District G	Geologist, Prince George	Off Confidential: 89.09.09
ASSESSMENT	F REPORT 18081 MINING DIVISION:	Clinton
PROPERTY: LOCATION:	Newton LAT 51 48 00 LONG 123 37 0 UTM 10 5738755 457475 NTS 092013E	0
CLAIM(S): OPERATOR(S): AUTHOR(S): REPORT YEA COMMODITIE SEARCHED E GEOLOGICAI SUMMARY:	Newton 1 S): Durfeld, R.M. : Durfeld, R.M. AR: 1988, 26 Pages ES FOR: Gold,Copper L Middle Jurassic intrusives and vo clastics are intruded by felsic rocks	olcanics and Upper Cretaceous
WORK DONE:	potential for this area is gold-copper the felsic intrusives and hydrothermal Geochemical ROCK 5 sample(s) ;AU,AG,AS,CU,PB,Z SAMP 129 sample(s) ;AU,AG,AS,CU,PB,Z SOIL 82 sample(s) ;AU,AG,AS,CU,PB,Z	Mineralization associated with alteration. N,SB,HG N,SB,HG N,SB,HG

LOG NO: 1212	RD.
ACTION:	e.
26 12	
FILE 1:0:	

GEOCHEMICAL AND GEOLOGICAL REPORT ON THE NEWTON MINERAL CLAIMS CLINTON MINING DIVISION, BRITISH COLUMBIA

NTS 920/13E

51° 48' north latitude 123° 37' west longitude

By

R.M. Durfeld

Durfeld Geological Management Ltd. 180 Yorston Street Williams Lake, B.C. V2G 3Z1

November 1988

GEGEUGICAL BRANCH AFSESSMENT REPORT

TABLE OF CONTENTS

	Page
A.) INTRODUCTION	1
1) Location	1
2) Access and Physiography	1
3) Ownership	1
4) Previous Work	1
5) Program	2
B.) GEOLOGY	2
1.) Regional Geology	2
2.) NEWTON Property Geology	2
C.) GEOCHEMICAL SURVEYS	з
D.) CONCLUSIONS	4 /
E.) COST STATEMENT	4
F.) CERTIFICATE	5,
APPENDIX I:	
- Diamond Drill Logs and Core Analyses Results 📝	
APPENDIX II:	
- Geochemical Soil Sample Results 🍃	
- Analytical Procedures 🧳	
ILLUSTRATIONS	
Figure 1 - NEWTON Property Location Map (1:250,000)	
Figure 2 - NEWTON Property Claim Map (1:50,000)	
Figure 3 - NEWTON Property Geochemical Maps (1:10,000)	7
3a) Silver/Gold	
3b) Arsenic/Mercury	
3c) Copper/Antimony	

-

A.) INTRODUCTION

1) Location

The NEWTON property is located (Figure 1) in the Clinton Mining Division, British Columbia, 37 kilometres west-southwest of the community of Hanceville and 105 kilometres west-southwest of the City of Williams Lake. More precisely, it is located at 51 degrees 48 minutes north latitude and 123 degrees 37 minutes west longitude. (National Topographic System Map 920/13E)

1

2) Access and Physiography

The NEWTON property is readily accessible from Williams Lake via paved highway to the community of Hanceville from where the Taseko Lake access road branches off to the southwest. At approximately 50 kilometres a 4-wheel drive trail, to Scum Lake, branches to the northwest and after 7 kilometres bisects the NEWTON Property.

The physiography of the NEWTON property is dominated by Newton Hill, a circular hill which protrudes 150 metres from the surrounding landscape of the Fraser Plateau and can be seen from miles around. The elevations on the NEWTON property vary from 1200 to 1360 metres (3950 to 4466 feet) above sea level.

The vegetation on the NEWTON property is characterized by mature open pine and poplar forests with undergrowths of sparce grasses throughout and alders in the lower swampy areas.

3) Ownership

The NEWTON property consists of 3 modified grid mineral claims comprised of 44 claim units.(Figure 2) The current status of these claims is summarized as:

Claim N	lame	Number of	Units Record	Number	Recor	d Da	te
NEWTON	I	20	2408		Sept.	14,	1987
NEWTON	II	12	2774		Oct.	09,	1988
NEWTON	III	12	2775		Oct.	11,	1988

The above claims are held under option by REA GOLD Corporation from R.M. Durfeld, the original owner of the claims.

4) Previous Work

The 1916 British Columbia Department of Mines Report documents a Mr. Newton working on Newton hill and showing \$1 to \$3 per ton gold (up to .1 oz/ton). This work is still evidenced by pits and open cuts

on the top of Newton hill.

In the early to mid 1970's the area of the Newton property was explored for its potential of hosting a porphyry copper-molybdenum deposit.

In 1981, Taseko Mines Limited acquired the SKI claims covering the NEWTON property and surrounding area and in 1982, conducted a program of percussion and diamond drilling that is documented as assessment report 11,001.

The central and eastern portions of the SKI property were subsequently permitted to lapse and were acquired by R.M. Durfeld as the NEWTON I to III mineral claims.

