בענו h chu h

HUNCD

REPORT ON

GEOLOGICAL MAPPING AND GEOCHEMICAL SURVEYS


ON THE

FROST LAKE PROPERTY (F.R.S. #1 and Helga #1 Claims)

VICTORIA MINING DIVISION, BRITISH COLUMBIA NTS 92C/9E 48°40'43" N, 124°07'40" W

BEAU PRE EXPLORATIONS LIMITED

GORDON J. ALLEN, P.GEOL.

GEOLOGICAL BRANCH ASSESSMENT REPORT

Victoria, B.C.

December 19, 1988

SUMMARY

This work program on the Frost Lake Property was conducted by Beau Pre Explorations Ltd. between July 22 and December 19, 1988. The program consisted of stream sediment sampling (standard silts and samples for heavy mineral concentrates), rock sampling, minor geological mapping, and a compilation and interpretation of previous work programs.

The property is underlain by basaltic volcanics and limestones of the Triassic Karmutsen Formation, micritic limestones of the Triassic Quatsino Formation, shale of the Triassic Parson Bay Formation, quartz diorite and dacite of the Jurassic Island Intrusions, and diorite and marble probably of the Jurassic Westcoast Complex. The entire package is generally moderately dipping to the northeast. Karmutsen and Quatsino Formation units have been repeated by faulting (thrust?).

Two types of skarn mineralization occur on the property:

- a) garnet, actinolite, <u>+</u> chalcopyrite, <u>+</u> pyrite skarns in Quatsino Formation limestone adjacent to dacite dykes.
- b) massive magnetite, chalcopyrite and pyrite with lesser amounts of garnet, epidote, actinolite and quartz in Karmutsen Formation basalt or possibly calcareous basaltic tuff.

The analyses of heavy mineral concentrates from stream sediments outlined areas with known skarn mineralization. Some drainages are yielding gold without associated anomalous amounts of copper, and an as yet unobserved type of gold-bearing mineralization may occur on the property.

i

Analytical results of standard stream sediment samples do not correlate well with those of the heavy mineral concentrates.

Based on known mineralization, the property has some potential to host an economic copper deposit, most likely in a calcareous basaltic tuff in the Karmutsen Formation (type b skarn). Gold potential on the property appears to be low judging from the gold content of the known highest-grade mineralization.

Based on information compiled during this Phase I exploration program, a Phase II program of geological mapping, stream sediment sampling (for heavy mineral concentrates), soil sampling and geophysics (VLF-EM, magnetic and I.P.) is recommended. The estimated cost of this program is roughly \$41,000.00.

FROST LAKE PROPERTY TABLE OF CONTENTS

٠

PAGÈ

	SUMMARY	i
1.0	INTRODUCTION	. l
2.0	PROPERTY LOCATION, ACCESS, TITLE	2
3.0	PREVIOUS WORK	5
4.0	REGIONAL GEOLOGY	7
	4.1 Westcoast Complex	7
	4.1.1 Karmutsen Formation	7
	4.1.2 Quatsino Formation	7
	4.1.3 Parson Bay Formation	7
	4.1.4 Sutton Formation	8
	4.2 Bonanza Group	8
	4.3 Island Intrusions	8
	4.4 Westcoast Complex	8
5.0	ECONOMIC SETTING	. 9
6.0	PROPERTY GEOLOGY	10
	6.1 Lithology of the Karmutsen Formation	10
	6.2 Lithology of the Quatsino Formation	10
	6.3 Lithology of the Parson Bay Formation	11
	6.4 Lithology of Intrusives	11
	6.4.1 Diorite	
	6.4.2 Granodiorite - Quartz Diorite	
	6.4.3 Dacite	
7.0	1988 EXPLORATION PROGRAM (PHASE I)	13
	7.1 Work Completed	13
	7.2 Stream Sediment Geochemistry Survey	13
	7.2.1 Stream Sediment Sampling Techniques	3
	7.2.2 Stream Sediment Sample Preparation	
	7.2.3 Stream Sediment Survey Analytical	
	Results	
	7.3 Mineralization and Rock Geochemistry Surve	∋y 20

FROST LAKE PROPERTY TABLE OF CONTENTS

ï

PAGE

8.0	CONC	LUSIONS	22			
9.0	RECO	MMENDATIONS	24			
	9.1	Recommended Phase II Work Program	24			
	9.2	Proposed Phase II Budget	24			
	9.3 Proposed Phase II Schedule					
	9.4	Summary of Recommendations	27			
	CERT	IFICATE Gordon J. Allen, P.Geol.				
	REFE	RENCES				

APPENDICES

Appendix I List of Personnel and Statement of Expenditures II Certificates of Analysis and Assay

III Rock Sample Descriptions

LIST OF ILLUSTRATIONS

				PAGE
Figure	1	General Location Map		3
Figure	2	Claim Map		4
Figure	3	General Geology and Rock and		
		Stream Sediment Sample Locations and		
		Analyses	In	Pocket
Figure	4	Heavy Mineral Concentrates From Stream		
		Sediment Samples	In	Pocket

1.0 INTRODUCTION

The Frost Lake Property has several showings of copperbearing skarn-type mineralization, some of which contain weakly anomalous amounts of gold. Several of these showings have been sampled and covered by soil geochemistry surveys in past work programs.

The 1988 exploration program was designed to assess the mineral potential of the entire property and to outline the best exploration targets for detailed mapping and sampling in future programs. The main focus of this program consisted of the collection of stream sediment samples and the subsequent analysis of heavy mineral concentrates from these samples. Minor amounts of geological mapping and rock sampling were also conducted.

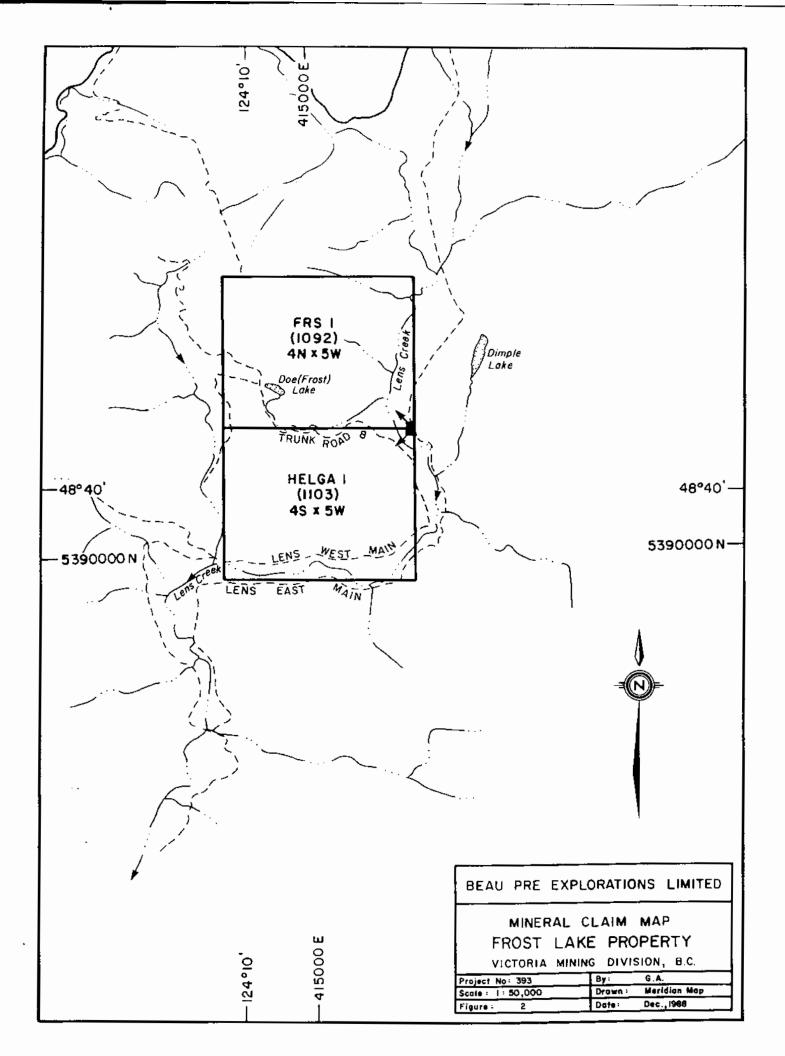
Ten days were spent on the property between July 30 and November 3, 1988.

2.0 PROPERTY LOCATION, ACCESS AND TITLE

The Frost Lake Property is located approximately 16 km south of Mesachie Lake on Vancouver Island, British Columbia (Figure 1). The property is in the Victoria Mining Division, on NTS sheet 92C/9E. The legal corner posts are located at 48°40'29"N, 124°07' 40"E on the west side of Lens Main road, 140 m north of its junction with Lens West Main road (Figure 2).

Access to the property is via the main Port Renfrew (Harris Creek Main) road which heads south off of Highway 18 at Mesachie Lake. Approximately 8 km south of Mesachie Lake Lens Main road veers off to the left, heading almost due south. The legal corner posts for the claims are located on Lens Main road roughly 8 km south of the Port Renfrew road. From the legal corner posts Lens West Main road and Trunk Road 8 give good access to much of the property.

The Frost Lake Property consists of 2 mineral claims totalling 40 units as shown below.


CLAIM	RECORD NUMBER	UNITS	ANNIVERSARY DATE*	YEAR REGISTERED
F.R.S. #1	1092	2 0	Sept. 19, 1992	1983
Helga #1	1103	20	Oct. 14, 1992	1983

*(Note: Anniversary date after the 1988 assessment work covered in this report.)

The claims were grouped as the Frost Lake Group by Notice to Group 556 dated September 18, 1984.

Both claims are wholly owned by Beau Pre Explorations Limited.

3.0 PREVIOUS WORK

Regional geological mapping was conducted in the area by Muller (1977).

Detailed geological mapping, and rock and soil geochemistry surveys and a magnetic susceptibility survey were conducted by Westmin in 1977 on part of what is now the F.R.S. #1 Claim. A grid was established in an area with several small zones of skarntype mineralization peripheral to a small stock of 'diorite' (probably a quartz diorite).

Gold-in-soil values are erratic and not related to any known mineralization. The highest gold value of 170 ppb is underlain by 'diorite'. No correlation was found between gold and any other metal in soil. Silver, copper, lead and zinc values are weakly sporadically anomalous along the flanks of the intrusive. All metal-in-soil values except gold are coincidentally anomalous over a chalcopyrite-bearing skarn zone in limestone immediately south of the intrusive.

The magnetic survey outlined a few isolated zones of higher susceptibility in areas underlain by Karmutsen Formation volcanic rocks. The intrusive is outlined by a zone of low magnetic susceptibility.

As a result of this work Westmin concluded that no significant mineralization outside of the known showings occurred in the grid area, and that the observed mineralized zones were too small and low grade for the area to warrant further work. The claims were subsequently dropped.

In 1983 massive chalcopyrite and magnetite float was found on Trunk Road 8 southeast of Frost Lake by J.W. Decker and F.R. Shandler. Consequently the F.R.S. #1 and Helga #1 Claims were staked.

Beau Pre Explorations Limited acquired the property on May 10, 1984. A brief examination of the property was conducted by E.W. Grove in 1985 on behalf of Beau Pre. A few small chalcopyrite-bearing showings were outlined in an area northeast of Frost Lake on the F.R.S. #1 Claim.

In 1986 G.R. Peatfield of Minequest Exploration Associates Ltd. was commissioned to assess the property. Geological mapping, and rock and soil sampling was conducted along road cuts on the Helga #1 Claim. One other zone with massive chalcopyrite float was located on Trunk Road 8, approximately 600 m west-northwest of the original showing.

In 1987 G.L. Garratt of Mincord Exploration Consultants Ltd. conducted another program of geological mapping and soil sampling on behalf of Beau Pre Explorations Ltd. The program was designed to locate the source of the massive chalcopyrite boulders first noted by Shandler and Decker. A few small weakly mineralized skarn zones were discovered, and several weak copper-in-soil anomalies outlined. The source of the massive chalcopyrite, however, was not located.

4.0 REGIONAL GEOLOGY

The area south of Lake Cowichan between the Cowichan and San Juan Valleys is underlain by rocks of the late Triassic Vancouver Group, the Early to Middle Jurassic Bonanza Group and the coeval Westcoast Crystalline Complex and Island Intrusions. These rocks are part of Wrangellia Terrane.

4.1 VANCOUVER GROUP

The Vancouver Group consists of four formations as listed below.

4.1.1 Karmutsen Formation

The Karmutsen Formation consists of an estimated 2500 m thick (Massey, 1987) sequence of pillowed and massive ferrotholeiitic basalt flows and hyoloclastites with minor shale and limestone interbeds.

4.1.2 Quatsino Formation

The Quatsino Formation is typically composed of massive micritic limestone. Limestone beds and basaltic flows are commonly interbedded at the transition between the Karmutsen and Quatsino Formations. In the area to the north of Frost Lake Massey estimates the Quatsino Formation to be less than 75 metres thick. Muller (1982) notes that the Quatsino Formation is up to a few hundred metres thick in the Harris Creek area.

4.1.3 Parson Bay Formation

Conformably overlying the Quatsino Formation limestone is dark coloured thinly bedded calcareous siltstone of the Parson Bay

Formation (Muller, 1982). Massey estimates this unit to be 35 m thick in the Cowichan Lake area.

4.1.4 Sutton Formation

The Sutton Formation conformably overlies the Parson Bay Formation and is composed of a reefoidal bioclastic limestone up to 100 m thick.

4.2 BONANZA GROUP

Massey (1987) describes the Bonanza Group in this area as "a variety of maroon to green-grey, feldspar-phyric basalt and andesite flows, lapilli and crystal-tuffs, feldspar-hornblende andesite flows, dacite and felsic lapilli tuff, and various minor basalt, andesite and dacite dykes." The thickness of this sequence is estimated to be at least 1000 m.

4.3 ISLAND INTRUSIONS

The Island Intrusions are stocks of medium to coarse-grained granodiorite to quartz diorite with hornblende (10-40%) as the main mafic constituent. They are considered to be coeval with the Bonanza Group volcanics (Massey, 1987).

4.4 WESTCOAST COMPLEX

The Westcoast Complex consists of heterogeneous metamorphosed amphibolitic and marblized country rock (metasediments which may in part be Sicker Group and in part Vancouver Group rocks), diorite, and migmatite (a mixture of the first two). Recent studies by Isachsen (1987) suggest that the dioritic component of the complex was emplaced in Jurassic time, and may be a deeper crustal equivalent of the Island Intrusions and Bonanza Group volcanics.

5.0 ECONOMIC SETTING

Several small skarn-type mineral deposits occur in the region, the most notable being the Alpha-Beta deposit and the now inactive Blue Grouse Mine.

The Alpha-Beta deposit is located on the Robertson River, 6 km ENE of the Frost Lake Property. Karmutsen Formation basalt and Quatsino Formation Limestone have been intruded by granodiorite and diorite dykes. Skarns containing garnet, epidote, pyroxene, chalcopyrite, magnetite and pyrite occur along the flanks of the dykes.

The Blue Grouse Mine, located 17 km NNW of the Frost Lake Property, is a skarn-type deposit hosted in a calcareous unit(s?) (calcareous tuff? limestone?) interlayered with basalt of the Karmutsen Formation. Feldspar porphyry dykes cut the sequence and mineralization occurs along the dyke-limy sediment contacts. Chalcopyrite, pyrrhotite, pyrite and lesser amounts of magnetite and sphalerite occur in ten small tabular sulphide-rich zones in a garnetite gangue. Total production from the Blue Grouse Mine (1954 - 1960) was: 249, 298 tonnes (274, 804 tons) containing 2,508,644 g (80,654 oz) Ag, 218 g (7 oz) Au, and 6,814,623 Kg (15,023,672 lb) Cu. The calculated average grade of this ore is: 0.87 ppb Au, 10 ppm Ag and 2.73% Cu.

The Blue Grouse, Alpha-Beta and Frost Lake Properties all have similar geological environments and are peripheral to the same relatively large granodiorite stock.

6.0 PROPERTY GEOLOGY

The Frost Lake Property is underlain by a generally northnortheast dipping sequence of Karmutsen Formation volcanic rocks overlain by Quatsino Formation micritic limestone, and Parson Bay Formation shale and calcareous mudstone (Figure 3). This sequence has been repeated by faulting (thrust?) in the north part of the property where Parson Bay Formation shale appears to be overlain by Karmutsen Formation basalt.

These rocks have been intruded by medium-grained granodiorite to quartz diorite and diorite stocks, and dacitic (?) feldspar porphyry dykes. It is presumed that all of these intrusive rocks are part of the Jurassic Island Intrusions.

6.1 LITHOLOGY OF THE KARMUTSEN FORMATION

The Karmutsen Formation is made up of interlayered massive fine-grained crystalline basalt, amygdaloidal basalt flows, pillow basalt, volcaniclastics and micritic limestone. The limestone units range in thickness from a few centimetres to several tens of metres. One limestone unit near the southwest corner of the property is fossiliferous (rod-shaped forms up to 0.5 cm in diameter) and marblized. The unit is bounded by a sequence of basalt flows and diorite intrusives. This package of rocks may be part of, or grading into, the Westcoast Complex.

6.2 LITHOLOGY OF THE QUATSINO FORMATION

The Quatsino Formation is predominantly composed of greyweathering, thickly bedded (1-2 m beds), massive, fine-grained dark grey micritic limestone. One 2 m thick orange-brown-weathering bed of dolomite was observed.

6.3 LITHOLOGY OF THE PARSON BAY FORMATION

This unit is composed of dark grey, soft, friable, thinly bedded calcareous mudstone. In one location rounded recessive weathering calcareous bodies up to a few centimetres in diameter were noted within a distinct horizon. These may be stromatolites.

6.4 LITHOLOGY OF INTRUSIVES

6.4.1 Diorite

True (apparent from hand specimen) diorites are found in the southwest corner of the property and as previously mentioned, may be part of the Westcoast Complex. They are medium-grained equigranular plutonic rocks with 60% (<u>+</u>) blue-grey plagioclase and 35% hornblende. The 'diorite' previously mapped by Saleken (1977) north-northeast of Frost Lake contains up to 10% glassy quartz and is probably more properly termed a quartz diorite.

6.4.2 Granodiorite - Quartz Diorite

These intrusives form small stocks within the Vancouver Group rocks. They are medium-grained, generally equigranular and composed of 75% (\pm) cream-coloured feldspar, 15-25% hornblende and 10-15% quartz.

6.4.3 Dacite

Saleken (1977) has mapped a swarm of northeast-trending, 2-15 m wide, feldspar porphyry dacite dykes north of Frost Lake. They are composed of 5% plagioclase phenocrysts up to 3 mm in length in a fine-grained crystalline equigranular groundmass of hornblende (15-20%) and feldspar (70% - total feldspar ~75%). No quartz was observed but thinsection work would be required to determine a true composition. Saleken shows the dacite dykes being truncated by the 'diorite' (probably quartz diorite) in the area, but this relationship was not confirmed.

7.0 1988 EXPLORATION PROGRAM (PHASE I)

7.1 WORK COMPLETED

Twenty mandays were spent in the field during the 1988 exploration program. A total of 25 rock samples, 19 standard stream sediment samples, and 19 -20 mesh stream sediment samples for the extraction of heavy mineral concentrates were taken. A small amount of geological mapping was conducted during the sampling program.

7.2 STREAM SEDIMENT GEOCHEMISTRY SURVEY

7.2.1 Stream Sediment Sampling Techniques

Two types of stream sediment samples were collected on the property:

- ~0.5 kg of the finest-grained material available within the stream channel (i.e. a standard silt sample).
- 2) 8-10 kg of -20 mesh material collected from as deep into the accumulated sediment as possible (generally 30-60 cm) in a location where heavy minerals tend to collect (i.e. on the upstream ends of bars, insides of bends in the channels, breaks in slope where the velocity and energy of the stream decreases, etc.)

7.2.2 Stream Sediment Sample Preparation

The standard stream sediments are dried and sieved to -80 mesh. This fraction was digested and analysed (in this program Au geochemistry (FA/AA), and 31 element ICP).

