ARIS SUMMARY SHEET

District	Geol	ogist, Nelson				Off	Confide	ntial:	90.01.30
ASSESSMEN	NT RE	PORT 18342	MINI	NG DIV	SION:	Golden			
PROPERTY		Pretty Girl LAT 50 31	00 LO	NG 11	L6 18 0	0			
		UTM 11 559 NTS 082K091	96093 54 N	9628					
CLAIM(S)	•	Burro, Donkey Minnie Ha Ha Beauty (Lot	Horse,As (Lot 257 2573),Old	s,Mule, 5),New Chum	Pretty Chum (Lot 25	Girl (lot 257 74>),De	Lot 257 1),Venu los (Lo	0) s (Lot t 3790	2572))
OPERATOR	(S):	Gold Ford Ca	bital	91),110	ם) וואני	01 3/92)		
AUTHOR (S):	Leriche, P.D	;Strityc	huk Hoj	okins,	J.M.			
REPORT YI COMMODIT	EAR: IES	1989, 148 Pa	ges						
SEARCHED	FOR:	Silver,Coppe	r,Gold						
KEYWORDS	:	Horsetheif C	reek Grou	p,Prote	rozoic	,Slate,	Argilli	te,Qua	rtzite
MODK		Tetranedrite	, Azurite,	Malach:	te				
DONE .	Geo	logical Geoch	amical						
DOME.	GEO	1500.0 ha	SHICOL						
	020.	Map(s) - 1:	Scale(s)	- 1:10	000				
	PET	R 5 sample	e(s)						
l de la companya de la	ROCI	K 50 sample	e(s);AU,	ME					
		Map(s) - 1;	Scale(s)	- 1:10	000				
	SIL	r 12 sample	e(s);AU,	ME					
	SOI	L 633 sample	e(s);AU,	ME					
		Map(s) - 3;	Scale(s)	-1:250)0				
MINFTLE		U82KNE067.08	2KNE030.0	82KNEO.	33.082K	NE025			

LOG NO: 05	103	RD.
ACTION:	NTS 82 Lat Long 1	K/8W,9W 50 ⁰ 31'N 116 ⁰ 18'W
FILE NO:		Alexandra

GEOLOGICAL AND GEOCHEMICAL REPORT ON THE PRETTY GIRL CLAIM GROUP

GOLDEN MINING DIVISIONLOGICAL BRANCH ASSESSMENT REPORT

FILMED

For

GOLD FORD CAPITAL CORP. 1500 - 885 West Georgia Street Vancouver, B.C.

SUB-RECORDER RECEIVED JAN 50 1989 VANCOUVER, B.C.

magazar-

-

- official and

And the second

V6C 3H7

Peter D. Leriche, B.Sc., F.G.A.C. Janet M. Stritychuk Hopkins, Hons.B.Sc. ASHWORTH EXPLORATIONS LIMITED 718 - 744 West Hastings Street Vancouver, B.C. V6C 1A5

November 21, 1988

SUMMARY

200

Ashworth Explorations Limited carried out a field program, consisting of geological mapping, rock sampling, hand trenching, stream sediment sampling and soil sampling on the Pretty Girl Claim Group, for Gold Ford Capital Corp. during September, 1988.

i

The Pretty Girl Claim Group consists of five contiguous mineral claims and nine reverted crown grants (totalling 88 units) in the Golden Mining Division. The claims are situated 18 kilometres west of Invermere, B.C.

The area of the subject claims has a lengthy production and prospecting history, mainly for sediment-hosted silver and base metal prospects. The most prolific producer was the Paradise Mine (located one kilometre south of the Pretty Girl property) which saw 64,635 tonnes mined and produced 22,928,788 grams silver, 7,247,973 kilograms lead, 3,623,589 kilograms zinc, and 995 grams gold from 1901 to 1952.

Previous work on the subject claims from 1898 to 1919 found the Pretty Girl, Delos and Trojan showings. Assays on the Pretty Girl showing graded up to 26.68% copper, 55 oz/ton silver and 0.2 oz/ton gold. Both the Pretty Girl and Trojan showings saw limited silver and copper production.

The subject property is underlain by a thick sequence of shale-slate, quartz grit and quartz pebble conglomerate, limestone, sandstone and quartzite belonging to the Proterozoic Horsethief Creek Group. Mineralization and mineralized quartz veins occur along shale bedding planes. The Horsethief granitic batholith probably provided a heat source and the fissile shale unit provided a conduit for ascending mineralizing solutions.

a provincia de la companya de la com

a second

The 1988 exploration program was successful in locating and systematically sampling the Pretty Girl and Trojan showings. Hand trenching and surface sampling on the Pretty Girl showing has revealed a 25.0 metre long, 1.18 metre wide mineralized horizon grading 2.68 oz/ton silver and 1.67% copper. Two dump samples assayed 34.60 oz/ton silver, 16.40% copper and 30.62 oz/ton silver and 12.60% copper. Nine samples from the Trojan showing averaged 1.46% copper over 1.22 metres. Both the Pretty Girl and Trojan showings are open along strike and dip.

A second and third phase exploration program has been recommended. Phase II will consist of a legal survey, geological mapping, rock sampling, road building, backhoe trenching, hand blasting and diamond drilling at an estimated cost of \$153,000. Phase III is contingent upon favourable results from Phase II. It would consist of further diamond drilling to delineate grade and tonnage.

TABI	LE OF	F CONTENT	<u>rs</u>		Page	No.
	SUM	IMARY				i
1.	INTI	RODUCTIO	N			1
2.	LOC	ATION, AC	CESS AND PHYSIOGRAPHY			1
3.	CLAI	IM STATUS	5			3
4.	ARE	A HISTORY	7			5
5.	PRE	VIOUS WO	RK			11
6.	REG	IONAL GEO	DLOGY			16
7.	1988	PROGRAM	I			20
	7.1	Scope and	l Purpose			20
	7.2	Methods a	and Procedures			20
	7.3	Property	Geology			22
	7.4	Mineraliza	ation and Rock Geochemistry			23
		7.4.1	Geological Model			23
		7.4.2	Pretty Girl Showing			24
		7.4.3	Trojan Showing			26
		7.4.4	Other Showings			28
	7.5	Stream S	ediment and Soil Geochemistry			29
		7.5.1	Gold in Soils			29
		7.5.2	Copper in Soils			30
		7.5.3	Zinc in Soils			30
	7.6	Discussion	of Results			30
8.	CON	CLUSIONS				31
9.	REC	OMMENDA'	TIONS			32
10.	PRO	POSED BU	DGET			33
	PER	SONNEL				34
	REF	ERENCES				35
	CER	TIFICATES			37 8	£ 38
	ITEN	MIZED COS	T STATEMENT			39

- statistical -

- Problem -

n all all a

「日本の

LIST OF FIGU	JRES	Page No.
Figure 1:	General Location Map	2
Figure 2:	Claim Location Map	4
Figure 3:	Regional Geology	17
Figure 4:	Property Geology	In pocket
Figure 5:	Pretty Girl Showing	25
Figure 6:	Trojan Showing	27
Figure 7:	Rock and Stream Sediment Geochemistry	In pocket
Figure 8:	Grid Map	In pocket
Figure 9:	Soil Geochemistry - Gold	In pocket
Figure 10:	Soil Geochemistry - Copper & Zinc	In pocket

LIST OF APPENDICES

- Andreas

Sec.

1000

- Andrews

and the second s

and the second second

14.26.28.20 Tr.

Appendix	A:	Rock Sample Descriptions
Appendix	В:	Analytical Reports
Appendix	C:	Analytical Techniques
Appendix	D:	Statistical Analysis by Tony Clark Consulting Services
Appendix	E:	Petrographic Reports
Appendix	F:	Original Survey Maps and Notes

1. INTRODUCTION

and the second

This report was prepared at the request of Gold Ford Capital Corp. to describe and evaluate the results of a geological-geochemical survey carried out by Ashworth Explorations Limited from September 8 to 19, 1988 on the Pretty Girl Claim Group, Invermere Area, B.C. The report also describes the regional geology and the past exploration activities in the area, and outlines a proposed exploration program.

One of the authors, Mr. Leriche, planned and supervised all fieldwork and was project geologist on the subject claims for the duration of the project.

2. LOCATION, ACCESS AND PHYSIOGRAPHY

The Pretty Girl Claim Group is located approximately 18 kilometres due west of Invermere, B.C. The claims occupy a large spur between Law Creek to the north and Bruce Creek to the south. The property lies within NTS mapsheets 82K/8 and 82K/9, at latitude $50^{\circ}31'$ north, longitude $116^{\circ}18'$ west.

Access to the claims is attained by taking the Horsethief Creek road west of Invermere for about 14 kilometres to a fork in the road. From there the south fork leads southwest (seven kilometres) to the Bruce and Law Creek roads which transect the northwest and southeast parts of the property. Vehicular access is good, although a four-wheel drive vehicle is recommended.

A helicopter is recommended for access to higher elevations. Frontier

Helicopters maintains a base in Fairmont Hot Springs which is 21 kilometres south of Invermere.

The terrain is characterized by moderate slopes which descend northwest and southeast from a northeast-trending ridge. Approximately 60% of the claims lie above treeline (7000 feet or 2297 metres). Below treeline, vegetation consists of fir, tamarack, alder, spruce and scrub-brush. Elevation varies from 2953 metres (9000 feet) on a ridgetop in the southwest to 1690 metres (5150 feet) in the Law Creek valley, giving a total relief of 1263 metres (3850 feet).

3. CLAIM STATUS

The Pretty Girl Claim Group consists of five contiguous mineral claims (79 units) and nine reverted crown grants, in the Golden Mining Division. The five mineral claims are owned by Gold Ford Capital Corp. The nine reverted crown grants are owned by Mr. Clive Ashworth and have been optioned to Gold Ford Capital Corp.

Pertinent claim data is as follows:

Claim Name	Lot No.	Record No.	Units	Record Date
Pretty Girl	2570	1618	1	June 20, 1986
New Chum	2571	1625	1	11 11 11
Venus	2572	1619	1	11 11 11
Beauty	2573	1620	1	. 17 17 17
Old Chum	2574	1621	1	11 TE 41
Minnie Ha Ha Fr.	2575	1622	1	11 11 11
Delos	3790	1560	1	Jan. 28, 1986
Calamity Jane	3791	1623	1	June 20, 1986
Trojan	3792	1624	1	11 11 11
Donkey		1933	15	Sept. 11, 1988
Horse		1934	16	11 11 11
Ass		1935	16	19 TT FT
Mule		1936	20	11 11 11
Burro		1963	12	Oct. 29, 1988
			88 uni	ts

The total area, correcting for overlap, is approximately 1975 hectares or 4878 acres.

The nine reverted crown grants have been misplotted on the government claim map and 1:50,000 topographic map. Appendix F shows the original survey maps and notes for the original crown grants.

4. AREA HISTORY (Figure 3)

and the second

-

Interest in the mineral potential of the area was minimal until the discovery, in the 1890's, of the silver-lead properties of the Cranbrook area to the south. This discovery stimulated prospecting throughout the area and many of the region's promising mineral occurrences were located during this period. The properties' locations illustrated on Figure 3 are identified by the number included in the property heading below.

Paradise Mine (#12)

The Paradise mine property was originally staked in 1899. It is situated at the headwaters of Spring Creek, approximately one kilometre due south of the Pretty Girl property.

The primary ore minerals are galena, sphalerite and pyrite. They occur as a massive replacement of gray, fine-grained, dolomitic limestone, close to the upper contact of the Mount Nelson Formation.

Production was relatively steady at this mine from 1901 to 1906, 1916 to 1929 and 1949 to 1952. By the end of 1952, total production was 64,635 mined tonnes including 995 grams gold, 22,928,788 grams silver, 7,247,973 kilograms lead, 3,623,589 kilograms zinc and 9,999 kilograms cadmium (Minfile).

In 1975, estimated ore reserves (measured and indicated) were calculated at 41,073 tonnes with cut-off grades of 4.81% lead, 9.48% zinc and 1.95 oz/tonne silver (Minfile).

Recent work by Purcell Development Co. Ltd. in 1974, consisted of geochemical soil sampling, and the re-opening of old underground workings and Tri Basin Resources Ltd. completed road construction in 1980 (GEM, 1974, 1980).

Sitting Bull

The old Sitting Bull Group was approximately located on the southern edge of the present Burro and Horse claims. A 50 foot deep shaft was sunk in 1898 and 20 tons of ore were removed. Work in 1916 consisted of several open-cuts which exposed the vein for several hundred feet. Mineralization consisted of stibnite and galena in quartz veins hosted by limestone and slate. A select sample in 1915 ran 0.05 oz/ton Au, 43.6 oz/ton Ag and 38.8% Pb (B.C. Minister of Mines Report, 1915). From the published literature, it does not appear that work on the claims continued after 1919.

Lost Claim

The Lost claim was located in 1981, and was situated just to the north, and partly over the area now covered by the Burro claim. According to the 1981 assessment report by J. A. Brophy, a search of past literature did not turn up

any information on previous work, however a collapsed adit was located on the claim.

Prospecting and soil and rock geochemical surveys were completed. High values obtained were 31% Zn, 25.9% Pb, and 8.84 oz/ton Ag. Two rock and soil sampling traverses extended off the property, one of which sampled an area which is now the Mule claim. This particular traverse indicated a Pb-Zn anomaly present on the western edge of the Mule claim (Brophy, 1981).

Mabel R (Jesse and Shannon Claims)

The Mabel R property is located approximately 2.75 kilometres west of the southwest corner of the Burro claim (presently the Jesse 1, Jesse 2, Shannon 1 and Shannon 2 claims). Between 1917 and 1918 approximately 35 tons of ore was shipped to the Trail smelter and was reported to contain 8 to 12 oz/ton silver and 80% lead. In 1985 the property was re-staked by R. M. Chabot.

Work in 1985 and 1986 included prospecting, geological mapping, and rock sampling. Geochemical results indicated the presence of polymetallic mineralization. Some values obtained were: 140.41 oz/ton Ag, >10,000 ppm Cu and 1.02 oz/ton Au (Chabot, 1986).

In 1985, while trying to verify locations of old workings, dumps and location of previous claims in the area, Mr. Chabot began to doubt the accuracy of the claim maps and the position of the crown grants on the topographic maps (refer to Appendix F). A surveyor was hired during the 1986 season to establish the correct location of the claims. After a complete survey it was definitely

concluded that the crown grants were incorrectly located on the topographic maps. However, no exact data was presented on the discovered inaccuracies (Chabot, 1986).

Grotto Claims

The Grotto claim group is located approximately 4.5 kilometres southwest of the Pretty Girl claims and approximately 3.75 kilometres west of the Paradise property.

Prospecting and exploratory work began around 1925 and more recently around 1972. The recent work has consisted of geochemical soil surveys, trenching and stripping, diamond drilling and underground work. The Grotto property is a silver-lead-zinc prospect with mineralization occurring in fractures and carbonate breccias in dolomites of the Jubilee and Beaverfoot Formations (Exploration in B.C., 1980).

Ptarmigan Property (#11)

The Ptarmigan property (Crown Grants 5345 to 5349) is located approximately five kilometres southwest from the subject claims at the headwaters of Red Line Creek. Between 1900 to 1920 it produced 781 tons of .6% lead, 82.8 oz/ton silver, .09 oz/ton gold and .8% copper (Chabot, 1986). By 1902 the underground workings totalled 1717 feet. They were reopened in 1955 and total production between 1957 and 1959 totalled 244 tons averaging .3% lead, .3% zinc, 201.6 oz/ton silver and .28 oz/ton gold (Chabot, 1986).

Nip and Tuck Claims

The Nip and Tuck claims are located immediately west and south of the Ptarmigan property, approximately 5.5 kilometres southwest of the Pretty Girl property. They were originally staked around 1899, and total production between 1903 and 1915 consisted of 79 tons averaging 55.15% lead and 101.5 oz/ton silver (Chabot, 1986). Additional production from 1916 to 1923 was 98 tons, averaging 48% lead, 69 oz/ton silver and .01 oz/ton gold (Chabot, 1986).

From 1980 to 1983, prospecting and sampling surveys were carried out on the property and mineralization was observed to be of the following two types:

- 1) tabular and pod-like bodies of manganiferous siderite and pyrite with galena, sphalerite, tetrahedrite and stibnite
- 2) numerous quartz veinlets containing tetrahedrite and galena in moderately dolomitized carbonate (GEM, 1983).

Redmac and Macred Claims

The Redmac and Macred claims are located .5 kilometres west of the old Ptarmigan property and approximately six kilometres west of the Pretty Girl claims. Here lead-zinc-silver mineralization occurs in sedimentary rocks of the Dutch Creek Formation. Work was performed from approximately 1974 to 1981 consisting of self-potential surveys, geochemical soil surveys, and diamond drilling. Cominco Ltd., as operator in 1981, performed a geochemical soil and silt survey which returned values up to 3,460 ppm Zn, 2,530 ppm Pb and 135 ppm Cu (Carter, 1982).

Copper King (#13)

The Copper King property (formerly the Tatler Group), was originally staked sometime prior to 1917. It consists of a group of crown grants held as a mineral lease, and is situated at the head of Farnham Creek on the northwest slope of Black Diamond Mountain, approximately 12 kilometres southwest of the Pretty Girl group. Copper-silver-lead-zinc-gold mineralization occurs in silicified fractures in Mount Nelson quartzite and dolomitic limestone. More recent work has consisted of electromagnetic surveys and trenching in 1979 and 1980.

Mineral King (#18)

1.00

States of the

The Mineral King property is located along Toby Creek, on the south slope of the ridge between Toby and Jumbo Creeks. It is approximately 16 kilometres south of the Pretty Girl claims.

By 1926 approximately 30 tons of ore had been removed and two adits driven following the trends of two quartz veins.

The mine underwent its main period of production between 1954 to 1964, producing 2.1 million tons averaging 1.8% lead, 4.1% zinc, .7 oz/ton silver plus copper, cadmium and barite (Chabot, 1986). After rehabilitation of the old workings, production resumed in 1974 and a 200 ton-per-day capacity concentrator was constructed near the confluence of Jumbo and Toby Creeks (GEM, 1974). No information is available regarding underground production after 1974. Barite was extracted from the old mine tailings by the owner, Mountain Minerals Ltd around 1984 (Canadian Mines Handbook, 1984-85).

Other Properties

Additional properties located in the area which have seen exploration and/or production (past and/or present) include:

Property	Minerals	Location
Hot Punch (#15) & Delphine (#14)	Cu, Pb, Ag, Au	10 km SW of Pretty Girl
Dutchy	Cu	24 km S of Pretty Girl
Steamboat (Cominco Ltd.)	Ag, Pb, Zn(barite)	16 km NE of Pretty Girl
Red Ledge	Pb, Zn, Ag	19 km SW of Pretty Girl

5. **PREVIOUS WORK**

The nine reverted crown grants were staked in the late 1890's (exact dates below) and the Pretty Girl and Delos reverted crown grants are first mentioned in the B.C. Minister of Mines report of 1898.

Claim Name

Date Staked

Delos Pretty Girl New Chum Beauty Trojan Minnie Ha Ha Fr. Old Chum Venus Calamity Jane

November 15, 1895 August 8, 1896 September 6,1897 July 15, 1898 August 11, 1898 August 13, 1898 September 14, 1898 September 14, 1898 May 18, 1899

According to the 1898 Ministry Report, an open cut, 12 feet long, was sunk on the Pretty Girl claim, 10 or 12 feet into a soft shale, dipping nearly vertical and striking north 25 degrees west. A mineralized zone of "grey copper and some carbonates of copper" (B.C. Minister of Mines Report, 1898) was discovered along the bedding planes of the shale. A representative sample assayed 26.68% Cu and 55.5 oz/ton silver. A tunnel was bored vertically below the open cut in hopes of intersecting the mineralization but with no positive results. A shaft was then sunk to determine additional information on the dip of the mineralized zone. Information obtained resulted in extending the tunnel to 235 feet where the zone was intersected 90 feet below surface. One thousand pounds of ore were shipped to England for a mill test which gave encouraging, although undocumented results.

The 1899 Minister of Mines report states that the shaft was extended 40 feet in a cross-cut from the main tunnel. The mineralized zone at the 60 foot level averaged two feet in width, containing "clean ore (tetrahedrite)" (B.C. Minister of Mines Report, 1899). The zone assayed 22.5% Cu, 40 oz/ton Ag and "\$3 gold to the ton" (0.2 oz/ton Au at a price of \$15 per ounce in 1899) (B.C. Minister of Mines Report, 1899).

By 1915 the old Pretty Girl workings had fallen into disrepair. The shaft was filled with ice and the tunnel was caved-in. Even so, the Provincial Mineralogist followed the tunnel for 60 feet and noted that it followed a quartz vein, stained with malachite, which varied in width up to 10 inches. A select sample from the dump assayed 38 oz/ton Ag and 20.8% Cu (B.C. Minister of Mines Report, 1915).

A small reference in the 1924 Ministry Report states additional prospecting was performed on the claims.

Production figures, as reported in the Minfile reference to the Pretty Girl showing follow:

Year	Tonnes Mined	Au (g)	Ag (g)	Cu (kg)	Pb (kg)	Zn (kg)
1904	5	0	10,482	1,214	0	0
1917	2	0	3,110	363	0	0
1928	1	0	622	91	0	0
Total	8	0	14,214	1,668	0	0

The mineralized rock formation on the Delos claim was described in the 1915 Minister of Mines report as a schistose shale hosting an irregular quartz vein striking in the same direction as the shale. The vein was well mineralized with chalcopyrite and a sample taken over a three foot width assayed 0.8 oz/ton Ag, 0.02 oz/ton Au and 9.6% Cu. A select sample assayed 0.8 oz/ton Ag and 27.6% Cu (B.C. Minister of Mines Report, 1915). Several open cuts were observed plus a caved-in tunnel.

In the 1917(?) Bureau of Mines report, the Delos-Calamity Jane-Trojan group was referred to as the Trojan group. Approximately 300 tons of ore were reported ready for shipment during the winter months. Camp buildings were constructed during the year and the old tunnel was extended (Bureau of Mines, 1917?).

The only published production data for the Trojan claim is given for 1919:YearTonnes MinedAu (g)Ag (g)Cu (kg)19194002184,191

(from Minfile Reference on Trojan Showing)

After 1919, very little work appears to have been done on the Pretty Girl (including the Delos group) group of crown grants. In the early 1930's the property was owned by North Kootenay Mines Limited, and only minimal

information is available on work done on the property. A November 28, 1932 clipping from The Province newspaper advises that preparations for a winter work program were underway. The program was to continue tunnelling towards the objective vein, 135 feet into the hillside. Assays were reported at 57 oz/ton silver and 28.9% copper (The Province Newspaper, November 28, 1932).

Little is known about the history of the property between 1932 and 1966. It was leased by Kirgal Mining and Development Ltd. on December 14, 1966 and allowed to lapse in December 1971. No information is available regarding any work Kirgal may have initiated on the Pretty Girl crown grants. The company's name was changed to Kirgal Silver Mines Ltd. in April 1969. In the 1972 Financial Post Survey of Mines, the company was thought to hold the "silver-copper prospect, Trojan-Pretty Girl cls., Boulder Creek, Golden, B.C., on which preliminary exploration" was carried out in 1969. A search for the former directors of Kirgal has resulted in determining they are deceased.

It is believed that a diamond drill hole collar, discovered on the Pretty Girl showing during the 1988 work program, could be attributed to the Kirgal period of ownership. Personal communication with Guy B. Allen, P.Eng., confirmed that Kirgal drilled two holes on the Pretty Girl claim in 1969. No drill core data is available.

Guy B. Allen acquired the reverted crown grants, which at the time were mineral leases, on February 3, 1972. Additional mineral claims surrounding the reverted crown grants were staked in September, 1972. A rock sampling program was completed that same year and was confined to the "lower claims" (Allen, 1972).

(The map to accompany Mr. Allen's report, which would indicate the sample locations, is not available to the authors.) Results indicated up to 3.68% copper and .09 oz/ton silver. Future proposed work was to determine if the same mineralized structure was present on both groups of reverted crown grants and if it was "continuous and mineralized over the intervening distance" (Allen, 1972). An EM-16 survey and a soil survey were recommended but never completed.

In 1981 the Pretty Girl/Delos property was re-examined on behalf of owners, David J. Gallagher and Robin W. Pearson. The Pretty Girl workings could not be located and discrepancies in its reported location and the locations as shown on the topographic map were observed (see Appendix F). However, the Delos showings were found and several grab samples were collected and analyzed for Cu, Pb, Zn, Co, Ag and Au. Values of 9.1% Cu, 1090 ppm Zn, 52.6 ppm Ag and 18 ppb Au were obtained (Evans, 1981).

A two-phase exploration program was recommended consisting of establishing the exact location of the Pretty Girl prospect, geological mapping, rock and soil sampling, and detailed follow-up work to precede diamond drilling.

In 1987 a self-potential survey was completed by T.R.B. Dundas & Associates Limited for W. Pochylko on the area which is now predominantly covered by the Burro claim (Dundas, 1987). No anomalous findings were reported, however information regarding inaccuracies in the precise location of the reverted crown grants was given. Evidence of the Crown Grant surveys was observed in the field and utilizing this, plus the original survey notes and sketches, the Pretty

Girl reverted crown grant group was relocated to the position accepted by the authors of this report (see Appendix F).

No further work was reported on the Pretty Girl claim group until the 1988 field program covered by this report.

6. **REGIONAL GEOLOGY (Figure 3)**

The regional geology exhibits a general northwest-southeast trend which is illustrated by several rock formations, fold axes and some faulting.

Precambrian (Proterozoic) rocks are dominant in the region and consist of two systems. The older Purcell system consists of the Dutch Creek Formation (argillite, slate and quartzite) which is conformably overlain by the Mount Nelson Formation (dolomite, argillite, slate and quartzite), also of the Purcell System (Helikian). These two formations lie between one and six kilometres west of the subject claims.

The Windermere System (Hadrynian) unconformably overlies the Purcell System and is represented by two formations, the Toby Formation and the Horsethief Creek Formation.

The Toby Formation occurs as a thin wedge (see Figure 3) situated immediately to the west of the south corner of the Pretty Girl Claim Group. It is lithologically variable throughout its exposure with respect to its occurrence, composition and thickness. The Toby Formation is a polymictic conglomerate

LEGEND

CENOZOIC Quaternary Q	UNCONSOLIDATED SEDIMENTS: Silt, sand, gravel
MESOZOIC Cretaceous Kqm,Kgd	Quartz monzonite, Granodiorite
Jurassic Jgd	Granodiorite
PALEOZOIC MT. FORSTEI Devonian (Up uDs	R per Devonian) STARBIRD FORMATION: Gray and gritty limestone
Devonian Dmf	MOUNT FORSTER FORMATION: Red and green argillite, weathered limestone
Ordovician ar OSb	d Silurian BEAVERFOOT FORMATION: Massive dolomite and dolomitic limestone
Ordovician Omw	MOUNT WILSON(WONAH) QUARTZITE: White orthoquartzite; crumbly quartz sandstone
Og	GLENOGLE SHALES: Black, fissile shale; brown argillaceous sandstone
Cambrian and COm	Ordovician McKAY GROUP: Blue-gray limestone, argillaceous limestone, dark shale; intraformational limestone conglomerate
Middle and/o €j	r Upper Cambrian JUBILEE (OTTERTAIL) FORMATION: Thinly laminated and massive dolomite
Lower Cambr. ICc	ian CRANBROOK (GOG) FORMATION: Crossbedded white and purple quartzite and grit
I€bm	BADSHOT-MOHICAN FORMATION: Marble, phyllite, muscovite- quartz schist
IEh, IEha	HAMILL GROUP: White, pure green, and gray quartzite and micaceous quartzite; dark slate, phyllite and mica schist
PROTEROZOIC	
Windermere Hh	(Hadrynian) HORSETHIEF CREEK GROUP: Gray, black and green slate and argillite, quartz pebble conglomerate, quartzite, feldspathic quartzite and grit; red slate and arenaceous slate
Ht	TOBY FORMATION: Pebble, cobble and boulder polymictic conglomerate and breccia
Hmn *	MOUNT NELSON FORMATION: weathered dolomite and dolomitic limestone, argilite and slate; white quartzite
Н₫	DUTCH CREEK FORMATION: Gray, green and black argillite and slate, buff dolomitic slate; thin-bedded, buff weathering dolomite, green, argillaceous quartzite

MINERAL PROPERTIES

- $\frac{4}{6}$
- 7
- 11
- 12
- Larrabee (barite) Lead Queen (Ag, Pb) Steele Group (Ag, Pb) Ptarmigan (Ag) Paradise (Ag, Pb, Zn) Tatler, Great Northern, Copper King (Au, Ag, Pb, Zn, Cu) Delphine (Ag, Pb) Hot Punch (Ag, Pb, Zn) 13
- 14 15
- Hot Punch (Ag, Pb, Zn)
- 16 17 18 Lisa A
- Jumbo
- Mineral King (Ag, Pb, Zn, Cu, Cd, barite)

containing the pebbles, cobbles and boulders (dolomite, quartzite and shale) of the underlying Purcell rocks.

The Horsethief Creek Formation generally conformably overlies the Toby Formation, and in some instances unconformably overlies the Purcell rocks. It is a dominant rock unit in the region and is the predominant unit on the Pretty Girl Claim Group. The lower portion of this formation contains argillite and slate with some limestone. The middle portion is typically composed of quartzite, grit and the quartz pebble conglomerate. The upper portion, typical of its exposure in this region, contains much purple and red slate and siltstone with minor limestone (Reesor, 1973).

In the northwest area of the claim group, limited exposure of Cambrian to Devonian age rocks occur. These are:

- Cranbrook (Gog) Formation quartzite and grits (Lower Cambrian),

- Jubilee (Ottertail) Formation (Middle to Upper Cambrian) thinly laminated and massive dolomites,
- Ordovician Beaverfoot Formation massive dolomite and dolomitic limestone,
- Mount Forster Formation (Devonian) bright red and green argillite and brown weathering limestone.

Approximately seven kilometres northwest of the Pretty Girl Claim Group lies the Horsethief Batholith (Cretaceous) covering an area roughly 15 kilometres in diameter. It predominantly consists of a porphyritic quartz monzonite with biotite phenocrysts, while the western edge consists of a very coarse-grained granite. Structurally, three main features are present in the region surrounding the Pretty Girl Claim Group: the Rocky Mountain Trench Fault, the Mount Forster-Steamboat Fault, and the Mount Forster Syncline.

The Mount Forster Syncline is part of the Purcell Anticlinorium which extends from the Rocky Mountain Trench (located in the northeast corner of Figure 3) westward to the Mount Cauldron Syncline (located just at the southwest corner of Figure 3). The structures in the eastern Purcell zone, where the Mount Forster Syncline is located, are characterized by synclines with steep-dipping to eastward-overturned western limbs and the fold-axial planes dip west at moderate angles.

The Mount Forster Syncline is displaced by the steeply dipping Mount Forster-Steamboat Fault, the northern end of which follows the regional northwestsoutheast trend. Towards its southern extension, it curves sharply southwest where it is cut off by the apparently younger Horsethief Batholith. Stratigraphic relations indicate an upward movement from the northwest.

The Rocky Mountain Trench is an implied feature of the region due to the differing structural and stratigraphic relations on either side of the trench. It appears to be the youngest structure as it truncates structures along both the Purcell front (including the Mount Forster-Steamboat Fault) and the western Brisco Range (Reesor, 1973).

The economic geology of the region has been characterized in the past by silverlead-zinc properties, concentrated in two main stratigraphic units, the Mount Nelson and Horsethief Creek Formations.

7. 1988 PROGRAM

alateratur.

-

- State

7.1 SCOPE AND PURPOSE

During September 1988 a field crew consisting of one geologist, two prospectors and two geotechnicians completed a program of geological mapping, rock sampling, stream sediment and soil sampling.

The purpose of the program was twofold:

1) To locate the documented showings and systematically sample them.

2) To cover the property using geochemical methods to define follow-up exploration targets.

The expected target is a shale or quartz vein hosted silver-copper deposit with accessory gold.

7.2 METHODS AND PROCEDURES

Geological mapping was performed at a scale of 1:10,000 (Figure 4) over the property. Control for mapping was established using an altimeter, compass, hipchain and the survey grid.

A total of 50 rock samples were collected and analyzed for gold and multielement ICP by Chemex Labs Ltd. Twelve samples were assayed for copper and eight samples were assayed for silver and antimony due to high results in the ICP procedure. See Appendix B for analytical reports and Appendix C for analytical techniques.

Five rock samples from the showings were sent to Vancouver Petrographics Ltd.

for polished-thin section analysis. Appendix E is a complete report on each section.

Stream sediment samples were taken from the active part of selective drainages. Grain size varied from silt to sand size. Altogether 12 stream sediment samples were taken, placed into marked sand sample bags and sent to Chemex Labs Ltd. for gold and multi-element ICP analysis (See Appendix B and C).

A survey grid (Figure 6) was laid out on the Ass claim to use as control for soil sampling and geological mapping. A baseline was compassed, brushed out, slope corrected and hipchained at an azimuth of 330 degrees for one kilometre. Cross-lines were surveyed using compass, hipchain and flagging at 100 metre line spacings and 25 metre station spacings. Total line surveyed, including baseline, tieline and cross-lines, was 19.9 kilometres.

The grid was soil sampled at 25 metre station spacings. The total number of soil samples taken was 633 (Figure 5). All soil samples were taken with a grub hoe from talus fines and the B horizon (approximately depth of 35 cm), placed into marked Kraft-paper bags, field dried, then sent to Chemex Labs Ltd. and analyzed for gold and multi-element ICP (Appendix B and C).

The lab results for 3 elements (Cu, Au and Zn) were computer-plotted on 1:2,500 scale maps (Figures 9 and 10). To evaluate any existing geochemical anomalies, frequency distribution histograms based on lab data were prepared for each of the aforementioned elements (Appendix D). Anomalous values were chosen using natural breaks in each histogram. For interpretation purposes, correlation coefficients were calculated (Appendix D) and anomalous ranges for each element

were plotted using symbol maps (Figures 9 and 10). All statistical and plotting work was performed by Tony Clark Consulting Services.

7.3 **PROPERTY GEOLOGY (Figure 4)**

- Newson

The property is underlain by a 1600 metre thick (approximate) interbedded sequence of shale-slate, quartz grit and quartz pebble conglomerate, limestone, interbedded sandstone and shale, sandstone, and quartzite belonging to the Proterozoic Horsethief Creek Group. These units occupy the northeast and southwest limbs of the Mount Forster Syncline which trends northwest-southeast through the central part of the property.

The average strike of the bedding is 150 degrees. The dips vary from vertical at the axis of the syncline and gradually shallow to 20 degrees 1.0 kilometres northeast of the axis.

The following description of lithological units in order of abundance is based on geological mapping by one of the authors (P. Leriche) and the two prospectors (J. Fleishman and V. Warwick).

Unit 1 Shale-Slate

Consists of a finely laminated shale partially metamorphosed to slate and is highly variable in colour (buff, reddish purple, maroon, reddish brown, brown, greenish brown, blue, gray).

Unit 2 Quartz Grit, Quartz Pebble Conglomerate

Unit 2 is composed of 70 to 90% well rounded and sorted white quartz clasts in

a light brown quartz-feldspathic matrix. Grain size varies in different interbeds from grit size (5 mm) to conglomerate size (up to 10 cm).

Unit 3 Limestone

A 100 metre wide exposure of black limestone outcrops 700 metres northeast of the LCP on the Donkey claim. The limestone is commonly sandy and interbedded with thin layers of argillite.

Unit 4 Interbedded Sandstone and Shale

Unit 4 is found on the Ass claim near the Trojan showing and on the Donkey claim 600 metres northeast of the LCP. Light brown to reddish weathered quartz sandstone is interbedded with light gray shaley siltstone. Average thickness of the laminae is seven cm.

Unit 5 Sandstone

Two outcrops of maroon-light gray coloured, fine-grained quartz sandstone were located 1.0 kilometre north of the LCP on the Mule and Donkey claims. This unit could be a fine-grained equivalent of Unit 2.

Unit 6 Quartzite

Occurs in a 25 metre exposure underlying Unit 5 on the Mule claim. Consists of a brown weathering limey quartzite with thin interbeds of shale.

7.4 MINERALIZATION AND ROCK GEOCHEMISTRY

7.4.1 Geological Model

The target deposit expected on the Pretty Girl Claim Group is a shale-quartz vein hosted silver-copper deposit with some accessory gold. Mineralization of

the host rocks and emplacement of quartz veins probably occurred during the Cretaceous period. The Horsethief granitic batholith provided a heat source and the fissile shales within the Horsethief Creek Group provided a conduit for mineralizing solutions.

7.4.2 Pretty Girl Showing (Figure 5)

The Pretty Girl showing was located 2,200 metres northeast of the peak of Mt. Slade on a northeast-trending ridge (elevation 9000 feet or 2953 metres). Physical features at the showing include a vertical shaft, an adit (caved in) and several blasthole pits. A campsite, approximately 20 years old was found 100 metres south of the shaft.

The showing, on surface, consists of a 1.0 metre wide, malachite-azurite stained mineralized horizon containing a five to 20 cm quartz vein. The horizon has an average strike of 140 degrees and dips vertically. Mineralization consists of semi-massive tetrahedrite, with minor chalcopyrite and pyrite within a malachite-azurite stained shale. Surface weathering and oxidation has leeched away at least some of the metallic minerals.

A total of seven hand trenches were dug by grubhoe and shovel across the mineralized horizon. The trenches average 3.0 metres in length, 1.0 metres wide and 50 cm deep.

Trenches 1 to 6 were dug approximately five metres apart over a 24.3 metre length. Results of chip sampling from Trenches 1 to 6 are as follows:

Sample Number	Trench	Sample Type	Sample Width (cm)	Ag (oz/ton)	Cu (%)	Sb (ppm)
PR15	4	Chip	100	2.07	1.00	7,780
PR16	3	Chip	100	4.30	2.79	>10.000
PR11	3	Channel	230	5.10	2.96	>10.000
PR17	2	Chip	100	0.33	0.44	1,595
PR18	1	Chip	100	0.30	0.56	1,990
PR19	5	Chip	100	1.67	0.92	8,130
PR21	6	Chip Average	$\frac{100}{118.6}$	$\frac{5.01}{2.68}$	$\frac{3.02}{1.67}$	>10,000

26

The above systematic surface sampling has revealed a 25.0 metre mineralized horizon, averaging 1.18 metres wide and grading 2.68 oz/ton silver and 1.67% copper.

Two select samples (PR10 and 14) from dump material, presumably derived at depth, assayed 34.60 oz/ton silver, 16.40% copper, >10,000 ppm antimony, >10,000 ppm zinc and 30.62 oz/ton silver, 12.60% copper, >10,000 ppm antimony, and >10,000 ppm zinc respectively.

Three dump samples (PR2, 3 and 5) were petrographically analyzed by polished thin section (Appendix E). The samples are sericite-quartz schists cut by early veins of quartz-pyrite and later (main) veins of tetrahedite-quartz-chalcopyrite (-galena). A third, later stage of veinlets is composed of azurite-malachitelimonite. The main veins (tetrahedrite-quartz-chalcopyrite) comprise 45 to 50% of the samples.

7.4.3 Trojan Showing (Figure 6)

and a

-

Located on the survey grid at approximately 0+75N 4+50W. The main workings are a caved-in adit and dump. The Trojan area is a series of parallel quartz veins striking at 135 to 150 degrees through a light gray shale-slate. Width of

- opinidano.

Lagrandian -

Analysis and Analy

and a second

(and the second s

in the second

27 LEGEND Rock sample number /Cu % ● JR 11/4-14 Quartz vein or veinlets Adit 30m 10 20 NTS 82K/8,9 GOLD FORD CAPITAL CORP. PRETTY GIRL CLAIM GROUP GOLDEN M.D., B.C. TROJAN SHOWING SAMPLE PLAN AND ANALYTICAL RESULTS Date : NOVEMBER 1988 Scale 1:500 Drawn J.S. By: P.L. Figure: 6 Ashworth Explorations Limited

the veins vary from 10 cm to over 1.0 metres. Mineralization in the veins includes patches of chalcopyrite (1 to 5%), pyrite (1%), bornite, malachite and azurite.

Significant results include the following:

Sample	Sample	Sample	Cu (%)
Number	туре	within (Cill)	
JR11	Select Dump		4.14
JR12	Select	20	2.16
JR13	Chip	60	0.67
JR14	Chip	40	0.23
JR15	Chip	110	0.093
JR16	Chip	200	0.18
JR17	Chip	100	3.71
JR18	Chip	300	1.04
JR19	Chip	150	0.92
	Average	122.5	1.46

One sample from dump material (PS4) was analyzed petrographically. Analysis revealed a quartz-sericite schist (5%) with an early vein of quartz (62%) and a later vein of quartz (13%), chalcopyrite (18%), tetrahedrite (1%) and pyrite (1%). The "textures suggest that later-formed quartz may have formed by recrystallization of early-formed quartz during the time when the sulphides were introduced" (Appendix E).

7.4.4 Other Showings (Figure 7)

One other showing was located on a north-south ridge 1.0 kilometres west of the main LCP on the Horse claim.

The showing is a 2.0 metre wide milky quartz vein cross-cutting a quartz grit at 60 degrees to subvertical. The vein was traced along a strike length of 25 metres.

Mineralization in the vein includes chalcopyrite (1%) in seams, and malachite. Two chip samples (PR7 and JR10) were taken which assayed 4560 and 2180 ppm copper.

7.5 STREAM SEDIMENT AND SOIL GEOCHEMISTRY

Twelve stream sediment samples were taken from selective drainages with no significant results to report.

A survey grid was laid out on the Ass claim to cover the Trojan and Delos showings. The purpose of soil sampling was to define the Trojan and Delos veins along strike. Due to a plotting error of the Trojan, Delos, and Calamity Jane reverted crown grants on the 1:50,000 topographic map, the grid was located too far northeast to cover the theoretical location of the Delos showing. This was not discovered until the field program was completed.

The grid is located on a moderate to steep southeast-facing slope in a sparsely treed area. The majority of samples taken are from talus fines rather than the well developed B horizon.

Statistical histograms in Appendix D include gold, copper, zinc, silver and antimony. Results for silver and antimony were not significant.

7.5.1 Gold in Soils (Figure 9)

Range:	<5 to 17 ppb
Mean:	2.01
Standard Deviation:	9.07
Background:	<5 to 24 ppb
Anomalous:	25+ ppb
Seventeen results were anomalous in gold including a high value of 170 ppb at L7+00N 0+50W. A concentration of anomalies (14) occur along lines 6+00N and 7+00N, west of the baseline.

7.5.2 Copper in Soils (Figure 10)

and a

「「「「」」

Range:	6 to 295 ppm
Mean:	39.34
Standard Deviation:	22.09
Background:	6 to 89 ppm
Anomalous:	90+ ppm

There are eleven spotty and scattered copper anomalies with a high value of 295 ppm at L7+00N 2+50W.

7.5.3 Zinc in Soils (Figure 10)

Range:	14 to 742 ppm
Mean:	81.69
Standard Deviation:	36.85
Background:	14 to 139 ppm
Anomalous:	140+ ppm

Anomalous zinc values (above 140 ppm) are plotted in triangle symbols on Figure 10. A total of seven single point values assayed higher than 140 ppm. A spot high of 742 ppm occurs at L2+00N 0+25W.

7.6 DISCUSSION OF RESULTS

The 1988 geological and geochemical surveys have delineated three areas that will require follow-up.

The first area is the Pretty Girl showing. Systematic sampling from hand trenches has outlined a mineralized horizon 1.0 metres wide and 25.0 metres long with an average grade of 2.68 oz/ton silver and 1.67% copper. The horizon is open along strike and at depth. Select dump samples derived at depth, assayed 34.60 oz/ton silver, 16.40% copper and 30.62 oz/ton silver and 12.60% copper. These assays suggest that grades significantly increase at depth where the host rock is not affected by surface leeching and oxidation.

The second area is the Trojan showing. A series of parallel quartz veins mineralized with chalcopyrite assayed up to 4.14% copper. Average copper grade from nine samples was 1.46% over 1.22 metres.

The third area is from a 2.0 metre wide quartz vein, mineralized with chalcopyrite, located approximately 1.0 kilometres west of the main LCP. Two chip samples collected from the vein assayed 4560 and 2180 ppm copper.

Another area of interest should be the Delos showing which was not located during the 1988 program. Future fieldwork should include location of this showing and its systematical sampling.

8. CONCLUSIONS

Both writers conclude that the Pretty Girl Claim Group has potential for hosting an economic silver-copper deposit for the following reasons:

- The geological environment (fissile sediments in close proximity to an intrusive pluton) is favourable for hosting economic mineralization, as seen by the presence of the Paradise Mine and other mines in the area surrounding the Pretty Girl property.
- Two showings (Pretty Girl and Trojan) were located on the subject property which carry economic values in both silver and copper. Both showings are open along strike and dip.

For these reasons, further exploration work is warranted and recommended.

31

9. **RECOMMENDATIONS**

Phase II

- 1) Perform a legal survey to relocate the exact boundaries of the nine reverted crown grants.
- Geologically map and rock sample the unmapped portion of the property.
 Locate the Delos showing and map and sample the surrounding area.
 Check the 1988 gold soil anomalies from Lines 6+00N and 7+00N.
- 5) Construct a road from the Law Creek road to the Pretty Girl showing. Slopes are gentle to moderate and should not inhibit the road building.
- 6) Trench the Pretty Girl showing using a backhoe or bulldozer to locate the mineralized horizon along strike. Expose the entrance to the adit for underground mapping purposes.
- 7) Perform approximately 1,500 feet of diamond drilling on the Pretty Girl showing to test the surface mineralization at depth.
- 8) Handtrench and blast the Trojan showing to expose the adit and test for mineralization along strike. Hand blasting should also be performed on Area 3 to better expose the vein.
- 9) Handtrench and blast the Delos showing if indicated.

Phase III

Phase III is contingent upon successful results from Phase II. It would consist of further diamond drilling to prove up tonnage and grade.

10. PROPOSED BUDGET - PHASE II

(Project Geologist, Prospector-Blaster, Geotechnician, 20 field days)

\$ 1,500
3,300
17,950
16,950
78,000
5,700
9,300
\$ 132,700
19,905
\$ 152,605
\$ <u>153,000)</u>
\$ \$ \$

PERSONNEL

The following persons were employed during the 1988 Field Program on the Pretty Girl Claim Group:

Doug Davidson John Fleishman Peter Leriche Denis Ross Vince Warwick

10101 1.5 (2011

· tekster

Geotechnician Prospector Project Geologist Geotechnician Geological Technologist

REFERENCES

- B.C. Dept. of Mines and Pet. Resources, Geology, Exploration and Mining in British Columbia, 1969, (published 1970).
- B.C. Dept. of Mines and Pet. Resources, Geology, Exploration and Mining in British Columbia, 1970, (published 1971).
- B.C. Dept. of Mines and Pet. Resources, Geology, Exploration and Mining in British Columbia, 1972, (published 1973).
- B.C. Dept. of Mines and Pet. Resources, Geology, Exploration and Mining in British Columbia, 1973, (published 1974).
- B.C. Dept. of Mines and Pet. Resources, Geology, Exploration and Mining in British Columbia, 1974, (published 1975).

