100101205

SOIL GEOCHEMISTRY. GEOPHYSICS, AND BACKHOE TRENCHING DAMBO 1-4 MINERAL CLAIMS OOTSALAKE AREA, B.C. OMINECA MINING DIVISION
 LATITUDE $53^{\circ} 51^{\prime}$ N, LONGITUDE 126 ${ }^{\circ} 33^{\prime} \mathrm{W}$ NTS MAP SHEET 93E/15E

October 25, 1988

TABLE OF CONTENTS

SUMMARY 1
PROPERTY, LOCATION, ACCESS 2
HISTORY 2
GEOLOGICAL SETTING 2
LOCATION MAP 3
CLAIM MAP 4
LOCAL GEOLOGY 5
SOIL GEOCHEMICAL SURVEY 5
Copper 6
Lead 6
Zinc 7
Silver 7
Arsenic 7
GEOPHYSICS - MAGNETOMETER SURVEY 7
PREVIOUS GEOPHYSICAL ANOMALIES 8
TRENCHING AND TRENCH SAMPLES 8
DISCUSSION 9
CONCLUSIONS 9
RECOMMENDATIONS 10
COST ESTIMATE 10
ENGINEER'S CERTIFICATE 12
GEOLOGIST'S CERTIFICATE 13
REFERENCES 14
APPENDIX:
Petrographic Description
Lognomal Probability Plots and Parameters of Metals in Soils
Soil Geochemical Analysis Certificate with Analytical Procedures
MAPS:
(Pocket inside back cover)
Soil Geochemical Survey Maps 1:5000 Scale for $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}$, As
Magnetometer Survey 1:5000 Scale
Backhoe Trenches, Location and Geochemistry 1:5000
Previous Geophysical Survey Anomalies 1:5000
Geology, 1:5000

SOIL GEOCHEMISTRY, GEOPHYSICS, AND BACKHOE TRENCHING DAMBO 1-4 MINERAL CLAIMS OOTSALAKE AREA, B.C. OMINECA MINING DIVISION

SUMMARY

The Dambo claim group is located 60 km south of Houston, B.C., 3 km north of Ootsa Lake. The property is underlain by volcanics of the Cretaceous or Tertiary Ootsa Lake Group and lesser feldspar porphyry dykes and basalt flows (?).

Rhyolite flows and breccia with local silification and clay alteration are exposed on Picket Hill in the central part of claim area. Previous exploration by BP Minerals Ltd. and current soil geochemical and magnetometer surveys suggest precious metals may be concentrated near this area and on the lower northern flanks of Picket Hill.

A Phase 1 exploration budget of $\$ 57,000$ is recommended to fund a diamond drilling programme to test geophysical and soil geochemical anomalies. If Phase 1 drilling is successful an additional drilling programme estimated to cost $\$ 100,000$ would comprise Phase 2. Total of Phases 1 and 2 programmes would require an expenditure of $\$ 157,000$.

PROPERTY, LOCATION, ACCESS

The Dambo mineral claim group is situated 3.0 km north of Ootsa Lake, about 60.0 km south of Houston, B.C. Picket Lake lies in the northeast quarter of the claims. The property is included in the Omineca Mining Division, NTS Map Sheet $93 \mathrm{E} / 15 \mathrm{E}$ at latitude $53^{\circ} 51^{\prime} \mathrm{N}$, longitude $126^{\circ} 33^{\prime} \mathrm{W}$. Elevation ranges from approximately 880 to 1075 metres.

The Dambo claim group consists of 40 units within four claims as listed below and shown on the following claim map.

Claim Name	Record No.	Number of Units	Record Date	
Dambo 1	$3271(10)$	12	October 6, 1980	
Dambo 2	$3272(10)$	8	$"$	
Dambo 3	$3273(10)$	12	$"$	$"$
Dambo 4	$3274(10)$	8	$"$	$"$

The claims cover an area of 1000 hectares. Access to the property is by good gravel road. Numerous logging roads provide ready access to many parts of the claims.

HISTORY

The Dambo claims were first staked in October, 1980 by BP Minerals Ltd., to cover a target defined by prospective geology and interesting rock chip sample resuits discovered during a reconnaissance exploration program (Findlay et al., 1981).

Geological, geochemical and geophysical surveys were carried out the following year. The property has more recently been optioned by B.P. Minerals to Exeter Mining Inc. In 1988, J.G. Ager Consultants Ltd. carried out additional grid surveys including soil geochemical and magnetics. Backhoe trenching also tested several of the anomalies.

The recent work is documented in this report and pertinent BP Minerals Ltd. data are summarized. The claims and grid area were examined on September 15, 1988 and found to conform to the presented data. There is no recorded mineral production from the property.

GEOLOGICAL SETTING

The Dambo claims lie within the Intermontane Tectonic Beit approximately 70 km east of the Coast Crystalline Belt. Eugeosynclinal rocks of Early to Middle Mesozoic are common in the

> DAMBO 1-4 MINERAL CLAIMS
> OOTSA LAKE AREA, B.C.
> OMINECA MINING DIVISION LATTTUDE $53^{\circ} 51^{\prime}$ N, LONGITUDE $126^{\circ} 33^{\prime} \mathrm{W}$
> NTS MAP SHEET $93 E / 15 E$

EXETER MINING INC.

To accompany report by
Locke B. Goldsmith, P.Eng.
Consulting Geologist
Paul Kallock
Consulting Geologist

DAMBO 1-4 MINERAL CLAIMS OOTSA LAKE AREA, B.C.
OMINECA MINING DIVISION
LATTTUDE $53^{\circ} 51^{\prime} \mathrm{N}$, LONGTTUDE $126^{\circ} 33^{\prime} \mathrm{W}$
NTS MAP SHEET 93E/15E

EXETER MINING INC.

To accompany report by
Locke B. Goldsmith, P.Eng.
Consulting Gcologisi
Paul Kallock
Consulting Geologist

Intermontane Belt. In west-central British Columbia, late Mesozoic and Early Cenozoic continental sedimentary, volcanic and plutonic rock occur in successor basin deposits. Between Ootsa and Francois Lakes these younger deposits constitute the Tiptop Hill and Ootsa Lake volcanic rocks. A younger, Eocene sequence of rocks known as the Endako and Goosly Lake Groups also occur in the area (MacIntyre, 1985).

LOCAL GEOLOGY

A geological map compiled by Woodsworth (1980) shows several outcrop areas in the Dambo claim group which are composed of volcanics of the Ootsa Lake Group of Cretaceous or Tertiary age. Geological mapping by BP Minerals Ltd. staff confirms the presence of rhyolite and lesser amounts of feldspar porphyry dykes and basalt on the claims.

The focus of most exploration at the Dambo claims has been directed toward Picket Hill (Jap Hat Hill) and its lower slopes. The top of the hill is located at approximately 4+00S 3+50E on the present grid. Rhyolite breccia is interbedded with rhyolite and dyke rocks show widespread pervasive weak to moderate clay alteration, while silicification, locally associated with close spaced quartz veinlets, has affected rhyolite within a zone 200 metres wide on the north side of Picket Hill. Rhyolite contains ubiquitous minor disseminated iron sulphides, largely weathered to limonite as well as more abundant pyrite localized within clasts of rhyolite breccia.

