ARIS SUMMARY SHEET

District Geologist, Kamloops

Off Confidential: 89.09.02

ASSESSMENT REPORT 18078

MINING DIVISION: Kamloops

-PROPERTY:

Haida Gold

LOCATION:

51 31 45 LONG 120 23 00 LAT

10 5711700 681505 UTM

NTS 092P09W

CLAIM(S): OPERATOR(S):

Fort 7, Fort 9, Tun 1 Vital Pacific Res. Westerman, C.J.

AUTHOR(S): _REPORT YEAR: 1988, 98 Pages COMMODITIES

SEARCHED FOR: Gold, Copper

GEOLOGICAL

SUMMARY:

The propert is underlain by Triassic volcanic and sedimentary rocks which are hornfelsed and locally converted to magnetite-

pyrrhotite skarns and contain erratic gold values.

_WORK

DONE:

Drilling

985.3 m 10 hole(s);NQ DIAD

532 sample(s); CU, PB, ZN, AG, AS, SB SAMP

-MINFILE: 092P 010,092P 136

100 NO. 1206	RD.
restrict.	
	and the second of the second o

REMENT BUTTORY

ASSESSMENT REPORT ON THE

PHASE 1 DIAMOND DRILLING PROGRAM

ON THE

HAIDA GOLD PROPERTY

Kamloops Mining Division, B.C. NTS 92P/9W Latitude 51° 31' N Longitude 120° 24' W

for

VITAL PACIFIC RESOURCES LTD. 201 - 194 Wilson Avenue Toronto, Ontario M5M 3A7 (Operator)

and

ELECTRUM RESOURCES LTD. (Owner)

by

C.J. WESTERMAN, Ph.D., F.G.A.C.

Consulting Geologist

1010 - 470 Granville Street

Vancouver, B.C. V6C 1V5

November 15, 1988

CONTENTS

		rage
Summary		1
Property History	n, Access, Topography Definition Work Program ces	2 2 4 4 6 6
Geology		7
Mineralization	n	10
Drilling Summ	ary	12
Conclusions ar	nd Recommendations	26
	APPENDICES	
	MT ENDICES	
Appendix 1 Appendix 2 Appendix 3 Appendix 4 Appendix 5 Appendix 6	Statements of Costs Statement of Qualifications Rock Sample List Drill Hole Logs Geochemical and Assay Results Core Recoveries	
	TABLES	
Table 1 Table 2	List of Claims Drill Hole Data	4 12
	<u>FIGURES</u>	
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11	Location and Claim Map Geology Deer Lake Grid - Drill Hole Locations Deer Lake Adit Section Drill Holes 88-1 to 88-4 Section Drill Holes 88-5 Section Drill Holes 88-6 Section Drill Holes 88-7 Section Drill Holes 88-8 Section Drill Holes 88-9 Section Drill Holes 88-9 Section Drill Holes 88-10	3 8 11 18 19 20 21 22 23 24 25

SUMMARY

Vital Pacific Resources Ltd. holds under option 164 units in 13 MGS mineral claims in the Kamloops Mining Division of British Columbia which are collectively known as the Haida Gold Property. The property is located 16 km northwest of Little Fort and lies north of Highway 24 which provides excellent access. Gold was initially discovered on the property in 1933 but extensive exploration work undertaken since that time has been largely directed to porphyry copper type targets.

Lower Jurassic limestone, siltstones and cherty andesitic tuffs have been contact metamorphosed by a pyroxene gabbro stock and associated plagioclase porphyry dike swarms. Late hornblende diorite stocks intrude this sequence with only minor retrograde effects. Past exploration has indicated the presence of seven linear gold-in-soil anomalies, four of which are at least one kilometre in length. Gold mineralization occurs in a variety of high and low sulphide garnet-diopside skarns and massive magnetite skarns. In the Deer Lake area, these skarns have returned assays of several ounces per ton gold from arsenopyrite bearing specimens and up to 6.61 g/t Au across 3.9 metres of low sulphide skarn.

In the spring of 1988, Vital Pacific Resources Ltd. undertook geophysical I.P., magnetic and VLF-EM surveys in the Deer Lake area and I.P. surveys in the Heidi Lake area of the property which are the subject of a separate report by E. Rockel. In the summer of 1988, the company completed 985.3 metres of NQ diamond drilling in 10 holes which are the subject of this report.

The geophysical survey of the Deer Lake area suggests the gold bearing skarns are lenses of limited extent. Three diamond drill holes (88-1 to 3) in the current program confirm this suggestion with regard to the original Deer Lake Adit zone. Significantly anomalous gold values over widths of 20 m, 50 m and 15 m in Holes 88-4, 5 and 8 indicate surface skarns with some depth extent which may warrant further drilling.

One hole (88-9) was drilled in the Lakeview South area of the property targeted on outcropping magnetite skarn breccias. This lithology contains no significant gold but the lowermost 80 metres of this hole is gold anomalous and includes a section of 4 metres assaying 7.12 g/t Au in low sulphide skarns. This situation has economic potential and warrants further exploration.

One drill hole (88-10) was targeted on a deep I.P. chargeability anomaly from a 1987 survey in the Heidi Lake Grid area of the property. The anomaly is caused by a 3 metre thickness of pyrrhotite-rich calcareous siltstone at 120 m depth overlain by barren plagioclase porphyritic diorite and underlain by barren hornblende diorite. No significant assay values were obtained from this hole.

The Phase 1 drill program has successfully tested several initial targets and the results are sufficiently encouraging to warrant a recommendation for further geophysical surveys and diamond drilling.

INTRODUCTION

Location, Access, Topography

The Haida Gold property is located 16 kilometers northwest of Little Fort in south-central British Columbia (Figure 1). The property is centered on latitude 51° 31'N and longitude 120° 24'W within NTS map area 92P / 9W. Provincial Highway 24, which connects Little Fort with 100 Mile House, passes east-west along the southern boundary of the property. Access from Highway 24 northwards across the property to Deer Lake is provided by the Taweel Forestry road. A network of old logging roads provides reasonably good access to most areas of the property.

The property is located in an upland plateau region with subdued topography and elevations ranging from 1,280 meters to 1,580 meters. Vegetation consists of a complex mix of mature timber and second generation regrowth following selective logging operations spaced over many years. The moderate climate should not pose any significant problems for exploration or mining operations. An electric power transmission line runs parallel to Highway 24 and Little Fort is served by the main line of the Canadian National Railroad.

Property Definition

The Haida Gold property consists of 164 units in 13 M.G.S. mineral claims located in the Kamloops Mining Division of British Columbia, NTS 92P / 9W (Figure 1).

TABLE 1					
Claim	Units	Record No.	Expiry Date Current	Pending	
NUF 1	15	2927	Sept 9, 1990	1993	
TUN 1	16	2921	Sept 8, 1990	1993	
TUN 2	20	2922	Sept 8, 1990	1995	
FORT 7	4	178	Dec 30, 1990	1995	
FORT 9	4	428	Jun 25, 1990	1996	
VIT 1	20	7062	May 29, 1989	1995	
VIT 2	20	7063	May 29, 1989	1995	
VIT 3	18	7064	May 29, 1990	1994	
VIT 4	20	7065	May 29, 1990	1993	
VIT 5	15	7066	May 29, 1990	1993	
VIT 6	10	7067	May 29, 1990	1994	
VIT 7	1	7068	May 29, 1990	1998	
VIT 8	1	7069	May 29, 1990	1994	

The claims are owned by Electrum Resources Ltd. Vital Pacific Resources Ltd. may earn an interest in the claims by way of an option agreement.

Documents filed prior to this report divide the claims for assessment purposes into two groups.

Haida New West Group: TUN 1, NUF 1, VIT 4 and 5

Haida New East Group: FORT 7, FORT 9, TUN II, VIT 1-3, VIT 6-8

This report and an accompanying geophysical report by E. Rockel of Interpretex Resources Ltd. covers work undertaken on both groups.

History

High grade gold skarns were initially discovered on ground covered by the FORT 7 claim adjacent to Deer Lake in 1933. Reports by the Minister of Mines indicate that Premier Gold Mining Co. obtained assays of several ounces per ton gold from these showings. A short adit and several small pits in this area probably date back to the mid 1930's.

During the late 1960's and early 1970's, the area of the Haida Gold property was explored for porphyry copper deposits by Anaconda, Rio Tinto and United Copper Co. Work completed at this time included wide spaced grid soil geochemistry, magnetometer VLF-EM and I.P. geophysical surveys, limited trenching and minor drilling programs. Anaconda diamond drilled six holes in 1967-68 totaling about 600 meters in the Deer Lake, Nora Lake and Laurel Lake areas, but results of this work are not available in the public record. Rio Tinto percussion drilled nine holes totalling 1,500 ft. (460 m) in 1974-75 in the Goose Lake - Laurel Lake - Rio Lake area of the property with poor results. None of these programs undertook any significant analyses for gold, and none of the holes exceeded 250 ft. (75 m) depth.

Barriere Reef Resources in 1972-73 undertook detailed grid soil geochemical, geological and EM geophysical surveys in the Heidi Lake area of the property. Reports in the public domain indicate that three short diamond drill holes were completed but no details are given. The surveys indicated a large zone of anomalous zinc, arsenic, mercury and copper geochemistry but no mention is made of gold analyses.

Meridian Resources in 1977 undertook soil geochemical and magnetometer surveys on three detailed grids at McLeod Lake, No Fish Lake and Deer Lake. Reports indicate the presence of sporadic gold-arsenic-copper anomalies in soils. Meridian percussion drilled two holes totalling 455 m within the area of the FORT 9 claim, west of Deer Lake. The first hole returned strongly anomalous copper values below 70 m but no mention is made of any gold analysis.

Tunkwa Copper Mines Ltd. in 1980 undertook grid geochemical soil, magnetometer and VLF-EM surveys over the entire area of the FORT 7, FORT 9, NUF 1, TUN 1 and TUN 2 claims. Lines spaced at 200 m were soil sampled at 25 m intervals. The surveys indicated the presence of seven linear gold-in-soil anomalies, four of which are at least one kilometer in length. The gold anomalies are partly coincident with anomalous values in arsenic and zinc. Tunkwa Copper Mines Ltd. chose not to follow-up these anomalies but instead, diamond drilled seven short holes in the vicinity of the original Deer Lake gold showings. Results of the drill program are not in the public domain.

Vital Pacific Resources optioned the property in 1987 and undertook geophysical I.P. and geochemical soil surveys and backhoe trenching in the Heidi Lake area (Westerman, 1987b; Rockel, 1987).

Current Work Program

Between July 24th and August 20th, 1988, a total of 985.3 metres of NQ diamond drilling in 10 holes was completed on the property by Iron Mountain Drilling Ltd. using a skid mounted Longyear 44 drill. All of the core was split and sampled in lengths of 2 metres or less. All samples were analyzed by Min-En Laboratories of North Vancouver, B.C. Gold was analyzed by fire assay (Atomic Absorption finish) and silver, arsenic, copper, lead, antimony and zinc were analyzed by Induction Coupled Plasma.

Geophysical work completed in 1988 on a small grid in the Deer Lake area and on the Heidi Lake grid is the subject of a separate report by E. Rockel of Interpretex Resources Ltd.

References

- Ager, C.A. & Smith, F.M. (1981) Geophysical and Geochemical Survey -Fort Tun Property, for Tunkwa Copper Mines Ltd., BCDM-A.R. 8880.
- Symonds, D.F. & Montgomery J.H. (1977) Report on the Deer Lake Copper-Gold Prospect, Kamloops M.D., B.C. on behalf of Meridian Resources Ltd., B.C.D.M. A.R. 6586.
- Rockel, E.R. (1987) Report on Induced Polarization and Resistivity Surveys on the NUF 1, TUN 1 and VIT 1 claims, for Vital Pacific Resources Ltd., company report.
- Rockel, E.R. (1988) Report on Geophysical Surveys on the Deer Lake and Haidi Grids, for Vital Pacific Resources Ltd., company report.
- Preto, V.A.G. (197)) Geology of the area between Eakin Creek and Windy Mountain. B.C.D.M. G.E.M. 1970, p. 307.
- Campbell, R.B. and Tipper, H.W. (1971) Geology of Bonaparte Lake Map Area, B.C., Geol. Surv. Canada Memoir 363.

- Westerman, C.J. (1987a) Geochemical report on Fort 9 Mineral claim, for Electrum Resources Ltd. and Vital Pacific Resources Ltd., filed for assessment credits June 1987.
- Westerman, C.J. (1987b) Geological, Geochemical and Geophysical report on the Haidi Gold Property, for Vital Pacific Resources Ltd., filed for assessment credits August 1987.
- Westerman, C.J. (1987c) The Haida Gold Property, a summary report for Vital Pacific Resources Ltd., August 30th, 1987, company report.
- The following B.C.D.M. Assessment Reports are pertinent to the area of the Haida Gold property: AR #905, 907, 910, 981, 1061, 1123, 1169, 1690, 2712, 3349, 3945, 4028, 4260, 4262, 4264, 4678, 4684, 4835, 4947, 5424, 5425, 5734, 6586.
- The mineralization within the Haida Gold property is referred to in the following B.C. government publications: M.M.A.R. 1930 p. 191, 1966 p. 143, 1967 p. 133. G.E.M. 1970 p. 312, 1971 p. 334, 1972 p. 320, 1973 p. 275, 1977 p. E179.

GEOLOGY

The Haida property is underlain by a sequence of andesitic volcanic rocks, siltstones, limestones and cherts of the late Triassic - early Jurassic Nicola group. These rocks have been intruded by a large stock of pyroxene (plagioclase) gabbro of probable middle Jurassic age in the vicinity of Porphyry Lake (Figure 2). Augite porphyry basalts are present throughout a large area north of the property. A hornblende diorite stock located southwest of Deer lake and a similar stock south of the Heidi Lake grid (encountered in Hole 88-10) have been previously correlated with the Thuya batholith of early Jurassic age which lies immediately south of the property. The hornblende-diorite stocks, however, post-date intrusion of pyroxene gabbro and may therefore be late Jurassic or early Cretaceous in age. Regional trends are west-northwest and stratified rocks generally have steep dips to the north. Some indications of flat dips to the south have been observed in the Heidi Lake area.

A thick sequence of banded grey limestone, calcareous siltstone and cherty tuffs in the Deer Lake area contains pods of garnet-diopside skarn. These rocks have been intruded by a swarm of plagioclase porphyry dikes which are now variably metamorphosed to a fine-grained intergrowth of diopside, quartz and calcite with rare pale pink garnet. The less metamorphosed varieties of these

dikes are recognizable by the presence of relic (ghost) plagioclase phenocryst outlines in the groundmass. Data from a subsequent drilling program suggests that these dikes are endomorphosed and are related genetically to the pyroxene gabbro of probable middle Jurassic age. Rare dikes of andesitic plagioclase-hornblende porphyry are generally relatively fresh and probably related genetically to the Deer Lake hornblende diorite stock. Variable crackle brecciation of the plagioclase porphyry dikes with introduction of pyrite, chlorite, calcite and quartz on fractures may be related to intrusion of the Deer Lake stock.

A wide area of intense hornfelsing of Nicola rocks underlies the Heidi Lake grid. A thin grey limestone unit in the north part of this grid is converted to garnet-diopside skarns along the southern contact of the Porphyry Lake pyroxene gabbro. The gabbro itself is a coarse grained equigranular rock showing little or no alteration except along intrusive contacts where some assimilation has taken place. (A subsequent drilling program reveals, however, pyroxene gabbro endoskarn xenoliths with retrograded margins in a hornblende diorite intrusive breccia.) Stratified rocks in the north part of the Heidi Lake grid including coarse lapilli tuffs have sub-vertical dips. Stratified rocks in the central part of the grid display shallow dips to the south and an intense hornfelsing. Drill Hole 88-10, located in the south-central part of the Heidi Lake grid, intersected remarkably unaltered rocks throughout its 244 m length. The fine-grained, dark green plagioclase porphyritic rock in the top 117 m of this hole was originally logged as andesitic but subsequently changed to diorite. There is considerable uncertainty as to the extrusive or intrusive nature of this rock. It bears no resemblance to the plagioclase porphyries related to the Porphyry Lake pyroxene gabbro. The lower 125 m of Hole 88-10 reveal the presence of a second hornblende diorite stock similar to the Deer Lake stock.

MINERALIZATION

Gold mineralization in skarns near Deer Lake was explored in the past by a short adit, two small pits and two trenches (Westerman, 1987a, b) (Figure 3). In the pit above the adit, the author's samples last year returned 6.61 g/t Au across 3.9 metres from a pale garnet-diopside skarn. This unit is contained between two massive pyrrhotite skarns, each about 1 metre wide. The author's samples of pyrrhotite skarn returned values of only 2.8 and 2.2 g/t Au. Other geologists have, however, picked arsenopyrite bearing pyrrhotite skarn samples from this trench which assayed several ounces of gold per ton. Sampling of similar rock units in the adit below the pit this year (Figure 4) returned only background gold values. Drill Holes 88-1, 88-2 and 88-3 targeted on depth extensions of this zone failed to intersect any significant gold mineralization. Geophysical and drilling information suggests that the zone is lense-shaped and pinches out in all directions.

Pyrrhotite-magnetite skarn exposed in Trench No. 1 (Figure 3) within claim Fort 9 were sampled in 1987 and returned 8 metres of anomalous gold values including 4.2 g/t over 1 metre. Drill Hole 88-8 intersected 22 metres of anomalous gold values including 4.7 g/t Au across 2 metres. Magnetic data suggests the skarn is lense-shaped but strike extensions have not been investigated by drilling.

Pyrrhotite skarns with weakly anomalous gold values in Trench 2 are related to more extensive magnetic and I.P. chargeability anomalies. Drill Holes 88-6 and 88-7, however, failed to obtain any significant gold values from pyrrhotite skarns intersected.

A massive magnetite-pyrrhotite skarn with traces of chalcopyrite underlies 49+50N on Line 50+25E and was intersected in Hole 88-5. This skarn body is so magnetic that it has caused a significant deflection in the baseline of the main survey grid. It is very unfortunate that the origin of the grid (surveyed in 1980) was chosen as the L.C.P. of the TUN claims which is on a small hill immediately above this magnetite skarn. A 50 metre section of Hole 88-5 contains anomalous gold values which peak at 1480 ppb Au. These values are in garnet-diopside skarns with variable pyrrhotite content and there seems to be little correlation of gold values with either sulphide or magnetite content.

