0127	F0,
	· · · · · · · · · · · · · · · · · · ·

OPERATOR: RAT RESOURCES LTD.

DHNER: SMD MINING COMPANY LTD.

TA HOOLA PROPERTY

ASSESSMENT REPORT

Kamloops Mining Division

British Columbia

N.T.S. 92P/9W

Latitude 51°33'58"N

Longitude 120°22°46"W

FILMED

by

Rebagliati Geological Consulting Ltd.

GEOLOGICAL BRANCH ASSESSMENT REPORT

18,30

C. M. Rebagliati, P. Eng.

January 31, 1989

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1,
LOCATION AND ACCESS	2 ,
CLAIMS	2
EXPLORATION HISTORY	3,
REGIONAL GEOLOGICAL SETTING	5
PROPERTY GEOLOGY	6 .
DIAMOND DRILLING	8
CONCLUSIONS	10
RECOMMENDATIONS	10
STATEMENT OF COSTS	11 /
REFERENCES	12
CERTIFICATE OF BUALTETCATIONS	13

LIST OF FIGURES

Following Page

Figure 1	LOCATION MAP	2 /
Figure 2	CLAIM MAP	3 ,
Figure 3	REGIONAL GEOLOGY	5,
Figure 4	BLOCK FAULTING	6.
Figure 5	COMPILATION: GEOLOGY, GEOCHEMISTRY, GEOPHYSICS	6 .
Figure 6	DRILL HOLE PLAN	8.
Figure 7	SECTION: DDH's 88-4, 88-5 and 88-6	8
Figure 8	SECTION: DDH 88-7	10

APPENDICES

APPENDIX	1	DIAMOND	DRILL	LOGS
----------	---	---------	-------	------

APPENDIX II CERTIFICATES OF ANALYSES ...

SUMMARY

In July 1980, Rat Resources Ltd. undertook a four hole, 456.95 metre, NQ diamond drilling program on their Ta Hoola property. Two gold-multi-element soil geochemical anomalies were tested.

In Anomaly A, on the Ta Hoola 9 claim, Hole 88-7 intersected an iron carbonate altered interval containing a pyritic quartz-carbonate-veinlet. A 3.10 m interval from 11.10 m to 14.20 m ran 4293 ppb gold (0.125 oz/ton).

At Anomaly B, on the Ta Hoola 12 claim, 3 holes cross-sectioned an area of coincident IP and soil anomalies. Hole 88-4 intersected a 4.61 m thick carbonate-quartz vein from which a 1.4 m interval, from 75.6 m to 77.0 m, ran 620 ppb gold (0.018 oz/t) and 0.18% zinc. Hole 88-5 intersected a 0.94 m thick quartz-carbonate vein from 84.86 m to 85.80 m grading 1070 ppb gold (0.03 oz/ton, 39.8 ppm silver (1.16 oz/ton), 0.20% zinc and 0.16% lead.

The diamond drill program has demonstrated that structurally controlled gold-silver mineralization is present in veins and stockwork zones on the claims.

Additional exploration is warranted to evaluate the mineralized structures and to assess other unexplored anomalies.

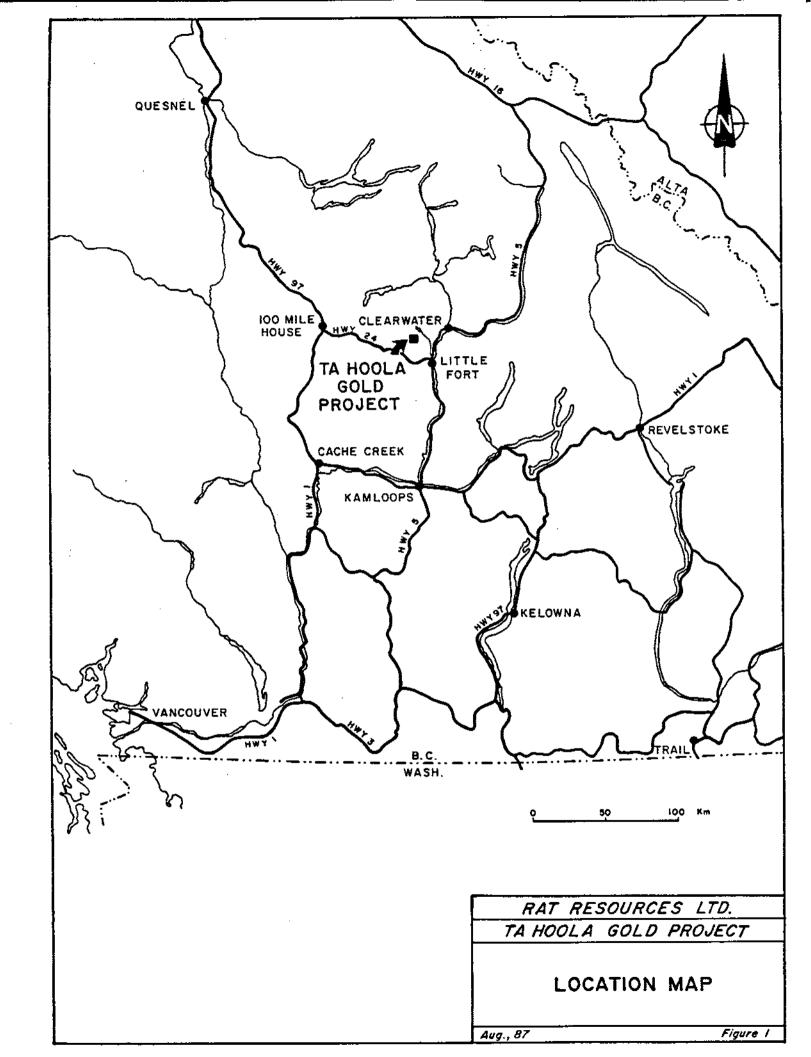
INTRODUCTION

This report is based on the writer's knowledge of the area gained by the study of available government and private reports; regional studies; the supervision of exploration on the Ta Hoola property during the period 1981-1982; in-house corporate technical reviews of the 1984-1985 exploration programs; an

examination on July 13, 1986; the supervision of work undertaken in 1987 and 1988 on the claims adjoining the east side of the Ta Hoola 9 & 12 claims; the supervision of the 1987 diamond drilling program; the geochemical surveys undertaken in 1988; and the direct supervision of the diamond drilling program undertaken during June and July, 1988.

LOCATION AND ACCESS

The Ta Hoola claim block is located approximately 25 km northwest of Little Fort, British Columbia on NTS Map Sheet 92P/9 at latitude 51°33'58"N and longitude 120°22'46"W (Figure 1).


A network of good quality logging roads provides easy access to the southern half of the property from Highway 24, which links the Yellowhead South Highway (No. 5) along the North Thompson River at Little Fort to the Cariboo Highway (No. 97) at 100 Mile House. Rough range roads provide good 4-wheel-drive access to the northern claims.

The property lies within the Thompson Plateau, a part of the Interior Plateau characterized by rolling uplands with rounded hills and numerous small lakes. Topography within the claim is moderate and elevations range from approximately 1300 m to 1600 m (a.s.l.).

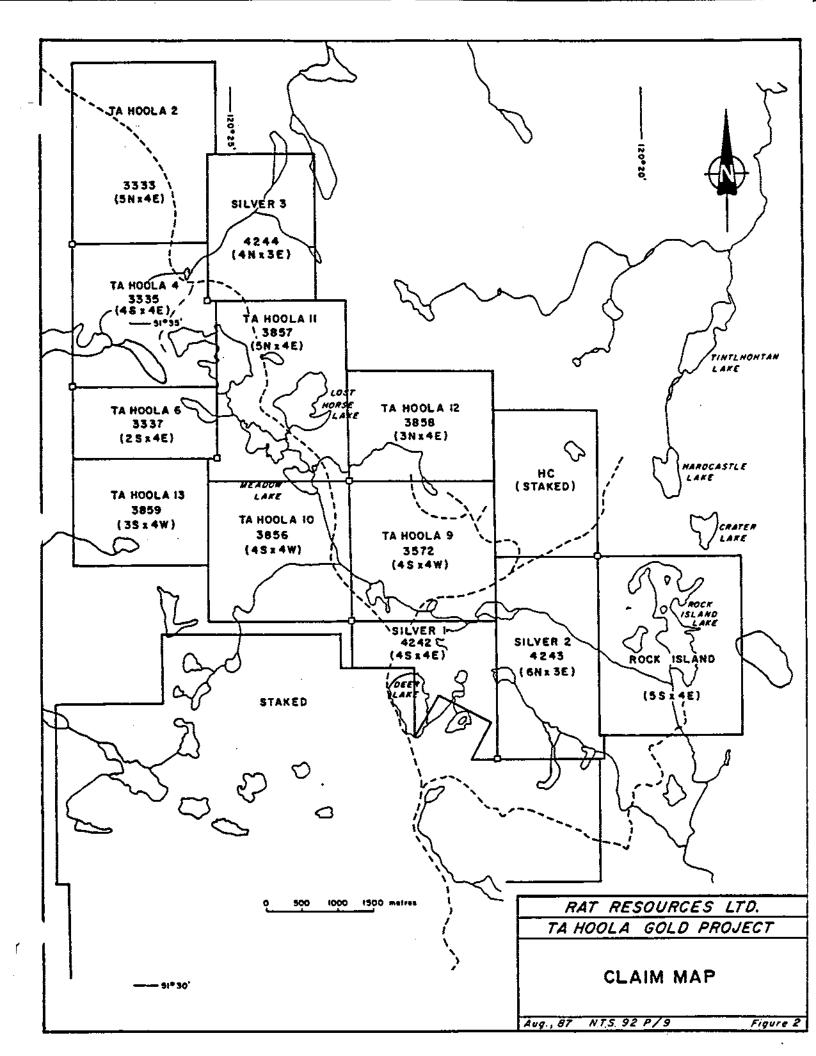
Vegetation consists of a mature spruce, fir and jack pine forest. Underbrush is moderately thick near moist valley bottoms and thins at higher elevations. Portions of the Silver 1, 2 and Ta Hoola 9 & 10 claims have been logged.

CLAIMS

The 166-unit Ta Hoola-Silver claim block is owned by SMD Mining Co. Ltd. Rat Resources Ltd. hold an option to earn a 50%

interest in the claims. The 20-unit Rock Island claim is jointly owned by SMD and Rat Resources (Figure 2).

Essential claim data are as follows:


Claim <u>Name</u>	Record No.	No. of <u>Units</u>	Mining <u>Division</u>	Recording <u>Date</u>	Expiry Date
Ta Hoola 2	3333	50	Kamloops	Mar.17/81	Mar.17/92
Ta Hoola 4	3335	16	u	Mar.17/81	Mar.17/94
Ta Hoola 6	3337	8	21	Mar.17/81	Mar.17/92
Ta Hoola 9	3572	16	11	Jun.11/81	Jun.11/92
Ta Hoola 10	3856	16	t#	Oct.16/81	Oct.16/89
Ta Hoola 11	3857	50	es	Oct.16/81	Oct.16/89
Ta Hoola 12	3858	12	es	Oct.16/81	Oct.16/89
Ta Hoola 13	3859	12	59	Oct.16/81	Oct.16/91
Silver 1	4242	16	94	Nov.17/81	Nov.17/93
Silver 2	4243	18	16	Nov.17/81	Nov.17/92
Silver 3	4244	12	65	Nov.17/81	Nov.17/94
Rock Island	7237	20	64	Aug.20/87	Aug.20/91
		186 นก:	i t s	_	-

EXPLORATION HISTORY

The Deer Lake-Friendly Lake district has a long exploration history. In 1930, the Lake View gold skarn deposit was discovered at the south end of Deer Lake.

A second prospect discovered in the 1930's is reported by Hirst (1966) to be located near Silver Lake. Hirst describes it as a zinc-lead-silver prospect occurring in a zone of sheared argillite. This prospect has not been relocated by the writer.