The -20 mesh samples were sent to C.F. Mineral Research in Kelowna for processing as follows:

- 1) -60 mesh fraction separated.
- 2) Heavy fraction (S.G. > 3.27) separated in methylene iodide.
- 3) -60 +150 and -150 fractions separated.
- 4) Magnetic, paramagnetic and nonmagnetic fractions separated.
- 5) Heavy nonmagnetic fractions sent for 27 element neutron activation analyses and subsequently AA analyses for Ag, Cu, Pb, Zn.

7.2.3 Stream Sediment Survey Analytical Results

Gold and copper values (plus other metal values considered anomalous) from the standard stream sediments and each of the -60 +150 and -150 fractions of the heavy nonmagnetic concentrates are shown in Figure 3, and also listed in Table 1.

The gold content in some of the heavy mineral concentrates was spectacularly high, ranging up to 50,000 ppb (FL-HM-14). Because of the diverse weights of the fractions, however, it was found that interpretation of the survey was simplified if gold values in the original -20 mesh samples were calculated (Table 1). This assumes that all gold values in the original -20 mesh samples was contained in the -60 mesh heavy nonmagnetic fraction. Copper values in the -60 mesh heavy nonmagnetic fractions were also calculated.

In addition to specific information gained from the analysis of the concentrates, some conclusions were drawn from the weights of the separate fractions . The heavy (S.G. >3.27) nonmagnetic fractions are presumably composed predominantly of sulphides, with lesser amounts of native metals and metallic oxides, and minor amounts of silicates and carbonates. The weights of the heavy TABLE 1

.

.

÷

-

FROST LAKE PROPERTY

1988 STREAM SEDIMENT SAMPLING PROGRAM

	Hea Coarse Fr (-60 +150		27) Nonmagnet Fine Fr (-150	action	Calculated M Au (ppb) [*] In Original -20 Mesh	etal Content Cu (ppm) in H.N. -60 Mesh	Sediment Sample (-80 Mesh)		
Sample No.	Au (ppb)	Cu (ppm)	Au (ppb)	Cu (ppm)	Sample	Fraction	Au (ppb)	Cu (ppm)	
FL - 01	30	1300	210	116	0.01	1164	66	88	
FL - 02	2500	34	370	55	4.63	35	<5	118	
FL - 03	4200	60	<30	94	5.13	66	<5	106	
FL - 04	30	131	190	100	0.02	123	<5	92	
FL - 05	1300	22	<30	40	1.63	24	<5	47	
FL - 06	80	1600	23000	525	1.26	1187	6	162	
FL - 07	3100	500	9700	1550	19.74	522	21	191	
FL - 08	<30	425	2800	667	0.23	456	10	111	
FL - 09	9000	59	17000	100	12.36	63	5	96	
FL - 10	<30	66	640	92	0.12	78	9	92	
FL - 11	<30	42	40	252	0.09	44	9	110	
FL - 12	<30	44	360	70	0.02	46	<5	45	
FL - 13	3200	158	<30	181	1.37	161	<5	114	
FL - 14	230	25	50000	64	2.92	25	5	44	
FL - 15	13000	328	380	268	5.98	312	7	89	
FL - 16	<30	560	340	148	0.09	372	<5	132	
FL - 17	12000	33	640	495	3.60	166	8	142	
FL - 18	12000	93	30	60	3.56	71	7	119	
FL - 19	<30	540	820	48	0.18	445	<5	159	

TABLE 2

t

FROST LAKE PROPERTY

RELATIVE MAGNETITE AND SULPHIDE CONTENT OF -20 MESH STREAM SEDIMENT SAMPLES

		PERCENTAGE OF TOTAL SAMPLE						
Sample No.	Sample Weight In Grams (-20 Mesh)	-60 Mesh Heavy Magnetic (Magnetite)	-60 Mesh Heavy Nonmagnetic (Sulphides, Native Metals, Etc.)					
FL-HM 01	7400	0.07	0.02					
02	6700	0.13	0.19					
03	7400	0.09	0.15					
04	7400	0.08	0.03					
05	8700	0.10	0.14					
06	9000	0.06	0.01					
07	8600	0.36	0.61					
08	6200	0.07	0.06					
09	9300	0.14	0.13					
10	7800	0.03	0.04					
11	7600	0.06	0.30					
12	8400	0.03	0.03					
13	8400	0.04	0.05					
14	10100	0.36	0.35					
15	6500	0.05	0.06					
16	6800	0.06	0.05					
17	5800	0.09	0.04					
18	8900	0.10	0.09					
19	4100	0.08	0.09					

nonmagnetic fractions are assumed, therefore, to be giving a relative indication of the sulphide content of the rock underlying the drainages.

The heavy magnetic fraction is presumed to be composed predominantly (if not exclusively) of magnetite. Since the target of the exploration program on the property is magnetite-bearing skarn mineralization, the relative magnetite content of the drainages is significant.

Relative sulphide and magnetite contents of the original -20 mesh samples have been calculated using the weights of the -60 mesh heavy nonmagnetic and heavy magnetic fractions respectively (Table 2). These values give only an indication of the relative sulphide and magnetite contents in the original sample because the -20 + 60 mesh fraction has been removed.

Calculated gold and copper, and relative percentages of sulphides and magnetite are presented in Figure 4.

The most significant calculated gold-in-stream sediment (-20 mesh) anomalies are located at sample sites FL-HM-07 (19.74 ppb Au) and FL-HM-09 (12.36 ppb Au) on creeks flowing north across Trunk Road 8 (Figure 3 and 4).

FL-HM-07 was collected on a creek draining the area on Trunk Road 8 with boulders of massive magnetite pyrite and chalcopyrite with up to 217 ppb Au and 13.2% Cu. In addition to gold, this stream sediment concentrate contained highly anomalous quantities of copper, magnetite and sulphides. It is the only sample on the property where the four quantities are coincidentally strongly anomalous. Sample FL-HM-08 was collected from the same creek 250 m up stream from FL-HM-07 (above Trunk Road 8). This sample contained only moderately anomalous amounts of copper, suggesting that a gold and copper-bearing magnetite-sulphide mineralized zone occurs somewhere locally (i.e. the magnetitechalcopyrite-pyrite boulders are probably near source).

FL-HM-09 was collected on a creek draining an area underlain by faulted Karmutsen Formation basalt and a relatively thick (for the Karmutsen Formation) unit of micritic limestone. No mineralization was noted in the area. The copper content of the sample is low and the sulphide and magnetite contents are only weakly anomalous. It is possible that the source of the gold in the drainage is from mineralization with a different character to that observed up stream from FL-HM-07.

Samples FL-HM-02, 03 and 15 contained weakly anomalous amounts of gold. These samples are from drainages north of Frost Lake underlain by rocks of the Karmutsen, Quatsino and Parson Bay Formations, and quartz diorite and dacite intrusives. Small zones of skarn mineralization occur in the area. No consistent correlation between the slightly elevated gold levels in these samples and their copper, sulphide and magnetite contents is evident.

FL-HM-17 contained a weakly anomalous amount of gold. The drainage from which the sample was taken lies immediately west of FL-HM-09 and is apparently underlain by similar geology.

Sample FL-HM-18 contained weakly anomalous amounts of gold, sulphides and magnetite. The geology of the area is not well understood but the drainage is apparently underlain by Karmutsen Formation basalt and limestone. A sample of a felsic dyke at the end of SP2 road contained 403 ppb Au.

Sample FL-HM-14 was collected on Lens creek near the southwest corner of the Helga 1 Claim. The heavy nonmagnetic -150 mesh (fine) fraction contained 50,000 ppb Au. The calculated gold content of the original sample is, however, only weakly anomalous (2.92 ppb). The relative sulphide and magnetite contents in the sample are high. Sample FL-HM-12, which was collected on Lens Creek 4.5 km up stream from FL-HM-14, contained nonanomalous amounts of gold, sulphides and magnetite. The few small drainages sampled between sites FL-HM-12 and 14 which enter Lens Creek from the north and west are also not anomalous. The source for the mineralization is, therefore, either underlying the Lens Creek valley or a drainage east and south of Lens Creek, or coming out of the thick banks of glacial outwash material along Lens Creek. If the source of the gold is the glacial material, it is unclear why the glacial deposits up stream from FL-HM-12 would not also contain gold. Followup sampling is required.

Samples FL-HM-01 and FL-HM-06 have significant copper-inconcentrate contents (1164 ppm and 1187 ppm respectively). Sample FL-HM-01 was collected from a drainage underlain by quartz diorite, Karmutsen Formation basalt and Quatsino Formation limestone. Small chalcopyrite-bearing skarns along the flanks of dacite dykes have been observed in the area.

Sample FL-HM-06 was collected from the creek draining Frost Lake. The geology is apparently similar to that of the FL-HM-01 drainage, and many chalcopyrite-bearing skarns are known to occur in the area.

Surprisingly, the copper content of FL-HM-07, which was collected from a drainage with boulders containing up to 13.2% Cu, was only half of either FL-HM-01 or 06. Stronger copper mineralization than that previously observed may, therefore, occur in these two drainages. More prospecting is warranted.

Only two standard stream sediment samples contained significant amounts of gold (Table 1). Sample FL-S-Ol contained 66 ppb Au. The heavy mineral concentrate from a sample from this drainage contained very low levels of gold. Conversely, the calculated copper content of the heavy nonmagnetic fraction of the

concentrate contained highly anomalous amounts of copper whereas the copper content of the standard stream sediment was low, even though chalcopyrite-bearing float occurs in the drainage.

Sample FL-S-07 contained 21 ppb Au and 191 ppm Cu, which was the highest copper value of all standard stream sediment samples collected on the property. As previously mentioned, this drainage contains boulders of massive chalcopyrite-pyrite-magnetite. In this instance, the gold and copper contents of both the heavy mineral concentrate and the standard stream sediment sample correspond well.

7.3 MINERALIZATION AND ROCK GEOCHEMISTRY SURVEY

Three basic types of mineralization occur on the property:

1) Skarn-type mineralization has developed in Quatsino Formation limestone along the margins of crosscutting dacite dykes north of Frost Lake. The skarns are up to 5 m wide (generally 1-2 m) and composed of fine to medium-grained brown crystalline garnet (locally garnetite), fine to coarse-grained dark green radiating actinolite crystals and varying amounts of pyrite (locally massive) and chalcopyrite. This material is similar to ore described from the Blue Grouse mine.

Samples of this type of mineralization (see Appendix III for rock sample descriptions and Figure 3 for sample locations) commonly contain up to 2% copper, very small quantities of gold, and sporadically weakly anomalous amounts of silver, lead and zinc (Figure 3). One grab sample of massive pyrite with 8-10% chalcopyrite (sample 97876) northeast of Frost Lake contained 221 ppb Au. 2) Boulders of massive magnetite, pyrite and chalcopyrite with minor amounts of garnet, actinolite, epidote and quartz occur on and below Trunk Road 8 near the northeast corner of the Helga 1 Claim (Figure 3). A gently northwest (?) - dipping 0.5-1 m wide tabular body of magnetite in Karmutsen Formation basalt(?) occurs in a road cut adjacent to the mineralized float and it is probable that the chalcopyrite-rich material is closely associated with this magnetite occurrence.

Samples of the mineralized float (samples 24251-24255) contained up to: 13.2% Cu, 217 ppb Au, 23.5 ppm Ag and sporadically anomalous amounts of Co, Rb, W and Zn.

3) The quartz diorite stock north-northeast of Frost Lake contains zones with up to 5% fine to mediumgrained disseminated pyrite. Samples of this material (samples 97877, 97879) contained nonanomalous amounts of gold.

In addition to the three types of mineralized rock mentioned above, a grab sample of a felsic dyke at the end of SP2 road (sample 'END SP2') contained 403 ppb Au. No visible mineralization was noted.

8.0 CONCLUSIONS

- 1) Two types of skarn mineralization occur on the property:
 - a) garnet, actinolite, <u>+</u> chalcopyrite, <u>+</u> pyrite skarns in Quatsino Formation limestone adjacent to dacite dykes.
 - b) massive magnetite, chalcopyrite and pyrite with lesser amounts of garnet, epidote, actinolite and quartz in Karmutsen Formation basalt or possibly calcareous basaltic tuff.

Type b appears to have the greatest potential to form an economic copper deposit in this area.

- 2) The massive magnetite-chalcopyrite-pyrite boulders near the creek on Trunk Road 8 and the massive chalcopyrite boulder 550 m to the west northwest (described by Peatfield 1986) lie along a line which parallels the strike of local stratigraphy. It is possible, therefore, that both of these 'type b' occurrences are from the same unit in the volcanic sequence. The soil geochemistry survey conducted by Garratt (1987), however, does not outline any such unit.
- 3) The fact that sample FL-HM-07 contains anomalous amounts of gold, copper, magnetite and sulphides, and that sample FL-HM-08 does not, suggests that the massive magnetite-chalcopyrite-pyrite float on Trunk Road 8 is from a local source. An occurrence of massive magnetite in the adjacent road cut and a small copperin-soil anomaly above the road cut tend to support this conclusion.
- 4) Heavy mineral concentrate analyses have successfully pointed out drainages with known mineralization. A few

drainages with no known mineralization have also been found to be carrying significant amounts of gold (i.e. FL-HM-09).

5) Standard stream sediment samples did not consistently pinpoint drainages with known mineralization. The correlation between analyses of standard stream sediment samples and those of the heavy mineral concentrates is inconsistent. Standard stream sediment sampling is not considered to be a reliable exploration tool.

IN SUMMARY

The Frost Lake Property has some potential to contain an economic copper deposit. The stream sediment samples indicate that the Trunk Road 8 showings area, the drainage south and east of Frost Lake and the FL-HM-01 drainage have the best potential for copper bearing mineralization. Judging from the nature of the mineralization observed, the first two areas should be given priority in future exploration programs.

Potential for an economic gold deposit on the property appears to be low, as indicated by the low gold content of the observed highest-grade mineralization. Stream sediment sample FL-HM-09, however, contained anomalous amounts of gold with little associated copper and as yet an unobserved type of mineralization may occur in this area (possibly associated with felsic dykes as in sample 'END SP2').

9.0 RECOMMENDATIONS

9.1 RECOMMENDED PHASE II WORK PROGRAM

- Detailed geological mapping of the road cut on Trunk Road 8 near the chalcopyrite-rich float should be conducted to determine the nature and extent of the magnetite (and possibly chalcopyrite) showing.
- Mapping and prospecting is recommended along the local stratigraphic strike direction from the Trunk Road 8 showings.
- 3) The 1987 soil survey grid should be expanded both to the NE and SW to cover showings areas and zones of anomalous copper-in-soil.
- 4) Magnetic and VLF-EM surveys are warranted in the Trunk Road 8 showings area (1987 Beau Pre grid). A limited I.P. survey would also be useful for outlining sulphide bodies.
- 5) The drainage from which stream sediment sample FL-HM-09 was collected should be prospected for gold mineralization.
- 6) The felsic dyke sampled with 'END SP2' should be investigated.
- 7) Mapping and prospecting should be conducted up the creek draining Frost Lake and along 'FL-HM-01 Creek'.
- 8) The higher metal-in-soil anomalies on the two grids should be investigated.

9) Stream sediment samples for heavy mineral concentrates should be collected from drainages east and south of Lens creek down stream from sample site FL-HM-12 in an attempt to locate the source of the gold found in sample FL-HM-14.

9.2 PROPOSED PHASE II BUDGET

FIELDWORK

Personnel	No.	Days	Rate	Cost	
Project Manager	1	15	250	3,750	
Geophysical Contractor (VLF & EM)	1	10	250	2,500	
Assistant	1	10	150	1,500	
Assistant	1	10	125	1,250	
Total Person	nnel	Cost		9,000	9,0

Food and Accommodation

45 Mandays @ 60

2,700

0

Equipment Rental:	No.	Days	Rate	Cost	
Truck	1	15	20	300	
Truck	1	10	90	900	
Radios	2		50/mo	100	
Magnetometer	1	10	35	350	
VLF-EM Receiver	1	10	35	350	
Total Equip	pment	Renta	al	2000	2,00

Disbursements:

٠

-+

.

Analyses	No.	Rate	Cost			
Rock	50	22	1100.00			
Au Assays	10	9	90.00			
Cu Assays	10	7	70.00			
Silt (H.M. Con.)	10	150	1500.00			
Soil	200	18	3600.00			
Analyses Co	osts	·	6360.00	6,360		
I.P. Survey 4 Km	@ 2000	า		8,000		
Map Blowups	0 200			300		
Copies of Maps				500		
Courier Services	_			100		
Exploration Supp	lies			200		
Miscellaneous				200		
Disbursements :	Subtota	al		15,210		
Administration	(15%)			2,282		
Disbursements Total				17,492	17,491	
Fieldwork Su	btotal				31,192	
Contingency	(15%)				4,679	
Fieldwork To	tal	Fieldwork Total				\$35,871

REPORT

Estimated Report Costs	\$ 5,000
Estimated Total Project Cost	\$40,871

9.3 PROPOSED PHASE II SCHEDULE

				WEEK				
ACTIVITY	1	2	3	4	5	. 6	7	
Mapping and Prospecting								
Stream Sediment Sampling	<u></u>	_						
Soil Sampling	-		_					
Magnetic Survey				_	_			
VLF-EM Survey								
I.P. Survey								

9.4 SUMMARY OF RECOMMENDATIONS

On the basis of the results of the Phase I exploration program, the following Phase II program is recommended:

- Mapping and sampling in the showings and geochemical anomaly areas.
- Expanded soil sampling on the 1987 grid.
- Magnetic, VLF-EM and I.P. surveys.
- Expanded stream sediment sample (for heavy mineral concentrate) coverage.

The outlined program is estimated to cost roughly \$41,000.

BEAU PRE EXPLORATIONS LTD.

Gordon J. Allen

Gordon J. Allen, P.Geol.

Victoria, B.C. December 19, 1988

CERTIFICATE

I, Gordon J. Allen, do hereby certify;

- 1) I am a graduate in geology of the University of British Columbia (B.Sc. 1975).
- I have practised as a geologist in mineral exploration for thirteen years.
- 3) I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- Opinions, conclusions and recommendations contained herein are based on fieldwork conducted by myself between July 30 and November 3, 1988.
- 5) I am a shareholder of Beau Pre Explorations Limited.

Gordon J. Allen

Victoria, B.C. December 19, 1988 Gordon J. Allen, P.Geol.

REFERENCES

- Garratt, G.L. 1987. Geological and Geochemical Report on the Frost Lake Property; for Beau Pre Explorations Limited, by Mincord Exploration Consultants Ltd.
- Grove, E.W. 1985. Geology and Work Proposal on the Beau Pre Explorations Ltd. Frost Lake Property.
- Isachsen, C. 1987. Geology, Geochemistry and Cooling History of the Westcoast Crystalline Complex and related rocks, Meares Island and vicinity, Vancouver Island, British Columbia; Canadian Journal of Earth Sciences, Volume 24, pp 2047-2064.
- Massey, N. 1987. Geology of the Cowichan Lake Area, NTS 92C/16; Province of British Columbia, Ministry of Energy, Mines and Petroleum Resources, Open File 1987/2.
- Muller, J.E. 1977. Geology of Vancouver Island (West Half); GSC Open File 463.
- Muller, J.E. 1982. Geology of Nitinat Lake Map Area, British Columbia; GSC Open File 821.
- Peatfield, G.R. 1986. Geology and Geochemistry on the Frost Lake Group; for Beau Pre Explorations Ltd., by Minequest Exploration Associates Ltd.
- Saleken, L.W. 1977. Report on Geology, Geochemistry and Magnetics; Conquest-Victor Claims; Western Mines Ltd.

APPENDIX I LIST OF PERSONNEL AND STATEMENT OF EXPENDITURES

.

LIST OF PERSONNEL AND STATEMENT OF EXPENDITURES

.

