0130

RÐ.

GEOLOGICAL REPORT on the FORREST 1-15 MINERAL CLAIMS

1

٠

FILE (10):

TABLE OF CONTENTS

1.0INTRODUCTION12.0LIST OF CLAIMS13.0LOCATION, ACCESS AND GEOGRAPHY24.0AREA HISTORY35.0REGIONAL GEOLOGY86.0PROPERTY GEOLOGY97.0MINERALIZATION107.1Ridge Area127.1.1Forrest Zone127.1.2Knob Showing137.1.2Charging13
2.0LIST OF CLAIMS13.0LOCATION, ACCESS AND GEOGRAPHY24.0AREA HISTORY35.0REGIONAL GEOLOGY86.0PROPERTY GEOLOGY97.0MINERALIZATION107.1Ridge Area127.1.1Forrest Zone127.1.2Knob Showing137.1.2Charrier12
3.0LOCATION, ACCESS AND GEOGRAPHY24.0AREA HISTORY35.0REGIONAL GEOLOGY86.0PROPERTY GEOLOGY97.0MINERALIZATION107.1Ridge Area127.1.1Forrest Zone127.1.2Knob Showing137.1.2Knob Showing13
4.0AREA HISTORY35.0REGIONAL GEOLOGY86.0PROPERTY GEOLOGY97.0MINERALIZATION107.1Ridge Area127.1.1Forrest Zone127.1.2Knob Showing137.1.2Charring13
5.0REGIONAL GEOLOGY86.0PROPERTY GEOLOGY97.0MINERALIZATION107.1Ridge Area127.1.1Forrest Zone127.1.2Knob Showing137.1.2Charring13
6.0PROPERTY GEOLOGY97.0MINERALIZATION107.1Ridge Area127.1.1Forrest Zone127.1.2Knob Showing137.1.2Charring13
7.0MINERALIZATION107.1Ridge Area127.1.1Forrest Zone127.1.2Knob Showing137.1.2Charring13
7.1 Ridge Area127.1.1 Forrest Zone127.1.2 Knob Showing137.1.2 knob Showing13
7.1.1 Forrest Zone 12 7.1.2 Knob Showing 13 7.1.2 Associate Structure 13
7.1.2Knob Showing137.1.2Associate Standard13
7.1.2. According Theorem
7.1.3 Azurite Snowing
7.1.4 Half-Ounce Showing 14
7.1.5 V.G. Showing 14
7.2 North Ridge Area 15
7.2.1 Triple Creek Showings FILMED 15
7.2.2 Creek Showing
7.2.3 Gulch Showing 16
7.3 Midway Area 17
7.4 South Forrest Area 17
7.4.1 Alpine Showings 17
7.4.2 Pond Showings 18
7.5 Gossan Creek/Forrest Kerr River Arseno-Float Area 19
8.0 DISCUSSION 19
9.0 CONCLUSIONS GEOLOGICAL BRANC \mathbf{H}^2
SSESSMENT REPORT
SUB-RECORDER
RECEIVED
JAN 2 3 1999
M.R. #
VANCOUVER, B.C.

GEOLOGICAL REPORT on the FORREST 1-15 MINERAL CLAIMS

TABLE OF CONTENTS

-

LIST OF FIGURES

.

N

.

			Following	Page
Figure	1	Property Location Map	1	
Figure	2	Claim Map	1	
Figure	3	Regional Geology Map	8	
Figure	4	Regional Mineral Occurrence Map	8	
Figure	5	Property Mineralization Map	10	
Figure	6	Rock Chip Sample Location Map	pocket	

APPENDICES

Appendix	I	Bibliography
Appendix	II	Cost Statement
Appendix	III	Assay Certificates
Appendix	IV	Engineer's Certificate
Appendix	v	Statement of Qualifications

1.0 INTRODUCTION

The Forrest 1-15 claims (278 units) are situated within the Liard Mining Division of northwestern British Columbia north of the Iskut River and immediately west of the Forrest Kerr River. Skyline Exploration Ltd.'s Stonehouse Gold deposit and Cominco/Delaware Resource Corp.'s Snip deposit are 30 kilometres to the west-southwest while the Sulphurets Gold Camp (Newhawk/ Lacana, Catear and western Canadian Mining Corp.) is situated 40 kilometres to the south. Calpine Resources Inc./Consolidated Stikine Silver Eskay Creek gold project is 15 kilometres to the southeast. Bob Quinn Lake and the Stewart-Cassiar Highway are located 30 kilometres to the east-northeast.

The Forrest 1-4 claims were staked in late October, 1987 and pre-date all claims in the immediate area. No previous exploration work nor mineral occurrences were known to exist on the property. In August, 1988 a small assessment work program was commenced on this original claim block. This resulted in immediate location of an extensive hydrothermal alteration system containing gold and copper mineralization.

Based on this, additional staking of the Forrest 5-15 claims was done and the project enlarged to the state discussed in this report. This resulted in the location of a number of other occurrences over a strike distance of some 7 kilometres. At this time it is possible that the mineralized occurrences are part of one mega-system although the intervening areas have not been explored due to time and personnel availability.

Mineralization occurring in a variety of styles has included arsenopyrite, chalcopyrite, galena, malachite/azurite, pyrite, bornite, hematite and visible gold. Gold values up to 5.802 oz/ton have been obtained.

2.0 LIST OF CLAIMS

Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the following claims are owned by Mr. Steve Todoruk.

Mr. Todoruk is presently holding the claims subject to a partnership agreement in which the authors, Mr. Todoruk and Mr, Ikona, are participants.

Claim <u>Name</u>		Record <u>Number</u>	No. of Units	Record Date	Expiry Date
Forrest	1	4361	20	November 24, 1987	
Forrest	2	4362	20	November 24, 1987	
Forrest	3	4363	20	November 24, 1987	
Forrest	4	4364	20	November 24, 1987	
Forrest	5	5155	20		
Forrest	6	5156	20		
Forrest	7	5157	20		
Forrest	8	5158	20		
Forrest	9	5159	20		
Forrest	10	5160	20		
Forrest	11	5161	20		
Forrest	12	5162	20		
Forrest	13	5163	20		
Forrest	14	5347	12		
Forrest	15	5348	6		

Two years assessment work have been filed on all of the claims.

3.0 LOCATION, ACCESS AND GEOGRAPHY

The Forrest 1-15 mineral claims are located approximately 110 kilometres east of Wrangell, Alaska, and 100 kilometres north of Stewart, British Columbia, on the eastern edge of the Coast Range Mountains (Figure 1). Bob Quinn Lake on the Stewart-Cassiar Highway is situated 30 kilometres to the east-northeast while Bronson airstrip (servicing Cominco/Delaware's Snip deposit and Skyline Exploration's Stonehouse Gold deposit) is 30 kilometres to the westsouthwest. Forrest Kerr River flows immediately east of the claims while the Iskut River is located just to the south of the Forrest 9 and 10 claims. Coordinates of the claims area are 56°47' north latitude and 130°44' west longitude, and the property falls under the jurisdiction of the Liard Mining Division.

------ Pamicon Developments Ltd. --

Access to the property is via helicopter from the Bronson Creek gravel airstrip, Bob Quinn Lake or the Forrest Kerr airstrip located 15 kilometres to the northwest at the headwaters of the Forrest Kerr River. Daily scheduled flights to the strip from Smithers, Terrace and Wrangell, Alaska have been available during the field season using a variety of fixed wing aircraft.

The construction of a road 65 kilometres long has been proposed by C.K. Ikona of Pamicon Developments Ltd. on behalf of Skyline Explorations Ltd. The road would be situated just south of the Forrest claims on the south side of the Iskut Valley to connect the Stewart-Cassiar Highway with the Cominco/Delaware-Skyline gold mines at Bronson Creek.

Geographically, the claims area is unlike much of the typical rugged, steep and heavily forested ground being worked further to the west closer to the Bronson Creek area. Elevations along the eastern side of the claims near the Forrest Kerr River approximate 300 metres and climb to 1800 metres along the western border of the property. To date, all mineralized showings have been found above treeline between elevations of 1100 and 1600 metres. Topography above treeline is essentially gently rolling. Lower slopes are predominantly covered with large spruce and fir timber. The property at higher elevations should be easily workable between the months of late May and mid-October.

4.0 AREA HISTORY

١

Figure 4 of this report presents a 1:500,000 scale area of northwestern B.C. from Stewart in the south to near Telegraph Creek in the north. This represents some 225 km. Within this area, which has been referred to as the Stikine Arch, mining activity goes back to the turn of the century. Due to the size of the region it historically has been referred to in more specific areas ranging from the Stewart area to Sulphurets, Iskut and Galore Creek. As can be noted in Figure 4, however, all of these individual camps appear to be related to the Stikine Arch as a whole. Recent discoveries appear to be filling in areas between these known mineralized camps. It is probable that

Pamicon Developments Ltd. -

the entire area be considered as one large mineralized province with attendant subareas. As the Forrest claims are located near the Iskut and Sulphurets-Tom MacKay areas a more detailed history of these areas is presented below.

The first recorded work done in the Iskut Region occurred in 1907 when a prospecting party from Wrangell, Alaska staked nine claims north of Johnny Mountain. Iskut Mining Company subsequently worked crown granted claims along Bronson Creek and on the north slope of Johnny Mountain. Up to 1920, a 9 metre adit revealed a number of veins and stringers hosting galena and gold-silver mineralization.

In 1954, Hudsons Bay Mining & Smelting located the Pick Axe showing and high grade gold-silver-lead-zinc float on the open upper slopes of Johnny Mountain, which today is part of Skyline Explorations Ltd.'s Stonehouse Gold deposit. The claims were worked and subsequently allowed to lapse.

During the 1960s, several major mining companies conducted helicopter borne reconnaissance exploration programs in a search for porphyry-copper-molybdenum deposits. Several claims were staked on Johnny Mountain and on Sulphurets Creek.

Between 1965 and 1971, Silver Standard Mines, and later Sumitomo, worked the E + L prospect on Nickel Mountain at the headwaters of Snippaker Creek. Work included trenching, drilling and 460 metres of underground development work. Reserves include 3.2 million tons of 0.80% nickel and 0.60% copper.

In 1969 Skyline staked the Inel property after discovering massive sulphide float originating from the head of the Bronson Creek glacier.

During 1972, Newmont Mining Corporation of Canada Limited carried out a field program west of Newmont Lake on the Dirk claim group. Skarn-type mineralization was the target of exploration. Work consisted of airborne and ground magnetic surveys, geological mapping and diamond drilling. One and one-half metres grading 0.220 ounces gold per ton and 15.2 metres of 1.5% copper was

intersected on the Ken showing.

ł.

In 1980 Dupont Canada Explorations Ltd. staked the Warrior claims south of Newmont Lake on the basis of a regional stream sediment survey. In 1983, Skyline Explorations Ltd. and Placer Developments Ltd. optioned the Warrior claims from Dupont. Efforts were directed at sampling and extending several narrow quartz-pyrite-chalcopyrite veins with values ranging from 0.1 to 3.0 oz/ton gold. Geophysics and coincident geochemical values indicated a significant strike length to the mineralized structure. The Warrior claims were allowed to lapse in 1986, at which time, Gulf International Minerals Ltd. acquired the McLymont claims covering much the same area.

Assays of interest from recent Gulf drilling are listed below (Gulf International Minerals Ltd., Annual Report, 1987 and news releases):

Drill	Interval	Length	Copper	Silver	Gold
<u>Hole</u>	(feet)	(feet)	(%)	(oz/ton)	(oz/ton)
87-25	343.0-373.0	30.0	0.23	0.11	0.404
	409.3-412.0	2.7	0.55	0.35	0.250
	470.2-473.8	3.6	0.42	0.19	1.520
87-29	167.0-170.0	3.0	0.001	0.01	0.140
	205.0-241.5	36.5	0.97	39.73	1.605
88-28	213.9-229.0	15.1			0.810
	260.5-276.6	16.1			0.645
	354.0-363.2	9.2			0.319

(average grade = 149.0 feet of 0.290 oz/ton gold)

After restaking the Reg property in 1980, Skyline carried out trenching and drilling for veined high-grade gold and polymetallic massive sulphide mineralization on the Reg and Inel deposits between 1981 and 1985.

In 1986, drilling and 460 metres of underground cross-cutting and drifting on the Stonehouse Gold Zone confirmed the presence of high grade gold mineraliza-

tion with additional values in silver and copper over mineable widths with good lateral and depth continuity. As of January 1988, reserves on the Stonehouse Gold Zone were reported as:

ŧ.

	Au (oz/ton)	Tons
Total Measured	1.246	121,000
Total Drill-Indicated	0.556	236,875
Total Inferred	0.570	700,000
Subtotal	0.644	1,057,875
McFadden	2.800	30,000
Ore Reserve Total	0.704	1,087,875

On the Cominco/Delaware Snip claims immediately north of the Stonehouse Gold deposit, approximately 20,000 metres of diamond drilling has been carried out defining the Twin Zone gold deposit. Three thousand metres of underground development work has also been completed as the project readies for production. As of December, 1987, reserves on the Twin Zone were reported as:

		Au	Tons	
		(oz)		
Total	Inferred	0.700	1.200.000	

Also, during 1987, Inel Resources Ltd. commenced an underground drifting and diamond drilling program along the main cross-cut intent on intersecting the Discovery Zone which hosts gold-bearing polymetallic massive sulphide mineralization. Underground drilling on the centre section of workings has returned in U88-3 a grade of 0.769 oz/ton gold for 4.1 metres (September, 1988). As of November, 1988, 730 metres of underground development has been completed in the area of the Discovery zone.

Western Canadian Mining Corp. in 1987 drilled tested to Khyber Pass massive sulphide showing on their Gossan claims in the Iskut area while in 1988 drilling was carried out on their Kerr project copper-gold porphyry deposit in the Sulphurets camp to the southeast.

Tungco Resources Corporation has drill tested four main gold/copper quartz vein targets; the Bluff, No. 7, Swamp and Gold Bug Zones. The Bluff Zone has been delineated 70 metres along strike and 60 metres downdip with better intersections grading up to 0.243 oz/ton gold across 2.45 metres. The No. 7 Vein returned 1.12 metres of 0.651 oz/ton gold. Drill testing was also carried out near the western edge of the claims on the Boot Zone lead/zinc/copper/silver/gold prospect.

During 1988 Pezgold Resource Corp./International Prism Exploration drill tested the old Newmont Ken Zone magnetite/chalcopyrite/gold skarn zone north of Gulf International Minerals' Northwest Gold Zone. High grade silver-lead-zinc was also found on the eastern side of the property.

In late 1988, Calpine Resources Incorporated/Consolidated Stikine Silver announced several exciting drill holes on their Eskay Creek Project at Tom McKay Lake. Drill hole CA88-6 reported values of 0.730 oz/ton gold across 96.5 feet.

South of Calpine's Eskay Creek Project and in the Sulphurets Gold Camp several properties are quickly moving into production phases as listed below:

Project	Mineral Reserves
Newhawk/Granduc/Lacana Mine	2,000,000 of 0.462 oz/ton Au, 21.78 oz/ton Ag
Catear Resources Ltd. Mine	291,916 of 0.835 oz/ton Au, 2.44 oz/ton Ag
Echo Bay Mines/Magna/ Silver Princess Project	470,000 of 0.270 oz/ton Au, 1.31 oz/ton Ag

Magenta Development Corp. also discovered an exciting gold/silver/copper/lead quartz vein in 1988 on the Rob claims in the Skyline area with values in trenches up to 2.567 oz/ton Au across 9.8 feet including 7.394 oz/ton Au across 3.3 feet.

5.0 REGIONAL GEOLOGY

The following regional geological interpretation is taken from B.C. Geological Survey Branch publication, in press, Exploration in British Columbia 1987 by D.V. Lafebure and M.H. Gunning.

A northwest-trending belt of Permian to Lower Jurassic volcanic and sedimentary rocks and their metamorphic equivalents trends northward from Alice Arm to Telegraph Creek and forms part of Stikinia. It is bounded to the west by the Coast Complex and is overlapped to the east by the clastic sediments of the Bowser Basin.

