

GEOLOGICAL AND GEOCHEMICAL REPORT

ON THE

CHUCHI PROPERTY
(KLAN 1 TO 9. NORN CLAIMS)

N.T.S. $93 \mathrm{~N} / 1 \mathrm{E}=$

OMINECA MINING DIVISION

SITUATED AT OQMOFDINATES: $\begin{array}{r}55^{\circ} 15 \prime N \\ 124^{\circ} 30 . \%\end{array}$

NORANDA EXPLORATION COMPANY. LIMITED (NO PERSONAL LIABILITY)

GEOLOGICALBRANCH
 ASSESSMENT REPORT

SUMMARY 1
INTRODUCTION 2
LOCATION \& ACCESS 2
CLAIM STATISTICS 2
TOPOGRAPHY \& VEGETATION 3
GRIDS 3
REGIONAL GEOLOGY 3
LOCAL GEOLOGY 4
PREVIOUS WORK 4
GEOCHEMISTRY: 5
METHOD 5
OBSERVATIONS 5
CONCLUSIONS 11
RECOMMENDATIONS 12
LIST OF AFPENDICES
APPENDIX I Statement of work Cost Breakcown
APPENDIX II Starement of Quailfications APPENDIX III Analyticai Procedure APDENDIX IV Geochemicai Results
LIST OF FIGURES

FIG. 1	Location Map	$1: 8,000,000$
FIG. 2	Claim Map	$1: 50,000$

(Iocatec in pocket file)
FIG. 3 Geology Map - Sheet 3 $1: 5.000$
FIG. 4 - Sheet 4 $1: 5,000$
FIG. 5 - Sheet 5 1:5.000
FIG. 6 Geochemistry - Cu/Au - Sheet 3 1:5.000
FIG. 7 - Sheet 4 $1: 5.000$
EIG. 8 - Sneet 51:5,000
FIG. 9 - Sneet 9 1:5.000
FIG. 10 Geochemistry - Po/Zn - Sheet 3 $1: 5,000$
FIG. 11 - Sheet 4 1:5,000
FIG. 12 12
FiG. 13 - Sheet 9- Sheet$1: 5.000$EIGGeochemistry - Ag/As1:5,000
1:5,000
FIG. 15 - Sheet 1:5,000
FIG. 16 - Sheet 5 1:5.000
FIG. 17 - Sheet 9 $1: 5.000$

SUMMARY:

The Klaw claims were acquired in the fall of 1987 to cover several reconnaissance strean geochemicai anomalies and a roadside geochemical anomaly detected earlier in the year. The Klaw 8 and 9 claims were staked in the summer of 1988 to expand the area of the property. Preliminary geologic mapping and reconnaissance soil sampling were conducted by Noranda personnel during the 1988 field season. A iarge recon soil grid was hip-chained and compassed and several small mini grids were added to define the size of anomalies.

Soil geochemistry outlined a very harge copper anomaiy with values up to 2200 ppm copper and other numerous isolated gold and copper anomalies.

Proposed work for the properiy in 1989 consists of mapping the entire grid. filling in between the recon soil iines over the iarge copper anomaiies, conduct a magnetometer survey over the entire grid and conduciing an iP survey over the main copper anomaiy.

INTRODUCTION:

The property was staked in the fail of 1987 to cover the drainage areas of several streams with numerous gold and copper anomalies. Pan concentrate anomalies for goid are up to 37,000 ppb. Copper silt anomalies range up to 1400 ppm, and a roadside soil anomaly on the Germansen-Indata forest road. *** Freliminary geologic mapping and soil sampiing were conducted in the 1988 field season. A large recon soil grid was established to investigate a porphyry copper and goid system and a structuraliy hosted gold deposit. Two smaller grids were established: the Tyrone grid to test a roadside geochemical anomaly and the Norn grid to test a pan concentrate and silt anomaly.

LOCATION \& ACCESS:

The claims are located along the north shore of Chuchi iake. approximately 180 kilometers northwest of Prince Georce. see Figure 1)

Access to the proper \quad is via the Indata-Germansen forest service road. off of the all-weather Germansen road from fort St. James. The indata-Germansen road is presencly only accessiale during the summer. There has been recent ioquing on most of the property. Roads and clear cuts provide ehceilent access to ait of the property.

CLAIM STATISTICS:

TOPOGRAPHY \& VEGETATION:
The area is characterized by iow rolling glacial topography, including pine flats. outcrop ridges and knobs and low swampy valleys. Elevations range from 868 meters on Chuchi Lake to 1200 meters.

Vegetation consists of mature standis of spruce, pine and balsar, which has been logged off in many areas on the property. Undergrowth is mainly small cedar, alder and devil's club.

GRIDS:

During the 1988 fieid season, a iarge reconnaissance soil grid, consisting of innes spaced 500 meters apart and sampling every 50 meters. was hip-chained anc compassed. The grid was established to cover a iarge area and pinpoint sources of the anomalous copper and gold stream geochemistry samples. The recon grid consists of 27.0 km of fiagged grid lines controlled by 4 km of cut baseiine at an azimutn of 090 degrees. Jhree lines 100 meiers apart were adied around 1 ine 7000 and three lines 200 meters apari were estainished to the east of line 11000 .

