FEB 9 1989

.... <u>©</u>

File co.

EXPLORATION REPORT

ON THE SIB AND POLO PROPERTIES NEAR STEWART, BRITISH COLUMBIA FOR AMERICAN FIBRE CORPORATION

Skeena Mining Division
N.T.S. 1048-9W,10E

Lat. 56°37'N Long. 130°30'W

BRADFORD J. COOKE

COOKE GEOLOGICAL CONSULTANTS LTD.

NOVEMBER 18, 1988

18376 ASSESSMENT REPORTS4 TITLE PAGE AND SUMMARY

Province of Ministry of Energy, Mines and Petroleum Resources	18376 Assessment report ⁵⁴ Title page and summary	COST (PM) 271CNEG
GEOCHEMICAL, GEOPHUSICAL	1 69, 249.67	
AUTHORISI BRADFORD J. COOKE SIG	GNATUREIS WAS LOOKE	
PROPERTY NAMES 518 - 1040	ED DAN 89 YEAR OF WORK 88	
COMMODITIES PRESENT AU, AS		
MINING DIVISION SKEENA	104 B - 9W, 106	St. 1711 -401
FIAMES and NEMBERS of all mineral senters in more lasten long 1. from the life in the last of last of last of the last of	nick mar disable through the recipes of the employ of \$2.5 at \$100.00 and \$1000.00	7
ON CONS SILVER BUTTE MINES O	AMERICAN FIBRE CORP.	
MAILING ACCRESS 901 900 W HASTINGS ST VANCOUVER BC	1200 625 Howe ST VANCOUVER BC	
OPERATOR(\$) (that it, Company paying for the work) (1) 12	9	
MAILING ADDRESS		\$ 2 \$ 2

sediments of the strenger Com		N ABON
RECEDENCE TO BUTTILOUS HIDRY	•	180

SUMMARY

The purpose of this report is to document exploration work carried out on the SIB and POLO properties near Stewart, B.C. during September, 1988. Included in this report are the results of geochemical sampling and geophysical surveying on the SIB claims and minor prospecting on the SIB and POLO claims.

SIB and POLO properties are located approximately 950 kilometres northwest of Vancouver and 80 kilometres northwest of Stewart in northwestern British Columbia. Access to the claims is provided by jet service to Terrace, vehicle transport by Highways 16 and 37 to Stewart, and helicopter charter to the property.

SIB and POLO properties are well located for gold exploration, being situated in the heart of the "hot" Stewart mining district, immediately south of historical workings along Eskay Creek. Recent drilling at Eskay Creek by Calpine Resources has intersected spectacular widths and grades of gold mineralization in the 21 Zone, including 0.20 oz/ton Au over 21.3 ft., 0.125 oz/ton Au over 242.1 ft. and 0.73 oz/ton Au over 96.5 ft.

The claims cover a large area (10,000 acres), have some history of prospecting work, a favorable geological setting is present and high grade gold-silver-lead-zinc samples have been reported. Immediately to the north, the TOK-KAY claims of Consolidated Stikine Silver and Calpine Resources have undergone considerable trenching, drilling and drifting since the original discoveries in 1926 and 1932, and some high grade gold-silver shipments were made in 1971 and 1979.

Regionally, the SIB-POLO claims sit at the western margin of the Intermontaine Belt where it meets the Coast Plutonic Complex. Triassic to Jurassic volcanic and sedimentary rocks of the Stewart Complex are intruded by Triassic to Tertiary plutonic rocks of the Coast Intrusions and overlain by Jurassic sedimentary rocks of the Bowser Basin. The district has produced more than 2 million ounces gold and 45 million ounces silver in the past, largely from the Premier-Silbak and Big Missouri mines near Stewart. Several recent discoveries, including Calpine Resources, Delaware Resources, Skyline Explorations, Newhawk Gold Mines and Westmin Resources, have fueled an exploration boom and the region appears to hold multi-million ounce gold potential.

Locally, the properties are underlain predominantly by Stewart Complex rocks, including andesite, rhyolite and greywacke of the Lower Jurassic Unuk River Formation and argillite, sandstone and conglomerate of the Middle Jurassic Salmon River Formation, intruded by Jurassic feldspar porphyry plugs, dikes and sills. A major northeast-trending lineament crosses the TOK-KAY and SIB-POLO claims, marked by sheared, altered and mineralized rhyolites up to 500 metres wide that host extensive low grade and localized high grade gold-silver-lead-zinc-copper mineralization.

Two different styles of mineralization have strong exploration potential on the SIB-POLO claims. Low grade, large tonnage, stratabound, volcanogenic precious and base metal prebodies could occur along the northeast lineament and high grade, small tonnage, crosscutting, epigenetic gold-silver-lead-zinc-copper pre shoots could follow northwest faults.

Soil sampling on the SIB claims shows a strong north to northeast background trend containing a number of geochemical anomalies up to 1360 ppb Au, 49 ppm Ag, 4226 ppm Pb, 358 ppm Cu, 3225 ppm Sb and 4034 ppm As. Six strong gold anomalies greater than 200 ppb Au appear to be unrelated to the northeast trend and could represent cross-cutting mineralized zones.

Several rock samples in a 1982 prospecting program returned anomalous gold values greater than 100 ppb, including one sample that assayed 3060 ppb Au, 21.6 ppm Ag, 2240 ppm Pb, 21,600 ppm Zn and 941 ppm Cu. Several stream sediments also returned elevated values greater than 100 ppb Au including one sample that assayed 750 ppb Au, 18.5 ppm Ag, 464 ppm Pb, 469 ppm An and 95 ppm Cu. These anomalous samples indicate the presence of gold minerlized zones.

Magnetic surveying on the SIB claims displays a strong series of northeast-trending magnetic highs going down the centre of the grid, offset by north trending magnetic lows. These anomalies probably represent more magnetic stratagraphic units offset by crosscutting faults.

Electromagnetic surveying exhibits a distinct north to northeast trend, particularly in the south and west parts of the grid. Anomalous conductors tend to follow magnetic lows, flanked by electromagnetic and magnetic highs. Those anomalies probably represent more conductive stratagraphic units offset by less conductive crosscutting faults.

In conclusion, the SIB and POLO properties have excellent exploration and mining potential for gold and silver ore deposits. An aggressive exploration program is merited at this time to further develop the claims.

A two phase \$270,000 work program is proposed to explore the SIB and POLO properties. Phase 1 calls for a \$100,000 expenditure over a two month period for extended surface exploration. Phase 2, contingent upon the success of Phase 1, would require \$170,000 over a two month period for diamond drilling of prospective zones.

TABLE OF CONTENTS

TITLE PAGE

SUMMARY

1.	INTRODUCTION	Page	No.
	Purpose and Scope Location and Access Physiography and Climate Infrastructure and Resources Claims Description Mining History	1 1 1 1 1 2	
2.	GEOLOGY		
	Regional Property Mineralization	6 7 7	
₃.	GEOCHEMISTRY		
	B-Horizon Soils Surface Rocks Stream Sediments	12 13 13	
4.	GEOFHYSICS		
	PP-Magnetics VLF-Electromagnetics	1 <i>4</i> 1 <i>4</i>	
5.	CONCLUSION		
	Conclusions Recommendations Budget	15 16 17	ı
REFE	RENCES	18, 19	ı
QUAL	IFICATIONS	20)
APPE	NDICES		

LIST OF FIGURES

FIGURE 1:	General Location Map	3
FIGURE 2:	Claims Location Map	4
FIGURE 3:	Regional Geology Map	9
FIGURE 4:	Property Geology Map	11
FIGURE 5:	Cu-Au Soil Geochemistry	folder
FIGURE 6:	Pb-Ag Soil Geochemistry	folder
FIGURE 7:	As-Sb Soil Geochemistry	falder
FIGURE 8:	PP-Magnetic Geophysics	folder
FIGURE 9:	VLF-Electromagnetic Geophysics	folder

LIST OF TABLES

TABLE 1:	Claim List	5
TABLE 2:	Formation List	10

1. INTRODUCTION

Purpose and Scope

The purpose of this report is to document exploration work carried out on the SIB and POLO properties near Stewart, B.C. during September, 1988. Included in this report are the results of geochemical sampling and geophysical surveying on the SIB claims and minor prospecting on the SIB and POLO claims.

Location and Access

SIB and POLO properties are located approximately 950 kilometres northwest of Vancouver and 80 kilometres northwest of Stewart in northwestern British Columbia (Figure 1). Access to the claims is provided by jet service to Terrace, vehicle transport by Highways 16 and 37 to Stewart, and helicopter charter to the property.

Physiography and Climate

The claims straddle the Prout Plateau, south of Tom McKay Lake and west of the South Unuk River, at elevations of less than 2200 feet along the river to more than 4300 feet at the top of the plateau. Vegetation is characterized by mature to stunted northern coniferous forest and the local climate is typified by short, cool, wet summers and long, cold snowy winters.

Infrastructure and Resources

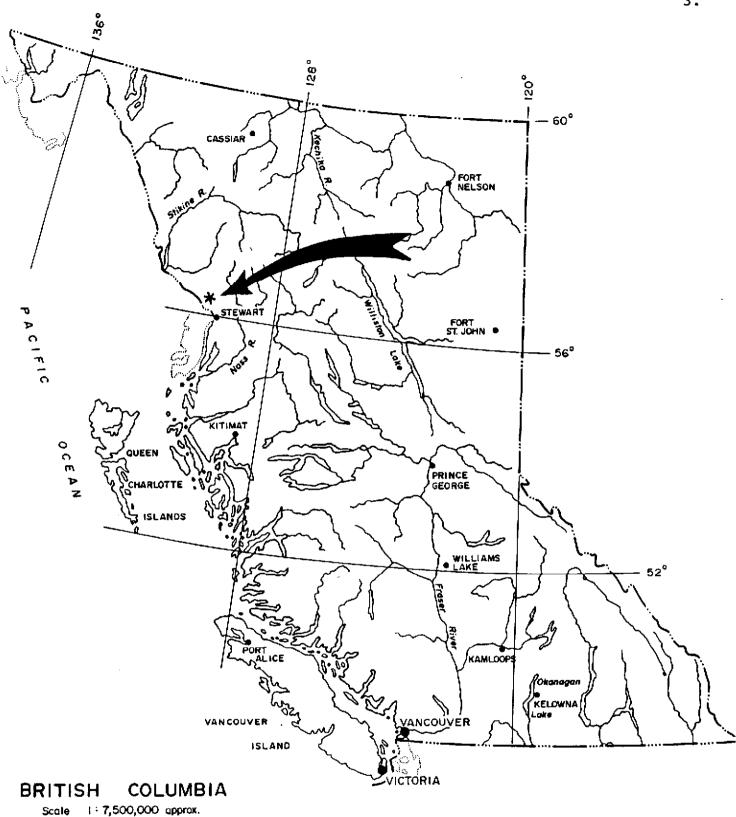
Although there is no ready infrastucture on the property, the nearby town of Stewart has full facilities to support helicopter based exploration work on the project. Water is abundantly available from creeks and lakes during the summer months and timber is in good supply on the lower slopes of the plateau.

Claims Description

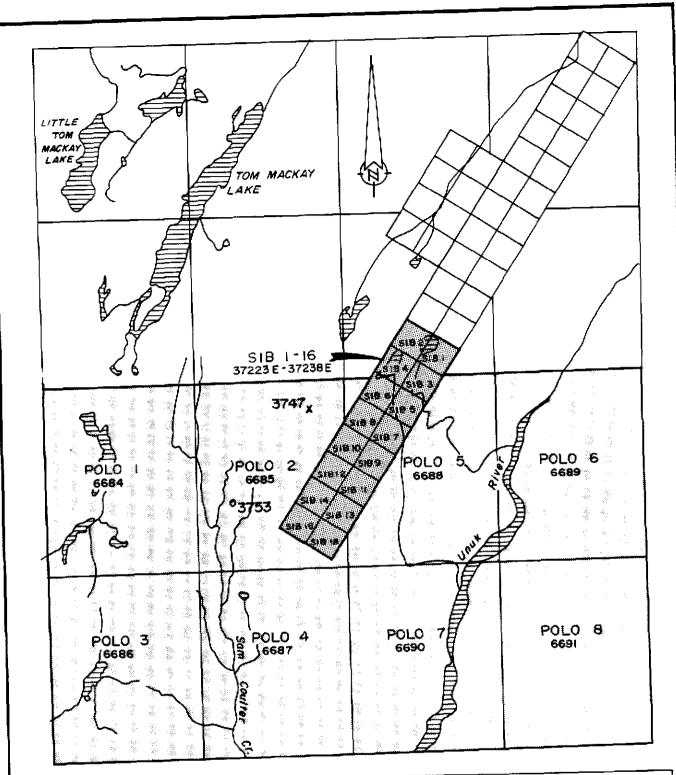
The SIB and POLO properties consist of 16 two post claims and 8 modified grid claims, all contiguous, totalling 16 and 160 units respectively, in the Skeena Mining Division (Figure 2). Total annual assessment on the SIB and POLO groups are approximately \$3200 and \$16,000, respectively and the claims all appear to be in good standing until 1989 (Table 1).

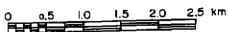
The SIB claims are subject to an option agreement with Consolidated Silver Butte Mines Ltd. whereby American Fibre Corporation can earn a 50% interest. A 100% interest can be acquired in the POLO claims under a purchase agreement with Ferdinand Schomig.

Mining History


Placer gold was first discovered locally at Sulphurets Creek (now held by Tonopah Resources) south of the SIB-POLO claims in 1881. By 1926, prospecting had located lode gold mineralization immediately northeast of the SIB-POLO properties along Eskay Creek (TOK-KAY claims now held by Consolidated Stikine Silver and Calpine Resources).

Credit has been given to Tom McKay and the McKay Syndicate for making important discoveries on the TOK-KAY ground between 1932 and 1934. Since that time, there has been extensive trenching, some drilling and limited drifting on the TOK-KAY claims, with minor work carried out in 1987. Recent drilling at Eskay Creek by Calpine Resources has intersected spectacular widths and grades of gold mineralization in the 21 Zone including 0.20 oz/ton Au over 21.3 ft., 0.125 oz/ton Au over 242.1 ft. and 0.73 oz/ton Au over 96.5 ft.


As of the date of this report, Calpine Resources has returned to active drilling of its exciting new discovery in the 21 Zone. A broad, southwest-trending, altered and mineralized, low grade gold-silver-lead-zinc-copper zone, containing high grade gold-silver-arsenic-antimony-mercury ore shoots, has been traced for more than 2 miles according to old prospecting maps. The SIB-POLO claims appear to cover the southwest extension of this zone, although limited exploration work has actually been recorded for these claims.


Consolidated Silver Butte Mines drove a 2 mile bulldozer trail and did surface stripping over an area 100 feet by 1,000 feet in 1973 but no assaying was reported. In 1982, Ryan Exploration carried out a reconnaissance rock chip and stream sediment sampling program covering the SIB-FOLO claims, and several strong anomalies were located.

The SIB-POLO properties were part of the TOK-KAY claim group held by Kerrisdale Resources in 1985 but work concentrated on the TOK-KAY ground. Since that time, no work has been carried out on the SIB-POLO claims.

AMERICAN FIBRE CORP. SIB and POLO **PROPERTIES** GENERAL LOCATION SKEENA M.D., B.C. SOUTH UNUK RIVER COOKE GEOLOGICAL CONSULTANTS LTD. Scole Drawn by see above N.T.S. 104 B/8W Date Aug 1988

SIB property POLO property

CORP. AMERICAN FIBRE SIB and POLO PROPERTIES LOCATION CLAIMS

SKEENA M.D. - SOUTH UNUK RIVER AREA COOKE GEOLOGICAL CONSULTANTS LTD.

	•		
T. S.	104 B / 8 W	SCALE : 50 000	FIGURE
	10-10-10-1		

N.T.S. 104	B/8W	SCALE	1:	50 000	110000
DATE AUG	1988	DRAWN		<u>.</u>	

TABLE	1:	CLAIM	LIST
	4 *		

Claim Name	Record No.	No. of Units	Expiry Data
Sib 1	3 7223	4	31 May 1⊞E9
Sib 2	37224	1	31 May 1787
Sib 3	37225	1	31 May 1989
Sib 4	37226	1	31 May 1935
Sib 5	37227	1	31 May 1787
Sib 6	37228	1	21 May 1989
510 0 Sib 7	37229	<u>.</u>	31 May 1999
Sib 8	37230	1	조호 변호V (무료로
515 5 Sib 9	37231	1	31 May 1777
Sib 10	37232	1	조호 연속에 한문문문
Sib 11	37233	1	変한 병송상 충족공주
Sib 11 Sib 12	37234	1	31 May 1999
Sib 13	37235	1	31 May 1939
	37236	1	31 May 1989
Sib 14	37237	1	31 May 1문문학
Sib 15 Sib 16	37238	1	조1 변호시 1988
	5484	20	is May ifee
Polo 1 Polo 2	668 5	ZO	18 May 1999
	6586	20	18 May 1999
Folo 3	6687	20	18 May 1989
Polo 4	6488	20	18 May 1983
Polo 5	668 9	20	1중 연동상 1독등등
Polo 6	6670	20	<u> 1명 제품의 1</u> 편문문
Polo 7	6670 6691	70 20	18 May 1988
Polo 8	<u></u>		

2. GEOLOGY

Regional

The Stewart gold-silver mining district lies at the western margin of the Intermontaine Belt of volcanic and sedimentary rocks where it meets the Coast Plutonic Complex of plutonic and metamorphic rocks. Local geological elements include Triassic to Jurassic, volcanic-sedimentary rocks of the Stewart Complex, the primary host rocks to gold-silver mineralization in the region. Triassic to Tertiary, plutonic rocks of the Coast Intrusions, possible source rocks to gold-silver mineralization; and Jurassic sedimentary rocks of the Bowser Basin, cover rocks to the Stewart Complex (Figure 3).

Upper Triassic clastic sediments of the Takla Group have been metamorphosed to layered schists-cataclasites and intruded by felsic plutons; overlain by Lower Jurassic, mafic volcanics and clastic sediments of the Unuk River Formation that are metamorphosed to hornfels-schists and intruded by dioritic plugs; followed by deposition of Middle Jurassic mafic to felsic volcanics and clastic sediments of the Betty Creek and Salmon River Formations, which were intruded by felsic sills and dikes; onlapped by Upper Jurassic clastic sediments of the Nass Formation; metamorphosed to hornfels and intruded by Lower Tertiary felsic plutons of the Coast Intrusions; and capped by Quaternary flood basalts and unconsolidated deposits (Table 2).

The Stewart mining camp has been a major producer of gold (>2 million oz.), silver (>45 million oz.) and copper (>385 million lbs.) for British Columbia. Premier-Silbak, the largest gold-silver mine in the district, operated continuously from 1918 to 1968.

Several recent discoveries of gold-silver vein deposits northwest of Stewart have fueled a boom in exploration activity. Calpine Resources, Delaware Resources (1 million tons one grading 0.75 oz/ton gold, Skyline Explorations (1 million tons one grading 0.75 oz/ton gold), Newhawk Gold Mines (2 million tons one grading 0.45 oz/ton gold and 20 oz/ton silver) and Westmin Resources (10 million tons grading 0.08 oz/ton gold and 2 oz/ton silver) all have new mines now under development.

Gold-silver (copper, molybdenum) quartz veins follow narrow fractures and broad shears in Stewart Complex volcanics and sediments near felsic porphyry sills and dikes. They form part of a regional zoning from copper-rich mineralization in the west to molybdenum-bearing zones moving eastwards, and from gold-rich veins in the north to silver-dominant mineralization moving southwards.

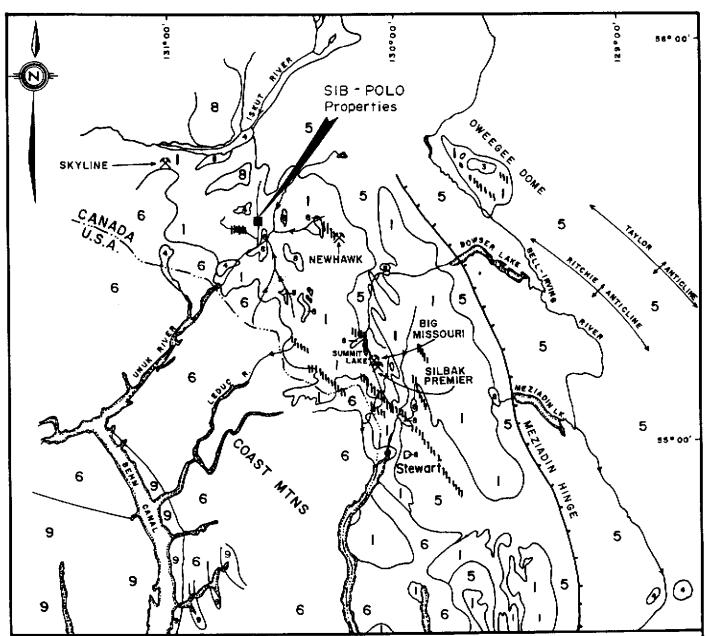
Property

The SIB-POLO properties are underlain predominantly by rocks of the Stewart Complex, including andesite, rhyolite and greywacke of the Lower Jurassic Unuk River Formation, unconformably overlain by argillite, sandstone and conglomerate of the Middle Jurassic Salmon River Formation. These rocks strike to the northeast and dip steeply northwest, along several northeast-trending fold axes, intruded by feldspar porphyry plugs, dikes and sills of Jurassic age (Figure 4).

A major northeast-trending lineament more than 10km long crosses the TOK-KAY and SIB-POLO properties marked by shearing, alteration and mineralization up to 500 metres wide. It is these pyritized, brecciated felsic rocks, variously described as rhyolite flows, tuffs and breccias or silicified replacement zones, that contain extensive, low grade, Au-Ag-Pb-Zn-Cu stockworks and localized, high grade, Au-Ag-Pb-Zu-Cu veins and Au-Ag-As-Sb-Hg pods.

Mineralization

In 1982, Ryan Explorations sampled rocks from the SIB-FOLO properties that assayed up to 0.15 oz/ton gold, 16.2 oz/ton silver, 2.40% Pb and 2.75% In. Their geochemical maps also show an old adit near the top of Prout Plateau on the SIB 8 claim.


The author made a brief visit to the area on July 14 but poor weather prevented helicopter access to most of the SIB-POLO properties. However, the prospective northeast lineament does trend across the American Fibre ground and two grab samples from the TOK-KAY claims confirmed the presence of gold-silver mineralization:

SAMPLE	TYPE	LOCATION	AU PPB	AG PPM	PB PFM	ZN PPM
KT-1	Grab	McKay Adit Dump	150	4.4	1430	1530
KT-2	Grab	Zone 21 Trench	4650	>200	3610	2910

Past work on the TOK-KAY claims of Consolidated Stikine Silver such as Premier Gold Mining's trenches at the "North End Workings" in 1936 produced results of up to 0.18 oz/ton gold over a 97 foot width. Kerrisdale Resources in 1985 drilled the Zone 21 and intersected up to 123.2 feet grading 0.044 oz/ton gold. Recent drilling of the 21 Zone by Calpine Resources intersected up to 96.5 feet grading 0.73 oz/ton Au and 242.1 ft. assaying 0.125 oz/ton Au.

Spotty high grade drill intersections have been reported by several operators (see References), typically of 0.1 - 1.0 oz/ton Au and 1.0 - 10 oz/ton Au grades over 1-20 foot widths. Limited mining was carried out in 1971 and in 1979, May Ralph Industries high-graded the Zone 22, shipping 9.65 tons ore that graded 4.21 oz/ton Au, 84.9 oz/ton Ag, 4.69% Pb and 11.50% Zn. Low grade disseminations and high grade veins of tetrahedrite, sphalerite, galena and chalcopyrite occur within broad zones of pyritized, felsic breccias.

Two different styles of mineralization have strong exploration potential on the SIB-POLO claims. Low grade, gold-silver, stockworks and disseminations appear to be stratabound, volcanogenic, vent-proximal sulfide mineralization with large tonnage potential, especially if more distal massive sulfides similar to the Calpine discovery can be located. Higher grade, crosscutting, gold-silver veins probably represent late-stage, epigenetic veining with high grade potential, particularly at the intersections of northwest and northeast-trending structures.

SEDIMENTS - VOLCANICS

- 1 STEWART COMPLEX TRIASSIC & JURASSIC
- 2 SUSTUT ASSEMBLAGE-CRETACEOUS & TERTIARY
- 5 PALEOZOIC
- 4 TERTIANY BRECENT VOLCANICS
- 5 BOWSER ASSEMBLAGE -MIDDLE JURASSIC TO UPPER JURASSIC

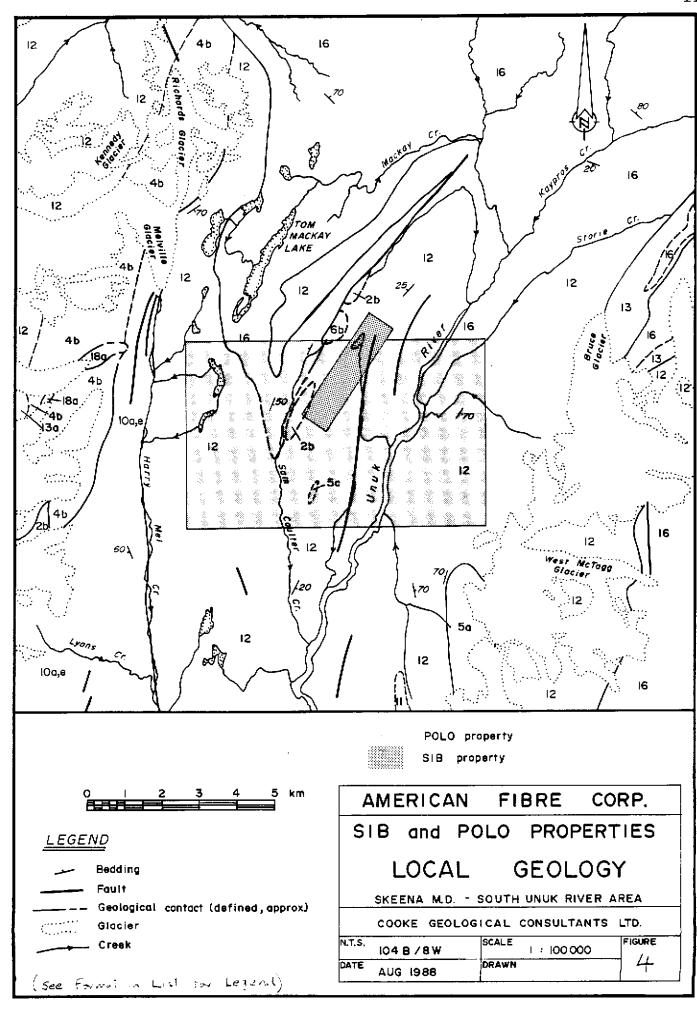
INTRUSIVES

- 6 COAST
- 7 OMINECA TOPLEY
- S SKEENA

TITL DYKE SWARMS

9 WRANGELL - REVILLAGIGEDO METAMORPHICS

AFTER: GROVE , 1970


AMERICAN FIBRE CORP. SIB and POLO PROPERTIES REGIONAL GEOLOGY

SKEENA M.D. - SOUTH UNUK RIVER AREA COOKE GEOLOGICAL CONSULTANTS LTD.

