\sim	
District	Geologist, Prince George Off Confidential: 89.09.02
ASSESSMEN	T REPORT 18073 MINING DIVISION: Omineca
PROPERTY:	Skook
LUCATION:	UTM 10 6117858 404525
CINTM(C).	NTS 093N01W 093N02E Skock 2 4 Skock 6
OPERATOR()	S): Nation River Res.
AUTHOR (S)	: Campbell, C.J.
REPORT YEA	AR: 1988, 52 Pages
COMMODITI	ES
SEARCHED	FOR: Copper,Gold,Silver
GEULUGICA.	L
SUMMARI:	which has intruded Takla volcanics and sediments north of Chuchi
	Lake. Gold, copper and silver values are found in silicified zones
	associated with alkalic hypabyssal rocks near the centre of the
	property. Chip samples across 1 metre returned up to 4.3 ppm gold
NORK	and 53 ppm silver.
WORK DONE •	Goological Coochemical
DONE.	GEOL 1625.0 ha
	Map(s) - 1; Scale(s) - 1:5000
_	LINE 7.5 km
	PETR 9 sample(s)
	ROCK 99 sample(s) ;ME
	Map(s) = 3; Scale(s) = 1:2500
	$Man(s) = 3 \cdot Scale(s) = 1 \cdot 2500$
MINFILE:	093N 140

LOG NO: 120L	RD.
ACTION:	
ուցիչ, անցանցվել է է է հեռանիսի հարձան էլ էլ էլ էլ էլ էլ էլ հայ է հայտնականություններին էլ էլ է էլ էլ էլ էլ էլ է	
FILE PAR-	

PRELIMINARY GEOCHEMICAL & GEOLOGICAL REPORT on the SKOOK 3-6 MINERAL CLAIMS

OMINECA MINING DIVISION

NTS 93N/1E /2W

Lat 55 12 ' N, Long 124 30' W

Owner & Operator: Nation River Resources Ltd.

Author:

Colin Campbell

NOVEMBER 18, 1988

GEOLOGICAL BRANCH ASSESSMENT REPORT

18.075

TABLE OF CONTENTS

.

1.0 Summary	1
2.0 Introduction	4
2.1 Claim Status	4
2.2 Topography and Vegetation	4
2.3 Regional Geology	5
2.4 Geochemical Survey	5
2.5 Previous Work	5
3 0 Geology	6
3 1 Mineralization	6
	7
3 3 Alteration	7
	'
4.0 Geochemical Survey	8
4.1 Field Methods	8
4.2 Anaylitical Methods	8
4.3 Results and Interpretation	9
5.0 Discussions & Recomendations	10
Bibliography	11
Appendix A Statement of Qualification	12
Appendix B Statement of Expenditures	13
Appendix B Cont Wage Expenditures	14
Appendix C Analytical Certificates	15-33
Appendix D Petrographic Report	34-46
Appendix E Rock Sample Discription	47-50
Illustrations	
Figure 1 Index Map	2
Figure 2 Claims Map	3
Figure 3 Composite - Index - Geology	Pocket
Figure 4a Cu & Au in Soil & Rock (Values)	Pocket
Figure 4b Pb & Zn in Soil & Rock (Values)	Pocket
Figure 4c As & Hg in Soil & Rock (Values)	Pocket
Figure 6a Rig Breccia Au Hg & Cu	Pocket
Figure 6b Rig Breccia Ag. Ph & Zn	Pocket
Figure 7a South Zone Au Ag & Cu	Pocket
Figure 7b South Zone Ag. Ph & Zn	Pocket

PAGE

1.0 SUMMARY

Geological mapping, rock sampling and soil sampling were conducted on the SKOOK copper-gold-silver property during the fall of 1987 and spring of 1988.

Mineralization occurs in three zones and is associated with hypabyssal alkalic rocks including gabbro and trachyandesite which have intruded Takla volcanics and sediments near the southern margin of the Hogem batholith. Grab samples returned up to 13.4 ppm gold, 16.6 ppm silver and 2.3% zinc. Chip samples across one metre returned values of up to 4.3 ppm gold and 53 ppm silver.

Further work including soil sampling and a ground magnetometer survey followed by an I.P. survey over any areas anomalous in gold and/or copper is recommended.

-2-

Ĵ

-3-

2.0 INTRODUCTION

This report covers work conducted on the SKOOK #3, #4, #5 & #6 mineral claims (65 units) located on the north shore of Chuchi Lake some 87 kilometres north of Fort St. James B.C. in the Omineca Mining Division.

Access to the property is by all weather gravel road from Fort St. James. Since much of the property has been logged over the past ten years four wheel drive vehicles give extremely good access to most of the central area.

During the summer and fall of 1987 and the spring of 1988 seven and one half kilometres of line were run. One hundred and seventy-three soil and ninety-nine rock samples were collected. All were analyzed for Au and multi-elements by ICAP. Twenty-eight rock samples were analyzed for mercury.

Hand trenching exposed several quartz-chalcopyrite veins or silicified areas. Chip samples returned up to 4.3 ppm gold and 53 ppm silver across one metre.

2.1 CLAIM STATUS

<u>Claim</u>	Name	Record #	# Units	Expiry	Dat	<u>e</u>
SKOOK	#3	8844	20	September	2,	1991
SKOOK	#4	8845	15	September	2,	1991
SKOOK	#5	8846	12	September	2,	1991
SKOOK	#6	8847	18	September	2,	1991

The four claims were grouped September 2, 1988 under the group name SKOOK and all are beneficially owned by Nation River Resources Ltd.

2.2 TOPOGRAPHY and VEGETATION

The SKOOK property covers a portion of the north shore of Chuchi Lake between the elevations of 868 metres and 1150 metres (Figure 2). The central working area which consists of low hills has been partially logged. Timbered areas mainly support open Jackpine and spruce; however, poorly drained areas can have a dense growth of spruce, balsam and alder.

2.3 REGIONAL GEOLOGY

The SKOOK property is situated in the Omineca Tectonic Belt of the Canadian Cordillera and lies along the southern edge of the Hogem batholith. The Hogem batholith is a composite intrusion ranging in composition from symple to granite.

The intrusive rocks are in contact with Takla volcanics and/or sediments along the northeast part of the property.

2.4 GEOCHEMICAL SURVEY

This survey was conducted during the fall of 1987 and the spring of 1988. A total of one hundred and seventy-three soil and ninety-nine rock samples were collected and analyzed for gold and multi-elements by ICAP. Twenty-eight of the rock samples were analyzed for mercury and nineteen of the soil samples were re-run for fire assay gold.

2.5 PREVIOUS WORK

The SKOOK property, besides covering newly discovered gold-quartzchalcopyrite veins, overlies a prospect found in the 1950's by Bill Rigler of Prince George (Rig Zone) and is on strike from silver-leadzinc mineralization originally found by Ted Taylor and George Snell in the 1930's and rediscovered by Ted Taylor in the early 1960's (from personal communications with T.H. Taylor). Ted Taylor staked this property which is known as the WIT.

During the late 1960's Noranda owned or operated claims over the western portion of the SKOOK (Dirom, 1968) and drilled five AX diamond drill holes on the WIT. Botel (1965) estimated the drilled zone to contain 20,000 tons probable ore grading 7.5% combined leadzinc plus silver. Later Royal Canadian Ventures Limited optioned the WIT property from Taylor and conducted an I.P. survey (Woodward, 1968), mapped and soil sampled and conducted a ground magnetometer survey over the eastern portion of the SKOOK (Vollo, 1967).

During the late 1960's the author conducted a silt survey along the north shore of Chuchi Lake and found the area near the center of the SKOOK property highly anomalous in copper. Claims were staked; however, the source of the copper silt anomaly was not found and the claims were allowed to lapse.

3.0 GEOLOGY

The central grid was mapped by the author on a scale of 1:5000; the results are plotted on Figure 3. Hip-chain and compass were used to control the survey away from the grid lines. Other areas prospected and mapped outside the grid area are also plotted on Figure 3 using air photos as control.

The SKOOK property covers the southerly portion of the Hogem batholith where it is in contact with Takla volcanics and sediments, this contact runs east-west along the northern portion of SKOOK #4 & #6.

The known mineralization on the SKOOK is related to alkalic volcanic and hypabyssal rocks ranging from gabbro to trachyandesite and latite which have intruded coeval(?) andesite and limey to siliceous sedimentary Takla rocks.

Ten rock samples were sent for petrographic examination to Vancouver Petrographics; their report is attached as Appendix D. Sample locations are plotted on Figures 3 and 4c.

3.1 MINERALIZATION

Three areas have economically interesting mineralization, the CL11 Zone, the Rig Breccia Zone and the South Zone.

The Rig Breccia Zone (Figure 6) at 5+00N-0+50E is at least six metres wide and is exposed in two old trenches, twenty-five metres apart, on both sides of a small stream; it consists of a central 1.2 metre wide shear or gouge zone; striking at 290 degrees that dips steeply, and has intensely brecciated wall rocks on both sides. The main sulphide mineralization in the breccia is sphalerite; minor galena and chalcopyrite occur in vuggy quartz veinlets (Appendix D-CL84 & CL86). Besides Zn, Pb & Cu the zone is anomalous in Silver - up to 21.8 ppm, mercury - up to 2.1 ppm and gold - up to 300 ppb. It is the best example of epithermal mineralization on the SKOOK.

The CL11 Zone (2+00S-5+25W) returned grab samples of up to 13.4 ppm gold, 16.6 ppm silver and 2.3% zinc and contains sphalerite, galena, chalcopyrite and quartz. The zone is about one metre wide, strikes at 90 degrees and dips steeply. The wall rock near the vein is light green and consists mainly of chlorite and carbonate. A one metre chip sample returned 6.4 ppm silver and 2.75 ppm gold.

3.1 MINERALIZATION - cont.

The South Zone (Figure 7) consists of a one metre wide silicified zone in andesite (Vancouver Petrographics CL59R) containing quartz, calcite, pyrite and chalcopyrite and returned 4.3 ppm gold and 53 ppm silver across one metre. A small gossan caused by clay alteration of the andesite contains quartz veinlets and chalcopyrite occurs fourty metres west of the silicified zone.

3.2 STRUCTURE

Wares (1971) postulated that Chuchi and Tchentlo Lakes represent large regional sigmoidal gash zones developed by wrench faulting and that the resultant dilatant zones were loci of magnetic and hydrothermal activity, I concur in this analysis and suggest the mineralization on SKOOK (and the WIT) supports Wares' contention. East-west linears are obvious on air photographs, mineralization strikes east-west and the Takla volcanics - Hogem batholith contact strikes east-west. Faulting is evident in brecciation of the volcanics and in veins which have healed and refractured.

3.3 ALTERATION

Most outcrops in the central grid zone show evidence of hydrothermal alteration, including bleaching and the development of chlorite, carbonate and pyrite. This alteration becomes more extensive near silicified zones which contain more pyrite and sericite. Tourmaline as acicular crystals with quartz can be found over much of the central grid area associated with vuggy quartz veinlets.

4.0 GEOCHEMICAL SURVEY

This survey was conducted during the fall of 1987 and the spring of 1988 to check for copper, gold and silver mineralization on the SKOOK property. A total of one hundred and seventy-three soil and ninetynine rock samples were collected and analyzed for gold and multielements by ICAP; in addition twenty-eight of the rock samples were analyzed for mercury.

The control grid consists of 7.5 kilometres of hip-chain and Silva compass line all tied to the SKOOK claims common legal corner post.

Most of the geochemical results are plotted at 1:2500 on Figures 4a, 4b & 4c. Those areas off the control grid are plotted on Figure 1 at a scale of 1:5000. Detailed rock sampling was under taken in the South Zone (Figure 7) and the Rig Breccia Zone (Figure 6); results are plotted at a scale of 1:250. Results from pan concentrate samples and two silt samples are plotted on Figure 1 but are not charged to the cost of this survey.

4.1 FIELD METHODS

A. Soil Survey

A mattock was used to sample the first available mineral soil horizon usually at a depth of less than six inches. These samples, typically a mixture of B and C horizons, were stored in 4"x 6" Kraft paper bags. Notes were kept on standard soil sheets to aid in interpretation of the results. Sample location was controlled by hipchain and compass grid lines. Location of each soil sample is noted on the geochemical certificates for gold appearing in Appendix C of this report.

B. Rock Survey

Generally a rock hammer was used to obtain approximately five pounds of rock chips over a one metre area; samples were stored in plastic bags. Other widths and rock sample descriptions are included in Appendix E. Rock sample locations are included on Figure 4c and on the areas sampled in detail on Figures 6 & 7.

4.2 ANALYTICAL METHODS

All samples were analyzed by Vangeochem Lab Limited of 1988 Triumph Street, Vancouver, B.C.

Analytical methods are included in Appendix C.

4.3 RESULTS AND INTERPRETATION

A. Soil Geochemical Survey

The results of the soil survey are plotted on Figures 4a, 4b & 4c. In the authors experience in this area copper values of greater than 100 ppm in soil are significant. Anomaly A is nearly one kilometre long averaging 200 metres in width with all values greater than 100 ppm copper (copper-gold results are plotted on Figure 4A). Two other single sample anomalies were found one at Line 4+00E-2+50N (Cu - 213 ppm & As - 129 ppm) the other at Line 8+00W-2+50N (Cu - 398 ppm & As 131 ppm) in a area where float of quartz stockwork in andesitic breccia was found.

Gold values of 40 ppb and greater are considered by the author to be anomalous and in areas of deeper overburden values of 10 ppb or greater could be significant.

Arsenic in soil results are plotted in Figure 4c. Lead and Zinc in soil results are plotted on Figure 4b.

B. Rock Geochemical Survey

Copper and gold results are plotted on Figure 4a, 6a & 6b. As well, some samples outside the grid area are plotted on Figure 1. Lead and zinc results in rock are plotted on Figure 4b, 6b & 7b. Arsenic and mercury values in rock are plotted on Figure 4c.

Many of the rock samples are highly anomalous in gold - up to 13.4 ppm, copper - up to .67%, silver - up to 64.4 ppm, arsenic - up to .76% and mercury - up to 2.1 ppm.

5.0 DISCUSSION & RECOMMENDATIONS

The stream sediment and pan concentrate sampling, conducted since the work reported on as assessment work in this report, along with the bifurcation of the aeromagnetic anomaly on the northwest part of the SKOOK #5 claim suggests a hydrothermally altered copper-gold bearing alkalic stock. Further I submit that the Rig Breccia, the South and the CL11 Zones, all anomalous in Cu, Ag, Pb, Zn & Hg, and the WIT Ag-Pb-Zn mineralization are all areas peripheral to a main mineralized alkalic stock which could contain a bulk tonnage coppergold deposit.

Further work on the SKOOK should be focused on this area even though overburden could be relatively deep. Work should include the extension of grid lines over SKOOK #5 & SKOOK #6, a ground magnetometer survey of both the existing grid and the proposed new grid and soil sampling of the new grid with analyses for gold and multi- elements by ICAP. An I.P. survey should be conducted over any areas anomalous in gold and/or copper.

John Comple

BIBLIOGRAPHY

- Botel, W.G., (1965): <u>Chuchi Option Chuchi Lake. B.C.</u>. Private report commissioned by Noranda Exploration Company Limited.
- Dirom, G.A., (1968): <u>Jay Group Geochemical Soil Survey</u>. B.C.D.M. Assessment Report #1215.
- Garnett, J.A., (1978): <u>Geology and Mineral Occurrences of the</u> <u>Southern Hogem Batholith</u>. B.C. M.M.P.R. - Bulletin #70. p.64.

Vollo, N.B., (1967): <u>Geological. Geophysical & Geochemical Report on</u> <u>the 93N1 Chuchi 1&2 Groups</u>. B.C.D.M Assessment Report #1119

Wares, R., (1971): <u>Report on the Campbell Option - Chuchi Lake.</u> <u>Omineca Mining District</u>. Private report for Falconbridge Nickel Mines Ltd.

Woodward, J.A. (1968): <u>Induced Polarization Survey for Royal Canadian</u> <u>Ventures Ltd. on the 93N1 Chuchi Group</u>. B.C.D.M. Assessment Report #1660.