Mineralization exposed at the Lakeview South area in two small side-hill cuts takes the form of magnetite matrix breccias with both massive pyrrhotite and garnet-diopside skarn clasts. This type of mineralization contains only background gold values in outcrops and in Hole 88-9. Significantly anomalous but somewhat erratic gold values are present in the lower part of Hole 88-9 from 20 m to 99 m depth. (The hole ended at 99 m depth.) These values occur in low sulphide garnet-diopside skarns complexly interbedded with actinolitic hornfels and endoskarned plagioclase porphyry dikes. A 4 metre section of Hole 88-9 from 33 m to 37 m assayed 7.12 g/t Au. This mineralization deserves detailed investigation and further drilling in this area is planned.

DRILLING SUMMARY

A total of 985.3 metres of NQ diamond drilling was completed in 10 holes. Drill logs, core recovery and analytical results are presented in Appendices 4-6 and other pertinent data in Table 2. Drill hole sections are presented in Figures 4-12.

TABLE 2

Drill Hole Data

Hole No.	<u>Grid</u>	Locat	ion	Angle	Azimuth	Total Depth (m)
88-1	Deer Lake	50+00E,	49+75N	-45	020	121.6
88-2	Deer Lake	49+90E.	50+20N	- 45	205	36.6
88-3	Deer Lake	50+00E,	50+48N	-45	200	77.1
88-4	Deer Lake	50+00E,	49+60N	-45	200	118.9
88-5	Deer Lake	50+25E,	49+25N	-45	200	88.1
88-6	Deer Lake	49+10E,	50+60N	-45	200	53.0
88-7	Deer Lake	49+08E,	50+60N	-45	240	98.8
88-8	Deer Lake	48+60E,	49+67N	-45	240	47.9
88-9	Lakeview S.	1+50E,	4+50S	-45	345	98.8
88-10	Heidi Lake	13+00 Ŵ ,	17+70S	90	-	244.5

CORE STORED IN BARRIERE

Drill Hole 88-1

This hole was collared south of a trench showing massive pyrrhotite skarns and a 3.9 metre wide garnet-diopside skarn which contains 6.61 g/t gold (Westerman, 1987c). The skarn structures appear to be vertical and pass through an adit 7 metres below the trench. The hole drilled to the north, passed 21 metres below the trench, but failed to intersect any significant mineralization. The hole was dominantly in banded grey limestone with a vertical dip. An endomorphosed plagioclase porphyry dike converted to a fine-grained diopside-quartz-calcite intergrowth with very rare pink garnets occurs from 9.7 to 21.5 metres. A similar dike occurs at 83.3 to 85.1 metres. Narrow lenses of diopside-garnet skarn occur throughout the length of the hole and are particularly concentrated in the interval from 60 to 70 metres. No anomalous gold values were obtained from Hole 1.

Drill Hole 88-2

This hole was collared north of the trench targeted by Hole 88-1 and was drilled south. The hole did not return any economically significant gold values. Two samples returned 100 ppb and 154 ppb Au. The section from 12 m to 22 m of interbedded garnet-diopside skarn and limestone may be equivalent to that exposed in the trench, but it is not mineralized.

Drill Hole 88-3

This hole was drilled below 88-2 in an effort to extend the skarn zone to depth and also to test a magnetic high anomaly centred at 50+20N. The hole intersected only grey banded limestone cut by many endomorphosed plagioclase porphyry dikes. The skarn zone apparently pinches out at depth. No significant gold values were encountered.

Drill Hole 88-4

This hole was drilled south from the same pad as Hole 88-1 to test on I.P. chargeability high anomaly at 40 metre depth below 49+35N. The anomaly is related to a 10 metre wide crackle brecciated endoskarned plagioclase porphyry dike which contains up to 8% pyrite as disseminations and fracture fillings. The dikes does not contain any significant gold values. The hole above this dike encountered mainly grey banded limestone cut by both hornblende diorite and plagioclase porphyry dikes with minor skarn. Below the main dike, the hole intersected a variety of coarse and fine-grained garnet-diopside skarns with interbedded actinolitic hornfels and banded cream to grey chert. A section of banded skarns from 75 m to 93 m returned anomalous values.

Drill Hole 88-5

This hole was drilled to test a strong magnetic high anomaly beneath 49+00N on Line 50+50E. The top 15 metres of the hole is in grey limestone. From 15 m to 64 m. There is a section of banded garnet-diopside skarns with minor plagioclase porphyry dikes. Many of these skarns appear to be healed breccias but this may be a metamorphic rather than original texture. To a depth of 35 m these skarns contain irregular aggregates of fine-grained pyrrhotite which may constitute up to 20% of the rock, and traces of chalcopyrite. From 35.0 m to 39.6 m there is a massive magnetite skarn containing up to 20% magnetite and 30% pyrrhotite with traces of chalcopyrite. Below this there are only minor sulphides in the skarns. A banded sequence of cherts and actinolitic hornfels (andesitic tuffs?) extends from 64 metre depth to the end of the hole. Erratic anomalous gold values are present in the section from 18 metres to 67 metres depth. There is, however, no consistent correlation between gold and other observable features or geochemical parameters. The four highest gold values, tabulated below, illustrates this inconsistency.

Section (m)	Au ppb	Cu ppm	Lithology	Sulphides
18.0 - 20.0	1480	18	Garnet diopside skarn	Po 15%, Cpy tr
34.0 - 35.0	1050	63	Diopside skarn breccia	Po 25%, Cpy tr
36.3 - 37.4	1100	270	Magnetite skarn	Mag 20%, Po 30%, Cpy tr
51.4 - 52.6	1380	26	Dolomitic chert	Py 20%

Drill Hole 88-6

This hole was drilled to test the down-dip extension of pyrrhotite bearing skarns exposed in an old trench (Trench No. 2). The surface skarns have weakly anomalous gold values up to 207 ppb (Westerman, 1987a). The zone is characterized by a strong magnetic anomaly and by a strong I.P. chargeability anomaly. The hole was collared in a hornfelsed andesitic lapilli tuff which gave way to banded epidote-actinolite skarns with abundant pyrrhotite at 12.5 m followed by mottled garnet diopside skarn at 18 m. The basal part of the latter contains bands and veins of massive pyrrhotite terminated abruptly by a chlorite-pyrite-calcite fault breccia. Below this fault, sulphides are restricted to the presence of disseminated pyrite in actinolitic hornfels and in minor fault breccias. The section below the fault consists of grey limestone and interbanded low sulphide skarns. No significant gold values were obtained from this hole.

Drill Hole 88-7

Pyrrhotite bearing skarns in Hole 88-6 were cut off abruptly by a major fault zone that appeared to be trending at a high angle to the inferred orientation of compositional banding in the skarns. The information generated by Hole 88-6 was also permissive of a 35-40° N dip for the sulphide skarn zones. Accordingly, Hole 88-7 was drilled from the same pad as 88-6, but at a different azimuth, designed to intersect the down-dip extensions of sulphide skarns exposed in both Trench No. 2 and Trench No. 1. Unfortunately, the hole intersected the same major fault zone as that intersected in Hole 88-6 which must have a strike orientation almost parallel to compositional banding. Hole 88-7 intersected the same sequence as Hole 88-6 to a depth of about 70 metres, followed by an interbanded sequence of

grey limestone and pale cream coloured chert. A narrow fresh olivine basalt dike near the bottom of the hole may be Tertiary in age. No significant gold values were obtained from the hole. Subsequent information indicates that compositional banding dips steeply to the northeast.

Drill Hole 88-8

This hole was oriented to test the down-dip extension of pyrrhotite-magnetite skarns exposed in Trench No. 1. These rocks had previously returned significantly anomalous gold values over an eight metre width including 4.2 g/t over 1 metre. The hole intersected diopside-garnet-magnetite-pyrrhotite skarns with traces of chalcopyrite from the base of the casing to 22 m depth. This section carries anomalous gold including 2 m of 4.7 g/t Au which correlates with surface values and indicates a dip of 65° to the northeast. From 23.0 m to 47.9 m (EOH) the hole intersected grey banded limestone with minor endoskarned plagioclase porphyry dikes and two narrow olivine basalt dikes. The section had no significant gold values. The gold anomalous, sulphide-magnetite skarns intersected in this hole are associated with a single line magnetic anomaly of limited extent.

Drill Hole 88-9

This hole was drilled to investigate the subsurface expression of sulphide-magnetite skarn breccias exposed in an area known as the Lakeview South zone located 300 metres west of Iron Lake. Sampling of old pits and trenches in this area had not returned any significant gold values, but a large magnetic anomaly suggested that a sizeable skarn body was present. The hole intersected banded garnet-diopside skarns with a complex healed breccia texture to a depth of 20 metres. Several sections of this breccia have a massive fine grained magnetite matrix and rare sections of massive pyrrhotite aggregates are present along with traces of chalcopyrite. The texture is suggestive of a coarse calcareous lithic lapilli tuff protolith. This section contains only background gold values.

The remainder of Hole 88-9 from 20 m to 99 m (EOH) depth must be considered significantly anomalous in gold values. Actual values are erratic varying generally from several tens to several hundreds of ppb Au. "Economic" gold values occur at:

Intersection (m)	Length (m)	Au _ppb	Assay Au g/t	Assay Au oz/t
25.0 - 27.0	2.0	6200	7.96	0.232
33.0 - 35.0	2.0	4160	5.78	0.169
35.0 - 37.0	2.0	<i>75</i> 00	8.45	0.246
85.0 - 87.0	2.0	3220	3.60	0.105

The lithologies in this section are complexly interbanded garnet-diopside skarns and actinolite hornfels cut by a network of endoskarned plagioclase porphyry dikes. The scale of interbanding varies from a few centimetres to slightly less than one metre. Coherent endoskarned plagioclase porphyry dikes occur at 20-22 m and 40-50 m. A healed intrusive breccia of actinolite hornfels fragments and endoskarned plagioclase porphyry matrix is present from 80 - 84 m. An andesitic plagioclase porphyry unit at the bottom of the hole (90-99 m) contains mafic clusters. This was originally logged as andesitic lithic tuff but may actually be the contact phase of the Deer Lake hornblende diorite stock.

There is no simple correlation of gold values with other recorded information or geochemical data. The erratic nature of the gold assay distribution suggests the presence of particulate free gold throughout the section.

Drill Hole 88-10

This vertical hole located in the Heidi Lake area of the property was drilled to test a narrow I.P. chargeability anomaly at about 150 metres depth which appears to have a strike length of at least 1,000 metres (Rockel, 1987, 1988). The hole intersected a 3 metre thickness of hornfelsed banded calcareous siltstone with 5-10% pyrrhotite and trace chalcopyrite at 120 m depth. This explains the I.P. anomaly but no significant gold values were encountered in the entire hole.

FOR LEGEND SEE FIGURE 5

VITAL PACIFIC RESOURCES LTD.

HAIDA PROPERTY
KAMLOOPS MINING DIVISION, B.C. NTS: 92 P/9

DEER LAKE GRID AZ 060° SECTION DDH 88-7

C.J.WESTERMAN Ph.D.

DATE: NOVEMBER 1988

FIGURE: 8

L4850E, 4960 N TRENCH Nº.I 88-8 Casing Sk.d-g w Po, Mag, Cpy Mag, Po, Py, Cpy Olivine basalt dike Lst cut by PP dike swarm Olivine basalt dike VITAL PACIFIC RESOURCES LTD. HAIDA PROPERTY 20 m KAMLOOPS MINING DIVISION, B.C. NTS: 92 P/9 SCALE 1:500 DEER LAKE GRID Az 060° SECTION DDH 88-8 C.J.WESTERMAN Ph.D. DATE: NOVEMBER 1988 FIGURE: 9 FOR LEGEND SEE FIGURE 5

A graphitic fault was intersected at 10 metre depth. Below this is a 110 metre thickness of fine to medium grained plagioclase porphyritic diorite (initially logged as andesite flows). This rock is only weakly chloritized and is of much lower metamorphic grade than the intense silica-pyrite hornfels exposed in nearby trenches and outcrops. The banded pyrrhotite hornfels at 120 m depth appears to be a xenolith or "screen" at the contact of two intrusive diorite phases. Below the xenolith, the hole intersected fine to medium grained hornblende-plagiolcase porphyritic diorite. This too is only weakly chloritized.

CONCLUSIONS AND RECOMMENDATIONS

Lower Jurassic limestone, siltstones and cherty andesitic tuffs within the Haida Gold property have been metamorphosed by intrusion of a pyroxene gabbro stock and associated swarm of plagioclase porphyry dikes. Calcareous units have been converted to garnet diopside skarns and diopsidic hornfelses, whilst tuffaceous units are converted to actinolitic hornfelses. The plagioclase porphyry dikes have been variably endomorphosed(?) to a diopside-quartz-calcite hornfels. This metamorphic event is visible in outcrops spread over about ten square kilometres. Late hornblende diorite stocks have intruded the area south of Deer Lake and east of Heidi Lake with little apparent metamorphic effect.

Several pyrrhotite-magnetite skarn bodies occur within the property as indicated by both outcrops and geophysical surveys. Gold mineralization occurs in magnetite skarn, high sulphide arsenopyrite-pyrrhotite skarn and low sulphide garnet-diopside skarn with minor pyrrhotite and pyrite. Drilling in the area of Deer Lake indicates that gold bearing skarns in this area are small lenses with erratic grades and are unlikely to be economic. The I.P. anomaly on the Heidi Lake grid was tested by Hole 88-10 with negative results.

Drill Hole 88-9 located in the Lakeview South area returned a surprising 80 metre length of anomalous gold values which included 4 metres of 7.12 g/t Au. The mineralization is in complexly interbanded low sulphide skarns and actinolitic

hornfelses cut by a plagioclase porphyry dike swarm. The size of the anomalous zone, the localized high values and the rock types are all permissive for discovery of economically significant gold mineralization. A program of geophysical surveying and further diamond drilling is recommended to test the Lakeview South target indicated by Drill Hole 88-9.

November 15, 1988 Vancouver, B.C.

C.J. Westerman, Ph.D., F.G.A.C. Consulting Geologist

APPENDIX 1

STATEMENT OF COSTS

HAIDA GOLD PROPERTY - DRILLING PROGRAM NUF 1, TUN 1 AND 2, FORT 7, FORT 9, VIT 1 - 8 CLAIMS

KAMLOOPS MINING DIVISION

FIELD WORK UNDERTAKEN JULY 5TH TO AUGUST 25TH, 1988

Drilling (2027)	č(7 970 00	
NQ 3232 ft. (985 m) at \$21/ft.	\$67,872.00 1,080.00	
Core boxes, 180 x \$6 Core box lids, 180 x \$3	540.00	
Field costs, 16 hours x \$75	1,200.00	
Mob-demob	1,200.00	
D-6 Cat, 59 hours x \$75	4,425.00	\$ 76,317.00
D-6 Cat, 37 Hodis x 373		, , , , , , , , , , , , , , , , , , ,
Assays		
513 Core, 19 Rocks		
Assay prep, Au fire geochem plus		
Cu, Pb, Zn, Ag, As, Sb by ICP		
532 samples x \$17.75		9,443.00
4 gold assays x \$10		40.00
•		
Salaries and Wages		17 200 00
Consulting geologist, 36 days		16,200.00
Field assistant, 22.5 days		2,250.00
Food		1,020.18
r000		1,020110
Accommodation		1,390.20
		·
Vehicle - rental, fuel, tolls		2,855.65
·		
Equipment		631.32
		763.58
Freight		763.38
Office and communications		456.42
Office and Communications		
TOTAL		\$111,367.35
. +		

Vancouver, B.C. November 15th, 1988 C.J. Westerman, Ph.D., F.G.A.C. Consulting Geologist

APPENDIX 2

STATEMENT OF QUALIFICATIONS

- I, Christopher John Westerman, hereby certify that:
- 1. I am an independent Consulting Geologist with an office at 1010 -470 Granville Street, Vancouver, British Columbia, V6C 1V5.
- 2. I am a graduate of London University, England with the degree of Bachelor of Science in Geology (1967); of the University of British Columbia with the degree of Master of Science in Geology (1970) and of McMaster University, Ontario with the degree of Doctor of Philosophy in Geology (1977).
- 3. I am a Fellow of the Geological Association of Canada (F.525) and a member of the Canadian Institute of Mining and Metallurgy.
- 4. I have practised my profession in North America since 1967, having worked as employee and consultant for several International Mining Corporations and Junior Resource Companies.
- 5. This report is based upon a personal examination of all available company and government reports pertinent to the subject property, and upon field work undertaken on the property between July 15th and August 25th, 1988.

November 15, 1988 Vancouver, B.C.

C.J. Westerman, Ph.D., F.G.A.C. Consulting Geologist

Moerte

APPENDIX 3 ROCK SAMPLE LIST

Sample	
88 WR 35	Multichip. Pale grey diopside-calcite skarn with trace disseminated pyrite.
88 WR 36	Multichip. Rusty weathering f.gr., pyritic actinolite hornfels.
88 WR 37	Multichip. Grey fine grained plagioclase porphyry endoskarn.
88 WR 38	Multichip. Rusty mafic pods in grey limestones.
88 WR 39	Multichip. Blocky, banded grey green garnet-diopside skarn with mafic actinolite hornfels lenses and 5% disseminated pyrrhotite.
38 WR 40	Multichip. Coarse diopside skarn with patchy c.gr. pyrrhotite and pyrite.
88 WR 41	Multichip. Fine grained actinolite hornfels with minor disseminated pyrite.
88 WR 48	1 m chip. Fine grained diopside skarn with coarse pyrite patches and 10% f.gr. disseminated pyrite - pyrrhotite -magnetite.
38 WR 49	Multichip. As WR 48 with trace chalcopyrite.
38 WR 50	Multichip. Massive magnetite-pyrrhotite-pyrite skarn.
88 WR 51	Adit 1 m chip, back and wall. Rusty skarn with massive pyrrhotite and (?)magnetite.
88 WR 52	Adit 2 m chip, wall. As WR 51.
88 WR 53	Adit 2 m chip, wall. Pale diopside - garnet skarn with only minor pyrrhotite and pyrite.
38 WR 54	Adit 2 m chip, wall. As WR 51.
88 WR 55 & 56	Adit 2 m chip, wall. Pale plagioclase porphyry endoskarn with minor pyrrhotite and pyrite.
88 WR 57	1.5 m chip. Pale diopside-garnet skarn with minor pyrrhotite and pyrite.
88 WR 58A	1.0 m chip as WR 57.
88 WR 58	Multichip. Discovery pit above adit. Massive pyrrhotite skarn from east wall.
88 WR 59	Single block of pyrrhotite rick skarn from adit.
88 WR 60	Lakeview South, upper cut. 2 m chip of magnetite breccia.