N.T. S. 1048/8W	SCALE: 1:1,000,000	FIG.
DATE: Aug 1988	DRAWN: J.R. /dw	3

TABLE 2: FORMATION LIST

PERIOD	UNIT	LITHOLOGY L	EGEND
Quaternary	Unconsolidated deposits	Fluviel, glacial sediments	20
	Volcanic Flows	Basalt	18, 19
Lower Tertiary	Coast Intrusions	Quartz diorite, granodiorite, quartz monzonite, granite	7, 8, 7
	Metamorphic Rocks	Hornfels, schist, gneiss	3
Jpp er Jurassic	Nass Formation	Mudstone, silt- stone, sandstone, conglomerate	17
Middle Jurasic	Plutonic Rocks	Granodiorite, syenodiorite, monzonite, alaskite	6
	Salmon River Formation	Siltstone, sand- stone, rhyolite, tuff	15, 16
	Betty Creek Formation	Andesite, basalt, conglomerate, sandstone	13, 14
_qwer Jurassic	Plutonic Rocks	Diorite, syenite	5
	Unuk River Formation	Andesite, tuff, sandstone, siltston	11, e 12
	Metamorphic Rocks	Hornfels, schist, gnæiss, cataclasite	2
Jpper friassic	Plutonic Rocks	Diorite, quartz diorite, grano- diorite	4
	Takla Group	Siltstone, sand- stone, conglomerate tuff	10
	Metamorphic Rocks	Schist, gneiss, cataclasite	1

3. GEOCHEMISTRY

Soils

A total of 679 soil samples were collected at 25 metre intervals along grid lines 200 metres apart. Soil holes were dug with spades, brown B-Horizon soil was placed in marked Kraft paper bags, and the samples were sent to Acme Analytical Laboratories Ltd. in Vancouver for analysis of Au by A.A. and 30 elements by I.C.P.

A number of significant anomalies were located northwest of the baseline, carrying up to 1360 ppb Au, 49 ppm Ag, 4226 ppm Pb, 358 ppm Cu, 3225 ppm Sb and 4034 ppm As. Background data show a strong north to northeast trend in As, Cu and Pb and weaker trends in Au, Ag and Sb.

Gold displays a strong northeasterly trend to the low grade anomalies, particularly from 300N 450W (45 ppb) to 2300N 425W (93 ppb), 3100N 425W (91 ppb) to 3700N 350W (26 ppb) and 700N 350E (36ppb) to 900N 400E (58 ppb). Six strong anomalies appear to be unrelated to the northeast trend, as follows (Figure 5):

500N 300W	274 ppb	1300N 300W 1360 pp
700N 225W	350 ppb	3 500N 225W 680 pp
1100N 475W	260 ppb	3700N 025E 270 pp

Silver shows an elevated background in the southwest portion of the grid, in particular from 300N to 1500N, suggesting a lithological change in that area. Two pronounced anomalies tie in with other anomalous elements at (Figure 6):

> 1300N 300W 16 ppb 2500N 175W 49 ppb

Lead exhibits a moderate north-northeasterly background trend from 300N 425E (375ppm) to 3500N 450W (213 ppm). Five other strong anomalies lie along the NNE trend, as follows (Figure 6):

1500N 125W	561 ppm	2500N 175W 4226 ppm
2300N 225W	218 ppm	2900N 300W 223 ppm
2500N 300W	385 ppm	

Copper displays a weak northeasterly trend in background values, particularly in the middle part of the grid. Four moderate spot anomalies within the background trend are as follows (Figure 5):

1100N 275W	270 ppm	1300N 300W	358 ppm
1100N 350E	222 ppm	2500N 225W	348 ppm

Antimony shows a moderate background trend in close association with arsenic going to the northeast, in particular from 700N 150W (14 ppm) to 1700N 425W (17 ppm), 1700N 150W (23ppm) to 2700N 275W (12 ppm) and 2900N 100W (25 ppm) to 3700N 150W (11 ppm). Four strong anomalies are related to this northeasterly trend, as follows (Figure 7):

1300N 300W 318 ppm 2500N 300W 121 ppm 2500N 175W 108 ppm 3700N 475W 3225 ppm

Arsenic exhibits a most pronounced background trend to the northeast, from 300N 150E (212 ppm) to 1700N 475W (263 ppm), 1700N 150W (1049 ppm) to 2700N 275W (163 ppm), and 2700N 000W (154 ppm) to 3700N 150W (458 ppm). Six other strong anomalies that lie on trend are as follows (Figure 7):

300N 125W 456 ppm 300N 075W 418 ppm 1300N 300W 4034 ppm 2500N 300W 531 ppm 2900N 100W 2672 ppm 3300N 225W 970 ppm

Rocks

In 1982, Ryan Exploration Co. Ltd. carried out a reconnaissance rock prospecting program on the SIB-POLO properties. Several rocks returned elevated values greater tha 100 ppb Au and sample 3747 assayed 3060 ppb Au, 21.6 ppm Ag, 2240 ppm Pb, 21,600 ppm Zn and 941 ppm Cu (see Figure 2).

Sediments

Ryan Exploration also sampled stream sediments on a reconnaissance scale. Several sediments also returned elevated values greater than 100 ppb Au and sample 3753 assayed 750 ppb Au, 18.5 ppm Ag, 464 ppm Pb, 469 ppm Zn and 95 ppm Cu (see Figure 2.)

4. GEOPHYSICS

PP-Magnetics

A total of 36.55km were surveyed at 25 metre intervals along grid lines 100 metres apart. A Scintrex MP2 magnetometer was used to read total field strengths and lines were surveyed in loops to correct for diurinal drift although no significant drift was observed and no corrections were necessary.

A series of magnetic highs form a strong north to northeast trend down the centre of the SIB claims, probably reflecting a more magnetic stratagraphic unit. From a base of 57,000 gammas, 5 magnetic highs are observed, as follows (Figure 8):

```
400N 225-350E to 600N 175-200E < 723 gammas 1000N 100-125E to 1400N 75W- 50E < 967 gammas 1600N 25- 50E to 2000N 25- 50W < 1020 gammas 2500N 75W-200E to 3700N 75W-175E < 1116 gammas 3300N 450-500W to 3700N 325-500W < 1093 gammas
```

VLF-Electromagnetics

Approximately 36.55km were surveyed at 25 metre intervals along grid lines 100 metres apart. A Sabre M27 electromagnetometer was used to read field strengths and dip angles relative to the Seattle station (24.8 Khz). Dip angles were fraser filtered for anomaly interpretation and raw field strengths were also plotted for assessment purposes.

Electromagnetic highs and lows form a distinct north to northeasterly trend, most pronounced in the south and west parts of the grid. From a base of 0° , 5 electromagnetic conductors were located, as follows (Figure 9):

```
200N 025E to 1700N 400W <+26° 1100N 450E to 1200N 350E <+44° 1700N 650W to 2800N 200W <+24° 1800N 175E to 2100N 100E <+28° 3400N 175W to 3600N 325W <+18°
```

5. CONCLUSION

Conclusions

- 1. The SIB and POLO properties have excellent exploration and mining potential for gold and silver ore deposits. Not only are the claims well located with respect to a major new gold discovery by Calpine Resources, they also have very strong geological, geochemical and geophysical indications of gold—silver mineralization.
- 2. The claims are located in the heart of the "hot" Iskut-Sulphurets mining district where several new gold mines are now under development, including Skyline Explorations, Delaware Resources, Newhawk Gold Mines and Westmin Resources. Recent drilling by Calpine Resources at Eskay Creek only 3 km north of the SIB-POLO claims has intersected spectacular widths and grades of gold mineralization in the 21 Zone, including 0.73 oz/ton Au over a 96.5 ft. width.
- 3. Geologically, the Calpine discovery appears to be a stratabound volcanogenic ore deposit with large tonnage and good grade potential. The same altered and mineralized rocks have been traced for more than 3 kilometres in a southwesterly direction onto the SIB and POLO claims.
- 4. Geochemistry indicates the possibility of one or more mineralized zones on the SIB claims by several strong soil anomalies assaying up to 1360 ppb Au, 49 ppm Ag, 4226 ppm Pb, 358 ppm Cu, 3225 ppm Sb and 4034 ppm As. Highly anomalous stream sediments and rock samples confirm the presence of gold and silver mineralization west of the SIB claims.
- 5. Geophysics show several strong north to north-east-trending magnetic and conductive anomalies that indicate the possibility of mineralized zones on the SIB claims. Some of these geophysical highs are coincident with anomalous soils and should be followed up.
- 6. The Phase 1 exploration program has produced several significant geochemical and geophysical anomalies that occur within rocks very similar to the Calpine discovery only 3 km to the north. An aggressive exploration program is merited at this time to further develop the claims.

REFERENCES

B.C. Minister of Mines Annual Reports	1901, p.994; 1920, p.67-68; p.49; 1933, p.61; 1934, p.830-33; 1935, p.87-11; 1939, p.A65; 1946, p.A85; 1953, p.A87-89; 1970, p.64-65
Bennett, R.C.	1936, Report on Metallurgical Tests, Silbak Premier Mines Ltd.
Bird, H.J.	1953, American Standard Mines Ltd. H.J. Bird & Co. Ltd. Investment Securities Newsletter.
Cooke, B.J.	1988, Report on the SIB and POLO properties near Stewart, British Columbia for American Fibre Corporation, Company Report, 17pp.
Dirom, G.A.	1935, Report on Unuk Group, Premier Gold Mining Co. Ltd.
	1937, Various telegrams to B.F. Smith, Premier Gold Mining Co. Ltd.
Gasteiger - Peatfield, G.R.	1973 Report on the Geophysical Surveys and supporting work near Tom MacKay Lake, Texasgulf Canada Ltd. Assessment Report #5683
George, R.H.	1983, Geochemical Report, Sib 1-16 claims, Ryan Exploration Co., Ltd.
Guess, H.A.	1936 Letter to B.F. Smith, Premier Gold Mining Co. Ltd., American Smelting & Refining Co. Ltd.
Haggen, E.A.	1929 Iskut-Stikine District largest mineralized area tributary to North American Pacific coast, Vancouver Province Jan. 13, 1919.
Harris C.R.	1980, Report on the Eskay Creek Property, Stikine Silver Ltd.
	1985, Report on Kay and Tok claims, Eskay Creek, Unuk River, B.C., Kerrisdale Resources

Kuran, V.M.	1985, Assessment Report on the Unuk River Property Kay, Tok and GNC claims, Kerrisdale Resources Ltd.
MacKay	1939, Report of Operations, Unuk River area, MacKay Gold Mines Ltd.
Norman, G.W.H.	1972, Letter to R.F. Sheldon re: Stikine Silver, Lat. 56°30', Long. 130°28', Newmont Mining Corp. of Canada Ltd.
Panteleyev, A.	1976, Kay (Eskay Creek Property), Geology in B.C.
Schink, E.A.	1976 Report on Diamond Drilling Program - Sib, Tok Kay claims, Texasgulf Canada Ltd. Assessment Report #6075
	1976, Final drilling report on the Sib, Kay and Tok claims, Texasgulf Canada Ltd.
Seraphim, R.H.	1983, Tok and Kay claims, Stikine Silver Ltd.
Skerl, A.C.	1963, Unuk River Property, Western Resources Ltd.
Smith, B.F.	1936, 1937 Three Letters to H.A. Guess at American Smelting & Refining Co., Premier Gold Mining Co. Ltd.
Starck, L.P.	1964, Correspondence W.C. Gibson, Giant Mascot Mines Ltd.
Thomson, D.R.S.	1973, Geology and Testing Report, Kalco Valley Mines Ltd.
Thompson, W.D.	1964, Exploration - Stikine Silver Property Unuk River, B.C. Stikine Silver Ltd.

Warren, H.V. Cummings, J.M. 1950, Mineralogy of the Unuk Gold Group. The Miner, August 1950.

QUALIFICATIONS

I, Bradford J. Cooke, am a professional geologist with a consulting business, Cooke Geological Consultants Ltd., located at Suite 107 - 325 Howe Street, Vancouver, B.C. V6C 127.

I obtained a B.Sc. Honours Geology degree at Queen's University, Kingston, Ontario in 1976 and completed a M.Sc. Geology degree at the University of British Columbia, Vancouver, B.C. in 1984.

I have worked in mineral exploration, both seasonally and full-time, since 1975 and have performed geological field work since 1973.

I am a Fellow of the Geological Association of Canada, a Member of the Canadian Institute of Mining and Metallurgy, a Member of the Prospectors and Developers Association of Canada, and a Member of the B.C.~Yukon Chamer of Mines.

I personally reviewed the historical literature on SIB and POLO and made a brief visit to the property on July 14, 1988.

I have no interest, nor do I expect to receive any interest, in the securities or proeprties of American Fibre Corp.

I consent to the inclusion of this report in a Prospectus or other qualifying documents for the purpose of raising funds through the Vancouver Stock Exchange or other financial institutions.

Bradford J. Cooke Cooke Geological Consultants Ltd. November 18, 1988

APPENDIX I

ASSAY CERTIFICATES

Chemex Labs Ltd

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V73-2C1

PHONE (604) 984-0221

To: AMERICAN FIBRE CORP.

107 - 325 HOWE ST. VANCOUVER, BC V6C 1Z7

Comments:

A8819116

CERTIFICATE A8819116

AMERICAN FIBRE CORP.
PROJECT : AF#88P
P.O.# : NONE

Samples submitted to our lab in Vancouver, BC. This report was printed on 25-JUL-88.

U IATT.	LE	PREPARATION
NUMBER AMPLES		DESCRIPTION
4	Rock	Geochem: Crush, split, ring
4	ICP:	Aqua regia digestion
İ		
	amples 4	AMPLES 4 Rock

* NOTE 1:

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Ti, W.

ANALYTICAL PROCEDURES

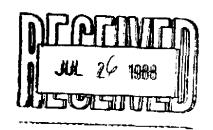
CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
100	4	Au ppb: Fuse 10 g sample	FA-AAS	5	10000
921	4	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
922	4	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
9 2 3	4	As ppm: 32 element, soil & rock	ICP-AES	5	1000
924	4	Ba ppm: 32 element, soil & rock	ICP-AES	10	1000
925	4	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
926	4	Bi ppm: 32 element, soil & rock	ICP-AES	2	1000
927	4	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.0
928	4	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.
929	4	Co ppm: 32 element, soil & rock	ICP-AES	1	1000
930	4	Cr ppm: 32 element, soil & rock	ICP-AES	1	1000
931	4	Cu ppm: 32 element, soil & rock	ICP-AES	i	1000
932	4	Pe %: 32 element, soil & rock	ICP-AES	0.01	15.0
933	4	Ga ppm: 32 element, soil & rock	ICP-AES	10	1000
951	4	Hg ppm: 32 element, soil & rock	ICP-AES	1	1000
934	4	K %: 32 element, soil & rock	ICP-AES	0.01	10.0
935	4	La ppm: 32 element, soil & rock	ICP-AES	10	1000
936	4	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.0
937	4	Mn ppm: 32 element, soil & rock	ICP-AES	i	1000
938	4	Mo ppm: 32 element, soil & rock	ICP-AES	i	1000
939	4	Na %: 32 element, soil & rock	ICP-AES	0.01	5.0
940	4	Ni ppm: 32 element, soil & rock	ICP-AES	1	1000
941	4	P ppm: 32 element, soil & rock	ICP-AES	10	1000
942	4	Pb ppm: 32 element, soil & rock	ICP-AES	2	1000
943	4	Sb ppm: 32 element, soil & rock	ICP-AES	5	1000
958	4	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
944	4	Sr ppm: 32 element, soil & rock	ICP-AES	1	1000
945	4	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.0
946	4	Tl ppm: 32 element, soil & rock	ICP-AES	10	1000
947	4	U ppm: 32 element, soil & rock	ICP-AES	10	1000
948	4	V ppm: 32 element, soil & rock	ICP-AES	1	1000
949	4	W ppm: 32 element, soil & rock	ICP-AES	5	1000
950	4	Zn ppm: 32 element, soil & rock	ICP-AES	1	1000

Chemex Labs Ltd

212 BROOKSBANK AVE. NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2CI

PHONE (604) 984-0221

To: AMERICAN FIBRE CORP.


107 - 325 HOWE ST. VANCOUVER, BC V6C 1Z7

Project : AF88SP Comments: **Page No. :1-A Tot. Pages: 1

Date :25-JUL-88 Invoice #:I-8819116 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8819116

SAMPLE	PREP	Au ppb	A1	Ag	As	Ba	Be	Bi	Ca	Cd	Co	Çr	Çu	Pe	Ga	Pļa	К	L _a	Mg	Min
DESCRIPTION	CODE	FA+AA	%	Þ p m	Ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	P	%		%	ppm
KT 2 (1000)/ T 1 (120)	205 238 205 238 205 238 205 238	50	0.57 0.25 0.21 0.43	3.8 1.4	45 45 4 5 4 5	90	< 0.5 < 0.5 < 0.5 0.5	6 4 4 4	< 0.01	6.0 11.0 > 29 1.5	2 < 1 7 12	53 51 67 23	15 20 19	1.71 F 0.70 2.48 8.77	10 < 10 < 10 < 10	4 5 < 1	0.20 0.18 0.01 0.09	20 10 < 10 10	0.43 0.02 0.58 0.18	129 17 962 216

CERTIFICATION :

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: AMERICAN FIBRE CORP.

107 - 325 HOWE ST. VANCOUVER, BC V6C 1Z7

Project : AF88SP

Comments:

**Page No. : I=B Tot. Pages: I

Date : 25-JUL-88 Invoice #: I-8819116 P.O. #: NONE

CERTIFICATE OF ANALYSIS A8819116

SAMPLE DESCRIPTION	PRE		Mo ppm	Na %	Ni ppm	P ppm	Рь	Sp prm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	w ppm	Zn ppm
KT 1 KT 2 T 1 T 2	205 205 205 205 205	238 238	12 <	0.01 0.01 0.01 0.03	< 1 < 1 < 1 7	60 30 250	50	10 < 5 < 5	< 1 < 1 2 2 2	1 < 70 <	< 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	< i 4 16	5 25 26 70	126
		i														
		ļ														
												,				JUL 26 1988

CERTIFICATION

RC-6

RECOMMENDATIONS

- 1. A two phase \$270,000 work program is proposed to explore the SIB and POLO properties. Phase 1 calls for a \$100,000 expenditure over a two month period for extended surface exploration. Phase 2, contingent upon the success of Phase 1, would require \$170,000 over a two month period for diamond drilling of prospective zones.
- 2. Phase 1 surface exploration includes 200 km of airborne geophysics and 40 km of rock prospecting on the POLO claims, 40 km of geological mapping on the SIB claims, 20 km of fill-in soil sampling on the SIB claims and 200m of dynamite trenching. These techniques have proven useful for discovering gold on the Eskay Creek property of Calpine Resources immediately to the north.
- 3. Phase 2 diamond drilling includes 1000m of NQ core drilling to test the best mineralized targets. A small, portable JKS 300 drill or equivalent is recommended for the job.

Budget

PHASE I

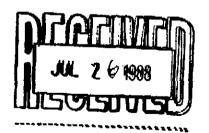
Mobilization/Demobilization Airborne Geophysics Rock Prospecting Line Cutting Outcrop Mapping Soil Sampling Geochemical Analyses Dynamite Trenching Helicopter Support Supervision and Report Miscellaneous and Contingencies	\$ 2,500.00 30,000.00 10,000.00 5,000.00 5,000.00 10,000.00 10,000.00 10,000.00 5,000.00
Sub-Total	\$100,000.00
PHASE II	
Mobilization/Demobilization	\$ 5,000.00
Diamond Drilling	100,000.00
Core Logging Core Assaying	5,000.00
Helicopter Support	20,000.00
Supervision and Report	10,000.00
Miscellaneous and Contingencies	20,000.00
Sub-Total	\$170,000.00
GRAND TOTAL	\$270,000.00

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVB., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: AMERICAN FIBRE CORP.

107 - 325 HOWE ST. VANCOUVER, BC V6C 1Z7


Project : AF##SP Comments: **Page No. : 1-A Tot. Pages 1

Date :25-JUL-88 Invoice #: I-8819116

P.O. # :NONB

CERTIFICATE OF ANALYSIS A8819116

	SAMPLE SCRIPTION	PRI COI		Au ppb PA+AA	A1	•	As ppm	Ва ррт	Be ppn	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Çı ppm	Pe %	Ga ppm	Hg ppm	K %	La ppm	М <u>в</u> %	Ma ppm
KI		203	238	150	0.57	4.4	135	20	< 0.5	6	0.01	6.0	2	53	15	1.71	10	4	0.20	20	0.43	129
KI	2	205	238	46 50	0.25	>200	230	90	< 0.5	4 <	10.0	11.0	< I	5 L	552	0.70	< 10	65	O. 18	10	0.02	17
hr i	l	205	238	50	0.21	3.2	< 5	250	< 0.5	4	3.64	>99.9	7	67	20	2.48	< 10	5	0.01	< 10	0.58	942
T:	2	205	238	25	0.43	1.4	< 5	30	0.5	4	0.29	1.5	12	23	19	8 .77	< 10	< 1	0.09	10	0.18	216

CERTIFICATION :

Chemex Labs Ltd.

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: AMERICAN FIBRE CORP.

107 - 325 HOWE ST. VANCOUVER, BC V6C 1Z7

Project : APSSP

Commenta:

**Page No. :1=B Tot. Pages:1 Date :25=JUL=88 Invoice #:I=8819116 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8819116

SAMPLE DESCRIPTION	PRE		Mo ppm	Na. 96	Ni ppm	P	Pb ppm	Sb ppm	Se ppm	Sr ppm	Tí %	Ti	υ pp m	bb m ∧	pim W	Za ppm
KT 1 KT 2 T 1 T 2	205 205 205 205 205	238 238	3 12 1 2	10.0 > 10.0	< 1 < 1 < 1 7	60 30 250 1250	1430 3610 2300 50	10 470 < 5 < 5	< ! < 1 < 2 2 2	1 · 70 ·	< 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	1 < 1 4 16	\$ 25 890 70	1530 2910 9740 126
																JUL 2 6 1988

CERTIFICATION :

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HMO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: SOII -80 Mesh AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

