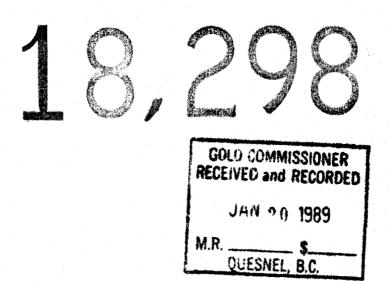
0	
District Geo	logist, Prince George Off Confidential: 90.01.20
ASSESSMENT R	EPORT 18298 MINING DIVISION: Cariboo
PROPERTY: LOCATION:	Duck LAT 52 44 40 LONG 121 28 00 UTM 10 5844727 603509 NTS 093A11W
CAMP:	038 Cariboo - Barkerville Camp
GEOLOGICAL SUMMARY: Of Mi pl le ch	Gibraltar Mines Bysouth, G.D.;Barker, G.E.
WORK DONE: Dr	illing
DI	AD 1033.9 m 7 hole(s);NQ Map(s) - 4; Scale(s) - 1:1000,1:2000,1:3600 MP 36 sample(s) ;AU,CU,MO,PB,ZN,AG,NI,CO
REPORTS: MINFILE:	17254 093A


0

U99 80)	01	25	RD.	
AUTON:			 ne e la contra de l	-

DIAMOND DRILL REPORT ON THE DUCK 1 CLAIM GROUP Cariboo Mining Division 93 A 11 (Latitude 52⁰ 41', Longitude 121⁰ 31') OWNER: C.E.Carlson, Hixon, B.C. OPERATOR: Gibraltar Mines Limited, McLeese Lake, B.C. G.E.Barker, G.D.Bysouth January 20, 1989

GEOLOGICAL BRANCH ASSESSMENT REPORT

DIAMOND DRILL REPORT

ON THE

DUCK 1 CLAIM GROUP

Cariboo Mining Division 93 A 11 (Latitude 52⁰ 41', Longitude 121⁰ 31')

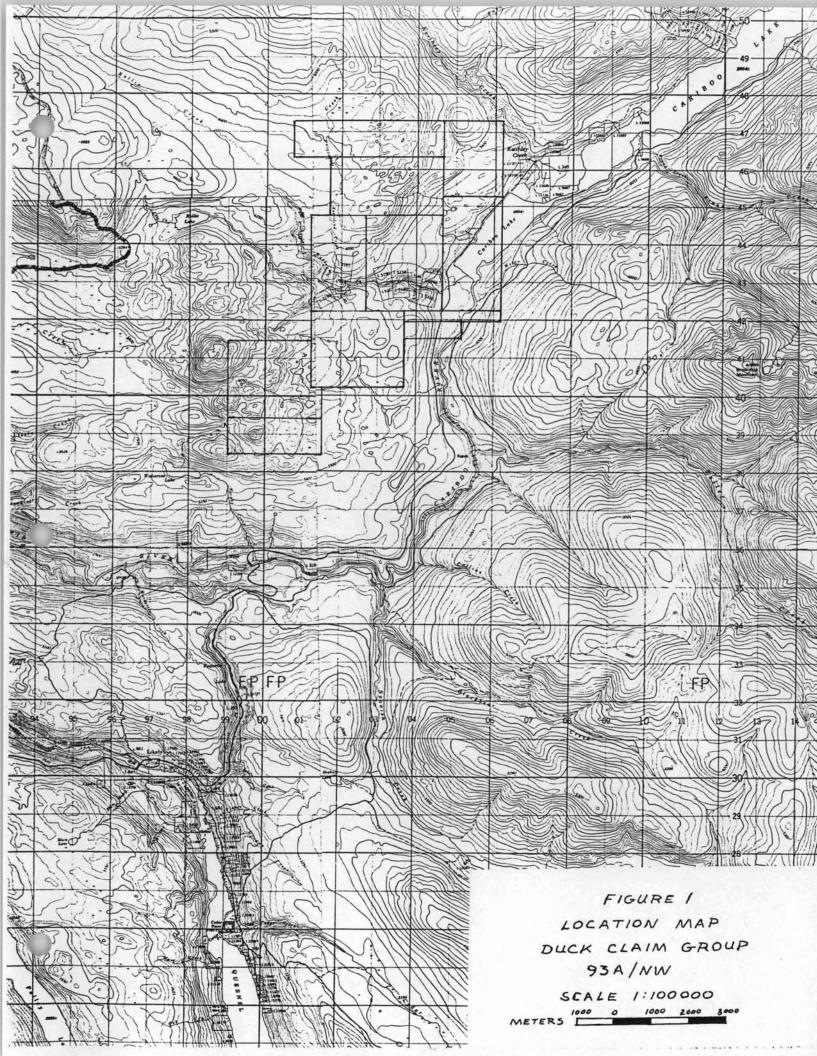
OWNER: C. E. Carlson P. O. Box 35 Site 9, R.R.#1 Hixon, B. C.

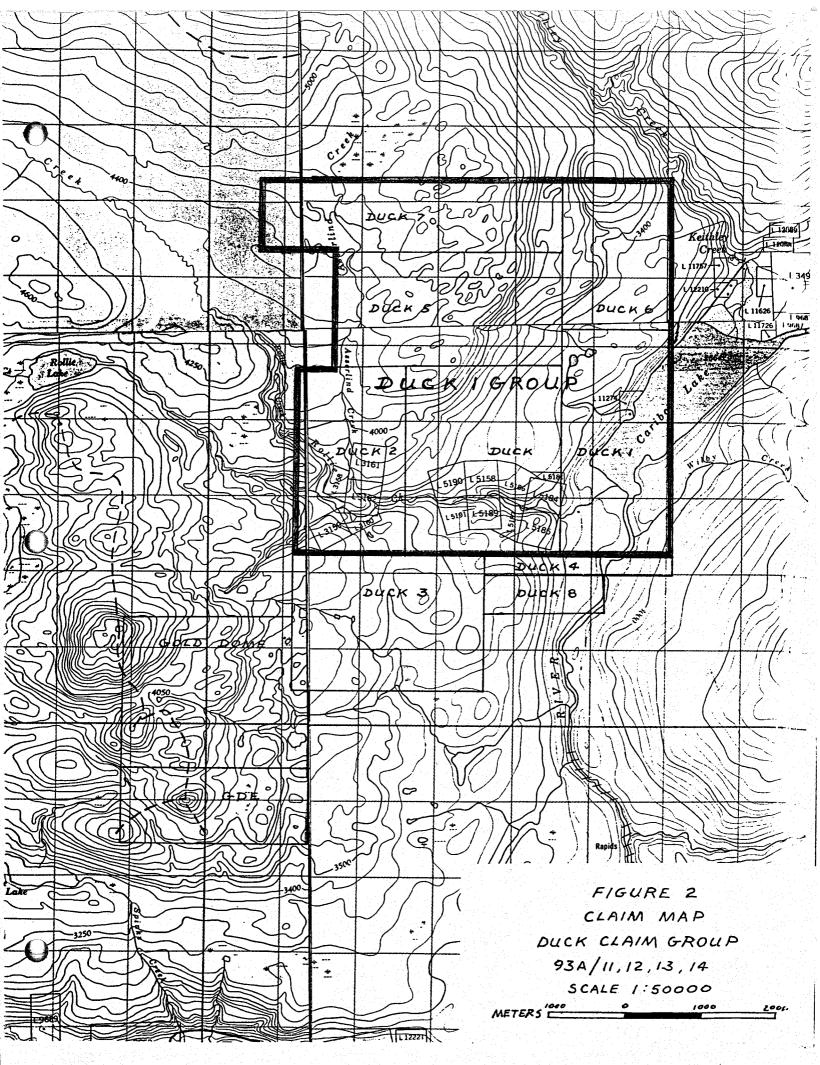
Autor Pil

Ster Hari

> OPERATOR: Gibraltar Mines Limited P. O. Box 130 McLeese Lake, B. C.

Author: G. E. Barker G. D. Bysouth


Submitted: January 20, 1989


TABLE OF CONTENTS

1 INTRODUCTION	• • •		• •							. 1
2 MINERAL CLAIMS										
2.1 DUCK 1 GROUP										
2.2 DUCK 2 GROUP										
3 GENERAL GEOLOGY										
4 THE DRILL PROGRAM										
4.1 Objective										
4.2 Results				• •	•	•		•		3
4.3 Interpretation										
5 STATEMENT OF EXPENDITURES			• • •	• •		• •			•	. 5
6 CONCLUSIONS										
LIST OF FIGURES										
	/-									. 7
Figure 1. Area Location Map	(1	n T	ext)	•	•		•	•	• •	. /
Figure 2. Duck Group Claim Map		n T n T								
Figure 2. Duck Group Claim Map Figure 3. Drill Hole Location Map	(I		ext)	•		• •	•	•		7
Figure 2. Duck Group Claim Map Figure 3. Drill Hole Location Map Figure 4. Drill Section A	(I (In	n T	ext) ket)	•	•	• •	•	•	•••	7 7
Figure 2. Duck Group Claim Map Figure 3. Drill Hole Location Map Figure 4. Drill Section A Figure 5. Drill Section B	(In (In (In (In	n T Poc Poc Poc	ext) ket) ket) ket)	•		· ·	•	•	· ·	7 7 7 7
Figure 2. Duck Group Claim Map Figure 3. Drill Hole Location Map Figure 4. Drill Section A Figure 5. Drill Section B Figure 6. Drill Sections C and D	(I (In (In (In (In	n T Poc Poc Poc Poc	ext) ket) ket) ket) ket)	• • •		• • • •	•	•	· · ·	7 7 7 7 7
Figure 2. Duck Group Claim Map Figure 3. Drill Hole Location Map Figure 4. Drill Section A Figure 5. Drill Section B	(I (In (In (In (In	n T Poc Poc Poc Poc	ext) ket) ket) ket) ket)	• • •		• • • •	•	•	· · ·	7 7 7 7 7
Figure 2. Duck Group Claim Map Figure 3. Drill Hole Location Map Figure 4. Drill Section A Figure 5. Drill Section B Figure 6. Drill Sections C and D	(I (In (In (In 	n T Poc Poc Poc Poc	ext) ket) ket) ket) ket)	•	• • • •	• •	•	•	• •	7 7 7 7 7 7
Figure 2. Duck Group Claim Map Figure 3. Drill Hole Location Map Figure 4. Drill Section A Figure 5. Drill Section B Figure 6. Drill Sections C and D REFERENCES	(I (In (In (In 	n T Poc Poc Poc Poc	ext) ket) ket) ket) ket)	• • • •	•	· ·	•	• • • • • • • • •	· · ·	7 7 7 7 7 7 8
Figure 2. Duck Group Claim Map Figure 3. Drill Hole Location Map Figure 4. Drill Section A Figure 5. Drill Section B Figure 6. Drill Sections C and D REFERENCES	(In (In (In (In 5 - G 5 - C	n T Poc Poc Poc . D. . E.	ext) ket) ket) ket) ket) Bys Ba	sou rke	th	· · ·	•	•	· · ·	7 7 7 7 7 8 8 9
Figure 2. Duck Group Claim Map Figure 3. Drill Hole Location Map Figure 4. Drill Section A Figure 5. Drill Section B Figure 6. Drill Sections C and D REFERENCES	(In (In (In (In (In 5 - G 5 - C	n T Poc Poc Poc 	ext) ket) ket) ket) ket) Ba	sou		· · ·	· · · · · ·	•	· · ·	7 7 7 7 7 7 8 8 8 9 10

1

 $j_{ij} = j_{ij}$

1 INTRODUCTION

The Duck Group is located in the Cariboo River District approximately 1.5 km. southwest of Keithley Creek, B. C. The claims cover the lower portion of the Rollie and Asserlind Creek watersheds and also include the southwest end of Cariboo Lake. The nearest large settlement is Likely, B. C. which lies about 20 km. to the southwest. Access to the property is via the main Keithley Creek road. Access within the property is provided by a network of logging roads.

The Duck claims were staked in 1987 and 1988 to cover sulfide mineralization observed in dark grey phyllites of the Snowshoe Group. The claims also cover several lead-silver quartz vein prospects located in the lower canyon of Rollie Creek. These veins plus coarse placer gold found in the creek canyon and in ancient stream channels cut by the creek were the focus of considerable exploration and mining activity from the late 1800's to at least 1952. (Minister of Mines Reports, 1926, 1931, 1951). A local origin for the placer gold has always been an intriguing possibility. The main focus of the exploration work during 1987 and 1988, however, was towards large tonnage ore zones in the sulfide-bearing sedimentary rock units.

This report covers a diamond drill program conducted by Gibraltar Mines Limited during the period August 19 to August 29, 1988. Seven holes were drilled for a total of 1033.88 meters. The contractor was Frontier Drilling Ltd. of Kelowna, B.C. The drilling was done only on the Duck and Duck 1 mineral claims. Core is stored at the Gibraltar Mines plantsite.

2 MINERAL CLAIMS

The mineral claims of the Duck Property are shown in Figure 2 and claim information is tabulated below:

JULY 16, 1987

JULY 16, 1987

MAY 6, 1988

a .

2.1 DUCK 1 GROUP

GOLD DOME

GDE

DUCK 8

CLAIM NAME	<u>RECORD NO.</u>	NO. OF UNITS	DATE OF RECORD
di para de par			
DUCK	8334	20	MARCH 29, 1987
DUCK 1	8335	18	MARCH 29, 1987
DUCK 2	8365	15	APRIL 16, 1987
DUCK 5	8566	18	AUGUST 14, 1987
DUCK 6	8671	12	OCTOBER 1, 1987
DUCK 7	8672	16	OCTOBER 1, 1987
$(\mathbf{U}_{i}^{n}) \in \{1, \dots, n\}$			
2.2 DUCK 2 G	ROUP		
CLAIM NAME	RECORD NO.	NO. OF UNITS	DATE OF RECORD
DUCK 3	8410	20	MAY 15, 1987
DUCK 4	8507	5	JUNE 26, 1987

8543

8544

9132

20

10

3

1

Duck 6 and Duck 7 are currently owned by Gibraltar Mines Limited. The remainder are all owned by C. E. Carlson but held under option by Gibraltar Mines Limited.