PERSONNEL

4

•

Gordon Allen Project Manager 39 Days @ 210 (+300 for O.T.)	8,280.00	
Bryan Beaupre Assistant 7 Day @ 85	595.00	
David Wardwell Assistant		
2 Days @ 90	180.00	
Zak Cohen Assistant		
1 Day @ 50	50.00	
Total Personnel Costs	10,005.00	10,005.00
Equipment Rental		
2 Radios 1 1/4 Months @ 100	125.00	
4 x 4 Truck 2 1/4 Months @ 4 + 3 days @ 20		
	<u>987.00</u> 1,112.00	
	1,112.00	1,112.00
Food and Accommodation		
Apartment - 2 Months	580.00	
Motel	30.24	
Meals	150.35	
	760.59	760.59
		,00109

Disbursements

4

٠

Concentrate Prep. 19 @ 100.68 1,912.95	
Neutron Activation 38 @ 9.92 377.00	
Ag-Cu-Pb-Zn 38 @ 6.02 228.75	
Rock (Au+31 EL. ICP) 25 @ 22.60 565.00	
Silt	
(Au+31 EL. ICP) 19 @ 19.95 <u>377.15</u>	
3,460.85 3,460.85	
Topographic Map Preparation 3,000.00	
Travel 214.10	
Gas 352.35	
Auto Maintenance 167.32	
Exploration Supplies 714.14	
Consulting 150.00	
Fax 60.00	
Courier 126.10	
Typing (Report + Rock Sample Descriptions) 260.00	
Drafting 268.00	
Airphotos and Maps (Including	
Reproductions) 285.25	
Report Reproduction (Est.) 100.00	
Miscellaneous (Photocopying, Hydro,	
Stationery, etc.) 60.93	
Disbursements Subtotal 9,219.04	
Administration (15%) 1,382.86	
Total Disbursements 10,601.90 10,601	.90
Total Project Cost \$22,479	

•

APPENDIX II CERTIFICATES OF ANALYSIS AND ASSAY

.

•

]		-1	a	- "1	- 1	1 1	í . T	1	<u>`</u> }	1 - 1	-	1	1	
IAR:	Ŧ	SONDAR (CLEGG -T	C.F. Min.	ANAL	NTICAL R	EQUESTS C	RECEIPT	F	POST LA	·KE ,* 35	3	D Cu Aa	
										PZNA	Ass	AVS		Ph. Z.
Same	IC SERIES	SOURCE	# SPLES	SHIPMENT	PATE OUT	REQUEST	DATE	CERT # INY #		CERTA INVA		CERT# INV #		CERTA, INVE
	-24256				1 1	AU, 31 1CP SOME CU FSARY		6305.0			1	6305 4		\square
	ECIMENS		в	14	it	AU ICP	<u> </u>		بر 					\leftarrow
FL-S.	01 Tocs	FR-5 #1	5	393-2	r	AU, ICP		6406.0	Auc.30					<u> </u>
2425	7	. +1				AUICE	11	"			SEPT.6	6406.6		
FL-AM	-01705	1" F25#/+	5	 	AUC. 9	1	\rightarrow		SEPT 16		<u> </u>			53920
FL-HM	-06 To 11	HELGA I	6		Aug 22				SEPT 27		<u> </u>		Nov. 7	
FL.S.	06 TO 11		_6.	<u> 393-3</u>		AJ, ICP	i	6766.0	SEPT. 15			/		\leftarrow
4 <u>2425</u>	<u>B - 24260</u>	HELCA!			• • •	AU,ICP	"			H		<u> </u>		5192 7
T FL-HA	<u>A - 12 to 19</u>		8		SEPT 1				Oct. 20				Nov.7	5392 D
FL-S	- 12 top	17 	8	393-4		,,		7287.0				<u> </u>	\rightarrow	\leftarrow
2426		Z	2	и 	, i 	AU, ICP		11			Cu - AbSAY			
9787	6 <u>-97880</u>	×	5	· · · · · · · · · · · · · · · · · · ·	Nov. 7	AUICP	Nov. 21	9736.0	Nov. 24	9736.0	Dec. 1	9736.6		
			··	· · · · · ·					ļ. <u>-</u>	· · · · ·			┼───	
			<u>}</u>			<u> </u>	· · · · · · · · · · · · · · · · · · ·		· _ · · _	<u> </u>	·		<u> </u>	
				┼────	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 _	<u> </u>			+
			ļ	· · · · ·			<u></u>	<u> </u>	<u> </u>		<u> </u>			
<u></u>					<u>}</u>	<u> </u>				<u> </u>		<u> </u>		
' <u></u>				·								+		
<u> </u>		·												
													- <u> </u>	
												+		
										+				
	,	· 			+	<u> </u>								
		<u> </u>										· · · ·		

.

コクヨ ショー26 (27×14)

y Lad.

Geochemical Lab Report

. _ _

REPORT: V88-16305.B (COMPLETE)

REFERENCE INFO: SHIPMENT #393-1 and the second second

SUBNITTED BY: GORDON ALLEN

DATE PRINTED: 25-AUG-88 -----

2

i

CLIENT: BEAU PRE EXPLORATIONS LTD.

PROJECT: 393

	ORDER		ELENENT	NUMBER OF	LOWER DETECTION LIMIT	EXTRACTION	METHOD
	1	Âυ	30g Gold 30 grams	14	5 PP 9	F IRE-ASSAY	Fire Assay AA
:	2	Λg	Silver	14	0.2 PPM	HND3-HCL HOT EXTR	PLASHA EMISSION SPEC
	3	As	Arsenic	14	S PPM	HNO3-HOL HOT EXTR	PLASMA FAISSION SPEC
	4	8	Boron	14	1 PPM	HN03-HCL HOT EXTR	PLASHA EMISSION SPEC
	5	8a	8ariu:	14	1 PPM	HND3-HCL HOT EXTR	PLASHA FILISSION SPEC
	6	8e	Beryllium	14	0.5 PPM	HN03-HCL HOT EXTR	PLASMA EMISSION SPECT
	1	31	8is#uth	14	2 PP#	HND3-HCI HOT EXTR	PLASMA FMISSION SPEC
	8	Çq	Cadeiue	14	1 PPM	HNO3-HCL HOT EXTR	PLASMA EMISSITON SPEC
	9	Ce	Ceriu	14	5 PPH	HN03-HCL HOT EXTR	PLASHA FRISSION SPEC
	10	Co	Cobalt	14	1 PP#	HN03-HCL HOT EXTR	PLASHA EMISSION SPEC
	11	Cr	Chroniun	14	1 PPM	HN03-HCL HOT EXTR	PLASHA ENISSION SPEC
	12	Cu	Соррет	14	1 PPH	HN03-HCL HOT EXTR	PLASHA EMISSION SPEC
	13	Ga	Galliu	14	2 PPH	HNO3-HCL HOT EXTR	PLASHA ENISSION SPEC
	14	La	Lanthanu	14	1 PPN	HN03-HCL HOT EXTR	PLASMA EMISSION SPEC
	15	Li	Lithium	14	1 PPM	HN03-HCL HOT FXTR	PLASHA EMISSION SPEC
	16	No	llo i ybdenua	14	1 998	HNO3-HCL HOT EXTR	PLASMA EMISSION SPEC
	17	Nħ	Niobium	14	1 PPH	HN03-HCL HOT EXTR	PLASHA ENISSION SPEC
	18	Ni	Nickel	14	1 PPM	HN03-HCL HOT EXTR	PLASMA EMISSION SPEC
	19	P5	Lead	14	2 PPN	HNO3-HCL HOT EXTR	PLASMA EMISSION SPEC
	20	Кb	Rubidiva	14	28 PPM	HND3-HCL HDT EXTR	PLASMA EMISSION SPEC
	21	Sb	Antimony	14	S PPM	HN03-HCL HOT EXTR	PLASMA EMISSION SPEC
	22	Sc	Scandium	14	1.0 PPM	HNC3-HCL HOT EXTR	PLASMA EMISSION SPEC
	23	Sn	Tin	14	20 PP#	HN03-HCL HOT EXTR	PLASHA EMISSION SPEC
	74	Sr	Strontium	14	1 991	HNO3-HCL HOT FXTR	PLASHA EMISSION SPEC
	25	la	Tantalum	14	10 PPH	HNOB-HOL HOL EXTR	PLASMA ENISSION SPEC
	76	Ĭe	Tellurium	14	10 PPM	HNO3-HCL HOT EXTR	PLASHA EMISSION SPEC
	27	11	Thallium	14	10 PPN	HN03-HCI HOT EXTR	PLASHA ERISSION SPEC
	78	V	Vanadium	14	1. PPN	HN03-HCL HOT EXTR	PLASHA ENISSION SPEC
	29	¥	Tungsten	14	10 PPM	HN03-HCL HOT FXTR	PLASHA ENISSION SPEC
	30	ÿ	Yttrium	14	1 PPM	HNO3-HCL HOT EXTR	PLASMA EMISSION SPEC
	31	Zn	Zinc	14	1 PPM	HN03-HC1 HOT EXTR	PLASMA EMISSION SPEC
	32	Zr	Zirconium	14	1 PPM	HNO3-HOL HOT EXTR	PLASHA ENISSION SPEC

۰.

R ROCK OR BED ROCK	D. BER SIZE 14 Z ITS ARE FLEVATED	FRACTIONS -158	NURHER 14	SUBNITTED BY: GORDON ALLEN DATE PRINTED: 25-AUG-88	:R
R ROCK ON BED ROCK REMARKS: SOME DETECTION LIM ARE SEMI-QUANTITAT	14 2 ITS ARE FLEVATED	· • • • • • • • • • • • • • • •		ASSAY PREP 4 CRUSH, PUL VERTZE -150 11	
R ROCK OR BED ROCK REMARKS: SOME DETECTION LIM ARE SEMI-QUANTITAT	14 2 ITS ARE FLEVATED	-150		CRUSH, PUL VERTZE -150 11	
ARE SEMI-GUANTITAT				FAX CHARGE	
REPORT COPTES TO: REAL PRE					
	EXPLORATIONS LTD		TNVC	DICE TO: BEAU PRE EXPLORATIONS	LID
	· · · · · · · · · · · · · · · · · · ·				
					, , , , , , , , , , , , , , , , , , ,
					<u>-</u>

.sg 4 Cumpon Lid. Serton Ave. Jancouver, 8.C. J V7P 2R5 J: (604) 985-0681 J: 04-352667

f

Geochemical Lab Report

- - --

. . .

	REPORT: V88-063	05.N	······································					PR	ØJECT: 39	3		PAGE LA	
	sample Number	ELEMENT UNITS	, Au 30g PPR	Ag PPM	As PPM	B PPit	Ba PPri	Be PPM	8i PPN	Cd PPN	Ce PPN	Co PPri	Ci PP
	R2 24251		36	<u>3.4</u>	<50	<2	41	<4,1I	<u>.</u>	1	<5	60	3
	R2 24252		9	<0.5	<50	<2	411	<4, በ	<5	2	6	15	1
	R2 24253		217	19.3	<\$fi	<2	37	(4,11	<5	5	<5	872	6
	R2 24254		140	23.5	<\$8	<2	11	<4 , ft	<5	2	<5	415	
	R2 24255		118	21.5	<50	<2	5	<4.11	<5	3	<5	301	2
.—	R2 24256		<5	13.8	<50	<2	13	<4.8	23	8	5	59	2
	R2 8R 150W 14.50	1	<5	(0.5	<56	<2	7	<4.B	<5	2	71	9	9
	R2 BR 15000 14.	511	6	1.5	<58	<2	<u>926</u>	<4.0	<5	<1	12	15	3
	R2 END SP-2		<u>403</u>	2.1	<50	<2	912	<4.8	<5	<1	12	16	4
	R2 04 8+25N "A"	· · · · · · · · · · · · · · · · · · ·	<u>277</u>	1.6	<50	<2	96	<4.[i	<5	<1	6	30	
	R2 OH 8+25N "8"		14	1.4	<50	<2	63	<4.0	<5	<1	7	16	8
	R2 SP-2		9	1.6	<50	<2	19	<4.1	<5	<1	8	39	5
	R2 SP-140 "A"		5	1.4	<51	<2	49	<4.N	<5	<1	<5	41	20
	R2 SP-140 "8"		6	0.8	<50	<2	32	<4.0	<5	<1	6	11	6

egg & Campany Ltd. Iberton Ave. Vancouver, B.C. 14 V7P 2R5 e: (604) 985-0681 v: 04-352667

(.⁽

٠

An Do AT

.

	REPORT: V88-063	15.0						PR	QUECT: 39	3	•	PAGE 1B	
	Sampl F Number	ELEMENT UNITS	Cu PPN	Ga PPM	la PPri	Li PPM	50 1144	Nb PP#	Ni PPN	РЪ РРМ	R b PPM	s6 PPM	Sc FPR
	RZ 24251		<u>15352</u>	<2	<1	<1	<5	1	39	15	<\$0	<5	2.3
	R2 24252		<u>1998</u>	<2	<1	< <u>t</u>	<5	<1	4	14	<50	<5	2.0
	82 24253		> <u>20000</u>	<2	<1	<1	<5	6	12	<10	<u>123</u> 72	<5	2.0
	R2 24254		>20000	4	<1	<1	<5	<u>9</u> 8	129	10		<5	3.0
	R2 24255	<u>_,</u>	>20000	4	<1	<1	<\$	8	199	<10	<5(1	< 5	9. U
• • •	R2 24256		>20000	5	<1	.1	<5	3	17	<10	<50	<5	2.0
	R2 88 1584 14.5		1914	38	<1	2	<5	(1	4	<10	<50	<5	3.8
	R2 BR 150ML 14.5	5M	1206	9	3	2	<5	2	4	<10	<50	<5	3.0
	R2 END SP-2		9 <u>55</u>	9	3	3	<5	2	8	10	<51	<5	3.0
	R2 04 8+25N "A"		1016	11	<1	4	<5	3	100	<10	<50	<5	4.0
	R2 DH 8+25N "B"		861	9	1	3	<5	2	47	<10	<50	<5	2.0
	82 SP-2		1552	8	<1	3	<5	3	61	<10	58	s	4.0
	R2 SP-140 "A"		652	7	<1	9	<5	3	292	<10	60	<5	2.0
	R2 SP-140 "B"		<u>B12</u>	8	<1	2	<5	1	23	<10	<50	<5	1.ກ
											<u> </u>		·
			· · ·										
								····					
	·									<u> </u>			
						•							
													•··· _·· ··· •
•		· · · · · · · · · · · · · · · · · · ·						··	· · · · · · · · · · · · · · · · · · ·				
						•							
											·····		

s dras (1967).

Bondar-Clege

Age & Company Ltd. iberton Ave. Vancouver, B.C. 'as V7P 2R5 'c: (604) 95-0641 v: 04-352667

Geochemical Lab Report

~

.

.

	REPORT: V88-06	305.0						PR	0JFCT: 39	3		PAGE 10
	Sample Number	ELEMENT UNITS	Sn PPN	Sr PPM	Ta PPN	Te PPN	T I FPN	V PPM	Ц РРЛ	Y PPM	Zn PPn	Zr PPN
_	R2 24251		<30	211	<10	<2D	<29	9	<10	2	65	<1
	R2 24252		<30	<1	<10	<28	<20	12	<10	5	49	<1
	R2 24253		<30	4	<10	<20	<20	<1	<u>21</u>	2	<152	<1
	R2 24254		<30	4	<10	<20	<20	<1	21 56	1	<376	<1
	R2 24255		<30	4	<10	<28	<20	4	48	1	<352	<1
_	R2 24256		<30	15	<1引	<20	<20	3	<10		1123	<1
	R2 8R 150W 14.	57	<30	<1	<10	<28	<20	<1	15	3	53	<1
	R2 88 15044 14	.Sh	<30	52	<10	<28	<20	43	<10	9	72	3
	R2 END SP-2		<30	57	<10	<21	<28	52	<10	10	64	.5
	R2 04 8+25N "A	•	<30	29	<10	<20	<20	98	<10	7	84	9
	R2 04 8+25N "B	**	<30	19	<10	<20	<20	45	<18	6	41	17
	R2 SP-2		<30	14	<10	<20	<20	111	<10	16	76	18
	R2 SP-140 "A"		36	79	<10	<20	<20	39	<10	8	58	6
	82 SP-140 "B"		<38	27	<10	<20	<20	10	<18	5	107	3

ŧ

E

-45-0681 -52667

¢

, **н**.

.

Certificate of Analysis

	REPORT: V88-06305.4 (COMPLET	(E)			[REFERENCE INFO: SH	IPMENT \$393-1	
<u></u>	CLIENT: BEAU PRE EXPLORATIONS PROJECT: 393	:170.				SUBMITTED BY: GORD DATE PRINTED: 10-A		
	ORDER ELEMENT		NUMBER OF ANALYSES	LOWER Detection limit	EXTRACTION	METHOD	······································	
	1 Cu Copper		4	0.01 PCT		Atomic	Absorption	
	SAMPLE TYPES	NUMBER	SIZE FI	RACTIONS	NUNBER	SAMPLE PREPARAT	IONS NUMBER	
	R ROCK OR BED ROCK	4	2 -1	50	4	ASSAY PREP	 4	
	REPORT COPIES IO: BEAU P	RE EXPLOR	TIONS I ID		INVOTO	F TO: BEAU PRE EX	PLORATIONS LID	
-								
n-								
				······································				
				······································				
-								
	·							
								• •
-								

.ن. .ن. .منگرمهه .s2467		NDAB-CLEGG	Certificate of Analysis
REPORT: V88	-06305.4	PROJECT: 393	PAGE 1
sanpi F Nunber	FLEMENT Cu UNITS PCT		
R2 24253 R2 24254 R2 24255 R2 24255 R2 24256	8.95 13.20 12.00 2.33		
			<u></u>

.

670 P03

*EP :T: V88-06486.8

. .

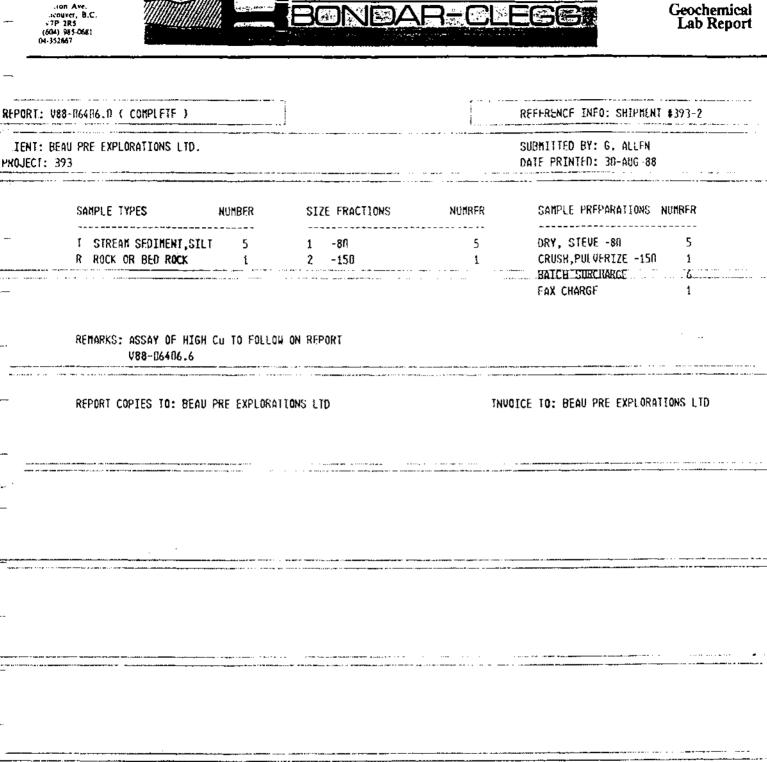
....