STATE 1.5 1.	DATE F	RECE1	VED	: #	OV 1 1	968	DATI	E RI	POR	T MA	ILE	D:	Λ/ο	V 4	100		SIG	NED	BY.	// . .:. /	<u>-</u>	∵]	D. 70Y!	K, C.LE	ONG, 8	. CHAN,	J. VAN	G; CER	TIPIED	B.C.	ASSATI	IRS
The control of the										AMI	ERIC	AN E	TIBR	E	Fi	le #	88	-561	.9	Pá	age	1										
STATEMEN ACCOUNTY	SAMPLE#											_																			-	
1277-1068 (1-258) 1 30 107 107 107 107 107 107 107 107 107 10	137-00N 4+75W	8	14	27	95	, 9	4	3	390	11.68	-	5	ND	7	3	1	2	2	43	.04	.026				10	.24	8	3.49			1	7
Extraction	537+00N 4+50W							7						•	,	1	-														_	19
13-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-												_		-	_	1	_	_													_	
Control Cont														-	-	i		Ĺ													-	
121-000 1-200 1-	137+DUM 3+75W	<i>-</i>	10	υ	107	٠,	Þ	7	156	1.39	0	,	MU	1	24	1	•	4	51	. 23	.004	13	.1	. 41	5:	-11	+	1.00	. 1/8	- 10	1	1
121-000 1-200 1-	1.37+008 3+50%	· (21	34	147	. 2	24	12	3135	6.57	14	5	NĐ	1	15	1	2	2	52	.25	.134	16	23	.54	133	.04	3	2.31	.02	.13	1	26
\$\frac{\frac{1}{2}\trace{1}{2}\trace{2}\trace{3}\trace{1}{2}\trace{3}\trace{1}{2}\trace{3}\trace{1}{2}\trace{3}\trace{1}{2}\trace{3}\trace{1}{2}\trace{3}\trace{1}{2}\trace{3}\trace{1}{2}\trace{3}\trace{3}\trace{1}{2}\trace{3}\trace{3}\trace{3}\trace{1}{2}\trace{3}\tracee3\trace{3}\trace{3}\trace{3}\trace{3}\trace{3}\trace{3}\trace{3}\trace{3}\trace{3}\trace{3}\trace{3}\trace{3}\trace{3}\trace{3}\							-					5		1		1	2	2													:	
\$\\ \begin{array}{cccccccccccccccccccccccccccccccccccc	537+00N 3+63W	1	56	13	117	.7	9	11			34	5	ND	1	25	:	2	3	110	.35	.080	8	11	. 28	110	.16	5	1.20	.05	. 39	ī	3
127-008 2-298 1 33 13 113 .6 9 9 274 6.90 10 5 80 2 44 1 2 2 142 .80 .096 26 25 .66 34 .75 3 4.65 .07 .09 1 1 337-008 2-208 1 32 .70 .80 1 1 22 .7 82 .5 13 13 7.8 7.90 21 5 80 4 40 1 2 2 120 .46 .895 14 32 .78 50 .66 4 5.41 .14 .13 1 .9 127-008 2-208 2 32 .2 16 2 .5 6 5 115 3.98 57 5 80 1 7 7 1 2 2 33 .15 .074 9 21 .55 37 .12 3 .20 .00 .00 .04 1 13 13 .70 .00 21 5 80 1 1 1 1 1 1 1 2 13 .15 .074 9 21 .55 13 .12 .20 .00 .00 .04 1 13 13 .70 .00 21 .5 80 1 1 7 1 2 2 33 .15 .074 9 21 .55 37 .12 3 .20 .00 .00 .00 4 1 13 13 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12	L37+00% 2+75%	2	59	45	154	6.3	14	31	3565	10.33	92	5	ND	1	10	1	2	Ż	97	.10	.140	19	29	. 27	108	. 09	3	2.52	.01	.11	1	17
\$\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac	637+00% 1+50%	1	41	4 i	127	1.3	11	13	1925	9.14	41	5	NĐ	1	21	1	2	4	152	.23	.174	9	30	. 10	48	. 39	5	3.10	.06	.10	1	. 4
\$\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac	137.00W 7475W	ī	11	13	117		Ġ	q	771	6 90	10	5	ND	,	24	•	2	2	142	3.0	096	26	25	66	34	75	3	4 65	N7	ng	;	1
1274-008 1-758		_					-	_				_		į		Ī	_	2													•	_
127-008 1-55W 2 101 34 138 .7 13 36 368 PLZ-66 488 5 MO 1 14 1 11 2 113 22 161 6 35 1.07 51 .25 5 3.67 .42 .05 1 5 127-008 1-258 2 5 1 20 101 .5 12 5 377 9.91 21 5 MO 3 18 1 2 3 165 .19 .092 9 34 .60 30 .76 4 2.84 .05 .10 1 2 2 127-008 1-258 2 2 127-008 1-258 2 2 128 .05 .10 .10 1 2 2 127-008 1-258 2 2 128 .05 .10 .10 1 2 2 127-008 1-258 2 2 128 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10														-		1	-	_													1	13
127-008 1-258						.7	13	_				5		ī	11	1	11	2							51	.25					_	5
127+00M 1-75W	137+00H 1+35W	2	51	20	101	. 5	12	5	377	9.91	21	5	HD	3	18	1	2	3	165	.19	.092	9	34	.60	30	.76	4	2.84	.05	.10	1	2
127+00M 1-75W	1.47+000 1+400	1	122	24	167	1.4	16	4 á	9061	7.13	36	5	άN	1	33	1	2	2	84	.44	. 180	10	35	.71	166	.10	2	2.81	. 87	. 08	1	23
1 25 24 111 1.1 1.5 19 2514 5.11 2.5 19 2514 5.11 2.5 19 2514 5.12 2.5 5 MD 1 73 1 2 3 107 .32 .086 10 20 1.13 180 .38 5 2.11 .23 .16 1 2 121-100 10-150 1.3 19 55 212 2.8 17 31 1812 9.99 96 5 MD 1 27 1 3 2 97 .15 .009 23 33 .66 68 .34 2 4.59 .04 .06 1 31 131 131 131 131 131 131 131 131 1												_		Ī		i	2	_				•									2	1
127-60K 0-25K 3 129 55 212 2.8 17 31 1562 9.99 96 5 KD 1 27 1 3 2 97 .35 .069 20 33 .66 68 .34 2 4.59 .04 .06 1 31 117-00X 0-00K 3 73 89 17; .7 23 11 436 6.42 73 5 MD 1 47 1 2 2 74 .55 .111 21 32 .81 123 .09 6 2.66 .05 .66 1 28 137-00K 0-151 2 110 35 267 2.6 22 26 1475 7.62 41 5 KE 1 37 1 3 2 53 .55 .141 13 22 1.15 115 .04 4 2.63 .05 .11 1 20 127-00K 0-151 2 147 44 .51 1.3 17 10 217 3.05 3 5 ND 1 73 3 2 2 37 123 .11 6 12 .62 83 .10 3 1.34 .08 .14 1 31 1.3 17 10 217 3.05 3 5 ND 1 73 3 2 2 37 123 .11 6 12 .62 83 .10 3 1.34 .08 .14 1 31 1.3 17 10 217 3.05 3 5 ND 1 73 3 2 2 37 123 .11 6 12 .62 83 .10 3 1.34 .08 .14 1 31 1.3 17 10 217 3.05 3 5 ND 1 73 3 2 2 37 123 .11 6 12 .62 83 .10 3 1.34 .08 .14 1 31 1.3 17 10 217 3.05 3 5 ND 1 73 3 2 2 37 123 .11 6 12 .02 103 .02 5 2.8 .02 .11 1 10 12 127-00K 1-02K 1												5	ND	1	73	1	2	3	107	.32	.086	10	20	1.13	180	.38	5	2.11	. 23	.16	ı	2
LS7-60N 6-257 2 110 55 267 2.6 22 26 1475 7.62 41 5 NC 1 37 1 3 2 53 .55 .141 13 22 1.05 115 .04 4 2.63 .05 .11 1 270 127-60N 6-257 2 1 47 41 191 1.3 17 10 217 3.05 3 5 NC 1 37 1 3 2 2 37 1.23 .111 6 12 .62 83 .10 3 1.34 .08 .14 1 31 1.37 10 127 3.05 3 5 NC 1 25 2 4 2 47 .41 .157 11 22 1.20 103 .02 5 2.38 .02 .11 1 102 127-60N 1-20R 2 153 105 345 2.8 12 15 2427 3.51 59 5 ND 1 36 3 8 2 46 .63 .162 13 24 1.12 150 .01 7 2.43 .01 .11 1 158 127-60N 1-20R 2 15 2 17 7 213 1.7 19 18 553 8.55 54 5 NC 1 12 1 3 3 49 .20 .120 12 22 1.04 51 .01 4 2.65 .01 .10 1 11 1 158 127-60N 1-258 2 1 18 29 117 .5 8 5 252 4.43 9 5 ND 1 27 1 2 2 113 .36 .03 4 9 17 .25 55 .43 5 1.03 .06 .19 1 15 .137-60N 1-258 2 1 18 29 117 .5 8 5 252 4.43 9 5 ND 2 1 27 1 2 2 113 .36 .03 4 9 17 .25 55 .43 5 1.03 .06 .19 1 15 .137-60N 1-258 2 1 18 29 117 .5 8 5 252 4.43 9 5 ND 2 1 12 1 3 3 3 49 .20 .120 12 22 1.04 51 .01 4 2.65 .01 .10 .10 1 210 12 12 12 12 12 12 12 12 12 12 12 12 12		3	119	55	212	2.8	17	31	1562	9.93	95	5	ND	1	27	1	3	2	97	. 26	.089	20	33	.66	68	.34	2	4.59	. 34	-06	1	31
\$\frac{1}{127\cdots} = \frac{1}{127\cdots} =	137+00N 5+00W	3	73	69	173	.7	23	17	436	5.42	73	5	ND	1	47	i	2	2	74	.55	.11i	21	32	. 81	123	.03	6	2.60	.05	.08	1	28
\$\frac{1}{127\cdots} = \frac{1}{127\cdots} =	137+23% A+757	2	110	35	267	7.6	22	76	1475	7.62	41	5	ЖE	1	37	1	3	2	5.3	. 55	.141	13	22	1.15	115	. 04	4	2.63	. 05	. 11	1	270
E37+00H 1-752														ī		3	2	2													ì	53
L27+CON 1+25E		2	124	83	265	2.5	28	27	1330	7.86	46	5	NC	1	25	2	4	2	47	.41	.157	11	22	1.20	103	.02	5	2.38	. 02	.11	1	102
L37+00N 1+508 1 18 29 117 .5 8 5 252 4.43 9 5 ND 1 27 1 2 2 113 .36 .694 9 17 .35 55 .43 5 1.93 .36 .39 1 15 L37+00N 1+752 2 15 22 81 .4 6 3 110 4.10 22 5 MC 2 14 1 2 3 128 .11 .039 8 13 .19 48 .46 4 1.54 .01 .06 1 13 L37+00N 2+003 5 12 21 .96 1.3 9 3 140 6.13 24 5 MD 1 11 1 2 2 76 .15 .072 13 22 .16 58 .11 7 2.64 .01 .08 1 1 L37+00N 2+502 2 18 23 104 .8 14 6 340 5.63 22 5 MD 1 10 1 2 2 81 .11 .059 8 21 .28 64 .04 4 2.07 .02 .09 1 1 1 L37+00N 2+502 1 32 13 135 .1 10 12 1353 9.21 24 5 ND 1 6 1 2 3 39 .08 .08 6 7 .16 61 .01 3 1.57 .01 .00 1 1 L37+00N 2+502 1 32 13 135 .1 10 12 1353 9.21 24 5 ND 1 6 1 2 3 39 .08 .08 6 7 .16 61 .01 3 1.57 .01 .00 1 1 L37+00N 2+502 1 2 1 2 3 39 .08 .08 6 7 .16 61 .01 3 1.57 .01 .00 1 1 1 L37+00N 2+502 1 2 1 2 3 39 .08 .08 6 7 .16 61 .01 3 1.57 .01 .00 1 1 1 L37+00N 2+502 1 2 1 2 3 39 .08 .08 6 7 .16 61 .01 3 1.57 .01 .00 1 1 1 L37+00N 3+502 1 2 1 2 2 2 49 .21 .057 4 9 .09 80 .03 3 .85 .01 .08 1 1 L37+00N 3+502 1 2 1 2 3 39 .08 .08 6 7 .16 61 .01 3 1.57 .01 .00 1 1 1 L37+00N 3+502 1 2 1 1 1 1 2 2 2 49 .21 .057 4 9 .09 80 .03 3 .85 .01 .08 1 1 L37+00N 3+502 1 2 1 1 1 1 2 1 2 2 66 .03 .66 3 3 .66 3 3 .65 .01 .08 1 1 L37+00N 3+502 1 2 1 1 1 8 1 2 2 2 66 .03 .66 3 3 .66 3 3 .65 .01 .08 1 1 1 L37+00N 1+752 1 2 1 1 1 81 .2 9 9 264 3.35 22 5 ND 1 2 1 2 1 2 3 94 .21 .053 10 12 .27 81 .07 5 1.41 .04 .08 1 1 1 L37+00N 1+752 1 2 1 11 81 .2 9 9 264 3.35 22 5 ND 1 2 1 2 1 2 1 2 3 94 .21 .063 10 12 .27 81 .07 5 1.41 .04 .08 1 1 1 L37+00N 1+752 1 2 1 11 81 .2 9 9 264 3.35 22 5 ND 1 2 1 2 1 2 1 2 3 94 .21 .063 10 12 .27 81 .07 5 1.41 .04 .08 1 1 1 L37+00N 1+752 1 2 1 11 81 .2 3 109 .2 16 17 1039 3.77 39 5 ND 1 5 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	137+00W 1+00B	2	150	105	315	2.8	33	35	2427	3.31	59	5	NĐ	1	3á	3	a	2	46	. 63	.162	13	24	1.12	150	10,	?	2.41	.01	.11	t	158
L37+00N 1+75E 2 15 22 61 .4 6 3 110 4.10 22 5 MC 2 14 1 2 3 128 .11 .039 8 13 .19 48 .46 4 1.54 .01 .06 1 13 127+00N 2+008 5 12 21 96 1.3 9 3 140 6.13 24 5 MD 1 11 1 2 2 76 .15 .072 13 22 .16 58 .11 7 2.64 .01 .08 1 1 137+00N 2+25E 2 18 23 104 .8 14 6 340 5.63 22 5 MD 1 10 1 2 2 81 .11 .059 8 21 .28 64 .04 4 2.07 .02 .09 1 1 137+00N 1+50E 1 33 13 135 .1 10 12 1353 9.21 24 5 MD 1 6 1 2 3 39 .08 .08 6 7 .16 61 .01 3 1.57 .01 .08 1 1 1 127+00N 1+50E 1 21 12 9 7 .2 20 7 547 4.91 18 5 MD 1 6 1 2 2 49 .21 .057 4 9 .09 80 .03 3 .55 .01 .08 1 1 1 127+00N 3+00E 1 21 12 9 7 .2 20 7 547 4.91 18 5 MD 1 34 1 2 2 66 .03 .664 3 21 .23 58 .01 6 2.24 .01 .09 1 1 127+00N 3+00E 1 21 14 93 .4 42 7 465 3.50 15 5 MD 1 34 1 2 2 5 7 .17 .052 10 46 1.04 63 .05 5 2.16 .04 .06 1 2 437450N 1+50E 1 3 15 53 .6 5 3 75 2.40 3 5 MD 1 34 1 2 2 125 .05 .028 10 14 .10 33 .48 4 1.08 .01 .04 .08 1 1 1 127+00N 1+75Z 1 21 11 81 .2 9 9 264 3.35 22 5 ND 1 22 1 2 1 3 94 .21 .363 10 12 .27 81 .07 5 1.41 .04 .08 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L21+CON 1+23E	2	E7	77	213	1.7	19	18	553	8.55	54	5	Nī	1	12	1	3	3	49	.20	.120	13	22	1.04	51	, D1	4	2.65	. D1	-10	1	210
L37+00N 1+75Z 2 15 22 61 .4 6 3 110 4.10 22 5 NC 2 14 1 2 3 128 .11 .039 8 13 .19 48 .46 4 1.54 .01 .06 1 13 127+00N 2+00S 5 12 21 96 1.3 9 3 140 6.13 24 5 ND 1 11 1 2 2 76 .15 .072 13 22 .16 58 .11 7 2.64 .01 .08 1 1 137+00N 2+25E 2 18 23 104 .8 14 6 340 5.63 22 5 ND 1 10 1 2 2 81 .11 .059 8 21 .28 64 .04 4 2.07 .02 .09 1 1 137+00N 2+50E 1 33 13 135 .1 10 12 1353 9.21 24 5 ND 1 6 1 2 3 39 .03 .088 6 7 .16 61 .01 3 1.57 .01 .08 1 1 1 1 1 2 2 49 .21 .057 4 9 .09 80 .03 3 .55 .01 .08 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	137+00N 1+30R	1	1.8	29	117	. 5	3	5	252	4.43	3	5	ND	1	27	1	2	2	113	.36	. 694	9	17	. 35	55	.43	5	1.93	. 16	. 29	1	15
1 27+00N 2+085 5 12 21 96 1.3 9 3 140 6.13 24 5 ND 1 11 1 2 2 76 .15 .072 13 22 .16 58 .13 7 2.64 .01 .08 1 1 237+00N 2+258 2 18 23 104 .8 14 6 340 5.63 22 5 ND 1 10 1 2 2 81 .11 .059 8 21 .28 64 .04 4 2.07 .02 .09 1 1 137+00N 2+502 1 33 13 135 .1 10 12 1353 9.21 24 5 ND 1 6 1 2 3 39 .03 .088 6 7 .16 61 .01 3 1.57 .01 .08 1 1 1 1 1 2 2 49 .21 .25 .05 .02 .09 .00 .00 1 .00 1 3 1.57 .01 .08 1 1 1 1 1 2 2 49 .21 .25 .05 .00 .00 .00 3 3 .55 .01 .08 1 1 1 1 1 2 2 49 .21 .25 .05 .00 .00 .00 .00 .00 .00 .00 .00 .0							6	3				5	NC	2	14	1	2	3	128	.11	.039	8	13	. 19	48	. 46	4	1.51	. 01	. 06	1	13
L37+CON 1+25E 2 18 23 104 .8 14 6 340 5.63 22 5 ND 1 10 1 2 2 81 .11 .059 8 21 .28 64 .04 4 2.07 .02 .09 1 1 137+CON 1+50E 1 33 13 135 .1 10 12 1353 9.21 24 5 ND 1 6 1 2 3 39 .08 .08 6 7 .16 61 .01 3 1.57 .01 .08 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5					9	3	140		24	5	MD	1	11	1	2	2	75	. 15	.072	13	22	.16	58	.11	7	2.61	.CI	. 0 B	1	1
L37+60N 1+50E 1 33 18 135 .1 10 12 1958 9.31 24 5 ND 1 6 1 2 3 39 .08 .08 6 7 .16 61 .01 3 1.57 .01 .08 1 1 L37+60N 2+55E 1 67 7 182 .1 15 5 271 1.49 17 5 ND 1 1 1 2 2 49 .21 .057 4 9 .69 80 .03 3 .85 .01 .08 1 1 L37+0N 3+65E 1 12 14 93 .4 42 7 465 3.50 15 5 ND 1 5 1 2 2 66 .03 .664 3 21 .23 58 .01 6 2.24 .01 .09 1 1 L37+0N 1+50E 1 3 15 53 .6 5 3 75 2.40 2 5 ND 1 34 1 2 2 125 .05 .028 10 14 .10 33 .48 4 1.08 .04 .06 1 2 L37+0N 1+75Z 1 21 11 81 .2 9 9 264 3.35 22 5 ND 1 22 1 2 3 94 .21 .363 10 12 .27 81 .07 5 1.41 .04 .08 1 1 L57+0N 1+75Z 2 51 23 109 .2 16 17 1209 3.47 30 5 ND 1 5 1 2 1 58 .04 .155 15 15 .55 .55 .51 2 1.31 .01 .99 1 4		2		23	104	. 3	14	8	340	5.63	21	5	MD	1	10	1	2	2	81	.11	.859	B	21	. 28	54	. 04	4	2.07	.02	. D9	1	1
L37+10N 3-50E 1 21 12 97 .2 20 7 547 4.90 19 5 ND 1 5 1 2 2 66 .03 .664 3 21 .33 58 .01 6 2.24 .01 .09 1 1 L27+10N 3-55E 1 12 14 93 .4 42 7 465 3.50 15 5 ND 1 34 1 2 1 57 .17 .051 10 46 1.04 63 .05 5 2.16 .04 .08 1 2 407+10N 1-50E 1 3 15 53 .6 5 3 75 2.40 2 5 ND 1 9 1 2 2 125 .05 .029 10 14 .10 33 .48 4 1.08 .01 .04 1 1 L27+00N 1-75Z 1 21 11 81 .2 9 9 264 3.35 22 5 ND 1 22 1 2 3 94 .21 .063 10 12 .27 81 .07 5 1.41 .04 .08 1 1 4 507+20N 1-75Z	137+00N 1+50E	1	33	19	135	.1	10	12	1953	9.31	24	í	ND	1	é	1	2	3	39	.03	.008	Ó	?	.16	61	.01	3	1.57	.01	.08	1	1
L37+10N 3-50E 1 21 12 97 .2 20 7 547 4.90 19 5 ND 1 5 1 2 2 66 .03 .664 3 21 .33 58 .01 6 2.24 .01 .09 1 1 L27+10N 3-55E 1 12 14 93 .4 42 7 465 3.50 15 5 ND 1 34 1 2 1 57 .17 .051 10 46 1.04 63 .05 5 2.16 .04 .08 1 2 407+10N 1-50E 1 3 15 53 .6 5 3 75 2.40 2 5 ND 1 9 1 2 2 125 .05 .029 10 14 .10 33 .48 4 1.08 .01 .04 1 1 L27+00N 1-75Z 1 21 11 81 .2 9 9 264 3.35 22 5 ND 1 22 1 2 3 94 .21 .063 10 12 .27 81 .07 5 1.41 .04 .08 1 1 4 507+20N 1-75Z	1,37+908 3+755	•	5?	•	182	.1	15	5	271	1,49	17	5	ND	:	11	1	ż	2	19	. 21	. 557	4	9	. 69	80	. 33	3	. 65	.01	.08	1	1
LETHING 3+158 12 14 93 14 42 7 465 3.50 15 5 ND 1 34 1 2 1 57 .17 .051 10 46 1.04 63 .05 5 2.16 .04 .06 1 2 407+10N 1+30E 1 3 15 53 .6 5 3 75 2.40 2 5 ND 1 9 1 2 2 125 .05 .028 10 14 .10 33 .48 4 1.08 .01 .04 1 1 LETHING 1+75Z 1 21 11 81 .2 9 9 264 3.35 22 5 ND 1 22 1 2 3 94 .21 .063 10 12 .27 81 .07 5 1.41 .04 .08 1 1 4 57+10N 1+75Z 2 51 23 109 .2 16 17 1209 3.77 30 5 ND 1 5 1 2 1 5 8 .04 .155 15 15 .15 .75 .31 2 1.33 .01 .09 1 4		:		i P				7						1		1	2	2					31								1	
407+50N 1-50E 1 3 15 53 .6 5 3 75 2.40 2 5 ND 1 9 1 2 2 125 .05 .028 10 14 .10 33 .48 4 1.08 .01 .04 1 1 L27+00N 1-75Z 1 21 11 81 .2 9 9 264 3.35 22 5 ND 1 22 1 2 3 94 .21 .063 10 12 .27 81 .07 5 1.41 .04 .08 1 1 457+00M 1-75Z 2 51 23 109 .2 16 17 1209 3.47 30 5 ND 1 5 1 2 2 5 8 .04 .155 15 15 .15 .75 .31 2 1.33 .01 .09 1 4		1					-	7			15	5	ND	1	34	1	2	:	57	.17	.052	10	16	1.94		.05	5	2.18	.04	.08	1	2
BOTHORN GHORE 2 51 23 109 J2 16 17 1289 3.47 36 5 NO 1 5 1 2 1 58 J4 J155 17 15 J1 75 J1 2 2.33 J01 J9 1 4		1	3	15	53		ĵ	3	75	2.40		_		1	-	1	2	2													1	1
	137+00N 1+75Z	1	21	11	81	. 2	9	9	261	3.35	22	5	NE	l	22	1	2	3	94	. 21	. 363	10	12	. 27	81	. 07	5	1.41	. 04	. 08	1	1
	BETACON CACOR	:	51	23	109		16	:7	1739	3.17	39	5	MD	1	5	1	2	-	58	1	. 155	15	15	. 15	75	. 11	2	1.31	.01	. 19	i	4
	STO CYAU-S				132	5.3								33	-	13	19	22									-		-		•	52

SAHPLE#	MO PPN	Cu PFM	Pb PPN	Zn PPM	Ag PPN	Ni PPM	Co PPM	Mn PPN	Fe }	As PPM	U PPM	Au PPN	Th PPM	Sr PPM	Cd PPM	SD PPM	Bi PPM	V PPN	Ca }	P	La PPM	Cr PPM	Ng %	Ba PPM	Ti 1	B PPM	Al 1	Na Ł	K L	W PPM	Au* PPB
L37+00N 4+25E L37+00N 4+50E L37+00N 4+75E L35+00N 4+75W L35+00N 4+50W	1 1 2 1 1	22 19 20 16 51	26 16 27 27 213	98 113 103 170 183	.2 .8 1.0 .2 .5	19 7 15 18 98	5 3 9 17 21	133 739 6145		19 8 9 2 24	6 5 5 5 5	ND ND ND ND	2 1 1 1 1	5 12 23 76 14	1 1 1 1	2 2 3 2 9	2 2 2 2 2 2	84 95 86 70 39	.04 .10 .36 1.48 .13	.039 .054 .047 .149 .055	11 6 21 10 11	41 12 29 19 72	.33 .13 .21 1.16 1.49	44 53 69 260 55	.07 .31 .22 .24 .02	3 5 2	3.50 1.49 3.06 1.69 2.60	.01 .02 .01 .20	.04 .05 .05 .19	1 2 1 1	2 1 1 8 11
L35+00N 4+25W L35+00N 4+00W L35+00N 3+75W L35+00N 3+56W L35+00N 3+25W	1 2 2 1 1	4 48 35 27 13	19 37 46 40 27	22 128 111 143 113	.2 .5 .6 .1	9 88 57 19	2 9 13 14 6	476 995 1860		2 16 27 19 2	5 5 5 5	ND ND ND ND	1 1 1 1	5 12 21 57 56	1 1 1 1	2 3 5 2 2	2 2 2 2 2	52 31 56 63 107	.03 .10 .25 .82	.014 .062 .056 .123	16 14 14 19 11	28 66 61 19 16	.15 1.18 .34 .83 .39	33 42 134 343 145	.06 .02 .08 .18	6 4 2	1.46 3.25 3.08 2.21 3.00	.01 .01 .02 .14	.04 .06 .06 .16	3 1 1 1 1	3 31 18 1
L35+00N 3+00W L35+00N 2+75W L35+00N 2+50W L35+00N 2+25W L35+00N 2+00W	5 4 1 1	23 14 10 189 17	83 49 13 173 27	69 59 116 318,-	9.3 3.1 .2 2.6	6 6 20 22 9	16	2074 564 8405	8.46	48 80 9 108 21	5 5 5 5 5	ND ND ND 3 ND	1 1 1 1	19 25 21 10 13	1 1 1 1	10 2 2 14 2	2 2 2 2 4	59 61 82 122 366	.11 .15 .20 .06	.102 .378 .121 .207 .052	7 5 5 3 5	9 13 53 70 19	.08 .18 1.10 1.05 .17	114 127 167 129 59	.11 .12 .01 .02	3 8	1.05 1.25 2.96 3.74 .85	.01 .02 .01 .01	.10 .11 .34 .13	2 2 1 9	460 270 5 680
135+00N 1+75W 135+00N 1+50W 135+00N 1+25W 135+00N 1+00W 135+00N 0+75W	1 1 1	22 35 22 133 50	19 26 12 34 30	96 90 89 157 129	.7 1.2 .1 .1	13 12 18 20 16	28 14 24 35 17	911 6180	3.25 9.10 6.66 7.99 4.62	38 117 20 102 14	5 5 5 5	ND ND ND ND	1 1 1 1	38 10 107 63 49	1 1 1 1	2 13 2 2 3	2 2 2 2 2 2	126 134 106 153 76	.37 .39 1.23 .51	.105 .122 .125 .165 .247	6 7 8 6 9	66	.62 .33 1.80 1.71 1.06	63 130 79 380 121	.35 .32 .55 .09	2 2	2.72 3.67 2.44 3.19 2.18	.11 .02 .40 .04	.13 .08 .26 .10	12 7 1 1	1 1 1 2 1
L35+00N G+50W L35+00N G+75E L35+00N 1+30E L35+00N 1+25B L35+30N 1+50E	3 3 1 1	39 18 57 19	20 39 34 26 19	71 42 98 55 36	.7 .3 1.1 .2	13 5 23 12 8	9 3 9 9 5	94	7.59 7.99 5.92 3.47 3.92	37 14 58 21 5	5 9 6 5	ND ND ND ND	1 1 1 1	9 6 7 31 22	1 1 1 1	2 2 4 3 2	2 2 2 2 2 2	91 89 56 137 122	.07 .06 .06 .37	.089 .051 .159 .341 .034	9 17 10 6 6	29 23 27 17 12	.46 .14 .31 .39	57 18 62 89 49	.16 .25 .02 .28 .66	4 3 2	2.38 3.53 3.29 1.48 1.23	.01 .01 .01 .07	.07 .03 .08 .08	3 4 2 1 1	1 4 1 1 3
L35+00N 1+75E L35+00N 2+00E L35+00N 2+25E L35+00N 2+5CE L35+00N 2+75E	3 2 3 1	13 9 16 10 38	25 21 23 13 29	53 39 44 79 103	.4 1.1 .5 .2 .3	10 8 7 15 16	4 3 4 17 10	100 212 1015	5.97 3.15 5.52 4.35 6.23	13 3 9 3 25	5 5 5 5	ND ND ND ND	2 1 1 1	10 17 16 75 22	1 1 : 1	2 3 2 3 2	2 2 2 2 2	126 108 101 101 73	.08 .15 .33 .96	.038 .046 .338 .071 .109	13 9 13 7 6	24 13 17 16 20	.23 .15 .19 1.27 .35	41 36 4: 61 65	.39 .67 .23 .50	4 2 2	2.26 1.13 1.99 1.88 1.63	.02 .04 .02 .27	.05 .06 .06 .19	2 2 1 1 1	1 10 1 1
L35+CON 3+003 L35+CON 3+258 L35+CON 3+558 L35+CON 3+758 L35+CON 4+008	1 1 1 2	14 9 82 16 20	17 26 37 15	64 75 129 75 61	.3 .1 .2 .4 .6	11 6 36 13	2 17 3 9	259 528 70	5.17 2.01 7.40 6.96 3.40	8 5 54 3 19	5 5 5 5	ND ND ND ND	1 1 1 1	10 19 14 27 36	1 1 1 1	2 2 2 2 2 2	2 2 3 3	108 85 69 108 82	.08 .22 .15 .39	.043 .052 .260 .152 .099	14 6 7 12 9	29 12 19 20 14	.29 .15 .28 .09	35 120 109 128 59	.28 .43 .03 .28	2 5 3	2.58 1.32 1.79 1.27 2.00	.02 .02 .01 .02 .10	.05 .07 .11 .03	1 1 1 1	2 1 4 1 3
L35+00N 4+25E STD C/AU-S	1 18	41 63	28 42	59 132	.2 7.0	11 69	6 31		5.11 4.23	22 41	5 17	NE 7	1 38	9 19	1 19	2 17	2 23	110 61	. 05 . 49	.155 .098	6 40	13 55	.20 .93	63 177	.03		2.07	.01	.07 .15	2 11	1 51

