COMINCO LTD.

in the $\bigcirc \mathbf{a}$ ON BEHALF OF COMINCO EXPLORATION LTD. Z C ΒY 🐔 🖧 😭 🖂 MICHAEL G. WESTCOTT, B.Sc. 20 24 OCTOBER 28, 1988 ind free 12 ्र भ्य Š med \bigcirc $\langle g \rangle$ \bigcirc \mathcal{O} Sec. 19

10

ſ	LOG MO: 1212 ED.	
	ACTION	
!		1

EXPLORATION

TABLE OF CONTENTS

MMARY AND CONCLUSIONS1
TRODUCTION
Location and Access1
Physiography1
MMARY OF WORK
OLOGY
Regional Geology
Local Geology
OCHEMISTRY
NCLUSIONS

PLATES & FIGURES

FIGURE 1	l –	Index Map
FIGURE 2	2 -	Regional Geology west of the McLeod Lake Faul

PLATES

_

_____. . ____ .

PLATE 1 -	OPUS Geology
PLATE 2 -	Sample Locations
PLATE 3 -	Geochemistry Au, Ag
PLATE 4 -	Geochemistry Pb/Zn/Cu
PLATE 5 -	Geochemistry As/Hg
APPENDIX I	Affidavit and Statement of Expenditures
APPENDIX II	Soil and Silt Sample Results
APPENDIX III	Pan Concentrate and Rock Sample Results
APPENDIX IV	Certificates
APPENDIX V	References

SUMMARY AND RECOMMENDATIONS

The 80 unit Opus claim group staked by Cominco Ltd. in 1987 was acquired in order to cover coincident magnetic and geochemical anomalies. Preliminary silt sampling in 1987 revealed two gold anomalies, which in large were responsible for the 1988 geochemical program described herein.

Samples obtained for geochemical analysis took the form of silt, soil, rock and pan concentrate samples. Silt and pan concentrate samples were taken at the two anomalous sample sites as well as along all major drainages. Results from the repeat sampling of the anomalous sites were mixed, with the pan concentrate samples yielding values of 2320 ppb and 1140 ppb Au, while the silts had no detectable gold.

A soil line along a north trending road cut, located 1.5 km east of the property, was part of a "down ice" prospecting program. The soil line has identified a northwest trending zone with continuously elevated zinc, silver and mercury values. Anomalous gold values up to 120 ppb were also obtained from the soil samples. The trend of the anomalous zone is the same as that of the underlying sedimentary strata, and is therefore suspected to be derived from underlying geology.

Recommendations for further work involve additional prospecting and soil lines in the vicinity of the zone yielding high gold, silver, mercury and zinc values.

INTRODUCTION

Location and Access

The Opus (1-4) claims lie within the Cariboo Mining District on N.T.S. Sheet 93J/14. The 80 unit claim group is centered about a common legal corner post located at latitude 54°50.1'N and longitude 123°07'W.

An extensive network of logging roads provides access to the claim group and surrounding area. The claim group is some 25 km along the logging roads which branch westward off the Hart Highway from Bear Lake and McLeod Lake. Helicopter and fixed wing services are available out of Prince George, 100 km to the south and MacKenzie, 60 km to the north.

Physiography

The claims overlie the northeastern portion of the subdued Nechako plateau. The subtle relief of the country rock is further masked by 25-100 feet of drift, leaving a rolling landscape averaging 3000' elevation.

Numerous well defined drumlins, eskers, melt water channels and crag and tail structures indicate the direction of the last ice movement across the area was from southwest to northeast.

Lakes, swamps and streams are plentiful, occupying 5-10 percent of the area. The drainage, highly influenced by the glacial landforms, flows to the northeast eventually emptying into McLeod lake.

A mature forest of lodge pole pine and spruce with occasional stands of deciduous trees covers the northern two thirds of the property, while much of the southern third is occupied by recent logging cut blocks. Devils club and willows flank many of the small swamps.

