0227 201	FD.
back from amendments	
PRE NO	

GEOLOGICAL AND ROCK GEOCHEMICAL SAMPLING PROGRAM

ALEXIS GROUP

Claims: Alexis 1 #884 Alexis 2 #885 Alexis 4 #887 Mining Division: Clinton NTS Location: 92N/8E 51° 22′ N 124° 13′ W Latitude and Longitude: Owner of Claims:

Author of Report: Date:

•

Eastfield Resources

J. W. Morton

December, 1988

GEOLOGICAL BRANCH ASSESSMENT REPORT

Table of Contents

Figure 1
1
1
1
2
Table 1
Figure 2
Appendix
Appendix

,

Location & Physiographic Position

The Alexis Claim Group consists of three two post claims located west of Chilko Lake in Central British Columbia. The claims occupy a mountainous terrain with elevations varying between 1,525m (5,000 feet) and 2,275m (7,460 feet). The claims are located approximately 65 kilometers southeast of the village of Tatla Lake but are most easily accessed by helicopter from the Nemaiah-Chilko road. The Nemaiah-Chilko roads occurs directly across the Lake approximately 4 kilometers east of the Claim Group and connects with Highway 20 near the village of Lees Corner.

Property Definition

The Alexis Claims occur in an area dominated by Upper Cretaceous volcanic and sedimentary rocks belonging to the Kingsvale Group. Most units strike northwest and dip steeply to the northeast. Numerous faults evidenced by well developed slickensides and with several orientations occur on the claims. These faults are believed to be subsidiary to the Tchaikazan Fault which is a major regional tectonic structure thought to bisect the claim group in a northwesterly direction.

Carbonate alteration is widespread and occurs in veins and pervasively. Other more restricted forms of alteration include silicification and argillic alteration.

Visible mineralization occurs in patchy zones with cinnebar and copper carbonates accompanied with vein or pervasive calcite flooding. Barite and quartz occur in varying concentrations within carbonate alteration zones.

Scope of Work

A northwesterly trending carbonate alteration zone was identified, examined and sampled on a ridge and where it occurs in an incised creek bed. This alteration zone had been sampled by the B.C. Ministry of Mines and Petroleum Resources during their 1987 geochemical survey in the area* during which values up to 138 ppb gold and 4,500,000 ppb mercury had been obtained. The September 1988 program traced this intense alteration zone for a projected distance of 470m and established its width to be at least 150m. This zone is open to the north and south and has an average trend of 340 - 160 . A summary of sampling is included in the table of results Table 1 and the sample location map Figure 2.

*McLaren G.P., Geochemistry west of Chilko Lake, B.C. Ministry of Mines and Petroleum Resources open file 1987-14, 1987.

Conclusions and Recommendations

significant gold values were obtained from this Although no sampling an impressive open ended alteration zone and mercury anomaly has been identified. Additional prospecting and sampling should be completed in both directions along the trend of this zone which is approximately 340° - 160° from its exposure in the creek bed. Additional prospecting and hand digging at the original 'knob' showing (vicinity drill hole DDH-81-3) resulted in the discovery of a mineralized carbonate rich vein breccia approximately 1 m thick trending east-west and dipping approximately 30° to the south. Drill hole DDH-81-3, completed by the Alexis Joint Venture syndicate in 1981, is a vertical hole that would not have intersected this structure.

Future work on the Alexis hdrothermal systems should be directed at deeper levels of the systems that trend northerly and southerly from the creek bottom near the northern boundary of the Alexis 2 claim and from the system that trends east-west from the south-west corner of the Alexis 1 claim.

ŝ

TABLE 1

ROCK DESCRIPTIONS & SUMMARIZED GEOCHEMICAL RESULTS

Sample #	Description	<u>(Ca + Mg)%</u>	Au ppb	Hg dqq	As ppm	Cu ppm	Ag ppm	Sb ppm
BXR-1	Carbonate rich vein breccia pervasive carbonate flooding, copper carbonate stain and visible cinnibar attitude 087° dip 30° S	18	3	2,222,000	469	3,156	9.8	954
BXR-2	Similar to BXR-1	12	1	183,500	56	320	0.7	116
BXR-3	Banded carbonate vein (0.3m), copper carbonate and visible cinnebar, more siliceous than BXR-1	11	1	717,700	52	1,036	2.2	95
BXR-4	Weakly silicified and carbonate altered argillite cut by micro quartz veinlets	31	2	4,200	6	8	0.4	2
BXR~5	Maroon lithic tuff, moderately silicified and carbonate altered, jointing of 010 060 W	9	2	780	42	11	0.2	2
BXR-6	Lithic tuff, sugary pinkish domains, intense silica and carbonate alteration	19	4	440	17	8	0.3	2

Sample #	Description	<u>(Ca + Mg)%</u>	Au ppb	Hg ppb	As ppm	Cu ppm	Ag ppm	Sb ppm
BXR-7	Lithic tuff with carbonate vein stockwork, strong silicification	21	6	854	9	9	0.3	2
BXR-8	Lithic tuff, intense carbonate-silica alteration slickensides at 340°77°E	15	3	3,200	13	14	0.3	2
BXR-9	Lithic tuff breccia, intense silica carbonate alteration, carbonate veinlets trending 356°86°E	20	6	11,000	109	347	0.7	18
BXR-10	Lithic tuff with intense silica-carbonate alteration conjugate vein stockwork with attitudes at 240° and 150° (sampled from 240° trend)	24	4	7,600	21	23	0.3	2
BXR-11	Lithic tuff, moderate silica carbonate alteration	10	6	270	16	25	0.4	7

Itemized Statement of Costs

TOTAL	\$1,865.75
Report Prep and Drafting	350.00
Four - multi element ICP plus Au, Hg by AA @ \$19.25	77.00
Soil Samples1	
Eleven - multi element ICP plus Au, Hg by AA @ \$21.25	233.75
Rock Samples:	
Helicopter:	625.00
Room and Board: 2 days @ \$40.00	80.00
T. MacKenzie Sept 11, 1988 - 1 day @ \$200.00	200.00
	\$300.00

Manpower:

STATEMENT OF QUALIFICATIONS

e'

I, James William Morton, of 2750 Alma Street, Vancouver, British Columbia, do hereby certify:

- 1. I graduated from Carleton University, Ottawa, in 1971 with a Bachelor of Science on Geology.
- 2. I graduated from the University of British Columbia, Vancouver, in 1976 with a Master of Science in Soil Science.
- 3. I am a fellow of the Geological Association of Canada.
- 4. I supervised the work described in this report.

r 1

J. W. Morton M. Sc., F.G.A.C.

Dated at Vancouver, British Columbia, this 15th day of December, 1988.

References

Rock Geochemistry MORTON, J.W. Assessment Report 1981 Soil Survey MORTON, J.W. Assessment Report 1982 RONNING, P.A. Homestake Mineral Development Company Geological & Geochemical Investigation Assessment Report 1983 CARTWRIGHT, P.A. Homestake Mineral Development Company Induced Polarization & Resistivity Survey 1984 MORTON, J.W. Assessment Report 1986 MCLAREN, G.P. B.C. Ministry of Mines Geochemistry West of Chilko Lake Open file 1987-14, 1987

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 ECL-HMO3-B2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MH FE SE CA P LA CE NG BA TI B W AND LIMITED FOR XA E AND AL. AU DETECTION LIMIT BE ICP IS 3 PPM. - SAMPLE TYPE: P1 ROCK P2 SOIL AD* AMALTSIS BE ACID LEACE/AA FROM 10 GM SAMPLE. DEG AWALTSIS BE FLAMLESS AA.