SAMPLES Cu Pb Zn λq Ni C٥ Mn 7e As Ľ λu Th Sr Cd Sb Bi V Ca P La CT Μđ Ba 71 В PPN è PPN PPN PPH PPN PPN PPM PPN PPM PPM 1 PPN PPM ł PPM ł PPM * PPM PPB PPN P?N PPM PPN PPM PPM .31 L35+00N 4+50E 7 1481 3.99 10 ND 10 2 118 .06 . 357 13 .16 82 3 1.70 . 01 . 05 . 8 29 2 86 .32 .115 8 . 28 108 .27 2 1.28 . 37 44 . 3 5 255 2.61 3 5 HE 1 2 11 .04 L35+00N 4+75E 1 14 14 21 30 62 28 6 408 5.15 21 5 ND 7 6 2 71 .07 .070 11 45 .34 67 .09 2 1.50 .01 .05 11 L33+00N 4+75W . 1 15 13190 7.97 6 5 ND 1 56 2 2 47 1.00 .157 41 12 .41 1064 .03 2 1.43 .01 7 L33+00N 4+50W 2 42 58 180 . 1 10 5 133+00N 4+25W 23 118 . 1 11 15 5989 5.42 5 5 ND 1 53 2 2 51 .93 .161 23 10 .72 449 .13 2 1.59 .11 .15 1 24 10 .24 .112 .41 190 .01 2 1.73 .02 .13 5 L33+00N 4+00W 31 29 123 .1 9 1725 4.43 9 5 ND 13 2 18 10 2 15 1.19 2 2.05 .20 15 21 2227 5.36 7 76 74 1.08 .127 10 164 . 26 L33+00N 3+75W 27 26 115 .1 9 589 2.90 19 5 19 1 2 2 44 .26 .156 11 15 . 46 369 .02 4 1.89 .02 .11 1 19 L33+00N 3+50W 21 20 97 .1 13 ND 1 :7 18 1501 5.24 ND 1 70 2 2 78 .95 .124 9 16 1.15 104 .31 2 1.79 . 20 .18 1 45 133+00H 3+25W 1 18 18 135 .1 8 5 1 89 11 13 1557 7.48 289 5 ND 1 43 97 .47 .209 5 19 . 48 99 .27 2 1.20 . 09 31 23 .1 L33+00N 2+50W .28 .161 30 .28 336 .03 2 1.36 .03 49 L33+00N 2+25W 43 207 . 5 35 71 4655 13.31 976 5 KD 31 26 90 6 .14 1 116 2 .10 .042 6 62 .81 133+00N 2+00W 1 11 13 33 . 4 6 4 255 1.55 48 5 ND 1 14 1 2 88 11 .12 .38 3 .02 .06 6 1 10 1367 6.66 29 5 ND 5 6 1 6 2 50 .08 .078 29 17 .24 34 . 23 3 4.24 . 05 .10 3 2 5 26 32 118 1.6 12 133+00N 1+75W .11 .038 . 05 133+00N 1+50W 11 32 41 . 3 6 4 137 5.17 16 5 ND 1 20 1 2 2 152 5 12 .16 56 .57 2 1.28 .02 1 1 5 187 9.63 52 5 ND 31 6 2 56 .25 .102 7 27 . 42 48 . 08 2 1.44 .06 1 5 L33+00N 1+25W 58 60 . 6 14 1 34 .26 3 1.85 .01 334 7.42 ND 2 162 .07 .094 8 27 .24 85 .05 L33+00N 1+00W 23 78 . 2 12 58 6 2 10 22 30 4810 9.75 70 5 ND 22 .32 .157 6 .52 138 .04 4 1.63 .05 L33+00N 0+75W 56 20 102 . 6 12 67 13 7 270 7.59 9 5 ND 3 20 2 2 138 .31 .099 11 26 . 50 56 .71 2 2.48 . 05 .09 1 43 . 6 L33+00N 0+50W 1 16 2 .51 .081 L33+00N 0+25W 1 22 58 . 3 9 12 501 4.98 6 5 ND 44 1 2 91 6 10 . 60 149 .21 2 1.83 .11 1 14 3 139 5.09 19 5 ND 2 9 1 3 2 79 .09 .079 18 21 .33 30 .26 4 2.84 2 17 L33+00N 0+00W 56 76 4.53 5 5 ND 2 13 2 112 .12 .072 8 12 .12 42 .50 3 1.62 .01 .05 11 L23+00M 0+25E 19 15 1.6 3 2 77 .47 .086 9 15 .55 60 . 29 3 1.43 .11 2 L33+00N 0+53E 1 13 22 63 1.5 9 8 297 3.06 3 5 ND 1 42 2 .12 30 1790 5.12 40 5 ND 2 18 1 3 2 39 .26 .130 . 14 41 1.21 117 .02 3 1.92 .01 .08 1 16 L33+00N 0+75E 93 37 168 .3 76 12 5 ND 13 2 2 79 .18 .070 18 27 .41 57 . 24 3 2.88 .02 2 6 320 6.31 1 1 L33+00N 1+00E 3 18 25 101 1.8 17 11 7 624 6.32 6 5 ND 24 1 3 2 115 .44 .107 11 19 .38 45 .47 3 3.27 . 04 1 L33+00N 1+25E 17 20 111 .1 .10 .041 5 . 15 114 . 05 2 2.13 .01 340 6.34 13 5 ND 2 2 108 27 L33+00N 1+50E 23 103 14 6 52 . 52 21 22 67 . 3 27 173 7.45 21 5 ND 15 3 2 113 .11 .043 9 62 . 13 2 2.99 L33+00N 1-75E .09 5 2 2 .04 .023 23 15 38 2 .76 L33+00N 2+00E 23 23 .1 5 92 . 84 5 ND 1 6 1 37 .31 .01 .06 2 1 3 4 32 5 ND 121 .08 .043 9 31 .32 47 .07 L33+00N 2+25E 1 31 18 74 . 1 20 242 8.49 3 8 1 4 2 .14 4 2.08 .01 1 2 25 5 ND 22 38 .26 .102 7 19 .38 106 .09 4 2.34 57 125 16 15 912 7.56 . 05 L33+00N 2+50E 1 23 .1 L33+00N 2+75E 53 121 14 907 6.53 12 5 ND 73 82 1.13 .085 34 30 .78 143 .56 6 4.44 .06 . 5 16 29 3 61 .06 .035 9 64 . 69 .06 4 2.76 219 10.60 6 ND 3 9 2 60 .01 . 05 1 L33+00N 3+00E 2 27 21 87 . 2 39 Ó 1 17 70 15 17 644 5.94 2 5 ND 37 1 2 2 110 1.13 .095 9 16 1.44 83 .62 2 2.44 . 33 .21 1 L33+00N 3+25E 1 6 . 1 3 151 1.32 10 5 ĦD 13 1 2 2 76 .09 .021 22 14 .10 51 .28 2 .31 .05 1 133+00N 3+50E 15 60 .1 7 L33+00N 3+75E 72 32 96 . 5 19 12 506 9.46 27 6 ND 1 4 76 .05 .102 7 29 .31 64 .06 4 2.98 .01 L33+00N 4+00E 49 33 123 . 3 23 19 1242 5.48 21 5 HD 1 25 1 2 2 64 .31 .178 14 22 .40 114 .12 3 2.37 .02 .10 1 2 56 43 19 B 38 48 18 16 20 60 .50 .098 39 .94 175 . 97 38 1.96 132 6.9 68 30 1025 4.24 STD C/AU-S

(

(

SAMPLE#	Mo PPM	Cu PPM	Pb PPM	Zc PPM	Ag PPM	Ni PPM	Co PPM	No PPM	Fe }	As P?H	U PPM	Au PPN	Th PPH	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V PPM	Ca }	P	La PPN	CT PPM	Ng 1	Ba PPM	Ti	B PPM	Al 1	Na 1	K	NS8	Au* PPB
L33+00N 4+25E L33+00N 4+563 L33+00N 4+75E L31+00N 4+75W L31+00N 4+56W	1 4 5 1 2	32 18 20 20 21	16 10 23 24 8	113 74 76 157 91	.4 .3 .5 .5	13 6 4 16 5	17 3 2 13 4	1085 198 277 1542 238	6.26 5.50 8.46 6.44 2.10	17 12 11 6 5	5 5 16 5 5	ND ND ND ND	1 2 3 1 1	36 11 5 19	1 1 1 1	2 2 2 2 2	3 7 2 2 2	70 163 37 77 39	.40 .11 .05 .32 .23	.195 .036 .072 .125 .076	7 14 24 13 16	18 15 15 24 3	.46 .09 .06 .51	85 24 23 171 161	.20 .61 .21 .22 .03	2 5	2.29 1.19 3.76 3.47 .69	.08 .01 .04 .03	.13 .05 .06 .09	1 1 2 1 1	3 1 1 2 1
L31+00N 4+25W L31+00N 4+06W L31+06N 3+75W L31+06N 1+50W L31-06N 1+15W	2 1 1 2 2	60 20 19 34 51	49 26 21 13 10	139 120 109 61 91	1.4 .8 .5 1.9	18 16 18 16 10	11		4.89 5.04	21 8 8 82 212	15 5 5 5 5	ND ND ND ND	3 1 1 1	21 28 51 10 13	I 1 1 1	3 4 2 2	2 2 2 2 2 2	25 67 75 80 71	.36 .40 .64 .11	1.081 .253 .157 .087 .171	21 15 11 9 7	25 24 25 35 28	.26 .54 1.03 .44	500 144 149 43 108	.06 .12 .28 .12 .03	2 3 3	5.45 1.69 2.46 2.81 1.80	.01 .05 .17 .01	.08 .10 .13 .05	1 1 1 1	91 10 13 1
131+00K 1+00W 1757+0 MC0+161 131-0 MC0-161 131+0 MC0+161 131+00M MC0W 131+00M MC0W	1 2 3 1	35 23 28 18 47	10 15 21 9 20	63 65 68 61 83	.8 .4 1.4 .7	9 12 12 12 12	7 8 6 9 5	234 217 219	7.63 6.09 8.42 9.29 9.11	12 23 9 12 13	5 5 7 7	ND NE DM DM	2 1 2 3 2	13 10 15 29 7	1 1 1 1	3 3 4 2	2 2 2 2 2	126 143 129 155 65	.20 .09 .18 .30	.069 .044 .072 .055 .044	13 11 19 7 25	34 28 35 27 22	.62 .20 .42 .62	28 54 33 57 33	.63 .22 .54 .74 .22	3 4 2	4.06 2.12 3.86 2.37 3.25	.03 .01 .04 .08	.06 .06 .07 .08	1 2 1 1	1 1 1 1
131+00N 0+25B 131+00N (+5CE 131+00N 0+75E 131+0CN 1+00E 131+00N 1+25B	1 1 3 6 3	26 14 3 19 51	28 12 50 21 19	92 64 86 71 131	2.7 .4 1.2 1.2	9 16 10 4 19	6 5 10 2 29	130 695	6.36 5.45 4.52 11.14 7.19	93 15 8 9 26	5 5 5 13 5	ND ND ND ND	2 1 1 4	16 15 22 6 20	1 1 1 1	2 2 2 4 2	2 4 2 2	125 115 89 56 68	.21 .12 .21 .07	.047 .040 .157 .038	14 9 13 29 17	26 28 18 25 28	.39 .30 .31 .11	35 72 84 16 71	.60 .27 .24 .30	3 4 2	2.95 1.84 1.53 3.52 3.41	.04 .02 .02 .03	.08 .04 .07 .05	1 1 1 1	2 1 1 1
L31+00N 1+50E L31+00N 1+75E L31+00N 2+90E L31+00N 2+25E L31+00N 2+50E	6 1 3 1	17 11 12 25 78	23 14 13 11 6	99 105 61 94 133	.9 .4 .6 .4	9 10 8 36 21	7 5 4 7 79	135	2.03 4.13 5.87	10 4 10 15 4	10 5 8 5 5	ND ND ND ND	3 1 1 1	9 36 6 16 43	1 1 1 1	2 2 2 3 3	2 2 2 2 2	88 55 119 77 62	.08 .34 .05 .16	.054 .075 .027 .047 .216	17 6 19 11 31	28 13 24 48 31	.18 .32 .23 .87	27 68 29 38 75	.35 .25 .25 .09	2 5 5	3.62 .97 2.60 2.70 5.48	.03 .05 .01 .05	.06 .06 .05 .08	2 1 1 1 1	1 1 2 1
L31+00N 2+753 L31+00N 3+30E L31+00N 3+255 L31+00N 3+50E L31+00N 3+75B	1 2 1 1	24 32 38 35 133	8 16 9 15 33	84 71 37 114 125	.5 .3 .7 .2 .1	13 8 9 12 22	13 6 8 14 21		5.82 2.83 6.74	2 15 5 6 23	5 5 5 5	ND ND ND ND	3 2 1 1 2	22 6 19 13 19	1 1 1 1	2 3 2 2 3	2 2 2 2 2 2	139 119 81 90 37	.25 .04 .16 .15	.072 .024 .090 .101 .137	15 11 7 13 11	27 27 15 27 20	.79 .21 .33 .49	53 53 79 42 231	.77 .14 .03 .23	3 2 2	3.49 3.27 2.75 3.59 2.40	.06 .01 .03 .03	.08 .05 .06 .08	1 1 1 1	1 1 1 1 2
L31+00N 4+00E L31+00N 4+25E L31+00N 4+50E L31+00N 4+753 L29+00N 4+75W	3 1 1 2 1	29 26 19 11 15	17 15 4 14 19	77 70 73 65 115	.4 .4 .5 .7	9 6 10 7 16	5 5 5 5	122	5.18 2.57 7.35 7.10 5.05	11 10 2 9 5	6 5 10 8 5	ND ND ND ND	2 1 3 3	9 8 20 11 16	1 1 1 1	3 2 2 2 3	2 2 2 2 2	162 74 125 134 69	.04 .09 .26 .37	.020 .386 .092 .043 .128	13 9 10 10	19 10 24 19 21	.13 .24 .50 .16	54 43 38 29 289	.43 .15 .68 .72	3 2 3	2.11 1.78 4.35 1.54 2.34	.01 .01 .05 .02	.04 .04 .06 .05	1 1 1 1	1 1 1 2 1
L29+00N 4+50W STD C/AU-S	2 18	33 62	16 36	81 132	. 6 6 . 9	12 68	3 30	212 1025	2.48 4.20	6 38	5 19	ND B	1 37	16 48	1 19	2 17	2 21	38 60	. 20 . 50	.130 .099	10 39	18 56	.09 .93	267 175	.05 .07	2 34	.91 1.99	.01 .06	.04 .15	1 11	1 53

SAMPLE:	No PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPN	Ni PPM	Co PPM	Ma ?PX	Fe }	As PPM	U PPM	Au PPM	Th PPM	Sr PPM	Cd PPN	SD PPM	Bi PPM	V PPN	Ca }	P	La ?PM	Cr PPM	Mg 3	Ba PPM	Ti 1	B PPM	Al t	Na }	K 1	W PPM	Au* PPB
129+00H 4+25W 129+00H 3+90W 129+00H 2+75W 129+00H 2+50W 129+00H 2+25W	1 3 4 2 3	29 18 102 43 18	16 223 34 107 16	128 65 96 88 68	.1 2.5 .8 3.8	15 4 7 6 7	3 6	334 1101	4.68 5.98 8.20 6.67 4.67	2 51 100 90 59	5 5 5 5 5	ND ND ND ND	1 1 1 2	36 14 6 14 8	1 1 1 1	2 2 3 2 2	2 2 2 5 2	57 72 103 91 103	.48 .10 .03 .14	.161 .111 .094 .154 .070	19 4 4 6 12	18 10 15 18 14	.74 .15 .12 .30	491 50 48 59 62	.12 .34 .15 .44	2 2 2	1.75 .88 .98 3.41 2.43	.09 .02 .01 .03	.10 .05 .03 .05	1 1 3 3 2	1 1 1 5 1
129+0CN 2+0GW 129+0CN 1+75W 129+0CN 1+5GW 129+CGN 1+25W 129+0GN 1+0GW	2 6 1 1	11 17 11 71 205	13 22 3 17 79	61 66 68 231 454	.7 .8 .1 .1	10 7 2 27 16		177 308 4383		5 16 20 85 2672	5 6 5 5	ND ND ND ND ND	1 2 1 1	8 6 9 25 5	1 1 1 1	2 2 2 2 2 23	2 5 2 2 2	79 90 89 64 47	.07 .05 .05 .53	.041 .079 .042 .227 .210	11 28 6 12 18	19 23 3 17 19	.19 .13 .08 .40	30 26 88 264 96	.32 .31 .01 .03	2	1.59 2.74 1.03 2.73 .91	.01 .02 .01 .05	.04 .05 .05 .10	2 1 2 1 1	1 1 1 1 4
L29+00H 0+75W L29+00H 0+56W L29+00H 0+25W L29+00H 0+00W L29+00H 0+15E	1 4 3 1	23 32 19 16 29	9 15 24 9 2	63 99 67 89 76	.1 1.6 2.1 1.0	10 7 12 5	4 10	1611 239	8.08 4.10	62 12 8 2	5 5 5 5 5	ND ND ND ND	1 2 2 1 1	24 25 11 56 21	1 1 1 1	2 2 2 2 2	2 2 2 2 2	124 109 110 95 68	.21 .25 .12 .69 .26	.032 .114 .090 .104 .109	6 15 15 17 5	5 31 24 19 7	.21 .41 .28 .85 .40	60 46 24 38 69	.17 .42 .47 .62 .08	2 2 2	1.19 3.23 4.20 3.72 1.55	.04 .08 .02 .19	.06 .09 .04 .15	1 1 1 1	1 1 2 1 1
L29+00N 0+50B L29+00N 0+75Z L29+00N 1+00B L29+00N 1+25E L29+00N 1+50E	1 1 3 1	50 36 14 65 39	8 12 2 13 15	145 154 55 86 116	.3 .5 .2 .7	16 11 11 15 11		393		8 20 8	5 5 5 5	ND ND ND ND	1 1 1 1	74 52 9 27 10	1 1 1 1	2 2 2 2 2	2 2 2 2 2	87 71 71 62 62	1.05 .70 .07 .24 .12	.164 .270 .027 .179 .126	9 9 21 7 10	17 15 14 23 24	1.17 .79 .09 .60	96 105 56 61 58	.33 .12 .13 .06	2 2 2	2.51 2.15 .98 2.73 3.00	.23 .14 .01 .05 .02	.16 .14 .05 .08 .09	1 1 2 1	1 1 1 1
L29+00N 1+75E L29+00N 2+00E L29+00N 2+25E L29+00N 2+50E L29+00N 2+75E	2 1 4 1 2	14 96 12 129 21	11 36 18 22 14	78 160 76 146 62	.6 .5 .7 .5	11 25 7 19 9	5 9 3 22 7	206 100 1023		15 30 11 12 7	5 5 5 5	ND ND ND ND	1 1 1 1	16 17 14 18 14	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	127 49 111 62 117	.09 .30 .19 .23 .14	.039 .156 .105 .151 .036	11 11 10 8 9	21 23 16 26 14	.19 1.00 .09 .77 .23	82 29 105 62	.23 .01 .34 .04	2 3	1.78 2.52 1.19 3.69 1.85	.02 .02 .01 .01	.04 .07 .04 .03	2 1 2 1 2	2 16 1 1
L29+00N 3+00E L29+00N 3+25E L29+00N 3+50E L29+00N 3+75E L29+00N 4+00E	1 4 3 1 1	22 14 20 12 27	11 14 10 12 14	91 70 139 112 92	.4 .3 .4 4.3	3 12 17 12 12	5 4 27 12 9	110 4156 376		2 11 2 2 9	5 5 5 5	ND ND ND ND	1 2 1 1	22 9 68 59 34	1 1 1 1	2 2 2 2 2	5 5 2 4 2	129 174 101 110 72	.23 .06 .78 .66	.047 .028 .089 .109 .073	10 13 11 8 7	22 36 32 15 19	.36 .18 .48 .85	31 49 76 55 75	.73 .32 .56 .47	2 2 3	2.77 1.83 3.57 1.91 2.00	.06 .01 .04 .17	.07 .04 .07 .12 .08	1 3 1 1	1 1 1 1
L29+00N 4+25E L29+00N 4+50B L29+00N 4+75E L27+00N 4+75W L27+00N 4+50W	1 2 1 4 2	12 104 53 31 10	6 30 27 30 15	116 104 117 95 61	.5 .2 .3 .6	17 17 10 29 18		2002 1189 916	5.89 6.71 6.49 6.19 3.21	3 20 9 13 6	5 5 5 5	ND ND ND	1 1 1 1 2	96 7 12 7 10	1 1 1 1	2 2 2 2 2	2 2 2 2 2	104 57 96 82 51	1.19 .07 .14 .11 .38	.089 .140 .115 .041 .053	9 7 11 25 9	16 26 26 53 38	1.60 .82 .58 .55 .23	49 90 52 45 69	.62 .03 .18 .28 .12	5 4 2	2.42 3.76 4.17 3.06 1.46	.36 .01 .03 .01	.23 .08 .07 .05	1 2 1 1 2	1 2 1 12 2
L27+0CN 4+25W STD C/AU-S	2 18	9 62	8 40	39 132	. 6 7.2	9 59	4 31	80 1027		4 39	5 19	ND 7	1 38	6 49	1 19	2 17	2 22	103 60	. 0 5 . 5 0	.019 .058	13 40	27 55	.14 .93	47 176	.23		1.55 2.00	.01 .06	.03 .15	3 11	2 48

SAMPLE#	No PPM	Cu PPM	Pb Ppm	2n PPM	Ag PPM	N1 PPM	Co PPM	Mn PPM	Fe	As PPM	U PPM	Au PPM	Th PPM	ST PPN	Cd PPM	Sb PPM	Bi PPN	V PPM	Ca }	P	La PPM	CT PPM	Mg 3	Ba PPM	Ti i	B PPM	Al 3	Na %	K Ł	W PPM	Au* PPB
127+00N 1+00N 127+00N 3+75N 127+00N 3+56N 127+00N 3+25W 127+10N 3+00W	1 2 1 1	4 11 9 17 6	22 20 10 19 12	25 46 44 51 30	.4 .6 .1 .4	3 3 8 11 4	2 4 6 6 3	155 309	.92 2.08 2.05 4.13 2.84	3 9 3 4 7	5 5 5 5	ND ND ND ND	1 1 1 1	12 8 23 28 18	1 1 1 1	2 2 2 2 2	2 2 3 2 2	42 47 53 91 74	.09 .09 .27 .34	.047 .116 .042 .103 .049	9 11 5 7 5	10 17 11 19 9	.06 .22 .41 .60	55 77 35 34 31	.13 .04 .21 .36	2	.95 1.05 .91 2.11 1.04	.01 .01 .06 .09	.04 .06 .06 .09	1 2 1 1	1 13 1 1
L27-00N 2+75W L27+00N 2+30W L27+00N 2+25W L27+00N 2+90W L27+00N 1+75W	7 3 2 4	50 7 24 38 27	2 7 21 22 42	79 24 67 59 35	.5 .3 .4	7 1 18 30 18	4 2 3 6 8	35 287	13.22 1.03 4.96 8.95 5.76	163 13 12 29 35	5 9 5 8	ND ND ND ND	3 1 3 2 2	13 9 13 4 3	1 1 1 1	12 2 2 2 2	2 2 2 2 2	169 31 58 54 33	.06 .10 .13 .03	.073 .027 .042 .046 .078	9 2 25 10 13	22 4 29 58 23	.13 .10 .36 .54	56 22 30 29 23	.56 .08 .29 .12	12 3 2	1.08 .45 3.20 1.80 2.46	.01 .02 .04 .31	.04 .05 .06 .06	1 1 1 1	2 1 1 4 3
127+00H 1+50W 127+00H 1+25W 127+00H 1+00W 127+00H 0+75W 127+00H 0+50W	2 1 1 1 3	15 14 36 12 29	17 27 18 11 9	73 49 62 33 59	.2 .4 .2 .1	12 6 24 5	5 4 8 2 6	133 311 168	5.91 4.43 3.81 6.12 3.39	35 11 57 13 44	5 8 5 6 5	ND ND ND ND	1 2 2 2 1	3 11 14 7 5	1 1 1 1	2 2 2 2 2 2	2 3 2 3 2	58 97 129 99 78	.02 .15 .13 .07	.042 .079 .024 .035	9 20 11 4	28 26 64 14 5	.34 .42 .69 .13	37 23 65 27 34	.02 .41 .10 .38	2	3.06 3.37 3.55 1.09	.01 .03 .04 .01	.10 .06 .07 .34 .05	1 1 4 1	1 6 2 2 3
127+01N C+25W 127+02N C+0CN 127+02N 0+253 127+06N 0+598 127+00N 0+758	4 2 4 3 8	22 75 19 30 42	3 40 19 19	50 139 67 139 139	.3 .6 .8 .4	11 30 19 45 20	38 5 17	130 3496 408 1199 15258	7.91 5.59 6.59	33 154 16 37 27	5 6 5 5	ND ND ND ND	1 1 1 1 2	10 37 10 13 48	1 1 1 1 3	2 4 2 2 2	2 2 2 2 2 2	38 62 125 50 68	.10 .47 .10 .17	.115 .176 .031 .138 .139	10 14 16 14 70	33 34 48 49 30	.13 .89 .38 .93	62 86 42 76 945	.17 .13 .30 .03	3 2 2	1.80 3.40 3.06 2.99 3.69	.01 .10 .03 .01	.05 .12 .05 .08	1 1 1 1	23 16 9 12 2
L27+G3N 1+00E L27+OCN 1+25E L27+CCN 1+50E L27+99N 1-75E L27+00N 2+303	8 2 1 4 2	19 65 22 29 19	21 21 15 25 17	196 59 55 62 83	.4 1.1 .2 1.2	21 8 15 3	28 5 6 1 7	277 194 243	8.30 6.70 6.91 4.91 6.83	19 14 18 7 23	5 5 5 5 5	ND ND ND ND	1 1 1 4 3	57 7 14 2 9	1 1 1 1	2 2 2 2 2	2 2 2 2 2	71 54 137 18 36	.68 .07 .14 .04	.098 .359 .125 .104 .082	18 6 8 21 14	26 22 34 15 49	.37 .29 .43 .05	326 47 57 10 52	.20 .03 .17 .13	2 2 3	2.43 3.40 2.77 5.03 3.65	.02 .01 .03 .03	.09 .06 .07 .06	1 1 1 1	1 1 1 3 2
L27+0CN 2+252 L27+30N 2-59E L27+30N 1+752 L27-C0N 3+00E L27+C3N 3+35E	1 2 2 1 2	29 46 55	15 10 21 30 23	99 62 93 119 71	.6 .7 .3 .1	18 16 25 63 7	22 6 7 19 9	313 735	5.46 6.55 9.36 6.27 6.08	5 14 6 41 9	5 5 5 5	DH DH DH DH	1 1 2 2 1	23 7 11 8 12	1 1 1 1	2 2 2 2 2	2 2 2 2 2	72 74 89 53 104	.25 .03 .11 .07	.115 .095 .221 .080	24 9 5 11	33 29 34 58 27	.53 .24 .68 1.05 .62	48 51 45 51 25	.23 .10 .11 .04	2 3 4	3.27 1.30 3.04 3.25 3.32	.05 .01 .01 .01	.09 .06 .06 .07	1 2 1 2	2 2 4 1
L27+30N 3+508 L27+39N 3-75E L20+00N 4+308 L27+00N 4+253 L27+00N 4+56E	5 1 : 1 2	17 66 12 32 98	24 25 13 12 15	67 116 51 76 78	.4 .3 .4 .4	10 25 4 27 14	3 19 3 6 7	1420 268	8.09 7.65 3.81 13.30 6.39	11 12 6 13	5 5 5 5	ND ND ND ND	2 1 1 2 3	6 28 15 14 3	1 1 1 1	2 2 2 2 2 2	2 2 3 2 2	123 39 147 123 36	.05 .33 .11 .10	.035 .178 .125 .109 .197	23 7 5 9	31 34 12 63 23	.29 .84 .13 .51	36 101 58 93 44	.39 .11 .55 .16	4 3 4	2.23 3.50 1.02 3.40 4.80	.01 .06 .01 .01	.08 .12 .05 .26 .06	1 1 2 1	1 1 3 1 5
L27+00N 4+75E STD C/AU-S	1 15	55 61	21 43	120 132	. 2 5. 9	24 67	4 30		3.00 4.30	5 40	6 18	ND 8	1 37	15 48	1 19	2 17	2 21	41 59	.19 .51	.135	22 39	33 56	. 78 . 89	30 177	.03 .07		3.40 2.05	.01 .06	.36 .15	1 12	5 19