B.C. Minister of Mines Report, 1898.

1899. 1915. 1916. 1917. 1924. 1925. 1958.

B.C. Ministry of Energy, Mines and Pet. Resources,

MINTILE	#1797.
Minfile	#1801.
Minfile	#1815.
Minfile	#1819.
Minfile	#6793.
Minfile	#6808.
	10000

- B.C. Ministry of Mines and Petroleum Resources, Exploration in B.C. 1976 (published 1977).
- B.C. Ministry of Mines and Petroleum Resources, Exploration in B.C. 1977 (published 1978).
- B.C. Ministry of Mines and Petroleum Resources, Exploration in B.C. 1978 (published 1979).
- B.C. Ministry of Mines and Petroleum Resources, Exploration in B.C. 1980 (published 1981).
- B.C. Ministry of Mines and Petroleum Resources, Exploration in B.C. 1983 (published 1984).
- B.C. Ministry of Mines and Petroleum Resources, Exploration in B.C. 1984 (published 1985).

- Brophy, J.A., 1981. Report on Prospecting, Geochemical Surveys, and Geological Reconnaissance Conducted on the Lost-1 Mineral Claim, Golden Mining Division, British Columbia, for First Nuclear Corporation. Assessment Report # 8,842.
- Carter, K.M., 1982. Geology and Geochemistry on the Redmac Claim Group, Golden Mining Division, British Columbia, for Cominco Ltd. Assessment Report #10,167.
- Chabot, R.M., 1986. Prospecting Report on Mabel R Property, Golden Mining Division, British Columbia, Assessment Report #15,334.
- Dundas, T.R.B., 1987. Self Potential Surveys over the Silver Thread Group, Invermere Area, Golden Mining Division, British Columbia, for W. Pochylko. Assessment Report #16,808.
- Evans, D.S., 1981. Prospecting Assessment Report on the Pretty/Delos Prospect, Golden Mining Division, British Columbia, for Pearson, Gallagher Ltd., Assessment Report #10,248.
- Financial Post, 1972. The Financial Post Survey of Mines.

- Langley, A.G., 1917(?). Government of Canada Bureau of Mines, Preliminary Report of Eastern Mineral Survey District, No. 5, Windermere Mining Division.
- Leriche, P.D., 1987. Preliminary Geological Report on the Pretty Girl, Minnie Ha-Ha, Old Chum, New Chum, Beauty, Venus, Delos, Trojan, Calamity Jane Reverted Crown Grants, Golden Mining Division, Private Report for Ashworth Explorations Limited, May 5, 1987.

Northern Miner Press Ltd., 1984. Canadian Mines Handbook 1984-1985.

- North Kootenay Mines Limited, circa 1932(?). Promotional Report on Pretty Girl Group of Mineral Claims.
- Reesor, J.E., 1973. Geology of the Lardeau Map-Area, East-Half, British Columbia, G.S.C. Memoir 369.
- The Province Newspaper, November 21, 1932. Article on North Kootenay Mines Ltd.
- The Province Newspaper, November 28, 1932. Article on North Kootenay Mines Ltd.
- Walker, J.F., 1926. Geology and Mineral Deposits of Windermere Map-area, British Columbia, GSC Memoir 148.

CERTIFICATE

I, PETER D. LERICHE, of 3612 West 12th Avenue, Vancouver, B.C., V6K 2R7, do hereby state that:

- 1. I am a graduate of McMaster University, Hamilton, Ontario with a Bachelor of Science Degree in Geology, 1980.
- 2. I am a Fellow in good standing with the Geological Association of Canada.
- 3. I have actively pursued my career as a geologist for nine years in British Columbia, Ontario, Yukon and Northwest Territories, Arizona, Nevada and California.
- 4. The information, opinions, and recommendations in this report are based on fieldwork carried out under my direction, and on published and unpublished literature. I was present on the subject property from September 8 to 19, 1988.
- 5. I have no interest, direct or indirect, in the subject claims or the securities of Goldford Capital Corp.
- 6. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

Name -

37

CERTIFICATE

I, JANET M. STRITYCHUK HOPKINS, of 2862 Banbury Avenue, Coquitlam, B.C., V3B 5H2, do hereby state that:

- 1. I am a graduate of Laurentian University, Sudbury, Ontario, with a Honours Bachelor of Science Degree in Geology, 1981.
- 2. I am a full member of the Canadian Institute of Mining and Metallurgy and an Associate of the Geological Association of Canada.
- 3. I have been employed as a geologist in Ontario, Quebec and British Columbia.
- 4. The information, opinions, and recommendations in this report are based on published and unpublished literature and results of fieldwork carried out on the subject property from September 8 to 19, 1988.
- 5. I have no interest, direct or indirect, in the subject claims or the securities of Goldford Capital Corp.
- 6. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

Janet M. Stritychuk Hopkins, Hons.B.Sc.

Dated at Vancouver, November 21, 1988

ITEMIZED COST STATEMENT

(Project Geologist, Prospector, 3 Geotechnicians; Sept. 8-19/88)

Project Preparation			\$ 900
Mob/Demob (includes transportation, freight and	wages	5)	4,185
<u>Field Crew</u> Project Geologist \$325/day x 11 days Prospector \$250/day x 11 days 3 Geotechnicians \$210/day x 33 mandays	\$	3,575.00 2,750.00 6,930.00	13,255
<u>Field Costs</u> Helicopter Support \$650/hr x 10 hrs Food and Accommodation \$70/day x 55 mandays Communications Supplies 4X4 Truck \$110/day x 11 days	\$	6,500.00 3,850.00 385.00 1,100.00 1,210.00	13,045
 Lab Analysis 645 silt and soil samples @ \$15.25/sample Au by FA/AA, ICP 50 rock samples @ \$17.75/sample Au by FA/AA, ICP 13 rock samples @ \$17.25/sample Cu, Sb, Ag assays 5 polished thin sections and analysis 	\$	9,836.25 887.50 224.25	
@ \$70/sample		350.00	11,298
Supervision and Report			7,900
Sub-total			\$ 50,583
Administration 15%			7,587
Total			\$ 58,170

Respectfully submitted,

and the second

The second

all all a second

No.

Peter D. Leriche, B.Sc., F.G.A.C.

39

APPENDIX A

ROCK SAMPLE DESCRIPTIONS

PRETTY GIRL CLAIM GROUP **ROCK SAMPLE DESCRIPTIONS**

Sample No.

Description

PG88-PR1

Select sample from a 1.0 metre wide quartz vein; inclusions of feldspar and chlorite; host is thinly bedded green-brown shale attitude 150/78W.

PG88-PR2 Select sample from 2.0 metre quartz vein; same at PR1.

PG88-PR3

Select sample from interbedded quartzite-quartz pebble conglomerate containing 10% euhedral pyrite crystals and webbed quartz veinlets.

Select sample from 2 parallel quartz trains (1.2 m wide)

PG88-PR4 Select sample from quartz vein stockwork within a quartz grit; average size of veins 8 cm.

PG88-PR5

PG88-PR6

Select sample from 0.7 metre wide basaltic dyke containing numerous quartz veinlets (1 mm wide); minor patches of pyrite and possible chalcopyrite; attitude 150/subvertical.

within a light brown shale; trains trend at 60 degrees.

PG88-PR7

PG88-PR8

Chip sample across 2.0 metre wide quartz vein cross-cutting quartz grit unit at 60/vertical; vein is malachite stained and contains patches of chalcopyrite (1%).

Select sample from a 15 cm wide milky quartz vein trending at 135 degrees; contains chlorite inclusions and rusty blotches from rotted out sulphides (?), host is light graybrown thinly bedded shale, attitude 135/70E.

Select chip across 23 metres from a network of milky quartz PG88-PR9 veins.

PG88-PR10 Pretty Girl Showing; select dump sample taken adjacent to vertical shaft; malachite and azurite stained shale (?) mineralized with massive tetrahedrite, minor chalcopyrite. bornite and pyrite; 60% combined sulphides.

PG88-PR11 Pretty Girl Showing; channel sample 10 cm deep over 2.3 metres; malachite-azurite stained shale containing quartz veinlets and semi-massive tetrahedrite.

PG88-PR12 Chip sample across 1.2 metre quartz-calcite vein trending at 112 degrees; hosted by black limestone.

PG88-PR13

Pretty Girl Showing; Trench 7; chip sample across 6.0 metres of gray-brown shale with minor malachite staining.

PG88-PR14

Pretty Girl Showing; Trench 7; select float sample probably from dump material from shaft, azurite-malachite stained; semi-massive tetrahedrite with minor chalcopyrite and pyrite.

PG88-PR15 Pretty Girl Showing; Trench 4; chip across 1.0 metres; muddy sericitic shale containing 4 cm wide quartz vein mineralized with tetrahedrite.

PG88-PR16

Pretty Girl Showing; Trench 3; chip sample across 1.0 metres, light brown bleached shale hosting a 10 cm wide quartz vein and 2 cm wide band of tetrahedrite, disseminated pyrite and possible chalcopyrite.

PG88-PR17

Pretty Girl Showing; Trench 2; chip sample across 1.0 metres; rusty shale with 15 cm wide quartz vein mineralized with patches of tetrahedrite; malachite and azurite stained.

PG88-PR18

Pretty Girl Showing; Trench 1; chip sample across 1.0 metres, rusty 20 cm quartz vein with 1% tetrahedrite and minor malachite and azurite.

PG88-PR19 Pretty Girl Showing; Trench 5; chip sample across 1.0 metres; same as PR18.

PG88-PR20 Pretty Girl Showing; sample across a 1.0 metre wide quartz vein parallel to mineralized horizon; 10 cm wide.

PG88-PR21 Pretty Girl Showing; Trench 6, same as PR18.

PG88-JR1 Select sample across 1.0 metre quartz vein in shale; attitude 130/45 south, 10% disseminated pyrite.

PG88-JR2 Select sample from 6.0 metre wide silicified zone within yellow stained shales.

PG88-JR3 Select sample across quartz stringers (50 cm) within shale; minor malachite staining and possibly chalcopyrite.

PG88-JR4 Chip sample across 1.0 metre quartz vein; contains inclusions of chlorite and rotted out pyrite.

PG88-JR5 Select sample from quartz veinlets within quartz pebble conglomerate.

PG88-JR6 Select sample from 50 cm wide quartz vein with rusty infilled vugs; host shale attitude 130/vertical.

PG88-JR7 Select sample from 10 cm wide vuggy quartz vein with rotted out pyrite.

PG88-JR8 Select sample from 50 cm wide quartz vein within limey shales.

PG88-JR9

Select sample from quartz vein (width unknown) between grit and shale unit, rusty quartz stockwork.

Chip sample across 1.0 metre wide quartz vein mineralized with chalcopyrite, malachite and azurite.

PG88-JR11

PG88-JR10

Trojan Showing; Select dump sample; malachite stained milky quartz vein material carrying 50% combined pyrite and chalcopyrite.

PG88-JR12

Trojan Showing; chip sample across 20 cm shear zone; contains brecciated quartz fragments with minor chalcopyrite; host is malachite stained gray shale-slate attitude 140/55W.

PG88-JR13 Trojan Showing; chip sample across 2.0 metres of malachite stained quartz vein at entrance to adit, attitude 140/vertical; semi-massive pyrite (50%) and minor chalcopyrite; host is light gray shale, attitude 106/steep east.

chalcopyrite; malachite-stained.

PG88-JR14

Trojan Showing; chip sample across 40 cm; 10 cm wide quartz vein with 10% disseminated pyrite and minor chalcopyrite.

PG88-JR15 Trojan Showing; chip sample across 1.1 metres of rusty shale, attitude 150/vertical; quartz veinlets average 4 cm wide injected along bedding planes with 5% combined pyrite and

PG88-JR16

Trojan Showing; chip sample across 2.0 metre gray-yellow quartzite, milky quartz veinlet stockwork (average 2 cm wide) containing isolated grains of chalcopyrite, patches of bornite and pyrite.

Trojan Showing; chip sample across 1.0 metre of malachite stained quartz vein; vein at contact between quartzite and rusty shale, attitude 150/vertical; up to 40% pyrite, 5% chalcopyrite.

PG88-JR18

PG88-JR17

Trojan Showing; chip sample across 3.0 metres of rusty shale with quartz veinlets along bedding, attitude 170/vertical; malachite staining; pyrite averages 10% but up to 40%.

PG88-JR19 Trojan Showing; chip sample across 1.5 metres of gray shale (attitude 135/vertical) with 1 to 2 cm quartz veinlets along bedding; 5% pyrite and minor chalcopyrite.

PG88-JR20 Trojan Showing; chip sample across 40 cm; milky quartz vein with minor pyrite.

PG88-JR21Select sample from 1.5 metre quartz vein at contact between
quartz grit and slate.PG88-JR22Select sample from 10 cm wide quartz vein within rusty
shale.

PG88-JR23 Select sample from 10 cm wide quartz-carbonate-limonite vein at contact between grit and shale, attitude 80/vertical. Select sample from quartz vein (width unknown), minor PG88-VR1 pyrite. **PG88-VR2** Select sample from quartz veinlets within shale. **PG88-VR3** Float; milky quartz float with disseminated pyrite crystals. **PG88-VR4** Select sample from .20 to 1.0 metre quartz vein within shales, attitude 80/70 north. **PG88-VR5** Float; milky quartz vein material. **PG88-VR6** Select sample from milky quartz vein (width unknown) within quartz pebble conglomerate.

and the second

comparison.

and the second

addan.

Sugar

APPENDIX B

Calabaration of

AY

1

ar a grante

ANALYTICAL REPORTS

Report	A8823918	<u> </u>	50 I	rock	samples;	Au,	ICP		
Report	A8824729	-	13 1	ock	samples;	Cu,	Ag,	Sb	assay
Report	A8823905	-	239	soil	samples;	Au,	ICP		
Report	A8823908	-	212	soil	samples;	Au,	ICP		
Report	A8823913	-	194	soil	samples;	Au,	ICP		

A AY ahe Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To: ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5

Comments: ATTN: PETER LERICHE

A8823918

CERTIFICATE A8823918

ASHWORTH EXPLORATIONS LTD. PROJECT : P.O.# : NONE Samples submitted to our lab in Vancouver, BC.

This report was printed on 27-SEP-88.

\$	SAMP	LE	PREPARATION
CHEMEX CODE	NUMBER Samples		DESCRIPTION
2 O 5 2 3 8	5 O 5 O	Rock ICP:	Geochem: Crush.split,ring Aqua regia digestion

* NOTE 1:

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

	• · · · · · · · · · · · · · · · · · · ·				
CHEMEX	NUMBER			DETECTION	UPPER
CODE	SAMPLES	DESCRIPTION	METHOD	LIMIT	LIMIT
100	50	Au ppb: Fuse 10 g sample	FA-AAS	5	10000
921	50	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
922	50	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
923	50	As ppm: 32 element, soil & rock	ICP-AES	5	10000
924	50	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
925	50	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
926	50	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
927	50	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
928	50	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
929	50	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
930	50	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
931	50	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
932	50	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
933	50	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
951	50	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
934	50	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
935	50	La ppm: 32 element, soil & rock	ICP-AES	10	10000
936	50	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
937	5.0	Mn ppm: 32 element, soil & rock	ICP-AES	1	10000
938	50	Mo ppm: 32 element, soil & rock	ICP-AES	1.1	10000
939	50	Na %: 32 element, soil & rock	ICP-AES	0.01	3.00
940	50	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
941	50	P ppm: 32 element, soil & rock	ICP-AES	10	10000
942	50	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
943	50	Sb ppm: 32 element, soil & rock	ICP-AES		10000
958	50	Sc ppm: 32 elements, soil & rock	ICP-AES	T T	100000
944	50	Sr ppm: 32 element, soil & rock	ICP-AES	•	10000
945	50	Ti %: 32 element, soil & rock	ICP-AES	0 01	
946	50	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
947	50	U ppm: 32 element, soil & rock	ICP-AES	10	10000
948	50	V ppm: 32 element, soil & rock	ICP-AES	Ĩ	10000
949	50	W ppm: 32 element, soil & rock	ICP-AES	5	10000
950	50	Zn ppm: 32 element, soil & rock	ICP-AES	5	10000

ANALYTICAL PROCEDURES

Analytical Chemists * Geochemists * Registered Assayers

PHONE (604) 984-0221

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE

Page No. : 1-A Tot. Pages: 2 : 27-SEP-88 Date Invoice # : I-8823918 P.O. # :NONE

S. CORDER

CERTIFICATE OF ANALYSIS A8823918

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA IA A	A1 %	Ag	As ppm	Ba ppm	Be ppm	Bi	Ca %	Cd ppm	Co	Cr	Cu	Fe %	Ga	Hg	K G	La	Mg	Ma
	 																~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~	
PG88-JR 01	205 238	< 5	0.21	< 0.2	< 5	50	< 0.5	< 2	0.90	< 0.5	9	166	< 1	6.30	< 10	< 1	0.01	< 10	0.69	1085
PG88-IR 02	205 238		0.11	< 0.2	\sim	810	< 0.3	$< \frac{1}{2}$	0.28	< 0.5	3	141	63	3.56	< 10	< 1	0.04	< 10	0.22	617
PG88-JR 04	205 238	$<$ $\frac{1}{5}$	0.18	< 0.2		300	< 0.5	\geq	2 60	~ 0.3	3 1	251	142	1 02	< 10		< 0.01	< 10	0.14	373
PG88-JR 05	205 238	< 5	0.09	< 0.2	< 5	80	< 0.5	< 2	5.14	< 0.5	4	241	< í	2.90	< 10	2 i	< 0.01	< 10	1.96	982
PG88-JR 06	205 238	< 5	0.34	0.2	< 5	3 50	< 0.5	2	1.35	< 0.5	5	172	< 1	1.10	< 10	< 1	0.01	10	0.77	575
PG88-JR 07	205 238	< 5	0.11	0.2	< 5	70	< 0.5	2	1.69	< 0.5	2	192	1	1.13	< 10	< 1	0.01	< 10	0.72	6 50
PG88-JR 08	205 238	< 5	0.29	< 0.2	< 5	30	1.0	< 2	6.77	< 0.5	7	138	< 1	3.75	< 10	1	0.01	< 10	2.78	2380
PG88-JR U9	205 238		0.60	< 0.2	·· < >.	20	2.0	$\leq \frac{1}{2}$	5.83	< 0.3	10	139	79	4.66	< 10	. <1	0.06	< 10	2.79	881
1080-JK 10	205 238	~ ~ ~	0.03	U.4	3	30	< 0.3	~ 1	0.07	< 0.5	1	139	2180	0.40	< 10	< 1	< 0.01	< 10	0.03	37
PG88-JR 11	205 238	< 5	0.08	6.2	5	50	1.0	< 2	0.26	< 0.5	3	119	>10000	5.18	< 10	2	0.01	< 10	0.08	70
PG88-JR 12	205 238	< 5	0.39	2.4	15	110	1.5	< 2	0.64	< 0.5	37	114	>10000	2.86	< 10	< 1	0.12	10	0.31	332
PG88-JR 13	205 238		0.17	0.8	15	130	< 0.5	< 2	0.05	< 0.5	6	196	6670	1.80	< 10	< 1	0.06	< 10	0.01	40
PG88-JR 15	205 238	< 5	0.19	0.6	5	1010	< 0.5	< 2	2.25	< 0.5	8	103	930	1.23	< 10	< 1 2	0.08	10	1.26 0.82	449 297
PG88-JR 16	205 238	< 5	0.12	0.2	< 5	800	0.5	< 2	0.08	< 0.5	2	233	1750	0.62	< 10	1	0.01	< 10	0.03	
PG88-JR 17	205 238	< 5	0.19	1.0	< 5	170	1.0	< 2	0.14	< 0.5	5	158	>10000	4.27	< 10	4	0.05	< 10	0.03	50
PG88-JR 18	205 238	< 5	0.18	0.4	10	260	0.5	< 2	0.05	< 0.5	4	120	>10000	1.84	< 10	12	0.06	< 10	0.01	13
PG88-JR 19	205 238	< 5	0.13	1.0	< 5	100	0.5	< 2	0.46	< 0.5	- 4	113	9890	1.73	< 10	< 1	0.04	< 10	0.17	78
PG88-JR 20	205 238	< 5	0.14	0.4	< 5	130	< 0.5	< 2	2.61	< 0.5	3	193	117	2.07	< 10	< 1	0.04	10	0.30	408
PG88-JR 21	205 238	< 5	0.40	< 0.2	< 5	20	< 0.5	< 2	0.10	< 0.5	6	184	49	2.20	< 10	< 1	< 0.01	< 10	0.22	547
PG88-JR 22	205 238	< 5	1.76	< 0.2	< 5	40	1.0	6	0.07	< 0.5	13	179	48	5.14	< 10	< 1	< 0.01	< 10	0.94	2010
PG88-JR 23	205 238		0.33	< 0.2	- 5	40	0.5	< 2	0.42	0.5	10	199	17	4.68	< 10	< 1	< 0.01	< 10	0.20	1550
PG88-PR 02	205 238	< 5	1.75	< 0.2	< 5	40	< 0.5	< 2	0.07	< 0.5	9	219	65	3.55	< 10		< 0.01	< 10	0.78	482
	201 220																			
PC88-PR 03	203 238		0.24	< 0.2		010	< 0.5		0.01	< 0.5	. 1/	152	43	3.11	< 10		0.03	< 10	0.03	269
PG88-PR 05	205 238	$\overline{\langle \cdot \rangle}$	0.23	< 0.2	\sim	20	< 0.5	$\overline{\langle}$	2 69	< 0.5	Š	130	05	3.02	< 10			10	1.43	005
PG88-PR 06	205 238	< 5	1.20	< 0.2	< 5	20	1.0	$\overline{\langle 2 \rangle}$	8.02	< 0.5	25	140	27	6.00	< 10	< 1	0.07	< 10	4.25	1095
PG88-PR 07	205 238	< 5	0.12	1.0	< 5	20	< 0.5	< 2	0.06	< 0.5	2	215	4560	1.21	< 10	< 1	0.01	< 10	0.04	78
PG88-PR 08	205 238	< 5	1.35	< 0.2	s < 5	10	1.0	< 2	0.05	< 0.5	15	202	129	4.81	< 10	< 1	< 0.01	< 10	0.65	1945
PG88-PR 09	205 238	75	0.13	0.2	< 5	30	< 0.5	< 2	0.26	< 0.5	3	242	81	1.43	< 10	2	< 0.01	< 10	0.10	437
PG88-PR 10	205 238	< 5	0.06	>200	28 50	30	< 0.5	< 2	0.59	>99.9	48	39	>10000	3.17	< 10	9530	0.01	< 10	0.13	114
PG88-PR 11	205 238	. < 5	0.24	176.0	805	280	0.5	< 2	0.16	19.5	16	55	>10000	3.22	< 10	260	0.11	< 10	0.05	347
PG88-PK 12	205 238	< >	0.05	3.4	10	100	< 0.5	< 2 -	>15.00	0.5	<u>, </u>	101		0.53	< 10	1.5	0.01	< 10	0.23	3/3
PG88-PR 13	205 238	< 5	0.38	13.6	25	70	< 0.5	< 2	0.38	1.0	25	19	1735	9.10	< 10	16	0.06	10	0.96	1495
PG88-PR 14	205 238	65	0.09	>200	1470	30	< 0.5	< 2	0.11	>99.9	35	48	>10000	2.97	< 10	816	0.03	< 10	0.04	56
PG88-PR 15	205 238	< 5	0.11	/2.0	335	1/10	< 0.5	< 2	0.04	3.5	4	50	>10000	1.54	< 10	436	0.04	< 10	0.02	117
PG88-PR 17	205 238	< 5	0.12	10.6	823 35	1310	< 0.5	$\stackrel{\sim}{<} \stackrel{\prime}{2}$	0.11	1.0	15	04 91	4410	4.57	< 10	23	0.08	< 10	0.01	627
C																	27	<u> </u>	1	
													CERT	TIFICATI	ON :). (and	×-	
																		1		

Analytical Chemists * Geochemists * Registered Assayers

PHONE (604) 984-0221

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC

Page No. :1-B Tot. Pages: 2 Date :27-SEP-88 Invoice # : I-8823918 P.O. # :NONE

100000

-

	V6C	1A5	,	
Pro	ject :			
Com	nents:	ATTN:	PETER	LER

RICHE

100101

CERTIFICATE OF ANALYSIS A8823918

SAMPLE DESCRIPTION	PREP	Mo	Na %	Ni	P	Pb	Sb	Sc	Sr	Ti	TI	U	v	W	Zn					
							Phil	Phin	Phu	70	1. Trini	phu	ppm	ppm	ppm					
PG88-JR 01	205 238	1 1 2	0.01	30	110	< 2	< 5	2	25 <	0.01	< 10	< 10	3	< 5	22					
PG88-JR 02	205 238		< 0.01	16	70	6	5	2	107 <	0.01	10	< 10	3	< 5	12					
PG88-JR 03	205 238			11	50	< 2	< 5	1	24 <	0.01	< 10	< 10	1	< 5	7					
PG88-JR 05	205 238	2 <	0.01	7	60	2	< 5	2	173 <	0.01	< 10 < 10	< 10	4	< 5	16					
PG88-JR 06	205 238	1 <	0.01	7	460	6	< 5	2	27 <	0.01	10	20	4	< 5	18		<u></u>		· ·	
PG88-JR 07	205 238	< 1	0.01	2	50	10	< 5	2	63 <	0.01	20	20	2	< 5	16					
PG88-JR 08	205 238			8 36	70	4	< 5	. 2	68 <	0.01	20	20	7	< 5	21					
PG88-JR 10	205 238	<1<	0.01	4	< 10	2	< 5	4	191 <	0.01	10	< 10	10	< 5	69					
							<u> </u>			0.01		< 10	<u> </u>	< 3	0	1.1				
PG88-JR 11	205 238	1 <	0.01	5	< 10	2	280	1	8 <	0.01	20	10	< 1	< 5	196					
PG88-JR 12	205 238	I I	0.01	53	60	8	25	4	15 <	0.01	20	< 10	4	< 5	84					
PG88-IR 14	205 238		0.01	20	190	26	3	1	1 7 <	0.01	< 10	< 10	1	< 5	23					
PG88-JR 15	205 238		0.01	14	60	16	10	<u>,</u>	214 <	0.01	< 10	10	2	< 5	19					
										U.UI	~ 10	< 10	3	,	21	1997) 1997 - 1997 - 1997				
PG88-JR 16	205 238	< 1	0.01	11	110	< 2	< 5	< 1	13 <	0.01	< 10	< 10	1 -	< 5	8					
PG88-JR 17	205 238		0.01	17	< 10	< 2	220	2	10 <	0.01	< 10	< 10	2	< 5	1 54					
PG88-JR 18	205 238		0.01	19	80	< 2	140	1	6 <	0.01	< 10	< 10	1	< 5	49					
PG88-JR 20	205 238		0.01	13	240	< 2	< 5	· 1	66 <	0.01	< 10	< 10		< 5	45					
											~	~ 10	-		.0					
PG88-JR 21	205 238	2 <	0.01	16	430	8	< 5	2	7 <	0.01	< 10	< 10	3	5	25					
PG88-JR 22	205 238		0.01	28	280	116	< 5	4	4 <	0.01	< 10	10	11	< 5	71					.
PG88-JR 23	205 238		0.01	33	130	6	< 5	2	6 <	0.01	< 10	10	3	< 5	33					1
PG88-PR 02	205 238	, , , , , , , , , , , , , , , , , , ,	0.01	25	270	114	<	3		0.01	< 10	< 10	11	< 5	51					
											~	~ 10								· ·
PG88-PR 03	205 238	< 1 <	0.01	17	1 50	4	< 5	2	17 <	0.01	< 10	< 10	4	< 5	18					
PG88-PR 04	205 238		0.01	12	90	2	5	5	45 <	0.01	< 10	< 10	-6	< 5	26					
PG88-PR 06	205 238		0.01	103	1560	1 24	\geq	14	175 /	0.01	< 10	< 10	4	< 5	27					
PG88-PR 07	205 238	< 1 <	0.01	- Š	70	4	\vec{s}	< 1	- 175 ~ 5 ~	0.01	< 10	< 10	43	< 5	20					
			·····						· · · · · · · · · · · · · · · · · · ·											
PG88-PR 08	205 238	1 <	0.01	32	170	< 2	< 5	4	3 <	0.01	< 10	< 10	10	< 5	57					
PG88-PR 10	205 238		0.01	49	< 10	146	25	1	26 ~	0.01	< 10	< 10	2	< 5	20					
PG88-PR 11	205 238	<1	0.01	26	370	4	>10000	3	15 <	0.01	10	< 10	. 1.	23	2920					
PG88-PR 12	205 238	< 1	0.01	2	< 10	2	305	7	818 <	0.01	10	< 10	1	< 5	50					
PC28 8	205 228	2.4	0.01	60	220	<u>()</u>	1170	6	18 -	0.01	20	20			102					
PG88-PR 14	205 238	1 <	0.01	33	< 10	4	>10000	4	6 <	0.01	< 10	< 10	1	~ ~ ~	>10000					
PG88PR 15	205 238	< 1 <	0.01	5	40	58	7780	1	131 <	0.01	20	20	i	25	401					I
PG88-PR 16	205 238	1 <	0.01	30	< 10	202	>10000	3	117 <	0.01	20	20	1	< 5	2 5 90					
PG88-PR 17	205 238	1 <	0.01	23	430	8	1595	3	25 <	0.01	10	10	2	< 5	457					
							· .						CERTI	FICATIO)N : _	ſ	3.1	(m)	s.	
																7		8		

Analytical Chemists * Geochemists * Registered Assayers

PHONE (604) 984-0221

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

Ltd

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Page No. : 2-A Tot. Pages: 2 Date : 27-SEP-88 Invoice # : I-8823918 P.O. # : NONE

- Salas

1.05462

Stir Heller

Constanting of

Comments: ATTN: PETER LERICHE

CERTIFICATE OF ANALYSIS A8823918

	1 ·																			
SAMPLE DESCRIPTION	PREP	Au ppb	A1 %	Ag	As	Ba	Be	Bi	Ca	Cđ	Co	Ст	Cu	Fe	Ga	Hg	K	La	Mg	Ma
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	phu	ppm	ppm	Pfrit	ppm	70	Phr	ppm	քքա	- Phur	70	Pha	- Plan	70	ppm	70	րես
PG88-PR 18	205 238	< 5	0.18	12.8	35	250	< 0.5	< 2	0.15	1.0	11	85	6000	2.77	< 10	20	0.07	< 10	0.03	369
PG88-PR 19	205 238	< 5	0.25	62.6	255	1 50	0.5	< 2	0.11	9.0	9	66	>10000	2.56	< 10	89	0.11	< 10	0.03	289
PG88-PR 20	205 238	< 5	0.45	2.4	< 5	140	< 0.5	< 2	0.05	0.5	9	110	989	10.05	< 10	2	0.03	< 10	0.44	1 5 4 0
PG88-PR 21	205 238	< 5	0.17	172.5	765	130	< 0.5	< 2	0.07	18.0	16	65	>10000	2.85	< 10	163	0.08	< 10	0.02	313
PG88-VR 001	205 238	< 5	0.66	2.4	< 5	60	< 0.5	< 2	6.84	0.5	15	107	416	5.24	< 10	2	0.04	< 10	2.43	1930
PG88-VR 002	205 238	< 5	0.95	0.4	< 5	60	< 0.5	4	2.61	< 0.5	17	133	142	3.56	< 10	3	0.02	10	1.07	1405
PG88-VR 003	205 238	< 5	0.17	0.2	< 5	170	< 0.5	< 2	0.12	< 0.5	12	103	120	8.01	< 10	< 1	0.07	< 10	0.09	3.58
PG88-VR 004	205 238	< 5	1.23	0.2	< 5	30	< 0.5	< 2	1.18	< 0.5	. 8	209	62	2.26	< 10	<b>- 1</b> -	0.02	< 10	0.67	451
PG88-VR 005	205 238	< 5	0.32	0.2	5	60	< 0.5	2	0.13	< 0.5	3	161	765	1.22	< 10	1	< 0.01	< 10	0.18	1065
PG88-VR 006	205 238	< 5	0.41	< 0.2	< 5	50	< 0.5	4	0.46	< 0.5	4	200	23	1.45	< 10	1	0.01	< 10	0.20	564
	1	1																1.1.1.1		

CERTIFICATION :



Т

# Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE Page No. : 2-B Tot. Pages: 2 Date : 27-SEP-88 Invoice # : I-8823918 P.O. # : NONE

# CERTIFICATE OF ANALYSIS A8823918

SAMPLE DESCRIPTION	PREP	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W	Za ppm	
PG88-PR 18 PG88-PR 19 PG88-PR 20 PG88-PR 21 PG88-VR 001	205238205238205238205238205238205238	1 < 1 < 1 < 1 < 1 <	< 0.01 0.01 < 0.01 < 0.01 < 0.01 0.01	17 20 43 23 28	730 490 110 160 180	4 8 2 14 < 2	1990 8130 140 >10000 160	2 2 4 3 4	17 < 16 < 6 < 11 < 136 <	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	10 20 30 20 10	< 10 < 10 20 20 10	1 2 3 2 6	< 5 < 5 < 5 < 5 < 5	453 885 76 2470 56	
PG88-VR 002 PG88-VR 003 PG88-VR 004 PG88-VR 005 PG88-VR 006	205       238         205       238         205       238         205       238         205       238         205       238	1 <1 <1 <1 <1	0.01 0.01 0.01 0.01 0.01	40 42 21 9 13	140 150 130 160 80	12 < 2 164 4 < 2	45 60 15 10 5	3 2 2 1 2	65 < 8 < 39 < 10 < 7 <	<ul> <li>0.01</li> <li>0.01</li> <li>0.01</li> <li>0.01</li> <li>0.01</li> <li>0.01</li> </ul>	< 10 30 10 10	< 10 10 < 10 10 10	6 3 7 1 4	< 5 < 5 < 5 < 5 < 5	42 29 48 19 25	
			-	· · ·							· · · · · · · · · · · · · · · · · · ·					

CERTIFICATION :



# Chemex Labs Ltd.

212 BROOKSBANK AVE, NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: ASHWORTH EXPLORATIONS LTD.

718 - 744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5

A8824729

Comments: ATTN: PETER LERICHE

# CERTIFICATE A8824729

# ANALYTICAL PROCEDURES

ASHWORTH	EXPLORATIONS	LTD.			
PROJECT	•				
P.O.#	: NONE				
Samples	submitted to o	ur lab	in	Vancouver, 1	BC.

Samples submitted to our lab in Vancouver, BC This report was printed on 7-NOV-88.

	SAMP	LE PREPARATION
CHEMEX CODE	NUMBER Samples	DESCR   PT   ON
214	13	Received sample as pulp

CHEMEX CODE	NUMBER Samples	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
301	13	Cu %: HClO4-HNO3 digestion	AAS	0.01	100.0
347	8	Sb %: Assay	Naa	0.001	100.0
383	8	Ag oz/T	Fa-gravimetric	0.01	20.00



### ex Labs 0 Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

718 - 744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project :

Page No. :1 Tot. Pages: 1 : 7-NOV-88 Date Invoice # : I-8824729 P.O. # :NONE

-

STATES.

Comments: ATTN: PETER LERICHE

### CERTIFICATE OF ANALYSIS A8824729

PC88-JR-12 PC88-JR-12 PC88-JR-13         214 214	SAMPLE DESCRIPTION	PREP CODE	Св %	SЪ NAA %	Ag FA oz/T			
PC88-PR-10         214          16.40         11.30         34.60           PC88-PR-11         214          12.60         12.07         30.62           PC88-PR-15         214          12.60         10.30         30.62           PC88-PR-15         214          1.600         0.795         2.07           PC88-PR-16         214          2.79         1.640         4.30           PC88-PR-18         214          2.79         0.55         0.30         30.62           PC88-PR-19         214          0.55         0.224         0.30         1.640         4.30           PC88-PR-21         214          0.55         0.224         0.30         1.640         1.640         1.640         1.30           PC88-PR-21         214          3.02         2.00         5.01         1.640         1.640         1.640           PC88-PR-21         214          3.02         2.00         5.01         1.640         1.640         1.640           PC88-PR-21         214          3.02         2.00         1.640         1.640         1.640	PG8 8-JR-11 PG8 8-JR-12 PG8 8-JR-17 PG8 8-JR-18 PG8 8-JR-19	214 214 214 214 214 214	4.14 2.16 3.71 1.04 0.92					
PC38-PR-10 PC38-PR-21       214        0.52 9.02       0.224 9.880       0.30 1.67 5.01         PC38-PR-21       214        3.02       2.800       1.67 5.01	PG88-PR-10 PG88-PR-11 PG88-PR-14 PG88-PR-15 PG88-PR-16	214 214 214 214 214 214	16.40 2.96 12.60 1.00 2.79	$ \begin{array}{r} 11.30\\ 2.07\\ 10.30\\ 0.795\\ 1.640 \end{array} $	$ \begin{array}{r} 3 4.60 \\ 5.10 \\ 30.62 \\ 2.07 \\ 4.30 \end{array} $			
	PG88-PR-18 PG88-PR-19 PG88-PR-21	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.56 0.92 3.02	0.224 0.880 2.00	0.30 1.67 5.01			



# Chemex Labs Ltd.

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5

A8823905

Comments: ATTN: PETER LERICHE

# CERTIFICATE A8823905

ASHWORTH	EXPLORATIONS LTD	
PROJECT	:	
P.O.#	: NONE	

Samples submitted to our lab in Vancouver, BC. This report was printed on 27-SEP-88.

1	SAMF	PLE PREPARATION
CHEMEX CODE	NUMBER Samples	DESCRIPTION
201	227	Dry, sieve -80 mesh; soil, sed.
203	8	Dry, sieve -35 mesh and ring
217	4	Geochem:Ring only,no crush/split
238	239	ICP: Aqua regia digestion

* NOTE 1:

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

	· · · · · · · · · · · · · · · · · · ·	<b></b>			
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION	UPPER LIMIT
	ļ		na an a		
100	239	Au ppb: Fuse 10 g sample	FA-AAS	5	10000
921	239	Al %: 32 element, soil & rock	ICP-AES	0.01	15 00
922	239	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
923	239	As ppm: 32 element, soil & rock	ICP-AES	5	10000
924	239	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
925	239	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
926	239	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
927	239	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
928	239	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
929	239	Co ppm: 32 element, soil & rock	ICP-AES	5 (A. 1	10000
930	239	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
931	239	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
932	239	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
933	239	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
951	239	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
934	239	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
935	239	La ppm: 32 element, soil & rock	ICP-AES	10	10000
936	239	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
937	239	Mn ppm: 32 element, soil & rock	ICP-AES	1	10000
938	239	Mo ppm: 32 element, soil & rock	ICP-AES		10000
939	239	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
940	239	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
941	239	P ppm: 32 element, soil & rock	ICP-AES	10	10000
942	239	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
943	239	Sb ppm: 32 element, soil & rock	ICP-AES	5	10000
958	239	Sc ppm: 32 elements, soil & rock	ICP-AES	1	100000
944	239	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
945	2 3 9	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
946	2 3 9	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
947	2 3 9	U ppm: 32 element, soil & rock	ICP-AES	10	10000
948	2 3 9	V ppm: 32 element, soil & rock	ICP-AES	1	10000
949	2 3 9	W ppm: 32 element, soil & rock	ICP-AES	5	10000
950	239	Zn ppm: 32 element, soil & rock	ICP-AES	5	10000

ANALYTICAL PROCEDURES



# Chemex Labs Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project :

Page No. : 1-A Tot. Pages: 6 : 27-SEP-88 Date Invoice # : I-8823905 P.O. # :NONE

STREET,

Comments: ATTN: PETER LERICHE

### CERTIFICATE OF ANALYSIS A8823905

SAMPLE DESCRIPTION	PREP CODE	Au ppb F <del>AlA</del> A	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	М <b>е</b> %	Ma ppm
T88-L0+00N 0+25	201 238	3 15	1.02	0.4	20	240	< 0.5	< 2	0.47	< 0.5	21	21	39	4.77	< 10	< 1	0.08	10	0.52	166
188-10-00N 0+50	201 238	30	1 1 2 2	0.4	15	140	< 0.5	2	1:00	< 0.5	19	23	38	3.97	< 10		0.07	10	0.68	482
188-LOHOON 1+00	201 238	35	1.18	< 0.2	5	260	< 0.5	2	1.43	< 0.5	23	20	39	3.92	< 10		0.14	30	1.29	763
T88-LO+00N 1+25	201 238	30	1.32	< 0.2	< 5	290	< 0.5	4	0.50	0.5	24	22	39	4.27	< 10	< i 1	0.12	20	0.82	6 5 4
T88-LOHOON 1+50	201 238	10	1.15	< 0.2	10	180	< 0.5	4	1.11	< 0.5	21	21	48	3.76	< 10	< 1	0.10	20	1.22	563
T88-T0+00N 2400	201 230	10	2.33	< 0.2	10	130	< 0.3	- 2	0.37	< 0.5	24	26	47	4.76	< 10	< 1	0.09	20	0.74	496
T88-L0+00N 2+50	201 238	< 5	1.14	0.2	20	220	< 0.5	4	1 75	< 0.5	23	10	45	2.34	2 10		0.03	20	0.21	7 4 1
T88-L0+00N 2+75	201 238	< 5	1.46	0.2	5	210	< 0.5	2	1.11	< 0.5	24	26	44	4.08	< 10	                                                                	0.10	20	1.33	6 50
T88-L0+00N 3+00	201 238	< 5	1.27	0.2	< 5	330	< 0.5	4	0.96	0.5	20	18	41	3.82	< 10	• 1	0.15	10	0.50	508
T88-L0+00N 3+25	201 238	< 5	1.31	< 0.2	5	240	< 0.5	< 2	1.06	< 0.5	17	19	38	3.16	< 10	4	0.10	10	0.47	5 5 4
188-LOHOON 34/5	201 238		1.4/	< 0.2	< >	30	< 0.5	< 2	0.02	< 0.5	12	25	36	4.34	< 10	4	0.05	10	0.58	1 56
188-L0+00N 4+50	201 238	$\vec{<}$	1.38	< 0.2	5	2 50	< 0.5	< 2	0.95	< 0.5	17	18	33	3.25	< 10	<1	0.04	< 10	0.04	30 3 3 4
T88-LOHOON 41-75	201 238	< 5	0.82	< 0.2	< 5	290	< 0.5	< 2	2.14	< 0.5	11	11	20	1.86	< 10	< 1	0.10	< 10	0.42	378
T88-L0+00N 5+00	201 238	< 5	1.29	0.2	< 5	310	< 0.5	< 2	0.74	< 0.5	18	18	40	3.91	< 10	. <b>1</b>	0.11	10	0.46	337
188-LOHOON 5475	201 238	< 5	1.72	< 0.2	< 5	290	< 0.5	2	1.06	< 0.5	21	28	36	4.00	< 10	< 1	0.09	10	0.61	686
T88-L0+00N 6+25	201 238	< 5	1.53	< 0.2	< 5	250	< 0.5	< 2	0.14	< 0.5	20	20	38 24	4.32	< 10	< 1	0.03	< 10	0.60	575
T88-LO+00N 6+50	201 238	< 5	1.34	< 0.2	20	200	< 0.5	< 2	0.12	< 0.5	17	21	43	3.53	< 10	1	0.07	< 10	0.43	453
T88-LO+00N 6+75	201 238	< 5	1.14	< 0.2	15	140	< 0.5	2	1.41	< 0.5	20	20	36	3.57	< 10	< 1	0.08	10	1.42	654
T88-L0+00N 7+00	201 238	< 5	1.22	< 0.2	15	140	< 0.5	< 2	0.74	< 0.5	24	21	- 44	3.91	< 10	< 1	0.07	10	1.04	648
188-LOTON /+25	201 238		1.10	< 0.2	10	190	< 0.5	2	1.36	< 0.5	22	19	39	3.41	< 10	< 1	0.10	10	0.88	676
	201 238		1.00	<b>\U.</b> 2	10	100	< 0.3		1.14	< 0.3	21			3.43	< 10	< 1	0.0/		1.2/	0.26
188-LOHOON 7475	201 238	5	1.42	< 0.2	20	170	< 0.5	< 2	1.04	< 0.5	24	26	41	4.32	< 10	1	0.06	10	1.12	6 59
TR8-L0+00N 0+2 5	201 238		1 32	< 0.2	10	280	< 0.3	< 2	0.20	< 0.5	22	19	32	3.70	< 10		0.06	10	0.73	534
T88-LOHOON 01-50	201 238	< 5	1.50	< 0.2	10	270	< 0.5	2	0.52	< 0.5	22	31	40	3.73	< 10	$\geq$	0.06	10	1.00	688
T88-L0+00N 1+00	201 238	< 5	1.76	< 0.2	15	290	< 0.5	2	0.47	< 0.5	24	38	53	4.17	< 10	< 1	0.07	10	1.16	570
T88-L0+00N 1+25	201 238	< 5	1.61	< 0.2	25	230	< 0.5	< 2	0.47	< 0.5	24	34	45	4.07	< 10	< 1	0.06	10	0.97	592
188-L0+00N 1+50	201 238		1.73	< 0.2	15	140	< 0.5	2	0.35	< 0.5	24	36	39	4.38	< 10	· < 1	0.07	10	1.01	691
T88-L0H00N H00	201 238	23	1.05	< 0.2	< 5	230	< 0.3	- 2	0.35	< 0.5	12	28	45	4.05	< 10	- 1	0.03	< 10	1.02	225
T88-L0+00N 3+25	201 238	< s	1.94	< 0.2	10	40	< 0.5	< 2	0.11	< 0.5	20	43	62	7.36	< 10	<i>&lt;</i> 1	0.03	< 10	0.52	316
T88-LOHOON 3+75	201 238	< 5	1.05	0.2	< 5	30	< 0.5	2	0.13	< 0.5	7	18	8	2.33	< 10	< 1	0.04	< 10	0.30	94
188-L0+00N 4+00	201 238	< 5	2.12	< 0.2	15	320	< 0.5	4	1.41	< 0.5	24	35	23	4.43	< 10	< 1	0.06	10	0.82	3810
1188-LOTOON 44-50	238		2 64	0.2	10	30 40	< 0.5	~ ~ 2	0.12	< 0.5	< 1	13 A1	1 4	1.92	< 10	< 1	0.07	< 10	0.28	271
T88-L0+00N 5+00	201 238	$\overline{\langle s \rangle}$	2.46	0.2	15	50	< 0.5	2	0.23	< 0.5	24	40	28	4.94	< 10	< 1	0.05	< 10	0.84	365
													CERT	IFICATI	ON :	- /	<i>3. (</i>	ag	Ś.	
																-		1		



# Chen Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE Page No. :1-B Tot. Pages: 6 Date :27-SEP-88 Invoice #:I-8823905 P.O. # NONE

Antestation .

