
LOG NO: 003	RD.
A TION:	

ASSESSMENT ON	REPORT	FILE 130:
GEOLOGICAL, GEOCHEMICAI ON THE FOLLOW		

TR 5 4961(9)

[PART OF THE NORTH GROUP]

AND

56 degrees 35 minutes latitude 130 degrees 09 minutes longitude

N.T.S. 104B/9E

PROJECT PERIOD: June 11 - Sept. 27, 1 87

ON BEHALF OF TEUTON RESOURCES CORP. VANCOUVER, B.C.

REPORT BY

D. Cremonese, P. Eng. 602-675 W. Hastings Vancouver, B.C.

Date: Dec. 28, 1988

 \triangleright s S **0** 0 **(2)** S) 0 S 2 E O ΖÞ z B ぼ 77 ⋟ б.) Z **77 ()** -) II

TABLE OF CONTENTS

1. INTRODUCTION	1
A. Property, Location, Access and Physiography B. Status of Property C. History D. References E. Summary of Work Done	1 1 2 2 4
2. TECHNICAL DATA AND INTERPRETATION	6
A. Regional Geology B. Property Geology/Mineralogy a. Introduction b. Geology/Mineralogy of the Nunatak (East) c. Geology/Mineralogy of the Nunatak (West) d. Geology/Mineralogy of the Konkin Gold Zone C. Trenching & Sampling a. Introduction b. Diagram 1 - "Konkin" c. Diagram 2 d. Diagram 3 - "Upper Goat Trail" e. Diagram 4 - "Lower Goat Trail" f. Diagram 5 g. Diagram 6 	6 6 7 9 9 9 9 9 10 11 12 12 13
D. GeochemistrySoil a. Introduction b. Treatment of Data c. Discussion of Results c.1 Gold c.2 Silver c.3 Copper c.4 Lead c.5 Zinc c.6 Arsenic c.7 Antimony	13 13 14 14 16 16 17 17 17
E. GeochemistryRock a. Introduction b. Treatment of Data c. Discussion of Results c.1 Gold c.2 Arsenic	18 18 19 19 20
F. GeochemistryField Procedure and Lab Technique G. Geophysics H. Conclusions	21 21 22

APPENDICES

- I Work Cost Statement
- II Certificate III Summary Statistics & Probability Plots

APPENDICES (CONTINUED)

IV Assay Certificates

ILLUSTRATIONS

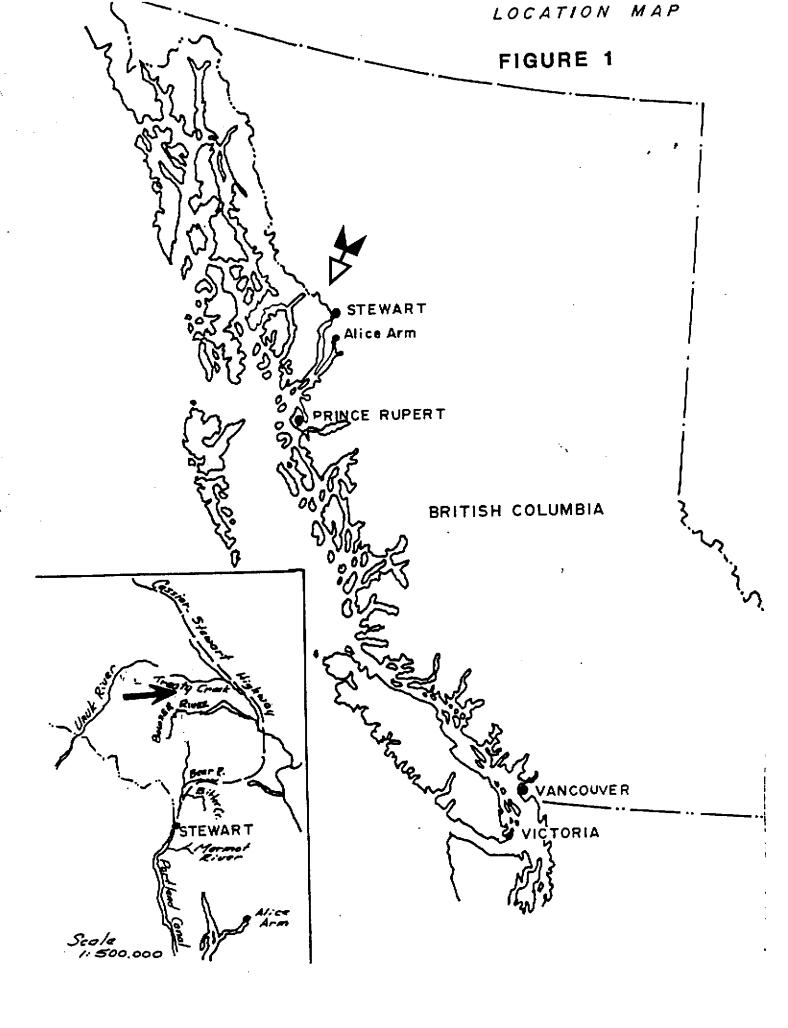
1. INTRODUCTION

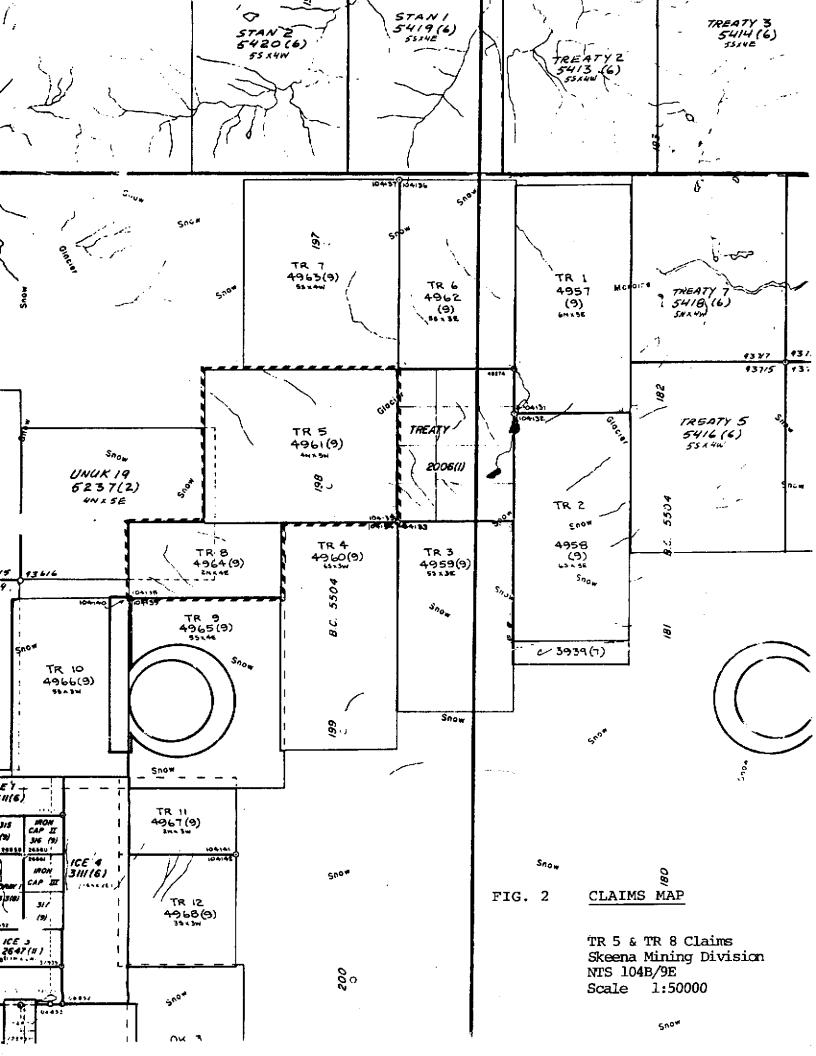
A. Property, Location, Access and Physiography

The TR property is located about 80 km north-northwest of Stewart, British Columbia. Nearest road is the Cassiar-Stewart Highway about 17 km to the east. Access is presently dependent upon helicopter services based at Stewart (Vancouver Island Helicopters) or alternatively at Bob Quinn Lake (Northern Mountain Helicopters). During the 1988 program, personnel and supplies were shuttled in from the air strip at Tide Lake Flats, situated at the terminus of the Granduc mining road about 20 km south of the property.

The claims cover an area of rugged, mountainous terrain at the head of the Treaty Creek Glacier. Elevations vary from approximately 1500 m to 2175 m. Vegetation in the area is limited to low-lying shrubs, mountain grasses and heather.

A nunatak exposed at high elevation along the eastern flank of the Treaty Glacier, covered variously by the TR 5, 8, 9 and 10 claims, constitutes the area of predominant interest on the TR property. Approximately 3,000 m long and averaging about 500 m wide, the nunatak features moderate to steep slopes with contours paralleling its northeast axis. Topography and orthophoto relative to claim lines are reproduced in this report as Figure 4. Ablation occurring prior to the date of the airphoto on which Fig. 4 is based has extended the real boundaries of the nunatak. For this reason, some of the geochemical lines put in during the 1988 work program appear to be overlying ice -- they are not.


Maximum rock exposure occurs where retreat of permanent snow and icefields has has been most pronounced. These exposures are interspersed with areas covered by glacial debris, talus and moraine. Although slopes are steep, most of the exposed areas can be accessed by foot without the help of mountaineering equipment.


Climate is severe, particularly at higher elevations. Heavy snowfalls in winter and rain in the short summer working season are typical of the Stewart area. Inclement weather conditions and reliance on helicopter transport make this a high cost area to explore for minerals.

B. Status of Property

Relevant claim information is summarized below:

Name	Record No.	No. of Units	Anniversary Date
TR 5	4961(9)	20	Sept. 30, 1987
TR 8	4964(9)	8	Sept. 30, 1987

Claim locations are shown on Fig. 2 after government N.T.S. map 104B/9E. The TR 5 claim belongs to the North Group, the TR 8 claim to the South Group. The claims are owned by Teuton Resources Corp. of Vancouver, British Columbia.

C. History

Two, brief isolated accounts in the B.C. Department of Mines Annual Reports mention that the Consolidated Mining and Smelting Company of Canada Ltd. (now Cominco) explored a large mineralized zone, parts of which are now covered by the TR 5 claim, during 1929 and 1930. Although Consolidated located 57 surveyed Crown-grant mineral claims in the area, exploration ended abruptly in 1931 and the claims were abandoned. Results of their exploration efforts were not published.

is also reported that several prospecting syndicates It during the 1950's explored the general Treaty Creek area (Ref. 1). In 1953, prospectors Charles Knipple and Tim Williams reported a small silver sulfide vein south of the Treaty Claim. Large boulders of tetrahedrite were also reported on the ice surface (source remains unlocated). Further work in 1967 ostensibly located a significant magnetic anomaly at the junction of Treaty Creek and South Treaty Glaciers. and further This, work in the area was concentrated on the highly visible alteration zones to the north and east of the TR 5 & 8 claims (these zones are covered by other claims in the TR series).

Prior to 1987, very little work, if any, had been carried out on the relatively isolated nunatak controlled by the TR 5 and 8 claims. Then, a small prospecting effort mounted late during the season led to the an unexpected discovery--native gold associated with skarn-like rocks just up from the ice edge on the eastern edge of the nunatak. This zone was dubbed the "Konkin" after its discoverer. At the instance of the exploration contractor a diamond drill was moved in to test the zone. Results of this work are contained in an assessment report filed with the B.C. Ministry of Mines and Energy Resources (Ref. 10).

The 1988 program was designed as a larger scale follow-up to the results obtained in 1987.

D. References

- 1. GROVE, E.W., P.ENG., PH.D. (1983): Private Report for Teuton Resources Corp. on the Treaty Claim.
- GROVE, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.

- 3. GROVE, E.W. (1971): Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- 4. ANNUAL REPORTS, MINISTER OF MINES, B.C.: 1929 -- p. C102; 1930 -- p. A110.
- BRITISH COLUMBIA MINER (1928): "Portland Canal Notes" by W.R. Hull, p. 36, December 1, 1928.
- KRUCHKOWSKI, E.R. (1981): Geological Report Treaty Claim --Bowser-Unuk Project, NTS 104B/9E, for E & B Explorations Ltd.
- 7. CREMONESE, P.ENG. (1984): Assessment Report on Prospecting Work on the Electrum 1 and Electrum 6 Claims, NTS 104B/9E, On File with the B.C.M.E.M.P.R.
- 8. CREMONESE, P.ENG. (1985): Assessment Report on Geological and Geochemical Work on the Treaty Claim, NTS 104B/9E, On File with the B.C.M.E.M.P.R.
- 9. CREMONESE, P.ENG. (Feb., 1987): Assessment Report on Geochemical Work on the Treaty & TR 2 claims, NTS 104B/9E, On File with the B.C.M.E.M.P.R.
- 10. CREMONESE, P.ENG. (Dec., 1988): Assessment Report on Diamond Drilling, Geological and Geochemical Work on the TR 4, 5 & TR 8 claims, NTS 104B/9E, On File with the B.C.M.E.M.P.R.
- OSTENSOE, ERIK A. (Feb., 1984): Report on the Gold Wedge Property, Sulphurets Creek Area. Private report for Catear Resources Ltd.
- 12. TRIBE, N.L., P.ENG. (Apr., 1986): Progress Report 1985 Field Season, Sulphurets Property. Report in Statement of Material Facts filed on behalf of Newhawk Gold Mines Ltd.
- WALUS, A. (Oct., 1988): Field Report and Maps on 1988 Treaty Creek Project for Teuton Resources Corp.
- 14. FIELDNOTES/FIELDMAPS (June-Sept. 1988): Sundry material collected by field personnel during 1988 Treaty Creek Project for Teuton Resources Corp.
- 15. SAYER, C., P. GEOL. (Sept., 1988): Drill Recommendations -TR 5 and TR 8 Claims; Private Report for Teuton Resources.
- 16. STANLEY, CLIFFORD R. (1987): PROBPLOT--An Interactive Computer Program to Fit Mixtures of Normal (or Log Normal) Distributions with Maximum Likelihood Optimization Procedures; Instruction Manual -- Association of Exploration

Geochemists, Special Volume 14.

E. Summary of Work Done.

On June 11, 1988 the author flew into the TR property by helicopter to assess snow conditions, select potential campsites and, if feasible, chart a route up the Treaty Glacier for a Bombardier or similar piece of equipment. During this visit it was noted that the main showings discovered on the TR 5 and 8 claims the previous year were largely free of snow.

Merl Cloutier, blaster, and an assistant left Vancouver for the property in late June with instructions to set up a camp near the "Konkin" showing and begin a trenching program. Thereafter two additional workers, both well-experienced with blasting and trenching, were flown in. One of these, Tom Kennedy, was put in charge of field operations. Subsequently, Alex Walus, geologist, and Eric MacKenzie (field hand experienced in operation of geophysical equipment) joined the crew. Two additional assistants were later added to the work force. During this time, the author made several visits to the property to supervise activities. Geologists Chris Sayer and Paul MacGuigan also made visits during the 1988 program.

The primary thrust of the 1988 program was directed at blasting, trenching and sampling of mineralized zones exposed in the northeastern portion of the nunatak on the TR 5 and 8 claims. Twenty-six trenches were excavated totalling 275.5 meters in length. Of this 258.4 meters were sampled, generating 282 samples. Average trench width was about 0.6 meters, depth varying from 0.6 m to 1.2 m depending upon degree of surface weathering. In several places, especially the upper portions of the Konkin Zone, overburden made trenching to bedrock a tedious and time-consuming process.

The "Main Grid" was constructed covering most of the area in the northeastern end of the nunatak. Baseline spanned 600 meters with cross-lines every 50 meters [additional cross-lines were used in the magnetometer survey]. Several reconnaissance rock and soil geochem lines were also put in to the test areas northeast, east, and southwest of the main grid. A detail grid was emplaced in the northeastern portion of the main grid in order to follow-up some high gold geochemical values. Altogether 439 soil and 487 rock samples were taken. A further 11 reconaissance rock geochemical samples were taken.

An Omni "Tie-Line" Magnetomer System was used to take readings along 5,570 m of grid at 579 stations.

Geological mapping at a scale of 1:2000 was undertaken to cover most of the exposed area of the nunatak. The Main Grid area in the northeastern portion of the nunatak was done with as much accuracy as surface conditions allowed (extensive talus and overburden, some steep, inaccessible places). This area, shown in Fig. 5, encompassed roughly 280,000 sq. meters (800m by 350m, on average). The longer, southwestern portion of the nunatak was also mapped at 1:2000, but work here was of a preliminary nature as there was not enough time to establish a control grid. This latter area is roughly 200m wide by 1800m long, or about 360,000 sq. meters (see Fig. 6). Detailed mapping of the Konkin Gold Zone at 1:200 was also completed, covering an area estimated at 7,500 square meters. Similar detailed mapping of trenches outside the Konkin Zone was not initiated as planned due to time constraints.

It was originally anticipated that a diamond drilling program would close out the 1988 field program. A full drill camp, complete with cookshack, showers, and other requisites, was operational by the first week of September. The labour crew had also blasted out and levelled three large drill pads, dimensions 6 m by 6 m minimum. Sites for these drill pads, #s 1-3, are shown on Fig. 7 (#1 and #2) and Fig. 5 (#3).

Delays in finding a suitable drill contractor ultimately led a decision to close down the project in mid-September. to Another factor was the proximity of the end of the field season (large costs overruns were incurred due to adverse weather conditions in a small drill program carried out near the end of the previous year's field season). Crew and equipment were flown out of the property on Sept. 22, just prior to the onset of a severe storm. During the hasty demobilization, some of the field notes for the 1988 project were lost (or unwittingly left on These included geochemical sample descriptions for some site). of the samples taken on the TR 5 and 8 claims, as well as notes describing sample locations for minor work carried out on the adjacent TR 1, 2, 3, and Treaty claims. Estimated prorated costs for this latter work have been deducted from the total 1988 program costs.

For simplicity, work on the North and South Groups of the TR claims has been presented in the format of a single assessment report. Since the main work area overlapped the boundary of the two groups, costs have been prorated as shown at the end of the Work Cost Statement (Appendix I).

2. TECHNICAL DATA AND INTERPRETATION

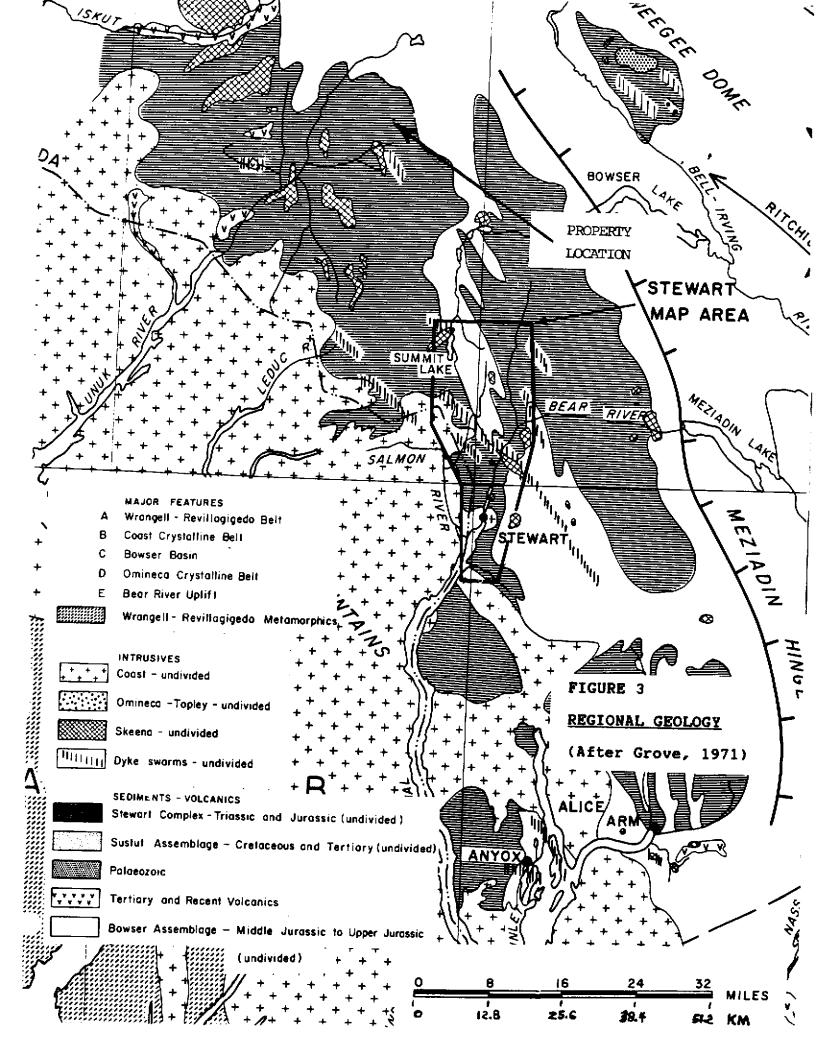
A. Regional Geology

The property lies along the eastern edge of a broad, NNW trending belt of Triassic and Jurassic age volcanic and sedimentary rocks termed by Grove (1971) as the "Stewart Complex" [see Fig. 3]. This belt is bounded to the west by the Coast Crystalline Belt (mainly granodiorites) and to the east by a thick series of sedimentary rocks known as the Bowser assemblage (Middle Jurassic to Upper Jurassic age).

In the Sulphurets-Treaty Creek area, the lowermost formation consists of clastic rocks comprised of medium grained lapilli tuffs of andesite composition (Unuk River Formation). It is believed to be as much as 3,000 meters thick. Significantly most of the economic gold-silver deposits within the Stewart area are contained within rocks of the Unuk River Formation.

Lying unconformably above is the Betty Creek Formation, consisting of red and green volcanic sandstone, pillow lavas, conglomerate, and tuffs. The Betty Creek varies in thickness and may pinch out altogether.

Above the Betty Creek is the Salmon River Formation of marine siltstones, greywackes, conglomerates, minor limestone, and minor volcanic components.


This volcanic-sedimentary sequence is cut in several places by a variety of intrusive rocks varying from diorite to granite to syenite. The plutons are marked generally by distinct zones of pervasive pyrite-sericite alteration. Argillic assemblages containing alunite and native sulfur are also associated with certain prominent gossans in the Treaty Creek area.

Up to the present date the area has undergone exploration for porphyry copper-molybdenum deposits (Sulphurets property, Kerr property) and epithermal vein-type gold-silver deposits (Sulphurets property, Gold Wedge property). A recent discovery at Eskay Creek, just west of the area but in the same lithologies, has indicated a third potential target: massive sulfide deposits carrying significant values in precious metals. These are thought to occur near the base of the Salmon River Formation.

B. Property Geology/Mineralogy

a. Introduction

Geological mapping was carried out by A. Walus, holder of a Master's Degree in geology, specializing in petrography. Geology of the nunatak was mapped at a scale of 1:2000. In order to

facilitate representation, the nunatak was mapped in two parts. The northeastern portion is found in Fig. 5, entitled "Geological Map of the Nunatak (East)"; the southwestern portion is found in Fig. 6, entitled "Geological Map of the Nunatak (West)". The two maps overlap to a certain extent. Because a control grid was established over a large part of the Fig. 5 geology (East), work thereon can be considered much more accurate than its Fig. 6 (West) counterpart. During mapping, extensive overburden and talus cover necessitated approximation of geological contacts between rock outcrops in both sections of the nunatak.

A detailed map of the "Konkin" area has been drawn at a scale of 1:200: see Fig. 7, "Geological Map Konkin Gold Zone". It was originally planned to map in detail all of the areas trenched on the property. Unfortunately time constraints postponed this work to the following field season.

b. Geology/Mineralogy of Nunatak (East)--Fig. 5

Two distinct horizons are present: at the bottom, a sedimentary sequence consisting of alternating beds of limestone, massive, greenish siltstone trending occasionally into more pelitic rock (possibly a mudstone) and conglomerate (a small occurrence of fine-grained conglomerate was spotted at 350N 90W on the Main Grid, all substantially silicified with disseminated pyrite; above, a volcanic unit consisting of andesite lapilli tuff which in a few places passes into volcanic breccia and sometimes into flow breccia. The former is cut by dykes of diorite (lesser granite, hornblende-augite porphyry and minor rhyolite), the latter by dykes of aphanitic andesite. Due to strong cleavage the lapilli tuff is in many places transformed to semi-schists. It is believed that the units are overturned, the sedimentary sequence being the younger of the two.

Both sedimentary and volcanic units have been intruded by a variety of plutons. In the northeast corner of the nunatak, a heavily silicified diorite contains disseminated pyrite mineralization (3 to 5%) accompanied by low grade gold values. Because of the intensity of silicification, classification as a diorite is not certain--however, in places, the fabric of the plutonic rock has been preserved). Just north of the "Konkin" zone, a diorite intrusive is exposed in several small outcrops (its extent is probably larger than shown on Fig. 5: cf. Magnetometer Survey, Fig. 21). Two "skarn-like" bands are exposed naturally and by trenching in the Konkin zone, and are believed related to the diorite.

A long northeast trending zone of alteration straddles the volcanic-sedimentary contact in the "Goat Trail" area. It features strong sericite, silica, pyrite, limonite, clay, calcite, chlorite alterations with the proportions of constituents changing in broad range. It may or may not be related to a similiar, narrower zone in andesite lapilli tuffs about 200 m southwest. Linear, northerly trending zones of alteration are also present in the Konkin zone area.

The Goat Trail alteration zone exhibits a distinct form of gold mineralization as outlined by geochemical sampling. Gold values are accompanied by elevated levels of lead, zinc, silver, antimony, arsenic, and in the area proximate to the silicified diorite, copper. The lead-zinc-silver values are believed to be associated with minor galena and sphalerite, the antimony and arsenic values possibly with tetrahedrite. Gold values obtained in the alteration zone 200 m southwest, however, appear to be associated with arsenic only.

c. Geology/Mineralogy of the Nunatak (West) Fig. 6

This portion exhibits the same volcanic-sedimentary package as in the eastern portion of the nunatak. Lying above it is another volcanic-sedimentary sequence consisting of andesite crystal tuff, andesite, lapilli tuff, volcanic sandstone and, in large part, dark banded siltstone which may be built at least partly with volcanic material. In some places, the bands of siltstone are intercalated with thin layers of volcanic sandstone or even with andesite crystal tuff (with distinct laths of feldspar). The volcanic sandstone appears to be reworked andesite crystal tuff, since full gradation between the latter and andesite crystal tuff is present.

Rocks in this area have been cut by abundant steep faults running approximately NE-SW to N-S.

A linear alteration zone extending northeast from the southwestern edge of the nunatak has been traced for approximately 450 meters. Predominant alteration is quartz-sericite-pyrite. The alteration is not homogenous but is intermingled with rocks untouched by alteration. Large portions of the altered rocks are almost devoid of pyrite while some portions have pyrite concentrations up to 20-30%. Pyrite occurs as very fine to medium sized grains or in semi-massive form; it is either evenly distributed throughout the rock or comprises thin veins, lenses, or patches up to 10 cm in diameter. Throughout this zone there are numerous thin veins of guartz-calcite. Strong gold-arsenic geochemistry in this area, both from soil and rock samples, suggests a situation similar to that occurring at Catear's Goldwedge property approximately 8 km to the south.

Two other types of mineralization were noted in the area. Auriferous sphalerite and galena occur in gossanous outcrops in the central portion of geochemical Line MC (cf. samples TK004 and 005--Figs. 19-20). Float boulders containing galena in a quartz gangue were also discovered close to Station BC 6+25S on Line BC (cf. sample ENM Float #1--Figs. 19-20).

Two forms of intrusive are evident in the northeastern portion of the Fig. 6 area (in the area of overlap with Fig. 5). One is a diorite, the other, believed to be an altered granite. Dykes of diorite, and to a lesser extent, granite, were also observed. Some dykes of augite porphyry were noted as well as two dykes of rhyolite. [The dykes have not been mapped because of the preliminary nature of the work in this area].

d. Geology/Mineralogy Konkin Gold Zone - Fig. 7 (Indexed Fig. 5)

The Konkin Zone is generally an andesitic package of rocks bounded to the north by a dioritic intrusion. Two parallel skarn zones ranging from 12 to 20 m wide run approximately east-west. To the west they are covered by overburden and they extend about 30 m east where they are cut off by north trending faults. Within the andesite are also north trending zones of sericitic, limonitic, clay alteration which occur east of the skarns. These zones may be 3-8 m wide and run up to 50 m in length. Pyrite is also common in this type of alteration.

The skarn zones are mainly characterized by epidote alteration with local magnetite and calcite replacement. Sulfide mineralization is often up to 60% consisting of pyrite with auxiliary chalcopyrite. Other minerals observed in the skarn assemblage include chlorite, diopside, specular hematite, malachite, azurite, and limonite.

In one location known as the "Gold Pit" a local concentration of native gold occurs which can be seen with the unaided eye. The "Gold Pit" features quartz calcite veinlets in an extremely vuggy zone about 1.2 m by 3 m in area. Local structural features are complex--mechanism for the gold enrichment has not yet been ascertained.

Drilling done in 1987 tested the southernmost skarn band which hosts the Gold Pit. One of three holes intersected 5.5 ft grading 0.8 oz/ton near hole bottom. According to present understanding of structural relations, these holes were inadequately sited and probably only grazed the outer fringe of the southern skarn.

C. Trenching & Sampling

a. Introduction

Altogether 26 separate trenches were excavated during the 1988 program, totalling 275.5 linear meters from which 282 samples (plus one grab) were taken. Most of the samples taken were 1.0 m in length or a little less. The trenching program was confined to the northeastern end of the nunatak--trench and sample locations are shown on Fig. 8--with the greatest density of trenching taking place in the "Konkin" area. In general trenches were approximately 0.6 meters in width and from 0.6 to 1.2 meters deep, depending upon degree of weathering in the rock. Certain trenches, such as #'s 31 and 32, required extensive surface clearing of overburden.

Although the trenches run from #'s 1 to 33, there are no trenches for #'s 23 to 29 inclusive. These were sited but were not begun due to other work taking precedence.

Gold values in oz./ton are recorded on Fig. 9. In the Konkin area, it was observed that there was some correlation between copper values and gold values, hence it was decided to plot the former on Fig. 11. Likewise, in the Goat Trail area and vicinity, arsenic values appeared to be somewhat associated with gold--arsenic values in trench samples can be found in Fig. 10.

Individual trenched areas (Diags. 1 to 6, Figs. 9-11) are discussed below.

b. Diagram 1 - "Konkin"

The impetus for work in this area came from the discovery of the "Gold Pit" in 1987. It yielded grades up to 28.0 oz/ton Au over 1.2 meters as well as several bonanza specimens containing coarse gold. Two 1987 chip samples from an outcrop 30 meters north of the Gold Pit returned values better than 1.0 oz/ton each over an interval of 1.2 meters. Although much of the area was masked by glacial overburden, it was assumed from the sample results that the locus for the gold mineralization was a northerly trending structure.

Trenching through outcrop and overburden in 1988 has shown that the initial interpretation was in error. The Gold Pit mineralization is now thought to represent a locally intense concentration of gold values within a broad, easterly trending band of skarn-like rocks. A parallel band of similar rocks, also easterly striking, contains the second set of high gold values discovered in 1987.

The northern band was tested by Trenches 1, 4 and 32 (Trench 4 crossed only a partial width of the band). The following gold-bearing intervals (weighted averages) were uncovered by sampling:

Trench #	Interval Sample #s	Length m	Gold oz/ton
TR-1	5-19	15.0	0.220
TR-4	3-8	3.8	0.401
T R-32	2-18	17.0	0.061

Signficant copper values were also obtained in the northern band as follows:

Trench	Interval	Length	Copper
#	Sample #s	m	%
TR-1	68	3	0.18
TR-32	7-16	10	0.36

Continuity of the northern skarn band along strike is obscured in both directions by overburden. Present trenching defines a strike length of about 20 meters.

The southern band returned gold-bearing intervals in four trenches (#'s 9, 30, 31 and 33). Only the uppermost Trench, #31, can be said with certainty to have cut across the full width of the auriferous portion of the skarn; the others all have at least one end still in gold mineralization. Based on gold grades and geology of Trench #3, the southern skarn band does not extend much beyond the exposures in Trenches 9 and 33, however, continuity along strike to the southwest remains unresolved because of talus cover. Trench intervals for gold are as follows:

Trench	Interval	Length	Gold
#	Sample #s	m	oz/ton
T R−9	Ext.#2-9	10.1	0.098
TR-30	1-5	5.0	0.102
TR-31	7-8	2.0	0.145
TR-33	1-5	5.0	0.193

For copper:

Trench	Interval	Length	Copper
#	Sample #s	m	%
TR-30	4-7	4.0	1.01
TR-31	7-8	2.0	0.29

Although copper values are found within both bands, the correlation with gold values is only partial. The same might be said of tungsten: analysis of the ICP assay certificates shows that anomalous tungsten levels are associated with some, but not all of the better gold values.

c. Diagram 2

Trenches #'s 5, 6 & 7 explore a sericite-pyrite alteration zone in lapilli tuffs between the western ends of Lines 150N and 200N on the Main Grid. A chip sample returned 0.6 oz/ton over 2.0 m in this area in 1987. Although values cannot be considered high-grade, the three trenches returned consistently anomalous levels in gold. The best interval occured at the northern end of Trench 7: 0.072 over 1.8 meters. Significantly, all three trenches registered anomalous arsenic content: cf. Fig. 10.

Further trenching was planned at this site but was put off for safety reasons (dangerous loose rock directly above zone).

d. Diagram 3 - "Upper Goat Trail"

Four trenches were put in here to test the center of a very intense, northeasterly trending, broad band of pyrite-sericite alteration. The trenches, #'s 19-22 inclusive, expose highly altered lapilli tuffs close to the sedimentary contact.

Gold values obtained from sampling the trenches appear to define a roughly northerly trending structure (visual identification of structure was rendered difficult if not impossible by the pervasiveness of alteration, particularly in Trench 22). Best value was obtained in Trench 19, 0.56 oz/ton gold over 0.9 meters contained within a larger interval having a weighted average of 0.312 oz/ton gold over 1.9 m. This was accompanied by elevated values in arsenic, lead and antimony. Not surprisingly, these three elements are also present in anomalous levels in the multi-element soil geochemical anomaly defined by the Main Grid geochem survey (cf. Figs. 17, 15 and 18, respectively). An interval in Trench 20 (Sample #s 5-9, incl.) returned a weighted average of 0.076 oz/ton gold over 4.5 meters.

Lack of mineral content in Trench 21 suggests that this was put in a little off structure. Although gold values in Trench 22 are appreciably weaker than in Trenches 19 and 20, this may be due to leaching (workers reported they were unable to reach non-weathered material).

e. Diagram 4 - "Lower Goat Trail"

Trenches 10, 11 and 12 explore a sedimentary sequence of alternating beds of limestone, mudstone and conglomerate containing disseminated pyrite. Gold values range from background levels to sub-ore grade (i.e., 0.124 oz/ton over 0.9 meters, Trench 12) were obtained, with no definite association to rock structure. It is probable that the gold values represent leakage from a primary structure not too far distant. Associated arsenic values were not present, suggesting different mineralogy to that in the Upper Goat Trail area.

f. Diagram 5

This is an interesting site spanning the contact area between the northeasterly-trending alteration zone described previously in the "Upper Gold Trail" section and a large outcrop of heavily silicified diorite. Trench 18 is in the altered lapilli tuffs and registered gold values between 0.016 and 0.081 oz/ton from five samples; Trench 13 is in the silicified diorite (also containing disseminated pyrite) and returned values ranging from a low of 0.013 oz/ton gold to a high of 0.076 oz/ton gold.

The Diagram 5 area is statistically significant because of the ubiquitous nature of the anomalous gold values--note that trenching was done in two different directions. The main metal association is iron (pyrite), although several of the sample sites also contain weak to moderately anomalous levels of arsenic.

g. Diagram 6

Located in relatively unaltered lapilli tuffs near the eastern end of Line 600N, this area features four trenches put in somewhat at random to test pyritic outcrops. All trenches contained intervals with anomalous gold content, however Trench 15 had the best values: a 3.6 m interval returned a weighted average of 0.052 oz/ton gold. Whether this interval is related to any of the gold values reported in the other trenches is not known.

D. Geochemistry--Soils

a. Introduction

Geochemical soil samples were collected from the Main Grid (and follow-up "Detail Grid") areas, results from which are presented in Figs. 12 to 18. Two reconnaissance geochemical lines were also put in, results from which are presented in Figs. 19 to 20.

Samples from the Main Grid were collected at 20 m intervals along lines separated by 50 m. A follow-up detail grid was also emplaced from which samples were collected every 5 m along lines separated by 12.5 m. The detail grid is located in the northeastern portion of the Main Grid. Sampling was precluded at certain sites by steepness, snow cover or rock outcrop.

Samples from reconnaissance lines "BC" and "MC" test the area southwest of the Main Grid and were taken every 25m.

b. Treatment of Data

Soil samples collected during the 1988 program were tested for gold content by atomic absorption methods; an additional 29 elements were analysed for using ICP. Results were recorded both in Assay Certificates (see Appendices) and on floppy disk. Analytic results for elements gold, silver, copper, lead, zinc, arsenic and antimony were selected for statistical treatment based on distribution patterns. [Gold was the primary target of the exploration program; silver, copper, lead, zinc, arsenic and antimony were considered to be of importance primarily as pathfinders for gold.]

The data was run through the "Probplot" computer program (Ref. 16), an interactive computer program designed to fit mixtures of normal (or log-normal) distributions with maximum likelihood optimization procedures. Summary statistics and a histogram have been plotted for each of the seven elements noted above: see Appendix III. In general, these reveal log-normal distributions, typical of geochemical data. Probability plots have also been included in Appendix III.

Inflection points on most, if not all, of the probability plots indicate the presence of several populations. Attempts to break these out into separate populations using the complex software available on the Probplot program were not successful. It was not clear whether two, three or even four populations were represented by the data, and the separated populations often showed a considerable degree of overlap. In the end it was decided that, for the grid samples, simply contouring the data was the best method for analysing results. As for the reconnaissance soil lines, samples registering values in excess of mean + one standard deviation were emphasized by placing a small diamond beside the numerical value on Figs. 19-20; those in excess of the mean + two standard deviations were emphasized by a large diamond.

Classification [Note: of the sample population into conventional background, threshold and anomalous categories was rendered difficult by two factors. First, the population was skewed because a large proportion of the samples were "anomalous" anyway--for instance, soil samples registering in excess of 200 ppb gold generally have been considered worthy of follow-up in the Stewart area, yet the mean for the project soil samples was 303 ppb gold. This was a direct result of the concentration of the geochemical samples in the Main Grid area, close to known occurrences of gold mineralization. Second, it is now obvious from the combined results of the 1988 program that several different types of gold mineralization exist on the property. These different types are in all probability represented by different populations, further complicating matters).

c. Discussion of Results

c.1 -- Gold

Gold values for the Main Grid area are shown in Fig. 12; for the reconnaissance soil lines "BC" and "MC" in Fig. 19. The Main Grid area has been contoured at the 700, 1100, 1500 and 2,000 ppb gold levels. A distinct anomaly is evident in the southeastern corner of the Main Grid, interepreted as being related to the "Konkin" area. Extension of the anomaly to the north-northeast is interpreted as either signalling an extension of the known Konkin mineralization or representing down-glacier contamination from the Konkin zone.