The dominant lithologies in the Bronson Creek area are clastic sediments and volcanics with minor carbonate lenses which are intruded by a diverse suite of intrusive rocks, most commonly granitic and syenitic. The sedimentary rocks are sandstones (typically greywackes), siltstones, shales, argillites, conglomerates and minor limestones. Volcanic rocks vary in composition from mafic to felsic and display a wide variety of igneous, pyroclastic and volcaniclastic textures.

Quaternary and Tertiary volcanics occur at Hoodoo Mountain, along the Iskut River near Forrest Kerr Creek, and in several localities along Snippaker Creek.

Kerr (1948) correlated most of the rocks along Bronson Creek with Triassic volcanics that he had seen farther to the north and northwest. These volcanics consist of intensely folded and sheared tuffs, agglomerates, lavas, rare pillow lavas and bedded sediments. He believed that the volcanics are overlain by Triassic argillites with lenses of limestone. The lower northern and western slopes of Johnny Mountain are underlain by pre-Permian metamorphosed shale, sandstone and limestone.

Exploration geologists have defined stratigraphic columns for specific properties (Birkeland and Gifford, 1972; Sevensma, 1981) and for the area as a whole

(Parsons, 1965; Bending, 1983). Bending defined a stratigraphic column with black argillite conformably overlain by banded siltstone which underlies a green volcanic unit composed principally of intermediate to felsic rocks. The green volcanic unit has an irregular upper contact with the "Upper Tuffaceous Sedimentary Unit," a sequence of limestones, tuffaceous sandstones, argillites and siltstones with lenses of conglomerate near the upper contact. At the top of Bending's sequence is hornblende-biotite andesite tuff and subordinate breccia. Based on descriptions by Kerr (1930, 1948), Bending correlated the basal argillite and siltstone with the upper Paleozoic, the green volcanic unit with the Triassic and the upper tuffaceous sediments with the lower Jurassic. Fossils collected from 350 metres southwest of Snippaker Peak have been determined as Lower Jurassic, probably Toarcian age, by H.W. Tipper of the Geological Survey of Canada (Graf, 1985).

Grove (1986b) subdivided the sedimentary and volcanic rocks on the top of Mount Johnny into the Unuk River and Betty Creek formations of the Hazelton Group, based on correlations with his work to the east.

6.0 PROPERTY GEOLOGY

Volcanic, sedimentary and metamorphic rocks cover the Forrest 1-15 claims. Argillite, greywacke, mudstone, chert and limestone are found on the Forrest 1 and along the northern boundary of the Forrest 3 claim block while andesitic volcanics consisting of agglomerate and tuffs cover the south into the Forrest 7 and 8 claim boundary area.

An extensive limestone unit (skarned immediately west of the Forrest 3 - pyrite + magnetite) passes through the western side of the Forrest, 5, 7 and 14.

Metamorphic rocks consisting of phyllites and schists cover the west side of the claims area on the Forrest 3, 5 and 7 claims.

Intrusive rocks mapped to date include an east-west trending syenite sill, a plagioclase porphyry and a hornblende porphyry dyke all found near the centre of the Forrest 3. A diorite plug has also been located at the 1780 metre elevation level on the Forrest 12 claim block.

Abundant diorite to quartz monzonite intrusive float is found at the mouth of Gossan Creek where it meets the Forrest Kerr River approximately 500 metres east of the Forrest 2 and 4 claim boundary.

7.0 MINERALIZATION

Sulphide mineralization with attendant gold, copper and silver values is extremely widespread on the Forrest claims. Following the initial discovery of visible gold in quartz vein float, only 20 man days of prospecting and sampling were spent in an attempt to define preliminary geology and character of the showings.

Generally, the mineralization is hosted in a myriad of quartz veins and shear zones. Those seen to date vary from a few centimetres to several metres in width. A fundamental relationship between all the structures and mineralization noted is suspected. This would imply favourable geologic potential over some 7 kilometres in strike length. However, as continuity over this distance remains to be demonstrated, for the purpose of this report the showings have been grouped into four general areas and then into showings within these areas as follows:

- 1. Ridge Area
 - Forrest Zone
 - Knob Showing
 - Azurite Showing
 - Half-Ounce Showing
 - V.G. Showing

- 2. North Ridge Area
 - Triple Creek Showings
 - Creek Showing
 - Gulch Showing

3. Midway Area (no individual showings named)

- 4. South Forrest Area
 - Alpine Showings
 - Pond Showings

Following limited geological investigation, it is felt that the veining and shearing is associated with a major north-northeasterly trending fault referred to as the Forrest Fault. The veining which lies to the west of the fault constitutes a major vein swarm or mega-stockwork further referred to as the Forrest System.

The Forrest Zone within the Ridge Area is perhaps the best example of the mega-stockwork system. Locally, within an exposed area of some 400 x 600 metres, a myriad of quartz veins occur ranging from centimetres to several metres in width. Two preferred orientations of $130^{\circ}/60-85$ NE and $000^{\circ}/90^{\circ}$ have been identified, although, intertwining of other orientations on veins gives the appearance of a stock work system.

Individual veins within the system may vary from barren bullish quartz to sparsely or well mineralized with sulphides (see following sections of this report).

All other areas listed above have revealed a multitude of veining with further work necessary to determine their extent.

Several different forms of mineralization have been noted at various locations in the areas known to date:

- gold in arsenopyrite quartz veins/shears

- gold with chalcopyrite in shears and quartz veins
- gold with chalcopyrite and galena in quartz veins
- as visible gold with bornite and hematite in quartz veins

Initial observations of the sulphide mineralization and associated gold values indicate a possible mineralized zonation related to elevation and/or depth of emplacement of the particular showings. For example, arsenopyrite and galena have only been observed in the North Ridge and South Forrest Areas which both lie some 200 to 300 metres lower in elevation that the Ridge zone which exhibits primarily chalcopyrite.

7.1 RIDGE AREA

7.1.1 Forrest Zone

The Forrest Zone is located within the south half of the Forrest 3 claim block at an elevation of 1400 metres. The zone consists of a mega-quartz vein stockwork system measuring 400 m x 600 m. Several orientations of quartz veins exist, but predominant trends are $130^{\circ}/60-85^{\circ}NE$ and $000^{\circ}/90^{\circ}$. Vein widths commonly vary between 10 and 30 cm but several exceed these widths and attain thicknesses of up to 6 metres. Several hundred quartz veins are located within the zone.

Vein alteration and sulphide content vary dramatically from vein to vein. Chalcopyrite is the most common form of mineralization found in the area. Minor pyrite is locally found in some wallrock. Chlorite and weak to moderate limonite alteration are most noted types of alteration associated with sulphide mineralization. Occasionally soft grey carbonate crystals infill vugs within the quartz veins.

Sec.

1

Typical Forrest Zone quartz vein stockwork outcrop

Forrest Zone quartz veining looking north

Of 23 rock chip samples collected from obviously mineralized (chalcopyrite) veins 12 samples returned assay values ranging between 0.30% and 5.12% copper. Low gold and silver values are reported.

From exposure seen on the Forrest claims, it is believed that the Forrest Zone mega-quartz vein stock work system is the higher level expression of the North Ridge Area auriferous-arsenopyrite quartz veins and shears as well as the Creek Showing chalcopyrite shear.

7.1.2 Knob Showing

Near the east side of the Forrest Zone, an area of gossan outcrop occurs hosting similar quartz veins as is found in the Forrest Zone. Chalcopyrite occurs in a much stronger style. Assays from this zone are listed below:

Sample	<u>Cu</u>	Ag	Au
Number	(%)	(oz/ton)	(oz/ton)
23537	0.61	0.18	0.016
23538	4.71	2.31	0.012
23539	2.50	1.49	0.026
23540	0.81	0.35	<0.005
23541	0.88	0.21	<0.005
23542	2.12	0.65	0.005
23543	2.39	0,54	<0.005
23547	6.90	2.02	0.011
23548	2.79	0.55	<0.005
23549	3.77	0.18	0.005
23550	3.94	0.69	0.005

7.1.3 Azurite Showing

The Azurite Showing is situated 50 to 75 metres to the south of the Knob Showing. A flat-lying shear or bedded semi-massive to massive chalcopyrite zone occurs in an outcropping surface area measuring at least 5 x 8 metres in

size. The zone appears to be greater than 30 cm thick. Host rock composition appears to be of a silicified sediment (?) variety. Snow covers the zone to the south. Assays from this zone are summarized below:

Sample	Cu	1		Ag		Au
Number	(ppm)	(%)	(ppm)	(oz/ton)	(ppb)	(oz/ton)
3386		6.14		0.81		0.002
14664		>10	76.6		380	
14665	21,125		24.5	~~~	410	
14666	3,318		7.1		40	
14694	8,289		36.9		740	

7.1.4 Half-Ounce Showing

The Half-Ounce Showing is situated uphill to the west from the Azurite Showing approximately 200 metres. A 20 cm flat-lying quartz vein with limonite alteration and malachite staining appears to be related to a plagioclase porphyritic intrusive:

Sample	Au
Number	(oz/ton)
23510	0.504

Forty metres to the east and apparently associated with the same feldspar porphyry intrusive is a subparallel quartz vein measuring 20 cm. Assay values are as follows:

Sample	Ag	Cu	Au
Number	(ppm)	(ppm)	(ppb)
23661	22.4	11,367	120

7.1.5 V.G. Showing

The V.G. Showing occurs in the southwest corner of the Forrest 3 claim block at an elevation of approximately 1585 metres above sea level. Two blocks of

quartz vein talus have been discovered hosting bornite + hematite + malachite + azurite + visible gold. The visible gold occurs as blebs and/or slivers 3 mm to 5 mm in size. The talus blocks appear to be relatively local in transport as does most talus found in this area of the Forrest 3 claim block. The two visible gold samples are found approximately 40 to 50 metres apart from each other. Assay results from samples of this material are listed below:

Sample	C	u	Au	
Number	(%)	(ppm)	(oz/ton)	
23507	0.61		5.820	
23569	0.03		0.040	
23577		387	0.168	

A semi-permanent snow field covers rocks and outcrop 25 to 35 metres upslope from the visible gold samples.

7,2 NORTH RIDGE AREA

7.2.1 Triple Creek Showings

The Triple Creek Showings are located in the west-central Forrest 3 claim block along the North Ridge area on the south side of Gossan creek at an elevation of 1130 metres. At least six individual quartz veins have been found in three creek draws to host anomalous gold + arsenopyrite + chalcopyrite mineralization across an area of 125 to 150 metres. Arsenic, cadmium, strontium, silver, copper and gold were found to be anomalous in most veins. Assays are listed below:

Sample	As	Cd	Sr	Ag	Cu	A	u
Number	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(oz/ton)
23664	80,217	148.3	110	0.9			0.347
23665	88,142	163.9	115	1.2			0.438

15

- Pamicon Developments Ltd. -

Sample	As	Cd	Sr	Ag	Cu	A	u
Number	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(oz/ton)
23666	29,436	51.8	40	3.8	1,492		0.074
23667	492	3.8		0.9	243	60	
23668	121				481	30	
23633	65,601		36	0.3		8,940	0.268
14685	73,146		64	0.3		2,800	0.066
23597	16,453		10	0.6	84	740	
23599	19,115		104		76	1,470	

7.2.2 Creek Showing

The Creek Showing is located at an elevation of 1170 metres in the next main creek draw 100 metres east of samples 23664 to 23666 (Triple Creek Showings). Samples 23597 and 23599 (auriferous arsenopyrite quartz veins) are located 30 to 50 metres directly downhill.

A shear zone up to 1.5 metres wide trending 045/90° hosts massive chalcopyrite mineralization. Prospect samples of copper mineralization have given anomalous results in gold, silver and copper as listed below:

Sample	<u> </u>			Ag		Au	
Number	(ppm)	(%)	(ppm)	(oz/ton)	(ppb)	(oz/ton)	
23626		>10	>100.0	3.29	5,300	0.160	
23627		>10	>100.0	3.72	>10,000	0.274	
23631		>10	>100.0		4,300	0.125	
23632	25,428		32.7		1,510	0.048	
23635	15,046		18.5	_ →	2,530	0.073	

7.2.3 Gulch Showing

This showing is located approximately 300 to 500 metres along the same ridge to the east from the Triple Creek Showings. An arsenopyrite shear measuring approximately 10 to 20 cm occurs within a pyritized shear zone possibly up to 6 to 7 metres wide. Assay results from this zone are listed below:

Sample	As	Au		
Number	(ppm)	(ppb)		
52665	>1,000	1,960	(Orequest	sample)

A limonitic quartz vein with chalcopyrite mineralization located just at the top of the chute leading down to the Gulch Showing at an elevation of 1340 metres assays as follows:

Sample	As	Cu	Ag		<u>Au</u>	
Number	(ppm)	(ppm)	(ppm)	(ppb)	(oz/ton)	
14691		600		3,630	0.083	
52661	>1,000	8,902	15.5	7,200	0.193 (0)	request sample)

7.3 MIDWAY AREA

The Midway Area is located in the northeast corner of the Forrest 5 claim block. In this area several quartz veins have been found which very briefly have been examined.

Quartz veins occur with widths of between 2 and 3 metres wide. Mineralization noted consisted of malachite and chalcopyrite. Iron-carbonate veining or dykes intrude the quartz veins locally while calcite crystals similar to those seen on the Forrest 3 and Forrest 7 infill open space vugs.

7.4 SOUTH FORREST AREA

7.4.1 Alpine Showings

The Alpine Showings occurs near the Forrest 7 and 8 2-South identification post. In this area intense quartz veining is found immediately west and uphill from the main north-south trending Forrest fault. Arsenopyrite, chalcopyrite, pyrite + malachite/azurite comprise mineralization found in limonite altered quartz veins varying in thickness between 10 cm and 1 metre.

The Alpine Showings lie at an elevation of approximately 1220 metres which corresponds in elevation to the Triple Creek Showings in the North Ridge Area located on the Forrest 3. Topography in this area of the claims is gently rolling, meadowy and above treeline. Soil development is excellent.

Sample	As	Cd	Ag	Au		
Number	(ppm)	(ppm)	(ppm)	(ppb)	(oz/ton)	
23587	57, 377	0.1	3.1	2,900	0.102	
23588	19,976	0.1	0.8	520		
23589	56,861	42.5	1.1	520		
23604	27,703	14.5	8.8	3,460	0.079	
23670	7,567	3.2	8.8	1,540	0.030	
23677	51		5.2	2,160	0.051	
3385					0.356	

Assays obtained from preliminary prospecting to date are listed below:

7.4.2 Pond Showings

The Pond Showings are located approximately 250 to 300 metres to the southwest of the Alpine Showings on the Forrest 7 claim at a similar 1220 metre elevation level. Quartz veining hosting predominantly chalcopyrite + malachite/ azurite + arsenopyrite occurs continuously between the two occurrences. Topography again is gently rolling with excellent soil development.

Within the Pond Showings several subparallel limonitic quartz veins varying between 10 and 75 cm host significant amounts of galena, chalcopyrite and associated malachite/azurite. A marked increase in chalcopyrite + galena mineralization occurs here over an area at least 50 metres long.

Anomalous values in silver, copper and lead have been obtained from sampling to date. Assay values are listed below:

Sample	Cu	Pb	A	g	Au
Number	(ppm)	(ppm)	(ppm)	(oz/ton)	(ppb)
23611	4,466	625	19.8		140
23612	15,502	9,257	37.4	1.06	130
23613	11,729	1,053	45.6	1.36	90
23614	19,551	19,906	79.6	2.15	360
23615	4,543	18,505	66.6	1,91	180
23616	2,177	26,488	95.2	3.01	510
23617	4,598	844	8.7		90
23618	7,598	2,527	24.9	.	80
23619	24,949	175	27.6		685
14679	1,486	893	6.1		nd
14680	9,186	20,286	81.1	1.71	200

7.5 GOSSAN CREEK/FORREST KERR RIVER ARSENO-FLOAT AREA

Quartz vein float with silicified wallrock hosting strong arsenopyrite mineralization was sampled at the confluence of Gossan Creek with the Forrest Kerr River. The assay result from this sample is listed below:

Sample	As	Au
Number	(ppm)	(oz/ton)
14695	30,686	0.300

8.0 DISCUSSION

The Forrest 1-15 claims comprise 278 units located halfway between Bob Quinn Lake at the Stewart-Cassiar Highway and Bronson Creek in northwestern British Columbia where Skyline Explorations Ltd. and the Cominco/Delaware Resources Corp. joint venture each have mineral reserves in excess of 1,000,000 tons grading 0.700 oz/ton gold. Calpine Resources Inc./Consolidated Stiking Silver Eskay creek gold project is located 15 kilometres to the south-southeast. Preliminary field work has identified four main areas of mineralizing significance on the claims:

- Ridge Area
- North Ridge Area
- Midway Area
- South Forrest Area

All four areas appear to be strongly associated with the Forrest fault which trends approximately 000-010°, has a strike length of not less than 12 kilometres and passes through the entire claims area. All four areas occur to the west of the Forrest fault above tree line level. As yet undetermined, these four areas may represent one vast hydrothermal quartz vein system (Forrest system).

