the second s	
LOG NO: 1205	RD.
ACTION:	
FILE KO:	

SOIL GEOCHEMISTRY. GEOPHYSICS, AND BACKHOE TRENCHING DAMBO 1-4 MINERAL CLAIMS OOTSA LAKE AREA, B.C. OMINECA MINING DIVISION LATITUDE 53°51'N, LONGITUDE 126°33'W NTS MAP SHEET 93E/15E

-5

କ

S S E O E

୬ ୦

T D

0 Z Ø 0

- H

تشامد

∼ ⊅

Prepared for EXETER MINING INC.

ARCTEX ENGINEERING SERVICES

Locke B. Goldsmith, P.Eng. Consulting Geologist

> Paul Kallock Consulting Geologist

October 25, 1988

TABLE OF CONTENTS

SUMMARY	1
PROPERTY, LOCATION, ACCESS	2
HISTORY	2
GEOLOGICAL SETTING	2
LOCATION MAP	3
CLAIM MAP	4
LOCAL GEOLOGY	5
SOIL GEOCHEMICAL SURVEY	5
Copper Lead Zinc Silver Arsenic	6 6 7 7 7 7
GEOPHYSICS - MAGNETOMETER SURVEY	7
PREVIOUS GEOPHYSICAL ANOMALIES	8
TRENCHING AND TRENCH SAMPLES	8
DISCUSSION	9
CONCLUSIONS	9
RECOMMENDATIONS	10
COST ESTIMATE	10
ENGINEER'S CERTIFICATE	12
GEOLOGIST'S CERTIFICATE	13
REFERENCES	14
APPENDIX:	
Petrographic Description Lognormal Probability Plots and Parameters of Metals Soil Geochemical Analysis Certificate with Analytical	
MAPS:	(Pocket inside back cover)
Soil Geochemical Survey Maps 1:5000 Scale for Cu, Magnetometer Survey 1:5000 Scale	Pb, Zn, Ag, As

Magnetometer Survey 1:5000 Scale Backhoe Trenches, Location and Geochemistry 1:5000 Previous Geophysical Survey Anomalies 1:5000 Geology, 1:5000

SOIL GEOCHEMISTRY, GEOPHYSICS, AND BACKHOE TRENCHING DAMBO 1-4 MINERAL CLAIMS OOTSA LAKE AREA, B.C. OMINECA MINING DIVISION

SUMMARY

The Dambo claim group is located 60 km south of Houston, B.C., 3 km north of Ootsa Lake. The property is underlain by volcanics of the Cretaceous or Tertiary Ootsa Lake Group and lesser feldspar porphyry dykes and basalt flows (?).

Rhyolite flows and breccia with local silification and clay alteration are exposed on Picket Hill in the central part of claim area. Previous exploration by BP Minerals Ltd. and current soil geochemical and magnetometer surveys suggest precious metals may be concentrated near this area and on the lower northern flanks of Picket Hill.

A Phase 1 exploration budget of \$57,000 is recommended to fund a diamond drilling programme to test geophysical and soil geochemical anomalies. If Phase 1 drilling is successful an additional drilling programme estimated to cost \$100,000 would comprise Phase 2. Total of Phases 1 and 2 programmes would require an expenditure of \$157,000.

PROPERTY, LOCATION, ACCESS

The Dambo mineral claim group is situated 3.0 km north of Ootsa Lake, about 60.0 km south of Houston, B.C. Picket Lake lies in the northeast quarter of the claims. The property is included in the Omineca Mining Division, NTS Map Sheet 93 E/15E at latitude 53°51'N, longitude 126°33'W. Elevation ranges from approximately 880 to 1075 metres.

The Dambo claim group consists of 40 units within four claims as listed below and shown on the following claim map.

Claim Name	Record No.	Number of Units	Record Date
Dambo 1	3271(10)	12	October 6, 1980
Dambo 2	3272(10)	8	12 21
Dambo 3	3273(10)	12	1 1 1 1
Dambo 4	3274(10)	8	11 II

The claims cover an area of 1000 hectares. Access to the property is by good gravel road. Numerous logging roads provide ready access to many parts of the claims.

HISTORY

The Dambo claims were first staked in October, 1980 by BP Minerals Ltd., to cover a target defined by prospective geology and interesting rock chip sample results discovered during a reconnaissance exploration program (Findlay et al., 1981).

Geological, geochemical and geophysical surveys were carried out the following year. The property has more recently been optioned by B.P. Minerals to Exeter Mining Inc. In 1988, J.G. Ager Consultants Ltd. carried out additional grid surveys including soil geochemical and magnetics. Backhoe trenching also tested several of the anomalies.

The recent work is documented in this report and pertinent BP Minerals Ltd. data are summarized. The claims and grid area were examined on September 15, 1988 and found to conform to the presented data. There is no recorded mineral production from the property.

GEOLOGICAL SETTING

The Dambo claims lie within the Intermontane Tectonic Belt approximately 70 km east of the Coast Crystalline Belt. Eugeosynclinal rocks of Early to Middle Mesozoic are common in the

DAMBO 1-4 MINERAL CLAIMS OOTSA LAKE AREA, B.C. OMINECA MINING DIVISION LATITUDE 53°51'N, LONGITUDE 126°33'W NTS MAP SHEET 93E/15E

EXETER MINING INC.

To accompany report by Locke B. Goldsmith, P.Eng, Consulting Geologist Paul Kallock Consulting Geologist

ARCTEX ENGINEERING SERVICES

CLAIM MAP_ 3483(6) PUKE 12 PUKE 5069 (3) ~ 0945(8) 0944(8) 23 PUKE PUKE ÿ 8942 (8) 10 8943 (8) 14423 PUKE PUKE 47 13 ရှိနှင့် (၃) -2PUKIE 8939/(8) PUKE 89.50 '53°52. 5' PUKE BIR 15 5068(3) 8776 (8) TONY ۱. ī. HEL 10 9021 (10) UKE L 1014(10) c 8934(0 0 ÷ DAMBO <u></u>б TONY 2 9022(10) <u>26</u>°: 3271 (10) 101-0.155 DAMBO 4 3274 (10) (2+ 5) 2+1 റ 0 53 201 3310A DAMBO 3 3273(10) DAMBO 2 3272 (10) 12511461 1002

DAMBO 1-4 MINERAL CLAIMS OOTSA LAKE AREA, B.C. OMINECA MINING DIVISION LATITUDE 53°51'N, LONGITUDE 126°33'W NTS MAP SHEET 93E/15E

EXETER MINING INC.

To accompany report by Locke B. Goldsmith, P.Eng. Consulting Geologist Paul Kallock Consulting Geologist

ARCTEX ENGINEERING SERVICES

October 25, 1988

.

4

Intermontane Belt. In west-central British Columbia, late Mesozoic and Early Cenozoic continental sedimentary, volcanic and plutonic rock occur in successor basin deposits. Between Ootsa and Francois Lakes these younger deposits constitute the Tiptop Hill and Ootsa Lake volcanic rocks. A younger, Eocene sequence of rocks known as the Endako and Goosly Lake Groups also occur in the area (MacIntyre, 1985).

LOCAL GEOLOGY

A geological map compiled by Woodsworth (1980) shows several outcrop areas in the Dambo claim group which are composed of volcanics of the Ootsa Lake Group of Cretaceous or Tertiary age. Geological mapping by BP Minerals Ltd. staff confirms the presence of rhyolite and lesser amounts of feldspar porphyry dykes and basalt on the claims.