APPENDIX 4

DRILL HOLE LOGS

PROJECT: HAIDA - VITAL PACIFIC RESOURCES LTD.					NTS: 92P/9
COORDINATES:	Deer Lk. Grid L50+00E, 49+75N	INCLINATION: BEARING:	-45 ⁰ 02 0 °T	TOTAL DEPTH 121.64m	p. l of 4
STARTED: FINISHED: LOGGED BY:	25/7/88 27/7/88 CJW	DESCRIPTIVE C	EOLOGY		HOLE NO. 88-1
Metres					
0 - 3.04	No core.				
3.04 - 6.00	Grey limestone - weak com	position banding, irregula	r at 450 CA. Tr.	diss. f.gr. pyrite.	
6.00 - 8.23	Diorite, medium to fine gra	ain plag. porph., minor hbl	phenos, rel. fresl	h except hairline fracts with	chlorite.
8.23 - 9.76	Cave.				
9.76 - 16.5	Plag. porph. diorite crackle and in irregular bands of m			ack chlorite xstals cluster ac 50 cm wide.	dj. to fracts
16.5 - 17.7	F.gr. silicified diorite w 5% 5 cm wide (Endoskarn).	6 dissem. to fract. filling f	gr. pyrite at 17.	5 is wispy diopside-garnet ska	arn band
17.7 - 21.5	Plag. porph. crackle bx p	oartly silicified, 5% pyr. di	ssem. and on frac	ets.	
21.5 - 23.1	Grey banded lst., banding a and green chlorite.	t 450 CA, weak patchy di	opside skarn alt	- at 22.9 is 1 cm band massiv	e f.gr. pyr.
23.1 - 24.1	Irreg. diop-calcite endoska w. green chlorite.	rn in alt. plag. porph. dior	ite. At 23.5 - 23.	8 patches of massive f.gr. py	rite assoc.
24.1 - 25.1	Plag. porph. diorite crackle	e bx. Chlorite alt. v. little	e pyrite.		
25.1 - 25.65 @ 25.65	Dark grey limestone and pairs 4 cm band of heavily dis			CA.	

PROJECT:	HAIDA	- VITAL	PACIFIC	RESOURCES	S LTD.
PROJECTA	HAIDA	- VIIAL	FACILIC	バレンひひれてた。	, , ,

COORDINATES:	Deer Lk. Grid L50+00E, 49+75N	INCLINATION: -45° BEARING: 020°T	TOTAL DEPTH 121.64m	p. 2 of 4
STARTED: FINISHED: LOGGED BY:	25/7/88 27/7/88 CJW	DESCRIPTIVE GEOLOGY		HOLE NO. 88-1

NTS: 92P/9

AA	et	re	c

Metres	
25.64 - 59.20 @ 26.3 @ 28 @ 35 @ 36.65 - 35.90 @ 38 @ 39	Banded grey limestone. 20 cm band skarn - pale green f.gr. actinolite with diss. & veinlet pyrite 8% - top contact 90° CA, bottom contact irreg. approx. 15° CA - pyrite veinlets go to 27.3 m. Comp. banding 45° CA. Comp. banding 45° CA. Skarn "vein" at 10° CA (comp. band is 25° CA) pale grn. diopside - pale garnets, dissm. pyrite 5%. Comp. band CA 45° - irreg. chloritic veinlets. Irreg. swirled dolomitization and/or f.gr. dark micrite bands.
41.6 - 42.0 42.3 - 43.10 43.7 - 44.40	Dark grey dolomite crackle breccia, irreg. qz-calc veinlets, minor patchy green calc-silicate, tr py, minor FeOx on fracts. Banding CA at 42 m is 45°, at 45 m is 10°, at 48 m is 25°, at 53 m is 40°.
47.5	Broken core, chlorite-pyrite crackle breccia.
48.4	Vuggy open space with coarse clear calcite - these continue at -50 cm intervals to 53.
50.3	10 cm interval has 2% diss. pyrite assoc. with irregular black dolomite? patches.
52.8	Broken slumped argillite unit 2 cm thick is weakly skarned.
54	Comp. band 50° CA enclosing calcite veined crackle breccia 10 cm long.
55	Comp. band CA tr pyrite assoc. boudinaged argillite layers.
59.2 - 59.8	Silicified skarn - pale green, 10% pyrite dissem. and banded, chlorite-epidote f.gr. Boundaries irregular but about 90° to CA. Pyrite veins at 10° to 45° CA - poss. endoskarn.
59.8 - 61.45	Grey banded limestone, minor qz-calc vugs.
61.45 - 63.3	Variably silicified "skarn" zone - crackle breccia hairline chlorite-pyrite veinlets. Pale apple grn. "chert" interposed with silic. dolomitic grey limestone, pyrite to 10%.
63.3 - 68.21	Grey banded limestone.

COORDINATES:	Deer Lk. Grid L50+00E, 49+75N	INCLINATION: BEARING:	_45 ⁰ 02 0 °T	TOTAL DEPTH 121.64m	p. 3 of 4
STARTED: FINISHED: LOGGED BY:	25/7/88 27/7/88 CJW	DESCRIPTIVE C	EOLOGY		HOLE NO. 88-1
Metres					
@ 65, 67 @ 67.20 @ 68.21 - 70.20	Comp. banding 90° CA I cm argillite band with skar 20% dark calc. dolomitic arg 80% siliceous calc silicate, in irregular veinlets, partly chlo is 5 cm of rip up clast bx - dl	gill (limestone). ncipient garnet/diopside oritic crackle breccia.	sk., with approx	a. 10% f.gr. pyrite dissem. and a	as
70.2 - 83.3 @ 70.6 @ 75.2 @ 79.5	Banded grey limestone. Com 5 cm calcite crush zone. Weak calcite-epidote stringe 2 mm pyrite lamination at 80	ers.	o and at 72.5 at 1	77 is 60°, at 79 is 45°, at 83 is	45°.
83.3 - 85.1	Pale green siliceous endoskar to approx. 10% f.gr. Contac			t veined pyr-po stringers, blebs	s, dissem.
85.1 @ 88.0	Grey banded limestone, bedd 4 cm endoskarn dike with cor py & po and also in fractures	ntacts at 45° CA, beddir		chilled "rhyolitic" margins, 10%).	diss. f.gr.
89.0 - 90.0	Broken fault gouge crosses a	t 20° CA minor pyrite.			
90.0 - 121.6 (EOH) @ 90.5 @ 91.6 @ 93.3 @ 94.5 @ 95.75* @ 96.2* @ 97.5*	Banded grey limestone. 5 cm arg. clast bx, white calcom sk. 10 cm broken, epidote-calcom vuggy calc. vein. 10 cm sk. at 90°, bedding at 10 cm sk. at 80° 2 cm sk. at 45° 20 cm sk. at 45°	chl fracts.			

NTS: 92P/9

^{* &}quot;cherty" banded to swirled pale green - pinkish, tr pyrite, no reaction in limestone at sharp contact. Refractured?ghost? relic plag. phenos.

COORDINATES:	Deer Lk. Grid L50+00E, 49+75N	INCLINATION: BEARING:	_45 ⁰ 02 0 °T	TOTAL DEPTH 121.64m	p. 4 of 4	
STARTED: FINISHED: LOGGED BY:	25/7/88 27/7/88 CJW	DESCRIPTIVE (GEOLOGY		HOLE NO. 88-1	
Metres						
@ 100.4 @ 101.7	Pyrite on fract 99 m beddi 40 cm calc. siltstn?/tuff, mir			,		
@ 106	From 103 on small swirled bl 30 cm pale pink skarn - cher	ebs of pale "skarn", plus	irreg. vuggy coar	rse calcite in fillings.		
107.2 - 108.0	F.gr. dk. grn., hard, andesitionsk. bands in limestone on each				nor epidote	
109.5 - 110.5		Altered diorite dike endoskarn - cherty silicified, incipient v.fr.gr. diop-garnet(?), 5% po dissem. and blebby, net veined - pyrite and qtz and calcite in fracts. incl. vuggy open spaces. Relic plag. phenos.				
111.20 - 112.60	Diorite endoskarn - f.gr. diop 10% grey limestone.	o. pale grn, relic plag. pl	nenos, 10% diss. f	.gr. py and po, veinlet brecci	a, incl.	
112.60 - 115.40	Grey limestone incl. at 113.2 45° and 20° CA.	_	CA, at 113.7 and 1	14.0 "Skarn" pods 3 cm wide	œntacts .	
@ 115.0	Vuggy qz-py-calc vein (speci	men).				
115.40 - 117.20	Grey siliceous "endoskarn" w rest is swirled and ghosty.	5% diss fract. py and	i po, top 4 cm "ch	illed', next 4 cm relic phenos	s of plag.,	
117.20 - 118.40	Mixed pale diop-garn "exosk"	and grey limestone bed	dding at 30° CA.			
118.40 - 119.30	Plag pheno endoskarned diori	ite 5% py and po dissem	. and fracts.			
119.30 - EOH	Grey limestone - bedding 450	0 - 100 - 450				
EOH - 121.64						

PROJECT: HAIDA - VITAL PACIFIC RESOURCES LTD.

COORDINATES:	Deer Lk. Grid 49+90E, 50+20N	INCLINATION: BEARING:	-450 2050 T	TOTAL DEPTH 36.58 m	p. 1 of 2
STARTED: FINISHED: LOGGED BY:	3/8/88 3/4/88 CJ₩	DESCRIPTIVE (GEOLOGY		HOLE NO. 88-2
Metres					
0 - 3.04	Casing				
3.15 - 3.30	Pale banded siliceous exoskarn swirled.	with 10% pyrite disse	eminated and fra	ctures filling contacts +45 top, -	45 base,
3.30 - 6.00 @ 4.30 @ 6.00 @ 6.40	Grey Lst banding 45° CA 20 cm banded siliceous zone @ 40 cm pale diop garnet banded @ 15 cm white calcite fault gouge	exosk 10 sulfides	racts 1 bedding o	chlorite + pyrite (5% c-m-gr).	
6.55 - 7.40	Grey Lst with 20% pale cream	skarn bands			
7.40 - 11.20	Pale swirled diopside garnet en	do?skarn, plag pherd	s at 10:00 m, 5%	Pyr in first 15 cm.	
9.85 - 10.50	Dark green f.gr. ?andetitic? sk	with 5% fine fract p	yrite, oxidized in	part.	
11.20 - 11.60	Lst, 11.60 - 12.90 pale green pi	nk swirled endoskarn	no sulfides.		
11.60 - 15.50	Banding 40° CA 50% Lst, 50% p	oale pink endosk no si	ul fides.		
15.50 - 17.00 @ 16.2 - 16.4 @ 16.8	Pale banded/swirled diop-garne Dark chloritic fractured unit wi Vuggy calcite vein.				
17.00 - 18.50	50% Lst, 50% pale skarn NS cor	ntacts 45 - 600 CA., I	3anding 40 - 300	CA	
18.5 - 19.5	GM Diop - Garnk sk, net veined pyrite Exosk.	by chlorite pyrite ve	einlets (@ 19 . 0 is	10 cm oxidized fracture zone) 1	0%

NTS: 92P/9

p. 2 of 2

HOLE NO. 88-2

COORDINATES:	Deer Lk. Grid 49+90E, 50+20N	INCLINATION: BEARING:	_450 2050 T	TOTAL DEPTH 36.58 m
STARTED: FINISHED: LOGGED BY:	3/8/8 8 3/4/8 8 CJ W	DESCRIPTIVE O	GEOLOGY	
Metres				
19.5 - 20.0	Lst banding 25° CA with, 4	0% thin sk bands with 10%	6 pyr.	
20.0 - 21.0 @ 20.8	Pale swirled garnet - diop s Is 5 cm band chlorite + 10%		s relic plag pher	nos.
21.0 - 22.2	50.50 Lst pale ga-diop sk co	ontacts 45° 90° CA.		
22.0 - 23.0	Lst with 10% sk, banding 90	CA.		
23.0 - 36.6 @ 25 @ 26.2 @ 28 @ 29.6	EOH Dark grey banded Lst. 5 cm dk grn chert band 5 cm irreg siliceous vein wi Banding 45° CA 10 cm soft grey, grn?tuff?	th chlorite and 8% pyr.	chl. altn. milled	d core some loss.
30 - 36.6 @ 30.0 @ 31.0 @ 34.0 @ 36.0 @ 31.7 @ 36.2	Grey banded Lst Banding parallel core 20° 10° 10° 4 cm qz calcite vein @ 20° Black chert clasts 4 cm squ			
EOH - 36.58 m				

PROJECT: HAID	DA - VITAL PACIFIC RESOURCES LTD.					
COORDINATES:	Deer Lk. Grid 50+00E, 50+48N	INCLINATION: BEARING:	-45 ⁰ 200 ^o T	TOTAL DEPTH 77.1 m	p. 1 of 2	
STARTED: FINISHED: LOGGED BY:	Aug 4/88 Aug 5/88 CJW	DESCRIPTIVE O		HOLE NO. 88-3		
Metres						
0 - 2.13 @ 4	Casing, no core.					
2.13 @ 5.12 @ 4.57 @ 8 @ 10 @ 12 @ 13 @ 13.4 @ 14.3 @ 16 @ 17.3 @ 20.1 @ 21.0 @ 22.5 @ 24.3 @ 24.3 @ 25.6 @ 28.1 @ 31.0* @ 32.7* @ 33.5*	Ground core at 5.6 pale core Bedding 10° Bedding 45° Bedding 60° Bedding 45° Broken core 60 cm lost and ground of Bedding 45°. 60 cm lost in dark argillad Bedding CA 20° Bedding CA 45° Bedding CA 45° Bedding CA 45° I cm pale cream vein w 1	band boudinaged in bedding alcite rich exoskarn 5 cm 4. light green porphyry dyke weeous limestone.	50 CA. 10% dissem. cul		CA.	

Bedding 400.

Bedding 45°.

@ 34.0*

@ 36.0*

^{*} Black banded limestone, pale green sk. blebs at 33.3 \underline{w} black argillaceous bands and pyr.

COORDINATES:	Deer Lk. Grid 50+00E, 50+48N	INCLINATION: BEARING:	-45° 200° T	TOTAL DEPTH 77.1 m	p. 1 of 2
STARTED: FINISHED: LOGGED BY:	Aug 4/88 Aug 5/88 CJ W	DESCRIPTIVE O	EOLOGY		HOLE NO. 88-3
Metres					
36.45 - 37.80	Pale green f.gr. siliceous dalso dissem. pyr. cubes (to amorphous bx, incipient ga	tal up to 10%). Top contac		green chlorite have dissm. f.g ing. Top contact has pale pir	
37.8 - 46.3	Grey limestone w vuggy ca	alcite bx zones up to 8 cm	wide, hematite st	ained, broken and lost(?) cor	e .
46.3 - 47.4	Complex by upper contact sharp contact, no met <u>m</u> a		% py, po, chlorit	e net veined, incl 20 cm grey	limestone,
47.4 - 50.6	Banded grey limestone, mi	nor wispy skarn, vuggy cal	cite wn 2 cm at 4	9.8, minor argill. horizons.	
50.6 - 51.6	Pale grn endosk. dike silice	eous, f.gr., chlorite-pyr cra	ckle bx 10% and	pyr.	
51.6 - 60.3	Grey limestone, minor ska	rn blebs and argillic broker	beds, excel. core	e.	
60.3 - 62.8				t veined, up to 10% pyrite di rtz-calc vein at lower contac	
62.8 - 66.15	Banded grey limestone 60°	CA, patchy siliceous vein	s at 65.2, 65.8 and	d 63 . 2.	
66.15 - 67.50	Grn. endomorph dike, lowe	r contact bedding at 60°	. 5% sulfide mai	nly py in chloritic fractures.	
67.50 - 72.1 @ 70.5 @ 71.8	Grey limestone at 70 m dis Broken calcite fracture zo Light grey-white siliceous	ne 5 cm continues as open	bx to 71.2.	gregates.	
72.1 - 74.1	Pale grey-grn siliceous bx	- felsic dike net veined wit	h chlorite, very l	ittle sulfide, local remnant p	olag phenos.
74.1 - 75.9	Grey limestone banding 30	°CA.			
75.9 - 77.1	Banding 10% CA, 50:50 lim	nestone and pale siliceous	skarn with no sulf	ide.	
E.O.H.					

COORDINATES:	Deer Lk. Grid L50+00E, 49+60N	INCLINATION: BEARING:	-45 ⁰ 2 00 ⁰ T	TOTAL DEPTH 118.9m	p. 1 of 4
STARTED: FINISHED: LOGGED BY:	Aug 5/88 Aug 7/88 CJW	DESCRIPTIVE O	EOLOGY		HOLE NO 88-4
Metres					
0 - 3.04	Casing.				
3.04 - 10.9	Grey limestone, broken and banding 20°.	milled, calcite vuggy fra	ctures at 4.9 and	10.8, 2 ft. washed at 9.14 m	, at 10 m
10.9 - 18.8 @ 10.9 - 15.0 @ 13.8 @ 15.0 - 15.8 @ 15.8 - 17.0 @ 17.0 - 18.8	Altered intrusive. is f.gr. cherty siliceous, net 10 cm limestone banding 50 Foliated v.f.gr. "andesitic" Foliated hornblende porphys sulfides absent, gradational Banded f.gr. siliceous unit,	o. weakly banded unit <u>w</u> 159 ritic f.gr. diorite, hbl phe margins.	6 f.gr. diss. pyr a nos chloritized de	nd 1 mm plag phenos. eformed 4–5 mm look like lap	oillis,
18.8 - 20.0	1/b limestone and "pyritic"	andesite.			
20.0 - 22.0	Grey banded limestone band	ding 20° 35° CA.			
22.0 - 25.16				no sulfide deformed hbl phen ontact at 45° CA banding i	
25.16 @ 29.0 @ 31 @ 32.5 33.5 - 35.1	Banded grey limestone 450 5 cm at 28.35 siliceous skar Calcite quartz healed bx 30 4 cm banded siliceous "skar 4 cm banded siliceous "skar	n band. cm, limestone banding a n". n".	t 45°.		
	Healed vuggy qz-calc fault	DX, HILLIOF Pyr.			
25.1 - 37.8	Grey limestone 20° 45°.				