Two smailer grids. the Tyrone and Norn, were estainisied to cover a roadside soil anomaiy and a copper-goid stream sediment sample, The Tyrone grid consists of 2.575 km oz fiagged aric lines, controlied by 400 meters of cut base line at an azimuth of 090 degrees. The Tyrone grid is situated on the Klaw 6 ciaim. (see Figure 3) The Norn gric consists of 2.325 km of flagged grid. line controiled by 400 meters of cut base line at an azimutin of 090 degrees. The Norn gxid is located on the Norn claim (see Figure 3).

REGIONAL GEOLOGY:

The most recent published information on regional geoiogy is by Paterson. I.A.. 1974 G.S.C. Paper 74-1. part B.

The Chuchi ciaim group lies in a broad northwest trending package of rocks known as the Quesnel trough. These include Upper Triassic to Lower Jurassic volcanics and sediments. which have been intruded by the Hogem Batholith and numerous other felsic to mafic stocks, ranging in age from Triassic to Cretaceous.

The volcanic rocks include massive to porpnyritic andesite and basaitic flows. The sedimentary package includes argiliites, greywackes and conglomerates.

The property is located in close proximity to the Hogem Batholith and this has probably caused major deformation in the area.

The Quesnel Trough is bounded to the west by the Pinchi Fault. The fault forms a contact between the Hogem Batholith and the volcanic and sedimentary package of rocke.

LOCAL GEOLOGY:-
The outcrop on the property is sparse and isolated with large areas covered by overburden. The area appears to be underlain by andesites and siltstones which have been intruded by several gabbro and diorite dykes.

The andesites are typically paie green, massive to weakiy porphyritic, moderately silicified and have minor epidote alteration.

The siltstones are medium to dark grey, usually hornteised, mottled and highly fractured and contain up ro $j-2 \%$ pyrite.

The diorite and gaboro occur as smail dykes cutting the sediments and volcanics. possibly causing hornfelsing anci alteration. The diorite is weakly porphyritic: weakly sausauritized? with a trace amounc of disseminated pyrite and chalcopyrite. There have values of up to 6% copper reported for this unit, in localized shear zones.

PREVIOUS WORK:

There has been extensive work performed in this area during the mid $1960^{\prime} s$ to early $1970^{\prime} s$. In the late $1960^{\prime} s$, Noranda estabiished several soil lines in the area of the present property. The results revealed high soil values for copper and molybdenum.

In the late $1960^{\prime} s, N o r a n d a$ drilled and identified a deposit of 20.000 tons of 7.5% combined lead and zinc on the WIT claim situated to the east of the Chuchi property. In 1984 and 1985 . RP Selco performed work on the Phil claims that are located north of the Chuchi property. Soil and rock samples were found to have anomalous copper values.

GEOCHEMISTRY:

METHOD -

A total of 789 soil samples were collected from the Chuchi property during the 1988 field season. The samples were taken using a soil auger. The samples were collected from the "B" horizon, $15-35 \mathrm{~cm}$ below the surface. The gamples were placed in kraft paper bags, dried and sent to the Noranda Lai for analysis at 1050 Davie St., Vancouver, B. C. The original recon soil samples were anaiyzed for copper, zinc, lead. silver, arsenic and gold. Each sample, from the Norn and Tyrone grids were analyzed for copper, zinc, lead, silver, arsenic and gold. The samples from the 100 meter spaced lines on the recon were analyzed for copper and gold only. The results are plotted on Figures 6 co i7. located in the pocket file.

OBSERVATIONS -

NORN GRID -

Goid - Gold values on the Norn gric zange between io and 40 ppb. Values greater than 10 ppb are considered to be weakiy anomalous. Five single station anomailes have been outiined:

- 20 ppb L3900N/4150E
- 40 ppb L4000N/4225E
- 20 ppb L4000N/4300E
- 20 pob L4100N/4200E
- 40 ppb L4200N/3900E

Copper - Values range from 8 ppm to 230 ppm. The average 15 around 20-25 ppm and values greater than 100 ppm are consideredi anomalous. Four single station anomalies have been ouvlined:

- 150 ppm L3800N/3975E
- $230 \mathrm{ppm} \mathrm{L} 3800 \mathrm{~N} / 4100 \mathrm{E}$
- 220 ppm L4000N/3800E
- 110 ppr L4000N/4350E

Lead - Values range from 1 ppm to 94 ppm. Most values are in the $1-2$ ppm range and values greater than 25 ppm are considered anomalous. Only one anomalous sample (S4 ppm) is indicated by the survey and occurs at [4000N/3900E.

Zinc - Values range from 28 ppm to 330 ppm, with the average around 40 to 50 ppm. Vaiues greater than 200 ppm are considered anomalous. One one anomalous sample was indicated:

- 330 ppm L4000N/4125E

Silyer - Values range from 0.2 to 1.6 ppm, with the average around 0.4 ppm. Only one sample was greater than 1.0 ppm:

- 1.6 ppr L4000N/3900E

Arsenic - Values range from 1 to 580 pom. Most values are around 2 to 2 ppm and values greater than 50 ppm are considered anomalous. Two anomalous samples have been outiined on the grid:

- 100 ppr L4000N/3900E
- 580 ppr L4000N/3800E

TYRONE GRID -

Goid - Vaiues range from 5 to 150 poo. Oniy two samples are greater than 10 ppi:

- 20 рро L6900E/5875N
- $150 \mathrm{ppO} \quad \mathrm{p} 7000 \mathrm{E} / 5850 \mathrm{~N}$

Copper - Vaiues range from 8 ppm to 360 ppm and the average is around 25 to 30 ppr. Values greater than 100 ppm are considered anomalous.