SUMMARY OF WORK

Commencing June 2, 1988 a 4-5 man crew worked on the claims for a total of 52 man days. The program included:

- 1. Cutting 3.5 km of trail, facilitating access to portions of the claims distal to roads.
- 2. Obtaining pan concentrate samples from all major drainages on the property. A total of 12 pan concentrates were taken. "Pan concentrating" was done using a 5-mesh screen and an 18" conical pan. The screened material was panned down to a concentration of 50 times the original.
- Obtaining duplicate silt samples at sites that gave anomalous gold values during preliminary sampling in 1987. In addition, pan concentrate samples were taken at these sites.
- Silt sampling major streams and their tributaries. A total of 60 silt samples were taken at 200-300 m intervals.
- 5. Three soil lines totalling 10 km and 47 samples were taken. Wherever possible samples were taken from B-horizon soil at depths of 15-30 cm.
- 6. Prospecting and mapping of outcrop and float. A total of 20 rock samples were submitted for analysis.

N.8. Due to the scarcity of outcrop on the property and the obvious influence of glaciation in the area, much of the sampling and prospecting was carried out in logged areas and along road cuts immediately down ice from the claims.

GEOLOGY

Regional Geology

Geology of the McLeod Lake area is divisible into two distinct packages, a sequence comprising the Nechako plateau in central British Columbia, and a sequence to the east forming the McGregor plateau and ultimately the Rocky Mountains. The division between the Nechako plateau and the McGregor plateau is marked by a northwest trending depression controlled by the McLeod Lake fault.

To the east of the fault, Paleozoic and Precambrian limy sediments, intermediate to basic volcanics, and low grade metasediments are the dominant lithologies. Structure east of the fault is marked by a northwest striking, southwest dipping sequence of rock, which is provisionally interpreted as a series of folded fault blocks.

West of the McLeod Lake fault the geology can be subdivided as follows: (see figure 2).

- TERTIARY
 - CHILCOTIN and ENDAKO GROUPS basalt, andesite, related tuffs and breccias
- TRIASSIC AND JURASSIC
 - TAKLA GROUP andesite to basaltic flows, tuffs, breccias, conglomerate, greywacke, argillite, limestone
- PENNSYLVANIAN and PERMIAN
 - CACHE CREEK GROUP limestone, ribbon chert, argillite
- MID-PALEOZOIC
 - SLIDE MOUNTAIN GROUP limestone, basaltic pillow lavas, andesite, related pyroclastic rocks, argillite, chert, greywacke
- PRECAMBRIAN to TERTIARY
 - WOLVERINE METAMORPHIC COMPLEX and younger granitoid rocks. granitoid gneiss, micaceous garnetiferous chlorite schists, pegmatite

Regional geology for McLeod Lake Area.

LEGEND

Scale 1: 850,000

TERTIARY Chilcotin and Endako Groups
TRIASSIC AND JURASSIC 2 Takla Group
UPPER PALEOZOIC 3 Cache Creek Group 4 Slide Mountain Group
PALEOZOIC AND PRECAMBRIAN 5 Limy sediments, intermediate - basic volcanics
PRECAMBRIAN TO TERTIARY 6 Wolverine Metamorphic Complex, and younger granitoid rocks

FIGURE 2

Structure west of the fault, largely interpreted from aeromagnetic data due to the scarcity of outcrop, includes a series of north-northwest trending normal or strike slip faults, and a similar less abundant set of faults crossing at right angles.

Struik 1988, suggests Precambrian rock of the Wolverine metamorphic complex may have been brought into contact with younger low grade metamorphic volcanics of the Takla and Slide Mountain groups by regional extension faults. Crustal thinning and shallow extension faults may have facilitated the elevation of warmer lower crustal rocks like those of the Wolverine Complex. The presence of a high level heat source may generate a heat pump for the circulation of meteoric and metamorphic waters and associated mineral brines.

