
LOG NO: 0203	RD.
ACTION	· · · · · · · · · · · · · · · · · · ·

GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL AND DIAMOND DRILLING ON THE JOE ANNE I, JOE ANNE II, RINA, AND CARDINAL GROUPS OF CLAIMS

Joe Anne II Group

1839(8)

1841(8)

Joe Anne II

Joe Anne IV

Joe Anne I GroupJoe Anne I1838(8)Joe Anne III1940(8)Joe Anne 51939(10)Joe Anne 62574(3)P-32525(12)

<u>Rina</u>	Gr	oup	
Rina	1	1594	4(10)
Rina	2	1624	4(12)
Rina	3	1625	5(12)
PC-1		2512	2(11)
PC-2		2513	3(11)

<u>Cardinal Group</u> Cardinal I 2496(11)

Cardinal II 2497(11) BW I 2515(11)

NANAIMO MINING DIVISION

N.T.S. 92F/11, 14

Latitude 446*30"N Longitude 125°22'00"W 49

Part 1 of 2

- Owner/Operator: Noranda Exploration Company, Limited (no personal liability)
- Authors : Terence J. McIntyGeEOLOGICAL BRANCH Dennis R. Bull ASSESSMENT REPORT Lyndon Bradish
- Date : January 27, 1989

TABLE OF CONTENTS

			-	
1.0	INTRO	DUCTION	I	1
	1.2 1.3 1.4 1.5 1.6 1.7	Physiod Claims Crown H Regiona Previou Propert 1.7.1 1.7.2 1.7.3	ty Geology Vancouver Group Nanaimo Group Tertiary Intrusives Related Breccias	1 3 3 4 4 7 7 8 9 9 11
2.0	1988	PROGRAM	IME - TECHNIQUES AND PRODUCTION	12
		Overvie Technic Product		12 12 13
3.0	1988	PROGRAM	IME - RESULTS	15
	3.1	3.1.1	Lake/Mt. Brooks Area Geophysics - Induced Polarization Survey 3.1.1.1 Instrumentation 3.1.1.2 Results 3.1.1.3 Conclusions Diamond Drilling 3.1.2.1 Target 3.1.2.2 Drill Hole Parameters 3.1.2.3 Drill Core Logging and Sampling 3.1.2.4 Drill Hole Geology 3.1.2.5 Mineralization and Analysis Geological Model & Economic Potential	15 16 16 17 18 18 19 19 20
	3.2	Elnora 3.2.1 3.2.2 3.2.3		20 21 21 21 21 21 21 21 22 22

	3.3	Anderson Showing 3.3.1 Geology 3.3.2 Geochemistry	22 22 23
	3.4	Cardinal Area 3.4.1 Geology 3.4.2 Rock & Soil Geochemistry 3.4.3 Interpretation	23 23 24 24
.0	CO	NCLUSIONS	25
	4.1	Divers Lake/Mt. Brooks Area	25
	4.2	Elnora Zone	25
	4.3	Anderson Showing	25
	4.4	Cardinal Area	25

APPENDICES

Appendix	I	:	Diamond Drill Logs and Assays - Divers Lake Grid						
Appendix	II	:	Diamond Drill Logs and Assays - Elnora Zone						
Appendix	III	:	Geochemical Analysis - ICP Multielement						
Appendix	IV	:	Statement of Costs						
Appendix	v	:	Crown Forest Licence Agreement						
Appendix	VI	:	Analytical Techniques						
Appendix	VII	:	Rock Sample Descriptions						
Appendix	VIII	:	Statement of Qualifications						

LIST OF FIGURES

<u>FIGURE</u>		<u>SCALE</u>
1.	PROPERTY LOCATION	1:250,000
2a.	REGIONAL GEOLOGY	1:250,000
2b.	LEGEND FOR REGIONAL GEOLOGY	1:250,000
3a.	PIGGOTT CREEK BLOCK CLAIM MAP	1:20,000
3b.	BROWNS RIVER BLOCK CLAIM MAP	1:20,000
4.	DIVERS LAKE/MOUNT BROOKS GRID INDUCED POLARIZATION SURVEY LINE 21200N	1:2,500
5.	DIVERS LAKE/MOUNT BROOKS GRID INDUCED POLARIZATION SURVEY LINE 21300N	1:2,500
6.	DIVERS LAKE/MOUNT BROOKS GRID INDUCED POLARIZATION SURVEY LINE 21400N	1:2,500
7.	DIVERS LAKE/MOUNT BROOKS GRID INDUCED POLARIZATION SURVEY LINE 21500N	1:2,500
8.	DIVERS LAKE/MOUNT BROOKS GRID INDUCED POLARIZATION SURVEY LINE 21600N	1:2,500
9.	DIVERS LAKE/BROOKS GRID INDUCED POLARIZATION SURVEY LINE 21700N	1:2,500
10.	DIVERS LAKE/MOUNT BROOKS GRID INDUCED POLARIZATION SURVEY LINE 21800N	1:2,500
11.	DIVERS LAKE GRID I.P. SURVEY (CONTOURED PFE)	1:5,000
12.	DIVERS LAKE GRID I.P. SURVEY (CONTOURED RESISTIVITY)	1:5,000

FIGURE		SCALE
13.	DIVERS LAKE GRID MAGNETOMETER SURVEY (WITH I.P. INTERPRETATION)	1:5,000
14.	DIVERS LAKE ZONE: GEOLOGY & DRILLING LOCATIONS	1:2,500
15.	DIVERS LAKE/MOUNT BROOKS GRID DRILL SECTION 21600N NFP 88-1	1:500
16.	DIVERS LAKE/MOUNT BROOKS GRID DRILL SECTION 21550N NFP 88-3	1:500
17.	DIVERS LAKE/MOUNT BROOKS GRID DRILL SECTION 21400N NFP 88-2, 4, 5	1:500
18.	DIVERS LAKE/MOUNT BROOKS GRID DRILL SECTION 21400N NFP 88-6	1:500
19.	ELNORA ZONE: GEOLOGY AND D.D. HOLES	1:2,500
20.	ELNORA ZONE: INDUCED POLARIZATION SURVEY RECCE TEST LINE	1:2,500
21.	ELNORA ZONE: SECTION 29355E NFP 88-7, 8	1:250
22.	ANDERSON/CARDINAL AREA INDEX MAP	1:10,000
23.	ANDERSON SHOWING: GEOLOGY	1:5,000
24.	ANDERSON SHOWING: ROCK SAMPLE LOCATIONS AND RESULTS	1:5,000
25.	ANDERSON SHOWING: SOIL GEOCHEMISTRY RESULTS Cu, Ag, As, Au	1:5,000
26.	CARDINAL CLAIMS: GEOLOGY	1:5,000
27.	CARDINAL CLAIMS: ROCK & SOIL SAMPLE LOCATIONS AND RESULTS	1:5,000

-

۰,

.

.

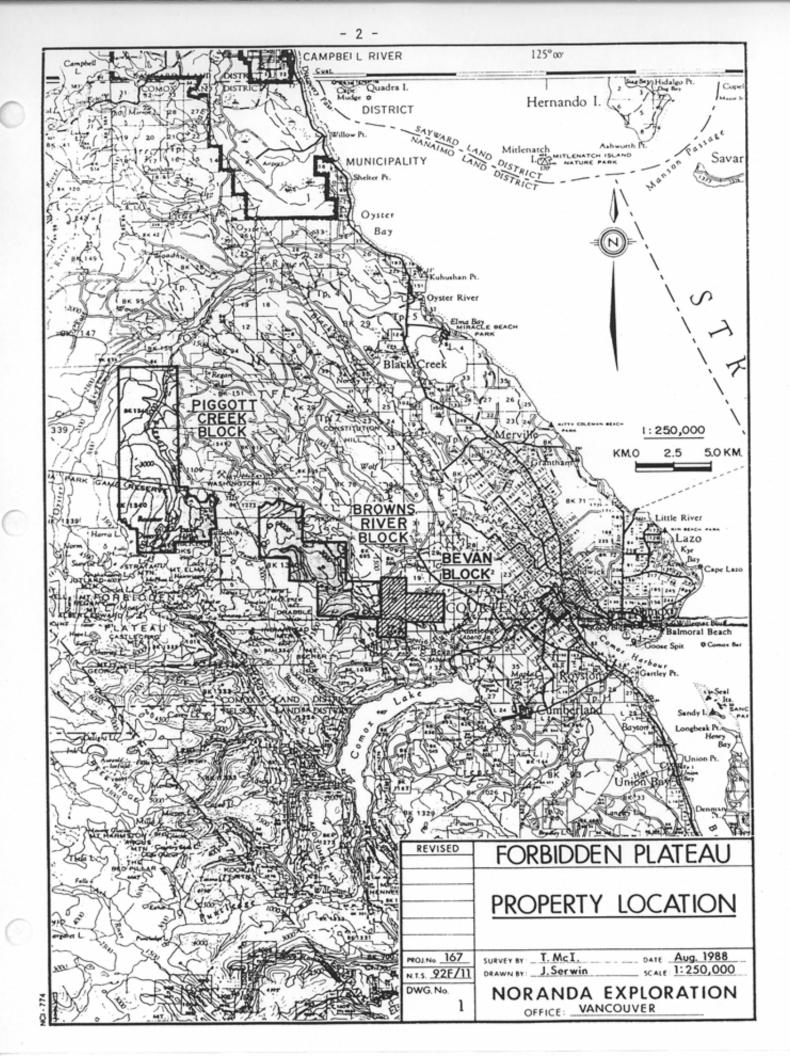
1.0 <u>INTRODUCTION</u>

1.1 Location and Access

The Forbidden Plateau property is located 27 kilometres west of the town of Courtenay, British Columbia, as shown in the Property Location Map, Figure #1.

The property can be reached via Mount Washington Ski Hill Road, as far as the Cross County Ski Lodge, and following logging roads towards Divers' Lake.

The Mount Washington Ski Hill Road is a well maintained gravel road as far as the ski lodge. Beyond this point access is via logging roads which are generally in fair condition. The remaining 1 1/2 kilometres to the property is via a drill road which is suitable only for tracked vehicles.


1.2 Physiography, Climate and Vegetation

The Divers' Lake Grid is located along the lower eastern rise of Forbidden Plateau, on the Vancouver Island Ranges subdivision of the Insular Mountains physiographic zone. The grid lies between the elevations of 3000 feet to the north and rises to 4100 feet at the base of Mount Brooks to the west.

October to May is cold and wet with significant snowfall at higher elevations. Snow accumulations often exceed 5 metres and persist well into late spring and early summer. For this reason, work in the Divers Lake area would be extremely difficult prior to mid-June, whilst at lower elevations work can normally commence a month earlier.

During most summer seasons, bright sunny days and dull rainy days occur in approximately equal numbers, with daytime temperatures averaging 18~20°C and occasionally reaching 25~30°C. In spring and fall the days are cooler, and generally more rainy. Yearly precipitation averages 100 cm.

The Divers' Lake area has not been logged and typically consists of mature stands of timber interspaced with huckleberry bushes.

1.3 <u>Claims</u>

The Forbidden Plateau group of claims are situated in the Nanaimo Mining Division and include the following claims:

CLAIM NAME	RECORD NO.	UNITS	EXPIRY DATE
Anderson 1	2292	l	Mar. 10, 1990
Anderson 2	2293	ì	Mar. 10, 1990
Anderson 3	2294	1	Mar. 10, 1990
Anderson 4	2295	1	Mar. 10, 1990 Mar. 10, 1990
Cardinal 1			
	2496	20	-
Cardinal 2	2497	8	Nov. 10, 1990
Cardinal 3	2580	20	Mar. 05, 1990
Joe Anne I	1838	20	Aug. 08, 1990
Joe Anne II	1839	20	Aug. 08, 1990
Joe Anne III	1840	20	Aug. 08, 1990
Joe Anne IV	1841	20	Aug. 08, 1990
Joe Anne 5	1939	20	Oct. 30, 1991
Joe Anne 6	2574	20	Mar. 05, 1991
P 3	2525	20	Dec. 01, 1990
PC 1	2512	20	Nov. 14, 1990
PC 2	2513	20	Nov. 14, 1990
Rina l	1594	20	Oct. 18, 1990
Rina 2	1624	20	Dec. 02, 1990
Rina 3	1625	20	Dec. 02, 1990
BW-1	2515	20	Nov. 28, 1990
Reward 1	2575	1	Mar. 05, 1990
Reward 2	2576	ī	Mar. 05, 1990
Reward 3	2577	1	Mar. 05, 1990
Reward 4	2578	1	
		1	Mar. 05, 1990
Reward 5	2579	T	Mar. 05, 1990

The claims are owned by Iron River Resources Ltd.

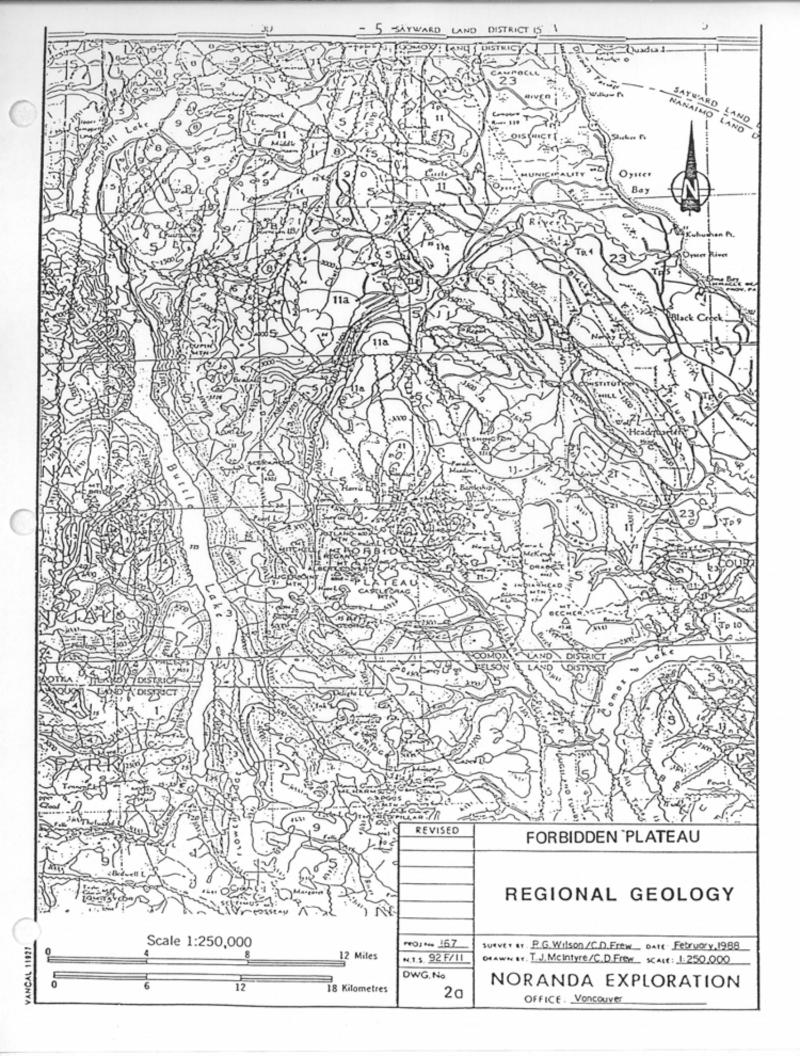
Noranda Exploration Company, Limited is the current operator and has the option to earn a 51% interest with Iron River Resources retaining a 49% interest.

1.4 Crown Forest Licence Agreement

A summary of the Licence Agreement between Noranda and Crown Forest (now called Fletcher Challenge) appears in Appendix I.

1.5 <u>Regional Geology</u>

Regional mapping in this area was done by J.E. Muller, D.J.T. Carson, G.C. Gunning and W.G. Jeffery, Figure #2a. Thesis work by D.J.T. Carson (1960) contributed much to the understanding of the geology in this area, as did the more recent work of J.E. Muller and D.J.T. Carson (1964, G.S.C. Paper 68-50).


The area covered by this report is underlain by Upper Triassic and older Karmutsen Formation basic volcanics. Unconformably overlying the Karmutsen is the Upper Cretaceous Nanaimo Group Haslam and Comox Formations which consist of fine to coarse grained sediments. Subsequent quartz diorite-monzonite intrusions, of Late Cretaceous to Tertiary age, intruded the Karmutsen Formation, and Haslam and Comox Formations forming stocks, sills, and dykes. These intrusions have formed breccias composed of basalt, sedimentary, and diorite fragments in a fine to medium grained quartz-biotite matrix. The breccias have proven to be a favourable stratigraphic unit for hosting sulphide mineralization.

1.6 <u>Previous Work</u>

In 1984 the Divers' Lake area was geologically mapped and sampled by K.E. Northcote. The Selco Division of B.P. Resources Canada Limited conducted a geological and soil geochemical programme in this area in 1985. In 1986 Noranda flew airborne mag and E.M. geophysics and performed grid and soil geochemistry surveys on the Valentine Zone, in the northern part of the Piggott Creek Block.

During the summer and fall of 1987 Noranda conducted an extensive exploration programme consisting of grid establishment, geological mapping, geochemical rock, soil, silt and pan sampling, and geophysical surveys. The results of this work identified the Divers' Lake area, at the south end of the Piggott Creek Block (Figure #1) as the area with most economic potential.

In 1988 the programme concentrated on the Divers Lake area, as well as the Elnora Zone, the Anderson Showing, and the Cardinal Claims. Details of work performed, results obtained, and interpretation are discussed in Sections 2 and 3 of this report.

LEGEND

1		1
ł	QUATERNARY PLEISTOCENE AND RECENT	UPPER TRUSSIC QUATSINO FORMATION: limestone, mainly massive to thick bodded.
		6 minor this bedded limestone
Ϋ́	Z3 Ciscial and alluvial deposits	UPPER TRIASSIC AND OLDER
CEHOZOIC	TERTIARY	KARMUTSEN FORMATION: pillow-besalt and pillow-breecia, massive
ă	22 Repolitic, to decitic tuff, preceis, ignimbrite	basali flows; minor tall volcanie brootia. Jasperoid taff, broctia and
٥ļ		conglomerate at base
Ì	Horoblende quartit diorite, leucoquartz montoolte, porphyritie daelte.	TRIASSIC OR PERMIAN
	treccia	4 Gabbro, peridatite, diabase
i	CRETAGEOUS OR TERTIARY	
i	Sandstone_ conglomerate	PENNITLVANIAN, PERMIAN AND OLDER
1	20 Sandstone, conglomerate	LOWER PERMIAN SICKER GROUP (1-3)
Ì	CRETACEOUS AND (?) TERTIARY	
1	UPPER CRETACEOUS AND (7) TERTIARY	U BUTTLE LAKE FORMATION: limestone, chert
1	NANAINO CROUP (11-19)	O O O
1	19 CABRIOLA FORMATION: sandstone, conglomerate, shale	S AIDDEE PERMITEVARIA
1		Argillite, greywacke, conglomerate; minor limestone, tuli
	UPPER CRETACEOUS	PENNSYLVANIAN AND OLDER
į	10 SPRAY FORMATION: silistone, shale, fine sandstone	Voicanic breecia, tuff, argillite; greensions, greenschist; dykes and
		L sills of undesite-porphyry
Ī	17 GEOFFREY FORMATION: conglomerate, sandatone	
	NORTHUMBERLAND FORMATION: allistone, shale, fine sandsione	WESTCOAST CRYSTALLINE COMPLEX' (A-D)
	NORTHONEERCARD FORMATION. THECH, THE CONTACT	"BASIC ROCKS"
	15 DE COURCY FORMATION: conglomerate, sandstone	D Gabbro, peridotite
	14 GEDAR DISTRICT FORMATION: shale, silistone, fine sardstone	"TOFTNO INLET PLUTON"
		C Hornblende-bloits quartz diorite, granodiorite
	13 EXTENSION-PROTECTION FORMATION: sandsigne, conglomerate, shale, coal	—
1	· ·	WESTCOAST DIORITES'
	12 HASLAN FORMATION: shale, silistone, fine sandsione	B Hybrid hornblende diorite, quarta diorite, agmatile; lociudes masses of
		bornfelsic volcanic rocks
	U COMOX FORMATION: sandatone, conglomerate, shale, coal: lin is BENSON MEMBER: mainly coarse conglomerate	WESTCOAST CHEISS COMPLEX
	BENSON MEMBER: mataly coarse componentate	
υ	UPPER JURASSIC AND/OR LOWER CRETACEOUS	A Normolunde-plagiociase gueiss, amphibolite, borniels
õ	10 'Tofino Area Greywacka Dalt' Greywacke, argilitic, conflomerate	
C 201C		Geological boundary (approximate)
M	NERASSIC NEDLE TO UPPER JURASSIC	Bedding (inclined, vertical, overturned)
:		Schistosity, faliation (inclined)
	BLAND INTRUSIONS: biotice-borriblande granodiarite, quarte diarite	Schistostiv, foliation and minor fold area (inclined, variation).
		arrow indicates plunge)
	TRIASSIC AND JURASSIC LOWER JURASSIC(1)	Linestion (sizes of minor folds)
	VANCOUVER GROUP (5-8)	Fault (approximate): lineament
	BONANZA SUBGROUP (7, 8) WOLCANIC DIVISION: andesitic to latitle precise, tuli and lava; minor	
	B greyesche, argilite and silistone	Geology by J. E. Muller, 1963-1967.
		includes contributions by W.G. Jeffery, D.J.T. Carson
	UPPER TRIASSIC AND LOWER JURASSIC SEDIMENTARY DIVISION: limeatone and argillite, thin bodded, ality	
	Carbonaceous	

÷

•

÷

2b. Legend for Regional Geology.

- 6 -

1.7 Property Geology

The following descriptions are summarized from the Geology Section of the 1987 project report.

1.7.1 <u>Vancouver Group</u>

<u>Lithology</u>

Within the Forbidden Plateau property, only the Karmutsen Formation basalts of the Vancouver Group remain.

On the property, the Karmutsen consists of massive flows 1-5 m thick, interbedded with lesser amounts of pillow basalts and minor pillow breccias. The flows and pillow lavas are typically fine grained to aphanitic, dark grey to greenish grey in colour, and weather buff to rusty brown. They are mostly equigranular, but sometimes porphyritic, with phenocrysts of plagioclase feldspar up to 4 mm long, frequently amygdaloidal and occasionally vesicular. Pillow structures are generally ovate in cross section, and average 20 cm x 75 cm in size with chilled margins. Only rarely were pillows found in 3 dimensions, and in these cases they were horizontal to sub-horizontal.

These basalts are frequently chloritic, as evidenced by their green colour. Epidote is common in fractures and Mn staining is pervasive. They are almost always magnetic, and occasionally very magnetic. Amygdule fillings typically consist of zeolites, quartz, chlorite and carbonate.

In several localities a sub-unit of the Karmutsen was found, consisting of rounded to sub-angular, pebble to small cobbles sized clasts of chloritic green basalt in a basaltic matrix. The field name volcanic pile rubble was assigned to this rock type, although it may be better described as an agglomerate. The purpose in noting this here is that the volcanic agglomerate should not be confused with basaltic breccia, of Tertiary Age.

Lithological similarities from one flow to the next makes determination of attitudes of flows difficult. Strike and dip measurements were taken wherever possible and in general were found to be within $10 \sim 15^{\circ}$ of horizontal.

The Karmutsen is pervasively fractured throughout. Joint, fault and shear zone orientations were measured wherever they were observed in outcrop.

The Karmutsen Formation basalts are separated from the overlying Nanaimo Group sedimentary rocks by a regional unconformity.

1.7.2 Nanaimo Group

At the base of the Comox Formation, lying immediately above the unconformity, is the Benson Member Conglomerate. This basal conglomerate is composed of well rounded, poorly sorted, pebble and cobble sized clasts of mostly basalt with minor sandstone, and quartz pebble lithologies. The matrix is generally bimodal, with coarse grained basaltic and feldspathic sands as well as clays. Good exposures of the Benson Member occur in the north and southwest parts of the Piggott Creek Block.

Overlying the Benson Member, the remainder of the Comox Formation is composed of medium grained feldspathic sandstones, sub quartzose sandstones, lithic sandstones and minor pebble conglomeratic sandstones. Mudstones and siltstones are interbedded within the sandstones.

The sandstones are variously cemented with silica, calcium carbonate and clays. They are generally quite permeable, and look as though they would offer moderately good pathways for any available hydrothermal fluids.

At the south end of the Piggott Creek claim block, on the flanks of Mount Brooks and the hillside west of Divers Lake, most of the Comox Formation sediments appear to have been affected by heat and/or hydrothermal activity. Northcote (1986) reported very fine grained secondary biotite in these sedimentary rocks, and therefore named them biotite hornfels. Specimens examined in thin section by this author contained what may be biotite, but grain make positive identification size was too small to None the less, it is apparent that these petrographically. sedimentary rocks, on Mt. Brooks and on West Hill to the west of Divers Lake, have been affected by heat and fluids, presumably derived from the dioritic intrusions, of Tertiary Age.

These agents have caused the sediments to become silicified, subsequently much harder and less permeable, and probably hornfelsed up to biotite grade.

Of economic significance, the hornfelsed sedimentary rocks have, in many cases, been mineralized with sulphides, mostly pyrite, and pyrrhotite, with occasional very minor chalcopyrite. Disseminated sulphides average 1% but ranged as high as 10%. Sulphides in fracture fillings were generally 5~10% but some samples contained up to 20%.

1.7.3 <u>Tertiary Intrusives</u>

Dioritic intrusions of Mid-Tertiary Age (Wanless et al. 1967, 1968 in Muller & Carson) occur in the southern part of the Piggott Creek Block, where they cut, and therefore post date, the sedimentary rocks of the Comox Formation.

These intrusions occur as dykes, sills and small stocks. The diorites are light grey to off-white in colour, weathering buff to light brown. They are fine to medium grained, generally equigranular but occasionally porphyritic, with phenocrysts of plagioclase feldspar up to 3 mm long. Biotite mica and amphibole (hornblende?) make up 5~10% of the rock, giving it a speckled appearance. Minor sulfide mineralization, in the form of pyrite and pyrrhotite was occasionally observed as fracture fillings and sparse disseminations, being generally less than 1% of the rock.

Because of their mineralogical similarities, the diorites are sometimes difficult to distinguish in hand specimen from the hornfelsed feldspathic sandstones. However, this difficulty can be easily overcome by petrographic studies of thin sections.

1.7.4 <u>Related Breccias</u>

In the southern part of the Piggott claim block, on Mt. Brooks and on Shirley Island in Divers Lake, four breccia bodies were mapped in 1987. These breccias vary from each other in their fragment and matrix lithologies as well as in the type and amount of mineralization which they contain. They are all believed to be related to the dioritic intrusive activity of Tertiary age, and are described in detail in the 1987 report.

The four breccia bodies are; the Cliff Breccia, the Summit Breccia, the Shirley Island Breccia, and the Jaws Breccia. The Cliff Breccia:

The Cliff Breccia outcrops over a distance of approximately 1000 m along the northwest flank of Mt. Brooks, between elevations of 3250' and 3950'. It is by far the most areally extensive breccia body found on the property, and forms cliffs up to 20 metres high.

The Cliff Breccia is composed of angular to sub-angular pebble to cobble sized fragments of diorite. The breccia fragments are contained within a siliceous, light to dark green matrix, with minor vugs containing euhedral quartz crystals up to 5 mm long. The breccia consists of approximately 85% fragments and 15% matrix. The matrix contains minor sulphides (~1%) mostly fine grained pyrite with very minor chalcopyrite.

Geochemical analysis of rock samples of the Cliff Breccia indicated slightly elevated values for copper, silver and gold.

The Summit Breccia:

The Summit Breccia occurs in three outcrops on the dome-shaped lower summit of Mt. Brooks. Spatial relationships between these three outcrops, suggests a breccia body at least 200 metres in diameter, although part of this lies within Strathcona Park.

The Summit Breccia is composed of angular pebble to cobble sized fragments of silicified fine grained sandstones and siltstones. The matrix is very fine grained, mostly silica, and is very tight. Minor disseminated very fine grained pyrite occurs within the matrix. The pyrite mineralization is generally very sparse, although in one outcrop it was as high as 10%.

Geochemical analyses of rock samples taken from the Summit breccia indicated only slightly elevated values for copper, silver and gold.

The Shirley Island Breccia:

The Shirley Island Breccia occurs on Shirley Island, in the centre of Divers Lake. This is a mixed lithology breccia, composed of angular to sub-angular, pebble to cobble sized fragments of silicified Karmutsen basalt, and silicified Comox siltstones and sandstone. The basaltic fragments in this breccia are dominant over the sedimentary rock fragments by about 2:1.

The matrix, which makes up approximately 15% of the rock is a medium to coarse grained mixture of quartz and carbonate with vugs containing small euhedral quartz crystals. Although the matrix is quite rusty, no sulphide minerals were visible. Geochemical analysis of five rock samples from this breccia produced no anomalous values.

The Jaws Breccia:

The Jaws Breccia, is exposed in one outcrop to the north of Mt. Brooks. This outcrop is continuous for over 150 metres in the creek bed, and the exposure is approximately 5 metres wide.

In gross morphology, the Jaws Breccia has the appearance of a pebble conglomerate. However, on closer examination in hand specimen, it becomes evident that this is a breccia, composed of granule to large pebble sized, angular to sub-rounded fragments of pre-existing lithologies, in a fine grained matrix containing 1~2% very fine grained disseminated pyrrhotite. Examination of thin sections from the Jaws Breccia has shown that this rock is quite different from other breccias found on the property so far.. The rock is ~60% fragments, 40% matrix. The small breccia fragments are diorite, silicified and carbonatized basalt, and silicified Comox siltstones and sandstone. There are also small individual fragments of quartz, feldspar and carbonate. The matrix is fine grained and is composed of carbonate and clay minerals. Some of the fragments exhibit reaction rims, where they are in contact with the matrix. Fragments composed mainly of quartz show extreme undulatory extinction in cross polarized light, indicating that they have been subjected to severe shock stress. For this reason, the Jaws Breccia is believed to be a diatreme breccia, produced by explosive activity.

Unfortunately, results of geochemical analyses of taken in 1987 from the Jaws Breccia were disappointing, as they produced only background values for copper, silver and gold.

1.8 <u>Personnel</u>

During the 1988 exploration programme the following Noranda personnel were involved:

D.R. Bull (Project Geologist), D. Dempsey, C.D. Frew, R. Hunter, D. Lewis, S. Louden, R. MacIntosh, T.J. McIntyre (Party Chief), and B. Northcote.

Geophysical surveys were conducted by Pacific Geophysics.

2.0 1988 PROGRAMME: TECHNIQUES AND PRODUCTION

2.1 <u>Overview</u>

The objectives of the 1988 programme were as follows:

- i) To identify drill targets in the Divers Lake/Mount Brooks area, by running an Induced Polarization survey over those zones previously recognised from soil geochemistry anomalies. To drill targets thus identified in order to determine the cause of the geochemical and geophysical anomalies.
- ii) To test by mapping, geophysics and drilling, the continuity, thickness and grades of the mineralized horizon observed in outcrop in the Elnora Zone.
- iii) To investigate by geological mapping, rock sampling and soil geochemistry, mineralization reported at the Anderson Showing, in the BW and Reward claims of the Browns River Block.
 - iv) To investigate possible sources of mineralization at or near the unconformable boundary between the Karmutsen Formation basalts and the Nanaimo Group sedimentary rocks on the Anderson claims

The work consisted of grid establishment, geological mapping, rock and soil sampling for geochemical analysis, Induced Polarization surveys, drill road access and diamond drilling.

2.2 <u>Techniques</u>

The line grids were established by Noranda personnel, using compass and hip chain measurements. Lines were flagged and underbrush was cut in order to allow line of sight. Stations were erected at 25 m intervals, using flagged, labelled wooden pickets. Grid installation is summarized below, in Section 2.3:

Soil samples were taken, using track shovels, from the "B" Horizon at depths of between 20~50 cms. Samples were placed in Kraft paper bags and were partially air-dried prior to being shipped to Noranda's Vancouver laboratory for geochemical analysis. Rock samples were collected in 6 mil polythene bags and sent for analysis by Acme Analytical Laboratories, in Vancouver.

Details of analysis techniques are shown in Appendix III.

Geological mapping was performed in the Divers Lake/Mt. Brooks area at a scale of 1:5,000, in the Elnora Zone at 1:2,500, on the Anderson Showing and the Cardinal Claims at 1:5,000. Rock samples for geochemistry were collected wherever mineralization of economic significance was observed or suspected.

2.3 <u>1988 Production</u>

<u>Grid Establishment</u>

Area			<u>Clai</u>	ims		Line_#.	Bearing	<u>Total km</u>	
Divers " " " "	Lake " " " "	e/Mt 11 11 11 11 11	Brooks " " " "	Joe " " " "	Anne " " " "	5 H H H	208N 209N 210N 213N 214N 215N	090° 090° 090° 090° 090°	0.55 0.375 0.325 1.05 0.90 0.25
99 99	f1 11	11 11	18 18	11 11	18 18	11 11	216N 217N	090° 090°	0.90 1.05
Elnora Zone		Rina	a 1		Recon Lin	e 324°	0.325		
Anderso	on Sh	lowi	ng	BW 1	L		L500N	055°	0.6
Cardina """	al			Card "	dinal "		L505E L508E L511E	150° 150° 150°	0.5 0.5 0.6

Soil Samples

Area	<u>Claims</u>	<u>Lines</u>	<u>Samples</u>
Anderson Showing	BW 1	L500+00N	10
Cardinal "	Cardinal " "	L505E L508E L511E	21 26 25
Divers Lake/Mt. Brooks H H H H H H H H	Joe Anne 5 II II II II II II	L208N L209N L210N	24 11 4

Geological Mapping

<u>Area</u>	<u>Claims</u>	<u>Mandays</u>
Divers Lake/Mt. Brooks	Joe Anne 5	11
Anderson Showing	BW 1	3
Elnora Zone	Rina 1	2
Cardinal	Cardinal 1,2,3	3

Rock Samples for Geochemistry

	_
1 10	

Geophysics: Induced Polarization Surveys

Area	<u>Claims</u>	<u>km</u>
Divers Lake/Mt. Bro	oks Joe Anne 5	5.85
Elnora Zone	Rina l	0.425

Diamond Drilling

<u>Area</u>		<u>Claims</u>	<u>Holes</u>	<u>Total m</u>	<u>Total Samples</u>
Divers Lake/Mt. Elnora Zone	Brooks	Joe Anne5 Rina l	6	780.56	517 21

3.0 <u>1988 PROGRAMME: RESULTS</u>

3.1 <u>Divers Lake/Mt. Brooks Area</u>

The 1988 project centered mainly on the Divers Lake/Mt. Brooks area and focused on the identification of specific drill targets within the Upper and Lower Divers Anomalies. A 1987 geophysical test programme determined that Induced Polarization techniques best provided drillable targets within the geochemical anomalies. Following a 1988 I.P. survey a series of 6 NQ diamond drill holes tested a portion of the available targets, intersecting several zones of Cu-Ag mineralization.

A re-interpretation of the geological contacts previously established in 1987 was completed using diamond drill hole contact data (Figure #14) and a geological model for Mt. Brooks/Divers Lake is presented. 3.1.1 <u>Geophysics</u>

During the period July 25 to August 2, 1988 an I.P. survey was conducted over the Forbidden Plateau "Divers Lake Grid". The survey was carried out under contract by Pacific Geophysical of Vancouver, B.C. The method employed Time Domain equipment manufactured by Phoenix Geophysics and throughout the survey a 25 metre dipole-dipole array was utilized with readings recorded down to the fourth separation.

3.1.1.1 <u>Instrumentation</u>

Induced Polarization System

The I.P. survey employed a Frequency Domain system manufactured by Phoenix Geophysics of Toronto, Ontario. The transmitter and generator have a capacity of 1.2 Kilowatts although this amount of power is rarely used. The survey parameters employed for this survey were as follows:

Dipole Array	: Dipole-Dipole				
Dipole Length	: 25 metre detail				
Separations	: n=4 on detail				
Frequencies	: 0.25 and 4.0 Hertz				
Parameters Recorded	: Percent Frequency Effect (PFE) & Resistivity (ohm-metres)				
I.P. Transmitter	: Phoenix IPT-1 & MG-1				
I.P. Receiver	: Phoenix IPV-1				

A fixed transmitter setup using up to four Tx dipoles on either side of the transmitter was used throughout the survey. The recorded resistivities indicate that E.M. coupling was negligible.

3.1.1.2 <u>Results</u>

Induced Polarization Survey

Six lines of I.P. were completed on the grid. I.P. and resistivity anomalies were identified that describe an arcuate pattern open to the south end of the grid. The PFE responses are not small discrete sources, however, the resistivity lows coincident with the PFE anomalies tend to be narrow and discrete.

LINE 21200N: This short line has mapped two very poorly defined increases in the Frequency Effect as identified on the section. These occur in an area underlain by high resistivities but themselves appear to be related to minor decreases in the local resistivity.

- LINE 21300N: Four PFE anomalies were identified on this line of which three are coincident with discrete low resistivity sources. Of particular interest are the zones located at Stations 30562.5E and at 31450E. These two targets have a resistivity signature indicative of a narrow high conductivity and polarizable source.
- LINE 21400N: Three zones of interest were identified on this pseudo-section of which one was rated as a high priority target. this is located at 31325E where a narrow low resistivity source is mapped within a larger but well defined and discrete PFE anomaly. This source stands out well from the surrounding background and is presented as a "clean" anomaly.
- LINE 21500N: This line is underlain by two wide anomalous PFE sources. Within the eastern zone the extension of the target discussed above for Line 21400N is observed centered at Station 31325E - 31350E. The resistivity signature here suggests the source to be very narrow and conductive.
- LINE 21600N: Two main targets were recorded on this line. The east zone at 31162.5E is the continuation of the source discussed for Lines 21500N and 21400N. The anomaly at the west side of the line (30623.5E) is of a similar signature with the discrete low resistivity, however, it lies within a high PFE background and at the resistivity source a marginal increase above the elevated background in the PFE response is recorded.
- LINE 21700N: This line of data recorded anomalous PFE values across its entire surveyed length. Similarly the resistivity pattern is observed to be complex. From the data on the preceding lines it is evident the survey line is sub-parallel to the PFE and resistivity sources and as hinted above overlies the "nose" of an arcuate source.

3.1.1.3 <u>Conclusions</u>

The I.P. survey identified a number of interesting PFE/resistivity targets and these, coincident with geochemical and geological data, enabled us to arrive at suitable drill targets.

3.1.2 Drilling Programme

Six diamond drill holes, totalling 780.56 metres, were drilled on the Divers Lake Grid between September 25, 1988 and October 13, 1988. The drilling programme was carried out to further test geophysical and geochemical anomalies.

The drilling was completed using a Boyles 25A diesel hydraulic diamond drill which is owned and operated by M & B Drilling Ltd. of Powell River, B.C. During the drilling "NQ" type drill rods were used, and dip tests were taken at 60 metre intervals and at the end of the hole. The core is currently being stored at Zebco Developments Ltd., which is located 4 kilometres northwest of Courtenay, B.C.

3.1.2.1 <u>Target</u>

The purpose of the drilling programme was to explore the potential for a Cu/Au deposit within the breccia body found at the base of Mount Brooks.

Evidence for this was based on geochemical and geophysical anomalies combined with geological mapping of the area. Five diamond drill holes were completed in the Upper Divers Lake anomaly and one hole was completed in the Lower Divers Lake anomaly.

3.1.2.2 Drill Hole Parameters

The following table outlines the specifications for each of the diamond drill holes in the Divers Lake area:

Hole #	Co-Ordinates	Bearin	g Dip	Length (m)	Date Coll.	Comp.
NFP-88-1	216+00N;312+00E	270°	- 45°	100.88	09/25/88	09/27/88
NFP-88-2	214+00N;310+86E	090°	-45°	102.41	09/28/88	09/30/88
NFP-88-3	215+50N;310+75E	090°	-45°	142.03	10/01/88	10/03/88
NFP-88-4	214+00N;312+62E	090°	-45°	146.60	10/04/88	10/07/88
NFP-88-5	214+00N;312+62E	270°	-45°	160.32	10/07/88	10/10/88
NFP-88-6	214+00N;306.52E	090°	-45°	128.31	10/11/88	10/13/88
	TOTAL METR	ES DRIL	LED:	780.55		

Recovery averaged 95% to 99%.

3.1.2.3 Drill Core Logging and Sampling

The core was logged on site and 517 samples were selected and split. Sampling was done in 1 1/2 metre intervals unless otherwise warranted by changes in rock type and/or mineralization.

The samples were analyzed by ICP for 29 elements and geochemically analyzed for Au. The analysis was done by Acme Analytical Laboratories Ltd., which is situated at 852 East Hastings, Vancouver, B.C.

3.1.2.4 Drill Hole Geology

Refer to the drill hole logs (Appendix I) for the lithological descriptions and Drawings #1-5 for the drill hole sections.

The geology of the Divers Lake grid area consists of Comox Formation hornfelsed sandstone, Comox Breccia, and Intrusive Breccia. Each of these units have been subsequently intruded by Tertiary dykes.

The hornfelsed sandstone is fine grained, light grey to offwhite in colour and has a salt & pepper appearance, due to 5~10% biotite and minor hornblende. It is moderately to intensely hornfelsed and silicified, and is weakly magnetic in part. The Comox Breccia is composed of angular to sub-angular fragments of Comox sediments in a matrix of, (in order of abundance), chlorite, calcite, sulphides, and quartz. The ratio of fragments to matrix is 4:1. Lastly, the Intrusive Breccia is composed of subrounded to rounded fragments of diorite, a minor amount of subrounded to rounded fragments of sandstone in a matrix of, (in order of abundance), chlorite, quartz, calcite, and sulphides. The ratio of Intrusive fragments to sediment fragments is 9:1, and the ratio of fragments to matrix is 9:1.

3.1.2.5 <u>Mineralization and Assay Results</u>

The breccias host the most abundant sulphide content. The sulphides within the breccias range from 0.5 to 3% chalcopyrite, 1-2% pyrrhotite, and a trace of pyrite. The exception is where the breccia is in close proximity to a dyke and here there is a marked increase in the sulphide content.

The alteration assemblage consists of silica, chlorite, calcium carbonate, biotite, epidote, sericite, and clays.

The copper, gold, and silver geochemical analysis is shown in Appendix I.

Gold analysis was generally very low with the exception of DDH-NFP 88-1 where Sample No.7679 returned 1395 ppb over one metre.

3.1.3 Geological Model and Economic Potential

The geological model for the Divers Lake/Mt. Brooks area is similar to that proposed for the nearby Mt. Washington area by D.J. Carson (1960).

<u>STAGE 1:</u> Dioritic intrusions (Tertiary) ascend through the Karmutsen basalts, causing fracturing and doming of the overlying Nanaimo Group sedimentary rocks, thermal metamorphism and metasomatism of both the Karmutsen and Nanaimo.

<u>STAGE 2:</u> Continued episodes of dioritic intrusion accompanied by explosive activity causing fracturing and the formation of breccias.

STAGE 3: Explosive intrusion by quartz and volatile-rich late stage differentiates, causing brecciation of the pre-existing packages and accompanied by base and precious metal mineralization. This last stage also causes further metamorphism and metasomatism of surrounding rocks.

Analysis of core from the 1988 preliminary drilling programme has revealed low but consistent grades for copper and silver within the breccia body. This mineralization appears to be intimately associated with the diorite dykes.

The potential exists for this deposit to be of economic importance should there prove to be sufficient tonnage and better grades.

3.2 Elnora Zone

3.2.1 <u>Geology</u>

Surface geology of the Elnora Zone is shown in Figure #19.

The showing is a brecciated siliceous, (drusy quartz) carbonatized (ankeritic) tabular zone which is mineralized by scattered 1 to 2 cm irregular pods of galena, sphalerite, with lesser chalcopyrite, and at least 2 anisotropic minerals.

The Elnora showing conforms to bedding, is sheared and overlain by gently flexured Karmutsen volcanics. Vein-breccia material was observed only under the cliff at creek level and forming the creek bottom a few metres upstream. It has not been observed in either stream bank elsewhere above or below the main showing.

3.2.2 Geophysics: Induced Polarization Survey

On August 3, 1988, Pacific Geophysical completed a test line of I.P. on the Elnora Zone. The frequency domain survey employed 25 metre dipoles in a dipole-dipole array. Readings w ere recorded down to the fourth separation. Instrumentation was as described in Section 3.1.1.1.

3.2.2.1 <u>Results and Interpretation</u>

The survey defined a low amplitude PFE anomaly centered at Station 262+25N at a depth of n=4 or approximately 40 metres. A geological contact is interpreted at approximately 262+00N. The PFE anomaly appears to extend towards grid north. However, its limits cannot be fully defined due to the limited coverage.

3.2.3 Diamond Drilling

3.2.3.1 <u>Target</u>

Two "NQ" diamond drill holes, totalling 98.75 metres, were drilled between October 16 and October 18, 1988. The objective was to test a showing which outcrops in Piggott Creek and is exposed during periods of low water levels.

Hole #	Co-ordinates	Bearin	g Dip	Length (m)	Date Coll.	Comp.
NFP-88-7	100+00N;500+00E		~ 90°	44.80	10/16/88	10/17/88
NFP-88-8	100+45N;499+75E		-90°	53.95	10/17/88	10/18/88
	TOTAL MET	ERAGE:		98.75	• • •	

3.2.3.2 ELNORA ZONE DRILL PARAMETERS

3.2.3.3 Drill Hole Geology

The geology of the two vertical holes drilled in the Elnora Zone consists of thick sections of Karmutsen Formation basalt with one small intra-flow limestone bed.

Within the basalts are narrow, approximately flat lying alteration zones, the thickest of which was 1.17 metres. These zones consist of hydrothermally altered basalt with quartzcarbonate and clay replacement minerals. The upper and lower contacts are gradational with the basalt. No sulfide mineralization was observed.

3.2.3.4 Mineralization and Analysis

Geochemical analyses (ICP) for Au, Ag, Cu, Pb and Zn were very low. Best values, though not all from the same intersection, were 102 ppb Au, 10.2 ppm Ag, 248 ppm Cu, 720 ppm Pb, and 1245 ppm Zn. The geochemical analysis is presented in Appendix II. The minor mineralization found in the Elnora Zone is not considered to be of economic importance.

3.3 Anderson Showing

The Anderson showing is located within the Reward 4 and BW-1 claims in the central part of the Browns River Block.

3.3.1 <u>Geology</u>

In order to map the showing and determine if similar occurrences exist, three mandays were spent mapping an area approximately 1000m x 800m. The results of geological mapping are shown in Figure #23. Excavation of the showings themselves were done using a small backhoe, contracted from Lee-Dar Contracting, of Courtenay, B.C.

The Anderson showing consists of two small (3m x 2m x 0.6m) discontinuous pods of massive sulfide which occur between flows of Karmutsen Formation basalt. These basalts consist of massive flows and pillow lavas, with minor volcanic breccias and aquagene tuffs.

The pods of massive sulfide are composed of pyrrhotite (~45%), chalcopyrite (~15%), pyrite (~20%), and fine grained quartz (~20%).

Upper and lower contacts are gradational within the basalt, and the pods pinch out at either end. No evidence of hydrothermal alteration was observed around or near the pods.

Several small dykes, of quartz diorite composition, were mapped in the area. These are off white in colour, weathering to light buff brown. They are generally medium grained, equigranular, but occasionally porphyritic with phenocrysts of plagioclase feldspar up to 4 mm long. These dykes are believed to be of Tertiary age. A small, sub-vertical, 5 metre wide fault zone was mapped just north of the #1 showing.

No relationship appears to exist between the sulfide pods and the fault zone or the diorite dykes. For the reasons described above, it is concluded that these two pods of sulfide are syngenetic with the Triassic Karmutsen basalts.

A total of 10 rock samples were collected for geochemical analysis. The locations and results of this sampling are shown in Figure #24. Whilst some of the samples returned encouraging values for Cu & Ag, these occurrences are considered to be too small and isolated to be of economic significance.

3.3.2 <u>Soil Geochemistry</u>

A reconnaissance line was run at a bearing of 054° for a distance of 600 metres over the #1 showing. "B" horizon soil samples were then collected along this line at 50 metre intervals. The objectives of this work were to determine (i) if metals from the sulfide pod would show up as anomalous values in soils, (ii) if any other mineralization might exist in sub-crop.