APPENDIX A

STATEMENT OF QUALIFICATION

I, Colin Campbell, of the Town of Courtenay, in the Province of British Columbia, do hereby state that:

- 1. I am a Geologist.
- I graduated from the University of British Columbia in 1966 with a B.Sc. Degree in Honours Geology.
- 3. I have worked steadily in mining exploration in British Columbia and Yukon Territory from 1966 to 1973; intermittently from 1974 to 1983 and steadily from January 1984 to the present.
- 4. I personally carried out, or supervised, the Geochemical and Geological Survey on the SKOOK 3-6 Mineral Claims.
- 5. I own a large share interest in Nation River Resources.

Colin J. Campbell

-12-

APPENDIX B

AS OF SEPTEMBER 2, 1988

,

STATEMENT OF EXPENDITURES - SKOOK 3-6

WAGES	(break	down page fo	llowing)		
Field				10,487.50)
Office				2.250.00	-
				12,737.50	\$12,737.50
TRANSPORTA	TION				
Aircraft	C-180	7 hrs.@ \$1	25 / hr.	875.00)
Truck	Field	22 days @ 9	\$60 / day	1320.00)
	Trip	Ctny / Vand	c & return	742.00	<u>)</u>
				2937.00	\$2937.00
GEOCHEMICA	L ANALYS	IS			
SOILS SA	MPLES				
99 sam	ples - A	u/sol & ICAP	@ 13.85 /	ea 1371.15	
19 sam	ples - A	u/fire-rerun	@ 7.50 /	ea 142.50)
74 sam	ples - A	u/fire & ICAP	@ 14.85 /	ea <u>1098.90</u>	<u>)</u>
				2612.55	\$2612.55
ROCK SAM	IPLES				
99 sam	ples - A	u/sol & ICAP	@ 17.50 /	ea 1683.15)
28 sam	ples - H	a	@ 3.50 /	ea <u>98.00</u>	<u>)</u>
				1781.15	\$1781.15
FOOD AND L	ODGING	50 days @ \$!	50.00 / da	y 2500.00	\$2500.00
PETROGRAPH	IIC REPOR	<u>T</u>	• • • • • • • • • • •		\$667.50
DRAFTING A	ND REPOR	T PREPARATION	• • • • • • •		\$800.00
AIR PHOTOS	<u>.</u>	• • • • • • • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • • • • • •	\$188.32
FIELD SUPP	PLIES .	••••		••••••	\$250,00

TOTAL \$24,473.87

(als) San

COLIN CAMPBELL

APPENDIX B - cont.

AS OF SEPTEMBER 2, 1988

STATEMENT OF EXPENDITURES - SKOOK 3-6 WAGES Colin Campbell FIELD 1987 August 11,12,13,18,19,20,21. September 14,15,17,19, (20,22,23 - 1/2 days). October 21,25,26,27,28. 1988 May 25,26,28,29,30,31. June 1,2,3. August 22,23,24,26. OFFICE 1987 September (28,29 - 1/2 days). October 6. November 12,18,24,25,27. 1988 June 6,13,14. 41.5 days @ \$225 / day 9337.50 \$9337.50 Dan Morrison FIELD 1987 August 18,19,20,21. 4 days @ \$100 / day 400.00 \$400.00 Tim Tacker FIELD 1987 September 14,15,17,19, (20, 22, 23 - 1/2 days).October 21,25,26,27,28. 10.5 days @ \$100 / day 1150.00 1988 May 25,26,27,28,29,30,31. June 1.2. 9 days @ \$150 / day 1350.00 2500.00 \$2500.00 Grant Gordon FIELD 1988 August 22,23,24,26. 4 days @ \$125 / day 500.00 \$500.00 TOTAL \$12,737.50

COLIN CAMPBELL

-14-

ANALYTICAL PROCEDURE FOR GOLD IN SOIL AND SILT

Analytical procedure used to determine Aqua Regia soluble gold in geochemical samples

Nethod_of_Sample_Preparation

- (a) Geochemical moil, milt or rock manples were received in the laboratory in wet-strength 4" x 6" Kraft paper bags or rock manples mometimes in 8" x 12" plastic bags.
- (b) The dried soil and silt samples were sifted by hand using a 8" diameter 80-mesh stainless steel sieve. The plus 80-mesh fraction was rejected and the minus 80mesh fraction was transferred into a new bag for analysis later.
- (c) The dried rock samples were crushed by using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for later analysis.

Method_of_Digestion

- (a) 5.00 10.00 grams of the minus 80-mesh samples were used. Samples were weighed out by using an electronic micro-balance into beakers.
- (b) 20 ml of Aqua Regia (3:1 HCl : HNO3) were used to digest the samples over a hot plate vigorously.
- (c) The digested samples were filtered and the washed pulps were discarded and the filtrate was reduced to about 5 ml.
- (d) The Au complex ions were extracted into diisobutyl ketone and thiourea medium. (Anion exchange liquida "Aliquot 336").
- (e) Separate Funnels were used to separate the organic layer.

Nethod_of_Detection

The gold analyses were detected by using a Techtron model AAS Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. A hydrogen lamp was used to correct any background interferences. The gold values in parts per billion were calculated by comparing them with a set of gold standards.

The analyses were supervised or determined by Mr. Conway Chun or Mr. Eddie Tang and his laboratory staff.

- FROM: Vangeochem Lab Ltd. 1521 Pemberton Ave. North Vancouver, B.C. V7P 2S3
- SUBJECT: Analytical procedure used to determine gold by fireassay method and detected by atomic absorption spec. in goelogical samples.

1. Method_of_Sample_Preparation

وسيسوعون الروار والمتراجين المتحمونية المراجع والمراجع

 (a) Geochemical soil, silt or rock samples were received in the laboratory in wet-strength 4" x 6" Kraft paper bags or rock samples sometimes in 8" x 12" plastic bags.

to the second second

:

- (b) The dried soil and silt samples were sifted by hand using a 8" diameter 80-mesh stainles steel sieve. The plus 80-mesh fraction was rejected and the minus 80mesh fraciton was transferred into a new bag for analysis later.
- (c) The dried rock samples were crushed by using a jaw crusher and pulverized to 100-mesh for finer by using a disc mill. The pulverized samples were then put in a new bag for later analysis.

2. Method_of_Extraction

- (a) 20.0 30.0 grams of the pulp samples were used. Samples were weighed out by using a top-loading balance into fusion pot.
- (b) A Flux of litharge, soda ash, silica, borax, flour, or potassium nitrite is added, then fused at 1900 degrees F and a lead button is formed.
- (c) The gold is extract by cupellation and part with diluted nitric acid.
- (d) The gold bead is saved for measurement later.

3. <u>Method_of_Detection</u>

- (a) The gold bead is disolved by boiling with sodium cyanide, hydrogen peroxide and ammonium hydroxide.
- (b) The gold analyses were detected by using a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values in parts per billion were calculated by comparing them with a set of gold standards.
- 4. The analyses were supervised or determined by Mr. Conway Chun or Mr. David Chiu and his laboratory staff.

-16-

VANGEOCHEM LAB LIMITED

1

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

-17-

A

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 871130 G/	JOB NUMBER: 871130	Nation River Resources	PAGE 1 OF 1
SAMPLE #	Au		
	ppb		
CL22	nd		
CL23	nd		
CL24	nd		
CL25	nd		
CL25	nđ		
CL27	nd		
CL 28	nd		
CL 29	nd		
CL30	5		
CL31	nd		
CL 32	nd		
CL 33	75	X	
CL34	nđ		
CL35	nd		
CL36	h		
CL 37	nd		
CL38	nd		
CL39	nd		
CL40	nd		
CL45	250		
CL46	40		
CL47	15		
CL48	20		
CL49	nd		
CL50	nđ		
CL51	1400 -		
CL52	8160 -		
CL53	75		
CL54	20		
CL55	25		
CL56	10		
CL235	10		

5 -- = not analysed

4.

VGC		ANGE MAIN (1521 PEMBE ORTH VANCOUN 504) 986-5211	OCHEM PFICE RTON AVE. /ER, B.C. V7P 2S3 TELEX: 04-352578	LAB LIMIT BRANCH OFF 1630 PANDORA VANCOUVER, B.C. (604) 251-563	ED ICE I ST. V5L 1L6 56	
REPORT NUMBER: 871413 GA	JOB NUM	IBER: 871413	NATION	VER RESOURCES	PAGE 1	01
SAMPLE \$ CL 58 CL 59 CL 60 CL 61 CL 62	Au ppb 4250 3360 650 680 175					
CL 63 CL 64 CL 65 CL 66 CL 67	70 25 505 15 15					
CL 69 CL 70 CL 71 CL 72 CL 419 (Soil)	5 50 235 3260 500 nd					
				•		

. 1

SAMPLE #

REPORT NUMBER: 871131 GA

VANGEOCHEM LAB LIMITED

NATION RIVER RESOURCES

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 071131

Au

-19-

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

	DETECTION LIMIT		5 stanslured	in a incuttini and another	
	LEZANS FIOM	4+50S	10		
1	CL2395 E10W	5+00S	nd		
	CL2385 L8W	3+0 0 3	20		
	CL2375 L8W	2+70S	10		
	CL2365 L8W	2+00S	nd		
ľ	CL2345 L8W	1+00S	35		
	CL2335 L8W	0+50S	5		
	CL2325 B.L.	L.C.P.	nd		
	CL2315 B.L.	0+50W	30		
	LZ3V5 B.L.	T+00M	30		
	CL2295 B.L.	1+50W	10		
	CL2285 B.L.	2+50W	15		
	CL2275 B.L.	3+00W	nd		
	CL2265 B.L.	3+50W	20		
			.v		
	CL2255 B . T.	4+00W	10		
	122200 B.L.		00 10		
	LL2225 B.L.	5+50W	10		
	CL221S B.L.	6+00W	10		
	CL2205 B.L.	6+50W	nd		
	CL2195 B.L.	7+00W	15		
	CL2185 B.L.	7+50W	20		
	CL2175 B . T	8+50W	15		
	CL2165 B. T.	9+000	10		
	UL1135 B.L.	9+50W	10		
		B.L.	5		
	CL2135 L8W	0+50N	10		
	CL2125 L8W	1+00N	10		
	CL2115 L8W	1+50N	10		
		2.00H	-*		
	CL2105 L8W	2+00N	10		
	CL2000 L8W	3+00N 2+50M	30		
		3+00N	ND 10		
	CL2065 L10W	2+50N	nd		
	CL2055 L10W	2+00N	15		
	CL2045 L10W	1+50N	nd		
	CL2035 L1 OW	1+00N	5		
	CL2025 1,1 OW	0+50N	10		
	CL2015 R. T.	10+00	10		

PAGE 1 OF 3

NATION RIVER RESDURCES

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

JOB NUMBER: 871131

REPORT NUMBER: 871131 GA

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

SAMPLE #		Au aab		
CL2415 L 1 OW CL2425 L 1 OW CL2435 L 1 OW CL2445 L 1 OW CL2445 L 1 OW	4+00S 3+50S 3+30S 2+50S 2+00S	5 5 15 10 5		
CL2465L1OW CL2475L1OW CL2485L2W CL2495L2W CL2495L2W	1+50S 1+00S 0+50S 0+50N 1+00N	10 10 nd 10		
CL251SL2W CL252SL2W CL253SL2W CL254SL2W CL255SL2W	1+50N 2+00N 0+50S 1+00S 1+50S	5 10 5 10 nd		
CL2565L2W CL2575L2W CL2585L4W CL2595L4W CL2965L4W	2+00S 2+50S 2+88S 2+50S 2+00S	5 nd nd 10 10		
CL2975L4W CL2985L4W CL2995L4W CL3005L4W CL3015L4W	1+50S 1+00S 0+50S 0+50N 1+00N	10 20 10 5 nd		
CL302SL4W CL303SL4W CL304SL4W CL305SL6W CL306SL6W	1+50N 2+00N 2+50N 2+50N 2+00N	10 nd 5 nd 10		
CL3075L6W CL3085L6W CL3095L6W CL3105L6W CL3115L6W	1+50N 1+00N 0+50N B.L. 0+50S	10 5 5 15 10		
CL312SL6W CL313SL6W CL314SL6W CL315SL6W	1+00S 1+50S 2+00S 2+50S	nd 5 10 5		
DETECTION LIMIT nd ≈ none detecte	d =	5 not analysed	is = insufficient	sample

PAGE 2 OF 3

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

-21-

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

3

REPORT NUMBER: 871131 GA	JOB NUMBER: 871131	NATION RIVER RESOURCES	PAGE	3	OF
SAMPLE #	Au				

		ppb
CL3165 L6W	3+00S	25
CL3175 L6W	3+50W	15

DETECTION LIMIT 5 nd = none detected -- = not analysed is = insufficient sample

		•
10/		\frown
	\checkmark	$\mathbf{\vee}$

,

.

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1821 FEMDERTON AVE. NORTH VANCOUVER, B.C. V7P 253 (604) 986-5211 FLEX: 04-352578

1630 PANDOBA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

•

REPORT NUMBER: 871384 GA J	OB NUMBER: 871384	NATION RIVER RESOURCES	PAGE 1 01 2
SAMPLE I	Au		
ŋ	oh		
CL 4009	50 -		
CL 4015	30		
CL 4025	20		
CL 4035	5		
CL 4049	45		
CL 4055	10		
CL 4065	10		
CL 4079	35		
CL 4089	10		
CL 4000			
	nd		
	nd		
	10		
	10		
CL 4135	10		
CI 4140			
CL 4180	nd		
v. 7133 Fi Ateo	nd		
CL 1103 Cl 4170	10		
CL 71/0 Ci A100	5		
LL 7103	20		

DETECTION LIMIT nd = none detected

.

4

.'

5

• -- = not analysed is = insufficient sample

 $\widehat{}$

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

-23-

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

RE	PORT	NUMBER:	890522 GA	JOB	NUMBER:	88052	22	MA	TION RI	VER R	esour	CES		PAGE	1	OF	2
SA	MPLE	ŧ		Au													
ы	420	DT	121004	ppb 20													
20	421	D•1.0 T1.00	12+00W	10													
с.	422	1 2 1 2 10	1+008	15													
сі С	422	LLZW	1+005	nd													
ä	424	L12W	2+00S	10													
		- • • • •															
, UL	420	LI2W	2+50S	10													
u.	426	LI2W	3+005	13													
CL	427	LI2W	3+50S	3													
CL.	428	LI2W	4+00S	3													
CL.	429	L12W	4+50S	10													
CL.	430	Ll2W	5+00S	15													
CL.	431	L12W	0+50N	nd													
α	432	L12W	1+00N	10	ł												
CL	433	L12W	1+50N	5													
α	434	Ll2W	2+00N		i												
CL	435	t.12W	2+50N	5													
a	436	L12W	2+00N	10													
n N	437	L12W	3+50N	20	1												
ň	428	L12W	4+00N														
ີດ	439	L12W	4+50N	10	, , ,												
CL	440	L12W	5+00N	2													
α	441	B.L.	16+00W	15													
α	. 442	L16W	0+50N	1	5		•										
CL	443	L16W	1+00N	20													
α	. 444	L16W	1+50N	10)												
α	445	iL16W	2+00N	10)												•
α	. 446	L16W	2+50N	10)												
ຕ	. 447	'L16W	3+00N	1	i												
α	. 448	L16W	3+50N		5												
CL	. 449	L16W	4+00N	20)												
ы	450	1.160	4+50N	3)												
יי רו	451	L16W	5+00N	1	, 5												
CL (1	. 451 152	L16W	0+505		4												
	. 737 152		1+005	2/	, \												
ជ	. 454 . 4 54	L16W	1+003 1+50S	1	5												
		1	0.00-	_	_												
CL	. 45		2+00S	1	}												
Cl	. 456	5 L L 6W	2+50S	1	0												
α	. 457	, ГТОМ	3+00S		5												
CI	. 458	LT0M	3+50S	1	D												

-24-

C

VANGEOCHEM LAB LIMITED

0410 017106 440 LABABATORY 1999 Triumph Street Vencourer, B.C. V51 115 (504)251-5654 FAY:254 5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 880	522 GA JOB NUMBER: 880522	NATION RIVER RESOURCES	PAGE 2 (IF 2
SANPLE I	Au		
	ppb		
CL 459 L16W	4+00S 20		
CL 460 L16W	4+50S 10		
CL 461 L16W	5+00S 15		
ri aco Line O	B . L . 15		• • • •
CL 462 B T.	0+50N 15		
CL 464 B. L.	1+00N 5		
CL 465 B.L.	1+60N nd		
CL 466 B.L.	2+00N 5		
CL 467 B.L.	2+50N nd		
CL 468 B.L.	3+00N 10		
CL 469 B.L.	3+50N 30		
CL 470 B.L.	4+00N 15		
CL 471 B.L.	4+50N 15		•
CL 472 B. L.	5+00N nd		,
CL 473 L4E	B.L. 10		
CL 474 L4E	0+50N 5		
CL 475 L4E	1+00N 5		
CL 476 L4E	1+50N 20		
CL 477 L4E	2+00N 10		
CL 478 L4E	2+50N 20		
CL 479 L4E	3+00N 20		
CL 480 L4E	3+50N nd		
CL 481 L4E	4+00N 25		,
CL 482 T.4E	4+50N 10		
CL 483 L4E	5+00N 20		
CI. 484 LGE	5+00N 5		
CL 485 L6E	4+50N 10		
CL 486 L6E	4+00N 10		
01 407 T.G.F	3+50N er		
CL 48/ LOB	3+00N -4		
UL 900 LOD			
UL 491 LOE	T+20M 10		
CL 492 LGE	1+00N 20		
CL 493 L6E	0+50N 10		
-			

DETECTION LIMIT nd = none detected

·.__

.