Banding in the rhyolite shows a complex flow deformation of highly viscous magma. Findlay et al (1981) suggest that a major component of the steep to subvertical dips observed in flow banded rhyolite at Picket Hill represents original steeply inclined banding, suggesting a subvolcanic rather than surface emplacement.

A rock sample collected from the lower north slopes of Picket Hill has been studied in thin section by Vancouver Petrographics Ltd., whose description of a slightly porphyritic, flow banded latite/rhyolite(?) is included in the appendix. It contained abundant fine disseminated hematite, silicification and clay alteration. Traces of galena(?) and titanium oxide were also noted.

Strongly clay-altered rhyolite is also exposed in bulldozed outcrops immediately south of Baseline Lake. Findlay et al. (1981) suggest this alteration (and perhaps at Picket Hill) may be of hydrothermal origin, associated with extrusive centers.

SOIL GEOCHEMICAL SURVEY

During 1988 a soil geochemical survey was conducted at the Dambo claim group by J.G. Ager Consultants Ltd. A northeast trending baseline was established between Baseline Lake and Picket Lake. Sixteen perpendicular lines, 100 metres apart were surveyed with hip chain and
compass. Soil samples were collected at 50 m spacings along these lines. Samples were collected with a grubhoe from a depth of 15 to 30 cm , which generally corresponds with the lower B or C soil horizon. Samples were collected in Kraft manila envelopes. Geochemical analyses for Cu, Pb, Zn, Ag, and As were carried out by Acme Laboratories of Vancouver, B.C. Certificates of analysis and analytical procedures are included in the Appendix. A total of 16.85 km of grid line were surveyed and 341 soil samples were collected.

Geochemical results of soil samples were processed with a computer programme to derive lognormal probability plots from which threshold and anomalous values were generated. Graphs and parameters are included in the Appendix. Plots for the elements $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}$, and As appear to have three populations. For most elements the upper end of population 2 and the lower end of population 3 categorize the anomalous and threshold levels of metals in soils. The plot for As appears to have broad overlap of populations therefore the lower portion of population 2 and the upper portion of population 2 categorize the anomalous and threshold levels of metals in soils.

	Cu	Pb	Zn	Ag	As
No. of Values, n	341	341	341	341	341
Threshold	49	20	264	1.2	17
Anomalous	53	21	500	2.3	34

Copper

Numerous anomalous copper values in soils are located along the grid baseline and along the shore of Picket Lake. These areas are known by trenching to have thick (>4 metres) of overburden, therfore source of the high values is unknown.

At 6+40W 2+755, 53 ppm copper occurs on the lower northwest slopes of Picket Hill. Two soil samples near the south end of line $8+43 \mathrm{~W}$ contain up to 105 ppm copper. Geology in this area is unknown. Finally, a single high value of 85 ppm Cu is located at $11+40 \mathrm{~W} 0+75 \mathrm{~S}$ near Baseline Lake. Depth of overburden is expected to be less in this area of the grid.

Lead

A very strong lead anomaly is located at Picket Hill. Eleven samples surrounding the hill top area contain more than 21 ppm Pb . As with silver and aresenic, lead can be seen to be spatially related to sulphide mineralization and silicification as exposed in outcrops near the hill top.

Two other single point amonalies are present in the grid area; at $8+43 \mathrm{~W} 2+25 \mathrm{~S}$ and $12+$ $40 \mathrm{~W} 5+25 \mathrm{~S}$. They occur in areas of unknown thickness of overburden.

Zinc

Numerous threshold values of zinc lie north and south of the lead anomaly at Picket Hill. Strong anomalous values up to 934 ppm Zn are located near the baseline in an area of deep overburden.

A single isolated threshold value of zinc is present at $10+40 \mathrm{~W} 1+50 \mathrm{~S}$ where 311 ppm was detected. Interestingly, a strong arsenic value of 72 ppm is also present in this sample.

Silver

Silver values in soils of up to 7.0 ppm are associated with mineralization at Picket Hill. No other anomalous values are present at the grid. Several threshold values are present along the baseline and as single isolated points in the west half of the grid.

Arsenic

Anomalous arsenic values in soil, up to 381 ppm, lie immediately south of Picket Hill.
There is a close association of high silver, lead, and locally high zinc with this arsenic anomaly. On the north side of the hill, threshold values of arsenic (greater than 17 ppm) are also associated with anomalous silver. The sulphide-bearing outcrops of silicified and argillic-altered rhyolite, which have been mapped by BP Minerals' geologists, lie within the threshold silver values. Increased concentrations of arsenic and silver are presentimmediately north and south of the outcrop area.

GEOPHYSICS - MAGNETOMETER SURVEY

A magnetometer survey was carried out on the same grid as the soil survey. Stations were established at 25 metres spacings along all lines including the baseline. More than 675 instrument readings are included in the survey. A GSM-8 proton precession magnetometer was used for the survey; corrections for diurnal variation were made twice daily. A survey map showing stations and instrument readings is included in the pocket in the back of this report. Contours at 100 gamma intervals have been drawn. The total field magnetic intensity ranged from 57,079 to 57,769 gammas.

The broad magnetic features of the survey grid display a rough circular high (greater than 57,600 gammas) centered at approximately $1+50 \mathrm{~S} 6+90 \mathrm{~W}$. Along the southeastern part of the grid a magnetic low exceeds 1000 m in length.

The strongest contrasting magnetic signatures are located near Picket Lake at $0+70 \mathrm{E}$, $3+50-4+00 \mathrm{~S}$. The highest point of 57769 gammas is flanked by low magnetics of 57112 gammas and 57146 gammas.

PREVIOUS GEOPHYSICAL ANOMALIES

Findlay et al. (1981) have summarized their induced polarization survey of the Picket Hill area. A map of the present grid area showing four of their IP anomalies and a resistivity anomaly is included in the pocket of this report.

The strongest anomaly, $\mathbb{I P}-1$, is located near Baseline Lake and is coincident with enriched soil values of copper up to 85 ppm and arsenic to 72 ppm . It is located on the southwest flank of the magnetic high.

Zone IP-2 located at $0+30 \mathrm{~W} 2+00 \mathrm{~S}$ extends under Picket Lake. It is similar to IP-1 in that a shallow ($10-20$ metres) conductor containing $3-5 \%$ disseminated sulphides is the expected cause of the anomaly. Soil values up to 61 ppm Cu have been returned from the area. Backhoe trenches \#12, \#13 and \#14 were excavated on the IP anomaly. However, bedrock was not reached and soils from the bottom of the trenches were not enriched in metals.

IP-3 and IP-4 occur along the southeast margin of the grid. They may be caused by $1-3 \%$ disseminated sulphides or as the magnetometer suggests, a change in lithology.