A unique feature of the "Konkin" soil gold anomaly is that it is associated with a distinct copper anomaly (and to a lesser extent a silver anomaly), however lead, zinc, arsenic and antimony appear only at background or slightly elevated levels.

The pronounced gold anomaly evident between Lines 350N and 600N, northeastern portion of the Main Grid, appears to be associated with a broad zone of pyrite-sericite alteration roughly coinciding with the volcanic-sedimentary contact. Unfortunately sampling density in the northeasternmost portion was limited due to steepness and extensive rock outcrop. The anomaly is about 100 m wide and has an inferred length of 250 m. It is open to the northeast and southeast.

A distinctive feature is a more or less overlapping, antimony anomaly. Throughout the rest of the main grid area antimony values are at background levels only. Coincident arsenic and lead-zinc-silver anomalies are also present. Copper is anomalous only in the northernmost portion.

Another gold anomaly occurs between Lines 50N and 150N at the western edge of the Main Grid. It is probably an expression of the structure hosting the gold mineralization trench sampled in Diag. 2, Fig. 9 (sericite schists). This anomaly shows a good correlation with an arsenic anomaly at the same site (cf. Fig.-17). Based on the arsenic/gold association, the gold anomaly between Stations 50W and 150W on Lines 0N and 50N is probably due to the same source.

The spot gold high of 1,435 ppb at Line 250N, Station 100W, is tentatively interepreted as having been caused by a glacial erratic.

Soil reconnaissance lines put in to test the southwestern portion of the nunatak disclosed broad areas of elevated gold values, particularly the southwestern portion of line "MC". While only those values in excess of 1390 ppb (mean + 1 standard deviation) have been specially marked on Fig. 19, it should be stated that the typical "rule-of-thumb" in the Stewart area has been to re-examine all soil values in excess of 200 ppb gold. Based on trials contouring the Main Grid area, a "cut-off" of 700 ppb is probably more appropriate for this part of the project area. [This higher value may be due to the fact the soils are more in the nature of talus fines than true soils. Since the southwestern portion of the nunatak will need follow-up grid geochemical sampling, it would be premature at this stage to rigidly define anomalous levels anyway.]

Twenty-seven of the samples collected along Lines BC and MC registered values in excess of 700 ppb gold. The best values occurred between Stations 9+50S and 10+25S on Line MC. These returned soil geochem values ranging between 1470 ppb and 2410 ppb in gold. The reading of 1705 ppb at Station 16+50S on line BC may represent a downhill continuation. Another high on Line MC occurs at 4+25S; it returned 1720 ppb gold, flanked by values of 1330 and 850 ppb on either side.

c.2 -- Silver

Silver values for the main grid are shown on Fig. 13. Contour levels are at 3, 4, 5 and 7 ppm.

As discussed in the preceding section on gold, overlapping silver anomalies mark both the Konkin and Goat Trail gold anomalies. The anomaly over the Konkin zone is less pronounced, reflecting the relatively low silver-gold ratios as defined in mineral samples taken from that area (many of the higher grade Konkin mineral samples have a higher gold content than silver content). The silver values in the Goat Trail area appear to be associated with lead-zinc values.

Another silver anomaly is evident between the Konkin and the Goat Trail anomaly. It's source is unknown but may be a downhill expression of the broader silver anomaly located due west. This latter anomaly appears to be related to an extensive, somewhat diffuse copper anomaly whose origin is speculated as being close to the ridge crest.

Other, smaller silver anomalies present on Fig. 13 are interpreted as associated with gold anomalies discussed in the section on gold.

c.3 -- Copper

Copper values for the main grid are shown on Fig. 14. Contour intervals are at 250, 325, 400 and 500 ppm.

The Konkin and Goat Trail copper anomalies have been discussed in section C.1 (Gold). Of most interest, is a broad, diffuse copper anomaly occupying much of the central portion of the Main Grid area. Values taper downhill to the east. Because the strongest values are at the top of the hill, at the western edge of the grid lines, the source for this anomaly is speculated as being outside the sampled area. Abundant copper-stained float (in volcanics) was found in talus scattered throughout the central portion of the anomaly. c.4 -- Lead

Lead values for the Main Grid are shown on Fig. 15. Contour intervals are at 200, 300, 400 and 500 ppm.

A large lead anomaly overlaps the gold anomaly located in the Goat Trail area in the northeastern portion of the Main Grid. Values range to 807 ppm. Lead also shows a strong silver, zinc, antimony, and arsenic association.

Spot highs located in the southwestern portion of the Main Grid are not directly associated with other anomalies or known mineralization.

c.5 -- Zinc

Zinc values for the Main Grid are shown on Fig. 16. Contour intervals are at 300, 450, 600 and 800 ppm.

The same comments with respect to lead (section c.4) also apply to zinc.

c.6 -- Arsenic

Arsenic values for the Main Grid area are shown on Fig. 17; for the reconnaissance soil lines "BC" and "MC" on Fig. 20. [Arsenic was the only metal other than gold plotted on figures for the geochemical reconnaissance lines on the southwest portion of the nunatak; this was because it was the only metal exhibiting a strong gold correlation in this part of the project area].

Contour intervals for the Main Grid samples are at 500, 800, 1100 and 1500 ppm. The two arsenic anomalies evident on Fig. 17, one in the Goat Trail area, the other in the southwestern corner of the grid, have already been discussed in the section on gold.

Reconnaissance geochem lines "BC" and "MC" contain several sections showing highly elevated levels of arsenic. The most anomalous area occurs at the southwestern end of Line MC, with three sample sites registering values in excess of 2160 ppm (equal to mean + 2 standard deviations: marked by a large diamond). Highest value obtained was 5,389 ppm arsenic at MC 9+755. Another "large diamond" occurs downhill on Line BC at 16+50S--3,103 ppm.

Values between 1230 and 2159 ppm have been marked on Fig. 17 as small diamonds. There are 27 of these samples--one prominent cluster occurs on Line MC between 3+25S and 4+25S inclusive. As stated in the previous section on gold, setting threshold values has been difficult because of the high background values inherent in the survey results. The same applies to the arsenic soil values obtained on the reconnaissance lines, particularly Line MC. A closely spaced grid survey should be undertaken in this area in order to properly define anomalies.

c.7 -- Antimony

Antimony values for the Main Grid area are shown on Fig. 18. Contour intervals are at 6, 14, 25 and 40 ppm.

The only antimony anomaly occurs in the "Goat Trail" area and coincides with gold, silver, lead, zinc and arsenic anomalies occurring there as well.

E. Geochemistry - Rock

a. Introduction

Geochemical rock samples were collected from reconnaissance lines north and east of the Main Grid ("WC", "GTC" and "BC" Lines:) and also southwest of the Main Grid ("UC" Line). Gold values are shown on Fig. 19, arsenic values on Fig. 20.

Samples were collected every 10 m along the lines. Lines "WC", "GTC" and the northern portion of "BC" are straight lines; the southern portion of Line "BC" and all of "UC" are irregular lines following rock outcrop.

Eleven spot rock geochemical samples were taken in the southwestern corner of the nunatak. These are termed NG-1 to NG-7, TK-004 to TK-006, and ENM Float #1.

Unfortunately rock geochemical sample descriptions were either inadvertently left at camp or lost during demobilization. Where possible brief descriptions are given from memory or by reference to geological mapping.

b. Treatment of Data

Rock samples collected during the 1988 program were tested for gold content by atomic absorption methods; an additional 29 elements were analysed for using ICP. Results were recorded both in Assay Certificates (see Appendices) and on floppy disk.

Analytic results for elements gold and arsenic were selected for statistical treatment based on distribution patterns. Data was run through the "Probplot" computer program (Ref. 16), an interactive computer program designed to fit mixtures of normal (or log-normal) distributions with maximum likelihood optimization procedures. Summary statistics and a histogram have been plotted for each of the seven elements noted above: see Appendix III. Both gold and silver show approximate log-normal distributions. Probability plots featuring several inflection points for both gold and arsenic (suggestive of several different populations) have also been included in Appendix III.

Difficulty in separating populations has precluded simple classification of anomalous or non-anomalous levels. The same reasons as stated in the section on soil geochemistry apply here as well. Since contouring was not available as an alternative method (non-grid samples), it was decided merely to emphasize those samples lying greater than one standard deviation from the mean (represented on the Figures as a small diamond), as well as those samples greater than two standard deviations from the mean (represented on the Figures as a large diamond).

Gold values are to be found on Fig. 19; values for the most important pathfinder element, arsenic, on Fig. 20.

c. Discussion of Results

c.1 -- Gold

The mean value for gold content in rock geochemical samples taken during the 1988 survey was 76 ppb. Mean plus 1 standard deviation equalled 730 ppb (rounded), and mean plus 2 standard deviations 1380 ppb.

Most anomalous rock geochem line was the southern portion of Line BC (Diag. 3; Fig. 19). From 23 samples taken along 220 m, values ranged between a low of 141 ppb to a high of 6465 ppb. Arithmetic average was 800 ppb (0.023 oz/ton), very anomalous considering the length of the interval. As located, this line would be within the unit termed "heavily silicified diorite" on Fig. 5 (Geological Map of the Nunatak {East}). Gold values obtained correspond in general with values from Trench 13, also in the same unit but some 80 m to the west.

The northern portion of Line BC (Diag. 2; Fig. 19) is also in the heavily silicified diorite but gold values are not as strong. Apart from the 1660 ppb sample at 2+70N, values are below the arithmetic mean for the southern part of Line BC. Similarily Line WGC, uphill to the northwest (also Diag. 2; Fig. 19) and situated in andesite lapilli tuffs, recorded some anomalous gold values but background gold values are not particularly high. Values of 3575 and 1635 ppb gold registered at GTC 0+30N and GTC 0+40N, respectively, should be investigated; ditto for the highs at GTC 1+90N and 2+10N. Uphill again to Line WC, in andesite lapilli tuff, gold values attenuate sharply. Best value was 790 ppb at WC 1+10N.

Turning to the southwestern portion of the nunatak, Line UC showed a cluster of anomalous gold samples at UC 4+70S (985 ppb), 4+80S (1025 ppb) and UC 5+00S (2215 ppb). According to Fig. 6 (Geological Map of the Nunatak {West}), these samples were taken from a sedimentary sequence of alternating beds of limestone, siltstone, mudstone and conglomerate. Two other isolated highs occur: at UC 1+60S (6255 ppb) in dioritic rock; and at UC 8+70S (1480 ppb) in the sedimentary sequence.

Perhaps the most interesting of the rock geochemical samples are those in the "NG" series, taken at random from the strong linear alteration zone in lapilli tuffs at the extreme southwest corner of the nunatak. A distinctive feature of the alteration zone is the abundance of guartz-calcite veining or stockworks. Seven samples ranged from 211 to 1725 ppb in gold, with an arithmetic mean of 1100 ppb.

TK 004 returned 5177 ppb in gold and was a sample of gossanous outcrop in volcanic rocks containing pyrite and a mineral believed to be sphalerite. TK 005 returned 6891 ppb in gold from a similar gossanous outcrop and featured pyrite, sphalerite and minor copper stain. TK006 was a pyritized float sample of andesite lapilli tuff which returned a value of 857 ppb in gold. Sample ENM Float #1 was selected from an area of abundant float boulders containing galena and sphalerite in a quartz gangue. Source remains unknown. This sample returned a value of 925 ppb gold and 158.4 ppm silver.

c.2--Arsenic

The mean value for gold content in rock geochemical samples taken during the 1988 survey was 88 ppb. Mean plus 1 standard deviation equalled 450 ppb (rounded), and mean plus 2 standard deviations 780 ppb.

The lack of high arsenic values in both the southern and northern portions of Line BC (Diags. 2 & 3, Fig. 20) indicates gold values in the silicified diorite probably are not that associated with arsenic. By contrast, elevated arsenic values occur in Lines GTC in approximate spatial correlation to the high gold values. This suggests that the form of gold mineralization occurring in the lapilli tuffs is arsenic related (as borne out by trenching in lapilli tuffs in the southwestern portion of the Main Grid area (Trenches 5, 6 & 7). The slightly elevated arsenic values registered at the beginning of Line UC are probably a continuation of this last mentioned area. At UC 8+70S, an arsenic value of 1,641 ppm corresponds well with a gold high of 1,480 ppb.

In the southwestern corner of the nunatak, arsenic values show a very strong correlation with gold in the "NG" series. The seven NG samples range from 417 to 1360 ppm arsenic with an arithmetic mean of 868 ppm. The NG samples are in an alteration zone in lapilli tuffs.

Arsenic highs were also obtained in samples TK005 and 006: 1344 and 854 ppm, respectively. Lesser values of 524 and

482 ppm were obtained from samples TKO-06 and ENM Float #1.

F. Geochemistry--Field Procedure and Laboratory Technique

Soil samples were taken from 20 to 30 cm below surface by digging with a prospectors pick. Soil development in this alpine-type area can be characterized as very immature--the sampled horizon, accordingly, does not fit readily into conventional classifications. The more proper classification, perhaps, would be to term the samples "talus fines". In any event, care was taken to ensure that all of the samples were taken from the same horizon/material to ensure a proper statistical distribution. The range of values exhibited in the data, and the good correlation of geochemical anomalies with known surface mineral showings, indicates that the material sampled was a good medium for geochemical study.

After sampling, soils were placed into a standard kraft bag, labelled, and allowed to dry before being shipped from the property. Rock geochemical samples were taken by chipping with a prospector's pick. These were also placed in a standard kraft bag, labelled, and allowed to dry before being shipped from the property.

Gold analyses were carried out either by standard fire-assay techniques (one-half assay ton), or by Atomic Absorption, by Acme Analytical Laboratories of Vancouver. In the latter case, 10 gm sub-samples were subjected to standard fire assay preconcentration techniques to produce silver beads which were then dissolved in reagent prior to determination of gold content by AA.

All samples were also tested using the 30-element Inductively Coupled Argon Plasma analysis. Preparation consisted of digesting representative 0.5 gm sub-samples with 3 ml of 3-1-2 HCl-HNO3-H2O at 95 deg. C. for one hour, followed by dilution to 10 ml with water.

G. Geophysics

It was originally anticipated that the auriferous "skarn" mineralization in the Konkin area could be traced under glacial debris and talus by utilizing a magnetometer survey. This supposition arose from the observation that magnetite was also included in the skarn minerals. Although it turned out that the mag survey was useful in delineating the intrusive proximate to the skarn, it did not pick up the skarn mineralization per se.

A magnetomer system was rented from Ashworth Explorations Limited. It was comprised of two magnetometers, both model Omni IV "Tie-Line", one with total field capability and the other with total field and base station capabilities. Each had 48K Ram Memory, a Remote Total Field Sensor, a pole assembly (four, 0.6 meter sections) and a rechargeable battery cartridge with battery charger.

Readings were taken in the field by Eric MacKenzie, an operator with lengthy experience in exploration, in general, and geopohysical surveys, in particular. Readings were recorded electronically and stored on a disk. Data was thereafter fed into a computer and plotted. Base mag was 56,000 gammas.

Results of the mag survey over the Main Grid area have been contoured on Fig. 21 (Magnetometer Survey) at 100 gamma intervals. Where possible, line spacing was reduced to 25 m, with stations taken every 10 m along lines (as compared to the geochemical survey which saw 50 m line spacings, and 20 m sample intervals).

The contouring defines a magnetic anomaly trending roughly southwest and corresponding to the diorite intrusive mapped just north of the Konkin zone. The anomaly is open to the southwest and northeast. Extension of the anomaly to Line 50S suggests that the "Konkin" diorite is probably larger than mapped (Fig. 5) and may even join with the diorite outcropping near the beginning of Rock Geochem Line "UC" (see Fig. 5). Heavy talus cover between these two points makes confirmation of this supposition difficult.

H. Conclusions

Results from the combined geochemical and trench sampling programs have defined a number of forms of gold mineralization on the TR 5 and 8 claims. Each of these zones appears to have a unique character according to its host.

In the andesite lapilli tuffs, gold values are accompanied universally by arsenic mineralization with the exception of the Konkin Gold Zone area. The arsenic-gold association is most prevalent at the southwestern end of the nunatak, a site as yet only lightly explored but which holds particular promise because of the observed presence of abundant guartz-calcite veining or stockworks in a linear pyrite-sericite alteration zone. The situation here appears guite similar to the high-level epithermal Au-As mineralization presently being exploited at the Gold Wedge property by Catear Resources Inc. to the south. Within the southwestern portion of the Main Grid, Au-As mineralization was also discovered by trenching in altered sericite schists. Preliminary indications are that the gold mineralization is not as strong as at the southwestern end of the nunatak, possibly due to lack of stockwork veining. The "Goat Trail" area also shows an arsenic-gold association, but the suspicion is that the

situation here is different from the two areas just discussed. The gold anomaly in the Goat Trail area is also overlapped by coincident antimony-lead-zinc-silver anomalies, suggesting a different mineral assemblage. Intensity and width of the gold anomaly in the Goat Trail area suggest that this is a prime exploration target. During the 1988 program, Drill Pad #3 was erected on a small knoll uphill from Upper Goat Trail trenches: upon completion of further rock sampling, this pad should prove an ideal spot to test down-dip extensions of auriferous mineralization in the area. Such further sampling should be carried out systematically along the steep gossanous slopes by experienced mountaineering geologists.

Gold mineralization in the Konkin Gold area has a different flavor. Although within an andesite package, the gold occurs in skarn-like rocks (whether or not it is a true skarn is still a matter for academic controversy). Mineral associations are not definite: massive pyrite bands, epidote, chalcopyrite, calcite veining and an unknown tungsten mineral are known to accompany some of the higher gold values but none of the above can be correlated completely with all of the strong gold values. Further work in this area is probably now confined to diamond drilling because of the depth of overburden southwest along putative strike of the skarn bands. Two drill pads have already been located to probe depth extensions of the present skarn exposures.

Preliminary trenching and rock geochemical sampling of rocks within the silicified diorite outcropping in the northeastern portion of the nunatak has identified widespread low-grade gold values. Further work should be undertaken to determine whether these represent a halo around a higher-grade structure of potential economic importance.

It is recommended that a control grid be established to cover the area southwest of the Main Grid to the southwestern edge of the nunatak. Rock and soil geochemical sampling, geological mapping and follow-up trenching should be carried out in this area. Favourable sites such as the linear alteration zone at the southwestern tip of the nunatak, the TK004 and TK005 areas, etc. should be carefully prospected. Float boulders, such as from the ENM Float #1 Sample area, should be carefully followed to source.

Respectfully submitted,

D. Kennen

D. Cremonese, P.Eng. December 28, 1988

APPENDIX I -- WORK COST STATEMENT

FIELD PERSONNEL (June to Sept., 1988):

Merl Cloutier, BlasterJune 25-July 28;	
Aug. 15-Sept. 3; 53 days @ \$267/day	\$ 14,150
Tom Kennedy, Foreman July 7 - Aug. 31; 56 days @ \$185/day	10,360
Ken Gourley, Assistant July 7 - Aug. 31; Sept. 15 -27;	
69 days @ \$150/day	10,350
Alex Walus, Geologist Aug. 8 - Sept. 16; 40 days @ \$150/day	6,000
Eric MacKenzie, Assistant Aug. 8 - Sept. 16; 40 days @ \$150/day	6,000
Mike Harris, Assistant Aug. 15 - Sept. 4; 21 days @ \$125/day	2,625
Ken Hopkins, Assistant Aug. 27 - Sept. 22; 27 days @ \$110/day	2,970
Chris Sayer, Geologist Aug. 25 - Sept. 2; 7.5 days @ \$285/day	2,138

SUPERVISION/ENGINEERING

D. Cremonese, P.Eng.	
22 days @ \$300/day	6,600
Paul MacGuigan, Senior Geologist	
2 days @ \$400/day	800

HELICOPTER [Vancouver Island Helicopters]

Base	cost for machine:	40.5	hrs	6	\$520/hr.	21,060
Fuel	(Stewart base):	22.2	hrs	0	\$78.50/hr.	1,743
Fuel	(Tide Lake strip):	15.3	hrs	0	\$87/hr.	1,331
Fuel	(Bob Quinn):	3.0	hrs	0	\$114.50/hr.	343

FOOD -- Bob's Mercantile, Stewart, B.C. 6,564

SUPPLIES & EQUIPMENT

Plywood and 2 by 4s for tent frames, camp 3,137 General supplies: including powder, fuses, B-line, first aid, camp equipment, water line, diesel,

kerosene, sample bags, tools, etc. Rental of full field camp (five tents), generator, radio, water heaters, diesel heaters, etc.	7,920
90 days @ \$75/day	6,750
Rental of pluggers, drill sharpener, trenching tools 90 days @ \$40/day	3,600
Rental of "Omni" Tie-Line Magnetomer (Ashworth Ex.)	-
9 days @ \$185/day	1,665
Orthophotos and digitized topos: Eagle Maps	8,040
ASSAYS Acme Analytical	
Fire assay for gold, 1/2 assay ton 189 @ \$8.50/sample	1,607
Geochem for gold (AA)	2,007
748 @ \$4.50/sample	3,366
30 element ICP	
937 @ \$6.25/sample	5,856
Rock sample preparation	
498 @ \$3.00/sample	1,494
Soil sample preparation	
439 @ \$0.85/sample	373
	3.9

TRANSPORTATION/ACCOMMODATION/SUPPORT COSTS

Personnel travel costs: Vancouver-Stewart-Van.	8,402
Transport equipment and supplies	340
Accommodation - Stewart (four months)	1,200
Expediting: Limar Industries & H. Foerster	2,498
Field Radio B.C. Tel charges	687

REPORT COSTS

Report and map preparation, compilation and research	
D. Cremonese, P.Eng., 6 days @ \$300/day	1,800
Computer Draughting RPM	2,400
Word Processor - 8 hrs. @ \$25/hr.	200
Map prints and material	160
Report copies, jackets, etc.	25

		GRAND	TOTAL	<u>\$154,555</u>
Allocation:	TR 5 claim [North Work filed [North Surplus		75 % = 5 Claim]	\$115,916 (\$ 75,000) 40,916
	TR 8 claim [South Work filed [South Surplus		20 % = 8 Claim]	\$ 30,911 (\$ 12,700) 18,211

Allocation (Continued from Previous Page)

Work on neighbouring TR claims* 5% = \$ 7,728 Work was not filed

*This work was of a minor nature, consisting of one reconnaissance geochemical soil line and some reconnaissance rock samples. Work would have been included in report but sample location notes were either lost or inadvertently left on site.

- I, Dino M. Cremonese, do hereby certify that:
- I am a mineral property consultant with an office at Suite 200-675 W. Hastings, Vancouver, B.C.
- I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
- 3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, #13876.
- 4. I have practiced my profession since 1979.
- 5. This report is based upon work carried out on the TR 5 and 8 mineral claims, Skeena Mining Division from June to September of 1988. I am satisfied that trench, rock and soil geochemical samples were taken properly and with care, and that geophysical readings were taken properly and with care, all by qualified personnel. Reference to field notes and maps made by geologist Alex Walus is acknowledged.
- 6. I am a principal of Teuton Resources Corp., owner of the TR 5 and 8 claims: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 28th day of December, 1988.

D. Lemmer

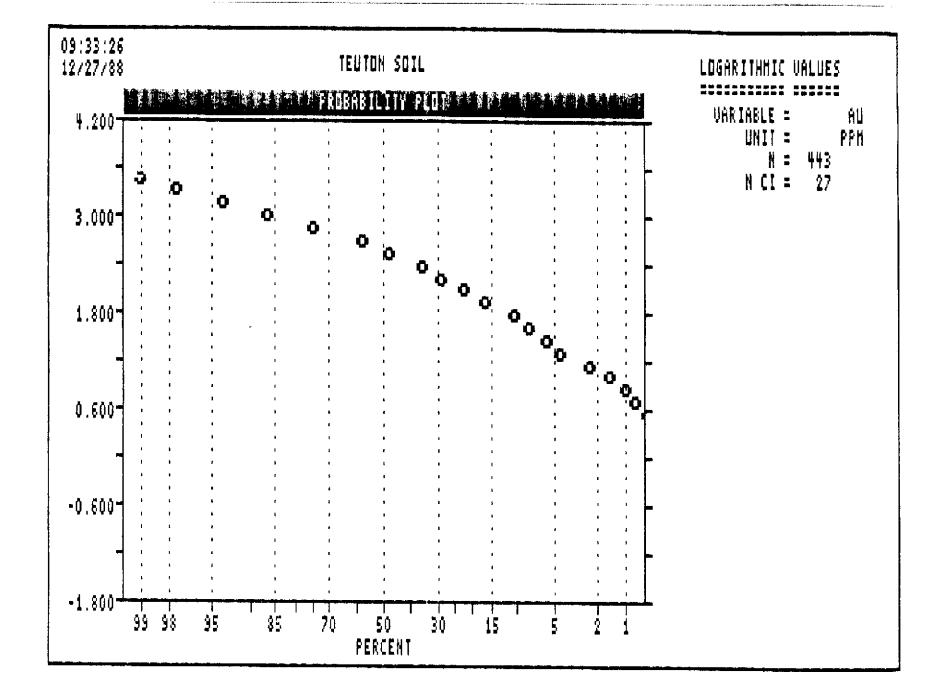
D. Cremonese, P.Eng.

1988 GEOCHEMICAL DATA

PROBABILITY PLOTS

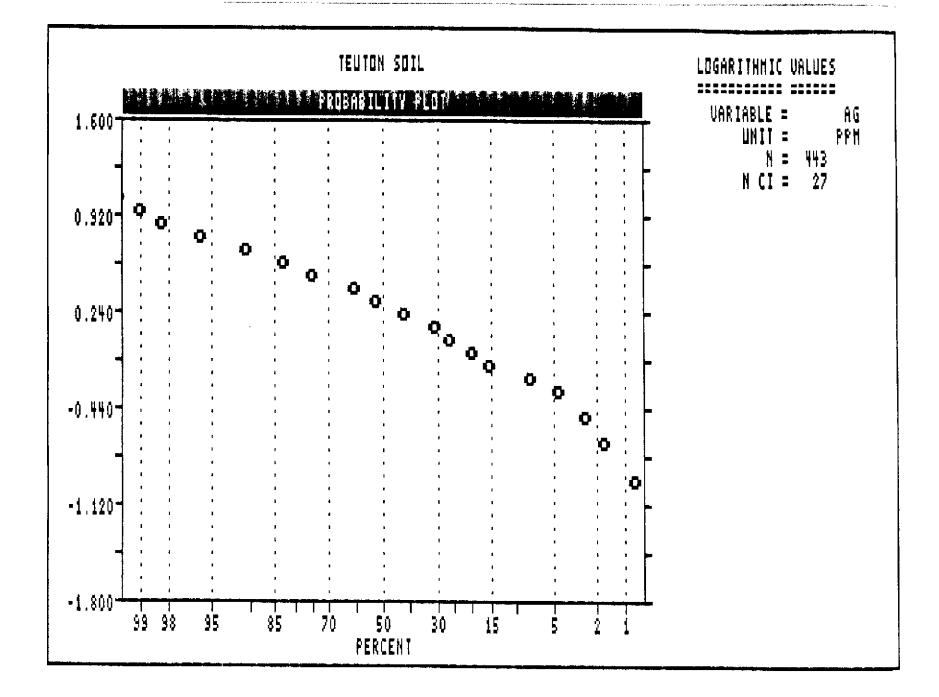
AND

"PROBPLOT" SUMMARY STATISTICS


APPENDIX III

09:32:00 TEUTON 50			TON SOIL 12/27/88		3UIL 12/2,				
					****	####	****	*******	######### MIC VALU
SUMMA	RY STA	TISTICS and	1 HISIUGKA	11			1	346, 1 1 M	ATC ANCO
Var i	able =	ĽA	Uni	t ==	FPM			N =	443
	Mean =	2.4824	Mi	n ==	0.0000	1st	Quart:	ile =	2.162
Std.	Dev. ≕	0.5525	Ma	$\chi =$	4 0152		Med	lan =	2.0803
	CV % =	22.2561	Skewnes	5 =	-0.9118	3rd	Quart:	ile =	2,858
	Ant	i-Log Mean	= 303.6	88	Anti-Log	Std	. De∨.	: (-) (+)	85.10) 1083.72(
==== %	cum %	antilog	cls int	(# c	of bins = 2	7 -	bin s	size =	0.154
	- <u></u>	0.837							
		1.195							
		1.705							
		2.433							
0.00		3.471							
0.23		3.4/⊥ 4.954							
		7.069							
0.45		10.088	1 0038	¥					
		14.395							
	4.39				÷				
		29.314							
	8.00				ŧ.				
	10.25								
	16.33		1.9304		******				
	21.73		2.0848		*****				
	28.49				********				
	35.25				*****				
		353.245			********	****	*****		
	57.77		2.7025	***	********				
	74.89		2.8569	***	********	****	******	(***** *	米米米米
	86.82			***	*********	****	****		
	93.81				*******				
	97.64			****	****				
	98.99								
	99.66			¥					
		6074.448							
		8668.335							
		12369.853	4.0924						
				 0	 1		2	3	

Each "*" represents approximately 2.2 observations.


;

X. .

09:53:42	TEUTON SOIL	12/27/88			
######################################					
Variable = AG	Unit = PPM	N = 443			
Std. Dev. = 0.3511	Min = -1.0000 1st Quarti Max = 1.3729 Medi Skewness = -0.5673 3rd Quarti	an = 0.3010			
Anti-Log Mean	= 1.853 Anti-Log Std. Dev.	: (-) 0.825 (+) 4.159			
	cls int (# of bins = 27 - bin s				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-0.8631 -0.7718 -0.6806 ** -0.5893 -0.4980 ** -0.3155 **** -0.2242 ****** -0.1330 ************** -0.0417 ******* 0.0496 ************************************	****			
0.23 99.89 26.215	1.4185 0 1 2	3 4			

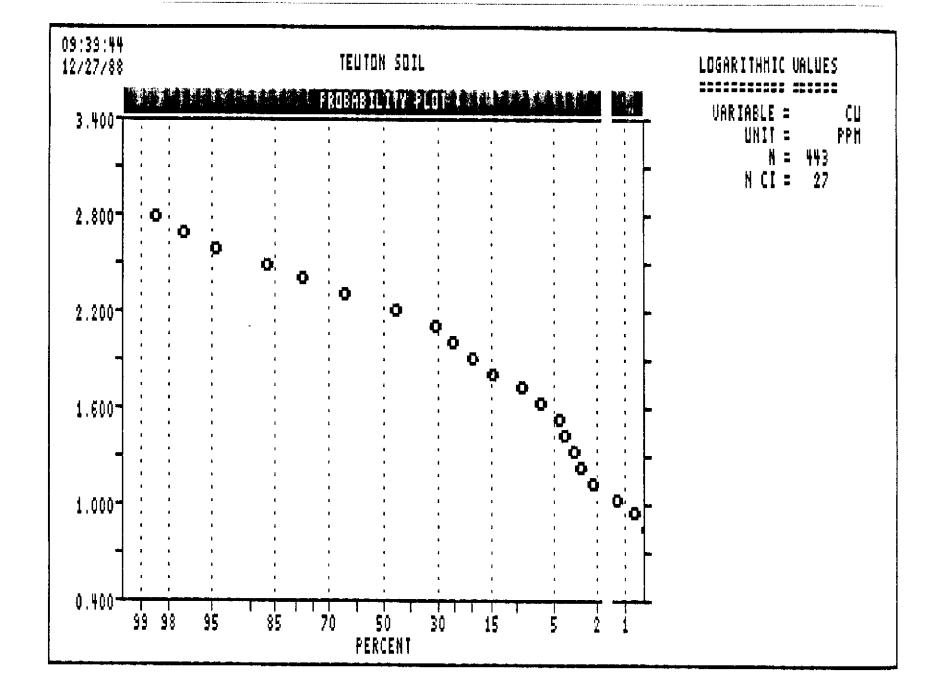
Each "*" represents approximately 2.2 observations.

X = Z

 $\mathbf{X}_{\mathbf{a}}$

00100	မားမလ			ICUI	ON DOIL			12/2//00
		神神神神神神神神神神 FISTICS and			****			########## NIC VALUES
Vari	iable =	CU	Uni	t =	PPM		N =	443
	Mean =	2.1732	Mi	n =	0.6021	1st Quarti	1e =	2.0107
Std.	Dev. ⇒	0.3449	Ma	v =	3.1319	Medi	an =	2.2368
	CV % =	15 8708	Skewnes	. <u>5</u> =	-1.2137	3rd Quarti	le =	2.3834
	Anti	-Log Mean	= 149.0	14	Anti-Log	Std. Dev.		67.347 329.712
7		antilog	cls int	(#)	of bins = 27	– bin s	ize =	0.0973)
		3.576	0 5504					
0.00	2 0 24	4 47A	0.6507					
0 0.00	1 0.04 1 6 94	4.474 5.598	0.0007					
0.00		U.U.DO 7 000	0.7460					
0.23	0 0.36	7.004 P.760	0.0900					
0.48 0.48	0 0.73 :54	8.762	U.2420 1 0000	v				
0.40	i terime V m ere	10.963	1.0377	¥				
	/ ಎನ್ನೇ 1.4% ಸಿ. ಬ್. ಬ್.ಟ್.ಸ್.	13.716	1.13/2	₩.¥.				
0.68		17.160	1.2345	¥				
0.45		21.470	1.3318	*				
	3.94	26.862	1.4291	÷.				
	4.39	33.608	1.5264	×				
	6.42	42.048	1.6237	***				
		52.607			÷.*			
	: 14.30	65.819			****			
	19.26	82.348	1.9157					
	24.89	103.028		长长长	****			
	30.52			***	*****			
					{************			
				***	******	******	*****	*****
13.77	77.82	252.445	2.4022	***	**********	*********	₩¥	
9.03	86.82	315,842	2.4995	***	********	X X X		
7.67	94.48	395.160	2.5968	***	*****			
2.71	97.18	494.397	2.6941	***1	÷¥			
i.35	98.54	618.555	2.7914	***				
1.13	99.66	773.894	2.8887	¥¥				
0.00	99.66	968.244	2.9860					
	99.66	1211.401	3,0833					
0.23	99.89	1515.622	3.1806					
*** blv H÷ b+ F41		anu os o anu ano de le pre are per pro la secono de la seco	())	1	2	2	4

TEUTON SOIL


12/27/88

Each "*" represents approximately 2.2 observations.

**

09:38:38

1

X. -

 $X_{1,2}$

 Mean =
 2.0722
 Min =
 1.2304
 1st Quartile =
 1.8062

 Std. Dev. =
 0.3375
 Max =
 3.1212
 Median =
 2.0700

 CV % =
 16.2895
 Skewness =
 0.1094
 3rd Quartile =
 2.3112

 Anti-Log Mean = 118.077 Anti-Log Std. Dev. : (-) 54.277 (+) 256.868

% cum % antilog cls int (# of bins = 27 - bin size = 0.0727) ____ 0.00 0.11 15.635 1.1941 0.23 0.34 18.485 1.2668 0.00 0.34 21.854 1.3395 7.90 36.37 83.428 1.9213 **************** 92.636 1.9940 ************ 7.22 56.42 137.873 2.1395 *************** 8.13 64.53 163.005 2.2122 **************** 7.00 71.51 192.719 2.2849 *************** 7.45 78.94 227.849 2.3576 *************** 5.42 84.35 269.382 2.4304 ********* 3.84 88.18 318.486 2.5031 ******** 4.29 92.45 376.542 2.5758 ******* 3.39 95.83 445.180 2.6485 ****** 2.03 97.86 526.330 2.7213 **** 0.68 98.54 622.273 2.7940 * 0.68 99.21 735.704 2.8667 * 0.45 99.66 869.812 2.9394 * 0.00 99.66 1028.366 3,0121

O.

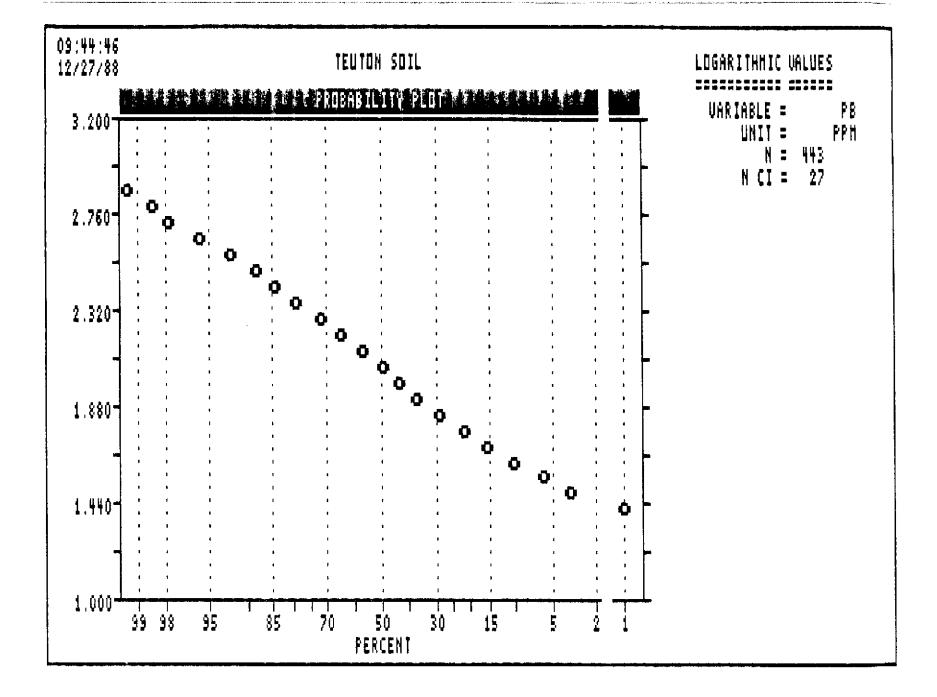
Each "%" represents approximately 2.2 observations.