PROJECT: 393

PAGE 1

ianple Nn 'R	ELEMENT UNITS	Au 3Ng PPR	Au/Ht G	Au∕¥t G
(1 FL-S-01		66_	5.0	
(1 **S-02		<u>66</u> <5	3.0	7.0
T1 -S-03		<5	10.0	
11 FL-S-04		s		10.8
11-2-5-05		<5		10.0
R2 +1 24257		46	30.0	

Geochemical Lab Report


		XPI ORAT	CONS I TD.				TED RY: G. ALTEN RTNTED: 311-AUG-88
	ORDER	El	ENENT	NUMHER OF ANALYSES	LOWER Detection limit	EXTRACTION	METHOD
	1	Ag.	Silver	6	0.2 PP#	HN03-HCI HOT EXTR	PLASHA FRIISSION SPEC
·	2	ÂS _	Arsenic	6	5 PPN	HN03-HCL HDT EXTR	PLASMA EMISSION SPEC
		 B		6	1 PPN	HN03-RCI HOT EXTR	PLASHA FRISSION SPEC
	4	Ba	Barium	6	1 PPM	HN03-HCI HOT EXTR	PLASHA EMISSION SPEC
	5	Be	Beryttium	6	0.5 PPM	HN03-HCL HOT EXTR	PLASHA ENISSION SPEC
	6	Bi	Bismuth	6	2 PPM	HN03-HCL HOT EXTR	PLASMA EMISSION SPEC
	7	Cd	Cadmium	6	1 221	HN03-RC1 HOT FXTR	PLASMA EMISSION SPEC
	8	Ce	Cerium	6	5 PPM	HN03-HCL HOT EXTR	PLASHA EMISSION SPEC
	ý	Co	Cobalt	6	1 PPM	HN03-HCI HOT FXTR	PLASMA EMISSION SPEC
	10	Cr	Chronium	6	1 PPM	HN03-HCL HOT EXTR	PLASMA EMISSION SPEC
	11	Cu	Copper	6	1 PPN	HN03-HCL HOT EXTR	PLASMA EMISSION SPEC
	12	Ga	Gallium	6	2 PPM	HN03-HCL HOT EXTR	PLASHA EMISSION SPEC
	· · · · · · · · · · · · · · · · · · ·	·			······································		
	13	i.a	Lanthanum	6	1 PPM	HN03-HCI HOT EXTR	PLASMA EMISSION SPEC
	14	Lī	Lithium	6	1 PPM	HN03-HCL HOT EXTR	PLASHA ENISSION SPEC
	15	No	falybdenum	6	1 PPM	HNO3-HCI HOT FXTR	PLASHA EMISSION SPEC
	16	Nb	Nichium	6	1 PPN	HN03-HCL HOT EXTR	PLASHA EMISSION SPEC
	17	NI	Nickel	6	1 PPH	HN03-HCI HOT FXTR	PLASHA FAIGSTON SPEC
	18	РЬ	Lead	6	2 PPM	HN03-KC1 H01 EX1R	PLASMA ENISSION SPEC
	19	Rb	Rubidium	6	28 PPM	HNO3-HCL HOT FXTR	PLASMA EMISSION SPEC
	28	Sb	Antimony	6	5 PP#	HN03-HCL HD1 EXTR	PLASNA ENISSION SPEC
	21	Sc	Scandium	6	1.0 PPM	HNO3-HOL HOT EXTR	PLASHA ENISSION SPEC
	22	Sn	ĩin	6	20 PPH	HN03-HCL HOT EXTR	PLASHA ENISSION SPEC
	23	 Sr	Strontium	6	1 PPM	HN03-HCI HOT FXTR	PLASHA FHISSION SPLC
	24	Ta	Tantalus	6	10 PPH	HN03-HCL HOT EXTR	PLASMA ENISSION SPEC
	25	Ĩe	Tellurium	6	10 PPN	HN03-HCI HOT EXIR	PLASHA ENISSION SPEC
	26	T I	Thallium	6	10 PPn	HN03-HCI HOI EXTR	PLASHA ENISSION SPEC
	27	Ų	Vanadiu#	6	1 PPM	HN03-HCI HOT EXTR	PLASHA FHISSION SPEC
	28		Tungsten	6	10 PPN	HN03-HCL HOT EXTR	PLASMA EMISSION SPEC
	29	Ÿ	Yttrium	6	1 PPH	HN03-HCI HOT EXTR	PLASMA ENISSION SPEC
	30	Zn	Zinc	6	1 PPM	HN03-HCL HOT EXTR	PLASMA EMISSION SPEC
	31	Zr	Zirconiu	6	1 PPM	HNG3-HCI HOT FXTR	PLASKA ENISSION SPEC
	32		Gold 30 grams	6	5 PPB	FIRE-ASSAY	Fire Assay AA
• · ,	33	 ≬⊎/⊔+	Sample weight/grams		(l.1 G		······································

. .

.ion A acouver, B.C. v7P 2R5 (604) 985-0681

(

الريان المهدوات

Geochemical

2 Company Ltd. «cton Ave. 4.000ver, B.C. . V7P 2R5 ... (604) 985-0681 .: 04-352667

.

.....

.

. . ._ _

. . . .

ť

....

Ć

....

Geochemical Lab Report

_

REPORT: V88-1				PRO	UFCT: 393	-	PAGE 1A						
MPLE NUMBER	ELEMENT UNITS	Ag PPN	As Pph	B FPN	Ba PPM	Be PPM	81 PP#	Cd PPM	Ce PPM	Со РРН	Cr PP#	Сп РРл	Ga PP#
FL-S-01		<0.5	<50	10	68	<4.13	<5	<1	13	15	34	88	13
FL-S-02		<0.5	<50	14	72	<4.0	<5	(1	18	17	50	118	9
71 FL-S-03		<0.5	<50	13	70	<4.8	<5	<1	10	20	69	166	13
🗍 FL-S-84		1.4	<50	4	112	<4.0	<5	2	16	19	34	92	9
FL-\$-05		1.3	<5R	<2	116	<4.0	<5	<1	13	11	25	47	18
₽º F! 24257		3.8		<2	38	<4.0	18	4	6	17	21	>2181(10	

BONDAR-CLEGG

2 & Company Ltd. ancouver, B.C. V7P 2R5 (604) 985-0631 (043) 585-0631

5

•

Geochemical Lab Report

REPORT: V88-	A64A6.A							PRO	JEC1: 393		.	AGE 1B	
: 121 F Nutiber	FI FRENT UNITS	La PPM	1 i PPM	йо ИЧЧ	N Б РРИ	Nî PPM	<i>Р</i> Ъ РРМ	Rb PPN	Sb PPN	Sc PPN	Sn PPN	Sr PPM	 1;
FL-S-N1		6	4	<5	<1	26		336	<5	7.0	<30	51	<1
T1 FL-S-02		9	5	<5	4	38	14	3ณา	<5	6.0	<30	39	<1
11 FL-S-03		5	5	<5	<1	58	13	312	<5	8.0	<30	40	<1
` FL-S-П4		6	6	<5	3	3 8	11	<5N	<5	6.1	<30	44	<1
11 FL-S-115	. .	5	5	<5	3	18	<19	<50	<5	5.0	<30	32	<1
f FL24257		<1	<1	<5	<1	2	<10	<50	<5	2.0	<30	<1	<1
. <u></u>								· · · · · · · · · · · · · · · · · ·					
, h													
-													
	· · · · · · · · · · · · · · · · · · ·		·····									······································	
									······································				
A													
												····· •· · · · · · · · · · · · · · · ·	• •
-													
······							<u></u>						·····
													
												unde 1 1 1	

<u>* A Company Ltd.</u> writion Ave. ancouver, B.C. * V7P 2R5 c: (604) 985-0681 s: 04-352687

Geochemical Lab Report

.....

			Pf	ROJECT: 39	3		PAGE 1C					
Sånple Nunder	FLEMENT UNTTS	Te PPM	T1 PP8	V PPM	y PPn	у Р Р п	Zn PP#	۲ ۲ PP M	Au 30g PPR	Au∕st G	An/HL G	· · · · · · · · ·
1 FL-S-B1		<20	<20	110	<10	9	65	4	<u>66</u> <5	5.8		
11 FL-S-117		<20	<29	88	<10	14	122	í	<5	3.0	7.8	
1 FL-S-03		<20	<26	114	<10	9	76	4	<5	10.0		
1 FL-S-N4		<20	<20	87	<10	13	243	<1	<5		10.0	
11 FL-S-05	- ,	<20	<2N	98	<18	9	51	4	<5		10.0	
(2 FI 24257	<u></u>	<20	<20	1	12	4	<740	<i< b=""></i<>	<u>46</u>	30.0		
	······································		<u></u>								·····	
												
							····	 , ,,		.		
- -												
					·							
				·	···				······································	······		
					····				·			e - 1 an 14-
					· · · · · · · · · · · · · · · · · · ·	<u></u>						
			· · · · · · · · · · · · · · · · · · ·									
			· · · · · · · · · · · · · · · · · · ·		·					·		
			· · · · · · · · · · · · · · · · · · ·									

_ _ _ .

 $\sigma \sim$

Certificate of Analysis

REPORT: V88-06406.6 (COMPLETE)				REFERENCE INFO: SHIPHEN	······································
CLIENT: BEAU PRE EXPLORATIONS LTD. PROJECT: 393				SUBMITTED BY: G. ALLEN DATE PRINTED: 2-SEP-88	
ORDER ELEMENT		LOWER DETECTION LIMIT		KETHOO	
1 Cu Copper	ĩ	0.01 PCT		Atomic Absor	ption
SAMPLE TYPES NUMBER			NUMBER	SAMPLE PREPARATIONS	
R ROCK OR BED ROCK 1		5D		AS RECEIVED, NO SP	
REPORT COPIES TO: BEAU PRE EXPLOR	ATIONS LTD		Invoi(<u>:F TO: BPAU PRF Explora</u>	TIONS 110
		4			
		······································			
			······································	······································	
·					
·	<u></u>				
		· ·			
				· · · ·	
					······································

, Company Ltd.	Do Sant			
in Ave. ouver, B.C. 7P 2815 (604) 985-0681 x4-352667		BONDAR-	CLEEC	Certificate of Analysis

	REPORT: V88-1	16406.6				PROJECT:	393	PAGE 1
	Sampl E Number	ELEMENT UNITS	Cu PCI	هاي يو	······	· · · · · · · · · · · · · · · · · · ·	······································	
	R2 FL24257		2.03					••••••••••••••••••••••••••••••••••••••
			· · · · · · · · · · · · · · · · · · ·				<u> </u>	
-								
	·····		······································					
-								
{ -								
·								

							- 	
							·	
. •								
								······································
						······	······································	
ĺ								
								_
••• - ••					,		VE	L a an 10 - 10 - 10
							f. f. f. t	\$

-

.

;

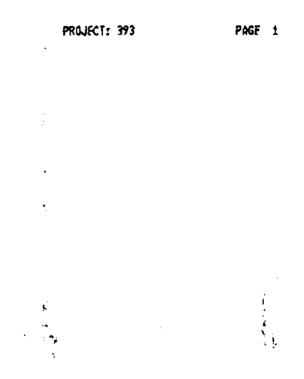
÷

81

1

.....

· .


....

. ..

EPORT: V88-06766.0

[

SAMPLE	ELEMENT	Au 30g	Au∕nt	Au/wt
-unber	UNITS	PPR	6	Ġ
1 FL-5 06		6	4.0	6.0
T1 FL-S 07		<u>21</u>	28.0	
1 FL-S 08		10	9.0	
.1 FL-\$ 09		S	17.0	•
Ti FL-\$ 10		9	14.0	
1 FL-S 11		9	4.0	6.0
R2 24258		6	30.0	
~2 24259		6	30.0	
2 24261		ଓ	30.0	

SEP 15 '88 15:21

BONDAR-CLEGG VANCOUVER: CANADA

978 PØ4

Bouder-Clagg & Company Ltd. ('20 Pemberton Avc. with Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

~--

, ---

.....

Geochemical Lab Report

4

1 PORT: V88-1	16766.11							PR	ANFCT: 393		ېې	AGF 1A	
SAMPLE INBER	ELEMENT	Au 3fig PPB	Au/at G	An/nt G	Ag PPri	As PPri	8 PPM	ชื่อ 201	8e PPN	81 PPM	Cd PP11	Ce PPM	Co PPM
TI FL-S D6	······································	6	4,8	6.0	N.6	< <u>5</u> Л	<2	73	<4.0	<5	<1		
-## FL-S 07		<u>21</u>	28.0		0.5	<50	<2	47	<4 ,0	<5	<1	7	13
. FL-\$ 08		<u>in</u>	9.D		0.6	<5fi	<2	5t	<4.0	<5	4	រេច	15
T1 FL-\$ 09		5	17.N		5.7	<50	<2	92	<4.8	<s< td=""><td><1</td><td>13</td><td>18</td></s<>	<1	13	18
11 FL-S 10		9	14.11	<u></u>	0.7	<517	<2	112	<4.N	<5	<1	13	12
11 FL-S 11		9	4.0	6.R	0.6	<\$D	(?	26	<4.0	¢5	<1	6	 18
R2 24258		6	30.0		1.1	<51	<2	242	<4.B	<\$	<1	<5	13
24259		6	30.0		0.8	<50	<2	30	<4.D	<5	<1	6	18
2 24268		<5	38.0		n.5	<5N	~?	10	<4.fl	<s< td=""><td>t</td><td><5</td><td>32</td></s<>	t	<5	32

......

SEP 15 '88 15:21

BUNDHR-CLEGG VHNCUDVER, CHNHDH

518 600

-Bondar-Clegg & Company Ltd. 130 Periberton Acc. 150 Periberton Acc.

Geochemical Lab Report

PORT: VAR-116	766.1							PRO	UFCT: 393			AGE 18	
SANPLE	ELEMENT UNITS	Cr PPN	Cu PPN	Ga PPN	La PPM	LI PPM	no PPN	Nb PPM	N1 PPN	РЪ РРН	Rb PP11	Sb PP11	Sc PPN
1 FL-S 06		45	162	8		6	<5	?	36	<18	< <u>sn</u>	<5	7.0
11 FL-S 07		25	191	7	2	5	<5	2	20	<វរា	<5ft	<5	5.8
1 FL~S 88		38	111	7	3	7	<5	?	29	<11	<\$0	<s< td=""><td>7.0</td></s<>	7.0
1 FL-S 09		58	96	8	4	9	<5	2	41	<1D	<5¶	<5	10.0
T1 FL-S 10		35	92	6	6	8	<5	3	32	11	<58	<5	11.0
1 FL-S 11		34	110	8			<5	2	38	<10	<รัก	<5	4.0
R2 24256		8	32/18	4	4	<1	(5	<1	26	<10	<50	<5	1.0
°2 24259		64	162	15	2	4	(5	1	34	<10	<5f1	<5	5.0
2 24268		6	65	<u>15</u> 6	ব	<1	<5	<1	9	cin	<\$0	<5	2.0

SEP 15 '88 15:22

BONDAR-CLEGG VANCOUVER, CANADA

878 206

 Bondar-Clegg & Company Ltd. 130 Persberton Ave. North Vancouver, B.C. V7P 2K5
 (604) 985-0681 Telex 04-352667

.

Geochemical Lab Report

REPORT: V88-II	6766.0							PRO	UFCT: 393		PA	GF 1C
Sample NUMBER	ELENENT	Sn PPH	Sar PPK	Та РРИ	Te PPH	11 PPN	V NPN	H PPN	ү РРЛ	Zn PPN	Zr PPN	* ·
T1 FL-S 06		<30	= <u>.</u>		<211	<21	96	<10		~	15	
T1 FL-S 07		<3n	23	<10	<20	<21	81	<19	5	72	10	
T1 FL-S 08		<31)	24	<10	<20	<28	79	<18	9	46	10	
T1 FL-S 09		<30	26	<10	<25	<211	96	<10	11	55	13	
T1 FL-S 10		<30	32	<10	<50	<20	81	<10	16	6	10	
71 FL-S 11		<30	21	<10	<20	<20	75	<10	5	40	₇	
R2 24258		<31	13	<10	<211	<20	46	<10	2	6	<1	
82 24259		<30	12	<10	<2N	<28	i19	<10	7	38	8	
R2 24260		<30	<1	<in< td=""><td><211</td><td><21</td><td>16</td><td><10</td><td>3</td><td>16</td><td>1</td><td></td></in<>	<211	<21	16	<10	3	16	1	

ł

SEM 14 188 15:19 BUNDAR-CLEGG VANCOUVER, CANADA

870 P03

EPORT: V88-87287.0

•

-

...

~

_

-

- - -

PROJECT: 393

PAGE 1

Aorle Unber	ELEMENT UNTIS	Au PP8
1 1-8-12 1 FL-8-13 1 71-8-14		<5 <5 5
1S-15 † FL-S-16		7 <5
l -\$-17 FFL-\$-18		8 7
. FL-S-19 ? .261		<5 <5
! =+262		<5

÷

Bondar-Clegg & Company Ltd. L30 Pemberton Ave. Jorth Vancouver, B.C. TP 2R5) 985-0681 Telex 04-352667

(

(

Geochemical Lab Report

REPORT: V88-07287_0 (CONPLETE)

REFERENCE ENFO: SHEPMENT #393-4

CLIENT: BEAU PRE EXPLORATIONS 11D. PROJECT: 393 SUBMITTIO BY: NR. G. ALLEN Date Printid: 22-Sep-88

	ORDER		ELEMENT	NUMBER OF	LOWER DETECTION LINET	EXTRACTION	METHOD
	1	Au	Gold - Fire Assay	١N	5 PPH	F)RE-ASSAY	Fire Assay AA
	2	Âg	Silver	10	#.2 PPM	SNO3-HOL HOT EXTR	PLASHA FHISSION SPEC
	3	As	Arsenic.	<u>.</u>	5 PPM	HN03-HC1 HOT FXTR	PLASHA FHIISSION SPEC
	4	₿	80 7 00	ŧn	1 PPH	HN03-HC), HOT EXTR	PLASMA EMISSION SPEC
	5	Ba	Barium	18	1 PPH	HNOB-HCI HOT FXIR	PLASHA FINTSSION SPEC
	6	θe	Berylliu∎	រព	B.5 PPN	HN03-HCL HOT EXTR	PLASHA EMISSION SPEC
	7	81	Rissuth	10	2 PPN	HNO3-HCL HOT FXTR	PLASMA FINISSION SPEC
	8	Cd	Cadeius	10	1 PPM	IND3-HCL HOT EXTR	PLASHA ENISSION SPEC
	9	Çe	Cerium	10	5 PPH	HN03-HCL HOT FXTR	PLASHA FHISSION SPEC
	10	Co	Cobalt	10	t PPM	HNO3-HCL HOT EXIR	PLASHA FHISSION SPEC
	11	Cr	Chrosius	10	1 PPM	HN03-HCE HOT FXIR	PLASMA ENJISSION SPEC
	12	Cu	Соррет	10	1 PPN	INO3-HCT, HOT EXTR	PLASNA FITTSSTON SPEC
	13	Ga	Gatlium	111	2 991	HNO3-HCI HOT FXIR	PLASHA FHITSSION SPEC
_	t4	La	Lanthanum	10	1. PPH	BN03-HCL HOT EXTR	PLASHA ENTISSION SPEC
	15	Li	Lithium	tΠ	1 PPA	HN03-HCL HOT EXTR	PLASHA FRITSSION SPEC
	16	Лo	Nolybdenus	tı)	1 PPM	UN03-HCL NOT EXTR	PLASHA ENTSSION SPEC
	17	₩Ь	Niobium	10	1 PPN	HN03-HCI HOT FXIR	PLASHA FHITSSION SPEC
<u> </u>	18	Ni	Nickel	tß	1. PPH	HNO3-HOL HOT EXTR	PLASHA ENISSION SPEC
	19	РЬ	l ead	10	2 PPM	HND3-HCL HOT FXTR	PLASHA ENTSSION SPEC
	20	Rb	Rubidium	19	20 PPM	HN03-HCI, HOT EXTR	PLASMA ENISSION SPEC
	21	55	Antimoty	18	5 PP8	HN03-HC1 HOT FXIR	PEASMA EMISSION SPEC
	22	Sc	Scandium	18	1.0 PPH	IN03-NCL HOT EXTR	PLASHA ENISSION SPEC
	23	Sn	Jin	10	20 PPM	HNO3-HCI HOT FXIR	PLASNA FITSSION SPEC
	24	Ş٣	Strontium	10	1 PPH	HNO3-HOL HOT EXER	PLASMA ENISSION SPEC
	25	Та	Tantalum	10	10 PPM	HN03-HCI HOT FXIR	PLASMA FHITSSION SPEC
	26	Īе	Tellurium	ោ	to PPN	HNOB-HOL HOT EXTR	PLASHA FHISSION SPEC
	27	Ŧŧ	lhattium	10	10 PPN	HN03-HCL HOT FXTR	PLASHA FHISSION SPEC
	28	V	Vanadium	10	i PP#	HNO3-HCL HOT EXIR	PLASMA EMISSION SPEC
	29	H	Tungstan	វព	10 PPM	HN03-HCL HOT FX18	PLASHA FHISSION SPEC
	30	Y	Yttrium	10	t PPH	HN03-HCL HOT EXTR	PLASHA ENISSION SPEC
	31	Zn	Zinc	10	1 PPM	HN03-HCE HOT FXTH	PLASHA FHISSION SPEC
	32	Zr	Zirconium	10	t PPH	INNOB-HCI, HOT EXTR	PLASHA ENISSION SPEC

Hundas-Clegg & Company Ltd. 19⁴ Pemberton Ave. No. h Vancouver, B.C. Via 2R5 785-0681 Telex 04-352667

.

