District Geologist, Victoria

MINING DIVISION: New Westminster

PROPERTY:	Slesse Creek								
LOCATION:	LAT 490020								
	UTM 10 5428776	LONG 1213700601171							
	NTS 092H04E								
CLAIM (S) :	Roy 1-2, Roy 5-6								
OPERATOR(S):	Sauer, B.R.								
Hauthor(S) :	Sauer, B.R.								
REPORT YEAR:	1989, 48 Pages								
COMMODITIES									
IISEARCHED FOR:									
KKEYWORDS:	$\begin{aligned} & \text { Pennsylvanian-Permian, Chilliwar } \\ & \text { Faults, Quartz veins, Pyrite, Pyrrhotite, Chalcopyrite, Gold, Bismuth } \end{aligned}$								
KeY-RDS									

WORK

Prospecting, Geochemical
PROS 800.0 ha
ROCK 60 sample(s) ;AU,AG,CU, ZN,AS,SB,BI $\operatorname{Map}(s)-2 ; S c a l e(s)-1: 5000,1: 1000$
SOIL $\quad 120$ sample(s) ;AU, AG, AS, BI, SB, CU, ZN Map(s) - 3; Scale(s) - 1:5000

16927
092HSW0 32,092 HSW053,092HSW064

B. R. SAVER, PROSPECTOR

LOG NO: 0417
ACTION: Date received report 3
back from amendments
FIEND:

4604 Strathcona Rd., N. Van. B. C. V7G lG (604) 929-2691

LOG NO, 0119	RD.

REPORT
on the
SLESSE CREEK PROPERTY (ROY GROUP)

NEW WESTMINSTER MINING DIVISION
BRITISH COLUMBIA
92H/4E ; Lat. $49^{\circ} 00 \mathrm{~N}$; Long. $121^{\circ} 37^{\circ} \mathrm{W}$
by
B. R. SAUER, PROSPECTOR

GEOLOGICAL BRANCH ASSESSMENTREPORT
N. Vancouver, Canada

Jan. 4, 1989

TABLE OF CONTENTS

Page (s)
1
INTRODUCTION
1
LOCATION AND ACCESS
1
PROPERTY
1-2
CLIMATE AND PHYSIOGRAPHY2-3
HISTORY
3-5
GEOLOGY
3
Regional
3-5
3-5
Property 5-10
GEOCHEMISTRY
5-7
Silt Survey
7-8
Soil Survey8
Rock Survey
8-10
8-10
Summary
10-24
10-24
GEOCHEMISTRY TABLES
10
Table I
11-23
Table II
24
Table III
24
Table Summary
BIBLIOGRAPHY 25-26
COST SHEET 27-28
FIGURE 1 29
Soil Horizons 29
ASSAY RESULTS 33-45
MAPS
Frontispiece Location Map
30
30
Regional Geology
Regional Geology
31
31
Property Geology
32
Krom, Fault Map (Red Mtn. Mine Area)
Claim Map i
Survey Boundaries Pocket
Silt Sample Locations
Pocket
Soil Sample Locations
Pocket
Rock Sample Locations
Rock Sample Locations-Torb Zone
Pocket

I, Brian R. Sauer, carried out a reconnaissance soil, silt and rock survey on the Roy Group of mineral claims during March, April, October and December of 1988. The purpose was to outline possible economic mineralization on the claims.

LOCATION AND ACCESS

The Roy Group is located in the New Westminster Mining District of $B . C$. at latitude $49^{\circ} 00^{\prime} N$, and longitude $121^{\circ} 37^{\prime}$ W. The claims are located on NTS sheet $92 \mathrm{H} / 4 \mathrm{E}$. Access is by paved road twenty kilometers east along the Chilliwack River road from Vedder Crossing and then nine kilometers south from the junction of Slesse Creek and the Chilliwack River on a well maintained logging road.

PROPERTY
The Roy Group consists of four "4" post claims recorded as follows:

Roy 1	$\# 3097$	9 units
Roy 2	$\# 3098$	15 units
Roy 5	\# 3139	4 units
Roy 6	\# 3140	4 units

all are located in the New Westminster Mining Division.

CLIMATE AND PHYSIOGRAPHY

The climate is typically coastal with moderate to heavy precipitation throughout the year. Snow at the higher elevations remains for most of the year on or near the remaining glacierettes, overlooking the Slesse Creek valley below. Work may be carried out virtually year-round, subject to extreme weather conditions on the property. Snow and rock
slides which occur from time to time generally pose few problems but topography must be taken into consideration in certain areas. Rock outcrops cover about 50% of the property with many sites being inaccessible due to the steep grades. The old slide scars or slide debris cover about 30% of the property mainly in the vallies for obvious reasons. The remaining 20% consists of glacial till and debris. Reforestation from logging in the 1950^{\prime} s has produced a thick secondary growth on the western side of Slesse Creek, this along with natural underbrush creates much difficulty in prospecting much of the claims.

HISTORY

Reports on the Slesse Creek basin are traced back to at least 1896 and up to the early $1980^{\prime} s$. Most of the exploratory adits and opencuts were, however, completed in the early 1900 's. Little activity was noted in the area after 1929, except for light reconnaissance surveys. At least 5 prospects were worked in the early period but, their exact locations have not yet been located. The Jumbo claims, 3 of 5 Reverted Crown Grants remaining in good standing, had several open cuts and two adits on the property. One of the adits, 160 feet deep, followed a seam of vitreous quartz approximately a foot in width.