2

3

4

1



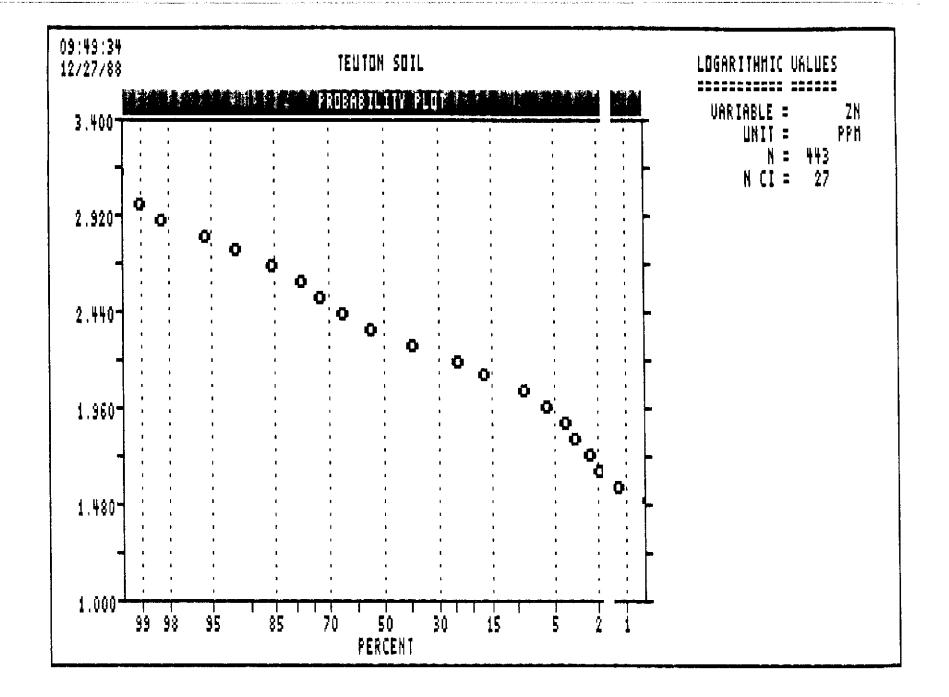
Variable =

ΡB

0.00 99.66 1215.823 3.0849 0.23 99.89 1437.450 3.1576

1

١.


ξ.,

 $X_{1} \geq$

09:48:48	TEUTON SOIL	12/27/88
######################################	*#####################################	LOGARITHMIC VALUES
Variable = ZN	Unit = PPM	N = 443
Std. Dev. = 0.2758	Min = 1.3010 1st Qu Max = 3.3306 Skewness = -0.1391 3rd Qu	Median = 2.3243
Anti-Log Mean	= 228.124 Anti-Log Std. 1	Dev.: (+) 120.877 (+) 430.526
% cum % antilog	cls int (# of bins = 27 - b	in size = 0.0781)
0.45 2.36 53.748	<pre>1. 3401 1. 4181 1. 4962 1. 5742 * 1. 6523 * 1. 7304 * 1. 8084 ** 1. 8084 ** 1. 8084 ** 1. 9645 **** 2. 0426 ****** 2. 1207 ************************************</pre>	
0.23 99.89 2342.325		3 4

7

Each "*" represents approximately 2.2 observations.

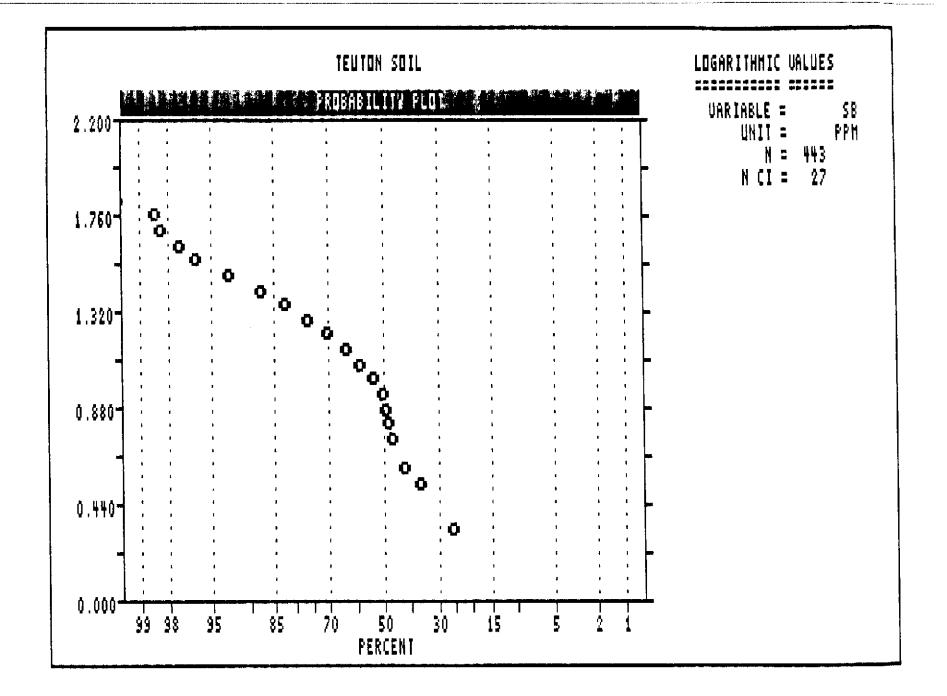
 $X_{\rm scale}(x)$

N. . .

############# Summary stat						GARITHM	NIC VALUE
Variable =	AS	Uni	t =	PPM		N =	443
Mean 🎫	2.4637	Mi	⊓ ≕	1.1461	1st Quart	ile =	2.0908
Std. Dev. =	0.5076	Ma	x =	3.7315	Med.	ian =	2.5922
CV % =	20,6041	Skewnes	= =	-0.5676	3rd Quart	ile =	2.8325
Anti	-Log Mean	- 290.8	88	Anti-Log	; Std. Dev.	: (-) (+)	90.385 936.173
7 cum %	antilog	cls int	(非 口)	f bins = 2	27 - bin :	size =	0.0994
0.00 0.11	12.486	1.0964					
	15.698		¥				
	19.737						
	24.815		关关关关				

	39.228		****				
		1.6930					
		1.7925	****				
		1.8919					
		1.9913					
4.97 24.89		2.0908					
		2.1902	****				
		2,2897	****				
	244.962	2.3891		****			
	307,990	2.4885		****			
		2.5880	****	****	*		
1.06 60.47		2.6874	****	*****	****		
	612.139			******	****		
		2.9863		***	****		
7.22 87.73	967.666	2.9857	***	****	÷		
5.64 93.36		3.0852	****	****			
3.61 96.96		3.1846					
1.13 98.09							
0.90 98.99			**				
0.23 99.21							
0.45 99.66			¥				
0.00 99.66							
0.23 99.89							
					2		

1



LOGARITHMIC UALUES	* * *	
,		0.800 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

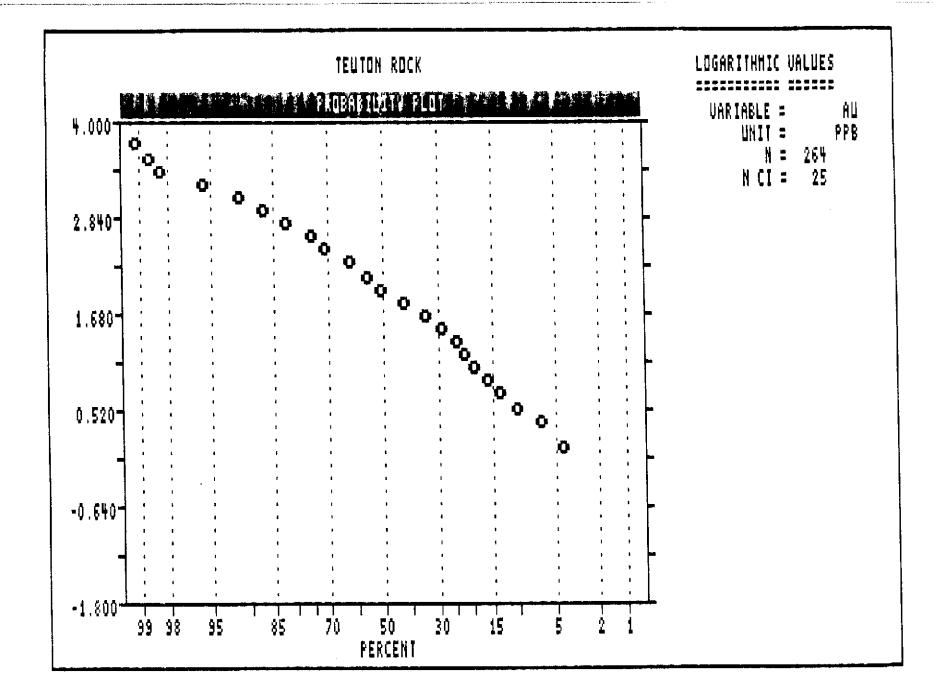
~

10:10	:29			TEUTON	SOIL			12/27/88
		*****			****	***	**	######### IC VALUES
SUMMA	RY STAT	ISTICS and	HISTUGRA	М		¹ ــا ــــا	SAK1 (Mr)	IC VALUES
Varia	able =	SB	Uni	t =	FFM		N =	443
t	Mean ⊨	0.8689	Mi		0.3010	1st Quart	ile =	0.3010
Std. 1	Dev. ≕	0.4602	Ma		2.0682	Med		
(CV % =	52.9615	Skewnes	5 =	0.0988	3rd Quart	11e =	1.2/68
	Anti	-Log Mean =	= 7.3	94	Anti-Log	Std. Dev.	: (-) (+)	2.563 21.334
7	⊂um %	antilog	cls int	(# of	bins ≕ 2	7 – bin	size = 	0.0680)
	0.11	1.849	0.2670			·····		
	25.34		0.3350	****	*******	********	******	> 50
	25.34	2.529						
	25.34	2,958	0.4709					
	36.15	3.459	0.5389	****	********	****		
	41.78	4.045	0.6069	****	****			
	41.78	4.730	0.6749					
	46.28	5.531	0.7428	***	***			
	48.09	6:468	0,8108	****				
0.90	48.99	7.564	0.9786	**				
0.90	49.89	8.845	0.9467	¥¥				
3.84	53.72	10.344	1.0147	****	***			
4.74	58.45	12.096	1.0827	****	¥ ¥ ¥ ¥			
4.97	63.40	14.146	1,1506	****	****			
6.77	70.16	16.542	1.2186	****	******			
6.32	76.46	19.345	1.2866	*****	*******			
5.87	82.32	22.622	1.3545		******			
5.42	87.73	26.454	1.4225	****	*****			
5.19	92.91	30.936	1.4905	****				
3.39	96.28	36.177	1.5584	*****	**			
1.13	97.41	42.306	1.6264	**				
	98.31	49.473	1.6944	¥¥				
0.23	98.54	57.854	1.7623					
0.90	99.44	67.655	1.8303	¥¥				
	99.66	79.116	1.8983					
0.00	99.66	92.520	1.9662					
0.00	99.66	108.194						
0.23	99.89	126.523	2.1022					
					••••	2	3	4
			I	0	1	<u>کد</u>		4

Each "*" represents approximately 2.2 observations.

ч,

 $\tilde{X}_{-,\ell}$


and the second sec

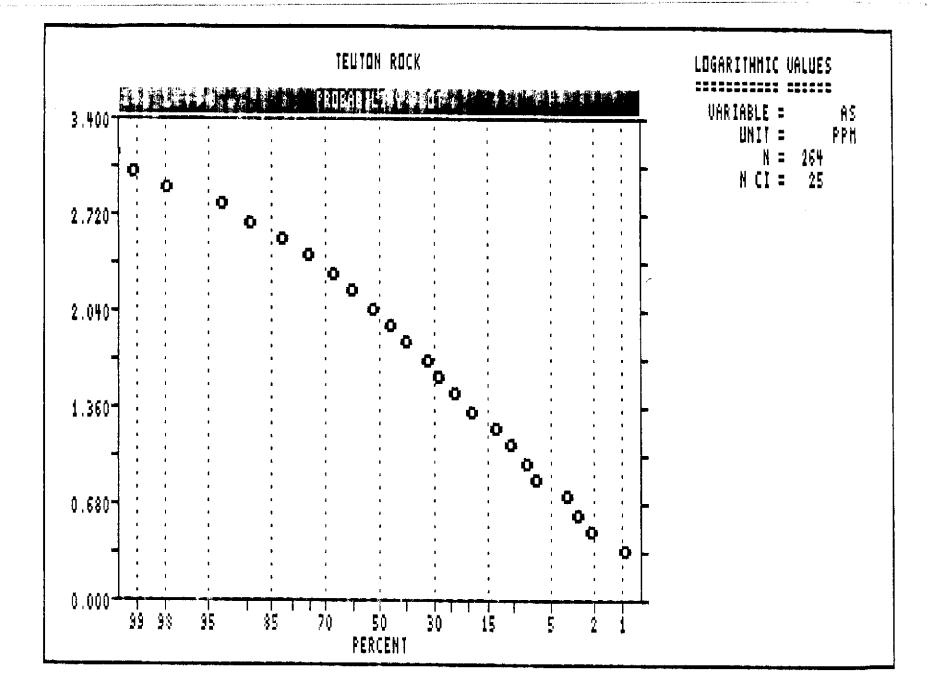
10:51:17		T	EUTON	ROCK			12/27/88
######################################	########## [STICS and	########### HISTOGRAM	; 井井井井 }	₩₩₩₩₩₩₩₩₩₩ ₩	############ LOG4	ŧ##### \RITHM	######### IC VALUES
Variable =	AU	Unit	=	PPB		N =	264
Std. Dev. =	0.8947	Max	=	3.8106	lst Quartil Media 3rd Quartil	a n =	1.9623
Anti-	-Log Mean	= 82.60	93	Anti-Log	Std. Dev. :	(-) (+)	10.526 648.252
			****====	=======================================		=====	======== ∩ 1588)
7. cum 7	antilog	cls int	(# of	bir.s = 23	 		
0.00 0.19							
4.17 4.34	1.201	0.0794	****	×			
0.00 4.34	1.730	0.2382					
2.27 6.60	2.494	0.3969	¥×¥				
3 41 10 00	3,595	o.5557	*****				
3.41 13.40	5.182	0.7145	*****				
2.65 16.04	7.469	0.8733	****				
3.03 19.06	10.765	1.0320	****				
2.05 21.70		1.1908	****				
2.27 23.96	22.365		¥ ₹				
4.55 28.49	32.237	1.5084	****	¥.¥			
5.68 34.15		1.6671	****	¥¥¥¥			
7.95 42.08		1.8259	****	****			
	96.532	1.9847		*******			
5.30 55.66	139.138	2.1434	*****	***			
6.44 62.08	200 .548	2.3022	****	****			
8.71 70.75	289.063	2.4610		******			
4.55 75.28	416 .6 45	2.6198	*****	**			
6.82 82.0 9	600.537		****				
5.30 87.36	865.592	2.9373	*****				
4.17 91.51	1247.633	3.0961	****	×			
4.17 95.66	1798.294		****	.≹∙			
2.65 98.30	2591.996	3.4136	****				
0.38 98.6 8	3736.010	3.5724	¥				
0.38 99.06	5384.950	3.7312	*				
0.76 99.81	7761.674	3.8900	÷				
	,, a, d we we)	4 4		3	4

(

Each "*" represents approximately 1.7 observations.

 $X_{\rm c}$ /

× . .


 $\sum_{i=1}^{n} e_{i}$

lean = lev. = V % = Ant cum % 0.19 0.94 2.08 2.83	1.739 2.300 3.042 4.023	Mir Ma: Skewnes: = 88.0 = 88.0 cls int 0.2403 0.3617 0.4832	n = x = 5 = 43 (# c +*	3.2 -0.4 Ant	010 151 414 :i-Log	3rd Std.	Med Quart Dev bin	tile dian tile . : . : siz	2 == 1 = 2 = () (+) =====	2.004 2.423 21.47 360.98
Ant Ant cum % 0.19 0.94 2.08 2.83	0.6128 31.5109 i-Log Mean antilog 1.739 2.300 3.042 4.023	Ma: Skewnes: = 88.0 cls int 0.2403 0.3617 0.4832	x = 5 = 43 (# c * *	3.2 -0.4 Ant	2151 4414 	3rd Std.	Med Quart Dev bin	dian tile . : . : siz) = () (+) =====	2.004 2.423 21.47 360.98
Ant Ant cum % 0.19 0.94 2.08 2.83	0.6128 31.5109 i-Log Mean antilog 1.739 2.300 3.042 4.023	Ma: Skewnes: = 88.0 cls int 0.2403 0.3617 0.4832	x = 5 = 43 (# c * *	3.2 -0.4 Ant	151 414 i-Log	3rd Std.	Med Quart Dev bin	dian tile . : . : siz) = () (+) =====	2.004 2.423 21.47 360.98
V % = Ant cum % 0.19 0.94 2.08 2.83	31.5109 i-Log Mean antilog 1.739 2.300 3.042 4.023	Skewnes: = 88.0 cls int 0.2403 0.3617 0.4832	43 (# c *	Ant	i-Log	Std.	. Dev.	. : ===== 512	() (+) =====	21.47 360.98
cum % 0.19 0.94 2.08 2.83	antilog 1.739 2.300 3.042 4.023	cls int 0.2403 0.3617 0.4832		est bin	·=====================================		===== bin	==== 5i2	(*) ====	380.98 ====================================
o. 19 0. 94 2.08 2.83	antilog 1.739 2.300 3.042 4.023	cls int 0.2403 0.3617 0.4832	(計 ⊂ *	of bin	15 = 2	5 -	bin	-512	:e =	0.121
0.19 0.94 2.08 2.83	1.739 2.300 3.042 4.023	0.2403 0.3617 0.4832	***		·	_ 				
0.94 2.08 2.83	2.300 3.042 4.023	0.3617 0.4832	¥₩							
0.94 2.08 2.83	2.300 3.042 4.023	0.3617 0.4832	¥₩							
2.08 2.83	3.042 4.023	.4832	¥₩							
2,83	4.023	0 6046								
			¥							
3.58	5,321	0.7260	*							
6.60		0.8474	***	6×						
7.74	9.303	0.9688	光光							
10.03	12.310	1.0903	****	K.						
12.02	16.281	1.2117								
18.68	21,533				e					
23.21	28.479									
28.11	37.665	1.5759								
31.89		1.6974								
33.43										
45.47										
52.26										
82.45										
					8: 13 1					
93.40	616.792	2.7901								

	6.60 7.74 10.00 10.00 10.00 10.00 10.00 20.10 20.21 20.11 20.12 60.12 60.12 60.12 60.12 60.12 89.25 90.40 97.92 99.06 99.40	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6.60 7.038 0.8474 7.74 9.208 0.9688 10.03 12.310 1.0903 12.02 16.281 1.2117 18.68 21.533 1.3331 23.21 28.479 1.4545 28.11 37.665 1.5759 31.89 49.815 1.6974 29.43 65.884 1.8188 45.47 87.136 1.9402 52.26 115.244 2.0616 60.19 152.410 2.1830 66.60 201.585 2.3045 75.28 266.612 2.4259 82.45 352.613 2.5473 89.25 466.357 2.6687 93.40 616.792 2.7901 97.92 815.753 2.9116 99.06 1078.894 3.0330 99.43 1426.917 3.1544 93.81 1387.203 3.2758	6.60 7.038 0.9474 $****$ 7.74 9.202 0.9688 $**$ 10.03 12.310 1.0903 $****$ 12.02 16.281 1.2117 $****$ 18.68 21.533 1.3331 $****$ 23.21 28.479 1.4545 $****$ 28.11 37.665 1.5759 $*****$ 31.89 49.815 1.6974 $****$ 45.47 87.136 1.9402 $****$ 45.47 87.136 1.9402 $****$ 52.26 115.244 2.0616 $****$ 66.60 201.585 2.3045 $****$ 82.45 352.613 2.5473 $****$ 89.25 466.357 2.6687 $****$ 93.40 616.792 2.7901 $****$ 97.92 815.753 2.9116 $****$ 99.43 1426.917 3.1544 $*$	6.60 7.038 0.9474 $*****$ 7.74 9.208 0.9688 $**$ 10.03 12.310 1.0903 $****$ 12.02 16.281 1.2117 $****$ 18.68 21.533 1.3331 $************************************$	6.60 7.038 0.9474 $****$ 7.74 9.208 0.9688 $**$ 10.03 12.310 1.0903 $***$ 12.02 16.281 1.2117 $****$ 18.68 21.533 1.3331 $************************************$	6.60 7.038 0.9474 $****$ 7.74 9.208 0.9688 $**$ 10.03 12.310 1.0903 $***$ 12.02 16.281 1.2117 $****$ 18.62 21.533 1.3331 $*******$ 23.21 28.479 1.4545 $*******$ 23.21 28.479 1.4545 $************************************$	6.60 7.038 0.9474 ***** 7.74 9.202 0.9688 ** 10.03 12.310 1.0903 **** 12.02 16.281 1.2117 **** 18.62 21.533 1.3331 ******* 23.21 28.479 1.4545 ****** 28.11 37.665 1.5759 ******* 21.89 49.815 1.6974 ******* 31.89 49.815 1.6974 ******** 31.89 49.815 1.6974 ******** 31.89 49.815 1.6974 ******** 31.89 49.815 1.6974 ******** 31.89 49.815 1.6974 ******** 31.89 49.815 1.6974 ********* 31.89 49.815 1.9402 ********* 31.43 65.884 1.8188 ************ 45.47 87.136 1.9402 ************ 52.26 115.244 2.0616 *************** 66.50 201.535 2.3045 **************** 65.60 201.535 2.3045 ***************** 75.28 266.612 2.4259 *************************** 89.25 466.357 2.6687 *********************************	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

C

Each "*" represents approximately 1.7 observations.

1.1

•.

.

APPENDIX IV

ASSAY CERTIFICATES

i

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUL 19 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: 4.25/88.

٢

ASSAY CERTIFICATE

TEUTON RESOURCES FILE # 88-2787 Page 1

SAN	{PLE#	AU** oz/t
TRI TRI TRI TRI TRI	88-1 88-2 88-3 88-4 88-5	.006 .008 .006 .014 .056
TR1 TR1 TR1 TR1 TR1	88-6 88-7 88-8 88-9 88-10	.122 1.374 .102 .086 .034
TR1 TR1 TR1 TR1	88-11 88-12 88-13 88-14 88-15	.044 .042 .162 .308
TR1	88-16 88-17 88-18 88-19 88-1	.086
TR2	88-2 88-3 88-4 88-5 88-6	.032
TR2 TR2	88-7 88-8 88-9 88-10 88-11	.008
TR2 TR2 TR2 TR2	88-12 88-13 88-14 88-15 88-16	.008 .002 .004 .004 .004
TRZ	88-17	.002

.

:

SAMPLE#	AU** oz/t
TR2 88-18	.002
TR3 88-1	.003
TR3 88-2	.014
TR3 88-3	.008
TR3 88-4	.004
TR3 88-5	.002
TR3 88-6	.005
TR3 88-7	.009
TR3 88-8	.026
TR3 88-9	.009
TR3 88-10	.015
TR3 88-11	.002
TR3 88-12	.005
TR3 88-13	.002
TR3 88-14	.005
TR3 88-15	.006
TR3 88-16	.004
TR3 88-17	.001
TR3 88-18	.006
TR3 88-19	.009
TR3 88-20	.018
TR3 88-21	.017
TR3 88-22	.018
TR3 88-23	.009
TR3 88-24	.006
TR3 88-25	.005
TR3 88-26	.010
TR3 88-27	.016
TR3 88-28	.008
TR3 88-29	.006
TR4 88-1	.007
TR4 88-2	.012
TR4 88-3	1.206
TR4 88-4	.744
TR4 88-5	.158
TR4 88-6	.053

۰.

SAMPLE#	AU**
	oz/t
TR4 88-7	.064
TR4 88-8	.036
TR4 GRAB	.194
-TK-001 GRAB	062
TK-002 FLOAT	

-LIMO-3.892 ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUL 28 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: AM. 6/88

ASSAY CERTIFICATE

TEUTON RESOURCES FILE # 88-3097 Page 1

SAM	PLE#	AU**
		oz/t
	003	<u>001</u>
m 1/	004 005	.151 .201
76-	88-1	.010
	88-2	.017
TR5	88-3	.004
TR5	88-4	.009
TR5	88-5	.011
TR5	88-6	.025
TR5	88-7	.032
	88-8	.014
	88-1	.029
	88-2	.039
	88-3	.021
TR6	88-4	.011
TR6	88-5	.007
TR6	88-6	.011
	88-7	.009
	88-8	.004
TR7	88-1	.109
	88-2	.058
	88-3	.027
	88-1	.002
TR8	88-2 88-3	.006
TRO	66-5	.002
TR8	88-4	.001
TRS	88-5	.002
	88-6 88-7	.004 .001
	88-8	.007
TR8	88-9 88-10 88-11 88-12	.002
TR8	88-10	.001
TR8	88-11	.003
TR8	88-12 88-13	.002
TKS	88-13	.004
TR8	88-14	.007

.

•

SAMPLE#	AU** oz/t
TR8 88-15	.003
TR10 88-1	.017
TR10 88-2	.018
TR10 88-3	.002
TR10 88-4	.003
TR10 88-5	.002
TR11 88-1	.054
TR11 88-2	.010
TR11 88-3	.052
TR11 88-4	.014
TR11 88-5	.013
TR11 88-6	.006
TR11 88-7	.008
TR11 88-8	.039
TR11 88-9	.002
TR11 88-10	.005
TR12 88-1	.007
TR12 88-2	.124
TR12 88-3	.028
TR12 88-4	.011
TR12 88-5	.083
TR12 88-6	.022
TR13 88-1	.017
TR13 88-2	.076
TR13 88-3	.057
TR13 88-4 TR13 88-5 TR13 88-6 TR13 88-7 TR13 88-8	.055 .019
TR13 88-9	.041
TR13 88-10	.035
TR13 88-11	.036
TR14 88-1	.014
TR14 88-2	.062
TR14 88-3	.014

.

.

.

.

.

1

.

SAMPI	LE#	AU** oz/t
TR15 TR15 TR15 TR15 TR15 TR15	88-1 88-2 88-3 88-4 88-5	.002 .025 .095 .018 .123
TR15	88-6	.046

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: AUG 11 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: 449.6.89.

ASSAY CERTIFICATE

- SAMPLE TYPE: ROCK AU** BY FIRE ASSAY FROM 1/2 A.T.

A D.TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS

ASSAYER:

1

١,

TEUTON RESOURCES FILE # 88-3501 Page 1

SAMPLE#	AU OZ,	
L1255 01 L1505 40 L1505 31 L1505 30 L1505 21	0W .00 5W .01 0W .00	03 02 01
L150S V	5W .0. DW .01	41 04 01
L1755 8 L1755 7 L1755 7 L1755 6 L1755 6 L1755 6	5W .04 0W .0 5W .01	01 01 13 01 02
L175S 5 L175S 5 L175S 4 L175S 4 L175S 4 L175S 3	0W .0 5W .0 0W .0	13 04 01
TK 006 TR13 88 TR13 88 TR13 88 TR13 88 TR13 88	-12 .0 -13 .0 -14 .0	25 26 14 52 17
TR13 88 TR13 88 TR16 88 TR16 88 TR16 88	-17 .0 -1 .0 -2 .0	21 13 12 21 27
TR16 88 TR16 88 TR16 88 TR17 88 TR17 88	-5 .0 -6 .0 -1 .0	08 07 05 07 12
TR17 88	-3.0	57

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: AUG 11 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: D.e. 19

ASSAY CERTIFICATE

ASSAYER:

D.TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS

- SAMPLE TYPE: ROCK AU** BY FIRE ASSAT FROM 1/2 A.T.

TEUTON RESOURCES FILE # 88-3501A

SAMPL	E#	AU** oz/t
	88-2 88-3	
TR19	88-1 88-2 88-3 88-4 88-5	.013 .560 .093 .042 .005
TR20	88-1 88-2 88-3	.013 .004 .008 .003 .004
TR290	88-5 88-6 88-7 88-8 88-9	.056 .114 .043 .099 .081
TR200	88-10	.019

"GOAT " TRAIL" SAMPLES

t

C

(

ť

(·

1

(

(

ł

C

(:)

C

£

(

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH JNL 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR NN FE SE CA P LA CE NG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK

SAMPLE No Pb Cu Zo λa Ni -Co Mn Fe U λs λu 7h Sr Cđ Sb BÍ V Ca P La Cr Ma Ba T1 3 Al Na ľ ¥. PPN PPN PPM PPM PPN PPN PPN PPN 3 PPK PPN PPN PPN PPN PPN PPN PPN PPN 1 \$ PPN PPN 1 PPN 1 PPN 1 Ł 1 PPN TR1 38-1 3 284 22 118 .9 6 13 3017 7.36 40 5 ND 2 115 83 1.59 .119 1 3 2 ŧ 9 2.18 57 .08 3 3.15 .01 .02 TR1 08-2 3 382 27 90 5 1.4 13 2204 8.35 76 5 ND 2 95 1 2 2 71 1.20 .110 4 9 1.74 60 .05 2 2.62 .01 . 05 - 1 TR1 88-3 2 716 23 91 1.2 4 9 2335 6.98 104 5 ND 2 119 1 2 2 75 1.93 .112 4 8 1.80 29 . 09 2 2.57 .01 .05 2 TR1 88-4 1 316 13 44 1.0 -8 1462 8.06 88 5 ND 2 126 1 4 2 36 1.98 .082 1 4 1.01 31 . 09 3 1.50 .01 .02 6 TR1 88-5 5 221 22 43 1.9 13 2149 14.91 231 4 5 ND 2 102 1 9 2 51 1.35 .069 3 9 .70 16 .10 4 .95 .01 .03 24 TR1 88-6 2 2595 20 68 14.0 3 30 1993 27.71 295 5 ND 38 4 1 8 2 36 1.22 .043 3 11 .46 .05 6 11 .88 .01 . 02 65 TE1 88-7 13 795 37 26 20.4 1 3 209 30.38 844 5 30 4 49 23 30 1 58 .18 .038 2 10 .03 68 .08 .27 13 .01 .06 108 TR1 88-6 2 1480 30 57 10.3 4 35 774 33.29 301 1 ND 6 27 1 12 5 48 . 26 .046 3 14 . 48 6 .04 9 1.12 ,01 .04 - 98 TR1 88-9 6 606 36 76 4.8 6 65 2470 29.76 303 6 ND 4 27 1 6 3 87 .25 .067 6 10 1.30 4 .01 10 2.99 .01 .10 - 5 TR1 88-10 4 510 17 30 5.0 3 29 329 22.59 257 5 ND 4 127 1 5 2 82 .67 .086 1 1 . 39 10 .08 4 1.04 .01 . 06 - 5 721 88-11 1 -74 20 -58 2.4 4 39 1725 13.19 118 5 MD. 2 195 1 3 2 70 2.36 .085 5 1 1.47 10 .06 2 2.38 .01 .03 . TR1 88-12 - 35 19 1 59 1.3 4 17 3519 10.08 - 54 5 ND 2 152 1 2 2 93 4.02 .105 5 10 1.59 20 .10 5 2.53 .01 .02 6 TR1 88-13 23 6 259 43 2.3 4 17 2508 15.13 218 5 2 114 3 1 6 2 52 6.10 .052 3 10 .64 18 .04 3 .33 .01 .06 - 34 TR1 88-14 2 349 30 38 4.5 3 16 977 30.29 353 6 1 5 17 1 10 2 48 2.04 .038 3 10 .34 15 .03 12 .63 .01 .05 171 TR1 88-15 9 235 37 30 4.7 3 14 429 30.91 322 6 6 4 48 1 1 3 45 .77 .038 2 14 .12 10 .06 10 .38 .01 .03 153 781 88-16 5 167 26 30 2.5 5 17 1014 15.46 149 5 6 3 83 1 1 2 57 .90 .069 3 15 .43 21 .08 2 1.00 .01 .04 16 TR1 88-17 8 158 31 34 2.2 6 19 469 21.98 183 5 2 4 48 1 2 35 .43 .052 4 3 16 .43 9 .05 5 .78 .01 . 02 20 721 88-18 4 110 29 64 2.2 6 23 1477 23.35 173 5 1Đ 52 3 1 4 1 42 1.63 .047 . 17 1.17 1 .03 6 1.58 .01 .05 9 TR1 88-19 - 41 2 22 40 2.1 1 8 1545 13.13 138 5 5 134 3 1 5 2 55 2.59 .087 5 14 .63 59 .10 2 1.42 .01 .02 20 TR2 88-1 56 1 16 110 .1 15 20 2004 9.57 38 5 1D 32 2 1 2 2 181 1.81 .168 13 19 2.24 58 .15 2 2.95 .01 .05 2 782 88-2 " 1 21 11 .1 9 9 2208 10.51 41 D 21 -5 1 1 2 2 124 .70 .066 38 1.61 7 31 . 03 2 2.74 .01 . 06 1 TR2 88-3 40 21 56 4 .6 10 7 1106 8.26 41 5 HD. 3 15 1 2 .46 .067 2 103 6 39 . 95 27 .05 2 1.75 .01 .11 1 TR2 88-4 14 111 43 78 1.2 6 12 1194 18.01 - 56 5 ID 4 6 1 2 2 123 .14 .063 4 47 1.23 12 .01 3 3.26 .01 .05 1 782 58-5 6 194 85 141 1.4 9 12 1474 18.44 105 5 1D 4 1 1 159 4 2 .13 .054 4 41 2.00 11 .01 3 3.91 .01 .07 1 TR2 88-6 6 98 61 89 1.6 741 17.89 413 1 1 5 ND. 4 5 0 .1 1 2 122 . 05 .057 3 34 1.00 13 .01 2 2.73 .01 .10 1 TR2 88-7 6 -71 11 151 11 1.6 9 1431 11.10 154 5 XD 4 6 2 107 .19 32 1.76 1 2 .106 1 29 .01 2 2.94 .01 .09 24 782 88-8 🛤 1 20 61 4.0 11 818 12.06 62 1 5 2 19 3 1 2 2 75 .19 .062 8 35 .96 14 . 02 3 2.00 .01 . 09 2 712 88-9 37 71 97 3 1.3 10 7 1152 6.58 51 5 ND 2 42 1 2 2 80 .84 .062 1 38 .75 30 .07 5 1.25 .02 .01 1 TH2 88-10 2 21 41 60 .4 9 7 1000 5.75 51 5 ND. 2 18 Ł 2 2 81 .27 .067 4 37 .97 64 .05 2 1.42 . 02 .11 2 TR2 88-11 13 37 57 1 .5 20 11 648 3.07 29 5 ۲D 11 4 1 2 2 60 .17 .068 5 32 .70 220 .02 2 .93 . 01 .11 1 TR2 88-12 22 53 19 1010 2 76 .6 33 4.20 44 5 ¥D 2 10 1 2 3 79 .33 .076 14 33 . 89 80 .02 2 1.08 . 02 .10 1 TR2 88-13 1 22 59 68 .1 17 1 703 3.33 28 5 ND 17 4 1 2 2 68 .24 .069 5 26 .96 113 .04 2 1.18 .01 .11 1 782 88-14 1 78 64 119 37 .8 19 1361 6.11 46 5 ND 3 17 1 2 2 96 .56 .173 18 53 1.43 145 .04 2 1.87 . 01 .12 1 TR2 88-15 86 139 275 18 1 1.2 25 1518 6.76 64 5 XD 3 19 2 2 2 97 .31 .078 -14 31 1.78 154 .03 2 2.62 .01 .09 2 TR2 68-16 48 22 64 1 .5 19 10 812 3.90 23 5 ХĎ 1 19 1 2 2 83 .41 .095 7 29 1.26 142 . 86 3 1.61 .01 .12 2 TR2 88-17 85 35 191 . 9 27 41 1461 12.65 1 19 5 ND. 2 20 1 2 2 395 .74 .092 10 18 1.99 195 .26 11 3.24 .01 .07 1 STD C 58 40 132 6.8 \$7 18 29 1056 4.12 42 17 6 37 48 18 18 19 57 .50 .090 39 56 .92 175 .06 36 1.99 .06 .14 12

TEUTON RESOURCES FIL # 88-2787R

SAMPLES	No PPN	Cu PPM	PD PPN	Zu PPK	Ag PPN	W1 PPN	Co PPN	Ka PPH	re 3	λs PPN	U PPN	Au PPH	Th PPH	Sr PPN	Cd PPM	SD PPM	BI PPK	V PPK	Ca 1		La PPN	CT PPN	Ng 1	Ba PPN	Tİ ł	B PPN	۸1 ۲	Ne 1	K ł	V PPN
TR2 88-18 TR3 88-1 TR3 88-2 TR3 88-3 TR3 88-4	1 2 1 1 2	66 508 51 264 241	30 35 12 9 10	117 86 72 70 75	1.0 2.5 .9 .5 .9	14 6 8 8 7	27 17 10 10 10	1310 1151 1455 1432 1340	4.98 4.18	156 42 20 18 26	5 5 5 5	ND ND ND ND ND	1 1 1 1	25 98 46 52 37	1 1 1 1 1	3 4 2 3 2	2 2 2 2 2 2	283 125 147 157 141	.77 1.22 .93 .89 .76	.161 .163 .166	7 4 5 5 8	10 12 10	1.66 1.64 1.75 1.73 1.61	119 63 70 62 77	.18 .10 .07 .03 .02	2 2 4	2.26 2.32 2.25 2.31 1.97	.01 .01 .02 .02 .02	.16 .09 .09 .10 .09	1 2 3 2 1
TR3 88-5 TR3 88-6 TR3 88-7 TR3 88-8 TR3 88-9	1 2 2 2 1	44 336 104 182 90	6 14 14 16 13	55 58 54 31 43	.3 .7 .8 1.7 1.1	7 6 5 2 3			5.68	12 46 45 75 58	5 5 5 5 5	ND ND ND ND ND	1 2 1 2 2	61 42 48 28 25	1 1 1 1	2 3 2 2 2	2 2 2 2 2 2	119 119 146 135 104	1.00 .70 .73 .26 .18	.152 .153	5 5 4 4 4	9 8 8	1.53 1.43 1.41 .77 1.05	46 85 64 86 453	.07 .06 .07 .01 .01	2 2 2	1.89 1.94 1.99 1.30 1.88	.02 .01 .01 .01 .01	.08 .07 .09 .12 .23	4 8 11 3 3
TR3 88-10 TR3 88-11 TR3 88-12 TR3 88-13 TR3 88-14	1 4 1 1	233 177 362 46 88	14 7 16 10 8	61 76 79 83 68	2.7 .5 .9 .2 .6	6 7 6 5	12	927 1094 1480 1192 1028	4.21 7.63 4.35	37 11 42 24 34	5 5 5 5 5	ND ND ND ND ND	2 1 1 1 1	28 47 17 20 26	1 1 1 1	3 2 2 2 2	2 2 2 2 2	146 115 166 143 117	.41 .78 .42 .60 .55	.169 .153 .168 .184 .180	6 7 6 5	1 7 4	1.87 2.40 1.81 2.31 1.79	332 94 186 215 222	.01 .01 .01 .01 .01	· 4 · 2 2	2.21 2.65 2.39 2.49 2.04	.01 .01 .01 .01 .01	.13 .10 .09 .13 .15	1 1 1 1
TR3 88-15 TR3 88-16 TR3 88-17 TR3 88-18 TR3 88-19	2 1 1 3	105 106 39 88 58	14 8 6 8 34	57 74 66 71 95	.9 .3 .2 .3 1.3	5 5 5 4	1	869 1395 922 1285 815	3.47 4.94	39 31 10 34 135	5 5 5 5 5	ND ND ND ND ND	1 1 1 2	42 28 15 10 36	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	124 130 116 136 41	.56 .55 .51 .34 .19	.185 .179 .179 .158 .143	4 5 5 5 5	5 5	1.69 2.28 2.16 1.63 .22	102 131 341 344 81	.01 .01 .01 .01 .01	3 2	1.96 2.59 2.15 1.78 .66	.01 .01 .01 .01 .01	.10 .13 .16 .13 .44	1 1 2 2 1
TR3 88-20 TR3 88-21 TR3 88-22 TR3 88-23 TR3 88-24	5 10 9 4 2	41 19 11 11 14	27 30 21 23 14	92 35 15 13 39	1.9 2.2 2.5 1.3 .8	13 2 1 1 6	13 5 3 3 8	161 105 120	7.90 6.95 5.07 6.03 6.32	158 116 171 158 108	5 5 5 5 5	ND ND ND ND ND	1 1 1 2 1	42 18 21 13 16	1 1 1 1	2 2 2 2 2 2	3 2 2 4 3	38 38 29 54 98	.44 .06 .05 .05 .31	.094 .051 .058 .077 .125	5 4 5 5 5	8 2 2 2 9	.30 .09 .06 .27 .91	17 40 37 27 21	.01 .01 .01 .01 .01	18 10 5 3 4	.63 .37 .31 .51 1.01	.01 .01 .01 .01 .01	.27 .52 .54 .44 .31	1 2 1 2 2
TR3 88-25 TR3 88-26 TR3 88-27 TR3 88-28 TR3 88-29	6 7 4 7 5	21 18 27 15 19	10 13 10 7 6	51 25 17 44 46	1.6 1.3 1.1 .6 .8	4 2 2 2	16 14 8 8 9	312 306 583	7.16 5.86 6.78 6.12 7.20	172 321 110 239 231	5 5 5 5 5	ND ND ND ND ND	1 1 2 2 2	13 9 57 9 7	1 1 1 1	2 2 2 2 2	2 2 2 3 2	108 66 50 94 104	.89 .23 .42 .33 .26	.232 .129 .127 .172 .160	7 3 4 3 3	3 2 2	1.50 .59 .39 1.23 1.18	16 13 12 34 18	.01 .01 .01 .01 .01	6 2 3	1.52 .80 .81 1.35 1.33	.01 .01 .01 .01 .01	.18 .25 .27 .19 .16	2 2 5 1 3
TR4 88-1 TR4 88-2 TR4 88-3 TR4 88-4 TR4 88-5	3 3 2 2 2 2	20 55 121 84 40	14 22 34 20 18	95 70 26 23 23	.7 1.3 7.0 5.7 1.6	10 18 5 2 1		2318 2966 310 2 266 1 349 2	9.30 8.27 6.99	39 92 342 166 252	5 5 5 5 5	ND ND 25 26 5	1 2 3 2 3	91 226 71 . 70 68	1 1 1 1	5 6 7 3 12	2 3 8 6 2		3.18 4.00 .47 .33 .56	.149 .085 .054 .044 .060	5 9 2 3 3	7 17 1 10 15	1.75 1.03 .07 .13 .09	50 113 5 28 32	.09 .11 .11 .04 .09	-	3.09 2.31 .47 .55 .63	.01 .01 .01 .01 .01	.08 .01 .03 .09 .02	5 27 76 121 20
TR4 88-6 STD C	21 17	26 58	23 39	14 132	2.5 7.2	1 68	2 28	404 1 1045		167 40	5 21	ND 6	1 36	206 47	1 17	12 18	4 19	84 55	1.48	.041 .087	3 38	8 55	.07 . 89	105 174	.12 .06	2 36	.90 1.95	.01 .06	.01 .14	151 12

.

