Off Confidential: 89.11.22 District Geologist, Kamloops Nicola MINING DIVISION: Kamloops ASSESSMENT REPORT 18048 -PROPERTY: WRT 50 26 00 120 40 00 LAT LONG LOCATION: UTM 10 5589195 665712 NTS 092I07E WRT 1,WRT 4,WRT 9-10,WRT 12-15 CLAIM(S): Western Res. Tech. OPERATOR(S): Crooker, G.F.; Rockel, E.R. AUTHOR(S): 1988, 73 Pages **REPORT YEAR:** COMMODITIES SEARCHED FOR: Copper, Zinc, Gold, Silver GEOLOGICAL The property is underlain by Upper Triassic Nicola Group volcanic -SUMMARY: rocks and derivatives. Shears and fractures contain copper and silver values. A carbonate-quartz-mariposite zone on the Meadow Creek Grid has yielded grab samples with gold values of up to 0.282 ounces per ton. A flow-pyroclastic contact has potential for stratabound massive sulphide mineralization. WORK Geological, Geochemical, Geophysical, Physical -DONE: 200.0 ha GEOL Map(s) - 1; Scale(s) - 1:25006.0 km IPOL Map(s) - 1; Scale(s) - 1:300016.2 km LINE 31 sample(s) ;ME ROCK 403 sample(s) ;ME SOIL Map(s) - 2; Scale(s) - 1:2500092ISE012,092ISE147,092ISE155,092ISE MINFILE:

# GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

| 1003  | (1-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KU.                                                                                                             |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| AC 11 | 代書:<br>11番4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · .                                                                                                             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |
|       | where the second s | The second statement of the second |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |

on the

# WRT 1 to 6 and 9-15 Claims

Logan Lake Area Kamloops and Nicola Mining Divisions

92I-7E (50° 26' N. Lat., 120° 40' W. Long.) FILMED

for

| WESTERN RESOURCE TECHNOLOGIES INC.<br>6571 Cooney Road<br>Richmond, B.C.<br>V6Y 2J7<br>(Operator) | RANCH<br>EPORT            |  |
|---------------------------------------------------------------------------------------------------|---------------------------|--|
| GRANT F. CROOKER<br>(Owner)                                                                       |                           |  |
| by                                                                                                |                           |  |
| GRANT F. CROOKER, B.Sc., F.G.A.C.<br>Geologist                                                    |                           |  |
| and                                                                                               | a si su la<br>La sa sa sa |  |
| EDWIN R. ROCKEL, B. Sc., P.Geoph., P.E<br>Geophysicist                                            | ng,                       |  |

November, 1988

# TABLE OF CONTENTS

|                                                                                                                                                                          | FAG                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| SUMMARY AND RECOMMENDATIONS                                                                                                                                              | 1                     |
| 1.0 INTRODUCTION                                                                                                                                                         | 3                     |
| <ul> <li>1.1 General</li> <li>1.2 Location and Access</li> <li>1.3 Physiography</li> <li>1.4 Property and Claim Status</li> <li>1.5 Area and Property History</li> </ul> | 3<br>3<br>3<br>4<br>4 |
| 2.0 EXPLORATION PROCEDURE                                                                                                                                                | 7                     |
| 3.0 GEOLOGY AND MINERALIZATION                                                                                                                                           | 9                     |
| 3.1 Regional Geology<br>3.2 Claim Geology<br>3.3 Mineralization<br>3.4 Prospecting                                                                                       | 9<br>9<br>10<br>11    |
| 4.0 GEOCHEMISTRY                                                                                                                                                         | 12                    |
| 4.1 Soil Geochemistry                                                                                                                                                    | 12                    |
| 5.0 GEOPHYSICS                                                                                                                                                           | 15                    |
| 5.1 Dupont Lake Grid                                                                                                                                                     | 15                    |
| 6.0 DISCUSSION                                                                                                                                                           | 16                    |
| 6.1 Dupont Lake Grid<br>6.2 Rhyolite Grid<br>6.3 Meadow Creek Grid                                                                                                       | 16<br>16<br>16        |
| 7.0 CONCLUSIONS AND RECOMMENDATIONS                                                                                                                                      | 18                    |
| 8.0 REFERENCES                                                                                                                                                           | 19                    |
| 9.0 CERTIFICATES OF QUALIFICATIONS                                                                                                                                       | 21                    |

# APPENDICES

Appendix I - Certificates of Analysis Appendix II - Geophysical Equipment Specifications Appendix III - Geophysical Data Appendix IV - Rock Sample Descriptions Appendix V - Cost Statement

# ILLUSTRATIONS

| FIGURE |                                                   | PAGE         |    |
|--------|---------------------------------------------------|--------------|----|
| 1.     | Property Location Map                             | follows page | 2  |
| 2.     | Claim Location Map                                | follows page | 4  |
| 3.     | Compilation Map                                   | follows page | 6  |
| 4.     | Property Geology                                  | follows page | 9  |
| 5.     | Geology - Meadow Creek Grid                       | follows page | 10 |
| 6.     | Geology - Rhyolite Grid                           | pocket       |    |
| 7.     | Soil Geochemistry Au & Ag,<br>- Meadow Creek Grid | pocket       |    |
| 8.     | Soil Geochemistry Cu & Zn,<br>- Meadow Creek Grid | pocket       |    |
| 9.     | Soil Geochemistry Au, Ag,Cu, Zn<br>- JHC Showing  | follows page | 13 |
| GP-1   | Chargeability Map<br>- Dupont Lake Grid           | follows page | 15 |
| GP-2   | Resistivity Map<br>- Dupont Lake Grid             | follows page | 15 |
| GP-3   | I.P. Pseudosections<br>- Dupont Lake Grid         | pocket       |    |

F:

#### SUMMARY AND RECOMMENDATIONS

The WRT property consists of 13 mineral claims covering 204 units in the Kamloops and Nicola Mining Divisions. The property is located approximately 10 kilometers east of Logan Lake in southern British Columbia. Western Resource Technologies Inc. of Richmond B.C. holds the option on the property from Grant Crooker of Keremeos, B.C..

Upper Triassic Nicola volcanic and sedimentary rocks with minor intrusives underlie the claims. Mining has been carried out on the property from the late 1880's, with six mineral occurrences having been documented. These include the Bertha/Molly, Plug (Meadow Creek), Chatrands, JHC, Rhyolite and Pom Pom.

The 1988 exploration program outlined in this report covers work on the Meadow Creek, Dupont Lake and Rhyolite Grids, and JHC and Pom Pom Showings. On the Meadow Creek Grid, fill-in lines and soil geochemical sampling as well as prospecting and geological mapping were carried out. A number of Induced Polarization lines were cut on the Dupont Lake Grid, and an Induced Polarization survey carried out. Geological mapping and prospecting were carried out on the Rhyolite Grid and a number of other areas of the property.

The program on the Meadow Creek Grid outlined a number of weak to moderate gold geochemical anomalies with values of up to 700 ppb gold. Several silver and copper geochemical anomalies were also outlined. Prospecting and sampling of the old trenches at the central revealed weak west zone to moderate carbonate+quartz±mariposite alteration over several hundred meters, with a grab sample (88-23) yielding gold and silver 7500 ppb (0.282 oz/ton) and 67.5 ppm respectively. values of Several soil samples taken from the same trench as sample 88-23 gave 70 and 150 ppb gold. Two grab samples taken of quartz±carbonate±mariposite schist with galena and sphalerite south central zone yielded 605 and 482 ppb gold, and from the 165.1 and 258.4 ppm silver.

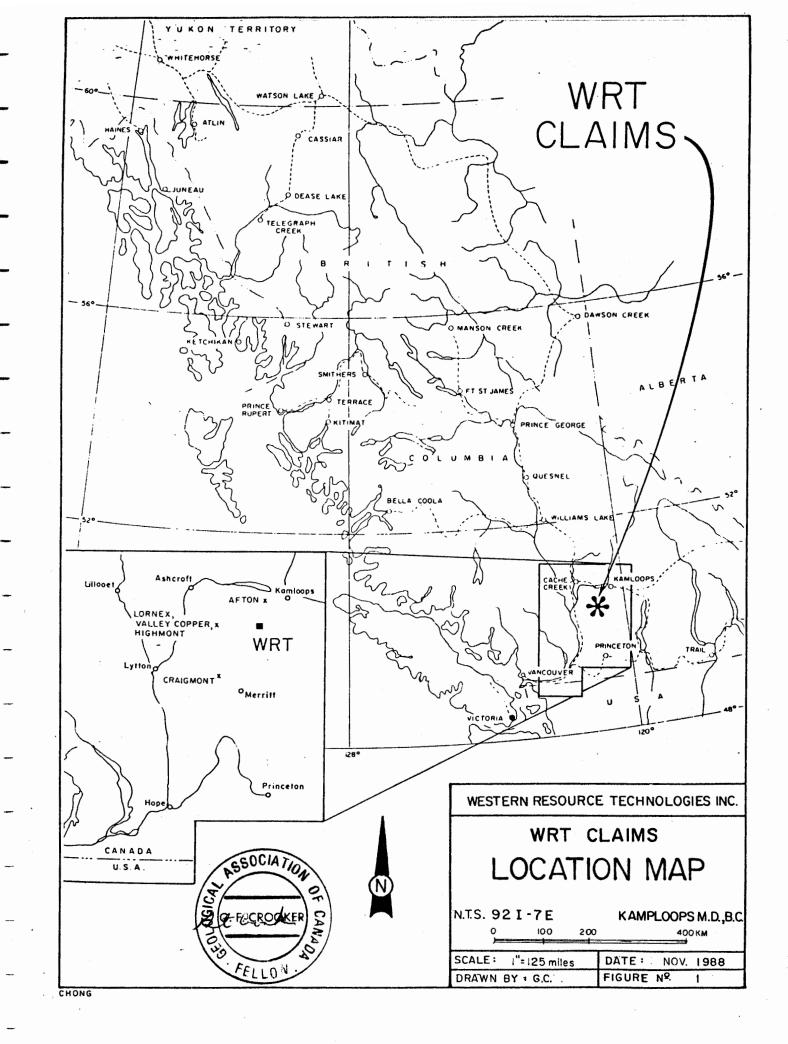
On the Rhyolite Grid, investigation of a 1987 copper-zinc geochemical anomaly indicated a northwest trending zone of shearing with quartz and carbonate veinlets. Sampling of the zone gave weakly anomalous values of gold, silver, copper and zinc. The flow-pyroclastic contact at the Rhyolite Grid remains a target for massive sulphide mineralization.

The I.P. Survey on the Dupont Lake Grid located a number of high chargeability zones. The best target is the chargeability high in the vicinity of 500E on line 366S, with a secondary target located between 50E and 150E on line 366S. These chargeability highs are believed to be caused by disseminated sulphides such as pyrite and chalcopyrite within bedrock.

1

The property contains targets for both precious and base metals. Additional work is warranted on the Meadow Creek, Dupont Lake and Rhyolite Grids as a result of the favourable results from the 1988 program. Recommendations are as follows:

1) The I.P. survey should be completed on the Dupont Lake Grid to close off the high chargeability zones. These zones should then be evaluated by surface prospecting, and if necessary trenching and/or drilling.


2) On the the Rhyolite Grid, trenching should be carried out over the poorly exposed zones with weakly anomalous gold, silver, copper and zinc values to fully evaluate them.

3) The geochemical anomalies and old trenches on the west central and south central zones of the Meadow Creek Grid should be evaluated by I.P. surveying, with follow up trenching and/or drilling.

5SOCIA) submitted, pectfuN GLF/CROOK , B,Sc., F.G.A.C., Croc

Edwin R. Rockel, B.Sc., P.Geoph., P.Eng., Geophysicist

| PERMIT TO PRACTICE<br>INTERPRETEX RESOURCES LTD. |
|--------------------------------------------------|
| Signature                                        |
| Date Nov. 7, 1988                                |
| PERMIT NUMBER: P 3100                            |
| The Association of Professional Engineers,       |
| Geologists and Geophysicists of Alberta          |



## **1.0 INTRODUCTION**

#### 1.1 GENERAL

Field work was carried out on the WRT Claims by Grant Crooker, Geologist and two field assistants. The work program consisted of cutting IP lines on the Dupont Lake Grid and extending the grid and soil sampling on the Meadow Creek Grid. Geological mapping and prospecting were carried out on the Rhyolite and Meadow Creek Grids, as well as other areas of the property.

A field crew from Interpretex Resources carried out the Induced Polarization survey.

#### 1.2 LOCATION AND ACCESS

The property (Figure 1) is located approximately 10 kilometers east of Logan Lake in southern British Columbia. The property lies between 50°25' and 50°28' north latitude and 120°35' and 120°44" west longitude (NTS 921-7E).

Excellent access is given to the property by a network of roads. The Logan Lake-Kamloops Highway passes along the northern border of the claims and the Coquihalla Highway passes along the eastern border of the claims. Numerous two wheel drive and four wheel drive roads built by mining, logging and ranching interests cover the entire claim block.

## **1.3 PHYSIOGRAPHY**

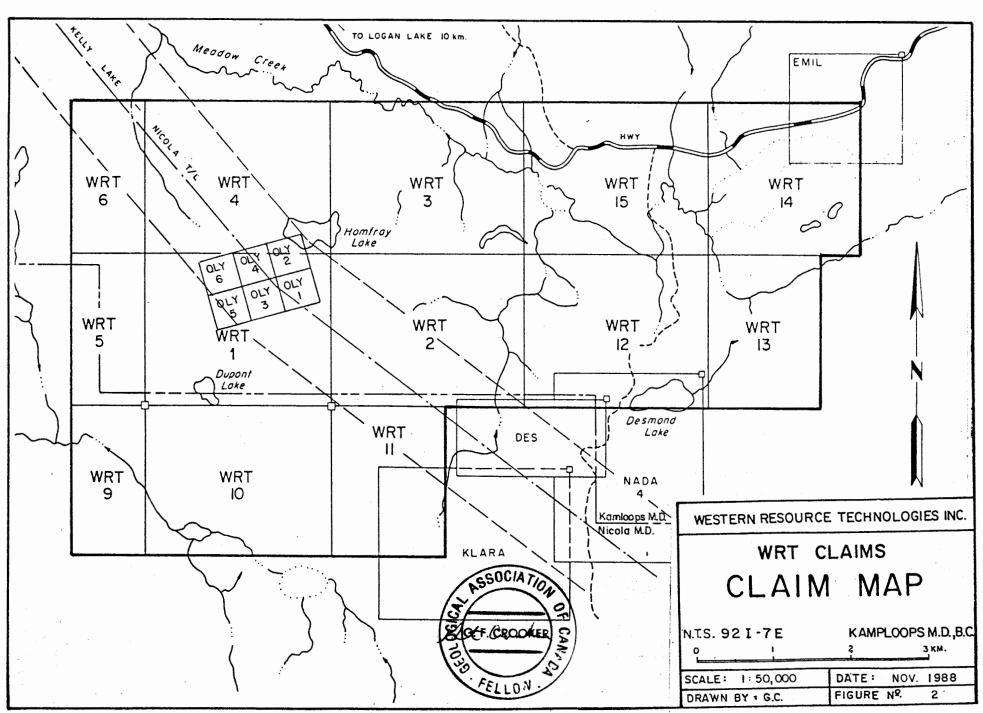
The property is located in the Interior Plateau of southern British Columbia. Topography is gentle to moderate with several steeper hills and elevation varies from 1100 to 1400 meters above sea level. A number of creeks drain the area and numerous lakes and swamps are found on the property. Snowfall is not excessive and water is usually available from the lakes and swamps.

Vegetation varies from open grassy meadows to a forest cover of jackpine and fir trees.

3

#### **1.4 PROPERTY AND CLAIM STATUS**

The WRT Claims (Figure 2) are owned by Grant Crooker of Keremeos, B.C. and are under option to and operated by Western Technologies Inc., 6571 Cooney Road, Richmond B.C., V6Y 2J7. The property consists of 13 claims covering 204 units.


| Clai  | m  | Units | Mining<br>Division | Record<br>Number | Record<br>Date | Expiry*<br>Date |
|-------|----|-------|--------------------|------------------|----------------|-----------------|
| WRT   | 1  | 20    | Kamloops           | 006179           | 07/05/85       | 07/05/91        |
| WRT : | 2  | 20    | Kamloops           | 006180           | 07/05/85       | 07/05/90        |
| WRT . | 3  | 20    | Kamloops           | 006181           | 07/05/85       | 07/05/90        |
| WRT   | 4  | 20    | Kamloops           | 006182           | 07/05/85       | 07/05/92        |
| WRT   | 5  | 8     | Kamloops           | 006183           | 07/05/85       | 07/05/91        |
| WRT   | 6  | 8     | Kamloops           | 006184           | 07/05/85       | 07/05/91        |
| WRT   | 9  | 8     | Nicola             | 1614             | 07/05/85       | 07/05/91        |
| WRT : | 10 | 20    | Nicola             | 1615             | 07/05/85       | 07/05/91        |
| WRT 1 | 11 | 12    | Nicola             | 1616             | 07/05/85       | 07/05/91        |
| WRT 1 | 12 | 20    | Kamloops           | 006185           | 07/05/85       | 07/05/91        |
| WRT : | 13 | 12    | Kamloops           | 006186           | 07/05/85       | 07/05/90        |
| WRT : | 14 | 16    | Kamloops           | 006187           | 07/05/85       | 07/05/90        |
| WRT   | 15 | 20    | Kamloops           | 006188           | 07/05/85       | 07/05/91        |

\* Upon Acceptance of this report

#### 1.5 AREA AND PROPERTY HISTORY

The area encompassed by a triangle with apices at Ashcroft, Kamloops and Merritt has been, over the past century the scene of intense exploration activity. This activity culminated with the discovery and development of the porphyry copper molybdenum mines in the Highland Valley, the Craigmont mine near Merritt and the Afton mine near Kamloops. Earlier smaller mines with good copper-gold values were worked south of Kamloops Lake.

Prospecting and development has been carried out on the WRT Claims for almost 100 years. The documented showings on the property are the Bertha/Molly, JHC, Pom Pom, Chatrandts and Plug. Trenching, shaft sinking, drilling, prospecting, sampling and geophysical and geochemical surveys have been carried out on the property. Unfortunately most of the pertinent information from this work was not documented or has been lost.



I

ł

Í.

CHONG

# Bertha/Molly Showing

This showing was first staked in 1888 by Wright and Fletcher. Α shaft was sunk on the Main Showing (No. 1 Showing) and lodes 3 feet to 4.5 feet in thickness were discovered. In 1928 Meadow Creek Mines worked the Number 1 Showing and a few tons of high grade copper ore were sorted for shipment. Dunmore Mines Ltd. carried out road building, trenching and diamond drilling in 1954. A small mill was erected but the supergene copper minerals were not amenable to gravity concentration. Dunmore Mines reported drilling 17 diamond drill holes with no information retained but F.J. Hemsworth reported in 1957 that the holes encountered only sparse mineralization.

Highhawk Mines Ltd. and Consolidated Standard Mines Ltd. acquired ground in the vicinity in 1972. Approximately 17 line miles of grid was established northwest of Dupont Lake to encompass Showings No.2 and No.4. Soil geochemical and Induced Polarization surveys were conducted and two diamond drill holes totalling 750 feet were drilled to test the IP anomalies flanking copper geochemical responses. Both holes encountered fracture related and disseminated pyrite with no visible copper mineralization. The holes were not assayed and the claims were allowed to lapse.

# JHC Showing

Vanex Minerals Ltd. acquired claims covering the JHC showing in 1958. They conducted magnetic surveys and physical work under the direction of Hill, Stark and Associates, Consulting Engineers. In 1959 Vanex drilled two holes in the JHC Showing area:

Hole No. 1

This hole was located approximately 3000 feet north of Homfray Lake and was drilled verticaly to a depth of 358 feet to test a magnetic high. The lower portion of the hole encountered a silicious, altered grey-green rock with considerable pyrite. No assays were reported but the recommendation was made to extend the hole to 1000 feet.

Hole No. 2

This hole was located on the west shore of Homfray Lake and was drilled at minus 45 degrees to a depth of at least 293 feet. Altered volcanics were noted but no mineralization was reported and no reason was given for drilling the hole.

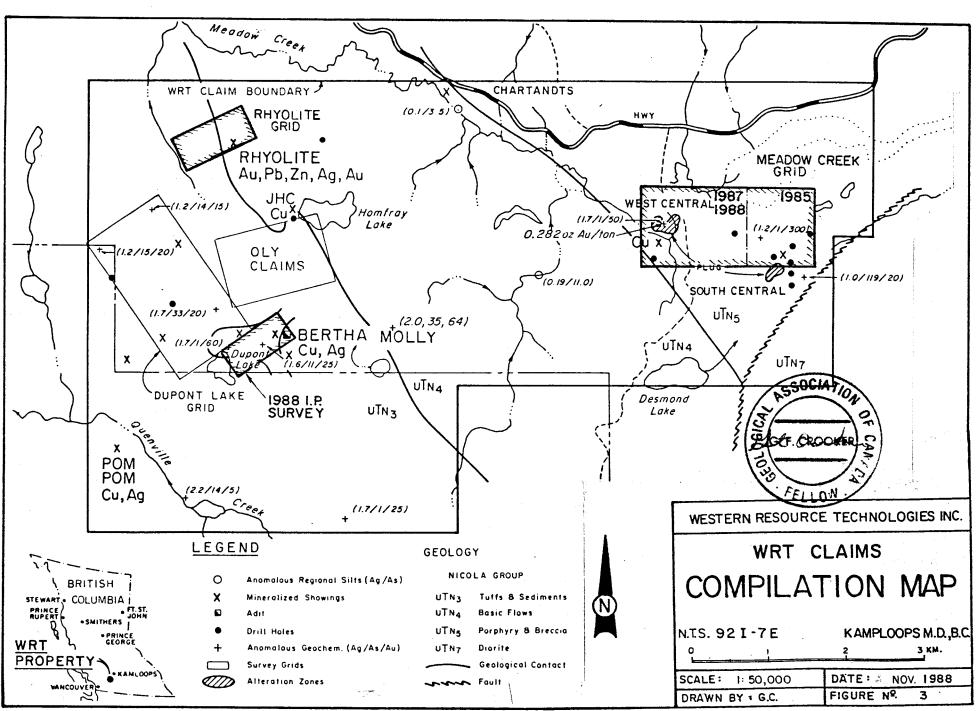
5

Craigmont Mines Limited staked claims in the area of the JHC showing in 1970. A small survey consisting of geological mapping, geochemical sampling and magnetic and IP surveying was conducted. Two holes totalling 800 feet were drilled but the location and results of the drilling are unknown.

# Plug Showing

In 1972 Texada Mines Ltd. acquired the claims in the area of the Plug showing. Texada conducted geological mapping, magnetic and induced polarization surveying and soil geochemical sampling (Cu, Zn, Ag) over 14 line miles of grid. The coincidental targets were percussion drilled with eight holes totalling 1400 feet. The results are not documented and presumed to be unsuccessful in locating ecomomic concentrations of copper.

#### Pom Pom Showing


Newmont Mining Corporation of Canada staked the Pom Pom claims in 1973 after copper mineralization grading 0.17% Cu was discovered. A small grid was established and mapping, geochemical sampling and magnetic and IP surveying (one line mile) were conducted. Follow-up investigations were not conducted.

#### Chatrandts Showing

The Minister of Mines Report for 1916 describes the showing as consisting of several deep open cuts and a 40 foot long adit. The location is not well documented and no further information is available on the showing.

The 1985 program consisted of silt sampling all drainages on the claims, and establishing grids over the Bertha/Molly and Plug showings. Soil and rock geochemical sampling, prospecting and magnetic and VLF EM surveying were carried out over the grids. Anomalous copper, lead, zinc, gold, silver and arsenic values were found in silt and soil samples. As well, a number of VLF EM conductors and magnetic trends were found.

During 1987 work was carried out over the Rhyolite and Meadow Creek Grids. This program consisted of soil sampling, VLF EM and magnetometer surveying, geological mapping and prospecting. On the Meadow Creek Grid several gold soil geochemical anomalies were outlined with values up to 700 ppb and widespread quartz-carbonate-mariposite alteration noted in several old trenches. A north trending zinc-copper soil geochemical anomaly was outlined on the Rhyolite Grid.



CHONG

ł

## **2.0 EXPLORATION PROCEDURE**

During this program fill-in lines and soil sampling were carried out on the Meadow Creek Grid and IP lines cut on the Dupont Lake Grid. The locations of the grids and showings are shown on figure 3.

# GRID PARAMETERS

Meadow Creek Grid

-baseline direction north-south -survey lines perpendicular to baseline -survey line separation 50 meters -survey station spacing 25 meters -survey total - 8.0 kilometers (flagged only)

JHC Showing

-baseline direction east-west -survey lines perpendicular to baseline -survey line separation 150 meters -survey station spacing 25 meters -survey total - 1.0 kilometers (flagged only)

Dupont Lake Grid

-baseline direction 145°-325° -survey lines perpendicular to baseline -survey line separation 122 meters -survey station spacing 25 meters -survey total - 7.2 kilometers (cut IP lines, 1+ meter wide)

#### **GEOCHEMICAL SURVEY PARAMETERS**

Meadow Creek Grid

-survey line separation 50 meters -survey sample spacing 25 meters -survey totals - 13.0 kilometers - 428 soil samples - 24 rock samples - 348 soil samples analyzed by 12 element ICP and for Au -24 rock samples analyzed by 12 element ICP and for Au -sample depth 10 to 25 centimeters -sample taken from brown B horizon JHC Showing

-survey line separation 150 meters
-survey sample spacing 25 meters
-survey totals - 1.0 kilometers
- 42 soil samples
-42 soil samples analyzed by 12 element ICP and for Au
-sample depth 10 to 25 centimeters
-sample taken from brown B horizon

All samples were sent to Min-En Laboratories Ltd., 705 West 15th Street, North Vancouver, B.C. for geochemical analysis. Laboratory techniques for geochemical analysis consists of preparing samples by drying at 95° C, and seiving or grinding to minus 80 mesh. A 12 element ICP analysis, and Au (aqua-regia digestion, atomic adsorption finish) are then carried out on the samples.

The soil geochemical data was plotted on figures 7 through 9 at a scale of 1:2500.

# **GEOPHYSICAL SURVEY PARAMETERS**

Dupont Lake Grid

-Induced Polarization Survey -survey line separation 122 meters -survey station spacing 25 meters -survey totals - 6.0 kilometers -Huntec Mk IV induced polarization receiver -Huntec Mk II 2.5 KW transmitter -pole-dipole array -electrode spacing - a = 25 meters, n = 1 to 6

Induced polarization and resistivity data have been presented as Fraser Filter contours on plan maps (figures GP-1 and GP-2 respectively) and in the form of pseudosections on figure GP-3.

## 3.0 GEOLOGY AND MINERALIZATION

# 3.1 REGIONAL GEOLOGY

The property lies within the Intermontane Belt of the Canadian Cordillera. Triassic Nicola volcanics underlie the claims and are in contact with the Jurassic Guichon Batholith to the west and the Jurassic Nicola Batholith to the east.

#### 3.2 CLAIM GEOLOGY

The property is underlain by the Nicola Group volcanics of Upper Triassic age (Figure 4). The rocks are subdivided into three sub-units that seperate the property into three northwest trending rock domaims.

#### UTN3 - Western Portion

Plagioclase, plagioclase-augite intermediate pyroclastic and epiclastic breccia, conglomerate, tuff, sandstone, local shale; carbonate clasts common. Local augite porphyry bodies probably feeders to volcanics. These rocks host the Bertha/Molly and Pom Pom Showings.

UTN4 - Central Portion

Aphanitic pillowed basic flows. This unit is in contact with UTN3. The contact zone hosts the Rhyolite and JHC Showings.

#### UTN5 - Eastern Portion

Augite porphyry, augite-plagioclase porphyry volcaniclastic breccia and tuff; interbedded argillite. This unit contains the Chartandts's Showing along its contact with the UTN4. The Plug (Meadow Creek Grid) Showing is associated with a quartz feldspar porphyry within the unit.

#### Rhyolite Grid

Geological mapping was carried out on the Rhyolite Grid (figure 6). The area is mainly underlain by a grey, green or black amygdaloidal basalt (unit 1). Varicoloured calcite amygdules ranging from 1 to 6 mm in diameter occur within an aphanitic groundmass. Several beds of maroon to green volcaniclastic breccia (unit 2) occur within the basalt. Maroon, subrounded to subangular clasts ranging up to 30 cm long by 15 cm wide occur within an aphanitic groundmass. Two northwest trending felsic dykes (unit 3) occur along the main road. The dykes appear to be 3 to 4 meters wide, and are light grey-green, aphanitic and siliceous. Pyrite content varying from 1/2 to 5% occurs within the felsic dyke.



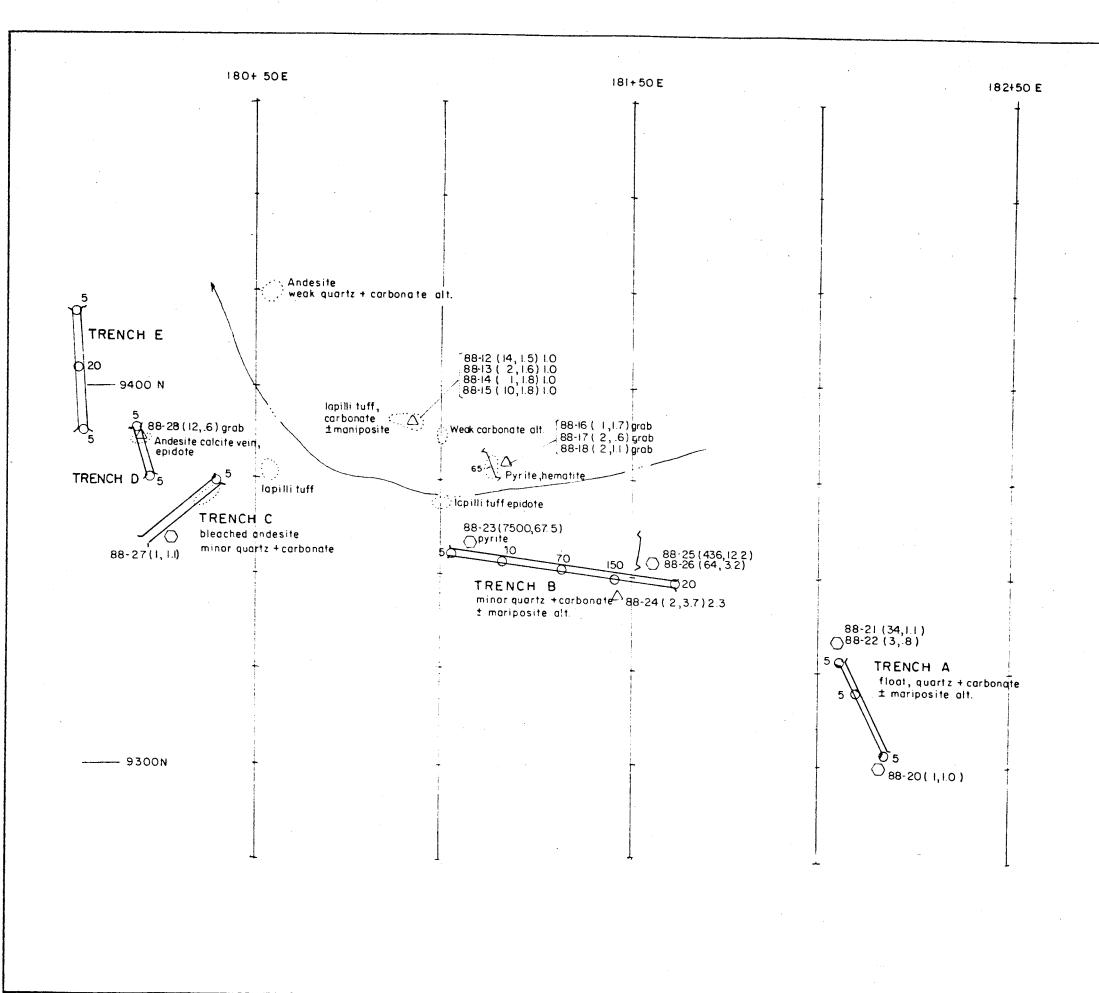
|   | _  |  |
|---|----|--|
|   |    |  |
|   |    |  |
|   |    |  |
| - |    |  |
|   |    |  |
|   |    |  |
|   | _  |  |
|   |    |  |
|   |    |  |
|   |    |  |
|   |    |  |
|   |    |  |
|   |    |  |
| - | -  |  |
|   |    |  |
|   |    |  |
| - | ~~ |  |
|   |    |  |
|   |    |  |
|   |    |  |
|   |    |  |
|   |    |  |

#### 3.3 MINERALIZATION

The mineralization on the property consists of sulphide minerals related to shears, fractures and disseminations within a variety of rock types. Minerals found at the showings include pyrite, chalcopyrite, cuprite, bornite, chalcocite, malachite and azurite. Various alteration patterns such as chlorite-epidote, calcite, silica and mariposite-carbonate occur on the property.

# Meadow Creek (Plug) Showing

Mineralization at the "west central" zone (Figure 5) along Meadow Creek consists of carbonate+quartz±mariposite alteration of andesite, lapilli tuff and limey sediments. Outcrop is scarce in the area and several old trenches have sloughed in. However weak to moderate carbonate±carbonate alteration with lesser mariposite was noted at a number of locations. The mariposite alteration is significant as it is often associated with precious metal mineralization.

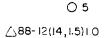

A number of samples of carbonate altered material were taken from the west central zone and several showed anomalous values in gold and silver. The most significant sample (88-23, grab) was taken from trench B and gave 7500 ppb Au (0.282 oz/ton) and 67.5 ppm Ag. A second sample (88-25, grab) taken from the trench also gave anomalous values of 436 ppb Au and 12.2 ppm Ag. Most of trench B has sloughed in and the mineralization was not located in outcrop.

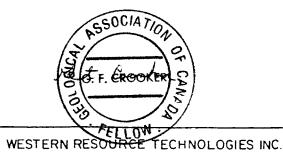
Two samples of float were taken from the "south central" zone near an old drill site. A quartz±carbonate±mariposite schist contains galena and sphalerite with minor chalcopyrite. The samples gave anomalous gold values of 605 and 482 ppb and silver values of 165.1 and 258.4 ppm (5 and 7.5 ozs/ton).

#### Rhyolite Showing

Mineralization at the Rhyolite Grid (Figure 6) occurs near a contact within Nicola volcanic rocks. flow-pyroclastic Α copper-zinc geochemical anomaly was outlined by the 1987 program. Mineralization at 075E is related to narrow 100N and quartz-carbonate veinlets and shearing within basalt. Several old trenches indicate the zone strikes approximately 335°-345° and dips steeply west. The zone is poorly exposed and of unknown dimensions. Pyrite is present locally in concentrations of up to 20%, with minor chalcopyrite, azurite, malachite and sphalerite. Sampling indicated weakly anomalous gold (41 ppb), silver (4.1 ppm), copper (3770 ppm) and zinc (2183 ppm) values.

The proximity of these showings to the flow-pyroclastic contact makes the area a target for stratabound massive sulphide mineralization.





# LEGEND

Creek



Trench Shearing & dip Grid station Outcrop Soil sample, Au ppb Bedrock Nº. (Auppb, Agppm) width, m. ○ 88-5 (10,1.1) Float " ( " " , " " )







| 0 20            | 40 60KM.        |
|-----------------|-----------------|
| SCALE: 1: 1000  | DATE: NOV. 1988 |
| DRAWN BY + G.C. | FIGURE Nº 5     |

## 3.4 PROSPECTING

Prospecting was carried out over the Meadow Creek and Rhyolite Grids and the JHC and Pom Pom? Showings.

Traverses were made along all lines on the Meadow Creek Grid. However outcrop is virtually nonexistant with the exception of the old trenching at the west central and south central zones.

Very little outcrop is exposed in the area around the JHC Showing, and no mineralization was noted.

Prospecting at the Pom Pom? Showing located a number of old trenches with scattered outcrops of maroon volcanics. Minor fracturing with epidote and calcite was noted in several locations. One sample of float containing white calcite veinlets with chalcocite and malachite gave 17552 ppm Cu. A number of soil samples were collected from the trenches but they did not show anomalous precious or base metal values.