Two other past producers from this area were the Lone Jack Mine and the Boundary Red Mountain Mine. The Lone Jack was situated four miles south of the International Boundary and had a two foot quartz vein, with a ten-stamp mill erected, to mine gold values of $\$ 32.00 / t o n(1904$ dollars).

Total production from the Red Mtn. Mine has been estimated at slightly over 80,000 tons of $0.60 \mathrm{oz} / \mathrm{ton}$ Au on average. Sampling during February, 1987 by SOLO INTERNATIONAL RESOURCES LTD. (VSE); present optionees of the mines six
patented mining leases, ran 0.487 oz/ton Au over 80 centimeters on the main vein.

The Boundary Red Mtn. Mine is important to the Roy Group due to its close proximity to the claims, just 500 meters to the south.

As previously mentioned at least 5 former prospects, the Wissota, Zenith, Tincup, Queen, Slesse Creek, and Gold Basin, have not been located. Of these only the Gold Basin, has a history of past production, $\$ 17,000.00$ (1920 dollars) in free gold largely from quartz float. It was staked to the east of the Boundary Red Mtn. Mine on the United States side of the border. Besides the rich quartz float the Gold Basin has a quartz vein of at least 4 feet in width, striking $N 5^{\circ}$ and dipping $70^{\circ} \mathrm{W}$.

GEOLOGY

Regional
The claims cover the Pennsylvanian and Permian age Chilliwack Group, consisting of basic volcanic rocks and metmorphosed argilliaceous rocks on the western portion of the property. To the east the Chilliwack Pluton of Tertiary Miocene and earlier ages consists of granodiorite and quartz diorites. Between these two major rock groups and centrally located lies the Slesse Diorite (Daly, 1912, pp532) ${ }^{1}$, of amphibolites, hornblendites, quartz diorites, and schists. Property

The main vein in the Boundary Red Mountain Mine is in schist and diorite, which forms a contact belt between Slesse Diorite and weakly metamorphosed rocks of the Chilliwack Group (Misch, 1967). The main veins are found in this schist/diorite belt, this zone contains many faults and fractures. The veins bearing economic values in gold at the mine were formed in two

1. Jewett, 1984 thesis; and Grant, 1987 report for SoL0 INT. RES. LTD., describe the Slesse Diorite as the "YellowAster Complex of meta-hornblende gabbro, meta-diorite, and metaquartz diorite.
stages of mineralization. Initially, fractures filled with quartz which contained pyrite, pyrrhotite, and chalcopyrite. Secondly, recurrent movement along these quartz veins produced microbrecciation which permitted hydrothermal gold-bismuth telluride solutions to infiltrate parts of the quartz veins. The quartz veins ranged from a few centimeters to almost three meters in width, striking roughly $N 14^{\circ} E$ and dipping 50° to vertical.

Daly (pp534,1912) observed that the schist/diorite contact belt is often cut by small quartz-veins, some of which form fairly high grade, free milling ore. These veins were too small and irregular to give any hope of profitable low-grade ore. The Boundary Red Mountain vein had been discovered at this time and very little development was performed.

The newly named TORB ZONE was discovered by following up a small amount of malachite float. A sulphide lens was discovered stained with malachite and containing chalcopyrite, pyrite, minor pyrrhotite and possible bornite. This area appears to be located in a shear zone noted by Jewett in his 1984 thesis. The heavily fractured rocks in the area also seem to concur with this idea, although no sign of slickensides have been observed in this area to date.

Two other areas of interest were found during the recconnaissance survey, the HARK ZONE and the WEST TORB ZONES. The Hark zone contains a silieceous hill which is a topographic anomaly in itself. The hill contains highly resistant silicified argillite, but is not very well exposed. Adjacent to this are outcrops of limestone and a possible quartz-stockwork located to the west. The possible stockwork contains veinlets carrying pyrite and pyrrhotite. A boulder found in the creek contained massive pyrite in a fine grained highly siliceous matrix.

The West Torb zone contained an outcrop of graphitic schist
containing pyrite and pyrrhotite. Highly clay altered float containing up to 50% of sulphides was found within 10 meters of this outcrop.

While prospecting a major creek (Chris) on the east side of Slesse Creek; quartz float in vein form, adjacent to a coarse grained diorite was discovered. Large crystals of molybdenum were observed in the quartz, with only minor amounts of pyrite in the diorite.

GEOCHEMISTRY

The 1988 Reconnaissance geochemical survey work completed on the Roy Group of mineral claims was performed to test for possible economic "zones". Soil geochemistry; silt/sediment geochemistry; and rock geochemistry were the mediums used to test for positive results.

The reconnaissance method was chosen due to the dense brush and steep hillsides on the claims. It was thought to be the most economic way to locate possible targets prior to any grid work being initiated.

Silt sampling was used to locate anomalies in the drainage area of the claims, with excellent results in one area. It was also used to verify some of the past silt/sediment results, especially the 1983 survey by Glow Resources Ltd..

Soil sampling was also used to reverify past results by Aquarius Resources Ltd. performed in 1978. It was also hoped that new soil geochem targets could be located.

