0125	
• • •	
HE .	

i	and the second
1	FILMED
1	the second s

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

OF THE

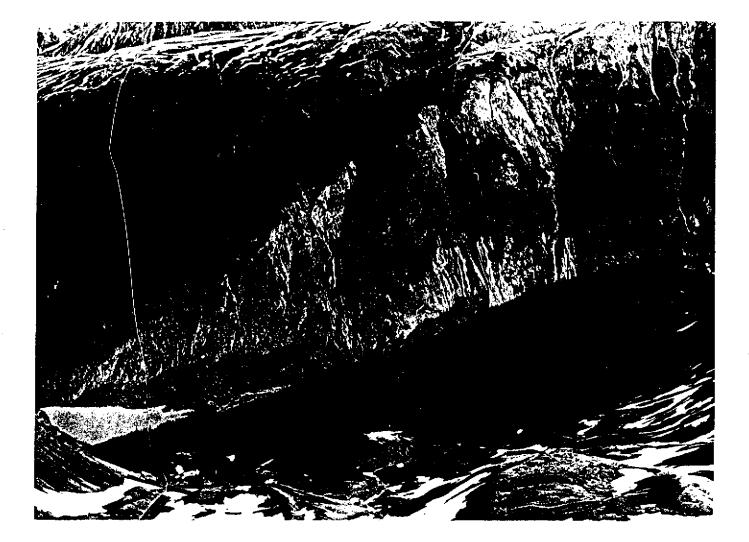
TEDRAY 13 CLAIM

SKEENA MINING DIVISION

GEOLOGICAL BRANCH ASSESSMENT REPORT

Author:

Ł


<u>م</u>

5

ы.

h----

Date: N.T.S: Commodities: Latitude: Longitude: Owner: Operator: REPORT NO: B.P. Butterworth, B.Sc. D.K. Kozak, B.Sc. December 7, 1988 104 B/8 Cu, Au, Ag 56⁰28' North 130⁰ 16' West Newhawk Gold Mines Limited, Granduc Mines Ltd. Western Canadian Mining Corporation 1025

ľ

Γ

[

l Bour

View of the Tedray 13 Mineral Claim looking northwest with Sulphurets Lake and Sulphurets Lake Gold Zone in the background.

SUMMARY

Objectives of the 1988 exploration program on the Tedray 13 mineral claim were to evaluate the Bornite Showing, a known copper-gold occurrence on the property, and to determine whether the styles of mineralization and alteration observed on the Kerr Property could be recognized on the nearby Tedray Property. The program consisted of geological mapping, soil and rock chip sampling and geophysical surveying, followed by blasting and diamond drilling of the Bornite Showing. A total of 79 rock chip and 602 soil samples were systematically collected on eastwest grid lines.

Results of the program imply that a porphyry type, lateral zonation sequence of alteration assemblages may be present. In particular, a package of intensely sericitized volcanic rocks occupying much of the west half of the property surround a potassic zone centred near the Bornite Showing. Soil geochemical and induced polarization surveys carried out over a portion of the phyllic package outlined a highly anomalous area. Further investigation is required to adequately assess this important target area.

Future work should include linecutting, detailed geological mapping and induced polarization surveying to better define and test the extent of the anomaly to the north. All coincident induced polarization and soil anomalies should be systematically diamond drilled to evaluate their economic potential.

TABLE OF CONTENTS

SUMMARY

.....

in protection

.

ъ.

i.

.

ы.

-

ы.,

ы.

.....

.

-

B....

2.0

<u>Page</u>

1.0 INTRODUCTION

1.1 1.2 1.3 1.4 1.5	Location and Access Topography and Vegetation Property Status & Claim Information History 1988 Exploration Programme	1 1 4 4
GEOLOGY		
2.1 2.2 2.3 2.4	Regional Geology Property Geology Alteration and Mineralization Structure	5 7 9 12

3.0 SOIL GEOCHEMISTRY

3.1	Introduction	12
3.2	Sample Preparation and Analytical	
	Procedure	13
3.3	Results	13

4.0 GEOPHYSICS

4.1		Magnetometer Survey	15
	4.1.1	Instruments and Survey Techniques	15 .
	4.1.2.	Presentation & Discussion of Results	15
4.2		Induced Polarization Survey	16
	4.2.1	Instruments and Survey Techniques	16
	4.2.2	Presentation and Discussion of Results	17

5.0 DIAMOND DRILLING

	5.1 5.2	General Results		18 18
6.0	CONCLUSIONS AN	ID RECOMMENDATIONS		19
	REFERENCES			21
	STATEMENT OF B	XPENDITURES		22
	STATEMENT OF (UALIFICATIONS	and	23 24

FIGURES

÷

.

-

. .

E

-

ь.

-

۰.

•

.

e ...

i.

<u>____</u>

.

-

5

-

.....

.

-

. .

		Page
Figure 1	Location Map	2
Figure 2	Claim Map	3 6
Figure 3	Regional Geology	6
Figure 4	Property Geology and Lithogeochemistry	
Figure 5	Soil Geochemistry - Au in ppb	1
Figure 6	Soil Geochemistry - Cu in ppm	17
Figure 7	Soil Geochemistry - Mn in ppm	91
Figure 8	Ground Magnetic and Induced Polarizatio	n "
•	(Resistivity) Survey Results	
Figure 9	Induced Polarization Section	17
-	Line 9500N	
Figure 10	Induced Polarization Section	н
-	Line 9600N	
Figure 11	Induced Polarization Section	ш
	Line 9700N	
Figure 12	Induced Polarization Section	11
	Line 9900N	
Figure 13		ppendix II
Figure 14	Histogram of T88-1 Au in oz/ton	IP
Figure 15	Histogram of T88-1 Cu in percent	н
Figure 16	Drill Hole Section T88-2	If
Figure 17	Histogram of T88-2 Au in oz/ton	N.
Figure 18	Histogram of T88-2 Cu in percent	II

TABLES

Table l	Summary of	Lithogeochemical Results	11
Table 2	Drill Hole	Survey Data	18
Table 3	Drill Hole	Geochemical Results	19

APPENDICES

Appendix	I	Assay and Analysis Certificates for Soil, Rock
Appendix	II	Chip and Grab Samples Diamond Drill Sections, Logs and Drill Core Assay and Analysis Certificates

.

LIST OF PHOTOGRAPHS

Photograph 1

After Page 9

Core from T88-1 showing fracture controlled chalcopyrite mineralization within the monzonite intrusive.

Photograph 2

Same core as Photograph 1 after After Page 9 K-feldspar staining.

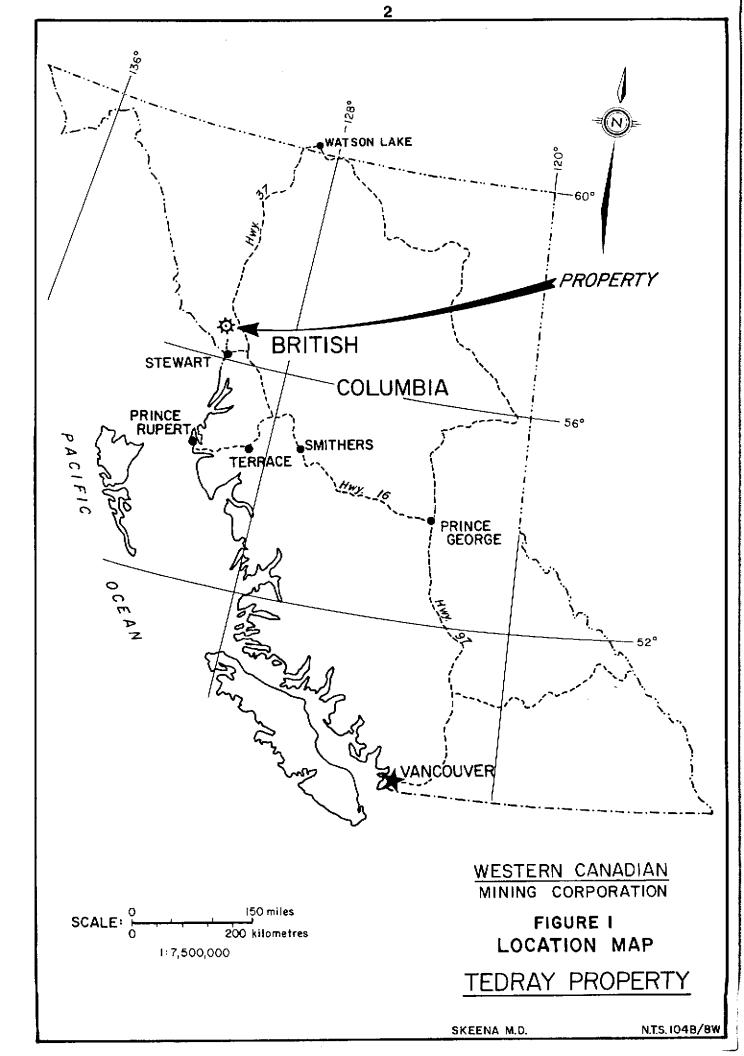
Photograph 3

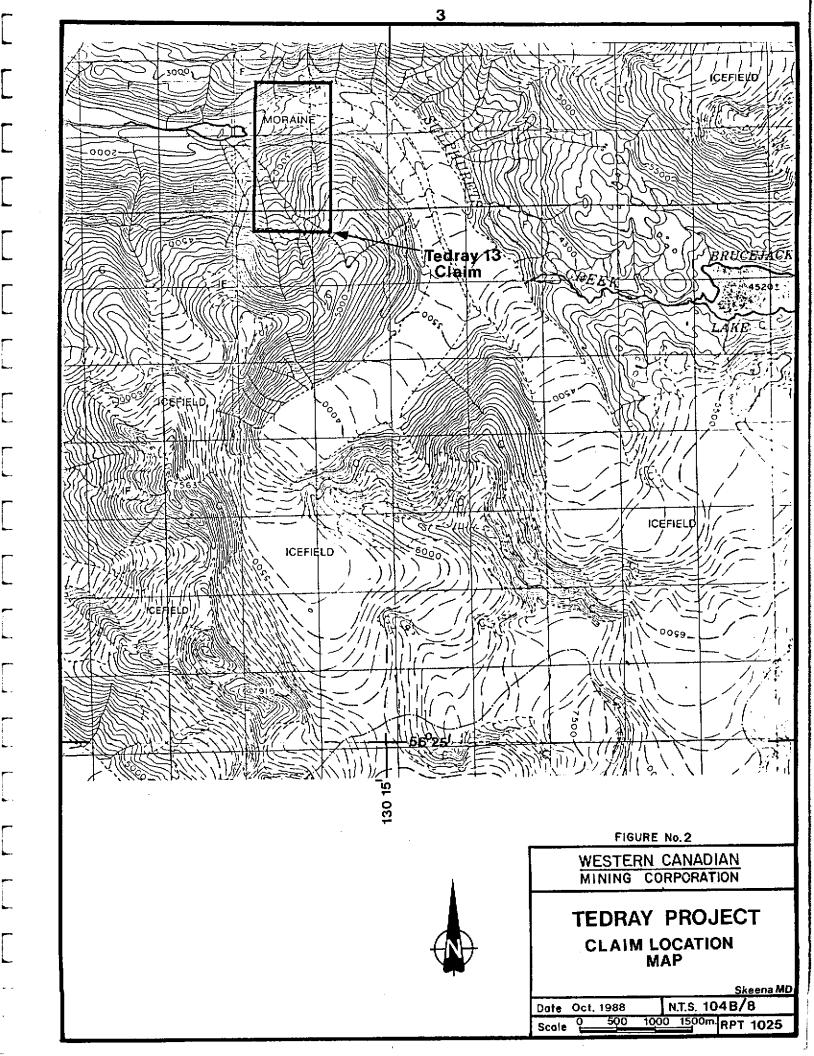
Altered and mineralized monzonite After Page 9 from the Bornite Showing with chalcopyrite, bornite and covellite along with malachite staining.

1.0 INTRODUCTION

1.1 Location and Access

The Tedray 13 mineral claim is situated in the Skeena Mining Division (NTS 104 B/8) at 56°28' north latitude and 130°16' west longitude (Figure 1). The property lies approximately 65 km north of Stewart and 45 km west of the Bell Irving #2 Crossing on the Stewart-Cassiar Highway. The closest road access is to the Tide Lake Airstrip at the end of the Stewart-Granduc Road, which lies only 30 km south of the property.


The property was worked from a fly camp which utilized Western Canadian Mining Corporation's Kerr camp as a base. The Kerr camp was solely accessed via helicopter from a staging point at Tide Lake airstrip. Personnel, equipment and supplies were transported by truck to Tide Lake and thence by helicopter to the property. All logistical matters were handled by an Expeditor based in Stewart.


1.2 Topography and Vegetation

The claim lies in mountainous terrain immediately east of Sulphurets Lake, and encompasses the toe of Sulphurets Glacier. Most of the property is below tree line, with grasses, lichen and alpine flower at the upper elevations. At lower elevations, the vegetation consists of dwarf spruce and tag alder with a transition to large spruce and poplar trees over much of the property. Elevations on the property range from 591 metres at Sulphurets Lake to 1350 metres along the eastern claim boundary. Slopes are moderate to steep and face slightly northward to north. Streams that drain the area have eroded deep ravines, usually with good bedrock exposure.

1.3 Property Status and Claim Information

Western Canadian Mining Corporation entered into an option agreement with Newhawk Gold Mines Ltd. in 1988 whereby the Kerr Joint Venture (70% Western Canadian, 30% Sulphurets Gold Corporation) could earn an interest in the Tedray 13 mineral claim (Figure 2). The Tedray 13 (record number 165) is an 8 unit, modified grid mineral claim that is bordered on three sides by the Kerr Property. Under the terms of the agreement, the Joint Venture can earn a 50% interest in the Tedray claim upon completion of \$500,000 of exploration expenditures by December 31, 1990.

i.

Assessment work applied in 1988 will keep the claim in good standing until August 26, 1999.

1.4 History

Interest in the immediate area dates back to 1959 when Newmont Mines carried out airborne and ground geophysical and geological surveys. Encouraging results led to the staking of the Sulphurets Claims near Brucejack Lake for Granduc Mines Ltd. Both Newmont and Granduc carried out property work throughout the 1960's.

In 1975, the Bornite Showing was discovered on the Tedray 13 Mineral Claim by means of reconnaissance contour line soil sampling. Follow up geological mapping and trenching revealed a small diorite intrusive hosting chalcopyrite and bornite mineralization that was traced for 300 metres. The Bornite Showing was reported to be about 16 feet wide averaging 1.11% copper and 0.08 oz gold/ton (Kruchkowski, 1975).

In 1979, the Sulphurets property was optioned to Esso Resources Canada Ltd. who spent over 2 million dollars on precious metal exploration over the next five years (Kowalchuk, 1987). In 1985, Newhawk Gold Mines Ltd. and Lacana Mining Corporation optioned the Sulphurets claims from Granduc Mines and for the past three years have performed an aggressive surface and underground exploration program at the West Zone in the Brucejack Lake area. No further work has been reported on the Tedray 13 mineral claim since the discovery of the Bornite Showing in 1975.

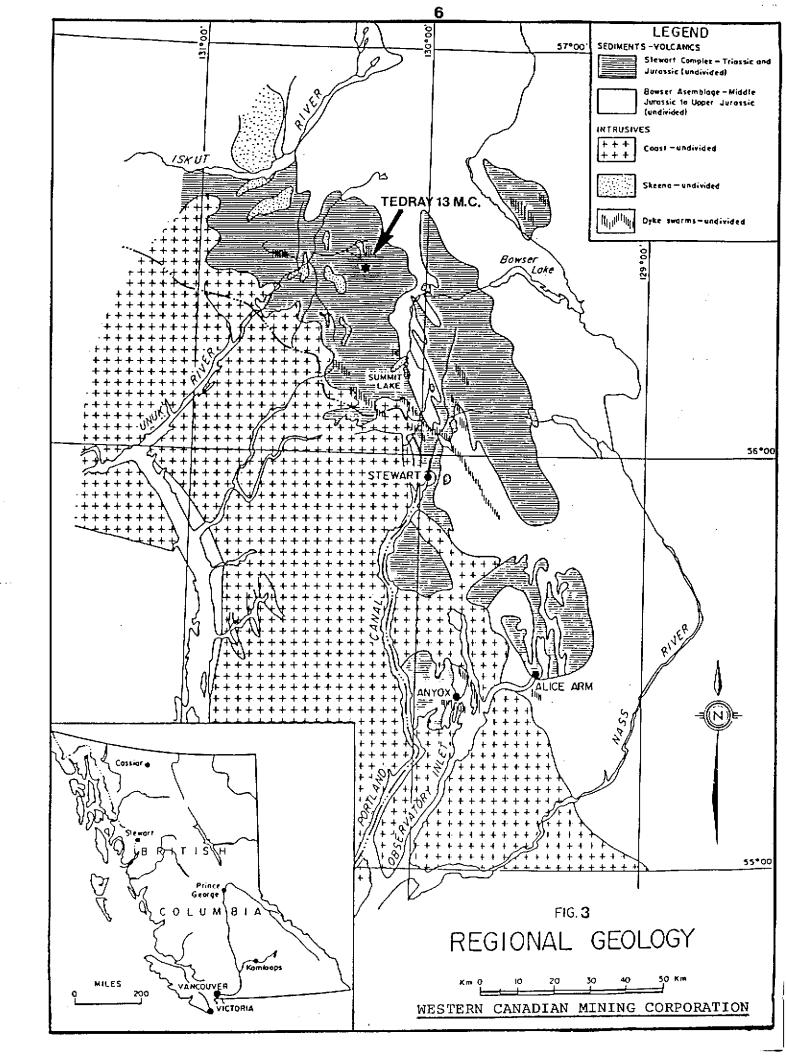
1.5 1988 Exploration Programme

Exploration activities in 1988 on the Tedray 13 mineral claim were carried out between July 15 and September 1 by D. Kozak under the direct supervision of B.P. Butterworth. The exploration programme consisted of the following:

- A grid was established, principally on the southern half of the property, with lines spaced 100 metres apart. A total of 602 B-Horizon soil samples were collected at 25 metre intervals, along east-west grid lines.
- 2) Detailed geological mapping (1:2,500) and rock chip sampling were carried out. A total of 79

continuous chip and grab samples were collected.

- Geophysical surveys, 8.5 km of Magnetometer and
 2.5 km of induced polarization were performed;
 two independent anomalies were identified.
- 4) Four mineralized surface areas were blasted to expose unweathered rock. A total of 11 continuous chip samples were collected at 2 metre intervals across the mineralized surfaces.
- 5) Geological mapping, rock chip sampling and magnetic surveying outlined an area of interest surrounding the Bornite Showing. Two drill sites were prepared and a total of 115.2 metres were drilled in two holes utilizing a modified JKS 300 diamond drill.


2.0 GEOLOGY

2.1 Regional Geology

The Tedray 13 property lies near the western edge of the Bowser Basin, east of the Coast Plutonic Complex, and along the western margin of the Intermontane tectonic belt (Figure 3). The property is underlain by the Stewart Complex which is locally referred to as the Hazelton Group. The Hazelton Group has been divided into 5 main lithostratigraphic units that collectively comprise the Lower and Upper Unuk River, Betty Creek, Mount Dilworth, and Salmon River Formations (Anderson, 1988; Britton, 1988).

The Late Triassic to Early Jurassic Lower Unuk River Formation consists of siltstones and conglomerates with minor volcanic interbeds. This sequence is conformably overlain by andesitic pyroclastics and flows with minor siltstones of the Upper Unuk River Formation. It has been suggested by Britton (1988) that the uppermost strata of the Upper Unuk River formation are marked by the appearance of plagioclasehornblende andesite dykes with coarse K-feldspar phenocrysts (Premier Porphyry).

The Betty Creek Formation is Early Jurassic and consists of tuffs and flows interbedded with hematitic sedimentary rocks, minor pillow lavas, and columnar jointed dacites. The bright red and green volcaniclastics are indicative of this unit.

A sequence of felsic pyroclastic rocks comprise the Early Jurassic Mount Dilworth Formation. This thin and widespread unit is an important regional marker, and is usually extensively hydrothermally altered. The sequence is overlain by Early to Middle Jurassic turbiditic siltstones and sandstones of the Salmon River Formation.

Intrusive Rocks

The strata are cut by various intrusive episodes that produced small synvolcanic plutons, satellite stocks of the Coast Plutonic Complex, and minor dykes and sills. To date, at least four distinct episodes have been recognized : Late Triassic and Early Jurassic (Texas Creek Suite) granodiorite to quartz monzonite plutonic rocks and coeval andesite porphyry dykes; Paleocene WNW-trending biotite granodiorite dyke swarms; Eocene (Hyder suite) monzonite, quartz monzonite and granodiorite plutons; Oligocene-Miocene biotite lamprophyre dykes (Anderson, 1988).

Structure

Northwesterly trending folds comprise the main structural features of this area. The main belt of exposed Unuk River Formation forms a domical structure that extends from the Bowser River through Brucejack Lake toward the head of Storie Creek (Grove, 1986). Lesser, more local structures include the north trending Sulphurets Syncline west of the Tedray property, the northerly striking Brucejack fault to the east, and northwesterly and northeasterly striking faults west and immediately south of Freegold Glacier. Large areas of hydrothermally altered, bleached and gossaned schist and phyllite occur along major northsouth structures throughout this region. Regional metamorphism is of very low grade, at most it is lower greenschist facies.

2.2 Property Geology

General

Geological mapping was carried out at 1:2,500 scale throughout most of the property area using grid coordinates to accurately locate outcrops (Figure 4). Detailed mapping was conducted at 1:1,000 scale in the vicinity of the Bornite Showing. Extensive soil cover on the east side of the property and glacially derived material in other areas make geological mapping difficult. Lithologic contacts in some areas are based upon limited geological information. In general, a sequence of sedimentary and volcaniclastic rocks has been intruded by dykes of monzonitic or andesitic composition.

Lithology

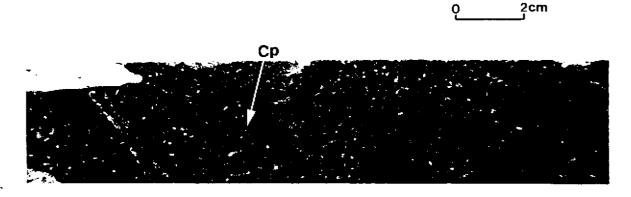
The property is underlain by an interbedded sequence of westerly dipping greywackes and siltstones (Unit 5) that lie near the eastern margin of the property (Figure 4). They are unaltered and unmineralized except for a few discontinuous pyrite veinlets on the northern extent of the unit. At one location on the property, teardrop shaped fragments of andesite were observed in the siltstone unit.

Higher in the succession, the sequence is characterized by crystal/lapilli tuffs of intermediate composition, with a few intercalated andesitic flows (Unit 6). The crystal tuff contains up to 30% feldspar crystals that range from 0.5 to 2 mm in size and are supported by a fine grained chloritic groundmass. The lapilli tuff contains up to 20% angular lithic fragments ranging from 5 to 45 mm in size.

The volcaniclastic sequence is capped by an upper siltstone and micro-greywacke that outcrops near the western margin of the property (Unit 13). This unit is thinly laminated, grey to dark brown in colour, unaltered and unmineralized. Bedding strikes northwesterly and dips moderately to the south.

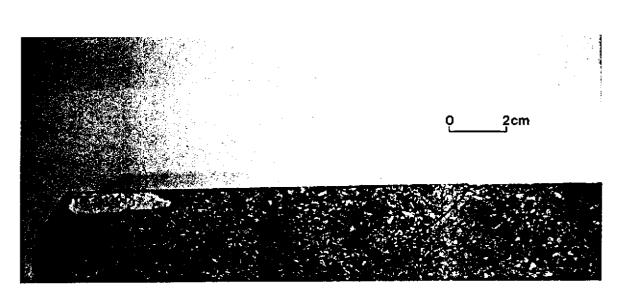
Monzonite, plagioclase prophyry and andesite dykes and plugs intrude the volcaniclastic and sedimentary package. The monzonite (Unit 7a) lies on the northern half of the claim and is best exposed at the "Bornite Showing" and is believed to be the oldest of the intrusives. This unit has an equigranular texture and takes on a mottled appearance. Magnetite and traces of pyrrhotite make this unit slightly magnetic. Potassic alteration is pervasive.

Plagioclase porphry (Unit 7) crops out as irregular masses on the southern half of the property and as 1 to 2 metre sill and dyke-like apophyses within the western sedimentary package. The porphyry contains plagioclase phenocrysts that range from 4 mm to 45 mm in length and occasionally exhibit internal zonation. The porphyry is sericitized and chloritized when foliated. The andesitic intrusive occurs as hornblende rich, and slightly magnetic dykes on the northern extent of the property (Unit 8). They are believed to be the youngest intrusive phase as they are unaltered and undeformed and have intruded both the monzonite and porphyritic instrusive rocks at some localities.

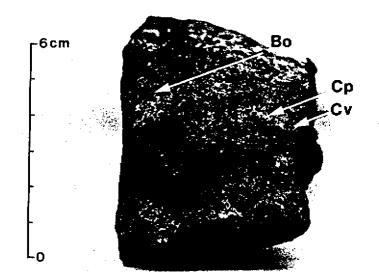

A north-south trending tectonically disrupted zone occupies the central region of the Claim (Unit 6). The rocks that comprise this zone are intensely sheared and altered to a quartz-sericite-pyrite schist with the northern extent undefined due to extensive glacial till cover. Locally, this unit displays strong pervasive silicification and is highly fractured.

2.3 Alteration and Mineralization

Porphyry style alteration and mineralization dominate the Tedray 13 claim, with well developed potassic, phyllic and propylitic alteration zones. Overall alteration intensity is controlled by two main factors: deformation and rock type; with deformation the principal factor. Mineralization is predominantly fine grained disseminated pyrite with traces of chalcopyrite or chalcopyrite along with other copper sulphides occurring on foliation planes and fracture surfaces.


Highly anomalous concentrations of gold (peak value >10000 ppb), copper (peak value >20,000 ppm) and occasionally silver (peak value > 50 ppm) were obtained in rock chip and grab samples collected from the phyllic and potassic alteration zones. Conversely, manganese concentrations in altered rock were quite low. Lithogeochemical results are summarized in Table I and assay certificates are presented in Appendix I.

Pervasive potassic alteration is restricted to the monzonitic intrusive, and is best displayed at the Bornite Showing (Photographs 1,2). Potassium feldspar is the most common alteration mineral with traces of sphene, biotite and actinolite at the Bornite Showing. Fractures and microveinlets host much of the mineralization consisting of chalcopyrite (5%) with traces of chalcocite, bornite, tetrahedrite, covellite, and pyrrhotite (Photograph 3). Bornite replaces magnetite as indicated by textural evidence, which would indicate that geophysical magnetic anomalies may contain bornite as well as magnetite. Lithogeochemical results of this alteration zone average 400 ppb gold


PHOTOGRAPH 1

Core from T88-1 showing fracture controlled chalcopyrite mineralization within the monzonite intrusive

PHOTOGRAPH 2

Same core as Photograph 1 after K-feldspar staining

. . .

PHOTOGRAPH 3

Altered and mineralized monzonite from the Bornite Showing with chalcopyrite, bornite and covellite along with malachite staining and a peak of > 10,000 ppb with copper averaging 600 ppm and having a maximum value of > 20,000 ppm. Four trenched areas returned background levels, except at two locations where values reached maximums of 8,600 ppb gold and > 20,000 ppm copper (Figure 4).

In areas of intense deformation, dominant phyllic alteration produces a quartz-sericite schist. Complete alteration makes the protolith impossible to determine throughout most of the alteration zone as guartz, sericite and occasionally mariposite replace pre-Mineralization is predominantly existing minerals. fine grained disseminated pyrite (7-15%) occurring on Occasional pyrite and lesser thin foliation planes. chalcopyrite veinlets (<4 cm in width) usually parallel or obliquely cross-cut the foliation. The weathering of the pyrite has likely created an acidic solution that leached the elements away from the surface, resulting in background surface lithogeochemical Rock samples average 100 ppb gold with a peak values. value of 560 ppb, while copper averages and peaks at 150 and 2068 ppm respectively (Figure 4). A similar unit on the Kerr Property revealed economic intersections of gold and copper mineralization in drill core.

Areas with lesser deformation develop propylitic alteration assemblages. These rocks are principally volcaniclastic and andesitic units with alteration minerals consisting of chlorite, epidote, sericite, calcite and sausserite. Predominantly, the mineralization takes the form of fine grained disseminated pyrite (2-5%) with traces of chalcopyrite. Infrequent quartz carbonate veinlets with associated pyrite and chalcopyrite occupy narrow minor shears. Lithogeochemical results are typically background and average 150 ppb gold and 170 ppm copper with maximums of 300 ppb gold and 315 ppm copper (Figure 4).

•

TABLE I SUMMARY OF LITHOGEOCHEMICAL RESULTS

		<u></u>		ults		<u> </u>		
Sample	Cu	Pb	Zn	Mn	Ag	Au	Width	n Description
No.	ppm	ppm	ppm.	ppm	ppm	ppb	m	
G88-8901	248	29	61	993	0.1	300	3	Chloritized and sericitized lapilli tuff with 3% fine disseminated pyrite
G88-8920	138	28	86	679	0.5	5	2	Hornblende- andesite dyke with minor saussurite and chlorite alteration
G88-8925	78	26	31	47	0.1	560	2	Quartz sericite pyrite schist occupying a fault zone
R88-8932	14747	40	82	649	7.5	1880	2	Blasted potassic alter- ed monzonite with chalco- pyrite (3%), bornite (<1%), covellite (<1%). Bornite showing
R88-8950	>20000	29	207	1057	24.5	8600	2	Blasted potassic alter- ed monzonite of lower Bornite showing with chalcopyrite (3%), bornite (<1%) and tetrahedrite (<1%)
G88-8954	>20000	11	37	3118	40.9	2540	2	Fractured and sheared monzonite with narrow 1 cm quartz-carbo- nate veinlets (20%) and chalcopyrite (2%)

2.4 Structure

Near the eastern property margin a north-south fault separates the eastern unaltered sediments from the altered rocks to the west (Figure 4). This fault coincides with a manganese soil geochemical anomaly displaying highly anomalous values to the east and background values to the west (Figure 7). Similar manganese geochemical data near the West property margin supports the presence of a fault bounded contact between unaltered sedimentary and altered volcanic rocks.

A large phyllic alteration zone with a foliation direction of 160° and a steep westerly dip occupies the centre of the property. The unit strikes roughly north-south with a persistent minor foliation (60-70NW) crenulating the dominant foliation. The quartzsericite-pyrite schist that occupies this region represents a wide shear zone that may have acted as a major conduit for mineralized hydrothermal fluids.

A minor east-west striking fault occurs on the property as well. The fault zone is also occupied by a quartzsericite-pyrite schist with a prominent foliation of 100/75S. The volcaniclastic/schistose unit (Unit 6) exhibits left-lateral displacement along this fault.

3.0 SOIL GEOCHEMISTRY

3.1 Introduction

A total of 602 soil samples were collected at 25 metre intervals along east-west grid lines spaced 100 m apart. Attempts were made to collect B-Horizon samples wherever possible; however, some areas exhibited poor soil development, therefore, C-Horizon samples were occasionally collected. Soil sampling was not undertaken in areas of glacial moraine cover. Average soil sample depth was 20 cm.

Geochemical data was entered into an IBM compatible computer, stored on 5-1/4" floppy diskettes and processed by a number of software programmes. Soil sample locations and results are plotted on Figures 5, 6 and 7. Assay certificates are presented in Appendix I.

3.2 Sample Preparation and Analytical Procedure

At Vangeochem Lab Limited in Vancouver soil samples were oven dried at approximately 60°C and sieved to minus 80 mesh. A 0.5 gram sample of the minus 80 fraction was digested in hot, dilute aqua regia in a boiling water bath and then diluted to 10 ml with demineralized water. All samples were analyzed for 30 elements utilizing the ICP (Inductively Coupled Plasma Emission Spectroscopy) technique. In addition, gold was analyzed, from a 10 gram fraction, by standard atomic absorption.

3.3 Results

In assessing the soil geochemical results, statistical methods were used to separate background from anomalous metal concentrations. Threshold and anomalous levels were determined for gold, copper and manganese. Sample locations, numbers, and analytical results are shown on Figures 5 to 7. Results have been contoured at threshold and anomalous levels.

Gold (Figure 5)

Two areas displaying highly anomalous concentrations of gold occur on the Tedray Property. One lies along the west claim boundary and the other occupies the central portion of the grid. The anomaly to the west forms a north-south trending zone that is likely the result of downslope migration of gold that is known to occur in quartz-sulphide veins on the Kerr Property. Small, northeast trending lobes originating from the main zone are further supportive evidence for the transported nature of this anomaly.

A larger gold anomaly occupying the central grid area, overlies a sequence of highly sericitized and moderately silicified volcaniclastic rocks. Outcrop exposure in this area is poor, however, it is believed that this anomaly and a coincident induced polarization resistivity low (Figure 8) represent the lateral continuation of the copper-gold zone (B-Zone) on the nearby Kerr Property. Gold being a much less mobile element has remained rather rooted in this area while other elements such as copper and manganese have been leached out and transported elsewhere.

Copper (Figure 6)

The Copper geochemical results have been contoured at intervals of 200, 400 and 600 ppm. A narrower, more restricted area of anomalous copper values correlates well with the gold soil anomaly along the west boundary of the mineral claim. Downslope migration from a source on the Kerr Property is the probable cause of this anomaly.

Two, well defined, northwesterly trending zones of highly anomalous copper border a zone of copper depletion in the central grid area. The depleted zone (8-200 ppm Cu) shows strong correlation with an area depleted in manganese and enriched in gold. Copper appears to have been leached from the highly altered package of volcaniclastic rocks and reprecipitated periphally, in more favourable chemical environments. The depletion zone is 600 metres long, 150 metres wide and open to the north.

Several other scattered, isolated copper anomalies occur throughout the property area. The anomalies likely represent styles of mineralization similar to those that have been observed at the Bornite Showing.

Manganese (Fig. 7)

Manganese soil geochemical results have been contoured at intervals of 1000 and 3000 ppm. The results show a well defined northerly trending zone of background values (2-500 ppm) that, within areas of bedrock exposure, are coincident with a sequence of highly sericitized and moderately silicified volcaniclastic rocks. This zone is bounded on both sides by sharp northwest and southeast demarcation boundaries that suggest the zone is fault bounded.

This zone of background values also coincides with an I.P. response indicating low resistivity and high chargeability; which on the Kerr property defines the high grade copper gold, B Zone.

Outside the background zone, the soils contain concentrations of manganese much greater than 1000 ppm. These high manganese concentrations correlate well with areas in which siltstones, greywackes and plagioclase porphyry dykes outcrop.

4.0 GEOPHYSICS

4.1 Magnetometer Survey

4.1.1 Instruments and Survey Techniques

Magnetometer surveying was carried out utilizing two MP-2 Proton Precession Magnetometers. One of these was operated as a base station monitor, recording readings every 15 minutes to allow for the removal of instrument drift and diurnal variation. When a base station operator was not available, a number of base stations were established at convenient locations on the grid. Operator precautions of demagnetization and consistency were observed and field clock to base magnetometer timing skew was maintained throughout the survey period.

The surveying was conducted over east-west picketed and flagged grid lines spaced 100 metres apart and over additional intermediate survey lines in the area of the Bornite Showing. Readings were taken at 6 metre intervals in the vicinity of the showing and 25 metre intervals throughout most of the remaining grid area. Corrected, unfiltered data are plotted on the base map in this report.

4.1.2. Presentation and Discussion of Results

The magnetic intensity data shows a large northwesterly trending magnetic high centred near the Bornite Magnetic intensities greater than 7,500 Showing, nanoteslas approximate the position of a cupriferous monzonitic intrusive. Values of 8,000 to 9,000 nanoteslas coincide with bornite and chalcopyrite bearing zones that collectively comprise the Bornite Showing. The outline of the monzonitic intrusive as determined by geological mapping and magnetic surveying Isolated is shown on Figures 4 and 8, respectively. highs peripheral to the main anomaly likely represent buried satelletic intrusive bodies related to the intrusive that hosts bornite, chalcopyrite and covellite at the Bornite Showing.

A larger region of background values occupies most of the southern half of the survey area. Limited outcrop makes interpretation of the data difficult in this area, but it appears that the area is principally underlain by sericitized volcanic rocks that have been intruded by feldspar porphyry dykes. Previous magnetometer surveys that have been conducted on the adjoining Kerr Property have revealed that both these units have low magnetic susceptabilities.

4.2 Induced Polarization Survey

4.2.1 Instruments and Survey Techniques

An induced polarization survey was initiated utilizing the pole-dipole method. The survey was carried out over four, east-west picketed and flagged grid lines. Measurements (first to fourth separation) of apparent chargeability and resistivity were made along the lines where conditions permitted. The data are presented in pseudo-section form on individual line profiles in pocket in this report (Figures 9-12). In addition, an interpretative resistivity plan map accompanies this report (Figure 8).

Survey Specifications

The induced polarization (I.P.) survey was carried out using a pulse type system, the principal components of which are manufactured by Huntec Limited and EDA Instruments Ltd. of Toronto, Ontario.

The system consists basically of three units, a receiver (EDA), a transmitter and a motor generator (Huntec). The transmitter, which provided a maximum of 2.5 kw d.c. to the ground, obtains its power from a 2.5 kw 400 c.p.s. three phase alternator driven by a qasoline engine. The cycling rate of the transmitter is 2 seconds "current-on" and 2 seconds "current-off" with the pulses reversing continuously in polarity. The data recorded in the field consists of careful measurements of the current (I) in amperes flowing through the current electrodes C_1 and C_2 , the primary voltage (V) appearing between the two potential electrodes, P and P, during the "current-on" part of the cycle, and the apparent chargeability (Ma) presented as a direct readout in millivolts per volt using a 160 millisecond delay and a 1580 millisecond sample window by the receiver, a digital receiver controlled by a micro-processor.