#### 4.0 GEOCHEMISTRY

#### 4.1 SOIL GEOCHEMISTRY

The fill-in sampling on the Meadow Creek Grid from the 1988 program was plotted on the 1987 base maps. This sampling caused the configurations of the 1987 anomalies to be modified somewhat.

Background and anomalous values were chosen as follows:

| ELEMENT | BACKGROUND | ANOMALOUS |
|---------|------------|-----------|
| Au ppb  | 5          | ≥ 10      |
| Ag ppm  | .92        | ≥ 1.4     |
| Cu ppm  | 29         | ≥ 44      |
| Zn ppm  | 44         | ≥ 66      |

Meadow Creek Grid

Gold

Gold values ranged from 5 to 590 ppb and a number of weak to moderate anomalies were outlined. Clusters of 10 ppb values with at least one value greater than 10 ppb were considered anomalies.

Anomaly Au-1 occurs north of Meadow Creek in an area with no outcrop. The highest value within the anomaly is 590 ppb.

Anomaly Au-2 is a weak anomaly occuring along the southern part of the grid. It extends intermittently over a strike length of 1100 meters, and has one value of 175 ppb within it.

Anomaly Au-3 is a weak east-west anomaly occuring around the trenching on the west central zone (figure 3), and is presumably associated with the carbonate±quartz±mariposite alteration exposed there. Two soil samples taken from trench B yielded 70 and 150 ppb Au respectively.

Anomaly Au-4 is a small anomaly containing one 1987 sample which gave 615 ppb gold. Prospecting in the area in 1988 located a small amount of carbonate float, although it did not contain anomalous gold or silver values.

Anomaly Au-5 is a small anomaly containing one 1987 sample which gave 700 ppb gold.

#### Silver

Silver values ranged from 0.10 to 4.9 ppm and three small anomalies were indicated.

Anomaly Ag-1 is a four sample anomaly which occurs immediately south of the trenching on the west central zone. It may represent an extension of the carbonate alteration and associated precious metal mineralization in the trenches.

Anomaly Ag-2 is a small anomaly occuring within part of the Au-2 anomaly. It occurs coincidentally with a 175 ppb gold value.

Anomaly Ag-3 is a small anomaly occuring north of the trenching on the west central zone, and again may represent an extension of the alteration and associated precious metal mineralization in the trenches.

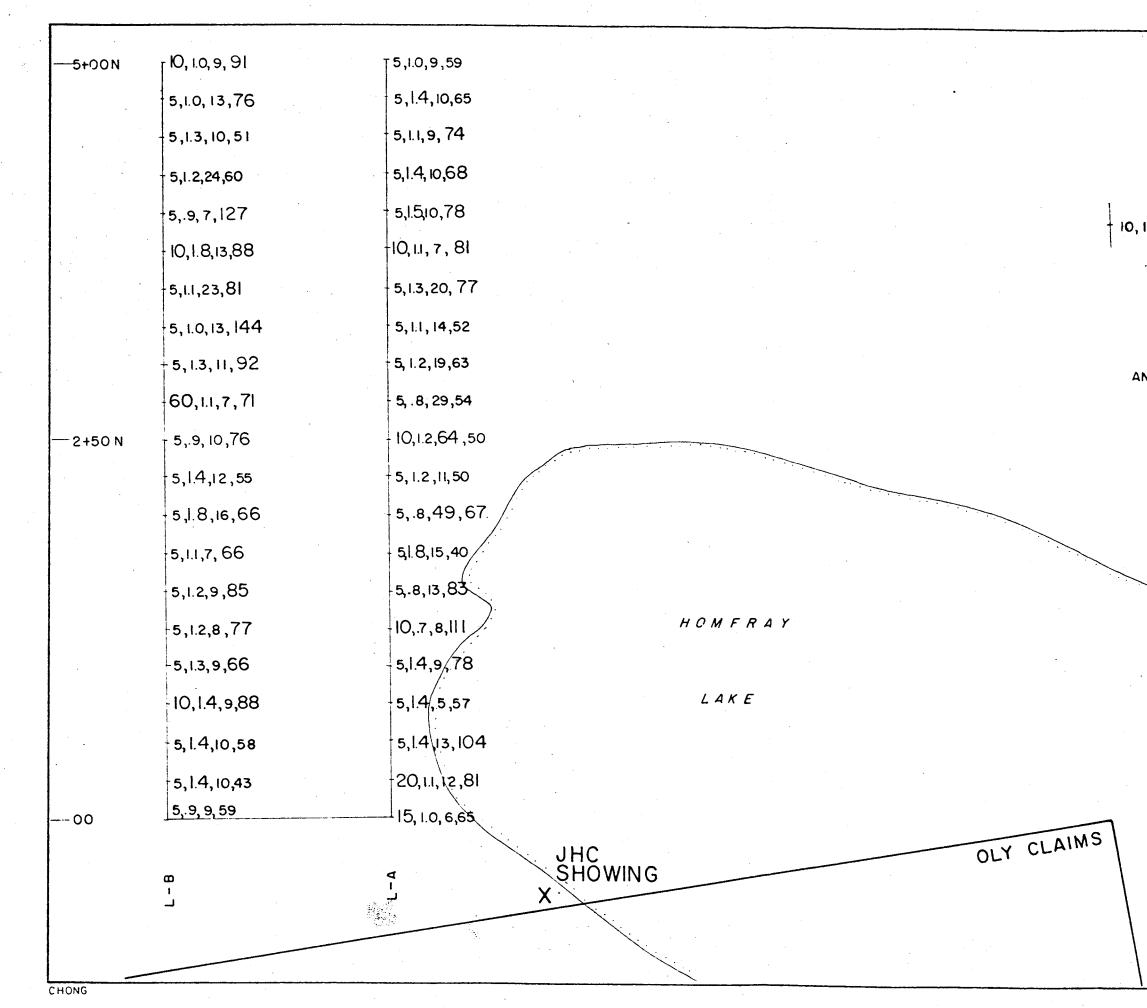
#### Copper

Copper values ranged from 4 to 166 ppm and four anomalies were outlined.

Anomaly Cu-1 occurs north of the trenching on the west central zone and appears to follow the Meadow Creek drainage. It appears to be at least in part caused by organic samples taken from the creek bottom.

Anomaly and Cu-2 was outlined by the 1987 survey and no cause is apparent for the anomaly.

Anomalies Cu-3 and Cu-4 occur in the south and central portions of the grid and appear to represent a northwest trending zone.

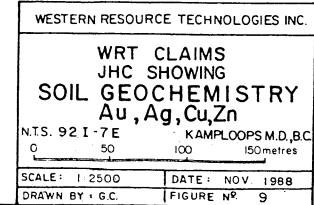

#### Zinc

Zinc values ranged from 3 to 119 ppm, and no anomalies were outlined by the survey.

With the exception of the trenching at the west central zone and a few scattered outcrops along Meadow Creek in the same area, no outcrop is exposed within the grid. There are no obvious causes for the geochemical anomalies.

#### JHC Showing


Two short lines of soil samples were taken west of Homfray Lake in the vicinity of the JHC Showing. A few scattered values of gold, silver and copper were anomalous. A large number of samples were anomalous for zinc.




10, 1.4, 50, 75 SOIL SAMPLE Au in ppb, Ag, Cu, Zn in ppm

> Au >10 ppb anomalous Ag >14 ppm " Cu >44 '' '' Zn >66 '' ''

ANOMALOUS VALUES IN LARGE CASE NUMBERS



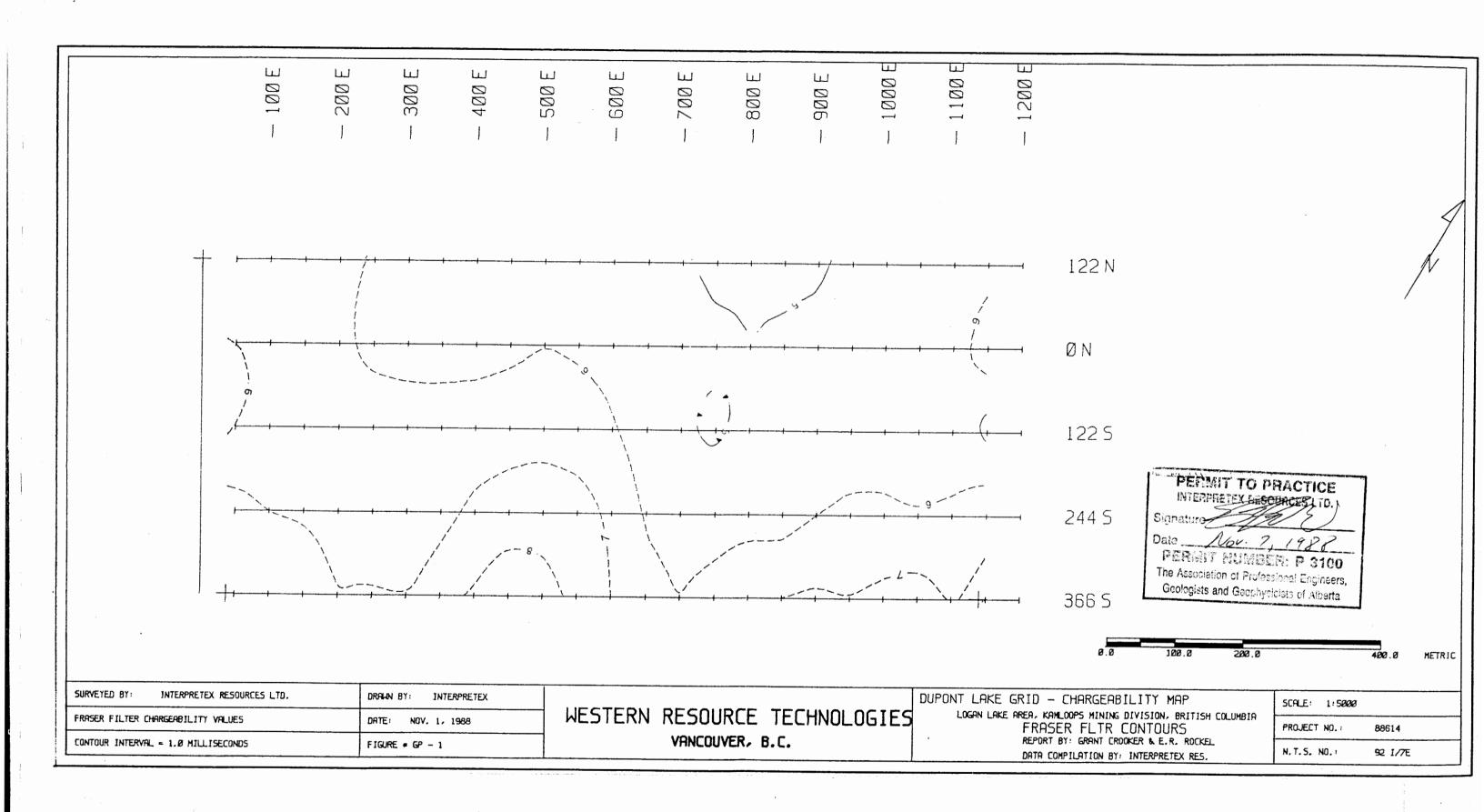


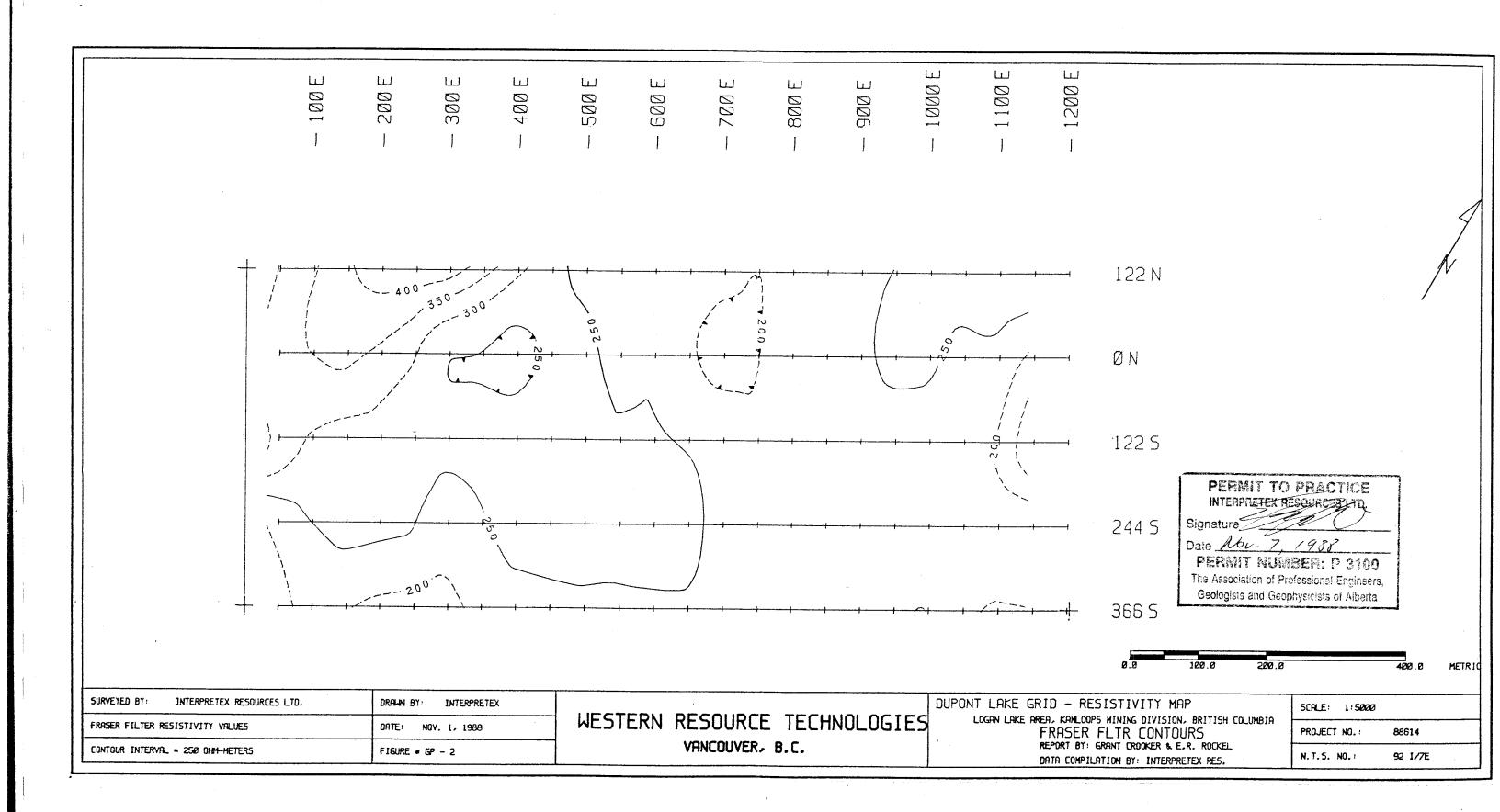
# **Correlation Coefficients**

The inter-element correlation coefficients from the 1987 survey indicated that the following elements have good correlation (in decreasing order):

-gold (very weakly) with boron and molybdenum -silver with cobalt, copper, arsenic, lead and antimony -copper with zinc, boron, barium, cobalt and silver -zinc with copper, boron, barium and lead

# 5.0 GEOPHYSICS


# 5.1 DUPONT LAKE GRID


This survey covers lines 366S, 244S, 122S, 0 and 122N from the baseline to 1200E. Induced polarization data showed a low background chargeability within a low resistive environment.

Contours of Fraser Filtered apparent chargeability values show a limited and low intensity zone of high chargeability in the vicinity of 500E on lines 366S, 244S, and 122S. Examination of pseudosection plots shows that this chargeable zone appears to be one of three or perhaps four seperate anomalous areas. These seperate zones are evident on line 366S and, along with the main zone at 500E, appear to fade out, possibly deepening to the north. The anomalous chargeability in this zone is believed to be caused by disseminated sulphides such as pyrite and chalcopyrite within bedrock.

Since the anomalous chargeability trends appear to be strengthening and coming closer to the surface toward the south, it is probable that additional survey to the south of line 366S will provide stronger chargeability values and will more clearly define the deeper zones.

A small chargeable body can be seen near surface on line 366S at about 100E. Lack of subsurface points near the beginning of the line prevents an estimation of its extent, however from data available, it appears that this feature has limited depth and lateral extent. This anomaly is probably caused by sulphides within bedrock as in the previous case.





# 6.0 DISCUSSION

#### 6.1 DUPONT LAKE GRID

From a geophysical standpoint the best target for follow-up is the high chargeability zone in the vicinity of 500E on line 366S. Initial follow-up work should involve surface examination of the high chargeability between stations 400E and 600E in order to determine if sulphide mineralization can be observed at surface. If overburden cover prevents observation of bedrock, then drilling should be considered. Before drilling takes place additional induced polarization survey coverage is recommended to the south of line 366S in order to determine the strike length of the zone and intensity of anomalous chargeability. Based on these new data additional drill locations may be planned.

Surface examination is also warranted on line 366S between station 50E and 150E to test for surface mineralization. Before drilling is considered, additional information regarding the size and extent of this feature is required. Additional I.P. survey data both to the west and to the south should be obtained.

#### 6.2 RHYOLITE GRID

Follow-up prospecting of a copper-zinc geochemical anomaly outlined by the 1987 program located a northwest trending zone of shearing with quartz and carbonate veinlets. Samples of the material gave weakly anomalous values in gold, silver, copper and zinc. As the zone is poorly exposed and of unknown dimensions, several trenches should be cut across the zone to throughly evaluate it.

#### 6.3 MEADOW CREEK GRID

Work on the Meadow Creek Grid has outlined a number of weak to moderate gold geochemical anomalies, along with silver and copper geochemical anomalies. Gold values in soils are as high as 700 ppb.

The west central zone appears to be the most significant at this time. Several sloughed trenches show strong carbonate±quartz±mariposite alteration and a grab sample of the material gave 7500 ppb gold (0.282 oz/ton) and 67.5 ppm silver. Two soil samples taken from the same trench as the anomalous rock sample gave gold values of up to 150 ppb gold. Lack of outcrop in the area makes evaluation of the zone difficult, and follow-up I.P. surveying, along with trenching and/or drilling will be needed to evaluate the zone. Several samples of quartz±carbonate mariposite schist float with galena and sphalerite were found on the south central zone. The samples gave anomalous gold values of 605 and 482 ppb and silver values of 165.1 and 258.4 ppm. The old trenches in the area have sloughed in, and I.P. surveying and trenching will be needed to evaluate this zone.

### 7.0 CONCLUSIONS AND RECOMMENDATIONS

The 1988 program was successful in further defining a number of precious and base metal geochemical anomalies on the Meadow Creek Grid. In addition, one rock sample from the west central zone gave 0.282 oz/ton gold.

The I.P. survey conducted on the Dupont Lake Grid showed a number of high chargeability zones which are believed to be caused by disseminated sulphides such as pyrite and chalcopyrite within bedrock.

Additional work is warranted on the Meadow Creek, Dupont Lake and Rhyolite Grids as a result of the favourable results from the 1988 program. Exploration should be continued for both precious and base metals. Recommendations are as follows:

1) The I.P. survey should be completed on the Dupont Lake Grid to close off the high chargeability zones. These zones should then be evaluated by surface prospecting, and if necessary trenching and/or drilling.

2) On the the Rhyolite Grid, trenching should be carried out over the poorly exposed zones with weakly anomalous gold, silver, copper and zinc values to fully evaluate them.

3) The geochemical anomalies and old trenches on the west central and south central zones of the Meadow Creek Grid should be evaluated by I.P. surveying, with follow up trenching and/or drilling.

GSOCIAT submitted, Re tfully GROOM B,Sc., F.G.A.C.,

Edwin R. Rockel, B.Sc., P.Geoph., P.Eng., Geophysicist PERMIT TO PRACTICE INTERFRETEX RESOURCES FID. Signature 1988 Vov. Date PERMIT NUMBER: P 3100 The Association of Professional Engineers, Geologists and Geophysicists of Alberta

#### 8.0 REFERENCES

<u>B.C. Dept. of Mines, GEM:</u> 1971 (pp294), 1972 (pp158, 181, 183), 1973 (pp 184, 186).

<u>B.C.M.M., Annual Reports:</u> 1888 (pp315), 1915 (pp 212), 1929 (pp217, 228), 1930 (pp195, 282), 1955 (pp35), 1956 (pp46), 1958 (pp29), 1959 (pp38, 143).

B.C. M.E.M.P.R. Mineral Inventory Map 92I (Ashcroft).

<u>Cockfield, W.E. (1948):</u> Geology and Mineral Deposits of Nicola Map-Area, Memoir 249.

<u>Crooker, G.F., and Rockel, E.R., (June 1986)</u>: Geochemical and Geophysical Report on the WRT 1 to 15 Claims, 92I/7E, for Western Resource Technologies, June 1986.

, (March 1988): Geological, Geochemical and Geophysical Report on the WRT 1 to 15, 92I-7E, for Western Resource Technologies.

Geological Survey of Canada: Map 886A, Nicola (East Half) 1961

<u>Geological Survay of Canada:</u> Bedrock Geology of Ashcroft (921) Map Area, G.F. 980.

<u>Hemsworth, F.J.,:</u> Report on the Dunmore Mines Property, Highland Valley Area.

<u>Hill, L.H., (March 1959):</u> Report Covering Geophysical and Physical work on 72 Claims of Vanex Holdings, Meadow Creek Area, Kamloops M.D..

<u>(June 1959):</u> Report on the Holdings of Vanex Minerals Limited.

Leith, H.C.B., (March 1959): Report of Visit to Meadow Creek Prospect, Vanex Holdings.

National Geochemical Reconnaissance Survey, 1981: 92I Ashcroft B.C., B.C. Ministry of Energy Mines and Petroleum Resources and Geological Survey of Canada.

Tough, T.R., (April 27, 1972): Geological Report on the Homfray Lake Property Kamloops Mining Division for Highhawk Mines Ltd. and Consolidated Standard Mines Ltd.

# Assessment Reports

Report

| Report<br>No. | Author                      | Company                                | Year | Type of<br>Work                         |
|---------------|-----------------------------|----------------------------------------|------|-----------------------------------------|
| 228           | McBeath, S.                 | Vanex<br>Minerals Ltd.                 | 1958 | Magnetometer<br>Survey                  |
| 234           | Hill, Henry                 | Vanex<br>Minerals Ltd.                 | 1958 | Magnetometer<br>Survey                  |
| 265           | Hill, Henry                 | Dunmore<br>Mines Ltd.                  | 1959 | Magnetometer<br>Survey                  |
| 266           | Hill, Henry                 | Vanex<br>Mines Ltd.                    | 1959 | Magnetometer<br>Survey                  |
| 3763          | White, G.E.                 | Consolidated<br>Standard<br>Mines Ltd. | 1972 | Geochemical<br>Survey                   |
| 3764          | White, G.E.                 | Consolidated<br>Standard<br>Mines Ltd. | 1972 | Induced<br>Polarization<br>Survey       |
| 4041          | Nordin, G.<br>Deleen, J.    | Texada Mines<br>Ltd.                   | 1972 | Soil Samples<br>Magnetometer<br>Survey  |
| 4042          | Scott, A.<br>Cochrane, D.R. | Texada Mines<br>Ltd.                   | 1972 | Induced<br>Polarization<br>Self-Potent. |
| 7268          | Sookochoff, L.              | Thunderbolt<br>Resources Ltd.          | 1979 | Magnetometer<br>VLF Surveys             |

# 9.0 CERTIFICATE OF QUALIFICATIONS

I, Grant F. Crooker, of Upper Bench Road, Keremeos, in the Province of British Columbia, hereby certify as follows:

- 1. That I graduated from the University of British Columbia in 1972 with a Bachelor of Science Degree in Geology.
- 2. That I have prospected and actively pursued geology prior to my graduation and have practised my profession since 1972.
- 3. That I am a member of the Canadian Institute of Mining and Metallurgy.
- 4. That I am a Fellow of the Geological Association of Canada.
- 5. That I am the owner of the WRT Claims.

Dated this  $7 \mathcal{L}^{h}$  day of  $\mathcal{N}^{o \cup a}$ , 1988, at Keremeos, in the Province of British Columbia.

SOCIATIO CRACK Grant Erooker, S.Sc., F.G.A.C. Consulting, Geologist

# CERTIFICATE OF QUALIFICATIONS

- I, Edwin Ross Rockel, hereby certify that:
- I am a Consulting Geophysicist and owner of Interpretex 1. Resources Ltd. of Box 48239 Bentall P.O., in the city of Vancouver, in the Province of British Columbia.
- 2. I currently reside at 6571 Cooney Rd., in the city of Richmond, in the Province of British Columbia.
- 3. I obtained a Bachelor of Science Degree in Geophysics and Geology in 1966 from the University of British Columbia.
- 4. I have been practicing my profession as an Exploration Geophysicist since 1967.
- 5. I am a Professional Geophysicist registered in the Province of Alberta.
- 6. I am a Professional Engineer registered in the Province of Saskatchewan.
- 7. I am a Certified Professional Geological Scientist registered in the United State For America.

Nov. 7, 1988 Date:

|     | INTERPRETEX 5000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|     | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|     | Date Nov. 7, 19PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Fdy | TIP ROSS ROCKET, B. SC. P.<br>B. SC. P. C. Strain P. Sc. P. Sc. P. Sc. P. Sc. P. P. Sc. P. P. Sc. P. P. Sc. P. Sc. P. | Geoph  |
| Buy | The Association of Professional Ecsinger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Geoph. |

# Appendix I

# CERTIFICATES OF ANALYSIS



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                           | <u> </u>                                                                                          | <u>nalytica</u>                                                          | <u>I Repor</u>                           | <u>t</u>                 |                                          |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------|--------------------------|------------------------------------------|
| °roject:WRT<br>➡ttention:G.<br>-                                   | . CROOKER                                                                                         |                                                                          |                                          |                          | -1370<br>PT.14/88<br>DCK & SOIL          |
|                                                                    | s Received<br>nitted by                                                                           |                                                                          |                                          |                          |                                          |
| Report on .                                                        | ании по ни и по на на п<br>на по на на по на на п<br>на по на | 403 SOILS,                                                               | 31 ROCKS                                 | талинаа С                | eochem Sample                            |
| ••••••••••••••••••••••••••••••••••••••                             |                                                                                                   |                                                                          |                                          |                          | Assay Sample                             |
| )opies sent                                                        | to:<br>1. GRANT C<br>2.<br>3.                                                                     | ROOKER, KEREMEOS,                                                        | B.C.                                     |                          |                                          |
| repared same<br>re<br>1ethods of a                                 | noles stored<br>jects stored                                                                      | h80(SOIL)<br>                                                            | scarded:                                 |                          | аян ки                                   |
|                                                                    | FIRE ASSAY<br>WET GEOCHEM                                                                         |                                                                          |                                          | a share ya shara ku ku a | n an |
|                                                                    | FIRE ASSAY                                                                                        | · · · · · · · · · · · · · · · · · · ·                                    |                                          |                          |                                          |
| нца<br>нца<br>нца<br>нца<br>нца<br>нца<br>нца<br>нца<br>нца<br>нца | FIRE ASSAY<br>WET GEOCHEM                                                                         |                                                                          |                                          |                          |                                          |
| AU-1<br>AU-1<br>AU-1<br>Remarks                                    | FIRE ASSAY<br>WET GEOCHEM<br>FIRE GEOCHEM                                                         |                                                                          |                                          |                          |                                          |
| AU-I<br>AU-I<br>AU-I<br>Remarks                                    | FIRE ASSAY<br>WET GEOCHEM<br>FIRE GEOCHEM                                                         | مى يەرىپىيە يەرىپىيە بەر يەرىپىيە بەر يەرىپىيە بەر يەرىپىيە بەر يەرىپىيە | an an ann an an ann an ann an an an an a |                          |                                          |
| AU-I<br>AU-I<br>AU-I<br>Remar ks                                   | FIRE ASSAY                                                                                        |                                                                          |                                          |                          |                                          |
| AU-I<br>AU-I<br>AU-I                                               | FIRE ASSAY<br>WET GEOCHEM<br>FIRE GEOCHEM                                                         |                                                                          |                                          |                          |                                          |
| AU-I<br>AU-I<br>AU-I                                               | FIRE ASSAY<br>MET GEOCHEM<br>FIRE GEOCHEM                                                         |                                                                          |                                          |                          |                                          |
| AU-I<br>AU-I<br>Remarks                                            | FIRE ASSAY<br>WET GEOCHEM<br>FIRE GEOCHEM                                                         |                                                                          |                                          |                          |                                          |



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### <u>Certificate of ASSAY</u>

Company:GRANT CROOKER Project:WRT CLAIMS Attention:G.CROOKER File:8-1370/P1
Date:SEPT.6/88
Type:ROCK ASSAY

 $\underline{\forall e \ hereby \ certify}$  the following results for samples submitted.

| 88 LR 023                                                                                                                                                                                                                          | 9.68 | 0.282 | an ber met ein zu der eine eine eine sonderstendenste |                                               |                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| -                                                                                                                                                                                                                                  |      |       |                                                       |                                               |                                                                                                                |
|                                                                                                                                                                                                                                    |      |       |                                                       | ***                                           |                                                                                                                |
|                                                                                                                                                                                                                                    |      |       |                                                       |                                               |                                                                                                                |
| -<br>                                                                                                                                                                                                                              |      |       |                                                       |                                               | and a second |
| -                                                                                                                                                                                                                                  |      |       | um an des des des des de de ses de ven des de         |                                               |                                                                                                                |
|                                                                                                                                                                                                                                    |      |       |                                                       |                                               |                                                                                                                |
|                                                                                                                                                                                                                                    |      |       |                                                       |                                               |                                                                                                                |
|                                                                                                                                                                                                                                    |      |       |                                                       | 10 air an |                                                                                                                |
|                                                                                                                                                                                                                                    |      |       |                                                       | <br>•                                         |                                                                                                                |
|                                                                                                                                                                                                                                    |      |       | ·                                                     |                                               |                                                                                                                |
|                                                                                                                                                                                                                                    |      |       |                                                       |                                               |                                                                                                                |
| en en el compositor de la compositor de la<br>Compositor de la compositor |      |       |                                                       |                                               | الم<br>الم الم الم الم الم الم الم الم الم الم                                                                 |

MIN-EN LABORATORIES LTD.

0

|   | COMPANY: GRA | ANT CROOKER |     |     |          | MIN-EN LI  | ABS ICP  | REPORT     |              |          |           | (A  | CT:F31)  | PAGE 1 ( | )F 1 |
|---|--------------|-------------|-----|-----|----------|------------|----------|------------|--------------|----------|-----------|-----|----------|----------|------|
|   | PROJECT NO:  | WRT CLAIMS  |     | 705 | WEST 15T | H ST., NOI | RTH VAN  | COUVER, B. | C. V7M       | 1T2      |           |     | FILE ND: | 8-1370/  | P1+2 |
|   | ATTENTION: 0 |             |     |     | (60      | 4) 980-581 | 4 OR (6) | 04)988-452 | 4 <b>#</b> T | YPE ROCK | GEOCHEN I | DA  | TE:SEPTE | MBER 6,  | 1988 |
|   | (VALUES IN   | PPM ) AG    | AS  | B   | BA       | BI         | CO       | CU         | MD           | NI       | PB        | SB  | ZN       | AU-PPB   |      |
|   | B8LR001      | .4          | 1   | 3   | 178      | 2          | 40       | 56         | 7            | 75       | 26        | 1   | 78       | 2        |      |
| - | 48LR002      | 4.1         | 1   | 2   | 35       | 1          | 32       | 3770       | 12           | 37       | 46        | 2   | 387      | 24       |      |
|   | 88LR003      | .2          | 29  | 3   | 12       | 6          | 31       | 326        | 8            | 41       | 7         | 3   | 974      | 7        |      |
|   | 88LR004      | 2.6         | 18  | 1   | 21       | 6          | 29       | 303        | 19           | 33       | 40        | 1   | 2183     | 41       |      |
|   | 88LR005      | .4          | 10  | 3   | 6        | 5          | 32       | 206        | 40           | 11       | 20        | 1   | 1951     | 16       |      |
|   | 88LR006      | 4,4         | 59  | 1   | 45       | 11         | 15       | 93         | 10           | 18       | 28        | 14  | 122      | 5        |      |
|   | 88LR007      | 2.6         | 19  | 3   | 45       | 2          | 53       | 175        | 5            | 529      | 9         | 1   | 27       | 9        |      |
|   | 88LR008      | 2.4         | 6   | 21  | . 169    | 8          | 18       | 17552      | 8            | 26       | 27        | 4   | 22       | 1        |      |
| - | 88LR009      | 1.9         | 31  | 1   | 61       | 4          | 20       | 229        | 10           | 22       | 19        | 3   | 54       | 3        |      |
|   | 88LR010      | 1.4         | 14  | 1   | 808      | 4          | 22       | 77         | 7            | 15       | 18        | 3   | 31       | 1        |      |
|   | 88LR011      | .3          | 25  | 3   | 636      | 2          | 38       | 9          | 7            | 20       | 10        | 4   | 55       | 35       |      |
|   | 88LR012      | 1.5         | 3   | 3   | 45       | 2          | 49       | 25         | 3            | 482      | 7         | 1   | 5        | 14       |      |
|   | 88LR013      | 1.6         | 21  | 3   | 25       | 2          | 51       | 26         | 3            | 479      | 6         | 1   | 7        | 2        |      |
|   | 88LR014      | 1.8         | 1   | 3   | 31       | 3          | 47       | 4          | 3            | 407      | 13        | 1   | 6        | 1        |      |
|   | 88LR015      | 1.8         | 15  | 3   | 34       | 3          | 53       | 13         | 3            | 488      | 12        | 1   | 5        | 10       |      |
| - | 88LR016      | 1.7         | 12  | 1   | 207      | 4          | 18       | 18         | 8            | 38       | 14        | 1   | 31       | 1        |      |
|   | 88LR017      | .6          | 20  | 3   | 618      | 3          | 41       | 39         | 4            | 342      | 16        | 1   | 20       | 2        |      |
|   | 88LR018      | 1.1         | 1   | 4   | 15       | 1          | 46       | 11         | 4            | 443      | 12        | 2   | 6        | 2        |      |
|   | 89LR019      | .8          | 15  | 3   | 446      | 3          | 31       | 55         | 6            | 24       | 11        | 3   | 56       | 25       |      |
|   | 88LR020      | 1.0         | 7   | 3   | 167      | 1          | 51       | 106        | 7            | 445      | 13        | 1   | 16       | 1        |      |
|   | 88LR021      | 1.1         | 9   | 2   | 220      | 2          | 45       | 20         | 5            | 360      | 8         | 1   | 16       | 34       |      |
|   | 88LR022      | .8          | 12  | 3   | 221      | 3          | 45       | 19         | 6            | 425      | 8         | 1   | 17       | 3        |      |
| - | 88LR023      | 202 67.5    | 1   | 1   | 134      | 3          | 18       | 96         | 6            | 113      | 58        | 3   | 15       | 7500     |      |
|   | 88LR024      | 3.7         | 37  | 1   | 197      | 7          | 18       | 44         | 9            | 46       | 19        | 9   | 20       | 2        | /    |
|   | 88LR025      | 12.2        | 5   | 1   | 19       | 1          | 23       | 11         | 4            | 247      | 15        | 1   | 25       | 436      | .015 |
|   | 88LR026      | 3.2         | 1   | 2   | 66       | 3          | 42       | 50         | 3            | 482      | 11        | 2   | 6        | 64       |      |
|   | 88LR027      | 1.1         | 5   | 4   | 192      | 3          | 29       | 81         | 7            | 21       | 11        | 1   | 53       | 1        |      |
|   | 88LR028      | .6          | 21  | 4   | 529      | 3          | 28       | 187        | 7            | 19       | 16        | 5   | 61       | 12       |      |
|   | 88LR029      | 5 165 1     | 183 | 2   | 24       | 1          | 44       | 553        | 3            | 387      | 2158      | 139 | 2737     | 605      | .018 |
|   | 88LR030      | 7 5 258.4   | 101 | 1   | 18       | 5          | 23       | 442        | 7            | 141      | 2901      | 285 | 1783     | 482      | ,014 |
|   | 88LR031      | 5.3         | 50  | 1   | 20       | 7          | 15       | 19         | 9            | 16       | 56        | 13  | 76       | 2        |      |

.