Local Geology

Outcrop exposed in the lower portions of stream cut gullies, along road cuts, and occasionally on topographic highs accounts for approximately one percent of the total claim area. Lithologies observed as outcrop and/or float on and immediately adjacent to the property are as follows:

TAKLA GROUP

Augite Porphyry

This unit, comprising the majority of the outcrops encountered on the claims, is a dark-medium green auite porphyritic flow. Augite phenocrysts, comprising up to 60% of the rock, are from 1-15 mm long and occur as subhedral to euhedral crystals. The rock is locally foliated generally striking northwest. The rock is pervaisvely magnetic although the intensity varies locally.

Crystal/Lapilli Tuff

This unit is monolithic tuff with calcareous siltstone fragments comprising 10-15% of the rock. The matrix is lime green and hosts 1-2% pyrite as fine disseminations and blebs.

Dark Grey Siltstone

This unit is foliated and friable, often exhibiting good laminations. This dark grey-black siltstone striking northwest and dipping steeply to either side, is the most abundant sedimentary rock in the area. Pyrite, locally present in 1-2% abundance occurs as fine disseminations.

Light Green Muddy Siltstone

This light green clay rich siltstone is highly weathered and is readily friable along a well developed foliation. The unit is exposed in two good sized outcrops and is found adjacent to a black graphitic siltstone in both instances.

Black Graphitic Siltstone

This unit is distinguishable from the forementioned siltstones in that it is shaly and it leaves a heavy black streak.

SLIDE MOUNTAIN GROUP

Pillow Basalt/Andesite

This submarine lain unit is light-medium green, non magnetic, and displays good pillow structures. Swirled flow structures entrain coarse breccia of the same composition. Locally, stockwork quartz veining 2-20 mm wide at a 10-15 cm spacing coincides with an orange-brown ankeritic alteration. Disseminated pyrite is found in abundances of 2-5 percent within the altered portions of the outcrop. Epidote and chlorite are common.

Intercalated Tuffs and Siltstones

Fresh surfaces varying from light to dark grey, commonly weather to an orangey brown. Tuffs ranging from ash to lapilli size are found intercalated with finely laminated siltstones. Siltstone, the more abundant lithology, is interupted by the tuffs at irregular intervals. Two or three tuff horizons are common in a 5-10 m thick sequence.

Carbonatization is common within this unit. An orange-brown altertion rind several centimetres thick commonly flanks fractures. In other instances the alteration is pervasive and through going. Two-five percent pyrite is common within the carbonatized zones.

METAMORPHIC COMPLEX

Biotite-quartz garnetifeorus gneiss, granitoid gneiss, and a muscovite pegmatite were all observed as subangular boulders on and around the property.

POST TRIASSIC INTRUSIVES

A few silicic dykes are found to intrude the augite porphyry. An altered feldspar porphyritic dyke or plug 3-4 m across is found abutting Takla siltstone.

Sulfide mineralization on the property is scarce. Minor disseminated pyrite, assumed to have a syngenetic origin, is not uncommon in the fine sediments of the Takla and Slide Mountain groups.

Two styles of epigenetic pyrite mineralization are recognized.

- 1. Blebs and disseminations of pyrite in abundances of 2-10 percent found along narrow veins and lenses of calcite and quartz. The quartz veins, which are generally less than 5 cm wide, are in the volcanic flows as well as in sediments.
- Pyritization locally accompanies carbonatization of Slide Mountain tuffs and siltstones. Here pyrite can be found as massive patches 5-10 cm long as well as in thin quartz and calcite veins as described above.

Minor chalcopyrite was observed in an outcrop of carbonatized siltstone.

An east-west trending peanut shaped magnetic high covers the central portion of the claim group. The magnetic high corresponds to the presence of augite porphyry. Finely disseminated magnetite within the augite porphyry is responsible at least in part for the observed magnetic anomaly.

Structural interpretation of the geology is difficult due to the lack of exposure. Aside from a few small scale shears, foliation is the only structural feature observed. The orientation of foliation was measured in several locations over the property and was found to consistantly strike 130i-170i and dip steeply to the west. The trend of the foliation roughly parallels the McLeod Lake fault located 10 km to the east.