- 360 ppr LS900E/6150N

Lead - Values range from 2 to 24 ppm. Most values fall between 2 and 4 ppm and values greater than 25 ppm are considered anomalous. None are found on the grid.

Zinc - Values range from 48 to 620 ppm. The average is around 70 to 80 ppm and values greater than 200 ppm are considered anomalous. Two single station anomalies have been outlined:

- 620 ppm L6900E/5150N
- 240 ppr L7000E/6100N

Silver - Values range from 0.2 to 0.8 ppm. Most values are around 0.2 pom and values greater than 1.0 ppm are considered anomaious:
$-1.4 \mathrm{ppm} \quad \mathrm{L} 6800 \mathrm{E} / 6250 \mathrm{~N}$

Argenic - Values range from $1-20$ ppm. No values are considered anomaious.

RECON SOIL GRID -
Gold - Gold values on the recon grid range from 10 to 1000 pob. Values greater tan 10 ppb are considered co pe anomaious. One triple station, one couble siation and 22 singie station anomalies have been outlined:

	80	pop	L7000E/ 8050N
	1000	ppo	L7000E/10350N
	50	ppb	L7000E/11800N
	30	poo	L7000E/12000N
	30	فpp	L7000E/12050N
	30	ppb	L7000E/12150N
	80	ppb	L7000E/12950N
	30	ppb	L7500E/ 7900N
	20	ppo	L7500E/ 8700N
-	30	ppo	L7500E/10850N
	20	ppb	L7500E/124
-	30	ppo	L7500E/133
-	110	bpb	L8000E/10500N
-	100	ppb	L8000E/10600N
-	30	ppb	L8000E/10900N
	30	Opo	L8000E/10950N
	20	ppb	L8000E/11000N
	20	ppo	L8000E/12600N
	240	ppo	L8500E/10950N
	270	ppb	L9000E/10400N
	340	ppo	L.9000E/11000N
-	80	ppb	L9000E/11100N
-	30	ppo	L10000E/ 9800N
-	40	ppb	L10500E/11750N
	40	ppo	L11000E/ 9800N
	20	ppb	L11000E/10050N
	30	ppb	L11000E/11650

Copper - Copper values on the recon grid range from 4 ppr to 2200 ppm. The average is around 50 to 70 ppm, and vaiues areater than 100 ppm are considered anomalous.

A large, loosely defined anomaly and 2 double station and 13 single station anomajies are defined. open to the southeast.

A large copper anomaly with values up to 2200 ppm, extends from Line $9500 E$ to Line $11200 E$. The outer boundaries of the anomaly are outlined by:

L $9500 \mathrm{E} \quad 10550 \mathrm{~N}$ to 11550 N
LiOOOOE 10250 N to 11650 N
LiO500E 10400 N to 11500 N
L11000E 10400 N to 11200 N
L11200E 11000 N to 11050 N

The 13 single and 2 double station anomalies are:

- 100 pom L7000E/ 7750N
- 110 ppm L7000E/ 7850N
- 100 ppm L7000E/ 7900N
- 130 ppm L7000E/ S800N
- 380 ppm L7000E/10000N
- 140 ррm L7000E/12950N
- 110 ppm L7000E/13050N
- 130 ppr L7500E/ 7600N
- 120 por L7500E/ 7900N
- 450 ppm L75005/10900N
- 140 ppm L7500E/10250N
- 130 ppm L7500E/10300N
- 170 ppm L8500E/10150N
- 170 ppr L8500e/11300N
- 100 ppr L9000E/ 9800n
- 130 ppm L9000E/10050N
- 130 ppm LSOOOE/11500N

Lead - Lead values on the recon soil grid range from 1 ppm to 28 ppm. The average is between 4 and 8 ppm. Values greater than 25 ppm are considered to be anomalous. One value is found to be anomalous:
-28 ppm L10500E/11200N

Zinc - Zinc values on the recon soil grid range trom 18 ppm to 290 ppin. with the average around $60-70$ ppm. Vaiues greater than 200 ppm are considered to be anomalous. Four single station anomalies are defined:

- 240 ppr \quad LOOOE/10750N
- 290 ppr $\mathrm{L} 7000 \mathrm{e} / 11000 \mathrm{~N}$
- 290 ppm L7000E/11700N
- 280 ppr L10000E/11800N

Silver - Silver values on this grid range from 0.2 to 1.2 ppm, with the average around 0.4 ppm. Two values are considered anomalous:
$\begin{array}{ll}-1.0 \text { ppm } & \mathrm{L} 9500 \mathrm{E} / 11650 \mathrm{~N} \\ -1.2 \text { ppr } & \mathrm{L} 30000 \mathrm{E} / 10850 \mathrm{~N}\end{array}$