The focus of most exploration at the Dambo claims has been directed toward Picket Hill (Jap Hat Hill) and its lower slopes. The top of the hill is located at approximately 4+00S 3+50E on the present grid. Rhyolite breccia is interbedded with rhyolite and dyke rocks show widespread pervasive weak to moderate clay alteration, while silicification, locally associated with close spaced quartz veinlets, has affected rhyolite within a zone 200 metres wide on the north side of Picket Hill. Rhyolite contains ubiquitous minor disseminated iron sulphides, largely weathered to limonite as well as more abundant pyrite localized within clasts of rhyolite breccia.

Banding in the rhyolite shows a complex flow deformation of highly viscous magma. Findlay et al. (1981) suggest that a major component of the steep to subvertical dips observed in flow banded rhyolite at Picket Hill represents original steeply inclined banding, suggesting a subvolcanic rather than surface emplacement.

A rock sample collected from the lower north slopes of Picket Hill has been studied in thin section by Vancouver Petrographics Ltd., whose description of a slightly porphyritic, flow banded latite/rhyolite(?) is included in the appendix. It contained abundant fine disseminated hematite, silicification and clay alteration. Traces of galena(?) and titanium oxide were also noted.

Strongly clay-altered rhyolite is also exposed in bulldozed outcrops immediately south of Baseline Lake. Findlay et al. (1981) suggest this alteration (and perhaps at Picket Hill) may be of hydrothermal origin, associated with extrusive centers.

SOIL GEOCHEMICAL SURVEY

During 1988 a soil geochemical survey was conducted at the Dambo claim group by J.G. Ager Consultants Ltd. A northeast trending baseline was established between Baseline Lake and Picket Lake. Sixteen perpendicular lines, 100 metres apart were surveyed with hip chain and compass. Soil samples were collected at 50 m spacings along these lines. Samples were collected with a grubhoe from a depth of 15 to 30 cm, which generally corresponds with the lower B or C soil horizon. Samples were collected in Kraft manila envelopes. Geochemical analyses for Cu, Pb, Zn, Ag, and As were carried out by Acme Laboratories of Vancouver, B.C. Certificates of analysis and analytical procedures are included in the Appendix. A total of 16.85 km of grid line were surveyed and 341 soil samples were collected.

Geochemical results of soil samples were processed with a computer programme to derive lognormal probability plots from which threshold and anomalous values were generated. Graphs and parameters are included in the Appendix. Plots for the elements Cu, Pb, Zn, Ag, and As appear to have three populations. For most elements the upper end of population 2 and the lower end of population 3 categorize the anomalous and threshold levels of metals in soils. The plot for As appears to have broad overlap of populations therefore the lower portion of population 2 and the upper portion of population 2 categorize the anomalous and threshold levels of metals in soils.

	Cu	Pb	Zn	Ag	As
No. of Values, n	341	341	341	341	341
Threshold	49	20	264	1.2	17
Anomalous	53	21	500	2.3	34

Copper

Numerous anomalous copper values in soils are located along the grid baseline and along the shore of Picket Lake. These areas are known by trenching to have thick (>4 metres) of overburden, therfore source of the high values is unknown.

At 6+40W 2+755, 53 ppm copper occurs on the lower northwest slopes of Picket Hill. Two soil samples near the south end of line 8+43W contain up to 105 ppm copper. Geology in this area is unknown. Finally, a single high value of 85 ppm Cu is located at 11+40W 0+75S near Baseline Lake. Depth of overburden is expected to be less in this area of the grid.

Lead

A very strong lead anomaly is located at Picket Hill. Eleven samples surrounding the hill top area contain more than 21 ppm Pb. As with silver and aresenic, lead can be seen to be spatially related to sulphide mineralization and silicification as exposed in outcrops near the hill top.

Two other single point amonalies are present in the grid area; at 8+43W 2+25S and 12 + 40W 5+25S. They occur in areas of unknown thickness of overburden.

Zinc

Numerous threshold values of zinc lie north and south of the lead anomaly at Picket Hill. Strong anomalous values up to 934 ppm Zn are located near the baseline in an area of deep overburden.

A single isolated threshold value of zinc is present at 10+40W 1+50S where 311 ppm was detected. Interestingly, a strong arsenic value of 72 ppm is also present in this sample.

Silver

Silver values in soils of up to 7.0 ppm are associated with mineralization at Picket Hill. No other anomalous values are present at the grid. Several threshold values are present along the baseline and as single isolated points in the west half of the grid.

Arsenic

Anomalous arsenic values in soil, up to 381 ppm, lie immediately south of Picket Hill.

There is a close association of high silver, lead, and locally high zinc with this arsenic anomaly. On the north side of the hill, threshold values of arsenic (greater than 17 ppm) are also associated with anomalous silver. The sulphide-bearing outcrops of silicified and argillic-altered rhyolite, which have been mapped by BP Minerals' geologists, lie within the threshold silver values. Increased concentrations of arsenic and silver are present immediately north and south of the outcrop area.

GEOPHYSICS - MAGNETOMETER SURVEY

A magnetometer survey was carried out on the same grid as the soil survey. Stations were established at 25 metres spacings along all lines including the baseline. More than 675 instrument readings are included in the survey. A GSM-8 proton precession magnetometer was used for the survey; corrections for diurnal variation were made twice daily. A survey map showing stations and instrument readings is included in the pocket in the back of this report. Contours at 100 gamma intervals have been drawn. The total field magnetic intensity ranged from 57,079 to 57,769 gammas.

The broad magnetic features of the survey grid display a rough circular high (greater than 57,600 gammas) centered at approximately 1+50S 6+90W. Along the southeastern part of the grid a magnetic low exceeds 1000 m in length.

The strongest contrasting magnetic signatures are located near Picket Lake at 0+70E, 3+50-4+00S. The highest point of 57769 gammas is flanked by low magnetics of 57112 gammas and 57146 gammas.

PREVIOUS GEOPHYSICAL ANOMALIES

Findlay et al. (1981) have summarized their induced polarization survey of the Picket Hill area. A map of the present grid area showing four of their IP anomalies and a resistivity anomaly is included in the pocket of this report.

The strongest anomaly, IP-1, is located near Baseline Lake and is coincident with enriched soil values of copper up to 85 ppm and arsenic to 72 ppm. It is located on the southwest flank of the magnetic high.

Zone IP-2 located at 0+30W 2+00S extends under Picket Lake. It is similar to IP-1 in that a shallow (10-20 metres) conductor containing 3-5% disseminated sulphides is the expected cause of the anomaly. Soil values up to 61 ppm Cu have been returned from the area. Backhoe trenches #12, #13 and #14 were excavated on the IP anomaly. However, bedrock was not reached and soils from the bottom of the trenches were not enriched in metals.

IP-3 and IP-4 occur along the southeast margin of the grid. They may be caused by 1-3% disseminated sulphides or as the magnetometer suggests, a change in lithology.

Anomaly R-1 is a zone of high resistivity which is coincident with a zone of silicification exposed on the northern side of the top of Picket Hill near 3+50W, 4+00S. It probably represents the subcrop extent of the zone of silicification. The anomaly measures 250 m x 250 m and lies adjacent to IP-2 anomaly.

Some of the strongest soil values of the survey are associated with the resistivity anomaly which reflects the silicified zone on Picket Hill. These include 109 ppm Pb, 428 ppm Zn, 1.9 ppm Ag, and 381 ppm As.