ı

AMERICAN FIBRE FILE # 88-5619 Page 7

Sample#	Mo PPM	Cu RPN	Pb PPM	Zn P?M	A9 PPM	Ni PPM	Co PPN	Ma 2PM	Fe }	As PPM	U Pan	Au PPM	Th PPM	Sr PPM	Cd PPM	Sb PPN	Bi PPM	V PPM	Ca %	P	La PPM	Cr PPM	Ng Ł	Ba PPM	7i	B PPM	Al 3	Na }	ţ	W PPM	Au* ?PB	
L25+00N 4+75W	11	16	28	95	.1	12	10	1774	5.81	9	5	ND	1	29	1	2	2	45	. 26	.051	42	16	. 19	47	.20	2	4.53	.04	. 97	1	1	
L25+00N 4+50W	•:	22	29	57	.1	13	9		8.03	6	5	ND	2	21	1	2	2	110	.27	.053	24	43	. 57	28	.56	3	4.20	.05	.06	1	1	
L25+00N 4+25W	ī	21	24	60	1.1	. 9	5		10.50	4	5	ND	2		i	2	2	113	.06	.339	25	49	.17	26	.39		3.90	.02	.05	1	1	
	,					i	-		1.35	43	5	ND	1	7	i	2	3	31	. 05	.013	12	7	.11	66	.04		.71	.01	.08	i	2	
125+00N 4+00W	1	11	3	16	.1	-	4				5				1	2	J	40	.19		12	28	. 86	50	.05		2.26	.02	.11	1	1	
125+00N 3+75W	2	28	17	70	. 1	30	9	540	4.67	19	,	NC	1	13	1	4	2	40	. 19	.116	1.	28	. 50	30	כע.	,	2.20	.02	.11	1	1	
125+00N 3+50W	1	6	a	58	.1	9	11		4.27	3	5	ND	1	11	1	2	2	26	.25		9	6	.50	134	.04		1.77	.02	.26	1	1	
125+00N 3-25W	3	12	26	46	1.7	7	6	217	7.40	10	5	ND	1	21	1	2	2	142	. 19	.039	5	13	. 26	40	.71	2	1.92	.04	. 05	1	3	
125+00% 3+00W	34	75	385	17	3.3	1	1	13	6.31	531	5	ND	1	24	1	121	4	22	. 01	.087	2	2	.01	101	.04	2	. 16	.01	.14	1	71	
L25+00N 2+75W	3	49	4 0	48	1.0	11	7	210	7.41	12	5	ND	4	18	1	2	2	130	. 27	. 373	15	23	.73	27	.75	2	3.11	.05	.07	1	3	
125+00N 1+50W	3	36	31	11	. 5	1	1	11	5.29	274	5	NC	1	3	1	52	2	13	.01	.043	2	4	. 32	12	.01	2	. 36	.01	.02	1	26	
L25+00N 2+25W	5	348	55	160	. 2	4	1.8	4964	10.80	59	5	ND	1	4	1	2	2	31	. 02	. 227	2	6	.06	99	. 02	4	.90	.01	. 05	1	24	
125+00N 2+00W	3	61	27	106	. 3	9	15	2587		14	5	ND	2	18	1	,	,	101	.20	.146	12	19	.42	43	.42	3	3.15	. 05	.07	1	1	
	ĵ	29	4025	66	48.8	2	3	96		277	Ś	ND	1		i	108	2	35	. 38	.181	2	6	.11	62	.02	3		.01	.10	i	176	
L25+00N 1+75W						5	,	290		B7	5		i	15	1	13	2	73	.15		8	17	.26	32	.10		1.72	.04	.06	i	14	
L25+00N 1+50W	i	70	86	53	.1	7					,	JK.	•	13	1	7	,	56			37	22	.21	19	.20		4.23	.03	.05	2	1	
L25+00N 1+25W	b	20	30	67	. 1	1	t	516	6.77	ó	,	ND	1	,	i	2	<u>-</u>	30	. 06	.075	37	22		19	. 20	J	1.23	.03	.03	4	1	
025+60N 1+00W	3	41	24	65	. I	24	5	313		53	5	ND	1	5	1	2	2	58	.04		12	36	.60	15	.09	_	2.88	.01	.04	1	ŝ	
125+00N 0+75W	1	22	24	57	. 1	9	7	321	3.61	33	5	ND.	2	9	:	2	2	135	.09	.072	7	33	. 20	53	.32		2.14	.01	. 04	1	1	
125+00N 0+50W	3	21	:4	121	.:	16	13	1939	5.28	13	5	ND	1	37	1	2	2	32	. 45	.036	5€	17	.17	111	.10		5.08	.03	.06	1	1	
125+00N 0-25W	3	28	25	73	.1	12	8	339	7.57	80	5	ND	2	10	1	2	2	134	.09	.057	13	23	.28	42	. 23	:	2.24	.02	.07	2	2	
125+00N 3+30W	6	20	27	67	.1	6	3	266	8.92	13	5	ND	4	6	I	2	2	65	.07	.065	23	20	. 13	18	.28	3	3.72	.02	.06	1	1	
L25+00N 0+25E	1	14	1	23	.1	11	2	15	. 56	2	5	ND	1	102	1	2	2	4	1.73	.066	3	1	. 13	81	.01	3	. 27	. 01	.01	1	1	
L25+00N 0+50E	i	13	14	68	.1	:3	3		2.30	23	5	ND	1	42	1	2	2	25	. 39	.067	24	15	. 28	96	.11	2	1.88	.06	.05	1	3	
125+00N 0+75E	1	27	14	96	.1	14	В	207	2.30	2	5	ND	3	69	i	2	;	132	.76	.145	19	21	.51		1.07		6.20	.14	.09	1	1	
	3	31	20	96	.1	39	12		6.96	15	5	NC	2	14	í	2	5	61	.13	.161	9	13	.33	41	.14		2.52	.02	.06	i	i	
125+00N 1+00E	-		_				7			7	5	ND	2	13	1	,	2	35	.13	.132	11	21	.45	45	.24		3.29	.02	.07	1	1	
125+00N 1+15E	1	30	17	60	. 5	11	,	443	6.48	,)	30	÷	13	1	2	2	30	.15	.13.	11	41	. 13	43	. 41	J	3.45	.02	.07	1	•	
125+00N 1+50E	3	54	52	91	.9	21	53	5019		7	5	ND.	1	36	1	2	2	53	. 46	.102	40	40	. 57	93	.20		4.96	.02	.06	i	3	
125+00N 1+75E	2	12	27	34	. 9	34	7	333	€.91	50	5	HD	1	7	1	á	2	52	. 03	. 116	7	51	.70	50	.02		2.30	.01	. û 4	2	1	
125-00N 2+00E	2	99	30	196	. 1	30	29	1813	6.70	96	5	ND	1	35	1	4	:	49	. 42	.130	12	23	.95	173	.05	2	2.31	.03	.Jó	1	1	
L25+0CN 0+05E	3	91	31	285	.1	70	16	408	4.37	36	5	NO	1	24	1	2	2	40	.24	.075	62	3.0	.74	186	.17	3	3.51	.03	.06	1	2	
125+00N 2+50E	3	78	28	128	1.0	35	5		4.61	23	5	ND	7	1	1	2	2	34	.10	.081	31	29	. 52	50	.15	2	4.19	.03	.05	1	4	
323700H 27302	•	, ,	- •				•			•••	•		-	•	•	•	•			,						_						
125+00N 2+75E	7	22	15	130	.1	20	116	12383		10	5	ND	1	45	1	2	2	70	. 6 1		16	29	. 27	109	.12		4.55	.02	.05	1	1	
L25+00N 3+00B	1	16	11	41	. 1	2	2		1.57	2	5	ND	Į.	18	1	2	4	47	. 28	.073	12	50	. 05	23	. 34		2.83	.01	.01	i	ı	
L25+00N 3+25E	8	25	31	79	. 1		3		9.09	3	5	ND	6	4	1	2	2	67	.03	.045	31	17	.09	14	.37		2.84	.01	.06	1	1	
115+00N 3+50E	1	28	23	57	. 1	19	7	198		17	5	Œ.	1	13	1	2	2	96	.16	.075	9	26	. 12	72	.10		2.28	.03	.05	1	3	
125+00N 3+75E	2	50	17	86	. 1	16	6	235	6.01	10	5	ND	2	19	1	2	2	103	.09	.081	5	29	.76	59	.14	2	3.44	. 02	. 05	1	2	
125+00N 4+00E	2	82	13	163	.1	31	25	3366	5.60	13	5	ND	1	49	2	2	-	56	. 57	.143	14	31	.95	151	.10	3	3.79	.03	. û ó	1	1	
STD C/AU-S	18	51	42		6.6	68		1025		42	20	Ē	37	46	18	16	22	59		. 095	39	54	. 93	182	.07	39	2.04	. 36	.13	13	48	
DID C/MU-3	16	21	14	13-	0.0	40			1			٠	• /	••		. •	••	• • •			• •	• •			•						*-	

ı

SAMPLE#	No PPN	Cu PPM	Pb PPM	Zn PPM	Ag PPN	N1 ?PM	Co PPM	Mn PPN	īe %	As PPM	U PPM	Au PPM	Th PPM	ST PPM	Cd PPN	Sb PPM	31 PPM	V PPM	Ca 3	P	La PPM	CT PPM	Ŋġ	Ba PPM	7i	B ??N	Al E	Na 1	K	W PPM	Au* PPB	
L25+00N 4+25 L25+00N 4+50 L25+00N 4+75 L23+00N 4-75 L23+90N 4+50	E 5 E 6 ¥ 4		22 27 25 13 20	126 130 65 72 62	.3 .1 .4 .1	18 22 7 32 14	25 12 3 6	242 242	5.22 6.27 7.60 6.27 3.22	10 21 11 9	5 5 7 5 5	ND ND ND ND	1 2 3 1	33 23 5 23 50	: 1 1 1	3 2 2 2 2 3	2 2 2 2 2 2	42 63 100 95 77	.36 .19 .04 .22 .53	.158 .187 .036 .047 .048	7 5 24 11 12	22 10 30 46 23	.91 .28 .15 .64	60 61 21 169 230	.01 .20 .39 .27	6 6	2.56 1.63 2.19 2.04 1.68	.02 .03 .02 .04	.06 .05 .06 .08	1 1 3 1	3 1 4 2 6	
L23+0CN 4+25 L23+0CN 4+00 L23+0ON 3+75 L23+0CN 3+50 L23+0CN 3+25	₩ 3 ₩ 6 ₩ 1	49 17 15	30 34 26 12 15	107 100 82 75 124	.2 1.7 4.4 .6	34 32 10 7 35	12 3 5 3 6	425 587 106	5.32 5.46 6.19 4.70 8.33	19 20 17 5 23	5 5 5 5	ND ND ND ND	1 2 7 1 2	9 12 5 14 8	1 1 1 1	2 2 3 2 2 2	2 2 2 5 2	52 73 21 105 125	.06 .13 .06 .15	.097	18 29 32 9	47 40 14 15 61	.60 .75 .15 .23	53 68 16 33 56	.12 .34 .17 .54	3 2 2	3.50 4.15 4.59 3.60 2.57	.02 .02 .06 .03	.06 .05 .06 .04	1 1 4 1 3	93 14 2 1	
123+00N 3-00 123+00N 2+75 123+00N 2+50 123+00N 2+25 123+00N 2+00	W 2 W 5 W 3	28 119	11 26 218 207 75	63 65 87 107 76	.? .6 2.8 6.5	9 12 10 4 8	5 4 5 6 6	115 612 360	5.69 6.98 10.75 9.15 7.96	22 46 193 129 54	5 5 5 5	ND ND ND ND	2 1 1 1 2	27 8 16 19 14	1 1 1 1	3 3 19 12 4	2 2 2 2 2 2	154 107 44 28 154	.23 .05 .05 .13	.047 .043 .236 .308 .052	7 9 5 3 7	17 39 27 6 25	.38 .20 .20 .14 .22	64 42 167 328 61	.72 .12 .03 .01	6 5 7	1.47 2.74 .87 .67 2.40	.06 .01 .01 .02 .03	.06 .04 .08 .04 .05	1 2 2 1 1	1 2 23 12 3	
L23+20N 1+75 L23+C0N 1+50 L23+00N 1+35 L23+00N 1+06 L23+00N 0+75	W 1 W 3 W 2	65 14 13	21 20 16 5	75 102 54 46 76	. 8 . 4 . 5 . 4	10 7 6 5	6 12 3 4 8	517 152 113	4.76 10.63 3.95 6.23 5.45	5 175 36 17 17	5 5 5 5 5	ND ND ND ND	2 2 2 2 2	9 9 14 6	1 1 1 1	2 5 3 2 3	2 5 2 2	\$4 160 119 126 118	.14 .03 .11 .06	.014 .050 .083	16 4 16 9	27 21 14 17 28	.38 .17 .12 .19 .54	17 111 61 32 39	.45 .34 .45 .45	5 2 2	3.39 1.34 1.26 1.32 3.60	.03 .01 .02 .01	.04 .04 .04 .04	3 1 1 2 1	1 1 8 3 2	
L23+00N 0+50 L23+00N 0+25 L23+00N 0+60 L23+00N 0+25 L23+0CN 0+50	W 1 W 2 E 4	12 21	12 17 13 26 34	83 31 67 74 96	.1 .5 .2	31 8 65 8 22	6 4 10 3	79 711 218	6.76 2.63 7.57 7.44 6.84	78 37 17 9 21	5 5 5 5 5	NC ND ND ND	1 1 1 3 1	7 8 9 5 7	1 1 1 1	2 3 3 2 2	2 4 2 2 2 2	82 101 90 73 67	.05 .08 .09 .07	.088 .091 .078	9 10 10 26 7	44 20 96 28 27	.67 .16 .89 .13	64 41 36 14	.03 .25 .12 .30	2 6 4	2.30 1.31 2.97 4.39 2.87	.01 .02 .01 .03	.06 .04 .04 .06	3 2 1 1 2	1 2 1 3 6	
L23-00% 0+75 L23+00% 1+90 L23+00% 1+25 L23+00% 1+50 L23+00% 1-75	E 1 E 2	45 56 22	17 11 56 18 15	48 112 133 68 69	.6 1.2 .5 .3	1 20 22 12 8		1482 1134 356		2 15 46 19	5 5 5 5	ND ND ND ND	1 1 1 2 3	10 10 17 10 20	1 1 1 1	2 2 2 2 2	6 2 2 2 2 2	74 80 46 121 156	.08 .13 .19 .08	.165	24 11 7 9	13 28 31 24 20	.08 .48 .50 .31	40 42 74 88 40	.35 .21 .04 .19	2 5 5	1.54 3.77 2.59 2.26 1.50	.01 .02 .03 .01	.03 .06 .09 .05	1 1 1 2 1	2 4 6 1 2	
L23+00N 2+00 L23+00N 2+25 L23+00N 2+50 L23+00N 2+75 L23+00N 3+00	E 1	19 22 21	14 19 12 13	65 106 57 97 122	.3 .1 .1 .2 .1	9 13 10 13	7 12 6 8 20	363 135	7.61 5.20 3.10 6.19 4.81	2 3 53 35 7	5 5 5 5	ND ND ND ND	4 1 1 2 1	15 29 6 15 54	1 1 1 1	3 2 7 4 2	2 2 2 2 2	151 122 43 83 81	.17 .30 .05 .13 .82	.080 .027 .047	7 7 5 6 7	24 19 5 13 21	.44 .50 .08 .20	42 101 36 65 180	.89 .46 .03 .22	2 2 3	2.63 1.66 .90 1.54 1.40	.03 .08 .01 .04	.05 .10 .07 .08	1 1 1 1 1	2 1 1 2 1	
123+00N 3+25 STC C/AU-S	E 1	22 61	19 35	49 132	. 4 6.7	17 70		219 1031	4.58 4.13	8 39	5 17	ND ŝ	1 38	10 49	1 19	2 20	2 21	80 61	. 07 . 49		7 40	34 56	.28 .91	67 179	.11		2.18 1.95	.01	.03	1 11	1 49	

SAMPLE#	No PPM	Cu ?PM	Pb PPM	Zn PPN	Ag PPM	Ni PPM	Co PPM	Mn PPN	Fe %	As PPM	U PPM	Au PPN	Th PPM	Sr PPM	Cd PPN	Sb PPN	B1 PPN	V PPN	Ca }	P	La PPK	Cr PPM	Mg }	Ba PPM	Ti	B PPM	Al ?	Na ł	۱ ۱	W PPM	Au* PPB
L23+00N 3+50E L23+00N 3+75E L23+00N 4+00E L23+00N 4+25E L23+00N 4+55E	1 1 1 1 3	25 75 21 10 143	16 32 7 5 36	35 95 104 43 140	.5 .3 .4 .3	8 16 34 7 28	5 30 11 5 35	7290 433	4.82 7.10 3.89 3.02 6.51	17 33 15 8 42	5 5 5 5	ND ND ND ND	1 1 1 1	11 16 37 18 16	1 1 1 1	2 3 2 2 3	12 2 2 3 2	118 61 64 105 48	.07 .19 .42 .17	.075 .376 .066 .041 .127	6 5 6 9	16 22 35 12 27	.12 .50 .93 .22 .86	70 84 98 52 116	.43 .04 .19 .49	3 3 2	2.58 2.48 1.79 1.24 3.25	.01 .03 .09 .04	.05 .09 .08 .06	2 1 1 3 1	1 4 1 1 3
L23+00N 4+75E L21+0CN 4+75W L21+0ON 4+50W L21+0CN 4+25W L21+0ON 4+0CW	1 2 1 2	22 122 78 39 29	14 24 17 14 17	47 111 144 106 145	.5 .5 .6 .8	10 15 18 30 14	2 9 12	298 7035 4473 571 1605	3.56 5.74	13 28 20 22 19	5 5 5 5	ND ND ND ND	1 1 1 1	31 20 34 42 27	1 1 1 1	4 4 2 3	3 2 2 2 2 3	109 95 102 68 99	.34 .32 .55 .53	.089 .167 .255 .078 .108	7 6 7 14 8	16 41 41 41 21	.42 .97 1.29 .57	39 335 302 304 46	.24 .07 .11 .15 .49	2 3 3	1.83 2.49 2.93 2.60 4.17	.08 .03 .06 .03	.07 .05 .09 .06	2 1 1 1	1 7 19 4 1
L21+00N 3+75W L21+00N 3+50M L21+00N 3+25W L21+00N 3+00W L21+00N 2+75W	2 2 6 1 3	27 28 4€ 103 28	15 27 32 11 21	93 103 115 148 74	.7 .7 1.5 .4 2.3	59 22 26 10 3	11 11 6 6	1243 297 936	5.81 6.13 6.21 1.60 3.17	20 17 21 2 96	5 5 5 5	ND ND ND ND	1 1 2 1	14 12 6 13 10	1 1 1 1	4 4 7 2 25	2 2 2 2 3	50 86 48 9 73	.13 .14 .06 .15	.044 .099 .086 .175	\$ 12 32 25 3	82 40 38 3	1.00 .48 .39 .05 .06	40 40 23 61 30	.05 .30 .19 .02 .31	5 2	2.60 3.20 5.01 3.89 .55	.03 .02 .02 .01	.05 .06 .04 .03	1 1 3 1 4	8 7 9 1 3
L21+00N 2+50W L21+00N 2+25W L21+00N 2+00W L21+00N 1+75W L21+00N 1+50W	5 1 2 3 3	18 64 41 47 27	10 8 36 31 27	104 62 92 72 91	.5 .5 1.2 1.2 2.3	20 4 11 23 13	5 2 10 6 6	143 272 476	3.22 .51 4.31 8.30 7.58	24 2 178 72 25	5 5 6 5	ND ND ND ND	3 1 1 2 2	7 4 56 7 14	1 1 1 1	4 2 17 8 5	3 2 2 2 2	112 7 92 83 110	.07 .03 .58 .04	.051 .125 .093 .072 .076	3 37 7 9 16	50 3 12 66 34	.39 .03 .76 .49	25 15 34 52 28	.43 .01 .43 .06	2 3 5	2.76 3.73 1.21 3.32 4.17	.02 .01 .16 .01	.04 .01 .10 .05	1 2 1 3 2	1 1 8 11 1
L21+00N 1+25W L21+00N 1+00W L21+00N C+75W L21+00N 0+50W L21+00N 0+25W	2 2 1 1	19 93 35 52 19	24 45 27 48 4	70 109 85 179 111	1.5 2.3 .7 4.1	9 7 13 10 11	5 17 7 20 9	3199 414 8615	6.39	17 103 46 135 50	5 5 5 5	ND ND ND ND	4 1 1 1 2	12 11 7 19 23	1 1 1 1	5 12 5 5 3	2 2 2 2 11	140 75 112 108 182	.13 .06 .07 .22	.042 .228 .042 .259 .368	11 6 15 8 6	36 23 38 30 25	.34 .23 .40 .54	30 192 53 79 38	.76 .16 .23 .20	6 4 2	2.92 2.12 3.63 2.94 1.98	.04 .02 .02 .05 .06	.05 .06 .04 .08	1 2 1 1	1 5 1 8
L21+00N 0+00W L21+00N 0+25E L21+00N 0+50B L21+00N 0+75E L21+00N 1+00S	2 3 1 6	20 57 16 27 18	14 30 12 16	92 158 119 80 134	1.6 .4 .1 .2 .1	14 18 12 14 20	11 13 7 12 26	1025 320	5.64 10.55 5.28 2.58 6.62	38 167 15 29 15	5 5 5 5	ND ND ND ND	1 1 1 1	36 8 24 13 170	1 1 1 1	2 8 2 4 2	3 2 4 2 2	107 81 111 21 102	.35 .12 .33 .22 2.35	.083 .153 .099 .109	8 6 9 5	23 28 21 6 16	.61 .24 .42 .12 2.02	84 45 48 36 115	.34 .03 .59 .06	2 3	2.02 2.03 3.63 .68 3.01	.11 .01 .05 .02	.11 .05 .06 .12	1 1 1 1	1 6 1 1
L21+00N 1+25E L21+00N 1+50B L21+00N 1+75E L21+00N 2+30B L21+00N 2+35E	1 1 1 4	10 34 24 11 15	9 20 16 26 17	41 206 85 70 78	.1 .5 1.1 .2	3 21 11 9	4 19 6 4 6	300	6.95	7 33 18 16 22	5 5 7 5 5	ND ND ND ND	1 1 1 2 1	18 35 15 7 15	1 1 1 1	2 5 6 2 3	2 2 2 2 2	42 129 130 105 85	.22 .63 .13 .04	.123 .042 .033	7 9 7 13 7	8 37 21 29 14	.16 .50 .22 .17	62 134 77 33 87	.06 .12 .13 .46	3 5 2	1.30 1.74 2.48 1.50 1.87	.03 .06 .01 .01	.06 .11 .05 .06	1 1 1 1	5 2 1 1
L21+00N 2+50E STD C/AU-S	3 18	23 52	11 39	134 132	1.6 7.0	11 69		1167 1028		19 42	5 17	HD 7	1 38	20 48	1 19	2 17	2 19	103 60	.22 .50		14 40	26 56	.46 .91	38 176	. 19 . 07		3.76 2.03	.06 .06	. 09 . 15	1 11	1 47

(

SAMPLE#	MC PPM	Cu PPN	Pb PPM	2n PPM	Ag PPM	Ni PPM	Cc PPM	Nn PPN	Fe %	As PPM	U PPM	AU PPM	Th PPN	Sr PPM	Cd 22%	Sb PPM	Bi PPM	y PPM	Ca 3	P 3	La PPN	Cr PPM	Mg	Ba PPM	Ti 3	B PPM	λl ξ	Na 3	K }	W PPN	Au* PPB
L21+00K 2+75E L21+00M 3+00E L21+00M 3+25E L21+00M 3+56E L21+00M 3+75E	1 2 1 1	4 34 14 11 39	9 29 10 12 16	45 102 93 66 140	.i .4 .5 .7	3 30 11 6 20	2 8 6 4 23	231	.50 9.74 5.55 3.96 8.41	2 28 4 2 17	5 5 5 5	ND NC ND NC	1 1 2 1 1	8 5 17 13 32	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	38 76 121 101 79	.08 .05 .15 .12 .42	.017 .090 .040 .032 .139	15 12 8 9 10	13 56 23 13	.11 .45 .34 .14	80 39 49 49 107	.03 .05 .49 .28	2	.94 3.09 2.19 1.78 2.64	.01 .01 .03 .02	.05 .06 .05 .04	2 2 2 1 1	1 1 1 3
L21+06N 4+00E L21+06N 4+25E L21+06N 4+56E L21+66N 4+75E L19+36N 4+75W	1 1 1 1 3	12 18 41 33 14	8 11 25 22 19	95 60 73 87 77	.1 .4 .1 .2	9 11 14 19 14	8 5 10 5	346 271 940	5.33 3.89 6.93 5.99 8.56	8 34 27 12	5 5 5 5	ND ND ND ND ND	1 1 1 1 2	43 27 2 8 15	1 1 1 1	2 2 3 3 2	2 2 2 2 2 2	131 116 40 42 107	.54 .34 .02 .07	.049 .053 .473 .182 .050	12 7 8 6 12	15 10 11 12 33	.43 .26 .07 .14 .31	144 60 34 55 64	.59 .35 .02 .02	3 3 5	1.14 .72 1.16 1.09 2.60	.09 .04 .01 .02 .04	.09 .07 .10 .10	1 1 1 1	1 2 1 1
L19+00N 4+50W L19+00M 4+25W L19+00M 4+00W L19+06M 3+75W L19+00M 3+50W	2 1 3 2 3	34 29 50 27 14	25 21 18 2 3	104 97 100 85 116	.7 .8 .£ .3	44 15 10 12 5		339 1719 1380 207 49	5.80 5.53 5.99 .78 .27	24 22 76 3	5 5 5 5	ND ND ND ND	1 1 1 1	12 21 7 213 185	1 1 1 !	2 2 3 2 2	3 2 2 2 2 2	58 85 19 14	.12 .21 .06 2.77 2.42	.064 .100 .214 .090 .041	10 7 6 5 2	52 23 13 8 3	.79 .38 .16 .22 .09	99 115 69 170 154	.03 .23 .02 .03 .01	4	3.14 2.17 1.19 .63 .19	.01 .04 .01 .04	.07 .07 .06 .04	2 1 1 1	28 2 8 1
L19+00N 3+25W L19+00N 3+00W L19+00N 2+75W L19+00N 2+50W L19+00N 2+25W	1 7 3 3	30 47 139 63 33	15 40 40 64 34	73 139 223 59 87	.4 1.0 .8 1.3	6 16 43 3 16	5 13 35 3 17	737 2340 35	3.34 6.02 5.12 5.48 7.56	14 27 49 329 123	5 5 5 5	ND ND ND ND	1 1 1 1	17 21 60 18 99	1 1 1 1	2 8 8 17 13	2 2 2 2 2	51 99 57 29 85	.17 .25 .68 .10	.093 .095 .103 .103 .105	7 14 14 7 9	4	.25 .42 1.26 .09 1.40	30 63 103 39 68	.12 .48 .22 .03	2 3 5	1.23 3.47 2.70 .97 2.14	.03 .03 .15 .02	.05 .06 .11 .05	1 1 1 1	1 2 31 5
119-00N 2-00W 119+00N 1+75W 119+00N 1+50W 119+00N 1+25W 119+00N 1+00W	4 2 7	18 14 62 14 136	137 26 51 47 62	56 55 63 64 76	3.2 .4 .5 .5	4 4 1 21 7	3 2 5 4 9	72 885 138	6.57 2.35 4.46 4.75 7.30	201 107 376 35 115	5 5 5 5 5	ND ND ND ND	1 1 1 1	15 9 6 12 25	1 1 1 1	8 2 37 2 4	6 2 4 2 3	78 77 20 103 88	.10 .08 .02 .10	.156 .070 .094 .043	4 7 2 10 5	12 12 2 38 11	.11 .39 .03 .44	4; 43 67 51 67	.23 .23 .91 .17 .27		.87 .64 .56 2.29 1.09	.02 .01 .01 .02 .07	.05 .03 .05 .04	1 1 2 2 1	9 1 2 1 2
119+00N 0+75W 119+00N 0+50W 119+00N 0+25W 119+00N 0+00W 119+00N 0+25E	4 5 1 2 1	35 20 210 91 137	43 31 3 43 21	102 30 266 91 192	.2 .4 .3 .4	16 8 19 12 14	5	213 3306	7.94 2.06	42 25 23 18 31	5 5 5 5	NC ND ND ND	2 1 1 1	7 9 35 46 41	1 1 1 1	2 2 8 2 3	2 2 3 2	73 162 120 45 53	.05 .08 .40 .19	.061 .028 .163 .104 .163	20 19 6 21	34 21 44 17 23	.37 .16 2.52 .24	46 72 512 78 101	.17 .48 .02 .12	2 5 7	2.89 2.14 3.24 2.56 4.81	.02 .02 .03 .03	.06 .04 .39 .04	1 1 1 2 1	5 1 1 1 1
L19+00N 0-50E L19+00N 0+75E L19+00N 1+00E L19+00N 1+25E L19+00N 1+50E	1 1 1 5 5	113 40 51 61 26	50 20 20 36 18	172 134 61 147 65	.B .2 .3 .3	57 21 19 27	30 16 12 20 6		5.63	112 23 42 68 33	5 5 5 5	ND ND ND ND	2 2 2 2 4	11 102 13 6 8	1 1 1 1	2 3 4 3	2 2 2 2 2 2	52 83 25 50 136	.08 1.37 .19 .07	.131 .117 .396 .126 .633	11 16 5 10		1.07 1.13 .30 .29 .19	68 39 90 63 51	.04 .41 .01 .01	4 6 5	2.89 2.84 1.24 2.51 2.57	.01 .31 .01 .01	.06 .20 .20 .09	2 1 1 1 2	11 1 1 2 2
119+00N 1+75E STD C/AU-5	1 18	19 62	12 42	71 133	1.0	9 70	7 31	215 1033	5.64 4.20	9 43	5 19	HD 7	3 38	10 48	1 19	2 16	2 20	109 61	.11 .50	.059	8 40	23 57	.27 .94	53 175	.27 .07		3.71 2.01	.03 .06	.06	1 11	1 43