Rock samples were taken of selected outcrops and float during the 1988 season. Some very exciting sample numbers were returned from various areas of the property, especially the TORB ZONE.
Silt Survey
All silt samples (except where noted) were taken using
moss from the creek beds．When the availability of moss was not easy to locate，sediment grab samples were taken．

Silt samples for Au were highest in the Glacier creek mouth area，with values running as high as $10,000 \mathrm{ppb}$ for the first 200 meters of the creek．

The remainder of the property was generally under 25 ppb Au except for the creek draining the Reverted Crown Grant 1082 ． The two samples taken from that creek ran looppb near the mouth and 145 ppb 350 meters upstream．

Samples on Slesse Creek；Slesse $⿰ ⿰ 三 丨 ⿰ 丨 三 八$ 2－5，were resampled from data taken in 1983 and were：

| l983 | | ppb | l988 | | ppb | |
| :--- | ---: | ---: | ---: | :--- | ---: | ---: | ---: |
| Slesse | 非 | 2 | 35 | Slesse 非 | 2 | 3100 |
| Slesse | 非 | 3 | 2000 | Slesse 非 | 3 | 1000 |
| Slesse | 非 | 4 | 50 | Slesse 非 | 4 | 243 |
| Slesse 非 | 5 | 65 | Slesse 非 | 5 | 3800 | |

The 1983 samples were grab silt／sediment samples taken from Slesse Creek；but the 1988 samples were taken from moss lining boulders in the creek．

Analysis for silver also produced good results；i．e． up to 22．7ppm Ag，again in the lower area of GLacier Creek． Due to the fact the amount of silver associated with gold was minimal to none at the old Red Mtn Mine，very little analysis was done for Ag．

Of the other elements analysed $C u, A s, S b, B i, M o, P b$ ，and Zn ；only Cu（up to 240 ppm ）and Zn （up to 142 ppm ）gave any en－ couraging results．

Future use of $\mathrm{Sb}, \mathrm{Bi}, \mathrm{Mo}$ ，and Pb ，in silt samples will not be utilized as pathfinders to locate economic deposits as their results were discouraging．The use of Bi was because of the amounts found along with gold at the Red Mtn．Mine，this representation did not appear to show up in the silt samples．

Molybdenum found in float on Chris creek was the basis for analysing for this element. Future analyses will be used only in the Chris creek area.

Upon completion of silt sampling of the creeks draining the claims only $\mathrm{Au}, \mathrm{Ag}, \mathrm{Cu}, \mathrm{As}, \mathrm{Pb}$, and Zn will be utilized. As silt sampling seems to be the most favorable method to locate possible economic outcrops, this method will be used more extensively than soil sampling.
Soil Survey
Soil samples were taken from the top of the "B" horizon, a very orange, iron rich, oxidized zone. The soil covering the property is easily accessible and shows little change in colour in exposures around the property.

Sample results from the east side of Slesse creek generally concurred with the results of 1978 , taken by Aquarius Resources. However, an area where Aquarius received its highest sample (35ppm) was not soil sampled. This was due to the amount of slide debris in the area (see figure).

One sample taken from the Hark zone ran 40 ppb , the highest soil sample taken to date. The soil samples taken in this zone were at 25 meter intervals along an old access road.

A total of 92 soil samples were collected during the 1988 soil survey using a reconnaissance method. Samples were collected every 100 meters on the east side of Slesse creek along the main access road. Sample collection was done at 50 meter intervals in the West Torb zone, again along an old access road.

Silver was not used as a pathfinder again due to the low silver values reported from the mine. The samples analysed for Sb, Bi, and Mo showed very little change and would not be used in future soil surveys.

Copper, arsenic, lead and zinc readings were of interest and will be used in future soil surveys along with gold, and sityer。

Rock Survey
Selected rock samples from outcrops and float were taken while silt or soil sampling. One outcrop of note which was sampled was the Torb zone which gave values exceedingly high in Au, Cu, and Ag (7400ppbAu; $90,750 \mathrm{ppmCu}: 49.8 \mathrm{ppmAg}$) . A sample taken below the road near the $S E$ corner of $L 186$ produced a reading of $33,733 p p m$ As, from an outcrop of pyrite rich,silicified material. The sample width was over 2 meters of varying types of rock in the outcrop.

Molybdenum was used as a medium to locate anomalous values due to the fact visible molybdenum was found in quartz-vein float in Chris creek. This particular sample in hindsight, should have been the only sample analysed for Mo.

Bismuth, lead, and zinc showed some fluctuation with highs of $173 \mathrm{ppm} \mathrm{Bi}, 73 \mathrm{ppm} \mathrm{Pb}$, and 670 ppm Zn , with lead being marginal.

Future samples of rock outcrops/float would be sampled for $A u, A g, C u, A s, ~ a n d Z n, u s i n g$ other elements only for selected samples.

Summary
Of all three sample types silt/sediment sampling appeared to be the most economical with best results in $A u, A g, C u$, As, Pb , and Zn .

The silt sample taken in 1983 by Glow Resources Ltd., just upstream from the creek draining the TORB ZONE, gave values of $3500 \mathrm{ppb} \mathrm{Au} ; 7.8 \mathrm{ppm} \mathrm{Ag}$; and $22,500 \mathrm{ppm} \mathrm{Cu}$. However, 2 silt samples taken above and below the TORB ZONE gave low indications in gold, $C G 102 / 22 p p b$ Au; and $C G 101 / 14 p p b$ Au respectively.

Aquarius Resources reconnaissance soil survey in 1978, soil sampled along the road below and above the TORB ZONE. The soil results were not anomalous in this area at all, this may have been due to the steep grade, or soil creep caused by local slide material.

Glaciation must also be taken into consideration as the Slesse Creek valley has been heavily glaciated. Soil movement caused by glacial dispersion is highly probable in the entire claim area.