|           | COMPANY: GRANT CROC                     |                   |                 | 705         |             |              | BS ICP                |                 | ארדו ייז ר  | 110        |            |                                                | PAGE 1 OF 1 -<br>8-1370S/P1+2 |
|-----------|-----------------------------------------|-------------------|-----------------|-------------|-------------|--------------|-----------------------|-----------------|-------------|------------|------------|------------------------------------------------|-------------------------------|
|           | PROJECT NO: WRT CLA                     |                   |                 | 705         | WEST 15TH S |              |                       | 4)988-45        |             |            | IL GEOCHEN |                                                | SEPT 13, 1988                 |
|           | ATTENTION: GRANT CF<br>(VALUES IN PPM ) | AG                | AS              | B           | BA          | BI           | <u>- 01 100</u><br>CO | 1/100 -1.<br>CU | 247<br>MO   | NI         |            |                                                | AU-PPB                        |
|           |                                         | .6                | 1               |             | 212         | <u>-</u>     | 18                    | 14              | 2           | 34         | 15         | 2 90                                           | 5                             |
|           | 88LS-02                                 | 1.4               | 5               | 4           | 150         | 8            | 16                    | 15              | 3           | 11         | 13         | 1 40                                           | 5                             |
|           | 88LS-03                                 | .9                | 27              | 4           | 136         | 8            | 19                    | 30              | 3           | 18         | 11         | 2 50                                           | 5                             |
|           | 88LS-04                                 | 1.1               | 33              | 6           | 151         | 10           | 21                    | 42              | 3           | 22         | 12         | 3 46                                           | 5                             |
|           | 88LS-0540M                              | .8                | 5               | 9           | 179         | 12           | 27                    | 102             | 2           | 35         | 20         | 3 72                                           | 5                             |
|           | 88LS-0640M                              | .9                | 43              | 9           | 212         | 11           | 29                    | 71              | 3           | 51         | 20         | 3 82                                           | 5                             |
|           | 88LS-0740M                              | 1.1               | 41              | 10          | 174         | 10           | 26                    | 97              | 2           | 35         | 36         | 3 82                                           | 10                            |
|           | 88LS-0840M                              | .7                | 36              | 8           | J. 171      | 9            | 24                    | 94              | 3           | 48         | 19         | 1 56                                           | 5                             |
| -         | 88LS-0940M                              | .9                | 34              | - 7         | 185         | 10           | 25                    | 66              | 3           | 47         | 18         | 4 60                                           | 5                             |
|           | <u>98LS-1040M</u>                       |                   |                 | 7_          | 267         | 10           | 26                    | 65              |             | 57         | 20         | 3 64                                           | 5                             |
|           | 88LS-11                                 | .8                | 42              | 8           | 179         | 9            | 26                    | 118             | 2           | 35         | 19         | 2 72                                           | 5                             |
|           | 88LS-12                                 | .8                | 38              | 9           | 176         | 10           | 24                    | 93              | 2           | 30         | 20         | 2 63                                           | 5                             |
|           | 88LS-13                                 | 1.1               | 33              | 5           | 153         | 11           | 21                    | 28              | 2           | 27<br>3    | 13<br>21   | 2 73<br>2 26                                   | 10<br>5                       |
|           | 88LS-14                                 | .2<br>.8          | 16<br>20        | 9<br>11     | 103<br>93   | 3<br>3       | 3<br>7                | 1<br>2          | 1 7         | د<br>ا     | 21 22      | z zo<br>3 45                                   | J<br>5                        |
| معيورة    |                                         | :0                | <u>20</u><br>17 |             | 125         | <sup>3</sup> |                       | <u>4</u><br>41  | 2           | 270        | 11         | 2 44                                           | <br>5                         |
|           | 88LS-17                                 | 1.0               | 20              | 6           | 199         | 8            | 38<br>38              | 39              | 2           | 277        | 12         | 3 54                                           | 5                             |
|           | 88LS-18                                 | .2                | 18              | 7           | 172         | 5            | 41                    | 26              | 2           | 296        | 18         | 1 51                                           | 5                             |
| Missource | 88LS-19                                 | 1.0               | 4               | 4           | 159         | 9            | 17                    | 18              | 3           | 16         | 16         | 1 63                                           | 5                             |
| _         | 88LS-20                                 | 1.0               | 7               | 6           | 95          | 8            | 30                    | 43              | 1           | 205        | 9          | 2 38                                           | 10                            |
|           | 88LS-2140M                              | 1.7               | 11              | 5           | 135         | 9            | 26                    | 52              | 3           | 96         | 18         | 3 51                                           | 70                            |
|           | 88LS-2240M                              | 4.0               | 22              | 6           | 195         | 9            | 27                    | 61              | 2           | 112        | 17         | 4 48                                           | 150                           |
| ***       | 88LS-2340M                              | 1.1               | 20              | 6           | 147         | 9            | 26                    | 44              | 2           | 132        | 15         | 1 47                                           | 20                            |
|           | 88LS-24                                 | 1.0               | 4               | 7           | 147         | 10           | 21                    | 50              | 3           | 23         | 17         | 2 58                                           | 5                             |
|           | 88LS-25                                 | .9                | 5               | 6           | 132         | 10           | 22                    | 90              |             | 17         | 18         | 4 41                                           | 20                            |
|           | 88LS-26                                 | .9                | 5               | 6           | 103         | 11           | 19                    | 54              | 2           | 14         | 11         | 3 32                                           | 5                             |
|           | 88LS-27                                 | 1.0               | 34              | 6           | 125         | 11           | 20                    | 60              | 2           | 17         | 16         | 3 45                                           | 5                             |
|           | 88L5-2840M                              | .7                | 33              | 5           | 130         | 9            | 21                    | 70              | 3           | 18         | 14         | 3 47                                           | 5                             |
| 1         | 98LS-29                                 | .2                | 27              | 5           | 234         | 5            | 20                    | 92              | 3           | 14         | 15         | 2 59                                           | 5                             |
|           | LAO+00N                                 |                   | 10              |             | 82          |              | 15                    | 6               | ·····       | 12         | 12         | 1 65                                           | 15<br>20                      |
|           | LA0+25N<br>LA0+50N                      | 1.1<br>1.4        | 2               | 5           | 149<br>183  | 8<br>10      | 14<br>17              | 12<br>13        | 2<br>2      | 14<br>17   | 14<br>11   | 1 81<br>2 104                                  | 2V<br>5                       |
|           | LAO+75N                                 | 1.4               | I<br>Q          | /<br>7      | 76          | 10           | 16                    | 10              | ۲<br>۲      | 17         | 13         | t 57                                           |                               |
|           | LA1+00N                                 | 1.4               | 1               | 5<br>5<br>1 | 103         | 11           | 10                    | 9               | 2           | 16         | 18         | 1 78                                           | 5                             |
|           | LA1+25N                                 | .7                | 27              | ų<br>į      | 160         | 8            | 17                    | 8               | 2           | 16         | 13         | 3 111                                          | 10                            |
|           | LA1+50N                                 | 8                 | 22              |             | 193         |              | 14                    | 13              |             | <u>i</u> 4 | 17         | 2 83                                           | 5                             |
|           | LA1+75N                                 | 1.8               | 33              | 1           | 68          | 9            | 11                    | 15              | 3           | 11         | 11         | 4 40                                           | 5                             |
|           | LA2+00N40M                              | .8                | 33              | 8           | 213         | 7            | 18                    | 49              | 2           | 18         | 11         | 2 67                                           | 5                             |
|           | LA2+25N                                 | 1.2               | 3               | 7           | 121         | 10           | 17                    | 11              | 2           | 16         | 16         | 1 50                                           | 5                             |
|           | LA2+50N40M                              | 1.2               | 36              | 8           | 194         | 9            | 20                    |                 | 3           | 23         | 14         | 3 50                                           | 10                            |
|           | LA2+75N                                 | .8                | 2               | 5           | 169         | 9            | 17                    | 29              | 2           | 17         | 15         | 2 54                                           | 5                             |
|           | LA3+00N                                 | 1.2               | 1               | 5           | 150         | 9            | 19                    | 19              | 3           | 14         | 19         | 1 63                                           | 5                             |
|           | LA3+25N                                 | 1.1               | 6               | 5           | 114         | 10           | 17                    | 14              | 2           | 14         | 13         | 1 52                                           | 5                             |
|           | LA3+50N<br>LA3+75N                      | $1.3 \\ 1.1$      | 6<br>23         | 5<br>4      | 143<br>107  | 11<br>9      | 19<br>16              | 20<br>7         | 2<br>3      | 16<br>14   | 11<br>20   | 4 77<br>1 81                                   | 5<br>10                       |
|           | LA4+00N                                 | $\frac{1.1}{1.5}$ | 25              | <u>4</u> -  | 107         | 7            | <u>10</u><br>16       | <u>/</u>        | <u>3</u> 33 | 17         | 21         | $\frac{1}{2}$ 78                               | 5                             |
| -         | LA4+25N                                 | 1.4               | 4.J<br>3        | т<br>5      | 102         | 11           | 10                    | 10              | 2           | 16         | 15         | 1 68                                           | 5                             |
|           | LA4+50N                                 | 1.1               | 2               | 4           | 113         | ç            | 15                    | 3               | 2           | 13         | 12         | 1 74                                           | 5                             |
|           | LA4+75N                                 | 1.4               | 13              | 5           | 120         | 11           | 16                    | 10              | 3           | 17         | 16         | 1 65                                           | 5                             |
|           | LA5+00N                                 | 1.0               | 2               | 2           | 118         | 9            | 14                    | 9               | 3           | 11         | 14         | 1 59                                           | 5                             |
|           | LBO+00N                                 | .9                | 23              | 5           | 128         | 9            | 13                    | 9               | 3           | 11         | 15         | 1 59                                           | 5                             |
|           | LB0+25N                                 | 1.4               | 11              | 4           | 73          | 10           | 14                    | 10              | 3           | 11         | 12         | 1 43                                           | 5                             |
|           | LBO+50N                                 | 1.4               | 10              | 5           | 104         | 10           | 14                    | 10              | 2           | 13         | 11         | 1 58                                           | 5                             |
|           | LB0+75N                                 | 1.4               | 8               | 5           | 155         | 8            | 13                    | 9               | 2           | 14         | 11         | 1 88                                           | 10                            |
|           | LB1+00N                                 | 1.3               |                 | <u>5</u>    | 122         |              |                       | 9               | 2           | 14         |            | 1 66                                           | 5                             |
|           | LB1+25N                                 | 1.2               | 2               | 6           | 124         | 10           | 16                    | 8               | 2           | 16         | 9          | 1 77                                           | 5                             |
|           | LB1+50N                                 | 1.2               | 2               | 5           | 129         | 8<br>n       | 15<br>+ A             | 9               | 2           | 13         | 12         | 1 85                                           | 5<br>F                        |
|           | LB1+75N                                 | 1.1               | 3               | 4<br>7      | 158         | 9<br>9       | 14<br>16              | 7               | 2           | 14         | 10<br>19   | 1 66                                           | 5                             |
|           | LB2+00N<br>LB2+25N                      | 1.8<br>1.4        | ა<br>25         | /<br>5      | 120<br>100  | 9<br>10      | 16<br>16              | 16<br>12        | 2<br>3      | 16<br>14   | 19         | <b>2</b> 66<br>2 55                            | 5                             |
|           | F87.77)2                                | ±17<br>           |                 |             | 177         |              |                       |                 |             |            |            | لالي وي من |                               |

,

,

``

•

•

.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMPANY: GRANT CROC              | IKER                                           |                 |            | м                 | IN-FN IA       | BS ICP RE       | PORT             |          |                  | 23              | (AC    | T:F31)          | PAGE 1 DF 1  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------|-----------------|------------|-------------------|----------------|-----------------|------------------|----------|------------------|-----------------|--------|-----------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT NO: WRT CLA              |                                                |                 | 705        | WEST 15TH         |                |                 |                  | . V7M    | 172              |                 |        |                 | 8-1370S/P3+4 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATTENTION: GRANT CR              | ROOKER                                         |                 |            | (604)             | 780-5814       | OR (604)        | 988-4524         |          | I TYPE S         | OIL GEOCH       | EM I   |                 | EPT 13, 1988 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (VALUES IN PPM )                 | AG                                             | AS              | B          | BA                | BI             | <u> </u>        | <u>CU</u>        | MO       | NI               | PB              | SB     |                 | AU-PPB       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L82+50N                          | .9                                             | 3               | 6          | 140               | 7              | 12              | 10               | 2        | 13               | 17              | 1      | 76              | 5            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LB2+75N                          | 1.1                                            | 4               | 5          | 90                | 8              | 12              | 7                | 2        | 12               | 10              | 1      | 71              | 60           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LB3+00N                          | 1.3                                            | 2               | 7          | 132               | 10             | 15              | 11               | 2.       | 14               | 15              | 1      | 92              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LB3+25N                          | 1.0                                            | 1               | 5          | 216               | 7              | 15              | 13               | 3        | 20               | 13              | 1      | 144             | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LB3+50N                          |                                                |                 |            | 167               | 11             | 16              |                  | 2        | 20               | 12              |        | 81              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LB3+75N                          | 1.8                                            | 1<br>3          | 4<br>*     | 107<br>142        | 9<br>8         | 16<br>14        | 13<br>7          | 2<br>2   | 14<br>12         | 17<br>12        | 2<br>2 | 127             | 10 - j.<br>5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LB4+00N<br>LB4+25N               | .9<br>1.2                                      | 36<br>36        | 4<br>7.5   |                   | 0<br>9         | 18              | 24               | 2        | 12               | 12              | 2      | 60              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LB4+20N                          | 1.3                                            | 30<br>6         | 4          | 99<br>97          | 10             | 16              | 10               | 2<br>3   | 10               | 8               |        | 51              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LB4+75N                          | 1.0                                            | 3               | т<br>4     | 134               | 9              | 10              | 13               | 3        | 15               | 15              | 3      | 76              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LB5+00N                          | 1.0                                            | 9               | <u>-</u> - | 117               | 9              |                 |                  | 2        | 14               |                 | ž<br>1 | 91              | 10           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E87+00N                    | 1.2                                            | 11              | 4          | 83                | 10             | 17              | 11               | 3        | 12               | 11              | 1      | 36              | 5            |
| - Contraction of the Contraction | 181+00E87+25N                    | 1.1                                            | 5               | 5          | 110               | 10             | 17              | 15               | 2        | 14               | 15              | 1      | 41              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E87+50N40M                 | 1.2                                            | 32              | 5          | 163               | 10             | 19              | 22               | 3        | 16               | 15              | 2      | 48              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E87+75N                    | 1.1                                            | 1               | 4          | 116               | 10             | 16              | 15               | 3        | 13               | 13              | i      | 37              | 5            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 181+00E88+00N40M                 | 1.2                                            | 2               | 5          | 150               | 10             | 17              |                  | 2        | 15               | 16              | 3      | 41              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E88+25N40M                 | 1.2                                            | 2               | 6          | 163               | 10             | 19              | 39               | 2        | 14               | 14              | 1      | 41              | . 5          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E88+50N40M                 | 1.2                                            | 12              | 6          | 126               | 10             | 19              | 19               | 2        | 11               | 17              | 1      | 37              | 10           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E88+75N                    | .9                                             | 2               | 4          | 120               | 10             | 17              | 13               | 2        | 12               | 16              | i      | 38              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E87+00N                    | <u>    1.2                                </u> | 3               | 4          | 103               | 10             | 18              | 16               |          | 13               | 12              | 1      | 34              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E89+25N                    | 1.0                                            | 27              | 4          | 130               | 9              | 17              | 16               | 3        | 12               | 10              | 1      | 39              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E89+50N40M                 | 1.0                                            | 25              | 4          | 99                | 10             | 16              | 14               | 3        | 9                | 12              | 1      | 38              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E89+75N                    | 2.7                                            | 57              | 1          | 4                 | 7              | 5               | 4                | 4        | 8                | 10              | 8      | 3               | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E90+00N40M                 | .9                                             | 4               | 3          | 131               | 9              | 17              | 18<br>15         | 3        | 11<br>13         | 12              | 2<br>2 | <b>43</b><br>36 | о<br>5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E90+25N<br>181+00E90+25N-A | <u> </u>                                       | <u>2</u><br>10  | 3<br>4     | 94<br>120         | <u>11</u><br>7 | <u>16</u><br>15 | <u>13</u><br>    |          | <u>1</u> 3<br>12 | $\frac{12}{10}$ |        | <u>35</u><br>41 | 10           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E90+25N-A                  | $1.0 \\ 1.0$                                   | 10              | 4          | 120               | 7<br>9         | 16              | 11<br>19         | 3<br>3   | 12               | 10              | 1<br>2 | 41<br>39        | 10           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E90+75N                    | 1.0                                            | 1               | 4          | 140               | 10             | 17              | 17               | 2        | 14               | 14              | 2      | 42              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E91+00N40M                 | 1.2                                            | 3               | 4          | 124               | 9              | 17              | 16               | 3        | 13               | 13              | 2      | 36              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E91+25N                    | 1.0                                            | 6               | 4          | 122               | 9              | 16              | 26               | 3        | 12               | 6               | 2      | 35              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E91+50N                    | 1.0                                            | 2               |            | 136               | 9              | 16              | 20               | 3        | 12               | 12              | 2      | 40              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E92+00N40M                 | .7                                             | 1               | 4          | 163               | 8              | 15              | 17               | 2        | 12               | 14              | 1      | 43              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E92+25N                    | 1.0                                            | 26              | 5          | 142               | 9              | 17              | 10               | 2        | 12               | 7               | 1      | 63              | 10           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E92+50N                    | .8                                             | 23              | 4          | 137               | 8              | 16              | 14               | 3        | 12               | 12              | 1      | 60              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E92+75N                    | 1.1                                            | 30              | 5          | 120               | 11             | 19              | 20               | 2        | 12               | 16              | 3      | 46              | 5            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 181+00E93+00N                    | ,7                                             | 29              | 5          | 174               | 8              | 17              | 22               | 2        | 13               | 15              | 1      | 40              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E93+25N                    | .9                                             | 2               | 3          | 131               | 8              | 15              | 20               | 2        | 14               | 14              | 1      | 37              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E93+50N                    | .7                                             | 28              | 4          | 165               | 8              | 17              | 25               | 3        | 12               | 12              | 1      | 53              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E93+75N                    | .9                                             | 27              | 4          | 139               | 9              | 16              | 13               | 3        | 13               | 12              | 2      | 42              | 10           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E94+00N                    |                                                | 28              |            | 218               | 4              | 24              |                  | 2        | 77               |                 |        | 65              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E94+25N<br>181+00E94+50N   | .6<br>.9                                       | 26<br>26        | 4<br>4     | 271<br>152        | 8<br>10        | 19<br>19        | 33<br>31         | 4<br>3   | 18<br>14         | 16<br>13        | 1<br>2 | 41<br>44        | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E94+75N                    | .7                                             | 20<br>8         | 4          | 152               | 10             | 19              | 31<br>29         | о<br>З   | 14               | 11              | 2      | 45              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E95+00N40M                 | .8                                             | 35              | 7          | 130               | 10             | 19              | 60               | 3        | 10               | 10              | 2      | 46              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E95+25N                    | ,9                                             | 23              | 4          | 143               | 8              | 19              | 34               | 4        | 15               | 12              | t      | 45              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E95+50N                    | 1.3                                            | 24              | 4          | 135               | 9              | 17              | 26               | 3        | 13               | 15              | 2      | 47              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E95+75N                    | . 9                                            | 26              | 4          | 118               | 8              | 15              | 19               | 3        | 11               | 10              | 1      | 53              | 10           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E96+00N40M                 | .8                                             | 24              | 5          | 144               | В              | 20              | 49               | 2        | 16               | 13              | 1      | 46              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E96+25N                    | .6                                             | 28              | 6          | 307               | 9              | 17              | 39               | 2        | 16               | 12              | 1      | 45              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E96+50N                    | .8                                             | 32              | 5_         | 150               | 9              | 20              | 47               | 3        | 16               | 15              | 1      | 39              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E96+75N                    | .8                                             | 27              | 4          | 129               | 10             | 17              | 15               | 2        | 10               | 10              | 2      | 38              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+00E97+00N                    | 1.0                                            | 29              | 5          | 136               | 9              | 17              | 18               | 3        | 14               | 11              | 2      | 50<br>77        | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+50E87+25N                    | .9                                             | 27              | 4<br>л     | 127               | 9              | 17<br>16        | 27<br>17         | 3<br>2   | 15<br>10         | 10<br>13        | 1      | 37<br>42        | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+50E87+75N<br>181+50E88+25N   | 1.3<br>1.0                                     | 20<br>26        | 4<br>3     | 125<br>114        | 9<br>9         | 16<br>15        | 17<br>12         | 2<br>3   | 10<br>12         | 13<br>10        | i<br>t | 42<br>40        | 5<br>5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+50E88+75N                    | 1.0                                            | <u>26</u><br>24 | <u>-</u>   | <u>114</u><br>115 | 7              |                 | $-\frac{12}{14}$ | <u>-</u> | <u>1</u> 4<br>11 | 8               | 2      | 39              | 5            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 181+50E89+25N                    | 1.0                                            | 1               | 4          | 115               | 9              | 15              | 17               | 3        | 14               | 13              | 2      | 38              | 10           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+50E89+75N                    | 1.3                                            | 32              | 5          | 120               | 11             | 18              | 20               | 3        | 14               | 14              | 2      | 39              | 5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181+50E90+25N                    | 1.3                                            | 20              | 4          | 127               | 9              | 16              | 14               | 2        | 13               | 12              | 1      | 42              | 5            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1B1+50E90+75N                    | .9                                             | 22              | 16         | 116               | 8              | 15              | 13               | 3        | 10               | 16              | 2      | 36              | 55           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                |                 |            |                   |                |                 |                  |          |                  |                 |        |                 |              |

|              | COMPANY: GRANT CRO                | nvco       |          | ж              | TM_EN IA     | BS ICP RI | POPT     |              | . [           | ACT:F31)         | PAGE 1 OF 1  |
|--------------|-----------------------------------|------------|----------|----------------|--------------|-----------|----------|--------------|---------------|------------------|--------------|
|              | PROJECT NO: WRT CL                |            |          | 705 WEST 15TH  |              |           |          | . V7M 1T2    |               |                  | 8-1370S/P5+6 |
| -            | ATTENTION: GRANT C                |            |          |                |              |           | 788-4324 |              | OIL GEOCHEM # |                  | EPT 13, 1988 |
|              | (VALUES IN PPM )                  | AG         | AS       | B BA           | BI           | CO        | CU       | MONI         | PB SB         | ZN               | AU-PPB       |
|              | 181+50E91+25N                     | 2.1        | 28       | 5 160          | 6            | 14        | 48       | 3 13         | 11 1          | 36               | 10           |
| -            | 181+50E92+25N                     | 1.5        | 1        | 5 151          | 7            | 16        | 47       | 2 15         | 14 2          | 37               | 5            |
|              | 181+50E92+75N                     | 1.4        | 4        | 4 166          | 8            | 16        | 25       | 3 20         | 16 1          | 63               | 5            |
|              | 181+50E93+25N40M                  | 1.2        | 5        | 4 195          | 7            | 17        | 18       | 3 31         | 14 1          | 48               | 5            |
|              | 181+50E93+75N                     | 1.1        | 9        | 3 130          | 8            | 16        | 32       | 4 20         | 12 3          |                  | 10           |
| iliana.      | 181+50E94+25N                     | .9         | 27       | 5 150          | 8            | 18        | 31       | 3 15         | 15 2          |                  | 15           |
|              | 181+50E94+75N40M                  | .9         | 32       | 6 177          | 9            | 21        | 45       | 3 19         | 17 3          | 53               | 5            |
|              | 181+50E95+25N                     | .9         | 35       | 6 224          | 8            | 19        | 46       | 2 15         | 17 2          | 49               | 5            |
| <b>Water</b> | 181+50E95+75N                     | .9         | 5        | 6 201          | 7            | 19        | 53       | 3 15         | 15 2          | 52               | 5            |
|              | 181+50E96+25N                     | 1.0        | 24       | 4 134          | 9            | 17        | 21       | 3 10         | 12 3          |                  | 5            |
|              | 181+50E96+75N40M                  | 1.2        | 2        | 5 132          | 10           | 18        | 25       | 3 14         | 14 3          |                  | 10           |
| -            | 182+00E87+00N                     | 1.7        | 23       | 4 137          | 9            | 16        | 13       | 2 14         | 16 3          | 41               | 5            |
|              | 182+00E87+25N                     | 1.3        | 3        | 4 91           | 9            | 16        | 14       | 3 12         | 14 1          | 39               | 5            |
|              | 182+00E87+50N                     | 1.1        | 7        | 4 100          | 9            | 16        | 9        | 2 12         | 12 1          | 38               | 5            |
|              | 182+00E87+75N                     | 1.3        | 4        | 3 102          | 9            | 15        |          |              | 14 1          | 40               | 5            |
| Salaria.     | 182+00E88+00N                     | 2.1        | 2        | 4 107          | 10           | 16        | 10       | 3 11         | 20 1          | 37               | 5            |
|              | 182+00E88+25N                     | 1.2        | 9        | 4 124          | 9            | 15        | 15       | 3 13         | 16 3          | 44               | . 5          |
|              | 182+00E88+50N                     | 1.4        | 7        | 3 99           | 10           | 15        | 12       | 2 10         | 13 1          | 34               | 175          |
| -            | 182+00E88+75N                     | 1.2        | 3        | 5 116          | 9            | 15        | 11       | 3 12         | 17 3          | 42               | 5            |
|              | 182+00E97+00N                     | 1.0        |          | 3 127          | 9            |           | 9        | 2 12         | 11 1          | 41               | 5            |
|              | 182+00E89+25N                     | 1.0        | 2        | 4 135          | 8            | 16        | 13       | 3 13         | 15 3          |                  | 5<br>10      |
| Verbiliter   | 182+00E89+50N                     | 1.2        | 5        | 4 115          | 9            | 15        | 20       | 3 12         | 15 1          | 34               | IV<br>E      |
|              | 182+00E89+75N                     | 1.0        | 25       | 3 106<br>7 106 | 8            | 15        | 17       | 3 14<br>3 14 | 13 1          | 36<br>37         | J<br>F       |
|              | 182+00E90+00N                     | 1.0        | 4        | 3 124<br>3 138 | 8<br>8       | 14<br>15  | 15<br>14 | 3 14<br>3 12 | 13 1<br>13 3  | 57<br>36         | 5            |
|              | 182+00E90+25N                     |            | 4        |                | <sup>0</sup> |           |          |              |               |                  | 5            |
|              | 182+00E90+50N<br>182+00E90+75N    | 1.0<br>1.4 | 3<br>24  | 4 164<br>4 125 | /<br>9       | 16<br>17  | 24<br>25 | 3 11<br>3 12 | 13 2<br>13 1  | 40<br>36         | J<br>5       |
|              | 182+00E90+73N<br>182+00E91+00N40M | 1.4        | 24<br>30 | 4 12J<br>5 159 | 7<br>9       | 17        | 25       | 3 12         | 13 1          | 30<br>37         | J<br>5       |
|              | 182+00E91+25N                     | 3.2        | 50<br>5  | J 137<br>J 116 | 7            | 17        | 20<br>19 | 3 13         | 15 3          | 37               | 10           |
|              | 182+00E91+50N                     | 1.1        | 9        | 5 164          | 0<br>7       | 10        | 45       | 3 22         | 14 1          | 39<br>39         | 10           |
|              | 182+00E92+00N                     | 1.2        | !        | 1 104          | 6            |           |          | 3 13         | 15 1          | 30               | 5            |
|              | 182+00E92+25N                     | 1.0        | 7        | 1 123          | 7            | 14        | 11       | 3 16         | 10 1          | 38               | 5            |
|              | 182+00E92+50N                     | 1.5        | 14       | 2 114          | 7            | 14        | 12       | 3 20         | 10 3          | 36               | 10           |
|              | 182+00E92+75N                     | 1.4        | 6        | 4 229          | 8            | 16        | 25       | 2 17         | 15 5          | 58               | 5            |
|              | 182+00E93+00N                     | 1.2        | 17       | 5 190          | 7            | 18        | 52       | 2 23         | 19 2          |                  | 5            |
| _            | 182+00E93+25N                     | 2.4        | 13       | 5 198          | 8            | 19        | 45       | 3 22         | 16 1          |                  | 5            |
|              | 182+00E93+50N                     | .5         | 33       | 6 137          | 5            | 46        | 19       | 2 479        | 6 6           | 29               | 10           |
|              | 182+00E73+75N40M                  | 1.6        | 13       | 6 231          | 7            | 27        | 49       | 3 126        | 20 4          | 45               | 5            |
|              | 182+00E94+00N                     | 1.3        | 1        | 7 179          | 9            | 22        | 52       | 3 24         | 17 4          | 52               | 5            |
|              | 182+00E94+25N                     | 2.3        | 6        | 6 185          | 9            | 22        | 50       | 3 20         | 14 5          | 48               | 5            |
|              | 182+00E94+50N                     | 1.8        | 13       | 3 162          | 9            | 16        | 12       | 3 13         | 12 2          | 64               | 10           |
|              | 182+00E94+75N                     | 2.2        | 15       | 5 161          | 10           | 18        | 24       | 3 17         | 15 2          | 54               | 5            |
|              | 182+00E95+00N                     | 1.4        | 40       | 6 236          | 8            | 23        | 54       | 3 17         | 26 3          | 68               | 5            |
|              | 182+00E95+25N                     | 1.4        | 5        | 6 220          | 10           | 22        | 42       | 2 17         | 20 5          | 52               | 5            |
|              | 182+00E95+50N                     | 1.3        | 17       | 6 217          | 10           | 21        | 31       | 3 15         | 161           | 50               | 10           |
|              | 182+00E95+75N                     | 1.3        | 8        | 3 124          | 9            | 13        | 12       | 3 12         | 9 1           | 41               | 5            |
|              | 182+00E96+00N                     | 1.3        | 7        | 3 133          | 10           | 14        | 12       | 2 11         | 12 2          | 43               | 5            |
|              | 182+00E96+25N                     | 1.8        | 16       | 5 122          | 12           | 15        | 19       | 3 14         | 15 3          | 51               | 5            |
|              | 182+00E96+50N40M                  | 1.4        | 12       | 4 123          | 9            | 18        | 21       | 3 14         | 17 2          | 45               | 5            |
|              | 182+00E96+75N                     | 1.0        | 16       | 5 175          | 8            | 19        |          | 3 17         | 16 1          | 48               | 5            |
|              | 182+00E97+00N                     | 1.3        | 9        | 6 149          | 10           | 20        | 30       | 3 19         | 15 2          |                  | 5            |
|              | 182+50E87+25N                     | 1.4        | 10       | 6 158          | 10           | 20        | 34       | 3 17         | 14 1          | 49               | 5            |
|              | 182+50E87+75N                     | 1.4        | 17       | 4 108          | 10           | 16        | 20       | 3 15         | 14 2          | 42               | 5            |
|              | 182+50E88+25N                     | 1.5        | 13       | 4 113          | 11           | 15        | 12       | 2 13         | 16 3          | 40               | 10           |
|              | 182+50E88+75N                     | 1.5        |          | 3 88           | 9            | 14        | 11       | 3 11         | 9 3           |                  | 5            |
|              | 182+50E89+25N                     | 1.1        | 15       | 4 117          | 8            | 15        | 14<br>10 | 3 12<br>7 17 | 16 2          |                  | 5            |
|              | 182+50E89+75N                     | 1.3        | 13       | 4 144          | 10           | 16        | 19       | 3 13         | 15 1          | 37               | 5            |
|              | 182+50E90+25N                     | 1.1        | 12<br>10 | 4 138<br>7 130 | 8<br>7       | 16<br>15  | 19       | 3 10<br>3 12 | 13 2          | 42<br>34         | 5            |
|              | 192+50E90+75N<br>182+50E91+25N    | 1.0<br>1.0 | 10<br>10 | 3 130<br>4 147 | /<br>7       | 15<br>17  | 12<br>37 | 3 12<br>3 16 | 15 2<br>17 2  | 3 <b>4</b><br>36 | 10<br>5      |
| _            | 102/072717208                     | 1.V        | 1V       |                |              |           |          |              | 11 <u>1</u>   |                  | ل<br>        |