Results of the soil geochemistry are shown in Figure #25. As may be seen from this map, only erratic, slightly anomalous values occur downslope from the #1 showing.

3.4 Cardinal Area

3.4.1 Geology and Rock Geochemistry

Three mandays were spent mapping an area approximately 1.5 x 1.5 km. Mapping was performed using grid and traverse lines, logging roads, and creek beds for control.

The area is underlain by Karmutsen Formation basalts and Comox Formation sedimentary rocks. One outcrop of Benson Member conglomerate was found. This is believed to represent the unconformable boundary between the underlying Karmutsen and the overlying Comox Formation. No intrusive rocks were observed during mapping and no significant visible mineralization was found within the area. However, of 3 "rock" samples; R-57912, 57913 & 57914 taken just above the ditch on the north side of the Mt. Washington Ski Hill Road, two returned anomalous As, Au values.

These samples were mostly clays and Fe oxide alteration material taken from what appears to be narrow, sub-vertical fault gouge zones. There is no real "rock" in this area, as the whole bank is composed of clays and overburden material. Consequently, there is no outcrop marked in this location on the geology map, although the surrounding area is underlain by Comox Formation sandstones.

3.4.2 Soil Geochemistry

A total of 72 soil samples from the "B" horizon were taken at 50 metre intervals on Lines 505E, 508E & 511E. The results of the soil geochemistry are shown in Figure #27 and in Appendix III.

An anomalous zone occurs at the north end of the grid, on Lines 508E & 511E. Here, anomalous values for As and Au were returned. This soil anomaly correlates with three rock samples of highly altered material described above in Section 3.4.1.

3.4.3 <u>Interpretation</u>

Whilst the majority of the Cardinal area examined shows low economic potential, the small anomalous zone described above warrants further investigation. To the north, off the Cardinal claims, Comox Formation sediments are intensely silicified and hornfelsed, up to biotite grade. This metamorphism and metasomatism is believed to have been caused by dioritic intrusives, of Tertiary Age, on the east arm of Mt. Washington. This intrusive activity may have been the source of the As, Au mineralization discovered through soil and rock geochemistry.

4.0 <u>CONCLUSIONS</u>

4.1 Divers Lake/Mt. Brooks Area

Diamond drill holes NFP 88-2, 3, 5 & 6 encountered short intersections of low grade Cu, Ag porphyry style mineralization within Comox and intrusive fragment breccia.

4.2 Elnora Zone

The intra flow alteration zones and low grade Pb, Zn and Cu mineralization mapped in outcrop were encountered in diamond drill holes NFP 88-7 & 8. Geochemical analysis of the core returned very low grades across these narrow, flat lying zones.

4.3 Anderson Showing

The two small pods of sulfide mineralization are discontinuous and do not appear to be related to either later faulting or intrusive activity. They are considered to be syngenetic, intraflow phenomena, within the Karmutsen Formation.

4.4 <u>Cardinal Area</u>

Of the ground covered by geological mapping and soil sampling, only a small area at the north end of the grid proved anomalous. Both soil and rock geochemistry gave moderately anomalous results for Cu, Ag, As, and Au.

This mineralization may be the result of hydrothermal activity associated with dioritic intrusives of Tertiary Age. Intrusions of this type have been mapped on the east arm of Mt. Washington, to the north of the Cardinal claims, but were not found within the Cardinal area itself. APPENDIX I

DIAMOND DRILL LOGS AND ASSAYS - DIVERS LAKE GRID

PAGE: 1

HOLE ND.: NFP88-1

LATITUDE : 21500.000 DEPARTURE: 31200.000 ELEVATION: 1091.740 DIP AT COLLAR: -45.00 DEG AZIMUTH : 270.00 DEG TOTAL DEPTH : 100.88

.

i.

DIAMOND DRILL LOG

DATE LOGGED: --/10/88 LOSGED BY : T. McIntyre

I MAJDR I From To I From To I (metres)	SUBUNIT From To (metres) (metres)	DESCRIPTION	
0.00 100.88		<pre>CASING HORNFELSED SANDSTONE METASEDIMENT Fine grained, salt & pepper colored, weakly magnetic moderately to intensely hornfelsed. Sulfides occur as f.f. with orientation 23 degrees ACA. 15.77-16.24: sediments are fractured and shot thru with puartz 40 degrees ACA. Wall rock kaolinized sil/hornfelsing 3. 27.43: Jointing 20;40 degrees \$ 50 degrees ACA. Sulf as f.f. Py 20 degrees ACA 23.30-26.39: Hairline to f.f. 20 & 40 degrees ACA. 29.29-29.74: sulfide zone, upper contact 45 degrees, lower contact 45 degrees. Sulfides are semi mass with quartz flooding. HORNFELSED SANDSTONE Core is mottled purple, prey, light green and white. 30.84-31.87: Sulf as f.f. 25 degrees \$ 30 degrees ACA. Sericite in fractures occurring with Py and Po.</pre>	

HOLE NO.: NF988-1

MAJOR SUBUNIT DESCRIPTION Τо Τo From From 31.87-32.36: Sulfide zone. Upper contact 80 degrees, lower contact 70 degrees ACA. Sulfides are semi mass in matrix & occur as f.f. in center 55 degrees ACA & str flooding. sulf as f.f. 30 degrees & 32.36-33.84: 40 degrees ACA. Duartz porphyoblasts circular and oval in shape 7 to 12mm in diameter. QUARTZ VEIN 37.63 38.04 Bull quartz, vuggy, with subsdral quartz crystals, upper contact 15 debrees. lower contact 38 degrees. Minor chl 1-2% Po, trace Cpy. 74.41 75.00 SANDSTONE BRECCIA Angular to sub angular frags of sandstone recemented with quartz. Matrix 40% frags 60%. Upper contact 30 degrees & lower contact 25 degrees ACA. Sulfides as f.f. 75.00 100.88 HORNFELSED SANDSTONE Mottled purple, light green, grey and white sulfides as f.f. 76.72-77.72: Interval contains a 3 1/2 cm wide quartz vein with sulfides. Contact 30 degrees ACA. Steel grey sulf sphalerite?

PAGE : 2

HOLE NO. : NFP88-1

MAJOR SUBUNIT DESCRIPTION From То From Τo 94.24-95.33: Interval contains a vein 96.96-97.07: Fault with slicks. Drientation 30 degrees ACA

PAGE: 3

ASSAY RECORD

PAGE: 1

DRILL HOLE NUMBER : NEP88-1

.

.

F

.

SAMPLE	FROM	то	WIDTH	Mo	Cu	РЬ	Zm	Ag	As	ω	Au
NO.				ppm	рам	DOM	opm	ppm	ppm	ppm	bop
7651	15.77	16.24	0.47	1.	187.	7.	19.	0.3	31.	1.	12.
7652	23.30	26.39	3.09	1.	131.	г.	21.	0.3	2.	1.	74.
7653	26.39	27.80	1.41	1.	244.	13.	26.	0.2	16.	7.	5.
7654	27.80	29.29	1.49	1.	186.	10.	24.	Ø.3	4.	г.	Э.
7655	29.29	29.79	0.50	1.	1025.	12.	43.	1.1	10.	1.	14.
7656	29,79	30.84	1.05	1.	276.	2.	29.	0.4	6.	1.	з.
7657	30.84	31.87	1.03	1.	393.	г.	25.	0.6	2.	i.	7.
7658	31.87	32.36	0.49	1.	361.	14.	24.	0.3	19.	5.	14.
7659	32.36	33.84	1.48	1.	392.	19.	28.	0.3	8.	1.	1.
7660	33.84	35.31	1.47	1.	363.	2.	33.	Ø.9	2.	1.	1.
7661	35.31	36.92	1.61	1.	488.	16.	43.	Ø.7	14.	3.	7.
7662	36.92	38.40	1.48	2,	635.	2.	38.	1.3	7.	1.	12.
7663	38.40	39.85	1.45	1.	226.	10.	30.	Ø. 3	20.	i.	4.
7664	39.85	41.27	1.42	1.	191.	2.	35.	0.5	15.	1.	6.
7665	41.27	43. 0 2	1.75	1.	269.	11.	24.	0.3	10.	1.	2,
7666	43.02	44.35	1.33	2.	314.	2.	25.	0.4	10.	5.	10.
7657	44.35	45.90	1.55	1.	254.	7.	29.	0.4	8.	1.	2.
7668	45.90	47.43	1.53	1.	546.	8.	55.	0.7	5.	i.	12.
7669	47.43	48.93	1.50	3.	1303.	6.	45.	1.7	14.	5.	21.
7670	48.93	50.37	1.44	1.	564.	з.	· 31.	0.9	2.	1.	6.
7671	50.37	52.04	1.67	1.	279.	2.	24.	0.2	٤.	1.	1.
7672	55.99	57.48	1.49	1.	309.	а.	25.	0.3	12.	7.	1.
7673	59.41	6 0. 96	1.55	1.	250.	2.	25.	0.5	3.	1.	з.
7674	66.34	57,87	1.53	i .	272.	3.	25.	0.2	4.	2.	2.
7675	68.78	69.73	Q. 95	1.	169.	17.	31.	0.1	13.	5.	1.
7676	72.94	74.41	1.47	1.	275.	4.	32.	0.3	181.	1.	г.
7677	74.41	75,00	0.59	i.	86.	92.	147.	0.7	13237.	1.	31.
7678	75.00	76.72	1.72	2.	167.	э.	29.	0.1	34.	3.	2.
7679	76.72	77.72	1.00	2.	165.	13.	95.	0,2	10679.	1.	1395.
7680	77.72	78,71	0.99	1.	148.	3.	24.	0.2	2.	1.	4.
7681	78.71	79.84	1.13	1.	166.	5.	15.	Ø. 1	19.	1.	3.

ASSAY RECORD

PAGE: 2

TD SAMPLE FROM WIDTH Мо Cu ΡЬ Ζn Ag As ы Au ND. ppm pom рры ppm PDM ррм dqq ppm 7682 79.84 80.97 1.13 1. 496. 11. 28. 0.1 11. 2. 7. 7683 82.49 80.97 1.52 2. 158. 14. 12. 0.1 6. 2. з. 7684 84.29 85.75 1.46 2. 189. 7. 17. 0.1 11. 3. 6. 7685 85.75 87,24 1.49 242. 2. 26. 10. 0.1 9. з. 2. 7686 87.24 1.65 88.89 205. 1. 15. 24. 0.1 15. э. 9. 91.53 7697 93, 17 1.64 2. 318. 6. 25. 0.2 132. 4. 44. 7688 93.17 94.24 1.07 1. 814. 11. 40. 0.6 18. 5. 15. 7689 94.24 93.33 1.09 1637. 1. 62. 183. 3,2 2. 189. 177. 7690 95.33 96.83 1.50 1. 256. з. 32. 0.1 21. 1. θ.

DRILL HOLE NUMBER : NFP88-1

PAGE : 1

LATITUDE : 21400.000 DEPARTURE: 31086.000 ELEVATION: 1158,100 DIP AT COLLAR: -45.00 DEG AZIMUTH : 90.00 DEG TOTAL DEPTH : 102.41

From

DIAMOND DRILL LOG

DATE LOGGED: --/-10/88

HOLE ND. : NEP88-2

31.01-31.62: Gouge, highly altered

40.00-54.34: Transitional change from

crumbly material with no apparent sulfides.

fractured to brecciated rock. Matrix of quartz. chl. & cc. Core alternates

Primarily composed of clay

LOGGED BY : T. McIntyre

MAJOR SUBUNIT DESCRIPTION Τo From To (metres) (metres) (metres) (metres) 0.00 102.41 0.00 6.10 CASING 6.10 54,34 HORNFELSED SANDSTONE Meta sediment, salt & pepper colored & a purple hue. Fine grained magnetic and sulfides occur both as f.f. and finely disseminated with in the sandstone. 12.53-22.71: Core becoming increasingly fractured, and shows signs of alteration. Where there are more open spaces the matrix is chloritic & sericite jointing 35 degrees. Core is becoming more consistently a specked light preen, ourple and white color. 29.60-31.01: Altered chloritic with quartz & calcite, icm vein 35 degrees ACA. Euhedral ouartz & calcite crystals.

:

MAJOR From To	SUBUNIT From To	DESCRIPTION
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i between being fractured # i between being brecciated. i For example there are i zomes of breccia intermit- i tently down the core. i 52.00: Fault, slicks 28 degrees ACA. SANDSTONE BRECCIA Core has now become more consistently brecciated. Contact 58 degrees ACA. Matrix is 20% to 25% with, in order of dominance, chlorite, quartz, calcite & sulfides. i 20% matrix. Matrix of quartz, calcite, chlorite and sulfides.
	75.37 77.46	DIORITE DYKE (AHd) all amphiboles alt to chl. Light green in color with phenocrysts of chlorite (darker green). Upper contact 45 degrees, lower contact 55 degrees. non magnetic. HORNFELSED SANDSTONE
	ι 17β.74 79.48 1 ι ι	 Same as 54.34-75.36m. DIORITE DYKE (AHd) Speckled light green, dark green light green matrix, upper contact 30 degrees, lower contact 31 degrees ACA. Similar to 75.37-77.46m.

I MAJOR	SUBUNIT	DESCRIPTION
} From To	From To	ן ן ן
 		ا ۱ ۱
	79.48 102.41	I I
) []		\$ }
1 1 8		1 1 1 1
		1 1 4
8 1 1		, , , , , , , , , , , , , , , , , , ,
۶ ۲	3	3 3 4
* *		5 1 1
1 1 1	1	
; ;]		

DRILL HOLE NUMBER : NFP88-2

SAMPLE NO.	FROM	τD	HIDTH	Mo pora	Сч ррю	РЬ Ррм	Zn ppm	рр м	А <u>я</u> Ром	H Ppm	Au opb
8899	5.41	7.91	1.50	2.	416.	4.	34.	0.6	11.	1.	1.
8900	7.91	9.41	1.50	8.	365.	8.	34.	Ø. 4	11.	1.	1.
8901	9.4i	10.91	1.50	1.	530.	4.	28.	0.4	7.	1.	3.
8902	10, 91	12.41	1.50	1.	299.	2.	52.	0.5	11.	1.	1.
8903	12.41	13.91	1.50	2.	1854.	з.	107.	1.9	18.	2.	4.
7691	13.91	15.50	1.59	1.	2091.	2.	109.	1.7	9.	1.	6.
8904	15.50	17.00	1.50	1.	527.	5.	104.	1.1	12.	1.	1.
8905	17.00	18.50	i.50	1.	523.	8.	64.	1.4	20.	1.	1.
8906	18.50	19.37	0.87	2.	334.	10.	135.	1.0	31.	1.	1.
8907	19.37	20.25	0.88	1.	1556.	в.	86,	2.4	17.	1.	11.
8908	20.25	21.64	1.39	1.	427.	2.	48.	1.0	13.	1.	3.
8909	21.64	23.15	1.51	з.	955.	21.	102.	1.2	31.	1.	14.
8910	23.15	24.08	0.93	1.	575.	7.	41.	0.7	8.	1.	3.
7692	24.08	25.58	i.50	2.	1078.	18.	144.	2.6	53.	1.	22.
8911	25.58	27.25	1.67	2.	1501.	14.	334.	3.6	228.	1.	31.
8912	27,25	28.57	1.32	г.	548.	71.	707.	1.4	122.	1.	10.
8913	28, 57	29.60	1.03	г.	546.	11.	157.	1.0	86.	1.	7.
7693	29.60	31.01	1.41	2.	473.	5.	49.	0.7	166.	1.	23.
7694	31.01	31.62	0.61	2.	425.	з.	31.	0.5	139.	1.	7.
7695	31,62	32,61	0.99	24.	395.	6.	37.	0.5	18.	i.	5.
8914	32.61	33. 91	1.30	7.	658.	9.	40.	1.0	9.	1.	14.
8915	33.91	35.60	1.69	1.	675.	2.	38.	1.1	7.	1.	7.
8916	35.60	37.18	1.58	1.	961.	2.	37.	1.4	7.	1.	7.
7696	37.18	38,64	1.46	1.	4068.	Э.	164.	6.7	22.	4.	48.
7697	38.64	39.60	0.96	з.	2982.	14.	122.	5.0	27.	83.	21.
7698	39.60	40.84	1.24	2.	10615.	12.	543.	19.6	229.	1.	93.
7699	40.84	42.13	1.29	2.	9819.	10.	447.	16.8	88.	i.	81.
7700	42.13	43.61	1.48	4.	5764.	9.	154.	12.6	86.	1.	29.
77@1	43.61	44.72	1.11	3.	16444.	12.	537.	39.7	296.	1.	138.
7702	44.72	46.50	1.78	3.	838.	7.	30.	3. t	129.	1.	4.
7703	46.50	47.03	0.53	ε.	1957.	10.	41.	5. i	663.	1 -	14.

PAGE: 2

DRILL HOLE NUMBER : NEP88-2

.

SAMPLE	FROM	ΤQ	WIDTH	Mo	Cu	РЬ	Zn	Ag	As	H	Au
ND.				ppm	ppm	ppm	bbut	PD16	ppm	рфm	opb
7704	47.03	47. 93	0.30	з.	4329.	18.	165.	8.3	181.	2.	15.
7705	47.93	49.45	1.52	з.	3422.	13.	137.	8.2	348.	1.	162.
7706	49.45	50,25	Ø. 81	з.	2450.	23.	204.	5.6	153.	1.	23.
7707	50.26	51.69	1.43	з.	919.	э.	60,	1.6	20.	1.	18.
7708	51.69	53.30	1.61	1.	942.	2.	62.	1.8	9.	1.	2.
7709	53.30	54.80	i.50	16.	1698.	7.	95.	2.9	15.	1.	15.
7710	54.80	56.08	1.28	3.	1331.	4.	73.	2.5	27.	1.	8.
7711	56.08	57.53	1.45	5.	1541.	5.	87.	2.9	13.	1.	9.
7712	57.53	59.02	1.49	2.	1310.	9.	75.	2.3	23.	2.	7.
7713	59.02	60.50	1.48	2.	485.	12.	52.	0.7	16.	4.	2.
7714	60.50	62.08	1.58	4.	494.	2.	49.	0.9	9.	i.	2.
7715	62.08	63.76	1.68	2.	939.	7.	75.	2.0	31.	1.	7.
7716	63.76	64.26	0.50	3.	1172.	6.	43.	2. 1	16.	3.	з.
7717	64.26	65.22	0.96	7.	7646.	12.	295.	13.2	123.	1.	54.
7718	65.22	67.19	1.97	2.	1143.	10.	68.	1.9	11.	2.	Б.
7719	67.19	68.74	1,55	4.	1231.	3.	69.	2.1	31.	1.	18.
7720	68.74	69.97	1.23	4.	12185.	а.	380.	23.2	126.	1.	143.
7721	69.97	71.05	1.08	г.	2040.	10.	8i.	4.3	48.	1.	10.
7722	71.05	72.60	1.55	2.	802.	7.	54.	1.5	21.	1.	3.
7723	72.60	73.94	1.34	2.	1468.	14.	42.	4.0	3120.	2.	390.
7724	73.94	75.37	1.43	1.	536.	5.	57.	1.3	27.	1.	5.
8917	75.37	76.76	1.39	1.	380.	4.	31.	0.5	56.	2.	1.
8918	76.76	77.46	0.70	1.	2340.	14.	130.	4.0	118.	1.	18.
7725	77.46	78.74	1.28	4.	1285.	7.	63.	2.0	22.	г.	12.
7726	78.74	79.48	0.74	3.	365.	22.	53.	0.6	73.	1.	6.
7727	79.48	81.03	i.55	2,	1102.	4.	65.	1.6	4.	1.	17.
7728	81.03	82. Ø1	o. 98	4.	1970.	10.	112.	3.1	20.	4.	31.
7729	82.01	83.02	1.01	2.	1685.	9.	98.	5,3	11.	2.	61.
7730	83.02	84.43	1.41	г.	1992.	4.	104.	4.2	12.	1.	22.
7731	84.43	85.44	1.01	з.	1798.	6.	84.	3. i	11.	1.	18.
7732	85.44	86.60	1,36	2.	3567.	5.	160.	5.6	11.	з.	34.

PAGE: 3

.

SAMPLE	FROM	то	WIDTH	Мо	Cu	РЬ	Zn	Ag	As	μ	Au
NQ.				pbw	poa	pom	D DM	DDM	opm	ppm	ppb
7733	86.80	88.30	1.50	3.	2389.	з.	119.	3.7	10.	1.	55.
7734	88.30	89.91	1.61	2.	2445.	10.	104.	3.1	13.	5.	23.
7735	89.91	91.41	1.50	4.	2019.	3.	90.	2.9	6.	1.	43.
7736	91.41	92.99	1.58	4.	3991.	7.	156.	5.5	33.	2.	85.
7737	92.99	93.99	1.00	2.	2061.	5.	93.	3.1	11.	1.	36.
7738	93.99	95.46	1.47	з.	1872.	4.	89.	3.6	7.	2.	16.
7739	95.46	96.97	1.51	1.	970.	6.	61.	1.5	3.	1.	7.
7740	96.97	98.46	1.49	3.	8801.	15.	289.	12.9	31.	7.	79.
7741	98.46	99.96	1.50	4.	1449.	5.	79.	2.1	9.	1.	7.
7742	99.9 5	102.01	2,05	з.	2585.	8.	95.	4.2	52.	1.	32,
7743	102.01	102.41	0.40	4.	994.	4-	54.	1.5	10.	1.	э.

DRILL HOLE NUMBER : NEP88-2

PAGE: 1

HOLE NO.: NFP88-3

DATE LOGGED: --/<u>10/88</u> LOGGED BY : T. McIntyre

LATITUDE : 21550.000 DEPARTURE: 31075.000 ELEVATION: 1131.060 DIP AT COLLAR: -45.00 DEG AZIMUTH : 90.00 DEG TOTAL DEPTH : 142.03

DIAMOND DRILL LOG

MAJOR SUBUNIT DESCRIPTION From То From Τo 4 (metres) (metres) (metres) (metres) CASING 0.00 142.03 0.00 3,66 SANDSTONE BRECCIA 3.65 59.52 Angular to sub angular fragments of comox sediments, 2mm to 40cm in size with the average size being 5-6cm. Matrix comprises 20-25% of the rock and is composed of, in order of dominance, chlorite, calcite (and calcite crystals) sulfides and quartz. The fragments are speckled prey-light green with preen spots. The fragments are quite altered to the point where it is difficult to distinguish. 9.04-10.36: Core broken up, frac 25 & 30 degrees ACA. Goupe mat and some (Tr) malachite. 23.16-23.46: semi mass sulfides. Cpy, Po, & mag disseminated in Bx 40 degrees ACA. 3.66-51.82: Sandstone breccia, composed of a matrix of, in order of dominance, chlorite, calcite, quartz and sulfides. $20 \times$ to $25 \times$ matrix. 51.82-59.52: sandstone breccia. composed of a matrix of. in order of dominance,

i Major		DESCRIPTION
f From To I	From To	
Image: state of the state o	1 1 1 1 1 1 1 1 1 1 1 1 1 1	quartz, calcite, chlorite, and sulfides. 51.82-55.52: breccia changes to matrix of quartz & cc. Matrix i0-15% 52.25-52.42: Fault & slicks 40 degrees ACA. HDRNFELSED SANDSTONE Mottled, purple, light green, beige and white. Weakly to moderately magnetic. Fine grained meta sediment. Upper contact 70 degrees ACA. 60.65-62.15: Sulfides occur as f.f. (hairline frac) orient 35 & 15 degrees ACA. 70.70-70.87: Fault 75 & 22 degrees ACA 77.11-77.61: Sulfide zone. Semi mass occurs dissem & as ff orient 53 & 56 degrees ACA 79.32-80.66: Quartz porphyoblasts 6mm to 16mm in diameter, oval shaped. 85.26-86.72: Sulfs as ff 28 degrees ACA
 	1 3 1 7 6	1 97.87-97.95: Fault orientation 30 & 1 25 degrees ACA. 1 103.51-103.93:Comox fun. Hornfelsed 1 sandstone is brecciated 6 cemented with quartz & 1 minor amounts of calcite.
1) }	I Upper and lower contact

MAJOR SUBUNIT DESCRIPTION То From То From 70 degrees ACA. 127.38-128.88:Sulf occur as f.f. 60 degrees ACA and 25 degrees ACĀ. 134.55-135.51:Sandstone breccia, upper contact 45 degrees, lower contact approx 45 degrees. Brecciated comox fun sandstone cemented with quartz

PAGE: 1

DRILL HOLE NUMBER : NEP88-3

,

SAMPLE	FROM	τo	WIDTH	Mo	Cu	Pb	Zn	69	As	ы	Au
ND.				n pm	mq q	ppm	рры	ppta	ppin	66w	doq
7744	3.05	4.57	1,52	6.	1793.	7.	107.	2.9	12.	1_	39.
7745	4.57	6.ØS	1.48	7.	2139.	2.	106.	3.3	11.	1.	15.
7746	6.05	7.57	1.52	3.	1235.	9.	78.	1.8	11.	-1.	13.
7747	7.57	9.04	1.47	в.	1668.	14.	114.	2.5	э.	1.	17.
7748	9.04	10.36	1.32	4.	2159.	2.	105.	3.9	40.	1.	30.
7749	10.36	11.54	1.10	3.	1091.	13.	90.	2.1	18.	г.	9.
7750	11.54	13.12	1.58	15.	6624.	26.	341.	12.0	32.	1.	105.
7751	13.12	14.60	1.48	з.	745.	6.	70.	1.5	15.	1.	10.
7752	14.60	16.15	1.55	112.	11171.	8.	310.	18.2	75.	1.	120.
7753	16.15	17.75	1.60	4.	2066.	2.	131.	3.7	37.	1.	24.
7754	17.75	19.35	1.60	7.	1186.	8.	104.	2.4	18.	1.	10.
7755	19.35	20.85	1.50	6.	1280.	6.	85.	2.7	19.	1.	6.
7756	20.85	22.31	1.46	5.	1170.	11.	85.	2.8	15.	1.	4.
7757	22.31	23.16	0.85	3.	824.	15.	59.	1.9	19.	1.	29.
7758	23.16	23.66	0.50	259.	53400.	198.	1948.	109.1	385.	1.	435.
7759	23,66	25.16	1.50	7.	1125.	16.	95.	2.5	15.	1.	13.
7760	25.16	26.77	1.61	б.	1028.	13.	73.	2.3	15.	1.	8.
7761	26.77	28.21	1.44	5.	1610.	17.	83.	з.б	21.	2.	11.
7762	28.21	29.45	1.25	з.	1623.	28.	133.	3.5	37.	1.	22.
7763	29.46	30.98	1.52	6.	4510.	25.	230.	11.5	133.	1.	52.
7764	30.98	32.48	1.50	5.	1525.	20.	103.	4.9	43.	1.	12.
7765	32.48	33, 95	1.47	6.	1014.	24.	83.	2.8	26.	2.	7.
7765	33.95	35.46	1.51	8.	1491.	14.	87.	3.7	44.	1.	8.
7767	35.46	36,96	1.50	з.	1271.	10.	132.	3.1	43.	i .	10.
7768	36.96	38.44	1.48	6.	1052.	10.	95.	2.8	39.	1.	103.
7769	38.44	39.94	1,50	4.	1060.	13.	83.	2.4	19.	1.	6.
7770	39.94	41.41	1.47	з.	1141_	4.	104.	2.6	17.	1.	46,
7771	41.41	42,92	1.51	4.	1015.	5.	73.	1.9	18.	2.	17.
7772	42.92	44.40	1.48	7.	1219.	10.	80.	2.6	31.	1.	23.
7773	44.40	45,90	1.50	11.	696.	э.	87.	1.4	16.	1.	18.
7774	45.90	47.42	1.52	7.	569.	11.	63.	1.3	14.	1.	3.

PAGE: 2

.

DRILL HOLE NUMBER : NFP88-3

•

.

						•					
SAMPLE	FROM	тĎ	HIDTH	Mo	Cu	ρь	Zn	Ag	As	н	Au
ND.				ррм	8100	ppm	p pra	ppm	ppm	ppm	рръ
7775	47.42	48.87	1.45	8.	583.	9.	68.	1.4	33.	1.	б.
7776	48.87	50.40	1.53	5.	1152.	10.	100.	2.4	37.	1.	10.
7777	50.40	51.82	1.42	4.	531.	· 9.	114.	1.2	128.	1.	7.
7778	51.82	5 3. 31	1.49	1.	233.	з.	42.	0.8	1739.	2.	50.
7779	53.31	54.83	1.52	7.	189.	12.	89.	0.6	1524.	1.	240.
7780	54.83	56.31	1.48	10.	139.	7.	77.	0.5	90.	1.	1.
7781	56.31	57.73	1.42	9.	83.	11.	111.	0.6	163.	1.	5.
7782	57.73	59.18	1.45	7.	141.	11.	75.	0.6	307.	1.	2.
7783	59.18	60.65	1.48	24.	280.	10.	51.	0.6	128.	1.	7.
7784	60.65	62.15	1.49	5.	748.	12.	50.	1.0	20.	2.	7.
7785	62.15	63.75	1.50	г.	800.	12.	43.	1.3	13.	1.	8.
7786	63.75	65,20	1.45	12.	294.	15.	34.	0.2	16.	5.	1.
7787	65.20	66.67	1.47	2.	290.	10.	28.	0.3	2.	1.	1.
7788	56.67	68.15	1.48	3.	262.	14.	26.	0.1	13.	5.	2.
7789	68, 15	69.63	1.48	3.	231.	13.	25.	0.1	8.	2.	1.
7790	69.63	70.86	1.23	5.	258.	7.	43.	0.7	2.	1.	з.
7791	70.86	71.71	0.85	2.	154.	6.	25.	0.5	6.	4.	3.
7792	71.71	72.73	1,02	1.	277.	в.	26.	0.6	2.	1.	1.
7793	72.73	74.30	1.57	i.	569.	10.	30.	0.9	9.	2.	12.
7794	74.30	75, 61	1.31	1.	350.	7.	34.	0.9	11.	2.	8.
7795	75.61	77.11	1.50	1.	272.	8.	28.	0.7	5.	t.	4.
7796	77.11	77,61	0.50	1.	804.	14.	38.	0.9	27.	з.	4.
7797	77.61	79.32	1.71	1.	392.	18.	57.	1.1	627.	1.	58.
7798	79.32	80.66	1.34	з.	459.	12.	47.	0.9	10.	5.	6.
7799	83.78	85,26	1,48	1.	862.	6.	38.	1.2	2.	1.	7.
7800	85.26	86.72	1.46	1.	251.	7.	26.	0.5	4.	з.	1.
7801	86.72	88.16	1.44	3.	586.	5.	36.	1.2	2.	1.	6.
7802	88.16	89.75	1.59	1.	411.	э.	24.	0.6	9.	5.	1.
7803	89.75	91.26	1.51	3.	346.	з.	24.	0.7	2.	i.	1_
7804	91.26	92.66	1.40	1.	317.	5.	23.	0.5	2.	1.	1.
7805	92.66	94.17	1.51	1.	140.	4.	19.	0.4	з.	1.	1.

PAGE: 3

DRILL HOLE NUMBER : NFP88-3

)

1

SAMPLE	FROM	то	WIDTH	Mc	Cu	РЬ	Zn	Ag	As	ы	Au
NO.				PD14	81QQ	ppm	0 pra	Mqq	р р м	ppm	ррЪ
7806	94.17	95.68	1.51	1.	176.	2.	19.	Q. 4	2.	1.	1.
7807	95.68	97.17	1.49	1.	192.	11.	23.	0.4	14.	6.	1.
7808	102.02	103.51	1.49	1.	170.	23.	752.	Ø. 8	1311.	1.	152.
7809	103.51	103, 93	Ø. 42	ł.	126.	98.	251.	0.7	2073.	1.	11.
7810	103.93	105.43	1.50	1.	61.	2.	21.	0.3	4.	1.	1.
7811	125.35	125.88	1.53	1.	227.	2.	19.	0.3	11.	1.	1.
7812	126.88	127.38	Q. 50	2.	142.	10.	27.	0.3	6.	2.	1.
7813	127.38	128.88	1.50	1.	172.	4.	19.	Ø. 4	8.	1.	1.
7814	131.65	133.14	1.49	1.	227.	6.	29.	0.5	6.	2.	1.
7815	133.14	134.55	1.41	1.	293.	9.	30.	0.5	4.	2.	з.
7816	134.55	135.51	0.96	1.	235.	6.	18.	0.1	6.	1.	1.
7617	135.51	137.20	1.69	1.	185.	2.	18.	0.3	2.	1.	1.
7818	137.20	138.74	1.54	2.	433.	12.	23.	0.3	13.	8.	2.

PAGE: 1

HOLE NO.: NFP88-4

LATITUDE : 21400.000 DEPARTURE: 31262.000 ELEVATION: 1127.710 DIP AT COLLAR: -45.00 DEG AZIMUTH : 90.00 DEG TOTAL DEPTH : 146.60

DIAMOND DRILL LOG

DATE LOGGED: ---/J0/-88 LOGGED BY : T. McIntyre

MAJOR	TINUBUS	DESCRIPTION
From To	From To	
metrês) (metres)	(metres) (metres)	
		I
0.00 146.60	1 0.00 12.80	1 CASING
	1 12.10 13.00	I COMOX BRECCIA
	1	l Matrix of quartz & calcite, & some
	ł 	! sulfides (Po & Py)
	1 13.00 17.07	HORNFELSED SANOSTONE
		I Fine grained, non magnetic, light green
		l to light grey, meta sediment.
	17.07 19.50	APLITE DYKE
	1	Fine grained white and grey in color,
	2	l magnetic. Pyrrhotized, upper contact
	19.50 26.52	l 30 degrees ACA. 1 HORNFELSED SANDSTONE
	126.52 27.50) APLITE DYKE
	1 27.60 32.61	HORNFELSED SANDSTONE
		28.56-32.08: BBC fracs run at 35 degrees
	+ 	and parallel to core axis.
	1	34.47-35.15: Badly broken core. Fractur-
	1	l es run at 40 & 80 degrees &
	\$	Darallel to core axis.
	}	1 39.00-42.75: Badly broken core, fault
	ł	with slicks 30 degrees ACA.
	1	I Fracts both 30 degrees &
	1	parallel to core axis.
	; 32.61 34.13	I APLITE DYKE
	1	I Upper contact 35 degrees, lower contact
	1	1 18 degrees ACA.
	I	58.29-59.73: Sulfides occur as fracture
		l filling 70 degrees ACA.

PAGE: 2

.

2

HOLE NO.: NFP88-4

.

MAJOR	SUBUNI Ť	DESCRIPTION
rcm To	From To	
	1	57.12-62.15: Fault with slicks 52
		degrees ACA. Fracs parallel
	i	and 52 degrees ACA,
	1	64.26-67.90: Fault. Slickensides, 25 &
	I	1 20 degrees and parallel ACA
	1	1 68.55: Fault, slickensides
	1	oriented at 35,45,30 & 15
	1	degrees and parallel to CA
	1 34.13 80.89	HORNFELSED SANDSTONE
	i	67.66-68.64: Sulfides as fracture
	1	1 filling, orientation 60
	I •	68.64-75.35: Fault. Slicks oriented 15.
	I	60 degrees ACA & 30 degrees
		ACA.
	1 B0.89 B5.33	APLITE DYKE
		Upper contact 45 degrees and lower
	i i	I contact 45 degrees ACA. Intensely
		I siliceous, Trace Po.
	85,33 8 5 ,95	I HORNFELSED SANDSTONE
	85.95 88.43	I APLITE DYKE
	1 88.43 88.72	I HORNFELSED SANDSTONE
	88.72 92.93	I APLITE DYKE
	I	I Upper contact 35 degrees ACA, and
	1	1 lower contact 20 degrees ACA. Sulf as
	1	f.f., 65 degrees and 30 degrees ACA.
	92.93 106.42	HORNFELSED SANDSTONE
	1 105.42 107.12	APLITE DYKE
	1 107.12 109.69	I HORNFELSED SANDSTONE I APLITE DYKE
	1 109.69 110.91 1 110.91 111.49	I HORNFELSED SANDSTONE

MAJOR	SUBUNIT	DESCRIPTION
From To	From To	
	111.49 115.61	, I APLITE DYKE
	l I	I Upper contact 60 degrees ACA, lower I contact 40 degrees ACA.
	! 115.61 120.70 !	HORNFELSED SANDBTONE 112.43-114.16:Sulfide zone, Po dissem.
	1	l in matrix & occurs as f.f. Cpy occurs as f.f. 35
	1 120.70 121.60	/ degrees ACA. APLITE DYKE
	1 121.60 122.22	I HORNFELSED SANDSTONE
	1 122.22 123.39	APLITE DYKE
		Upper contact 55 degrees, lower contact 60 degrees ACA.
	1 123.39 141.26	I HORNFELSED SANDSTONE
	141.26 142.14	I COMOX BRECCIA
l	I	I Upper contact 50 degrees, lower contact
	l	20 degrees ACA. Intensely fractured &
		recemented with quartz and cc , 5% Po,
	1 142.14 143.03	matrix comprises 10% of total. HORNFELSED SANDSTONE
	1 143.03 145.35	APLITE DYKE
	I	I Upper contact 35 degrees, lower contact
	1	40 degrees ACA.
I	1 145.35 146.60	I HORNFELSED SANDSTONE
		Moderate to intensely hornfelsed, fine
	1	grained to medium grained feldspathic
		l sandstone. I Sulfide as f.f. 40 degrees ACA.
	•	
	4	
	·	
l	1	1

PAGE: 1

DRILL HOLE NUMBER ; NEP88-4

.

)

.

.

SAMPLE	FROM	το	WIDTH	Mo	Cu	РЬ	Zη	Ag	As	м	Au
NO.				ppm	ppm	ppm	ppm	ppm	ppm	ppin	рръ
7822	12.10	13.28	1.18	i.	451.	12.	59.	1.6	568.	i,	49.
7819	22.86	24.60	1.74	1.	133.	2.	24.	0.3	2.	1.	1.
7820	24.60	25.45	0.85	4.	688.	i5.	33.	0.8	13.	10.	1.
7821	25.45	26.52	1.07	2.	114.	2.	24.	0.4	2.	1.	1.
7823	28.82	30.27	1.45	1.	117.	5.	23.	0.3	6.	1.	1.
7824	30.27	30.90	0.63	1.	586.	8.	28.	Ø. 3	5.	1.	712.
7825	30.90	32.61	1.71	8.	233.	2.	33.	0.5	2.	1.	7.
7826	53.70	55, 37	1.67	1.	224.	г.	36.	0.3	4.	1.	5.
7827	55.37	56, 50	1.13	i.	275.	3.	31.	0.5	9.	1.	б.
7828	56.50	57.33	0.83	1.	1656.	9.	59.	1.7	9.	1.	28.
7829	57.33	58.29	0.96	1.	112.	5.	51.	0.3	2.	1	4.
7830	58.29	59.73	1.44	1.	759.	11.	22.	0.2	10.	2.	з.
7831	59,73	61.45	1.72	1.	66.	9.	22.	0.1	6.	з.	2.
7832	61.45	62.50	1.05	1.	162.	5.	19.	0.1	4.	i _	2.
7833	62.50	63.92	1.42	1.	123.	з.	15.	0.2	2.	1.	з.
7834	63, 92	65.20	1.28	1.	557.	10.	26.	0.1	7.	1.	8.
7835	65.20	66.28	1.08	1.	267.	4.	25.	0.2	2.	1.	7.
7836	66.28	67.66	1.38	1.	259.	5.	30.	0.4	2.	1_	4_
7837	67.66	68.64	0.98	1.	2338.	14.	115.	3.4	31.	1.	23.
7838	76.88	78.49	1.61	1 .	131.	9.	31.	0.3	6.	1.	5.
7839	80.89	82,27	i.38	з.	212.	з.	36.	Ø. 4	5.	2.	з.
7840	88.72	90.22	1.50	5.	311.	2,	25.	Ø.2	з.	1.	5.
7841	101.21	102.71	1.50	2.	315.	13.	36.	0.2	11.	з.	7.
7842	102.71	103.75	1.04	1.	780.	16.	35.	0.5	18.	6.	19.
7843	106.42	107.12	0.70	1.	383.	5.	25.	0.5	3.	2.	6.
7844	109.69	110.91	1.22	1.	317.	з.	25.	0.3	2,	1.	з.
7845	111.49	112,43	0.94	2.	237.	2.	25.	6.2	з.	2.	4.
7846	112.43	114.16	1.73	1_	827.	2.	43.	0.7	з.	1.	6.
7847	114.16	115.61	1.45	1.	185.	2.	32.	0.4	2.	1.	1.
7848	120.70	122,22	1.52	1.	117.	э.	28.	Ø. 3	2.	1.	1.
7849	122,22	123.39	1.17	1.	255.	5.	29.	0.4	5.	з.	2.

PAGE: 2

.

DRILL HOLE	NUMBER : NF	P884									
SAMPLE NO.	FROM	τD	WIDTH	Мо Орна	Cu ppm	р _Б ром	Zn opm	Ад ррм	As ppm	ы Мад	Ач Роб
7850	134.40	135.63	1.23	9.	217.	2.	24.	Ø. 1	4.	1.	3.
7851	139.65	141.26	1.61	1.	53.	24.	44.	0.1	61.	5.	2.
7852	141.26	142.14	0.88	1.	283.	164.	417.	Ø. 8	1213.	1.	11.
7853	142.14	143.03	0.89	1.	37.	29.	88.	0.2	159.	1.	1.
7854	143.03	143.90	0.87	i.	89.	14.	43.	Q.1	67.	2.	1.
7855	143.90	145.35	1.45	1.	139.	8.	24.	0.1	7.	1.	1.
7856	145.35	146.60	1.25	1.	202.	4.	23.	0.2	5.	1.	1.

LATITUDE : 21400.000 DEPARTURE: 31262.000 ELEVATION: 1127.710 DIP AT CDLLAR: -45.00 DEG AZIMUTH : 270.00 DEG TOTAL DEPTH : 160.32

1

.

T.

DIAMOND DRILL LOG

HOLE NO.: NFP88-5

DATE LOGGED: --/-10/88 LOGGED BY : T. McIntyre

I MAJOR	SUBUNIT	DESCRIPTION
 From To (metres) (metres) 	From To (metres) (metres)	
0,00 160.32 - 	0.00 12.19 12.19 23.16	GASING COMOX BRECCIA Angular to subangular frags of sand- stone in a matrix of, in order of abundance, chlorite, calcite, quartz & sulfides. Matrix is 10% of total.
1 5 1 1 1 1	23.16 40.23	I HORNFELSED SANDSTONE I I Fine grained weakly to moderately I I magnetic, light grey to dark grey I I mornfelsed sandstone. Upper contact I I hornfelsed sandstone. Upper contact I I (indist.) and lower contact S0 degrees I I ACA. I I I 25.19-31.39: Badly broken core, I I fractures parallel and 40 I
 	1 	I degrees ACA. I 28.49-32.00; Fault. Slicks orient I parallel and 40 degrees I ACA. I 32.97-34.40; Sulf diss & as f.f. within I core orient 25 degrees ACA
1 1 1 1 1 1 1	40,23 63.22 	I COMQX BRECCIA I I Angular to subangular frags of sandstone I I in a matrix of, in order of abundance, I I chlorite, calcite, ouartz and sulfides. I I chlorite, calcite, ouartz and sulfides. I I Matrix comprises 20-25% of total. I I 53.18: Fault. Slickensides and I I orientation 30 degrees ACA I
} !	I 63.22 64.67	I HORNFELSED SANDSTONE

MAJOR SUBUNIT DESCRIPTION From Тο Тο From Upper contact approx 35 degrees, lower contact 40 degrees ACA. Fine grained light grey to dark grey in color. Magnetic. Cpy/Py as f.f. 40 degrees ACA. COMOX BRECCIA 64.67 87.74 Fragments of sandstone/siltstone, subangular to subrounded in a matrix of, in order of abundance, calcite, quartz, chlorite and sulfides. Matrix 15X-20X of total. 67.17-68.55: Vuggy and exhedral quartz crystals. 5-10% open space 68.60-68.88: Fault. Slicks with orientation of 30-33 degrees ACA. 70.30: Fault. Slicks with orient of approx 25 degrees ACA. 73.15-73.80: Fault & slicks 25 degrees ACA. 87.74 DIORITE DYKE 90.52 Altered dyke. All amphiboles altered to chlorite. Fine grained, weakly to moderately magnetic. Light grey to dark grey in color. Upper contact 25 degrees aca, lower contact indistinguishable. COMOX BRECCIA 90.52 94.35 Fragments of fine grained sandstone/ siltstone, angular to subangular in a matrix of, in order of abundance, calcite, quartz, chlorite and minor sulfides. Weakly magnetic.

94.35 100.05 FELDSPAR PORPHYRY DYKE Fine grained with 2mm to 4km size benocrysts of white feldspar. Mafics have been altered to chlorite, Sulfides consist of Cpy and Po. Upper contact 55 degress, lower contact 55 degress, lower contact 55 100.06 116.82 116.82 118.00 118.00 HORNFELSED SANDSTONE 118.00 100.32	MAJOR MAJOR From To	SUBUNIT From To	DESCRIPTION
		1 100.06 115.82 116.82 118.00	Fine grained with 2mm to 4mm size (ohenocrysts of white feldspar. Mafics) have been altered to chlorite. Sulfides (consist of Cpy and Po. Upper contact 65) degrees, lower contact 55 degrees ACA. (Possible altered diorite porphyry dyke. (COMDX BRECCIA) HORNFELSED SANDSTONE

ASSAY RECORD FORBIDDEN PLATEAU

DRILL HOLE NUMBER : NFP88-5

)

1

SAMPLE NO.	1 1	FROM	 }	ΩT	1 I 1	HTUIH	1	Mo ppm		Cu ppm		РЪ Ррм		Zn ppm		(gA Ppm l	As Ppm		и ррм	-	Ач (ррЪ
7857		12.23	1	12.90	1	0.67	 1	 5.	1	3968.	1	19.	1	672.	;	11.2	112.	; ;	1.]	132.
7858	1	12.90		14.32		1.42	1	4.	1	2587.	1	11.	1	2034.	1	6.4 I	383.	1	1.	1	32. 4
7859	1	14.32	ŧ	16.01	1	i.69	1	3.	1	2633.	1	28.	1	1256.	I	7.5	74.	1	1.	1	85.
7860	1	16.01	\$	17.99		1.98	I	з.	I.	1842.	ł	э.	1	144.	I	4.1	34.	1	1.	1	22.
7861	1	17.99		19.60		1.61	I	3.	1	2359,	1	13.	Ţ	121.	1	5.4	80.	1	2.	1	245.
7862	1	19.60	I .	20.95		1.35	1	2.	1	3266.]	13.	ł	161.	1	7.1	60.		1.	1	7.
7863	1	20.95	!	23.16	ļ	2.21	1	3.	ł	2290.	1	29.	i	281.	1	5.5 !	1770.	1	1.	ł	265.
8932	1	23.16	1	24.66	1	1,50	1	1.	1	101.	ł	22.	1	422.	1	0.4 I	45.	1	t.	1	9. :
8933	1	24.66	1	26.16	1	1.50	I I	2.	1	103.	I I	4.	Т	36.	1	@.2 I	5.	1	1.	1	2.
8934	i i	26.15	I	27.65	ł	1.50	1	2.	1	912.	ţ.	10.	1	60.	I I	1.2 1	5.	I I	1.	1	7.
8935	1	27,66	I	29.16	1	1.50	ŧ	1.	Ţ	293.	1	7.	1	39.	1	0.5 1	5,	1	1	1	5.
6936	1	29.16	1	30.66	1	1.50	t	1.	I.	429.	1	14.	1	28.	1	0.5 1	7.	1	з.	1	6.
: 8937	1	30.66	1	32.97	1	2.31	1	2.	1	112.	ł	7.	ł	25.	ł	Ø.1 1	6.	I I	1.	ł	2.
7864	1	32,97	1	34.40	1	1.43	\$	2.	I.	240.	1	3.	ł	25.	1	0.1	2.	1	б.	1	4.
1 8938	1	34,40	\$	35, 90	ł	1.50	1	3.	1	70.	1	6.	1	28.	1	0.1	5.	1	1.	ł	1.
6939	١	35.90	i	37.40	1	1.50	1	1.	}	96.	1	6.	1	25.	I	0.1 (3.	1	1.	1	2.
8940	ł	37.40	1	38.85	i	1.45	I.	з.	1	87.	1	7.	ł	31.	1	0.2 3	8,	I.	1.	I I	1.
8941	1	38.85	1	40.23	1	1.38	1	5.	Т	58.	1	14.	ł	53.	1	0.21	12.	1	1.	E	6.
7865	1	40.23	1	42.36	1	2.13	1	э.	1	285.	1	9.	1	41.	1	0.5	6.	1	2.	1	б.
7866	ŧ	42.36	ł	43.92	ł	1,56	I	11.	1	24.	ŧ	6.	ł	33.	ŧ	0.1 1	4.	i	4.	1	7.
7867	1	43.92		45.43		1.51	ł	8.	Т	219.	1	9.	1	45.		0.3			4.	Ì.	5.
7868	Î.	45.43		47.01		1.58	1	11.	T	2262.	I I	11.	i.	77.		3.4 1			2.	1	50.
7869	i	47.01		48.45		1.44	I.	23.	Ĵ.	909.	I I	8.	ł	65.	1	1.1 4			2.	1	в.
7872	1	48.45		49.95		1.50	t	18.	T	2774.	1	5.	1	103.	1	5.9 1			1.	ř.	41.
7871	i.	49.95		50. 94		0.99	Ì.	17.	Ţ	4873.	I	3.	Ì.	146.		5.8			2.	Ì.	91.
7872	i	50.94		51.90		0.96	i i	17.		8560.	I I	6.	Í.	205.		10.5			5.	1	56.
1 7873	i	51.90		52.90		1.00	1	13.		9239.	i	δ.	i.	260.		11.5			5.	t	122.
0882	i	52.04		53.60		1.56	\$	1.		227.	I I	2.	1	25.		0.21			1.	İ	1.
1 7874	í	52.90		53.90		1.00	1	9.	Î.	4968.	1	10.		148.		6.1 1			5.	i	54.
8863	i	53.60		54.61		1.01	1	1.	ī	154.	i	2.		24.		0.3 1			1.	i	1.
1 7875	i	53.90		55.40		1.50	i	13.	i	4657		9.		136.		5.8			4.	ì	76.