Arsenic - Arsenic values on the recon grid range from 1 ppm to 92 ppm. with an average around 5 ppm to 8 ppm. Values above 50 ppm are considered to be anomalous. Four single station anomalies are outlined:

- 92 ppm L $7000 \mathrm{E} / 11000 \mathrm{~N}$
- $84 \mathrm{ppm} \quad \mathrm{L} 7000 \mathrm{E} / 13700 \mathrm{~N}$
- 72 ppm $~ \mathrm{p}$ 7500E/ 7600N
- 64 por Lil000E/10900N

100 METER SPACED LINES -
The 100 meter spaced lines were established around high anomaiies defined by the recon sampiing. The iines are spaced aoo meters apart and samples are taken at 25 meter intervals. The grid lines are flagged and were established with a hip chain and compass.

L6900E, L7100E, L7200E -
Gold - Goid values on these detailed lines range from 10 to 20 ppb. The average is 10 ppb. Three single station anomailes of 20 ppb are defined:

- 20 ppb L6300E/11000N
- 20 ppb L7100E/10975N
- 20 ppb L7200E/10550N

Copper - Copper values on these 100 meter spaced lines range from 12 ppm to 1400 ppm . The average vaiue $i s$ around 110 ppm to 120 ppm . The average is distorted by some very high anomalous values. There is a 7 station, a 2 station and 2 single station anomalies defined:

- 140 ppm	$\mathrm{L} G 900 \mathrm{E} / 10675 \mathrm{~N}$
- 180 ppm	$\mathrm{L} 6900 \mathrm{E} / 10800 \mathrm{~N}$
- 160 ppm	$\mathrm{L} G 900 \mathrm{E} / 10825 \mathrm{~N}$
- 120 ppm	$\mathrm{L} 7100 \mathrm{E} / 10700 \mathrm{~N}$
- 160 ppm	$\mathrm{L} 7100 \mathrm{E} / 10850 \mathrm{~N}$
- 470 ppm	$\mathrm{L} 7200 \mathrm{E} / 10850 \mathrm{~N}$
- 180 ppm	$\mathrm{L} 7200 \mathrm{E} / 10875 \mathrm{~N}$
-1300 ppm	$\mathrm{L} 7200 \mathrm{E} / 10900 \mathrm{~N}$
-1400 ppm	$\mathrm{L} 7200 \mathrm{E} / 10925 \mathrm{~N}$
- 270 ppm	$\mathrm{L} 7200 \mathrm{E} / 10950 \mathrm{~N}$
- 280 ppm	$\mathrm{L} 7200 \mathrm{E} / 11000 \mathrm{~N}$

Li1,200E. L11,400E and Li1, 600E -

Gold - The gold values on these 200 meter spaced lines range from 10 ppo to 520 ppb. The average is around 20 ppb. There are 5 singie scation anomailes outiined:

| $-\quad 40 \mathrm{ppo}$ | $\mathrm{L} 11200 \mathrm{E} / 11225 \mathrm{~N}$ |
| ---: | ---: | ---: |
| $-\quad 20 \mathrm{ppD}$ | $\mathrm{L} 11200 \mathrm{E} / 11575 \mathrm{~N}$ |
| -520 ppb | $\mathrm{L} 11400 \mathrm{E} / 11225 \mathrm{~N}$ |
| $-\quad 30 \mathrm{ppo}$ | $\mathrm{L} 11600 \mathrm{E} / 11325 \mathrm{~N}$ |
| -70 ppb | $\mathrm{L} 11600 \mathrm{E} / 11375 \mathrm{~N}$ |

Copper - The copper values on the 200 meter spaced lines range from 16 ppm to 580 ppm . The average is around 80 ppm . Values above 100 ppm are considered to be anomaious. There are 3 double station and 6 single station anomalies outiined:

pp	L11200E/11000N
100 ppm	L11200E/11025N
100 ppm	L11400E/11450N
10 ppm	L11400E/11
110 ppm	L11400E/1
580 ppm	L1160
200 ppm	L11600
380 ppm	L11600E/111
100 ppm	L11600E/11150N
330 ppm	L13600E/11225N
120 pmm	L11600E/1
220 ppd	LI1600E/11375N
260 ppm	L11600E/1
100 ppm	L11600E/116

CONCLUSIONS:

The property is underiain by porphyritic diorite that appears to be weakly altered, massive to porphyritic andesite with a trace amount of pyrite and disseminated chalcopyrite and siltstones that are hornfelsed and contain up to $1-2 \%$ pyrite.

A structural break trending 070 degrees occurs on the property. This is indicated by strean courses and topography changes seen on air photos and topographic maps. Reconnaissance gold anomalies weakly refiect this break.

A large copper geochemical anomaly $2 k m$ long and 1.5 km wide that is open to the southeast has been outlined. The copper values in this anomaly range up to 2200 ppm. Scattered gold anomalies with values up to 1000 ppo are found throughout the grid.

The Tyrone grid has scattered gold values up to 150 opo, scattered copper values up to 360 ppm and a large zinc vaiue of 620 ppm .