. . .

5

-- = not analysed is = insufficient sample

5

5

10

10

25

•

-25-

1.1

CL 1015

CL 1016

CL 1017

CL 1018

CL 1019

VANGEUCHEM LAB LIMITED

MAIN OFFICE: 1521 PEMBERTON AVE. N.V(UVER B.C. V7P 2S3 PH: (604)986-5211 TELEX:04-352578 | BRANCH OFFICE: 1630 PANDORA ST. VANCL _R B.C. V5L 1L6 PH: (604)251-5656

1 .26-

ICAP GEOCHEMICAL ANALYSIS

.

.

)

)

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:2 HCL TO HND3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND 15 DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN.NN.FE.CA.P.CR.MG.BA.PD.AL.NA.K.W.PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

)	COMPANY: NA ATTENTION: PROJECT: CL	ATION COL:	N RIV IN CA	VER RI	ESOUI -	RCES	LTD	-	REPOR JOB #: INVOI	RT#: 871 CE#:	8711 130 871	130P	A NA			DAT DAT COP	e re e co y se	CEIV MPLE NT T	ED: { TED: O:	87/0 87/9	8/24 09/23	3 ~				ANAL	YST_4	e z	Junes	
)	N.B.C	sde	is a																				PA	ie 1 of	1					
)	SAMPLE NAME	AG PPM	AL I	AS PPH	AU PPM	BA PPH	BI PPM	CA Z	CD PPH	CO PPM	CR PPH	CU PPN	FE 1	K 1	56 I	nn PPN	HQ PPH	NA I	ni Pph	P I	V PB PPM	Р р Ррн	PT PPM	SB PPM	SN PPM	SR PPH	U Pow	u PP#	ZN PPM	
) (,	Ct 27 St 23 Ct 24 Ct 25 Ct 25 Ct 25 Ct 25	.1 .5 .1 .2 .1	2.62 1.14 3.84 2.83 2.43	97 14 25 26 19	ND ND ND ND ND	25 28 21 323 30	6 4 ND 5 4	1.06 .96 3.13 1.12 1.97	.1 .1 .1 .1	24 15 13 10 14	34 9 255 30 22	113 139 80 99 123	5.12 2.67 5.33 4.62 3.72	.04 .06 .05 .08 .07	2.54 .24 4.05 .86 .44	1423 199 3470 322 243	1 2 1 2 1	.19 .03 .26 .11 .07	20 11 79 10 14	.13 .15 .10 .14 .14	49 4 23 8 38	ND ND ND ND	nd Nd Nd Nd	ND 5 ND 11 ND	ND 1 ND ND ND	24 49 90 411 31	nd Nd Nd Nd Nd	ND 4 ND ND ND	106 14 170 50 27	
)	CC 27 CC 29 CC 29 CC 20 CC 30 CC 31	.1 .1 .1 2.7	2.18 1.72 2.04 2.38 .88	4 3 25 26	ND ND ND ND ND	55 22 25 31 21	5 ND ND 5 6	2.12 3.25 2.81 1.36 .75	.1 .1 .1 26.1	19 17 11 22 8	22 42 30 7: 25	120 16 3 134 580	4.22 4.09 3.99 5.32 1.79	.07 .07 .07 .06 .06	1.43 1.31 1.56 2.74 .46	435 1977 1801 764 904	34+2	.07 .11 .12 .17 .12	20 64 17 25 7	.14 .15 .10 .14 .06	28 4 23 6 405	ND ND ND ND	ND ND ND ND	ND XD XD XD XD	ND ND ND ND	60 50 43 27 10	NC ND ND ND	ND ND ND ND ND	17 30 40 45 5406	
)	CC 32 CC 33 CC 34 CC 35 CC 36	.1 4.5 5.5 .1 .8	1.93 1.27 2.06 2.52 2.87	13 84 17 11 ND	ND ND ND ND	95 118 18 59 23	ND B ND 3 ND	1.75 .17 2.77 1.93 4.82	.4 3.1 21.2 38.9 17.6	22 11 11 19 19	33 15 32 10	145 674 1532 221 835	5.00 4.15 3.20 5.12 5.39	.08 .06 .06 .07 .03	1.54 .71 1.32 1.48 1.33	1252 336 1931 1907 2703	2 1 1 1 KD	.19 .40 47 .75 .70	27 5 17 9 22	.14 .08 .08 .14 .11	14 24 4927 137 20	ND ND ND ND ND	ND ND ND ND	ND 11 3 ND ND	ND ND ND ND	50 9 27 30 81	ND ND ND ND ND	ND ND ND ND ND	175 781 5132 9394 3992	
)	CC 37 CC 38 CC 39 CC 44 CC 45	.1 .1 .8 .4 1.7	4.57 2.33 .53 .44 1.45	ND 3 ND ND 963	nd Nd Nd Nd	24 47 111 158 27	ND ND 3 4 2	5.00 3.25 .73 .44 .48	3.5 1.3 .1 .8 .1	23 13 2 2 8	192 42 105 18 10	44 192 252 113 118	7.38 4.03 1.06 .97 3.49	.07 .07 .05 .05 .05	3.57 1.47 .20 .14 .71	3409 1766 593 522 592	ND ND ND 1	.72 .34 .03 .13 .14	75 11 7 5 8	.08 .14 .02 .03 .10	13 8 2 9 23	ND ND ND ND	ND ND ND ND	ND ND 5 4 33	ND ND ND ND	85 46 12 10 18	nd Nd Nd Nd Nd	ND ND 7 4 ND	1258 603 62 327 192	
,)	CC 46 CC 47 CC 48 CC 49 CC 50	.1 .1 19.3 .6	2.96 2.96 3.12 1.18 2.43	138 28 16 91 10	ND ND ND ND	35 79 71 52 31	4 5 3 3 40	2.50 2.41 2.99 .29 4.34	.1 2.2 .1 .3	24 21 22 12 18	56 47 34 88 54	139 324 288 4227 1025	6.04 5.41 5.54 5.51 4.90	.07 .08 .03 .05 .08	2.35 1.92 2.16 .55 1.46	1705 1935 2047 452 2033	1 ND ND 6 3	.25 .39 .22 .26 .26	32 20 22 10 21	.12 .17 .17 .08 .16	24 6 9 11 3	ND ND ND ND	nd ND ND ND ND	5 ND ND B ND	nd Nd Nd Nd Nd	40 43 45 14 47	ND ND ND ND	ND ND ND ND ND	213 633 290 328 327	
))	00 51 00 52 00 53 00 54 00 55	5.4 67.3 1.6 .1	3.57 .28 1.54 .48 1.43	7621 840 - 66 24 11	5 3 ND ND ND	15 52 48 117 39	6 ND ND ND ND	.22 .03 1.91 3.52 1.31	.1 .1 .1 .1	81 3 47 11 5	89 19 38 4 24	1971 251 224 78 162	24.89 3.08 5.98 3.09 2.77	.08 .05 .07 .08 .04	1.63 .06 .86 .53 1.02	980 100 2024 1891 1066	3 1 3 4 ND	47 .11 .22 .08 .25	19 3 31 20 10	.07 .02 .10 .10 .05	135 155 121 13 8	ND ND ND ND ND	ND ND ND ND ND	38 49 5 4 3	ND ND ND ND	6 8 22 33 20	ND ND ND ND ND	ND ND ND 3 0k	2287 149 225 52 477	
)	CC 56 CC 235	.1 5.6	1.45 2.32	4 123	ND ND	27 7	6 4	. 23 . 28	.1	13 48	54 77	49 5053	5.33 9.82	.05 .03	.95 1.29	238 1325	4 B	.12 .34	15 7	.11 .04	7 13	ND ND	ND ND	4 4	ND ND	5 4	ND ND	KD ND	29 238	
)	DETECTION LINIT	.1	. 01	3	3	1	3	.0!	.1	:	:	:	.01	.01	.01	t	1	.01	1	.01	2	3	5	2	2	!	5	3	1	

VANGEOCHEM _AB LIMITED

MAIN OFFICE: 1521 PEMBERTON AVE. N.VANCOUVER B.C. V7P 2S3 PH: (604)986-5211 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L 1L6 PH: (604)251-5656

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:2 HCL TO HWO3 TO H2O AT 95 DES. C FOR 90 MINUTES AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR SM./M.FE.CA.P.CR.MG.BA.PD.AL.NA.K.W.PT AND SR. AU AND PD DETECTION IS 3 PPH. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, ~ NOT ANALYZED

COMPANY: N ATTENTION: PROJECT: C	ATIO COL	N RI' In C	ver r Ampbe	ES. LL	LTD.			REPO JOB# INVO	RT#: : 97: ICE#:	871 1413 : 87	413P 1413	A NA			DAT DAT COP	TERE TECC	NT T	ED: TED: D:	87/0 87/	9/25 10/02				ANAL	YST_	w	. Fa) ues	
																						PA	¥E 10F	1					
SAMPLE NAME	AG PPH	AL Z	AS PPN	AU PPN	BA PPN	81 PPN	CA I	CØ PPN	CO PPN	CZ PPE	CUI PPNI	FE I	K Z	HG Z	nn PPH	110 PP11	XA I	NI PPN	P I	PS PPS	P B PPN	PT PPH	SØ PPH	SII PPH	SR PPH	U PPN	V PPN	ZN PPN	
CL 58 CL 59 CL 60 CL 61 CL 62	53.0 66.1 2.8 1.0 1.5	.56 .19 .91 .70 .63	667 969 228 118 388	3 10 10 10 10 10	- 41 23 65 59 54	滑 增 增 消 消 注	.12 .08 .15 .12 .14	.1 2.7 .1 .1 .1	8 15 10 8 5	129 31 12 123 26	183 5803 204 104 71	2.49 4.47 3.39 2.96 2.50	.04 .05 .07 .05 .06	.17 .02 .36 .29 .20	358 134 481 445 370	7 2 1 8 2	.09 1.28 .15 .11	7 13 5 7 7	.04 .03 .07 .05 .06	125 71 40 22 21		113 110 119 119 119	29 37 16 15 15	NÐ 2 1 3 2	10 5 21 7 17	3)19)19)19)19	4)89)15 3)10	146 3298 277 181 69	(
CL 63 CL 64 CL 65 CL 66 CL 66 CL 57	64.4 12.3 2.7 .1 .1	.46 1.85 .51 4.33 1.27	79 27 1738 61 82	113 113 113 113 113	11 72 18 41 5	15 5 N9 4 4	1.54 .54 .13 .49 1.52	6.0 1.5 .1 .1	35 12 4 19 40	117 25 43 88 175	31797 5086 203 265 125	7.30 4.41 2.54 14.51 9.77	.09 .06 .06 .14 .12	.22 1.35 .15 2.81 .87	895 1135 128 1048 497	10 3 2 1 4	.85 .29 .05 .27 .18	15 24 3 22 59	.05 .11 .09 .10 .05	78 33 24 16 14	MB Na Na Na Na Na	XD XD XD XD	14 10 47 15 13	2 2 ND 1. B	26 25 9 28 13	NB XB 4 XD XD	X9 X5 X5 X9 X9	1750 505 52 53 54	
CL 68 CL 69 CL 70 CL 71 CL 72	.1 30.5 3.2 14.3 4.3	2.64 1.46 .67 .36 1.48	45 69 37 144 936	ND ND 4 7 ND	41 43 - 76 - 47 50	ND 12 3 7 3	1.97 1.35 2.91 1.30 .27	.1 .1 181.5 99.9 .1	25 14 11 11 14	14 58 90 21 30	48 16250 466 1506 366	7.28 5.73 2.01 1.94 9.15	.11 .10 .06 .04 .11	1.65 .99 .32 .13 .78	2080 1258 2123 865 546	ND 4 1 4	.15 .14 12.82 7.44 .63	23 10 5 6 10	.14 .10 .06 .05 .12	12 15 129 150 2547	XD ND XD XD XD	XD XD XD XD XD	8 11 5 13 20	ND 2 5 4 ND	38 35 35 13 38	X0 X9 X8 X0 X0	XB XD XD XD XD	48 69 29003 15772 1059	
CL 419(SOIL)	.2	1.77	25)Ø	138	ND	.34	.1	9	45	53	3.89	.06	. 43	533	жÐ	.10	15	.09	36	X9	XÐ	B	2	30	ND	KØ	124	
DETECTION LINIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	1	1	.01	1	.01	2	3	5	2	2	t	5	3	t	

۰.

3

)

3

.)

•

).

)

)

)

27-

MAIN OFFICE: 1521 PEMBERTON AVE. N.VANCOUVER B.C. V7P 2S3 PH: (604)986-5211 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L 1L6 PH: (604)251-5656

- ÷

€

C

(

-28-

1

(

(

(

ł,

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF D:1:2 KUL TO HNOD TO HED AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SM,MK,FE,CA,P,CR,MG,BA,PD,AL,NA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NDT ANALYZED

