GEOCHEMICAL REPORT on the

CV \& AU Claim Group
for
PETER LO

Liard M.D.
NTS 104P/4E
GEOLOGICALBRANCH ASSESSMENTREPORT

January 3, 1989
Vancouver, B.C.

SOOKOCHOFF CONSULTANTS INC. Laurence Sookochoff, P.Eng.

TABLE OF CONTENTS

PAGE

SUMMARY 1.
INTRODUCTION 1.
LOCATION AND ACCESS 2.
CLAIM INFORMATION 2.
PHYSIOGRAPHY AND CLIMATE 2.
HISTORY AND PREVIOUS WORK 3.
REGIONAL GEOLOGY 4.
PROPERTY GEOLOGY AND MINERALIZATION 6.
GEOCHEMICAL SURVEY 6.
CONCLUSIONS AND RECOMMENDATIONS 7.
BIBLIOGRAPHY 8.
CERTIFICATE (L. Sookochoff) 9.
STATEMENT OF COSTS 10
ILLUSTRATIONS
FOLLOWING PAGE
Figure 1 Location Map 1.
Figure 2 Claim Map 2.
Figure 3 Location to Known Producers 3.
Figure 4 Geology Map 4.
Figure 5 Arsenic Geochemistry 6.
Figure 6 Gold Geochemistry 6.
APPENDICESASSAY CERTIFICATES

GEOCHEMICAL REPORT

on the
$\mathrm{CV} \& \mathrm{AU}$ Claim Group

SUMMARY

The $C V$ \& $A U$ claim group is comprised of 18 units and four located mineral claims in the cassiar region of northern B.C. and is located 12 kilometers southeast of the town of Cassiar B.C. The claims cover rocks of the sylvester group which are known to contain productive zones of gold mineralization in the area.

The claim group is located adjacent to the property of Erickson Gold Mine where a gold mining operation has been in progress since 1979 and has produced over 500,000 tons of ore with a recovered grade of $0.46 \mathrm{oz} /$ ton gold. The gold occurs in weakly mineralized quartz veins within volcanic rocks of the Sylvester group. The host rock alters to a indicative gossan zone around the quartz veins as a result of carbonatization and pyritization.

The soil sampling done on the $C V \& A U$ claims indicate areas of potential gold mineralization and a follow up evaluation of the property is warranted.

INTRODUCTION

During the period of June 6, to June 9,1988 an exploration program consisting of a limited soil sampling program was carried out on the $C V \& A U$ mineral claims. The exploration was implemented as a result of interest in the area since gold production from both the proximal Erickson Gold and Cusac properties. The purpose of the program was to determine the potential of the $C V$ \& $A U$ claim group for similar gold zones as those which occur on the adjacent properties.

The program was completed by employees of Sookochoff Consultants Inc. under the direction of Laurence Sookochoff, P.Eng.

LOCATION AND ACCESS
The CV \& AU claims are located between Callison Lake adjacent to the east, Lang Lake one km to the west and the Stewart-Cassiar Road adjacent to the north. Helicopter service is availiable at both Dease Lake, B.C. and Watson Lake Yk. The flight time from both communities to the property is approximately 45 minutes.

CLAIM INFORMATION

The CV \& AU claim group is comprised of one claim of 18 units and four two-post claims. Particulars are as follows.

NAME	UNITS	RECORD NO.	EXPIRY DATE*
CV 1		2952	
CV 2		2953	October 11,1989
CV 3		2955	October 11, 1989
CV 4		2956	October 11, 1989
AU	18	3022	Dectober 11,1989

* Upon the approval of one years assessment work filed on
October 7 , 1988 .

Any legal aspects of the claims is beyond the scope of this report.

PHYSIOGRAPHY AND CLIMATE

The CV \& AU claim group is located at Machilo Pass and the headwaters of Bass Creek flowing southwesterly and McDame Creek flowing northeasterly. Gentle drift covered slopes prevail on the property with elevations reaching 1375 meters at the southeast portion from 1035 meters between Lang and Callison Lakes in the northern portion.

The area has relatively dry summers and cold winters with snowfall averaging three meters covering the ground from November to June. Water would be available for all phases of the summer exploration program from the lakes and water courses covered by and adjacent to the claim group.

HISTORY AND PREVIOUS WORK

Gold was first discovered in the area in 1874 when placer gold was found in McDame creek with the creeks in the area continuing to yield small amounts of gold today. It is estimated that between the years 1874 and 1895 some 70,000 ounces of gold was recovered from the area, including a single 73 ounce nugget from McDame creek. The total gold production for the area to date is estimated to be around 170,000 ounces.

It is reported that in 1934 Pete Hanlin and John Velaugh made the first discoveries of gold bearing quartz veins in the Table Mountain Gold Camp. It is reported that in 1934 one ton of ore from the Discovery vein containing four ounces of gold was shipped by air by J.F. Callison. New discoveries were made in the late 1930's and early 1940's, among which was the Cusac vein. In 1939, A.W. Boulton recovered 114 ounces of gold and 20 ounces of silver from 130 tons of ore from the Jennie vein. Exploration was intermittent until access to the area was drastically improved with the opening of the Cassiar Asbestos Mine and the town of Cassiar in 1955.