TRENCHING AND TRENCH SAMPLES

During 1988, 14 trenches were excavated on the Dambo claims using a John Deere 450-B backhoe. Length of trenches ranged from 4 to 48 metres, width from 0.75 to 1.5 m and depth of hole from 3 to 4 metres. A sample of the colluvial material from each of the trenches was collected and analyzed by the same procedure and for the same elements as a soil sample. A map showing trench locations and sample results is included in the pocket of this report. No bedrock was

encountered in the trenches and no rock samples were collected. A total length of 323 metres of trenching was excavated.

Only trench #8 which is located 50 m northwest and down slope from resistivity anomaly R-1 and 150 m downslope from anomalous soil values of zinc, silver and arsenic, contained elevated metal values. A sample of soil from the bottom of the trench contained 829 ppm Zn, 1.4 ppm Ag, and 1176 ppm As.

DISCUSSION

Recent mineral exploration by Rio Algom Explorations Inc. has found precious metals in volcanics of the Ootsa Lake Group at the Wolf prospect. This property is located approximately 100 km southeast of the Dambo claims, six km. southeast of Entiako Lake. Preliminary mapping and sampling in the area in 1983 and 1984 indicated epithermal mineralization within the Tertiary Ootsa Lake Group.

Precious metals at this prospect are associated with silicified and brecciated zones in a flow banded and spherulitic rhyolite. These volcanics might represent resurgent domes and associated hydrothermal products related to volcanic activity within a caldera or maar feature (Andrew et al., 1986).

Similarities of the Wolf prospect and the Dambo property include the presence of rhyolite of the Ootsa Lake Group, zones of silicification and quartz veining, and anomalous soil or rock geochemistry.

CONCLUSION

Silicification and clay alteration are present in rhyolite on the north side of Picket Hill. Exploration conducted by BP Minerals Ltd. in 1981 has obtained gold values up to 100 ppb from a sulphide-rich shear zone and from pyrite clasts in rhyolite breccia from this area. The silicified rhyolite shows up as a resistivity high which extends into areas of overburden surrounding the hill top. The current soil geochemical survey indicates that a mineralized source rock lies within the Picket Hill area and has contributed to values up to 109 ppm, Pb, 1004 ppm Zn, 7.0 ppm Ag, and 381 ppm As.

Three hundred metres northeast of the hill top another geophysical anomaly was delineated. An IP. anomaly indicates the presence of 3-5% disseminated sulphides at shallow depth. Trenching of the anomalous area to 4 m in depth did not reach bedrock. Encouraging metal values up to 829 ppm Zn, 1.4 ppm Ag, and 1176 ppm as have been recovered from backhoe trenching 250m northwest of the hill top (50 m north of the resistivity anomaly). This area is on the lower slopes of the hill and may have received transported soil and debris from above.

Near Baseline Lake soil values of 85 ppm copper and 72 ppm arsenic are located in the area of IP-1. Furthermore, the area is adjacent to a magnetic high. This high magnetic feature may outline an intrusive which is more mafic than the rhyolite known to exist elsewhere on the property.

RECOMMENDATIONS

A programme of diamond drilling is recommended to test for base and precious metal mineralization in the Picket Hill area. The silicified rhyolite, particularly where it contains abundant sulphides, could be host to precious metals. Both the high resistivity anomaly and IP-2 anomaly should be drilled, particularly where soil geochemical anomalies are coincident or may have been displaced downslope. Drilling is also recommended for IP-1 target and the magnetic high zone where it abuts the IP-1 target.

Geological mapping of outcrops on Picket Hill and those south of Baseline Lake could be accomplished during the drill programme. Drill site access roads should be mapped and sampled.

COST ESTIMATE

Phase I

Geological mapping and rock geochemical sampling, and diamond drilling, as follows:

Geological mapping and rock sampling	6,000	
Diamond drilling 250 m @ \$110/M	27,500	
Access road and drill site preparation	5,000	
Assays and geochemical analyses	1,500	
Food and lodging	1,500	
Transportation	1,500	
Engineering and supervision	2,500	
Reporting	_2.000	
	47,500	
Contingencies, 20%	<u>_9,500</u>	
Total Phase 1	57,000	\$ 57,000

Phase 2

Continued diamond drilling, allow	\$100,000	\$ <u>100.000</u>
Total Phases 1 & 2		\$157,000

Results of Phase 1 should be compiled into an engineering report; continuance to Phase 2 should be contingent upon favourable conclusions and recommendations from an engineer.

Respectfully submitted,

Lock SSOC/ Kallock Sher or Our? PAUL KALLOCK Locke B. Goldsmith, P.Eng. Paul Kalloe Consulting Geologist Consulting gist ELIAN

Vancouver, B.C. October 25, 1988

ENGINEER'S CERTIFICATE LOCKE B. GOLDSMITH

- 1. I, Locke B. Goldsmith, am a registered Professional Engineer in the Province of Ontario and the Northwest Territories, and a Registered Professional Geologist in the State of Oregon. My address is 301, 1855 Balsam Street, Vancouver, B.C.
- 2. I have a B.Sc. (Honours) degree in Geology from Michigan Technological University, a M.Sc. degree in Geology from the University of British Columbia, and have done postgraduate study in Geology at Michigan Tech and the University of Nevada. I am a graduate of the Haileybury School of Mines, and am a Certified Mining Technician. I am a Member of the Society of Economic Geologists, the AIME, and the Australian Institute of Mining and Metallurgy, and a Fellow of the Geological Association of Canada.
- 3 I have been engaged in mining exploration for the past 30 years.
- 4 I have co-authored the report entitled, "Soil Geochemistry, Geophysics, and Backhoe Trenching, Dambo 1-4 Mineral Claims, Ootsa Lake Area, B.C., Omineca Mining Division," dated October 25, 1988. The report is based upon fieldwork and research supervised by the author.
- 5. I have no ownership in the property, nor in the stocks of Exeter Mining Inc..
- 6. I consent to the use of this report in a prospectus, or in a statement of material facts related to the raising of funds. Sheets of analyses in the Appendix could be omitted from a prospectus because all values are plotted on maps.

Respectfully submitted, flimit Locke B. Goldsmith, P.Eng. Consulting Geologist CEOF ONTAR

Vancouver, B.C. October 25, 1988

GEOLOGIST'S CERTIFICATE PAUL KALLOCK

I, Paul Kallock, do state: that I am a Geologist with Arctex Engineering Services, 301 - 1855 Balsam Street, Vancouver, B.C.

I Further State That:

- 1. I have a B.Sc. degree in Geology from Washington State University, 1970. I am a Fellow of the Geological Association of Canada.
- 2. I have engaged in mineral exploration since 1970, both for major mining and exploration companies and as an independent geologist.
- 3. Ihave co-authored the report entitled, "Soil Geochemistry, Geophysics, and Backhoe Trenching Dambo 1-4 Mineral Claims, Ootsa Lake Area, B.C., Omineca Mining Division." The report is based on my fieldwork carried out on the property and on previously accumulated geologic data. I visited the property on September 15, 1988.
- 4. I have no direct or indirect interest in any manner in either the property or securities of Exeter Mining Inc., or its affiliates, nor do I anticipate to receive any such interest.
- 5. I consent to the use of this report in a prospectus, or in a statement of material facts related to the raising of funds. Sheets of analyses in the Appendix could be omitted from a prospectus because all values are plotted on maps.