The apparent resistivity (Pa) in ohm metres is proportional to the ratio of the primary voltage and the measured current, the proportionality factor depending on the geometry of the array used. The chargeability and resistivity are called apparent as they are values which the surveyed portion of the earth would have if homogeneous. As the earth surveyed is usually inhomogeneous, the calculated apparent chargeability and resistivity are functions of the actual chargeability and resistivity of the rocks.

The survey was carried out using the "pole-dipole" method of surveying. In this method the current electrode C_1 , and the two potential electrodes, P_1 and P_2 , are moved in unison along the survey lines. The spacing "na" (n an integer) between C_1 and P_1 is kept constant for each traverse at a distance roughly equal to the depth to be explored by that traverse, while that of P_1 and P_2 (the dipole) is kept constant at "a". The second current electrode C_2 is kept constant at "a".

Thus usually on a "pole-dipole" array traverse with an electrode spacing of 100 metres a body lying at a depth of 50 metres will produce a strong response, whereas the same body lying at a depth of 100 metres will only just be detected. By running subsequent traverses at different electrode separations, more precise estimates can be made of depth, width, thickness and percentage of sulphides of causative bodies located by the I.P. method.

A 25 metre dipole was employed on this survey and first to fourth separation measurements were made every 25 metres along the survey lines.

4.2.2. Presentation and Discussion of Results

The induced polarization survey outlined a zone of high chargeability, low resistivity which stretches from line 95N to 99N, is open to the north, and passes on to the Kerr Property to the south. The anomalous belt, as enclosed by the 30 mV/volt chargeability and 350 ohm-m resistivity contours, is 400 metres long and 300 metres wide (Figure 8).

The zone is associated with intensely sericitized and moderately silicified volcaniclastic rocks. Low resistivity, coupled with broad chargeability highs suggest that significant sulphide mineralization is hosted within highly fractured and altered rocks. This zone of high chargeability and low resistivity is coincident with strong gold and depleted copper and manganese concentrations in soil. Similar responses have been observed in areas of economic interest on the Kerr Property.

5.0 DIAMOND DRILLING

5.1 General

During 1988, two BQ size drill holes totalling 115.2 metres were completed by Falcon Drilling Limited of Prince George, B.C. Drilling was carried out using a modified J.K.S 300 drill that was moved by a Hughes 500D helicopter to hand constructed drill sites. Drill hole survey data is summarized below in Table II.

TABLE II DRILL HOLE SURVEY DATA

<u>Drillhole</u>	Northing	Easting	<u>Elevation</u>	<u>Azimuth</u>	Dip	Length
T88-1 T88-2	10662 10540	10390 10415	950 m 983 m			69.8 m 45.41m

Diamond drilling was designed to test, at depth, the surface copper gold mineralization and coincident magnetic response in the vicinity of the Bornite Showing. Drill hole collar locations and surface traces are shown on Figures 4 and 8. Drill hole cross sections (Figures 13,14), descriptive logs and assay certificates are included in Appendix II.

5.2 Results

Both drill holes intersected a porphyritic sygnodiorite intrusive cut by andesite dykes. The sygnodiorite consists of plagioclase, hornblende, and apatite with clusters of magnetite in a groundmass of potassium feldspar and lesser quartz. Copper-bearing sulphides, mainly chalcopyrite with lesser bornite, tetrahedrite, chalcocite and covellite, occur locally in veinlets and as coarse aggregates (Photograph 3).

The drill core was sampled at two metre intervals with the exception of the narrow andesite dykes, which were sampled individually. Drill hole copper, gold and silver geochemical results are summarized below in Table 3.

TABLE 3

Drill Hole Geochemical Results

Drill hole	From (m)	<u>To (m)</u>	<u>Cu (%)</u>	<u>Au(g/tonne)</u>	Ag(g/tonne)
T88-1	2.74	69.8	0.17	0.38	0.48
T88-2	2.13	45.41	0.23	0.31	0.89

Figures 14 and 15, along with 17 and 18 in Appendix II, depict copper and gold distributions throughout T88-1 and T88-2, respectively.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Results of the 1988 exploration program on the Tedray property indicate that portions of the property have excellent potential for hosting porphyry style base- and precious-metal mineralization.

Geologic mapping indicates that much of the property is underlain by variably altered volcaniclastic and sedimentary rocks of the Unuk River Formation, intruded by hypabyssal syenodiorite intrusive rocks as well as later stage andesite and feldspar porphry dykes. An extensively deformed northwest-southeast trending zone of intensely sericitized volcaniclastic rocks is the major structural element and is of particular interest as it hosts gold and copper mineralization.

The intensely deformed and sericitized volcaniclastics that comprise the phyllic alteration zone coincide with gold and copper soil geochemical anomalies, as well as a narrow belt of high resistivity and moderate chargeability outlined by the IP Survey. The IP response is indicative of a highly fractured, significantly mineralized area. Drilling of a similar unit on the adjacent Kerr property produced excellent results.

The potassic alteration zone is restricted to the monzonite intrusive near the northern extent of the grid area, in the vicinity of the Bornite Showing. The Magnetometer Survey outlined a distinct northward-striking anomaly coinciding with the Bornite Showing and is believed to be caused by magnetite and pyrrhotite in the intrusive. Textural relationships in hand specimen suggest bornite replaces magnetite. The two short drill holes in the area revealed a high gold to copper ratio. A long drill hole stepped back from the magnetic anomaly would be useful in determining if precious and base metal mineralization is predominantly in the flanks, core or is ubiquitous throughout.

Induced polarization, Magnetometer and soil geochemical surveys should continue northward to close existing anomalies and define additional drill targets.

L -

B.P. BUTTERWORTH, B.Sc.

B.Sc.

REFERENCES

- 21 -

- Alldrick, D.J., D.A. Brown, J.E. Harakal, J.K. Mortensen, and R.L. Armstrong, 1987. Geochronology of the Stewart Mining Camp, B.C. Department of Mines and Petroleum Resources, Paper 1987-1.
- Anderson, R.G., 1988. A Paleozoic and Mesozoic Stratigraphic and Plutonic Framework for the Iskup Map Area (104 B), Northwestern British Columbia. Smithers Exploration Group - G.A.C., Cordilleran Section Workshop.
- Britton, J.M. and D.J. Alldrick, 1988. Stratigraphy and Mineral Deposits in the Unuk-Sulphurets Map Area, Northwestern British Columbia. B.C. Department of Mines and Petroleum Resources, Paper 1988-1.
- Grove, E.W., 1986. Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area. B.C. Department of Mines and Petroleum Resources, Bulletin 63.
- Kowalchuk, J.M. and M. Jerema, 1987. A Geological, Geochemical, Geophysical and Drilling Report on the Kerr Project (NTS 104 B/8), Skeena Mining Division. Western Canadian Mining Corporation Report No. 996.
- Kruchkowski, E. and Ostensoe, E., 1975. Geology and Geochemistry of Mitch, Ray, Ted, Patty and Ram Mineral Claims. unpub. report, Granduc Mines Limited.
- Walcott, P., 1987. An Induced Polarization Survey on the Kerr Property for Western Canadian Mining Corporation.

STATEMENT OF EXPENDITURES - JULY 15 - DEC. 10, 1988.

, |-----

ί.

.

÷.

-

....

TEDRAY 13 MINERAL CLAIM

SALARIES	\$ 20,366.90
HELICOPTER	15,509.92
ASSAYS	9,745.00
CLAIM FEES	560.00
CONSULTING	62.83
GEOPHYSICS	5,094.00
DRAFTING, PRINTING	375.58
DRILLING	9,190.00
EXPEDITING	930.30
FIELD EQUIPMENT RENTAL	1,011.50
EQUIPMENT, SUPPLIES, FUEL	876.42
FREIGHT	304.00
ROOM AND BOARD	2,970.00
SURVEYING	428.00
TRAVEL	937.40
TRENCHING	3,629.84
VEHICLE	618.00
SUBTOTAL:	\$ 72,609.69
EXPLORATION SERVICES (10%):	7,260.97
TOTAL:	\$ 79,870.66

STATEMENT OF EXPENDITURES - ASSESSMENT CREDIT Aug. 27 to Dec. 10, 1988 - To be applied for Assessment

SALARIES \$ 3,513.00 HELICOPTER 500D - 4 hrs @ \$690/hr. 2,760.00 3,200.00 - 2 hrs @ \$600/hr. ASSAYS - 57 core samples at \$15/sample 855.00 GEOPHYSICS - Induced Polarization 5,094.00 DRAFTING, PRINTING 375.58 EXPEDITING 200.00 FIELD EQUIPMENT RENTAL - 25 man days @ \$5 125.00 EQUIPMENT, SUPPLIES, FUEL 100.00 50.00 FREIGHT, COURIER ROOM AND BOARD - 49 man days @ \$22 1,078.00 320.00 TRAVEL 100.00 VEHICLE REPORT WRITING 2,712.00

SUBTOTAL: 10% OVERHEAD:	\$ 20,482.58 2,048.26
TOTAL:	\$ 22,530.84

STATEMENT OF QUALIFICATIONS

I, Brian P. Butterworth, of North Vancouver, British Columbia, hereby certify that:

- I am a geologist residing at 1008 Wellington Drive, North Vancouver, British Columbia and am employed by Western Canadian Mining Corporation of 1170 - 1055 West Hastings Street, Vancouver, British Columbia, V6E 2E9.
- 2. I received a Bachelor of Science degree from the Faculty of Geology of the University of British Columbia, Vancouver, British Columbia (1983).
- 3. I am an associate of the Geological Association of Canada.
- 4. I personally supervised all of the field work performed in 1988, and take responsibility for the content of this report.

B.P. BUTTERWORTH, B.Sc. Geologist

December 7, 1988.

STATEMENT OF QUALIFICATIONS

I, Douglas K. Kozak, do hereby certify that:

- I am a geologist employed by Western Canadian Mining Corporation, residing at 8912 Connors Road, Edmonton, Alberta.
- I received a Bachelor of Science degree from the Faculty of Geology of the University of Alberta, Edmonton, Alberta (1988).
- I am a Geologist in Training with the Association of Professional Engineers, Geologists, and Geophysicists of Alberta (APEGGA).
- 4. I am the co-author of this report which is based on field work conducted by myself during June to September, 1988, under the direct supervision of B.P. Butterworth, Project Geologist and R.S. Hewton, Exploration Manager, on behalf of Western Canadian Mining Corporation.

December 7, 1988.

APPENDIX I

L

.

.

: • •

i.

. . .

5

i.

....

.

.....

- -

Assay Certificates for Soil, Rock Chip and Grab Samples - -

 - 5

1

1 1

Ţ

REPORT #: 880961 PA WESTERN CON MINING CORP. Page 1 of 13 Åq Al Ås. Au620 Sample Number Åu Ba Bi Ca Ċđ Ĉα Çr Cu Fe ĸ No čη Ko. Ka. Жi Ρ ۶b Pđ PŁ Sb H ¥ So Sr Zn I ppe. ppe ppb 00B 000 000 X 008 001 DDa 008 7 1 I 0pm I pp∎ ppe 1 <u>pp</u> po 🛛 DDE. pps DD. 00E DDa 000 <u>ṕp∎</u> L 9500N 9900E 5.7 1.31 665 380 (3 148 9 0.02 4.2 62 36 307 >10.00 0.07 0.81 6875 8 0.06 25 0.40 567 (3 <5 <2 5 17 <5 (3 602 L 9500N 9925E 6.5 1.73 389 270 (3 390 5 79 0.i3 6.4 20 419 9.00 0.08 0.65 11859 7 0:06 35 0.28 435 (3 ۲5 (5 (3 (2 4 24 929 9950E L 9500N 0.9 1.40 227 230 (3 338 (3 0.15 54 4.7 15 270 6.72 0.07 0.45 11178 6 0.04 18 0.33 (3 ۲3 ٢) **{3** 444 <2 2 30 \$98 L 9500N 9975E 3.3 254 320 (3 1.25 294 5 0.10 3.8 57 17 282 8.07 0,07 0.45 9520 6 0.04 16 0.35 395 (3 (5 <۵ (2 4 27 (3 390 10000E L 9500N 0.2 2.25 117 45 (3 241 3 0.31 2.9 25 30 185 5.24 0.09 1.68 2826 3 0.03 44 163 0.24 (3 <5 (2 2 17 ٢) (3 437 L 9500N 10025E 56 (3 0,1 2.67 40 32B 4 0.45 1.9 28 41 149 5.04 0.11 2.21 2319 2 0.02 50 0.28 75 (3 <5 <2 3 25 <5 <3 201 L 9500M 10050E 132 135 (3 0.9 1.94 351 4 0.36 4.2 28 29 235 5.57 0.10 1.53 3745 3 0.04 47 198 0.26 (3 <5 (2 3 21 (5 (3 647 L 9300N 10075E 138 35 0.2 2.28 {3 263 3 0.37 {0.1 33 19 194 5.58 0,10 1.60 2784 4 0.03 37 0.22 136 (3 (5 (2 3 (\$ (3 24 326 L 9500N 10100E 125 430 (3 2.2 1.14 267 (3 0.03 0.8 12 14 125 4.13 0.04 0.73 878 4 0.02 16 0.14 170 (3 ٢5 (2 2 18 <5 (3 134 L 9500N . 10125E 180 245 (3 5.1 0.49 292 (3 0.01 0.9 5 7 166 5.10 0.04 0.28 237 16 0.02 9 0.19 289 (3 (5 {2 42 <5 (3 3 97 L 9500N 10150E 0.51 143 390 (3 (3) 2.2 316 0.06 1.1 9 7 212 5.89 0.04 0.43 320 28 0.02 9 0.21 104 (3 {5 (2)٢S (3 67 42 L 9500N 10175E 2.3 0.62 202 320 (3 185 (3 0.01 1.1 6 220 5.80 3 0.04 0.32 185 26 0.02 6 (5 0.22 106 (3 {2 3 53 **<5** (3 56 L 9500N 10200E 1.6 0.41 170 500 (3 203 (3 0.01 0.6 2 4 162 4.39 0.03 0.19 105 24 (3 (S 0.01 2 0.17 118 <2 2 53 <5 (3 65 L 9500N 10225E 155 1.6 0.24 365 (3 294 (3 0.01 0.1 2 1 107 3.16 9.02 0.08 42 29 0.01 1 0.10 138 (3 (5 ₹2 ۲X 55 ٢) (3 L 9500N 10250E 4.1 0.25 302 1495 (3 298 (3 0.01 3 0.5 2 306 5.05 0.03 0.11 70 31 0.01 3 0.12 155 (3 {5 (2 3 37 ٢S <3 L 9500N 10275E 0.9 0.31 117 220 (3 333 (3 0.01 0.1 2 64 2.76 0.02 0.16 66 20 0.01 2 0.13 124 (3 {5 <2 (2 31 (5 <3 41 L 9500N 10300E 278 0.2 0.18 225 (3 337 (3 0.01 0.1 2 42 3.29 1 0.02 0.06 28 29 0.01 (S 2 0.19 -64 (3 (2 2 39 {5 (3 20 L 9500N 10325E 466 405 (3 1.6 0.15 134 (3 0.01 0.1 1 1 14 1.53 0.01 0.04 15 4 0.01 2 131 (5 0.23 (3 (2 2 (5 (3 R 12 L 9500M 10370E 76 0.4 0.15 370 (3 323 (3 0.01 0.1 35 1 4 3.12 22 0.02 0.03 15 0.01 2 0.35 70 (3 <5 **(**2 (3 39 ٢5 15 2 L 9500N 10400E 0.1 0.14 49 455 (3 424 (3 0.01 0.6 1 4 43 3.85 0.03 0.01 18 23 0.01 3 0.19 221 (3 <5 **{2** 2 92 <2 (3 16 L 9500N 10425E 0.1 0,15 25 400 (3 279 (3 0.01 0.9 5 30 4.69 0.03 L 0.01 -11 22 0.01 6 0.26 70 (3 (5 ٢2 3 28 ٢5 (3 12 -L 9500M 10450E 0.32 84 0.2 315 (3 663 (3 0.01 0.5 2 10 114 3.88 0.03 BÔ 0.07 26 0.01 5 0.15 116 (3 <\$ (2 50 (5 (3 2 39 L 9500N 10475E 93 445 0.9 1.43 (3 358 (3 0.02 1.4 ٤ 15 98 5.09 0.04 0.37 1017 49 0.02 7 0.31 133 (3 ۲5 <2 21 (5 (3 82 L 9500N 10500E **4**5 360 (3 0.2 0.43 57 (3 0.01 0.1 2 7 35 0,05 1.16 0.02 60 19 0.01 6 0.10 40 (3 (5 <2 (5 (3 32 2 10 L 9500M 10525E 50 0.2 0.29 516 (3 124 0.1 (3 0.01 5 113 3.45 0.03 0.04 41 16 0.01 3 0.28 187 (3 ٤\$ (2 а 16 ۲5 (3 20 L 9500N 10550E 0.2 5.39 (3 30 (3 53 (3 0.02 0.9 139 4.31 2 2 0.04 0.03 193 4 0.02 2 0.11 65 {3 ۲5 (2 -5 2 ٢5 () 58 L 9500M 10575E 67 0.1 0.22 315 (3 192 (3 0.01 0.1 1 1 18 1.11 0.02 0.04 18 S 0.01 27 2 0.05 <3 ٢\$ (2 (2 38 ٢) <3 18 L 9500M 10600E 0.1 0.53 482 320 (3 104 5 0.01 2.1 29 16 965 >10.00 0.05 3656 0.10 43 0.03 24 0.22 87 (3 (5 (2 5 16 ٢5 (3 267 L 9500N 10625E 1.5 1.12 129 335 (3 63 (3 17 17 0.13 1.2 154 5.15 0.05 0.48 1409 7 0.02 17 0.19 141 .(3 ۲5 {2 18 ۲5 (3 185 4 1 9500N 10650E 0.9 0.49 ш 210 (3 28 (3 0.01 1.4 4 13 115 6.23 0.04 192 0.17 10 (3 0.02 10 0.18 54 (5 (2 (5 (3 72 а L 9500N 1067SE 0.9 0.50 90 95 (3 84 6 0.07 2.5 10 13 120 >10.00 0.07 0.41 17 0.02 316 17 0.42 60 (3 ٢) <2 B 15 <5 (3 105 L 9500N 10700F 0.4 1.22 98 50 (3 85 (3 0.01 0.8 8 19 93 4.08 0.04 0.23 571 4 0.01 18 (3 0.19 61 ٢\$ <2 ٢5 (3 L 9500N 10720E 107 1.9 1.23 100 (3 73 3 0.02 1.9 14 15 109 7.41 0.19 1777 0.05 8 0.02 15 0.24 100 **(3 (5** <2 7 <5 (۵ -4 1 - + L 9500N 10752E 76 75 (3 1.2 1.19 304 З 22 0.24 2.1 14 145 6.12 0,08 0.59 1759 5 0.03 30 127 (3 (5 <2 0.20 6 32 <5 (3 270 L 9500N 10825E 185 40 (3 0.9 0.59 121 3 0.01 1.9 20 16 124 5.78 0.06 0.13 4828 5 25 189 0.03 0.23 (3 (5 <2 5 2 <\$ (3 385 L 9500N 10850E 169 0.9 0.73 40 {3 185 0.07 0.04 2.1 32 21 151 B.02 0.23 3753 5 0.02 38 0.22 91 (3 (5 <2 <5 (3 192 6 - 6 L 9500K 10875E 30 1.2 1.06 181 (3 165 5 0.27 2.5 48 37 192 7.64 0.11 0.80 3811 6 0.02 48 0.14 101 (3 (5 <2 27 <5 (3 6 199 L 9500N 10900E (3 2.3 0.31 169 280 110 4 0.01 4.2 28 11 119 7.48 0.07 0.06 8072 6 0.04 14 0.38 667 (3 (5 (2 6 9 ٢) (3 913 L 9500N 10325E 1.9 1.12 222 55 (3 70 4 0.05 25 2.6 14 124 7.44 0.07 0.35 5077 5 0.03 237 (3 (5 <2 21 0.28 6 (5 (3 5 404 Minimum Detection 0.1 0.01 з S 3 3 0.01 0.1 1 1 0.01 0.01 0.01 1 1 1 0.01 1 0.01 2 3 5 2 2 5 3 1 -1 Maximum Detection 50.0 10.00 1000 10000 1000 1000 1000 20.00 100.0 20000 1000 20000 10.00 10.00 10.00 20000 1000 10.00 20000 10.00 20000 100 100 1000 100 10000 100 1000 20000 < < Less than Minimum is = Insufficient Sample ns = No sample 2 = Greater than Maximum AuFA = Fire assay/AAS</pre>

.

1

.

REPORT #: 880861 PA VESTERN CON NINING CORP.								
Sample Number		-				. Page 2 of 13		
L 9500N 10950E L 9500N 1097SE L 9500N 11025E L 9500N 9300E L 9600N 9925E	ppm X ppm 0.1 0.84 127 0.1 0.54 141 0.1 0.93 87 6.6 1.13 170	Jugen Au Ba Bi Ca ppb ppm ppm ppm X 55 <3		1 1 1 p 4.85 0.06 0.24 27	396 10 0.04 15 0.32 658 (3	Pt Sb Sn Sr U N Zn ppa quad quad<		
L 9600X 9950E L 9600N 9975E L 9600N 10000E L 9600N 10025E L 9600N 10050E		500 (3) 187 9 0.01 290 (3) 393 7 0.05 60 (3) 333 4 0.38 50 (3) 343 4 0.50 65 (3) 164 5 0.59	4.3 51 42 352 35 5.9 65 25 677 4.5 34 35 212 2.9 31 44 172 3.4 38 16 171	>10.00 0.06 1.34 60 9.44 0.08 0.91 99 5.84 0.11 1.93 35 5.27 0.15 2.34 30 5.25 0.15 1.92 27	866 8 0.05 38 0.31 546 (3 876 2 0.04 55 0.27 171 (3 853 1 0.03 56 0.25 101 (3	(5) (2) 5 11 (5) (3) 389 (5) (2) 4 15 (5) (3) 779 (5) (2) 3 22 (5) (3) 538 (5) (2) 3 29 (5) (3) 538 (5) (2) 3 29 (5) (3) 305 (5) (2) 7 55 (5) (3) 390		
L 9600N 10075E L 9600N 10100E L 9600N 10125E L 9600N 10150E L 9600N 10175E	2.4 1.13 129 3.1 2.15 115 2.8 0.50 142	250 (3) 167 3) 0.25 130 (3) 213 3) 0.03 35 (3) 153 4) 0.59 470 (3) 275 (3) 0.01 340 (3) 78 (3) 0.01	2.9 42 19 222 1.4 7 5 237	5.06 0.15 1.53 299 5.41 0.05 0.25 30	89 7 0.02 17 0.18 142 (3	(5 (2 3 28 (5 (3 212 (5 (2 3 18 (5 (3 129 (5 (2 8 68 (5 (3 303 (5 (2 3 44 (5 (3 - (5 (2 3 59 (5 (3 -		
L 9600N 10200E L 9600N 10225E L 9600N 10250E L 9600N 10250E L 9600N 10275E L 9600N 10300E	2.8 0.44 191 1.2 0.22 299 0.6 0.19 184	320 (3 204 (3 0.01 490 (3 85 (3 0.01 330 (3 40 (3 0.04 215 (3 204 (3 0.01 270 (3 218 (3 0.03	1.4 3 4 214 1.5 2 3 183 1.4 5 1 432 1.4 5 1 87 0.5 3 1 37	5.22 0.05 0.19 5 4.44 0.04 0.12 5 5.70 0.04 0.09 4	34 32 0.02 5 0.18 83 (3) 98 33 0.02 5 0.21 B4 (3) 58 21 0.01 5 0.21 63 (3) 47 20 0.02 4 0.14 44 (3) 43 13 0.01 4 0.18 77 (3)	(5) (2) 3 41 (5) (3) 39 (5) (2) 4 50 (5) (3) 41 (5) (2) 4 50 (5) (3) 41 (5) (2) 4 30 (5) (3) 48 (5) (2) 5 22 (5) (3) 25 (5) (2) 4 27 (5) (3) 25		
L 9600N 10325E L 9600N 10350E L 9600N 10375E L 9600N 10400E L 9600N 10425E	1.2 0.15 55 3 0.1 0.27 23 3 0.4 0.38 84 3	410 (3 139 (3 0.09 310 (3 200 (3 0.01 220 (3 275 (3 0.01 350 (3 130 (3 0.01 530 (3 141 (3 0.01	0.6 3 3 26 0.1 1 19 19 0.1 1 2 14 1.2 2 6 89 0.2 1 2 61	1.45 0.02 0.01 0.67 0.02 0.02 1 5.41 0.04 0.04 3	54 B 0.01 9 0.59 59 <3 8 12 0.01 3 0.17 51 <3	(5) (2) 4 16 (5) (3) 17 (5) (2) 3 16 (5) (3) 18 (5) (2) 2 21 (5) (3) 30 (5) (2) 4 12 (5) (3) 24 (5) (2) 4 12 (5) (3) 24 (5) (2) 3 5 (5) (3) 18		
L 9600N 10450E L 9600N 10300E L 9600N 10525E L 9600N 10550E L 9600N 10575E	2.4 2.40 39 0.1 0.72 62 1 0.5 0.97 102 1	190 (3 84 (3 0.02 115 (3 151 (3 0.01	1.4 4 20 78 0.1 2 9 149 1.2 5 17 193	10.00 0.07 0.09 33 7.00 0.05 0.06 33 2.34 0.03 0.07 12 5.80 0.04 0.15 42 6.38 0.05 0.48 370	34 12 0.03 4 0.12 78 (3 22 8 0.01 4 0.16 38 (3 28 11 0.02 8 0.26 81 (3	(5 (2 7 19 (5 (3 38 (5 (2 12 5 (5 (3 64 (5 (2 12 5 (5 (3 31 (5 (2 4 12 (5 (3 31 (5 (2 6 21 (5 (3 75 (5 (2 4 7 (5 (3 345		
L 9600N 10500E L 9600N 10625E L 9600N 10650E L 9600N 10675E L 9600N 10700E	0.5 0.38 121 0.4 1.04 B9 0.4 0.93 149	95 (3 94 (3 0.02 35 (3 150 (3 0.05 85 (3 57 3 0.04	1.5 17 15 99 1.1 11 16 70 2.1 12 17 62	5.52 0.07 0.43 49 5.06 0.04 0.30 270 3.76 0.05 0.28 146 6.99 0.06 0.15 274 5.67 0.07 0.33 460	05 6 0.02 12 0.23 138 (3 58 5 0.02 22 0.19 96 (3 10 5 0.02 11 0.31 132 (3	(5) (2) 8 22 (5) (3) J+1 (5) (2) 4 5 (5) (3) (5) (2) 4 8 (5) (3) (5) (2) 5 7 (5) (3) (5) (2) 5 7 (5) (3) (5) (2) 7 18 (5) (3)		
L 9600N 10725E L 9600N 10750E L 9600N 10775E L 9600N 10800E	0.1 0.74 109 0.1 0.98 119 0.1 0.69 119	50 (3 59 (3 0.02 40 (3 78 (3 0.01 35 (3 83 (3 0.02	1.1 10 9 62 1.4 11 13 109	4.82 0.07 0.33 415- 4.42 0.04 0.12 291 5.10 0.04 0.14 1473 4.90 0.04 0.12 293	3 4 0.02 13 0.19 160 (3) 19 5 0.02 18 0.19 101 (3)	(5 (2 5 22 (5 (3 251 (5 (2 4 4 (5 (3 170 (5 (2 5 3 (5 (3 238 (5 (2 5 3 (5 (3 288 (5 (2 5 3 (5 (3 288		
Miniaum Detection Maximum Detection < ≖ Less than Miniaum is ≖	0.1 0.01 3 50.0 10.00 1000 100 Insufficient Sample ns	••• • ••••	0.0 20000 1000 20000 1	0.01 0.01 0.01 1 10.00 10.00 10.00 2000 S		5 2 2 1 5 3 1 100 1000 100 10000 100 1000 20000		

REPORT 1: 880851 PA			WESTERN	CON NI	(ING COR	P.							-												Pag	je 3 c	of 13		
Sample Humber	Ag pp=	1	ppa	ppb	Au ppm	Ba pp s	B) pp#	1	Cd ppe	•••	Cr pps		Fe 1	X I	Kg Z	Nn ope	Ло ррш		-	_	P6 ppe	Pd ppo	Pt ppm	Sð pp#	Sn pp∎	Sr ppa	U pom	W ppe	Zn Dom
L 9600N 10850E L 9600N 10875E	1,1			35 55	{3 {3	64 10B	(3		1.7	22	6	-	6.81	0.05		3722	2	0.03	le	Q.34	***	(3	(S	(2	3	i	(5	(3	385
L 9600N 10900E	2,4		159	150	(3	144	(3		2.5	31 21	3 5		8.11 5.16	0.07	0.18 0.19		2	•				(3	(5	(2	4	9	(5	(3	433
L 9600N 10925E	1.2		80	35	(3	139	3		1.5		12		5.40	0.14	1.17		2		22 28			(3 (3	(5 (5	(2 (2	2 10	13 74	<5 (5	(3 (3	438
L 9600N 11025E	0.L	1.46	118	35	<3	119	(3	0.08	1.4	28	20	122	5.98	0.06			i		44			(3	(5	{ 2	2	B	<5	(3	189 144
L 9700N 9625E	1.7		369	320	(3	307	3		2.4	19	14	291	6.51	0.09	0.88	1100	6	0.04	20	0.19	249	(3	(5	<2	4	46	<5	<3	401
L 9700N 9650E L 9700N 9675E	0.5			140	(3 (3	83	(3	-	0.1	3	4	29	1.45	0.02			4	0.01	3		81	(3	(5	(2	(2	12	(5	(3	47
L 9700N 9700E	0.6		639	90 140	(3	115 256	<3 5		0.1 4.3	4 59	5 16	26	1.18	0.02	0.09		2		2		56	(3	(5	(2	(2	10	<5	(3	56
L 9700N 9725E	3.1		B17	680	(3	323	4		2.7	18	8	1313 524	8.69 8.39	0.07 0.05	0.74 0.25		58 14		90 8		108 216	(3 (3	(5 (5	<2 (2	4	9 51	<5 <5	(3 (3	1506 150
L 9700N 9750E	1.7		431	295	(3	302	3		2.5	34	10	940	6.79	0,05	0.44	2127	8	0.03	14	0.25	226	(3	(5	(2	3	35	<5	(3	245
L 9700N 9775E L 9700N 9825E	2.8 4.5		214 158	255 170	<3 (3	210	3	0.06	2.2	34	20	311	7.00	0.05	0.65		5	0.03	15		362	(3	(5	(2	4	21	(5	(3	273
L 9700N 9850E	4.8		234	210	(3	140 255	(3	0.04	1.4	16 51	22 34	114 250	5,45	0.04	0.59	1681	5		8		293	<3	<5	<2	4	13	<5	(3	228
L 9700N 9875E	8.2	-	214	235	(3	259	4		5.1	49	37	257	8.63 7.90	0.07	1.01 1.11	8163 7482	5		20 28	0.24 0.25	509 408	(3 (3	(5 (5	(2 (2	4	22 40	<5 <5	(3 (3	
L 9700N 9900E	7.7	1.59	206	180	(3	215	4	0.10	4.5	43	39	281	7.93	0.05	1.20	\$\$1 5	4	0.05	23	0.25	451	(3	(5	/3	5	74		17	
L 9700H 9925E	8.2		153	240	(3	223	- 4	0,07	4.5	47	- 44	265	8.39	0.05	1.38	6173	3		26	0.26	445	(3	(5	(2 (2	5 5	24 15	<5 (5	(3 (3	642 556
L 9700N 9950E L 9700N 9975E	4.8		159	220	(3	188	4		4.5	47	41	27B	B. 57	0.06	1.22	59B1	5		29	0.27	392	(3	(5	(2	5	16	(5	(3	574
L 9700N 10000E	3.1 2.3	1.12 1.50	137 162	125 200	(3 (3	109 191	4 5		3.1 2.9	27 48	22 28	169 202	9.03 9.16	0.0B 0.07	0.79 0.96	2506 7588	5 4		18 18	0.33 0.28	219 505	(3 (3	(S (5	(2) (2)	6 5	20 21	(5 (5	(3 (3	272 362
L 9700N 10400E	0.3	0.44	108	290	(3	284	(3	0.01	0.5	5	7	80	3.94	0.02	0.05	253	19	0.01	13	0.13	133	(3	(5	(2	2	41	(5	(3	49
L 9700N 10425E	1.2		67	360	(3	147	(3	0.01	0.2	3	6	103	3.50	0.02	0.05	64	21	0.01	5		40	(3	(5	(2	3	42	(5	(3	41
L 9700N 10450E L 9700N 10475E	0.3 0.1		77 331	2S5 20	<3 (3	197 29	(3	0.01	0.6	3	8	128	5.34	0.02	0.07	64	40		4	0.18	74	ä	<5	(2	4	149	(5	3	31
L 9700N 10500E	0,1		114	25	(3	429	17 (3	0.01 0.08	0.3 t.1	1 5	21 25	1278 135	>10.00 5.25	0.17 0.05	0.05	27	87	0.10	(1	0.71	38	(3	<5	<2	12	4	(5	(3	23
L 9700N 10525E	0.1	0.72	60	15							_	_			0,32	119	6	0.02	13	0.58	63	(3	(5	<2	3	19	<5	(3	76
L 9700X 10550E	0:1	0.96	82 99	25 75	(3 (3	180 94	(3 (3	0.05 0.01	0.3	6	9	74	3.82	0.03	0.16	714	7		5	0.21	52	(3	{5	<2	4	25	(5	<3	52
L 9700N 10575E	0.5	0.87	145	195	(3	48	3	0.01	0.8 1.5	7	13 19	68 405	5.61 8.55	0.02	0.12 0.18	197 7 764	7 10		5	0.21	69	(3	<5	(2	6	10	(5	(3	80
L 9700N 10500E	0.1	0.77	121	50	(3	100	(0.04	1.7	21	9	108	5.32	0.03	0.15	4398	3	0.03	9 18	0.21	82 133	(3 (3	(5	(2	5	8	(5	(3	104
L 9700N 10650E	0.1	0.58	36	35	<3	59	(3	0.02	0.1	3	. 4	15	1.14	0.01	0.05	93	ď	0.01	3	0.11	32	(3	(5 (5	(2 (7	3 <2	6 3	(5 (5	(3 (3	255 30
L 9700N 10675E	25.8	9.77	209	550	(3	110	3	0.19	1.2	13	8	63	5.95	0.06	0.50	253	4	0.03	п	0.27	73	/3	/ e	10	-	44	<i>.</i> -		-
L 9700N 10700E	0.1	1.09	93	30	(3	286	(3	Q. 0B	0.6	10	9	47	4.24	0.04	0.20	1353	4		12	0.14	/3 52	(3 (3	(S (S	<2 <2	8 4	36 9	(5 (5	(] (]	54
L 9700N 10725E L 9700N 10750E	7.5	0.84	748	90	(3	181	5	0.08	3.1	54	23	247	9.98	0.06	0.50	B664	7	0.05	127	0.31	132	(3	(5	(2	5	Ű	(5	(3	٥٠.
L 9700N 10900E	0.1 0.1	1.13	174 119	40 40	(3 (3	96 83	(3 (3	0.02 0.09	1.1 1.1	21 30	24	131	5.69	0.03	0.65	3222	3	0.03	29	0.27	B1	(3	(5	<2	3	3	(5	(3	183
L 9700N 10925E			-	•			-		-		18	150	5,55	0.05	0.48	1695	1	0.03	64	0.21	67	{3	<5	<2	3	9	<5	(3	206
L 9700N 10375E	0.1	1.4B 1.73	123 97	110 25	(3 (3	113 83	(3	0.08	1.1	23	16	127	5.51	0.04	0.39	885	1		45	0.14	63	(3	<5	(2	3	8	(5	<3	155
L 9700N 11000E	0.1	1.38	90	20 30	(3	83 149	(3 (3	0.05 0.17	1.2 0.5	20 12	21 19	82 79	5.35 4.12	0.04 0.05	0.45 0.40	1352 977	2	0.02	22	0.21	4B	(3	(5	(2	3	5	٢)	(3	145
L 9800N 10025E	3.1	2.52	87	125	(3	220	4	0.94	1.9	39	12			0.19	1.80	977 1715	2 6	0.02 0.07	26 25	0.19 0.16	34 81	(3 (3	(5 (5	(2 (2	3 12	16 115	(5 (5	(3 (3	152 19 2
Minimum Detection	0.1	0.01	3	5	3	1	Э	0.01	0.1	1	t	t	0.01	0.01	0.01			A 41			-	-	-	_					
Maximum Detection	50.0	10.00	1000	10000	1000	1000	1000	20.00	100 0	20000	1000	20000	10.00		19.00	20000	1 1000	0.01 10.00	20000	0.01	2 20000	3 100	5 100	2 1000	2	1	5	3	1
C = Less than Minimum is :	= Insul	ficient	Sample	ns ≖ H	o sample	e) =	Greater	than M	szi műð	AuFA =	Fire a	issay/A/	5			**		1 1 1 V V	FA44AA		10040	100	100	7000	100 [900 0	100	1000	20000