SAMPLE#	Mo PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Ni PPM	CO PPM	Mn PPM	īe }	As PPM	U PPM	Au PPM	Th PPM	Sr ?PM	Cd PPN	Sb PPM	Bi PPM	V PPM	Ca %	P	La PPM	Cr PPM	Mg L	Ba PPM	Ti }	B PPN	Al 3	Na Ł	K %	W PPM	Au* PPB
L19+00N 2+00E L19+00N 2+253 L19+00N 2+50E L19+00N 2+75E L19+00N 3+00E	1 1 6 1 2	5 8 18 26 9	11 8 19 14 16	3E 51 28 101 61	.3 .9 .2 .5	5 9 6 41 9	2 3 6 12 4	84 792 1814	1.33 3.46 9.18 7.55 5.49	2 12 5 19 15	5 5 5 5 5	ND ND ND ND	1 1 5 1	12 13 5 13 9	1 1 1 1	2 2 2 2 2 2	2 2 2 3 3	86 126 77 82 123	.14 .10 .04 .19	.018 .046 .087 .094	8 15 21 8 12	20 30 24 22 26	.11 .20 .12 .16 .21	49 53 23 105 56	.40 .20 .45 .08	2	.84 1.83 3.13 1.65 2.34	.01 .01 .03 .01	.03 .04 .08 .09	1 1 1 1	1 2 1 2
L19+00N 3+25E L19+00N 3+50E L19+00N 3+75E L19+00N 4+00E L19+00N 4+25E	1 1 1 3 1	15 10 28 76 24	25 13 17 99 43	66 51 101 2969 586	.5 .3 .4 .4	19 8 43 23 18		139		14 7 20 62 18	5 5 5 5 5	ND ND ND ND	1 1 1 2 1	6 26 9 14 107	1 1 10 1	3 2 2 10 2	2 2 2 2 2	72 88 72 71 103	.05 .23 .10 .17 1.38	.120 .036 .075 .099 .107	10 8 10 21 12	41 17 54 18 20	.39 .33 .94 1.07 1.77	76 90 66 345 134	.06 .34 .05 .01	4 2 2	2.20 1.60 2.68 2.66 2.54	.01 .06 .01 .01	.07 .10 .08 .11 .27	1 1 1 1	1 1 1 1
L19+00M 4+50E L17+00M 4+752 L17+00M 4+75M L17+00M 4+50M L17+00M 4+25W	1 6 3 2 5	27 108 30 27 85	12 43 25 23 138	152 150 56 93 210	.4 .4 .2 .5	38 19 11 12 53		514		15 295 263 28 98	5 5 5 5	ND ND ND NC	1 2 1 1	33 6 11 31 13	1 1 1 1	2 2 2 2 17	2 2 2 2 2	84 60 22 88 35	.26 .01 .26 .33	.055 .156 .122 .114 .130	8 10 8 12 18	50 26 9 17 53	.31 .19 .55 .49	123 47 68 55 50	.12 .03 .01 .20	2 3 4	2.40 3.45 1.36 2.06 2.84	.06 .01 .01 .36	.07 .09 .12 .09	1 1 1 1	1 3 18 1 43
L17+00N 1+00M L17+00N 3+75W L17+00N 3+50W L17+00N 3+25W L17+00N 3+00W	4 1 2 2 4	20 4 39 24 17	21 9 17 18 21	83 23 68 66 55	1.2 .2 .7 1.2 1.2	34 10 48 29 12	7 2 13 5 4	70 729 212	7.60 .94 5.38 5.69 6.43	13 7 29 49 9	5 5 5 5	ND ND ND ND	1 1 1 1	8 6 5 12	1 1 1 1	2 2 2 2 2 2	3 2 2 2 2 2	88 52 42 81 104	.06 .05 .02 .03	.035 .015 .039 .046	13 23 17 15 17	55 31 60 68 36	.56 .16 .93 .54	32 40 40 36 41	.31 .12 .05 .15	5 2 2	2.12 1.21 3.09 3.29 2.75	.02 .01 .01 .01	.06 .04 .06 .05	1 2 2 2 1	1 1 9 4 1
L17+DON 2+75W L17+DON 2+50W L17+DON 2+25W L17+DON 2+00W L17+DON 1+75W	1 2 2 2 3	14 31 20 24 114	8 22 10 12 25	38 104 58 66 120	.3 1.0 1.0 1.8	17 32 37 12 9	9 30 5 4 14	3028 236	6.30 5.84 10.53	14 45 19 7 175	5 5 5 5 5	ND ND ND ND	1 1 1 3 1	8 12 10 16 19	1 1 1 1	2 2 4 2 7	3 2 2 2 2	117 62 62 148 67	.10 .12 .03 .13	.043 .097 .232 .091 .242	13 24 9 9	40 38 65 36 16	.45 .59 .55 .30	58 33 43 65 65	.22 .18 .05 .70	2 2	1.70 4.10 1.96 2.77 1.57	.01 .04 .01 .03	.07 .06 .05 .07	2 1 2 1 1	1 1 5 1
117+00N 1+50W 117+00N 1+25W 117+00N 1+90W 117+00N 0+75W 117+00N 0+50W	3 2 2 3 1	127 134 30 17 40	135 83 24 19	323 120 63 47 156	1.9 .8 .9 .4	7 6 23 5 8	32 14 6 2 9	831 191 71	12.97 10.62 7.87 4.96 5.36	1049 462 49 24 24	5 5 5 5	ND ND ND ND	1 1 2 1	32 8 14 7 35	1 1 1 1	23 14 2 2 2	2 2 2 2 2 2	29 25 84 91 84	.50 .12 .13 .06	.083	5 7 7 11 4	11 11 37 29 12	.43 .17 .32 .16	62 27 40 27 37	.03 .01 .19 .24	2 2 2	1.18 1.24 1.97 2.73 1.02	.02 .01 .01 .01	.05 .04 .05 .04	1 6 1 3	4 2 1 3 7
L17+00H C+25W L17+00H G+00W L17+00H C+25E L17+00H C+50E L17+00H G+75E	3 1 3 1 4	41 66 37 34 24	19 16 28 26 29	85 81 107 99 152	.8 .4 1.9 1.1 3.8	11 10 22 33 16	6 10 11 7	181 2104 399	7.94 4.50 8.56 8.68 7.88	9 5 27 65 17	5 5 5 5	DN DN DN DN DN	2 2 3 1 1	18 24 9 9	1 1 1 1	2 2 5 4 2	2 2 2 2 2	103 138 76 92 62	.19 .33 .09 .04	.140 .095 .054	15 37 20 9 22	35 24 40 63 29	.45 .42 .68 .76	58 39 69 119 147	.53 .79 .23 .04	2 2 3	4.36 6.10 4.14 2.95 3.71	.05 .07 .03 .01	.06 .09 .07 .05	1 3 5 3 1	2 1 1 2 1
L17+00N 1+00E STD C/AU-S	1 13	37 62	10 44	270 132	. 2 7 . 0	i 1 69		11637 1023		83 43	5 18	ND 7	1 38	23 49	1 19	2 19	2 19	46 61	.57 .50		13 40	13 56	.35 .95	198 180	. 02 . 07		1.38	.02 .06	. 09 . 15	1 12	4 53

SAMPLE#	Mo PPN	Cu PPM	Pb PPM	2n PPM	Ag PPM	Ni PFM	Co PPM	Mn PPM	Fe 3	As PPM	U PPN	Au PPM	7b PPM	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V PPM	Ca 1	P	La PPM	Cr PPM	Ng L	Ba PPM	Ti 1	B PPM	Al 3	Na }	K	W PPM	Au* PPB
L17+00N 1+25E L17+00N 1+50E L17+00N 1+75E L17+00N 2+00E L17+00N 2+25E	1 1 1 6	31 22 48 20 13	22 13 33 24 17	104 54 93 59 63	.7 .1 .1 .9	49 14 19 21 10	12 17 28 3	484 1790 253	6.59 3.95 3.99 4.14 4.57	26 43 47 16 13	5 5 5 5	ND ND ND ND	1 1 1 2	11 28 48 4 32	1 1 1 1	2 2 3 2 2	2 2 2 2 2 2	56 38 39 90 138	.11 .56 .79 .02	.066 .048 .121 .029 .044	9 5 7 16 7	51 14 14 27 19	.94 .43 .44 .37 .49	40 501 277 41 72	.08 .01 .10 .39	6 4 2	2.88 1.54 1.07 1.94 1.75	.02 .02 .06 .01	.05 .31 .11 .04 .10	i 1 1 1	3 1 1 25 1
L17+00N 2+56E L17+00N 2+75E L17+00N 3+00E L17+00N 3+25E L17+00N 3+56E	1 1 2 3 1	13 14 9 24 25	10 16 19 12 3	38 74 48 56 97	.3 1.7 .2 .4 .2	6 10 7 11 17	2 6 2 7 14	337 97	2.89 6.37 2.78 5.93 6.39	11 6 11 22 8	5 5 5 5	ND ND ND ND	1 2 1 2	9 19 9 10 25	1 1 1 1	2 2 2 2 2 2	2 4 2 2 2	60 113 75 100 131	.10 .22 .08 .11 .32	.099 .096 .043 .037	5 11 12 6 5	8 31 21 20 25	.10 .38 .18 .24 .33	60 40 39 48 82	.07 .55 .19 .17	5 2 4	1.49 2.30 1.77 2.88 1.60	.01 .06 .02 .02 .02	.08 .09 .05 .08	3 1 1 1	2 1 1 1
L17+00N 3+75E L17+00N 4+00B L17+00N 4+25E L17+00N 4+50E L17+00N 4+75E	1 1 1 1	30 15 10 12 26	14 13 15 10 12	120 54 88 65 82	.2 .3 .1 .1	22 23 7 10 12	5 7	925 1383	2.56 3.27	31 17 9 6	5 5 5 5	ND ND ND ND	1 1 1 1	9 14 30 38 36	1 1 1 1	2 2 2 2 2 2	2 2 3 2 2	76 41 99 110 117	.10 .11 .37 .44 .39	.113 .047 .053 .084 .050	10 9 6 8 3	27 34 13 13	.27 .40 .31 .55	76 61 78 133 44	.11 .01 .41 .34	4 2 4	3.10 1.42 .96 1.63 1.66	.02 .02 .06 .10	.10 .06 .09 .11	1 1 1 1	1 2 1 1
M27+4 M00+211 M26+4 M00+211 M25+4 M00+211 M00+4 M00+211 M27+8 M00+211	3 1 1 1	15 24 24 25 15	36 18 17 15 14	48 107 90 126 104	2.4 .8 .7 .8	9 16 46 7 11	2 9 6 8 5	959 261 1683	4.03 5.76 6.77 7.61 8.02	2 16 81 5	5 5 5 5	ND ND ND ND ND	1 1 1 1 3	9 21 10 12 17	1 1 1 1	2 2 3 2 2	2 2 2 2 3	62 107 78 71 136	.06 .29 .07 .10	.039 .170 .034 .207 .066	28 29 8 4 6	34 30 74 14 28	.12 .52 .85 .18	32 48 63 80 30	.16 .43 .10 .10	3 4 2	2.82 4.67 3.15 .90 2.42	.01 .04 .02 .02	.03 .08 .05 .06	1 1 1 2	2 1 93 1 1
115+00N 3+55W 115+00N 3+25W 115+00N 3+06W 115+00N 2+75W 115+00N 2+56W	3 1 3 1 3	10 64 27 19	13 42 13 10 20	103 349 135 98 110	. 4 . 8 . 5 . 2	50 14 17 12 19	6 28 5 3 6	9007 521 199	6.10 9.10 10.25 5.92 8.30	9 265 19 9 36	5 5 5 13 10	ND D ND ND	1 1 2 4 3	9 17 6 23 7	1 1 1 1	2 11 2 2 2 2	2 2 2 8 3	64 58 126 152 77	.06 .30 .08 .32	.037 .273 .098 .100	10 4 11 17 17	64 23 50 29 40	.91 .41 .32 .51	42 118 28 33 28	.20 .02 .34 1.22 .33	4 3 2	2.63 1.52 2.97 4.92 4.12	.02 .02 .01 .07	.07 .06 .04 .08	1 1 1 1	1 1 1 1
L15+00N 1+25W L15+00N 2+00W L15+00N 1+75W L15+00N 1+50W L15+00N 1+25W	5 2 2 4 2	16 19 46 115 64	15 18 22 22 361	82 105 112 124 201	.5 .7 .8 2.0 5.4	35 34 38 17 13	5 5 118 8	213 259 14301	7.13 6.96 7.62 7.90 8.43	24 23 56 12 103	5 5 5 5	ND ND ND ND	1 1 2 1	15 20 10 10 21	1 1 1 1	2 2 9 2 8	2 2 2 3	102 68 59 102 68	.09 .17 .06 .13	.045 .043 .086 .078 .137	14 10 6 23 5	57 52 57 49 23	.60 .56 .66 .31	67 49 51 73 249	.19 .10 .05 .32 .17	2 4 2	2.55 2.22 2.57 4.21 1.66	.01 .01 .01 .03	.05 .04 .04 .06	2 1 2 1	1 1 2 1
L15+00N 1+00W L15+00N 0+75W L15+00N 0+56W L15+00N 0+25W L15+00N 0+00W	4 1 2 1 8	20 20 24 42 12	27 32 160 96 21	101 123 173 127 88	.5 1.2 2.9 2.0 1.0	10 13 7 11 8	5 9 5 9	505 742 893	9.38 4.75 7.09 9.23 11.73	23 13 19 62 21	5 5 5 7	ND ND ND ND	2 1 1 3 3	11 30 17 14 6	1 1 1 1	2 2 2 6 2	2 2 2 2 2 2	136 136 123 106 89	.11 .30 .13 .15	.078 .059 .381 .100	10 9 6 6	28 23 20 32 22	.39 .51 .18 .39	49 115 79 78 24	.32 .33 .52 .52 .32	2 3 3	2.20 1.59 1.60 3.14 1.77	.03 .07 .02 .03	.05 .07 .06 .05	1 1 1 1 2	1 1 1 1
L15+00N 0+25E STD C/AU-S	1 18	65 62	22 43	117 132	1.2	24 68	6 30	286 1021	11.63 4.27	67 42	5 17	ND 8	2 38	11 49	1 18	2 18	2 21	115 60	. 06 . 50	.101 .098	6 39	68 55	. 52 . 94	87 178	.04 .07	_	3.70 2.01	.01 .06	.03 .15	1 11	54 52

,

(

SAMPLE # Mc Cu ЭЪ 20 Ni Ca Mn Fe As U Au Th Sr cd sb Bi ٧ Ca P La Cr Mg Вa 71 В Нa PPN PPN ł ł PPM PPN PPN PPM PPM PPM PPM PPM 1 1 PPM ì PPM PPM PPM PPM PPM PPM ł PPN PPM PPM 26 1027 7.90 . 38 .169 .86 46 .04 2 2.67 .01 .04 19 L15+CON C+5CE 42 142 .7 45 113 5 ND 11 46 56 100 3 12 6 30 .31 58 .29 2 1.67 .01 . 05 L15+00N 0+75E 51 28 140 1.0 17 8 285 9.75 117 5 ND 1 2 103 .11 .139 62 .03 . 332 7 66 .63 58 .07 4 4.47 .01 .05 32 39 109 .5 31 318 8.37 39 5 ND 6 L15+00N 1+00E 11 3 3.97 .01 .06 2 7 240 6.88 43 5 ND 1 9 1 5 2 107 .09 .092 33 . 38 44 . 34 115+00N 1+25E 1 29 25 115 1.5 19 9 240 6.63 17 5 ND 2 30 68 .24 .057 10 22 . 65 56 .09 3 2.02 . 95 1 15 146 17 3 L15+00N 1-50E 44 2 37 5 145 1.94 5 ND 22 81 .24 .028 12 19 . 29 62 . 26 3 1.32 . 05 115+00N 1+15E 3 12 . 4 8 8 .79 184 5 3.01 .02 23 1275 6.33 33 5 ND 61 50 .68 .105 12 43 .04 115+00N 2+00E 76 36 209 . 6 45 2 21 12 104 1.0 6 221 10.15 3 5 ND 3 14 1 5 2 149 .10 .085 6 41 .32 71 .54 4 2.04 .02 5 L15+00N 2+25E 1 12 90 407 6.31 6 5 ND 2 17 1 2 2 2:3 .14 .037 7 33 .22 58 .69 4 1.76 .03 . 05 1 13 .4 10 7 L15+00N 2+50E 2 1.02 .01 47 .07 .252 3 20 .17 50 .03 1 115+00N 2+75E 56 16 165 . 5 21 16 1074 7.08 HD. 46 .03 3 .84 L15+00N 3+00E 2 17 3 78 . 2 11 7 132 1.52 20 5 ND 16 1 2 71 .11 .030 11 11 .11 81 11 188 11.56 5 ND 2 5 1 56 .03 .058 6 52 .43 70 .02 5 2.91 .01 .05 62 31 41 169 115+00N 3+25E 1 . 4 55 .38 .090 . 25 .09 7 1.11 .04 446 2.77 15 5 ND 31 7 11 82 L15+00N 3+50E 1 22 9 378 . 3 11 В 5 ND 7 1 28 .07 .086 11 33 .43 60 .01 3 3.69 .01 .09 42 23 140 . 3 31 12 510 5.51 16 2 4 2 L15+00N 3+75E 2 .07 33 21 .35 145 . 63 5 1.84 1 10 387 6.15 17 5 ND 2 134 .28 .041 6 L15+00N 4+00E 20 22 113 . 2 16 170 .17 .044 26 .35 8á .98 3 1.75 .03 123 218 9.41 10 5 HD. 13 L15+00N 4+25E 21 8 . 5 11 41 13 152 22 14 1089 5.78 2 DK 2 68 1 2 83 1.15 .090 58 28 .88 104 .72 4 5.72 . 08 .06 1 115-00N 4+59E . 32 4 3.02 2 66 48 .28 63 .01 .07 42 27 85 . 9 21 7 453 7.56 27 5 ND 14 1 4 .19 .107 7 1 L15+00N 4+75E 23 82 8 28 1.06 56 .02 3 2.36 .02 1 113+00N 4-75W 146 12 128 27 575 8.13 228 5 ND 1 1 12 .40 .248 505 9.07 35 5 ND 24 1 7 2 122 .27 .100 9 28 . 56 56 .45 2 3.30 .06 .06 L13+00N 4+50W 125 13 45 6 1.1 12 50 .35 2 2.23 .03 104 9 11 542 7.77 44 5 ND 13 1 3 2 129 .11 .063 13 28 .37 113+00N 4+25W 41 14 2.7 428 7.28 5 ND 3 23 16 2 143 .26 .075 11 39 . 52 42 . 62 4 2.96 .07 .09 27 125 10 2 1 113+00N 4+00W 14 3.4 18 294 3.17 13 5 ND 11 3 39 .09 .063 11 56 . 43 57 . 36 3 1.97 .01 .04 1 3 L13+00N 3+75W 15 10 66 . 9 28 5 6 2.30 . 04 2 12 637 3.10 13 5 ND 7 1 5 2 112 .04 .059 9 66 .42 83 .06 .01 69 14 101 . 5 24 1 L13+00N 3+50W 82 .10 .119 .37 13 .08 6 1.49 .01 1 L13+00N 3+25W 2 104 29 152 1.0 26 16 1105 10.95 47 5 ND 2 8 1 11 2 6 49 .06 223 16.4 24 52 2766 18.99 4034 5 3 319 2 30 .31 .179 13 20 .17 60 . 31 5 .11 1 1360 L13+00N 3+00W 4 258 139 84 29 .34 3 B 5 2.32 .02 144 161 16 35 2633 11.20 163 5 ND 9 1 22 2 .14 .244 12 .16 158 2.0 113-00N 2+75W 67 .03 .025 39 61 .73 49 .22 2 2.79 .01 .06 5 ND 5 2 1 9 113+00N 2+50W 24 25 88 . 2 39 5 271 5.42 19 4 95 298 6.49 90 5 ND 1 15 1 2 75 .16 .087 11 47 .53 65 .07 4 2.00 . 02 .07 1 3 25 13 . 8 30 В L13+CON 2+25W 5 ND 2 19 .08 .098 8 46 .74 55 .01 2 1.94 .01 1 36 9 455 5.56 121 L13+00N 2-00W 78 24 143 1.1 135 .12 .120 .17 45 4 1.17 .01 L13+00N 1+75W 36 13 127 1.2 15 8 342 7.31 135 5 ND 2 15 2 25 .16 123 .08 .297 125 43 155 1.5 13 19 4195 10.27 213 5 ND 1 11 1 11 2 26 .27 62 .12 4 1.30 . C1 .06 L13+00N 1+50W 25 2 105 .26 .175 16 .29 44 .34 6 1.26 .06 B 272 7.56 66 5 L13-00N 1+25W 97 26 60 . 4 9 37 11 .69 69 18 42 .7 5 9 248 9.54 93 5 ND 2 18 1 7 2 96 .12 .137 3 13 . 16 .10 .03 .07 2 L13+00N 1+00W 4 .08 .072 .12 42 .51 17 80 19 23 3 2.92 .04 .06 1 L13+CON 0+75W 21 47 69 4.2 5 81 10.95 5 ND 8 17 156 .24 .058 .30 .73 . 05 5 326 5.36 5 23 16 34 6 1.16 113+00N 0+50W 15 26 54 3.2 8 9 HD 3 32 17 17 1690 9.23 22 5 ND 2 46 1 4 2 151 .48 .094 10 33 1.14 131 . 39 5 2.76 . 16 .12 1 1 L13+CON 0+25W 3 35 105 1.2 43 38 19 20 18 61 .50 .094 40 56 .95 178 .07 39 1.98 .06 12 63 38 132 7.3 31 1033 4.16 19 7 49 STD C/AU-S