|               | COMPANY: G.CROOK               | ER         |        |          |                     | MIN-EN LA          | BS ICP R   | EPORT           |          |                 |            | (ACT     | :F31)    | PAGE 1 OF 1 |
|---------------|--------------------------------|------------|--------|----------|---------------------|--------------------|------------|-----------------|----------|-----------------|------------|----------|----------|-------------|
|               | PROJECT NO: WRT                |            |        | 705 WES  |                     | ST., NOR           |            |                 | . V7M    | 1T2             |            | FI       | LE NO:   | 8-1370/P7+8 |
|               | ATTENTION: G.CRO               | OKER       |        |          |                     | ) <b>9</b> 80-5814 |            |                 |          |                 | GEOCHEM I  | DATE     | SEPTEME  | ER 14, 1988 |
|               | (VALUES IN PPM                 |            | AS     | B        | BA                  | BI                 | CC         | CU              | MO       | NI              | PB         | S8       | ZN       | AU-PPB      |
|               | 182+50E95+25N                  | .8         | 31     | 5        | 137                 | 9                  | 20         | 43              | 3        | 16              | 17         | 2        | 37       | 5           |
|               | 182+50E95+75N                  | 1.1        | 28     | 5        | 102                 | 11                 | 19         | 36              | 2        | 17              | 6          | 2        | 42       | 5           |
|               | 182+50E96+25N                  | .8         | 26     | 6        | 190                 | 9                  | 19         | 46              | 3        | 16              | 11         | 2        | 50       | 10          |
|               | 182+50E96+75N                  | .8         | 37     | 7        | 169                 | 10                 | 23         | 58              | 4        | 20              | 16         | 1        | 47       | 5           |
| -             | 183+00E87+00N                  | 1.1        | 3      | 4        | 126                 | 9                  | 16         | 14              |          |                 | 10         | 1        | 41       | 5           |
|               | 183+00E87+25N                  | 1.8        | 30     | 1        | 50                  | 8                  | 11         | 21              | 3        | 11              | 13         | 4        | 23       | 10          |
|               | 183+00E87+50N                  | 1.2        | 27     | 2        | 127                 | 10                 | 16         | 12              | 3        | 13              | 14         | 3        | 42       | 5           |
|               | 183+00E87+75N                  | 1.2        | 4      | 3 50     | 121                 | 10                 | 16         | 13              | 3        | 12              | 10         | 1        | 44       | 5           |
| <b>Lingen</b> | 183+00E88+00N                  | 1.1        | 2      | 4        | 134                 | 9                  | 15         | 10              | 3        | 10              | 10         | 2        | 41       | 5           |
|               | 183+00E88+25N                  | <u>i.4</u> |        |          | 100                 | 9                  | 14         | 13              |          | 13              | 9          | <u>i</u> | 32       | 5           |
|               | 183+00E88+50N                  | 1.0        | 7      | 4        | 132                 | 9                  | 15         | 11              | 3        | . 11            | 8          | 2        | 41       | 10          |
|               | 183+00E88+75N                  | 1.2        | 5      | 2        | 143                 | 10                 | 16         | 14              | 3        | 13              | 15         | 1        | 38       | 5           |
|               | 183+00289+00N                  | .9         | 2      | 4        | 168                 | 8                  | 15         | 17              | 3        | 11              | 13         | 2        | 43       | 5           |
|               | 183+00E89+25N                  | .8         | 24     | 4        | 161                 | 8                  | 16         | 13              | 3        | 10              | 16         | 2        | 38       | 5           |
|               | 183+00E87+50N                  |            | 5      |          | 155                 |                    | 17         |                 | 4        | 13              | 16         |          | 41       | 10          |
|               | 183+00E89+75N                  | 1.0        | 3      | 5        | 165                 | /                  | 17         | 33              | 3        | 15              | 15         | 3        | 40       | 5           |
|               | 183+00E90+00N                  | 1.0        | 6      | 6        | 146                 | 8                  | 18         | 38<br>70        | 3        | 17              | 13         | 3        | 37<br>35 | 20<br>5     |
|               | 183+00E90+25N                  | 1.0        | 7      | 6        | 164                 | 8                  | 15         | 38              | 4        | 16              | 13<br>17   | 1<br>4   | 55<br>42 | อ<br>5      |
| -             | 183+00E90+50N                  | 1.0        | 9      | 6        | 154                 | 8                  | 19         | 46<br>35        | 3        | 15              | 17         | 4<br>1   | 42<br>47 | 10          |
|               | 183+00E90+75N                  | 1.1        | 10     | 5        | 195                 | <u>8</u>           |            |                 |          | <u>16</u><br>14 | <u>1</u> 5 |          |          | 5           |
|               | 183+00E91+00N                  | 1.0        | 30     | 5        | 154<br>200          | 8<br>9             | 13<br>21   | 50<br>56        | 3<br>2   | 14              | 15         | 4        | 30<br>43 | J<br>5      |
|               | 183+00E91+25N                  | 1.0<br>1.0 | 2<br>3 | 6        | 200<br>197          | 9<br>8             | 21<br>20   | 22<br>DD        | 2<br>3   | 16              | 17         | 7        | 43<br>49 | J<br>5      |
|               | 183+00E91+50N<br>183+00E92+00N | 1.0        | э<br>7 | 6<br>6   | 187<br>172          | е<br>9             | 17         | 33<br>44        | 2        | 18              | 13         | ن<br>۱   | 47       | 5           |
|               | 183+00E92+00N<br>183+00E92+25N | 1.3        | 13     | 6        | 218                 | 7                  | 14         | 44<br>73        | z<br>3   | 18              | 13         | 4        | 41       | 5           |
| -             | 183+00E92+50N                  | 1.2        | 6      | <u>0</u> | - <u>419</u><br>196 |                    |            | 45              |          |                 | 15         |          | 44       | 5           |
|               | 183+00E92+35N                  | 1.2        | 6      | 7        | 163                 | 9                  | 23         | -u<br>53        | 3        | 24              | 13         | 3        | 51       | 5           |
|               | 183+00E93+00N                  | 1.3        | 2      | 5        | 139                 | 11                 | 23         | 27              | 3        | 37              | 15         | 1        | 37       | 5           |
|               | 183+00E93+25N                  | 1.0        | 3      | 4        | 125                 | 9                  | 21         | 40              | ž        | 31              | 7          | 3        | 37       | 5           |
|               | 183+00E93+50N                  | N/S        |        | 3        | ***                 | 1                  | <b>-</b> + | 10              | Ý        | ψ1              | ,          | Ť        |          | •           |
|               | 78.0                           | 13.5       |        | 1        |                     | 48                 |            | 124             | 51       | 134             | 7622       | 386      | 102      |             |
|               | 701.0                          | 53.8       | 1      | 1        | 1                   | 52                 | 13         | 135             | 55       | 145             | 7785       | 437      | 109      |             |
| ()angune      | 751.0                          | 56.5       | 1      | 1        | 1                   | 400                | 54         | 176             | 134      | 137             | 1954       | 1200     | 536      |             |
|               | 183+00E93+75N                  | .7         | 36     | 7        | 133                 | 8                  | 24         | 69              | 3        | 28              | 14         | 1        | 49       | 5           |
|               | 183+00E74+00N                  | .7         | 1      | 8        | 207                 | 9                  | 22         | 46              | 3        | 19              | 10         | 1        | 49       | 5           |
|               | 183+00E94+25N                  | 1.0        | 5      | 5        | 152                 | 10                 | 21         | 39              |          | 20              | 13         | 3        | 40       | 15          |
|               | 193+00E74+50N                  | .9         | 36     | 6        | 172                 | 9                  | 24         | 60              | 2        | 21              | 18         | 2        | 48       | 5           |
|               | 183+00E94+75N                  | 1.0        | 33     | 5        | 150                 | 11                 | 21         | 33              | 3        | 15              | 16         | 4        | 49       | 5           |
|               | 183+00E95+00N                  | 1.2        | 3      | 5        | 114                 | 10                 | 20         | 31              | 3        | 16              | 11         | 3        | 44       | 10          |
|               | 183+00E95+25N                  | 1.2        | 3      | 5        | 130                 | 10                 | 17         | 21              | 4        | 13              | 16         | 3        | 56       | 5           |
|               | 183+00E95+50N                  | .8         | 22     | 6        | 136                 | 10                 | 22         | 36              | 3        | 18              | 18         | 2        | 41       | 5           |
|               | 183+00E95+75N                  | 1.0        | 5      | 4        | 140                 | 10                 | 18         | 21              | 3        | 15              | 15         | 3        | 67       | 5           |
|               | 183+00E96+00N                  | 1.0        | 35     | 7        | 194                 | 10                 | 20         | 53              | 4        | 18              | 15         | 2        | 63       | 5           |
|               | 183+00E96+25N                  | 1.2        | 1      | - 7      | 186                 | 7                  | 19         | 40              | 2        | 18              | 14         | 3        | 52       | 10          |
|               | 183+00E96+50N                  | 1.0        | 5      | 5        | 144                 | 10                 | 19         | 28              |          | 16              | 13         | 44       | 50       | 5           |
|               | 183+00E96+75N                  | 1.0        | 2      | 4        | 142                 | 10                 | 18         | 26              | 2        | 13              | 18         | 3        | 36       | 5           |
|               | 183+00E97+00N                  | .9         | 35     | 6        | 172                 | 10                 | 22         | 52              | 2        | 21              | 16         | 2        | 47       | 5           |
|               | 183+50EB7+25N                  | 1.1        | 2      | 4        | 121                 | 9                  | 15         | 12              | 3        | 11              | 12         | 1        | 45       | 5           |
|               | 183+50E87+75N                  | 1.1        | 5      | 4        | 144                 | 9                  | 16         | 20              | 3        | 13              | 14         | 3        | 52       | 10          |
|               | 183+50E88+25N                  | 1.1        |        | 5        | 149                 | 10                 | 16         |                 |          | 13              | 11         |          | 41       | 5           |
|               | 183+50E88+75N                  | 1.0        | 1      | 5        | 133                 | 10                 | 17         | 15              | 2        | 13              | 16         | 3        | 44       | 5           |
|               | 183+50E89+25N                  | 1.0        | 28     | 4        | 104                 | 10                 | 18         | 18              | 3        | 13              | 13         | 3        | 37       | 5           |
|               | 183+50E89+75N                  | .9         | 1      | 6        | 148                 | 8                  | 18         | 48<br>45        | 3        | 17              | 14         | 4        | 39<br>40 | 5           |
|               | 183+50E90+25N                  | .9         | 12     | 5        | 141                 | 9                  | 17         | 45<br>07        | 3        | 17              | 19         | 3        | 42       | 10          |
|               | 183+50E90+75N                  | 1.0        | 13     | <u>4</u> | 132                 | 8                  | 16         | 26              |          | 15              | 11         | 3        | 37       | 5           |
|               | 183+50E92+25N                  | .8         | 11     | 4        | 128                 | 8                  | 19         | 34              | 3        | 20              | 13         | 2        | 39<br>75 | 5           |
|               | 183+50E92+75N                  | 1.0        | 7      | 4        | 109                 | 9<br>7             | 16         | 12              | <u>उ</u> | 17<br>55        | 12         | 3        | 35<br>71 | 3<br>E      |
|               | 183+50E93+25N                  | 1.1        | 14     | 5        | 169<br>150          | ,                  | 12<br>20   | 43<br>10        | 3<br>3   | 22<br>20        | 13<br>14   | 1<br>3   | 31<br>43 | 3           |
|               | 183+50E93+75N<br>183+50E94+25N | .8<br>1.2  | 7<br>2 | 7<br>5   | 159<br>127          | 9<br>10            | 20<br>17   | <b>49</b><br>23 | ა<br>2   | 20<br>13        | 14<br>12   | 5<br>1   | 40<br>42 | э<br>5      |
|               | 10373VE74*23N                  |            |        | j        | 141                 | 19                 |            |                 | <u>ŕ</u> |                 | 14         |          | 74       |             |

|   | COMPANY: GRANT C               | ROOKER     |               |           | M                 | IN-FN IA       | BS ICP R  | PART       |          |          | <i>.</i>       | 140           | T:F31) F        | PAGE 1 DF 1 |
|---|--------------------------------|------------|---------------|-----------|-------------------|----------------|-----------|------------|----------|----------|----------------|---------------|-----------------|-------------|
|   | PROJECT NO: WRT                |            |               | 705 W     |                   |                |           | JVER, B.C. | . V7M    | 172      |                |               |                 | 3705/P9+10  |
|   | ATTENTION: GRANT               |            |               |           |                   |                |           | 988-4524   |          |          | IOIL GEOCH     |               |                 | PT 13, 1988 |
|   | (VALUES IN PPM                 |            | AS            | B         | BA                | BI             | C0        | CU         | MO       | NI       | PB             | SB            |                 | AU-PPB      |
|   | 183+50E96+25N                  | 1.0        | 1             | 4         | 118               | 9              | 18        | 26         | 3        | 13       | 12             | 2             | 38              | 10          |
|   | 183+50E96+75N                  | 1.1        | 4             | 5         | 129               | 11             | 19        | 35         | 2        | 17       | 12             | 4             | 49              | 5           |
|   | 184+00E87+00N                  | .9         | 9             | 4         | 141               | 9              | 17        | 33         | 2        | 15       | 11             | 3             | 40              | 5           |
|   | 184+00E87+25N                  | .7         | 5             | 6         | 177               | 6              | 19        | 45         | 3        | 19       | 14             | 3             | 50              | 10          |
|   | 184+00E87+50N                  | 1.0        | 7             | 5         | 98                | 10             | 20        | 16         |          | 19       | 13             | 3             | 40              | 5           |
|   | 184+00E87+75N                  | 1.0        | 9             | 5         | 121               | 9              | 17        | 29         | 2        | 17       | 19             | 4             | 42              | 5           |
|   | 184+00E88+00N                  | .8         | 6             | 5         | 122               | 9              | 18        | 41         | 2        | 23       | 11             | 3             | 43              | 5           |
|   | 184+00E88+25N                  | 1.2        | 5             | ني<br>حري | 135               | 9              | 15        | 105        | 2        | 22       | 15             | 4             | 38              | 5           |
|   | 184+00E88+50N                  | 1.1        | /             | 7         | 152               | 8              | 16        | 86         | 2        | 21       | 14             | 3             | 35              | 10          |
|   | 184+00E88+75N                  | 1.0        | <u>4</u><br>4 | 5         | <u>112</u><br>121 | <u>10</u><br>9 | 18        | 28<br>34   | <u>3</u> | <u> </u> | 15<br>13       | 3             | <u>32</u><br>33 | 5           |
|   | 184+00E89+00N<br>184+00E89+25N | 1.0<br>1.1 | 4             | 5<br>7    | 121               | 7<br>B         | 18<br>15  | 34<br>36   | 3<br>2   | 15<br>15 | 15<br>15       | 5<br>1        | 38<br>38        |             |
| - | 184+00E89+50N                  | .8         | 3             | 7<br>5    | 134               | е<br>9         | 18        | 3a<br>23   | 2        | 13       | 13             | 1<br>3        | 30              | ы<br>Е,     |
|   | 184+00E89+75N                  | 1.0        | 9             | 5         | 147               | ,<br>9         | 10        | 25         | 2        | 13       | 11             | 1             | 33              | 5           |
|   | 184+00E90+00N                  | 1.2        | 11            | 4         | 108               | 11             | 17        | 17         | 2        | 13       | 17             | 4             | 37              | 10          |
|   | 184+00E90+25N                  | 1.0        | 7             | :         | 145               |                | 16        |            | <u>-</u> | 15       | <u>-</u><br>11 | ;             |                 | 10          |
|   | 184+00E90+50N                  | .9         | 6             | 5         | 177               | 8              | 17        | 49         | 2        | 19       | 13             | 3             | 37              | 5           |
|   | 184+00E90+75N                  | 1.1        | 3             | 6         | 155               | 9              | 18        | 60         | 3        | 21       | 15             | 4             | 41              | 10          |
|   | 184+00E91+00N                  | 1.0        | 13            | 6         | 166               | 8              | 16        | 56         | 2        | 18       | 8              | 3             | 36              | 5           |
|   | 184+00E91+25N                  | 1.1        | 12            | 10        | 200               | 7              | 13        | 106        | 3        | 20       | 12             | 3             | 37              | 5           |
|   | 184+00E91+50N                  | 1.2        | 10            | 6         | 160               | 10             | 20        | 44         | 2        | 16       | 18             | 1             | 39              | 15          |
|   | 184+00E92+00N                  | 1.1        | 7             | 6         | 191               | 8              | 17        | 45         | 2        | 18       | 12             | 3             | 39              | 10          |
| — | 184+00E92+25N                  | 1.0        | 1             | 6         | 167               | 8              | 16        | 51         | 3        | 15       | 15             | 2             | 39              | 5           |
|   | 184+00E92+50N                  | 1.0        | 12            | 6         | 150               | 8              | 18        | 41         | 3        | 19       | 14             | 3             | 40              | 10          |
|   | 184+00E92+75N                  |            | 5             | 7         | 147               | 9              | 20        | 49         |          | 20       |                |               | 42              | 5           |
|   | 184+00E93+00N                  | 1.0        | 3             | 5         | 134               | 9              | 17        | 13         | 3        | 16       | 13             | 3             | 42              | 5           |
|   | 184+00E93+25N                  | 1.3        | 6<br>31       | 5<br>5    | 144<br>113        | 11<br>8        | 20<br>20  | 26<br>48   | 2<br>3   | 17<br>21 | 18<br>13       | 4<br>3        | 40<br>37        | ວ<br>ຮ      |
|   | 184+00E93+50N<br>184+00E93+75N | .7         | 13            | 5         | 113               | o<br>q         | 20<br>19  | 48<br>49   | о<br>3   | 18       | 13             | о<br>З        | 36              | 5<br>5      |
| - | 184+00E94+00N                  | .7         | 1.5<br>6      | 5         | 164               | ,<br>8         | 21        | 48         | 3        | 18       | 15             | 3             | 42              | 5           |
|   | 184+00E94+25N                  | •••••      | 30            | 5         | 146               | 8              | 20        | 42         | <u>š</u> | 17       | 13             | <u>-</u>      | ~ 48            | 5           |
|   | 184+00E94+50N                  | 1.0        | 32            | 5         | 136               | 9              | 19        | 40         | 3        | 17       | 9              | 2             | 42              | 5           |
| - | 184+00E94+75N                  | . 9        | 2             | 4         | 141               | 10             | 20        | 36         | - 3      | 14       | 15             | 3             | 52              | 5           |
|   | 184+00E95+00N                  | .9         | 5             | 7         | 187               | 10             | 22        | 49         | 3        | 18       | 17             | 3             | 58              | 5           |
|   | 184+00E95+25N                  | 1.0        | 1             | 7         | 194               | 10             | 20        | 46         | 3        | 17       | 14             | 3             | 50              | 10          |
|   | 184+00E95+50N                  | 1.3        | 2             | 5         | 127               | 12             | 19        | 25         | 3        | 17       | 13             | 4             | 46              | 5           |
|   | 184+00E95+75N                  | 1.3        | 6             | . 5       | 128               | 11             | 18        | 17         | 2        | 10       | 10             | 1             | 39              | 5           |
|   | 184+00E76+00N                  | 1.3        | 7             | 5         | 123               | 11             | 18        | 15         | 3        | 12       | 13             | 4             | 40              | 5           |
|   | 184+00E96+25N                  | 1.2        | 31            | 5         | 158               | 10             | 16        | 22         | 2        | 13       | 12             | 2             | 51              | 10          |
|   | 184+00E96+50N                  | 1.4        |               | 5         | 128               | 10             | 15        | 16         | 2        | 10       | 13             |               | 49              | 5           |
|   | 184+00E96+75N                  | 1.3        | 4             | 5         | 109               | 10             | 16        | 11         | 3        | 12       | 13             | 3             | 43              | 5           |
| - | 184+00E97+00N                  | 1.1        | 4             | 6         | 119               | 10<br>10       | 20        | 33         | 3        | 13       | 13             | 3             | 39              | 5<br>10     |
|   | 184+50E87+25N<br>184+50E87+75N | 1.2        | 6<br>4        | 5         | 90<br>90          | 10<br>6        | 17<br>21  | 14<br>16   | 3<br>3   | 14<br>33 | 12<br>9        | 1<br>2        | 41<br>36        | 10<br>5     |
|   | 184+50E87+75N<br>184+50E88+25N | 1.0        | +<br>1        | 4         | 90<br>116         | 6<br>8         | 21<br>18  | 16<br>25   | э<br>2   | აა<br>16 | 9<br>14        | 2<br>3        | 38<br>39        | 5           |
|   | 184+50E88+75N                  | 1.1        | 10            | 7         | 190               | 8              | <u>19</u> | 166        | 2        | 25       | 13             | <u>j</u><br>1 | <u>3</u> /      | 5           |
|   | 184+50E89+25N                  | 1.0        | 8             | 6         | 125               | 9              | 19        | 44         | 3        | 17       | 17             | 3             | 34              | 10          |
|   | 184+50E89+75N                  | 1.2        | 9             | 7         | 122               | 9              | 17        | 41         | 2        | 16       | 14             | 1             | 31              | 5           |
|   | 184+50E90+25N                  | 1.4        | 18            | 10        | 182               | 7              | 13        | 156        | 3        | 26       | 15             | 1             | 39              | 5           |
|   | 184+50E90+75N                  | 1.0        | 7             | 6         | 185               | 8              | 15        | 34         | 3        | 13       | 13             | 3             | 38              | 5           |
|   | 184+50E91+25N                  | 1.0        | 3             | 4         | 186               | 8              | 17        | 19         | 3        | 12       | 18             | 1             | 39              | 5           |
|   | 184+50E91+75N                  | .8         | 1             | 5         | 128               | 8              | 18        | 33         | 3        | 16       | 15             | 2             | 40              | 15          |
| - | 184+50E92+25N                  | .9         | 6             | 5         | 143               | 9              | 18        | 37         | 3        | 15       | 11             | 2             | 33              | 5           |
|   | 184+50E92+75N                  | 1.0        | 2             | 4         | 115               | 10             | 19        | 31         | 3        | 14       | 11             | 2             | 35              | 5           |
|   | 184+50E93+25N                  | 1.3        | 4             | 4         | 78                | 11             | 16        | 14         |          | 15       | 15             | 11            |                 | 5           |
| - | 184+50E93+75N                  | 1.4        | 1             | 3         | 78                | 11             | 17        | 19         | 2        | 15       | 9              | 1             | 31              | 10          |
|   | 184+50E94+25N                  | 1.0        | 9             | 4         | 119               | 9              | 21        | 54         | 2        | 20       | 13             | 3             | 38              | 50          |
|   | 184+50E94+75N                  | .7         | 3             | 5         | 170               | 8              | 16        | 24         | 4        | 13       | 11             | 2             | 53              | 5           |
| _ | 184+50E95+25N                  | .8<br>.7   | 9<br>5        | 1<br>3    | 124<br>124        | 6<br>7         | 14<br>19  | 23<br>40   | 2<br>2   | 13<br>16 | 10<br>16       | 1<br>3        | 30<br>41        | 590         |
|   | 184+50E95+75N                  | ······     | <u>3</u>      |           | 144               | /              | 17        | 49         |          | 10       | 10             |               | 41              | 5           |

| Drewent, GANT, Coldikar, Data         Hitherik LARS, Data         Ditter Ling, Data           Antervirum, GANT, Digger, Data         Ling, Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | CONCAUN COANT COD |     |    |          | ыты | <b>EN 1</b> | AND 100 000                             | 107 |        |       |    | (ACT:F31) PAG | E 1 DF 1 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----|----|----------|-----|-------------|-----------------------------------------|-----|--------|-------|----|---------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                   |     |    | TAS NECT |     |             |                                         |     | 079    | 1 177 |    |               |          |
| Image: 10 PMP 3         BA         BI         CI         CI         DI         BI         PI         BI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                   |     |    | /VJ WEDI |     |             |                                         |     | * ¥75i |       |    |               |          |
| Image: Sec: Sec: Sec: Sec: Sec: Sec: Sec: Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                   |     | Δς |          |     |             |                                         |     |        |       |    |               |          |
| <ul> <li>Bishordskyrdy</li> <li>Bishords</li></ul>                                                                                                                                                                                                                                                                                                                                                                                         |          |                   |     |    |          |     |             |                                         |     |        |       |    |               |          |
| Image: construction         Image: construction <thimage: construction<="" th="">         Image: construction</thimage:>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                   |     |    |          |     |             |                                         |     | -      |       |    |               |          |
| High-NCE2-25-4     Hold Stressen -      High-NCE2-25     Hold Stressen -      High-NCE2-25     Hold Stressen -      High-NCE2-25     Hold Stressen -                                                                                           |          |                   |     |    |          |     | -           |                                         |     |        |       |    |               | -        |
| - IBS-00227-000. 07.7 3. 5. 1500 4. 13. 47.4 20. 17. 1.1 35.5<br>IBS-002281259. 9. 9. 7.7 3. 5. 150 4. 45.5 9. 22. 48. 3. 26. 17. 1.45.5<br>IBS-002281259. 18. 1.1 5. 9.6 8. 151.9 9. 25. 3. 21. 12. 2. 45. 10<br>IBS-002281259. 18. 1.1 5. 9.6 8. 151.9 9. 25. 3. 21. 12. 2. 45. 15<br>IBS-002287-250. 1.0 1.7 4. 5. 113. 8. 15. 9.7 12. 14. 2. 35.<br>IBS-002287-250. 1.0 1.0 1.8 1.1 8. 15. 10. 2. 2. 2. 2. 14. 2. 3. 34. 5<br>IBS-002287-250. 1.0 1.0 4. 4. 10.9 9. 15. 12. 12. 14. 2. 35. 5<br>IBS-002287-250. 1.0 1.0 4. 4. 10.9 9. 15. 17. 3. 10. 10. 3. 34. 5<br>IBS-002287-250. 1.0 4. 4. 10.9 9. 15. 17. 3. 10. 10. 3. 34. 5<br>IBS-002287-250. 1.0 4. 4. 10.9 9. 15. 17. 3. 10. 10. 3. 34. 5<br>IBS-002287-250. 1.0 4. 4. 10.9 9. 15. 17. 3. 10. 10. 3. 34. 5<br>IBS-002287-250. 1.0 8. 3. 112. 8. 14. 10. 3. 11. 12. 3. 47. 5<br>IBS-002287-250. 1.0 8. 3. 112. 8. 14. 10. 3. 11. 12. 3. 47. 5<br>IBS-002287-250. 1.0 8. 3. 112. 8. 14. 10. 3. 11. 12. 3. 47. 5<br>IBS-002287-250. 1.0 8. 3. 112. 8. 14. 10. 3. 11. 12. 3. 47. 5<br>IBS-002287-250. 1.0 8. 3. 112. 8. 14. 10. 3. 11. 12. 3. 77. 5<br>IBS-002287-250. 1.0 8. 3. 112. 8. 14. 10. 3. 11. 12. 3. 77. 5<br>IBS-002287-250. 1.0 8. 4. 205. 7. 2. 111. 13. 1. 47. 5<br>IBS-002297-250. 1.0 8. 4. 205. 7. 2. 111. 13. 1. 47. 5<br>IBS-002297-250. 1.0 8. 4. 205. 7. 2. 11. 13. 1. 47. 5<br>IBS-002297-250. 1.0 8. 4. 205. 7. 2. 11. 13. 1. 47. 5<br>IBS-002297-250. 1.0 8. 4. 205. 7. 2. 11. 13. 1. 47. 5<br>IBS-002297-250. 1.0 7. 5. 69. 9. 17. 12. 2. 14. 4. 9. 2. 95. 5<br>IBS-002297-250. 1.0 6. 24. 4. 99. 15. 15. 11. 10. 2. 25. 5<br>IBS-002297-250. 1.0 1.0 7. 5. 69. 9. 17. 12. 2. 13. 13. 72. 5<br>IBS-002297-250. 1.0 1.0 7. 5. 69. 9. 14. 9. 3. 12. 13. 3. 72. 5<br>IBS-002297-250. 1.0 6. 24. 4. 99. 14. 7. 7. 7. 12. 11. 2. 57. 5<br>IBS-002297-250. 1.0 1.0 7. 7. 5. 69. 9. 14. 9. 3. 12. 13. 4. 55. 5. 14. 5<br>IBS-002297-250. 1.0 1.0 7. 7. 5. 69. 9. 14. 9. 3. 12. 13. 4. 55. 5<br>IBS-002297-250. 1.0 1.0 7. 7. 5. 69. 9. 14. 9. 3. 12. 13. 4. 55. 5<br>IBS-002297-250. 1.0 1.0 7. 7. 5. 69. 9. 14. 9. 7. 7. 14. 4. 51. 10<br>IBS-002297-250. 1.1 6. 4. 127. 7. 7. 12. 14. 4. 42. 5<br>IBS-002597-250                   |          |                   |     | -  |          |     |             |                                         |     | -      |       |    |               |          |
| IBS-00627.75%         P         P         F         S         Is         O         2         S         S           IBS-00234.25%         .0         1         J         P         F         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                   |     | -  |          |     | '           |                                         |     | _      |       |    |               |          |
| Ibs-observed         Is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                   |     |    |          |     |             |                                         |     |        |       |    |               |          |
| Istendo         Istendo <t< td=""><td></td><td></td><td></td><td>•</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |     | •  |          |     | -           |                                         |     |        |       |    |               |          |
| - 15-00258-500 1.0 0 4 6 111 8 5 17 25 3 21 13 1 59 5<br>15-00259-500 1.0 10 7 121 8 12 7 3 3 1 1 2 3 54 5<br>185+0029+500 1.0 4 6 161 8 12 47 3 21 14 2 3 55<br>185+0029+500 1.0 4 4 109 9 15 19 3 10 10 3 30 1<br>185+0029+500 1.0 8 4 113 9 17 15 3 12 2 3 47 5<br>185+0029+500 1.0 8 4 113 9 17 15 3 12 2 3 47 5<br>185+0029+500 1.0 8 4 105 9 17 1 1 2 3 47 5<br>185+0029+500 1.0 8 4 105 9 17 2 1 3 1 1 2 3 47 5<br>185+0029+500 1.0 8 4 105 9 17 2 1 3 1 1 2 3 47 5<br>185+0029+500 1.0 8 4 105 9 17 2 1 3 1 1 2 3 47 5<br>185+0029+500 1.0 8 4 105 9 15 7 2 1 3 13 4 47 5<br>185+0029+500 1.0 8 4 105 9 15 7 2 1 3 13 4 47 5<br>185+0029+500 1.0 8 4 105 9 15 17 2 1 3 1 4 2 3 47 5<br>185+0029+500 1.0 8 4 105 9 15 11 3 1 2 2 3 47 5<br>185+0029+500 1.0 8 4 105 9 15 11 3 1 2 2 3 47 5<br>185+0029+500 1.0 8 4 105 9 15 11 3 1 2 2 3 47 5<br>185+0029+500 1.0 5 4 105 9 15 11 3 1 2 2 3 47 5<br>185+0029+500 1.0 2 4 125 102 15 7 2 13 13 4 47 5<br>185+0029+500 1.0 2 4 105 9 11 1 2 2 3 15 1 3 40 5<br>185+0029+500 1.0 2 4 4 59 10 14 11 3 11 10 3 22 7 5<br>185+0029+500 1.0 2 4 4 59 10 14 11 3 11 10 3 22 7 5<br>185+0029+500 1.0 0 10 3 87 8 14 9 3 12 13 1 39 5<br>185+0029+500 1.0 7 7 5 50 5 14 5 3 8 9 2 2 37 5<br>185+0029+500 1.0 7 7 2 121 4 11 77 1 12 2 3 42 4 5<br>185+0029+500 1.0 9 14 12 7 11 2 3 12 3 4 5<br>185+0029+500 1.0 9 14 12 7 11 2 3 12 3 4 5<br>185+0029+500 1.0 9 1 50 7 14 12 3 12 13 2 4 5<br>185+0029+500 1.0 9 1 50 7 14 12 3 12 3 1 5 3 4 5<br>185+0029+500 1.0 9 1 50 7 14 12 3 12 1 3 4 5<br>185+0029+500 1.0 9 1 50 7 14 12 3 12 13 2 5<br>185+0029+500 1.0 9 1 50 7 14 12 3 12 1 5 4 42 5<br>185+0029+509 1.0 9 1 50 29 3 12 1 5 4 42 5<br>185+0029+509 1.0 9 1 50 9 14 12 7 11 1 2 50 5<br>185+0029+509 1.0 9 1 50 29 3 12 12 4 5 5<br>185+0029+509 1.0 9 1 50 29 3 12 12 4 5 5<br>185+0029+509 1.0 9 1 7 17 5 15 2 1 1 7 1 1 2 5 15 3 5<br>185+0029+509 1.0 9 17 17 5 15 2 1 1 7 1 1 3 15 3 42 5<br>185+0029+509 1.1 6 3 12 9 19 14 4 11 3 19 15 3 42 5<br>185+0029+509 1.1 6 7 17 9 18 7 19 51 2 1 1 7 1 1 3 1 1 1 3 5 5<br>185+0029+509 1.1 1 4 7 109 10 17 18 2 13 13 15 3 42 5<br>185+0029+509 1.1 4 4 7 109 10 17 18 2 13 13 15 3 4 55 5<br>185+0029 |          |                   |     |    |          |     | -           |                                         |     |        |       |    |               | -        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Witness  |                   |     | -  |          |     | -           |                                         |     | -      |       |    |               |          |
| IBS-00209+02N         I.O         IO         Y         E         23         B         20         D3         E         24         S5         S         S4         S5           ISF-00209+02N         I.O         4         4         10         7         12         B         B         65         3         13         14         2         35         5           ISF-00209+00A         1.1         1         4         107         15         19         3         10         13         34         5           ISF-0020940A         1.0         8         3         113         B         14         10         3         11         2         34         10         13         14         7         5         35         10         5         10         10         10         3         11         10         2         38         5         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |     | -  |          |     | -           |                                         |     | -      |       |    |               |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                   |     |    |          |     |             |                                         |     |        |       |    |               |          |
| ISA 002 B9 +500         1.0         4         6         1.1         9         19         47         3         21         14         2         35         5           ISS 002 B9 +500         1.0         4         4         109         9         15         10         3         30         5           ISS 002 B9 +500         1.0         6         10         11         1         4         113         10         11         12         34         7         5           ISS 002 B9 +500         1.0         6         105         10         15         2         14         12         38         5           ISS 002 90 +500         1.0         5         4         10         5         10         15         14         12         38         5           ISS 002 91 +500         1.0         10         2         4         10         12         11         10         3         32         5           ISS 002 91 +500         1.0         10         2         10         18         11         3         11         10         3         32         5           ISS 002 91 +500         1.0         10         3 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                   |     | -  |          |     | -           |                                         |     |        |       |    |               |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |     |    |          |     | -           |                                         |     | -      |       |    |               |          |
| ist-origonom         i.i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                   |     | •  |          |     | ~           |                                         |     | •      |       |    |               | -        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |     | •  |          |     | •           |                                         |     | •      |       |    |               |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 'address |                   |     |    |          |     | -2:         |                                         |     |        |       |    |               |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |     | -  |          |     | -           |                                         |     |        |       |    |               |          |
| - 183-0053+400 1.0 5 4 102 9 15 11 2 11 2 39 10<br>183-0053+400 1.0 5 4 102 9 15 11 3 12 11 2 39 10<br>183-0053+2450 1.0 26 4 69 10 16 11 2 11 10 3 32 5<br>183-0053+250 1.0 2 4 69 10 16 11 2 11 10 2 29 5<br>183-0053+250 1.0 2 4 69 10 16 11 2 11 10 2 29 5<br>183-0053+250 1.0 7 3 80 9 14 9 3 12 13 1 39 5<br>183-0053+250 1.0 7 3 80 9 14 9 3 12 13 1 39 5<br>183-0053+250 1.0 7 3 80 9 14 5 3 8 9 2 37 5<br>183-0053+250 1.0 7 7 2 121 6 13 12 3 12 12 3 41 5<br>183-0053+250 7 7 7 2 121 6 13 12 3 12 12 3 41 5<br>183-0053+250 7 7 7 2 121 6 13 17 3 12 12 3 12 12 5<br>183-0053+250 7 7 7 2 121 6 13 14 12 3 12 8 2 44 5<br>183-0053+250 7 7 7 2 121 6 13 12 3 12 12 3 41 5<br>183-0053+250 7 7 7 2 121 6 13 14 12 3 12 8 2 44 5<br>183-0053+250 7 7 7 2 121 6 13 14 12 3 12 8 2 44 5<br>183+0053+250 7 7 7 2 121 6 13 14 12 3 12 8 2 44 5<br>183+0053+250 7 7 7 2 121 6 13 14 12 3 12 8 2 44 5<br>183+0053+250 7 7 7 2 121 6 13 14 12 3 12 8 2 44 5<br>183+0053+250 7 7 7 2 121 6 13 14 12 3 12 8 2 44 5<br>183+0053+250 7 7 7 2 121 6 15 4 12 3 13 18 15 3 42 5<br>183+0053+250 7 7 7 1 1 1 0 4 6 204 8 20 43 2 19 14 4 51 10<br>183+0053+500 1.0 7 5 159 6 15 41 3 18 15 3 42 5<br>183+0053+250 1.0 4 6 204 8 20 43 2 19 14 4 51 10<br>183+0053+500 1.1 0 4 6 204 8 20 43 2 19 14 4 51 10<br>183+0053+500 1.1 0 4 6 204 8 20 43 2 19 14 4 51 10<br>183+0053+500 1.1 0 5 188 9 15 20 3 12 12 2 3 3 5<br>183+0053+570 1.1 0 4 5 127 13 14 15 4 53 5<br>- 183+0053+500 1.1 0 1 7 176 19 22 3 14 15 4 52 5<br>- 183+0053+250 1.0 1 7 7 3 153 10 20 28 5 24 8 4 40 10<br>183+0053+520 1.0 1 7 7 15 10 20 4 13 3 18 13 6 43 5<br>183+0053+250 1.0 10 7 217 9 18 9 5 2 26 12 5 53 5<br>- 183+0053+250 1.0 10 7 217 9 18 9 5 2 26 12 5 53 5<br>- 183+0053+250 1.0 10 7 217 9 19 19 3 14 13 1 55 5<br>- 183+0053+250 1.0 10 7 217 9 19 19 3 14 13 1 55 5<br>- 183+0053+250 1.1 4 4 510 9 10 7 7 11 3 3 12 4 55 5<br>- 183+0053+250 1.1 4 4 4 4 11 1 16 16 3 3 13 13 4 55 5<br>- 183+0053+250 1.1 4 4 22 5 112 10 16 13 2 13 12 1 3 2 13 5 15<br>- 183+053+250 1.1 4 4 5 110 9 10 7 12 1 3 13 13 4 55 5<br>- 183+053+250 1.1 4 4 4 4 14 11 16 16 3 3 13 0 4 55 5<br>- 185+053+250 1.1 4 4 5 112 9 16 13 2     |          |                   |     | -  |          |     |             |                                         |     |        |       |    |               |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                   |     |    |          |     |             |                                         | •   |        |       |    |               | -        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                   |     |    |          |     | •           |                                         |     | -      |       |    |               |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |     |    |          |     |             |                                         |     |        |       |    |               |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |     |    |          |     |             |                                         |     | -      |       |    |               |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   |     |    |          |     |             |                                         |     | -      |       |    |               | -        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |     |    |          |     |             |                                         |     |        |       |    |               | 5        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |     |    |          |     | -           |                                         |     | -      |       |    |               | -        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   |     |    |          |     |             |                                         |     |        |       |    |               |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                   |     |    |          |     |             |                                         | -   |        | -     |    |               |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |     | -  |          |     |             |                                         |     | -      |       |    |               | 5        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   |     | -  |          |     | -           |                                         |     | 3      |       |    |               | 5        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   |     | _  |          |     | -           |                                         |     | -      |       |    |               | -        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                   |     |    |          |     |             | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |     |        |       |    |               |          |
| 185+00E94+75H         1.0         4         6         204         8         20         43         2         19         14         4         51         10           185+00E94+75H         1.0         8         204         8         20         43         2         19         14         4         51         10           185+00E95+00N         .9         1         7         151         9         22         3         15         16         5         497         5           185+00E95+00N         1.2         13         4         139         9         15         20         3         12         12         2         33         5         5         5         14         15         4         53         5         5         16         9         17         15         3         7         5         10         10         18         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         11         10         10         14         4         10         10         10         10         10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>••</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                   |     |    |          |     | ••          |                                         |     | -      |       |    |               | 5        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   |     | 4  |          |     | -           |                                         |     | 2      |       |    |               |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   |     | 1  |          |     | -           |                                         |     | 3      |       |    | 4 52          |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |     | -  |          |     | -           |                                         |     | -      |       |    |               |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        |                   |     |    |          |     |             |                                         |     |        |       |    |               |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   |     |    |          |     | 8           |                                         |     |        |       |    |               | 5        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |     | 10 |          |     | 9           | 19                                      |     | 3      | 14    | 15 | 4 53          | 5        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   |     | 7  |          | 53  | 10          | 20                                      | 28  | 3      | 24    | 8  | 4 40          | 10       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -        |                   |     | 7  | 5 1      | 29  | 10          | 19                                      | 32  | 2      | 19    | 15 | 3 39          | 5        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 185+00E96+75N     | 1.0 | 1  | 7 1      | 76  | 10          | 21                                      | 41  | 3      | 18    | 10 | 4 47          | 5        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 185+00E97+00N     | .8  | 6  | S 1      | 61  | 10          | 24                                      | 61  | 3      | 24    | 12 | 4 50          | 10       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   |     | 10 |          |     | 9           |                                         | 95  | 2      | 26    | 12 | 5 53          | 5        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                   |     | 10 | 7 1      | 48  | 9           | 20                                      | 38  | 3      | 22    | 17 |               | 5        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 185+50E88+25N     | 1.1 | 4  | 5 1      | 09  | 10          | 17                                      | 8   | 2      | 13    | 15 | 1 57          | 5        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 185+50E88+75N     | 1.4 | 11 | 4 1      | 32  | 9           | 16                                      | 14  | 3      | 12    | 12 | 1 34          | 10       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 185+50E89+25N40M  | 1.1 | 15 | 7 1      | 99  | 9           | 19                                      | 58  | 2      | 18    | 13 |               |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 185+50E89+75N     | 1.1 | 4  | 4 1      | 25  | 9           | 16                                      | 19  | 3      | 14    |    |               | 5        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 185+50E90+25N     | 4.9 | 16 | 4 1      | 42  | 10          | 17                                      | 11  | 3      | 13    | -  |               | 5        |
| $- \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _        |                   |     |    |          |     |             |                                         |     |        |       |    |               |          |
| $- \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 185+50E91+25N     |     | 22 |          |     |             | 16                                      |     | 2      |       |    |               |          |
| 185+50E92+75N       1.3       29       4       107       10       17       12       3       11       7       1       45       5         185+50E92+75N       1.4       4       141       11       16       16       3       13       6       1       45       5         185+50E93+75N       1.0       6       5       112       10       16       10       3       13       6       1       45       5         185+50E93+75N       1.0       6       5       112       10       16       10       3       13       10       4       47       5         185+50E94+25N       1.0       3       4       143       9       16       13       2       12       13       4       58       5         185+50E94+75N       1.0       7       6       147       9       16       37       2       17       11       1       38       5         185+50E95+25N40M       .8       5       8       145       9       18       48       3       14       14       4       34       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                   |     |    |          |     | 10          |                                         |     |        |       |    |               |          |
| 185+50E93+25N       1.4       4       4       141       11       16       16       3       13       6       1       45       5         185+50E93+25N       1.0       6       5       112       10       16       10       3       13       10       4       47       5         185+50E93+75N       1.0       3       4       143       9       16       13       2       12       13       4       58       5         185+50E94+25N       1.0       3       4       143       9       16       13       2       12       13       4       58       5         185+50E94+75N       1.0       7       6       149       9       16       37       2       17       11       1       38       5         185+50E95+25N40M       .8       5       8       145       9       18       48       3       14       14       4       34       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                   |     |    |          |     | •           |                                         |     |        |       |    |               | 5        |
| 185+50E93+75N       1.0       6       5       112       10       16       10       3       13       10       4       47       5         185+50E93+75N       1.0       3       4       143       9       16       13       2       12       13       4       58       5         185+50E94+25N       1.0       3       4       143       9       16       13       2       12       13       4       58       5         185+50E974+75N       1.0       7       6       147       9       18       37       2       17       11       1       38       5         185+50E95+25N40M       .8       5       8       145       9       18       48       3       14       14       4       34       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                   |     | 29 |          |     |             |                                         |     | -      |       |    |               | 5        |
| 185+50E94+25N       1.0       3       4       143       9       16       13       2       12       13       4       58       5         185+50E94+25N       1.0       7       6       149       9       16       37       2       17       11       1       38       5         185+50E95+25N40M       .8       5       8       145       9       18       48       3       14       14       4       34       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                   | 1.4 | 4  |          |     | 11          | 16                                      |     | 3      |       |    |               |          |
| 185+50E94+75N 1.0 7 6 149 9 18 37 2 17 11 1 38 5<br>185+50E95+25N40M .8 5 8 145 9 18 48 3 14 14 4 34 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                   |     | 6  |          |     | 10          |                                         |     |        |       |    |               | -        |
| 185+50E95+25N40M .8 5 8 145 9 18 48 3 14 14 <b>4 34 5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                   |     | -  |          |     |             |                                         |     |        |       |    |               | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                   |     |    |          |     | •           |                                         |     |        |       |    |               |          |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                   |     |    |          |     | •           |                                         |     | -      |       |    |               |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 185+50E95+75N     | 1.1 |    | 41       | 59  | <u> </u>    | 16                                      | 16  | 2      |       | 13 | 1 45          | 5        |