COMFANY: ATTENTION PROJECT:	NAT N: C CL	ION	N J.	ER R CAM	ESOUI PBELI	RCES L	LTD.	. F	REPOR	RT#: 871 CE#:	8711 131 871	31P/	A NA			DAT DAT COP	e rei e coi y sei	CEIVE MPLE NT TO	ED: 8 TED: D:	37/08 87/(3/24 09/18	3				ANAL	YST_	<u>i) j</u>	Pours
																							PA	SE 1 OF	2				
sahple name		ag PPn	AL Z	AS FPE	AC PPH	BA PPH	BI PPM	CA X	CD PPH	co PPN	CR P?#	CU PPN	FE 1	K I	NG Z	nn Pph	no PPN	NA I	KI PPH	P I	PB PPN	PD PPM	PT P PH	SB PPN	sa Pph	SR PPM	u PPN	¥ ??#	ZN PPN
CL 201 - S CL 202 CL 203 CL 204 CL 205		.1	2.22 3.02 2.19 2.34 1.55	14 24 22 14 36	nd ND ND ND	107 135 73 65 53	3 ND ND ND	.87 .72 .35 .39 .35	.1 .1 .1 .1	13 22 14 10 9	32 42 43 22 28	324 402 65 54 34	3.18 4.54 5.47 2.89 3.59	.03 .02 .01 .02 .01	.71 .90 .80 .45 .39	598 1486 369 288 300	2 3 3 2 3	.07 .13 .14 .07 .13	30 34 20 25 11	.11 .14 .13 .05 .09	7 20 15 12 23	ND ND ND ND	ND ND ND ND	33433	nd Nd Nd Nd Nd	52 47 38 24 25	ne Nd Nd Nd Nd	kd Nd Nd Nd	73 158 129 69 214
CL 205 CL 207 CL 208 CL 209 CL 209 CL 210		.1 .1 .1 .1	2.03 1.30 1.99 2.17 1.41	4 23 131 8	nd Ko Nd Nd	379 47 49 151 54	KD ND XD 3 ND	.83 .42 .25 .73 .26	.1 .1 .1 .1	7 8 11 11 7	14 21 25 30 22	27 47 60 398 27	2.92 2.10 4.50 3.34 2.80	.01 .01 .01 .01 .01	.20 .38 .55 .88 .34	274 585 294 967 164	2 1 2 3 1	.08 .04 .13 .23 .07	8 17 17 31 14	.04 .02 .08 .04 .03	9 6 17 28 10	XD ND ND ND	nd Nd Nd Nd	3 MD 3 10 3	nd Nd Nd Nd Nd	307 32 23 60 25	nd Nd Nd Nd Nd	nd Nd Nd Nd	113 44 168 831 82
CL 211 CL 212 CL 213 CL 214 CL 215		.1 .1 .1 .1	1.16 1.72 1.48 2.05 1.35	8 7 10 16	Kd Nd Nd Nd Nd	44 68 42 75 50	3 RD ND ND	.20 .29 .21 .28 .24	-1	5 9 7 10 9	15 25 26 24 42	14 29 25 39 47	1.89 2.58 3.13 3.24 3.76	.02 .01 .01 .01 .01	.21 .47 .41 .53 .41	165 211 191 279 314	ND 1 2 2 2	.06 .05 .07 .07 .11	7 25 22 22 12	.08 .11 .10 .03 .11	17 5 8 7 16	KD KD KD KD	ND ND ND ND	4 ND ND 3 ND	ND ND ND ND ND	18 31 24 27 28	nd ND ND ND	nd ND ND ND	101 42 88 45 145
CL 216 CL 217 CL 218 CL 219 CL 229		.1 .1 .1 .1	3.41 2.78 1.91 1.77 2.08	15 28 13 7 123	nd Nd Nd Nd Nd	134 487 91 67 137	ND 3 ND ND ND	.25 .39 .22 .33 .37	.1 .1 .1 .1	12 24 15 8 15	41 24 25 22 24	170 65 69 30 104	5.19 5.51 4.25 3.04 4.08	.01 .01 .01 .01	.76 .63 .49 .41 .68	483 2112 908 226 841	2 7 3 2 3	.17 .14 .11 .07 .21	19 24 19 19 29	.25 .08 .05 .06 .11	14 12 9 8 39	10 19 10 10	ND ND ND ND	3 3 3 3 8	nd ND ND ND	69 138 30 28 51	nd Nd Nd Nd Nd	nd Kd Nd Nd	229 126 138 70 453
Ci. 221 Ci. 222 Ci. 223 Ci. 224 Ci. 225		.1 .1 .1 .1	2.07 1.50 1.95 1.48 1.57	21 12 10 8 4	nd Nd Nd Nd Nd	83 94 78 49 57	nd Nd Nd Nd Nd	.38 .71 .27 .19 .33	.3 .1 .1 .1 .1	14 10 8 8 15	26 26 24 21 23	57 68 28 25 18	3.11 2.58 3.08 3.26 3.50	.01 .02 .02 .02 .01	.63 .59 .52 .38 .38	550 654 267 209 714	2 2 1 2 1	.20 .06 .09 .68 .11	34 26 24 16 14	.08 .04 .18 .05 .07	7 5 7 13 13	KC) KC) KC) KC)	ND ND ND ND	4 3 4 4 3	nd Nd Nd Nd Nd	40 43 25 35 25	nd Nd Nd Nd Nd	nd ND ND ND	454 54 148 94 184
CL 226 CL 227 CL 228 CL 229 CL 230		.1 .1 .1 .1	1.09 1.54 1.27 1.28 1.46	4 4 10 5 10	nd ND ND ND	56 63 52 67 67	ND ND ND ND ND	.26 .27 .27 .25 .29	.1 .1 .1 .1	6 9 7 8 7	16 23 22 23 22	17 21 15 14 29	1.55 2.25 2.24 2.27 2.56	.02 .01 .01 .02 .02	.32 .46 .41 .44 .37	267 375 210 660 264	1 1 1 1	.03 .06 .05 .05 .07	15 17 16 18 17	.04 .11 .06 .06 .09	10 9 11 9 8	HD HD HD HD	100 100 100	3 3 3 3 100	nd Nd Nd Nd Nd	27 24 25 24 27	3 ND KD 5 ND	ND ND 3 ND	45 86 69 64 104
CL 231 CL 232 CL 233 CL 234 CL 236		.1 .1 .1 .1	1.99 2.73 1.99 1.59 2.45	14 21 28 21 21	ND ND ND ND	72 109 88 78 142	ND ND ND ND	.25 .32 .27 1.51 1.02	.1 .1 .1 .1	11 12 11 13 14	27 31 30 25 28	52 85 46 342 173	3.53 4.77 4.77 3.19 3.35	.02 .01 .02 .01 .01	.52 .56 .51 .64 .75	287 488 420 737 1855	3 2 5 2 3	.12 .17 .14 .11 .10	22 20 14 20 30	.08 .26 .09 .10 .09	15 14 27 10 8	ND ND ND ND	ND ND ND ND ND	4 3 4 ND ND	ND ND ND ND	23 32 33 83 71	nd Nd Nd Nd	ND ND ND ND	213 270 205 182 125
CL 237 CL 235 CL 239 CL 240 - 5		.1	1.29 1.53 .52 1.53	11 10 ND 7	ND KD KD XD	148 75 42 67	ND ND ND	.34 .23 .23 .24	.7 .1 .1 .1	8 4 2	17 23 15 23	34 28 7 29	2.51 3.35 1.76 2.87	.01 .01 .02 .01	.43 .43 .12	377 312 188 231	3 1 ND 1	.12 .08 .03 .06	10 15 7 16	.05 .10 .05 .09	13 10 7 9	nd Nd Nd Nd	ND ND ND ND	ND ND ND 3	ND ND ND ND	35 22 22 22	ND KD 4 ND	ND ND ND ND	216 91 29 51

	CLIENT:	NATION	I R	IVER	RES	SOURI	CES	LTD.	JOE	3#: 8	37113	81 F	PROJI	ECT:	CL	REPO	RT:	8711:	B1PA	DA	TE: 8	37/09	1/18			PAG	E 2	0F 2		
	SAMPLE NAME	AG PPI	ų	AL I	as Ppr	au Ppr	BA PP#	BI PPM	CA Z	CD PPH	CO PPN	CR PPM	cu PP n	FE	K I	XS I	HN PPH	10 22#	NA Z	NI PPH	? 1	ов РР7	PD PPm	P* PP₩	SB PPt	SN PPM	SR PPH	U PP I	и Ррн	25 PPN
	CL 241 - 5	X	D :	1.38	7	ND	8:	XD	,55	.1	9	29	47	2.52	.03	.60	304	1	.05	24	.07	7	ND	ND	ЯŅ	ND	41	ND	3	45
-	CL 242 CL 243 CL 244 CL 245 CL 245 CL 246	N Xi Xi Xi Xi Xi Xi		3.36 1.67 1.60 1.28 2.49	8 3 7 3 11	ND ND ND ND ND	176 53 54 101 133	ND 3 ND ND ND	.62 .34 .22 .25 .55	.2 .1 .1 .3 .1	20 10 10 12 15	38 25 23 21 30	131 38 60 37 85	4.58 2.92 2.94 2.91 3.66	.04 .03 .03 .05 .02	.86 .55 .58 .22 .91	1869 263 379 1171 513	2 1 1 2 3	.12 .05 .06 .06 .10	48 29 28 10 29	.08 .10 .06 .05 .10	14 5 7 10 10	ND ND ND ND ND	nd Nd Nd Nd Nd	ND ND ND ND ND	ND ND ND 1 ND	50 32 35 31 60	ND ND ND ND	ND 6 ND ND ND	148 59 43 54 98
-	CL 247 CL 248 CL 249 CL 250 CL 251	SE NI NI NI NI		3.05 2.51 1.43 1.69 1.38	15 14 3 5	nd Nd Nd Nd	157 123 46 84 74	XD Dr Dr CX D	1.17 1.68 .27 .38 .32	.2 .1 .1 .3 .1	18 13 7 9 7	33 34 23 25 18	259 393 19 35 25	4.14 3.35 3.01 2.90 1.84	.04 .02 .01 .02 .03	.86 .75 .35 .51 .39	2879 802 324 460 207	3 1 1 2 1	.14 .08 .07 .06 .03	35 33 14 18 14	.14 .13 .20 .13 .05	5 1 63 10 6	ND ND ND ND ND	ND ND ND ND ND	И В В В С И С И	ND D CX CM CX	74 82 25 35 32	ND ND ND ND ND	ND ND ND 4	209 94 83 63 37
	CL 252 CL 252 CL 254 CL 255 CL 255 CL 255	NI Ni Ni Ni Ni		2.14 1.54 2.79 2.70 2.15	3 12 15 10 20	ND ND ND ND	78 94 114 140 57	nd Nd Nd Nd Nd	.25 .38 .22 .23 .23	• • • • • • •	10 12 20 9 10	30 31 7 28 42	27 46 37 33 41	3.30 3.07 7.52 3.32 4.17	.02 .04 .01 .04 .09	.48 .58 1.04 .55 .75	211 324 555 211 250	2 2 2 2 3	.05 .07 .20 .12 .09	22 33 7 19 20	.22 .10 .08 .13 .12	9 11 15 11 19	ND ND ND ND	ND ND ND ND ND	CJ 47 (J 47 CJ	NB 1 ND ND 1	28 39 21 34 28	ND ND ND XD 5	ND ND ND 3	47 73 193 224 73
	CL 258 CL 253 CL 296 CL 297 CL 298	XI NI NI NI		1.70 1.84 5.12 3.31 1.87	14 11 25 44 5	nd Nd Nd Nd	97 111 409 463 75	ND ND ND 4 ND	.52 .31 .38 .42 .25		14 8 30 36 10	42 32 19 14 31	49 28 171 78 25	4.58 4.41 7.81 9.13 3.16	.05 .06 .01 .01 .07	.53 .42 1.55 1.10 .55	417 241 2323 1305 335	2 3 4 3 2	.14 .09 .58 .35 .14	19 13 15 18 27	.18 .05 .12 .13 .13	19 14 135 8 28 12	ND ND ND ND ND	ND ND ND ND ND	CI 0, CI EV CI	ND ND ND ND ND	39 36 13 213 27	ND ND ND ND	ND CX DR DR CM	188 80 1655 600 313
	CL 233 CL 300 CL 301 CL 302 CL 303	NI NI NI NI		.95 2.15 1.92 1.57	8 5 XD 12 5	nd Nd Nd Nd Nd	59 85 114 62 81	ND ND ND ND	.24 .00 .45 .31 .29		:1 10 9 9	29 25 19 23 25	31 30 45 25 28	2.87 3.19 1.98 2.39 2.85	.06 .05 .05 .04	.55 .52 .53 .45 .43	223 235 290 300 293	: 2 1 1 1	.06 .08 .05 .05 .05	31 24 15 17 19	.09 .08 .06 .10 .13	9 :5 8 10 5	ND ND ND ND ND	ND ND ND ND ND	4 10 00 14 10	ND ND NC 2 ND	26 27 42 33 31	4 ND 14 3	4 ND ND ND ND	73 113 73 71 50
	CL 304 CL 305 CL 306 CL 3 07 CL 308	NI NI NI NI		51 60 62 76 89	4 4 3 5	ND ND ND ND	51 53 73 50 84	ND ND ND ND ND	.21 .33 .49 .27 .36		7 9 8 11	21 29 23 23 25	19 18 50 23 36	2.33 2.97 2.24 2.40 2.34	.05 .06 .05 .06	.31 .44 .61 .37 .46	125 269 259 183 339	1 1 1 1	.04 .06 .04 .04 .07	15 19 22 21 18	.04 .17 .07 .05 .15	8 8 7 11	XD ND ND ND KD	ND ND ND ND ND	3 3 3 ND 3	ND ND ND ND ND	20 28 41 25 31	3 5 ND 4 ND	4 ND 4 ND ND	40 59 44 57 112
•	CL 309 CL 310 CL 311 CL 312 CL 313	ni Ni Ni Ni		70 2.19 2.97 2.26 75	8 19 3 36 14	ND ND ND ND	, 83 118 74 87	ND ND ND ND	.62 .39 .33 .23 .57	.: .8 .8	11 14 13 15 10	20 27 33 29 41	67 57 45 200 65	2.83 3.08 3.75 4.11 3.45	.05 .05 .03 .06 .03	.69 .65 .79 .59 .51	569 547 425 360 305	2 3 3 4 4	.06 .20 .19 .18 .14	24 32 35 24 17	.08 .08 .09 .05 .05	5 11 12 15 14	ND ND ND ND	ND ND ND ND ND	XD 3 6 5 4	ND ND ND ND 1	49 40 31 25 45	ан 5 ND ND 80	ND On On ND Cx	63 505 425 379 274
	CL 314 CL 315 CL 316 CL 317 - S CL 327 - S	NE NE NE) 1) 1) 1) 1	.79 .99 .77 .20 .54	5 5 12 9 15	XD XD XD XD ND	67 166 88 55 40	ND ND ND ND ND	.26 1.60 .20 .15 .22	.3 .1 1.2 .2 .1	11 12 13 5 9	24 23 25 22 23	37 57 35 13 20	2.70 3.04 4.32 2.98 4.41	.03 .10 .03 .04 .05	.48 .73 .47 .28 .46	305 1458 485 176 261	1 ND 2 1 2	.06 .06 .11 .05 .09	17 24 17 12 16	.11 .20 .10 .05 .13	7 1 10 10 12	ND ND ND ND	CX CX CX CX	0 x2 5 4 5	ND ND ND ND ND	25 91 18 15 19	ND ND G	ND ND ND ND ND	75 87 142 76 98
	DETECTION LINI	.1		.01	3	3	:	3	.0:	.:	1	:	1	.0:	.01	.01	1	i	.01	1	.01	2	3	5	î	•	1	5	3	1

Ć

}

)

)

)

÷.

)

)

7

)

)

)

)

)

)

)

)

)

)

)

-29-

(

VANGEOCHEM | B LIMITED

MAIN OFFICE: 1521 PEMBERTON AVE. N.VANCOUVER B.C. V7P 253 PH:(604)986-5211 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L 1L6 PH:(604)251-5656

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:2 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, MN,FE,CA,P,CR,MG,BA,PD,AL,NA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: NATTENTION: PROJECT: CI	ATION COLI	N RIV (N CA	er ri Mpbei	ESOU LL	RCES	LTD	•	REPO JOB#: INVO	RT#: : 871 ICE#:	8713 384 871	384P/	ιA A			DAT DAT COP	e rei E coi Y sei	CEIV MPLE NT T	ED: 1 TED: O:	87/09 87/3	9/21 10/05	5				ANAL	YST_	<u>.</u>	Rece
																						PAG	ie 105	2				
SAMPLE NAME	AG PPN	AL Z	AS PPN	AU PPH	BA PPH	BI PPN	CA Z	CD PPN	CO PPN	CR PP#	CU PPH	FE I	K I	ñû Z	3N PPN	aj Pph	NA Z	NI Pph	P I	PB PPR	PD PPM	PT PPN	SB PPN	SN PPH	SR PPN	U PPN	N PPN	ZN PPN
11 4005 11 4015 11 4025 11 4025 11 4035 11 4045	4.6 .1 .1 .1	.46 3.00 2.53 1.62 2.05	507 - 75 7 10 23	ND 3 ND 3	79 172 132 90 115	ND ND ND 4 3	.22 .33 .60 .38 .34	.1 .1 .1 .1	3 21 20 14 16	3 41 24 22 25	40 98 66 25 158	3.45 7.55 4.70 3.37 5.43	.07 .03 .05 .04 .04	.05 1.03 .59 .39 .55	98 1021 2607 1248 838	7 1 ND 1 3	.09 .44 .19 .11 .16	3 20 19 14 24	.08 .18 .19 .10 .15	54 14 11 13 17	nd Nd Nd Nd	ND ND ND ND	32 ND ND 5 5	ND ND ND ND ND	42 28 41 29 28	ND ND ND ND	5 ND ND ND	- 99 703 251 149 147
11. 4055 11. 4065 11. 4075 11. 4085 11. 4095	.1 .1 .2 .1 .1	1.67 1.87 1.52 1.71 2.07	8 9 9 8	ND ND ND ND ND	112 61 63 76 115	ND ND ND ND 3	.71 .35 .32 .29 .37	.1 .1 .1 .1	10 9 8 10 12	25 31 26 24 29	27 19 14 19 46	2.65 3.38 2.66 3.18 3.50	.03 .04 .04 .03 .01	.54 .55 .42 .42 .62	649 250 208 283 449	ND ND 1 1	.07 .08 .05 .08 .08	26 23 20 17 23	.08 .07 .09 .09 .10	7 11 12 13 ND	ND ND ND ND ND	ND ND ND ND ND	3 4 5 11	ND ND ND ND ND	49 34 27 28 32	ND ND ND ND	ND ND ND ND	71 61 48 82 83
1, 4105 1, 4115 1, 4125 1, 4125 1, 4135 1, 4145	.1 .1 .1 .1	.65 1.77 2.96 3.23 1.97	29 35 ND 21 8	ND ND ND ND	110 323 246 117 164	ND ND ND 3	.31 .52 .96 .60 .78	3.3 1.7 6.5 .6 1.7	6 13 43 19 15	5 5 12 14 19	38 99 86 56 50	3.45 7.30 7.73 5.81 4.00	.01 .03 .01 .01 .01	.06 .14 1.14 .76 .52	338 1599 4106 863 1751	6 4 160 4 2	.12 .22 .25 .14 .13	20 18 16 12 15	.07 .19 .47 .10 .12	20 4 8 2 7	ND ND ND ND ND	ND ND ND ND ND	16 14 11 11 12	ND ND ND ND ND	12 15 31 28 43	ND ND ND ND	ND ND ND ND	230 329 373 122 194
1 4155 1 4165 1 4175 1 4185	.1 .1 .1	1.59 1.05 2.10 1.75	15 12 25 14	nd ND ND ND	71 65 131 77	3 ND 3 ND	.33 .31 1.10 .33	.3 3.6 4.7 1.5	10 6 13 11	24 21 22 27	32 24 213 27	3.19 3.06 3.50 3.62	.01 .01 .01 .01	.49 .28 .63 .56	360 373 983 342	2 2 1 1	.09 .11 .14 .15	17 11 23 22	.05 .04 .16 .09	6 11 10 5	ND ND ND ND	ND ND ND ND	12 14 11 13	ND ND ND ND	32 29 50 23	ND 6 ND ND	ND 3 ND ND	116 190 256 295
DETECTION LIMIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	1

ī

VANGEOCHEM L 3 LIMITED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH:(604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH:(604)251-7282 FAX:(604)254-5717 €

£

€

C

€

£

€

£

(

- - 3] -

(

(

ų.