And H. Anders And Anders And Anders And Anders And Anders And Anders And Anders		REPORT #: 880861 PA		ŀ	IESTERN	CON MEN	ING COR	P. 1																			Pai	ge 4 i	of 13		
1 1 1 1 1 2 1 7)	Sample Humber	•														-		ňo		-	P	Pb	Pd	Pt	56	Sл	Sr	U	¥	;
L 1990 NUMEL 6. 4. 6.63 HZ 101 SZ 6. 6.7 HZ 101 SZ 6.7 HZ 102 SZ 104 HZ 6.64 HZ 102 B 0.22 9 0.29 EU 0.2 HZ 101 SZ 6. 6.7 HZ 102)	L 9800N 10075E	0.3 0.5	1.12 0.82	197 140	215 90	(3 (3	169 365	(3 4	0.14 0.39	2.1	24	. 8	389	5.84	0.07	0.44	2950	11	0.03	3 17	0.19	173	(3	(5	(2	ິ 3	22	Č5	(3	38
1 1 4998 10105 3.3 0.4 1017 210 0.2 200 0.3 0.0 0.1 6 6 112 1 0.0 0.14 612 1 0.0 0.14 611 114 18 0.0 0.14 71 13 0.1 0.1 1 1 1 1 1 1 1 0.0 0.14 114 18 0.0 0.1 1)	L 9800% 10125E	0.3	0.93	125	185	<3	36B	4	0.77	2.7	28	33	503	B, 45	0.17	0.60	2097	5	0.08	5 38	0.20 0.20	101 82	(3 (3	(5 (5	(2 (2	-	9 49	(5 (5	(3 (3	15 79
L SHOW 14722 L SHOW 14725 L)	L 9800W 10200E	1.9	0.45	154	205	(3	205	3	0.03		_	6 7													(2	-	20	(5	(3	5
L 1980X 10035E L 1980X 10055E L 1980X 10055E)	L 9800N 10250E	1.1	0.22	219	310	(3	419	(3	0.01	0,1	2	2	52	3.76	0.03	0.05	30	32	0.01	4	0.41	134	(3	(5 (5	(2 (2	2	43 132	<5 <5	(3 (3	6 2 1
1 1)	L 9800N 10325E	0.1	0.22	122	50	(3	49	18	0.01	5.5	3	9	264	>10.00	0.14	0.04	245	32	0.09	1	0.50					-	•			 2
L 9800W 16453E L 9800W 16555E L 9800W 10555E L 9800W 10555E)	L 9800N 10375E	0.4	0.40	55	180	(3	414	(3	0.01	0.1	3	13	86	3.20	0.05	0.09	58	21	0.01	5	0,17	57	(3	(5	<2	2	44	(5	(3	2
1 1	•	L 9800N 10450E	0.5	0.51	155	120	(3	252	(3	0.01	0.5	3	8	197	5.45	0.06	0.04				-						-	•			3 4
L 9800W 10575E L 9800W 10650E L 10.73 163 75 (3 20 2) L 9800W 10550E L 1 0.73 163 75 (3 20 2) L 9800W 10550E L 1 0.73 163 75 (3 20 2) L 9800W 10550E L 1 0.73 163 75 (3 20 2) L 9800W 10550E L 1 0.73 163 75 (3 20 2) L 9800W 10550E L 1 0.73 163 75 (3 20 2) L 9800W 10550E L 1 0.73 163 75 (3 20 2) L 9800W 10550E L 1 0.73 163 75 (3 20 2) L 9800W 10550E L 1 0.73 163 75 (3 20 2) L 9800W 10550E L 1 0.73 163 75 (3 20 2) L 9800W 10550E L 1 0.73 163 75 (3 20 2) L 9800W 1075E 0.2 1.07 162 2) L 9800W 1075E L 9800W 1075E 0.2 1.07 162 2) L 9800W 1075E 0.2 1.0 1.0 0.0 53 0.06 67 0.21 122 (3 (5 (2 7 3) (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5 (2 8 3 (5 (3 4) 2) 10 (3 (5)	L 9800N 10500E	0.7	1.25	163	90	(3	282	4	0.02	1.4	24	17	245	7.79	0.06	0.32	3109	11	0.04	14	0.36	134	(3	(5	<2	4	12	(5	(3	2' 16 41
L SBOOM 16650E L SBOOM 16550E L SBOOM 16755E L SBOOM 16755E)	L 9800M 10575E			54							•	-							=						-				(3	8: 17'
L SBOOM 10675E L SBOOM 1075E L SBOOM 10800E L SBOOM 1080E L SBOOM 1080E L SBOOM 1080E L SBOOM 1080E L SBOOM 1080		L 9800M 10625E	0.9	0.82	346	160	(3	54	4	0.05	1.2	28	14	133	6.51	0.11	0.21	2989	6	0.04 0.07	1B 25	0.19 0.24	98 164	(3 (3	(5 (5	(2 (2	5	5	<5	(3	120 777
L \$900M 10700E L \$900M 10700E 0.4 1.04 135 30 (3 84 4 0.02 1.4 20 16 52 4.76 0.13 0.27 200 6 0.05 28 0.20 108 (3 (5 (2 6 1 (5 (3 0 2 1 (5 (2 1 1) (5 (3 0 2 1 (5 (2 1 1) (5 (3 0 2 1 (5 (2 1 1) (5 (3 0 2 1 (5 (2 1 1) (5 (3 0 2 1 (5 (2 1 1) (5 (3 0 2 1 (5 (3 0 2 1 1) (5 (3 0 2 1 (5 (3 0 2 1 1) (5 (3 0 1) (5 (i											-				_			_									24		-	28:
1 L 9800W 10750E 3.2 0.26 278 B0 (3 135 7 0.24 3.6 28 10 298 7.65 0.18 0.10 1235 B 0.03 13 (5 (2 7 31 (5 (3 92 L 9800W 10775E 7.9 0.33 260 35 (3 121 6 0.27 2.2 25 10 165 6.12 0.21 0.13 4672 11 0.08 53 0.16 222 (3 (5 (2 7 31 (5 (3 92 L 9800W 10775E 7.7 9 0.33 260 35 (3 11 7 2.2 2.6 10 165 5.12 0.21 0.13 4672 11 0.08 53 0.16 222 (3 (5 (2 7 31 (5 (3 93 (3 13 6 0.41 1.7 28 10 16 5.15 0.20 116 (3 (5 (2 11 23 (3							(3	84	4	0.02	1.4	20	16	92	4.76	0.13	0.27	2303	6	0.05	28	0.20	108	(3	(5	{2	6	3	<5	(3	195
L 9800N 10900E 0.2 0.27 146 15 (3 131 6 0.41 1.7 22 6 95 4.08 0.27 0.15 2218 9 0.07 25 0.20 119 (3 (5 (2 8 31 (5 (3 4 4 19 (5 (3 4 4 19 (5 (3 4 4 19 (5 (3 4 4 19 (5 (3 4 4 19 (5 (3 4 4 19 (5 (3 4 4 19 (5 (3 11 19 (3 3 (5 (2 11 12 (5 (3 4 4 19 (5 (3 11 11 19 (5 (3 11 11)))))))))))))))))))))))))))))))	ł				278		(3	135	-	0.24	3.6	28	10	29B	7.65	0.18	0.10	3236	B	0.09	53	0.19	293	(3	(5	<2	7		(5	(3	237 920 444
L 9800N 10975E 0.1 1.69 110 25 (3 70 B 0.20 2.1 14 12 35 3.67 0.29 0.18 322 11 0.09 22 0.17 139 (3 (5 (2 14 19 (5 (3 11 12 9900N 10000E))))) 0.1 1.12 195 25 (3 33 11 0.03 3.1 29 18 B0 3.83 0.39 0.28 1243 14 0.13 31 0.20 188 (3 (5 (2 14 19 (5 (3 11 19 (5 (5 (2 11 19 (5 (3 11 19 (5 (3 11 19 (5 (3 11 19 (5 (3 11 19 (5 (5 (2 11 19 (5 (3 11 19 (5 (5 (2 11 19 (5 (3 11 19 (5 (5 (1 19 (5 (1 19 (5 (1 19 (5 (1 19 (5 (1 19 (5 (1 19 (5 (1 19 (5 (1 19 (5 (1 19 (5 (1 19 (5 (1 19 (5 (1 19 (19 (19 (19 (19 (19 (19 (19 (19 (ł	L 9800N 10900E	0.2	0.27	146	15	(3	131	6	0.41	1.7	22	6	95		0.27			-						-		-	-			172
L 9900N 10000E 0.7 1.59 122 180 (3 320 4 0.56 2.2 30 15 190 5.63 0.15 1.07 2040 6 0.04 23 0.21 155 (3 (5 (2 4 58 (5 (3 34) L 9900N 10025E 2.9 1.22 160 125 (3 211 (3 0.23 1.7 22 12 469 5.13 0.08 (0.01 1552 9 0.03 25 0.18 150 (3 (5 (2 3 30 (5 (3 34) L 9900N 10050E 0.1 1.06 148 155 (3 203 3 0.30 3.3 21 8 952 6.20 0.09 0.72 1462 7 0.05 37 0.22 131 (3 (5 (2 3 28 (5 (3 34) L 9900N 10075E 1.9 1.34 132 180 (3 95 (3 0.19 0.3 7 7 771 4.78 0.08 0.38 421 11 0.03 10 0.21 111 (3 (5 (2 3 25 (5 (3 12))))))))))))))))))))))))))))))))))))		L 9800X 10975E	0.1	1.68	110	25	(3	70	8	0.20	2.1	14	12	35	3,67	0.29	0.18	322	- 11	0.09	22	0.17	139	(3	(5	<2	14	19	<5	(3	4vi 111 84
L 9900N 10050E L 9900N 10075E 1.9 1.34 132 160 (3 95 (3 0.19 0.3 7 7 771 4.78 0.08 0.38 421 11 0.03 10 0.21 111 (3 (5 (2 3 28 (5 (3 61 1.9 1.34 132 160 (3 95 (3 0.19 0.3 7 7 771 4.78 0.08 0.38 421 11 0.03 10 0.21 111 (3 (5 (2 3 28 (5 (3 12 Miniaus Detection Maximus Detection 50.0 10.00 1000 1000 1000 1000 1000 1000			0.7	1.59			(3	320	4	0.56	2.2	30	15	190	5,63	0.15	1.07	2040										•			346
Niniaux Detection 0.1 0.01 3 5 3 1 3 0.01 0.1 1 1 1 0.01 0.01 0.01 1 1 0.01 1 0.01 2 3 5 2 2 1 5 3 Maximus Detection 50.0 10.00 10000 10000 1000 1000 20.00 1000 20000 10 00 10 00 10 00 20000 10 00 20000 10 00 100 1		L 9900N 10050E	0.1	1,06	148	155	(3	203	3	0.30	3.3	21	8	952	6.20	0.09	0.72	1462	7	0.05	37	0.22	131	(3	(5	(2	3	28	۲\$	(3	331 610 129
K = Less than Hinimum is = Insufficient Sample ns = No sample) = Greater than Maximum AuFA = Fire assay/AAS		Maximue Detection	50.0	10.00	1000	10000	1000	1000	1000	20.00	100-0	1 20000	L 1000 (200.00	10.00		0.01	I	1	0.01	t	0.01	2				2	1		3	1

•

									,					•									:					·
REPORT #: 880861 PA		VESTERN (CHD MINI	186		Ŋ		•				-												Pa	qe 5 d	of 13		
Sample Number L 9900N 10100E	Ag At pp= X 1.5 0.70	ppe	AuGED ppb 140	Au ppe (3	Ва ррж 94	Bi ppa (3	Ca Z 0.25	. Cd ppm 1.8	Co ppm 13	Cr pp4 10	Cu pps 238	Fr 1 5.44	X X	Hg I	pp∎	pps	Z	poe			Pd pp∎	Pt pp∎	Sb	Sn ppe	ST ppe	¥ pp∎	¥ ppe	2n pom
E 9900N 10125E E 9900N 10150E E 9900N 10175E E 9900N 10200E	1.2 1.01 1.6 0.66 4.1 0.54 1.6 0.41	145 132	80 85 45 270	(3 (3 (3 (3	82 42 192 241	(3 (3 (3 (3	0.27 0.09 0.22 0.14	2.5 1.3 2.5 1.1	29 4 35 9	22 17 10 5	613 555 155 149	6.87 5.15 5.87 3.98	0.10 0.11 0.07 0.09 0.08	0.49 0.22 0.33	2482 101 2385	5 2 4	0.03 0.02 0.03	20 11 15	0.32 0.32 0.35	95 44 95	(3 (3 (3 (3 (3)	(5 (5 (5 (5	(2 (2 (2 (2 (2 (2	2 3 3 4 3	25 22 10 25 39	(5 (5 (5 (5 (5	(3 (3 (3 (3 (3	178 250 117 185 91
L 9900N 10225E L 9900N 10250E L 9900N 10275E L 9900N 10300E L 9900N 10325E	0.9 0.58 2.4 0.44 1.6 0.35 1.9 0.31 0.1 0.03	124 235 210 238 9	390 370 380 720 20	(3 (3 (3 (3	248 318 241 210 21	(3 (3 (3 (3 25	0.0B 0.01 0.01 0.02 0.01	0.8 1.8 1.3 1.6 9.1	6 4 4 (1	5 4 3 5	153 165 112 160 562	3.88 5.67 5.03 4.67 >10.00	0.07 0.05 0.05 0.05 0.22	0.21 0.19 0.17	98	21 30 26 28 33	0.02 0.02 0.02	11 10	0.24 0.23 0.23	116 95 114	(3 (3 (3 (3 (3	(5 (5 (5 (5	(2 (2 (2 (2 (2	3 3 4 3 11	34 40 47 57 2	(5 (5 (5 (5	(3 (3 (3 (3 (3	63 55 47 59 7
L 9900N 103S0E L 9900N 1037SE L 9300N 10400E L 9300N 1042SE L 9900N 10450E	0.9 0.26 0.4 0.28 0.9 0.54 2.4 0.75 0.9 0.47	92 85 105 209 93	500 230 100 55 100	(3 (3 (3 (3 (3	337 215 98 68)1000	3 (3 (3 (3	0.01 0.03 0.02 0.07 0.02	1.6 3.9 1.3 2.6 1.5	4 5 7 44 9	5 8 8 14 8		7.07 >10.00 4.31 7.23 4.58	0.07 0.10 0.07 0.09 0.08	0.12 0.07 0.36	53 93 754 2943 673	25 27 11 7 6	0.04 0.02 0.04	11 12 14 26 17	0.22	47 54 208	(3 (3 (3 (3 (3	(5 (5 (5 (5 (5	(2 (2 (2 (2 (2	5 8 4 7 4	36 17 13 15 28	(5 (5 (5 (5 (5	(3 (3 (3 (3 (3	53 52 52
L 9900N 10475E L 9900N 10525E L 9900N 10550E L 9900N 10555E L 9900N 10575E L 9900N 10600E	1.6 0.83 2.4 0.89 0.9 0.35 4.1 0.90 0.3 0.61	115 185 107 97 208	205 95 30 90	(3 (3 (3 (3 (3	132 56 72 63 58	(3 (3 17 (3 7	0.14 0.01 0.01 0.01 0.01 0.02	1.5 2.2 6.6 1.8 3.7	17 5 108 7 8	B 13 7 12 9	54	3.80 7.11 >10.00 5.67 >10.00	0.09 0.08 0.15 0.09 0.08	0.39 0.09 0.05 0.17 0.07	1418 71 9963 172 505	9 16 19 7 9	0.06 0.03	(1 17 27 15 14	0.14 0.14 0.19 0.20 0.25	117 72 49 122 120	(3 (3 (3 (3 (3	(5 (5 (5 (5	<2 (2 (2 (2 (2 (2	6 7 11 6 7	39 19 45 35 41	(5 (5 (5 (5	(3 (3 (3 (3 (3	173 62 124 73 241
L 9900N 10525E L 9900N 10550E L 9900N 10575E L 9900N 10700E L 9900N 10725E	0.9 1.24 0.3 0.87 0.3 1.03 0.3 1.11 0.9 0.85	190 132 97 113 93	100 50 35 50 35	(3 (3 (3 (3 (3	117 64 69 71	5 (3 (3 (3 (3	0.02 0.03 0.04 0.02 0.02	3.2 1.5 1.1 1.8 1.1	6 8 11 11 6	27 16 9 11 9	111 63 66 75 40)10.00 5.73 4.20 5.67 4.01	0.0B 0.07 0.07 0.06 0.06	0.27 0.14 0.23 0.23 0.10	372 464 728 1041 137	9 5 4 4	0.02	19 14 30 13 15	0.30 0.17 0.15 0.20 0.14	105 56 84 126 66	(3 (3 (3 (3 (3	(5 (5 (5 (5 (5	(2 (2 (2 (2 (2	7 7 5 7	25 9 10 4 7	(5 (5 (5 (5	(3 (3 (3 (3 (3	79 73 83 93 64
L 9900N 10750E L 9900N 10775E L 9900N 10800E L 9900N 10825E L 9900N 10850E	0.1 0.67 0.9 0.89 0.3 1.21 3.1 2.38 0.9 0.52	80 92 119 40 119	30 35 60 40 35	(3 (3 (3 (3 (3	72 79 65 61 62	(3 (3 (3 5 (3	0.01 0.01 0.01 0.81 0.01	0.8 1.5 2.1 2.1 0.8	5 10 18 29 6	9 10 14 8 7	37 49 93 62 41	3.79 4.61 6.16 4.87 3.44	0.06 0.06 0.07 0.19 0.06	0.10 0.19 0.23 1.49 0.13	144 1016 1718 545 95	3 3 4 3 3		12 14 13 24 12	0.28 0.23 0.21 0.16 0.14	132 184 210 108 192	(3 (3 (3 (3 (3	(5 (5 (5 (5	(2 (2 (2 (2 (2 (2	5 5 16 4	5 6 94 3	(5 (5 (5 (5	(3 (3 (3 (3	72 104 117 79 89
L 9900N 10875E L 9900N 10900E L 9900N 20925E L 9900N 10950E L 9900N 10975E	0.9 0.43 1.2 2.83 0.9 1.94 1.2 1.02 1.2 1.37	36 120 49 129 72	(5 40 50 30 20	(3 (3 (3 (3 (3	59 35 30 35 141	(3 4 (3 4 (3	0.01 0.04 0.01 0.01 0.20	0.1 2.5 1.3 2.8 2.1	4 14 7 12 19	4 23 14 15	9 57 30 126 134	0.50 7,56 4.00 7.94 4.82	0.05 0.09 0.07 0.09 0.12	0.11 0.65 0.11 0.18 0.35	20 974 120 281 2085	2 7 6 8 6	0.01 0.03 0.03 0.03 0.04	9 20 12 22 50	0.02 0.30 0.12 0.15 0.13	209 115 64 85 60	(3 (3 (3 (3 (3	(5 (5 (5 (5	(2 (2 (2 (2 (2	4 8 11 5 7	4 4 2 1 20	(5 (5 (5 (5	(3 (3 (3 (3 (3	28 97 52
L 9900N 11000E L 9900N 11025E L 9900N 11050E L10000N 10000E	0.1 1.29 0.1 1.19 0.3 1.56 1.6 1.20	161 386 396 122	30 30 55 300	(3 (3 (3 (3	136 62 123 196	(3 (3 6 (3	0.40 0.05 0.05 0.40	3.1 2.1 4.1 2.1	41 18 50 18	19 19 23 12	93 56 187 2 211	6.69 4.56 10.00 4.85	0,13 0.07 0.09 0.12	0.62 0.43 1.05 0.88	500B 683 4244 600	6 4 5 12	0.03 0.02 0.03 0.03	42 23 35 23	0.23 0.19 0.32 0.20	82 52 81 94	(3 (3 (3 (3	(5 (5 (5	(2 (2 (2 (2	6 8 9	44 6 5 55	(5 (5 (5 (5	(3 (3 (3 (3	207 91 172 177
Minisus Detection Maximum Detection C = Less than Miniaum is	0.1 0.01 50.0 10.00 = Insufficient	3 1000 1 Sample	5 10000 .ns = Xo	3 1000 Sample	1 1000 : > =	1000	0.01 20.00 1 than Na	0,1 100.0 11111	1 20000 Aufa =	1 1000 : Fire as	1 20000 553y/AA	0.01 10.00 S	0.01 10.00	0.01 10.00	l 20000	1 1000	0.01 10.00	1 2000 0	0.01 10.00	2 2000 0	3 100	5 100	2 1000	2 100	1 10000	5 100	3 1000 (1 20000

.

VESTERN CON MINING CORP.

REPORT 4: 880861 PA

ι...

Page 6 of 13

.

Sample Mumber L10000N 10025E L10000N 10050E L10000N 10075E L10000N 10100E L10000N 10125E	Ag ppm 0.1 0.1 3.7 0.6 1.B	A1 2 1.18 1.95 1.72 0.97 0.64	As ppa 125 108 35 114 111	Au6E0 ppb 150 30 40 95 70	Au ppm (3 (3 (3 (3 (3 (3)	Ba 9pm 180 48 27 47 37	Bi ppm 3 (3 (3 (3	Ca 2 0.32 0.16 0.30 0.10 0.17	Cd ppm 2.5 3.5 1.1 1.2 1.2	Co ppa 22 4 3 3	Ст ррж 9 20 5 11 11	Cu ppn 579 1114 1503 722 257	Fe 1 5.44 >10.00 1.92 4.87 4.20	K 10 0.10 0.11 0.10 0.08 0.08	Hg 0.81 0.52 0.24 0.17 0.17	Ил 1604 149 81 98 79	Ho 998 6 4 2 4 2	0.03	Ni 23 19 6 5	P 2. 0.20 0.24 0.19 0.28 0.44	Pb pp= J11 117 52 97 83	Pd (3 (3 (3 (3 (3 (3	Pt	55 pp# (2 (2 (2 (2 (2	5a ppn 4 5 3 4 4	Sr pp m 30 14 26 8 11	U (5 (5 (5 (5 (5	¥ (3 (3 (3 (3 (3	2n pp= 285 84 57 104 73
LL0000N 10150E L10000N 10175E L10000N 10200E L10000N 10225E L10000N 10250E	1.3 3.2 5.1 2.5 3.2	0.80 0.56 0.41 0.65 0.44	143 118 127 94 137	70 160 45 255 240	(3 (3 (3 (3 (3	194 110 21 215 291	4 (3 3 (3 (3	0.05 0.05 0.08 0.16 0.10	1.2 0.3 1.1 1.1 1.2	16 5 4 16 10	11 13 22 7 7	113 103 370 415 192	5.97 2.83 5.00 3.04 3.50	0.08 0.07 0.08 0.10 0.08	0.27 0.22 0.17 0.32 0.20	1366 139 121 815 326	5 14 3 14 19	0.03 0.02 0.03 0.03 0.02	9 8 9 7	0.29 0.13 0.22 0.17 0.16	110 75 48 98 83	(3 (3 (3 (3 (3	<2 <2 <2 <2	(2 (2 (2 (2 (2 (2	5 3 4 5	16 19 34 38	(5 (5 (5 (5 (5	(3 (3 (3 (3 (3	140 58 109 79 72
L10000N 10275E L10000N 10300E L10000N 10325E L10000N 10350E L10000N 10375E	21.1 3.1 0.1 0.4 0.6	0.34 0.24 0.24 0.51 0.46	201 241 262 190 113	270 350 560 105 110	(3 (3 (3 (3 (3	41 155 99 121 72	3 3 (3 4 (3	0.08 0.04 0.05 0.04 0.01	1.3 1.5 1.2 2.2 0.5	4 4 3 19 4	16 4 3 15 11	570 177 452 417 104	4.74 5.08 4.83 7.81 4.30	0.08 0.08 0.05 0.07 0.05	0.12 0.13 0.14 0.30 0.20	69 65 63 1405 435	8 20 19 9 5	0.03 0.03 0.02 0.03 0.03 0.02	7 4 6 15 7	0.22 0.28 0.22 0.25 0.17	53 B7 64 132 58	(3 (3 (3 (3 (3	(5 (5 (5 (5 (5	(2 (2 (2 (2 (2	6 5 3 4 4	14 45 34 17 51	(5 (5 (5 (5 (5	(3 (3 (3 (3 (3	55 48 69
L10000N 10400E L10000N 10425E L10000N 10450E L10000N 10475E L10000N 10500E	0.1 0.1 0.6 3.7 2.5	0.68 2.74 0.81 0.40 0.85	131 161 122 104 187	40 60 115 95 120	(3 (3 (3 (3 (3	76 54 111 88 168	(3 14 3 3 7	0.05 0.15 0.02 0.07 0.13	[.1 5.5 1.5 1.2 3.5	17 52 4 5 62	13 6 13 5 9	75 71	5.04 >10.00 6.12 5.25 >10.00	0.06 0.15 0.07 0.08 0.12	0.27 0.10 0.08 0.05 0.19	2251 5155 141 172 3835	3 17 6 9 10	0.02 0.05 0.02 0.02 0.02	14 27 9 6 19	0.24 0.29 0.28 0.32 0.32	93 63 117 85 133	(3 (3 (3 (3 (3	(5 (5 (5 (5 (5	(2 (2 (2 (2 (2 (2	3 7 5 5 7	8 88 58 50 189	(5 (5 (5 (5	(3 (3 (3	160 407 76 76 283
L10000M 10525E L10000M 10575E L10000N 10600E L10000N 10625E L10000W 10650E	0.1 0.4 0.1 0.1 0.5	0.34 0.88 0.80 0.66 2.12	291 175 92 82 101	55 265 45 60 25	(3 (3 (3 (3 (3	69 179 97 118 85	7 3 (3 (3 (3	0.07 0.01 0.01 0.02 0.01	2.9 1.7 0.3 0.6 1.2	3 0 3 7 75	11 12 8 0 15	207 148 27 54 175	>10.00 6.83 2.92 4.05 4.80	0.08 0.05 0.05 0.05 0.05	0.08 0.19 0.08 0.08 0.30	59 413 117 591 4881	6 11 3 5 4	0.03 0.02 0.02 0.02 0.02	10 8 5 6 14	0.32 0.19 0.19 0.46 0.22	52 123 70 75 67	(3 (3 (3 (3 (3	(5 (5 (5 (5	(2 (2 (2 (2 (2	6 5 4 5 4	43 43 13 13 5	<5 (5 (5 (5 (5	<pre><3 <3 <3 <3 <3 <3</pre>	56 - 85 44 51 120
L10000N 10700E L10000N 10725E L10000N 10750E L10000N 10775E L10000N 10800E	0,1 0.1 0.4 1.2 0,1	1.36 1.12 0.86 1.08 1.55	140 163 168 170 105	55 25 40 35 20	(3 (3 (3 (3 (3	85 52 68 53 57	4 4 3 (3	0.01 0.01 0.01 0.01 0.01	1.8 1.8 1.2 1.2	15 5 6 16	17 16 17 18 15	97 125 117 59 50	7.29 7.55 6.65 5.82 5.44	0.07 0.07 0.07 0.07 0.05	0.29 0.30 0.15 0.17 0.22	1386 249 124 114 2583	4 4 5 5	0.03 0.03 0.02 0.02 0.02	12 9 10 13 12	0.34 0.29 0.34 0.25 0.20	80 82 73 59 55	(3 (3 (3 (3 (3	(5 (5 (5 (5 (5	(2 (2 (2 (2 (2 (2	5 5 7 6	10 5 5 4 3	(5 (5 (5 (5 (5	(3 (3 (3 (3 (3	139 102 86 74 102
L10000N 10825E L10000N 10850E L10000N 10875E L10000N 10900E L10000N 10925E	0.1 0.1 0.1 0.1 0.1	0.55 0.64 1.35 1.82 1.54	123 40 128 152 90	15 10 40 50 20	(3 (3 (3 (3 (3	60 64 58 64 96	(3 (3 (3 (3 (3	0.01 0.01 0.02 0.02 0.25	0,1 0,1 1.5 1.3 1.3	4 2 15 37 20	5 4 19 16 15	17 12 80 134 77	1.83 1.23 7.30 5.20 5.29	0.03 0.04 0.05 0.05 0.08	0.19 0.08 0.26 0.41 0.51	107 57 1159 1933 926	1 5 3 3	0.01 0.01 0.02 0.02 0.03	6 3 15 14 20	0.12 0.07 0.20 0.19 0.22	28 27 75 59 67	(3 (3 (3 (3 (3	(5 (5 (5 (5 (5	(2 (2 (2 (2 (2 (2	3 3 8 4 4	4 3 3 3 29	(5 (5 (5 (5 (5	(3 (3 (3 (3 (3	25 114 149
L10000K 10950E L10000K 10975E L10000K 11000E L10100N 9850E Minimum Detection	0.1 0.1 0.1 2.5	1.65 0.79 2.34 1.43	193 170 75 118 3	30 20 30 95 5	(3 (3 (3 (3	63 65 61 115	(3 3 (3 4 3	0.06 0.06 0.34 0.26	1.5 1.5 1.1 1.5 0.1	27 27 8 18	15 14 13 16	92 37 90	6.22 6.49 4.92 5.27	0.07 0.07 0.11 0.10 0.01	0.34 0.20 0.27 0.75	2622 2487 526 1385	3	0.03 0.02 0.02 0.03	16 15 11 11	0.20 0.39 0.15 0.17	72 65 58 125 2	(3 (3 (3 (3	(5 (5 (5 (5	(2 (2 (2 (2 (2	5 5 7 7 2	7 6 46 33	(5 (5 (5 (5	(3 (3 (3 (3	172 103 101 211
Maximum Detection C = Less than Minimum is =	50.0	10.00	0001	10000	1000	1000	1000	20.00	100.0	20000	1000	20000	10.00			20000	1000		20000		20000	100	100	1000	-	0000	100	1000	20000

REPORT 0: BEOB61 PA		WESTER	N CON MIN	IING CORI	.	•																		Pag	e 70	1 13	2	
Sample Number	Åg ppe	Al A I pp		Au	82	Bi	Ca I	۲ď	Co	Cr	Cu	Fa	ĸ	Mg	ňa	Ko	_		P	РЪ	84	Pt	Sb	Sn	Sr	U	W	In
L10100N 9875E		.87 15	••	рра (З [,]	pp n 183	рра (3	0.11	pp∎ 0.4	ppe S	рря. 8	ppm 142	ž 4.25	1 0.05	I 0.44	рря 214	pp s 19			1	pp. 115	pp∎ {3	pp∎ (S	ppa (2	pps 3	pp =	pps /S	epe 20	ppe
L10100N 9900E		.88 20		(3	175	(3	0.04	0.7	4	9	161	5.36	0.05	0.36	224	22			0.24	111 172	(3	(5	(2 (2	3	32 28	(5 (5	(3 (3	81 112
L10100N 9925E		.24 9	225	(3	165	(3	0.12	0.6	10	17	B7	3.66	0.06	0.55	677	9			Q.18	119	(3	(5	(2	3	17	(5	(3	122
£10100N 9950E	1.1 1	.05 ii	5 15	<3	147	(3	0.24	1.4	17	9	331	4.65	0.09	0.63	1344	5				112	(3	(5	(2	Ă	25	<5	(3	208
L10100N 9975E	_ 1.5 I	.09 17	0 180	(3	274	3	0.10	1.4	20	10	499	6.38	0.07	0.57	1959	10				185	(3	<5	(2	é	19	(5	(3	195
L10100N 10000E	1.2 1			(3	112	(3	0.12	0.7	10	12	507	4.61	0.07	0.47	707	5	0.03	12	0.23	109	(3	۲)	(2	4	14	۲5	(3	151
L10100N 10025E -		.18 5		(3	59	<3	9.17	0.1	9	8	57	2.82	0.07	0.51	35t	2			0.20	53	(3	(5	(2	4	24	(5	(3	70
L10100N 10050E		.93 11		(3	73	(3	0.05	0.1	4	9	57	3.6Z	0.06	0.22	139	7	0.02	- 4	0.20	80	(3	(5	<2	4	15	(5	(3	56
L10100N 10075E		.95 6		(3	114	(3	0.02	0.1	5	7	34	2.66	0.05	0.21	419	- 4	0.02	- 4	0.27	89	(3	(5	<2	4	13	(5	(3	58
L10100N 10100E	1.3 0	.69 B;	2 125	(3	53	<3	0.05	0.1	3	6	81	1.92	0.05	0.14	59	4	0.02	4	0.14	45	(3	(5	<2	3	9	<5	(3	46
L10100N 10125E		.93 11		(3	78	(3	0.03	0.7	5	12	85	5.16	0,06	0.26	392	7	0.03	6	0.25	105	(3	<5	(2	5	10	(5	(3	93
L10100N 10150E		.55 23		(3	41	· (3	0.02	0.1	3	3	17	0.47	0.04	0.07	29	1		2	0.03	19	(3	<5	<2	3	5	<5	K 3	72
L10100N 10175E		.70 150		(3	177	4	0.04	1.2	6	18	425	6.98	0.07	0.32	317	5		9	0.27	104	(3	(5	(2	5	12	(5	(3	151
L10100N 10200E L10100N 10275E		.31 116 .44 45		(3 (3	64	(3 (3	0.02	0.1	4	3	123	2.34	0.05	0.02	42	9		-	0,09	44	(3	(5	(2	3	1	(5	(3	
CIVIAN 10215C	1.2 0		, 50A	13	31	13	0.08	0,1	3	12	396	1.83	0.05	0.10	36	7	0.02	5	0.14	26	(3	(5	<2	3	Н	(5	(3	
L10100N 10300E	1.9 0	. 26 27	5 335	(3	139	<3	0.03	0.7	3	3	294	5.45	0.07	0.14	61	18	0.02	3	0.27	81	(3	(5	<2	4	39	(5	(3	50
L101000 10325E		.48 208		(3	214	(3	0.02	0.7	5	5	236	5.08	0.07	0.20	156	20	0.03	4	0.26	88	(3	<5	<2	4	93	(5	(3	55
L10100N 10350E		.78 134		<3	193	3	0.11	1.5	22	11	262	6.45	0.10	0.36	773	5	0.04	20	0.24	92	(3	(5	(2	5	26	(5	(3	197
L10100N 10375E		.21 180		(3	151		0.05	1.9	71	8	368	7.42	0.10	0.23	5667	5		19	0.35	162	<3	۲)	{2	4	37	(5	<3	194
L10100N 10400E	0,9 1.	.50 160	5 120	<3	191	7	0.01	2.7	39	11	364	>10.00	0.11	0.11	3142	14	0.05	10	0.28	107	۲3	(5	(2	6	121	۲5	(3	109
L10100N 10425E		.98 164		(3	265	3	0.04	1.2	22	13	232	8.81	0.05	0.30	2022	4			0.36	112	(3	(5	(2	4	36	<5	(3	152 -
L10100N 10450E		.68 179		(3	122	4	0.02	2.1	42	15		>10.00	0.04	0.24	3738	4		11	0.38	165	(3	(5	(2	4	34	<5	(3	159
L10100N 10475E L10100N 10500E		.80 15: .70 156		(3 (3	182 51	4 (3	0.01	1.5 0.9	6 9	14 7	180	9.42	0.04	0.25	747	3		6	0.35	153	(3	<s< td=""><td>(2</td><td>4</td><td>33</td><td>(5</td><td>(3</td><td>103</td></s<>	(2	4	33	(5	(3	103
L10100N 10525E		.14 152		(3	86	(3	0.05 0.01	1.2	11	21	279 228	6.71 8.26	0.04	0.19	556 871	2		14	0.32	141 115	(3 (3	(5	<2 <2	(2	43 26	(5 (5	(3	17 3 B0
							0.01	1.1	**	21	140	0.20	0.03	0.24	071	•	0.02	,	0.33	113	13	<5	12	۲	20	(3	(3	00
L10100N 10550E	4.5 2.			(3	55	(3	0.02	1.1	15	25	316	6.73	0.02	0.31	85 6	- 4	0.02	13	0.27	69	<3	(5	<2	3	12	(5	(3	135
L10100N 10575E		.04 98		(3	141	(3	0.04	0.3	?	15	99	5.50	0.03	0.21	4495	3			0.30	67	<3	<5	<2	4	14	(5	(3	103
L10100N 10600E		.58 117		(3	110	(3	0.01	1.2	6	15	103	7.46	0.03	0.20	451	7			0.22	102	(3	<5	(2	6	13	(5	(3	76
L10100N 10625E L10100N 10650E		.23 17(.72 B((3 (3	72 56	6 (3	0.01	2.5	3 2	15		>10.00	0.05	0.19	215	6		5	0.34	120	(3	(5	(2	5	12	(5	(3	78
Ctoroda 10050E	V.1 V.	.1 <u>7</u> D.	ول ا	13	96	(3	0.02	0.3	1	9	51	4,64	0.02	0.10	119	2	0.01	4	0.1B	47	(3	(5	<u> <2</u>	5	8	(5	(3	46
L10100N 10675E		43 102		(3	56	(3	0.07	1.1	9	13	73	6.34	0.06	0,29	695	3	0.02	11	0.16	50	(1	<5	<2	5	7	<5	(3	92
L10100N 10700E		.94 129		(3	43	4	0.02	2.2	19	23	80	9.52	0.06	0.41	2175	7		11	0.21	77	<1	<5	<2	В	5	(5	(3	
L10100N 10725E		.58 124		G	56	G	0.02		14	20	56	6.28	0.05	0.37	2064	4		10	0.19	65	K 3	(5	<2	6	4	(5	(3	6 - e
L10100N 10750E L10100N 10775E		.13 155		(3	53	5	0.01	1.5	15	78	9 B	7.31	0.05	1.62	1639	4		17	0.31	61	(3	(5	<2	5	3	(5	(3	145
	0.1 1.	.29 142	35	(3	59	(3	0.01	1.1	12	17.	62	6.00	0.05	0.33	791	3	0.02	11	0.21	55	(3	(5	(2	5	2	(5	(3	79
LIGIOON IDBODE	0.1 2.			(3	31	{3	0.01	1.1	6	13	73	6.26	0,05	0.22	449	5	0.02	6	0.18	76	(3	(5	(2	6	3	(5	(3	102
LIGIOON LOBSCE		.71 155		(3	40	3	0.01	1.9	33	21	123	6.89	0.07	0.68	1991	•	0.03	۱S	0.21	76	(3	(5	(2	6	2	<5	(3	232
L10100N 10875E		87 295		(3	38	5	0.01	2.2	30	42	115	8.18	0.07	1.32	265 3	4	0.03	19	0.33	98	(3	(5	(2	6	2	{5	(3	315
L10400N 10900E	0.6 2.	.49 101	40	(3	53	(3	0.14	1.2	15	17	60	5.40	0.07	0.47	940	4	0.03	11	0.28	72	(3	<5	<2	7	12	(5	(3	148
Minimum Detection	0.1 0.	.01 3	5	3	1	- 3	0.01	0.1	1	1	l	0.01	0.01	0.01	1	1	0.01	t	0.01	2	3	5	2	2	1	5	3	1
Maximum Detection	50.0 10.	00 1000		1000	1000	1000	20.00	100.0	20000		20000	10.00		10.00	-	1000	10,00		10.00	20000	100	100	1000	-	10000	100	-	20000
C = Less than Minimum	is = Insuffici	ient Sampl	e ns = i	No sampl	∎ } ≖	Greater	than P	laxiaum	AuFA =	Fire a	assay/Ai	AS ,																
														•														

1

.