5) Program

To evaluate the potential of the NEWTON property as a host for economic gold mineraliztion, eighty-two soil samples were collected on lines 500 metres apart at 50 metre intervals over the core of Newton hill and analyzed for gold and pathfinder elements.

In conjunction with the soil sampling, rock samples of limited surface outcroppings and incomplete diamond drill core samples from the 1972 programs were also collected and analyzed for gold and pathfinder elements.

The results of these preliminary surveys are documented in this report.

B.) GEOLOGY

1.) Regional Geology

The regional geology of the Scum Lake area is compiled by H.W. Tipper of the Geological Survey of Canada as 1978 O.F. 534. This mapping shows the NEWTON property as being underlain by Mid-Jurassic granodiorites and volcanics that were subsequently overlain by the Upper-Cretaceous Kingsvale clastic sediments. All of these lithologies were subsequently intruded by felsite, feldspar porphyry and biotite feldspar porphyry of Eocene Age. Away from Newton Hill much of the area is shown as being underlain by thick sections of Quaternary Age tills.

The economic mineral potential of the Newton property is as a gold **deposit associated** with the alteration and silicification system of the Eocene felsic intrusions.

2.) NEWTON Property Geology

The limited surface mapping and drill core logging by the author shows the top of Newton Hill to be dominated by felsic volcanics. The diamond drill core shows Eocene intrusive lithologies as biotite to hornblende granodiorites, diorite to quartz diorite and feldspar prophyry cutting fine grained sediments and lapilli tuff.

Hydrothermal alteration as variable sericite and argillization and silicification were noted throughout, in response to the younger intrusive activity. Intense sericitic, argillic and silicification alterations of the felsic volcanics were noted as the top of Newton Hill.

Mineralization on the NEWTON property is recognized as pyrite veins and disseminations throughout, often comprising greater than 10% of the total rock. Magnetite was generally noted in the intrusive lithologies. Chalcopyrite and molybdenite were noted on diamond drill core as isolated occurences in quartz veins.

The attached diamond drill logs show the distribution of the observed lithologies, alteration and mineralization on the Newton property in greater detail.

"B' horizon about 20 cm below surface C.) GEOCHEMICAL SURVEYS

To evaluate the mineral potential of the NEWTON property 5 rock, 129 drill core and 82 soil samples were collected and sent to MIN-EN Labs in Vancouver. MIN-EN Labs analyzed all the samples for gold and mercury by atomic absorption and silver, arsenic, copper, lead, antimony and zinc by multielement ICP. The results for the rock and soil sample sites are listed as appendix II and shown as figures 3a, 3b, and 3c of this report. The results for the diamond drill core analyses are listed with the diamond drill logs as Appendix I of this report.

Gold

Analyses of rock and core samples returned several sections of strongly anomalous gold values (up to 2.79 g/tonne) over 10 feet. The soil sampling also showed several anomalous (>50 ppb) sites, with values as high as 580 ppb.

Accessory Minerals

The highest gold values from diamond drill hole 479-72-6 show a strong correlation to the highest copper values. Isolated strongly anomalous mercury values were noted in soils but additional fill in sampling is necessary to define areas of interest. The sampling of altered rhyolite encountered in diamond drill hole 479-72-5 returned strongly anomalous mercury values (up to 6375 ppb).

Additional fill-in soil and rock sampling is necessary to better define the association of the anomalous accessory minerals with the anomalous gold sites.

D.) CONCLUSIONS

The NEWTON property is underlain by Mid-Jurassic intrusive and volcanic lithologies and Upper Cretaceous sediments that were subsequently intruded by Eocene felsic intrusives. Hydrothermal alteration as sericitic, argillic and silicification are developed in response to the emplacement of the Eocene intrusives.

The economic mineral potential of the Newton property is to host economic epithermal gold silver mineralization developed in association with the emplacement of the Eccene intrusives.

The results of the geochemical surveys that are documented in this report show several areas anomalous in gold and pathfinder elements (silver, mercury, arsenic, copper). Additional fill-in sampling is necessary to define the extent of these anomalous zones.

E.) COST STATEMENT

TECHNICAL STAFF	
4 day @ \$350	\$ 1,400.00
ASSISTANTS - C. Durfeld and R. Dubois	
8 days @ \$165	1,320.00
TRUCK RENTAL 3 days @ \$50	150.00
TRUCK FUEL	100.00
GEOCHEMICAL ANALYSES	
SOIL SAMPLES	1,479.00

CORE SAMPLES

REPORT

TOTAL COST OF PROGRAM

\$ 6,497.00

1,548.00

500.00

R.M.

- compilation of data and drafting

R.M. Durfeld, B.Sc. (Geologist)

F.) CERTIFICATE

I Rudolf M. Durfeld, do hereby certify:

- That I am a geologist with offices at 180 Yorston Street, Williams Lake, B.C.
- 2.) That I am a graduate of the University of British Columbia, B.Sc. Geology 1972, and have practiced my profession with various mining and/ or exploration companies and as an independent geologist consultant since graduation.
- 3.) That I am a Fellow of the Geological Association of Canada (Member No: F3025), and am a member of The British Columbia and Yukon Chamber of Mines and the Canadian Institute of Mining and Metallurgy.
- 4.) That this report is based on my personal knowledge of the property as geologist on the limited exploration program that was conducted on the NEWTON property during the period October 15th December 15, 1988.