PAGE: 1

.

۲

ASSAY RECORD FORDIDDEN PLATEAU PAGE: 2

DRILL HOLE NUMBER : NFP88-5

.

1.1

SAMPLE NO.	1 1	FROM (ΤQ	i WIDTH	1 1	Mo I ppm i	L ul pem l	РЪ ФРМ		Zn I ppm I	i gA I mqq	As I Ppm I	H I ppm I	Ац ррь
8884	 1	54.61 (55.99			1. 1	95. 1	6.	1	23. 1	0.2 1	6. 1	i. J	1.
8526	1	55.40	56.84		1	6.1	1725. 1	з.	1	76.)	2.2 1	14. !	14. i	28. 1
8527	ł	56.84 }	58.34		1	23. 1	3 557. I	5.	ł	124. I	4.4 !	22 . J	39. I	79.
8885	1	57.48 /	58.25		1	1. 1	330. 1	3.	1	23, 1	0,51	5. ł	1. 3	1. 1
8886	i	58.26	59.41	1 1.15	Ţ	1. 1	218. 1	4.	ł	26. 1	0.4	2. I	2. i	1.
8528	I.	58,34	60.10		1	27. I	3817. 1	8.	1	125. J	4.8	29. I	12. 1	35. 9
8529	I.	60.10 I	61.58	1 1.48	1	2 9. I	764 3. i	8.	ł	203. 1	9.7	48. 1	4. 1	54.
8887	ł	60,98	62.47	1.49	1	1. 1	301. 1	10.	t	33. 1	0.5	5. I	1. I	2.
8530	I.	61.58 !	62,39	i 0.81	1	21.	4523. 1	2.	1	173. i	5.9 1	35, 1	4. 1	77.
8531	\$	62.39)	63.22	1 0.83	1	23. 1	2100. 1	Б.	1	96. I	2,6 (29. (1. 1	26.
8888	ł	62.47 I	63.75	1 1.28	1	1. 1	106. 1	3.	ł	20. 1	0.1	13. I	2. 1	1.
8532	1	6 3. 22 i	64.67	1.45	1	7. (1879. 1	2.	3	61. i	2.2 }	24.)	1. 1	42.
8889	1	63.75 3	65.29	I 1.54	1	1. }	145. I	8,	ţ	22.	0.1 1	4. 1	1. 1	1.
8533	I	64.67 1	65.98	1 1.31	1	19.	9426. I	8.	1	311. 1	13.5	54. 1	1.	27.
6890	i	65.29)	66.34	1 1.05	1	1. 1	112. 1	2.	1	24. 1	Ø.1 I	4. J	1. 1	1.
8534	1	65.98 1	67.17	1 1.19	1	23. 1	1425. /	9.	1	54. i	2.9 1	61. J	2. 1	18.
8535	1	67.17 1	68.53	1.38	1	18. 1	1051. 1	2.	1	39. 1	2.6)	73. 1	2. 1	12.
8891	I.	57.87 1	68.78	1 0.91	3	1.	118. 1	3.	1	32. 1	0.3 I	4. 3	1. 1	1.
8536	1	68.55)	70.04	1 1.49	1	24. 1	3698. 1	10.	1	136. /	8.5 I	131, 1	2. I	29.
6892	1	69.73 }	71.27		1	1. 1	59. 1	6.	I I	28. 1	0.1 :	3. 1	1. 3	1.
8537	Т	70.04 1	71.60		I	18. J	332. 1	10.	1	50. 1	0.8 1	21, 1	2. I	11.
8893	I.	71.27 1	72.94		1	1. 1	89. (3.	1	23. 1	0.1 1	4. 1	1. 1	1.
8538	1	71.60 1	72.58		1	11. i	114.	З.	1	13. i	0.4 3	70, 1	1. 1	17.
8539	1	72,58 i	74.06		1	17.	120.	5.	1	20. 1	0.3 :	23. 1	3. 1	8.
8540	Ì	74.06	75.55		1	10. 1	75.)	4.	Ť.	35. 1	0.2 1	25. 1	2. 1	31.
8541	1	75.55 I	77.20		1	9. 1	257. 1		1	45. i	0.6	61. 1	2. 1	17.
8542	j.	77.20	78.30		ł	4. 1	741. 1		Ī	13. 1	1.8 1	73.	1. 1	8.
8543	1	78.30 1	79.80		1	10. 1	81. 1		t	9. I	0.1	112. 1	1. 1	10.
8544	j	79.80 1	81.00		1	4. 1	171. I		1	12. 1	Q.3 I	79. 1	1. 3	9.
8545	1	81.00	82.50		ł	5. 1	176. 3		i	8. 1	0.2 1	143.	1. 1	7.
8894	i	82.49	83.50		i.	1. 1	147.		í.	21. 1	0.3 1	5. !	1. 1	1.

ASSAY RECORD FORBIDDEN PLATEAU

PAGE; 3

.

,

DRILL HOLE NUMBER : NFP88-5

.

1	SAMPLE	ļ	FROM	ΤO	l	WIDTH	ļ	Mo I	Cu		Pb		Zni	Ag i	As !	н		A.
	NO.	؛ 	·		 	.		ן הפק 		 		ı 		ppm i	ppm !		1	qq
ţ	8546	ŀ	82.50 }	83.51		1.01	ł	8. i	27.		3.		10. 1	0.1 I	84. I	i.		1
	8895	1	83.50 }	84.29		0.79	I	1. 1	190.		2.		15. 1	0.1 !	8. 1	1.		3
i i	8547	1	83.51 /	84.50		Q. 99	ł	7. 1	162.		4.		5. J	0.2	130. 1	1.	1	5
ł	8548	ł	84.50)	86.00		1.50	1	4. 1	77.		з.	t	6. 1	0.1 1	40. 1	1.	I	1
ļ	8549	I.	86.00	87.10		1.10	1	3.1	317.		4.	I	11. 1	0.4 1	20. 1	1.	1	1
1	8550	1	87.10 1	87.74	I	0.64	ł	2. 1	17.	1	з.	1	3. 1	0.1 1	693.	з.	1	- 36
ł	8551	1	87.74 /	89.22	1	1.48	1	1. I	3731.	1	7.	1	1 50. 1	6.9 i	112. I	1.	I I	66
}	8896	1	88.89 (89.46	1	0.57	I	1. 1	139.	1	3.	t	39. 1	0.3 I	2. I	1.	1	1
ł	8552	1	89.22 (90.52	I I	1.30	1	1. I	538.	ł	з.	1	36. i	0.7 i	40. 1	2.	1	7
1	8897	1	89.46 I	91.11	ł	1.65	I I	1. 1	209.	I	2.	1	26. 1	0.4	8. 1	1.	1	1
1	8553	1	90.52 i	92. 05	i	1.53	I	14.	79.	1	4.	1	25. 1	0.1 i	15. !	1.	1	1
L	8898	3	91.11 I	91.53	1	0.42	ł	2. 1	302.	I	4.	i	20.	0.2	3. 1	1.	I I	2
\$	8554	1	92.05 I	93.26	1	1.21	1	12. J	56.	ł	з.	I.	24. 1	0.1 }	12.	1.	ţ	;
L	8555	!	93.26 /	94.35	1	1.09	1	6. I	94.	1	4.	1	15. 1	0.1	31. }	1.	I.	18
1	8556	1	94.35 }	95.68	1	1.33	1	1. 1	339.	1	5.	ī	34. 1	0.4 1	15.	1.	\$	3
1	8557	ļ	95.68 I	97.33	I	1.65	1	1. 1	475.	1	4.	1	37. 1	0.5)	15.	1.	ł	3
1	8558	1	97.33	98.74	I I	1.41	1	1. 1	910.	1	з.	ł	54. I	1.0 {	35. 1	1.	1	
ł	8559	ł	98.74	100.06	1	1.32	1	1. I	158.	1	5.	1	32. I	0.2 1	23. (1.	ļ	1
1	8560		100.05	101.70	I I	1.54	1	10. 1	1142.	1	7.	ł	47. 1	1.6 1	422. 1	1.	1	77
ŧ	8561	J	101.70	103.10	ļ.	1,40	ł	6. i	1032.	1	7.	3	4 0. i	1.1 i	3. 1	1.	1	1
i.	8562	t	103.10 1	104.57		1.47	1	7. 1	7072.	ł	13.	Ŧ	163.	8.5	3. !	1.	1	65
1	8563	1	104.57 1	105.47		0.90	i	5. I	2770.	1	10.	1	89. I	3.8	14. 1	1.	1	- 86
1	8564	1	105.47	106.53	ł	1,06	I.	6. 1	5341.	t	10.	3	152. I	6.71	5. I	1.	1	124
i.	8565	ż	106,53	108.04		1.51	1	4. 1	4201.	t	Б.	ŧ	129. 1	5.4 !	2. 1	1.	1	65
i.	8566	÷.	108.04	109.57		1.53	1	5. ;	3654.	1	6.	\$	107. 1	4.7 1	6, i	1.	1	37
i i	8567	1	109.57	111.07	I I	1.50	1	5. I	8985.	3	2.	I.	232. (11.9 I	10.	4.	1	210
i.	8568	i.	111.07 1	112.51	1	1.44	ĩ	4. 1	5504.	I	2.	I.	152.	8.5 1	S. I	1.		- 48
i	8569	- Í	112.51	114.00		1.49	1	6. I	397.	1	9.	1	57. }	0.6 1	28. 1	1.	1	11
i.	8570	i	114.00 3	115.45		1.46	1	5. I	84.		4.	1	51. J	0.1 1	4. !	1.		1
i i	8571	í	115.46	116.82		1.36	1	9. 1	294.		6.	ł	79. 1	0.5 1	12. 1	1.		3
ŧ	8572	i	116.82 1	118.00		1.18	1	1. 1	98.		4.	i.	39. 1	9.2 1	8. i	1.		

ASSAY RECORD FORBIDDEN PLATEAU PAGE: 4

.

.

DRILL HOLE NUMBER : NEP88-5

1

Т

SAMPLE NO.	1	FROM I	τc		WIDTH	 	Мо ррм		Cu ł ppm ł	99 Мар		Zn ppm	-	Ag PPM		As ppm		} {	Au dqq
8573	 I	118.00 1	119.36	 	1.38	1	8.	1	589. 1	3. 3.	i	 52 .	1	 0.Э	 I	3.	1 1.	1	6.
8574	1	119.38 I	120.90	1	1.52	1	з.	1	245. 1	4.	1	45.	1	0.2	1	з.	1 1.	1	1.
8575	1	120,90 !	122.40	11	1.50	1	2.	L I	108. 1	5.	ł	46.	1	0.2	1	2.) 1.	ł	1.
8576	ţ	122.40 I	123.89) }	1.49	1	3.	1	156. I	6.	1	42.	1	0.1	ł	5.	1 1.	- 1	1.
8577	ł	123.89 I	125.36	5 1	1.47	ļ	4.	ł	74.	з.	Ł	44.	1	0.1	1	2.	1 1.	1	1.
8578	ł	125.36 I	126.87	1	1.51	1	з.	}	121. 1	7.	1	41.	1	0.2	ł	4.	1 1.	T	9.
8579	ł	126.87 :	128, 39) i	1.52	ł	2.	1	2858.	6.	1	108.	1	4.0	1	7.	1 1.	1	40.
8580	1	128.39	129, 97	1	1.58	1	2.	1	100. I	5.	1	40.	1	0.2	1	з.	I 1.	1	1.
8581	ł	129,97 i	131.49) (1.52	1	1.	1	1210.	5.	Ŧ	60.	1	1.7	ł	8.	1 2.	1	3.
8582	Ţ	131.49 I	133.00) [1.51	ł	2.	1	48. I	5.	1	43.	1	0.1	1	8.	1 1.	1	1.
8583	1	133.00 1	134.45	5 1	1.45	E	2.	ł	63. 1	12.	I	50.	1	0.3	1	4.	1 1.	1	1.
8584	ï	134.45 1	136.34	1	1.89	ł	2.	1	36. 1	5.	1	44.	1	0.2	1	9.	1 1.	1	6.
8585	1	136.34 I	137.72	2 1	1.38	1	2.	1	64. 🕴	4.	1	41.	1	Ø. 1	1	2.	1 1.	J	1.
8586	I.	137.72 /	139.20	1	1.48	1	2.	1	70. 1	9.	1	44.	1	0.2	I	6.	1 1.	3	1.
8587	1	139.20 /	140.7	5 1	1.53	I	2.	1	118. /	9.	1	47.	1	0.3	t	7.	1 1.	1	1.
8588	Ţ	140.73 1	142.17	1 3	1.44	1	2.	I I	73. 1	8.	1	49.	1	0.1	I	8.	1 1.	1	1.
8589	1	142.17	143.6/	+ 1	1.47	1	1.	ł	55. i	13.	I.	49.	I.	0.1	I I	з.	1 1.	1	1.
8590	i	143.64 J	145.13		1.49	I	2.	1	104.	9.	1	62.	1	0.3	1	2.	1 1.	1	4.
8591	Í.	145.13	146.7		1.62	ł	з.	ł	137. 1	11.	I I	56.	1	0.2		8.		ł	1.
8592	Í.	146.75	148.30		1.55	Ţ	1.	I I	1223.	8.	1	84.		1.9		58.		Ĵ.	7.
8593	1	148.30 1	149.8		1.55	I.	2.	1	353. I	13.	ŧ	50.		0.7		30.		j.	5
8594	Ť	149.85	151.0		1.16	I.	2.	I	93. 1	7.	1	42.	1	0.1	1	2.		i.	1.
8595	i	151.01 1	152.60		1.59	ł	з.	1	152. I	12.	t	62.		0.4		5.		1	1.
8596	i	152,50 1	154.0		1.47	1	3.	I.	79. I	11.	1	61.	1	0.1	ł			i.	1.
8597	i	154.07 1	155.50		1.49	I.	2.	I I	38. I	5.	1	48.	1	0.2	ł	5.		1	1.
8598	ł	155.56	157.03		1.47	I	3.		57. i		1	54.		0.1		10.		1	1.
8599	t	157.03	158.2		1.20	1	з.	ł	68. 1	4.	1	44.		0.1		11.		Í.	3.
8690	ł	158.23	159.10		0.87	I.	1.	1	8703.		ţ	233.		11.6		9,		i	96.
8688	1	159.10 1	160.3		1.22	I.	з.	1	226. 1	3.	1	40.		0.4		4.		Í	4.
0000	i			ì		Ŧ		1	1		;	. – •	1		i		1	i	
	i			i		t			i		1		i i		i -			1	

PAGE: 1

ł

ŧ

.

HOLE NO. : NEP88-6

LATITUDE : 21400.000 DEPARTURE: 30652.000 ELEVATION: 1051.510 DIP AT COLLAR: -45.00 DEG AZIMUTH : 90.00 DEG TOTAL DEPTH : 128.31

LATITUDE : 21400.000

1

.

r.

DIAMOND DRILL LOG

DATE LOGGED: --/10/88 LOGGED BY : T. McIntyre

I MAJOR I MAJOR	SUBUNIT	DESCRIPTION
, From To (metres) 	From To (metres) (metres)	
0.00 128,32) } } 0.00 1.22 } 1.22 1.42 }	I CASING I DIORITE DYKE Finely crystaline, diorite dyke, salt & I pepper colored, moderately magnetic.
- - - - - - - - - - - - - -	i.42 23.80	 amphiboles have been altered to chlorite INTRUSIVE BRECCIA Subrounded to rounded frags of diorite in a matrix of, in order of abundance, chlorite, quartz, and sulfides and calcite. Matrix to frag ratio 10/90. calcite. Matrix to frag ratio 10/90. moderately to intensely siliceous. Intrusive frags make up to bulk of the fragment lithotypes with the intrusive sediment frag ratio being 88/12. 5.40-10.81: bluish-purple or indigo fractures 75 & 20 degrees
	; 23.80 24.66 ; ;	i ACA. I I APLITE DYKE
, 1 1 1 1 1) 24.66 30.95) 30.95 31.65))	INTRUSIVE DRECCIA 1 INTRUSIVE DRECCIA 1 Same as 1.42-23.80m. 1 APLITE DYKE 1 Fine grained felsic dyke, upper contact 1 70 degrees and lower contact 45 degrees ACR. 1

SUBUNIT DESCRIPTION MAJOR Τo Τo From From INTRUSIVE BRECCIA 31.65 35,95 Same as 1.42-23.80m. APLITE DYKE 35.95 37.28 Upper contact 60 degrees, lower contact 35 deprees ACA. INTRUSIVE BRECCIA 37.28 69.04 Subrounded to rounded frags of diorite and sandstone. Intrusive frags to sed frag ratio 90/10. Matrix to frag ratio 10-12/90-88. 45.58-47.03: Sericite occurs in a fracture with orientation of 55 degrees ACA. Occurs with calcite 50.75: Fault. Orientation on slickensides parallel and 30 deprees ACA. 52.58: Fault, slicks 25 degrees ACA. APLITE DYKE 70.36 69.04 Fine grained felsic intrusion. Upper contact 20 degrees ACA, and lower contact 40 degrees ACA. INTRUSIVE BRECCIA 70.36 84.94 Subrounded, to rounded fragments of diorite with the occasional fragment of sediment. Intrusive to sed ratio 94/6. Matrix to frag ratio 10/90. Matrix is composed of, in order of dominance, chlorite, quartz, calcite, sulfides, and minor biotite.

MAJOR SUBUNIT DESCRIPTION From То From To 78.20: Fault, slick with orient of 25 degrees ACA. 83,82 84.94 HORNFELSED SANDSTONE Same as 86.40m to 100.36m. Upper contact 60 degrees ACA. 84.94 86.40 DIORITE DYKE Upper contact 30 degrees and lower contact 25 degrees, moderately crystaline and intensely siliceous. Weakly to moderately magnetic 86.40 100.35 HORNFELSED SANDSTONE Moderately to intensely hornfelsed, fine grained sandstone/siltstone. Moderately magnetic. Light grey to dark grey in color. 93.80-94.85: Hydrothermal alteration zone. Alteration consists of chlorite & clays with quartz stringers shot thru 94.61-94.77: Fault slicks, orientation 45 & 80 degrees ACA. 98.70: Fault. Slicks 25 degrees ACA. 100.35 101.62 DIORITE DYKE Upper contact 25 degrees, lower contact 70 degrees ACA. Coarsely crystaline at upper contact, becoming finely crystaline at lower contact. Equigranular euhedral to sub hedral crystals. 101.62 106.45 HORNFELSED SANDSTONE Dark grey, magnetic fine grained

MAJOR SUBUNIT DESCRIPTION From То Fricia Τo sandstone/siltstone of intense hornfelsing. 106.45 109.83 DIORITE DYKE Light grey, fine grain diorite dyke and phenocrysts of biotite mica & amphiboles magnetic. 109.83 115.10 HORNFELSED SANDSTONE Same as 101.62-106.45m. 109.83-111.58:core shot thru with silica 40 degrees ACA. 113.13-114.62:hydrothermal alteration zone. Upper contact 70 degrees ACA, lower contact 32 degrees. Alteration consists of clays, quartz and carbonate. 115.10 116.10 DIORITE DYKE Upper contact 50 degrees & lower contact 15 degrees ACA. Same as 100.36-101.62m. 116.10 121.53 HORNFELSED SANDSTONE Same as 101.62-105.45m. 120.53-151.53:Alteration zone. Fracture intensity is 3 to 4 (25% of core is fractured) and is recemented with quartz. Alteration consists of ouartz and clays. 121.53 128.32 DIORITE DYKE Upper contact indistinguishable due to sandstone and increasingly intermixed with diority. Contact approx 121.53m

PAGE ;

ł

۰Ŀ

1

I MAJOR I From To I	SUBUNIT From To	DESCRIPTION
· · · · · · · · · · · · · ·		and approx 25 degrees. Contains fragments of sandstone intermittantly. Moderately crystaline with subhedral crystals. Salt and pepper color.
1 1 1 1 1 1 2 1 3 1 3 1 3 1 4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 <td></td> <td></td>		

PAGE: 1

.

DRILL HOLE NUMBER : NFP88-6

)

÷

)

SAMPLE	FROM	ΤD	WIDTH	Mo	Cu	Pъ	Zn	Яg	As	ų	Au
NO.				pom	ррм	ppm	ppm	ppm	MQQ	þþm	ррЪ
8689	1.42	3.14	1.72	112.	437.	2.	107.	1.1	19.	1.	5.
8690	3.14	4.91	1.77	19.	785.	11.	114.	1.8	17.	1.	44.
8691	4.91	5.47	1.56	8.	463.	7.	44.	0.9	9.	1.	1.
8692	5.47	7,98	1.51	21.	608.	9.	48.	0.9	6.	1.	15.
8693	7.98	9.40	1.42	11.	509.	4.	55.	1.1	14.	1.	1.
8694	9.40	10,81	1.41	72.	312.	6.	68.	0.8	12.	2.	1.
8695	10.81	12.15	1.34	49.	516.	з.	73.	1.1	18.	1.	з.
8696	12.15	13.96	1.81	36.	410.	12.	156.	1.0	26.	1.	7.
8697	13.96	15,46	1,50	54.	442.	8.	53.	1.0	13.	1.	3.
8698	15.45	16.46	1,00	22.	320,	3.	66.	0.7	10.	1.	1.
8699	16.46	17.46	1.00	19.	795.	10.	68.	1.7	19.	1.	9.
8700	17.46	18.96	1,50	11.	302.	4.	54.	0.6	18.	1.	4.
8701	18.96	20.47	1.51	15.	337.	5.	56.	0.8	19.	1.	6.
8702	20.47	22.25	1,78	16.	316.	б.	69.	0.6	17.	1.	7.
8703	22.25	23.16	0,91	14.	733.	3.	79.	1.7	22.	1.	23.
6704	23.16	23.80	0.64	41.	311.	7.	55.	0.9	15.	1.	26.
8705	23.80	24.66	0.86	42.	549.	2.	77.	1.0	369.	1.	4.
8706	24.65	26.43	1.77	42.	413.	10.	62,	1.1	16.	1.	14.
8707	26.43	27.93	1.50	16.	417.	7.	60.	0.9	16.	1.	11.
6708	27.93	29.42	1.49	17.	308.	4.	. 47.	0.9	8.	1.	34.
8709	29.42	30.95	1.53	13.	859.	11.	239.	1.7	128.	1.	37.
8710	30.95	31.65	0.70	15.	344.	6.	56.	Ø. B	21.	1.	19.
8711	31.65	32.43	0.78	26.	237.	з.	56.	Ø.6	12.	1.	7.
8712	32.43	33.99	1.56	18.	540.	12.	68.	1.3	15.	1.	9.
6713	33.99	34,94	0.95	68.	1155,	2.	94.	2.4	14.	1.	22.
8714	34.94	35.95	1.01	22.	765.	10.	93.	1,6	12.	1.	10.
8715	35.95	37.28	1.33	39.	722,	г.	93.	1.6	268.	1.	3.
8716	37.28	38.14	0.86	13.	431.	6.	53.	0.7	15.	1.	з.
8717	38.14	39.55	1.41	27.	406.	2.	56.	0.8	10.	1.	9.
8718	39.55	41,05	1.50	12.	451.	7.	60.	0.8	9.	1.	20.
8719	41.05	42.55	1,50	12.	391.	4.	48.	0.7	а.	1.	11.

.

PAGE: 2

DRILL HOLE NUMBER : NFP88-5

J.

3

)

1

. İ

SAMPLE	FROM	то	HIDTH	Mo	Cu	₽ъ	Zn	Ag	As	ы	Au
NO.				ppm	Diblu	ppm	ppm	Ррм	P pro	рри	dqq
8720	42.55	44.03	1.48	9.	266.	2.	49.	0.5	14.	з.	6.
8721	44.03	45.58	1.55	15.	638.	4.	61.	1.2	33.	1.	1Ø.
8722	45.58	47.03	1.45	10.	287.	2.	61 .	0.7	31.	1.	7.
8723	47.03	48.46	1.43	8.	3071.	10.	489.	7.8	327.	1.	780.
8724	48.46	49.88	1.42	14.	4555.	11.	343.	14.3	95.	2.	420.
8725	49.88	51.16	1.28	20.	853.	2.	95,	1,9	27.	1.	17,
8726	51.16	52.63	1.47	17.	379.	4.	55.	0,7	12.	1.	14.
8727	52.63	54.12	1.49	5.	819.	з.	68.	1.4	9.	1.	9.
6728	54.12	55.61	1.49	5.	465.	2.	57.	0.7	8.	1.	11.
8729	55.61	57.07	1.46	7.	384.	9.	55.	0.5	5.	i.	4.
8730	57,07	58.66	1.59	6.	593.	2.	89.	1.1	53.	1.	8.
8731	58,66	60.19	1.53	4.	367.	5.	65.	0.7	5.	1.	20.
8732	50, 19	61.56	1.37	5.	351.	2.	58.	0.9	7.	1.	1.
8733	61.56	63,03	1.47	4.	423.	5.	63.	0.9	7.	1.	4.
8734	63.03	64.65	1.62	5.	465.	4.	63.	0.9	13.	1.	9.
8735	64,65	56.14	1.49	6.	150.	5.	47.	0,4	з.	1.	е.
8736	66.14	67.57	1.43	8.	647.	2.	65.	1.3	5.	1.	4.
8737	67.57	69. 04	1.47	6.	349.	4.	53.	0.7	20.	1.	8.
8738	69.04	70.36	1,32	8.	252.	з.	50.	0.6	165.	i.	3.
8739	70.36	71.85	1.49	7.	623.	5.	70.	1.4	17.	1.	5.
8740	71.85	73.43	1.58	5.	1304.	2.	87.	2.9	10.	1.	14.
8741	73.43	75.07	1,64	11.	777.	10.	aı.	1.7	60.	1.	10.
8742	75.07	76.72	1.65	6.	474.	5.	242.	1.1	22.	1.	72.
8743	76.72	78.20	1.48	8.	760.	7.	71.	1.5	63.	1.	36.
B744	78,20	79.69	1.49	6.	170.	7.	48.	Ø. 4	7.	1.	3.
8745	79.69	81.40	1.71	14.	234.	2.	61.	0.5	10.	i.	1.
8746	81.40	82.73	1.33	13.	735.	5.	76.	1.5	9.	1.	1.
8747	B2.73	83.82	1.09	27.	1Ø34.	6.	93.	2.3	2.	1.	1.
8748	83.82	84.94	1.12	27.	2305.	6.	53.	1.5	8.	1.	1.
8749	84.94	86.40	1.46	3.	228.	з.	34.	0.4	42.	1.	4.
8750	86.40	87.91	1.51	3.	1175.	11.	50.	1.5	75.	1.	21.

PAGE: 3

.

DRILL HOLE NUMBER : NEP88-6

•

SAMPLE	FROM	το	WIDTH	Mo	Cu	Ръ	Zn	Ag	As	м	Au
ND.				ppm	ppm	PPtd	ррм	ppm	р ртя	ррм	ррЪ
8751	87.91	89.28	1.37	2.	280.	7.	33.	Ø.4	106.	1.	1.
6752	89.28	90.52	1.24	1.	514.	9.	40.	0.1	16.	з.	6.
8753	90.52	92.25	1.73	2.	422.	12.	63.	0.2	15.	1.	3.
8754	92.25	93, 80	1.55	з.	529.	6.	58.	0.5	18.	1.	8.
8755	93.80	94.85	1.05	54.	805.	13.	87.	2.1	45.	1.	44.
8756	94,85	96.41	1.56	71.	606.	9.	47.	0.5	10.	1.	15.
8757	96.41	98.12	1.71	7.	326.	4.	58.	0.1	13.	г.	1.
8758	98.12	99.5 2	1.40	7.	337.	12.	33.	0.2	12.	3.	1.
8759	102.69	104.12	1.43	1.	376.	12,	29.	0.3	2.	2.	1.
8750	111.58	113.13	1.55	4.	318.	10.	46.	0.3	4.	2.	1.
8751	113.13	114,62	1.49	22.	115.	3.	75.	0.2	146.	i.	1.
8762	120,53	121.53	1,00	220.	1065,	2.	21.	0.9	8.	1.	1.
8763	124.41	125.41	1.00	5.	766.	2.	30.	1.1	3.	1.	3.

APPENDIX II

DIAMOND DRILL LOGS AND ASSAYS - ELNORA ZONE

PAGE: 1

.

LATITUDE : 28317.000 DEPARTURE: 29370.000 ELEVATION: 655.300 DIP AT COLLAR: -90.00 DEB AZIMUTH : 999.99 DEG TOTAL DEPTH : 44.80

DIAMOND DRILL LDG

HOLE NO.: NFP88-7

DATE LOGGED: __/_D/_88 LOGGED BY : D. R. Bull

 	MAJOR	SUBUNIT	DESCRIPTION				
: From (metres) }	To (metres)	From To (metres) (metres)					
I 0.00 I I I I I I I I I I	44.80	0.00 3.04 3.04 22.76 4 1 1 1 1 1 1 1 1 22.76 23.17	<pre>I I I CASING BASALT I Fine grained porphyritic w.r.t. plag. I in part. Amygdaloidal in part. FS dark grey-green chloritic minor quartz as I in filling around pillows @ 9.07; 12.14; I 4.10;17.13 metres I LIMESTONE I Fine grained massive. FS dark grey I strongly dolomitized (fizz only when powdered). Upper contact indistinct</pre>				
		 23.17 31.90 	 lower contact 75 degrees to CA BASALT Fine grained porphyritic w.r.t. plag in part, amygdaloidal in part. FS dark grey green, chloritic minor stringers of 				
		31.90 32.97	<pre> quartz 1mm. ALTERATION ZONE. Ginger brown color basalt altering to clays and Fe Oxides. Minor quartz veinlets 32.17-32.26: Quartz vein with rusty blebs and masses possibly oxidized sulfides? 32.30-32.40: All gone to clays, light brown color. Soft. Upper and lower contacts of alteration zone are gradational.</pre>				

.

I MAJOR	SUEUNIT	DESCRIPTION					
l From To	From To						
	1 1 32.97 33.26	 BASALT ! As above. Minor quartz-carbonate ! veinlets, 1-2mm at 70 degrees to C.A.					
- 	: 33.26 33.44	 with minor malachite staining. ALTERATION ZONE Ginger brown color, basalt altering to clays and Fe Oxidizes, minor quartz veinlets and blebs. 					
1	33.44 37.67	BASALT As above. Minor Malachite? staining.					
	37,67 37,81	 ALTERATION ZONE Ginger brown color, basalt altering to clays and Fe oxidizes minor quartz veinlets & blebs. Upper contact 50 degrees ACA, lower contact 60 degrees ACA 					
	1 37.81 42.73 1 1	BASALT Fine grained, porphyritic in part. Amygdaloidal in part, FS dark grey-green chloritic					
I J 	42.73 43.15	ALTERATION ZONE Ginger brown color, basalt altering to Clays & Fe oxidizes minor quartz veinlets.					
i i 1	 43,15 44.80 	BASALT As above					
1	E I						
- 1 4	9]						
i I	 !	I I					

PAGE: 2

DRILL HOLE NUMBER : NFP88-7

,

SAMPLE	FROM	то	WIDTH	Mo	Cu	Pb	Zn	Ag	As	ω	Au
NO.				pom	ppm	bbw	p pm	D D M	m qq	mqq	pob
8764	31.29	31.79	0.50	1.	82.	6.	95.	Ø. i	28.	2.	1.
8765	31.79	32.97	1.18	1.	248.	73.	217.	7.5	290.	2.	23.
8766	32.97	33.23	0,26	1.	60.	2,	79.	Ø. i	11.	1.	1.
8767	33.23	33.53	0,30	1.	109.	19.	183.	0.3	161.	1.	10.
8768	33.53	34.03	0.50	1.	120.	23.	205.	1.2	27.	5.	4.
8769	37.17	37.67	0,50	1.	49.	9.	91.	0.1	5.	2.	2.
8770	37.67	37.82	0.15	1.	66.	41.	364.	0.6	95.	1.	3.
8771	37.82	38.32	0.50	1.	117.	6.	101.	0.1	8.	3.	5.
8772	42.22	42.72	0.50	1_	135.	9.	156.	0.2	28.	1.	з.
8773	42.72	43.16	0.44	1.	104.	19.	166.	2.4	423.	1.	11.
8774	43.16	43.66	0.50	i.	105.	5.	121.	0.2	32.	з.	1.

-

PAGE: 1

.

1

.

LATITUDE : 28362.000 DEPARTURE: 29355.000 ELEVATION: 653.800 DIP AT COLLAR: -90.00 DEG AZIMUTH : 999.99 DEG TOTAL DEPTH : 53.95

.

DIAMOND DRILL LOG

HOLE NO.: NFP88-8

DATE LOGGED: --/10/88 LOGGED BY : D.R. Bull

MAJOR		SUÐUNIT	DESCRIPTION
From To (metres) (metres)	From (metres)	To (metres)	
0.00 53,95	 & Ø. ØØ 3. 25 	3. 25 22. 66] CASING ! INTERMEDIATE VOLCANIC (ANDESITE) } Minor volcanic pillow breecias with ! quartz infilling. Medium grained.
	; ; ; ; ;		<pre>FS light greenish grey 4.35: Becoming darker grey 5.00: (approx.) becoming finer grained, occasionally porphynitic. Amygdaloidal in part.</pre>
) 22.66 } }	23.25	 LIMESTONE Fine grained, massive. FS light grey. Strongly dolomitized. Upper contact indistinct, lower contact approx 75 degrees to CA.
) 	43.14	BASALT Fine grained. FS medium greenish grey, Amygdaloidal. Porphyritic wrt Pyroxene? Minor quartz stringers { or = 2mm. Sub parallel to core axis minor volcanic
	43.14 	44.31	 breccias with quartz infilling. ALTERATION ZONE Basalt altering to clays and Fe Oxides. Ginger brown color. Minor guartz blebs. Upper & lower contact approx. 85 degrees to CA.
	44.31	47. 01	BASALT As above.

HOLE NO.: NFP88-8

.

!

MAJOR	SUBUNIT	DESCRIPTION
From To	From To	
	1 1 1 1 1 47.01 47.12	i 45.01: 5mm wide quartz-carbonate veinlet at 65 degrees to core axis, minor sph. SMALL ALTERATION ZONE Basalt partially altered to clays and Fe oxides. Singer brown color, original texture still visible. Upper contact
	 47.12 47.33 47.33 47.64	40 degrees, lower contact 70 degrees CA BASALT As above.
	I I I I I I I I I I I I I I I I I I I	 ALTERATION ZONE Basalt altering to clays and Fe oxides minor quartz blebs. Some of original texutres still visible. Upper contact gradational, lower contact 60 degrees CA BASALT
	48.56 48.87	As above, but, more silicified, also Minor CaCo3 ALTERATION ZONE Basalt altering to clays and Fe oxidizes
	 48-87 49-10 	 Upper contact gradational at approx 70 degrees CA, lower contact obscured by ground core. BASALT Fine grained. FS dark greenish grey. 5mm wide guartz-clay filled fracture.
	 49.10 49.25 	At approx 70 degrees to CA. Connects upper and lower alteration zones. ALTERATION ZONE Basalt altering to clays and Fe oxides Upper contact 45 degrees to CA, lower

PAGE: 2

,

J.

1

.

ı.

HOLE NO.: NEP88-8

.

MAJOR	SUBUNIT	DESCRIPTION
From To	From To	
	49.25 51.60	l I I contact 50 degrees to CA. I BASALT I Fine grained. Mostly equigranular I Moderately silicified. Slightly
	i 51.60 52.50	I amygdaloidal. Lower contact gradational. J BASALT
) 52.50 53.95)	l Porphyritic wrt plat and Pyroxene? BASALT ! Fine grained, Amygdaloidal in part.
		1
	3	
) 	3
		, 1 1
	1 -	}
	8 	5

PAGE: 3

1

ASSAY RECORD

DRILL HOLE NUMBER : NEPBB-B

.

SAMPLE NO.	FROM	סד	WIDTH	Mo: pom	Cu pom	рр л	Z т мקq	а Мада	As PPM	ы Мад	Ац бо д
8775 8776 8777 8778 8779 8789 8789 8789	42.52 43.02 44.36 46.80 47.30 47.65 48.13	43.02 44.36 44.85 47.30 47.55 48.13 48.58	0.50 1.34 0.50 0.50 0.35 0.48 0.48 0.45 0.30	1. 1. 1. 1. 1.	87. 202. 180. 67. 207. 68. 30. 56.	2, 92. 8. 159, 8. 10, 64.	123. 298. 169. 107. 451. 166. 74. 332.	0.1 1.8 0.2 0.1 10.2 0.7 0.1 19.1	16. 305. 23. 30. 192. 33. 11. 190.	2. 1. 2. 1. 3. 1.	1. 22. 2. 102. 4. 1.
8782 8783 8784	48.58 48.88 49.40	48.88 49.40 49.90	0.50 0.52 0.50	1. 1.	41. 64.	720.	1245. 89.	6.8 4.0	82. 17.	1.	9. 2.

PAGE: 1

)

APPENDIX III

GEOCHEMICAL ANALYSIS - ICP MULTIELEMENT

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1710

Forbia DOH-NEF-SS_1 (TMC)

ſ

11

.

÷

ł

£

¢.

\$

£

(

(

(

(

¢

(

ŧ.

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SANFLE IS DIGESTED WITH 3HL 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR XH FE SR CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BT ICP IS 3 PPN. - SANFLE TTPE: CORE AU" ANALTSIS BT ACID LEACH/AA FROM 10 GM SAMPLE.

NORANDA EXPLORATION PROJECT 167/8810-016 File # 88-5022

SAMPL3#	No PPN	CU PPM	65 H65	2n PPN	AG PPN	NÍ PPM	Co PPM	Mn PPN	Ze 1	As PPX	U PPK	AU PPM	Th PPN	51 7PM	Cđ PPK	SD PPK	BI PPM	V PPN	Ca %	۴ ۶	64 299	CT PPN	Nġ ł	Ba PPN	71 1	8 2 P K	41 3	Na ł	Х }	W PPM	λu" ?73
765:	1	197	,	19	.:	56	19	206	4.37	31	5	ND	2	16	1	11	,	60	1.93	.029	3	49	1.97	67	.03	,	2.03	.07	.32	-	12
7652		131	2	21	.3	41	18		5.43	2	5	ND	1	106	1	;	÷	99	.58	.029	1	11	1.49	143	.11		3.09	.12	. 17	1	74
7553	1	244	13	26	.2	31	19	185	5.26	16	÷	XD	3	157	1	10	2	102	1.87	.029	3	57	1.24	155	. 39		3.72	.19	.45	Ť	5
7654	1	185	10	24	.3	35	17		4.63	1	ć	ND	;	159	i	.,	ž		1.16	.027	;	67	1.46	146	.16		3.34	.25	. 89	2	ģ
7655	1	1025	12	43	1.1	31	17		9.30	19	5	ND	3	131		2	2		2.14	,025	,	41	.96	- 51	. 04		3.51	.21	.19	,	, 14
1533	1	1023	12	40	1.1	3.	4,1	1/5	9.30	19	3	nv.	2	111	1	4	2	31	2.14	, 44.1	•	94	.70	91		D	3.31	• 4 +	.17	ı	14
7636	1	276	2	25	.4	31	19	211	5.13	6	5	ND	2	174	1	2	2	137	1.59	.015	1	66	1.59	111	.15	2	4.25	.25	. 97	1	3
7657	1	393	2	25	.6	31	21	187	5.85	2	5	ЯC	3	118	1	2	2	105	1.05	.015	2	57	1.44	66	.11	2	3.45	.19	. 66	1	7
7653	1	361	14	24	. 3	47	59	135	14.96	19	5	ND	2	78	2	15	2	87	1.61	.053	2	45	. 69	33	.07	1	2.23	.12	. 39	5	14
7659	1	392	13	23	.3	24	25	282	7.41	3	5	ND	2	100	l	2	2	187	1.32	.022	3	79	1.80	92	.13	6	3.95	.18	.78	1	:
7660	1	363	2	31	, 9	25	22	330	4.63	2	5	ND	2	រ	1	2	2	85	. 73	.009	2	10	1.22	21	.08	- 1	1.69	.03	. 29	1	1
	-		-																												
7851	1	158	15	43	.7	34	33	431	5.49	14	5	ND	ž	22	1	4	2	137	. 74	.015	3	52	1.69	46	.08	5	2.53	.05	.19	3	7
7662	2	635	2	38	1.2	25	35	298	5.00	7	;	ND	2	12	1	2	2	51	1.16	.028	3	24	. 85	16	.01	2	1.35	.02	.08	1	12
7663	1	228	15	30	. 3	27	21	284	4.20	20	5	an C	1	19	1	2	2	17	1.00	.011	2	35	1.07	0	.04	1	1.53	.04	.14	I	4
7664	1	191	2	35	.5	32	31	337	5.23	15	5	ЯĎ	3	41	ĩ	2	2	85	1.17	.051	3	39	1.19	29	.06	2	2.01	.05	.12	1	6
7665	1	269	11	24	.3	29	30	165	4.78	10	5	ND	1	27	1	2	2	69	. 87	.017	2	. 31	1.10	36	.04	2	1.89	.07	. 89	1	ż
		•••	••	•••		•••																									
7666	2	314	2	25	. ł	29	25	256	4.15	30	5	ND	1	17	1	7	2	82	. 11	.016	2	37	1.11	31	.04	5	1.51	. 04	. 06	5	10
7687	1	251	7	29	. 4	29	23	239	5.06	8	5	ND	2	25	1	2	2	105	1.26	.012	2	39	1.28	46	.08	2	1.86	.05	. 20	1	2
7668	1	545	8	55	.7	33	13	536	4.98	5	5	ND	2	28	1	2	2	125	1.36	.013	3	56	1.45	52	. 09	2	2.37	.04	. 21	1	12
7669	3	1303	6	45	1.7	41	55	260	5.12	14	5	ND	1	18	2	8	3	81	1.29	.029	3	41	1.30	33	.02	7	1.84	.03	.12	5	21
7670	i	564	3	31	. ġ	32	59	138	6.27	2	5	ND	2	26	t	2	2	102	. 59	.020	2	46	1.11	10	.11	2	1.81	. 07	.42	;	6
	•		•					•••		•	-		-		-	-	-				-					-					-
7671	1	275	2	24	. 2	39	33	123	5.16	6	5	ND	2	30	1	2	2	134	. 55	.017	2	59	1.40	67	.14	3	2.23	. 09	.54	1	i
1672	1	309	8	25	.3	36	25	173	4.80	12	5	ND	1	18	I	B	2	130	. 19	.024	2	62	1.32	159	.12	6	2.00	.06	.62	7	I
7673	1	250	2	25	. 5	37	24	133	4.47	3	5	NÐ	2	21	1	2	2	105	.36	.013	2	- 69	1.22	105	.14	2	1.96	. 05	.51	1	3
7674	1	272	3	25	.2	35	27	145	6.30	4	5	ХD	1	46	1	2	2	129	.94	.022	2	56	1,20	63	н.	4	2.60	.13	. 36	2	2
7675	1	169	17	31	.1	39	23		5.51	13	5	ND	1	49	1	12	2	158	1.19	.051	2	66	1.45	151	.20	4	3.17	.15	. 81	5	1
					-		-																								
7576	1	275	4	32	.3	28	18		6.91	181	S	HD	2	- 14	1	2	2		3.57	.017	4	28	.14	10	.02	3	1.54	. 08	.09	1	2
7677	1	86	92	147	.1	12	7	747	5.12	13237	5	ND	2	43	I	162	2	14	9.SI	.02i	4	5	1.48	11	.01	4	. 15	. 11	.07	1	31
\$70 C/AU-	a 19	60	42	111	6.7	67	30	1019	1.29	43	21	8	39	49	13	18	18	58	. 50	.096	4 D	59	. 94	114	.07	33	2.01	.05	. 11	12	539

												N	<i>ح</i> و	ડે શ	6	,	'	4													
ACME ANAL	LYTICA	L LA	BOR.	атоя	RIES	LTD).	;	852	Е. Н	AST:								V6A	1R6	i	Pł	ONE	(604) 2 5	3-33	158	FAX	(60	4)25	53-1,16
	*					GI	eо	CH	IEN	110	CA	L	AN	1A)	LY	sI	s	C	ÈŔ	ττ	ΈI	c	АŤ	E							
																				D IS D Ditic											
				-	SAMPL	1172	: Core)	ана така 1911 г. т. т.	LTSIS	BT ACIE	LEYCH	(/ X 1	ROX 10													XG; CBR				_
DATE	RECEI	VED:	QC	7171										/							•	0,7071			. CHAX,	J. 93	XG; CER	117180	B.Ç.	AS5ATI	125
SAMPLZI	Ko	Cu	Pb	20	19 19	B1	1DA Co	њ. Х.Р. Хл	LORA It	λε	1 PR	نے در ۱۹	.1. 8 7b	-018 St	2 4 U -	50	Bi	стт. Л	= # Ca	88-5	1230	Cr	Pag Mg	E I Ba	7i	8	a î	Na	r	¥	iu*
3AR: 024	PPN	PPN	29N	PPK	PPK	PPK	2PH	PPK	1		PPK	PPN	268	??X	PPK	PPN		7 7%	ï	ì	PPN		1	PPH	1	PPK	ł	ł	ł		PP8
R 767S R 7673 R 7680 R 7681 R 7682	2 1 1 1	165 146 166	9 !1 3 5 11	25 95 24 15 28	.1 .2 .1 .1	36 35 31 37 34	23 27 20 15 36	424 258 178	6.08 6.27 5.14 4.96 8.67	34 10679 2 19 11	5 5 5 5 5	NC 3 ND ND ND	1 2 1 2	50 39 57 72 67	1 2 1 1 1	5 91 2 2 2	6 7 2 2 2	29 106 78	2.18 3.89 1.98 2.32 1.72	.017 .019 .032	5 5 1 3 3	58 14 67 31 55	.93 .88 1.03 .66 .90	44 9 38 10 13	.05 .01 .15 .14 .10	9 2 4	1.95 .54 2.70 3.26 3.99	.13 .01 .20 .29 .21	.30 .20 .20 .03 .09	3 1 1 1 2	2 1395 4 3 7
R 7533 R 7684 R 7585 R 7686 R 7687	2 2 2 1 2	242 205	10 10 15 6	12 17 26 24 25	.1 .1 .1 .2	34 30 38 43 46	19 18 25 27 21	124 189 225	5.50 6.02 6.47 6.09 4.78	5 11 9 15 132	5 5 5 5 5	ND ND ND ND NC	2 1 2 1	94 81 71 51 52	1 1 1 1	3 4 2 8 2	2 3 3 2 2	70 126 130	2.29 2.04 1.55 1.42 1.50	.031 .022 .052	ł 3 3 3	77	.47 .52 1.18 1.33 1.08	12 33 75 102 45	.16 .14 .18 .21 .05	4 4 5	4.23 3.80 3.59 3.34 2.29	.38 .30 .27 .15 .09	.02 .09 .12 .51 .23	2 3 9 4	2 5 2 9
R 7688 R 7689 R 7690 R 1691 R 1691 R 1692	1 1 1	814 1617 256 2091 1078	31 52 3 2 18	40 183 32 109 144	.6 3.2 .1 1.7 2.6	70 29 13 9 16	54 31 17 11 23	358 220 626	6.95 8.86 4.17 4.08 3.83	18 189 21 9 53	5 5 5 5 5	ND DX CV DX DV	1 1 1 1	66 61 67 7 28	1 2 1 2 1	3 2 2 2 2 2 2	2 5 3 3 2	63 60 48	1.82 2.12 2.12 .59 2.80	.060 .062 .044	1 2 3 6 4	35 39	.80 1.28 1.34 1.13 .80	70 22 19 21 19	.06 .04 .02 .01 .03	5 3 3	2.55 2.02 2.21 2.06 .84	.11 .10 .09 .02 .02	.27 .12 .13 .19 .23	1 1 1 1	15 177 8 6 22
R 7693 R 7694 R 7695 B 7696 R 7537	2	473 426 395 4063 2982	5 6 9 14	49 31 37 164 122	.7 .5 6.7 5.0	12 11 14 21 25	15 15 17 22 24	554 269 452	3.14 3.90 3.73 3.84 3.94	186 139 18 22 27	5 5 5 5	ND ND ND ND ND	1 1 1 1	21 14 48 33 30	1 1 2 2	7 12 1 2 2	2 2 2 3 2	7 34 50	1.23 2.89 2.19 2.11 2.45	.045 .041 .036	5 5 5 2 3		.33 .55 .88 1.08 1.12	6 4 39 15 12	.01 .01 .02 .01 .01	4 5 6	.54 .56 2.26 1.86 1.75	.01 .01 .08 .03 .02	.15 .21 .28 .12 .85	! ! ! 4	23 7 5 48 21
R 7638 R 7699 R 7700 R 7701 R 7701 R 7702	2 4 3	10615 9819 5764 16444 898	12 10 9 12 7	447 154 537	19.6 16.8 12.6 19.7 3.1	30 21 19 41 12		128 157 525	5.93 5.80 5.36 6.99 4.37	229 88 86 295 129	5 5 5 5	ND ND ND ND ND ND	I 1 1 1	29 18 15 1	6 5 2 5 1	3 3 22 48 51	15 9 13 65 4	15 13 9	2.61	.031 .031 .034	1 1 1 3	8 21 8 21 7	.93 .82 .74 .37 .67	18 20 15 19 10	.01 .01 .01 .01 .01	7 5 3 11	.62 .39 .35 .34 .35	.01 .01 .01 .01 .01	.18 .21 .21 .22 .19	1 1 1 1	93 81 29 138 4
R 7703 R 7704 R 1105 R 7706 R 7707	3 3 3	1957 1329 3122 2130 919	10 18 13 23 9	41 165 137 204 60	5.1 8.3 8.2 5.6 1.6	13 18 19 18 12	27 32 26	887 719 676	4.75 4.44 4.91 3.98 4.12	181	5 5 5 5 5	ND D ND ND ND	1 1 1 1	12 20 19 11 29	1 2 2 2 1	84 43 27 28 2	4 5 2 4 2	12 12 11	2.83 4.60 2.64 2.72 2.86	.034 .038 .036	2 3 4 5 4	25 9 20 7 22	,66 .85 .69 .41 .60	13 10 17 18 18	.01 .01 .01 .01 .01	5 6 5 4 4	.29 .33 .46 .34 .77	.01 .01 .01 .01	.19 .20 .22 .20 .19	1 2 1 1 1	14 15 162 23 18
R 7708 R 7709 A 7710 R 7711 R 7717	16 3 5	942 1698 1331 1541 1310	2 7 4 5 9	95 73 87	1.8 2.9 2.5 2.9 2.3	11 15 14 14 15	15 17 15 15 17	478 468 456	4.27 4.38 4.15 3.90 4.23	9 15 27 13 23	5 5 5 5	DK DK DK DK DK DK	1 1 1 1 1	24 23 28 28 39	1 1 1 1	2 2 2 2 2	2 2 2 2 2	34 34 36	2.53 2.03 2.17 1.95 2.52	.037 .037 .034	 	17 21 36 23 51	.82 .9€ .84 .91 .97	9 13 12 15 18	.01 .01 .01 .01 .01	2 2 2	1.58 1.78 1.67 1.65 1.88	.01 .01 .01 .01 .01 .02	.12 .17 .13 .15 .16	1 1 1 1 2	2 15 8 9 7
R 7713 STD C/AU-		485 59	12 40	52 132	.7 7.1	15 67			4.31 4.19	16 41	5 20	ND J	1 37	39 67	1 17	2 19	2 2 D		2.59 .48) 38	25 53	1.13 .94	13 172	.01 .06		1.92		.13 .13	4 12	2 510

ς.