1

.

.

١.....

ſ 1

.•

1

REPORT 1: 880851 PA	WESTERN CON MINING CORP.				Page 8 of 13
Sample Number Li0100K 10925E L10100N 10950E L10100N 10975E L10100N 11000E L10200N 9575E	Ag Al As Au6E0 Au Ba ppn I ppn ppn	Bi Ca Cd Co ppa 2 ppa ppa ppa <3	ppm ppm 1 1 1 1 1 ppm ppm 1 1 1 ppm ppm 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 7 1 0.03 0.11 5 1 1 2 1 2 7 1 0.03 0.11 5 1 1 1 1 2 1 0.05 0.35 2 5 1 <th1< th=""></th1<>	91 3 0.03 11 0.25 60 (3) 193 4 0.03 17 0.19 59 (3) 151 1 0.01 7 0.15 49 (3) 13 4 0.04 25 0.26 60 (3)	Pt Sb Sn Sr U W Zn ppn c5 (2 4 4 (5 (3 92 (5 (2 3 5 (5 (3 127 (5 (2 2 6 (5 (3 41 (5 (2 4 7 (5 (3 130 (5 (2 4 7 (5 (3 130 (5 (5 (3 14 (5 (5 (3 14 (5 (5 (5 (3 13) (5
L10200N 9700E L10200N 9725E L10200N 9725E L10200N 9750E L10200N 9775E	1.5 1.21 645 380 (3) 79 1.9 1.78 533 500 (3) 111 9.2 1.56 >1000 420 (3) 330 1.3 2.00 270 285 (3) 246 0.2 0.53 86 295 (3) 769	3 0.09 1.2 29 4 0.05 2.7 58 3 0.52 5.9 47 5 0.07 2.7 47 (3) 0.02 0.1 3	19 148 6.50 0.07 0.65 237 37 172 9.07 0.08 1.13 591 10 409 6.44 0.16 1.04 555 24 335 8.60 0.09 1.06 324	77 9 0.05 25 0.48 230 (3 113 9 0.06 33 0.44 367 (3 76 20 0.08 34 0.21 1508 (3	<5
L10200N 9800E L10200N 9825E L10200N 9850E L10200N 9875E L10200N 9900E	2.1 0.79 148 290 (3 168 0.9 1.01 72 150 (3 84 0.1 0.36 94 530 (3 200 0.1 0.59 65 325 (3 162 1.5 0.98 61 140 (3 202	(3) 0.06 0.5 3 (3) 0.06 0.1 4 (3) 0.01 0.1 2 (3) 0.02 0.1 2 (3) 0.02 0.1 2 (3) 0.15 0.6 B	9 23 1.95 0.06 0.18 5 4 41 1.68 0.05 0.05 5 5 5 23 0.97 0.05 0.07 1	60 23 0.02 7 0.20 170 (3) 57 12 0.02 8 0.05 75 (3) 27 13 0.02 5 0.04 137 (3) 18 8 0.02 6 0.04 73 (3) 44 4 0.02 17 0.11 55 (3)	C5 C2 4 17 C5 C3 62 C5 C2 4 15 C5 C3 43 C5 C2 2 28 C5 C3 39 C5 C2 2 28 C5 C3 39 C5 C2 2 22 C5 C3 39 C5 C2 3 15 C5 C3
L10200N 9925E L10200N 9950E L10200N 9975E L10200N 10000E L10200N 10025E	0.9 1.23 78 65 (3 130 0.3 0.93 55 140 (3 108 1.9 1.23 188 250 (3 135 0.3 0.92 63 155 (3 110 1.3 0.96 140 130 (3 75	(3 0.03 0.4 6 (3 0.11 0.2 10 3 0.03 1.2 13 (3 0.08 0.1 8 (3 0.05 0.5 6	12 60 2.79 0.07 0.33 36 8 123 1.91 0.07 0.43 56 13 402 6.47 0.08 0.39 119 6 115 2.06 0.07 0.29 25 7 109 3.93 0.08 0.17 11	B2 4 0.02 12 0.09 59 (3 92 12 0.04 11 0.25 162 (3 59 5 0.02 9 0.09 55 (3	(5) (2) 4 7 (5) (3) 94 (5) (2) 4 13 (5) (3) 102 (5) (2) 4 16 (5) (3) 179 (5) (2) 4 16 (5) (3) 179 (5) (2) 4 16 (5) (3) 63 (5) (2) 6 12 (5) (3) 73
L10200N 10050E L10200N 10075E L10200N 10100E L10200H 10125E L10200N 10150E	2.1 0.79 122 270 (3 68 1.5 0.72 124 185 (3 121 1.5 0.57 173 345 (3 233 1.3 0.63 116 265 (3 331 1.3 0.69 125 290 (3 132	(3 0.01 0.6 5 (3 0.13 0.3 6 (3 0.05 0.5 5 (3 0.07 0.3 5 (3 0.13 0.1 3	B 122 3.79 0.08 0.10 10 5 447 3.08 0.11 0.27 19 4 126 3.66 0.11 0.23 16 4 352 1.80 0.11 0.31 11 4 260 2.82 0.05 0.29 11	30 12 0.03 10 0.19 118 (3) 51 15 0.03 8 0.19 127 (3) 10 18 0.03 8 0.15 133 (3)	(5) (2) 5 8 (5) (3) 57 (5) (2) 4 68 (5) (3) 96 (5) (2) 5 65 (5) (3) 69 (5) (2) 5 193 (5) (3) 66 (5) (2) 2 84 (5) (3) 74
L10200N 10175E L10200N 10225E L10200N 10250E L10200N 10275E L10200N 10300E	2.1 0.47 116 250 <3	<pre><3 0.06 1.1 28 <3 0.02 0.6 12</pre>	I 82 2.21 0.04 0.19 7 18 579 >10.00 0.06 0.34 40 15 301 6.03 0.05 0.37 218 9 493 5.09 0.04 0.21 76 41 248 9.57 0.07 1.21 240	07 14 0.03 14 0.26 93 (3 36 5 0.02 24 0.23 71 (3 56 12 0.02 13 0.17 95 (3	(5) (2) 2 120 (5) (3) 50 (5) (2) 6 21 (5) (3) 88 (5) (2) 6 21 (5) (3) 88 (5) (2) 4 15 (5) (3) 182 (5) (2) 3 30 (5) (3) 99 (5) (2) 6 29 (5) (3) 230
L10200N 10325E L10200N 10350E L10200N 10375E L10200N 10400E L10200N 10425E	0.1 1.53 259 70 (3 256 0.3 1.08 195 45 (3 225 0.9 1.20 114 65 (3 91 0.1 1.67 167 70 (3 78 0.1 1.63 145 70 (3 58	(3 0.18 1.6 11 (3 0.02 0.9 5 3 0.01 1.1 5	23 425 9.68 0.07 0.78 243 25 127 5.86 0.07 0.92 65 26 50 5.20 0.05 0.09 27 24 151 6.95 0.05 0.25 31 43 70 5.40 0.05 0.68 100	56 3 0.02 19 0.21 86 (3 74 6 0.02 8 0.45 87 (3 19 5 0.02 12 0.22 98 (3	(5) (2) 6 23 (5) (3) 254 (5) (2) 4 23 (5) (3) (5) (2) 8 6 (5) (3) (5) (2) 8 6 (5) (3) (5) (2) 5 10 (5) (3) (5) (2) 6 8 (5) (3)
L10200N 10450E L10200N 10475E L10200N 10500E L10200N 10525E	0.1 1.49 147 55 <3	5 0.05 2.1 12 (3 0.03 0.1 7	34 62 6.65 0.06 0.26 35 70 104 9.89 0.07 1.18 182 13 54 3.90 0.05 0.21 28 23 120 5.82 0.06 0.75 347	28 5 0.03 13 0.24 343 (3 30 3 0.02 9 0.11 66 (3	(5 (2 7 9 (5 (3 84 (5 (2 9 6 (5 (3 166 (5 (2 5 10 (5 (3 55 (5 (2 6 11 (5 (3 131
Minimum Detection Maximum Detection < ∓ Less than Minimum i	0.1 0.01 3 5 3 1 50.0 10.00 1000 10000 1000 1000 s = Insufficient Sample ns = No sample >= (3 0.01 0.1 1 1000 20.00 100.0 20000 10 ireater than Maximum AuFA = Fi	1 1 0.01 0.01 0.01 000 20000 10.00 10.00 10.00 2000 ire assay/AAS	i i 0.01 i 0.01 2 3 10 1000 10.00 20000 10.00 20000 100 1	5 2 2 1 5 3 1 100 1000 100 1000 100 1000 20000

i.....'

REPORT 4: BB0861 PA		KE	STERN (ININ NO.	NG CORF	·.			-																Pag	e 9 o	f 13		
Sample Kumber	Ag pp=	AL X	Ås ppa	AuGEO ppb	Au ppe	Ba ppm	Bi ppa	Ċa X	Cd ppa	Co ppe	Cr	Cu ppa	Fe I	X I	Ng X	Ba	No	Na	Ni	P	Pb	Pd	Pt	SD	5n	Sr	U	¥.	Zn
L10200N 10550E L10200N 10575E	0.1	0.97	44 136	35 70	(3	43	(3	0.04	0.1	1	ppm 9	17	1.81	0.01	Q.12	рр м 440	ppm (l	1 0.01	ppe 3		908 37	900 (3	90# (5	ppa (2	pp s 3	pp∎ 7	pp∎ (5	ррж (3	pp≞ 43
L10200N 10500E		1.82	204	50	(3 (3	119 76	4	0.02	2.1 2.2	5 10	27 24		>10.00	0.02	0.53	577	5	0.02	8	0.33	71	(3	(5	(2	4	9	(5	(]	96
L10200N 10525E		1.40	146	65	(3	99	<3	0.01	1.1	4	15	49	>10.00	0.03 0.02	0.43	557	5	0.03	- 14	0.20	85	(3	(5	(2	5 7	5	(5	(3	110
L10200N 10550E		2.20	195	85	ä	90	5	0.02	2.5	15	28		>10.00	0.04	0.19 0.62	171 1597	6		6 14	0.15 0.27	52 87	(3 (3	(5 (5	(2 (2	5	9 8	(5 (5	(] (3	61 111
L10200N 10675E	0.1	2.07	176	150	(3	103	. 4	0.01	2.1	9	16	54	8,95	0.03	0.29	B1 B	6	0.03	10	9.12	84	(3	(5	(2	8	3	(5	(3	92
L10200N 10700E		1.33	64	55	(3	60	(3	0.02	0.1	3	7	16	2.02	0.01	0.13	160	t i	0.01	4	0.07	31	(3	(5	(2	ž	5	(5	(3	- 51
L10200N 10725E	0.1	1.92	165	470	(3	92	5	0.08	2.5	14	38	160	9.95	0.05	0.57	997	4	0.03	16	0.27	90	(3	(5	(2	â	13	(5	(3	140
L10200N 10750E	0.1	1.55	90	15	(3	63	(3	0.04	1.9	6	10	30	7.63	0,04	0.11	1108	6	0.03	5	0.20	82	(3	(5	(2	9	5	Ġ	(3	88
L10200N 10775E	0.1	1.29	140	30	(3	122	{3	0.01	1.2	18	23	94	6.38	0.02	0.15	1403	3	0.02	17	0.26	98	(3	<5	(2	3	3	<5	(3	12B
L10200N 10800E	1.8	3.55	159	530	(3	37	(3	0.01	1.3	2	14	47	6.96	0.04	0.07	184	6	0.03	4	0.16	98	(3	(5	<2	7	3	۲)	(3	60
L10200W 10825E		2.29	324	25	(3	67	3	0.01	1.7	18	13	79	7.68	0.04	0.72	1358	2	0.04	12	0.27	267	(3	(5	<2	3	3	(5	(3	384
L10200N 10875E		3.37	37	45	(3	38	(3	0.05	0.6	2	8	57	3.2B	0.05	0.13	124	3	0.04	5	0.19	82	(3	<5	<2	6	B	<5	(3	59
L10200N 10900E		0.42	377	30	(3	189	5	0.02	2.2	17	15		>10.00	0.07	0.04	1890	5	0.04	10	1.17	211	(3	(5	<2	5	39	(5	(3	
L10200N 10925E	0.1	0.62	413	70	(3	86	3	0.02	1.2	12	10	34	7.62	0.07	0.04	3003	3	0.04	10	0.24	84	(3	<5	<2	4	3	(5	(3	
£10200N 10975E	1.8	1.87	134	35	(3	68	(3	0.17	1.1	10	13	26	4.97	0.10	0.25	2298	3	0.04	11	0.36	74	(3	(5	(2	5	18	(5	(3	161
L10200N 11000E	0.1	0.64	561	60	{3	59	{3	0.02	0.3	16	10	49	4.92	0.06	0.04	2961		0.03	16	0.25	76	(3	(5	(2	3	3	(5	(3	175
L10300N 10255E	0.1	0.B5	19B	265	(3	21	(3	0.11	1.1	14	7	1293	5.72	0.04	0.32	475	15	0.02	10	0.25	112	(3	(5	<2	<2	85	۲5	(3	145
L10300N 10400E		1.40	183	55	{3	85	(3	0.05	0.5	11	32	105	5.69	0.02	0.47	530	3	0.02	12	0.25	86	(3	<5	(2	4	13	(5	(3	97
L10300N 10425E	0.1	1.26	135	80	<3	85	(3	0.08	0.5	11	20	74	4.05	0.02	0.39	403	2	0.01	11	0.15	51	(3	<5	(2	4	16	<5	(3	87
L10300N 10450E		1.17	121	30	<3	81	<3	0.10	0.3	11	19	69	3.91	0.02	0.44	376	2	0.01	14	0.14	45	(3	(5	(2	4	17	(5	(3	80
L10300N 10475E		1.12	257	60	(3	120	3	0.04	1.5	7	22	220	7.83	0.03	0.22	403	3	0.03	8	0.43	106	(3	(5	<2	4	\$	(5	<3	128
L10300N 10500E		1.26	235	75	(3	105	3	0.04	1.2	8	24	219	8.03	0.03	0.29	350	3	0.03	8	0.37	111	(3	(5	(2	5	6	(\$	<3	125
L10300N 10525E		1.10	233	65 75	(3	113	3	0.04	1.5	8	22	212	7.46	0.04	0.22	302	3	0.03	7	0.37	104	(3	(5	(2	4	6	<5	(3	121
L10300X 10550E	0.1	2.63	119	75	(3	57	5	0.08	3.6	43	37	202	9,43	0.04	0.83	1985	. 3	0.05	19	0.20	362	(3	۲)	(2	4	5	(5	(3	396
L10300N 10575E	0,1	2.56	111	60	(3	60	5	0.10	3.5	36	36	195	9.31	0.05	0.85	1775	3	0.05	17	0.19	334	(3	(5	(2	4	6	(5	(3	399
L10300N 10500E		1.47	76	30	(3	105	(3	0.18	0.7	9	9	60	4.12	0.04	0.42	259	1	0.02	7	0.15	88	(3	(5	(2	5	26	(5	(3	76 .
L10300N 10525E		1.23	50	20	(3	30	3	0,12	1.5	19	17	215	6.83	0.04	0.31	556	- 4	0.03	12	0_19	118	(3	(5	<2	7	15	(5	(3	104
L10300N 10650E		1.05	38	20	<3	75	(3	0.10	0.3	6	13	43	2.41	0.04	0.34	520	1	0.01	6	0.11	35	(3	<5	(2	4	12	<5	(3	79
L10300N 10675E	0.1	1.62	88	20	(3	61	(3	0.03	0.3	7	10	34	3.17	0.03	0.21	227	3	0.02	6	0.11	45	(3	(5	(2	6	4	(5	<3	65
L10300N 10700E	2.1	1.47	66	70	(3	60	(3	0.02	0.5	7	22	45	2.71	0.03	0.20	222	4	0.02	4	0.05	70	(3	<5	(2	10	4	(5	(3	"
L10300N 10725E	0.3	1.45	105	30	(3	54	- 4	0.06	2.1	10	38	92	7.31	0.05	0.63	912	4	0.04	11	0.18	62	(3	(5	(2	7	10	(5	(3	
L10300N 10750E		2.70	179	50	(3	\$I	(3	0.04	1.2	9	18	47	4,68	0.05	0.55	578	4	0.03	14	0.17	92	(3	<5	(2	5	6	(5	(3	1
L10300N 10775E		2.74	165	95	(3	56	(3	0.04	1.1	9	17	- 44	4.72	0.02	0.55	893	3	0.02	9	0.18	82	(3	(5	<2	3	6	(5	(3	127
L10300N 10800E	0.1	1.95	113	35	(3	135	(3	0,48	1.7	16	15	68	5.19	0.10	0.91	2473	3	0.05	17	0.21	71	(3	(5	(2	3	33	(5	(3	494
L10300N 10825E	0.1	t.77	11B	35	(3	63	(3	0.03	0.7	6	17	51	4.43	0.02	0.52	350	2	0.02	8	0.16	123	(3	{5	(2	2	5	(5	(3	72
L10300N 10850E		2.24	534	35	<3	104	•	0.13	0.8	33	18	55	7.17	0.05	1.16	7071	2	0.03	n	0.35	171	(3	(5	(2	3	10	(\$	(3	133
L10300N 10875E		1.67	172	(5	(3	88	4	0.04	2.1	28	18	53	8.74	0.05	0,46	1992	3	0.04	14	0.31	21B	(3	{5	(2	3	3	(5	{3	197
L10300N 10900E	1.1	1,87	69	15	(3	43	(3	0.07	0.7	5	10	16	4.30	0.02	0.22	528	3	0.02	4	0.11	71	(3	(5	{2	7	7	(5	(3	73
Miniaua Detection	0.1 0	0.01	3	5	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	I	0.01	1	0.01	2	3	5	2	2	r	5	3	1
Maxigue Detection			1000		1000		1000			20000	•	20000			10.00	-	-		20000		20000	100	100	1000		10000	100	-	20000
C = Less than Minisum is =						• > •	Greater	than 1	azīsue	AuFA =	Fire a	ssav/A	AS						_,								• • •		
			-									,	*																

1

j

)

)

)

)

)

)

)

)

)

)

÷.

)

Т

)

.

i____

1																													
	REPORT D: BEOB61 PA		¥:	ESTERN (CON MINI	NG CORS	?.																		Page	e 10 a	1 13		
	Sample Number	Ag	A1	As	Au6EO	Âu	Ba	Bi	Ca	Cď	Co	Cr	Cu l	ie I	Mg	Ka	No	Ka	Ki	Þ	Pb	Pđ	Pt	Sb	Sn	Sr	n	u	
ز ۲	L10300N 10925E L10300N 10950E L10300N 10975E L10300N 11000E L10400N 10200E	ppm 0.1 0.1 0.3 0.1 3.6	1.70 0.55 0.41 0.70 1.09	рра 65 181 174 93 127	рръ 20 20 5 5 100	ррв (3 (3 (3 (3 (3 (3	ppm 127 73 81 85 122	pps (3 (3 (3 (3 (3 (3	I 0.42 0.03 0.03 0.03 0.03 0.04	ppm 1.5 0.6 0.6 0.2 1.4	pp# 22 6 6 7 5	908 10 7 8 5 12		1 1 3 0.12 3 0.03 3 0.03 3 0.03 1 0.03	2 0.51 0.06 0.07 0.03	pp# 7455 248 163 834 205	pp# 2 2 3 1 8	1 0.03 0.02 0.02 0.02 0.02	ppm 48 12 12 5 9	1 0.17 0.14 0.12 0.14 0.14 0.17	998 42 55 69 34 81	(3) (3) (3) (3) (3) (3) (3)	pp# (5 (5 (5 (5 (5	\$P# (2 (2 (2 (2 (2 (2 (2) (2	pp∎ 6 3 2 2	9 37 8 9 5 37	ppm (5 (5 (5 (5 (5 (5	(3) (3) (3) (3) (3) (3) (3)	P: 1 1 6
)	L10400N 10225E L10400N 10250E L10400N 10300E L10400N 10350E L10400N 10350E	1.6 0.3 1.6 0.1 0.9	0.57 0.72 1.67 0.72 1.04	174 219 290 172 94	45 155 120 85 45	(3 (3 (3 (3) (3)	506 118 162 97 91	7 (3 4 (3 (3	0.02 0.04 0.14 0.04 0.04	3.4 1.2 2.5 0.5 0.2	3 5 23 5 8	11 20 21 21 31	192 >10.0 246 5.1 441 8.1 110 4.5 83 2.6	80 0.07 14 0.11 10 0.07	0.34 0.49 0.11	160 185 872 99 204	7 10 7 4 2	0.04 0.02 0.03 0.02 0.02	8 10 24 9 9	0.61 0.16 0.27 0.42 0.17	142 62 118 57 31	(3 (3 (3 (3 (3	(5 (5 (5 (5	(2 (2 (2 (2 (2	2 2 (2 (2 (2	173 34 52 12 9	(5 (5 (5 (5	(3 (3 (3 (3 (3	t: 1) 1) ;
) .)	L10400N 10375E L10400N 10375E L10400N 10400E L10400N 10425E L10400N 10450E	0.7 1.9 0.6 0.7 1.6	0.48 2.28 1.43 1.58 1.47	133 108 146 257 167	155 120 30 50 30	(3 (3 (3 (3 (3	391 74 68 60 65	3 4 (3 (3 (3	0.04 0.05 0.16 0.03 0.06	2.4 2.1 0.8 1.5 0.8	8 12 14 15 8	B 115 15 21 17	406 8.4 94 7.2 292 4.0 145 5.7 52 4.3	8 0.08 6 0.09 7 0.07	0.78 0.28 0.45	145 312 683 468 16B	14 4 3 4 4	0.03 0.03 0.03 0.02 0.02	14 17 17 14 9	0.38 0.10 0.13 0.20 0.11	98 55 54 94 51	(3 (3 (3 (3 (3	(5 (5 (5 (5	(2 (2 (2 (2 (2 (2	(2 (2 (2 (2 (2 (2	89 15 13 12 13	<5 <5 <5 <5 <5	(3 (3 (3 (3 (3	1. E 15
)	LI0400N 10475E L10400N 10500E L10400N 10525E L10400N 10550E L10400N 10575E	1.9 0.7 1.5 0.7 1.6	1.76 1.64 2.42 2.29 1.61	115 210 244 222 253	40 25 35 30 (5	(3 (3 (3 (3	83 92 65 62 57	4 3 5 3	0.08 0.05 0.02 0.05 0.04	2.5 2.1 3.1 2.7 2.2	14 11 14 11 9	38 31 35 89 34	135 9.8 104 8.5 69 >10.0 54 >10.0 68 8.0	i 0.08 0 0.08 0 0.08	0.42 0.70 0.45	557 384 671 685 306	8 7 6 6	0.03 0.03 0.03 0.03 0.03	14 12 19 12 16	0.42 0.66 0.42 0.33 0.25	59 68 84 71 77	(3 (3 (3 (3 (3	(5 (5 (5 (5 (5	(2 (2 (2 (2 (2	(2 (2 (2 (2 (2 (2	38 21 5 5 5	(5 (5 (5 (5 (5	(3 (3 (3 (3 (3	£ ; ; ;
)	L10480N 10500E L10400N 10525E L10400N 10550E L10400N 10575E L10400N 10700E	0.7 0.9 1.9 1.9 0.5	3.80	383 >1000 >1000 >1000 >1000	50 40 50 10 25	(3 (3 (3 (3 (3	63 66 71 69 62	3 3 6 5 (3	0.02 0.05 0.08 0.16 0.06	2.1 3.1 4.4 3.4 1.1	18 17 58 38 8	24 39 65 69 11	75 7.4 82 8.5 384 >\$0.0 224 9.3 26 4.3	5 0.08 0 0.10 9 0.09	0.78 1.18 1.00	1457 1459 3394 2136 294	5 5 8 5	0.03 (0.01 0.04 0.03 0.02	14 14 31 20 9	0.28 0.35 0.26 0.25 0.18	131 139 252 62 56	(3 (3 (3 (3 (3	<5 <5 <5 <5 <5	(2 (2 (2 (2 (2 (2	(2 (2 (2 (2 (2	4 6 5 34 8	(5 (5 (5 (5 (5	(3 (3 (3 (3 (3	1E 14 15 E
;	L10400N 10725E L10400N 10750E L10400N 1075E L10400N 10800E L10400N 10825E	0.9 0.6 8.2 1.8 0.3	2.39 1.65 1.69 1.77 2.33	122 89 175 95 92	25 15 30 20 20	(3 (3 (3 (3 (3	76 55 88 56 94	4 (3 (3 (3	0.07 0.01 0.03 0.02 0.08	2.7 1.4 1.5 0.6 1.9	13 12 14 7 17	71 16 18 14 19	126 >10.0 43 6.5 47 6.6 22 3.9 59 6.8	7 0.07 9 0.07 2 0.06	0.49 0.37 0.27	1701 532 1932 234 1010	9 5 5 4 3	0.03 0.02 0.02 0.02 0.02 0.02	15 11 11 8 14	0.32 0.11 0.32 0.12 0.13	62 47 73 52 67	(3 (3 (3 (3 (3	(\$ (5 (5 (5 (5	(2 (2 (2 (2 (2	(2 (2 (2 (2 (2 (2	21 3 5 4 7	<5 <5 <5 <5 <5	(3 (3 (3 (3 (3	7 4 7 8
;	L10400N 10850E L10480N 10875E L10400N 10900E L10400N 10925E L10400N 10950E	0.1 0.1 2.4 0.1 0.1	2.41 1.25 0.51 1.69 0.98	125 384 >1000 207 122	30 10 30 20 20	(3 (3 (3 (3 (3	102 58 85 89 66	(3 (3 (3 (3 (3	0.05 0.01 0.05 0.02 0.03	1.2 1.7 1.7 1.9 0.6	13 12 6 8 7	18 14 8 19 10	35 4.2 53 6.2 41 6.2 35 7.4 21 3.7	3 0.06 9 0.07 9 0.07	0.54 0.31 0.10 0.45 0.11	1642 852 1021 697 886	3 3 4 3 3	0.02 0.02 0.02 0.02 0.02	12 13 8 9 7	0.18 0.20 0.30 0.22 0.18	77 59 140 89 43	(3 (3 (3 (3 (3	(5 (5 (5 (5 (5	(2 (2 (2 (2 (2 (2	(2 (2 (2 (2 (2 (2	5 2 3 4	(5 (5 (5 (5 (5	(3 (3 (3 (3 (3	, 10 3
•	L10400N 10975E L10400N 11000E L10500N 10200E L10500N 10225E	0.1 0.1 0.1 0.1	1.66 1.15 0.24 0.99	329 151 111 136	40 30 15 45	(3 (3 (3 (3	55 81 57 115	(3 (3 (3 (3	0.04 0.01 0.34 0.21	2.2 0.1 0.1 1.4	8 4 5 6	19 6 3 21	31 8.5 14 2.1 96 1.0 94 4.1	5 0.06 5 0.08	0.14 0.08 0.04 0.23	775 121 39 245	6 2 4 4	0.02 0.01 0.01 0.01	11 7 9 15	0.18 0.05 0.05 0.08	91 39 14 45	(3 (3 (3 (3	(5 (5 (5 (5	(2 (2 (2 (2	(2 (2 (2 4	3 3 18 14	<5 <5 <5 <5	(3 (3 (3 (3	6 2 6 7
	Minimum Detection	0.1 50.0	0.01	3	5	3	1	3	0.01	0.1	1	ı	E 0.0	0.01	0.01	E	1	0.01	ı	0.01	2	3	5	2	2	L	5	3	

0.1 0.01 3 1 3 0.01 0.1 1 1 1 0.01 0.01 1 1 0.01 3 5 1 0.01 2 3 3 5 2 2 L 5 **Maximum Detection** 001 100 [000 100 10000 100 1000 2000 { * Less than Minisum is = Insufficient Sample ns * Ho sample > * Greater than Maximum AuFA * Fire assay/AAS

,	REPORT \$: 880861 PA		WESTERN CON MINI	NG .	<u> </u>						Page 11 of 13
,	Sample Number		NL As AuGEO	Au Ba	Bi Ca Cd	Co Cr	Cu Fe I	C Hg Mn Ha	n Na Ni P	Pb Pd Pt	Sb Sn Sr U W i
))	L10500N 10250E L10500N 10275E L10500N 10300E L10500N 10325E L10500N 10335E	pp∎ 0.1 i.1 0.1 2.6 0.1 0.3 0.1 i.3 0.1 i.3	58 187 75 32 161 65 38 158 75	ppa ppa (3 100 (3 B2 (3 52 (3 119 (3 67	ppe 1 pps (3 0.09 1.5 3 0.09 2.6 (3 0.25 0.4 (3 0.20 2.1 (3 0.06 0.7	ppn pps 5 21 12 26 4 3 8 22 3 8	pon I 1 54 4.25 0.04 144 6.66 0.05 123 1.40 0.06 118 5.81 0.05 25 1.79 0.03	4 0.17 241 10 5 1.04 797 3 5 0.05 54 3 5 0.39 371 4	I pos I	ppe ppe ppe 57 (3) (5) 69 (3) (5) 12 (3) (5) 55 (3) (5) 27 (3) (5)	ppa ppa ppa ppa ppa ppa ppa pc pc (2 6 9 (5 (3 6 6 6 7 7 7 11 12 12 12 14 (5 (3 11 12 12 12 14 (5 (3 1 13 (5 (3 6 12 13
)	LI0500M 10375E L10500N 10400E L10500N 10425E L10500N 10450E L10500N 10450E	0.4 2.6 0.8 2.3 1.2 1.6 0.4 2.1 0.1 2.4	34 255 25 56 187 65 10 200 35	(3 76 (3 105 (3 73 (3 55 (3 37	(3 0.09 2.4 3 0.12 2.9 (3 0.07 1.8 (3 0.03 2.6 4 0.07 3.3	11 25 8 30 6 15 6 26 15 106	130 6.28 0.05 67 8.57 0.06 30 4.92 0.04 60 7.94 0.05 908 9.48 0.06	5 0.99 644 3 5 0.27 831 6 6 0.27 215 3 5 0.27 234 5	3 0.02 16 0.15 5 0.03 13 0.92 8 0.02 9 0.32 5 0.02 9 0.52	67 (3 (5 85 (3 (5 58 (3 (5 69 (3 (5 63 (3 (5	(2 3 10 (5 (3 1((2 5 10 (5 (3 5 (2 6 9 (5 (3 5 (2 5 5 (5 (3 5 (2 5 5 (5 (3 5 (2 6 9 (5 (3 5 (2 6 9 (5 (3 7
)	L10500N 10500E L10500N 10525E L10500N 10550E L10500N 10575E L10500N 10600E	0.1 1.9 0.5 2.0 0.4 1.9 0.8 1.2 0.8 2.2	2 358 25 89 85 50 25 351 125	(3 37 (3 72 (3 55 (3 76 (3 49	5 0.21 3.3 3 0.05 2.5 (3 0.08 0.7 (3 0.02 1.1 6 0.12 3.6	22 73 8 24 5 30 4 19 36 26	170 9.66 0.09 71 7.60 0.05 20 1.45 0.03 28 3.34 0.02 154 >10.00 0.08	5 0.45 574 4 0.31 122 1 0.24 851 2		70 (3) (5) 73 (3) (5) 28 (3) (5) 53 (3) (5) 202 (3) (5)	(2 S 30 (5 (3 5 (2 5 9 (5 (3 7 (2 3 10 (5 (3 4 (2 4 5 (5 (3 5 (2 5 6 (5 (3 5
)	LIOSOON 10625E LIOSOON 10650E LIOSOON 10675E LIOSOON 10700E LIOSOON 10725E	1.5 4.1 0.8 1.4 0.1 1.9 4.1 2.4 0.1 2.2	60 531 15 66 93 25 66 365 50	(3 31 (3 78 (3 42 (3 58 (3 89	8 0.12 5.2 5 0.12 3.1 (3 0.15 2.1 3 0.03 2.2 3 0.05 2.6	65 103 9 \45 12 39 14 30 10 24	232 >10.00 0.08 92 >10.00 0.06 111 5.72 0.05 88 5.52 0.03 32 6.76 0.05	0.54 540 5 0.57 1039 4 0.62 1603 13	0.03 11 0.36 0.02 11 0.22 0.02 9 0.27	B10 (3 (5 72 (3 (5 42 (3 (5 108 (3 (5 151 (3 (5	(2 4 6 (5 (3 3. (2 7 17 (5 (3 6 (2 3 18 (5 (3 5 (2 3 18 (5 (3 5 (2 5 6 (5 (3 7 (2 4 5 (5 (3 E
)	L10500N 10750E L10500N 10775E L10500N 10800E L10500N 10825E L10500N 10850E	0.1 1.9 0.1 1.8 0.1 1.8 1.2 2.0 0.4 1.4	1 181 25 3 197 25 1 265 20	(3 120 (3 65 (3 70 (3 90 (3 54	(3 0.36 2.5 (3 0.03 1.7 (3 0.04 1.8 3 0.10 2.9 (3 0.05 2.1	25 15 5 12 5 12 28 17 9 14	54 5.13 0.09 42 5.45 0.03 42 5.21 0.03 114 7.83 0.06 49 5.81 0.04	0.23 225 3 0.23 237 2 0.57 2440 3	0.02 6 0.09 0.01 8 0.09 0.03 15 0.23	82 (3 (5 49 (3 (5 48 (3 (5 64 (3 (5 55 (3 (5	(2 3 25 (5 (3 20 (2 4 4 (5 (3 4 (2 4 5 (5 (3 4 (2 3 B (5 (3 11 (2 2 6 (5 (3 6
)	L10500N- 10875E L10500N 10900E L10500N 10925E L10500N 10950E L10500N 10975E	0.1 2.0 0.1 1.6 0.8 1.7 0.1 0.7 0.1 1.5	0 81 40 7 378 105 9 122 20	(3 107 (3 84 (3 65 (3 57 (3 57	(3 0.03 2.3 (3 0.12 1.3 3 0.06 2.8 3 0.01 2.8 (3 0.11 0.8	14 16 7 10 19 17 16 10 7 9	78 6.06 0.04 21 3.88 0.04 40 7.30 0.05 115 8.21 0.05 19 1.65 0.03	0.24 523 2 0.62 3372 3 0.08 1147 4	0.01 5 0.17 0.03 11 0.21 0.03 13 0.26	53 (3) (5) 51 (3) (5) 138 (3) (5) 57 (3) (5) 24 (3) (5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
)	LIOSOON 11000E LIOGOON 10050E LIOGOON 10075E LIOGOON 10109E LIOGOON 10125E	0.1 2.3 1.2 0.2 0.5 0.8 0.1 0.4 2.1 0.8	6 136 280 7 172 140 7 104 85	(3 78 (3 30 (3 165 (3 82 (3 75	(3 0.14 2.2 (3 0.02 1.1 3 0.08 2.4 (3 0.06 1.8 (3 0.23 1.4	24 19 5 4 20 13 4 10 11 7	32 5.58 0.05 262 2.87 0.03 421 7.49 0.05 244 5.32 0.03 144 3.61 0.05	0.10 60 14 0.33 993 6 0.13 180 5	0.01 8 0.15 0.03 13 0.28 0.01 7 0.24	40 C3 C5 66 C3 C5 89 C3 C5 46 C3 C5 38 C3 C5	(2) 3 16 (5) (3) 9 (2) 2 72 (5) (3) 3 (2) 4 45 (5) (3) 17 (2) 4 23 (5) (3) 5 (2) 4 23 (5) (3) 5 (2) 7 43 (5) (3) 5
)	L10500N 10150E L10500N 10175E L10500N 10200E L10600N 10225E	1.8 0.63 0.1 0.4 0.1 0.7 1.6 2.13	7 55 90 5 58 110	(3 241 (3 (1) (3 56) (3 107)	(3 0.05 1.8 (3 0.03 0.6 (3 0.04 0.8 4 0.09 2.2	4 7 4 8 4 3 8 32	139 5.40 0.03 53 1.53 0.02 43 1.85 0.02 107 9.98 0.07	0.05 40 2 0.14 180 1	0.01 5 0.09 0.01 4 0.05	86 (3) (5) 27 (3) (5) 22 (3) (5) 101 (3) (5)	(2 4 132 (5 (3 3 (2 3 10 (5 (3 2' (2 2 8 (5 (3 1 (2 9 6 (5 (3 7:
ŀ	Ainiaua Detection Naxiaus Detection C = Less than Miniaua is	0.1 0.0) 50.0 10.0(s = Insufficien	0 1000 10000	3 1 1000 1000 1 Stuple > = Gri	3 0.01 0.1 000 20.00 100.0 eater than Maximum	1 1 20000 1000 AufA = Fire a	1 0.01 0.01 20000 10.00 10.00 assay/AAS		0.01 \$ 0.01 10.00 20000 10.00 2	2 3 5 20000 100 100	2 2 I 5 3 1000 100 10000 100 1000 2000

)

1

.