DATE RECEIVED: SIP 15 1988 DATE REPORT MAILED: Sept 20/82 ASSAYER. C. LEONG, CERTIFIED B.C. ASSAYERS

EASTFIELD RESOURCES LTD. PROJECT ALEXIS File # 88-4488 Page 1

ł

(

SANPLE	NO PPN	Cu PPK	Pb PPN	ZA PPN	lg PPX	NÍ PPN	Co PPK	ND 1999	?e t	λs PPK	U PPM	Au PPK	th PPN	Sr PPH	Cđ PPK	Sb PPN	Bi PPM	V ??X	Ca ł	P 1	La PPN	CT PPK	Ng L	Ba PPX	71 1	B PPN	41 3	Ha t	1 1	W PPK	Å0* PP3	Ag PP3	
BIR-1 BIR-2	1	3156 320	11	154 80	9.8 .7	18 11	21 15	1286 978	4.89 3.68	469 56	5	ND ND	1 1	217 122	2 1	954 116	4	91 1 71 1	15.29	.046	3 1	8 10	2.58	92 124	.01 .01	11 13	.11	.01 .01	.02 .03	1	32	222000	
BIR-3	1	1036	10	85	2.2	13	13	736	2.98	52	5	ND	1	150	1	95	2	65	9.29	.019	2	10	1.96	36	.01	21	.21	.01	. 02	1	i	717700	
BIR-4	1	8	2	9 76	.1	1	10	3301	.99	6	1	ND ND	1	178	1	2	2	11 3	30.91	.010	3	3	.57	42	.01	5	.47	.01	.01	1	2	4200	
DAA-J	•	11	15	13	.1	14	10		2.75	14	1		1	141	•	4	2	/1	1.81			,	1.44	34	. 01	13	.41	.91	. 05	1	2	/80	
BIR-6	1	8	13	139	.1	10	20	1548	4.38	17	5	XD	1	208	1	2	2	71 1	15.13	.012	(2	3.77	19	.01	11	.18	.01	.03	1	- 1	440	
BIR-7	1	9	15	170	.3	20	20	961	4.20	9	5	ND	1	548	1	2	2	107 1	16.66	.014	2	7	1.80	9	.01	10	.15	.01	.02	1	5	850	
BIR-8	1	H	13	99	.1	11	15	\$38	3.54	13	5	ND	1	125	1	2	2	80 1	12.54	.013	2	4	2.94	16	.01	12	.14	.01	.01	1	3	3200	
HIR-9	1	347	1	102		12	19	1058	1.55	109	2	ND	1	244	2	18	2	101 1	17.64	.025	3	11	2.39	41	, 01	- 17	.26	.01	.01	1	6	11000	
BI8-10	1	23	16	121	.3	9	19	1291	4.73	21	1	ND	1	483	2	2	2	72 1	9.24	,014	Z	4	4.47	23	.01	15	. 16	.01	.02	1	4	7500	
812-11	1	25	9	94	.1	12	22	867	5.06	16	5	ND	1	269	1	7	2	105	7.88	.024	2	28	1.86	27	. 02	19	.34	.01	.05	1	6	270	
STD C/AU-R	18	60	43	133	7.0	69	31	1020	4.04	43	17	7	39	48	19	19	20	60	. 48	.094	40	58	.91	177	.06	33	1.97	. 05	.15	13	190	1300	

EASTFIELD RESOURCES LTD. PROJECT ALEXIS FILE # 88-4488

SAMPLE	No	Cu	PD	Zo	λg	Ti	Co	Ko	le	λs	Q	Au	Th	sr	Cđ	Sb	Bi	Y	Ca	P	La	Ĉr	Ъġ	34	71	B	A1	¥a	I	f	32*	Bg
	PPK	PPK	PPN	PPN	PPN	PPE	PPK	55K	1	56M	PPR	PPK	PPN	PPN	PPN	PPE	PPN	PPE	1	1	2 P N	PPK	\$	PPN	\$	PPX	1	1	\$	PPN	PP8	PPB
							•-						_																			
BI-7	1	62	12	134	.1	39	25	1349	6.62	58	5	ND	1	- 49	1	2	2	59	.73	.059	13	27	.17	228	.02	12	2.17	.01	.14	1	- 4	880
BI-S	1	£1	1	106	.1	34	20	970	5.45	56	5	ND	1	62	1	2	2	85	1.11	.058	12	26	1,01	192	.04	16	2.55	,01	.12	1	.4	1500
BI-9	1	93	14	117	.1	39	21	1265	6.33	78	5	ND	1	50	1	3	2	95	.94	, 859	12	26	.85	204	. 02	14	2.33	. 02	.13	2	3	2200
BI-10	1	56	1	108	.1	33	19	972	5.46	51	5	ĦD.	1	59	1	2	2	86	1.11	.068	11	25	1.04	189	.04	17	2.69	.03	.12	2	1	560
STD C/AU-S	18	57	36	132	1.1	67	30	1021	4.15	38	19	7	36	{ B	18	18	18	55	. 19	. 082	36	55	.90	172	.06	32	1.94	.08	.13	12	19	1300

Page 2

(

C

t

(

£

(

(

(

(

(

(

ę

Ċ

(

¢

(

(.

SAMPLE NO	. AU PPB	AG PPN	HG PP8	AS PPM	SB PFM	CU PPN	PB PFM	ZN FPN	CO PPN	NI PPN	FE 1	NO PPN	MN PPM	
08147	/ 20	/A 7	76	/46	(20	15	/10	(10	40	/10				
RA1140 RK147	20	(0.3	33 (20	240	<20 <20	13 40	10	57	91 97 -	11	2.3	(10	19	
RNIAR	(20	(0.3	(70	(40	(20	43	15	179	23 28	94	4.5	(10	455	
RNIAQ	(20	(0.3	(20	(10	(20	58	11	174	18	49	7.6	210	755	
RM150	(70	(0.3	145	(40	(20	32	12	19	23	15	6.6	(10	555	
RM151	(20	(0.3	506	(40	(70	33	107	126	15	19	3.4	(10	573	
R6152	(20	(0.3	72	(40	(20	51	14	108	21	(10	4.3	(10	1200	
RN153	(20	(0.3	41	(40	(20	<u>61</u>	12	62	20	12	4.2	(10	735	
RK154	(20	(0.3	20	(40	<20	57	Ħ	53	20	12	5.0	<10	1100	
RM155	<20	(0.3	29	K4 0	<20	188	(10	49	20	(10	0.6	<10	463	
RM156	(20	(0.3	870	(40	<20	1100	(10	52	68	13	11.2	(10	1200	
RM157	(20	(0.3	27	(40	<20	130	(10	105	24	(10	6.6	(10	1500	
RM158	(20	(0.3	36	(40	< 20	282	12	50	29	(10	6.9	<10	1000	
R#159	(20	(0.3	44	(40	<20	47	(10	52	10	26	4.5	<10	87	
RN160	<20	(0.3	29	(40	<20	49	13	43	23	<10	3.1	(10	707	
RM161	<20	0.7	195	86	<20	43	40	87	28	29	4.6	<10	1200	
RM162	< 20	(0.3	80	789	<20	25	20	70	18	26	4.0	(10	810 -	
RM163	< 20	0.6	727	(40	24	26	11	71	10	12	5.1	<10	1600	
RM164	(20	(0,3	113	(40	<20	14	16	25	9	<10	1.3	<10	755	
RM165	<20	(0.3	600	(40	(20	26	<10	55	31	12	1.7	<10	1300	
RH166	<20	(0.3	1560	(4 0	<20	26	26	93	13	13	4.5	<10	1300	
RM167	< 20	0.9	57	(40	<20	2200	10	26	8	<10	1.5	K10	647	
RM168	(20	2.0	560	<40	<20	6500	14	65	39	<10	5.0	<10	785	
RH169	<20	(0.3	42	(4 0	{20	2900	11	73	25	25	13.0	<10	715	
RH170	129	5.0	107	40	<20	3000	13	75	35	<10	20.6	<10	655	
RM171	<20	1.0	755	69	<20	1700	13	770	39	13	20.5	<10	3600	
RM172	<20	(0.3	133	343	50	52	144	168	- 16	<10	2.7	<10	1000	
RM173	298	14.0	135	(40	<20	18400	(10	404	104	<10	4.4	1700	141	
RN174	<20	<0.3	28	(40	(20	61	(10	57	43 -	(10	4.8	(10	268	
RN175	<20	(0.3	640	(40	<20	64	(10	82	21	(10	5.2	<10	584	
R#176	(20	(0.3	250	<4 0	<20	28	30	222	10	32	4.6	<10	1500	
RN177	<20	<0.3	300	<4 0	<20	11	(10	44	21	11	1.6	<10	260	AL
R#178	<20	(0.3	2100	40	(20	50	20	152	23	(10	5.3	(10	2300	HLexis
RK179	<20	<0.3	1350	(40	<20	18	19	160	24	17	5.2	<10	2200	ALEXIS
RM180	138	<0.3	2080	393	38	11	(10	143	33	(10	8.1	(10	2200	ALexis
R#181	<20	(0.3	169	<40	<20	41	17	115	21	27	2.9	(10	620	Alexis
R#182	<20	(0.3	- 41	(40	<20	11	21	156	25	23	5.0	(10	1700	Alerte
RM183	<20	<0.3	64	K40	41	15	11	62	17	12	2.2	(10	1000	HICX/S
RM184	(20	2.0	634000	34	60	300	35	179	24	21	6.1	(10	1300	ALEXIS
RM185	(20	6.0	2240000	255	804	2800	13	184	23	29	6.7	(10	1/00	ALEXIS
KA186	(20	27.0	4500000	890	2600	8000	21	400	73 26	36	5.5	(10	2100	ALexis
KA16/	(20	(0.5	120	(4U) 740	120	11	21	130	23 94	23	1.∜ # /	114	2000	
KD186	(20	(0.3	2500	(40	120	11	23	107 30	17	\1V /1A	7:0	110	2000	
DM400	(20	(0.)	807 595000	140	02 65	1	12	17	10	10	1.1 5 5	\1V /1A	800 100	
NA17V DW(24	120	10.7	323000 307	7V 780	70	107	12	127 20	17	01 210	J.J A 2	\ I V /1A	117	
RG171	120	10.3	203	140	χv	10	110	27	10	110	v.a	110	\$11	

After Op

.