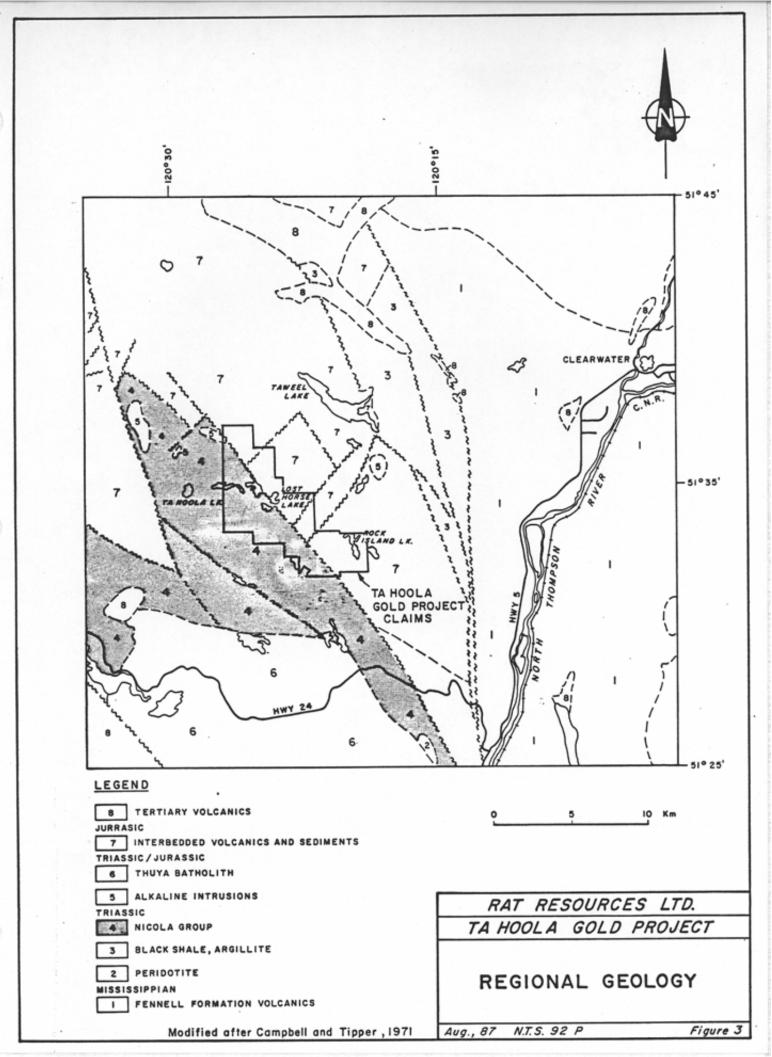
Since the mid-1960's, various parts of the Ta Hoola property have been explored by Anaconda American Brass Ltd. (1965 - 1968), United Copper Corporation (1966-1968), Imperial Oil Ltd. (1972-1973), Prism Resources (1972), Barrier Reef Resources (1972-1973), Cities Service Mineral Corp. (1973-1975), Meridian Resources (1977), Commonwealth Mining (1979-1982), SMD Mining Co.

Ltd. (1981-1982), Lornex Mining Corporation Ltd. (1983), and Selco Division - BP Resources Canada Ltd. (1984-1986).

In the period 1965 to 1981, the exploration was directed towards porphyry copper and molybdenum deposits and comprised of repeated soil geochemical and IP surveys. In the 1960's, Anaconda drilled several holes, on ground now covered by the Ta Hoola 4 claim, to test Cu-Mo. Low grade copper-molybdenum mineralization was encountered in potassium metasomatized volcanic rock.

Imperial Oil drilled several widely-spaced percussion drill holes to test a broad area of high IP response on the Ta Hoola 2 and 4 claims. Trenches excavated by SMD Mining Co. Ltd. at the east end of Friendly Lake exposed a pyritic carbonate alteration zone which ran 370 ppb gold across 11 m, and was also anomalous in copper, molybdenum and arsenic. In 1982, SMD Mining withdrew from exploration in British Columbia, and the property was farmed out to Lornex.

In 1983, Lornex drilled several short vertical percussion holes on geochemical-IP targets. No ore grade intersections were obtained.

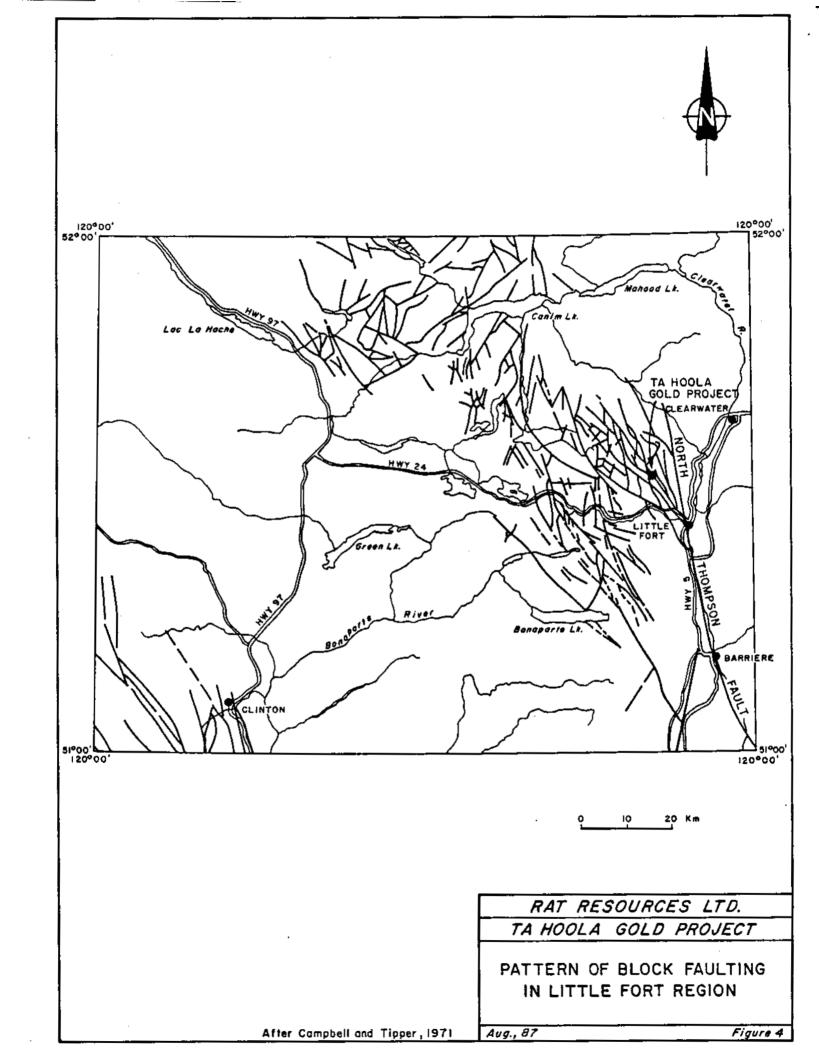

In 1984, Selco/BP optioned the claims and undertook more geological, soil geochemical and IP surveys; identifying several new anomalies. In 1985, several of the anomalies were trenched. Thick overburden (greater than 4 m) and flooding prevented the anomalies from being adequately assessed. A program of diamond drilling was proposed to assess the overburden-covered IP and soil anomalies, however, the property became inactive in late 1985 when the Company's western Canadian exploration budget was sharply reduced.

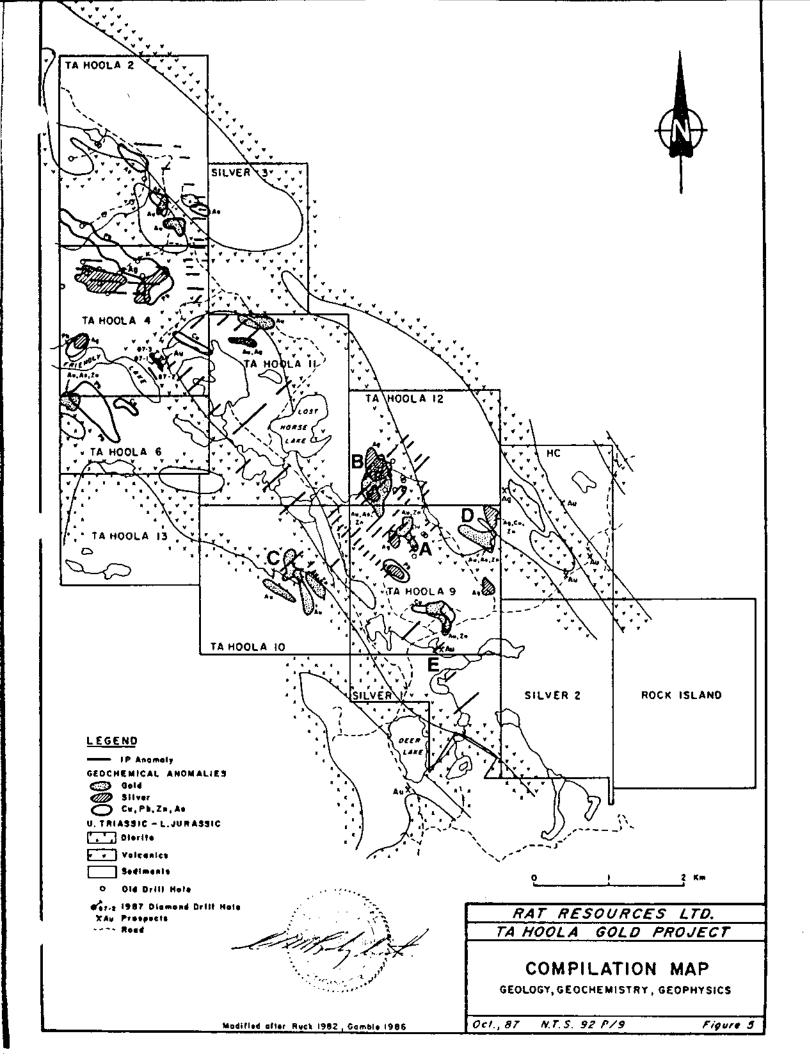
In August of 1987, Rat Resources Ltd. optioned the Ta Hoola property from SMD Mining Co. Ltd. and, in September, sank three diamond drill holes comprising 310 m to test the auriferous carbonate alteration zone situated east of Friendly Lake. In 1988, Rat Resources Ltd. extended the previous soil geochemical grids and sank four NQ diamond drill holes comprising 457 metres to test geophysical-geochemical anomalies situated on claims Ta Hoola 9 and Ta Hoola 12.

REGIONAL GEOLOGICAL SETTING

The Ta Hoola property is situated within the Quesnel Trough, a 2000 km long northwesterly-trending belt consisting of Upper Triassic - Lower Jurassic volcanic rocks, derived sedimentary rocks and intrusives. The belt is characterized by a volcanic core of Triassic subaqueous andesite pyroxene porphyritic flows, tuffs and breccias. Interbedded with the volcanics are calcareous argillite, siltstone, silicious cherty sediments and limestone. On the eastern and western margins of the volcanic core is an overlying and flanking sequence of Lower Jurassic pyroxene porphyritic volcaniclastic breccias with proximal to distal epiclastic sediments consisting of conglomerate, greywacke and argillite (Figure 3). To the extreme east are fine clastic sediments, consisting of a siltstone, shale and argillite assemblage, which appear to form the base of the Triassic sequence.

Regional mapping indicates that the property area is underlain by Nicola Group alkaline volcanic and sedimentary rocks intruded by numerous comagnatic diorite to syenite stocks (Preto 1970, Campbell and Tipper, 1971).


The Ta Hoola claim block lies within an area of intense block faulting, formed where the North Thompson Fault bifurcates into a multitude of northwesterly trending splays (Figure 4).


At Little Fort, where the North Thompson Fault breaks into the splays, there are two ultramafic bodies aligned along the fault. These ultramafic bodies are evidence that the fault represents a zone of deep crustal weakness, a favourable host structure for gold mineralization.

PROPERTY GEOLOGY

The Ta Hoola property overlies the central Upper Triassic volcanic core of the Nicola Group, which is flanked on the east by a sequence of interbedded Lower to Mid-Jurassic pyroxene porphyritic pyroclastics and distal epiclastic sediments (Figure 3). To the west, a large diorite pluton and a series of smaller satellitic plugs intrude the volcanic assemblage. Block faulting has disrupted the stratigraphy, which has been rotated into a near-vertical attitude.