The inferred contact between lithologies of the Takla group and those of the Slide Mountain group trends north-northwest. The coincident trends of the foliation, contacts, and regional structures suggests the contact between the two groups may well be defined by a fault paralleling the prominent McLeod Lake fault.

GEOCHEMISTRY

A total of 107 silts and soils, 12 pan concentrates, and 20 rock samples were analysed for (Au, Ag, As, Cu, Pb, Zn, and Hg). Results for all samples are listed in Appendix II and III.

Background values for all elements analysed for are low. Gold concentrations are below the detection level in the majority of the silts and soils analyzed. Gold was detected in 15 of the 107 samples with 120 ppb, 114 ppb, 92 ppb and 72 ppb Au being the four highest values.

Anomalous values returning from analyses of the 104 silts and soils are highlighted as follows:

	Ag	Pb	Zn	Cu	As	Hg ppb
Element	ppm	ppm	ррт	ppm	ppm	
three	2.6	52	426	129	424	430
highest	1.9	29	314	88	292	300
values	1.8	20	269	82	192	260

Pan concentrate samples proved more successful in detecting gold and mercury, while values for Ag, Pb,Zn,Cu and As are much the same as those attained from silt samples. Gold concentrations returned included 2320 ppb, 1438 ppb and 1140 ppb Au. The highest mercury value attained 820 ppb Hg, was from the same sample that yielded 2320 ppb Au. Of the twenty rock samples analysed, two produced anomalous values.

- WR-29 The sample was taken from one of several angular boulders up to 60 cm in diameter. The rock is carbonatized and epidotized with a tight stockwork of 2-3 mm quartz veinlets. Fuchsite comprises 25-30% of the rock. This sample was anomalous in arsenic yielding 1840 ppm As.
- WR-30 The sample was taken selectively from 1-2 cm quartz veins that form a stockwork in a pillowed basalt. 1-2% pyrite accompanies the quartz. This sample was anomalous in gold yielding 538 ppb.

	1987 SAMPLE Sample		198	38 SAMPLES Sample	
Sample #	Туре	Au ppb	<u>Sample #</u>	Туре	Au ppb
51120	silt	189	51945	silt	<10
			; VH-6	pan	1140
			4 9 2	concentrat	e
51118	silt	329	51986	silt	<19
			VH-21	pan	<10
				concentrat	e
 			* VH-9	pan	2320
			-	concentrat	e
1			* 51430	silt	<10

Results from resampling sites which were anomalous in gold in 1987 are summarized as follows:

* samples taken 20 m down stream and on opposite side of creek from 5118, 51986, and VH-21

CONCLUSIONS

A magnetic high of 4600 gammas provided much of the original interest in the area now covered by the Opus claims. Prospecting identified magnetite bearing augite porphyry as the lithologic unit corresponding spatially to the anomaly. Magnetic properties of the augite porphyry outcrops are highly variable over the claim group.

Two silt samples taken in 1987 yielding 189 ppb and 329 ppb Au provided a target for follow up in 1988. Repeat sampling in 1988 consisted of a silt and a pan concentrate sample at the site yielding 189 ppb Au, and two silts and two pan concentrate samples from the sample site yielding 329 ppb Au. The reproducibility of the two anomalies was met with mixed success. All three silt samples returned with gold values below the 10 ppb detection limit. Of the three pan concentrates samples, two returned with appreciable gold values while the other contained less than 10 ppb Au. The pan concentrate results were 2320 ppb and 1140 ppb Au corresponding to the 1987 silt anomalies of 329 ppb and 189 ppb Au respectively.