Brief field work during August and September, 1988 has discovered eleven separate mineral occurrences, most of which appear to be strongly related to a mega-quartz vein stockwork system.

Gold mineralization up to 5.802 oz/ton gold has been discovered on the claims. Gold occurs in four forms found to date:

- gold in arsenopyrite quartz veins/shears

- gold with chalcopyrite in shears and quartz veins
- gold with chalcopyrite and galena in quartz veins
- as visible gold with bornite and hematite in quartz veins

On the Forrest 3 claim in the Ridge Area a mega-quartz vein stock work system measuring approximately 400 metres x 600 metres occurs at an elevation of 1400 metres. Chalcopyrite is the dominant sulphide seen in several veins ranging

in values between 0.30% to 5.10% copper. Peripheral to this stockwork system but possibly related are several other significant showings:

- semi-massive chalcopyrite occurring either as a flay-lying shear or a conformable bedded sulphide zone with values >2,0 oz/ton silver, >10% copper and up to 740 ppb gold
- copper/silver/gold quartz veins with values up to 6.90% copper, 2.50 oz/ton silver and 0.026 oz/ton gold
- auriferous quartz veins associated with plagioclase porphyritic intrusives and having values up to 0.502 oz/ton gold
- quartz vein talus with strong bornite + hematite + visible gold associations assaying up to 5.802 oz/ton gold

North of the Ridge Area along lower elevations around 1160 metres in the North Ridge Area six quartz veins sampled (Triple Creek Showings) within three separate creek draws indicate an enrichment and possible auriferous sulphide zonation in arsenic, cadmium, silver, copper and gold. Three quartz veins sampled assayed 0.438 oz/ton gold, 0.347 oz/ton gold and 0.074 oz/ton gold while the remaining veins were geochemically anomalous in gold with values ranging up to 1,470 ppb gold. Based upon the aerial extent (150 to 200 metres) of these gold bearing arsenopyrite quartz veins at this elevation, it is very plausible to suggest a gold-sulphide zonation may well exist lower down within the much larger (400 x 600 metres) Forrest Zone mega-quartz vein system.

Approximately 125 to 150 metres east of the Triple Creek Showings and less than 50 metres up hill from one of the auriferous arsenopyrite quartz veins is a chalcopyrite shear structure (Creek Showing) hosting gold, silver and copper with values up to 0.274 oz/ton gold, 3.72 silver and >10% copper.

Along the same ridge face on the south side of Gossan Creek and 300 to 400 metres east of the Creek Showing is an auriferous arsenopyrite shear structure also near an elevation of 1400 metres. Air photo examination suggests this shear zone may extend across Gossan Creek to the north.

On the Forrest 7 and 8 mineral claims a similarly strong quartz veining system has been identified at an elevation of 1220 metres. Sulphide mineralization in this area is strong and appears similar to that found along the North Ridge Area showings on the Forrest 3 claim. Mineralization consists of arsenopyrite, chalcopyrite, pyrite and galena. Within the Alpine Showings a sample of arsenopyrite quartz veining has returned an assay of 0.356 oz/ton gold. Three to four hundred metres to the southwest are several strongly mineralized galena and chalcopyrite quartz veins with values up to 95.2 ppm Ag, 24,949 ppm Cu, 26,488 ppm Pb and 685 ppb Au.

9.0 CONCLUSIONS

The Forrest claims are at an early stage of development with most of the work to date restricted to prospecting in areas easily identified from the air as containing quartz veining.

These areas appear to be associated with a mega-hydrothermal system extending for in excess of 7 kilometres in strike length with widths up to 500 metres although continuity throughout the strike length has yet to be demonstrated. Should this be the case the property contains one of the largest known hydrothermal systems in Western Canada.

The system has demonstrated that it contains anomalous amounts of metals with gold, copper, silver and minor base metals being of economic interest.

An aggressive exploration and development program on the property is required to determine if any areas of the system will develop grades and tonnages sufficient to produce ore bodies.

S.L. Todoruk, Geologist

C.K. Ikona, P.Eng.

APPENDIX I

.

.....

,

.

BIBLIOGRAPHY

BIBLIOGRAPHY

Caulfield, D.A. and C.K. Ikona (1987): Geological Report on the GIM Mineral Claim.

Caulfield, D.A. and C.K. Ikona (1987): Geological Report on the Josh, Josh 2-4 Mineral Claims.

Costin, C.P. (1973): Assessment Report 4150, Dirk Claims, Newmont.

Delaware Resources Corp.: Progress Report, Snip Prospect, November 19, 1987.

Gulf International Minerals Ltd.: Annual Report, February 1988.

Grove, E.W. (1985): Geological Report and Work Proposal on the Skyline Explorations Ltd. Inel Property.

Grove, E.W. (1986): Geological Report, Exploration and Development Proposal on the Skyline Explorations Ltd. Reg Property.

Kowalchuk, J. (1982): Assessment Report 10,418, Warrior Claims, Dupont Exploration.

Lafebure, D.V. and M.H. Gunning (1987): Exploration in British Columbia 1987, in press, B.C. Geological Survey Branch publication.

Skyline Explorations Ltd.: Annual Report 1987.

- Sorbara, J. Paul (January 11, 1988): Geological Report on the Joy 1 & 2 Mineral Claims for Brenwest Mining Ltd.
- Ticker Tape Resources Ltd.: News releases dated September 21, 1987 and October 13, 1987.

Todoruk, S.L. and C.K. Ikona (1987): Geological Report on the Stu 1 & 2 Mineral Claims.

- Todoruk, S.L. and C.K. Ikona (1987): Geological Report on the Gab 11 & 12 Mineral Claims and Stu 8 & 9 Mineral Claims.
- Todoruk, S.L. and C.K. Ikona (1987): 1987 Summary Report on the Sky 4 & 5 and Spray 1 & 2 Claims.
- Todoruk, S.L. and C.K. Ikona (1987): Geological Report on the Stu 4 & 5 Mineral Claims.

Tungco Resources Corporation: News release dated December 1, 1987.

Western Canadian Mining Corp.: News release dated November 12, 1987.

APPENDIX II

٠

`

.

-

٠

.....

COST STATEMENT

COST STATEMENT FORREST 1-15 CLAIMS JULY 1 to NOVEMBER 8th, 1988

\$

Wages \$ 4,550.00 Senior Geologist - 13 days @ \$350 Field Geologist - 13 days @ \$250 3,250.00 Prospector - 16 days @ \$250 4,000.00 2,200.00 Samplers - 11 days @ \$200 P.Eng. - 4 days @ \$450 1,800.00 Field Support Crew 963.64 500.00 Office and Logistical Support \$17,263.64 Man Day Camp Cost - 63 days @ \$125 7,875.00 Equipment 1,400.00 G. Rayner & Associates 865.95 10,806.82 Helicopter 1,694.13 Reproduction and Photos 750,86 Fixed Wing Travel and Accommodation 589.79 258.77 Communication 203.72 Freight 5,900.50 Assays 5,000.00 Report 4,519.06 **Project Supervision** 4,056.50 Recording Fees Total This Project \$61,184.74
ASSAY CERTIFICATES

APPENDIX III

`

,

.

VGC	VANG NAIN OFFICE 1998 Tr Varcouver (604)251-56	AND L iueph B.C. 56 FA	CHEM ABORATORY Street VSL 1K5 X:254-5717,	LAB LIN BRANCH 1630 PANE VANCOUVER, I (604) 25	ITED OFFICE DORA ST. B.C. V5L 1L6 1-5656		
REPORT NUMBER: 880884 AA	JOB NUMBER: 890984		PANICON DEVI	ELOPHENT LTD.	PAGE	1 OF	1
SAMPLE #		Cu %	РЬ %	Zn %	Ag oz/st	07	Au :/st
23507		61	<.01	<.01	. 26	5.	820
23510		24	<.01	.01	.23	-	504
23513	•	40	<.01	<.01	.05	<.	005
23514	-	12	<.01	<.01	.05	<.	005
23565		08	<.01	<.01	.05	<.	005

~

 Γ_{C}

ſ

Γ

E

ſ

Γ

Γ

[

[

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm	.01 .01 .01 . 1 ppm = 0.0001% ppm = parts per million <= le	01 .005 ss than
signed:	<u>FRC</u>	

VGC	١	ANGEO MAIN DFFICE AND 1988 Triumph Vancouver, B.C (604)251-5656 F	CHEM Street V5L 1K5 AX:254-5717	LAB LIM BRANCH (1630 PAND VANCOUVER, B (604) 251			
REPORT NUMBER: 880921 AA	JOB NUMBER;	880921	PANICON DEVE	LOPMENT LTD.	PAGE	1 05	- 1
SAMPLE #		Си Х	Pb %	Zn %	Ag oz/st	0;	Au z/st
23502		.01	<.01	<.01	.02	<.	.005
23569		.03	<.01	.01	. 11		, 040

Ν.

Ę

Γ

Γ

Γ

Γ

Γ

Γ

ſ

ł

DETECTION LIMIT .01 .01 .01 .005 i Troy oz/short ton = 34.28 ppm i ppm = 0.0001% ppm = parts per million (= less than signed:

:

`				MPM	PUNTE		
VGC	VANGEO NAIN OFFICE AN 1988 Trium Varcouver, B (604)251-5656	CHEM L D LABORATORY ph Street .C. VSL 1KS FAX:254-5717	AB LIM BRANCH 1630 PAND VANCOLIVER, E (604) 251				
REPORT NUMBER: 080322 AA	JOB NUMBER: B80922	PANICON DEVELO	OPNENT LTD.	PAGE	1 OF 4		
SAMPLE #	Cu %	РЬ %	Zn %	Ag oz/st	Au oz/st		
23501	.11	<.01	<.01	. 15	<.005		
23003	<.Q1	<.01	.01	. 02	<.005		
23304	-13	< .01	10.	.01	<.005		
23506	.06	<.01	<.01	.02	<.005		
23508	.02	<.01	<.01	.03	.016		
23509	.13	<.01	<.01	.04	<.005		
23511	.85	<.01	.01	. 14	<.005		
23512	2.95	<.01	.01	.60	<.005		
23515	.30	<.01	.01	.14	<.005		
23516	.29	<.01	<.01	.09	<.005		
23517	.07	<.01	<.01	.13	<.005		
23518	.40	<.01	.01	.15	<.005		
23519	.59	<.01	<.01	.08	<.005		
23520	. 14	<.01	<.01	. 10	<.005		
23521	5.17	<.01	.01	.52	<.005		
23522	.10	<.01	<.01	.05	<.005		
23523	. 27	<.01	< . O t	.07	<.005		
23524	.30	<.01	<.01	.05	<.005		
23525	.21	<.01	<.01	, 08	<.005		

DETECTION LIMIT .01 .01 1 pps = 0.0001% / pp = parts per million .01 (=less than .005 1 Troy oz/short ten = 34.28 ppm signed: .

E, E Γ Γ Γ

ł

Г₍

•

VANGEOCHEM LAB LIMITEDAUG NAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

1988

19

REPORT NUNBER: 880922 AA	JOB NUMBER; 880922	PANICON DEVELO	PMENT LTD.	PAGE	2 OF 4
SAMPLE #	Cu %	Pb %	Zn %	Ag oz/st	Au oz/st
23526	.41	<.01	.01	.22	<.005
23527	.15	<.01	<.01	.04	<.005
23528	.16	<.01	<.01	. 11	<.005
23529	1.16	<.01	.01	.15	<.005
23530	.61	<.01	.01	.12	<.005
23531	- 18	<.01	.01	.06	<.005
23532	. 38	<.01	<.01	.11	<.005
23533	.24	<.01	<.01	.04	<.005
23534	.27	<.01	.03	.12	<.005
23535	.65	<.01	.01	.09	<.005
23536	.13	<.01	.01	.06	<.005
23537	.61	<.01	.02	.18	.016
23538	4.71	<.01	.03	2.31	.012
23539	2.50	<.01	.01	1.68	. 026
23540	.81	<.01	.01	.35	<.005
23541	. 88	<.01	.01	.21	<.005
23542	2.12	<.01	.01	.65	.005
23543	2.39	<.01	.01	. 54	<.005
23544	.15	<.01	.01	.09	<.005

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm

23545

N

Į.

L

GC

.01 Þi 1 ppm = 0.00017= parts per million

<.01

<.01

.01

.13

.01 < 🖙 less than

.03

<.005

.005

1

signed:

`				MPP	TUUL
				ALIG	1 - 1988
		CHEM LA			T STILL
V(5())	1988 Triumph St Vancouver, B.C. V	reet 5L IK5	1630 PANDOR/ VANCOUVER, B.C.		
	(604)251-5656 FAX:	254-5717	(604) 251-56	56	
REPORT NUMBER: 880922 AA	JOB NUMBER: 880922	PANICON DEVEL	LOPHENT LTD.	PAGE	3 OF 4
SAMPLE #	Cu X	Pb %	Zn %	Ag oz/st	Au oz/st
23546	.14	<.01	<.01	.04	<.005
23547	6,90	<.01	.04	2,02	.011
23548	2,79	<.01	.01	.55	<.005
23549	3.77	<.01	.01	.18	.005
23550	3.94	<.01	.01	.69	.005
23551	.13	<.01	.01	<.01	<.005
23552	.02	<.01	<.01	.05	<.005
23553	.02	<.01	<.01	.02	<.005
23554	(C. <u>1</u> ,	<.01	$<. \odot 1$.05	<.005
23555	.01	<.01	.01	.02	<.005
23556	.01	<.01	<.01	.05	<.005
23557	.01	<.01	.01	<.01	<.005
23558	.01	<.01	.01	,01	<.005
23559	.01	<.01	.01	.01	<.005
23560	.01	<.01	.02	.01	<.005
23561	.99	<.01	.01	.10	<.005
23562	1.91	<.01	.01	, ú9	<.005
23563	.11	<.01	. O 1	.01	<.005
23564	.04	<.01	<.01	.01	<.005
23566	.02	<.0i	<.01	.03	<.005

DETECTION LIMIT .01 i ppm = 0.0001% .005 pg = parts per willion . 01 1 Trey ez/short ton = 34.28 ppm < = less than ί, signed:

N

ſ

Γ

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUNBER: 880922 AA JOB N	WABER: 880922	PANICON DEVELO	PMENT LTD.	PAGE	4 OF 4
SAMPLE #	Cu Z	ድክ %	Zn %	Ag oz/st	Au oz/st
008c7					
23568	4 U I	<.01	<.01	<.01	<.005
23570	.01	<.01	<.01	.06	<.005
23571	.04	<.01	<.01	<.01	<.005
23572	1.91	<.01	<.01	.03	<.005
23573	.02	<.01	<.01	<.01	<.005
23574	.01	<.01	<.01	<.01	<.005

1988 AUG

.01 Öi .01 .01 .005 1 pps = 0.0001%parts per million < = less than 1

signed:

1 Trey oz/short ton = 34.28 pp#

DETECTION LIMIT

[
E :	VGC	MAIN (19 Vanc (604)2	DFFICE AND LABORATORY 708 Triumph Street couver, B.C. V5L 1K5 251-5656 FAX:254-5717	BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V51 1L6 (604) 251-5656)
	REPORT NUMBER: 880929 6A	JOB NUMBER: 88	10929 PAHICON DE	VELOPMENT LTD.	PAGE 1 OF 1
Г	SAMPLE #	Aม ออb			
L. [.	FSi-I	10			
F					זבייייבי

.

l

ſ

Į

ſ

Γ l

.....