(

(

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HWO3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, NN,FE,CA,P,CR, NG,BA,PD,AL,NA,K,N,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: N ATTENTION: PROJECT:	ANY: NATION RIVER REPORT#: 880522 PA NTION: C CAMPBELL JOB#: 880522 ECT: INVOICE#: 880522 NA														DAT DAT COP	e rei E coi Y sei	CEIV MPLE NT T	ED: TED: D:	8870 8870	5/01 06/09	•				ANAL	YST_	1	Ji ny
																						PAG	E 1 OF	2				
SAMPLE NAME	AG PPM	AL Z	AS PPH	AU Pph	BA PPM	BI PPM	CA I	CD PPH	CO PPN	CR PPM	CU PPN	FE 1	K Z	M6 I	NN PPN	NO Pph	NA I	NI PPH	P Z	PB PPN	PD PPH	PT PPH	SB PPM	SN PPH	SR PPH	U PPH	W PPM	ZN PPH-
CL 420 CL 421 CL 422 CL 423 CL 423 CL 424	.2 .1 .1 .1	3.50 1.98 1.77 1.23 1.89	21 12 14 13 13	ND ND ND ND	292 155 122 111 123	ND ND ND ND	.83 .56 .45 .39 .44	.8 .4 .6 .6	20 12 14 9 11	37 22 29 29 27	103 39 61 28 40	3.97 2.25 4.00 3.30 2.62	.07 .05 .04 .05 .06	1.03 .77 .60 .41 .60	927 314 359 283 291	4 1 1 1	.01 .01 .01 .01	34 22 17 11 24	.06 .06 .10 .10 .10	7 3 3 7 5	ND ND ND ND	ND ND ND ND ND	ND ND ND ND	6 4 5 4 4	88 53 50 41 44	ND ND ND ND	ND ND ND ND	121 - 70 - 60 - 54 - 56
CL 425 CL 426 CL 427 CL 428 CL 429	.1 .1 .3 .1	1.63 1.97 1.28 4.08 3.59	15 10 6 11 15	ND ND ND ND ND	102 113 98 200 124	ND ND ND ND	.39 .44 .38 .56 .48	.5 .6 .5 3.1 1.2	11 12 10 28 11	24 30 24 28 11	24 35 12 54 56	2.45 2.75 1.82 6.69 6.56	.05 .05 .05 .06 .04	.44 .60 .40 .97 .32	298 334 357 896 449	1 1 2 6	.01 .01 .01 .01	22 33 16 19 8	.11 .13 .05 .12 .30	6 4 7 4 7	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	4 5 4 8	38 40 34 72 66	ND ND ND ND ND	ND ND ND ND ND	72 55 69 424 209
CL 430 CL 431 CL 432 CL 433 CL 433 CL 434	.1 .1 .1 .1	1.91 3.12 2.45 1.28 2.36	11 16 7 8 9	NÐ ND ND ND	103 181 191 66 121	ND ND ND ND	.35 .45 .40 .35 .34	.3 .8 .8 .5 .6	12 17 21 11 11	25 45 45 28 35	20 70 42 30 32	2.74 4.91 5.52 3.24 4.26	.05 .05 .05 .05 .05	.41 .83 .64 .32 .48	383 416 430 269 324	1 2 2 1	.01 .01 .01 .01	20 21 18 11 14	.14 .22 .08 .03 .34	6 5 6 7 7	ND ND ND ND	ND ND ND ND	ND ND ND ND	4 6 4 4	31 47 50 33 31	ND ND ND ND	ND ND ND ND	73 207 247 62 84
CL 435 CL 436 CL 437 CL 438 CL 439	.1 .1 .1 .1	2.86 2.00 2.97 2.68 2.02	11 8 286 17 8	ND ND ND ND	218 98 187 119 109	ND ND ND ND	.53 .48 .68 .38 .38	.8 .6 .8 .6	14 15 22 17 13	41 27 36 28 26	40 28 59 45 28	3.69 3.39 3.97 4.02 3.52	.05 .05 .06 .05 .05	.81 .44 .68 .61 .44	980 267 746 365 279	1 1 1 1	.01 .01 .01 .01	21 15 38 24 12	.10 .10 .04 .08 .25	9 6 31 6 7	ND ND ND ND	ND ND ND ND ND	ND ND ND ND	4 5 6 5	72 37 45 36 42	ND ND ND ND	ND ND ND ND ND	172 185 136 78 61
CL 440 CL 441 CL 442 CL 443 CL 443 CL 444	.1 .2 .2 .2 .1	1.12 2.02 2.52 1.53 1.64	7 B 13 6 5	ND ND ND ND	59 103 102 118 144	ND ND ND ND	.34 .41 1.02 .40 .41	.5 .8 .8 .4 .8	5 15 14 10 13	21 31 31 26 26	18 63 64 31 37	2.59 3.95 4.76 3.25 2.87	.04 .05 .07 .05 .06	.24 .50 .52 .28 .46	180 651 296 279 773	1 2 3 3 2	.01 .01 .01 .01 .01	15 18 13 9 20	.06 .20 .08 .05 .20	8 11 11 11	ND ND ND ND	ND ND ND ND ND	ND ND ND ND	4 5 5 5 5	30 37 45 34 37	ND ND ND ND	ND ND ND ND	27 73 74 52 78
CL 445 CL 446 CL 447 CL 448 CL 449	.2 .2 .2 .2 .2	1.41 1.29 2.24 2.16 1.20	8 10 19 8 6	ND ND ND ND	86 92 130 168 87	ND ND ND ND	.41 .72 .56 .52 .45	.6 .6 .6 .6	12 10 17 14 10	25 23 33 25 21	16 37 69 22 19	2.47 2.77 3.44 3.82 2.58	.05 .06 .06 .06 .05	.39 .34 .70 .56 .29	331 294 482 333 223	2 2 2 2 2	.01 .01 .01 .01 .01	17 9 22 14 9	.11 .03 .13 .32 .04	11 11 10 13 14	ND ND ND ND ND	ND ND ND ND	ND ND ND ND	5 6 6 6	36 45 57 44 36	ND ND ND ND	ND ND ND ND ND	69 47 53 126 54
CL 450 CL 451 CL 452 CL 452 CL 453 CL 454	.1 .1 .2 .2 .1	2.58 2.49 1.41 1.67 1.46	21 16 10 14 12	ND ND ND ND	155 99 90 121 130	ND 4 ND ND	.48 .58 .30 .40 .40	.8 .5 .8 .8	18 19 9 14 12	27 26 22 30 29	59 55 25 38 28	4.24 3.50 1.67 2.79 2.84	.05 .05 .05 .05 .05	.70 .64 .39 .56 .48	380 405 200 415 583	2 2 3 2 2	.01 .01 .01 .01	19 22 16 25 24	.30 .15 .04 .13 .22	10 11 13 13 12	ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	7 7 6 5	41 44 32 40 36	ND ND ND ND	ND ND ND ND ND	80 71 40 63 61
CL 455 CL 456 CL 457 CL 458	.1 .1 .2 .2	1.54 2.45 1.54 2.17	7 10 10 11	ND ND ND ND	115 158 112 195	ND NG ND ND	.34 .44 .50 .86	.4 .6 .6 1.1	10 16 11 12	25 26 27 27	18 68 47 95	2.62 2.86 2.50 2.65	.05 .06 .06 .07	.41 .48 .54 .48	323 1075 391 1997	2333	.01 .01 .01 .01	17 27 22 31	.08 .19 .07 .08	13 12 14 11	ND ND ND ND	ND ND ND ND	ND ND ND ND	5 6 5 4	38 40 45 62	ND ND ND ND	ND ND ND ND	63 119 44 97
DETECTION LIMIT	.:	.01	3	3	1	3	.01	. 1	:	:	1	.01	.01	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	1

CLIENT: NATION RIVE	ER JOI	84: 8805:	22 PROJ	IECT:	REPORT:	88052	2 PA							• .							P	AGE 2 01	F 2						
SAMPLE MANE	AG PPN	AL I	45 PPH	AU Pph	BA PPN	B1 PPN	CA I	CD PPH	CO PPM	CR PPM	CU PPN	FE I	K I	ng I	nn Pph	no Ppn	XA I	NI PPR	P I	PB PPM	P0 PPN	PT PPN	SB PPH	SN PPH	SR PPH	U PPN	N PPM	ZN PP n	
CL 459	.1	1.46	7	ND	95	3	. 56	.3	9	24	36	2.24	.05	.40	263	1	.01	29	.04	8	ND	ND	ND	3	44	ND	ND	53	
CL 460 CL 461	.1 .1	1.38 1.62	ճ 5	ND ND	99 96	ND ND	.44 .36	.2 .3	8 8	23 24	25 20	1.95 2.92	.04 .03	.50 .36	222 220	ND ND	.01 .01	24 13	.08 .12	3 2	NO ND	ND ND	XD MD	3	41 34	XD XD	ND ND	37 42	
CL 462 CL 463 CL 464 CL 465 CL 465 CL 466	.1 .2 .2 .1 .2	2.54 2.09 1.36 2.85 1.16	41 17 8 22 10	XB KD KD XD	165 140 80 125 93	NB ND 3 ND ND	.34 .35 .31 .32 .46	I_1 .4 .4 .4 .4	15 12 7 13 7	36 31 12 27 18	103 29 17 34 25	5.45 2.72 1.35 2.95 1.80	.20 .21 .21 .21 .21 .21	.64 .61 .31 .49 .38	455 257 153 267 179	2 2 1 2 1	.01 .01 .01 .01 .01	15 27 9 23 12	.42 .11 .02 .09 .10	18 9 11 9 9	ND N9 ND ND ND	ND ND ND ND ND	ND ND ND ND ND	6 5 4 6 4	36 36 33 33 41	ND ND ND ND ND	ND ND ND ND	251 65 40 49 40	
CL 467 CL 468 CL 469 CL 470 CL 471	.2 .1 .2 .1 .1	1.12 2.35 1.52 1.42 2.46	8 14 13 19 17	ND ND ND ND ND	39 61 85 79 101	XD XD XD XD XD	.31 .28 .61 .53 .31	.2 .6 .8 .4 .8	6 8 20 10 12	27 35 61 27 29	16 31 51 56 47	2.49 4.13 5.00 2.50 3.58	.20 .20 .21 .22 .20	.19 .35 .55 .49 .58	168 472 589 308 306	1 2 3 4	.01 .01 .01 .01 .01	4 5 12 11 16	.03 .27 .09 .10 .15	12 12 14 15 10	ND ND ND ND ND	ND ND ND ND	ND ND ND ND ND	5 5 4 5	22 19 51 35 24	ND ND ND ND	ND NG ND ND	42 110 51 48 79	
CL 472 CL 473 CL 474 CL 475 CL 475 CL 476	.1 .1 .2 .1 .2	1.19 1.63 1.40 1.73 2.35	7 20 11 26 16	ND ND ND ND	55 70 53 108 152	ND ND ND ND	.30 .47 .18 .42 .38	.4 .9 .2 .8	8 11 5 19 14	20 32 19 51 37	14 75 29 66 84	1.93 3.17 2.73 4.17 5.14	.20 .22 .20 .21 .20	.24 .51 .20 .78 .63	219 411 153 544 431	1 3 1 2 1	.01 .01 .01 .01 .01	10 12 6 17 15	.07 .12 .13 .08 .22	10 14 11 41 16	ND ND ND ND ND	ND ND ND ND ND	ND ND ND NO ND	4 5 5 7	29 39 19 38 44	ND ND ND ND ND	ND ND ND ND ND	79 54 58 261 217	
CL 477 CL 476 CL 479 CL 480 CL 481	.1 .1 .1 .2 .2	1.87 3.62 2.26 1.27 1.64	15 129 35 45 19	ND ND ND ND	80 334 155 101 120	ND ND ND ND	.27 .31 .35 .42 .72	.5 3.1 2.9 1.1 .7	10 115 43 13 16	29 29 24 24 24 29	28 213 52 22 90	4.19 11.26 6.59 2.61 3.14	.20 .18 .20 .21 .23	.37 .68 .51 .35 .67	351 1425 1161 569 535	1 3 1 1 2	.01 .01 .01 .01 .01	5 28 11 11 23	.25 .10 .27 .11 .12	13 10 16 12 11	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	5 for 4 4 50	17 26 29 31 57	ND ND ND ND	NC NC ND ND ND	191 409 567 176 49	
CL 482 CL 483 CL 484 CL 465 CL 485	.2 .1 .2 .2 .2	1.66 1.59 1.54 2.31 1.28	20 17 14 25 13	nd Nd Nd Nđ Nđ	132 45 80 125 65	ND ND ND ND ND	.85 .34 .44 .56 .46	.6 .6 .7 .8 .4	17 9 12 20 11	27 28 25 45 33	103 56 35 126 38	3.16 3.04 3.11 4.38 3.05	. 24 . 20 . 22 . 22 . 21	.72 .37 .42 .63 .48	565 194 324 848 386	1 1 2 1	.01 .01 .01 .01 .01	22 17 16 29 17	.13 .18 .14 .04 .03	10 9 8 11 8	ND ND ND ND	ND ND ND ND	ND ND ND ND	5 4 5 5 4	63 29 37 46 38	ND ND ND ND ND	NO ND ND ND	57 30 69 71 43	
CL 487 CL 488 CL 489 CL 499 CL 491	.1 .2 .1 .1	1.68 1.62 .88 1.33 2.50	18 20 8 20 21	ND ND ND ND	108 94 105 78 120	ND ND ND ND ND	.47 .51 1.97 .51 .29	.7 1.1 .6 .9 .7	13 14 7 12 15	29 39 9 28 28	68 85 74 43 38	2.90 3.57 1.25 3.01 3.91	.22 .22 .24 .22 .20	.55 .71 .32 .47 .35	557 561 521 480 766	2221	.01 .01 .01 .01 .01	26 27 13 17 5	.06 .04 .13 .09 .42	9 12 7 10 7	ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	4 4 5 3 5	36 40 79 33 22	NG ND ND ND ND	ND ND ND ND ND	55 79 51 .76 195	
CL 492 CL 493	.1 .2	2.69 1.90	17 11	ND ND	153 146	ND ND	.32 .36	.9 1.1	14 15	23 28	90 83	4,45 3,34	.20 .21	.54 .55	437 381	2 1	.01 .01	31 8	.28 .09	9 12	ND ND	ND ND	ND ND	65	26 41	ND ND	ND ND	311 255	
SETECTION LETTE	.1	.01	3	3	t	3	.01	.1	l	1	:	.et	.e:	. 11	:	i		:	.01		3	r,	:	:		c	5	1	

۰.