A relatively thin drift cover, along with well defined geomorphic features providing an accurate record of glacial direction, renders down ice prospecting a viable exploration method. Work immediately down ice of the claim group consisted of boulder train prospecting and 8 km of soil lines. Soils taken at 150 m intervals along the banks of a north trending road identify a northwest trending zone with several anomalous gold values, up to 120 ppb, and consistently elevated Hg, Zn and Ag values. The trend of the anomalous zone matches that of the underlying Slide Mountain sediments, suggesting the possibility of a local stratabound source for the anomaly. Dispersion from mineralization or alteration, which may accompany the northwest trending fault zone separating the Takla Group from the Slide Mountain Group, may also account for the observed anomaly. Because the drift cover in the area is moderately thin (2-10 m), additional soil lines with tighter sample spacing should substantiate or negate the possibility of an underlying local source for the anomaly.

Report by : Multiple Control B. Westcott

Endorsed by : 4. A. Latanen

I.A. Paterson. Senior Geologist

Approved for

Release by : M. J. Wolfe,

Manager, Exploration-Western Canada

APPENDIX I

STATEMENT OF EXPENDITURES FOR OPUS (1-4) CLAIMS, 1988

The following expenditures were incurred by Cominco Ltd. during a geochemical field investigation of the OPUS 1-4 claims.

Salaries

Personnel	Period	Days x Rate					
I.A. Paterson	2- 5 June	4 e \$350/day = \$1400					
M.G. Westcott	2-13 June	19 @ \$163/day = 1956					
A. Travis	2-13 June	12 • \$155/day = 1860					
G. Wober	2-13 June	12 @ \$138/day = 1656					
D. Owens	2-13 June	12 @ \$100/day = 1200					

\$ 8072

\$ 1040.00

Analytical Costs

20	rocks:	lab preparation 20 # \$3.25 = Analyses (Au,Ag,As,Hg,Cu,Pb,Zn) 20 # \$ 19 =	\$ 65.00 380.00	
12	pan con	centrates: Lab preparation 12 @ \$2.50 = Analyses (Au.Ag.As.Hg.Cu.Pb.Zn)	30.00	
		12 @ \$19	1083.00	
47	soils:	lab preparation, 47 @ \$1.00= Analyses (Au.Ag.As.Hg.Cu.Pb.Zn)	47.00	
		47 @ \$19	893.00	
60	silts:	Lab preparation, 60 @ \$1.00- Analyses (Au. Ag. As. Hg.	60.00	
		Cu, Pb, Zn) 60 @ \$19=	1140.00	\$ 3698.00
Tra	ansporta	tion		
Tru Tru	ick rent ick rent	al 12 days @ \$50/day = al 4 days @ \$50/day =	\$ 600.00 <u>200.00</u>	
For	.d			\$ 800.00
100	<u></u>			

52 man days @ \$20/man day =

Miscellaneous

Maps, Airphotos, sampling supplies = \$ 500.00 Data Compilation and Report Preparation M. G. Westcott 6 days @ \$163/day \$ 978.00 Draftsman - 2 days @ \$200/day 400.00 Total expenditures: \$ 15488.00

APPENDIX II

.

.