Anomaly R-1 is a zone of high resistivity which is coincident with a zone of silicification exposed on the northern side of the top of Picket Hill near $3+50 \mathrm{~W}, 4+00 \mathrm{~S}$. It probably represents the subcrop extent of the zone of silicification. The anomaly measures $250 \mathrm{~m} \times 250 \mathrm{~m}$ and lies adjacent to IP-2 anomaly.

Some of the strongest soil values of the survey are associated with the resistivity anomaly which reflects the silicified zone on Picket Hill. These include $109 \mathrm{ppm} \mathrm{Pb}, 428 \mathrm{ppm} \mathrm{Zn}, 1.9 \mathrm{ppm}$ Ag, and 381 ppm As.

TRENCHING AND TRENCH SAMPLES

During 1988, 14 trenches were excavated on the Dambo claims using a John Deere 450-B backhoe. Length of trenches ranged from 4 to 48 metres, width from 0.75 to 1.5 m and depth of hole from 3 to 4 metres. A sample of the colluvial material from each of the trenches was collected and analyzed by the same procedure and for the same elements as a soil sample. A map showing trench locations and sample results is included in the pocket of this report. No bedrock was
encountered in the trenches and no rock samples were collected. A total length of 323 metres of trenching was excavated.

Only trench \#8 which is located 50 m northwest and down slope from resistivity anomaly R-1 and 150 m downslope from anomalous soil values of zinc, silver and arsenic, contained elevated metal values. A sample of soil from the bottom of the trench contained $829 \mathrm{ppm} \mathrm{Zn}, 1.4 \mathrm{ppm} \mathrm{Ag}$, and 1176 ppm As.

DISCUSSION

Recent mineral exploration by Rio Algom Explorations Inc. has found precious metals in volcanics of the Ootsa Lake Group at the Woif prospect. This property is located approximately 100 km southeast of the Dambo claims, six km. southeast of Entiako Lake. Preliminary mapping and sampling in the area in 1983 and 1984 indicated epithermal mineralization within the Tertiary Ootsa Lake Group.

Precious metals at this prospect are associated with silicified and brecciated zones in a flow banded and spherulitic rhyolite. These volcanics might represent resurgent domes and associated hydrothermal products related to volcanic activity within a caldera or maar feature (Andrew et al., 1986).

Similarities of the Wolf prospect and the Dambo property include the presence of rhyolite of the Ootsa Lake Group, zones of silicification and quartz veining, and anomalous soil or rock geochemistry.

CONCLUSION

Silicification and clay alteration are present in thyolite on the north side of Picket Hill. Exploration conducted by BP Minerals Ltd. in 1981 has obtained gold values up to 100 ppb from a sulphide-rich shear zone and from pyrite clasts in rhyolite breccia from this area. The silicified rhyolite shows up as a resistivity high which extends into areas of overburden surrounding the hill top. The current soil geochemical survey indicates that a mineralized source rock lies within the Picket Hill area and has contributed to values up to $109 \mathrm{ppm}, \mathrm{Pb}, 1004 \mathrm{ppm} \mathrm{Zn}, 7.0 \mathrm{ppm} \mathrm{Ag}$, and 381 ppm As.

Three hundred metres northeast of the hill top another geophysical anomaly was delineated. An IP. anomaly indicates the presence of 3-5\% disseminated sulphides at shallow depth. Trenching of the anomalous area to 4 m in depth did not reach bedrock.

Encouraging metal values up to $829 \mathrm{ppm} \mathrm{Zn}, 1.4 \mathrm{ppm} \mathrm{Ag}$, and 1176 ppm as have been recovered from backhoe trenching 250 m northwest of the hill top (50 m north of the resistivity anomaly). This area is on the lower slopes of the hill and may have received transported soil and debris from above.

Near Baseline Lake soil values of 85 ppm copper and 72 ppm arsenic are located in the area of IP-1. Furthermore, the area is adjacent to a magnetic high. This high magnetic feature may outline an intrusive which is more mafic than the rhyolite known to exist elsewhere on the property.

RECOMMENDATIONS

A programme of diamond drilling is recommended to test for base and precious metal mineralization in the Picket Hill area. The silicified rhyolite, particularly where it contains abundant sulphides, could be host to precious metals. Both the high resistivity anomaly and IP-2 anomaly should be drilled, particularly where soil geochemical anomalies are coincident or may have been displaced downslope. Drilling is also recommended for IP-1 target and the magnetic high zone where it abuts the $\mathrm{P}-1$ target.

Geological mapping of outcrops on Picket Hill and those south of Baseline Lake could be accomplished during the drill programme. Drill site access roads should be mapped and sampled.

COST ESTIMATE

Phase I

Geological mapping and rock geochemical sampling, and diamond drilling, as follows:
Geological mapping and rock sampling $\quad 6,000$
Diamond drilling $250 \mathrm{~m} @ \$ 110 / \mathrm{M} \quad 27,500$
Access road and drill site preparation $\quad 5,000$
Assays and geochemical analyses 1,500
Food and lodging $\quad 1,500$
Transportation 1,500
Engineering and supervision $\quad 2,500$
Reporting $\quad \underline{2.000}$
47,500
Contingencies, $20 \% \quad 9,500$
Total Phase 1 57,000
\$ 57,000

Phase 2

Continued diamond drilling, allow	$\$ 100,000$	$\$ 100,000$
Total Phases $1 \& 2$		$\$ 157,000$

Results of Phase 1 should be compiled into an engineering report; continuance to Phase 2 should be contingent upon favourable conclusions and recommendations from an engineer.

Respectfully submitted,

Locke B. Goldsmith, P.Eng.
Consulting Geologist
Vancouver, B.C.
October 25, 1988

ENGINEER'S CERTIFICATE LOCKE B. GOLDSMITH

1. I, Locke B. Goldsmith, am a registered Professional Engineer in the Province of Ontario and the Northwest Territories, and a Registered Professional Geologist in the State of Oregon. My address is 301,1855 Balsam Street, Vancouver, B.C.
2. I have a B.Sc. (Honours) degree in Geology from Michigan Technological University, a M.Sc. degree in Geology from the University of British Columbia, and have done postgraduate study in Geology at Michigan Tech and the University of Nevada. I am a graduate of the Haileybury School of Mines, and am a Certified Mining Technician. I am a Member of the Society of Economic Geologists, the AIME, and the Australian Institute of Mining and Metallurgy, and a Fellow of the Geological Association of Canada.

3 I have been engaged in mining exploration for the past 30 years.
4 I have co-authored the report entitled, "Soil Geochemistry, Geophysics, and Backhoe Trenching, Dambo 1-4 Mineral Claims, Ootsa Lake Area, B.C., Omineca Mining Division," dated October 25, 1988. The report is based upon fieldwork and research supervised by the author.
5. I have no ownership in the property, nor in the stocks of Exeter Mining Inc..
6. I consent to the use of this report in a prospectus, or in a statement of material facts related to the raising of funds. Sheets of analyses in the Appendix could be omitted from a prospectus because all values are plotted on maps.

Vancouver, B.C.
October 25, 1988

GEOLOGIST'S CERTIFICATE PAUL KALLOCK

I, Paul Kallock, do state: that I am a Geologist with Arctex Engineering Services, 301 1855 Balsam Street, Vancouver, B.C.