. . . .

R.M. Durfeld, B.Sc. (Geologist)

APPENDIX I:

Diamond Drill Logs and Core Analyses Results

The existing full core was split in half, or the existing split core was quartered. The core is stored at the old comparite on the property.

DIAMONI DATE DI	D DRILL H RILLED:	IOLE NO. : <u>479-72-4</u> 1972 DATE	LOGGED: November 25, 1987.	Company:CYP Project: Attention:A	RUS METALS								
				We hereby c	ertity th	e tollowi	ng resul	ts tor	sampies	SUDMITT	20.		
FOOT/ FROM feet	AGE TO feet	LITOLOGY	MODIFYING FEATURES	Sample Number	AU G/TONNE	AU OZ/TON	AG PPM	AS PPM	CU PP n	PB PPM	SB PPM	ZN PPM	HG PPB
0	543	Missing Core											
543	580	Silicious hornfels	 mottled light and dark grey calcite on fractures disseminated pyrite throughout moderate magnetic throughout quartz pyrite veins with chlorite and sericite alteration selvages. 	#4 543-550 #4 550-560 #4 560-570 #4 570-580	.16 .07 .16 .05	0.005 0.002 0.005 0.001	.9 .8 .9 .8	10 3 12 3	391 347 373 209	21 16 18 12	2 2 2 2	21 25 23 15	45 45 45 70
580	600	Feldspar Porphyry	 irregular milky feldspar crystals to 2mm in a fine beige silicious matrix relic chlorite on hornblende pyrite disseminated and as veins throughout trace chalcopyrite as vein 	#4 580-590 #4 590-600	.19 .10	0.006 0.003	.7 1.1	9 8	612 182	12 48	З 1	23 79	35 55
600	620	Silicious hornfels	 as above strong magnetic up to 10% pyrite on veins and disseminated 	#4 600-610 #4 610-620	.21 .19	0.006 0.006	1.4 1.6	10 12	531 417	25 13	2 2	25 24	15 25
620	640	Feldspar Porphyry	- as above	#4 620-630	.17	0.005	.9	4	250	6	1	18	40
640	673	Silicious Hornfels	 as above pyrite on fractures 647-648 fine feldspar porphyry with 10% pyrite 650 intense silicification with disseminated chalcopyrite 	#4 630-640 #4 640-650 #4 650-660 #4 660-673	.04 .21 .13 .15	0.001 0.006 0.004 0.004	.8 1.6 .9 1.2	4 6 14 3	110 437 341 371	8 15 13 17	3 1 6 3	15 62 30 29	30 25 25 25
673	694	Missing Core											
694	718	Silicious Hornfels	- as above - up to 15% magnetite - 710 trace chalcopyrite	#4 694-700 #4 700-710 #4 710-719	.19 .27	0.006	2.3 3.0	7 8	568 1338 259	5 4	1 1	36 30 35	15 15 15
718		End of hole	* <i>*</i>	#7 /10-/18	. 10	14 B 14 14 14 14 14 14 14 14 14 14 14 14 14	T • 3	10	332	10	Т	55	

(

Certificate of ASSAY

.

DIAMOND DATE DR	DRILL H	IOLE NO. : <u>479-72-5</u> <u>1972</u> DATE	LOGGED: <u>November 25, 1987.</u>	Company:CYP Project: Attention:A We hereby c	RUS METALS .JACKSON ertify th	s ne followi	following results for samples a					File:7-2043/P1 Date:DEC 14/87 Type:ROCK ASSAY ubmitted.				
FROM feet	TO feet	LITOLOGY	MODIFYING FEATURES	Sample Number	AU G/TONNE	AU OZ/TON	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	HG			
0	88	Missing Core			-											
88	133	Altered Rhyolite	 milky feldspar grains in a light grey glassy silicious matrix oxidized fractures to 100 feet 	#5 88-100 #5 100-110 #5 110-120 #5 120-130	.30 .14 .59 .37	0.009 0.004 0.017 0.011	1.6 1.3 3.3 1.6	9 10 44 23	325 660 1601 836	6 43 266 8	3 18 58 10	9 14 30 13	6375 1100 1720 905			
133	140	Fault Gouge	 10% disseminated pyrite throughout 	#5 130-140	.18	0.005	1.3	13	307	13	6	69	195			
140	205	Altered Rhyolite	 as above 165 feet molybdenum of quartz vein 5 to 10% pyrite disseminated and on veins at 20° to core axis 	#5 140-150 #5 150-160 #5 160-170 #5 170-180 #5 180-190 #5 190-200	.19 .16 .24 .20 .17 .36	0.006 0.005 0.007 0.006 0.005 0.011	1.1 .8 1.4 1.3 1.4 1.7	12 3 4 8 3 7	233 789 697 468 309 719	17 9 7 6 13 7	5 6 3 2 3 3	91 63 24 28 105 28	60 800 510 260 165 85			
205	220	Feldspar Porphyry Biotite Granodiorite	 stubby to subrounded concent- rically zoned milky feldspar crystals in a fine biotite and light grey felsic matrix moderately magnetic 1 to 2% pyrite, disseminated and on veins 	#5 200-210 #5 210-220	.33 .25	0.010 0.007	1.3 1.5	3 7	565 423	8 16	2 3	58 71	40 75			
220		End of hole														