٠

j

•...

•

;

i

į

Open file 1987-14

Geochemistry West of Chilko Lake G.P. McLaren, B.C. Ministry of Energy, Mines and Petroleum Resources 1987

LITHOGEOCHENISTRY WEST OF CHILKO LAKE

PFB PFB PFH PFH <th>56</th> <th>AMFLE NO.</th> <th>AU</th> <th>AG</th> <th>HG</th> <th>A5</th> <th>SB</th> <th>CU</th> <th>PB</th> <th>IN</th> <th>CO</th> <th>NI</th> <th>FE</th> <th>NQ</th> <th>MH</th> <th></th>	56	AMFLE NO.	AU	AG	HG	A5	SB	CU	PB	IN	CO	NI	FE	NQ	MH	
NH72 C20 C0.3 950 C40 47 9 10 32 22 10 1.7 (10 695 ND1 C20 0.6 46 C40 72 24 110 51 43 113.2 18 1161 ND2 C0.3 333 3750 C20 337 137 144 01 13.6 41 1365 11.4 410 3803 R04 C20 (0.3 74 (40 (20 32 (10 42 (10 2.0 (10 547 PD5 C20 (0.3 37 (40 (20 22 (10 2.0 (10 547 PD5 C20 (0.3 384 (40 51 45 (10 171 22 18 5.3 (10 55 57 PD6 C20 C33 327 (40 (20 756 60 32 117 12			ff8	FPN	PF8	PPM	PFN	рри	PPH	PPN	PPM	PPN	ž	FPN	pri	
B01 C20 Q.8 48 C40 C20 3717 1343 110 51 43 112, 2 B8 114 B02 C20 470, 6 51 (40) C20 33 3750 C20 33 3750 C20 33 3750 C20 33 3750 C20 C30 32 C10 L4 C10 5303 B04 C20 C0.3 374 C40 C20 C20 C10 44 25 C10 2.0 C10 547 B05 C20 C0.3 371 C40 C20 C41 17 L1 C10 L4 L6 C10 576 B07 C20 C0.3 381 C40 51 45 C10 171 22 18 5.3 C10 177 C40 C40 C20 C10 321 C10 7.6 C40 C40 C40 C40 C40 C40 <t< td=""><td>R</td><td>M192</td><td>(20</td><td>(0.3</td><td>950</td><td><40</td><td>47</td><td>9</td><td>10</td><td>32</td><td>22</td><td>10</td><td>1.7</td><td>(10</td><td>695</td><td></td></t<>	R	M192	(20	(0.3	9 50	<40	47	9	10	32	22	10	1.7	(10	695	
6D2 C20 4F1.0 6S1 C40 C20 3717 1343 1135 40 C10 13.6 44 B265 RB3 C20 C0.3 333 3550 C20 235 73 197 15 C10 1.4 C10 3803 RD4 C20 C0.3 314 C40 C20 52 C10 B0 32 C10 1.4 C10 577 RD5 C20 C0.3 314 C40 C20 32 C10 B0 32 C10 A.0 C10 576 RD7 C20 C0.3 314 C40 C20 S21 C10 74 17 C10 A.0 C10 576 RD10 C20 C0.3 321 C40 C20 S31 C10 74 17 C40 C40 756 RD11 C20 C0.3 322 C40 C40 780 C40	R	DI	(29	0.6	48	(40	<20	99	24	110	51	43	13.2	18	1161	
683 C20 G0.3 233 3750 C20 355 73 197 15 (10 1.4 (10 3903 804 C20 G0.3 134 C40 C20 32 C10 44 25 C10 2.0 C10 547 805 C20 G0.3 37 C40 C20 32 C10 44 25 C10 2.0 C10 547 805 C20 G0.3 37 C40 C20 42 C10 44 25 C10 2.0 C10 557 807 C20 G0.3 318 C40 C20 453 C10 72 C10 7.0 C10 7.6	61	D2	<20	47.0	651	(4 0	{20 -	3717	1343	1135	40	<10	13.6	461	B265	
B04 C20 G0.3 74 G40 C20 S22 G10 B0.3 C10 2.2 C10 577 B05 C20 G0.3 S37 C40 C20 S2 C10 A4 Z5 C10 2.0 C10 547 B05 C20 G0.3 B1 C40 C20 C20 C10 A4 L25 C10 A.0 C10 576 B07 C20 G0.3 B1 C40 C20 C20 C10 A21 C10 A4 L25 C10 L3 C10 L576 B01 C20 G0.3 S11 C40 C20 C40 C20 C40 C20 C40 C21 C10 C10 <thc10< th=""> <thc10< th=""> <thc10< t<="" td=""><td>£[</td><td>03</td><td><20</td><td><0.3</td><td>233</td><td>3750</td><td><20</td><td>35</td><td>73</td><td>197</td><td>15</td><td>(10</td><td>1.4</td><td>(10</td><td>3803</td><td></td></thc10<></thc10<></thc10<>	£[03	<20	<0.3	233	3750	< 20	35	73	197	15	(10	1.4	(10	3803	
RD5 C20 G03 134 C40 C20 S2 C10 44 25 C10 2.0 C10 547 RD7 C20 G03 84 C40 C20 22 C10 40 27 C10 2.0 C10 564 RD7 C20 G03 S84 C40 C20 20 C10 74 17 C10 2.0 C10 564 RD7 C20 G0.3 S84 C40 C20 20 C40 756 C10 7.0 C10 7.6 C10 756 RD10 C20 C0.3 S32 C40 C20 756 C10 7.2 C10 7.8 C10 7.6 C10	RE	04	<20	(0.3	74	(40	<20	52	(10	80	32	(10)	2.2	K10	577	
FD5 C20 60.3 37 C40 C20 42 C10 40 27 C10 2.0 C10 524 B7 C20 60.3 84 C40 C20 204 C10 74 19 C10 4.0 C10 556 B7 C20 60.3 211 C40 C20 613 C10 72 C10 7.5 C10 7.5 B70 C20 60.3 318 C40 51 455 C10 71 72 C10 7.8 C10 455 B011 C20 60.3 32 C40 C20 758 C10 32 C10 7.4 C10 461 411 22 C10 7.4 C10 463 B013 C20 0.5 G7 C40 C20 170 C10 63 C11 18 C10 4.6 C10 76 B014 C20 0.5	RE	05	<20	<0.3	134	<40	(20	32	(10	44	25	<10	2.0	<10	54?	
FB7 C20 C00 38 C40 C20 204 C10 74 19 C10 4.0 C10 576 REE C20 (0.3) 31 C40 C20 63 C10 76 23 C10 1.9 C10 756 RD1 C20 (0.3) 318 C40 51 45 C10 71 22 C10 5.4 C10 112 RD11 C20 (0.3) 32 C40 C20 758 C10 52 24 C10 4.4 C10 1123 RD12 C20 (0.3) 32 C40 C20 35 C10 103 21 17 4.4 C10 1048 RD14 C20 0.4 24 C40 C20 15 C10 111 18 C10 4.4 C10 1048 RD14 C20 0.3 56 C40 C20 C10 111 18 C10 4.7 C10 4.6 C10 140 C10 17	Ē	05	(20	(9.3	37	<40	<20	42	(10	40	27	<10	2.0	<10	624	
REE (20) (0.3) 21 (40) (20) 63 (10) 76 23 (10) 77 78 <th78< th=""> <th78< th=""> <th78< th=""></th78<></th78<></th78<>	RE	97	(20	(0.3	84	<40	<20	204	<10	74	19	<10	4.0	(10	596	
BB9 C20 C0.3 389 C40 51 45 C10 171 22 16 5.3 C10 1950 RE10 C20 C0.3 1318 C40 60 25 C10 421 27 C10 5.4 C10 1123 RD11 C20 C0.3 32 C40 C20 7658 C10 32 22 C10 5.4 C10 1123 RD12 C20 C0.3 32 C40 C20 548 C10 52 24 C10 4.4 C10 1048 RD14 C20 C4.3 77 C40 C20 756 C10 113 12 C10 4.6 C10 1048 RD17 C20 C0.3 55 C40 C20 65 C10 118 27 C10 4.7 C10 643 RD17 C20 C0.3 640 C20 52 C10 177 C10 4.7 C10 643 RD20 C20 C0.3 <t< td=""><td>RI</td><td>68</td><td>(29</td><td>(0.3</td><td>21</td><td><40</td><td><20</td><td>63</td><td>(10</td><td>78</td><td>23</td><td><10</td><td>1.9</td><td>(10</td><td>756</td><td></td></t<>	RI	68	(29	(0.3	21	<4 0	<20	63	(10	78	23	<10	1.9	(10	756	