Geochemical Lab Report

	-PORY: V88-117287.11 (COMP		 		
	IENT: BEAU PRE EXPLORATI AJECT: 393	CONS LID.	······································		SUBNITIED BY: NR. G. ALLEN DATE PRINTED: 22-SEP-88
	SAMPLE TYPES	NUTBER	SIZE FRACITONS	NUMBER	SAMPLE PREPARATIONS NUMBER
	T STREAM SEDIMENT, ST R ROCK OR BED ROCK	(LT 8 2	1 ~80 2 -150	8 2	DRY, SIEVF ~811 8 CRUSH, PUI VERIZE -150 2
					BATCH SURCHARGE 10 FAX CHARGE 1
	REPORT COPIES TO: BEA	IU PRE EXPLORA	FTONS 1.1D	TNVI	OICE TO: BEAU PRE EXPLORATIONS LID
	<u></u>				
	·····				
<u>.</u>		,			

Geochemical Lab Report

RI PORT: V88-0	17287.0						PR	OJFCT: 39	3		PAGE 1A	
SAMPLE NUMBER	ELEMENT	Au PPB	Ag PPN	A∺ PPM	B PPN	8 a PPN	Be PPM	Bi PPM	Cd PPM	Ce PPN	Со РРЛ	Cr PPN
T1 FL-S-12		<5	i).8	(58)	</td <td>47</td> <td><4.tì</td> <td><5</td> <td><1</td> <td></td> <td>16</td> <td>36</td>	47	<4.tì	<5	<1		16	36
T1 FL-S-13		- 65	8 .9	<50	<2	99	<4 . D	<5	2	£1	22	59
T1 FL-S-14		5	9.6	<50	<2	49	<4.11	<5	<1	6	11	24
11 FL-S-15		7	1.1	<50	<2	82	<4.11	<5	1	15	18	53
T1 FL-S-16	······	<5	1.2	CSR	<7	119	<4.0	্র	3	16	21}	54
T1 FL-S-17		8	1.7	<5ቢ	</td <td>47</td> <td><4.11</td> <td>5</td> <td>C)</td> <td>18</td> <td>21</td> <td></td>	47	<4.11	5	C)	18	21	
J1 FL-S-18		7	9.8	<50	(2	79	<4.11	6	<t< td=""><td>16</td><td>7.2</td><td>43</td></t<>	16	7.2	43
T1 FL-S-19		<5	0,8	<5N	3	73	<4 . 1	<5	<1	6	72	40
R2 24261		S	2.0	C5 H	<2	77	<4.0	<5	(1	5	12	2:
R2 24262		6	<0.5	<50	<7	42	<4. B	<5	5	<5	12	3:

Bondar-Clegg & Company Etd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 43 985-0681 Telex 04-352667

t

(

Geochemical Lab Report

inple Inber	FLEMENT	Cu					L	OJECT: 39			PAGE 18	
		PPM	PPM	la PPM	1 i PPĦ	tto PPM	Nb PPN	N i PPH	РЪ РРМ	Rb PPN	Sb PPM	Sc PPM
FL-S-12		45	<u> </u>	4	14	<5	3	30	17	<50	<5	7.0
FL-S-13		114	12	5	9	<5	4	51	14	<50	<5	9.0
FL-S-14		44	9	3	7		2	18	<18	<58	<5	4.0
FL-S-15		89	13	7	14		4		13	<50	<5	10.0
FL-S-16		132	13	8	<u></u>	<u>(5</u>	4	94	16	<\$N 	<5	10.0
FL-S-17		142	19	t1)	9	<5	4	91	10	<50	<5	17,0
FL-S-18		119	12	6	9	<5	4	39	11	<50	ত	10.0
FL-S-19		159	11	3	8		3	37	< सा	<\$0	<s< td=""><td>4.0</td></s<>	4.0
			7				2	13	<18			1.0
24262		415	3	<1	2	< <u>s</u>	<1	7		<sn< td=""><td><5</td><td><1.0</td></sn<>	<5	<1.0
	FL-S-14 FL-S-15 FL-S-16 FL-S-17 FL-S-18	FL-S-14 FL-S-15 FL-S-16 FL-S-17 FL-S-18 FL-S-19 24261	FL-S-14 44 FL-S-15 89 FL-S-16 132 FL-S-17 142 FL-S-18 119 FL-S-19 159 24261 <u>3791</u>	FL-S-14 44 9 FL-S-15 89 13 FL-S-16 132 13 FL-S-16 FL-S-17 142 15 FL-S-18 119 12 FL-S-19 159 11 24261 <u>3791</u> 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

.

Bondar-Clegg & Company Etd. 130 Pemberton Ave. North Vancouver, B.C. V?P 2RS 4) 985-0681 Telex 04-352667

Ĺ

7

(

Geochemical Lab Report

REPORT: V88-1	7287.0						PR	OJECT: 39	3	I	AGE 1C	
Sample Number	ELEBENT UNTTS	Sn PPfl	TZ MAG	Ja PPN	Te PPN	T E PPM		N PPM	Y PH1	Zn PPM	ZT PPN	
T1 FL-S-12		<3N	12	<10	<20	<20		<1J]	6	93	6	_
11 FL-S-13		<30	36	<10	<20	0</td <td>1118</td> <td><18</td> <td>13</td> <td>95</td> <td>11</td> <td></td>	1118	<1 8	13	95	11	
I1 FL-S-14		<311	22	<111	<20	<28	66	<1I)	6	49	5	
T1 FL-S-15		31	44	<1日	<20	<20	97	<10	12	149	7	
T1 FL-S-16	·	<311	51	<10	<20	<29	97	<1N -	15	217	9	
T1 FL-S-17		<31	47	<10	<20	<20	73	<10	23	54	18	
T1 F1-S-18		K3 0	31	I	<20	<20	106	<10	12	7.0	12	
11 FL-S-19		<31	38	<ίΠ	<20	<20	92	<10	6	33	6	
R2 24261		<31	5	<1月	(21)	<20	47	<10	4	t7	<1	
R2 24262		<3N	<1	<18	<20	<20	<1	<10	2	695	<1	

..

_ _

C.F.MINERAL RESEARCH LTD.

TEL(604)763-1815

(604)860-8525

263 LAKE AVENUE KELOWNA, BRITISH COLUMBIA CANADA V1Y 5W6

BEAU PRE EXPLORATIONS LTD. PROJECT: FL-HM GORDON J. ALLEN 29/08/88

C.F.M. 88-620

SAMPLE NO.	ORIGINAL WEIGHT (KG)	FRACTION	WEIGHT (GMS)	
FL-HM01 FL-HM01 FL-HM01 MAGNETITET FL-HM01 SULPHIDEST FL-HM01 FL-HM01	7.400	-60+150HM -60+150HP -60+150HN -150HM -150HP -150HN	$\begin{array}{r} 4.52 \\ 16.72 \\ 1.17 \\ 0.84 \\ 3.07 \\ 0.15 \end{array}$	HN = 20.3% HN = 5.0%
FL-HM01		-150MA		
FL-HM02 FL-HM02 FL-HM02 FL-HM02 FL-HM02 FL-HM03 FL-HM03 FL-HM03 FL-HM03 FL-HM03 FL-HM03 FL-HM03 FL-HM03 FL-HM03	c. 197 0. 097. 7.400	-60+150HM -60+150HP -60+150HN -150HM -150HP -150HN -60+150HM -60+150HP -60+150HN -150HM -150HP -150HN	7.07 13.46 12.32 1.81 4.21 0.74 $3^{\circ}.67$ 4.95 41.35 9.05 1.96 11.13 2.06 76.50	HM = 22.4% HN = 33.0% HN = 9.8% HN = 15.8%
FL-HM04 FL-HM04 FL-HM04 FL-HM04 FL-HM04 FL-HM04 FL-HM04	7.400 0.08% 0.03%	-60+150HM -60+150HP -60+150HN -150HM -150HP -150HN	4.91 28.78 1.59 1.13 5.92 0.57	HM = 14.1% HN = 5.0%
FL-HM05 FL-HM05 FL-HM05 FL-HM05 FL-HM05 FL-HM05	0.10 % 8.700 0.14 %	-60+150HM -60+150HP -60+150HN -150HM -150HP -150HN	6.81 14.56 10.86 1.52 2.91 1.43	HM= 21.97. HN = 32.37.

FRANK FRACTIONS S.A. > 3.27

C.F.MINERAL RESEARCH LTD. 263 LAKE AVENUE KELOWNA, BRITISH COLUMBIA CANADA V1Y 5W6

0

0

TEL(604)763-1815 (604)860-8525

BEAUX PRE EXPLORATION LTD. C.F.M. 88-626 PROJECT: GORDON J. ALLEN 08/09/88

SAMPLE NUMBER	ORIGINAL WEIGHT (KG)	FRACTION	WEIGHT (GMS)
	9.000	-60+150HM -60+150HP -60+150HN -150HM -150HP -150HN	$\begin{array}{c} 4.08 \\ 28.59 \\ 0.82 \\ HN = 32 \\ 1.22 \\ 4.90 \\ 0.45 \\ 40.06 \\ \end{array}$
	8.600 AGRINING - 0.36 %	-60+150HM -60+150HP -60+150HN -150HM -150HP -150HN	25.43 HM=27.2 22.89 51.38 HN=45.5 5.89 8.60 1.03
FL-HM-08 FL-HM-08 FL-HM-08 FL-HM-08 FL-HM-08 FL-HM-08 FL-HM-08	6.200	-60+150HM -60+150HP -60+150HN -150HM -150HP -150HN	3.33 26.41 HM=10.6 3.12 HN= 8.5 1.09 7.43 0.41 41.79
FL-HM-09 FL-HM-09 FL-HM-09 FL-HM-09 FL-HM-09 FL-HM-09 FL-HM-09	9.300	-60+150HM -60+150HP -60+150HN -150HM -150HP -150HN	9.49 21.14 HM=23.0 10.82 HN=21.5 3.21 9.47 1.02 55.15
FL-HM-10 FL-HM-10 FL-HM-10 FL-HM-10 FL-HM-10 FL-HM-10 FL-HM-10	7.800	-60+150HM -60+150HP -60+150HN -150HM -150HP -150HN	1.67 20.12 1.69 0.82 7.53 1.37 30.20

C.F.MINERAL RESEARCH LTD.

TEL(604)763-1815

(604)860-8525

C.F.M. 88-626

263 LAKE AVENUE KELOWNA, BRITISH COLUMBIA CANADA V1Y 5W6

BEAUX PRE EXPLORATION LTD. PROJECT: GORDON J. ALLEN 08/09/88

~

٠

1

SAMPLE NO.	ORIGINAL WEIGHT (KG)	FRACTION	WEIGHT (GMS)	
FL-HM-11	7.600			
FL-HM-11		-60+150HM	3.92	HM=11,7%
FL-HM-11		-60+150HP	7.91	
FL-HM-11		-60+150HN	22.46	HN=54.6%
FL-HM-11		-150HM	0.91	
FL-HM-11		-150HP	6.09	
FL-HM-11		-150HN	0.16	
FD-111-11			41.45	

ALL SAMPLES HAVE BEEN UV LIGHT EXAMINED - NO SCHEELITE GRAINS WERE FOUND.

C.F.MINERAL RESEARCH LTD. 263 LAKE AVENUE KELOWNA, BRITISH COLUMBIA CANADA V1Y 5W6 TEL(604)763-1815 (604)860-8525

BEAU PRE EXPLORATIONS C.F.M. 88-635 PROJECT: G. ALLEN 04/10/88 SAMPLE NUMBER ORIGINAL FRACTION WEIGH'

SAMPLE NUMBER	ORIGINAL WEIGHT (KG)	FRACTION	WEIGHT (GMS)	
FL-HM-12	8.400			
FL-HM-12		-60+150HM	2.15 HM=12.4	4 7
FL-HM-12		-60+150HP	14.00 HN = 13.	1.8
FL-HM-12		-60+150HN	2.59	
FL-HM-12		-150HM	0.57	
FL-HM-12		-150HP	2.40	
FL-HM-12		-150HN	0.28	
			21.99	
FL-HM-13	8.400			
FL-HM-13		-60+150HM	3.10 HM=12	4'
FL-HM-13		-60+150HP	18.66 HN = /4	5
FL-HM-13		-60+150HN	3.61	. ~
FL-HM-13		-150HM	0.54	
FL-HM-13		-150HP	2.70	
FL-HM-13		-150HN	0.64	
FB-III-10			29,25	
FL-HM-14	10.100			
FL-HM-14		-60+150HM	35.08 = M = 19.	.6'
FL-HM-14		-60+150HP	105.76 HN = 19	2
FL-HM-14		-60+150HN	34.26	· -
FL-HM-14		-150HM	0.81	
FL-HM-14		-150HP	6.47	
FL-HM-14		-150HN	0.82	
FD-11-14			183.20	
FL-HM-15	6.500		105.20	
FL-HM-15	0.000	-60+150HM	2.31 HM= 1+	,
FL-HM-15		-60+150HP	11.07	
FL-HM-15		-60+150HN	2.95 PN-18	.8
FL-HM-15		-150HM	0.86	
FL-HM-15		-150HP	3.53	
FL-HM-15		-150HN	1.16	
FL-HH-15		100111	21.88	
FL-HM-16	6.800			
FL-HM-16	0.000	-60+150HM	3.21	2
FL-HM-16		-60+150HP	22.52	
FL-HM-16		-60+150HN	1.39 HN= 10	.
FL-HM-16		-150HM	0.72	
FL-HM-16		-150HP	5.11	
FL-HM-16		-150HN	1.64	
FL-RH-10			35.09	
			JJ. V /	

BEAU PRE EXPLORATIONS

C.F.M. 88-635

G. ALLEN 04/10/88

SAMPLE NUMBER	ORIGINAL WEIGHT (KG)	FRACTION	WEIGHT (GMS)	
FL-HM-17	5.800			
FL-HM-17		-60+150HM	4.51	HM= 15.7
FL-HM-17		-60+150HP	21.20	
FL-HM-17		-60+150HN	1.69	HN - 7.1
FL-HM-17		-150HM	0.86	
FL-HM-17		-150HP	5.18	
FL-HM-17		-150HN	0.73	
FL-III-17			34.17	
FL-HM-18	8.900			
FL-HM-18		-60+150HM	4.85	HM = 13.9
FL-HM-18		-60+150HP	35.19	HN=12.7
FL-HM-18		-60+150HN	2.60	111. 12.7
FL-HM-18		-150HM	3.95	
FL-HM-18		-150HP	11.81	
FL-HM-18		-150HN	5.53	
rb-mi-io			63.93	
FL-HM-19	4.100			
FL-HM-19		-60+150HM	2.57	HM=6.6
FL-HM-19		-60+150HP	37.43	
FL-HM-19		-60+150HN	2.98	HN=7.4
FL-HM-19		-150HM	0.81	
FL-HM-19		-150HP	6.47	
FL-HM-19		-150HN	0.82	
FD-HH-15			51.03	
			51.08	

ALL SAMPLES HAVE BEEN UV LIGHT EXAMINED - NO SCHEELITE GRAINS WERE FOUND.

C.F. MINERAL RESEARCH LTD 263 LAKE AVENUE KELOWNA, BRITISH COLUMBIA CANADA V1Y 5W6 TEL(604)763-1815 (604)860-8525

BEAU PRE EXPLORATIONS LTD. PROJECT:FL-HM GORDON J. ALLEN 29/08/88

ł

C.F.M. 88-620

.

CODE	SAMPLE NO.	FRACTION	VIAL WEIGHT (gms)
209L	FL-HM01	-150HN	0.151
210L	FL-HM02	-150HN	0.735
211L	FL-HM03	-150HN	2.022
212L	FL-HM04	-150HN	0.539
213L	FL-HM05	-150HN	1.374

C.F. MINERAL RESEARCH LTD 263 LAKE AVENUE KELOWNA, BRITISH COLUMBIA CANADA V1Y 5W6

.

BEAU PRE EXPLORATIONS LTD. PROJECT:FL-HM GORDON J. ALLEN 29/08/88

٠

C.F.M. 88-620

CODE	SAMPLE NO.	FRACTION	VIAL WEIGHT (gms)
204L	FL-HM01	-60+150HN	1.159
205L	FL-HM02	-60+150HN	12.296
206L	FL-HM03	-60+150HN	9.032
207L	FL-HM04	-60+150HN	1.598
208L	FL-HM05	-60+150HN	10.853

C.F.MINERAL RESEARCH LTD.

TEL(604)763-1815

(604)860-8525

263 LAKE AVENUE KELOWNA, BRITISH COLUMBIA CANADA V1Y 5W6

BEAUX PRE EXPLORATION LTD. PROJECT: GORDON J. ALLEN 08/09/88

۰.

.

CODE	SAMPLE NO.	FRACTION	VIAL WEIGHT (gms)
	~		
292L	FL-HM-06	-60+150HN	0.803
293L	FL-HM-07	-60+150HN	51.261
294L	FL-HM-08	-60+150HN	3.111
295L	FL-HM-09	-60+150HN	10.799
296L	FL-HM-10	-60+150HN	1.702
297L	FL-HM-11	-60+150HN	22.424
298L	FL-HM-06	-150HN	0.492
299L	FL-HM-07	–150HN	1.117
300L	FL-HM-08	-150HN	0.465
301L	FL-HM-09	-150HN	1.047
302L	FL-HM-10	-150HN	1.377
303L	FL-HM-11	-150HN	0.171

C.F.M. 88-626

.

- --

C.F. MINERAL RESEARCH LTD 263 LAKE AVENUE KELOWNA, BRITISH COLUMBIA CANADA V1Y 5W6 TEL(604)763-1815 (604)860-8525

BEAU PRE EXPLORATIONS PROJECT: G. ALLEN 06/10/88

CODE SAMPLE NO. FRACTION VIAL WEIGHT (gms) _____ ____ ____________ -60+150HN 2.629 1R FL-HM-12 -60+150HN 3.603 2R FL-HM-13 34.295 3R FL-HM-14 -60+150HN 4R FL-HM-15 5R FL-HM-16 6R FL-HM-17 -60+150HN 2.958 -60+150HN 1.910 -60+150HN 1.702 -60+150HN -60+150HN 7R FL-HM-18 8R FL-HM-19 2.628 3.014

C.F.M. 88-635

.

C.F. MINERAL RESEARCH LTD 263 LAKE AVENUE KELOWNA, BRITISH COLUMBIA CANADA V1Y 5W6 TEL(604)763-1815 (604)860-8525

BEAU PRE EXPLORATIONS PROJECT: G. ALLEN 06/10/88

CODE SAMPLE NO. FRACTION VIAL WEIGHT (gms) ____ _ ____ -----_ _ _ _ _ _ _ -150HN 0.243 9R FL-HM-12 -150HN 0.620 10R FL-HM-13 11R FL-HM-14 12R FL-HM-15 0.433 -150HN -150HN 1.123 1.596 -150HN 13R FL-HM-16 - 150HN - 150HN - 150HN 0.687 14R FL-HM-17 15R FL-HM-18 16R FL-HM-19 5.442 0.792

C.F.M. 88-635

_----

BEAU PRE EXPLORATIONS LTD.