(

Ĺ

ĺ

(

SAMPLE#	Mo PPM	Cu PPM	P5 PPN	Zn PPM	AG PPM	Ni PPM	Co PPN	Mn PPN	Fe 3	As PPN	U PPN	Au P?M	Th PPM	Sr ?PN	Cd PPN	Sb PPM	Bi PPM	V PPM	Ca 3	P	La PPM	Cr PPN	Ng %	Ba PPM	Ti	B PPM	Al %	Na B	K	W PPM	Au* PPB
113+0CN 0+00E 113+00N 0+05E 113+00N 0+50E 113+00N 0+75E 113+00N 1+00E	6 2 1 8 3	68 72 11 13 27	136 15 13 25 20	172 73 43 87 84	1.8 .3 .7 .6	13 15 5 8 23	20 14 4 6	159	8.06 7.90 5.14 6.53 6.33	71 8 4 13 25	5 5 5 5	ND ND ND ND ND	1 2 2 2 1	14 30 17 7 14	1 1 1 1	4 2 2 2 2 3	2 2 5 7 2	72 140 189 111 83	.13 .38 .12 .06 .16	.138 .093 .026 .028 .045	10 15 5 22 12	42 28 14 17 43	.57 .93 .24 .26 .39	105 85 45 23 182	.13 .73 1.06 .62 .08	3 2 2	3.42 3.90 1.11 1.43 2.80	.02 .08 .03 .02	.05 .08 .04 .04	1 1 2 2 1	14 4 4 6 1
L13+00N 1+25E L13+00N 1+50E L13+60N 1+75E L13+00N 2+00E L13+00N 2+25B	1 5 1 4	11 30 68 26 185	22 26 23 36 25	58 96 115 66 153	.4 1.0 .6 2.2 .2	5 10 9 18 40	4	325 3312	5.41	10 23 23 33 39	5 5 5 5	ND ND ND ND	1 1 1 1 2	16 15 31 5 29	1 1 1 1	2 2 2 2 2	2 6 2 2 2	79 122 73 64 28	.13 .10 .31 .02 .22	.055 .045 .297 .045 .173	8 16 15 12 6	11 20 18 32 21	.13 .16 .25 .32 .63	93 91 124 51 46	.20 .45 .12 .39	3 2	.92 2.05 2.40 2.05 2.11	.01 .02 .02 .01	.04 .06 .05 .04	1 2 1 3 1	69 1 1 5 8
L13+00N 2+50E L13+00N 2+75E L13+00N 3+30E L13+00N 3+25E L13+30N 3+50E	3 3 2 3 2	96 33 45 27 23	53 19 37 16 30	167 86 145 123 125	1.5 .7 .4 .2 .3	36 13 55 15 48		211		76 26 33 8 12	5 5 5 5 5	ND ND ND ND	1 2 1 1	15 15 7 138 34	1 1 1 1	3 2 2 2 2 2	2 2 2 2 2	38 95 56 89 43	.12 .07 .03 1.78 .36	.222 .150 .075 .079 .034	12 12 28 38 20	38 20 54 24 43	.66 .14 .92 .37	52 76 65 225 234	.03 .22 .02 .65	5 4 2	2.77 1.77 3.64 4.12 2.68	.03 .01 .01 .06	.06 .06 .06 .09	2 2 2 1 1	8 1 3 1 1
L13+00N 3+75E L13+10N 4+00E L13+00N 4+25E L13+00N 4+50E L13+0N 4+75E	2 4 3 6 2	22 22 42 35 34	9 10 21 16 25	181 127 99 86 125	.3 .8 .2 .4	14 21 21 16 22		233	9.79 5.46 9.12	6 16 31 47 25	5 5 5 5	ND ND ND ND	1 1 1 3 1	154 129 108 8 27	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	74 77 58 137 79	1.74 1.82 .87 .05	.076 .228 .037 .042 .138	15 17 21 14 16	25 23 22 25 39	.42 .31 .25 .15	308 729 113 58 53	.57 .08 .08 .15	3 2 6	3.00 2.70 1.59 1.91 4.13	.05 .03 .01 .01	.08 .09 .08 .06	1 1 1 3 1	1 1 1 1 2
L11+00N 4+75W L11+00N 4+50W L11+6CN 4+25W L11+00N 4+00W L11+30N 3+75W	2 2 2 2 1	54 115 140 19 33	73 34 53 21 16	264 185 318 92 111	3.7 .5 1.0 .7 2.1	92 14 14 10 11	18 26 48 6	2631 7882 290	8.77	63 132 211 14 12	5 5 5 5 5	D ND ND ND ND	1 1 3 3	18 5 24 12 19	1 1 1 1	35 23 17 2 2	2 2 2 5 6	38 63 59 114 179	.18 .05 .35 .19	.073 .199 .196 .067	18 9 10 19	54 23 22 23 21	1.51 .37 .38 .45 .15	157 60 111 28 49	.01 .02 .02 .62	3 3 3	2.65 2.01 1.79 2.60 1.14	.01 .01 .06 .03	.08 .05 .08 .06	1 3 1 2	260 23 9 3
L11+00N 3+50W L11+00N 3-25W L11+00N 3+00W L11+0GN 2+75W L11+00N 2+50W	1 1 1 1	13 20 144 270 141	16 5 21 26 19	106 175 182 206 188	2.3 1.0 .6 1.7	9 14 16 21 19	50		14.23	10 10 63 164 44	5 5 5 5	ND ND ND ND	1 1 2 1 1	11 75 12 27 47	1 1 1 1	3 2 10 5 3	2 2 2 2 2	116 49 59 71 85	.10 .76 .17 .61	.033 .089 .111 .190 .312	10 4 6 12	25 9 22 29 27	.20 .48 .14 .26	61 87 58 95 65	.49 .25 .01 .01	2 7 6		.02 .10 .01 .01	.06 .07 .04 .05	1 1 1 1	1 1 16 21 1
L11+00N 2+25W L11+CON 2+00W L11+0GN 1+75W L11+0ON 1+56W L11+GON 1+25W	1 1 1 1 7	128 33 51 45 22	29 27 14 29 25	171 106 171 201 98	.6 1.1 .5 1.4	24 17 20 21 26	34 6 17 35 7	949 7983	10.39 5.68 10.24 8.95 10.88	75 54 238 74 32	5 5 5 5	ND ND ND ND	1 1 1 1 3	16 8 16 22 9	1 1 1 1	3 15 4 2	2 2 2 2 2	50 78 97 94 87	.25 .06 .15 .32 .07	.187 .070 .113 .215 .035	18 9 5 15	29 29 17 27 53	.32 .27 .17 .37 .45	55 44 68 95 39	.02 .20 .06 .15	6 3 4	1.48 2.21 .84 2.38 2.71	.01 .01 .02 .03	.05 .05 .05 .06	1 2 1 1	9 1 1 1 30
L11+00N 1:00W STD C/AU-3	3 13	58 62	100 40	107 132	4.0 7.1	16 69		7 49 7 1030		18 42	5 20	ND 8	1 38	9 49	1 19	2 16	2 22	36 61	.17 .50	.082 .100	21 40	54 55	.28 .95	18 177	.30 .07		5.10 2.05	.02 .06	.04 .15	1 12	3 47

i

SAMPLE#	Mo PM	Cu PPH	PPN PPN	Zr. PPM	Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe }	As PPM	U PPM	Au PPM	Th PPM	St PPM	Cd PPN	St PPM	Bi PPM	V PPM	Ca %	P	La PPM	Cr PPM	Mg }	Ba ?PM	7i	9 PPM	Al Ł	Na ł	R 3	¥ ??M	Au* PPB
L11+00H C-75W L11+00H G+36W L11+00H G+25W L11+00H G+25E	6 2 7 3 1		26 53 117 141 144	102 122 96 559 465	1.6 .7 3.4 1.7 2.0	3 10 7 13 12	5 29	748 1090 314 2197 11111	12.82 9.54 16.56	10 92 21 99 145	5 5 5 5	ND ND ND ND	1 4 1 1	14 3 10 7 11	1 1 1 1	5 3 21 15	2 2 2 2 2 2	100 131 108 81 105	.19 .06 .11 .06	.055 .130 .043 .166 .373	20 2 14 2 5	30 15 25 32 26	.35 .08 .23 .30	26 75 50 94 167	.54 .05 .73 .03	6 2 7	3.27 1.02 1.98 2.11 1.55	.03 .01 .02 .01	.06 .06 .06 .05	1 2 1 1	1 1 3 7
L11+0CN C+50E L11+0CN C+75E L11+0CN I+0CB L11+0CN 1+25E L11+0CN 1+50E	6 6 3 6	33 39 10 37 20	67 30 25 25 30	162 89 72 71 91	. 5 . 5 . 9	41 17 5 18 10	8 7 2 4 5	119 138	7.99 8.43 6.73 8.66 6.59	59 31 8 44 9	5 5 5 5	DK DK CK DK GK	2 2 2 1 1	23 9 9 7 11	1 1 1 1 1	3 3 2 5 2	2 2 3 2 2	91 126 129 113 119	.06 .05 .06 .02	.031 .044 .048 .037 .035	15 12 19 9	63 49 19 61 32	.93 .21 .11 .37 .22	88 74 37 52 37	.10 .22 .73 .09	4 2 2	3.49 2.45 1.91 2.70 3.20	.01 .01 .02 .01	.05 .04 .04 .03	1 1 1 3 1	5 1 1 1
L11+00N 1+75E L11+00N 2+00E L11+00N 2+25E L11+00N 2+56E L11+00N 2+75E	1 3 1 5 5	10 28 23 24 36	23 21 5 11 36	50 90 116 63 93	.5 .6 .1 .7	3 12 13 23 13	2 10 8 5 42	275		2 5 5 22 3	5 5 10 5	ND DR DR GR	1 2 4 1	14 30 199 16 31	1 1 1 1	2 3 4 2 3	2 2 2 2 2	66 125 118 99 81	.13 .44 1.12 .05 .28	.048 .089 .161 .332 .150	7 19 21 14 22	8 24 27 38 46	.11 .31 .77 .38 .32	65 54 278 55 66	.38 .75 1.29 .16 .19	29 2	.86 5.72 6.14 2.59 5.61	.02 .08 .19 .01	.04 .08 .12 .05 .35	1 1 2 1	1 1 1 1 7
L11+00N 3+00E L11+00N 2+25E L11+00N 3+50E L11+00N 3+75E L11+00N 4+00E	5 4 2 1	12 22 222 126 13	24 19 33 30 22	75 \$2 190 156 83	.7 .4 1.0 .4	13 21 35 29 8	5 53 23 4	169 3316 799	3.35 5.91 14.33 6.50 4.75	11 24 92 25 5	5 5 5 5	ND ND ND ND	1 2 1 2 1	12 18 17 15 62	1 1 1 1 1	2 2 6 2 2	2 2 2 2 2	81 107 148 64 91	.12 .12 .34 .20	.039 .038 .153 .143 .034	15 10 10 8 9	29 34 46 33 19	.19 .32 1.00 .93 .28	135 124 88 78 55	.16 .16 .02 .09	3 3 3	2.24 1.37 2.31 3.16 1.23	.01 .03 .01 .02 .03	.05 .07 .05 .06	2 1 1 1	1 1 9 3 1
L11-OCN 4+25E L11+00N 4+50E L11+30N 4+75E L9+00N 4-75W L9+00N 4-56W	4 7 4 5 2	31 15 24 22 14	22 31 21 52 28	105 79 113 146 70	.7 .5 2.0 3.2 1.5	22 11 13 37 16	6 3 113 9 5	145 4124 548	E.27	26 12 8 75 20	5 5 5 5	ND ND ND ND ND	3 1 2 1 2	14 10 73 15	1 1 1 1	2 2 19	2 2 2 2 2	134 94 103 66 118	.08 .06 .96 .16	.160 .337 .084 .043 .039	8 20 15 11 8	43 24 30 49 48	.32 .19 .33 .59	66 35 74 63 67	.26 .43 .45 .08 .25	3 3 6	2.33 2.11 3.80 2.27 2.39	.01 .02 .03 .02	.04 .05 .06 .07	2 2 1 1 2	1 1 1 52 9
L9+00N 4+25W L9+00N 4+00W L9+00N 3+75W L9+0CN 3+50W L9+00N 3+25W	5 2 4 3 7	45 119 31 100 38	25 20 16 27 40	230 203 82 116 133	3.9 1.0 2.3 4.6 5.7	38 29 13 14	39 9	1971 10764 576 2153 635	14.89 5.52 3.88	20 39 87 4	5 5 5 5	ND ND ND ND	1 1 2 1	19 19 7 19	1 1 1 1	5 16 11 2 3	2 2 2 2 3	40 84 110 52 98	.26 .29 .06 .31	.178 .165 .041 .150 .054	30 11 11 36 26	39 39 30 33 30	.95 .52 .18 .38 .24	130 145 48 46 35	.03 .15 .19 .20	5 3 2	4.47 2.07 2.07 6.41 3.23	.01 .01 .01 .04	.06 .05 .04 .04	1 1 3 1	11 17 7 1
L9+00N 3+00W L9+09N 2+75W L9+00N 2+50W L9+00N 2+25W L9+00N 2+60W	2 2 1 3	49 57 19	34 32 25 13	143 168 114 92 87	2.9 6.3 1.8 .4	80 19 12 25 12	17 28 17 7 20	2498 628 141	4.74 10.12 6.59 3.74 10.18	21 29 32 20 52	5 5 5 5	ND ND ND ND	1 1 1 1	12 8 12 12 5	1 1 1 1	13 5 10 2 13	2 2 2 2 2 2	40 97 123 77 34	.19 .10 .17 .10	.041 .110 .059 .019 .183	15 23 7 13	71 48 23 42 15	1.25 .39 .14 .23 .05	44 64 73 73 27	.04 .14 .16 .03	6	2.83 3.04 1.23 1.13 .63	.02 .01 .01 .01	.06 .06 .06 .05	1 1 1 1 2	1 9 5 12 2
19+00N 1+75W STD C/AU+3	1 18	72 62	17 40	22 0 131	.7 6.9	25 68		33 86 1029		26 41	5 17	ND 7	1 36	26 48	1 19	5 18	2 20	76 60	. 32 . 49	. 250 . 096	20 39	22 55	. 25 . 90	:15 175	.17 .07		1.70 1.96	.03 .06	.38	1 11	1 48

ı

SAMPLES	Mo PPM	Cu PPN	Pb PPM	ZE PPM	Ag PPM	Ni PPM	Co PPM	Nn PPN	Fe }	As PPN	U PPM	Au PPN	Th PPN	Sr PPM	Cd PPN	Sb PPM	Bi PPM	V PPN	Ca š	?	La PPM	Cr PPM	¥.	Ba PPN	71 }	PPM	Al 3	Na %	K	W PPM	Au* PPB
19+CON 1+50W	1	70	13	102	.4	10	13	440	8.97	41	5	ND	1	11	1	13	2	60	. 67	.276	4	9	.03	100	. 67	5	.54	.01	.04	3	1
L9+00N 1+25W	5	31	48	180	. ś	20	8		10.55	86	5	HC	2	8	1	6	2	99	.07	.121	11	34	. 32	52	.18		1.70	.01	. 05	1 2	1 3
L9+00N 1-00W	3	28	26	92	.7	31	5		7.36	20	5	ND	1	7	1	4	2	114	. 05	.029	13	64	.57	36	.29		3.07 2.53	.01 .06	.06 .07	1	6
L9+00N C+75W	2	14	23	79	. 6	8	1		5.61	29	19	ND	5	22	1	2	2 2	169 133	.22	. 333	12 14	29 50	.32 .61	31	1.30	_	3.52	.03	.06	1	•
19+00N 0+50W	3	18	14	75	.3	22	5	183	9.03	20	7	MD	3	13	1	4	2	100	.17	.044	14	30	.01	31	.01	,	3.32			•	•
L9+00N 0+25W	8	10	34	86	. 6	7	3			11	6	ND	3	12	1	4	3	111		.022	22	28	.22 .50	37 89	. 66 . 33		2.37 5.45	.03 .05	.07 .07	2	1 1
L9+CCN C+OCW	4	26	24	123	2.3	16		5094		6	5	DK	1	33	1	5	2	85 108	.59 .24	.109 .160	29 11	34 24	.23	105	.33		3.01	.01	.04	1	1
L9+00N 3+25E	3	53	26	309	و.	13		13951		108	5	ND	1	14 10	1	20 5	2	108 56	.11	.112	7	40	.58	86	.01		2.01	.01	.07	1	i
L9+CON 0+50E	2	30	41	142	. 6	30		6832		138 44	5	ND ND	1	11	1	1	2	126	.09	.042	11	41	.21	71	.12		2.67	.01	. 34	2	1
L9+00N 0+75E	6	29	16	83	.3	11	ó	212	9.32	44	3	NU	1	11	1	,	2	120			11				.12					•	-
L9+00N 1+00E	1	32	123	121	1.1	12	2	110	1.22	2	5	ND	1	61	1	4	2	38	.25		33	25	. 29	175	. 16		2.99	. 02	. 05	1	7
L9+00N 1+253	4	26	37	75	. 6	10	7		7.91	47	5	ND	1	13	1	6	2	142	.06	.041	13	36	.16	96	. 22		1.91	.01	.05	3	3 6
L9+00N 1+50E	4	44	28	104	1.3	16	7		9.83	46	5	ND	2	8	1	6	2	96	.04	.076	12	55	.32	53	.19		3.66	.01 .02	.05 .05	1	5
L9+03N 1+75E	7	20	25	129	1.1	9	3		6.23	14	5	ND	i	21	1	2	2	125	.11	.943	15 5	17 33	.10	48 70	.44		1.42 2.56	.02	.05	1	,
19+00N 2+00E	2	51	20	112	, 9	20	8	479	9.11	39	5	ND	1	14	1	•	2	76	.12	.083	0	13	. 34	70	.12	1	2.30	.02	.03	•	•
L9+00N 2+75E	2	34	25	113	. 6	40	5	220	5.87	27	5	ND	1	20	1	2	2	79	.11	.093	7	55	. 90	72	.07		2.39	.01	.05	1	17
L9+00N 3+00E	3	8	13	80	. 8	7	6		7.55	2	6	ND	2	12	1	2	2	151	.10	.034	21	24	. 29	28	.76		2.75	. 03	.06	1	l
19+00N 3+25E	1	15	11	196	. 8	9	7	187	2.85	5	5	ND	1	58	1	2	2	94	. 59	. 358	5	11	.41	42	. 52		1.12	.10	.13	1	1
19+00N 3+50E	5	15	18	148	.7	13	9		5.26	7	5	ND	1	43	1	2	2	142	.42	.034	13	31	. 18	54	.73		1.54	.13	.11	1	3 1
L9+00N 3+75E	2	27	13	137	. 3	18	23	995	1.72	17	5	ND	1	106	1	2	2	115	1.33	.097	9	25	1.79	65	.48	2	3.31	.44	. 25	1	
L9+00N 4+06E	2	29	12	91	. 6	4	6	236	5.19	8	5	ND	1	30	1	2	2	73	.33	.081	7	7	. 25	73	.12		1.26	.03	.06	1	58
L9+00N 4+25E	4	28	7	140	. 6	15	15	3028		5	5	ND	2	73	1	3	2	93	.78	. 379	19	25	. 40	167	.93		3.05	.06	. 37	1	1
L9-00N 4+50E	4	17	13	96	. 5	14	6		5.89	14	5	ND	2	38	1	2	2	126	.34		10	27	. 29	118	.63		1.41	.05 .03	.06 .06	1	1 1
L9+00N 4+75E	ó	26	17	100	1.1	13	6		7.88	19	5	DK	2	20	1	6	2	141	.16	.088	15	25	.16 .50	68 65	.52		1.65	.06	.07	1	13
L7+00N 4+75W	3	18	21	88	1.0	13	7	394	9.19	40	5	ND	3	22	1	4	2	134	. 19	.041	8	31	.50	03	.04	1	2.19	.00	. 01	1	13
L7+00N 4-50W	1	14	13	89	2.5	13	3	161	6.15	14	5	ND	2	8	1	5	2	113	. 97	.029	12	41	.32	28	.43		2.50	.02	.04	2	6
L7+00N 4+25W	3	14	15	95	1.9	22	5	391	5.83	10	5	ND	1	22	1	4	2	85	.21	.041	13	40	.53	43	. 33		2.21	.06	.08	2	47
L7+00N 4+00W	5	35	55	166	2.7	31	8	224	3.75	10	17	ND	1	10	1	11	2	47	.14		50	34	. 31	60	. 24		5.55	. 02	.06	1	10
L7+00N 3+75W	3	21	36	123	1.6	57	22	1485	4.89	16	5	ND	2	12	1	В	2	52	.12		14	60	. 98	70	. 18		2.70	.02	.07	2	22
L7+00N 3+50W	3	30	27	170	2.6	23	28	3018	7.09	63	5	ND	1	21	1	. 5	2	82	. 32	.109	13	33	.57	84	. 28	2	3.35	.03	. 08	1	28
L7+00N 3+25W	2		34	219	2.5	56	9		4.75	16	5	ND	1	16	1	4	2	53	.18		19	58	1.12	77	.08		3.02	.04	.08	1	45 1
L7+00N 3+00W	2	16	16	75	2.0	11	6		6.89	2	5	ND	2	14	1	3	2	121	.20	.059	9	26	.51 .25	25 18	.17 .60		3.34 2.99	.04	.05	2	2
L7+0CN 2+75W	5		15	83	1.9	8	3		8.06	8	5	ND	ĵ.	10	1	3	2	103	.11 .26		16 17	25 15	.14	53	.13	-	2.41	.03	.05	1	3
L7+00N 2+50W	1		11	84	1.6	1	3		1.17	13	5	ND	1	23	1	3	2	65	. 26 . 06		17	66	.94	47	.07		2.70	.01	.05	3	
L7+00N 2+25W	3	24	18	106	2.1	57	5	271	5.20	15	5	ND	1	11	1	4	2	57	. 00	.031		00								J	
L7+00N 2+00W	3	34	39	140	1.6	41	10	533	4.75	25	5	ND	1	14	1	6	2	45	.19	.094	17	44	. 88	71	.07		2.59	. 32	.07	1	51
STD C/AU-S	13		42	132	5.9	69	30	1024	4.18	38	19	7	36	48	19	19	20	60	. 50	.097	39	56	.90	174	.07	35	2.00	. 06	.14	11	53

.

SAMPLE#	No PPN	Cu PPM	Fb PPM	Zn PPM	Ag PPN	Ni PPM	Cc PPM	Ma PPM	Fe %	As PPM	U PPM	Au PPM	Th PPN	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V PPN	Ca }	P	La ?PM	Cr PPM	Mg	Ba PPM	Ti }	B PPM	Al %	Na 1	K	W PPM	Au* PPB
L7+00N 1+75W L7+00N 1+50W L7+00N 1+25W L7+00N 1+00W L7+00N 0+75W	2 1 9 2 1	25 50 17 77 38	14 23 23 59 19	105 127 112 430 130	.5 .8 1.0 1.4 .2	54 16 10 7 8	3	1045 315 1088	9.50	13 145 18 101 24	5 5 5 5	ND ND ND ND	1 1 2 2 1	7 14 6 5 24	1 1 1 1 1	2 14 2 2 2	2 2 3 2 2	64 80 94 112 143	.02 .17 .05 .03	.099 .179 .050 .065	9 7 24 4 6	76 39 31 26 14	.88 .50 .14 .13 .32	48 46 21 43 60	.07 .09 .42 .13	5	2.99 2.05 1.77 1.75 1.01	.01 .02 .01 .01	.04 .06 .04 .04	1 1 1 1	12 5 5 1
17-00% 0+50M 17+00% 0-25W 17+00% 0+00% 17+00% 0+25E 17+00% 0+53E	1 2 5 2 3	40 37 11 12 9	32 33 21 19	106 141 64 48 61	.8 1.0 .2 .3	39 43 5 4	6 9 2 5 3	221 143 109	2.58 2.67 6.31 5.66 5.38	15 18 19 20 8	5 5 7 5 5	ND ND ND ND	1 1 1 1 2	14 19 9 10	1 1 1 1	3 3 2 2 2	2 3 2 2 2	42 45 62 141 121	.20 .25 .08 .10	.087 .096 .034 .024 .028	17 19 11 8 9	40 40 16 11	.87 .82 .09 .07	67 90 24 87 23	.06 .11 .35 .21 .68	3 5 4	2.41 2.53 1.52 1.35 1.41	.02 .03 .01 .01	.04 .05 .04 .04	1 1 1 2 1	66 52 1 3 4
L7+00N 0+75E L7+00N 1+00E L7+00N 1+25E L7+00N 1+50E L7+00N 1+75E	3 1 1 2 1	9 12 46 47 34	14 11 18 24 54	62 60 86 75 95	.4 .5 .6 1.5	8 9 8 9		140		8 2 66 11 162	5 5 5 5	ИО В ОИ ОИ ОИ	1 2 1 1	20 15 9 21 12	1 1 1 1	2 2 2 3 2	2 2 2 2 2	103 120 79 58 78	.20 .20 .16 .33	.036 .076 .085 .101	12 17 4 8 7	17 22 18 24 29	.34 .41 .26 .37 .25	35 29 57 47 58	.49 .72 .07 .19	3 4 3	1.66 3.22 1.23 3.60 1.50	.06 .04 .01 .04 .02	.06 .05 .03 .05	1 1 1 1	1 1 1 4 1
L7+00N 2+00E 17+00N 2+50E L7+00N 2+75E L7+00N 3+00E L7+00N 3+253	1 1 1 1	7 69 96 10 7	12 51 31 12 4	74 79 155 53 42	.3 .2 .7 .2 .7	8 7 9 8 6	9		7.40	11 45 233 14 5	5 5 5 5	ND NC ND 2 ND	2 1 1 1 1	12 8 9 16 18	1 1 1 1	2 3 9 3 2	2 3 2 2 2	144 153 85 121 76	.15 .06 .08 .14	.037 .131 .665 .045 .037	6 4 5 6	19 19 27 11 8	.38 .11 .29 .22 .19	22 38 64 46 31	.75 .48 .09 .60	4 3 2	1.53 1.08 1.32 .71 1.13	.04 .01 .01 .03	.05 .03 .05 .04	1 1 1 1	3 1 1 1 7
L7+00N 3+50E L7+00N 3+55E L7+00N 4+00E L7+00N 4+25E L7+00N 4+50E	3 1 2 1 1	9 11 12 6 5	20 4 7 13 14	46 69 60 33 46	1.1 .6 .4 .2 .2	6 16 8 2 7	3 15 7 2 5	370 150 47	4.83 4.24 3.40 2.48 2.52	10 3 17 5 5	5 5 5 6	ND ND ND	1 1 1 1	13 88 36 10 25	1 1 1 1	2 2 2 2 2	2 2 2 2 2	63 74 97 117 76	.10 .96 .32 .10	.038 .072 .039 .017 .037	8 8 5 6	8 16 14 8 10	.16 1.29 .35 .07	24 98 43 37 32	.32 .49 .25 .56	4 3 2	1.29 1.37 .95 .60 1.17	.03 .30 .07 .01	.04 .19 .06 .02	3 1 1 2	36 12 12 17 1
L7+00N 4+75E L5+00N 4+75W L5+00N 4+50W L5+00N 4+25W L5+00N 4+00W	1 2 2 1 1	9 17 17 12 13	3 10 15 12 10	71 80 86 67 57	.1 2.1 2.7 .8	12 12 11 9	12 13 14 6 8	546 828 153	3.33 5.58 6.02 5.26 5.27	2 6 5 6 7	5 5 5 5	ND ND ND ND	1 1 1 2	57 46 27 15 27	1 1 1 1	2 2 2 2 2	2 2 2 2 2	62 97 100 122 106	.69 .52 .31 .20	.108 .090 .096 .076	6 38 43 14	12 22 27 23 11	.35 .80 .57 .41	66 41 41 26 112	.44 .51 .48 .74	3 2 3	1.34 2.80 3.13 3.32 2.24	.15 .17 .09 .04	.12 .14 .11 .05	1 1 1 1	1 7 8 5
15+00N 3+75N 15+00N 3+50N 15+00N 3+25N 15+00N 3+03N 15+00N 2+75N	3 2 2 1 2	14 12 20 16 12	21 15 20 10 31	79 81 157 69 48	1.2 .6 2.2 .3 1.5	12 11 19 8 16	6 8 18 6 3	514 3928 594		16 11 23 13 12	5 5 5 6	ND ND ND ND	1 1 1 1	14 18 17 4 12	1 1 1 1	2 2 2 2 2	2 2 2 2 2	114 72 63 92 58	.17 .21 .29 .06	.616	13 10 15 9	32 20 31 11 30	.22 .28 .30 .12 .35	70 38 109 40 65	.45 .11 .10 .21 .22	2 2 2	1.85 1.53 2.33 .78 2.65	.03 .04 .02 .01	.05 .06 .07 .06	1 1 1 1 2	3 16 166 274 168
L5+00N 2+50W STD C/AU-S	3 18	43 59	23 38	97 132	3.8 7.0	31 70	7 30	530 1027		44 41	5 19	ND 7	1 37	6 49	1 19	2 20	2 21	49 60	.04 .49		11 40	49 55	. 53 . 93	38 176	.06 .07		3.10 1.99	.01 .06	.04 .15	111	24 52