PL _ 2

r

(

(

C

(

C.,

(

0

C

C

(

Ć

C

Ċ.

C

(

(

(::

(

(

TEUTON RESOURCES FILE # 88-2787R

SAMPLES	No PPN	Cu PPK	567 715 715	Zn PPN	Ag PPK	NI PPN	Co PPN	Na PPN	re t	As PPM	0 899	du PPH	Th PPH	Sr PPN	Cđ PPH	SD PPH	Bİ PPM	V PPN	Ca 3	7 1	La PPN	CT PPN	Ng t	Ba PPH	Tİ Z	B PPN	31 2	Xa ł	r ł	¥ PPK	
TR4 38-7 TR4 88-8	71 45	36 68	24 35	17 39	4.2 3.6	1	2' 6	330 1968	16.29 17.21	178 225	5	ND ND	6 5	89 116	1	20 29	12 10	55 74		.026 .047	2	8 10	.11	78	.07	2	. 40	.01	.01	366	
TRA GRAB ^ TK-001-GRAB	59 	50 - 572	29 	16 	3.7	1	i 	262 -1614	18.17	142	5 5	5	5	78	i	24	11	58 58	.45	.019	2	10	.07	24 28	.06 .06	2	.78 .41	.01 .01	.01	142 691	
76-002 FLOX7		120	_1\$_	- 15	-2.1	<u> </u>	_15_	193	11.18	-112	_ <u>i</u> _	_1_	1	15	<u>i</u>			21	.22			_13	.12	_15	.01	j	.37	.01	.01	-110 - <u>-1</u> 8	
LINO STD C	- 10 17	2461 57	55 37	43 132	52.4 7.1	66	28	495 1046	10.00 1.00	- 838 40	<u>5</u> 19	-117 6	37	<u>15</u> 47	17		<u>40</u> 22	<u>52</u> 55	.12 .48	.088	<u>3</u> 37	<u>11</u> 55	<u>. 05</u> . 90	70 173	.02	36	<u>.46</u> 1.95	0106	.13	- 11 12	

Page 3

C

(

4

(77

C

(

C

6

(·

(

C

C

€

(

Ċ

Ċ

C

(

C

MI

7. 20 11

C100175

1 .

(

1

С.

Ċ,

(

(

(

(

C

0

6...

(

C

L

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR NW FE SE CA P LA CE NG BA TI B W AND LIMITED FOR WA E AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK

DATE RECEIVED: AUG \$ 1918 DATE REPORT MAILED: High 15 /80

TEUTON RESOURCES File # 88-3097R Page 1 - A

6Ъ

SAMP	PLE¥	No PPN	C'I PPN	Pb PPX	ZD PPM	Ag PPN	NI PPM	Co PPN	Ma PPM	Fe 3	λs PPN	U PPN	Au PPN	dT PPN	Sr PPM	Cđ PPM	SD PPM	Bİ PPN	V PPN	Ca 3	Р 1	La PPM	CT PPM	Hg L	Ba PPM	71 1	B PPN	л1 Х	Na X	r ł	W PPM
 11-)					51		-24		- 813	5.89		;		<u>-</u> 1-	-123-		- 12			3.61				1.92-	<u>59</u> -	.01		-2.13-			1
11-0		9	694		4074		2	2	17400	3.23	1344	5	3	1	139	18	417	2		8.15		ġ		2.25	69	.01	2		.01	.01	1
TX-0	005	14	1459	69	23621	101.3	13	51	989	24.16	854	5	3	1	6	92	11	2	42		.015	3	26	.63	4	.01	2		.01	.04	i
TRS	88-1	1	125	15	166	2.7	4	19	2394	6.37	661	5	ND	1	50	1	17	2	13	3.35		10	1	.63	11	.01	ī	.38	.01	.15	i
TRS	99- 2	2	167	24	1376	7.E	3	17	1311	7.24	692	5	ND	1	20	6	14	2	35		.135	7	i	.12	16	.01	4	.45	.01	.15	1
TRS	88-3	1	139	17	183	2.4	3	12	4714	5.28	408	5	ND	2	85	1	26	2	55	5.78	.039	9	4	1.43	33	.01	3	. 35	.01	.15	1
785	88-4	1	517	21	180	5.6	3	14	1468	5.72	839	5	ND	2	27	1	50	2	33	1.69		B	2		28	.01	i	.42	.01	.19	i
TRS	88-5	1	707	19	142	6.3	4	16	2134	4.96	897	5	ND	1	21	1	46	2		1.66		10	4	. 65	29	.01	ž	. 79	.01	.19	i
725	38-6	6	314	29	185	6.5	2	12	3475	4.38	709	5	ND	2	92	1	26	2		6.70		15	3	.84	27	.01	ī	.81	.01	.09	i
TR5	88-7	9	199	44	155	9.8	3	15	1642	5.35	951	5	ND	1	64	1	43	2		2.14		4		1.12	29	.01	2	.43	.01	.09	i
TR5	88-8	1	34	12	199	. 9	6	18	2894	6.90	1352	5	ND	2	28	1	12	2	108	1.50	.152	9	12	2.11	22	.01	3	1.96	.01	.13	1
TR6	88-1	1	- 14	14	191	2.5	3	11	3359	4.69	526	5	ND	2	96	1	6	ž	50			7	2	1.28	41	.01	11	.52	.01	.13	1
TR 6	88-2	1	93	21	31	3.7	3	18		5.98	661	5	2	1	20	1	21	2	15		.111	5	2		9	.01	3	.27	.01	.20	ż
TR6	88-3	19	296	36	302	7.0	5	30		7.14		5	ND	1	25	1	79	2	29	1.16		ī	2	.24	Ĥ	.01	3	.32	.01	.18	1
726		2	505	321	177	5.9	2			6.15		5	ND	1	14	1	47	3	35		.150	10	3	.18	29	.01	9	.46	.01	.19	1
786	88-5	1	476	60	91	8.1	1	18	2597	6.19	1945	5	ND	1	17	1	92	2	26	.12	. 163	8	2	.02	52	.01	5	.30	.01	.24	2
TR6	88-6	3	307	26	167	2.9	3	19	2714	6.65	1692	5	ND	1	31	1	31	2		1.41		1	3	.34	12	.01	2	.45	.01	.15	i
TR6	89-7	1	31	9	215	. 8	4	17	4277	5.86	1829	5	ND	2	59	1	13	ž	59	4.11	.132	10	;	.70	32	.01	ż	.49	.01	.15	1
TR6	88-8	1	27	9	303	.1	5	18	4742	5.52	726	5	KD	2	31	1	3	2		2.37		15	ĥ	1.89	113	.01	-	2.18	.01	.16	i
TR7		3	12	14	82	2.8	2			6.24		5	3	1	44	1	9	2				6	3	. 39	20	.01	i	.59	.01	.27	1
TR 7 (88-2	5	11	15	82	2.7	1	9	841	7.51	1169	5	2	2	42	1	15	2	31	.15	.165	4	2	.23	23	.01	3	.43	.01	.37	2
TR7	88-3	1	21	11	192	1.5	4	14	4631		659	5	ND.	1	107	1	9	2				11		1.28	36	.01	2	.52	.01	.20	1
728		6	20	8	51	.5	4	17		8.08	64	5	ND	1	11	i	2	2	134	.37	.197	6		1.19	35	.01		1.38			1
TRS (10	12	12	12	1.5	ž		111		60	ŝ	ND	2	11	i	ż	ŝ	48		.064	3	ż	.12	26	.01	ź		.02	.11	1
TRE I		1	20	1	59	.8	5		1153		12	5	ND	1	13	1	ì	2	123		.193	9		1.48	173			.31	.03	.17	2
							-					•		•		•	•	•			. 175	,	J	1.30	113	.01	3	1.81	.02	.14	1
728 (3	13	1	63	.3	3	12		6.19	34	5	ND.	1	23	1	2	2	107		.177	5	3	1.75	106	.01	2	1.88	. OZ	. 89	1
TRB I		10	18	1	49	.6	2	13		7.69	58	5	ND	1	10	1	2	2	107	.35	.200	4	3	1.30	29	.01	2	1.42	.02	.10	3
TRS (1	57	1	69	.1			1282		55	5	ND	1	15	1	2	2	108	.41	.168	6	3	1.93	228	.01		2.12	.02	.10	1
TRS !		2	67	•	61	.5	3	15	1012	4.98	75	5	TD	1	12	1	2	2	116		.154	-	3	1.70	94	.01		1.84	. 02	.10	ž
TRS :	38-8	2	27	20	69	.1	2	12	576	6.95	70	5	XD	1	16	1	2	2	99	. 18	.166	5		1.44	13	.01		1.60	.01	.12	2
TR8 (1	76	6	56	.5	6		176		37	5	ID	1	13	1	2	3	124	.54	.158	7	5	1.78	93	.01	2	1.68	. 02	. 09	1
	88-10	1	116	8	79	.1	71		1479		23	5	ND	1	40	1	3	2	138	1.18	.073	9		3.21	82	.07		3.09	.02	.08	i
	89-11	1	185	7	71	.8	18	18	1154	5.07	34	5	ND	1	13	1	2	2	133	.42		6		2.11	45	.01		2.19	. 02	.06	i
TRS (88-12	1	193	9	38	.5	40		1331		31	5	ND	1	13	1	4	2	152		.121	1		2.92	88	.01		2.90	.02	.06	i
TRB 3	39-13	1	156	7	13	.6	3	11			32	5	ND	1	31	1	2	2	121		.188	6		1.60	238	.01		1.60	.02	.08	3
TRS	88-14	3	"	11	45	1.7	3	1	576	8.91	88	5	ND	1	13	1	2	2	124	.25	.159	ŧ	3	1.25	52	.01	2	1.25	.03	.13	2
STD (C	17	57	36	132	1.2	67	28	1049	4.00	42	17	6	36	47	17	17	20	55	.41		38			174	.06		1.94	.06	.14	11
																		^		-							••				••

- ASSAY REQUIRED FOR CORRECT RESUL FOR CL. 2. >10,000 PPM

TEUTON RESOURCES FILE # 88-3097R

_																														
SAMPLE	NO PPN	CH PPN	PD PPX	Zn PPN	Åg PPN	W1 PPN	Co PPK	Na PPN	Te X	λs PPN	U Mqq	Au PPN	Th PPH	ST PPN	Cd PPN	SD PPN	Bİ PPK	V PPN	Ca 1	P 3	La PPN	Cr PPN	Ng L	Ba PPH	Tİ Z	B PPN	A1 \$	¥a 1	r ł	W PPK
TR8 88-15 TR10 88-1 TR10 88-2 TR10 88-3 TR10 88-4	2 38 2 1 1	54 101 28 62 35	6 38 10 14 12	45 52 67 153 121	.6 7.2 2.6 .8 .7	2 10 12 28 23	6 18	611 1181 1904 2290 2177	6.49 8.24	54 187 87 27 71	5 5 5 5 5	ND ND ND ND	3 3 4 3 3	15 56 79 76 66	1 1 1 1	2 15 3 2 2	2 2 2 2 2	29 103	.43 2.50 3.44 3.30 2.77	.167	4 6 8 15 15	3 9 18	1.21 .09 .81 2.10 1.71	98 20 12 30 32	.01 .01 .01 .01 .01	2 2 2	1.25 .28 .91 2.95 2.40	.02 .01 .01 .01 .01	.12 .21 .19 .18 .18	2 3 2 1 1
TR10 88-5 TR11 88-1 TR11 88-2 TR11 88-3 TR11 88-3	1 14 1 44 2	7 73 14 717 10	8 45 7 63 15	127 35 61 225 29	.3 17.6 2.6 85.6 1.2	14 12 11 9 10	46 15 24	2179 1043 1784 1069 871	15.00 5.30 9.70	36 167 68 237 154	5 5 5 5 5	ND ND ND ND ND	4 3 3 3	32 37 67 45 26	1 1 2 1	2 6 2 182 2	2 2 2 2 2 2	37 23 170	1.02 1.89 3.08 2.21 1.33	.106 .036 .038 .024 .031	10 6 5 3 7	22 3 12 4 4	1.76 .14 .62 .05 .15	40 5 7 7 11	.01 .01 .01 .01 .01	3 2 5 2 4	2.22 .27 .76 .18 .40	.01 .01 .01 .01 .01	.14 .18 .15 .15 .20	1 3 2 3 3
TR11 88-5 TR11 88-6 TR11 88-7 TR11 88-8 TR11 88-9	5 3 6 4 1	11 8 11 35 24	24 23 58 67 4	13 80 69 153 97	1.6 1.1 2.5 4.5 .2	16 16 15 7 15	42 24	878 1662 1172 2575 2184	15.86 15.51	116 44 93 264 9	5 5 5 5 5	ND ND ND ND ND	4 4 5 6 2	45 50 33 49 100	1 1 1 1 1	2 2 2 2 2 2	3 2 3 4 2	34 26 51	2.22 2.55 1.42 1.71 4.96	.037 .068	6 8 35 13		.04 1.00 .76 1.79 1.40	7 9 4 11 50	.01 .01 .01 .01 .01	2 2	.20 1.11 1.00 2.53 1.85	.01 .01 .01 .01 .01	.15 .13 .14 .14 .15	2 2 1 1
TR11 88-10 TR12 88-1 TR12 88-2 TR12 88-3 TR12 88-3 TR12 88-4	1 1 30 5 2	17 6 104 17 7	8 11 121 26 9	89 133 120 61 31	.8 .9 14.4 3.4 1.7	17 21 8 13 15	7 17 9	1443	9.06 15.73 5.20	39 20 376 139 63	5 5 5 5	ND ND 4 ND ND	2 5 4 1 3	158 49 44 9 59	1 1 1 1	2 2 9 2 2	2 2 16 2 2	52 53 138	6.94 1.91 1.95 .15 2.34	.096 .135 .043 .051 .052	13 8 4 5	13 20 5 11 9	1.44 2.09 .45 .51 .33	222 9 5 13 17	.01 .01 .01 .01 .01		1.54 2.36 .56 .65 .41	.01 .01 .01 .01 .01	.16 .14 .13 .13 .13	2 1 2 3
TR12 88-5 TR12 88-6 TR13 88-1 TR13 88-2 TR13 88-3	42 3 1 1 2	61 25 8 10 120	122 10 7 11 15	42 41 70 51 39	9.5 3.2 .6 .8 1.3	8 10 25 20 15	5 10	1720 1799	3.86 5.84	229 58 30 46 141	5 5 5 5 5	2 ND ND 2 ND	4 2 4 4 3	57 24 72 82 35	1 1 1 1	4 2 2 2 2	12 2 2 2 2	27 19 19	2.47 .88 2.93 3.21 1.56	.025 .027 .071 .101 .061	4 3 4 5 3	4 8 12 8 7	.10 .25 .99 .73 .21	4 21 19 12 6	.01 .01 .01 .01 .01	2 2 5 2 2	.18 .37 1.20 .89 .35	.01 .01 .01 .01 .01	.12 .12 .16 .23 .17	4 13 24 6
TR13 88-4 TR13 88-5 TR13 88-6 TR13 88-7 TR13 88-7 TR13 88-8	1 1 1 2	8 56 22 55 77	12 15 12 15 15	34 55 23 68 64	.8 1.5 .5 1.1 1.4	12 14 15 30 38	11 14 25	1313 1786 782 1893 1516	8.12 5.38 6.41	154 150 84 194 246	5 5 5 5 5	2 ND ND ND	3 4 3 2 4	47 53 32 76 49	1 1 1 1	2 2 2 2 3	2 2 2 2 2 2	14 8 9	2.34 2.46 1.39 3.83 2.68	.046 .040 .049 .055 .069	4 3 4	8 6 8 6 7	.24 .68 .25 .19 .37	10 9 5 15 15	.01 .01 .01 .01 .01	2 4 2 2 2	.19 .64 .34 .34 .57	.01 .01 .02 .01 .01	.13 .20 .13 .17 .20	5 3 4 3 3
TR13 88-9 TR13 88-10 TR13 88-11 TR14 88-1 TR14 88-1 TR14 88-2	1	166 198 162 128 0905	25 18 22 26 94	52 88 257 192 62	1.8 1.5 1.8 3.7 58.6	38 13 11 3 1	1	1416 1534 1689 702 42	4.72 3.76	394 369 288 60 305	5 5 5 5 5	ND ND ND ND ND	3 2 2 2 3	50 70 77 61 4	1 1 1 1	7 7 7 2 39	2 2 2 2 21	16	3.29 3.23 .38	.051 .044 .046 .095 .026	4 3 2 6 3	5 7 6 1 2	.04 .13 .13 .24 .01	14 18 23 13 3	.01 .01 .01 .01 .01	7 2 3 4 2	.20 .21 .23 .46 .09	.01 .02 .01 .01 .01	.16 .12 .13 .15 .10	4 4 4 4
TR14 88-3 STD C	1 17	103 58	9 36	254 132	1.8 7.2	4 67		2620 1050		35 39	5 18	ND 7	3 37	16 48	2 17	2 19	2 20	69 56		.125 .089	9 39	11 56	1.12	68 174	.01 .06	5 37	1.56 1.95	.01 .06	.16 .13	3 12

.

Paye 2

r

¢

£,

C

(

(

Ç

Ċ

Ċ

C

(

C

C

C

(:

(

(

C

(₁

(

.

TEUTON RESOURCES FIL. # 88-3097R

SAMP LE #		Cu PPN		Zn PPN		¥1 PPH		NS PPN	Te t		U PPM		Th PPN				Bİ PPM				La PPN		Ng 1	Ba PPH	TÍ ł	B PPN	A1 1	Na X		¥ PPK
7215 88-1	1	6	13	47	.3	12	17	1414	6.08	20	5	ND	1	53	1	2	2	1	2.05	.048	3	2	1.05	1	.01	6	.29	.01	.18	1
7815 88-2	30	23	62	35	3.6	4	20	474	15.31	97	5	ND	1	9	1	2	9	3	.44	.014	2	1	.16	2	.01	- 1	.11	.01	.09	1
TE15 88-3	6	4066	61	56	12.7	5	30	1047	16.34	479	5	ND	1	15	1	6	13	8	. 84	.010	2	2	.43	2	.01	5	.25	.01	.10	1
7815 88-4	5	3576	28	39	1.1	17	10	1416	5.67	172	5	ND	1	58	1	6	11	6	1.89	.042	2	- 1	.57	8	.01	3	.22	.01	.13	2
TR15 88-5	1	50	80	54	6.5	14	10	629	11.88	161	5	3	1	12	1	2	18	15	.59	.029	2	4	. 32	1	.01	5	. 22	.01	.12	1
TR15 88-6 STD C	4 17	39 57	29 38	57 128	1.6 7.2	28 67			10.39 4.04	217 39	5 19	ND 7	2 36		1 17	3 17	5 20	20 56	. 84 . 49	.037 .089	2 38	7 55	.57 .90		.01 .06		.58 1.98	.01 .05		1 12

.

Pà 3

0.1

1

(1

ŧ

(

(

E

(

(

C

(

(

(

C

C

ſ

C

X.

C

1

(

C.,

e

1

4

(

(

C

(

(

C

C

C

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DIG. C FOR OWE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MW PE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* AWALTSIS BT ACID LEACH/AA FROM 10 GM SAMPLE.

TEUTON RESOURCES File # 88-3689

.

SAMPLE ‡	No PPN	Cu PPN	Pb PPN	Zn PPK	λg PPN	W1 PPN	Co PPN	Na PPN	Ze 3	As PPN	U PPN	Au PPN	Th PPN	ST PPK	Cd PPX	Sb PPN	Bİ PPN	V PPN	63 1	P 3	La PPH	CT PPN	Ng 1	Ba PPN	Tİ Ş	B PPK	A1 \$	Na X	I ł	¥ PPX	Au* PPB	
TR9 88-1	4	91	23	22	5.0	1	3	458	21.96	233	5	8	4	67	1	26	13	79	. 62	.043	3	,	.08	61				••				
TR9 88-2	4	58	24	39	3.2	3	6	1068	18.51	161	ş	ż	i	90	i	16	5	56	.74	.046	3	••		61	.09	16	.54	.01	.03		8890	
TR9 88-3	4	130	34	29	4.5	1	j			244	į,	ŝ	ċ	10	i	10	12	54	.07		4	18	.11	39	.07	10	.97	.01	.01	63		
TR9 88-4	3	122	37	30	5.7	ī	ŝ		30.47	267	í	ND	i		1	,	14	47		.055			.06	79	.02	19	.33	.01	.05	146	4840	
TR9 88-5	2	120	11	67	5.8	17		1007	4.00	- 44	i	ND	ž	14	1	13	;	44	.04	.063	3	10	.14	50	.01		.47	.01	.13	42	1890	
•	-		••	••	•••	• *				11	,	a 9		14	1	13	4		.20	.101	1	22	.87	299	.01	,	1.46	.01	. 19	1	365	
TR9 88-6	4	125	28	80	1.7	6	1	1653	12.35	100	5	ND	1	14	1	5	2	51	.40		16	75			••			••		_		
TR9 88-7	3	74	13	62	3.1	i	15	2827		79	ŝ	5	i	106	1	÷	1				20		1.49	165	.01		2.90	.01	.67	2	875	
T29 88-8	j	90	ii	33	2.8	3		1577		179	i.	;	1	120	· 1	2	,		4.68	.065			1.39	- 14	.02		1.77	.01	.11		2240	
T19 88-9	i	240	19	35	2.2	2		494	20.47	356	í		, i	14	1		1,		3.45	.049		12	.59	16	.03	f	.13	.01	.07	223	2240	
TR9 88-10	i	16	16	41	.9	;	i	572	6.08	109	ć	ND	,	14	1		13	35	. 09	.089	3	10	.05	417	.01	13	.46	.01	.17	- 4	4250	
	•	••	••	••		•	•		0.00	103	,	NV.	4	14	1	4	4	76	.28	.187	4	15	. 99	105	.01	- 4	1.23	.01	.55	3	225	
TR9 88-11	2	16	12	52	1.2	3	10	557	7.53	107	5	ND	2		1	2	,	94	. 32	.207		11	1.04	17		•						
TR9 88-12	9	18	14	33	7.8	2	1	521	5.53	147	5	ND.	1	i	i	;	;	235		.212					.01		1.20	.01	.17	1	230	
TR9 88-13	5	27	1	41	1.3	3	14	518	7.89	192	ŝ	ND	;	i	i	;	;	90		.179	3 E		1.10	56	.01		1.23	.01	.33	I	790	
TR9 88-14	1	14	6	59	.6	ž	ŝ	768	5.28	23	ŝ	ND	;	i	;	,		105			,		1.12	16	.01		1.27	.02	.18	1	545	
TR9 88-15	1	16	32	83		•	i	732	5.96	76	ś	ND	,	10	4		3			.228			1.71	102	.01		1.73	.02	.16	1	60	
	•	••	••	••	• ·	•	,		3.70	/•			4	10	1	4	4	96	.40	.239	•		1.47	44	.01	7	1.67	.02	.19	1	225	
TR9 88-16	1	17	5	54	.1	2	9	432	5.06	117	5	ND	2	11	2	2	2	82	.40	.196	6		. 59	86	.01				••			
TR9 88-17	4	9	12	57	.6	4	12	658	5.78	104	ŝ	ND	2	18	;	;		109		.230	,	11					1.29	.02	.19	1	176	
TR9 88-18	1	25	4	58	.3	i	13	758	4.72	89	ŝ	ND	1	14	1	,	,	115			1		1.46	59	.01		1.63	.02	.13	1	82	
TR9 88-19	ī	50	11	58	.3	12	31	891	6.61	51	ś	ND	;	44	1	1	3			.233	;		1.63	90	.01		1.80	.03	.13	1	55	
STD C/AU-R	18	57	37	131	1.1	67	28	963	4.12	40	17		36	47	12	4		133		.185			2.09	70	.01		2.22	. 02	.10	1	65	
•/ ••		*1	•1			•,	20	147	7.12	77		9	70	47	16	17	17	56	.47	.095	39	60	.90	173	.06	33	1.94	.06	.15	11	520	

1 N. 1

GEOCHEMICAL ANALYSIS CERTIFICATE

(

(

ť

(

Ċ

(

(...

(**

t

(

C

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HW03-H20 AT 95 DEG. C FOR OWE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR NG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK

SANPLE ;	NO PPN	Cu PPN	Pb PPN	Zn PPN	Ag PPH	Nİ PPN	CO PPH	Nn PPN	Te 3	λs PPN	U PPN	Au PPN	Th PPN	ST PPN	Cd PPM	SD PPN	Bi PPN	V PPN	Ca ł	P R	La PPN	Cr PPN	Ng t	Ba PPN	Tİ X	B PPN	A1 3	Na X	K ł	¥ PPK
11255 OW	1	5	24	107	.1			1429		545	3	ND	2	17	1	2	3	129	. 49		8		1.62	20	.15		1.53	.02	.17	1
LISOS TOW		1	18	88	.1	4		1235		58	5	ND	2	29	1	2	2				10	6	.71	336	.05		1.39			1
L1505 35W	+	20	34	123	.1	5		1797		156	5	ND	1	30	1	4	5	46	.40		16		1.02	58	.06			_H_		1
L1505 30W	6	13	11	46	.2	3	10		4.02	348	5	ND	3	29	1	2	4	39	.13	.150	5	6	. 39	278	.10	2		.01		2
L1505 25W	2	16	23	_ #L	.2		1	435	4.05	386	3	ND	3	31	1	3	5	25	.11	.110	4	1	.25	457	سللنس	-3	.65	.01	.29	2
L1505 20W	1	7	38	94	.2	3		1464			5	ND	2	45	1	3	2	48		.104	7	1		205	.07		1.58	.01		1
L1505 15W	1	29	41	160	.3	5		2286		55	5	ND	2	86	1	2	4	81		.128	<u> </u>			1285	.10		2.23	.01	. 30	3
L1505 10W	1	6	20	80	.1	5		1053			5	ND	2	14	1	2	2	53		-112	5	10	.81	14	.07		1.10	.01	.30	2
L1505 5W	1	1	12	131	.1	6		2243		45	1	ND .	2	39	1	2	2	_59-		.104	1		1.11	511	. 09		2.01	.01	.30	2
L1505 OW	1	17	17	96	.1	1	14	1175	5.76	205	5	ND-	-1	13	1	1	-	69	. 29	.166	1	9	1.02	49	.16	2	1.36	.01	.25	3
L1755 80W	2	29	64	\$1	.1	6	3			170	5	ND	3	Ĥ	$<_{1}$	3	2	5		.033	6	9	.05	248	.01	2	.41	.01	.18	1
L1758 75W	1	13	36	136	.4	11	4			74	5	JQ-	- 3	8	1	1	-1_	14			6	21	. 32	147	.01	5	.52	.03	.12	1
L1758 70W	4	32	30	97	2.6	5		1940			-	2	5	20	1	4	2		.13		8	3	.06	663	.02	2	.46	.01	.22	1
L1755 65W	2	12	56	111	.6	3		414			S	ND	2	40	1	2	2	23		-199	6	10	.45	23	.01	2	.92	.01	.22	1
L1755 60W	1	11	17	80	.1	3	,	1572	3.89	55	5	ND	1	62	1	2	3	48	2.73	.105	-H-	-	1.20	212	.01	2	1.74	.02	.15	1
11758 55W	1	6	6	116	-+	1	6	2242		21	5	ND	1	110	1	2	4	43	11.19		6	2	1.31	-187	.01	4	. 37	.01	.11	1
11758 50W	2	15	16	-71	1.1	1	9			170	5	ND	1	8	1	2	2	30		.131	8	3	.29	75	.01	1	.87	.01	.27	1
11758 45W	3	H	-11	- 11	.5	3	20	1822	5.68	133	5	ND	5	32	1	2	2	30		.135	1	5	.41	728	.01	1	1.46	.01	.23	1
11755 10W		17	9	80	.1	1		1839		120	5	ND	1	- 44	1	2	5	34	1.41		11	1	.94	103	.01		1.57	.01	.23	1
41258 351	1	34	8	89	.1	3		2244	3.10	152	5	ND	1	21	1	2	2	32	. 39	.120	16	3	.84	518	.01	1	1.44	.01	.71-	<u> </u>
TK 006	H	55	726	205	3.2	1	10	213	27.40	524	5	2	4	10	1	8	5	21	.02	. 268	10	1	.04	116	.01	2	. 42	.01	.21	1
TR13 88-1 2	2	28	19	34	.1	17		1971		112	5	ND	1	59	1	2	6	- 14	2.99	.056	- 1	- 1	.40	- 4	.01	2	.53	.01	.24	3
TR13 88-1 3	1	36	20	79	.3	21	26	1319		86	5	ND	1	51	1	2	2	20	1.83	. 088	- 1	1	.78	4	.01	2	.87	.01	.18	1
TR13 88-14	1	111	107	348	2.5	24	46			174	5	2	2	11	3	3	2	1			3	- 4	.19	4	.01	2	. 52	.01	.25	1
TR13 88-15	1	107	345	539	1.5	12	11	769	4.46	204	5	ND	3	11	5	6	2	11	.34	.033	4	5	.26	14	.01	3	. 16	.01	.17	1
FR13 88-16	5	215	38	86	2.9	25	23	2107	5.83	250	5	ND	1	39	1	4	2	16	1.71	.106	6	5	.54	17	.01	2	.90	.01	. 29	1
TR13 88-17	6	124	30	- 59	2.0	15	15	2428	4.12	211	5	ID	1	47	1	3	2	13	2.73	.061	6	- 4	.58	14	.01	5	. 55	.01	.22	1
TR16 88-1	43	111	152		18.1	2	8	129	9.69	194	5	ND	1	1	1	10	2	10	.02	.043	6	1	. 02	16	.01	•2	.27	.01	.15	3
TR16 88-2	6	75	138	62	10.2	2	6	161	7.51	109	5	ND	1	36	1	2	2	16	.01	.040	3	2	.04	18	.01	2	.24	.01	.19	2
TR16 88-3	2	87	74	36	8.4	1	14	365	8.46	98	5	ND	3	25	1	2	6	43	.37	.101	l	3	.10	33	.01	2	.36	.01	. 29	4
TR16 88-4	2	127	26	32	2.1	3	18	563	6.98	107	5	ND	1	45	1	2	2	43	.97	.122	7	3	.16	19	.01	2	.43	.01	.35	2
TR16 88-5	ī	118	46	60	2.5	1	13	556		127	5	ND	3	1	1	ž	Ĩ	62		.110	ż	3	.39	ï	.01	ż	. 80	.01	.22	2
TR16 88-6	1	182	36	83	1.2	1	10	871		64	5	ND	4	10	1	2	3	11		.136	5	i	.62	13	.01		1.04	.01	.20	2
TR17 88-1	1	93	24	57	2.9	5	18	928		81	5	ND	1	50	1	2	2	51		.130	9	5	.44	8	.01	11	.81	.01	.25	1
TR17 88-2	9	849	11	140	6.2	1	11			155	5	ND	2	30	1	7	4	29			5	2	.18	4	.01	2	.42	.01	.18	2
TR17 88-3	10	4776	201	1378	44.3	2	12	56	14.30	344	5	ND	2	24	10	37	5	12	.10	.029	2	6	.01	3	.01	,	.15	.01	.12	5
STD C	18	58	37		7.2	67		1070		37	21	8	37	41	18	17	19	58		.088	39	54	.89	178	.06		1.93	.06	.13	12

TEUTON RESOURCES FILE # 88-3501R

	SAMP LE #	NO PPN	Cu PPM	Pb PPK	Zu PPK	λg PPN	WI PPN	Co PPN	Nn PPK	Te 2	λs PPN	U PPN	λu PPH	Th PPN	Sr PPK	Cđ PPK	SD PPN	BI PPN	V PPN	Ca 1	2	La PPN	Cr PPN	Ng t	Ba PPN	Ti	B	X 1	¥a	I	¥	-
										•		••••					114		m	•	•	***	r r A	1	rra	•	PPN	4	4	4	PPN	
	TR18 88-1	5	- í	11	,	1.4		5	61	4.62	88	5	ND	2	17	1	6	8	16	. 02	.029	9	Ę.	. 03	25	.01	,	.19	.01	.29	,	
	TR18 88-2	127	11	273	18	14.8	2	9	55	29.60	1261	5	4	1	6	1	18	100	15	.01	.045	2	1	.01	15	.01	;	.16		11.04	1	
	TR18 88-3	2	36	17	27	1.5	8	2	179	4.01	60	6	ND	2	6	1	2	2	33	.02	.040	i	11	.29	48	.01	i	.42	.02	.12	2	
	TR18 88-4	2	- 48	26	88	1.3	16	1	510	4.73	41	5	4	3	52	1	2	2	74	.50	.290	10	19	1.15	157	.01	i	1.41	.01	.21	,	
	TR18 88-5	1	58	4	109	.3	22	5	1573	3.30	18	5	ND	2	28	1	3	2	112	.50	.149	11		1.43	62	.01		1.90	.01	.17	1	
	TR19 88-1	3	12	168	1	4.3	1	2	24	3.74	42	1	ND	2	6	1	9	4	10	.01	.005	1	3	. 02	181	.01	1	.24	.01	. 28	,	
	TR19 88-2	28	103	1380		37.3	1	8	402	24.69	381	5	27	2	1	1	103	40	23	.01	.049	3	,	.01	96	.01	,	.34	.01	.27	,	
	TR19 88-3	21	83	157	15	11.8	1	5	39	10.47	189	5	ND	2	6	1	20	2	31	.01	.024	3	ī	.01	257	.01	ĥ	.22	.01	.13	,	
	TR19 88-4	24	165	73	18	13.9	1	8	25	16.19	75	5	ND	2	11	1	28	3	17	.01	.028	35	13	.01	93	.01	ĥ	.20	.01	.15	1	
	TR19 88-5	1	40	12	12	2.0	2	4	486	5.61	43	5	ND	2	12	1	5	3	6	.01	.050	9	4	.02	513	.01	8	.27	.01	.21	1	
	TR19 88-6	2	41	53	15	4.4	3	3	74	4.39	51	5	ND	2	14	1	4	4	8	.01	.048	22	5	.03	522	.01	3	.31	.01	.21		
	TR20 88-1	5	192	70	280	1.0	38	54	4001	9.65	455	5	ND	4	19	1	17	2	69	.09	.078	13	41	. 39	839	.01	ī	1.74	.01	.28	1	
	TR20 88-2	1	- 74	27	132	.1	30	23	2507	8.64	175	5	ND	2	31	1	11	2	49	2.04	.095	11	28 .	.55	86	.01	ŝ	1.07	.01	.26	1	
	TR20 88-3	1	42	23	31	.5	2	5	317		110	5	ND	1	- 14	1	12	2	5	.01	.034	6	4	.02	401	.01	i	.30	.01	.20	ż	
	1829 88-4	9	41	16	24	.1	4	4	201	4.00	84	5	ND	1	11	1	11	2	6	.01	.037	7	5	.01	505	.01	2	.24	.01	.15	2	
	TR29 88-5	83	93	867	21	22.8	4	6	102 1	14.46	157	5	2	1	8	1	55	1	5	.01	.011	16	(.01	54	.01	•	.26	.01	. 59	1	
TR20.	TR29 88-6	40	82	27	18	25.2	3	12	18 1	8.08	178	5	3	2	4	1	12	9	- 1	.01	.002	8	2	.01	55	.01	2	.24	.01	.16	i	
(1 2 0		16	22	53	10	26.0	1	3	29	6.69	71	5	2	1	66	1	14	8	6	.01	.009	10	- i	.01	()	.01	n	.16	.01	.44	1	
not	TR29 88-8	36	280	45	22	9.9	1	10	29 1	9.71	358	5	- 4	3	10	1	80	23	9	.01	.052	9	2	.01	134	.01	2	.28	.01	.22	;	
29	TR29 88-9	33	98	88	11	11.9	1	5	27 1	3.83	274	5	5	1	27	1	46	12	20		.043	9	ī	.01	53	.01	ž	.15	.01	. 52	1	
- ' (TR29 88-10	1	29	4	17	2.9	1	3		4.19	116	1	ND.	2	18	1	2	2	6	.01	.042	а,	3	. 02	353	.01	6	.26	.01	.25	2	
	STD C	18	61	38	132	6.1	73	29	1069	4.13	42	16	8	36	49	18	17	20	59	.47	.092	40	56	.). ,	181	.07	36	2.05	.06	.15	12	

**

÷

Paye 2

1

•

Ċ

(

1

ť

. ···

ŧ

(

(

(

E

6

(.,

Ċ

(

C

(

C

t

.