6

 ζ_{i}

C

(

(

Ċ

ć,

(

(

C

C

(

(

Ç

Ç

C

(

C

ς.

(

(

NORANDA EXPLORATION PROJECT 8810-042 167 FILE # 88-5256

'SAXPLOF	Mo C PPN PP			AÇ PPH	NI PPK	CO PPN	ND PPK	Te L	AS PPK	U PPN	ÅU PPK	76 F2k	ST 7PM	CÍ PPN	SD PPH	31 PPK	V Fex	Ca }	Р 3	La PPN	CE PPH	¥ġ ¥	Ba PPN	Ti 3	B Pên	۶1 ۲	Xa X	I ł	7 998	AU' PPB	
R 7714 R 7715 R 7716 R 7717 R 7717 R 7713	4 49 2 93 3 117 7 764 2 114	97 26 17	75 43 295	.9 2.0 ,2.1 13.2 1.9	13 17 15 42 14	13 12 13 36 11	531 485 415	3.93 3.80 2.84 5.71 4.50	9 31 16 123 11	5 5 5 5	ND ND ND ND ND	1 1 1 1	32 29 29 26 36	1 1 3 1	2 2 10 4	4 3 2 2 3	34 38 43	2.08 2.32 2.38 1.92 2.42		3 1 3 3	21 22 24 25 24	1.00 .85 .83 .96 1.05	9 15 13 10 15	.01 .01 .01 .01 .01	2 2 2	1.77 1.63 1.66 1.87 2.01	.01 .01 .01 .01 .02	.10 .13 .12 .09 .11	1 1 3 1 2	2 7 3 51 5	
R 7719 R 7720 R 7721 R 7722 R 7723	4 123 4 1218 2 204 2 80 2 146	5 3 0 10 2 7	380 81 54	23.2 4.3 1.5	23 52 18 15 27	24 55 17 14 17	609 156 645	4.28 6.36 5.15 3.97 3.79	31 126 43 21 3120	5 5 5 5 5	ND ND ND ND	1 1 1 1	33 20 11 39 3	1 4 1 1	2 8 2 2 40	2 19 2 2 3	15 26 25	2.75 2.90 1.23 3.81 1.87	.036 .032 .038 .040 .038	4 3 5 2	14 \$ 16 13 \$. 58 . 48 . 69 . 80 . 31	12 10 8 1D 12	.01 .01 .01 .01 .01	2 2	1.17 .33 1.67 1.05 .27	.01 .01 .01 .01 .01	.13 .12 .12 .14 .15	1 1 1 2	18 143 19 390	
R 7724 R 7725 R 7725 R 7725 R 7727 R 7728	1 53 4 128 3 36 2 110 4 197	s 7 5 22 2 4	63 53 65	2.0	23 16 16 18	9 15 13 14 21	139 489 151	2.83 1.58 3.04 3.92 4.48	27 22 73 4 20	5 5 5 5 5	ND ND ND	1 1 1 1	33 38 21 57 58	1 1 1 1	12 8 14 2 7	2 2 3	1) 8 35	3.94 3.33 2.41 2.46 2.15	.040 .051 .041	4 5 4 3 3	9 10 5 21 26	.53 .35 .51 .90 1.16	8 10 4 21 35	.01 .01 .01 .01 .02	2	.51 1.05 .41 1.74 2.13	.0: .02 .01 .05 .06	.15 .12 .16 .17 .22	1 2 1 1	5 12 6 17 31	
R 7723 R 7730 R 7731 R 7732 R 7733	2 158 2 199 1 179 2 335 3 238	2 8 6 7 5	104 84	2.3 4.2 3.1 5.6 3.7	18 16 16 21 22	17 16 13 23 19	439 446 412	1.46 3.92 3.53 4.53 4.57	11 12 11 11	5 5 5 5 5	ND Nd Nd Nd Nd	1 1 1 1	61 53 46 56 59	1 1 1 2 1	2 2 2 2 2 2	4 3 3 2 4	38 36 40	2.76 2.82 2.79 2.43 2.30	.040 .038 .037 .037 .037	 3] 	21 23 26	1.08 .90 .74 1.03 1.15	18 15 22 17 31	.01 .01 .01 .01 .01	2 2 3	2.00 1.67 1.51 1.93 2.22	.03 .02 .03 .03	.09 .08 .10 .08 .15	2 1 1 3 1	61 22 18 34 55	
R 7734 R 7735 R 7736 R 7737 R 7738	2 244 4 201 4 399 2 206 3 187	93 17 15	90 156 93	3.1 2.9 5.5 3.1 3.6	21 19 28 25 25	13 17 22 19 17	435 480 544	3.65 3.96 4.29 4.04 3.90	13 6 33 11 7	5 5 5 5 5	NO No No No No	1 1 1 1	50 48 51 54 48	1 1 2 1 1	3 2 9 2 2	3 5 14 2 3	41 29 35	2.43 2.59 3.21 3.79 2.24	.036 .035 .038 .038 .031 .040	4 4 5 3	25 24 15 16 28	.80 .89 .78 .90 1.01	17 18 24 18 27	.01 .01 .01 .01 .01	2 8 2	1.61 1.68 1.07 1.58 1.85	.03 .02 .02 .02 .02	.07 .08 .11 .10 .15	5 1 2 1 2	23 43 85 36 16	
R 7739 R 7740 R 7741 R 7742 R 7743	1 97 3 880 4 144 3 258 4 99	1 15 9 6 5 8	289 79 95		15 55 16 23 14	14 40 16 20 12	443 418 409	3.98 5.53 4.43 3.99 3.68	3 31 9 52 10	5 5 5 5 5	KD ND ND ND ND	1 1 1 1	54 47 51 31 49	1 4 1 1	2 1 D 2 1 O 2	3 16 6 2 3	42 38 16	2.34 2.65 2.15 2.95 3.44	.039 .036 .041 .034 .036	4 3 4 3 5	20 22 21 9 8	.93 .93 1.02 .57 .62	14 16 14 8 13	.01 .01 .01 .01 .01	8	1.74 1.73 1.71 .53 .53	.03 .03 .01 .01 .01	,09 ,09 .09 .09 .09	1 7 1 1	7 79 7 32 9	
R 7784 R 7735 R 7786 R 7786 R 7787 R 7786	5 74 2 80 12 29 2 25 3 26	0 12 4 15 0 10	43 34 28	1.0 1.3 .2 .1	39 34 46 41 40	20 36 21 21 21	414 513 379	4.41 6.00 5.12 5.39 5.25	20 13 15 2 13	5 5 5 5 5	NC ND ND ND	1 1 2 1	40 50 53 73 142	1 1 1 1	13 2 10 2 3	2 1 2 2 2	72 90 101	2.38 2.11 1.93 1.16 2.15	.024 .023 .030 .027 .025	5 1 1 1 1	46 70 69	1.02 1.10 1.60 1.56 1.42	24 38 67 99 119	.01 .01 .04 .06 .09	2 4 6	1.52 2.07 2.74 3.04 3.97	.04 .07 .05 .10 .20	. 13 . 20 . 27 . 29 . 38	2 1 5 1 5	7 8 1 1 2	
R 1789 S7D C/AU-R	3 23 18 6			.1 7.2	40 68	21 31	325 1014	5.20 1.22	8 (1	5 19	ND 7	1 35	60 68	1 18	2 17	2 25	101 58	.85 .19	.029 .090	1 10		1.53	88 179	.08 .07		2.15 2.05	.08 .06	. 28 . 13	2 13	1 520	

rage 2

x.

£

C

C

£

£

(

ć

(

6

Ċ

C

(

(

۲ ب

(

(

C

C

Ĺ

NORANDA EXPLORATION PROJECT 8810-042 167 FILE # 88-5256

'SANPLE#	KC PPK	Cu PPM	PD PPK	1c PPN	AQ Ben	¥1 PPN	CO PPN	Ka P?N	Je 1	λs РРН	U PPK	λu PPN	76 229	Sr Pfn	Cđ PPK	SD PPN	BÍ PPK	¥ 2PM	Ca %	P X	La PPK	CT PPK	Xg S	Ba PPN	71 1	9 899	۸1 ۲	Na X	۲ ۲	W PPK	207 PPB	
E 7790 E 7791 E 7792 E 7793 E 7794	2 2 1 1 1	154 277 569	? 6 8 10 7	43 25 26 30 34	.7 .5 .8 .9 .9	43 48 39 36 32	22 23 23 31 25	299 254 368	5.22 5.18 5.02 5.73 5.14	2 5 2 9 11	5 5 5 5 5	XD ND XD ND ND	3 2 3 3 3	49 62 69 124 96	· 1 1 1 1	2 5 2 2 2 2	2 2 2 2 2 2	90 105 97 106 105	1,37 .88 .89 2.56 1.66	.027 .026 .027 .027 .027 .018	1 2 3 4 3	59 48 45	1.49 1.71 1.30 1.39 1.46	69 132 91 120 74	.04 .07 .05 .05 .05	\$ 2 2	2.58 1.04 2.73 1.29 2.96	.04 .07 .08 .12 .11	.29 .46 .27 .38 .26	1 4 1 2 2	3 1 12 8	
R 7795 B 7736 R 7791 B 7798 R 7798 R 7799	1 1 3 1	392 159	8 14 18 12 5	28 38 57 47 38	.7 .9 1.1 .9 1.2	35 40 33 36 20	23 62 26 26 34	499 544 340	5.32 10.94 6.87 6.03 6.16	5 27 627 10 2	5 5 5 5 5	ND Dh Dh Dh Dh Dh	3 2 1 3 3	100 104 55 79 30	1 1 1 1	2 4 2 5 2	2 2 2 2 2	103 153	2.30 3.55 2.56 1.88 .63	.039 .025 .124	3 7 5 1 2	35 51 62	1.61 1.11 1.59 1.87 1.20	127 14 97 144 70	.07 .02 .04 .08 .07	2 2 4	3.17 3.79 1.39 3.77 2.18	.11 .08 .09 .14 .07	.46 .07 .31 .61 .26	1 3 1 5 1	4 58 5 7	
R 7800 R 7801 R 7801 R 7803 R 7803 R 7804	3]		7 5 9 3 5	25 36 24 24 23	.5 1.2 .6 .7 .5	18 25 30 29 35	14 27 35 22 26	303 190 222	3.18 4.50 4.57 4.25 5.23	1 2 9 2 2	5 5 5 5 5 5	ND ND ND ND ND	1 4 1 2 2	13 18 22 17 29	1 1 1 1	1 2 3 2 2	2 2 2 2 2 2	63 94 93 95 151	.56 .62 .56 .45 .18	.013 .010 .020 .011 .014	2 2 2 2 2 2	33 30	.84 1.23 1.20 1.20 1.64	8 16 22 19 87	.05 .06 .05 .07 .12	2 3 2	1.43 1.96 1.77 1.68 2.57	.03 .04 .05 .01 .08	.04 .07 .08 .05 .53	3 1 5 1 1	1 6 1 1 1	
2 7303 R 7805 R 7807 R 7808 R 7808 R 7805	1 1	170	4 2 11 23 98	19 19 23 752 251	.4 .4 .8 .7	34 34 40 34 31	21 22 22 19 19	181 190 278	5.03 1.58 1.97 1.13 3.92) 2 14 1311 2073	6 5 5 5 5	ND ND ND ND ND	2 3 1 2 1	39 28 34 21 21	1 1 6 2	2 2 8 5 51	2 2 2 2	161 139 148 55 23	.54 .52 .64 1.44 1.54	.013 .045 .013	2 2 1 3 3	43	1.74 1.55 1.60 .99 .57	177 127 153 79 15	.16 .11 .16 .02 .01	2 6	1.16 2.66 2.89 1.09 .53	.)1 .07 .09 .02 .01	.99 .68 .79 .26 .15	1 5 1 1	1 1 152 11	
E 7810 R 7311 E 7812 R 7813 R 7813 R 7814	2	61 227 142 172 227	2 2 10 4 5	21 19 27 19 29	.3 .3 .4 .5	33 42 29 36 36	19 26 54 21 26	105 151 107	4.6D 5.23 8.51 4.76 5.28	1 5 8 6	5 5 5 5 5	ND ND ND ND XD	2 2 1 2 2	21 41 41 31 38	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	138 153 115 151 170	.70 .99 1.54 .51 .64	.013 .097 .097 .016 .018	2 2 2 2 2	14 34 19	1.38 1.30 1.27 1.46 1.63	195 121 34 181 158	.15 .16 .08 .19 .19	2 2 2	2.54 2.78 3.08 2.63 3.07	.06 .13 .11 .10 .11	.76 .82 .23 .95 .99	1 1 2 1 2	1 1 1 1	
# 7815 1 7816 1 7817 1 7817 1 7815 1 7815 1 7819	1 1 2	293 235 185 433 133	9 6 2 10 2)0 18 18 23 24	.5 .1 .3 .3	34 28 32 37 44	23 23 22 35 14	208 110 142	5.31 4.66 4.58 6.18 3.86	1 6 2 13 2	5 5 5 5 5	ND NO ND ND XD	1 2 2 1 2	33 78 38 41 69	1 1 1 1	2 19 2 7 2	2 2 2 2 2	21 127 134	1.30 5.84 1.45 1.10 2.22	.018 .013 .029	2 5 3 2 3	3 41	1.43 .95 1.26 1.21 .97	123 9 127 55 52	.11 .01 .12 .11 .08	1]]	2.53 .40 2.34 3.03 4.56	.08 .01 .08 .13 .25	. 53 . 14 . 53 . 43 . 19	2 1 8 1	3 1 1 2 1	
R 7820 R 7821 R 7822 R 7823 R 7823 R 7824	2	688 114 451 117 586	15 2 12 5 8	33 24 59 23 28	.8 .1 1.6 .3 .3	50 50 39 48 32	25 15 27 11 37	159 922 217	5.33 4.13 3.69 3.13 9.55	13 2 368 6 5	5 5 5 5 5	ND ND ND ND ND	1 2 2 2 1	82 18 97 51 38	1 1 1 1	8 2 39 2 2	2 2 3 2 3	94 10 94	2.82 1.29 7.60 1.42 1.68	.033 .037 .032	3 2 1 2 2	5	.90 1.08 .25 1.13 .35	86 71 19 56 2	.07 .08 .01 .06 .03	1 2 2	5.75 3.44 .29 2.84 2.94	.28 .14 .01 .13 .07	. 39 . 32 . 15 . 22 . 03	10 1 1 1	1 1 19 1 712	
R 7825 STD C/XV-R	8 19	233 61	2 44	33 132	.5 8.9	47 70	13 31	327 1020	3.75 4.21	2 39	5 19	НД 7	2 38	46 49	1 18	2 16	2 23	107 39	1,34 .50	.031 .088	2 40	73 53	1.13 .97	92 181	.09 .07		2.82 1.98	.12 .05	.37 .13	1 12	7 470	

rage 3

C

(

6

C

C

(

t

 \mathbb{C}^{n}

£,

0

€.

C

(

(

(

Ċ

C

C

C

t i

í.

ţ

NORANDA EXPLORATION PROJECT 8810-042 167 FILE # 88-5256

SANPLE	Xo PPN	Cu PPN	Pb PPK	20 79%	Ag PPX	Ni PPN	C0 PPX	ND. PPX	Te N	λs PPK	U PPN	Au PPX	Th PPX	Sr 9PN	Cd PPX	SD PPK	81 ??N	V PPK	Ca 3	P 3	La PPX	CT PPN	Kg 1	Ba PPN	TÎ 1	B PPK	الد ا	N Z ł	ł	¥ ?PX	ku" PPB	
8 7826 R 7827 R 7828 R 7829 R 7830	1	224 275 1656 112 759	2 3 9 5 11	36 31 59 51 22	.3 .5 1.7 .3 .2	45 61 42 68	22 20 88 12 40	225 253 342	5.48 5.13 14.58 4.28 6.99	\$ 9 2 10	5 5 5 5 5	XD XD XD KD XD	ŧ 3 4 3	32 36 35 46 37	· 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	102 67 101	1.37	.031 .034 .033	4 3 3 4 4	92 61 90	1.37 1.38 1.16 1.43 1.39	73 94 43 78 89	.08 .08 .03 .07 .07	2 2 2	2,43 2,48 2,30 2,61 2,46	.07 .09 .08 .11 .10	.34 .39 .21 .34 .43	1 1 1 2	5 6 28 1 3	
R 7831 R 7832 R 7833 R 7834 R 7834 R 7835	1 1 1 1	66 162 123 557 267	9 5 3 10 6	22 19 15 25	.1 .1 .2 .1 .2	34 37 19 21 42	13 16 10 24 22	165 133 154	4.18 4.11 3.30 6.36 5.51	6 4 2 7 2	5 5 5 5 5	KD KD KD	2 2 3 2 4	25 15 30 85 57	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	12 67	1.01 1.95	.023 .024 .016 .060 .029	5 5 3 5 3	54 36 37	1.32 1.18 .91 .82 1.47	47 41 38 40 108	.03 .01 .06 .04 .10	3 2 2	2.03 1.71 1.46 2.83 2.93	.02 .02 .03 .13 .13	.15 .11 .11 .11 .11	3 1 1 1	2 2 3 8 7	
R 7836 R 7837 R 7838 R 7339 R 7840) 1 3 5	259 2338 131 212 311	5 14 9 3 2	30 115 31 36 25	.4 3.4 .3 .4 .2	40 85 31 24 24	22 57 22 12 14	552 253 384	5.38 10.79 5.49 3.70 4.23	2 31 6 5 3	5 5 5 5	ND ND ND ND	4 3 4 2 3	38 44 137 21 21	1 2 1 1	2 3 2 2 2	2 2 3 2 2	147	1.34 1.00 1.00	.026 .031 .026 .013 .012	i 5 3 2 2	68 68 30	1.39 1.86 1.66 1.02 1.08	81 80 288 19 55	.05 .05 .18 .02 .06	2 2 2	2.12 3.03 3.67 1.38 1.66	.04 .95 .17 .03 .06	.35 .33 1.06 .08 .22	1 1 2 1	4 23 5 3 5	
R 7841 R 7842 R 7843 R 7844 R 7844 R 7845	2 1 1 2	315 780 333 317 237	13 16 5 3 2	36 35 25 25 25	.2 .5 .3 .2	33 42 34 30 37	21 37 20 18 22	195 117 137	5.18 8.10 5.17 5.00 5.54	11 18 3 2 3	5 5 5 5	KD ND ND	1 1 3 3 2	33 35 64 31 40	1 2 1 1	2 7 2 2 2	2 2 2 2 2		1.18 .57 .71	.053 .027 .014 .031 .011	3 3 2 2 2	43 44 40	1.41 1.13 1.03 1.14 1.32	27 20 30 21 75	.05 .07 .97 .05 .09	9 2 2	2.10 2.13 1.92 2.00 2.48	.07 .05 .09 .08 .09	.13 .13 .22 .10 .33	3 6 2 1 2	1 19 6 3	
R 7846 R 7847 R 7848 R 7349 R 7349 R 7850	1 1 1 9	827 185 117 255 217	2 2 9 5 2	13 32 28 29 21	.1 .4 .3 .4 .1	33 28 29 31 21	45 13 12 19 17	216 222 215	8.38 3.98 3.91 4.51 4.35	3 2 6 4	5 5 5 5	KD ND XD ND XD	1 3 3 2 2	60 20 43 58 39	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	100 106 96	, 44 , 83 , 92	.034 .009 .012 .017 .430	2 2 3 2 6	50 (5	,58 1.17 1.19 1.10 1.02	10 12 74 14 90	.03 .07 .11 .06 .08	2 2 2	2.02 1.58 1.98 2.41 1.78	.05 .05 .05 .12 .05	.06 .06 .35 .06 .45	1 1 1 3	6 1 2 3	
R 7851 R 7852 R 7853 R 7854 R 7855	1 1 1 1	53 283 37 89 139	24 164 29 14 8	44 417 08 43 24	.1 .8 .2 .1	33 29 24 24 24	14 31 10 14 19	396 417 178	4.43 4.75 4.56 3.59 5.19	61 1213 159 67 7	5 5 5 5 5	ND ND ND ND	2 2 2 1 2	40 44 56 35 73	1 9 1 1	19 13 5 2 2	2 3 3 2 2	58 109 98	4.02 2.94 1.36	.026 .039 .014 .014 .016	8 8 5 2 4	29 50 42	1.10 .95 1.10 .89 1.17	33 7 109 34 127	.02 .01 .06 .08 .13	4 4 3	1.95 1.68 2.16 1.80 2.83	.01 .01 .06 .09 .18	.24 .13 .41 .14 .63	5 1 1 2 1	2 11 1 1 1	
¥ 7856 STD C/AU-R	1 19	202 62	4 42	23 133	.2 6.8	29 61	20 31	171 1029	1.99 1.30	5 45	5 21	8 B	2 40	34 50	1 18	2 16	2 22	97 61		.017 .099	2 39	43 59	. 87 , 97	28 181	.08 .07		1.\$1 2.01	.07 .08	.12 .13	1 12	1 190	

~

C

C

٢.

(

C

C

Page 4

(

0

6.

C

(

(

0

(

C

(

(

C

(

Forbidden DDH NFP-BE.3 (IMC)

852 E. HASTINGS ST. VANCOU. & B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-17

¢

ſ

í

1

Ć

£

(

(

Ċ

٢.

ć.

4

ú

ACME ANAL. ICAL LABORATORIES LTD.

/

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS FARTIAL FOR NH FE SE CA F LA CE NG BA TI B W AND LIMITED FOR NA E AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Core AU* AMALTSIS BY ACID LEACH/AA FROM 10 GK SAMPLE.

NORANDA EXPLORATION PROJECT 8810-028 167 File # 38-5070 Page 1

SANPLE	No PPH	Cu PPN	PD PPN	20 99K	Àg 2PN	NI PPX	Co PPN	No Pen	7e t	AS PPM	U PPN	Au PPN	Th Pen	ST PPM	Cd PPN	Sb ? PX	3i PPN	¥ PPM	Ca 3	P 3	La PPM	CT PPN	Ng t	Ba PPM	ti 1	8 PPs	A1 }	Xa 1	5 1	W PPN	AU* 223
9744 7745 7745 7747 7747 7748	5 7 3 8	1868	7 2 9 14 2	106 78 114	2.9 3.3 1.3 2.5 3.9	17 13 14 15 14	18 15 16 17 18	472 422 573	1.15 1.40 4.38 1.55 4.75	12 11 11 9 40	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	34 48 36 43 11	! 2	2 5 2 2 3	2 3 2 2 2	41 41	1.51 1.39 1.47 2.21 .38	.043 .045	4 4 10 7	31 35 30	1.06 1.00 1.19 1.05 1.06	18 18 10 17 21	.01 .01 .01 .01 .01	2 2 2	1.83 1.81 1.90 1.86 1.96	.03 .04 .04 .03 .03	.10 .11 .21 .11 .11	1 1 1 1 1	39 15 13 17 30
7749 7750 7751 7752 7753	3 15 3 112 4	8624 745 11171	13 25 6 8 2	70	2.1 12.0 1.5 18.2 3.7	16 31 15 28 18	15 26 14 74 23	860 743 425	4.93 6.55 4.83 8.23 5.85	18 32 15 75 37	5 5 5 5 5	ND ND ND ND ND ND	i I 1 1	13 51 16 30 16	2 4 3 7 2	6 3 2 7	2 2 2 2 2 2	13 58 46 56 15	.31 2.87 .31 .91 .51	.045 .039 .043 .043 .045	5 74 9 23 6	32 37 33	1.24 1.32 1.11 1.21 1.15	25 22 26 34 22	.01 .01 .01 .01 .01	2 3 2	2.28 2.35 2.05 2.05 2.13	.03 .03 .02 .04 .92	.14 .15 .17 .22 .12	2 1 1 1	9 105 10 120 24
7754 7755 7156 7157 7758	7 6 5 3 259	1186 1280 1170 824 53400	8 6 11 15 199	104 85 85 59 1948	2.4 2.7 2.8 1.9 109.1	18 14 18 15 230	19 15 16 18 205	848 772 758	4.71 4.28 4.39 5.00 24.81	18 19 15 19 385	5 5 5 5 7	ND Nd Nd Nd Nd	1 1 1 1	12 86 52 12 22	2 2 1 2 20	2 2 2 9	2 2 2 135	40 46 40	2.80 4.61 2.99 2.80 1.40	.041 .043	4 5 4 159		.96 .91 1.10 1.07 1.10	24 24 22 24 13	.01 .01 .01 .01 .01	2 4 2	1.72 1.56 1.89 1.94 1.71	.02 .01 .01 .01 .01	.18 .20 .19 .22 .13	1 1 1 1 1	10 6 4 29 435
7759 7760 7761 7762 7783	7 6 5 3 6	1028	16 13 17 28 25	95 73 83 133 230	2.5 2.3 3.6 3.5 11.5	15 17 18 22 51	15 15 15 17 48	998 861 880	4.69 5.53 4.69 5.67 8.37	15 15 21 37 133	5 5 5 5	ND ND ND ND ND	1 1 1 1	34 43 72 40 36	t 1 2 1 3	2 2 5 6	2 2 2 2 2	52 43 49	1.23 2.79	.040 .039 .042	3 6 5 6 5	30 31 30	1.17 1.29 1.02 1.29 1.08	23 25 29 22 21	.01 .01 .01 .01	2 2 2	1.94 2.22 1.89 2.18 1.79	.02 .01 .02 .01 .01	.20 .21 .25 .22 .19	1 2 1 1	13 8 11 22 52
7764 7165 7766 7767 7768	5 8 3 6	1525 1014 1491 1271 1052	20 24 14 10 10	103 83 87 132 95	4,9 7.8 3.7 3.1 2.3	18 19 21 19 24	15 14 16 15 22	812 676 868	4.36 4.96 5.15 4.88 5.92	43 26 44 43 39	5 5 5 5	ND ND ND ND ND	1 1 1 1	38 44 44 52 58	1 2 1 2 1	2 2 2 2 2 2	2 2 3 2	49 47 46	2.91 2.13 3.42	.043 .042 .045 .042 .042	5 5 4 5 4	42	.94 1.10 1.21 1.08 .99	24 25 31 24 31	.01 .01 .01 .01 .01	5 2 2	1.72 1.97 2.13 1.88 1.73	.01 .01 .03 .91 .02	.24 .26 .27 .25 .25	1 2 1 1	12 7 8 10 103
7769 7770 7771 7772 7773	 3 4 7 11	1060 1141 1015 1219 696	1) 4 5 10 9	83 104 73 80 87	2.4 2.6 1.9 2.6 1.4	19 17 19 25 16	14 16 18 25 16	623 910 736	1.53 4.78 4.65 4.92 4.70	19 17 18 31 18	5 5 5 5 5	ND Nd Nd Nd Nd	1 1 1 1	62 41 63 51 39	1 2 1 2 1	2 2 5 2	2 2 2 2 2	44 43 38	3.64 2.19 4.27 3.31 2.56	.043 .044 .038 .040 .046	5 3 6 1 3	36 24 32	1.04 1.10 .97 .85 1.12	33 20 31 27 21	.01 .01 .01 .01 .01	2 3 2	L.81 1.72 1.67 1.41 1.51	.02 .01 .02 .01 .01	.28 .20 .24 .22 .22	1 1 2 1 1	3 46 17 23 13
7774 7775 7776 7777 7778	7 8 5 1 1	569 583 1152 531 233	11 9 10 9 3	53 88 100 114 42	1.3 1.4 2.4 1.1 .B	15 17 19 21 16	12 14 20 13 13	749 703 496	3.99 4.32 4.60 3.62 4.30	14 33 37 128 1739	5 5 5 5	ND ND ND ND	1 1 1 1	48 41 37 22 19	1 2 3 1	2 3 2 6 35	2 2 2 2 2	40 31 27	2.98	.041 .043 .043 .046 .046	5 4 6 3	28 21 27 17 21	.91 1.00 .98 .17 .69	27 25 23 29 25	.0) .01 .01 .01 .01	3 5	1.41 1.52 1.27 1.20 .26	.01 .01 .01 .33 .01	.24 .26 .24 .27 .20	1 1 1 2	3 6 10 7 50
7779 STC C/AU-R	7 15	189 Se	12 38	39 133	,6 6.5	21 67	18 28	518 1957		1524 3	5 19	KD 7	2 35	9 47	1 17	2 6 15	2 18	11 57	1.30 .17	.021 .092	5 38	11 57	.16 .87	35 173	.01 .07	2 33	.32 1.80	.01 .96	.25 .15	1 13	240 520

NORANDA EXPLORATION PROJECT 8810-028 167 FILE # 88-5070

SAMPLET	Xo PPN	CU PPN	PD X99	ZO PPK	λg PPN	NÎ PPH	CO PPN	KD 29N	Fe	ÀS PPR	U 29X	Au PPX	Th PPN	ST PPN	Cd PPN	SD PPM	Bi PPN	V PPN	Ca 1	P	La 22X	CT PPX	Xg l	Ba PPN	Ti ł	B PPK	¥1 ¥	84 \$	2	W PPK	ÀU* PPB
7780	10	139	7	77	.5	38	17	664	3.66	90	5	ND	2	10	1	15	2	20	2.23	.043	19	24	. 42	36	.01	2	. 38	.01	.27	1	1
7781	9	83	11	111	.6	46	16	908	5.53	163	5	ND	2	13	2	33	2	25	2.59	,047	6	22	.67	28	.01	3	. 38	.01	. 26	1	5
2782	1	111	11	75	. 6	37	20	1067	6.30	307	5	ND	2	25	2	21	2	28	3.73	. 038	7	28	1.11	25	.01	Ż	.39	.91	. 26	1	2
7783	24	280	10	51	. 6	54	21	593	5.23	128	5	ND	2	63	1	15	2	11	1.07	.043	5	60	1.23	49	. 01	3	2.41	.11	. 32	1	1

Assay required for correct result for Cu = 10,000 ppm Ag = 35.0 ppm.

Page 2

Ċ

1

.

ţ

í.

ŧ.

1

í.

C

(

(

Ć

(

£

×.

C

(

C.

¢

ί

ACME ANALYTICAL LABORATORIES LTD.

1

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

(iMc) 2011 88-5

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAX SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HNO3-H2D AT 35 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN PE SR CA P LA CR NG BA TI B W AND LIMITED FOR HA K AND AL. AU DETECTION LIMIT BT ICP IS 3 PPM. - SAMPLE TIPE: CODE AU* ANALTSIS BI ACID LEACH/AA FROM 10 GM SAMPLE.

Forbilder,

NORANDA EXPLORATION PROJECT 8810-052 167 File # 88-5492

	5387121	NC PPM	40 895	69 899	20 PPN	λą 798	S Í PPM	Co PPN	NA PPK	fe ł	лś РРХ	85K D	A N P P K	70 PPX	ST PPH	Cd ?PK	Sb ?9x	BI PPN	Y PPN	Ca 3	۹ ۲	La PPN	Ct PPN	Xç L	88 PPN	ti t	8 PPH	A1 1	Na t	K ł	¥ PPX	дит РРВ
	R 7857 R 7853 R 7859 R 7860 R 7861	4 3 3	3963 2587 2633 1842 2359	28 9	572 2034 1256 144 121	11.2 6.4 7.3 4.1 5.4	21 21 21 18 19	15 19 28 10 15	521 550 707	1.37 3.38 5.51 1.14 5.22	112 363 74 34 40	5 5 5 5	ND Ch ND Ch Dk	1 1 1 1	7 9 21 39	4 15 11 1 1	19 28 15 8 2	3 2 4 2 2	11 11 19	1.78	.038 .034 .040	3 4 2 4 4	6 7 7 13	.48 .46 .54 .60 1.03	19 20 17 18 18	.01 .01 .01 .01 .01	1 3 2 2 3	. 13 . 13 . 38 . 55 2. 00	.01 .01 .01 .01 .01	.23 .21 .19 .21 .20	1 1 1 2	132 32 95 22 245
<u>``</u>	R 1862 R 7863 R 7854 R 7855 R 7866			13 29 3 9 6	161 281 25 41 33	7.1 5.5 .1 .5 .1	23 17 19 16 17	22 18 19 16 13	923 331 609	3.96 3.99 4.71 3.85 4.38	60 1770 2 6 4	5 5 5 5	ND ND ND ND ND	1 1 1 1	30 57 116 23 34	1 3 1 1 1	2 5 2 2 2	2 6 3 2 5	22 52 41		.031 .037 .032	ŧ ↓ 7 3	10 10 50 46 21	.71 .64 .52 .72 1.08	14 16 24 18 16	.01 .01 .06 .01	4 14 3	1.03 1.22 4.84 1.70 2.33	.01 .01 .22 .01 .01	.19 .20 .08 .22 .23	1 6 2	7 265 4 5 7
	R 7867 R 7868 R 7369 R 7870 R 7871	11 23 18	219 2262 909 2774 4873	9 11 9 5 3	45 77 65 103 146	.3 3.4 1.1 5.9 5.8	19 40 18 21 41	13 15 16 29 30	(5) 619	4.52 3.78 3.82 3.95 5.45	5 50 11 30 58	5 5 5 5	НД ДХ ДУ Ц Д	1 1 1 1	39 19 33 39 43	1 1 1 1	2 3 2 2 2 2	4 2 5 2 2	28 35 32	2.50 1.45 2.02 2.48 3.07	.021 .032 .037	3 3 3 4	24 23 22 23 19	1.20 .57 .83 .67 .70	19 30 21 13 16	.01 .01 .01 .01 .01	2 0 2	2.53 1.45 1.90 1.58 1.63	. 02 . 01 . 02 . 02 . 02	.22 .20 .20 .18 .18	4 2 2 1 2	5 50 8 91 91
	R 7872 R 7373 R 7574 R 7875 R 8526	13 13	8560 9239 (968 4557 1729	5 8 10 9 3	205 260 148 135 76	10.5 11.5 6.1 5.8 2.2	39 57 31 33 22	44 50 31 32 25	521 603 563	5.50 8.53 5.70 5.54 5.80	42 49 28 31 14	5 5 5 5	08 08 08 08 08	1 1 1 1	44 48 45 43 63	2 3 2 1	2 2 2 2 2 2	4 3 2 4 2	43 (5 44	1.91 2.15 2.42 2.18 2.34	.032 .034 .010	3 3 3 3	18 20	.98 1.08 1.17 1.10 1.35	24 22 10 20 21	.01 .01 .01 .01 .01	2 2 7	2,08 2,23 2,34 2,32 2,82	.01 .03 .02 .03 .04	.11 .16 .11 .15 .14	5 5 4 14	56 122 54 76 28
	R 8527 R 8528 R 8529 R 8530 R 8531	27 29 21	3557 3817 7543 4523 2100	5 8 3 2 6	124 125 203 173 96	4.4 4.8 9.7 5.9 2.6	30 33 47 37 30	27 30 42 32 25	511	5.69 5.35	22 29 48 35 29	5 5 5 5 5	םא סא סא HD	1 1 1 1 1	45 17 33 31 22	2 2 2 2 1	2 2 2 2 2 2	2 2 3 1 2	15 13 11	2.10 2.17 2.53 2.05 1.51	.035 .036 .013	3]]]	25 35 25	1.13 1.06 1.08 1.10 .76	22 17 19 15 24	.01 .01 .01 .01 .01	2 2]	2.51 2.19 2.29 2.28 1.72	.04 .04 .02 .02 .02	.21 .14 .15 .15	39 12 4 1	79 35 54 77 26
	R 8532 R 8533 R 8534 R 8535 R 8535 R 9516	19 23 18	2879 9425 1425 1651 3698	2 5 9 2 10	81 311 54 39 138	2.2 13.5 2.9 2.5 3.5	79 49 22 17 34	38 38 15 8 26	158 750 567 261 570	5.15 3.05 2.01	24 51 61 73 131	5 5 5 5	ND XC ND ND XD	2 1 1 1 1	12 39 26 7 18	1 4 1 1	2 2 2 2 2 2	2 2 2 5	31 20	3.50 2,51	.030 .013	5 ł 2]	18 31 20 38 22	.15 .75 .60 .34 .52	16 17 25 17 28	.01 .01 .01 .01 .01	5 3	1.79	.02 .01 .01 .01 .01	.20 .17 .24 .12 .26	1 1 2 2 2	42 27 18 12 29
	R 8537 R 8538 R 8539 R 8540 R 8541	18 11 17 10 9	114	10 3 5 4 2	50 13 20 15 45	.8 .4 .3 .2 .6	16 25 26 19 27	12 12 12 12 11	492 575 521	3,94 2,12 3,50 4,03 3,37	71 70 23 25 61	5 5 5 5	ND ND ND ND	1 1 1 1	22 13 10 17 9	1 1 1 1	2 2 2 2 2 2	2 3 3 2	20 42	2.45 3.05 1.97 2.13 .90	.011 .025	4 4 3 6	(3 16 25 32 21	, 83 , 32 , 67 , 62 , 54	32 21 39 27 26	.01 .01 .01 .01 .01	3 3 2	1.97 .76 1.71 E.45 1.25	.01 .01 .01 .01 .01	.24 .12 .25 .19 .18	2 1 3 2 2	11 17 6 21 17
	7 8542 STD C/AU-R	4 18	241 58	2 38	13 132	1.5 7.1	42 68	22 30	228 1057	3.30 4.24	73 41	5 17	ND 8	2 37	11 47	1 18	2 20	2 21	28 57		.026 .095	4 39	37 58	. 30 . 92	44 175	.01 .05	6 38	.88 2.05	.01 .05	.20 .13	1 12	8 490

- 9|33

d i

ć.

2

8810-062

1

190

8810.561

¢

(

ŧ

Ĺ

ſ

ACHE ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1...

Formali Pl. NFP 58-648 The)

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAK SAMPLE IS DIGESTED WITH JNL 3-1-2 HCL-HNOJ-HZO AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 KL WITH WATER. THIS LEACH IS PARTIAL FOR NN TE SE CA P LA CE NG BA TI B W AND LINITED FOR WA E AND AL. AU DETECTION LINIT BY ICP IS 3 FPM. - SAMPLE TYPE: Core AU+ ANALTSIS BY ACID LEACH/AA FROM 10 GK SAMPLE.