)									VA	NG	EC	юн	IE1	1 L.	АВ	L.	IM	т.т	ED										
)					HAI BRA	Ni Ofi NCH (FICE	1 19 CE1	1630	PANE	PH SI	STRE	F, VA SET.	ANCOL VANC	iver Duve	B.C. R B.(V5L C. V	1K5 5L 1	PHI L6 P	(604) Hz (60)251- 04)25	-3656 51-72	5 TE1 282 F	EXIC)4-3 (604)	i2578 254-) 3 717	,	
)									IC	:AP	G	EO	ICH	IEM	IC	AL	~	NA	LY	819	8								
)						A .5 6 This L 15= In	IRAN SAN Each Is ISUFFIC:	WLE IS 5 Parti Leht Sa	i Digeste Al For S Mple, M	ED WITH SH, MW, FE Im Not I	5 HL 81 E,CA,P,(Netectes	F 3+1:3 CR,M9,B D, -= M	HEL TO A,P9,AL DY ANAL	D HNO3 TI .,NA,K,N .YZED	0 H20 A ,PT AND	1 95 368 SR. AU	. C FOI And 71	R 90 HI I Detec	NUTES A	ND IS DI 3 PPN.	ILUTED 1	10 10 M	L VITH I	MTER.					
)	COMPANY: PA ATTENTION: PROJECT: FC	MICO MR. RRES	N DE' S. TI T	VELO BDOR	pmen Lik	TS			REPOR JOB#: INVO3	RT#1 880 [CE#1	8809 929 880	929P# >929#	NA			DATI DATI COP	e ree E co Y se	CEIV MPLE NT T	ED: TED: O:	88/08 88/(8/09 08/1	5				ANAL	YST_	h	/
ì																							PM	ie 10F	1		-		
1	SAMPLE NAME	AG PPH	ж 1	AS PPX	AU PPN	SA Pph	B1 PPN	CA I	CB PPH	CO PPN	CR PPN	CU PPN	FE 1	K Z	NG I	HN PPH	NO PPN	KA I	NI PPN	P I	PB PPN	Pa PPN	PT PPH	58 2 1 %	SN PPN	SR PP#	U PPN	W PPH	2H 2H PP#
	F\$i-1	.2	.68	6	NÐ	265		. 10	.8	5	8	19	1.39	.04	. 48	351	ι	.01	10	.03	6)(1	Hł.		ı	13	KB	10	57

1 .01 .01 .01

· · · · ·

1

L .01

1.01

2

3

5

2

2

1

AUG 16 ISAA

· ,

57

3 1

5

1

1

1

!

)

)

1

)

)

}

)

•

•

)

•

3

)

DETECTION LINIT

.1 .01 3 3 1

3 .01 .1 I

V GC	VANGEC MAIN OFFICE AN 1988 Trium Vancouver, B (604)251-5656	DCHEM L D LABORATORY ph Street .C. V5L 1K5 FAX:254-5717	AB LIMITED BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656		
REPORT NUMBER: 880930 GA	JOB NUMBER: 880930	PANICON DEVELO	PHENT LTD.	PAGE 1 OF	1
SAMPLE #	Âu Bob				
FHS #1	10		<u> </u>		5
FHS #2	nd		DFR		
FHS #3	bn			LTUX	-711
FHS #4	5		- عمرار ا	. e 3099	- [] [
FHS #5	nd		AUG	10 1900	SU

`

-

.

.

.

•-

- -

-

••

.

VANGEOCHEM LAB LIMITED

.

1 1

1

4 1 3

1

11.1

11)

1 1

1

.

)

11

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. VSL 1K5 PH:(604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. VSL 1L6 PH:(604)251-7282 FAX:(604)254-5717

۰ I

۱

:

3

1

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DISESTED WITH S NL OF 3:1:3 HCL TO HMO3 TO H20 AT 95 DEG. C FOR 90 HIMUTES AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR SH,MM,FE,CA,P,CR,MG,BA,PD,AL,MA,K,W,PT AND SR. AN AND PD DETECTION IS 3 PPH. IS= INSUFFICIENT SAMPLE, ND= MOT DETECTED, ~= NOT ANALYZED

COMPANY: PAMICON DEVELOPMENTS ATTENTION: MR. S. TODORUK PROJECT: FORREST						REPORT#: 880930PA JOB#: 880930 [NVOICE#: 880930NA							DATE RECEIVED: 88/08/09 DATE COMPLETED: 88/08/15 COPY SENT TO:							s ANALYST_								
																						PAG	£ 10i	F 1				/
SAMPLE XAME	А6 РРН	AL Z	AS PPM	AU PPN	BA PPR	BE PPH	CA I	CD PPH	CQ PPM	CR PPM	CU PPM	fe I	K 1	M8 I	im Pph	NQ PPH	XA I	KI PPH	P X	P2 PPH	PÐ PPK	РТ РРМ	SD PPH	Sil PPH	SR PPH	U PP#	N PPN	ZH PPN
FHS #1 FHS #2 FHS #3 FHS #4 FHS #5	.1 .2 .4 .2 .2	1.77 1.76 .93 .94 1.31	24 25 7 5 8	ND ND ND ND	179 175 245 247 240	NG 3 Ng Ng	.40 .30 .16 .24 .22	1.2 1.2 .6 .5	11 12 5 6 9	52 63 88 114 86	74 116 31 44 39	2,95 2,95 1,64 1,81 2,38	.08 .09 .06 .06 .06	1.43 1.35 .64 .56 .96	499 506 360 456 530	5 3 1 2 1	.01 .01 .01 .01 .01	29 22 9 8 15	.08 .08 .04 .04 .05	11 10 12 10 8	HƏ Mə Hə Hə Hə	ND ND ND ND	на 4 На На	1 1 1 1 1 1 1	15 16 18 21 19	ND ND ND N3	MD Ko Ng Ko	125 104 50 59 57
DETECTION LENET	.1	.01	3	3	ł	3	.01	. 1	ĩ	I	1	.01	.01	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	I

. .

VGC

 \mathbf{x}

-

•

.

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V51 1K5 (504)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER:	860974 6A JOB	NUNBER: 880974	PANICON DEVELOPMENT	LTD.	PAGE	i	0F	ł
SAMPLE #	Au							
	aab							
14656	nd							
14657	nd							
14658	30							
14659	20							
23575	nď							
23651	390							
23652	20							
23653	nd							
23654	130							
23655	120							

,

٦

VANGEDCHEM LAB LIMITED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1KS PH: (604)251-5656 TELEX: (4^{12}) BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)

. . . .

ICAP GEOCHEMICAL ANALYSIS

A .S 6KAM SAMPLE IS DIGESTED WITH S ML OF 3:1:3 HEL TO HAD3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN,MN,FE,CA,P,CR,MG,BA,PD,AL,WA,F,M,FT AND GR. AU AND PD DETECTION IS 3 FPM. IS= INSUFFICIENT SAMPLE. NOW NOT DETECTED. -= NOT ANALYZED

COMPANY: P/ ATTENTION: PROJECT: FO	AMICO MR. DRRES	N S. T T	ODORI	UK			F	REPOR JO8#: INVOI	T#: 880 CE#:	8809 974 880)74PA)974N	IA			DATE DATE COPY	e Rei E COI Y SEI	CEIVE MPLE NT TO	ED: 8 TED: D:	88708 8870	8712 08724					ANALY	rst_	6/	12. V
																						PA6	ELOF	1				0
SAMPLE NAME	AG PPM	AL Z	AS PPM	AU Ppm	8A PPK	Bî PPR	CA Y	CO Ppm	C8 PPR	CR Ppm	CU PPM	fE 1	K I	#6 1	NN Ppm	MO Ppk	na 1	NI PPK	P Z	98 Ppm	PD PPM	pt Ppm	S8 Ppm	SN PPM	SR PP# ^	U PP#	N PPK	ZN PPN
14656 14659 14658 14659 23575	.9 5.5 1.2 1.3 .1	.43 .17 2.79 2.80 4.53	ND 85 17 14 40	NC ND ND ND	8 10 134 105 28	ND 3 6 12	2.65 .49 1.76 1.10 .07	.8 .9 2.2 2.1 3.6	11 2 20 33 36	179 208 49 46 114	146 1686 3037 4559 256	1.58 1.41 5.40 4.50 8.61	.32 .10 .28 .20 .06	.32 .13 1.60 2.47 5.15	229 102 779 735 944	5 1 2 2 2	.01 .01 .03 .02 .03	22 17 19 10 82	.03 .01 .07 .08 .09	15 359 36 32 44	ND ND ND ND	ND ND ND ND	ND ND ND ND	5 1 5 7	16 8 49 70 4	ND ND ND ND ND	ND ND ND ND	34 43 73 103 122
23651 23652 23653 23654 23655	3.5 3.1 .1 .1	3.17 2.92 .87 .35 1.21	179 24 10 78 62	ND Ng ND ND	25 16 11 10 15	13 ND ND 5 7	.49 16.53 .11 .15 .05	3.6 2.1 1.3 2.6 3.1	56 12 2 7 8	115 43 134 143 78	1776 3705 125 72 220	9.82 4.88 2.85 7.95 9.21	.14 .68 .04 .06 .05	2.32 2.31 .31 .15 .53	496 1806 211 820 626	4 2 1 9 4	.04 .03 .01 .02 .03	64 55 6 9 11	.05 .05 .01 .05 .07	43 32 17 28 28	ND ND ND ND	ND ND ND ND	ND ND ND ND	4 1 3 4	12 241 4 22 11	KD Nd Nd Nd	ND ND ND	89 81 33 18 42
DETECTION LIMIT	.1	.01	3	3	1	3	,01	.1	1	1	I	.01	.01	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	1

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

V	GC

. 1

.

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

1

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

 REPORT NUMBER:
 BB1028
 PAMICON DEVELOPMENT LTD.
 PAGE 1
 OF 1

 SAMPLE #
 Au
 ppb
 23577
 5965
 5965

VGC	VANGEO MAIN OFFICE AND 1988 Triumph Vancouver, B.C. (604)251-5656 Fr	CHEM Street V5L 1K5 AX:254-5717	LAB LIMITED BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656				
REPORT NUMBER: 891028 AA	JOB NUMBER: B81028	PANICON DI	EVELOPMENT LTD.	PAGE	1 (JF	1
SAMPLE #	Au oz/st						

-

•

~

~

•

-

~•

-

, k

.168

DETECTION LIMIT 1 Troy oz/short ton = 34.20 ppm	.005 1 ppm = 0.0001% ppm = parts per million	< = less than
signed:	- AC'	

and the second AUG 2 = 1988

ſ

1

.

•

VANGEOCHEM LAB LIMITED

;

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX: 04-352578 BRANCH OFFICE: 1630 PANDORA STREET, VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HMO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, NN, FE, CA, P, CR, NS, BA, PD, AL, NA, K, W, PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: PA ATTENTION: PROJECT: FO	MICON MR. S RREST	N 5. T(T	ODORI	лк				REPOR JO9#: INVOI	T#: 881 CE#:	0810 028 881	28PA 028N	IA			DATE DATE CDPY	REC CON SEN	CEIVE MPLE1 NT TO	ED: E TED:):	98708 9870	9/17 98/23					ANAL.	YST_	6	hz.	
																						PAG	E 1 OF	I				0	
SAMPLE NAME	A6 PPM	AL I	AS PPN	AU PPR	8A PPK	SI PPM	CA L	CO PPH	CO PPN	CR PPM	CU PPM	FE Z	K Z	HS 1	MN PPN	MO PPN	NA I	n! PPit	ዮ ፤	PB PPM	PD PPN	PT PPN	SB PPM	SN Ppm	SR PPM	11 _ PPH	N PPK	ZN PPN	
23577	. 3	.51	20	ND	130	KD	2.03	. 9	9	91	387	1.60	. 29	.\$1	680	Ż	.01	9	.05	17	ND	ND	NÖ	t	140	MD	ND	72	
DETECTION LINIT	.1	.01	3	3	L	3	. 01	. 1	1	1	ι	.01	.01	.01	1	ı	.01	1	.01	2	3	5	2	2	1	5	3	i	

VANGEOCHEM LAB LIMITED

÷

)

)

;

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH:(604)251-5656 TELEX:04-352578 BRANCH DFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH:(604)251-7282 FAX:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 NL OF 3:1:3 HCL TO HN03 TO H20 AT 95 DEG. C FOR 90 NINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, MN, FE, CA, P, CR, NG, 8A, PD, AL, NA, K, W, PT AND SR. AU AND PD DETECTION IS 3 PPN. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: PA ATTENTION: PROJECT: F	AMICO ORRES	n de T	VELÖ	PMEN	TS		1	REPO JOB#: INVO	RT#: : 881 (CE#:	891(029 981	029P/	A NA			DAT DAT COP	e re E CO Y se	CEIV MPLE NT T	ED: 8 TED: O:	38708 8879	9/17 08/22	2				ANAL	YST_	4	1/2	Ł_
																						PAE	SE 1 OF	1				1	
SAMPLE NAME	46 225	AL I	AS PPM	AU PPM	BA PPM	BI PPM	CA I	CD PPM	00 998	CR PPM	CU PPM	7E 1	k 2	MG 2	HN 2Px	MÛ PP M	HA X	NÎ Mar	р 1	PB PFM	PD PPN	PT PPH	SB Ppm	SN PPM	SR PP4	U PP#	н Ррн	zər PPit	
23507	8.1	.30	5	:59	97	ND	. 19	1.0	6	161	5202	1.43	.07	.32	184	4	.01	8	.01	13	ND	ND	нD	2	18	NÐ	ND	29	
DETECTION LINET	.1	.01	3	3	1	3	.01	ы	1	1	1	. 01	.01	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	L	

AUG 23 IGRA

V GC		VANGEO MAIN OFFICE AND LA 1989 Triumph S Vancouver, 8.C. (804)251-5656 FAX	CHEM BORATORY treet VSL 1K5 :254-5717	BRANCH OFFICE 1630 PANDORA ST VANCOUVER, B.C. V5L 1L6 (604) 251-5656				
REPORT NURBER: BUILE4 GA	JUB	NUMBER; BUII64	PANTCON	DEVELOPMENT LTD.	PAGE	i 7	ЪF	1
SAMPLE F	Au Dag							
23576	30							
23579	76							
23580	nd							
23581	100							
23582	75							
23583	40							
23656	20							
23657	15							
23658	nd							
23659	nd							
23660	БŐ							
23661	120							
23562	45							
23663	50							

`

23664

23665

23666

23667

23668

1

-

.