COORDINATES:	Deer Lk. Grid L50+00E, 49+60N	INCLINATION: BEARING:	-45° 200° T	TOTAL DEPTH 118.9m	p. 2 of 4		
STARTED: FINISHED: LOGGED BY:	Aug 5/88 Aug 7/88 CJW	DESCRIPTIVE O	GEOLOGY		HOLE NO. 88-4		
Metres							
37.8 - 40.3	I/b skarn and limestone in 50 cm uCA, exoskarns.	ınits - at 40.3 is 5 o	cm band heavy dis	sem po in skarn at contact. B	anding 450		
40.3 - 42.5	Complex "auto" brecciated f.gr. d dissem.	iorite dike - some	relic plag phenos,	5-10% pyrite on chloritic fra	ctures and		
42.5 - 44.9	Grey banded limestone, at 450 CA	, two 5 cm pale sk	arn bands.				
44.9 - 54.0		Autobx plag porph dike - 8% pyrite on chlorite fracts, crowded plag porph frags, minor qz veins, intense silic locally, chilled pyritic margin at base at -25° CA.					
54.0 - 56.5	Blk limestone w chert bands beddi	ing 40° CA.					
56.5 - 60.6	Med-c.gr. garnet-epidote skarn v.	pale colors, tr. dis	sem. pyr. v. mino	r py-cpy-sph on fracts.			
60.6 - 67.9	I/b grey limestone and pale grey b skarn <u>w</u> dissem. py-po-cpy (4-5 mr				net-diop		
67.9 - 68.7	Crowded plag porphyry dike f.gr., weakly bx chilled, base contact pa			• • • • • •	dding		
68.7 - 75.1	I/b grey banded limestone bedding	g 450 and pale calci	te exoskarn brec	cias, 50 cm average width.			
75.1 - 82.6	Med-coarse gr. garnet-diop skarn, fracts, dk green chloritic(?) units				trogra de		
82.6 - 86.2	Finer gr. skarn alteration diop & g	garnet rich, weak c	hlorite fractures	with pyrite, v. minor pyrite, l	banded 40-		
@ 86.85	5 cm band f.gr. grey plag porph re	elic.					

PROJECT: HAIDA - VITAL PACIFIC RESOURCES LTD.

111002011							
COORDINATES:	Deer Lk. Grid L50+00E, 49+60N	INCLINATION: BEARING:	-45 ⁰ 2 00 ⁰ T	TOTAL DEPTH 118.9m	p. 3 of 4		
STARTED: FINISHED: LOGGED BY:	Aug 5/88 Aug 7/88 CJW	DESCRIPTIVE (GEOLOGY		HOLE NO 88-4		
Metres							
86.2 - 86.8	Coarse garnet skarn, weak o	calcite fract bx.					
@ 86.9 - 87.2 @ 87.2 - 88.2 @ 88.2 - 90.5	Pyrite in fracts and at 87.5, Fine grained gar-diop sk. Coarser garnet rich sk, calc and 15% pyr at 45° CA at 88	ite veinlets, remnant pat	ches of crowded p	lag porphy, 5 cm bands of bl	k limestone		
90.5 - 94.10	F.gr. dark green diopside ba	Figr. dark green diopside banded skarn, banding 45-60° CA, v. minor pyrite on chlorite fractures.					
94.10 - 96.1	Mixed bx, pale grey f.gr. sili swirled portions <u>w</u> up to 209		in bx, minor calci	te veinlets, <u>and</u> dark green _l	pyritic		
96.1 - 98.17	Grey ultra f.gr. unbanded "c	hert" minor chlorite and	or calcite veinlet	5.			
98.17 - 98.7 @ 99.8		Mf.gr. altered plag porph dike, silicified "endosk" garnet-diop contact, 10-15% f.gr. pyr dissem and fracts. Weakly banded irregularly bx and healed pinkish unit of ?garnet diops v. f.gr. cherty skarn? 5% pyrite on irreg. fractures.					
99.8 - 101.0	V. f.gr. grey green banded 3	0° CA chert(?) <u>w</u> up to 1	0% f.gr. cubic pyr	and also pyr on fracts.			
101.0 - 101.20	Grey grn m.gr. plag porph si	licified, 15% dissm pyr.					
101.20 - 102.55	Banded grey "chert" - some	calcareous laminae, 5-15	% dissem pyr on 4	50 comp banding.			
102.55 - 103.30	Alt. plag porph dike 8% pyri	te dissem.					
103 - 107	Dark grey and cream grey b	anded?chert, 5-75% fr.g	r. pyrite dissem a	nd minor on fracts.			
107 - 110.4	Dark grey green non calc "c fracts/bx.	herty tuff(?)" 10-75% py	mainly as ultra f.	gr. dissem but also abundant	on		

NTS: 92P/9

PROTECT:	HAIDA -	- VITAL PACIFIC	RESOURCES LTD.
----------	---------	-----------------	----------------

COORDINATES:	Deer Lk. Grid L50+00E, 49+60N	INCLINATION: -45° BEARING: 200° T	TOTAL DEPTH 118.9m	p. 4 of 4
STARTED: FINISHED: LOGGED BY:	Aug 5/88 Aug 7/88 CJ W	DESCRIPTIVE GEOLOGY		HOLE NO. 88-4
Metres				

NTS: 92P/9

110.4 - 112 Irreg. mottled healed bx dk grn. frags, pale cream grey matrix both ultra f.gr., 10-15% pyr on fracts.

112 - 113 M.gr. green plag porphy, rel. fresh(!), pyrite in altered matrix approx. 10% weak chlorite vx.

113.1 - 114.1 Purplish banded chert 2% pyrite on fractures.

114.1 - 114.7 Pale grey green f.gr. siliceous altered? porphyry dike?, 5% pyr, 2% po irreg. fracts.

114.7 - 118.9 EOH Banded v. f.gr. green-grey-pinkish laminated chert(?) and tuffaceous chert(?), minor pyr on fracts except last 20 cm which has approx. 4% pyr on fracts and 2% v. f.gr. pyr dissem.

E.O.H.

PROJECT: HAIDA - VITAL PACIFIC RESOURCES LTD.					NTS: 92P/	
COORDINATES:	Deer Lk. Grid L50+25E, 49+25N	INCLINATION: BEARING:	-450 200° T	TOTAL DEPTH 88.1 m	p. 1 of 3	
STARTED: FINISHED: LOGGED BY:	Aug 7/88 Aug 9/88 CJW	DESCRIPTIVE (GEOLOGY		HOLE NO. 88-5	
Metres						
0 - 4.57	Casing.					
4.57 - 14.0	Blk limestone banded 45° C minor calcite veinlets, sk ba		ands, minor 5-10 c	m bands siliceous "cherty" sl	karn, bx <u>w</u>	
14.0 - 16.2	Becoming reX to white m.g	r. structureless marble, l	ower contact C	Α.		
16.2 - 18.0	Cherty purple-pinkish bande or? relic plag phenos?. Inc			hite blotches may be ex calc	inclusions	
18.0 - 19.90	Med - coarse gr. garnet-dio fractures, texture suggests			y dissem po + 1% pyr on chlo	rite	
19.90 - 27.8	I/b f.gr. diop sk "cherty" 5- cpy mildly fractured chlorit banding. I/b scale from 4 c	e and pyrite + calcite. B	and m.gr. garnet-d anding 20° CA mi	liop sk <u>w</u> up to 20% dissem po inor 1 cm bands massive po p	0 <u>+</u> 1-2% parallel	
27.8 - 30.9	Dk. green-pink diop-garnet skarns, swirled healed bx, irreg. fragments, minor late chlorite-pyrite crackle bx, f.gr. aggregates of po occur throughout up to 20% both as dissem. and as early fracture fillings - dissem to mainly in dark diopside "matrix" rather than in pale "cherty fragments". 2 cm massive po veinlets at 29.5, 30.1.					
30.9 - 35.0	Diopside sk bx healed 25% f lower 2 m is only 10% po.	.gr. aggregates of po w	minor cpy incl. and	d on boundaries, dk green dio	p matrix,	
@ 35.0 - 39.6		Po blebs up to 1 cm are	ragged, locally up	arnet - encloses swirled po ago to 30% vol., magnetite up to		

COORDINATES:	Deer Lk. Grid L50+25E, 49+25N	INCLINATION: BEARING:	-45 ⁰ 200 ⁰ T	TOTAL DEPTH 88.1 m	p. 2 of 3
STARTED: FINISHED: LOGGED BY:	Aug 7/88 Aug 9/88 CJW	DESCRIPTIVE O	EOLOGY		HOLE NO. 88-5
Metres					
@ 39.6 - 51.4				ole, @ 50 m minor blebby po on	fracts
@ 48.6 - 49.3	(healed), late epid-chlorite- Dk grn f.gr. ?andesitic tuff			0° CA, 10% banded to fract fill	ing pyrite.
51.4 - 52.1	Thin laminated pyrite "exha constitute up to 20% by vol.			ubes of pyrite in bands, 5 m - 1	cm wide
52.1 - 52.6	Dark grey limestone w up to	o 10% dissem. pyr f.gr., te	endency to band	de d.	
52.6 - 53.70	Banded green diop sk w chlo	orite laminations and frac	ts <u>w</u> 3% pyr. B	anding 45° CA.	
53.7 - 55.7	Swirled f.gr. pinkish garnet-	diop skarn "healed bx". I	No signif. sulfid	e .	
55.7 - 58.1	Dark grey/grn f.gr. intensel pyr cubes plus 5% dissem f.g			r banded diop sk. incl, 2% disses.	m m.gr.
58.1 - 62.4	Semi massive f.gr. diop-gard 58.4. Milled core at 60.4, 6		CA. No signif.	sulfides except minor py-chl fr	acts at
62.4 - 63.7	Plag porph w lithic clasts 1-	2 cm angular and 20 cm	di-skarn inclusiv	ve, weak epid veins.	
63.7 - 65.3	I/b grey chert and totally sl	icif plag porph, minor pyr	on fractures.		
65.3 - 68.4	Light grey to pinkish "chert	" (ultr. f.gr. diop-garnet?	tr. pyr on tigh	t chloritic fractures.	
68.4 - 70.1		pritic fractures. Diffuse		r. dissem pyr to approx. 10% an ins at 69.5 each 2 cm wide asso	

PROJECT: HAIDA - VITAL PACIFIC RESOURCES LTD.

COORDINATES:	Deer Lk. Grid L50+25E, 49+25N	INCLINATION: BEARING:	-45 ⁰ 200 ⁰ T	TOTAL DEPTH 88.1 m	p. 3 of 3		
STARTED: FINISHED: LOGGED BY:	Aug 7/88 Aug 9/88 CJW	DESCRIPTIVE (GEOLOGY		HOLE NO. 88-5		
Metres							
70.1 - 76.7		Weakly banded at 70° CA, dark green cherty tuff w local f.gr. banded pyrite adjacent to units that may be healed coarser tuffs or met m intrusive sills of andesite porphyry pyrite zones 5-10% pyr at 71.5, 73.5, 74.6, 75.0.					
76.7 - 80.9	Pale pinkish green chert c	rackle bx by epidote veinle	ets <u>+</u> v. f.gr. qz +	minor pyr, base contact 450	CA.		
80.9 - 82.6		Grey plag porphyry, irreg. qz-plag net veining, plag phenos alt pale grn clays (soft), grey matrix "andesitic" contains approx. 8% f.gr. dissem po and pyr, pyr also on fract approx. 2%					
82.6 - 86.0	Mixed green-grey "chert"	and green "andesite tuff" h	nornfels, minor ble	ebby pyr on irreg. fracts.			
86.0 - 88.1	Mixed chert, andesite tuff	and plag porphyry, tr. pyr	., blebby pyr 2% -	f.gr. 8% pyrite.			
88.1 E.O.H.							

NTS: 92P/9

veinlets.

COORDINATES:	Deer Lk. Grid 49+10E, 50+60N	INCLINATION: BEARING:	-450 200° T	TOTAL DEPTH 53.0 m	p. 2 of 2	
STARTED: FINISHED: LOGGED BY:	Aug 9/88 Aug 10/88 DESCRIPTIVE GEOLOGY CJW					
Metres			<u> </u>			
28.7 - 31.4	Coarse pink garnets in a f.gr. veinlets.	pale green to cream m	atrix. No sulfide	except v. minor pyr in late o	chlorite	
31.4 - 34.2	I/b (a) dk. grn. f.gr. andesitic accumulations; (b) pale green					
34.2 - 36.0	Pale green-grey birds eye tuf	f, cherty rhyolite, no su	ulfides, chloritic o	rackle veinlets.		
36.0 - 37.3	Fault zone in I/b birds eye tu 6% f.gr. pyrite.	ff and green-grey-crean	n banded calc-sili	cates. Chloritic matrix faul	t bx has -	
37.3 - 41.5	Banded pale green diopside conclusive healed fault bx in low		ets variable from	v. f.gr. to coarse p'blasts. C	alcite-	
41.5 - 45.4	Dark grey to black weakly ba	nded limestone comp. b	anding at 80° CA	•		
45.4 - 48.6	Banded pale grey-green-creamulation sltsts I/b cherty tuffs.	m "cherty" calc-silicate	, no eff., f.gr. gar	net fm in some bands - prob	ably calc	
48.6 - 53.0	Banded grey limestone, appro	ox. 20% pale grn-cream	calc-silicate band	ds.		
53.0 (174 ft) E.O.H.						

and the first of t

PROJECT:	HAIDA	_ VITAI	PACIFIC	RESOUR	CFSITD
FRUJECIA	HAHA	- 11176	FACHIC	KLJOOK	

COORDINATES:	Deer Lk. Grid 49+08E, 50+60N	INCLINATION: BEARING:	-45 ⁰ 2 40 ⁰ T	TOTAL DEPTH 98.78 m	p. 1 of 2
STARTED: FINISHED: LOGGED BY:	Aug 10/88 Aug 12/88 CJW	DESCRIPTIVE C	EOLOGY		HOLE NO 88-7
Metres					
0 - 2.7					
2.7 - 9.0	Grey weakly laminated coamafic phenos.	rse lithic lapilli tuff ande	sitic - as 88.6, mi	nor fract. pyrite and chlorite	e, plag and
9.0 - 14.5		2% pyr total. This increase	w increasing sili	x. 5%, crackle bx chlorite an cification towards base. 12-1 y and po constitutes 15%.	
14.5 - 28.2	disseminated bands of po a 14.7 - 12 cm 15.4 - 12 cm 16.0 - 16.5 - 50 cm 17.3 - 18.4 - 110 cm 19.0 - 19.4 - 40 cm 20.1 - 20.4 21.0 - 21.2 - 20 cm 24.0 - 24.5 - 50 cm tr cpy of	on fractures		etrograded by chlorite-epidot eavily dissem pyr 25.0 - 25.2 a	
28.2 - 32.8 @ 28.2	Broken chlorite fractured a	zone bx, 5% grey limeston	e, pale green che	rt to 32.8.	
32.8 - 37.2	Coarse pink garnets and vu calc silicate, 10% garnet-d			pale green-cream v. siliceous	s "chert" or
37.2 - 39.3	Mixed (1) white chert bx in in pale green chert - all mo	9 -		et-diop skarn, (3) coarse garr	net p'blasts

NTS: 92P/9

COORDINATES:	Deer Lk. Grid 49+08E, 50+60N	INCLINATION: BEARING:	-450 2 40 0 T	TOTAL DEPTH 98.78 m	p. 2 of 2
STARTED: FINISHED: LOGGED BY:	Aug 10/88 Aug 12/88 CJW	DESCRIPTIVE C	EOLOGY		HOLE NO. 88-7
Metres					
39.3 - 43.0	Retrograded chloritic "skar	n", net veined calcite vei	nlets, increasing t	to fault bx between 41.0 - 43	.0 m.
43.0 - 45.0	Med. gr. andesitic lithic la contact <u>w</u> 5% diss pyr 15 c		diam, matrix has	rel. fresh plag phenos. Chill	ed lower
45.0 - 46.8	Pink garnet bands and coar	se p'blasts in a pale green	-cream cherty ba	nded matrix. Banding approx	k. 60° CA.
46.8 - 51.0	Banding approx. 50° CA, 4	0 cm I/b grey limestone ar	nd white cherty li	mes tone.	
51.0 - 56.0	Banded dark grey limeston	e, banding 50° CA, minor	calcite veinlets, 5	5 cm of 5% diss py at 54.6.	
56.0 - 63.1	Banded garnet-diopside skarich bands locally. Diopsid	arns of variable comp, ban le skarns are v.f.gr. and "c	ding at 45° CA, a cherty", weak cal	few cm to 40 cm wide. M.gr cite veins on rare fractures h	. garnet nave tr pyr.
63.1 - 74.2	Black banded limestone 45 From here I/b limestone ar Laminations from 5 mm up	nd banded f.gr. quartz-diop		stone - limestone I/b sequenc fides.	ce.
74.2 - 76.9	F.gr. andesitic plag porphy 3% dissem pyr and 2% frac			-diop sk adj top and base in l	imestone,
76.9 - 95.1	Banded 45° CA blk limes to	ne $\underline{\mathbf{w}}$ I/b white laminated	calc-silicate appr	ox. 40%.	
95.1 - 95.8	Porphyritic olivine basalt of contact.	like. Oliv up to 3 mm diar	n. partly altered	to epidote. Matrix rel.fresh	, shar p
95.8 - 98.78	Bik banded limestone, tr bl	k chert, <u>w</u> chloritic slicks	•		
E.O.H.					