3 GENERAL GEOLOGY

- 114

The geology of the Duck 1 Group is not well known. As shown in G.S.C. Map O.F. 574 (R. B. Campbell, 1978) the property is underlain by sedimentary rocks of the Snowshoe and Midas Formations and by Quesnel Lake Gneiss. The suggested age of the Snowshoe Formation is Hadrynian with parts of it equivalent to the Devonian Black Stuart Formation and the Mississippian Guyet Formation. Similarly the Midas Formation is considered also of Hadrynian age with parts of it equivalent to the Devonian Black Stuart Formation. These correlations are by no means satisfactory but they do illustrate the difficulty in subdividing the thick assemblage of sedimentary rocks underlying the Cariboo Lakes area. A Devonian to Mississippian age is supported however, by the occurrence of volcanic rocks within the sedimentary sequence. The Quesnel Lake Gneiss has been given an age of Archean to Paleozoic; similar rocks to the south have provided ages of Late Devonian to Middle Mississippian (Mortensen, 1987).

Our work within the Duck 1 Group indicates the sedimentary rocks form a thick monotonous assemblage of grey, green and black laminated rocks which could be variously referred to as siltite, or phyllite, or in some cases tuffite. A predominately black phyllite sequence is well exposed in road cuts along the northwest shore of Cariboo Lake on the Duck 1 claim. This sequence consists mainly of black graphitic phyllite and black siltite with lesser amounts of green phyllite. It strikes northwesterly and dips at low angles to the north. It appears to overlie a grey and green phyllite sequence which may contain some beds of pyroclastic material. Along the lake shore road cuts, both sequences contain zones of abundant iron sulfide and sporadic concentrations of chalcopyrite and sphalerite. Most of this mineralization is disseminated but quartz vein systems are also present carrying various combinations of pyrite, chalcopyrite, sphalerite and galena. The black phyllite sequence has been traced westerly as far as Duck 5 mineral claim where it is in contact with a fine grained diorite. To the north, on Duck 5 and Duck 7 a dark green chlorite-plagioclase rock occurs which has been tentatively identified as a meta-andesite. Within the lower Rollie Creek canyon another assemblage of phyllites is well exposed. These, however, are predominately of green and grey coloration with only minor beds of black phyllite and siltite. Disseminated pyrrhotite, chalcopyrite, sphalerite and galena was found in several black siltite exposures about 1.6 km. above the mouth of the creek. The same mineralization was also found in a chloritic schist formation nearby along the bed of the stream. Of particular interest in the canyon is the occurrence of silver bearing quartz-galena veins which had been explored by trenching and underground work beginning in 1878 (Amos Bowman, 1888) and extending to at least 1933 (Minister of Mines Reports, 1926, 1933).

Granite rocks of the Quesnel Lake Gneiss formation are also common within the claim group. Three main exposures are involved. One underlies a small hill south of Two-Mile Lakes and appears to overlie the phyllite sequences exposed along the lake shore. The other forms a series of prominent bluffs west of the lake and the third straddles the Rollie Creek canyon above the mouth of Asserlind Creek. In each case the rock appears as a coarse grained leucocratic metacrystic granite or quartz monzonite. Near some contacts with the phyllite the gneiss shows zones of shearing and possible mylonite development. 4354

4 THE DRILL PROGRAM

4.1 Objective

The primary purpose of the 1988 drill program was to test the grade, thickness and continuity of copper mineralization found in surface showings of black phyllite and siltite. The general exploration target was a sedimentary-hosted large tonnage copper-silver deposit.

4.2 Results

Seven vertical N.Q. diamond drill holes were completed. Drill conditions and recoveries were generally good. The location of the holes is shown in Figure 3 and copies of the logs are provided in the Appendices. Drill sections are also provided to show the interpreted geological relations. Survey control was by compass, chain, abney level and topographic map. Only a small amount of the core was assayed. Determinations were made at three meter intervals for copper, molybdenum, lead, zinc, silver, cobalt, nickel and gold.

Drill holes D-1, D-2 and D-3 were positioned to intersect the down-dip extension of chalcopyrite-sphalerite-pyrrhotite mineralization exposed in black siltites about 60 to 100 meters to the south, in the Rollie Creek canyon. The holes encountered abundant and widespread pyrite and pyrrhotite but only weak and sporadic concentrations of chalcopyrite and sphalerite. The sulfides were disseminated throughout an array of grey, greenish grey, green, dark grey and black phyllites. Some of the green phyllites displayed a distinct volcanic appearance imparted by recognizable relict feldspar or hornblende grains, moderately coarse fragmental textures and a general lack of bedded structure; these rocks have been tentatively identified as tuffite. In drill holes D-1 and D-3, concentrations of 1768 ppm. and 2982 ppm. zinc occur respectively over six-meter intervals at the contact between black phyllite and green tuffite. Elsewhere sphalerite, and also chalcopyrite, appear to have a random distribution throughout the assemblage but only in sufficient concentrations to impart slightly anomalous values to the assayed sections. The highest concentrations of iron sulfide appear to be in the black units. Except where contained in quartz-carbonate veins, the sulfides are very fine grained and not easily seen without magnification even though they may occur in concentrations up to four percent. It should be noted that the black units encountered in these holes consist of various combinations of soft black graphitic schist, dark grey phyllite and hard black siliceous siltite, or quartzite.

Diamond drill holes D-4, D-5, D-6 and D-7 were positioned to test the down-dip extensions of chalcopyrite and sphalerite mineralization found in surface rock exposures of black siltite in the vicinity of Two-Mile Lake and along the Cariboo Lake road cuts. No significant ore mineralization was found. Scattered blebs of chalcopyrite were observed in all holes but very little sphalerite was noted. Widespread pyrite in the form of uniform disseminations and quartz vein constituents were found in the black phyllites and siltites of all holes. Average sulfide concentrations appeared to range between one and two percent. This mineralization was found to be coarser grained than that of D-1, D-2 and D-3 and generally devoid of pyrrhotite. The rock units encountered in each hole also appeared to be different. D-5 intersected a thick sequence of green and grey rocks, completely lacking in graphitic beds. Some massive and chlorite-rich sections appeared to be of volcanic origin. Drill hole D-6 passed through a granitic gneiss body and into a black phyllite formation which was found to be much thicker than any of the black units encountered near Rollie Creek. The hole was located to intersect the base of

the black phyllite formation which, in the lake shore road cuts to the east, contains ore grade copper mineralization. Unfortunately, the hole was abandoned at 164.6 meters after intersecting a series of highly broken quartz vein systems. Drill hole D-7 went through a green banded phyllite unit and into a different black phyllite formation. The up-dip extension of this formation was intersected by D-4 which due to fault problems was abandoned at only 66.8 meters.

4.3 Interpretation

As shown in Figures 4 and 5, an attempt was made to subdivide the rock sequence encountered near Rollie Creek into mappable units. Because of the overwhelming similarity between rock types, this interpretation is quite tentative. It does, however, reveal a type of repetitive depositional history involving two, and possibly three, cycles of banded green phyllite, green tuffite and black phyllite. In each cycle, the green tuffite directly underlies the black phyllite and grades downward into an array of green and grey laminated rocks. These in turn pass abruptly into an underlying black phyllite sequence. If this interpretation is correct, the rocks here would strike at about 320-degrees and dip 35-degrees northeasterly.

An interpretation of geological relations in the vicinity of Two-Mile Lakes is shown in Figure 6. This is actually a compilation of surface geology, geophysics and drilling results. In texture, composition and structure these rocks are very similar to those of Rollie Creek but do not correlate in either thickness or stratigraphic order. Coarse grained Quesnel River Gneiss occurs at the top of the section followed by a black graphitic phyllite formation which is about 110 meters thick. The gneiss has a pronounced cataclastic texture and is separated from the phyllite by a 28-meter wide zone of mixed black phyllite and white fine grained quartz-feldspar rock. This may represent a ragged intrusive contact. Below the graphitic phyllite formation a banded green phyllite zone occurs which is about 50 meters thick. It passes into a 94-meter thick black siltite formation which is predominately hard siliceous siltite but does include beds of soft graphitic material. The base of the section consists of a thick sequence of green and grey phyllites, siltites and possibly tuffites which were intersected in hole D-5. The above assemblage strikes at about 290-degrees and has a proven dip of about 25-degrees to the north. The corresponding dip of similar magnitude to the south is based on the fact that drill hole D-5 did not intersect a siltite formation exposed to the south. If this interpretation is correct, the rocks in the vicinity of Two-Mile Lakes form a broad west trending anticlinal structure.

The diamond drill program has not indicated the presence of any metal-enriched horizon, or formation, which would directly lead to a sediment-hosted ore body. Instead, the minerals chalcopyrite and sphalerite appear scattered in small amounts throughout the intersected rock units. Some zinc enrichment was noted along the black phyllite - green tuffite contact near Rollie Creek but this was not confined to any specific stratigraphic horizon. Similarly, the iron sulfide enrichment found in most of the black units need not reflect a period of abnormal sulfide deposition, but rather may be a function of the reducing environment in which the rocks were formed.

The common occurrence of sphalerite and chalcopyrite throughout the sedimentary sequence however, must be considered a mineralogical anomaly and does warrant some explanation. These minerals may be diagenetic; that is, the chalcopyrite, sphalerite and iron sulfides may have formed by the migration and interaction of constituent elements within the sedimentary pile during

11

ात्म्य () जीवन्त

15 ° 6 °

14

metamorphism. This process is consistent with the accepted mode of formation for at least some sedimentary ore bodies. On the other hand, the minerals may be epigenetic, or introduced by some external, most likely, hydrothermal source. In this connection, the ore minerals may represent an outer, almost barren phase of better grade mineralization. Both models appear equally plausible. A third possibility involving a syngenetic, or more specifically, an exhalative origin does not appear likely, due to the almost ubiquitous distribution of the ore minerals.

5

5 STATEMENT OF EXPENDITURES

1988 DIAMOND DRILL PROGRAM, DUCK GROUP

1.	Drilling Costs Direct drilling charges, 1033.88m. @ \$43.64 per meter Other charges (mob-demob, lost equip., mud,)	\$45,118.52 4,247.33
2.	Supplies 170 core boxes @ \$5.95 per box	1,011.50
3.	Vehicle Costs Rental 1988 pick-up, 10 days @ \$30.00 per day	300.00
4.	Assay Costs 36 samples: assayed for Cu,Mo,Pb,Zn,Ag,Ni,Co @ \$7.00 per sample assayed for Au @ \$5.50 per sample	252.00 198.00
5. 101 101 101 101 101	 Personnel Costs 1. Field Supervision G. Barker, Aug. 19 to Aug. 28, 1988 50 hours @ \$22.00 per hour 2. Core Logging G. Barker, Aug. 21 to Aug. 30, 1988 40 hours @ \$22.00 per hour 	1,100.00 880.00
	 G. Bysouth, Aug. 30 to Sep. 02, 1988 32 hours @ \$31.00 per hour 3. Report Writing G. Bysouth, Dec. 15 to Dec. 30, 1988 	992.00
and the second	60 hours @ \$31.00 per hour TOTAL	1,860.00 \$55,959.35

3111

, de t

Est. Dr.

6 CONCLUSIONS

10 j i

 $\frac{124}{4\mu} = \frac{124}{4\mu} \frac{1}{4} \frac{1}$

The original target of an ore grade copper-silver zone within a specific black siltite formation as suggested by surface exposures has not been substantiated by the 1988 diamond drill program. Further, there is no evidence of exhalative-type mineralization within any of the sedimentary assemblages intersected by drilling. At this point, the property must be re-evaluated from an epigenetic perspective with particular attention paid to fault structures, quartz vein systems and alteration patterns.

math

G. D. Bysouth Senior Geologist

i - 10 i i

1 1.215

j – Ju⊀u Suuppers

G. E. Barker Exploration Geologist

GIBRALTAR MINES LIMITED

REFERENCES

相任的

3

 $1 \parallel 1$

- 1. Barker, G. E., Bysouth, G. D.: Geochemical Soil Survey Report on the Duck 1 Group March 1988 - Assessment Report.
- 2. Bowman, A., (1988): Geological Survey of Canada Report, Geology of the Cariboo Mining District, B. C.
- 3. Campbell, R. B. (1978): Quesnel Lake, Geological Survey of Canada, Open File Map 574.
- 4. Mortensen, J. K. (1987): Canadian Journal of Earth Sciences, Vol. 24, p. 1261-1266.

40.0

5. Minister of Mines 1926 p. A 178 1933 p. A 138 1951 p. 118

APPENDICES

25 - S+ H

Cyli ab i

90 - S

APPENDIX A. Statement of Qualifications - G. D. Bysouth

I, Garry D. Bysouth, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:

- 1. I am a geologist.
- 2. I am a graduate of the University of British Columbia with a B.Sc. degree in Geology in 1966.
- 3. From 1966 to the present I have been engaged in mining and exploration geology in British Columbia.
- 4. I personally participated in the field work, supervised the program and interpreted the results.

bain N. Syrouth

Garry D. Bysouth

APPENDIX A. Statement of Qualifications - G. E. Barker

ιĖ.,

-€`i

I, George E. Barker, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:

- 1. I have a General Science Degree from the University of Waterloo since 1985.
- 2. From 1978 to the present I have been engaged in mining and exploration geology in British Columbia.
- 3. I personally participated in the field work and logged most of the core.

adas

G. E. Barker

GIBRALTAR MINES LIMITED

ASSAY CERTIFICATE

Sampte No.		-Cer. Tutai-Co.					
	Cu	3	76	NI	Co	15-	40
		0				11/0 52	Hg
41634 0-33	265	PPA 1632 78M	252 PP	1 78 7	PM 14	RA # 2098	21 4.0
35	1110	4332	60	66	22		<u>4.0</u> 4.0
36 20-30			56	82	32	\$ 10	3.6
416 47 69-72	340	424	28	68	32	10 10 10 10 5 5 5 5 10	4.4
48	115	47	28 20	24	10	8 5	2.4
49		54	20	24 52	20	55	2.8
50 78-81	185	164	28	92	4/2	\$ 10	4.8
116 76 81-84	-	464	104	92 80	16	20 15	3.6
	165	648	80	84	14	20 15	3:2
78 "0		440	64	92	14	20	3.2
79	195	544	160	82	14	5	3.6
80		416	120	84	14		3.2
81		336		92	20	D IS	
16 90 123-126	95	90	92 16	74	28 30	20 20 20 20 20 20 20 20 20 20 20 20 20 2	4.0
			14			42 10	3.6
6 403 162-165	135	253	124	72	1/	25	3.2
04 165-165	170	480	124 92	72	16		3.2
160-511		100		1/2	14	30	512
15-26	165	102	52	74	24		20
27 5	180	1224	180	76	29	20	2.8
28	290	2312	178	90	28 38 34	15	3.6
29 12 - 21 30 21 - 24	155	411.	128 96 28	10 CC	30	10	4.4
30 21- 24	180	237	10	88 94	37	10	4.0
31 25 27	150	2040	20		38	15	3.2
32 2000	95	227	20	88	34	lo	4.0
33	115		20 24	100	38 36	10	4.0
34 5536	110	108 93	27	96	36	5	4.0
	<u></u>		20	96	38	10	4.0

Assayer ...