1

•		1 1 1						
)	REPORT #: BB0861 PA	KEST	ERN CON MINING CORP.					Page 12 of 13
)	Sample Number	Ag Al	As AuGED Au Ba	· Bi Ca Cd (Co Cr Cu Fe K	lig lin lio Na	Ni P Pb Pd Pt	Sb Sn Sr U W
)	LIOGOON 10250E LIOGOON 10275E LIOGOON 10300E	1.4 1.86 4.5 2.63 0.1 1.92	pp= ppb pp= pp= 235 50 (3 90 136 120 (3 89 160 80 (3 114	(3 0.03 2.2	ta ppa ppa 1 1 5 42 68 7.92 0.05 5 5 69 8.39 0.05 19 16 101 4.83 0.10	0.37 217 4 0.02 0.32 845 3 0.02	T pps pps pps 11 0.19 76 <3 <5 2 0.23 60 <3 <5 16 0.10 58 <3 <5	pps pp s p s p s p s p
)	L10600N 10325E L10600N 10350E		168 155 (3 87 137 100 (3 92		8 17 79 3.99 0.05 5 6 60 2.13 0.04	0.48 208 3 0.02	11 0.10 47 (3 (5 5 0.09 32 (3 (5	(2 4 20 (5 (3 (2 3 13 (5 (3
)	L10600N 10375E L10600N 10400E L10600N 10425E L10600N 10450E L10600N 10450E	0.1 2.61 0.1 1.60 0.1 1.67	222 90 <3 80 292 80 <3 72 151 210 <3 55 114 55 <3 52 81 45 <3 53	(3 0.07 0.4 (3 0.07 0.5	5 19 62 6.06 0.04 10 26 125 6.16 0.06 6 13 39 3.05 0.04 5 18 54 3.93 0.04 6 10 43 2.58 0.04	0.84 595 2 0.02 0.31 395 1 0.01 0.26 210 3 0.01	7 0,12 76 (3) (5) 14 0.28 74 (3) (5) 7 0.18 41 (3) (5) 6 0.18 44 (3) (5) 5 0.16 29 (3) (5)	(2 6 9 (5 (3) (2 4 16 (5 (3) (2 3 10 (5 (3) (2 5 12 (5 (3) (2 5 12 (5 (3) (2 3 14 (5 (3)
، ب	LIGGOON 10500E LIGGOON 10525E LIGGOON 10550E LIGGOON 10575E LIGGOON 10500E	1.1 1.96 0.1 2.44	164 30 <3 85 819 70 <3 81 339 60 <3 65 135 30 <3 49 000 425 <3 65	(3 0.04 0.5 3 0.08 2.2 (3 0.04 1.6 1 (3 0.21 0.5 1	-	0.23 382 2 0.02 0.35 438 5 0.03 0.61 1085 4 0.03	5 0.17 43 (3 (5 13 0.42 110 (3 (5 13 0.23 82 (3 (5 10 0.16 30 (3 (5 8 0.16 71 (3 (5	(2 5 B (5 (3) (2 5 11 (5 (3) (2 4 7 (5 (3) (2 4 26 (5 (3) (2 3 12 (5 (3)
)	L10500N 10523E L10500N 10650E L10500X 10675E L10600X 10700E L10600N 10725E	0.9 1.54 0.1 2.24 1.5 1.98	174 45 (3 53 169 50 (3 92 151 40 (3 74 142 40 (3 73 000 85 (3 78	3 0.11 2.1 1 <3 0.07 1.1 <3 0.04 1.8 <3 0.02 1.3	5 26 59 8.01 0.05 7 15 44 5.61 0.05 6 20 54 6.39 0.05 B 16 44 5.19 0.05	0.84 1000 1 0.02 0.36 419 2 0.02 0.37 321 2 0.02 0.34 1108 3 0.02	12 0.14 165 (3 (5 B 0.21 62 (3 (5 10 0.21 69 (3 (5 9 0.17 59 (3 (5	(2 6 13 (5 (3) (2 4 5 (5) (3) (2 5 6 (5) (3) (2 5 3 (5) (3)
)	L10600H 10750E L10600H 10775E L10600H 10800E L10600H 10825E L10600H 10825E	0.1 1.55 0.1 2.05 0.1 1.00 0.1 1.92	303 50 <3 81 505 90 <3 92 142 50 <3 45 79 35 <3 132 92 40 <3 75	(3 0.06 0.9 5 0.02 2.8 2	B 14 71 5.05 0.04 9 17 170 >10.00 0.05 4 9 28 3.72 0.04 0 14 48 5.30 0.05	0.32 220 2 0.02 0.93 2249 3 0.03 0.14 190 3 0.02 0.53 2394 2 0.02	12 0.21 112 <3 <5 10 0.18 50 <3 <5 15 0.17 82 <3 <5 5 0.17 47 <3 <5 10 0.16 49 <3 <5 7 0.14 54 <3 <5	(2 3 5 (5 (3) (2 4 6 (5 (3) (2 5 3 (5 (3) (2 9 4 (5 (3) (2 9 4 (5 (3) (2 4 13 (5 (3) (2 3 8 (5 (3)
, ر	L10600N 10875E L10600N 10900E L10600N 10925E L10600N 10950E L10600N 10975E	0.1 1.77 1 0.1 1.31 3 0.1 1.75 1	83 70 (3) 131 120 20 (3) 243 359 20 (3) 100 185 45 (3) 72 785 120 (3) 81	(3 0.91 1.8 1 (3 0.10 1.7 2	B 19 104 7.82 0.06 5 15 39 6.54 0.05	0.64 4572 Z 0.02 0.32 4373 3 0.03 0.20 164 5 0.02	5 0.06 85 (3) (5) 40 0.27 52 (3) (5) 17 0.37 92 (3) (5) 7 0.07 76 (3) (5) 7 0.13 430 (3) (5)	(2 5 10 (5 (3) (2 2 90 (5 (3) 2 (2 4 9 (5) (3) (2 8 6 (5) (3) (2 8 6 (5) (3) (2 4 6 (5) (3)
) }	L10600N 11000E L10650N 10450E L10650N 10475E L10650N 10505E L10650N 10525E	0.1 1.65 2 0.1 1.51 2	000 150 (3) 68 431 200 (3) 54 262 140 (3) 41 774 50 (3) 86 317 45 (3) 60	5 0.08 0.1 2 4 0.13 2.2 3 3 0.18 1.8 1 4 3 0.04 40.1 4 3 0.12 2.1 1	3 38 321 9,08 0,07 2 33 162 8,16 0,08 5 15 50 3,85 0,04	0.92 1150 4 0.03 1 0.55 1041 6 0.03 0.30 736 2 0.02	11 0.27 335 (3 (5 15 0.20 101 (3 (5 9 0.24 73 (3 (5 6 0.23 74 (3 (5 14 0.21 99 (3 (5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ې ۲	LIGESON 10550E LIGESON 10575E LIGESON 10600E LIGESON 10625E	2.8 1.15 2	204 75 (3 78 248 75 (3 80 117 70 (3 33 000 55 (3 42		5 21 75 5.34 0.03 5 11 40 3.45 0.03 4 4 19 1.63 0.03 2 24 161 >10.00 0.07	0.13 67 10 0.01 0.05 101 5 0.02	8 0.35 55 (3) (5) 4 0.05 56 (3) (5) 2 0.04 45 (3) (5) 8 0.18 277 (3) (5)	(2 3 5 (5 (3) (2 5 6 (5 (3) (2 18 6 (5 (3) (2 7 5 (5 (3)
>	Minimum Detection Maximum Detection C = Less than Minimum is =	0.1 0.01 50.0 10.00 10 Insufficient Sam	3531 000 10000 1000 1000 uple ns=Hosample)=	3 0.01 0.1 1 1000 20.00 100.0 2000 Greater than Maximum Aufi	1 1 1 0.01 0.01 0 1000 20000 10.00 10.00 A = Fire assay/AAS	0.01 1 1 0.01 10.00 20000 1000 10.00 2000	1 9.01 2 3 5 00 10.00 20000 100 100	2 2 1 5 3 1000 100 10000 100 1000 200: .

)

)

	REPORT D: BBOSEI PA		H	ESTERN	CON MINI	INS COR	Ρ.																			Pag	e 13 c	of 13	,	
)	Sample Humber	Ag	Ai	As		Au	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fæ	x	Ng	Ka	Ko	Xa	Ni	P	РЬ	Pd	Pt	Sb	Sn	Sr	U	¥	
	L10650N 10650E	pp#	2 52	pp#	ppb (C	ppa	pp	ppa	I 	ppe	pp	pp	ppe		z	1	¢p∎	ppe	I	ρp∎	z	ppa	<u>op∎</u>	рр∎	pp∎	p p ∎	pps.	ppe)pa	P:
)	L10650N 10675E	2.3 0.1	2.52	241 112	40 30	(3 (3	62 69	3 (3	0.05 0.04	1.9	7 6	20	73		0.04	0.52	556	5	0:03	10	0.20	82	(3	K5	(2	6	1	(5	(3	1
	L10650N 10700E	0.6	2.34	177	60	(3	93	(3	0.10		-	5	31	6.90	0.04	0.30	569	3	0.02	4	0.27	- 44	(3	(5	(2	5	2	<5	(3	2
	L10750N 10200E	0.1	1.07	198	20	ä	4B	(3	0.18	1.6 0.2	15 12	18 14	80 95	7.15	0.05	0.85	953	4	0.02	13	0.17	61	(3	۲\$	(2	3	7	(5	(3	E
)	L10750N 10725E	0.1		162	30	(3	39	(3	0.15	0.3	8	8	54		0.05 0.05	0.74 0.54	602 384	32	0.02 0.02	9 7	0.0B 0.10	55 53	(3 (3	(5 (5	(2 (2	2 3	12 11	(5 (5	(3 (3	1: it
)	L10750N 10250E	0,1	1.08	225	30	(3	43	(3	ô. 13	0.B	13	14	95	3.19	0.05	0.75	675	,	0.02	9	0.0B	70	/=			•			4.5	
,	L10750X 10275E	0,1	0.93	146	20	(3	45	(3	0.16	0.5	9	7	35	2.68	0.05	0.60	469		0.02	,	0.08	78 81	<3 <3	(5	(2 (2	4 2	10 11	<5 (5	(3 (3	14 15
	L10750N 10300E	1.6	1,64	252	60	(3	63	3	0.11	1.6	á	25	B9	8.21	0.05	0.40	51B	;	0.02	10		83	(3	(5 (5	(2	2				15
)	L10750N 10325E	1.2	0.83	32	490	(3	57	(3	0.04	0.1	2	3	42	0.63	0.03	0.12	60	1	0.01	1 10	0.04	20	(3			3	12 7	<5 /5	(3	1
,	L10750N 10350E	0.6	2.00	92	95	(3	95	(3	0.13	1.3	10	37	251	6.15		0.48	400	3	0.02	10		47	(3	₹5 ₹5	<2 <2	د 5	20	(5 (5	· (3 (3	÷
)	L10750N 10375E	0.1	1.57	244	120	(3	60	(3	0.10	0.7	8	22	91	5.34	0.04	0,42	452	٩	0.02	10	0.49	64	(3	(S)	(2		16	- (5	(3	,
,	L10750N 10400E	3.1	2.07	397	175	(3	55	(3	0.12	1.3	9	46	165	7.29	0.05	0.52	540	7	0.02	11		123	(3	(5	(2	Š	23	(5	(3	5
	L10750N 10425E	0.1	1.57	352	65	(3	80	(3	0.05	0.6	7	21	70	6.30	0.04	0.39	567	5	0.02	11	0.37	76	(3	(5	(2		12	(5	(3	7
}	L10750N 10450E	0.1	1.30	314	75	(3	61	(3	0.05	Q. B	5	17	44	6.23	0.04	0.19	183	5	0.02	 A	0.28	65	(3	(5	(2	, K	12	(5	(3	•
	L10750N 10475E	1.2	2.75	348	60	(3	65	3	0.05	2.1	11	28	123	9.05	0.04	0.78	727	7	0.03	15	0.16	110	(3	Ğ	(2	5	B	(5	(3	
)	L10750N 10500E	0.1	1.08	59	100	<3	45	(3	0.25	0.1	8	ìı	50	1.72	0.05	0.31	16 B	3	0.01	6	0.07	21	(3	(5	<2	4	42	<5	(3	ç
	L10750N 10525E	1.2	1.54	405	65	<3	67	(3	0.04	0.7	В	- 14	60	5.B1	0.04	0.23	406	17	0.02	8	0.09	81	(3	<5	(2	i	11	(5	(3	10
	L10750N 10550E	0.1	1.23	173	240	(3	59	(3	0.03	0.1	4	7	27	2.43	0.02	0.10	78	13	0.01	4	0.05	41	{3	(5	(2	8	B	(5	(3	3
)	L10750N 10575E	0.1	0,66	29	20	<3	70	(3	0.14	0.1	7	4	39	1.39	0.03	0.29	113	(1	0.01	7	0.09	15	(3	(5	<2	5	25	(5	(3	11
	L10750N 10600E	2.3	1.55	124	55	<3	46	(3	0.14	0.9	B	16	92	5,33	0.05	0.31	223	4	0.02	12	0.16	46	(3	۲5	<2	6	13	<5	(3	5
)	L10750N 10625E		1.98	441	25	(3	91	(3	0.16	1.3	25	14	64		0.07	0.55	4725	4	0.03	10	0.40	61	(3	<5	<2	4	7	<5	<3	11
	L10750N 10650E	0.2		468	10	(3	80	4	0.03	1.5	10	25		9.82	0.04	0.54	302	5	0.03	12	0.10	91	(3	(5	(2	7	9	<5	(3	10
	L10750N 10675E	1.6	7.42	745	85	(3	45	4	0.12	1.5	9	31		>10.00	0.07	0.45	530	5	0.03	12	0.27	144	(3	(5	(2	5	8	(5	۲3	11
;	110750N 10700E	0.1	1.30	99	25	<3	67	(3	0.05	0.1	7	7	35	2.42	0.03	0.28	15B	1	0.01	6	0.07	28	{3	<5	<2	2	7	(5	(3	6
	Miniaua Detection	0.1	0.01	3	5	3	L	3	0.01	0.1	1	t	1	0.01	0.01	0.01	1	1	0.01	· 1	0.01	2	3	5	2	2	1	5	3	
)	Maximum Detection		10.00				1000			100,0		1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10,00	20000	100	100	1000	100 1	1000 0	100	1000	2000
	(= Less than Minimum i	ls = Insufi	ficient	Sample	ns ≏ No	o sampli	e)=	Greate	than I	laximum	Aufà =	Fire -	assay/A	AS																

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

. .

ł

)

.

ι...

VANGEOCHEM LAB LIMITED 1988 TRIUMPH STREET VANCOUVER, B.C. VSL 1K5 (604) 251-5656 FAX (604) 254-5717

.

•

REPORT 8: 880996 PA		1	WESTERN	CANADIA	N HENIN	G CO2P.				• • • •			294-3	() (Pag	e io	12		
Sample Number	Ag ppm	A1 Z	As pps	Au6EO pob	Au Pom	Ba	Bi	Ca I	Cd	Co	Cr	Cu	Fe	ĸ	Kg	Ka	No		, Xi	P	Pb	Pd	Pt	56	Sn	Sr	U	¥	In
L 9700N 9600E	- 3.5			310	(3	рр а 561	pp# (3	0.34	¢p∎ c •	₽₽∎ 34	ppe ar	ppe 105	1	1	1	004	pp .	z	9 0 0	1	pp.	p g∎	po e	pos	pp∎	pp 🛛	₽ ₽∎	ppe	pps.
L 9700K 10000E	5.3			725	(3	Jei 94	5		5.1		26	195	5.85	0.11			1	0.04				(3	<5	(2	2	27	(5	<3	651
L 9700N 1002SE	0.4		52	90	(3	237	-	0.18	3.2	23	35	211	8.41	0,08			4	0.04	25			(3	<5	{2	5	23	(5	(3	252
L 9700N 10050E	0.1			335			(3	0.61	2.7	29	24	122	4,82	0.15			4		29			(3	(5	<2	3	51	- (5	(3	322
L 9700N 10075E		2.12		225	(3	304	(3	0.41	2.4	30	23	205	5.02	0.12				0.03	34		126	(3	(5	<2	2	34	(5	(3	273
E 3700R 10073C	2.8	V. 34	113	113	<3	291	(3	0.15	1.7	81	9	532	4.47	0.07	0.56	1058	15	0.03	18	0,17	127	<3	(5	<2	2	33	(5	(3	182
L 9700N 10100E	0.9	0.94	95	290	(3	274	(3	0.11	0.9	9	9	213	4.05	0.06	Q.48	415	16	0.02	10	0.15	139	(3	(5	<2	2	28	(5	(3	107
L 9700N 10125E	0.9	0.95	89	280	. (3	235	(3	0, 17	1.1	8	9	318	3,91	0.07	Ô.4B	328	17	0.02	11		-	Ġ	(S	(2	ž	30	(5	ä	90
L 9700X 10150E	1.2	0.92	73	130	(3	279	(3	0.46	1.7	21	13	269	4.44	0.12	0.65	832	16	0.03	15		88	(3	(5	(2	6	66	(5	(3	153
L 9700N 10175E	1.1	0.71	131	700	(3	232	(3	0.30	0.9	4	7	292	4.46	0.05	0.31	179	27	0.02	6		98	(3	<5	(2	2	29	(5	G	£6
L 9700X L0200E	¹ .1	0.95	74	280	(3	211	(3	0.35	1.5	15	14	412	5.64	0.10		592	21	0.03	16		60	(3	(5	(2	8	49	(5	ä	
•					-						••		0.01	****		414	*1	v.v3	. 10	V. 20	00	13	13	14	e	**	13	(3	85
L 9700N 10225E	2.8	0.93	163	510	(3	361	3	0.03	1.7	10	9	381	6.54	0.06	0.42	521	24	0.03	8	0.26	148	(3	(5	<2	3	47	(5	(3	7B
L 9700K 10250E	2.8	0.50	160	520	(3	763	(3	0.01	1.4	4	6	245	5.33	0.05	0.29	193	32	0.02	5	0.21	90	(3	(5	(2	3	46	(S	(3	57
L 9700N 10275E	1.1	0.44	196	390	(3	274	(3	0.12	0.5	6	3	38	2.90	0.05	0.23	102	10	0.02	4	0.14	131	(3	(5	(2	4	31	(5	(3	24
L 9700M 10300E	3.1	0.23	19	170	(3	51	(3	0.01	0.1	2	6	15	0.42	0.02		15	3	0.01	5		13	(3	(5	(2	ż	5	(5	G	27
L 9700W 10325E	0.1	0.11	31	260	(3	53	(3	0.01	0.1	1	Ī	9	0.38	0.02		3	ā	0.01	ĭ	0.04	23	(3	(5	<2	(2	5	(5	(3	12
										-	•	•				•	••	****	•		15			••				•••	12
L 9700N 10350E	1.2	0.20	24	300	<3	148	<3	0.01	0.3	2	5	18	0.97	0.02	0.02	23	11	0.01	3	0.08	48	(3	<5	(2	2	14	(5	(3	23
L 9700N 10375E	0.1	0.37	5i	420	(3	128	(3	0.06	1.5	5	6	151	5.51	0.05	0.16	84	29	0.02	6	0.13	67	(3	(5	(2	5	30	(5	(3	27
L 9800N 9625E	13.1	1.71	>1000	1500	(3	348	- 4	0.23	9.1	55	6	390	8.58	9.11	1.38	9846	35	0.07	41	0.20	1354	(3	(5	12	3	50	ś	(1106
L 9800N 9650E	4.5	2.34	}1000	2865	{3	255	3	0.04	5.2	51	5	482	7.91	Q. 0B	0.79		33	0.05	38		224	(3	Ś	(2	3	15	(5	(3	502
L 9800N 9675E	0.4	1.40	278	160	(3	17\$	<3	0.05	2.6	17	13	233	3.82	0.05	0.62	2588	14	0.03	17		173	(3	(5	<2	3	12	<5	(3	276
L 9800N 9700E	2.2	2.05)1000	290	(3	474	4	0.37	9.9	116	10	1134	8.32	A 14	1.05	14767	24		78		710	/ 3			•				
L 9800M 9725E	1.1	2.16	57B	480	(3	221	4	0.19	5.2	48	10	466		0.14		10353	20	0.10	78		610	(3	(5	(2	3	30	(5	(3	1703
L 9800N 9750E	0.4	1.39	231	520	(3	213	(3	0.02		-			6.81	0.09	1.35	4120	15	0.07	39	0.19	365	(3	(5	<2	3	21	(5	(3	1131
L 9800X 9775E4A	3.1	1.15	. 144	290	(3	124	(3	0.02	1.5	31 8	11	252	4.97	0.05	0.43	2819	14	0.03	12		301	(3	(5	<2	3	16	<5	(3)	244
L 9800X 9775E(B	0.2	1.03	147	255	(3	118	(3		1.5	•	18	108	5.25	0.04	0.34	627	6	0.02	1		217	(3	(5	(2	4	8	(5	(3	139
	v.1	1.03	177	177	13	110	(3	0.01	1.2	9	12	95	3.87	0.04	0.32	1034	3	(0.01	6	0.16	219	(3	(5	(2	3	11	۲۵	(3	111
L 9800N 9800E	7.1	1.34	115	200	(3	138	(3	0.06	1.4	13	25	96	4.95	0.05	0.56	1501	4	0.02	10	0.18	209	(3	<5	(2	4	13	(5	(3	187
L 9800W 9825E	0.4	1.36	91	240	(3	115	(3	0.03	1.5	15	24	75	4.74	0.05	0.55	1328	4	0.02			278	(3	(5	(2		7	(5	(3	81
L 9800N 9850E	4.9	0.90	194	710	(3	162	3	0.01	1.9	6	17	160	8.10	0.05	0.25	674	12		6	0.25	349	((5	(2	5	32	(5	(3	184
L 9800W 9875E	0.1	1.19	125	140	(3	117	3	0.08	1.7	23	13	110	5.85	0.06	0.39	3553	5	0.02	8	0.20	178	(3	(5	(2	3 4	11	(5	(3 (3	144
L 9800N 9900E	0.5	1.87	113	BO	(3	136	4	0.07	3.1	48	38	138	9.04	0.08	0.80	7804	5	0.04	20	0.29	264	(3	(5	(2	5	13	(5	(3	
							•					144	1.41	4.40	v. dv	7094	*	¥1 ¥1	24	4.23	491	13	13	12	J	19	ιJ.	19	315
L 9800K 9925E	2.2	1.47	79	Z90	<3	149	(3	0.12	1.4	22	24	83	4.34	0.06	0.87	2857	3	0.02	- 14	0.19	217	(3	{5	<2	4	17	(5	(3	173
L 9800N 9950E	3.5	1.85	119	220	<3	122	3	0.39	3.6	37	25	143	6.40	0.12	1.14	4257	3	0.04	21	0.17	332	(3	(5	<2	7	50	(\$	(3	384
L 9800W 9975E	3.5	1.39	143	290	{3	147	- 4	0.17	5.5	45	31	260	B.33	0.09	0.92	5789	5	0.05	24	0.42	360	G	(5	<2	5	23	(5	(3	622
L 9800M 10000E	1.2	1.58	85	225	<3	118	{3	0.20	1.5	21	19	79	4.56	0.08	0.96	1639	5	0.03	16	0.18	164	(3	(5	(2	S	22	(5	(3	147
L 9900N 9750E	0.4	1.95	290	900	(3	109	(3	0.03	1.9	29	20	209	6.00	0.05	0.86	1B15	11	0.03	15	0.15	270	(3	(5	(2	4	8	(5	(3	312
L 9900N 9775E	13.7	0.85	260	310	(3	169	5	0.05	2.9	47	22	134	9.87	0.08	0.49	5552	7	0.04	16	0.31	430	(3	(5	(2		44	(5	(3	225
1 9900W 9800E	3.2	1.81	173	310	(3	153	5	0.06	2.7	39	22	309	6 .92	0.08	0.75	2929	15	0.04	15	0.28	318	(3	(5	(2	8	31	(5	(3	251
9900W 9825E	1.1	2.06	193	250	(3	188	3	0.03	2.6	19	22	250	8.40	0.06	0.47	1257	15	0.03	15	0.33	325				ŝ				-
9900N 9850E	0.1	1.05	B2	170	(3	103	(3	0.02	0.9	6	13	23V 56	3.85	0.03		681	13	0.01	4	0.18	325 114	(3 (3	<5 (5	(2		19	(5	(3	245
- · -	***		~.		••		14		**3	P	13	20	3193	V.VJ	0.15	001	Ð	V. VI	4	V.16	114	14	()	<2	4	1	(5	(3	64
Tinisus Detection	0.1	0.01	3	5	3	1	3		Q.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	3	5	2	2	1	5	3	1
Maxigum Detection		10.00	1000	10000	1000	[000]	1000	20.00	100,0	20000	1000	20000	10.00	10,00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	1000	100	10000	100	1000	20000
(* Less than Ninimum	is = Insuf	licient	Sample	ns = K	o sampli	e)=	Greater	r than I	laxinun	Aufa =	Fire a	assay/A/	S																

6

•

PORT 1: 880996 PA WESTERN CANADIAN MINING CORP. Page 2 of 2 uple Number Ag AL As. Au6EO Au Ba Bi C. Cd Сo Cu Çr Fe r Ng Kŋ Na Xi llo P ŶЪ Pđ Pt Sb Ŀ 2n Sn S U ppe. 1 \$p∎ ppb **ρ**ρ κ ppe. ï ppe ¢ρ∎ pp. **ppa** ₽₽∎. T 1 -1 ppn ppa 7 ₽**₽**₽ 1 00.0 008 008 DOB 006 ppe ppa. 008 004 3900N 9875E 0.85 315 0.t 3100 (3 88 (3 0.02 0.7 -6 8 92 4.4 0.03 0.15 472 2 0.02 5 0.16 98 (3 ۲5 (2 (5 90 (3 -2 3900N 9900E 3.3 1.15 103 200 (3 187 (3 0.07 1.3 13 11 169 5.65 0.05 0.47 1475 4 0.02 8 0.27 231 (3 ۲5 `{2 £ 25 ۲5 <3 139 300X 9925E 153 2.4 1.45 205 <3 178 27 3 0.15 2.3 16 175 7.10 0.08 0.92 3331 5 0.03 16 0.29 316 (3 (5 (5 **{2** 4 39 (3 218 1900N 9950E 1.75 148 260 (3 206 1.6 3 0.04 1.8 16 24 193 7.36 2574 0.06 0.79 11 0.03 11 0.33 234 (3 3 <3 193 (2 2 39 ٢, 1900N 9975E 130 (3 153 1.9 2.13 91 3 0.50 1.6 30 14 228 5.75 0.15 1.45 1471 5 0.05 26 0.19 (5 149 {3 (2 7 63 ٢S <3 225 900N 9975E 1.9 2.04 261 345 (3 131 4 0.12 2.9 50 25 263 8.59 0.08 1.15 5001 7 0.05 24 0.27 419 <3 <5 (2 (5 <3 470 5 24 0000H 9750E 1.44 433 250 (3 192 27 1.1 (3 0.07 2.3 13 229 6.29 0.06 0.56 3819 11 0.04 22 0.25 359 (3 (5 (2 2 9 <S. (3 \$39 137 0000N 9800E 1.1 1.19 150 (3 125 (3 0.15 1.3 12 18 105 6.76 0.07 0.47 522 5 0.03 13 0.33 205 (3 **(**5 <2 (3 6 27 (5 179 0000N 9825E 0.5 1.17 332 100 (3 106 (3) 0.07 1.2 8 16 109 921 5,90 0.05 0.36 5 0.03 11 0.31 215 <3 ٢5 <2 15 (5 (3 185 3 0000N 9850E 2.63 272 310 (3 256 1.5 5 0.02 65 29 425 310.00 3.9 0.07 1.45 3475 12 0.05 29 0.34 391 (3 ۲S (2 23 (5 (3 \$39 6 0000N 9875E 215 0.5 2.12 147 <3 115 3 0.04 1.6 15 125 7.04 0.05 1911 16 0.80 5 0.03 8 0.16 208 (3 <5 <2 11 <5 (3 184 4 0000X 9900E 1.6 1.47 102 105 ₹3 120 6 (3 0.06 0.6 5 15 77` 4.07 0.04 0.44 396 3 0.02 130 <5 <S (3 0.28 (3 (2 3 13 153 0000N 9925E 0.1 1.71 112 100 ζ3 117 <3 0.23 1.3 27 13 63 5.59 0.08 0.81 4229 2 0.03 9 0.29 159 (3 (5 <2 28 ۲5 (3 195 0000N 9950E 0.1 1.23 121 230 (3 303 <3 25 13 165 0.31 1.8 5.34 0.09 0.70 4730 11 0.03 176 (5 <5 (3 15 0.24 <3 <2 219 3 36 0000N 9975E 0.1 0.84 125 200 (3 279 <3 0.45 1.8 14 7 153 6.52 0.13 0.47 1467 8 0.03 12 0.41 208 (3 ۲5 (2 3 46 **(5**) (3 231 0700N 10150E 78 0.1 0.69 60 ٢3 94 <3 0.3 0.03 95 0.07 4 6 59 2.00 0.13 3 0.01 5 25 (3 (5 <2 25 -{5 (3 0.09 3 -44 0700N 10175E 3.1 0.59 206 200 (3 90 <3 0.04 1.2 4 20 169 6.98 0.05 0.07 312 5 0.02 5 0.52 92 (3 (5 <2 5 12 (5 (3 69 0700X 10200E 240 100 (3 1.3 1.10 117 (3 27 76 290 0.11 0.7 7 5.14 0.05 0.19 2 0.02 9 0.24 59 (3 (5 (2 5 15 **<**5 (3 74 0700N 10225E . 25 60 (3 0.04 0.5 0,75 59 <3 0.1 4 4 23 1.00 0.03 0.[1 12 3 (5 1 0.01 0.03 20 <3 ۲\$ **(2** 2 12 (3 26 0700X 10250E 1.71 245 130 (3 101 22 1.1 3 0.04 2.4 B 105 8.56 0,05 0,30 348 B 0.03 9 0.19 98 (3 (5 (2 11 11 ٢5 <3 76 0700N 10275E 2.4 2.82 265 120 (3 100 4 0.04 2.6 7 45 195 210.00 0.07 0,35 316 0.03 16 (5 (3 95 5 0.15 106 (3 <5 **{2** 5 9 0700K 10300E 205 200 а 0.7 0.1 2.13 134 (3 0.09 -6 28 94 5.41 0.05 0.45 1589 3 0.02 8 0.40 146 (3 (5 <2 12 **(**5 (3 76 3 0700H 10325E 3.4 1.60 176 90 (3 88 39 87 8.12 0.05 389 3 0.04 1.6 8 0.42 5 0.03 13 0.28 84 Ξ. ۲5 (2 (5 <3 69 8 8 0700N 10350E 1.1 0.91 -93 1990 **(3** 61 (3 0.09 0.2 6 294 2.71 0.20 1083 Z 58 4 0.04 0.01 5 0.12 <3 **(5** <2 3 13 ۲5 (3 65 0700N 10375E 41 120 (3 0.1 1.44 48 <3 0.18 0.1 6 14 SL 1.63 0.05 0.33 176 1 0.01 6 0.07 29 (3 (5 **(2** 5 35 (5 (3 38 0700N 10400E 0.1 1,38 85 85 (3 46 3 0.15 2.3 46 130 8.00 0.07 0.50 1547 5 0.03 0.71 (5 (5 <3 55 9 11 60 (3 <2 £ 30 0700N 10425E 0.1 1.38 246 70 (3 38 (3 7 24 69 6.53 0.05 0.24 5 0.07 1.2 447 0.02 0.55 70 (3 <5 (5 83 9 <2 6 12 (3 0700N 10450E 1.1 1,73 267 110 (3 71 (3 0.07 1.2 7 20 72 5.76 0.05 0,28 325 4 0.02 0.33 82 (3 (5 (3 8 {2 11 - (5 60 5 3700X 10175E 153 0.1 1.45 125 140 (3 3 0.09 1.6 2 37 93 8.46 0.05 0.28 402 9 0.66 ٢S 0.03 8 84 <3 **(2** 6 17 **{5** (3 7B 0700N 1050DE 0.1 1.06 42 40 (3 61 (3 0.06 0.1 3 7 24 1.64 0.03 0.12 217 1 0.01 4 0.22 33 (3 (5 <2 2 16 <5 (3 40 0700K 10525E 152 1.56 75 1.1 **{3** 119 (3 0.03 0.5 44 4.43 0.04 0.27 148 2 0.02 16 7 0.17 49 ζ3 <5 <2 3 11 (5 (3 56 0700N 10550E 0.1 1.67 221 70 (3 77 <3 253 0.08 0.B 7 20 73 5.70 0.05 0.44 4 0.02 14 72 0.28 <3 <5 <2 5 <5 (3 78 9 0700K 10575E 28 (3 79 0.1 -1.47 100 **(3** 0.18 115 0.05 0.47 341 1 33 0.L 8 24 2.41 0.01 8 0.08 (3 (5 <2 4 37 (5 (3 58 0700N 10600E 2.4 1.88 51 60 (3 77 **(3** 0.15 7 42 157 0.52 241 14 45 (3 **(S** <5 (3 59 1.8 6.87 0.07 0.02 12 0.36 6 (2 22 0700N 10625E 1.1 4,47 170 200 (3 41 0.16 27 36 718 310.00 0.09 0.74 976 7 (5 (5 (3 72 4 2,6 0.03 11 0.23 68 (3 (2 5 17 0700N 10550E 7B 2.19 159 80 (3 48 (3 0.05 0.42 449 -74 ٢5 <S (3 0.1 0.11 1.2 8 14 84 6.09 4 0.02 8 0.24 (3 <2 5 13 0700X 10675E 2.84 171 155 (3 47 850 126 (3 (5 (5 (3 107 0.1 4 0.11 2.1 13 31 147 8.79 0.07 0.67 3 0.03 11 0.24 (2 6 7 0700X 10700E 0.1 1.56 138 60 (3 76 455 (5 (3 9B 0.07 2.9 11 19 89 >10.00 0.07 0.40 4 0.04 14 0.23 78 (3 <2 1 12 ٢S 6 ious Detection 0.1 0.01 3 -5 3 3 0.01 1 0.01 0.01 0.01 0.01 3 0.1 1 0.01 2 5 2 5 1 1 1 2 3 1 inum Detection 50.0 10.00 1000 10000 1000 1000 1000 20.00 100.0 20000 1000 20000 10.00 10.00 10.00 20000 1000 10.00 20000 10.00 20000 100 100 1000 100 100 1000 20000 10000 Less than Minimum is # Insufficient Sample :ns # No sample) = Greater than Maximum AuFA = Fire assay/AAS

ANOMALOUS RESULTS: FURTHER ANALYSES

ť

1

t

t

1

t

t

1

ov wedening

VANGEOCHEM LAB LIMITED 1988 TRIUMPH STREET VANCOUVER, B.C. VSL 1K5 (604) 251-5556 FAX (604) 254-5717

Г

.

.

ί.

· -----

.