• •

1

C

C

t

(

C

(

¢

€

C

C

Ċ

Ć

(

C

C.

t

(

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TYPE: ROCK AU* AWALTSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

TEUTON RESOURCES File # 88-4036

SANPLE‡	No PPX	Cu PPH	P5 PPM	ZL PPM	λg PPM	Hİ PPN	Co PPM	Hn PPH	Fe	λs PPM	IJ PPN	Au PPM	Th PPM	ST PPM	Cđ PPM	SD PPN	Ei PPM	V PPM	Ca ł	P \$	La PPM	Cr PPN	Ng S	Ba PPM	Ti X	B PPN	Al t	Na %	K ł	¥ PPN	Au* PPB
KG-001 KG-003 TR-31-89-13 TR-31-88-14 TR-31-88-15	-	287	68 157 5 6 8	505 56 50 76 68	2.0 23.2 .8 .5 .7	6 2 7 8 8	4 17	1456	2.10 4.89	118 352 13 14 3	5 5 5 5 5	nd NC ND ND ND	1 1 1 1	77 212 84 24 21	3 1 1 1	4 33 4 3 4	2 2 2 2 2			.093 .034 .143 .169 .156	12 5 8 9		.95 .05 1.42 1.95 1.93	246 61 147 247 216	.17 .01 .92 .01 .01	4 9 3	1.89 .26 2.43 2.52 2.55	.03 .01 .01 .02 .01	.11 .13 .25 .13 .19	2 2 1 1 1	590 78 137 93 120
TR-31-38-15 TR-31-58-17 TR-31-98-13 TR-32-83-1 TR-32-83-2	1 1 1 4 1	176 29 205	8 10 85 25	60 65 69 146 81	.4 .7 .4 1.7 1.2	7 7 6 10 8	11 11	1351 1279 1212 2213 1303	4.86 4.97 9.89	18 37 11 63 17	5 5 8 5	ND ND ND ND	1 1 1 1	24 13 17 30 62	1 1 1 1 1	3 5 3 4 4	2 2 2 2 2	93 105 103 464 172	.94 .52 .68 .86 1.46	.149 .163 .158 .165 .144	8 7 7 5 4	7 6 18	1.91 2.12 2.17 2.77 1.67	213 344 438 46 39	.01 .01 .13 .08	3 4 2	2.55 2.77 2.91 4.45 2.44	.01 .01 .01 .01 .01	.19 .19 .18 .07 .05	1 1 1 2 1	25 129 56 118 330
TR-32-88-3 TR-32-88-4 TR-32-88-5 TR-32-88-5 TR-32-88-5	3 2 2 1 2	73 49 292	38 12 19 42 46	123 72 95 132 117	1.8 1.0 .7 3.3 7.3	11 5 4 3 5	10 2	1776 1816 2012 2588 2593	5.43 4.66 7.85	56 25 18 61 99	5 5 5 5 5	ND ND ND ND 2	1 1 1 1	78 154 215 168 145	1 1 1 1	2 7 5 7 6	2 2 2 2 2	95	1.13 4.78 7.95 6.08 8.34	.158 .096 .089 .108 .067	5 - 4 - 4 - 7 - 5	7 7 11	2.58 1.72 1.67 1.98 1.43	23 20 6 52 33	.15 .06 .07 .05 .03	10 2 8	3.84 2.58 2.65 3.32 2.40	.01 .01 .01 .01 .01	.03 .07 .04 .08 .05	3 3 4 44	89 116 62 565 3740
TR-32-88-8 TR-32-38-3 TR-32-88-10 TR-32-88-11 TR-32-88-12	2 1 2	2072 2181 5840 9693 3028	31 25 17 27 43	138 125 146 183 511	11.8 22.0 51.1	4 6 3 7 5	11 13	2384 2867 3202 2547 3510	11.02 10.54 12.50	171 151 251 238 180	5 5 5 5 5	2 2 5 5 3	1 1 2 3	48 85 86 88 73	1 2 3 3 8	5 8 6 2 7	2 3 2 3 2	40 36 43	4.82 8.12 5.81	.032 .037 .029 .059 .062	3 7 3 8 9	14 11 16	1.33 1.31 1.31 1.48 2.08	12 30 20 19 30	.01 .02 .02 .04 .05	2 3 3	1.84 1.87 1.56 2.13 3.16	.01 .01 .01 .01 .01	.02 .03 .01 .03 .02	43 20 63	2430 2215 6280 6820 4615
TR-32-68-13 TR-32-88-14 TR-32-88-15 TR-32-88-16 TR-32-88-17	1 5	5564 1311 3735 1447 68	29 20 32 14 6	247 119 151 91 43	22.6 7.7 28.9 4.7 1.4	9 10. 10 12 25	3 8 4	4515 2410 4284 2555 994	6.28 15.56 6.45	88 43 122 49 9	5 5 8 5 5	ND NC 4 ND ND	1 1 1 1	99 189 98 173 58	2 1 2 1 1	7 8 2 5 2	2 2 5 2 2	49	2.88 7.88 1.53 3.22 .82	.080 .086 .074 .094 .097	10 6 19 7 9	13 20	3.27 1.50 1.95 1.74 .84	100 31 140 149 145	.06 .05 .05 .08 .08	2 2 2	4.61 2.51 3.44 2.92 1.29	.01 .01 .01 .01 .01	.04 .06 .06 .06 .11	12	280 275 7390 151 340
TR-32-88-19 TR-32-88-19 TR-32-88-20 TR-32-88-21 TR-32-88-22	2 1 1 3 2	37 18 489	6 9 9 31 25	57 59 57 48 83	2.0 1.1 1.3 5.8 2.4	26 21 23 6 5	3 4 18	1127 1381 1329 847 3073	3.98 3.04 25.88	8 16 11 210 81	5 5 6 5	ND ND ND 3 ND	1 1 1 1	30 65 12 40 79	1 1 1 1	2 3 2 5	2 2 8 3	74 70 62 52 75	.44 .93 .30 .37 2.41	.096 .107 .097 .063 .082	10 10 10 5 9	25 28 15	1.13 1.13 .97 .51 1.95	398 238 212 10 16	.03 .03 .01 .01 .01	2 3 2	1.52 1.85 1.43 1.61 3.25	.01 .01 .01 .01 .01	.11 .10 .14 .11 .04	1 1 9	565 230 470 6810 1825
TR-32-88-23 TR-32-88-24 TR-33-89-1 TR-33-88-2 TR-33-88-3	2 4 7 23 16	76 245 182	25 20 16 17 12	50 69 56 16 20	17.9	7 11 5 1 1	3		7.03	134 45 91 178 97	5 5 9 8	2 ND ND 10 ND	1 1 1 1	167 86 129 69 76	1 1 1 1	8 5 4 5	5 2 2 30 10	64 83 70 177 95	1.81 2.96 3.94 .55 .63	.063 .111 .078 .064 .050	8 8 5 2 2		.93 1.45 1.37 .17 .32	22 43 13 29 31	.07 .10 .06 .16 .11	3	1.97 2.66 1.98 .61 .88	.01 .01 .01 .01 .01	.05 .10 .04 .05 .10	4	
TR-33-89-4 TR-33-88-5 STD C/XJ-R	15 9 19	327	21 16 42	40 31 132	5.8 3.6 7.4	7 2 73	12 5 30		16.95 14.38 4.03	164 36 43	8 8 24	ND ND 3	1 2 36	24 34 53	1 1 19	2 2 18	10 5 21	85 73 64	.27	.054 .079 .087	4 7 40	11 10 61	.50 .32 .33	14 69 130	.04 .03 .07	2 2 41	.94 .95 2.03	.01 .01 .06	.08 .16 .14	28	5630 1725 475

TR ZI 22

30

31

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HHO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P5 SOIL P6-P8 ROCK AU* AWALTSIS BY ACID LEACH/AA FROM 10 GN SAMPLE.

9 EXT 1, EXT 2

P. 6-7

1

1

1

ſ

Ć

(

(

C

(

1

۰.

(

(

(

(

C

1

DATE RECEIVED: AUG 31 1988 DATE REPORT MAILED: Sept 9/83 Page 1 TEUTON RESOURCES File # 88-4109

SAMPLE¢	No PPN	CL PPM	PD PPM	CC PPN	2g 29M	Ni PPM	Co PPM	Nn PPM	Fe	As PPN	U PPM	Au 2PN	Th PPN	ST PPN	Cd PPN	SD PPM	BÍ PPN	V PPM	Ca 1	5	ia PPN	CT PPM	Ng ł	Ea F?N	Ti S	B PPN	A1 1	Na 3	K }	¥ PPN	Au* PPB
GT 1+400 GT 1-208 GT 1+009 GT 0+908 GT 0+908	7 5 8 14	134 143 143 214 439	172 137 92 199 100	153 139 259 193 309	5.0 3.6 2.9 3.7 7.0	9 16 12 47	15 21 36	1365 1769 2322 3754 5824	\$.53 7.34 5.37		5 5 5 5	NE ND ND ND ND	2 2 3 2 4	13 13 15 14 24	2 3 3	5 5 1 29 41	2 2 2 2 2	38 29 41 48 58	.02 .08 .06	.135 .142 .114 .154 .125	15 17 19 21 54	8 3 11 6 18	.40 .44 .58 .52 .58	235 275 407 313 388	.01 .01 .01 .01 .01	1 1	.91 1.02 1.31 1.39 1.22	.01 .01 .02 .01 .01	.15 .17 .15 .15 .12	1 1 1	1465 1055 775 1385 1435
GT 0+40% GT 0+20% 5+00% 0+503 5+00% 0+803 6+00% 1+003	23 5 4 3 5	53 57 258 248 322	257 215 126 218 907	130 175 209 225 366	6.4 2.9 2.5 2.8 9.0	4 5 7 8 4	26 20 28	1448 3641 2742 3885 3902	8.70 7.13 8.25	340 1162 490 625 705	5 5 5 5 5	2 ND ND ND 2	1 3 1 1 2	15 18 18 15 15	2 2 3 3 4	18 12 3 4 54	2 2 2 2 2 2	20 32 35 40 41	.03 .23 .24	.074 .155 .154 .186 .199	27 24 20 25 17	6 5 3 3 3	.24 .36 .51 .58 .47	273 370 514 709 355	.01 .01 .01 .01 .31	4 7 4	.81 1.16 1.00 1.24 1.04	.01 .01 .01 .01 .01	.19 .16 .10 .12 .13	1 2 1	4175 2015 635 655 2175
6+00N 1+20E 6+00N 1+40E 6+00N 1+60E 6+00N 1+80E 6+00N 2+0DE	4 16 4	21E 1355 500 258 261	349 319 213 145 160	226 2141 242 465 466	4.2 5.0 22.6 2.6 3.0	6 11 3 15 14	32 20 21	3612 6274 2708 2570 2160	10.03 14.99 8.13	648 455 296 302 315	5 5 5 5	ND ND 3 ND ND	1 2 4 3 2	22 20 19 11 12	4 21 3 4 3	16 8 29 3 4	2 2 12 2 3	57 38 38 42 40	. 22 . 06 . 09	.167 .177 .165 .137 .143	22 35 16 15 14	5 5 3 10 9	.90 .50 .23 .60 .57	545 401 53 240 236	.03 .01 .01 .01 .01	9 7 4	1.51 1.72 .66 1.40 1.21	.03 .01 .01 .01 .01	.12 .15 .26 .12 .10	1 3 1	855 1455 2795 735 725
5+50N 0+20W 5+50N 0+00B 5+50N 0+20B 5+50N 0+40B 5+50N 0+60B	2 2 6 6 12	102 139 158 91 76	48 44 106 95 210	162 153 193 111 170	.9 1.5 1.3 1.5 7.0	10 9 10 6 3	16 19 6	1729 1716 1503 427 2210	5.89 7.37 5.80	100 102 446 286 435	5 5 5 5	ND ND ND ND 5	1 2 1 3 2	24 44 15 B 10	2 1 2 1 2	3 4 3 9	2 3 2 2 4	73 82 65 64 38	.49 .15 .07	.108 .129 .149 .098 .173	16 20 25 21 26	7 7 11 12 6	.72 .90 .73 .45 .10	315 1579 431 225 230	.05 .03 .02 .01 .01	5 4 6	1.55 2.12 2.61 2.71 1.84	.05 .05 .03 .01 .01	.09 .11 .09 .09 .13	1	
5+00N 0+60W 5+00N 0+40W 5+00N 0+20W 5+00N 0+00W 5+00N 0+20S	3 5 7 3 3	73 93 68 66 55	157 118 75 47 44	292 155 108 97 121	1.4 1.5 1.6 1.1 1.0	7 8 8 4 - 6	15 8 11	5190 2974 801 1112 1312	7.27 6.23 5.05	310 647 389 162 156	5 5 7 5 5	ND ND ND ND ND	1 2 2 1 1	18 13 10 5 12	3 2 1 1 1	2 2 4 3	2 2 2 2 2 2	57 97 76 47 65	.05 .05 .02	.186 .144 .124 .148 .160	8 12 14 14 8	8 9 11 6 7	.10 .10 .28 .34 .31	386 263 156 180 286	.01 .01 .01 .01 .01	2 4 2	.70 1.16 1.97 1.79 1.68	.01 .01 .01 .01 .01	.12 .13 .11 .08 .09	1 1 1 1	215 255
5+00N 0-4CB 4+5CN 1+80N 4+50N 1+50W 4+50N 1+60W 4+50N 1+60W	3 2 2 2 2 2	4C 76 69 85 56	50 38 41 39 36	74 77 124 122 93	1.1 .5 .7 .9 2.5	5 4 6 7 5	7 10 14	1309 415 1221 2159 912	4.03 4.66 5.03	141 68 111 101 91	5 5 5 5	ND ND ND ND ND	1 1 1 1	12 5 11 13 8	1 1 1 1	3 2 2 2 4	2 2 2 2 2	59 56 57 64 60	.05		10 12 10 18 13	6 8 6 8	.18 .35 .32 .59 .42	113 165 436 775 286	.03 .01 .01 .01 .01	5 4 8	1.11 2.30 1.64 2.21 2.35	.01 .01 .01 .01 .01	.09 .07 .09 .09 .09	1 1 2 1 1	99 72 62 73 102
4+50N 1+00W 4+50N 0+80W 4+50N 0-60W 4+50N 0+60W 4+50N 0+40W 4+50N 0+20W	2 4 3 4 5	34 73 59 57 56	36 73 70 78 100	71 127 134 110 95	1.0 .8 2.7 1.0 2.2	4 7 6 4	12 12 13	747 1731 1772 3194 2355	5.75 5.69 5.14	99 220 325 280 395	5 5 5 5 5	ND ND ND ND	1 1 2 1	12 12 11 13 20	1 1 2 2 2	3 2 2 2 2	2 2 2 2 2 2	53 75 54 55 51	.07 .03	.123 .143 .164 .132 .419	10 13 10 12 14	6 9 7 8 5	.21 .30 .35 .21 .30	363 667 277 302 513	.01 .01 .01 .01 .01	3 3 3	1.22 2.39 1.86 1.54 1.38	.01 .01 .01 .01 .01	.10 .10 .09 .10 .10	1 1 1 1	235
4+50N C+00N STD C/AU-S	9 20	• 44 62	6é 42	111 132	1.3 7.1	6 73		1102 1054		249 39	5 18	ND 8	1 36	21 52	2 20	2 17	2 21	52 61	.19 .49	.151 .084	15 40	8 61	. 37 . 94	333 179	.01 .07		1.78 1.98	.01 .06	.09 .13	2 12	295 50

TEUTON RESOURCES File # 88-4109

SAMPLE	No PPN	Cu PPN	Pb PPM	ZO PPN	Ag PPM	NI PPN	Co PPN	ND PPN	Fe 1	As PPN	U PPN	Au PPN	Th PPN	ST PPN	Cđ PPN	Sb PPN	Bİ PPN	V PPM	Ca 1	P 3	La PPN	Cr PPN	Ng t	Ba PPN	Ti ł	B PPN	A1 2	Ha X	K ł	W PPN	Au* PPB
4+50N 0+20E 4+50N 0+4CE 4+DON 2+20W 4+00N 2+00W 4+00N 1+80W	2 4 1 1 1	63 4 99 74 95	100 662 29 30 25	172 92 106 102 113	.9 2.6 .2 .1 .3	5 1 7 4 5	1	871	7.28 3.48 4.78 4.41 3.62	528 232 64 66 69	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	22 73 19 12 10	1 1 1 1	2 2 2 2 2	2 3 2 4	52 11 60 78 59	.17 .03 .35 .18 .10	.213 .067 .123 .158 .132	6 12 17 12 8	5 1 5 5 5	.08 .02 .45 .32 .36	423 111 1022 903 488	.01 .01 .01 .01 .01	3	.66 .27 1.49 1.99 1.68	.01 .01 .01 .01 .01	.14 .39 .12 .11 .13	1 2 1 1 1	134 450 41 39 43
4+00N 1+60W 4+00N 1+40W 4+00N 1+20W 4+00N 1+00W 4+00N 0+80%	1 1 1 1	52 80 118 80 64	48 47 80 67 60	117 118 161 200 78	.6 .4 .6 .1 .9	4 6 8 3	10 15 18	1903 139 9 2175 2970 1641	4.59 5.42 4.87	102 118 212 132 124	5 5 5 5	ND ND ND ND ND	2 1 1 1	17 13 22 58 7	1 1 1 1	3 3 2 3 2	2 2 3 2 2	67 60 64 66	.09 .10 .27 .75 .04	.140 .180 .187 .263 .142	9 7 14 10 11	5 6 9 6 7	.34 .38 .56 .61 .31	311 473 1075 1541 182	.01 .01 .01 .01 .01	3 7 4	1.61 2.00 2.29 1.87 1.80	.01 .01 .01 .01 .01	.15 .12 .11 .15 .11	1 1 1 1 1	67 85 151 87 189
4+00N 0+60W 4+00N 0+40W 4+00N 0+20W 4+00N 0+00W 4+00N 0+20E	1 7 3 6 8	75 112 78 189 73	45 165 89 268 259	129 109 171 353 283	1.4 1.8 2.0 6.9 1.6	6 7 10 13 3	28 25 31	1796 3411 2739 2821 1021	7.90 6.36 7.60	115 333 228 349 677	5 5 5 5 5	ND ND ND ND 2	1 2 1 1 3	12 27 43 28 17	1 1 3 1	3 2 3 2 19	2 2 3 2	60 54 63 50 13	.11 .15 .42 .17 .04	.185 .172 .160 .143 .082	10 19 20 26 40	6 5 6 11 3	.54 .50 .79 .48 .06	383 761 802 910 366	.01 .02 .03 .01 .01	3 2	2.17 1.90 2.10 3.02 .77	.01 .03 .07 .02 .01	.12 .11 .14 .10 .12		
4+00N 0+40E 4+00N 0+60E 4+00N 0+80E 4+00N 1+00E 4+00N 1+20E	4 3 4 6 3	53	527 421 372 286 274	303 478 241 126 238	3.7 3.8 3.3 2.9 2.5	8 10 6 4 7	24 26	3085 3685 5360 4207 2558	8.68 9.29 8.90	413 448 603 957 465	5 5 5 5 5	2 2 2 NC	2 1 5 4 4	29 34 29 19 20	2 3 1 1 1	13 14 5 8 5	2 2 2 2 2 2	48 41 41 36 42	.09 .22 .10 .02 .05	.169 .155 .189 .210 .134	19 20 21 20 16	8 6 8 8	.42 .44 .34 .30 .48	620 571 431 382 476	.01 .01 .01 .01 .01	4	1.67 1.26 1.56 1.43 1.34	.01 .01 .01 .01 .01	.15 .16 .19 .21 .19	1 1 2	1070 1810 1550 1815 1250
4+00N 1+40E 4+00N 1+60E 3+50N 1+60W 3+50N 1+40W 3+50N 1+20W	5 4 1 1 1	101 195 253	217 194 97 81 95	205 210 138 166 165	2.8 2.7 2.0 .9 1.0	10 9 7 9 8	23 18 19	3098 2037	8.42 7.66 4.96 5.32 5.79	1510 812 98 133 240	5 5 5 5 5	ND ND ND ND ND	5 4 1 3	21 21 38 33 17	1 1 1 1	11 5 2 4 5	2 3 2 3 2	32 36 72 81 72	.05 .15 .57 .39 .18	.144 .127 .158 .182 .157	23 20 23 20 16	6 7 7 8 8	.35 .42 .67 .80 .75	472 489 1930 1009 346	.01 .01 .01 .01 .01	2 4 - 3	1.22 1.16 1.81 2.20 2.19	.01 .01 .01 .01 .01	.20 .18 .17 .17 .16	I	
3+50N 0+60W 3+50N 0+40W 3+50N 0+20W 3+50N 0+00W 3+50N 0+20B	1 1 2	170	77 63 66 72 111	163 155 163 152 178	1.2 1.2 1.3 .6 5.4	8 9 8 6 46	19 18 17	1383 1347 1910		138 109 112 142 452	5 5 5 5 5	ND ND ND ND 2	2 3 2 2 2	26 31 24 63 75	1 1 1 1	5 2 3 3 2	3 2 2 2 2 2	82 88 78 72 54	.36 .33 .35 .36 .36	.151 .092 .131 .113 .102	18 18 18 17 54	7 8 6 7 7	.80 .86 .78 .70 .44	699 571 539 534 1084	.02 .04 .01 .01 .01	6 4 3	1.63 1.61 1.54 2.14 1.64	.01 .04 .01 .01 .01	.14 .13 .12 .13 .12	1 1 1	165 178 171 172 1690
3+50N 0+40E 3+50N 0+60B 3+50N 0+80E 3+50N 1+00E 3+50N 1+20Z	1	157 158	179 437 190 79 43	281 430 1646 518 388	3.2 3.9 3.0 1.9 1.7	15 12 16 16 32	24 18 20	4054 2511 2587	7.14 7.43 6.08 6.23 3.94	355 691 235 136 158	5 5 5 5 5	ND ND ND ND	3 5 3 2 6	44 46 42 64 48	2 4 12 6 2	2 4 3 3 3	2 2 3 6	54 50 57 73 15	.39 .28 .37 .61 .56	.125	24 25 26 23 32	7 8 8 11 6	.69 .58 .81 1.05 .15	600 621 601 676 336	.04 .02 .01 .08 .01	11 10	1.48 1.42 1.94 1.59 .87	.03 .01 .01 .06 .01	.14 .15 .14 .14 .36	1 1 1	
3+00N 2+00W STD C/AU-S	1 19	48 1 62	126 43	265 132	3.1 6.9	8 73			6.71 4.15	123 41	5 22	ND 8	2 38	32 53	1 19	3 17	3 23	84 61		.153 .084	27 39	7 61	.84 .95	1144 183	.02 .07		1.85 2.01	.01 .06	.17 .14	2 13	139 51

•

.age 2

ï

t

ł.

1

.

ſ

T.

(

t

t

(

C

4

ĸ

(

(

t

1

SAMPLET	No PPN	Cu PPN	PD PPN	ZD PPN	Ag PPN	NI PPN	CO PPN	Na PPN	te X	As PPN	U PPN	AU PPN	Th PPN	ST PPM	Cđ PPN	SD PPM	Bi PPM	V PPH	Ca t	P R	La PPN	CT PPM	Ng t	Ba PPN	T1 \$	8 PPN	A1 1	Na ł	X ł	¥ PPN	Au* PPB	
3+00N 1+80W 3+00N 1+60W 3+00N 1+40W 3+00N 1+20W 3+00N 1+00W	1 1 1 1		113 81 89 65 51	299 196 177 174 168	2.6 2.0 1.9 2.0 1.B	6 6 6 7	21 22 17	3322 2777 5191 1586 1077	5.46 5.33 5.12	108 85 99 81 77	5 5 5 5 5	ND ND ND ND ND	1 3 1 1	34 32 36 32 30	1 1 1 1	2 3 2 3 2	4 2 2 2 2	72 78 70 73 76	.60 .58 .52 .50 .50	.157 .178 .134 .159 .168	17 20 23 23 20	6 5 6 7	.72 .65	1155 1009 1883 1147 951	.02 .03 .02 .01 .02	3 3 4	1.43 1.40 1.46 1.51 1.55	.01 .01 .01 .01 .01	.13 .10 .11 .10 .11	1 1 2 2 2	79 152 245 235 196	
3+00N 0+80W 3+00N 0+60W 3+00N 0+40W 3+00N 0+20W 3+00N 0+00W	1 1 1 1 1	199 190	56 79 58 56 65	187 191 178 157 181	1.4 2.1 1.3 .9 1.5	6 8 7 9 7	16 18 18	1310 1127 1375 1760 1521	5.21 5.30 5.04	86 85 70 91 71	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	29 29 29 24 29	1 1 1 1	3 2 2 2 2	3 2 2 2 2	78 77 80 73 71	.50 .53 .56 .46 .57	.191 .172 .175 .150 .170	18 17 18 17 10	7 10 8 10 7	.62 .67 .70 .62 .68	1101 762 795 734 882	.01 .01 .01 .01 .02	5 4 10	1.62 1.46 1.38 1.15 1.31	.01 .01 .01 .01 .01	.11 .09 .10 .09 .10	2 2 2 2 1	174 225 255 138 117	
3+00N 0+20B 3+00N 0+40B 3+00N 0+60B 3+00N 0+80B 2+50N 2+00W	1 1 1 4	210 184	60 60 53 55 177	176 175 170 169 246	1.4 1.3 1.2 1.7 3.5	7 8 7 9 9	19 19 19	1863 1966 1813 2026 3765	5.29 5.38 5.76	73 78 67 123 147	5 5 5 5 5	ND ND ND ND	2 2 2 2 2 2	29 29 36 47 59	1 1 1 2	2 2 3 2 2	2 2 2 2 2	83 81 86 88 73	.59 .57 .72 1.27 .62	.186 .179 .195 .170 .214	17 17 17 16 25	6 7 7 8 6	.72 .71 .84 1.04 .73	800 711 872 570 516	.02 .03 .02 .02 .03	6 4 5	1.32 1.22 1.38 1.68 1.46	.01 .01 .01 .01 .02	.10 .10 .10 .15 .13	1 1 1 1	79 95 165 166 235	
2+50N 1+80W 2+50N 1+60W 2+50N 1+40W 2+50N 1+20W 2+50N 1+00W	4 2 1 1 1	328 365 373	110 96 74 80 68	212 202 199 203 204	3.1 3.2 2.5 4.2 2.6	9 11 12 10 11	24 23 22	3087 2501 2873 2849 2695	6.15 6.07 6.02	136 123 98 82 109	5 5 5 5 5	ND ND ND ND	3 2 1 2 2	49 44 39 34 36	1 1 1 1	2 3 3 2 2 2	2 3 2 2 2	77 74 77 82 81	.68 .70 .70 .70 .69	.213 .205 .193 .202 .191	21 18 19 21 22	6 7 10 7 8	.83 .78 .82 .71 .77	550 673 867 819 754	.04 .06 .06 .03 .05	5 5 4	1.47 1.30 1.38 1.17 1.20	.03 .04 .03 .02 .03	.11 .10 .09 .11 .09	1 1 1 1 1	92	
2+50W 0+80W 2+50W 0+60W 2+50W 0+40W 2+50W 0+20W 2+50W 0+20W	1 1 1 1	163 327 334	70 47 74 84 74	211 204 203 216 222	1.9 1.2 2.0 2.3 2.6	9 9 10 11 9	25 22 22	2427 2340 2610 2593 2323	6.23 5.82 6.05	53 59 60 76 71	5 5 5 5 5	ND ND ND ND	2 3 4 3 2	40 37 32 30 30	1 1 1 1	2 3 3 2 2	2 2 2 2 2 2	89 96 90 94 87	.88 .99 .74 .69 .69	.218 .222 .220 .230 .224	20 18 22 22 28	7 6 8 8 7	.66 1.08 .65 .62 .72	933 691 857 810 760	.03 .02 .03 .02 .01	18 6 - 13	1.10 1.55 1.13 1.07 1.17	.01 .01 .01 .01 .01	.11 .11 .13 .11 .12	1 1 2 1 1	1435 74 78 90 73	
2+50N 0+20E 2+50N 0+40E 2+50N 0+60E 2+50N 0+80E 2+50N 0+80E 2+50N 1+00E	1 1 2 1 3	194 345 189	76 69 139 63 83	210 176 252 169 185	2.0 1.6 3.8 2.4 2.9	11 17 15 10 17	22 28 18	2388 1763 2938 1919 2281	5.91 6.58 5.85	124 129 207 148 224	5 5 5 5 5	U U U U U U U	3 3 3 2 3	28 52 44 37 40	1 1 2 1 1	2 2 2 3 2	2 2 2 2 2 2	84 80 72 81 76	.61 .77 .65 .84 .60	.191 .160 .205 .195 .161	20 16 20 17 17	8 13 11 8 9	.68 1.02 .89 .86 .95	644 574 976 449 551	.02 .14 .07 .03 .07	3 3 5	1.10 1.33 1.45 1.42 1.53	.01 .10 .04 .01 .05	.10 .10 .10 .14 .12	1 1 1 2 4	325	
2+00¥ 1+80¥ 2+00N 1+40¥ 2+00N 1+20¥ 2+00N 1+20¥ 2+00N 0+80¥	1 1 1 1	299 302 270	83 134 141 99 101	180 242 269 201 202	2.0 3.6 3.8 2.5 2.6	10 12 13 11 12	23 24 22	2482 2946 2755 2709 2733	6.20 6.32 5.88	61 92 111 65 75	5 5 5 5 5	ND ND ND ND ND	3 3 3 3 3	38 35 38 39 40	1 1 2 1 1	2 3 2 3 3	2 2 2 2 2 2	85 89 88 81 80	.80 .76 .76 .77 .81	.223 .205 .206 .198 .210	29 22 21 20 21	8 8 8 9	.14 .73 .75 .76 .73	764 764 795 864 790	.05 .05 .07 .07 .07	5 4 4	1.10 1.17 1.20 1.16 1.13	.03 .03 .04 .04 .04	.11 .10 .11 .11 .10	1 1 1 1	139 57	
2+00N 0+60W STD C/AU-S	1 19	253 62	80 41	166 132	1.5 7.2	10 72		2488 1061	5.55 4.15	62 42	5 18	ND 8	2 37	29 53	1 19	2 18	2 22	82 63	.68 .49	.210 .091	19 39	8 61	.62 .95	831 179	.01 .07		1.03 2.00	.01 .06	.11 .13	1 11	68 49	

.

٠

.age 3

:

(

.

۱

1

(

()

-t

C

(

.(

C

C,

C

(

(

C

(

Sampis≹	No P2N	Cu 2PM	FE ?PM	ZE PPM	ÂĢ PPN	K1 PPM	Co PPM	MD PPN	ie S	λs PPN	U PPN	Au PPM	Th PPN	ST PPN	Cđ PPN	Sb PPM	Bi PPM	V 22N	Ca 3	P. 33	La PPN	Cr PPM	Ng i	Ba PPM	Ti 3	B PPM	۱۲ ۶	Na k	Ā	W PPM	Au* PPS
2+00% 0+40% 2+00% 0+20% 2+00% 0+20% 2+00% 0+202 2+00% 0+602	1	263 319 279 299 200	111 110 133 147 50	194 205 244 261 133	1.3 2.3 4.2 4.8 2.5	9 9 10 9 14	20 21 29	2839 2392 2289 2283 1887	5.31 6.17 5.80	86 92 104 109 206	5 5 5 5 5	ND Sid ND ND Hd	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	30 30 28 29 27	1 1 1 1	2 2 3 3	2 2 2 2 2	84 77 82 74 90	.66 .71 .66	.218 .203 .249 .201 .152	22 19 20 18 14	7 7 8 7 11	.66 .53 .59 .73 1.04	794 781 357 710 212	.03 .32 .01 .01 .01	4 4 6	1.09 1.32 1.02 1.30 1.78	.01 .01 .01 .01 .01	.13 .11 .14 .14 .19	1 1 1 1 2	55 109
2+00N 1-00E 1+50N 2+00H 1+50N 2+00H 1+50N 2+00H 1+50N 1-50H	7 9 4	105 395 293 352 402	45 346 191 131 30	127 495 277 182 212	1.0 3.6 1.3 2.1 1.9	14 17 13 26 12	46 52 46	1458 4403 3497 3685 2969	E.75 11.71 3.30	152 504 531 375 172	5 5 5 5	ND Nd Nd Nd Nd		39 41 36 44 34	1 6 1 2 1	2 3 2 2	2 2 2 1 1	115 73 97 80 77	. 25 . 65	.153 .191 .283 .195 .233	12 25 16 23 22	12 12 18	1.23 1.33 1.08 1.03 1.31	110 489 246 566 853	.03 .06 .03 .05 .04	3 3 9	2.01 1.97 2.13 1.94 1.71	.01 .62 .01 .64 .92	.19 .14 .15 .15 .15	1 1 1	331 750 1263 532 322
1+5CN 1+4CW 1+5ON 1+0CW 1+5ON 3+2CE 1+5CN 3+4DE 1+5ON 0+6CE	3	236 422 163 179 436	79 206 51 105 35	210 305 144 222 143	1.9 5.1 1.4 1.3 2.5	11 12 11 11 9	30 21 25	2675 3590 2194 2678 2545	7.23 5.45 7.31	175 227 173 296 296	5 5 5 5 5	NU ND ND ND ND	1 3 2 2 1	33 29 48 31 44	1 2 1 1 1	2223	2 2 2 2 2	78 79 77 89 80	. 57 . 54	.204 .205 .163 .162 .156	20 22 18 19 14	9 9	1.12 .88 1.11 1.13 .99	842 960 501 690 235	.04 .03 .09 .02 .02	6 3 3	1.83 1.59 1.68 2.12 1.75	.01 .01 .06 .01 .01	.13 .14 .15 .18 .13	1 1 1	
1+5CN C+30Z 1+5CW 1+30E 1+0CW 2+53W 1+03N 2+36W 1+03N 1+53W	4 7 8	135 490 247	54 45 93 94 113	142 117 203 205 191	1.4 1.1 4.5 2.1 2.5	15 12 9 9	23 33 37	1693 1469 5763 4668 4192	7.81 3.65	163 166 562 267 198	5 5 5 5 5	ND ND ND ND	1 3 1 3 3	25 29 24 35 40	1 1 2 2 1	2 2 2 3	2 2 2 2 2 2	113 108 58 94 88	.58 .42 .56	.159 .164 .195 .157 .202	13 11 28 24 28	10 4		149 121 303 191 290	.02 .03 .04 .07 .06	4 14 3	1.38 1.72 1.43 1.80 1.53	.01 .01 .02 .03 .03	.15 .13 .11 .11 .11	1 1 1	472 491 1170 692 272
1+00H 1+40W 1+00N 1+20W 1+00N 1+00W 1+00N 0+80W 1+00N 0+60W		231	79 76 75 26 31	154 166 158 117 120	1.5 1.6 1.3 .3 .4	9 10 13 12 14	24 25 14	2886 2973 2708 1684 1697	7.03 4.55	169 175 154 41 35	5 5 5 5 5	ND NC NC ND ND	2 1 2 1 1	36 38 42 59 67	1 1 1 1	2 2 2 2 2 2	2 2 3 2 2		.64 .75 .78 2.11 2.44		27 29 26 18 14	6 7 9 14 16	.77 .87 .90 .83 1.00	207 220 272 260 457	.05 .05 .09 .02 .02	23 _4 _7	1.36 1.48 1.49 1.43 1.58	.02 .03 .05 .01 .01	.11 .14 .14 .13 .15	1 2 1 1 1	231 38
1+00N 0+40W 1+00N 0+2CW 1+00N 0+00W 1+00N 0+40B 1+00N 0+60Z	- 1	194 178	47 58 52 41 42	159 160 148 120 117	.7 .9 2.1 2.5 3.2	19 13 7 5 14	21 20 22	2554 2521	6.53 6.17 6.53 9.91 8.25	89 109 287 228 213	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 2	48 29 26 51 21	1 1 1 1 1	2 2 2 2 2 2	2 2 3 2 2	81 71 66 1C2 88	1.21 .67 .50 .72 .36	.183 .169 .134	22 24 18 11	12 6	1.02 .92 .88 1.25 .96	435 423 470 110 241	.07 .02 .03 .03 .03	6 13 9	1.61 1.59 1.49 2.25 1.67	.05 .01 .01 .01 .01	.13 .16 .16 .18 .18	1 2 1 14 2	124 422 1392
1+00% 1+00% 0+50N 1+30W 0+50N 1+60W 0+50N 1+60W 0+50N 1+20W	3 2 4 4 7	183 95 104	52 54 64 58 79	167 198 157 156 175	1.0 1.0 1.1 1.3 3.2	19 14 - 8 10 3	51 40 41	5761 3957 4018	7.21 11.69 11.65 10.01 8.33	1120	5 5 5 5 5	ND ND ND ND ND	1 3 5 4 3	42 44 15 28 26	1 1 1 1 1	2 5 2 2 3	3 2 2 2 2 2	100 82 65 55 58	. 22	.210 .270	13 26 16 16 23	14 6 7 5	1.25 .85 .69 .90 .67	80 184 259 236 529	.03 .06 .01 .05 .03	8 4 5	1.98 1.66 1.46 1.61 1.31	.01 .05 .01 .05 .01	.18 .18 .16 .15 .13	3 2 1	783
0+50N 1+0CW STD C/AU-5	5 18		70 41	175 132	2.9 5.5	13 72			8.60 4.16	472 42	5 21	ND 6	2 36	52 53	1 18	2 16	2 21	72 60	.68 .48		24 41	8 61	1.04 .34	482 181	.16 .07		1.67 1.97	.12 .06	.12 .14	2 13	

•

Page 4

1

(

(

(

C.