GIBRALTAR MINES LIMITED **ASSAY CERTIFICATE**

sealogue - Cili	losation					, L . 14	
Sample No.	% -0x. Gu? -	-Total Cut.				1	
	Cu	32	Pb	NI (60	MoSz	Ag
<i>EE</i> -D2		0.					
4/15 35 138-141 36141- 144 37144- 147	100 ??~	313 77-1	64771	5874	181	415 781	2.6 11
36141-144	115	632	140	74	24	10	3.0
37144-147	225	234		68	24 32	10	314
38 147-150	113	144	72 24	Sa	38	15	316
38 147 - 150 39 150 - 153	85	208	40	32	40	10	4.0
40 153-FOH	430	480	40	40	50	10	4.6
4178-81		148	14	62	34	10	3.2
42 81-84		158	16	52	32	10	310
43 84.87	185	131	68	52 58	36	10	3.8
44 54-57	175	392	68 72	20	18	20	4.0
45 57-60	11.0	310	64	72	18	20	3.4
4/	1740	384	456	122	132	10	6.6
nerelize Sloot from		001					
the one = zan.					n in the second se		
<u>contin</u>							
i. r. top y Fx							<u>an an an Anna an Anna</u> An Anna Anna Anna An Anna Anna Anna Ann
							eren <u>an an an an</u> Saidh an Anna Anna Anna Anna Anna Anna An Anna Anna
						()	
					1		<u>son</u>

ţ

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 ³ (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

SAMPLE #	Au		
41526	ррb 10		
41527	10		
41528	45		
41529	15		
41530	15		
	.		
41531	5		
41532	5		
41533	10		
41534	5		
41535	nd		
	11 4		
41536	nd		
41537			
41538	1 0		
41539	10		
41540	10		
14414	▲ ♥		
41541	5		
41542			
41543	10 10		
41544	nd		
41545	nd		
74070	na sena di sena di sena di na sena di Sena di sena di		
41546	15		
41634	nd		
41635	10		
41636	10		
41647	20		
TIUTI			
41648	15		
41649	15		
41650			
41676	10 10		
41677	10		
710//	1V 		
A1270	5		
41678			
41679	nd		
41680	10		
41681	10 In		
41690	nd		
15 100			•
46403	10		
46404	1994 - Alexandre 5 7 - A		

DETECTION LIMIT 5 nd = none detected -- = not analysed is = insufficient sample

EXPLORATION DIAMOND DRILL LOG

SCALE of LOG 1:200

•

 $^{\circ}$

HOLE NO 88-DI Page ____ of 5

(Above Rollie Creat @ Joe's sig LOCATION DUCK CLAIM	n) <i>GROU</i>	PBEA	RIN	۱ <i>۵</i>	LATIT	40E _				COR	ë siz	E	NQ			
DATE COLLARED 19 AUG 1	988	LEN	G-T+	155.14 m (509') DEPAR	TURE -				DAT	E	22 F	NUG.	1988		
DATE COMPLETED 20 AUG	1988	DIP		90°	ELBVA	TION _			<u> </u>	LOGO	GED Z	37_6		BARK	FR	
		meters	GR.				%	%	SAMPLE		As . 2n	SAY Pb	VALU			
GEOLOGY	FOLN.	DEPTH	ST.	MINERALIZATION	REMARKS	BLOCKS	REC	PY+	No.	Cu ppm	2n PPM	PPm	Ni prini Copini	nio52 ppni	Ag	Hu DPb
OVERBURDEN		9.0	1000		CHSING TO 9.14m											
BLACK BANDED SH.717E 9.14 m to 13:4m	70 + cren	-		gtz-carb-py-ohl (graphite)(lim) ((ery))	LINION INE: to 22.5, Crenilated Zone	9.14 11.3	98	1.0	41526	165	102	52	74 24	20	Z18	10
Haid (6-2) Alternating Wight and dark bands I to 3mm thick, similar to dark banded phyllite but contains more atz. Py in small views + blobs, some views cross cut bedding	NA	12.0		etz-carbuich Iomm wide with minor cpy-215Pbs (ZnS) ((Cpy)) py	- in bounded sitting sust before contact commented of 3 particules ?	<u>12.8</u>	98 98	1.5	41527	180	/224	180	76 28	15	3.6	10
<u>GREEN RX (UNI)</u> <u>13.4 m to 27.4 m</u> A light green to grey green	NA	18.0		(ZnS) py		17.1	97	1.0	41528	290	2312	128	90 38	10	4.4	45
non-Laminated Rx consisting of carb, feldspar, 6tz and chl.	μA	21.0		((CFY)) (Z NS)		<u>18.3</u> <u>19.5</u>	97	20.5	41529	155	416	96	86 34	10	4.0	15
	٨٩	24.0		(ZnS)((<py)) pyr<="" td=""><td></td><td>22.6</td><td>97</td><td>20.5</td><td>415 30</td><td>180</td><td>237</td><td>28</td><td>94 38</td><td>15</td><td>3.2</td><td>15</td></py))>		22.6	97	20.5	415 30	180	237	28	94 38	15	3.2	15
	A M	27.0		(ZnS)(CP))) Pyr		25:3	98	1.0	41531	150	2040	20	86 34	10	4.0	٩
GREEN UNIT - increase in dark bands (grander) 27:4 m to 37:2 m	60? WZ	30.0		рут (сру)		28.4	98 97	0.5	41532	95	227	20.	100 38	10	4.0	5
	6?. WR	1		(Z1,5)) (CF3))		<u> </u>	97	20.5	41533	115	108	2.4-	96	μ,	4.0	10

GIBRAL R MINES LTD EXPLORATION DIAMOND DRILL LOG

SCALE of LOG 1:200

HOLE NO 88-DI Page 2 of 5

1.

	T	T	GR.	[I	Γ	%	0/	r				VALU			
GEOLOGY	FOLN.	DEPTH		MINERALIZATION	REMARKS	BLOCKS		90 PY+	SAMPLE No.	Cu	Zn	РЬ	N' PPM	HIDS.	Ag	Au
	1							PYE		PPm	ppm	PPNI	Co PDM	o pan	DPN	NOD.
	60?			(Pyr)		34.4	90	0.5		110	0.7		96			_
	wh	36.0	والمشيرية والم				85	 	4/534	110	93	20	38	10	4.0	5
	75					36.3										
BANDED SILTITE 37.2m to Al.B	mod			(P4+) P3 ,			95	0.5								
	YILCL	39.0				38.7										
	80	-		(Zns)) pyr py												
	med	_					90	0.5						an a		
HIGH QUARTZ GREEN UNIT 41.8 m to 44.4 m		42:0				41.8					e de la composition de la composition de la composition de la composition de la comp					
<u> </u>	65?	-	F.	913 - PY - ((CP))	RQD:33											
BLACK BANDED SILTITE	wk.	-					98	20.5								
<u>44.4 m to 61.9 m</u>		45.0	1947			44.8										
A black to dark grey rx	07	-	15	CA1	R@D= 60		99	1.0						20 - 1912 - 1912 -		
laminated with light 913-carb and darker	cren	-	A	ey	strongly evenulated		77	1.0	· 영제 49.1							
arachitic bands, most		48.0				47.9						ne drige n Tract				
Laminae are 1 to 3 mm	70	•		(ZNS) ((CPU)) PY > PUY	29D-73		98	1.5								
think schie atz-carb	str	51.0				50.9		15								
zones up to zoom thick,	40		- E	(Zns))((CPU))	RQD: 47											
Graphite is fairly abundent	+0		¥.				97	1.0								
rock could be classified as phillite H (5-6)	70 57 V	54.0		PY		53.9										
Philotte	30		1	(сру) .	Rads 37											
	30 ⁺ 50			Py < Pyr			97	2.0		No. 1						
	542	57.0	1.1			57.0									•	
	65	-			Rad: 73										•	
			-	Ру			99	1.0								•
	mod	60.0	\equiv			60.0										
GREEN UNIT		-		Py > pyr	K&D=33	1.1.1	95	1.5			Ī	•				
61.9 to 70.2	70 mi		2	((CPY))		61.6		113	n Alasian Alasian							
carb - chlorite - gt 3 no Laminae H(6-7)		63.0			RQD = 73	63.1	95									
동안에 2007년 1월 2017년 1월 2017년 1월 2017년 1917년 - 1917년 1월 2017년 1월 2017	75?	-	Г.,		K90-73										en Al Den al L	
	VWR	-	1				99	20.5								
		66.0														

SCALE of LOG ______

GIBRAL R MINES LTD

EXPLORATION DIAMOND DRILL LOG

HOLE NO 88-D1 Page 3 of 5

			GR.				%	%	SAMPLE		A 5.	SRY	VALC	IES		
GEOLOGY	FOLN.	DEPTH		MINERALIZATION	REMARKS	BLOCKS		PY	No.							
	70	Star 2	2		PQ.D:87	66.1										
	107		1.25					2015							h *	
	45 V. WE	69.0					98						f = d + c			
					RQD+53	69.2										<u> </u>
DARK BANDED S11.7175 70.2 m to 86.3 Similar to Kx from 44.1m	80	•		Py > pur (ZnS)			98	1.0								
Similar to Ex from 44.4m	mod	72.0				71.3										
to 6119 m (8t3-carbravaphile)		1/2.0	21		Rap= 40								<u> </u>		<u> </u>	
		-	1 E	Py ((ZnS))			97						a bata			
	Crevi	1 · · · · · · · · · · · · · · · · · · ·	C	ry ((4n3))		74.4		1.5					14		1.13	
	mod	75.0	Ê				26									
승규는 영국 관람을 가지 않는다.		-	Ē				98	1.5								
	70	•		Py 2 Pyr ((C PY))(ZnS))		77.4		1.5								
	mod	<u>78 o</u>		(CPV)/(ZnS)												
	70	-					98									
공항 것이 없는 것 것 같아요. 영화 것	+0 50	-		By (CPY) (ZnS)		<u>79.6</u>		1.0								
	mod	81.0					97									
	65	-		1 3		82.6		1.5								
가 가고 있는 것으로 가장하는 것이다. 같은 것으로 동안 한 성격 가지 않는				Py > рут (((zns cpy)))		02.0		1.5								
	med	84.0	: 2 ¹¹				99									1 - 1
		-					11									
GREEN LLNIT-interbedded	70	_		Py > pyr		85.6		1.0								
ith dark banded sillite 86.3 m to 108.0 m	V, wiz	87.0		((CPY))												
<u>000 m /0 / 0 d 0 m</u>		-					98									1
	60?			Py > Pyr		<u>88·7</u>		1.0								
	V. WR	90.0	\leq	((zns))												
				PYT > PY			98									1
	60?			ZINS (CPY)		91.7		0.5								
	V. WR	93.0					98							la se est		
	40		1	FUF > PY		93.6						•				1-
11 14 15 16 14 14 14 15 15 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 1	40 40 P 60 P		A. C.	(Z.ns) ((C.P.Y))				0.5								Р. _{1.}
		96.0	24	e-may (et a)			99									
			1			96.6										
	?		2	(PY)				205								
경험 방법은 여자 그 관련 같은 것이		99.0	1				99			•						F


EXPLORATION DIAMOND DRILL LOG

SCALE of LOG _ 1.200


HOLE NO 88-D/ Page 4 of 5

12

			GR.				%	%	SAMPLE				VALL	IES		
Geology	FOLN.			MINERALIZATION	REMARKS	BLOCKS		PY	No.							
						9 9 .7										
	NA	-	- 1. T.	((PY))			97	20.5								
		102.0				101.5		[ana An An					
	65?	•					96	20.5								
	v.wk	105.0		(PY) (CPY)))•		104.2		2015								
		105.0					98									ļ
· 동안 가장에 가지 않는 것은 가지 않는 것을 가셨다. - 같은 한 동안 가지 않는 것이 같은 것은 것은 것은 것이다.	NA	-		((Py))		106.1		20.5								
Green 1017 108 cm to 127m		108.0					98									
108 cm to 127m Similar to Fx from 6119m						108.8	1 A A A A A A A A A A A A A A A A A A A									
to 70.2 m (Nodarte bands)	NA							NIL								
		111.0					98			na an Taonac Taonac					•	(** ;
						111.9										
	NA	-		(Py)				2015								
		114.0		an an an an an Array an Array Array an Array an Arr			99						<u> </u>			
2013년 2013년 - 11월 12일 - 11일 11일 - 11일	NA	•				114.9		NIL								
		- 117.0					99					n sin s Di selata				
						-										
	NA					<u> ''U ×</u>		NIL								
		120.0					98									
		-			en de la composition Constante de la composition	121.0						•		e este Second		
	NA	-						NIL								
		123.0				-	99						1			
	NA	•				124.0		NIL								
		126.0	$\sum_{i=1}^{n}$				99									
GREEN UNIT - interbelled			\leq													
with grey-black siltite	70 70 50 V.WR		And a second	Pyr(Zns)((w))		127.1		0.5								
127m to FOH	V.WR	12.9.0					98				•					
	65					130.1										
	2	-					99	NIL		•						
	v.wz	132.0			••••••••••••••••••••••••••••••••••••••											· ·

EXPLORATION DIAMOND DRILL LOG

, i 🔿

			GR.				%	%			AS	SAV	VAL	155	
GEOLOGY	FOLN.			MINERALIZATION	REMARKS	BLOCKS	REC	78 PY	SAMPLE No.				1		
	65 ?	l .				<u>/33·2</u>		2،02							
		135.0					98								
	65.7 40'	138.0		РУ		<u>/36·2</u>	•	0.5							
	65 60 WR			PY > PY+		139.3	99	1.0							
		141.0				-	99								
	65? V. wk	<u>144.0</u>		(PY > PYF)		142.3	98	0.5							•
	-70 WE	•		Pyr (Ens)		145.4		1.0							
	65	<u>147.0</u>		РУY > РУ (2 nS))		148.4	99	1.0							
	v,wz	<u>150·0</u>					99								
	65 V WZ	1530		Py+ · (ZnS)		151.5	•	0.5							
	MA	-		(jyg)) ·	END of HOLE	154.5	99 98	20.5							
			_			153114									
		•									•				
										299 - 1 - 1 - 1 - 1 - 1					
		1			n an an Araban an Araban an Araban <u>An Araban an Araban</u> an Araban an Araban						1 A.				