i

SAMPLE#	No PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPN	H1 PPM	Co PPN	Mn PPM	Fe %	As PPM	U PPN	Au PPM	Th PPM	Sr PPM	Cđ PPM	Sb PPM	Bi PPM	V PPM	Ca \$	P	La PPM	Cr PPN	Ng }	Ba PPM	Ti	B PPM	Al E	Na }	ž \$	W PPM	Au* PPB
L5+00N 2+25W L5+00N 2+00W L5+00N 1+75W L5+00N 1-50W L5+00N 1+25W	5 2 2 1 1	13 10 26 36 17	6 8 7 7 9	54 47 58 64 56	.3 .7 1.6 1.6 2.2	11 10 13 10 8				2 6 5 21 6	5 5 5 5	ND ND ND ND	2 1 1 1 1	6 8 22 20 17	1 1 1 1	2 2 2 2 2	7 2 3 2 3	103 113 88 68 59	.04 .04 .31 .25	.029 .019 .081 .086	7 16 20 20 10	26 37 24 25 13	.27 .18 .48 .37 .20	38 50 48 23 32	.42 .32 .50 .35	2 2 3	2.10 2.16 4.16 3.52 1.72	.02 .01 .05 .05	.05 .03 .05 .05	1 3 1 1	8 1 1 1
L5+00N 1+00W L5+00N 0+75W L5+30N 0+53W L5+30N 0+25W L5+00N 0+03W	1 6 1 1 4	13 18 11 12 28	3 35 10 6 12	50 69 52 48 95	.2 .2 .5 .5	6 5 6 8	1 2 3 2 12	107 105 86	3.51 4.75 3.89 3.45 7.66	5 19 3 2 389	5 5 5 5	ND ND ND ND	3 2 1 1	17 8 12 20 5	1 1 1 1	2 2 2 2 8	2 2 2 2 3	112 91 70 68 217	.18 .10 .17 .28 .05	.080 .028 .045 .041 .031	20 29 14 13 8	18 34 18 16 22	.26 .08 .21 .24 .07	22 24 21 54 57	1.03 .49 .48 .41	2 2 2	3.37 2.21 2.78 2.03 1.48	.04 .03 .03 .04	.05 .06 .04 .04	1 1 1 1	1 2 1 8 5
L5+00M 0+25E L5+00M 0+56E L5+00M 0+75E L5+00M 1+00E L5+00M 1+25E	2 4 2 1 1	20 9 15 20 12	10 7 15 9	102 63 69 70 60	.7 .1 .2 .4	13 9 33 6 8	13 4 6 5	153 253 206	7.28 5.95 5.07 6.86 5.18	16 9 12 4 2	5 5 5 5	ND ND ND ND	1 2 1 2 2	46 14 6 15 15	1 1 1 1	2 2 2 2 2	2 2 2 2 2	112 130 157 135 111	.59 .16 .06 .15	.111 .030 .026 .041 .075	11 14 10 15 14	28 21 68 18 22	.76 .39 .56 .17	55 24 38 56 25	.49 .73 .26 .72	2 6 3	3.42 1.97 2.64 2.12 3.01	.15 .04 .02 .04 .05	.12 .05 .04 .06	1 1 1 1	1 1 1 1
L5+00N 1+50E L5+00N 1+75E L5+00N 2+00E L5+00N 2+25E L5+00N 2+50E	9 2 2 3 1	34 23 25 50 36	10 11 13 71 22	81 92 39 158 97	.2 2.9 2.6 1.0	8 11 10 10 3	10 13 12 13 6	724	5.18 4.52 4.63 14.31 10.17	173 8 7 43 49	5 5 5 5	ND ND ND ND	1 1 1 1 2	13 24 26 6 12	1 1 1 1	3 2 2 34 3	2 2 2 2 2	164 75 75 103 153	.14 .29 .32 .05	.031 .082 .085 .044 .076	14 10 13 4 5	11 19 21 19 24	.12 .29 .32 .07	51 41 42 27 42	.23 .32 .33 .17	2	.87 2.96 3.16 1.25 1.54	.03 .05 .06 .01	.07 .06 .07 .03	1 1 1 1	1 2 1 2 1
L5+CON 2-758 L5+CON 3+COB L5+CON 3+252 L5+CON 3+50B L5+CON 3+752	2 8 5 1 1	20 27 19 115 101	14 14 10 16 16	70 94 62 62 64	1.2 .5 .3 .4	12 10 3 11	4 9 9 15 17	253 239 552	8.83 7.99 5.10 15.34 11.12	31 95 33 137 126	5 5 5 5	ND ND ND ND	3 2 1 1 1	10 14 18 8 10	1 1 1 1	2 3 3 2	2 2 2 2 2	143 243 211 130 152	.09 .11 .16 .03	.048 .047 .031 .201 .143	7 14 10 3 3	38 21 21 32 26	.33 .08 .16 .06	42 60 62 65 73	.61 .74 .74 .08	3 2 4	3.54 1.12 1.03 1.56 1.29	.02 .01 .03 .01	.05 .04 .04 .05	1 1 1 1	1 1 1 1
L5+00N 4+00Z L5+00N 4+25E L5+00N 4+50B L5+00N 4+75E L3+00N 4+75W	1 7 1 1 2	16 12 8 6	8 9 10 5	65 56 63 36 68	1.0 .2 .3 .5	19 4 3 5	10 4 4 3	170 114 67	4.16 12.89 4.37 2.44 5.17	25 4 4 4 29	5 5 5 5	ND ND ND	1 4 4 2 1	50 6 21 14 7	1 1 1 1	2 2 2 2 2	2 2 2 2 2	86 158 148 124 109	.52 .04 .21 .12	.026 .037	7 9 7 5	21 20 20 8 26	.91 .06 .29 .10	45 36 30 19 52	.39 .74 1.25 .67 .17	2 2 2	1.78 1.92 1.81 .53 2.79	.16 .02 .06 .03	.12 .04 .06 .04	1 1 1 1	1 1 1 1 2
L3+00N 4+50W L3+00N 4+25W L3+00N 4-00W L3+00N 3+75W L3+90N 3+56W	1 4 2 3 4	7 14 11 30 42	9 47 27 26 44	82 94 75 126 111	1.0 2.8 2.9 4.8 2.2	6 8 7 13 7	13 10 4 3		6.04	50 191 27 24 32	5 5 5 5	DN DN DN CN DN	1 2 1 1 2	28 9 18 13	1 1 1 1 1	2 2 2 8 3	2 2 2 2 2 2	78 132 115 56 93	.33 .09 .15 .20	.045 .098 .076	10 18 10 29 30	12 30 20 24 29	.57 .25 .25 .30	250 39 58 45 21	.08 .51 .40 .23	2 4 2	1.76 3.48 2.34 3.24 3.54	.07 .03 .03 .05	.12 .06 .07 .09	1 1 1 1	45 1 1 18 7
L3+00N 3+25W STD C/AU-S	3 18	8 61	22 41	84 133	.5 7.0	5 63	2 30			5 42	5 20	ND 7	2 37	9 48	1 19	2 15	3 18	65 59	. 19		29 39	15 56	.16 .93	18 176	.38 .07		2.15 1.97	.06 .06	.09 .14	1 11	1 49

(

SAMPLE#	Mo PPM	Cu PPN	Pb PPN	Zn PPM	Ag PPM	Ni PPM	Co PPM	Ma PPM	Fe }	As PPM	U PPM	Au PPM	Th Pen	Sr PPM	Cđ PPN	Sb PPN	Bi PPM	V PPM	Ca %	P 3	La PPN	Cr ?PN	Mg %	Ba PPM	Ti }	E P PM	Al 3	Na %	K	W PPM	Au* 2P3
#3+00H 3+00H #554C MOG+84 #62+2 MOG+84 #62+2 MOG+84 #3+00H 2+0W	1 3 6 3	12 13 19 22 12	6 18 56 41 28	81 75 100 81 98	.5 .4 3.6 2.7 1.0	12 16 5 21	5 5 1 6 1	183 213 402	7.22 4.13 7.02 5.79 7.38	5 17 14 21 16	5 5 9 5	ND ND ND NC	1 3 2 10	20 15 4 7 3	1 1 1 1	2 3 6 2 2	3 2 2 2 2	127 101 34 72 22	.21 .17 .05 .07	.049 .034 .038 .106 .031	6 11 27 13 31	32 24 12 41 16	.49 .27 .05 .41	31 104 16 34	.63 .22 .24 .29 .20	3 2 2	2.75 1.75 3.01 3.57 5.01	.01 .02 .03 .02 .04	.05 .05 .06 .06	1 1 3 2 4	1 1 6 55 1
L3+00N 1+75W L3+00N 1+55W L3+00N 1+25W L3+00N 1+00W L3+30N 3+75W	6 1 4 3 1	20 75 167 22 31	16 19 43 51 7	96 176 170 88 91	3.3 .2 .2 7.4	7 25 24 15 14	7	6651 1942	10.53 5.86	10 58 456 27 9	7 5 5 7 5	ND ND ND ND	2 1 1 1 2	7 44 17 8 20	1 1 1 1	2 2 4 59 3	3 2 2 2 3	50 101 50 74 114	.10 .55 .21 .08 .29	.045 .138 .103 .052	52 11 6 17 16	21 27 14 26 33	.15 .48 .31 .26 .56	23 117 58 34 53	.27 .14 .05 .30	2 4 2	3.38 1.69 1.40 2.49 4.53	.03 .10 .03 .62 .04	.06 .10 .06 .06	1 1 1 1	6 1 1 1
L3+00N 0+50N L3+00N 0+25N L3+00N 0+05N L3+00N 0+25E L3+00N 0+50E	1 1 2 1 2	15 39 38 22 37	10 12 20 14 10	66 108 106 92 78	.1 .2 .7	10 6 19 7	5 12 7 5	1597 259 183	4.36 5.91 6.56 6.99 4.32	15 15 66 42 79	5 5 5 5	ND ND ND ND	1 1 2 1	12 16 4 10 9	1 1 1 1	2 2 5 2 4	2 3 2 2 2	113 80 57 95 49	.12 .14 .03 .11	.028 .100 .059 .091 .110	10 7 8 9 6	26 6 29 17	.18 .17 .24 .22 .06	45 119 37 35 39	.18 .09 .04 .19	3 2	2.10 1.36 2.94 3.12 .91	.01 .03 .01 .02 .01	.02 .36 .04 .05	1 1 1 1	1 1 1 1
L3+00N 0+75E L2+00N 1+60E L3+00N 1+25E L3+00N 1+56E L3+00N 1+75E	2 2 2 2	48 83 36 62 64	14 14 15 9	169 164 234 217 207	.1 .2 .1 .7	14 13 20 16 16	19 34 38	2181 653 1799 4078 2648	10.61 14.01 12.15	418 251 212 212 257	5 5 5	ND ND ND ND	1 1 1 1	24 E 3 10 8	1 1 1 1	8 9 9	2 2 2 2 2	45 75 110 94 108	.25 .06 .02 .11	.104 .149 .192 .287 .261	4 5 5 6	3 10 16 14 18	.09 .07 .07 .07	37 29 32 67 43	.01 .01 .06 .01	2 4 3 2 3	.45 .48 .57 .47	.02 .01 .01 .01	.07 .06 .05 .08	1 3 3 11 13	2 1 1 1
13+80H 2+80E 13+80H 2+15E 13+80H 2+50E 13+80H 2+75E 13+80H 3+60E	1 4 6 2 4	29 101 24 40 27	2 20 12 15 30	181 189 138 96 153	.1 .6 .1	16 17 22 3 11	10 23 4 7 4	953 366 285	2.30 13.59 19.16 5.70 11.06	71 274 33 50 44	5 5 5 5	DE DE CN DE	1 1 2 1 4	97 5 9 16 6	1 1 1 1	2 8 2 2 2	2 2 2 2 2	31 73 62 31 43	1.35 .04 .10 .15	.099 .115 .046 .080	3 4 14 8 19	5 10 38 15 31	.15 .05 .34 .20	83 61 28 55 20	.03 .01 .23 .05	3		.03 .01 .02 .03 .02	.04 .06 .04 .04	1 5 1 1	1 2 1 1
L3+00N 3+25E L3+00N 3+50E L3+00N 3+75E L3+00N 4+00E L3+00N 4+25E	2 3 2 2 3	14 13 61 20 47	20 15 7 22 375	55 46 120 101 87	.3 .1 .1 .1 5.5	3 4 11 12 10	12		5.67	13 19 68 21 102	5 5 5 5	ND ND ND ND	1 1 1 1	21 14 35 54 21	1 1 1 1	3 2 3 2 38	5 3 2 3 12	121 106 66 123 56	.22 .14 .42 .62	.042 .027 .108 .055 .190	9 11 3 12 7	13 8 13 18 23	.26 .18 .58 .70 .20	24 33 109 59 186	.55 .36 .14 .55	4 2 2	1.15 .91 1.90 1.65 1.74	.05 .03 .10 .17	.06 .05 .09 .12	1 2 1 1 2	1 1 1 1 32
L3+00N 4+50E STD C/AU-S	5 17	59 61	61 41	172 132	1.1 5.8	16 68		4852 1111		104 44	6 20	ND 8	1 35	10 47	1 13	10 19	3 21	50 58	. 09 . 50	.191 .096	27 38	29 55	. 22 . 85	62 175	.06 .07		4.02 1.99	.01 .06	.04 .14	2 11	18 51

.

For: Cooke Geolgical Consultants Ltd.

By: Target Surveys Inc. Dec. 7 1988

Sample:	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn
Concentration	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
No. of Samples	680	680	680	680	680	680	680	680
Min. value	1	4	2	11	0.1	1	1	11
Max. value	34	358	4226	2969	48.8	98	118	15380
Median	2	26	20	92	0.5	13	7	391
Mean	2.41	39.09	33.96	109.25	0.97	16.26	12.40	1199.55
Std. Dev.	2.11	39.16	164.60	125.41	2.19	12.56	13.96	2207.49
Variance	4.45	1533	27094	15729	4.80	158	195	4873023

For: Cooke Geolgical Consultants Ltd. By: Target Surveys Inc.

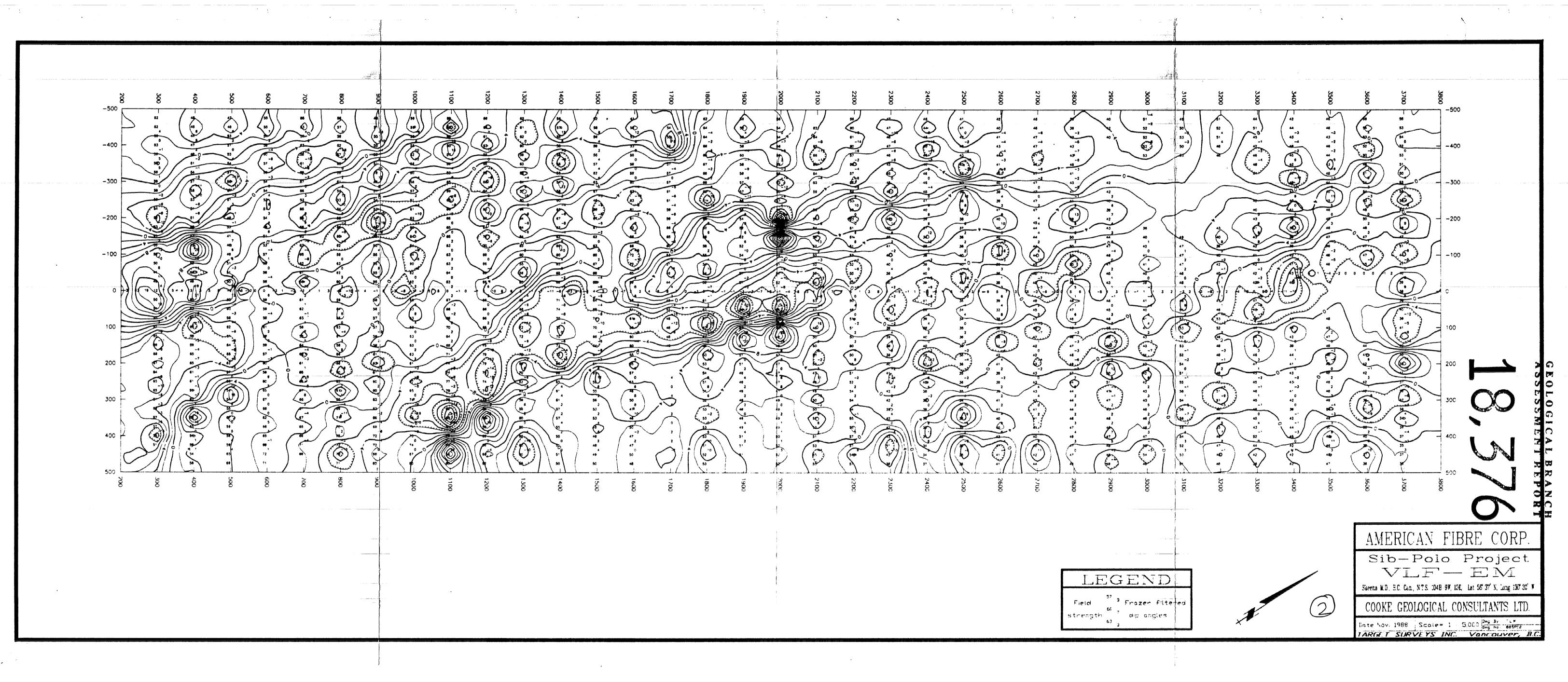
Dec. 7 1988

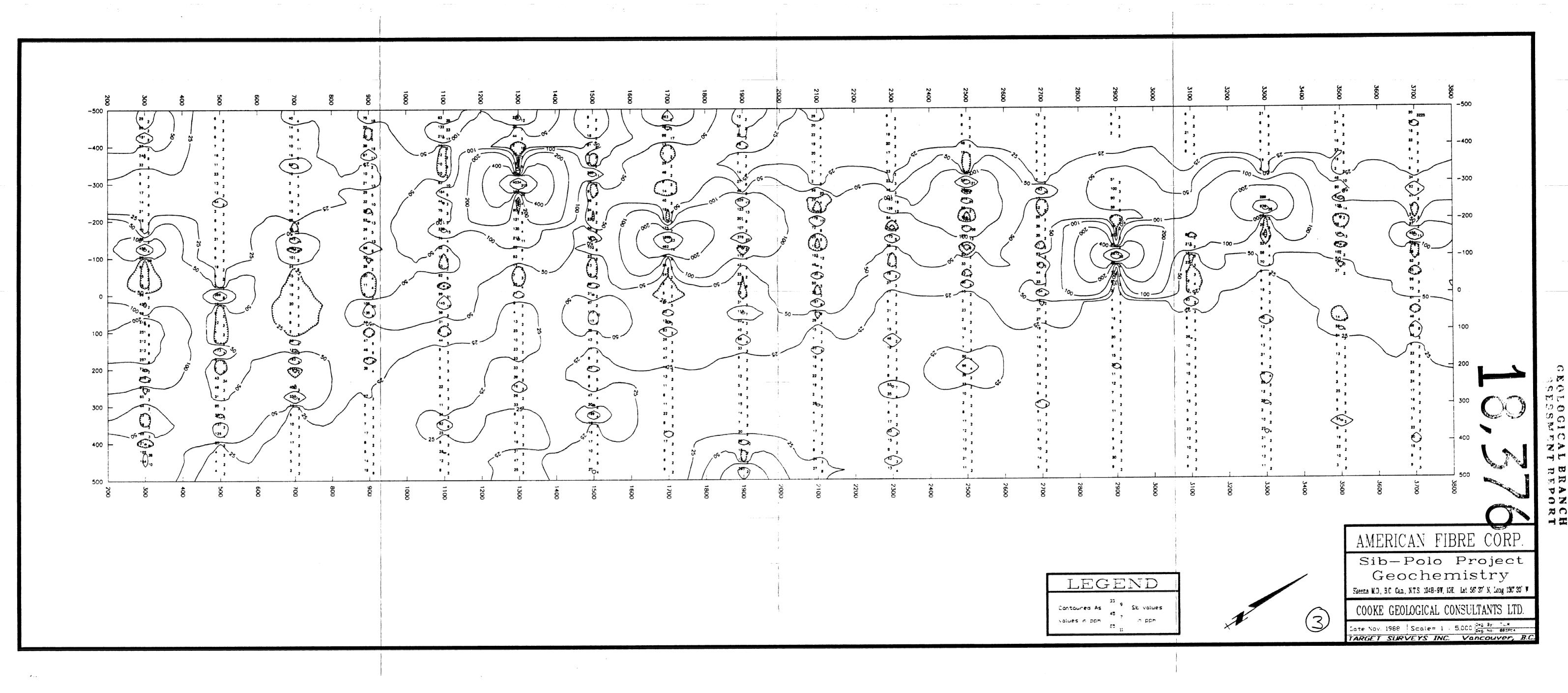
Sample:	Fe	As	\mathbf{U}	Au	Th	Sr	Cd	Sb
Concentration	%	PPM	PPM	PPM	PPM	PPM	PPM	PPM
No. of Samples	680	680	680	680	680	680	680	680
Min. value	0.27	2	5	0	1	2	1	2
Max. value	21.66	4034	19	3	10	213	10	319
Median	6.32	19	5	0	1	14	1	2
Mean	6.56	52.97	5.21	0.24	1.48	21.37	1.03	4.72
Std. Dev.	2.84	201.07	1.15	0.45	0.94	23.39	0.37	14.41
Variance	8.06	40427.98	1.32	0.20	0.88	546.87	0.14	207.68

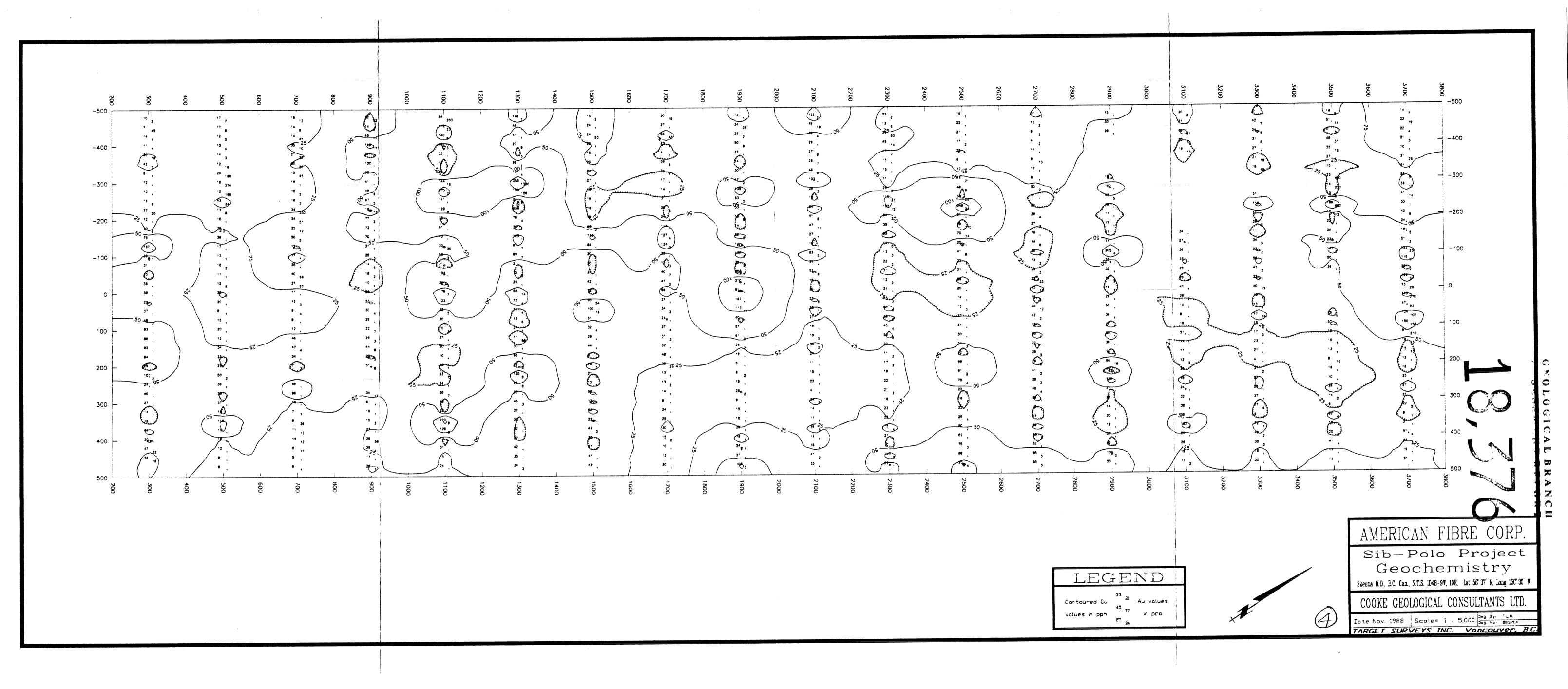
For: Cooke Geolgical Consultants Ltd.

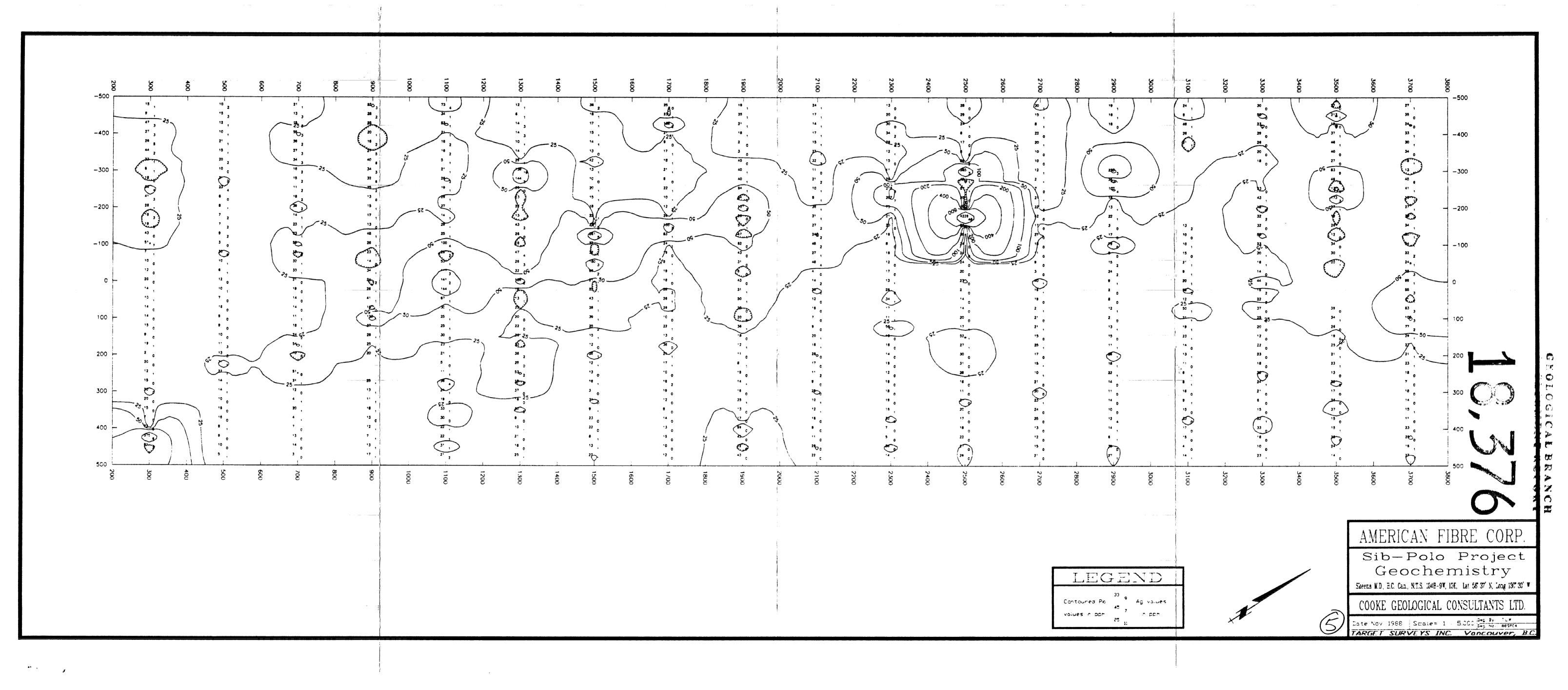
By: Target Surveys Inc.

Dec. 7 1988


Sample:	₿i	V	Ca	P	La	Cr	Mg	Ba
Concentration	PPM	PPM	%	%	PPM	PPM	%	PPM
No. of Samples	680	680	680	680	680	680	680	680
Min. value	2	4	0.01	0.014	2	1	0.01	9
Max. value	12	366	2.77	1.081	70	90	2.52	1064
Median	2	84	0.14	0.081	10	24	0.34	58
Mean	2.24	88.17	0.24	0.10	12.41	26.92	0.43	78.83
Std. Dev.	0.93	37.55	0.30	0.08	8.23	14.65	0.32	86.22
Variance	0.87	1410.11	0.09	0.01	67.78	214.55	0.11	7434.06


For: Cooke Geolgical Consultants Ltd.


By: Target Surveys Inc. Dec. 7 1988


Sample: Concentration	Ті %	B PPM	Al %	Na %	K %	W PPM	Au* PPB
No. of Samples	680	680	680	680	680	680	680
Min. value	0.01	2	0.16	0.01	0.01	1	1
Max. value	1.3	29	6.41	0.59	0.35	49	1360
Median	0.2	3	2.28	0.02	0.06	1	1
Mean	0.26	3.29	2,37	0.04	0.07	1.46	12.51
Std. Dev.	0.24	1.76	1,11	0.05	0.04	2.12	67.55
Variance	0.06	3.11	1.23	0.00	0.00	4.48	4562.67