,

>10000

>10000

2090

60

VANGEOCHEM LAB LIMITED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH:(504)251-5656 TELEX:04-952578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH:(604)251-7282 FAX:(604)254-5717

11

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIDESYED WITH 5 ML OF 3:1:3 HCL TO HONO3 TO H2O AT 95 DEG. C FOR 90 NIMUTES AND ID DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR SH, NH,FE,CA,P,CR,HG,BA,PD,AL,HA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, HD= NOT DETECTED, -= NOT ANALYZED

ATTENTION: PROJECT: FI	s to Orres	DORL	JK JK	- FI E N	13			JOB#: INVOI	881 (CE#1	164 881	164) 164	NA			DAT DAT COP	e rei E Coxi Y sei	MPLE NT TO	ED: 6 TED: 0;	88/Q	8/30 09/06					ANAL	YST_	1/4	/2_f
																						PAG	£10¥	1				
SAMPLE NAME	AS PPM	AL I	AS PPR	AU PPN	BA PPH	8 I PP#	CA I	CØ PPN	CO PPN	CR PPN	CU PPK	FE I	K Z	NG 1	HK PPN	NO PPN	NA X	N1 PPH	Р I	P8 PPN	29 PPR	PT PPN	SB PPN	SM Ppn	SR PPH	U PPN	N Pph	ZM PP
23578	ų	2,44	ND 15	N.	715	3	2.42	2.1	31	104	434	5.87	.33	3.07	777	ţ	.02	70	.06	17	Ð	KÔ	ND	i	84	ND	89	11
233/3	.1		13		- 10		.07	.1	3	105	2010	1.07	. 43	. 59	131	1	.01	• •	.02	5			ND .	1		10	199	
23380		.03	13	kD.	68	ND	. 15		2	727	13	. 14	.04	.02	219	4	.01	6	.01	5	NV NB	148 147	10	ND.		717 143	ND ND	
23582	.1	. 18	11	ND	25	MĐ	1.64	.1	2	108	12	1,49	.23	. 64	865	i	.01	ti	.01	1	ND	ND	ND	2	15	ND	NÐ	
23583	.1	. 02	23	140	23	ND	.55	.1	5	203	9	1.06	. 10	.18	552	1	.01	9	.01	5	KĐ	113	ND	1	6	ND	NĐ	
23656	1.	. 15	25	ND	150	3	5.61	1.2	20	83	48	5.05	.44	2.89	1157	S	.02	29	.04	14	KÐ.	XD	ND	4	129	ND	X0	. (
23657	.1	.10	153	KD	60	E	6.02	2.1	37	68	25	5.75	.47	3.14	1165	3	.02	83	.08	18	ND	ND	MD	5	135	ND .	ND	
23659 23659	5.7	.43	19	KD	42	ND	.09	د. ۱.	8	208	1125	1.72	.03	.25	436 103	4 3	.01 .01	8	.01	14	ND ND	ND ND	N D ND	2	5 14	ND ND	ND ND	
23660	.۱	.01	9	ND	9	MD	.37	.1	2	119	515	.54	.07	. 20	228	2	.01	1	.01	5	ND	KD	ND	1	3	ND	XĐ	
23661	22.4	. 30	52	ND	58	ND	.02	1.1	15	219	11367	3.84	.03	.15	84	13	.01	11	.01	4	MD	XD	ND.	3	5	ND	XĐ	1
23662	· !	.49	123	N.	72	3	.30	- 1.7	25	93	445	8,42	-10	.10	- 94	6	.02	11	.32	ង	MQ	ND	149	5	ş	ND	319	
23664	.9	. 43	80217	12	11	3	4.0L	148.3	39	69	29	9.00	.15	.34	1897	7	.02	5	.02	11	NO	ND ND	N9	ND	110 1	N.S	ND.	
23665	1.2	.46	88142	15	12	4	4.08	163.9	40	110	26	10.12	. 40	.38	1366	7	.02	6	. 08	13	ND	KD	ND	ND	115	KÔ	ND	I
23666	3.8	1.07	29436	NC	13	3	1.88	51.8	19	135	1492	6.67	.25	.76	1290	6	.02	6	.13	12	NQ.	ND	NÐ	2	40	NÐ	¥Q	:
23657	.9	3.64	492	ND	24	1	1.15	3.8	42	15	244	10.31	.22	2.76	1135	2	.03	9	. 20	34	KD	ND	KB	9	21	ND:	ND	11
23668	.1	. 88	121	KD	11	ND	2,22	.1	9	154	401	2.24	.27	.61	369	3	.01	6	-04	12	NØ	MD	NO	4	23	N)	ND.	
DETECTION LINIT	.1	.01	3	3	1	3	.91	- 1	1	1	1	.01	. 01	.01	i	1	.01	1	.01	2	3	5	2	2	Т	5	3	

ANOMALOUS RESULTS:

ì

- }

1

}

)

Э

)

)

)

)

)

.

FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

.

.....

.

VANGEOCHEM LAB LIMITED

PANICON DEVELOPMENT LTD.

 MAIN OFFICE

 1521 PEMBERTON AVE.

 NORTH VANCOUVER, B.C. V7P 2S3

 (604) 986-5211

 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 1 OF 1

 REPORT NUMBER:
 BB1263
 GA
 JDB
 NUMBER:
 BB1263

 SAMPLE #
 Au
 ppb
 23669
 30

DETECTION LINIT 5 nd = none detected -- = not analysed is = insufficient sample

VANGEOCHEM LAB LIMITED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. VSL 1K5 PH: (604)251-5656 TELEX: 04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. VSL 1L6 PH: (604)251-7282 FAX: (604)254-5717

.

•

1

٦

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HHO3 TO H2O AT 95 DEG. C FOR 90 HIMUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SM, MM, FE, CA, P, CR, MG, BA, PB, AL, MA, K, W, PT AND SR. AU AND PD DETECTION IS 3 PPM. IS≈ INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT AMALYZED

COMPANY: PA ATTENTION: PROJECT: FO	OMPANY: PAMICON TTENTION: S TODORUK ROJECT: FORREST						1	REPOF JOB#: INVO)	RT#: : 881 [CE#:	8812 263 881	63 F 263	'A NA			DAT DAT COP	e re E co Y se	CEIV MPLE NT T	ED: { TED: D:	88709 8870	9/07 09/19)				ANAL	YST_	4	hi.
																						PAS	Æ 1 0₽	1				(i –
SAMPLE NAME	AG PPM	AL. Z	AS PPM	AU PPH	8A PPM	81 PPM	CA 1	CD PPM	CO PPN	CR PPN	CU PPK	FE I	K X	26 7	NN PPM	NO PPN	NA I	NÎ Pph	р Х	PB PPN	PD PPN	PT PPN	SB Ppm	SN PPN	SR PPN	U Pph	N PPN	ZN PPM
23669	.1	. 23	ND	ND	47	ND	.91	.2	3	84	29	.97	.11	. 18	406	2	٥١.	24	. 02	27	ND	ND	ND	ND	15	ND	ХD	132
DETECTION LINET	. i	.01	3	3	t	3	. 01	-1	1	L	t	.01	.01	,01	I	1	.01	1	. 01	2	3	5	2	2	i	5	3	1

3

1

ì

ς.

.

-

-

Ξ.

٠

.

ł

VANGEOCHEM LAB LIMITED

MAIN DEFICE AND LABORATORY 1988 Triumph Street Varcouver, B.C. V5L 185 (504)051-5556 FAY:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 8	181406 GA JOB	NUMBER: 881406	PANICON DEVELOPMENT LTD.	PAGE	1 0	F
SAMPLE #	Au					
	ppb					
23586	60					
23587	2900					
23588	520					

V GC	VANGEO MAIN OFFICE AND L 1900 Triveph Varcouver, 2.C. (504)251-5656 FA	CHEM LAI ABORATORY Street V51 1K5 1 V Xr254-5717	BLIMITED BRANCH OFFICE 1630 PANDORA ST. ANCOUVER, B.C. V5L 1L6 (604) 251-5656				
REPORT NUNBER: 881406 AA	JDB NUMBER: 881406	PAHICON DEVELOPHED	IT LTD.	PAGE	1	OF	1
SAMPLE #	Au oz/st						
23587	.102						

`

;

. .

.

•

.

.

-

DETECTION LIMIT .005 1 Troy oz/short ton = 34.28 pps 1 pps = 0.00012 pps = parts per sillion < = less than signed:

VANGEOCHEM B LIMITED

MAIN DEFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1KS PH: (604)251-5656 TELEX:04-352578 BRANCH DEFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 SRAM SAMPLE IS DIGESTED WITH S ML OF 3:1:3 HCL IO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN,MM,FE,CA,P,CR,NG,BA,PD,AL,NA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: PAMICON ATTENTION: STEVE TODORUK PROJECT: FORREST SAMPLE KARE AG AL AS AG BA BI						F J J	KEPOR 108#: INVOI	:T#: 881 CE#:	8814 406 881	06PA 406N	A			DATI DATI COP	e rei E com Y sem	CEIVE MPLET	ED: 8 TED: D:	38709 8871	9720 .0714		PAG	E I OF	ş	ANAL	YST_	4	hy	<i>.</i>	
SAMPLE KAME	Аб РРН.	AL I	as Ffm	AG PPH	BA Pfn	BI PPN	CA X	CD PPN	co PPN	CR PPM	CU Pph	35 2	K X	NG X	MN PPM	n0 Ppn	KÁ T	N i PPM	P X	PB PPM	PO PP5	PT PPK	S8 PPH	SN Pp#	SR PPM	U Pfrij	ц 772	lm PPm	
23586 23587 23389	4.5 3.1 .8	.39 .03 .03	6 57377.~ 19976 ~	KD ND ND	110 14 7	NÐ 3 ND	.08 .01 .01	-8 .1 .1	8 29 17	164 143 219	814 29 15	1.52 4.54 1.50	.08 .15 .04	.28 .02 .01	171 60 96	3 5 2	.01 .01 .01	29 12 10	.0! .01 .01	17 21 10	ND ND ND	ND ND ND	ND ND ND	1 ND ND	4 1 1	NÐ MD ND	NC ND ND	22 3 4	
DETECTION CIMIT	.1	.01	3	3	i	3	. 01	.1	1	1	1	.01	.01	.01	:	i	.01	I	.01	2	3	5	2	2		5	3	:	

ANOMALOUS RESULTS:

FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

2

1 · 1

۰.

1

.7

,

.

,

2

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V51 185 15041251-5655 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 881423 GA	JOB NUMBER: 881423	PANICON DEVELOPMENT LTD.	PAGE 1 OF 1
SAMPLE #	Au		
	ppb		
23584	nd		
23585	20		

VANGEOCHEM LAB LIMITED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

1 1 1 1 1 1 1

1)

/

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH S ML OF 3:1:3 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN,MN,FE,CA,P,CR,MG,BA,PD,AL,NA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= WOT DETECTED, -= NOT ANALYZED

COMPANY: PAMICON ATTENTION: S. TODORUK PROJECT: FORREST							6 J J	EPOR 108#: 10701	T#: 881 CE#:	8814 423 861	23PA	1A			DATI DATI COP	e reg e com y sem	CEIVE 1PLEI NT T	ED: E TED: D:	88709 8871	0/21 .0/17					ANAL.) רצץ	1	Ŋ.	
																						PAG	E 1 OF	1				V	
SAMPLE NAME	AG Pen	AL X	А\$ РРИ	AU PP#	BA PPN	BI PPft	CA Z	CD Pem	CO PPM	CR PPM	CU PPK	FE Z	K I	86 I	MN PPh	Nû FPM	NÅ I	N L PPM	P 1	PB PPM	PD PPH	PT PP#	SB PPM	SN PP#	SR PPK	U PPM	N PPM	IN PPM	
23584 23585	.2	2.73 .32	29 16	ND Kd	21 28	3 ND	.86 .03	2.8	52 3	16 108	226 1B	8.98 .86	.41 .03	2.15	812 196	6 1	.03 .01	20 5	.13 .01	58 25	ND ND	89 80	NÐ NÐ	NÐ 2	11 2	ND ND	NG KD	204 29	
DETECTION LINET	.1	.01	3	3	1	3	.01	.1	1	1	i	.01	.01	.01	ł	۱	.01	1	.01	2	3	5	2	2	1	5	3	l	

OCT 1 8 1988 *****

VGC

23688

23689

1

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1999 Triumph Street Vancouver, B.C. V5L 1K5 1504)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT	NUMBER: 881437 GA JOB	NUMBER: 881437	PANICON DEVELOPMENT LTD.	PAGE 1 OF 1
SAMPLE	≇ Áu			
	ppb			
23589	590			
23601	20			
23602	50			
23603	20			
23604	3460			
23605	20			
23606	nd			
23607	10			
23608	60			
23609	10			
23610	80			
23670	1540			
23671	40			
23672	40			
23673	20			
23674	130			
23675	40			
23676	80			
23677	2160			
23678	50			
23679	40			
236B0	120			
23681	30			
23682	50			
23683	10			
23684	63			
23685	70			
23686	ba			
23687	1140			
	REPORT SAMPLE 23589 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23670 23670 23670 23671 23672 23673 23674 23675 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686	REPORT NUMBER: BB1437 GA JOB SAMPLE Au ppb 23589 590 23601 20 23602 50 23603 20 23604 3460 23605 20 23605 20 23606 nd 23607 10 23608 60 23609 10 23608 60 23609 10 23607 10 23608 60 23609 10 23610 80 23670 1540 23671 40 23672 40 23673 20 23674 130 23675 40 23675 40 23675 40 23675 50 23679 40 23680 120 23680 120 23681 30 23681 30 23682 50 23683 10 23685 70 23685 70 2368	REPORT NUMBER: BB1437 GA JOB NUMBER: BB1437 SAMPLE t Au ppb 23589 530 23601 20 23602 50 23603 20 23604 3460 23605 20 23606 nd 23607 10 23608 60 23609 10 23609 10 23607 10 23608 60 23609 10 23607 10 23608 60 23670 1540 23671 40 23672 40 23673 20 23674 130 23675 40 23676 80 23677 2160 23678 50 23680 120 23681 30 23682 50 23683 10	REPORT NUMBER: BB1437 GA JOB NUMBER: BB1437 PANICON DEVELOPMENT LTD. SAMPLE # Au ppb 23589 530 23601 20 23602 50 23603 20 23604 3460 23605 20 23606 nd 23607 10 23608 60 23609 10 23610 80 23670 1540 23671 40 23672 40 23673 20 23674 130 23675 40 23678 50 23679 40 23680 120 23681 30 23683 10 23684 60 23685 70 23686 nd 23687 1140

2300

VGC	VANGEO MAIN OFFICE AND LA 1988 Triumph S Vancouver, 9.C. (604)251-5656 FAY	CHEM LAB L RORATORY BRA treet 1630 USL 1K5 VANCOU :254-5717 (6)	IMITED NCH OFFICE (PANDORA ST IVER, B.C. V5L 1L6 04) 251-5656			_	
REPORT NUMBER: 881437 AA	JOB NUMBER: 801437	PANICON DEVELOPMENT LT	D. P	A6E	1	۵F	1
SAMPLE #	Au oz/st						
23604	.079						
23670	.030						
23677	.051						
23687	.055						

.055

.073

`

23688

ŧ

.

.

.

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm	.005 1 ppm = 0.0001% (ppm = parts per aillion	< = less than
signed:	AC	

VANGEOCHEM B LIMITED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1KS PH: (604)251-5656 TELEX:04-352578 BRANCH DFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

DATE RECEIVED: 88/09/22

COPY SENT TO:

ICAP GEOCHEMICAL ANALYSIS

A .5 BRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNOS TO H20 AT 95 DEG. C FOR 90 KINUTES AND IS DILUTED TO 10 NO WITH WATER. THIS LEACH IS PARTIAL FOR SN, NN, FE, CA, P, CR, NG, BA, PD, AL, NA, K, N, PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NDT DETECTED, -= NOT ANALYZED

REPORT#: 881437PA

INVOICE#: 881437NA

JOB#: 881437

COMPANY: PAMICON

PROJECT: FORREST

ATTENTION: S. TODORUK

2

 (\cdot)

Ξ.

.