Three main bands of pyroxene lapilli tuff-agglomerate trend northwesterly across the claims (Figure 5). These rocks are medium to dark green, massive and medium to coarse-grained pyroclastics. Fragment sizes vary from 1 cm to 20 cm and are comprised of subangular to subrounded porphyritic augite andesite. Clasts are supported by a matrix of fine-grained ash tuff. Subordinate units of andesite flows and feldspar crystal tuffs are interbedded with the pyroxene porphyritic units. Pyrite occurs in minor concentrations as widely-spaced disseminated grains.

The epiclastic sediments interbedded with and flanking the volcanic units comprise siltstone, argillite, chert, greywacke and conglomerate. Siltstone predominates. Pyrite is sparse, occurring as disseminated grains, but reached .5% to 10% in light grey bands as heavy disseminations with interstitial carbonate. Subordinate very-fine-grained, massive, black, carbonaceous argillite is occasionally interbedded with the siltstone. Disseminated pyrite is ubiquitous and commonly comprised up to 5% of the rock.

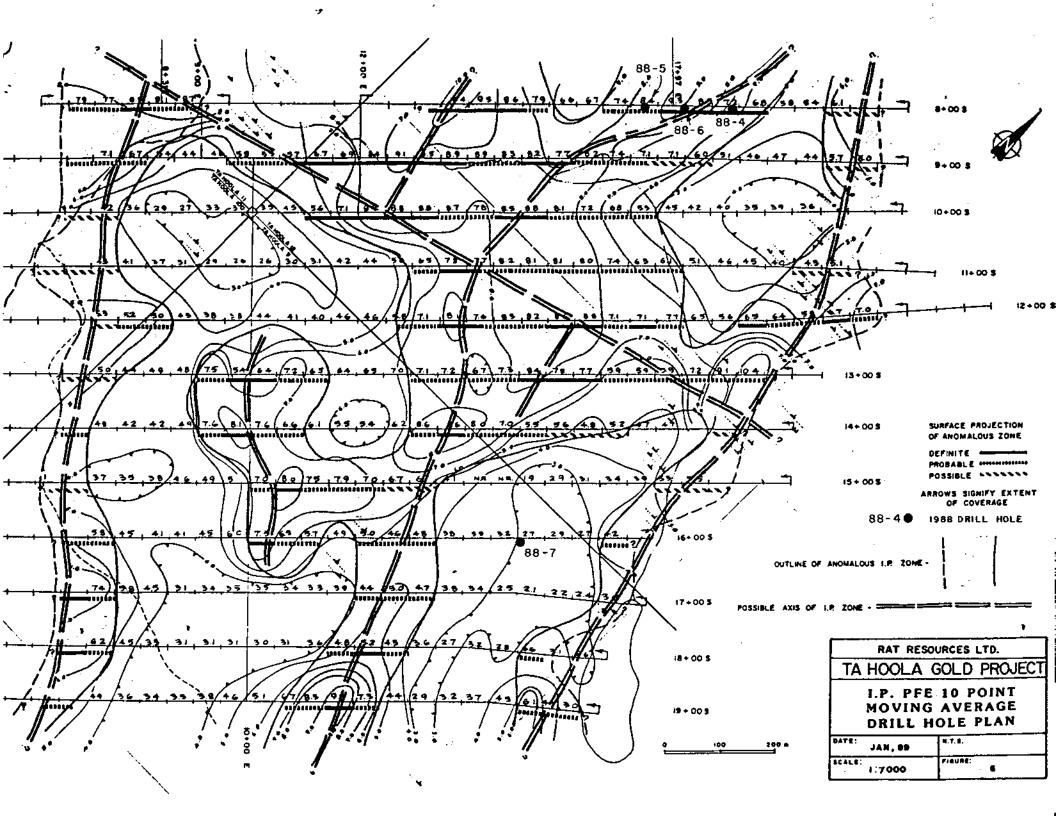
A large fine to medium-grain diorite stock comprised of 20% mafics, 75% plagioclase and 5% quartz lies along the western side of the claims. East of Deer Lake, the intrusive is a hornblendediorite.

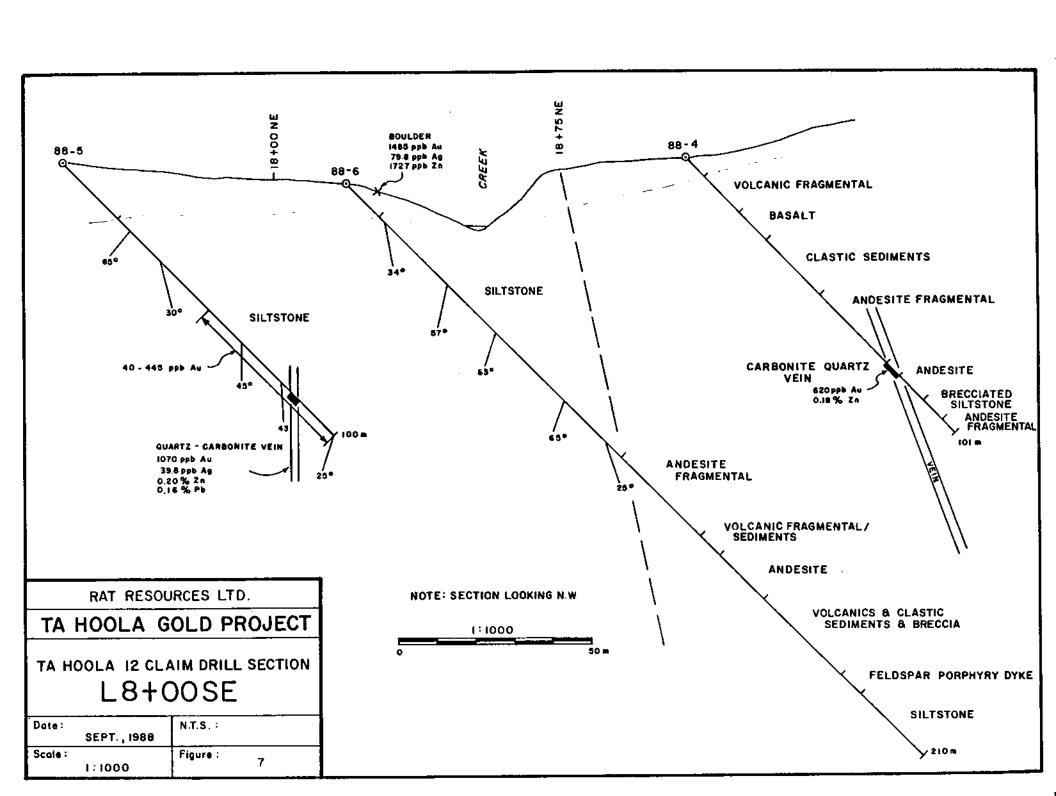
At the boundary between the Ta Hoola 10 and Ta Hoola 13 claims, a diorite breccia has formed as a contact phase along the margin of the main diorite pluton. It contains angular diorite fragments to 10 cm in size, which are supported in a diorite matrix. Epidote-chlorite-quartz veins are present. The pyrite content is less than 1%.

Numerous northwest and northeast-trending faults traverse the property. Their traces are marked by the alignment of lake chains and a rectangular stream drainage pattern.

Carbonate alteration is widespread on the property. Narrow, randomly oriented, calcite stringers and grain aggregates are common in all units. They are generally sulphide free and barren. Veinlet density increases in the fractured rocks adjacent to many of the major structures.

At the east end of Friendly Lake, a northwesterly-striking pyritic carbonate alteration zone carries anomalous values in gold, arsenic and molybdenum. The mineralization is hosted by pervasively carbonate-sericite-chlorite altered brecciated biotite hornfelsed mafic volcanic units. Calcite, an iron-carbonate, and fine rock fragments form the matrix. Disseminated fine-grained pyrite impregnates the breccia fragments and, to a lesser degree, the calcareous matrix. Average pyrite concentrations within the alteration zone are in the range of 1% to 3%. Trace amounts of chalcopyrite, galena, sphalerite, molybdenite and arsenopyrite are present.


On the Ta Hoola 9 and Ta Hoola 12 claims, and on the adjoining HC 1 claim, recessive 1 m to 8 m thick carbonate-quartz veins carry gold, silver, lead and zinc mineralization.


DIAMOND DRILLING

Three NQ diamond drill holes totalling 411.22 metres were drilled on the Ta Hoola 12 claim to test anomalous area B. (Figure 5).

These holes cross-sectioned a broad, high-contrast, induced polarization anomaly where it is coincident with the gold-arsenic-copper-lead-silver-zinc multi-element soil geochemical anomaly (Figure 6).

Hole TA 88-4, drilled across the eastern side of the anomaly, intersected andesitic flows and polylithic fragmental units interbedded with siltstones and immature polylithic clastic sediments (Figure 7). Both the volcanic and sedimentary units host numerous intervals containing 2% to 12% disseminated and veinlet pyrite. Holes TA 88-5 and TA 88-6, drilled to test the

western and central portions of the IP anomaly respectively, intersected a thick sequence of siltstone, argillite and calcareous sandstone containing 1% - 5% disseminated fine-grained pyrite. The lower half of Hole TA 88-6 extended below Hole TA 88-4, where it cut similar interbedded sedimentary and volcanic units. Structural complications caused by faulting prevent the correlation of individual units.

Although there were numerous geologically favourable silicified iron carbonate and mariposite altered intervals in Hole TA 88-4, most contained background or very weakly elevated concentrations of gold and other associated elements. A 4.61 metre (15.12 ft) thick carbonate-quartz vein, intersected from 74.39 m to 79.0 m, contained a 1.4 m interval from 75.60 m to 77.0 m which ran 620 ppb gold (0.018 oz/ton) and 0.18% zinc. The remainder of the vein carried anomalous but very low gold values.

In Hole TA 88-5, an interval from 54.0 m to 100.0 m, which was not conspicuously altered, carried geochemically anomalous concentrations of gold ranging from 40 ppb to 445 ppb, which are accompanied by enriched silver, arsenic, zinc and lead concentrations. Within this interval a 0.94 m thick quartz-carbonate vein intersected from 84.86 m to 85.80 m ran 1070 ppb gold (0.03 oz/t), 39.8 ppm silver (1.16 oz/ton), 0.20% zinc and 0.16% lead.

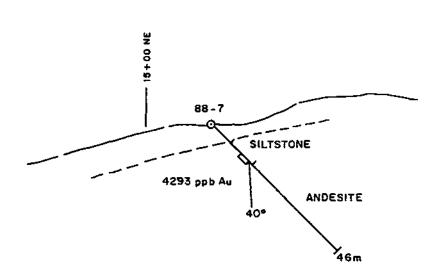
Metal abundances in Hole TA 88-6 are low except for a slight enrichment in arsenic. The most significant interval was from 15.0 m to 18.0 m which carried 510 ppb gold (0.015 oz/ton).

A 40 cm x 60 cm x 30 cm boulder of quartz-carbonate vein material exposed during the preparation of the drill site for Hole TA 88-6 ran 1485 ppb gold (0.043 oz/ton),. 79.8 ppm silver (2.33 oz/ton), 298 ppm antimony and 1727 ppm zinc.

Rebagliati Geological Consulting Ltd.

Hole TA 88-7 was sunk to a depth of 45.73 m to evaluate the multi-element gold soil geochemical zone comprising Anomaly A. A 3.10 m (10.17 ft) interval of quartz-iron carbonate-veined pyritic siltstone from 11.10 m to 14.20 m ran 4293 ppb gold (0.125 oz/ton gold) (Figures 6 and 8).

The cose is stored on the property


The pyritic sediments in Holes TA 88-4, TA 88-5 and TA 88-6 are the source of the IP anomaly and the 46 m thick metal enriched interval in Hole TA 88-5 may in part explain the multi-element soil geochemical anomaly. The substantial vein encountered in Hole TA 88-4 and other smaller veins demonstrate that potential ore hosting structures occur within the anomalous area.