The Norn grid has scattered weak copper and goid values and an anomalous arsenic area iocated on the southern edge of the grid. The arsenic values range up to 580 ppm.

RECOMMENDATIONS:

Further soil sampling and geophysics work should be performed on the property.

Geochemistry -

These soil iines should be added to the grid with samples

L 9100E
L 9200E
L 9300E
L 9400 E
L 9600 E
L 9700E
L 9800E
L 9900E
L10100E
LiO200E
L10300E
L10400E
L. 10500 E

L10700E
L10800E
L10900E
L11100E
L11200E
Li 1300 E
L11400E
L12500E
LI?600E
L. 6800 E

L $6900 E$
L 7100 E
L $7200 E$
L. 7300 E

L 7400E
L 7500E
L $7900 E$
L 8100E
L 8900E
L 9100E
L $6900 E$
L 7100 E
L 7400 E
L 7600 E
$10000 \mathrm{~N}-12000 \mathrm{~N}$ 10000N-12000N $10000 \mathrm{~N}-12000 \mathrm{~N}$ $10000 \mathrm{~N}-12000 \mathrm{~N}$ 10000N-12000N $10000 \mathrm{~N}-12000 \mathrm{~N}$ 10000N-12000N $10000 \mathrm{~N}-11000 \mathrm{~N}$ $10000 \mathrm{~N}-12000 \mathrm{~N}$ $10000 \mathrm{~N}-11000 \mathrm{~N}$ $10000 \mathrm{~N}-12000 \mathrm{~N}$ $10000 \mathrm{~N}-11000 \mathrm{~N}$ $10200 \mathrm{~N}-11100 \mathrm{~N}$ $9700 \mathrm{~N}-10500 \mathrm{~N}, 11850 \mathrm{~N}-12250 \mathrm{~N}$ $9700 \mathrm{~N}-10500 \mathrm{~N}, 11850 \mathrm{~N}-12250 \mathrm{~N}, 11000 \mathrm{~N}-13000 \mathrm{~N}$ $9700 \mathrm{~N}-10500 \mathrm{~N}, 11000 \mathrm{~N}-13000 \mathrm{~N}$
$10300 \mathrm{~N}-11200 \mathrm{~N}$. 10100N-11200N $10100 \mathrm{~N}-11200 \mathrm{~N}$ $10400 \mathrm{~N}-11200 \mathrm{~N}$ $10400 \mathrm{~N}-11200 \mathrm{~N}$ 9650N-10150N 9650N-10150N $7650 \mathrm{~N}-8100 \mathrm{~N}, 12700 \mathrm{~N}-13100 \mathrm{~N}$ $7650 \mathrm{~N}-8100 \mathrm{~N}, 12700 \mathrm{~N}-13100 \mathrm{~N}$ $7800 \mathrm{~N}-8000 \mathrm{~N}$ $7800 \mathrm{~N}-8000 \mathrm{~N}$

Geophysics -

Complete a magnetometer survey over the entire property. L9000E to L11500E; 10000 N to 12000 N , spacing lines 100 meters apart. A total of 52 km of magnetometer survey.

Complete an $I p$ survey over the same grid as the magnetometer survey with 200 meter spacing between the iines. A total of 26 km os Ip survey.

The proposed geophysics phase involves a magnetometer survey and an IP survey. The magnetometer survey will cover the entixe grid. The IP survey will cover the area of the iarge copper anomaly.

Geoiogy -
Map the property at a scaie of 1:5,000.

APPENDIX I
 STATEMENT OF WORK

a) WAGES:

Geology - 5 mandays $5150 /$ day $\$ 750.00$
Linecutting - 5 mandays 0 s $100 / \mathrm{day}$
$\$ 500.00$
Soil Sampling - 7 mandays $9100 / \mathrm{day}$
$=700.00$
b) FOOD. ACCOMMODATIONS \& TRANSPORTATION:

17 days @ $550 /$ day
$\$ 850.00$
c) COST OF ANALYSIS:

151 sampies $0 \$ 8.75$ ea
51. 321.25

638 sampies @ $\$ 15.00$
$\$ 9,570.00$
d) COST OF REPORT PREPARATION:

Author 5200.00
Drafting $\quad \$ 200.00$
Typing $\quad \$ 50.00$ 550.00

TOTAL COST
$\$ 14.141 .25$

APPENDIX I

COST BREAKDOWN

a) GEOLOGY:
Wages \quad Accommodations \& Transportation $\$ 750.00$
Food, Accommodations \& Trangportation 250.00 Report Preparation 200.00
$\$ 1,200.00$
b) SOIL GEOCHEMISTRY:
wages $\$ 500.00$
Food, Accommodations \& Transportation 250.00
Cost of Analysis $\$ 10.891 .25$
Report Preparation 250.00
$\$ 11.891 .25$
c) LINE EUTTING:
Wages$=700.00$
Food, Accommodations \& Transportation$=350.00$
$\$ 1.050 .00$

STATEMENT OF QUALIFICATIONS

I, Terrence Campbell, of Frince George, Frovince af Eritisin Columbia, do hereby certify that:

1. I am a geologist residing at 7740 Gladstone Drives, Prirce George, British Columbia. .
2. I am a 1385 graduate of the University af British Coluntia, E.Sc. (Geology).
3. I am a member ir goad staridirg of the Eritish Columian Yukon Chamber of Mires.
4. I presently hold the position of Field Gealagist with Nomanda Explometion Compary, Limited iro persorimal liability) and have beer in their emplay sirnee 1986.