RE10 (20) (0.3) 1318 (40) (20) 7498 (10) 32 22 (10) 7.8 (10) 113 B011 (20) (0.3) 32 (40) (20) 7498 (10) 52 24 (10) 5.4 (10) 1123 B012 (20) (0.3) 32 (40) (20) 35 (10) 103 21 17 4.4 (10) 1048 R014 (20) 0.4 24 (40) (20) 75 (10) 38 22 (10) 3.7 (10) 766 F015 (20) 0.5 67 (10) 1170 (10) 63 21 (10) 6.0 10 562 F016 (20) 0.3 562 (40) (20) 421 118 3.5 (10) 564 R017 (20) (0.3 455 (40) (20) 11 10 37 12 <td>RE</td> <td>39</td> <td><20</td> <td>(0.3</td> <td>380</td> <td>(40</td> <td>51</td> <td>45</td> <td><10</td> <td>171</td> <td>22</td> <td>18</td> <td>5.3</td> <td>(10</td> <td>1950</td> <td></td>	RE	39	<20	(0.3	380	(40	51	45	<10	171	22	18	5.3	(10	1950	
R011 C20 4.3 999 C40 C20 7878 C10 32 22 C10 5.4 C10 1123 R012 C20 C0.3 32 C40 C20 55 C10 103 21 110 4.4 C10 1048 R013 C20 C0.5 87 C40 C20 117 4.4 C10 1048 R014 C20 0.4 24 C40 C20 1170 C10 63 21 C10 4.6 C10 962 R017 C20 0.4 350 C40 C20 42 C10 411 18 C10 4.6 C10 962 R017 C20 C0.3 152 C40 C20 43 10 61 12 5.5 C10 14 3.5 C10 143 5.5 C10 14 3.5 C10 144 3.5 C10 144 4.7 <td< td=""><td>RE</td><td>C10</td><td>(20</td><td><0.3</td><td>1318</td><td><40</td><td>60</td><td>29</td><td>(10</td><td>421</td><td>27</td><td><10</td><td>7.8</td><td><10</td><td>4811</td><td></td></td<>	RE	C10	(20	<0.3	1318	<40	60	29	(10	421	27	<10	7.8	<10	4811	
ND12 C20 C0.3 32 C40 C20 S48 C10 S2 24 C10 4.3 C10 E50 RD13 C20 C0.3 27 C40 C20 35 C10 103 21 17 4.4 C10 1048 RD14 C20 0.4 24 C40 C20 1170 C10 63 21 C10 4.6 C10 766 F015 C20 0.4 350 C40 C20 65 C10 111 18 C10 4.6 C10 766 F017 C20 0.3 56 C40 C20 42 C10 42 C10 47 C10 645 F021 C30 6.3 40 C20 55 C10 717 C10 4.7 C10 645 F021 153 0.3 545 10 55 C10 1.2 C10 4.7 C10 <td>RU</td> <td>Ш</td> <td>(20</td> <td>4.3</td> <td>999</td> <td>K40</td> <td><20</td> <td>7698</td> <td>(10</td> <td>32</td> <td>22</td> <td><10</td> <td>5.4</td> <td>(10</td> <td>1123</td> <td></td>	RU	Ш	(20	4.3	999	K40	<20	7698	(10	32	22	<10	5.4	(10	1123	
RD13 C20 60.3 27 C40 C20 35 C10 103 21 17 4.4 C10 1048 RD14 C20 0.4 24 C40 C20 75 13 38 22 C10 3.7 C10 766 PD15 C20 0.5 67 C40 C20 65 C10 111 18 C10 4.6 C10 766 PD16 C20 0.3 56 C40 C20 42 C10 65 C10 111 18 C10 4.6 C10 56 760 760 760 760 760 760 760 760 760 760 760 760 760 760 760 760 770	RI	012	(20	<0.3	32	(49)	(20	548	(10	52	24	(10	4.3	<10	850	
NB14C200.424C40C2078133822C403.7C40766F015C200.567C40C201170C106321C104.6C10962RD16C200.4350C40C2065C1011118C106.010662RD17C20C0.355C40C2040C2040C1011827143.5C101178RD17C20C0.355C40C2040C2052C10117C104.7C10643RD17C20C0.3655C40C2052C1077C104.7C10740RD21139C0.3453102C2035C105629235.2C10427RD22C20C0.3453102C201310575C101.2C10408RD23C20C0.3137C40C2017C1010822C102.4C10408RD24C2060.3137C40C2017C1010822C102.4C10133ALexRD24C2060.3137C40C201371463.0C10137ALexRD2529C0.3488C40C2014<	RE	113	<20	(0.3	27	<40	(20	35	K10 .	103	21	17	4.4	(10	1048	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RL	014	(20	0.4	24	(40	(20	76	13	38	22	<10	3.7	<10	766	
PB16 C20 0.4 359 C40 C20 65 C10 111 18 C10 6.0 10 662 RB17 C29 (0.3 56 C40 C20 40 C10 118 27 14 3.5 C10 1178 RD17 C29 (0.3 121 C40 C20 63 10 66 12 5.3 C10 540 RD17 C29 (0.3 262 C40 C20 63 10 66 13 C40 4.7 C10 643 RD20 C20 (0.3 453 102 C20 63 C10 56 29 23 5.2 C10 4.7 C10 643 RD21 C33 6.3 440 C20 17 C10 108 22 C10 0.7 C10 248 RD23 C20 (0.3 27 C40 C20 17 C10 108 22 C10 2.4 C10 433 44.2 44.5 44.5	E	315	<20	0.5	87	(40	(20	1170	(10	63	21	<10	4.6	<10	982	
RED7 C29 C0.3 56 C40 C20 40 C10 118 27 14 3.5 C10 1178 KD18 C20 C0.3 121 C40 C20 42 C10 44 C10 643 RD17 C20 C0.3 562 C40 C20 53 C10 77 C10 47.7 C10 643 RD21 138 C0.3 453 102 C20 35 C10 56 29 23 5.2 C10 427 RD22 C20 (0.3 44 C20 17 C10 108 57 5 C10 1.2 C10 446 A1ex RD23 C20 (0.3 43 C40 C20 14 17 45 27 C10 0.8 C10 444 44 44 420	FI	016	<20	0.4	390	(40	(20	65	(10	111	18	(10	6.0	10	562	
KD18 (20) $(0,3)$ 121 (40) (20) 42 (10) 46 16 12 5.3 (10) 540 RD17 (20) $(0,3)$ 262 (40) (20) 633 100 666 13 (10) 4.7 (10) 643 RD20 (20) $(0,3)$ 453 102 (20) 52 (10) 76 17 (10) 4.7 (10) 643 RD21 1138 $(0,3)$ 453 102 (20) 35 (10) 56 29 23 5.2 (10) 4.7 (10) $4.$	RE	017	(20	(9.3	56	(40	<20	40	(10	118	27	14	3.5	(10	1178	
RD17 (22) $(0,3)$ 262 (40) (20) 63 10 66 13 (10) 4.7 (10) 643 RD20 (20) $(0,3)$ 453 (10) 52 (10) 97 17 (10) 4.7 (10) 719 RD21 139 $(0,3)$ 453 102 (20) 35 (10) 56 29 23 5.2 (10) 427 RD22 (20) $(0,3)$ 24 (40) (20) 17 (10) 108 22 (10) 1.7 (10) 446 RD25 29 $(0,3)$ 24 (40) (20) 17 (10) 108 22 (10) 2.4 (10) 446 RD12 (20) $(0,3)$ 422 51 (20) 145 10 60 47 50 6.9 (10) 446 RD25 29 $(0,3)$ 422 51 20 145 10 60 47 50 6.9 (10) 446 RC1 (20) 0.3 422 51 20 145 10 60 47 710 6.9 6.9 (10) 446 RC2 (20) 0.3 427 (40) (20) 22 (10) 45 10 49 46 RC2 (20) 0.3 47 (20) 23 51 14 70 50 13 3.2 (10) 653 RC4 21	RI	DIB	{20	(0.3	121	(40	< 20	42	- {10 - `	48	16	12	5.3	(10	540	