### CERTIFICATE OF ANALYSIS A8823905

SAMPLE	PREP	Mo		Na 1	Ni	P	РЪ	Sb	Sc	Sr	Ti	TI	U	v	w	7n	
DESCRIPTION	CODE	ppm	1	% p <u>r</u>	xn p	m	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	
T88-L0+00N 0+25	201 238	1	< 0 (	<u></u>	1 6	70	2		•		0.01	- 10	< 10				 
T88-LOHOON 0+50	201 238	i	0.0	01 4	H 6	590 · · ·	$<\hat{2}$	< 5	5	101 <		< 10	< 10	11	< 5	69	
T88-LOHOON 0+75	201 238	1	< 0.0	01 3	19 5	50	28	5	4	24 <	0.01	< 10	< 10	14	$\overline{\langle s \rangle}$	87	
T88-L0+00N 1+00	201 238	1	< 0.0	DI 3	3 5	500	26	5	4	31 <	0.01	< 10	< 10	12	< 5	86	
T88-L0+00N 1+25	201 238	1	< 0.0	51 4	6 4	50	36	< 5	4	17 <	0.01	< 10	< 10	13	< 5	88	
T88-L0+00N 1+50	201 238	1	< 0.0	01 3	9 4	80	30	< 5	4	19 <	0.01	< 10	< 10	11	< 5	73	
T88-L0+00N 1+75	201 238		< 0.0	51 5	0 5	30	14	< 5	5	29 <	0.01	< 10	< 10	14	< 5	75	
188-L0+00N 2+00	201 238		0.0	03 1	7 1	30	16	< 5	2	13	0.04	< 10	< 10	20	< 5	38	
188-LOHUN 2+50	201 238		< 0.0	)I 3	6 4	50	40	5	3	27 <	0.01	< 10	< 10	12	< 5	75	
100 101001 27/3	201 230	<u> </u>	< 0.t	JI 4			32	3	3	23 <	0.01	< 10	< 10	13	< 5	. 77	
188-L0+00N 3+00	201   238	1	0.0	)i 3	1 4	10	24	5	4	61 <	0.01	< 10	< 10	13	< 5	66	
T88-L0+00N 3+25	201 238	< 1	0.0	01 2	7 5	10	22	5	4	68	0.01	< 10	< 10	13	< 5	72	
188-L0+00N 3+75	201 238	2	< 0.0	31 3	6 2	20	14	< 5	2	4 <	10.01	< 10	< 10	15	< 5	63	
188-LOTON 4400	201 238	< 1	0.0		4 4	00	4	< 5	< 1	. 13	0.01	< 10	< 10	. 9 .	< 5	14	
100-101004 47-50	201 238		0.0	<i>)</i> [3	4 4	90	8	< >	4	51 <	0.01	< 10	< 10	10	< 5	60	
T88-LOHOON 4+75	201 238	1	< 0.0	01 1	9 5	30	16	5	2	106 <	0.01	< 10	< 10	5	< 5	47	
T88-L0+00N 5+00	201 238	< 1	0.0	DI 4	1 5	20	14	< 5	5	47 <	0.01	< 10	< 10	10	< 5	59	
T88-L0+00N 5+75	201 238	1	0.0	)1 3	7 4	60	18	< 5	5	58 <	0.01	< 10	< 10	13	< 5	80	
188-L0100N 6100	201 238	1	< 0.0	)1 3	8 3	40	22	< 5	4	13 <	0.01	< 10	< 10	13	< 5	78	
188-LOHOON 6+25	201 238		< 0.0	)1 3	4 3	40	20	< 5	4	14 <	0.01	< 10	< 10	-11	< 5	62	
T88-LOHOON 6+50	201 238	2	0.0	)1 3	0 2	70	30	< 5	3	12 <	0.01	< 10	< 10	12	< 5	95	 
T88-L0+00N 6+75	201 238	1	< 0.0	)1 3	1 3	50	22	5	3	22 <	0.01	< 10	< 10	9	< 5	71	
188-LOHOON 7400	201 238	2	< 0.0	)1 3	5 4	90	38	5 -	- 3	15 <	0.01	< 10	< 10	- 11	< 5	82	
188-L0+00N 7+25	201 238		< 0.0	)] 3	4 5	20	46	< 5	3	28 <	0.01	< 10	< 10	10	< 5	100	and the second
188-LOHOON 74-50	201 238	2	< 0.0	)1 3	3 4	30	28	< 5		18 <	0.01	< 10	< 10	10	< 5	75	
T88-L0+00N 7+75	201 238	2	< 0.0	)1 4	5 3	50	16	< 5	4	24 <	0.01	< 10	< 10	10	< 5	86	
T88-LOHOON 8400	201 238	2	< 0.0	)1 3	4 4	60	34	< 5	3	7 <	0.01	< 10	< 10	10	< 5	75	
T88-LOHOON 0+25	201 238	2	< 0.0	)1 4	3 5	40	12	< 5	4	42 <	0.01	< 10	< 10	9	< 5	69	
T88-L0+00N 0+50	201 238		< 0.0	)1 4	8 5	50	16	< 5	4	33 <	0.01	< 10	< 10	11	< 5	93	
188-LOHOON 1400	201 238		< 0.0	<b>)</b> 1 5	5 5	30	16	< 5	5	15 <	0.01	< 10	< 10	13	< 5	87	
T88-L0+00N 1+25	201 238	1	< 0.0	1 5	3 6	20	10	< 5	5	18 <	0.01	< 10	< 10	12	< 5	82	
T88-L0+00N 1+50	201 238	1	< 0.0	)1 5	4 5	70	12	< 5	5	16 <	0.01	< 10	< 10	14	< 5	121	
T88-L0+00N 1+75	201 238	2	< 0.0	)1 5	4 4	60	14	< 5	5	16 <	0.01	< 10	< 10	13	< 5	80	
188-L0400N 3400	201 238	2	< 0.0	)1 2	2 2	90	22	< 5	2	6 <	0.01	< 10	< 10	16	< 5	62	
188-L0+00N 3+25	201 238	2	< 0.0	)1 2	6 7	70	24	< 5	2	8 <	0.01	< 10	< 10	19	< 5	78	
T88-L0+00N 3+75	201 238	1	0.0	)1 1	1 2	90	14	< 5	1	7 <	0.01	< 10	< 10	16	< 5	38	
T88-L0+00N 4+00	201 238	1	0.0	)1 3	8 3	80	14	< 5	4	56 <	0.01	< 10	< 10	21	< 5	202	
188-LOHOON 44-50	201 238		< 0.0		9 2	10	4	< 5	1	8 <	0.01	< 10	< 10	14	< 5	38	
188-L0100N 4175	201 238	2	< 0.0		22	30	12	5	. 3	15 <	0.01	< 10	< 10	22	< 5	91	
100-TOTON 2400	x01 238	2	< 0.0	4	0 31	00	14	>	3	13 <	0.01	< 10	< 10	19	< 5	101	 ······
														CERT	IFICATIO	N :	 -gl-

CERTIFICATION :



## Chemex Labs Analytical Chemists * Geochemists * Registered Assayers

Main and

Contactor

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project :

Page No. :2-A Tot. Pages: 6 :27-SEP-88 Date Invoice # : I-8823905 P.O. # :NONE

-

Comments: ATTN: PETER LERICHE

### CERTIFICATE OF ANALYSIS A8823905

SAMPLE DESCRIPTION	PREP CODE	Au ppb F <del>AHA</del> A	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Ma ppm
T88-L0+00N 5+50 T88-L0+00N 5+7 T88-L0+00N 6+00 T88-L1N 25E T88-L1N 50E	201 238 201 238 201 238 201 238 201 238 201 238	<pre>&lt; \$ &lt; \$</pre>	0.76 1.36 2.35 0.70 0.95	0.2 0.2 0.2 < 0.2 < 0.2 < 0.2	5 5 15 10 20	60 70 70 320 260	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre> 2 &lt; 2 4 &lt; 2 4 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 </pre>	0.08 0.12 0.37 0.34 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 12 35 21 21	11 22 31 12 18	18 23 23 35 28	2.41 3.32 6.69 3.38 3.92	< 10 < 10 < 10 < 10 < 10 < 10	< 1	0.06 0.07 0.03 0.08 0.07	< 10 10 10 10 10	0.21 0.45 0.39 0.25 0.31	289 437 835 1050 841
188-LIN 1+25E 188-LIN 1+50E 188-LIN 2+00E 188-LIN 2+50E 188-LIN 3+00E	201238201238201238201238201238	<pre>&lt; 5 &lt; 5 </pre>	1.81 0.96 1.20 1.77 1.62	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	5 15 < 5 < 5 < 5 < 5	240 260 390 160 320	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 4 < 2 < 2 < 2	0.23 0.40 0.22 0.51 0.83	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	24 19 24 22 23	35 25 25 35 32	45 68 46 38 45	3.96 2.46 2.81 3.28 3.27	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 1	0.07 0.06 0.04 0.05 0.06	10 10 < 10 10 10	0.66 0.26 0.47 0.93 0.82	3470 2540 >10000 850 901
T88-LIN 3+2 5E T88-LIN 3+50E T88-LIN 3+7 5E T88-LIN 3+7 5E T88-LIN 4+00E T88-LIN 4+2 5E	217 238 217 238 217 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 5 < 5	2.19 2.13 2.20 1.57 0.97	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	5 10 < 5 5 5	200 320 120 320 130	< 0.5 0.5 < 0.5 0.5 < 0.5	2 < 2 4 2 < 2 < 2	0.52 0.68 0.36 0.83 0.10	< 0.5 < 0.5 < 0.5 1.0 2.0	24 23 22 23 12	55 55 51 31 20	45 51 46 38 21	3.85 4.04 3.93 3.19 2.21	< 10 < 10 < 10 < 10 < 10 < 10	 < 1 2 1 < 1	0.13 0.14 0.09 0.07 0.03	10 10 10 10 < 10	1.12 1.07 1.11 0.78 0.40	806 932 606 1495 586
T88-LIN 4+7 5E T88-LIN 5+50E T88-LIN 5+50E T88-LIN 5+7 5E T88-LIN 6+2 5E T88-LIN 0+50W	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 5 < 5	1.77 0.99 0.91 1.77 0.71	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	15 20 20 10 10	1 50 1 80 2 20 3 00 3 10	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2 2	0.24 0.26 0.42 0.64 0.53	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	24 24 23 17 23	35 18 18 12 13	43 35 26 21 27	3.68 2.75 2.56 2.26 3.51	< 10 < 10 < 10 < 10 < 10 < 10	2 < 1 1 3 < 1	0.07 0.07 0.07 0.10 0.08	10 10 10 10	0.88 0.40 0.43 0.33 0.27	1665 2130 2230 1605 1725
T88-L1N 1+00W T88-L1N 1+2 5W T88-L1N 1+50W T88-L1N 1+50W T88-L1N 1+7 5W T88-L1N 2+50W	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 5 < 5	0.67 0.60 0.75 0.67 1.33	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	15 10 10 20 10	300 940 340 730 490	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 2 2 < 2 2 < 2	0.31 1.52 0.30 0.51 0.71	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 19 22 23 24	10 9 12 10 26	21 35 33 31 47	2.70 2.15 3.36 3.36 3.82	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.06 0.08 0.09 0.10 0.09	10 10 10 10	0.16 0.29 0.26 0.29 0.72	208 3740 1115 1110 839
T88-LIN 3+00W T88-LIN 3+2 SW T88-LIN 3+50W T88-LIN 3+7 SW T88-LIN 3+7 SW T88-LIN 4+00W	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 5 < 5	2.40 1.69 1.35 0.37 0.53	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	25 15 15 15 5	260 110 100 80 60	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 < 2 4	0.07 1.23 0.39 5.67 10.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 24 29 12 12	24 31 18 6 4	19 55 77 27 29	3.82 4.52 5.05 2.46 2.66	< 10 < 10 < 10 10 20	2 < 1 1 1 < 1	0.10 0.10 0.10 0.08 0.08	10 10 < 10 < 10 < 10	0.49 0.93 0.46 0.11 0.10	434 717 588 441 151
T88-LIN 4+50W T88-LIN 4+7 5W T88-LIN 5+00W T88-LIN 5+2 5W T88-LIN 5+50W	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	3.73 2.27 2.37 2.05 2.93	0.6 0.2 < 0.2 0.2 0.2 0.2	20 15 5 15 20	200 110 250 110 130	0.5 0.5 < 0.5 < 0.5 < 0.5 0.5	2 4 < 2 < 2 < 2 < 2 < 2	0.15 0.08 0.10 0.45 0.29	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	23 24 21 32 18	26 37 29 39 20	34 46 29 73 19	3.66 4.61 3.84 5.00 3.07	< 10 < 10 < 10 < 10 < 10 < 10	3 <1 <1 <1 <1 1	0.08 0.06 0.09 0.08 0.09	10 10 10 10	0.59 0.93 0.67 1.14 0.44	213 335 634 833 403
T88-LIN 5+7 5W T88-LIN 6+00W T88-LIN 6+2 5W T88-LIN 6+50W T88-LIN 6+7 5W	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	1.92 2.14 2.09 2.35 2.59	< 0.2 < 0.2 < 0.2 < 0.2 0.2 < 0.2	10 20 20 20 20	200 160 150 120 100	0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 < 2 2 < 2 2	0.48 0.31 0.96 0.37 0.75	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	24 33 24 24 24 24	27 34 29 31 40	27 48 32 40 50	3.56 4.27 4.09 4.11 4.95	< 10 < 10 < 10 < 10 < 10 < 10	3 < 1 2 2	0.07 0.09 0.09 0.11 0.08	10 10 10 10	0.61 0.82 0.78 0.84 1.06	904 1940 1370 667 565
													CERT	<b>TIFICATI</b>	ON :	/	<u>B. (</u>	a	pl.	



### Chemex lahe Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC

V6C 1A5 Project : Comments: ATTN: PETER LERICHE Page No. :2-B Tot. Pages: 6 Date :27-SEP-88 Invoice # : I-8823905 P.O. # :NONE

and dear

PHONE (604) 984-0221

#### CERTIFICATE OF ANALYSIS A8823905

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na N % pp	i P m ppm	Pb ppm	Sb	Sc ppm	Sr ppm	Ti %	Ti	U ppm	V ppm	W	Za ppm		
T88-L0+00N 5+50 T88-L0+00N 5+75 T88-L0+00N 6+00 T88-L1N 25E T88-L1N 50E	201 238 201 238 201 238 201 238 201 238 201 238	$ \begin{array}{c} 2 & 0 \\ 2 & 0 \\ 3 < 0 \\ 2 & 0 \\ < 1 < 0 \end{array} $	D.02       1         D.01       2         D.01       3         D.01       3         D.01       3	2 360 1 280 7 1210 3 680 3 730	38 64 30 12 16	< 5 < 5 < 5 < 5 < 5 < 5	1 2 5 3 3	6 < 10 < 20 < 25 < 20 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 17 17 11 12	< s < s < s < s < s	43 69 76 72 68		
T88-L1N 1+25E T88-L1N 1+50E T88-L1N 2+00E T88-L1N 2+50E T88-L1N 2+50E T88-L1N 3+00E	201         238           201         238           201         238           201         238           201         238           201         238           201         238	$ \begin{array}{c} 2 & 0 \\ 2 & 0 \\ 1 & 0 \\ 1 < 0 \\ 2 < 0 \end{array} $	0.01     3       0.02     3       0.01     2       0.01     4       0.01     4	6 1240 1 1450 8 970 4 760 3 510	22 24 44 18 24	< 5 < 5 < 5 < 5 < 5 < 5	3 1 1 4 5	16 < 24 14 < 14 < 17 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	21 14 15 13 13	< 5 < 5 < 5 < 5 < 5 < 5	150 117 132 84 69		
T88-LIN 3+25E T88-LIN 3+50E T88-LIN 3+50E T88-LIN 3+75E T88-LIN 4+00E T88-LIN 4+25E	217 238 217 238 217 238 201 238 201 238	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D.01         5           D.01         4           D.01         5           D.01         3           D.02         2	1 580 8 630 0 450 9 630 1 370	10 18 14 36 16	< 5 < 5 < 5 < 5 < 5	4 4 4 2	14 < 20 < 11 < 16 < 6	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	16 16 16 14 15	< 5 < 5 < 5 < 5 < 5	96 97 87 80 43		
T88-L1N 4+75E T88-L1N 5+50E T88-L1N 5+75E T88-L1N 6+25E T88-L1N 0+50W	201       238         201       238         201       238         201       238         201       238         201       238	1 C 1 C 1 C 1 C 1 C 1 C	0.01     4       0.01     2       0.01     2       0.02     2       0.01     3	2 720 4 1070 3 880 1 820 4 710	36 36 28 22 14	< 5 < 5 < 5 < 5 < 5	4 1 1 2 3	10 < 14 < 19 < 47 35 <	0.01 0.01 0.01 0.04 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	15 14 13 14 8	< 5 < 5 < 5 < 5 < 5	84 69 73 78 78		
T88-LIN 1+00W T88-LIN 1+25W T88-LIN 1+50W T88-LIN 1+75W T88-LIN 2+50W	201         238           201         238           201         238           201         238           201         238           201         238	$ \begin{array}{c} 1 & 0 \\ < 1 & 0 \\ 1 & 0 \\ 1 & < 0 \\ 1 & < 0 \end{array} $	0.01     2:       0.01     3:       0.01     3:       0.01     3:       0.01     4:	2 530 2 820 4 520 4 720 7 660	10 10 10 12 24	< 5 < 5 < 5 < 5 < 5	3 2 4 4 4	26 < 65 < 25 < 33 < 24 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	11 7 11 7 13	< 5 < 5 < 5 < 5 < 5	44 140 75 84 96		
T88-LIN 3+00W T88-LIN 3+2 5W T88-LIN 3+50W T88-LIN 3+7 5W T88-LIN 4+00W	201 238 201 238 201 238 201 238 201 238 201 238	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01         29           0.01         44           0.01         56           0.01         2           0.01         2	9     480       5     350       5     230       1     300       5     230	20 26 22 8 16	< 5 < 5 5 5 5	2 6 8 5 6	8 72 < 29 < 130 < 192 <	0.02 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	24 14 11 6 6	< 5 < 5 < 5 < 5 < 5	83 83 58 27 18		
T88-LIN 4+50W T88-LIN 4+75W T88-LIN 5+00W T88-LIN 5+25W T88-LIN 5+50W	201 238 201 238 201 238 201 238 201 238 201 238	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.03         39           0.01         50           0.01         34           0.01         5           0.02         2	250       180       190       7     450       7     720	22 22 18 28 22	< 5 < 5 < 5 < 5 < 5	5 5 4 6 3	18 8 < 12 18 < 22	0.06 0.01 0.01 0.01 0.04	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	22 19 21 16 17	< 5 < 5 < 5 < 5 < 5	70 84 72 93 72		
T88-LIN 5+75W T88-LIN 6+00W T88-LIN 6+25W T88-LIN 6+50W T88-LIN 6+75W	201       238         201       238         201       238         201       238         201       238	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01     3.       0.01     4.       0.01     3.       0.01     3.       0.01     5.	3     720       2     550       7     470       3     310       2     350	36 28 30 24 28	< 5 < 5 < 5 < 5 < 5	3 5 5 7 7	$ \begin{array}{c} 23 \\ 15 < 60 \\ 33 \\ 48 < 6 \end{array} $	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	17 18 16 17 17	< 5 < 5 < 5 < 5 < 5	79 83 84 81 93	<b>6 7</b>	
												CERT	FICATIO	N :	<i>В.Са</i>	-gli-



# Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE Page No. : 3-A Tot. Pages: 6 Date : 27-SEP-88 Invoice #: I-8823905 P.O. # : NONE

agt

# CERTIFICATE OF ANALYSIS A8823905

SAMPLE DESCRIPTION	PR CO	ep De	Au ppb FAIAA	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg	K %	La ppm	Mg %	Ma ppm
T88-LIN 7+00W	201	238	< 5	2.27	< 0.2	5	120	< 0.5	< 2	0.65	< 0.5	24	35	40	4.28	< 10	< 1	0.11	10	0 10	742
TREAT IN THEORY	201	238		2.33	< 0.2	< 5	110	< 0.5	2	0.64	< 0.5	24	34	39	4.43	< 10	5	0.10	10	0.88	773
T88-LIN 7+7 9V	201	230		2.34	< 0.2	-20	140	< 0.5	< 2	0.54	< 0.5	24	34	49	4.52	< 10	. < 1	0.14	10	0.83	1 3 0 5
T88-LIN 8+00W	201	238	10	1.47	< 0.2	15	110	< 0.5	< 2	0.92	< 0.5	24	21	52	3.79	< 10	2	0.09	10	0.51	1815
T88-1 IN 8-2 81/	201	228	10	1 60	< 0. 0		100								3./ <del>4</del>	< 10	< I	.0.10	10	0.37	1870
T88-LIN 8+75W	201	238	< 5	1.50		10	100	< 0.5	2	0.81	< 0.5	24	24	64	3.56	< 10	1	0.08	10	0.52	1910
T88-LIN 9+00W	201	238	< 3	1.03	< 0.2	20	130			0.81	< 0.5	. 24	22	35	3.90	< 10	< 1	0.15	10	0.47	1 5 4 0
T88-LIN 9+25W	201	238	< 5	1.57	< 0.2	20	220		$\geq$	0.43	< 0.3	22	24	30	3.93	< 10	1	0.07	10	0.51	1195
T88-LIN 9+50W	201	238	< 5	2.10	< 0.2	25	130	< 0.5	$\stackrel{>}{<} \frac{1}{2}$	0.00	< 0.5	24	19	36 17	3.96 3.91	< 10 < 10	< 1	0.12	10	0.48	2140
T88-LIN 9+75W	201	238	< 5	1.64	< 0.2	25	240	<03	< 2	0.10	< 0.1									0.34	
T88-LIN 10+00W	201	238	< 5	1.48	< 0.2	15	240		25	0.30	< 0.3	23	22	28	3.76	< 10	< 1	0.12	10	0.51	1420
T88-LIN 10+25W	201	238	< 5	1.39	< 0.2	25	220	< 0.5		0.8/	< 0.5	24	26	44	3.85	< 10	< 1	0.11	- 10	0.69	1100
T88-LIN 10+50W	201	238	< 5	1.92	< 0.2	25	170	< 0.5	~ 2	0.04	< 0.3	24	24	41	3.57	< 10	1	0.09	10	0.67	1235
T88-LIN 10+75W	201	238	< 5	1.33	< 0.2	< 5	300	< 0.5	< 2	0.94	0.5	22	21	48 32	4.85	< 10 < 10	< 1	0.07	10	0.90	626
T88-LIN 11+00W	203	238	< 5	1.70	< 0.2	5	250	< 0 5	< 2	0.84	<05	10	40			- 10					
T88-LIN 11+25W	201	238	< 5	1.42	< 0.2	10	270	< 0.5	$\overline{\langle}$	0.04	< 0.5	19	49	34	3.10	< 10	< 1	0.22	10	0.69	1235
T88-LIN 11+50W	201	238	< 5	1.57	< 0.2	10	280	< 0.5	< 2	0.11	< 0.5	10	11	20	3.83	< 10	< 1	0.11	20	0.48	447
T88-LIN 11+75W	201	238	< 5	1.41	< 0.2	5	360	< 0.5	< 2	0.12	< 0.5	11	12	10	2.03	< 10		0.06	10	0.25	- 117
T88-LIN 12+00W	201	238	< 5	1.04	0.2	15	460	< 0.5	2	0.08	< 0.5	9	9	45	2.40	< 10	< 1	0.14	10	0.20	3 54
T88-LIN 12+25W	201	238	< 5	1.83	0.2	< 5	170	< 0.5	< 2	0.21	< 0.5	16	10	14	2 10	< 10				~	
T88-LIN 12+50W	201	238	< 5	2.22	0.2	10	150	0.5	< 2	0.20	< 0.5	11	14	7	2.72			0.08	10	0.4/	298
T88-L1N 12+75W	201	238	< 5	0.76	< 0.2	< 5	140	< 0.5	< 2	0.29	< 0.5		1 0	. , \$	2.00			0.0/	10	0.26	220
T88-LIN 13+00W	201	238	< 5	1.46	< 0.2	15	160	< 0.5	< 2	0.15	< 0.5	12	15	Ğ	2.00	< 10		0.00	10	0.19	268
T88-LIN 13+25W	201	238	< 5	1.52	< 0.2	10	180	< 0.5	< 2	0.08	< 0.5	17	16	14	3.18	< 10	1	0.09	10	0.30	431
T88-LIN 13+-50W	201	238	5	1.80	< 0.2	. 5	1.50	< 0.5	< ?	0.15	< 0 5	18	20	22	2 50	< 10		0.10			
T88-LIN 13+75W	201	238	< 5	1.90	< 0.2	< 5	160	< 0.5	< 2	0.09	< 0.5	16	20	15	3.57	< 10	. 1	0.10	10	0.39	411
T88-LIN 14+00W	201	238	< 5	1.96	< 0.2	< 5	190	< 0.5	< 2	0.29	< 0.5	16	20	13	3 36	< 10	. 1	0.00	10	0.40	322
T88-LIN 14+25W	201	238	< 5	1.13	< 0.2	< 5	200	< 0.5	4	0.45	< 0.5	24	18	32	3.45	< 10	< 1	0.10	10	0.30	0 70
188-LIN 14+50W	201	238	< 5	1.32	< 0.2	5	140	< 0.5	2	0.32	< 0.5	32	23	53	4.57	< 10	< 1	0.07	10	0.58	1090
T88-LIN 14+75W	201	238	< 5	1.25	< 0.2	10	170	< 0.5	2	0.56	< 0.5	30	22	57	4.58	< 10	< 1	0.07	10	0.48	
T88-LIN 15+00W	201	238	< 5	1.21	< 0.2	10	160	< 0.5	2	0.43	< 0.5	24	20	46	4.30	< 10	21	0.07	10	0.30	0.04
T88-LIN 15+25W	201	238	< 5	1.28	< 0.2	< 5	100	< 0.5	4	0.31	< 0.5	24	22	47	4.56	< 10	- 2i	0.06	< 10	0.57	722
188-LIN 15+50W	203	238	< 5	1.09	< 0.2	5	300	< 0.5	2	0.84	< 0.5	24	52	52	3.04	< 10	< 1	0.21	10	0 41	1105
188-LIN 15+75W	201	238	< 5	1.15	< 0.2	15	410	< 0.5	< 2	0.42	< 0.5	19	13	27	2.79	< 10	i	0.11	10	0.34	2550
T88-LIN 16+00W	201	238	< 5	0.90	< 0.2	5	310	< 0.5	2	0.14	< 0.5	11	8	14	1.80	< 10		0.10	10	0.19	3520
188-LIN 16+25W	201	238	< 5	1.94	< 0.2	15	240	0.5	< 2	0.27	< 0.5	11	10	14	2.24	< 10	· 1	0.07	10	0.26	820
188-LIN 16+50W	201	238	< 5	1.37	< 0.2	10	90	< 0.5	< 2	0.10	< 0.5	19	11	29	3.30	< 10	< 1	0.06	< 10	0.23	382
188-LIN 16+75W	201	238	< 5	0.82	0.2	5	220	< 0.5	2	0.36	< 0.5	10	8	17	2.12	< 10	1	0.07	10	0.16	919
WU0+11 FILL 001	201	438	< >	2.38	< 0.2	5	200	< 0.5	< 2	0.18	< 0.5	11	10	10	1.98	< 10	2	0.07	10	0.24	1355



### Chemex labs

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE

Page No. : 3-B Tot. Pages: 6 27-SEP-88 Date Invoice # : I-8823905 P.O. # :NONE

### CERTIFICATE OF ANALYSIS A8823905

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P	Pb ppm	Sb ppm	Sc ppm	Sr T ppm 9	i Ti 6 ppm	U ppm	V ppm	W	Zn ppm		
188-LIN 7+00W 188-LIN 7+25W 188-LIN 7+50W 188-LIN 7+50W 188-LIN 7+75W 188-LIN 8+00W	201 238 201 238 201 238 201 238 201 238 201 238	2 2 2 2 2 2	0.01 < 0.01 0.01 0.01 0.01	42 42 43 30 34	460 380 440 840 680	24 32 34 36 46	< 5 < 5 < 5 5 5	5 6 7 6 6	$\begin{array}{r} 29 < 0.0\\ 37 < 0.0\\ 31 & 0.0\\ 42 & 0.0\\ 43 < 0.0 \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	< 10 < 10 < 10 < 10 < 10 < 10	17 16 18 16 15	< 5 < 5 < 5 < 5 < 5 < 5	88 88 89 92 105		
T88-L1N 8+2 5W T88-L1N 8+7 5W T88-L1N 9+00W T88-L1N 9+2 5W T88-L1N 9+50W	201         238           201         238           201         238           201         238           201         238           201         238	1 2 1 2 2	0.01 0.01 0.01 0.02 0.01	30 35 37 35 34	520 610 440 660 560	38 34 22 28 14	< 5 < 5 < 5 < 5 < 5 < 5	5 4 4 5 3	$\begin{array}{cccc} 37 & 0.0 \\ 33 & 0.0 \\ 25 < 0.0 \\ 39 & 0.0 \\ 22 & 0.0 \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	< 10 < 10 < 10 < 10 < 10	16 15 14 15 18	< 5 < 5 < 5 < 5 < 5	111 101 84 110 79		
T88-L1N 9+7 5W T88-L1N 10+00W T88-L1N 10+2 5W T88-L1N 10+2 5W T88-L1N 10+50W T88-L1N 10+7 5W	201         238           201         238           201         238           201         238           201         238           201         238	<1 <1 <1 <1 <1 <1	0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01	30 43 39 56 31	480 790 790 590 800	20 34 30 14 26	< 5 < 5 < 5 < 5 < 5	3 4 3 5 3	$\begin{array}{cccc} 24 & 0.0 \\ 37 < 0.0 \\ 34 < 0.0 \\ 25 < 0.0 \\ 41 < 0.0 \end{array}$	$ \begin{array}{cccc} 1 & < 10 \\ 1 & < 10 \\ 1 & < 10 \\ 1 & < 10 \\ 1 & < 10 \\ 1 & < 10 \end{array} $	< 10 < 10 < 10 < 10 < 10	17 12 12 15 11	< 5 < 5 < 5 < 5 < 5 < 5	119 102 96 87 95		
T88-L1N 11+00W T88-L1N 11+25W T88-L1N 11+50W T88-L1N 11+75W T88-L1N 12+00W	203238201238201238201238201238201238	1 1 < 1 < 1 < 1	0.02 0.01 0.01 0.02 0.01	35 25 22 12 13	770 210 140 180 170	24 32 24 20 18	\$ < 5 < 5 10	3 3 2 1 1	$\begin{array}{c} 39 < 0.0\\ 11 & 0.0\\ 9 & 0.0\\ 9 & 0.0\\ 9 & 0.0\\ 9 & 0.0\end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 10 < 10 < 10 < 10 < 10	14 18 17 20 17	< 5 < 5 < 5 < 5 < 5 < 5	94 57 42 46 50		
T88-L1N 12+25W T88-L1N 12+50W T88-L1N 12+75W T88-L1N 12+75W T88-L1N 13+00W T88-L1N 13+25W	201238201238201238201238201238	1 1 1 2 1	0.01 0.03 0.02 0.01 0.01	25 15 8 18 26	160 190 170 230 210	20 20 8 18 20	< 5 < 5 < 5 < 5 < 5 < 5	2 2 1 1 1	18         0.0           17         0.0           16         0.0           12         0.0           7         0.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 10 < 10 < 10 < 10 < 10 < 10	18 26 15 18 16	< 5 < 5 < 5 < 5 < 5 < 5	55 50 36 45 69		
T88-L1N 13+50W T88-L1N 13+75W T88-L1N 14+00W T88-L1N 14+25W T88-L1N 14+50W	201238201238201238201238201238	2 2 1 1 2	0.01 0.01 0.01 < 0.01 < 0.01 < 0.01	28 28 27 31 47	110 180 170 470 810	20 18 16 22 18	< 5 < 5 < 5 < 5 < 5 < 5	3 2 2 3 4	$\begin{array}{cccc} 12 & 0.0 \\ 7 & 0.0 \\ 25 & 0.0 \\ 24 < 0.0 \\ 14 < 0.0 \end{array}$	$ \begin{array}{cccc}                                  $	< 10 < 10 < 10 < 10 < 10 < 10	17 19 18 10 10	< 5 < 5 < 5 < 5 < 5 < 5	58 54 63 78 89		
T88-L1N 14+75W T88-L1N 15+00W T88-L1N 15+25W T88-L1N 15+25W T88-L1N 15+50W T88-L1N 15+75W	201238201238201238203238201238	2 1 2 1 2	< 0.01 < 0.01 < 0.01 0.02 0.01	52 44 49 34 22	770 840 660 1120 900	20 12 22 26 16	\$ < 5 < 5 < 5 < 5 < 5	4 4 2 1	$\begin{array}{c} 21 < 0.0\\ 22 < 0.0\\ 15 < 0.0\\ 35 < 0.0\\ 22 & 0.0 \end{array}$	<pre>&lt; 10 &lt; 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	9 9 9 9 13	< 5 < 5 < 5 < 5 < 5 < 5	100 90 82 112 88		
T88-LIN 16+00W T88-LIN 16+25W T88-LIN 16+50W T88-LIN 16+75W T88-LIN 16+75W T88-LIN 17+00W	201238201238201238201238201238	1 1 1 2 1	0.02 0.03 0.01 0.01 0.03	11 16 30 15 13	720 460 340 360 360	14 16 10 14 14	< 5 < 5 < 5 < 5 < 5 < 5	1 2 2 1 1	10 0.0 17 0.0 9 0.0 22 0.0 12 0.0	$\begin{array}{c} 2 & < 10 \\ 2 & < 10 \\ 1 & < 10 \\ 1 & < 10 \\ 3 & < 10 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	16 16 12 14 16	< 5 < 5 < 5 < 5 < 5 < 5	97 68 50 72 91		
												CERT	<b>FIFICATIO</b>	)N : _	<i>B.</i> (	agi-

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project :

td

Page No. :4-A Tot. Pages: 6 : 27-SEP-88 Date Invoice # : I-8823905 P.O. # :NONE

.....