(

(

£

) (

(

(

Ċ

¢

(

(

(

.

1

SAMPLE#	HC PPN	Cu PPN	PD PPN	CC PPN	Ag PPN	NÍ PPM	Co PPN	Ma PPN	7e N	ÅS PPN	U 2PM	Au PPM	Th PPM	ST PPM	Cd PPN	SD PPN	BÍ PPM	V PPN	C3 }	P ł	La PPN	CT PPN	Ng ł	Ba PPN	Ti }	B PPM	A1 }	Na 3	۲ ۲	¥ PPN	Au* PPB
0+50N C+50N 0+50N C+60N 0+30N 0+40N C+50N 0+20N 0+50N 0+00N	5 5 4 3 2	312 225 233 172 178	105 71 64 52 63	206 150 154 163 164	3.1 3.0 2.5 2.3 2.2	8 6 5 6	19 24 22		7.75 5.98 5.95	413 180 370 391 359	5 5 5 5 5 5	ND ND ND ND ND	: 1 1 2 2	29 19 22 27 26	2 1 1 1 1	3 4 3 2 2	3 2 2 2 2	80 58 59 59 64	.40 .35 .43 .44 .40	.177 .161 .153 .152 .142	24 21 18 18 19	5 4 4 5	.69 .79 .76 .94 .86	50C 449 467 407 542	.04 .02 .02 .52 .02	2 6 4	1.55 1.47 1.39 1.65 1.58	.01 .01 .01 .01 .01	.11 .14 .16 .18 .15	1 1 1 1	960 945 730 445 580
0+50N 0+20E 0+50N 0+40E 0+50N 2+60E 0+60N 2+60B 0+60N 2+50W 0+00N 2+40W	3	437 429 370 390 210	44 41 49 96	132 121 122 251 130	2.5 3.5 2.9 2.5 2.5	7 12 11 17 11	25 21 37	2549 1577 1761 5212 4752	10.27 10.30 5.38	2 82 207 225 362 392	5 5 5 6 8	ND ND ND NC	1 1 1 4 2	36 39 31 34 30	: 1 1 3 1	2 5 3 2 2	5 4 1 2 2	110 106 94 64 74	.44 .58 .35 .43 .55	.144 .139 .134 .145 .149	12 14 11 35 32	9 1: 10 3 5	1.29 1.20 1.11 .84 1.02	346 215 264 337 252	.03 .02 .01 .02	5 5 3	2.16 2.29 1.93 1.81 1.39	.01 .01 .01 .01 .01	.15 .17 .15 .12 .13	9	1115 1690 1255 460 445
C+CON 2+20W 0+00N 2+00W 0+CON 1+5CW 0+00N 1+60W 0+00N 1+60W	2 3 4 3 3	202 173 163 140 154	63 58 66 76 96	181 170 176 208 231	2.3 2.1 2.9 2.2 2.4	11 10 10 16 15	34 39 35	4532 4226 4819 5186 5052	8.69 9.47	427 409 500 462 575	5 5 5 5 5	NC ND ND ND ND	2 1 2 3 2	23 33 34 54 32	1 1 1 1 1	2 4 2 5 2	3 2 2 2 2	75 77 83 95 83	.48 .46 .42 .69 .43	.151 .171 .155	31 29 30 35 32	5	1.03 1.07 1.04 1.20 .91	281 262 267 281 217	.03 .03 .02 .14 .03	2 10 5	1.89 1.89 1.95 2.00 1.72	.02 .02 .02 .11 .02	.14 .13 .16 .14 .13	1 1 1 1 1	520 573 510 585 850
0+CON 1+COW 0+00N 1-00W 0+00N 0-30W 0-00W 0+60W 0+00N 0+40W	1 1 2 5 2	90 71 125 221 117	64 47 86 71 54	204 196 235 193 159	1.5 1.6 1.9 4.1 1.9	10 7 15 7 16	40 29	3123 4623 3549	11.39	567 481 923 618 411	5 5 5 5 5	NC ND ND ND ND	2 3 3 3 2	28 22 30 18 80	1 1 1 1	4 5 4 2 4	2 2 3 2	85 98 76 62 92	.41 .42 .34 .30 .98	.170 .164 .135 .158 .125	24 21 30 22 23		1.02 1.10 .75 .77 1.50	386 350 163 352 289	.02 .01 .01 .02 .23	2 3 4	1.72 1.73 1.47 1.40 2.97	.01 .01 .01 .01 .01	.14 .17 .15 .12 .18	1 1 1 1 1	775 660 925 940 625
0+0CN 0+204 0+00x 0+00W 0+00x 0-20E 0+00N 0+40B STD C/AU-S	5 2 3 5 19	235 204 243 259 63	77 69 59 86 42	199 174 155 277 132	2.5 1.7 3.7 2.3 7.1	9 10 14 28 72	28	3059 2476	8.48 6.70	524° 419 299 364 43	5 5 5 5 19	ND ND ND ND 8	2 2 1 1 37	24 25 33 28 52	1 1 1 2 19	2 4 2 2 17	2 2 2 2 2	63 73 78 64 63	.40 .43 .45 .49 .49	.173 .142 .142 .105 .085	25 20 17 18 42	9 6 8 10 61	.77 .98 .98 .62 .96	454 466 290 401 179	.02 .01 .06 .01 .07	5 - 6 6	1.53 1.75 1.57 1.37 2.01	.01 .01 .05 .01 .06	.15 .20 .16 .12 .14	1 1 1 13	780 705 735 620 49

.....

Page 5

1

1

t

(

1

t

(

C

(

(

C

(.)

. ريا

l

(

C

.

(

t

	SANPLE ‡	No PPN	Cu PPM	PÈ P?N	ZE PFN	Ag P?N	NI PPM	Cc PPN	No P2N	Fe Z	λs PPN	U PPN	Au PPM	TE PPM	ST PPM	C1 PPM	SD PPN	BÍ PPN	V 2PN	Ca k	P N	La PPN	Cr PPN	Ng	Ba PPN	TÍ 1	B PPN	Al S	Na ł	3	W PPN	Au* PPB		
	TR-21-88 1 TR-21-88 2 TR-21-88 3 TR-21-88 1 TR-21-88 2	2 3 4 1 1		59 43 58 12 14	21 19 21 99 117	1.2 11.2 37.5 1.4 1.2	6 4 5 6 7		143		79 40 75 1859 853	5 5 5 5 5	ND NC ND ND NC	1 2 3 3 3	13 6 18 35 65	1 1 1 1	2 4 5 5 2	2 2 2 2 2 2	5 5 49 64	.02 .02 .01 .22 .22	.022 .033 .041 .376 .073	8 5 6 26 23	9 15 4 17 14	. 32 . 02 . 03 . 99 1.48	493 91 607 714 1472	.01 .01 .01 .01 .01		.31 .24 .29 1.49 1.83	.01 .01 .01 .01 .01	.16 .13 .15 .14 .12	1 1 1 1		.00 .00 .00 .00 .00	5 6 6
	TR-22-80 3 TR-22-63 4 TR-22-83 5 TR-22-86 6 TR-22-86 7	2 5 2 5 8	206 137	16 23 15 29 12	93 152 135 147 62	1.2 9.3 1.7 4.9 9.1	49 12 7 3 14	11 9 7	2116 2274 2392 1553 2564	4.04 3.76 3.82	993 259 509 257 46	5 5 5 5	nd nd nc nd nd	1112	41 34 21 24 12	1 1 1 1 1	4 5 2 3 13	2 2 2 2	86 64 74 31 33	1.64 .79 .72 .33 .06	.065 .078 .078 .055 .035	19 37 29 15 6	11	1.74 .76 1.23 .29 .03	351 398 199 405 314	.01 .01 .01 .01 .01	- 1	2.12 1.08 1.75 .75 .24	.01 .01 .01 .01 .01	.16 .12 .13 .23 .11	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	440 210	44 .00 .01 .01 .01 .01 .014	6
	TR-22-83 8 TR-22-88 9 TR-22-83 10 TR-22-88 11 TR-22-88 12	10 8 2 2 2	193 42 55	50 14 7 12 7	50 66 24 31 17	94.1 10.7 1.9 2.8 1.8	8 8 3 5 6	3 5	1085 1221	4.56 3.71	115 64 32 99 57	5 5 5 5 5	NC ND ND ND ND	3 2 5 4 3	27 9 5 6 5	1 1 1 1	72 24 2 2 2	2 2 2 2 2	50 56 7 6 9	.02 .02 .02 .02 .02	.026 .036 .040 .043 .029	7 9 6 9 8	6 13 7 13 5	.03 .03 .03 .03 .03	181 154 146 145 76	.01 .01 .01 .01 .01	9 4 4 9	.26 .34 .28 .31 .27	.01 .01 .01 .01 .01	.14 .15 .17 .16 .17	2 1 1 2 2	1140 475 210 310 390	.033 .014 .006 .009 .01	
H C	TR-22-88 13 TR-22-88 14 TR-22-86 15 TR-22-88 16 TR-22-88 16 TR-22-88 17	2 3 2 13 7	96 23 20 37 39	9 14 8 32	17 19 21 52 54	1.4 5.2 1.8 .7 2.3	4 10 19 16 21	2 2 7 6 21	54 76 122	6.30 6.13 4.82 4.32 9.47	64 102 100 46 190	5 5 5 5 5	NC ND ND ND ND	5 4 1 1	5 4 1 5 8	1 1 1 2	2 2 3 2 2	2 2 2 2 6	9 11 12 7 11	.01 .02 .03 .27 .20	.064 .040 .027 .045 .045	5 8 6 7 7	14 11 14 19 14	.03 .03 .04 .03 .11	42 12 11 17 6	.01 .01 .01 .01 .01	5 5 5	. 29 . 25 . 29 . 37 . 48	.01 .01 .01 .01 .01	.14 .17 .13 .16 .17	1 2 2 1 1	305 660 480 114 920	. 809 . 819 . 814 . 803 . 827	
	TR-22-88 18 TR-22-88 19 TR-30-38 1 TR-30-88 2 TR-30-88 3	5 4 1 1 1	68	71 14 12 10 16	250 51 74 75 81	3.0 .9 .5 .5 5.0	17 7 8 8 7	8 20 16	1111 1382 1267 1247 1445	2.98 5.18 5.07	167 84 10 10 29	5 5 5 5 5	ND ND ND 6	1 3 2 2 3	22 12 40 27 16	5 1 1 1 2	2 3 2 2 2	2 2 2 2 2 2	21 24 140 128 130	.72	.035 .042 .151 .161 .146	5 6 8 11 18	9	.30 .06 2.47 2.36 2.32	4 145 203 308 240	.01 .01 .02 .02 .01	5	.52 .38 3.08 2.92 3.08	.01 .01 .01 .01 .01 .01	.21 .17 .07 .11 .17	1 1 1 1	690 250 27 63 8820	.020 .007 .001 .002 .257	
	TR-30-88 4 TR-30-88 5 TR-30-88 6 TR-30-88 7 TR-31-88 1	2 2 2	21843 9083 7388 2087 147	32 17 21 22 18	191 134 167 90 67	36.4 14.2 9.2 4.4 .3	10 8 10 10	10 7 17	2747 2981 2960 2234 1088	9.75 10.67 19.41	114 93 105 241 18	5 5 5 5 5	ND 3 3 3 ND	9 7 7 4 1	88 115 116 61 23	7 4 3 1	436 2 4 2 4	2 3 3 5 2	42 42		.038 .030 .024 .021 .199	10 6 5 4 6	13 17 17	1.45 1.69 1.65 1.13 1.62	35 26 21 8 294	.01 .01 .01 .01 .01	6 5 4	2.05 2.09 2.25 1.77 2.14	.01 .01 .01 .01 .01	.08 .01 .01 .01 .01	26 42	2970 1730 1560 2350 68	.037 .050 .046 .069 .007	
	TR-31-88 2 TR-31-88 3 TR-31-88 4 TR-31-88 5 TR-31-88 6	1 1 2 1 2	47	15 18 15 23 11	75 76 96 113 42	.3 .7 .9 1.3 2.8	10 13 8 6 3	14 23 6	1169 1178 1197 2070 1786	5.26 5.48 6.92	22 11 19 20 23	5 5 5 5 5	DH DH DH JH DH DH	1 3 3 1 2	14 12 14 75 244	1 1 2 2 1	2 2 4 2	2 2 2 2 2		.48 .45 4.95	.171 .142 .140 .088 .025	6 11 11 9 6	17 10	1.88 2.22 1.94 1.76 .47	141 173 244 80 161	.01 .01 .01 .01 .01	1 9	2.43 2.89 2.51 2.95 .77	.02 .01 .01 .01 .01	.11 .16 .14 .19 .06	4 1 1 5	82 34 101 148 510	, DOZ , DOI , DOI , DO4 , OIS	
	TR-31-38 7 S7D C/AU-R	3 20	2411 62	20 41	114 132	4.8 7.2	6 72		2535 1058		47 42	5 19	2 7	2 36	140 53	2 20	4 19	2 23	69 61	8.93 .49	.058 .085	9 40	20 51	1.19 .91	25 183	.01 .07		2.08 1.99	.01 .05	.09 .14		49 20 500	.144	

Page 6

t

(

¢

- É

τ

t

(

1

.

(

(

(...

 \sim

(

C

4

Ĺ

(

1

1

1

ŧ

(

(

(

{

(

(

(

Page 7

÷	SAMPLE I		Cu PPN	PD PPM	Zn PPN	Ag PPN	NI PPM	Co PPN	Na PPN	Fe 1	As PPN	U PPN	Au PPN	Th PPN	Sr PPN	Cđ PPN	SD PPN	Bİ PPN	V PPN	Ca 3	P %	La PPN	Cr PPN	Ng t	Ba PPN	Tİ Z	B PPM	A] 3	Na ł	K ł	W PPM	Au* PPB	
	TR-31-68 8	•	3557	13	89	5.8	5	2	2418		52	5	4	1	171 170	2	2	3		9.49 5.13		6		1.36	35 146	.04		2.12	.01 .01	.10 .13		5050 124	, 147 , 104
1	TR-31-88 9 TR-31-88 10	2	498 159	15 7	97 61	1.1	8 5		2428	6.38 6.36	25 16	5	ND ND	1	193	1	4	2	97	7.56	.092	5	6	1.39	75	.08	3	2.61	.01	.14	5	350	. 010
	TR-31-88 11 TR-31-88 12	2 3	80 395	20 15	72 75		7 9			6.88 7.14	32 31	5	ND ND	1 1	35 29	1	2	2	90 135		.123 .130	9	-	1.44 1.70	61 60	.01 .01	-	2.77 2.81	.01 .01	.37 .35	1	182 430	, 9 ° ' , 913
ί,	TR 9 EXT 88-1	2	43	11	73	.7	4	10	3281	15.29	182	5	ND	2	97	3	4	2	57	4.44	.041	7	20	1.56	29	.05	2	2.08	.01	. 05	38	950	.078
ц Ч	TR 9 EXT 88-2	3	60	12	84	3.5	7 	20	150	16.80 -3:37 -	178	5 5	10 	1 1	36 4 -	2	2	5 	<u>-</u>	1.69	.029 .001	1 2	15 	1.72 04	9 	.02 91-	2	2.10	.01 .01	.04 04	3 t	7680 	1224
0 -	STD C/AU-R	19	62	43	132	7.2	73	31	1051	4.11	44	19	8	37	52	19	17	18	61	. 50	.081	41	60	. 95	181	. 07	33	2.01	. 06	.15	11	505	

6

 $\overline{}$

·. •

•	SAMPLE#	No PPN	Cu PPN	PD PPN	ZD PPM	λg PPN	Ni PPN	Co PPN	ND PPN	Te 3	ÅS PPN	U PPN	Au PPK	Th PPN	ST PPN	Cd PPN	SD PPN	B1 PPN	V PPN	Ca t	P 2	La PPN	Cr PPN	Ng t	Ba PPN	ti ł	B PPN	A1 3	Na ł	R ł	W PPN	λu* PPB
	BC 2+20W	1	24	35	120	1.6	25			6.32	363	5	WD	3	25	2	3	2				5	11	. 60	11	.01		1.16	.01	.30	1	980
	BC 2+10N	1	50	8	82	3.3	17	9	1850	4.24	71	5	ND.	2	57	1	2	- 1	15	3.16	.038	- 4	13	. 82	19	.01	3	1.28	.01	.26	1	225
	BC 2+00N	1	,	21	68	. 6	9	- 4	1193	2.69	- 91	5	ND.	2	13	1	2	4	5	.48	.024	5	2	. 05	25	.01	3	.40	.01	. 20	1	505
	BC 1+90W	1	17	16	130	.4	17	- 4	3739	6.56	124	5	ND.	3	- 44	1	2	3	22	2.98	.071	6		2.05	39	.01	9	1.84	.01	.28	1	153
	BC 1+80W	7	118	12	112	. 6	28	9	3574	3.82	181	5	HD.	2	64	1	6	3	12	3.88	.037	5	11	1.08	34	.01	2	.90	.01	.21	1	555
	BC 1+70M	1	10	8	52	.4	21	19	2144	5.85	167	5	ND.	3	47	1	2	2	12	2.78	.051	5	17	1.08	18	.01	6	1.11	.01	. 31	1	325
	BC 1+60N	1	11	6	136	. 3	25	8	4676	5.19	75	5	WD.	3	36	1	2	2	27	2.15	.051	6	24	2.86	30	.01	3	2.39	. 01	. 28	1	275
	BC 1+50W	1	16	317	753	. 8	16	9	6131	2.45	58	5	ND	2	118	1	1	2	4	3.93	.032	6	1	.42	16	.01	2	.43	.01	.20	1	1455
	BC 1+40N	2	13	76	202	.7	16	9	231	3.94	140	5	HD.	3	14	1	6	2	5	. 25	.044	7	3	.07	19	.01	3	.53	.01	.25	1	275
	BC 1+30N	2	64	48	157	2.3	25	32	7130	13.63	253	5	ND	3	32	1	4	2	4	2.10	.066	2	1	.42	4	.01	3	. 39	.01	.24	1	655
	BC 1+20W	2	52	817	2591	2.4	17	13	421	7.54	400	5	4	2	11	17	8	2	9	. 33	. 035	3	3	.06	8	.01	2	.34	.01	.21	1	6465
	BC 1+10N	4	10	6	60	.2	15	10	1075	2.84	51	5	ND	3	32	1	2	2	18	1.78	.034	6	12	.64	39	.01	3	.84	.02	. 19	1	335
2	BC 1+00N	1	4	5	98	.3	14	1	2010	3.87	50	5	D	2	34	1	2	2	18	2.61	.056	1	17	1.87	- 79	.01	5	1.78	.01	.25	1	141
′	BC 0+90M	2	14	23	58	1.7	19	27	902	6.66	65	5	ND	3	20	1	2	2	18	1.43	.037	16	16	.67	16	.01	3	1.03	.01	.19	1	1145
•	BC 0+BON	1	13	18	83	.1	15	6	1059	3.68	26	5	ND	2	55	1	2	2	14	1.88	.042	8	14	. 58	17	.01	3	1.02	.01	.23	1	235
	BC 0+70N	3	35	6	58	.6	15	5	1732	2.39	120	5	ND	2	59	1	2	2	16	3.49	.044	1	13	. 69	56	.01	2	.86	.01	.17	1	745
	BC 0+60W	3	12	36	95	.3	15	4		2.33	20	5	m	2	32	1	2	2	11	1.92	.028	8	13	. 33	42	.01	6	.53	.02	.20	1	126
	BC 0+50N	45	19	58	23	3.9	31	21	3867	14.51	106	5	11D	2	105	1	2	1	1		.039	10	3	.06	•	.01	2	. 29	.01	.25	1	585
	BC 0+40N	1	1	6	82	.2	23			3.07	63	5	JID.	2	32	1	2	2			.051	14	34	1.47	97	.01	5		.02	. 22	1	315
	BC 0+30N	1	5	25	34	.6	5	4		1.59	95	5	ND	2	24	1	2	2			.019	8	10	.21	96	.01	5		.01	.22	1	265
	BC 0+20W	1	11	2	4	.5	3	4	391	1.33	40	5	ID	1	145	1	2	2	2	.73	.012	4	1	.03	29	.01	2	.32	.01	.23	1	255
	BC 0+10N	5	3755	64	39	28.3	16	128	555	15.41	75	5	ND.	2	32	1	2	5	1	1.92			14	.28	4	.01	2	.45	.01			2115
	BC 0+00N	1	35	21	125	1.9	25			8.38	164	5	D	3	27	1	3	4	29			1		2.04	16	.01	3	2.45	.01			255
	RC-3+50# 1+408				- 11	+	- 24			3.10		.	. 10					- 2		1.11		-15-		1.42	-140-		-	1.66	+2-			- 975
-	BC 1+00H 0+20E	-1-			178	1	1			8.16	- 21-	5	Ð		- 29	1	2	2		1.01		-15		1.35	250	17		2.40	.02	.05	- 2	-19
-	RC 1+00N 0+808	1	61	5	51		5	+	- 635	3.06	- 21-	5	10				-2	-1			.163-	- 1	9-	1.25	- 131	.01	- 2	1.49	.12	.13		12
	STD C/AU-R -	18	59	40	132	6.5	68	29	963	4.14	40	21		36	47	18	17	18	58	. 53	.081	38	61	.92	172	. 06	31	2.01	. 86	.15	13	490

.

age 8

۲

ć

; -

(

(

(

¢...

.

(

(

4

C

(

€.

6

Ģ.

(

(

C

٩.

Ç

852 E. HASTINGS ST. VAN /ER B.C. V6A 1R6 PHONE(6

PHONE (604) 253-3158 FAX (604) 25.

16

1

1

.

- (

ŧ.

1

1

(

(

(

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HW03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR NN FE SR CA P LA CR NG BA TI 8 W AND LINITED FOR NA K AND AL. AU DETECTION LINIT BY ICP IS 3 PPN. - SAMPLE TYPE: P1-P5 SOIL P6-P13 ROCK AU* AWALTSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE REPORT MAILED: Oct 3/88 DATE RECEIVED: SEP 27 1988 File # 88-4826 Page 1 TEUTON RESOURCES V Au* B λ] Ha L Cr Хa Ba Ti Fe As J Au 7b Sr Cd SD Bi V Ca 9 La Co Mn SAMPLE Cu ?b Cn λα Ni No PPN PPB PPN PPN 1 PPM 1 PPN 1 \$ 1 PPN PPH PPN 1 1 PPN PPN PPN PPN PPM PPN PPN PPN PPN PPN PPM PPM 3 PPM PPN .02 . 22 250 66 1.00 . 239 15 . 64 729 .01 3 1.35 1 10 257 .1 6 24 2730 7.13 400 5 WD. 3 34 11 2 L6+25N 0+00E 1 108 139 6 1.85 .01 . 23 1 530 927 5 NÐ 4 29 1 13 2 73 .50 . 288 23 16 .93 801 .01 36 4170 10.01 1 242 361 335 2.0 1 16+25N G+05E 2 1.49 .01 .24 1 905 65 14 .78 552 .01 2 35 2 .31 .251 20 713 5 WD. 3 20 L6+25N 0+20E 358 487 510 4.6 5 32 5386 10.69 1 1 890 .01 .25 5 XD. 3 17 34 2 54 .18 .239 19 13 .63 543 .01 2 1.34 29 4465 10.44 715 1 L6+25N 0+25E 3 350 478 458 5.1 6 1 905 14 .63 624 .01 3 1.40 .02 . 22 20 30 5439 10.27 614 5 ¥D. 3 17 2 31 2 -52 .21 .244 L6+25N 0+30E 2 442 398 527 4.5 6 970 .57 433 .01 2 1.46 .01 .21 1 .16 .221 16 13 23 5104 9.53 352 5 WD. 3 16 2 16 2 47 L6+25N 0+35E 1 416 286 565 4.0 8 .01 .21 2 310 5 - 3 24 11 2 50 .53 .197 15 9 .54 581 .01 3 1.17 RR 196 1.0 5 19 2593 6.63 361 1D 1 1 119 L6+25N 0+80E .21 1 370 .5i 663 .01 2 1.16 .01 5 1D 3 24 1 10 2 46 .53 .178 15 1 18 2661 6.07 327 L6+25H 0+358 1 131 87 189 1.0 5 2 255 .95 1363 .01 2 1.81 .01 .20 5 ND. 3 27 1 20 2 92 .58 .430 31 18 255 1.0 54 6093 10.84 1024 2 194 367 8 L6+25N 0+90E .01 .18 1 305 .55 .232 10 .59 796 .01 2 1.23 355 5 ШÐ 2 23 1 12 2 62 16 22 2851 6.90 L6+25N 0+95E 1 119 94 191 .1 6 .91 783 . 01 2 1.82 .01 . 22 1 550 76 .32 .528 37 13 44 5392 13.97 1085 5 TD 4 24 1 - 8 2 L6+12N 0+00E 1 185 156 244 1.7 6 .01 .25 1 1370 .12 .263 19 13 .65 515 .01 2 1.38 1.2 5 28 4264 10.48 722 5 ND 4 14 1 43 2 53 450 339 L6+12N 0+20E 3 342 2 1.22 .01 .26 1 830 18 49 .05 .302 16 12 . 51 326 .01 5 4 11 1 4 566 5.8 5 21 3797 12.99 394 TD. L6+12N 0+35E 3 498 364 1 570 10 .47 632 .01 2 1.03 .01 .18 21 3144 7.62 471 5 Ð 2 23 1 15 2 48 .38 .212 19 251 1.3 7 L6+12N 0+80E 1 156 141 .39 .190 .48 702 .01 2 1.13 .01 .22 1 710 22 1 -14 2 38 19 9 480 5 ۳D 3 244 1.5 6 21 3629 7.04 L6+12N 0+85E 1 180 128 , 23 .47 672 .01-2 1.13 .01 . 25 1 780 . 33 .207 21 3913 7.02 523 #D 3 21 1 13 2 33 8 5 5 L6+128 0+90E 1 173 145 224 1.4 3 540 11 2 41 .35 .209 20 8 .51 898 .01 4 1.06 . 01 .18 225 1.4 5 22 3178 7.26 451 5 D 4 24 2 1 176 163 L6+12N 0+95E .31 .330 29 16 .78 545 .01 2 1.57 .01 .19 1 850 14 27 2 66 8 43 5130 12.40 1731 5 10 3 1 441 542 2.8 L6+12N 1+0CE 1 334 1 1220 .74 500 2 1.39 .01 .23 45 53 .14 .264 18 15 .01 437 350 4.4 5 29 4241 10.11 542 5 10 2 13 1 2 L6+12N 1+25E 2 338 .07 15 12 .31 303 .01 6 1.00 .01 .28 1 1430 5 19 2745 9.60 602 5 D 3 18 1 - 34 2 40 .215 L6+12N 1+30E 4 272 456 300 6.9 .22 .183 19 10 .51 732 .01 2 1.09 .01 .17 2 1920 457 5 D 3 19 1 15 2 45 21 3392 7.37 L6+00N 0+75E 2 179 156 255 1.8 8 3 660 50 .25 .172 16 11 .50 797 .01 3 1.06 .01 .14 16 2 L6+00N 0+80E 2 152 139 277 1.7 1 21 2910 7.27 357 5 ٨D 2 21 1 3 770 1 20 2 32 .20 .196 23 8 .42 687 .01 2 1.06 .01 . 20 5 10 3 14 186 222 1.6 6 20 3730 7.26 571 16+00N 0+85E 1 213 1 690 700 .01 2 1.60 .01 .22 58 .27 .249 25 13 .81 5 ND. 2 14 1 16 2 L6+00N 0+90E 1 249 151 230 1.9 5 29 4237 9.08 728 3 810 12 21 2 82 .25 .414 25 18 1.05 688 .01 2 2.12 .01 .19 53 7213 12.92 1084 5 Ð 4 1 L&+00W 0+95E 1 392 335 242 3.4 8 .34 .187 27 18 .86 849 .01 2 1.56 .01 .22 1 440 32 5434 7.59 527 5 D 2 20 1 9 2 41 239 1.9 13 L6+00N 1+00E 1 498 117 1 1840 .23 .217 17 13 .50 416 .01 2 1.06 .01 .26 117 3 40 433 10.0 5 26 4352 10.60 605 5 2 2 18 1 16+CON 1+108 2 394 802 1 1150 IIC. 3 20 1 32 2 40 .26 .226 19 12 .59 606 .01 2 1.21 .01 .25 420 318 3.9 5 26 4124 9.37 603 5 L6+00N 1+15E 1 288 1 1420 17 . 53 428 2 1.20 .01 .24 5 1D 4 13 1 39 2 42 .08 .215 15 .01 22 3050 9.72 720 L6+00N 1+20E 4 265 368 280 5.2 6 1 1550 20 11 .63 513 .01 2 1.18 .02 .21 25 4329 9.29 648 5 ¥D. 3 18 1 31 2 40 .29 .216 291 380 3.4 5 L6+00N 1+25E 1 258 336 .01 2 1.63 .01 .25 2 1205 8 29 8029 10.20 535 5 D 3 13 3 25 2 39 .09 .218 15 15 .38 3 745 424 601 5.1 L6+00W 1+30E 2 1.63 .01 .27 1 760 5 15 4 22 2 42 .22 .236 19 15 . 50 399 . 01 24 6325 9.17 360 20 1 1 620 450 769 3.8 10 L6+00N 1+35E .30 .01 3 .86 .01 .21 2 840 .18 .273 27 8 912 24 4892 8.70 977 5 ND. 4 13 1 24 2 19 L5+87N 0+70E 1 221 330 213 2.5 5 .37 724 .01 2.96 .01 . 20 4 620 5 IID. 3 12 1 23 24 .16 .276 28 8 26 5175 8.66 900 2 15+87N 0+75E 1 248 371 175 2.4 ő .61 914 .01 27 2 1.35 .01 .22 2 190 .29 .246 11 241 192 2.2 6 25 4303 8.19 713 5 ND. 3 16 1 16 2 36 15+87N 3+30E 1 241 995 2 1.52 .01 .25 1 610 .37 .237 25 11 .14 .01 17 13 2 43 L5+87N 0+35E 1 248 165 219 1.7 6 25 4286 7.82 635 5 SD. 2 1 .07 . 16 3 570 5 Ð 3 37 1 17 2 60 .41 .180 15 15 .71 748 . 08 3 1.32 12 24 2952 8.17 333 15+75N 0+202 2 156 153 336 1.9 55 .86 173 .07 33 1.85 .06 .15 12 48 17 20 39 17 53 40 132 7.1 67 30 1013 3.95 37 17 1 38 47 19 59 .46 .094 STD C/AU-S

SAMPLE	No PPN	Cu PPN	PD PPN	ZD PPN	Ag PPN	NI PPN	Co PPN	Mn PPN	Te 3	As PPN	U PPN	ÂU PPN	Th PPN	ST PPN	Cđ PPN	SD PPN	B1 PPN	V PPN	Ca 3	P	La PPN	Cr PPN	Ng L	Ba PPN	Ti t	B PPN	A1 3	Na t	1 }	¥ PPN	Au* PPB
L5+75N 0+25E L5+75N 0+30E L5+75N 0+35E L5+75N 0+40B	2 1 1 1		145 134 164 135	309 314 307 249	1.8 1.5 1.9 1.4	10 8 10 10	23 27 25	4143 3102	7.98 8.42 '7.96	383 316 686 612	5 5 5 5	ND ND ND ND	3 3 3	21 20 20 17	1 1 1	14 17 15 15	2 2 2 2	55 60 45 52	.19	.176 .195 .196	16 15 24 22	12 12 12 13	.56 .56 .43 .66	744 649 796 680	.02 .03 .01 .02	2 1 4 1 3 1	1.21 1.28 1.15 1.49	. D2 . 02 . 02 . 02	.15 .15 .16 .16	3	555 635 1305 505
L5+75N 0+45E L5+75N 0+50E L5+75N 0+55E L5+75N 0+60E L5+75N 0+65E L5+75N 0+70E	1 2 1 1 1	156 98 191 313 265 231	156 138 172 614 269 111	262 282 389 160 197 261	1.4 1.5 1.8 2.9 1.6 1.8	10 6 12 6 5	19 28 36 27	5808	10.53 8.78 10.19 8.21	562	5 5 5 5 5 5	ND ND ND ND ND 2	3 5 3 3 3 3	18 9 17 11 11 14	1 1 2 1 1	16 16 14 10 17 22	2 2 2 2 2 2 2	60 27 43 33 29 21	.14	.176 .274 .225 .265 .239 .240	19 46 22 30 27 25	13 10 14 11 10 10	.62 .31 .60 .68 .64 .49	493 407 474 843 870 974	.03 .01 .02 .01 .01 .01	2 2 3 2	1.50 1.20 1.58 1.37 1.32 1.14	.03 .01 .03 .01 .01 .01	.14 .16 .18 .20 .20 .21	1 4 1 2	520 1030 1010 172 395 1485
L5+75N 0+75E L5+75N 0+80E L5+62N 0+10E L5+62N 0+15E L5+62N 0+20E	1 1 1 2 1	206 192 149	112 137 78 218 172	259 206 210 456 330	2.3 1.7 .9 2.1 2.1	6 6 9 9 10	23 22 22 27	5130 4656 1666 3433 2406	7.95 7.55 7.08 8.99	887 748 152 412 263	5 5 5 5 5 5 5	UN ND ND ND ND	2 3 3 3 3	12 18 35 16 18	1 1 1 1 1	15 11 11 21 12	3 2 3 2 2	20 27 77 51 56		.227 .207 .121 .182 .179	25 26 14 18 23	8 9 13 12 11	. 52	771 1118 530 607 452	.01 .01 .10 .01 .02	2 8 3 3	1.15 1.33 1.31 1.16 1.27	.01 .01 .08 .01 .02	.21 .22 .14 .16 .13	1 1 1 1	805
L5+62N 0+25B L5+62N 0+30B L5+62N 0+35B L5+62N 0+40B L5+62N 0+45B	1 1 1 1 1	108 133 143	182 103 120 133 118	365 281 250 250 243	1.5 1.0 1.2 1.1 1.1	10 12 9 10 10	22 20 21	1483 3190 2032 2400 2236	7.44 6.96 6.96	298 530 246 311 306	5 5 5 5 5	ND ND ND ND	2 3 4 2 3	23 29 26 17 29	I 1 1 1	18 9 12 12 12	2 2 2 2 2	60 54 66 63 68	.36	.162 .169 .144 .150 .154	16 22 16 17 18	13 15 11 13 14	.57 .81 .65 .57 .73	374 605 427 470 467	.04 .06 .06 .03 .06	2 3 4	1.35 1.50 1.35 1.39 1.49	.04 .05 .06 .02 .06	.15 .16 .13 .13 .14		335
L5+62N 0+50E L5+62N 0+55B L5+62N 0+60B L5+62N 0+65B L5+62N 0+70B	1 1 2 1 1	139	129 151 95 125 211	240 249 227 187 321	1.1 1.5 .9 1.5 1.7	9 11 8 2 9	27 29 33	2473 3900 4753 5621 5013	8.73 9.92 11.00	373 538 786 1083 523	5 5 5 5 5 5	ND ND ND ND ND	3 4 3 4 3	17 28 14 7 16	1 1 1 1	13 11 13 16 12	2 2 3 3 2	63 59 45 18 36	.18 .30 .14 .03 .22	.165 .221 .288 .383 .203	18 19 24 22 27	11 14 14 7 10	.61 .87 .62 .22 .56	407 241 454 410 790	.03 .08 .02 .01- .01	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.47 1.70 1.49 .70 1.34	.03 .08 .03 .01 .01	.13 .17 .16 .16 .18	3	435 510 385 1150 435
L5+62N G+758 L5+62N G+802 L5+50N G+208 L5+50N G+258 L5+50N G+308	1 1 2 1 6	85 187	147 189 202 147 100	243 247 227 202 204	2.1 1.0 1.2 1.2 2.0	9 6 9 8 9	23 25 24	3654 3647 4798 3739 2725	6.49 7.77 9.93	605 358 292 564 305	5 5 5 5 5	ND ND ND ND ND	3 2 2 3 10	13 20 19 31 10	1 1 1 1	13 10 14 16 15	2 2 2 2 3	33 38 56 56 35	.17 .50 .11 .27 .10	.215 .187 .187 .266 .159	22 19 21 17 25	10 12 13 15 11	.46 .73 .44 .51 .33	628 326 938 647 358	.01 .01 .03 .06 .05	3 2 2	1.09 1.49 1.23 1.21 2.14	.01 .01 .01 .06 .07	.18 .28 .13 .14 .14	1 1 1 2 4	375 645
L5+50N 0+35E L5+50N 0+40E L5+50N 0+45E L5+50N 0+50E L5+50N 0+55E	3 1 1 1 1	183	262 79 156 136 277	226 204 222 257 250	1.5 .8 .9 1.1 4.4	9 11 7 10 7	22 27 30	1985 2216 2823 4548 3017	7.07 8.67	719 278 314 572 2199	5 5 5 5 5	ND ND ND ND 4	4 3 3 2 4	14 27 10 14 6	1 1 1 1	16 10 15 12 39	2 2 2 2 2 2	50 69 56 58 25	.08 .31 .11 .19 .05	.270 .166 .228 .246 .200	21 16 17 23 36	14 12 11 14 9	.44 .71 .46 .73 .25	509 475 422 426 283	.01 .06 .01 .01 .01	2	1.45 1.59 1.47 1.93 .81	.01 .06 .01 .02 .01	.19 .14 .15 .17 .13	1 2 2	1130 295 560 635 4070
L5+50N 0+60B STD C/AU-S	1 18	416 59	361 42	338 132	4.0 6.5	6 68		1899 1025	13.01 4.01	1195 42	5 16	1 8	2 38	8 49	1 17	61 19	3 19	22 60	.06 .47	.242 .096	21 40	8 57	.14 .88	439 183	.01 .07	2 33	.65 1.93	.01 .06	.13 .15	1 11	1870 53

Page 2

·

1

ť

(

(

(

i

(

t

1

Ú,

(

Ć

(

(

(

(

ι.