REPORT 4: 881302 PA		H	ESTERN	CANADIA	N																				Page	e 10	f I		
Sample Number	Ag • pom	AL	Ås ppa	AufA ppb	Áu ppe	Ba pps	Bi ØD u	Ca	60	Co	Cr	Ču	fe	ĸ	Kg	lin	No	K.	Ni	P	Pb	Pd	Pt	56	Sn	Sr	U	¥	2n
L10450N 10350E	0.9	0.17	55	80	(3	26	(3	0.02	0.1	9pe 7	pp 🖷	pp∎ 114	2.04	0.08	0.02	pd4 56	908 1	0.01	DDB 9	0.06	pp∎ 13	ор∎ (3	ррњ (5	pom (2	pps.	ppa c	pp4 <\$	¢ps (3	pp∎ 58
10450N 10375E	0.2	0.23	61	45	(3	30	(3	0.03	0.1	ć	ź	123	2.70	0.11	0.02	99	2		. B	0.12	20	(3	(5	<2 <2	-		(5	(3	59
L10450K 10400E	0.6	1.16	105	35	(3	97	(3	0,30	2.2	43	13	335		0.27	0.22	8155	÷	0.01	30	0.21	55	(3	(5	<2	4				
110450N 10425E	1.1	1.51	155	40	(3	69	(3	0.08	1.2	4	28	154		0.27	0.43	454	5	0.01 0.02	30 13	0.30	50 60	(3	(5	(2	4	22 13	(S (S	(3 (3	144 85
L10450H 10450E	3.8	1.29	115	70	(3	55	(3	0.03	0.4	5	18	63					2		10						•	13			
E101300 101302	4.4	1.17	110		10	55	14	V.V3	0.4	3	to	63	4.51	0,19	0.10	86	3	0.01	•	0.26	45	(3	<5	<2	3	'	(5	(3	34
L10450N 10475E	1.2	1.19	54	85	(3	130	(3	0.07	1.9	12	39	126	8.29	0.35	0,68	51B		0.02	11	0.21	55	(3	۲5	<2	B	19	<5	(3	60
L10450N 10500E	1.3	2.22	96	140.	(3	131	(3	0.05	0.8	13	37	243	5.71	0.25	0.69	1553	0	0.02	13	0.32	51	(3	(5	(2	•	12	(5	(3	97
L10450N 10525E	0.1	1.54	181	45	(3	68	(3	0.03	0.9	13	20	65		0.29	0.34	250	-	0.02	11	0.30	68	(3	(5	<2	-	12	(5	(3	60
L10450H 10550E	3.8	1.78	>1000	40	(3	61	. (3	0.03	0.1		52	115	8.71	0.37	0.45	579	4	0.02	6 11	0.30	139	(3	(5	(2		г	(5	(3	70
L10450N 10575E	1.5	1.43	145	55	(3	45	(3	0.03	0.9	Q E	32	47	6.5B	0.28	0.13										5				
£101500 103752		1113	114		13	- L	13	0.03	V. 3	3	32	7/	0.30	0.28	0.15	288	2	0.01	5	0.34	57	(3	(5	<2	2	4	<\$	(3	38
L10450K 10600E	1.6	2.40	>1000 ·	60	(3	56		0,05	0.1	24	55	61	>10. 00	0.47	0.83	2264		0.02	15	0.1B	160	{3	/5	12		e	15	13	134
L10450N 10525E	1.1	2.14	389	30	(3	32	3	0.12	2.7	70	76	140		0.45	1.23	3864	2	0.02	12 21	0.15	200	(3	(5 (5	<2 <2	-	3	<5 <5	<3 (3	124 235
L10450K 10650E	0.6	1.57	197	40	(3	32	3	0.07	1.7	14	25		>10.00		0.59	2156	3	0.02	41 8	0.47	132	(3	(5	(2	1	7	(5	(3	67
L10450N 10675E	0.5	2.83	805	30	(3	26	1			•									_										
L10450N 10700E	0.4	1.58	88	30	(3	74		0.07	0.9 0.3	45	71		>10.00	0.57	0.91	3213		0.02	18	0.20	90	(3	<5 /2	<2		17	{5	(3	79
CITION ITTOL	*. 1	11.00	00	34	13	14	<3	0.02	0.3	•	12	28	3.97	0.17	0.20	270	٩	0.01	2	0.07	44	(3	<\$	(2	6	2	(\$	(3	42
Minique Detection	0.1	0.01	3	5	3	1	3	0.01	0.1		1	•	0.01	0.01	0.01	1	1	0.01	1	0.01	2	3	5	2	,	1	5	3	1
Maximum Detection		10.00	1000	10000	1000	1000	1000	20.00	100.0	20000	1000	20000		10.00	10.00	20000	1000		20000	10.00	20000	100	100	1000	100	10000	100	-	20000
C = Less than Minimum i									Yarimua	AuF#	- Firm :		10.00	10.00	10.00	70000	1000		10000	10100	******	100	100	1000	100		100	1000	24444
					na sarpi	• / -	A1 6816	4 411201			- 1116 /	appq3//	50.2																

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

										VA (604)	NCOU 251-56	VER, 8 156 FA	3.C, V X (604	/5L 1K) 254-5	5 717														
REPORT 0: B81059 PA		ŀ	IESTERN	ANADIANAD	e nexthe	G CORP.	٠					•													Pag	e 1 o	4 1		
Sample Mumber	Åg Pp e	AL X	As pp#	AuFA ppb	Au ppe	Ba ppe	Bi - ppm	Ca I	' Cd ppo	Со ррм	Cr pp=	Ču ppe	Fe I	ĸ	Xg T	Kn ppm	No '	· Xa	Ni ppm	P	Pb	Pd	Pt	Sb	Sn	Sr	U	y	_
L10600NB 10200E	2.1	0.24	115	255	3	486	(3	0.01	0.1	1	2	34	3.72	0.01	0.03	27	17	0.01	7	A 10	pp#	pps /2	pp=	ppe (2	pp a	ppe co	pp n	ppa	P
L10600NB 10225E	0.1	0,75	243	160	(3	122	(3	0.03	0.6	3	13	369	6.59	0.01	0.23	265	4	0.02	ź	0.19	310	(3	< <u>s</u>	(2	(2	58	(5	(3	
L10600XB 10250E	0.2	1.31	269	135	(1	118	(3	0.49	0.6	13	23	364	5.48	0.10	0.56	1493	2	0.02	13	0.20	90	(3	(5	(2	3	36	(5	(3	
L10500N8 10275E	0.1	2.21	783	375	(3	62	3	0.03	0.3	20	61	147	9.12	0.01	0.96	3122		0.02	13	0.19 0.11	114	(3	(5	{2	Z	36	(5	(3	2
LI0600NB 10300E	0.1	0.62	(3	70	(3	50	(3	0.07	0.L	6	10	89	3.47	0.02	0.11	174	2	0.01	1	0.06	157 37	(3 (3	(5 (5	(2 (2	3	5 15	(5 (5	(3 (3	2
L10500WB 10325E	0.1	0.74	186	45	(3	58	(3	0.28	0.1	6	12	73	3.73	0.05	0.14	178	,		,	A 47					-				
L10500#8 10350E	0.3	2.01	179	100	(3	115	(3	0.05	1.1	5	24	67	7.05				6	0.01	6	0.07	41	(3 -	(5	(2	2	22	<5	(3	
L10600NB 10375E	0.1	2.18	235	70	(3	89	(3	0.09	0.7	5	23	76	6.68	0.01 0.02	0.35 0.28	157	3	0.02	8	0.07	70	(3	(5	(2	<u>+</u>	10	(5	(3	
L10600NB 10400E	1.5	1.65	316	75	ä	73	(3	0.03								229	1	0.02	6	0.15	74	(3	(5	(2	5	13	<5	(3	
L10600WB 10425E	0.8	3.08	169	105	ä	79	13	0.05	0.1 1.3	13	16 29	42	4.75	0.01	0.16	116	3	0.02	2	0.20	65	(3	(5	{2	5	7	<5	(3	
	•••	0.70	100	143	13	13	3	4.03	113	13	73	270	7.19	0.02	0.95	817	4	0.0Z	15	0.14	75	<3	<\$	(2	4	10	<5	(3	
L10600NB 10450E	0.3	1.92	236	70	(3	89	(3	0.02	1,1	4	19	63	7.67	0.02	0.21	218	۲.	0.02	4	0.17	73	19	<i></i>	/1	,	,		/-	
L10600NB 10475E	0, i	1.98	163	70	(87	(3	0.01	0,6	- i	20	43	5.58	0.02	0.20	200	5	0.02		0.11		(3	<5	(2	5		(5	(3	
L10600XB 10500E	0.6	2.12	291	120	Ċ	54	1	0.05	1.1	12	23	79	7.73	0.01	0.62	916		-			60	(3	<5	<2	1	1	(5	(3	
L10600NB 10525E	0.B	2.11	215	25	3	61	3	0.02	1.2	12	30	69	8.45	0.01	0.24	346	5	0.02	1	0.21	84	(3	(5	(2	5	6	(5	(3	
L10600NB 10550E	2.7	1.72	>1000	225	(3	36	и 5	0.05									2	0.03		0.19	BZ	(3	<5	<2	6	7	<5	(3	
*******		****	* 8 4 4 4		10	94		0.03	0.1	11	ÞΫ	125	9.48	0.02	0.58	953	3	0.03	10	0.50	208	(3	<5	(2	5	7	<5	(3	1

97 7.50 0.02 0.56

64 2.43 0.03 0.32

1 0.01 0.01 0.01

144 >10.00

1012

285

1

0.01 0.94 2943

4 0.02

4 0.03

1 0.01

5 0.01 14 0.23

1 0.01

15 0.38

6 0,09

1000 10.00 20000 10.00 20000

230

256

48

Ż

(3

(3

(3

3

100

(5

۲5

<5

5

100

<2

(2

٢2

2

1000

13

8

10

1

4

5

3

2

100 10000

۲5

(5

<5

5

100

(3

(3

(3

3 1

1000 20000

LIMITED

в

1588 TRIUMPH STREET

l P P

4

9

21

22

5

5

4

4

з

۶

Ż

3

71

51

R

12:

28.

41

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

0.1 2.37 >1000

7.1 2.81 21000

149

3

1000 10000

1.3 1.74

0.1 0.01

50.0 10.00

65

30

15

5

(3

(3

(3

3

1000

K = Less than Hinimum is = Insufficient Sample ns = No sample > = Greater than Maximum AuFA = Fire assay/AAS

62

52

36

1

1000

3 0.11

3 0.01

6 0.04

(3 0.16 0.1

0.1

0.1

0.1

11

30

4

t

65

99

13

1

1000 20.00 100.0 20000 1000 20000 10.00 10.00 10.00 20000

.

L10600N8 10575E

L10600X8-10600E

L10600N8 10625E

Minisus Detection

Maximum Detection

١

)

1

i.

1

L 9800N

.

. ..

ъ.

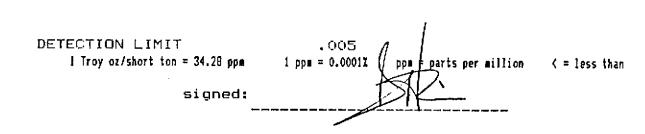
b -

L

L10700N 10350E

9650E

VANGEOCHEM LAB LIMITED


MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

.118

.082

BRANCH OFFICE 1630 PANDORA ST, VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 880996 AA	JOB NUMBER: B80996	WESTERN CDN. MINING CORP.	PAGE I OF I
SAMPLE #	Au oz/st		
L 9800N 9625E	.067		

••		I	\bigcirc	
VGC	VANGEO HAIN OFFICE AND 1980 Triuap Vancouver, B. 1504)251-5656	LABORATORY 1 Street 2. V54 1K5	AB LIMITED BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. VSL 1L6 (604) 251-5656	
REPORT NUMBER: BBOBGT AA	JUB NUMBER: 880861	WESTERN CON.	HINING CORP.	PAGE I OF 1
SAMPLE #	Au oz/st			
L 9500N 10250E	. 048	3		

DETECTION LIMIT 1 Troy of/short ton = 34.28 ppm signed:	.005 1 ppm = 0.0001% ppm parts per million	<

۰.

L.

.

Ĺ.

< = less than</pre>

VARGEOCHEM LAB LIMITED 1988 TRIUMPH STREET VANCOUVER, B.C. VSL 1KS 16041 251-5555 FAX (604) 254 5712

•

٠

....

REPORT #: BB1061 PA	Page 1 of 1 Szasle Nueber Ag Al As AuFA Au Ba Bi Ca Cd Co Cr Cu Fe K Mg Mn Mo Ka Ni P Pb Pd Pt Sb Sn Sr U W Zn BDW X ppm ppb ppa ppa Z ppm ppm X X Z ppm ppe X DDW ppm X DDW ppm ppm DDW ppm ppm Z Z DDW X DDW ppm ppm ppm ppm ppm ppm ppm ppm ppm pp																												
Saapie Husber	•	ĩ			Au ppa			Ca Z			Cr ppm		fe T	ĸ	Mg				Ni	P		Pd	Pt		•	Sr	U	¥	ζn
	0.1	0.17	21	145	<3	8	(3	0.01	0.4	6	60	80	3.54	0.01	0.02	16	12	0.01	••	0.04	· · · ·			DD#	000				00 m
R88-823	9.1	2.22	144	530	(3	15	5	0.36	2.5	32	66		>10.00		1.31	983	13	0.03	14		13	(3	(5	(2	2	100	<\$	(3	19
R88-8830	2.5		9	190	(3	148	3	1.87	1.2	25	121	2068	4.82	0.25	2.83	1238	2	0.02	11 38	0.17	51 27	(3)	(5		Ş	39	< <u>(5</u>	3	103
R86-9832	0.1	2.50	189	60	(3	45	(3	2.74	1.1	28	62	174	4.58				1	0.02	35		55	(3	(5 (5	(2	2	83 99	(5	(3 (3	84 156
Miniaus Detection Naxisus Detection	0.1 50.0	0.01 10.00	3 1000	5 10000	3 1000	1 1000	3 1000	0.01	0,1 100,0	i 20000	1	1	0.01	0.01	0.01	1	I	0.01	1	0.01	2	3	5	2	2	1	5	3	I
<pre>K = Less than Minimum</pre>						le) =	Greater	r than	Baximum	Aufa :	1000 = fire -	20000 assay/A	10.00 AS	10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	1000	100	10000	100	1000	20000

.

.

1988 I WOMPH SINEET VANCOUVER, B.C. V5L 1KS (604) 251-5556 FAX (604) 254-5717

.

•

.

														177 10	04) 234	5717													
REPORT 1: 801069 PA		1	NESTERN	CANADIA	K																				Pa	ge 1 c	of 1		
Sample Number	٨g	A1	٨s	AuFA	Au	Ba	8i	Ca	Cd	Co	î,	Cu	fe	ĸ	Ng	ňo	No	Xa	Ni	P	የъ	Pd	Pt	Sb	Sn	Sr	U	W	1
	pp=	z	ppa	ppb	pp	ppe	pp s	I	ppa	ppe	ppa	ррв	I	2	ĩ	ppe	ppe	1	pp∎	I	ppm	ppe	ppa	p p∎	pps	ppa	pps	p ç∎	PP
R88-6833	1.5	2.23	29	<5	(3	27	6	0.41	1.8	26	61	249	5.65	0.09	2.19	140	7	0.02	25	0.19	156	(3	<5	(2	4	10	(5	< 3 2	10
R88-8834	0.3	1.63	19	<5	(3	42	3	0.45	1.5	23	58	200	4.49	0.11	1.32	1027	4	- 0.01	13	0.19	96	(3	(5	- (2	з	10	(5	<3	15
£88-8835	8.0	0.85	56	(5	(3	133	<3	0,79	0.3	17	14	4923	2.01	0.16	0.31	594	2	0.01	6	0.13	31	(3	<۵	{2	<2	19	(5	<3	• 6
R68-8835	0.8	Q. B1	53	(5	(3	123	(3	0.71	0.3	21	19	3995	2.23	0.15	0.37	526	3	0.01	8	0.15	27	(3	{5	(2	(2	24	(5	(3	. 5
R88-8837	0.1	0.77	35	(5	(3	122	(3	0.49	0.1	14	17	2745	2.39	0.11	0.48	607	2	0.01	5	0.15	26	٢3	<5	(2	(2	32	<5	(3	6
R88-B8 38	0.1	0.8S		(5	(3	24B	(3	0.34	0,	8	17	659	2.39	0.10	0. 28	161	2	0.02	3	0.15	28	<3	(5	(2	<2	13	(5	(3	5
R88-8839	0.8 1.55 >1000 (5 (3 24 3 1.22 0.1 15 37 191 4.61 0.21 1.05 935 2 0.02 21 0.21 35 (3 (5 (2 (2 42 (5 (3 0.4 1.90 29 615 (3 21 (3 2.26 1.3 16 72 114 4.69 0.27 1.08 1207 2 0.02 16 0.20 31 (3 (5 (2 2 95 (5 (3 1.3 1.4 1.1 1.5 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.4 1.1 1.5 1.5 1.4 1.4 1.1 1.5 1.5 1.4 1.1 1.5 1.5 1.4 1.1 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5														12														
R68-6640	0.4 1.90 29 615 (3 21 (3 2.26 1.3 16 72 114 4.69 0.27 1.08 1207 2 0.02 16 0.20 31 (3 (5 (2 2 95 (5 (3														11:														
R88-8841	1.3	1.41	11	960	(3	73	(3	0.44	1.1	· 17	44	3519	3.47	0,11	1.15	\$50	4	0.02	6		27			(2	<2	53	(5	<3	8
R68-8929	3.1	0.54	160	1510	(3	241	<3	0,30	0.1	11	62	1713	1.33	0.09	0.09	207	5	0.01	4	0.15	29	(3	(5	<2	{2	10	(5	۲3	1
888-8930	2.5	0.72	5	800	(3	528	<3	1.06	0.5	7	29	4824	2.49	0.19	0.63	861	3	0.01	2	6 .11	30	(3	(5	(2	(2	68	(5	(3	7:
888-8931	6.3	0.96	55	3900	3	89	3	0.59	1.3	8	16	8092	3.14	0.12	0.76	897	2	0.02	- 4	0.12	27	<3	{5	93	(2	43	(5	<3	11
.R88-8932	7.5	0.80	12	1880	(3	52	5	0.B9	1.1	8	36	14747	3.28	0.16	0.75	649	3	0.02	4	0.14	40	(3	(5	(2	(2	44	(5	(3	8
- R88-8933	14.1	1.00	74	7540	7	15	5	0.65	1.1	8	70	1B445	3.5B	0.13	0.65	905	4	0.02	5	0.15	56	(3	(5	(2	(2	44	<5	(3	10
R88-8934	2.2	0.96	14	970	(3	72	(3	1.15	0.5	\$	31	4953	2.62	0.20	0.78	1018	2	0.01	2	0.1Z	21	(3	(5	(2	(2	92	(5	(3	9.
R88-8935	0.4	1.07	(3	70	(3	553	(3	1.42	0.5	7	22	2289	2.84	0.23	0.89	1036	2	0.01	4	0.13	18	(3	(5	<2	(2	98	(5	(3	7.
R88-8936	11.3	1.04	132	2190	(3	72	5	1.10	0.9	8	65	14710	3.17	0.19	0.82	924	4	0.02	5	0.13	26	(3	<5	556	<2	67	(5	(3	12:
R88-8937	, 4.9	1.30	23	830	<3	255	3	0.BS	1.1	16	64	4392	3.32	0.17	1.39	2067	2	0.02	17	0.14	32	(3	<5	<2	3	72	(5	(3	9'
R88-8938	11.3	0.87	73	2290	<3	16	5	1.27	1.2	6	19	14487	3.62	0.21	0.62	1245	3	0.02	4	0.11	31	(3	(5	<ż	(2	81	(\$	(3	2
R88-8939	0,8	1.17	47	650	(3	87	<3	1.35	0.4	7	43	2710	2.43	0.22	0.89	842	2	0.01	2	0.14	30	(3	(5	<2	<2	89	<5	۲3	8:
R88-8940	0.4	1.05	11	635	(3	, 70	(3	2.14	0.5	1	32	3101	2.22	0.27	0.86	1148	2	0.01	8	0.13	23	(3	<5	(2	(2	193	<5	(3	7
- R88-8941	0.B	1.09	10	10000	9	158	(3	0.82	0.6	7	22	4612	2.33	0.16	0.84	793	3	0.01	3	0.12	18	(3	(5	(2	(2	65	(5	(3	6:
R88-8942	0.4	0.95	<3	355	<3	779	(3	0.72	0.5	7	45	1330	2.19	0.15	0.75	B25	3	0.01	3	0.11	16	(3	(5	(2	(2	67	<5	(3	6:
R68-8945	1.3	Q. 99	(3	300	(3	327	(3	0.62	0.5	В	14	1428	2.63	0.13	0.86	1027	2	0.01	3	0.13	20	(3	(5	(2	(2	34	(5	(3	71
R88-8945	0.8	1.34	(3	360	<3	881	(3	0.70	0.6	B	10	1670	2.62	0.14	1.12	1645	2	0.01	3	0.13	40	(3	(5	à	(2	73	<5	(3	9
Minimum Detection	0.1	0.01	3	5	3	1	3	0.01	0.1				A A1	A 41	۰ م ر			* **				_					-	-	
Naxious Detection		10.00	-	10000	1000	1000	_		100.0	20000	1000	20000	0.01 10.00	0.0	0.01	1.	1000	0.01	1	0.01	2	3	5	2	2	1	5	3	
<pre>< = Less than Minimum</pre>							Greate	r than	Kaxisus	AuFA =	Fire	assay/A	AS	10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	1000	100	10000	100	1000	2000{

• .

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

1

[]

1

T.

VANGEOCHEM LAB LIMITED 1988 TRIUMPH STREET VANCOUVER, B.C. V5L 1K5 (604) 251-5656 FAX (604) 254-5717

EPORT #: 881153 PA		H	ESTERN	CANADIA	N HENIN	6 CORP,																			Pag	e 1 (of 1		
lasple Humber	Áç po∎	A) I	As ppe	Auž A ppb	Au pow	8a pom	Bi ppe	Ca X	Cđ pp#	Co	Cr PD II	Cu ppe	fe 7	x 7	Kg	Nn ppe	Ko pom	Ka	Xi	P	Pb	Pd	Pt	55	Sn	Sr	U	V	In
·c8 - 8842	0.3	1.61	29	460	(3	106	(3	0.28	0.8	20	34	1456	3.41	0.07	1.40	709	pp		ppa 15	A 15	ppa	ppe (S	ppe	po a	9p	D D D D	pp a	ppe	00 B
·88 - 8843	1.3	1.10	81	950	(3	298	(3	0.41	0.5	12	24	2657	2.05	0.11	• • •		3	0.01	15	0.15	36	(3	(5	(2	- 1	25	(\$	(3	83
58 - 8844	1.3	1.12	46	200	ä	231	(3	0.72	0.8						0.40	438	1	0.01		0.15	38	(3	<5	<2	3	13	(5	(3	61
68 - 8943	1.1	0.92	12	5690	13	671		-	-	23	21		2.98	0.14	0.58	672	7	0.01	8	0.17	45	(3	- (5	<2	- 4	25	< 5	(3	69
					0		(3	1.13	0.6		28	1547	2.68	0.20	0.67	1181	2	0.02	- 4	0.14	28	(3	i (S	<2	3	72	<5	(3	74
358 - 8944	1.3	1.24	14	990	<3	404	(3	,0.82	0.8	6	11	2894	3.10	0.15	1.03	935	1	0.01	4	0.14	27	(3	(5	<2	3	49	(5	<3	88
ise - 8947	0.5	1.11	6	280	(3	883	(3	0.42	1.1	9	32	907	3.91	0.10	1.04	1484	,	0.02	5	0.14	46	(3	<5	(2		57	(5	(3	76
iee - 8948	0.1	1.22	3	100	(3	31000	3		0.B	11	16	435	3.94	0.13	1.09	1403	;	0.02	č	0.15	•	(3			è				76
SB - 8949	0.3	0.91	13	330	(3	321	(3	0.37	0.6		21	372	3.61	0.09	0.65	880	1		- 5		39		<5	(2	2	88	(5	(3	91
'88 - 8950	24.5	0.97	250	8600	Ŕ	42	3	1.18	2.6	a		-					2	0.02	-	0.14	34	<3	(5	(2	2	31	(5	<3	E
SB - 8951	0.3	1.63	á	200	(3	-				1		20000	3.61	0.19	0.81	1057	2	0.02	2	0.12	29	<3	<5	>1000	3	70	<2	<3	207
	v. 5	1.03	,	200	(3)1000	(3	0.38	1.1	13	51	780	3.86	0.10	1.59	1018	2	0.02	11	0.16	32	<3	۲5	(2	6	69	(5	<3	B1
Sá - 8952	0.4	1.30	7	250	(3	618	3	0.33	1.1	12	51	426	3.64	0.09	1.29	1025	2	6 63		A 15	54	/3	/5	10				10	70
138 - 8953	0.1	1.43	35	150	(3	>1000	(3		I.I	15	30						-	0.02	11	0.15	34	(3	<5	(2	3	35	(5	<3	72
			••			/1000		0,00	1.1	11	30	334	3.39	0.09	1.34	1637	I	0.02	9	0.16	39	(3	- (5	<2	5	69	(5	<3	108
Sinimum Detection	0.1	0.01	3	5	3	I	3	0.01	0,1	1	1	1	0.01	0.01	0.01			0.01		0.01	•	•	e	•					
Cassmum Detection	50.0	10.00	1000	10000	1000	1000	1000	20.00		20000	1000	20000	10.00	10.00		20000	1		1		<u>, , , , , , , , , , , , , , , , , , , </u>	5		4	2	1	3	3	1
= Less than Minimum					No samp	le) =	Greate	r than	Naxigun	AufA =	Fire -	assay/A	10.00 AS	10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	1000	100	10000	100	1000	20000

r - - 1

.

.

.

1 1

1 1

· · · · · ·

л г.

.

.

÷

.

1

 (k_{1}, \ldots, k_{n})

1.00

.

.

÷.

ŧ

(

(

1

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

.

L

;

.

VANGEOCHEM LAB LIMITED 1988 TRIUMPH STREET VANCOUVER, B.C. V5L 1K5 (604) 251-5656 FAX (604) 254-5717

REPORT 4: 881301 PA		¥	ESTERN	CANADIA	8																				Pag	je io	if 1		
Sample Number	Ag ppa	A] Z	As pps	AuFA opb	Åu pc∎	Ва рра	Bi pp∎	Ca I	Cd pça	Co ppe	Cr ppa	Сц роч	Fe	K Z	Ng I	Kn Dpe	fo pça	د K ۲	Ni Sp e	P Z	РЪ рса	Pd pps	Pt pp∎	ՏՆ բջա	Sn ppe	Sr P20	. 11	¥	În
R33-6249	3.4	0.24	79	100	(3	1	(3	0.07	2.1	13	57	83	5.06	0.72	0.04	58	4	0.02	22	0.0B	82	(3	{5	(2	2	P 2	974 (5	рр∎ ∢3	քթ≞ 343
R80-2350	0.5	0.45	130	<5	(3	7	(3	0.05	1.1	21	26		4.59	0.65	0.09	41	2	0.01	15	0.12	39	(3	(S	(2	2	4	(5	(3	260
			•																			·		•					
299-B355	1 .2	2.82	24	.110	<3	46	(3	2,33	1.2	31	208	315	3.99	0.91	3.62	1570	3	0.01	50	0.14	67	(3	(5	<2	s B	299	<\$	<3	126
£89-8956 ,	0.2	1.32	48	10	(3	569	<3	0.63	Ô.2	11	29	144	2.62	0.41	0.80	721	1	0.01	8	0.17	30	(3	(5	(2	4	40	(5	(3	٤٥
R29-3358	0.2	1.27	1B	<5	(3	2001(<3	0.72	0,1	10	50	264	2.66	0.31	0.77	770 .	2	0.01	10	0,16	29	(3	(5	(2	4	23	(5	(3	55
888-835 9	1.2	2.17	21	140	(3	636	3	0.49	1.1	22	167	640	3.94		2.50	2182	3		41	0.19	48	₹3	(5	(2	8	47	(S	(3	107
Minimum Detection	0.1	0.01	3	5	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	i	0.01	1	0.01	2	3	5	2	2		5	3	ı
Maximum Detection		10.00		10000	1000	1000		20.00			1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	1000	100	10000	100	1000	20000
(= Less than Hinigum i	is = Insul	licient	Saaple	ns = 1	No samp	le)=	Sreate	r than	Maximum	AuFA =	Fire F	a`ssay/A	AS																

.

.

.

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

-

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 881069 AA	JOB NUMBER: BB1069	WESTERN CON. MINING CORP.	PAGE 1 OF 1
SAMPLE #	Au oz/st		
R88-8841	.031		
R88-8929	.033		
R88-8931	.120		
R8B-8932	.045		•
R88-8933	.188		
R88-8934	.035		
R88-8936	.082		
R88-8937	.032		
R88-8938	.060		•
R88-8941	. 512		

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm

signed:

È.

4

. .

.005 i ppm = 0.0001Z (ppm = parts per million (= less than

R88 - 8953

. .

in...

1

ſ

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 881153 AA	JOB NUMBER: 881153	WESTERN CON. MINING CORP.	PAGE	1 0	FI
SAMPLE #	Au oz/st				
R88 - 6842					
R88 - 8843	.031				
R88 - 8844	_ _				
R88 - 8943	.182				•
R88 - 8944	.028				
				•	
R88 - 8947					
R88 - 8948					
R88 - 8949					
R88 - 8950	.210				-
R88 - 8951 .					
	r				
R88 - 8952					

DETECTION LIMIT I Troy oz/short ton = 34,28 ppm

signed:

.005 1 ppm = 0.00012 ppå = parts per million < = less than</pre>

1</t

Sample Humber	Ag ppo	Al Z	As pp B	AuFA ppb	Au ppe	Ba ppé	Bi pps	Ca I	ppe	Со род 1		Ca ppe	I	I	Hg I	ppe	<u>ppa</u>	Xa I	ppa	Р 2	Pb ppm	Pd pp#	Pt ppi	Sb ppa	Sn pp∎	Sr pps	U pp#	¥ spa	
68B - 8501	0.4	2.70	12	(5	(3	56	6	3.47	2.5	24	35	111	4.71	0.3B	2.20	1683	1	0.02	25	0.15	50	(3	<5	(2	(2	199	(5	(3	
Ninisus Detection Nacisus Detection C = Less than Minisus (0.1 (50.0 1(is = Insuffic	0.00	3 1000 Sample	\$ 10000 ns =)	3 1000 Ko sanpi	1 1000 le) =	3 1000 Greate	0.01 20.00 r than	100.0	ן 20000 אעדא י	1 1000 Fire	1 20000 2552y/A	10.00		0.01 10.00		1 1000	0.01 10.00	-	0.01 10.00	2 2000 0	а 100	5 100	2 1000	2 100	10000	5 100	E 2 0001	

e - 1

AUG 1 9 1988

ί.,

VANGEOCHEM LAB LIMITED 1988 TRIUMPH STREET VANCOUVER, B.C. V5L 1K5 (604) 251-5656 FAX (604) 254-5717

.

.

.

1

r

٠

.

REPORT 1: BOLOGO PA		¥.	STERN	נאנא אסס	l NG																				Pag	je i o	f 1		
Sample Number	Ag	ĄĮ	As	AuFA	Au	Ba	Bi	Ca	Cd	Ćσ	Cr	Cu	fe	ĸ	Ng	Кл	Ko	Na	Ni	2	Pb	29	Pt	Sb	Sn	Sr	U	¥	lr.
	ppa	1	ppe	P DP	P 0	996	₿₽ n	7	pom	pom	104	ppe	4			DDe	¢p∎	-	004	- A	p p a	pp 🛛	ppa	DD4	ppe.	00=	₿D1	pom	90 C
698-9828	0.1	1.23	29		- (3	51	(3	2.97	0.1	10	- 33	64	2.63	0.30	0.80	3060	1	0.01	10	0.16	21	(3	<5	(2	2	119	(5	(3	6.
663-9631	0.2	0.38	17	100	(3	5	3	0.13	1.1	12	27	, 281	5.62	0.04	0.20	130	3	0.02	. 12	0.09	24	(3	<5	(2	2	20	(5	(3	71
Minigum Detection	0.1	0.01	3	5	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	3	5	2	2	1	5	3	1
Maximum Detection	50.0	10.00	1000	10000	1000	1000	1000	20.00	100.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10,00	20000	100	100	1000	100	10000	100	1000	2000/
K = Less than Kinimum											= Fire	assay/A	A\$	10104	141.04	20000		10.00	20000	10,00	20000	400	,00	1000	100	10000	100	1000	10000

. • •

No sample > * Greater than Maximum AuFA = Fire assay/AAS . .

.

1 1 1

ί.

1 .

ŗ

• •	1	1	 _	1 7]	;		F	. .	7		1	[[٦	f	1	1	!	1	•	1		r		Γ		
										•	۷	ANG	ОСН	EM L	AB LI	MITED	,												
REPORT & BS1152 PA		H	ESTERN	CAKADIA	N KIXIN	G CDRP.					u	VANC	38 TRI CUVE	R, 8.C	. V5L										Pa;	e io	1 1		
Sample Humber	Ag pom	#1 T	As B9B	Aufa ppb	Au ppe	8a ppm	8i pp#	Ça Z	Cđ Ppo	Co ppe	Cr PP=	Cu ppa	Fe I		(004) 2. Ng I		Ko 998	X1 7	Ni ppa	р 1	РЬ рра	Pd ppm	Pt pys	St. pps	Sa ppa	Sr ppe	U ppa	¥ eeq	l. Pp
688 - 8845 688 - 8954	1.6		••	890	(3	72	(3		0.8	22	25	3859 20000	2.98 5.64	0,14 0,35		467	1	0.01 0.01	15	0.14 0.01	41 11	(3 (3	(5 (5	(2 (2	4	22 169	(5 (5	(3 (3	57
Minimum Detection	0.1	0.01	3	5	3	1	3	0.01	0.1	i	1	1	0.01	0.01	9,01	1	1	0.01	1	0.01	2	3	2	2	2	1	5	3	l
Nazimum Detection K = Less Uhan Minimum	50.0 is = Insui		1000 Sample	10000 ns =	1000 No samp	1000 ie)=		20.00 r than						10.00	10.00	20009	1000	10.00	20000	10.00	20000	100	100	1000	100	10000	100	1000	20000

• •

.

•• ,

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

.

1.

.

VANGEOCHEM LAB LIMITED 1988 TRIUMPH STREET VANCOUVER, B.C. V5L 1K5 (504) 251-5656 FAX (604) 254-5717

1 1

1

•

.

1

T T

1

.

1

ŝ

REPORT 6: BB1300 PA		ŭ	ESTERNI	CANADIA	N KININ	CORP.																			Pa	ge la	я 1		
Sample Number	Ág ppm	A1 1	As pom	Auf A ppb	Au pp∎	Ва ррж	Bi pps	Ca T	Cď POA	Co pp∎	Čr ppe	Cu pp∎	Fe Z	ĸ	Ng T	Ka pp u	Ko ppe	Ha Z	Ni ppq	P I	P6 po∎	Pd ₽5≛	Pt pp#	Sb DD •	Sn ppe	Sr ppn	U pom	N Sde	Zn pps
623-8847	1.2	0.85	10	70	(3	22	4	0.67	2.5	46	145	138	8.53	0.10	0.61	295	4	0.03	54	0.12		K 3	(5	(2	1	8	(5	(3	228
- 688-8957	0.4	1.16	70	110	K 3	254	(3	0.54	0.4	12	54	660	2.28	0.12	0.58	597	2	0.02	10	0.15	38	K 3	(5	<2	3	27	(5	(3	64
Miniaua Detection	0.1	0.01	3	5	3	t	3	0.01	0.1	1	i	t	0.01	0.01	0.01	1	1	0.01	1	0.01	2	3	5	2	2	1	5	3	1
Mariaua Detection	50.0	10.00	1000	10000	1000	1000	1000	20.00	100.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	1000	100	10000	100	1000	20000
C = Less than Minisum is	s = Insul	ficient	Sample	AS =	No sampl	a) =	Greate	r than	Maxîsu	AuFA	= Fire	assay/A	AS																

• `

..

WESTEPH CON MINING CORP. Page 1 of 1 :POP1 1: 880986 PA ₽t Âġ A) AufA λa, 8a Bi C a Cđ Co Сr Ûц fe ĸ. ňa Бn ño Na Ki P ያъ ۶đ Sb Ŝπ Sr U ٧ isole Number ĥs Zn I 90e. 1 1 7 l ï ₽₽∎ ppa pp d ррв ççe 004 pps ppe. 1 008 **DD** pp n DOM 901 pp.4 004 **D**D∎ 005 DD . **DD**∎ aob DDA 248 2.53 0.15 29 (3 (5 <2 35 <5 38-9901 0.1 1.73 28 300 (3 - 45 (3 0.82 0,7 11 114 1.36 993 4 0.01 39 0.19 5 (3 61 (3 (5 90 (3 71 63 4.20 0.10 1.00 627 16 43 (5 {2 22 (3 43 13-890Z 0.1 1.30 20 82 (3 0.45 1.1 10 8 0.02 0.21 6 (3 SL 71 2.61 0.08 0.65 **<**33 20 0.20 457 (3 <5 <2 4 8 <5 <3 434 35-6903 0.1 1.27 69 <5 83 (3 0.37 2.9 13 3 0.02 59 73 2,30 0.10 0.30 124 1B 0.16 20 (3 ۲5 {2 48 <5 (3 24 0.61 10 30 (3 42 (3 0.48 0.3 13 1 0.01 4 2-8904 0.1 32 ۲) (3 13 (3 24 82 91 2.78 0.86 273 33 21 (3 (5 (2 4 42 2-9905 0.1 1.01 40 51 (3 0.4B 0.B 0.10 3 0.01 0.15 47 **(**\$ {3 (5 **(2**) 39 21 (3 4 9068-3 0.1 1.07 13 -{5 (Ξ 38 (3 0.58 0,8 21 89 87 3.05 0.11 0.90 405 4 0.01 31 0.14 2.24 35 а 33 3 0,44 21 78 118 4.96 0.10 2.42 879 3 0.02 22 0.17 75 **{3** ٢5 (2 1 15 <5 (3 69 :8-8907 0.4 50 2.1 (3 (5 (2 **(**5 (3 174 2.52 24 (3 3 0.40 26 1154 4.57 2.53 3 11 0.12 32 4 36 ie-8908 1.1 170 844 1.8 10 0,10 1474 0.02 ۲S (3 95 2-8909 0.1 0.89 13 90 (3 100 0 0.72 0.7 7 63 1068 2.86 0.14 0.66 650 2 0.01 6 0.11 17 (3 <5 <2 3 25 {2 (5 (3 83 (3 **(**5 3 21 0.9 1.25 11 1100 **(3**) 216 (3 0.47 7 56 2173 3.15 756 5 0.13 16 .9-8910 1.1 0.11 1.12 4 0.01 43 - (5 (3 82 2.1 0.91 17 (3 767 (3 <5 (2 3 3-8911 2230 344 (3 0.64 1.3 9 45 4973 3.45 0.13 0.83 3 0.02 6 0.15 -41 ٢) (3 353 (3 0.88 29 3.03 19 (3 ۲) {2 - 3 54 <3 71 8-8912 0.1 0.77 8 500 0.8 8 5693 0.17 0.71 725 2 0.01 5 0.14 0.70 <3 ٢) (2 72 <5 (3 76 8-8913 2.1 0,78 10 1250 (3 309 (3 0.93 8 43 5792 3.02 0.17 0.02 21 3 1.1 816 2 6 0.14 0.9 1.57 0.62 71 3.05 23 26 (3 (5 (2 6 103 ۲) (3 57 9-9914 10 410 (3 618 (3 1.1 20 430 0.14 1.44 634 3 0.02 0.13 ٢, 33 (3 ٢5 (2 3 59 - (3 122 8-6915 2.8 0.91 10 3840 (3 230 (3 30 5262 3.15 3 0.02 7 0.13 1.19 1.5 1 0.20 0.72 1040 <3 ٢\$ 123 13 483 (3 ٢\$ {2 7 46 9-8916 >50.0 1.11 33 >10000 28 (3 0.89 4.8 11 44 320000 7.87 0.19 0,97 984 7 0.04 0.25 3 6 8-6917 2.1 4.13 49 (3 59 1.77 2.9 28 38 634 7.16 0.29 3.01 1966 5 0.04 6 0.14 57 (3 ٢5 (2 16 72 (5 (3 175 20 <۵ (3 132 ٢, **(**2 13 3-5910 0.9 1.69 94 70 (3 19 (3 0.38 1.8 28 67 605 5.27 0.11 1.39 1232 4 0.02 18 0.23 133 (3 5 (3 (5 (2 5 130 (5 (3 239 8-8919 0.1 3.75 56 15 **{3** 67 4 1.59 2.8 23 57 134 6.36 0.26 3.53 1625 4 0.03 29 0.17 242 <5 (3 86 28 (3 (5. (2 (2 164 3-8920 0.5 2.53 17 ۲\$ (3 82 3 1.30 1.5 31 202 138 3.58 0.22 2.84 679 2 0.03 60 0.19 93 3-8921 0.9 3.64 50 30 (3 43 0.31 15 69 176 2.61 1390 0.04 23 108 (3 **{5** (2 9 8 ۲) ٢) 6 3.2 9.07 0.1B 0.11 6 2-8922 35 (3) 1.95 1756 3 0.02 10 36 (3 ₹5 (2 108 **{**5 (3 57 0.1 1.96 10 <3 ΒŌ 4.1 14 32 62 3.55 0.30 1.38 0.15 4 5-8923 0.1 1.OB 13 35 (3 60 (3 1.4B 44 26 24 (3 (5 (2 58 <5 <3 41 8 2.24 0.24 0.65 930 0.01 6 0.10 2 0.3 1 ٢3 82 3-9924 0.1 0.92 9 250 (3 239 (3 0.38 10 46 843 3.24 0.10 0.95 516 2 0.02 B 0.15 25 (3 (5 **{2** 5 56 ۲5 1.1 (3 **{2** 7 ٢\$ (3 31 47 26 **(**5 2 9-9925 1.0 0.47 89 5£0 <3 10 (3 0.15 0.7 15 77 78 4.48 0.06 0.04 4 0.02 8 0.17 5 3 ъ.