EXPLORATION DIAMOND DRILL LOG

SCALE of LOG _ 1'200

HOLE NO 88-D2 Page 1 of 5

LOCATION DUCK CLENN G	ROUP	BEA	RIN		LATITO	IDE _				COR	E SIZ	:E	NQ			
DATE COLLARED 20 AUG 19 DATE COMPLETED 21 AUG 19					(507') DEPAR											• •
GEOLOGY	FOLN.	meters DEPTH	GR. ST.	MINERALIZATION	REMARKS	BLOCKS	% REC	% PY	SAMPLE No.		AS.	SAY	VALL	ES		
OREBUDEN -		6	000,000		CASING TO 6 Im	6./		+ Pyr								
<u>GREEN UNIT</u> <u>6.1 to 78 m</u> A light green to grey green non Laminated Ex consisting	· ·		ନ୍ତ୍ରେ	Limonite to libm (Fy)	Badly broke: cove 6.1mto 1714m		70	0.57								
of corb, feld, otz, chl. This zone is interbedded with black todark grey	?	12	0.000	foult gouac		10.4		0.5?								
bards (graphitic?) probably same material that makers up the dark banded silfites	?-	-	80 10 30	PY>PY+ZnS		13.7	50	1:0 ?								
and/or phyllites	,	/8	1800000 (-9cuge -9ouge Py >py+ ((ZnS))		17:4	45	1.0?								
	60 WR	21	1. 1. V.	Put ZnS ((Cfu)))		20.4	98	210								
	65 70 WZ			(PYY-7 PY)		23.5	99	1.5								
Black	65 . Wte	27	6. M.	руг > ру (ZnS)		26.5	96	2.0								
	65 W 12		Cold: 1	(pyr >py)		29.0	92 93	1.0								
	L	30	1			1 1 1			the second second		A Contraction of the	1. A.		1 J	1.1.1.1.1	F

GIBRAL R MINES LTD

EXPLORATION DIAMOND DRILL LOG

SCALE of LOG _____

HOLE NO 88-DZ Page 2 of 5

1.2

G2000 PD Part Dermit st, Autren AutZATION REMARKS BLOOK RE PP Add PP			meter	GR.				%	%	SAMPLE		A 5.	SAY	VALU	ege_		
$N_{0} \stackrel{\text{derive suffice trudy}}{32 \cdot n_{1} \cdot e \cdot 32 \cdot 0} = \frac{1}{24} \text{with vert for one of equation of equations of e$	GEOLOGY	FOLN.	DEPT	1 ST.	MINERALIZATION	REMARKS	BLOCKS					Zn	Pb	N' PPH		Ag	Au
No device subjections 32.9m, to 42.00m $AA = \frac{32}{(p_{2})} + \frac{32}{(p_{2})} + \frac{32}{(p_{2})} + \frac{32.2}{(p_{2})} + 32.2$				08	gtz vien ben wide	minor broken core	30.5					Fr	PPm	Coppm	ppm	ppm	РРЬ
No device subjections 32.9m, to 42.00m $AA = \frac{32}{(p_{2})} + \frac{32}{(p_{2})} + \frac{32}{(p_{2})} + \frac{32.2}{(p_{2})} + 32.2$		75		L				95	0.5			1					alar Marina
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			33		Pyr- ((2h5))		33.2										
Arequent dark sittige Arequent dark si	32.9m to 42.0m							75	1								
NA 30 32.5 92.6 42.5 40.2 <t< td=""><td></td><td>NA</td><td></td><td></td><td>(Pur) ·</td><td></td><td></td><td></td><td>20.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		NA			(Pur) ·				20.2								
Prequent dork silide 33 36 263 1 <t< td=""><td></td><td></td><td>36</td><td></td><td></td><td></td><td></td><td>96</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			36					96									
Prequent dark siline 33 a_{2} a_{2		λA					37.5										
Prequent dark silfife interbedding 42 1949m - also interbedding 5218 NA d2 NA		n an ann Agus an An	39	1				. .	20.5								
Program 1 dark silfide interbedding 42 to 45m – alto increase in gt3 hh . $d2$ hh .							10.2	98									in de la composition Notation de la composition
$\frac{1114 + 5 - 64 \operatorname{ding}}{16 + 6 - 64 \operatorname{ding}} \frac{22 + 6 + 5 - 8}{- 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 $		мĤ					70 6		2015								•
also increase in §13 $\frac{1}{20}$ $\frac{1}{20}$	Frequent dark silfite		42					98									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	also increase in 9t3	70	•		(Park)		43.3										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		a de part		1	(('))				20.5								
$\frac{1}{47.9} = \frac{1}{96} = \frac{1}{47.9} = \frac{1}{96} = \frac{1}{605} = \frac{1}{100} = \frac{1}$			45					97									
$\frac{1}{45 \text{ m} + 0.76 \text{ m}} = \frac{1}{10000000000000000000000000000000000$	reduced 45 to 78	70					46.3		2015	an an tao							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		v. wte	48	1.25			47.9	96	Ĺ								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45m to 78m															•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-		(Pyt)(ZrS))			97	0.5								
$\frac{v. wk}{54} = \frac{54}{220} \qquad \qquad$		V.WE	51				50.2										
$\frac{v. wk}{54} = \frac{54}{220} \qquad \text{miner broken core} = \frac{53\cdot3}{54\cdot9} = \frac{53\cdot3}{96} = \frac{54\cdot9}{96} = \frac{96}{57\cdot2} = \frac{70}{18} = 20 \text{A·O} \text{ND}$ $\frac{57\cdot2}{75?} = \frac{1}{75?} = $		75 ?	•					96									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		V. wk	54	20		miner brotzen core	53.3		2015							•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					(tyr) (zns))		54.9	96									e arte Riger
$\frac{v.wt}{75?} = \frac{18}{\frac{v.wt}{60}} = \frac{18}{\frac{59.4}{18}} = \frac{36}{\frac{59.4}{18}} = \frac{18}{\frac{59.4}{18}} = \frac{18}{18} = \frac{18}{1$	사실 방법이 가지 않았다. 이상 가지 가지 않는 것 같아. 이 가장은 것이 가장 것을 것 같아. 것이 같아.	80							20.5	41544	175	392	72	70	20	4.0	ND
$\frac{75?}{41545} = \frac{96}{18} = \frac{20}{310} = \frac{310}{18} = \frac{100}{18} = \frac$		V.WE	57				57.0	97						18			
$\frac{y \cdot wk}{8^{\circ} i} = \frac{59 \cdot 4}{18} = 59 \cdot $			•		(P98-P9) ((ZnS))			97					•	72			
			•				59.4	10	20.5	41545	/60	310	64		20	3.4	ND
승규가 많은 것을 하는 것을 물었다. 이 것 같은 것을 하는 것을 물었다. 것은 것은 것은 것을 다시며 한 것을 못했다. 지난 것은 것이 있는 것이 있는 것을 하는 것을 하는 것이 같다.		y wit	60											ίδ			
에서 관계 승규님, 그는 것은 전 방법에 가지 않는 것이 것을 하는 것이 같아요. 이 가지에 가지 않는 것이 있는		80?	•						2015								
		V. vute	63	1							•						

ND = NONE DETECTED

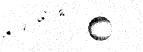
EXPLOBATION DIAMOND DRILL LOG

SCALE of LOG _____

HOLE NO BB-D2 Page 3 of 5

1

		meters	GR.				%	%	SAMPLE			SAY	VALU	ES		
GEOLOGY	FOLN.	DEPTH	57.	MINERALIZATION	REMARKS	BLOCKS		PY	No.	Cu	Zn PPm	Pb PPM		MOS2 PPM	Ag	Au
	70		(and a			63.1										
	VWR						98	< 0.5								
		66				66.1										
	65	•														
	wk	•					99	205								
		69				69.2										
	80	•	2				97	205								
	UWR	72		an an an Arran an Ar Arran an Arran an Arr			97									
						72.2	- 1.2 1.174 _			[e de la composition			
	BC V. WR		0	(P)	miner broken core		96	2015								· ·
		75				74.4										
	70	•			an a		98									
		-		(729 < 49)		77.4		0.5								- I
DARK BANDED SILLITE 78 1 to 89 m	wha	78														
Hard (6.7) Rx with	70 W2 tu	•		Py > Pur			૧૯	1.0	1		100		6Z			
Iternating Light and dark	med	81		((ZnS)) ((CPY))		80.5			41541	160	148	16	34	10	3.2	5
imitar to dark banded phyllite	70															-
nit contains more at 3 -	+0 5P			Py > Py+ ((Z+S))			97	1.5	41542	170	158	16	52	10	310	10
anit interbedded	WR	84				83.5							32			
		- 11					98						58			
	65			(Py > PUF) ((ZNS)/(CPU))		86.6		1.0	41543	185	131	68	36	10	3.8	10
	witz	87_		(12 h3)(10 P9)))		•		┣								
GREVUNIT	70	-		(Byr)			97	20.5								
BBm to 106m	wte	90				89.6										
imilar to Green Unitedly			۰.',						1							┢─
even in color preside	NA						99	20.5								
ark spects ansciult handlard		93				92.7										
iv biotite - Rx has volcanic		-		(increase in sot 3												
(ppearmice (Ots forphory?)	NA	-	•				38	2015								
		96		2^{1} , the first sector 2^{1}		95.7		-		la se se s	1					Ι.


EXPLORATION DIAMOND DRILL LOG

SCALE of LOG _____

HOLE NO 88- D2 Page 4 of 5

12

			GR.				%	%	SAMPLE	AS.	SAY	VALL	IES	
GEOLOGY	FOLN.			MINERALIZATION	REMARKS	BLOCKS		PY	No.					
	MA	-				98·8	97	2015						
	٨٩	99					99	2015						
	٨٨	102				101.8	98	2.05						
GREEN UNIT and BLACK BANDED SILJITE interbedded		105	9		mimor broken core	104.9	96							
BANDED SILTITE interbedded 196m to 1/2:7m	70 wk	108	9111	(FUY > PUY))	WINNUT DEOK EN COT	107.0		0.5						
	70 Wte			Рун > ру (Zns)((Сру))		110.0	98	1.0						
<u>GREY UNIT</u> <u>1127m to 119:9 m</u> similar to Ry From 89m to	75 VWR	-	1 W.			<u>//3·/</u>	98	2015						·
106m	MA		$\{ f_{i}, f_{i} \} \in \mathcal{F}_{i}$			116.1	98	20.5						
GREEN UNIT - with miner dork bands (artite?) 119.9 to Eat	NA	120				1/9.2	97	20.5			•			
	70 V WE	/23		Py > pyr ((ZnS))		<u>122.2</u>	99	015						
	60		1. 1. 1. 2. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Py-PU+ ((ZnS))		125.3	98	1.0						
	5 V WR	126		Py < py+		128.3	98	0.5						

EXPLORATION DIAMOND DRILL LOG

SCALE of LOG _____

HOLE NO_88-D2 Page 5 of 5

1

			GR.			1	%	1%	SAMPLE		AS.	SAY	VALU	ES		
GEOLOGY	FOLN.	DEPTH		MINERALIZATION	REMARKS	BLOCKS		PY	No.	Cu. ppm	Zn ppm	РЬ ppm	Ni ppm Co ppm	Mosz	Ag	Au PPb
	65			רא < אנא		131.4	98	0.5								
	V WZ	132						ļ								
	70	-		אטא ארא		<u>133·2</u>	98	1.5								
	vwz	135					99									
	75 Wa	•		マットウト		136.2		1.0								
	<u> </u>	138					97									
strong increase in	. 75	-		Py>Pu+		139.3		1.5	41535	100		64	58			•
Dark banded sill ite 137:9m to 141m	mocl	141		(zns) ((Cpu))		141.1	97		+10 50	100	313	67	18	15	2.6	ND
	70 Wtz	-		PJ > PY+ ((2ns))		147.	96	110	41536	115	632	140	74	10	3.0	ND
		144				143.6							24			
	75	•	1			146.6	98	2015	41537	225	234	72	68	10	3.4	5
	V wtz	147				146.6	-	 	-				32			
	75 7	-		(rur) (rur)			98	0.5	41538	113	144	24	50	15	3.6	10
	VWZ	150		1		149.7			<u></u>				38			
	Bo	•	1				98	20.5	41539	85	208	40	32	10	4.0	10
	V WR BO	153	ی ایران استین			152.7		-					40			
	UWR		ست رید. ست		END of HOLE	154.53	98	20.5	41540	<i>430</i>	480	40	40 50	10	4.6	10
						4										
		-														
		-				-										
		•								•						

ND = NONE DETECTED

GIBRALTAR MINES LTD. EXPLORATION DIMIND DRILL LOG

1

Hole No. 2-28-D3 Page No. 1 of 6

HOLE 88-D3

LOCATION <u>Duck Option</u> DATE COLLARED <u>AUG 21/88</u> DATE COMPLETED <u>AUG 23/88</u>	_ LE	NGTH_		184.4 m (605') D	EPART	URE_	6 			DAT	E	е <u>N</u> Яид ч(31 1	988		
Geology	Foln.	Depth	Str.	Mineralization	Blocks		0/0 Py. + Pyr.	Sample Na	Cu PPm	Mo	Pb	Zn	Hg PPm	Au Peb	NI	CO
Casing To 6.7 m					6.7		- 14									
BLACK BANDED PHYLITE	50 WK	9.0 m	00	mainty clissem py Very minor pyp		80	2.0	41626								
a black to dark grey graphitic rock usually			Ŵ	dissem - py	10.1											
Etcouch laminated with Light grey (gtz-corb?) laminac. 1- 3 pour thick	50 W	12-0	0 12 0 C		11.3	76	2.5	41627								
laminac 1= 3 km thick alternating with thicker laminac and bunds of dark arey to black	60 WK	15.0	MMM	disseni py	14.3	85	3.0	1 1628								
- material - also contains - particles and some of 	- 70 WY.	18.0	A WAN	dissem py	17.1	70	4 0	41629								
and grades in place to a black siltite (HS-7)	te wk	21.0		dissem by Very minor byr	19.5	80	40	41630								
It appears to consist of	-	21.0	Ø		21.6		1									
- varying proportions of dis- carbonate graphite - this and sulfides	50 WK	24.0	Rooll	dissem py minor qtz-carb-py bands strong graph. zone	23.5	85	4.5	41631								
The sufficiency are extremely fine grained - K i num and not clearly chidrent without	- 60-70 - WK	27.0	20	dissem py <u>an</u> d pyr. Minor specks of cp and sthal.	25.9	80	4.5	41632								
Foliation zen in not strong and a low and is concordent with the lamontum - the logic			COR	рчг » ру	29.6	65	4.0	41633								
bedding et with only miner	_ Cren	30.0	ALL CAN	PYF >> PY dissem sphal = minor CP	32.6	85	3.5	41634	265	20	252	/632	410	ND	78	14

ND = none detected.