|              | COMPANY: GRANT CROD                     |                   |                    |          |                  |                | BS ICP R             |                  | 1.779.14      | 170       |                  |                |          | AGE 1 OF 1                 |
|--------------|-----------------------------------------|-------------------|--------------------|----------|------------------|----------------|----------------------|------------------|---------------|-----------|------------------|----------------|----------|----------------------------|
| с.           | PROJECT NO: WRT CLA                     |                   |                    | 705 1    | WEST 15TH        |                |                      |                  | . V/M         |           | OIL GEOCH        |                |          | 570S/P13+14<br>PT 13, 1988 |
|              | ATTENTION: GRANT CR<br>(VALUES IN PPM ) |                   |                    |          |                  | 980-3814<br>BI | <u>0n (504</u><br>CO | ) 988-4524<br>Cu | MO            | NI        | PB               | SB             |          | 10-PPB                     |
|              | 185+50E96+25N                           | AG                | AS                 | <u>3</u> | BA<br>147        | <u>81</u>      |                      | 20               |               | 15        | <u>r</u> o<br>13 | 4              | 46       | 5                          |
|              |                                         | 1.0<br>.8         | 1                  | 5        | 147              | 0<br>9         | 18                   | 33               | 3             | 15        | 13               | T<br>A         | 43       | 10                         |
|              | 185+50E96+75N                           | .8<br>1.1         | 7                  | ы<br>З   | 94               | 7<br>9         | 10                   | 33<br>13         | 3             | 19        | 10               | - <del>-</del> | 39       | 5                          |
|              | 186+00E87+00N<br>186+00E87+25N          | 1.1               | 7<br>9             | ن<br>4   | 129              | 9              | 17                   | 23               | 3             | 18        | 16               | 1              | 42       | 10                         |
|              | 186+00E87+25N<br>186+00E87+50N          | 1.0               | 7<br>8             | 4<br>3   | 127              | 7<br>9         | 17                   | 23<br>14         | 2             | 15        | 16               | 1              | 43       | 5                          |
| <b>Value</b> | 186+00E87+75N                           | <u>1.1</u><br>1.1 | <u>6</u>           | 3        | 107              | $\frac{7}{10}$ | <u>1/</u><br>15      | 10               | ź<br>2        | 12        | 12               | · <u>1</u>     | 42       | 5                          |
|              | 186+00E88+00N                           | 1.0               | 10                 | о<br>З   | 101              | 10             | 13                   | 7                | 2             | 12        | 12               | 1              | 60       | 10                         |
|              | 186+00E88+25N                           | 1.1               | 10                 | ა<br>3   | 110<br>          | 0<br>9         | 15<br>16             | 13               | 2             | 10        | 13               | 1              | 47       | 5                          |
|              | 188+00E88+50N40M                        | ···               | 35                 | 5        | 106              | 7<br>6         | 10<br>24             | 45               | 2<br>3        | 30        | 17               | 1              | 48       | 5                          |
|              | 186+00E88+30N40M                        | •0<br>.4          | 30<br>43           | 7        | 108              | 2              | 28                   | -13<br>61        | 3             | 48        | 15               | 3              | 57       | 5                          |
|              | 186+00E88+70N20M                        | 1.0               |                    |          | 175              | <u>9</u>       |                      | 54               | 2             | 23        | 11               | <u>-</u>       | 46       | 10                         |
|              | 185+00E89+25N                           | 1.0<br>1.0        | 3J<br>2            | и<br>3   | 175              | 7<br>Q         | 16                   | 12               | 3             | 13<br>13  | 11               | 1              | 38       | 5                          |
| -            | 186+00E89+50N                           | 1.0               | 2                  | а<br>З   | 110              | 7<br>9         | 16                   | 16               | 2             | 15        | 14               | i              | 48       | 10                         |
|              | 188+00E89+75N                           |                   | 8<br>8             | ्<br>4   | 106              | 7<br>9         | 15<br>15             | 10               | 2             | 10        | 10               | 1              | 33       | 5                          |
|              |                                         | $1.0 \\ 1.1$      | 8<br>10            | 4<br>4   | 108<br>105       | 7<br>9         | 15                   | 10               | 2<br>3        | 12        | 10               | 1              | 35<br>36 | 5                          |
| -            | 186+00E90+00N                           | <u>1.1</u><br>1.1 | <sup>10</sup><br>7 |          | 175              | <u>7</u><br>10 |                      |                  | 2             | <u>13</u> |                  | 5              | 46       | 5                          |
|              | 186+00E90+25N<br>186+00E90+50N          | 1.2               | 7<br>9             | J<br>4   | 121              | 10             | 16                   | 21               | 3             | 16        | 10               | 1              | 44       | 5                          |
|              | 186+00E90+35N                           | 1.3               | 7                  | 4<br>4   | 121              | 10             | 10<br>17             | 26               | 2             | 10        | 15               | 1              | 43       | 5                          |
|              | 188+00E90+75N<br>186+00E91+00N          | 1.1               | 8<br>15            | 4<br>4   | 112              | 10             | 17                   | 18               | 4<br>3        | 13        | 11               | 1              | 45       | 5                          |
|              | 186+00E91+25N                           | 1.4               | 13                 | 4<br>5   | 112              | 10             | 18                   | 10               | 2             | 14        | 14               | 5              | 40       | 5                          |
|              | 186+00E91+50N                           | <u>1.4</u><br>1.1 |                    | <u>-</u> | 119              | 11             | 19                   | 45               | <u>+</u><br>2 | 18        | 16               | <u>-</u>       | 41       | 5                          |
|              | 186+00E91+75N                           | 1.1               | 1<br>7             | . 5      | 117              | 8              | 17                   | 43<br>48         | 3             | 20        | 13               | 5              | 48       | 5                          |
| -            | 188+00E92+00N                           | .9                | 8                  | 2        | 128              | 0<br>7         | 14                   | 10               | 3             | 10        | 10               | 1              | 42       | 5                          |
|              | 186+00E92+25N                           | .7<br>1.1         | 17                 | 2        | 103              | 8              | 14                   | 15               | 3             | 10        | 10               | 2              | 36       | 10                         |
|              | 186+00E92+50N40M                        | .9                | 17                 | 4        | 128              | 0<br>8         | 19                   | 51               | 3             | 13        | 11               | 1              | 38       | 5                          |
|              | 186+00E92+75N                           | 1.1               |                    |          |                  | <u>4</u>       | <u>1/</u><br>14      | 10               | 2             | 10        | 13               | <u>1</u>       | 35       | 5                          |
|              | 186+00E93+00N                           | 1.3               | 14                 | 3        | 84               | 9              | 15                   | 13               | ž             | 10        | 17               | 2              | 41       | 5                          |
|              | 186+00E93+25N                           | 1.1               | 6                  | 3        | 102              | ,<br>9         | 15                   | 11               | 3             | 10        | 13               | 1              | 37       | 5                          |
|              | 186+00E93+50N                           | 1.4               | 9                  | ۍ<br>۲   | 120              | 10             | 15                   | 27               | . 3           | 14        | 16               | 2              | 37       | 10                         |
| -            | 186+00E93+75N                           | .9                | 2                  | 4        | 110              | 8              | 18                   | 47               | 2             | 18        | 15               | 4              | 47       | 5                          |
|              | 185+00E94+00N                           |                   |                    |          | 106              |                | 18                   | 62               | <u>-</u>      | 10        | 9                | 4              | 37       | <u>5</u>                   |
|              | 186+00E94+25N                           | .7                | 1                  | 4        | 131              | 8              | 19                   | 58               | 3             | 18        | 8                | 4              | 41       | 5                          |
| -            | 186+00E94+50N                           | 1.0               | 4                  | 1        | 71               | 8              | 15                   | 10               | 3             | , ç       | 10               | 1              | 31       | 10                         |
|              | 186+00E94+75N                           | 1.3               | 9                  | 3        | 87               | 8              | 15                   | 20               | , 2           | 11        | 12               | 2              | 36       | 5                          |
|              | 186+00E95+00N                           | .8                | 9                  | 4        | 145              | 8              | 15                   | 23               | 3             | 13        | 13               | 4              | 41       | 45                         |
|              | 186+00E95+25N                           |                   |                    | 4        | 150              | 8              | 16                   |                  | 3             | 15        | 12               | 5              | 40       | 5                          |
|              | 186+00E95+50N                           | .9                | 4                  | 3        | 128              | 8              | 16                   | 17               | 3             | 11        | 17               | 1              | 49       | 5                          |
|              | 186+00E95+75N                           | .7                | 6                  | 3        | 140              | 8              | 17                   | 20               | 4             | 13        | 10               | 4              | 45       | 5                          |
|              | 186+00E96+00N                           | 1.0               | 7                  | 3        | 125              | ç              | 16                   | 25               | 3             | 14        | 12               | 4              | 37       | 5                          |
|              | 186+00E96+25N                           | 1.0               | 7                  | 3        | 123              | 9              | 10                   | 25               | 3             | 14        | 15               | 1              | 38       | 5                          |
|              | 186+00E76+50N                           | 1.0               |                    | <u>-</u> | 128              |                | 14                   | 23               |               | 17        | 14               | <u>-</u>       |          | 5                          |
|              | 186+00E96+75N                           | 1.0               | 11                 | 4        | 110              | ,<br>9         | 14                   | 14               | 3             | 11        | 11               | 1              | 41       | 5                          |
|              | 186+00E97+00N                           | 1.0               | 8                  | 7        | 142              | 9              | 20                   | 50               | 3             | 20        | 10               | . 5            | 45       | 5                          |
|              |                                         | v<br>             |                    | ,<br>    | . : <del>.</del> | ,<br>          | **<br>********       |                  |               | ••        |                  |                | ·        | _                          |

...

Appendix II

## GEOPHYSICAL EQUIPMENT SPECIFICATIONS

# M-4 Induced Polarization Receiver

M-4 SERIES

#### DESCRIPTION

The Huntec M-4 is a microprocessor based receiver for time and frequency domain IP and complex resistivity measurement. It is:

**Easy to operate.** One switch starts a measurement, of up to 33 quantities simultaneously. The optional Cassette DataLogger records them all in seconds. Calibration, gain setting and SP buckout are all automatic.

**Reliable.** Using advanced digital signal processing techniques, the M-4 delivers consistently accurate data even in noisy, highly conductive areas. For mechanical reliability it is packaged in a rugged aluminum case for backpack or hand carrying.

Versatile. The operator may adjust delay and integration times, operating frequency and other measurement parameters to adapt to a wide range of survey conditions and requirements. An independent reference channel facilitates drillhole and underground work, and guarantees transmitter-receiver synchronization in highnoise conditions.

**Highly accurate.** With a frequency bandwidth of 100 Hz and noise-cancelling digital signal stacking, the M-4 delivers very precise results. The details are summarized in a table overleaf.

**Sensitive.** The same features that make the M-4 accurate allow detection of very weak signals. The Huntec receiver requires lower transmitter power than any other, for a given set of operating conditions. Automatic correction for drifts in self-potential and gain allow long stacking times for significant signal-to-noise improvements.

**Intelligent.** Under the control of a powerful 16-bit microprocessor, the M-4 calibrates and tests itself between measurements. Coded error messages, flashed onto the display, inform the operator of any malfunction.

The M-4 Receiver is complemented by Huntec's new M-4 transmitters, which offer precisely timed constant-current output and both time and frequency domain waveforms, compatible with the receiver's accuracy and multi-mode measurement capabilities. The RL-2 Reference Isolator connects any IP transmitter to the receiver's reference channel.

Contact Huntec for more information on the benefits offered by the M-4 product line.

#### **FEATURES**

- Time and Frequency domain IP and Complex Resistivity operation.
- Simultaneous Time domain and Complex Resistivity measurement.
- Automatic calibration

gain setting SP cancellation fault diagnosis filter tuning.

- Independent reference channel for drillhole and underground work.
- 42 quantities, displayable on large 3½ digit low-temperature liquid-crystal readout.
- Analogue meter for source resistance measurement.
- 10<sup>9</sup> ohms differential input resistance
- 8 hours continuous operation with replaceable, rechargeable nickel-cadmium battery pack (2 supplied).
- Optional Cassette DataLogger fits inside case, has read-after-write error checking. Up to 350 stations per tape.
- Conveniently packaged for backpacking or hand carrying.
- 100 Hz bandwidth, fine time-resolution.
- Advanced digital signal stacking.
- Delivers reliable, accurate data in noisy, highly conductive areas.

#### SPECIFICATIONS

#### INPUTS

Resistance:

Keypad:

**Operating Controls** 

Reference Registers:

| Signal Channel           |                                                                             |
|--------------------------|-----------------------------------------------------------------------------|
| Range:                   | $5 \times 10^{-5}$ to 10 volts. Automatic ranging. Overload indication      |
| Resistance:              | Greater than 10 <sup>9</sup> ohms differential                              |
| Bandwidth:               | 100 Hz                                                                      |
| -SP Cancellation:        | -5 to $+5$ volts (automatic)                                                |
| Protection:              | Low-leakage diode clamps, gas discharge surge arrestors, replaceable fuses. |
| <b>Reference</b> Channel |                                                                             |
| Level:                   | 500 mV minimum, 10 volts peak maximum, overload indication                  |

2 x 10<sup>5</sup> ohms differential

with each key.

cassette.

16 keys, calculator format, function associated

Keypad may be used to store up to ten 31/2

digit numeric values with floating decimal point to represent station number, line number, operator, time, date, weather, transmitter current, etc. for recording on

CONTROLS AND FUNCTIONS

#### MECHANICAL 3

M-4 Receiver with battery pack: 45 cm x 33 cm x 14 cm, 10.0 kg. M-4 Receiver with battery pack and Cassette DataLogger: Dimensions as above, 11.0 kg. Replaceable 33 cm x 11 cm x 4.5 cm, 3 kg. Battery pack: **ENVIRONMENTAL** Operation: -20°C to +55°C. Temperature: Storage: -40°C to +70°c. Humidity: Moisture-proof, operable in light drizzle. -1,525 m to +4,775 m. Altitude:

## Shock, Vibration: Suitable for transport in bush vehicles.

## OUTPUT ACCURACY AND SENSITIVITY

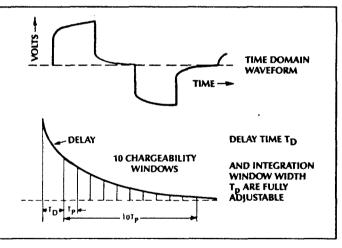
|             | PHASES                | AMPLI-<br>TUDES          | Vp            | SP            | CHARGE-<br>ABILITY | PFE                   |
|-------------|-----------------------|--------------------------|---------------|---------------|--------------------|-----------------------|
| UNITS       | millradians           | volts                    | volts         | volts         | seconds            | %                     |
| ACCURACY    | 2milli-<br>radians(1) | 1% to 40Hz<br>2% to 80Hz | ±1%           | ±1%           | 0.1%(2)            | 0.1%(3)<br>full scale |
| SENSITIVITY | 0.01<br>milliradians  | 10-6 volts               | 10-3<br>volts | 10-3<br>volts | 10-6<br>seconds    | 0.001%<br>full scale  |

(1) Frequency domain mode: at harmonic frequencies up to 15 Hz, increases to not more than 5 milliradians at 80 Hz.

Time domain mode: at harmonic frequencies up to 7.5 Hz, increases to not more than 5 milliradians at 30 Hz.

(2) of total OFF time

(3) Full scale defined as 100% PFE.


Cassette Data: recorded in ASCII, 9 digits with decimal point fixed for four decimal digits.

Display Data: 31/2 digits, floating decimal point.

Resolution of averaged waveform limited by A/D converter to one part in 4096 x (square root of cycle count).

Resolution of reference waveform (not averaged) limited by available memory to one part in 256. Additional memory and averaging software available as option.

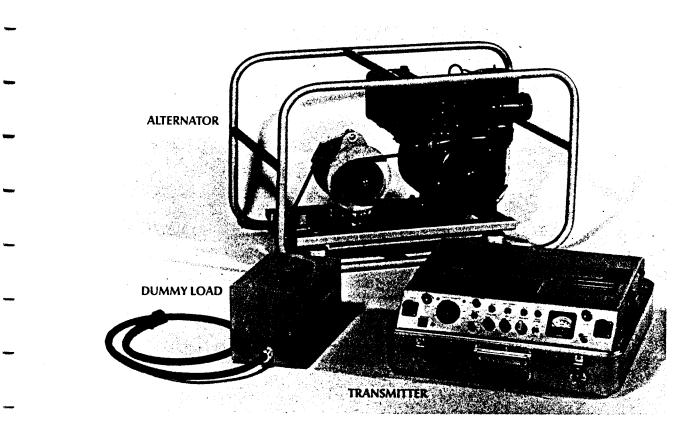
#### CHARGEABILITY WINDOWS



HUNTEC

1750 Brimley Road, Scarborough Ontario, Canada M1P 4X7 Phone: (416) 299-4100 Telex: 06-963640

#### **Programming Controls**


| Sub-panel: | All programming controls are on a covered sub-panel. |
|------------|------------------------------------------------------|
| Thumbwheel | Colort delas time to in millioneende ekonom          |

Switches: Select delay time t<sub>D</sub> in milliseconds chargeability window t<sub>p</sub> in milliseconds; operating frequency; PFE frequency ratio.

#### **Displayable Quantities**

| Displayable Quantiti      | 5                                                                                                                                                                                                                                                                   |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time domain:              | Primary voltage; self-potential; chargeability<br>(total or each of 10 windows of equal width);<br>phases of odd harmonics 3 to 15; amplitudes<br>of odd harmonics 1 to 15; cycle count;<br>repeating display of polarization potential<br>and total chargeability. |
| <sup>-</sup> req. domain: | Primary amplitude; Percent Frequency Effect; self-potential; cycle count.                                                                                                                                                                                           |
| Complex Resistivity:      | Phases of odd harmonics 3 to 15; amplitudes<br>of odd harmonics 1 to 15; fundamental<br>phase (with ref. input); cycle count.                                                                                                                                       |
| Any mode:                 | Battery voltage, Frequency error.                                                                                                                                                                                                                                   |
| OUTPUTS SHARES            |                                                                                                                                                                                                                                                                     |
| Displays                  |                                                                                                                                                                                                                                                                     |
| Digital Display:          | 31/2 digit, low-temperature liquid crystal display. Indicates measurement results and diagnostic error messages.                                                                                                                                                    |
| Analogue Meter:           | Ohms scale for source resistance; also gives qualitative indication of signal-to-noise ratio.                                                                                                                                                                       |
| CASSETTE DATALOO          | GER (OPTIONAL)                                                                                                                                                                                                                                                      |
| Description:              | Accommodated within M-4 chassis. If not acquired with receiver, may be retrofitted by user at any time. Two recording modes:                                                                                                                                        |
| Partial:                  | All sub-panel settings, measurement results, and contents of reference registers are                                                                                                                                                                                |
| – Full:                   | recorded (2 seconds recording time).<br>As in partial mode, but also recorded is one<br>cycle of averaged signal waveform (28 seconds<br>recording time). If external reference is used,                                                                            |
|                           | one cycle of reference waveform is also<br>recorded (60 seconds recording time). Extra                                                                                                                                                                              |
| ormat:<br>/erification:   | one cycle of reference waveform is also                                                                                                                                                                                                                             |

- M-4 SERIES -Induced Polarization/ Resistivity 2.5 kW - Transmitter DESCRIPTION **FEATURES** The HUNTEC M-4 2.5 kW Induced Solid-state switching for long life and Polarization transmitter is designed for precise timing. time domain, frequency domain (PFE) and complex resistivity applications. • Open circuit during the "off" time The unit converts primary 400 Hz ac ensures no counter current flow. power from an engine-alternator set · Resistance measurement for load to a regulated dc output current, set by the operator. Current regulation matching. eliminates output waveform distortion • Precision crystal controlled timing. due to electrode polarization effects. It is achieved in the transmitter by vary-· Failsafe operation protects against ing the alternator field currents. The short-circuit and overvoltage. transmitter is equipped with dummy loads to smooth out generator load • Automatic regulation of output variations. current eliminates errors due to changing polarization potential and load resistance.



## SPECIFICATIONS

Weight:

|   | M-4 2.5 kW Transm                                 | itter                                                                                                                                                                |
|---|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Power input:                                      | 96 — 144 V line to line 3 phase,<br>400 Hz (from Huntec generator set)                                                                                               |
|   | Output:                                           | Voltage: 150 — 2200 V dc in<br>8 steps Current: 0.2 — 7 A regulated**                                                                                                |
|   | Current regulation:                               | Less than ±0.1% change for ±10%<br>load change                                                                                                                       |
|   | Output frequency:                                 | 0.0625 Hz to 1 Hz (time domain,<br>complex resistivity)<br>0.0625 Hz to 4 Hz (frequency                                                                              |
|   |                                                   | domain) selectable from front panel<br>An additional range of frequencies<br>between 0.78 and 5.0 Hz is avail-<br>able and can be selected by an<br>internal switch. |
|   | Frequency                                         | internal switch.                                                                                                                                                     |
|   | accuracy:                                         | $\pm 50 \text{ ppm} - 30^{\circ}\text{C}$ to $+60^{\circ}\text{C}$                                                                                                   |
| - | Output duty cycle:<br>$T_{on}/(T_{on} + T_{off})$ | 0.5 to 0.9375 in increments of<br>0.0625 (time domain)<br>0.9375 (complex resistivity)<br>0.75 (frequency domain)                                                    |
| _ | Output current<br>meter:<br>Ground resistance     | Two ranges: 0-5 A and 0-10 A                                                                                                                                         |
|   | meter:                                            | Two ranges: 0-10 kΩ, 0-100 kΩ                                                                                                                                        |
|   | Input voltage meter:                              | 0-150 V                                                                                                                                                              |
|   | Dummy load:                                       | Two levels: 500 kW and 1.75 kW                                                                                                                                       |
|   | Temperature range:                                | -34°C to +50°C                                                                                                                                                       |
|   | Size:                                             | 53 cm x 43 cm x 29 cm                                                                                                                                                |
|   |                                                   |                                                                                                                                                                      |

\*\*Smaller currents are obtainable, but outside the current regulation range the transmitter voltage is regulated, not the current.

26 kg

## SPECIFICATIONS

| M-4 2.5 kW | Engine Driven Alte | ernator |
|------------|--------------------|---------|
|------------|--------------------|---------|

| Output:       | 120 V ac 400 Hz 3.5 kVA maximum                                                                     |
|---------------|-----------------------------------------------------------------------------------------------------|
| Engine:       | Briggs & Stratton 6 kW air cooled,<br>single cylinder four cycle piston<br>engine with manual start |
| Fuel:         | Regular grade gasoline, tank capa-<br>city 3.8 L to give 4 h duration                               |
| Alternator:   | Delta connected heavy duty auto-<br>mobile type, belt driven, air cooled                            |
| Construction: | Tubular protective carrying frame<br>with resiliently mounted engine<br>and alternator              |
| Size:         | 51 cm x 48 x 76 cm                                                                                  |
| Weight (dry): | 61 kg                                                                                               |

#### 



HUNTEC GEOPHYSICS 1750 Brimley Road, Scarborough Ontario, Canada M1P 4X7 Phone: (416) 299-4100 Telex: 06-963640

P.O. Box 851, Dartmouth Nova Scotia, Canada B2Y 3Z5 Phone: (902) 463-2380 Telex: 019-31446 LOCATED AT: ARGO BUILDING, BEDFORD INSTITUTE OF OCEANOGRAPHY

## Appendix III

### GEOPHYSICAL DATA

|   | 400        | 462.5          | 4      | 42        | 0.92         | 10.8       | 287        |
|---|------------|----------------|--------|-----------|--------------|------------|------------|
|   | 400        | 487.5          | 5      | 20        | 0.94         | 9.2        | 201        |
|   | 400        | 512.5          | 6      | 14        | 0.95         | 8.5        | 194        |
|   | 450        | 437.5          | 1      | 372       | 1.07         | 6.9        | 218        |
|   | 450        | 462.5          | 3      | 141       | 1.08         | 7.0        | 246        |
|   | 450        | 487.5          | З      | 77        | 1.09         | 10.3       | 266        |
|   | 450        | 512.5          | 4      | 35        | 1.10         | 9.4        | 200        |
|   | 450        | 537.5          | 5      | 24        | 1.12         | 8.7        | 202        |
|   | 450        | 562.5          | 6      | 15        | 1.13         | 4.5        | 175        |
|   | 500        | 487.5          | 1      | 537       | 0.88         | 4.4        | 383        |
|   | 500        | 512.5          | 2      | 136       | 0.89         | 8.0        | 288        |
| - | 500        | 537.5          | 3      | 54        | 0.90         | 7.5        | 226        |
|   | 500        | 562.5          | 4      | 33        | 0.90         | 7.4        | 230        |
|   | 500        | 587.5          | 5      | 50        | 0.91         | 6.0        | 207        |
| _ | 500        | 612.5          | 6      | 14        | 0.92         | 4.6        | 201        |
|   | 550        | 537.5          | 1      | 318       | 0.75         | 6.9        | 266        |
|   | 550        | 562.5          | 2      | 95        | 0.78         | 8.3        | 230        |
|   | 550        | 587.5          | 3      | 52        | 0.81         | 7.5        | 242        |
|   | 550        | 612.5          | 4      | 28        | 0.82         | 5.4        | 215        |
|   | 550        | 637.5          | 5      | 19        | 0.84         | 5.5        | 213        |
|   | 550        | 662.5          | 6      | 15        | 0.86         | 6.0        | 230        |
| - | 600        | 587.5          | 1      | 365       | 0.76         | 6.3        | 302        |
|   | 600        | 612.5          | 2      | 122       | 0.80         | 7.5        | 287        |
|   | 600        | 637.5          | 3      | 50        | 0.83         | 5.6        | 227        |
|   | 600        | 662.5          | 4      | 30        | 0.85         | 5.2        | 222        |
| - | 600        | 687.5          | 5      | 2S        | 0.86         | 6.3        | 241        |
|   | 600<br>650 | 712.5          | 6      | 18        | 0.88         | 6.7        | 270        |
|   | 650<br>650 | 637.5<br>662.5 | 1<br>2 | 488       | 0.88         | 6.2        | 348<br>ase |
|   | 650        | 687.5          | 3      | 111<br>52 | 0.93<br>0.94 | 5.8<br>5.7 | 225        |
|   | 650        | 712.5          | 4      | 34        | 0.94         | 6.7        | 209<br>227 |
|   | 650        | 737.5          | 5      | 26        | 0.92         | 7.1        | 266        |
| - | 650        | 762.5          | 6      | 17        | 0.88         | 7.9        | 255        |
|   | 700        | 687.5          | 1      | 365       | 1.04         | 4.3        | 221        |
|   | 700        | 712.5          | ż      | 100       | 1.08         | 4.7        | 175        |
| _ | 700        | 737.5          | 3      | 58        | 1.11         | 6.2        | 197        |
|   | 700        | 762.5          | 4      | 43        | 1.12         | 6.1        | 241        |
|   | 700        | 787.5          | 5      | 30        | 1.14         | 7.6        | 248        |
|   | 700        | 812.5          | 6      | 19        | 1.14         | 7.2        | 220        |
|   | 750        | 737.5          | 1      | 207       | 0.91         | 4.1        | 143        |
|   | 750        | 762.5          | â      | 82        | 0.92         | 6. 2       | 168        |
|   | 750        | 787.5          | 3      | 52        | 0.94         | 6.0        | 209        |
|   | 750        | 812.5          | 4      | 33        | 0.94         | 7.3        | 221        |
|   | 750        | 837.5          | 5      | 20        | 0.95         | 7.0        | 198        |
|   | 750        | 862.5          | 6      | 26        | 0.96         | 7.6        | 357        |
|   | 800        | 787.5          | 1      | 255       | 1.10         | 4.8        | 146        |
| - | 800        | 812.5          | â      | 109       | 1.10         | 5.6        | 187        |
|   | 800        | 837.5          | 3      | 59        | 1.10         | 6.8        | 202        |
|   | 800        | 862.5          | 4      | 33        | 1.10         | 6.8        | 188        |
|   | 800        | 887.5          | 5      | 39        | 1.10         | 7.7        | 334        |
|   | 800        | 912.5          | 6      | 23        | 1.13         | 11.6       | 269        |
|   | 850        | 837.5          | 1      | 452       | 1.59         | 4.8        | 179        |
|   | 850        | 862.5          | ā      | 168       | 1.61         | 6.1        | 197        |
|   | 850        | 887.5          | 3      | 77        | 1.64         | 5.4        | 177        |
|   | 850        | 912.5          | 4      | 84        | 1.66         | 6.9        | 318        |
|   | 850        | 937.5          | 5      | 46        | 1.67         | 8. O       | 260        |
|   |            |                |        |           |              |            |            |
|   | :          |                |        |           |              |            |            |
|   |            |                |        |           |              |            |            |