Kallock PAUL KALLOCK ELLOPAN Kallock **Consulting Geologist**

Vancouver, B.C. October 25, 1988

REFERENCES

- Andrew, K.P.E., Godwin, C.I. and Cann, R.M., 1986, Wolf Epithermal Precious Metal Vein Prospect Central British Columbia (93F/3W) in Geological Fieldwork 1985 pages 317 - 320, B.C. Ministry of E.M. & P.R. Paper 1986-1
- Findlay A.R., Hoffman S.J. and Mitchel G., 1981. Geological, Geochemical and Geophysical Report on the Dambo Property, Dambo 1-4 Omineca Mining Division, B.C. MTS93E/15E Assessment Report #9788 B.P. Minerals Ltd.
- MacIntyre D.G. 1985 Geology and Mineral Deposits of the Tahtsa Lake District West Central British Columbia, Bull. 75 B.C. M of EM + PR
- Stanley, C.R. 1987. PROBPLOT: An Interactive Computer Program to Fit Mixtures of Normal (or Log-Normal) Distributions with Maximum Likelihood Optimization Procedures. Assoc. of Exploration Geochemists, Special Volume #14.

Woodsworth, G.J. 1980, Geology of the Whitesail Lake (93 E) Map-Area B.C., O.F. 708 GSC.

APPENDIX

•

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph. D. Geologist

> Report for: J.G.Ager, 1326 - 510 West Hastings Street, Vancouver, B.C.

P.O. BOX 39 8887 NASH STREET FORT LANGLEY, B.C. VOX 1JO

PHONE (604) 888-1323 June 1988

Sample: DAMBO 1G

The polished section was examined. It is a slightly porphyritic, flow banded latite/rhyolite (?) containing 5-7% phenocrysts of plagioclase(?) in an extremely fine grained groundmass. Phenocrysts are subhedral and up to 1 mm in size; they appear to be altered to quartz and a very soft, extremely fine grained mineral, possibly kaolinite. The extremely fine grained groundmass may be silicified in part; it contains moderately abundant disseminated, anhedral patches of hematite averaging 0.02-0.05 mm in size. One patch of coarser grained hematite (0.07-0.1 mm) contains a few inclusions up to 0.01 mm in size of galena(?).

Cutting the rock are veinlets averaging 0.3-0.5 mm wide of fine grained quartz containing minor to moderately abundant specular hematite plates averaging Ø.05-0.1 mm in length, with a very few over Ø.15 mm long. Pyrite forms a very few anhedral grains up to Ø.03 mm in size, surrounded by quartz. One patch of quartz contains a dense cluster Ø.17 mm long of extremely fine grained, subhedral to euhedral Ti-oxide grains. Limonite forms an irregular patch up to Ø.7 mm across bordering one vein.

film & Vay o

00:05:19 DAMB02

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS
Data File Name = DAMBO2.DAT
Variable = Cu
Unit = ppm
N = 341
N CI = 26
Transform = Logarithmic
Number of Populations = 3

of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean	÷	Std Dev	Parcentage
1	12.050		8.035	93,20
		÷	18.073	
2	45.355	-	38.021	2.80
		· + ·	54.104	
3	83.440		67.249	4,00
		·t-	103.530	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thre	sholds
16. da.,	میں برد برد برد	
1	5.358	27.104
2	31.872	64.541
3	54.200	128.456

1.1419 - 1.141 1.141 - 1.141 - 1.141

C

(

(

00:15:42 DAMB02

. .

11/19/88

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = DAM802.DAT

Variable = CuUnit = ppmN = 341N CI = 26Transform = LogarithmicNumber of Populations = 3

of Missing Observations = 0.

5

Class Interval Data Maximum Likelihood Parameter Estimates

Maximum LM Likelihood Value = -920,965

Parameterized Degrees of Freedom =

Population	Pesn	Std Dev	Percentage
	11.946	7,962	92.SO
ariy alam		H 17.924 - 31.155	2.75
• g. !	75.995 -	+ 44.321 - 61.235	4.75
		- 94.311	

Default Thresholds.

Standard Deviation Multiplier = 2.0

 Pop.
 Thresholds

 1
 5.307
 26.892

 2
 26.121
 52.862

 3
 49.343
 117.043

.

an 1411 ann 1

х. :

38744 1

.

. .

.

.

01:27:26 DAMBO2

11/19/88

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

```
Data File Name = DAMB02.DAT
```

Variable = Pb Unit = ppm N = 341 N CI = 26

Transform = Logarithmic Number of Populations = 3

of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Neen		Std Dev	Percentage
-) -2	5,024	 .	3.026	55.00
		·]	8.341	
2004 2012	12.391	•••	9.548	42.30
		÷	16,079	
	54.408		31.165	2.70
		-!-	94.985	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds				
THE OTHER POLY		ana 1989 na 2014 ang 1944.			
<u>1</u>	1.823	13.848			
	7.358	20.866			
	17.852	165.823			

01:15:01 DAME02

11/19/88

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

```
Data File Name = DAMBO2.DAT
```

```
Variable = Pb Unit = ppm N = 341
N CI = 26
```

Transform = Logarithmic Number of Populations =.3

of Missing Observations = 0.

Raw Data Maximum Likelihood Parameter Estimates

Maximum LN Likelihood Value = -57.052

Parameterized Degrees of Freedom = 5

Population	Mean		Std Dev	Percentage
1	5.281		2.735	51.56
		4 ·	10.197	
2	10.737		7.773	46.02
		4	14.833	
	61.226		34.778	2.42
		·+	107.788	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds		
\$	1.416	19.691	
22	5.626	20.492	
	19.754	189.760	

04:48:46 DAMBOD

.

...

.

PAPAMETER SUMMARY STATISTICS FOR PROBABILITY FLOT ANALYSIS

Data File Name - DAMBD2.DAT

Variatia m In Doit = ppm W = 341 N OI m 26

Transfors = Logarithmic Number of Populations = 3

of Missing Observations = 0.

Users Viewal Perameter Estimates

Populstion	that we see the	Stat Discour	Parcentage
	da an	на на конструкција на селото селот	112 1.11 1.22
1	87.075	- : 58.651	92.00
2		+ <u>129.276</u>	
1 <u>.</u>	sur accordentes las los locas que	- 247.786 + 425./18	7.00
75	759.565	- 561.608	1.00
		+ <u>1027,799</u>	

Default Thresholds.

Standard Deviation Multiplier = 2.0

 Pop.
 Thresholds

 1
 39.805
 191.929

 2
 189.040
 558.014

 3
 415.242
 1389.404

11/19/88

.

04:41:25 DAMED2

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PUOT ANALYSIS

Variable = Zn Unit = ppm N = N CI =

Transform = Logarithmic Number of Populations = 3

of Missing Observations = 0.

Class Interval Data Maximum Likelihood Parameter Estimates

Maximum 1	N LiVeliho	opd Value =	-859.702
Parameterized	Degrees of	Freedom =	E ,
Population	Mean	Std Dev	Percentage
1	86.932	- 58.371	91.44
		 129.470 	
205 32	288.709	- 219,405	2 . . 913
		+ 379.902	
	480.257	- 3554.092	y a second
		F 547.717	

Default Thresholds.

Standard Deviation Bultiplier = 2.0

Pap. Thresholds 1 39 197 192.321 2 164.725 499.913 2 244.629 873.548

341

26

.

06:45:04 DAMBO2

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name - DAMBD2.DAT

Variable = Aq Unit = ppm N = 341 N CI = 26 Transform = Logarithmic Number of Populations = 3

of Missing Observations = 0.

Users Visual Parameter Estimates

Populstion	Mean	Std Dev	Percentage
······			
1	0.198	- 0.105	94.30
		+ 0.371	
2	1.436	- 1,149	4.50
		+ 1.794	
	\mathbb{S} . $\mathbb{S}11$ \cdot	- 1.879	1.20
		+ 5,836	

Default Thresholds.