7

5 2 nimum Detection 0.1 0.01 3 5 3 3 0.01 0.1 1 0,01 0.01 0.01 1 1 0.01 1 0.01 2 3 2 1 1 1 1 100 100 1000 20000 100 1000 100 10000 visua Detection 50.0 10.00 1000 10000 1000 1000 1000 20.00 100.0 20000 1000 20000 10.00 10.00 10.00 20000 1000 10.00 20000 10.00 20000 = Less than Minimum is = Insufficient Sample ins = No sample) = Sreater than Maximum AuFA = Fire assay/AAS

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

.

٦ [

.

۱.,

. .

ь.

È.

<u>і</u>. - -

L

b....

i.

.....

.

b...

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST, VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 880986 AA	JOB NUMBER: 880986	WESTERN CDN. MINING CORP.	PAGE	1	OF	1
SAMPLE #	Ag oz/st	Au oz/st				
588-8910		.038				l
G88-8911		.048				
688-8913		.047			-	
G88-8915		.073				
688-8916	2.31	.858				

.01 65 1 ppm = 0.00011 parts per million pp∎

ī

signed:

VGC	MAIN OFFICE AND LE 1988 Trivaph S Vancouver, B.C. (604)251-5656 FAJ	ABUKATURY Street VSL 185 V. R:254-5717	BRANCH OFFICE 1630 PANDORA ST. ANCOUVER, B.C. VSL 1L6 (604) 251-5656		•
REPORT NUMBER: 881152 AA	JOB NUMBER: 801152	WESTERN CON. MIN	ING CORP.	PAGE	I OF
SAMPLE #	Au oz/st				
688 - 8954	.067				
	<i>.</i>				

[.

L

DETECTION LIMIT 1 Tray az/short tan = 34.28 ppm	.005 1 ppa = 0.0001% A a = pyrts per million	(=
signed:	AC	

٩

< = less than</pre>

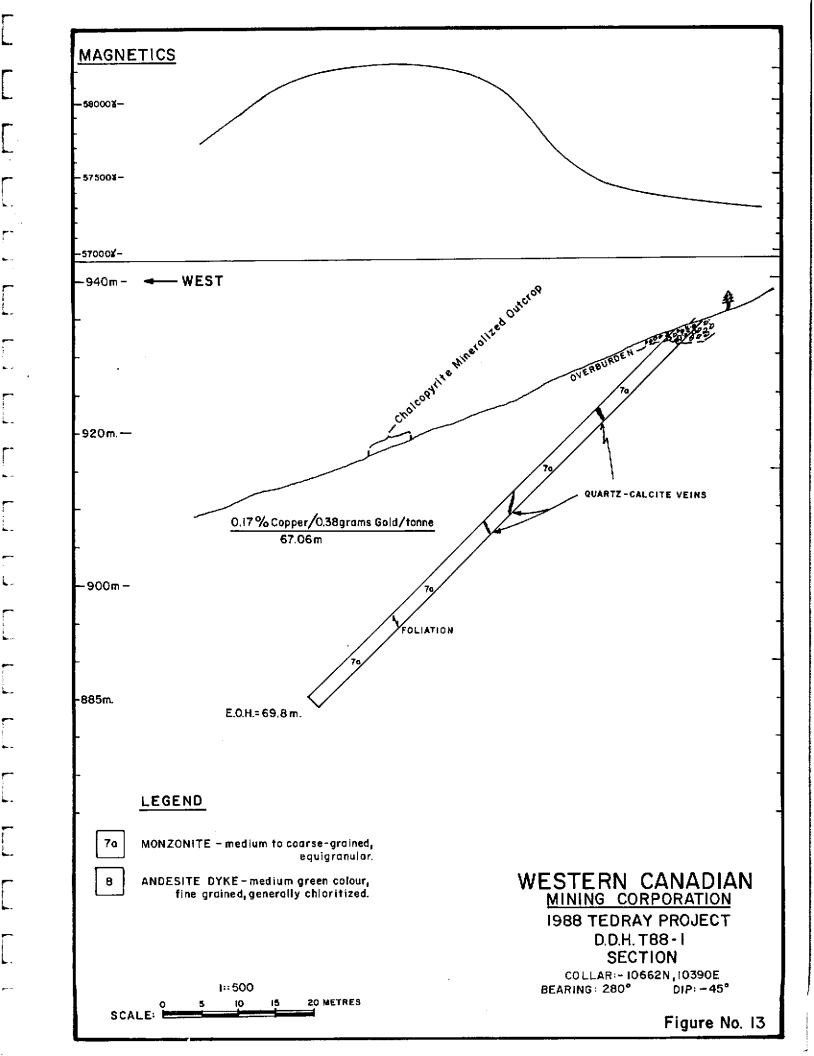
.

...

APPENDIX II

• •

...


۱.,

١.

L.

Diamond Drill Sections, Logs and Drill Core Assay and Analysis Certificates

.

Ł

ь.,

<u>i</u>.

i.,

£....

TEDRAY PROJECT

Į

ĺ

Ĺ

D.D.HOLE <u>T-88-1</u>

••	MAL IROOM		
LOCATION DATE STARTED DATE COMPLET CORE RECOVER DRILLED BY _ LOGGED BY DC OBJECTIVE TH DIP TEST DEN DEN	ED <u>AUGUS</u> AY <u>89.56</u> FALCON DRI DUG KOZAK, ST DOWNDIP PTH <u>NONE</u>	T 22, 1988 T 22, 1988 % LLING LTD. SCOTT CASSE EXTENT OF	COLLAR LAT. 10662 NORTH LONG. 10390 EAST ELEVATION 950 m AZIMUTH 280 DIP -45 de LENGTH 69.8 m LENGTH 49.36 m BORNITE MINVERT. PROJ49.36 m deg deg
======================================	:========= :O (m) :W	=========== IDTH (m)	
0.00	2.74	2.74	OVERBURDEN
2.74	68.5	65.76	<pre>MONZONITE - grey-green with pink tinge - medium to coarse grained, inequigranular - plagioclase 1-4 mm, euhedral lathes 25-30% - potassium feldspar, predominantly fine-grained, groundmass 45% - quartz - carbonate veining 5% - 10% mafics, predominantly hornblende - sphene (titanite) trace - < 1% pyrite, finely disseminated - possible trace tetrahedrite - trace bornite and covellite - trace bornite and covellite - < 1% chalcopyrite occurring as coarse blebs in quartz calcite veins (to 1 cm) and as fine wispy intergranular blebs - alteration 15% chlorite - pervasive moderate chloritization of mafic minerals as well as massive bands and blebs in quartz-calcite veins and wispy chlorite stringers - 3-5% sericite - occurs mainly due to feldspar sericitization</pre>

TEDRAY PROJECT

.

,

D.D.HOLE <u>T-88-1</u>

TEDF	RAY PRO	OJECT	D.D.HOLE $T-88-1$
FROM (m) !TO	(m)	WIDTH (m)	LESCRIPTION
			 10-20% potassic alteration in the form of pervasive fine grained aphanitic potassium feldspar masses fractures 35-60 deg to core axis veins to 1 cm 25-55 deg to core axis 55-56 m weak foliation (alignment of tabular minerals) at 30 deg to core axis with slight increase in sericite, slightly magnetic
68.5	69.2	0.7	ANDESITE DYKE - dark green - fine grained with minor barren carbonate spots and carbonate veins to 1 cm - intensely chloritized 20% mafics (hornblende) chloritized 10% plagioclase partially sericitized 1% fine wispy carbonate stringers < 1% pyrite slightly magnetic - upper contact 40 deg to core axis - lower contact 45 deg to core axis
69.2	69.8	0.3	MONZONITE as above - no contact alteration
			E.O.H.

.

j,

DRILL HOLE LOG ABBREVIATIONS

-

. ►...

. .

.

....

.....

Ref RL RQ ROCKNAME		Diamond drillhole reference number Reference level, elevation Rock quality index
	-	MONZ - monzonite ANDS - andesite
TXT	-	Texture FG - fine grained MG - medium grained CG - coarse grained
ALTERATION (%)		
SI QV SE CY CH EP CB GM Al A2 IN MINERALIZATION (%	- - - - - - - - - - - - - - -	Pervasive silicification Quartz veining Sericite Clay Chlorite Epidote Carbonate Green mica Alteration mineral 1 Alteration mineral 2 Total rock alteration intensity
РҮ		Pyrite
CP	-	Chalcopyrite
SP	-	Sphalerite
CC	-	Chalcocite
NC	-	Native copper
Ml	-	Bornite
M2 <u>GEOCHEMISTRY</u>	-	Ore mineral 2
Au		Gold assay in ppb
Au oz	***	Gold assay in ounces per ton
Ag	-	Silver assay in ppm
Ag oz	-	Silver assay in ounces per ton
Cu	-	Copper assay in ppm
Zn Fe %	_	Zinc assay in ppm Iron assay in percent
re s As	-	Arsenic assay in percent
Mn		Manganese assay in ppm

.

Western Canadian Mining Corporation - 23 Nov 1988 10:02:03 Page 1

.

.

-

.

- .

Ref T881	North 10662	East 10390	RL 93	L Azim 50 280	Di 45		Len 69.	gth 8	Cat	egor		TEST	שםע	NDIP		arks ENT		ORNI	TE M	INER	AL I Z	ATIO	N		#H¢∟E
FROM	Dist	WDTH RG	RDC	CKNAME	UNT	тхт	ទរ	QV	SE	CY	СН	ΈP	CB	GM	A1	A 2	IИ	ΡY	CP	SP	CC	NC	M1	M2	
0	2.74		OVE	ERBURDEN																					
2.74	4.00	1.26 43		NZ		M-CG		1	2		25		4				35	1	.2						
4.0	6.00	2.0 37				M-CG		.5	5		20		1				20	1	- 1						
6	8.00	2.0 39				M-CG		1	7		12		2				25	1	.5						
8	10	2.0 34				M-CG		2	7		15	_	1				27	1	•8						
10	1 🗅	2.0 40				M-CG		4	8		17	.2	.5				34	2	- 1						
12	14	2.0 45				M-CG		2	8		17	1_	4				37	2	. 1						
14	16	2.0 47				M-CG		5	8		17	• 2	5				40	2	.5						
16	18	2.0 43				M-CG		2	7		15		2				35	1	. 1						
18	20	2.0 44				M-CG		1	5		12		2				25	1	.3						
20	22	2.0 42	: MOX	NZ		M-CG		1	6		11		4				28	1	.3						
22	24	2.0 40	MOI	NZ		M-CG		1	8	1	11		4				30	2	.4						
24	26	2.0 45	וסא ו	NZ		M-CG		2	9	1	5		4				30	2	.5						
26	28	2.0 53				M-CG		2	12		7		3				30	2	i						
28	30	2.0 53	: MOI	NZ		M-CG		2	12	1	8	.2	5				33	4	1						
30	32	2.0 44	MD	NZ		M-CG		1	10		8		4				20	4	1.5						
32	34	2.0 46	MOI	INZ		M-CG		1	10	1	7		4				28	4	1						
34	36	2.0 54	MOI	NŻ		M-CG		1	15	1	8		3				33	2	.5						
36	38	2.0 41	, MOI	INZ		M-CG		3	15	2	12		2				42	2	.5						
38	40	2.0 53	: MOI	NZ		M-CG		1	8	.5	15		5				35	1	.3						
40	42	2.0 53	2 MO	INZ		M-CG		1	7	.2	12		5				30	1	1						
42	44	2.0 52	2 MOI	NZ		M-CC		1	13		12		5				4¢	3	1.5						
44	46	2.0 47	7 MO	INZ		M-CG	3	1	20		10		3				40	4	1.5						
46	49	2.0 48	3 MOI	NZ		M-CE		.5	10	1	6		2				25	2	.8						
48	50	2.0 43	. MO	IN Z		M-CG		1	11		8		2				25	4	2						
50	52	2.0 47	7 MO	INZ		M-CG		.5	8	i	10		2				25	4	1						
52	54	2.0 52	2 MO	3NZ		M-C9		.5	7	1	7		3				22	2	.8						
54	56	2.0 44	i Ma	INZ		M-CG		.5	12	1	7		2				25	3	.5						
56	58	2.0 52	2 MO	NZ		M-CO		.5	10	1	7		3				25	3	.5						•
53	60	2.0 43	s Mo	INZ	•	M−C0	1	.5	13	1	8		2				27	2	.3						
60	62	2.0 44	1 MO	3NZ		M-C0	51	.5	10	. 5	8		3				25	2	.8				. 1		
62	64	2.0 40	5 MD)NZ		M-CG		.5	10		9		3				25	2	.5				- 1		
64	66	2.0 48	3 MO	INZ		M-CC	i 2	.5	10	1	9		2				25	2	3						
66	68.5	2.5 4	7 MO)NZ		M-CS) 2	.5	10		10		2				25	3	.2						
68.5	67.2	0.7 4	B AN	1DS		F-M0			2	.5	4Q		2				45	.5							
69.2	67.8	0.6 5)NZ		M-CO	5 3	.5	5		10	. i	3				23	1	. 1						

· .

.

- 1

۰.

÷ .

:

1

1

. .

Western Canadian Mining Corporation - 23 Nov 1988 10:00:33

,

-

- **Г**

.

1

.

.

.

- T

.

e.

1

Ref T881	North 10662	East 10390	RL 950		Azim 280	Dip 45		ngth (.8	Categor	γ το τεst	DOWND		emarks TENT		ORNITE M	INERALIZ	ATION	#HOL)
FROM	Dist	SampNo	WDTH	REC	Au	Auoz .	Ag	Agoz	Eu	Ζn	Fe%	As	Mn	E1	Ē2			
ú	2.74												007					
2.74	4.00	12001		0.66			.2		714	80	3.32	4	987	_				
4.0	6.00	13002	2.0	1.07			.4		903	75	3.62	3	1165					
6	8.00	13003	2.0	1.91			1.2		1350	73	3.83	3	1068					
8	10	13004	2.0	1.23			0.4		1671	84		3	1078	5				
10	12	13005	2.0	1.85	220		0.4		623	74	3.50	3	872					
12	14	13006	2.0	1.87	2 40		.2		504	89	3.63	3	788	_				
14	16	13007	2.0	1.95	70		- 1		417	77	3.54	3	1029	7				
16	18	13008	2.0	1.97	340		.9		909	80	3.45	3	959					
19	20	13009	2.0	1.96	350		.9		1090	63	3.01	6	735					
20	22	13010	2.0	1.92	350		.4		69 3	84	3.52	3	977					
22	24	13011	2.0	1.87	4 40		1.2		1907	83	3.57	22	1115	5				
24	26	13012	2.0	1.90	650		2.2		3250	74	2.90	3	923					
26	28	13013	2.0	1.89			1.2		1904	82	3.26	40	1078					
28	30	13014	2.0	1.86	730		5.3		6837	106	3.97	53	1320					
30	32	13015	2.0	1.98			2.2		3239	96	3.60	37	1264					
32	34	13016	2.0	1.99			2.2		2966	9 2	3.22	106	1338	Э				
34	36	13017	2.0	1.91			2.5		2469	93	3.01	76	1286	5				
34	38	13018	2.0	2.0			.4		697	93	3.34	145	1253	3				
38	40	13019	2.0	2.0	70		. 4		534	70	3.15	3	884					
40	42	13020	2.0	1.94			1.2		1549	61	2.96	17	750					
42	44	13021	2.0	1.94			2.1		1854	85	3.27	91	1008	5				
44	46	13022	2.0	1.83			.9		1123	72	2.77	71	132:					
	43	13023	2.0	1.96			.9		1429	ອວ	3.23	58	1023					
46 48	50	13023	2.0		1600	.042	3.9		3753	90	3.31	19	1038					
	50	13025	2.0	1.96			2.2		2644	82	3.28	106	1064					
50 50	54 54	13025	2.0	1.94			1.3		1354	76	3.19	77	1017					
52		13028	2.0	1.94			2.2		1497	80	3.11	195	1140					
54	56	13028	2.0	2.0			2.5		1967	78	3.11	172	1051					
56	58	13028	2.0	1.92				•	896	100	3.40	68	1093					
58	50				260		3.1		2641	81	3.16	28	910					
60	42	13030	2.0				.9		855	72	3.08	13	1082					
62	64	13031	2.0	1.91			.7		855	83	3.10	3	1105					
64	66	13032	2.0		27Ú				280	78	3.10	3	1023					
66	68.5	13033	2.5	2.5	45 400		-4						934					
68.5	69.2	13034	0.7	0.7	400		2,1		143	111								
69.2	67.8	13035	0.6	0.5	40		. 1		114	79	3.10	ت	271					

.

۰.

Page 1

. .

•

•

- -

REPORT 1: 881354 PA	VANGEOCHEM LAB LIMITED 1988 TRIUMPH STREET VANCOUVER, B.C. V5L 1K5 (604) 251-5656 FAX (604) 254-5717 Page L of 2 Page L of 2													
Samole Number C88 - 13001 C89 - 13002 C88 - 13003 C89 - 13004 C69 - 13005	Ag Al ppm 2 0.2 1.07 0.4 1.17 1.2 1.08 0.4 3.28 0.4 1.11	As Aul ppm pr 4 11 (3 12) (3 33) (3 ((3 22)	b ppe ppa 0 <3 452 0 <3 >1000 0 <3 737 5 <3 377	<pre>{3 1.47 (3 0.77 (3 0.93 (3 0.55</pre>	ppa ppa p 0.3 11 0.7 12 0.6 10 0.6 11	Cr Cu Fe ppn ppn Z 26 714 3.32 50 903 3.62 44 1350 3.83 42 1071 4.12 10 623 3.50	T I 0.22 1.10 0.15 1.12 0.17 1.02 0.11 1.25	1165 3 0.02 1066 1 0.02 1076 2 0.02		Sb Sn Sr U W In ppm pm <	(((
C88 - 13006 C88 - 13007 C88 - 13008 C88 - 13009 C88 - 13010	0.2 1.25 0.1 1.28 0.9 1.23 0.9 1.02 0.4 1.18	 3 24 3 34 6 35 33 	0 (3 >1000 0 (3 606 0 (3 594	<pre>(3 2.72 (3 2.35 (3 1.77</pre>	0.3 10	26 507 3.63 33 419 3.54 29 909 3.45 18 1090 3.01 26 893 3.52	0.29 1.22 0.28 1.23 0.25 0.98	1029 1 0.02 959 1 0.02 735 1 0.02	3 0.18 28 <3	(2 4 103 (5 (3 89 (2 4 123 (5 (3 77 (2 4 89 (5 (3 80 (2 3 72 (5 (3 63 (2 3 78 (5 (3 84	c c			
C88 - 13011 C88 - 13012 C88 - 13013 C88 - 13014 C88 - 13014	1.2 1.19 2.2 0.93 1.2 1.08 5.3 1.19 2.2 1.17	22 44 3 65 40 37 53 73 37 59	0 (3 256 0 (3 246 0 (3 35	<pre>{3 2.23 {3 2.52 {3 2.31</pre>	1.1 10	25 1907 3.57 30 3250 2.90 25 1904 3.26 29 6837 3.97 19 3239 3.60	0.28 0.89 0.29 1.05 0.28 1.11	923 1 0.02 1076 2 0.02 1320 2 0.02	3 0.16 31 (3 (5 2 0.13 30 (3 (5 3 0.16 29 (3 (5 3 0.16 29 (3 (5 3 0.17 37 (3 (5 2 0.17 31 (3 (5	(2 3 75 (5 (3 83 (2 3 72 (5 (3 74 (2 3 77 (5 (3 82 (2 3 77 (5 (3 82 (2 4 68 (5 (3 106 (2 3 82 (5 (3 96	((
CB8 - 13016 C85 - 13017 C88 - 13018 C88 - 13019 C88 - 13020	2.2 1.17 2.5 1.23 0.4 1.49 0.4 1.13 1.2 0.89	106 59 76 51 145 26 (3 7 17 29	0 (3 108 5 (3 134 0 (3)1000	<pre>{3 2.52 {3 2.65 {3 2.15</pre>	0.5 8 0.5 9 0.3 8	27 2966 3.22 22 2489 3.01 20 697 3.34 20 534 3.15 11 1549 2.96	0.29 1.14 0.29 1.41 0.28 1.10	1286 I 0.02 1253 1 0.02 884 I 0.02	4 0.15 42 (3 (5 2 0.15 32 (3 (5 2 0.17 28 (3 (5 2 0.16 24 (3 (5 1 0.14 27 (3 (5	(2 3 79 (5 (3 82 (2 3 87 (5 (3 93 (2 3 104 (5 (3 93 (2 3 104 (5 (3 93 (2 3 148 (5 (3 70 (2 2 97 (5 (3 61	; (
C88 - 13021 C68 - 13022 C88 - 13023 C88 - 13024 C88 - 13024 C88 - 13025	2.1 1.30 0.9 0.85 0.9 1.20 3.9 1.16 2.2 1.10	91 57 71 16 58 29 19 160 106 66	0 (3 136 0 (3 77 0 (3 69	(3 3.11 (3 2.37 (3 2.22	0.5 6 0.6 8	30 1854 3.27 26 1123 2.77 23 1428 3.23 13 3753 3.31 16 2644 3.28	0.32 1.43 0.28 1.11 0.28 1.16	1321 1 0.02 1022 2 0.02 1038 1 0.02	0 0.16 38 <3	(2 3 104 (5 (3 85 (2 2 283 (5 (3 72 (2 2 170 (5 (3 80 (2 3 110 (5 (3 90 (2 3 23 93 (5 (3 82	(
CEB - 13026 CEB - 13027 CEB - 13028 CEB - 13029 CEB - 13030	1.3 1.04 2.2 1.07 2.5 0.86 0.9 1.32 3.1 0.93	77 50 196 53 132 46 68 26 28 52	0 (3 21 0 (3 31 0 (3 71	<pre>{3 2.57 {3 2.53 {3 2.05</pre>	0.3 B 0.6 10	18 1354 3.19 22 1497 3.11 8 1967 3.11 19 896 3.40 22 2641 3.16	0.29 0.94 0.29 0.86 0.26 1.23	1140 2 0.02 1053 1 0.02 1092 2 0.02	2 0.14 31 C3 C5 2 0.16 31 C3 C5 2 0.15 41 C3 C5 2 0.15 41 C3 C5 2 0.15 36 C3 C5 2 0.15 36 C3 C5 2 0.15 36 C3 C5 2 0.14 33 C3 C5	(2 3 98 (5 (3 76 (2 3 93 (5 (3 80 (2 3 81 (5 (3 78 (2 4 82 (5 (3 100 (2 3 80 (5 (3 100 (2 3 80 (5 (3 81	(
CE8 - 13031 C88 - 13032 C88 - 13033 C88 - 13033 C88 - 13034 C88 - 13035	0.9 1.11 0.9 1.15 0.4 1.24 2.1 2.44 0.1 1.27	13 18 3 27 (3 4 33 40 (3 4	0 (3 B02 5 (3 >1000	<pre><3 2.36 ; <3 2.15 6 2.31</pre>	0.2 9 0.6 10 0.8 29 1	30 855 3.08 9 867 3.10 21 280 3.16 161 143 4.16 33 114 3.10	0.29 1.18 0.28 1.13 0.28 2.97	1105 1 0.02 1022 1 0.02 934 10 0.03 5	3 0.11 38 <3	C2 3 81 C5 C3 72 C2 3 104 C5 C3 83 C2 3 107 C5 C3 78 C2 9 128 C5 C3 111 C2 3 165 C5 C3 79	(

, ۰ د

L____

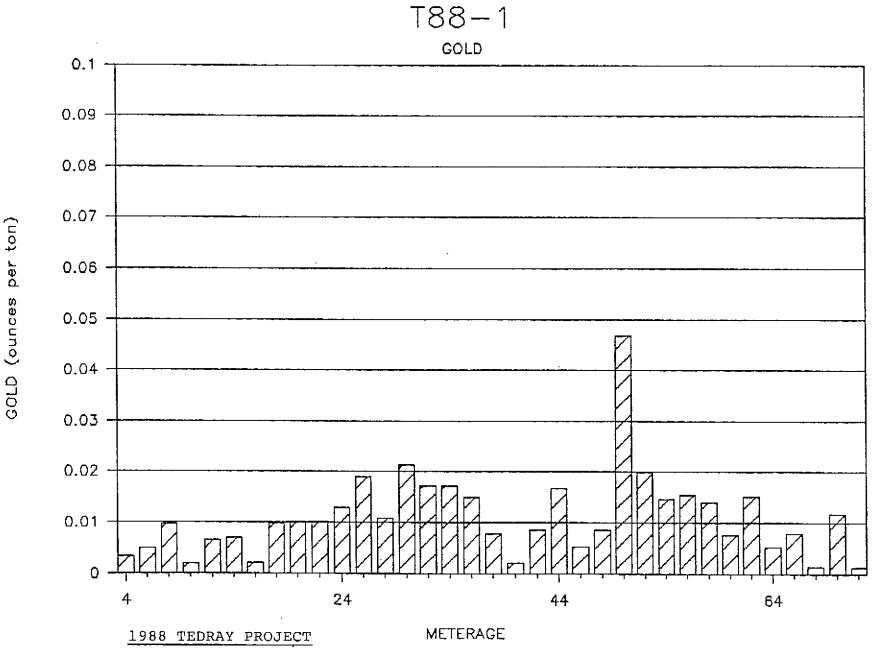
•

1 7

.

V GC	VANGEOC MAIN OFFICE AND LA 1988 Triumph S Vancouver, B.C. (604)251-5656 FAD	Street 1630 PANI	OFFICE DORA ST. B.C. V5L 1L6	
REPORT NUMBER: 881154 AA	JOB NUMBER: 881154	WESTERN CDN. MINING CORP.	PAGE 1	 DF 1
SAMPLE #	Au oz/st			
088-13024	.042			

[:


.

[

.....

•

DETECTION LIMIT Troy oz/short ton = 34.28 ppm ===================================	.005 ippm = 0.00012 pph = parts per million	< = less than

ר

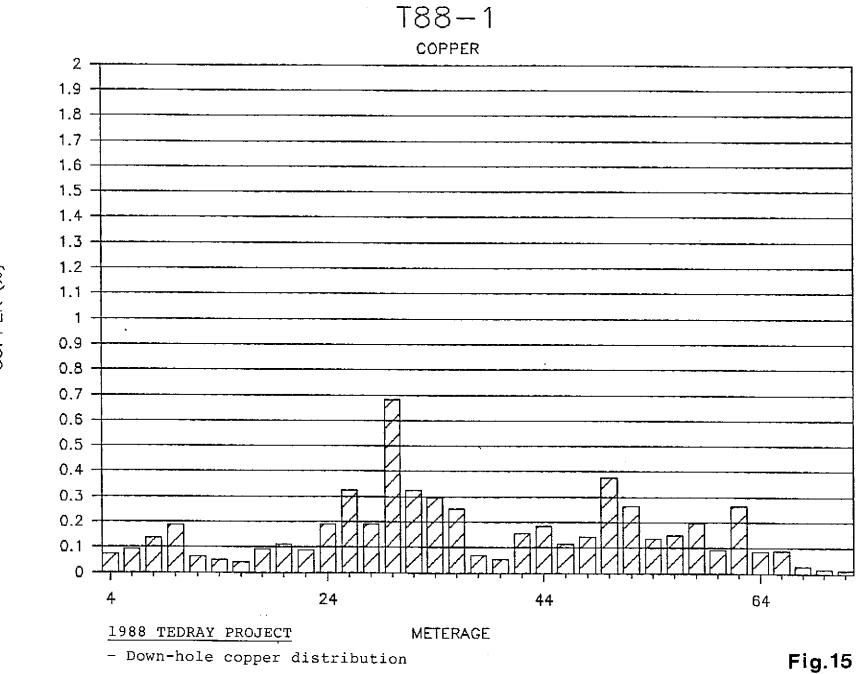
.

1

1

- Down-hole gold distribution

 Γ


1

1

]

•

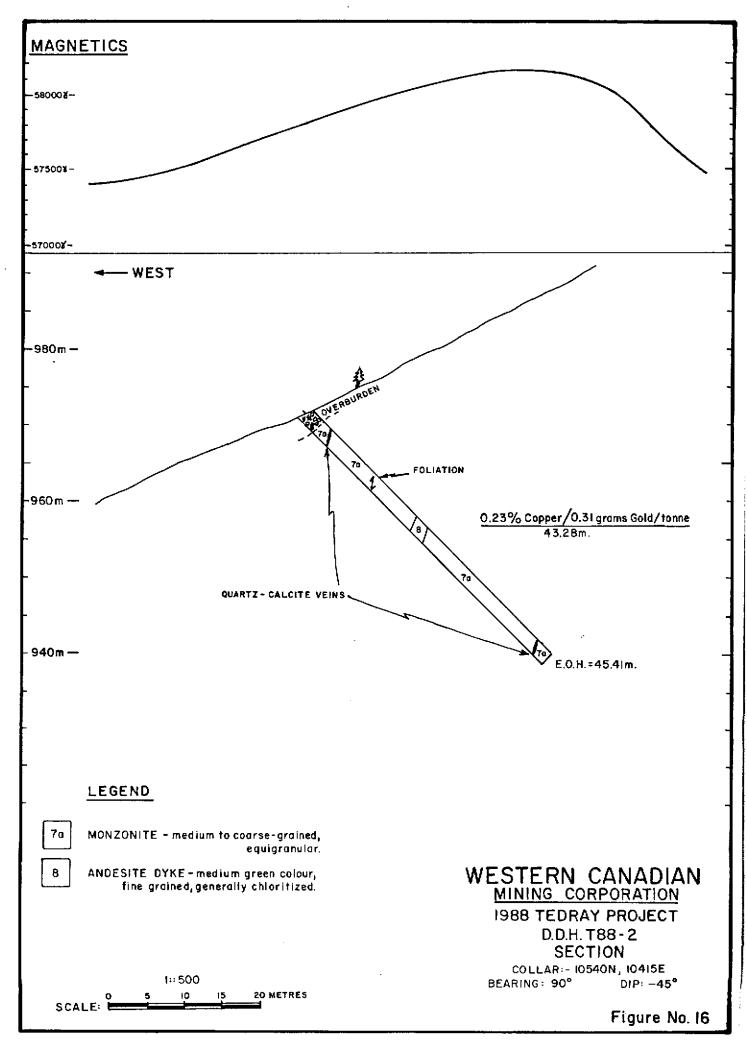
- [

1

r

r

COPPER (%)


1 1 1

T

1

Г**Г**

TEDRAY PROJECT

рта 1 16-л

•••• | |

~ •

• .

D.D.HOLE <u>T-88-2</u>

LOGGED BY <u>D. KO</u> OBJECTIVE <u>TEST N</u> DIP TEST DEPTH _ DEPTH _	83.07% CON DRILLING LTD DZAK, S. CASSELM MAGNETIC ANOMALY NONE m DIP m DIP	8 ELEVATION 983 m AZIMUTH 090 DIP -45 deg LENGTH 45.41 m 149 feet AN HOR. PROJ. 32.11 m VERT. PROJ. 32.11 m deg deg
<u> FROM (m) TO (n</u>	n) <u> WDTH (m) </u>	DESCRIPTION
0.00 2	2.13 2.13	OVERBURDEN
2.13 20	0.3 18.17	<pre>MONZONITE - light to medium green grey with red tinge - inequigranular medium to coarse- grained slightly magnetic - similar to monzonite in T88-1 but slightly in-homogeneous and more altered - plagioclase laths 20-25% potassium feldspar groundmass 45% - quartz - calcium veins 5% - mafics (predominantly hornblende) 10% - sphene trace - < 1% disseminated pyrite - < 1% disseminated chalcopyrite - alteration 20-25% chlorite in the form of mafic alteration as well as bands and blebs in quartz-calcite veins to 1 cm and as individual wispy stringers - 3-5% sericite from feldspar sericitization - 10-20% potassic alteration in the form of fine-grained aphanitic potassium feldspar groundmass - fractures at 40 to 70 degrees to core axis</pre>

TEDRAY PROJECT	D.D.HOLE <u>T-88-2</u>
<u>FROM (m) TO (m)</u>) : DESCRIPTION :
	- veins (up to 1 cm) at 30 to 60 degree: to core axis 12.5 to 13 weak foliation as shown by orientation of tabular crystals
20.3 22.2 1.9	ANDESITE DYKE - dark green - fine grained with minor barren carbonate blebs and veins (to 1 cm) - intense chloritization slightly magnetic 7% chloritized mafics 1-2% carbonate stringers < 1% pyrite - upper contact 70 deg to core axis - lower contact 60 deg to core axis
22.2 45.41 23.21	MONZONITE as above - no alteration observed at contact
	34.2 to 35.1 - weak foliation

•

ł

2

•

.

е Т.

Ĺ.

.

.....

DRILL HOLE LOG ABBREVIATIONS

.

.....

L.,

- -

• •

Ref RL RQ ROCKNAME		Diamond drillhole reference number Reference level, elevation Rock quality index
	-	MONZ - monzonite ANDS - andesite
TXT	-	Texture FG - fine grained MG - medium grained CG - coarse grained
ALTERATION (%)		
SI QV SE CY CH EP CB GM Al A2 IN MINERALIZATION (%	- - - - - - - - - -	Pervasive silicification Quartz veining Sericite Clay Chlorite Epidote Carbonate Green mica Alteration mineral 1 Alteration mineral 2 Total rock alteration intensity
РҮ	- -	Pyrite
CP		Chalcopyrite
SP CC		Sphalerite Chalcocite
NC	-	Native copper
M1	_	Bornite
M2	-	Ore mineral 2
GEOCHEMISTRY		
Au		Gold assay in ppb
Au oz Ag	-	Gold assay in ounces per ton Silver assay in ppm
Ag oz	-	Silver assay in ounces per ton
Cū	-	Copper assay in ppm
Zn Fe %	_	Zinc assay in ppm Trop assay in pargont
AS	-	Iron assay in percent Arsenic assay in ppm
Mn	-	Manganese assay in ppm

-			#HOLE		
			#	μ	
				μ	
				ÿ	
	· · ·			ដ	
l				ត្ត	
L				ú	
.				λ	•••===================================
-				N	44400000000000004444000 000004000404040040
-			ů ×	A 2	
1			MALY	A1 4	
b			AND AND	e ₩8	
ſ			ETIC		
.		H	Category Remarks TEST MAGNETIC ANDMALY	60 0	89844888448484888888888888888888888888
-		: aɓe y	EST 1	т ЦЦ Т	
		., ù	۲. TE	н Н	888999694444999999999999999999999999999
e			tego	ò	~ ~ ~ ~
		-0		ដ្ឋ	N3VV033550000005556044500
-	· · · · · · · · · · · · · · · · · · ·	10:02:16	Length 45.41	ß	. មាកសម្កាត់ កំពុង សំណាក់ សំណាល់ ស
. .		10:0	មិស ភ្មែ	IS	
-		886		тхт	$\begin{array}{c} \Sigma \Sigma$
b		0v 1988	Dip 45	UNT TXT	
F		Й М N	-	-	
		T	Azim 90		z
-		tion		АМП	а ж -
		Corporation	RL 983	ROCKNAME	MOURA MOURA
6		10	u. u.		
-		ęr i	East 10415	С Ц Ц	► <p< th=""></p<>
k		Mining	ΡĢ	HLUM	-4444444444444444444444444444444444444
-		ii an	ЕÒ		
		Canadian	North 10540	Dist	
	· · ·		- 1	ā	លក១៣-កំដក់ភ័កស៊ីស៊ស៊ស៊ស៊ស៊ស៊ស៊ស៊ស៊ស៊ីទី៩៩៩
-		Western	Ref T882	FROM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		ц Ш	н Ц	FR	044985444980844988888444
_					

	Remarks ANDMALY	Mn Ei		1000	1101	825	738																	
	AN	Аs		5	64	10 11	. 9	÷	ei H	11	ዮ	20	14	0 1	4 1	10	0	75	17	0 10	Ч Г	°,	n T	۲ ۲
11	MAGNETIC	FeX		4.05	0. 4C	с. 61.01	N. 10 00	2 .8 2	2.35	2.88	3.17	и . 52	7.96	3.12	3.20	00. N	3.76	3.60	3.24	а. 50 И. 50	04.N	4.10	4.15	۲ 1
abed	, TEST	с М		96	5	74	5	69	47	71	-0 4	69	174	76	17	ው 40	(1 0	មា ព	44	ស ស	76	8 4	89	0 Q
	Category	Ū		147	977	1607	2169	2402	1495	2947	1676	5277	284	2315	HHOM M	1 (106	2741	1711	1470	4110	4040 10	2154	311 2	1007
± 00 ± 44	Length (45.41	Agoz																						
10 10	74	θg		D,	4	4	٥.	n.	ņ.	1.1	°.	ມ 	1.S	4.	1.1	¢,	1.1	<u>،</u>	4,	ب ۱	ю. Т	1.1	¢.	4
Nov 1988 10:00:44	Dip 45	ALOZ																						
n N	Azim 90	Αu		110	000	310	06S	400	240	370	290	480	20	280	000 19	200	240	320	165	490	520	260	270	01
ti on	< P	REC		មួ	ю	1.18	1.96	1.97	1.95	1.91	1.90	2. 1 1	1.86	1. 8	1.97	1.94	о N	1.73	1.76	0. N	1.92	1.92	16-1	000
corpora.	RL 983	WDTH		1.87	0.0	ю. И	9.0 19	0.0 10	0.0 10	сч 0	0.0 0	ณ พ	1.9		2.0	9.0	0 0	2.0	0.0	0 0	2.0	2.0	2.0	0.0
Mining (East 10415	SampNo		13036	10037	13038	13039	13040	13041	13042	10040	13044	13045	13046	13047	13048	13049	13050	13051	13052	13053	13054	13055	1 7.05.4
Western Canadian Mining Corporation -	Narth 10540	Dist	2.13	4.0	\$	ω	10	12	14	16	18	20.3	22.2	24	26	28 28	30	32	34	36	38 38	40	42	74
Western	Ref T882	FROM	0.0	2.13	4 .0	¢	ស										0 17		32	34	36	00 10	04	6 0

·

#H01;

∩ ₩

: •

1

___ : ►...

_

h. .