INTERPRETEX RESOURCES LTD. INDUCED POLARIZATION & RESISTIVITY SURVEY POLE-DIPOLE ARRAY - nois is WEST (Pole Dir'n Code E & N = 1, W & S = -1) ELECTRODE PARAMETERS - "a" = 50 meters. N = 1, 2, 3, 4, 5 & 6 |-----USER CODES------(meters = 1, feet = -1) Grid Units Code = 1 GRID : Dupont Lake LINE : (1 = incr, -1 = decr), Pole Dir'n Code = -1 366 S incr/decr P1 Loc. Code = 1 & "a" = 50 FILE NAME : W3665 (+ = east, - = west)Vo Ι Ma Pa P1 Loc. Plot Pt. (mV) (amps) (mSec.) (ohm-m.) MF SP N 35 50 37.5 317 0.95 7.4 210 1 7.3 33 50 62.5 2 110 0.95 218 50 87.5 З 79 1.28 9.7 233 50 112.5 4 42 1.28 7.3 206 50 137.5 5 25 1.30 8. O 181 5.2 132 50 162.5 6 13 1.30 100 87.5 1.05 8.4 225 1 376 100 112.5 2 1621.06 10.5 288 215 З 7.8 100 137.5 61 1.07 100 162.5 4 34 1.09 9.0 196 5 6.0 159 17 1.01 100 187.5 100 212.5 6 13 1.03 5.6 167 150 137.5 1 576 0.94 9.6 385 232 162.5 З 0.95 7.6 150117 187.5 З 56 0.95 9.4 222 150 6.8 212.5 4 25 0.97 162 150150 237.5 5 19 0.99 6.8 181 6 1.01 5.6 157 262.5 12 150 0.65 6.0 200 187.5 1 202 195 2 74 9.1 200 212.5 0.66 211 200 237.5 З 29 0.68 6.7 161 200 262.5 4 -20 0.69 6.7 182 200 287.5 5 -1.30.71 4.6 173 200 312.5 6 11 0.72 8.6 202 8.8 237.5 1 382 1.36 176 250 2 110 1.37 6.7 151 250 262.5 287.5 З 67 1.38 7.3 183 250 5.7 250 312.5 4 40 1.38 182 5 337.5 31 1.39 9. Ŭ 210 250 250 362.5 6 23 1.40 9.2 217 300 287.5 1 338 1.38 7.1 154 300 312.5 2 144 1.43 6.6 190 З 6.0 300 337.5 73 1.46 188 4 54 1.49 8.7 300 362.5 855 300 387.5 5 36 1.50 8.5 226 300 412.5 6 19 1.22 9.7 205 350 337.5 1 431 Ö.94 6.4 288 З 6.7 362.5 101 0.95 200 350 387.5 З 60 0.95 8.8 238 350 350 412.5 4 43 0.96 8.6 281 350 437.5 5 31 0.96 11.6 304 350 462.5 6 15 0.97 10.0 204 387.5 0.86 5.1 400 250 183 1 400 412.5 2 103 0.89 8.1 218 З 7.7 257 400 437.5 62 0.91

| • <b>•••</b> • | 850<br>900 | 962.5<br>887.5 | 6<br>1 | 25<br>475 | 1.68<br>1.40 | 7.2 | 196<br>213 |
|----------------|------------|----------------|--------|-----------|--------------|-----|------------|
|                | 900        | 912.5          | 2      | 126       | 1.44         | 5.4 | 165        |
|                | 900        | 937.5          | З      | 115       | 1.48         | 6.5 | 293        |
| Markey .       | 900        | 962.5          | 4      | 59        | 1.52         | 8.4 | 244        |
| -              | 900        | 987.5          | 5      | 31        | 1.55         | 6.5 | 188        |
|                | 900        | 1012.5         | 6      | 23        | 1.57         | 8.3 | 193        |
|                | 950        | 937.5          | 1      | 250       | 0.65         | 5.8 | 242        |
|                | 950        | 962.5          | а      | 100       | 0.66         | 5.5 | 286        |
|                | 950        | 987.5          | 3      | 42        | 0.67         | 5.7 | 236        |
|                | 950        | 1012.5         | 4      | 20        | 0.68         | 6.3 | 185        |
|                | 950        | 1037.5         | 5      | 14        | 0.68         | 6.2 | 194        |

|   | COTO - D.         | pont Lake |        |                   |          |          | ODES               |              |    |
|---|-------------------|-----------|--------|-------------------|----------|----------|--------------------|--------------|----|
|   |                   | 244 S     |        | meters<br>1 - iso | - 1, 188 | c = -170 | ole Dir'n (        | Code =       |    |
|   |                   | : W244S   | ,<br>i | nen/dec           | n, 11    | Code =   | 01e DIP N (<br>1 & |              | 50 |
|   | 1 . L. L. 1977173 | * ***     | L.     |                   |          |          |                    | <b>e</b> i — |    |
|   | (+ = east.        | - = west) | J.     | Vn                | Т        | Ma       | Pa                 |              |    |
|   |                   | Plot Pt.  |        |                   |          |          |                    | MF           | SF |
|   | 50                | 37.5      | 1      | 210               | 0.97     | 5.9      | 136                | 43           |    |
| • | 50                | 62.5      | 2      | 85                | 0.99     | 6.3      | 162                | 39           |    |
|   | 50                | 87.5      | З      | 61                | 1.00     | 7.7      | 230                |              |    |
|   | 50                | 112.5     | 4      | 45                | 1.01     | 9.6      | 280                |              |    |
|   | 50                | 137.5     | 5      | 26                | 1.02     | 8.4      | 240                |              |    |
|   | 50                | 162.5     | 6      | 16                | 1.03     | 5.9      | 205                |              |    |
|   | 100               | 87.5      | 1      | 242               | 0.98     | 4.6      | 155                |              |    |
|   | 100               | 112.5     | 2      | 133               | 1.00     | 6.8      | 251                |              |    |
|   | 100               | 137.5     | З      | 83                | 1.02     | 8.9      | 307                |              |    |
|   | 100               | 162.5     | 4      | 78                | 1.04     | 8.2      | 471                |              |    |
|   | 100               | 187.5     | 5      | 27                | 1.05     | 5.6      | 242                |              |    |
|   | 100               | 212.5     | 6      | 11                | 0.81     | 5.0      | 179                |              |    |
|   | 150               | 137.5     | 1      | 297               |          |          | 210                |              |    |
|   | 150               | 162.5     | 2      | 135               | 0.91     |          | 280                |              |    |
|   | 150               | 187.5     | З      | 109               | 0.92     |          | 447                |              |    |
|   | 150               | 212.5     |        | 35                | 0.93     |          | 236                |              |    |
|   | 150               | 237.5     |        | 18                | 0.94     |          |                    |              |    |
|   | 150               | 262.5     |        | 18                |          |          |                    |              |    |
|   | 200               | 187.5     |        | 886               |          |          |                    |              |    |
|   | 200               | 212.5     |        | 129               |          |          | 352                |              |    |
|   | 500               | 237.5     | 3      | 37                | 0.69     |          | 202                |              |    |
|   | 200               |           |        | 18                | 0.70     |          | 162                |              |    |
|   | 500               | 287.5     |        | 18                | 0.71     |          | 239                |              |    |
|   | 200               | 312.5     | 6      | 14                |          |          | 260                |              |    |
| - | 250               |           | 1      | 415               | 0.82     | 7.9      | 318                |              |    |
|   | 250               | 262.5     |        |                   | 0.84     |          | 191                |              |    |
|   | 250               | 287.5     | З      | 37                | 0.87     | 5.2      | 160                |              |    |
|   | 250               | 312.5     | 4      | 33                | 0.90     | 5.8      | 230                |              |    |
|   | 250               | 337.5     | 5      | 25                | 0.92     | 6.3      | 256                |              |    |
|   | 250               | 362.5     | 6      | 21                | 0.93     | 7.1      | 298                |              |    |
|   | 300               | 287.5     | 1      | 210               | 0.88     | 7.3      | 150                |              |    |
|   | 300               | 312.5     |        | 97                | 1.24     |          | 147                |              |    |
|   | 300               | 337.5     | 3      | 77                | 1.25     |          | 232                |              |    |
|   | 300               | 362.5     | 4      | 52                | 1.25     | 7.4      | 261                |              |    |
|   | 300               | 387.5     | 5      | 41                | 1.27     |          | 304                |              |    |
|   | 300               | 412.5     | 6      | <b>26</b>         | 1.28     | 8.8      | 268                |              |    |
|   | 350               | 337.5     | 1      | 423               | 1.89     | 5.8      | 141                |              |    |
|   | 350               | 362.5     | 2      | 252               | 1.90     | 6.4      | 250                |              |    |
|   | 350               | 387.5     | 3      | 140               | 1.90     | 7.1      | 278                |              |    |
|   | . 350             | 412.5     |        | 101               |          | 7.6      | 332                |              |    |
|   | 350               | 437.5     | 5      | 60                | 1.92     | 9.0      | 295                |              |    |
|   | 350               | 462.5     | 6      | 47                | 1.92     |          | 323                |              |    |
|   | 400               | 387.5     | 1      | 436               | 1.12     | 4.6      | 245                |              |    |
|   | 400               | 412.5     | 2      | 133               | 1.13     | 5.8      | 222                |              |    |

| 400        | 462.5 | 4 | 45       | 1.14         | 8.2 | 248 |  |
|------------|-------|---|----------|--------------|-----|-----|--|
| 400        | 487.5 | 5 | 34       | 1.13         | 9.6 | 284 |  |
| 400        | 512.5 | 6 | 29       | 1.12         | 9.1 | 342 |  |
| 450        | 437.5 | 1 | 358      | 0.93         | 4.2 | 242 |  |
| 450        | 462.5 | 8 | 128      | 0.94         | 5.6 | 257 |  |
| 450.       | 487.5 | 3 | 55       | <b>°.</b> 95 | 7.3 | 218 |  |
| 450        | 512.5 | 4 | 40       | 0.97         | 9.6 | 259 |  |
| 450        | 537.5 | 5 | 32       | 0.99         | 7.1 | 305 |  |
| 450        | 562.5 | 6 | 20       | 1.00         | 7.3 | 264 |  |
| 500        | 487.5 | 1 | 465      | 0.91         | 4.5 | 321 |  |
| 500        | 512.5 | 2 | 116      | 0.92         | 6.3 | 238 |  |
| 500        | 537.5 | 3 | 67       | 0.94         | 8.2 | 269 |  |
| 500        | 562.5 | 4 | 46       | 0.97         | 6.9 | 298 |  |
| 500        | 587.5 | 5 | 27       | 0.98         | 6.4 | 260 |  |
| 500        | 612.5 | 6 | 13       | 0.98         | 7.4 | 175 |  |
| 550        | 537.5 | 1 | 665      | 1.25         | 5.2 | 334 |  |
| 550        | 562.5 | â | 217      | 1.26         | 7.3 | 325 |  |
| 550        | 587.5 | 3 | 110      | 1.24         | 5.6 | 334 |  |
|            |       |   | 58       |              |     | 285 |  |
| 550<br>550 | 612.5 | 4 |          | 1.28         | 5.8 |     |  |
| 550        | 637.5 | 5 | 25       | 1.33         | 5.4 | 177 |  |
| 550        | 662.5 | 6 | 27       | 1.39         | 5.5 | 256 |  |
| 600        | 587.5 | 1 | 727      | 0.94<br>0.97 | 6.5 | 486 |  |
| 600        | 612.5 | 2 | 202      | <b>0.9</b> 5 | 4.4 | 401 |  |
| 600        | 637.5 | 3 | 77       | 0.96         | 4.7 | 302 |  |
| 600        | 662.5 | 4 | 85       | 0.97         | 4.4 | 181 |  |
| 600        | 687.5 | 5 | 27       | 0.98         | 5.3 | 260 |  |
| 600        | 712.5 | 6 | 17       | 1.00         | 5.6 | 224 |  |
| 650        | 637.5 | 1 | 769      | 0.85         | 6.3 | 568 |  |
| 650        | 662.5 | 2 | 160      | 0.86         | 4.8 | 351 |  |
| 650        | 687.5 | 3 | 46       | 0.87         | 4.7 | 199 |  |
| 650        | 712.5 | 4 | 38       | 0.89         | 5.6 | 268 |  |
| 650        | 737.5 | 5 | 21       | 0.90         | 4.8 | 220 |  |
| 650        | 762.5 | 6 | 13       | 0.92         | 6.2 | 186 |  |
| 700        | 687.5 | 1 | 369      | 0.94         | 5.1 | 247 |  |
| 700        | 712.5 | ż | 88       | 0.98         | 5.0 | 169 |  |
| 700        |       | 3 | 64       | 1.02         | 5.7 | 237 |  |
|            | 737.5 |   |          |              |     |     |  |
| 700        | 762.5 | 4 | 33       | 1.04         | 5.6 | 199 |  |
| 700        | 787.5 |   |          | 1.06         |     |     |  |
| 700        |       |   |          |              |     |     |  |
| 750        | 737.5 |   |          |              | 4.6 |     |  |
| 750        | 762.5 |   | 147      | 1.15         | 5.1 | 241 |  |
| 750        |       |   | 62       | 1.16         | 5.6 | 201 |  |
| 750        | 812.5 | 4 | 33       | 1.18         | 5.6 | 176 |  |
| 750        | 837.5 |   | 26       |              | 5.9 | 206 |  |
| 750        | 862.5 |   | 23       |              | 7.6 | 242 |  |
| 800        | 787.5 | 1 | 397      |              | 3.9 |     |  |
| 800        | 812.5 |   | 112      |              |     |     |  |
| 800        |       |   | 48       |              | 4.9 |     |  |
| 800        | 862.5 | 4 | 35       |              | 5.6 |     |  |
|            | 887.5 |   |          |              |     |     |  |
| 800        |       |   | 28<br>20 |              |     |     |  |
| 800        |       |   | 20       |              |     |     |  |
| 850        |       |   |          |              |     | 188 |  |
| 850        |       |   | 113      |              | 4.1 | 161 |  |
| 850        |       |   | 67       |              |     |     |  |
| 850        |       |   | 50       |              | 6.7 |     |  |
| 850        | 937.5 | 5 | 32       | 1.44         | 5.9 | 209 |  |
|            |       |   |          |              |     |     |  |

-----

|         | 850  | 962.5  | 6 | 25  | 1.49 | 6.7  | 221 |  |
|---------|------|--------|---|-----|------|------|-----|--|
| -       | 900  | 887.5  | 1 | 230 | 0.84 | 4. O | 172 |  |
|         | 900  | 912.5  | 2 | 92  | 0.86 | 5.1  | 205 |  |
|         | 900  | 937.5  | З | 58  | 0.90 | 6.4  | 243 |  |
| -       | 900  | 962.5  | 4 | 32  | 0.92 | 6.8  | 219 |  |
|         | 900  | 987.5  | 5 | 22  | 0.89 | 6.1  | 233 |  |
|         | 900  | 1012.5 | 6 | 16  | 0.88 | 7.7  | 240 |  |
|         | 950  | 937.5  | 1 | 404 | 1.43 | 4.8  | 178 |  |
|         | 950  | 962.5  | 2 | 193 | 1.51 | 6.4  | 241 |  |
|         | 950  | 987.5  | 3 | 86  | 1.55 | 5.5  | 209 |  |
|         | 950  | 1012.5 | 4 | 58  | 1.57 | 5.7  | 232 |  |
|         | 950  | 1037.5 | 5 | 4Ŭ  | 1.59 | 6.1  | 237 |  |
|         | 950  | 1062.5 | 6 |     |      |      |     |  |
|         | 1000 | 987.5  | 1 | 333 | 0.92 | 5.3  | 227 |  |
|         | 1000 | 1012.5 | 2 | 102 | 0.98 | 5.0  | 196 |  |
| <b></b> | 1000 | 1037.5 | З | 56  | 1.03 | 4.8  | 205 |  |
|         | 1000 | 1062.5 | 4 | 35  | 1.01 | 6.1  | 218 |  |
|         |      |        |   |     |      |      |     |  |

INTERPRETEX RESOURCES LTD. INDUCED POLAKIZATION & RESISTIVITY SURVEY POLE-DIPOLE ARRAY - pole is WEST (Pole Dir'n Code E & N = 1, W & S = -1) ELECTRODE PARAMETERS - "a" = 50 meters, N = 1, 2, 3, 4, 5 & 6|-----USER CODES-----(meters = 1, feet = -1) Grid Units Code = GRID : Dupont Lake 1 LINE : 122 S (1 = incr, -1 = decr), Pole Dir'n Code = -1 FILE NAME : W122S incr/decr P1 Loc. Code = 1 & "a" = 50 (+ = east, - = west)٧o I Ma Pa P1 Loc. Plot Pt. (mV)N (amps) (mSec.) (ohm-m.) MF SP 50 37.5 960 1.44 4.4 1 419 11 50 62.5 2 248 1.45 4.7 322 15 50 З 87.5 125 1.46 5.1 323 50 112.5 4 74 1.46 6.2 318 50137.5 5 53 1.47 7.4 340 50162.5 6 40 1.48 8.4 357 100 87.5 1 439 1.22 4.6 226 100 112.5 2 4.7 169 1.26 253 137.5 100 З 91 1.30 5.6 264 100 162.5 4 60 1.32 7.0 286 1 Ö Ö 187.5 5 45 1.35 8.1 314 100 212.5 7.5 6 28 1.37 270 150137.5 1 476 1.26 4.1 237 150 162.5 2 180 1.28 5.0 265 150 187.5 З 90 1.31 6.2 259 150 212.5 4 61 1.34 7.6 286 150237.5 5 37 1.36 6.8 256 262.5 6 1501.38 24 6.4 229 200 187.5 1 659 1.26 4.9 329 200 212.5 5.3 2 190 1.29 278 200 237.5 З 100 1.31 6.5 288 200 262.5 4 54 1.32 6.4 257 200 287.5 5 33 1.34 6.3 232 200 312.5 6 ΞO 1.36 E.1 194 250 237.5 1 465 1.12 4.5 261 250 262.5 2 170 1.15 5.9 279 250 287.5 З 80 6.3 1.19 253 250 312.5 4 44 1.23 6.2 225 250 337.5 5 26 1.25 6.6 196 250 362.5 6 33 1.28 6.8 340 300 287.5 1 593 1.34 4.9 278 300 312.5 2 187 1.36 5.6 259 З 300 337.5 84 1.39 6.2 228 300 362.5 4 43 1.41 5.9 192300 387.5 5 51 1.42 6.5 338 300 412.5 6 30 1.42 7.0 279 350 337.5 1 798 1.35 5.1 371 350 362.5 2 206 1.38 6.0 281 350 387.5 З 79 1.41 6.0 211 350 412.5 4 86 1.45 6.7 373 5 350 437.5 47 1.48 7. Ŭ 299 350462.5 6 36 1.50 8.1 317 387.5 400 1 348 0.87 5.2 251 400 412.5 2 90 5.5 0.88 193 400 437.5 З 84 0.90 6.3 352

|   | 400        | 462.5 | 4 | 41  | 0.91 | 6.4  | 283 |
|---|------------|-------|---|-----|------|------|-----|
| - | 400        | 487.5 | 5 | 30  | 0.92 | 7.7  | 307 |
|   | 400        | 512.5 | 6 | 24  | 0.93 | 8.1  | 341 |
|   | 450        | 437.5 | 1 | 284 | 0.94 | 4.6  | 190 |
|   | 450        | 462.5 | 2 | 168 | 0.96 | 5.6  | 330 |
| - | 450        | 487.5 | 3 | 66  | 0.99 | 6.0  | 251 |
|   | 450        | 512.5 | 4 | 45  | 1.01 | 7.1  | 280 |
|   | 450        | 537.5 | 5 | 34  | 1.03 | 7.5  | 311 |
|   | 450        | 562.5 | 6 | 27  | 1.05 | 7.4  | 339 |
|   | 500        | 487.5 | 1 | 610 | 1.18 | 4.9  | 325 |
|   | 500        | 512.5 | 2 | 139 | 1.20 | 5.3  | 218 |
| - | 500        | 537.5 | 3 | 75  | 1.21 | 6.5  | 234 |
| — | 500        | 562.5 | 4 | 52  | 1.22 | 6.7  | 268 |
|   | 500        | 587.5 | 5 | 40  | 1.24 | 6.6  | 304 |
|   | 500        | 612.5 | 6 | 15  | 1.25 | 4.8  | 158 |
|   | 550        | 537.5 | 1 | 331 | 0.98 | 4.7  | 212 |
|   | 550        | 562.5 | 2 | 117 | 1.00 | 5.5  | 221 |
|   | 550        | 587.5 | 3 | 66  | 1.04 | 5.6  | 239 |
|   | 550        | 612.5 | 4 | 47  | 1.06 | 6.0  | 279 |
|   | 550        | 637.5 | 5 | 16  | 1.09 | 4.9  | 138 |
|   | 550        | 662.5 | 6 | 17  | 1.11 | 5.5  | 202 |
|   | 600        | 587.5 | 1 | 652 | 1.36 | 5.6  | 301 |
|   | 600        | 612.5 | 2 | 208 | 1.37 | 5.4  | 286 |
|   | 600        | 637.5 | 3 | 115 | 1.39 | 5.1  | 312 |
|   | 600        | 662.5 | 4 | 34  | 1.39 | 4. Ö | 154 |
| - | 600        | 687.5 | 5 | 34  | 1.40 |      |     |
|   | 600        | 712.5 |   |     |      | 4.7  | 209 |
|   | 650        | 637.5 | 6 | 22  | 1.40 | 5.9  | 207 |
|   |            |       | 1 | 749 | 1.40 | 5.6  | 336 |
| - | 650<br>650 | 662.5 | 8 | 249 | 1.42 | 5.0  | 331 |
|   | 650<br>650 | 687.5 | 3 | 61  | 1.45 | 3.8  | 159 |
|   | 650<br>650 | 712.5 | 4 | 49  | 1.46 | 4.4  | 211 |
|   | 650<br>650 | 737.5 | 5 | 32  | 1.47 | 5.1  | 205 |
|   | 650        | 762.5 | 6 | 23  | 1.49 | 5.3  | 204 |
|   | 700        | 687.5 | 1 | 495 | 0.88 | 5.0  | 353 |
|   | 700        | 712.5 | 2 | 88  | 0.89 | 4. Ŭ | 174 |
|   | 700        | 737.5 | 3 | 53  | 0.91 | 4.3  | 220 |
|   | 700        | 762.5 | 4 | 31  |      | 5.1  | 209 |
|   | 700        | 787.5 |   | 21  |      | 5.3  | 211 |
| _ | 700        | 812.5 |   | 15  | 0.95 | 5.4  | 208 |
|   | 750        |       | 1 | 301 | 0.86 | 4.1  | 220 |
|   | 750        | 762.5 | 2 | 123 | 0.89 | 4.4  | 261 |
|   | 750        | 787.5 | 3 | 61  | 0.92 | 5.4  | 250 |
|   | 750        | 812.5 | 4 | 35  | 0.94 | 5.4  | 234 |
|   | 750        | 837.5 | 5 | 23  | o.96 | 5.5  | 226 |
|   | 750        | 862.5 | 6 | 16  | 0.97 | 6.6  | 218 |
| - | 800        |       | 1 | 598 | 1.66 | 3.8  | 226 |
|   | 800        | 812.5 | 2 | 227 | 1.67 | 5.1  | 256 |
|   | 800        | 837.5 | 3 | 110 | 1.72 | 5.0  | 241 |
|   | 800        | 862.5 | 4 | 45  | 1.23 | 5.3  | 230 |
|   | 800        | 887.5 | 5 | 29  | 1.24 | 6.1  | 220 |
|   | 800        | 912.5 | 6 | 24  | 1.21 | 5.9  | 262 |
|   | 850        | 837.5 | 1 | 549 | 1.77 | 4.4  | 195 |
|   | 850        | 862.5 | 2 | 206 | 1.78 | 4.6  | 218 |
|   | 850        | 887.5 | 3 | 100 | 1.80 | 5.0  | 209 |
|   | 850        | 912.5 |   | 59  | 1.81 | 5.9  | 205 |
|   | 850        | 937.5 | 5 | 47  | 1.83 | 6.0  | 242 |
|   |            |       |   |     |      |      |     |

|   | 850  | 962.5  | 6 | 4Ō  | 1.84 | 6.7 | 287 |
|---|------|--------|---|-----|------|-----|-----|
| - | 900  | 887.5  | 1 | 292 | 0.83 | 4.1 | 221 |
|   | 900  | 912.5  | 2 | 106 | 0.86 | 4.7 | 232 |
|   | 900  | 937.5  | З | 53  | 0.88 | 5.4 | 227 |
| _ | 900  | 962.5  | 4 | 38  | 0.90 | 5.7 | 265 |
| - | 900  | 987.5  | 5 | 29  | 0.92 | 6.3 | 297 |
|   | 900  | 1012.5 | 6 | 10  | 0.94 | 5.4 | 140 |
|   | 950  | 937.5  | 1 | 439 | 1.49 | 4.0 | 185 |
|   | 950  | 962.5  | 2 | 165 | 1.50 | 5.1 | 207 |
|   | 950  | 987.5  | 3 | 99  | 1.50 | 5.5 | 249 |
|   | 950  | 1012.5 | 4 | 68  | 1.51 | 6.0 | 283 |
|   | 950  | 1037.5 | 5 | 22  | 1.52 | 5.5 | 136 |
|   | 950  | 1062.5 | 6 |     |      |     |     |
|   | 1000 | 987.5  | 1 | 478 | 1.55 | 4.3 | 194 |
|   | 1000 | 1012.5 | 2 | 208 | 1.59 | 5.0 | 247 |
|   | 1000 | 1037.5 | 3 | 119 | 1.62 | 5.4 | 277 |
|   | 1000 | 1062.5 | 4 | 35  | 1.64 | 5.0 | 134 |
|   | 1000 | 1087.5 | 5 |     |      |     |     |
| - | 1000 | 1112.5 | 6 |     |      |     |     |
|   | 1050 | 1037.5 | 1 | 480 | 1.46 | 4.6 | 207 |
|   | 1050 | 1062.5 | E | 196 | 1.49 | 5.2 | 248 |
|   | 1050 | 1087.5 | З | 50  | 1.53 | 4.6 | 123 |
|   | 1050 | 1112.5 | 4 |     |      |     |     |
|   | 1050 | 1137.5 | 5 |     |      |     |     |
|   | 1050 | 1162.5 | 6 |     |      |     |     |
| - | 1100 | 1087.5 | 1 | 531 | 1.54 | 5.0 | 217 |
|   | 1100 | 1112.5 | 2 | 93  | 1.58 | 4.5 | 111 |
|   | 1100 | 1137.5 | 3 |     |      |     |     |
| - | 1100 | 1162.5 | 4 |     |      |     |     |
|   | 1100 | 1187.5 | 5 |     |      |     |     |
|   | 1100 | 1212.5 | 6 |     |      |     |     |
|   | 1150 | 1137.5 | 1 | 184 | 1.67 | 4.3 | 69  |
|   |      | x.     |   |     |      |     |     |
|   |      |        | • |     |      |     |     |
|   |      |        |   |     |      |     |     |
|   |      |        |   |     |      |     |     |
|   |      |        |   |     |      |     |     |

|                       |              |                |         |          |          | DDES                                                                                                                             |        |         |
|-----------------------|--------------|----------------|---------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------|--------|---------|
| GRID : Dup            | ont Lake     |                | meters  | = 1, Tee | t = -1 G | ria Units (<br>Signature de la compañía de Districtor de la compañía | code = | <i></i> |
| LINE :<br>FILE NAME : | WOS          | i              | ncr/dec | r Pl Loc | . Code = |                                                                                                                                  | "a" =  | 5       |
| (+ = east.            | - = west)    | a <sup>e</sup> | ۷p      | т        | Ma       | Pa                                                                                                                               |        |         |
| (+ = east, P1 Loc.    | Plot Pt.     | N              | (m∨)    | (amps)   | (mSec.)  | (ohm-m.)                                                                                                                         | MF     | S       |
| 50                    | 37.5         | 1              | 300     | 0.78     | 5.3      | 242                                                                                                                              | 22     |         |
| 50                    | 62.5         | 8              |         | 0.80     | 4.9      | 295                                                                                                                              | 17     |         |
| 50                    | 87.5         | 3              | 69      | 0.81     | 5.5      | 321                                                                                                                              |        |         |
| 50                    | 112.5        | 4              | 4Ö      | 0.82     | 6.1      |                                                                                                                                  |        |         |
| 50                    | 137.5        | 5              | 39      |          | 7.1      |                                                                                                                                  |        |         |
| 50                    | 162.5        | 6              | 20      |          | 6.9      |                                                                                                                                  |        |         |
| 100                   | 87.5         | 1              | 735     | 1.21     |          |                                                                                                                                  |        |         |
| 100                   | 112.5        | 2              | 230     |          | 6.4      |                                                                                                                                  |        |         |
| 100                   | 137.5        | З              | 108     |          | 6.4      |                                                                                                                                  |        |         |
| 100                   | 162.5        | 4              | 87      | 1.22     |          |                                                                                                                                  |        |         |
| 100                   | 187.5        | 5              | 40      | 1.22     |          |                                                                                                                                  |        |         |
| 100                   | 212.5        | 6              | 28      |          | 6.1      |                                                                                                                                  |        |         |
| 150                   | 137.5        | 1              | 826     |          | 6.9      |                                                                                                                                  |        |         |
| 150                   | 162.5        | Ξ              | 251     | 1.05     |          |                                                                                                                                  |        |         |
| 150                   | 187.5        | З              | 138     | 1.07     |          |                                                                                                                                  |        |         |
| 150                   | 212.5        | 4              | 56      | 1.08     |          |                                                                                                                                  |        |         |
| 150                   | 237.5        | 5              | 36      |          |          |                                                                                                                                  |        |         |
| 150                   | 262.5        | 6              | 18      |          | 6.2      |                                                                                                                                  |        |         |
| 200                   | 187.5        | 1              | 752     |          | 6.3      |                                                                                                                                  |        |         |
| 200                   | 212.5        | 2              | 227     | 0.96     |          |                                                                                                                                  |        |         |
| 200                   | 237.5        | 3              | 79      | 0.97     |          |                                                                                                                                  |        |         |
| 200                   | 262.5        | 4              | 45      | 0,97     |          |                                                                                                                                  |        |         |
| 200                   | 287.5        | 5              |         |          | 6.1      |                                                                                                                                  |        |         |
| 200                   | 312.5        | 6              |         | 0.98     |          |                                                                                                                                  |        |         |
| 250                   | 237.5        | 1              |         |          | 5.2      |                                                                                                                                  |        |         |
| 250                   | 262.5        | 2              |         | 1.10     |          | 312                                                                                                                              |        |         |
| 250                   | 287.5        | З              | 86      | 1.11     | 4.6      | 292                                                                                                                              |        |         |
| 250                   | 312.5        | 4              | 34      | 1.13     | 4.8      | 189                                                                                                                              |        |         |
| 250                   | 337.5        | 5              | 19      | 1.14     | 5.5      | 157                                                                                                                              |        |         |
| 250                   | 362.5        | 6              | 25      | 1.15     | 6.2      | 287                                                                                                                              |        |         |
| 300                   | 287.5        | 1              | 1069    | 2.53     | 5.5      | 265                                                                                                                              |        |         |
| 300                   | 312.5        | ā              | 359     | 2.54     | 4.7      | 266                                                                                                                              |        |         |
| 300                   | 337.5        | З              | 116     | 2.55     | 4.4      | 171                                                                                                                              |        |         |
| 300                   | 362.5        | 4              | 59      | 2.55     | 4.6      | 145                                                                                                                              |        |         |
| 300                   | 387.5        | 5              | 71      | 2.56     | 5.8      | 261                                                                                                                              |        |         |
| 300                   | 412.5        | 6              | 38      | 2.56     | 6.5      | 196                                                                                                                              |        |         |
| 350                   | 337.5        | .1             | 1246    | 1.78     | 6.3      | 440                                                                                                                              |        |         |
| 350                   | 362.5        | ŝ              | 244     | 1.79     | 5.1      | 257                                                                                                                              |        |         |
| 350                   | 387.5        | 3              | 102     | 1.80     | 5.2      | 214                                                                                                                              |        |         |
| 350                   | 412.5        | 4              | 97      | 1.82     | 6.0      | 335                                                                                                                              |        |         |
| 350                   | 437.5        | 5              | 46      | 1.83     | 6.3      | 233                                                                                                                              |        |         |
| 350                   | 462.5        | 6              | 42      | 1.84     | 7.1      | 301                                                                                                                              |        |         |
| 400                   | 387.5        | 1              | 704     | 1.90     | 5.0      | 233                                                                                                                              |        |         |
|                       | است ها استسو |                | (\\'T   | **       | ul∎ \/   | السواليين سيلا                                                                                                                   |        |         |
| 400                   | 412.5        | 2              | 217     | 1.91     | 4.9      | 214                                                                                                                              |        |         |

|   | 400        | 462.5          | 4 | 70       | 1.93 | 5.8        | 228 |  |
|---|------------|----------------|---|----------|------|------------|-----|--|
|   | 400        | 487.5          | 5 | 60       | 1.93 | 6.8        | 293 |  |
| - | 400        | 512.5          | 6 | 44       | 1.94 | 7.0        | 299 |  |
|   | 450        | 437.5          | 1 | 798      | 1.86 | 4.7        | 270 |  |
|   | 450        | 462.5          | 2 | 377      | 1.88 | 5.2        | 378 |  |
| , | 450        | 487.5          | 3 | 118      | 1.88 | 5.3        | 237 |  |
|   | 450        | 512.5          | 4 | 88       | 1.90 | 5.9        | 291 |  |
|   | 450        | 537.5          | 5 | 59       | 1.90 | 6.1        | 293 |  |
| - | 450        | 562.5          | 6 | 30       | 1.91 | 6.3        | 207 |  |
|   | 500        | 487.5          | 1 | 931      | 1.49 | 5.4        | 393 |  |
|   | 500        | 512.5          | Ê | 184      | 1.52 | 5.4        | 228 |  |
|   | 500        | 537.5          | 3 | 115      | 1.55 | 5.5        | 280 |  |
| - | 500        | 562.5          | 4 | 68       | 1.57 | 5.6        | 272 |  |
|   | 500        | 587.5          | 5 | 32       | 1.59 | 5.8        | 190 |  |
|   | 500        | 612.5          | 6 | 30<br>20 |      |            | 165 |  |
|   | 550        |                | 1 |          | 1.60 | 6.1        |     |  |
|   |            | 537.5          |   | 385      | 1.41 | 4.9        | 172 |  |
|   | 550<br>550 | 562.5          |   | 180      | 1.43 | 5.2        | 237 |  |
|   | 550        | 587.5          | 3 | 86       | 1.44 | 5.2        | 225 |  |
| * | 550        | 612.5          | 4 | 36       | 1.42 | 5.4        | 159 |  |
|   | 550        | 637.5          | 5 | 21       | 1.41 | 5.9        | 140 |  |
|   | 550        | 662.5          | 6 | 16       | 1.40 | 6.4        | 151 |  |
| - | 600        | 587.5          | 1 | 1055     | 1.27 | 5.7        | 522 |  |
|   | 600        | 612.5          | 8 | 535      | 1.28 | 5.2        | 342 |  |
|   | 600        | 637.5          | З | 71       | 1.29 | 5.0        | 207 |  |
|   | 600        | 662.5          | 4 | 34       | 1.30 | 5.1        | 164 |  |
| • | 600        | 687.5          | 5 | 23       | 1.31 | 4.6        | 165 |  |
|   | 600        | 712.5          | 6 | 21       | 1.32 | 5.8        | 210 |  |
|   | 650        | 637.5          | 1 | 742      | 1.50 | 5.0        | 311 |  |
|   | 650        | 662.5          | 2 | 166      | 1.52 | 5.0        | 206 |  |
|   | 650        | 687.5          | З | 66       | 1.53 | 5.2        | 163 |  |
|   | 650        | 712.5          | 4 | 39       | 1.54 | 4.6        | 159 |  |
|   | 650        | 737.5          | 5 | 34       | 1.54 | 5.1        | 208 |  |
| - | 650        |                | 6 | 18       | 1.55 | 5.0        | 153 |  |
|   | 700        | 687.5          | 1 | 649      | 1.73 | 5.0        | 236 |  |
|   | 700        | 712.5          | 2 | 125      | 1.26 | 5.2        | 187 |  |
|   | 700        | 737.5          | 3 | 59       | 1.26 | 4.5        | 177 |  |
| - | 700        | 762.5          | 4 | 46       | 1.27 | 4.5        | 228 |  |
|   | 700        | 787.5          |   | 23       | 1.28 | 4.5        | 169 |  |
|   | 700        | 612.5          |   |          |      |            |     |  |
| - | 750<br>750 |                |   | 23       |      | 5.4        | 235 |  |
|   |            | 737.5<br>760 F |   | 375      |      | 4.8<br>4.E | 224 |  |
|   | 750<br>750 | 762.5          |   | 117      |      | 4.5        | 208 |  |
|   | 750<br>750 | 787.5          |   | 77       | 1.08 | 4.7        | 269 |  |
| - | 750<br>750 | 812.5          |   | 34       | 1.10 | 4.9        | 194 |  |
|   | 750        | 837.5          |   | 31       | 1.11 | 5.2        | 263 |  |
|   | 750        | 862.5          |   |          | 1.13 | 5.8        | 304 |  |
| - | 800        | 787.5          |   |          | 2.00 | 4. O       | 173 |  |
|   | 800        | 812.5          |   |          | 2.01 | 4.5        |     |  |
|   | 800        | 837.5          |   | 98       | 2.02 | 4.6        | 183 |  |
|   | 800        | 862.5          |   |          | 2.03 | 5.1        | 248 |  |
|   | 800        | 887.5          |   |          | 2.04 | 5.7        | 296 |  |
|   | 800        | 912.5          |   | 37       |      | 6.3        | 239 |  |
|   | 850        | 837.5          |   | 453      | 1.31 | 3.8        | 217 |  |
|   | 850        | 862.5          | 2 |          | 1.33 | 4.4        | 170 |  |
|   | 850        | 887.5          |   | 84       |      | 4.8        | 235 |  |
|   | 850        | 912.5          |   | 60       |      | 5.4        | 279 |  |
|   | 850        | 937.5          |   | 33       | 1.36 | 5.7        | 229 |  |

|   | 850  | 962.5  | 6 | 29  | 1.36 | 5.8 | 281 |       |
|---|------|--------|---|-----|------|-----|-----|-------|
| _ | 900  | 887.5  | 1 | 477 | 1.45 | 3.5 | 207 |       |
|   | 900  | 912.5  | 8 | 211 | 1.48 | 4.5 | 269 |       |
|   | 900  | 937.5  | З | 120 | 1.50 | 5.1 | 302 |       |
|   | 900  | 962.5  | 4 | 58  | 1.51 | 5.6 | 241 |       |
| - | 900  | 987.5  | 5 | 47  | 1.53 | 5.7 | 290 | · .   |
|   | 900  | 1012.5 | 6 | 21  | 1.54 | 6.5 | 180 |       |
|   | 950  | 937.5  | 1 | 437 | 1.05 | 3.8 | 262 |       |
|   | 950  | 962.5  | ε | 184 | 1.08 | 4.6 | 321 |       |
|   | 950  | 987.5  | 3 | 72  | 1.08 | 5.2 | 251 |       |
|   | 950  | 1012.5 | 4 | 52  | 1.08 | 5.3 | 303 |       |
| - | 950  | 1037.5 | 5 | 22  | 1.09 | 6.3 | 190 |       |
|   | 950  | 1062.5 | 6 |     |      |     |     |       |
|   | 1000 | 987.5  | 1 | 423 | 1.05 | 4.0 | 253 |       |
|   | 1000 | 1012.5 | 8 | 129 | 1.06 | 4.9 | 229 |       |
| - | 1000 | 1037.5 | З | 83  | 1.09 | 5.2 | 287 |       |
|   | 1000 | 1062.5 | 4 | 32  | 1.11 | 6.2 | 181 |       |
|   | 1000 | 1087.5 | 5 |     |      |     |     |       |
|   | 1000 | 1112.5 | 6 |     |      |     |     |       |
|   | 1050 | 1037.5 | 1 | 426 | 1.22 | 4.5 | 219 |       |
|   | 1050 | 1062.5 | 2 | 194 | 1.24 | 4.9 | 295 |       |
| _ | 1050 | 1087.5 | 3 | 62  | 1.28 | 6.2 | 183 |       |
|   | 1050 | 1112.5 | 4 |     |      |     |     |       |
|   | 1050 | 1137.5 | 5 |     |      |     |     |       |
|   | 1050 | 1162.5 | 6 |     |      |     |     |       |
| - | 1100 | 1087.5 | 1 | 470 | 1.04 | 4.8 | 284 |       |
|   | 1100 | 1112.5 | 2 | 145 | 1.28 | 6.3 | 214 |       |
|   | 1100 | 1137.5 | 3 |     |      |     |     |       |
| - | 1100 | 1162.5 | 4 |     |      |     |     |       |
|   | 1100 | 1187.5 | 5 |     |      |     |     |       |
|   | 1100 | 1212.5 | 6 |     |      |     |     |       |
|   | 1150 | 1137.5 | 1 | 248 | 0.79 | 6.3 | 197 |       |
| - |      |        |   |     |      |     |     | 19 a. |
|   |      |        |   |     |      |     |     |       |