Standard Deviation Multiplier = 2.0

3

Pop.	Thres	holds
1.	0.054	0.695
.2	0.920	2.241

1.066

10.286

06:02:30 DAMBO2

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Mame = DAMBO2.DAT

Variable - Ac	Lfr <u>yi</u> t to an	ppm	14	10 Z	\$41
			M CI		26
Tranaform = Loc	aarithmic	Number of	Population	: = J	

of Missing Observations = O_{s}

Class Interval Data Chi Squared Parameter Estimates

Fopulation	Mean	Std Dev	Percentage
	and the transmission of the second state of th		
3.	0.158 -	- 0.097	93.00
		r 0.285	
	1.166	· 0.826	5.80
		+ 1.645	
13	3.677 -	- 2.069	1.20
	-	- 6.533	•

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop. Thresholds 1 0.048 0.514 2 0.586 2.322 3 1.155 11.609

11/19/88

• • •

· .

•

ſ

23:14:22 DAMBOD

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = DAMBO2.DAT

Unit = ppm

Variable = Ar

Transform = Locarithmic

of Missing Observations = 0.

Users Visual Carsmater Estimates

Population	Mæar.	Std Dav	Percentage
	71 N		The second s
;	5.862 -	3,309	~ 5.50
	-1	10.383	
25	23.657 -	19.852	C. 00
	:	- 28.190	
	70.949 -	28.974	1.30
	4	173.734	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thre	sholds
1	1.848	18.391
22	16.660	33.572
3	11.832	425.428

<u>341</u>

N =

Number of Populations = 3 👘

N CI = 26

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SANPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WAYER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR WA & AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL

J.G. AGER CONSULTANTS LTD. PROJECT PICKET HILL FILE # 88-3600

SAMPLE	ŧ	Cu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM
TRENCH	3	17	13	48	.4	9
TRENCH	4	29	`17	85	.6	20
TRENCH	5	28	13	64	.7	13
TRENCH	6	26	14	395	.6	14
TRENCH	7	29	16	207	.6	14
TRENCH	8	11	11	829	1.4	1176
TRENCH	9	20	14	68	.5	16
TRENCH	11	18	9	53	. 5	13
TRENCH	12	25	14	65	. 8	14
TRENCH	13	23	14	69	. 5	13
TRENCH	14	19	13	60	.5	12

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUN 17 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: 44.88 4

B----

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNG3-H2G AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AG DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

J.G. AGER PROJECT-PICKET HILL File # 88-2061 Page 1

SAMPLE#	ृCu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM
L12+90W 3+ L12+90W 4+ L12+90W 4+ L12+90W 5+ L12+90W 5+	25S 4 75S 9	2 6 4 9 5	56 95 70 103 100	.2 .1 .3 .1 .1	14 8 2 13 4
L12+40W 0+ L12+40W 1+ L12+40W 1+	25S 8 75S 7 25S 10 75S 9 25S 15	10 4 7 2 2	54 60 93 103 76	.3 .1 .2 .2 .2	9 5 6 7 9
L12+40W 3+ L12+40W 3+ L12+40W 4+	755 12 255 7 755 8 255 13 755 11	2 2 3 2	60 76 90 129 196	.1 .3 .2 .4 .3	12 6 3 3 8
L12+40W 6+		23 11 4 6 14	176 48 63 164 84	.4 .3 .1 .5 .4	17 8 15 3 23
L11+90W 4+2		7 2 5 6 4	50 97 58 77 74	.1 .2 .1 .1 .1	4 5 7 2 5
	75S 14 25S 11 75S 85	8 5 4 4	131 123 72 146 86	.2 .3 .2 1.4 .5	7 5 11 13 11
L11+40W 1+5 L11+40W 2+2 L11+40W 2+7 L11+40W 3+2 L11+40W 3+7	25S 14 75S 16 25S 12	7 3 5 7 8	123 56 134 75 67	.1 .1 .3 .1 .1	9 11 11 20 2
L11+40W 4+2 STD C	25S 17 61	11 38	78 132	.4 6.9	9 41

· · ·

· · · ·

-

SAMPLE#	Cu	Pb	Zn	Ag	As
	PPM	PPM	PPM	PPM	PPM
L11+40W 4+75S L11+40W 5+25S L11+40W 5+75S L11+40W 6+25S L11+40W 6+75S	10 9 13 13 8	7 5 17 5 4	44 59 107 81 156	.1 .2 .1 .1 .1	3 4 8 3
L11+40W 7+25S	7	6	238	.3	14
L11+40W 7+75S	38	3	85	.4	24
L11+40W 8+25S	19	5	49	.1	8
L10+40W 0+25S	18	15	83	.3	14
L10+40W 0+75S	13	9	116	.3	8
L10+40W 1+25S	8	10	100	.1	2
L10+40W 1+75S	36	22	311	.5	72
L10+40W 2+25S	23	11	66	.2	10
L10+40W 2+75S	10	9	70	.3	5
L10+40W 3+25S	12	10	102	.2	8
L10+40W 3+75S L10+40W 4+25S L10+40W 4+75S L10+40W 5+25S L10+40W 5+75S	9 12 14 7 7	9 8 8 8 4	110 88 48 45 68	.1 .1 .1 .3	8 8 7 3 3
L10+40W 6+25S	9	13	70	.1	2
L10+40W 6+75S	11	2	94	.1	7
L10+40W 7+25S	18	7	80	.2	6
L10+40W 7+75S	40	16	140	.1	23
L9+40W 0+25S	19	21	95	.1	16
L9+40W 0+75S L9+40W 1+25S L9+40W 1+75S L9+40W 2+25S L9+40W 2+75S	15 25 29 9 13	10 5 8 7 4	71 100 85 58 73	.1 .1 .1 .1	2 7 3 2 5
L9+40W 3+25S	10	6	76	.1	9
L9+40W 3+75S	7	7	72	.1	2
L9+40W 4+25S	12	12	68	.3	7
L9+40W 4+75S	15	2	90	.1	5
L9+40W 5+25S	38	12	120	.4	16
L9+40W 5+75S	9	7	113	.1	2
STD C	60	38	132	6.8	40

r

SAMPLE#	Cu	PD	Zn	Ag	As
	PPM	PPM	PPM	PPM	PPM
L9+40W 6+25S L9+40W 6+75S L9+40W 7+25S L9+40W 7+75S L9+40W 8+25S	9 13 7 9 14	5 7 2 12 11	81 105 41 54 80	.3 .1 .2 .3	4 7 2 3 4
L8+43W 0+25S L8+43W 0+75S L8+43W 1+25S L8+43W 1+75S L8+43W 2+25S	18 11 13 28 14	16 9 9 12 30	91 71 82 124 249	.1 .1 .2 1.8	5 9 5 2
L8+43W 2+755 L8+43W 3+255 L8+43W 3+755 L8+43W 4+255 L8+43W 4+755	15 13 7 10 9	3 7 10 9 12	78 93 84 114 113	.4 .2 .3 .1	5 6 3 5 2
L8+43W 5+25S	12	5	98	.4	5
L8+43W 5+75S	11	4	218	.3	3
L8+43W 6+25S	105	17	192	1.6	15
L8+43W 6+75S	76	12	155	1.0	9
L8+43W 7+25S	48	18	77	.1	12
L8+43W 7+75S	6	6	53	.2	5
L7+42W 2+75N	18	18	132	.1	5
L7+42W 2+25N	19	12	85	.2	15
L7+42W 1+75N	12	11	90	.3	8
L7+42W 1+25N	5	8	46	.3	2
L7+42W 0+75N	12	10	93	.4	2
L7+42W 0+25N	15	15	65	.2	11
L7+42W 0+25S	16	12	103	.4	6
L7+42W 0+75S	8	6	89	.2	9
L7+42W 1+25S	10	3	81	.4	9
L7+42W 1+75S L7+42W 2+25S L7+42W 2+75S L7+42W 3+25S L7+42W 3+75S	12 11 8 8 21	11 7 8 9 12	72 85 132 109 176	.1 .5 .4 .4 .5	7 5 2 4
L7+42W 4+25S	8	9	84	.3	3
STD C	59	39	132	6.6	36