C.F.M. 88-620

GORDON J. ALLEN 26/08/88

ŧ

-

SAMPLE NUMBER ORIGINAL FRACTION WEIGHT WEIGHT (GMS) (KG)

ALL SAMPLES HAVE BEEN UV LIGHT EXAMINED - NO SCHEELITE GRAINS WERE FOUND.

1280 MAIN STREET WEST, HAMILTON, ONTARIO, L8S 4K1

PHONE (416) 522-5666 TELEX 06-986947

Certificate of Analysis

To: BEAU PRE EXPLORATIONS ATTN: GORDON J. ALLEN 1027 PANDORA AVENUE VICTORIA, BRITISH COLUMBIA V8V 3P6

Client # 714/01/01

Date Submitted 09-SEP-88

Report: 10254

f

File number: 12000

12 PREPARED SAMPLES

CUST. REF# C.F.M. 88-626

were analyzed as follows:

e ements	detection limit	units	method	elements 	detection limit	units	method
G	5.0000	PPM	INAA	SE	20.0000	PPM	INAA
AS	2.0000	PPM	INAA	j ta	1.0000	PPM	INAA
, AU	30.0000	PPB	INAA	TH	0.5000	PPM	INAA
Ba	200.0000	PPM	INAA	U	0.5000	PPM	INAA
Ca	1.0000	8	INAA	W	10.0000	PPM	INAA
CO	5.0000	PPM	INAA	ZN	200.0000	PPM	INAA
R	10.0000	PPM	INAA	LA	1.0000	PPM	INAA
E	0.0200	8	INAA	CE	3.0000	PPM	INAA
HF	1.0000	PPM	INAA	SM	0.1000	PPM	INAA
` O	20.0000	PPM	INAA	I EU	0.2000	PPM	INAA
А	0.0500	0	INAA	I YB	0.2000	PPM	INAA
NI	200.0000	PPM	INAA	LU	0.0500	PPM	INAA
SB	0.2000	PPM	INAA	IR	50.0000	PPB	INAA
С	0.1000	PPM	INAA	1			

DATE 27-SEP-88

NUCLEAR ACTIVATION SERVICES

Certified by 3/4/KiuWd

*** Unless instructed otherwise we will discard ALL samples *** Irradiated samples after 30 days, any other material after 120 days

	6	LHM-01	SAM	LE NU		FL HM-05	EL HAS
		COARSE	COMPLSE	FL HM-03 COARSE	COARSE	COARSE	FIN
LEM			*2 05 L FL-HM4:				
JN	CI TS 10	1-60+150H*	*72-67+157H**	×р 3-67+150H«	\$0 4-60 +1 50 H ^A	#0 5- 60 +1 50 H4	≎Н МО 1-15
5	2 PM	< 5	< 5	< 5	< 5	< 5	<
S	2 PM	50	31	9	24	. 9	2
U	2 63	30	2 50 0	4230	30	1300	21
A	2 F.4	1 70 0	< 200	< 2) 0	< 27 0	< 20 0	1,70
А	2	33	< 1	'6	- 6	31	S
0	> pvg c	13 0	11	? 0	3 5	9	4
R	PPM	37.0	130	23.0	730	130	10
ĉ	2	13.6	12.1	3.26	14.0	10.3	5.4
F	2 PM	15	1	2	16	2	16
С	> PM	<2.0	<2 0	<2.0	<2 0	<2.0	<2
A	2	0.59	2.14	2.11	2.47	0.14	2.
1	2 05	< 40.0	< 20 0	< 23 0	< 32.0	< 20 0	< 40
ĉ	2 PM	2.5	0.9	0.8	2.0	1.0	0.
C	2 b A	13.8	31.7	13.2	111	38.4	33.
ē	> P'1	<2 0	<2.0	0</td <td>2 0</td> <td><2.0</td> <td>23</td>	2 0	<2.0	23
А	> PM	2	< 1	< 1	< 2	< 1	<
н	> PM	3.9	1.0	1.1	3.6	1.3	1
	р рм	2.6	< 0.7	1.9	1.9	1.1	10.
	PPY	<1 0	<10	<1.0	10	<1.0	<1
Ν	> рм	< 20.0	< 20 0	< 2) 0	< 27.0	< 20.0	< 20
А	> pu	3.5	53	13	30	47	4
ε	2 PM	56	59	24	77	s 7	1 3
М	> PM	7.8	4.8	2.9	8.5	5.1	7.
U	2 64	2.6	2.2	2.5	3.1	3.2	2.
3	2 PM	5.2	2.1	2.4	5.5	1.9	15.
υ	2 pM	0.83	2.33	2.34	2.31	0.20	3.1
R	2 63 -	<5.0	<5.0	<5.0	< 5.0	<5.0	<=

DATE: 16-SEP-38 REPORT: 10212 FILE NUMBER: 11965 PAGE: 1

MUDLEAR ACTIVATION STR/ 10 ES LIMITED

LU

IR

DATE: 15-SEP-38 REPORT: 10212 FLC NUMBER: 11965

ELEMENT : 21 OL ELOS 21 1L ELOS 21 2. ELES 21 3. ELOS 2 JNITS 14 MO 2- 15 04 NO #4 MO 3- 15 04 NO #4 MO 4- 15 04 NO #4 MO 5- 15 04 NO # _____ р р м р м < 5 < 5 < 5 < 5 16 D PM 29 24 38 19 45 37 0 <30 120 AU > PB <30 эрм 3A CA < 90.0 < 20 0 1010 < 20 0 2, 74 CA 3.0 50 < 1 31 - 3 29 00 PPM 37 53 0 320 CR 5! 0 42.0 > pv FE Z 5.55 10.8 10.8 20.4 220 23 44 HE PAC 24 0 <? 0 <2.0 PPM <2.0 <2 0 40 2 3.33 0.98 4.6 NΑ 3.6 < 500 > PM < 47.0 < 30 0 < 6) 0 NI 53 > pv < 0.6 0.5 1.3 1.5 2.3 74.1 SC PAC 73.9 75.6 <2.0 D PM <2.0 <2.0 <? 0 SΕ A PPM < 5 < 2 5 < 2 13 12 ТH 2 PM 5.5 4.6 J 4.2 3.8 14.9 > PM 9.6 2 PM 1.0 <10 10 <1.0 N. < 20.0 < 2) 0 < 20 0 PPM < 20.0 ZN 30 51 76 2 PM 35 LA 37 127 0ε эpч 176 116 12.5 13.1 S M 2 PM 3.1 < 0.1 EU 2.2 < 2.7 4.3 > PM 1.6 22.3 73.3 0.7 2 P.M 5.3 YΞ

EXPLANATION OF CODES

1.12

<5.0

2 PM 4.91

2 P 3

<50

VARIABLE DETECTION LIMITS DUE TO SAMPLE COMPOSITION

1.40

<5.0

5.71

<5.0

PAGE : 2

DA TE = 27 -S EP -8 8 RE PORT = 1 02 54 FILE NUMBER: 12 00 D PAGE = 1

···--

Constants of the most of the Property

.

SAMPLE NUMBERS

ELEM		12 92 LF L- HM-**	*2 93 L= L- HM -≉!*	2 94 L° L- HM-X		2 96 LF L- HM -+	¢297LFL-H™
8 U N	ITS	\$3 6- 60 +1 50 H#*	×0 7- 60 +1 50 H≉ ×	ю 8+ 60 +1 50 н여	¢09−60+150H**	1 0 - 63 +1 53 H⊄	¤11-60+150
		*					
A G	P PM	I < 5	< 8	< 5	< 5	< 5	< 5
ΔS	р Рм	14	26	12 .	4 ¹	83	7
ΑU	P P8	80	3 10 0	<3 0	7 O O O	<30	<30
8 A	РРМ	50 0	< 50 0	< 23 0	< 20 0	< 20 0	< 20 0
C A	z	41	< 1	9	5	29	20
co	рри	46	< 5	11	8	22	20
CR	P PM	1 40 0	29 0	21 0	30	410	12 0
FE	X	11.8	27.9	4.35	4.52	13+5	1 2+ 3
HF	РРМ	32	4	4	3	9	3
MO	2 P.M	<2 0	<2 0	0</td <td><? 0</td><td><2 0</td><td><2.0</td></td>	0</td <td><2 0</td> <td><2.0</td>	<2 0	<2.0
NA	z	3.36	<0.75	0.38	<0.05	0.58	0.12
NI	Р РМ	< 40 O	< 20 Q	<200	< 20 0	< 20 0	< 20 0
58	р рч	2.8	2.6	0.8	0.9	2.5	1.4
5 C	РРЯ	137	< 0.1	29.7	19.9	72+9	33.3
5E	РРМ	<2 0	<2 0	<2.0	0</td <td><2 0</td> <td><2 0</td>	<2 0	<2 0
TA	эрч	6	< 1	< 1	< 1	1	< 1
ТН	р ря	4.7	2.9	1.2	1. 1	2.5	1.3
J	РРМ	4.5	2•6	1.2	< 0. 5	4. 4	< 0.5
el 👘	P PM	10	<1 0	<1 0	<10	<1 0	<1 0
ZN	рря	I < 20 0	23 0	< 2) 0	< 20 0	< 20 0	< 20 0
A	P P M	•	97	21	31	28	40
СE	Р РМ	92	13.6	38	49	37	60
SM	P PM	l 9 9	13.7	3.5	6.0	5.9	7+3
εU	р Рм	4.7	20.9	1.6	1.5	2.7	3.6
48	р ри	9•1	5•7	2. 2	1.8	5.0	2•7
ιŪ	рри) . 85	0.34	J . 2 4	0.78	0.50
IR	<u> 2 98</u>	<5 0	<5.0	<5 0	<5 Q	<50	<50

.

DATE: 27-SEP-88 REPORT: 10254 FILE NUMBER: 12000 PAGE: 2

·· _____

FINST - ISC MARK S A M P L E N U M B E R S

•

ELEM		12 98L FL-HM** 1-06 - 15 0+N**					
ИЦ 3 	11 IS	!-06 -1504N≋* +	≈= 07 = 15 04 N¢;≆	- 05 - 15 OH N#	₩-07 -1304N%*	- 10 - 15 0H N≄⊅	- 11 - 150+
AG	2 PM	< 5	< 5	< 5	< 5	< 5	< 5
AS	2 P M	6	3	70	2	29 :	<2
AU	5 PB	23 00 0	977 o	2 80 0	17 00 0	640	40
3 A	P PM	50 0	50.0	9) 0	400	40.0	300
ČĂ	*	18	10	18	18	7	17
co	р рм	3 Z	30	27	29	16	23
CR	P PM	84 0	38 0	83 0	5 <u>8</u> 0	170	380
FE	z	7.53	5.47	8 • 7 7	5.15	5.17	4 • 4 2
н£	РРМ	23 0	19 0	34.0	310	66	170
MO	рри	<2 0	<2 0	<u>5</u> 0	30	<2 0	<20
NA	z	2• 3	3• 5	2, 7	3.4	3. 2	1.2
NI	2 P4	< 40.0	< 23 Q	< 20 0	< 23 0	< 20 0	< 20 0
S 8	р РМ	1.2	1.3	2.4	0.9	0-8	< 0• Z
S C	э Биі	84.5	46.2	76,3	58+0	3 4• 7	46.0
3 E	PPM	20	<2 0	0</td <td>40</td> <td><2 0</td> <td><2 0</td>	40	<2 0	<2 0
ΤA	э рч	< 3	2	3	3	1	2
тн	р рм	21	9.8	30	15	4.0	19
J –	PPM	14•6	14.4	30.8	2 4 • 1	9. 2	14.5
H .	РРМ	20	<10	<1 0	<1.0	<10	<10
ΖŅ	Р₽₩	< 20 0	< 20 0	< 2) 0	< 20 0	< 20 0	< 20 0
LA	р рм	4 4	30	37	47	6	51
СE	ррң	96	44	13.1	54	41	80
SM	PPM	9.8	5.8	13.6	8.7	5.1	11.4
ΕU	2 PM	2.7	1+6	3,0	2.4	1.5	2.3
¥В	PPM	21.9	18.5	32.8	30.2	8.4	19•4
LU	o py	5 •1 0	3.59	6.16	5.19	1.60	3.72
IR	РPB	<5 0	<50	<5.0	<5.0	<5 0	<50

EX PLANATION OF CODES

VARIABLE DETECTION LIMITS OUE TO SAMPLE COMPOSITION

.

•

(

(

DATE:	20-0CT-88	REPORT:	10324	FILE NUMBER:	12091	PAGE:	1
							_

SAMPLE NUMBERS COARSE FRACTION (-60+150)

-

				COARSE FR	4CTION (-60+1	50)		
EI :M & UN					4R FL-HM-1** 5-60+150HN**			
	+-							•
AG	PPM	<5	<5	<5	<5	<5	<5	
AS	PPM	9	11	8	200	100	20	
JA	PPB	<30	3200	230	13000	<30	12000	
BZ	PPM	<200	400	<200	1800	300	<200	
CA	રુ	16	19	14	11	16	<1	
С	PPM	12	21	11	91	51	23	
CK	PPM	290	430	130	390	610	660	
FE	8	7.70	8.93	8.23	17.2	11.7	8.03	
HI	PPM	4	4	6	4	6	6	
MC	PPM	<20	<20	<20	20	<20	<20	
AN	8	0.18	0.16	0.15	0.19	0.21	0.16	
NI 👘	PPM	<200	<200	<200	<200	<200	<200	
SL	PPM	7.7	1.2	2.2	1.9	1.7	0.6	
SC	PPM	51.1	52.7	36.6	53.2	69.5	69.7	
SI	PPM	<20	<20	<20	<20	<20	<20	
ТА	PPM	<1	1	<1	<2	<1	<1	
тн	PPM	2.8	3.5	2.4	2.5	1.1	0.9	
U K	PPM	2.5	1.8	0.8	3.1	1.2	1.4	
rk.	PPM	<10	<10	<10	<10	<10	<10	
ZN	PPM	<200	<200	<200	400	200	<200	
Σ.	PPM	33	19	20	23	16	11	
CE	PPM	54	35	28	59	38	22	
SM	PPM	7.1	5.3	2.3	4.9	2.9	2.6	
EI	PPM	1.9	2.4	0.7	1.9	1.3	1.5	
ΥL	PPM	3.6	3.0	1.0	2.2	2.4	3.1	
Li	PPM	0.60	0.47	0.15	0.36	0.38	0.42	
Ι.	PPB	<50	<50	60	<50	<50	<50	