RD20 (20) (0.3) 6.36 (40) (20) 52 (10) 97 17 (10) 4.7 (10) 719 RD21 133 (0.3) 453 102 (20) 35 (10) 56 29 23 5.2 (10) 427 RD22 (20) (0.3) 95 (40) (20) 11 10 37 12 (10) 0.7 (10) 427 RD23 (20) (0.3) 197 (40) (20) 17 (10) 198 22 (10) 2.4 (10) 439 RD25 29 (0.3) 197 (40) (20) 17 (10) 198 22 (10) 0.8 (10) 446 RC1 (20) (0.3) 2192 210 (20) 14 17 45 27 (10) 0.8 (10) 435 RC2 (20) (0.3) 2192 2010 (20) 22 (10) 4.9 (10) 639 RC3 (20) (0.3) 2192 2010 (20) 22 (10) 30 4.9 (10) 693 RC4 21 (0.3) 27 (40) (20) 23 38 26 (10) 3.0 (10) 659 RC4 21 (0.3) 37 440 (20) 35 14 70 50 13 3.2 10 860 RC5 (20) (0.3) 30	R	017	(29	(0.3	262	(40	< 20	63	10	66	13	<£0	4.7	(10	643	
ED21138 $(0,3)$ 453102 (20) 35 (10) 5629235.2 (10) 427ED22 (20) $(0,3)$ 75 (40) (20) 11103712 (10) 0.7 (10) 248ED23 (20) $(0,3)$ 24 (40) (20) 17 (10) 595 (10) 1.2 (10) 408 Alex BD24 (20) $(0,3)$ 197 (40) (20) 17 (10) 10822 (10) 2.4 (10) 1.339 Alex BD2529 $(0,3)$ 21922010 (20) 14174527 (10) 0.8 (10) 446RC1 (20) $(0,3)$ 21922010 (20) 22 (10) 4.7 (10) 479 (10) 479RC3 (20) $(0,3)$ 21922010 (20) 22 (10) 4.7 (10) 4.7 (10) <td>80</td> <td>920</td> <td><20</td> <td>(0.3</td> <td>636</td> <td><40</td> <td>(20</td> <td>52</td> <td>(10</td> <td>97</td> <td>17</td> <td><10</td> <td>4.7</td> <td>(10</td> <td>719</td> <td></td>	80	920	<20	(0.3	636	<40	(20	52	(10	97	17	<10	4.7	(10	719	
R022 (20) $(0,3)$ 95 (40) (20) 11 10 37 12 (10) 0.7 (10) 248 R023 (20) $(0,3)$ 24 (40) (20) 17 10 59 5 (10) 1.2 (10) 408 $ALex$ R025 29 $(0,3)$ 197 (40) (20) 17 (10) 108 22 (10) 2.4 (10) 439 $ALex$ R025 29 $(0,3)$ 48 (40) (20) 145 10 60 40 5 6.9 (10) 735 RC1 (20) 0.3 2192 2019 (20) 22 (10) 45 17 $30)$ 4.9 (10) 496 RC2 (29) (0.3) 413 (40) (20) 24 25 38 26 (10) 3.0 (10) 763 RC4 21 (0.3) 277 (40) (20) 35 14 70 50 13 3.2 (10) 860 RC5 (20) (0.3) 124 (40) (20) 98 (10) 60 37 14 6.3 (10) 547 RC6 (20) (0.3) 324 47 (20) 98 (10) 30 47 (10) 4.2 14 521 RC7 (20) (0.3) 30 47 (20) 81 (10) 30 47 (10)	60	021	139	<0.3	453	102	(20	35	(10	56	29	23	5.2	(10	427	
ED23 $(20$ (9.3) 24 $(40$ $(20$ 19 10 59 5 $(10$ 1.2 $(10$ 408 $HLex$ RD24 $(20$ (0.3) 197 $(40$ $(20$ 17 $(10$ 108 22 $(10$ 2.4 $(10$ 1337 $ALex$ RD25 27 (0.3) 48 $(40$ (20) 14 17 45 27 $(10$ 0.8 $(10$ 446 RC1 $(20$ (0.3) 22 51 (20) 145 10 60 40 5 6.0 $(10$ 935 RC2 (29) (0.3) 212 2010 (20) 22 (10) 45 17 30 4.7 (10) 690 RC3 (20) (0.3) 217 (40) (20) 214 25 38 26 $(10$ 3.0 4.10 545 RC4 21 (0.3) 27 (40) (20) 35 14 70 50 13 3.2 (10) 653 RC4 21 (0.3) 37 440 (20) 88 (10) 30 47 (10) 4.2 14 521 RC5 (20) (0.3) 34 47 (20) 77 410 5.8 34 1170 RC6 (20) (0.3) 24 47 (20) 77 (10) 853 13 4.7 17 944 RC6 (20)	R	022	(20	(0.3	95	<40	<20	11	10	37	12	<10	0.7	(10	248	
RB24 (20 (0.3 197 (40 (20 17 (10 108 22 (10 2.4 (10 1339 ALex RD25 29 (0.3 48 (40 (20 14 17 45 27 (10 0.8 (10 446 RC1 (20 (0.3 212 51 (20 145 10 60 40 5 6.0 (10 935 RC2 (20 (0.3 2192 2010 (20 22 (10 45 17 30 4.7 (10 603 RC3 (20 (0.3 217 (40 (20 23 14 70 50 13 3.2 (10 663 RC4 21 (0.3 27 (40 (20 98 (10 30 47 (10 545 RC6 (20 (0.3 44 47 (20 97 (10 85 34 10 5.8 34 1170 RC7 (20 (0.3 24	13	023	<20	(0.3	24	<40	<20	17	10	59	5	(19	1.2	(10	408	ALex
R02529 $(0,3)$ 48 (40) (20) 14174527 (10) 0.8 (10) 446RC1 (20) $(0,3)$ 2251 (20) 14510 60 4096.0 (10) 935RC2 (20) $(0,3)$ 2193 2010 (20) 22 (10) 4517304.9 (10) 670 RC3 (20) $(0,3)$ 43 (40) (20) 24253826 (10) 3.0 (10) 663 RC421 $(0,3)$ 27 (40) (20) 35147050133.2 (10) 860 RC5 (20) $(0,3)$ 124 (40) (20) 88 (10) 60 37 14 6.3 (10) 549RC6 (20) $(0,3)$ 35 47 (20) 78 (10) 30 47 (10) 4.2 14 521 RC6 (20) $(0,3)$ 36 47 (20) 79 (10) 85 34 1170 RC7 (20) $(0,3)$ 24 47 (20) 97 (10) 85 34 1170 RC8 (20) $(0,3)$ 24 47 (20) 97 (10) 85 34 1170 RC10 (20) (20) 20 97 (10) 85 34 10 5.7 21 1726 RC10 (20) <	RI	024	<29	<0.3	199	<4 0	<20	17	(10	108	22	(10	2.4	(10	1339	ALex
RC1 $(20$ (0.3) 22 51 $(20$ 145 10 60 40 5 6.0 $(10$ 935 RC2 $(20$ (0.3) 2193 2010 $(20$ 22 $(10$ 45 19 30 4.7 $(10$ 690 RC3 $(20$ (0.3) 43 $(40$ (20) 24 25 38 26 $(10$ 3.0 (10) 563 RC4 21 (0.3) 27 (40) (20) 23 14 70 50 13 3.2 (10) 860 RC5 (20) (0.3) 124 (40) (20) 35 14 70 50 13 3.2 (10) 860 RC6 (20) (0.3) 35 47 (20) 78 (10) 30 47 (10) 4.2 14 521 RC6 (20) (0.3) 30 47 (20) 78 (10) 30 47 (10) 4.2 14 521 RC6 (20) (0.3) 46 47 (20) 79 (10) 85 34 1070 RC7 (20) (0.3) 47 (20) 81 (10) 26 53 13 4.7 17 744 RC7 (20) (0.3) 214 47 (20) 82 (10) 75 21 1726 RC10 (20) (30) 214 47 (20) 82 $(10$	R	025	29	(0.3	48	(40	<20	14	17	45	27	<10	0.8	<10	445	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R	C1	<20	(0.3	22	51	(20	145	10	60	40	9	6.0	<u>(10</u>	935	