The actual TORB ZONE was found initially through prospecting, by finding small amounts of malachite float in debris. This method appears to be the best initial exploration tool along with silt sampling, to be used in prospecting the Roy Group. Float found further up above the TORB ZONE containing malachite (8312005) should also be followed up to locate similar outcrops ($8212005=.3 \% \mathrm{Cu}, .04 \mathrm{oz} /$ ton Au). Mapping on a scale of $1: 1000$ is also proposed for this zone, along with minor trenching and breaking of rock faces for sampling fresh unoxidized material.

It should also be noted that the TORB ZONE does not seem to be similar in geology or economic mineralology to the Boundary Red Mountain Mine. This is made evident by the silver and copper content of the lenses in the TORB ZONE.

Lastly; the ROCK O.C. (outcrop) sample must be verified as to location due to the high gold values ($0.828 \mathrm{oz} / \mathrm{ton}$). Until verification of the sample has been 100% identified, it will not be considered in relation to the Roy Group.

I therefore recommend the following:
1.) silt sampling of accessible creeks be continued at 100 meter intervals,
2.) prospecting in these creeks be continued,
3.) a small soil grid be run over the last 200 meters of Glacier creek to test the anomalous silt samples,
4.) adits on the property be opened up for safe mapping and sampling,
5.) the TORB ZONE be mapped to determine economic geology at a scale of 1:1000,
6.) limestone outcrops in the $H A R K$ and WEST TORB ZONES be prospected for the possible source of the ROCK O.C. sample.

GEOCHEMISTRY TABLES

Table I Sample
SILT

SOIL
 Low)

ROCK

Element

2. $33,733-1$, sample taken over 2 meters in width. Without this sample high-low= 1,895-1.
3. 2,083-1, sample of visible molybdenum in float. Without this sample high-low= 41-1.

Au Content
Silts
ppb
10，000
7，000
3，800
3，000
1，700
1，000
820
800
243
192
145 103 100 22 21
15
14
13
10
8
5
Soils

Rocks

7400
1320
1150
1000 818 560 530
number
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
7

14

76

```
    Iocation 4
    G非3
    G 非
    Slesse非5
    G非2
    G非6
    Slesse非3
    G非7
    G非4
    Slesse非4
    CG105
    016
    G非1
    18(40mesh)
    CG102
    SL非1
    29(40mesh)
    CG101
    CG103
    22(40mesh)
    CG104
    15,24,27,31,34,
    46,150.
    SG106
    87
    SG107,21,41,52,56,
    62,70,81,86,91,112,
    120,138,121.
    19,20,23,25,28,30,
    32,33,36,42,44,45,
    48,50,51,53,54,55,
    57,58,59,60,61,63,
    64,65,66,67,68,69,
    71,72,73,74,75,76,
    78,80,82,83,84,85,
    88,89,90,92,93,94,
    95,1111,113,114,115,
    116,117,118,119,122,
    123,124,125,126,127,
    128,129,130,131,132,
    133,134,135,136,139,
    140,141.
    64758
64757
3
5
MIN-EN非I(2meters wide)
10
6
```

continued on p 12．．．

Table II cont.

Table II cont．

Soils

ppm	number
23	3
22	3
21	2
19	3
18	2
17	3
16	3
15	2
14	2
13	9
12	
	8
11	

90，750
76，500
71，250
46，348
41，005
37，760
23，122
18，793
13，109
10，000（greater than）
8，622
3，360
2，593
2，164
1，801
1，214
1，000
865
737
445
363
358
334
207
160
101
82
78
75
72
71
57
54
52
number：
1
Cu Content
number
3
3
2
3
2
3
3
2
2
9
8

5
3 1 1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1 ；
I
1
1
1
1
1
1
1
1.

1
location
28，94，127．
59，65，74．
36，88．
30，66，129．
44，67．
55，76，77．
20，58，68．
33，56．
70，91．
32，41，52，60，75，
90，116，131，57
23，25，42，50，61，
63，89，117．
54，64，69，71，38．
19，21，51．
location
64757
MIN－EN⿰⿰三丨⿰丨三一1（2meters width）
64758
8
10
3
9
7
1
103752H，152．
6
64756
5
13
2
4
11
64759
12
64755
99
106
110
148
14
101
108
147
103
100
146
35
49
47

As Content

Soils		
ppm	number	location
51	1	92
50	4	86,115,124,128.
49	4	93,121.131,132.
48	2	32,67.
47	1	83
46	2	19,111.
45	3	70,82,130.
44	3	113,139,141.
43	3	$41,75,95$.
42	2	78,123
41	1	91
40	3	60,84,136.
39	1	59
38	4	58,85,116,127.
37	2	66,72.
36	5	54, 73, 88, 122,135.
35	3	20,50,62.
33	1	61
32	1	90
31	2	57,81.
29	2	55,76.
27	1	36
26	4	23,42,45,94.
25	1	53
24	4	28,56,63,74.
23	1	25
22	1	52
21	1	44
20	3	51,64,71.
19	1	80
18	1	33
16	1	30
13	1	77
12	1	21
Rocks		
ppm	number	Iocation
33,733	1	13(2meters width)
2,160	1	14 (adit Slesse Cr.)
1,895	1	151 (15
790	1	152
319	1	17(mafic dyke)
101	1	47 (1)
79	1	11
68	1	49
63	1	6
58	1	3
47	1	106
44	1	144
42	1	108
37	1	137
	ntinued	