### Comments: ATTN: PETER LERICHE

#### CERTIFICATE OF ANALYSIS A8823905

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SAMPLE	PREP	A11 001	. Å1			Bo	Be	- De i	· Co	Ci	6	<u>~-</u>	~	17-	<b>6</b> -	**		анан <b>т</b> ана		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DESCRIPTION	CODE	FAHAA	, AI A %	ng nga	DDC	DOD	D D D D D D D D D D D D D D D D D D D	DI	96 96	DOM	mma		pom	95 	DOD .	nnm	 	DOD		MD
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										~~	FR						ppan	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Phan	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Phu
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T88-LIN 17+25W	201 238	< 5	2.09	< 0.2	15	180	< 0.5	< 2	0.07	< 0.5	18	17	28	3.85	< 10	2	0.08	10	0.50	411
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T88-LIN 17+50W	201 238	< 5	1.70	< 0.2	1.5	120	< 0.5	< 2	0.05	< 0.5	18	24	30	4.37	< 10	< 1	0.06	< 10	0.58	264
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T88-LIN 17+75W	201 238	< 5	1.37	< 0.2	15	130	< 0.5	4	0.13	< 0.5	21	20	47	4.37	< 10	< 1	0.06	< 10	0.53	944
TR8-LIS 0+28         Z01         Z38          S -1.1         C -2         S -1         D00         C -0.5         P         Z6         IR         S -1.6         < 10         O, O         < 20         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O <t< td=""><td>T88-LIN 18+00W</td><td>201 238</td><td>&lt; 5</td><td>1.09</td><td>&lt; 0.2</td><td>15</td><td>1 30</td><td>&lt; 0.5</td><td>&lt; 2</td><td>0.24</td><td>&lt; 0.5</td><td>12</td><td>17</td><td>22</td><td>3.37</td><td>&lt; 10</td><td>&lt; 1</td><td>0.08</td><td>10</td><td>0.41</td><td>422</td></t<>	T88-LIN 18+00W	201 238	< 5	1.09	< 0.2	15	1 30	< 0.5	< 2	0.24	< 0.5	12	17	22	3.37	< 10	< 1	0.08	10	0.41	422
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	188-LIS 0+25E	201 238	< 5	3.14	< 0.2	< 5	100	< 0.5	2	0.06	< 0.5	19	26	18	3.61	< 10	1	0.04	< 10	0.47	265
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T88-L1S 0+50E	201 238	< 5	1.91	< 0.2	5	80	< 0.5	< 2	0.62	< 0.5	20	31	34	4.02	< 10	< 1	0.06	10	0.94	469
TR8-LIS H-00E         Tol         24.2 $< 3.2$ $< 3.3$ $< 1.0$ $< 1$ $0.07$ $10$ $0.3.3$ $34$ TR8-LIS H-30E         Tol $23.8$ $< 5.2$ $23.8$ $< 5.2$ $23.8$ $< 1.2$ $5.22$ $23.8$ $< 1.2$ $< 1.0$ $< 1.0$ $0.07$ $10$ $0.3.4$ $34.1$ TR8-LIS H-50E         Tol $23.8$ $< 5.2$ $23.8$ $< 0.5$ $22.0$ $33.6$ $41.4$ $4.15$ $< 10.0$ $< 1.0.07$ $(0.0.44)$ $41.1$ TR8-LIS H-70E         Tol $1.66$ $< 0.2$ $< 5.0$ $< 2.0.56$ $< 0.5$ $21.3$ $33.4$ $41.4.115$ $< 10.0$ $< 0.06$ $10.0.94$ $43.16$ TR8-LIS H-70E         Tol $1.35$ $1.66$ $0.2.2$ $< 5.0$ $< 0.05$ $< 2.0.65$ $< 0.5$ $21.37$ $54.44.26$ $< 0.06$ $(0.0.66) (0.0.7) (0.0.66) (0.0.7) (0.0.66) (0.0.7) (0.0.7) (0.0.7) (0.0.7) $	T88-LIS 0+75E	201 238	< 5	1.87	< 0.2	10	80	< 0.5	< 2	0.61	< 0.5	21	29	34	4.01	< 10	< 1	0.05	10	0.89	4 5 7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T88-LIS 1+00E	201 238	< 5	2.42	< 0.2	15	100	< 0.5	< 2	0.25	< 0.5	22	34	32	4.38	< 10	< 1	0.07	10	0.83	346
1188-LIS       1-50E       201       218       < 3       1.71 $< 0.2$ $< 3$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$ $< 0.92$	T88-LIS 1+25E	201 238	< 5	2.38	< 0.2	5	- 90	< 0.5	< 2	0.27	< 0.5	22	35	34	4.29	< 10	< 1	0.07	10	0.84	355
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	188-LIS 1+50E	201 238	< 5	1.71	< 0.2	< 5	50	< 0.5	< 2	0.92	< 0.5	20	38	41	4.17	< 10	3	0.06	10	0.94	413
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T88-LIS 1+75E	201 238	5	1.66	< 0.2	< 5	40	< 0.5	4	0.95	< 0.5	20	37	41	4.18	< 10	2	0.06	10	0.97	4 5 9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T88-LIS 2+00E	201 238	< 5	1.67	< 0.2	10	40	< 0.5	< 2	0.85	< 0.5	21	36	41	4.13	< 10	< 1	0.06	10	0.90	438
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	188-LIS 2+25E	201 238	< 5	0.78	< 0.2	< 5	30	< 0.5	< 2	0.06	< 0.5	6	7	6	1.66	< 10	< 1	0.03	< 10	0.13	79
188-LIS 0+23W       201       238       < 5	188-LIS 0+00W	201 238	< 5	2.86	< 0.2	5	50	< 0.5	2	0.16	< 0.5	11	15	15	2.44	< 10	2	0.06	< 10	0.29	234
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	188-LIS 0+2 9W	201 238	< 5	2.85	0.2	5	110	< 0.5	2	0.62	< 0.5	24	37	54	4.42	< 10	< 1	0.06	10	0.93	1165
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T88-LIS 0+50W	201 238	< 5	2.28	0.2	25	60	< 0.5	2	0.42	< 0.5	33	36	67	5.60	< 10	< 1	0.06	10	0.95	745
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T88-LIS 0+7 5W	201 238	< 5	2.14	< 0.2	5	60	1.0	2	0.21	< 0.5	24	40	40	4.46	< 10	< 1	0.06	< 10	0.87	926
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T88-LIS 1+00W	201 238	< 5	2.54	0.2	5	70	1.0	< 2	0.11	< 0.5	20	26	23	3.33	< 10	< 1	0.05	10	0.50	408
<b>188</b> -LIS <b>1-50V201238&lt; 53.860.25902.0&lt; 20.12&lt; 0.52328743.57&lt; 1010.06100.5120188</b> -LIS <b>1174201238&lt; 53.850.4&lt; 5800.5&lt; 20.19&lt; 0.51222142.94&lt; 10&lt; 10.06100.44737188</b> -LIS <b>2+50W201238&lt; 52.290.25802.020.47&lt; 6.52434404.39&lt; 10&lt; 10.06100.44737188</b> -LIS <b>2+50W201238&lt; 52.090.25701.020.47&lt; 6.52434404.39&lt; 10&lt; 10.06100.63717188</b> -LIS <b>2+50W201238&lt; 52.42&lt;0.2&lt; 5700.5&lt; 20.41504.49&lt; 1030.05100.78931188</b> -LIS <b>3+50W201238&lt; 52.34&lt; 0030.05100.78931188</b> -LIS <b>3+50W201238&lt; 52.34&lt; 0052434504.49&lt; 1030.</b>	T88-LIS 1+2.5W	201 238	< 5	2.16	< 0.2	< 5	60	0.5	< 2	0.11	< 0.5	11	23	9	3.29	< 10	1	0.06	10	0.48	188
188 + LIS 1 + 75W $201$ $238$ $10$ $1.74$ $< 0.2$ $< 5$ $80$ $0.5$ $< 2$ $0.19$ $< 0.5$ $12$ $222$ $14$ $2.94$ $< 10$ $< 1$ $0.07$ $10$ $0.44$ $733$ $188 + LIS 2 + 25W$ $201$ $238$ $< 5$ $2.29$ $0.2$ $< 5$ $80$ $2.0$ $2$ $0.22$ $0.5$ $31$ $41$ $39$ $5.03$ $< 10$ $< 1$ $0.066$ $10$ $0.89$ $293$ $188 + LIS 2 + 25W$ $201$ $238$ $< 5$ $2.09$ $0.2$ $< 5$ $70$ $1.0$ $2$ $0.47$ $< 0.5$ $24$ $34$ $40$ $4.39$ $< 10$ $< 2$ $0.66$ $10$ $0.63$ $714$ $188 + LIS 2 + 75W$ $201$ $238$ $< 5$ $2.42$ $< 0.2$ $< 5$ $70$ $0.5$ $< 2$ $0.41$ $0.5$ $20$ $30$ $23$ $3.93$ $< 10$ $< 1$ $0.06$ $10$ $0.63$ $714$ $188 + LIS 2 + 75W$ $201$ $238$ $< 5$ $2.42$ $< 0.2$ $< 5$ $70$ $0.5$ $< 2$ $0.31$ $< 0.5$ $24$ $34$ $50$ $4.49$ $< 10$ $3$ $0.05$ $10$ $0.78$ $93$ $188 + LIS 2 + 25W$ $201$ $238$ $< 5$ $2.34$ $< 0.2$ $< 5$ $70$ $0.5$ $< 2$ $0.29$ $< 23$ $37$ $204$ $< 10$ $< 1$ $0.06$ $< 10$ $0.82$ $0.92$ $188 + LIS 2 + 25W$ $201$ $238$	T88-LIS 1+50W	201 238	< 5	3.86	0.2	5	90	2.0	< 2	0.12	< 0.5	23	28	74	3.57	< 10	1	0.06	. 10	0.51	203
TR8-LIS 2+00W201238 $< s$ $3.45$ $0.4$ $< s$ $80$ $2.0$ $2$ $0.2$ $0.5$ $31$ $41$ $39$ $5.03$ $< 10$ $< 1$ $0.06$ $10$ $0.89$ $250$ TR8-LIS 2+25W201238 $< 5$ $2.29$ $0.2$ $< 5$ $70$ $1.0$ $2$ $0.47$ $< 0.5$ $24$ $34$ $40$ $4.39$ $< 10$ $< 1$ $0.06$ $10$ $0.75$ $44$ TR8-LIS 2+75W201238 $< 5$ $2.05$ $0.2$ $< 5$ $70$ $0.5$ $< 2$ $0.41$ $0.5$ $20$ $30$ $23$ $3.93$ $< 10$ $< 1$ $0.07$ $10$ $0.63$ $710$ TR8-LIS 3+00W201238 $< 5$ $2.42$ $< 0.2$ $< 5$ $70$ $0.5$ $< 2$ $0.31$ $< 0.5$ $24$ $34$ $50$ $4.49$ $< 10$ $3$ $0.05$ $10$ $0.78$ $931$ TR8-LIS 3+50W201238 $< 5$ $2.42$ $< 0.2$ $< 5$ $70$ $0.5$ $< 2$ $0.21$ $< 33$ $< 10$ $< 1$ $0.05$ $10$ $0.78$ $931$ TR8-LIS 3+50W201238 $< 5$ $2.34$ $< 0.2$ $< 5$ $70$ $0.5$ $< 2$ $0.21$ $< 34$ $37$ $4.04$ $< 10$ $< 1$ $0.06$ $10$ $0.78$ $931$ TR8-LIS 3+50W201238 $< 5$ $1.99$ $< 0.2$ $< 5$ $70$ $0.5$ $< 2$ $0.21$ $< 33$ <	T88-LIS 1+75W	201 238	10	1.74	< 0.2	< 5	80	0.5	< 2	0.19	< 0.5	12	22	14	2.94	< 10	< 1	0.07	10	0.44	737
T88-LIS 2+25W T88-LIS 2+50W 201201 238 $238$ $< 5$ $2.29$ $0.2$ $0.2$ $5$ $70$ $1.0$ $2$ $2$ $0.47$ $0.5$ $24$ $34$ $40$ $4.39$ $4.39$ $201$ $< 10$ $2.3$ $2$ $0.06$ $10$ $0.07$ $0.75$ $441$ T88-LIS 2+75W T88-LIS 2+75W 201238 $< 5$ $2.05$ $0.2$ $< 5$ $70$ $0.5$ $< 2$ $2$ $0.16$ $< 2$ $0.5$ $24$ $41$ $53$ $4.77$ $< 10$ $< 1$ $0.07$ $10$ $< 0.05$ $10$ $0.97$ $422$ T88-LIS 3+00W 	T88-LIS 2+00W	201 238	< 5	3.45	0.4	< 5	80	2.0	2	0.22	0.5	31	41	39	5.03	< 10	< 1	0.06	10	0.89	2 5 9
<b>1783-LIS 2+50W201238</b> < 5 <b>2.050.2</b> < 5 <b>700.5</b> < 2 <b>0.410.52030233.93</b> < 10< 1 <b>0.07</b> 10 <b>0.637161783-LIS 2+75W201238</b> < 5 <b>2.42</b> <0.45501.0<2 $0.16$ <0.524 <b>411534.77</b> <10<1 $0.05$ 10 $0.97$ <b>421783-LIS 3+70W201238</b> < 5 <b>2.42</b> <0.2< 5 <b>70</b> 0.5<2 $0.33$ <0.5 <b>24411504.49</b> <10 <b>30.05</b> 10 <b>0.78931783-LIS 3+75W201238</b> < 5 <b>2.04</b> <0.2< 5 <b>40</b> <0.5 <b>20</b> $0.33$ <0.5 <b>2443504.49</b> <10 <b>30.05</b> 10 <b>0.78931783-LIS 3+75W201238</b> < 5 <b>2.34</b> <0.2< 5400.5<2 $0.29$ <0.5 <b>2337204.04</b> <10<1 $0.068$ <10 $0.82$ <b>6.371783-LIS 3+10W201238</b> < 5 <b>1.99</b> <0.2< 570 $0.5$ <2 $0.21$ <78 <b>133.59</b> <101 $0.14$ 10 $0.643$ <b>341783-LIS 3+475W201238</b> < 5 <b>1.76</b> <0.2<5 <b>70</b> $0.5$ <2 $0.27$ <5 <b>12</b>	T88-LIS 2+25W	201 238	< 5	2.29	0.2	5	70	1.0	2	0.47	< 0.5	24	34	40	4.39	< 10	2	0.06	10	0.75	446
<b>1783-LIS</b> 247.5W <b>201238102.450.45501.0</b> $< 2$ <b>0.16</b> $< 0.5$ <b>2441534.77</b> $< 10$ $< 1$ <b>0.05100.974221783-LIS</b> 3400W <b>201238</b> $< 5$ <b>2.42</b> $< 0.2$ $< 5$ <b>700.5</b> $< 2$ <b>0.33</b> $< 0.5$ <b>2434504.49</b> $< 10$ <b>30.05100.78931783-LIS</b> 3425W <b>201238</b> $< 5$ <b>2.05</b> $< 0.2$ <b>100.5</b> $< 2$ <b>0.29</b> $< 0.5$ <b>2337204.04</b> $< 10$ $< 1$ <b>0.08</b> $< 10$ <b>0.826371783-LIS</b> 3475W <b>201238</b> $< 5$ <b>2.34</b> $< 0.2$ $< 5$ <b>70</b> $0.5$ $< 2$ $0.21$ $< 0.5$ <b>2441334.77</b> $< 10$ $< 1$ $0.08$ $< 10$ $0.82$ <b>6371783-LIS</b> 3475W <b>201238</b> $< 5$ <b>1.35</b> $< 0.2$ $< 5$ <b>70</b> $0.5$ $< 2$ $0.27$ $< 6.5$ <b>127813</b> $3.59$ $< 10$ $1$ $0.14$ $10$ $0.64$ <b>4491783-LIS</b> 4475W <b>201238</b> $< 5$ $1.55$ $< 0.2$ $15$ $70$ $0.5$ $< 2$ $0.27$ $< 0.5$ $12$ $23$ $15$ $.44< 0.04< 10.06< 100.444491783-LIS 4475W201238$	T88-LIS 2+50W	201 238	< 5	2.05	0.2	< 5	70	0.5	< 2	0.41	0.5	20	30	23	3.93	< 10	< 1	0.07	10	0.63	716
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T88-LIS 2+75W	201 238	10	2.45	0.4	5	50	1.0	< 2	0.16	< 0.5	24	41	53	4.77	< 10	< 1	0.05	10	0.97	422
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T88-LIS 3+00W	201 238	< 5	2.42	< 0.2	< 5	70	0.5	< 2	0.33	< 0.5	24	34	50	4.49	< 10	3	0.05	10	0.78	931
T88-L1S $3+75W$ 201238 $< 5$ $2.34$ $< 0.2$ $< 5$ 40 $0.5$ $< 2$ $0.21$ $< 0.5$ $24$ $43$ $27$ $4.40$ $< 10$ $2$ $0.05$ $< 10$ $0.95$ $277$ T88-L1S $3+75W$ 201238 $< 5$ $1.99$ $< 0.2$ $< 5$ $70$ $0.5$ $< 2$ $0.25$ $< 0.5$ $12$ $78$ $13$ $3.59$ $< 10$ $1$ $0.14$ $10$ $0.64$ $349$ T88-L1S $4+00W$ 201 $238$ $< 5$ $1.55$ $< 0.2$ $15$ $70$ $0.5$ $< 2$ $0.27$ $< 0.5$ $12$ $24$ $17$ $3.51$ $< 10$ $< 1$ $0.06$ $< 10$ $0.44$ $449$ T88-L1S $4+25W$ $201$ $238$ $< 5$ $1.55$ $< 0.2$ $15$ $70$ $0.5$ $< 2$ $0.27$ $< 0.5$ $12$ $23$ $15$ $3.44$ $< 10$ $< 1$ $0.06$ $< 10$ $0.44$ $449$ T88-L1S $4+75W$ $201$ $238$ $< 5$ $1.76$ $< 0.2$ $< 5$ $110$ $0.5$ $< 2$ $0.52$ $< 0.51$ $12$ $23$ $15$ $3.44$ $< 10$ $< 1$ $0.06$ $< 10$ $0.69$ $93$ T88-L1S $5+75W$ $201$ $238$ $< 5$ $1.15$ $< 0.2$ $< 5$ $50$ $0.5$ $19$ $38$ $13$ $3.75$ $< 10$ $1$ $0.06$ $< 10$ $0.69$ $93$ T88-L1S $5+75W$ $201$ <t< td=""><td>T88-LIS 3+29W</td><td>201 238</td><td>&lt; 5</td><td>2.05</td><td>&lt; 0.2</td><td>10</td><td>60</td><td>0.5</td><td>. 2</td><td>0.29</td><td>&lt; 0.5</td><td>23</td><td>37</td><td>20</td><td>4.04</td><td>&lt; 10</td><td>&lt; 1</td><td>0.08</td><td>&lt; 10</td><td>0.82</td><td>637</td></t<>	T88-LIS 3+29W	201 238	< 5	2.05	< 0.2	10	60	0.5	. 2	0.29	< 0.5	23	37	20	4.04	< 10	< 1	0.08	< 10	0.82	637
T88-LIS $3+7$ SW201238< 51.99< 0.2< 5700.5< 20.25< 0.51278133.59< 1010.14100.64344T88-LIS $4+00W$ 201238< 5	T88-LIS 3+50W	201 238	< 5	2.34	< 0.2	< 5	40	0.5	< 2	0.21	< 0.5	24	43	27	4.40	< 10	2	0.05	< 10	0.95	275
T38-L1S4+00W201238 $< 5$ 1.70 $< 0.2$ $< 5$ 60 $0.5$ 2 $0.19$ $< 0.5$ $12$ $24$ $17$ $3.51$ $< 10$ $< 1$ $0.05$ $< 10$ $0.48$ $294$ T88-L1S $4+25W$ 201238 $< 5$ $1.55$ $< 0.2$ $15$ $70$ $0.5$ $< 2$ $0.27$ $< 0.5$ $12$ $23$ $15$ $3.44$ $< 10$ $< 1$ $0.06$ $< 10$ $0.44$ $449$ T88-L1S $4+75W$ 201238 $< 5$ $1.76$ $< 0.2$ $< 5$ $110$ $0.5$ $< 2$ $0.57$ $< 0.5$ $12$ $23$ $15$ $3.44$ $< 10$ $< 1$ $0.06$ $< 10$ $0.44$ $449$ T88-L1S $4+75W$ $201$ $238$ $< 5$ $1.30$ $< 0.2$ $< 5$ $50$ $1.0$ $< 2$ $0.55$ $19$ $38$ $13$ $3.75$ $< 10$ $1$ $0.06$ $< 10$ $0.44$ $449$ T88-L1S $5+00W$ $201$ $238$ $< 5$ $1.15$ $< 0.2$ $5$ $60$ $0.5$ $< 2$ $0.07$ $< 0.5$ $19$ $23$ $33$ $5.25$ $<10$ $< 1$ $0.06$ $< 10$ $0.39$ $322$ T88-L1S $5+00W$ $201$ $238$ $< 5$ $1.15$ $< 0.2$ $5$ $60$ $0.5$ $< 2$ $0.07$ $< 0.5$ $12$ $19$ $19$ $29$ $4.11$ $<10$ $< 1$ $0.06$ $< 10$ $0.32$ T88-L1S $5+50W$ <	T88-LIS 3+7 9W	201 238	< 5	1.99	< 0.2	< 5	70	0.5	< 2	0.25	< 0.5	12	78	13	3.59	< 10	1	0.14	10	0.64	349
T88-L1S4+2 9W201238 $< 5$ $1.55$ $< 0.2$ $15$ $70$ $0.5$ $< 2$ $0.27$ $< 0.5$ $12$ $23$ $15$ $3.44$ $< 10$ $< 1$ $0.06$ $< 10$ $0.44$ $446$ T88-L1S $4+50W$ 201 $238$ $< 5$ $1.76$ $< 0.2$ $< 5$ $110$ $0.5$ $< 2$ $0.52$ $< 0.52$ $< 0.5$ $19$ $38$ $13$ $3.75$ $< 10$ $1$ $0.06$ $< 10$ $0.44$ $446$ T88-L1S $4+79W$ $201$ $238$ $< 5$ $1.30$ $< 0.2$ $< 5$ $50$ $1.0$ $< 2$ $0.55$ $19$ $23$ $33$ $5.25$ $< 10$ $< 1$ $0.06$ $< 10$ $0.69$ $982$ T88-L1S $5+00W$ $201$ $238$ $< 5$ $1.15$ $< 0.2$ $5$ $60$ $0.5$ $< 2$ $0.07$ $< 0.5$ $19$ $23$ $33$ $5.25$ $< 10$ $< 1$ $0.06$ $< 10$ $0.39$ $322$ T88-L1S $5+25W$ $201$ $238$ $< 5$ $1.55$ $< 0.2$ $5$ $60$ $0.5$ $< 2$ $0.07$ $< 0.5$ $12$ $19$ $29$ $4.11$ $< 10$ $< 1$ $0.06$ $< 10$ $0.32$ $366$ T88-L1S $5+50W$ $201$ $238$ $< 5$ $1.55$ $< 0.2$ $5$ $80$ $1.0$ $2$ $0.48$ $< 0.5$ $24$ $24$ $36$ $4.80$ $< 10$ $< 1$ $0.05$ $10$ $0.51$ $777$ <tr< td=""><td>T88-LIS 4+00W</td><td>201 238</td><td>&lt; 5</td><td>1.70</td><td>&lt; 0.2</td><td>&lt; 5</td><td>60</td><td>0.5</td><td>2</td><td>0.19</td><td>&lt; 0.5</td><td>12</td><td>24</td><td>17</td><td>3.51</td><td>&lt; 10</td><td>&lt; 1</td><td>0.05</td><td>&lt; 10</td><td>0.48</td><td>294</td></tr<>	T88-LIS 4+00W	201 238	< 5	1.70	< 0.2	< 5	60	0.5	2	0.19	< 0.5	12	24	17	3.51	< 10	< 1	0.05	< 10	0.48	294
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T88-LIS 4+25W	201 238	< 5	1.55	< 0.2	15	70	0.5	< 2	0.27	< 0.5	12	23	15	3.44	< 10	< 1	0.06	< 10	0.44	449
T88-L1S4+7.9W201238< 51.30< 0.2< 5501.0< 20.050.51923335.25< 10< 10.05< 100.3932T88-L1S5+2.9W201238< 51.15< 0.25600.5< 20.07< 0.51919294.11< 10< 10.06< 100.3236T88-L1S5+2.9W201238< 51.55< 0.2< 5600.5< 20.07< 0.51219294.11< 10< 10.06< 100.3236T88-L1S5+50W201238< 51.55< 0.25801.020.48< 0.52424364.80< 10< 10.05100.5177T88-L1S5+75W201238< 51.71< 0.2560< 20.07< 0.51225194.00< 10< 10.05100.5177T88-L1S5+75W201238< 51.71< 0.2560< 20.07< 0.51225194.00< 10< 10.05100.5177T88-L2N0+00E201238202.56< 0.253101.040.28< 0.52469414.69< 10< 10.30100.8416510<	T88-LIS 4+50W	201 238	< 5	• 1.76	< 0.2	< 5	110	0.5	< 2	0.52	< 0.5	19	38	13	3.75	< 10	1	0.04	10	0.69	982
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T88-LIS 4+7 9W	201 238	< 5	1.30	< 0.2	< 5	50	1.0	< 2	0.05	0.5	19	23	33	5.25	< 10	< 1	0.05	< 10	0.39	322
T38-L1S5+2 5W20123810 $1.07 < 0.2$ < 560 $0.5$ < 2 $0.07 < 0.5$ 121924 $3.80 < 10$ < 1 $0.06 < 10$ $0.29$ $332$ T88-L1S5+50W201238< 5 $1.55 < 0.2$ 580 $1.0$ 2 $0.48 < 0.5$ 242436 $4.80 < 10$ < 1 $0.06 < 10$ $0.51$ $772$ T88-L1S5+75W201238< 5 $1.71 < 0.2$ 560< 2 $0.07 < 0.5$ 122519 $4.00 < 10$ < 1 $0.07$ 10 $0.56$ 500T88-L2N 0+00E20123820 $2.56 < 0.2$ 5310 $1.0$ 4 $0.28 < 0.5$ 246941 $4.69 < 10$ < 1 $0.30$ 10 $0.84$ 1652T88-L2N 0+25E20123815 $2.30 < 0.2$ 15 $310$ $1.5$ $2$ $0.97 < 0.5$ $33$ 59 $71$ $3.68 < 10$ < 1 $0.24$ 10 $0.85$ $3366$	T88-LIS 5+00W	201 238	< 5	1.15	< 0.2	5	60	0.5	< 2	0.07	< 0.5	19	19	29	4.11	< 10	< 1	0.06	< 10	0.32	364
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	T88-L1S 5+25W	201 238	10	1.07	< 0.2	< 5	60	0.5	< 2	0.07	< 0.5	12	19	24	3.80	< 10	< 1	0.06	< 10	0.29	333
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T88-L1S 5+50W	201 238	< 5	1.55	< 0.2	5	80	1.0	2	0.48	< 0.5	24	24	36	4.80	< 10	< 1	0.05	10	0.51	775
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T88-LIS 5+7 5W	201 238	< 5	1.71	< 0.2	- 5	60	< 0.5	< 2	0.07	< 0.5	12	25	19	4.00	< 10	1 > 1	0.07	10	0.56	506
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	T88-L2N 0+00E	201 238	20	2.56	< 0.2	5	310	1.0	4	0.28	< 0.5	24	69	.41	4.69	< 10	< 1	0.30	10	0.84	1655
La construction de la construction de la construction de la destruction de la destruction de la destruction de	T88-L2N 0+25E	201 238	15	2.30	< 0.2	15	310	1.5	2	0.97	< 0.5	33	59	71	3.68	< 10	< 1	0.24	10	0.85	3360
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T88-L2N 0+50E	201 238	< 5	1.72	< 0.2	10	590	0.5	4	1.05	< 0.5	24	28	69	3.27	< 10	1	0.12	10	0.69	5420

B. Cagli



# Analytical Chemists * Geochemists * Registered Assayers

Sector Sec.

-

Including of

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project :

A CONTRACTOR OF THE OWNER

Page No. :4-B Tot. Pages: 6 Date :27-SEP-88 Invoice # : I-8823905 P.O. # :NONE

156 participante

- approximate

Comments: ATTN: PETER LERICHE

# CERTIFICATE OF ANALYSIS A8823905

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na Ni % ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr Ti ppm %	Ti ppm	U ppm	V ppm	W ppm	Zn ppm				
T88-LIN 17+25W T88-LIN 17+50W T88-LIN 17+75W T88-LIN 18+00W T88-LIN 18+00W T88-LIS 0+25E	201238201238201238201238201238	$ \begin{array}{cccc} 2 & 0. \\ 2 < 0. \\ 2 < 0. \\ 1 < 0. \\ 1 & 0. \\ \end{array} $	01         32           01         39           01         42           01         29           02         24	290 330 570 460 590	24 20 16 18 12	< 5 < 5 < 5 < 5 < 5 < 5	2 3 3 1 2	$\begin{array}{c} 6 & 0.01 \\ 5 < 0.01 \\ 9 < 0.01 \\ 15 < 0.01 \\ 7 & 0.03 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 14 13 13 20	< 5 < 5 < 5 < 5 < 5 < 5	78 83 99 64 64				
T88-LIS 0+50E T88-LIS 0+75E T88-LIS 1+00E T88-LIS 1+25E T88-LIS 1+50E	201       238         201       238         201       238         201       238         201       238         201       238         201       238	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01         34           01         34           01         37           01         38           01         37	300 290 200 200 670	22 24 26 22 20	< 5 < 5 < 5 < 5 < 5	5 5 5 7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 16 20 19 12	< 5 < 5 < 5 < 5 < 5	88 83 85 85 102				
T88-L1S 1+75E T88-L1S 2+00E T88-L1S 2+25E T88-L1S 2+25E T88-L1S 0+00W T88-L1S 0+25W	201       238         201       238         201       238         201       238         201       238         201       238         201       238	$ \begin{array}{rcl} 3 &< 0 \\ 2 &< 0 \\ &< 1 \\ & 0 \\ & 1 \\ & 0 \\ & 2 \\ & 0 \\ \end{array} $	01         35           01         37           02         7           05         15           03         43	660 640 160 730 770	28 24 4 12 24	< 5 < 5 < 5 < 5 < 5	7 7 1 2 8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	12 12 19 18 19	< 5 < 5 < 5 < 5 < 5	100 102 35 41 87				
T88-LIS 0+50W T88-LIS 0+7 5W T88-LIS 1+00W T88-LIS 1+2 5W T88-LIS 1+50W	201238201238201238201238201238201238	3 0. 2 0. 2 0. 2 0. 1 0.	01         56           01         42           02         24           02         21           03         36	450 410 210 160 260	44 34 16 18 40	< 5 < 5 < 5 < 5 < 5	8 4 3 2 5	$\begin{array}{rrrrr} 27 < 0.01 \\ 12 < 0.01 \\ 10 & 0.03 \\ 7 & 0.04 \\ 16 & 0.05 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	15 19 22 25 22	< 5 < 5 < 5 < 5 < 5 < 5	120 85 61 61 56				
T88-LIS 1+7 9W T88-LIS 2+00W T88-LIS 2+2 9W T88-LIS 2+2 9W T88-LIS 2+50W T88-LIS 2+7 9W	201238201238201238201238201238201238	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	02         22           01         50           02         39           01         29           01         46	300 190 330 370 270	26 32 26 16 18	< 5 < 5 < 5 < 5 < 5	1 5 5 4 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	22 23 18 21 21	< 5 < 5 < 5 < 5 < 5 < 5	55 81 84 81 96				
T88-LIS 3+00W T88-LIS 3+2 5W T88-LIS 3+50W T88-LIS 3+7 5W T88-LIS 3+7 5W T88-LIS 4+00W	201238201238201238201238201238201238	$\begin{array}{cccc} 2 & 0 \\ 2 & 0 \\ 2 & < 0 \\ 2 & 0 \\ 1 & < 0 \\ \end{array}$	01 40 01 39 01 49 02 29 01 26	400 230 220 410 380	20 14 14 18 14	< 5 < 5 < 5 < 5 < 5 < 5	5 3 4 3 2	$\begin{array}{rrrr} 17 & 0.01 \\ 18 &< 0.01 \\ 13 &< 0.01 \\ 16 &< 0.01 \\ 12 &< 0.01 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	20 20 18 24 16	< 5 < 5 < 5 < 5 < 5	101 93 95 80 60				
T88-LIS 4+2 9W T88-LIS 4+50W T88-LIS 4+7 9W T88-LIS 4+7 9W T88-LIS 5+00W T88-LIS 5+2 9W	201       238         201       238         201       238         201       238         201       238         201       238         201       238	$\begin{array}{ccc} 2 &< 0. \\ 2 & 0. \\ 3 &< 0. \\ 2 &< 0. \\ 2 &< 0. \end{array}$	01         26           01         34           01         26           01         25           01         22	470 310 540 460 480	22 16 22 20 20	< 5 < 5 < 5 < 5 < 5	2 3 3 2 2	$\begin{array}{rrrr} 16 &< 0.01 \\ 20 & 0.01 \\ 6 &< 0.01 \\ 7 &< 0.01 \\ 6 &< 0.01 \end{array}$	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	15 24 16 16 15	<	66 112 77 75 67				
T88-L1S 5+50W T88-L1S 5+7 5W T88-L2N 0+00E T88-L2N 0+2 5E T88-L2N 0+50E	201238201238201238201238201238201238	3 0. 2 0. 2 0. 2 0. 1 0.	01       35         01       24         03       50         03       42         02       38	760 430 1160 960 1400	20 12 < 2 22 26	< 5 < 5 < 5 < 5 5	3 2 6 6 4	$\begin{array}{rrrr} 19 &< 0.01 \\ 7 &< 0.01 \\ 23 & 0.01 \\ \$\$ &< 0.01 \\ 69 & 0.01 \end{array}$	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	17 20 23 18 17	< 5 < 5 < 5 < 5 < 5 < 5	97 82 98 74 125				
											CERT	IFICATIO	on :	<u>В</u> .	(0	-gli	

CERTIFICATION :



Analytical Chemists * Geochemists * Registered Assayers

PHONE (604) 984-0221

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

td

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project :

Comments: ATTN: PETER LERICHE

Page No. :4-B Tot. Pages: 6 Date : 27-SEP-88 Invoice # :1-8823905 P.O. # :NONE

#### CERTIFICATE OF ANALYSIS A8823905

SAMPLE	PREP	Мо	Na	Ni	Р	РЪ	Sb	Sc	Sr	Ti	TI	U	v	w	Zn			
DESCRIPTION	CODE	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	<b>%</b>	ppm	ppm	ppm	ppm	ppm			
T88-L1N 17+25W T88-L1N 17+50W	201 238 201 238	2	0.01 < 0.01	32 39	290 330	24 20	< 5 < 5	2	6 5 <	0.01 0.01	< 10 < 10	< 10 < 10	17 14	< 5 < 5	78 83			
188-LIN 17+75W T88-LIN 18+00W T88-LIS 0+25E	201 238 201 238 201 238		< 0.01 < 0.01 0.02	42 29 24	570 460 590	16 18 12	< 5 < 5 < 5	3 1 2	9 < 15 < 7	0.01 0.01 0.03	< 10 < 10 < 10	< 10 < 10 < 10	13 13 20	< 5 < 5 < 5	99 64 64			
T88-LIS 0+50E T88-LIS 0+75E	201 238 201 238	23	0.01 0.01	34 34	300 290	22 24	< 5 < 5	5 5	33 < 36 <	0.01 0.01	< 10 < 10	< 10 < 10	17	< 5	88 83			
T88-LIS 1+00E T88-LIS 1+25E T88-LIS 1+50E	201 238 201 238 201 238	1 1 3	10.0 10.0 10.0 >	37 38 37	200 200 670	26 22 20	< 5 < 5 < 5	5 7	22 24 59 <	0.01 0.01 0.01	< 10 < 10 < 10	< 10 < 10 < 10	20 19 12	< 5 < 5 < 5	85 85 102			
T88-L1S 1+75E T88-L1S 2+00E	201 238 201 238	3 - 2 -	< 0.01 < 0.01	35 37	660 640	28 24	< 5 < 5	7	56 < 56 <	0.01	< 10 < 10	< 10 < 10	12 12	< 5 < 5	100 102	<u> </u>	<u> </u>	
T88-L1S 2+25E T88-L1S 0+00W T88-L1S 0+25W	201         238           201         238           201         238           201         238	< 1 1 2	0.02 0.05 0.03	15 43	160 730 770	4 12 24	< 5 < 5 < 5	1 2 8	4 14 42	0.02 0.06 0.03	< 10 < 10 < 10	< 10 < 10 < 10	19 18 19	< 5 < 5 < 5	35 41 87			
T88-L1S 0+50W T88-L1S 0+75W T88-L1S 0+75W	201 238 201 238 201 238	322	0.01 0.01	56 42 24	450 410 210	44 34	< 5 < 5	8 4 2	27 < 12 <	0.01	< 10 < 10	< 10 < 10	15 19	< 5 < 5	120		······	
T88-LIS 1+25W T88-LIS 1+50W	201 238 201 238 201 238	2	0.02 0.03	21 36	160 260	18 40	< 5 < 5	2 5	7 16	0.03 0.04 0.05	< 10 < 10 < 10	< 10 < 10 < 10	25 22	< 5 < 5 < 5	61 56			
T88-LIS 1+7 9W T88-LIS 2+00W T88-LIS 2+2 9W	201 238 201 238 201 238	1	0.02 0.01	22 50	300 190	26 32 26	< 5 < 5	1 5	12 21 25	0.01	< 10 < 10 < 10	< 10 < 10 < 10	22 23	< 5	55 81 84			
T88-L1S 2+50W T88-L1S 2+7 5W	201 238 201 238	2	0.01 < 0.01	29 46	370 270	16 18	< 5 < 5	4	24 < 12 <	0.01 0.01	< 10 < 10 < 10	< 10 < 10 < 10	21 21	< s < s	81 96			
T88-L1S 3+00W T88-L1S 3+25W T88-L1S 3+50W	201 238 201 238 201 238	2 2 2	0.01 0.01 < 0.01	40 39 49	400 230 220	20 14 14	< 5 < 5 < 5	5 3 4	17 18 < 13 <	0.01 0.01 0.01	< 10 < 10 < 10	< 10 < 10 < 10	20 20 18	< 5 < 5 < 5	101 93 95		· · ·	
T88-LIS 3+75W T88-LIS 4+00W	201 238 201 238	2	0.02 < 0.01	29 26	410 380	18 14	< 5 < 5	32	16 < 12 <	0.01	< 10 < 10	< 10 < 10	24 16	< 5 < 5	80 60		·	
T88-LIS 4+25W T88-LIS 4+50W T88-LIS 4+75W	201 238 201 238 201 238	2 2 3	< 0.01 0.01 < 0.01	26 34 26	470 310 540	22 16 22	< 5 < 5 < 5	2 3 3	16 < 20 6 <	0.01 0.01 0.01	< 10 < 10 < 10	< 10 < 10 < 10	15 24 16	< 5 < 5 < 5	66 112 77			
T88-LIS 5+00W T88-LIS 5+25W	201 238 201 238	2 - 2 -	< 0.01 < 0.01	25 22	460 480	20 20	< 5 < 5	2 2	7 < 6 <	0.01 0.01	< 10 < 10	< 10 < 10	16 15	< \$ < \$	75 67		- -	
T88-L1S 5+50W T88-L1S 5+75W T88-L2N 0+00E	201 238 201 238 201 238	3 2 2	0.01 0.01 0.03	35 24 50	760 430 1160	20 12 < 2	< 5 < 5 < 5	3 2 6	19 < 7 < 23	0.01 0.01 0.01	< 10 < 10 < 10	< 10 < 10 < 10	17 20 23	< 5 < 5 < 5	97 82 98			
T88-L2N 0+25E T88-L2N 0+50E	201 238 201 238	2 1	0.03 0.02	42 38	960 1400	22 26	< 5 5	6 4	88 < 69	0.01 0.01	< 10 < 10	< 10 < 10	18 17	< 5 < 5	74 125	<i>D</i>	<u> </u>	0
													CERT	IFICATIO	N :	<i>p.</i> (	ag	·Ki



Chemex

Labs

Analytical Chemists * Geochemists * Registered Assayers

PHONE (604) 984-0221

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

Ltd

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE

Page No. : 5-A Tot. Pages: 6 Date :27-SEP-88 Invoice # : I-8823905 P.O. # NONE

121722

### **CERTIFICATE OF ANALYSIS** A8823905

DESCRIPTION T88-L2N 0+7 5E T88-L2N 1+00E T88-L2N 1+2 5E T88-L2N 1+50E	CODE 201 23 203 23 201 23 203 23 217 23	FAHAA 8 < 5 8 < 5 8 < 5	% 2.71	ppm	ppm	ppm	ppm	DOM	04											
T88-L2N 0+7 5E T88-L2N 1+00E T88-L2N 1+2 5E T88-L2N 1+50E	201       23         203       23         201       23         203       23         203       23         217       23	8 < 5 8 < 5	2.71	< 0.2				F P	70	ppm	ppm	ppm	ppm	96	ppm	ppm	%	ppm	95	ppm
T88-L2N 1+00E T88-L2N 1+25E T88-L2N 1+50E	203 23 201 23 203 23 217 23	8 < 5	2 10	<b>V</b> 0.2	10	100	< 0.5	2	0.21	< 0.5	34	56	73	5.32	< 10	< 1	0.07	10	1.29	1455
T88-L2N 1+25E	201 23 203 23 217 23		2.18	< 0.2	5	90	< 0.5	< 2	0.16	< 0.5	24	60	55	4.02	< 10	< 1	0.13	10	0.98	1065
	203 23		2.67	< 0.2	< 5	240	< 0.5	. 6	0.46	0.5	32	33	51	3.32	< 10	2	0.07	10	0.77	2350
T88-L2N 1+75E		8 < 5	3.15	< 0.2	15	50	< 0.5	2	0.15	< 0.5	24	67	38	5.42	< 10	2	0.16	10	1.14	1000
T88-L2N 2+00E	201 23	8 < 5	0.86	< 0.2	5	830	< 0.5	6	1.18	< 0.5	24	14	- 54	2.02	< 10	1	0.08	10	0.41	>10000
T88-L2N 2+25E	201 23	8 < 5	1.82	< 0.2	5	1 50	< 0.5	4	0.24	< 0.5	24	34	42	3.44	< 10	2	0.07	10	0.82	1700
188-L2N 2+50E	201 23	8 < 5	1.50	< 0.2	5	190	< 0.5	2	0.62	< 0.5	23	28	46	2.91	< 10	< 1	0.07	10	0.68	1465
188-L2N 2+75B	203 23		1.68	< 0.2	10	470	< 0.5	< 2	1.38	< 0.5	23	51	55	3.02	< 10	3	0.17	10	0.82	1435
188-L2N 3+00E	203 23	~ ~ ~ ~	1.//	< 0.2		370	< 0.5	4	1.00	< 0.3	24		<u> </u>	3.23	< 10		0.16	10	0.86	1405
T88-L2N 3+25E	201 23	8 < 5	1.66	< 0.2	< 5	290	< 0.5	4	0.92	0.5	23	33	58	3.24	< 10	< 1	0.08	10	0.86	1170
T88-L2N 3+50E	201 23	8 < 5	1.76	< 0.2	15	380	< 0.5	< 2	1.07	< 0.5	24	34	66	3.29	< 10	2	0.09	10	0.89	1685
188-L2N 3+75E	203 23	s < 5	1.98	< 0.2	10	460	< 0.5	2	1.19	< 0.5	24	53	56	3.30	< 10	< 1	0.16	10	0.93	1480
T88-L2N 4+2 5E	203 23	8 < 5	2.35	< 0.2	30	220	< 0.5	2	0.60	< 0.5	33	59 47	48 61	3.47	< 10 < 10	< 1	0.17	10	0.99	1165
T88-L2N 4+50E	201 23	8 < 5	1.21	0.2	10	390	< 0.5	2	0.96	< 0.5	24	23	40	2 74	< 10	<u> </u>	0.12	10	0.64	2800
T88-L2N 4+75E	201 23	8 < 5	1.31	< 0.2	< 5	320	< 0.5	< 2	0.73	< 0.5	24	26	41	3.12	< 10	$\sim$	0.11	10	0.04	2430
T88-L2N 5+00E	201 23	8 < 5	1.64	< 0.2	10	340	< 0.5	2	0.31	< 0.5	33	32	41	3.66	< 10	1	0.08	10	0.77	2100
T88-L2N 5+25E	201 23	8 < 10	1.74	< 0.2	15	140	< 0.5	2	0.26	< 0.5	31	34	51	4.59	< 10	< 1	0.07	10	0.75	1280
T88-L2N 5+50E	201 23	8 < 5	1.22	< 0.2	5	360	< 0.5	2	0.39	< 0.5	24	22	45	2.86	< 10	< 1	0.07	10	0.42	3490
T88-L2N 5+75E	201 23	8 < 5	2.21	0.2	15	380	< 0.5	2	0.19	< 0.5	22	23	33	3.49	< 10	3	0.07	10	0.42	951
188-L2N 6+00E	201 23	8 < 5	2.55	< 0.2	10	1030	< 0.5	< 2	0.19	< 0.5	- 11	18	11	3.46	< 10	1	0.07	10	0.42	2840
188-L2N 6+25E	201 23		2.1/	< 0.2	< 3	360	< 0.3	< 2	0.11	< 0.5	22	32	31	3.87	< 10	< 1	0.09	10	0.75	1360
T88-L2N 7+00E	201 23	8 < 5	2.44	< 0.2	5	630	< 0.5	$\stackrel{<}{<} \stackrel{2}{2}$	0.55	< 0.5	20	21	24	3.28	< 10	< 1	0.12	10	0.44	1795
T88-1.2N 0+00W	201 23		0.68	0.2	10	240	< 0.5	< 2	0.60	< 0.5	10	14	28	1 07	< 10	<1	0.08	10	0 10	646
T88-L2N 0+2 W	201 23		1.03	< 0.2	10	1700	< 0.5	$\overline{\langle 2 \rangle}$	2.95	< 0.5	22	15	53	2:17	10	1	0.00	< 10	0.37	>10000
T88-L2N 0+50W	201 23	8 < 5	0.81	< 0.2	20	370	< 0.5	2	0.67	< 0.5	24	14	30	3.38	< 10	< 1	0.11	10	0.42	1915
T88-L2N 0+7 SW	201 23	8 < 5	0.90	< 0.2	15	3 50	< 0.5	< 2	0.57	< 0.5	24	16	43	3.19	< 10	< 1	0.10	10	0.43	1390
T88-L2N 1+25W	201 23	8 < 5	0.94	< 0.2	20	4 50	< 0.5	2	0.92	< 0.5	24	16	49	3.34	< 10	1	0.09	10	0.40	2280
T88-L2N 1+50W	201 23	8 < 5	2.06	< 0.2	10	210	< 0.5	2	0.40	< 0.5	31	36	36	4.13	< 10	< 1	0.12	10	0.85	1800
T88-L2N 1+75W	201 23	8 < 5	2.11	< 0.2	10	210	< 0.5	< 2	0.44	< 0.5	22	30	34	3.72	< 10	< 1	0.14	10	0.68	9 5 9
188-L2N 2+25W	201 23	8 < 5	1.40	< 0.2	20	310	< 0.5	2	0.37	< 0.5	23	22	42	3.58	< 10	1	0.07	10	0.44	697
T88-L2N 2+75W	201 23	$\frac{5}{8}$ < 5	2.53	< 0.2	10	290	< 0.5	< 2	0.33	< 0.5	21	26	20	3.08	< 10	<1	0.07	10	0.46	44.50
The Tax Month	201 22		2.24	< 0.2	10	140	101	~ ~ ~	0.22		24				< 10				0.16	
TRA-LIN HOW	201 23		1 07		10	140			0.23	< 0.3	24	32	14	4.14	< 10	< 1	0.08	10	0.70	400
T88-1.7N 24501	201 23	il 23	2.05	< 0.2		160	< 0.5	25	0.13	< 0.5	12	23	14	3.16	< 10	< 1	0.10	10	0.33	205
188-L2N 3+7 SW	201 23	s	2.22	< 0.2	25	120	< 0.5	2	0.13	< 0.5	19	30	18	3.62	< 10	<1	0.08	< 10	0.71	224
T88-L2N 4+00W	201 23	8 < 5	2.54	< 0.2	15	110	< 0.5	< 2	0.44	< 0.5	24	38	47	4.58	< 10	< 1	0.09	10	وو.ه	716
•	<b>.</b>												CERT	IFICATIO	ом :	Æ	3. (	ag	Į.	



Analytical Chemists * Geochemists * Registered Assayers

PHONE (604) 984-0221

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

l td

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE Page No. : 5-B Tot. Pages: 6 Date : 27-SEP-88 Invoice # : I-8823905 P.O. # : NONE

È.

# CERTIFICATE OF ANALYSIS A8823905

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P	Pb ppm	Sb ppm	Sc ppm	Sr Ti ppm %	Ti ppm	U ppm	V ppm	W	Zn ppm				
T88-L2N 0+75E T88-L2N 1+00E T88-L2N 1+25E T88-L2N 1+50E T88-L2N 1+75E	201 238 203 238 201 238 203 238 203 238 217 238	2 2 2 3 3	0.01 0.02 0.01 0.03 0.01	62 50 37 57 64	490 360 900 940 400	24 8 28 24 6	< 5 < 5 5 5 5	7 5 3 6 5	$\begin{array}{r} 20 < 0.01 \\ 16 < 0.01 \\ 29 < 0.01 \\ 37 < 0.01 \\ 11 < 0.01 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	22 17 19 19 22	< 5 < 5 < 5 < 5 < 5	103 77 84 118 114				
T88-L2N 2+00E T88-L2N 2+2 5E T88-L2N 2+50E T88-L2N 2+7 5E T88-L2N 2+7 5E T88-L2N 3+00E	201         238           201         238           201         238           203         238           203         238	1 2 1 2 1	0.01 0.02 0.02 0.01 0.01	29 37 36 36 41	1280 640 990 900 720	44 34 34 22 18	< 5 < 5 < 5 5 < 5	2 4 3 4 4	$\begin{array}{rrrr} 47 < 0.01 \\ 14 & 0.01 \\ 24 & 0.01 \\ 32 < 0.01 \\ 22 < 0.01 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	9 20 17 14 15	< 5 < 5 < 5 < 5 < 5 < 5	396 77 61 89 82		-		
T88-L2N 3+25E T88-L2N 3+50E T88-L2N 3+50E T88-L2N 3+75E T88-L2N 4+00E T88-L2N 4+25E	201238201238203238203238201238	1 1 1 2 2	< 0.01 0.01 0.02 0.01 0.01	42 42 44 44 53	680 1010 790 720 1010	16 14 18 22 30	< 5 < 5 < 5 < 5 < 5	4 4 4 6	$\begin{array}{rrrr} 21 &< 0.01 \\ 22 &< 0.01 \\ 28 &< 0.01 \\ 23 &< 0.01 \\ 18 &< 0.01 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	14 15 16 16 18	< 5 < 5 < 5 < 5 < 5	82 79 109 96 89				
T88-L2N 4+50E T88-L2N 4+75E T88-L2N 5+00E T88-L2N 5+00E T88-L2N 5+25E T88-L2N 5+50E	201238201238201238201238201238	1 2 1 3 2	0.01 0.01 0.02 < 0.01 0.01	34 40 37 42 28	1260 1160 840 900 870	30 32 24 26 30	< 5 5 < 5 < 5 < 5 < 5	3 3 4 5 1	$\begin{array}{r} 34 < 0.01 \\ 34 < 0.01 \\ 21 & 0.01 \\ 17 < 0.01 \\ 21 & 0.01 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	10 11 19 17 18	< 5 < 5 < 5 < 5 < 5	98 97 75 88 107	-			 - -
T88-L2N 5+75E T88-L2N 6+00E T88-L2N 6+25E T88-L2N 6+25E T88-L2N 6+50E T88-L2N 7+00E	201238201238201238201238201238	1 2 2 1 1	0.02 0.01 0.01 0.02 0.02	30 23 44 30 30	1690 600 450 320 1620	32 16 6 18	< 5 < 5 < 5 < 5 < 5	3 3 5 4 3	13         0.04           13         0.03           11         0.01           23         0.03           27         0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	20 23 21 17 22	< 5 < 5 < 5 < 5 < 5 < 5	129 285 88 67 96			· · · · · · · · · · · · · · · · · · ·	 
T88-L2N 0+00W T88-L2N 0+2 5W T88-L2N 0+5 6W T88-L2N 0+7 5W T88-L2N 0+7 5W T88-L2N 1+2 5W	201         238           201         238           201         238           201         238           201         238           201         238	1 · · · · · · · · · · · · · · · · · · ·	< 0.01 0.02 0.01 < 0.01 < 0.01	40 37 37 41 44	690 2760 730 760 680	4 16 16 18 20	< 5 < 5 < 5 < 5 5	4 2 3 3 4	$\begin{array}{rrrr} 46 < 0.01 \\ 107 & 0.01 \\ 44 < 0.01 \\ 29 < 0.01 \\ 35 < 0.01 \end{array}$	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	7 11 9 9 9	< 5 < 5 < 5 < 5 < 5	45 742 82 71 74				
T88-L2N 1+50W T88-L2N 1+7 5W T88-L2N 2+2 5W T88-L2N 2+50W T88-L2N 2+7 5W	201 238 201 238 201 238 201 238 201 238 201 238	3 2 2 1 2	0.01 0.01 0.02 0.02 0.01	41 51 32 28 38	750 680 910 480 190	42 26 24 24 20	< 5 < 5 < 5 < 5 < 5	4 4 3 3 3	21         0.01           23         0.01           20         0.01           24         0.02           12         0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	18 18 17 18 19	\$ < \$ < \$ < \$ < \$ < \$	116 96 67 84 76				
T88-L2N 3+00W T88-L2N 3+2 5W T88-L2N 3+50W T88-L2N 3+50W T88-L2N 3+7 5W T88-L2N 4+00W	201 238 201 238 201 238 201 238 201 238 201 238	1 1 1 2 2	0.01 0.01 0.01 0.01 0.01	40 31 31 41 49	200 230 250 180 260	22 20 16 12 32	< 5 < 5 < 5 < 5 < 5	3 2 2 2 5	22 0.01 13 0.01 10 0.01 10 0.01 25 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	19 17 17 17 17	<	86 74 74 71 93		~~~~		

CERTIFICATION : _______. Cangling



# Chemex Labs Ltd.

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE Page No. :6-A Tot. Pages:6 Date :27-SEP-88 Invoice #:I-8823905 P.O. # :NONE