In Anomaly A, on the Ta Hoola 9 claim, the 3.10 m interval in Hole TA 88-7 containing veinlet-hosted mineralization grading 0.125 cz/ton gold is encouraging and warrants further exploration.

Many other anomalous and mineralized areas on the property warrant detailed assessment.

RECOMENDATIONS

- 1. Diamond drill to determine the extent of the mineralization encountered in Drill Hole TA 88-7.
- Diamond drill to evaluate the remaining unexplored soil geochemical and geophysical anomalies identified by previous surveys.

RAT RESOURCES LTD.

TA HOOLA GOLD PROJECT

TA HOOLA CLAIM DRILL SECTION

L 16+00 SE

Date:	SEPT., 1988	N.T.S, :
Scale:	1:1000	Figure: 8

STATEMENT OF COSTS

Ta Hoola 12 Claim

Rebagliati Geological Consulting Ltd. Professional Services July 4 - Nov. 14, 1988 12.5 days @ \$450.00/day	\$ 5,625
Labour:	
Corey Sauer July 16-21 6 days @ \$135/day Ross Rebagliati July 15-24 10 days @ \$135/day	810 1,350
Room and Board 26 field days @ \$65/day	1,690
Truck Rental & Operation 15 days @ \$100/day all incl.	1,500
Analyses 198 9 \$7.50	1,485
Iron Mountain Diamond Drilling 411.23 m @ \$99.83/m	41,050
	\$ 53,510
<u>Ta Hoola 9 Claim</u>	
Rebagliati Geological Consulting Ltd. Professional Services July 4 - Nov.14, 1988 7 days @ \$450.00/day	\$ 3,150

Labou	T	:
-------	---	---

Ross Rebagliati July 25	1 day	බ	\$135/day	135
Room and Board 5	field days	a	\$65/day	325
Truck Rental & Operation	3 days	ə	\$100/day	300
Analyses	17	а	\$7.53	128
Iron Mountain Diamond Drilling	45.73 m	a	146.25/m	6,688
Cat for Drill Move and Site Pr	ep 21.6 hrs	a	\$96/hr	2,074

\$ 12,800

Rebagliati Geological Consulting Ltd.

REFERENCES

- Campbell, R.B. and Tipper, H.W., 1971; Geology of Bonaparte Lake Map Area, British Columbia, G.S.C. Memoir 363.
- Gamble, A.P.D., 1986; 1985 Summary Exploration Report, Geology, Geochemistry, Geophysics and Trenching on the Ta Hoola Project, Kamloops Mining Division.
- Hirst, P.E., 1966; Anaconda American Brass. Company correspondence.
- Preto, V.A.G., 1970; Geology of the area between Eakin Creek and Windy Mountain; in Geology, Exploration and Mining in British Columbia. B.C. Department of Mines and Petroleum Resources, pp 307-312.
- Rebagliati, C.M., P.Eng. 1987; Report on the HC Gold Project, Kamloops Mining Division, British Columbia for Lancer Resources Inc.
- Rebagliati, C.M., P.Eng. 1988; Assessment Report on the HC
 Project, Kamloops Mining Division, British Columbia for
 Lancer Resources Inc.
- Rebagliati, C.M., P.Eng. 1988; Assessment Report on the Ta Hoola Property, Kamloops Mining Division, British Columbia for Rat Resources Ltd.
- Ruck, P., 1982; 1982 Exploration Report, Geology, Geochemistry, Geophysics, Ta Hoola Project, Kamloops M.D.
- Serack, M.L., 1983; 1983 Percussion Drill Report on the Ta Hoola, RO and Silver Claims, Kamloops M.D., Lornex Mining Corporation.
- B.C. Assessment Reports: 981, 1061, 1169, 1690, 4028, 4260, 4262, 4678, 4684, 5191, 10287, 10880, 11413, 12101, 15221.

CERTIFICATE OF QUALIFICATIONS

- I, Clarence Mark Rebagliati, of 3536 West 15th Avenue, Vancouver,
- B. C., hereby certify that:
- I am a consulting Geological Engineer with offices at 3536 West 15th Avenue, Vancouver, B. C.
- I am a graduate of the Provincial Institute of Mining, Haileybury, Ontario (Mining Technology, 1966).
- I am a graduate of the Michigan Technological University, Houghton, Michigan, U.S.A., (B.Sc., Geological Engineering, 1969).
- 4. I have practiced my profession continuously since graduation.
- I am a member in good standing of the Association of Professional Engineers of British Columbia.
- 6. The foregoing report is based on:
 - a) A study of all available company and government reports.
 - b) My personal knowledge of the general area resulting from regional studies and from examinations of the property made in 1980, 1981, 1982, 1986, 1987 and 1988, while supervising a series of exploration programs.

C. M. Rebagliati, P. Eng. January 31, 1989 APPENDIX I: DIAMOND DRILL LOGS

7.32 19.70 Intensely altered polylithis (volumi) frogrant ?? 109503 9.40 10.40

All original tentime and manerals are destroyed. 109505 11.40 12.40 Brecentel, silicitized, bleached to a mle 109506 12.40 13.40 109507 13.40 14.40 Tan with danker greenish patches 2) less aftered rock. Possible relie ausit phenographic 109508 14.40 15.40 The rock has been shattered and breceinted, 109509 15:40 16:40 1095 10 16.40 17.40 at least three generations of veining Column thick ore abundant - up to 10 mm thick 109511 17.40 18.40 1.0 109512 18.40 19.70 1.3 Some carry to specula humatite others pyrite. 109513 1970 20.44 0.74 minim chalcopyrite and other unidentified 109514 20.44 21.40 0.96 Eine grande duch netallie minerals. Some veine 1095 15 21.40 22.80 1.40 are banded others can angula such frozents. 1095 116 2280 2480 20

		 	· · · · · · · · · · · · · · · · · · ·						A 88	-4	 28/ 5	5-
FOOT ROM	TO	DESCRIPTION	SAMPLE NO.	FROM	70	WIDTH	RECOV.				71	
		2-to-10% pyrite mostly very fine - medin	109517	24.80	26.00	1.20						
		grained dissemented grains and numerous	109518	26.00	28.40	2.40						
_		hairline fractures control with printe.			30.30							
		7.32-8.40 is the least altered - is chloritic and is	109520									_
		volcanie in migin . Late sulphile- rich verilit	109521	32 ₀	340	Z. <i>0</i>						
	<u>-</u>	at 40 to 60° to cove oxis one 1 cm to 6 cm thich	109522	34.0	36.0	2.0					 1	
9.70	2010	Grey andesite dyke. He rimed pyritic	109523	36.0	38.0	2-0						
		Dark green Chlorili Baselt Faulted and	109524	38.0	40.0			_				
			109525									
_		memerous quartz , quarte- combonete veinlet	109526	42.0	44.0							
		5 to 100 permete. Some Iron Carbonate and	109527	44.0	46.0							
_		manipaste. Variable disseminable and tractive										
		controlled pyrite; Increases with increased	109529	48.0	50.0							
_		intensity of bleaching - silicification.	109530	50,0	52.0							
		Silicified/veined intervals 20.44 to 21.40m;	109931	52.0	54.0							_
		22 Ao - 22.80 Shacker 23-10 to 26.00 m; 28.40-30.00	109532	54.0	54.0	<u> </u>						
_		Faultod from 28.40-30.0	109533	56.0	58.0							_
			109534	58.0	60.0							
305	0.00	Sedimentary Clastic / Frogmontal. Clasts	109535	60.0	62.0							_
		are month of Anderite telf and/or siltstoni.	109536	62.0	64.0							_
		Minor andis to Fragmente interale or long andis to	109537	64.0	66.0				 -			_
_ _		clasts. Minior conglarante with pink tatito clasts.	109538	66.0	48.0				1			
	-	Minor chalcedonic - pyritic Veining	109539	48.0	70.0							

.

FOOTAGE	· · · · · · · · · · · · · · · · · · ·				,			TAE	38-4	3.f
ROM TO	DESCRIPTION	SAMPLE NO.	FROM	то	WIDTH	RECOV.	SULPHIDES		1 1	
	Boding 30-60 to core onis . Colourie	109540	70.0	720	7.0					
	generally greanish grey or can't when cut by	109541	72.0	73.80	1.80					
	seliceous sulphile and/or speculant Siller frontenes	109542	73.80	74.39	0.59					
	when rock becomes ten colound. These silicitied	109543	74.39	75.60	1.2/		" "			
	in terrale are extensive comprising approximately	109544	75.60	77.0	1.40					
_	30/2 of the intered. Some charty untorole.	109545	77.0	78.0	1.0					
	All cours cut by lote colab gash fractives.	109546	78.0	<i>79.</i> 0	1.0					
	1-3/2 fine-grained disserves to and fraction	109547	79.0	81.0	2.0					
	controlled printe . FAULT AT UTOM	109548	81.0	83,0	2.0					
_	Preminent breecestin is common.	109549	83.0	850	7.0					
	At 50-60 m 2-5 cm patches of coarse secondary biotite.	109550	85.0	87.0	2.0					
0.0 74.39	Poly lithic Andesite Fragmental-closts	10955	\$7.0	880	1.0					
	to your . Dark green and Chloritic	109552	880	90.0	2.0					
	Weak Colice veining <td>109553</td> <td>90.0</td> <td>92.0</td> <td>2.0</td> <td></td> <td></td> <td></td> <td></td> <td></td>	109553	90.0	92.0	2.0					
<u></u>	Increasingly calcite veine and proites towards	109554	92.0	94.0	2.0					
	74.39. Fault at 52.10 m	109555	94.0	95.0	1.0	_				
-}}	1380 to 7439 Sheared-silicified-	109556	95.0	97.0	Z.0					
	can sonatried and pyritic - calcite and iran	109557	97.0	19.0	7.0					
- 4	Carponate AT 53 m brown biotite books	109558	89.0	1004	1.61					
39 7560	My lanced shoul silicitied - carbons to altered									
_	andesite mixed with consonets - quarte seining									
<u> </u>	Bish calib , 2% disseminated fixito · Bording		_							
	shearing at 75° to core oxis. CONTACT ZONE		1							

:

.

							TA	88	-4		40	5
FOOTAGE_	DESCRIPTION	SAMPLE NO.	FROM	το	WIDTH	RECOV.	SULPHIDES					
75.60 78.0	CARBONATE QUARTZ VEIN. Brecciates											
	and rebrecciated Numerous angular rock											
	Eracments, white clean and grey quarter					<u> </u>						
	disseminations - minor over all								<u> </u>			
	disseminations - minor over all				ļ	ļ			<u> </u>			
		.=		<u></u>					<u> </u>	-		
	Mylonized Vein-rock 50% vein-50%				ļ				 			
	altered rock. 1-e-carbonat, calcit and	_			<u> </u>				-			
	silicitied. 1% dissemmetal pyrite.				<u> </u>				-			
					ļ ———		·					
79.0 88.0	Andesite - STRONGLY ALTERED - Silicified				ļ			. 	┼──	-		
	Carbonatives, brecciated and quarte-corbonat		-						 	-		
	nainel Calaband Fe-consonal Decreosing			<u> </u>					 			
-	alteration down wards. Possible				 					-		
	subardinate charty sillstone intervale.								1			
	1% disseminated prite								1		1	
	Faulto and shearing at 80.40m, and 790	·			 	-						
Co. C.	Green brecciated chloritic silicitied sitts Tow								 		-	
1 75.0	with minor velcomic Clarks and intervals				 							7
	Chlority films on fractions This Imm		_						1			
- -	calciti-quarte-pyrite veine Potchy prin-corborate											
	· · · · · · · · · · · · · · · · · · ·				[
	alteration				<u> </u>				<u></u>	<u> </u>		

•

. .