7

à.

GIBRALTAR MINES LTD. EXPLORATION DIMIOND DRILL LOG

Hole No. 2 of 6

Geology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• P _Y .	Sample No.	Cu PPm	Mo PPM	Pb	Zn	Ag	Au PPb	N; ppm	Co
<u>35-1 m</u>	Cren	36.Dm	100000	dissem pyr - very mini sphal. 9tz-carb-chi-sphal@contact breceia healed with 9tz- carb-sphal-pyr(cp)	35.7	95	1.0	41635	260	10	60	4332		10	66	22
<u>GREEN MASSIVE UNIT</u> (35.1-48.3 h) a pea-streen to gray green non-laminated rx consisting of	Cren to Massive	39.0m		dissem. pyr and qts-corb. Pyr veinlets or breccia filling:	38.7	٩٥	1.0	41636	2/0	10	56	424	3.6	10	82	32.
- carb., feldspar, gt and chl. - chl in places appears as hb relicts - cut by verillets and invegular some of qts-carb (gashes? be fillings) - he abusious sedimentary structures		42.0	アノノ		41.0	90	.5	41637								
This rx may be an altered anderite or decite - containe useakly dissem pyr and minor	NĄ	45.0	((//	80° carb-py vein - 5 cmxz	43.9	70	• 5	41638								
ep. blebs. Upper contact is by health by ets-carb spliel - pess. concordant - lower contact is gradational 48.3	NA	<u>48 c</u>	1.1.	fo carb-py vein-6cm.xz bx gg-10 cm	46.6		• 5	41639								
BANDED MULTI-COLORED UNIT (48.3 - 69.9 m) alternated laminac, band and	5-20	51.0			49.7	95 86	<.5	41690								
beds of pea green, greenish brown, dark brown, grey green and dark grey to black materiel - color appears due to dominate	50	54.0		dissem and bands of black opaque material - graphite?	52.4	95	٤.5	41641								
brown mice, greent - ie black graph brown mice, green chl. - this rx is generally soft	10- 60 WK	57.0		material - graphite ?	55.5	90	<.5	41642								
(<4) due to a high mica content bottom appears sharp_and concordant (80-90°)	40	60.0	11/2/1/		58.5	95	2.5	41643								
	<i>50-</i> 80	63.0	111111122	dissem py	61.6	95	•5	41644								
	- 80	65.0	111112	6 cm, 80° chl-carb-cp 3 cm 80° chl-carb-cp	64.0	90	1.0	41645								

GIBRALTAR MOLS LIMITED

Hole No. 5 D3 Page No. 3 Of 6

	1	1			r					· · · · ·		1 aye	. 190.	'		
Geology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• Py.	Sample No.	Cu pen	Mo PPN'	Рь <u>Peni</u>	Z n Penn	Hg PPIL	Au PPL	N; PPm	Co
	80		1111111		67.4		<.5	41646								
		69.0m		red-brow wire zone		95										
QUARTZ PORPHYRY	80. 90 °	72.0m	111/	so hie carb-cp 48,2mm qt3-carb-cp	70.4	95	, 5	1 1647	340	5	28	203	414	20	68	32
"qt3-eye" phenocrysts up to 6mm dia in a aphanitic qt3-spar matrix - contains 25-100% chl.	50	75.0	11	70° 2 cm qt3 (cp) to+60, 12 cm + 6 cm, qt3- carb x 2	75.0	95	۲.5	41648	115	5	20	47	2,4	15	z4	10
MASSIVE BROWN MICA ZONE	45	78.0		dissen pyr (cp) and dk brown sphal? in chl zonc:		٩٥	1-0	41649	20	5	20	54	2.8	15	52	20
(77.4 - 79.9 m) also interbedded witz lesser massive cht.	- ?	81.0	44	contact concordant	80.5	95	1.5	41650	185	10	28	164	4.8	10	92	42
BLACK BANDED PHYLLITE (79.9 - 100.0 m) very similar to 9.0-35.111 but	60- 70	64.0	*	J fault. dissem py, minar pyr, and cp - py often as larger subhedral	81.4	 95	2.0	41676	155	15	104	464	3.6	10	80	16
less gravite	60- 70	87.0	111111	dissem py, minor pyr. and cp as above plus sparse sphal.	84.4	98	2.0	41677	165	20	80	648	3.2	10	84	14
	60 - 70	90.0	MANAN	• dissens pyr - minor py - blebs of cp in larger pyr. seg. - fine sport along gluzari lan	87.5	85	2.0	41678	180	20	64	440	3.2	5	92	14
	60- 90	93.0		dissem pyr and py minor dissim splint race ey.	90.5 92.3	75	2.0	41679	195	15	160	544	3.6	ND	8z	14
	70- 80	96.0	0.00		93.6 95.4		1.0	41680	195	20	120	416	3,2	10	84	14
air. ble and green bands.		99.0	MUNUT	Clissem pyr - cp - pinkich pyr? in banas	98.1	70	2.0	41681	170	15	92	336	4.0	10	9z	28

ND = none detected

۵.

	- · ·			
- i i i i		RALTAR) M Crc	1
	\mathbf{T}	\land	N 1 1 1 1 2 - 5	LIMITED

 \bigcirc

Hole No. 893

Geology	Foln.	Depth	Str.		Blocks	•/• Rec.	•/• Py.	Sample No.	Cu <u>Peni</u>	Mo ppin	Рь <u>ирал</u>	Zn <u>pphi</u>	Rg DPm1	Au DDb	Ni PPm	Co
100.0m				durin pir-cp.	100.9	90										
GREY-GREEN PHYLLITE (100.0m - 120.9m)	60. 83	1020m		- \		75	٤.5	41682								
-predom. grey-green but includes pea green, dark green and dark grey beds - contains fine discent.	70- 80		- 1-1-1-1	S broken zone	103 3	70	<.\$	41683								
pyr. which incrie in dark grey beds - not strongly banded-indiv beds not strongly defined - contact arodictional with overlying black	60 • 1 D	105.0M	1.1.	} pea Breen wassie Zone (volennie?)	107.3	85	۷,5	4 1684								
phylliter. - some sections resemble green decitic volconics	0 - 4 5	108.0m	:-	proken zone mainly dk grey bands	108.2	50										
- this unit is guide soft (H3+) and readily figure in acid		(1).0		with gts-carb lamine	111.3	80	<.5	41685								
- in places contains round clasts up to Zom dia	Jo ?	114.0			114,3	80	2.5	41686								
	76?	117.0	11	} broken zoine	114.3	80	~ .5	41687								
	0- 90 Cren	120.0	Meren		120.3	85	< ·S	41688								
HIXED DARK GREY AND GREEN	0- 96	1230		} mainly pyr in massive } x-cutting venus with minor cp blebs		85	3.5	41689								
- PHYLLITE (120.9-152.5 m) - Greenish beds of phyllite similar to above interbeddod with banded	70	124.0	HUNDIN	dissem pyr and py minor cp	123.7	85	2.5	41690	95	10	16	90	3.6	ND	74	30
dark grey phyllite similar to the banded block phyllite unit intersected at 79.9-100.0m - the green bands or beds tend to	Cren	129.0	いいい	dissem pyr+ py	126.8	85	1.0	41691								
be massive - beds vary from 6 cm to 6.0m wide	45- 70	132.0	1111111		129.8	80	1.0	1 1692								

ND= none detected

C

GIBRALTAR MORES LIMITED

Hole No. <u>D3</u> Page No. <u>5</u> Of <u>6</u>

	1	1	T		,	· · · · · · · · · · · · · · · · · · ·		يشمد فيكم في		·		1 4 9 4				
Geology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• P _Y .	Sample No.	Cu jano	Mo PPM	Рь 792	Zn	Ag	Au ppb	N; PP m	Ce PP
	4 5	135.0	100111111	fine dissem pyr + py + mino cp	133.8	-75	ι.5	41693								
	0- 80	138.0		dissem pyr+py - minior cp. rarc sphal	1368	85	4.0	41694								
from 138.0m to 152.5m the dark grey beds >> grow beds:	80	141.0	111111111111111111111111111111111111111	discem pyr + py - mixor cp-rare sphal	139.9	85	3,5	41695								
	0 - 90	144.0	11111111111111111111111111111111111111	dissen firtpy	1+2.3		2.5	41696								
	60- 80	147.0	11111111	dissem pyr + pr	145.4	85	1.0	41697								
	10 - 3 o	150.0	112112012		148-4	90	- 1.0	41698								
<u>52.5 m</u>	80	153.0	111011111	fine dissem py + pyr	151.5		- 1.5	41699								
BLACK BANDED SILTITE (152.51 - 178.7 m) (milar to the black banded	60	156.0	11:22112211	Fina diseem py-pyr.	154.5	90	2.0	41700								
ontains more qt3 - generally ontains less dark bands and lef. less graphile	0 - 90 Creu	159.0	22221111	fine disseni py-pyr-cp tare sphal.	1576	80	3,0	46401								
finely dissem py occurs throughout with pyr and very minor cp - n general py >> pyr.	0 - 90 Cre.	162.0	111111111111111111111111111111111111111	fine dissem py-pyr-cp hare sphal.	160.6	, 85	3.0	46402								
	90 Cren	165.0	11/10/11/10/11	fine dissem py-pyr-cp rare sphal	163.7		2.0	46403	135	25	124	253	3.2	10	72	

فمنفلفته				

GIBRALTAR MOLES LIMITED

Hole No. DB3 Page No. Of 6

	i	1	<u> </u>									Page	IN 0.	6	0+	<u></u>
Geology	Foln.	Depth	Str.		Blocks		•/• P _Y .	Sample No.	Cu PPN1	M ٥ سجر	Рь Ppni	Z n 2011	Hg Lieft	Au Pob	NI PP#1	Co
	Cren	168.0	2211122	dissem py-pyr-cp rare sphal	166.7	90	2.5	46404	170	30	92	480	3.2	5	72	16
	cren to 90		111022	dissom py-pyr cp	169.8	98	3.D	46405								
	Cren to 90	בייונו	I Start	dissem py-pyr-minior cp	172.8	80	2.0	46406								
	Cren to	174-0	1172ANN	dissem Pl-Plr-minor CP	175.9	-80	3.0									
<u>178.7</u>	90	17.0	1111111	dissem Pir-cp		વર		46407								
GREENISH GREY PHYLLITE weakly laminated with dk and lighter green layers	<u>80</u>	180.0	1/32		178.9	90	- 1.5	46408								
in places appear clastic or breccinated with avoid frags up to I cm dia	80 Wk Creu	183.0			132.0	75		96409								
E-OH 184.4 m.					184.4											
ARS.																

1

GIBRALTAN MINES LTD. EXPLORATION DIMMOND DRILL LOG

Hole	No.	3	88	-D	4
	No				

HOLF QO-DA

LOCATION <u>Duck Option</u> DATE COLLARED <u>23 AMG-88</u> DATE COMPLETED <u>24 AUG-88</u>	- LE	NGTH	·	66.8 m (219')	ATITU EPART LEVAT	URE							4. Q. W .pt 5, G.D.T		<u>8 10 7</u>	
Geology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• Py.	Sample No.	Cu	Mo	РЪ	Zn	۳g	٩u		
<u>Casing To 15.2 m</u>		15.0m														
BLACK BANDED SILTITE (15.2 - 66.8 m) not like the siltite of D-3		18.0m	- 1- 1-1-	1.5 m gg and bx	<u>15.2</u> 16.7	40	a5									
- this lacks fine repetitive lamination - ind, bands gen. tange from 2 cm to 10 cm. - sulfides are also diff ie		21.0M	4	broken core + minor as Is.zm to	19,6	45	0.5									
- the re consists of fine and		24.0m	6 6 4	broken core + minor gq	<u>22</u> .9 23.5		0.3									
black laminae and beds interbed with light grey quarts-carb. Leminae and beds - some of	80- 96	27.0m	0 111010	dissem py as blebs and Cubes up to 2mm take cp.		60	1.0									
- the corb opprars <u>ankeritic</u> - the siltite is also interbedded with beds of black another is		<u>30.0m</u>	10/4 2-1-12	broken gougy core Poss Fourt	27.4	50	1.0?									
- material usually carry aboundant - by and fine grain greenish - gree phyllite 1-4 m. thick		<u>33.0m</u>	2 - 2 - 34	broken gougy core Zone 27.4 to	32.0	30	1.0?									
- this hole appears confined entirely to a fault zone which is either guite large or steep		36.0	1	34.9m strong graphitics py zone	34.4	50 50	3.0									
		59-0	n /0/2/2	graphite -py-gg 30ne gg-broken graph (def 20ne (fault		70	1.5 ?									