											1.	6010		6300	ACE		E T PI		00	1020	,												
	SAMPLE	No PPN	Cu PPN	PD PPN	ZO PPN	λg PPN	W1 PPN	CO PPN	Na PPN	le }	As PPM	U PPN	Au PPN	Th PPN	ST PPN	Cd PPN	SÐ PPM	BI PPN	V PPN	Ca ł	P 1	La PPN	CT PPN	Hg L	Ba PPN	Ti ł	B PPN	A1 3	Na Ł	K l	¥ PPN	λu* PPB	
	LS+5CN 0+65E LS+50N 0+70B LS+50N 0+75E LS+50N 0+80E LS+37N 0+20E	1 1 2 1		245 310 249 139 128	521 487 463 220 185	3.4 3.3 2.9 2.2 1.1	14 11 7 3 5	39 29 27	5100 4271 3806 37Q8 2152	8.88 8.79 8.78	627 525 583 570 605	5 5 5 5 5	ND ND ND ND ND	4 3 2 3 4	18 17 18 12 11	6 3 5 1 2	21 18 24 15 9	2 2 2 2 2 2	34 59 37 45 37	.26 .36 .32 .13 .14	.227	41 28 22 16 19	10 13 11 9 8	.70 .84 .54 .54 .34	424 368 430 325 474	.02 .01 .01 .02 .01	2 2 2	1.63 1.68 1.01 1.18 1.03	.03 .01 .01 .02 .01	.14 .16 .18 .15 .10	1 1 1 1	475 520 825 575 595	
	L5+37N 0+25B L5+37N 0+30E L5+37N 0+35B L5+37N 0+40E L5+37N 0+45E	1 2 2 6 6	104 383 231 125 228	97 155 327 139 167	172 192 287 199 302	1.0 6.7 1.6 .7 1.1	7 6 7 8 9	36 22 42	1417 E329 2012 E287 3824	10.42 10.41 11.97	238 919 849 1232 421	5 5 5 5 5	ND ND ND ND ND	2 3 3 5	11 20 9 7 6	2 2 1 1	5 64 14 16 17	2 2 2 2 2	51 47 55 45 38	.10 .08	.159 .305 .267 .253 .155	15 17 20 36 24	9 12 12 15 13	.47 .48 .50 .45 .39	418 750 364 261 178	.01 .01 .01 .02 .01	2 2 2	1.37 1.74 1.79 2.66 2.57	.01 .01 .01 .02 .02	.09 .11 .12 .09 .11	10	305 685 1005 545 710	
	L5+37N 0+503 L5+37N 0+558 L5+37N 0+608 L5+37N 0+658 L5+37N 0+708	5 4 3 3 3	362 337 216	241 265 314 192 178	197 414 186 332 230	3.2 1.3 1.4 2.4 1.9	7 9 2 8 4	43 36 16	1668 23632 4588 2025 4188	9.16 12.82 8.75	984 566 1429 381 489	5 5 5 5 5	ND ND ND ND ND	4 2 6 3 3	7 4 5 9 7	2 5 2 2 2	71 16 53 24 16	2 2 2 2 2 2	46 45 29 36 47	.07 .02 .16 .02 .03	.243 .197 .509 .157 .243	12 14 23 20 14	15 12 9 10 10	.46 .47 .58 .37 .28	166 361 91 223 173	.01 .01 .01 .01 .01	2 2 3	1.84 2.87 1.34 1.52 1.40	.01 .01 .01 .01 .02	.10 .11 .13 .17 .12	2	750 1120 285 775 715	
	L5+25N 0+108 L5+25N 0+158 L5+25N 0+208 L5+25N 0+258 L5+25N 0+308	1 6 8	124 127 282 185 187	73 90 122 154 114	182 211 256 296 216	.8 .9 .6 1.2 .9	8 12 15 11 10	19 24 32	2283 2206 3753 3291 3002	7.00 10.35 12.89	201 283 697 891 840	5 5 5 5 5	ND ND ND ND ND	3 3 3 3 4	20 16 7 8 6	1 1 2 1 2	9 10 13 25 20	2 2 2 2 2 2	67 64 47 45 41	.32 .27 .10 .10 .06	.163 .187 .277 .272 .168	18 18 23 18 19	12 13 16 15 14	.78 .71 .54 .54 .47	910 720 340 164 158	.01 .02 .01 .01 .01	2 3 2	1.73 1.61 2.19 1.77 2.25	.01 .01 .01 .02 .01	.10 .09 .10 .11 .11	3 4	195 710 520 875 2510	
	L5+25N 0+35E L5+25N 0+40B L5+25N 0+452 L5+25N 0+50E L5+25N 0+55E	6 5 5 4 3	100 66 83 94 156	166 92 119 137 117	208 113 134 154 163	.6 .2 .4 1.5 3.0	5 3 4 5 4	17 15 8	2945 4738 3825 1430 3468	7.74 8.70 7.94	996 439 551 418 694	5 5 5 5 5	NC ND ND ND ND	3 2 2 2 2 2	5 6 7 8 10	1 1 1 1	15 11 15 28 27	2 2 2 2 2 2	52 56 60 52 61	.04 .03 .03 .04 .04	.194 .211 .241 .229 .234	17 15 14 12 13	15 10 11 8 11	.44 .19 .21 .20 .22	161 177 180 206 331	.01 .01 .01 .01 .01	2 2 2	2.25 1.96 2.13 1.82 2.02	.01 .02 .01 .01 .01	.11 .10 .11 .12 .13	3 1 2 3 2	550 215 320 520 225	
·	L5+25N 0+60B L5+25N 0+653 L5+25N 0+70B B.C. 0+255 B.C. 0+50S	4 5 9 2 4	101 96 86 149 130	154 180 230 92 101	182 166 215 213 225	3.6 3.7 5.0 1.3 1.8	4 6 3 25 20	9 40 26	1125 1660 4994 3312 2738	9.27 17.91 6.38	406 448 478 250 408	5 5 5 5 5	ND ND 6 ND ND	2 2 3 4	10 11 12 26 46	1 1 1 2	27 22 26 5	3 2 2 2 2	56 53 27 43 59	.03 .02 .39	.185 .221 .311 .143 .129	10 12 17 22 17	7 11 9 12 12	.11 .11 .07 .55 .64	291 316 357 671 424	.01 .01 .01 .01 .01	2 2 2 2	1.45 1.69 1.73 1.14 1.11	.01 .01 .02 .01 .10	.12 .14 .22 .15 .15		520 3495 335	
	B.C. 0+75S B.C. 1+00S B.C. 1+255 B.C. 1+50S B.C. 1+75S	3 4 7 6 4	126 178 173	59 139 111 171 81	164 202 198 219 196	1.2 2.0 2.1 2.0 1.5	22 20 17 18 22	21 23 25	1418 1749 2537 2859 2015	5.27 6.00 6.30	203 256 295 325 330	5 5 5 5 5	WD ND ND ND ND	4 4 5 5	26 25 26 27 26	1 1 1 1	2 5 4 9 5	2 3 2 2 2	25 26 28 30 33	.38 .29 .26 .25 .34	.106 .127 .131 .135 .122	16 15 16 17 16	8 7 7 8	.27 .20 .27 .29 .28	412 382 439 476 481	.01 .01 .01 .01 .01	5 5 3 3 3	.72 .64 .69 .73 .73	.01 .01 .01 .01 .01 .02	.13 .11 .12 .12 .12	1 1 1 1	208 250 265 320 225	
	B.C. 2+005 STD C/AU-5	3 18	140 60	56 41	1 99 132	1.0 7.5	26 70		1585 1027		396 41	5 18	ND 7	3 39	31 49	1 17	5 17	2 21	56 61	.89 .47	.107 .097	15 40	14 55	.61 .87	334 179	.03 .07		1.22 1.92	.01 .06	.12 .15	1 11	182 51	

140 - 20

 $f \sim 1$

•

Page 3

1

ſ

ł,

ŧ

(

ť

1

l

(

(

(

(

1

(

C

(

(

.

t.

SAMPLE	NO PPN	Cu PPN	PD PPN	Zn PPN	Âġ PPM	Ni PPN	Co PPN	Na PPN	Je t	As PPN	U PPN	Au PPX	Th PPN	ST PPN	Cđ PPN	Sb PPN	Bİ PPN	V PP N	Ca t	P 3	La PPH	Cr PPN	Ng 2	Ba PPN	ti X	B PPN	A1 \$	Na 3	r ł	W PPN	Au* PPB
B.C. 2+255 B.C. 2+505 B.C. 2+755 B.C. 3+005 B.C. 3+255	3 5 4 3 2		66 92 128 126 127	178 245 336 325 349	1.6 1.5 2.3 2.9 3.2	24 28 29 27 25	24 25 23	1409 2181 2206 1681 1580	5.73 6.15 6.08	212 411 605 655 582	5 5 5 5 5	ND ND ND ND	4 4 3 3	23 39 29 38 43	2 1 2 1 2	4 9 11 12 9	3 2 2 2 2	49 55	1.05	.110	16 18 17 13 11	9 15 15 16 16	. 29 . 60 . 60 . 73 . 68	402 436 357 205 187	.01 .03 .02 .05 .03	10 5	.74 1.19 1.20 1.22 1.19	.02 .01 .01 .02 .01	.13 .14 .13 .12 .14	1	325 325 350 350 345
B.C. 3+50S B.C. 3+75S B.C. 4+00S B.C. 4+25S B.C. 4+50S	2 3 4 2	170 153 161	103 194 157 173 165	298 517 318 404 389	3.5 5.3 2.6 2.5 1.6	22 26 27 28 27	24 24 24	1240 2166 1830 2235 2037	6.56 6.35 5.89	465 617 600 438 252	5 5 5 5	ND ND ND ND ND	2 2 4 3	41 36 26 41 38	1 1 1 1 1	9 12 12 13 10	2 3 2 2 2	53 54 44		.108 .100 .113	9 14 13 15 13	13 15 17 15 11	.57 .75 .66 .56 .31	129 213 217 342 376	.04 .03 .03 .03 .03	3	.93 1.26 1.10 1.09 .85	.01 .01 .01 .03 .01	.09 .15 .10 .15 .17	1 1	530 275
B.C. 4+755 B.C. 5+005 B.C. 5+255 B.C. 5+505 B.C. 5+755	3 3 4	130 151 163 200 180	163 185 221 307 196	389 502 608 760 516	1.7 4.9 6.2 9.7 4.4	27 26 26 26 33	23 24 26	2059 2161 2186 2476 2377	5.99 6.75 7.25	269 394 545 642 433	5 5 5 5 5	WD WD WD WD	3 3 2 3 3	29 32 34 30 48	1 3 2 4 3	9 10 14 19 14	2 2 3 2 2	45	.95 1.50	.126	15 13 13 16 12	10 12 16 15 16	.29 .42 .65 .65 .54	380 308 171 201 236	.01 .01 .03 .02 .02	4	.85 .91 1.07 1.09 1.01	.01 .01 .01 .01 .01	.17 .16 .17 .14 .16	1	160 345 615 925 615
B.C. 6+005 B.C. 6+255 B.C. 6+505 B.C. 6+755 B.C. 7+005	4 5 6 7 5	135 169 248 229 252	134 308 312 164 659	294 544 917 356 1172	2.7 5.7 7.5 3.4 12.3	27 29 28 22 31	23 24 16	1605 2527 2626 1745 3334	5.54 6.12 4.25	314 507 458 290 1293	5 5 5 5 5	ND ND ND ND	2 3 4 2 4	46 38 41 70 41	2 2 5 2 8	13 28 18 16 40	2 2 2 2 2	36 45	1.71 .70 1.50 2.65 .58	.133 .117 .098	9 16 16 9 17	14 11 16 8 15	.43 .41 .53 .29 .44	150 368 337 362 366	.02 .01 .01 .01 .01	13 2 6 7 4	.69 .90 1.08 .68 .99	.01 .02 .01 .01 .01	.09 .15 .17 .18 .16	3 1 1	315 235 585 385 855
B.C. 7+255 B.C. 7+505 B.C. 7+755 B.C. 8+005 B.C. 8+255	5 5 4 5 3	178 171 131 159 162	291 332 255 377 284	509 674 386 475 449	4.9 5.4 4.2 4.6 4.6	24 26 22 27 25	22 15 19	2064 2457 1660 2343 2457	5.09 4.10 5.10	469 422 357 448 571	5 5 5 5 5	ND ND ND ND	3 2 2 3 2	64 51 43 30 46	2 3 1 1 1	24 25 25 30 22	2 4 3 2 2	27 23 34	1.87 1.26 1.02 .60 1.35	.122 .123 .138	12 15 12 15 12	11 12 9 10 16	.42 .39 .35 .41 .71	298 398 196 236 328	.01 .01 .01 .01 .01	7 3 4 3 6	.81 .88 .64 .81 1.24	.01 .01 .01 .01 .01	.14 .16 .11 .12 .17	2 6 1	225 235 176 149 205
B.C. 8+50S B.C. 8+75S B.C. 9+00S B.C. 9+25S B.C. 9+50S	2 1 1 3	184 140 161 147 229	212 128 183 159 198	446 316 389 397 529	3.3 2.0 3.2 2.8 2.8	23 20 19 24 21	21 22 26	2809 2166 2531 2696 3236	6.09 6.65	859 515 719 758 1179	5 5 5 5 5	ND ND ND ND ND	1 1 2 1	13 51 50 52 32	1 1 1 1	23 15 20 20 22	2 2 2 2 2		1.46		12 10 11 11 13	20	.84 1.01 .87 1.02 .57	361 351 385 389 410	.03 .05 .01 .13 .01	2 2 10	1.36 1.51 1.42 1.33 1.02	.03 .05 .01 .11 .02	.15 .19 .18 .14 .13	1 1	435 335 325 465 445
B.C. 9+755 B.C. 10+005 B.C. 10+255 B.C. 10+505 B.C. 10+755	1 1 1	231 107 170 168 185	158 146 218 110 109	553 395 457 291 292	2.9 2.8 3.5 2.2 2.3	17 20 23 18 17	25 25 22	3222 2745 2692 2161 2300	7.12	1229 799 776 500 522	5 5 5 5 5	ND ND ND ND	2 1 1 1	37 30 31 24 22	2 1 1 1 1	28 19 20 16 16	2 2 2 2 2 2	42 63 73 63 62	.87	.238 .255 .258 .291 .296	11 11 12 10 11	10 18 20 18 17	.48 .82 .86 .88 .83	357 353 354 232 353	.01 .01 .02 .01 .01	4 2 2	.91 1.31 1.31 1.32 1.28	.01 .01 .02 .01 .01	.15 .15 .14 .13 .14	1 1 1 1 1	505 825 345
B.C. 11+005 STD C/AU-S	1 18	204 58	117 44	332 132	2.3 6.6	18 69		2708 1020		458 39	5 18	ND 7	2 38	24 48	1 18	16 15	2 22	58 59	.68 .46	.261 .095	10 39	1 6 55	.72 .86	346 179	.01 .07	-	1.22 1.89	.01 .06	.15 .15	1 12	315 52

...

•

•

Page 4

SAMPLE#	No PPN	Cu PPN	PD PPN	2n P PN	Ag PPN	Nİ PPM	Co PPN	No PPN	Je X	As PPN	U PPN	Au PPN	Th PPN	ST PPN	Cđ PPN	SD PPN	Bİ PPN	V PPM	Ca 3	P 3	La PPK	CT PPN	Ng t	Ba PPM	Tİ X	B PPN	A1 3	Na X	I ł	W PPN	Au* PPB
B.C. 11+25S B.C. 11+50S B.C. 11+75S B.C. 12+00S B.C. 12+25S	1 1 1 1	197 162 161 172 156	88 194 169 201 228	268 387 365 446 474	2.0 2.8 2.6 3.3 4.3	16 20 20 23 21	22 23 24	2162 2454 2479 2943 2562	6.95 7.18	386 647 741 826 647	5 5 5 5 5	ND ND ND ND ND	3 2 2 2 1	30 55 38 37 63	1 1 1 2	13 19 19 22 19	3 2 2 2 2	75 79	.86 2.12 .95 1.05 2.43	.302 .255 .250 .241 .214	10 11 11 13 12	17 21 19 21 20	.80 .97 .97 .87 .89	303 380 343 388 531	.01 .01 .04 .01 .01	4 3 3	1.40 1.68 1.54 1.49 1.65	.05 .01 .04 .02 .01	.19 .23 .18 .18 .25	1	231 360 450 450 265
8.C. 12+505 B.C. 12+755 B.C. 13+005 B.C. 13+255 B.C. 13+505	1 1 1	201 156 161 154 157	237 202 228 188 165	576 416 463 402 395	4.3 2.8 3.0 2.8 2.8	34 21 21 20 24	22 22 21	3970 2491 2673 2410 2499	6.92 6.52	1215 639 680 622 770	5 5 5 5 5	ND ND ND ND ND	3 2 1 2 2	37 58 49 64 51	2 1 1 1 1	30 19 19 18 22	2 2 2 2 2	87 87 85	2.11	.208 .251 .243 .229 .240	15 12 13 11 12	26 21 21 20 23	.78 .95 .86 .94 .91	399 438 435 461 357	.01 .01 .01 .01 .01	3 4 7	1.51 1.63 1.55 1.61 1.57	.01 .01 .01 .01 .01	.21 .21 .21 .22 .21	1 1 1	510 330 360 260 420
B.C. 13+755 B.C. 14+005 B.C. 14+255 B.C. 14+505 B.C. 14+755	1 1 1	163 172 186 192 176	176 212 242 273 204	405 450 517 517 427	3.2 3.0 3.5 3.6 2.9	22 21 22 22 13	23 24 25	2486 2660 2978 3052 2623	7.38 7.61	732 752 850 866 767	5 5 5 5 5	NG ND ND ND ND	2 2 2 2 2	53 54 44 36 33	1 1 2 1 1	21 18 21 20 18	4 2 2 2 2	85 84	1.83	.268 .242 .259 .258 .284	13 12 14 14 13	21 21 20 20 19	.92 .94 .90 .93 .95	361 396 431 444 380	.01 .01 .01 .01 .01	3 2 8	1.54 1.65 1.57 1.64 1.53	.01 .01 .01 .01 .01	.20 .22 .21 .20 .17	1 1 1	410 210 370 360 430
B.C. 15+005 B.C. 15+255 B.C. 15+505 B.C. 15+755 B.C. 15+755 B.C. 16+005		189	291 244 425 469 208	524 442 634 711 401	4.2 3.3 5.9 5.4 3.0	24 20 29 29 16	25 28 29		7.59	754 962 932 1058 788	5 5 5 5 5	ND ND ND ND	2 2 2 1	59 34 43 49 32	1 1 3 1	22 22 29 27 19	2 2 4 2	80 99	2.20 .90 1.35 1.60 .90	.247 .250 .252 .239 .248	13 13 15 15 11	21 18 25 21 16	.89 .89 .86 .66 .80	443 453 438 601 391	.01 .01 .01 .01 .01	3 4 3	1.52 1.56 1.50 1.30 1.35	.01 .01 .01 .01 .01	.20 .20 .18 .19 .17	1 1 1	650 560 340 430 560
B.C. 16+255 B.C. 16+508 B.C. 16+755 B.C. 17+005 B.C. 17+255	1 1 1	211 503 160 127 230	203 542 98 64 89	294 680 221 173 201	1.7 4.6 1.4 1.1 1.8	16 13 18 19 16	31 21 17	5411 2458 1599	5.06 9.00 5.74 4.88 7.08	3103 798 475	5 5 5 5 5	ND ND ND ND ND	3 2 2 3 2	47 37 43 81 30	1 2 1 1	15 36 17 9 28	4 5 2 2 2	48 50	1.07 .59 .93 1.81 .68	.222 .228 .211 .168 .254	11 12 11 9 11	15 14 17 16 18	.95 .74 .84 .96 .92	354 466 349 315 427	.01 .01 .01 01 .01	2 4 8	1.48 1.42 1.30 1.60 1.43	.02 .01 .01 .01 .01	.17 .21 .14 .21 .18	1 1 1	670 1705 430 410 705
B.C. 17+50S N.C. 0+005 N.C. 0+25S N.C. 0+505 N.C. 0+75S	1 1 2 4 7	90 139 151	94 149 204 256 279	202 254 387 417 468	1.8 1.2 2.3 4.4 4.4	15 14 22 27 32	7 15 19	368 1750 2442	7.26 3.27 4.54 4.62 4.87	1448 164 196 290 354	5 5 5 5 5	ND ND ND ND ND	3 2 3 4 5	31 25 28 29 34	1 1 2 2	26 7 14 24 28	2 2 2 2 2	64 27 30 27 28	.49 .55 .46		11 17 22 18 19	19 10 10 10 10	.94 .35 .31 .29 .31	421 397 329 306 363	.01 .01 .01 .01 .01	4		.01 .01 .01 .01 .01	.18 .16 .16 .14 .17	1 1 3	
H.C. 1+005 N.C. 1+255 N.C. 1+305 N.C. 1+755 N.C. 1+755 N.C. 2+005	6 4 7 7 5	178 151 190 185 169	322 214 467 466 211	453 367 634 608 472	4.9 3.1 5.6 6.5 2.6	31 28 32 31 35	24 25 26	2471 2940 2671	5.26 5.35 6.05 6.47 8.36	427 451 627 680 966	5 5 5 5 5	ND ND ND ND ND	4 5 5 4 4	3D 32 35 34 29	2 2 4 3 2	27 23 35 36 21	2 2 2 2 2 2	29 33 34 46 91	.56 .52 .64 .80 .65	.162 .154 .161 .164 .147	20 19 18 18	11 10 12 13 17	.30 .36 .40 .49 .81	450 474 354 304 286	.01 .02 .01 .01 .05		. 95	.01 .02 .02 .01 .02	.19 .16 .18 .16 .13	4	340
N.C. 2+255 STD C/AU-S	6 17	193 58	338 43	502 132	4.6 6.7	42 69			7.66 3.98	750 41	5 21	ND 7	4 40	27 48	3 19	26 18	2 20	87 60	.78 .46	.126 .094	22 40		1.11 .87	303 181	.04 .07		1.88 1.93	.01 .06	.14 .15	1 12	144 48

•

•

Page 5

1

Ē

t

Ĺ

1

t

¢

(

1

(

SANPLE	No PPN	Cu PPN	PD PPN	ZD PPN	Ag PPN	NI PPN	CO PPN	No PPN	le X	As PPN	U PPN	Au PPK	Th PPN	Sr PPN	Cđ PPM	SD PPM	B1 PPN	V PPN	Ca 1	P	La PPN	CT PPN	Ng 2	Ba PPN	Tİ Z	B PPN	A1 1	Na 2	T ł	¥ PPH	Au* PPB
N.C. 2+505	9	244	410	682	4.7	32	29	4832	6.51	865	5	ND	4	32	6	28	2	37		. 161	19	10	. 39	390	.01	5	.83	.01	.14	1	
N.C. 2+755	3	226	179	413	2.7	40			8.39		5	ND	4	31	- 1	20	2	75		.135	17	26	.97	334	.05		1.53	.04	.12	1	
N.C. 3+00S	6	262	262	565	4.1	22			7.43		5	ND		36	5	28	4	36		.201	15 17	9 12	.37 .45	444 478	.01 .01	3	.78 .92	.01 .01	.16 .15	1	530 710
N.C. 3+255	8	272	362	829	5.3	27			7.98		5	ND ND	1	37 38	6	34 28	2	40 42		.187 .215	14	10	. 49	543	.01	6	.94	.02	.15	i	
N.C. 3+505	6	264	232	574	3.4	21	29	9297	7.38	1235	3	AU	٩	30	3	20	4	11			.,	10		143		•	.,,			•	
N.C. 3+755	3	313	164	735	3.6	16	29	4613	8.46	1600	5	ND	4	35	6	36	2	40		. 261	13	8	. 36	427	.01		.83	.01	.17		690
N.C. 4+005	4	297	233	596	4.6	21	32	3772	8.38	1400	5	ND	4	27	4	19	2	64		.148	20	16	.12	500	.01		1.49	. 02	.15		1330
N.C. 4+255	3	312	232	760	4.3	22			8.81		5	ND	4	27	1	24	2	59		.180	16	15	. 55	472	.01		1.16	.02	.16		1720
N.C. 4+50S	2	-	212	505	1.0	19			8.51		5	ND	2	26	4	24	2	63		.244	16	18	.73	393 364	. 02		1.32	.02 .01	.16 .15		850 740
N.C. 4+755	1	257	176	530	3.6	20	32	3931	7.71	864	5	ND	3	28	5	26	2	53	.01	. 241	12	13	. 55	384	.01	,	1.08	. 01	.13	1	144
N.C. 5+00S	1	24B	156	439	2.9	22	33	3488	7.82	780	5	ND	3	29	4	25	2	62	.70		12	16	. 67	380	.02		1.20	. 02	.16	-	550
N.C. 5+255	1	221	97	262	2.0	19	29	2844	7.31	538	5	ND	3	31	3	17	2	51		. 320	11	11	.50	225	.01		.93	.01	.11	1	
N.C. 5+505	1	230	137	312	2.9	17		3061		747	5	ND	3	26	3	23	2	49		. 269	12	12	.64	219	.01		1.06	.01	.15	1	
N.C. 5+75S	1	222	122	305	2.5	21		3359		841	5	ND	2	27	3	23	3	48		.264	12	- 14	. 56	186	.01		.99	.01	.15		810
N.C. 6+00S	1	195	112	289	2.3	21	27	3012	7.19	677	5	ND	2	26	3	18	3	51	.65	. 239	11	15	. 62	207	.01	. •	1.05	.01	.15	1	570
N.C. 6+255	1	190	126	370	2.6	21	30	3299	7.55	940	5	ND	3	30	3	19	2	52		. 233	12	14	. 68	249	.01		1.13	.01	.15	-	840
N.C. 6+50S	1	220	230	504	3.1	20	31	3752	7.71	1051	5	ND	2	31	2	21	2	51		.240	12	16	.70	447	.01		1.18	.01	.15		1150
N.C. 6+755	1	181	200	401	3.0	21			7.14		5	ND	1	28	2	26	2	52		.224	11	16	.13	386	.01		1.19	.01	.15		810 810
N.C. 7+005	2		381	559	1.1	25			8.65		5	ND	3	29		34	2	59		. 205	13	17	.71	519	.01		1.31	.01	.18		950
N.C. 7+255	2	214	208	442	3.9	31	32	3900	8.25	1210	5	ND	3	31	5	28	2	69	. 64	. 212	15	21	.12	398	.01		1.26	. 01	.15	1	680
N.C. 7+505	2	206	263	655	5.4	22	24	3408	7.84	1430	5	ND.	2	26	4	35	2	58		. 253	- 14	14	.42	395	.01	6	.93	.01	.15		1100
N.C. 7+755	2	351	326	573	5.1	17	29	3577	1.32	1389	5	#D	2	28	- 4	32	2	54		.220	14	10	.52	562	.01		1.09	.01	.15		920
M.C. 8+005	2	251	290	631	4.0	22	31	3859	7.33	1218	5	ND	2	32	3	30	2	50		.233	13	11	.47	533	01	. 12	.94	.01	.15		1180
N.C. 8+25S	2	268	402	693	4.2	21			8.13		5	ND	2	31	1	21	2	61		.226	15	14	. 59	620 -			1.14	.01	.17		670
N.C. 8+50S	3	186	290	662	3.9	27	30	3210	8.09	1162	5	ND	2	32	4	27	2	73	.11	.271	15	18	.74	421	.01	3	1.27	.01	.15	1	490
M.C. 8+755	2	206	584	867	7.1	30	32	4355	9.20	1381	5	ND	2	28	6	26	2	101		. 236	19	23	.16	603	.01		1.40	.01	.15	1	
N.C. 94005	2	185	442	688	6.5	32			8.14		5	ND	2	33	5	25	2	81		. 251	15	19	.58	533	.01	-	1.06	.01	.13	1	
N.C. 9+255	2	201	388	731	4.7	27			7.92		5	ND	2	30	6	29	2	62		. 232	- 14	12	.44	668	.01		.18	.01	.14	1	~ 2
N.C. 9+505	2	392	172		4.3	19			9.42		5	ND.	3	51	4	27	2	70		. 222	14	16	.97	439	.12		1.53	. 08	.17		1470
N.C. 9+755	3	682	1322	1316	8.6	15	39	7244	11.94	5389	5	3	I	53	1	46	2	47	. 58	.214	14	13	.70	468	.01	2	1.42	.01	.19	1	2620
N.C. 10+005	2	367	349	697	5.8	21			9.69		5	ND	1	41	4	39	2	61		. 228	15	16	.64	352	.01		1.18	.01	.16		1750
N.C. 10+255	2		200	341	5.2	12			11.90		5	ID	2	58	3	32	3	48		. 222	12	9	.53	413	.01		1.04	.01	.17		2410
H.C. 10+50S	1	231	132	266		20			7.67		5	ND	2	28	3	21	2	66		.234	13	18	. 82	532	.01		1.30	.01	.14		760
N.C. 10+755	1	228	83	190	1.5	16			6.93		5	ND	2	27	1	18	2	60		.234	10	16	. 86	458	.01		1.34	.01	.16	-	540
N.C. 11+005	2	356	205	381	2.9	25	38	5891	11.11	3/23	5	ND	1	39	2	60	2	66	. 63	.171	16	23	.75	607	.01	1	1.26	.01	.17	1	1070
STD C/AU-5	18	59	40	132	6.8	69	30	1024	4.03	40	IJ	1	39	49	18	16	21	60	.17	.093	40	56	.87	182	.07	33	1.96	.06	.16	13	53

11 C. C. a.

.

•

Page 6

. .

SANPLE !	NO PPN	Cu PPN	Pb PPN	Zn PPN	Ag PPN	NI PPN	CO PPN	NB PPN	Te 1	A s PPN	U PPN	Au PPN	Th PPN	ST PPN	Cd PPN	Sb PPN	Bi PPN	V PPN	Ca 3	P R	La PPN	CT PPN	Ng L	Ba PPN	Ti S	B PPN	A1 3	Na 3	K ł	W PPN	Au* PPB
L5+75N 0+30E L5+75N 0+35K L5+75N 0+50E L5+75N 0+53K L5+71N 0+47E	1 1 1 1	10 9 22 86 19	111 18 19 14 22	18 78 94 240 132	1.2 .5 .7 1.0 .3	2 2 3 4 3	8 10	28 1836 1960 2551 1435	3.11 3.66 4.58	262 244 293 312 133	5 5 5 5 5	ND ND ND ND	2 2 2 2 2 2	24 40 32 17 31	1 1 1 1	2 3 2 3 2	4 2 2 2	31 34	.03 1.75 1.30 .63 1.20	.064 .108 .111 .123 .118	13 11 11 14 13	1 5 7 7 7 7	.03 .76 .81 .93 .84	618 83 80 38 127	.01 .01 .01 .01 .01	3 2	.39 1.33 1.47 1.50 1.52	.01 .01 .02 .01 .01	.30 .35 .27 .28 .31	1 1 1 1	545 37 68 129 20
L5+64N 0+56E L5+64W 0+58E L5+63W 0+53B L5+62N 0+23E L5+62N 0+25E	1 1 1 1	42 23 22 17 11	20 20 24 114 24	144 123 152 67 557	.7 .6 .5 1.1 .3	4 3 3 1 3	8 9 2	1707 1249 2157 87 3234	3.57 3.60 3.90	200 224 244 115 180	5 5 5 5 5	ND ND ND ND ND	2 2 2 1 2	29 19 46 8 46	1 1 1 2	2 2 3 2	2 2 2 2 2 2	31 34 8	1.02 .62 2.21 .02 2.77	.117 .122 .114 .069 .117	14 13 13 7 11	7 7 7 1 6	.77 .80 .87 .02 .72	28 56 48 471 28	.01 .01 .01 .01 .01	3 3 2	1.23 1.37 1.38 .37 1.20	.02 .01 .01 .01 .01	.26 .30 .28 .25 .29	1 1 1 1	63 70 99 310 215
L5+62N 0+30E L5+62N 0+408 L5+62N 0+50E L5+60N 0+05E L5+53N 0+04E	10 1 1 1	36 46 29 39 193	852 32 27 20 34	51 192 189 103 214	1.5 .8 .4 .9 .4	3 4 5 2 7	10 7	2274 2447	3.90 4.33	315 407 177 113 148	5 5 5 5 5 5	ND ND ND ND ND	2 2 3 3 1	200 35 24 13 24	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	10 79 38 24 20	.02 1.54 1.03 .37 1.10	.060 .169 .116 .143 .044	9 11 13 8 20	3 8 6 7	.01 1.62 1.04 .59 .80	606 54 116 40 63	.01 .01 .01 .01 .01	3 2 2	.25 1.96 1.61 .94 1.28	.01 .01 .01 .01 .01	.15 .24 .22 .21 .26	1 1 1 1	1050 85 33 152 59
L5+53N 0+60E L5+52N 0+57E L5+50N 0+20E L5+50N 0+25E L5+50N 0+30E	1 1 1 1	180 88 26 10 72	100 102 70 41 11	163 40 72 54 122	1.1 4.6 2.4 .7 .6	7 3 1 2 4	7 6 2 3 7	69 448	3.81	127 578 385 235 258	5 5 5 5 5	ND ND ND ND ND	2 2 1 3 2	34 14 75 78 47	1 1 1 1 1	2 18 3 2 2	3 4 3 2 2	19 5 6 15 22	1.58 .04 .05 .09 2.05	.099 .032 .115 .121 .111	14 6 15 18 15	6 1 1 4 6	.65 .02 .02 .30 .55	163 25 1217 969 128	.01 .01 .01 .01 .01	4 2 4	1.15 .25 .33 .63 1.13	.01 .01 .01 .01 .01	.26 .19 .20 .20 .29	-	31 2475 225 189 48
L5+50N 0+32E L5+50N 0+35E L5+50N 0+40E L5+50N 0+42E L5+50N 0+45E	1 1 1 1	12 13 35 26 14	12 103 19 30 62	122 72 186 183 72	.3 1.2 1.1 .8 .7	3 2 5 6 4	10 2 10 16 10		5.11	347 490 444 251 117	5 5 5 5 5	ND ND ND ND	2 2 3 3 3	39 16 30 31 13	1 1 1 1	2 2 2 2 2 2	2 2 2 2 4	41 42 80 101 55	1.81 .03 .42 .52 .48	.134 .209	17 11 12 12 13	1 10	1.07 .17 1.54 1.73 .80	60 267 414 60 35	.01 .01 .09 .03 .01	3 3 2	1.43 .48 2.07 2.18 1.10	.01 .01 .01 .01 .01	.26 .26 .20 .20 .20	1 1 2 1 2	82 580 125 141 32
L5+50N 0+558 L5+50N 0+608 L5+49N 0+008 L5+47N 0+008 L5+47N 0+048	1 1 1	152 99 143 85 261	27 55 348 59 28	232 146 557 34 150	.7 1.5 1.0 6.2 .6	10 7 6 3 6	12 9 6	124		186 189 217 474 136	5 5 5 5 5	ND ND ND ND ND	3 2 2 3 2	16 34 55 9 32	2 1 8 1 1	2 3 2 34 2	2 3 2 2 3	16 15	.38 1.31 2.53 .19 1.30	.059 .043 .136	28 10 11 10 15		1.31 1.15 .84 .05 .90	227 109 67 28 108	.01 .01 .01 .01 .01	2 2 4	1.89 1.67 1.32 .43 1.32	.01 .01 .01 .01 .01	.28 .31 .29 .25 .24	1 1 1 1	43 36 67 775 31
L5+47N 0+05E L5+46N 0+00E L5+46N 0+02Z L5+45N 0+06E L5+45N 0+60E	1 1 1 1	118	38 49 77 113 52	123 53 245 84 35	2.2 6.7 1.3 4.9 6.8	4 5 2 5	1	73 1758 296	3.56 4.65 2.65 5.35 4.53	363 282 124 675 466	5 5 5 5 5	ND ND ND ND 2	3 3 2 3 3	19 10 39 30 11	1 1 2 1 1	23 42 2 33 24	2 2 3 3	27 15 17 29 15	.18 1.76 .07	.060	17 10 16 13 8	7 2 8 2 2	.72 .04 .97 .19 .93	40 29 143 266 19	.01 .01 .01 .01 .01	- 4	1.15 .47 1.38 .55 .45	.01 .01 .01 .01 .01	.25 .29 .27 .28 .26	1	
15+43N 0+03R 15+42N 0+00B STD C/AU-R	1 2 18	44 64 59	82 106 42	80	7.2	4 4 70	8 6 30	37	4.33 2.91 4.09	477 303 43	5 5 17	2 ND 8	3 1 38	9 15 49	2 1 18	18 34 16	2 2 19	12 11 61	. 05		7 8 40	1 2 57	.82 .02 .89	14 30 179	.01 .01 .07	5 2 32	.34 .33 1.99	.01 .01 .06	.22 .21 .15	-	1450 2135 485

•

Page 7

(

1

.

ſ

1

1

£

(

ŧ

. (

(

(

1

(

(

t

ŧ.

÷.