Table_II cont.
1 Rocks
$\left.\begin{array}{ccc}\text { ppm } & \text { number } & \text { location } \\ 34 & 1 & 96 \\ 33 & 2 & 98,100 \text {. } \\ 29 & 1 & 149 \\ 28 & 1 & 110 \\ 26 & 2 & 38,146, \\ 23 & 1 & 79 \\ 21 & 2 & 147,64759 . \\ 20 & 1 & 35,148 . \\ 19 & 18 & 1\end{array}\right)$

Silts

ppm
 4 3

Soils

ppm	number
13	2
12	3
11	19

10
9

8

7
6
5
4

Rocks

ppm	number
173	1
166	1
147	1
130	1
89	1
72	1
52	1
33	1
16	1
14	1
13	1
12	1
11	3
10	4
9	1
8	2
7	4
6	7
4	2
3	2
1	7

number
3
111

16

18

13
5
2
1
number

1
1
1

1
location
15,27,46.
43
66
5

104
49
108
2,17,146.
11,14,4,99.
39
143,145.
100,109,148,149.
3, 35, 79,96,102,110,147.
6, 12
38,47.
97,98,101.144,151,152.
continued on p 19...

Tabl		19
	Mo Content	-
Silts		
ppm	number	location
6	1	150
4	6	15,18, 22, 27, 31, 34.
3	6	$16,24,29,37,43,46$.
Soils		
8	1	112
7	3	42,86,117.
6	23	$32,50,53,54,55,56,57$,
		$58,67,68,76,78,81,85$,
		$87,89,91,115,116,$
	4	$119,131,141,121 .$
5	39	$48,52,59,60,61,62,63,$
		$64,65,66,69,70,72,74,$
		$75,82,84,88,90,93,94,$
		95,113,114,118,120,123,
		124,126,127,128,129,132,
		133.
4	21	20,23,25,28,30,36,91,44,
		$45,51,71,73,77,80,83,92$,
		111,122,125,130,135.
3	3	19,21,33.
Rocks		
ppm	number	Iocation
2,083	1	38 (Chris Creek; float)
41	1	
30	1	49
29	1	137
15	3	6,144,152.
13	1	8 ,
12	1	47
9	2	96,108.
8	2	7,39.
7	2	3,5.
6	6	2,10,103,4,35,79.
5	5	104,143,145,1,99.
4	12	9,11,13,17,98,101,107,
		$109,146,147,148,110 .$
3	4	$12,14,105,149 .$
2	3	$97,100,106$
1	1	102
	Pb Content	
Silts		
ppm	number	location
33	1	150
22	1.	34
21	1	27
19	1	34
18	1	24
16	continued on p $20 \ldots$	15,18(40mesh).

Table II cont.

Pb Content

Silts

ppm

15
13
11
9
Soils
ppm
98
53
42
40
39
38
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
15
14
13
Rocks

number	location
1	22 (40mesh)
2	16,37.
1	29 (40mesh)
2	43,46.
number	location
1	111
1	121
2	53,140
3	67,115,126.
1	65
2	112,125.
7	$\begin{aligned} & 58,60,66,68,123,128, \\ & 141 . \end{aligned}$
4	119,120,133,134.
4	72,74,89,129.
4	93,114,127,139.
6	59,90,91,118,132,136.
4	32,61,113,122.
6	54, 62, 73, 86, 117,130.
4	50,69,124,135.
3	52,63,116.
3	76,131,138.
7	$44,57,70,75,78,80,94$.
4	55,87,88,95.
4	56,64,71,92.
2	48,81.
3	19,36,51.
1	23
6	20,30,42,45,82,84.
1	85
1	28
3	41, 77,83.
1	33
2	21,25.

number	location
1	22 (40mesh)
2	16,37.
1	29 (40mesh)
2	43,46.
number	location
1	111
1	121
2	53,140
3	67,115,126.
1	65
2	112,125.
7	$\begin{aligned} & 58,60,66,68,123,128, \\ & 141 . \end{aligned}$
4	119,120,133,134.
4	72,74,89,129.
4	93,114,127,139.
6	59,90,91,118,132,136.
4	32,61,113,122.
6	54, 62, 73, 86, 117,130.
4	50,69,124,135.
3	52,63,116.
3	76,131,138.
7	$44,57,70,75,78,80,94$.
4	55,87,88,95.
4	56,64,71,92.
2	48,81.
3	19,36,51.
1	23
6	20,30,42,45,82,84.
1	85
1	28
3	41, 77,83.
1	33
2	21,25.

ppm	number
73	1
63	1
61	1
44	1
37	1
34	1
33	1
30	1
29	1
28	1
27	1
25	1
	continued

continued on p 21...