In 1978 Erickson Gold Mining Corp. started production on the Table Mountain veins located two kilometers north of the property. In 1979 it is reported that Erickson milled 28, 296 tonnes of ore with average grades of $20.9 \mathrm{gm} /$ tonne gold and $20.5 \mathrm{gm} /$ tonne silver, resulting in 590,900 grams of gold and 581,522 grams of silver being produced. since then exploration and development in the area increased dramatically resulting in Plaza Resources and Tarus Gold Mines commencing gold production in 1981, followed closely by Cusac on the nothwest side of Table Mountain. Erickson acquired the Plaza deposit in 1983 and optioned the Cusac property in 1984.

Since startup in 1978 to 1988 the Erickson mine has produced over 500,000 tons of ore at a recovered grade of $0.46 \mathrm{oz} /$ ton gold. The yearly average grade has ranged from 0.31 to 0.94 oz/ton gold. In February 1988 the total proven, probable mining and inventory reserves were 137,518 tons grading 0.292 oz/ton gold.

CV \& AU CLAIM GROUP	
LIARD M.D.	

Information obtained from Total Erickson's annual reports for 1986 and 1987 is as follows:

In 1985 the mine operated for 11 months and produced 19,363 ounces of gold and 15,461 ounces of silver from 68,835 tons of ore with an average grade of $0.31 \mathrm{oz} / \mathrm{t}$ on gold. In the six months of operation in 1986 the mine produced 27,167 tons of ore with an average grade of $0.93 \mathrm{oz} /$ ton gold. This resulted in 24,262 ounces of gold and 8,092 ounces of silver. In 1987 the mine produced 36,847 ounces of gold and 18,137 ounces of silver from 95,179 tons of ore. The average grade was 0.417 oz/ton gold and recovery averaged 92.8%.

The quarterly report ending March 31, 1988 states that 21,807 tons of ore grading $0.306 \mathrm{oz} / \mathrm{ton}$ gold, produced 6,308 ounces of gold with a recovery averaging over 93%. The report states that there are sufficient developed mineable reserves to last most of the calendar year. Recent high grade discoveries on the Michelle and Eileen veins indicate minimum reserves of 15,000 ounces of gold. As of February 1988 the Eileen was grading 0.674 oz/ton gold.

There is no documented information on previous exploration on the $C V$ \& $A U$ claim group area.

REGIONAL GEOLOGY

The main structure in the region of the claims is the northwest trending, southeast plunging McDame synclinorium, comprised mainly of rocks of Devonian-Mississippian age.

The basement rock in the area is the Proterozoic Good Hope Group. Limestone, dolomite, slates, shale and quartzites more than 4,000 feet thick outcrop along the eastern flank of the synclinorium. The beds vary from red to pink to green in color. Limestone and dolomite are the dominant lithology in this group and occur in beds from one inch to 10 feet thick but average between one and two feet.

Overlying the Good Hope Group is the Lower Cambrian, Atan Group, a sequence of limestone, dolomite, quartzite, shale, slate, and argillite. The Atan Group is up to 3,000 feet thick in places and can be subdivided into two very distinct units.

The upper consists of almost exclusively limestone and dolomite with only minor slate. This unit is relatively pure, thick bedded to massive, and blue-grey to black in color. The beds of limestone and dolomite range in thickness from inches to hundreds of feet but on average are from a foot to 10 feet. The lower unit consists of well bedded quartzite, pebble conglomerate, slate, siltstone, and argillite and has a tan, rose or white color. The thickness of the beds in this unit are between a few inches to 10 feet.

The next Group in the statigraphic sequence is the Middle Cambrian to Middle Ordovician, Kechika Group. This unit is easily distinguished from overlying and underlying units by the well developed cleavage and tight folding. The rocks are predominately argillaceous in the southwest and calcareous in the northeast and up to 2,000 feet thick. The main lithologies in this Group are phyllites, shale, slate, and limestone in a wide variety of colours.

Resistant ridge forming dolomites and sandstones of the Ordovician to Devonian Sandpile Group overlay the Kechika Group. The Sandpile Group has a total thickness of about 1,600 feet and occurs in a wide range of color. The Sandpile Group is highly fossiliferous in localized areas.

Middle and Upper Devonian Carbonate strata of the McDame Group overlay the Sandpile Group. The 500 feet or so of this unit can be divided into two members: an upper consisting of grey platy limestone, and a lower consisting of black fetid dolomite. The well bedded, platy limestone of the upper member occur in beds between half an inch and four feet thick. These limestones tend to have hackly and pitted surfaces, as a result of weathering, giving it marked contrast from the underlying dolomites. The lower dolomite member serves as one of the best horizon markers in the area because of the high fossil content and distinctive lithology.

Above the McDame Group is the most widespread and most important unit in the region, the Devonian and Mississippian Sylvester Group. In the southeast portion of the synclinorium the Sylvester Group attains a thickness of over 15,000 feet thick. This unit is distinctive in the amount of volcanic material from which it is composed. The rocks take on a dark weathering and structureless appearance in the field. Greenstone, chert and argillite are the most dominant lithologies in the unit and the greenstone serves as host to the most important gold bearing quartz veins in the area. The generally east-west trending quartz veins can occur up to 40 meters wide and may carry visible gold. The sulfide content in the veins ranges up to 5%, with the sulfides predominantly pyrite, with some tetrahedrite, mariposite, and occasionally sphalerite and galena.