Terrerice Campoe 11

The methods listed are presertly applied to analyse geological materials by the Noranda Geochenical Laboratory at Vancouver. (March, 1984)

Preparation of Samples

Sediments and soils are dried at approximately $80^{\circ} \mathrm{C}$ and sieved with a 80 mesh nyion screen. The -80 mesh (0.18 mm) fraction is used for analysis.

Rock specimens are pulverized to -120 mesh (0.13 mm) . Heavy mineral fractions (parned samples) are analysed im its entirety, when it is to be determined for gold without further sample preparation. See addendum.

Amalysis of Samples.

Decomposition of a $0 . \mathcal{E O O} \mathrm{g}$ sample is done with conceritrated perchloric and nitric acid (3:1), digested for 5 hours at reflux temperature. pulps of rock or core are weighed out at 0.2 g or less depending an the matrix of the rock, and twice as much acid is used for decomposition than that is used for silt or soil.

The coricentrations of Ag, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V and Zr (all the group A elemerts of the fee schedule) can be determined directly from the digest (dissalution) with an atomic absomption spectrometer (AA). A Variar-Techtror Model AA-S or Model AA-475 is used to measure elemental concentratiors.

Elements Reguirirg Specific Decompositian Method

Antimony - St: O.E 9 sample is attacked with 3.3 mL of $6 x$ tartaric acid, 1.5 m coric. hydrochloric acid ard $O .5 \mathrm{ml}$ of conc. nitric acid, then heated irt a water bath for 3 hours at $75 \mathcal{C}$. $S b$ is detemined directly from the acid solution with an AA-475 equipped with electrodeless discharge lamp (EDL).

Arsenic - As: $0 . \varepsilon-0.4 \mathrm{~g}$ sample is digested with 1.5 mL of 70% perchloric acid and 0.5 mL of coric. ritric acid. A Varian AA-475 equipped with ari As-EDL measures the arseric corceritration of the digest.

Barium - Bat 0.1 g sample is decompesed with corc. perchioric, nitric and hydrofluoric acid. Atomic absorption using a nitrous oxide-acetylene flame determiries Ba from the aquequs solution.

Bismuth - Bi: O. 2 - 0.3 g is digested with 2. 0 ml of perchloric $70 x$ and I. O ml of conc. nitric acid. Bismuth is detemmined directly from the digest into the flame of the $A A$ iristrument $c / w E D L$.

Gold - Au: 10.0 g sample (Pan-comcentrates see below) is digested with aqua regia (1 part nitric and 3 parts hydrochloric acid). Gold is extracted with Methyl iso-Butyl ketone (MIBK) from the aqueous solution. Gold is determined from the MIBK solution with flame AA.

Magnesium - Mg: $0.05-0.10$ g sample is digested with 4 ml perchloric/nitric acid (3:1). An aliquot is taker to reduce the concentration to within the range of atomic absorption. The $A A-475$ with a nitrous oxide flame determines Mg from the aqueous solution.

Tungsten - W: 1.0 g sample sintered with a carbonate flux and thereafter leached with water. The leachate is treated with potassium thiocyanate. The yellow tungsten thiocyanate is extracted into tri-n-butyl phosphate. This permits colourimetric comparison with standards to measure tungsten concentration.

Uranium - U: An aliquot, taken from a perchloric-nitric (3:1) decomposition, usually from the multi-element digestion, is diluted with water and a phosphate buffer. This solution is exposed to laser light, and the luminescence of the uranyl ion is quantitatively measured on the UR-3 (Scintrex).

LOWEST VALUES REPORTED IN PPM

U"iues in P户M, exceft where noted.