				•				TAS	-8-4	Į.	5	JS
FOOTAGE FROM TO	DESCRIPTION	SAMPLE NO.	FROM	70	HTGIW	RECOV.	SULPHIDES					
95.0 100.61	Aucite Anderite Fragmental . Propylitic							-				
	Augite Andesite Frogmental. Propylitic alteration Pyrite, che bondte - epidote in Fracture fillings and vein salvages. Chlorite- pyrite coated Fracture 2% dissamental pyrite:								 	-		
	Fraction fillings and vein salvages. Chlorite-									_		
	pyrit coated fractions 2% dissemental											
	pyrite.											
1000	END OF HOLE											
	· · · · · · · · · · · · · · · · · · ·								<u> </u>			
							_					-
							 i		_			
			<u> </u>				<u>:</u>					
-												
				\longrightarrow								
			_		 							
				-								
- 							-					
		-	$\overline{}$									
 				\dashv		$\overline{}$	•					
				\dashv								
		ļ		- }	j	J	ļ	ŀ	İ	[- 1	

. .

DIAMOND DRILL LOG

PROPERTY : TA HOOLA HOLE No. TA 88-5 CLAIM TA HOOLA

HOL		EY
FOOTAGE	&EARING.	OSP
-		

COLLAR SURVEY . LATITUDE:

SECTION .____

DATE BEGUN: July 15, 1988 SHEET NA: 10+ DATE FINISHED July 17 TOTAL DEPTH 1/00.6/

LOGGED BY . C.M. Rebaglist

DEPARTURE :

ELEVATION .

BEARING . 0400 DIP -45°

CORE SIZE NQ

FOOT	AGE TO	DESCRIPTION	SAMPLE NO.	FROM	то	WIDTH	RECOV.	SULPHIDES					
0.0	19.82	Casing in Overburder	109701	1982	22.0	2.18	1.05			<u> </u>			
		,	19702	22.0	24.0	2.0	1.70						
19.82	130.61	Dark grey thinly bodded sittstone angillib	109703	24.0	26.0	2.⊅	1.60						
		and culcureous sundstone. Light barries in	109704	260	280	2.0	1.80				<u> </u>		
		siltstone are calcusous. 1-5% fine-gramed	109705	28.0	30.0	20	2.0				<u> </u>		<u> </u>
		discounted syngenetic printe Sandy units	109706	30.0	32.0	2.0	2.0						
		are more pyritis Pyrite lamine as common.	19707	32.0	340	2.0	1.90	<u></u>					<u> </u>
		Mina Pyrite filled fractures, Minor	109703	34.0	36.0	2.0	210					<u> </u>	
		1-4 cm Calcile quanta veing - with no essociated	109 709	36.0	38.0	2.0	1.80		<u> </u>			<u> </u>	<u> </u>
		alteration. Most of these vein contain angula	017901	38.0	40.0	7.0		<u></u>				<u> </u>	<u> </u>
		Exegenente of the wall rock. This lower	19711						<u> </u>	<u> </u>		<u> </u>	<u> </u>
<u> </u>		culcits filled fractures are common 10-30/m	109712				<u> </u>				<u> </u>	<u> </u>	<u> </u>
<u> </u>		bodding at: 24.70m is 850 to core axis	109717	44.0	46.0	2.0		<u> </u>	<u> </u>			<u> </u>	<u> </u>
		29.80m " 30° " " "	109714	T	1	1					<u> </u>	<u> </u>	<u> </u>
L		36.0m = 30° " " "	109715	48.0	50.0	2.0							

·		,			т			<u> </u>	3-5		29	<u>//_3</u>
FOOTAGE	DESCRIPTION	SAMPLE NO.	FROM	то	WIDTH	RECOV.	SULPHIDES		<u> </u>			<u> </u>
10 10	hedding at 47.0m is at 0° to core axis	109716	50.0	<u>5</u> 2.0	2.0				<u> </u>			
	53.50m - 33° - "	109717	52.0	54.0	7.0				ļ			
	66.0 " " 45" " "	109718	54.0	56.0	2.0				<u> </u>	ļ		
	Numerous gouge faulte from 19.82 mt 32.0m	19719	56.0	58.0	2.0							
	At 55m the calciti-guarte veins which are	109720	58.0	60.0	Z.0				<u> </u>			_
	subparallel tothe core axis contain minior	109721	60.0	62.0	7.0	ļ		<u> </u>	ļ	<u> </u>		ļ. <u> </u>
	honey coloured spheleit and galeng and me	109722				<u> </u>		<u> </u>	<u> </u>	<u> </u>		\vdash
	enjulie (1-5/2). At 67.0m a combonate vein trends	109723	64.0	66.0	2.0			ļ.—	-	<u> </u>	ļ	╄-
	down the core to 69.0m 50% vein 50% silts tone.	109724	66.0	67.0	1.0	<u> </u>			ļ	<u> </u>	<u> </u>	╀
	The vein is probably only about 20 cm thick.	109725	67.0	69.0	8.0				ļ	<u> </u>		1
	Bedding at 75.6 m is at 40 of coreaxis	109726	69.0	71.0	2.0			<u> </u>	<u> </u>		ļ	↓_
	80.5 m " ' 43° " "	109727	71.0	73.0	2.0	<u> </u>		<u> </u>		<u> </u>	ļ	↓_
1	88.0 m * " 40° " * "	109723	73.0	75.0	2.0				ļ	<u> </u>	<u> </u>	\perp
	94.0 " 60° " "	109729	75.0	77.70	2.70			<u> </u>	ļ	ļ <u> </u>	ļ	$oldsymbol{\perp}$
	/00.0 " 55" "	109730	77.70	78.50	0.80	<u> </u>		<u> </u>	<u> </u>	<u> </u>	 	$oldsymbol{\perp}$
	Tope up to west: by ripple marker	109731	78.50	80.50	2.0			<u> </u>	1		<u> </u>	╽-
	7770 - 78.50 Carbonate - Quart - vein - numerous	109732	80.50	82.68	2.18	<u> </u>	ļ	<u> </u>	ֈ	ļ	 	1
	angular rock fragments Minor prit	109733	82.68	83. IS	0.47	<u> </u>	ļ <u>.</u>	<u> </u>	<u> </u>		<u> </u>	_
	82.68 - 83.15 m similar to vein chem.	109734				/	<u> </u>	<u> </u>	↓		↓	\bot
	8 4.86 - 85.80 Quarti-Carbonat vein More (4th)	109735	I				ļ	<u> </u>	 	1	 	+
	course pyrite-minor fine disseminated galeria.	109736				•	ļ		<u> </u>	_	 	+
	Veins are at about 400 to conscris . At \$ 91.15 - 92.0	10977						 	-	<u>. </u> ,		+-
	Quanta consonate vein 2 to 10 conthict poro /le/s con.	109735	88.0	90.0	2.0							

Alman sleuching for 20 cm on vein contacts . silicitication

									TA 8	38-5		301	3
FOOT	AGE TO	DESCRIPTION	SAMPLE NO.	FROM	TO	WIDTH	RECOV.	SULPHIDES					
			109739	90.0	91.15	1.15							
		All angillite, silt stone and sandston are	109740	91.15	92.0	0.85					<u>-</u>		
		Calcareous:	109741	92.0	94.0	2.0							
			109742	94.0	96.0	2.0							
			109743										
			109744	98.0	100.61	2.61							
00.6/	m	END OF HOLE		<u> </u>									

				<u> </u>									
					-								
			Ì										_
										- 			
													ŀ
\dashv										-			<u> </u>
1			1						-				
\dashv		· · · · · · · · · · · · · · · · · · ·	<u> </u>								- ··		

.

<u>DIAMOND</u> DRILL LOG

PROPERTY :	TA	HOOLA	HOLE No. : TA 88-6	CLAIM TA HOOLA
------------	----	-------	--------------------	----------------

HOL	E SURV	ΕY
FOOTABE	BELAIRS	DIP
	 	
		
	 	
	, T	

COLLAR SURVEY

LATITUDE:_____

DEPARTURE

ELEVATION :

DIP : -4/5°

CORE SIZE : NQ

DATE BEGUN : July 18 SHEET No.: 10+6

SECTION: DATE FINISHED : July 23 LOGGED BY . C. M. Rebaylish

BEARING: 040° TOTAL DEPTH : 210.10 DATE: July 1988

FOOTAGE TO WIGTH RECOV. SULPHIDES SAMPLE NO. FROM DESCRIPTION FROM TO Cosing in averburden 0.0 /223 109745 12.20 15.0 2.80 109746 15.0 18.0 3.0 12.20 97.45 Light and dark gray torded sittstone. 109747 18.0 21.0 3.0 Minor aryellite and sands tow in ten beds. 109748 210 240 30 109749 24.0 27.0 3.0 cinito orecolcorenia - li despread very 109750 270 30.0 3.0 Fine-grains dissemented pyrite 3 % 10975 | 30.0 33.0 30 overall hight coloure lamimae 109752 33.0 36.0 3.0 or generally more positie the darker lawine 109753 36.0 39.0 30 109754 390 420 30 109755 42.0 45.0 3.0 15 an is at 34 ot Coro axis 109756 45.0 48.0 3.0 27m - " 65° " " 109757 48.0 51.0 3.0 37m " " 57° " " 109758 510 52.36 1.35 47m " 55° " " " 109759 5235 5255 020

	47.						7	A 88	3-6	207	6
FOOTAGE FROM TO	DESCRIPTION	SAMPLE NO.	FROM	то	WIOTH	RECOV.					Ť
	Bodding at 55m is at 63 to core onis	00FP01	<i>5</i> z.55	55.0	2.45						
	Contacted quarte- calcib - 10 on carponete	19761	L								
	Contacted quarte- calcib-, 10 on contracte	109762	58.0	61.0	3.0		·				
	Bedding at 64 m is 2+ 65 to come 2xis	109763									
	" 73 ₄ 1" 58° " "	109764	640	67.0	3.0						
	" * 80.5 m = 65 " " " ")	109765	67.0	70.0	3.0						
	87.0 m i 63° " "	109766									\perp
	Consonate -Quant vein 81.91-82.33	109767									\perp
	and pyrite bonds . Traces of spheleib galera.	109768	760	79.0	3.0	•					\perp
	and pyrite bands . Traces of sphaleit ogalera.	109769	79.0	81.91	2.9/						
	Vein wall and burding at 350 to core axis	109770	8/9/	82.33	0.42						
	<u> </u>	155601									\perp
	FAULTING AT 825 to 83. 7m and 85.200	1097.7Q	83.0	86.0	30						<u> </u>
	Boolding at 885 mis at 10 to coneavis	109773	860	89.0	3.0	2.7					
	Fautting et 88.11m, 89.94 and 90.5 M	109774	69. 0	92.0	3.0	2.2					\perp
	BAD FRYLING From 925 m to 98.8 m	109775									\perp
	Bodding at 92.5 m is at 25° teconoxis	109776	95.0	97.45	2.45	135					\perp
		109777	9745	9880	1.35	0,83					
45 108.20	TNTENSELY SILICIFIED, BLEACHED ALTERED	109778	9880	1000	1.20	1.7.					$oldsymbol{\perp}$
	SEDIMENT - NOW CHERTY SOME GRIT BELS.	1		• .							
	with pebblate 1cm. Breccio closts are angular.								<u> </u>		
	healed with silica - white and smoken gray.	109781	102.0	103.0	1.0	10					
	5% dissenantil and fracture cooting prints r-f-9.	10978Z	1030	104.0	10	1.0					

.

.