DATE RECEIVED: OCT 25 1988 DATE REPORT MAILED: Oct. 31, 1984 SIGNED BY Bernard Char. O. 1018, C. LEONG, B. CHAN, J. WANG; CERTIFIED B.C. ASSATERS

		,				ORAN	IDA	EXPI	LORA	TION	PR	OJEC	T 8	810-	061	167		Fil	e #	88-9	5428		Pag	e 1							/
5237161	NO 29x	Cu P?X	76 791	2n PPN	λg PPN	H1 PFX	CO PPN	NA 2PK	?e }	Às	U 2PM	Au PPK	Th 2PX	ST PPN	Cd PPX	5D PPN	B1 978	51K A	Ca 1. 1	7 1	La PPN	Cr PPX	Ng 1	e s Pph	71 \$	B P?K	41 1	53 1	3	¥ 778	30T 298
R 3711 R 3712 R 8713 R 9714 R 8735	13 58 22	227 640 1155 765 150	3 12 2 10 5	56 63 94 93 47	.6 1.3 2.6 1 <u>.6</u> .1	10 13 11 12 13	18 20 18 21 29	509 586 583	5.50 5.23 5.10 5.35 5.24	12 15 14 12 3	3 5 5 5 5	כא 12 12 14 14 14 15	1 1 1 1	29 28 30 31 38	t 1 1	2222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	35 27 24	2.29 1.54 2.35 2.63 2.18	.034 .037 .031	4 3 3 3 3		1.07 1.19 .97 .94 1.14	21 13 17 17 15	.01 .01 .01 .01 .01	2	1.76 2.15 1.61 1.66 2.38	.01 .03 .02 .02 .02	.17 .12 .14 .14 .11	1	7 5 22 <u>19</u>
R 3736 R 8737 R 3733 R 8735 R 8740	5 7	647 349 352 623 1304	2 4 3 2	63 53 50 70 87	1.2 .7 .5 1.4 2.9	13 14 14 12 13	20 20 17 19 22	610 635 516	5.44 5.51 4.88 6.03 5.53	5 20 155 17 10	5 5 5 5	NC ND ND ND ND		35 37 23 25 33]] 	2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	31 8 31	1.83 2.13 1.92 .95 1.91	.040 850. 750.] 	19 1	1.17 1.07 .45 1.64 .37	17 12 5 12 21	.01 .01 .91 .91 .91	2 5 2	2.33 2.61 .65 2.55 2.15	.03 .02 .01 .01 .02	.11 .11 .15 .12		4 5 5
R 8742 P 5742 R 8743 R 9744 R 9744 R 8745	6 5 5	777 474 760 170 234	10 5 7 7 2	81 242 71 45 61	1.7 1.1 1.5 .4 .5	14 14 17 13 12	21 15 61 14 14	528 719 559	7.61	E0 22 63 7 10	5 5 5 5	ND NC ND ND	1 1 1 1	20 34 32 34 31	1 2 1 1	22122	2 2 2 2	35 32	.82 1.63 2.23 1.82 1.75	.030 .034	3 4 3 3 3	21 19 20	1.05 1.09 1.23 1.15 1.23	21 19 17 14 13	.01 .01 .01 .01 .01	2 2 2	2.59 2.06 2.50 2.25 2.30	.01 .04 .07 .03 .02	.13 .12 .11 .10 .06	1	10 72 36 2 1
R 8746 R 9747 R 9747 R 9748 R 8749 R 9750	27 27 3	735 1034 2305 225 1175	5 6 3 11	76 93 53 34 50	1.6 2.3 1.5 .4 1.5	13 13 15 12 38	18 16 48 13 42	551 663 227 318 323	5.03 7.99 3.45	9 2 9 42 75	5555	ND ND ND ND ND	1 1 1 1	31 33 24 34 58	1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	13 229 42	1.90 1.95 .44 1.25 2.79	.042 .008 .035	3		1.21 1.31 .36 .91 .44	13 10 22 36 17	.01 .01 .08 .03 .07	3 ? 3	2.13 2.44 1.90 1.73 3.71	.03 .03 .05 .06 .09	.03 .06 .10 .09 .01	1	1 1 4 21
R 3751 R 3752 R 8753 R 8754 R 8754 R 8755	1 2 3	280 514 422 529 505	7 9 12 , 5 13	33 40 53 58 87	.1 .2 .5 2.1	21 50 92 81 43	16 29 34 31 32	398 282 499 457 797	6.13 7.00 6.55	105 15 15 18 13	5 5 5 5	DN DN DK DK DK	1 1 1 1	33 24 23 22 31	1 1 1	2 2 2 2	2 2 2 2 2 2 2	133 269 194		.162 .050 .012	4 7 3 3 5	37 86 146 103 43	.93 1.08 .93 .55 .55	19 26 23 33 22	.03 .04 .07 .07 .01	2 2 2 2	2.37 3.07 2.61 2.16 1.55	.08 .09 .05 .01 .02	.07 .09 .13 .24 .21	1 3 1 1 1	1 5 3 8
R 8756 R 8757 R 9759 R 8759 R 8759 R 9760	71 7 7 1		9 4 12 12 10	47 58 33 29 46	. 5 . 1 . 3 . 3	107 106 52 48 67	34 53 24 25 34	358 478 301 203 560	9.02 5.23 7.12	10 13 12 2 4	5 5 5 5	ND ND ND ND ND ND	1 3 1 1	28 15 31 97 28	1 1 1 1	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2			.052	2 5 3 5 2	130 92	.55 1.02 .91 .28 3.23	37 18 25 22 50	19. 96. 10. 10. 90.	2	1.90 3.19 3.42 5.92 2.24	. 05 . 04 . 03 . 28 . 35	.21 .14 .13 .22 .31	1 2 3 2 2	15 1 1 1
R 8761 R 9762 R 8763 R 3754 R 3754	220	111 1055 766 32 248	3 2 5 73	75 21 30 \$5 217	.2 .9 1.1 .! 7.5	58 T 9 47 51	12 10 30	1072 130 208 867 1048	2.51 2.38 5.26	146 3 28 290	5555	ND ND ND ND ND	1 1 1 1	38 27 15 33 22		11 2 2 3	*****	11 53 129		.036 .038 .035	4 5 2 5 5	46 5 11 23 19	.84 .32 .92 2.09 .40	15 10 18 3 10	.01 .01 .05 .30 .02	8 6 8	.85 .87 1.38 2.92 .91		.13 .15 .06 .03 .18		1 1 1 23
R 3756 570 C/AU-R	1 18	50 58	:	19 132	. L 6.5	51 68		923 1013		11 35	5 [9	5C 8	1]{	ł6 47	1 17	2 17	2 18		1.70 .17		5 37		2.60 .91	6 174	. 13 . 06		2.79 1.59	. 96 . 66	.08 .14	1 11	1 530

-

010-0138

NORANDA EXPLORATION PROJECT 8610-061 167 FILE # 88-5428

SANPLES	NO PPK	CU PPX	26 275	ZD PPX	λg PPN	NI ?PX	CO PPX	Xn PPK	re 1	λs ΡΡΧ	U PPN	AU PPK	th PPN	ST PPN	Cd PPX	SD PPX	81 PPX	V PPK	Ca 1	P 1	La PPK	Ct 9PK	Kợ ł	Ba PPN	7i 3	8 27%	31 3	Ha t	K	¥95	AU* 228
R 8767	1	109	13	183	.3	47	28	867	5.61	161	3	ЯD	L	32	1	2	2	86	6.81	.037	5	35	. 86	и	.07	н	1.56	,01	.24	1	10
R 3753	í	120	23	205	1.2	- 14	30		\$.17	27	5	ND	1	33	1	2	2	152	4.70	.010	6	29	2.39	5	. 39	1	3.61	.02	.01	5	- E
2 8769	i	49	9	91	.1	39	29		6.27	5	5	ND	1	29	1	2	2	148	1.10	.013	6	22	1.99	3	. 40	11	2,86	. 02	. 97	2	2
R 8770	i	66	4	364	.8	13	33		6.50	95	ŝ	ND	1	29	2	2	. 2			.043	f	23	1.45	11	.15	11	2.15	.02	.15	l	3
R 8771	1	111	6	101	.1	34	27	1992		8	5	ND	1	26	1	2	2	133	3.50	.041	â	11	1.85	S	.34	11	3.95	. 02	, 03	3	5
1 6772	1	135	9	156	.2	и	29	1011	5,90	28	5	ЯD	1	21	1	2	2	135	3.26	.037	6	25	2.22	5	. 15	п	2.95	.03	.04	1	3
£ 8773	i	104	19	166		49	27	1655		(23	ŝ	ND	i	27	t	2	2		7.17	.035	5	23	. 33	18	.01	14	. 93	.01	.20	1	11
2 8774	÷	105	ï	121	.2	37	30		6.17	32	ŝ	ND	1	25	1	2	2		1.11	.043	6	21	1.83	6	.23	10	2.96	.02	.02	3	1
E 6775	i	87	ź	123		36	27		5.49	16	ŝ	ND	1	21	t	2	2				5	16	1.90	5	.31	8	2.87	.02	.03	2	1
R 8776	i	202	92	298	1.8	40	29		5.62	305	ŝ	ND	1	20	į	ł	ź		5,42		5	15	.12	18	.04	17	.87	.01	.24	1	12
B 8777	1	180	8	169	.2	40	28	1072	5.73	23	5	DK	i	32	1	2	2	129	3,16	.034	6	23	2.50	7	. 32	5	2.93	. 02	.07	2	2
8 8778	1	67	6	107	.1	43	29	915	5.81	30	5	ND .	1	27	1	2	2	118	3.49	.036	6	29	1.96	\$.19	\$	2.46	.02	.09	1	1
R 3779	1	207	159	451	10.2	55	33	1704	5.89	192	5	ND	1	2 D	2	\$	2	66	2.E5	.039	5	27	.75	9	.01		1.14	.01	. 20	1	102
R 8780	i	68	8	155	.1	- (1	28	707	5.82	33	5	ND	1	28	1	2	2		4.54		- 5			ł	. 25		1.25	. 02	.03	3	1
R 8781	I	30	10	71	.1	11	30	864	£.13	11	5	KD	1	24	1	2	2	150	3.90	. 037	5	31	2.55	5	.30	8	3.17	.02	. 01	1	1
R 8782	1	66	64	332	19.1	54	32	1480		190	8	ND	1	28	2	2	2		1.11		Ţ	24	.71	9	.03		1.34	.01	.25	1	1
R 8783	1	41	720	1215	5.B	45	28	1123		82	5	HD	1	- 44	5	2	1	86	3.31	.032	5	30	1.54	8	.13		1.81	.01	.19	1	y
R 8784	1	61	5	89	4	12	26		5.27	17	5	NÜ	1	25	1	2	2						2.31	1	.27		1.n	.02	.06	1	
STD C/AU-R	18	51	38	132	7.1	67	31	1073	3.81	38	22	1	36	41	17	18	19	55	. 16	.001	35	55	.90	174	.06	32	1.82	.05	.15	11	520

 \sim

.

....

⊭age 2

Fort Kin (TME)

2

4

£

(

6

t

1

Т

ſ

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

1CP - ,500 GRAK SAMPLE IS DIGESTED WITH 3ML 3-1-2 KCL-KNO3-KZO AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Core AU* ANALTSIS BY ACID LEACH/AA FROM 10 GK SAMPLE.

DATE RECEIVED: OCT 21 1988 DATE REPORT MAILED: Oct. 26, 1988 SIGNED BY BAAN AND TOTE, C. LIONG, B. CHAN, J. WANG; CERTIFIED B.C. ASSAMERS

						N	ORAN	IDA	EXPI	LORA	TION	PRO	JEC	т 8	810-	052	/167		File	e #	88-5	357		Page	2 1							,
	SAMPLE	NC NC	/ Cu Pem	FD PPN	26 228	λġ ?PX	Ni FPX	CO PPM	Na 97k	īt Ş	75 794	95¥	AU PPK	Th PPX	ST PPK	Cd PPN	SD PPH	Bi PPN	v Pex	C1 1	P	ia PPN	CT PPM	Xg	Ба Ррн	Ti t	B PPN	41 1	84 \$	K Z	N ?PX	λυ' 276
-	R 8543 R 3544 R 8543 R 9546 R 9546 R 9547	10 4 5 8 7	81 171 176 27 152	6 2 4 3 4	9 17 5 10 5	.1 .3 .2 .1 .2	20 37 33 29 16	E 11 13 7 5	245 343	2.20 3.08 1.69 2.43 .89	112 79 143 84 130	5 5 5 5	KD KD ND ND ND	1 1 1 1	12 15 16 10 4	1 1 1 1 2	2 2 2 2 2 2	2 2 2 2 2 2	38 28	1,35 .95 2.36 1.45 .34	.044 .012 .012 .010 .014	3 1 5 2 4	18 23 34 17 39	.34 .24 .22 .24 .12	24 48 24 22 15	.01 .03 .01 .01 .01	2 2 3 2	.71 1.02 .52 .52 .38	.01 .01 .01 .01 .01	.18 .28 .19 .15 .13	: 1 1 1 1	10 9 7 1 5
~	R 3543 R 8549 R 8550 R 8551 R 8551		77 217 17 3731 538		5 11 3 150 36	.1 .1 6.9 .7	26 17 9 30 15	7 5 65 25	104 3326 638	1.48 .75 1.14 5.61 3.70	40 20 693 112 40	5 5 5 5 5	ЯС 97 97 97 97 97 97	1 1 1 1	7 5 145 42 40	1 1 1 1	2 2 2 2 2	2 2 2 2 2	25	.63 .51 23.15 5.10 9.63		1 3 19 3 5	13 41 36 15	.13 .07 .16 .85	22 18 14 7 3	.01 .01 .01 .01 .01	2 2 2 3	.49 .31 .38 1.60 .94	.01 .01 .01 .01 .01	. 13 . 13 . 16 . 13 . 09	1 1 1 2	1 36 36 7
	R \$553 R \$554 R \$555 R \$555 R \$555 R \$557	14 12 6 1	79 56 94 139 175	4 3 4 5 4	25 24 13 34 37	.1 .1 .4 .5	42 34 31 23 20	12 12 10 24 25	617 142 573	4.19 4.23 2.71 4.91 5.34	15 12 31 15 15	5 5 5 5 5	DN DN DN DN DN DN	1 1 1 1	17 20 28 128 64	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	61 46 37	1.93 2.73 2.71 3.10 2.99	.027 .025 .058	5 7 4 2 3		.79 .86 .52 1.20 1.21	20 20 16 18 11	.01 .01 .01 .01 .01	3 2 2	1.88 1.34 1.11 2.25 2.28	.01 .01 .01 .03 .02	.25 .23 .21 .17 .13	1 1 1 1	1 1 19 1 3
	R 3558 R 3555 R 3560 R 3561 R 3561 R 8561	1 10 6	910 153 1142 1032 7072	3 5 7 7 13	54 32 47 40 153	1.0 .Z 1.6 1.1 6.5	24 22 40 43 61	37 29 33 16 35	469 433 353	5.41 5.02 4.43 3.74 6.03	35 23 422 3 3	5 5 5 5 5 5 5	00 סא סא סא	1 1 2 1	73 80 35 41 48	1 1 1 2	2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36 71 72	2.92 2.61 2.15 2.07 2.78	.055 .042 .041	3 3 5 4		1.19 1.29 .62 .71 .74	9 15 13 25 16	.01 .01 .01 .01 .01	2 2 2	2.15 2.38 1.75 2.02 2.50	.03 .04 .03 .05	.10 .13 .18 .13 .11	l 1 1 1	5 1 77 1 65
_ ·	R 3363 9 8564 R 3365 R 8566 R 8567	6 4 5	2770 5341 4201 3654 8985	10 10 6 2	89 152 129 107 232	3.8 6.7 5.4 4.7 11.9	72 51 52 37 64	52 31 35 23 48	406 325 463	0.77 5.81 4.94 4.80 7.28	14 6 2 6 10	5 5 5 5 5	ND NC ND ND ND	1 1 2 2 1	46 37 38 35 35	1 2 1 1 3	2 2 2 2 2 2	2 4 2 4 5	81 69 71	2.67	.042 .039 .041 .039 .040	5 4 5 6 5	81 70 85 64 75	.93 .79 .5 9 .76 .84	36 18 19 18 15	.03 .01 .01 .01 .01	2 	2.95 2.26 2.57 1.89 2.97	.06 .04 .11 .02 .02	.20 .16 .13 .18 .16	1 1 1 1	83 124 65 37 210
	9 5563 R 8569 R 8570 R 8573 R 8573 R 8572		5504 397 94 294 98	29464	152 57 51 79 39	8.5 .6 .1 .5 .2	62 39 49 49 77	34 15 17 20 23	608 622 623	7.22 4.92 8.00 5.72 5.51	5 26 12 8	5 5 5 5 5	ND ND ND ND ND	2 2 2 3	32 44 37 31 24	2 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	78 93	1.73	.058	5 5 5 5 5	74 73 78	1.32 .90 1.20 1.12 1.30	19 23 30 28 39	.01 .01 .03 .01 .03	2 2 2	2.28 2.66 2.66 2.43 2.50	.02 .06 .04 .03 .05	.19 .21 .24 .20 .21	1 1 1 1 1	43 11 1 3 1
	R 2573 R 8574 R 5576 R 5576 R 3577	8 1 2 3	569 245 108 156 74	3 4 5 5 7 3	52 45 46 42 44	.9 .2 .1 .1	44 42 40 46 43	22 21 18 18	715 525	6.81 6.19	3 3 2 5 2	5 5 5 5 5	NC ND ND ND ND	2 2 2 2 2 2	27 38 26 27 22	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	85 91 89	1.32	.019 .041	4 5 5 5 5	69 80 74	1.04 1.21 1.28 1.26 1.34	22 21 20 23 24	.01 .01 .01 .01 .01	2 3 2	2.34 2.63 2.79 2.67 2.93	.02 .02 .02 .02 .02 .02	.12 .19 .19 .19 .17 .20	1 1 1	6 1 1 1
	R 8573 510 C/AU-R	3 19	121 62	7 43	4: 133	.2 7.0	39 70	16 31	526 1036		4 42	5 17	НD 7	2 39	32 50	1 19	2 17	2 17		1.86 ,50	. 033 . 699	5 (1		1.23 .93	20 180	.01 .07	3 38	2. 64 2.03	. 02 . 06	.15 .15	1 13	9 330

NORANDA EXPLORATION PROJECT 85.0-052/167 FILE # 88-5357

. .

SAMPLE¥	55H 86	Cu PPN	PC PPM	Zn PPN	àg PPN	NI PFN	C0 79X	Nn PPN	Fe }	AS PPH	U PPM	AU PPK	Th PPN	Sr PPN	Cđ PPN	SD PPN	Bi PPN	V PPM	Ca Ł	P	La PPN	CT PPK	Xg 1	Ba PPK	Ti t	B PPX	Al S	Na ł	K 1	W PPK	AU" PP5
R 3579 R 8560 R 8561 R 3582 R 8533	2	2853 100 1210 48 53	6 5 5 12	106 40 60 43 30	4.D .2 1.7 .1 .3	68 13 50 31 38	24 15 31 16 15	493 571 627	5.91 5.13 7.77 5.59 5.97	7 3 8 9	5 5 5 5 5	NC ND ND ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 32 31 31 43	1 1 1 1	2 2 2 2 2	3 3 2 3 2	96 97 98	1.16 1.23 1.47 1.55 2.22	.038 .039 .039 .038 .038	3 4 4 4	82 84 76	1,24 1,36 1,36 1,36 1,43	19 62 29 19 19	.01 .04 .02 .01 .01	2 6 3	2.61 2.74 2.70 2.77 2.89	.02 .04 .03 .02 .02	.14 .33 .19 .13 .14	1 1 2 1 1	40 1 3 1 1
R 8534 R 8585 R 8585 R 8585 R 8587 R 8588	2 2 2 2 2 2	36 61 70 118 73	5 1 9 9 8	44 41 44 47 49	.2 .1 .2 .3 .1	38 36 41 37 46	14 16 20 18 20	669 678 73D	8.49 6.60 7.41 7.37 7.38	9 2 6 7 8	5 5 5 5	ND ND ND ND ND	2 2 2 2 2	29 35 36 38 36	1 1 1 1	2 2 2 2 2	2 2 2 2 2	100 107 110	1.95 1.86	.038 .038 .010	5 4 4 4	74 75 78	1.36 1.41 1.49 1.52 1.46	22 21 20 21 21 24	.01 .01 .01 .01 .01	3 4 3	2.76 2.79 2.97 3.00 2.95	.02 .02 .02 .02 .02	.13 .14 .13 .13 .14	1 1 1 1	5 1 1 1
7 8585 R 8590 R 8591 R 8592 R 8593		194 137 1223	13 9 11 8 13	6 9 62 56 64 50	.1 .3 .2 1.9 .7	4) 47 50 52 39	18 21 19 27 18	516 500 473	5.88 7.70 7.19 5.97 7.52	3 2 8 53 30	5 5 5 5 5	NC ND ND ND	2 2 2 2 2 2	40 41 36 36 27	1 I 1 1	2 2 5 5	2 3 2 3 2	131 125 74		.039 .041 .041	5 4 5 6 7	85 85 58	1.43 1.64 1.57 .97 1.29	66 98 73 19 16	.05 .08 .07 .01 .01	5 1 6	2.91 3.23 3.16 2.24 2.31	.04 .05 .05 .03 .01	.39 .95 .55 .13 .12	1 1 1 1	1 1 7 5
R 3594 R 8595 R 8596 R 8597 P 8592	2 3 3 2 3	93 152 79 38 57	7 12 11 3 2	42 62 61 45 54	.1 .4 .1 .2 .1	34 45 54 46 45	16 20 19 15 19	711 467 681	6.28 7.63 6.18 6.58 7.57	2 5 8 5 10	5 5 5 5 5	ND ND ND ND	2 2 2 2 2 2	49 40 47 37 30	1 1 1 1	2 2 2 2 2	2 2 2 2 2	108 124	1.21 1.94	.040 .040 .039	5 5 7 6	74 84 72	1.32 1.58 1.55 1.49 1.53	20 26 91 27 30	.01 .01 .09 .01 .01	6 2 3	2.47 3.01 3.06 2.95 3.07	.07 .02 .04 .92 .02	.11 .15 .97 .15 .16	i 1 1 1	1 1 1 1
2 3399 R 3600 R 5688 R 5689 R 5689	3 112	58 8703 225 427 793	4 18 3 2 11	44 233 40 107 114	.1 11.8 .4 1.1 1.8	40 89 33 16 13	15 95 14 20 21	49 3 526 520	6.20 13.25 5.51 5.14 5.66	11 9 5 19 17	5 5 5 5 5	ND ND ND ND ND	2 1 2 1	28 45 37 26 23	1 3 1 1	2 2 2 2	2 3 2 2 4	90 88 10	1.52 2.16 2.15 1.55 1.33	.034 .035 .044	6 7 3 3	61 58 30	1.33 .95 1.22 1.09 1.20	31 30 26 39 16	.01 .01 .01 .01 .01	6 3 5	2.61 2.61 2.36 2.05 2.27	.02 .03 .02 .03 .03	.15 .09 .12 .13 .11	1 1 1 1	3 96 4 5 44
R 5691 R 5692 R 3553 R 8694 R 8695	\$ 21 11 72 49	463 608 509 312 516	7 9 6 3	44 46 55 58 73	.9 .9 1.1 .8 1.1	14 16 15 14 14	16 16 21 15 21	422 589 540	5.30 5.52 6.83 5.35 5.28	9 5 14 12 13	5 5 5 5	ND ND ND ND ND	1 1 1 1	29 34 27 23 32	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	38 36 42	1.60	.044 .040 .042	3 3 3 4	29 27 31	2.17 1.25 1.36 1.24 1.35	17 18 17 10 32	.01 .01 .01 .01 .01	2 	2.00 2.11 2.43 2.24 2.33	. 34 . 05 . 03 . 34 . 04	.10 .09 .10 .07 .11	t 1 2 1	1 15 1 1 3
R 8695 R 8537 R 9699 R 8699 R 8700	36 54 22 19 11	410 442 320 795 302	12 8 3 10 4	136 63 66 68 54	1.0 1.0 .7 1.7 .6	13 15 12 15 13	20 17 15 23 22	593 555 546	5.97 5.58 5.13 5.99 6.17	26 13 10 19 18	5 5 5 5	ND ND ND ND	1 1 1 1	22 35 35 39 36	1 1 1 1	2 2 2 2 2	3 2 3 2 1	42 42 42	1.70 2.26 1.85 1.85 2.15	.044 .045 .043	3 3 3 5	28 30 33	1.12 1.21 1.19 1.23 1.22	19 13 13 14 14	.01 .01 .01 .01 .01	8 5 8	2.27 2.29 2.26 2.28 2.40	.01 .03 .04 .05 .04	.21 .12 .10 .10	1 1 1 1 1	7 3 1 9
8 8701 STD C/AU-R	15 18	337 61	6 38	56 132	.8 7.1	13 68	23 30	605 1028	6.41 4.16	19 41	5 17	ND 7	1 38	30 49	1 18	2 19	3 22		1.95 .49		1 10		I.19 .91	14 179	.01 .97		2.44	.01 .06	.12 .15	1 11	6 510

.age 2

(

15

4

t

r

ſ

(

÷.

ç

Į.

(

.

τ.

1

;

1

ι

Kç.		
2	~	
3		
ម		
Å.		
H		
8		NORA
N.		ANDA
ľé		ы
As	۲	IXPLORATION
e		ATI
λu		g
76		PROJECT 8
51		ECT
a		8810-052/167
\$		0-05
B		52/1
-0		67

R 8731 R 8732 R 9733 R 9733 R 9734 STD C/AU-R	지 전 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2112 2112 2112 2112 212 212 212 212 212	98 8716 98 8716 98 87117 98 87117 98 87119 97 87120	8707 88707 89715 8715 8715	R 8702 R 8702 R 8703 R 8703 8705	13TARYS
ــــــــــــــــــــــــــــــــــــ	6 - 4 US US 🖬	21022	9 12 12 13 2	3512136	****	PPM Ro
463 60 60	379 334 553	4555 3071 3555	266 261 261	344 344 722	311 549 413	CU CU
		N===	ين درو الم من الله ال	⋈ぁ⊒ᆃ⊸		NZd Sd
63 63 132	89 55 68 55 55	343 55		239 56 93	81616	
مه به دن دن دن در	1.2.1.1.1	14.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	ហុំ សុំស្លំ ឆំ - រ	1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		PER AS
8 H L J L	225555	GRESS	****		15,913	И И И И
800 H 10	13 13 13	19 23 23	52522	16 22 53 18	22 27 21 19	PR NO
590 639 581 655	549 549 549	609 717 790 793	648 556	581 635 634	588 588 588	Noranda Co Ke PPN PPN
5,39 5,26 1,15	6.55 53 53 53 55 55 55 55 55 55 55 55 55 5	6,56 6,56 6,57 6,57	6.05 6.05 6.28	5.54 5.72 3.83	5.94 5.10	
· · ·	55 yr ar yr 17	3333 95 7 7	1 8 9 5 1	16 128 128 21 268	369 12 12 12 23 169 34	EXPLORATION
10 y y y y y	ى دىرى مى مى	ە بى مى يى مى				RATI U PPR
**9*9	N N N N N	5 3 5 3 5	8 6 8 6 8		88888	
						PROJECT Th St PPX PPH
4 00 14 00 14 9 60 61 01 14	2012220	136 127	36 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		20 26 34	ECT St PPK
5		اسر ہے جک ہے) جبا			-	881 Cd PPN
To こうで	91 KM KM KM	~~~~	NO 104 NO 100 60	88 NJ 10 NJ NJ	N N N N N N	NAU NAU NAU NAU CG 75 P1 CG 75 P2
20222	もでこでこ	ورية ورج عام وهو الأرم	こままま	~~~~	1.2 Fe3 (22 Fe3 Fe3	Bi Bi
50 56 53 11 50 56 53 11	213582	3 43 43 44 4 3 43 64 4	31 31 32	587584 587	니다	67 9 9
1.91 1.93 2.30	2.07 2.16 1.77 1.55	1.44	2.18 2.18 2.18 2.19 2.19	1.91		FILE
.043 .043 .045 .097	.043 .043	.046 .046 .041	.043 .045	.043 .043	.045 .041 .052 .044	ст М м* та 14
.	ری سه سه سه ری	نه نړي نه زړي سه	6.5 - 7.65 (12 - 12 - 12	فیا بر) فیا بر) بی		88- La
28 28 25	26 22 23	20 20 24	23 23 23	52222	28228	-535 2184
1.10 1.26 1.20 1.25 .91	1.12 1.02 1.40 1.23	1.25 .90 .36	1.107 1.114 1.13	1.12	1.21 1.16 .62	¢ bµ ∠
	23 19 18 26	ti H N N N	20 20 20	J2 8 2 1	2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PPH Ba
90000						~ ²
പ പം		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>م ب</u> س م	ഴം രം കേകം	***	Rdd 8
1.96 1.96 1.96	2,12 2,12 2,51 1,95	2.25 7.43 7.65 2.02	1.06 1.88 2.20 2.22 2.34	1.97 1.97	2.36 2.14 2.15 2.11	~ ²
6.0.02	02291			022		
11111		.15		10.05		NF 24
E			ч н н н н		ы на на на на	Kdd A
525 y 4 1 0	∞ ≁ Ï w #	10 780 120	ef1156.260	11 11 11 11	₩ ~ ₹7 №3 Æ Æ 6 ₩ -4	/ rage 3

(

(

Portriden IFP 38-4 (TMc)

8811-021

ME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .300 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HNO3-HZO AT 95 DEG. C FOR OWE HOUR AND IS DILUTED TO 10 KL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AN DETECTION LIMIT BY ICP IS 3 PPX. - SAMPLE TYPE: COTE ANA ANALISIS BI ACID LEACH/AA FROM 10 GM SAMPLE.

				-		ACE IS I TYPE				SR CA LTSIS E							KA K	AND A	L. AI) DETEC /	TION L	IXIT 8	T ICP :	IS 3 P	PX.						
DATE	RECEI	VED:	XC	W 15 1	988	DAT	E RI	POR	т ма	ILE) :	Nov	ا الم	let		SIG	1ED	BY.	Ċ.	h.,	·· .	D. 101	2, C.LI	KONG, I	B.CRAR	, J.XA)	NG; CBR	1718	D 8.C.	1 55478	RS
					И					тіон					024	167		File	2 #	88-5	5852		Pag	e 1							,
SAKPL e f	HC PPN	CU PPK	91 89K	20 PPK	AÇ PPN	NÍ PPK	CO FPN	Nr. Ppk	fe 1	AS PPN	U PPX	ku PPX	Th PPK	St P7X	Cđ PFN	SD PPK	Bi FPN	V PPN	Ca 3	? 1	La PPK	Cr PPX	Ng L	Ba PPK	Ti ł	B PPK	A1	Xa ł	1 1	¥ 898	201 228
8919 DR 8920 DR 8921 DR 8922 DR 8922 DR 8923 DR	4 1 1 1	2085 612 337 158 111	2 2 2 2 5	80 31 33 22 18	.9 .5 .3 .1	14 23 30 42 40	15 17 18 24 23	296 315 165	4.43 3.54 4.45 5.52 5.02	? 7 5 7 10	5 5 5 5 5	ND ND ND ND	1 1 1 1	10 17 21 25 25	1 1 1 1	2 2 2 2 2 2 2	3 2 4 2 2	42 73 119 152 139	.15 1.08 .98 .51 .45	.010 .009 .008 .023 .015	6 2 4 2 2	13 17 66	1.07 .93 1.38 1.43 1.44	14 23 53 73 95	.01 .05 .09 .18 .18	2 5 3	2.01 1.46 2.06 2.67 2.61	. 03 . 03 . 05 . 08 . 08	. D6 . 08 . 21 . 66 . 72	1 2 1 1 1	5 4 1 1
8524 DR 8935 DR 8926 DR 8926 DR 8928 DR	4 2 1 1 1	258 146 147 133 139	2 6 7 3	18 19 23 16 22	.1 .1 .1 .1 .2	39 (0]e]6]8	26 24 23 18 24	113 157 125	5.18 5.03 4.26 3.90 4.69	7 5 6 9	5 5 5 5 5	ND ND ND ND	1 1 1 2	23 24 34 18 22) 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	126 135 122 99 126	.42 .75 .64 .43 .39		2 2 2 2 2	57 62 45	1.39 1.45 1.22 1.13 1.34	58 85 79 42 71	.15 .19 .14 .13 .10	3 2 2	2.32 2.66 2.62 1.77 2.26	.07 .08 .12 .06 .06	.48 .60 .43 .15 .73	1 1 1 1	1 1 1 1
3929 DR 8930 DR 8931 DR 8931 DR 8942 DR 8943 DR	1 1 4 1 1	242 168 407 334 380	2 5 3 2 2	27 24 35 32 21	.1 .6 .5 .1	37 (3 38 35 40	25 28 23 21 24	135 298 255	5.27 5.58 4.77 4.61 5.16	6 13 9 8 9	5 5 5 5 5	ND ND ND ND ND	1 I 1 1	28 26 22 25 42	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	142 141 132 137 157	,45 ,43 ,48 ,54 ,31	.011 .010 .018 .006 .052	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	89 57 61	1.42 1.48 1.38 1.25 1.39	77 69 113 126 93	.18 .19 .37 .17 .20	2 2 2	2.67 2.15 2.35 2.35 3.11	.10 .09 .05 .09 .15	.72 .94 .48 .60 1.08	1 2 2 1	2 1 1 1 2
6944 DR 8945 DR 8946 DR 5946 DR 5947 DR 8948 DR	1 1 5 1	162 260 182 44 175	2 3 5 16 7	24 23 19 174 24	.1 .1 .1 .2	36 51 36 23 81	23 31 23 5 19	123 109 243	4.90 5.74 5.26 1.07 3.53	12 8 9 7 13	5 5 5 5	ND ND ND ND	1 1 2 2	29 35 46 12 12	1 1 2 1	2 2 3 2 2	2 2 2 2 2 2		.46 .64 .81 1.51 1.68	.013 .031 .038 .010 .029	2 2 6 9	\$2	1.44 1.67 1.58 .09 .42	106 51 80 41 64	.21 .17 .19 .01 .02	3 2 2	2.56 2.11 3.23 .48 3.19	.12	1.02 .51 1.11 .19 .17	1 3 1 1	1 1 59 2
8545 DR 8950 DR 8951 DA 8952 DR 8952 DR	2 3 2 1	284 347 726 191 173	2 5 3 7	18 20 26 25 25	.3 .6 .2 .1 .1	35 26 50 43 51	25 26 19 18 15	246 238 211	3.63 3.33 3.70 3.97 4.34	5 2 6 10 10	5 5 5 5 5	ND ND ND ND ND	1 2 2 2	25 80 67 42 75	1 1 1 1	2 2 1 2 7	2 2 2 2 2 2	43 69 71	2.48 2.63 2.25 1.84 2.54	.002	\$ 3 2 3	32 45 58 64 82	.38 .29 .71 .82 .94	15 35 41 32 46	.03 .04 .05 .05 .07	2 2 3	1.86 3.99 4.16 3.62 3.05	.06 .17 .24 .15 .27	.05 .03 .10 .11 .17	2 1 1 1 3	1 1 1 1
2754 DR 5555 DR 8956 DR 8957 DR 8957 DR 8958 DR	1 1 2 1	249 67 211 93 57	2 6 2 2	30 33 28 33 20	.3 .1 .4 .1	36 56 26 54 81	17 13 17 14 21	445 372	3.76	12 10 13 7 6	5 5 5 5 5	NO Kd Nd Nd	1 2 1 2 2	53 54 19 31 26	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	111 64	1.84 1.27 1.71 1.08 .47	.030 .035 .016 .034 .034	3 3 4 4	74 100 49 64 104	.89 1.24 .82 1.44 1.59	19 61 25 131 160	.06 .09 .01 .09 .12	2 2 2	2.41 3.15 1.46 2.77 3.04	.15 .16 .02 .08 .07	.08 .26 .15 .57 .73	3 2 2 1 1	2 1 1 2
5955 DR 8960 DR 6961 DR 8362 DR 8362 DR 8363 DR	5 1 1 1	324 100 215 208 79	2	28 31 42 28 21	.4 .2 .4 .1	60 54 56 57 51	22. 17 19 23 17	271 446 266	4.88	7 11 6 11 5	5 5 5 5 5	ND ND ND ND	2 2 2 3	(8 51 3) 29 29	1 1 1 1	3 2 2 2 2	3 2 2 2 2		.75 1.02 1.04 .83 .70	.034 .039 .037 .036 .023	3 3	110 93 104	1.57 1.58 1.56 1.66 1.67	121 171 133 98 165	.12 .13 .10 .12 .15	2	3.04 3.37 2.82 2.83 3.13	.09 .13 .06 .07 .09	.76 .77 .54 .83 1.13	3 2 3 3 7	2 1 1 1
5954 DR STC C/RU-	1	98 63	3 41	20 13:	.1 6.9	5e 72	20 31	165 1034		6 42	5 21	80 7	; 39	35 19] 19	2 17	2 21	111 61	.51 .50	. 032 . 098	4 41	86 56	1.71 .97	105 176	.09 .07		3.08 1.97	.09 .08	. 5 2 . 13	3 13] 520

,

& KUI WA DE

•							ю	RAN	DA E	XPLC	RAT	ION	PRO	JECT	° 88	· 0	24	167	FI	LE #	88	-58	52									тe
SAMPLE	Ко Ррк	Cu PPX	66 29K	10 PPN	Ag PPM	Nİ PPY	CO PPX	X0 PPS	ie 3	λs FPN	U ?PN	yn 55K	46 22%	SC PPN	Cd 27%	SD PPN	BI PPM	¥ 795	Ca 1	7 1	La PPR	Cr ?PN	¥ċ Xċ	Ba ?PX	11 1	8 P7x	A1 2	Xa X	1 }	W ?PX	AU** 228	
8965 CR 8968 CR 8967 DR 8968 DR 8968 DR	1 1 1 1	96 114 196 287 178	5 7 5 5	25 38 48 47 37	.1 .1 .1 .3	65 58 45 64 57	20 22 27 31 27	334 390 341	5.61 6.89 9.51 7.54 6.98	4 12 9 14 9	5 5 5 5 5	ND ND ND ND ND	2 2 2 2 2	23 34 30 14 20	1 1 1 1 1	2 7 10 2 2	3 2 2 2 2 2	125 149 170 134 143	.52 .63 .50 .42 .68	.344 .047 .049 .041 .033	4 3 4 5	96	1.91 1.93 1.72	142 17: 190 112 120	.12 .15 .15 .14 .12	6 3 6	3.25 3.66 4.32 3.12 3.20	.08 .08 .07 .04 .04	.70 1.02 1.08 . 96 .63	1 2 1 1 2	4 15 4 76 28	
8970 DR 8971 DR 8972 DR 8973 DR 8974 DR	1 1 1 1 1	114 137 88 120 234	2 6 4 1 5	33 24 23 25 24	.1 .1 .1 .1	13 39 12 41 41	23 23 15 20 19	239 234 228	5.25 5.23 4.53 5.12 5.27	3 7 4 5 3	5 5 5 5 5	KD ND ND ND	2 2 1 1	51 56 55 51 112	 	3 2 3 2 2	2 3 3 2 2	120 79 105 105 76	.93 1.59 .90 .80 2.92	.012 .034 .030 .026 .027	5 6 1 3 1	67	1,33 1,59 1,65	143 97 142 188 92	.13 .05 .09 .10 .04	4 2 2	3.02 2.46 2.83 2.94 2.57	.07 .05 .07 .06 .04	.57 .37 .58 .76 .34	1 - 1 1 1	\$ 39 15 31 1	
8975 GR 8976 DR 8977 GA 8978 DR 8979 GR	1 1 1 3	153 222 284 186 169	2 13 10 3 7	29 47 46 27 35	.1 .2 .4 .2	24 38 4D 20 23	20 22 24 10 1)	332 267 243	5.31 5.91 8.00 2.90 3.44	7 5 10 2 2	5 5 5 5 5	ND Kd Nd Nd Nd	2 2 4 1 1	117 93 74 20 20	1 1 1 1	2 2 7 2 2 2	2 2 3 2 2	122 152 217 64 75	1.52 .97 .87 .74 .59	.030 .022 .031 .014 .014	5 3 4 2 2	61 93 87 48 33	1.91 2.21 .90	210 212 183 25 11	.11 .17 .21 .03 .05	1 6 2	3.34 3.56 4.31 1.31 1.62	.14 .14 .13 .05 .05	.71 .74 1.29 .05 .06	1 1 1 1	3 16 21 2 1	
3380 DR 8981 CR 8982 CR 8983 DR 3984 CR	1 2 1 1 3	65 161 238 969 231	8 5 6 2	26 59 26 72 28	.1 .2 .1 1.0 .3	39 23 21 29 22	15 8 11 41 13	188 126 193	5.23 2.72 3.38 7.55 3.76	3 2 6 9	5 5 5 5 5	ND NC ND ND ND	2 1 1 1 i	61 32 13 40 23	I 1 1 1 1	4 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	178 66 60 73 73	.96 .63 .34 1.31 .50	.019 .044 .010 .103 .014	1 2 3 2	72 28 42 29 58	1,83 .85 .85 .92 .90	234 16 20 17 12	.24 .05 .05 .06 .08	2 3 2	3.83 1.45 1.24 2.33 1.59	.16 .08 .03 .07 .07	1.08 .06 .12 .08 .13	1 1 1 1	1 4 3 1 1	
8985 DR 8986 DR 8987 DR 8988 DR 9989 DR	1 1 1 1	128 179 258 219 151	2 2 2 2 4	24 23 33 27 31	.1 .1 .1 .3 .2	35 35 41 42 37	18 21 23 24 17	137 209 193	5.15 5.72 5.80 5.51 4.71	2 6 8 10 2	5 5 5 5 5	DK Dr Dr Dr Dr	2 2 2 1 1	53 53 50 62 49	1 1 1 1	2 6 1 7	2 2 2 3	163 173 156 138 120	.69 .73 .58 1.32 1.40	.029 .020 .020 .019 .011	3] 2] 3	56 55 60	1.68 1.36	211 157 171 158 146	.21 .21 .18 .15 .11	ł 1 1	3.14 3.26 3.20 2.87 2.72	.11	1.04 .90 1.07 .97 .74	1 1 4 1 1	3 1 1 1	
3990 DR 8991 DR 8992 DR 8993 DR 8993 DR	1 1 1 1	139 153 149 127 90	t 0 2 2 6 2	24 22 22 23 24	.1 .1 .2 .2	39 39 41 40 31	14 14 19 19 12	113 106 98	4.58 4.60 5.00 5.04 4.02	1 2 2 3	5 5 5 5	ND ND ND ND ND	2 1 1 2 1	39 42 41 67 48	1 1 1 1	2 2 3 2	2 2 2 2 3	137 147 165 177 147	.96 .50 .52 .81 .78	.016 .014 .010 .015 .021	3 2 3 3	63 80 64	1.52 1.53 1.59 1.37 1.44	143 152 203 238 166	.12 .18 .18 .22 .21	3 4 2	2.65 2.83 3.17 3.49 2.86		.75 .74 1.09 1.31 .81	2 1 1 1 1	2 1 1 2 15	
8995 CH 8998 GR 8997 CH 8998 DR 6999 DR	1 1 1 1	104 107 151 249 231	1 3 1 6 2	27 30 27 29 29	.1 .1 .3 .1 .1	40 37 39 45 42	16 20 15 25 21	144 151 134	1.85 5.08 1.56 5.86 5.62	4 5 2 5	5 5 5 5 5	ND ND ND ND	1 1 2 1	41 71 53 72 41	1 1 1 1	2 3 3 2 2	2 2 2 2 2	134 181 153 151 146	.51 .90 .51 1.05 .83	.013 .014 .015 .022 .013	3 3 3 2 3	81 62 69	1.48 1.49 1.53 1.44 1.48	179 263 181 130 76	.18 .21 .19 .15 .14	5 2 3	2.90 3.75 3.31 3.55 2.79	.10 .19 .13 .18 .10	.83 1.30 .80 .76 .37	2 1 1 1 1	1 1 1 6 1	
F 9000 CR STD C/AU-R	1 13	98 63	3 4D	28 132	.1 7.0	10 73	18 31	144 1026) 45	5 20	D۶ 8	1 39	34 48	1 20	2 20	2 20	137 61	1.07	.014 .096	3 40	63 56	1.49 .96	98 175	.14		2.70 1.96	.08 .06	.46 .13	1 13	5 170	

Ç

C

5.

Ċ

(

(

 $f^{\prime\prime}$

Ċ

(° 1

Ċ

C

C

(.)

(

Ċ

 ${\bf G}^{*}$

(

C

C

C

£

¢

		/			,		NO	RAN	DAE	XPLC	RAT	ION	PRO	JECI	8 7	-0	24	167	£1	LE	\$ 88	-58	52								j.	je 3
'ANPLEI	NO PPN	Cu PPN	96 1999	10 PPK	Ag PFN	NÍ PPN	CO PPN	Жл 29ж	ie 1	λ5 РРЖ	U ?Pk	Au Pfx	Th PPK	ST PPH	Cđ PPK	SD 894	BI PPK	V PPN	Ca 1	P 1	La PPH	CT PPN	Xg 1	Ba PPK	Ti 3	B P9X	۸1 ۲	74 }	1 }	¥ 97K	AU* PP8	
2851 DR	3	124	5	24	.1	34	15		1.83	2	5	ND	1	48	1	2	2		1.22		ł		1.50	125	.16		3.08	.12	.54	i	ĩ	
2852 DR	1	135	3	27	.1	33	17		1.38	2	5	ND	1	55	l	2	2	151		.016	3		1.19	169	.16		3.29	.15	. 88	1	1	
2353 DR	1	41	6	26	.1	28	17		4.79	2	5	¥D	1	85	1	2	2	190			4		1.60	223	.17		4.18		1.06	1	i	
2854 DR	1	\$5	\$	26	.1	32	17		1.11	2	5	XD	1	66	1	2	2		1.26		4		1.51	234	.15		3.73		1.11	I	1	
2855 DR	1	98	1	50	. 2	32	14	154	\$.42	5	5	ХD	1	46	1	2	2	161	1.15	.010	3	62	1.47	144	.18	8	2.99	.13	.71	1	1	
2856 DR_	3	183	10	27	.1	26	19	205	4.42	2	5	ĶD	1	33	1	2	2	119	1.76	.011	5	50	1.17	49	, ØS	2	2.02	. 05	.32	1_		,
2857 CR	13	724	. 8	48		87	37	275	3.27	16	<u>۲</u>	ND	1	30	1	3	2	329	.67	.025	3	158	1.30	73	.13	3	2.63	. 01	.30	1	14	
2958 DR	8	319	2	20	. 5	21	10		3.59	3	5	KD	1	23	1	2	2	78	1.01	.027	2	31	.73	15	.09	1	1.38	.05	.05	1	1	
2859 DR	3	630	2	38	.5	78	27	204	7.96	24	5	ND	1	- 55	1	6	2	274	2.33	.043	5	159	. 12	13	. 12	2	3.81	.21	. 08	1	12	
2850 CR	9	129	5	53	.5	90	41	329	3.13	5	5	ND.	1	28	1	6	2	337	. 11	.030	•	198	1.28	(7	.11		3.41	. 09	.32	2	6	
2361 DR	4	299	7	32	.5	35	21	344	3.50	24	5	ND	1	54	1	3	2	53	1.92	. 945	4	28	. 93	31	.01	,	2.26	. i 1	.11	,	ţ	
2262 DR	5	586	10	51	1.1	30	15		1.21	40	5	NC	Ī	33	1	2	2	50			4	19	1.11	16	.02		2.28	. 06	.12	1	1	
2863 DR	25	275	10	43	.5	71	23		6.57	15	5	XD	1	36	1	2	,	262		.010	;	151	.84	39	.10		2.13	.06	.19	1	;	
2864 DR	16	196	1	- (1	.5	31	18	158		30	5	NO	i	58	1	ī	2	92			3	57	.67	17	.01		2.00	.01	.15	1	i	
2865 DR	6	71	2	13	. 3	18	7		2.33	2	5	HD	2	36	1	2	2	38			3	20	.72	й	. 0 2		1.37	.01	.07	ī	ì	
2566 DR	6	317	٩	37	,5	64	21	191	6.73	,	5	ЯD	,	57	ŧ	1	,	25R	2.11	067	5	180	1.34	47	.10	ţ	3.56	.15	.19	1	1	
2867 DR	1	181	í.	28		23	19		1.45	63	í.	ND	1	35	1	1	;		1.46		í	25	. 83	10	.03		1.27	.07	.05	;	ž	
2868 63	i	166	1	22	.;	11	ï		2.51	3	ć	XC	1	- ii	1	2	;		1.59		- 1	15	.85	11	.03		1.36	.07	.05	5	1	
2869 DR	5	1479	;	31	1.3	5	17		1.33	i	ŝ	ND	1	32	i	;	,	32				й	.91	28	.01		1.70	. 02	.15	1	ż	
2870 38	1	63	÷	16	.2	,	8		2.35	,	ś	ND	1	38	i	;	;	38]	11	. 69	10	.05		1.20	.01	.02	1	1	
5014 AV	1	63	,	14	••	'	٥	121	2.33	2	,	41	1	10	1	2	4	10			÷		.07	14	, V3	2	1.24	. 01	- 44	1	ł	
2971 DR	1	154	6	21	.2	8	1		2.61	2	S	ND	i	50	i	2	2	38			3	29	.54	19	.06		1.61	.11	.)1	1	1	
2872 DR	2	285	1	23		3	1		2.14	1	5	ND	1	43	1	1	2	36		.040	1	11	. 90	11	.06		1.46	.49	.01	1	1	
TD C/AU-R	18	60	42	132	6.3	67	21	1029	4.18	12	20	8	38	11	19	16	20	59	. 30	.092	\$ 0	55	.93	179	.06	37	1.95	.05	.13	12	530	

C

1

Ċ

(

Ċ

<u>(</u>`

6 cm

{.

(

£

(

C

(

(...

 $C_{\rm c}$

C

(

C

.

,

Forbidden DOH. NFP 88-1 (DB)

1

3

ME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS S. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(6.:)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HR03-H20 AT 55 DEG. C FOR OWE HOUR AND IS DELUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MW PE SE CA P LA CE NG BA TI B W AND LIMITED FOR WA X AND AL. AU DITECTION LIMIT BT ICP IS 3 PPM. - SAMPLE TIPE: CORe AU* AWALTSIS BT ACID LEACH/AA FROM 10 GM SAMPLE.