COORDINATES:	Deer Lk. Grid 48+60E, 49+67N	INCLINATION: BEARING:	-45 ⁰ 240 ⁰ T	TOTAL DEPTH 47.9 m	p. 1 of 2		
STARTED: FINISHED: LOGGED BY:	Aug 12/88 Aug 13/88 CJW	DESCRIPTIVE (GEOLOGY		HOLE NO. 88-8		
Metres							
0 - 7.6	Casing broken and oxidized to 1	0.2.					
7.6 - 22.3 @ 14.3 @ 21.7 - 21.9 @ 22.3	Diopside - garnet skarn, patchy Throughout the unit is weakly to late fault bx at 9.5 m for 20 cm fractures. Banding 20° CA and 5 10 cm of massive f.gr. magnetit 3 mm late calcite-chl vein. is v. f.gr. massive po aggregate, F.gr. pyrite aggregates in band 5	o moderately fracture, and at 19.5 for 15 co 50° CA. The w 20% dissem pyre at late pyr vein 2 mm 2 cm wide at contact	ed (brecciated) by cm, minor pyrite p and tr cpy, band i at 60° CA.	y white calcite and green chlor present on late calcite-chlorite s almost CA CA cut off at bas	eite veins,		
22.3 - 36.9 @ 34.0	Black banded limestone <u>w</u> minor at 31 m, 20° at 36 m. Healed co is 8 cm wide black-green olivine	alcite fault bx's at 2	5.8 approx. 10 cm	32.3 m = 5 cm, 34.8 = 5 cm.	m, 20 ⁰ CA		
36.9 - 37.6	pyrite aggregates and tr cpy on	Green m.gr. endomorphosed plag porph dike. Top contact 80° CA sharp is 25 cm of semi massive f.gr. po w pyrite aggregates and tr cpy on fract. Remainder of dike is retrograded on chlorite-pyrite fractures. Base contact is garnet-diop sk w 10% po and pyr.					
37.6 - 38.2	Grey limestone - banded 80° CA	w 5 cm pale grn ch	ert bx bands.				
38.2 - 38.4	Pale grn altered plag porphyry o	like, minor py or chl	orite-calcite frac	ts.			
38.4 - 38.7	Grey limestone.						
38.7 - 39.65	Black f.gr. px/ol porphyritic bas	salt dike contacts sha	arp 90° CA.				
39.6 - 44.8	Grey banded limestone, 60° CA	, calcite fault bx at	41.7 m = 10 cm.				

PROJECT: HAIDA - VITAL PACIFIC RESOURCES LTD.				
COORDINATES:	Deer Lk. Grid 48+60E, 49+67N	INCLINATION: -45° BEARING: 240° T	TOTAL DEPTH 47.9 m	p. 2 of 2
STARTED: FINISHED: LOGGED BY:	Aug 12/88 Aug 13/88 CJW	DESCRIPTIVE GEOLOGY		
Metres				
44.8 - 45.6	Pale green altered?diorit pyrite-chlorite-calcite - 8	e? dike. Semi massive pyrite at both conta % - 10% total sulfides.	cts <u>w</u> minor po. Complex cra	ckle bx
45.6 - 47.9	Grey banded limestone. C	alcite fault bx at 47.0 = 40 cm, banding 50°	CA.	
47.9 E.O.H.				

PROJECT: HAIDA - VITAL PACIFIC RESOURCES LTD.					NTS: 92P		
COORDINATES:	Lakeview South 1+0 <i>5</i> E, 4+50S	INCLINATION: BEARING:	-45 ⁰ 3 45 ⁰ T	TOTAL DEPTH 47.9 m	p. 1 of 3		
STARTED: FINISHED: LOGGED BY:	Aug 13/88 Aug 15/88 CJW	Aug 15/88 DESCRIPTIVE GEOLOGY					
Metres					-		
0 - 4.26	Casing.						
4.26 - 38.0	20-30 cm wide. Some sec to chlorite and epidote (59	tions appear to be healed b % - 95% retrograde). Rare	x - possibly coars white calcite veir	nm scale to coarse gr. garned e lithic tuffs(?). Variably re as 5 mm wide. Banding at 6 n , at 31 m is 60° at 35 m is 45	trograded n is 45° CA,		
4.26 - 5.0	Incl Semi massive f.gr. magnet	tite matrix bx, clasts f.gr g	arnet/diop sk. ad	v. chlorite retrogression.			
6.30 - 6.60	11						
6.70 - 6.90	II .						
9.40 - 9.50	II						
9.80 - 9.85	II .						
10.20 - 10.60		in 3 cm band 10° Ca surrou natrix unit has 10% diss Po		orite reaction mins, f.gr. gr	een		
16.4 - 17.4	F.gr magnetite matrix and 15 cm has -15% dissem Po		ntains irreg sulfide	e clasts both Po & Py to 1%.	Lowest		
20.2 - 20.6	Dk grn f.gr unit with 15% matrix flow.	Po in matrix +5% magnetis	te, oblique at 50 (CA ?relic plag phenos in chlo	orite		
21.0 - 22.0	F.gr grey green "dacitic"	unit with relic plag and hbl	phenos. Minor py	yr on chloritic fracts.			

PROJECT: HAIDA - VITAL PACIFIC RESOURCES LTD.

1

- 1

1

Lakeview South INCLINATION: -45° TOTAL DEPTH COORDINATES: **BEARING:** 3450 T 1+05E, 4+50S 47.9 m p. 2 of 3 Aug 13/88 **STARTED:** HOLE NO. Aug 15/88 **DESCRIPTIVE GEOLOGY** 88-9 **FINISHED:** LOGGED BY: CJW Metres Thin banded unit at 40° CA incl. 50% dk grn diop sk with 20% f.gr. dissem Po. Also late 3 cm massive f.gr 22.0 - 23.0 pyrite vein parallel CA. 1 cm wide late vuggy multiple calcite vein parallel CA. 28.9 - 29.6 @ 27.3 Dk grn chloritic f.gr andesitic flow unit with relic phenos of plag, 3% f.gr matrix pyrite 10 cm wide. 10 cm pale green unit with plag phenos is probably altered "diorite" dike 34.45 - 34.60 f.gr. chloritic dk grn a 30.25 unit with 10% f.gr pyrite aggregation to 4 mm diam. Banding diffuse and certain - poss - 30° CA. 35.2 - 35.3 10 cm chlorite-pyrite unit @ 36.3 1 cm white calcite - qz-chl vein @ 45° CA. Homogenous pink brown garnet skarn, massive, minor calcite veinlets tr. pyr. 37.0 - 40.2 Green diopside sk, plag relic phenos, not veined chlorite bx + epid + pyr. 41.0 - 41.7 chlorite faults and 40.2 - 51.4 calcite (d 45° CA. Cherty endomorphosed diorite? 41.9 - 42.1 Pale brown garnet sk Late calcite-chlbxn increasing 42.0 -5 cm garnet sk at 80° CA, also at 45.5. @ 44.5 46.7 - 48.3 Fault bx chlorite, clay, minor, pyrite 49.8 - 50.0 Fault bx chlorite, calcite veins parallel or 100 CA. Structureless garnet (?epidote) skarn + chl 51.4 - 52.7 52.7 - 57.6 I/b dark green f.gr diops sk and pale garnet sk + epidote banding parallel CA, banding 5 cm - 50 cm.

1

1 1

1

NTS: 92P/9

COORDINATES:	Lakeview South 1+05E, 4+50S	INCLINATION: BEARING:	-45 ⁰ 345 ⁰ T	TOTAL DEPTH 47.9 m	p. 3 of 3
STARTED: FINISHED: LOGGED BY:	Aug 13/88 Aug 15/88 CJW	DESCRIPTIVE (GEOLOGY		HOLE NO 88-9
Metres					
53.6 - 54.3	Chlorite fault bx 30 cm + calci	te vein zone 40 cm w	minor pyrite.		
55.4 - 55.9	Dark grn f.gr actinolitic (?) unflow?	it has relic plag & hbl	phenos 5% dissen	n pyr., concordant contacts -	may be a
55.9 - 75.1	Dominantly f.gr pale green to chlorite - actinolite (?) tuffs w plag phenos, local incipient pin units are I/b on 10 cm - 50 cm silica.	ith 1% dissem pyr. and k garnet and up to 5%	d pale green cher pyrite, mainly o	ty f.gr unbanded units with re n irregular healed fractures.	lict These
75.1 - 76.4	Mislatch 1 m ground, qz-calc-o	chl. vn 2 cm wide 100	CA.		
76.4 - 79.6	Banded to healed bx, dk grn ch Network of calcite - epidote a				sitic.
79.6 - 84.4	I/b on 50 cm scale 1) dk grn ba int bx contacts. 1) units have @ 81 m is 45° CA.				
84.4 - 91.0	I/b i) dk green metatuffs above retrograde epid-chl veinlets. 1				
91.0 - 98.78	Med gr andesitic tuffs, rare lit intergrowth. F.gr dissem pyrit CA is upper part. May be flow	e 1% - 5%, network e	pidote-chlorite ve	einlets. 1% pink garnet sk bar	
98.78 EOH					

PROJECT: HAID	A - VITAL PACIFIC RESOUR	CES LTD.		NTS: 92P/9
COORDINATES:	Heidi Lk Grid 1 300 W, 1770 S	INCLINATION: Vertical BEARING:	TOTAL DEPTH 244.5 m	p. 1 of 5
STARTED:	Aug 15/88	DECORPTIVE CE OLOGY		HOLE NO.
FINISHED: LOGGED BY:	CJW	DESCRIPTIVE GEOLOGY		88-10
Metres				
0 - 9.14	Casing			
9.14 - 9.25	Grey bx, pale grey "daciti	c" frags in white, soft, non-calc. vein matri	х.	
9.25 - 11.00		Hard f. gr. grey dacitic frags in banded wea Probable chilled contact of Plag. Porphyry.	kly calcareous black graphiti	c matrix.
11.0 - 12.5	Pale grey-green "dacitic"	chilled bx. qz-calcite net veinlets.		
12.5 - 14.5	Healed f.gr diorite intr. b	x, blk andesite frags rounded/angular in f.gr	.andesitic matrix.	
14.5 - 15.0	M. gr plag porphyritic dio	rite. Minor qz-plag-calc veining. Lower co	ntact bx 5 cm.	
15.0 - 17.0	F.gr diorite.			
17.0 - 19.2	Plag porph diorite. Top o	ontact bx, blocky some ground. Plag phenos	to 3 mm.	
19.20 - 19.4	F. gr andesitic inclusion,	flow bx at 20.4 - 5 cm.		
21.3 - 54.5	to 27 m. Unit continues t goes to at least 41.5 m. I	start of strong chlorite crackle bx. Lost 2 f through with weak chlorite crackle bx. More Plag porphyritic diorite, weak chlorite net ve bx at 38.0 m and 40.5 m and 44.0 m	e epidote rich unit starts - 34	m. Unit
@ 40.9 @ 43.9	tr pyrite aggregates assoc tr pyrite aggregates assoc 1 pyritic fract every 10 c starting at 46.2 m increas	c. chloritic fracts m approx.		
0 116 6	is 2 cm intrusive by			

is 2 cm intrusive bx.

@ 46.6

PROJECT: HAID	A - VITAL PACIFIC RESOUR	CES LTD.		NTS: 92P/							
COORDINATES:	Heidi Lk Grid 1 300 W, 1770 S	INCLINATION: Vertical BEARING:	TOTAL DEPTH 244.5 m	p. 2 of 5							
STARTED: FINISHED:	Aug 15/88	DESCRIPTIVE GEOLOGY		HOLE NO.							
LOGGED BY:	CJW	DESCRIPTIVE GEOLOGY		88-10							
Metres											
50.0 - 51.7	Fault Bx chlorite - calcit	e - clay matrix with 5% pyrite.									
51.7 - 54.5	Mixed autobrecciated cor	atact zone.									
54.5 - 60.0		veak chlorite & qz-plag veinlet crackle bxs,	grades into coarser plag porp	hyritic							
@ 58.8		diorite starting about 60.0 m. Tr pyr. 2 cm clay gouge fault bx @ 45° CA.									
60.0 - 66.0		ritic diorite weak calcite epidote veinlets. Qure gradational tr. diss pyr.	z-plag vein bxs at 62.5 (4 cm	n) & 64.0							
66.0 - 67.3	Plag. porphyry. At 66.8 2	cm qz plag vein at 45° CA.									
67.0 - 71.0		c plag diorite f.gr. units have mod intense ne s 3) epidote-calcite veinlets.	et veinings of 1) early qz plag	g veinlets,							
71.0 - 79.0 @ 73.6 @ 78.7	80% porphyritic plag dior 10 cm intense qtz-plag ve 4 cm banded qtz-plag vei										
79.0 - 82.8	Porphyritic plag diorite s Tr py.	trongly crackle brecciated by chlorite veinle	ts. Pervasive pale green alte	eration							
82.8 - 84.45 @ 84.5	Clearer plag. porhyry is 5 cm flashy pyrite sme	ared on fracture at 100 CA (some core mille	d slightly here).								
84.5 - 100.6	Grey med gr plag porphyr	y again more crackle brecciated, broken cor	e adj late fracts with banded	i chi-qtz-							

 $M\text{-}gr\text{-}grey\text{-}green \ plagioclase \ porphyry \ with \ weak \ chlorite \ net \ veining \ slightly \ finer \ grained \ at \ 90.4 \ m.$

and the state of t

COORDINATES:	Heidi Lk Grid 1 300 W, 1770 S	INCLINATION: BEARING:	Vertical	TOTAL DEPTH 244.5 m	p. 3 of 5
STARTED: FINISHED:	Aug 15/88	DESCRIPTIVE O	EOLOGY		HOLE NO 88-10
LOGGED BY:	CJW				
Metres					
95.0 - 96.8			oanded flow breco	ia dark grey matrix with dist	torted dk
100.6 - 102.0	grn lithic frags and broker Finer grained banded dior	n plag phenos ir pyr. ite flow bx tr pyr or fracts.		·	
102.0 - 102.6	Plag porph.				
102.6 - 103.9	F.gr chloritic diorite with	qz-calc vein 5 mm wide	CA.		
103.9 - 117.0	Plag porph diorite increas	sing chlorite bx to max at 10	06.8 m then decre	easing. Minor Pyr on fracts.	
110.2 - 111.1 @ 114.4	becomes finer grained, pa	fied (f.gr) tr pyr or fracts lle grey green, more dacitic	looking becomes	gradually more brecciated t	oward
@ 117.0	xenolith contact at base. is 4 cm quartz-calcite vei	in with minor pyrite at 50°	CA.		
117.0 - 117.8		eous tuff, strongly fracture d siltstone, contacts at 40°		aggregates on fractures. Inc	ludes
117.8 - 118.1		iltstone with tuffaceous cor cipient diopside(?) formatic		g @ 45° CA, 5-10% f. gr disse	em Po <u>+</u> pyr
118.1 - 118.8	Pale green andesitic volca	anic with minor white veinl	ets.		
118.8 - 120.4	Banded @ 500 CA tufface	ous calcareous siltstones w	ith 4 - 10% f.gr d	issem Po in bands + tr Cpy, g	generally
@ 119.6	1 cm wide complex vein c	s) - one band has v.f. gr inc crosses at 30° CA at this po byr aggregates in a garnet e	int is contact wit	and pale grn diopside. h more tuffceous sitstn and a	a 10 cm

COORDINATES:	Heidi Lk Grid 1 300 W, 1770 S	INCLINATION: Vertical BEARING:	TOTAL DEPTH 244.5 m	p. 4 of 5
STARTED: FINISHED: LOGGED BY:	Aug 15/88	DESCRIPTIVE GEOLOGY		HOLE NO. 88-10
Metres	Hornblende Diorite			
120.4 - 134.4	weak qz-calcite-chlorite r	ndesitic - unit with small phenos of chloritinetwork of veinlets. Mafics are hornblende ailled matrix. Contact is flow bx.		
134 - 138.5	Xenolith of f. gr xstal tufi 2 mm elongate patch of di	f and accret. lapilli, dust tuff I/b on 10-20 cossem cpy + po.	m scale. Andesitic @ 136.2 i	s 1 cm x
138.5 - 138.7	Fault bx, andesite frags in	a calcite-chlorite-plag vein matrix.		
138.7 - 144.3	Self healed f. gr Hbld, dio	rite intrusive bx patchy chlorite and∕or epid	ote alt.	
145.2 - 146.0	F. gr. accret. lapilli xstal	tuff, xenolith.		
146.0 - 150.0	Self healed hbl. dior bx., p	atchy chlorite - epid. alt pyrite smears on f	ract surface at 148.0.	
150.0 - 169.4		ggestion of weak flow banding at 450 CA. A		
@ 161.5 - 163.0		rel. weak - mainly chlorite, tr epid v. minor CA. Possible flow bx contacts @ 163, 165 -		es.
169.4 - 202.0	M. gr hornblende - plagiocat 174.0, 175.3.	lase porphyritic diorite generally fresh, min	or epidote on fractures poss	flow bxn
@ 180.5 @ 184.2 @ 188.0 @ 188.5 @ 189.0 @ 194	3 mm epidote-calcite veir 1 cm qz vn with tr cpy at Broken core. Intr flow bx, chlorite alt, Chilled zone, loss of plag 1 cm complex qz-calcite-	margins. minor blebs of f.gr cpy through 5 cm of core phenos, 5 cm of epidote-chlorite-calcite "go	e. uge" 30 cm. Similarly at 192	2.5 m.