								7/	188 -	- <i>'6</i> '	30	26	
FROM	TAGE	DESCRIPTION	SAMPLE NO.	FROM	70	WIDTH	RECOV.	SULPHIDES					
	<u> </u>	Hairline Frante Coats with specular hemotite	109785	104.0	105.0	1.0				1			•••
	ļ	and minor magnifite	109784		106.0		0.8						
	<u> </u>	higher tan coloured to 103m then becomes	109785	i	/07.0	I							
		grevish green	109786	107.0	108.20	1.20							
						<u> </u>		:					
08.20	124.48	ANDESTE FRAGMENTAL - Chloritie	109787	108.20	110.0	1.80			·				•
;· ·			109788	110.0	1120	20							
		and fraction coating pyrite. Progressivily	1 <i>0978</i> 9	1120	114.0								
<u></u>		darler green - more chloriti to 122 m. Where	109790	114.0	116.0		<u> </u>						
		the core is lighter green-bleached-more heavily	109791.	116.0	118.0		<u> </u>						
		quantz-consonate veined.	109797	118.0	1200	<u> </u>		!		<u> </u>			
		y	109793	120.0	1220					<u> </u>			
3448	127.10	Silicitied brecioted bleached anderiti volume	109794	122.0	124.48	2.48							
		rock Faulting 125.5m	109995	124.48	125.5	1.02	0.90						
			109796	125.5	127.10	1.60	1.10	MoSz					
27.10	127.27	Silicified - pervaine - andquarte veinel Chloritic	109797						<u>.</u>				
		5 heard regments.	169798	129.27	13/.0	/. <u>7.3</u>							
			109799	13/.0	133.0	2.0							
2 <i>9.27</i>	<u>/35.56</u>	Mixed volcanie - sed innestary Fragmental	109800	133.0	13450	1.5							
		locally bracintel, silicited or chloritic	109801	134.50	114.85	०५५				<u> </u>			
		2 % prit . Breccial silicited intered 13450 to	10980Ž	13485	/35.55	0.70						_	
 		134.85 m - Volcenie Fragments on augite porphyritie -	KOMMON	12K 5C	,,,,,	. 45							
	l	sediments are charty.	109804	/37.0	139.0	z.0		ŀ				Ì	

									-6	40	46
FOOTAGE ROM TO	DESCRIPTION	SAMPLE NO.	FROM	ŦΟ	жтоі₩	RECOV.	SULPHIDE	5			
5.55 151.8	Augite Andesite - Variably silicified and	109805	137.0	141.0	2.0						Γ
	bleached intervale. Moderate white quarte-	109806	141.0	143.0	2.0						T
	colcite reining 5 mm to 2 cm thick 5- 10 pm metre.	109807	143.0	145.0	2.0		·				
	Veinlets one pyritic - carly veinlets have chloritic	109808	145.0	147.0	2.0						
	wolls. Bleachel and silicified towards 151 m.		147.0	1490	2.0						
	2% pyrite	109810	149.0	151.0	2.0						
<u> 1.83 /533</u>	Brecciated and silicitied sedimentary	109811	151.0	151.83	0.83						
_	Fragmental	109812	15483	153.35	1.52						
	,	109813	153,85	155.0	1.65						
5338 15788	Light grey sugite anderite - Fracture Land	109814	155.0	157.85	2.85		<u>-</u> -				
		109815	157.85	1590	1.15						上
	locally stuttered . 3 to pyrite . Pyrite input	1098,6	159.0	161.0	Z ، ن						_
	replaces chloritized sugite grains.	109817	161.0	/63.0	2.0						
785 /64.15	Light green fine-graned chaty mossive	109818	163.0	164.15	1.15						
	sediment. 2/2 disseminated prints.	109819	/64.15	<i>165</i> .30	1.15						L
	Sediment 2/2 disseminated prints.	1098z0	165.30	16730	z. 0						<u> </u>
		1098 Z L									L
4JS 165.3	Highly altered volcanie conglomerate?	1098:22	169.58	171.0	142						L
	Carponate veins, clots and matrix-some	109823	171.0	173.0	2.0						$oldsymbol{oldsymbol{\perp}}$
_	silicitication. Reaction rimed combonet	109824	173.0	175.0	2.0						<u> </u>
	- hemotite - pyrite - epidate - chlorite	109825	175.0	17615	1.15				·		╀
		109876	174-15	178.0	1.85						<u> </u>
30 /6955	Augite porphyritic andesite with flow to Precia	104827	178.0	179.9	1.90						

	•								7	A88-6	5-,	26
FROM	TAGE	DESCRIPTION	SAMPLE NO.	FROM	то	WIDTH	RECOV.	SULPHIDES				
		chlorite filled voids with beleached and	1098 28	179.90	183.0	3./0						
		silicified margins . Patial replacements	109829									
		chloritic augite by pyrite. Colcite veining	1098 30	1860	187.4	1.4						
			1098 3 1									
/6758	176.15	Poly lithic Breccia . Charty and sittstone	1098 32	190.0	1930	3.0						
		closts rounded to subangular-light pink	109833	193.0	196.0	3.0						<u> </u>
		and light grey and green . Volcanie clasts										<u> </u>
		with planet reaction rims give a	1018 35	1								
		mottled patchy appearance. Patchy	1098 36			•						
		epidote replacement of motioninals	1098 37]				
			109838									
		yellow garnet - PyRITE - Chlorite and	109839	207.0	20930	2.30			i			<u> </u>
		specielar hemalite possibly some diopside.	109840	•								
		5-10% Pyrite disseminet and coarse clots			<u> </u>							
176.15	179.70	Fine-grained greyish-green mossing									<u> </u>	
		teffaceness siltstone - silicified, longe										
		patcher of pyrite - epidate - Fire fractura filled										<u> </u>
		with quants /calit . 1% dissemental Pyrite										
17990	1874a	FELDSPAR PORPHYRY DYKE -Crosscut by								3		
		Imm to 10 mm calcite veintete some calcite.										
		quanty veinlets. hemotite or walled veinlite										
		Motics altered to chlorets Feldspar Phenaryets to 6 mg		1								

								TAS	3-6			681	6
FOOT	AGE TO	DESCRIPTION	SAMPLE NO.	FROM	то	WIOTH	RECOV.	SULPHIDES					
8740	202.13	Fine -grained greyish - green massive tuttacons											Γ
		siltstom. Occasional large poteta Depidoto-							_		_		Γ
		pyrite. Minor calate quarte reining along frontier.			•								Г
		Fine -grained, greyish-green, massive tuttacous siltstom. Occusional large potetes & epidote- pyrite. Minor cale to quarte reining along fraction. 2% dissemental and fraction controllal pyrite:					· · ·						igspace
2.13	203.35	Crushel and ground faulted silicified breezis.		-									\vdash
		Crushel and ground faulted silicitied brecein.											
23.5	? <u>045</u> ?	Fine Grainet greyish-green, massive to Hoceous Histore.			-								\perp
			ļ							<u> </u>	<u> </u>	<u> </u>	$oldsymbol{\downarrow}$
94.57	2093U	Fine grained Angels An desite 3 to disseminated				ļ				<u> </u>		ļ	╀-
		pyrite.				<u> </u>						<u> </u>	+
29.30	2/0/0	Light grean charty sediment											T
İ						<u> </u>				ļ		<u> </u>	$oldsymbol{\perp}$
\dashv		BADAY FAULTED FROM 1980mts ENDOF HOLE				 			-		<u> </u>	-	╀
													\vdash
10.10	,	END OF HOLE											L
							,	<u>. </u>					╀
													†
													Τ

DIAMOND DRILL LOG

PROPERTY . TA HOOLA	HOLE No. : 7A88 -7	CLAIM TA HOOLA 1
---------------------	--------------------	------------------

ELEVATION

HO	LE SURV	EY
POOTAGE	BEAGING	OIP
[
	—	-

COLLAR SURVEY : SECTION .

DEPARTURE : SEARING : 040

DIP 1 - 45

DATE BEGUN: July 23/88

DATE FINISHED July 24/88

TOTAL DEPTH: 45.73

LOGGED BY C. M. Rebalisti

CORE SIZE : 1/Q

FOO1	AGE	DESCRIPTION	SAMPLE NO.	FROM	то	WIDTH	RECOV	SULPHIDES		T			
			OAMI CC NO.	,	<u> </u>		NEGO.	302111023		!	<u> </u>	<u> </u>	
0.0	6.7/	Cusing in overbunder	109841	6.7/	8.65	1.94	1.05				,	<u> </u>	<u> </u>
			109847			2.45	1	:					
6.71	8.65	Fragmental Aug to Androite. 2 % disserved but	104843	11.10	12.40	1.30	0.70			<u> </u>			
		Fragmental Aug & Androide. Z'ho dissemine topy to	109844	12.40	14.20	1.80	1.65			<u> </u>			
			109845	1420	14.92	0.72	0.72						
8-65	14.92	Greenish gray siltstone 3% dissaminatel			1	0.88							
		Mirito Bodding at 42 mis at 40 to core our	109847	15.80	17.65	1.85							
		2 cm quate - 1 RONGAR AMATE VEIN is Subprolled	109848	1765	20.0	2.35	·						
		to core crais from 11.10 m to 12.40 m. Vein contains	109849	20.0	23.0	3.0							
		disseminated printe, galow and sphelerite.	109850	23.0	26.0	3.0			<u>. </u>				
		Bleached and relicitied from 1420 \$14.920.		26.0									
			04852		32.0								
14.92	17.65	Augite Andasets - Conforate altered with 2%	109893	32.0	35.0								
		disseminated pyrite. From 14.92 to 15.80 tha	1092 54	35.0	38.0								
	1 1	core is intimely altered and bleached and contains	104855	38.0	41.0								

							<u> </u>		A 88	3-7		25	12
FOOT	AGE TO	DESCRIPTION	SAMPLE NO.	FROM	70	WISTH	RECOV.	SULPHIDES				1	
		10 % disseminated purite. breccioted and	169.856	41.0	44.0	30							
		partly cilicitied. Moderate carbonate -quanta	109857	440	45.73	1.73							
		veining.											
		J		_							ļ		L
7.65	46·73	Green Anderite. In part amy g dalidal -											
		calcite tilled. Some mining flow top precios											
_		The core has been shottend with Fronting											
		filled with colate 30 to 100/m Minin											
		Quartz-caliste prits veinlis 1-5/m. up to											
		I con thick which cut the colore tilled Fronting		_					- <u></u>				
]	the interity of veining encreased downwoods.											
		12/a dissemental pyrit.											Ĺ
	{	Patcher of epidote between 30 nto 35 m	_	_									
]												<u> </u>
€.23	[END OF HOLE						 -				 	<u></u>
			<u> </u>				·					 	
		·											
												⊢—	
	l									:		-	
								.—				 	<u> </u>
_													
	\longrightarrow]						
							ļ					. !	

APPENDIX II: CERTIFICATES OF ANALYSES

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUL 22 1988

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED: .4

gnly 29/88

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HMO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SE CA P LA CE MG BA TI B W AND LIMITED FOR WA E AND AL. AND DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: COTE AND ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

REBAGLIATI GEOLOGICAL PROJECT TA HOOLA FILE # 88-2912 Page 1

						•	
	SAMPLE#	Cu	Pb	Zn	Ag	As	Au*
		PPM	PPM	PPM	PPM	PPM	PPB
83-4	E 109501	121	11	56	. 2	3	12
• •	E 109502	62	7.	42	.7	42	43
	E 109503	121	3	27	. 2	6	7
	E 109504	85	8	35	. 4	7	ģ
	E 109505	114	8	23	. 4	4	13
	E 109506	54	7	23	.6	5	22
	E 109507	87	4	19	.4	2	11
	E 109508	159	8	23	. 4	3	15
	E 109509	159	6	33	. 4	3	13
	E 109510	88	5	20	.3	2	12
	E 109511	137	8	26	. 4	3	16
	E 109512	152	6	46	. 3	2	17
	E 109513	84	13	70	. 5	10	20
	E 109514	79	8	32	.3	6	2
	E 109515	29	12	52	. 2	2	ī
	E 109516	118	12	28	.3	4	1
	E 109517	96	8	22	.1	3	ī
	E 109518	10	13	56	.1	12	ī
	E 109519	68	32	54	.5	8	4
	E 109520	66	10	49	. 2	2	i
	E 109521	151	6	38	.1	3	3
	E 109522	35	6	35	.1	6	6
	E 109523	37	13	33	. 2	10	8
	E 109524	41	6	23	.1	2	3
	E 109525	89	16	36	. 2	2	2
•	E 109526	44	9	50	.1	2	18
	E 109527	158	5	48	.1	6	17
	E 109528	25	6	36	.1	2	13
	E 109529	68	8	44	.1	4	3
	E 109530	76	13	84	.5	33	8.
	E 109531	85	7	54	. 2	9	13
	E 109532	85	13	50	.2	13	6
	E 109533	88	11	51	.1	12	
	E 109534	97	7	52	.1	9	5 1
	E 109535	80	16	47	.1	10	ī
	B 100756						
	E 109536	79	12	41	.1	10	3
	STD C/AU-R	58	38	131	7.1	36	509