RC3 (20 (0.3 43 (40 (20 24 25 38 26 (10 3.0 (10 963 RC4 21 (0.3 27 (40 (20 35 14 70 50 13 3.2 (10 860 RC5 (20 (0.3 124 (40 (20 88 (10 60 37 14 6.3 (10 549 RC6 (20 (0.3 35 47 (20 78 (10 30 49 (10 4.2 14 521 RC7 (20 (0.3 48 47 (20 97 (10 85 34 10 5.8 34 1170 RC9 46 (0.3 24 47 (20 88 (10 70 43 17 5.7 21 1726 RC10 (20 (0.3 218 47 (20 5383 (10 11 17 (10 2.1 1726 RC11 21 3.4 665	R	62	(29	<0.3	2193	2010	<20	22	(10	45	17	30	4.9	<10	670	
RE421 $(0,3)$ 27 (40) (20) 35147050133.2 (10) 860RC5 (20) $(0,3)$ 124 (40) (20) 98 (10) 6037146.3 (10) 549RC6 (20) $(0,3)$ 3547 (20) 78 (10) 3049 (10) 4.214521RC7 (20) $(0,3)$ 4E47 (20) 97 (10) B534105.8341170RC8 (20) $(0,3)$ 2447 (20) 81 (10) 2653134.717944RC946 (0.3) 2447 (20) 88 (10) 7043175.7211726RC10 (20) $(0,3)$ 21847 (20) 47 (10) 7522185.727418RC11213.4 665 121 (20) 5383 (10) 1117 (10) 2.1 (10) 436RC12 (20) 7.52122 67 (20) 14900101722 (10) 5.3 (10) 1094RC13 (20) $(0,3)$ 37 (40) (20) 19 (40) 9722133.7 (10) 1189RC14 67 $(0,3)$ (20) (40) (20) 14 (10) 27 (10) 2.5 (10) <	R	C3	(20	(0.3	43	(4 0	<20	24	25	38	26	<10	- 3.0	(10	963	
RC5 $(20$ (0.3) 124 $(40$ $(20$ BB $(10$ 60 37 14 6.3 $(10$ 549 $RC6$ $(20$ (0.3) 35 47 $(20$ $7B$ $(10$ 30 49 $(10$ 4.2 14 521 $RC7$ $(20$ (0.3) $4E$ 47 $(20$ 97 $(10$ $B5$ 34 10 5.8 34 1170 $RC9$ $(20$ (0.3) 24 47 $(20$ 81 $(10$ 26 53 13 4.7 17 944 $RC9$ 46 (0.3) 24 47 $(20$ 81 $(10$ 26 53 13 4.7 17 944 $RC9$ 46 (0.3) 214 47 $(20$ 81 $(10$ 70 43 17 5.7 21 1726 $RC10$ $(20$ (0.3) 218 47 $(20$ 85 (10) 70 43 17 5.7 21 1726 $RC11$ 21 3.4 665 121 $(20$ 5383 (10) 11 17 $(10$ 2.1 (10) 436 $RC12$ $(20$ 7.5 2122 67 (20) 14900 10 17 22 $(10$ 5.3 (10) 1971 $RC13$ $(20$ (0.3) 37 (40) (20) 17 (10) 97 22 13 3.7 (10) 1971 <t< td=""><td>- FI</td><td>C.4</td><td>Z1</td><td>(0.3</td><td>27</td><td>(40</td><td>(20</td><td>35</td><td>14</td><td>70</td><td>50</td><td>13</td><td>3.2</td><td>(10</td><td>870</td><td></td></t<>	- FI	C.4	Z 1	(0.3	27	(40	(2 0	35	14	70	50	13	3.2	(10	870	
RC6 $\langle 20 \rangle$ $\langle 0.3 \rangle$ 35 47 $\langle 20 \rangle$ 78 $\langle 10 \rangle$ 30 47 $\langle 10 \rangle$ 4.2 14 521 RC7 $\langle 20 \rangle$ $\langle 0.3 \rangle$ 48 47 $\langle 20 \rangle$ 97 $\langle 10 \rangle$ 85 34 10 5.8 34 1170 RC9 46 $\langle 0.3 \rangle$ 24 47 $\langle 20 \rangle$ 81 $\langle 10 \rangle$ 26 53 13 4.7 17 944 RC9 46 $\langle 0.3 \rangle$ 24 47 $\langle 20 \rangle$ 81 $\langle 10 \rangle$ 75 22 18 5.7 27 418 RC10 $\langle 20 \rangle$ $\langle 0.3 \rangle$ 218 47 $\langle 20 \rangle$ 47 $\langle 10 \rangle$ 75 22 18 5.7 27 418 RC11 21 3.4 665 121 $\langle 20 \rangle$ 5383 $\langle 10 \rangle$ 11 17 $(10 \rangle$ 2.1 $\langle 10 \rangle$ 436 RC12 $\langle 20 \rangle$ 7.5 2122 67 $\langle 20 \rangle$ 14990 10 17 22 $\langle 10 \rangle$ 5.3 $\langle 10 \rangle$ 1974 RC13 $\langle 20 \rangle$ $\langle 0.3 \rangle$ 37 $\langle 40 \rangle$ $\langle 20 \rangle$ 35 $\langle 10 \rangle$ 140 29 15 4.7 $\langle 10 \rangle$ 1897 RC14 $\delta7$ $\langle 0.3 \rangle$ $\langle 20 \rangle$ $\langle 40 \rangle$ $\langle 20 \rangle$ 14 $\langle 10 \rangle$ 2.5 $\langle 10 \rangle$ 3.7 $\langle 10 \rangle$ 1897 RC14 $\delta7$ $\langle 0.3 \rangle$ 32 $\langle 40 \rangle$ $\langle 20 \rangle$ 245 $\langle 19 \rangle$ 81	- El	C5	<20	(0.3	124	{40	<20	86	(10	60	37	14	6.3	(10	549	
807 (20) $(0,3)$ $4E$ 47 (20) 97 (10) 85 34 10 5.8 34 1170 RCB (20) $(0,3)$ 30 47 (20) 81 (10) 26 53 13 4.7 17 944 $RC9$ 46 (0.3) 24 47 (20) 81 (10) 26 53 13 4.7 17 944 $RC10$ (20) (0.3) 218 47 (20) 68 (10) 70 43 17 5.7 21 1726 $RC11$ 21 3.4 665 121 (20) 5383 (10) 11 17 (10) 2.1 (10) 436 $RC12$ (20) 7.5 2122 67 (20) 14900 10 17 22 (10) 5.3 (10) 1094 $RC13$ (20) (0.3) 37 (40) (20) 14900 10 17 22 (10) 5.3 (10) 1791 $RC14$ 67 (0.3) (20) (40) (20) 197 22 13 3.7 (10) 1189 $RC14$ 67 (0.3) (20) (40) (20) 14 (10) 27 (10) 2.5 (10) $RC14$ 67 (0.3) 220 (40) (20) 245 (10) 27 (10) 4.8 (10) 953 $RC16$ (20) </td <td>R</td> <td>66</td> <td><20</td> <td>(0.3</td> <td>35</td> <td>47</td> <td><20</td> <td>78</td> <td>(10</td> <td>30</td> <td>49</td> <td>(10</td> <td>4.2</td> <td>14</td> <td>521</td> <td></td>	R	66	<20	(0.3	35	47	<20	78	(10	30	49	(10	4.2	14	521	
RCB (20 (0.3 30 47 (20 81 (10 26 53 13 4.7 17 944 RC9 46 (0.3 24 47 (20 68 (10 70 43 17 5.7 21 1726 RC10 (20 (0.3 218 47 (20 47 (10 75 22 18 5.7 27 418 RC11 21 3.4 665 121 (20 5383 (10 11 17 (10 2.1 (10 436 RC12 (20 7.5 2122 67 (20 14900 10 19 22 (10 5.3 (10 1094 RC13 (20 (0.3 37 (40 (20 35 (10 140 29 15 4.7 (10 1791 KC14 67 (0.3 (20 (40 (20 19 (10 97 22 13 3.7 (10 1189 FC15 (20	S [67	(2 0	(0.3	48	47	<20	99	(10	B5	34	10	5.8	34	1170	