FATE: 20-OCT-88	REPORT:	10324	FILE NUMBER:	12091	PAGE:	2
		~~~~				-

#### (

•

## SAMPLE NUMBERS FINE FRACTION (-150)

•				,		FINE FRACTO	N (-150)
ELEM & UN			*8R FL-HM-1** *9-60+150HN**				
		• _ ·					<b>-</b>
λG	PPM		<5	<5	<5	<5	<5
AS	PPM		7	16	23	27	240
A'	PPB		<30	360	<30	50000	380
B	PPM		200	<200	500	600	800
CA	₹	17	17	15	19	10	11
с	PPM	23	21	16	31	14	76 [']
Ċĸ	PPM	530	90	320	550	160	340
FE	१	8.19	8.05	8.19	9.46	5.72	16.7
Н	PPM	7	1	240	63	340	60
М	PPM	<20	<20	<20	<20	<20	<20
N	8	0.19	0.23	1.6	0.82	2.7	0.92
N	PPM	<600	<200	<200	<300	<200	<200
SB	PPM	1.7	1.1	4.7	1.8	2.7	1.5
SÇ	PPM	72.3	20.1	55.2	62.2	32.6	46.5
S	PPM	<20	<20	<30	<20	130	<20
TA	PPM	4	<1	<1	<1	3	<1
Τ	PPM	2.3	1.6	13	6.7	15	3.9
Ŭ K	PPM	3.4	2.0	14.7	5.5	13.5	5.3
Ŕ	PPM	10	<10	10	10	40	<10
ZN	PPM	<200	<200	<200	<200	<200	200
Ι.	PPM	26	14	46	28	33	28
CE	PPM	46	28	109	52	82	47
51	PPM	7.7	4.2	9.0	5.5	6.2	4.9
Εľ	PPM	2.9	2.2	3.9	2.4	2.3	1.8
ΥВ	PPM	4.9	2.1	23.5	7.4	27.2	7.0
] ]	PPM	0.95	0.40	5.51	1.50	6.39	1,56
11	PPB	<50	<50	<50	<50	<50	<50

				• • • • • • • •	
(			SAMP FINE FRI	LE NUM + CTION (-150)	BERS
E	EMENT !	13R FL-HM**	14R FL-HM**	15R FL-HM**	16R FL-HM**
&	UNITS !	-16-150HN**	- <u>1</u> 7-150HN**	- <u>18</u> -150HN**	- <u>19</u> -150HN**
A	PPM	<del>-</del>	<5	<5	<5
A_		42	20	13	6
AU		340	640	30	820
Ε.	PPM	300	<200	<300	<200
С	*	10	13	17	16
со	PPM	25	25	22	53
č	PPM	300	640	190	130
F.		6.51	6.93	10.5	7.95
HF		29	86	28	17
K^		<20	<20	<20	<20
NA	ક	1.2	1.5	0.26	1.9
NI		<200	400	<400	<200
5	PPM	0.8	0.8	1.3	0.8
£	PPM	42.2	68.1	53.7	27.0
SE	PPM	<20	<20	<20	<20
п.	PPM	<1	<2	<2	<1
TΗ		3.0	6.0	3.6	6.4
U	PPM	2.5	5.0	3.1	3.8
ž	PPM	<10	<10	<10	<10
	PPM	<200	<200	<200	<200
2-					
Γ.	PPM	20	18	102	21
C (		33	46	132	33
SM		3.5	4.2	13.7	4.7
EU		1.6	1.2	4.1	2.0
Y,	PPM	4.4	9.1	6.3	4.1
LU	PPM	0.89	2.03	1.16	0.88
IT.		<50	<50	<50	<50
		-			

۰.

#### EXPLANATION OF CODES

VARIABLE DETECTION LIMITS DUE TO SAMPLE COMPOSITION

DATE: 20-OCT-88 REPORT: 10324 FILE NUMBER: 12091 PAGE: 3

(



.

4200B - 10 STREET N.E., CALGARY, ALBERTA, CANADA T2E 6K3 PHONE: (403) 250-1901

AUTHORITY: GORDON ALLEN

BEAUPRE EXPLORATIONS LTD. **1027 PANDORS AVENUE** . VICTORIA, B.C. VOV 3PG

BARRINGER Laboratories (NWT) Ltd.

P.O. BOX 864, YELLOWKNIFE, NWT, CANADA, X1A 2N6 PHONE. (403) 920-4500

i

÷

ļ i

.....

<0.2

<0.2

<0.2

31-0CT-88 PAGE: 1 OF 2

COPY: 1 OF 2

WARK ORDER: 53920-88

23.0

16.0

13.0

18.0

3.0

4.0

					WORK C	RDER: 5392	D-88
					*** FI	NAL REPOR	RT ***
	GEOCHI	EM	ICAJ	L LAB	DRATORY	REPOR	₹ <b>T</b>
	SAMPLE TYPE:	PUI	LP			:	
	I			CU	PB	ZN	AG
	SAMPLE NU	ΜB	ER	PPM	PPM	PPM	<b>PPM</b>
	FLHM01:-60+150HN		204L	1300.0	<1.0	21.0	<0.2
	FLHM02:-60+150HN	-	205L	34.0	5.0	32.0	<0.2
	FLHM03:-60+150HN	-	206L	60.0	2.0	32.0	<0.2
	FLHM04:-G0+150HN	-	207L	131.0	3.0	80.0	<0.2
	FLHM05:-60+150HN	-	208L	22.0	7.0	20.0	<0.2
	FLHM01:-150HN	-	209L	116.0	4.0	44.0	<0.2
	FLHM02:-150HN		210L	55.0	5.0	50.0	<0.2
	FLHM03:-150HN		2111	94.0	3.0	33.0	<0.2
	FLHM04:-150HN		211L 212L	100.0	5.0	93.0	<0.2
						24.0	
	FLHM05:-150HN	-	213L	40.0	4.0	24.V	<0.2
;	FLHM06:-60+150HN	-	292L	1600.0	2.0	26.0	<0.2
	FLHM07:-60+150HN		293L	500.0	2.0	24.0	<0.2
į	FLHM08:-60+150HN		294L	425.0	3.0	16.0	<0.2
	FLHM09:-60+150HN		295L	59.0	4,0	19.0	
	FLHM10:-60+150HN	-	296L	66.0	8.0	20.0	$\frac{1.2}{0.2}$
	FLHM11:-60+150HN	-	297L	42.0	Э.О	17.0	<0.2
	FLHMOG:-150HN	-	298L	<u>525.0</u>	4.0	33.0	0.5
	FLHM07:-150HN	~	299L	1550.0	131.0	29.0	
	FLHMO8:-150HN	-	300L	667.0	6.0	28.0	<0.2
	FLHM09:-150HN	-	301L	100.0	3.O	24.0	<u> 2 - 0</u>
	FLHM10:-150HN	-	302L	92.0	4.0	34.0	<0.2
ļ	FLHM11:-150HN	-	303L	252.0	6.0	36.0	<0.2
i	FLHM12:-60+150HN		1R	44.0	8.0	22.0	<0.2
	FLHM13:-60+150HN		28	158.0	4.0	51.0	<0.2
	FLHM13:-60+150HN	-	3R	25.0	6.0	20.0	<0.2
	ELNNI41-60+130HN	-	A C	V.U.ù	O . V	2V.V	NU - 2
	FLHM15:-60+150HN	-	4 R	328.0	1.0	143.0	0.4
	FLHM16:-60+150HN	~	SR	560.0	1.0	132.0	<0.2
					10 0		10.0

....

33.0

93.0

540.0

6R

7R

8R

~

_.

---

FLHM17:-60+150HN

FLHM18:-60+150HN

FLHM19:-60+150HN

BARRINGER — Laboratories (Alberta) Ltd.

4200B - 10 STREET N.E., CALGARY, ALBERTA, CANADA T2E 6K3 PHONE: (403) 250-1901

AUTHORITY:GORDON ALLEN

#### BEAUPRE EXPLORATIONS LTD. 1027 PANDORS AVENUE

VICTORIA, B.C. V8V 3P6

1

BARRINGER Laboratories (NWT) Ltd.

P.O. BOX 864, YELLOWKNIFE, NWT. CANADA X1A 2N6 PHONE. (403) 920-4500 31-0001-38

PAGE: 2 OF 2 COPY: 1 DF 2

WORK ORDER: 53920-88

#### *** FINAL REPORT ***

(	GEOCHE	MICA	L LAI	BORATOR	Y REPO	) R T
	PLE NU	PULP BER	CU PPM	PB PPM	ZN PPM	AG PPM
ELHM1 ELHM1 ELHM1	2:-150HN 3:-150HN 4:-150HN 5:-150HN 5:-150HN	9R - 10R - 11R - 12R - 13R		6.0 61,0 6.0 2.0 5.0	<u>60.0</u> 6 <u>3.0</u> 48.0 1 <u>75.0</u> 1 <u>37.</u> 0	<0.2 <0.2 2.4 0.4 <0.2
FLHMI	7:-150HN B:-150HN 9:-150HN	- 14R - 15R - 16R	495.0 60.0 48.0	10 <u>,</u> 0 17 <u>,</u> 0 7.0	<u>62.</u> 0 5 <u>3.0</u> 29.0	<0.2 0.2 <0.2

SIGNED: C. Douglas Read, LABORATORY MANAGER

FOOTNOTES: P=QUESTIONABLE PRECISION; *=INTERFERENCE; TR=TRACE; ND=NOT DETECTED; IS=INSUFFICIENT SAMPLE; NA=NOT ANALYZED; MS=MISSING SAMPLE ADVANCED TECHNIQUES AND INSTRUMENTATION FOR THE EARTH SCIENCES NUV 21 188 16:27

BUNDAR-CLEGG VANGUUVER, CANADA

546 F63

Geochemical Lab Report

Pondar-Clegg & Company Ltd. 30 Pemberton Ave. orth Vancouver, B.C. P 2R5 504) 985-0681 Telex 04-352667



F 'ORT: V88-	09736.0					PROJECT: 393-FROST LAKE PAGE 1					
ANPL F TBER	ELENENT UNTTS	Au PPU		··			·				
2 97876		221	PYRITE - RICH	SKARH	B 150	<u></u> .ω	PORTH	٥F	FA ST	L.K.	
97877		<5									
97878		6									
2 97879		65									
2 97881		<5									
	·	·	· _ · · · · · · · · · · · · · ·						·•		
										••	
								-			
····							·				
											<u> </u>
	_										
			· · · · · · · · · · · · · · · · · · ·							,,,	
	· · · · ·										
	·										

NUV 24 188 16:06

BURDER-CLÉGÉ VENCOUVER: LENEZE

074 Md4

.dar-Clegg & Company Ltd. D Pemberton Ave. Porth Vancouver, B.C. 2R5 - Crit 985-0681 Telex 04-352667

.....



## Geochemical Lab Report

RY "2RT: V88-09736.0			· · · · · ·				PRO	IKF	PAGE 1A			
ELEMENT	Ag PPM	As PPH	8 7211	Ва РРИ	80 PPri	Bi PPR	Cd PPN	Ce PPN	Co PPH	C <del>r</del> PPM	Cu PPH	
	25.8	63	<2	14	<4.D	- 20	8		111	86	>20000	
	<0.5	<50	<2	245	<4.li	3	4	14	- 9	78	266	
	0.6	<50	<2	6	<4.0	<s.< td=""><td>&lt;1</td><td>11</td><td>44</td><td>34</td><td>600</td><td></td></s.<>	<1	11	44	34	600	
	<0.5	<50	<2	75	<4.0	<5	<1	13	7	90	37	
	6.8	<50	<2	11	<4.D	<5	<1	8	7	215	3230	
	ELEMENT	ELEMENI AG UNITS PPM 25.0 20.5 0.6 <0.5	ELEMENT Ag As UNITS PPH PPH 25.0 63 70.5 <50 0.6 <50 <0.5 <50 0.5 <50	ELEMENT Ag As B UNITS PPH PPH PPH 25.0 63 (2 (0.5 (50) (2 0.6 (50) (2 (0.5 (50) (2	ELEMENT         Ag         As         B         Ba           UNITS         PPM         PPM         PPM         PPM           25.0         63         <2	ELEMENT         Ag         As         B         Ba         Be           UNITS         PPM         PPM         PPM         PPM         PPM         PPM           25.0         63         <2	ELEMENT         Ag         As         B         Ba         Bo         Bi           UNITS         PPM         PM         PM </td <td>ELEMENT         Ag         As         B         Ba         Ba         Bi         Cd           UNITS         PPH         PH         PPH         PPH         PPH         PPH         PH         PH</td> <td>ELEMENT         Ag         As         B         Ba         Ba         Bi         Cd         Ce           UNITS         PPH         PH         PH</td> <td>ELEMENT         Ag         As         B         Ba         Ba         Ba         Bi         Cd         Ce         Co           UNITS         PPH         PH         PH</td> <td>$\begin{tabular}{c c c c c c c c c c c c c c c c c c c$</td> <td>ELEMENT         Ag         As         B         Ba         Bo         Bi         Cd         Ce         Co         Cr         Cu           UNITS         PPH         PH         <t< td=""></t<></td>	ELEMENT         Ag         As         B         Ba         Ba         Bi         Cd           UNITS         PPH         PH         PPH         PPH         PPH         PPH         PH         PH	ELEMENT         Ag         As         B         Ba         Ba         Bi         Cd         Ce           UNITS         PPH         PH         PH	ELEMENT         Ag         As         B         Ba         Ba         Ba         Bi         Cd         Ce         Co           UNITS         PPH         PH         PH	$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $	ELEMENT         Ag         As         B         Ba         Bo         Bi         Cd         Ce         Co         Cr         Cu           UNITS         PPH         PH         PH <t< td=""></t<>

-- -- ---

. . . . . . .

.....

- - - -

_ _

____

.....

++ ++

.. .

...

٩

sidar-Clogg & Company Ltd. .40 Pernberton Ave. North Vancouses, B.C. '7P 2R5 (604) 985-0681 Telex (14-352667

٠



## Geochemical Lab Report

.

•

	-09736.0								JECT: 393	· <u>-</u>		AGE 18
SAMPLE MINNER	ELEMENT UNETS	Ga PPH	i.a PPH	L) PPH	Мо РРИ	ND PPM	Ni PPri	РЬ РРН	אט איזק איזק	Sb PPM	Se PPN	Sn PPN
n2 97676	·•	</td <td>&lt;1</td> <td>&lt;1</td> <td>&lt;5</td> <td>4</td> <td>- 4</td> <td>780</td> <td>&lt;<u></u>\$1</td> <td>&lt;5</td> <td>2.0</td> <td>&lt;30</td>	<1	<1	<5	4	- 4	780	< <u></u> \$1	<5	2.0	<30
R2 97877		5	3	3	<5	2	3	22	<5fl	<5	4.1	<30
° 97878		<2	<1	1	<5	2	2	20	<\$N	<5	2.0	<30
2 97879		6	3	3	<5	2	3	:1	<50	<5	3.0	<30
R2 97 <b>88</b> 0		<2	<1	<1	<5	2	13	:10	<59	<s< td=""><td>2.9</td><td>&lt;30</td></s<>	2.9	<30

.....

ł

__ . ___...

_____

BONDAR-CLEGG VANCOUVER, CANADA

574 PØ6

Lar-Clegg & Company Ltd. J Pernberton Ave. rth Vancouver, B.C. + 7P 2R5 (64) 985-(K8) Telex (4-352667

.



## Geochemical Lab Report

-- . . . . . .

1 70RT: V88-	09736.0							PR(		R-FROST LA	KF PA	GF 1C
Sample > 1Ber	ELEMENT UNTTS	Sr PPM	[а РРН	ie PPN	11 PPH	V PPfi	k PPH	Y PPM	2љ РРМ	Zr PPM	40 PP8	
R2 97876		<1	<10	<29	<20	19	<[[]	2	761	2	221	
f" 97877		55	<10	<211	<20	38	<19	8	32	2	<5	
97678		<1	<1N	<20	<20	16	14	2	47	12	<5	
R2 97879		156	<10	<2N	<28	2.4	<10	6	24	3	<5	
P2 97880		<1	<18	<28	<2i)	12	<u></u>	3	35	?	<5	
						<b></b>	- • ••					
						<b>-</b> .						
· ··· • ··· · ·	· · ·· · · · · · · · · · · · · · · · ·	• • •		•					_	•• • ••		
				•••••						-		
•												
				·· · ··		<u></u> .						· · · · · · · · · · · · · · · · · · ·
					<b></b>		<u></u>					
-	••• • • • • • •	•									- · -	
					<b></b>			····			_	

-----

Porth Vance P 2K5	gg & Company Ltd. Ion Ave. Duver, B.C. 81 Telex ()4-352667		BONDAR-CLEGG		ochemical ab Report
JRT: U88-				PROJECT: 393-FROST LAKE	PAGE 1
IMPLE ITSER	FLEMENT CU UNITS PCT	····			
97876	2.38				
	, <u>.</u>	<u>.</u> . <u></u>			
					······································
		· · · · · · · · · · · · · · · · · · ·			
	<u></u>		··· ··· ··· ··· ··· ··· ··· ··· ·		
•					
			· · · · · · · · · · · · · · · · · · ·	. <u> </u>	

### APPENDIX III ROCK SAMPLE DESCRIPTIONS

ł

.

#### ROCK SAMPLE DESCRIPTIONS AND LITHOGEOCHEMICAL RESULTS

Sample Number		Description	Au pp		Ag ppm	As ppm	Cu ppm	Other ppm	
24251	Location: Rock Type: Material Sampled	Trunk Road 8, Helga 1 Claim Massive Magnetite	36	5	3.4	<50	15,352		
	and Sample Type: Occurrence Size:	Float, Grab Composite of several 5-20 cm subrounded to subangular road fill							
	grained crystallin fine-grained epide pieces contain s	float is composed of up to 80% fine- ne dark blue-grey magnetite and up to 20% ote in lenses up to 3 mm x 10 mm. Some small quartz stringers. Traces of r disseminated within the magnetite.							