SAMPLE#	Cu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM	Au* PPB
E 109537 E 109538 E 109539 E 109540 E 109541	73 104 121 117 112	23 10 14 10 11	41 40 40 45 48	.2 .1 .1 .1	5 3 2 2 5	6 5 2 3 2
E 109542 E 109543 E 109544 E 109545 E 109546	107 85 99 119 124	10 54 327 105 18	80 138 1435 146 113	.1 .8 2.6 2.8 1.2	5 12 15 15 23	13 29 620 90 81
E 109547 E 109548 E 109549 E 109550 E 109551	124 118 294 58 98	13 39 8 8	83 51 55 41 30	.3 .6 .6 .4	12 10 7 9	26 28 220 27 18
E 109552 E 109553 E 109554 E 109555 E 109556	42 57 42 154 88	11 101 9 9	36 38 29 31 36	.1 1.4 .5 .1	6 5 9 6 6	8 5 15 10 250
88-4 E 109558 88-5 E 109701 E 109702 E 109703	216 138 97 83 122	10 9 16 14 11	48 42 113 124 124	.2 .1 .5 .5	2 4 73 84 61	5 16 42 18 27
E 109704 E 109705 E 109706 E 109707 E 109708	98 98 110 115 120	16 16 14 21 40	373 105 176 727 1133	.4 .8 .4 .7	88 94 154 93 126	28 35 22 25 147
E 109709 E 109710 E 109711 E 109712 E 109713	124 87 225 102 731	21 15 21 18 14	294 281 429 424 337	.8 .5 .8 .3	128 43 60 61 64	41 61 13 26 27
E 109714 STD C/AU-R	170 57	13 43	229 132	7.1	57 38	21 485

REBAGLIATI GEOLOGICAL PROJECT TA HOOLA FILE # 88-2912 Page 3

SAMPLE#	Cu	Pb	Zn	Ag	As	Au*
	PPM	PPM	PPM	PPM	PPM	PPB
E 109715	99	31	241	2.9	77	84
E 109716	103	13	237	.4	81	92
E 109717	152	24	433	. 4	95	84
E 109718	164	55	455	11.6	93	445
E 109719	95	28	429	3.3	79	106
2 105/15	93	20	423	3.3	19	106
E 109720	132	27	658	3.3	100	222
E 109721	190	31	617		102	220
E 109721	108	15	367	3.3	103	159
				. 5	104	17
E 109723	116	20	578	.5	97	49
E 109724	242	445	1171	2.7	94	285
E 109725	97	26	1511	7.3	100	410
E 109726	126				100	410
		31	1184	1.5	66	106
	95	21	234	2.7	64	176
E 109728	112	11	122	. 3	59	42
E 109729	117	23	372	1.5	85	205
E 109730	41	184	444	6.3	2.2	122
E 109731	122	16	469		33	133
E 109731				1.9	80	114
	126	18	114	1.0	57	59
E 109733	102	97	156	13.3	41	575
E 109734	253	479	309	6.7	54	375
E 109735	59	1620	2012	39.8	22	1070
E 109736	148	36			23	1070
			169	3.4	55	126
E 109737	119	163	173	2.4	59	255
E 109738	95	13	267	. 7	50	42
E 109739	109	13	560	. 3	50	72
E 109740	118	17	543	2 0	5.0	
				2.8	52	144
E 109741	138	15	126	1.1	61	139
E 109742	121	22	104	1.7	50	169
E 109743	91	13	643	. 3	48	103
E 109744	91	12	148	. 6	71	52
STD C/AU-R	57	40	130	7.1	39	490

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUL 27 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA R AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P4 CORE P5 ROCK P6 SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

REBAGLIATI GEOLOGICAL PROJECT TA HOOKA FILE # 88-3040 Page 1

	SAMPLE#	Cu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM	Au* PPB
B8-6	E 109745 E 109746 E 109747 E 109748 E 109749	81 111 123 109 101	11 34 16 17	109 257 143 281 353	.5 1.3 .8 1.0	55 65 65 51 28	2 510 21 37 17
	E 109750 E 109751 E 109752 E 109753 E 109754	84 101 103 77 91	5 11 9 7 14	124 219 163 256 325	.5 .6 .9 .6	31 45 47 58 62	1 15 2 1
	E 109755 E 109756 E 109757 E 109758 E 109759	109 90 125 119 115	17 9 40 21 109	363 108 479 311 125	.8 .3 1.2 .7 3.3	55 38 99 124 170	1 3 20 57 585
	E 109760 E 109761 E 109762 E 109763 E 109764	103 104 91 87 105	8 10 5 5 7	126 83 63 116 96	. 4 . 8 . 7 . 6	76 63 74 79 38	1 1 2 5 1
	E 109765 E 109766 E 109767 E 109768 E 109769	92 102 102 98 100	8 10 21 5 7	175 196 338 150 67	1.0 .6 .5 .7	43 47 225 43 79	3 1 4 1 2
	E 109770 E 109771 E 109772 E 109773 E 109774	219 80 93 112 112	26 24 13 15	154 325 125 219 169	3.1 .7 .5 .9	97 108 49 56 63	127 12 2 1 2
	E 109775 E 109776 E 109777 E 109778 E 109779	119 91 20 100 60	10 16 2 9 8	126 239 41 26 19	.5 .9 .7 .8	43 55 2 14 10	1 1 2 2 1
	E 109780 STD C/AU-R	103 61	6 43	29 132	.4 7.2	8 45	1 480