NORANDA EXPLORATION PROJECT 167/8811-001 File # 88-5568 Page 1

SAMPLEĮ	Ko PPK	Cu PPK	PD PPH	21 PPK	AÇ PPK	NÍ PPK	Co PPN	Xa PPX	Fe A	AS PPK	U 72%	λu PPN	tb 2pm	ST PPN	Cđ PPH	SD PPN	Bi PPN	V PPK	Ca 1	F	La PPK	Cr PPK	Kọ L	Ba PPX	1i 1	8 ? P M	81 3	Na ł	t l	¥ PPN	λ01 278
R 6882 R 8883 R 8884 R 6885 R 8886	1 1 1 1	227 154 95 330 218	2 2 5 3 4	25 24 23 23 26	.2 .3 .2 .5 .4	38 33 43 33 35	17 17 17 21 17	182 185	4.71 4.82 5.26 4.00 3.39	6 2 5 2	5 6 5 5 5	HD ND ND ND	2 2 1 2 2	46 40 33 32 22	1 1 1 1	2 2 2 2	2 2 2 2 2 2	147 155 156 95 106	.77 .54 .40 .34 .43	.033 .016 .012 .010 .010	2 2 3 2 2	78	1.30 1.50 1.64 .92 1.03	176 283 408 14 36	.21 .22 .20 .09 .12	4 2 2	2.83 7.86 3.22 1.77 1.65	.12	1.11 1.50 1.70 .08 .17	1 1 1 2	1 1 5 1
R 8687 R 8686 R 8689 R 8690 R 8691	1 1 1 1	301 105 145 112 118	10 3 6 2 3	33 20 22 21 32	.5 .1 .1 .1 .3	38 38 19 (2 37	25 22 24 18 17	159 181 176	5.57 5.72 5.39 6.70 5.26	5 13 4 4	5 5 5 5 5	ND ND ND ND	2 2 1 1 2	37 51 57 53 57	1 1 1 1	2 2 2 2 2	2 2 2 2 2	159 170 143 145 173	.60 .71 .94 .78 .83	.013 .021 .025 .012 .013	2 3 2 2 2	76 81 61	1.54 1.61 1.43 1.38 1.53	197 351 296 224 262	.23 .26 .25 .24 .30	2 2 2	3.00 3.64 3.42 2.89 3.15	.14 .11 .15	1.18 2.09 1.67 1.45 1.31	1 2 1 1 1	2 1 1 1 3
R 8292 R 8693 R 8894 R 8895 R 8896	1 1 1 1	59 89 147 190 139	6 3 1 2 3	28 23 21 15 39	.1 .1 .3 .1 .3	42 38 39 36 40	23 17 20 18 20	167 90 110	5.61 5.47 5.18 6.36 5.66	3 4 5 8 2	5 5 5 5 5	ND ND ND ND ND	1 1 2 1	36 58 72 96 50	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	126 77	1.18 1.49	.013 .016 .017 .059 .018	2 2 4 4 2	83 61 47	1.37 1.31 1.03 .50 1.58	239 154 41 23 86	.27 .24 .22 .17 .22	2 4 2	2,96 3,42 3,44 4,12 3,85		1.66 1.14 .18 .07 .33	1 1 1 1	1 1 1 1 1
R 3897 R 8898 R 8859 R 8960 R 8901	1 2 2 8 1	209 302 416 365 530	2 4 8 4	26 20 34 34 28	.4 .2 .6 .4	10 72 17 17 17	10 25 14 15 14	175 205	3.55 5.82 4.74 3.83 3.50	8 3 11 1) 7	5 5 5 5	RD XD XD XD RD	1 2 1 1	58 63 13 54 72	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	100 55 55	1.03 1.45 .62 .76 1.10	.037 .086 .044 .040 .039	2 4 2 2 2	67 55 40	1.27 1.16 1.67 1.55 1.44	38 77 50 71 106	.08 .05 .09 .12 .11	2 2. ?	2.25 3.53 2.50 2.60 2.37	.13 .14 .11 .12 .16	.21 .36 .32 .40 .50	1 1 1 1 1	1 2 1 1 3
R £902 R 8903 E 8904 R 8905 R 8905 R 8905	1 2 1 1 2	299 1854 527 323 334	2 3 5 8 1 D	52 107 104 64 136	.5 1.9 1.1 1.4 1.0	19 19 18 15 19	15 24 17 16 20	490 473 595	1.86	11 18 12 20 31	5 5 5 5 5	ND RD ND RD ND	1 1 1 1	48 10 33 35 20	1 2 1 1 1	2 2 2 2 2 2	2 2 3 2 2	43	2.50	.042 .039 .041 .043 .038	2 6 4 5	55 37 44	1.60 1.43 1.43 1.15 1.26	92 20 25 14 15	.11 .01 .01 .01 .01	4 2 4	2.43 2.35 2.54 2.05 2.17	.11 .03 .06 .91 .01	.42 .14 .15 .17 .19	1 2 1 1	1 4 1 1 1
R 8907 R 8908 R 8909 R 8910 R 8911	1 3 1	1556 427 955 575 1501	8 2 21 7 14	86 48 102 4] 334	2.4 1.0 1.2 .7 3.6	22 15 18 17 19	31 18 25 23 27		3.95	17 13 31 8 228	5 5 5 5	KD ND RD ND KD	1 1 1 1 1	29 49 36 49 43	1 1 1 3	2 2 2 2 7	2 2 2 2 3	45 52	.95 1.16	.044 .041 .038 .039 .038	4 8 3 2 3	35 34 32	1.57 1.51 1.46 1.53 1.18	28 43 33 42 18	.01 .03 .03 .07 .05	3 2 1	2.61 2.46 2.30 2.34 1.44	.05 .08 .06 .10 .05	.20 .27 .26 .34 .23	1 1 1 1	11 3 14 3 31
R 8912 R 8513 R 8514 P 8915 R 8915	2 2 7 1 1	348 546 658 675 961	71 11 9 2 2	707 157 40 38 37	1.4 1.0 1.0 1.1 1.1	17 18 19 21 18	29 26 22 22 15	128 421 300 293 259	3.66 3.46	122 86 9 7 7	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	35 47 42 41 43	6 1 1 1	5 2 2 2 2 2	1 3 2 2 5	31 51 47	2.38 2.52 1.81 2.02 2.00	.034	4 1 3 2 2	29 26	.95 1.19 1.27 1.17 1.02	21 29 33 21 22	.01 .01 .02 .01 .03	3 3 6	1.23 1.46 2.01 1.58 1.46	.04 .06 .07 .05 .07	.23 .25 .24 .16 .18	1 1 1 1	10 7 14 7 3
R 8317 STD C/AU-R	1 17	380 62	4 13	31 132	.5 7.2	23 70	14 31	478 1032		56 43	5 21	ND 7	1 38	50 19	1 19	27 18	2 23	15 60	(.61 .51	.060 .100	5 40	10 57	,51 ,93	10 178	.01 .97	4 37	.48 2.06	.01 .06	.14 .15	2	1 520

 $|\mathbf{A}| = \{p_1, \dots, p_{n-1}\}$

8811-001

NORANDA EXPLORATION PROJUCT 167/8811-001 FILE # 88-5568

1

SAKPLEŧ	No PPK	Cú PPK	PE PPK	ZD PPK	rd PPK	WI PPK	CC PPK	No PPK	Se z	AS PPK	U PPK	Xa PPX	7b PPK	SC PPK	Cđ PPK	Sb PPX	B1 PPN	V PPN	C1 3	P N	La PPK	CT PPX	XÇ t	Ba PPN	ti 3	B PPK	81 2	Xa X	I ł	¥ PPK	ХЦ! РРВ
R 8518	1	2310	11	130	4.0	24	22	658	4.17	118	5	XD	1	22	1	15	2	10	1.01	.046	ł	10	. 65	11	. 01	5	. 33	.01	.15	1	18
R 8932	1	101	22	422	t	46	11	- 447	3.22	45	5	ΝÛ	2	19	- 1	l.	2	21	2.00	.022	6	17	.25	29	.01	5	. 52	.01	.21	1	9
R 8933	2	103	- 1	36	.2	56	18	588	5.38	5	5	. XD	2	19	1	3	2	59	2.05	.037	5	58	.73	33	.03		2.39	.02	.20	1	2
R 8934	2	912	10	60	1.2	50	29	513	6.41	5	5	ND.	1	43	1	2	2	88	4.11	.039	6	51	.12	16	.02	3	3.62	.07	.12	1	1
8 8935	1	293	7	39	.5	F1	21	531	5.19	3	5	ND	2	26	1	3	2	53	2.74	.032	4	52	.65	51	.02	3	2.13	.03	.17	١	5
R 8936	1	129	н	28	.5	51	20	250	5.03	7	5	ND	1	86	1	3	2	81	4.41	.027	2	73	.47	46	.08	2	6.20	.14	.13	3	6
R 8937	2	112	7	25	, i	53	18	332	4.73	6	5	ХD	2	76	1	2	2	73	1.90	,033	2	81	.76	10	. 08	2	3.88	.12	.16	ì	2
R 8938	3	70	6	28	.1	58	16	379	4.60	5	5	XD	2	60	1	2	2	86	1.61	.033	3	87	. 98	53	.05	2	3.49	.19	. 24	1	1
R 8939	1	98	5	25	.1	70	21	101	5.23	3	5	XD	2	21	1	3	2	70	1.10	. 035	ŧ	71	1.17	- 12	.03	2	2.63	.04	.22	1	2
R 8940	3	87	1	31	.2	55	15	379	4.44	\$	5	KD	1	17	ì	2	2	93	2.30	.031	3	89	1.04	31	.01	2	3.70	.22	.21	1	1
R 8941	5	58	н	53	.2	53	17	577	5.37	12	5	ND	2	37	1	2	2	84	1.73	.032	4	59	1.05	27	. 02	3	2.74	. 07	.15	l	6
STD C/AU-R	18	60	42	133	6.9	67	29	1010	3.97	39	20	7	36	47	18	16	22	59	. 48	.091	38	58	. 81	173	.07	36	1.94	.06	.14	12	190

Page 2

Formidder 9. (RMCI)

C

(

t,

Ċ

C

1

ſ

ACME ANALITICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-BRO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH HATER. THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CE MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TIPE: ROCK AU* AWALTSIS BT ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: OCT 13 1988 DATE REPORT MAILED: Oct. 18, 1988 SIGNED BY. B. Cham. D. TOTE, C. LEONG, B. CHAR, J. WANG; CERTIFIED B.C. ASSATERS

NORANDA EXPLORATION PROJECT 8810-040 167 File # 88-5187

SAMPLE	NO PPX	Cu PPN	Pb PPM	2D PPN	ÅÅ PPN	NI PPN	CO PPN	NO PPN	fe t	AS PPN	U PPK	Au PPH	76 PPX	ST PPH	Cđ PPN	SD PPM	Bi PPX	V PPN	Ca k	? 1	La PPN	CT PPH	Kg t	Ba PPN	7i 3	B PPM	А1 Х	Na ł	K Ł	¥ PPM	A u" PPB		I
R 45676 R 45877	3 2	4639 99	16840 4	53665 148	127.8 .2	7 5	23 6	493 279	16.94 3.49	13612 126	5 5	25 ND	2 1	23 4	590 1	105 2	331 5	6 14	1.73	.013 .039	2	2 8	.14 .43	9 17	.01 .01	2	. 33 . 91	.01 .01	.13	3	48000	485 1.40	
R 45878 R 45879 R 45880	2 1	202 104	150 13	637 131 1435	.8 .4	8 8	5 6	362 650	4.22 2.52	31 128	5 5	ND ND	1 2	2 21	4	2 2	2 2	20 26	.17 3.35	.054 .038	3	12 12	.49 .99	18 11	.01 .01	3 2	1.00 2.08	.01 .01	.16 .96	1 1	59 5		e
STD C/AU-R				130																													

-Assay required for correct result for Pb. Zr., & 7 10,00 ppm Ag - 35.0 ppm.

FORBID PON KINT. COENCE (み)

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3KL 3-1-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR NG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AUT AWALTSIS BY ACID LEACH/AR FROM 10 GM SAMPLE.

DATE RECEIVED: OCT 13 1988 DATE REPORT MAILED: Oct 18/ 1988 SIGNED BY. B. Cham. B. TOTE, C. LEONG, B. CHAR, J. WANG; CERTIFIED B.C. ASSATERS

1

6

(

ť

1

6

Ċ

C

C

(

Ċ

(

0

C

{

NORANDA EXPLORATION PROJECT 8810-039 127 File # 88-5186

SAMPLE	Хo	Cu	Pb	Za	Åġ	Ni	Co	Xo	F e	λs	រ	λu	Th	\$r	Cđ	sb	8i	V	Ca	P	La	C۲	Kg	8a	71	3	31	Na	K	N.	Au *
	PPN	PPN	?PN	PPN	PPN	PPN	PPN	8 S X	1	PPK	PPX	P?X	PPN	PPK	PPN	PPS	PPN	88X	۲	ł	PPK	PPH	ł	2 PN	ł	PPN	\$	ŧ	۲	PPN	PP8
a 48151	14	62040	13	2635	45.5	1	430	239	35.33	144	5	ND	2	1	71	3	69	12	. 15	.027	2	7	.14	3	.01	5	. 52	.01	.01	1	710
R 48152	i	211																													
3 48153	1	2016	9	197	. 9	59	- 17	1476	12.42	32	5	ND	1	6	3	6	2	263	.23	.077	3	93	2.07	22	.03	7	5.36	.01	.06	3	62
R 43154	1	229	8	105	1.	58	29	899	7.95	10	5	KD	1	19	1	2	2	211	1.48	.065	6	63	2.34	12	.35	7	4.14	.05	.05	1	17
R 48155	1	989	4	116	.1	- 4	21	460	3.19	12	5	ND	2	36	2	2	2	\$3	2. 4 8	.072	7	8	I.02	18	.05	٤	1.85	.05	.05	5	7
R 48156	ł	24	3	34	1.	10	10	1411	8.21	10	13	ND	1	52	2	2	2	68	13.36	.024	5	18	3.22	5	. 01	3	1.54	.01	.03	2	22

1-1

APPENDIX IV

STATEMENT OF COSTS

NORANDA EXPLORATION COMPANY, LIMITED STATEMENT OF COSTS

PRC	JECT: FORBIDDEN	PLATEAU	DATE: December, 1988
TYP	'E OF REPORT:		
a)	Wages:		
	No. of Days	220	
	Rate per Day		
	Dates From:	June 1, 1988 to November 17, 1988	
	Total Wages	220× \$ 189.28	\$41,640.69
ь)	Food & Accomoda	tions:	
	No. of Days	220	
	Rate per Day	\$ 25.50	
	Dates From:	June 1, 1988 to November 17, 1988	
	Total Costs	220× \$ 25.50	\$5,610.00
c)	Transportation	Truck, Gas, Oil, Airfare, Ferries	
ς,	No. of Days	105	
	Rate per Day		
	Dates From:	June 1, 1988 to November 21, 1988	SE 0(2, 2)
	Total Costs	105× \$ 56.79	\$5,963.34
d)	Instrument Rent	al: Equipment	
	Type of Instrum	ent Geophysical	
	No. of Days	10	
	Rate per Day	\$ 105.70	
	Dates From:	July 25, 1988 to August 3, 1988	
	Total Costs	10 x \$ 105.70	\$1,056.97
	Type of Instrum	ent	
	No. of Days		
	Rate per Day	ş	
	Dates From:		
	Total Costs	x - \$	

- - ..

Page 2

e)	Analysis: (See attached schedule)	\$ 10),034.30
F)	Cost of preparation of Report		-
	Author:	\$	500.00
	Drafting:	Ş	500,00
	Typing:	\$	200.00
g)	Other:		
	Contractor	\$ 9 <u>9</u>	5,017.34
	Supplies (Core shack, tools, bags, etc.)	\$ 3	3,616.61
	TOTAL COST:	<u>\$16</u> 4	4,139.25

r.

```
Page 3
```

```
h) Unit Costs for Geology
    No. of Days:
                     117
    Unit Cost: $22,085.60/117 days
                                                       $ 22,085.60
    Total Cost: $188.77/day x 117 days
    Unit Costs for Geochemistry
    No. of Units:
                     704 Assays
    Unit Costs: $15,442.75/704 Assays
                                              $ 15,442.75
    Total Cost: $21.94/assay x 704 assays
    Unit Costs for Geophysics (includes Linecutting)
    No. of Days: 10
    No. of Units: 6.28 Km
    Unit Costs: $2,766.06 / Km
    Total Cost: 6.28 Km x $2,766.06
                                                        $ 17,370.86
    Unit Cost for Drilling (includes road and pad prep. & core logging)
    No. of Units: 879.30 metres
    Unit Costs: $105,553.10 / 879.30 metres
     Total Cost: $120.04/m x 879.30 metres
                                                       $105,553.10
    Unit Cost for Trenching
    No. of Units:
                   98 metres
    No. of Days: 3
    Unit Cost: $3686.94 / 98 metres
                                                        $ 3,686.94
     Total Cost: $37.62 x 98 metres
```

TOTAL COST:

\$164,139.25

NORANDA EXPLORATION COMPANY, LIMITED (WESTERN DIVISION)

DETAILS OF ANALYSES COSTS

PROJECT: FORBIDDEN PLATEAU

	ELEKENT NO. OF	DETERMINATIONS	COST PER DETERMINATION	TOTAL COSTS
×	ICP-Core Split	562	6.25	\$3,512.50
	Geochem for Au	562	4.50	\$2,529.00
	Sample Prep	562	3.00	\$1,686.00
	Oata Entry	562	0.95	\$ 533.90
*	ICP-Soil, Silt & Pan Concentrate	142	6.25	\$ 887.50
	Geochem for Au	142	4.50	\$ 639.00
	Plotting	704	0.35	<u>\$ 246.40</u>

TOTAL COST: \$10,034.30

-

* ICP 30 ELEMENTS

Mo, Cu. Pb, Zn, Ag, Ni, Co, Mn, Fe, As, U, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, B, Ti, B, Al, Na, K, W, Au.

.

SUMMARY COS. 'ORT FORBIDOEN PLATEAU PROJECT

YEAR TO DATE 1988

WORK TYPE	OFFICE FIELD/LABOUR	SUPPLIES G LODGING	HISC. ITEHS	EQUIPMENT REPAIR & RENTAL	TRANSPORTATION AIR/GROUNO	ASSAYING	CONTRACTS	YEAR TO DATE TOTALS
LINE CUTTING	\$ 2,931.05	\$ 1,469.20	\$ 185.19	\$ 42.33	\$ 513.29			\$ 5,141.06
1.P.	2,764.47	360.13	116.41	400.35	225.94		\$ 8,362.50	12,229.80
GEOLOGY	25,024.93	5,508.09	1,309.54	339.55	1,147.70			33,329.81
TRENCHING	413.02		· · · · · · · · · · · · · · · · · · ·				3,273.92	3,686.94
SILTS			172.30			\$ 403.60		575.90
SOILS	1,996.15	1,031.77	2,184.37	257.25	871.23	5,014.56		11,355.33
ROCK GEOCHEN	368.52	• •	31.70			882.40		1,282.62
PAN CONCENTRATES			15.60			12.20		27.80
DRILLING							70,215.43	70,215.43
CORE SPLIT ASSAYING	2,801.73					8,256.70		11,058.43
ENGINEERING (LABOUR)	15,081.35							15,081.35
SERVICES	609.41	2,496.58	325.13	17.49	3,705.22		13,165.49	20,319.32
SUB TOTAL	\$ 51,990.69	\$ 10,865.77	\$ 4,340.24	\$ 1,056.97	\$ 6,463.38	\$ 14,596.46	\$95,017.34	\$184,303.85
OPTION PAYMENT								30,000.00
CLAIN HOLDING COST								3,420.00
TOTAL:								\$217,723.85
							ł	

APPENDIX V

CROWN FOREST LICENCE AGREEMENT

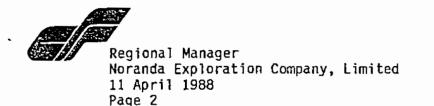
5 July 1988

File: General 129-I

Noranda Exploration Company, Limited 1050 Davie Street Vancouver, B.C. V6E 1M5 (No Personal Liability)

(the "Licensee")

Attention: Regional Manager


Dear Sirs:

RE: Block 13 TFL 47 Comox Land District; <u>Piggot Creek and Brown's River</u>

Crown Forest Industries Limited (the "Licensor") hereby grants the Licensee a non-exclusive licence to enter and occupy those lands marked in yellow on Schedule "B" hereto (the "Lands") for the purpose of mineral exploration (the "Work") upon the following terms and conditions:

- Subject to Paragraph 16 of Schedule "A" hereto, this Licence shall be for a term commencing on 1 January 1988 and ending on 31 December 1988.
- The Licensee will pay upon execution of this License, and in addition to any other monies payable by the Licensee hereunder:
 - (a) \$300.00 to the Licensor for the rights granted the Licensee here-under and as a document processing fee; and
 - (b) \$5,000.00 to the Gold Commissioner pursuant to Section 9 of the Mineral Act, which, at the termination of this Licence, will be applied against any damages suffered by the Licensor as a result of the Licensee's use and occupation of the Lands, and the remainder, if any, will be returned to the Licensee.
- The Licensor's authorized representative for the purpose of this Licence is Mr. R.D. (Don) Jones, Operations Engineer (hereinafter referred to as the "Authorized Representative").
- The Licensee shall not conduct or perform any:
 - (a) clearing, trenching, scraping or other activities causing soil disturbance on the Lands;
 - (b) ditching, culverting, clearing or other road upgrading activities on the Roads; or

A0D2:H:2

 (c) repairs, alterations or changes to any bridges, culverts or other structures,

without the prior approval of the Authorized Representative which approval may be granted in the sole discretion of the Authorized Representative. For the purposes of this provision the Licensor may require a site inspection and a review of the Licensee's plans.

- The Licensee shall notify the Licensor prior to conducting any blasting on the Lands. The Licensor may restrict or regulate blasting by the Licensee.
- 6. The Licensee shall conduct its blasting operations in compliance with all federal, provincial and municipal laws. Without limiting the generality of the foregoing, the Licensee shall comply with the Transport of Dangerous Goods Act of B.C. and the Workers Compensation Act of B.C.
- 7. Where the Licensee's activities may pose a hazard to other users of the Lands or the Roads, the Licensee shall post warning signs.
- 8. Schedules "A" and "8" attached hereto form a part of this Licence.

Kindly indicate your agreement with the terms and conditions contained in this Licence in the space designated on the enclosed copy hereof and return the copy to us together with your cheque in the amount of \$300.00 and your confirmation of the deposit required by Paragraph 2(b) above.

Yours very truly,

CROWN FOREST INDUSTRIES LIMITED GERRY YOUNG

(Title) Manager - Johnstone Strait

The Common Seal of NORANDA EXPLORATION COMPANY, LIMITED was hereuntolaffixed in the presence of:

c/s

A002:H:2

SCHEDULE "A"

GENERAL TERMS AND CONDITIONS

CERTIFICATE AND WORK

 The Licensee will, before commencing work or exercising any of its rights hereunder (the "Work"), deliver to the Licensor a true copy of its Free Miner Certificate issued under the <u>Mineral Act</u>, R.S.B.C. 1979, c. 259, and any renewals or replacements thereof, which the Licensee will maintain as valid and subsisting throughout the terms of this Licence.

Work shall mean any mineral exploration activity, but shall not include activity which may result in damage to forest soils, immature trees, standing timber or felled and bucked timber unless approval has been granted under Paragraph 6(b) hereto.

LOCATION OF OPERATIONS

2. The Licensee's Work and operations hereunder shall be limited to the Lands outlined in yellow on the map attached as Schedule "B" hereto and shall be conducted in a manner which does not interfere with the Licensor's operations.

ROAD USE

3. The Licensee may use the Licensor's roads located on or providing access to the Lands (the "Roads"), subject to the Licensor's right, in its sole discretion, to prohibit the Licensee from using particular Roads from time to time. The Licensee will keep the Licensor informed of its use of the Roads, will use the Roads in a manner which does not interfere with the Licensor's use of the Roads, and will advise the Licensor at least two days in advance of any equipment movement on the Roads other than passenger vehicles.

ROAD CONSTRUCTION AND MAINTENANCE

4. The Licensee will not alter, modify, repair, maintain, extend, or construct Roads on the Lands without the prior written approval of the Licensor and, having obtained such approval, the Licensee will carry out such work at its expense and to the standards established by the Licensor.

PRIOR APPROVAL

5. The Licensee will not commence mechanical work on or clear any site without the prior approval of the Licensor's authorized representative which approval will not be unreasonably withheld or delayed.

WORK SITES

- 6. The Licensee will:
 - (a) mark all Work sites in the field;
 - (b) have all Work sites reviewed by the Licensor's Authorized Representative prior to commencing Work;
 - (c) upon completion of the Work, leave the Work sites in a safe and environmentally sound condition, provided however the Licensee shall not be liable to correct or repair any condition not attributable to its activities; and
 - (d) where the Work might result in soil disturbance or damage to immature, mature or felled timber, obtain the approval of the Licensor's Authorized Representative and agree with the Licensor on the amount of compensation to be paid by the Licensee for such disturbance or damage, all before the commencement of work.

SITE REHABILITATION

7. Should the Licensee cause damage to soils or vegetation, the Licensee will, at its expense, carefully pile in an orderly manner consistent with standards of the Licensor all slash and forest debris which results from the Work and the Licensee's occupation of the Lands. Prior to the end of the Licensee's occupation, but at times specified by the Licensor, will burn and dispose of all such slash and debris and will restore and reclaim those areas of timberland on the Lands disturbed by the Licensee's occupation so that they are placed in such states of topography and fertility as in the reasonable opinion of the Licensor are necessary for good timber growing purposes, and will replant those areas with seedling stock approved by the Licensor.

RIGHTS RESTRICTIONS

8. The Licensor may at any time and from time to time prohibit or restrict the exercise of any of the rights hereby granted to the Licensee for such period or periods of time as the Licensor may in its absolute discretion determine should the Licensor consider such prohibition or restriction justified on account of hazardous weather conditions or unreasonable interferences with the Licensor's operations and the Licensee will at all times observe and conform with such prohibitions or restrictions.

COMPLIANCE

9. The Licensee will comply with the provisions of all laws and regulations passed in pursuance thereof, of Canada, of British Columbia and of the municipal and regional authorities having jurisdiction over the Lands and the Work, and the Licensee hereby acknowledges that the provisions of this Licence are in addition to such laws and regulations and, without limiting the generality of the foregoing, the Licensee will obtain such permission as may be required under the Forest Act of British Columbia and from other landholders to conduct the Work and use the roads contemplated to be used in connection with the Licensee's Work hereunder and the Licensee will comply with the requirements of the Licensor and with the requirements of all persons acting under the Minister of Forests and Lands in respect to fires, including slash disposal.

RISKS AND RELEASE

10. The Licensee will and does hereby accept all risks associated with its entry to and occupation of the Lands, and of its use of all of the Licensor's roads leading to the Lands, as its own risks and, without limiting the generality of anything contained herein, the Licensee for itself and its directors, officers, employees, agents, contractors, sub-contractors, and invitees and for any persons acting in concert with it hereby releases and discharges the Licensor and its directors, employees, agents, contractors, sub-contractors, and officers, invitees (collectively the "Licensor's Representatives") from any and all responsibility and liability, whether arising in tort, contract or otherwise, in respect of all loss, damage, personal and property injury and death arising out of or attributable to the state of the Lands, to the design, layout or condition of the Licensor's roads and trails thereon and the other lands upon which the Licensor's roads are situate on Vancouver Island, or the Licensor's or the Licensor's Representatives' conduct on such lands or roads whether or not such loss, damage, personal or property injury, or death is attributable to negligence of the Licensor or the Licensor's Representatives save and except the negligent operation of a motor vehicle by the Licensor or the Licensor's Representatives.

INDEMNITY

11. The Licensee will indemnify and save harmless the Licensor from and against all claims, losses, costs, damages, demands, actions, and causes of action made against the Licensor, against the Licensee or through the Licensee against the Licensor, or suffered by the Licensor in respect of the Licensee's occupation of the Lands and use of all the Licensor's roads or trails on the Lands or leading to the Lands; and the Licensee will immediately cause to be removed all liens and other charges which purport to charge the Lands in consequence of the Licensee's activities hereunder.

INSURANCE

12. The Licensee will obtain and maintain throughout the term hereof public liability insurance and property damage insurance in the minimum amount of \$2,000,000.00 with respect to death or injuries to persons or property caused by or arising out of or attributable to the exercise of the rights granted hereunder, proof of which insurance shall be delivered to the Licensor upon request.

COMPENSATION

13. In addition to all other payments by or obligations of the Licensee hereunder, the Licensee may be required to pay to the Licensor compensation for the value of any timber taken from the Lands, the amounts in respect of any interruption to timber growing cycles, an amount for injurious affection to adjacent lands, and generally for damage to roads, timber, and lands resulting from the Licensee's activities.

TAXES

14. In addition to any compensation that may be payable in respect of those matters described in Paragraph 13 and in addition to any other monies payable hereunder, the Licensee shall pay to the Licensor an amount equal to any land use taxes imposed on the Licensor as a result of the Licensee's Work and improvements constructed on the Lands by the Licensee.

CLEAN UP

15. Immediately upon the termination of this Licence, the Licensee will remove all equipment, structures and improvements placed on the Lands

by it and leave the Lands and Roads in a condition reasonably consistent with that in which the Licensee found them.

DEFAULT

16. If the Licensee is in default hereunder, the Licensor may deliver to the Licensee, either personally or by registered mail, at the abovementioned address, notice of such default, which notice will be deemed to have been received when delivered, if delivered, and five days after mailing, if mailed, and if the default is not rectified within five days of receipt of such notice, the Licensor may immediately terminate this Licence by giving further notice to the Licensee in the same; manner as above.

NO WAIVER OF RIGHTS

17. Nothing contained herein is or should be construed as a waiver by either party of any rights which that party has or which may accrue to that party at law, in equity, or by statute.

ASSIGNMENT

18. This Licence may not be assigned by the Licensee.

SUCCESSORS AND ASSIGNS

19. This Licence is binding upon and shall enure to the benefit of the successors of the Licensee and Licensor and the assigns of the Licensor.

PARAGRAPH HEADINGS

20. The paragraph headings in this Licence are for ease of reference only and are not to be used in the construction of this Licence. Ġ., .

2

٩

21. Any notice required hereunder will be deemed to have been properly and sufficiently given if delivered in person or sent by prepaid registered mail to the address of the parties first above written and shall be deemed to have been received when delivered, if delivered in person, or 5 days after date of mailing if mailed.

APPENDIX VI

ANALYTICAL TECHNIQUES

ANALYTICAL METHOD DESCRIPTIONS FOR GEOCHEMICAL ASSESSMENT REPORTS

The methods listed are presently applied to analyses geological materials by the Noranda Geochemical Laboratory at Vancouver.

Preparation of Samples:

Sediments and soils are dried at approximately 80°C and sieved with a 80 mesh nylon screen. The -80 mesh (0.18 mm) fraction is used for geochemical analysis.

Rock specimens are pulverized to -120 mesh (0.13 mm). Heavy mineral fractions (panned samples * from constant volume), are analysed in its entirety, when it is to be determined for gold without further sample preparation.

Analysis of Samples:

Decomposition of a 0.200 g sample is done with concentrated perchloric and nitric acid (3:1), digested for 5 hours at reflux temperature. Pulps of rock or core are weighed out at 0.4 g and chemical quantities are doubled relative to the above noted method for digestion.

The concentrations of Ag, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn can be determined directly from the digest (dissolution) with a conventional atomic absorption spectrometric procedure. A Varian-Techtron, Model AA-5 or Model AA-475 is used to measure elemental concentrations.

Elements Requiring Specific Decomposition Method:

Antimony - Sb: 0.2 g sample is attacked with 3.3 ml of 6% tartaric acid, 1.5 ml conc. hydrochloric acid and 0.5 ml of conc. nitric acid, then heated in a water bath for 3 hours at 95° C. Sb is determined directly from the dissolution with an AA-475 equipped with electrodeless discharge lamp (EDL).

Arsenic - As: 0.2 - 0.3 g sample is digested with 1.5 ml of perchloric 70% and 0.5 ml of conc. nitric acid. A Varian AA-475 equipped with an As-EDL is used to measure arsenic content in the digest.

Barium - Ba: 0.1 g sample digested overnight with conc. perchloric, nitric and hydrofluoric acid; Potassium chloride added to prevent ionization. Atomic absorption using a nitrous oxide-acetylene flame determines Ba from the aqueous solution.

Bismuth - Bi: 0.2 - 0.3 g is digested with 2.0 ml of perchloric 70% and 1.0 ml of conc. nitric acid. Bismuth is determined directly from the digest with an AA-475 complete with EDL.

Gold - Au: 10.0 g sample is digested with aqua regia (1 part nitric and 3 parts hydrochloric acid). Gold is extracted with MlBK from the aqueous solution. AA is used to determine Au.

Magnesium - Mg: 0.05 - 0.10 g sample is digested with 4 ml perchloric/nitric acid (3:1). An aliquot is taken to reduce the concentration to within the range of atomic absorption. The AA-475 with the use of a nitrous oxide flame determines Mg from the aqueous solution.

Tungsten - W: 1.0 g sample sintered with a carbonate flux and thereafter leached with water. The leachate is treated with potassium thiocyanate. The yellow tungsten thiocyanate is extracted into tri-n-butyl phosphate. This permits colourimetric comparison with standards to measure tungsten concentration.

Uranium - U: An aliquot from a perchloric-nitric decomposition, usually from the multi-element digestion, is buffered. The aqueous solution is exposed to laser light, and the luminescence of the uranyl ion is quantitatively measured on the UA-3 (Scintrex).

N.B.: If additional elemental determinations are required on panned samples, state this at the time of sample submission. Requests after gold determinations would be futile.

LOWEST VALUES REPORTED IN PPM:

Ag - 0.2	Mn - 20	2n – 1	Au - 0.01
Cd - 0.2	Mo - 1	Sb – l	W - 2
Co - 1	Ni - 1	As - 1	U - 0.1
Cu - 1	Pb – l	Ba - 10	
Fe - 100	V - 10	Bi - 1	

EJvL/ie

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone: 253-3158 GEOCHEMICAL LABORATORY METHODOLOGY & PRICES - 1989 Sample Preparation Soils or silts up to 2 lbs drying at 60 deg.C and sieving 30 gms -80 mesh (other size on request) \$80 s .85 .45 Saving part or all reject SJ Soils or silts - drying at 60 deg.C and sieving -20 mesh & pulverizing (other mesh size on request.) S20R 2.00 Soils or silts - drying at 60 deg.C pulverizing (approx . 100 gms) SP 1.50 (approx Rocks or cores - crushing to -3/16" up to 10 lbs, then pulverizing 1/2 lb to -100 mesh (98%) Surcharge crushing over 10 lbs **PP100** 3.00 .25/1b \mathbf{Cr} 1.00/15 Surcharge for pulverizing over 1/2 lb 2PX Same as RP100 except sleving to ~100 mesh and saving +100 mesh (200gms) **RPS100** 3.75 the reject -additional Same as above except pulverizing 1/2 RPS100 1/2 1.00/1b Same as above except pulverizing all the reject - additional RPS100 A 1.00/15 Compositing pulps - each pulp Mixing & pulverizing composite. OP .50 1.50 Heavy mineral separation - S.G.2.96 + wash -20 mesh 12.00 HM Drying vegetation and pulverizing 50 gms to -80 mesh 3.00 **V1** Ashing up to 1 1b wet vegetation at 475 deg.C 2.00 **V2** 17.00/hr Special Handling H1 Sample Storage Rejects - Approx. 2 lbs of rock or total core are stored for three months and discarded unless claimed. Pulps are retained for one year and discarded unless claimed. for 3 years \$10.00/1.2 cu.ft. box or 15 cents/sample pulp or 5 cents/sample soil Additional storage -\$125.00/thousand \$140.00/thousand Plastic \$10.00/hundred \$ 20.00/hundred N/C \$ 5.00/liter \$ 1.00/each \$ 12.00/each 114 Supplies 4" x 6" 4" x 6" with gusset 7" x 13" 4 ml 12" x 20" 6 ml Soil Envelopes Soil Envelopes Bags Plástic Bags Ties Assay Tags 10% HCl

1

Conversion Factors

Dropping bottles Zn Test

1 Troy oz = 31.10 g 1 oz/ton = 34.3 ppm = 34.3 g/tonne = 34,300 ppb 1 % = 10,000 ppm

A & B

3

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone: 253-3158

ハ

GEOCHEMICAL ANALYSES - Rocks and Soils

Group 1 Digestion

.50 gram sample is digested with 3 mls 3-1-2 HCl-HNO3-H2O at 95 deg.C for one hour and is diluted to 10 ml with water. This leach is near total for base metals, partial for rock forming elements and very slight for refractory elements. Solubility limits Ag, Pb, Sb, Bi, W for high grade samples. Group 1A - Analysis by Atomic Absorption. Detection 2 ppm Element Element Detection Element Detection Antimony* Bismuth Molybdenum Nickel Silver Vanadium Copper 1. ppm 0.01 % 2 ppm 0.1 ppm 1 ppm Iron Lead Lithium 1 Cadmium* ō.ı ррд ррд Chromium 5 ž 1 5 Cobalt ррт Manganese ррш Zinc ppn First Element \$2.25 Subsequent Element \$1.00 Hydride generation of volatile elements and analysis by ICP.
 This technique is unsuitable for sample grading over .5% Ni or Cu.
 Cu Massive Sulphide.
 Detection Group 1B Element Detection 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm Arsenic Antimony Bismuth First Element \$4.75 All Elements \$5.50 Germanium Selenium Tellurium Group 1C - Hq Detection limit - 5 ppb Price \$2.50 Eq in the solutions are determined by cold vapour AA using a F & J scientific Hg assembly. The aliquots of the extract are added to a stannous chloride/hydrochloric acid solution. The reduced Hg is swept out of the solution and passed into the Hg cell where it is measured by AA. <u>Group 1D</u> - <u>ICP</u> Analysis Element Detection Ag Cd,Co,Cr,Cu,Kn,Mo,Ni,Sr,Zn As,Au,B,Ba,Bi,La,Pb,Sb,Th,V,W 0.1 ppm 1 2 5 ppm ppm 0.01 Ppm Al,Ca,Fe,K,Mg,Na,P,Ti 2 elements \$3.25 Any 5 elements 10 elements 4.50 6.25 All 30 elements Group 1E - Analysis by 1CP/M5 Element Detection Ga,Ge 1 ppm Au, Bi, Cd, Hg, In, Ir, Os, Re, Rh, Sb, Te, Th, Tl, U 0.1 ppm All Elements 15.00 (minimum 20 samples per batch or \$15.00 surcharge) Hydro Geochemical Analysis Natural water for mineral exploration 26 element ICP - Mo,Cu,Pb,Zn,Ag,Co,Ni,Mn,Fe,As,Sr,Cd,V,Ca,P, Li,Cr,Mg,Ti,B,Al,Na,K,Ce,Be,Si \$8.00 F by Specific Ion Electrode U_by UA3 detection detection 20 ppb .01 ppb .1 pH \$3.75 5.00 рН Au .001 ppb detection 4.00 Minimum 20 samples or \$5,00 surcharge for ICP or AA and \$15.00 surcharge for ICP/MS. All prices are in Canadian Dollars

4

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone: 253-3158

- Geochemical Analysis by Specific Extraction and Instrumental Group 2 Techniques Element Method Detection <u>Price</u> 0.100 gram samples are fused with .6 gm LiBO2 dissolved in 50 mls 5% HNO3 and analysed by ICP. (other whole rock elements are also determined) .5 g/Na2O2 fustion - 50ml in 20% HC1 10 ppm Barium \$4.00 Boron 2 ppm 4.00 LECO (total as C or CO2) .01 \$ 5.75 Carbon Carbon+Sulfur Both by LECO .01 \$ 6.50 HCl leach before LECO 8.00 Carbon .01 % 1 (Graphite) Chromium 0.50 gram samples are fused with 1 gm Na202 dissolved in 50 ml 20% KCl, analysed ICP. 4.00 5 ppm 0.25 gram samples are fused with NaOK; leached solution is adjusted for pH and analysed by specific ion electrode. Fluorine 10 ppm 4.50 LECO (Total as S) Sulphur .01 % 5.50 Sulphur insoluble LECO (After 5% HCl leach) .01 % 8.00 1.00 gram samples are fused with NH4I. The sublimed lodine is leached with 5 ml 10% HCl, and analysed by Atomic Absorption. Tin 1 ppm 4.00 .50 gram digested with 50% HNO3 - Dilute to 10 ml - graphite AA .50 gram samples are fused with Na202 dissolved in 20 ml H20, analysed by ICP. T1 4.00 .l ppm i ppm Tungsten Geochemical Noble Metals Group 3 -<u>Meth</u>od Element Detection Price 10.0 gram samples are ignited at 600 deg.C, digested with hot agua regia, extracted by MIBK, analysed by graphite furnace AA. An * l ppb \$ 4.50 6.00 - first element 2.50 - per additional 10.00 - for All 4 10.0 gram samples are fused with a Ag inquart 1 ppb with fire assay fluxes. After cupulation, the 2 ppb dore bead is dissolved and analysed by AA or Au * * Pd, Pt, Rh ICP/MS. 20 gms add \$1.50 30 gms add \$2.50 Larger samples -Group 4A - Geochemical Whole Rock Assay 0.200 gram samples are fused with LiBO2 and are dissolved in 100 mls 5% HNO3. SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, MnO, TiO2, P2O5, Cr2O5, LOI + Ba by ICP. Price: \$3.75 first metal \$1.00 each additional \$9.00 for All. Group 4B - Trace elements Price \$3.75 first element or \$1.00 additional to 4A \$6.00 for All. <u>Analysis</u> ICP ICP Element Co,Cu,Ni,Zn,Sr Ce,Nb,Ta,Y,Zr Detection 10 ppm 20 ppm Group 4C - analysis by ICP/MS. Be, Rb, Y, Zr, Nb, Sn, Cs, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Th, U Detection: 1 to 5 ppm Price : \$20.00 for All. Minimum 20 samples or \$5.00 surcharge for ICP or AA and \$15.00 surcharge for ICP/MS. All prices are in Canadian Dollars

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone: 253-3158 \sim

<u>Requiar Assay</u>

Aluminum Antimony Arsenic Barium Bismuth Boron Cadmium Calcium Carbon (Total) Carbon (Total) Carbon plus Sulfur Carbon plus Sulfur Cerium Chromium Copper Copper (non-sulfide Europium Fluorine Gallium Gold (Fire Assay) Gold plus Silver (F Indium Iron (Total) Iron (Ferrous)* Lanthanum Lithium Lead Loss on Ignition Magnesium Manganese Mercury* * Minimum 5 samples	(Eu) (FG) (Ga) (Ge) (Au) ire Assay) (In) (Fe) (La) (La) (LoI) (LOI) (Mg) (Mn) (Hg)	\$ 7.00 7.00 7.00 7.00 7.00 7.00 7.00 9.00 10.00 10.00 10.00 7.00 7.00 7.00 7.0	Moisture Molybdenum Sulfide Niobium Nickel Nickel (Non-sulfide) Palladium Phosphorus Platinum Rubidium Rubidium Selenium Silica Silver (Fire Assay) Sodium Specific Gravity* Strontium Sulfur (Total)• Sulfur (Sulfate) Tantalum Thellium Thallium Thorium* Tin Titanium Yungsten Uranium Yttrium Zinc Zirconium*	(H2O) (H0S2) (NDS2) (ND) (Pd) (Pd) (Pd) (Pd) (Pd) (Pd) (Pd) (Pd	<pre>\$ 5.00 7.00 10.00 7.00 10.00 7.00 10.00 7.00 10.00 7.00 7</pre>		
Other elements by Mass Spec. on request.							
-	-	-					

Multi-Element Assay Price

Arsenic, Antimony, Bismuth, Cadmium, Cobalt, Copper, Gold, Iron, Lead, Manganese, Molybdenum, Nickel, Silver, Thorium, Uranium, Zinc. Price : First element \$7.00 Each Additional \$3.00 All 16 elements \$22.00

Whole Rock Assay Prices S102, A1203, Fe203, Ca0, Mg0, Na20, K20, Mn0, Ti02, P205, Cr203, L0I. Price : First oxide \$7.00 Each Additional \$3.50 All 12 \$9.00 Volume Discounts Available.

Special Fire Assay Prices

Gold (1/2 A/T) Gold + Silver (1/2 A/T)	\$ 8.5 0
	\$12.00
Gold (1 A/T)	\$10.00
Gold - native + 100 mesh	\$ 6.00
Gold, Silver, Platinum, Palladium, Rhodium (1/2 A/T)	\$22.00
Placer conc. for total precious metal or Gold + return of bead	\$15.00

APPENDIX VII

4

ROCK SAMPLE DESCRIPTIONS

NORANDA EXPLORATION COMPANY, LIMITED

N.T.S. 92 F/11

PROPERTY FORBIDDEN PLATEAU - RAINBOW SHOWING

DATE 10 Oct 88

LAB REPORT # 8810 - 040

ROCK SAMPLE REPORT

PROJECT <u>167</u>

					π							r	
MPLE NO.	LOCATION & DESCRIPTION	% SULPHIDES	ТҮРЕ	WIDTH	G∏∧∏ Cu (ppm)		G A R	G A C PD (ppm)				SAMPLE 8 Y	D
				(m)					1	}	ļ		-
<u> 45876</u>	Loc E. of Divers Lake at base of gulley &	30	chip	0.05	4639	3	53,665	15,840	127.8	<u>13,612</u>	<u>48,000</u>	<u>R. M</u> cIn	tos
<u> </u>	cliffs above talus.	-]		 					· · · · · · · · · · · · · · · · · · ·	
<u></u>	- 5 cm thick horizontal vein; 30% qtz,			[·	L						
	15% py, 5% ga, 5% sp, 1-3% Tetrahedrite??									ļ 	 _	<u> </u>	-
	in diorite sample along 2m of vein				 		 				 	· · · · · · · · ·	-
₹45877	Barren wall rx up to 0.5m above R45876.		chip	0.5	99	2	148	4	. 2	126	72	R. McInt	 :osh
	In diorite along 2m			}						 			-
R45878	Barren wall rx up to 0.5m blow R45876. In	_	chip	0.5	202	2	637	150	. 8	31	59	R. McIr	itos
	diorite along 2m.	 		 			 ·			 	 		
R45879	In gulley 200 vert ft. above R45876 clay		chip	0.3	104	1	131	13	.4	128	6	R. McInt	- osh
	fault gouge in diorite				 		 				 	1 	-
R45880	In gulley 30 vert ft, above R45876		grab		, 152	2	1435	249	2.5	18,245	2940	R. McInt	 :osh
	Diorite, w/ min pod 10x30cm 10% py, 5% ga?	,							[L	<u> </u>	
	+ vuggy qtz + weathered tet or arseno.			ļ									
	Heavily weathered. Grab of min.pod.												-
	(Very high graded).	-								· ·			-
<u> </u>							 	 	 			 	-
				<u> </u>		}							-
		i	_	1	.	G	= GEOCH	IEM	A = ASSA	<u></u>	<u> </u>	#. <u></u>	-

NORANDA EXPLORATION COMPANY, LIMITED

N.T.S. 92 F/11

PROPERTY _____ FORBIDDEN PLATEAU (ANDERSON SHOWING)

DATE 10 Oct 88

LAB REPORT # 8810-039

ROCK SAMPLE REPORT

PROJECT 167

	R. McIntos
D	R. McI
62	R. McI
17	R. McI
7	R. McI
-	
- - -	
	17

NORANDA EXPLORATION COMPANY, LIMITED

N.T.S. <u>92 F/11</u>

PROPERTY FORBIDDEN PLATEAU (ANDERSON SHOWING)

DATE 14 Oct 88

ROCK SAMPLE REPORT

PROJECT_167

AMPLE NO.	LOCATION & DESCRIPTION	~	ТҮРЕ	WIDTH		G 🗌 🗛 🗌	G 🗆 A 🗍	GLAD	G	G 🗋 A 🗖	GŪAŪ	SAMPLED
		SULPHIDES		width (m)	(ppm).	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	G 🗋 A 🛄	ΒΥ
R48157	Anderson Showing #1. Pod of massive	MS	Chip		47000	10	2700	2	35.0	470		D.R.B.
	sulfide 3m long x 0.75m thick max		Ро Сру (By)	1							
				1								
R48158	Originally basalt, highly sheared & altered	None Visibl	e Chip	6	470	2	100	2	5.0	120		D.R.B.
	to clays		ļ									
·		<u> </u>		<u> </u>								
R48159	Anderson Showing #2. Pod of massive	MS	Chip	3	1800	2	82	1	1.6	50		D.R.B.
·	sulfide 3m long x 0.6m thick max		Ру Сру Р	9	 	 				 		
	······································	None										
<u>R48160</u>	Wallrock above Pod #2. Silicified		e Chip	3	300	2	110	1	0.4	10		D.R.B.
	intermediate to mafic volcanic					 	 		 			·
<u> </u>		1		-			1					
		1										•
				1								
		}			¦		<u> </u>					
		_		+								
		-					<u> </u>					
		-	<u> </u>		1							
						· ·	<u> </u>			<u> </u>		
	<u> </u>	<u> </u>	L	1	I	G	i = GEOCH	↓ к∈м	A = ASSA	L	<u> </u>	

STATEMENTS OF QUALIFICATIONS

APPENDIX VIII

7

STATEMENT OF QUALIFICATIONS

I, Lyndon Bradish of Vancouver, Province of British Columbia, do hereby certify that:

- I am a Geophysicist residing at 1826 Trutch Street, Vancouver, British Columbia.
- I am a graduate of the University of British Columbia with a B.Sc. (Geophysics).
- 3. I am a member in good standing of the Society of Exploration Geophysicists, Canadian Institute of Mining and the Prospector's and Developer's Association.
- I presently hold the position of Division Geophysicist with Noranda Exploration Company, Limited and bave been in their employ since 1973.