24252	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:	Trunk Road 8, Helga 1 Claim Garnetite Float, Grab 40 cm x 50 cm x 50 cm boulder	9	,	<0.5	<50	1998		
	crystalline garnet	ring dark brown fine to medium-grained t. Fine-grained magnetite has developed ong each side of an epidote - filled (1-2							
24253	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:	Trunk Road 8, Helga 1 Claim Massive Sulphide Float, Grab 20 cm x 20 cm x 30 cm boulder	21	.7 1	.9.3	<50	>20,000 8.95%	872 123	Co Rb
	pyrite and chalo masses up to 1 c	tz groundmass with 20-30% @ magnetite, copyrite. Pyrite occurs as fine-grained im in diameter. Chalcopyrite occurs in							

irregular masses and bands up to 1 cm in thickness.

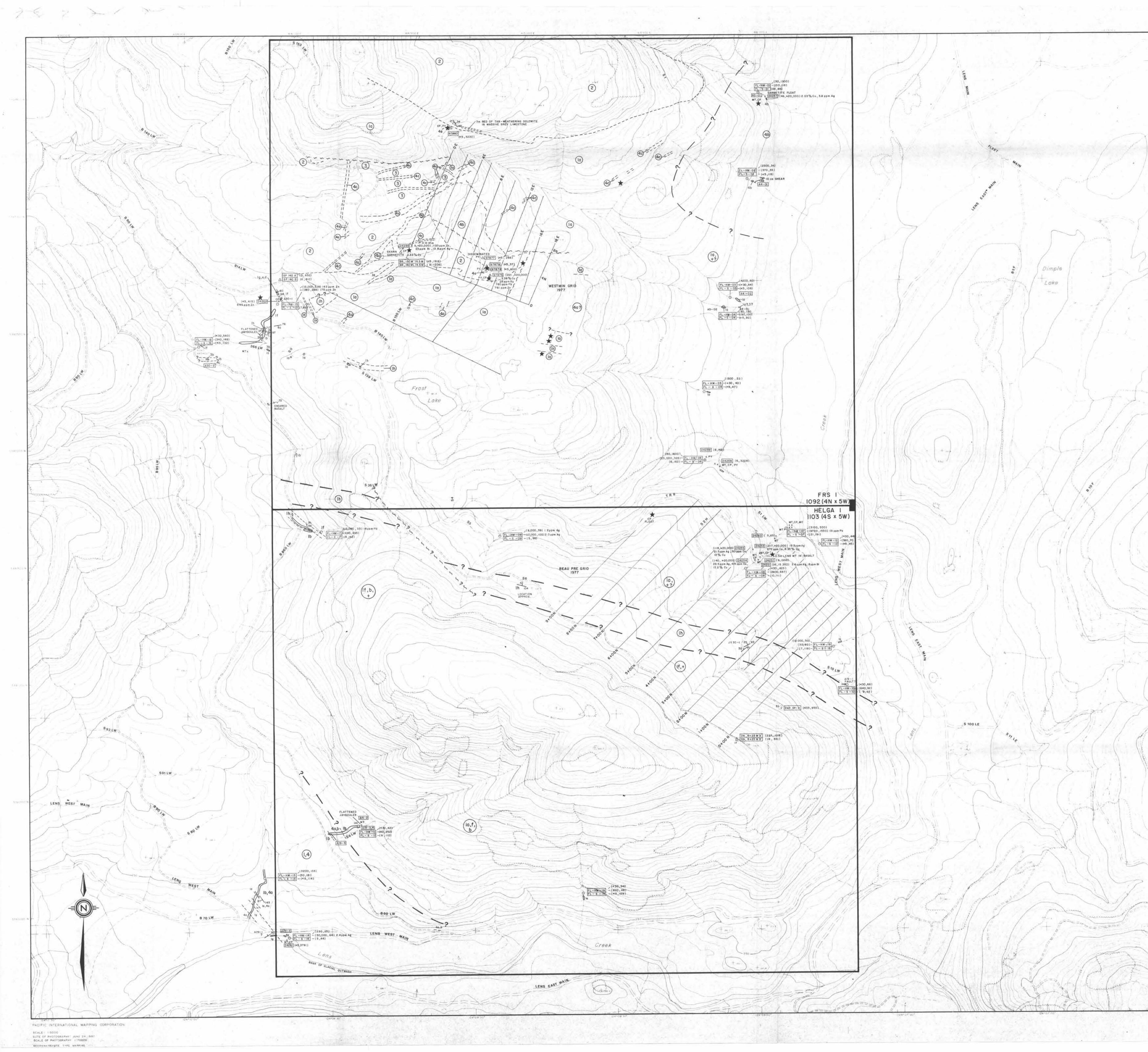
Sample Number		Description	Av Pl	u pb	Ag ppm	As ppm	Cu ppm	Othe: p <b>p</b> m	_	
24254	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:	Trunk Road 8, Helga 1 Claim Massive Sulphide, Skarn Float, Grab 30 cm x 30 cm x 30 cm	14	40	23.5	<50	>20,000 13.2%	72	Co Rb W	
	quartz and epidote up to 1 mm which an altered volcant replaced by massi cm), epidote (10%)	s a fine-grained dark green aggregate of e with rare vague light-coloured patches a could be feldspar phenocrysts (possibly tc). The original rock is almost totally two chalcopyrite (30-60% in masses to 2 a, quartz (10-20%), magnetite (5-15%) and actinolite crystals up to 5 mm in length								
24255	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:	Trunk Road 8, Helga 1 Claim Massive Sulphide Breccia, Skarn Float, Grab 10 cm x 20 cm x 20 cm	11	18	21.5	<50	>20,000 12.00%	301 48		
	to 5 mm in diamete magnetite (30%) blue-green actinol	sed of epidote-rich angular fragments up er (~25%) in a groundmass of fine-grained and chalcopyrite (30%), and radiating ite (?) crystals up to 5 mm in length. an altered lapilli or brecciated basalt.								
24256	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:	B 150WL Road, FRS 1 Claim Skarn, Altered Limestone Outcrop, Grab 2 m (+) Wide Zone		<5	13.8	<50	>20,000 2.33%		Co Zn	
	brown actinolite length in a ground Chalcopyrite (2-10	ng coarse-grained dark green to dark (70%) in radiating masses up to 2 cm in mass of calcite, epidote and magnetite. D%) occurs as masses to 2 mm in diameter me actinolite crystals.								

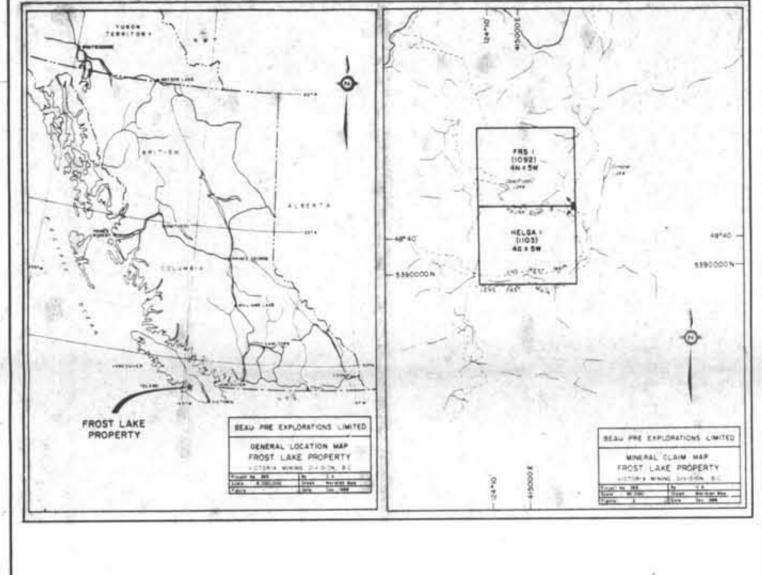
Sample Number		Description	Au gqq	Ag ppm	As ppm	Cu ppm	Other ppm
24257	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:		46	3.8	<50	>20,000 2.03%	
	piece contained chalcopyrite in r disseminated pyrrl grained groundmass of similar materia	a composite of 2 subangular cobbles. One 50% fine-grained magnetite, 5% masses up to 2 mm in diameter and 1-2% hotite in a dark greenish-brown fine- s. A second piece of float was composed al with 5-8% fine-grained disseminated bock was strongly magnetic.					
24258	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:	NW end of SILW Road, FRS 1 Claim Altered Basalt (?) Float, Grab Cobble-sized road fill	6	1.7	<50	3208	
	several centimeter	ned black magnetite in masses or layers rs thick in a dark green fine-grained talline aggregate with 1-2% fine-grained te.					
24259	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:		б	0.8	<50	162	
	Dark green fine-gr	rained crystalline silicified basalt with					

5% pale pyrite along fractures up to 2 mm wide.

Samplə Number		Description	Au ppb	Ag ppm	As ppm	Cu ppm	Other ppm
24260	Location: Rock Type: Material Sampled	SILW Road, Helga 1 Claim Altered Basalt (?) Altered Sediment (?)	<5	0.5	<50	65	
	and Sample Type: Occurrence Size:	Float, Grab Boulder					
	grained cryptocry Boulders contain several tens of	ned magnetite in a groundmass of fine- ystalline medium greenish-grey material. up to 60% magnetite in masses up to centimeters wide. All boulders of this ished slickenside surfaces.	aterial. s up to				
24261	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:	In Lens Cr., SW Part of Helga 1 Claim Altered Basalt (?) Float, Grab Cobble	<5	2.0	<50	3791	
	with: 20% fine-gra angular masses up chalcopyrite in widths, and 10% ra in length. The a	rained crystalline aggregate groundmass ained crystalline magnetite in lenses and to 1 cm in diameter, 5% fine-grained concentrations of up to 30% over 1 cm adiating actinolite crystals up to 1 cm angular masses of magnetite could be soft res, but mineralogy suggests a skarn.					

Sample Number		Description		Au ppb	Ag ppm	As ppm	Cu ppm	Othe ppm	
24262		one with 20% amber-coloured garnets in		<5	<0.5	<50	415	695	Zn
	bedding) and quartz stringe 2) Massive fine-g	grained garnetite. with 30% dark green radiating actinolite							
97876	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:	On B 150 LW Road North of Frost Lake Massive Sulphide Skarn Outcrop, Grab ~10 m wide zone	<u>-</u>	221	25.0	<u>63</u>	>20,000 (2.38%)	8 113	Bi Cd Co Pb Zn
	sloughing off of h grained pyrite in Some pieces of pal crystalline garnet	grab of heavily mineralized material bank. Some pieces with up to 80% coarse- a medium-grained actinolite groundmass. The greenish-brown fine to medium-grained site with up to 20% fine-grained pyrite							


and 10% chalcopyrite concentrated along 2-5 mm bands (remnant bedding?).


Sample Number		Description	Au ppb	Ag ppm	As ppm	Cu ppm	Other ppm
97877	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:	B 150 LW Road North of Frost Lake Diorite (?) Outcrop, Grab	<5	<0.5	<50	266	
	~10% (?) glassy ~15% tabular i long (avera ~65% (+) brown ~5% medium-gra The rock is strong	plack hornblende crystals up to 4 mm age ~2 mm) n plagioclase ained disseminated PY					
97878	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:		<5	0.6	<50	<u>600</u>	14 W 12 Zr
	intrusive (97879). blue-green actinol coarse-grained Py chalcopyrite. The intrusive contact	crongly gossanous material adjacent to an The rock is composed of medium-grained Lite + brown garnet, an average of 5-8% (massive in places), and traces of e zone is fractured and sheared along the at ~31/85-90 SE. Irregular lenses of in an actinolite-rich altered volcanic					

Sample Number		Au ppb	Ag ppm	As ppm	Cu ppm	Other ppm	
97879	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:	B 150 LW Road, North of Frost Lake Leucocratic Feldspar Porphyry Outcrop, Grab	<5	<0.5	<50	37	156 Sr
	~20% light gre ~5% anhedral i ~5% fine-gaine The relationship	lue-grey groundmass with: ey prisms of euhedral plagioclase fine-grained mafic mineral (hornblende?) ed disseminated PY between this rock and the medium-grained to the north (97877) is not clear.					
97880	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:	On BR 2 Road North of B 150 LW Road Quartz Vein Outcrop, Grab 3-4 m zone	<5	0.8	<50	<u>3230</u>	11 W
	blue-grey to w chalcopyrite. The zone of skarnif; equigranular diori of coarse-grained to float found a composed of 2-4 m	0-20 cm wide) of vuggy, gossanous glassy white quartz with 5% disseminated e quartz lens in hosted in a 3-4 m wide ied limestone adjacent to a fine-grained ite dike (CI~35). The skarn is composed actinolite and banded garnetite similar adjacent to 24257. The garnetite is mm wide bands of medium to fine-grained garnet interlayered with hematitic lite. This material could be an altered					

Sample Number		Description	Au ppb	Ag ppm	<b>As</b> ppm	Cu ppm	Other ppm
		thology hand specimens which were sent were not described properly before shiping.					
14.5 M Ro Ma ar	ocation: ock Type: aterial Sampled nd Sample Type: ccurrence Size:	BR 150LW Road at 14.5 Mile Skarn Outcrop, Grab 2 m (+) wide zone	<5	<0.5	<50	1914	
ar		to 24256 with coarse-grained actinolite of chalcopyrite. Could also have been					
14.5 M Ro Ma ar	ocation: ock Type: aterial Sampled nd Sample Type: ccurrence Size:	BR 150LW Road at 14.5 Skarn Outcrop, Grab 2 m (+) wide zone	6	1.5	<50	1206	926 Ba
As	s BR 150L 14.5 M						
Ro Ma ar	ocation: ock Type: aterial Sampled nd Sample Type: ccurrence Size:	End of SP 2 Road, Helga 1 Claim Leucocratic Intrusive Outcrop, Grab Few meter wide dyke	403	2.1	<50	955	912 Ba
Me	edium-grained ligh	nt-coloured dyke hosted in basalt.					
8+25N 'A' Ro Ma ar	ocation: ock Type: aterial Sampled nd Sample Type: ccurrence Size:	ON, 8+25W; Helga 1 Claim Agglomerate, Basalt Outcrop, Grab	277	1.6	<50	1016	
gr	rained groundmass	lal fragments up to 10 cm in a fine- with <1 to 3 mm clasts rimmed with a al (devitrified glass?).					

Sample Number		Description	Au ppm	Ag ppm	As ppm	Cu ppm	Other ppm
O₩, 8+25N 'B'	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size: As OW, 8+25N 'A'.	ON, 8+25W; Helga 1 Claim Agglomerate, Basalt Outcrop, Grab	14	1.4	<50	861	
SP-2	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size: Dark grey micrite.	SP 2 Road, Helga 1, Claim Limestone (?) Outcrop, Grab	9	1.6	<50	1552	
SP 140 A 292 Ni	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:	SP 140 Road, FRS 1 Claim 51.4<50 652 Agglomerate, Basalt Outcrop, Grab					
SP 140 B	Location: Rock Type: Material Sampled and Sample Type: Occurrence Size:	SP 140 Road, FRS 1 Claim Agglomerate, Basalt Outcrop, Grab	6	0.8	<50	812	





# GEOLOGICAL LEGEND

JURASSIC (?)

# 4 INTRUSIVES

- a DIORITE b GRANODIORITE - QUARTZ DIORITE
- c DACITE
- TRIASSIC
- 3 PARSON BAY FORMATION SHALE
- 2 QUATSINO FORMATION LIMESTONE
- 1 KARMUTSEN FORMATION
- a MASSIVE FINE GRAINED CRYSTALLINE BASALT (+ TUFF )
- AMYGDALOIDAL BASALT FLOW
   PILLOW BASALT
- d TUFFACEOUS SEDIMENT
- e LAPILLI TUFF
- f AGGLOMERATE g MARBLE .
- h MICRITIC LIMESTONE

## SYMBOLS AND ABBREVIATIONS

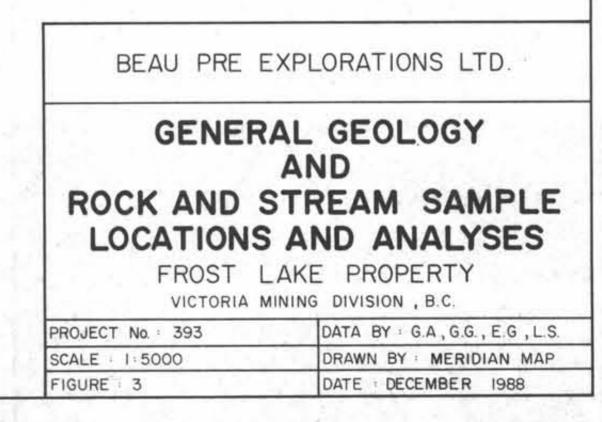
100 1

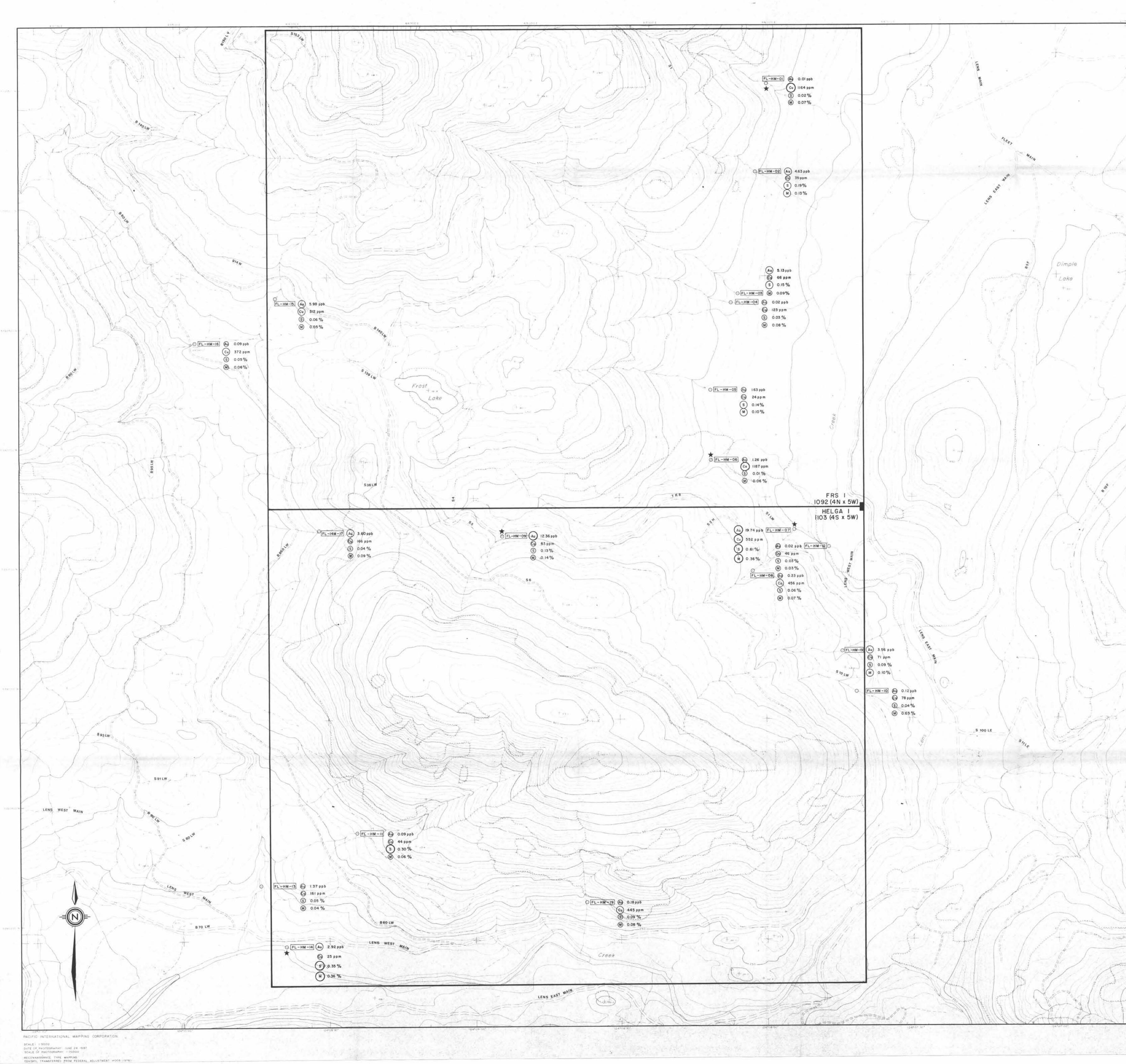
## SAMPLE SITE LOCATIONS:

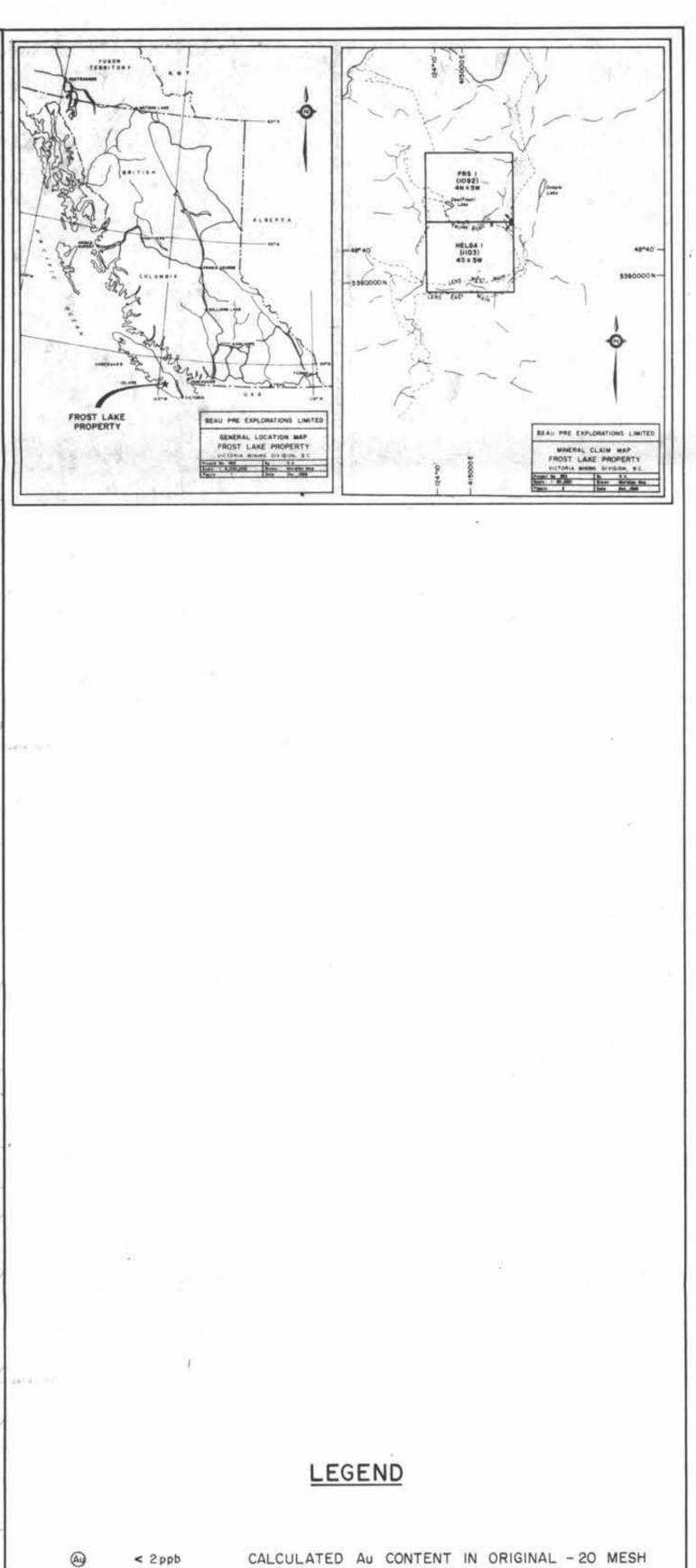
© FL-HM-OI SELVED STREAM SEDIMENT (FOR HEAVY MINERAL CONCENTRATE) FL-S-OI STANDARD STREAM SEDIMENT

## x 24251 ROCK FLOAT

ANALYSES :


/(ppb Au, ppm Cu) AND OTHER VALUES CONSIDERED ANOMALOUS
// (30,1300) COARSE (-60 TO + 150 SIZE FRACTION)
// (210,116) FINE (-150 SIZE FRACTION)
// (-150 SIZE FRACTION)
// (-150 SIZE FRACTION)


[2425] (36,15352) 3.4 ppm Ag, 8 ppm Bi


## SYMBOLS :

88 34	CLAIM LINES AND LEGAL CORNER POST BEDDING WITH STRIKE AND DIP (TOPS UNKNOWN) SHEAR	
51	OBSERVED GEOLOGICAL CONTACT (G ALLEN)	
2	GEOLOGICAL CONTACT AS DEFINED BY L. SALEKEN AND E. GROW	/E
· · · ·	FAULT	
0	OUTCROP	
*	SKARN MINERALIZATION (FLOAT OR OUTCROP)	
A30-1	FIELD NOTE LOCATION	
A30-2	HAND SPECIMEN SAMPLE SITE	
CP	CHALCOPYRITE	
MT	MAGNETITE	
PY	PYRITE GEOLOGICAL BRANCH ASSESSMENT REPORT	
	101-11	

NOTE CLAIM LINES FROM POSTS LOCATED IN FIELD





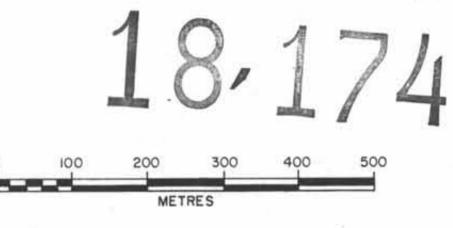


(	< 2ppb
Au	2-10 ppb
Au	> 10 ppb
0	< 200 ppm
Cu	200-500 ppm
Cu	> 500 ppm
(\$)	0.02-0.09%
S	0.10-0.19%
S	≥ 20 %
M	0.03-0.09%
M	0.10-19 %
M	≥ 20%

*

E

CALCULATED CU CONTENT IN -60 MESH HEAVY (S.G. ≥ 3.27) NONMAGNETIC FRACTION


SAMPLE (ASSUMES THAT ALL GOLD IS -60 MESH)

PERCENT OF TOTAL SAMPLE IN -60 MESH HEAVY (S.G. ≥ 3.27) NONMAGNETIC FRACTION (GIVING AN INDICATION OF SULPHIDE AND NATIVE METAL CONTENT IN ORIGINAL - 20 MESH SAMPLE) PERCENT OF TOTAL SAMPLE IN -60 MESH HEAVY (S.G.≥3.27) MAGNETIC FRACTION (GIVING AN INDICATION OF MAGNETITE CONTENT IN ORIGINAL

SAMPLE CONSIDERED SIGNIFICANT

-20 MESH SAMPLE)

GEOLOGICAL BRANCH ASSESSMENT REPORT



NOTE : CLAIM LINES FROM POSTS LOCATED IN FIELD

BEAU PRE EXPLORATIONS LTD.

	AL CONCENTRATES
STREAM SED	IMENT SAMPLES
	AKE PROPERTY
PROJECT No.: 393	DATA BY : G.A.
SCALE : 1:5000	DRAWN BY MERIDIAN MAP

DATE DECEMBER 1988

FIGURE : 4