(

(

Certificate of ASSAY

DIAMO DATE	ND DRILL H DRILLED:	HOLE NO. : <u>479-72-6</u> <u>1972</u> DAT	Page 1 of 3 E LOGGED: <u>November 27, 1987.</u>	Company:CYPF Project:	RUS METALS	Ce S	ertifica	te of A	SSAY	F	File:7-20 Date:DEC	043/P1 14/87	
				Attention:A. We hereby ce	JACKSON ertify th	ne followi	ing resu	lts for	samples] s submitt	<pre>Fype:ROCI ted.</pre>	(ASSAY	
FOO FROM feet	TAGE TO feet	LITOLOGY	MODIFYING FEATURES	Sample Number	AU G/TONNE	AU OZ/TON	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	HG PPB
0	37	Missing Core											
37	62	Oxidized and	- milky beige to rusty brown in	#6 37-42	.14	0.004	1.1	55	925	6	5	19	105
х		Altered Unknown	 part crumbly primary textures erased due to strong argillic alteration as mainly kaolinite, but may contain minor sericite rusty veinlets at 40° to core axis due to weathered pyrite minor quartz on fractures 42 to 44 feet minor malachite on fractures 	#6 42-50 #6 50-62	.18 .06	0.005 0.002	1.3 1.1	4 26	1344 557	17 12	· 4 9	37 12	35 35
62	84	Missing Core											
84	108	Oxidized and	- 100 to 108 feet fault gouge	#6 84-90	.17	0.005	1.1	3	771	16	7	19	110
-		Altered Unknown	 " " minor relict feldspar phenocrysts increase of silicification with depth 	#6 90-100 #6 100-108	.16 .04	0.005 0.001	1.3 1.0	2 5	565 394	8 18	3 7	36 48	35
108	152	Missing Core											
152	250	Granodiorite	- irregular milky feldspar	#6 152-160	.14	0.004	1.1	6	316	16	6	89	20
			phenocrysts to 1 cm in a finer	#6 160-170	.27	0.008	1.2	10	514	14	د ر	87	13
			hornblende and felsic matrix	#6 170-180	.21	0.006	1.5	52	348	12	4	106	20
			 sections of crowded feldspar 	#6 180-190	.13	0.004	1.3	· 6	319	16	6	90	240
			porphyry	#6 190-200	.17	0.005	1.9	15	154	45	4	218	50
			 moderate argillic alteration 	#6 200-210	.23	0.007	1.5	6	390	22	8	111	15
			 weak propylitic alteration 	#6 210-220	.11	0.003	1.2	11	153	15	4	115	10
			 3 to 5% pyrite disseminated 	#6 220-2 3 0	.08	0.002	1.2	10	189	16	7	130	15
			throughout	#6 230-240	.06	0.002	1.6	8	232	19	5	199	10
			 171 and 186 feet - vuggy quartz bands to 5 cm thick 212 to 214 feet silicious pyritized band 200 to 240 feet weak magnetic 240 to 268 feet moderate magnetic 230 to 232 feet included 	#6 240-250	.11	0.003	2.1	18	180	27	21	123	335
			 Fragments of banded grey sediment 220 to 240 feet quartz-pyrite veins at 60° to core axis 								·		
250	270	Feldspar Porphvrv	- strong calcite in altered										
		······································	shear zone	#6 250-260 #6 260-270	.11 2.30	0.003 0.067	1.6 2.7	9 24	249 955	36 20	5 5	91 87	160 85

5 e.