$\begin{aligned} & \text { T.i. } \\ & \text { NO. } \end{aligned}$	SAMPLE NC．	Cu	Zri	Pto	Fig^{3}	As	PPs Au	$\begin{aligned} & 88: 1-005 \\ & \text { Pg. }_{5} 2073 \end{aligned}$
50	7000E－E100N	ECl	\＃40	12	0.5	5	\pm	
51	5125	ここ	75	4	0.8	E	5	
5	6150	$3 B$	75	8	$0 . E$	E	동	
53	6175	35	ES	5	0.5	E	5	
54	ロご00	16	E4	z	$0 . E$	4	5	
55	ㅌ．ets	E6	56	Ξ	6． 3	E	5	
5 E	Eご心	14	50	1	O．E	1	5	－
57	E®75	10	44	1	\％．	4	5	
59	7000E－5EOON	15	$4 E$	E	0.8	\％	5	
5	$7100 \mathrm{E}-5 \mathrm{GON}$	69	100	こ	0.5	8	5	
60	55E5	40	E6	E	2．	E	5	
61	5¢56	76	Es	4	0.4	14	5	
Eミ	5575	3	75	4	$0 . E$	E	5	
53	590%	1 こ	150	4	0.5	Σ	5	
64	5% 5\％	78	$1 き 0$	E	O．E	4	든	
55	5950	45	100	4	0.3	6	든	
65	5000	56	96	E	O．E	E	E	
67	E0ES	18	$1 \approx 0$	4	0.3	1	5	
EG	E0EO	E8	78	4	$0 . E$	4	E	
65	E075	13	140	4	O．こ	10	동	
70	$E 100$	13	170	4	0.5	1	5	
71	E1E	54	50	16	C． 4	\because	5	
7 －	E150	15	60	E	O．E	E	5	
75	E．175	ㅌ6	Eb	4	0.4	1	E	
74	E玉O以	15	70	E	O．E	4	5	
75	EEES	E	6.4	4	0.4	4	5	
7 F	E心EO	E®	45	4	0.4	1	5	
77	Eミ7E	15	EO	4	O．	4	5	
78	7100E－ESOON	O	Et	4	0.4	1	E	
79	7EOE－5EGON	7 O	Ee	4	$0 . も$	18	5	
80	55	4.4	74	4	6．E	E	5	
51	5856	50	78	4	O．${ }^{2}$	6	\pm	
$g \Xi$	5575	E8	85	4	0.3	1	E	
53	5900	34	110	4	0.4	4	5	
94	틀	E0	160	E	O．E＇	4	5	
ES	5550	30	176	4	G．	®	듣	
56	Einoo	18	54	4	6．	1	E	
ET	E．cre	14	$E \pm$	4	O． 5	4	5	
89	8050	8	54	4	$0 . E$	5	5	
89	6075	10	58	4	O．E	4	5	
50	5100	30	46	E	0.5	E	5	
31	E1ES	16	90	8	0.8	E	5	
Э゙	E175	®s	ブ	E	0.3	4	5	
35	E®E5	こ8	64	6		E	5	
54	EE50	EG	あ玉	4	0.5	5	5	
95	E． 075	E4	匕こ	E	6.	1	5	
96	7ニOOE－E5OCN	12	50	き	$0 . E$	3	5	
97	ごЭ0以サー 3760 C	$1 こ$	4シ	こ	0.0	1	10	
98	375	$E S$	58	E	0．	1	단	
99	3750	38	110	$E 6$	0.4	190	Ξ	
100	CHECK NL－E	50	140	66	1.0	Э0	－	
101	$3 \Im 00 N-3775 \mathrm{E}$	16	E50	14	0.3	\＃00	E	
$10 \pm$	4000157005	1 ご	48	E	0.3	1	5	
103	37	24	44	E	0.0	1	단	
104	3750	50	58	4	0.	1	5	
105	$4000 N-3775 E$	44	68	4	0.2	1	5	
106	$41003 \mathrm{O}-3510 \mathrm{E}$	ES	98	4	0.4	EEO	5	

F.	SAMPLE NC.	Eu	$2 r$	Ob	Fig	As	FFE Fu	$\begin{aligned} & \text { ES11-60g } \\ & \text { Pg. } 3 \text { of } \end{aligned}$
07	41005 －3775N	34	94	4	0.3	1	5	
05	$4010 \mathrm{~N}-3500 \mathrm{E}$	50	86	4	O．${ }^{\text {e }}$	24	5	
09	ごGON－38パを	10	62	4	0.4	E	5	

COEE ：8S10～05
JROPERTY；LロCATICN：DHUCHI
Date rec＇a：OCT ぎ

Shモet： 1 cf Ξ
EECTM ：EM．M．
Date campi：NGV． 17
Vaiues in FFM，except vinere roter．

ic.	SAMFLE No．	Cu	$\begin{aligned} & \text { FPE } \\ & F: H \end{aligned}$	$\begin{aligned} & \text { B810-0등 } \\ & \text { Fg. } 3 \text { af } 3 \end{aligned}$
44	$11500 \mathrm{E}-11150 \mathrm{~N}$	100	10	
45	11 E00	54	10	
45	11ごら	130	10	
47	11300	$1 E 0$	10	
48	1135	50	JC	
49	11250	50	10	
50	CHECK NL－6	50		
E． 1	11575	シご	70	
5	11400	E®0	10	
53	114ES	40	10	
54	11450）	50	10	
55	11475	90	10	
$5 E$	1150	7 E	10	
． 57	115	5	10	
58	11 Eご	50	10	
53	11850	109	10	
．EO	11675	110	10	
E1	11700	88	10	
6%	$117 E$	단）	10	
63	11600E－11775N	Э	10	
E． 4	10406E－11400N	130	10	
55	114 cos	55	10	
E6	11475	35	10	
67	11500	Eお耍	80	
．Es	1150	7 －	10	
． 63	11550	60	10	
70	11575	55	10	
． 71	11600	45	10	
．7E	11 E®゙ち	54	10	
$\bigcirc 73$	11650	50	10	
． 74	11700	110	10	
：75	11785	10	10	
$: 75$	11750	110	10	
： 77	10400E－11775N	140	10	