---ы.

.

. .

.....

İ.

. . . .

VANGEOCHEM LAB LIMITED
1988 TRIUMPH STREET
VANCOUVER, B.C. V5L 1K5
(604) 251-5656 FAX (604) 254-5717

.

-

REPORT #: SBIISI PA		WES	STERN CA	KATTAR	MINING	CORP.		VA (604)	VANCOUVER, B.C. V5L 1K5 (604) 251-5656 FAX (604) 254-5717 Page 1 of 2																				
Sample Number	Ag Dçm	A1 1	As ppn	AuFA ppb	Áu pps	Ba ppm	Bi pps	Ca I	Cđ pom	Co ppm	Cr ppa	Cu ppa	Fe 1	K Z	Ng T	Йл рре	No ppm	Na Z	Xi ppa	Р 1	РЪ рол	Pd ppø	Pt pps	S6 pp=	Sn pp=	Sr ¢p∎	U Døm	¥ ppa	lo ppe
C88 - 13036	0.9	2.59	19	110	(3	59B	4	1.07	1.1	21	104	147	4,05	0.19	2.50	1000	2	0.02	33	0.17	39	{3	(5	(2	6	88	{5	(3	96
C88 - 13037	0.4	1.95	64	320	(3	95	(3	3.00	0.7	15	56	779	3.95	0.31	1.80	1101	2	0.02	13	0.13	37	<3	₹5	<2		142	<5	(3	79
C86 - 13038	0.4	1.33		310	(3	307	(3	1.72	0.2	12	40	1607	2.29	0.24	1.41	825	1	0.01	7	0,13	28	(3	(5	<2	3	67	<5	<3	73
C8B - 13039	6.9	0.80	8	390	<3	238	<3	1.70	0.2	12	33	2169	2.58	0.24	0.66	738	2	0.02	6	0.13	23	(3	(5	<2	3	66	(5	(3	57
Ainiaum Detection	0.1	0.01	3	5	3	1	3	0.01	0.1	1	1	ĩ	0.01	0.01	0.01	1	1	0.01	1	0.01	2	3	5	2	2	1	5	3	1
Maximum Detection < = Less than Minimum		LO.00 fícien				1000 ple > =		20.00 er than			• • • • •	20000 assay/		10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	1000	100	10000	100	1000	2000¢

:

• WESTERN CANADIAN MINING CORP. REPORT #: 881154 PA Page 2 of 2 Sample Number Ág A3 Ås AUF A Ba Bí Åц Ca Cd. Сo Сr Cu fe (Нg Ħn. No Na Ni Pb Pd Pt Sb Sn Sr -11 N 2n ррн 1 pos pab **ppa** poe ppe ĩ βpe 008 00= po∎ ĩ Z 2 ppe ppe. ĩ pp∎ I, pps pp. pp= pp∎ **ρρ**ε ¢p≇ pp e 90e ¢p. CB8 - 13040 0.3 17 430 (3 1.11 218 (3 1.78 0.4 14 34 2402 2.82 0.24 1.03 861 1 0.01 9 0.13 2! (3 (5 ٢2 3 64 (5 (3 69 C88 - 13041 0.3 0.79 122 240 (3 30 (3 2.60 0.1 9 11 1495 2.35 0.29 ¢ 0.61 1122 0 0.01 5 0.13 (3 (5 20 (2 2 93 <5 <3 47 C88 - 13042 1.1 1.22 11 370 **(**3 78 <3 1.46 0.4 15 26 2947 2.88 0.22 1.09 851 2 0.02 7 0.14 22 (3 (5 <2 17 4 ٢5 **(**3 71 C88 - 13043 0.9 1.21 9 290 <3 77 (3 1.72 0.5 18 37 1676 3.17 0.24 1.16 790 2 0.02 8 0.14 20 (3 ₹5 <2 4 111 <5 **{**3 64 C88 - 13044 1.5 1.32 20 480 (3 59 (3 1.29 0.8 23 35 5277 3.52 0.20 1.17 ŧ 726 2 0.02 B 0.14 24 (3 **(**5 (2 3 67 <5 ٢3 69 688 - 13045 1.5 4.05 14 50 (3 164 12 1.67 1.9 33 13 284 7.96 0.23 4.30 1941 3 Ó.03 11 0.29 43 (3 ٢\$ <2 11 57 **(**5 (1 174 CBB - 13946 0.4 1.29 10 280 (3 67 <3 1,76 0.5 17 22 2315 3.12 0.25 € 1.41 835 1 0.02 7 0.13 24 <3 ₹\$ <2 4 111 (5 <3 76 628 - 13047 1.1 1.35 43 330 **(**3 34 (3 1.60 25 0.6 20 3032 3.20 0.24 1.16 822 2 0.02 5 0.15 30 (3 (5 <2 4 74 <5 (3 72 C88 - 13048 0.9 1.09 10 200 (3 399 (3 1.49 0.5 15 33 1386 3.25 0.23 1.05 735 1 0.02 6 9.12 25 (3 **<**5 <2 4 77 (5 <3 59 C88 - 13049 1.1 1.19 9 (3 240 179 3 1.63 0.5 18 26 (2741 3.76 0.24 1.21 B42 1 0.02 7 0.14 33 (3 <5 <2 68 (5 -5 (3 92 C88 - 13050 0.9 1.27 75 320 <3 30 3 1.56 0.8 17 34 1711 0.24 1.26 3.60 860 2 0.02 8 0.13 36 (3 (5 (2 -5 70 **(**5 ₹3 85 C88 - 13051 1.34 17 165 (3 (3 2.37 0.4 119 0.5 19 30 1470 3.24 0.28 1.19 1099 (2 0.02 9 0.14 26 (3 **(**5 <2 4 50 (5 {3 94 C8B - 13052 258 490 (3 1.5 0.96 16 (3 2.21 0.5 19 28 4110 3.58 0.29 0.56 842 3 0.02 10 0.17 35 (3 (5 {2 3 45 **(**5 (3 55 C88 - 13053 1.5 1.14 12 520 <3 48 (3 2.75 0.9 17 18 4833 3.49 0.31 1.05 1025 2 0.02 9 35 0.14 {3 (5 (2 89 4 **(**5 <3 76 CBE - 13054 1.1 1.51 10 260 (3 312 4 1.77 1.1 18 39 2154 4.10 1 0.26 [.44 921 2 0.02 9 0.15 31 (3 **(**5 (2 5 (5 (3 104 **B4** C88 - 13055 0.9 1.52 13 270 {3 250 4 1.94 16 3112 0.9 34 4,15 0.27 1.52 931 2 0.02 9 0.14 27 (3 <5 (2 80 ٢\$ 89 4 (3 CBB - 13056 0.4 1.59 35 150 (3 88 ۲3 1.76 0.6 16 30 1003 3.79 0.25 1.53 894 2 0.02 7 0.13 30 (3 ₹5 (2 6 67 <5 {3 89 C88 - 13057 1.1 1.50 9 195 <3 89 3 1.56 0.8 21 20 2241 3.77 0.24 1.45 828 2 0.02 6 0.15 31 (3 (\$ <2 5 57 (5 (3 82 Minimum Detection 0.1 0.01 3 5 3 1 3 0.01 0.1 1 1 1 0.01 0.01 0.01 4 1 1 0.01 1 0.01 2 3 5 2 2 1 5 3 1 Maximum Detection 50.0 10.00 1000 10000 1000 1000 1000 20.00 100.0 20000 1000 20000 10.00 10.00 10.00 20000 1000 10.00 20000 10.00 20000 100 100 1000 100 1000 20000 < = Less than Minimum is = Insufficient Sample ins = No sample) = Greater than Maximum AuFA = Fire assay/AAS</pre> 10000 100

7

۳.

1

[]

1

٦

ľ

٦.

· (

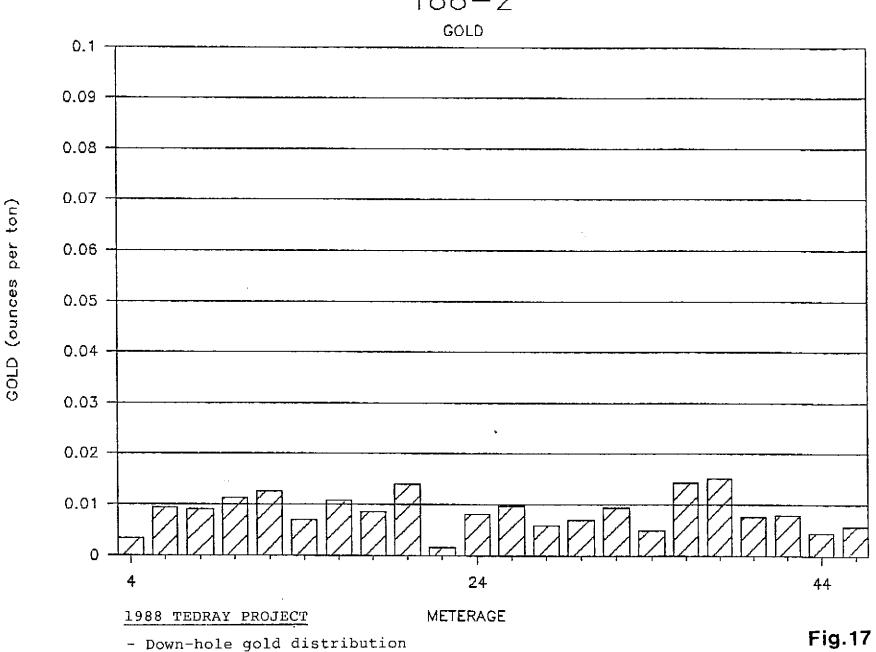
£

€

ŧ

C

C


€

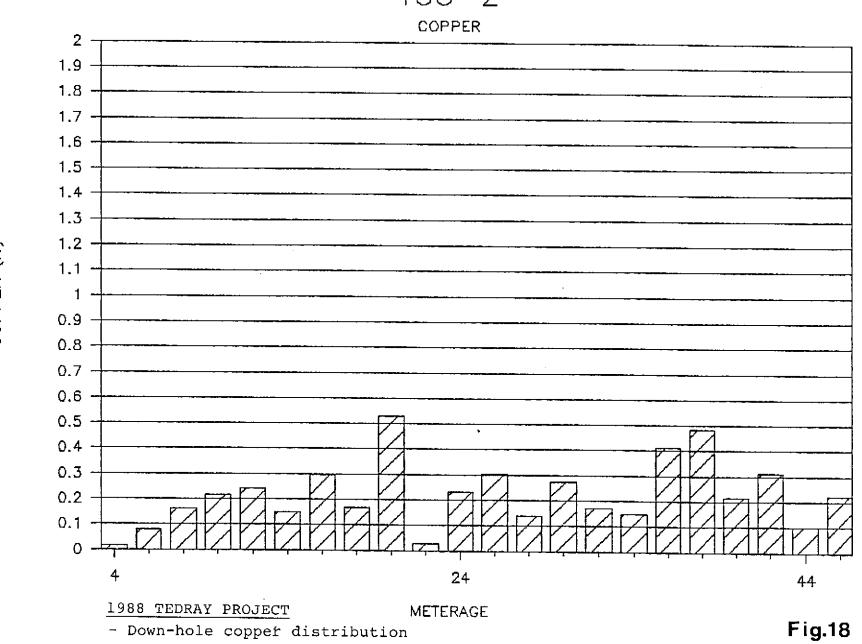
(

(

(

r

i.


.

ſ

T88-2

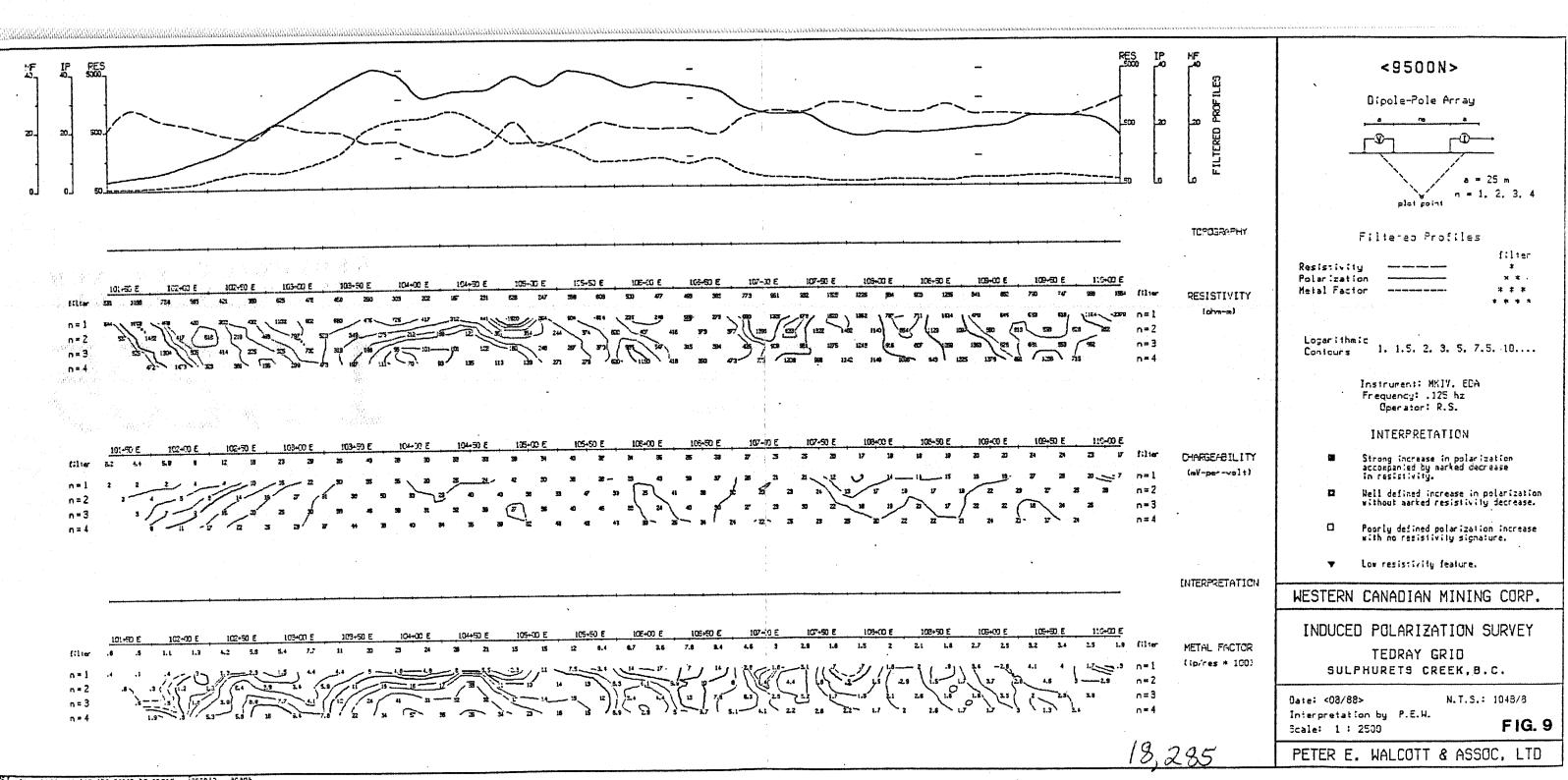
1

1

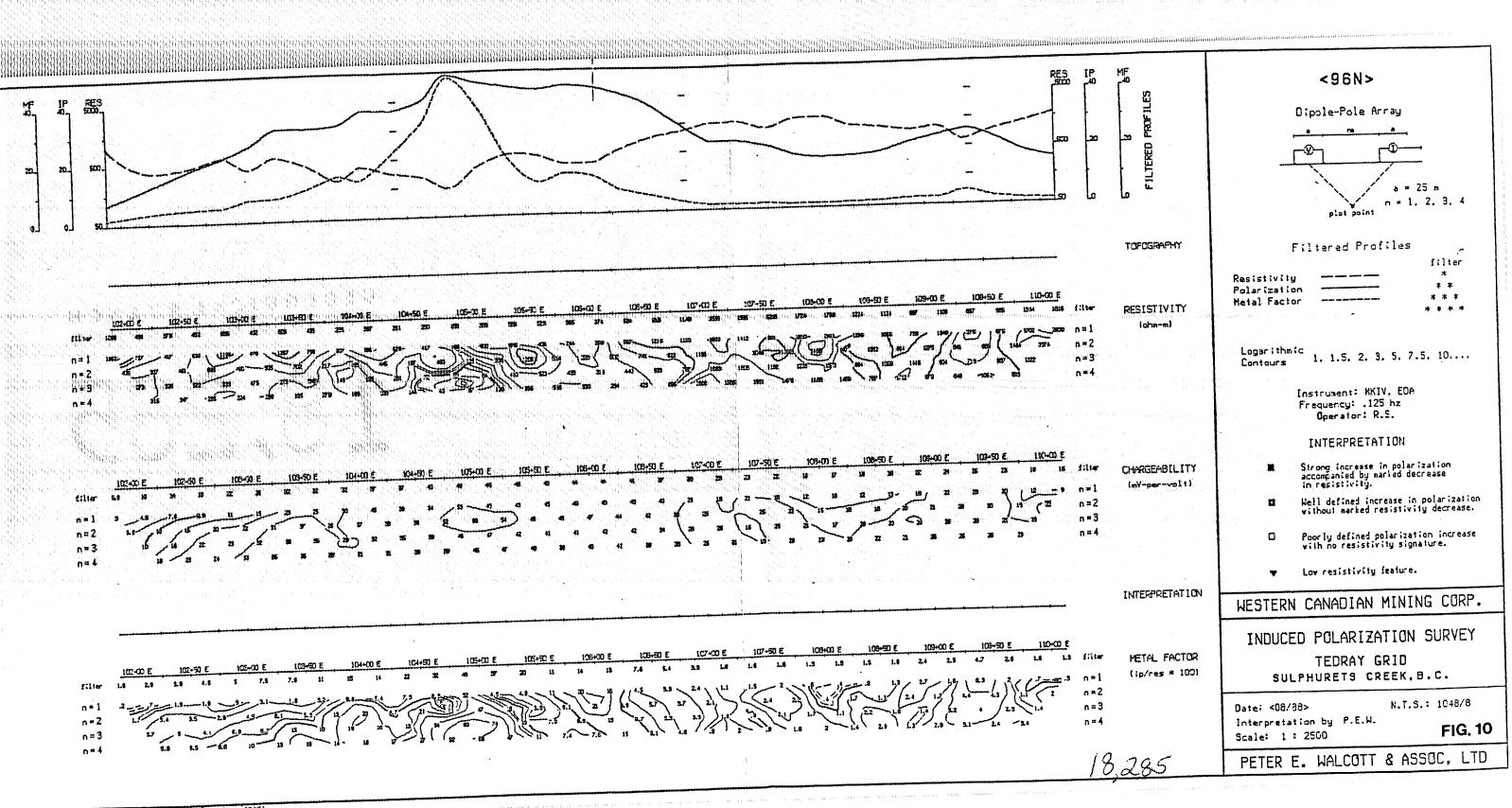
8 COPPER

7 ſ 7

[

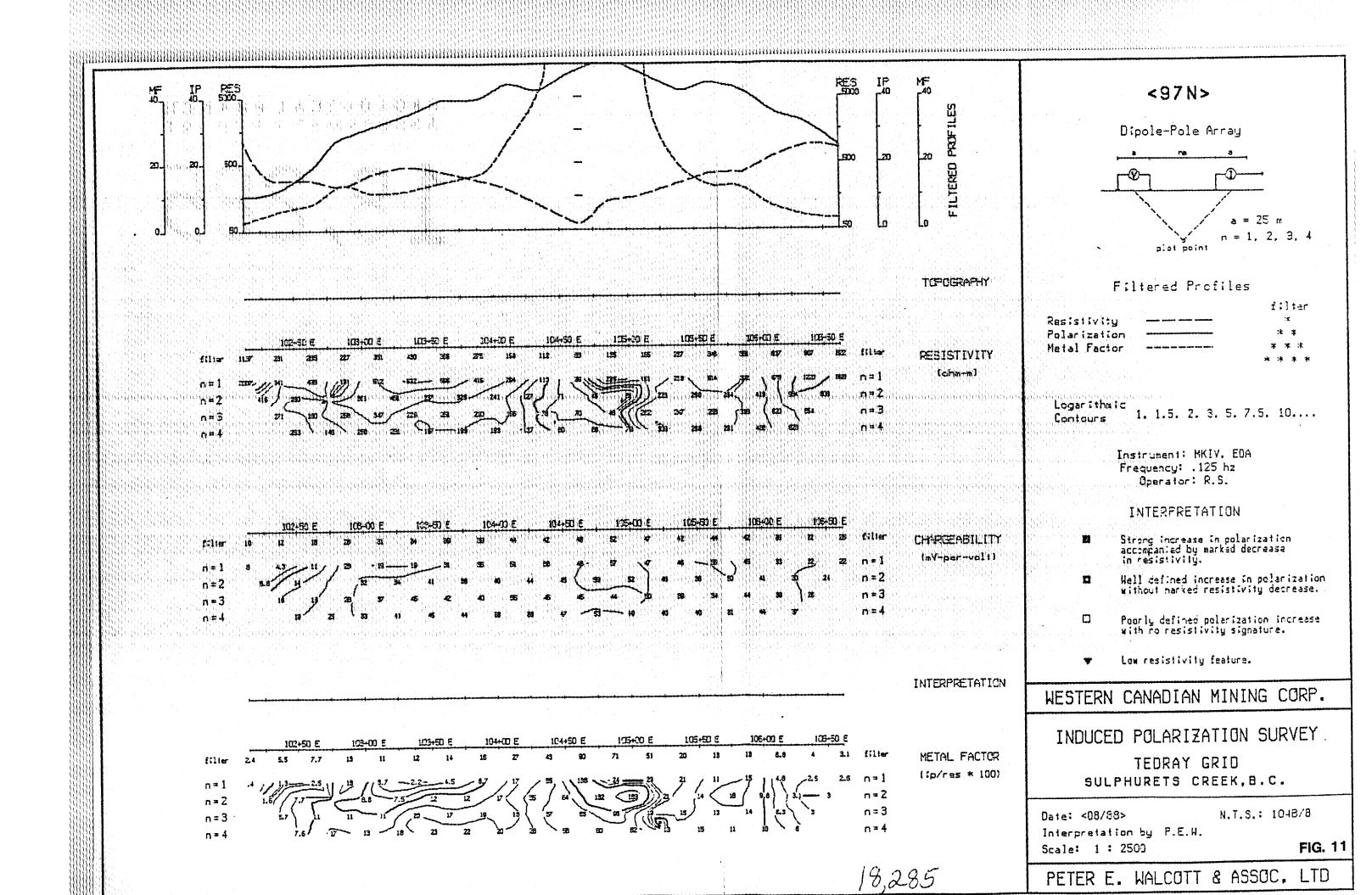

7 - [

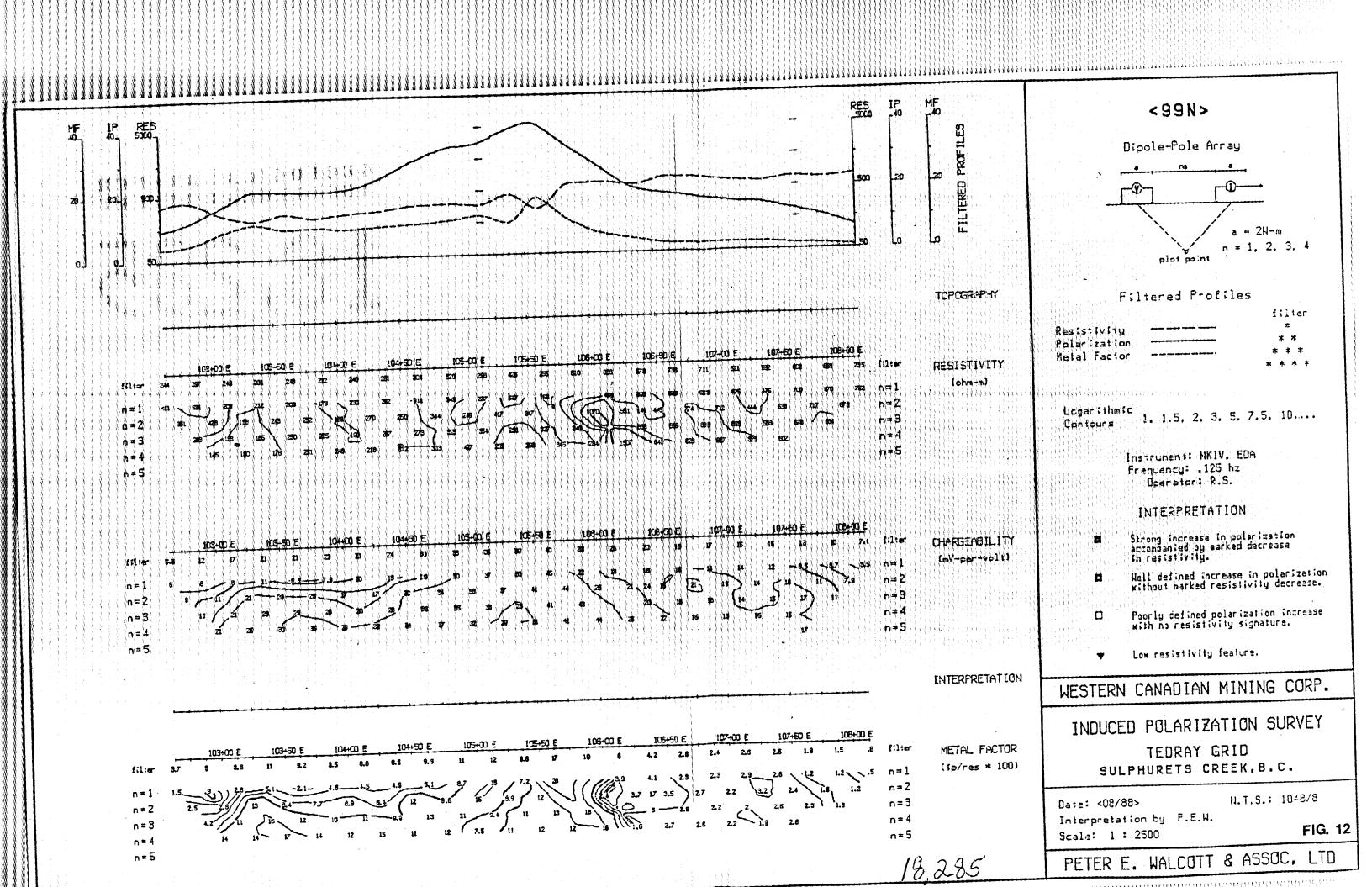
T

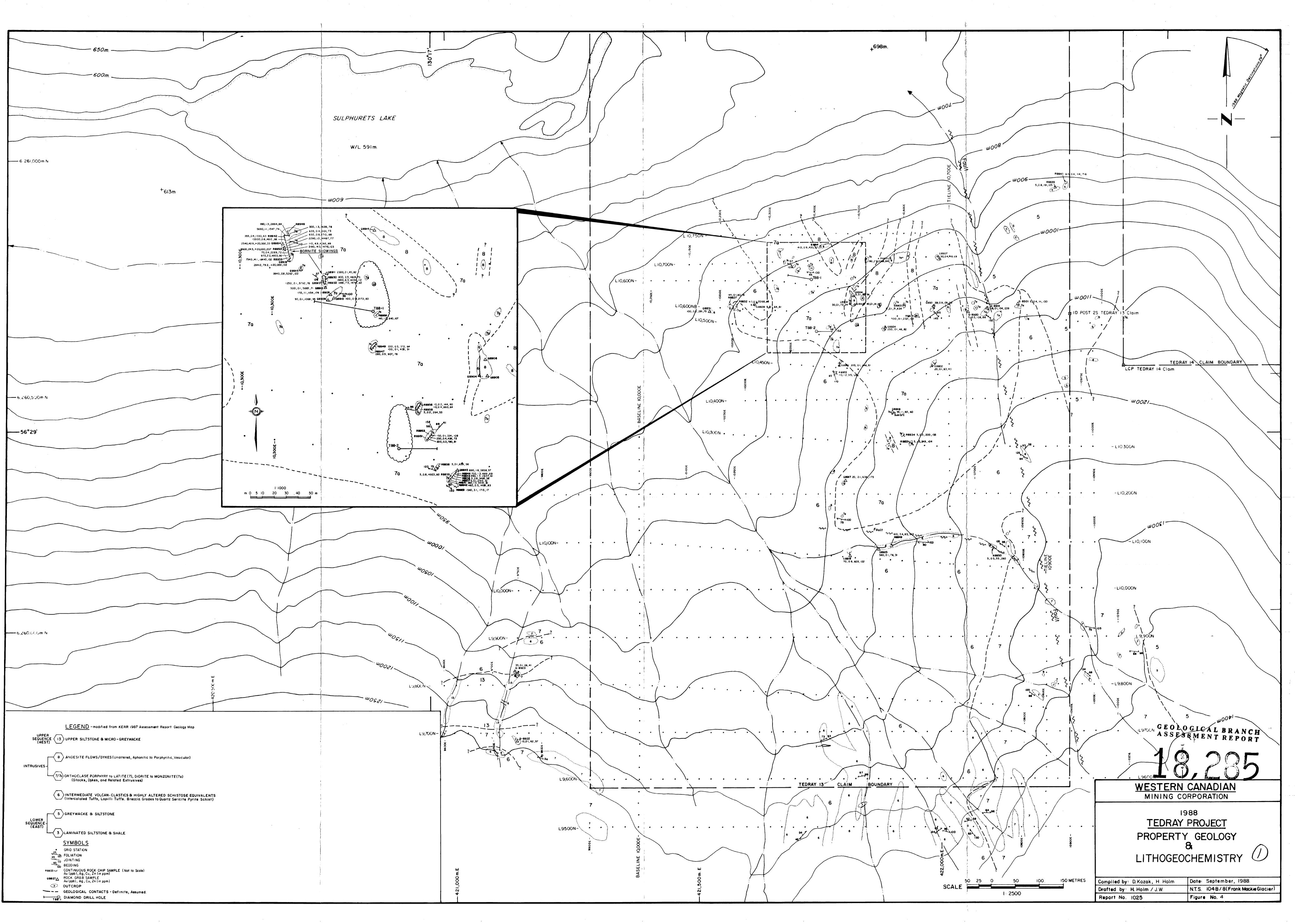

1

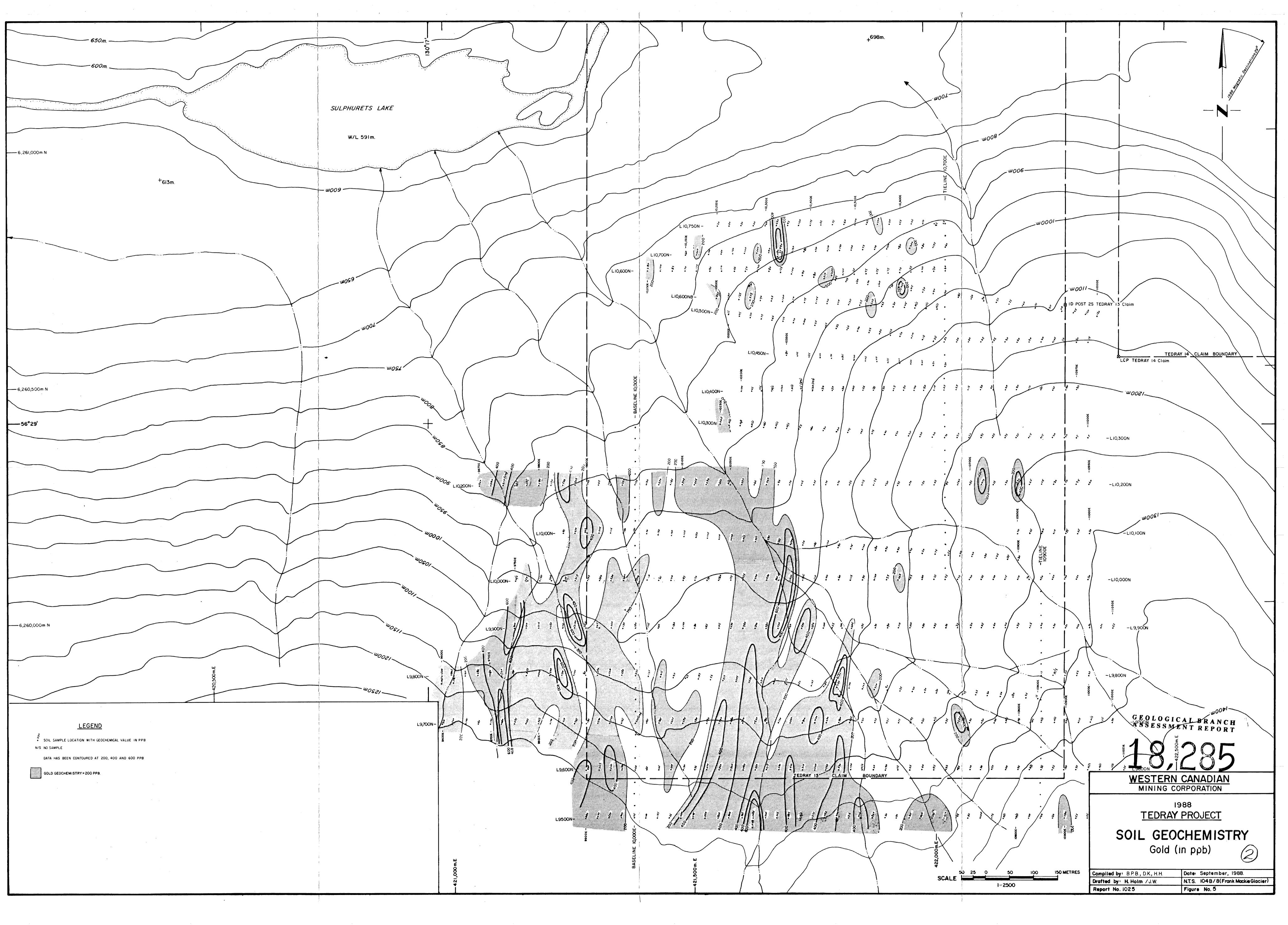
T88-2

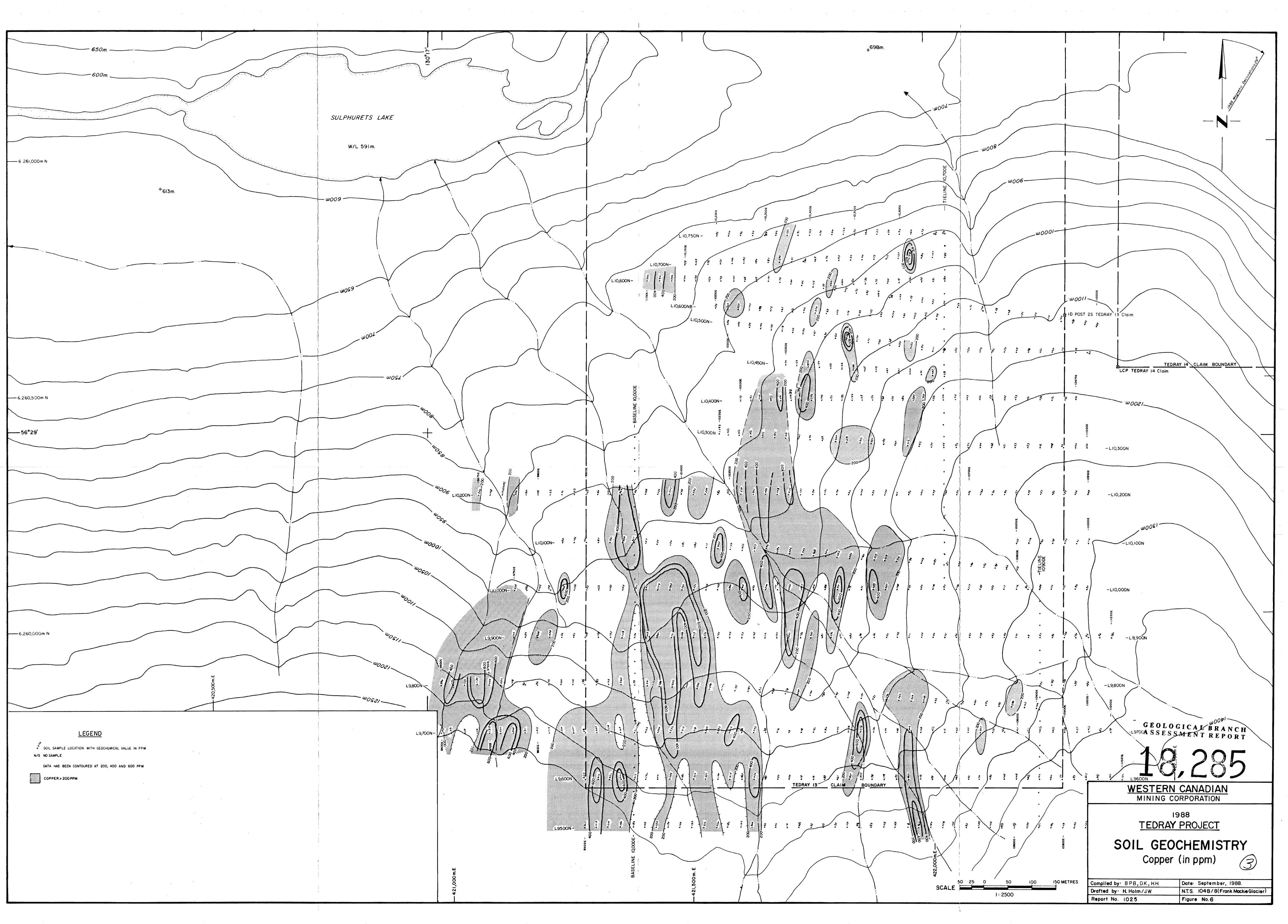
r




CORT the contrare for the parth Sciences, Toronto, Janada




COOT in, boltware for the Carth Sciences, foronto, canada


A state of the sta