PROPERTX GEOLOGY AND MINERALIZATION

The CV \& AU claim group is indicated to be underlain by rocks of the Sylvester Group. The property is located on the western margins of the synclinorium and as a result sedimentary bedding dips to the west along with the regional northwesterly strike. As the property was not mapped, specific geological information is unknown.

There is no known mineralization on the property other than that indicated by the soil geochem results.

GEOCHEMICAL SURVEY

The localized geochemical survey was carried out on a grid within the northwestern portion of the $C V \& A U$ claim group. Three north-south grid lines spaced 50 meters apart and 540 , 440 and 160 meters long respectively were utilized to collect soil samples at 20 meter intervals. The soil samples were collected with a shovel from the "B" horizon wherever possible from a depth of between three and 30 cm . Each sample was placed in a brown wet-strength envelope. A ribbons with the appropriate co-ordinate marked thereon was placed at the soil sample site. A total of 60 samples were collected.

The samples were sent to Acme Analytical Laboratories Ltd. in Vancouver where a 30 element ICP test in addition to a gold geochem was performed. The ICP test involved the digestion of 0.500 grams of the sample with 3 ml of $3-2-1 \mathrm{HCl}-\mathrm{HNO} 3-\mathrm{H} 2 \mathrm{O}$ acid at 95 degrees C for one hour, the sample is then diluted to 10 ml with water. The gold analysis was accomplished by acid leach and atomic absorption from a 10 gram sample.

A sufficient number of samples were unavailable for a reliable statistical analysis, thus the anomalous values were estimated at 50 ppm As and 25 ppb Au . The results indicate two anomalous areas. A one line 100 meter long anomaly with values of up to 1394 ppm As and 1580 ppb ($0.05 \mathrm{oz} / \mathrm{ton}$) Au occurs in the northwest corner and open to the north and west. The second anomalous area is located at the southern extent of the center grid line where 80 meters of anomalous gold values of up to 415 ppb Au and 87 ppm As. This anomaly is open to the east.

CONCLUSIONS AND RECOMMENDATIONS

The limited soil sampling survey was successful in delineating favorable areas for locating potentially economic gold mineralization. To obtain specific target zones to test for sub-surface mineralization geological and geophysical methods should be employed. However, prior to initiating a geophysical program, the entire property should be prospected, mapped and geochemed.

Vancouver, B.C.
January 3, 1989

BIBLIOGRAPHY

COPLAND, H. - September 19,1983, Geological and Geochemical Report on the Nome 1-5 Claims

DIAKOW, L.J. and PANTELEYEV, A. - 1981, Cassiar Gold Deposits. McDame Map Area B.C. Ministry of Energy, Mines, and Petroleum Resources, Geologic Field Work, 1980. Paper 1981-1, pages 55-62.

GABRIELSE, H. - 1963, McDame Map Area, Cassiar District, B.C., G.S.C. Memoir 319.

GARAGAN, T. - June 28, 1987, Geological and Geochemical Report on the Nome 1 to 5 Claims. Assesment Report Submited to the B.C. Ministry of Energy, Mines, and Petroleum Resources.

POLONI, J.R. - December 19, 1981 Report on the Cordoba, Tara, Pete Groups Liard M.D.

SINGHAI, G.C. - Report on AU Group and CV Mineral Claims, Callison Lake Area. April 10, 1984

CERTIFICATE

I, Laurence Sookochoff, of the City of Vancouver, in the Province of British Columbia, do hereby certify:

That I am a Consulting Geologist and principal of Sookochoff Consultants Inc. with offices at 609-837 West Hastings St, Vancouver, B.C., V6C $1 \mathrm{B6}$.

I further certify that:

1. I am a graduate of the University of British Columbia (1966) and hold a B.Sc. degree in Geology
2. I have been practising my profession for the past twenty-three years.
3. I am registered and in good standing with the Association of Professional Engineers of British Columbia.
4. The information for this report was obtained from sources as cited under Bibliography and from the supervision of the exploration program reported, on herein
5. I have no direct, indirect or contingent interest in the property described hereingor do I expect to receive any.

Vancouver, B.C.
January 3, 1989

STATEMENT OF COSTS

The fieldwork consisting of a localized geochemical survey on the AU mineral claim was carried out during the period of June 6, 1988 to June 9, 1988 to the following value:

Pat Crook, Rod Husband, Ron Husband

12 man days e $\$ 250$.
Camp equipment rental 400.00

Board - 12 man days a $\$ 50$.
600.00

Field supplies 275.00

Report

APPENDIX I ASSAY CERTIFICATES

54NPLIt	K0 P8	$\begin{gathered} \text { CO } \\ P P K \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{PPK} \end{gathered}$	$\begin{array}{r} \text { in } \\ \text { PPM } \end{array}$	29 PPK	$\begin{gathered} \text { Ii } \\ P P M \end{gathered}$	Co PPK	$\begin{gathered} \mathrm{Ma} \\ \mathrm{PaK} \end{gathered}$	$\begin{gathered} \mathrm{fe} \\ 1 \end{gathered}$	$\begin{gathered} A \delta \\ P P M \end{gathered}$	T ${ }_{\text {TK }}$		$\begin{aligned} & \text { Tb } \\ & P P \mathrm{P} \end{aligned}$	St	$\begin{gathered} \mathrm{Cd} \\ \mathrm{PPM} \end{gathered}$	St	B1 PPA	PPM	$c i$	i	Le	$\underset{\mathrm{fPr}}{\mathrm{Cr}}$	Mg	$\begin{gathered} \mathrm{Bl} \\ \mathrm{PPH} \end{gathered}$	4	PPI	$\begin{gathered} 11 \\ 1 \end{gathered}$	1	1		$\begin{aligned} & \lambda 0^{\prime} \\ & P 78 \end{aligned}$
4.536		61		70^{+}	.2	35	13	1335	-5.3	76		10	1	7	T	7	2	177	. 82	. 115	9	100	1.30	15	" 16		7.15	. 1			
4.5144	1	19	1	16	. 2	23	11	1254	1.10	15	5	30	1	16	1	1	3	101	. 31	. 076	10	11	. 78	69	. 21	l	1.96	01			
18.5129		75	8	95	. 3	12	31	1394	6.28	21	5	10	1	21	1	4	2	111	. 55	. 091	1	81	1.39	13	. 21		3.11			1	3
11.5304			1	64	. 1	25	8	561	5.27	1		30	1	14	1	2	?	111	. 33	. 079	9	61	. 17	15	. 14		2 H	. 01	. 05	1	2
11.5281	1	15		14	. 1	31	12	601	3.83	9	5	10	2	11	1	?	2	87	, 61	. 016	10	63	1.29	51			2.12	. 01	. 06	1	1
H.5 69	1	20	5	10		4	1	811	¢.31	12	5	310	2	11	1	2	2	123	. 34	. 196	12	56	12	4	. 12	4	2.03	. 01	+06	1	1
11.5218	1	13	1	65	. 1			301	6.38	19	5	10	2	15	1	2	2	185	. 54	. 148	1	37	T. 06	38	. 20	2	2.50	. 01	. 4	1	1
11.5221	1	36	2	13	.2	32	10	3th	5.04	6	5	10	,	15	1	2	2	10	. 35	. 064		6	1.01	41	. 11	3	2.91	. 01	. 01	1	10
18.5208	1	35	1	62	. 2	23	12	495	6.01	6	5	10	2	14	1	2	1	142	. 37	-17\%	,	10	. 11	50	. 25	2	2.16	. 01	. 05	1	1
46.5181	1	52	1	64	. 2	32	13	415	6.25			10	3	23	1	2	2		17	. 041	9	16	1.15	I3	. 15	2	2.90	. 01	. 05	1	2
58.5161	2	34	5	71	.1	28	9	416	1.91	8	5	10						91	. 29	. 018	10	57	. 83	59	. 13	2	2.39	. 01	. 01	1	1
31.511%	1	13	1	63	. 1	35	12	593	5.09	1	5	5					2	91	. 50	. 079	1	6	1.12	59	. 11	3	2.62	. 01	. 03	1	$!$
58.5128	2	26	1	18	. 1	19	1	669	3.61	2	5	10					1	89	. 25	. 051	10	11	. 56	71	. 14	2	1.80	. 01	. 05	1	2
48.5108	1	19	13	41	. 1	8	1	211	2.35	2	5	10		14				19	. 26	. 041	12	11	. 21	12	. 16	2	1.24	. 01	. 81	1	2