G	IBR	AL	TAR	MC	ES	LIMI	TED

C

Hole No. 204 Page No. 201 Z

			- <u>-</u>									rage	LINO.		0+	
Geology	Foln	Depti	_	Mineralization	Blocks	•/• Rec.	•/• P _Y .	Sample No.	Cu	Mo	Рь	Zn	Яg	Rυ		
	7		0 4 # } a	99-6x def.	408	30	1.5 ?									
		42.0	m ~ o		42.7	కం										
	?	450) ~) ~ <u> </u>	39-bx)	44.5	50	2.0?			na an Taonac Taonac						
	40- 50	48.0	11) proken annau		55	3.0									
	15	51.0		Sraphitic - PY 30ne			2.0									
	 აა		1		51.8	60	?									
		54.0	<u>}</u> -}-		539	40										
		57.0	• ~ ~ ~ ~	broken zougy grachite Fault	55.5	40	?									
			• ? • ~	broken gougy 53.4 to	588	35	7									
		60.0	•	graphite (65.5 m	600	45										
		63.0	2-1-7-	broken gougy graphitic	63.1	30	7									
a grey fine gra rx occurs at base of the fault from 65.5 to -this rx consists of sericite, ank., cark E.O:H 66.8 and m	the E.oH	660	2 . 2 . 1		65.5	10	3									
E.O.H 66.8 and m	ariposite				66.8	-60-										
DOB.																
		1				L										

 \bigcirc

GIBRALTAD MINES LTD. EXPLORATION DIAMOND DRILL LOG

Hole No. <u>107 5</u> Page No. <u>107 5</u> HOGE BB-05

LOCATION <u>TOUCH CLAIN GROU</u> DATE COLLARED <u>24 AUG 88</u> DATE COMPLETED <u>25 AUG 88</u>	_ Le	NGTH .	15	<u>3.92 m (505')</u>		URE_				DAT	E	E G	<u>NQ</u> B <u>EP</u> T		 <i>ги</i> 7 <i>Н</i>
, Geology	Foln.	Depth	ļ	Mineralization	Blocks	∘/• Rec.	•/• Py./ Pyrr	Sample No.	C u	Mo	РЬ	Zn	19	Ru	
CASINGTO 6.1m		6.0	0-0-0-0-0-												
Thur gouge Adroken cove to 7.3m to 33m Over and 6.1m to 57m maner interteding of fart	60° +0 -10°	9.0 m		gouge Bt3 -carburens ans CPY	6·1 7_3	60 75	0.1/							6	
eiliste <u>mit</u>	79	12.0	\mathbb{X}	gourge some brown colorationin core poschos bictite.	9:4 / <u>]</u> .3	85									
	- 	15.0	××× × ××	(graphitr) corb) (10:3)	73.7	80									
	- 15	18.0	$\mathbb{R}^{\times 1}$	gauge chl-seri		50									
	10 40	21.0	泛	gouge cht-serr gauge	78.3	70									
	r,0	24.0	× , × , ×		2011	56									
	70	27.0	× × × ×	brown Coleration Jouge	2.5.6	80 75									
	- 40	<u> 30.0</u>	X XX X	Brounish. black brothe?	27.1	80									

· · O			G	BRALTAR MC	25	<u>LIMi</u>	<u>[ed</u>		fisitiko dari doko dako	<u>kinkter starradered</u>	FRANCESSION	Hold Page	e No. e No.	8	<u>-D5</u> f_5	
Geology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• Py.	Sample No.	Cu	Mo	Рь 	Zn	Яg			
	₿°	33.0		\$3 -carb sien zon)	<u>30:5</u> 31:4	85 85										
Broken core and more lant burs science 44.5m		36.0		Brown coloration biddle? (79) gouge	3312 3517	90	0.1/0									
	exen.	39.0		ედიელ 00-392	37:5 38:7	75 70	(
	Greek.	42.0	× (199) ×	₩ rct gouge	40.5	65 90										
	6× ^{6×}	45.0	XXX XXX	(biolite?)	<u>43.0</u> 4 <u>4</u> .5	90										
	CNEY	28.0	× NAX	(FY)(P3xx)	<u>-7-7-5</u>	97	0.1/ /0.1									
Broken core and miner fault gouge 50.6 to 5% = m	CXON	51.0	×××	(car l)	50.6	90										
	70	54.0	XXXXXXX	(carL)	5313	70										
	70-80	57:0	××× ***	(Py) (ZnS) <i>9</i> 0uge	56.4	1.11	0.1/0									
Rx light weeneder -frequent earl-sty? 57m to 7/13m	-10	<0.0		ZNS (PY)((CPY)) ((ZNS)) ((PY))	57.6		0.05/									
	15	6310	* * *	(ру)(рукт)	60.7 62.2	96	01/01									

GIBRALTAR MOES LIMITED

Hole No. <u>205</u> Page No. <u>3</u>f <u>5</u>

	1	1	1		+	·			1.11			Lade			e t <u></u>	
Geology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• Py	Sample No.	Cu	Mo	Рь	Zn	٩g	Αυ		
	70-80	66.Cm			63.1	98										
	14.8 196	69.0		(трун)	66.1 68.3	78	0/0.05									
	70- 80	72.0		(pyrr)(zns).	71.3	99	0/0.1									
Green unit intersection units Hack backs-staph? some while	1 ⁶ , 1 ⁴ ,	7510	××××	(bsrrilzns)) green inclinatallie nimeral (7411	97	0/0.05									
Line - als-carb also. 12:5 m 10 87 m	65-75	78.0	××		76.2	96 97										
	65-15	3110	* ; * ;		78.3	97	0/									
	70-80	84.0			87.4	98										
	8c 9c	87.0	××		84.4	96										
	go. 90		i Xi	purr(Zns) (opu)) chatlexed gtz vien = 20cm	87.5	96	0/013									
BANDED GREEN PHYLLITE (88- 114.3m) a med. green rx consisting of aminoc and beds of pale area	<i>к</i> е ⁰	93.0	14	Pyrr ((Zas)) Black spects Biotic?	92:7	97	0/01									
a med. green rx consisting of amiroe and beds of pale grey carbonote (+9tz?) in a green Fine grn charitic matrix bounding tends to be indictinet with widey would be (meta. segreg.?)	-10-80			דידר (אב)	94.5	97	0/0.2									

										s,
		1	3			1.4	sm.	<u>,</u>		1
						P	sliti i	<u>م</u>	ά.	
ι,						٤.		2.	χ^2	1
	۰.	1	11	14		. 1	aline:	· .		
F	7.7		1.		 1.0	1			·	-

	<u> </u>		191						
1	GI	BR	AL-	ΓAF	ર	FS	11	Mi	TED
				1.1.1					I L D

Hole No. <u>- D5</u> Page No. <u>4</u> Of <u>5</u>

		1	1	and the second	·					<u> </u>		1 - 3-			<u> </u>	ر خسته
Geology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• Py.	Sample No.	C u	Mo	Ръ	Zn	Ag	Rυ		
a precion. re-or my-rich made	70 ^{- 8°}	99.Cm		(CUV) (Constraints)	97.5	99 99	0/0.05									
- the gen. appearance of the unit varies due to changing ecoportions of light grey and green material	80	102.0	××		<u>100 · 6</u>	98	0									
- gen, zort (H z-3K) - contains some plack lawride (graphitic?)	to 85	105.0		$\sum_{i=1}^{n}$	103.6	97	0.05									
	Bo Cren	108.0	1.22211	Chl-rich well banded section very similar to CC	1c 5· <u>8</u>	98	°									
	טר	111.0		meta.tuffs	<u>108.6</u>	98	v									
	76	114.0	114	3	111.9	76	O									
	70	117.0	M11	5	114.9	98	D									
	70	120.0			117,3	99	¢									
MASSINE GREY- GREEN UTT	70	123.0			120,4	99	o									
<u>(119.3 - 127.5 m)</u> faint banding - soft (H-3) - wk fizz in acid - resembles a volcome	70	126.0			123.4	99	ס									
τυff. 127.5 m	70	12.9.0	-	p 12 cm 60-70 Limestone with blk siliccous? griss up to 1 mm 80. is can at y em	126.8	98	0/:									

•				
	- 	No. of the second se	19	

GIBRALTAR MOES LIMITED

Hole No. 5-D5 Page No. 5 of 5

	1	1	1									raye	LINO.		
Geology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• P _Y .	Sample No.	C.,	Mo	Рь ——	Zn	Hg	Au	
<u>GREY GREEN PHYLLITE</u> <u>(127.5-137.8m)</u> Similar to above unit but with	70. 80	132,0m		60-90,8 cm liniestone with blk silverous blobs.	129.6	98	D								
Marked here in banding of clark and leght green material plas increase in carb. bands which	\$0				132.9	07	٥								
extend up to izem. in width	10- 80	135.0			135.9	97	0								
<u>GNEY GREEN BAYDEL</u> <u>PSYLLITE (137.8-1</u> 92.6m) Similar to above bot carb. and	10- 80	138.0	11.11		139.0	98	0/5								
qtz layers form up to soo/o.of rx. In places, the rx has a		14110				98	5								
BROWN BANDED SILTITE (148.6 - 153.92 m)	6 o	1-4.0	11/11/		142:3	99									
- a distinctly differenck type		147.0			145•4	97									
consisting mainly of pale brown silty material interbedded with pale grey (gty-cove) and dark grey (graphitic) material - has a			Nr.4.4.4.4.4.		1+7.8	98									
strange source tipe deform. textore (course crev. ?)		150.0	1 1 V		15013	L									
Some dark bands consist of carb, and blk siliccus yers		153.0			151.5	97									
EOH IPB.															
AK >															
	<u> </u>														1 × .

10			<u>E X</u>	GIBRALTAR PLORATION DI	PION	NES ID D	LTD.	LOG			88-1	>6	Hole Page	No	7	<u>D6</u> 66
		<u> </u>	<u></u>					· · · · · · · · · · · · · · · · · · ·				1.1	HOL	6 8	18-E	>6
LOCATION DUCK CLIMM GM.	120 BE	ARING														
DATE COLLARED <u>26 AUG 88</u> DATE COMPLETED <u>27 AUG 88</u>				(n + (n + 1))	LAIIII	JDE				COR	ESIZ	Ε	<u></u>	2		
	- LE	NGTH -	16	54.6 m (540).	DEPAR	TURE_				DAT	ε	7	SFP	T 19F	R	
DATE COMPLETED 27 AUG 88	_ DIF	o		-90°	FIEVA	TION										
										LOGO	GEDI	3Y (🕁 .)	- BAR	<u>KEK/G</u>	D.BYS	OUTH
	T				1	•/•	0/0					1:z				
Geology	Foln.	Depth	Str.	Mineralization	Blocks	Rec.		Sample No.	Cu	Mo	РЪ	Zn	Rg	Rυ		
CASING 70 3.05 m						1					<u> </u>		<u> </u>			1
]													1 .		
		3.0m			3.05											
QUESNEL RIVER			°0		3.03	-						1				Carlos and a second score
GNELSS (3.05 - 20.9 m)			0		5.2	98	4.5		ana ang sang sang sang sang sang sang sa							
0.0010		6.0m	5								an dan Ang ang					
consist grey coarse arn	-		90													
a pale grey coarse grn consisting of 20 e/o ovoid to rounded grains of quart. guart - feldspar and fedspar	-		ũ			99	<.5									
a port - foldering and Call	H		• 0		8.2		1.3									
in a suiviled fine and texaspon	4	9.0	┟╼┿╺╁┶		کی ہے۔ محصر سے دی اور	ļ	 						a sur a la			
in a swirled finer ground to seriate matrix of			00													†
feldsone wints and somate	-		0			97	4.5									
feldspor, gibrts and scricite The grains range from 5	-	12.0	5		11.3										1	
mm to 3 cm in dia. The spar is white			6													
Spare is white	-		U			98						. 1999 - A				
caticality - but such strong	1		0		14.3	1 -0	4.5				1					
courclassie - but such strong	-	15.0	0													
detormation doesn't extend			0						 		<u> </u>		+		<u> </u>	_
to the underlying sed. unit.			4			97	.5			$\{x_i\}_{i \in I}^{n} = B_i$						a di se
The Texture could be			0		17.4		-5									
clastic and the rx could	_	18.0					1							1.55		
- contact is poss. concordont			Ú,			95								1	1	1
- contact is poss. concordant	-		5		19.5		.5						1			
20.9 m	<u>_</u>	21.0	0			90				a starte						
INTERBEDDED BLACK	-		2		21.3	+	_		<u> </u>						<u> </u>	<u> </u>
PHYLLITE AND WHITE QUARTZ		21.0		broke (siltit	· · · · · · · · · · · · · · · · · · ·						tina (antina)			1	1	
FELDSFAK UNIT (20.9-48.Bm)				bed		80	4.5									
beds of well banded siltite	-	24.0		<u> </u>								1. S. 18 1.		1		
and phyllite interbedded with					24.4	-				Τ	1		1	+	1	+
a massive white rx consisting	H		1111111111111			85	2.5									
of quartz, while feldspar and servicite, This rock is fine	-				26.5											
	1 () () () () () () () () () (1.2740	1								1.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.1	• • • • • • • • • • • • • • • • • • •	 10