I Further State That:

1. I have a B.Sc. degree in Geology from Washington State University, 1970. I am a Fellow of the Geological Association of Canada.
2. I have engaged in mineral exploration since 1970 , both for major mining and exploration companies and as an independent geologist.
3. Ihave co-authored the reportentitied, "SoilGeochemistry, Geophysics, and Backhoe Trenching Dambo 1-4 Mineral Claims, Ootsa Lake Area, B.C. Omineca Mining Division." The report is based on my fieldwork carried out on the property and on previously accumulated geologic data. I visited the property on September 15, 1988.
4. I have no direct or indirect interest in any manner in either the property or securities of Exeter Mining Inc., or its affiliates, nor do I anticipate to receive any such interest.
5. I consent to the use of this report in a prospectus, or in a statement of material facts related to the raising of funds. Sheets of analyses in the Appendix could be omitted from a prospectus because all values are plotted on maps.

Vancouver, B.C.
October 25, 1988

REFERENCES

Andrew, K.P.E., Godwin, C.I. and Cann, R.M., 1986, Wolf Epithermal Precious Metal Vein Prospect Central British Columbia (93F/3W) in Geological Fieldwork 1985 pages 317-320, B.C. Ministry of E.M. \& P.R. Paper 1986-1

Findlay A.R., Hoffman S.J. and Mitchel G., 1981. Geological, Geochemical and Geophysical Report on the Dambo Property, Dambo 1-4 Omineca Mining Division, B.C. MTS93E/15E Assessment Report \#9788 B.P. Minerals Ltd.

MacIntyre D.G. 1985 Geology and Mineral Deposits of the Tahtsa Lake District West Central British Columbia, Bull. 75 B.C. M of EM + PR

Stanley, C.R. 1987. PROBPLOT: An Interactive Computer Program to Fit Mixtures of Normal (or Log-Normal) Distributions with Maximum Likelihood Optimization Procedures. Assoc. of Exploration Geochemists, Special Volume \#14.

Woodsworth, G.J. 1980, Geology of the Whitesail Lake (93 E) Map-Area B.C., O.F. 708 GSC.

APPENDIX

JAMES VINNELL, Annam
JOHN G. PAYNE. Pr. D. Geologist

POO. BOX 39
88B7 NASH STREET FORT LANGLEY. BC. VOXIJO

PHONE (604) 888-1323
June 1988

Sample: DAMBO $1 G$

The polished section was examined. It is a slightly porphyritic, flow banded latite/rhyolite (?) containing 5-7\% phenocryst of plagioclase(?) in an extremely fine grained groundmass. phenocrysts are subhedral and up to 1 mm in size; they appear to be altered to quartz and a very soft, extremely fine grained mineral, possibly kaolinite. The extremely fine grained groundmass may be silicified in part; it contains moderately abundant disseminated, anhedral patches of hematite averaging $\emptyset .02 \cdots .05 \mathrm{~mm}$ in size. one patch of coarser grained hematite ($0.07-0.1 \mathrm{~mm}$) contains a few inclusions up to $\emptyset . \emptyset 1 \mathrm{~mm}$ in size of galena(?).

Cutting the rock are veinlets averaging $0.3-0.5 \mathrm{~mm}$ wide of fine grained quartz containing minor to moderately abundant specular hematite plates averaging 0.05-b. 1 m in length, with a very few over 0.15 mm long. Pyrite forms a very few anhedral grains up to 0.03 mm in size, surrounded by quartz. One patch of quartz contains a dense cluster 0.17 mm long of extremely fine grained, subhedral to euhedral Ti-oxide grains. Limonite forms an irregular patch up to 0.7 mm across bordering one vein.

 FAFAMETEF SUMMAFY STATISTICS FOF FFOEASILITY FLOT AUALYGJS

Data File Name = DAMBOC.DAT

H. $\mathrm{CI}=26$

Foputatian Men Ft Dev Fernentage

1	12.50	-	9.5	5 a
		+	10.07	
2	45. 35	-	צ6.021.	20
		$+$	54.164	
\%	8 E .440	\cdots	67.249	4.00
		t	103.530	

Default Threstaclefs.
Standara Deviatior Multiplier $=2.0$

Frop.	Thresholds	
1	던	27.104
2	-1.372	64.54 .1
F	54.200	128.48

 FAFAMETER EUHHABY GTATISTLC FOE FRTEAEILITY FIOT ANALYSIS

Mrit ：pom
$N=$
$N C I=$
34
26

Whmber of Fopulations $=$
\＃wf Mis ing DeservetionE ow

$1 \quad 11.946$
7.96
8.50
17.524
$\because \quad \because \quad, \quad 159$
$\therefore 1.1 .5 \quad 275$
$\because \quad 75$ 4．4．321 61.248 4．75
$+\quad 94.311$

Defant Thresholde．

Staridard Deviation Multigligr＝2． 0

> Fro. Threstodds
…＂．．．．．．．

1	5.807	$26,8 \%$
2	ご， 2 d	－2．862
\because	$4 \square$－4	117．88

FAFAMETEF SUMIAAFY GTATTSYTOS FOF FFOEAETLITY FLOT ANALYSIE
Date File Mane = DAMEDS DAT

Yeriatels $=$ Ft	Mrite = put	$N=$	241
		U CI =	26

 Nomber of Fopulation $=\because$

"

fandyation ME: Gtd Dev Fencenters

3	5.9	\cdots		צ5:9
		4.	区. 41	
\cdots		\cdots	9548	42.30
		+	16.977	
\because	54.499	-	\%1, 16\%	$\therefore 8$
		\uparrow	94.985	

м

Stamard Deviztion Maltiplier =2. 0

 FAFAMETER GUMMAGY GTATISTIGS FOE FFOEAETIITY FLOT ANALYSTE

Unit : $=$ Ppm
「 :
$34:$
$\mathrm{NE}=$
26

Fien Thts Faximum inke? inctorarameter Estimates

Defaust Thremtacids.