63.5 B4	1	18	1	33	. 1	16	6	102	2.21			0	1	18	1	2			43	. 128	11	38	. 54	10	. 16	2	1.54	. 01	. 03	1	,
54.5 fv	1	35	5	64	. 2	36	11		+.78	1	5	10	1	21	1	2	1	92	. 62	. 05		12	1.34	50	. 15	3	2.12	. 11	. 03	1	,
4.5 is	1	35	6	11	. 2	28		-356	4.50	10	5	10	1	19	1	3	1	86	. 57	. 018			1.14	14	. 15	2	2.59	. 01	. 01	1	1
11.528	1	16	9	45	. 1	4	1	254	1.09	2	,	nd	,	13	,	2	1	65	. 28	. 012	11	42	. 3	11	. 15	1	1.80	. 01	. 03	1	,
13.308	,	21	11			23	1	307	3.76	3	5	10	1	16	,	2	1	8	. 39	. 012	8	51	. 81			1	2.20	. 01	. 04	1	2
26.514	1	11			. 1	29	9	376	1.61	2	5	0	1	19	1	2	2	85	. 53	. 041	t	59	1.06	17	. 16		2.44	. 01	. 03	1	,
4.518			11	4	. 1	9	J	457	1.54	2	,	10	,	12	,		,	19	. 17	.063	,	28	. 24	6	. 12	2	1.15			1	1
51.56		11	6	9	2	11	5	505	2.51	5	,	11	1	15	$!$,	1	11	. 31	. 045	,	43	.5]	54	. 17	1	1.12	. 01	. 7		,
$4{ }_{4} 83$		38	9	57	. 1	35	12	495	3.23	10	5	10	1	21	1	2	2	15	. 11	.055	8	6	1.16	19	. 13	5	2.11	. 01	04		
2110 10 S		11	21	103	. 5	111	58	2101	14.62	1394	5	1 J	1	22	$!$	6	$?$	51	. 61	. 045	10	38	. 68	13	. 05		1.02	. 01	. 09	1	1540°
10 6025		15	1	17	. 2	31	13	568	1.4	11	5	IT	5	9	t	2	,	54	. 22	. 031	13	33	. 53	63	. 11	6	1.64	. 01	. 01	1	16
20.60	,	45	6	115	. 3	31	26	$70 \pm$	6.28	166	5	m	5	12	,	2	2	91	. 29	. 041	12	49	. 92	6	. 17	,	2.56	. 41	. 06	1	158
10 LO 56	1	13	1	237	. 1	17	31	1041	1.71	223	5	10	3	13	1	2	2	113	. 31	. 061	1	45	. 65	19	. 16	2	1.99	. 01	. 07	1	47.
104085	,	13	10	221	. 1	51	31	1388	9.23	513	5	10	,	11	,	1	2	66	. 11	. 092	10	31	. 48	11	. 18	2	1.50	. 01	. 05	1	115
01010105	,	21	10	89	. 1	26	1	390	2.54	16	3	ID	5	13	,	2	2	39	. 40	. 017	17	27	. 59	34	. 10	1	1.33	. 01	. 10	1	14
20 60125	1	1	13	69	. 1	11	6	836	2.19	10	5	no	7	5	1	2	3	10	. 11	.098	16	2	. 26	51	. 10	2	. 66	. 01	. 65	,	1
10 W 115	2	18	15	208	. 1	39	13	112	4.85	11	5	D	9	7	,	2	2	71	. 10	. 132	15	19	. 59	15	. 33	2	1.62	. 01	. 07	1	1
20 20165	1	10	5	90	. 1	26	8	276	2.69	10	5	10	13	,		2	2	4	. 21	. 132	10	31	. 48	46	. 09		1.54	. 01	. 06	1	1
10.6185	,	11	13	123	. 3	32	12	459	4.15	1	5	E	11	6	1	2	2	64	. 12	. 997	18	31	. 49	93	. 21	3	2.59	. 01	. 01	1	1
1010205	2	11	13	111	. 1	13	12	111	\$.59	8	5	10			,	2	?	6_{6}	. 12	. 096	11	4	. 68	69	. 41	2	3.38	. 41	. 06	1	2
10 10225	2	14	8	202	. 1	11	18	311	4.40	2	5	10	I)	6	1	2	2	65	. 10	. 104	18	41	. 63	81	. 25	5	2.89	. 01	. 05	1	,
A0 10215	2	11	13	108	. 2	11	8	299	3.69	6	5	10	8	1	1	2	2	60	. 16	. 090	20	32	. 51	15	.17	1	1.91	. 01	. 08	1	1
ST0 c/ab-s	17	57	37	125	7.0	69	21	1053	3.71	37	11	1	36	19	17	16	18	56	. 46	. 085	36	56	. 81	112	. 06	33	1.79	. 06	. 14	11	51