GIBRALTAR MINES LTD. EXPLORATION DIATIOND DRILL LOG

Hole No. <u>2-D6</u> Page No. <u>2076</u>

Geology	Foln.	Depth	Str	Mineralization		•/•	•/• Py.		Cu	Mo	Рь		. 496 		<u> </u>	
		matere			Blocks meters	Kec.	Py.	Sample No.			Г р	2 n	Rg 	A u		
grained but also contains zones of coarse texture which			+ () + ·	((CPY))		90										
resemble the overlying gross. Contacts are conformedule	1		+ ⁺		28.7		<.5									
Contacts are conformeable		30.0				95										- 14 14
deformation effects - delicate			1		30.2											
banding in siltie is meserved.			+			97	•6									uter Mu Literation
These rocks may be an arkosic		33.0	+		32.6								•			
sed. or even an acidic toff			+ 11+													
			Ŧ			99	•6									
		36.0			35.7							l				
			+													
에 이 것은 것을 알고 있다. 이 가지 않는 것은 가지 않는 것을 알고 있는 것을 알고 있다. 이 가지 않는 것을 이 가지 않는 것을 알고 있다. 이 가지 않는 것을 같이 않다. 이 가지 않는 것을 알고 있다. 이 가지 않는 것을 않는 것을 알고 있다. 이 가지 않는 것을 않는 것을 알고 있다. 이 가지 않는 것을 않는 것 않는 것을 않는 것 않는 것			*		38.7	98	1.0									
]	39.0		(Tyrr) (ZNS)) ((Cpy))			<u> </u>					[<u> </u>
	4					98	0.8						na Alistana Alistana			
	4	42.0	~		41.8		0.0									
	1	1	-													
	-		•			97	1.2									
	•	45.0	1.		44.8											
		1	•					<u></u>		•••••	 					
			• •		46.9	96	1.5									
	-	48.0			47.8	80										
48.8			Ľ													
BLACK BANDED PHYLLITE					49.7	85	1.5									
<u>(48.8-164.6 m)</u> <u>a black to dark grey</u>	-	5110	•			60										
arrighter we characterized by			To a		51.8											
fine laninations of palegrey			4			80	1.0									
Fine laninations of pale grey	-	54.0	Ł		53.9											
														1		
graphitic material - contains					56.4	70	1.1									
graphitic material contains fine grained py along folm. planes and coarser evhedral scattered py up to 4 mm dia		57.0					1	<u> </u>	<u> </u>							$ u = \frac{1}{2}$
scattered py up to 4mm dia	1			loca wide at zinnen (((chi))		96										
	-			(((Crv)))	59.4	1	1.3									
	1	60.0		l			1					1				1 · · ·

GIBRALTAR MINES LTD. EXPLORATION DIAMOND DRILL LOG

Hole No. <u>3 of 6</u> Page No. <u>3 of 6</u>

Ġcology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• Py.	Sample No.	C٦	Mo	Ръ	Zn	Ag	Au		
]															
]					95	1.0									
		63.0			62.5		1.0									
			××					-								
			v X	X = Badly broken cove		40	1.0									
	-	66.0	*	JUICKENCOVE	65.5											
						50	1.5									
	•	69.0	×		68.9						•					
			X y X			65										<u> </u>
					70:4		1.5									
		72.0				90						a Silandi Silan				
	1		XX		73.5											
			5				110									
		75.0	××	(CPU)//ZmS)/(Bor?))		90										
			7	(Cor:)	75.3	0-										
		78.0			77.1	85	2.0									
		79.0							<u> </u>	 		1				
	-					95	1.5									
	-	81.0			80.2											
rease in ana duite 89.4m to	-	101.0	1		+	<u> </u>										<u> </u>
rease in graphite 89.4m to re is bailly traten and gougy						97	1.5									
		84.0			83·Z	95			ay a di							
- 21 2 1 2 2 1일 전 19 2 1일 전 19 2 1일 전 19 2 1일 전 1 2 1일 전 19 2 1일	-		t.		84.7					<u> </u>			<u> </u>			+
]		77				1.5									
	-	87.0				98										
	-		×.	((cpu))	87.5										<u> </u>	+
	_					90	1.0									
		90.0	5		89.9		<u> </u>									
	-		7										[1	1	1
	_		7		92.4	80	1.2	and the second sec								
		93.0	~		Le'T	1					1			1		1

GIBRALTAR MINES LTD. EXPLORATION DIAMOND DRILL LOG

Hole No. 9-D6Page No. 4 of 6

Geology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• Py.	Sample No.	C	Mo	Рь ——	Z n	Rg 	A u	
		96.0	× × IX	((CP9)))	96.4-	85	15					*			
			XX		97·2	80									
		99.0	+*		98.5	75	1.0								
		102.0	X		101.2	90	09								
		105.0	X		104.2	97	1:2								
		108.0	200 I.	Light arey silty-sondy ted (anomalous)		90	1.5								
			7		108.8	•								1	
		111.0	N. Y.		110.	90	1.5								
		114.0	W.		113.7	, 65	1.3								
		117.0			116.	20 1 10	1.6								
		120.	X××X	((CPJ)) (118.		1.5								
		100	¥		121.					-					
		123,		 A second sec second second sec		96	1.2				29 4				
				<	124	65	- 1+2								

GIBRALTAR DINES LTD.

Hole No. 9-D6Page No. $9_{of 6}$

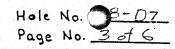
Geology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• Py.	Sample No.	Cu	Mo	Рь	Zn	Ag	Rυ		
	-	melers			126.5											
Increase in quartz																
						95	1.5									
126.7m to 130.5		129.0		<u> </u>	129.5				<u> </u>							
50 to 60 % gtz	_			(CPY)												1999 1997 - 1997 1997 - 1997
						90	1.0									
		132.0		na na serie da la companya da serie da Na serie da serie da												
					132.6											
						85	1.2									
		135.0			135.0	ļ										ļ
			-										•			
			13			95	1.5						a da angar			
		138.0	N.													
			7		138.1						a je se j					
			9%		n in statu Geografia	80	1.0									
141.4 m to 143.5		141.0														
141.4 m to 143.5 20 to 30% gtz			7		141.4											
			X			96	1.0									
		144.0	- 1 C			L		L								
			17		144.1	3	_					T				
			Y.				1.0									
		147.0				97										
149.7 40 150.5			XX		147.8				1					1		
148.2 to 150.5 60 to 70% qtz.			X				1.5									
		150.0	1			90										
In graphite					150.	3									1	
150.5 to 152.1m			E			80	1.5									
		153.0			152.	4 -	-			- 10 - 11 - 11						10
		1 1				-	-								1	
						90	0.5									
The second second second second second		156.	1 to		155.	4	4									
Increase in graphite 156 to EOH		1301				1				-		+-	-		1	+-
			- K		157.	6 75	- 0.5									
			- 12			85										
		159.	01×	1								<u> </u>	<u> </u>			.

GIBRALTA MINES LTD. EXPLORATION DIAMOND DRILL LOG

Hole No. <u>B-D6</u> Page No. <u>6 of 6</u>

Gcology	Foln.	Depth	Str.	Mineralization	Blacks	•/• Rec	•/• P	Sample No.	Cu	Mo	Ръ	Zn	Rg	Au	- 1	
the second se	1		1				• 1•	Jampie no.								
159.6 to 160.3 40 to 50 % gtz		162.0	SHA	gcage	160.6											
						50	1.0									
		162.0			162.5	50		ļ								
163.5 to 164.3 70 to 80 % qtz			N			70	0.5									
					164.3	90										
EOH	•	<u> </u>			164.6				-							
					1.00		an la c									
ton.	•						an an taon Taona amin' amin									
	•										1					
	1															
	4															
]															
		• + • • • • • • • • • • • • • • • • • •						-						ļ		ļ
						12										
	-						1		- -							
	-		+				+	• + • • • • • • • • • •	-	• • • • • • • • • • •	+					
	-								al al constantes de la constante							
	-				-	+			-				+	-		1
						1										
																1
	-					·				_						
	-											Sec.				
	_	+	+-						$\left \right $							
	1							an an an Carl Start an Air								
	-	1.														
<u> </u>		<u> </u>				1	1				1	1	1	<u> </u>	1	<u> </u>

			<u>E7</u>	GIBRALTAR		D D	LTD. RILL	<u>- LOG</u>			88-1		Page	No.	9 <u>-1</u> of B-D	6
LOCATION <u>DUCK SLAIM GROUP</u> DATE COLLARED <u>27 AUG 88</u> DATE COMPLETED <u>28 AUG 88</u>	_ LEI	NGTH .	15	54.5m (507')	DEPART	IURE_				DAT	E9	E	NQ T 19	55		
Geology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• Py.	Sample No.	Cu	Mo	РЪ	Zn	Ag	คม		
CASING TO 3.05		3.0 m	0.0.0.0		3.05											
20PK BANDED SHITTE (PHYLINE) 3m to 6m		6.0	X.	Py	4.6	75	< 15									
LIGHT GREY-GREEN UNT		9.0	× × × × × × × ×	(PY+r)(ZnS)) Jean e	8.2	70	2.5									
		12.0		P)(tyxy) gowge	<u>10.1</u> 11.3	60 80	4.5									
		15.0	X X X X	Pyry ((CH)))	14:3	95	1.5									
	-	18.0	XX	асч 62 В Х1 Х асч 62	16:2	96 90	.0									
	•	21.0	× × × ×	9:03: den ge tyrr	18.3 20.4	90	1.5									
		24.0	1 and 1	PS. r Source	23.2	80	1.0									
LIGHTGKITENILI, T- Milor-blad and white the dings 26m to 60-9	ž	07.0		Pyrr	2513	90 95	05									


GIBRALTAR TINES LTD. EXPLORATION DIATIOND DRILL LOG

Hole No. 207 Page No. 2016

Geology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• Py.	Sample No.	Cu	Mo	Рь	Z n	Rg 	А		
A med given ix consisting of			××	PYER ((FS))	27.7	95	1.0									
Lammae and bels of polegray.		30.0	××		29.0	75	1.0									
en chlaite mitix.		30.0	44	FYrr (P))	32.0	97	1.0				\$					
		33.0	X											•		
				Рутт ((РУ)) (сту)))	35.7	97	1.5									
	•	36.0														
Brown Adnt wesere		39.0		a z carb zommuite		78	2.5									
	4				40. 2	97	2.5									
		42.0				71										
			×	<	43.3		0.5									
	_	45.0				96					, 					4
<u> </u>	_				46:6	-	2.5		n an							
	-	48.0	Y	×		-98										
	-		×	 A state of the sta	50.	2	4.5									
		51.0		× PUTH PAL		95										
		54.0			53	3	0.5									
	-														_	
		57.				96	2.5	5								
			-		57.	9	2.1	5								
	_	60.				98										

GIBRALTAP MINES LTD. EXPLORATION DIAMOND DRILL LOG

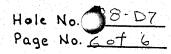

 \bigcirc

Geology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• Py.	Sample No.	<u>_</u>	Mo	Рь	Zn	Ag	Αu	
DARK PRUTER PHYLLITH 60-4 - C. H. Black to Jack grey supplifie ox with fine Lange a tick of out		6310	XXXXXXX	No extracrdinary subdide minimulation was obe or ved in the Back Banded Elighte		97									
arey at 2-in the Innite Know		66.0	4 4 1 1 4 4 4 4 1 1 4 4	Pyrite and miner amounts of Pyriwcre observed in quantities varying from about 390		95									
endering den sind the general second se		69.0	×××	to 10% within the tx unit.	6611	96									
		72.0	× \ \ \ \ \ \ \ \ \ \ \ \			96									
		75.0	* *		72,2	97									
		78.0	XT X S		75.3	96									
		81.0	¥×		78.9	97			•						
		84.0	1 1 1 1		81.4	96									
		87.0	***		84.4	95									
	-	90,0	× × ×	a ⁺ 2 10 cm	87.2 89.6	96									
	-	93.0	×		91.4	70 95									