-----

INTERPRETEX RESOURCES LTD. INDUCED POLARIZATION & RESISTIVITY SURVEY POLE-DIPOLE ARRAY - pole is WEST (Pole Dir'n Code E & N = 1, W & S = -1) ELECTRODE PARAMETERS - "a" = 50 meters, N = 1, 2, 3, 4, 5 & 6 -----USER CUDES-----(meters = 1, feet = -1) Grid Units Code = GRID : Dupont Lake 1 LINE : (1 = incr, -1 = decr), Pole Dir'n Code = 122 N . --- 1 FILE NAME : W122N incr/decr P1 Loc. Code = 1 & "a" = 50(+ = east, - = west)Vo-1 Ma Pa Plot Pt. (mV) (amps) SP P1 Loc. N (mSec.) (ohm-m.) MF 50 37.5 347 0.89 245 1 6.3 26 50 62.5 2 132 0.90 5.9 276 21 50 87.5 З 0.91 5.7 58 240 50 112.5 4 42 0.92 6.9 287 50 137.5 5 30 0.92 6.8 307 50 162.5 6 28 6.5 0.88 420 438 0.87 100 87.5 1 5.6 316 100 112.5 2 127 0.89 5.6 269 100 137.5 З 79 0.91 6.9 327 100 162.5 4 55 0.92 6.2 376 187.5 5 100 48 0.94 6.4 481 100 212.5 6 30 0.94 5.6 421 150 137.5 1 652 1.52 5.2 270 2 150 162.5 271 1.54 6.7 332 150187.5 З 6.0 1501.55 365 150212.5 4 6.3 128 1.55 519 5 150237.5 73 1.56 5.6 441 150 262.5 6 7.0 62 1.10 744 200 187.5 1 707 1.27 6.5 350 200 212.5 2 294 1.27 5.8 436 200 237.5 З 195 1.27 6.1 579 200 262.5 4 1.27 96 5.5 475 5 200 287.5 58 1.27 6.0 430 200 312.5 5.7 6 37 1.29 378 250 237.5 1.34 5.2 1 838 393 250 262.5 3 393 1.35 5.8 549 250 287.5 З 166 1.35 5.3 464 250 312.5 4 5.7 82 1.36 379 5 52 250337.5 1.36 5.6 360 250 362.5 6 25 1.36 5.4 243 300 287.5 1 1116 1.36 6.0 516 300 312.5 2 328 1.38 5.3 448 300 337.5 З 132 1.40 5.7 355 300 362.5 4 77 1.41 5.5 343 1.42 300 387.5 5 36 5.1 239 412.5 6 6.3 300 32 1.43 295 350 337.5 1 992 1.38 4.5 452 350 362.5 2 5.3 230 1.40 310 350 387.5 З 5.1 117 1.41 313 350 412.5 4 50 1.42 4.9 221 350 437.5 5 41 1.44 5.8 268 350 462.5 6 26 1.44 5.5 238 400 387.5 526 4.9 1 1.26 262 40Ö 412.5 2 197 5.01.27 292 400 437.5 З 73 1.27 4.6 217

|          | 400        | 462.5 | 4 | 53          | 1.28 | 5.3         | 260 |   |
|----------|------------|-------|---|-------------|------|-------------|-----|---|
|          | 400        | 487.5 | 5 | 31          | 1.20 | 5.4         | 228 |   |
|          | 400        | 512.5 | 6 | 25          | 1.28 | 6.1         | 258 |   |
|          | 450        | 437.5 | 1 | 635         | 1.48 | 4.4         | 270 |   |
|          | 450        | 462.5 | 2 | 163         | 1.50 | 4.2         | 205 |   |
| -        | 450        | 487.5 | З | 99          | 1.51 | 5.1         | 247 |   |
|          | 450        | 512.5 | 4 | 53          | 1.53 | 5.0         | 218 |   |
|          | 450        | 537.5 | 5 | 40          | 1.54 | 5.4         | 245 |   |
|          | 450        | 562.5 | 6 | 33          |      | 6.4         | 281 |   |
|          | 400<br>500 |       |   |             | 1.55 |             |     |   |
|          |            | 487.5 | 1 | 349         | 1.19 | 4.1         | 184 |   |
|          | 500        | 512.5 | 2 | 148         | 1.21 | 5.1         | 231 |   |
| _        | 500        | 537.5 | 3 | 68          | 1.24 | 5.0         | 207 |   |
|          | 500        | 562.5 | 4 | 46          | 1.25 | 5.3         | 231 |   |
|          | 500        | 587.5 | 5 | 35          | 1.26 | 6.1         | 262 |   |
|          | 500        | 612.5 | 6 | 20          | 1.26 | 5.4         | 209 |   |
|          | 550        | 537.5 | 1 | 522         | 1.56 | 4.5         | 210 |   |
|          | 550        | 562.5 | a | 173         | 1.63 | 4.7         | 200 | * |
|          | 550        | 587.5 | З | 100         | 1.68 | 5.0         | 224 |   |
|          | 550        | 612.5 | 4 | 65          | 1.68 | 5.8         | 243 |   |
|          | 550        | 637.5 | 5 | 40          | 1.88 | 5.2         | 201 |   |
|          | 550        | 662.5 | 6 | 31          | 1.90 | 5.9         | 215 |   |
|          | 600        | 587.5 | 1 | 475         | 2.03 | 4.0         | 147 |   |
|          | 600        | 612.5 | 2 | 209         | 2.04 | 4.4         | 193 |   |
|          | 600        | 637.5 | 3 | 144         | 2.04 | 5.4         | 266 |   |
|          | 600        | 662.5 | 4 | 57          | 2.05 | 4.8         | 175 |   |
|          | 600        | 687.5 | 5 | 42          | 2.05 | 5.3         | 193 |   |
| -        | 600        | 712.5 | 6 | 25          | 1.99 | 5.3         | 166 |   |
|          | 650        | 637.5 | 1 | 606         | 1.08 | 4.6         | 353 |   |
|          | 650        | 662.5 | ŝ | 192         | 1.10 | 5.0         | 329 |   |
|          | 650        | 687.5 | 3 | 1 JE<br>81  |      | 4.5         |     |   |
|          |            |       |   |             | 1.12 |             | 273 |   |
|          | 650        | 712.5 | 4 | 53          | 1.14 | 5.4         | 292 |   |
|          | 650        |       | 5 | 30          | 1.15 | 5.0         | 246 |   |
|          | 650        | 762.5 | 6 | 18          | 1.16 | 4.8         | 205 |   |
|          | 700        | 687.5 | 1 | 628         | 1.85 | 4.8         | 213 |   |
|          | 700        | 712.5 | 2 | 179         | 1.88 | 4.1         | 179 |   |
|          | 700        | 737.5 | З | 102         | 1.90 | 4.8         | 202 |   |
|          | 700        | 762.5 | 4 | 51          | 1.95 | 4,4         | 164 |   |
|          | 700        | 787.5 | 5 | 29          | 1.95 | <b>4.</b> O | 140 |   |
|          | 700        | 812.5 | 6 | 24          | 1.95 | 5,1         | 162 |   |
| -        | 750        | 737.5 | 1 | 523         | 1.72 | 4.1         | 191 |   |
|          | 750        | 762.5 | 2 | 206         | 1.74 | 4.8         | 223 |   |
|          | 750        | 787.5 | З | 84          | 1.74 | 4.4         | 182 |   |
| _        | 750        | 812.5 | 4 | 42          | 1.75 | 3.6         | 151 |   |
|          | 750        | 837.5 | 5 | 32          | 1.76 | 5.2         | 171 |   |
|          | 750        | 862.5 | 6 | 30          | 1.77 | 5.5         | 224 |   |
|          | 800        | 787.5 | 1 | 634         | 1.28 | 5.6         | 311 |   |
|          | 800        | 812.5 | 2 | 176         | 1.30 | 5.3         | 255 |   |
|          | 800        | 837.5 | 3 | 69          | 1.36 | 4.2         | 191 |   |
|          | 800        | 862.5 | 4 | 47          | 1.37 | 4.8         | 216 |   |
| -        | 800        | 887.5 | 5 | 37          | 1.38 | 5.4         | 253 |   |
|          | 800        |       | 6 |             |      |             |     |   |
|          |            | 912.5 |   | 22<br>6 7 0 | 1.38 | 5.8         | 210 |   |
|          | 850        | 837.5 | 1 | 639         | 1.48 | 4.6         | 271 |   |
|          | 850        | 862.5 | 8 | 164         | 1.49 | 3.7         | 207 |   |
|          | 850        | 887.5 | 3 | 95          | 1.50 | 4.8         | 239 |   |
|          | 850        | 912.5 | 4 | 65          | 1.50 | 5.0         | 272 |   |
| agenter. | 850        | 937.5 | 5 | 35          | 1.51 | 5.2         | 218 |   |
|          |            | :     |   |             |      |             |     |   |
|          | 1          |       |   |             |      |             |     |   |
|          |            |       |   |             |      |             |     |   |

|          | 850  | 962.5  | 6 | 26  | 1.52 | 6.0 | 226 |  |
|----------|------|--------|---|-----|------|-----|-----|--|
|          | 900  | 887.5  | 1 | 428 | 1.24 | 4.1 | 217 |  |
|          | 900  | 912.5  | 2 | 189 | 1.27 | 5.0 | 281 |  |
|          | 900  | 937.5  | З | 100 | 1.29 | 5.1 | 292 |  |
| -        | 900  | 962.5  | 4 | 48  | 1.30 | 5.1 | 232 |  |
| -        | 900  | 987.5  | 5 | 33  | 1.31 | 5.7 | 237 |  |
|          | 900  | 1012.5 | 6 | 85  | 1.32 | 5.8 | 280 |  |
|          | 950  | 937.5  | 1 | 712 | 1.26 | 4.5 | 355 |  |
|          | 950  | 962.5  | 2 | 233 | 1.30 | 4.6 | 338 |  |
|          | 950  | 987.5  | З | 93  | 1.33 | 4.6 | 264 |  |
|          | 950  | 1012.5 | 4 | 55  | 1.37 | 4.9 | 252 |  |
|          | 950  | 1037.5 | 5 | 43  | 1.39 | 5.6 | 292 |  |
|          | 950  | 1062.5 | 6 |     |      |     |     |  |
|          | 1000 | 987.5  | 1 | 713 | 1.26 | 4.1 | 356 |  |
|          | 1000 | 1012.5 | 2 | 186 | 1.30 | 4.3 | 270 |  |
| •••      | 1000 | 1037.5 | З | 91  | 1.32 | 4.6 | 260 |  |
|          | 1000 | 1062.5 | 4 | 66  | 1.34 | 5.4 | 309 |  |
|          | 1000 | 1087.5 | 5 |     |      |     |     |  |
|          | 1000 | 1112.5 | 6 |     |      |     |     |  |
|          | 1050 | 1037.5 | 1 | 606 | 1.28 | 4.0 | 297 |  |
|          | 1050 | 1062.5 | 2 | 188 | 1.28 | 4.4 | 277 |  |
|          | 1050 | 1087.5 | З | 112 | 1.29 | 5.0 | 327 |  |
| August . |      |        |   |     |      |     |     |  |

Appendix IV

### ROCK SAMPLE DESCRIPTIONS

#### ROCK SAMPLE DESCRIPTIONS

|   | Sample<br>No. | Grid<br>Coord. | Description                                                                                                       |
|---|---------------|----------------|-------------------------------------------------------------------------------------------------------------------|
|   | 88-01         | Rhyolite       | ∸grab, carbonate alteration, rusty ankerite,<br>calcite veinlets, 2 ppb Au, .4 ppm Ag                             |
|   | 88-02         | Rhyolite       | -grab, 5 cm quartz veinlet within basalt, py,<br>cpy, mal, az, 24 ppb Au, 4.1 ppm Ag,<br>3770 ppm Cu, 387 ppm Zn  |
|   | 88-03         | Rhyolite       | -grab, 5-10 cm wide calcite veinlets within<br>basalt, 10% py, sp, 7 ppb Au, .2 ppm Ag,<br>326 ppm Cu, 974 ppm Zn |
|   | 88-04         | Rhyolite       | -grab, quartz-carbonate veinlets within basalt,                                                                   |
|   |               |                | py, 41 ppb Au, 2.6 ppm Ag, 303 ppm Cu, 2183<br>ppm Zn                                                             |
|   | 88-05         | Rhyolite       | -grab, rusty fracturing & shearing, 10% py,<br>16 ppb Au, .4 ppm Ag, 206 ppm Cu, 1951 ppm Zn                      |
|   | 88-06         | Rhyolite       | -grab, felsic dyke, 1% py, 5 ppm Au, 4.4 ppm<br>Ag, 93 ppm Cu, 122 ppm Zn                                         |
|   | 88-07         | Meadow         | -float, carbonate altered, minor mariposite,<br>9 ppb Au, 2.6 ppm Ag, 175 ppm Cu                                  |
|   | 88-08         | Pom Pom?       | -float, white calcite veinlets within maroon<br>tuff, chalcocite, mal, 1 ppb Au, 2.4 ppm Ag,<br>17552 ppm Cu,     |
|   | 88-09         | Meadow         | -float, rusty, silicified & carbonate altered,<br>3 ppb Au, 1.9 ppm Ag, 229 ppm Cu                                |
|   | 88-10         | Meadow         | -grab, minor silicification, narrow calcite<br>veinlets, 1 ppb Au, 1.4 ppm Ag,                                    |
|   | 88-11         | Meadow         | -grab, weak carbonate alteration, rusty, 35 ppb<br>Au, .3 ppm Ag                                                  |
|   | 88-12         | Meadow         | -1 m chip, carbonate alteration, minor<br>mariposite, 14 ppb Au, 1.5 ppm Ag,                                      |
|   | 88-13         | Meadow         | -1 m chip, carbonate alteration, minor<br>mariposite, 2 ppb Au, 1.6 ppm Ag,                                       |
| : | 88-14         | Meadow         | -1 m chip, carbonate alteration, fg py?, 1 ppb<br>Au, 1.8 ppm Ag,                                                 |

----

88-15 Meadow -grab, carbonate alteration, 10 ppb Au, 1.8 ppm Ag, 88-16 Meadow -random chip, silicified zone, minor py, hem on fractures, 1 ppb Au, 1.7 ppm Ag, 88-17 Meadow -grab, shear, chlorite, talc, calcite veinlets, 2 ppb Au, .6 ppm Ag, 88-18 Meadow -grab, rusty, carbonate altered, minor mariposite, hem on fractures, 2 ppb Au, 1.1 ppm Ag, 88-19 Meadow -grab, weak carbonate alteration, rusty, 25 ppb Au, .8 ppm Ag, 88-20 Meadow -float, rusty, carbonate altered, mariposite, 1 ppb Au, 1.0 ppm Ag, trench A, 88-21 Meadow -float, rusty, carbonate altered, mariposite, 34 ppb Au, 1.1 ppm Ag, trench A, 88-22 Meadow -float, rusty, carbonate altered, mariposite, 3 ppb Au, .8 ppm Ag, trench A, -float, carbonate alteration, tr py, minor 88-23 Meadow silicification, mariposite, 7500 ppb Au, 67.6 ppm Ag, trench B, 88-24 Meadow -2.3 m chip, rusty, carbonate alteration, weak shearing, 2 ppb Au, 3.7 ppm Ag, trench B 88-25 Meadow -float, rusty, carbonate alteration, mariposite 436 ppb Au, 12.2 ppm Ag, trench B, 88-26 Meadow -float, rusty, carbonate alteration, mariposite 64 ppb Au, 3.2 ppm Ag, trench B, 88-27 Meadow -float, weak carbonate alteration, 1 ppb Au, 1.1 ppm Ag, trench C, 88-28 Meadow -grab, weak carbonate alteration, rusty fractures, epidote, 12 ppb Au, .6 ppm Ag, 88-29 Meadow -float, quartz mariposite schist, ga, sp, cpy, 605 ppb Au, 165.1 ppm Ag, 553 ppm Cu, 2158 ppm Pb, 2737 ppm Zn, 88-30 Meadow -float, quartz mariposite schist, ga, sp, cpy, 482 ppb Au, 258.4 ppm Ag, 442 ppm Cu, 2901 ppm Pb, 1783 ppm Zn,

Appendix V

COST STATEMENT

#### INTERPRETEX RESOURCES LTD.

Personnel

E.R. Rockel, Geophysicist Oct. 29, Nov. 1, 3, 4, 1988

1. Bzdel, Field Geophysicist
Sept. 2-13, 1988

T. Iannone, Geophysical Technician Sept. 2-13, 1988

D. Segal, Geophysical Technician Sept. 2-13, 1988

B. McPhee, Geophysical Technician Sept. 2-13, 1988

M. Gawne, Geophysical Technician Sept. 2-13, 1988

MOBILIZATION-DEMOBILIZATION

| — | inc | lude | <b>s</b> - j | per | son | nel |
|---|-----|------|--------------|-----|-----|-----|
|---|-----|------|--------------|-----|-----|-----|

- geophysicl instruments
- two 4x4 trucks
- fuel and oil
- food and accommodation

#### \$ 1,250.00

#### INDUCED POLARIZATION SURVEY

- includes salaries
  - equipment
    - vehicle rental
    - food and motel for personnel
    - field and office supplies
    - fuel and oil

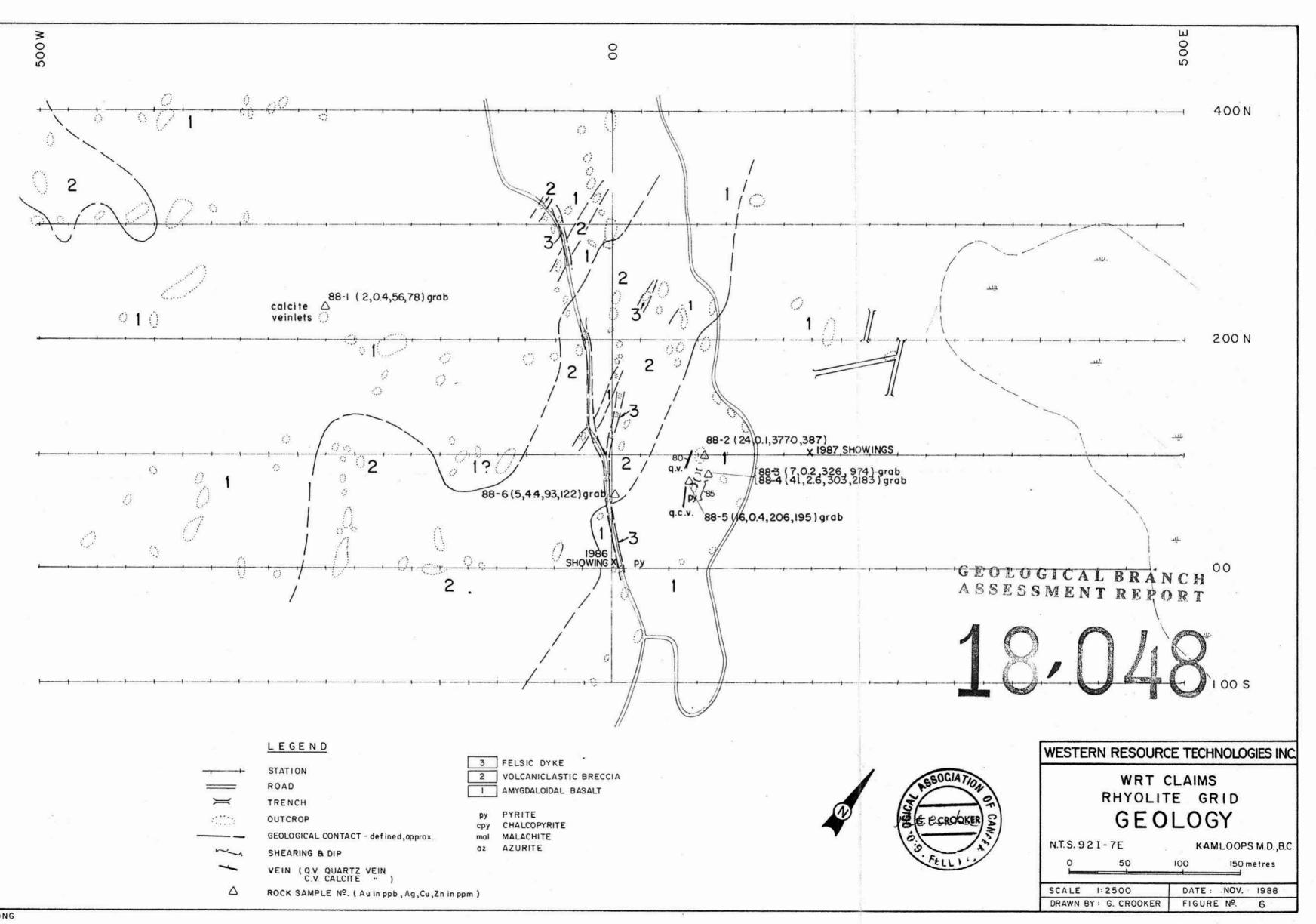
#### 11 days survey

18,590.00

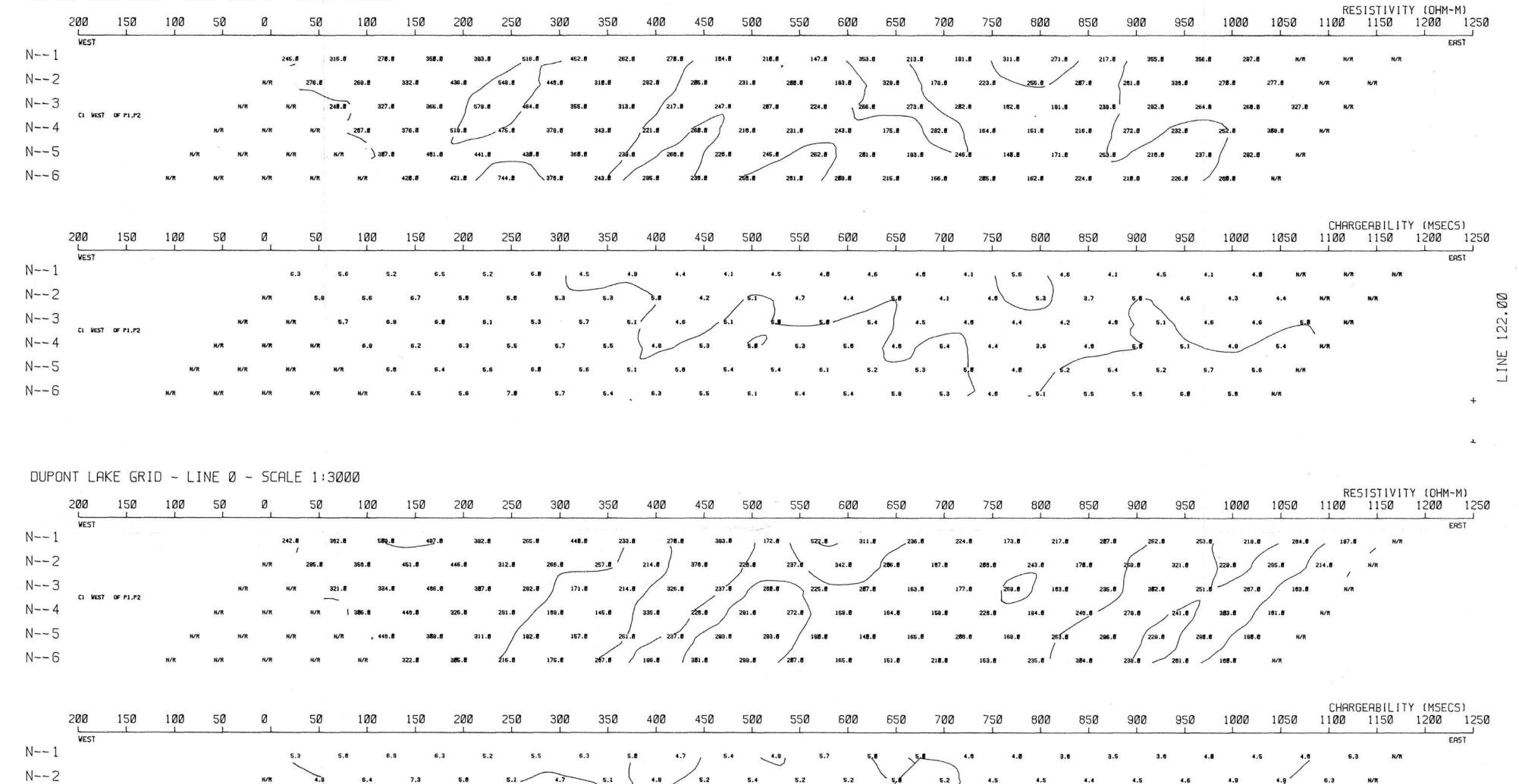
#### DATA MANIPULATION AND REPORTING

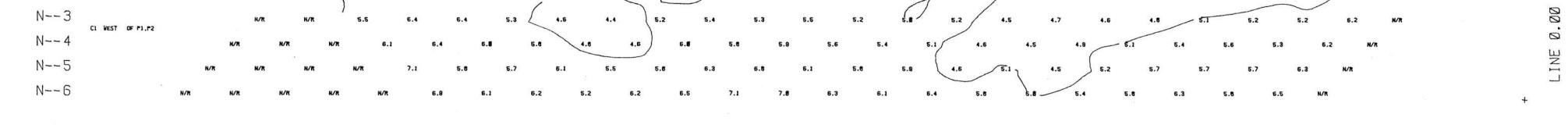
- includes computer data processing
  - preliminary maps
  - data interpretation
  - report writing
  - final computer data plotting and map production
  - materials, supplies and shipping costs

1,500.00

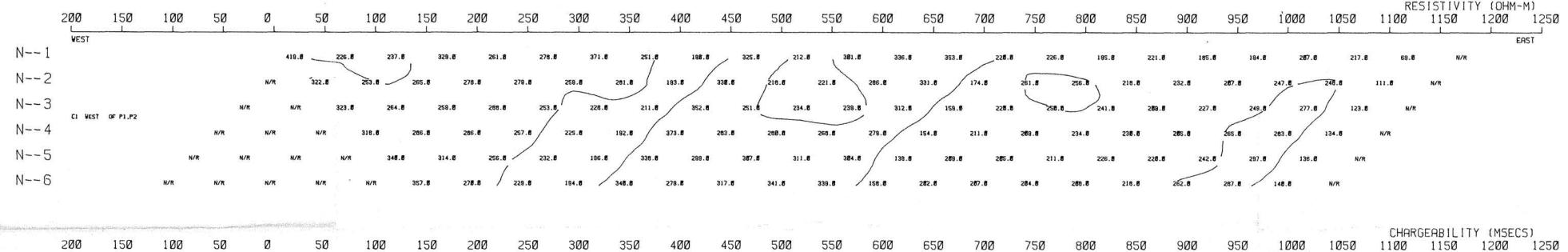

### GRANT CROOKER, GEOLOGICAL SERVICES

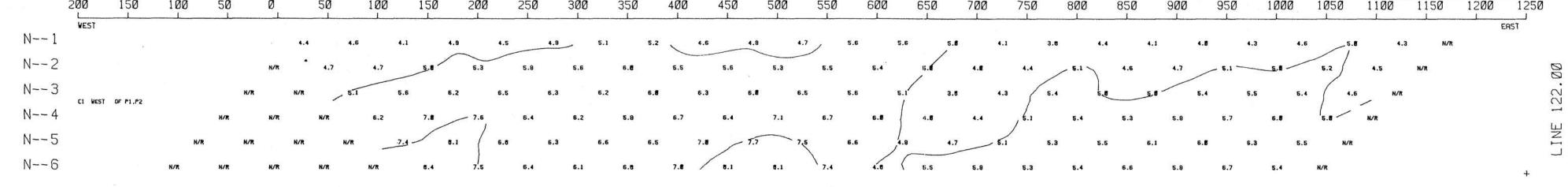
#### SALARIES


| -    | Grant Crooker, Geologist<br>June 2-8, 11, 13-16, Aug. 26-28,<br>Sept. 13-15, Nov. 1-3, 1988<br>21 days @ \$ 350/day                                                | \$ 7,350.00                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| -    | <b>L.W. Saleken, Geologist</b><br>Aug. 26- 28, 1988<br>3 days @ \$ 350.00/day                                                                                      | 1,050.00                             |
| -    | <b>Lee Mollison, Field Assistant</b><br>June 2-8, 11, 13-16, 1988<br>12 days @ \$ 150.00/day                                                                       | 1,800.00                             |
| -    | Frank Haidlauf, Field Assistant<br>June 2-8, 11, 13-16, 1988<br>12 days @ \$ 150.00/day                                                                            | 1,800.00                             |
| MEAL | S and ACCOMMODATION                                                                                                                                                |                                      |
|      | Grant Crooker - 15 days @ \$ 60.00/day<br>L.W. Saleken - 3 days @ \$ 60.00/day<br>Lee Mollison - 12 days @ \$ 60.00/day<br>Frank Haidlauf - 12 days @ \$ 60.00/day | 900.00<br>180.00<br>720.00<br>720.00 |
| TRAN | SPORTATION                                                                                                                                                         |                                      |
|      | Vehicle Rental(Ford 3/4 ton 4x4)<br>June 2-8, 11, 13-16, Aug. 26-28, 1988<br>15 days @ \$ 60.00/day<br>Gasoline                                                    | 900.00<br>322.40                     |
| -    | Vehicle Rental(Datsun pick-up)<br>1942 kms @ .25/km                                                                                                                | 485.50                               |
| . –  | Vehicle Rental(1984 Bronco 4x4)<br>Aug. 26-28, 1988<br>3 days @ \$ 60.00/day                                                                                       | 180.00                               |
|      | Gasoline                                                                                                                                                           | 90.00                                |
| EQUI | PMENT RENTAL                                                                                                                                                       |                                      |
| -    | Powersaw Rental<br>June 2-7, 14, 14, 1988<br>8 days @ \$ 25.00/day<br>Gas and Oil                                                                                  | 200.00<br>40.43                      |
|      |                                                                                                                                                                    |                                      |


#### ANALYSIS

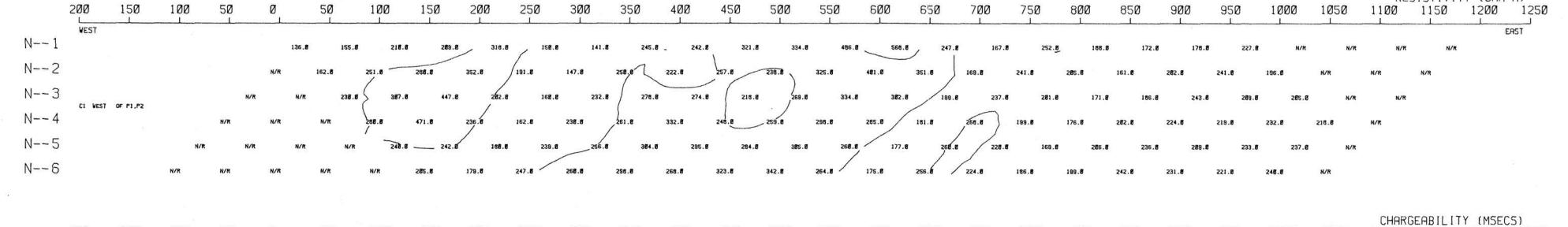
| - 31 rock samples, 12 elemen | t ICP, Au fire  |                 |
|------------------------------|-----------------|-----------------|
| @ \$ 17.00/ sample           |                 | 527.00          |
| - 403 soil samples, 12 eleme | nt ICP, Au aqua |                 |
| regia @ \$ 11.75/sample      |                 | 4,735.25        |
| - 1 assay, Au @\$ 8.50       |                 | 8.50            |
| SUPPLIES                     |                 |                 |
| - Hipchain thread, flagging, | etc.            | 211.33          |
|                              |                 |                 |
| FREIGHT                      |                 | 31.90           |
| DRAUGHTING                   |                 | 550.00          |
| PREPARATION OF REPORT        |                 |                 |
| - Secretarial, reproduction, | telephone,      |                 |
| Office overhead etc.         |                 | 1,500.00        |
|                              | TOTAL           | \$<br>45,642.31 |