SAXPLIt	no	CJ	Pb	In	19	1	Co	H	Ie	18	J	k	Th	St	cd	Sb	$8 i$	V	Cl	9	4	CT	Mg	88	11	8	11	11	1	＊	10^{*}
	PPG	PPX	PFK	PPM	PP\％	PPX	PP\％	PFIK	；	PPK	PPA	PPK	PPK	PPM	PPM	P9\％	PPK	$p P^{\prime}$	1	1	PYy	2 Pr	1	PPK	1	PPF	1	1	；	7P\％	P\％B
10 10258	2	19	12	144	． 1	30	18	996	9.31	1	5	50	f	9	1	2	2	75	． 15	． 072	13	43	． 41	106	． 28	2	2.21	． 01	． 86	1	1
10 it iss	1	20	10	111	． 1	15	12	359	4.88	23	5	1 B	6	9	1	2	2	66	． 18	． 013	15	45	． 58	60	． 21	6	2.14	． 01	． 07	1	1
A0 10308	2	11	5	130	． 1	12	11	351	3.81	8	5	50	7	9	1	2	，	57	． 19	． 054	18	35	． 58	${ }^{3}$	． 16	1	1.71	． 01	． 09	1	1
2010325	2	13	16	211	． 5	21	12	513	5.10	J	5	\％	6	1	1	3	1	95	． 10	． 047	14	11	． 16	105	． 31	2	1.90	． 01	． 01	1	，
10 10315	3	6	13	197	． 1	14	1	173	5.17	1	5	10	1	9	1	2	2	106	． 14	． 033	11	35	． 21	111	． 34	2	1.06	． 01	． 06	1	1
却 10368	2	1	15	116	． 2	1	1	S43	3.94	$?$	5	相	1	1	1	1	1	91	． 09	．028	13	11	． 18	13	． 12	2	． 91	． 01	． 06	1	？
20 10385	2	16	15	204	． 6	$1]$	is	181	S．18	9	5	n	8	8	1	2	，	71	． 14	． 012	11	51	． 60	131	． 26	2	1.95	． 01	． 07	，	1
A0 60105	1	13	9	81	． 1	23	6	213	3.15	1	5	10	1	1	1	2	1	15	． 16	． 025	12	12	． 53	61	． 11	8	1.34	． 01	． 04	1	2
就 10 129	2	20	2	111	． 1	10	11	121	4.13	8	5	10	5	9	1	2	2	15	． 21	． 031	11	12	． 63	13	． 13	2	1.92	． 01	． 01	1	1
15 10 14S	1	\＄\＄	1	16	． 1	40	is	118	5.48	1	5	Ti	1	9	1	2	2	85	． 20	． 042	16	41	． 19	17	． 15	2	3.28	． 41	． 03	1	1
aty 6165	1	130	14	86	． 1	31	24	518	5.44	2	5	10	4	11	1	2	2	128	． 31	． 021	12	11	． 51	66	． 30	2	3.00	． 01	． 03	1	1
40.10485	1	61	1	164	． 1	d	15	611	4.97	2	5	10	1	9	1	2	2	95	． 13	． 016	15	11	． 11	10	． 31	2	2.21	． 01	． 01		1
1020505	1	60	\％	125	． 1	38	11	186	4.24	，	5	ID	8	11	1	1	2	15	． 36	． 014	16	45	． 65	110	． 24	，	2.11	． 01	． 06	1	1.
A1） 6525	1	202	10	121	． 2	62	13	167	4.93	1	5	IV	I	14	1	2	2	86	． 62	． 040	21	51	． 51	60	． 21	2	4.88	． 01	． 04	1	2.
17 io 545	2	88	8	14	． 1	51	20	215	6.26	7	5	H	6	11	1	3	2	131	． 32	．01］	15	56	． 53	35	． 10	1	3.73	． 02	． 04	1	1.
10 20.505	1	13	1	69	． 1	20	10	105	3.00	8	5	10	，	11	1	2	，	19	． 26	． 027	13	11	． 12	59	． 15	2	1.59	． 01	． 06	1	
aj 10.525	1	，	2	69	． 1	18	，	245	3.55	1	5	ID	6	1	1	2	i	56	． 12	． 060	11	11	． 39	54	． 19	2	1.73	． 01	． 05	1	1
20 L0．5 is	1	10	7	15	． 1	13	1	49］	3.34	6	5	10	，	1	1	2	，	51	． 10	． 071	11	25	． 30	19	． 16	2	1.50	． 01	． 05	1	1
1010.5 ¢8	1	13	10	163	． 1	30	10	190	4.36	f	5	T1	8	4	1	2	1	19	． 12	．173	17	42	． 70	64	． 19	2	3.00	． 01	． 09	1	1
A0 20.5 is	1	11	16	245	． 2	19	9	460	3.10	1	5	10	6	1	1	？	2	85	． 12	． 091	is	4	． 32	11	． 21	2	1.8	． 01	． 06	2	1.
20 20.5105	3	9	12	182	． 2	16	1	333	4，66	1	3	10		$?$	1	2	$?$	$B 9$	． 18	． 075	15	33	． 16	67	． 22	$?$	1.52	． 01	． 07	1	1
10 00.5125	2	12	12	164	． 1	17	4		5.64	1	5	F0	4	1	1	1	2	89	． 12	． 091	13	14	． 11	18	． 25	？	2.00	． 01	． 01	，	2.
材 0.5115	1	5	2	63	． 1	11	1	181	2.33	5	5	H	11	1	1	3	6	10	． 22	． 103	25	20	． 11	11	． 81	t	． 88	． 01	． 08	1	$1 "$
20 0.5195	3	11	11	219	． 1	16	15	1t5	4.19	10	5	10	6	1	1	2	2	59	． 16	． 080	15	45	． 68	11	． 12	1	\＄．81	． 01	． 08	$?$	1^{\prime}
20 60.5185	3	13	16	204	． 1	29	16	691	6.20	，	5	10	5	8	1	2	，	13	． 10	． 173	14	51	． 55	13	． 32	1	2.63	． 01	． 08	1	1
18 10.5205	2	1	10	12	． 1	13	1	451	3.39	1	5	10	5	6	1	2	2	61	． 10	． 016	12	31	． 36	क	． 11	2	1.05	． 01	． 06	1	2
1010.5225	2	10	11	107	． 1	11	9	213	3.71	5	5	10	1	1	1	2		61	． 11	． 059	15	32	． 32	59	． 19	2	1.64	． 01	． 06	1	${ }^{\circ}$
40 10.5245	2	11	12	126	． 1	14	8	311	4.95	6	5	TD	4	6	$!$	$?$	2	4	． 88	． 010	12	41	． 21	80	． 25	2	1.19	． 01	． 04	1	
A0 60．5 265	2	13	10	201	． 2	19	13	519	6.29	10	3	ID	1	1	1	1	，	18	． 13	． 058	11	4	． 4	18	． 31	2	1.92	． 01	． 06	1	2
A0 00.5285	2	15	16	220	． 1	21	13	313	5.14	\pm	5	IV	4	4	1	2	，	32	． 12	． 43	12	18	． 41	104	． 28	2	2.16	． 01	． 01	1	1 ＇
20.10 .5305	3	20	9	180	． 1	31	11	105	5．62	11	5	ID	6	23	1	2	$?$	115	． 21	． 019	15	62	． 93	131	． 21	$?$	1.98	． 02	． 11	1	1.
AE 60.5125	1	20	17	318	． 1	12	17	544	1.85	11	5	30	5	12	1	？	2	11	． 11	． 856	13	16	． 64	168	． 21	2	2.35	． 01	． 11	1	ξ
10.0 .5315	2	14	15	132	． 1	18	12	129	5.86	15	5	10	6	11	1	2	2	126	． 15	040	14	16	． 19	199	． 28	2	1.15	． 01	． 09	1	385
20060．5 365	1	31	9	13	． 1	40	17	361	6.19	58	5	（1）	12	11	1	3	？	99	． 21	． 032	19	51	． 86	103	． 18	$?$	2.17	． 01	． 11	2	115
迆 00.5385	2	11	15	85	． 1	11	16	933	5.83	87	5	10	15	10	1	2	3	102	． 16	． 028	11	4	． 37	133	． 22	2	1.60	． 01	． 09	2	122
10 60.5105	5	20	12	81	． 1	21	11	299	4.56	12	5	10	4	15	1	2	2	101	． 41	． 026	11	41	． 61	${ }^{\text {B }} 3$.19	2	1.66	． 01	． 81	1	62
STD C／AJ－S	18	57	40	134	7.1	61	28	1067	4.01	19	18	8	36	4	19	19	23	51	． 4	． 085	31	55	． 88	174	． 06	33	1.88	． 06	． 15	11	－ 11