SOIL AND SILT SAMPLE RESULTS

÷

OPUS (1-4) SILT AND SOIL GEOCHEHISTRY

•••••	- * - • - •								
LAB	FIELD	Au	Aç	Pb	Zn	Cu	As	hg	
13EF	NC .	ppb	pps	рры	ppe	99 9	ppa	9pb	
		********			·····				
	51508	(10	Q./	•	- 107 - 100	11	16	(10	
58801024	31309	27	0.9	•	90	76	14	(10	
C2011086	31330	<10	Q.)	4	108	20	11	< 10 7 E A	
20011079	21211	11	1.1	•	33	13	14	(10	
58801027	31312	(10	4.4		34	32		(10	
58891928	21213	11	0.4		119	53	65	(10	
58801029	31314	(10	Q.4	3	87	28	36	390	
56901030	21212	CIC .	Q. /	<4 	64	16	L .	172	
5690103:	21216	10	0.5	73	\$2	23	8	3:	
58801032	3131/	(10	<.4 • •	52	62	33	8	120	
S88V1124	91395	11	9.5	2	80 60	3/	1	18	
58801123	31363	de	1.4 A A	{4	23	21	2	10	
56801126	313/2	(10	9. 7	¶ 	34	51	ن م		
56601129	313/3	<10	<.4 2 - 2	<• •	36	8	4	(10	
58801130	31974	(10	K.4	4	62	13	<2 /*	CIÚ	
58801131	31970	(10	<. 4	(4	30	11	<2 70	110	
56801142	31347	(10		< <u> </u>	9Z	36	14 A		
56801143	31946	10	· •	(4	33	17	4	10	
58801144	21343	(10	<.4 • •	{ 4	36	22	1	(19	
58801145	21320	(10	1.8	1	314	15	15	269	
58801146	3132; 2132;	(10	.	(4	33	35			
58801061	314.92	114	(.4	(4	32	24	4	10	
S8601127	219/1	(10	\$, 4	(4)	20	35	• • •	(10 (16	
91126	21310	(10	0.4	<	87	53	10	40	
201060	3143/	(10	<.4 / 1	< « 	31	12	292	(16	
JJ801204	21282	(10	(. 4	< 4	64 6 -	42	-	(10	
58801205	31 984	(16	(. 4	(4	24	23	5	(10	
58801008	31434	(10	<.4 . 4	(4	44 87	13	66	<10 /10	
\$8801055	31435	(10	(. 4	(4	30	2	4/4	< 10 /10	
58801147	21939	(10	(,4	4	34	y 43	,	(10	
58801148	31960	(10	Q.4	{4	32	¶/ 	د •	300	
56801000	51431	(10	<	(4	53	24	2	<10 730	
58801056	31432	(10	(4	54	13	1/	Ç 100	<10 <10	
56861627	31432	10			85. 47	44	192	(10)	
58801132	3:167	(10	¥./	j A	4 : 70	90 20	÷ 14	10	
20001136	21265	(10			18	23	2*	23 71h	
58801170 CR04117/	31305	(JV //A	5.4 7.4	•	04 . Kn	11 10	19	210	
200011/8	J1305 \$1004	V I V	· · ·	10	jj €^	10	•	×10 216	
200011//	J173V 61001	710	¶ / 4	(4 K	J∡ 67	11	3	×10 ×10	
500V11/8	J1331 \$1001	230	54 5 2 4	J	3/	10 11	2	(10	
20041125	42332 44609	V1V (10	2.4	ç	6. 182	11	9 ?	19	
200011000	J. 773 51 664	(10	\•¶ / 4	4	141	, 	2	(16	
20011100	J1374 51606	VIV 718	₹. ♥ / ▲	/4	37	43 7	2	<1A	
400V110/	41773 4100/	V10	\ ↓ ↓ ↓		17	14	15	(10	
200V1100 C22A1174	51007	10	\. . ₹	, ,	110 7A	17 27	14 1	12	
200V11/3	JIJJ/ 51000	19	\.4 A 7	J 1A	14	1/ 58	22	(1) 01	
20001100	JI 330 51000	\1V /1A	₩, / A ≪	₩	184 145		97	<1V /1A	
200V1101 C00A1AC3	41777 51587	(1V (1A	V.J A 4	7	17J 97	79 51	3) 26	75	
6691V9~~~ 31A16	51500	(10	7.9 7 C	• 17	47£	47 17 4	4V 60	90	
VIVID SARAIARS	UIUUU Sisat	/18	1.0	17 2	749	143 M	9V 1A	(10	
SANA AND	51501	(1V) (10)	1.0	0 5	124	20	14	100	
200A1A40	AT ANT	<1V	V./	v	114	29	74	144	

.

٠

•

.