Standar Deviation Mostipligr = 2.0

Fop.	Threstiolde	
!	1.416	19.691
2	\%.62A	20.492
\bigcirc	17.754	189.76

蚿

隹

			Stutysors	－
4	s^{-r}	－－	5erw	9%
		4	1\％\％－ 3	
\cdots	204．769	－\times＂	247．78e	
		＊	$4 \mathrm{~m}_{0} \mathrm{~m}$	
\because	75958	－＇	56， 60%	1.00
		4	15\％＂\％－－	

F＂mp．Thrmationde
… ．．．．．＂．

1	サ9．	191．4\％
？	1 5\％－40	$55_{6}^{69 \%}$
\％	41 E＊）	15®？，4＂4

Ty tu E

	Unit $=$－	N：	741	
		$\\| \mathrm{Em}=$	26	

$$
\begin{aligned}
& \text { テッツ. }
\end{aligned}
$$

$0 \operatorname{rr}=$

位

"	0.190	"'	0.10	94.9
		+	0.31	
Q	1.436	"	1. 1.49	4.50
		+.	1.794	
※	3-	"-	1.879	1. 3
		4	¢585	

隹

Defedrt Thremind dea

PaD. Thestuad

1	9.056	0.545
2	0.520	2.241
3	1.065	10236


```
    MOT= N
```


Fooknlation	Mear		Etd Dev	Ferrcentange
1.	O. 15	"-	0.697	9 Sa
		4	0.25	
\cdots	1. 16%	\cdots	On $\mathrm{gat}^{\mathrm{c}}$	
		$+$	J. 640	
Y	80%	""	2.065	1. 20
		\dagger	6.58	

1	0.008	0.514
	0.506	2.62
	1.165	11.609

Data File Mert = DAPEOE, DAT

象

м

:	\%, 2 C	...	3 Br	\%
		\%	10.78	
\therefore	28, 67	...	19.0 \%	$\therefore .00$
		!-	28.170	
\%	70.949	---	29.0\%4	1.30
		t	$17 \pm .7$ ¢	

Mef atut Thremtolds.
Stamgard Daviation Multiolier = $2 \boldsymbol{O}$
Per. Threstulds

1	1. 566	1.8.891
2	16.66	\%-59\%
,	1:9\%2	42 E 4\%

ACME ANALYTICAL LABORATORIES LTD.
DATE RECEIVED: AUG 111988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604)253-3158 FAX (604)253-1716 DATE REPORT MAILED: ffg. 23.88.

- SAMPLE TYRE: SOLL

SAMPLE\#	Cu PPM	Pb PPM	Zn PPM	AG PFM	AS PPM
TRENCH 3	17	13	48	.4	9
TRENCH 4	29	17	85	.6	20
TRENCH 5	28	13	64	.7	13
TRENCH 6	26	14	395	.6	14
TRENCH 7	29	16	207	.6	14
TRENCH 8	11	11	829	1.4	1176
TRENCH 9	20	14	68	.5	16
TRENCH 11	18	9	53	.5	13
TRENCH 12	25	14	65	.8	14
TRENCF 13	23	14	69	.5	13
TRENCH 14	19	13	60	.5	12

ACME ANALYTICAL LABORATORIES LTD.
DATE RECEIVED: JUN 171988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAI ANAIYSIS CERTIEICATE

 - SAMpis typr: soil

ASSAYER: D.TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS J.G. AGER PROJECT-PICKET HILL File \# 88-2061 Page 1

SAMPLE\#	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \text { As } \\ \text { PPM } \end{array}$
L11+40W 4+75S	10	7	44	. 1	3
L11+40W 5+25S	9	5	59	. 2	4
L11+40W $5+75 \mathrm{~S}$	13	17	107	. 1	8
L11+40 W $6+25 \mathrm{~S}$	13	5	81	. 1	8
L11+40W $6+75 \mathrm{~S}$	8	4	156	. 1	3
L11+40W $7+25 \mathrm{~S}$	7	6	238	. 3	14
L11+40 W 7+75s	38	3	85	. 4	24
L11+40W $8+25 \mathrm{~S}$	19	5	49	. 1	8
L10+40W 0+25S	18	15	83	. 3	14
L10+40W $0+75 \mathrm{~S}$	13	9	116	. 3	8
L10+40W 1+25s	8	10	100	. 1	2
$\mathrm{L} 10+40 \mathrm{~W} 1+75 \mathrm{~S}$	36	22	311	. 5	72
L10+40W $2+255$	23	11	66	. 2	10
$\mathrm{L} 10+40 \mathrm{~W} 2+75 \mathrm{~S}$	10	9	70	. 3	5
$\mathrm{L} 10+40 \mathrm{~W} 3+25 \mathrm{~S}$	12	10	102	. 2	8
L10+40W 3+75s	9	9	110	. 1	8
L10+40W 4+25s	12	8	88	. 1	8
$\mathrm{L} 10+40 \mathrm{~W} \mathrm{4+75S}$	14	8	48	. 1	7
L $10+40 \mathrm{~W} 5+25 \mathrm{~S}$	7	8	45	. 1	3
L10+40W 5+75S	7	4	68	. 3	3
L10+40W $6+25 \mathrm{~S}$	9	13	70	. 1	2
L $10+40 \mathrm{~W} 6+75 \mathrm{~S}$	11	2	94	. 1	7
L10+40w $7+25 \mathrm{~S}$	18	7	80	. 2	6
L10+40W 7+75s	40	16	140	. 1	23
L9+40W $0+25 \mathrm{~S}$	19	21	95	. 1	16
L9+40W 0-75s	15	10	71	. 1	2
L9+40W $1+25$ S	25	5	100	. 1	7
L9+40W $1+75 \mathrm{~S}$	29	8	85	. 1	3
L9+40W $2+25 \mathrm{~S}$	9	7	58	. 1	2
L9+40W $2+75 \mathrm{~S}$	13	4	73	. 1	5
L9+40W 3+25s	10	6	76	. 1	9
L9+40W 3+75S	7	7	72	. 1	2
L9+40W 4+25s	12	12	68	. 3	7
L9+40W 4+75S	15	2	90	. 1	5
L9+40W 5+25s	38	12	120	. 4	16
L9+40W 5+75s	9	7	113	. 1	2
STD C	60	38	132	6.8	40

SAMPLE\#	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPM} \end{array}$	$\underset{\mathrm{PPM}}{\mathrm{Zn}}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{As} \\ \mathrm{PPM} \end{array}$
L9+40W 6+25s	9	5	81	. 3	4
L9+40W 6+75s	13	7	105	. 1	7
L9+40W 7+25S	7	2	41	. 1	2
L9+40W 7+75s	9	12	54	. 2	3
L9+40W $8+255$	14	11	80	. 3	4
$\mathrm{L} 8+43 \mathrm{~W} \quad 0+25 \mathrm{~S}$	18	16	91	. 1	5
$\mathrm{L} 8+43 \mathrm{~W} \quad 0+75 \mathrm{~S}$	11	9	71	. 1	9
L8+43W $1+25 \mathrm{~S}$	13	9	82	. 1	5
L8+43W $1+75 \mathrm{~S}$	28	12	124	. 2	5
L8+43W $2+25 \mathrm{~S}$	14	30	249	1.8	2
L8+43W $2+75 \mathrm{~S}$	15	3	78	. 4	5
L8+43W 3+25S	13	7	93	. 2	6
L8+43W 3+75S	7	10	84	. 2	3
L8+43W $4+25 \mathrm{~S}$	10	9	114	. 3	5
L8+43W 4+75S	9	12	113	. 1	2
L $8+43 \mathrm{~W} \quad 5+25 \mathrm{~S}$	12	5	98	. 4	5
L8+43W 5+75S	11	4	218	. 3	3
L8+43W 6+25S	105	17	192	1.6	15
L $8+43 \mathrm{~W} 6+75 \mathrm{~S}$	76	12	155	1.0	9
L8+43W 7+25S	48	18	77	. 1	12
L8+43W 7+75S	6	6	53	. 2	5
$\mathrm{L} 7+42 \mathrm{~W} 2+75 \mathrm{~N}$	18	18	132	. 1	5
L7+42W $2+25 \mathrm{~N}$	19	12	85	. 2	15
L7+42W $1+75 \mathrm{~N}$	12	11	90	. 3	8
L7+42W $1+25 \mathrm{~N}$	5	8	46	. 3	2
$\mathrm{L} 7+42 \mathrm{~W} \quad 0+75 \mathrm{~N}$	12	10	93	. 4	2
$\mathrm{L} 7+42 \mathrm{~W} \quad 0+25 \mathrm{~N}$	15	15	65	. 2	11
$\mathrm{L} 7+42 \mathrm{~W} \quad 0+25 \mathrm{~S}$	16	12	103	. 4	6
L7 $7+42 \mathrm{~W} \quad 0+75 \mathrm{~S}$	8	6	89	. 2	9
L7+42W $1+25 \mathrm{~S}$	10	3	81	. 4	9
$\mathrm{L} 7+42 \mathrm{~W} \quad 1+75 \mathrm{~s}$	12	11	72	. 1	7
L $7+42 \mathrm{~W} \quad 2+25 \mathrm{~S}$	11	7	85	. 5	5
$\mathrm{L} 7+42 \mathrm{~W} 2+75 \mathrm{~S}$	8	8	132	. 4	5
L7+42W 3+25s	8	9	109	. 4	2
L7+42W 3+75S	21	12	176	. 5	4
L7+42W 4+25S	8	9	84	. 3	3
STD C	59	39	132	6.6	36