NTS: 92P/9

COORDINATES:	Heidi Lk Grid 1 300 W, 1770 S	INCLINATION: Vertical BEARING:	TOTAL DEPTH 244.5 m	p. 5 of 5						
STARTED: FINISHED: LOGGED BY:	Aug 15/88	DESCRIPTIVE GEOLOGY		HOLE NO. 88-10						
Metres										
@ 195		e is "punky", broken increasing to 196.7 who	ere is 20 cm clay-chlorite-ep	oidote fault						
@ 199.0		gouge at 35° CA. Still in m. gr hbl-plag diorite porphyry. Flow bx and chilled zone 30 cm.								
202.0 - 205.0 @ 205.0	Finer grained zone, partial loss of plag phenos. Weak flow foliation. Broken zone with calcite-chlorite fracts.									
205.0 - 213.0	Coarser hbl-plag diorite por	phyry broken zone at 207.0 m.								
213.0 - 217 .0		frags of m.gr hbl-plag porph diorite, matri rags, some open spaces, tr calcite, minor la								
217.0 - 244.5	Finer grained, more epidote Healed intr. box @ 226.0 fo	rich, hornblende porphyritic diorite w/o pl r 20 m - Tr pyr.	ag phenos. Irreg calcite vei	ns @ 221.						
227.2 - 227.9	Broken clay altered fault zo to 234.	one. From 229 on the unit is broken on epid	ote <u>+</u> chlorite fractures with	n trace pyr						
234 - 238	Weakly fractured, less epide	ote								
244.5 EOH										

and the contract of the contra

APPENDIX 5

GEOCHEMICAL & ASSAY RESULTS

COMPANY: TERRANE RESOURCES MIN-EN LABS ICP REPORT (ACT:F31) PAGE 1 OF 1
PROJECT NO: HAIDA 8803 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 8-1095/P1+2

PROJECT NO: HAIDA B	803		705 WEST	15TH ST	NORTH VANCO	UVER.	B.C. V	7H 1T2		FILE NO: 8-1095/P1+2
ATTENTION: C.J.WEST				(604) 980-5	B14 OR (604	988-	4524	# TYPE	ROCK GEOCHEM	DATE: AUGUST 2, 1988
(VALUES IN PPM)	A6	AS	CU	PB	SB	ZN	AU-PPB			
H8813.04-6.00	.5	25	43	38	2	70	3	,		
H8816.00-8.23	4.5	27	28	15	8	31	1			
H8819.76-11.00	4.0	21	30	23	5	41	2)		
H8B111.00-13.0	3.9	20	31	17	6	34	3	5		
		27	42	15	5	32	1			
H88113.00-15.0	4.0			21		38		i		
H88115.00-17.0	3.9	38	61		5	38	7			
H88117.00-19.0	4.0	26	52	14	7	46	3			
H88119.00-21.5	4.3	28	67	20	-		2			
H88121.50-23.1	.3	22	103	12	2	33	4	<u> </u>		
H88123.10-24.1	8	9	302	16	1	124				
H88124.10-25.0	3.1	19	37	14	4	47	5)		
H88125.00-27.0	2.1	16	1081	18	1	48	1			
H88127.00-29.0	.5	24	87	13	1	23	4			
H88129.00-31.0	.5	25	72	14	1	25	2	2		
H88131.00-33.0	.2	24	54	13	2	14	7	. 		
H88133.00-35.0	.5	28	56	15	4	15	3	5		
H88135.00-37.0	.3	29	38	14	3	19	7	2		
H88137.00-39.0	.3	26	39	14	2	34	7	2		•
H88139.00-41.0	.4	32	37	11	3	25	5	5		
	.1	18	92	15	2	47	2			
H88141.00-43.0	:	18	<u>/</u> 2	13	<u>-</u>	61				
H88143.00-45.0					2	16	_	3		
H88145.00-47.0	.3	24	31	16	2	16	ì	i		
H88147.00-49.0	.5	23	30	18			7	2		
H88149.00-51.0	.5	25	80	18	2	144				
H88151.00-53.0	1	23	39	20	3	<u>-41</u>		<u> </u>		
H88153.00-55.0	.5	27	42	14	4	46		7		
H88155.00-57.0	. 4	26	33	15	2	23	-	2		
H88157.00-59.0	.1	22	34	39	2	66		3		
H88159.0-59.8	1.1	27	94	20	1	41	- 7	2		
H88159.80-61.45	.1	22	29	19	1	31		<u> </u>		
H88161.45-63.3	1.7	8	52	8	1	145	- 2	2		
HB8163.30-65.0	.5	23	25	16	2	34	:	1		
HB8165.0-67.0	.2	30	25	15	4	29	1	1		
H88167.0-68.2	.8	23	25	10	3	21	4	4		
H88168.2-70.2	1.3	11	53	15	8	64	1	1		
H88170.2-72.0		<u>25</u>	31	10	2	28		2		
H88172.0-74.0	.1	23	30	12	2	54		1		
H88174.0-76.0	.4	28	24	14	ī	31		2		
		27	23	15	2	20		- 3		
H88176.0-78.0	.4		23 23	16	5	25	·	2		
H88178.0-80.0	5	31				23		<u></u> 1		
H88180.0-82.0	.1	27	26	16	4 7	22		2		
H88182.0-83.3	.3	28	25	13	3			<u> </u>		
H88183.3-85.1	2.8	14	37	6	8	25				
H88185.1-87.0	.4	27	23	16	2	15		1		
H88187.0-89.0	4	27	24	<u> 17</u>	2	19		<u> </u>		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
H88189.0-91.0	.1	29	24	15	2	20		i -		
H88191.0-93.0	.5	24	71	19	1	25	,	2		
H88193.0-95.0	. 4	25	26	14	2	27		1		
H88195.0-97.0	.2	29	47	12	4	27		1		
H88197.0-99.0	.1	27	29	15	7	56		2		
H88199.0-101.0	.5	27	25	14	4	22		5		
H881101.0-103.0	.5	21	34	22	2	33	1	2		
H881103.0-105.0	.3	24	31	13	4	39		4		
H881105.0-107.2	.1	26	27	14	2	33		1		
H881107.2-108.1	1.4	20	45	14	2	22		2		
				16	<u>2</u>	<u>55</u>		1 1		
H881108.5-109.5	.5	20		13	3	36		1		
H881109.5-110.5	2.0	26 74	38 70		J A	36 24		3		
H881110.5111.2	. 4	34	39	14	7	43 63		ว		
H881111.2-112.6	1.3	25	42	16	4			1		
H881112.6-115.4	.5	24	28	16	3	140		1		

COMPANY: TERRANE RES			705 WEST			ICP REPORT		172			(1	ACT:F31) P FILE NO:	PAGE 1 8-10	
ATTENTION: C.J.WESTE	RMAN			(604) 980	-5814 OR	(604) 988-	-4524	# TYPE	ROCK	6EOCHEM	‡	DATE: AUGL	JST 3,	1988
(VALUES IN PPM)	A6	AS	CU	PB	SB	ZN	AU-PPB							
H881 115.4-117.2	3.6	68	66	22	6	35	2							
H881 117.2-118.4	.7	18	75	24	3	105	1							
H881 118.4-119.3	3.1	36	74	18	7	27	2							
H881 119.3-121.6	.2	21	34	17	3	93	5							
88WR 35	4.3	25	583	16	40	285	180							
88WR 36	4.6	24	897	19	3	47	300							
88WR 37	1.7	13	56	14	6	32	20							
88WR 38	.3	12	320	22	1	11	24							
88WR 39	.5	73	192	23	1	18	16							
88WR 41	.4	3	71	16	1	21	149							

y

COMPANY: TERRANE RESOURCE	MANAGEMENT	TNC.	HIN-E	N LABS I	CP REPORT				(ACT:F31) PAGE 1 OF 1
PROJECT NO: HAIDA 8803	initioene.	705 WEST			ANCOUVER,	B.C. V7M	1T2		FILE NO: 8-1161/P1
ATTENTION: C.J.WESTERMAN			(604) 980-	-5814 OR	(604) 988-4	1524	TYPE ROCK	6EOCHEM #	DATE: AUGUST 11, 1988
(VALUES IN PPM)	AG	AS	CU	PB	SB	ZN	AU-PPB		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
88WR4B	.7	24	422	16	3	19	940		
88WR49	.2	122	403	12	1	22	37		
88WR50	.7	118	395	12	10	15	15		
88WR51	1.0	22	2319	21	9	56	10		
88WR52	.3	34	198	19	3	23	8		
88¥R53	.8	30	107	18	5	41	5		
88WR54	.9	18	3887	18	12	126	17		
88WR55	.6	23	396	13	5	59	6		
88WR56	1.7	40	237	17	3	54	7		
DDH88-2-3.04-5.00	.5	56	85	14	2	56	6		
DDH88-2-5.00-7.50	.3	17	26	11	3	181	4		
DDH88-2-7.50-8.50	. 4	31	54	19	3	30	100		
DDH88-2-B.50-11.20	.4	28	97	21	4	188	10		
DDH88-2-11.20-13.00	.3	43	100	15	2	717	17		
DDH88-2-13.00-15.50	.3	32	46	13	3	327	8		
DDH88-2-15.50-17.00	. 4	11	53	16	3	89	154		
DDH88-2-17.00-18.50	.2	7	32	15	4	239	15		
DDH88-2-18.50-20.00	.3	33	75	15	3	35	16		
DDH88-2-20.00-22.00	.4	17	59	15	4	123	2		
DDH88-2-22.00-24.00	4	5	60	13	2	157	<u>8</u>		
DDH88-2-24.00-26.00	,4	12	20	8	4	49	6		
DDH88-2-26.00-28.00	.6	7	42	10	3	43	40		
DDH88-2-28.00-30.00	.2	10	22	10	3	18	18		
DDH88-2-30.00-32.00	.4	11	20	13	4	13	3		
DDH88-2-32.00-34.00	.3	5	17	12	<u> </u>	15	16		
DDH88-2-34.00-36.00	.2	5	20	10	3	15	5		
DDH88-3-2.00-4.0	.4	4	17	10	3	26 70	10		
DDH88-3-4.00-6.0	.4	7	26	12	3	38	12		
DDH88-3-6.00-8.0	.3	9	13	10	4	30	10 4		
DDH88-3-8.00-10.00	.5	7	13	<u> </u>	3	28	-		
DDH88-3-10.00-12.00	.5	7	14	11	4	25	٠ 		

•

COMPANY: TERRANE R	.M. INC.			MIN-E	N LABS IC	P REPORT	•			(ACT:F31) PAGE 1 OF
PROJECT NO: HAIDA			705 WEST	15TH ST.,	NORTH VA	NCOUVER,	B.C. V	7M 1T2		FILE NO: 8-1166/P1+
ATTENTION: C.J.WES				(604) 980-	5814 OR (604) 988-	4524	# TYPE RO	CK GEOCHEM *	DATE: AUGUST 11, 198
(VALUES IN PPM)	AG	AS	CU	PB	SB	ZN	AU-PPB			
3-24.0-25.5	.4	9	15	8	3	25	2			
3-25.5-26.0	.6	46	65	18	4	29	1			
3-26.0-28.0	.2	7	16	12	2	26	1			
3-28.0-30.0	.1	13	26	13	1	20	3			
3-30.0-32.0	.3	5_	17	8	2	26	2			
3-32.0-34.0	.4	9	16	12	3	22	2			
3-46.3-47.4	.2	93	66	16	1	35	2			
3-47.4-49.0	. 4	12	16	12	2	65	3			
3-49.0-50.6	.5	11	23	14	1	42	4			
3-50.6-51.6	.7	48	70	17	3	27				
3-51.6-54.0	. 4	13	23	11	4	57	2			
3-54.0-56.0	.3	6	16	8	3	25	2			
3-12.4-14.0	.2	9	12	11	3	52	1	•		
3-14.0-16.0	.2	15	12	7	1	12	1	•		
3-16.0-18.0	5	7	<u> 11</u>	6	3	10				
3-20.0-22.0	.4	8	14	7	3	15				
3-18.0-20.0	.5	12	15	9	4	20	2			
3-22.0-24.0	.1	12	14	11	3	18	1			
3-34.0-36.45	.4	16	14	11	5	24				
3-36.45-37.8	9	48	49	24	3	159				
3-37.8-40.0	.5	7	11	7	1	20		2		
3-40.0-42.0	.4	11	14	10	2	33		}		
3-42.0-44.0	.2	14	16	10	2	37		,		
3-44.0-46.3	.5	13	15	11	3	23		<u>.</u>		
3-56.0-58.0	.3	13	16	<u>8</u>	4	19		<u></u>		
3-58.0-60.3	.5	11	14	6	2	24		<u>!</u>		
3-60.3-62.8	1.1	23	78	21	5	41))		
3-62.8-64.1	.5	13	23	7	4	22	•	<u> </u>		
3-64.1-66.1	.5	19	43	11	4	28		l E		
3-66.1-67.5	1.5	40	96	19	<u>1</u>	<u>32</u>		5		
3-67.5-70.1	.4	15	15	10	2	32		2		
3-70.1-72.1	.1	10	46	10	3	22	•	3		
3-72.1-74.1	.3	18	104	31	4	114		1		
3-74.1-77.1	.5	10	74	13	3	30		ī		

MIN-EN LABS ICP REPORT (ACT:F31) PAGE 1 OF 1 COMPANY: TERRANE RESOURCE MANAGEMENT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 8-1166/P3+4 PROJECT NO: HAIDA 8803 DD88-4 (604)980-5814 DR (604)988-4524 * TYPE ROCK GEOCHEM * DATE: AUGUST 11, 1988 ATTENTION: C.J.WESTERMAN (VALUES IN PPM) ZN AS CU PB SB AU-PPB 4-15.0-17.0 .5 .2 4-17.0-18.8 .3 4-18.8-20.5 4-20.5-22.0 .5 4-22.0-24.0 , 4 .5 4-24.0-25.2 4-25.2-27.0 .3 4-27.0-29.0 .3 4-29.0-31.0 .1 <u>2</u>. 4-31.0-33.0 .5 4-33.0-35.0 . 4 4-35.0-37.0 .4 4-37.0-39.0 .5 .5 4-39.0-40.3 4-40.3-42.5 1.0 4-42.5-44.9 .5 4-44.9-47.0 1.3 4-47.0-49.0 1.1 4-49.0-51.0 1.6 4-51.0-53.0 1.1 4-53.0-54.0 .3 4-54.0-56.5 .4 4-56.5-58.5 .2 4-58.8-60.6 .2 .5 4-3.0-5.0 <u>2</u> 4-5.0-7.0 .4 4-7.0-9.0 .3 4-9.0-11.0 .4 4-11.0-13.0 .3 .2 4-13.0-15.0 WR58 .9 WR59 .7

COMPANY: TERRANE RESOURCES MIN-EN LABS ICP REPORT (ACT:F31) PAGE 1 OF 1 PROJECT NO: HAIDA 8803 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 8-1191/P2+3 ATTENTION: C. WESTERMAN (604)980-5814 OR (604)988-4524 # TYPE ROCK GEOCHEM # DATE: AUGUST 19, 1988 SB ZN AU-PPB AS CU PB (VALUES IN PPM) AG .7 88460.0-62.0 .3 88462.0-64.0 88464.0-66.0 . 4 88466.0-67.9 .4 88457.9-58.7 1.3 88458.7-71.0 .4 .3 88471.0-73.0 88473.0-75.1 .3 88475.1-77.0 1.1 88477.0-79.0 88479.0-81.0 .5 88481.0-83.0 . 4 88483.0-85.0 . 4 .3 88485.0-87.0 88487.0-89.0 88489.0-91.0 1.1 88491.0-93.0 .2 88493.0-95.0 .5 88495.0-96.1 1.1 88496.1-98.1 1.8 88498.1-98.7 1.7 88498.7-99.8 1.9 88499.8-101.0 1.7 884101.0-103.0 1.5 884103.0-105.0 1.5 884105.0-107.0 1.5 1.5 884107.0-109.0 884109.0-110.4 1.7 884110.4-112.0 1.8 884112.0-113.0 2.1 884113.0-114.0 1.6

Activities and a second

884114.0-116.0

884116.0-118.0

2.1

1.9

SOURCES											ACT:F31) PAGE 1 OF 1
		705 WEST									
ERMAN			(604) 980-	5814 OR	(604) 988-	4524	# TYPE	ROCK	GEOCHEM	1	DATE:AUGUST 12, 1988
AG	AS	CU	PB		ZN	AU-PPB					
.3	2	32	10	4	132	7					
.1	11	91	11	2	985	2					
.2	9	18	10		119	8					
.3	12	66	9	5	315	4					
.5	11	32	10	3	271	8					****
.2	6	32	9	1	381	6					
.4	61	42	21	3	210	2					
. 4	29	18	13	2	24	1480					
.3	13	105	17	2	32	37					
.3-	15	214	16	1	12	15					
.2	23	133	18	3	14	335					
.4	8	68	13	4	22	10					
.2	18	383	14	5	19	12					
.5	24	122	13	3	21	10					
. 4	14	63	17	1	13	1050					
. 4	1	353	11	10	13	522					
.5	20	270	20	8	15	1100					
.2	56	327	15	16	14	180					
.3	41	87	17	5	16	351					
	AG .3 .1 .2 .3 .5 .2 .4 .4 .3 .2 .4 .2 .5 .4	803 ERMAN AG AS .3 2 .1 11 .2 9 .3 12 .5 11 .2 6 .4 61 .4 29 .3 13 .3 15 .2 23 .4 8 .2 18 .5 24 .4 14 .4 1 .5 20 .2 56	803 705 WEST ERMAN AG AS CU .3 2 32 .1 11 91 .2 9 18 .3 12 66 .5 11 32 .2 6 32 .4 61 42 .4 29 18 .3 13 105 .3 15 214 .2 23 133 .4 8 68 .2 18 383 .5 24 122 .4 14 63 .4 1 353 .5 20 270 .2 56 327	803 705 WEST 15TH ST., (604)980- ERMAN CU PB .3 2 32 10 .1 11 91 11 .2 9 18 10 .3 12 66 9 .5 11 32 10 .2 6 32 9 .4 61 42 21 .4 29 18 13 .3 13 105 17 .3 15 214 16 .2 23 133 18 .4 8 68 13 .2 18 383 14 .5 24 122 13 .4 14 63 17 .4 14 63 17 .4 1 353 11 .5 20 270 20 .2 56 327 15	803 705 WEST 15TH ST., NORTH V (604) 980-5814 OR AG AS CU PB SB .3 2 32 10 4 .1 11 91 11 2 .2 9 18 10 3 .3 12 66 9 5 .5 11 32 10 3 .2 6 32 9 1 .4 61 42 21 3 .4 29 18 13 2 .3 13 105 17 2 .3 15 214 16 1 .2 23 133 18 3 .4 8 68 13 4 .2 18 383 14 5 .5 24 122 13 3 .4 14 63 17 1 .4	REMAN	Reman Rema	ROS	The series Total St., North Vancouver, B.C. V7M TT2	ROS	## AG

and the second s

(ACT:F31) PAGE 1 OF 1 MIN-EN LABS ICP REPORT COMPANY: TERRANE RESOURCE HANAGEMENT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 8-1203R/F1 PROJECT NO: HAIDA 8803 ATTENTION: C.WESTERMAN/K.KENT PB ZN AU-PPB CU SB (VALUES IN PPM) A6 .3 88-5-41.0-43.0 . 4 88-5-43.0-45.0 .4 88-5-45.0-47.0 .5 88-5-47.0-49-0 88-5-49.0-51.4 1.2 88-5-51.4-52.6 .5 88-5-52.6-53.6 . 4 88-5-53.7-55.7 1.4 88-5-55.7-58.1 88-5-58.1-60.2 88-5-60.2-62.4 .5 1.2 88-5-62.4-63.7 1.8 88-5-63.7-65.3 2.0 88-5-65.3-67.0 88-5-67.0-69.4 1.8 1.5 88-5-68.4-70.1 1.8 88-5-70.1-72.0 1.8 88-5-72.0-73.5 88-5-73.5-75.0 1.9 88-5-75.0-76.7 1.1 88-5-76.7-78.9 1.4 1.2 88-5-78.9-80.9 88-5-80.9-82.6 1.6 98-5-82.6-84.0 1.1 88-5-84.0-86.0 1.0 88-5-86.0-88.1 1.1