B. Carge

and a

# CERTIFICATE OF ANALYSIS A8823905

SAMPLE DESCRIPTION	PREP CODE	Au ppb F <del>A+A</del> A	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	М <b>в</b> %	Ma ppm
T88-1.2N 4+2 W	201 23	8 < 5	3 89	0.4	10	180	< 0.5	~ ~ ~ ~	0.21	< 0.5			 6 1	A 77	< 10	~ 1	0.11	10	0 77	4.20
T88-L2N 4+50W	201 23	8 < 5	2.50	< 0.2	5	140	< 0.5	$\overline{\langle 2 \rangle}$	0.53	< 0.5	24	36	30	4.77	< 10	21	0.11	10	0.17	439
T88-L2N 4+7 5W	201 23	8 < 5	2.63	0.2	10	90	< 0.5	< 2	0.29	< 0.5	35	41	57	4.80	< 10	< 1	0.10	10	1.05	791
T88-L2N 5+00W	201 23	8 < 5	3.11	0.2	< 5	190	< 0.5	< 2	0.63	0.5	24	32	32	3.89	< 10	2	0.22	20	0.69	606
T88-L2N 5+25W	201 23	8 < 5	2.85	0.2	20	130	< 0.5	6	0.41	< 0.5	36	46	77	5.31	< 10	< 1	0.16	10	1.10	1235
T88-L2N 5+50W	201 23	8 < 5	2.24	< 0.2	10	90	< 0.5	< 2	1.10	< 0.5	24	37	48	4.04	< 10	< 1	0.10	10	1.03	785
T88-L2N 5+75W	201 23	8 < 5	2.12	< 0.2	25	90	< 0.5	< 2	1.11	< 0.5	24	34	46	3.79	< 10	< 1	0.09	10	0.97	786
188-L2N 6+00W	201 23	8 < 5	2.17	< 0.2	5	100	< 0.5	2	1.14	< 0.5	24	35	47	3.93	< 10	< 1	0.10	10	1.01	840
TRA-LIN CHION	201 23		2.81	< 0.2	10	100	< 0.3	2	0.44	< 0.5	24	43	46	4.76	< 10	1	0.08	10	1.08	521
100-1214 07304	201 23		2.82	<b>~ 0</b> .2	15	140	< 0.5	2	0.09	< 0.5		42		4.9/	< 10	1	0.13	10	1.04	1205
T88-L2N 6+7 5W	201 23	8 < 5	2.77	< 0.2	5	120	< 0.5	< 2	0.64	< 0.5	24	40	52	4.63	< 10	< 1	0.12	10	1.04	589
188-L2N 7+00W	201 23	8 < 5	2.91	< 0.2	5	90	< 0.5	2	0.37	< 0.5	31	48	56	5.62	< 10	3	0.08	10	1.23	593
188-L2N 7+25W	201 23	8 < 3	2.68	< 0.2	< 5	130	< 0.5	2	0.45	< 0.5	24	39	52	4.63	< 10	3	0.10	10	1.00	8 5 5
188-L2N /+30W	201 23		2.78	0.2	20	100	< 0.5	< 2	0.38	< 0.3	24	32	35	4.88	< 10		0.07	10	0.83	690
100 L2N /+/ W	201 23	~	2.30	0.4	10	30	< 0.5	2	0.24	< 0.3		40	07	5.06	< 10	<u>&lt; 1</u>	0.05	10	1.10	249
T88-L2N 8+00W	201 23	8 < 5	1.91	< 0.2	20	50	< 0.5	< 2	7.02	< 0.5	24	31	46	4.07	10	1	0.08	< 10	0.85	389
T88-L2N 8+2 5W	201 23	8 < 5	1.42	< 0.2	10	50	< 0.5	< 2	8.18	< 0.5	23	21	61	2.98	10	2	0.09	< 10	0.69	488
188-L2N 8+50W	201 23	8 < 5	0.19	< 0.2	10	10	< 0.5	2	14.65	< 0.5	12	2	32	2.91	20	1	0.02	< 10	0.31	621
188-L2N 8+7 9W	201 23	s < 5	1.75	0.2	10	90	< 0.5	< 2	0.85	< 0.5	31	21	62	4.67	< 10	1	0.15	10	0.49	618
188-L2N 9+00W	201 23	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2.05	< 0.2	20	110	< 0.5	2	1.02	< 0.5	24	23	47	5.86	< 10	< 1	0.12	20	0.66	1130
T88-L2N 9+2 SW	201 23	8 < 5	1.60	< 0.2	< 5	60	< 0.5	< 2	0.14	< 0.5	23	17	42	4.25	< 10	< 1	0.06	< 10	0.40	237
T88-L2N 9+50W	201 23	8 < 5	1.27	< 0.2	5	40	< 0.5	< 2	0.20	< 0.5	24	17	40	4.73	< 10	1 > 1	0.06	< 10	0.39	479
T88-L2N 9+7 SW	201 23	8 < 5	1.85	< 0.2	10	190	< 0.5	< 2	0.10	< 0.5	12	24	20	3.80	< 10	< 1	0.06	10	0.58	324
188-L2N 10+00W	201 23	8 < 5	1.75	< 0.2	< 5	330	< 0.5	2,	0.21	< 0.5	19	22	26 -	3.62	< 10	< 1	0.09	10	0.57	955
188-L2N 10+25W	201 23	8 < 3	1.8/	< 0.2	10	110	< 0.5	< 2	0.32	< 0.5	59	27	70	4.57	< 10	< 1	0.12	10	0.71	1025
T88-L2N 10+50W	201 23	3 < 5	2.16	< 0.2	10	250	< 0.5	< 2	0.25	< 0.5	18	24	22	4.00	< 10	< 1	0.06	10	0.59	460
T88-L2N 10+75W	201 23	8 < 5	2.27	< 0.2	15	1 50	< 0.5	2	0.10	< 0.5	18	21	15	3.42	< 10	< 1	0.10	10	0.46	196
T88-L2N 11+00W	201 23	8 10	2.24	< 0.2	5	80	< 0.5	< 2	0.08	< 0.5	19	31	19	4.09	< 10	< 1	0.05	< 10	0.79	218
188-L2N 11+25W	201 23	8 < 5	2.77	< 0.2	< 5	270	< 0.5	< 2	0.09	< 0.5	18	21	19	3.61	< 10	< 1	0.05	< 10	0.49	435
188-L2N 11+50W	201 23	< >	2.12	< 0.2		170	< 0.3	2	0.13	< 0.5	18	25	13	3,69	< 10	< 1	0.09	10	0.50	289
T88-L2N 11+75W	201 23	8 < 5	2.19	< 0.2	< 5	150	< 0.5	< 2	0.47	< 0.5	23	27	24	4.48	< 10	<1	0.08	10	0.66	487
T88-L2N 12+00W	201 23	8 < 5	2.97	0.2	< 5	100	< 0.5	< 2	0.63	< 0.5	11	16	23	2.60	< 10	< 1	0.07	20	0.39	421
T88-L2N 12+25W	201 23	s < s	2.69	< 0.2	< 5	200	< 0.5	< 2	0.28	0.5	21	23	21	3.63	< 10	< 1	0.09	10	0.57	938
188-L2N 12+50W	201 23	s < 5	2.01	< 0.2	< 5	170	< 0.5	< 2	0.11	1.5	19	20	20	4.05	< 10	< 1	0.09	10	0.44	340
188-L2N 12+75W	201 23	5 < 5	2.77	< 0.2	< >	140	< 0.5	2	0.48	0.5	22	28	26	4.42	< 10	< 1	0.09	10	0.69	495
T88-L2N 13+00W	201 23	8 < 5	2.36	0.2	< 5	100	< 0.5	< 2	0.51	0.5	24	32	37	5.32	< 10	< 1	0.08	20	0.85	660
188-L2N 13+25W	201 23	8 < 5	2.69	0.4	10	150	< 0.5	< 2	0.65	< 0.5	24	24	32	4.29	< 10	< 1	0.09	30	0.61	1250
188-L2N 13+50W	201 23	5 25	3.03	0.2	25	150	< 0.5	< 2	0.44	< 0.5	23	29	44	4.59	< 10		0.10	20	0.69	1090
188-L2N 13+75W	201 23	s < s	2.67	< 0.2	< 5	1.90	< 0.5	< 2	0.21	< 0.5	24	32	38	4.60	< 10	< 1	0.08	10	0.81	552
	Learning and the second																			l

CERTIFICATION :


- Alexandra and a

A CONTRACTOR OF THE OWNER OF THE

## Chemex Labs Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project :

Section 1

Page No. :6-B Tot. Pages: 6 : 27-SEP-88 Date Invoice # : I-8823905 P.O. # :NONE

Based

Stand States

Comments: ATTN: PETER LERICHE

### CERTIFICATE OF ANALYSIS A8823905

SAMPLE	PREP	>	Mo	Na	Ni	Р	Pb	Sb	Sc	Sr	Ti	TI	U	v	w	Zn	
DESCRIPTION	CODE	3	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	ppm	
T88-L2N 4+2 5W	201 2	38	2	0.02	54	330	28	< 5	6	18	0.05	< 10	< 10	24	< 5	92	
T88-L2N 4+50W	201 2	38	2	0.01	42	3 50	32	< 5	4	34	0.01	< 10	< 10	21	< 5	91	
188-L2N 4+7 5W	201 2	38	2	0.01	50	320	40	< 3	6	17	0.01	< 10	< 10	21	$\sim$	73	
T88-L2N 5+2 5W	201 2	38	3	0.01	58	460	56	ŝ	8	27	0.01	< 10	< 10	23	< 5	106	
T88-L2N 5+50W	201 2	38	1	0.01	42	580	26	< 5	5	38	< 0.01	< 10	< 10	17	< 5	85	
T88-L2N 5+7 5W	201 2	38	2	0.01	40	590	40	< 5	4	39	< 0.01	< 10	< 10	16	< 5	80	
T88-L2N 6+00W	201 2	38	2	0.01	43	620	30	< 5	. 5	40 -	< 0.01	< 10	< 10	16	< 5	84	
188-L2N 6+2 5W	201 2	38	2	0.01	54	250	36	< 5	8	42	0.01	< 10	< 10	20	5	103	
									7	20	0.01	< 10	< 10	17		04	
T88-L2N 6+7 5W	201 2	38	1	0.01	49	240	42	~ ~	. 8	29	0.01	< 10	< 10	20	< 5	109	
T88-L2N 7+00W	201 2	30	- 1	0.01	48	230	34	$\langle s \rangle$	7	28	0.01	< 10	< 10	18	5	94	
T88-L2N 7+50W	201 2	38	2	0.01	48	3 50	28	< 5	7	37	0.02	< 10	< 10	18	5	84	
T88-L2N 7+7 5W	201 2	38	2 -	< 0.01	58	110	26	< 5	7	16	< 0.01	< 10	< 10	17	< 5	97	
T88-L2N 8+00W	201 2	38	1	0.01	43	420	22	< 5	6	177 -	< 0.01	< 10	< 10	12	5	90	
T88-L2N 8+2 5W	201 2	38	1	0.01	36	560	20	< 5	3	138 -	< 0.01	< 10	< 10	9	10	58	
T88-L2N 8+50W	201 2	38	<1.	< 0.01	20	370	20	5	6	337	< 0.01	< 10	< 10	3	10	58	
T88-L2N 8+7 5W	201 2	38	2	0.01	48	220	16	5	8	36	0.01	< 10	< 10	12	< 5	78	
188-1.2N 9+00w	201 2	.38	2	0.01	43	300	20	3		47	0.01	< 10	< 10		~;		· · · · · · · · · · · · · · · · · · ·
T88-L2N 9+2 5W	201 2	38	2	0.01	46	140	12	< 5	3	12	< 0.01	< 10	< 10	10	< 5	52	
188-L2N 9+50W	201 2	38	2	< 0.01	22	150	14		2	10	0.01	< 10	< 10	17	$\geq$	61	
1788-1.2N 10400W	201 2	18	2	0.01	33	270	16	$\vec{<}$ s	3	17	0.01	< 10	< 10	16	< 5	66	
T88-L2N 10+25W	201 2	38	2 -	< 0.01	71	4 50	24	< 5	5	15	< 0.01	< 10	< 10	12	5	94	
T88-L2N 10+50W	201 2	.38	2	0.01	38	190	8	< 5	2	13	0.01	< 10	< 10	17	< 5	73	
T88-L2N 10+75W	201 2	38	2	0.01	29	210	20	< 5	2	12	0.02	< 10	< 10	20	< 5	65	
T88-L2N 11+00W	201 2	238	2 -	< 0.01	37	270	18	< 5	2	9	< 0.01	< 10	< 10	17	< 5	82	
T88-L2N 11+25W	201 2	238	3	0.01	33	310	18	~ `	3	12	0.02	< 10	< 10	20	$\geq$	75	
188-L2N 11+50W	201 2	.38		0.01	26	300		<u></u>									
T88-L2N 11+75W	201 2	238	3	0.01	37	390	24	< 5	4	30	< 0.01	< 10	< 10	17	< 5	71	
T88-L2N 12+00W	201 2	238		0.04	23	740	22	< 5	5	45	0.05	< 10	< 10	13	$\leq$	04 10	
[188-L2N 12+25W	201 2	38		0.02	33	460	12	< ,	2	10	0.03	< 10	< 10	16	$\overline{\langle s \rangle}$	79	
T88-L2N 12+75W	201 2	238		0.01	43	590	30	< 5	6	38	0.02	< 10	< 10	19	5	87	
T88-1.2N 124001	201 2	238		< 0.01	43	280	38	< 5	8	37	< 0.01	< 10	< 10	19	5	92	
T88-L2N 13+25W	201 2	238	2	0.02	37	580	42	< 5	8	47	0.03	< 10	< 10	18	< 5	87	
T88-L2N 13+50W	201 2	238	2	0.01	42	520	30	< 5	9	38	0.04	< 10	< 10	19	< 5	94	
T88-L2N 13+75W	201 2	238	1	0.01	50	300	22	< 5	4	18	0.02	< 10	< 10	19	< 5	85	
L									, , <del>, , , , , , , , , , , , , , , , , </del>					CERT	IFICATI	ON :	B. Cardi-
														~DA 1			1



212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5

Comments: ATTN: PETER LERICHE

A8823908

## CERTIFICATE A8823908

ASHWORTH EXPLORATIONS LTD. PROJECT : P.O.# : NONE

Samples submitted to our lab in Vancouver, BC. This report was printed on 27-SEP-88.

~	SAMF	LE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
201	192	Dry, sieve -80 mesh; soil, sed.
203	1.6	Dry, sieve -35 mesh and ring
217	4	Geochem:Ring only,no crush/split
2 3 8	212	ICP: Aqua regia digestion

* NOTE 1:

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Ti, W.

ANAL	YTICAL	PRO	CEDUR	ES

	1	······································		······	·····
CHEMEX	NUMBER			DETECTION	UPPER
CODE	SAMPLES	DESCRIPTION	METHOD	LIMIT	LIMIT
100	212	Au ppb: Fuse 10 g sample	FA-AAS	5	10000
921	212	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
922	212	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
923	2 1 2	As ppm: 32 element, soil & rock	ICP-AES	5	10000
924	212	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
925	2 1 2	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
926	212	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
927	212	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
928	212	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
929	212	Co ppm: 32 element, soil & rock	ICP-AES		10000
930	212	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
931	212	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
9 3 2	212	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
933	212	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
951	212	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
934	212	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
935	212	La ppm: 32 element, soil & rock	ICP-AES	10	10000
936	212	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
937	212	Mn ppm: 32 element, soil & rock	ICP-AES	1	10000
938	212	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
939	212	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
940	212	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
941	212	P ppm: 32 element, soil & rock	ICP-AES	10	10000
942	212	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
943	212	Sb ppm: 32 element, soil & rock	ICP-AES	s	10000
958	212	Sc ppm: 32 elements, soil & rock	ICP-AES	1	100000
944	212	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
945	212	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
946	212	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
947	212	U ppm: 32 element, soil & rock	ICP-AES	10	10000
948	212	V ppm: 32 element, soil & rock	ICP-AES	1	10000
949	212	W ppm: 32 element, soil & rock	ICP-AES	5	10000
950	212	Zn ppm: 32 element, soil & rock	ICP-AES	5	10000
1					



212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE Page No. : 1-A Tot. Pages: 6 Date : 27-SEP-88 Invoice # : I-8823908 P.O. # : NONE

L CONSTRUCTION

## CERTIFICATE OF ANALYSIS A8823908

SAMPLE DESCRIPTION	PREP CODE	Au ppb F <del>AIA</del> A	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	М <b>8</b> %	Ma. ppm
T88-L2S 0+75W	201 238	< 5	2.58	< 0.2	20	60	< 0.5	2	0.90	< 0.5	24	45	56	4.89	< 10	< 1	0.05	10	0.91	809
188-L2S 1+00W	203 238		2.91	0.2	15	90	< 0.5	2	0.48	< 0.5	32	68	51	4.83	< 10	< 1	0.17	10	0.92	1110
T88-L2S 1+25W	201 238		2.90	< 0.2		70	< 0.3	~ 2	0.11	< 0.3	3/	49	66	5.47	< 10	< 1	0.05	< 10	1.06	501
T88-L2S 2+00W	201 238	< 5	2.59	< 0.2	10	50	< 0.5	2	0.13	< 0.5	24	41	39	4.20	< 10	< 1	0.04	10	0.91	200
T88-L2S 2+50W	201 238	< 5	2.49	0.2	5	80	< 0.5	2	0.55	< 0.5	36	44	62	4.73	< 10	- 1	0.06	10	0.95	964
T88-L2S 2+75W	201 238	< 5	3.24	0.4	< 5	110	< 0.5	< 2	0.13	< 0.5	22	36	32	3.96	< 10	2	0.08	10	0.75	167
188-L2S 3+00W	201 238	< 5	3.24	0.6	5	100	< 0.5	< 2	0.13	< 0.5	21	31	31	3.56	< 10	2	0.09	10	0.65	152
T88-L2S 3+75W	201 238	5	2.98	0.4	< 5	50 40	< 0.5	4	0.36	< 0.5	24 24	47 45	52 47	4.78	< 10 < 10	< 1	0.07	10	1.03	333 278
T88-L2S 4+00W	201 238	< 5	2.68	0.2	5	130	< 0.5	4	1.16	< 0.5	36	40	48	4.52	10	< 1	0.10	20	0.79	4150
T88-L2S 4+2 5W	201 238	< 5	2.51	0.2	10	140	< 0.5	4	1.29	< 0.5	36	36	40	4.16	10	< 1	0.11	20	0.71	3770
T88-L2S 5+00W	201 238	< 5	2.63	0.4	15	140	< 0.5	4	1.22	< 0.5	46	40	43	4.62	10	< 1	0.11	20	0.78	40 50
188-L2S 5+50W	201 238	< 5	2.65	0.2	10	130	< 0.5	2	1.15	< 0.5	45	41	50	4.60	< 10	2	0.10	20	0.79	4380
188-L2S 6+00W	203 238	< 5	2.45	0.2	5	1 30	< 0.5	< 2	1.37	< 0.5	36	66	48	3 - 8 5	< 10	< 1	0.18	10	0.67	4340
T88-L2S 6+25W	217 238	< 5	3.20	0.4	10	80	< 0.5	2	1.55	< 0.5	24	84	50	5.01	10	1	0.32	10	1.31	706
T88-L2S 6+50W	201 238	< 5	3.10	0.4	< 5	60	< 0.5	4	0.35	0.5	36	48	63	5.93	< 10	< 1	0.07	10	1.19	695
T88-L2S 6+7 5W	201 238	< 5	2.92	0.4	10	50	< 0.5	4	0.99	< 0.5	34	48	51	5.84	< 10	< 1	0.07	20	1.14	741
T88-L2S 7+00W	201 238	< 5	2.46	0.2	25	40	< 0.5	4	0.21	< 0.5	24	50	84	8.87	< 10	2	0.08	10	0.85	310
188-L2S 7+2 9W	203 238	< 5	2.59	0.2	< 5	50	< 0.5	4	0.29	< 0.5	21	65	54	6.55	< 10	< 1	0.24	10	0.91	293
T88-L2S 7+50W	201 238	< 5	2.61	0.2	5	30	< 0.5	2	0.11	< 0.5	37	43	72	6.74	< 10	< 1	0.05	< 10	0.91	239
T88-L2S 7+7 9W	201 238	< 5	2.69	0.2	< 5	30	< 0.5	< 2	0.01	< 0.5	23	47	71	8.31	< 10	< 1	0.06	< 10	0.97	344
T88-L2S 8+00W	203 238	< 5	3.15	0.4	5	50	< 0.5	- 4	0.07	< 0.5	21	64	60	6.14	< 10	< 1	0.23	< 10	1.00	257
T88-L2S 8+25W	201 238	< 5	2.00	0.2	< 5	50	< 0.5	4	0.32	< 0.5	24	31	54	5.42	< 10	< 1	0.08	10	0.67	368
188-L2S 8+50W	201 238	< >	1.40	0.2	10		< 0.5	4	0.14	< 0.5	11	21	21	3.38	< 10	1	0.08	10	0.33	109
T88-L2S 8+75W	201 238	< 5	1.94	0.4	10	60	< 0.5	4	0.03	< 0.5	. 19	33	41	5.54	< 10	3	0.08	10	0.51	275
T88-L2S 9+00W	201 238	< 5	1.84	0.4	5	230	< 0.5	6	0.13	< 0.5	12	32	51	4.70	< 10	< 1	0.07	10	0.59	201
T88-L3N 0+00E	203 238	< 5	3.23	0.4	< 5	120	< 0.5	2	0.07	< 0.5	35	78	72	5.59	< 10	< 1	0.22	10	1.30	1660
188-L3N 0+25E	201 238	< 5	3.07	0.4	20	90	< 0.5	8	0.08	< 0.5	36	53	152	6.47	< 10	< 1	0.10	10	1.18	1615
188-L3N 0+50E	201 238	< ,	3.15	< 0.2		. /0	< 0.5	. 0	0.0/	< 0.5	37	61	/4	3.36	< 10		0.07	10	1.38	1/80
T88-L3N 0+75E	201 238	< 5	2.45	< 0.2	5	220	< 0.5	4	0.62	< 0.5	37	47	73	4.42	< 10	1	0.08	10	1.12	2630
[188-L3N 1+00E	201 238	< 3	3.58	0.4	10	140	< 0.5	4	0.14	< 0.5	37	68	84	5.98	< 10	1	0.10	20	1.70	1810
188-L3N 1+25E	201 238	< 5	3.40	0.4	20	140	< 0.5	4	0.15	< 0.5	. 37	63	78	5.64	< 10	2	0.10	20	1.61	1815
188-L3N 1+50E	201 238		3.53	0.4		130	< 0.5	2	0.15	< 0.5	37	65	80	5.84	< 10	1	0.10	20	1.68	1795
188-L3N 1+75E	201 238	< >	2.6/	0.4	20	390	< 0.5	< 1	0.34	< 0.5	68	44	101	5.34	< 10	2	0.16		1.04	4950
T88-L3N 2+00E	201 238	< 5	1.81	0.4	10	710	< 0.5	4	0.97	< 0.5	36	28	49	3.82	< 10	< 1	0.19	20	0.67	2990
T88-L3N 2+25E	201 238	< 5	2.08	0.4	< 5	470	< 0.5	< 2	0.85	< 0.5	33	32	74	3.31	< 10	2	0.13	20	0.79	6190
T88-L3N 2+50E	201 238	< 5	1.65	0.2	< 5	120	< 0.5	< 2	0.37	< 0.5	24	30	47	2.91	< 10	< 1	0.13	20	0.65	1375
188-L3N 2+75E	203 238	.10	2.30	0.2	5	370	< 0.5	2	0.73	< 0.5	24	72	65	3.79	< 10	< 1	0.27	20	1.00	1200
188-L3N 3+00E	203 238	< 5	2.81	0.2	<u> </u>	270	< 0.3	< 1	0.52	< 0.5	24	78	57	4.48	< 10	1	0.27	20	- 22	1075

CERTIFICATION :

B. Carglin



## Cher Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA. CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE

Page No. :1-B Tot. Pages: 6 Date :27-SEP-88 Invoice # : I-8823908 P.O. # : NONE

- Second Second

ADDISECT.

SAMPLE	PREP	Мо	Na	Ni	P	Рь	Sb	Sc	Sr T	Ti Tl	U	v	w	Zn			
DESCRIPTION	CODE	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	% ppm	ppm	ppm	ppm	ppm			
	201 220	ł	0.01	. 45	4.60												
TX8-L2S 0+7 W	201 238	1	0.01	45	400	42	< 5	10	44 < 0.0	>1 < 10	< 10	21	5	101			
T88-L2S 1+2 5W	201 238	3	< 0.01	52	380	54	< 5	ŝ	10 < 0.0	(1) < 10	<10	23	< < 5	103			
T88-L2S 1+50W	201 238	2	0.01	41	190	22	< 5	3	6 < 0.0	01 < 10	< 10	17	< 5	79			
T88-L2S 2+00W	201 238	3	0.01	42	240	20	< 5	3	9 0.(	) < 10	< 10	21	< 5	87			
T88-L2S 2+50W	201 238	2	0.01	48	470	56	< 5	9	26 < 0.0	)1 < 10	< 10	19	5	93		······································	
T88-L2S 2+7 5W	201 238	2	0.03	36	190	26	< 5	4	15 0.0	>4 < 10	< 10	26	< 5	77			
188-L2S 3+00W	201 238		0.04	30	170	22	5	4	15 0.0	>5 < 10	< 10	26	< 5	71			
T22-125 J+2 JW	201 238	2	0.02	40	220	30	$\geq$	, (	17 < 0.0	1 < 10		24	<	94			
100 223 317 34	201 230		0.01	+0	520				17 < 0.0	<u> </u>	<u> </u>		·····				
T88-L2S 4+00W	201 238	2	0.01	39	520	74	< 5	7	54 < 0.0	01 < 10	< 10	24	5	109			
188-L2S 4+2 5W	201 238	2	0.01	37	530	70	5	6	58 < 0.0	>1 < 10	< 10	23	< 5	116			
188-L2S 5+00W	201 238	2	0.01	40	690	68	< 5	7	55 < 0.0	>1 < 10	< 10	24	5	112			
1188-L2S 5+50W	201 238		0.01	38	520	/0	< 5	4	54 < 0.0	>1 < 10	< 10	24	5	120			
100-123 0100	203 230	<u> </u>	0.03	34	470	34	~ }	/	01 < 0.0	<u> </u>	< 10	20		98			1
T88-L2S 6+2 5W	217 238	2	0.05	53	420	26	< 5	8	53 < 0.0	)1 < 10	< 10	23	5	103			
T88-L2S 6+50W	201 238	. 3	0.01	56	390	56	< 5	7	22 0.0	) < 10	< 10	25	< 5	119			
T88-L2S 6+7 9W	201 238	2	0.01	48	620	46	< 5	10	45 < 0.0	>1 < 10	< 10	23	5	118			3 A
188-L2S 7+00W	201 238	4	0.01	38	770	38	5	4	16 < 0.0	>1 < 10	< 10	23	< 5	116			
188-L2S /+2 W	203 238	. 3	0.05	39	3 50	34	< >	6	28 < 0.0	< 10	< 10	21	5	102			
T88-L2S 7+50W	201 238	2	< 0.01	58	410	38	5	5	12 < 0.0	01 < 10	< 10	17	< 5	113			
T88-L2S 7+7 5W	201 238	3	0.01	46	510	38	< 5	6	9 < 0.0	01 < 10	< 10	20	< 5	133			
T88-L2S 8+00W	203 238	3.	0.04	55	360	36	< 5	5	16 < 0.0	01 < 10	< 10	22	< 5	124			1
T88-L2S 8+2 5W	201 238	2	0.01	44	380	24	< 5	5	18 < 0.0	1 < 10	< 10	17	< 5	112			
188-L2S 8+50W	201 238		0.02	18	300	12	< 5	2	9 0.0	ol < 10	< 10	21	< 5	58			
T88-L2S 8+75W	201 238	3	0.01	31	360	18	< 5	3	8 < 0.0	01 < 10	< 10	22	< 5	85		,	
T88-L2S 9+00W	201 238	2	0.01	35	440	26	< 5	3	15 < 0.0	01 < 10	< 10	18	< 5	89			12.0
T88-L3N 0+00E	203 238	1	0.04	67	370	8	< 5	8	15 < 0.0	1 < 10	< 10	26	5	99			
188-L3N 0+25E	201 238	3	0.01	62	460	34	5	10	11 < 0.0	1 < 10	< 10	25	< 5	100			
188-L3N 0+50E	201 238	2	0.01	61	520	34	< 5	. 7	12 < 0.0	01 < 10	< 10	25	< 5	103			- 1
T88-L3N 0+75E	201 238	2	0.01	53	7 50	36	< 5	6	34 < 0.0	01 < 10	< 10	21	< 5	86		· · · · · · · · · · · · · · · · · · ·	
T88-L3N 1+00E	201 238	2	0.01	74	510	40	< 5	8	18 < 0.0	1 < 10	< 10	27	5	127			
T88-L3N 1+25E	201 238	1	0.01	71	510	40	5	7	19 < 0.0	1 < 10	< 10	26	< 5	122			
188-L3N 1+50E	201 238	2	0.01	71	510	40	< 5	7	19 < 0.0	< 10	< 10	27	5	126			
188-L3N 1+75E	201 238	4	0.01	59	1540	100	< >	. /	27 0.0	n < 10	< 10	22	< >	118	<u></u>	n de la composition de la comp	
T88-L3N 2+00E	201 238	1	0.02	42	720	32	< 5	6	62 0.0	1 < 10	< 10	18	< 5	77			]
188-L3N 2+25E	201 238		0.02	41	1050	48	< 5	4	50 0.0	< 10	< 10	20	< 5	137			1
188-L3N 2+50E	201 238		0.02	31	1040	- 32	< >	4	25 0.0	$\sim 10$	< 10	1/	$\sim$	90			
T88-1.1N 2002	203 238		0.03	49	620	20	$\langle \cdot \rangle$	6	22 < 0.0	1 < 10	< 10	20	$\sim$	97			)
1.30 231 37008	-05 230	<b></b>	0.03		040		~ ~ ~				~ 10				<i>D</i>	<u>~ n</u>	
															KI	· ·	
												CERT	<b>FIFICATIO</b>		- p. l	wy-	
															•	1	

CERTIFICATION :



Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE Page No. : 2-A Tot. Pages: 6 Date : 27-SEP-88 Invoice # : I-8823908 P.O. # : NONE

## CERTIFICATE OF ANALYSIS A8823908

SAMPLE	PREI	P	Au ppb	Al	Ag	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Ma
DESCRIPTION		-		· · · · · · · · · · · · · · · · · · ·	<b>pp</b> m	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppn	%	ppm	ppm	. 95	ppm	96	ppm
T88-L3N 3+25E	203 2	238	< 5	2.36	< 0.2	< 5	270	0.5	< 2	0.56	< 0.5	22	65	50	3.83	< 10	< 1	0.24	20	1.01	1235
188-LIN HOUE	203 2	238	< 10	1.81	0.2	< 5	310	< 0.5	- 2	1.24	< 0.5	20	51	45	3.05	10	$\leq 1$	0.20	20	0.87	1415
T88-L3N 4+00E	201 2	238	< 5	1.34	0.4	$< \frac{1}{5}$	240	< 0.5	2	1.06	< 0.5	18	26	44	2 48	< 10		0.12	10	0.83	1555
T88-L3N 4+25E	203 2	238	< 5	1.69	0.2	< 5	300	0.5	< 2	0.79	0.5	21	56	37	3.18	< 10	<b>~</b> i	0.24	10	0.78	1835
T88-L3N 4+50E	201 2	238	< 5	1.72	< 0.2	< 5	2 50	< 0.5	< 2	0.49	< 0.5	27	28	44	3.65	< 10	< 1	0.14	10	0.76	2580
1188-L3N 4+/3E	201 2	138	< 10	3.3/	< 0.2	< >	270	< 0.3	$\frac{< 1}{< 2}$	0.36	< 0.5	30	65	53	5.48	< 10		0.32	20	1.46	1 500
1788-L3N 5+25E	201 2	238	< 10	1.81	< 0.2	< 5	170	0.5	2	0.30	0.5	29	20	44	3.30	< 10	$\geq$	0.12	10	0.72	2000
T88-L3N 5+50E	203 2	3.8	< 5	2.46	0.4	5	240	0.5	2	0.50	< 0.5	31	65	48	4.01	10	< 1	0.29	10	1.02	2320
T88-L3N 5+75E	201 2	38	< 5	2.02	< 0.2	< 5	330	< 0.5	< 2	0.32	< 0.5	26	29	33	4.04	< 10	< 1	0.16	10	0.73	4060
188-LIN OHODE	201 2	38	< 5	1.9/	< 0.2	< \$	300	< 0.5	< 2	0.25	0.5	21	34	22	3.88	< 10	< 1	0.11	10	0.72	1995
T88-L3N 6+50E	201 2	38	$\vec{< s}$	2.02	< 0.7	< 5	480	< 0.3	$\overline{\langle}$	0.47	0.5	10	20	20	1.31	< 10		0.04	10	0.17	28.50
T88-L3N 6+75E	201 2	38	< 5	0.91	0.2	< 5	320	< 0.5	< 2	0.27	< 0.5	11	14	12	1.88	< 10	i	0.10	10	0.32	1615
T88-L3N 7+00E	201 2	38	< 5	2.06	< 0.2	5	640	< 0.5	< 2	0.35	< 0.5	15	16	9	3.33	< 10	< 1	0.16	20	0.48	1245
188-L3N 7+25E	201 2	38		2.00	< 0.2	< >	460	< 0.5	< 2	0.26	< 0.5	. 18	34	36	4.10	< 10	< 1	0.16	10	0.90	1845
T88-T 3N 7+75F	201 2	38	< 5	2.34	< 0.2	< 5	760	< 0.5	$\langle \rangle$	0.32	0.5	10	34	29	3.80	< 10		0.15	10	0.73	1440
T88-L3N 0HOOW	201 2	38	< 5	2.56	< 0.2	Š	260	< 0.5	< 2	0.44	< 0.5	30	53	63	5.19	< 10	i	0.12	20	1.13	3030
T88-L3N 0+25W	201 2	38	< 10	1.99	< 0.2	< 5	440	< 0.5	< 2	0.42	< 0.5	27	37	56	4.85	< 10	< 1	0.17	20	0.79	2790
188-L3N 0+50W	201 2	38	< 5	1.18	< 0.2	2	170	< 0.5	< 2	0.42	< 0.5	23	19	41	3.87	< 10	< 1	0.14	10	0.48	1760
TRE-I IN LLOW	201 2	30	~ ~ 5	0.03	0.4	30	1380	< 0.5	$\leq \frac{1}{2}$	0.10	< 0.5	23	1.5	04	3.93	< 10		0.17	20	0.13	1025
T88-L3N 1+2 5W	201 2	38	< 5	1.34	0.2	20	70	< 0.5	< 2	3.72	< 0.5	14	21	32	2.78	10	ì	0.08	10	0.65	413
T88-L3N 1+50W	201 2	38	< 5	2.94	0.2	5	1 30	< 0.5	< 2	0.35	0.5	36	56	74	5.62	< 10	< 1	0.17	10	1.25	8 59
T88-L3N 1+75W	201 2	38	< 5	2.54	< 0.2	5	1 50	< 0.5	< 2	0.57	< 0.5	39	49	69	4.88	< 10	< 1	0.18	10	1.05	21 50
188-L3N 2+00W	201 2	38	~ ``	2.65	0.1	10	1/0	< 0.5	< 2	0.43	< 0.3	49	47	82	4.94	< 10		0.15	10	1.00	2030
T88-L3N 2+75W	201 2	38	< 10	1.79	< 0.2	15	360	< 0.5	$\geq \frac{2}{2}$	0.32	< 0.5	28	34	- 58	4.10	< 10	< 1	0.10	10	0.73	895
T88-L3N 3+00W	201 2	38	< 5	2.25	0.4	< 5	270	< 0.5	< 2	0.29	< 0.5	14	34	19	3.73	10	< 1	0.10	10	0.60	502
188-L3N 3+2 5W	201 2	38	< 5	2.65	0.2	10	170	< 0.5	< 2	0.31	0.5	16	28	11	3.46	10	< 1	0.18	10	0.53	509
188-L3N 3+50W	201 2	:38	< 5	2.35	- 0.2	10	90	< 0.3	< 1	0.08	< 0.5	20	34	34	4.36	10		0.13	10	0.86	288
T88-L3N 4+00W	201 2	38	< 5	2.29	0.4	5	180	< 0.5	$\stackrel{>}{<} \frac{1}{2}$	0.16	< 0.5	29	33	18	3.60	10	< 1	0.13	10	0.62	1450
T88-L3N 4+2 9W	201 2	38	< 5	2.15	< 0.2	10	120	< 0.5	< 2	0.34	< 0.5	37	27	32	5.05	< 10	< 1	0.17	10	0.54	1335
T88-L3N 4+50W	201 2	38	< 5	1.76	0.2	5	100	< 0.5	< 2	0.31	0.5	22	22	23	2.95	10	< 1	0.13	10	0.55	1205
T88-L3N 4+7 SW	201 2	38	< 5	2.96	0.2	5	100	< 0.5	< 2	0.30	< 0.5	32	47	37	5.26	< 10	< 1	0.13	10	1.06	601
188-LIN SHOW	201 2	38	< 5	2.43	0.2	< 3	140	< 0.3	$\leq \frac{1}{2}$	0.21	< 0.3	46	43	31 29	4.30	10		0.12	10	0.90	802
100-131 JT2 JW	401 2			4.40			1.70	~ ~	<u> </u>	0.24	~ 0.7	<u> </u>	40	40	7.37			0.14			

B. Cardi-



Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C IAS Project : Comments: ATTN: PETER LERICHE Page No. :2-B Tot. Pages:6 Date 27-SEP-88 Invoice # : I-8823908 P.O. # :NONE

A State

÷.

#### CERTIFICATE OF ANALYSIS A8823908

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti Ti % ppu	U n. prom	V	W	Zn			· · · · · · · · · · · · · · · · · · ·		
T88-L3N 3+25E T88-L3N 3+50E T88-L3N 3+50E T88-L3N 3+75E T88-L3N 4+00E T88-L3N 4+25E	203 238 203 238 201 238 201 238 201 238 203 238	1 < 1 < 1 < 1 < 1 < 1	0.03 0.02 0.01 0.02 0.02	49 40 40 26 38	650 800 1130 970 960	18 20 24 24 24 26	< 5 < 5 < 5 < 5 < 5 < 5	5 4 5 2 4	$21 < 0. \\ 30 < 0. \\ 31 < 0. \\ 27 & 0. \\ 32 < 0. \\ 32 < 0. \\ 32 < 0. \\ 32 < 0. \\ 32 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 31 < 0. \\ 32 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 32 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 < 0. \\ 31 <$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 < 10 \\ 0 < 10 \\ 0 < 10 \\ 0 < 10 \\ 0 < 10 \\ 0 < 10 \end{array}$	19 14 14 15 13	20 15 10 10	86 79 82 60 86		•			
T88-L3N 4+50E T88-L3N 4+75E T88-L3N 5+00E T88-L3N 5+25E T88-L3N 5+50E	201238217238201238201238203238	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.06 0.03 0.03 0.04	41 63 38 38 49	8 30 8 10 9 10 600 9 50	44 24 32 32 34	< 5 < 5 < 5 < 5 < 5	4 7 5 5 5	30 < 0. 28 < 0. 28 0. 22 0. 33 < 0.	$\begin{array}{c ccccc} 01 & < 10 \\ 01 & < 10 \\ 01 & < 10 \\ 01 & < 10 \\ 01 & < 10 \\ 01 & < 10 \end{array}$	$\begin{array}{c} 0 & < 10 \\ 0 & < 10 \\ 0 & < 10 \\ 0 & < 10 \\ 0 & < 10 \end{array}$	15 23 19 19 19	10 15 10 10	77 104 72 72 89					
T88-L3N 5+75E T88-L3N 6+00E T88-L3N 6+25E T88-L3N 6+50E T88-L3N 6+75E	201         238           201         238           201         238           201         238           201         238           201         238           201         238           201         238	< 1 < 1 1 < 1 < 1 < 1	0.01 0.01 0.01 0.02 0.04	41 36 6 29 10	860 480 260 890 740	38 26 16 26 14	< 5 < 5 < 5 < 5 < 5 < 5	4 3 1 3 2	$\begin{array}{c} 25 & 0.6\\ 19 < 0.6\\ 25 & 0.6\\ 20 & 0.6\\ 14 & 0.6\end{array}$	$\begin{array}{c cccc} 01 & < 10 \\ 01 & 10 \\ 02 & < 10 \\ 01 & < 10 \\ 04 & < 10 \end{array}$	$ \begin{array}{cccc} 0 & < 10 \\ 0 & < 10 \\ 0 & < 10 \\ 0 & < 10 \\ 0 & < 10 \end{array} $	16 17 14 24 20	< 5 < 5 < 5 5 5	123 102 50 117 53					
T88-L3N 7+00E T88-L3N 7+25E T88-L3N 7+50E T88-L3N 7+50E T88-L3N 7+75E T88-L3N 0+00W	201         238           201         238           201         238           201         238           201         238           201         238           201         238	< 1 1 < 1 < 1 1	0.01 0.01 0.01 0.02 0.01	21 44 41 35 55	600 960 860 970 640	22 12 14 12 28	< 5 < 5 < 5 < 5 < 5 < 5	3 5 4 3 8	20         0.0           18         0.0           22         0.0           24         0.0           27         0.0	$\begin{array}{c cccc} 02 & < 10\\ 01 & < 10\\ 02 & < 10\\ 02 & 10\\ 01 & < 10 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	24 21 21 19 21	< 5 < 5 < 5 < 5 < 5 < 5	82 103 86 156 94	•		<u></u>		
T88-L3N 0+2 5W T88-L3N 0+50W T88-L3N 0+7 5W T88-L3N 1+00W T88-L3N 1+2 5W	201       238         201       238         201       238         201       238         201       238         201       238	1 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	55 40 57 27 32	690 550 380 520 250	14 12 28 22 20	< 5 < 5 5 < 5 5 5	7 5 4 3 5	$\begin{array}{r} 29 < 0.0\\ 32 < 0.0\\ 25 < 0.0\\ 30 < 0.0\\ 118 < 0.0\end{array}$	$\begin{array}{c cccc} 01 & < 10\\ 01 & 10\\ 01 & 10\\ 01 & < 10\\ 01 & < 10\\ 01 & < 10 \end{array}$	< 10 < 10 < 10 < 10 < 10 10	17 11 7 10 9	5 15 10 < 5 10	79 49 23 29 57				· · · · · · · ·	
T88-L3N 1+50W T88-L3N 1+75W T88-L3N 2+00W T88-L3N 2+25W T88-L3N 2+75W	201       238         201       238         201       238         201       238         201       238         201       238	1 < 1 1 2 < 1	0.01 0.01 0.01 0.01 0.01	62 50 53 43 52	240 590 340 390 510	44 50 64 34 38	< 5 < 5 < 5 < 5 < 5	9 7 8 4 6	$\begin{array}{c} 18 < 0.0\\ 26 & 0.0\\ 20 & 0.0\\ 19 & 0.0\\ 17 < 0.0\\ \end{array}$	$\begin{array}{cccc} 01 & 10 \\ 01 & 10 \\ 01 & < 10 \\ 01 & < 10 \\ 01 & < 10 \\ 01 & < 10 \end{array}$	< 10 < 10 < 10 < 10 < 10	19 19 19 21 15	15 15 5 5 10	104 108 94 88 79					
T88-L3N 3+00W T88-L3N 3+2 5W T88-L3N 3+50W T88-L3N 3+7 5W T88-L3N 3+7 5W T88-L3N 4+00W	201       238         201       238         201       238         201       238         201       238         201       238	< 1	0.01 0.02 0.01 0.01 0.01	33 35 47 68 38	220 230 220 200 280	20 16 24 20 30	< 5 < 5 < 5 < 5 < 5	3 3 4 5 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccc} 01 & < 10 \\ 03 & < 10 \\ 01 & < 10 \\ 01 & < 10 \\ 02 & < 10 \end{array}$	< 10 < 10 < 10 < 10 < 10 < 10	23 27 23 21 23	5 < 5 5 < 5 10	71 81 91 113 82					
T88-L3N 4+2 5W T88-L3N 4+50W T88-L3N 4+7 5W T88-L3N 5+00W T88-L3N 5+2 5W	201       238         201       238         201       238         201       238         201       238         201       238	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.02 0.01 0.01 0.01	56 37 55 63 45	370 250 260 290 340	26 20 34 30 28	< 5 < 5 < 5 < 5 < 5 < 5	7 3 6 5 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrr} 01 & < 10 \\ 01 & < 10 \\ 01 & < 10 \\ 1 & 20 \\ 1 & < 10 \end{array}$	< 10 < 10 < 10 10 < 10	19 16 24 21 22	10 5 10 10 10	48 61 97 82 76					
												CERT	IFICATIO	N :		B. (	ay	J.	



#### Chei ΔV

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE

Page No. : 3-A Tot. Pages: 6 Date : 27-SEP-88 Invoice # : I-8823908 P.O. # : NONE

Contraction of the

#### CERTIFICATE OF ANALYSIS A8823908

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA <del>IA</del> A	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	<b>Ca</b> %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K 96	La ppm	<b>Мg</b> %	Ma ppm
T88-L3N 5+50W T88-L3N 5+75W T88-L3N 6+00W T88-L3N 6+25W T88-L3N 6+50W	201238201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5	2.59 2.39 2.24 2.53 2.42	0.4 0.2 0.2 0.4 0.2	5 10 20 < 5 < 5 < 5	100 130 180 360 310	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 4 < 2 < 2 2 2	0.45 0.32 0.19 0.22 0.06	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	27 27 17 18 19	39 31 31 30 25	47 39 25 13 26	5.31 4.23 4.28 3.12 3.73	10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.15 0.14 0.20 0.12	10 10 20 20 20	1.03 0.83 0.71 0.45 0.57	708 1120 331 717 324
T88-L3N 6+7 5W T88-L3N 7+00W T88-L3N 7+2 5W T88-L3N 7+2 5W T88-L3N 7+50W T88-L3N 8+00W	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	2.60 2.90 2.21 3.08 2.49	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	10 10 10 20 10	250 110 120 170 120	< 0.5 1.0 0.5 2.0 1.0	< 2 2 2 < 2 < 2 < 2	0.25 0.25 0.07 0.48 0.86	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	22 22 17 42 33	31 33 32 45 37	32 26 27 55 58	4.60 4.27 4.33 5.39 4.24	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.16 0.11 0.08 0.14 0.11	10 10 10 10	0.83 0.84 0.80 1.10 0.94	562 374 174 1270 1440
188-L3N 8+2 5W 188-L3N 8+50W 188-L3N 8+50W 188-L3N 8+7 5W 188-L3N 9+00W 188-L3N 9+2 5W	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	3.52 2.99 2.69 2.68 2.50	0.6 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	20 20 20 20 15	160 110 140 140 50	2.0 1.5 2.0 1.5 1.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.86 0.26 0.55 0.40 0.12	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	31 27 31 24 17	40 42 41 28 33	84 49 47 29 29	5.03 4.95 4.81 4.33 4.48	10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.14 0.17 0.13 0.07	20 10 10 20 10	1.07 1.15 1.06 0.82 0.87	591 869 1390 864 211
T88-L3N 9+50W T88-L3N 9+7 5W T88-L3N 10+00W T88-L3N 10+2 5W T88-L3N 10+50W	201238201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	2.69 2.60 2.74 2.14 1.83	<0.2 <0.2 <0.2 <0.2 <0.2 0.4	20 5 10 5 20	160 190 200 90 320	1.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 4	0.30 0.36 0.44 2.13 0.59	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	22 27 37 22 19	33 30 45 39 24	26 51 65 41 37	4.60 4.78 5.32 4.61 3.39	< 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.16 0.15 0.14 0.07 0.14	10 10 10 10 20	0.89 0.84 0.95 1.04 0.61	922 1540 1825 532 2860
T88-L3N 10+75W T88-L3N 11+00W T88-L3N 11+25W T88-L3N 11+25W T88-L3N 11+50W T88-L3N 11+75W	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5	2.79 3.90 2.64 3.07 3.50	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.4	10 20 15 15 15	120 130 80 170 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 2 4 4 4	0.21 0.15 0.18 0.38 0.52	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 17 19 20 21	34 30 31 34 36	24 24 29 27 28	4.33 3.50 4.69 4.71 4.42	< 10 < 10 < 10 < 10 10	1 < 1 < 1 < 1 < 1 < 1	0.07 0.12 0.12 0.16 0.13	10 10 10 20 20	0.82 0.57 0.96 0.62 0.89	554 267 253 589 416
T88-L3N 12+00W T88-L3N 12+25W T88-L3N 12+50W T88-L3N 12+50W T88-L3N 12+75W T88-L3N 13+00W	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	3.66 2.63 3.06 4.24 3.48	0.6 <0.2 0.2 0.2 0.2	10 10 15 15 15	160 170 160 100 140	< 0.5 < 0.5 < 0.5 1.0 < 0.5	2 2 2 4 2	0.57 0.26 0.54 0.98 0.63	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 18 21 23 17	28 24 28 23 18	32 17 23 59 34	3.77 3.66 4.55 4.17 3.36	10 < 10 10 10 10	< 1 < 1 < 1 < 1 < 1	0.16 0.16 0.17 0.11 0.15	20 10 30 30 20	0.62 0.48 0.67 0.69 0.50	565 726 8 30 303 601
T88-L3N 13+25W T88-L3N 13+50W T88-L3N 13+50W T88-L3N 13+60W T88-L3N 13+75W T88-L3N 13+75W	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	2.09 2.01 1.23 1.15 1.63	0.2 < 0.2 0.4 < 0.2 0.2	5 10 20 15 5	100 70 120 210 420	0.5 1.0 1.5 1.5 < 0.6	6 2 4 4 2	0.29 5.12 0.40 0.35 0.16	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	20 20 25 21 13	33 33 24 16 18	49 63 54 41 13	4.50 4.56 5.21 3.58 2.99	10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.06 0.06 0.08 0.10	10 10 10 10	0.79 1.06 0.70 0.51 0.49	730 473 784 1130 793
T88-L3N 14+25W T88-L3N 14+50W T88-L3N 14+75W T88-L3N 15+00W T88-L3N 15+25W	201238201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	1.92 2.33 1.40 2.67 2.62	0.2 0.2 0.2 0.2 0.2 0.2	< 5 5 25 10 10	250 360 220 270 200	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 2 2 2	0.19 0.31 0.22 0.24 0.20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 17 15 18 14	25 28 13 25 27	10 27 29 25 11	2.97 4.16 3.28 3.87 3.03	< 10 < 10 10 10 10	< 1 < 1 < 1 < 1 < 1	0.12 0.17 0.17 0.18 0.17	10 10 10 20 20	0.50 0.72 0.34 0.58 0.40	3 59 796 666 9 3 3 260
													CERT	IFICATIO	ON :		<u> </u>	a	d.	