ſ

ł

£,

(

ί

-32- +

ł

£

ł

í

t

C

€

(^

C

• (

VANGEOCHEM LAB LIMITED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. VSL 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. VSL 1L6 PH: (604)251-7282 FAX: (604)254-5717 ٢

↓ ω ↓

(

ŧ

(

(

(

€

(

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 95 DEG. C FOR 90 NIMUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN.MN.FE.CA.P.CR.MG.DA.P9.AL.XA.K.N.PT AND SR. AU AND PD DETECTION IS 3 PPH. IS= INSUFFICIENT SAMPLE, NOT DETECTED, -= NOT ANALYZED

					15= 1		LIDE SP	17712, JU	F 101	DEIECH	., -•	MUT ANAL	TIED															11
COMPANY: ATTENTION PROJECT:	NATIO : C C	N RIY Ampbe	VER R ELL	ES				REPOR JOB#1 INVO	RT#: : 889 ICE#:	880 0530 : 89	530 0530	PA NA			DAT DAT COP	E RE E CA Y SE	ECEIN DMPLE ENT T	ÆD: ETED: O:	8870 887	6/03 06/10	D				ANAL	YST_	h	642
																						PN	SE 10	F 1	•			
SAMPLE NAME	AG PPN	AL I	AS PPM	AU PPH	BA PPH	BI PPM	CA I	CD PPH	CO PPH	CR PPH	CU PPH	FE 1	ĸ	MG I	nn PPH	NO PPH	NA L	NI PPH	р :	28 221	PD PPH	PT PPM	SB PPM	SN PPN	SR PPH	U PP N	u PPM	ZN PPN
C 1001 C 1002 C 1003	.€ .2 .1	1.02 1.68 2.62	22 20 108	ND ND ND	36 53 53	ND ND ND	.44 1.23 .61	1.Ī .8 2.1	28 19 13	44 41 33	694 94 21	4,95 4,41 9,91	.08 .06 .03	1.39 .81 1.86	87 268 1461	1 3 1	.01 .01 .01	6 6 1	.11 .15 .13	7 8 44	ND ND ND	ND ND ND	ND ND ND	8 7 7	23 19 18	ND ND ND	ND ND ND	8 72 255
C 1004	.1	2.75	32	ND	43	ND	3.27	1.1	34	44	84	4.94	.07	2.72	2284	2	.01	15	. 13	9	ND	ND	ND	6	62	ND	ND	91
CL 1005 CL 1006 CL 1006 CL 1007 CL 1008 CL 1009	.1 .1 .1 .1	1.27 1.61 1.98 2.33 3.29	10 20 25 77 86	ND ND ND ND ND	88 69 79 73 68	KD KD KD KD	1.23 3.57 1.57 1.50 5.44	.8 3.2 4.1 .3 1.2	14 14 17 21 32	31 55 43 39 115	177 129 149 52 72	4,39 2,31 3,59 5,05 4,87	.07 .08 .08 .08 .08	.56 .89 1.29 1.56 3.12	512 1659 1643 1279 2399	\$ 2 3 2	.01 .01 .01 .01	5 9 6 1 59	.08 .10 .10 .25 .08	15 24 279 13 20	20 20 20 20 20 20	ND ND ND ND ND	XD ND ND ND ND	22337	24 46 20 23 76	ND ND ND ND ND	HD ND ND ND	54 793 945 74 98
CL 1010 CL 1011 CL 1012 CL 1012 CL 1013 CL 1014	.1 .3 .1 .8 .1	2.43 2.93 5.27 2.83 3.17	38 21 30 28 22	ND ND ND ND ND	64 92 17 31 22	7 ND ND ND 3	1.38 2.59 5.90 2.12 3.35	1.2 1.1 .5 21.2 .8	33 23 25 16 15	141 30 81 65 40	79 199 139 1136 88	2.29 4.40 2.86 4.45 2.70	.06 .08 .06 .07 .07	4.29 .81 .48 1.93 .80	542 339 328 2268 415	2 4 5 1 3	.01 .01 .01 .01 .01	183 13 47 26 45	.97 .29 .15 .12 .17	10 12 10 13 9	ND ND ND ND	ND ND ND ND ND	XD XD XD XD XD	69766	19 27 19 20 21	ND ND ND ND	XD XD ND ND	213 60 25 7619 153
CL 1015 CL 1016 CL 1017 CL 1018 CL 1018 CL 1019	.1 .1 .1 .1	.75 .79 .56 .76 2.25	32 18 23 33 38	ND ND ND ND	65 110 57 46 77	ND ND ND ND ND	.51 .30 3.45 1.12 .48	.6 .5 .5 1.5	9 5 5 5 25	18 20 33 24 183	28 21 19 26 497	3.67 3.27 3.20 4.80 11.14	.06 .06 .08 .07 .04	.25 .24 .17 .25 2.00	665 463 924 916 312	2 2 3 3 80	.01 .01 .01 .01	5 3 1 3 64	.13 .12 .11 .11	20 17 19 23 14	XO XD XD XD XD	ND XD XO ND NB	KD KD KD ND	1 1 1 7	13 12 49 18 48	90 08 08 90 00	ND ND ND ND ND	194 81 71 67 21
DETECTION LINIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	. 01	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	1

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph. D. Geologist

Report for: Colin Campbell,

P.O. BOX 39 8887 NASH STREET FORT LANGLEY, B.C. VOX 1JO

PHONE (604) 888-1323 Invoice 7107 January 1988

Samples: CL-52 H.S., -59-R, -69-R, -84-R, -86, -101, -501, -502, -503, -504

Nation River Resources Ltd.,

COURTENAY, B.C., V9N 7J3

Suite 480, R.R. #4,

Summary:

The samples are from an alkalic volcanic and hypabyssal suite, ranging from alkali gabbro to trachyandesite and latite.

- porphyritic trachyandesite: phenocrysts of plagioclase and .CL-52 H.S. clinopyroxene with minor ones of hornblende, biotite, and magnetite in a groundmass of plagioclase and lesser K-feldspar with minor chlorite.
 - quartz-calcite-chalcopyrite-pyrite vein with minor CL-59 R tetrahedrite(?) replacing an altered host rock dominated by quartz with lesser sericite and minor pyrite.
- CL-69 R altered porphyritic andesite with phenocrysts of plagioclase and minor ones of biotite and hornblende in a groundmass of plagioclase-calcite-chlorite with minor pyrite; veins are of quartz-(calcite) with minor pyrite.
- ¿ CL84 R. breccia: fragments of altered andesite(?) dominated by sericite and chlorite, and of silica and quartz in a groundmass of calcite with lesser quartz and minor pyrite.
- breccia: fragments of guartz-calcite in a groundmass of VCL-86 • cryptocrystalline silica-dolomite and patches of calcite
- V CL-101. altered alkalic gabbro dominated by clinopyroxene and plagioclase with lesser K-feldspar and patches of tremolite/actinolite; cut by a replacement vein dominated by K-feldspar with patches of pyrrhotite, actinolite, and tourmaline.
- ✓ CL-5Ø1-R· porphyritic latite with phenocrysts of plagioclase and hornblende in a groundmass dominated by plagioclase and lesser K-feldspar, with patches of tremolite/actinolite and of epidote, and minor pyrrhotite.
- alkali gabbro porphyry, with phenocrysts of plagioclase and clinopyroxene, and minor sphene in a groundmass dominated by plagioclase with lesser K-feldspar and minor epidote and marcasite/pyrite.

(continued)

SAMPLE PREPARATION FOR MICROSTUDIES • PETROGRAPHIC REPORTS • SPECIAL GEOLOGY FIELD STUDIES

✓ CL-5Ø2

℃CL-5Ø3•

hypabyssal leucocratic diorite dominated by plagioclase with patches of amphibole and lesser chlorite, and replacement patches of calcite; replaced by tourmaline vein and late calcite veinlet.

└- CL-5Ø4・

breccia; fragments of chlorite-rich rock and andesite in groundmass of porphyritic latite/trachyte containing abundant replacement dolomite/calcite patches

Rock names in the alkalic volcanic and hypabyssal suite are not as well defined as in the calcalkalic suite because of the stronger degree of fractionation between phenocrysts and groundmass. For example, sample CL 52 H.S. (trachyandesite) is similar to Samples Cl-101 and CL-520 (alkali gabbro), in that they all contain clinopyroxene phenocrysts and moderately abundant groundmass K-feldspar.

Carbonates were distinguished mainly on the basis of relief, with dolomite having moderately high relief and calcite moderately low relief.

For iron sulfides, marcasite/pyrite was identified by moderate anisotropism, whereas pyrite is isotropic to weakly anisotropic.

Amphiboles were distinguished mainly by color, with tremolite/actinolite very pale green, actinolite pale to light green, and hornblende light to medium green to brown.

John & Payne

-35-

CL 52 H.S. Porphyritic Trachyandesite

The rock contains phenocrysts of clinopyroxene and plagioclase, and minor ones of biotite in a groundmass dominated by lathy to feathery plagioclase and lesser K-feldspar.

phenocrysts	
plagioclase	20-25%
clinopyroxene	15-17
hornblende	1
biotite	Ø . 5
magnetite/hematite	2-3
apatite	minor
groundmass	
plagioclase	35-4Ø
K-feldspar	10-15
chlorite	3-4
quartz	minor
epidote	minor
calcite	minor
chalcopyrite	minor
pyrite	trace

Plagioclase forms phenocrysts from $\emptyset.7-1.5$ mm in size. It is altered moderately to strongly to extremely fine to very fine grained patches of epidote.

Clinopyroxene forms anhedral to subhedral phenocrysts from $\emptyset.2-\emptyset.8$ mm in size, with a few up to 1.3 mm long.

Hornblende forms ragged to euhedral phenocrysts up to 1.5 mm in length. It is light to medium greenish brown in color. Some phenocrysts are altered moderately to very fine grained, in part pseudomorphic epidote.

Biotite forms a few equant phenocrysts averaging $\emptyset.2-\emptyset.3$ mm in size. It is altered completely to pseudomorphic chlorite, with or without moderately abundant epidote patches.

Magnetite forms equant, anhedral grains and clusters of grains averaging $\emptyset.1-\emptyset.3$ mm in size. It is altered strongly to hematite.

Apatite forms a few equant, anhedral phenocrysts averaging $\emptyset.1-\emptyset.15$ mm in size.

The groundmass is dominated by irregular lathy to feathery plagioclase and lesser interstitial K-feldspar grains averaging 0.03-0.08 mm in size. Chlorite and much less epidote occurs in interstitial, extremely fine grains and aggregates. Locally, these grade upwards in size to patches up to 0.3 mm across of chlorite, with or without epidote. In a very few patches, calcite forms anhedral grains up to 0.2 mm in size intergrown with chlorite and epidote.

Quartz forms a patch 0.4 mm long at the end of one plagioclase phenocryst; it consists of a few grains from 0.08-0.2 mm in size.

Chalcopyrite forms a few anhedral grains up to 0.03 mm in size in the groundmass, and a few patches up to 0.13 mm in size in phenocrysts of clinopyroxene.

Pyrite forms a very few subhedral grains up to 0.03 mm in size; some grains are replaced partly by hematite. CL-59 R

Quartz-Calcite-Chalcopyrite-Pyrite Vein replacing Quartz-Sericite Altered Host Rock

The rock contains relic patches of very fine to extremely fine grained quartz, quartz-sericite, and sericite-(limonite) enclosed in fine to medium grained quartz, with patches of coarse grained calcite, and disseminated patches of sulfides, dominated by chalcopyrite and lesser pyrite.

host rock		vein	
quartz	15-20%	quartz	45-50%
sericite	· 4- 5	calcite	15 - 2Ø
pyrite	Ø.3	chalcopyrite	1- 2
biotite	minor	pyrite	Ø.5
apatite	trace	<pre>tetrahedrite(?)</pre>	minor
Ti-oxide	trace	sphalerite	trace

The patches of host rock show a variety of textures. Some consists entirely of very fine grained quartz in random to slightly oriented textures. Others consist of irregular aggregates dominated by quartz with minor to locally moderately abundant interstitial patches of sericite. In some, sericite is concentrated in discrete patches, a few of which show subhedral outlines, suggesting that they represent original plagioclase phenocrysts. Some patches are dominated by sericite with minor limonite; in some of these sericite has a foliated texture, suggesting that it represents a metasedimentary rock. The largest of these contains disseminated pyrite and is cut by a vein up to 0.6 mm wide in which pyrite forms a dense aggregate 0.4 mm wide bordered by a band of quartz 0.2 mm wide. Quartz grains are oriented perpendicular to the vein walls.

Pyrite occurs in some patches as clusters of subhedral to euhedral cubic grains from $\emptyset.\emptyset5-\emptyset.2$ mm in size. Associated with some pyrite patches are feathery to slightly radiating clusters of pale to light greenish brown biotite averaging $\emptyset.\emptyset2-\emptyset.\emptyset3$ mm in grain size.

Apatite and Ti-oxide form a very few anhedral grains up to $\emptyset.03$ mm in size.

Vein quartz commonly is subhedral in outline, with grains averaging 0.2-1 mm in size. In places subhedral to euhedral grains of quartz are intergrown with the altered host rock.

Calcite is concentrated in one main zone as anhedral grains up to a few mm across. It also occurs adjacent to this zone as smaller grains (0.1-0.7 mm) intergrown with quartz.

Chalcopyrite and pyrite occur in clusters up to 1.7 mm in size. Some are dominated by chalcopyrite with scattered anhedral pyrite grains; others contain euhedral pyrite cubes surrounded by chalcopyrite. Pyrite is slightly anisotropic. Near calcite, patches of each sulfide commonly are rimmed by thin halos of secondary hematite, and locally pyrite is replaced along veinlets by hematite.

One sulfide patch contains a few interstitial grains up to 0.03 mm across of tetrahedrite(?) intergrown with chalcopyrite and locally with secondary covellite.

Sphalerite forms a few patches up to Ø.1 mm in size interstitial to subhedral quartz grains. Sphalerite contains abundant exsolution blebs of chalcopyrite averaging Ø.005 mm in size.

In the second section (examined only under reflected light), two sulfide patches contain several subhedral to euhedral grains of arsenopyrite up to 0.2 mm in length. In one of these patches, arsenopyrite is altered to secondary minerals, including abundant covellite. Associated with chalcopyrite in one of these patches is a grain up to 0.35 mm across of tetrahedrite(?) -38-

The rock contains phenocrysts of plagioclase and much less biotite and hornblende in a groundmass dominated by plagioclase, calcite, and chlorite.

phenocrysts		veins	
plagioclase	25-30%	quartz	5-78
biotite	2-3	calcite	1- 2
hornblende 👘 🖉	1-2	pyrite	Ø.3
apatite	trace	chlorite	minor
groundmass	•		
plagioclase	25-3Ø		
calcite	15-20		
chlorite	10-12		
pyrite	1-2		

Plagioclase forms subhedral to euhedral prismatic phenocrysts averaging $\emptyset.7-1.5$ mm in length. It is altered completely to extremely fine grained sericite and locally minor chlorite.

Biotite forms mainly equant phenocrysts averaging $\emptyset.2-\emptyset.3$ mm in size. It is altered completely to pseudomorphic chlorite and abundant Ti-oxide needles.

Hornblende forms a few anhedral to subhedral phenocrysts up to 1 mm across, and numerous ones averaging 0.1-0.2 mm across. The larger ones are replaced completely by intimate intergrowths of very fine grained calcite and chlorite. The smaller ones are replaced by chlorite with Ti-oxide concentrated in an irregular rim around the border of the grain.

Apatite forms a few stubby, subhedral prismatic grains up to $\emptyset.1$ mm long.

The groundmass consists of extremely fine grained plagioclase and much less chlorite, with irregular patches of calcite averaging $\emptyset.1-\emptyset.3$ mm in size. Groundmass plagioclase is altered moderately to sericite. Pyrite forms disseminated grains and clusters of grains averaging $\emptyset.02-\emptyset.1$ mm in size.