5XXPL5	$\begin{array}{r} \text { Yo }_{0} \\ \text { PPK } \end{array}$	$\begin{gathered} \mathrm{Cu} \\ 18 \mathrm{ar} \end{gathered}$	$\begin{array}{r} \mathrm{Pb} \\ P \mathrm{P} \end{array}$	$\begin{gathered} \text { ip } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \lambda g \\ p, y \end{array}$	$\begin{gathered} 11 \\ P P K \end{gathered}$	$\begin{array}{r} \text { CO } \\ \text { PPR } \end{array}$	$\begin{array}{r} \mathrm{Kn}_{n} \\ \mathrm{PPII} \end{array}$	$\begin{gathered} \mathrm{rt} \\ i \end{gathered}$	$\begin{array}{r} \text { AB } \\ \mathrm{PPII} \end{array}$	PPIT	$\begin{gathered} \mathrm{A} 0 \\ \mathrm{P} \cdot \mathrm{KK} \end{gathered}$	$\begin{gathered} \text { ib } \\ P P K \end{gathered}$	$\begin{gathered} \text { Sr } \\ \mathrm{HPK} \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ \mathrm{PPX} \end{gathered}$	$\begin{gathered} 5 b \\ \mathrm{FPK} \end{gathered}$	$\begin{array}{r} B 1 \\ \text { PPK } \end{array}$	P?	$\begin{gathered} c \\ : \end{gathered}$!	Le	$\begin{gathered} \mathrm{CI} \\ \mathrm{PPM} \end{gathered}$	Mg	$\begin{array}{r} \mathrm{Bl} \\ \mathrm{PPZ} \end{array}$	+1	${ }_{\text {PFII }}$	11	H1	1	\% ${ }_{\text {P\% }}$	$\begin{aligned} & \lambda 0^{1} \\ & P P B \end{aligned}$
A10 10.5125	1	70	10	132	. 1	51	11	581	4.16	32	5	ro	15	22	1	2	2	78	. 75	. 036	17	65	. 51	121	. 14	5	2.61	. 01	. 89	1	26
10. 20.5445	5	115	!	185	.!	69	16	119	4.53	35	8	T0	12	41	1	2	2	8.	. 91	.060	36	66	1.11	112	. 15	1	2.56	. 83	. 01	2	1
$10 \mathrm{Li.0} 05$	1	10	2	94	. 1	26	10	340	2.4	,	5	It	11	,	,	2	2	4	. 21	.119	25	31	. 50	50	, 14	1	1.64	. 01	. 07	1	1
N0 61.0 25	1	10	,	44	.1	20	1	154	3.11	2	5	10	11	,	1	2	2	36	. 21	.13]	29	31	. 4	15	. 11	6	1.61	. 01	. 81	1	3 *
d0 41.18	3	15	1	176	. 2	40	12	539	5.21	2	5	10	15	11	1	2	2	81	. 18	. 113	20	31	. 64	104	. 21	2	4.16	. 01	. 8	1	1
19 L1.0 65	3	13	10	211	. 4	18	21	162	5.20	5		10	6	11	1	2	2	85	. 19	. 098	19	¢2	. 61	112	. 13	3	3.30	. 01	. 8 \%	1	1
20 Li. 08	9	10	11	150	. 1	21	11	603	5.30	13	5	0	5	13	1	2	2	129	. 16	. 111	16	42	. 48	19	. 25	2	1.91	. 01	. 09	1	1
A0 41.0105	2	12	1	164	. 1	25	12	431	4.65	T	5	s0	,	13	1	,	2	83	. 33	. 065	15	4	. 66	58	. 21	2	1.91	. 01	. 01	1	1
2061.0138	2	26	13	121	. 2	26	13	1167	3.91	15	5	50	6	19	,	2	$?$	87	. 66	. 054	If	31	. 54	105	. 19	5	1.62	. 01	. 13	1	1
10 61.0165	2	16	1	251	. 1	26	12	1021	3.15	2	5	䊅	5	25	2	2	2	85	. 50	. 040	15	46	. 54	452	. 23	1	1.56	. 01	. 11	1	1
10. 41.0165	1	16	14	119	. 5	21	13	1904	4.14	,	5	10	14	10	1	2	2	81	. 12	. 031	11	38	. 37	152	. 26	2	1.62	. 01	. 09	1	1.
ITS.		11	π	115	. 1	31	5	ITIJ	1.85	3	5	17	T	13	1	7	2	3	- 70	.0ts	11	H	+	4	18						
1.6.	1	63	17	90	. 1	11	21	1161	4.96	59	5	10	1	11	1	2	1	81	. 18	. 033	12	10	1.39	220	. 21	1	2.54	. 01	. 26		1