RC9 46 (0.3) 24 47 (20) 68 (10) 70 43 17 5.7 21 1726 RC10 (20) (0.3) 218 47 (20) 47 (10) 75 22 18 5.7 27 418 RC11 21 3.4 665 121 (20) 5383 (10) 11 17 (10) 2.1 (10) 436 RC12 (20) 7.5 2122 67 (20) 14900 10 19 22 (10) 5.3 (10) 1094 RC13 (20) (0.3 37 (40) (20) 35 (10) 140 29 15 4.7 (10) 1791 RC14 67 (0.3 (20) (40) (20) 114 (10) 27 (10) 2.5 (10) 1697 RC14 67 (0.3 (20) (40) (20) 114 (10) 27 (10) 2.5 (10) 361 RC15 (20)	RC	C8	<20	K0. 3	30	47	(20	81	(10	26	53	13	4.7	17	944	
RC10 (20 (0.3) 218 47 (20) 47 (10) 75 22 18 5.7 27 418 RC11 21 3.4 665 121 (20) 5383 (10) 11 17 (10) 2.1 (10) 436 RC12 (20) 7.5 2122 67 (20) 14900 10 17 22 (10) 5.3 (10) 1094 RC13 (20) (0.3) 37 (40) (20) 35 (10) 140 29 15 4.7 (10) 1189 RC14 67 (0.3) (20) (40) (20) 17 (10) 27 (10) 2.5 (10) 1189 RC15 (20) (0.3) (20) (40) (20) 114 (10) 27 (10) 2.5 (10) 361 RC16 (20) (0.3) 32 (40) (20) 24 (10) 4.8 (10) 953 RC17 (20) (0.3) 320 4	R	69	46	(0.3	24	47	(20	88	(1 0	70	43	17	5.7	21	1726	
RC11 21 3.4 665 121 (20 5383 (10 11 17 (10 2.1 (10 436 RC12 (20 7.5 2122 67 (20 14900 10 17 22 (10 5.3 (10 1094 RC13 (20 (0.3 37 (40 (20 35 (10 140 29 15 4.7 (10 1791 RC14 67 (0.3 (20 (40 (20 19 (10 97 22 13 3.7 (10 1189 RC14 67 (0.3 (20 (40 (20 19 (10 27 (10 2.5 (10 361 RC15 (20 (0.3 32 (40 (20 24 (10 27 (10 2.5 (10 361 RC16 (20 (0.3 32 (40 (20 24 (10 4.8 (10 953 RC17 (20 (0.3 320 44 (20 37 <td>R(</td> <td>C10</td> <td>(20</td> <td>(0.3</td> <td>218</td> <td>47</td> <td>(2)</td> <td>47</td> <td>(10</td> <td>75</td> <td>22</td> <td>19</td> <td>5.7</td> <td>27</td> <td>418</td> <td></td>	R(C10	(20	(0.3	218	47	(2)	47	(10	75	22	19	5.7	27	418	
RC12 (20 7.5 2122 67 (20 14900 10 17 22 (10 5.3 (10 1094 RC13 (20 (0.3 37 (40 (20 35 (10 140 29 15 4.7 (10 1791 RC14 67 (0.3 (20 (40 (20 17 (10 97 22 13 3.7 (10 1189 RC15 (20 (0.3 (20 (40 (20 17 (10 27 (10 2.5 (10 361 RC15 (20 (0.3 32 (40 (20 245 (19 B1 24 (10 4.8 (10 953 RC17 (20 (0.3 320 (40 (20 24 (10 123 27 11 4.5 (10 1557 RC18 (20 (0.3 320 44 (20 37 (10 48 18 (10 3.7 21 380 RC18 (20 0.7 <td>60</td> <td>C11</td> <td>21</td> <td>3.4</td> <td>665</td> <td>121</td> <td><20</td> <td>5383</td> <td>(10</td> <td>11</td> <td>17</td> <td>(10</td> <td>2.1</td> <td>(10</td> <td>436</td> <td></td>	60	C11	21	3.4	665	121	<20	5383	(10	11	17	(10	2.1	(10	436	
RC13 (20 (0.3 37 (40 (20 35 (10 140 29 15 4.7 (10 1791 RC14 67 (0.3 (20 (40) (20) 19 (10) 97 22 13 3.7 (10) 1189 RC15 (20 (0.3) (20) (40) (20) 114 (10) 27 (10) 2.5 (10) 361 RC16 (20) (0.3) 32 (40) (20) 245 (19) B1 24 (10) 4.8 (10) 953 RC17 (20) (0.3) 320 44 (20) 37 (10) 123 27 11 4.5 (10) 1537 RC18 (20) (0.3) 320 44 (20) 37 (10) 48 18 (10) 3.7 21 380 RC19 (20) 0.7 146000 50 202 585 11 54 10) 34 4.4 (10) 700 RC20	Ri	C12	(20	7.5	2122	67	<20	14900	10	17	22	(10	5.3	<10	1074	
RC14 87 (0.3 (20 (40 (20 17 (10 97 22 13 3.7 (10 1189 RC15 (20 (0.3 (20 (40 (20 114 (10 27 (10 2.5 (10 361 RC16 (20 (0.3 32 (40 (20 245 (19 81 24 (10 4.8 (10 953 RC17 (20 (0.3 324 (40 (20 24 (10 123 27 11 4.5 (10 1557 RC18 (20 (0.3 320 44 (20 37 (10 48 18 (10 3.7 21 380 RC18 (20 0.7 14600 50 202 585 11 54 10 34 4.4 (10 700 RC19 (20 0.4 34000 50 203 590 (10 49 5 26 2.9 (10 400	ĥ	613	<20	<0.3	37	(4 0	<20	35	(10	140	29	15	4.7	<10	1771	
RC15 (20 (0,3 (20 (40 (20 114 (10 (10 27 (10 2.5 (10 361 RC16 (20 (0,3 32 (40 (20 245 (19) B1 24 (10 4.8 (10 953 RC17 (20 (0,3 24 (40 (20) 24 (10 123 27 11 4.5 (10 1537 RC18 (20 (0,3 320 44 (20 37 (10 48 18 (10 3.7 21 380 RC19 (20 0.7 14600 50 202 585 11 54 10 34 4.4 (10 700 RC20 (20 0.4 34000 50 203 590 (10 49 5 26 2.9 (10 400	- 61	C14	67	(0.3	(20	(40	(2 0	17	(10	97	22	13	3.7	(10	1169	
RC16 (20 (0.3) 32 (40 (20) 245 (10) B1 24 (10) 4.8 (10) 953 RC17 (20) (0.3) 24 (40) (20) 24 (10) 123 27 11 4.5 (10) 1537 RC18 (20) (0.3) 320 44 (20) 37 (10) 48 18 (10) 3.7 21 380 RC19 (20) 0.7 146000 50 202 585 11 54 10 34 4.4 (10) 700 RC20 (20) 0.4 34000 50 203 590 (10) 49 5 26 2.9 (10) 400	F	C15	<20	(0,3	<20	(40	(2 0	114	<10	(10	27	(10	2.5	<10	361	
RC17 (20 (0.3 24 (40 (20 24 (10 123 27 11 4.5 (10 1577 RC18 (20 (0.3 320 44 (20 37 (10 48 18 (10 3.7 21 380 RC17 (20 0.7 14600 50 202 585 11 54 10 34 4.4 (10 700 RC19 (20 0.4 (3400) 50 202 585 11 54 10 34 4.4 (10 700 RC20 (20 0.4 (3400) 50 203 590 (10 49 5 26 2.9 (10 400	RI	616	<20	(0.3	32	<40	(20	245	(19	B1	24	<10	4.8	<10	953	
RC18 < 20 < 0.3 320 44 < 20 37 < 10 48 18 < 10 3.7 21 380 RC19 < 20 0.7 146000 50 202 585 11 54 10 34 4.4 < 10 700 RC20 < 20 0.4 · 34000 50 203 590 < 10 49 5 26 2.9 < 10 400	R	C17	(20)	(9.3	24	(40	<29	24	(10	123	27	11	4.5	(10	1577	
RC19 <20 0.7 146000 50 202 585 11 54 10 34 4.4 <10 700 RC20 <20 0.4 34000 50 203 590 <10 49 5 26 2.9 <10 400	R	C18	< 20	(0.3	320	44	<20	37	(10	48	18	<10	3.7	21	380	
RC20 (20 0.4 34000 50 203 500 (10 49 5 26 2.9 (10 400	R	C17	(2 0	0.7	146000	50	202	585	11	54	10	34	4.4	<10	700	
	R	C20	<20	0.4	34000	50	203	590	(10	49	5	26	2.9	<10	400	