COMPANY: TERRANE RESOURCE MANA	GEMENT	•	MIN-	EN LABS ICF	REPORT				(ACT:F31)	PAGE 1 DF 1
PROJECT NO: HAIDA 8803		705 WEST	15TH ST.	, NORTH VAN	COUVER,	B.C. V7M	1T2		FILE NO: 8	-1218R/F1+2
ATTENTION: C.WESTERMAN/K.KENT			(604) 980	-5814 OR (8	504) 988-4	4524	TYPE ROCK	GEOCHEM #	DATE: AUGU	ST 19, 1988
(VALUES IN PPM)	A6	AS	CU	PB	SB	ZN	AU-PPB			
DDH 89-6-3.65-5.0	1.5	29	94	31	1	93	3			
DDH 88-6-5.0-7.0	1.5	33	75	37	1	109	2			
DDH 88-6-7.0-9.0	1.4	151	51	13	1	40	2			
DDH 88-6-9.0-11.0	1.8	43	95	17	1	25	1			
DDH 88-6-12.5-14.0	.8	278	458	20	1	26	4			
DDH 88-6-14.0-15.3	1.0	152	637	22	i	26	4			
DDH 88-6-15.3-16.3	. 9	189	116	18	1	22	6			
DDH 88-6-16.3-18.0	1.8	382	427	18	1	41	3			
DDH 88-6-18.0-20.0	1.0	84	97	19	1	27	2			
DDH 88-4-20.0-22.3	.9	24	300	17	1	20	3			
DDH 88-6-22.3-23.7	1.0	34	850	19	1	32	8			
DDH 88-6-23.7-25.7	1.1	61	220	16	1	39	5			
DDH 88-6-25.7-27.2	.7	65	88	23	1	51	i			
DDH 88-6-27.2-28.7	.7	71	3	23	1	51	2			
DDH 88-6-28.7-30.2	1.1	95	62	22	4	106	4			
DDH 88-6-30.2-31.4	1.3	96	193	46	6	4 30	4			
DDH 88-6-31.6-33.0	1.6	52	129	14	i	115	3			
DDH 88-6-33.0-34.2	1.7	155	170	19	1	3 9	1			
DDH 88-6-34.2-36.0	1.5	142	127	19	8	54	2			
DDH 88-6-36.0-37.3	1.4	- 68	55_	22	8	110	2			
DDH 88-6-37.3-39.0	1.2	58	31	15	5	118	3			
DDH 88-6-39.0-41.0	1.1	58	76	16	1	344	1			
DDH 88-6-41.0-43.0	1.1	33	40	24	2	163	2			
DDH 88-6-43.0-45.0	1.0	40	45	28	3	153	1			
DDH 88-6-45.0-47.0	1.4	61	69	49	7	529	4			
DDH 88-6-47.0-49.0	1.4	71	51	32	15	1241	3			
DDH 88-6-49.0-51.0	1.3	42	60 ·	20	5	704	2			
DDH 88-6-51.0-53.0	.8	38	39	22	4	141	4			
88WR57	.8	38	1194	16	1	56	463			
88WR58A	.6	67	152	14	11	37	103			
88WR60	.5	26	464	11	1	10	13			
DDH88-6-11.0-12.5	1.5	256	178	14	2	144	9			

(ACT:F31) PAGE 1 OF 1 MIN-EN LABS ICP REPORT COMPANY: TERRANE RESOURCE MANAGEMENT FILE NO: 8-1223R/P1 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 PROJECT NO: HAIDA 8803 (604)980-5814 OR (604)988-4524 # TYPE ROCK SEOCHEM # DATE: AUGUST 19, 1988 ATTENTION: C.WESTERMAN/K.KENT (VALUES IN PPM) CU PB SB ZN AU-PPB 1.8 DDH88-7-2.5-5.0 1.9 DDH88-7-5.0-7.0 DDH88-7-7.0-9.0 1.8 1.8 DDH88-7-9.0-11.0 25 DDH88-7-11.0-13.0 1.8 1.7 DDH88-7-13.0-14.0 DDH88-7-14.0-15.5 .6 DDH88-7-15.5-16.5 1.0 DDH88-7-16.5-17.4 1.1 22 DDH88-7-17.4-18.4 .9 DDH88-7-18.4-19.4 .8 DDH88-7-19.4-20.4 .6 .8 DDH88-7-20.4-21.4 DDH88-7-21.4-23.4 .9 DDH88-7-23.4-24.4 1.1 DDH88-7-24.4-25.4 1.0 .9 DDH88-7-25.4-26.8 DDH88-7-25.8-28.2 .6 .9 DDH88-7-28.2-30.0 DDH88-7-30.0-32.0 1.2 DDH88-7-32.0-34.0 1.0 DDH88-7-34.0-36.0 1.4

1.4

DDH88-7-36.0-38.0

COMPANY: TERRANCE RESOURCES

MIN-EN LABS ICP REPORT

(ACT:F31) PAGE 1 OF 1

A 5 1 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1									
PROJECT NO: HAIDA	8803/DDH88-7		705 WEST	15TH ST.,	NORTH \	VANCOUVER,	B.C. V71	1 1T2	FILE NO: 8-1225/P1+2
ATTENTION: K.KENT	/C.WESTERMAN			(604) 980-		(604) 988-	4524	# TYPE ROCK GEOCHE	M # DATE: AUGUST 19, 1988
(VALUES IN PPM)	AG	AS	CU	PB	SB	ZN	AU-PPB		
DDH88-7-38.0-39.	5 .9	73	25	23	2	58	2		
DDH88-7-39.5-41.0	.9	41	48	11	1	47	• 4		
DDH88-7-41.0-43.0	.7	52	39	17	1	62	3		
DDH88-7-43.0-45.0	1.7	36	70	16	1	63	4		
DDH88-7-45.0-47.0	1.4	80	114	27	5	284	3_		
DDH88-7-47.0-49.0	1.0	38	67	9	1	146	2		
DDH88-7-49.0-51.0	1.2	27	54	25	4	172	5		
DDH88-7-51.0-53.	.9	23	47	20	1	146	2		
DDH88-7-53.0-55.0	,9	39	44	21	1	142	3		
DDH89-7-55.0-57.0	1.1	47	98	63	6	503	5_		
DDH88-7-57.0-59.0	1.4	61	46	29	6	495	2		
DDHB8-7-59.0-61.0	1.5	137	77	72	14	3422	1		
DDH88-7-61.0-63.0		55	57	18	7	106	6		
DDH88-7-63.0-65.0		47	39	31	7	146	2		
DDH88-7-65.0-67.		58_	48	35	6	167	2_		
DDH88-7-67.0-69.0	.8	40	48	39	3	15 3	10		
DDH88-7-69.0-71.0	.9	46	51	24	4	124	2		
DDH88-7-71.0-73.0	.6	31	22	25	4	64	4		
DDH88-7-73.0-74.2		39	23	30	3	44	8		
DDH88-7-74.2-75.5		<u>73</u>	32	33	<u> </u>	73	14		
DDH88-7-75.5-76.9		51	79	17	1	33	2		
DDH88-7-76.9-79.0		47	36	29	1	83	5		
DDH88-7-79.0-81.0		25	54	22	3	177	6		
DDH88-7-81.0-83.0		24	37	21	3	138	1		
DDH88-7-83.0-85.0		26	40	23	3	91	2_		~~~
DDH88-7-85.0-87.0		37	47	23	- 4	177	2		
DDH88-7-87.0-89.0		26	53	30	8	299	1		
DDH88-7-89.0-91.0		38	35	23	6	215	1		
DDH88-7-91.0-93.0	-	29	30	23	4	125	3		
DDH88-7-93.0-95.0		30	27	22	4	49	2		~~~~
DDH88-7-95.0-97.0		10	49	15	1	49	1		
DDH88-7-97.0-98.8	.4	13	20	17	4	45	2		

CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

<u>Certificate of GEOCHEM</u>

Company: TERRANE RESOURCES

Project:HAIDA 8803 "Attention:C.WESTERMAN File:8-1297/P1 Date:AUG.31/88

Type:ROCK GEOCHEM

He hereby certify the following results for samples submitted.

Sample Number	AU-FI PPB	RE AS PPM	AG PPM	PB PPM	CU PPM	ZN PPM	SB PPM
88 8 7.62-10 88 8 10-11 -88 8 11-12 88 8 12-13 88 8 13-14	525 316 61 40 19	22 16 17 18 40	1.9 1.7 1.6 1.8 2.4	44 51 36 39 43	22 17 16 19 183	56 44 29 41 32	1 2 1 1 1
88 8 14-15 88 8 15-16 88 8 16-17 A 88 8 16-17 B 88 8 18-19	18 263 6100 3350 1370	30 30 22 68 20	1.6 1.7 1.6 2.0 1.8	37 35 28 32 36	22 45 39 135 84	28 27 24 29 36	3 4 1 1
8 19-20 88 8 20-21 88 8 21-22.3 88 8 23.3-24 88 8 24-26	185 102 640 29 4	45 10 21 12 10	1.4 1.6 1.9 2.1 2.4	3 9 37 42 54 63	123 37 276 49 23	59 25 32 267 81	1 1 1 1
88 8 26-28 -88 8 28-30 88 8 30-32 88 8 32-34 _88 8 34-36.9	3 6 14 8 5	14 8 12 13 20	2.2 2.4 2.1 2.3 1.6	61 56 59 58 44	22 15 16 18 36	179 38 51 69 52	3 1 1 1
88 8 36.9-37.6 88 8 37.6-38.7 -88 8 38.7-39.7 88 8 39.7-42 88 8 42-44.8	17 3 19 5 2	74 32 12 8 8	1.2 1.1 0.8 2.1 1.7	34 39 28 57 51	191 39 63 15 16	66 97 72 39 44	1 1 1 1
88 8 44.8-45.6 88 8 45.6-47.9 88 9 33-35 88 9 35-37 88 9 37-39	3 4 4160 7500 97	2250 17 23 18 22	0.7 1.9 1.7 2.1 1.1	27 92 36 37 29	114 19 89 91 138	49 109 38 39 47	70 1 1 1

Certified by

COMPANY: TERRANE RESOURCES MIN-EN LABS ICP REPORT (ACT:F31) PAGE 1 0F 1 PROJECT NO: HAIDA 8803-88-90DH 705WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 8-1256/P1 (604)980-5814 OR (604)988-4524 # TYPE ROCK GEOCHEM # DATE: AUGUST 27, 1989 ATTENTION: C.WESTERMAN/K.KENT (VALUES IN PPM) AU-PPB 3 CU 5 SB AG ZN 4.3-5.0 1.1 5.0-7.0 .8 7.0-9.0 .6 9.0-10.2 .9 10.2-10.6 .6 10.6-12.6 .5 12.6-14.6 1.0 14.6-16.4 .8 16.4-17.4 .7 17.4-18.4 1.0 15 18.4-20.2 .5 20.2-20.6 .7 20.6-22.0 .8 22.0-23.0 .7 23.0-25.0 1.0 25 25.0-27.0 1.3 27.0-29.0 .8

29.0-31.0

31.0-33.0

.5

.7

SPECIALISTS IN MINERAL ENVIRONMENTS
CHEMISTS · ASSAYERS • ANALYSTS • GEOCHEMISTS

705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD

VANCOUVER OFFICE:

P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of Geochem

Company:TERRANE RESOURCE Project:HAIDA 8803 Attention:C.WESTERMAN File:8-1297/P2 Date:AUG 31/88 Type:ROCK GEOCHEM

He hereby certify the following results for samples submitted.

Sample	AU-FIRE	SB	AS	AG	PB	CU	ZN
_Number	PPB	PPM	PPM	PPM	PPM	PPM	PPM
88 9 39-40.2 88 9 40.2-42 88 9 42-43.5 88 9 43.5-45 88 9 45-46.7	148 263 124 21 13	1 3 9 7 1	25 32 20 16 23	1.6 1.0 .9 .6	27 19 23 17 19	77 128 49 79 110	29 82 53 59 55
88 9 46.7-48.7	25	2	30	.8	18	141	66
88 9 48.7-50.7	42	1	20	.6	16	98	59
88 9 50.7-51.4	9	1	18	1.0	19	63	64
88 9 51.4-53	980	1	24	2.3	29	157	36
88 9 53-55	207	1	29	1.2	23	181	87
7 ; 9 55-57 88 9 57-59 88 9 59-61 88 9 61-63 88 9 63-65	233 84 418 59 76	1 1 4 5	29 24 15 19 18	1.1 .5 .6 .6	18 16 9 19 8	344 184 78 71 46	88 47 48 48 31
88 9 65-67	54	2	30	.6	13	83	47
88 9 67-69	9	1	31	1.1	34	359	72
88 9 69-71	1020	1	33	1.0	33	253	69
88 9 71-73	10	3	26	.7	17	187	56
-88 9 73-75	79	2	27	.8	22	131	49
88 9 75-77	44	6	33	1.3	26	89	98
-88 9 77-79	165	5	18	1.1	21	152	66
-88 9 79-81	41	5	25	.9	79	122	189
88 9 81-83	18	4	21	1.0	18	1 89	71
88 9 83-85	62	1	23	1.2	19	103	56
88 9 85-87	3220	1	27	1.8	27	267	48
88 9 87-89	93	2	21	.9	14	113	55
88 9 89-91	189	1	15	2.4	34	110	33
88 9 91-93	46	8	26	.7	11	119	57

Certified by_

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate Geochem o f

Company: TERRANE RESOURCE -Project:HAIDA 8803

Attention: C. WESTERMAN

File:8-1297/P3 Date: AUG 31/88

Type:ROCK GEOCHEM

_He hereby certify the following results for samples submitted.

Sample -Number	AU/FIRE PPB	PPM	AS PPM		PPM	CU PFM	ZN PPM
88 9 93-95 — 88 9 95-97 88 9 97-98.8 88 10 56-58 88 10 58-60	165 21 19 2 2	6 2 5 1	26 28 17 20 50	.7 .5 .9 .7	18 16 24 23 16	182 105 156 28 55	46 64 55 78 44
88 10 60-62 88 10 62-64 -88 10 64-66 88 10 66-68 38 10 68-70	1 5 3 2 2	2 3 5 2	86 25 23 23 17	.5 .4 .5 .4 .6	17 16 19 18 21	23 16 29 28 22	48 47 52 59 43
10 70-72 88 10 72-74 98 10 74-76 88 10 76-78 98 10 78-80	1 4 6 9 3	1 1 1 2 1	20 19 12 13	.5 .4 .4 .6	16 14 14 20 19	22 39 39 17 23	45 49 49 48 52
	8 2 4 2 1	7 2 2 7 2	18 17 19 16	.6 .5 .5 .4	16 21 54 18 15	25 24 19 22 15	58 62 51 52 46
88 10 90-92 -88 10 92-94 88 10 94-96 88 10 96-98 _88 10 98-100	3 2 2 2 4 3	1 6 2 1	10 11 14 12 11	.5 .6 .5 .4	19 18 23 17 21	13 35 26 23 36	47 51 50 48 45
88 10 100-102 88 10 102-104 -88 10 104-106 88 10 106-108 88 10 108-110	4 2 2 1 5	8 9 2 10 2	12 14 16 36 16	.6 .6 .7 .5	23 23 14 16 15	27 27 19 22 13	42 42 37 128 59

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

VANCOUVER OFFICE:

VANCOUVER OF FIGURE 1 1 TO 1 TO

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

of GEOCHEM Certificate

Company: TERRANE RESOURCES

Project:HAIDA 8803

Attention:C WESTERMAN/K.KENT

File:8-1280/P1 Date: AUG 31/88

Type:ROCK GEOCHEM

-We hereby certify the following results for samples submitted.

_Sample Number	SB PPM	AU-FIRE PPB	AS PPM	AG PPM	CU PPM	PB PPM	ZN PPM
9-11 DDH88-10 -11-13 DDH88-10 13-15 DDH88-10 15-17 DDH88-10 -17-19 DDH88-10	1 1 2 4 1	14 3 8 2 5	72 32 20 23 18	1.0 0.7 0.6 0.6 0.4	. –	31 19 18 17	136 54 51 53 52
19-21 DDH88-10 21-23 DDH88-10 23-25 DDH88-10 25-27 DDH88-10 27-29 DDH88-10	1 2 1 1	3 3 6 2	20 20 13 18 13	0.7 0.8 0.8 0.6 0.4	6 8 3 12 9	21 18 19 17 15	49 54 47 88 48
29-31 DDH88-10 31-33 DDH88-10 _33-35 DDH88-10 35-37 DDH88-10 37-39 DDH88-10	1 1 2 1 3	3 2 1 2 2	12 17 10 17 13	0.9 0.8 0.6 0.5 0.9		16 14 18 21	46 49 48 50 52
39-41 DDH88-10 41-43 DDH88-10 43-45 DDH88-10 -45-47 DDH88-10 47-49 DDH88-10	1 1 1 2 2	4 2 2 2 3 1	22 25 27 18 25	0.6 0.7 0.8 0.6 0.7	43 27 39 26 36	15 17 19 24 14	51 53 56 44 49
49-50 DDH88-10 50-52 DDH88-10 52-54 DDH88-10 54-56 DDH88-10	1 1 1 2	5 3 2 7	22 22	0.4 0.5 0.5 0.6	20 17 22 21	13 19 16 21	43 36 61 73

Certified by_

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of Geochem

Company: TERRANE RESOURCE Project: HAIDA 8803 Attention: C. WESTERMAN

File:8-1297/P4 Date: AUG 31/88

Type:ROCK GEOCHEM

He hereby certify the following results for samples submitted.