#### Chemex Labs td.

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2CI PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE

Page No. :3-B Tot. Pages: 6 : 27-SEP-88 Date Invoice # : I-8823908 P.O. # NONE

#### CERTIFICATE OF ANALYSIS A8823908

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm					
T88-L3N 5+50W T88-L3N 5+75W T88-L3N 6+00W T88-L3N 6+25W T88-L3N 6+50W	201238201238201238201238201238201238	< 1 2 1 1	0.01 0.01 0.02 0.01	59 41 40 37 39	270 430 320 230 230	38 36 22 16 20	< 5 < 5 < 5 < 5 < 5	9 5 3 3 3	26 < 19 14 < 18 10	< 0.01 0.01 < 0.01 0.02 0.01	< 10 < 10 < 10 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	19 22 23 24 21	10 5 15 10 5	93 84 79 65 65					
T88-L3N 6+7 5W T88-L3N 7+00W T88-L3N 7+2 5W T88-L3N 7+50W T88-L3N 8+00W	201238201238201238201238201238	< 1 < 1 2 < 1 < 1	0.01 0.01 < 0.01 0.01 0.01	49 49 43 70 45	300 210 160 430 570	26 20 14 40 46	< 5 < 5 < 5 < 5 < 5	4 3 3 6 7	20 19 8 < 26 40	0.01 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	23 24 19 25 19	\$ < 5 < 5 < 5 < 5 < 5	85 92 72 112 85					
T88-L3N 8+2 5W T88-L3N 8+50W T88-L3N 8+75W T88-L3N 8+7 5W T88-L3N 9+00W T88-L3N 9+2 5W	201238201238201238201238201238	< 1 < 1 < 1 < 1 1 <	0.01 0.01 0.01 0.01 < 0.01	53 56 50 45 46	3 30 3 50 500 3 20 200	40 26 38 28 18	< 5 < 5 < 5 < 5 < 5	13 8 7 5 3	55 23 39 28 11 <	0.02 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	21 21 21 23 23	< 5 < 5 < 5 < 5 < 5	88 102 99 80 84					
T88-L3N 9+50W T88-L3N 9+7 5W T88-L3N 10+00W T88-L3N 10+2 5W T88-L3N 10+50W	201238201238201238201238201238	< 1 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	50 45 55 53 35	3 50 440 510 580 430	28 44 48 26 14	< 5 5 < 5 < 5 < 5	5 7 10 6 3	25 26 29 80 < 36 <	0.02 0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	21 20 20 14 18	< 5 < 5 < 5 < 5 < 5	79 94 99 99 75					
T88-L3N 10+75W T88-L3N 11+00W T88-L3N 11+25W T88-L3N 11+50W T88-L3N 11+50W	201238201238201238201238201238	< 1 < 1 < 1 < 1 < 1 1	0.01 0.02 0.01 0.02 0.02	42 35 49 46 49	460 600 330 260 280	20 18 20 16 32	< 5 < 5 < 5 < 5 < 5	3 4 4 6 6	14 17 14 37 49	0.02 0.07 0.01 0.01 0.03	< 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10 < 10	26 25 21 24 23	< 5 < 5 < 5 < 5 5	92 75 86 63 96					
T88-L3N 12+00W T88-L3N 12+25W T88-L3N 12+50W T88-L3N 12+50W T88-L3N 12+75W T88-L3N 13+00W	201238201238201238201238201238	< 1 2 < 1 1 1	0.05 0.02 0.02 0.06 0.05	37 35 41 45 34	440 910 470 350 1010	28 20 36 30 24	< 5 < 5 < 5 < 5 < 5 < 5	8 3 8 13 8	50 23 53 75 59	0.07 0.03 0.02 0.08 0.08	< 10 < 10 10 10 10	< 10 < 10 < 10 < 10 < 10	22 23 26 21 20	\$ < \$ < \$ \$ < \$	74 95 80 67 63					
T88-L3N 13+29W T88-L3N 13+50W T88-L3N 13+60W T88-L3N 13+60W T88-L3N 13+79W T88-L3N 14+00W	201         238           201         238           201         238           201         238           201         238           201         238           201         238	< 1	0.02 < 0.01 < 0.01 0.01 0.01	49 53 59 42 27	390 590 470 680 310	24 20 20 14 14	< 5 < 5 < 5 < 5 < 5	6 5 3 2	22 90 < 23 < 21 < 11	0.01 0.01 0.01 0.01 0.02	20 10 10 10 < 10	10 < 10 < 10 < 10 < 10	18 15 11 12 21	< 5	79 81 75 94 52	· ·	-			
T88-L3N 14+25W T88-L3N 14+50W T88-L3N 14+75W T88-L3N 14+75W T88-L3N 15+00W T88-L3N 15+25W	201238201238201238201238201238	< 1 1 1 < 1 1	0.01 0.01 0.01 0.02 0.02	24 42 31 39 27	2 50 3 50 3 60 3 00 3 10	8 20 10 22 16	< 5 < 5 < 5 < 5 < 5	2 4 3 4 3	12 23 17 17 13	0.03 0.02 0.01 0.02 0.04	10 < 10 10 < 10 < 10	10 < 10 < 10 < 10 < 10	19 18 15 24 26	\$ < \$ < \$ < \$ < \$ < \$ < \$	47 67 47 75 59		~~~			
													CERT	IFICATIO	)N :	-f	3. (	ag	Ľ.	<u> </u>



Chemex Labs

Analytical Chemists * Geochemists * Registered Assayers

PHONE (604) 984-0221

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

I td

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE

Page No. : 4-A Tot. Pages: 6 Date : 27-SEP-88 Invoice # : I-8823908 P.O. # :NONE

a state of the

#### **CERTIFICATE OF ANALYSIS** A8823908

SAMPLE DESCRIPTION	PREP CODE	Au ppb F <del>AIA</del> A	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Pe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Ma ppm
T88-L3N 15+50W T88-L3N 15+75W T88-L3N 16+00W T88-L3N 16+25W T88-L3N 16+50W	201238201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5	3.04 2.11 1.99 2.15 1.79	<pre>0.2 &lt; 0.2 0.2 0.2 0.2 0.2 0.2</pre>	15 15 < 5 5 < 5	160 130 220 170 300	1.0 1.0 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.19 0.11 0.25 0.12 0.28	< 0.5 < 0.5 0.5 0.5 < 0.5	13 13 17 16 15	18 18 17 21 17	11 19 15 27 15	3.02 3.05 3.26 3.74 3.16	< 10 < 10 10 < 10 10	<1 <1 <1 <1 <1 <1 <1	0.13 0.21 0.17 0.13 0.14	10 20 30 30 30	0.33 0.38 0.41 0.44 0.36	396 172 986 254 1190
T88-L3N 16+75W T88-L3N 17+00W T88-L4N 0+25E T88-L4N 0+50E T88-L4N 0+75E	201         238           201         238           201         238           201         238           201         238           201         238	< 5 < 5 < 5 < 5 < 5 < 5	1.47 1.50 2.41 2.63 3.09	0.2 0.4 < 0.2 0.2 < 0.2	10 15 < 5 5 5	140 90 240 100 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 2	0.09 0.05 0.15 0.17 0.15	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 9 19 34 33	14 12 35 52 64	9 9 25 75 113	2.57 2.59 3.91 5.05 5.19	< 10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 1	0.12 0.10 0.12 0.09 0.09	20 20 10 20 20	0.24 0.24 0.73 1.12 1.46	390 126 870 1575 2120
T88-L4N 1+25E T88-L4N 1+34E T88-L4N 1+75E T88-L4N 2+00E T88-L4N 2+25E	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 5 < 5	2.68 2.62 2.64 3.09 2.53	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	25 < 5 15 5 < 5	190 210 110 120 150	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	4 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.16 0.54 0.36 0.13 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	41 25 34 29 31	51 52 47 62 52	108 59 61 51 59	4.94 4.68 4.50 5.37 5.26	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.10 0.11 0.13 0.13 0.12	20 20 20 20 20 20	1.14 1.34 1.07 1.32 1.19	2370 1040 2680 1405 2340
T88-L4N 2+50E T88-L4N 2+75E T88-L4N 3+00E T88-L4N 3+25E T88-L4N 3+25E T88-L4N 3+50E	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	2.00 1.42 1.03 1.93 1.60	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 < 5 5 5 15	280 170 230 590 190	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2 2 2	0.32 0.12 0.36 0.26 0.29	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	28 17 16 24 28	42 25 16 34 31	51 34 15 68 48	4.07 5.86 2.80 3.99 3.95	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.11 0.14 0.12 0.11	20 10 10 10	0.84 0.44 0.34 0.87 0.69	1940 1190 1965 2910 2010
T88-L4N 3+75E T88-L4N 4+00E T88-L4N 4+25E T88-L4N 4+25E T88-L4N 4+50E T88-L4N 4+55E	201238201238217238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	1.31 2.05 2.04 2.45 2.44	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 10 15 5 35	450 310 80 190 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 2.0	< 2 < 2 < 2 < 2 < 2 < 2 6	0.22 0.25 0.13 0.27 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	27 35 21 37 76	32 45 49 49 35	42 62 41 58 138	4.15 4.77 5.50 4.91 6.98	< 10 < 10 < 10 < 10 < 10 < 10	1 <1 <1 1 <1	0.12 0.10 0.14 0.09 0.11	10 10 10 10	0.45 0.96 0.95 1.14 1.07	2560 2250 1340 2420 5060
T88-L4N 5+00E T88-L4N 5+25E T88-L4N 5+50E T88-L4N 5+50E T88-L4N 5+75E T88-L4N 6+00E	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	2.55 2.79 2.83 2.40 2.39	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	20 30 5 < 5 15	120 140 140 490 420	< 0.5 1.0 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.25 0.18 0.13 0.47 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	49 60 32 30 27	45 36 53 50 48	91 87 56 59 41	5.53 5.98 5.31 4.44 5.46	< 10 < 10 < 10 < 10 < 10 < 10	< 1 2 < 1 < 1 < 1 < 1	0.13 0.15 0.12 0.14 0.13	10 10 20 20 10	1.12 1.07 1.28 0.97 0.94	3340 3790 1825 3520 1430
T88-L4N 6+25E T88-L4N 6+75E T88-L4N 7+00E T88-L4N 7+25E T88-L4N 7+50E	201238201238201238203238201238	< 5 < 5 < 5 < 5 < 5 < 5	1.59 1.79 1.74 3.10 2.32	0.4 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	15 10 20 10 < 5	1110 770 760 130 300	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 2 4 < 2 < 2 < 2	0.59 0.49 0.75 0.15 0.40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	25 26 35 24 23	18 33 28 85 44	47 31 59 37 37	3.43 3.95 3.79 5.06 4.15	10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.15 0.16 0.27 0.15	20 20 20 10 10	0.56 0.67 0.67 1.34 0.96	5490 3780 5210 604 2370
T88-L4N 7+75E T88-L4N 8+00E T88-L4N 0+00W T88-L4N 0+02 5W T88-L4N 0+2 5W T88-L4N 0+7 5W	203238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	2.82 2.44 2.21 2.17 1.47	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	10 20 5 < 5 10	90 1 50 1 20 1 30 2 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 4 < 2 < 2 < 2 < 2 < 2	0.55 0.47 0.05 0.07 0.32	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	35 41 17 18 24	68 46 35 35 62	79 88 31 34 36	5.33 5.04 4.43 4.43 3.37	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.26 0.15 0.09 0.10 0.39	10 20 10 10 10	1.20 1.01 0.86 0.81 0.36	2450 5190 267 474 1420
									. * * .				CERT	<b>FIFICATION</b>	on :	· · · · /	B. (	a	Ľ	



#### Chemex lahe Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE

Page No. :4-B Tot. Pages: 6 Date :27-SEP-88 Invoice # : I-8823908 P.O. # :NONE

and the second

#### CERTIFICATE OF ANALYSIS A8823908

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
T88-L3N 1 5+50W T88-L3N 1 5+7 5W T88-L3N 16+00W T88-L3N 16+2 5W T88-L3N 16+50W	201         238           201         238           201         238           201         238           201         238           201         238           201         238	<pre></pre>	0.03 0.01 0.01 0.01 0.01	25 30 30 32 24	560 220 280 260 350	14 12 20 18 22	\$ < 5 < 5 < 5 < 5 < 5	2 3 3 3 3	14 13 24 10 21	0.06 0.03 0.02 0.01 0.01	10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	25 19 18 22 19	\$ \$ < 5 < 5 < 5	59 52 62 67 58	
T88-L3N 16+75W T88-L3N 17+00W T88-L4N 0+25E T88-L4N 0+50E T88-L4N 0+75E	201         238           201         238           201         238           201         238           201         238           201         238           201         238	$  1 \\ 1 \\   1 \\   1 \\   1 \\ 2 $	0.01 0.01 0.01 0.01 0.01	17 16 45 58 67	260 210 300 430 580	16 16 18 66 22	< 5 < 5 < 5 < 5 < 5	1 1 3 8 8	8 5 14 20 < 18 <	0.02 0.01 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	19 19 20 20 23	5 < 5 < 5 < 5	45 44 71 88 103	
T88-L4N 1+25E T88-L4N 1+34E T88-L4N 1+34E T88-L4N 1+75E T88-L4N 2+00E T88-L4N 2+25E	201238201238201238201238201238	< 1 1 < 1 < 1 < 1 < 1	0.01 0.01 0.02 0.02 0.01	57 58 49 61 56	630 570 640 540 580	48 28 70 38 66	< 5 < 5 < 5 < 5 < 5	7 6 6 7 7	17 < 24 < 24 18 < 18 <	< 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 10 10 20	< 10 < 10 < 10 < 10 < 10 < 10	21 20 25 25 20	< 5 < 5 < 5 < 5 5	93 96 86 105 93	
188-1.4N 2+50E 188-1.4N 2+75E 188-1.4N 3+00E 188-1.4N 3+25E 188-1.4N 3+50E	201238201238201238201238201238	< 1 < 1 < 1 < 1 1	0.01 0.01 0.01 0.01 0.01	48 39 24 47 48	690 500 630 560 600	34 10 8 10 24	< 5 < 5 < 5 < 5 5	5 6 3 3 5	21 < 15 < 22 < 22 < 22 <	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	20 20 10 20 10	< 10 < 10 < 10 < 10 < 10 < 10	17 15 11 14 12	\$ < 5 < 5 5 5	74 62 45 79 64	
188-L4N 3+75E 188-L4N 4+00E 188-L4N 4+25E 188-L4N 4+25E 188-L4N 4+50E 188-L4N 4+75E	201         238           201         238           217         238           201         238           201         238           201         238	< 1 2 1 < 1 3	0.01 0.01 0.02 0.01 0.01	55 56 66 58 78	480 610 360 630 750	14 44 12 48 90	< 5 < 5 < 5 < 5 < 5	5 6 5 7 9	24 < 22 < 16 < 21 < 21 <	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	15 17 17 20 16	\$ < 5 < 5 10	81 82 107 90 93	
T88-L4N 5+00E T88-L4N 5+2 5E T88-L4N 5+50E T88-L4N 5+7 5E T88-L4N 6+00E	201238201238201238201238201238201238	< 1 3 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	63 75 64 51 50	6 50 590 540 8 70 1090	64 76 40 34 48	< 5 < 5 < 5 < 5 < 5	7 7 7 6 5	21 < 20 17 < 23 15 <	<ul> <li>0.01</li> <li>0.01</li> <li>0.01</li> <li>0.01</li> <li>0.01</li> <li>0.01</li> </ul>	< 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10 < 10	17 20 22 21 23	10 10 5 5 5	107 108 98 111 97	
T88-L4N 6+2 5E T88-L4N 6+7 5E T88-L4N 7+00E T88-L4N 7+2 5E T88-L4N 7+50E	201238201238201238203238201238	< 1 1 < 1 1 < 1	0.01 0.02 0.02 0.04 0.01	31 35 38 66 52	1440 1210 1310 540 910	58 48 62 10 16	< 5 < 5 < 5 < 5 < 5	4 4 6 5	26 24 33 19 < 25 <	0.01 0.02 0.02 2 0.01 2 0.01	< 10 < 10 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	18 22 21 25 22	5 5 10 10 10	108 81 113 97 111	
T88-L4N 7+7 5E T88-L4N 8+00E T88-L4N 0+00W T88-L4N 0+2 5W T88-L4N 0+7 5W	203         238           201         238           201         238           201         238           201         238           201         238	1 1 2 1 2	0.04 0.01 < 0.01 0.01 0.03	67 59 49 48 41	1010 1060 290 310 510	48 68 10 18 16	< 5 < 5 < 5 < 5 < 5 < 5	7 7 3 4 5	32 < 31 8 < 9 23 <	2 0.01 0.01 2 0.01 0.01 2 0.01 2 0.01	10 10 10 10 10	< 10 < 10 < 10 < 10 < 10 < 10	21 21 20 20 14	10 20 10 10 5	105 116 77 73 48	
													CERT	IFICATIO	)n :	-B. Cargli-



#### To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project :

Page No. : 5-A Tot. Pages: 6 Date :27-SEP-88 Invoice # : I-8823908 P.O. # :NONE

Sec. Sec.

AND REPORTS

k:

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

Analytical Chemists * Geochemists * Registered Assayers

ahe

Chemex

Comments: ATTN: PETER LERICHE

#### CERTIFICATE OF ANALYSIS A8823908

SAMPLE DESCRIPTION	PREP CODE	Au ppb FAHAA	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg 96	Ma ppm
T88-L4N 1+00W T88-L4N 1+25W T88-L4N 1+75W T88-L4N 1+75W T88-L4N 2+00W T88-L4N 2+25W	201238201238201238201238201238	<pre>&lt; \$ &lt; \$</pre>	1.62 1.90 2.64 2.79 2.19	0.2 0.6 0.2 0.4 0.2	40 15 < 5 5 10	220 380 530 450 330	1.0 1.0 < 0.5 1.0 0.5	< 2 2 2 2 4 2	0.22 0.82 0.17 0.18 0.19	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	28 24 15 20 14	46 89 79 65 66	51 43 24 15 16	4.00 3.77 3.95 3.39 3.30	< 10 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.46 0.54 0.38 0.29 0.27	20 20 20 20 20 20	0.31 0.57 0.69 0.47 0.54	1005 1030 277 1010 715
T88-L4N 2+50W T88-L4N 2+75W T88-L4N 3+00WA T88-L4N 3+00WB T88-L4N 3+25W	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 5 < 5	2.49 3.11 2.80 2.14 2.43	< 0.2 0.2 0.2 < 0.2 < 0.2 < 0.2	15 20 < 5 20 20	760 470 400 400 260	1.0 1.0 < 0.5 < 0.5	2 4 4 4 2	0.18 0.10 0.24 0.41 0.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 17 20 26 26	77 68 86 73 85	46 35 48 53 43	4.90 4.47 4.35 5.22 4.84	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 1	0.37 0.37 0.45 0.29 0.37	20 20 20 20 20 20	0.71 0.84 0.90 1.01 0.76	653 351 1300 873 1215
T88-L4N 3+50W T88-L4N 3+75W T88-L4N 4+00W T88-L4N 4+00W T88-L4N 4+25W T88-L4N 4+50W	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 5 < 5	2.73 3.02 2.87 2.32 2.91	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	15 5 10 15 10	210 210 210 260 280	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 2 2	0.03 0.13 0.10 0.17 0.10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 13 9 17 16	51 67 43 68 48	25 13 8 34 17	4.11 3.82 2.69 4.26 3.55	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 < 1	0.20 0.28 0.15 0.29 0.22	20 10 10 20 20	0.66 0.47 0.27 0.62 0.48	214 310 221 521 245
T88-L4N 4+7 9W T88-L4N 5+00W T88-L4N 5+2 9W T88-L4N 5+2 9W T88-L4N 5+50W T88-L4N 5+7 9W	201         238           201         238           201         238           201         238           201         238           201         238	< 5 < 5 < 5 < 5 < 5 < 5	3.02 2.87 3.45 3.31 3.12	<0.2 <0.2 <0.2 0.2 0.2 <0.2	15 10 < 5 < 5 35	350 250 170 170 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 4 4	0.11 0.12 0.08 0.11 0.06	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 17 19 19 18	68 63 98 71 86	17 24 43 41 49	3.62 4.13 4.97 4.96 5.31	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.36 0.27 0.52 0.37 0.37	20 20 20 20 20 30	0.58 0.71 0.89 0.88 1.01	373 217 241 237 281
T88-L4N 6+00W T88-L5N 0+25E T88-L5N 0+50E T88-L5N 0+50E T88-L5N 0+75E T88-L5N 1+00E	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 5	3.19 3.08 2.71 2.48 2.52	<0.2 <0.2 <0.2 <0.2 <0.2 0.2	15 < 5 5 15 5	160 160 340 380 380	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.12 0.05 0.20 0.37 0.36	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 18 21 17 18	69 88 70 65 55	36 44 32 26 24	4.97 4.81 4.27 3.72 3.67	< 10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.30 0.31 0.31 0.31 0.32	20 10 20 20 20	0.97 1.07 0.92 0.78 0.76	561 470 1545 2190 2130
T88-L5N 1+25E T88-L5N 1+50E T88-L5N 1+5E T88-L5N 2+00E T88-L5N 2+25E	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	3.25 3.45 3.63 3.29 2.66	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 15 10 10 10	310 450 550 270 200	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 2 2 2 2 2 2 2 2 2 2 2	0.12 0.16 0.36 0.14 0.15	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 18 14 34 15	73 70 52 89 63	24 20 25 113 24	4.00 3.81 3.12 5.02 3.72	10 < 10 < 10 < 10 < 10 < 10	< 1 2 1 2 1	0.32 0.36 0.24 0.35 0.28	20 20 20 20 10	0.82 0.76 0.67 1.22 0.76	803 2000 395 2940 599
T88-L5N 2+50EA T88-L5N 2+50EB T88-L5N 2+75E T88-L5N 3+00E T88-L5N 3+25E	201         238           201         238           201         238           201         238           201         238           203         238	< 5 < 5 < 5 < 5 < 5 < 5	3.12 3.89 3.17 4.29 3.55	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 5 10 15 5 < 5	210 280 200 120 200	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 2 2 2	0.15 0.41 0.20 0.15 0.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 25 31 34 25	84 86 82 89 101	52 80 58 72 49	4.93 5.35 4.91 6.68 5.48	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 1 < 1	0.30 0.34 0.32 0.40 0.33	20 20 20 20 20 20	1.31 1.61 1.21 1.66 1.32	789 1365 1545 2060 1470
T88-L5N 3+50E T88-L5N 3+75E T88-L5N 4+25E T88-L5N 4+25E T88-L5N 4+50E T88-L5N 4+75E	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	3.13 2.20 1.60 1.80 2.68	<0.2 <0.2 0.8 0.2 0.6	5 15 10 25 20	230 2100 200 280 190	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 2 6	0.16 0.20 0.50 0.33 0.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	31 29 22 20 34	72 63 71 67 90	66 106 52 37 56	5.80 5.68 3.46 3.91 4.91	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 1 <1	0.31 0.36 0.37 0.28 0.33	20 10 10 10 10	1.24 0.72 0.51 0.54 1.04	2790 2580 1560 2270 2850
													CERI	IFICATIO	ON :		<u> 5. (</u>	ay	Ľ	



To : ASHWORTH EXPLORATIONS LTD.

Same

Chemex Labs

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project :

Page No. : 5-B Tot. Pages: 6 Date :27-SEP-88 Invoice # : I-8823908 P.O. # :NONE

CONTRACTOR OF

distantia in a

Constant of the local division of the

Comments: ATTN: PETER LERICHE

CERTIFICATE OF ANALYSIS A8823908

and the second

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Ti ppm	U ppm	V ppm	W ppm	Zn ppm				
T88-L4N 1+00W T88-L4N 1+2 5W T88-L4N 1+7 5W T88-L4N 2+00W T88-L4N 2+2 5W	201         238           201         238           201         238           201         238           201         238           201         238           201         238	< 1 < 1 2 1 2	0.04 0.05 0.04 0.05 0.03	55 57 40 28 30	4 50 5 90 2 40 4 30 2 70	14 20 10 12 14	\$ < \$ < \$ < \$ < \$	6 7 4 3 3	27 < 57 < 17 < 16 15	0.01 0.01 0.03 0.01	< 10 10 10 10	< 10 < 10 < 10 < 10 < 10 < 10	13 14 24 27 22	< 5 5 < 5 < 5 10	42 57 60 78 57				
T88-L4N 2+50W T88-L4N 2+75W T88-L4N 3+00WA T88-L4N 3+00WB T88-L4N 3+25W	201238201238201238201238201238	1 < 1 < 1 < 1 < 1	0.04 0.04 0.05 0.03 0.05	47 45 48 63 52	290 300 350 540 400	20 16 12 32 28	5 < 5 < 5 5 5 5	5 5 7 7 5	23 < 17 < 25 < 18 <	0.01 0.01 0.01 0.01 0.01	< 10 10 20 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	21 26 21 19 24	\$ < \$ < \$ < \$ < \$ < \$	72 72 78 85 81				
T88-L4N 3+50W T88-L4N 3+75W T88-L4N 4+00W T88-L4N 4+00W T88-L4N 4+25W T88-L4N 4+50W	201 238 201 238 201 238 201 238 201 238 201 238	< 1 < 1 1 1 < 1	0.03 0.05 0.08 0.04 0.04	38 27 18 42 35	300 560 600 270 300	18 16 18 14 18	< 5 < 5 < 5 < 5 < 5	4 3 3 5 3	9 12 13 18 < 12	0.02 0.04 0.07 0.01 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	27 32 30 21 28	< 5 5 < 5 < 5 < 5 < 5	70 67 50 62 68				
T88-L4N 4+7 9W T88-L4N 5+00W T88-L4N 5+2 9W T88-L4N 5+50W T88-L4N 5+50W T88-L4N 5+7 9W	201 238 201 238 201 238 201 238 201 238 201 238	< 1 < 1 < 1 < 1 < 1 2	0.07 0.05 0.07 0.06 0.05	38 42 48 49 55	380 210 210 220 240	18 12 20 18 20	< 5 < 5 < 5 < 5 5	3 4 5 5 5 5	16 15 19 16 15 <	0.03 0.01 0.01 0.01 0.01	< 10 < 10 20 < 10 10	< 10 < 10 < 10 < 10 < 10 < 10	30 26 31 30 27	< 5 5 < 5 5 10	76 69 81 82 91				
T88-L4N 6+00W T88-L5N 0+25E T88-L5N 0+50E T88-L5N 0+75E T88-L5N 1+00E	201 238 201 238 201 238 201 238 201 238 201 238	 < 1 < 1 1 1	0.04 0.04 0.03 0.04 0.04	50 53 52 44 41	240 310 390 620 620	30 16 16 18 18	< 5 < 5 < 5 < 5 < 5 < 5	5 5 4 4	17 13 < 22 < 27 27	0.01 0.01 0.01 0.01 0.01	10 20 20 10 20	< 10 < 10 < 10 < 10 < 10 < 10	28 28 26 25 26	15 5 10 5 15	93 83 80 79 78				
T88-L5N 1+25E T88-L5N 1+50E T88-L5N 1+50E T88-L5N 1+75E T88-L5N 2+00E T88-L5N 2+25E	201 238 201 238 201 238 201 238 201 238 201 238	< 1 < 1 < 1 1 1	0.05 0.05 0.07 0.05 0.04	47 39 36 55 39	390 440 390 680 320	16 16 12 28 16	< 5 < 5 < 5 < 5 < 5	4 4 4 8 3	17 18 18 17 17	0.02 0.03 0.04 0.01 0.01	10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	31 32 24 27 24	\$ < \$ < \$ < \$ < \$ < \$	81 93 61 99 72		· · · · · ·		
T88-L5N 2+50EA T88-L5N 2+50EB T88-L5N 2+75E T88-L5N 3+00E T88-L5N 3+025 T88-L5N 3+25E	201 238 201 238 201 238 201 238 201 238 203 238	< 1 < 1 < 1 1 < 1	0.04 0.05 0.04 0.08 0.05	57 63 56 76 64	410 460 540 450 370	18 14 34 62 32	< 5 < 5 < 5 < 5 < 5 < 5	7 9 7 9 7	18 < 37 < 22 < 28 < 21 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10	26 29 27 33 27	< 5 < 5 < 5 < 5 < 5	91 106 95 123 105				
T88-L5N 3+50E T88-L5N 3+75E T88-L5N 4+25E T88-L5N 4+25E T88-L5N 4+50E T88-L5N 4+75E	201238201238201238201238201238	1 < 1 3 1 < 1	0.04 0.04 0.03 0.03 0.05	58 47 51 37 56	520 670 430 500 620	88 58 32 24 58	< 5 < 5 < 5 < 5 < 5 < 5	8 8 6 4 7	22 < 40 < 28 < 29 < 22 <	0.01 0.01 0.01 0.01 0.01	10 10 < 10 < 10 10	< 10 10 < 10 < 10 < 10	26 21 12 18 23	< 5 < 5 < 5 < 5 < 5 < 5	105 69 50 63 90			~	
													CERT	IFICATIO	)n :	/	B. (	a	di_



Section.

Section 201

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : ASHWORTH EXPLORATIONS LTD.

Service Service

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE Page No. :6-A Tot. Pages:6 Date :27-SEP-88 Invoice #:I-8823908 P.O. # :NONE

## CERTIFICATE OF ANALYSIS A8823908

ALC: NO.

SAMPLE DESCRIPTION	PREP CODE	Au ppb F <del>A1A</del> A	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	М <b>в</b> %	Ma ppm
T88-L5N 5400E	201 238	< 5	2.40	0.2	20	240	< 0.5	< 2	0.32	< 0.5	39	68	54	4.64	< 10	< 1	0.23	10	0.97	4180
T88-L5N 5+25E	201 238	< 5	2.14	< 0.2	20	270	< 0.5	< 2	0.39	< 0.5	29	70	40	3.96	< 10	<1	0.29	10	0.80	3350
T88-LSN 5+50E	201 238	< 5	2.61	< 0.2	20	130	< 0.5	< 2	0.46	< 0.5	29	90	53	4.79	< 10	< 1	0.35	10	0.87	1870
T88-L5N 5+75E	201 238	< 5	2.98	< 0.2	25	220	< 0.5	< 2	0.36	< 0.5	33	71	56	4.91	< 10	1	0 27	20	1.22	2680
T88-L5N 6+00E	217 238	< 5	2.75	< 0.2	15	200	< 0.5	< 2	0.25	< 0.5	20	90	37	4.86	< 10	< i	0.17	10	1.32	884
T88-L5N 6+50E	201 238	< 5	2.11	0.4	10	450	< 0.5	< 2	0.39	< 0.5	35	71	50	4.00	10	<1	0.26	20	0.80	3790
T88-L5N 6+75E	203 238	< 5	2.02	0.2	5	530	< 0.5	< 2	0.57	1.0	29	89	57	3.63	< 10	< 1	0.26	10	0.76	3310
T88-L5N 7+00E	203 238	< 5	2.26	0.2	20	380	< 0.5	< 2	0.49	< 0.5	35	89	65	4.34	< 10	< 1	0.24	20	0.94	3290
T88-L5N 7+25E	201 238	< 5	2.10	< 0.2	10	330	< 0.5	< 2	0.18	1.0	21	72	30	3.63	< 10	< 1	0.22	10	0.73	2460
T88-L5N 7+50E	201 238	< 5	2.12	0.4	10	330	< 0.5	< 2	0.34	0.5	13	35	22	2.19	10	< 1	0.25	10	0.35	1275
T88-L5N 7+75E	201 238	< 5	2.73	0.4	15	280	< 0.5	< 2	0.43	< 0.5	27	63	44	4.10	< 10	< 1	0.42	20	0.84	2920
T88-L5N 8+00E	201 238	< 5	2.44	< 0.2	5	240	< 0.5	< 2	0.32	0.5	24	55	41	4.14	< 10	< 1	0.31	10	0.78	2370

CERTIFICATION : .



### nex Labs Analytical Chemists * Geochemists * Registered Assavers

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5

Page No. :6-B Tot. Pages: 6 : 27-SEP-88 Date Invoice # : I-8823908 P.O. # :NONE

and all the second

State of the state

Project : Comments: ATTN: PETER LERICHE

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Ti ppm	U ppm	V ppm	W ppm	Zn ppm			 	
T88-L5N 5+00E	201 238	< 1	0.03	53	710	74	< 5	7	26 -	< 0.01	20	10	21	< 5	88				 
T88-LSN 5+25E	201 238	<1	0.04	45	740	54	< 5	5	32 -	< 0.01	10	< 10	19	< 5	78				
T88-L5N 5+50E	201 238	1	0.04	55	380	36	< 5	. 6	34 -	< 0.01	10	< 10	21	< 5	83				
T88-LSN 5+75E	201 238	< 1	0.04	57	710	56	5	7	30 ·	< 0.01	10	< 10	24	< 5	95				
T88-L5N 6+00E	217 238	< 1	0.02	56	630	16	< 5	5	21	< 0.01	10	10	20	< 5	96		• .		
T88-L5N 6+50E	201 238	1	0.04	42	870	66	< 5	5	24	< 0.01	< 10	< 10	21	< 5	80			 	 ····_
T88-L5N 6+75E	203 238	< 1	0.04	41	790	58	< 5	4	31 -	< 0.01	< 10	< 10	19	< 5	93				
T88-L5N 7+00E	203 238	. 1	0.03	51	830	72	< 5	5	27 .	< 0.01	< 10	< 10	20	< 5	92				
T88-LSN 7+25E	201 238	1	0.05	37	630	28	< 5	5	17	0.02	< 10	< 10	26	< 5	75				
T88-L5N 7+50E	201 238	. 1	0.08	27	860	26	< 5	3	32	0.04	< 10	< 10	18	< 5	103				
T88-L5N 7+75E	201 238	< 1	0.04	51	620	36	< 5	5	40	0.01	< 10	< 10	21	< 5	107	· · · · · · · · · · · · · · · · · · ·	•	 <u> </u>	 ·····
T88-L5N 8+00E	201 238		0.03	49	590	40	< 5	5	32	0.01	< 10	< 10	19	< 5	99				

CERTIFICATION :



212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5

A8823913

Comments: ATTN: PETER LERICHE

## CERTIFICATE A8823913

ASHWORTH EXPLORATIONS LTD. PROJECT : P.O.# : NONE

Samples submitted to our lab in Vancouver, BC. This report was printed on 27-SEP-88.

	SAME	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
201	190	Dry. sieve -80 mesh; soil, sed.
203	2	Dry, sieve -35 mesh and ring
217	2	Geochem:Ring only.no crush/split
238	194	ICP: Aqua regia digestion

* NOTE 1:

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba. Be, Ca, Cr, Ga. K, La, Mg, Na, Sr, Ti, T1, W.

CHEMEX	NUMBER			DETECTION	UPPER
CODE	SAMPLES	DESCRIPTION	METHOD	LIMIT	LIMIT
100	194	Au ppb: Fuse 10 g sample	FA-AAS	5	10000
921	194	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
922	194	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
923	194	As ppm: 32 element, soil & rock	ICP-AES	5	10000
924	194	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
925	194	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
926	194	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
927	194	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
928	194	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
929	194	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
930	194	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
931	194	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
932	194	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
933	194	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
951	194	Hg ppm: 32 element, soil & rock	ICP-AES	1.00	10000
934	194	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
935	194	La ppm: 32 element, soil & rock	ICP-AES	10	10000
936	194	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
937	194	Mn ppm: 32 element, soil & rock	ICP-AES	1	10000
938	194	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
939	194	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
940	194	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
941	194	P ppm: 32 element, soil & rock	ICP-AES	10	10000
942	194	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
943	194	Sb ppm: 32 element, soil & rock	ICP-AES	5	10000
958	194	Sc ppm: 32 elements, soil & rock	ICP-AES	1	100000
944	194	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
945	194	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
946	194	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
947	194	U ppm: 32 element, soil & rock	ICP-AES	10	10000
948	194	V ppm: 32 element, soil & rock	ICP-AES	1	10000
949	194	W ppm: 32 element, soil & rock	ICP-AES	5	10000
950	194	Zn ppm: 32 element, soil & rock	ICP-AES	5	10000

ANALYTICAL PROCEDURES



### CI Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE . NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE Page No. 1-A Tot. Pages: 5 Date : 27-SEP-88 Invoice # : I-8823913 P.O. # :NONE

#### CERTIFICATE OF ANALYSIS A8823913

SAMPLE DESCRIPTION	PREP CODE	Au ppb F <del>AIA</del> A	A1 %	Ag	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg. %	Ma ppm
T88-L5N 0+00W T88-L5N 0+25W T88-L5N 0+50W T88-L5N 0+75W T88-L5N 0+75W T88-L5N 1+00W	201238201238201238201238201238201238	<pre>&lt; s &lt; s &lt; s &lt; s &lt; s &lt; s </pre>	2.78 2.46 2.07 2.15 2.32	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	20 20 10 10 15	140 180 470 240 240	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 4 4 2 2	0.08 0.09 0.45 0.07 0.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	21 16 12 15 15	37 36 17 29 33	36 20 15 20 19	4.61 3.77 2.80 3.69 3.71	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.11 0.11 0.12 0.12 0.15	10 10 10 10 20	0.98 0.66 0.41 0.61 0.61	699 869 1380 496 463
T88-L5N 1+2 9W T88-L5N 1+50W T88-L5N 1+7 5W T88-L5N 2+00W T88-L5N 2+2 5W	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	1.29 1.09 2.37 2.10 2.05	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 30 20 15 25	280 370 470 1110 390	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 2 < 2 4	0.20 0.19 0.11 0.13 0.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	24 26 18 13 13	29 17 34 27 30	28 52 37 21 22	4.41 4.53 4.21 3.49 3.50	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.11 0.12 0.17 0.16 0.11	20 20 20 10	0.61 0.43 0.70 0.49 0.58	1130 1205 841 440 284
T88-L5N 2+50W T88-L5N 2+7 5W T88-L5N 3+2 5W T88-L5N 3+50W T88-L5N 3+7 5W	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 5 < 5	2.16 1.85 1.04 1.54 1.80	< 0.2 0.2 0.4 0.2 0.2	20 5 5 10 10	760 1130 720 280 180	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 4 4 2 < 2	0.12 0.15 0.21 0.23 0.06	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 15 9 21 22	32 28 8 26 27	37 31 18 53 39	4.31 3.74 2.00 5.23 4.88	< 10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.15 0.17 0.12 0.10 0.11	10 10 10 10	0.64 0.50 0.22 0.74 0.58	463 913 2220 765 654
T88-L5N 4+00W T88-L5N 4+2 9W T88-L5N 4+50W T88-L5N 4+7 9W T88-L5N 5+00W	201 238 201 238 201 238 201 238 201 238 201 238	\$ < 5 < 5 < 5 < 5 < 5	1.16 1.81 1.61 2.31 2.33	0.4 0.2 0.2 0.4 0.4	10 10 5 5 5 5	1 50 1 20 1 50 1 10 1 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 2 < 2 < 2 < 2	0.07 0.05 0.08 0.05 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 10 12 12 13	14 16 15 16 25	13 23 17 16 16	2.72 3.91 3.43 3.63 3.94	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.09 0.11 0.08 0.08	10 20 10 10 10	0.32 0.51 0.46 0.47 0.50	214 215 749 173 195
T88-L5N 5+2 5W T88-L5N 5+50W T88-L5N 5+7 5W T88-L5N 5+7 5W T88-L5N 6+00W T88-L6N 0+2 5E	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	2.15 2.05 1.98 2.34 1.70	0.4 0.4 0.4 0.4 0.4	20 15 15 25 10	140 140 130 140 220	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 6 4 4 2	0.11 0.20 0.28 0.47 0.15	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 25 23 22 14	30 35 34 31 29	17 40 39 32 25	3.58 3.88 4.03 4.14 3.57	10 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.15 0.16 0.17 0.13	20 20 20 20 10	0.54 0.66 0.63 0.66 0.56	588 2150 1335 1270 607
T88-L6N 0+50E T88-L6N 0+75E T88-L6N 1+00E T88-L6N 1+25E T88-L6N 1+25E T88-L6N 1+50E	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5	2.23 2.52 2.09 2.16 1.99	0.2 0.6 0.4 0.2 0.2	10 15 10 15 5	3 50 300 2 30 1 30 380	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 6 4 < 2	0.13 0.12 0.08 0.04 0.15	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 14 14 14 13	36 31 30 36 24	26 23 21 28 19	3.84 3.12 3.19 3.91 3.39	10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.18 0.16 0.13 0.08 0.10	10 10 10 10	0.70 0.52 0.59 0.81 0.65	1000 551 609 334 1160
T88-L6N 1+75E T88-L6N 2+00E T88-L6N 2+25E T88-L6N 2+25E T88-L6N 2+50E T88-L6N 2+75E	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 5	1.94 2.63 2.77 2.94 2.47	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	10 10 20 10 5	320 230 290 350 360	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.11 0.09 0.19 0.09 0.22	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	13 22 25 19 19	27 34 51 32 32	20 41 78 31 32	3.49 4.89 5.16 4.12 4.05	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.08 0.07 0.13 0.14	10 10 20 10 10	0.63 1.07 1.34 0.88 0.85	1 3 10 161 5 1 30 5 2000 21 30
T88-L6N 3+00E T88-L6N 3+25E T88-L6N 4+00E T88-L6N 4+25E T88-L6N 4+25E T88-L6N 4+50E	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 5 < 5	2.48 2.72 2.74 3.03 3.05	<0.2 <0.2 <0.2 0.2 0.2 <0.2	20 20 10 15 10	470 320 310 340 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 2 6	0.27 0.21 0.12 0.10 0.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	22 20 20 24 33	33 33 33 48 51	42 48 38 52 86	4.47 4.39 4.48 5.06 5.16	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.15 0.13 0.12 0.11 0.09	10 20 10 20 20	1.00 1.01 0.99 1.22 1.28	2120 1980 1645 1805 1230
													CERT	IFICATIO	ом :		5. (	a-g	:L:	



#### Chemex Labs tđ Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

Sector Sector

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE

Page No. : 1-B Tot. Pages: 5 Date : 27-SEP-88 Invoice #:1-8823913 P.O. # :NONE

alland

#### CERTIFICATE OF ANALYSIS A8823913

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr T ppm 9	i Ti 6 ppm	U ppm	V ppm	W ppm	Za ppm				
T88-L5N 0+00W T88-L5N 0+25W T88-L5N 0+50W T88-L5N 0+75W T88-L5N 0+75W T88-L5N 1+00W	201238201238201238201238201238201238	1 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	48 41 32 38 43	480 520 450 280 280	14 18 22 10 16	< 5 < 5 < 5 < 5 < 5 5	4 3 3 3 3	$\begin{array}{c} 10 < 0.0 \\ 10 & 0.0 \\ 26 & 0.0 \\ 10 < 0.0 \\ 11 < 0.0 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	< 10 < 10 < 10 < 10 < 10 < 10	26 24 20 21 22	< 5 5 10 10 10	89 82 66 66 67				
T88-L5N 1+2 SW T88-L5N 1+50W T88-L5N 1+50W T88-L5N 2+00W T88-L5N 2+00W T88-L5N 2+2 SW	201238201238201238201238201238	< 1 < 1 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	51 59 47 35 35	490 470 540 420 320	12 16 16 20 16	< s < s < s < s < s	6 6 4 3 3	$\begin{array}{c} 25 < 0.0\\ 20 < 0.0\\ 15 & 0.0\\ 15 & 0.0\\ 9 & 0.0 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 10 10 < 10 < 10 < 10	11 9 22 23 22	5 10 10 5 5	67 49 69 59 60				
T88-L5N 2+50W T88-L5N 2+7 5W T88-L5N 3+2 5W T88-L5N 3+50W T88-L5N 3+7 5W	201         238           201         238           201         238           201         238           201         238           201         238           201         238		0.01 0.02 0.02 0.01 < 0.01	44 29 15 52 49	3 30 400 590 4 50 2 50	18 24 22 38 20	< 5 < 5 < 5 < 5	4 3 1 6 5	$\begin{array}{c} 12 < 0.0\\ 15 & 0.0\\ 15 & 0.0\\ 20 < 0.0\\ 10 < 0.0 \end{array}$	$ \begin{array}{cccc} 1 & < 10 \\ 1 & 10 \\ 2 & < 10 \\ 1 & 10 \\ 1 & < 10 \end{array} $	< 10 < 10 < 10 < 10 < 10	21 21 17 13 15	5 < 5 < 5 < 5 < 5	73 65 62 80 70			- - - -	
T88-L5N 4+00W T88-L5N 4+2 5W T88-L5N 4+50W T88-L5N 4+50W T88-L5N 4+7 5W T88-L5N 5+00W	201         238           201         238           201         238           201         238           201         238           201         238           201         238	< 1 1 2 < 1 1	0.01 0.01 0.01 0.01 0.01	18 28 25 28 28	240 290 260 250 330	20 24 24 24 24 24	5 5 < 5 5 5 < 5	1 3 2 2 2	7 0.0 7 0.0 8 0.0 6 0.0 6 0.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 10 < 10 < 10 < 10 < 10 < 10	19 23 21 23 25	< 5 < 5 < 5 < 5 < 5 < 5	41 68 66 66 80	· · · · ·			
T88-L5N 5+2 5W T88-L5N 5+50W T88-L5N 5+75W T88-L5N 5+75W T88-L5N 6+00W T88-L6N 0+2 5E	201238201238201238201238201238	1 < 1 < 1 1 1	0.02 0.02 0.02 0.02 0.02 0.01	29 34 33 39 35	360 680 600 410 410	28 40 44 36 16	< 5 < 5 < 5 5 < 5	3 3 4 4 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 10 10 2 20 2 10 10	< 10 < 10 < 10 < 10 < 10	26 23 26 23 19	< 5 < 5 < 5 < 5 < 5	75 93 89 92 61				
T88-L6N 0+50E T88-L6N 0+75E T88-L6N 1+00E T88-L6N 1+25E T88-L6N 1+50E	201238201238201238201238201238	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.02 0.01 < 0.01 0.01	43 35 34 42 33	450 620 410 280 390	8 14 14 14 18	< 5 < 5 < 5 < 5 < 5 < 5	4 3 3 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 30 20 10 < 10	20 20 20 < 10 < 10	23 23 23 23 22 20	< 5 < 5 < 5 < 5 < 5	68 61 65 69 65				
T88-L6N 1+75E T88-L6N 2+00E T88-L6N 2+25E T88-L6N 2+25E T88-L6N 2+50E T88-L6N 2+75E	201238201238201238201238201238	1 1 2 < 1 1	0.01 < 0.01 0.01 0.01 0.01	32 51 63 46 41	410 370 550 360 630	16 24 30 14 22	< 5 < 5 < 5 < 5 < 5	3 5 6 4 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 10 < 10 < 10 < 10 2 < 10 2 < 10	< 10 < 10 < 10 < 10 < 10 < 10	19 22 21 23 22	< 5 < 5 < 5 < 5 < 5	64 90 101 84 87				
T88-L6N 3+00E T88-L6N 3+25E T88-L6N 4+00E T88-L6N 4+25E T88-L6N 4+26E T88-L6N 4+50E	201238201238201238201238201238	2 3 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	48 46 48 55 59	710 620 380 480 380	32 24 20 26 18	\$ < 5 < 5 < 5 < 5 < 5	5 4 5 6 8	$\begin{array}{cccc} 23 & 0.0 \\ 18 & 0.0 \\ 16 & 0.0 \\ 18 < 0.0 \\ 21 < 0.0 \end{array}$	< 10 < 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10 < 10	22 24 23 24 26	< 5 < 5 < 5 < 5 < 5 < 5	90 94 86 96 89		· · · · ·		A
												CERT	<b>FIFICATIO</b>	N :	ß	. (	and	<u>Ki</u>