After Open file 1987-14

Geochemistry West of Chilko Lake

G.P. McLaren, B.C. Ministry of Energy,

Mines and Petroleum Resources 1987

^{×15} ris.

Î

۰.

SAMPLE NO.	AU	AG	HG	AS	58	CU	PB	IN	00	HI	FE	MB	1 1N	
	PP8	PPN	PFB	PPM	PFN	PPN	PPN	PPN	PPN	PPN	2	PPN	PPN	
8021	(20	0.4	\$2000	6 6	120	ሰአፓ	12	57	5	29	र द	(10	ንሰስ	
RC22	(20	(0.3	4485	(40	(20	248	(10	172	45	77	R 2	(10	1532	
RE23	(20	(0.3	1400	300	(20	49	13	70	12	12	£ 1	210	1500	DIOVIE
RE24	(20	(0.3	1044	(40	< 20	58	(10	16	19	(10	19	(10	1214	14000
RC25	(20	3.4	1044000	97	308	1200	11	112	16	26	6.7	(10	1300	
RC26	(20	(0.3	4767	(40	{20	105	(10	84	39	61	7.5	(10	1000	
RC27	445	(0.3	10000	66	90	135	11	87	20	58	6.8	(10	1400	
RVI	69	(0.3	(20	(40	(20	97	(10	R4	31	31	1.9	(10	1332	
RV2	<20	(0.3	33	(40	(20	72	(10	101	79	28	5.9	(10	1149	
RV4	(20	(0.3	84	(40	<20	105	(10	118	24	45	5.1	(10	457	
RVA	k7	(0.3	22	(40	(20	10	(10	20	21	(10	11	(10	281	
RV7	(20	(0.3	29	240	(20	14	(10	74	32	14	15	710	107#	
RVR	(20	(0.3	24	(40	(20	47	10	123	34	77	5 6	(10	1572	
RV9	24	(0.3	31	(40	(20	14	13	(10	16	(10	1.1	10	555E 66	
RVID	(20	9.6	54	(40	(20	12300	(10	99	34	11	7 4	(10	1478	
RVII	20	(0.3	(76	(10	(20	40	10	91	32	12	7.1	(10	1774	
RU12	(20	(0.3	(20	(40	(70	35	16	179	77	25	3.0	210	101	
RV13	(70	(0.3	39	(40	(20	RR .	(10	94	- 79	17	1.1	(10	1113	
RV14	(76	(0.3	(20	(40	(20	\$7	(10	99	7#	(10	1 2	210	1744	
RUIS	C/ii	6.3	70	240	(20	20	(10	105	17	22	7 4	/10	501	
RV1A	(20	(0.3	(20	(10	(20	44	(10	70	32	(10	1.5	710	1757	
RU17	(20	(0.3	(70	(20	(20	17	(10	50	रु	/10	4.4	210	1414	
RUIR	(20	(0.3	(20	780	(20	50	(10	11	74	12	1 7	10	1410	
DU10	(20	/0 3	540	746	/20	20	/10	50	10	17	747 7 4	210	277	
6717 DUDA	(20	1 6	157	710	120	11500	710	70	27	10	3.4	110	373 87£	
N720 D951	/20	753	tur Ki	/#0	120	11100	710	114	27	10	7.0	110	720	
6921	120	10.3	UT 7054	110	(20	121	110	117	23	14	J. I 10 1	110	101	
RY22 D1107	29 756	(0.3	JUJ9 707	140	(20	121	110	00 /7	10	10	10.0	(10	575	
R¥23 RU24	120	(0.3	323	140	(20	10	(10	65	13	(10	4.3	(10	102	
RY29 DHOS	(20	(0.3	71	(40	(20	98	(10	41	20	(10	4./	(10	176	
NYZƏ DUDA	40	(0.3	0/1	140	(20	78	(10	00	29	26	3.0	(10	1110	
KY26	47	(0.3	01Z	100	<20	26	II (II	54	14	(10	2.5	(10	810	
RVZ/	(20	(0.3	323	{4 0	<20	76	(10	90	16	(10	5.1	(10	169/	
RYZB	(20	(0.3	3/	(40	(20	(5)	(10	51	2	(10	1.1	(10	743	
KVZY	<20 100	(0.3	85	(40	(20	20	(10	27	14	10	3.5	(10	3020	
RV30	(20	(0.3	Z5/	(4D	(20	72	(10	49	21	50	3.1	35	556	
RVJI	<20	(0.3	265	(40	(20	32	(10	117	31	16	4.9	(10	2121	
RVJZ	(20	(0.3	55	(40	(20	18	(10	172	20	18	5.Z	(10	1617	
RV33	(20	(0.3	160	{4 0	{ 20	(5	{10	34	17	(10	1.0	(10	485	

After Open file 1987-14 Geochemistry West of Chilko Lake G.P. McLaren, B.C. Misistry of Energy, Mines and Petroleum Resources 1987 Province of British Columbia Ministry of Energy, Mines and Petroleum Resources

Parliament Buildings Victoria British Columbia V8V 1X4

Date: 1989 February 13

File No. 24500-03-AME

Direct inquiries to T. Kalnins (356-2286)

CERTIFIED MAIL

Eastfield Res. 110 - 325 Howe Street Vancouver BC V6C 127

Dear Sir/Madam:

Re: Alexis 1-2 Mineral Claim(s) Worked On Statement Number(s) 000056 Assessment Report Number 18162

We have received the above noted report(s); however, the report contravenes the Mineral Act Regulations and before it can be approved, we require the following amendments in duplicate:

Section 1(2) states that all work submitted under these regulations must be original studies and not compilations and interpretations of work previously done. Each report must be complete in its presentation, and not rely on references to previous history, location, or studies. Previous work should be referenced in a standard bibliographic format.

We are returning the report(s) for amendment within sixty days of the date of this letter. When you return the report(s), please attach one copy of this letter. No further extensions or reminders will be issued.

Yours truly,

alitani

T.E. Kalnins, P. Eng. for Chief Gold Commissioner Mineral Resources Division

- cc: Gold Commissioner, Clinton
- p.s. 89/02/02. There are already six assessment reports on the property. Please explain how your very brief report constitutes an original study.

EASTFIELD RESOURCES LTD.

110-325 Howe Street, Vancouver, B.C. Canada V6C 1Z7 Office: (604) 681-7913

February 23, 1989 The Ministry of Energy, Mines and Petroleum Resources Parliament Buildings Victoria, BC V8V 1X4

Attention: T. E. Kalnins, Mineral Resource Division (Your file 24500-03-AME

Dear Mr. Kalnins:

The work outlined in Eastfield Resources' recently submitted assessment report for the Alexis Claim Group (report # 18,162) is original new work. This work completed in September 1988 was the first new field work completed on this property subsequent to the release of the B.C. Ministry of Energy, Mines and Petroleum Resources open file 1987-14 (Geochemistry West of Chilko Lake, G.P. McLaren et al 1987). Open file 1987-14 indicated a significantly anomalous gold value from an outcrop in an area of the Alexis Claims never previously sampled (sample RM-180). This sample was from a deeply incised creek located near the northern boundary of the three unit Alexis Group beyond the limits of the earlier geochemical surveys. Although Eastfield's follow-up work failed to duplicate the gold values obtained in sample RM-180 it was successful in identifying and defining a major north-south silica-carbonate alteration zone. This zone which is believed to trend 340° and 160° from its occurrence in the creek gives new insight to the structural control that may be focusing hydrothermal processes that are evident on the property. Additionally the 1988 field program took a fresh look at the original 1980 'knob' showing (vicinity drill hole DDH-81-3). At the 'knob showing' an impressive mercury occurrence had been outlined in soils and talus in 1981 and drill tested that same Drill hole DDH-81-3 had failed to explain the mineralized year. talus or the soil anomaly occurring at this showing. Our more recent investigation was successful in locating an outcrop of an approximately one meter wide mineralized vein breccia buried under talus approximately 25 meters from this drill hole. The attitude of this structure approximately east-west and dipping to the south, is such that it would not project through drill hole DDH-81-3 and therefore offers new insight as to the correct orientation of the structure that may be responsible for mercury, arsenic and antimony anomalies occurring at the 'knob showing'.

I have expanded the conclusion section of this report to more clearly explain these new insights and have included excerpts of open file 1987-14 in the appendix for comparative purposes.

Please give me a call if my letter and report modifications do not satisfy you concerns.

Yours truly,

ĺ

Bill Morton.

J. W. Morton, President EASTFIELD RESOURCES LTD.

JWM:klt Encl.

Legend Gapland

Legend Geology 2a Volcanic conglomerate (clasts dacític)

2b Greywacke

2c Argillite (siltstone)

la Lithic tuff., maroon

3 Hornblende porphyry Contact Shear zone Sample location Golnting Carbonate vein

GEOLOGICAL BRANCH ASSESSMENT REPORT

meters

<u>.</u>

18,162

Knob 10 BXA 2 2 3 DDN-81-3

Fig. 2