Sample _Number	AU/FIRE FPB	PPM	AS PPM	AG PPM	CU PPM	PB PPM	ZN PPM
88 10 110-112 88 10 112-114 -88 10 114-116 88 10 116-117 88 10 117-119	2 5 1 2 2	1 1 2 1 1	12 13 18 47 153	.9 .6 .7 .8 1.4	14 18 17 22 163	15 14 16 19 41	45 54 107 258 483
88 10 119-120.2 88 10 120.2-122 88 10 122-124 88 10 124-126 88 10 126-128	4 6 3 3 2	1 1 2 1 2	32 25 27 33 28	1.8 .7 .9 .8	392 34 38 40 55	22 11 6 13	533 18 21 42 54
- ; 10 128-130 88 10 130-132 88 10 132-134 _88 10 134-136 88 10 136-138	2 1 2 2 4	1 2 3 3 1	22 20 50 17 13	.9 .8 .6 1.0	49 40 71 45 33	10 15 14 17 15	58 54 47 55 54
88 10 138-140 88 10 140-142 88 10 142-144 88 10 144-146 -88 10 146-148	2 1 6 4	1 1 1 1	12 12 10 8 12	.7 .9 .8 .7	27 11 9 3 10	16 15 13 14	43 48 44 41 42
88 10 148-150 88 10 150-152 88 10 152-154 88 10 154-156 98 10 156-158	2 3 12 2 4	1 2 1 1	15 18 20 15	.4 1.2 .5 .4	18 24 46 23 36	21 17 16 14 16	48 53 44 33 42
88 10 158-160 88 10 160-162 88 10 162-164 88 10 164-166 88 10 166-168	1 3 3 2 2	2 2 2 1 3	17 17 20 22 13	.7 .6 .6 .5	210 76 13 16 13	15 24 14 18 19	44 45 62 58 67
T88 10 118-119	3	1	42	.8	124	14	104

Certified by

• EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS
CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

VANCOUVEN OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7

TELEPHONE: (705) 264-9996

Certificate of Geochem

Company:TERRANE RESOURCES
Project:HAIDA 8803
—Attention:C.WESTERMAN

File:8-1297/P5 Date:AUG.31/88

Type:ROCK GEOCHEM

<u>We hereby certify</u> the following results for samples submitted.

Sample	AU-FIRE	PPM	AS	AG	CU	PB	ZN
Number	PPB		PPM	PPM	PPM	PPM	FFM
88 10 168-170	2	1	10	0.7	98	18	71
38 10 170-172	1	2	10	1.2	476	21	53
_38 10 172-174	1	2	8	1.0	203	9	45
88 10 174-176	2	1	12	0.9	86	14	49
38 10 176-178	3	1	7	1.2	103	16	50
88 10 178-180	1	1	8	0.8	59	13	49
88 10 180-182	2	3	10	0.7	44	15	46
38 10 182-184	2	2	10	0.5	39	11	49
-38 10 184-186	1	1	7	0.6	116	10	41
88 10 186-188	4	1	5	0.9	75	12	46
	6 2 2 5 1	1 2 2 3 4	7 7 7 5 8	0.8 0.7 1.0 0.9 0.8	163 52 194 197 169	15 13 17 11	48 43 44 42 43
38 10 198-200	7	1	13	0.7	111	16	49
_38 10 200-202	3	2	8	0.6	58	15	47
88 10 202-204	2	1	8	0.9	96	21	53
38 10 204-206	4	2	10	1.2	143	22	50
38 10 206-208	11	2	10	0.8	85	16	42
88 10 208-210 38 10 210-212 -38 10 212-214 88 10 214-216 38 10 216-218	3 4 3 2 2	2 2 1 1 2	5 7 15 20 12	0.9 0.8 1.2 0.8 0.7	100 55 191 107 113	19 22 16 19	51 50 53 59 55
88 10 218-220 98 10 220-222 38 10 222-224 -88 10 224-226 88 10 226-228	2 1 4 2 2	1 1 2 3 1	7 7 7 6 7	0.9 0.8 0.6 0.7	154 58 21 14	20 32 23 24 19	66 67 72 77 75

Certified by_

CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

SB

PPM

VANCOUVER OFFICE:

705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 •FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

CU

PPM

ΑG

FFM

<u>Certificate of Geochem</u>

PPM

AU-FIRE AS

PPB

Company: TERRANE RESOURCES
--Froject: HAIDA 8803
Attention: C. WESTERMAN

Sample

-Number

File:8-1297/P6
Date:AUG.31/88
Type:ROCK GEOCHEM

PB

PPM

ZN

PFM

<u>He hereby certify</u> the following results for samples submitted.

14000000					, , , ,	. ,	, , ,	
		anne na saidh ann an t-aire. L	S	273 44	0.7	9	19	64
-88 10		1	2	4	0.9	8	17	66
	232-234	1	3	5	0.8	48	18	58
	234-236	4	1	8	0.7	51	21	61
_88 10	236-238	2	5	4	0.6	107	19	60
	238-240	1	2	6	0.8	42	17	57
	240-242	1	4	3	0.7	18	20	56
-88 10	242-244.5	3	3	3	0.9	11	17	55
********							,	~~~~
7								
_								
*****							~~~~~~~~~~	
-								

-								
	कर की की की की कर कर की की के को कर की की							
_								

Certified by

CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

AU

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate OF ASSAY

Company: TERRANE RESOURCE MANAGEMENT roject:HAIDA 8803

File:8-1191/P1 Date: AUGUST 12/88

Attention: C. WESTERMAN

Sample

Type:ROCK GEOCHEM

le hereby certify the following results for samples submitted.

AU

Jemb 7 E	HU	HU			
_lumber	G/TONNE	DZ/TON			
98-5 18,0-20,0		A COLOR	er en	etr - oneigijountee ente veinnem ingritsprom i d e g ingritskoor i	en registration of the segment of the second entrance of the second
38-5 34.0-35.0	1.22				
788-5 36.3-37.4		0.036			
66-0 36.3-37.4	1.24	0.036			
- The	****			*************************	
**					
**************************************		····· ·· · · · · · · · · · · · · · · ·			

	•				
- Marie Paris Control of the Control		v	•		
_					
	•				
- 					
Name .					
(α	1
`				/()/	<i>J</i> :

Certified by

CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of ASSAY

Company:TERRANE RI Project:HAIDA 880 Attention:C.WESTER	3 .3 (1)	GEMENT]	File:8-1203/P1 Date:AUGUST 19/88 Type:ROCK ASSAY
We hereby certify	_ the follow	ing result	s for sampl	es submit	ted.
Sample Jumber	AU G/TONNE	AU OZ/TON			
88-5 51.4-52.6	1.67	0.049	。1756年,为4466年的1966年的1966年的2016年4月1日(1966年)1966年(1966年)1966年(1966年4月)	(ARCHAEL HAMP) (F.) - You JABACC 2016年1900年	AND CONTRACTOR OF THE CONTRACT
<u>-</u>					
	## ## ## ## ## ## ## ## ## ## ## ## ##				
•					
_					

	<u>, b vo siyoo</u> o a a a a a a a a a	# 14 M W W W W W W W W W W W W W W W W W W			***************************************
_					

Certified by____

LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

VAINCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certz	* f z	cat	e of	* <i>AS</i> S	SAY

Company: TERRANE RESOURCES
Project:HAIDA 8803-88-9DDH
Attention: C. WESTERMAN/K. KENT

File:8-1256/P1 Date: AUG. 27/88

Attention: C. WESTERM	AN/K.KENT				Тур	e:ROCK AS	SAY
He hereby certify	the follow	ing result	s for	samples	submitted	*	
Sample Number	AU G/TONNE	AU OZ/TON			and the second of the second o		
25.0-27.0	7.96		gge iga onijo	i i degree e e e e e e e e e e e e e e e e e	an in the state of	and the second s	
_							
			~~~~~~~~~	***			=======================================
-							
<u>.</u>							
		***************************************					*****
-							
	~~~~~				***		
<del>-</del>							
÷							
						, , , , , , , , , , , , , , , , , , ,	
		4,					
			+				
							********
·				a	7		

Certified by_



# LABORATORIES LTD.

### **SPECIALISTS IN MINERAL ENVIRONMENTS**

CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

### Certificate OF <u>assay</u>

Company: TERRANE RESOURCES

Project: HAIDA 8803 Attention: C. WESTERMAN File:8-1297/P1 Date: AUG. 31/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

Mage				
Sample Number	AU G/TONNE	AU OZ/TON		
98 8 16-17A 88 8 16-17B -88 8 18-19 88 9 33-35 88 9 35-37	6.24 3.70 1.57 5.78 8.45	0.182 0.108 0.046 0.169 0.246		
88 9 51.4-53 88 9 69-71 88 9 85-87		0.029 0.034 0.105		
***************************************			 	 ×
_				
_				
_				
			 	 ) <del>() () () () ()</del>
_				
-				

Certified by

MIN-ENWABORATORIES LID.

APPENDIX 6

CORE RECOVERIES

<u>Interval</u>	Recovery (%)	<u>Interval</u>	Recovery (%)
3.04		72.25	101
4.27	100	73.78	105
5.79	3 <b>4</b>	75.30	102
5.70	65	77.13	83
7.32	118	78.65	106
8.23	130	80.18	105
9.76	17	81.85	96
10.67	167	83.53	96
11.28	95	85.00 86.58	111 103
11.89 13.41	110 117	88.10	96
14.33	71	89.63	110
14.93	140	90.54	175
16.46	107	92.23	91
17.98	123	93.90	97
18.59	131	95.42	9 <b>9</b>
19.81	104	96.95	106
21.03	115	98.47	104
22.56	18	100.00	103
24.08	121	101.52	103
25.61	113	103.04	104
27.13	99	104.87	86
28.66	89	106.40	107
31.71	104	107.97	100
33.23	104	109.45	107
34.76	103	110.97	106
36.28	105	112.50	100
37.80	100	114.02	109
39.33	94	115.54	93
40.85	102	117.07	110
42.37	109	118.59	103
43.90	99	120.12	) 9
44.32 <b>46.34</b>	105 88		
47.56	103		
48.47	100		
50.00	108		
51.52	99		
53.05	111		
53.96	109		•
55.48	103		
57.01	101		
57.62	103		
59.15	90		
60.67	<b>94</b>		
62.20	108		
63.72	100		
64.94	87		
66.46	103		
67.98	102		
69.20	105		
70.73	105		

Interval	Recovery (%)
3.04	_
4.26	Ö
5.79	0
6.40	0
7.62	0
8.84	0
10.36	0
11.89	0
13.28	0
14.78	107
16.31	106
17.83	112
19.51	96
21.03	106
22.56 24.08	110 104
25.60	112
26.82	118
28.04	105
28.65	146
29.57	59
30.18	116
31.70	106
33.23	125
34.75	106
36.28	99
36.58	163
	<del>-</del>

<u>Interval</u>	Lacovery (%)	Interval	Recovery (%)
2.13		77.13	100
2.74	134		
3.65	8 4		
4.57	104		
5.79	111		
7.31	107		
8.84	108		
10.36	99		
11.89 13.41	104 92		
14.93	55		
16.45	105		
17.98	61		
18.90	98		
20.12	104		
21.03	114		
22.56	106		
24.08	93		
25.60	108		
26.21	100		
27.13	95		
28.65	106		
30.18	86		
31.70	113		
33.23	105		
34.75	105		
36.28 37.80	104		
39.32	103 78		
40.85	102		
42.37	63		
43.90	95		
45.42	97		
46.95	95		
48.47	3 <b>7</b>		
50.00	101		
51.52	113		
53.04	103		
54.57	103		
56.09	107		
57.62	107		
59.14	103		
60.67	100 92		
62.20 65.24	97 97		
66.77	9 <b>6</b>		
68.29	102		
69.82	100		
71.34	93		
72.87	95		
74.39	106		
75.91	93		

<u>Interval</u>	Recovery (%)	Interval	Recovery (%)
3.04		79.87	85
3.65	7 4	81.40	99
4.57	103	82.01	105
5.79	76	83.53	101
6.70	66	85.06	95
7.92	74		
8.53		86.58	102
	100	88.10	95
9.14	33	89.63	102
10.36	111	91.15	98
11.58	90	91.76	103
12.19	102	92.37	. 107
13.41	8 4	93.59	111
14.93	118	94.20	0
16.15	99	95.73	99
17.68	101	96.64	111
19.35	78	98.17	95
21.03	121	99.69	105
22.56	104	101.27	103
24.08	108	102.89	97
25.60	105	104.42	108
26.82	104	104.42	95
28.35	102		
29.87	105	107.62	107
31.70	96	109.15	116
33.23		110.00	127
	111	111.58	96
34.75	112	113.11	98
36.28	97	114.63	108
37.80	105	116.16	100
39.32	101	117.68	101
46.95	0	118.90	107
48.48	103		
50.00	. 119		
51.22	122		
52.74	105		
53.66	129		
54.57	135		
56.10	109		
57.67	95		
59.14	110		
60.67	97		
62.19	103		
63.71	103		
65.24	103		
66.76	98		
68.29			
	103		
71.34	101		
72.86	95		
74.39	97		
75.91	94		
77.43	111		
78.35	92		
78.81	152		

<u>Interval</u>	Recovery (%)	Interval	Recovery (%)
4.57		77.43	111
5.79	99	78.96	104
7.31	116	30.48	111
8.23	104	81.71	119
8.84	80	83.23	104
10.36	112		31
11.89	105	85.06	
13.41	109	86.59	101
		88.11	101
14.93	106		
16.46	109		
17.98	108		
19.51	101		
21.03	113		
22.56	95		
24.08	118		
25.60	107		
27.13	110		
28.66	107		
30.18	113		
31.70	105		
33.23	9 <b>7</b>		
33.84	110		
35.06	112		
36.78	74		
37.80	143		
39.32	105		
40.85	103		
42.37	99		
43.59	116		
45.12	109		
46.64	107		
48.32	93		
49.84	106		
51.37	105		
52.74	126		
54.57	91		
56.09	103		
57.62	103		
59.14	106		
60.36	111		•
61.28	39		
62.19	118		
63.71	105		
65.24	110		
66.76	114		
67.68	100		
68.29	146		
69.81	109		
71.34	105		
72.86	109		
74.39	109		
74.39 75.91	105		
13.31	102		

Interval	Recovery (%)
3.65 4.87	1.40
5.79	149 139
7.31	110
8.84	115
10.36	111
11.89	114
13.41	127
14.93	103
16.46	112
17.98	108
20.12	112
21.03	99
22.56	92
24.08	114
25.60	126
27.13	114
28.65	134
30.18	104
31.70	104
33.23	105
34.25 36.28	121 112
37.80	93
39.32	105
40.85	119
42.37	107
43.90	112
45.42	103
46.95	114
48.47	109
50.00	106
51.52	106
53.04	105

Interval	Recovery (%)	Interval	Recovery (%)
2.74		69.32	98
3.04	170	71.34	103
3.96	103	72.87	103
5.79	124	74.39	102
7.32	122	75.92	103
3.34	99		103
10.37	104	77.44	97
		78.96	
10.98	146	80.49	104
11.89	132	82.01	98
13.11	130	83.54	107
13.41	103	85.06	93
14.94	107	86.59	99
16.46	105	88.11	9 <b>7</b>
17.99	105	89.63	105
19.51	101	91.16	95
21.03	100	92.68	105
22.56	105	94.21	95
24.08	103		
25.60	117	95.73	105
	118	97.26	93
27.13		98.78	105
27.74	115		
29.26	76		
29.87	97		
32.31	8 <i>9</i>		
33.23	129		
34.75	107		
35.67	132		
36.28	105		
37.80	122		
39.32	111		
39.63	139		
41.15	111		
42.37	98		
43.59	114		
45.12	108		
46.64	113		
48.47	54		
50.00	101		
51.52	103		
53.04	107		
54.57	105		
56.10	100		
57.62	9 <b>9</b>		
59.15	107		
50.37	98		
60.67	107		
	83		
60.97			
62.50	108		
63.72	106		
65.24	103		
66.77	101		
68.29	104		

<u>Interval</u>	Recovery (%)
7.62	
8.84	93
10.36	9 <b>4</b>
11.89	93
13.41	109
14.94	39
15.24	90
16.77	106
17.99	98
19.51	104
21.04	93
22.56	107
24.08	96
25.60	128
27.13	108
28.65	122
30.18	99
31.70	109
33.23	107
34.75	99
36.28	112
37.80	112
39.32	126
40.85	118
42.37	95
42.98	116
44.81	101
46.34	97
47.86	118
41.00	770

Interval 4.26	Recovery (%)	Interval 77.43	<u>Recovery (%)</u> 67
	127	78.96	107
5.64			
7.16	118	79.57	113
8.68	109	80.48	89
10.21	105	81.70	121
11.89	101	83.23	103
13.41	105	84.75	111
14.93	103	86.28	109
15.54	102	87.80	108
17.07	105	89.63	87
17.98	101	91.15	103
18.59	102	92.68	102
19.96	104	94.21	110
21.03	100	95.73	497
22.25	103	97.26	99
23.47	104	98.78	94
24.08	120	30.70	<b>3.</b>
25.60	109		
	105		
27.13			
28.65	100		
30.18	104		
31.70	106		
33.07	104		
34.45	92		
35.36	127		
36.28	105		
37.80	107		
39.32	97		
40.85	110		
42.37	112		
43.59	101		
44.20	126		
45.43	104		
46.95	116		
48.47	117		
50.00	118		
51.52	109		
53.04	105		
54.57	102		
57.62	109		•
59.14	114		
60.67	103		
62.19	105		
	113		
63.71			
65.24	110		
66.46	110		
66.78	116		
68.29	104		
71.34	117		
72.36	107		
74.39	105		
75.19	116		

<u>Interval</u>	Recovery (%)	Interval	Recovery (%)
9.14		125.60	117
10.67	90	126.52	112
13.71	109	128.35	122
15.24	125	130.18	126
17.07	126	131.40	125
19.20	116	132.62	106
21.34	108	134.45	122
22.86	105	135.67	111
23.47	54		115
25.00	63	137.50	
25.91		138.71	118
	151	141.76	106
27.23	155	143.29	133
28.96	89	146.34	117
31.09	122	149.39	122
34.14	103	152.43	135
37.19	106	155.48	115
39.78	106	158.53	104
41.15	124	161.58	0
42.68	113	164.64	103
44.20	137	166.15	108
47.28	121	166.67	127
50.30	117	169.20	98
51.28	78	172.25	0
53.35	117	175.30	106
56.40	111		
59.45	116	177.50	104
62.50		178.35	106
	104	181.40	103
65.54	102	184.45	105
68.59	106	190.54	107
71.64	104	193.59	111
74.69	105	196.64	118
77.74	113	199.08	122
80.79	103	202.13	114
83.85	107	205.18	105
84.45	172	208.23	120
86.89	109	211.28	94
89.93	115	214.33	100
92.07	122	217.38	104
92.98	109	220.43	102
96.03	101	220110	102
99.08	110		
102.13	90		
102.43	153		
105.18	111		
108.23	116		
111.28	109		
114.32	111		
117.07	101		
120.12	107		
120.42	130		
122.56	121		
124.08	111		

# Project Name: Haida Drill Hole: 38-10 (cont'd)

<u>Interval</u>	Recovery (%)
220.43	
223.47	99
224.09	113
227.13	0
227.74	0
230.18	99
231.40	102
232.42	171
236.28	104
237.80	116
239.63	92
240.85	106
241.46	120
242.68	125
244.51	103