## Chemex

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE

Page No. : 2-A Tot. Pages: 5 Date : 27-SEP-88 Invoice # : I-8823913 P.O. # :NONE

10000

ANTE DAY

a sustained

#### CERTIFICATE OF ANALYSIS A8823913

SAMPLE DESCRIPTION	PREP CODE	Au ppb FAHAA	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	М <b>g</b> %	Min ppm
T88-L6N 44-7 5E T88-L6N 54-00E T88-L6N 54-00E T88-L6N 54-2 5E T88-L6N 54-50E T88-L6N 54-7 5E	201238201238201238201238201238201238	<pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 </pre>	2.71 2.43 2.80 2.71 1.69	0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	10 15 10 5 20	110 200 110 100 130	0.5 1.0 1.0 1.0 0.5	< 2 6 2 < 2	0.12 0.35 0.14 0.23 0.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	24 36 38 34 33	51 45 57 54 31	45 45 77 60 34	4.87 4.37 5.97 5.40 4.51	10 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.10 0.08 0.11 0.11	10 20 20 10 10	1.23 1.03 1.34 1.25 0.70	1015 3490 2660 2120 1370
T88-L6N 6+00E T88-L6N 6+2 5E T88-L6N 6+50E T88-L6N 6+50E T88-L6N 6+7 5E T88-L6N 7+00E	201238201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	1.35 2.39 2.59 1.97 2.14	0.2 < 0.2 0.2 < 0.2 < 0.2 0.2	25 20 15 5 5	210 270 180 320 230	0.5 1.0 0.5 0.5 0.5	< 2 2 < 2 2 2 2 2 2 2 2 2	0.26 0.34 0.15 0.26 0.16	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	35 32 25 22 23	26 46 57 41 41	36 54 52 28 38	4.38 5.32 5.40 4.51 5.13	< 10 < 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.14 0.11 0.14 0.13	10 20 20 10 10	0.41 1.07 1.15 0.93 0.88	2730 2580 1020 1045 882
T88-L6N 7+25E T88-L6N 7+50E T88-L6N 7+50E T88-L6N 8+00E T88-L6N 8+00E T88-L6N 0+00W	201         238           201         238           201         238           201         238           201         238           201         238	< 5 10 < 5 5 < 5	2.47 2.69 1.73 2.46 1.99	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	10 10 < 5 10 5	350 60 190 150 290	$ \begin{array}{r} 1.0\\ 0.5\\ 0.5\\ 0.5\\ < 0.5\\ < 0.5 \end{array} $	2 < 2 < 2 < 2 < 2 < 2 4	0.15 0.11 0.30 0.18 0.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	25 24 22 27 15	46 51 27 46 26	42 43 35 50 27	4.62 5.23 4.03 5.06 4.19	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.12 0.10 0.18 0.15 0.10	20 20 20 20 20 20	0.95 1.25 0.60 0.98 0.64	1510 984 1640 1945 246
T88-L6N 0+2 sw T88-L6N 0+50w T88-L6N 0+7 sw T88-L6N 1+00w T88-L6N 1+2 sw	201238201238201238201238201238	10 10 < 5 < 5 < 5 < 5	1.82 2.24 0.87 1.59 2.23	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 5 10 < 5	380 250 130 130 120	< 0.5 < 0.5 0.5 < 0.5 0.5	<pre></pre>	0.13 0.10 0.04 0.07 0.08	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 9 11 16 26	19 15 11 24 49	6 12 31 32 39	3.19 2.41 2.72 4.03 4.82	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.17 0.06 0.05 0.08 0.06	20 10 10 10	0.40 0.25 0.28 0.61 1.14	404 149 161 432 665
T88-L6N 1+50W T88-L6N 1+7 5W T88-L6N 2+00W T88-L6N 2+2 5W T88-L6N 2+50W	201 238 201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 20	1.70 2.09 1.98 3.13 2.16	0.2 < 0.2 0.2 0.4 0.2	< 5 10 < 5 5 5	160 280 1060 1280 1160	0.5 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.04 0.08 0.04 0.14 0.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 18 14 12 13	34 32 23 13 18	34 25 32 50 41	4.69 4.08 4.08 2.66 3.46	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.12 0.12 0.10 0.10	10 10 10 10	0.71 0.73 0.47 0.19 0.30	277 606 230 243 161
T88-L6N 2+7 5W T88-L6N 3+00W T88-L6N 3+2 5W T88-L6N 3+50W T88-L6N 3+50W T88-L6N 3+7 5W	201 238 201 238 201 238 201 238 201 238 201 238	15 25 20 15 10	2.73 1.47 1.75 2.32 1.29	0.4 0.2 0.2 < 0.2 < 0.2 < 0.2	< 5 5 10 15	1400 1550 1560 1420 1210	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 4 4	0.09 0.03 0.09 0.14 0.16	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 12 15 12 20	15 11 16 14 24	49 62 27 19 63	2.92 3.70 3.28 3.28 4.65	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.09 0.07 0.09 0.11 0.09	10 10 10 10 20	0.27 0.26 0.35 0.36 0.54	197 230 505 469 691
T88-L6N 4+00W T88-L6N 4+2 5W T88-L6N 4+50W T88-L6N 4+50W T88-L6N 4+7 5W T88-L6N 5+00W	201 238 201 238 201 238 201 238 201 238 201 238	20 40 25 10 35	1.88 1.78 1.74 2.22 2.01	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	10 < 5 15 5 < 5	100 110 110 170 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.04 0.04 0.04 0.06 0.10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 12 11 16 11	20 20 18 25 24	16 14 14 19 15	3.50 3.44 3.47 4.05 3.45	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.10 0.11 0.10 0.13 0.11	10 10 10 10	0.38 0.39 0.39 0.53 0.42	163 163 174 387 210
T88-L6N 5+2 SW T88-L6N 5+50W T88-L6N 5+7 SW T88-L6N 5+7 SW T88-L6N 6+00W T88-L7N 0+2 5E	201238201238201238201238201238	15 15 10 < 5 10	2.58 2.39 1.59 2.26 1.82	0.2 0.2 < 0.2 0.2 < 0.2 < 0.2	< 5 15 15 10 10	110 90 80 140 390	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.06 0.03 0.02 0.04 0.12	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 16 14 12 18	20 24 22 16 29	22 25 30 13 34	3.27 3.84 4.02 3.02 4.06	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.09 0.08 0.06 0.07 0.11	10 10 10 10 10	0.44 0.46 0.44 0.35 0.65	1 58 169 223 307 909
							-						CERT	IFICATIO	DN :	ß	. (	n-g	<u>k.</u>	·····



#### Chemex Labs LTO

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE Page No. :2-B Tot. Pages: 5 Date : 27-SEP-88 Invoice #: I-8823913 P.O. # :NONE

-interinter

## CERTIFICATE OF ANALYSIS A8823913

in children

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W	Zn ppm		-		
T88-L6N 4+75E T88-L6N 5+00E T88-L6N 5+25E T88-L6N 5+50E T88-L6N 5+75E	201238201238201238201238201238	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 < 0.01	59 48 62 61 57	460 630 640 790 510	28 90 100 62 22	< 5 < 5 < 5 < 5 < 5	5 6 8 6 5	14 24 15 19 15	< 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	23 22 22 21 16	< 5 5 5 < 5 < 5	92 87 104 99 72				
T88-L6N 6+00E T88-L6N 6+25E T88-L6N 6+50E T88-L6N 6+50E T88-L6N 6+75E T88-L6N 7+00E	201         238           201         238           201         238           201         238           201         238           201         238           201         238	< 1 < 1 < 1 < 1 < 1 < 1	< 0.01 0.01 0.01 0.01 0.01	51 64 67 57 59	810 580 450 550 430	20 50 26 8 4	< 5 < 5 < 5 < 5 < 5	4 5 7 5 5	20 - 27 - 17 - 22 - 18 -	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	15 17 21 19 20	< 5 < 5 < 5 5	78 97 89 76 74			· · · · · · · · · · · · · · · · · · ·	
T88-L6N 7+25E T88-L6N 7+50E T88-L6N 7+75E T88-L6N 8+00E T88-L6N 8+00E	201         238           201         238           201         238           201         238           201         238           201         238           201         238           201         238	< 1 < 1 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	54 62 46 57 44	620 510 550 670 320	20 16 18 46 2	< 5 < 5 < 5 < 5 < 5 < 5	6 6 4 6 3	17 17 < 30 < 18 14	0.02 < 0.01 < 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	25 23 15 21 17	< 5 < 5 < 5 < 5 < 5	87 108 72 98 66				
T88-L6N 0+2 SW T88-L6N 0+50W T88-L6N 0+7 SW T88-L6N 1+00W T88-L6N 1+00W	201 238 201 238 201 238 201 238 201 238 201 238	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.02 < 0.01 < 0.01 < 0.01	32 27 27 42 57	460 340 150 250 410	2 8 2 8 14	< 5 < 5 < 5 < 5 < 5	2 2 3 4 4	12 10 8 < 8 < 8 <	0.02 0.04 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	20 17 6 14 16	< 5 < 5 < 5 < 5 < 5	62 40 35 56 77				
T88-L6N 1+50W T88-L6N 1+7 5W T88-L6N 2+00W T88-L6N 2+2 5W T88-L6N 2+50W	201238201238201238201238201238	<1 < <1 <1 <1 <1 <1 <1	< 0.01 0.01 0.01 0.03 0.02	49 44 37 24 37	260 480 490 1410 350	6 6 16 18 14	< 5 < 5 < 5 < 5 < 5	3 3 2 2 3	7 < 11 11 14 9	< 0.01 0.02 0.03 0.07 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	16 19 20 21 18	< 5 < 5 < 5 < 5 < 5	63 68 56 60 52			·	
T88-L6N 2++7 SW T88-L6N 3+00W T88-L6N 3+2 SW T88-L6N 3++50W T88-L6N 3++7 SW	201238201238201238201238201238201238	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.01 0.01 0.01 < 0.01	34 36 36 34 46	420 270 270 370 350	8 16 18 14 14	< 5 < 5 < 5 < 5 < 5	2 2 2 2 5	14 11 15 15 15 <	0.05 0.01 0.02 0.05 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	17 11 16 21 11	< 5 < 5 < 5 < 5 < 5 < 5	35 37 52 47 54				
T38-L6N 4+00W T88-L6N 4+2 5W T88-L6N 4+50W T88-L6N 4+50W T88-L6N 4+7 5W T88-L6N 5+00W	201238201238201238201238201238	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.02	31 27 30 38 26	370 240 240 620 320	24 20 14 22 24	< 5 < 5 < 5 < 5 < 5	2 2 2 2 2 2	7 8 8 8 10	0.03 0.01 0.01 0.02 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	20 18 18 20 21	< 5 < 5 < 5 < 5 < 5	55 52 53 82 65				
T88-L6N 5+2 5W T88-L6N 5+50W T88-L6N 5+50W T88-L6N 5+7 5W T88-L6N 6+00W T88-L7N 0+2 5E	201         238           201         238           201         238           201         238           201         238           201         238           201         238	< 1	0.02 0.01 0.01 0.02 0.01	34 36 36 27 47	300 520 350 430 340	14 22 28 26 2	< 5 < 5 < 5 < 5 < 5 < 5	2 2 3 1 3	8 6 7 12	0.04 0.02 0.01 0.04 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	20 19 15 20 17	< 5 < 5 < 5 < 5 < 5 < 5	63 67 64 67 62	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
													CERT	IFICATIO	•N :	ß.	(a.	.pl:	



212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE Page No. : 3-A Tot. Pages: 5 Date : 27-SEP-88 Invoice # : I-8823913 P.O. # : NONE

Martin .

F

## CERTIFICATE OF ANALYSIS A8823913

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA <del>IA</del> A	A1 %	Ag ppm	As ppm	Ba ppm	Be	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	М <b>д</b> %	Ma ppm
T88-L7N 0+50E T88-L7N 0+75E T88-L7N 1+00E T88-L7N 1+25E T88-L7N 1+50E	201238201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5 < 5	3.29 1.50 2.04 1.85 2.39	0.4 0.4 < 0.2 < 0.2 < 0.2 < 0.2	< 5 < 5 < 5 < 5 < 5 < 5	820 230 370 570 380	1.0 0.5 0.5 1.0 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.18 0.14 0.19 0.26 0.11	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 14 17 25 19	19 24 22 29 34	25 27 17 36 27	2.85 3.64 3.48 4.16 3.72	10 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.12 0.13 0.16 0.11 0.09	10 20 20 20 10	0.39 0.48 0.46 0.70 0.68	416 421 914 21 30 1220
T88-L7N 1+75E T88-L7N 2+25E T88-L7N 2+50E T88-L7N 2+75E T88-L7N 2+75E T88-L7N 3+00E	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5	2.32 2.90 2.58 2.58 2.33	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	< 5 < 5 < 5 < 5 < 5	360 260 290 290 290 280	1.0 1.5 1.0 1.0 1.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.16 0.07 0.12 0.05 0.20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	23 29 20 18 18	51 51 38 30 34	51 71 29 30 30	4.78 5.11 3.97 3.98 4.11	< 10 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.09 0.11 0.10 0.13	20 10 10 10 10	1.21 1.30 0.82 0.79 0.84	835 1355 2120 1495 1325
T88-L7N 3+25E T88-L7N 3+50E T88-L7N 3+50E T88-L7N 3+75E T88-L7N 4+25E T88-L7N 4+50E	201238201238201238201238201238	< 5 < 5 < 5 < 5 < 5	2.63 2.63 2.82 2.40 2.31	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 5 < 5 < 5 < 5	240 310 250 240 470	0.5 1.5 2.0 1.0 1.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.06 0.16 0.05 0.14 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 24 19 18 18	40 40 45 40 27	33 48 58 33 24	4.11 4.34 4.51 4.09 3.73	10 < 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.12 0.09 0.10 0.13	10 10 10 10	0.92 0.99 1.05 0.91 0.74	375 2780 1855 1415 2630
T88-L7N 4+75E T88-L7N 5+00E T88-L7N 5+50E T88-L7N 5+75E T88-L7N 6+00E	201         238           201         238           203         238           203         238           203         238           217         238	< 5 < 5 < 5 < 5 < 5 < 5	2.03 2.02 3.57 2.56 2.67	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 < 5 < 5 5 < 5	380 420 340 360 200	1.0 1.0 1.5 1.0 1.0	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.22 0.38 0.12 0.23 0.15	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	20 21 21 25 24	27 30 70 83 70	23 35 2 42 40	3.70 3.73 4.44 4.69 5.08	< 10 10 < 10 10 10	<1 <1 <1 <1 <1 <1	0.12 0.13 0.40 0.29 0.16	10 10 20 10 10	0.68 0.78 1.29 1.07 1.34	28 30 21 20 779 116 5 9 30
T88-L7N 6+25E T88-L7N 6+50E T88-L7N 6+50E T88-L7N 6+75E T88-L7N 7+25E T88-L7N 7+50E	201         238           201         238           217         238           201         238           201         238	< 5 < 5 < 5 < 5 < 5 < 5	2.13 2.25 2.63 2.06 2.48	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	15 < 5 5 10 5	320 400 230 690 170	1.0 1.0 1.0 1.0 1.0	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.16 0.22 0.13 0.15 0.10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	23 22 19 19 22	39 39 73 36 44	37 34 37 38 31	4.54 4.40 5.03 4.81 4.59	10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.12 0.17 0.12 0.11	10 10 10 10	0.85 0.87 1.27 0.80 1.10	1690 1690 826 1070 863
T88-L7N 7+75E T88-L7N 0+25W T88-L7N 0+50W T88-L7N 0+50W T88-L7N 0+75W T88-L7N 1+00W	201238201238201238201238201238	5 20 170 30 10	2.75 2.03 2.71 2.15 1.98	< 0.2 0.2 < 0.2 < 0.2 < 0.2 0.2	5 5 10 5 10	190 210 270 140 160	1.0 0.5 1.0 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.21 0.07 0.10 0.06 0.06	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	24 15 20 21 16	41 24 28 41 34	31 25 32 48 34	4.65 3.88 3.79 4.61 4.26	10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.09 0.15 0.08 0.07	20 20 20 20 20	1.12 0.60 0.77 0.97 0.79	2300 253 482 441 242
T88-L7N 1+2 5W T88-L7N 1+50W T88-L7N 1+50W T88-L7N 1+7 5W T88-L7N 2+00W T88-L7N 2+2 5W	201 238 201 238 201 238 201 238 201 238 201 238	5 20 15 45 < 5	2.18 2.53 2.14 1.22 0.87	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 < 5 < 5 5 10	240 400 150 2100 3190	0.5 0.5 0.5 0.5 < 0.5	< 2 6 4 4 < 2	0.17 0.06 0.11 0.07 0.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 14 19 14 10	27 21 36 10 < 1	24 26 37 69 107	3.93 3.70 4.34 3.18 2.94	10 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.12 0.10 0.09 0.07 0.08	20 10 10 10 10	0.71 0.57 0.87 0.27 0.16	509 314 700 700 386
T88-L7N 2+50W T88-L7N 2+7 SW T88-L7N 3+00W T88-L7N 3+2 SW T88-L7N 3+50W	201238201238201238201238201238	< 5 10 5 30 30	2.22 2.35 0.79 1.12 1.16	0.6 0.2 < 0.2 < 0.2 < 0.2 0.2	5 5 15 30 20	2730 2720 1020 400 370	0.5 0.5 0.5 0.5 <0.5 <0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 2	0.04 0.03 0.01 0.37 0.06	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 12 18 27 9	3 6 3 8 10	295 68 63 20 30	2.67 2.80 4.04 4.66 3.39	< 10 < 10 < 10 < 10 10	<1 <1 <1 <1 <1 <1	0.09 0.09 0.07 0.12 0.12	10 10 10 10 10	0.15 0.22 0.18 0.31 0-25	218 157 624 1605 403

CERTIFICATION : ______



C

hemex

abs

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER,

BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

**†0** 

#### To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Comments: ATTN: PETER LERICHE Page No. : 3-B Tot. Pages: 5 Date : 27-SEP-88 Invoice # : 1-8823913 P.O. # : NONE

mail incom-

Sal Baller

3 B.

SAMPLE	PREP	Mo	Na %	Ni	P	Pb	Sb	Sc	Sr	Ti	Ti	U	v	W	Za				
				****	P	PP	P.P	PP	Plan	70	ppm	Plan	Plan	ppm	ppm				
T88-L7N 0+50E T88-L7N 0+75E	201 238 201 238	< 1 < 1	0.03	37 42	740 360	18	< 5 < 5	3	19 15	0.09	< 10 < 10	< 10 < 10	22	< 5	60 55		·····		
T88-L7N 1+00E	201 238	< 1	0.01	40	430	14	< 5	3	16	0.01	< 10	< 10	16	< 5	63				
188-L7N 1+25E	201 238	< 1	0.01	54 4 s	520	16	< .5	4	20	0.01	< 10	< 10	15	< 5	74				
IGO DAN TIJOL	201 250					<u> </u>			11	0.03	~ 10	~ 10	21	< >	- /1				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
T88-L7N 1+75E	201 238	< 1 <	< 0.01	62	440	22	< 5	7	11 -	< 0.01	< 10	< 10	17	< 5	90				
188-L7N 2+25E	201 238		0.01	61	430	20	< 5	.7	14 -	< 0.01	< 10	< 10	21	< 5	92				
T88-L7N 2+75E	201 238		0.01	42	460	14	< 5	3 4	0	0.02	< 10	< 10	21	< 3	88 92				
T88-L7N 3+00E	201 238	< 1	0.01	50	680	28	< 5	3	17	0.01	< 10	< 10	20	<i>&lt; š</i>	87				
TYP-I TNL 142 CE	201 228		0.01	٨٩	270	1.4			10	0.01	< 10	< 10	10		61		··	<u>.</u>	
T88-L7N 3+50E	201 238		0.02	52	830	18	$\overline{\langle s \rangle}$	4	17	0.01	< 10	< 10	20	< 5	92				
T88-L7N 3+75E	201 238	< 1	0.01	48	480	16	< š	5	15	0.01	< 10	< 10	22	< 5	82				
T88-L7N 4+25E	201 238	< 1	0.01	46	420	16	< 5	3	14	0.01	< 10	< 10	20	< 5	79				
188-L7N 4+50E	201 238	< 1	0.01	41	740	26	< 5	2	19	0.02	< 10	< 10	20	< 5	85				
T88-L7N 4+75E	201 238	< 1	0.02	35	780	24	< 5	2	16	0.02	< 10	< 10	21	< 5	78				
T88-L7N 5+00E	201 238	< 1	0.01	40	8 50	30	< 5	3	20	0.01	< 10	< 10	18	< 5	76				
188-L7N 5+50E	203 238		0.06	65	380	4	< 5	. 7	-28 <	< 0.01	< 10	< 10	29	< 5	80				
T88-L7N 6+00E	217 238		0.02	61	500	26	$\overline{\langle s \rangle}$	4	15 <	< 0.01	< 10	< 10	17	< 5	93				
T88-L7N 6+25E	201 238		0.01	50	590	32	< 5	4	12 <	< 0.01	< 10	< 10	19	< 5	81				a start a start
T88-L/N 6+70E	201 238		0.01	4/ 62	400	20	< 3	4	14	0.01	< 10	< 10	10	< >	86				1.
T88-L7N 7+25E	201 238	< 1	0.01	53	370	24	$\vec{< s}$	5	14	0.01	< 10	< 10	23	$\langle \dot{s} \rangle$	74				
T88-L7N 7+50E	201 238	1 < 1	0.01	58	440	14	< 5	4	14 <	< 0.01	< 10	< 10	22	10	84				
T88-L7N 7+7 5E	201 238	< 1	0.02	57	620	32	< 5	4	21	0.01	< 10	< 10	22	10	102				
T88-L7N 0+2 5W	201 238	< 1	0.01	43	340	10	< 5	3	10	0.01	< 10	< 10	19	10	72				
T88-L7N 0+50W	201 238	< 1	0.02	43	500	12	< 5	3	12	0.04	< 10	< 10	24	5	85				
188-L7N 0+75W	201 238			56	290	. 10	< 5	3	12 <	< 0.01	< 10	< 10	18	10	76				
100-1/14 17000	201 230		. 0.01				<u> </u>	•	10 -	<u> </u>	~ 10	<u> </u>	10	13	03			· · · · ·	
T88-L7N 1+25W	201 238	< 1	0.01	46	390	16	< 5	3	14	0.02	< 10	< 10	19	5	70				
188-L7N 1+50W	201 238		0.01	39	240	10	< 5	2	8	0.05	< 10	< 10	22	5	58				
T88-L7N 2+00W	201 238		C 0.01	25	520	30	$\overline{\langle \mathfrak{s} \rangle}$	3	17	0.01	< 10	< 10	14	10	46				
T88-L7N 2+2 5W	201 238	< 1 <	< 0.01	20	380	22	5	i	24	0.01	< 10	< 10	11	< 5	38				
T88-L7N 2+50W	201 238	1	0.01	25	430	16	15	2	16	0.03	< 10	< 10	12	< 5	47		<u>.</u>	· · · · · · · · ·	
T88-L7N 2+7 5W	201 238	< i	0.01	34	240	16	< 5	2	10	0.03	< 10	< 10	15	< 5	42				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
T88-L7N 3+00W	201 238	< 1 <	< 0.01	35	380	14	< 5	4	11 <	< 0.01	< 10	< 10	7	< 5	40				
T88-L7N 3+2 SW	201 238	<1	0.01	47	1490	10	< 5	3	21	0.01	< 10	< 10	11	5	44				1. J.
188-L7N 3+50W	201 238		0.01	19	3/0	10	< >	I	14	0.01	< 10	< 10	14	< 5	31	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			<u></u>

CERTIFICATION : ______.



Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Page No. : 4-A Tot. Pages: 5 Date : 27-SEP-88 Invoice # : I-8823913 P.O. # : NONE

Comments: ATTN: PETER LERICHE

SAMPLE DESCRIPTION	PREP CODE		Au ppb FAHAA	A1	Ag	As	Ba	Be	Bi	Ca 95	Cđ	Co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Ma
					**					~~~~							P.Perr	70	Phr	20	Phin
T88-L7N 3+7 SW	201 2	38	< 5	1.84	< 0.2	5	510	1.0	2	0.28	< 0.5	20	33	45	4.54	< 10	< 1	0.09	10	0.95	743
T88-L7N 4+00W	201 2	38	15	1.74	< 0.2	15	340	1.0	8	1.22	< 0.5	22	36	54	4.48	< 10	< 1	0.10	10	1.49	797
188-L7N 4+2 9W	201 2	38	30	0.96	< 0.2	30	80	0.5	< 2	0.06	< 0.5	18	17	35	4.03	< 10	< 1	0.08	10	0.31	243
188-1 7N 4-7 SW	201 2	38	30	2 48	< 0.2	23	260	0.5	- 2	0.05	< 0.3	14	19	31	3.95	10	< 1	0.12	10	0.37	240
					~ • • • •					0.00	<b>~ •</b>			• •	2.00	10	<u> </u>	0.14	10	0.31	2290
T88-L7N 5+00W	201 2	38	10	1.57	< 0.2	10	50	0.5	< 2	0.06	< 0.5	17	21	31	4.31	10	< 1	0.10	10	0.49	319
[188-L7N 5+2 5W	201 2	38	10	1.63	< 0.2	10	110	0.5	2	0.05	< 0.5	14	21	22	4.12	10	< 1	0.12	10	0.42	277
188-L/N 3+30W	201 2	38	23	1.88	< 0.2	~ *	120	0.5	< 2	0.06	< 0.3	12	21	18	3.57	< 10	< 1	0.09	10	0.38	265
TER-LIN SHOW	201 2	28	40	2.03		$\sim$	200	0.5	< 2	0.04	< 0.3	10	10	20	3.90	10	< 1	0.09	10	0.44	360
100 2/10 01000				2.02	~ V. #					0.05	< V. J	12			5.51		~ 1		10	0.30	304
T88-L8N 0+25E	201 2	38	5	2.14	< 0.2	-5	460	< 0.5	2	0.27	< 0.5	27	36	30	3.94	10	< 1	0.15	20	0.72	1 5 9 5
188-L8N 0+50E	201 2	38	< 5	2.99	< 0.2	S	230	< 0.5	< 2	0.13	< 0.5	21	41	36	4.29	10	< 1	0.15	20	0.83	1245
188-LON 0+/3E	201 2	38	< 5	2.50	< 0.2	~ ~	830	< 0.5	2	0.26	< 0.3	31	43	52	4.72	10	< 1	0.16	20	0.98	2120
TRE-LEN 1-1 SE	201 2	30	$\geq$	1.95	< 0.2		270	< 0.5	~ 2	0.24	< 0.3	14	21	13	3.0/	10		0.17	20	0.48	1613
	201 2	<u> </u>	~ ~ ~	2.17	<b>~ 0.2</b>	<u> </u>	3/0	<u> </u>	~ 4	0.13	< 0.5	10		20	3.60	< 10	<u> </u>	0.19		0.72	8.50
T88-L8N 1+50E	201 2	38	< 5	2.34	< 0.2	< 5	280	< 0.5	< 2	0.16	< 0.5	21	42	33	4.42	< 10	< 1	0.13	10	1.01	1035
T88-L8N 2+00E	201 2	38	< 5	2.01	0.4	< 5	2 50	< 0.5	< 2	0.16	< 0.5	25	35	44	4.43	10	< 1	0.11	20	0.91	1080
T88-L8N 2+25E	201 2	38	10	1.82	< 0.2	5	270	< 0.5	< 2	0.17	< 0.5	14	29	25	3.78	< 10	< 1	0.12	10	0.66	748
(188-L8N 2+7 5E	201 2	38	< 5	2.16	< 0.2	< 5	6 50	< 0.5	< 2	0.28	< 0.5	20	26	35	3.54	< 10	< 1	0.14	20	0.64	3020
100-LON HOUE	201 2.	38	< >	2.29	< 0.2	< >	610	< 0.5	< 2	0.28	< 0.5	20	11	31	3.76	< 10	< 1	0.14	20	0.69	2900
T88-L8N 3+25E	201 2	38	< 5	2.41	< 0.2	5	410	< 0.5	2	0.23	< 0.5	23	36	38	4.17	10	< 1	0.14	20	0.81	2640
T88-L8N 3+50E	201 2.	38	< 5	2.33	< 0.2	15	500	< 0.5	< 2	0.40	< 0.5	26	- 41	37	3.96	10	< 1	0.14	20	0.82	3030
T88-L8N 3+75E	201 2.	38	< 5	1.62	< 0.2	5	700	< 0.5	< 2	0.37	< 0.5	13	21	17	3.02	< 10	< 1	0.16	10	0.54	2470
188-L8N 4+25E	201 2.	38	< 5	2.49	< 0.2	< 5	270	1.0	< 2	0.08	< 0.5	23	41	63	4.49	10	< 1	0.10	10	1.03	2380
188-L8N 4+50E	201 2.	38	< >	2.58	< 0.2	< \$	360	0.5	2	0.21	< 0.5	26	45	53	4.81	< 10	< 1	0.09	10	1.03	2020
T88-L8N 4+75E	201 2.	38	10	2.52	< 0.2	15	160	1.0	< 2	0.19	< 0.5	48	49	79	5.88	10	< 1	0.09	20	1.07	38 30
T88-L8N SHOOE	201 2.	38	< 5	2.83	< 0.2	< 5	220	0.5	< 2	0.11	< 0.5	39	60	72	6.41	10	< 1	0.10	20	1.35	2510
188-L8N 5+25E	201 2.	38	< 5	2.34	0.6	5	960	0.5	4	0.06	< 0.5	28	47	76	6.08	··· 10	<1	0.11	10	0.84	1005
TOOLSN STOLE	201 2	38	~ ~	1.07	< 0.2	< >	430	< 0.3	< 2	0.3/	< 0.3	13	17	20	2.12	< 10	$\leq$	0.18	10	0.23	615
100-LON J+/ JE	201 2.	°°	<u> </u>	2.23	< 0.2	< >	670	< 0.5	0	0.30	< 0.5	21	42		4.02	< 10	< 1	0.15	20	0.80	1025
T88-L8N 6+00E	201 2:	38	< 5	2.33	< 0.2	< 5	890	0.5	2	0.20	< 0.5	37	51	58	5.43	10	< 1	0.13	20	1.01	2860
T88-L8N 6+25E	201 2.	38	< 5	2.09	< 0.2	< 5	760	0.5	< 2	0.21	< 0.5	25	38	39	5.32	10	< 1	0.13	10	0.67	2760
188-L8N 6+50E	201 2	38	< 5	1.20	< 0.2	< 5	470	< 0.5	< 2	0.15	< 0.5	22	19	31	4.60	< 10	< 1	0.11	10	0.34	2480
188-L8N 7+00E	201 2.	38	< 5	2.24	< 0.2	< 5	280	< 0.5	< 2	0.11	< 0.5	17	33	27	3.49	10	< 1	0.10	10	0.70	2200
188-L8N /+25E	201 2.	38	< >	2.23	< 0.2	< >	180	< 0.5	< 2	0.12	< 0.5	18	34	29	4.14	< 10	< 1	0.09	10	0.76	1150
T88-L8N 7+50E	201 2	38	< 5	2.38	< 0.2	< 5	140	< 0.5	< 2	0.10	< 0.5	25	47	45	5.08	< 10	< 1	0.11	10	1.00	1285
T88-L8N 7+7 5E	201 2	38	< 5	2.17	< 0.2	< 5	70	< 0.5	4	0.02	< 0.5	25	43	53	5.22	10	< 1	0.08	10	0.81	954
T88-L8N 8+00E	201 2.	38	< 5	2.37	< 0.2	< 5	160	< 0.5	< 2	0.14	< 0.5	25	45	41	4.42	10	< 1	0.11	10	0.82	1910
188-L8N 0+00W	201 2	38	5	2.43	< 0.2	5	290	< 0.5	< 2	0.33	< 0.5	37	38	48	4.42	10		0.11	20	0.83	2010
100-LON 0+25W	201 2.	38	< >	2.21	< 0.2	< >	2 30	< 0.5	< 2	0.33	< 0.3	4.5	30	42	4.11	< 10	<u> </u>	0.15	10	2.01	2070

CERTIFICATION : B. Carglin



Smed

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

Labs

Itd.

-

Chemex

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS	ST.
VANCOUVER, BC	
V6C 1A5	
Project :	

Page No. :4-B Tot. Pages: 5 : 27-SEP-88 Date Invoice # : I-8823913 P.O. # :NONE

1000

- Contraction

- All Steen

- Aline

Comments: ATTN: PETER LERICHE

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Ti ppm	U ppm	V ppm	W ppm	Zn ppm	
T88-L7N 3+7 5W T88-L7N 4+00W T88-L7N 4+2 5W T88-L7N 4+2 5W T88-L7N 4+50W T88-L7N 4+7 5W	201238201238201238201238201238201238	<pre>&lt; 1 &lt; 1</pre>	< 0.01 0.01 < 0.01 0.01 0.02	57 63 41 45 30	540 480 280 240 610	8 50 20 38 22	< 5 < 5 < 5 < 5 < 5	5 5 3 3 2	16 21 9 12 11	< 0.01 < 0.01 < 0.01 0.01 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	14 14 8 14 19	< 5 < 5 < 5 < 5 < 5	73 120 44 64 78	
T88-L7N 5+00W T88-L7N 5+2 5W T88-L7N 5+50W T88-L7N 5+50W T88-L7N 5+7 5W T88-L7N 6+00W	201 238 201 238 201 238 201 238 201 238 201 238	1 <1 <1 <1 <1 <1	< 0.01 0.01 0.02 0.01 0.01	42 40 32 40 31	250 250 380 460 620	32 26 28 20 28	< 5 < 5 < 5 < 5 < 5	3 3 2 3 2	13 10 8 8 9	< 0.01 0.01 0.03 0.02 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	13 15 19 17 22	< 5 < 5 < 5 < 5 < 5	69 61 57 62 74	
T88-L8N 0+25E T88-L8N 0+50E T88-L8N 0+75E T88-L8N 0+75E T88-L8N 1+00E T88-L8N 1+25E	201 238 201 238 201 238 201 238 201 238 201 238	<1 <1 <1 <1 <1 <1 <1	0.01 0.02 0.02 0.02 0.02 0.01	36 44 52 28 40	950 720 720 510 360	34 34 40 22 16	< 5 < 5 < 5 < 5 < 5	3 4 5 2 3	20 14 25 20 15	0.03 0.04 0.01 0.03 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	25 26 24 23 20	< 5 < 5 < 5 < 5 < 5	105 86 89 67 72	
T88-L8N 1+50E T88-L8N 2+00E T88-L8N 2+25E T88-L8N 2+25E T88-L8N 2+75E T88-L8N 3+00E	201 238 201 238 201 238 201 238 201 238 201 238	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.02 0.02	53 54 36 34 38	470 670 460 830 820	18 30 18 38 54	< 5 < 5 < 5 < 5 < 5	4 7 3 3 4	16 20 14 23 23	< 0.01 < 0.01 0.01 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	19 17 19 21 22	< 5 < 5 < 5 < 5 < 5	83 80 71 78 81	
T88-L8N 3+25E T88-L8N 3+50E T88-L8N 3+50E T88-L8N 3+75E T88-L8N 4+25E T88-L8N 4+50E	201 238 201 238 201 238 201 238 201 238 201 238	<1 <1 <1 <1 <1 <1 <1	0.02 0.02 0.02 0.01 0.01	46 45 29 48 50	910 880 550 580 570	34 56 22 16 52	< 5 < 5 < 5 < 5 < 5 < 5	3 4 2 5 5	18 29 29 11 16	0.02 0.02 0.03 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	24 22 22 23 23	< 5 < 5 < 5 < 5 5	90 81 76 80 83	
T88-L8N 4+7 5E T88-L8N 5+00E T88-L8N 5+2 5E T88-L8N 5+50E T88-L8N 5+50E T88-L8N 5+7 5E	201 238 201 238 201 238 201 238 201 238 201 238	< 1 < 1 < 1 < 1 < 1 1	0.01 0.01 0.01 0.01 0.01	59 68 54 29 58	830 610 480 2200 440	174 80 20 2 20	< 5 < 5 < 5 < 5 < 5	7 7 6 4 5	17 14 11 26 23	0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	23 24 21 9 19	< 5 < 5 < 5 < 5 < 5	95 104 78 29 72	
T88-L8N 6+00E T88-L8N 6+2 5E T88-L8N 6+50E T88-L8N 7+00E T88-L8N 7+2 5E	201 238 201 238 201 238 201 238 201 238 201 238	< 1 < 1 < 1 < 1 < 1 1	0.01 0.01 0.01 0.01 0.01	67 46 41 46 47	700 570 890 640 500	68 32 10 26 22	< 5 < 5 < 5 < 5 < 5 < 5	7 6 6 3 3	21 15 11 12 11	< 0.01 0.01 0.01 0.03 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	22 31 27 23 23	< 5 < 5 < 5 < 5 < 5	91 72 57 91 84	
T88-L8N 7+50E T88-L8N 7+75E T88-L8N 8+00E T88-L8N 0+00W T88-L8N 0+00W T88-L8N 0+25W	201 238 201 238 201 238 201 238 201 238 201 238	< 1 < 1 < 1 < 1 < 1	0.01 0.01 0.02 0.01 0.01	61 59 47 46 47	510 300 570 820 1120	46 58 42 42 40	< 5 < 5 < 5 < 5 < 5 < 5	5 6 4 4 3	13 12 13 20 19	0.01 < 0.01 0.01 0.03 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	24 23 24 25 21	< 5 < 5 < 5 < 5 < 5	94 88 83 81 91	
		•											CERT	<b>FIGATIO</b>	ом : _	B. Caglin



#### I td Chemex Labs Analytical Chemists * Geochemists * Registered Assayers

Self Selfers

1. 日本

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1AS Project :

Page No. : 5-A Tot. Pages: 5 : 27-SEP-88 Date Invoice # : I-8823913 P.O. # :NONE

a des

and the second

(here he

- -----

anthing and a

Comments: ATTN: PETER LERICHE

#### CERTIFICATE OF ANALYSIS A8823913

SAMPLE	PREP	Au ppb	Al	Ag	As	Ba	Be	Bi	Ca	Cđ	Co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Ma
						ppm				ppm			- Phu	70	ppm		70	ppm	. 70	ppu
T88-L8N 0+50W T88-L8N 0+75W T88-L8N 1+00W	201 238 201 238 201 238 201 238	< 5 < 5 < 5	2.50 1.85 2.06	< 0.2 < 0.2 < 0.2	< 5 < 5 < 5	250 230 140	0.5	< 2 4 2	0.19 0.18 0.04	< 0.5 < 0.5 < 0.5	20 16 17	47 28 29	41 27 40	4.59 3.71 4.56	10 < 10 < 10	< 1 < 1 < 1	0.12 0.11 0.09	10 10 10	1.03 0.66 0.84	1690 1660 429
188-L8N 1+25W T88-L8N 1+50W	201 238 201 238	< 5	2.19	< 0.2 < 0.2	< 5 < 5	290 240	1.0	2	0.24	< 0.5	17	38 30	39 29	4.06 4.28	< 10 < 10	< 1	0.13 0.12	10	0.90	1950 670
T88-L8N 1+7 5W T88-L8N 2+00W T88-L8N 2+2 5W T88-L8N 2+5 0W	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 5	2.24 2.10 1.60 1.63	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 < 5 < 5 < 5	330 240 260 230	0.5 0.5 0.5 < 0.5	< 2 < 2 4 < 2 < 2	0.15 0.12 0.20 0.16 0.06	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 17 14 9	28 32 20 17	24 32 26 10 24	3.84 4.23 3.84 2.76 2.69	< 10 < 10 < 10 10 < 10	<1 <1 <1 <1	0.15 0.14 0.13 0.08 0.06	10 10 20 10	0.71 0.72 0.52 0.32 0.20	1430 950 1075 513 215
188-L8N 3+00W 188-L8N 3+2 5W 188-L8N 3+50W 188-L8N 3+7 5W 188-L8N 3+7 5W	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 5 < 5	3.42 1.50 1.92 1.85 2.67	0.4 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 < 5 < 5 < 5 < 5	800 350 300 830 250	0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.07 0.06 0.07 0.18 0.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 11 13 15 28	14 14 19 25 59	62 22 21 22 59	2.19 3.16 3.53 3.57 5.38	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1	0.05 0.09 0.11 0.11 0.11	10 10 10 20 20	0.18 0.32 0.40 0.58 1.56	174 381 432 1020 829
T88-L8N 4+50W T88-L8N 4+7 5W T88-L8N 5+00W T88-L8N 5+00W T88-L8N 5+2 5W T88-L8N 5+50W	201 238 201 238 201 238 201 238 201 238 201 238	<pre>&lt; \$ &lt; \$</pre>	1.25 1.75 1.63 1.66 1.41	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 < 5 < 5 < 5 < 5 15	530 180 110 150 70	< 0.5 0.5 0.5 0.5 0.5	< 2 2 < 2 2 2 < 2	0.17 0.05 0.18 0.20 0.14	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 9 11 11 15	18 16 12 12 22	15 8 13 11 27	3.04 3.40 2.93 3.17 4.18	< 10 10 < 10 10 < 10	<1 <1 <1 <1 <1	0.16 0.11 0.13 0.10 0.12	20 10 10 10	0.38 0.34 0.32 0.35 0.45	8 58 194 169 8 23 346
T88-L8N 5+7 5W T88-L8N 6+00W JS-1 JS-2 PG88-PL 1	201 238 201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 5 < 5	1.38 2.24 1.95 1.34 2.23	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	15 < 5 < 5 < 5 < 5 < 5	100 160 190 170 180	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 2 2	0.10 0.13 0.23 0.24 0.37	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 10 19 12 20	20 11 29 23 45	24 10 16 25 41	4.21 2.67 4.33 3.25 4.77	< 10 < 10 < 10 < 10 < 10 < 10	<1 <1 <1 <1 <1 <1	0.13 0.09 0.06 0.06 0.05	10 10 10 10	0.42 0.28 1.04 0.66 1.32	548 680 840 243 757
PG88-PL 2 PG88-VL 001 PG88-VL 002 PG88-VL 003 PG88-VL 004	201         238           201         238           201         238           201         238           201         238           201         238           201         238	< 5 10 < 5 < 5 < 5	1.95 1.76 1.37 1.06 1.57	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 5 < 5 < 5 5	210 220 700 210 360	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.37 0.53 0.24 2.95 0.41	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 21 22 15 20	35 37 23 14 32	36 53 50 48 41	4.27 4.57 5.16 3.64 4.59	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.06 0.07 0.08 0.13 0.05	10 10 20 10 10	1.13 1.19 0.73 1.43 0.99	\$77 724 953 632 609
PG88-VL 005 PG88-VL 006 PG88-VL 007 PG88-VL 008	201 238 201 238 201 238 201 238 201 238	< 5 < 5 < 5 < 5 < 5	2.14 1.60 1.65 0.95	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	< 5 < 5 < 5 5	370 250 330 130	0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.53 0.26 0.41 1.93	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 18 22 12	40 22 32 16	33 51 49 35	4.04 4.28 4.92 3.48	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.08 0.07 0.05 0.08	10 10 10 20	1.12 0.82 1.01 1.71	451 827 750 600
																			7	

CERTIFICATION : B. Carge



212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : ASHWORTH EXPLORATIONS LTD.