Most veins are in a subparallel set, and are up to 1 mm wide. They are dominated by very fine to locally fine grained quartz, with scattered grains of calcite and of pyrite, and with minor irregular patches of chlorite. In the centerlines of several veins are concentrations of extremely fine grained quartz and sericite. Calcite and pyrite grains are up to 0.6 mm in size. Pyrite commonly is subhedral to euhedral in outline. A few veinlets are dominated by very fine to fine grained calcite, with or without scattered fine grains of pyrite. CL-84 R

Breccia: Altered Andesite(?) with replacement by Calcite-Quartz-(Pyrite); veins of Calcite-Pyrite

The rock contains angular fragments averaging as few mm across and locally up to 2 cm long (in hand sample). Much of the rock is strongly altered, such that the original rock type is uncertain. Several patches are dominated by extremely fine grained silica. A few are dominated by very fine grained replacement quartz. Elsewhere, the fragments are dominated by extremely fine grained sericite-chlorite with coarser grained flakes and aggregates of muscovite/Ti-oxide and of chlorite, possibly after biotite. The fragments are enclosed in and partly replaced by calcite, lesser quartz, minor pyrite and much less chalcopyrite and sphalerite.

<pre>fragments(?)</pre>	
silica-rich	4-58
quartz-rich	1-2
andesite(?)	
sericite	12-15
chlorite	7-8
muscovite-(Ti-oxide)	2-3
rutile	minor
breccia groundmass and	réplacement
calcite	50-55
quartz	12-15
pyrite	2-3
Ti-oxide	minor
chalcopyrite	trace
sphalerite	trace

The rock contains angular to irregular patches up to 1.5 mm in size dominated by extremely fine grained ($\emptyset.\emptyset \partial 2 - \emptyset.\emptyset \partial 3$ mm) silica with scattered coarser grains ($\emptyset.\emptyset 2 - \emptyset.1$ mm) of guartz and disseminated replacement patches of subhedral/euhedral calcite/dolomite and of anhedral pyrite averaging $\emptyset.\emptyset 5 - \emptyset.\emptyset 7$ mm in size.

One patch up to 2 mm across is dominated by prismatic quartz grains up to 0.1 mm in size, with interstitial, finer grained quartz and minor disseminated calcite and pyrite.

The altered andesite(?) consists of intergrowths of extremely fine grained sericite and chlorite, with coarser patches (averaging $\emptyset.1-\emptyset.2$ mm in size of ragged muscovite-(Ti-oxide) flakes (possibly secondary after biotite), and patches of chlorite flakes, generally without Ti-oxide, up to $\emptyset.2$ mm across. Rutile forms scattered grains and clusters of grains from $\emptyset.\emptyset5-\emptyset.15$ mm in size.

Much of the breccia matrix is dominated by anhedral aggregates of calcite grains averaging \emptyset .1- \emptyset .3 mm in grain size.

Quartz forms anhedral grains from $\emptyset.1-\emptyset.3$ mm in size intergrown with calcite and to a lesser extent as a partial replacement of the altered andesite fragments.

Pyrite forms disseminated anhedral grains averaging 0.03-0.1 mm in size, with a few medium and coarse grains up to 1.5 mm across. They commonly are intergrown slightly to moderately along their borders with calcite and silicates. One grain contains a subrounded inclusion of pyrrhotite 0.015 mm across.

Sphalerite forms a very few patches up to 0.4 mm across, intergrown very intimately with calcite. Sphalerite contains moderately abundant exsolution blebs of chalcopyrite averaging 0.002-0.003 mm in size.

Chalcopyrite forms disseminated patches up to 0.05 mm in size.

CL-86

Breccia: Fragments of Replacement Quartz-Calcite in a Groundmass of Cryptocrystalline Silica-Dolomite and Patches of Calcite.

The rock contains angular fragments up to a few cm in size of strongly replaced rock dominated by quartz with lesser chlorite, and patches of calcite and pyrite. These are enclosed in a groundmass, partly dominated by cryptocrystalline silica with disseminated dolomite, and partly by fine to coarse grained calcite.

fragments		(percentages for thin section;
quartz .	17-20	fragments more abundant in
chlorite	4-5	hand sample)
dolomite/calcite	3-4	
pyrite	Ø.3	
groundmass		
a) silica	35-40	
dolomite	15-17 ⁻	
pyrite	minor	
chalcopyrite	trace	
b) calcite	12-15	
chlorite	Ø.7	
pyrite	Ø.2	
veinlets		
dolomite/calcite	Ø.2	

The texture of the fragments is variable. Quartz forms aggregates of two main types. The first is dominated by prismatic grains up to Ø.1 mm long intergrown with extremely fine grained anhedral quartz and chlorite. This grades into the second, which is dominated by equant, anhedral quartz grains averaging Ø.05-Ø.15 mm in size. Chlorite forms extremely fine grained patches up to 1 mm in length; some of these contain dusty concentrations of Ti-oxide. Some fragments consist of intergrowths of extremely fine grained patches of chlorite and very fine to fine grained quartz. One fragment contains a patch of extremely fine grained sericite intergrown coarsely with very fine to fine grained quartz.

Dolomite/calcite forms patches up to $\emptyset.8$ mm in size of anhedral grains averaging $\emptyset.1-\emptyset.2$ mm in size. In some fragments it is almost as abundant as guartz.

Pyrite forms disseminated, subhedral to euhedral grains and aggregates ranging up to Ø.5 mm in size. Borders of a few grains are altered to hematite.

The main groundmass consists of cryptocrystalline silica with minor very fine grained quartz, and moderately abundant to very abundant disseminated grains and patches of dolomite averaging $\emptyset. 05- \emptyset.2$ mm in size. Pyrite forms disseminated subhedral to euhedral grains averaging $\emptyset. 02- \emptyset. 07$ mm in size. Chalcopyrite forms a few anhedral grains up to $\emptyset. 02$ mm in size.

The groundmass contains patches up to a few cm across (in hand sample) of anhedral calcite grains mainly averaging 0.2-0.5 mm in grain size, and locally averaging 0.03-0.05 mm in grain size. Chlorite forms a few irregular patches up to 0.5 mm across of extremely fine grain size. Pyrite forms disseminated subhedral to euhedral grains up to 0.2 mm across.

The rock is cut by a few veinlets up to Ø.1 mm in width of dolomite/calcite.

Along a late fracture pyrite is altered to hematite, with hematite concentrated in narrow fractures parallel to the main fracture zone. <u>CL-101</u> Altered Alkalic Gabbro cut by Vein of K-feldspar-(Pyrrhotite-Actinolite-Tourmaline-Quartz)

The rock is a medium grained alkalic gabbro dominated by clinopyroxene and lesser plagioclase, with interstitial K-feldspar, and minor biotite, sphene, chlorite, and apatite. Secondary replacement patches are dominated by actinolite and pyrrhotite. The rock is cut by a vein dominated by K-feldspar with patches of pyrrhotite and disseminated grains and clusters of tourmaline and of actinolite.

clinopyroxene	35-408	vein	
plagioclase	30-35	K-feldspar	5- 7%
K-feldspar	10-12	pyrrhotite	Ø.7
sphene	2	actinolite	Ø.7
biotite	Ø.5	tourmaline	Ø.1
apatite	Ø.3	chalcopyrite	trace
chlorite	1		
tremolite/actinol	ite 3-4		
pyrrhotite	Ø.3		
pyrite	trace		

Clinopyroxene forms anhedral to euhedral, stubby prismatic grains from $\emptyset.5-1.5$ mm in size. Many show concentric zones of finely oscillating composition. A few show simple twins. A few are altered to or overgrown by secondary patches of pale green actinolite.

Interstitial to clinopyroxene are intergrowths of subhedral prismatic plagioclase grains averaging 0.2-0.5 mm in size. They are altered moderately to strongly to extremely fine grained sericite.

Interstitial to plagioclase are anhedral K-feldspar grains averaging \emptyset .3-1 mm in size.

Sphene forms anhedral patches from Ø.1-Ø.5 mm in size. It is altered completely to Ti-oxide.

Biotite forms scattered ragged flakes up to 0.5 mm long. It is pleochroic from pale to medium reddish brown. Grains commonly are partly replaced by pseudomorphic chlorite and/or sericite/muscovite, locally with minor lenses of calcite parallel to cleavage.

Apatite forms acicular grains up to 0.7 mm in length.

Chlorite forms interstitial patches up to 0.5 mm in size.

Actinolite forms interstitial patches up to 1.5 mm in size of pale green to yellowish green prismatic to fibrous grains ranging from extremely fine to fine grained. Associated with some patches of actinolite are irregular interstitial patches of very fine grained pyrrhotite up to 0.3 mm across. Chalcopyrite forms a few anhedral grains up to 0.03 mm in size associated with pyrrhotite. Some actinolite patches contain minor to moderately abundant extremely fine grained chlorite.

Pyrite forms disseminated, subhedral to anhedral grains averaging $\emptyset.1-\emptyset.15$ mm in size.

The rock is cut by a vein up to 2.5 mm wide of probable replacement origin. Borders with the rock are diffuse. The vein is dominated by fine to medium grained K-feldspar, with patches of pyrrhotite up to 1 mm across and grains and clusters of actinolite and of tourmaline up to 0.5 mm in size. Pyrrhotite is altered partly to secondary Fe-sulfides and oxides. Tourmaline is zoned slightly, and ranges from pale to medium green and blue. It commonly is euhedral. Quartz occurs in a few patches up to 1.7 mm across as very fine grains intergrown very irregularly with pyrrhotite, tourmaline, and along borders of patches with actinolite and K-feldspar. Chalcopyrite occurs mainly with pyrrhotite as anhedral grains up to 0.1 mm in size.

<u>CL-5Ø1-R</u> Porphyritic Latite

The rock contains phenocrysts of plagioclase and lesser ones of hornblende and apatite. These are set in an extremely fine grained groundmass dominated by plagioclase and lesser K-feldspar.

phenocrysts	
plagioclase	20-258
hornblende	8-1Ø
apatite	Ø.2
groundmass	
plagioclase	<u>5</u> Ø-55
K-feldspar	15-17
tremolite/actinolite	4-5
epidote	1-2
quartz	Ø.2
ilmenite	minor
sphene	minor
chlorite	minor
pyrrhotite	Ø.2
pyrite	trace

Plagioclase forms subhedral to euhedral prismatic phenocrysts from $\emptyset.7-1.5$ mm in length. It is altered slightly to disseminated, extremely fine grained sericite and epidote.

Hornblende forms subhedral to euhedral prismatic phenocrysts averaging Ø.7-1.2 mm in length. It is altered completely to tremolite/actinolite.

Apatite forms euhedral, stubby prismatic phenocrysts from $\emptyset.1-\emptyset.2$ mm in average size. Many contain tiny, elongate inclusions parallel to the c-axis.

The groundmass is dominated by anhedral to subhedral plagioclase grains averaging $\emptyset.03-\emptyset.05$ mm in size, with interstitial plagioclase and K-feldspar from $\emptyset.01-\emptyset.03$ mm in size.

Tremolite/actinolite forms clusters up to 1.5 mm in size of fibrous to prismatic aggregates.

Epidote forms scattered patches up to 1.2 mm in size of anhedral, fine grains, and also occurs as disseminated grains 0.005-0.01 mm in size throughout the groundmass.

Quartz forms discontinuous lenses up to $\emptyset.8 \text{ mm}$ long, and one interstitial patch up to $\emptyset.7 \text{ mm}$ across; the latter contains a cluster of acicular to prismatic tremolite crystals up to $\emptyset.15 \text{ mm}$ long.

Chlorite forms scattered interstitial patches up to Ø.2 mm in size of extremely fine, pale green grains.

Ilmenite forms anhedral grains averaging 0.05-0.07 mm in size; they are surrounded by halos up to 0.2 mm across of sphene.

Pyrrhotite forms anhedral patches up to 0.5 mm in size. A few patches are altered strongly to secondary Fe-sulfides, and many others are altered moderately to completely to deep red-brown hematite.

Pyrite forms a few clusters of anhedral to subhedral grains up to 0.3 mm in size. It is altered moderately along grain borders and fractures to hematite.

The rock contains phenocrysts and clusters of phenocrysts of clinopyroxene-(sphene[?]) and phenocrysts of plagioclase in an very fine grained groundmass dominated by plagioclase and K-feldspar. Marcasite/pyrite forms disseminated cubic grains.

phenocrysts	
plagioclase	25-308
clinopyroxene	12-15
sphene(?)	1-2
apatite .	Ø.1
groundmass	
plagioclase	40-45
K-feldspar	8-1Ø
epidote	2-3
marcasite/pyrite	1-2
sphene	minor
calcite	minor
veinlets	
calcite	minor

Plagioclase forms subhedral phenocrysts averaging 1-2.5 mm in size. They are moderately to strongly altered to extremely fine grained sericite and epidote, with epidote somewhat concentrated towards the rims of grains and sericite towards the cores. Calcite forms irregular patches and veinlets in some phenocrysts.

Clinopyroxene forms phenocrysts and clusters of phenocrysts up to 2 mm in grain size. Some show simple twins. Alteration is variable, with some grains relatively fresh and others altered moderately to calcite, with or without minor tremolite. A few contain patches up to 0.4 mm across of extremely fine grained chlorite.

Commonly associated with clusters of clinopyroxene phenocrysts are subrounded, interstitial patches up to 0.3 mm in size consisting of extremely fine grained intergrowths of ilmenite-(Ti-oxide) and chlorite or calcite; these may be secondary after sphene.

Apatite forms subhedral grains and clusters of grains averaging $\emptyset.1-\emptyset.2$ mm in size; some are included in clinopyroxene phenocrysts, and some are associated with patches of clinopyroxene and/or calcite.

The groundmass is dominated by anhedral to prismatic grains of plagioclase from Ø.05-Ø.13 mm in average size. Interstitial to these are anhedral K-feldspar grains averaging Ø.03-Ø.1 mm in size, with some skeletal grains up to Ø.5 mm in size. Epidote forms disseminated patches averaging Ø.05-Ø.1 mm in size. Groundmass feldspars are altered slightly to moderately to dusty to extremely fine grained sericite. Calcite forms disseminated irregular patches up to Ø.3 mm in size.

Marcasite/pyrite forms irregular to euhedral cubic grains and clusters of grains averaging 0.5-0.7 mm in size. They commonly contain abundant inclusions of groundmass feldspars. Anisotropism is moderate. Borders of a few grains are altered slightly hematite.

Ilmenite forms disseminated, irregular patches up to Ø.35 mm in size; these are altered partly to extremely fine grained Ti-oxide.

The rock is cut by veinlets of calcite up to 0.02 mm in width.

CL-503 Hypabyssal Leucocratic Diorite cut by Tourmaline Vein

The rock is a fine to medium grained, hypabyssal diorite dominated by plagioclase, with scattered patches of amphibole/chlorite, and minor interstitial quartz. Calcite forms abundant replacement patches. The rock is cut and replaced by a vein up to 2.5 mm wide of tourmaline-(calcite), and cut by a late veinlet of calcite.

plagioclase	60-65%
calcite	12-15
amphibole	8-1Ø
chlorite	3-4
quartz	Ø.7
Ti-oxide	Ø.3
pyrite	Ø.2
vein	
tourmaline	7-8
calcite	Ø.2
late veinlet	
calcite	Ø.2

Plagioclase forms slightly to moderately interlocking grains averaging Ø.3-Ø.7 mm in size, with a few over 1 mm long. Alteration is commonly slight to moderate to extremely fine grained sericite. Locally, in patches up to 1 mm across, plagioclase is altered completely to sericite. Calcite forms irregular replacement patches; the largest are skeletal, porphyroblastic grains up to a few mm across.

Several patches up to a few mm across consist of slightly radiating aggregates dominated by sericite, with lesser lenses of chlorite and of epidote defining the radiating texture. A few patches also contain minor calcite. These patches may be secondary after amphibole.

Chlorite forms interstitial patches up to 1 mm in size of extremely fine, pale green flakes.

Quartz forms interstitial patches up to $\emptyset.7$ mm in size of very fine to fine grains.

Ti-oxide forms scattered disseminated grains and clusters of grains averaging Ø.Ø2-Ø.Ø5 mm in size, with a few up to Ø.15 mm across.

Pyrite forms disseminated equant, subhedral grains averaging $\emptyset.1-\emptyset.2$ mm in size, and clusters of similar grains up to $\emptyset.5$ mm across. It is altered strongly to hematite.