V. Phral Cas

L. Bradish

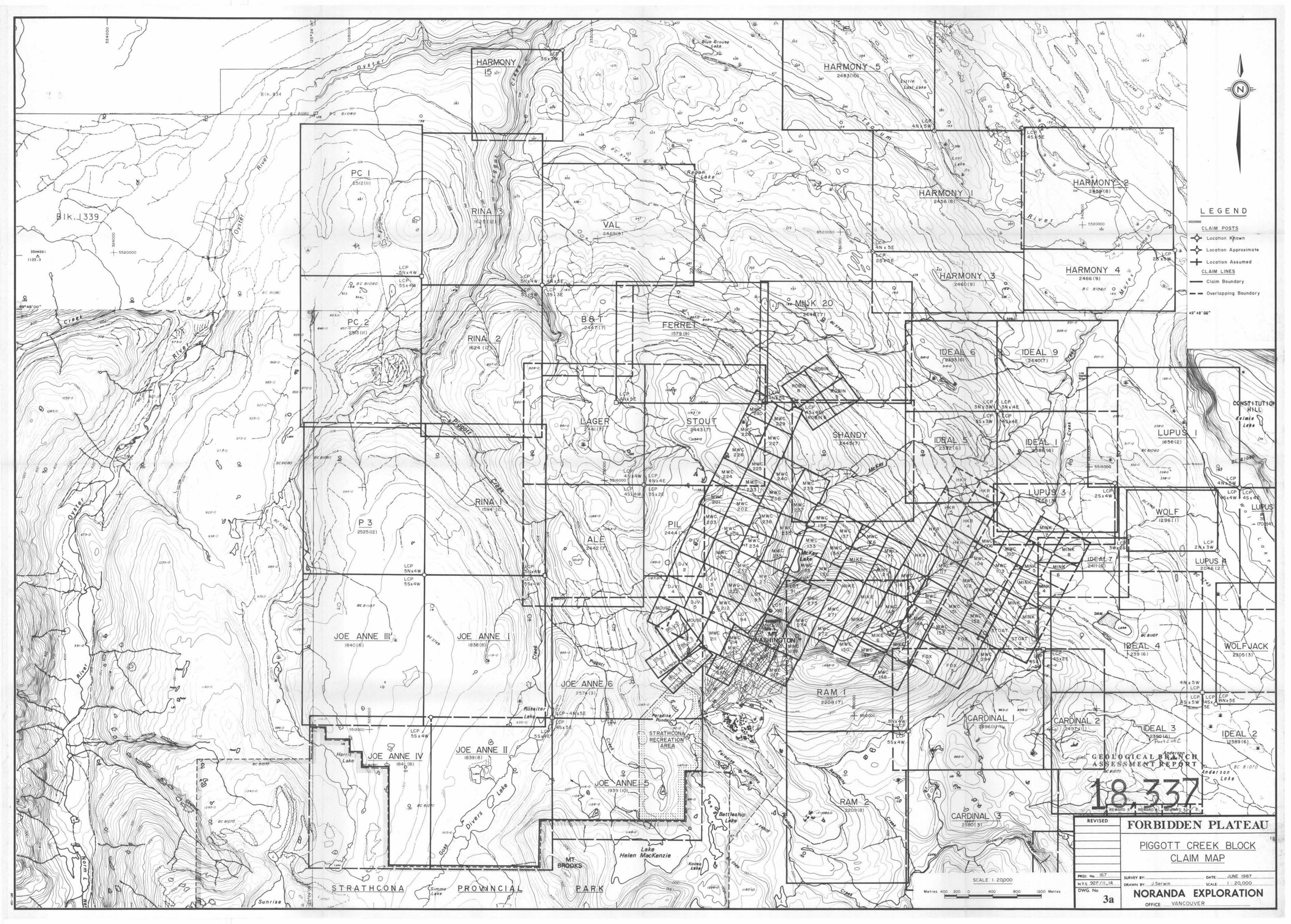
STATEMENT OF QUALIFICATIONS

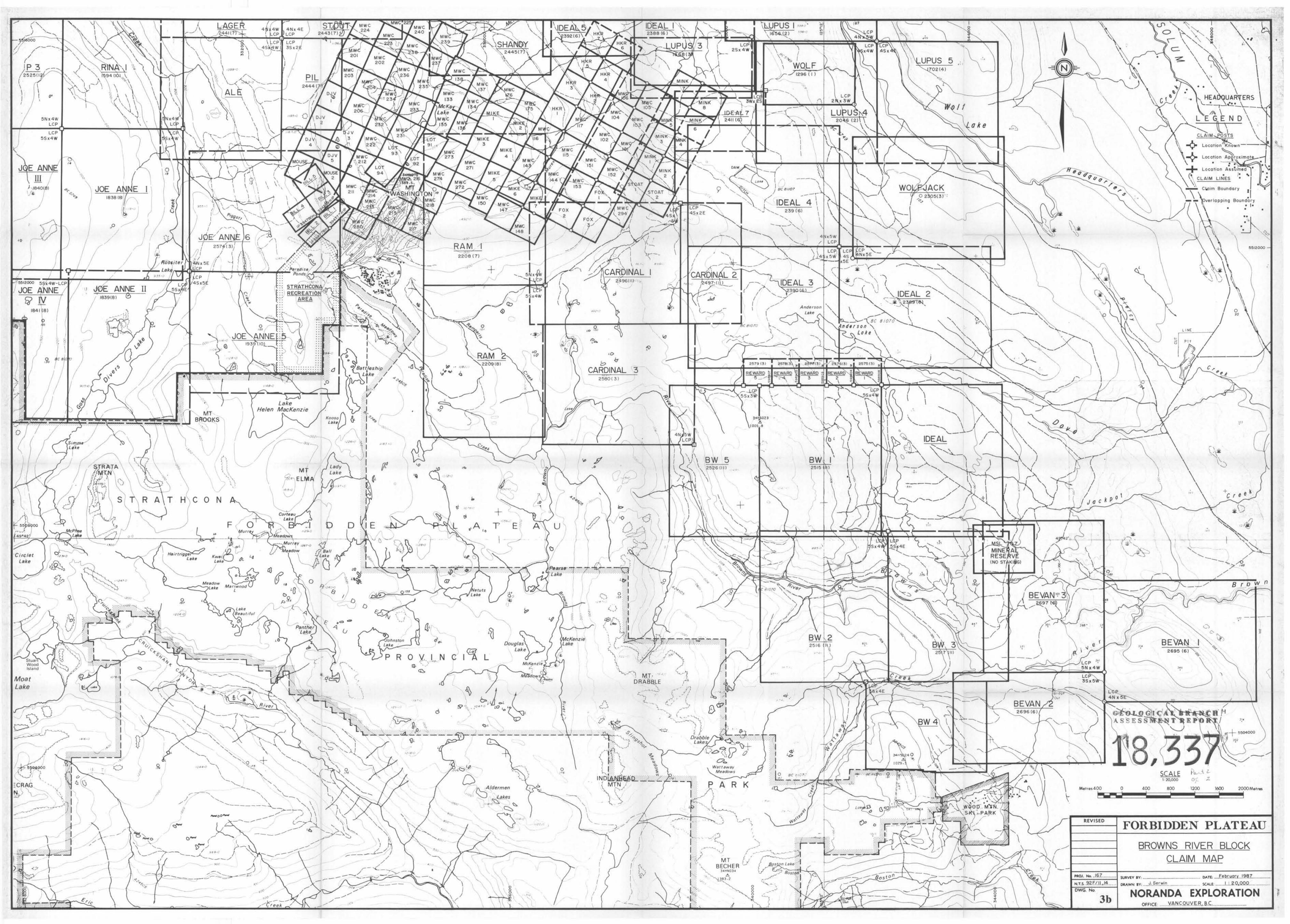
I, Dennis R. Bull of the Municipality of Richmond, Province of British Columbia, do hereby certify that:

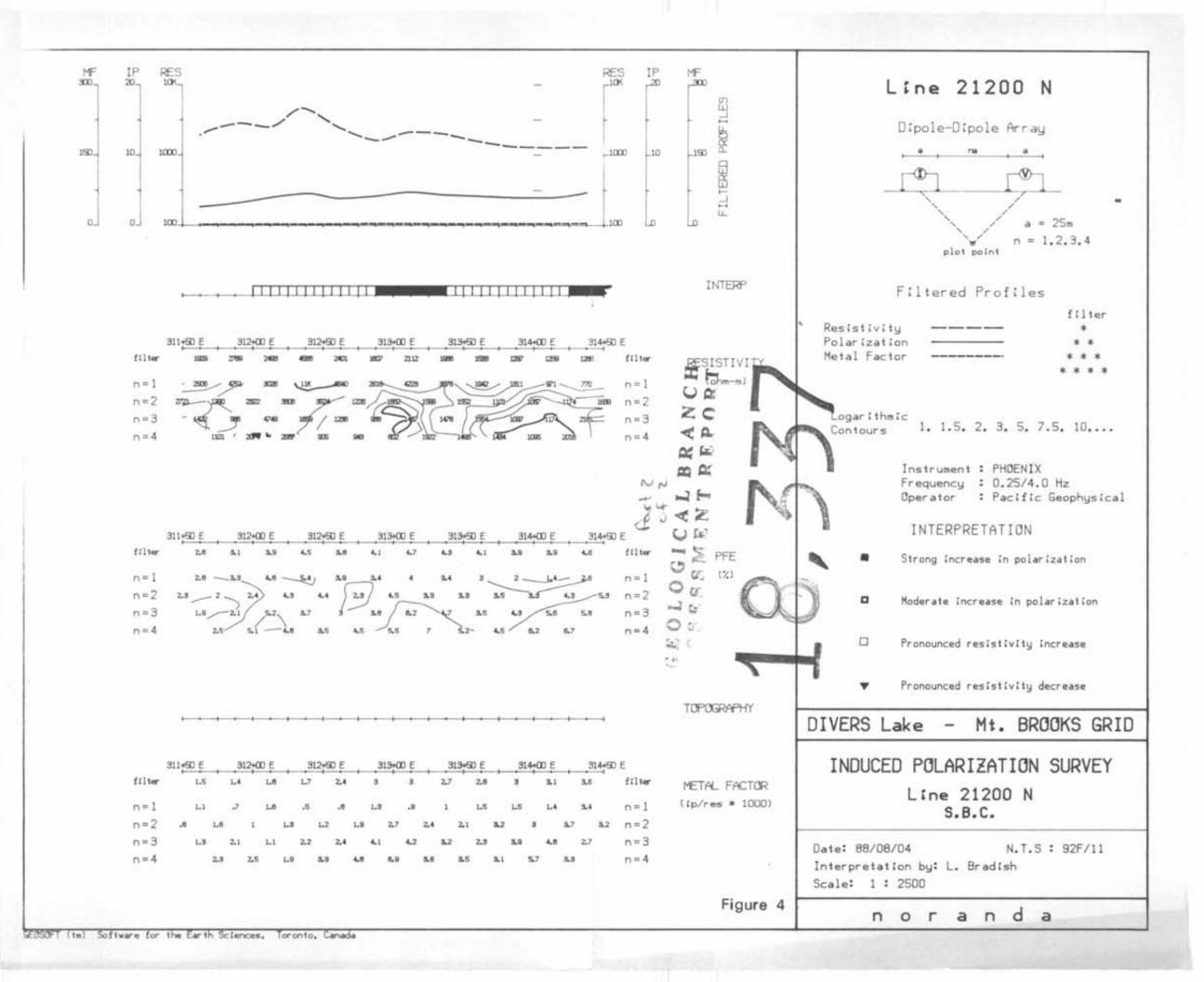
- I am a Geologist residing at 161, 10991 Mortfield Road, Richmond, B.C.
- I graduated from the University of Alberta in 1986 with a BSc (Honours) degree in Geology.
- I have worked in Mineral Exploration since 1974 and have practiced my profession as a Geologist since May, 1987.
- I am presently a Geologist with Noranda Exploration Company, Limited.

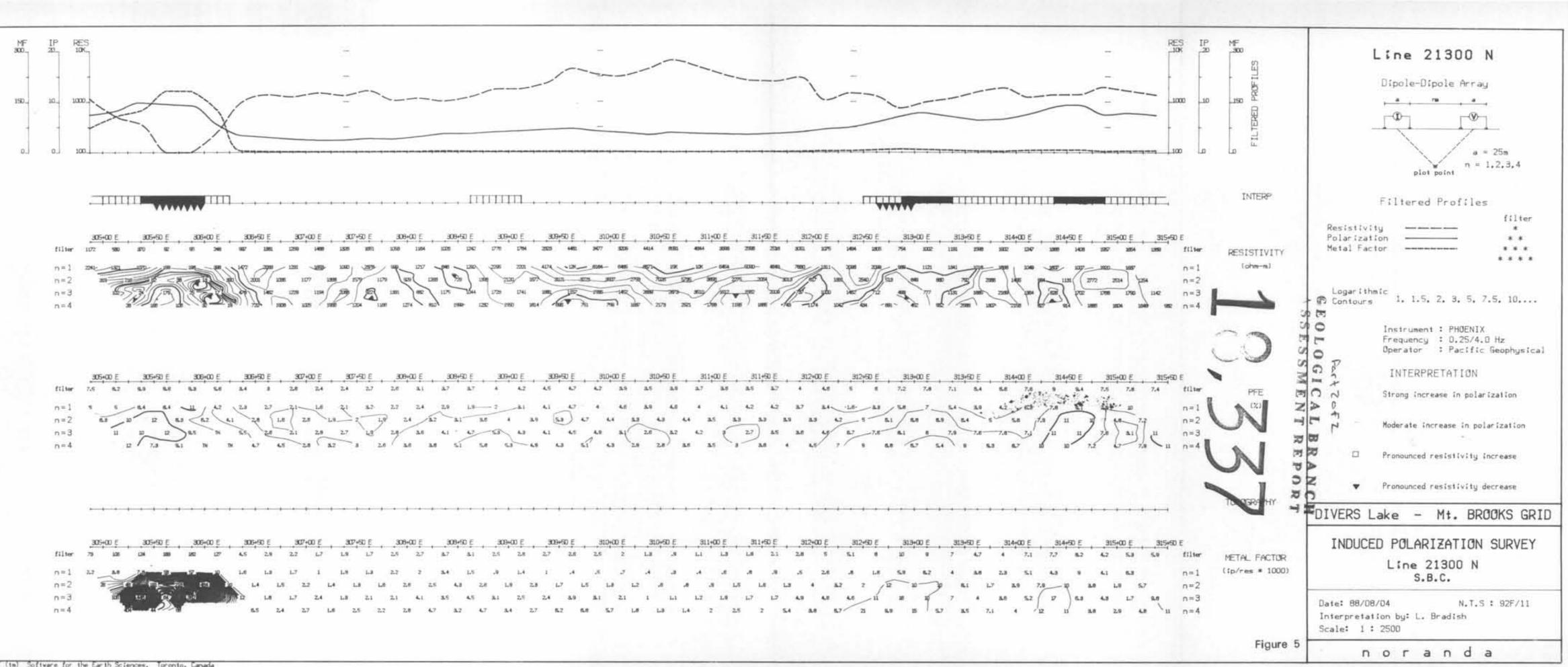
ŝ,

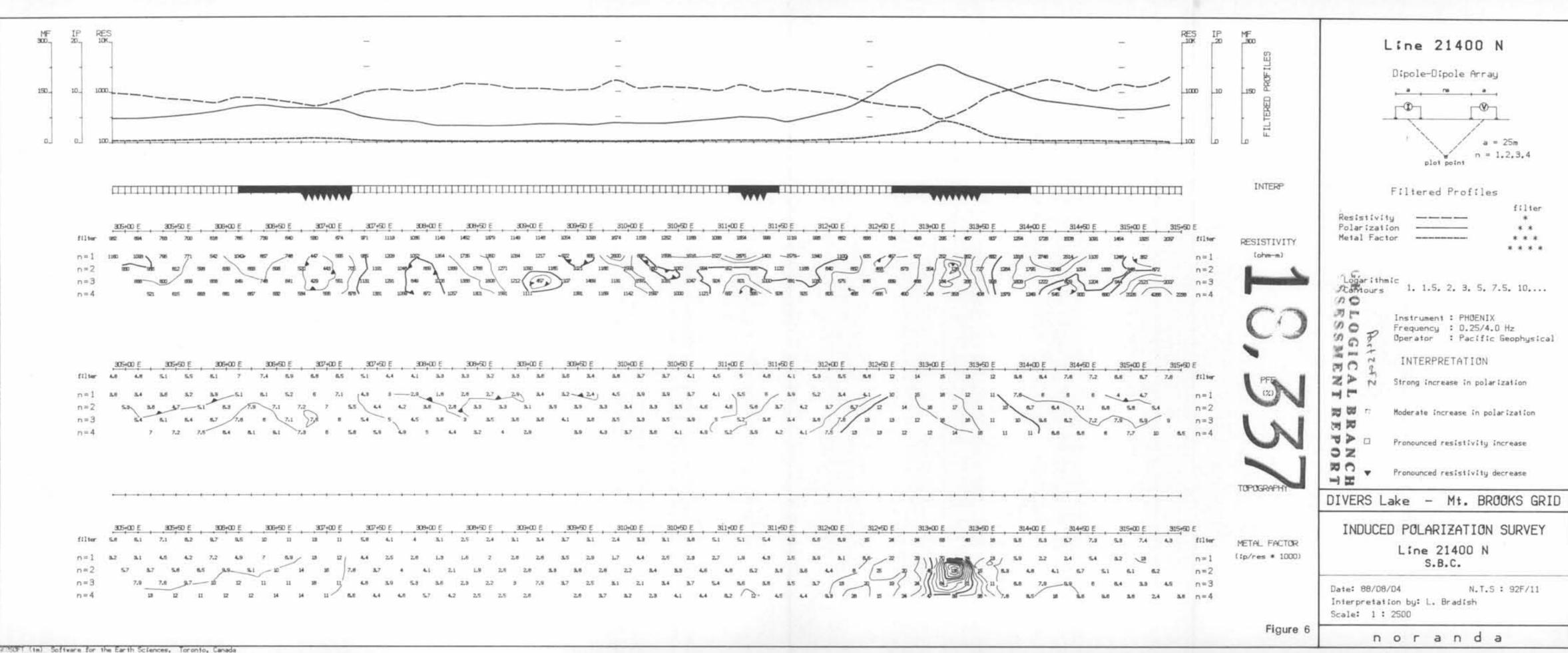
Dennis R. Bull

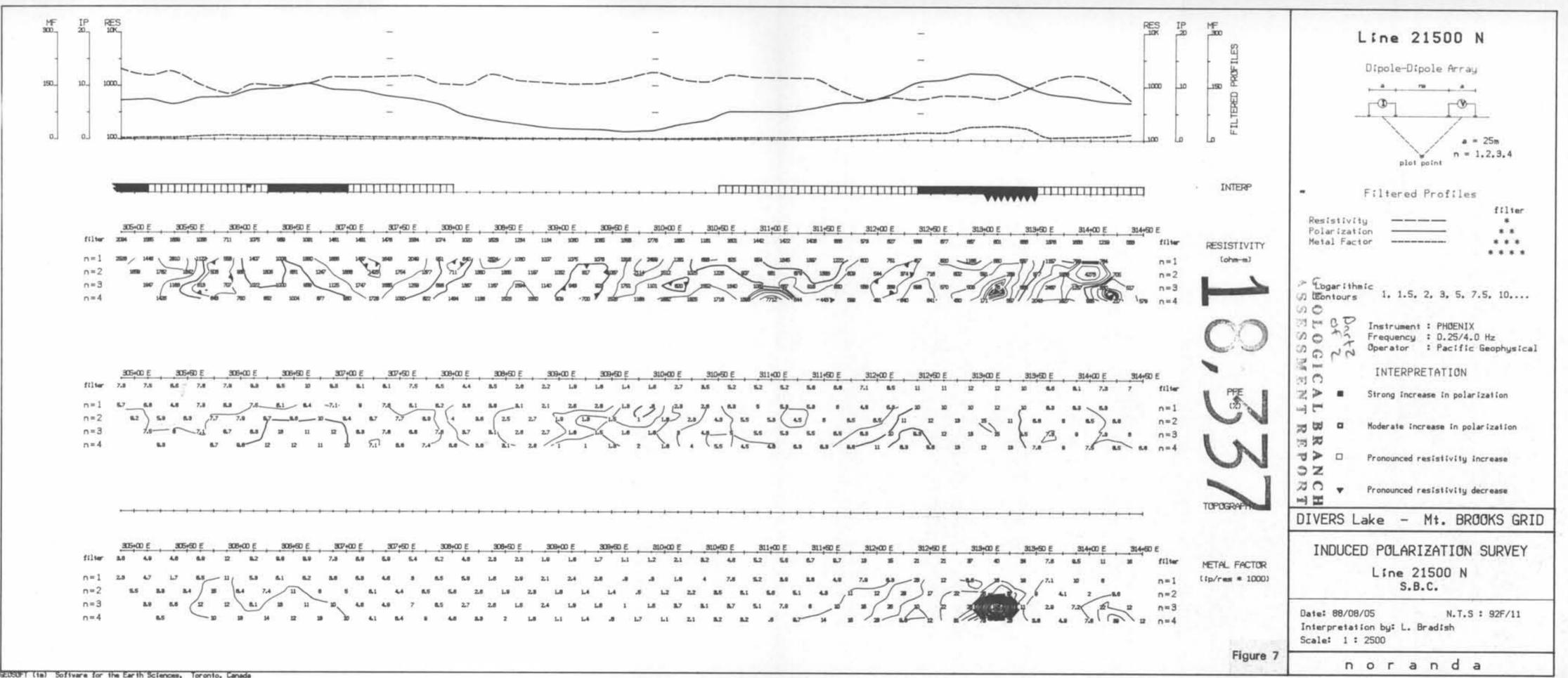

ξţ

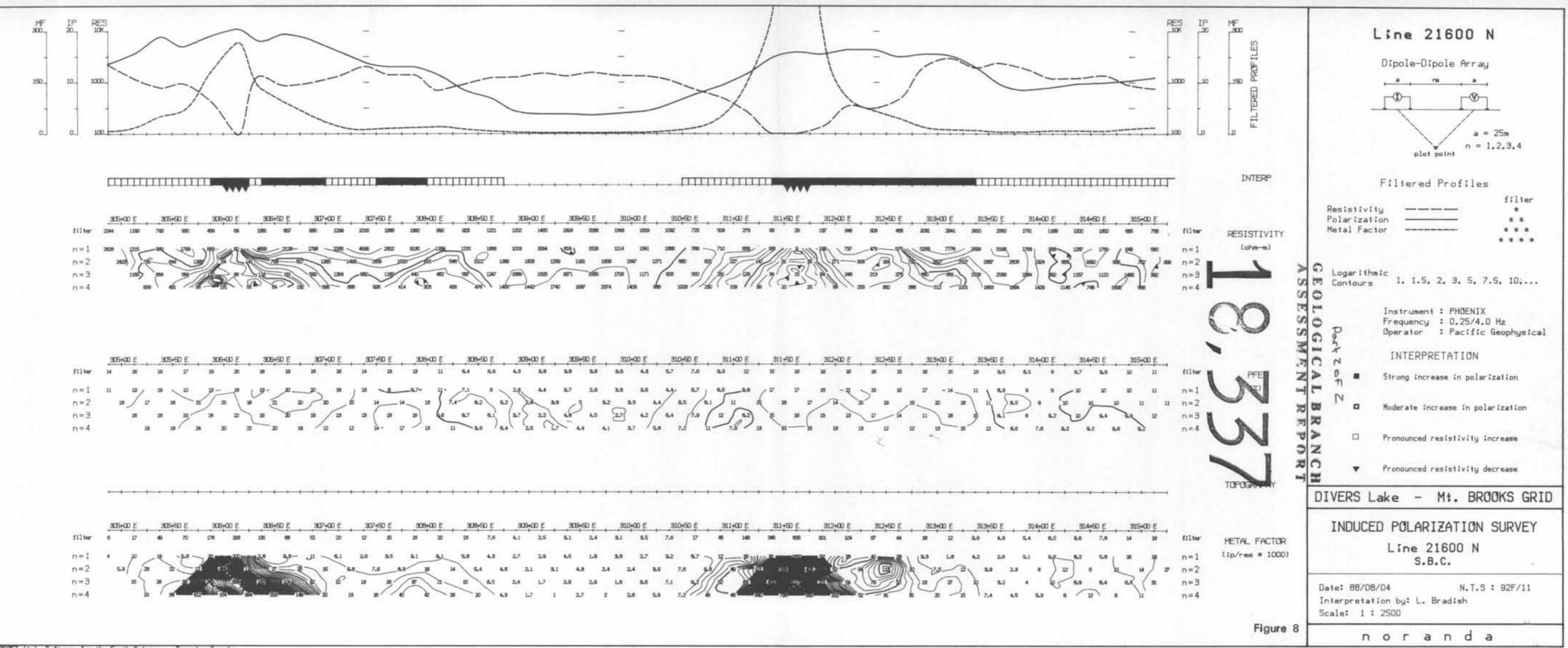

AUTHORS QUALIFICATIONS *********

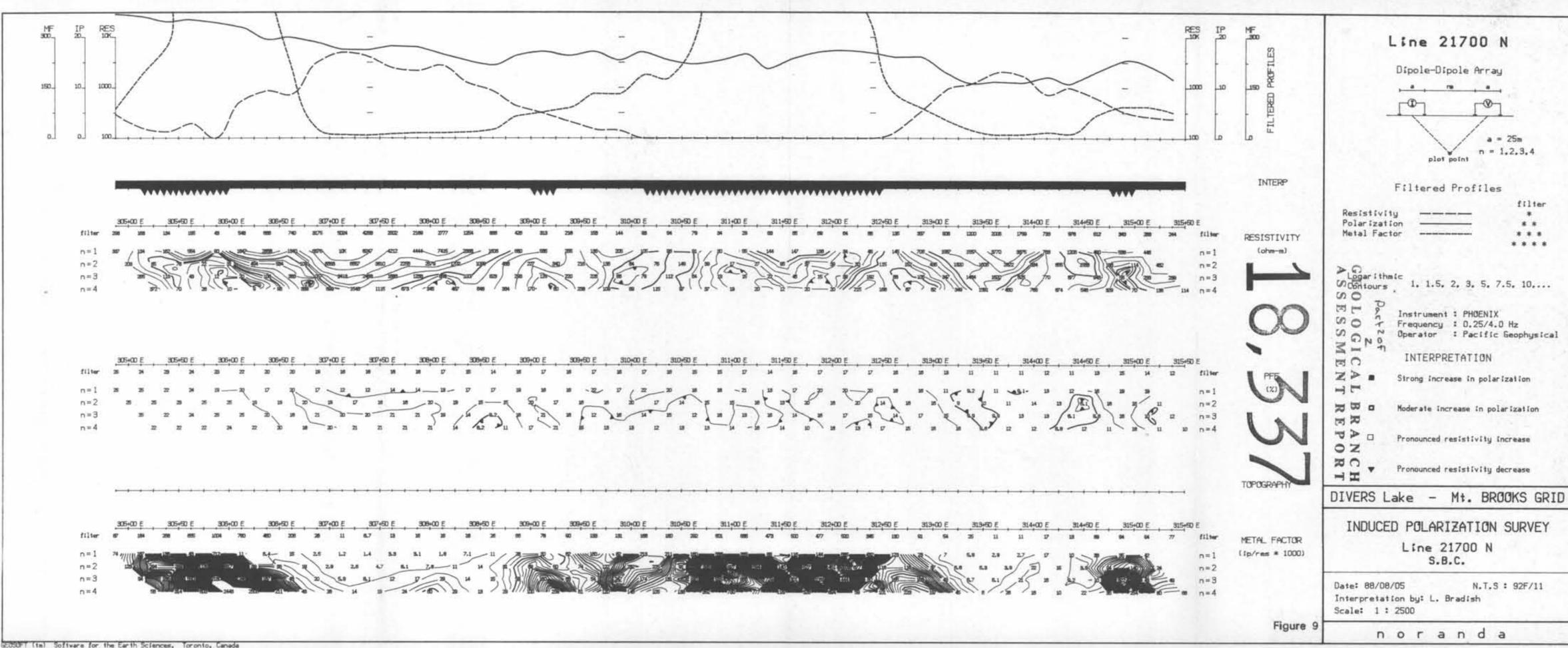

I, Terence J. McIntyre of 894 Pacific Drive, South Delta, Province of British Columbia, do hereby certify that:


- 1. I have been employed as a Geologist for Noranda Exploration Company,Limited (no personal liability) from the Spring of 1987 to the present.
- I graduated from the Montana College of Mineral Science and Technology in 1986 with a B.Sc degree in geological engineering.
- 3. I have worked in mineral exploration and in mines since 1983.

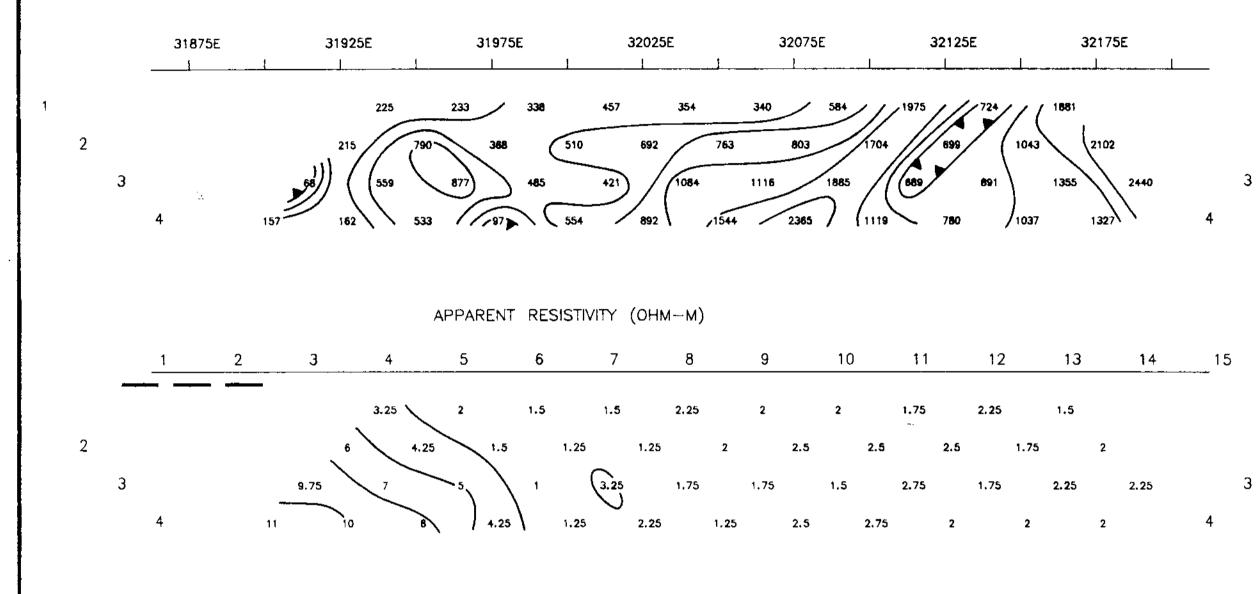

Terence J. McIntyre January 1, 1989







n = 1	al an an an an an an an an an an an an an	8 27 29 24 L	2-424 45 3	8 38 37 41 55 8
n=2	=2 53 38 37 51 53 7.1 7.2 7 55 44 4.2 38 28	3.5 3.3 3.1 3.9	2.9 2.3 2.4	23 25 48 48 50 37
n=3	=3 \$4 \$1 \$4 \$7 7.8 \$ 7.1 7.8 \$ \$45 \$.8			
n = 4	=4 7 7.2 7.5 8.4 8.1 8.1 7.8 8 5.8 5.9 4.9 5 4.4	3.2 4 2.9	3.9 4.8 3.7	3.0 4.1 4.9 52 3.5 4.



GEOSOFT (tm) Software for the Earth Sciences, Toronto, Canada

DIPOLE LENGTH: 25 m

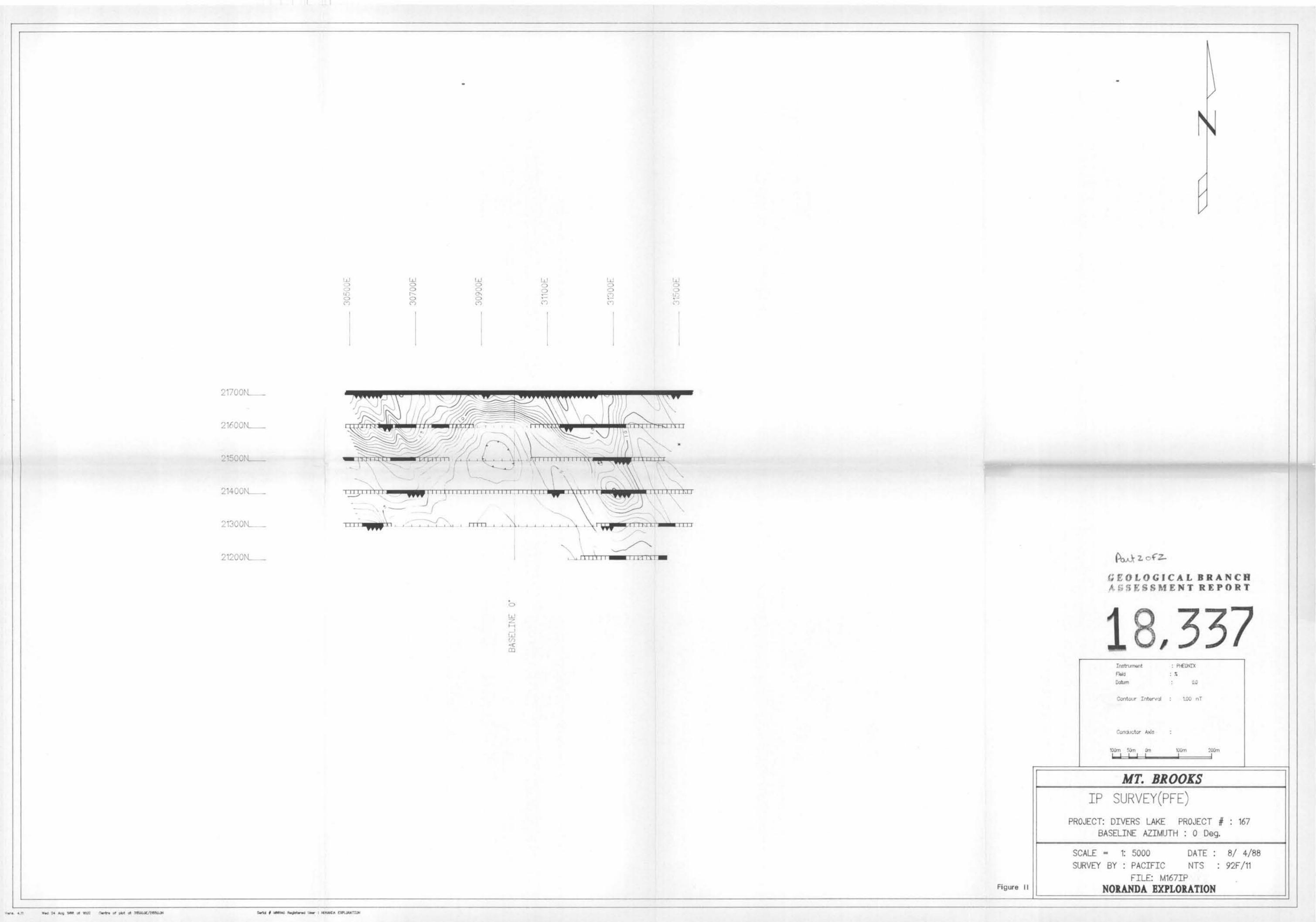
INDUCED POLARIZATION SURVEY

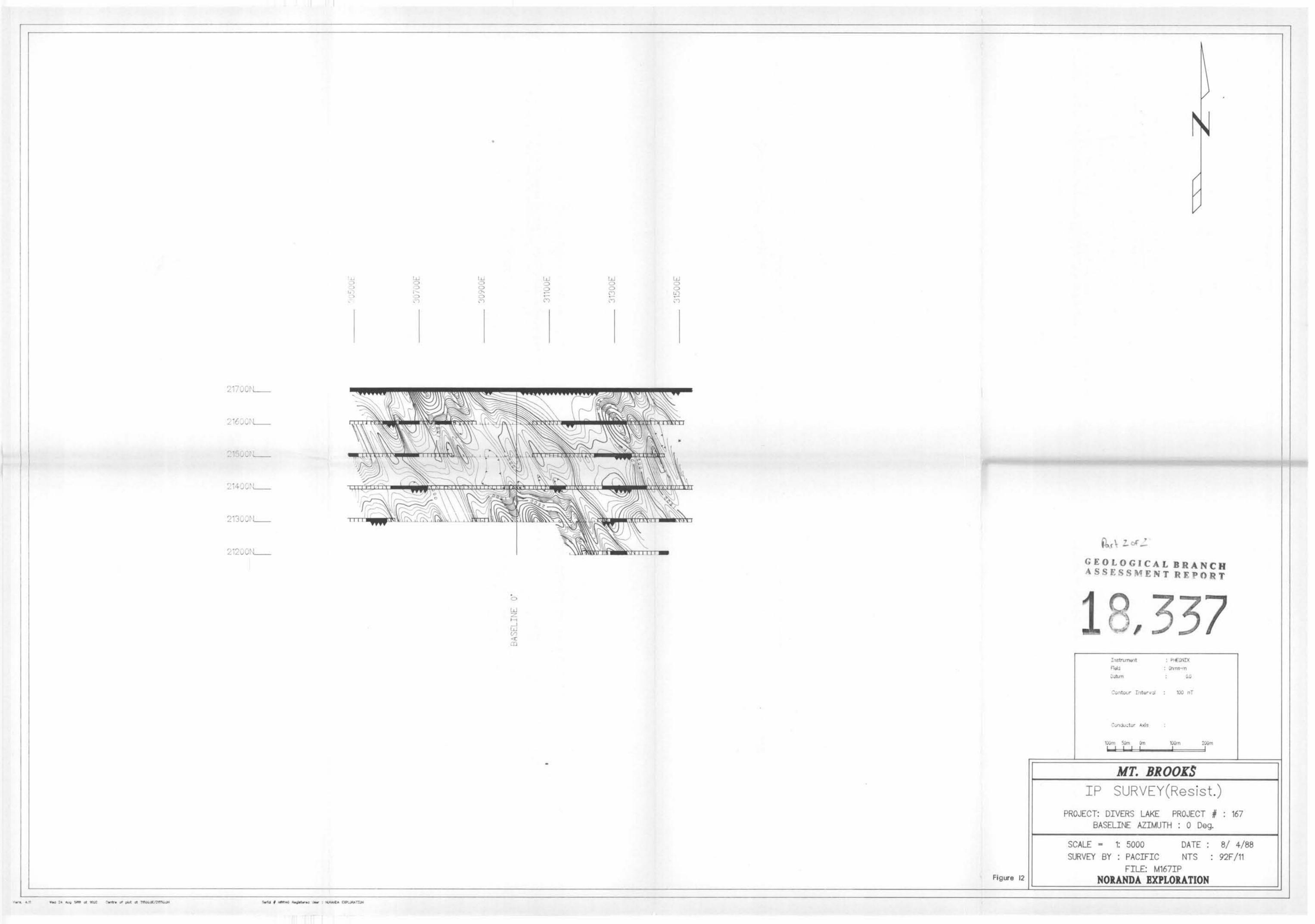
	ARRAY:	DIPOLE-DIPOLE
1	FREQUENCY:	.25/4 Hz
	CONTOUR MULTIPL	_ES:
	1	1.5 2 3 4 5 7 10
	SPACING:	25 m
	SURVEY DATE:	17/11/87
	OPERATOR:	WK
	Rx:	PHEONIX IPV1
	Tx:	PHEONIX IPT1

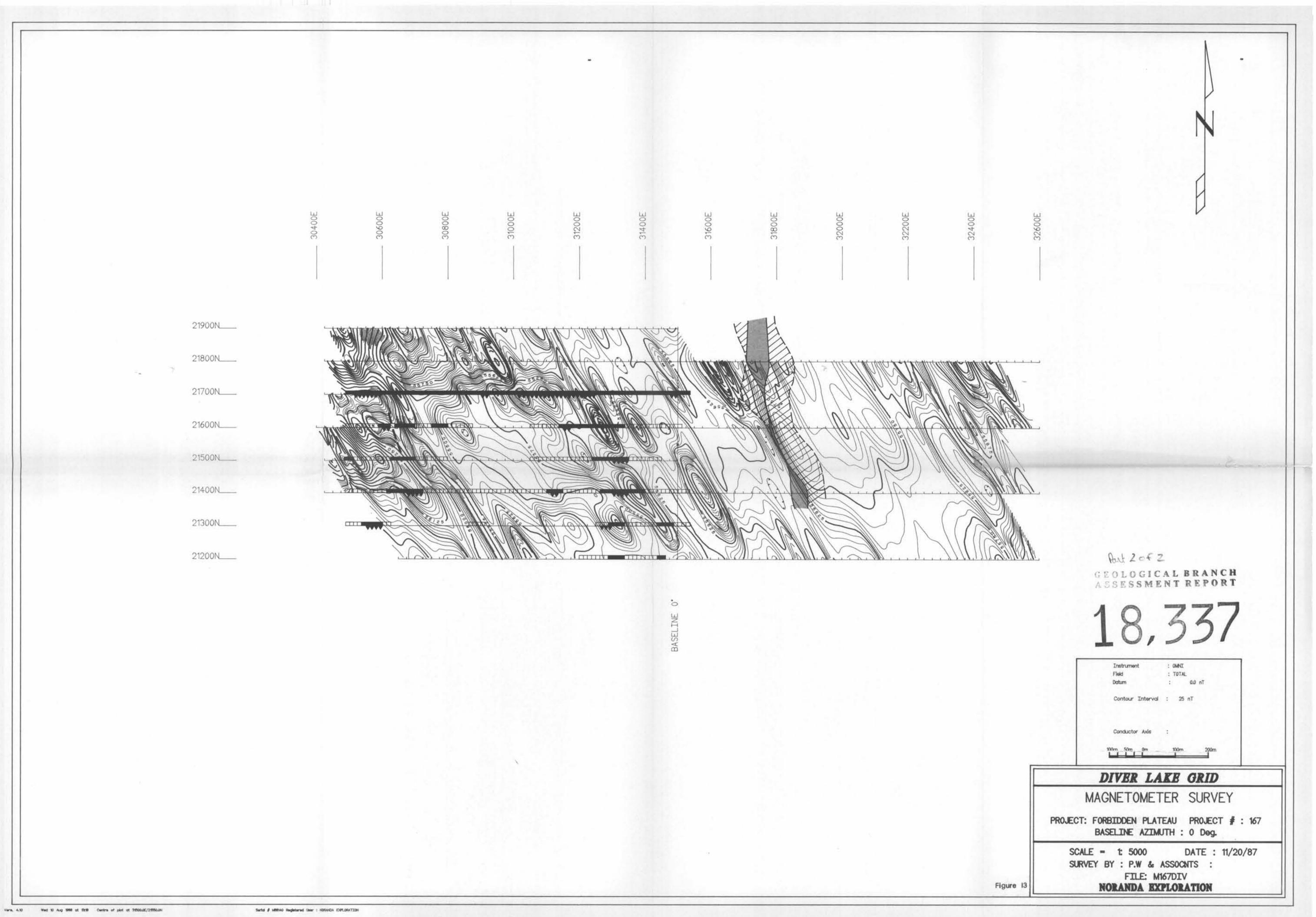
•

2

1


2


DutzofZ GEOLOGICAL BRANCH ASOSSMENT REPORT


18,337

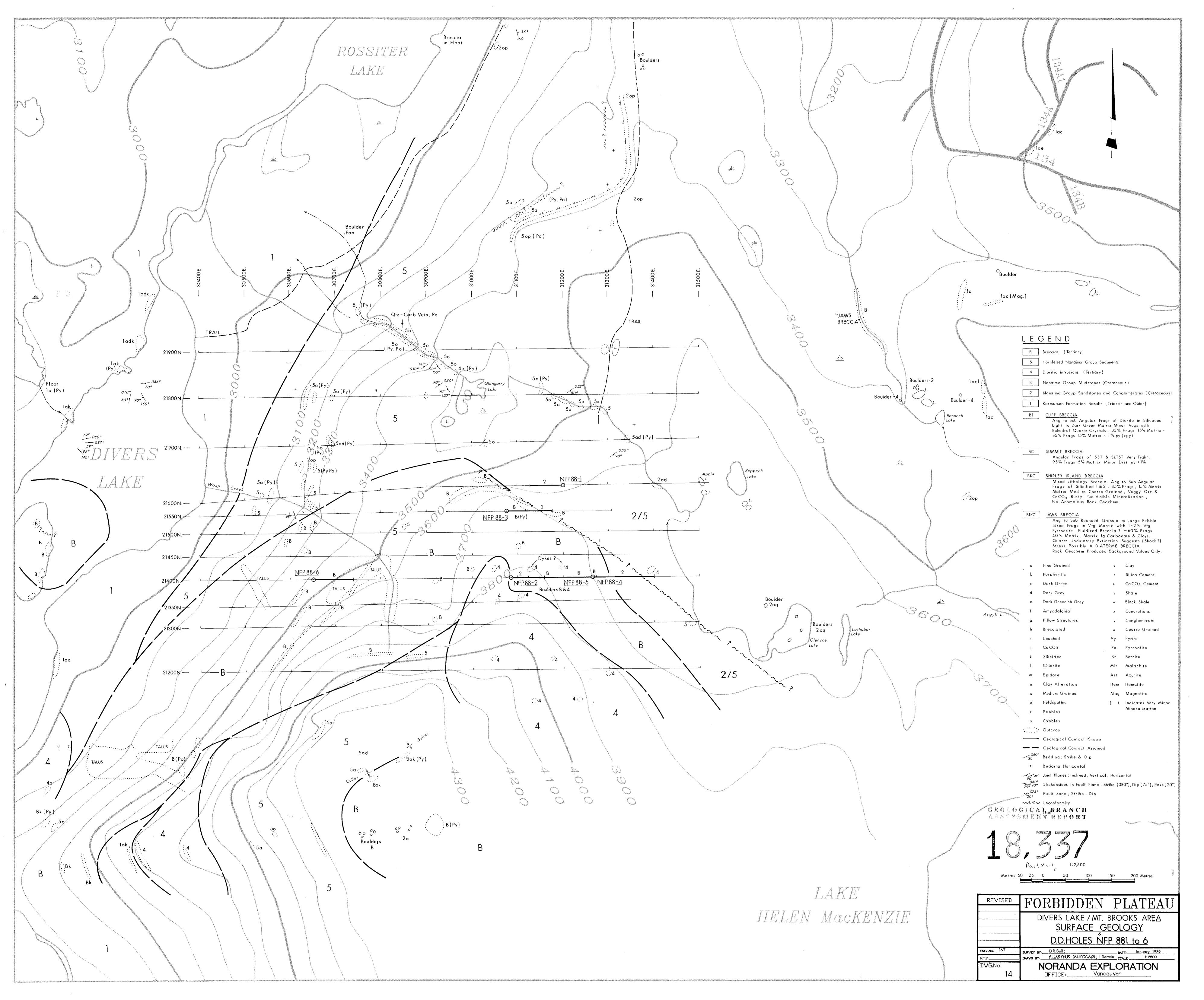
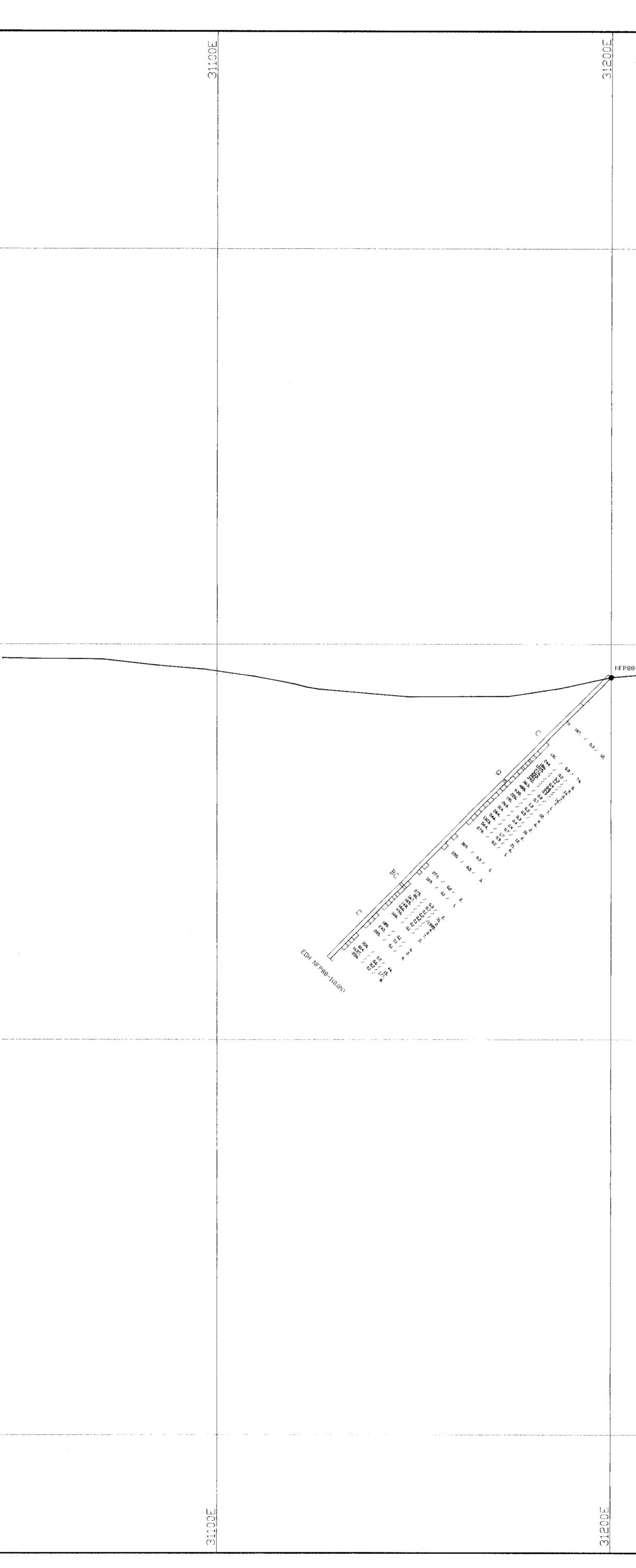
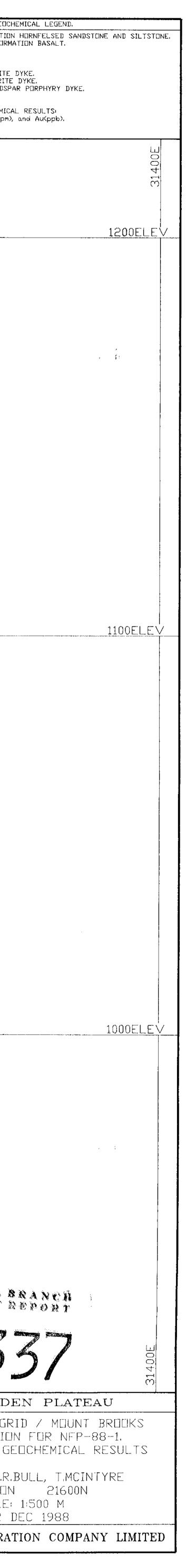
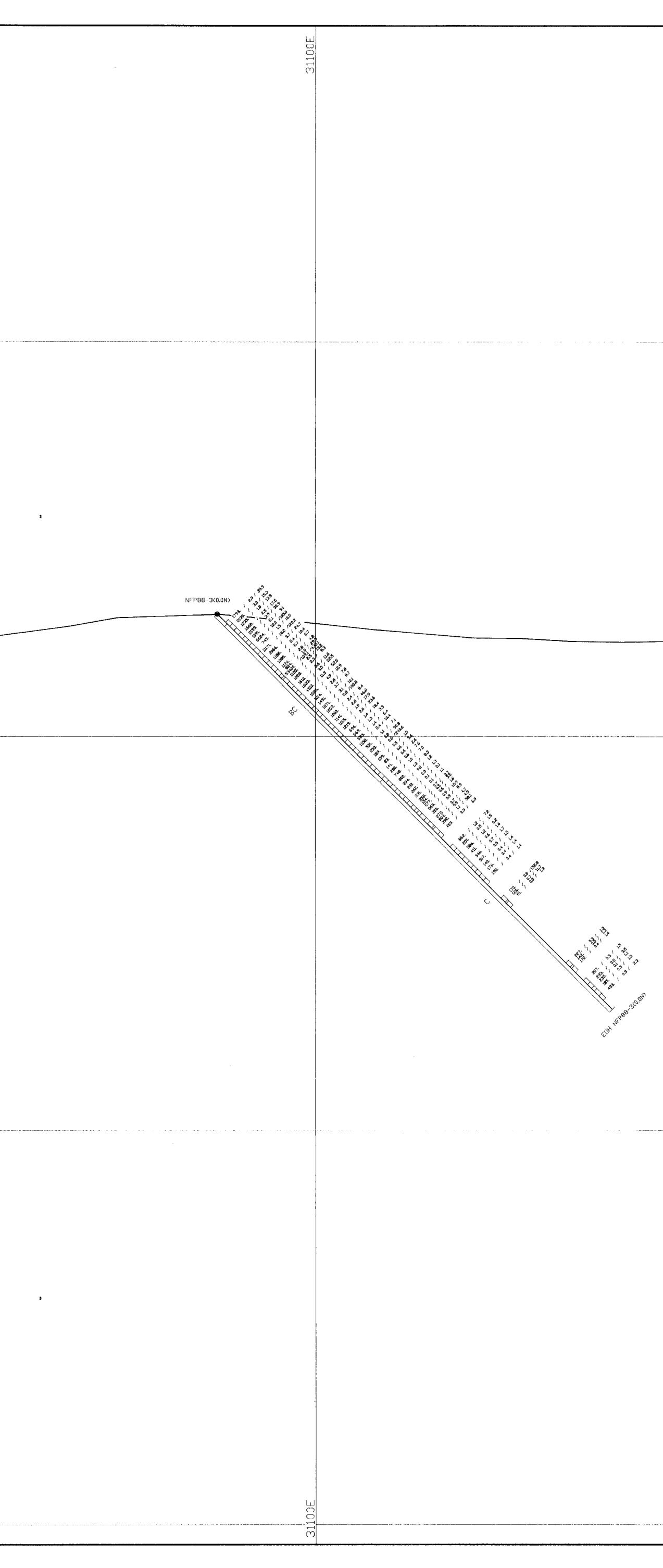
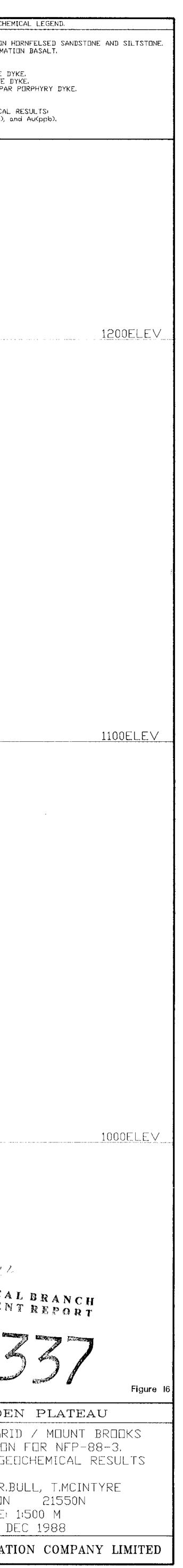