																						PAt	52 I UP	1				17	
SAMPLE NAME	AG PPN	AL Y	AS PP#	AU PPM	BA PPM	B1 FPM	CA X	CD PPN	CO PPM	CR PP:1	CU PPK	FE I	K X	MG X	HN PPK	HQ PPH	HA I	N] PPH	P I	РВ РРМ	PD PPM	PT PPM	SB PPK	SN PPB	sr Pph	U Ppn	W PPM	ZN PPK	
23589 23601 23602 23603 23603 23604	1.1 3.1 4.2 .7 8.0	.22 .03 .02 .02 .13	56861 966 182 175 27703	ND ND ND ND ND	15 24 16 22 15	ND ND ND ND ND	.07 .53 .47 .02 .01	42.5 .1 .1 .1 14.5	22 3 6 13 20	138 210 133 235 164	59 1212 2571 544 47	3.63 1.10 1.07 2.07 2.95	.14 .11 .10 .01 .05	.16 .01 .01 .01 .05	209 295 346 58 106	3 3 8 3	.01 .01 .01 .01 .01	12 0 12 14 12	.01 .01 .01 .01 .01	4 2 2 15	ND ND ND ND ND	ND ND ND ND	ND ND ND ND	NS 2 2 7 ND	3 18 15 1	ND ND ND ND	ND ND ND ND	14 10 5 6	
23605 23606 23607 23608 23608 23509	.3 2.7 1.1 2.4 1.1	.73 .82 .20 .03 .02	528 146 151 30 27	ND ND ND ND ND	10 4 5 6	ND ND ND ND ND	.34 .13 .76 .11 .01	.1 .1 .1 .1	7 7 5 2 6	103 125 160 218 119	403 336 510 614 195	1.51 2.01 .87 .35 .72	.13 .10 .13 .02 .06	.55 .69 .15 .01 .01	245 252 304 134 102	1 4 3 7	.01 .01 .01 .01	15 23 16 8 13	.02 .01 .01 .01	8 9 6 92 19	ND ND ND ND	ND ND ND ND	ND ND ND NO	1 1 2 2	11 4 21 3 ND	ND KD KD	ND ND ND ND	24 33 18 12 7	
23610 23670 23671 23672 23673	.1 B.8 1.1 7.9 .7	4.37 .84 .17 .32 3.8;	333 7567 162 80 105	ND NQ ND ND ND	16 27 13 10 49	5 MD ND ND 4	.07 .11 .04 1.03 .15	2.4 3.2 .1 .1 2.1	36 40 13 33	82 133 133 220 121	35 76 459 6957 524	9.47 2.74 .83 2.28 7.77	.34 .10 .05 .21 .27	3.36 ,38 ,10 ,24 2.76	400 659 112 403 601	6 5 1 5 7	.02 .01 .01 .01 .02	55 16 7 30 £3	.09 .02 .01 .03 .09	59 36 2 4 58	ND ND ND ND	ND ND ND ND	ND Kđ Mđ ND	ND ! ! ND	2 5 2 33 7	ND ND ND ND	ND ND ND ND ND	74 30 14 17 107	
23674 23675 23676 23677 23678	2.4 3.7 6.2 5.2 2.7	.69 .41 .11 .32 1.06	53 9 233 51 23	ND On Dn Dh Dr	31 159 8 7 67	NG ND ND ND	.0+ .60 .02 .08 5.46	.5 .1 .3 .1 1.4	14 13 14 19 19	170 97 128 173 117	788 1302 1049 1587 2707	2.94 2.12 2.84 1.34 4.96	.10 .19 .09 .07 .95	.49 .28 .05 .20 1.13	503 310 134 262 1039	6 2 4 5 6	.01 .01 .01 .01 .01	28 22 26 31 37	.03 .01 .01 .01 .04	15 8 25 10 26	ND ND ND ND	ND ND ND ND	ND ND ND ND	1 1 2 ND	2 18 3 154	ND ND ND ND	ND ND ND ND	31 20 20 16 60	
23679 23681 23682 23683 23683 23584	13.3 12.3 3.7 3.7 8.8	2.80 .07 .38 1.76 .87	158 34 6 58 123	ND ND ND ND	13 6 5 7 €	4 ND ND ND	.24 .26 .11 .18 .05	2.2 .3 .1 .9 1.7	47 12 8 26 47	173 208 176 139 117	6797 3802 1221 2095 4703	7.28 2.69 1.84 4.14 6.00	.27 .12 .07 .16 .20	2.37 .05 .29 1.35 .52	521 165 196 405 153	7 6 6 4	.01 .01 .01 .01 .01	102 11 35 32 52	.04 .01 .01 .04 .03	44 5 8 33 41	ND Ků NĐ NĐ	ND ND ND ND	ND ND ND ND	1 2 2 2 2	9 9 4 7 2	KD ND ND KD	ND ND ND ND ND	64 6 21 52 95	
23685 23686 23687 23688 23689	8.2 .1 1.6 2.7 1.1	.84 4.55 .08 .03 1.39	107 738 270 352 740	ND ND ND ND	8 10 6 7 15	ND 6 ND 3	.04 .06 .01 .01 .02	1.5 3.1 .1 1.5	45 53 14 15 60	86 692 223 115 130	4333 123 392 438 34	5.42 10.55 1.51 1.49 6.98	-18 ,25 ,05 ,05 ,23	.48 3.97 .06 .02 .99	143 257 115 118 167	4 9 5 7 5	.01 .01 .01 .01	<5 127 37 38 54	.03 .07 .01 .01 .03	36 64 12 17 28	ND ND ND ND	ND ND ND ND	ND ND ND ND	3 ND 3 2	1 2 ND RD 1	ND ND ND ND	nd Nd Ng Nd	89 81 8 9 30	
- 23680	17.9	.44	213	NG	40	ND	. 18	1.6	25	110	5490	3.18	.13	. 34	50 3	3	.01	67	.01	15	ND	ND	N0	3	5	ND	ND	199	
DETECTION LIMIT	. !	.01	3	3	1	3	, 01	.1	1	1	i	.01	.01	. 01	1	ι	.01	;	.01	2	3	5	2	2	1	5	3	1	

.

.

`

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1998 Triumph Street Vancouver, S.C. V5L 185 3 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT	NUMBER:	981466	6A J0	B NUMBER:	881466	PANICON	DEVELOPMENT	LTD.	PAGE	1	OF	1
SAMPLE	i i		A	u								
			ρ¢	b								
14670			ġ	0								
14671			n	d								
14672			г	d								
14673			1	0								
14674			1	0								
14675			л	ų								
14676				- d								
14677			F	d								
14678			12	0								
14679				đ								
				-								
14680			20	0								
14681			r	đ								
18501			2	0								
18502			г	d								
18503			(d								
18504			5	d								
18505			4	0								
23620			1	0								
23621			4	0								
23622			1	0								

	HEM LAB LIMI	MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.
REPORT NUMBER: 881466 AA	JOB NUMBER: BB1466	PANICON DEVELOPMENT LTD.	PAGE 1 OF 1
SAMPLE #	Ag oz/st	1	

•

.

ť

`

1.71

DETECTION LIMIT	.01 /	
1 Troy oz/short ton = 34.28 ppm	1 ppm = 0.0001% / ppm = parts per million	<pre>(= less than</pre>
	MT2	
signed:	TAC	

VANGEOCHEM LAB LIMITED

- ·.

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 FH:(604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET, VANCOUVER B.C. V5L 1L6 FH:(604)251-7282 FAX:(604)254-5717

1

.

11

ICAP GEOCHEMICAL ANALYSIS

A US GRAM SAMPLE IS DIGESTED WITH 5 M OF 3:1:3 WCL TO HMD3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PAPTIAL FOR SALMA,FELCALP.(P.MS,BA,PD.AL.WA,K.W.PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= (MSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: P ATTENTION: PROJECT: F	AMICO S. T ORRES	IN ODGR: T	UΚ				1	REPOR JOB#: INVOI	2T#: 881 (CE#:	881- 465 88	466P/ 1466)	A NA			DAT DAT COP	e re e co y se	CEIV MPLE NT T	ED: 1 TED: 0:	88709 8873	9/26 10/20	0					vst_	1	4	/
																						246	E t Of	1					
SAMPLE NAME	AG PPH	A:_ >	AS PP:	AŬ 224	84 791	81 P25	CA Z	00 221	CO PPH	02 221	(1) 2011	ε ί	ĸ	MG 1	йћ 294	HQ 22M	na Z	NI PPM	Р I	РВ РРМ	Р0 РР <u>1</u>	PT PP#	58 2011	SN PPB	SR PPK	U PP:1	₩ 225	în FP.1	
14670 14671 14672 14673 14674	.5 27.4 16.8 .9 5.7	.58 .94 .07 .97 2,38	19 B ND ND 3	нС ИС ИС ИС ИС	75 15 23 15 44	ND ND ND ND	.12 .73 .0; .02 3.21	1.6 .1 .1 1.9	5 24 5 11 43	209 299 245 276 281	113 14672 2653 163 5475	1.73 4.50 1.99 1.22 6.44	.07 .26 .06 .01	.42 1.28 .05 .05 3.38	149 629 47 52 843	47253	,01 .01 .01 .01 .01	35 133 15 28 180	.06 .03 .01 .01 .20	23 25 11 8 48	АР Ю Ир Ир Ир	ND ND ND ND	N0 Ю КD КD Си	1 2 1 1	12 117 5 4 386	ND ND ND ND	NC ND ND ND	114 53 5 5 145	
14675 14676 14677 14678 14679	2.4 .9 .1 .2 6.1	.52 .03 .16 .09 .04	ND 3 296 41 10	ND ND ND ND	50 11 18 101 17	ND 16 ND ND	.29 .01 .01 .03 .86	.1 ;1 .6 .1 .1	9 1 57 3 2	271 233 60 211 110	(619 (87 406 43 (496	1.62 .69 62.90 1.37 .75	.09 .02 2.09 .95 .14	.34 .02 .09 .01 .01	2:7 37 92 28 361	5 23 10 5	.01 .01 .05 .01	31 6 93 9 5	.15 .01 .01 .05 .01	14 10 7 15 893	ND ND ND ND	nd Nd Nd Nd Nd	DR Dr Dr Dr Gr	נ נא 10 אם	33 5 3 6 32	ND ND ND ND	ND ND ND ND ND	23 3 10 3 7	
14680 4681 18501 18502 18503	81-1 1.5 .8 .3	.05 .25 .13 .68 1.71	ND 8 10 2	AD ND ND ND	6 25 4 20 430	3 ND ND ND ND	.37 .96 .05 .05 .56	.8 .1 .1 .1 .5	47651	240 212 259 197 47	3185 257 77 42 48	3.09 1.70 .70 1.80 3.14	. 15 .05 .03 .05 .18	.03 .13 .08 .32 1.57	102 521 246 692 1204	7 3 5 3 2	.01 .01 .01 .01 .01	13 12 5 6 9	.01 .02 .01 .02 .17	20285 449 69 40 143	ND Ng Nd Ng Ng	nd Nd Nd Nd Nd	ND ND ND ND	80 1 1 2	16 5 1 2 33	ND ND ND ND ND	ND ND ND ND ND	36 12 5 39 14:	
18504 18505 23620 23621 23622	.5 .1 4.3 6.5 1.3	.33 2.36 .74 .38 .04	13 7 49 37 12	ND ND ND ND ND	63 57 25 8 9	ND 4 DM DM DM	.01 .72 1.94 .58 .05	.1 1.9 .8 .9	2 18 19 6 5	115 74 263 228 286	20 273 2094 1723 1673	.89 7.57 2.20 1.36 .81	. 02 . 36 . 34 . 12 . 03	.11 1.90 .58 .31 .02	260 2155 479 217 155	1 8 3 5	.05 .02 .01 .01	2 16 41 17 14	.01 .13 .06 .01 .02	27 64 42 18 17	ND ND ND ND	ND ND ND ND	ND ND ND NC	1 3 1 2 1	4 35 71 21 2	ND ND ND ND	ND Ko Kd Xo	25 259 34 35	
DETECTION LIMIT	-1	.01	3	Ĵ	1	3	.01	• :	ł	:	1	.01	.01	.01	ł	;	.01	1	.01	2	3	5	2	2	1	5	3	ŧ	

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

.

.

VGC

23699

23700

ς.

1

VANGEOCHEM LAB LIMITED

yMAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V50 105 (504)251-5656 FAX:254-57;7

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NU	UNBER: 88146	9 6A JOB	NUMBER:	881469	PANECON	DEVELOPMENT	LTD.	PAGE	1	OF	i
SAMPLE #		Au									
		ppb									
14664		380									
14665		410									
14666		40									
14667		870									
14669		20									
14669		20									
23690		650									
23691		50									
23692		100									
23693		35									
23694		200									
23695		35									
23696		120									
23697		nd									
23698		170									

30

AN COULTM AR IM ED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCL _R B.C. V5L 1K5 PH:(604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCUUVER B.C. V5L 1L6 PH:(604)251-7282 FAX:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .3 BRAK SAMPLE IS DISESTED WITH 5 ML OF 3:1:3 HOL TO HAND TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SW,MK,FE,CA,P,CK,MG,BA,PD,AL,NA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -- NOT AMALYZED

COMPANY: FAMICON ATTENTION: S. TODORUK FROJECT: FORREST									T#: 881	8814 469 88:	169P/	A NA			DATE RECEIVED: 88/09/27 DATE COMPLETED: 88/10/20 COFY SENT TO:								ANALYST 202							
																					PAG	E 1 OF	-	()						
SAMPLE NAME	AG PPN	AL ĭ	AS PPH	AU PPM	ВА РРЧ	6) PPK	ĩA ĩ	CD 2PM	CS PPH	CR PPN	CU PPK	FE X	K X	MG 2	ни Ррн	NG PPH	NA X	NI PPM	P X	PB PPM	PD PPN	91 99 6	S8 PPM	sn Ppir	SR PP#	U FP h	₩ ₽₽ñ	ZN EPH		
14654 14563 14665 14667 14868	76.6 24.5 7.1 .1 .5	2.91 2.20 2.63 .6B .07	663 119 62 57 12	ND NC ND ND	29 95 43 7	ND S ND ND	.0; .01 .01 6.17 1.29	11.1 3.7 1.7 2.7	301 42 68 40 4	76 43 93 26 206):01 21:25 3318 341 76	20.73 10.08 6.20 8.75 .86	.59 .34 .20 1.14 .20	.79 .64 .93 3.67 1.06	1050 234 561 2721 266	34 9 5 5 8	.04 .03 .02 .02 .02	33 4 9 40 8	.01 .01 .01 .04 .01	176 77 59 21 9	NC Nđ Nđ Nđ Nđ	ND ND ND ND ND	ND ND ND ND	8 2 1 1	3 1 49 6	KD Nd Nd Nd	HD ND ND ND	146 69 41 34 3		
14689 23690 23891 23892 23893	,6 29.8 5.1 17.7 5.1	.08 .03 .04 1.43 .05	6 830 94 82 32	ND ND ND ND	22 6 4 6 2	KD S ND ND ND	.46 .03 .04 .11 .46	.1 8.1 .5 1.3 .1	16 43 16 29 8	165 41 223 100 17B	1213 1518 1295 7309 7146	1.33 27.92 3.42 4.22 1.54	.11 .95 .12 .15	.15 .04 .02 1.12 .03	568 595 148 332 255	2 35 10 4 6	.01 .07 .01 .01	24 34 32 47 17	.01 .01 .01 .03 .01	9 38 12 89 187	ND ND ND ND	ND ND ND ND ND	KD Nd Nd Nd	1 ND 1 1	3 ND 1 12	ND ND ND ND	ND Ng ND ND	4 1565 52 59 11		
20294 23695 22695 23695 23696	12.6 5.9 11.5 12.1 9.3	. 22 2.04 .08 .79 .03	21 105 204 96 13	ND ND ND ND	7 6 5 6	KD NQ ND ND	.32 .17 1.13 .22 2.83	1.6 1.6 .8 .8	9 28 9 20 2	162 251 79 200 183	3714 1259 2124 5580 1486	3.45 4.92 3.89 5.45 .69	, 16 , 19 , 29 , 16 , 41	.15 1.67 .04 .55 .12	173 389 310 415 382	3 1: 3 7 2	.01 .01 .01 .01 .01	34 75 15 50 7	.01 .05 .01 .03 .01	63 409 25 363 1163	ND ND ND ND ND	ND ND ND ND	ND ND ND ND	1 1 2 ND	10 5 32 91	NC ND ND ND	ND ND ND ND ND	40 59 69 46 8		
23899 23706	3.5 4.3	. (14 , 83	20 ND	N0 N0	4 10	NG NC	.24 11.48	.1 .1	101	241 76	761 18;	,44 1,01	.Ú4 1.64	.03 .63	126 1014	9 3	.0: .01	7 12	.01 .01	228 2 756	ND ND	ND ND	MD ND	1 K9	6 165	ND NC	ND ND	31 28		
DETEKTION LIMIT	.:	.01	3	3	i	3	. 01	.1	1	1	1	.0:	. 01	.01	i	ì	.01	;	.01	2	3	5	2	2	1	5	3	1		

ANOMALOUS RESULTS:

FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

OCT , ILLIA

1

,

GC VANGEOCHEM LAB LIMITED

`

,

(

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 881488 GA	JOB NUMBER:	881488	PANICON DEVELOPMENT LTD.	PAGE	1	ÐF	1
SAMPLE #	Au						
23593	ррв 180						

VANGEOCHEM LAB LIMITED

.