SANPLE!	No PPN	Cu PPN	Pb PPN	ZD PPM	λg PPN	NI PPN	CO PPN	Ma PPN	fe 3	ÀS PPR	U PPN	Au PPN	Th PPN	ST PPN	Cd PPN	SD PPM	BÍ PPN	V PPH	Ca 3	P t	La PPN	Cr PPN	Ng L	Ba PPN	ti 1	B PPN	A1 \$	Ha t	R ł	W PPN	Au* PPB
L5+42N 0+55E L5+41N 0+558 L5+40N 0+02E L5+37N 0+03R L5+37N 0+25B	1 1 1 2 1	274 220 44 15 10	19 32 45 147 75	133 151 71 26 122	2.0 3.4 2.4 3.7 .3	3 4 2 2 7	13 14 5 1 10	1092 52 59	2.73 3.05	804 446 333 714 232	5 5 5 5 5	ND ND ND ND ND	3 3 3 3 2	9 10 13 27 36	1 1 1 1	17 13 21 22 2	2 2 3 4 2	43 43 16 12 15	.15 .22 .21 .03 1.05	.186 .175 .114 .106 .093	10 11 10 9 12	13 6 13 1 15	.27 .84 .03 .01 .50	22 69 40 230 53	.01 .01 .01 .01 .01	2 2 5 2	.78 1.32 .42 .28 .96	.01 .01 .01 .01 .01	.28 .26 .30 .28 .30	1 1 2 1	205 375 535 1995 62
L5+37N 0+28H L5+37N 0+30B L5+37N 0+32H L5+37N 0+42B L5+37N 0+50H	1 1 1 1	84 12 23 125 16	13 36 12 20 64	97 91 213 88 33	.7 .7 .3 .9 1.2	3 2 4 3 2	4	1270 570 1186 710 60	5.99	379 617 295 525 294	5 5 5 5 5	ND ND ND ND	1 3 3 2 3	32 18 15 33 49	1 1 1 1	10 2 3 3 18	2 3 2 2 2	12 74 102 82 10	1.31 .19 .38 .24 .07	.117 .210 .208 .156 .108	15 8 11 8 14		.25 .88 1.58 1.02 .03	46 227 41 20 111	.01 .01 .01 .01 .01	2	1.13 1. 86 1.35	.01 .01 .01 .01 .01	.30 .30 .21 .31 .24	1 1 1 1	76 225 43 39 655
L5+37N 0+54E L5+37N 0+55B L5+37N 0+56B L5+37N 0+60B L5+37N 0+63B	1 1 1 2 1	417 17 12 66 25	20 15 10 72 102	258 283 225 86 64	1.2 .5 .3 2.5 3.5	4 6 3 4 3	17 19 15 7 5		6.23	256 408 254 668 694	5 5 5 5 5	ND ND ND ND ND	2 3 2 2 2	69 25 40 9 24	1 1 1 1	2 5 3 14 20	2 2 2 2 2	74 82 79 24 13	2.85 .68 1.65 .21 .04	.185 .209 .213 .121 .145	12 13 12 7 9	9	1.56 1.59 1.77 .28 .02	54 217 80 35 459	.01 .01 .01 .01 .01	2	2.17 2.26 2.35 .70 .36	.01 .01 .01 .01 .01	.27 .29 .31 .30 .26	1 1 1 1	111 47 9 425 965
L5+33N 0+55B L5+29N 0+05B L5+25N 0+25B UC 0+005 UC 0+10S	1 1 3 1 1	100 74 11 6 4	36 61 74 11 11	304 69 135 14 38	.6 2.2 .5 .4 .4	3 2 3 4 3	13 2 10 6 11	1155	4.64 5.57 3.27	508 387 438 299 531	5 5 5 5 5	ND ND ND ND	2 3 2 3 4	25 47 30 9 12	1 1 1 1	8 27 3 2 2	2 2 3 2	55 18 120 62 74	.87 .05 .41 .30 .46	.197 .153 .268 .155 .173	15 11 15 6	16 10 15	1.19 .04 1.31 .20 1.33	72 120 754 68 45	.01 .01 .01 .01 .05	2 2 2	1.67 .52 1.98 .53 1.40	.01 .01 .01 .02 .01	.30 .50 .34 .25 .22	1 2 1 1 1	295 565 69 164 147
UC 0+205 UC 0+305 UC 0+405 UC 0+505 UC 0+605	1 1 1 1	5 7 57 9 5	14 22 20 15 13	49 95 19 59 27	.4 .5 .7 .5 .3	1 6 4 2 1	3 15 6 4	1844 244 1043	2.07	501 670 259 285 687	5 5 5 5 5	ND ND ND ND	4 2 3 4 4	30 25 13 36 21	1 1 1 1	3 4 10 2 2	2 2 2 2 2 2	102 171 17 66 61	.12 1.57 .30 .36 .26	.154 .180 .152 .149 .155	# 4 5 10 9	12 18 13 8 9	.59 1.83 .05 .88 .71	346 17 129 83 109	.18 .15 .01 .05 .01	· 2	.75 1.40 .49 1.13 .87	.03 .02 .01 .02 .02	.22 .10 .31 .17 .23	4 1 1 1 1	105 142 80 145 74
UC 0+705 UC 0+805 UC 0+905 UC 1+005 UC 1+105	1 1 1 1 2	7 9 6 14 12	11 22 22 15 5	33 23 19 41 54	.4 .6 .4 .5 .4	2 1 4 2 2	4 3 2 4 5	305 231 451	4.94 4.56 2.48 5.38 5.02	238 273 202 229 192	5 5 5 5 5	HD HD HD HD	4 3 2 4 4	12 31 28 13 19	1 1 1 1 1	2 2 4 2 2	2 2 2 2 2 2	105 32 51 69 77	.27 .04 .28 .13 .25	.143 .098 .121 .163 .156	6 3 7 5 5	\$ 9 3 17 7	1.12 .13 .12 .40 .65	54 203 78 181 99	.10 .09 .11 .19 .13	2 2 2	1.10 .48 .46 .78 1.00	.03 .01 .01 .01 .02	.18 .34 .26 .33 .26	1 1 4 3 1	60 94 475 126 40
UC 1+20S UC 1+30S UC 1+40S UC 1+50S UC 1+60S	2 1 1 1 4	10 8 8 4 7	16 26 21 8 137	59 147 100 56 25	.1 .7 .5 .4 2.0	2 7 7 6 4	- 14	5548 2280	5.56	152 162 150 133 92	5 5 5 5 5	ND ND ND ND 7	2 3 5 5 1	10 53 17 24 20	1 1 1 1	2 4 2 4 3	2 2 2 2 2 2	51 114 126 176 6	4.14	.112 .126 .134	6 11 14 12 2	12 21 21 18 28	1.52	75 57 68 123 630	.01 .06 .01 .05 .01	2 2	1.25 2.15 1.84 2.23 .32	.02 .02 .02 .03 .01	.23 .10 .19 .16 .21	1 8 1 1 1	29 122 48 22 5255
UC 1+705 UC 1+805 STD C/AU-R	1 1 18	16 32 60	23 2 36	437 90 132	.2 .1 7.0	20 12 68	27	1160 1741 1031	-	142 34 42	5 5 17	ND ND 8	3 1 40	12 107 50	5 1 18	2 2 16	2 2 20	15 148 60			8 6 41	5 16 57	.09 .93 .88	152 241 179	.01 .01 .07	2 2 32	.35 .61 1.94	.01 .02 .06	.12 .17 .16	1 1 11	29

•

Page 8

(

(

,

t

(

(

1

Ĺ

(

(

(

¢

1

 $t_{\rm c}$

C

E

(

١

SAMPLE	No PPN	Cu PPN	PD PPK	ZO PPN	Ag PPN	NÍ PPN	Co PPN	No PPN	Fe 3	As PPN	U PPN	Au PPN	Tb PPN	ST PPN	Cđ PPM	Sb PPN	Bi PPN	V PPN	Ca ł	P 1	La PPN	Cr PPN	Ng Ł	Ba PPN	Ti t	B PPN	A1 3	Na 3	K }	¥ PPN	Au* PPB
UC 1+905 UC 2+60S UC 2+105 UC 2+205 UC 2+305	1 1 1 1 1	32 34 33 85 41	6 7 12 7 9	93 127 134 110 136	.2 .1 .1 .1 .1	13 11 11 12 15	28 28 22	1349 1300 1305 947 1064	9.79 9.81 7.92	19 17 30 49 18	5 5 5 5	UD ND ND ND ND	2 2 1 2	25 48 48 22 44	1 1 1 1 1	3 2 7 2 2	3 2 2 2 2	201 192 186	2.62 1.97 2.57 1.89 2.42	.109 .120 .103	6 10 10 7 8	18	1.75 .80 1.83 1.32 1.43	76 70 167 250 242	. 29 . 01 . 02 . 21 . 05	7 2 7	2.86 1.17 2.60 2.23 2.39	.02 .02 .03 .03 .03	.08 .18 .06 .12 .10	1 1 1 1	13 3 6 5 1
UC 2+40S UC 2+50S UC 2+60S UC 2+70S UC 2+80S	1 3 1 1 1	27 17 22 23 34	8 114 7 15 18	129 96 115 58 129	.3 1.7 .1 .1 .5	11 5 2 3 5	5 11 12	1295 521 1383 1156 1807	1.93 5.44 5.22	79 352 33 228 133	5 5 5 5	ND ND ND ND ND	2 3 4 1 4	44 7 63 17 23	1 1 1 1 1	3 13 3 6 7	2 3 2 2 2	49	3.39 .36 3.13 .56 1.95	.103 .142 .196 .157 .191	8 10 14 10 15	6 7 2	1.69 .38 1.14 .07 1.59	115 132 147 494 77	.34 .01 .15 .01 .18	7 3 7	2.40 .78 1.97 .61 1.96	.03 .01 .05 .03 .03	.04 .19 .14 .13 .12	1 1 1 1	93 75 8 8 63
UC 2+905 UC 3+005 UC 3+105 UC 3+205 UC 3+305	1 13 16 7 1	42 616 814 443 39	19 25 68 30 8	156 206 532 225 126	.8 1.5 2.8 1.5 .1	32 22 11 40 15	13 9 19	2068 1167 1099 1773 1270	4.35 3.46 4.56	279 59 34 97 27	5 5 5 5 5	ND ND ND ND ND	2 3 1 2 2	49 22 21 29 47	1 1 3 1 1	9 2 2 6 2	2 2 2 2 2 2	72 37 61	1.69 2.49	.105 .077 .024 .104 .100	10 16 5 16 8	35 18	2.34 1.17 .88 1.89 1.58	28 74 70 62 163	.01 .02 .03 .01 .01	2 2 6	2.77 1.83 1.42 2.30 2.42	.03 .03 .02 .02 .03	.05 .17 .97 .14 .07	1 1 1 1	53 505 275 96 7
UC 3+405 UC 3+505 UC 3+605 UC 3+705 UC 3+805	1 1 1 1	31 31 30 30 11	11 10 7 84 2	149 110 145 297 53	.1 .1 .4 .2	14 13 13 7 13	23 23 27	1487 968 1163 2792 1029	8.40 8.88 7.67	248 41 45 80 40	5 5 5 5 5	ND NC ND ND	2 1 2 1 3	29 24 33 132 7	1 1 1 1 1	3 2 6 11 2	2 2 2 2 2 2	182 181 206 145 82	1.82	.113 .095	6 8 6 8 5	20 21 12	1.98 1.22 2.00 1.42 1.14	65 46 24 23 56	.34 .41 .34 .30 .01	3 2 8	3.55 2.84 2.79 2.40 1.61	.03 .03 .03 .02 .03	.02 .05 .05 .07 .06	1 1 1 1	18 1 14 56
UC 3+90S UC 4+00S UC 4+10S UC 4+20S UC 4+20S UC 4+30S	1 1 2 1 1	3 22 243 12 6	2 5 8 20 8	44 31 40 66 37	.1 .1 .5 .4 .2	39 16 13 15 11	7 7 9 4 5	761 611 551	3.80	22 55 170 139 27	5 5 5 5 5	UK Uk Uk Uk Uk Uk	4 3 2 4 3	66 23 12 8 7	1 1 1 1	2 2 3 2 2	2 2 2 2 2 2	50 57 69 72 33	.59 1.22 .39 .26 .17	.083 .031 .038 .102 .036	11 8 6 4 6	39 34	1.50 .53 .43 1.18 .44	1488 116 64 157 46	.07 .01 .07 .21 .06	7 3	1.94 .84 .69 1.14 .60	.03 .04 .04 .03 .04	.23 .06 .07 .14 .09	1 1 1 2 2	3 34 131 245 45
UC 4+403 UC 4+505 UC 4+605 UC 4+705 UC 4+805	1 1 1 29 1	18 8 16 941 64	13 2 10 9 9	68 37 41 109 142	.2 .1 .1 1.3 .6	19 10 15 27 5	7 3 4 10 12	430 359 586	1.34	33 15 29 150 25	5 5 5 5 5	ND ND ND ND ND	4 2 3 4	13 10 8 40 65	1 1 1 1 1	2 2 8 2	2 2 2 2 2 2	82 26 44 30 115	.37 .21 .21 2.66 .09	.037 .033 .040 .037 .103	8 4 5 5 8	21 22 16	1.38 .45 .45 .17 1.27	32 32 45 138 157	.09 .04 .07 .01 .19	2 4 3	1.45 .68 .64 .32 1.54	.04 .04 .04 .03 .05	.06 .07 .08 .12 .10	1 1 2 1 1	13 7 24 985 1025
UC 4+90S UC 5+00S UC 5+10S UC 5+20S UC 5+30S	6 4 1 1	39	51 29 13 4 4	151 44 81 187 155	1.0 1.9 .6 .1 .1	20 12 13 2 1		372 885 1207	2.96 3.25 2.75 8.09 9.01	64 237 90 19 14	5 5 5 5 5	ND ND ND ND ND	6 3 1 3 2	76 112 30 33 47	1 1 1 1 1	2 3 2 3 2	2 2 2 2 2 2	75 53 80 24 36	1.61	.090 .054 .074 .267 .260	11 7 5 16 16	33 19 28 10 8	.82 .49 1.33 .91 .96	122 92 52 285 131	.33 .10 .10 .24 .20	11 3 2	1.31 1.12 1.25 1.88 2.06	.02 .02 .03 .04 .04	.15 .12 .09 .10 .05	1 1 1 1 1	126 2215 82 11 1
UC 5+40S UC 5+50S STD C/AU-R	1 6 18	17 11 59	10 12 36	34	.1 .1 7.1	4 18 68	3	605	8.69 1.61 4.01	32 309 41	5 5 23	ND ND 8	3 1 40	42 58 49	1 1 13	2 2 16	2 2 19	50 18 61		.241 .060 .096	19 7 41	10 12 56	.88 .14 .88	97 84 178	.01 .01 .07	2	2.05 .43 1.98	.03 .02 .06	.09 .14 .16	1 1 11	1 1 510

•

.

`age 9

(

1

(

(

t,

ť.,

ŧ

Ċ

(

. (

(

(

(

t

C

(

(

ŧ

C

(

SANPLE	No PPN	Cu PPN	PD PPN	Zn PPN	Ag PPN	NI PPN	CO PPN	Na PPN	Te 3	λs PPN	U PPN	Au PPN	Th PPN	Sr PPN	Cd PPN	Sb PPM	Bi PPN	V PPN	Ca 3	P \$	La PPN	CT PPN	Ng 3	Ba PPN	Tİ X	B PPN	A1 \$	Na ł	K ł	W PPN	Au* PPB
UC 5+60S UC 5+70S UC 5+80S UC 5+90S UC 5+90S UC 6+00S	1 1 1 1	14 23 187 63 25	25 12 15 7 11	57 57 79 140 75	.1 .1 .1 .1	6 7 18 23 16	5 5 11 15 11	454 717 1391 1289 769	1.31 1.08 2.56 3.82 2.49	17 13 7 2 3	5 5 5 5 5	ND ND ND ND ND	1 2 3 2	71 88 390 103 167	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	6 21	9.59	.037 .038 .142 .064 .080	7 6 11 14 11		.07 .04 .93 1.58 1.09	479 48 800 388 1812	.01 .01 .01 .01 .01	2	.30 .26 1.41 2.18 1.53	.01 .01 .01 .01 .01	.17 .15 .14 .13 .16	1 1 1 1	4 1 5 7
UC 6+10S UC 6+20S UC 6+30S UC 6+40S UC 6+40S UC 6+50S	1 1 1 1	109 56 27 89 78	20 11 18 11 20	78 63 44 335 186	.1 .1 .4 .1	15 10 4 15 18	12	488 570 1271 2548 3911	2.72 2.00 1.25 2.80 3.57	2 11 8 4 17	5 5 5 5	ND ND ND ND	3 3 1 4 3	74 85 400 139 310	1 1 1 1	2 2 2 2 3	2 2 2 2 2 2	22 10 5 14 17	1.91 9.08 4.41	.073 .042 .015 .097 .113	10 10 5 17 15	20 8 4 9 10	1.00 .30 .22 .46 .45	586 79 25 99 127	.01 .01 .01 .01 .01	3 5 3 3 2	1.49 .82 .21 .39 .81	.01 .01 .01 .01 .01	.13 .19 .05 .17 .15	1 1 2 1 1	3 1 1 4 3
UC 6+60S UC 6+70S UC 6+80S UC 6+90S UC 6+90S UC 7+00S	1 1 1 1	43 114 56 48 16	8 30 13 22 51	108 97 110 44 69	.1 .1 .1 .9	18 18 18 8 8	11 11 7		2.81 3.01 3.67 1.43 1.73	3 10 16 3 50	5 8 5 5 5	ND ND ND ND	2 3 3 1 1	259 513 232 867 129	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	19 19 8	4.86 11.57 5.37 21.20 3.93	.064 .133 .108 .073 .031	9 13 17 6 5		.78 1.21 1.45 .67 .13	2215 136 162 2439 165	.01 .01 .01 .01 .01	2	1.01 1.72 2.39 .33 .25	.01 .01 .01 .01 .01	.17 .13 .14 .10 .16	1 2 1 1 1	5 4 8 2 11
UC 7+10S UC 7+20S UC 7+30S UC 7+40S UC 7+50S	1 1 1 2 1	84 53 30 99 84	15 25 13 23 76	123 125 134 150 204	.1 .1 .4 .5	55 22 8 39 17		848 898 1253 2988 2307	3.78 4.10 9.09 3.79 3.40	7 30 36 78 78	5 5 5 5 5	ND ND ND ND ND	3 4 2 2 3	124 22 83 256 50	1 1 1 1	2 3 4 2 4	2 2 2 2 2	82 156 50	3.15 .69 4.55 15.39 2.80	.082 .083 .127 .113 .067	14 15 8 13 14	35 17 31	1.43 1.69 1.27 1.48 1.63	145 57 88 34 41	.01 .01 .20 .01 .01	3 3 2	1.94 2.23 3.40 1.98 1.69	.01 .02 .02 .01 .02	.15 .11 .09 .13 .05	1 1 3 1 1	2 3 1 2 12
UC 7+605 UC 7+705 UC 7+805 UC 7+905 UC 8+005	1 1 1 3	73 5 4 10 25	2 4 5 15 467	91 106 106 164 281	.4 .1 .1 .1 3.2	4 4 5 8 8	12 11 18		3.48 4.31 3.68 7.32 4.05	11 22 86 40 386	5 5 5 5 5	ND ND ND ND	2 2 2 2 2 2	130 42 89 53 21	1 1 1 1	2 2 3 14	2 2 2 2 2 2	63 60	1.21	.122 .138 .142 .207 .061	7 6 7 1 8	11 14	.98 1.29 1.01 1.59 1.11	1454 117 742 525 68	.01 .01 .01 .01 .01	5 4 2	1.70 2.04 1.59 2.90 1.07	.01 .01 .01 .01 .02	.18 .20 .19 .22 .08	1 1 1 1 1	19 3 16 49 86
UC 8+105 UC 8+205 UC 8+305 UC 8+405 UC 8+505	2 20 7 1 8	47 54 84	344 684 27	318 351 83	3.3 1.2 2.5 .2 1.4	41 12 2 21 15	6 5 14	991	7.35 .83 2.64 5.47 5.69	511 62 130 68 69	5 5 5 5 5	ND ND ND ND ND	4 2 3 3	13 69 22 13 15	3 2 1 1 1	14 4 2 2 3	2 2 3 2 2	104 24 45 120 93	2.29 .39 .50	.033 .117	8 9 9 16 6	44 15 11 36 40	.80 2.26 1.87	43 147 109 71 88	.15 .09 .20 .01 .01	5 2 3	2.68 .90 1.80 2.36 2.11	.02 .02 .01 .02 .01	.10 .04 .08 .06 .07	1 1 1 1 1	7 172 14
UC 8+60S UC 8+70S UC 8+80S UC 8+90S UC 9+00S	7 87 4 5 5	533 154 62	376 57 52	4492 309 260	42.3 .9 3.4	13 1 7 13 22	9 (10	1476 194 1350 1179 1311	4.40 44.01 2.79 5.13 4.14	17	5 5 5 5 5 5	ND ND ND ND	10 2 3	34 13 12 7 15	1 3 2 1 1	2 1 2 2 2	2 2 3 4	67	.06 .68 .23	.096 .053 .063	4 9 6	40 17 24 21 26	1.55 .06 .61 .73 1.52	144 133 69 76 66	.04 .11 .01 .08 .01	2 4 2		.02 .01 .01 .01 .02	.07 .08 .12 .16 .14	1 1 1 1 1	1480 165 188
GTC 2+80N STD C/AU-R	3 17								5.01 3.70		5 16	KD 7				22 17	2 23					3 56		14 175	.01 .07	2 32	.18 1.85	.01 .05	.14 .15	1 12	

Page 10

(

(

1

1

(

¢

ł

t

í

í

. 1

;

1

t

ĺ

1

(

SAMPLE	No PPN	Cu PPN	Pb PPN	ZB PPN	Ag PPN	Nİ PPN	Co PPN	Nn PPN	re 3	As PPN	U PPN	Au PPN	Th PPN	ST PPN	Cđ PPN	SD PPN	Bi PPN	V PPN	Ca 3	P X	La PPN	CT PPN	Ng L	Ba PPN	TI 3	B PPK	A1 3	Na Ł	K ł	¥ PPN	λu* PPB
GTC 2+70N GTC 2+60N GTC 2+50N GTC 2+50N GTC 2+40N GTC 2+30N	1 1 1 1	252 60 16 73 16	3588 478 287 105 47	7536 1294 191 157 256	10.0 4.4 3.0 2.6 .1	3 4 1 4 1	18	53 1073	5.04	680 341 219 513 84	5 5 5 5 5	ND ND ND ND	3 4 1 1 1	38 11 106 83 137	36 8 2 1 1	21 13 6 3 2	3 2 3 2 2	25	.82 .25 1.58 4.38 4.67	.079 .085 .063 .148 .093	5 4 2 6 7	4 1 1 6 4	.04 .01 .01 .57 .61	8 7 10 27 62	.01 .01 .01 .01 .01	6 5 4 3 2	.27 .20 .10 1.14 .99	.01 .01 .01 .01 .01	.19 .15 .10 .17 .25	1 1 1 1 1	815 365 235 425 156
GTC 2+20H GTC 2+10H GTC 2+00N GTC 1+90N GTC 1+70N	1 1 1 1	6 35 29 75 2004	12	115 3414 201 25273 225		3 2 4 2 3	7 10 12	3931 601 3014 235 3732	4.36 4.10 5.70	95 450 28 547 385	5 5 5 5 5	ND ND ND ND	1 1 1 1	131 52 109 31 153	1 36 1 497 1	2 18 2 15 30	2 3 2 3 2	6 31 14	4.45 1.25 3.04 .58 5.88	.098 .074 .081 .139 .147	6 2 6 2 8	4 1 10 2 6	.69 .04 1.26 .08 1.14	66 8 132 8 22	.01 .01 .01 .01 .01	4	.75 .31 1.93 .41 1.52	.01 .01 .01 .01 .01	.28 .24 .25 .19 .20	1 1 1	36 1285 48 1825 555
GTC 1+60N GTC 1+50N GTC 1+40N GTC 1+40N GTC 1+30N GTC 1+20N	1 1 1 1	23 128 12		314 265 267	.5 1.8 .4 .1 .3	2 4 3 3 4	17 15 13	3166 2979 2562 3471 2609	5.95 5.60 5.29	37 367 51 10 21	5 5 5 5 5	ND ND ND ND	2 2 1 1 1	140 93 90 167 112	8 3 1 1 1	3 3 2 2 2 2	2 3 2 2 2	80 100 76	4.88 3.91 3.90 5.41 4.74	.169 .172 .145	11 9 10 11 8	8 8 7	1.30 1.57 1.60 1.77 1.47	364 59 68 326 412	.01 .01 .01 .01 .01	6 2 4	1.82 2.06 2.05 2.45 2.16	.01 .01 .01 .01 .01	.22 .19 .16 .24 .20	1 1 1 1	158 23
GTC 1+10N GTC 1+00N GTC 0+90N GTC 0+80N GTC 0+70N	1 1 1 1 1	14 13 16	9 13 32	145 151 300	.1	3 3 2 3 4	10 12 13	1968 2528 2269	5.10 4.19 3.87 5.37 4.22	100 186 175 174 21	5 5 5 5 5	ND ND ND ND	1 1 1 1 2	76 86 87 91 94	1 1 1 1	2 2 3 3	2 2 2 2 4	38 20 52	3.73 3.82 3.91 3.72 3.65	.156 .144 .128	7 8 5 7 8	8	.77 1.27	109 103 65 57 124	.01 .01 .01 .01 .01	2 2 2	2.23 1.69 .38 1.78 1.86	.01 .01 .01 .01 .01	.21 .31 .26 .22 .24	1 2 1 1 1	146 46
GTC 0+60N GTC 0+50N GTC 0+40N GTC 0+30N GTC 0+20N	1 1 1 1	14 142 41	16 192 165	194 225 1219	.1 1.1 4.8	11 3 3 3 3	16 12 11	2651 3816 2311	4.09 5.22 7.25 5.33 6.70	35 52 131 671 81	5 5 5 5 5 5	ND ND ND 3 ND	1 1 1 1 1	142 130 45 63 10	1 1 12 3	3 2 2 6 2	2 2 2 2	60 65	5.89 4.74 2.46 3.64 .33	.171 .119 .092	7 9 8 8 6	7 11 3	1.40	127 129 23 21 36	.01 .01 .01 .01 .01)2 /2 1	1.57 2.23 1.91 .63 1.97	.01 .01 .01 .01 .01	.21 .24 .21 .18 .19		84 1635 3575
GTC 0+10N GTC 0+00W WC 2+80M WC 2+70M WC 2+60M	1 1 1 1 1	84 64	14 20	177 120 64	.1 .7 .1	1 4 13 10 7	10 34 15	3447 1015 1163	22.85 5.79 5.50 4.55 4.31	346 28 55 10 7	5 5 5 5 5 5	ND	4 2 1 1 1		1 1 1 1 1	3 2 5 2 2	4 2 2 2 2	58		.112 .099	4	9 12 11			.01 .01 .01 .01 .01	2 2 2	.32 2.06 2.60 1.91 2.02	.01 .01 .01 .01 .01	.23 .27 .11 .11 .11	4 1 1 1 1	68 23 4
WC 2+50N WC 2+30N WC 2+20N WC 2+10N WC 2+80N	1 1 2 1 1	51 144 81	1 11 1 50 5 0	1 99 5 33 5 142	9.2 3.5 2.6	6 5	23 17	1470 213 1573	4.61 5.05 3.67 5.21 4.87	6 27 158 27 5	5 5 5 5 5	ND ND ND	1	258 86 196	1 1 2	2 2 6 3 2	3	57 15 51	4.90 5.46 .51 4.45 6.78	.083 .108 .104	5 2 5	9 4 10	1.73	1690	.02 .01 .01 .01 .01	4 3 3	1.93 2.80 .96 2.39 1.73	.01 .01 .01 .01 .01	.11 .12 .14 .16 .15	1 1 1 1 1	3 29 2
WC 1+90W STD C/AU-R	1 18			5 123 9 133					3 3.77 7 4.16	5 44	5 19					2 19	2 19		8.50	.081 .088		-		2340 178	.01 .08		2.02 2.01	.01 .06	.10 .15	2 13	

. col

i

-

•

Page 11

•.

SANPLE	NG PPN	Cu PPN	PD PPN	Zn PPM	Ag PPN	NI PPN	CO PPN	Na PPN	re 3	λs PPN	U PPN	Au PPN	Th PPN	Sr PPN	Cd PPN	SD PPN	B1 PPN	V PPN	Ca 1	P t	La PPN	CT PPN	Ng t	Ba PPH	ti 1	B PPN	A1 2	Ha X	K Z	¥ PPH	Au* PPB
WC 1+80W	1	283	14	113	.3	1		1164		8	5	ND ND	2 1	103 139	1	4 2	2		4.82 9.55		1 1		1.82 1.13	205 497	.01 .01		2.80	.01 .01	.18 .12	1 1	3 4
WC 1+70N	1	111	10	79	.2	6		1553		10 16	5	ND	2	116	i	3	ž		4.56		ģ		1.22	122	.03		1.56	.02	.10	1	7
WC 1+60W	1	63	13	69	.1	6		1266 1460		8	5	ND	1	148	ż	ž	ž		5.48		i			1235	.01		2.14	.01	.11	1	4
WC 1+50N	1	22	4	94	.3	4		1440		7	5	ND	1	126	1	2	2			.101	5			1157	.01	2	1.60	.01	. 09	1	5
WC 1+40N	1	97	5	64	.1	•	1.4	1440	1.17	'	,		•		•	-	•				_					•				,	,
WC 1+30W	1	174	7	62	. 2	2		3221		19	5	ND	1	477	3	2	2		16.84		6 5		1.00 2.86	1772 535	.01 .01		1.64 3.23	.01 .01	.06 .09	1	3
WC 1+20N	1	51	10	131	.2	B	27	1602		1	5	D	2	94	2	2	2		3.91		10		1.42	69	.01		2.07	.01	.17	1	790
WC 1+10N	1	9	16	187	.3	3		2292		42	5	ND	2	85	1	2	2		12.43		1		1.01	11	.01		1.41	.01	.13	1	104
WC 1+00M	1	1	1	139	.3	1	10		3.51	27	5	ND	1	342	4	1	2		4.77		j		1.32	36	.01		1.66	.01	.20	1	460
WC 0+80N	1	14	15	186	.3	3	16	2765	4.79	265	5	ND	1	96	1	,	4	30	4.77	.194	,		1.36			•					
WC 0+70N	1	74	12	260	.2	4	14	3316	5.27	59	5	ND	1	109	1	2	2		3.85		1		1.72	277	.01		2.41	.01	.20 .21	1	49 31
WC 0+60N	1	56	24	249	.2	4			4.80	66	5	ND	1	67	1	2	2		2.56		1		1.31	45	.01		2.31	.01 .01	.24	1	27
WC 0+50N	1	162	13	305	. 6	3			4.90	15	5	ND	1	109	1	2	2		5.40		10		1.47	292	.01		2.03	.01	.17	i	230
WC 0+40N	1	32	19	214	1.0	3			5.66	168	5	ND	1	112	1	2	2		4.49	.171	,		1.45	40	.01 .01		1.89	.01	.20	1	112
WC 0+30W	1	16	9	178	.3	2	12	2030	4.62	87	5	ND	2	105	1	2	2	62	3.31	. 154	ł	'	1.22	46		4	1.07				
WC 0+20W	1	62	15	218	.1	4	15	2033	5.17	101	5	ND	2	75	1	2	2		3.57		f		1.43	34	.01		1.86	.01	.22	1	53
WC 0+10W	1	37	55	195	1.0	5	18	2352	5.95	416	5	WD.	2	136	1	8	2		5.30		1		1.13	50	.01		2.04	.01	.20	1	56
8.C. 3+70N	i	48		87	.1	2	8	2668	3.65	54	5	ND	1	135	1	2	2		6.83		1	9		40	.01		1.29	.01	.23	1	87
B.C. 3+60W	1	6	11	108	.1	2	12	2193	4.29	27	5	WD.	2	- 54	1	2	2	58	2.22		1	8		43	.01		1.59	.01	.14	1	52
B.C. 3+20W	1	6	6	8	.1	11	1	280	3.01	34	5	ND.	2	22	1	2	2	4	. 60	.036	4	1	.04	17	.01	3	.15	.01	.10	1	48
				••				176	7 7E	32	5	ID	3	,	,	2	2	4	.24	.034	5	1	. 94	15	.01	5	.19	.01	.11	2	147
B.C. 3+10N	2	8		23	.4	9 6	6 4	48	2.75	74	5	ND.	1	í	1	ż	ì	j			í	i		24	.01	2		.01	.15	1	550
B.C. 3+00N	1			10	.2	6	4		3.58	11	5	ND	2	6	1	2	2	i			3	ī	.02	15	.01	· 3		.01	.14	3	260
B.C. 2+90N	1			14	.2	8	5		2.27	63	Ś	ND	ì	25	i	ž	3		1.17		4	2		22	.01	2	.16	.01	.15	1	540
B.C. 2+80N	2	11		25	.5 1.7	3	15		16.26	111	5	ND.	2	5	i	3	3				2	2		2	.01	2		.01	.06	2	1660
B.C. 2+70#	2	27	50	19	8./	,	13	30	10.10		,		•		•	•	•	•			-	-				.'					
B.C. 2+60N	1	6	5	45	.2	8	1	606	5.38	38	5	MD.	2	11	1	2	2	11			2	1	.65	10	.01	2		.01	.10	-	470
B.C. 2+50N	1	11	9	58	.3	12	8	1947	3.54	47	5	IID	3	51	1	2	3		3.33		4	9		22	.01	3		.01	.18		280
B.C. 2+30W	1	35	8	137		13	1	2723	3.34	92	5	ND.	3	26	1	2	2		1.36		5	•	.59	15	.01	2		.01	.19		350
B.C. 1+25W 20W	4	1	1	11	.1	10			3.21	51	5	2	2	40	1		2	1			3	1			.01	2		.01	.17		1060
B.C. 1+25W 10W	1	6	9	45	.1	13	8	1676	3.77	105	5	ND	2	46	1	2	2	7	1.86	.030	3	4	.35	20	.01	2	.34	.01	.14	1	680
B.C. 1+25W	2	25	1472	5517	3.1	11	13	49	6.49	302	5	4	2	11	67	4	2	4			2	1			.01	2		.01	. 12	-	3880
B.C. 1+20W 20W	i			80					1.87	61	5	ND	1	29	1	2	2	6	2.51	.031	5	5		62	.01	2		.01	.18		650
B.C. 1+20# 10W	ż	-		87	.1		5		2.21	123	5	ND	1	25	1	2	2	7		.035	- 4	- 4			.01	2		.01	.12		520
B.C. 1+20W 10B	i	-	••	26			ġ		1.98	58	5	#D	3	15	1	2	2	5	. 93	.081	8	2			.01	- 4		.01	.17	1	
B.C. 1+15W 20W	n						10		3.64	60	5	ND	1	29	1	2	2	8	1.51	.036	5	- 4	.19	17	.01	2	.17	.01	.11	1	680
											e	-			•	2	2	,	2.86	.043	5	1	.04	30	.01	,	. 15	.01	. 12	1	290
B.C. 1+15N 10W	5		-	13					2.59	89 41		ND B	1 38	10 49	1 16	-		61		.043		57			.07		1.95	.06	.15	-	530
STD C/AU-R	18	60	39	132	6.7	69	30	1028	3.99	41	10	0	10	47	10	1.	44	91	. 10		40	,,									

h ad

∴age 12

1

7

7

1

ŧ

(

(

(

(

(

. (

(

(

Ċ

(

C

¢

t

(

ŧ

٠

											THO.	1011																					
•	SANPLE	NO PPN	Cu PPN	Pb PPN	Zn PPM	Ag PPN	NI PPN	Co PPN	Nu PPN	Te 3	AS PPN	U PPN	Au PPN	Th PPH	Sr PPN	Cđ PPM	SD PPN	Bİ PPN	¥ PPK	Ca 1	P 3	La PPN	CT PPN	Ng t	Ba PPK	71 4	B PPN	A1 \$	Na 3	K X	¥ PPH	Au* PPD	
																	•	•	•	2.79	.043	1	,	.13	25	.01	2	.20	.01	.16	2	790	
		•	15	6	25	.1	8	6	2817	2.79	156	- 5	10	1		1	2	4	•					. 1.5	22	.01	ĩ	.18	.01	.14	1	485	
	B.C. 1+15W		13		17	.1	10	Å	915	4.11	100	5	ND	2	35	1	2	2	-	1.69	.032					.01	;	.18	.01	.15	1	680	
	B.C. 1+15H 5E	1	3	,				ŝ	1225	1.20	140	5	1D	1	- 41	1	2	2		2.27	.039	,	4	.11	16		-		.01	.23		2095	
	B.C. 1+15# 10#	1)		24	.1	, ,		1673			5	ND.	1	119	1	3	2	16	4.94	.159	,	10	1.00	33	.01	3	.59				750	
	B.C. 1+10N 14W	1	11	- 14	105	2.9	21	,	1029	2.47	126	ç	ND.	1	34	1	2	3	4	1.66	.038	- 1	5	.21	29	.01	4	.17	.01	.13	4	130	
	B.C. 1+10W 10W	- 4	5	10	14	.1	8	'	1023	2.1/	120			-	•••	-																	
												c	Th.	1	44	1	2	2	14	2.02	.027	9	2	. 10	23	.01	2	.17	.01	.15	1	1105	
	B.C. 1+10N 5E	1	1	5	12	.1	7	6	1331	3.36	91	,			11	1	,	;	47	1.28	.113	22	29	2.22	50	.01	2	2.45	.01	.14	1	74	
5 cele	B.C. 0+208 10W	1	5	17	131	.1	26	14	1958	5.67	- 14	2	ND		10		;	,	č	1.33		11	6	. 19	22	.01	2	.26	.01	.23	1	200	
	B.C. 0+15M	- i	- 41	12	23	. 9	13	50	803	4.50	89	2	ND		24	1		,			.115	11	24	2.13	- 54	.01	2	2.55	.01	.21	1	9	
	B.C. 0+10W 5W	1		17	121	.1	20		3294	5.03	7	5	ND.	3	98	1	1		41	3.33	.113			1.05	270	.01		1.22	.02	.12	1	202	
	B.C. 0+5N 5W	i	- i	1	63	. 4	10	3	1577	2.56	46	5	ND	2	80	1	1	1	28	2.80	.032	14	D	1.43	210		-	•••••					
	B.C. VYJN JN	•	1	•																			-	1 74		61	,	2.04	.01	.15	1	47	
			,	E	105	1	16	1	2298	4.25	10	5	ND	3	82	1	2	2	33		.064	11	30		68	.01			.01		i	10	
	B.C. 0+5W	1		,	79		ii	ŝ	1806	2.80	5	5	ND	2	66	1	2	2	31	3.03		12	- 26	1.22	27	.01		1.49				1725 0.050	
	B.C. 0+00N 10W	1	1				11	11	1796		1040	5	ND.	1	119	1	27	2	13	4.26	.104	3	1	. 59	1	.01		.22	.01	.17	1	211 0.006	
	NG-1	1	162	20	54	1.2	2	11	1539	4.29		Ę	ND	1	79	1	29	2	12	3.61	. 232	- 4	3	.41	35	.01	(. 30	.01	.21	1		
	NG-2	1	173		82	.8		16				, i	10		106	1	11	2	1	2.56	.038	2	1	.32	21	.01	- 4	.18	.01	. 89	1	970 0.078	
	11G-3	1	232	212	130	1.9	1	•	2132	7.24	010	,		•		•	••															0 0 14	
											<i>.</i>		10	1	131	1	14	,	13	6.79	.052	4	1	1.04	14	.01	5	. 30	.01	.12	1	1525 0.044	
	NG-4	1	492	49	105	2.2	- 4	3	10618				ND	-	78			,	42		.111		11	.13	23	.01	2	. 93	.01	. 15	1	1190 0.035	
	11G-5	1	76	236	162	2.2	1	1				;	ND		/0		4 E	;			.208		3	.18	17	.01	3	.41	.01	.22	1	365 0.011	
	NG-6	1	45	44	117	1.2	9	20	1444		896	5	ND			4				1.07	.070			.21	13	.01	4	.18		.15	1	1770 0.052	
	NG-7	ŝ	252		238	3.1	3	8	3069	5.48	1026	5	TD.		- 63	1		4	41	1.14	.0/0		1	.13				.19			1	925 0.02	7
			\$751	18108	16892	158.4	4	5	38217	5.88	482	5	ND	1	63	107	2093	2	9	1.34	.032	,	1	.13			•						
	ENK FLOAT \$1	4	4671	10100			•	-											_								E		81	61		1 1680 0.049	<u>, </u>
			E 1.0	4131						2.17		Ş	#9	1				}	├5	, 0 1								. 11			1	12210 0 54	6
	-I.G. 005			11784	1274	118.7		1	_1111	_32.98	1716	<u> </u>	1\$	4				57			033								¥∔ 8 *			1 515	
	- Tk 007			-1+148	133	00711 7 1	70	31	1035			21	1	40	51	21	16	19	63	.40	. 095	42	58	. 89	179	.07	. 34	1.96	.06	.16	1	313	
	STD C/AU-R	19	63	1 40	132	7.1	10	41	1433	1.44																•							

Page 13

,

C

(

Ċ

(

(

Ċ

(

C

(

(

(

(

(

(

(

(

(