FORBIDDEN PLATEAU DIVER LAKE GRID I.P. SURVEY L 21800.0N AREA: MT. WASHINGTON NORANDA EXPLORATION SCALE = 1: 1250 Surveyed by: WK\MF Date: 17/11/87 Plotted by: WK Project No: 167

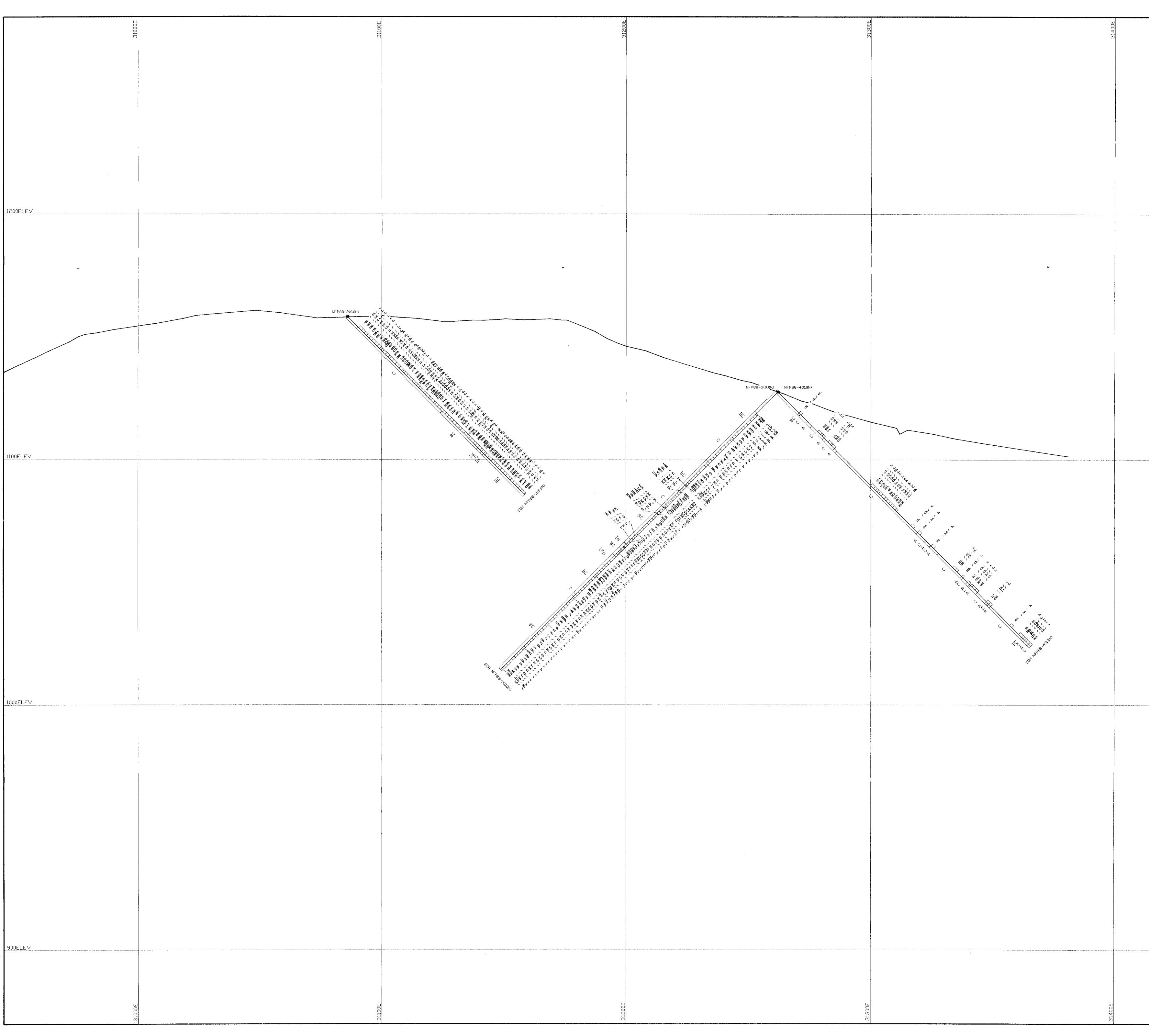
Figure 10





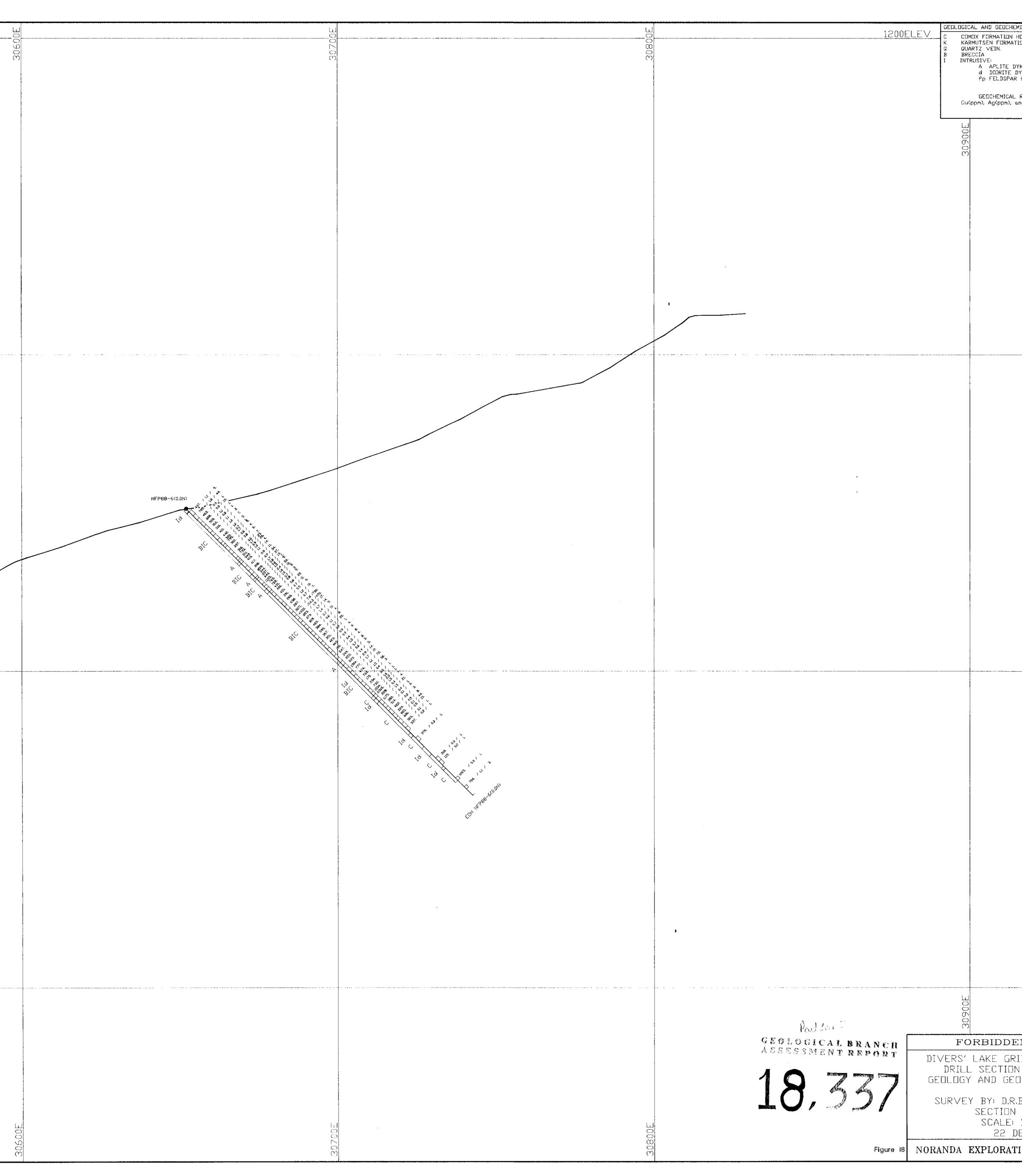

	· · · ·		<u></u>
300E	31000E		
С М П	in the second se		
1200ELEV			
1100ELEV			
	l.		
1000ELEV		·····	· · · · · · · · · · · · · · · · · · ·
900ELEV			
30900E	31000E		
0 M			


	31300E		GEOLOGICAL AND GEOCH C COMOX FORMATION K KARMUTSEN FORMA Q QUARTZ VEIN. B BRECCIA I INTRUSIVE: A APLITE d DIORITE fp FELDSPA GEOCHEMICA. Cu(ppm), Ag(ppm),
*			
		·	
-1(0.0N)			
a			
			PONEZZZ GEOLOGICAL S ASSESSMENT R 10, 3
		900ELEV	FORBIDDI DIVERS' LAKE GR DRILL SECTION GEOLOGY AND GE SURVEY BY: D.R.J SECTION
	31300E	Figure 15	SCALE: 22 I

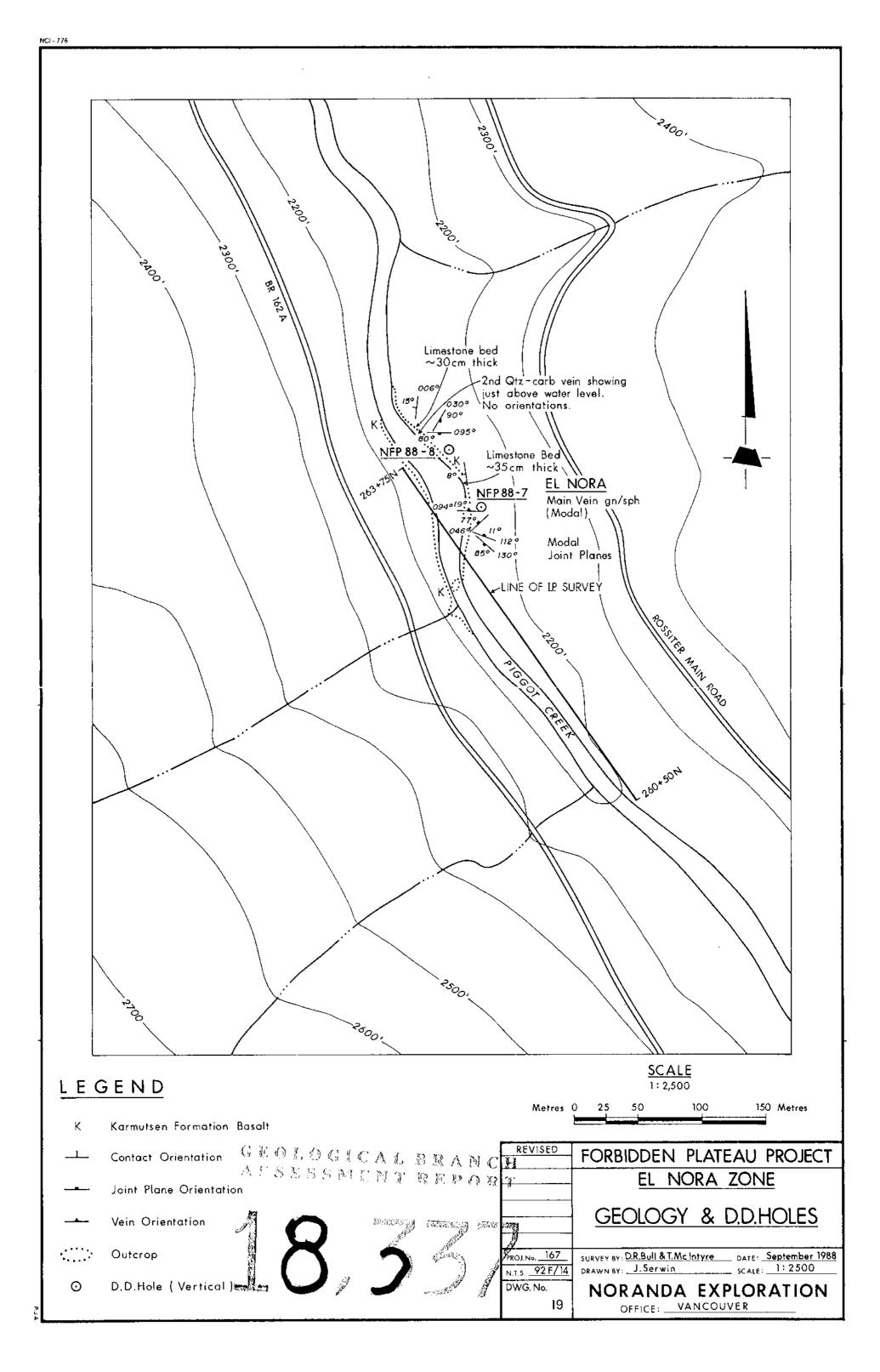


30900E	31000E	
1200ELEV		
.1100ELEV		
1000ELEV ;		
900ELEV 6000000000000000000000000000000000000	31000E 31000E	

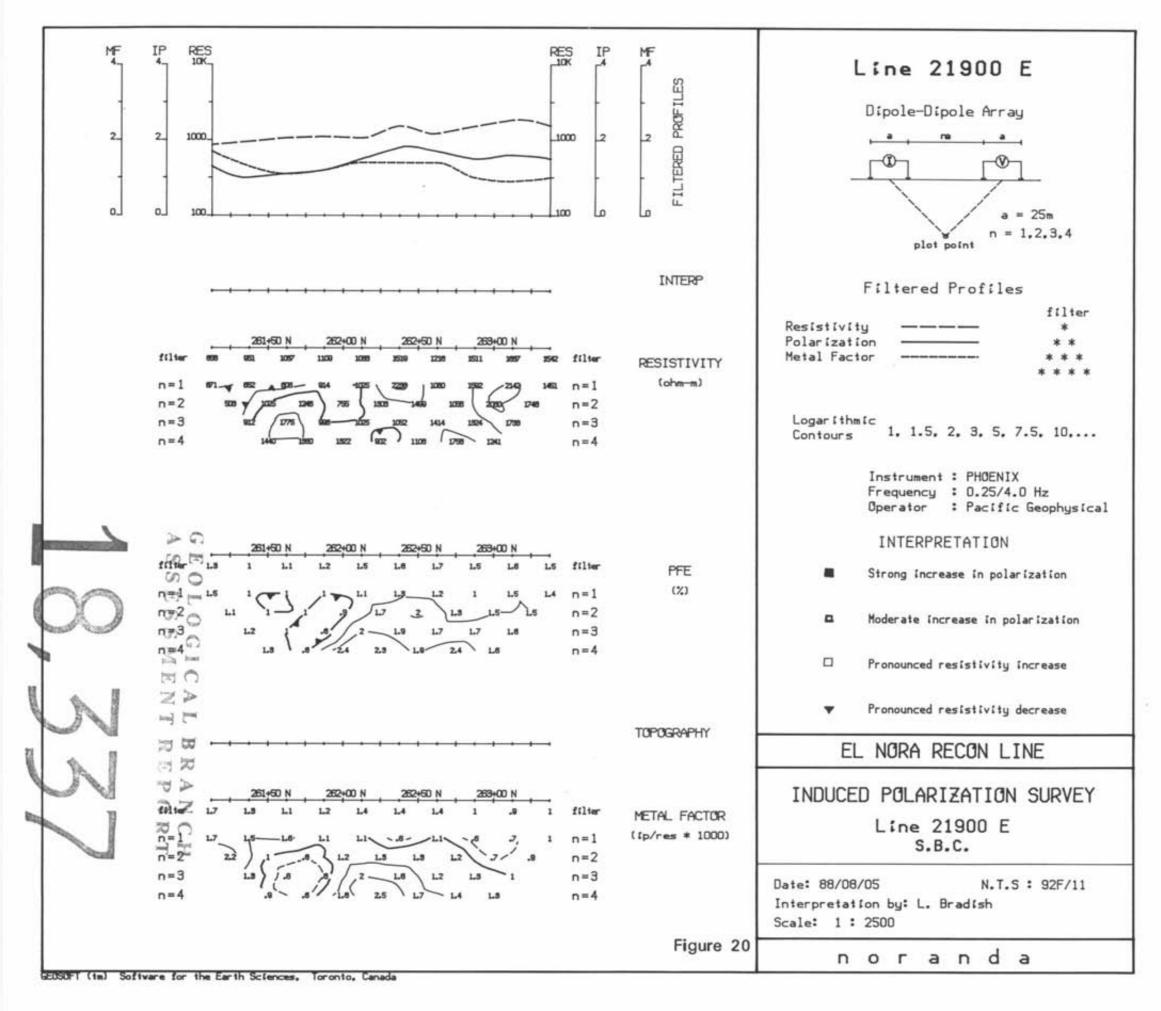
31200E	31300E	GEOLOGICAL AND GEOCHEM C COMOX FORMATION H K KARMUTSEN FORMATI B BRECCIA I INTRUSIVE A APLITE DY d DIORITE D' fp FELDSPAR GEOCHEMICAL Cu(ppm), Ag(ppm), ar
-		
		GEOLOGICA ASSESSMEN
		FORBIDDE DIVERS' LAKE GRI DRILL SECTION GEOLOGY AND GEO SURVEY BY: D.R.B SECTION
31200E	Ш 00 10 900ELE	SCALE: 22 DE NORANDA EXPLORATI

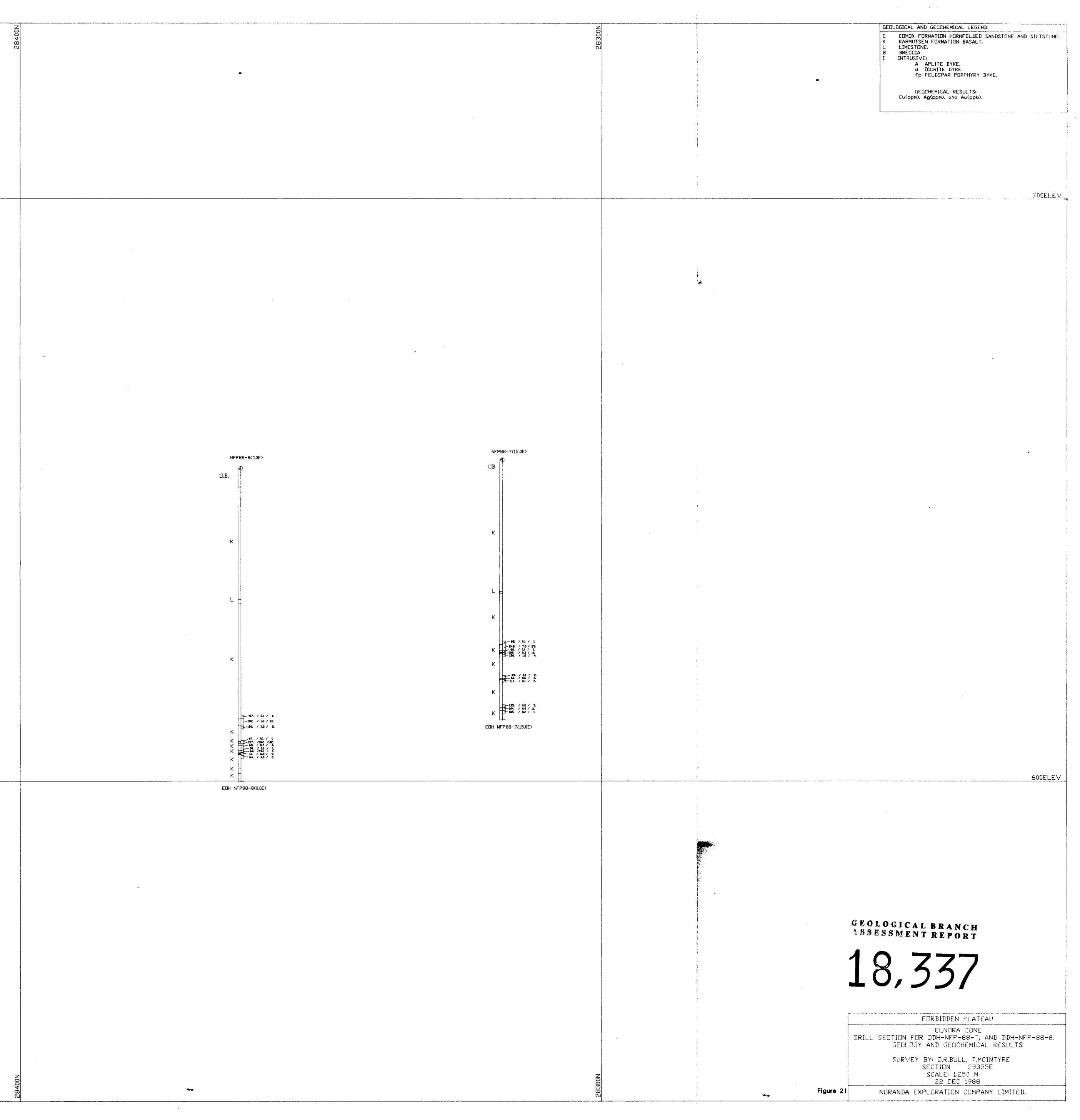


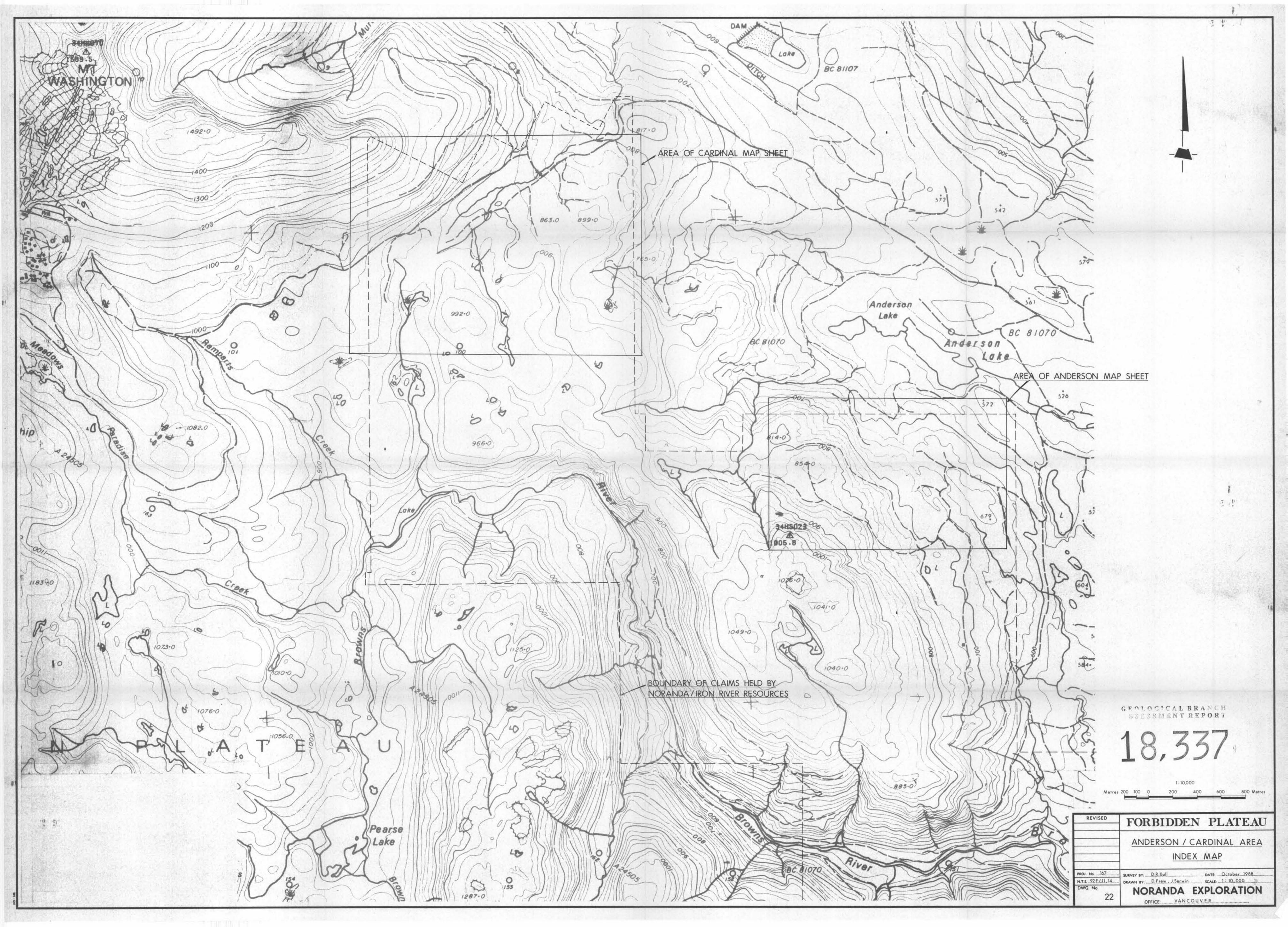
 GEOL	OGICAL AND GEOCHEMICAL LEGEND.
C K B I	COMOX FORMATION HORNFELSED SANDSTONE AND SILTSTO KARMUTSEN FORMATION BASALT. BRECCIA INTRUSIVE A APLITE DYKE. d DIORITE DYKE. fp FELDSPAR PORPHYRY DYKE.
	GEOCHEMICAL RESULTS: Cu(ppm), Ag(ppm), and Au(ppb).
<u></u>	ـــــــــــــــــــــــــــــــــــــ

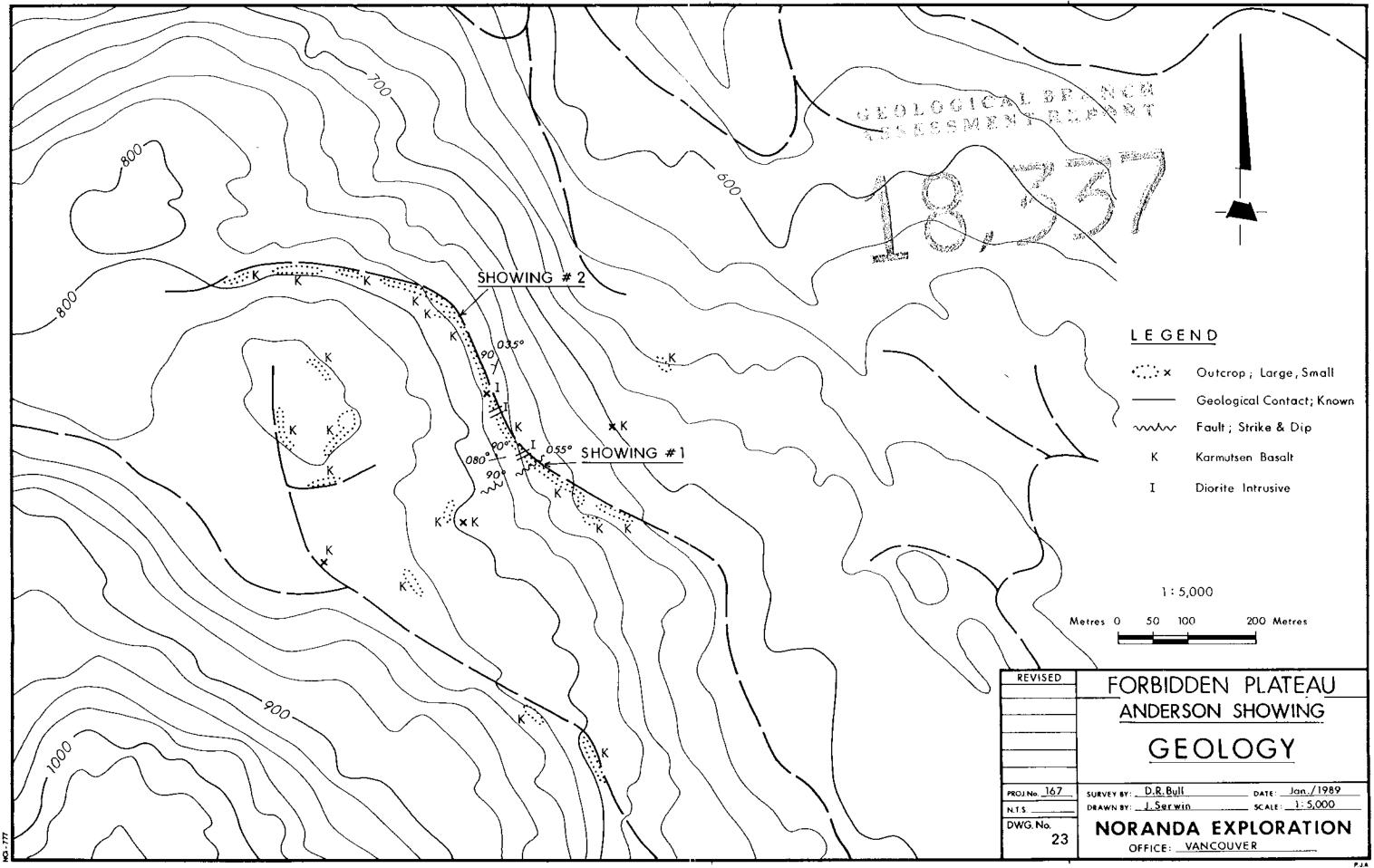

1200ELĖV

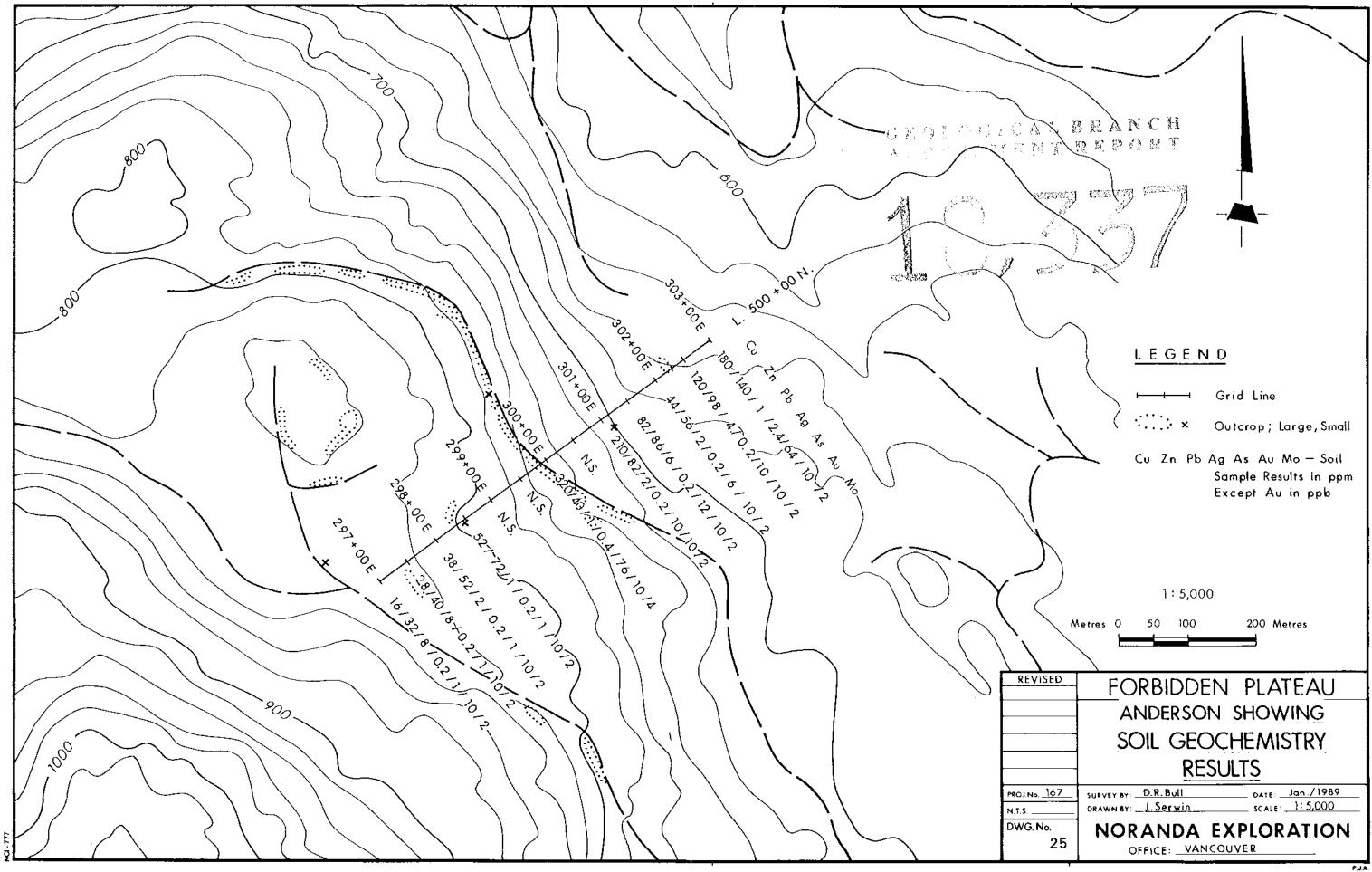
Production and CLOLOGICAL BRANCH ASSESSMENT REPORT and the second second Contractor 1 900ELE FORBIDDEN PLATEAU DIVERS' LAKE GRID / MOUNT BROOKS DRILL SECTION FOR NFP-88-2, NFP-88-4, AND NFP-88-5, GEOLOGY AND GEOCHEMICAL RESULTS SURVEY BY: D.R.BULL, T.MCINTYRE SECTION 21400N SCALE: 1:500 M 20 DEC 1988 Figure 17 NORANDA EXPLORATION COMPANY LIMITED

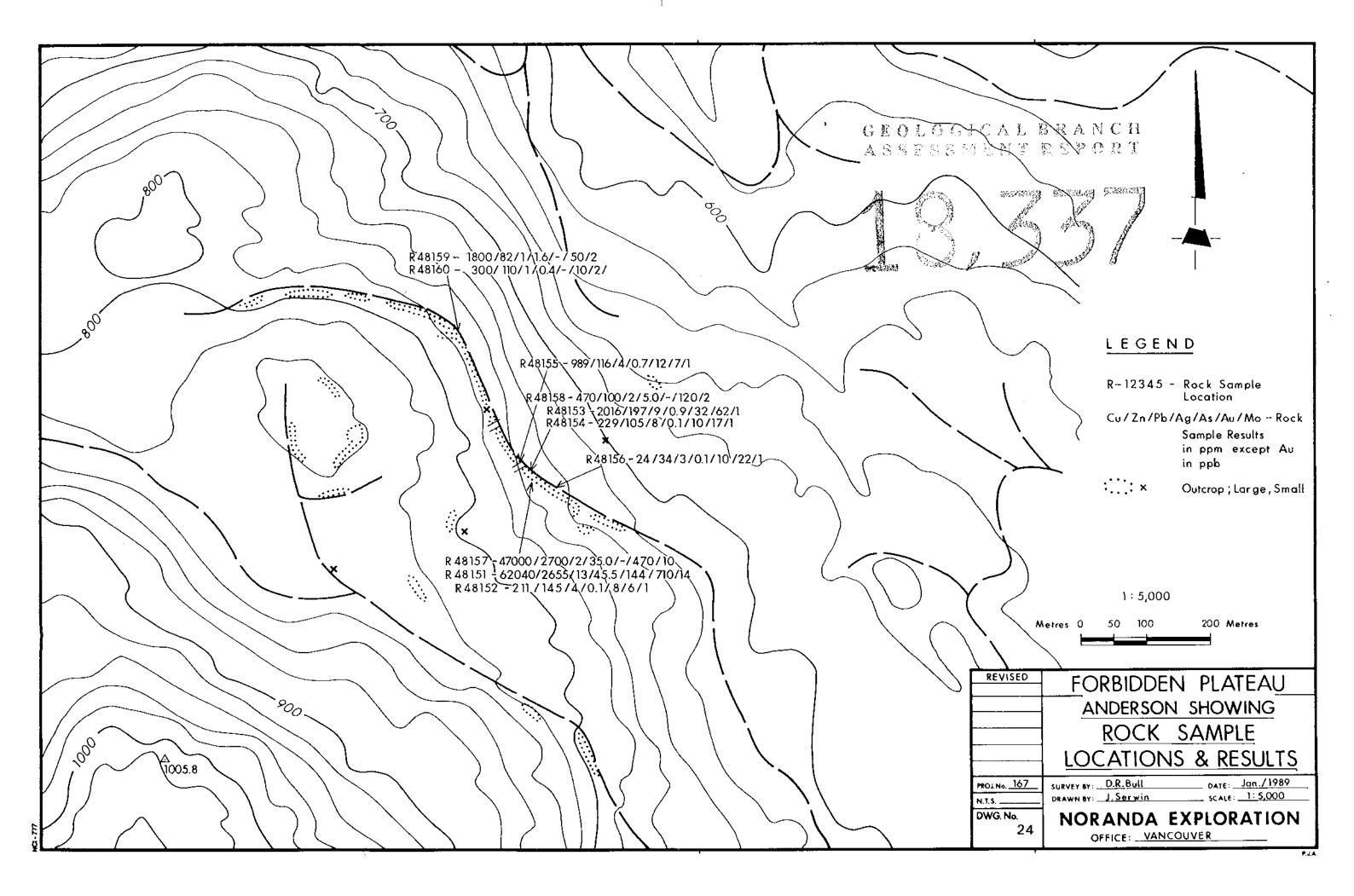

1200ELEV	30200E	
\$ -2		
<u>1100ELEV</u>		
	-	
1000ELEV		
900ELEV		
	30200E	


IDOUFLEY IDOUFL	
BYKE IR PERPHYRY BYKE. L RESULTS. and Aucopolo. IIODELEV IIODELEV 900ELEV PODELEV PO	IEMICAL LEGEND. I HORNFELSED SANDSTONE AND SILTSTONE.
DYSE. R PORPHYRY DYKE. LPSULTS: and Au(ppb). 1100ELEV 1100ELEV 	HITON RASALI'
EN PLATEAU 1100ELEV 1100ELEV 1100ELEV 1100ELEV 1100ELEV 1100ELEV 1100ELEV 1100ELEV 1100ELEV	
2006LEV 2006LEV 2006LEV 2006LEV 2006LEV 2006LEV 2006LEV 2006LEV 2006LEV 2006LEV 2006LEV 2006LEV	
1000ELEV POOELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NEP-88-6. COCHEMICAL RESULTS R.BULL, T.MCINTYRE N 21400N DEC 1988	and Au(ppb).
1000ELEV POOELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NEP-88-6. COCHEMICAL RESULTS R.BULL, T.MCINTYRE N 21400N DEC 1988	*##27_7# · · · · · · · · · · · · · · · · · · ·
1000ELEV POOELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NEP-88-6. COCHEMICAL RESULTS R.BULL, T.MCINTYRE N 21400N DEC 1988	
1000ELEV POOELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NEP-88-6. COCHEMICAL RESULTS R.BULL, T.MCINTYRE N 21400N DEC 1988	
1000ELEV POOELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NEP-88-6. COCHEMICAL RESULTS R.BULL, T.MCINTYRE N 21400N DEC 1988	
1000ELEV POOELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NEP-88-6. COCHEMICAL RESULTS R.BULL, T.MCINTYRE N 21400N DEC 1988	
1000ELEV POOELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NEP-88-6. COCHEMICAL RESULTS R.BULL, T.MCINTYRE N 21400N DEC 1988	
1000ELEV POOELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NEP-88-6. COCHEMICAL RESULTS R.BULL, T.MCINTYRE N 21400N DEC 1988	
1000ELEV POOELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NEP-88-6. COCHEMICAL RESULTS R.BULL, T.MCINTYRE N 21400N DEC 1988	
1000ELEV POOELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NEP-88-6. COCHEMICAL RESULTS R.BULL, T.MCINTYRE N 21400N DEC 1988	
1000ELEV POOELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NEP-88-6. COCHEMICAL RESULTS R.BULL, T.MCINTYRE N 21400N DEC 1988	
1000ELEV POOELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NEP-88-6. COCHEMICAL RESULTS R.BULL, T.MCINTYRE N 21400N DEC 1988	
1000ELEV POOELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NEP-88-6. COCHEMICAL RESULTS R.BULL, T.MCINTYRE N 21400N DEC 1988	
1000ELEV 900ELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 1500 M DEC 1988	1100ELEV
1000ELEV 900ELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 1500 M DEC 1988	
1000ELEV 900ELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 1500 M DEC 1988	
1000ELEV 900ELEV EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 1500 M DEC 1988	
900ELEV POD	
900ELEV POD	
900ELEV POD	
900ELEV POD	
900ELEV POD	
900ELEV POD	
900ELEV POD	
900ELEV POD	
900ELEV POD	
900ELEV POD	
900ELEV POD	
900ELEV POD	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	1000ELEV
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
EN PLATEAU RID / MOUNT BROOKS IN FOR NFP-88-6. OCHEMICAL RESULTS R.BULL, T.MCINTYRE 21400N 1:500 M DEC 1988	
RID / MOUNT BROOKS IN FOR NFP-88-6. Ochemical Results R.BULL, T.MCINTYRE N 21400N 1500 M DEC 1988	
RID / MOUNT BROOKS IN FOR NFP-88-6. Ochemical Results R.BULL, T.MCINTYRE N 21400N 1500 M DEC 1988	
RID / MOUNT BROOKS IN FOR NFP-88-6. Ochemical Results R.BULL, T.MCINTYRE N 21400N 1500 M DEC 1988	EN PLATEAU
COCHEMICAL RESULTS R.BULL, T.MCINTYRE N 21400N 1500 M DEC 1988	RID / MOUNT BROOKS
N 21400N 1:500 M DEC 1988	IN FUR NFP-88-6. Euchemical results
1:500 M DEC 1988	R.BULL, T.MCINTYRE
	: 1:500 M
	ALON COMIANT LIMITED




and the diffe




- <u>-</u>								
-								
700ELEV								
		· · · · · · · · · · · · · · · · · · ·						
			- 					
			2 					
			·					
600ELEV				· · · ·				
			:					
			.,					