MAIN DFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH DFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HMO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND 15 DILUTED TB 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, HN, FE, CA, P, CR, NG, 84, PD, AL, NA, K, W, PT AND SR. AU AND PD DETECTION 15 3 PPN. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NDT ANALYZED

COMPANY: PAMICON ATTENTION: S. TODORUK PROJECT: FORREST										REPORT#: 881488PA JOB#: 881488 INVOICE#: 881488NA								CEIVI MPLE NT TI	ED: (TED: D:	88709 8871	3/27 10/24	ŀ		ANALYST ANA.							
																								E 1 DF	-						
	SAMPLE NAME	AG PPM	ж 1	AS PPR	AU PP n	ВА Ррн	BI PPM	CA 1	CD PPM	CØ PPM	CR PPM	CU PPH	FE 1	K I	116 I	MN PPN	MQ PPM	NA I	N] PPM	Р 1	р8 РРЯ	20 PPN	PT PPN	59 PPK	SN Pph	SR PPN	U PPN	¥ PPN	2N PPN		
	23593	1.1	2.42	MD	ND	4	8	1.91	5.6	113	46	1652	23.32	1.06	1.37	621	5	.06	11	1.56	67	ND	ND	ND	ND	65	ND	NB	164		
	DETECTION LIMIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	1	1	.01	1	.01	2	3	5	2	2	i	5	3	1		

000 . 3 1 1988 TUUE

· · · · ·

11

.

1

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABOR470RY 1988 Triumph Street Vancouver, B.C. VSL 1K5 1504)251-5456 FAJ:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 881492 G	A JOB NUMBER: B81492	PANICON DEVELOPMENT LTD.	PAGE I OF I
SAMPLE #	Au		
	ppb		
23611	140		
23612	90		
23613	130		
23614	360		
23615	180		
23616	510		
23617	90		
23618	80		
23619	585		

`

,

-

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD, BATHURST, N.B, MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: B81492 AA	JOB NUMBER: 881492	PANICON DEVELOPMENT LTD.	PAGE	j	OF	1
SAMPLE #	Ag oz/st					
23612	1.06					
23613	1.36					
23614	2.15					
23615	1.91					
23616	3.0t					

DETECTION LIMIT .01 i Troy oz/short ton = 34.28 ppa 1 ppm = 0.0001% ppm = parts per million (= less than signed:

MAIN DEFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH:(604)251-5656 TELEX:04-352578 BRANCH DEFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH:(604)251-7282 FAX:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HOL TO HN03 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN,MM,FE,CA,P,CR,NG,BA,PD,AL,NA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPN. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NDI ANALYZED

					10- 15		2011 2000	nicij ne	* MUT PI		, - N																-7	~ ~	
COMPANY: PA ATTENTION: PROJECT: V	MICOL S. TO	N DDOR Lof	UK				F 1	EPOR 108#: 10701	:T#: 881 CE#:	8814 492 881	192P#	¥ NA			DATE DATE COP	E RE(E CD/ Y SE	DEIV MPLE NT T	ED: 8 TED: 0:	8870 887	9/21 10/19)					, YST_	4	loz	/
																						PAG	E 1 OF	!				0	
SAMPLE NAME	AG PPM	A: Z	AS PPR	AU PPN	ва РРК	BT PPM	CA X	CO PPM	CO PPM	CR PPM	ûŭ Pak	FE	K Z	NG Y	ЯN Рев	80 20%	NA 2	NI Pek	P Y	Р9 Рри	PD PPN	PT PPH	S8 PPH	SK 205	SP PPK	U PPM	¥ PPK	ZN PPH	
													~				•		^	••••	••••				1.10	••••			
23611	19.8	.19	33	NG	15	ŇD	3.84	. 1	14	147	4466	1.59	.58	.16	563	4	.01	20	.01	625	ND	NÐ	ND	ND	111	X0	NÛ	19	
23612	37,4	.24	AC.	МD	7	3	1.26	1.7	16	130	15502	2.88	.27	.19	298	1	.01	36	.01	9257	ND	ND	ND	ND	40	ЯÐ	ND	72	
23613	45.6	.08	42	ND	В	4	1.66	.1	11	195	11729	2.15	.30	.14	384	5	.01	26	.01	1053	ND	ND	ND	3	45	ND	ND	9	
23614	79.6	.03	ND	ND	7	5	1.06	3.2	9	156	19551	3.60	.27	.02	168	-	.02	19	, 01	19906	NÐ	ND	45	6	35	ND	KD	155	
23615	65.6	, 6 E	NÐ	NÐ	8	4	.05	.1	5	242	4543	3.07	.11	,03	66	2	.01	17	.01	18505	ND	ND	ND	50	4	ND	NÐ	32	
23616	95.2	. 22	ND	NÐ	8	5	.62	1.2	32	BO	2177	1.95	. 15	. 19	:40	•	, Ó I	21	. 01	25488	ND	ND	ND	NÐ	25	KŪ	ыD	13	
23517	8.7	.17	٤Ę	NÐ	15	ND	2.50	.4	12	173	4598	1.86	. 42	33.	558	3	.01	15	.01	R44	NE	ND	ND	1	62	ND	ND	43	
23510	24.9	1.06	174	ND	9	NÐ	. 22	.9	17	132	7598	4.71	.17	.90	447	2		40	63	7597	NT.	ND	мū	1	5	80	NUL I	RÓ	
23619	27.6	3.17	645	ND	8	5	.04	4.6	57	176	24949	11.53	. 40	2.43	328	10	.03	64	.07	175	ND	ND	ND	2	ž	ND	MÐ	291	
DETECTION LINIT	.1	.01	3	3	1	3	.0:	.1	i	;	Т	.01	.91	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	1	

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

.

ì

GC

7

~

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FRX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 881496	GA JOB NUMBER: BB1496	PANICON DEVELOPMENT LTD.	PAGE 1 OF
SAMPLE #	Au		
	ppb		
23590	80		
23591	110		
23592	35		

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET, VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

~

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HN03 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR SN, MN,FE,CA,P,CR,MG,BA,PD,AL,NA,K,N,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: P ATTENTION: PROJECT:	AMICO S. T	N ODOR	UK				5	REPOR 108#: 1NV01	₹ *# 881 (CE#:	8814 496 88	496P/ 1496	na			DAT DAT COP	e rei E coi Y sei	CEIV MPLÉ NT TI	ED: { TED: O:	38709 8873	9/26 10/24	ŀ				ANAL	YST_	h	42	/
			<i>;</i>																			PAG	ie 1 DF	۱.				0	
SAMPLE NAME	AG PPK	AL I	AS PPR	AU PPH	BA PPN	BI PPR	CA 1	CD PP#	CD PPM	CR PPN	CU PPM	FE 1	K I	NG T	NN PPh	NO PPN	NA I	NJ PPM	P I	P8 PP n	PD PPN	РТ РРМ	SB PPX	SN Ppm	SR PPM	U PPN	N Ppn	ZN PPN	
23590 23591 23592	.1 22.3 15.8	.51 1.63 .15	ND 91 18	ND Nd Nd	18 17 39	6 ND NO	.11 .27 .59	4.6 3.2 1.5	46 66 12	38 86 64	210 44954 31778	19.55 7.05 4.06	.71 .29 .22	.28 1.23 .19	967 534 583	9 6 4	.05 .03 .02	13 49 32	.05 .10 .05	20 48 28	KQ ND ND	ND ND Dy	ND ND ND	ND 2 1	12 13 10	ND ND ND	XD ND ND	44 91 38	
DETECTION LIMIT	.1	.01	3	3	1	3	.01	.1	1	I	1	.01	.01	.01	Т	I	.01	t	.01	2	3	5	2	2	I	5	3	í	

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

· · · ·

. 4

ана арана **т**ана **т**ана та

VGC

1

•

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND L&90RA10P4 1998 Triumph Street Vencouver, 8.2, V5L 195 J (104)251-5656 F4X:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5655

JOB NUMBER: 881552 REPORT NUMBER: 881552 GA PANICON DEVELOPMENT LTD. PAGE 1 OF 1 SAMPLE # Au ppb 14682 990 14683 4700 14684 390 14685 2800 14686 380 14687 125 14688 1340

VGC	VANGEO MAIN OFFICE AND LA 1985 Triught S Vatoover, B.C. 1604 201-0456 F0	CHEN BOSGTORY Street USL 15 5 1524-5717_	I LAB BR 16: VANCC	LIMITED ANCH OFFICE 80 PANDORA ST. 90 VER, B.C. V5L 1L6 (604) 251-5656				
REPORT NUMBER: 881552 AA	JOB NUMBER: 881552	PAMICON	DEVELOPMENT (.TD.	PAGE	1	OF	1
SAMFLE #	Au oz/st							
14683 14685	.187 .066							

14688 .028

``

.

.

.

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH:(604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH:(604)251-7282 FAX:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .S GRAM SAMPLE IS DIGESTED WITH 5 KL OF 3:1:3 HEL TO HANGS TO H2D AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. This leach is partial for Sm, Mm, Fe, CA, P, CR, MG, BA, PD, AL, NA, K, W, PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYIED

COMPANY: PA ATTENTION: S PROJECT: FO	MICD S. T RRES	N ODOF T	NUK (7 J 1	EPOR OB#: NVOI	:T#: 881 CE#:	8815 552 881	52PA 552N	N NA			DATE DATE COPY	e re(e com y sen	CEIVE MPLEI NT T(ED: 8 TED: D:	38/10 88/1	0/03 .0/21					ANAL	YST_		<u>é /</u>
																						PAG	E I OF	:				1
SAMPLE NAME	A6 PPt	AL I	25 m	4) 25 4	84 99 -	81 2011	CA X	CD PPM	CO PPR	CR Ppm	ûU ₽P¶	FE 1	r Z	NG I	KN 29m	MO PP#	NA Z	NT Ppm	p I	PB PPf	PD 925	PT 728	58 292	SA PPR	SR PP#	U PPH	K PPM	ZK PPN
14682 14683 14684 14685 14686	.3 .1 .1	.47 .89 2.47 .27 2.25	16005 70302 4782 73145 25735	NG ND ND ND	36 14 22 9 49	NC ND ND ND	1.98 3.72 1.6E 2.51 2.24	.1 .1 .1 .1	7 26 22 20 19	109 30 25 44 43	100 102 346 21 371	2.89 6.96 8.80 4.90 8.18	.41 .74 .53 .52 .59	.35 .61 1.28 .15 1.18	825 1373 1530 668 1322	336 25	.02 .02 .03 .02 .03	18 2 3 1	.03 .12 .25 .09 .22	54 17 37 38	ND ND ND ND	ND ND ND ND	ON ND GM CM CM	NO ND ND ND ND	40 87 34 64 56	KD ND ND ND	ND ND ND ND	162 84 113 49 94
14687 14686	6.5	5.10 1.94	1153 9558	40 N0	381 21	4 KD	1.45 2.12	.1	30 14	18 36	314 2446	10.37 6.58	.56 .52	1.65 1.09	1356 1225	5	.04 .02	1 2	.30 .20	41 33	ND ND	ND ND	ND ND	ND ND	57 65	50 ND	ND ND	189 82
DETECTION LINET	.:	.0;	5	3	1	3	.01	.1	1	1	1	.01	.01	, ¢1	1	1	.01	1	.01	2	3	5	2	2	t	5	З	1

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

-

1

10

· · · · · ·

GC VAN

`

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LASOPHICRY 1908 Triumph Street Vancouver, B.C. VSL 195 1909)051-5956 _FF/:054-8717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT	NUMBER:	881613	GA .	OB NUMBER	89 1613	PANICON	DEVELOPMENT	LTD.	PAGE	1	OF	1
SAMPLE	+			Au								
			1	pb								
23633			8	40								
23634				50								
23635			2	30								
23636				30								
23637				nd								
23638			1	85								

VGC	VANGEC MAIN OFFICE AND 1988 Triumpi Vancouver, 5.0 1508/251-5556 F	CHEM LABORATORY Street 	LAB LIMITED BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656				
REPORT NUMBER: BB1613 AA	JOB NUMBER: 881613	PANICON DEV	ELOPHENT LTD.	PAGE	i	OF	1
SAMPLE #	Au oz/st	3 ;					

.268

.073

~

23633

23635

,

.

DETECTION LIMIT 1 Troy oz/short ton = 34.28 nmm	.005	/ - less thes
signed:		< = 1855 than

MAIN DFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH DFFICE: 1630 PANDDRA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 NL OF 3:1:3 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO IO NL WITH WATER. THIS LEACH IS PARTIAL FOR SM, MM, FE, CA, P, CR, MG, BA, PD, AL, NA, K, W, PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT AMALYZED

COMPANY: PA ATTENTION: PROJECT: FO	AMICO STEV DRRES	N E TO T	DORU	ĸ			F	REPOR JOB#: INVOI	(1#: 881 (CE#:	881) 613 89	513PA 1613N	iA			DAT DAT COP	e reg e com Y sem	CEIVE MPLET NT TO	ED: 8 FED: D:	38/10 88/1	0/11 10/28	I				ANAL	YST_	Ň	b'	1.
																						PAG	E 1 OF	1					/
SAMPLE NAME	А6 9РМ	AL I	AS PPM	AU Ppn	BA PPN	81 Pph	CA Z	CD PPN	CQ PPH	CR PPM	CU PPM	۶E ۲	X Z	MG X	KN Ppn	NO PPH	HA Z	N(PPN	P Z	P9 PPE	PB PPM	PT PPM	SB PPM	SN FPK	SR PPK	U Ppm	¥ P?H	ZN PPM	
23633 23634 23635 23635 23636 23637	.3 .1 18.5 .1 .5	.63 1.18 .41 .31 .50	65601 1592 306 50 39	5 ND ND ND	12 12 15 23 45	ND ND ND ND	1.48 6.57 .51 1.28 .24	4.8 .2 .1	12 9 31 13 7	97 54 84 78 200	50 138 15046 288 872	4,95 5,73 2,84 1,94 1,01	.37 1.09 .17 .24 .06	.29 .86 .17 .26 .30	508 2606 390 650 175	4 3 2 3	-01 -05 -02 -01 -01	3 1 31 19 11	.07 .13 .07 .04 .01	13 26 18 12 17	5 5 4 3 KD	ND ND ND ND ND	nd Nd Nd Nd Nd	ND ND L MD I	36 125 7 14 4	ND Kd ND ND Kd	ND ND ND ND	18 1491 73 21 20	
23638	.9	. 18	2245	ND	8	ND	.41	.1	4	198	938	.95	.09	.07	200	3	.01	5	.01	10	ND	ND	ND	1	13	ND	ND	32	
DETECTION LIMIT	.1	.01	3	3	1	3	.01	Л	;	1	1	.01	.01	.01	1	1	.01	I	.01	2	3	\$	2	2	1	5	3	Т	

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE

METHODS SUGGESTED

OCT 31 MAR

1 J 1 1 1 1

1

5

•

.

.

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LASSRATCES 1998 Trisoph Street 3 Vancouver, B.C. VEL 145 (1991)51-5655 FA1:054-5717_ BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER:	881614 GA JOB	NUMBER: 881614	PANICON DEVELOPMENT LTD.	PAGE	í	OF	i
SAMPLE #	Ан						
	ppb						
23597	740						
23599	1470						
23626	5300						
23627	>10000						

VGC	VANGEO Main Office AND LA 1989 Triumph S Varcouver, 212. (204)251-5656 FAX	CHEM I BOSA754 Freet VEL 1/5 1054-5717	AB LIMITE BRANCH OFFICI 1630 PANDORA ST VANCOUVER, B.C. VSI (604) 251-5656				
REPORT NUMBER: 881614 AA	JOB NUMBER: 881614	PANICON DEV	ELOPHENT LTD.	PAGE	1	OF	1
SAMPLE #	Au oz/st						
23626 23627	.160						
	12/4						

`

.

-

 \mathcal{A}_{ij}

DETECTION LIMIT	.005	
i Troy oz/short ton = 34.28 ppm	1 ppm = 0.0001% ppm = parts per million < = 1	ess than
signe d:	SAC-	

VGC	VANGFOC MAIN OFFICE AND LA 1989 Triugob S Vancouver, B.C. (504)281-5654 FAX	CHEM BOSATORY trpet V9L 1K5 : 254-371"	LAB LIMITE BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L (604) 251-5656	1L6			
REPORT NUMBER: 081614 AA	JOB NUMBER: 001614	PANICON DE	VELOPMENT LTD.	PAGE	1	OF	1
SAMPLE #	Ag oz/st	Au oz/st	L				
23626	3.29	.160					

3.72 .274

``

23627

÷

.