The rock is replaced by a vein dominated by tourmaline with minor interstitial calcite. Tourmaline forms anhedral aggregates of equant grains and slightly radiating aggregates of prismatic grains up to 1 mm in length. In zoned, coarser grains, pleochroism is from neutral to light green to bluish green in cores of grains and from neutral to medium green in rims. Smaller grains commonly are unzoned and similar in composition to rims of larger ones. Calcite forms interstitial patches up to Ø.15 mm in size and seams between tourmaline grains. The vein also contains relic patches of host-rock plagioclase.

The rock is cut by a late veinlet up to Ø.1 mm wide of very fine grained calcite.

Breccia: Fragments of Chlorite-rich Rock and Andesite in Groundmass of Porphyritic Latite/Trachyte

The rock contains abundant fragments up to 2 cm in size of chlorite-rich rock and andesite in a matrix of porphyritic latite/trachyte, containing plagioclase phenocrysts in a groundmass dominated by K-feldspar and plagioclase, with abundant secondary dolomite/calcite patches.

-45-

gments			
mafic-rich	(20-25%	of	section)
chlorite			60-65%
plagioclas	е		30-35
quartz			3-4
calcite			1- 2
Ti-oxide			Ø.3
pyrite			Ø . 5
	gments mafic-rich chlorite plagioclas quartz calcite Ti-oxide pyrite	gments mafic-rich (20-25% chlorite plagioclase quartz calcite Ti-oxide pyrite	gments mafic-rich (20-25% of chlorite plagioclase quartz calcite Ti-oxide pyrite

b)	andesite	(12-15%	of	section)
	plagiocla	ise		75-80%
	chlorite			15-20
	Ti-oxide			1- 2
	pyrite			minor

Chlorite-rich fragments are extremely fine grained, and dominated by equant flakes of chlorite intergrown with lesser plagioclase of similar grain size. Patches up to 0.8 mm in size consist of unoriented aggregates of slightly coarser grained chlorite with no plagioclase. Quartz forms patches up to 0.7 mm in size of very fine to locally fine grained aggregates, in part associated with very fine grained chlorite. Calcite forms scattered replacement patches averaging less than 0.1 mm in size. Ti-oxide forms disseminated patches up to 0.1 mm in size of extremely fine grains. Pyrite forms disseminated, equant grains up to 0.2 mm in size; borders are altered to hematite.

Andesite fragments contain plagioclase phenocrysts up to 1 mm in size in a groundmass of slightly to moderately finer grained plagioclase and lesser chlorite. One fragment contains a euhedral, prismatic phenocryst of plagioclase 3 mm long, which is altered completely to sericite. Other plagioclase grains are altered slightly to moderately to sericite and/or chlorite. Ti-oxide forms clusters up to 0.15 mm across of extremely fine grains intergrown with silicates. Pyrite occurs as in the mafic-rich fragments.

A few fragments of non-porphyritic andesite, are dominated by fine grained, slightly interlocking plagioclase, with minor interstitial patches of guartz and of chlorite.

(continued)

matrix	(60-65%	of	section)
phenocrysts			
plagioclase		7-	8
groundmass			
K-feldspar		30-3	35
plagioclase	-	L7-2	20
dolomite/calcit	e 2	25-3	3 Ø
quartz		4 -	5
sericite		2-	3
chlorite	•	1-	2
Ti-oxide		Ø	.3
pyrite		Ø	. 2
vein			
dolomite/calcite			1

In the matrix, plagioclase forms subhedral to anhedral phenocrysts averaging Ø.3-Ø.7 mm in size. These are set in an extremely to very fine grained groundmass dominated by K-feldspar and plagioclase. Dolomite/calcite forms skeletal replacement porphyroblasts up to 2 mm across. Sericite forms extremely fine grained interstitial patches, in part intergrown with calcite, and possibly containing some chlorite. Quartz forms interstitial grains and patches averaging Ø.Ø3-Ø.1 mm in grain size. Ti-oxide forms disseminated, extremely fine grained patches up to Ø.Ø5 mm across. Pyrite occurs as in the fragments.

The rock is cut by a few wispy veinlets up to 0.03 mm wide of dolomite/calcite.

L			· · · · · · · · · · · · · · · · · · ·					
		COLIN C	AMPBELL EXP	PLORATION - ROCK SAMPLES				
	.	_						
COLLECT	OR C. Campbell	P	ROJECT	AREA				
- DATE		IN	12	AIR PHOTO				<i>.</i>
Sample No.	LOCATION	Түре	WIDTH	SAMPLE DESCRIPTION	Au	Cu	Ag	As
CLII-R	5+25W-2+105	GRAB		Qtz, Sph, Py vein	ŀ	1		
CL 12-R	3+70w - 1+405	11		M.q. Onderite?, oxidized + 20% Py				
C- 13	3+58W - 11	1)		Acid Porphyry, " + 150/0 Py				1
CL 14	3+46w - 11	11		Feldspar porphyry + CB + 20% Py				
CL 15	3+35~ "			M.G. andesile + CB + 150/0 Py		1		
CL 16	3+26W- 11	. t		F.G. CB rich rock + Golena				
C L 17	3+17w - 11	U U		Attered Anderite, Chlorite + CB				
CL 18	3+17w - "	11		Gouge				
C4 19	3+07w - 11	11		Altered anchite? + 20% Py	1	1		
CL 20	2+55w - 11	"		" " up to to do Sulpide	÷-			
CL 21	1+80W- 11	4		" " CB + Py + Po 25% "	<u> </u>			<u>.</u>
CL 22	30+004-50+00W	11		Q12. Veinlets in mon 20 nile.	1			
C6 23	12+16N - 25+00W	"		silicitized andesite + Py				
CL 24	2+00N - 9+15W	и	# .34	Oxidized volcanics?				
CL 25	2+00N - 9+35W	и	# .3m	11 11				
C6 26	1+35N- B+90N	ν		CB citered vole. tuff. + Ry on fractimes	1			
CL 27	0+30N - 8+00W	ى با		u u + Ep, Po + Py				
CL 28	0+105-8+40W	u		Breccia, Otz Stuk, CB+Py				
CL 29	0+255-8+22W	LI	3 M	u				
CL 30	0 +40N- 5+70W	4		Altered Vokanic	T -			
CL 31	0+28N-6+40W	и	.IM	ven material	1			
CL 32	3+105-8+15W	11		Andesile + Oty veintets				
CL 33	3+455 - B+40W	.1		Atz veinlets in CB attered anderic				
CL 34	0+30N-4+23W	11		Oto Coy Gn highly exidenced.	T	[
CL 35	1 +055 - 6+12 W	ч	3M	Brecciated, Qtz, CB, Cpy	l			
CL 36	1+055 - 6+23W	ч		Float? propylitically attered volcanics				
CL 37	· - 6+32w	11		As above, minor py + CB.				
CL 38	" 6+00W	•••	1.5M	Breccia	1			
CL 39	" 5+85W	11	1.500	i <i>u</i>				
CL 40	11 547541		1.5M	tr				

:

r

٠.

······································		COLIN C	AMPBELL EXI	PLORATION - ROCK SAMPLES	<u></u>		·····	
Collect Date	OR C. Complete August 1988	P	ROJECT <u>S</u>	AREA Churchi Labe AIR PHOTO				
Sample No.	LOCATION	Τγρε	WIDTH	SAMPLE DESCRIPTION	Αu	Cu	Ag	As
CL 45	4+305- 6+85W	Chip	24	(Battered Volcanics + 900ge]		
CL 46	4+285 - 6+85W	Chip	ZM	CB altered Volcanics				
CL 47	4+265-6+85W	Chip	ZM	CB altered Volcanies + Qty verilets + Cpy		1		
C L 48	4+245-6+85W	Chip	2 m	CB altered Voltanics				
CL 49	4+265-6+850	GRAB	1	Atz veni + Cpy				
CL 50	4+235-6+85W	GRAB		Qts stuck + Py + Cpy		<u> </u>		
CL 51	4+355-7+15W	GRAB	.1 M	QT2, Py Cpy Ven St-210° Dip 80° NE.			<u> </u>	-
CL 52R	4+305-6+600	Float		Qtz+Cpy in road cut.				
CL 53R	1+405-5+770	Grab		Qt2-CB Stuk + Py				
CL 54R	1+405 5+57W	Grah		H.S.				
CL SSR	1+405 5+23W	Grab		Porcellance, preciated + Ry minor Cpy				
CL 56 R	1+405 - 4+52W	Grab		Audesila + 30010 Ry		<u> </u>		
CL 58		Chip	IM	Atz v. and gouge. 8500 Trevel.				<u> </u>
CL 59		7	.6	Oto minor CB, Py Cou & Sph.				
CL 60		и	IM	Clay aft. & going, stidized				
CL 61		4	-6 M	" " + verggy Ouerty		ļ	L	<u> </u>
6462		11	.Cm	ч ц				
CL 63		Grab	.2 m	Otz-Cpy-Pyrein + molechite				
CL 64		chip	1.5 m	Cherty, black altered zone + verus				
66 65		Grab		Py, Coy in silicified very.				<u> </u>
CL 6L		4		Py in oxidized very instrial				
CL 68		Chip	1 m	(B, sheaved + gouge + Ry		L		<u> </u>
CL69		Trench		could be float - propylitic att.				
CL 70		Grab		High yrade Boughe.		L		
CL 71		Chip	.5m	CB very. + chlorite ateration.	ļ	ļ	ļ	ļ
CL 72		Chip	1.5m	Py, minor Goy + P65	ļ	<u> </u>	ļ	<u> </u>
< 4 73		Grab	zm	Co altered baselt?, Cpy in Quaty U'S.		ļ	<u> </u>	ļ
66 74		Chip	.5	Highly oxidized - gotticle 7156 Pyrile	ļ			_
CL 75		Grah		Attered anderile + py as blebs & furthered		I		<u> </u>
CL 76		L.		Silicifico unq 24 anderile?	1			

(

Ĺ

٢

-48-

42

.

	<u> </u>	COLIN CA	MPBELL EX	PLORATION - ROCK SAMPLES		<u> . </u>		
Collecto Date	OR C. Can phice October 187	Pr NT	0ject <u>5</u>	AREA Chuchi Lad AIR PHOTO	<u>kı</u>			
Sample No.	LOCATION	ΤΥΡΕ	Width	SAMPLE DESCRIPTION	Αu	Cu	Ag	As
6677		Grab		Pyvile dist u's in ouderile ? .				
CL 78		4		Anderile + Otz + CB + PBS				
CL 79		4		Non-vin - Leaved martitic altered				
<6 80		4		Sulphide rich auderite speccie				
CC 81		и	····	Bueccia pune " 30% Pyule				
C (82	Rig Zom	1 mchin	12	bonched gtz, U'S + 5% Py + Cpy		<u> </u>	ļ	
CL 83	· ~	17 .	£ e	propylitized anderile + Otz + Sph + CB V'S		ļ		ļ
C - 87	V	IM	<u>(1</u>	gouge & breecie zon, Otz + CB + Hg S?				
CL 85	u	IM .		propy litiged + Sili anderile CB+ Ry + Cpy				
CL 86	<u> </u>	IM	<u>()</u>	Cherty CB rich rock			_	ļ
CL 87	٤,	IM	٤1	main gouge - wast side				
CL 88	4	staip 6rab	The	Bended Why U'S at CL82 R		L	ļ	ļ
CL 89	1,	Chip	In	garge + "tight fractions in Droicle?				ļ
6690	ti	Grab		High sulptide + Cmy + Atz U'S		<u> </u>		
CC91		chip	IM	Fractured dioric? + Py + limonite		<u> </u>		ļ
CL 92	()	er	1 m	gouge + Siliceon matace + My		ļ		ļ
C 493	ч	4	IM_	goice + minor Ptz u's + Goy+alor.		ļ	·	ļ
CC74	(.	4	Im	braccia - silicitied Stopy + con		ļ	l	ļ
C695	//	Grob		QB+ Spy + Sp + Ry		ļ		ļ
<< 96	Contral	Grab	<u>7M</u>	Tim's sulpline 20m + Tourmaline		L		L
CL 97	6	"		namow unggy gts us + Coy		ļ		
CL 98	CLII Zone	Chip	.Z M	QB V'S + HOS+ Sp + Gry + Pry		ļ		
CL 99	CL11 11	11	IM	Propylitically alt. w.w+ vew				ļ
C - 100 P	U		IM	11 " waerock.				
CL 1005	24w - 2+005	Chip	2m	4 4 + Ay + Cpy.		<u> </u>	┣	
CL1006		Grab		Q12- Coy+by VIS		 	╏───┤	
CL1007		<u> </u>	1	etz-uis			├ ───┤	
200122		Chip	in	F. g. altired votcomes + Otz + My		<u> </u>		
CL1009	·	Grap		Chloritic vote. + 93+CB+ My				
CK1010		11		Coarse propylile + epidole + My		1		1

\$

(______. .

-49-

Ĺ

,

전화법 가장 가슴다. 그는 것은 것은 것은 것은 것은 것은 것이 좋아. 것은 것이 같다.				· · · · · · · · · · · · · · · · · · ·	こと ふうさう こうがんし しんごうかがく しかいき ひめかえ とうえんどうき アンジャング 力学 アンゴム しちかいとうし
Ľ		۳	L	Ŵ	Ш
50+00	5	2 8	8 + 5 8 1	58+00	8 * * *
•					
•					
IVRITIC LATITE					
0 CL:79 NCL:77 LD. Post 4E		11			
5					
CL 78		ĺ.			
			GEOLOG ASSESS	ICAL BRA MENTRE	NCH
			GEOLOG ASSESS	ICAL BRA MENTRE	NCH
		PESOI	I GEOLOG ASSESS IRCES	ICALBRA MENTRES MENTRES	NCH NCH MT
ION RIV SKC	VER R DOK (ROUI	I GEOLOG ASSESS JRCES	ICALBRA MENTREP MENTREP	NCH NCH NCH
ION RIV SKC	VER В ОСТ АКОМАІ 10-20 ррб	SESOI BESOI	I GEOLOG ASSESS JRCES	ICALBRA MENTREF MENTREF LICOL	NCH ND
ION RIN SKC	VER В ОСД АЛОМАЦ Ю-20 ррб >20-40 ррб	JES:	I GEOLOG ASSESS JRCES JRCES	ICALBRA MENTREP DOD ICALBRA MENTREP DOD ICID.	Inch flaceous to flaceous to flaceous to flaceous to flaceous to flaceous to flaceous to
ION RIY SKC	VER R OOLD ANOMAL 0-20 ppb >20 - 40 ppb >20 - 40 ppb >40 - 80 ppb	SESOI SROUT	I GEOLOG ASSESS JRCES JRCES	ICALBRA MENTREF MENTREF JUN ICALBRA MENTREF MENTREF MENTREF MENTREF MENTREF ICALBRA IN	NCH OT SOUTHAN SOUTHAN SOUTHAN SUTTAIN
TON RIN SKC	VER R DOK C SOLD ANOMAL IO-20 ppb >20 - 40 ppb >20 - 40 ppb >40 - 80 ppb >80 - 160 ppb >80 - 160 ppb	IALIES: (C.I = IOO ppm)	I GEOLOG ASSESS JRCES JRCES	ICALBRA MENTREF MENTREF MENTREF MENTREF CONSTRUCTION LITO. LECO UNITE	NCH NCH NCH The not state ffaceous to the dikes. The fraceous to the dikes. The fraceous to the dikes. The fraceous to the dikes.
	ACCY	ILLIES: (C.I = IOO ppm)	ROCK T 1 C E O L O G A S S E S S C C C C C C C C C C C C C	ICALBRA MENTREF MENTREF CONTE ICALBRA MENTREF CONTE ICALBRA IC	NCH Solution faceous to rt and calcite. h, late dikes. TE: fresh: e, sillicified. PHYRY pyroclastics ite minor pyrite.

ASSESSMENT REPORT

4+50 N -----

20

25 metres

20

AO (n) (**) 500 [and fame SSME. ZA tana) (maat to to 1 JA D OZ 创 〇 一日

NATION RIVER RESOURCES LTD. Trench Sample Location and Number of Chip Sample across 1 metre CL84R SKOOK GROUP CHUCHI LAKE B.C. ▲ CL95R Rock Sample and Number Grab Sample G.S. RIG BRECCIA ZONE 10,2100,1568 Au(ppb),Hg(ppb),Cu(ppm) Au,Hg,Cu ROCK GEOCHEMISTRY OMINECA M.D. NTS 93N 182 Scale: 1:250 Drawn By: E.V.O Figure: 60 Date: April 18, 1988

4+75 N -----

4+50 N -----