Table II cont．
Rocks
ppm
26
24
23
21
20
19
Pb Content

ppm	number	location
26	2	1，4．
24	1	64757
23	4	17，96，99，106．
21	3	35，79，143．
20	2	105，108．
19	2	11，149．
17	2	109，146．
16	7	$\begin{aligned} & 14,100,103,145,51,148, \\ & 110 . \end{aligned}$
15	2	147，64758．
14	1	64755
13	3	98，104， 137.
12	3	2，39，MIN－EN非（2meters width）．
11	1	107
10	2	12，38．
9	1	144
8	1	101
3	1	102
1	2	151，152．
	Zn Content	
Silts		
ppm	number	location
142	1	150
131	1	G非 4
97	1	G非5
96	1	G非 I
86	1	34
84	1	G非 6
78	1	SL非1
77	1	37
74	2	G非7，24．
70	1	G非2
69	1	16
67	1	G非3
66	2	Slesse非3，27。
65	2	15，18（40mesh）．
64	2	Slesse非2，slesse非5．
60	1	31.
55	1 ：	Slesse非4
49	1	46
47	2	29 （40mesh）
39	1	43
Soils		
ppm	number	location
293	， 1	73
263	1	48
208	1	87
continued on p $22 \ldots$		

location
1，4．
64757
17，96，99，106．
35，79，143．
105，108．
11，149．
109，146．
$14,100,103,145,51,148$ ， 110 ．
147，64758．
64755
98，104， 137.
2，39，MIN－EN非（2meters
width）．
107
12，38．
144
102
151，152．
location
150
G非 4
G非 5
G\＃I
34
G非 6
SL非1
37
G非7，24．
G非2
16
Slesse非3，27。
15，18（40mesh）。
Slesse非2，Slesse非5．
31
Slesse非4
46
29 （40mesh）
43
location
73
48
87
continued on p 22．．．

Soils

ppm

149
146
135
132
125
124
121
116
113
110
109
108
105
104
103
101
99
98
97
96
95
94
92
91
88
87
86
84
83
79
77
75
74
73
72
71
70
67
65
56
52
51
49
44
42

Zn Content
number
1
1
1
1
1
1
1
1
1
4
1
3
2
3
1
1
1
1
2
1 1 2 3 4 2 1 5 4 2 2 2
2
2
2
1
1
3
3
2
2
1
2
2
1
1

```
location
    111
    63
    53
    65
    67
    62
    84
    6 1
    6 6
    56,58,74,86.
    6
    55,91,121.
    92,117.
    69,76,94.
    93
    59
    57
    6 4
    83,95.
    54
    82
    70,118.
    72,88,89.
    32,60,78,112.
    41,122.
    81
    50,52,80,114,124.
    116,120,127,130.
    123,90.
    113,129.
    136,140.
    115,138.
    71,141.
    126,139.
    75
131
19,45,128.
44,132,134.
36,135.
25,42.
30
20,28.
23,33.
7 7
21
```345
numb
1
1
1
\[
103752 \mathrm{H}
\]
\[
64757
\]
\[
64758
\]3011ber location
MIN-EN非(2meters width)
\[
249
\]
\[
152
\]

18
15 1
100 1
85100
4. "location" refers to map locations, numbers l, 2, etc. in location column are the last two or three digits in sequence, unless otherwise specified; i.e. \(38=8312038\) (\(8=y e a r ; 3=\) time; \(1=\)
\[
\text { sampler; } \quad \begin{aligned}
& 2=\text { rock float; last three digits are sequence.). } \\
& 1=0 u t c r o p \\
& 6=\text { soil sample } \\
& 4
\end{aligned}
\]

Table III

Rocks
\begin{tabular}{lc}
g/tonne & number \\
22.90 & 1 \\
14.10 & 1 \\
.27 & 1 \\
.07 & 1 \\
.006 & 1 \\
.001 & 3
\end{tabular}

\section*{Ag Content}

Rocks
g/tonne
0.29
no detection
```

number
1
3
-

```
Cu Content
\(\%\)
.439
no detection
number
1
location 64751 \(64752,64753,64754\).

\author{
location \\ 64751 \\ \(64752,64753,64754\).
}

Rocks
location \({ }^{5}\)
103752 H
103751 H
152
151
64751
\(64752,64753,64754\).

\section*{Table Summary}

The presence of some highly anomalous rock samples in gold, silver, copper, and arsenic on the TORB ZONE is very encouraging to say the least. This is not to say that the WEST TORB ZONE and the HARK ZONE are nonecomical but, simply less prospected to date. The amounts of sulphides present in those zones may point the way to greater hidden finds. Also the molybdenum found in float in Chris creek and the ROCK O.C. sample must be prospected to locate their sources. The entire east side of the claims have seen little prospecting to date and should also be prospected more thouroughly.

As can be seen in the previous tables a number of
samples taken during 1988 were anomalous in several elements.
The reconnaissance survey carried out in the past year has been successful in identifying at least one possible economic zone. Continued use of geochemical prospecting will continue to be utilized in prospecting the Roy Group of mineral claims.
5. See footnote 4 .

\section*{BIBLIOGRAPHY}

Bruland, Tor, Letter Reply to Author in cluding Assays taken_during Property visit(Roy Group). April 14, 1988. Giroux, G.H., Assessment Report on the Sles liaim New Westminster Mining Division, on behalf of Aquarius Resources Limited. December, 1978 . Grant, Robert Allen, "Summary Report and Recommendations Red Mountain Mine Property Mt. Baker Mining District, Whatcom County, Washington, prepared for Solo International Resources Limited." February 25, 1987.
Jewett, Peter D., "The Structure and Petrology of the Slesse Peak Area, Chilliwack Mountains, British Columbia, Canada. A thesis presented to the Faculty of Western Washington University, in partial fulfillment of the requirements for the Degree Master of Science, 1984.
Keyser, Harmen, Field Notes-Visit to Roy Claims. April 16, 1988.
Krom, Max Morris, The Boundary Red Mountain Mine, Whatcom County, Washington. A thesis submitted for the degree of Bachelor of Science in Mining Engineering and Geology, University of Washington, 1937.
Moen, Wayne S., Mines and Mineral Deposits of Whatcom County, Washington. Washington Department of Natural Resources, Division of Mines and Geology. Bulletin No. 57, 1969.
Misch, Peter, Unusual Imbrication Patterns Displayed by Pre二 Devonian Crystallines and Upper Paleozoic Rocks Below Mount Shuksan overthrust in Mount Larrabee (Red Mountain) Tomyhoi Peak_Area of Northwestern Cascades, Whatcom County, Washington. Abrastracts for 1962, Geological Society of America, GSA Special Papers, Number 73, pp 53.