DIAMO DATE	OND DRILL DRILLED:	HOLE NO.: <u>479-72-6</u> 1972 DAT	Page 2 of 3 E LOGGED: November 27, 1987.	Company:CYP	RUS METALS	Ce S	rtificat	e of AS:	SAY	F	ile:7-20	43/P1	
				Attention:A We hereby c	.JACKSON ertify th	ne followi	ng resul	ts for a	samples	Submitte	ype:ROCK	ASSAY	
FOU FROM feet	TO feet	LITOLOGY	MODIFYING FEATURES	Sample Number	AU G/TONNE	AU Oz/Ton	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	HG PPBB
270	314	Lapilli Tuff	- irregular angular felsic to	#6 270-280	.12	0.004	1.1	8	223	11	2	36	40
			mafic fragments to 3 cm crowded	#6 280-290	.05	0.001	.9	5	122	18	2	27	5
			in a finer felsic to mafic	#6 290-300	.03	0.001	1.0	6	127	10	2	16	5
			matrix	#6 300-308	.02	0.001	.7	9	109	8	· 3	35	10
-			 generally hornfelsed throughout 	#6 308-314	.03	0.001	.7	10	265	15	3	26	5
			 weak to moderate magnetic throughout 										
			 quartz and calcite on matrix and veins 										
			 bleached bands parallel to pyrite veinlets due to argillic 										
			alteration - propylitic alteration of mafic sections										
314	382	Missing Core											
382	490	Lapilli Tuff	- as above	#6 382-390	.04	0.001	1.1	5	106	16	2	27	5
		-	- minor pyrrhotite as	#6 390-400	.17	0.005	1.0	6	357	9	2	20	5
			disseminations	#6 400-410	.20	0.006	.7	9	206	6	2	30	15
			- 3 to 10% pyrite mainly on	#6 410-420	.03	0.001	.5	5	55	5	1	15	95
			fractures at 0°, 30° and 60° to	#6 420-430	.18	0.005	1.3	13	328	15	1	26	25
			core axis	#6 430-440	.12	0.004	.9	10	109	10	1	15	5
			 sections with multiple quartz 	#6 440-450	.20	0.006	1.3	5	227	16	1	24	20
			pyrite veins	#6 450-460	.05	0.001	.6	6	174	12	2	20	30
				#6 460-470	.03	0.001	1.0	8	91	8	1	20	15
				#6 470-480	.02	0.001	.7	7	105	7	2	13	10
				#6 480-490	.03	0.001	1.1	⁵ 4	195	7	1	13	30
490	530	Feldspar Porphyry	- non magnetic	#6 490-500	.02	0.001	1.4	7	111	6	4	11	40
			- 5 to 10% pyrite with calcite	#6 500-510	.01	0.001	1.1	5	13	5	2	9	40
			on fractures and disseminated	#6 510-520	.04	0.001	1.3	· 6	13	7	2	14	60
			 silicification as quartz veins and flooding of matrix 	#6 520-530	.08	0.002	3.4	5	224	8	3	20	110
530	550	Hornfels	- very fine grained dark grey to	#6 530-540	.03	0.001	1.1	5	157	8	1	34	40
			black - originally a fine grained sediment?	#6 540-550	.07	0.002	1.1	6	287	16	2	25	30
			- 5% pyrite on veins and disseminations										
			- non magnetic										
550	562	Feldspar Porphyry	- sub-hedral feldspar	#6 550-562	.14	0.004	2.0	Э	415	49	4	7 9	75
			phenocrysts to 7mm in a fine silicious matrix										
			- 5% pyrite disseminated - non magnetic										المر المري
562	640	Missing Core	-										-1
		0											

•

(

DIAMON DATE D	D DRILL H	HOLE NO. : <u>479-72-</u> <u>1972</u>	<u>-6</u> Page 3 of 3 DATE LOGGED: <u>November 27, 1987.</u>	Company:CYP Project: Attention:A We hereby c	RUS METALS .JACKSON ertify th	s ne follow	ing resu	lts for	samples	s submi	File:7-2 Date:DEC Type:ROC tted.	043/P1 14/87 K Assay	
FROM feet	TO feet	LITOLOGY	MODIFYING FEATURES	Sample Number	AU G/TONNE	AU OZ/TON	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	HG PPB
64 0	840	Hornfels	 as above 10% pyrite disseminated and on veins throughout moderate magnetic minor calcite decreasing with depth variable silicious hornfels sericite as bleaching on vein selvages 	#6 640-650 #6 650-660 #6 660-670 #6 670-680 #6 680-690 #6 700-710 #6 710-720 #6 710-720 #6 720-730 #6 730-740 #6 740-7.0 #6 750-760 #6 760-770 #6 780-790 #6 790-800 #6 800-810	.03 .15 .09 .02 .04 .02 .03 .11 .41 2.79 .04 .12 .11 .07 .06 .10 .13	0.001 0.003 0.001 0.001 0.001 0.003 0.012 0.081 0.001 0.004 0.003 0.002 0.002 0.003 0.003 0.002 0.003 0.004	1.2 1.8 1.7 1.7 .8 1.2 1.0 1.3 1.5 13.1 1.5 2.0 1.6 1.2 1.0 1.3 2.2	8 12 6 10 10 14 2 12 7 6 11 8 5 10 12 11	115 949 366 239 132 139 136 295 479 4854 348 495 732 529 444 483 745	7 11 17 100 21 18 15 18 14 13 15 6 13 12 14 12 10	1 2 1 3 2 3 2 3 4 2 5 3 1 1 2 2	19 23 25 22 20 23 20 23 20 23 28 40 23 28 40 24 20 23 22 24 23 34	25 20 20 10 15 10 15 10 30 10 5 10 10 5 10
				#6 810-820 #6 820-830 #6 830-840	.17 .18 .07	0.005 0.005 0.002	1.2 1.0 .6	13 11 12	278 252 279	9 13 16	1 3 3	22 19 18	10 10 15
840	855	Rhyolit Dyke?	 strong argillic alteration > 10% pyrite throughout crosscutting quartz veins chalcedonic non magnetic 	#6 840-850 #6 850-855	.11 .13	0.003 0.004	.3 .4	5 6	316 214	12 13	2 1	17 32	25 20
855	902	Missing Core											
902	925	Hornfels	 light to dark grey mottled moderate magnetic 40% fault gouge quartz pyrite veins with sericite alteration selvages sections of strong silicification 	#6 902-910 #6 910-920 #6 920-925	.09 .16 .10	0.003 0.005 0.003	.3 .5 .4	17 12 3	270 392 425	17 18 12	1 3 1	19 24 19	20 15 10