J.G. AGER PROJECT-PICKET HILL FILE \# 88-2061

SAMPLE		$\underset{\mathrm{PPM}}{\mathrm{Cu}}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{PPM} \end{gathered}$	$\underset{\mathrm{PPM}}{\mathrm{Zn}}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \text { AS } \\ \text { PPM } \end{array}$
L7 $7+42 \mathrm{~W}$	4+75s	7	13	99	. 1	3
$\mathrm{L} 7+42 \mathrm{~W}$	5+25s	6	13	187	. 1	4
L. $7+42 \mathrm{~W}$	$5+75 \mathrm{~S}$	10	16	185	. 1	2
$\mathrm{L} 7+42 \mathrm{~W}$	$6+25 s$	11	15	101	. 3	4
$\mathrm{L} 7+42 \mathrm{~W}$	$6+755$	7	12	64	. 2	5
L7+42W	$7+25 \mathrm{~S}$	6	16	69	. 1	4
$\mathrm{L} 7+42 \mathrm{~W}$	$7+75 s$	15	9	56	. 3	5
$\mathrm{L} 7+42 \mathrm{~W}$	$8+25 \mathrm{~S}$	8	11	111	. 1	12
L6 $6+40 \mathrm{~W}$	$2+75 \mathrm{~N}$	9	19	62	. 1	4
L6+40 W	$2+25 N$	11	13	125	. 2	11
L6 $6+40 \mathrm{~W}$	$1+75 \mathrm{~N}$	11	13	78	. 1	7
L6+40W	$1+25 \mathrm{~N}$	13	14	39	. 1	5
$\mathrm{L} 6+40 \mathrm{~W}$	$0+75 \mathrm{~N}$	21	10	68	. 1	12
L6+40 W	$0+25 \mathrm{~N}$	10	11	71	. 1	4
L6+40w	$0+25 \mathrm{~S}$	10	9	82	. 1	8
L6+40 W	$0+75 \mathrm{~s}$	12	10	75	. 2	8
L6+40w	$1+25 s$	13	13	72	. 3	8
L6 $6+40 \mathrm{~W}$	$1+75$ S	34	20	102	. 3	9
L6+40w	$2+25 \mathrm{~s}$	23	17	65	. 1	12
L6 $6+40 \mathrm{~W}$	$2+75 \mathrm{~S}$	53	15	161	. 5	9
L6 $6+40 \mathrm{~W}$	$3+255$	16	14	81	. 2	11
L $6+40 \mathrm{~W}$	$3+75 \mathrm{~s}$	14	12	80	. 4	8
$\mathrm{L} 6+40 \mathrm{~W}$	$4+25 s$	13	14	103	. 2	7
L6+40 W	$4+75 \mathrm{~s}$	11	8	83	. 2	5
L6 $6+40 \mathrm{~W}$	$5+25 \mathrm{~S}$	12	10	144	. 4	4
L6+40W	5+75s	9	11	115	. 3	6
L6 $6+40 \mathrm{~W}$	$6+25 s$	17	11	130	. 3	7
L $6+40 \mathrm{~W}$	$6+75 \mathrm{~s}$	12	12	47	. 3	5
$\mathrm{L} 6+40 \mathrm{~W}$	$7+25 \mathrm{~S}$	11	8	79	. 2	3
L $6+40 \mathrm{~W}$	$7+75 \mathrm{~s}$	13	9	64	. 2	5
L $6+40 \mathrm{~W}$	$8+25 \mathrm{~S}$	13	13	65	. 2	8
L5 5 +36 W	$2+75 \mathrm{~N}$	9	7	58	. 4	3
L $5+36 \mathrm{~W}$	$2+25 \mathrm{~N}$	12	14	96	. 3	10
L $5+36 \mathrm{~W}$	$2+75 \mathrm{~N}$	19	5	101	. 3	12
$\mathrm{L} 5+36 \mathrm{~W}$	$1+25 \mathrm{~N}$	6	12	41	. 2	4
L $5+36 \mathrm{~W}$	O+75N	12	7	53	. 2	6
STD C		61	38	132	6.8	39