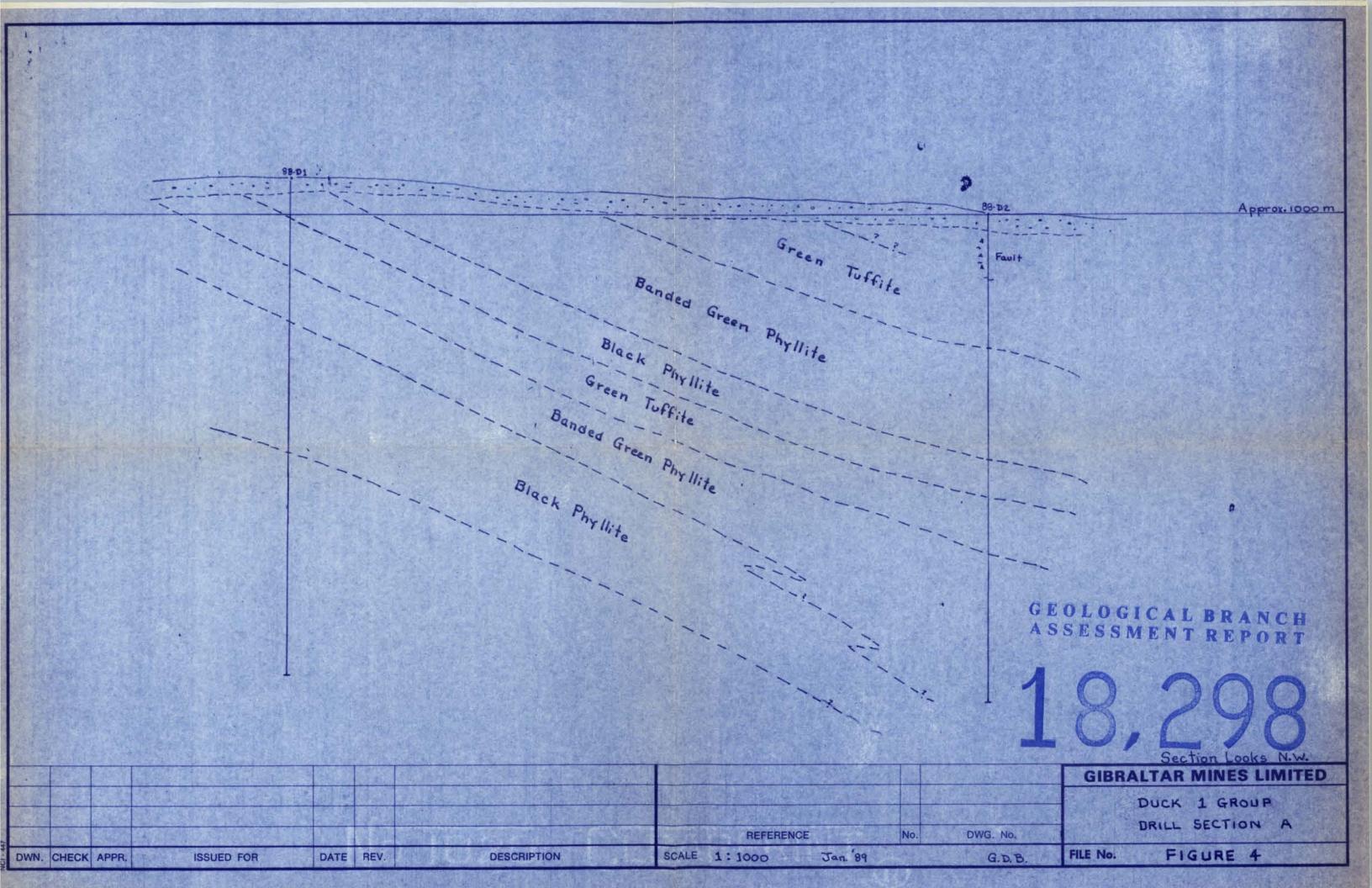
GIBRALTARMINES LTD. EXPLORATION DIATIOND DRILL LOG

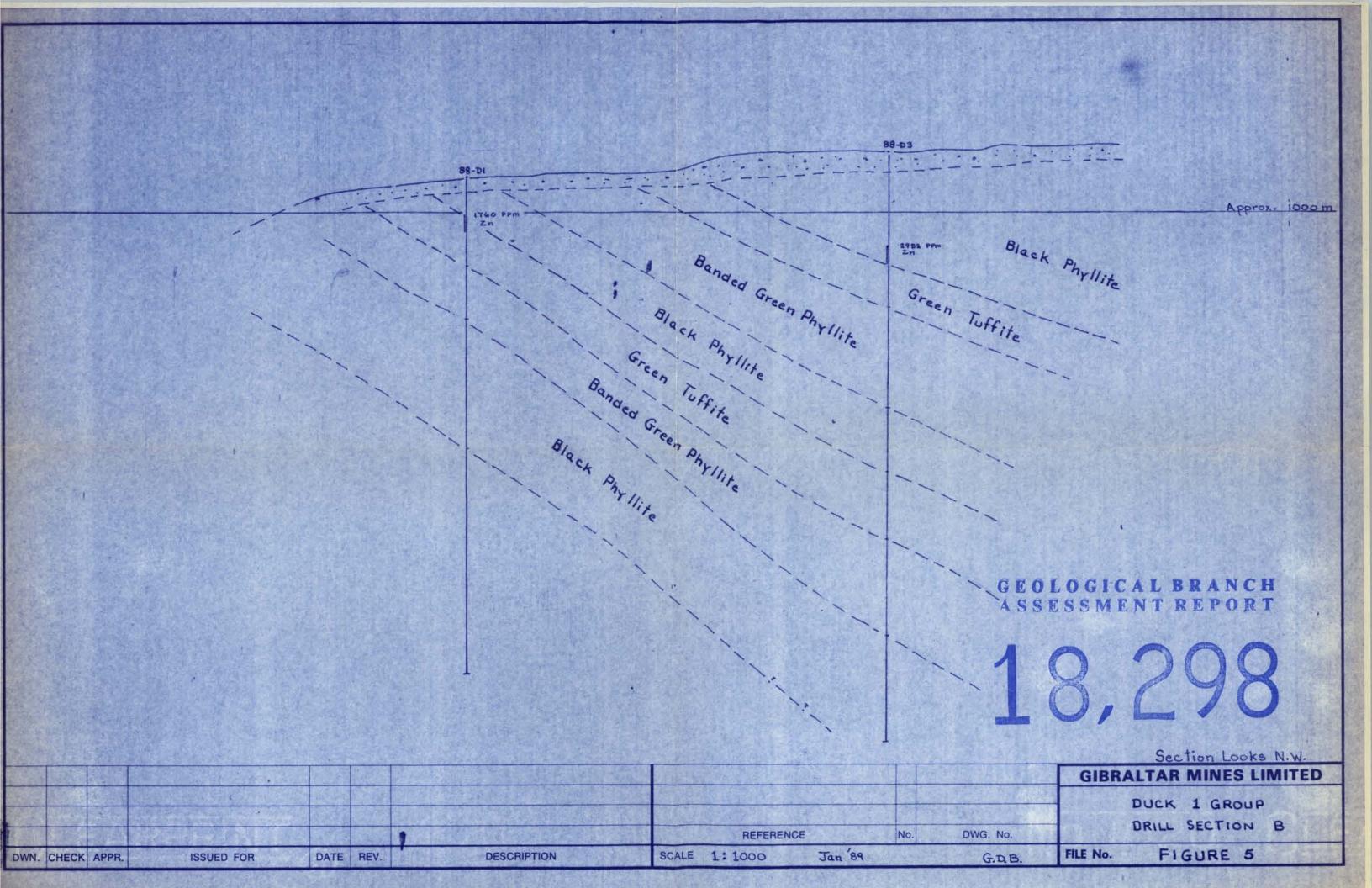
<u> </u>	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	•/• P _Y .	Sample No.	C.,	Mo	Рь	Zn	A9	Au	
Zrown Zone 93. Emto 97.0m					93.6	96									
	•	96.0	100		96.6										
		99.0				98									
Grey Green gene 990 to white					99.7										
		102.0			102.7	99									
		105.0				97									
			and a c	री 3 के बाह क स्वी 3 के बाह के बाह स्वी 3 के बाह के बाह स्वी 3 के बाह के बाह के बाह के बाह के बाह के बाह के बाह के बाह के बाह के बाह क के बाह के बाह के बाह के ब	105.8										
		108.0			108.8	80									
	- 1	111.0	**			96									
	-				111.9		-				+				
	-	114.0	*** ***		114.9	90									
	-	117.0	1 × ×	utz.carb	117.0	80									
			XX XX		118.6	90									
	-	120.0													
		123.0	1.4 **		172.2	97									
						95									
	-	126.0	,		1250	3	-								

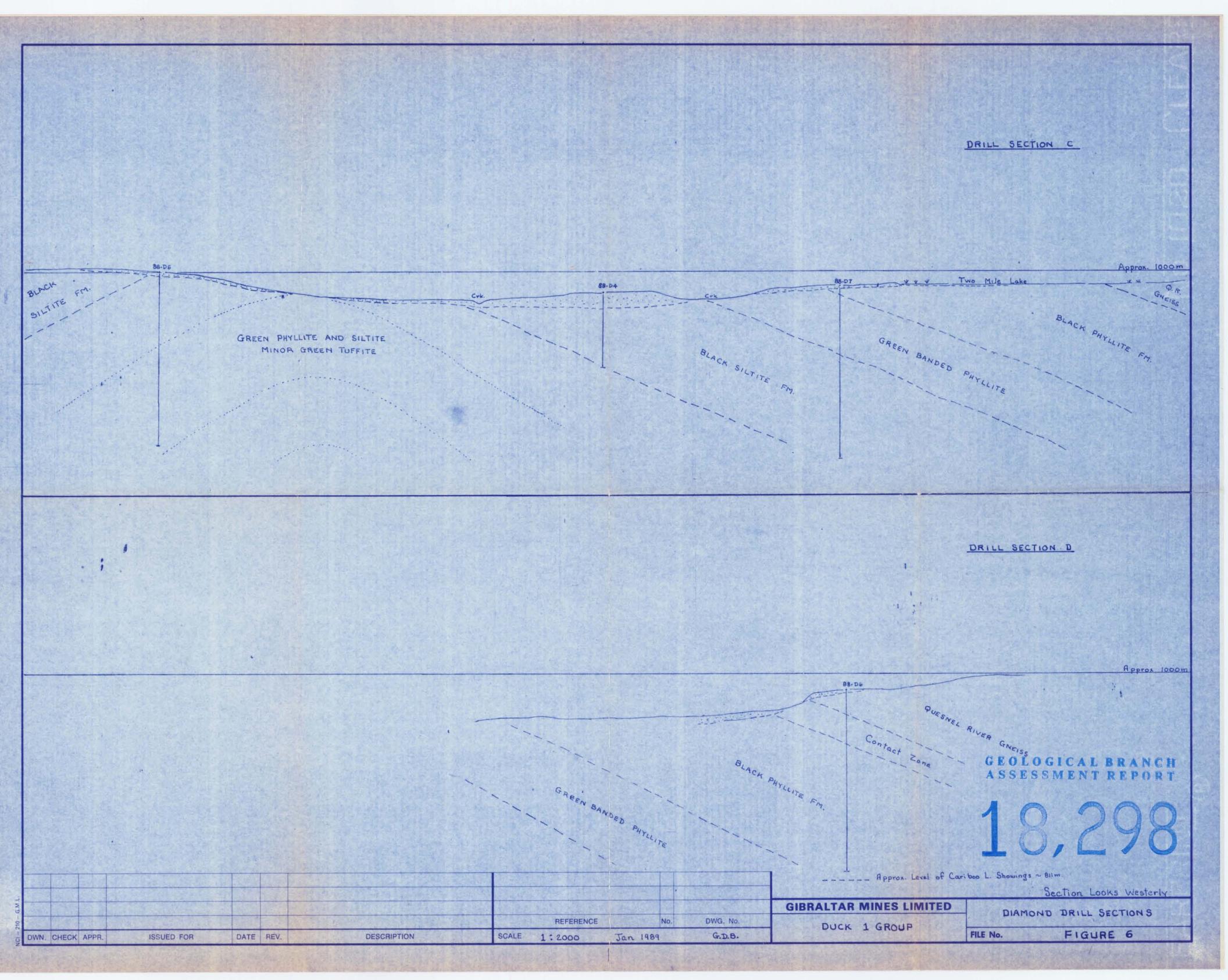
GIBRALTAR MINES LTD. EXPLORATION DIAMOND DRILL LOG

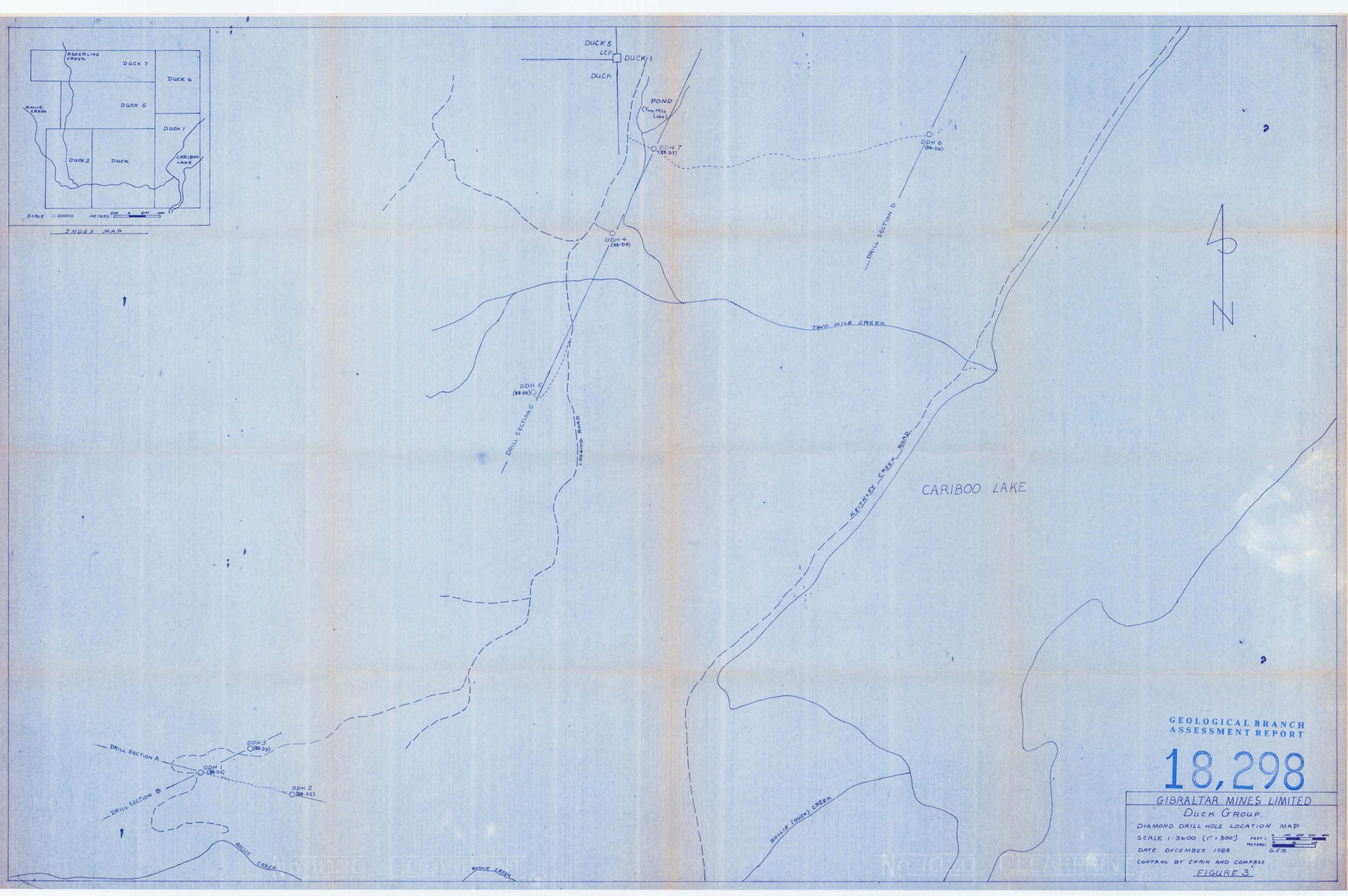

 \bigcirc

Hole	No. 8-07	
Page	No. 5 of 6	


	LENGTH DIP				ELEVATION													
Geology	Foln.	Depth	Str.	Mineralization	Blocks	•/• Rec.	°/• Py.	Sample No.	Cu	Mo	Рь	Zn	19 g	Ru				
		129.0			128.3	95												
		132.0			131.4	97												
		135.0	* ***		134.4	98												
		138.0	* * *		137.5	65												
		141.0	**	pepsied	/39•3	60 20												
		144.0	777 × ×		142:3	85												
		147.0	××		144.2	30												
		150.			149.	90												
		153	t x		152.	97												


. . 6


GIBRALTAR MINES LTD. EXPLORATION DIMMOND DRILL LOG



LOCATION DATE COLLARED DATE COMPLETED	LENGTH E			ELEVATION					-					
Geology	Foln. Depth Str.	Mineralization	Blocks	o/o Rec.	•/• Py.	Sample No.	Cu	Mo	Рb	Zn	Ħg	Р .,		
	- ××		/54.53	96										
EoH														