1

925

(

i

End of Hole

•

Certificate of ASSAY

DIAMONI	D DRILL H	IOLE NO. : 479-72-7	7 Page 1 of 2			Cert	ificate	of ASSA	Y		File 7-20	143/D1	
DATE DE	RILLED:	<u>1972</u>	DATE LOGGED: December 1 and 4, 1987.	Project:	CUS METALS	•					Date:DEC	14/87	
5007				Attention:A We hereby ce	JACKSON ertify th	ne followi	ng resul	lts for	samples	submit	ted.	ADDAY	
FROM feet	TO feet	LITOLOGY	MODIFYING FEATURES	Sample Number	AU G/TONNE	AU OZ/TON							
0	26	Missing Core											
26	40	Rubble	- non magnetic - non calcareous	#7 26-30 #7 30-40	.37	0.011 0.005	1.3 .4	11 11	42 9 66	18 12	· 12 4	71 35	20 20
40	55	Quartz Diorite	 fine grained milky feldspars to 1mm in a fine dark grey felsic silicious matrix 	#7 40-50 #7 50-60	.12 .05	0.004 0.001	. 4 . 6	9 3	62 34	15 12	4 3	40 38	15 10
55	80	Hornfels	- minor calcite on fractures - 80 feet pyrrhotite on vein	#7 60-70 #7 70-80	.04 .16	0.001 0.005	.9 .9	8 8	37 51	21 36	3 4	45 60	30 35
80	85	Quartz Diorite	- very fine grained	#7 80-90	.04	0.001	.9	7	35	21	3	86	770
85	91	Shear Zone	 leucocratic gouge with minor calcite 										
91	147	Diorite	 very fine grained minor quartz epidote veining 2% disseminated pyrite non magnetic 132 to 135 shear zone 	#7 90-100 #7 100-110 #7 110-120 #7 120-130 #7 130-140 #7 140-150	.12 .34 .07 .09 .18 .11	0.004 0.010 0.002 0.003 0.005 0.003	- 8 - 9 - 6 - 8 1. 2 - 9	8 7 5 9 6 11	45 70 38 56 72 95	31 34 22 24 21 36	4 3 5 6 4 4	84 87 41 46 82 103	470 35 25 20 30 30
147	154	Shear Zone	 argillic altered leucocratic gouge 	#7 150-154	.13	0.004	2.0	13	111	33	6	247	135
154	225	Missing Core											
225	240	Hornfels	 minor calcite on fractures moderate argillic alteration good chalcedonic quartz and sections of strong silicification 239 sphalerite on quartz vein banded quartz pyrite veins 	#7 225-230 #7 230-240	.19 .36	0.006 0.011	2.1 1.6	198 333	157 91	25 68	2	79 367	755 1260
240	270	Diorite	- as above - very fine grianed - weak magnetic	#7 240-250 #7 250-260 #7 260-270	.02 .03 .08	0.001 0.001 0.002	.6 .4 .6	2 8 8	32 110 117	14 13 16	3 1 1	48 50 49	135 55 65
270	365	Hornfels	 dark grey to black is a hornfelsed dark fine grained sediment 10% pyrite disseminated and on veins more leucocratic bands due to argillic alteration and quartz 278 feet calcite gypsum vein 	#7 270-280 #7 280-290 #7 290-300 #7 300-310 #7 310-320 #7 320-330 #7 330-340	.17 .06 .18 .09 .04 .02 .06	0.005 0.002 0.005 0.003 0.001 0.001 0.002	2.4 .9 .7 .9 1.1 .8 .6	19 10 16 7 4 9 10	122 129 142 76 63 82 146	56 43 21 17 26 23 25	<u>2</u> 3 2 3 2 4 3	60 66 55 49 106 66 61	30 25 320 30 25 25 15

•

.

• -

·.

t

ł

DIAMOND DATE DR	DRILL H ILLED:	IOLE NO. : <u>479-7</u> <u>1972</u>	Company:CYPRUS METALS Project: Attention:A.JACKSON We hereby certify the following results for samples submitted										
FROM feet	TO feet	LITOLOGY	MODIFYING FEATURES	Sample Number	AU G/TONNE	AU OZ/TON	AG PPM	AS PPM	CU PPM	PB PPM	SB PPM	ZN PPM	HG PP B
			- 358 feet 2cm epidote quartz vein	#7 340-350 #7 350-360	.12	0.004	1.0 2.3	9	211 771	24 17	2 4	57 71	20 40
365	388	Missing Core		#7 360-365	.05	0.001	.5	3	102	17	. 2	47	15
388	412	Hornfels	- as above	#7 388-400	.21	0.006	1.8	21	198	152	9	123	30
412	435	Missing Core		#/ 400-412	.03	0.001	.8	12	98	19	3	47	50
435	458	Hornfels	- as above - magnetic - calcite on fractures - epidote on quartz veins	#7 435-440 #7 440-450 #7 450-458	.42 .03 .09	0.012 0.001 0.003	1.8 1.2 1.2	390 4 3	332 224 152	81 34 38	4 2 2	669 88 67	75 25 40

458

End of Hole

Certificate of ASSAY

APPENDIX II:

Geochemical Soil Sample Results Geochemical Analytical Procedures

COMPANY: DURFELD PROJECT NO: SCUM ATTENTION: RUDY	GEOLOGICAL I LK. NEWTON I DURFELD		705 WEST	MIN-E 15TH ST., (604)980-	N LABS IC NORTH VI 5014 OR (CP REPORT ANCOUVER, 16041988-41	8.C. V7M 524	IT2 * TYPE S	(A F DIL GEOCHEM +	CT:F31) PAGE 1 BF 1 TLE NO: 7-1701S/P1+2 DATE:OCT 30, 1987
IVALUES IN PPM) AG	AS	CU	P8	SB	ZN }	lg-ppb	AU-PPB		
SL 5N 0000E	.8	5	21	11	1	162	40	27		
SL 5N 0050E	. 5	10	29	18	2	83	15	4 .		
SL 5N 0100E	.6	5	29	13	7	93	10	52		
SL 5N 0150E	.7		54	10	1	93	20	4		
SE ON OFFICE			3/ 	10		318	38	ۍ کې		er der blev for det per der mer felt det det det det det ges aus des sen det der sen
DE DN UZDVE	.3	D 7	10	20 11	4	83 110	9/(75	7/1		¥
SL JA VJUVE CI EN AZEAC	- J D	(Ę.	10	11	י ז	76	্য বন্দ	16		
CL JA VOJVE CL SN AAAAE	., a	ن د 7	27	15		59	20 70	8 30		
SL 5M 04002 SL 5N 0450E	.6	3	13	12	1	59	20	2		
SI 5N 0500E	. h	7		13	3	90	15	12		
SL 5N 0550E	1.5	í	61	62	2	494	40	47		
SE 5N GLOOF	.9	8	31	10	1	121	35	57		
SL 5N 0550E	. 6	4	17	16	2	89	30	27		
SL 5N 0700E	.5	2	23	17	2	52	10	2	r	
SL 5N 0750E		6	20	15	1	51	40	\$		na dar min bar ap ber dal tal par 500 das bil par der der an eine an eine der der der der der der der der der d
SL 5N 0900E	.5	6	19	16	ł	78	25	23		
SL 5N 0850E	.7	11	26	17	3	107	30	69		
SI. 5N 0900E	.9	17	28	24	3	135	35	10		
SI. 5N 0950E	.9	9.	29	32	3	142	25	5		
SL 5N 1000E	.7	9	18	27	2	152	25	4		
SL 5N 1050E	.5	7	24	24	3	108	20	2		
SL 5N 1100E	.7	12	21	19	4	87	30	6		
SL 5N 1150E	.3	9	20	15	1	118	20	87		
SL 5N 1200E	1.0			16	j	95				an, an am da sta an
SL 5N 1250E	.1	15	27	14	2	315	12	,		
SL DN 1500E	. ð F	8	39 71	11	4	111	20	4) L		
SE DA LODUE	, J L	13 7	31 51	د <i>د</i> م	1	100 100	15	9 725		
OL JN 140VE	۰0 ٤	, a	24	12	ſ	70	20	200		
SI 5N 15005	, 18 7		<u>i</u> 5	£			75	7		کېد خوه موه مور دون وي دون وي دون وي دون وي وي دون وي وي وي وي وي وي وي وي وي و
SI 5N 1550E	.4	2	13	5	ĭ	63	10	4		
SL 5N 1600E	1.0	9	16	5	ţ	75	30	15		
SL 5N 1650E	.8	8	17		1	59	5	8		
SL 5N 1700E	.9	ÿ	14	7	1	75	15	4		
SL 5N 1750E	,9	8	13	6	1	72	30	6	an man dan man anta kata bata dan dan adal kata bata dari	age dae wel oo ood die bee dae dae dae dae dae die die die die die die die die die di
SL 5N 1800E	.9	8	13	8	1	70	15	10		
SL 5N 1850E	.8	3	13	8	3	77	35	9		
SL 5N 1900E	. 8	6	13	4	1	71	20	3		
SL 5N 1950E	.9	15	14	7	2	78	15			
SL 5N 2000E	.7	5	12	8	1	61	30	4		
SL ION 0000E	. 6	8	20	7	1	82	35	- 7		
SL ION 0050E	.9	10	17	8	2	79	20	8		н.
SE TON 0100E	.7	8	23	9	2	67	25	19		
SL 10M 0150E	• 6	ن ي	18	13	······································			17		nam gin min wattan geroem wernen som en per eine gin ger dat ger ger ger ver som som en e
SE TON 0200E	, 4 C	9	46	15	} 7	10 10	3/3 75	220		
SE IVN VZBVE	د. د،	1 -7	13 70	14	ે ઝ	52	20 12	JL Л7		
SE LON VOUDE	a / 12	1	96 47	35	2 Q	5) ج۸	13 AA	40 110		
DL TON VODUL	2 J L	5	۲۲ مت	17 44	ن ۳	30	9V 9A	21 V 21 V		
DI JON VAVUE	۵ ^۵				<u>í</u> 7	14 Q4	<u>-</u>	10		ner und sich die Ann geft die sie ver die das das bei bei bei bei das ind die das die die die die die die die d
SE ANN UNBUE	۵. ۵	0 10	111 QC	21 21	ل گ	60 157	20 25	00. 71		
SE TON OUVE	 7	×د ب	00 17	1.1 Q		149	10			
5L 10N 0600F	.4	3	74	13	2	144	15	42		
SL 10N 0650E	.3	12	46	30	ĩ	64	20	580		
SL 10W 0700E	,3	8	43	32	3	78	15	138	ne ann ann ann ann ann ann ann ann ann a	الله المراجعة المراجع
SL 10N 0750E	.9	8	25	13	2	87	15	16		
SI. 10N 0800E	. 4	5	13	14	2	102	10	B		
SL ION OBSOE	. 4	5	12	13	1	94	15	5		
SL 10N 0900E	,5	6	12	16	2	129	10	4		
an is ar in an ar ar di m in in at si an in in di										