	SAMPLE\#		$\underset{\mathrm{PPM}}{\mathrm{Cu}}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { As } \\ \mathrm{PPM} \end{array}$
	L5 5 +3W	O+25N	66	16	202	. 8	13
	L5+36W	0+25s	36	9	107	. 5	10
	L5+36W	$0+75 \mathrm{~S}$	20	2	108	. 7	8
	$\mathrm{L} 5+36 \mathrm{~W}$	1+25S	16	4	80	. 3	8
	L5+36W	$1+75 \mathrm{~s}$	98	17	190	. 9	15
	L5 + 36 W	$2+25 \mathrm{~S}$	18	8	78	. 1	9
	L5+36W	$2+75 \mathrm{~s}$	12	6	110	.1	5
	L5+36W	$3+25 \mathrm{~S}$	12	9	85	.1	7
	L5 + 36 W	$3+75$ S	13	4	70	. 5	7
	L5+36W	$4+25 \mathrm{~S}$	18	23	295	2.3	34
	L5 5 36W	$4+75 s$	11	5	192	. 2	3
	L5+36W	5+25S	19	3	213	. 2	7
	L $5+36 \mathrm{~W}$	$5+75 \mathrm{~S}$	13	3	193	. 4	4
	L5+36W	$6+25 \mathrm{~S}$	18	12	166	. 4	6
	L $5+36 \mathrm{~W}$	$6+75 \mathrm{~S}$	13	6	101	. 2	3
	L $5+36 \mathrm{~W}$	$7+25 s$	24	5	114	. 5	5
	L5+36W	$7+75 S$	17	6	79	. 3	4
	L5 + 36 W	$8+25 \mathrm{~S}$	26	4	74	. 4	6
	L $4+36 \mathrm{~W}$	$3+00 \mathrm{~N}$	7	6	48	. 1	3
	L4+36W	$2+50 \mathrm{~N}$	7	2	51	. 1	2
	L4+36W	$2+00 \mathrm{~N}$	10	9	90	. 1	6
	L4+36W	$1+50 \mathrm{~N}$	7	8	39	. 2	2
	L $4+36 \mathrm{~W}$	$1+00 \mathrm{~N}$	11	2	97	. 1	9
	$\mathrm{L} 4+36 \mathrm{~W}$	0+50N	19	9	97	. 3	7
	L $4+36 \mathrm{~W}$	$\mathrm{O}+00 \mathrm{~N}$	14	2	68	. 2	6
	$54+36 \mathrm{~W}$	0+50s	13	4	95	. 2	7
	L $4+36 \mathrm{~W}$	$1+005$	14	12	119	. 1	6
	L4+36W	$1+50 \mathrm{~S}$	11	14	131	. 2	10
	L4+36W	$2+005$	15	10	124	. 6	12
	L $4+36 \mathrm{~W}$	$2+50 \mathrm{~S}$	25	8	83	. 3	12
	L $4+36 \mathrm{~W}$	$3+005$	14	98	428	5.4	33
	L $4+36 \mathrm{~W}$	$3+50 \mathrm{~S}$	22	109	185	1.5	31
	L $4+36 \mathrm{~W}$	$4+00 \mathrm{~S}$	20	23	180	1.6	13
い"**	$\underline{L} 4+36 \mathrm{~W}$	$4+505$	13	93	170	1.8	74
	L $4+36 \mathrm{~W}$	$5+50 \mathrm{~S}$	8	5	200	. 4	2
	L $4+36 \mathrm{~W}$	$6+00 \mathrm{~S}$	26	6	1004	. 7	2
	STD C		59	40	132	7.2	38

SAMPLE\#			$\begin{gathered} \mathrm{Cu} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { AS } \\ \text { PPM } \end{array}$
	L $4+36 \mathrm{~W}$	6+50s	19	19	252	. 3	16
	L4+36W	$7+005$	7	12	280	. 2	8
	L4+36W	$7+50 \mathrm{~S}$	12	15	378	1.2	12
	L4+36W	$8+005$	12	14	97	. 3	7
	$\mathrm{L} 4+36 \mathrm{~W}$	$8+505$	11	14	63	. 3	6
	$\mathrm{L} 4+36 \mathrm{~W}$	9+00s	10	14	64	. 1	10
	L3+35W	$3+00 \mathrm{~N}$	19	21	92	. 5	6
	L $3+35 \mathrm{~W}$	$2+50 \mathrm{~N}$	10	14	80	. 3	5
	L $3+35 \mathrm{~W}$	$2+00 \mathrm{~N}$	19	15	117	. 2	13
	$\mathrm{L} 3+35 \mathrm{~W}$	$1+50 \mathrm{~N}$	8	12	56	. 1	6
	L3 3 35 W	$1+00 \mathrm{~N}$	11	15	93	. 3	9
	L3+35W	0+50N	7	14	57	. 1	2
	L $3+35 \mathrm{~W}$	$0+005$	10	13	107	. 2	5
	L $3+35 \mathrm{~W}$	$0+50 \mathrm{~S}$	19	10	467	. 2	5
	L $3+35 \mathrm{~W}$	$1+00 \mathrm{~S}$	41	17	441	. 4	9
	L3+35 W	$1+505$	15	12	503	. 1	2
	L $3+35 \mathrm{~W}$	$2+005$	23	15	380	. 3	12
	L $3+35 \mathrm{~W}$	$2+505$	21	17	285	. 6	13
	L3 3 +35 W	$3+005$	12	32	488	1.9	23
	$\mathrm{L} 3+35 \mathrm{~W}$	$3+505$	16	99	69	1.4	16
	L $3+35 \mathrm{~W}$	$4+005$	8	30	114	1.8	16
	L3+35 W	$5+00 \mathrm{~S}$	32	57	298	4.2	25
	L $3+35$ W	$6+005$	16	19	323	. 6	8
	L $3+35 \mathrm{~W}$	$6+505$	17	10	135	. 1	9
	L3+35W	$7+005$	11	11	129	. 1	8
	L $3+35 \mathrm{~W}$	$7+505$	13	11	85	. 1	4
	L $3+35 \mathrm{~W}$	$8+005$	11	12	72	. 1	6
-	L $3+35 \mathrm{~W}$	$8+25 \mathrm{~S}$	19	13	110	. 3	7
	$\mathrm{L} 3+35 \mathrm{~W}$	$8+505$	14	10	69	. 3	8
	L $2+33 \mathrm{~W}$	$3+00 \mathrm{~N}$	10	11	71	. 1	5
	$\mathrm{L} 2+33 \mathrm{~W}$	$2+50 \mathrm{~N}$	9	11	74	. 1	4
	$\mathrm{L} 2+33 \mathrm{~W}$	$2+00 \mathrm{~N}$	16	16	137	. 3	12
	$\mathrm{L} 2+33 \mathrm{~W}$	$1+50 \mathrm{~N}$	13	14	102	. 3	15
	$\mathrm{L} 2+33 \mathrm{~W}$	$1+00 \mathrm{~N}$	16	14	94	. 1	9
	$\mathrm{L} 2+33 \mathrm{~W}$	$0+50 \mathrm{~N}$	85	19	934	. 6	8
	STD C		59	39	132	7.0	39