Phendier, R.W., Report on the Slesse Creek Property (MX2 claim) New Westminster Mining Division, British Columbia for Glow Resources Limited. July, 1983.
Sauer, B.R., Prospecting Program Report, Roy 1, 2, 5, and 6 Mineral Claims, New Westminster Mining Division. February 26, 1988.

\section*{COST SHEET}
February 1988
General \$ 3.60
Truck rental 6@\$25.00(idle) 150.00
Truck rental 2@\$50.00. 100.00
Equipment rental(chainsaw, camp) 300.00
Fuel 153.83
Food 279.95
Equipment(Soil bags, hip.chain etc.) 686.82
Lodging 50.20
Geochem(Assay results) 203.80
Maps 28.87
Wages 8@ \$125.00 \(\$ 1000.00\)
Office \(\$ 43.77\)
TOTAL \(\$ 3,000.84\)
March/April 1988
General n/a
Truck rental 2@ \$ 50.00 \$ 100.00
Fuel 51.01
Food 29.68
Geochem(Assay results) 167.55
Wages 2@ \$ 150.00 300.00
Office - - I6:26
TOTAL \$ 665.20
October/December 1988
General 29.27
Truck rental 4 @ \(\$ 50.00\) 200.00
Truck rental 8 @ \$ 25.00 \$ 200.00

\section*{COST SHEET}
October/December 1988 cont.
Equipment rental (chainsaw, camp) \$ 296.00
Fuel 166.99
Food 406.88
Equipment(Soil bags, acid, etc.) 648.33
Lodging 51.80
Geochemistry(Assay results) \$1791.95
Maps/Airphotos \$ 115.51
Wages
Assistant 10 @ \(\$ 100.00\) \(\$ 1000.00\)
Supervisor 12 @ \$ 135.00 \(\$ 1620.00\)
TOTAL \$6526.53
January 1989
Office \$ 450.00
TOTAL \$ 450.00
February 1988 Total \$3000. 84
March/April 1988 Total \$ 665.20
october/December 1988 Total \(\$ 6526.53\)
January 1989 Total \(\$ 450.00\)
TOTAL ALL \$ 10,642.57

Organic debris lodged on the soll

GEOLOGICAL SURVEY OF CANADA DEPARTMENT OF ENERGY, MINES AND RESOLACES

\section*{LEGEND}

TRIASSIC AND JURASSIC
UPPER TRIASSIC, LOWER AND UPPER JURASSIC CULTUS FORMATION; pelite. sandstone
trussic
UPPER TRUSSIC NICOLA GROUP
3 Porphyritie andesite and basalt

CEHOZOIC
QUATERNARY
PLEISTOCENE AND RECENT
25 Glacial, glaciofluvial and fluvial gravel, sand and clay, talus and slope-
wash deposita

\section*{TERTLARY} MOCENE AND EARLIER
\(\qquad\) Granodiorite, quariz diorite

23 COQUTHALLA GROUP
Basall, rhyolite, tuff, agglomerate, diorite

22 SKAGIT FORMATION; andesite, tuff, agglomerate

CRETACEOUS AND/OR TERTUAY
EOCENE AND PALEOCENE OR UPPERMOST CRETACEOUS
Conglornerate. sandstope

\section*{ULTRAMAFIC ROCK}

Aa. serpentinite. serpentinized peridotite: includes some Upper Paleozoic volcanie rocks in broad belt northeast of Hope; Ab, pyroxeniter An, harnblendite

SCHEST. AMPHIBOLITE AND PHYLLITE
An, graphitie and quartzose plyllite; Bb, schist. amphibolite; Be. migmatitic equivalent of B ; B B amphibolite, hormblendite, quartz diorite in southwestern part of map-area between Welch Peak and Slease Mountain these rooks are complexly imbricated with Upper Paleozole roeks and the area shown as Bd includes both
\(\square\) GNEISS
\(49^{\circ} \circ 0^{\prime}\)

\(122^{\circ} 00^{\prime}\)
Published 1970. Aevised 1970

MAP 12-1969
PAPER \(69-47\)
GEOLOGY HOPE

Scale 1:250,000
 \(4 \quad 0\)
\(0 \quad 4\)

\(81 / 2 \times 11\) PRINTED ON NO. 1000 H CLEARPRINT.