744 W. HASTINGS ST. VANCOUVER, BC V6C 1A5 Project : Page No. : 5-B Tot. Pages: 5 Date : 27-SEP-88 Invoice # : I-8823913 P.O. # : NONE

CONTRACTOR OF

-CHISHAG

Since

Comments: ATTN: PETER LERICHE

CERTIFICATE OF ANALYSIS A8823913

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Za ppm	· · · ·	
T88-L8N 0+50W T88-L8N 0+7 5W T88-L8N 1+00W T88-L8N 1+2 5W T88-L8N 1+50W	201238201238201238201238201238	< 1 < 1 < 1 < < 1 < 1	0.01 0.01 0.01 0.02 0.01	51 40 49 46 44	790 570 440 810 590	22 16 12 32 22	< 5 < 5 < 5 < 5 < 5	4 3 3 4 3	15 14 9 17 16	0.01 0.02 0.01 0.02 0.02	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	22 20 19 22 20	< 5 < 5 < 5 < 5 < 5 < 5	94 79 84 77 73		
T88-L8N 1+75W T88-L8N 2+00W T88-L8N 2+25W T88-L8N 2+50W T88-L8N 2+50W T88-L8N 2+75W	201         238           201         238           201         238           201         238           201         238           201         238           201         238	< 1 < 1 < 1 < 1 < 1 1	0.01 0.01 0.01 0.01 0.01	46 51 43 23 12	760 490 470 520 900	18 12 12 4 8	< 5 < 5 < 5 < 5 < 5	3 4 3 1 1	12 13 15 9 6	0.02 0.01 0.01 0.02 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	21 18 16 19 21	< 5 < 5 < 5 < 5 < 5 < 5	72 63 60 61 40		
T88-L8N 3+00W T88-L8N 3+25W T88-L8N 3+50W T88-L8N 3+50W T88-L8N 3+75W T88-L8N 4+00W	201238201238201238201238201238	< 1 < 1 < 1 < 1 < 1	0.02 0.01 0.01 0.01 0.01	21 28 32 34 74	440 320 380 420 520	16 4 8 18 12	< 5 < 5 < 5 < 5 < 5	3 2 2 2 5	9 7 8 13 18	0.09 0.02 0.02 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	19 18 20 21 19	< 5 < 5 < 5 < 5 < 5 < 5	36 50 54 60 100		
T88-L8N 4+50W T88-L8N 4+7 5W T88-L8N 5+00W T88-L8N 5+00W T88-L8N 5+2 5W T88-L8N 5+50W	201238201238201238201238201238	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.02 0.01	22 22 27 22 43	270 210 400 310 260	30 10 10 14 30	< 5 < 5 < 5 < 5 < 5 < 5	2 1 1 2 2	15 7 12 16 10 <	0.01 0.03 0.02 0.03 < 0.01	< 10 < 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10	20 22 16 20 13	< 5 < 5 < 5 < 5 < 5 < 5	44 43 37 42 66		
T88-L8N 5+75W T88-L8N 6+00W JS-1 JS-2 PG88-PL 1	201 238 201 238 201 238 201 238 201 238 201 238	< 1 < 1 < 1 < 1 < 1	0.01 0.02 0.01 0.01 0.01	39 25 51 41 58	340 640 490 470 390	14 16 6 16 20	< 5 < 5 < 5 < 5 < 5	3 1 3 4 4	9 < 11 25 < 27 < 16 <	< 0.01 0.05 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	14 18 9 9	5 < 5 < 5 < 5 5	61 46 85 62 100		
PG88-PL 2 PG88-VL 001 PG88-VL 002 PG88-VL 003 PG88-VL 004	201 238 201 238 201 238 201 238 201 238 201 238 201 238	< 1 < < 1 < < 1 < < 1 < < 1 <	0.01 0.01 0.01 0.01 0.01	53 54 51 31 51	470 450 450 400 440	16 24 38 32 20	< 5 < 5 < 5 < 5 < 5	4 4 5 4 4	21 < 19 < 17 < 61 < 17 <	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	12 12 9 7 10	\$ < \$ < \$ \$ \$ \$	91 79 82 61 77		
PG88-VL 005 PG88-VL 006 PG88-VL 007 PG88-VL 007 PG88-VL 008	201 238 201 238 201 238 201 238 201 238	< 1 < 1 < < 1 < < 1 <	0.01 0.01 0.01 0.01	46 47 57 26	430 490 450 380	14 28 22 40	< 5 < 5 < 5 < 5	5 4 5 3	57 < 24 < 18 < 28 <	< 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	13 10 11 8	< 5 < 5 < 5 < 5	70 73 85 70	· · · · · · · · · · · · · · · · · · ·	
												• • •		н страни н страни н страни			

#### APPENDIX C

### ANALYTICAL TECHNIQUES

Gold FA-AA ppb:

- Contempor

C. LEWISCON

100

Contraction of the

A 10 gram sample is fused with a basic litharge flux inquarted with 10 mg of Au-free silver and then cupelled.

Beads for AA finish are digested for 1/2 hour in 1 ml HNO3, then 3 ml HCl are added and digested for 1 hour. The samples are cooled and made to a volume of 10 ml, homogenized and run on the AAS with background correction.

#### 32 ELEMENT GEOCHEMISTRY PACKAGE - ICP-AES

and the second

Contrast of

The second

· Training and ·

- and the second

A STATE OF A

Prepared sample (0.5g) is digested with concentrated nitric-aqua regia acid at medium heat for approximately 2 hours. The acid solution is diluted to 25 ml with demineralized water, mixed and analyzed on a Jarrell-Ash 1100 Plasma unit after calibration with proper standards.

Results are corrected for spectral interelement interferences.

*Al	0.01	*	*Cr	1	ppm	Mn	1	ppm	*Na	0.01	8
Sb	5	ppm	Co	1	ppm	Hg	1	ppm	*Sr	1	ppm
As	5	ppm	Cu	1	ppm	Mo	1	ppm	*T1	10	ppm
*Ba	10	ppm	Fe	0.01	*	Ni	1	ppm	*Ti	0.01	8
*Be	0.5	ppm	*Ga	10	ppm	P	10	ppm	*W	10	ppm
Bi	2	ppm	*La	10	ppm	*K	0.01	8	U	10	ppm
Cd	0.5	ppm	Pb	2	ppm	Se	10	ppm	V	1	ppm
*Ca	0.01	8	*Mg	0.01	8	Ag	0.2	ppm	Zn	2	ppm

*Elements for which the digestion is possibly incomplete.

### APPENDIX D

Ĵ

- ----

- management

STATISTICAL ANALYSIS BY TONY CLARK CONSULTING SERVICES



A STATE

Routine: FREHIST File: \TONY\GOLDFORD.NUM Date: 11-03-1988 Page: 1 Comment: ALL SAMPLES

Histogram for Au_ppb

ź.	Lower	limit	Upper	limit	Freque	ency	8	Cumul	ative	*	
STANDARD I	0		10			578	91		578	91	Mean
	10		20			31	5		609	96	
ŝ.	20		30			10	2		619	98	
	30		40			9	1		628	99	
	40		50			3	0		631	100	
	50		60			1	0		632	100	
	60		70			0	0		632	100	
	70		80			0	0		632	100	
	80		90			0	0		632	100	
	90		100			0	0		632	100	
	100		110			0	Õ		632	100	
	110		120			0	Ō		632	100	
	120		130			0	0		632	100	
	130		140			0	0		632	100	
	140		150			Ō	0		632	100	
_	150		160			0	0		632	100	
	160		170			0	Ō		632	100	
	170		180			1	ñ		633	100	
	180		190			0	õ		633	100	
	190		200			0	0		633	100	
	Data e	lements	insid	e histo	ogram		633				
No.	Data e	lements	outsi	de hist	togram		0				
	Descri	ptive St	tatist	ics							
	Mean						2.01	06319			
1	Varian	Ce					82.2	28158			
	Standa	rd Devia	ation				9.0	70919			
	Skewne	SS					11	39036			



Routine: FREHIST File: \TONY\GOLDFORD.NUM Date: 11-03-1988 Page: 1 Comment: PARTIAL DATA SET

Histogram for Au_ppb *** DATA OUTSIDE RANGE ***

100	Lower	limit	Upper	limit	Freque	ency	*	Cumul	ative	8	
and the second	0		3			562	89		562	89	Mean
	3		6			16	3		578	91	
	6		9			0	0		578	91	
Triple.	9		12		-	23	4		601	95	
	12		15			0	0		601	95	
	15		18			8	1		609	96	
	18		21			7	1		616	97	
1	21		24			0	Ō		616	97	
	24		27			3	0		619	9.8	
	27		30			0	Õ		619	9.8	
	30		33			7	1		626	99	
	33		36			2	0		628	99	
-5	36		39			ō	Ō		628	99	
Dan da	39		42			2	n n		630	100	
	42		45			ō	Õ		630	100	
	45		48			1	Õ		631	100	
(e-3)	48		51			1	ñ		632	100	
÷	51		54			ō	ñ		632	100	
	54		57			õ	õ		632	100	
1	57		60			Ō	0 · · ·		632	100	
	Data e	lements	insid	e hist	ogram		632	<b>)</b>			
1	Data e	lements	outsi	de his	togram		1				
Sector 1							-				
	Descri	ptive S	tatist	ics							
ſ	Mean						2.0	06319			
V	Varian	ce					82	28159			
	Standa	rđ Devi	ation				9 0	70010			
	Skewne	SS					11.	39036			
4											



diana.

- A State

Contraction of the

- Statement

The second

1 - Andrewski -

· Alternation

Contraction of the

Routine: FREHIST File: \TONY\GOLDFORD.NUM Date: 11-03-1988 Page: Comment: ALL SAMPLES

1

Histogram for Cu_ppm

Lower 1	imit	Upper	limit	Freque	ency	*	Cumul	ative	8	
0		15			51	8		51		
15		30			165	26		216	34	
30		45			199	31		415	66	Mean
45		60			138	22		553	87	
60		75		a section and	51	8		604	95	
75		90			18	3		622	98	
90		105			3	0		625	99	
105		120			5	1		630	100	
120		135			0	0		630	100	
135		150			1	0		631	100	
150		165			1	0		632	100	
165		180			0	0		632	100	
180		195			0	0		632	100	
195		210			0	0		632	100	
210		225			0	0		632	100	
225		240			0	0		632	100	
240		255			0	0		632	100	
255		270			0	0		632	100	
270		285			0	0		632	100	
285		300			1	0		633	100	
Data el	ements	insid	e hist	ogram		633	3			
Data el	ements	outsi	de his	togram		0				
Descrip	tive S	tatist	ics							
Mean						39.	34123			
Variance	e					488	3.1716			
Standard	d Devi	ation				22	09461			
Skewness	5					3.2	25066			



COLVER TO STREET

a station of the second se
Routine: FREHIST File: \TONY\GOLDFORD.NUM Date: 11-03-1988 Page: Comment: PARTIAL DATA SET

Histogram for Cu_ppm *** DATA OUTSIDE RANGE ***

100.000

1000

A DESCRIPTION OF THE OWNER OF THE

Lower limit	Upper limit	Frequency	*	Cumulative	*	
0 10	10 20	16 78	3 12	16 94	3 15	
20 30 40	30 40 50	122 140 118	19 22 19	216 356 474	34 56 75	Mean
50 60 70	60 70 80	79 34 26	12 5 4	553 587 613	87 93 97	
80 90 100	90 100 110	9 2 4	1 0 1	622 624 628	98 99 99	
110 120 130	120 130 140	2 0 1	0 0	630 630 631	100 100 100	
140 Data elements	150 inside bisto	0 Ogram	0	631	100	
Data elements	outside hist	togram	2	-		
Mean	JUATISTICS		39.	34123		
Variance Standard Devi Skewness	ation		488 22. 3.2	09461 25066		



Routine: FREHIST File: \TONY\GOLDFORD.NUM Date: 11-03-1988 Page: 1 Comment: ALL SAMPLES

Histogram for Zn_ppm . .

Lower limit	Upper limit	Frequency	*	Cumulative	*	
0	40	18		18		
40	80	284	45	302	48	
80	120	309	49	611	97	Mean
120	160	18	3	629	99	mean
160	200	0	0	629	99	
200	240	1	0	630	100	
240	280	Ō	Ō	630	100	
280	320	1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	0	631	100	
320	360	ō	Ő	631	100	
360	400	1	Õ	632	100	
400	440	ō	õ	632	100	
440	480	0	D	632	100	
480	520	Õ	ŏ	632	100	
520	560	Õ	ŏ	632	100	
560	600	0	Ō	632	100	
600	640	Ō	õ	632	100	
640	680	Ő	Ō	632	100	
680	720	0	ň	632	100	
720	760	1	- ñ	633	100	
760	800	ō	Ő	633	100	
Data elements Data elements	s inside hist s outside his	ogram togram	633 0	}		
Descriptive S	Statistics					
Mean Variance Standard Devi Skewness	ation		81. 135 36. 10.	69194 58.176 85344 36127		



State of State

Routine: FREHIST File: \TONY\GOLDFORD.NUM Date: 11-03-1988 Page: Comment: PARTIAL DATA SET

Histogram for Zn_ppm *** DATA OUTSIDE RANGE ***

	Lower limit	Upper limit	Frequency	8	Cumulative	8	
	0	10	0	0	0		
	10	20	2	0	2	Ő	
	20	30	4	1	Ē	ĭ	
	30	40	12	2	18	3	
	40	50	33	5	51	Ř	
	50	60	42	7	93	15	
	60	70	94	15	187	30	
	70	80	115	18	302	48	
	80	90	135	21	437	69	Mean
ġ.	90	100	102	16	530	95	nean
	100	110	48	8	597	03	
	110	120	24	4	611	93	
	120	130	12	2	622	00	
	130	140	3	n n	625	00	
	140	150	1	0	620	00	
	150	160	2	ŏ	620	33	
	160	170	2	0	629	00	
	170	180	0	õ	629	33	
	180	190	0	0	629	99	
ż.	190	200	0	0	629	99	
	190	200	U	U	629	99	
· #	Data element	s inside hist	oaram	620	a a a a a a a a a a a a a a a a a a a		
	Data element	s outside his	togram	02:	7		
	Data Crement	b outside his	cogram	4			
	Descriptive	Statistics					
100	Mean			81	69194		
	Variance			1 7 1	58.176		
	Standard Dev	iation		36	85344		
á.	Skewness			10	36127		
156							



a section of

- Fighter and the second

. . .

- Salation

Routine: FREHIST File: \TONY\GOLDFORD.NUM Date: 11-03-1988 Comment: ALL SAMPLES

Histogram for Sb_ppm

and the second

Section 2

States ...

Lower limit	Upper limit	Frequency	*	Cumulative	×	
0	1	561	89	561		Mean
1	2	0	0	561	89	
2	3	0	0	561	89	
3	4	0	0	561	89	
4	5	0	0	561	89	
5	6	70	11	631	100	
6	7	0	0	631	100	
<b>7</b>	8	0	0	631	100	
8	9	0	0	631	100	
9	10	0	0	631	100	
10	11	1	0	632	100	
11	12	0	0	632	100	
12	13	0	0	632	100	
13	14	0	0	632	100	
14	15	0	0	632	100	
15	16	1	0	633	100	
16	.17	0	0	633	100	
17	18	0	0	633	100	
18	19	0	0	633	100	
19	20	0	0	633	100	
Data elements	s inside hist	ogram	633			
Data elements	s outside his	togram	0			
Descriptive S	Statistics					
Mean			0.5	924171		
variance			2.9	31716		
Standard Devi	ation		1.7	12225		
skewness			3.0	60087		



President ----

Contraction of the local distance of the loc

- setting

- culture -

- Alimeter

- it makes as

A CONTRACTOR

Routine: FREHIST File: \TONY\GOLDFORD.NUM Date: 11-03-1988 Comment: ALL SAMPLES

Histogram for Ag_ppm

and the second second

	Lower limit	Upper limit	Frequency	8	Cumulative	*	
State of the second	0	0.1	431	68	431	68	Mean
	0.1	0.2	0	0	431	68	
	0.2	0.3	133	21	564	89	
	0.3	0.4	0	0	564	89	
-75	0.4	0.5	59	9	623	98	
_	0.5	0.6	0	0	623	98	
	0.6	0.7	9	1	632	100	
Υ.	0.7	0.8	0	0	632	100	
	0.8	0.9	1	0	633	100	
	0.9	1	Ō	0	633	100	
	Data element	s inside hist	ogram	63	3		
	Data element:	s outside his	togram	0			
	Descriptive	Statistics					
	Mean			0.	089100		
*	Variance			0.	021542		
	Standard Dev	iation		0.	1467733		
	Skewness			1.	607171		

Page:

PETROGRAPHIC REPORTS

100

i, .

Contraction of the

APPENDIX E



A MARKAN

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph. D. Geologist P.O. BOX 39 8887 NASH STREET FORT LANGLEY, B.C. VOX 1JO

Report for: Ashworth Exploration 718 - 744 West Hastings Street, VANCOUVER, B.C., V6C 1A5 PHONE (604) 888-1323 Invoice 7742 October 1988

Samples: PG Series: 88-4, 88-5, PS-2, PS-3, TS-1; SE-C-88 (KR ØØ7)

Summary:

A: Veins

The vein samples are generally similar. They contain an early stage of quartz, locally with ankerite, barite, and pyrite, and a main stage dominated by tetrahedrite with lesser quartz and chalcopyrite. Early stage quartz contains abundant dusty inclusions, and commonly was strained and partly recrystallized to extremely fine grained subgrain aggregates. Main-stage quartz was formed in part at least by recrystallization of early-stage quartz. Sulfides are fractured and altered slightly to moderately to secondary limonite/hematite, malachite, and azurite. These minerals also were mobilized into late-stage veinlets which cut the earlier vein material. The host rock is an altered quartz-sericite schist, which in places is dominated by sericite and in others is dominated by quartz. The latter may have been silicified.

- PG-PS-3 sericite-quartz schist; early quartz veins; late vein of tetrahedrite-quartz-(chalcopyrite), with minor galena; secondary patches dominated by limonite and veinlets dominated by malachite.
- PG-PS-2 sericite-quartz schist; early veins of quartz-pyrite; main vein of tetrahedrite-quartz-chalcopyrite-(pyrite?) with minor muscovite/sericite and a trace of galena; late veinlets dominated by azurite with minor malachite and limonite.
- PG-88-4 quartz-sericite-(chlorite) schist; early vein of quartz; main vein of quartz-chalcopyrite-(tetrahedrite-pyrite) with minor muscovite; late veinlets of limonite.

PG-88-5 quartz-sericite schist; early-formed vein of quartz-ankerite-barite-pyrite; main-stage vein of quartz-tetrahedrite-(pyrite-chalcopyrite) with trace Mineral X (possibly Bi, Bi-telluride or native silver); late replacement patches and veinlets of azurite-malachite-limonite-(kaolinite?)

(continued)

B: Volcanic Rocks

Volcanic rocks are intermediate to mafic in composition, and are altered strongly, mainly to carbonate. Veins and veinlets contain one or more of carbonate, quartz and K-feldspar.

- PG-TS-1 altered, slightly porphyritic basalt with clinopyroxene phenocrysts altered to dolomite/calcite-(quartz) in groundmass of completely altered mafic minerals (Ti-oxide-carbonate) and plagioclase (carbonate-sericite). Amygdules of dolomite-quartz are surrounded by alteration patches rich in carbonate-sericite-quartz); veins and veinlets are of dolomite/calcite.
- SE-C-88 (KR-ØØ7) altered, slightly porphyritic andesite with minor plagioclase phenocrysts in a groundmass dominated by plagioclase, chlorite, and ankerite with minor K-feldspar, quartz and Ti-oxide; veinlets and replacement patches of quartz-ankerite and of K-feldspar.

John G. Payne 604-986-2928

### Sericite-Quartz Schist Cut by Barly Veins of Quartz-Pyrite; Main Vein of Tetrahedrite-Quartz-Chalcopyrite; Secondary Replacement and Veins of Hematite/Limonite, Azurite, and Malachite

PG-PS-2

The rock contains minor fragments of sericite-quartz schist. Early formed veins are of deformed quartz and pyrite. The main vein is a fine to locally medium grained and dominated by tetrahedrite and quartz with lesser chalcopyrite. Sulfides are fractured and replaced moderately to strongly: pyrite by hematite, tetrahedrite by hematite and azurite, and chalcopyrite by hematite and azurite. Late veinlets are dominated by azurite with lesser malachite.

host rock		late veinlets	
sericite	4- 5%	azurite	3- 48
quartz	4-5	malachite	Ø.5
pyrite/limonite	0.1	limonite/hematite	Ø.5
early veins and repl	acement		
quartz	20-25		
pyrite	7-8		
main vein and replac	ement		
tetrahedrite	30-35		
quartz	15-20		
pyrite	? (see	discussion below)	
chalcopyrite	2-3		
muscovite-sericite	minor		
galena	trace		

The host rock forms lenses up to a few mm long on both sides of the section. On one side, these are moderately well foliated, and dominated by extremely fine to very fine grained sericite and quartz. On the other side they are dominated by quartz with minor sericite; these may represent original sericite-quartz schist which was silicified. Pyrite forms disseminated subhedral to euhedral grains averaging 0.05-0.15 mm in size; these are mainly replaced by limonite.

Early formed veins and replacement patches contain fine to medium grained quartz which is characterized by abundant dusty inclusions, and which commonly is moderately strained and partly recrystallized towards much finer grained, subgrain aggregates. Pyrite forms clusters of euhedral to subhedral, cubic grains averaging  $\emptyset.3-1$  mm in size. Pyrite is fractured moderately to strongly; more strongly fractured zones are altered moderately to strongly to hematite. On the weathered side of the sample, pyrite is altered completely to hematite.

The main vein is dominated by tetrahedrite and lesser quartz in fine grained aggregates. Tetrahedrite is altered moderately along fractures and grain borders to hematite and minor azurite.

Quartz forms anhedral aggregates which are free of dusty inclusions, and which do not show evidence of deformation.

Pyrite is concentrated along one side of the main vein; it is uncertain whether it is part of the main-stage vein assemblage, or was all formed earlier as part of the early quartz-pyrite veining and replacement. The contact between the pyrite-rich zone and the tetrahedrite-rich zone generally is sharp, suggesting that they represent two different stages. Textures of pyrite are similar to those in the early veins, except that fracturing and replacement by hematite are very abundant adjacent to the tetrahedrite-rich zone.

### PG-PS-2 (page 2)

4

Chalcopyrite is intergrown with tetrahedrite in patches averaging  $\emptyset.2-1.2 \text{ mm}$  in size. It is altered moderately to strongly along fractures and grain borders to hematite. Chalcopyrite also occurs within tetrahedrite grains as lenses and patches averaging  $\emptyset.03-0.1 \text{ mm}$ in size. Where these are surrounded by unfractured tetrahedrite, they generally are fresh, but where fractures have reached them, they are altered to hematite as in the larger chalcopyrite patches. Chalcopyrite also forms a few patches of very fine grained aggregates bordering some pyrite aggregates; in these chalcopyrite is altered strongly along grain borders to hematite.

Muscovite/sericite forms flakes up to 0.15 mm long and clusters up to 0.2 mm long of subradiating to subparallel flakes up to 0.1 mm in length.

Galena(?) forms a few inclusions averaging Ø.01-0.02 mm in size in tetrahedrite, and a few similar grains in quartz bordering tetrahedrite.

Late veinlets and veins up to  $\emptyset.5 \text{ mm}$  wide are dominated by very fine to extremely fine grained grained azurite with lesser malachite and hematite/limonite. Coarser grained azurite is anhedral, equant grains averaging  $\emptyset.1-\emptyset.2 \text{ mm}$  in size. Coarser grained malachite forms subradiating aggregates of acicular to prismatic grains up to  $\emptyset.1 \text{ mm}$ long.

#### <u>PG-PS-3</u> Sericite-Quartz Schist cut by Early Veins of Quartz and Later Vein of Tetrahedrite-Quartz-Chalcopyrite-(Galena); Secondary Malachite-(Azurite)-Limonite

The host rock is an extremely fine grained schist dominated by sericite and lesser quartz. It is cut by several early veins up to 1.5 mm across of quartz and a later vein up to several mm across dominated by tetrahedrite and quartz, with minor chalcopyrite and galena. Chalcopyrite is altered moderately to strongly by hematite and malachite. A late braided veinlet is dominated by malachite with lesser limonite and minor azurite.

host rock		secondary patches	S
sericite	17-20%	limonite	18
quartz	8-10	malachite	Ø.2
pyrite/limonite	0.2	late veinlets	
early veins		malachite	0.5
quartz	8-10	limonite	0.2
later vein		azurite	minor
tetrahedrite	40-45		
quartz	12-15		
chalcopyrite	1		
galena	minor		
muscovite	minor		

Sericite forms extremely fine grained aggregates showing a moderate to strong foliation. Intergrown with sericite is lesser, extremely fine grained quartz. The rock was contorted moderately near the vein, and in part recrystallized to slightly coarser grained aggregates of muscovite-quartz. Limonite, probably after pyrite, forms scattered anhedral to subhedral patches averaging  $\emptyset.03-\emptyset.07$  mm in size. Pyrite forms a few subhedral to euhedral grains averaging  $\emptyset.03-\emptyset.05$  mm in size.

Early formed veins are dominated by fine to medium grained quartz, generally with moderately abundant dusty inclusions. A few patches are strained moderately, suggesting that they were involved in the deformation which affected the rock. However, it is possible that these represent only a slightly earlier vein phase than the main vein.

The later vein is dominated by tetrahedrite with lesser quartz and chalcopyrite and minor galena and muscovite. Tetrahedrite forms very fine to fine grained aggregates. These contain scattered lenses up to 0.3 mm long of chalcopyrite, and much lesser equant grains averaging 0.01 mm in size of galena. One chalcopyrite lens contains a grain 0.005 mm across of galena. Tetrahedrite is fractured coarsely, and altered slightly along fractures to hematite.

Chalcopyrite forms patches up to 1 mm in size of very fine grained aggregates, mainly bordering the main zone of tetrahedrite. It commonly is altered moderately on fractures and grain borders to deep red-brown hematite.

Muscovite forms a few subhedral flakes averaging  $\emptyset.1-\emptyset.15$  mm in length, mainly on borders of quartz and sulfides.

One patch up to 1.5 mm across consists of a border zone of red-brown hematite containing a core of very fine grained, elongate, subradiating aggregates of light green malachite.

A late, braided and locally en echelon veinlet averaging 0.1 mm in width, is dominated by very fine to extremely fine grained, unoriented, prismatic grains of malachite, with a few lenses up to 0.3 mm long of extremely fine grained azurite and moderately abundant dusty limonite. The vein is developed mainly along a thin seam of host rock in the main vein, and limonite extends outwards into the host rock along foliation planes.

#### <u>PG-88-4</u> Quartz-Sericite-Chlorite Schist Fragments and Seams in Early-formed Quartz Vein with Later-formed patches of Quartz-Chalcopyrite-(Tetrahedrite-Pyrite)

The host rock is most prominent at the far side of the hand sample from where the section was cut. It is a medium to dark green, very fine grained schist dominated by quartz with lesser muscovite and chlorite. In the section, only wispy patches and lenses of quartz-sericite are preserved. The vein is dominated by early-formed quartz, with later-formed patches of chalcopyrite-quartz, with minor tetrahedrite and pyrite.

nost rock	
quartz	3-48
sericite	1
early vein	
quartz	60-65
late vein	
quartz	12-15
chalcopyrite	17-20
tetrahedrite	1
pyrite	1
muscovite	minor
late veinlets	
limonite	minor

Relic patches and seams of the host rock range from equant patches up to 0.7 mm in size and elongate patches up to 1.5 mm long to discontinuous, contorted seams between early-formed quartz grains. These are dominated by quartz and/or sericite, and most are extremely fine grained, with a moderate to strong foliation. Seams are dominated by sericite.

Early-formed quartz is mainly medium to coarse grained. It is characterized by abundant dusty inclusions and by textures which suggest moderate deformation and partial recrystallization towards extremely fine grained, subgrain aggregates. Contacts with later-formed quartz generally are sharp. The latter is characterized by the absence of dusty inclusions and strained textures. It occurs only with chalcopyrite patches.

Chalcopyrite forms anhedral patches up to several mm across intergrown irregularly with quartz. Most are free of inclusions of other sulfides. Although most of the chalcopyrite is intergrown with later-formed quartz, some patches up to 1 mm in size are intergrown with early-formed quartz. Textures suggest that later-formed quartz may have formed by recrystallization of early-formed quartz during the time when the sulfides were introduced.

Tetrahedrite forms anhedral grains averaging 0.05-0.3 mm in size, mainly intergrown coarsely with chalcopyrite along borders with quartz. A few chalcopyrite grains contain clusters of a few tetrahedrite and pyrite grains averaging 0.03-0.05 mm in size.

Pyrite forms subhedral to anhedral grains averaging  $\emptyset.\emptyset5-\emptyset.2$  mm in size. A very few contain minor inclusions of chalcopyrite.

Muscovite forms scattered flakes up to 0.1 mm in size associated with chalcopyrite and later-formed quartz.

Wispy veinlets up to 0.05 mm wide are of light to medium orange limonite.

#### PG-88-5 Vein: Barly-Formed Quartz-Ankerite-Barite-Pyrite Later Quartz-Tetrahedrite-Chalcopyrite-Pyrite with minor Patches of Host Rock: Quartz-Sericite Schist

The rock contains a few relic patches of host rock dominated by extremely fine grained quartz and/or sericite. These are enclosed in a vein which contains early-formed quartz, which was recrystallized during introduction of some of the sulfides. Ankerite and barite occur in irregular patches of uncertain but probably early age. Sulfides are dominated by patches of tetrahedrite with lesser pyrite and chalcopyrite, and trace Mineral X (possibly bismuth telluride or native silver). Most sulfides appear to be late, but pyrite may be associated with early-formed quartz.

host rock	
quartz	2-3
sericite	1- 2
early vein	
quartz	30-35
ankerite	7-8
barite	4- 5
sericite	minor
late vein	
quartz	15-17
tetrahedrite	17-2Ø
pyrite	3-4
chalcopyrite	1- 2
Mineral X	trace

1210

late replacement patches azurite 2-3% malachite 1-2 limonite 2-3 kaolinite(?) Ø.2 veinlets azurite-malachite Ø.3

Minor fragments of host rock are dominated by anhedral, very fine to extremely fine grained quartz aggregates, with minor seams, patches, and disseminated grains of extremely fine grained sericite. One seam 3 mm long and  $\emptyset.2-\emptyset.5$  mm wide is dominated by extremely fine grained sericite.

The early vein material is dominated by patches medium to very coarse grained quartz. It contains abundant dusty inclusions, and is deformed slightly to strongly, and recrystallized locally to extremely fine grained, subgrain aggregates.

Ankerite forms subhedral to locally euhedral grains averaging  $\emptyset.2-\emptyset.7$  mm in size. Grains commonly are strained slightly. It locally shows growth(?) zones with moderately abundant limonite. One such patch shows euhedral crystal terminations into a cavity, which was later filled by chalcopyrite patches up to  $\emptyset.7$  mm in size.

Barite forms patches up to 2 mm across of medium to coarse, commonly irregular grains, commonly intergrown coarsely to finely with ankerite. Some large grains show moderate strain deformation, suggesting that barite was formed with early quartz.

Sericite forms scattered subradiating to irregular patches of extremely fine to very fine grained flakes, commonly associated with ankerite or quartz.

Surrounding sulfide patches, quartz forms fine to locally medium grained patches. These probably represent zones of recrystallized early-formed quartz; they contain no dusty inclusions and do not show deformation textures. Bordering a few patches of sulfides, recrystallization of quartz removed dusty inclusions but otherwise appears not to have affected early-formed quartz grains.

Tetrahedrite forms annedral patches up to a few mm across. It is fractured coarsely, with minor hematite and azurite along fractures.

(continued)

ł

Pyrite forms subhedral grains averaging  $\emptyset.3-1$  mm in size. Some are enclosed by early-formed quartz. It is fractured moderately to strongly and replaced along fractures by hematite.

Chalcopyrite forms anhedral grains and aggregates averaging  $\emptyset.07-0.15$  mm in grain size, with a few patches up to 1.2 mm across. It is altered moderately on fractures and grain borders to hematite. It forms irregular interstitial patches in aggregates of ankerite and also in patches of barite.

Mineral X (possibly native bismuth, bismuth telluride or native silver) forms one equant grain  $\emptyset.07$  mm in size. It is pale cream in color with high reflectivity, and occurs with chalcopyrite surrounded by tetrahedrite. Identification of this phase will require S.E.M. analysis.

Secondary alteration of sulfides produced patches up to 1 mm in size of azurite, malachite, limonite/hematite, and kaolinite(?). A few patches of ankerite are replaced in irregular patches to malachite and much less abundant azurite. A few interstitial patches up to 1 mm in size in barite consist of rims of radiating aggregates of malachite with grains averaging  $\emptyset. \emptyset 2 - \emptyset. \emptyset 3$  mm in length, with interstitial patches or overgrowths of extremely fine grained kaolinite(?) with grains averaging  $\emptyset. \emptyset 03 - \emptyset. \emptyset 05$  mm in size.

Azurite and malachite occur in late veinlets averaging  $\emptyset.\emptyset1-\emptyset.\emptyset3$ mm in width as extremely fine to very fine grained aggregates. Azurite forms equant to slightly elongate grains up to  $\emptyset.1$  mm in length. Malachite forms aggregates of subradiating, acicular grains up to  $\emptyset.\emptyset7$  mm long.

### <u>PG-TS-1</u> Altered, Slightly Porphyritic Basalt with Amygdules of Dolomite-Quartz partly surrounded by Alteration Patches rich in Carbonate-Sericite-(Quartz)

The sample contains scattered phenocrysts of clinopyroxene [altered to dolomite/calcite-(quartz)] in a strongly altered groundmass of very fine to fine grained mafic and plagioclase grains altered completely to Ti-oxide-carbonate and carbonate-sericite, respectively. Several amygdules up to a few mm across are of dolomite-quartz. One also contains siderite and minor chlorite. Numerous veinlets and a few veins are of dolomite/calcite.

phenocrysts		veinlets and veins	n an
clinopyroxene	3-48	dolomite/calcite	3-48
groundmass			
plagioclase	35-40		
mafic	40-45		
alteration patche	S		
carbonate-(seric	ite-quartz-Ti-	oxide) 5-7	
fragment	· .		
Mineral X	1-2		
amygdules			
dolomite	2-3		
quartz	1-2		
limonite	Ø.3		
siderite	Ø.3		
chlorite	minor		

Clinopyroxene forms euhedral phenocrysts from 1-2.5 mm in size. These are replaced completely by aggregates of extremely fine to very fine grained dolomite/calcite. Some have central cavities rimmed by euhedrally terminated dolomite, and filled by extremely fine grained, strongly interlocking aggregates of chalcedonic quartz.

In the groundmass, original plagioclase forms anhedral to slightly prismatic grains averaging  $\emptyset.05-\theta.1$  mm in size. It is altered completely to extremely fine grained intergrowths of carbonate, sericite, and minor quartz. A few grains contain irregular patches up to  $\emptyset.15$  mm in size of extremely fine grained hematite.

Original mafic grains have a prismatic to equant habit, and average Ø.1-Ø.15 mm long. They are altered to dusty Ti-oxide with lesser, extremely fine grained dolomite(?), whose texture is obscured by the Ti-oxide.

Amygdules up to a few mm across are dominated by very fine to extremely fine grained dolomite with central cavities filled with quartz. Quartz commonly is extremely fine grained adjacent to dolomite, and fine to locally medium grained in the cores of the amygdules. One amygdule up to 1.7 mm long consists of fine grained quartz cut by veinlets and irregular patches of dolomite. In the largest amygdule, 4 mm across, dolomite is concentrated along the rim, and has euhedrally terminated crystals into the core of the amygdule. The core consists of quartz which is extremely fine grained (0.01 mm); quartz grains have slightly variable extinction positions, and appear to have recrystallized from coarser grained aggregates. One amygdule contains a few clusters of subhedral to euhedral siderite/ankerite grains averaging Ø.21-Ø.3 mm in length. This mineral is altered slightly to moderately to limonite along cleavages. Siderite is surrounded by very fine grained dolomite containing a patch Ø.3 mm across of very fine grained quartz and another of quartz-chlorite.

Inontinue as

## **PG-TS-1** (page 2)

a kind to

Several irregular alteration patches up to several mm across are dominated by extremely fine grained carbonate with lesser sericite and minor quartz, and with disseminated, ragged to subhedral patches up to Ø.3 mm long dominated by Ti-oxide, probably pseudomorphic after original mafic grains. The alteration patches relatively sharp contacts with the main rock, and commonly enclose amygdules. Bordering one of the amygdules, sericite is concentrated locally into lenses up to Ø.2 mm long of subparallel flakes.

A lensy fragment 2.5 mm long consists of a strongly fractured, aggregate of anhedral, very fine grained Mineral X. The aggregate may have been formed by recrystallization of a single coarser grain. Mineral X has the following properties: orange brown color, pleochroism from light orange to medium orange-brown, moderate to high relief, birefringence obscured by mineral color, no obvious crystal outlines.

## APPENDIX F

# ORIGINAL SURVEY MAPS AND NOTES

#### PRETTY GIRL LOCATION

After searching for the Pretty Girl showing on Lot 2570, it was determined that the nine reverted crown grants have been misplotted on the topographic map (82K/9) and the government claim map.

Distance in the

and the second

After locating the Pretty Girl showing, studying the Minister of Mines reports and the original survey maps (included in this Appendix), it was determined that the Pretty Girl, New Chum, Venus, Minnie Ha Ha Fraction, Old Chum and Beauty crown grants are located 2.3 kilometres southwest of their plotted location on the topographic map. Coincidentally, the Trojan, Delos and Calamity Jane crown grants are also misplotted by approximately one kilometre.

The claim map (Figure 2) in this report plots the nine reverted crown grants in their proper (approximate) location. Map 2 in this Appendix shows the reverted crown grants plotted incorrectly on the Ministry's present claim map.

Additional information was obtained from Assessment Report #16,808 with regard to the incorrect plotting of the Pretty Girl nine reverted crown grants. Map 1 in this Appendix shows a replotting of the reverted crown grants by T. R. B. Dundas, 1987. An excerpt from the Assessment Report follows:

The property consists of a total of 18 units within 2 claims as listed below. The claims are located in the Golden Mining Division, 50 30' Lat., 116 20' W Long., and a number of claims owned by other persons are either completely or partially enclosed within the external limits of the 18 units. The relative locations are shown in Figure 2 but the accuracy of the location of other claims relative to the Silver Thread group, particularly the Crown Grants, have been changed considerably from published maps. Some evidence of the Crown Grant surveys was observed in the field and combined with the origonal survey notes and sketches, the locations provided are felt to be accurate but will require more evidence on the ground to confirm the final locations.

(Assessment Report #16,808, Dundas, 1987)

Other crown grants are reported misplotted in the general area surrounding the Pretty Girl Claim Group. Assessment Report #15,334 describes the misplotting of Crown Grants L5345 to L5349 on both claim and topographic maps. An excerpt from this report follows:

Note: Crown Grants L5345 - L5349 are not properly shown on either topographic or claims maps, and should be north of thier currently plotted position. Nip and Tuck 1-8, Time 1-8 and WH 1-3 appear to be incorrectly plotted on the claims map. The Redmac and Macred claims appear to be approximately correct. Considerable care was taken in locating and mapping the Jesse and Shannon claims to avoid compounding the above noted inaccuracies. Substantial time was spent searching for and locating existing claim posts, I.D. posts and lines. (Assessment Report #15,334, Chabot, 1986)

During the 1988 field program, one Crown Grant claim post was found. It appears to be the #1 post for the location of the Pretty Girl claim, Lot 2570. The only legible marks left on the post were "N1".

A legal survey has been recommended in Phase II to establish the exact claim boundaries.

a P. D. Leriche

NAME.



and the second second

and the second se

And a local division of the local division o







Huidermero Klining Derrocore North Carl Nootway . Capey of Record Mery, Partnership. NHA STATEST A the A - Alexandra General Surg Cure Abungal Chains AS IN AS A L 标识 图 Asta March Vecalis in the parturo hipo name of en state ( see the constance) Ser Carte ····· 1.50 Imus and the stay. and the second second I.M. Hils hell chances Nº 48074 J.J. Ho: Nay Nº 80611 A SA SA SA SA The claim to sectuate and the cauch forth of stores This Cuel in north and a low from the creek, and atom 20 miles from the Calum Sia rever. The direction of the becation live is north and paush The laugest of the claud to 1500 ft. The feel lis to the suger and for ful to the left of The lacations laws. The claim to as located on the site day of auguer 1596 Recorded this 13th day of auguer 1996 Lenge Coldie & WORKS DEP Eliming Recorder. 19 DEC 1899 CTORIA, B. C 

Seely Goil Weinral Clauis South Boundary, Nel Post to S.W.C. Prely Gril Menural Clause Xar 2570 Feel Feat Boundary, S.W.C. lo N.W.C. S.N.C 610 700 Jul 702. p N.W.C. 934.8 600 of sticting driet Targe Bouldons 600 300 174 7000 STee75 Stope To mest 300 S Tee To 5 To To F.2) 80 • 0 Neirost ne a From Itre S.W.C 0 mag That 00W. N30 00'm/ & WORKS DEPAR 19 DEC 1899 CTORIA, B. C. The above line was run the 5th day of Curgerst 1898. THE Cay Comes P.S. V. - T.h. Cyloria. P.L.d.



Sutty Goil Hermiral Clauni 201 2570 out Boundary. Not Soat to S.E.C. fidan I. I. W. aylemer of Galden a ducy anthorned Inormation Vand Curreyor for the Promee of British Calumbia the coach and cay as Her fallows · SEO 700 (1.) Frame Reconneged the Thele Gord 6.3570, municial Classic. 608 W.P onurhed (2) I commenced the said survey on the of day of august 1890, and completed if on the 600 6 day of august 1898 (3) O personally ran all the lines of the said survey on the dates set and in the (4) The notion contained in the field back are 5. 5. 5 E a correct representation of the work done Z 000 Covorn hefor ere An ayluwe Soomocal Land Loring, 65al Golden this 267 day of Konender NOIDOST "Span allarran Jo-N. 59'00 4. Mag WORKS DEPA 19 DEC 1899 Vortan A. The above line was run the 6th day of Guguet 1898. F.W. Cylonese S.L. e. 189 ...




















P 1900 6815 93 KOA'3 · 计中于正式 N. B.-Une the brite store three of Certificate at water die DELOS upon one of the lists present first notes at the nd of your me . . . . . . . rule must be strictly full seed, as the power with the printed as orized liable to be detached from the seld soles, which are then rational make CALAMITYJANE T. Sig A. L 37:91 G.1. er_ 110 42.7 A authorized Provincial . . . . . . erendente **B** tish Columbia WORKS DE say as follows (1) 11 - - - - --SEP 1900 12.) I comme peed the said survey on the in the - 1<u>1</u> . . . . . . . . ES. sul comix ete 179 1 44.00 (3.) I personally raCal Creding . . . . . F. () Fire set out field took marked A. dates (4.) The nexts confished in the Bald book are Nº2 34.5 ,585°29'W PI done on the ground by sar. 1500' epreend Sworn lefare. 300'TO I INCH tor against Land eyor. 25 1500





## LEGEND

GEC	DLOGY
Age	Unknown
m	Basaltic Dyke
PROT Ha	EROZOIC orsethief Creek Group
6	Quartzite
5	Sandstone
4	Interbedded sandstone and shale
3	Limestone
2	Quartz grit, quartz pebble conglomerate
1	Shale, slate

## SYMBOLS

·······	Geological contact (defined, approx., assumed)
<del>*</del>	Synclinal axis (approximate)
47.D	Area of outcrop
70	Strike and dip
<u> </u>	Adit
	Shaft
Summer .	Bridge
	Logging road
	Legal Corner Post
L	Claim boundary
	Base line grid
> @	Creek
	Dry creek
CT - 6000	Topographic contour (interval 500')
OGICAL BRAN SSMENT REPO	400 600 800 1000 m
RICH	
	NTS 82 K /8,9

GOLD FORD CAPITAL CORP.

GOLDEN M.D., B.C.

## PROPERTY GEOLOGY

ale	I :10000	By i	P. L.	Drawn	J.S.
ate i NC	VEMBER 1988.	Figure	No	4	
A	shworth E	xploratio	ns Lir	nited	



cole	1 10.000	By →	Drown : J.S.
ate	NOVEMBER 1988	Figure No	. 7
	Ashworth	xplorations	Limited



	- 1800W	- 1700W		- 1600W		- 1500W			- 1400W				- 1300W				- 1200W	
800N -																		5-
700N -																		
600N -																		
500N -																		
400N -																		
300N -		88	99	99	ų	99	\$	\$	9 Q	\$	9.0	9	\$	<55	\$	92	\$	9.4
200N -		ю 10	Ω.Ω	<u>م</u> م		Ω Ω	5	10		22 	\$	5	5	5	2	5	5 <5	10 H
100N -	<u>v v v v</u>		~ ~	v v		v v	~	~	VV	v	5	V		V	V	V	V	V
ON -																		
1005																		
200S —																		



	1800W	- 1700W	- 1600W	- 1500W		- 1400W		- 1300W			- 1200W	
800N -	1	1				I		1			.1	
700N -												
600N -												
500N -												
400N -		0	0	- 10			- 75	0 4			N	80
300N -		0 0 7 N		2	2 2	4	38 44 6	32 4 37 37 3	26	20 21 21	23	24 21
100N -	22 47 30 28	10 17 29 14	14 27 52	46	57 53 32	13	23	4 0	80	7	45	10
on -												
1005 -												
1003												
200S -												

1100W	1000W	M006	800W	700W		600W		500W		400W
1						24	27	1. 8	15	22
						26	22	31	. 31	54 45
						30	25	5 ¢	41 44	16 63
						32	40	16 16	23	39
						36	41	24	34	8
29 24 37	51 51	29 29 47	5.84	55 27 32	26	39	47 28	37	32	- 18 - 45
19 15 22	26 20	40 47 62 32	61 46 67	55 56 52	96 46	47 46	48 77	32 57	39 51	47 18
. 31 . 32 . 48 . 48	44 28	17 36 35	64 60 52	49 39 50 40	40	. 27	- 19	29 46	34	29
						23	8	28	~ .	. 8
						19	36 24	33	13 15	17
		5 4 5	5,400	72 34 84	50	48	50 43		40	84
				0			2			



			500E				600E				700E				BOOE
			R				4				81				а.
63	53	62	72	76	26	35	58	39	5		27	29	45	53	41
															-
. 33	24	23	35		5	42	40	37	34	37		- 38	15	31	
52	. 86	45	45	. 77	60	34	36	54	52	28	38	42	54	35	- 20
52	. 37	. 56	- 54	40	53	. 56	37		50	57	65	30	22	44	41
41	58	138	16	87	99	59	41	47		12	59	37	37	67 -	88
37	44	53	44	49	48	33	22	Ð	20	12	6	36	29	₹22	
61	49	41	41	51	45	33	Ē	31	. 26		24				
- 21		43			35	26		21			-			-	
	33 36 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36														
GEOLOGICAL BRANCH ASSESSMENT REPORT															
GEOLOGICAL BRANCH ASSESSMENT REPORT															
			4		/	1		8	),		3	2	4	2	)
		6	/	/		1	N550		2.0	2					
À	7	_				01001010	P. D	LERIC	HE J	CANAD					
	V				Ţ	Tig	lire	- 1	0						
)1	D		F'(	) ह	2D	-6	C	A F		ΓΔ	I.	(	CC	) F	2P
01.0	)EN	P	RE	TT	'Y	G	IR	L	PH	20	JE	CT	1	2K/	8.9
	S	0]	L	(	GE C	10 01	CPF	H	E1 IR	MI	S'	ΤF	S.A	7	
SH	[W	OR	RTF	H	EX	PI	01	RA	TI	01	NS 1	L	IM 24	IT.	ED
Di	4 rav	vn	by	13	700 TO	NY	C	LAI	SK	CC	I DNS	SUI	TI	NG	0