t.G. 3		13	13	111	. 1	53	25	1308	4.81	15	5	0	2	11	,	2	2	88	. 35	. 033	13	11	1.12	215	. 20	2	2.11	. 01			205
I.G. 1			20	152	.	31	33	3631	4.88	135	5	1 D	1	25	1	2	2	91	. 79	. 095	13	18	. 95	291	.11	1	2.58	Ot	1	1	69
1.6. 5	,	5		I	.	52	24	1513	5.15	125	,	It	,	11	,	,	,	81	, 31	. 061	11	61	1.20	219			2.50	. 01	. 46	I	345
1.6. 8	1	30	23	141		17	25	1377	5.69	403	5	w	3	13	$!$	2	2	10	. 29	. 053	11	6	1.26	151			2.37	. 01	. 08	1	520
1.6. 1	1	15	11	114	\cdot		22	1316	5.17	191	5	10	,	12	,	2	2	81	. 35	. 044	14	54	1.08	15	. 12	,	2.32	. 01	. 06	1	315
1.6. 8	1	61	15	102	. 1	11		1109	1.85	143	5	b	1	1	,	2	2	16	. 16	. 045	13	31	, 15	181	. 10	1	2.17	. 01	. 06	,	126
I.6. ${ }^{\text {a }}$	1	4	16	115	1	13	11	IKK	1.50	36	5	10	1	19	1	2	2	61	. 41	. 064			. 14	145	. 17	2	1.75	. 01	. 01	1	19
P.6. 10	1	111	23	137	. 1	16	25	1355	4.80		5	10	2	12	1		,	76		-614	13	63	1.21	23	. 11	J	2.31	, 81	. 88	1	111
1.6. 11	1	100	22	119	. 1	${ }^{1}$	${ }^{21}$	1655	5.20	101		10	2	11	,	1	,		. 31	. 018	16	11	1.12	235	. 11	J	2.57	. 81	. 01	1	113
1.6. 12	!	69	20	121	. 1	45	21	184!	5.10	11			1	16	1	,		5	. 41	. 071	13	6	1.20	212	. 10	2	2.18	. 81	. 05	2	23
1.6. 13	1	18	11	111	. 1	15	22	1519	1.81	50	5	10		12	1		2	81	. 21	. 058	14	82	1.11	119	. 11	4	2.17	. 01	. 01	1	,
C.G. 11	1	12	20	111	. 1	98	30	2085	5.12	91	5	10	1			2	2	81	. 36	. 85	12	113	1.73	131	. 11	6	2.10	. 01	. 07	1	11
C.G. 15	1	33	11	13	. 1	25	12	112	4.11	76	5	It		1	1		2	101	. 32	. 050	10	11	. 60	121	. 15	5	1.35	. 01	. 05	1	10
6.6. 16	1	10	11	121	. 1	50	23	1367	5.11	107	5	1	1	15	1	2		89	. 38	. 048	13	66	1.11	159	. 14	5	2.10	. 01	. 01	1	121
I.6. is	1	30	21	136	.1	33	15	815	4.10	20		畮	1	26	1	2	2		11	. 130	20	50	1.51	204	. 25	2	1.12	. 01	. 15	1	11
1.6. 19	1	19	11	62	. 2	18	,	131	3.19	-18	5	0	\pm	10	1	3	2	116		139	13	38	. 6	30	. 21	3	1.11	. 01	. 06	1	1
I.G. 10	1	63	10	110	. 1	18	15	1225	3-45	167	5	(${ }^{\text {d }}$	1	16	1	2	2	12	. 35	. 017	11	60	. 98	188	. 14	1	2.11	. 01	. 07	1	290
3.G. 21	1	16	0	97	. 1		12	1066	4.25	81	?	IV	2	11	,	$?$	2	11	. 46	. 060	13		1.29	113	. 13	5	1.35	. 01	. 01	1	455
t.G. 12	1	65	20	108		18	11	1031	4.13	51	5	L	2	13	1	2	2	15	. 53	. 056	15	60	1.01	215	. 12	3	2.31	. 01	. 85	1	1
1.6. 71	1	61	12		.	39	11	856	4.73	38	5	[i)	2	13	1	$?$	2	12	. 31	. 043	14	55	. 93	259		5	2.07	. 01	.08	2	16
I.G. 24	,	91		107	. 1	65	22	1139	4.62	15	5	ID	1	11	,	3	2	76	. 41	. 062	13	4	1.32	112			2.03	. 01	. 06	1	91
1.6. 24 k			13	108	. 2	81	27	1222	5.57	147	5	10	3	19	,	2	2	86	. 52	. 052	12	91	1.65	220	.10		45	. 81	. 03	1	139
1.6. 15		13	1	31	. 1	14	13	1119	4.59	14	5	It	2	13	1	2	2	81	. 31	.054	11	61	1.06	123	.12	*				1	31
1.6.15	1	11	14	65	. 2	21	B	311	2.72	21	5	10	1	11	1	2	3	105	. 26	. 025	11	11	. 60	125	. 23	4	1.35	. 01			10
SIOC/49-5	11	61	1	111	6.9	68	30	1069	3.85	40	15.	8	31	41	18	16	11	51	11	O11	31.	15.	19	111	+16	31.	1.4	AS	15		