,

•••					
SAMPLE#	Cu PPM	Pb PPM	Zn PPM	Ag PPM	AS PPM
L7+42W 4+75S	7	13	99	.1	3
L7+42W 5+25S	6	13	187	.1	4
L7+42W 5+75S	10	16	185	.1	2
L7+42W 6+25S	11	15	101	.3	4
L7+42W 6+75S	7	12	64	.2	5
L7+42W 7+25S	6	16	69	.1	4
L7+42W 7+75S	15	9	56	.3	5
L7+42W 8+25S	8	11	111	.1	12
L6+40W 2+75N	9	19	62	.1	4
L6+40W 2+25N	11	13	125	. 2	11
L6+40W 1+75N	11	13	78	.1	7
L6+40W 1+25N	13	14	39	.1	5
L6+40W 0+75N	21	10	68	.1	12
L6+40W 0+25N	10	11	71	.1	4
L6+40W 0+25S	10	9	82	. 1	8
		10	75	.2	8
L6+40W 0+75S	12	10	75	.2	8
L6+40W 1+25S	13	13	72		9
L6+40W 1+75S	34	20	102	.3	
L6+40W 2+25S	23	17	65	.1	12
L6+40W 2+75S	53	15	161	. 5	9
L6+40W 3+255	16	14	81	.2	11
L6+40W 3+75S	14	12	80	. 4	8
L6+40W 4+25S	13	14	103	.2	7
L6+40W 4+75S	11	8	83	. 2	5
L6+40W 5+25S	12	10	144	. 4	4
L6+40W 5+75S	9	11	115	.3	6
L6+40W 6+25S	17	11	130	.3	7
L6+40W 6+75S	12	12	47	.3	5
L6+40W 7+25S	11	8	79	. 2	3
L6+40W 7+75S	13	9	64	. 2	5
L6+40W 8+25S	13	13	65	.2	8
L5+36W 2+75N	9	7	58	.4	3
L5+36W 2+25N	12	14	96	.3	10
L5+36W 2+25N L5+36W 1+75N	12	5	101	.3	12
	19	12	41	.2	4
L5+36W 1+25N	U	16	71	• 4	-
L5+36W 0+75N	12	7	53	. 2	6
STD C	61	38	132	6.8	39

J.G. AGER PROJECT-PICKET HILL FILE # 88-2061

٠

,

Page 5

SAMPLE#		Cu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM
L5+36W 0	+25N	66	16	202	.8	13
L5+36W 0	+25\$	36	9	107	.5	10
L5+36W 0	+75S	20	2	108	.7	8
L5+36W 1		16	4	80	.3	8
L5+36W 1	+758	98	17	190	.9	15
L5+36W 2		18	8	78	.1	9
L5+36W 2		12	6	110	.1	5
L5+36W 3		12	9	85	.1	7
L5+36W 3		13	4	70	.5	7
L5+36W 4	+25S	18	23	295	2.3	34
L5+36W 4		11	5	192	.2	3
L5+36W 5		19	3	213	. 2	7
L5+36W 5		13	3	193	. 4	4
L5+36W 6		18	12	166	.4	6
L5+36W 6	+/58	13	6	101	.2	3
L5+36W 7	+258	24	5	114	.5	5
L5+36W 7	+75\$	17	6	79	.3	4
L5+36W 8	+258	26	4	74	. 4	6
L4+36W 3	+00N	7	6	48	.1	3
L4+36W 2	+50N	7	2	51	.1	2
L4+36W 2		10	9	90	.1	6
L4+36W 1		7	8	39	.2	2
L4+36W 1		11	2	97	.1	9
L4+36W 0		19	9	97	.3	7
L4+36W 0	+00N	14	2	68	.2	6
L4+36W 0		13	4	95	.2	7
L4+36W 1		14	12	119	.1	6
	+50S	11	14	131	.2	10
L4+36W 2		15	10	124	.6	12
L4+36W 2	+505	25	8	83	.3	12
L4+36W 3		14	98	428	5.4	33
L4+36W 3		22	109	185	1.5	31
L4+36W 4		20	23	180	1.6	13
14+36W 4		13	93	170	1.8	74
C L4+36W 5	+50\$	8	5	200	.4	2
L4+36W 6	+00S	26	6	1004	.7	2
STD C		59	40	132	7.2	38

· — —

· - - - · -

,

.

SAMPLE#	Cu	Pb	Zn	Ag	As
	PPM	PPM	PPM	PPM	PPM
L4+36W 6+50S	19	19	252	.3	16
L4+36W 7+00S	7	12	280	.2	8
L4+36W 7+50S	12	15	378	1.2	12
L4+36W 8+00S	12	14	97	.3	7
L4+36W 8+50S	11	14	63	.3	6
L4+36W 9+00S	10	14	64	.1	10
L3+35W 3+00N	19	21	92	.5	6
L3+35W 2+50N	10	14	80	.3	5
L3+35W 2+00N	19	15	117	.2	13
L3+35W 1+50N	8	12	56	.1	6
L3+35W 1+00N	11	15	93	.3	9
L3+35W 0+50N	7	14	57	.1	2
L3+35W 0+00S	10	13	107	.2	5
L3+35W 0+50S	19	10	467	.2	5
L3+35W 1+00S	41	17	441	.4	9
L3+35W 1+50S	15	12	503	.1	2
L3+35W 2+00S	23	15	380	.3	12
L3+35W 2+50S	21	17	285	.6	13
L3+35W 3+00S	12	32	488	1.9	23
L3+35W 3+50S	16	99	69	1.4	16
L3+35W 4+00S	8	30	114	1.8	16
L3+35W 5+00S	32	57	298	4.2	25
L3+35W 6+00S	16	19	323	.6	8
L3+35W 6+50S	17	10	135	.1	9
L3+35W 7+00S	11	11	129	.1	8
L3+35W 7+50S	13	11	85	.1	4
L3+35W 8+00S	11	12	72	.1	6
- L3+35W 8+25S	19	13	110	.3	7
L3+35W 8+50S	14	10	69	.3	8
L2+33W 3+00N	10	11	71	.1	5
L2+33W 2+50N L2+33W 2+00N L2+33W 1+50N L2+33W 1+00N L2+33W 0+50N	9 16 13 16 85	11 16 14 14 19	74 137 102 94 934	.1 .3 .1 .6	4 12 15 9 8
STD C	59	39	132	7.0	39