E 109781	SAMPLE#	Cu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM	Au* PPB
E 109792 68 7 29 .6 15 2 E 109783 76 11 41 .1 6 1 E 109785 102 8 45 .3 3 .2 11 1 E 109785 102 8 45 .3 3 .7 E 109786 127 9 62 .2 10 1 E 109788 162 27 121 .3 8 1 E 109789 53 10 96 .1 2 1 E 109790 97 12 77 .1 2 2 E 109791 99 11 36 .2 2 1 E 109792 57 7 34 .2 3 2 E 109793 65 10 36 .2 2 1 E 109795 57 8 64 .3 2 1 E 109795 57 8 64 .3 2 1 E 109796 97 48 89 1.4 39 29 E 109797 93 8 56 .4 25 1 E 109798 80 6 31 .7 8 1 E 109798 80 6 31 .7 8 1 E 109799 78 8 17 .2 12 1 E 109799 78 8 17 .2 12 1 E 109799 78 8 17 .2 12 1 E 109800 81 6 22 .3 37 1 E 109801 41 11 30 .3 6 4 E 109805 104 5 32 .2 11 1 E 109806 217 5 46 .2 3 1 E 109807 89 9 48 .2 2 6 E 109808 107 2 26 .4 4 9 1 E 109809 117 6 27 .5 8 1 E 109811 67 3 42 .2 12 1 E 109811 67 3 42 .2 12 1 E 109812 50 3 34 .4 9 1 E 109815 31 5 32 .1 10 2 E 109815 31 5 32 .1 10 2	E 109781	79	8	32	. 6	5	29
E 109783	E 109782	68					
E 109784							
E 109785							
E 109786							
E 109787	1 101.00	101	Ŭ	1.7		•	•
E 109787	E 109786	127	9	62	. 2	10	1
E 109788							
E 109789							
E 109790 97 12 77 .1 2 2 E 109791 99 11 36 .2 2 1 E 109792 57 7 34 .2 3 2 E 109793 65 10 36 .2 2 7 E 109794 54 7 80 .2 2 1 E 109795 57 8 64 .3 2 1 E 109796 97 48 89 1.4 39 29 E 109797 93 8 56 .4 25 1 E 109798 80 6 31 .7 8 1 E 109799 78 8 17 .2 12 1 E 109800 81 6 22 .3 37 1 E 109801 41 11 30 .3 6 4 E 109802 103 9 39 .5 8 2 E 109803 56 6 41 .1 7 1 E 109804 111 8 24 .4 9 1 E 109805 104 5 32 .2 11 1 E 109806 217 5 46 .2 3 1 E 109807 89 9 48 .2 2 6 E 109808 107 2 26 .4 4 2 E 109809 117 6 27 .5 8 1 E 109811 67 3 42 .2 12 1 E 109812 50 3 34 .4 9 1 E 109813 49 6 29 .4 15 1 E 109814 51 5 33 .2 15 1 E 109815 31 5 32 .1 10 2							
E 109791 99 11 36 .2 2 1 E 109792 57 7 34 .2 3 2 E 109793 65 10 36 .2 2 7 E 109794 54 7 80 .2 2 1 E 109795 57 8 64 .3 2 1 E 109796 97 48 89 1.4 39 29 E 109797 93 8 56 .4 25 1 E 109799 78 8 17 .2 12 1 E 109800 81 6 22 .3 37 1 E 109801 41 11 30 .3 6 4 E 109802 103 9 39 .5 8 2 E 109803 56 6 41 .1 7 1 E 109804 111 8 24 .4 9 1 E 109805 104 5 32 .2 11 1 E 109806 217 5 46 .2 3 1 E 109807 89 9 48 .2 2 6 109808 107 2 26 .4 4 2 E 109809 117 6 27 .5 8 1 E 109810 79 4 39 .3 13 2 E 109813 49 6 29 .4 15 1 E 109814 51 5 33 .2 15 1 E 109815 31 5 32 .1 10 2 E 109815 31 5 32 .1 10 2							
E 109792	2 203730	,	12	, ,	• •	2	2
E 109792	E 109791	99	11	36	. 2	2	1
E 109793 65 10 36 .2 2 7 E 109794 54 7 80 .2 2 1 E 109795 57 8 64 .3 2 1 E 109796 97 48 89 1.4 39 29 E 109797 93 8 56 .4 25 1 E 109798 80 6 31 .7 8 1 E 109799 78 8 17 .2 12 1 E 109800 81 6 22 .3 37 1 E 109801 41 11 30 .3 6 4 E 109802 103 9 39 .5 8 2 E 109803 56 6 41 .1 7 1 E 109804 111 8 24 .4 9 1 E 109805 104 5 32 .2 11 1 E 109806 217 5 46 .2 3 1 E 109807 89 9 48 .2 2 6 E 109808 107 2 26 .4 4 2 E 109809 117 6 27 .5 8 1 E 109810 79 4 39 .3 13 2 E 109811 67 3 42 .2 12 1 E 109812 50 3 34 .4 9 1 E 109813 49 6 29 .4 15 1 E 109815 31 5 32 .1 10 2 E 109815 31 5 32 .1 10 2	E 109792	57	7	34			
E 109796 97 48 89 1.4 39 29 E 109797 93 8 56 .4 25 1 E 109798 80 6 31 .7 8 1 E 109799 78 8 17 .2 12 1 E 109800 81 6 22 .3 37 1 E 109802 103 9 39 .5 8 2 E 109803 56 6 41 .1 7 1 E 109804 111 8 24 .4 9 1 E 109805 104 5 32 .2 11 1 E 109807 89 9 48 .2 2 6 E 109808 107 2 26 .4 4 2 E 109808 107 2 26 .4 4 2 E 109809 117 6 27 .5 8 1 E 109810 79 4 39 .3 13 2 E 109811 67 3 42 .2 12 1 E 109812 50 3 44 .4 9 1 E 109813 49 6 29 .4 15 1 E 109814 51 5 33 .2 .1 10 2 E 109815 31 5 32 .1 10 2		65	10	36			
E 109796 97 48 89 1.4 39 29 E 109797 93 8 56 .4 25 1 E 109798 80 6 31 .7 8 1 E 109799 78 8 17 .2 12 1 E 109800 81 6 22 .3 37 1 E 109802 103 9 39 .5 8 2 E 109803 56 6 41 .1 7 1 E 109804 111 8 24 .4 9 1 E 109805 104 5 32 .2 11 1 E 109807 89 9 48 .2 2 6 E 109808 107 2 26 .4 4 2 E 109808 107 2 26 .4 4 2 E 109809 117 6 27 .5 8 1 E 109810 79 4 39 .3 13 2 E 109811 67 3 42 .2 12 1 E 109812 50 3 44 .4 9 1 E 109813 49 6 29 .4 15 1 E 109814 51 5 33 .2 .1 10 2 E 109815 31 5 32 .1 10 2						$\bar{2}$	
E 109796 97 48 89 1.4 39 29 E 109797 93 8 56 .4 25 1 E 109798 80 6 31 .7 8 1 E 109799 78 8 17 .2 12 1 E 109800 81 6 22 .3 37 1 E 109802 103 9 39 .5 8 2 E 109803 56 6 41 .1 7 1 E 109804 111 8 24 .4 9 1 E 109805 104 5 32 .2 11 1 E 109807 89 9 48 .2 2 6 E 109808 107 2 26 .4 4 2 E 109808 107 2 26 .4 4 2 E 109809 117 6 27 .5 8 1 E 109810 79 4 39 .3 13 2 E 109811 67 3 42 .2 12 1 E 109812 50 3 44 .4 9 1 E 109813 49 6 29 .4 15 1 E 109814 51 5 33 .2 .1 10 2 E 109815 31 5 32 .1 10 2						2	
E 109797 93 8 56 .4 25 1 E 109798 80 6 31 .7 8 1 E 109799 78 8 17 .2 12 1 E 109800 81 6 22 .3 37 1 E 109801 41 11 30 .3 6 4 E 109802 103 9 39 .5 8 2 E 109803 56 6 41 .1 7 1 E 109804 111 8 24 .4 9 1 E 109805 104 5 32 .2 11 1 E 109806 217 5 46 .2 3 1 E 109807 89 9 48 .2 2 6 E 109808 107 2 26 .4 4 2 E 109809 117 6 27 .5 8 1 E 109810 79 4 39 .3 13 2 E 109811 67 3 42 .2 12 1 E 109812 50 3 34 .4 9 1 E 109813 49 6 29 .4 15 1 E 109815 31 5 32 .1 10 2 E 109816 45 7 34 .1 8 1		•	_			_	-
E 109798	E 109796	97	48	89	1.4	39	2 9
E 109798	E 109 7 97	93	8	56	. 4	25	1
E 109799 78 8 17 .2 12 1 E 109800 81 6 22 .3 37 1 E 109801 41 11 30 .3 6 4 E 109802 103 9 39 .5 8 2 E 109803 56 6 41 .1 7 1 E 109804 111 8 24 .4 9 1 E 109805 104 5 32 .2 11 1 E 109807 89 9 48 .2 2 6 E 109808 107 2 26 .4 4 2 E 109809 117 6 27 .5 8 1 E 109810 79 4 39 .3 13 2 E 109811 67 3 42 .2 12 1 E 109812 50 3 34 .4 9 1 E 109813 49 6 29 .4 15 1 E 109815 31 5 32 .1 10 2 E 109816 45 7 34 .1 8 1	E 109798	80	6	31	.7	8	
E 109800 81 6 22 .3 37 1 E 109801 41 11 30 .3 6 4 E 109802 103 9 39 .5 8 2 E 109803 56 6 41 .1 7 1 E 109804 111 8 24 .4 9 1 E 109805 104 5 32 .2 11 1 E 109806 217 5 46 .2 3 1 E 109807 89 9 48 .2 2 6 E 109808 107 2 26 .4 4 2 E 109809 117 6 27 .5 8 1 E 109810 79 4 39 .3 13 2 E 109811 67 3 42 .2 12 1 E 109812 50 3 34 .4 9 1 E 109813 49 6 29 .4 15 1 E 109814 51 5 33 .2 15 1 E 109815 31 5 32 .1 10 2	E 109799	78	8				
E 109801 41 11 30 .3 6 4 E 109802 103 9 39 .5 8 2 E 109803 56 6 41 .1 7 1 E 109804 111 8 24 .4 9 1 E 109805 104 5 32 .2 11 1 E 109806 217 5 46 .2 3 1 E 109807 89 9 48 .2 2 6 E 109808 107 2 26 .4 4 2 E 109809 117 6 27 .5 8 1 E 109810 79 4 39 .3 13 2 E 109811 67 3 42 .2 12 1 E 109812 50 3 34 .4 9 1 E 109813 49 6 29 .4 15 1 E 109814 51 5 33 .2 15 1 E 109815 31 5 32 .1 10 2							
E 109802							_
E 109803	E 109801	41	11	30	. 3	6	4
E 109803	E 109802	103	9	39	. 5	8	2
E 109804 111 8 24 .4 9 1 E 109805 104 5 32 .2 11 1 1	E 109803	56	6	41	. 1	7	
E 109805 104 5 32 .2 11 1 E 109806 217 5 46 .2 3 1 E 109807 89 9 48 .2 2 6 E 109808 107 2 26 .4 4 2 E 109809 117 6 27 .5 8 1 E 109810 79 4 39 .3 13 2 E 109811 67 3 42 .2 12 1 E 109812 50 3 34 .4 9 1 E 109813 49 6 29 .4 15 1 E 109814 51 5 33 .2 15 1 E 109815 31 5 32 .1 10 2	E 109804	111	8	24	. 4	9	1
E 109806	E 109805	104	5	32	. 2	11	
E 109807 89 9 48 .2 2 6 E 109808 107 2 26 .4 4 2 E 109809 117 6 27 .5 8 1 E 109810 79 4 39 .3 13 2 E 109811 67 3 42 .2 12 1 E 109812 50 3 34 .4 9 1 E 109813 49 6 29 .4 15 1 E 109814 51 5 33 .2 15 1 E 109815 31 5 32 .1 10 2							
E 109808							
E 109809 117 6 27 .5 8 1 E 109810 79 4 39 .3 13 2 E 109811 67 3 42 .2 12 1 E 109812 50 3 34 .4 9 1 E 109813 49 6 29 .4 15 1 E 109814 51 5 33 .2 15 1 E 109815 31 5 32 .1 10 2 E 109816 45 7 34 .1 8 1							
E 109810 79 4 39 .3 13 2 E 109811 67 3 42 .2 12 1 E 109812 50 3 34 .4 9 1 E 109813 49 6 29 .4 15 1 E 109814 51 5 33 .2 15 1 E 109815 31 5 32 .1 10 2 E 109816 45 7 34 .1 8 1							
E 109811 67 3 42 .2 12 1 E 109812 50 3 34 .4 9 1 E 109813 49 6 29 .4 15 1 E 109814 51 5 33 .2 15 1 E 109815 31 5 32 .1 10 2 E 109816 45 7 34 .1 8 1		117	6	27	. 5	8	1
E 109813	E 109810	79	4	39		13	2
E 109813	E 100011	a o	3	4.3	•	3.0	4
E 109813			3				
E 109814 51 5 33 .2 15 1 E 109815 31 5 32 .1 10 2 E 109816 45 7 34 .1 8 1							1
E 109815 31 5 32 .1 10 2 E 109816 45 7 34 .1 8 1							
E 109816 45 7 34 .1 8 1			5				1
·	E 109815	31	5	32	. 1	10	2
·	E 109816	45	7	3.4	1	Ω	1
STD C/AU-R 57 36 127 7.0 38 500	STD C/AU-R	57	36	127	7.0	38	500

	SI	AMPLE#	Cu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM	Au* PPB
	E	109817	52	6	24	. 2	9	1
	E	109818	84	6	26	. 1	9	2
	Ε	109819	60	9	19	. 1	9	1
	E	109820	72	15	39	. 1	12	1
	Ē	109821	97	10	45	. 1	3	1
	E	109822	64	7	15	. 1	8	1
	E	109823	54	2	7	. 2 . 1	7	1
	E	109824	53	5	7	. 1	8	2
	Ė	109825	65	2	11	. 1	3	1
	E	109826	89	10	23	. 2	5	1
	E	109827	103	6	22	. 1	10	9
	E	109828	22	15	64	. 1	5	2
	E	109829	11	10	62	. 1	2 7	3 1
	E	109830	16	11	6 5	. 1	7	1
	E	109831	72	6	27	. 1	,	1
	E	109832	145	· 3	20	. 1	7	2
	E	109833	118	7	36	. 1	10	1
	Ε	109834	106	4	18	. 1	11	19
	E	109835	84	8	26	. 1	12	2
	E	109836	127	8	38	, 2	6	1
	E	109837	76	6	24	. 1	7	1
•	E	109838	39	2	27	. 1	- 9	2
00 /	£	109839	44	3	30	. 1	8	4
88-6_	_ Ē	<u>_1</u> 09840	64	5	23	. 1	8	2
85-7	E	109841	39	9	139	. 1	19	1
	E	109842	124	8	204	. 1	22	. 2
	E	109843	202	42	139	4.5	28	2920
	E	109844	164	37	221	1.9	73	5285
	E	109845	119	110	331	1.8	32	2
	E	109846	88	7 9	251	2.1	28	32
		109847	92	18	233	. 3	10	1
	E	109848	139	11	127	. 1	5	25
	E	109849	154	9	157	. 1	8	1
	Ē	109850	120	8	101	. 1	10	1
	E	109851	131	13	120	.1	4	4
		109852	133	3	85	. 1	2	2
	S	TD C/AU-R	58	42	132	6.8	44	490

REBAGLIATI GEOLOGICAL PROJECT TA HOOKA FILE # 88-3040 Page 4

SAM	PLE#	Cu	Pb	Zn	Ag	As	Au*
		PPM	PPM	PPM	PPM	PPM	PPB
E 1	09853	146	5	109	.3	3	8
E 1	09854	118	7	84	. 4	2	6
E 1	09855	148	3	77	. 4	3	13
E 1	09856	160	8	76	. 3	2	6
E 1	09857	196	7	79	. 4	4	7

SAPLI		S S S S S S S S S S S S S S S S S S S		11 ??¥	1g PPX	Ti PPM	Co PPE	114. 1781	Ie t) PPH	1 !!!	Au PPN	Th RFS	St PPM		Sb PPN	31 ??E	T ??N	Ca 1	7	La 771	CC 7711	ilg t	34 PM	Ti t	11.1 11.1	11	Ite L	į	??%	14°
12-11-61	161		\$23		19.1	14	3		2.05	3.6	5	2	1	354	32	238	2		1.88		1	•	.58	47	.01	14	.07		.03	2	1485
71-66-62	533	115	286	135	6.1	13	- 4	1104	2.43	27	3	10	ī	417	2	63	2	12	5.49	.045	2	5	. 21	35	.01	3	. 97	. 01	. 05	1	105
7A-44-63	83	195	2142	743	16.5	10	2	1227	2.59	30	3	m	1	428	14	137	2	28	2.23	.013	4	5	. 65	72	.91	3	. 22	.01	. 03	1	150
71-64-64	4	36	23	321	.7	137	38	1434	£.13	237	5	ED.	I	375	1	ţ	2	61	1.32	.127	•	225	2.02	60	.01	5	1.03	.01	.12	1	10
14-18-71	2	145	21	95	.1	207	35	1097	5.90	16	5	II)	1	108	1	2	2	H	2.46	.093	3	301	3.20	71	.01	4	1.84	.01	.17	t	18
TA-68-72	3774	1077	14363	2857	184.5	65	20	177	5.02	360	5	4	1	19	57	197	L 2	60	.15	.846	2	H	.04	10	.01	2	.12	.01	.10	1	3255
71-08-73	2	55	3	68	.6	155	37	1193	6.25	2	5	100	1	334	1	2	2	27	5.35	.096	3	259	4.74	121	.01	1	.43	.01	.26	1	92
1 6054	24	31	76	301	1.2	15	11	714	3.68	26	3	D	1	79	1	2	2	•	2.00	.062	2	12	.39	39	.01	- 4	.15	,04	.06	1	46
SYD C/AU-R	18	57	35	132	5.7	61	28	1050	1.05	38	17	1	36	47	1\$	16	18	56	.41	.009	31	55	.91	171	.06	35	1.94	.06	.15	12	500

REBAGLIATI	GEOLOGICAL.	PROJECT	TA	HOOKA	FTT.E #	88-3040
KUDAMILALI		PROJECT	10	HOOK	E 1 1 1 0 0	00-3040

511913)																								B Al				
88-6053 88-60531 81-6054	2	25	23	176	.5	26	16	419 4.6	24	5	10	1	11	4	2	2	17	.25	113	7	42 .56	64	.15	2 3.66	.92	.05	2	15