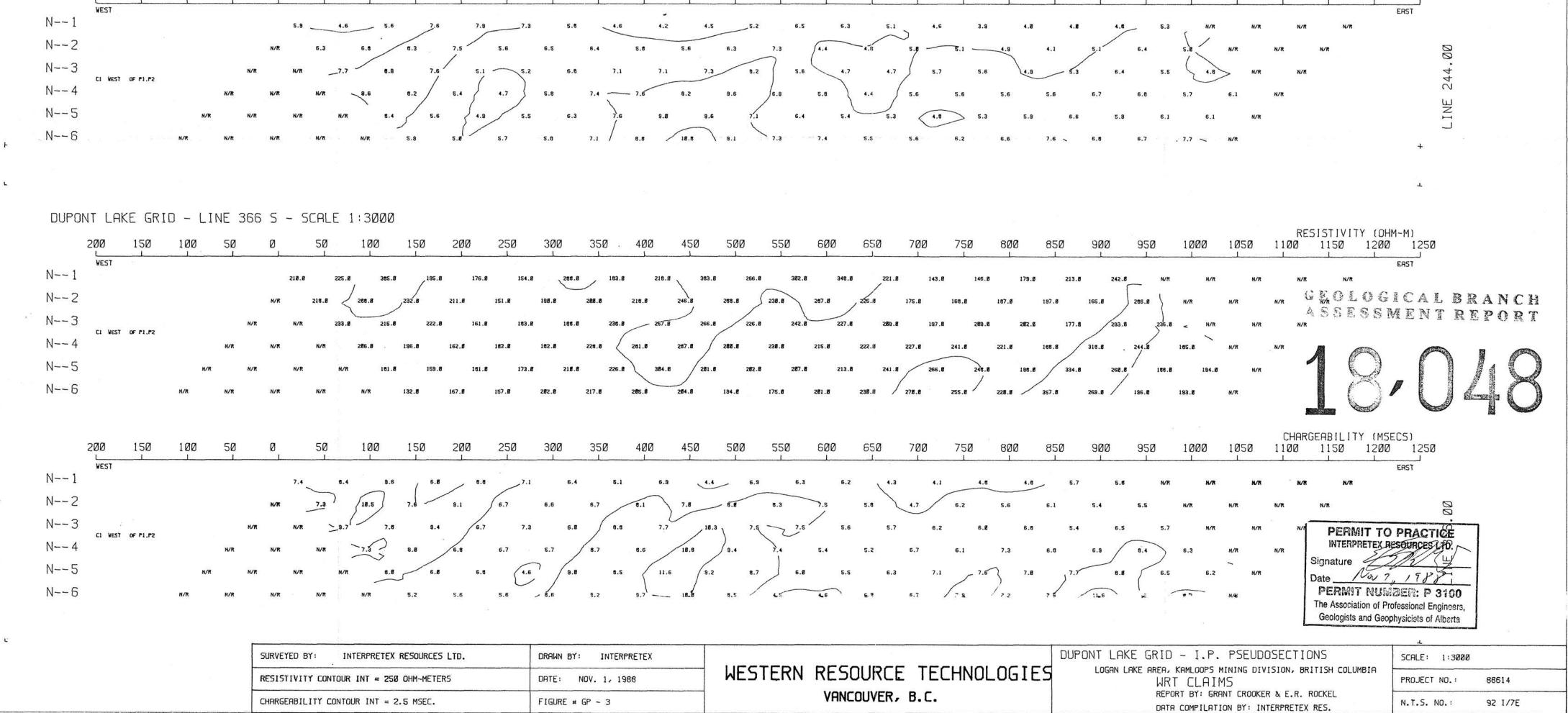


DUPONT LAKE GRID - LINE 122 N - SCALE 1:3000





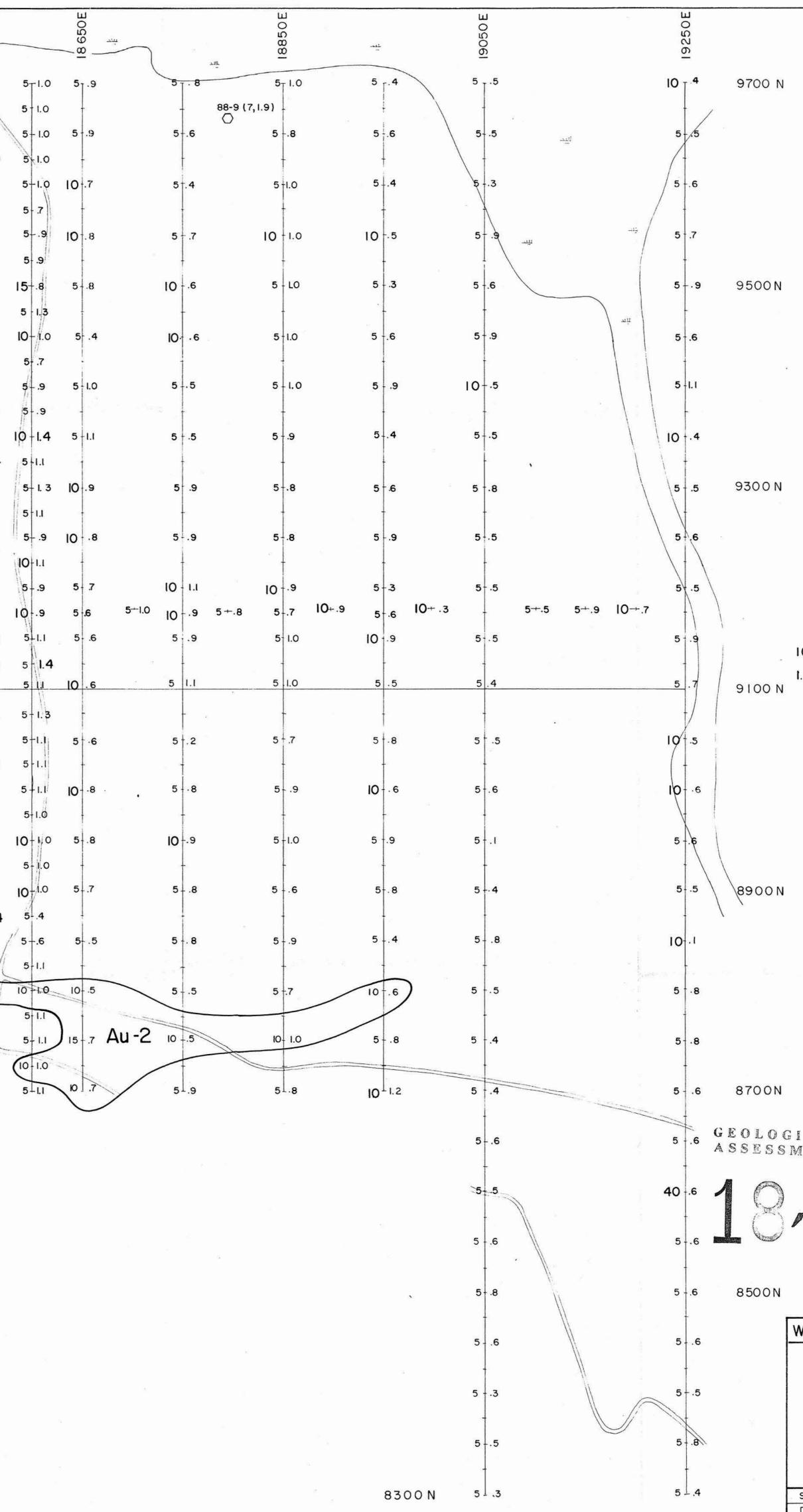

DUPONT LAKE GRID - LINE 122 5 - SCALE 1:3000





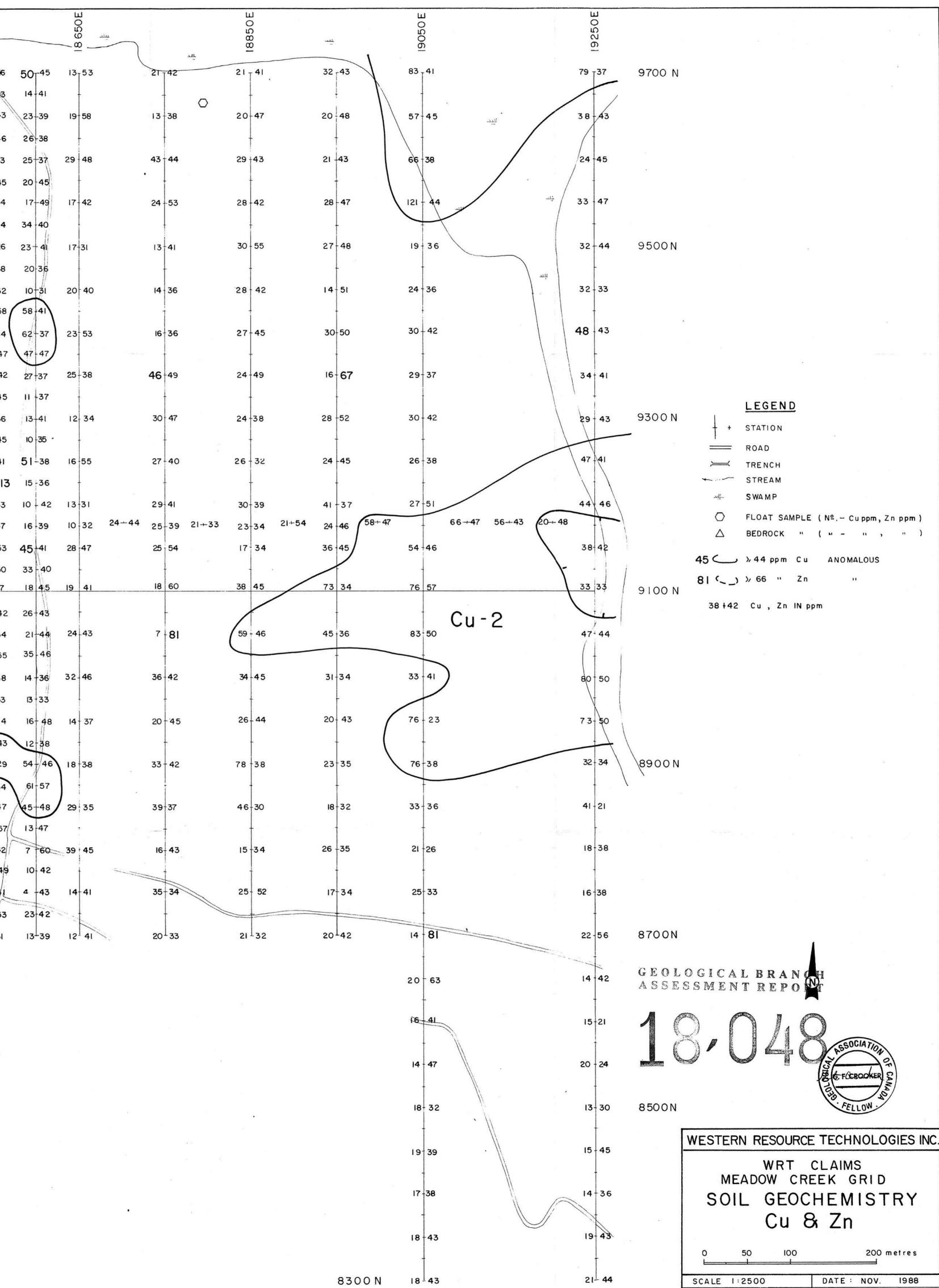

DUPONT LAKE GRID - LINE 244 5 - SCALE 1:3000






200 150 100 50 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250




| <b>~</b> ~~~~~                          |                 |                 |      |                                            |                |                |                    |                        |                   |                    |                    |                    |                            |                           |                  |
|-----------------------------------------|-----------------|-----------------|------|--------------------------------------------|----------------|----------------|--------------------|------------------------|-------------------|--------------------|--------------------|--------------------|----------------------------|---------------------------|------------------|
|                                         | 17850E          |                 |      |                                            | 8050E          |                |                    |                        | 8250E             |                    |                    |                    | 8450E                      |                           |                  |
|                                         | 178             |                 |      |                                            | 180            |                |                    |                        | 182               |                    |                    |                    | 184                        |                           |                  |
| 5                                       | т.8             | 5               | ĩ.9  |                                            | <b>IO</b> ⊤I.0 | 5r1.0          | 20T I.0            | 5 <sub>τ</sub> ι. 3    | 5 ĩ.8             | 5 <sub>7</sub> .9  | 5 <sub>1.7</sub>   | 5 <sub>T</sub> I.I | <b>3</b> 0 <sub>1</sub> .9 | 10T.8                     | 5 T.7            |
|                                         |                 | 0               |      |                                            |                | 5+.5           | (D-1.2)            | 5-1.0                  | 58                | 5-1.0              | 5+1.1              | 5-1.3              | 5-1.0                      | 5+1.0                     | 10 . 8           |
| 5                                       | 7               | 5               | .9   |                                            | e 01           | 58             | 51.0               | 5-1.4                  | 10-1.0            | 5-1.0              | 59                 | 5-1.4              | 10 .7                      | 5-1.0                     | 56               |
| 5                                       | ].1             | 5               |      |                                            |                | 5+.6           |                    | 5-1.8                  |                   |                    |                    |                    | 5-1.1                      | 10-1.2                    | 5-1.0            |
| 2                                       |                 |                 | 1    |                                            | Ţ              |                | 5-1.0              | 1-1                    |                   | 10-1.2             | 10 <sup>-1.0</sup> | 10-1.2             |                            |                           |                  |
| 10                                      | .8              | MEADOW          | 1.2  |                                            | 5+.8           | 58             | 10-1.2             | 5 1.0                  | 10-1.3            | 5-1.0              | 5+ .8              | 5-1.3              | 901                        | 5-1.0                     | 57               |
|                                         |                 |                 | ł    |                                            | ţ              | (10.9          | 5.9                | 5-10                   | 5-1.1             | 5 1.0              | - NS               | 5-1.3              | 57                         | 5-1.1                     | 5-1.1            |
| 5                                       | +1.0<br>88-     | 10(1, 1.4) grab | .6   | Co                                         | 5-1.2          | 5-1.3          | 20 .9              | 1.0-1.3                | 5-10              | 58                 | 5- 1.0             | 5-1.3-<br>Au       | 159<br>- <b>1</b>          | 5-1.2                     | 5+.6             |
|                                         | ł               | 88-11(35,.3)    | grab | D PEET                                     | +              | 58             | 59                 | / 5-1.4                | 58                | 5-1.2              | NS                 | 1.0-1.0            | 5908                       | 5-1.0                     | 5+.8             |
| 5                                       | 1.2             | 5               | 9.9  |                                            | 5-1.0          | 58             | 5-I. O             | Δπ-3                   | 5-7               | 10 1.2             | 10-1.2             | 59                 | 10-1.0                     | 5 .9                      | 55               |
|                                         | ł               | 2               |      |                                            | 10 .9          | 59             | 59                 | AG -5<br>5 2.2         | 56                | 5-1.0              | NS                 | 59                 | 5 .7                       | 10-1.0                    | 5-1.0            |
| 5                                       | 1.0             | 5               | .5   |                                            | 57             | 59             | 10-1.0             | 10-1.8                 | 5 .7              | 59                 | 58                 | 5-1.0              | 10.9                       | 58                        | IO 9             |
|                                         |                 |                 | 1    |                                            | 5.7            | 5 .6           | 159                | 5 2.3                  | 1 5 .7            | 15-1.0             | 5-1.2              | 56                 | 50-1.0                     | 5-1.1                     | 5-1.0            |
| 5                                       | 7               | ,5 <sup>-</sup> | .6   |                                            | 10-1.1         | 5.1            | 0.5                | 5 1.3                  | 50-1.1            | 57                 | 10-1.0             | 53                 | ۵3                         | 5-1.0                     | 10 - 9           |
| ana ang ang ang ang ang ang ang ang ang |                 |                 |      | 2<br>2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | 5 .7           | 10 .9<br>TR. B | <b>10-11</b>       | 5-1.6                  | 20 8              | 5 .7               | 5 .8               | 5 .9               | 10-1.4                     | 59                        | 5-1.0            |
| 10                                      | .3              | 5               | 6    |                                            | 10-1.0         | 59             | 10-2.3             | 4                      | 5 .9              | NS                 | 10.6               | 5 9                | 59                         | 57                        | 5+.6             |
|                                         |                 |                 | +    | TR. C                                      | 51.9           | 5+.9           | 5; 1.2             | 5-12.4                 | <b>↓</b> 5+.7     | 5 1.0              | 5+1.1              | 5-1.3              | 5†1.3                      | 5 <del> </del> 1.1        | 5+ <b>I.4</b>    |
| 5                                       | .6              | ю               | .9   |                                            | 5 .7           | 5+.7           | IO .9              |                        |                   | 5-1.3              | 58                 | 5-1.0              | 106                        | 51.0                      | 10 .7            |
|                                         |                 | 10              |      |                                            | 57.9           | 5-1.1          | (5-1.4             | 5-1.2<br>TR.A<br>5-1.4 | 57                | 5 1.0              | 5-1.0              | 59                 | 5-1.0                      | 5+1.0                     | 5 -1.3           |
| 5                                       | -1.0            | -               | 7    |                                            |                |                |                    | q - 1                  | 5 .7              |                    |                    |                    | 56                         |                           |                  |
| 5                                       | † <b>I</b> . U  | 5               | .7   |                                            | 10+1.1         | 5+.8           | 5+.7)              | 10-1.5                 |                   | 5-1.2              | 5+.8               | 10-1.0             |                            | 5+1.0                     | 107              |
| i<br>V                                  |                 |                 | Ì    |                                            | 5+1.1          | <b>IO</b> -1.0 | 5-1.5              |                        | 10-1.0            | 5-1.2              | 58                 | 5-1.0              | 59                         | 5-1.0                     | 54               |
|                                         | <sup>+</sup> .5 | 5               | .8   |                                            | e.+01          | 5+.7           | 5-1.0              | 5-1.2                  | 5†.6              | 5-1.3              | 5 .5               | Au                 | -408<br>-40-88-7           |                           | 56               |
| IC                                      |                 | <u> </u>        | .8   | 5 -+.8                                     | 59             | 5+.9           | <b>IO</b> -1.1     | 58                     | 5 -1.1            | 58                 | 0.6                | 55                 | 6158                       | 25 .7                     | 56               |
| 5                                       | 8               | (10             | .7   |                                            | 10-1.0         | 5-1.0          | 5.9                | 5-1.1                  | 57                | 5-1.0              | 58                 | 15-1.2             | 55                         | 5-1.0                     | NS               |
| 22.23                                   | ł               |                 |      | $\mathbf{i}$                               | ļ              | 5 - 1.0        | (10 2.1            |                        | 1                 | 5 1.0              | NS                 | 5-1.1              | 5-1.0                      | 59                        | <b>IO</b> - 1. 3 |
| 5                                       | 1.0             | 5               | .7   | $\overline{}$                              | 10 . 9         | 5 1.2          | 15 .7              | 5 1.0                  | .6 OI             | 51.0               | 5 1.0              | 5 1.0              | .9                         | 10 1.0                    | 10.6             |
|                                         |                 |                 |      | $\backslash$                               | +              | 5-1.0          | 59                 | 5-1.4                  | 10-1.0            | 10-1.1             | 5-1.0              | 10 1.1             | 5-1.0                      | 5-1.0                     | 5 -1.2           |
| 5                                       | +.8             | 5               | 1.1  |                                            | 15 8           | 5-1.0          | 5  1.1             | 5+1.0                  | 59                | 5†1.0              | 5   .8             | 59                 | 15 2                       | 5+1.0                     | 56               |
|                                         | ł               |                 | ļ    |                                            |                | 10 1.1         | 5-1.3              | 59                     | 5÷ I.I            | 5-1.0              | 109                | 10-1.0             | 5 1.4                      | 5 1.0                     | 5 <b>- 1.9</b>   |
| 5                                       | 8               | 5               | 7.7  |                                            | 5 - 1.0        | 59             | 5-1.1              | 5-1.0                  | 108               | 20-1.0             | 56                 | 10-1.2             | 5 .3                       | 10-1.1                    | 59               |
|                                         | ł               |                 |      |                                            |                | 5 2.7          | 5-1.3              | 5 1.0                  | 5-1.3             | 5-1.0              | 59                 | 5-1.0              | 5-1.2                      | 5-1.0                     | 5-1.1            |
| 5                                       | .6              | 5               | +.7  |                                            | 57             | 5+1.0          | 10 .9              | 10-1.2                 | 700-1.4           | (e0                | 5.9                | 58                 | 107                        | 5-1.0                     | IO .6            |
|                                         | +               |                 | +    |                                            | -              | 5 1.0          | ( Au               | 5-1.0                  | 5 -1.1            | 58                 | 5-1.0              | 5 -1.1             | 10-1.0                     | 5-1.0                     | 5 -1.1           |
| 5                                       | 1.0             | 5               | -1.0 |                                            | 59             | 5 1.2          | 5-1.1              | 5-1.0                  | 5 1.0             | 59                 | 58                 | 5-1.0              | 56                         | 58                        | 55               |
| 1.000                                   |                 |                 | ļ    |                                            |                | 5 .9           | CALE               | 5 5 1 2                | 5-1.5             | 5 1.2              | 5-1.0              | 5 - 1.0            | 5-1.1                      | 5+.9                      | 10-1.4           |
| 20                                      | .8              | 10              | 7    |                                            | 105            | 10-1.2         | 5 1.0 S            | 175-1.4                | 58                | 10-1.0             | 58                 | 10-1.1             | 105                        | 5+.8                      | 5†.7             |
| 20                                      |                 |                 |      |                                            |                | 5 1.2          | 5 1.0              | 5-1.2                  | -                 | 5-1.4              |                    | 5+1.2              | 5 1.0                      | 108                       | 5 -1.1           |
| 10                                      | <b>8</b>        | Au-2            | 1.0  |                                            | -              |                |                    |                        | Au 12-1           | 1                  | 2                  |                    |                            | 55                        | 112              |
|                                         |                 | 10              |      |                                            | 5 1.8          | 5-1.2          | 10 .9              | 5-2.1                  | 10 .6             | 5-1.1              | 5+.8               | 58                 | 105                        | 5                         | 5 10             |
|                                         | 1               |                 |      |                                            |                | 5-1.1          | 5 1.3              | 5-1.3                  | 5-1.4             | 5 1.2              | 10-1.1             | 5 1.0              | 51.6                       | 5 †.9                     | 5 1.0            |
| 5                                       | 6               | 5               | 9    |                                            | 59             | 5-1.2          | 57                 | 5 -1.1                 | 58                | 5-1.0              | 58                 | 5-1.0              | 59                         | 57                        | 10.5             |
| a                                       | 1               |                 | Ť    |                                            | Ţ              | 5 -1.1         | 59                 | /                      | 5-1.4             | _ 10-1.8           | 5-1.1              | 107                | 10-1.2                     | 5-1.0                     | 5 1.0            |
| 5                                       | 1.8             | 5               | 1.8  |                                            | 511.1          | 511.2          | 5 <sup>1</sup> 1.0 | (51.7                  | 30 <sup>1.6</sup> | 5 <sup>⊥</sup> I.I | 51.8               | 5⊥.9               | 10 <sup>1.8</sup>          | <b>IO</b> <sup>⊥</sup> .9 | 51.6             |
|                                         |                 |                 |      |                                            |                |                |                    | 1.000 M                |                   |                    |                    |                    |                            |                           |                  |

.



| 8                                                                                                                                                                                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
| LEGEND                                                                                                                                                                                  |  |
| + STATION                                                                                                                                                                               |  |
| ROAD                                                                                                                                                                                    |  |
| TRENCH                                                                                                                                                                                  |  |
| STREAM                                                                                                                                                                                  |  |
| SWAMP                                                                                                                                                                                   |  |
|                                                                                                                                                                                         |  |
| △ BEDROCK " ( • - · · , " )                                                                                                                                                             |  |
| 10 - » 10 ppb Au ANOMALOUS                                                                                                                                                              |  |
| 1.4 () » 1.4 ppm Ag "                                                                                                                                                                   |  |
|                                                                                                                                                                                         |  |
| 12 + 1.5 Au ppb, Ag ppm                                                                                                                                                                 |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
| 2 c                                                                                                                                                                                     |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
| an search and the alternative sectors and                                                                                                                                               |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
| MENT REPORT                                                                                                                                                                             |  |
|                                                                                                                                                                                         |  |
|                                                                                                                                                                                         |  |
| ASSOCIATION                                                                                                                                                                             |  |
| Steres S                                                                                                                                                                                |  |
|                                                                                                                                                                                         |  |
| FELLOW.                                                                                                                                                                                 |  |
|                                                                                                                                                                                         |  |
| WESTERN RESOLIDE TECHNOLOGIES INC                                                                                                                                                       |  |
| WESTERN RESOURCE TECHNOLOGIES INC.                                                                                                                                                      |  |
| WRT CLAIMS                                                                                                                                                                              |  |
| MEADOW CREEK GRID                                                                                                                                                                       |  |
| SOIL GEOCHEMISTRY                                                                                                                                                                       |  |
| Au & Ag                                                                                                                                                                                 |  |
|                                                                                                                                                                                         |  |
| 0 50 100                                                                                                                                                                                |  |
| 0 50 100 200 metres                                                                                                                                                                     |  |
| O         50         100         200 metres           SCALE         1:2500         DATE : NOV.         1988           DRAWN         BY: G. CROOKER         FIGURE         Nº.         7 |  |

|             |           |                                             |                   |                          |       |         |                 |                 |    |              |            |     |          |             |      |                      |            | فالمتحدث والمحمد |        |             |                 |     |      |     |
|-------------|-----------|---------------------------------------------|-------------------|--------------------------|-------|---------|-----------------|-----------------|----|--------------|------------|-----|----------|-------------|------|----------------------|------------|------------------|--------|-------------|-----------------|-----|------|-----|
|             | 1 0 D U E |                                             |                   |                          | 8050E |         |                 |                 |    |              |            |     | 8700E    |             |      |                      |            |                  |        | 18450E      |                 |     | /    |     |
|             | T 52      | 27                                          | 7 <sub>⊤</sub> 43 | 25                       |       | 18      | <sub>T</sub> 50 | 39 <sub>⊤</sub> | 49 | 30-7         | 48         | 39  |          | <b>62</b> ⊤ | -47  | 35 <sub>1</sub> 4    | 45         | 3 <b>3</b> 739   | 47     | - 36        | 61 <sub>T</sub> | 50/ | 24 T | 46  |
| 55          |           | -                                           |                   | 20                       |       |         | 38              | 26              |    | 30           |            | /   | 47       | 26          |      | 35 - 4               |            | 11-43            | $\sim$ | -38/        | 41              |     | 33-  |     |
| 44          | 41        | 35                                          | 43                | 36                       | 43    |         | 39              | 32-             |    | 21-4         |            |     | 50       | 28-         |      | 28-4                 |            | 16-49            |        | . /         | 32              |     | 39-  | 11  |
|             |           |                                             |                   |                          |       |         | 45              | 21-3            |    | 19-          |            |     | 50       | 40-         |      | 26+3                 |            | 22-51            |        | -38         | 28              |     | 20-  |     |
| 46          | 43        | 66                                          | 48                | 36                       | 42    |         |                 | 39-             |    | 12-          |            | 36  |          | 53          |      | 36-5                 |            | 15-40            |        | 65          | 25              | 53  | 29-  |     |
| _           |           | ME A DO W                                   | ļ                 |                          |       |         | -53             | 53              |    | 12-          |            |     | 42       |             | 67   |                      | IS         | 17-39            |        |             | 24              | 32  | 16   |     |
| 19          | 44        |                                             | 34                | 65<br>10 (7,7 , 31) grab | 48    |         | . 47            | 47              | 45 | 31           | 50         | 22  | -38      | 36          | 41   | 38-5                 | 50         | 25-46            | 24     | 48          | 20              | 33  | 20-  |     |
|             |           | 88-11 (9,55)                                |                   | P                        | -     |         | 45)             | 46              | 49 | 42+          | 52         | 43  | 37       | 21          | -56  | <br>+                | NS         | 46-50            | 23     | 30          | 22-             | 49  | 48   | 34  |
| 34          | -52       |                                             | -33               |                          | 41    | 60      | 46              | 63              | 45 | 54-1         | 68         | 50- | 40       | ) 31        | 44   | (51-5                | 1          | 49-58            | 3) 32  | 42          | 54              | 52  | 42-  | 26  |
|             |           |                                             | }                 | 68                       | - 43  | 29      | 45              | 45              | 53 | 24           | 54         | 25  | 38       | 33-         | 49   |                      | N.S.       | 36-52            | 24     | 53          | 43              | 51  | 37-  | 38  |
| 28          | 45        | 63                                          | -38               | Cu-1 46                  | -35   | 31      | 44              | 29-             | 42 | 12           | 64         | 39  | 42       | 60-         | 48   | 23-4                 | 5          | 40-42            | 52     | 60          | 41              | 42  | 21   | 32  |
| _           | -         |                                             | +                 | 49                       | 12:   | 5 33    | 41              | 31-             | 41 | 50           | 48         | 49  | 40       | 39          | 40   | 23 -4                | 2          | 42-48            | 3 54   | -38         | 29-             | 42  | 13   | 58  |
| 54          | 42        | 19                                          | 34                | 66                       | 58    | 66-     | 65              | 50              | 38 | 52-          | 52         | 49  | 57       | 46          | 49   | 32-4                 | 13         | 48 43            | 57     | 42          | 1 12            | 69  | 17   | 34  |
|             |           | 1.5 x01.511.00 eestitoonin amitta 2001.0783 | +                 | 55                       | 29    | 13<br>T | 42<br>R. B      | 32-3            | 33 | 49           | 45         | 39  | 33       | 69          | 49   | 49                   | 43         | 48-36            | 19     | -31         | 12-             | 44  | 10   | 47  |
| 34          | 37        | 28                                          | -40               | 26                       | 40    | 25      | -53             | 4 2 4           | ¥З | 19-          | 29         | 19  | 35       |             | N.S. | 62-4                 | 8          | 48-37            | / 14   | -33         | 17              | 50  | 19   | 42  |
|             |           |                                             | +                 | TR. C 23                 | 48    | 20      | 37              | 18              | 48 | 45           | 41         | 20  | 35       | 40          | 37   | 43-3                 | 51         | 26-40            | 14     | 33          | 12              | 41  | 16-  | 45  |
| 55          | 39        | 19                                          | 37                | 9                        | 60    | 33      | 40              | 47              | 43 | 52           | 48<br>R. A | 42  | 36       | 27-         | -37  | 40-3                 | 6          | 13-42            | 14     | 32          | 5               | 37  | 15   | 36  |
|             |           |                                             | ł                 | 35                       | -36   | 20      | 46              | 25              | 63 | 25           | 50         | 40  | 43       | 53          | 51   | 12-3                 | 5          | 49-42            | 31     | 35          | 9               | 36  | 12   | 45  |
| 15          | 37        | 46                                          | 40                | 25                       | 44    | 14      | 60              | 18-3            | 33 | 12-          | 36         | 50  | 40       | 45          | 44   | 33 -3                | 8          | 41-40            | 23     | -30         | 9-3             | 39  | 34   | 41  |
|             |           |                                             | ł                 | 23                       | -37   | ю       | 63              | 47-3            | 37 | 11   3       | 38         | 30  | 34       | 73-         | 41   | 34-3                 | 9/         | 51-39            | ) 37   | 33          | 11 -            | 29  | 13+  | 113 |
| 14          | -36       | 21                                          | 31                | 22                       | -33   | 17      | -43             | 58-3            | 39 | 11-1         | 30         | 28  | 42       | 44-         | 47   | 58-4                 | 41         | 45-39            | 28     | 34<br>)88-7 | 11<br>7 ( 175,  |     | 18 - | 33  |
| 20          | 37        | 29+37 22                                    | - 36              | 18 + 36 17               | -34   | 20      | -38             | 48-3            | 35 | 2013         | 38         | 20  | 34       | 57          | 37   |                      | 7          | 23-34            | 36     | 42          | 12              | 35  | 17.  | 37  |
| 16          | -50       | 27                                          | 36                | 20                       | 40    | 20      | -40             | 37 3            |    | 45           |            | 26  |          | -           | 49)  | - <b>U</b> -<br>48-3 | 39         | 44-39            |        | 42          | 12              |     | 13-  |     |
| 20          | 66        | 70                                          | 43                | 23                       | 35    |         | -35<br>36       | 48-3<br>28-3    |    | 19-<br>26    |            |     | 36<br>32 | 56-<br>30   |      | 37 4                 | I.S        | 106-37<br>56 36  |        | 39<br>34    | 12+             |     | 12-  |     |
| 20          |           |                                             | 110               |                          | 100   |         |                 |                 |    |              |            |     |          |             |      |                      |            |                  |        |             |                 |     |      |     |
|             | 4         | 07                                          | Í.                | 00                       | 1     |         | 42              | 13              |    | 25           |            |     | 34       | 35          |      | 26-3                 |            | 60-41            |        | -38         | 7+4             |     | 27-  |     |
| 23-         | - 41      | 27                                          | 41                | 22                       | -35   |         | - 39            | 20-4            |    | 24           |            |     | 36       | 46-<br>38-  |      | 45-4                 | -          | 49-37            |        | 39          | 15+             |     | 12-  |     |
| 23          | 36        | 29                                          | 45                | 22                       | -37   |         | 36<br>43        | 14 -<br>13 -    | 42 | 14<br>16 - 3 |            |     | 42       | 38          |      | 58                   |            | 17-37            |        |             | ) 15+           |     | 13   |     |
| 23          | 30        | 20                                          | 145               |                          |       | 4       |                 | 20              |    | 17           |            |     | 37       |             | 40   | 4813                 |            | 25-33            | $\sim$ | 31          | 19              |     | 19   |     |
| 23          | 40        | 36                                          | - 56              | 45                       | - 33  |         | -38             | 24              |    | 20-          |            |     | 33       | 29          |      | 35-3                 |            | 23-3             |        | -27         | 47-             | -   | 16   |     |
| 20          |           |                                             |                   | 40                       |       |         | - 39            | 17-3            |    | 13-3         |            |     | 36       | 13-         |      | 18-3                 |            | 36-38            | 1      |             |                 |     | 58   |     |
| 29          | 43        | 24                                          | 43                | 29                       | -36   |         | 34              | 19-3            |    | 9+           |            |     | 38       |             | -43  | 23-4                 |            | 34-33            |        | °C          | U -             | 4   | 66-  |     |
|             |           |                                             | Ļ                 |                          | ļ     |         | 38              | 14              |    |              | 42         |     | 35       | 14          |      | 15                   |            | 28-32            |        |             | 13              |     |      | 34  |
| 23          | 44        | 17                                          | -38               | 20                       | - 31  |         | 37              | 19-3            |    | 12-          |            |     | 37       |             | - 41 | 18-3                 |            | 86-35            |        | -32         | 25-             |     | 17   |     |
| , energy of |           |                                             |                   |                          |       | 39      | 41              | 12              | 40 | 15           |            |     | 40       | 13          | 32   | 12-4                 |            | 105-31           |        | 39          | 9               | 48  | 8    | 57  |
| 18          | 32        | 25                                          | 41                | 27                       | - 37  | 36      | -41             | 16-3            | 33 | 10-          | 37         | 12  | 36       | 10          | 41   | 21-4                 | <b>1</b> 6 | 41 - 4           | 3 24   | 38          | 48-             | 49  | 38   | 42  |
|             |           |                                             | ł                 |                          | ł     | 15      | 37              | 17              | 42 | 14           | 40         | 20  | 42       | 13          | 44   | 20                   | 52         | 26 4             | 2 16   | 36          | 17-             | 38  | 38-  | 49  |
| 38          | 39        | 25                                          | 52                | 25                       | 36    | 22      | -48             | 20              | 32 | 9-           | 38         | 15  | 32       | 12          | -42  | 16-4                 | 18         | 16-40            | 24     | 47          | 67              | 35  | 32   | 31  |
| 3           | -         |                                             | ł                 |                          | ł     | 15      | - 41            | 27              | 37 | 14-          | 39         | 34  | 49       | 21          | 23   | 12-4                 | 45         | 45-50            | 0 14   | 41          | 33 -            | 28  | 95   | 53  |
| 21          | 39        | 22                                          | 48                | 23                       | 40    | u       | 36              | 26              | 55 | 13           | 41         | 16  | 32       | 14          | - 61 | 181                  | 65         | 33-40            | ) 15   | 35          | 16              | 41  | 22   | 31  |
|             |           |                                             |                   |                          |       |         |                 |                 |    |              |            |     |          |             |      |                      |            |                  |        |             |                 |     |      |     |



|                  | LEGEND                          |
|------------------|---------------------------------|
| + +              | STATION                         |
|                  | ROAD                            |
| Ĭ                | TRENCH                          |
| +                | STREAM                          |
| <u>~11</u>       | S WA M P                        |
| $\bigcirc$       | FLOAT SAMPLE (Nº Cuppm, Zn ppm) |
| $\bigtriangleup$ | BEDROCK " ( " - " , " )         |
| 45 —             | »44 ppm Cu ANOMALOUS            |
| 81 ()            | ≫ 66 "Zn "                      |
| 38 + 42          | Cu, Zn IN ppm                   |

.

| 0<br>⊾ | 50<br>l    | 100<br> |        | 200  | metres |  |
|--------|------------|---------|--------|------|--------|--|
| SCALE  | 1:2500     | i       | DATE : | NOV. | 1988   |  |
| DRAWN  | BY: G. CRO | OKER    | FIGURE | Nº.  | 8      |  |