· -- · -- · ·

•

SAMPLE#	Cu PPM	Pb PPM	Zn PPM	Ag PPM	As Ppm
L2+33W 0+00S	9	3	151	.3	4
L2+33W 0+50S	21	7	118	.5	8
L2+33W 1+00S	10	5	96	.4	7
L2+33W 1+50S	17	7	117	.4	14
L2+33W 2+00S	11	6	153	.3	4
D2+00# 21000	1 1	Ý	155		Т
L2+33W 2+50S	12	13	119	.2	5
L2+33W 3+00S	8	4	80	.1	. 4
L2+33W 3+50S	11	10	89	.3	3
L2+33W 4+005	9	9	105	.2	2
L2+33W 4+50S	17	6	113	.3	10
L2+33W 5+00S	12	7	67	.1	8
L2+33W 5+50S	14	11	222	.4	9
L2+33W 5+505	14	8	132	.2	5
L2+33W 6+50S	12	2	107	.5	2 3
L2+33W 7+00S	8	2	57	.1	3
L2+33W 7+50S	8	2	153	.3	2
L2+33W 8+00S	8	3	56	.1	3
L2+33W 8+50S	17	5	72	.2	5
L1+32W 3+00N	16	4	90	.1	10
L1+32W 2+50N	12	2	123	.1	9
T 1 . 0.017 0 . 0.017	1 7	2	01	•	0
L1+32W 2+00N	17	3	81	.3	8
L1+32W 1+50N	12	3	138	. 2	7
L1+32W 1+00N	24	10	187	.4	3
L1+32W 0+50N	8	. 9	278	.1	13
L1+32W 0+00S	60	6	379	. 4	6
L1+32W 0+505	86	8	199	1.0	13
L1+32W 1+00S	17	9	82	.3	6
L1+32W 1+50S	10	7	78	.1	9
L1+32W 2+00S	10	6	115	.1	2
L1+32W 2+50S	20	11	77	.5	3
					-
L1+32W 3+005	14	4	94	.1	12
L1+32W 3+50S	14	9	149	. 4	7
L1+32W 4+00S	13	3	82	.1	13
L1+32W 4+50S	14	8	148	. 2	5
L1+32W 5+00S	16	4	91	.1	7
L1+32W 5+50S	8	3	74	.1	2
STD C	60	38	132	6.9	40
	00	50	1.06	0.2	-40

SAMPLE#	Cu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM
L1+32W 6+00S	10	2	69	.1	6
L1+32W 6+50S	6	4	52	.1	2
L1+32W 7+00S	7	3	63	.1	4
L1+32W 7+50S	9	5	59	.1	6
δ L1+32W 8+50S	9	4	57	.1	5
L0+30W 3+00N	13	2	83	.1	7
L0+30W 2+50N	16	7	98	.1	23
L0+30W 2+00N	8	6	42	.1	4
LO+30W 1+50N	8	2	57	.1	6
L0+30W 1+00N	28	8	197	.1	10
L0+30W 0+50N	107	12	680	.4	9
L0+30W 0+00N	9	8	84	.1	4
L0+30W 0+50S	10	2	48	.1	6
L0+30W 1+00S	8	9	63	. 2	5
L0+30W 1+50S	10	9	72	.1	13
L0+30W 2+00S	22	6	83	.1	7
L0+30W 2+50S	11	3	93	.1	11
L0+30W 3+005	9	5	64	.4	5
L0+30W 3+50S	12	7	96	.3	8
L0+30W 4+00S	16	8	64	.1	7
L0+30W 4+50S	13	10	121	.1	2
L0+30W 5+00S	12	9	107	.2	9
L0+30W 5+50S	14	5	70	.2	6
L0+30W 6+00S	9	6	76	.3	4
L0+30W 6+50S	17	7	110	.4	5
L0+30W 7+005	10	4	114	. 4	10
L0+30W 7+50S	12	2	96	.1	8
L0+30W 8+005	18	10	78	.2	8
10+30W 8+50S	19	13	169	.3	12
BL 8+00W	17	16	63	.3	18
BL 7+50W	8	8	61	.2	2
BL 7+00W	11	7	85	.2	8
BL 6+50W	86	8	111	1.3	16
BL 6+00W	66	14	144	1.2	17
BL 5+50W	9	6	45	. 4	8
BL 5+00W	123	16	145		21
STD C	60	39	132	7.0	42

SAMPLE#	Cu	Pb	Zn	Ag	As
	PPM	PPM	PPM	PPM	PPM
BL 4+50W	98	9	215	.9	16
BL 4+00W	18	5	85	.1	11
BL 3+50W	12	2	65	.1	6
BL 3+00W	20	8	309	.1	4
BL 2+50W	25	8	522	.1	4
BL 2+00W	37	10	353	.3	7
BL 1+50W	23	11	204	.1	4
BL 1+00W	8	8	96	.1	5
BL 0+50W	11	8	162	.1	4
BL 0+00W	77	13	96	.6	3
L0+70E 1+50S	20	5	57	.1	4
L0+70E 2+00S	61	13	80	.4	6
L0+70E 2+50S	51	10	98	.5	9
L0+70E 3+00S	19	7	71	.4	4
L0+70E 3+50S	7	6	53	.3	2
	·	-			-
L0+70E 4+00S	12	2	139	.1	6
L0+70E 4+50S	11	3	51	.1	4
L0+70E 5+00S	11	6	108	.1	6
L0+70E 5+50S	9	5	86	.3	6
L0+70E 6+00S	7	9	146	.3	3
L0+70E 6+50S	11	2	70	.1	4
L0+70E 7+00S	13	2	53	.3	3
L0+70E 7+50S	19	11	71	.1	6
L1+70E 4+00S	12	8	99	.6	5
L1+70E 4+50S	54	. 8	302	1.1	3
FI410E 44002	34	. 0	302	1.1	5
L1+70E 5+00S	12	7	97	.5	8
L1+70E 5+50S	10	5	86	.3	6
L1+70E 6+00S	11	3	63	.2	11
L1+70E 6+50S	23	10	133	. 1	6
L1+70E 7+00S	12	2	80	.2	3
L1+70E 7+50S	4	10	31	.1	2
L2+70E 5+00S	15	6	49	.2	2 4
L2+70E 5+50S	8	2	99	.2	
L2+70E 6+00S	16	8	153	.3	6 5
L2+70E 6+50S	11	4	142	.1	6
		-			_
L2+70E 7+00S	7	2	69	.3	2
STD C	60	36	132	6.9	37

. `

*

SAMPLE#	Cu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM
L2+70E 7+50S	7	9	52	.1	2
L1+00S 1+83W	20	13	51	.3	5
L1+00S 0+82W	11	14	115	.2	9
L1+00S 0+20E	6	7	30	.2	3
L1+00S 0+70E	23	б	36	.4	4
L2+005 1+83W	11	19	75	.3	11
L2+005 0+82W	20	12	81	.7	11
L2+00S 0+20E	15	11	63	. 2	7
L3+005 1+83W	14	13	98	.6	11
L3+005 0+82W	13	10	63	. 2	9
L3+00S 0+20E	14	7	82	.4	5
L7+50S 0+50E	10	11	78	.1	4
L7+50S 1+00E	8	9	61	.1	5
L7+50S 1+50E	9	7	54	.1	9
L7+50S 2+00E	17	11	52	.3	6
L7+50S 2+50E	16	11	57	.3	9
L4+36W 5+00S	36	44	50	.3	56
L3+35W 5+50S	14	32	17	7.0	381

Exeter Mining Inc.

DAMBO CLAIM GROUP

OOTSA LAKE AREA B.C. OMINECA M.D. 93E/15

SOIL GEOCHEMISTRY

TO ACCOMPANY REPORT BY: PAUL KALLOCK, GEOLOGIST LOCKE B. GOLDSMITH, P.ENG., CONSULTING GEOLOGIST

-

PICKET LAKE

2*0014

`*^{00`}

BASELINE 0*00

1×005

2*003

3*00⁵

6*00⁵

,005

**005

3*70€

2*10E

1*704

0*70E

0*30^W

×32 M

2*33.04

A*36M 3*35W

5*30W

6* AON

7* 22 W

ARCTEX ENGINEERING SERVICES OCTOBER 1988 GEOLOGICAL BRANCH ASSESSMENT REPORT

•

Exeter Mining Inc.