\title{
MIN-EN LAEDFATGFIES LTDSpecialists in Hineral Environments 705 West 15th Street Morth Vancouver. B.C. Canada V7M 172
}

\section*{Eertixicateox \(4 \leq 54 y\)}

\title{
 \\ Specialisis in hineral Environments 705 West 15th 3treet North Vancouyer, E.C. Canda V7H \(1 T 2\)
}

FHONE: (604)980-5814 OR (604) \(988-4524\)
TELEX:VIA USO 7601067 IE

\(\operatorname{cottitied} b y\)

\begin{tabular}{ccr}
58 & IM & A11-P98 \\
3 & 64 & 3100 \\
5 & 66 & 1000 \\
3 & 55 & 243 \\
2 & 64 & 3800 \\
5 & 78 & 21 \\
-1 & 93 & 103 \\
4 & 70 & 3000 \\
5 & 67 & 10000 \\
5 & 131 & 800 \\
5 & 97 & 7000 \\
\hline 3 & 64 & 1700 \\
1 & 74 & 820
\end{tabular}

PHONE：（604）980－5814 OR（604） \(938-4524\)

\section*{ Specializts in Mineral Environments 705 weet I5th Street Wor th Vancouver: B.E. Canada via 112}

PHINE: (604)980-5日14 OR (6041988-4524
TEEK:IIA UEA 760067 tit

Min-EM LAB IC REPT

(ACTFSH FAE © E 1 FME WH B-EDSTSH

-75081
-83002
\(-\cdots\) 31
45
47
40
30
30
34
34
36
70
32
41
51
49
24
4
\begin{tabular}{ll}
8315112 & 6 \\
8316113 & 4
\end{tabular}

I
\(\frac{81615}{6316116}-\ldots-\cdots-\cdots\)

I
836118 - \(8+16120\)

8316123
866124
3515125
831626
\(\frac{28}{127}\) \(\begin{array}{ll}516127 & 50 \\ 8316129 & 50\end{array}\)
816129
8316130
83631
85 6152
\(\qquad\)

8115-

4\(\begin{array}{ll}501614 & 50 \\ 81613 & 36\end{array}\)

\section*{\begin{tabular}{l}
1 \\
1 \\
4 \\
\\
\hline 1
\end{tabular}}

\section*{0 \\ 0}

VANCOUVER OFFICE:
705 WEST 15TH STREE
NORTH VANCOUVER, BC. CANADA V7M \(1 T 2\) TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) \(980-9621\)
TIMMINS OFFICE:
33 EAST IROQUOIS ROAD
SPECIALISTS IN MINERAL ENVIRONMENTS
POO. BOX 867
TIMMINS, ONTARIO CANADA PAN 7 G 7
CHEMISTS • ASSAYERS • ANALYSTS * GEOCHEMISTS

Company: B. SAUER
Projectaroy group
Attention: B. SAUEF \(/ H\).CE SEER

File: \(8-1815 / \mathrm{F} 1\)
Date: oCT 21/8日 Type FOCK ASSAY

He hereby certify the following results for samples submitted.
Sample \(\quad\)\begin{tabular}{c}
\(A U\) \\
Number
\end{tabular}\(\quad G /\) TONNE \(O Z / T O N\)
\(\left[\begin{array}{llrl}8311003 & 1.40 & 0.041 \\ 8812005 & 1.00 & 0.029 \\ \text { ROCK } 0.0 . & 28.40 & 0.828\end{array}\right.\)
certified by

To : SAUER, B.
Chemex Labs Ltd.
Analytical Chemists * Goochemists * Reglstered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLLMBIA, CANADA V7J-2CI PHONE (604) 984-0221

4604 STRATHCONA RD. NORTH VANCOUVER, BC V7G 1G3
Project: Cormonts:
**Page No. : 1-A
Tot. Pages: 1
Date
Invoice \#: 1-8828365
P.O. \(\#\) :NONE

CERTIFICATE OF ANALYSIS A8828365

Chemex Labs Ltd.
Analytioal Chemists * Geochemists * Reglstered Assayers 212 BROOKSBANE AVE., MORTH VANCOYIVER BRITISH COLIMBIA, CANADA V7I-2C1 PHONE (604) 984-0221

\section*{4604 STRATHCONA RD.}

Page No. : 1-B

\section*{CERTIFICATE OF ANALYSIS A8828365}

\begin{tabular}{|c|c|c|}
\hline & \[
\begin{aligned}
& 106 \\
& 15 / 358 / 47 \\
& \mathrm{Au}, \mathrm{Cu}, \mathrm{As}
\end{aligned}
\] & \\
\hline & \begin{tabular}{l}
\[
759
\] \\
83/865/21 \\
\(\mathrm{Au}, \mathrm{Cu}, \mathrm{As}\)
\end{tabular} & \[
\begin{aligned}
& \otimes \operatorname{LCP} \\
& \text { ROYI-2 }
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 100,098 \\
& 1020,099 \\
& 0103 \\
& 0.103
\end{aligned}
\]} & 99 10/363/53 & 049 \\
\hline & \(\mathrm{Au}, \mathrm{Cu}, \mathrm{As}\) & \[
10
\] \\
\hline & \(\bigcirc 79\) & \\
\hline
\end{tabular}

ROY GROUP
ROCK
1988

HARK ZONE

CANADA
\[
\begin{gathered}
14 \odot \\
5 / 160 / 2160 \\
\text { Au,Cu, A@O47 } \\
\text { 10/52/101 } \\
\text { AuCu, As }
\end{gathered}
\]
\begin{tabular}{lr}
\(0038 / 39\) & 38 Mo \\
035 & 2083
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\begin{tabular}{l}
○ROCK SAMPLE \\
only samples higher than the average shown. (\(\mathrm{A} u=\mathrm{ppb}\); \(\mathrm{Cu}, \mathrm{As}, \mathrm{MO}=\mathrm{ppm}\) ')
86,187,188 Rev.C.
\end{tabular}} \\
\hline 0 & & 200 & 300 & 400 & 500 \\
\hline
\end{tabular}
\(\begin{array}{ll}96 & 97 \\ \bigcirc & \bigcirc\end{array}\)


```