COMPANY:	DURFELD	GEOLOGICAL	
			-

MIN-EN LABS ICP REPORT

(ACT:F31) PAGE 1 DF 1

PROJECT ND: SCUM LK.	NEWTON I		705 WEST	15TH ST.	, NORTH '	VANCOUVER,	B.C. V7M	172		FILE NO: 7-17019/P3
ATTENTION: RUDY DURF	ELD			(604)980-	5814 OR	(604)988-	4524	* TYPE	SOIL GEOCHEN	* DATE: OCT 30, 1987
(VALUES IN PPM)	AG	AS	CU	PB	SR	ZN	HG-PPB	AU-PPB		
SI. 10N 0950E	.5	8	- 11	17	3	153	15	9		
SL 10N 1000E	.5	6	14	19	2	138	20	5		
SL 10N 1050E	.7	10	14	23	3	212	15	18		
SL 10N 1100E	.6	8	16	24	2	187	10	18		
SL 10N 1150E	.6	5	18	19	3	156	15	21		
SL 10N 1200E	.6	7	15	13	1	162	10	27		•
SL 10N 1250E	.7	Ġ	13	16	2	163	15	4		
SI. 10N 1300E	.9	9	14	15	3	93	15	36		
SE 10N 1350E	.3	1	9	. 8	ł	151	15	6		
SL 10N 1400E	.5	7	18	12	2	. 124	20			
SL 10N 1450E	.6	6	15	5	1	72	15	7		
SL ION 1500E	.3	2	11	12	1	104	10	4		
SL 10N 15505	.9	4	16	12	7	55	25	8		
SE 10N 1600E	.6	7	9	7	!	75	10	4		
SL 10N 1650E	.8	7	10	13	\$	69	15	3		
SL 10N 1700E	,5	\$	10	7	2	77	15	4		
SL 10N 1750E	.7	6	13	7	1	72	30	4		
SL 10N 1800E	.5	6	9	5	1	107	5	3		
SL 10N 1850E	.8	ė	13	6	1	82	15	12		
SL 10N 1900E	, 5	3 -	14	6	1	58	5	3		
SL 10N 1950E	1.1	1	17	8	3	48	10	8		an fan fin ant lin an de net de net fin fan an fan de de an de se se de an de se an de se an an
SL 10N 2000E	.8	4	15	8	1	91	10	6		
SL R1	.7	25	26	29	1	123	25	.24		
SL 82	3.8	40	224	102	2	1121	140	127		
SL R3	1.4	5	243	43	7	384	25	120		
SL R4	2.0		164	61	10	186	225	630	un biel bie nies nies nies nies nies hier nies bien hier nies die nies	aan pele bele ande akte ook gant den som hade bele ben die aan die dee het dee akte akte akte akte ook
SL RS	. 4	2	403	59	11	98	95	165		

PHONE 980-5814

MIN-EN Laboratories Ltd.

Specialists in Mineral Environments Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 5.0 or 10.0 grams are pretreated with HNO_2 and $HClO_4$ mixture.

After pretreatments the samples are digested with <u>Agea Regia</u> solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 0.005 ppm (5ppb).

MERCURY ANALYTICAL PROCEDURE FOR ASSESSMENT FILING

1.000 gram sample digested with Nitric and Sulphuric Acid. Than further oxidized with 30% H₂O₂ while heating and repeating the oxidizing steps.

After cooling and diluting to suitable volume the solution to refine the oxidation procedure 5% KMNO, is added in the titrating manner until pink color is obtained.

Mercury is realized by reducing solution into the Flameless Atomic Absorption Chamber and measured in comparing samples with known standards.

MIN-EN Laboratories Ltd.

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

Analytical Procedure Report for Assessment Work

31 Element ICP

Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories Ltd., at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.

1.0 gram of the sample is digested for 4 hours with an aqua regia $HClO_4$ mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers. Reports are formatted and printed using a dot-matrix printer.

NEWTON PROPERTY

GEOCHEMICAL MAP FIGURE 3a SILVER / GOLD

Scale 1:10 000

500 m

10 + 00 N -

J 5+00 N

NEWTON

c c u L

٩

NEWTON PROPERTY

GEOCHEMICAL MAP FIGURE 3 b MERCURY/ARSENIC

Scale 1 : 10 000

50m 0 500m

4

- cut

Scum Lake