	/16		4	172	74	20	(10
S2801050 51504	C10	4.4 A.4	5	112	3V 2K	11	31
\$8801051 51505	14	i.i	Ĭ.	105	50	it -	20
\$8801052.51506	72	Q. 7	20	269	82	37	430
~\$01035 51 9 32	(10	4.4	5	71	47	14	(10
101036 5:933	12	0.6	1	121	79	36	83
58801037 51934	(10	0. 7	1	82	52	34	(10
S6801038 51935	92	4.4	1	70	39	27	(He
58401039 51935	10	<.4 • •	6 e	11	20	12	8.0 20
58801040 3133/ 68861641 \$1838	(10	1.1	3 K	50 194	42 24	10	20
50001041 3.330 CDS6164* 51939	(10	4-3 7 A	3	127	24	45	(10
CREATOR 51939	(16	1 5	, k	92	37	71	(10
SR801044 51941	37	4 K	7	128	20	17	(10
\$8801045 51942	(10	4.8	, 11	190	82	31	(10
S8801149 51961	(10	<. 4	4	68	12	11	47
S8801150 51962	(10	0.7	7	117	29	38	56
S8801151 51963	(10	6.4	(4	70	19	5	32
\$8801152 51964	17	1.2	8	257	47	55	39
SB801153 51965	(10	<.4	<4	48	13	4	28
S8801154 51966	<10	{ .4	(4	50	22	5	12
S8801155 5:967	(10	4.4		39	8	4	13
\$8801156 51962	(16	< . 4	5	5!	35	5	<10
S8801200 51657	(10	۲.4		52	20	7	47
S8801201 51658	(10	<.4	< 4	57	20	5	(10
58801202 51659	10	¢.4	4	49]4	<2	(10
\$8801203 \$166P	(1¢	1.4	(4	35	16	>	Z3
58801182 51639	(10	Q./	2	17. 17.	3/	11	20
SOULIES DIDAN	(10	4.7	(6	190	 64	25 *	2J 79
101184 31841 Mites Si641	416	0.7	i A	130	26	30 25	25
101103 3101_ 10001105 41232	(16	\. .	2	50	450 3 2	2:	(16
CRAN1187 51644	716	1.7	a a	87 87	21	12	110
SRR01188 51645	<10	6.4	5	17	5	3	30
SRE01189 51646	11	C.C.	5	64	39	17	(10
S8801190 51647	(10	4.4	4	18	7	1	22
\$8801191 51648	(10	1.1	4	145	25	15	170
\$8801192 51649	<10	1.1	4	91	39	٤	78
\$8801193 51650	120	C.4	٤	163	3€	15	39
\$8801194 51652	C10	0.7		74	15	2	150
S8801195 51653	20	0.4	6	94	48	35	20
SB801196 51654	(10	¢.7	(4	76	21	10	(10
S8801197 51382	{1 €	0.4	{4	87	18	10	Gé
S8801170 51661	10	K.4	(4	70	16	19	{10
\$8801171 51662	(16	0,4	5	63	17	8	(10
S8801172 51663	(10	· (, (2	25 20	27	36 16	\$10 \$2
58801173 51664	(10	(,4 • •	6	70	21 56	10	30 2
288010/0 21910	VIV /10	V.8		73	50	10	2
50001071 31711 60961677 \$1917	(10	0.4	5	108	34	10	2
\$8801075 \$1945	(10	0,4	4	85	62	10	2
\$8801054 51430	(10	0.4	4	50	11	10	2
S8801199 51656	10	0.4	25	4	64	23	10
38801033 51518	10	1.4	42	7	106	7	10
s88^1034 51519	10	1.6	39	7	143	20	10
388.2073 51943	10	.4	49	4	71	12	70
38801074 51944	10	0.7	36	6	141		100
. •							

APPENDIX III

PAN CONCENTRATE AND ROCK SAMPLE RESULTS

÷

:

LAB ND F Job VB9-237k	IELB NURBER		Au gpt		Ag ppa		ћ рн	Zn ppa	Ca ppo	As ppn	Ng ppb
R8804754	編-9	(10		2.1		\$	67	122	···	
R8804755	WR-19	(10	<	.4	(4	67	\$5		100
R8804756	¥#-11	<	10	<	.4	<	4	62	16	3	100
R8804757	iit-8	(10	<	.4	(4	13	139	18	
R8804756	WR-1	<	10	<	.4		10	34	\$2	11	1 IV
28804759	₩ - 2		80	<	.4		25	52	35	24	10
R8804761	VN-5	•	10	<	.4		6	6 1	33	,	430
R8804762	VN-6		1140		.6	<	4	57	4	t a	94 75
R6804765	¥N-9		2320		.6	•	4	29	10	4	#26
R8804766	VH-10	(10				4	50	14	10	\$2
R880476 7	VX-12		740		1	<	4	43	13	5	205
R8804768	VH-13		1438		.5	<	4	35	16	12	12
R8804769	VH-14		360		.6	ć	4	25	X	Ť	< 16
R8804770	VN-15		*		.6	<	4	26	16	2	5 IV 6 10
R8804772	¥ R-1 7	(10		.4		12	491	126	38	500
R8804773	\$1-RV	<	10		.9		31	*	61	3	< IA
R8804774	VH-21	<	10	<	.4	¢	4	31	20	5	< 10
R8804777	線~41	<	10	<	.4		6	79	58	27	< 10 < 16
R6804780	¥2-31	(10	•	.4	Κ.	4	59	82		(10
R88047#1	TR-1	(10	<	.4	۲	4	73	61	2	(10
R880478 2	WR-30		538		.\$	<	4	64	59	55 4	(10 -
R8804783	LR-28	(10	•	.4	<	4	2	4	3	
28 804784	TR-7	•	\$0		.4	(•	68	15	431	16
R8804785	iik-29	(10	<	.4	۲	4	14	5 E	1840	10
R68047 66	¥R-36		20	(,4	(4	69	44	29	38
R8804788	TH-14	<	10	<	.4	<	4	46	22	9 (10
28804789	TR-12	(10	<	.4	(4	19	,		10
R\$804790	TR-15	(10		.4	(4	14	75	4 (10
£880509 7	T#-16	۲	10	¢	.4	۲	4	85	115	6 (10
R8805219	¥H-4	(10	<.	.4	1	4	49	16	3 (10
	VR-19		10		.4		24	9	36	5	10
	VR - 20		10		. 4		4	11	29	2	10

OPUS ROCK AND HEAVY CONCENTRATE SEDCHENISTRY

•

APPENDIX IV

I, Michael G. Westcott of 214-2025 West 1st Avenue, Vancouver, British Columbia, Canada, declare:

1. I am a Geologist, residing at the above address.

2. I am a Graduate of Geological Science from the University of British Columbia, in 1988 with a Bachelor of Science (Geology) degree.

3. This report is based on my personal field examination of the property.

Dated at Vancouver, BC., this <u>6</u> day of December 1988

Michael G. Westcott

APPENDIX IV

I, IAN A. PATERSON, WITH BUSINESS ADDRESS AT 700-409 GRANVILLE STREET, VANCOUVER, BRITISH COLUMBIA, DO HEREBY CERTIFY THAT:

- 1. I graduated from the University of Aberdeen, Scotland with a B.Sc. (Hons.) Degree in 1967.
- 2. I graduated from the University of British Columbia with a Ph.D. degree in 1973.
- 3. I am a registered Professional Engineer of the Province of British Columbia, a Fellow of the Gelogical Association of Canada and a member of the Canadian Institute of Mining and Metallurgy.
- 4. I have been engaged in my profession since my graduation in 1973.
- 5. I have been employed by Cominco Ltd. since 1974.

Respectfully submitted:

IAN A. PATERSON SENIOR GEOLOGIST

Dated this <u>6</u> day of December 1988 at Vancouver, British Columbia

APPENDIX V

REFERENCES

÷

- Armstrong, J.E., Tipper, H.W., Hoadley, J.W., Muller, J.E., Geology of McLeod Lake, Cariboo District, British Columbia; Geol. Surv. Can., Map 1204A (1969).
- Struik, L.C. and Fuller, E.A.; Preliminary Report on the Geology of the McLeod Lake Area, British Columbia, Geol. Surv. Can., Paper 88-1E, (1988).

•