-

~

.

DETECTION LIMIT	.01 .005	
1 Troy oz/short ton = 34.28 ppm	1 ppm = 0.0001% ppm = parts per million	(= less than
signed:	<u>BAC</u>	

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH:(604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH:(604)251-7282 FAX:(604)254-5717

,

• • •

10

1.

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 KINUTES AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR SN, NH, FE, CA, P, CR, MG, BA, PD, AL, NA, K, W, PT AND SR. AU AND PD DETECTION IS 3 PPN. 15= INSUFFICIENT SAMPLE, WD= NOT DETECTED, ~= NOT ANALYZED

COMPANY: F/ ATTENTION: PROJECT: FU	AMICON DRRES	N T					F J	REPOP JOB#: INVOI	RT#: 881 CE#:	8818 614 88:	514P# 1614N	A NA			DATI DATI COP	E RE¢ E COM Y SEI	CEIVE MPLE NT TO	ED: 8 TED: O:	38/10 88/1	0/07 10/14	ł				ANAL	YST_	V	<u>IN</u>	•
																						PAG	E : DF	1					
SAMPLE NAME	AS PPH	AL 1	AS PF#	Atl 20g	BA Sfit	81 PP h	CA 1	CC PP r	CQ PPM	CR PPN	CU PPM	FE X	K Z	M6 X	nn Ppi	NO Ppm	NA S	Nî PPM	P ï	98 791	PD PPH	PT PPM	SÐ PPH	SN PPM	SR PPM	U PPM	Sok M	UN PPM	
23597 23599 23626 23627	.5 .1 >100 >100	.45 .37 .21	16453 19115 384 133	ND ND ND	1: 11 6	ND 15 ND RD	1,44 3,86 .07 .01	.1 .5 5.3 5.8	8 18 36 17	147 94 167 103	94 76 >101 >101	1,88 4.58 13.72 8.27	.23 .57 .39 .24	.95 1.38 .09 .02	430 1700 241 82	5 5 17 14	.01 .01 .02 .01	:5 5 155 4B	.03 .04 .01 .01	7 9 148 139	HD MB ND ND	NG X9 Ng Ng	NÜ NÖ ND	ND ND 1 2	10 104 2 1	ND ND	ND Kd ND ND	8 25 96 24	
DETECTION LIMIT	.1	.61	3	3	i	3	.01	.1	1	1	1	.01	.61	.01	1	ι	.01	1	. 01	2	2	5	2	2	1	5	3	1	

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

\$

•

-

1 1

VANGEOCHEM LAB LIMITED

PANICON DEVELOPMENT LTD.

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vencouver, B.C. V51 1/5 16041251-5656 (FAX:054-571) BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 1 DF 1

REPORT	NUMBER:	881615	GA JO	B	NUMBER:	891615
SAMPLE	+		A	łu		
			pp	b		
14689			Π	d		
14690			п	đ		
14691			363	Q		
14692			12	0		
14693			n	d		
23594			2	0		
23595			74	0		
23596			144	0		
23598			24	0		
23600			3	0		
23623			n	d		
23624			1	0		
23625			26	0		
23628			125	0		
23629			137	0		
23630			77	0		
23631			430	0		
23632			151	0		

MAIN DEFICE AND LABORATORY 1988 Triveph Street Vancorver, B.C. USL 15 1504/251-5136 FAX:054-531

1

23631

23632

'GC

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 881615 AA	JOB NUMBER: 881615	PANICON DEVELOPMENT LTD.	PASE	1	05	1
SAMPLE #	Au oz/st					
14691	.083					
23596	.030					
23628	.036					

.125

.048

DETECTION LIMIT .005 1 Troy oz/short ton = 34.28 ppa 1 ppm = 0.0001% ppm = parts per million < = less than signed:

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH:/604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 116 PH:/604)251-7282 FAX:(604)254-5717

and the second second

/

11

ICAP GEOCHEMICAL ANALYSIS

A LS GRAM SAMPLE IS DIGESTED MITH SIML OF BILLS HE. TO MMODIFO MADIAT OS DEGLICIFOR SO MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SMIMH,FEITA,FICP.MG,MA,PD,AL,MA,PI,MADISML AND SMI AN AND PD DETECTION IS I PPM. IB= INSUFFICIENT SAMPLE, ND= NDT DETECTED, HE NOT RMALYZED

COMPANY: PA ATTENTION: PROJECT: FO	DMPANY: PAMICON REPORT#: 881615PA TTENTION: S. TODORUK JOB#: 881615 ROJECT: FORREST INVOICE#: 881615NA												DATE DATE COPY	E REC E COM Y SEN	EIVS IFLEI IT TO	ED: 8 FED: D:	8/10 88/1	0/31					ANAL	YST_	V	lar.	, 		
																				PAG	€ : OF	!				IJ			
SAMPLE NAME	A6 PPK	AL X	AS PPM	AU Péri	as Pen	B(PPM	CA Z	CD PPM	CO PPK	CR PPH	CU ទទង្គ	۲E ۲	K Z	16 1	MN PPM	NO PPM	NA Z	NC P2M	> z	28 2011	P0 P25	97 РРд	58 295	SN PPM	SR PPM	U PPN	H PPN	ZN PPH	
14585 14690 14691 14692 14693	.3 .1 .1 1.1	.06 .39 1.53 .06 2.43	19 NO 58 631 103	10 10 10 10		80 99 90 90 90	1.81 8.71 2.40 .10 .12	.t .1 .1 .7	14 7 20	190 120 148 195 97	62 14 500 83 122	. 48 . 75 2. 87 . 55 6. 45	. 25 1, 14 . 40 . 93 . 26	.07 .39 1.41 .03 1.51	381 494 574 55 336	4 KD 4 2 7	.01 .01 .01 .01 .02	99 19 14 16	,01 .01 .05 .01 .04	9 13 32 61	ND ND ND ND	*0 40 80 80 80	О 10 10 10 10 10	ND ND 1 3	23 68 27 3	ND ND ND ND	NO ND ND ND ND	8 13 30 6 85	
23534 23395 23595 23595 23598 23600	.6 3.5 2.7 .1	1.54 .22 .58 2.52 .50	39 250 99 1607 30	NO NO NO NO	49 22 22 23	ND ND ND ND	.05 3.57 3.30 2.24 ;5.36	. 9 . 4 . 7 . 5	21 107 41 43 B	55 100 96 48 28	68 5730 5685 933 3943	3.29 3.53 5.12 9.42 3.80	.13 .59 .88 .83 2.29	.41 1.62 1.31 2.79 4.48	708 1609 1715 1115 3994	ճ. 1 3 4 MD	.01 .01 .02 .03	40 54 19 10 27	.95 .94 .24	42 18 23 46 31	ИВ 68 64 97 97 97 97 97 97 97 97 97 97 97 97 97	ND NC ND ND	ND ND ND ND ND	н См См Ци Ци	16 21 22 17 639	ND NC ND ND	0 0 0 0 0 0	76 22 26 91 21	
23623 23624 23625 23628 23629	1.1 2.5 .5 20.1 29.2	.05 2.07 .73 1.55 .59	18 31 41 72	の の 28 28 28 28 28 28 28 28 28 28 28 28 28	23 58 52 10	ND ND C T DR	.58 .96 .63 .75	2.5 2.9 1.5	7 27 30 31 52	207 85 40 79 131	1754 1851 575 19063 13752	.73 5.24 9.31 7.43 4.74	. 10 . 34 . 44 . 35 . 20	.17 1.12 .76 .85 .29	253 998 1357 1061 336	4 5 5 5 3	.01 .03 .04 .03 .03	10 8 4 3 56	.01 .17 .25 .30	11 44 25 53 33	ND ND ND ND ND	12 10 10 10 10 10	ND ND ND ND ND ND	N0 1 1	18 27 16 11 5	11D 14D 14D 14D 14D 14D 14D	ND ND ND ND	5 91 90 54 20	
23530 23631 23632	16.7 >100 32.7	.35 .20 .25	:00 76 92	10 3 10	18 9	ND MD 3	. 50 . 02 . 04	.8 8.1 .8	44 37 21	117 134 151	15055 3403 25428	3.34 12.44 3.17	.19 ,44 ,12	.12 .07 .11	531 121 57	4 12 3	.02 .04 .02	25 71 24	. 08 . 25 . 08	37 119 45	ND NG ND	ND ND ND	ND ND ND	1 4 1	;1 ; 3	ND ND	ND MD Gx	27 40 21	
GEFECTION LIMET	.:	.01	3	2	:	3	.01	.1	i	:	1	.01	.01	.01	1	ł	.0:	t	.ů!	2	3	5	2	2	1	5	3	ł	

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

VGC	VANGEO MAIN OFFICE AND L 1958 Triugph Vancouver, B.C. (604)251-5656 Fr	CHEM L ABOSATORY Street V5L 195 AV: 1954-5712	AB LIMITED BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656			-	
REPORT NUMBER: 881674 GA	JOB NUMBER: B81674	PANICON DEV	ELOPMENT LTD.	PAGE	1	OF	1
SAMPLE #	Au						
14694	ррЬ 740						

-

•

٠

p=-

ŗ

-

-

.

.

.

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-3656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

*

÷.,

(

23

2

ICAP GEOCHEMICAL ANALYSIS

A .S GRAM SAMPLE IS DIGESTED WITH S NL OF 3:1:3 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR SN, MN, FE, CA, P, CR, NG, BA, PD, AL, NA, K, W, PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NDT DETECTED, -= NOT ANALYZED

	LS- INSURFILIENT SHIPLE, NU- KUT VETELJEV, NUT MANLIEV																			2	11								
COMPANY: PA ATTENTION: PROJECT: FC	MICO S TO DRRES	N IDORU IT	к				F	REPOR JOB#: INVOJ	RT#: 881 CE#:	8816 674 881	674 F	PA NA			DATI DATI COP	e rec e com y sem	CEIVE MPLET	ED: E FED: D:	38/10 88/1)/18 1/01					ANAL	YST_	1	baz	<u>,</u> -
																						PAG	E 10F	1					
SAMPLE HAME	AG PPN	AL I	ል5 የቦ <u></u>	AU PPM	BA PPN	BI PPN	CA 1	CD PPN	CO PPN	CR PPN	CU Pph	FE T	K I	X6 I	NN PPH	NO PPN	NA X	N[PPH	P I	PB PPM	20 Ppk	PT PPN	S8 PPK	SN Ppn	SR PPM	U Pph	K PPM	ZN PPM	
14694	36.9	5.46	143	MD	H	42	.02	6.5	291	32	8289	31.98	1.16	1.29	1002	39	.10	29	.01	39	ND	ND	184	KD	3	ND	XD	198	
DETECTION LINIT	.1	.01	3	3	1	3	.01	۰۱	i	1	L	.01	.01	.01	1	i	.01	1	.01	2	3	5	2	2	ł	5	3	1	

.

(

1

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 (604) 251-5656 FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD, BATHURST, N.B, MISSISSAUGA, ONT, RENO, NEVADA, U.S.A,

REPORT NUMBER:	881736 GA JOB N	JMBER: 881736	PAMICON DEVELOPMENT LTD,	PAGE	1	OF	1
SAMPLE #	Au						
	ppb						
14695	>10000						
14696	390						
14697	40						

	HEM LAB LIMITI	MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A
REPORT NUMBER: 001736 AA	JOB NUMBER: 881736	PANICON DEVELOPMENT LTD.	PAGE 1 OF 1
SAMPLE #	Au oz/st		
14695	.300		
14696			
14697			

•

r-

.

l

~

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm signed:	. 005 1 ppm = 0.0001%	parts per million	< =
845	ð	2	

< = less than</pre>

MAIN DEFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. VSL 1K5 PH:(604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. VSL 1L6 PH:(604)251-7282 FAX:(604)254-5717

1

11

1

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 NL OF 3:1:3 HCL TO HNO3 TO M20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, KN,FE,CA,P,CR,MG,BA,PD,AL,NA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= :*SUFFICIENT SAMPLE, NO= NOT DETECTED, -= NOT ANALYZED

COMPANY: P ATTENTION: PROJECT: F	AMICO ORRES	N T						REPOF JOB#: INVDI	27#: 881 [CE#:	8817 736 881	36 F 7 36	PA NA			DAT DAT COP	e re(e coi y sei	CEIV MPLE NT T	ED: 0 TED: D:	38/10 88/1)/27 11/11	L				ANAL	YST_	4	ax.	
															•							PAG	EiOF	1			Ľ		
SAMPLE NAME	AŠ PPH	AL I	AS PPM	AU PPM	BA PP#	51 P PM	CA X	CD PPM	00 PPH	CR PPM	CU PPM	FE I	K I	ng Y	MN PPN	NG PP n	NA X	NI PPM	P I	PB PPN	PD PPM	PT Pph	SB PPM	SN Pph	SR Pph	U PPM	¥ PPN	IN PPM	
14695 14695 14697	2.2 .9 .5	.71 .14 .12	30686 3678 138	10 ND ND	17 38 4)	ND ND ND	.36 .44 .70	32.8 3.2 .1	21 2 13	143 188 148	31 36 441	4.08 1.21 1.60	.21 .13 .18	. 39 . 30 . 33	200 641 327	10 4 5	.01 .01 .01	7 6 43	.03 .01 .01	90 98 74	ND RD ND	ND ND ND	ND ND ND	ND ND ND	14 58 19	ND ND ND	ND ND ND	30 13 13	
DETECTION LIMIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.0;	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	Э	1	

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

\$

• •

j

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER:	881752 AA	JOB NUMBER: 881752		PANICON DEVELOPMENT LTD.	PAGE	1	OF	1
SAMPLE #			Cu %	Ag oz/st				
(881492)	23612			.93				
(881492)	23613			1.11				
(881492)	23614		1.8% p	2.00				
(881492)	23615			1.78				
(881492)	23616			2.72				
(881466)	14680			1.43				
(881614)	23597		01					
(881614)	23599		01					
(881614)	23626	10.	15	<u></u>				
(881614)	23627	Э.	73					

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm	$0.01 = 0.0001% = pp_{m} = pasts per million$	< = less than
signed:	MC	

APPENDIX IV

.

ς.

.

٠

.

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, STEVE L. TODORUK, of Suite 129, 7451 Minoru Boulevard, Richmond, in the Province of British Columbia, DO HEREBY CERTIFY:

- THAT I am a Geologist in the employment of Pamicon Developments Limited, with offices at Suite 711, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of British Columbia with a Bachelor of Science Degree in Geology.
- 3. THAT my primary employment since 1979 has been in the field of mineral exploration.
- 4. THAT my experience has encompassed a wide range of geologic environments and has allowed considerable familiarization with prospecting, geophysical, geochemical and exploration drilling techniques.
- 5. THAT this report is based on data generated by myself, under the direction of Charles K. Ikona, Professional Engineer.
- 6. THAT I hold a beneficial interest in the Forrest claims.

DATED at Vancouver, B.C., this 23 day of January , 1989.

Steve L. Todoruk, Geologist

APPENDIX V

`

.

ENGINEER'S CERTIFICATE

ENGINEER'S CERTIFICATE

I, CHARLES K. IKONA, of 5 Cowley Court, Port Moody, in the Province of British Columbia, DO HEREBY CERTIFY:

- THAT I am a Consulting Mining Engineer with offices at Suite 711, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of British Columbia with a degree in Mining Engineering.
- 3. THAT I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.
- 4. THAT this report is based on data generated by Steve Todoruk, with whom I have worked for three years, and in whom I have every confidence.
- 5. THAT I examined the property reported on in August, 1988 and have had extensive experience in the area.
- 6. THAT I hold a beneficial interest in the Forrest claims.

DATED at Vancouver, B.C., t	his 23 day of <u>Jow</u>	, 198 %.
Charles K. Ikona, P.Eng.	CONTROL HOSTA	