SAMPLE\#		$\underset{\mathrm{PPM}}{\mathrm{Cu}}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{PPM} \end{array}$	$\underset{\mathrm{PPM}}{\mathrm{Ag}}$	$\underset{\text { PPM }}{\text { As }}$
$\mathrm{L} 2+33 \mathrm{~W}$	$0+005$	9	3	151	. 3	4
L2+33W	$0+50 \mathrm{~s}$	21	7	118	. 5	8
L2+33W	$1+00 \mathrm{~S}$	10	5	96	. 4	7
L2+33 W	$1+50 \mathrm{~s}$	17	7	117	. 4	14
L2 $2+33 \mathrm{~W}$	$2+005$	11	6	153	. 3	4
L2+33 W	$2+50 \mathrm{~s}$	12	13	119	. 2	5
L2+33W	$3+005$	8	4	80	. 1	4
$\mathrm{L} 2+33 \mathrm{~W}$	$3+50 \mathrm{~s}$	11	10	89	. 3	3
L2+33W	$4+005$	9	9	105	. 2	2
$\mathrm{L} 2+33 \mathrm{~W}$	$4+505$	17	6	113	. 3	10
L2+33W	5+00s	12	7	67	. 1	8
L2+33W	$5+50 \mathrm{~s}$	14	11	222	. 4	9
$\mathrm{L} 2+33 \mathrm{~W}$	$6+005$	10	8	132	. 2	5
L2+33W	$6+50 \mathrm{~S}$	12	2	107	. 5	2
L2+33 W	$7+005$	8	2	57	. 1	3
$\mathrm{L} 2+33 \mathrm{~W}$	$7+50 s$	8	2	153	. 3	2
L2 $2+33 \mathrm{~W}$	$8+005$	8	3	56	. 1	3
$\mathrm{L} 2+33 \mathrm{~W}$	$8+505$	17	5	72	. 2	5
L1+32W	$3+00 \mathrm{~N}$	16	4	90	. 1	10
L1+32W	$2+50 \mathrm{~N}$	12	2	123	. 1	9
$\mathrm{L} 1+32 \mathrm{~W}$	$2+00 \mathrm{~N}$	17	3	81	. 3	8
Li+32W	$1+50 \mathrm{~N}$	12	3	138	. 2	7
L $1+32 \mathrm{~W}$	$1+00 \mathrm{~N}$	24	10	187	. 4	3
$\mathrm{L} 1+32 \mathrm{~W}$	$\mathrm{O}+50 \mathrm{~N}$	8	9	278	. 1	13
$\mathrm{L} 1+32 \mathrm{~W}$	$0+00 \mathrm{~s}$	60	6	379	. 4	6
$\mathrm{L} 1+32 \mathrm{~W}$	0+50s	86	8	199	1.0	13
$\mathrm{L} 1+32 \mathrm{~W}$	1+00s	17	9	82	. 3	6
$11+32 \mathrm{~W}$	$1+50 \mathrm{~s}$	10	7	78	. 1	9
Li+32W	$2+005$	10	6	115	. 1	2
$\mathrm{L} 1+32 \mathrm{~W}$	$2+50 \mathrm{~s}$	20	11	77	. 5	3
$\mathrm{L} 1+32 \mathrm{~W}$	$3+005$	14	4	94	. 1	12
$\mathrm{L} 1+32 \mathrm{~W}$	$3+50 \mathrm{~s}$	14	9	149	. 4	7
L $1+32 \mathrm{~W}$	$4+005$	13	3	82	. 1	13
$\mathrm{L} 1+32 \mathrm{~W}$	$4+50 \mathrm{~s}$	14	8	148	. 2	5
$\mathrm{L} 1+32 \mathrm{~W}$	$5+005$	16	4	91	. 1	7
$\mathrm{L} 1+32 \mathrm{~W}$	$5+50 \mathrm{~S}$	8	3	74	. 1	2
STD C		60	38	132	6.9	40

SAMPLE\#	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{PqM} \end{array}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \text { As } \\ \mathrm{PPM} \end{array}$
BL $4+50 \mathrm{~W}$	98	9	215	. 9	16
BL 4+00W	18	5	85	. 1	11
BL $3+50 \mathrm{~W}$	12	2	65	. 1	6
BL 3+00W	20	8	309	. 1	4
BL $2+50 \mathrm{~W}$	25	8	522	. 1	4
BL 2+00W	37	10	353	. 3	7
BL $1+50 \mathrm{~W}$	23	11	204	. 1	4
BL $1+00 \mathrm{~W}$	8	8	96	. 1	5
BL $0+50 \mathrm{~W}$	11	8	162	. 1	4
BL $0+00 \mathrm{~W}$	77	13	96	. 6	3
L0+70E $1+505$	20	5	57	. 1	4
L0+70E $2+00 \mathrm{~S}$	61	13	80	. 4	6
L0+70E $2+50 \mathrm{~S}$	51	10	98	. 5	9
LO+70E 3+00S	19	7	71	. 4	4
LO+70E 3+50S	7	6	53	. 3	2
L0+70E 4+00s	12	2	139	. 1	6
LO+70E 4+50S	11	3	51	. 1	4
L0+70E 5+00S	11	6	108	. 1	6
L0+70E 5+50S	9	5	86	. 3	6
LO+70E 6+00S	7	9	146	. 3	3
L0+70E 6+50S	11	2	70	. 1	4
L0+70E 7+00S	13	2	53	. 3	3
L0+70E 7+50S	19	11	71	. 1	6
L1+70E $4+00 \mathrm{~S}$	12	8	99	. 6	6
L1+70E 4+50S	54	8	302	1.1	3
L1+70E 5+00S	12	7	97	. 5	8
L1+70E 5+50S	10	5	86	. 3	6
L1+70E 6+00S	11	3	63	. 2	11
L1+70E 6+50S	23	10	133	. 1	6
L1+70E 7+00s	12	2	80	. 2	3
L1+70E 7+50S	4	10	31	. 1	2
L2+70E 5+00S	15	6	49	. 2	4
L2+70E 5+50S	8	2	99	. 2	6
L2+70E $6+00 \mathrm{~S}$	16	8	153	. 3	5
L2+70E 6+50S	11	4	142	. 1	6
$\mathrm{L} 2+70 \mathrm{E} 7+00 \mathrm{~S}$	7	2	69	. 3	2
STD C	60	36	132	6.9	37

SAMPLE\#	$\begin{gathered} \mathrm{Cu} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{PPM} \end{gathered}$	$\begin{gathered} \text { As } \\ \mathrm{PPM} \end{gathered}$
L2+70E $7+505$	7	9	52	. 1	2
$\mathrm{L} 1+00 \mathrm{~S} 1+83 \mathrm{~W}$	20	13	51	. 3	5
$\mathrm{L} 1+00 \mathrm{~S} 0+82 \mathrm{~W}$	11	14	115	. 2	9
Li+00S 0+20E	6	7	30	. 2	3
$\mathrm{L} 1+00 \mathrm{~S} 0+70 \mathrm{E}$	23	6	36	. 4	4
$\mathrm{L} 2+00 \mathrm{~S} 1+83 \mathrm{~W}$	11	19	75	. 3	11
$\mathrm{L} 2+00 \mathrm{~S} 0+82 \mathrm{~W}$	20	12	81	. 7	11
$\mathrm{L} 2+00 \mathrm{~S}$ O+20E	15	11	63	. 2	7
$\mathrm{L} 3+00 \mathrm{~S} 1+83 \mathrm{~W}$	14	13	98	. 6	11
L3+00S $0+82 \mathrm{~W}$	13	10	63	. 2	9
L3+00S $0+20 \mathrm{E}$	14	7	82	. 4	5
L7+50S 0+50E	10	11	78	. 1	4
L7+50S $1+00 \mathrm{E}$	8	9	61	. 1	5
$\mathrm{L} 7+50 \mathrm{~S} 1+50 \mathrm{E}$	9	7	54	. 1	9
$\mathrm{L} 7+50 \mathrm{~S} 2+00 \mathrm{E}$	17	11	52	. 3	6
L7+50s $2+50 \mathrm{E}$	16	11	57	. 3	9
L $4+36 \mathrm{~W} 5+00 \mathrm{~S}$	36	44	50	. 3	56
L3+35W 5+50S	14	32	17	7.0	381

1