GEOLOGICAL BRANCHSALKE AREA B.C. OMINECA M.D. 93E/15 Z-GPIL GEOCHEMISTRY

3*0014

130

4*30W

5*30W

18,1

6* AON

1* A2 W

¢ - ?

8* 43 W

PICKET LAKE

2*0014

1×00¹⁴

BASELINE 0*00

1×005

2*005

3*00⁵

4*00⁵

5*00⁵

6×005

**005

3*70E

2*70E

1*70E

0*70E

0*30M

1×32W

2*33W

3*35W

9*⁰⁰⁵

TO ACCOMPANY REPORT BY : PAUL KALLOCK, GEOLOGIST LOCKE B. GOLDSMITH, P. ENG., CONSULTING GEOLOGIST

ARCTEX ENGINEERING SERVICES OCTOBER 1988

Pb

ppm

•

Exeter Mining Inc.

GEOLOGICAL BRANCH DAMBO CLAIM GROUP ASSESSMENT REPORTLAKE AREA B.C. OMINECA M.D. 93E/15

3*0014

PICKET LAKE '*^{00'}

12

3*35W

A*30W

1×22W

8* 43 W

2*33W

BASELINE 0+00

1×005

2*005

3*⁰⁰⁵

*005

5*00⁵

"",00⁵

1*005

8*⁰⁰⁵

3*70E

2*70E

1*70E

0*70E

0*30W

9*⁰⁰⁵

18, 13 SOL GEOCHEMISTRY

TO ACCOMPANY REPORT BY: PAUL KALLOCK, GEOLOGIST LOCKE B. GOLDSMITH, P. ENG., CONSULTING GEOLOGIST

ARCTEX ENGINEERING SERVICES OCTOBER 1988

GEOLOGICAL BRANCH

18, 137 Exeter Mining Inc. **137**

DAMBO CLAIM GROUP

OOTSA LAKE AREA B.C. OMINECA M.D. 93E/15

SOIL GEOCHEMISTRY

TO ACCOMPANY REPORT BY: PAUL KALLOCK, GEOLOGIST LOCKE B. GOLDSMITH, P. ENG., CONSULTING GEOLOGIST

.

3*0014

PICKET LAKE 2*0014

× 00 th

BASELINE 0*00

'*00⁵

ീ

1×32 W

2*33W

4*36W 3*35W.

5*30W

6" NOW

ኅ

1* 22 W

2*005

3*005

4*⁰⁰⁵

5*00⁵

6*00⁵

1*005

8*00⁵

3*10E

2*10€

 γ_{i}

0*30W 0*70E

9*⁰⁰⁵

ARCTEX ENGINEERING SERVICES OCTOBER 1988

•

1:5000

GEOLOGICAL BRANCH ASSESSMENT REPORT

Exeter Mining Inc.

DAMBO CLAIM GROUP

OOTSA LAKE AREA B.C. OMINECA M.D. 93E/15

SOIL GEOCHEMISTRY

TO ACCOMPANY REPORT BY: PAUL KALLOCK, GEOLOGIST LOCKE B. GOLDSMITH, P. ENG., CONSULTING GEOLOGIST

ARCTEX ENGINEERING SERVICES OCTOBER 1988

As ppm

3*35^W 2*33^W

A* 30N

5*36N

6* 40 W

1* 22 W

9*40W 8*43W

 $\begin{pmatrix} \hat{a} \end{pmatrix}$

3*0014

PICKET LAKE

2*0014

1*00^M

BASELINE 0*00

*00⁵

2

2*005

/

3*00⁵

A*005

5*00⁵

6*00⁵

1*005

8*00⁵

3*70E

2*70E

1*70E

0*10E

0+30W

1×32 W

9*00⁵

CONTOUR INTERVAL: 100 GAMMAS

Exeter Mining Inc.

3*70€

2*70€

1*70E

0*70E

0*30^N

×32 W

2*33214

3*35^W

A*30W

5×30W

NOA

8*A3N

DAMBO CLAIM GROUP

OOTSA LAKE AREA B.C. OMINECA M.D. 93E/15

Magnetometer Survey

3*00

PICKET LAKE

> TO ACCOMPANY REPORT BY: PAUL KALLOCK, GEOLOGIST LOCKE B. GOLDSMITH, P. ENG., CONSULTING GEOLOGIST

GEOLOGICAL BRANCH TOBER 1988 ASSESSMENT REPORT

Exeter Mining Inc.

DAMBO CLAIM GROUP

1*70E

0*10E

OOTSA LAKE AREA B.C. OMINECA M.D. 93E/15

Backhoe Trenches

0°30W 0°30W 0°30W 0°30W 0°30W 0°30W

LOCATIONS & SOIL GEOCHEMISTRY

TO ACCOMPANY REPORT BY: PAUL KALLOCK, GEOLOGIST LOCKE B. GOLDSMITH, P. ENG., CONSULTING GEOLOGIST

.

3*00 M

PICKET

LAKE

2*0014

23 - 14 - 69 0.5 - 13

14 19-13-60 05-12

5*30W

.

6* 40 W

1×22 M

₩12

25-14-68 0.8-14 1*0014

BASELINE 0+00

1*005

2×005

3×005

A*005

5*00⁵

6×005

1*005

8×005

2*70E 3*70E

9×005

*

ARCTEX ENGINEERING SERVICES GEOLOGICAL BRANCH OCTOBER 1988 ASSESSMENT REPORT

Exeter Mining Inc.

DAMBO CLAIM GROUP

OOTSA LAKE AREA B.C. OMINECA M.D. 93E715

ANOMALIES

3*0014

PICKET

LAKE

P-L

R

18.3

2*001

1*0014

BASELINE 0+00

1×00⁵

/

2*005

3*005

4*00⁵

5×005

6×005

1*005

2*102

1*70E

0*30^N 0*70^E

1×32 M

2×33W

3*35^W.

IP-A

5*30^W

6* 40 W

7* 22 24

8×43W

9×40N

4*30^N

8*00⁵

3*70€

9*00⁵

1981 Geophysical Survey

TO ACCOMPANY REPORT BY PAUL KALLOCK, GEOLOGIST LOCKE B. GOLDSMITH, P. ENG., CONSULTING GEOLOGIST

ARCTEX ENGINEERING SERVICES OCTOBER 1988 GEOLOGICAL BRANCH ASSESSMENT REPORT

- -

Exeter Mining Inc.

8*005

2*70E 3*70E

DAMBO CLAIM GROUP

 \mathbf{N}

0*10E

0*30^W

1×32 W

A*30W 3*35W 2*33W

1*70E

OOTSA LAKE AREA B.C. OMINECA M.D. 93E/15

~

3*0014

PICKET LAKE

2°/

5*36W

* AON

22N

8*43N

9*40^W

10× AON

Ŷ

20

20

PICKET

20

2*0014

,*00⁴

BASELINE 0*00

1×005

2*005

3*⁰⁰⁵

TO ACCOMPANY REPORT BY: PAUL KALLOCK, GEOLOGIST LOCKE B. GOLDSMITH, P. ENG., CONSULTING GEOLOGIST

ARCTEX ENGINEERING SERVICES GEOLOGICAL ASSESSMENT REPORT