NORANDA UANCOUVER LAEDRATORY

PROPERTY／LD	：STU	RT CLA		CODE	＝8807－003
Prajecti Na．	：	283	Sheet： 1 cif 3	Date	rec＇d：IUNE7
Material	： 45	SOILS	Geal．：G．M．	Date	Compl＝Jul
Remarks	：				
			Values in Pm，	xcep	where rscoted．

r. T. Na．	SAMPLENG．	Eu	2 rr	Pb	Ag	As	$\begin{aligned} & \text { PPE } \\ & A_{4} \end{aligned}$	
\because	700以E－75\％ON	38	130	4	0.2	1	10	
3	7500	34	4 B	®	0.8	5	10	
4	7700	4こ	54	E	$0 . \Xi$	16	10	
5	7750	100	130	1	0.6	6	10	－1．n－m－
5	7800	38	58	こ	00^{2}	14	10	0 ¢ 0 ，：
7	7850	110	120	6	O． 5	30	10	$\mathrm{g}_{1}+\cdots-\cdots-\cdots-\cdots$
B	7900	100	46	$こ$	O．E	15	10	ก JH $\%$ ．－－\％
5	7950	48	54	2	0.2	14	10	！J－－． 5000
10	8000	48	58	Ξ	0.2	こ	10	
11	8050	68	140	16	0.5	30	－ 80	
1 13	B：00	68	76	4	0.8	18	10	
13	8150	18	E®	$=$	0.2	10	10	
14	8 ㄴ00	ここ	50	E	0.3	14	10	
15	$8=50$	E4	$5:$	Ξ	0.2	18	10	
15	8300	16	48	4	0.2	8	10	9
17	8350	16	50	Ξ	0.2	6	10	\cdots corser
18	8400	30	56	4	0.5	6	10	
13	8450	こ®	58	6	0.5	14	10	
E	8500	54	70	ᄅ	0.3	10	10	
こ1	8550	14	56	4	0.3	18	10	
ここ	8600	18	80	シ	0.3	1：	10	
23	8550	E0	60	1	0.4	6	10	
24	8700	56	70	こ	0.5	12	10	
25	8750	56	36	\％	$0 . E$	8	10	
EG	8800	16	34	1	0.3	2	10	
E7	8850	14	34	1	$0 . E$	Ξ	10	
こ8	9150	36	54	1	C．	8	10	
ت9	Fこ00	15	5こ	E		5	10	
30	9700	$\Sigma 4$	74	Ξ	0.3	6	10	
31	9750	14	96	E	0.2	4	10	
35	3800	130．	94	8	0.2	18	10	
33	3850	42	90	4	$0 . \pm$	2	10	
34	9700	15	55	こ	0.3	1	10	$\sqrt{n} \cdot t$
35	3950	こ6	50	1	0.2	1	10	1
36	10000	380	88	1	0.4	5	10	10
37	10050	ここ	78	1	0.2	E	10	V
38	10100	$6 \pm$	94	1	0.3	6	10	
33	10150	36	54	1	O．E	14	10	
40	10000	26	40	1	0.2	4	10	
41	10 ¢50	14	44	1	0.2	Ξ	10	
4 E	20300	ここ	64	Ξ	0.2	10	10	
43	10350	36	55	4	0.2	Σ	$\cdots 000^{\circ}$	
44	10400	16	56	E	$0 . \pm$	10	10	
45	10450	58	78	10	0.2	6	10	
46	10500	18	50	8	0.3	1	10	
47	10550	1Ξ	48	\approx	0.2	1	10	
48	10600	12	38	4	0.2	4	10	
43	7000E－10650N	ご	70	4	0.3	4	10	

T．T． vo．	SAMPLE NC．	Cu	Zrs	Pb	Ag	fs	$\begin{aligned} & \text { PPE } \\ & \text { Pu } \end{aligned}$	$\begin{aligned} & 8807-00 \\ & \text { pg. } E \text { e. } \end{aligned}$	Э
50	7000E－10700N	$\Xi 2$	66	4	0.2	4	10		
51	10750	4こ	\％40	18	0.3	E0	10		
5	1085	13	40	4	O．${ }^{2}$	Ξ	10		
53	10350	38	140	6	O． 0^{2}	8	10		
54	11000	32	： 59	14	0.7	9ะ	10		
55	11050	24	5	4	0.5	1	10		
56	11100	20	40	4	0.5	1	10		
57	11150	14	48	6	$0 . \Xi$	1	10		
58	11 E00	10	Eこ	6	0.8	1	10		
59	11250	4	40	1	C．	1	10		
60	11300	18	5	8	0.5	1	10		
61	1：350	10	50	Ξ	O．	8	10		
65	11400	14	38	4	O． 0^{1}	10	10		
63	11550	10	40	6	O．	8	10		
64	11500	12	4こ	8	0.2	10	10		
55	11700	66	$\therefore 290$	20	$0 . E$	84	10		
66	11800	5	170	5	0.2	14	－60．		
67	11850	®0	48	6	O． 0^{2}	10	10		
68	11900	16	60	12	0.3	12	10		
69	11950	5	85	8	0.2	14	10		
70	1：0000	B	65	10	0.3	こ	-30		
71	1 EOSO	8	40	Ξ	0.3	1	． 30		
75	$1 こ 100$	35	54	6	$0 . E$	8	10		
73	15150	ニะ	78	4	0.2	10	． 30.		
74	1 ここらら0	30	74	6	0.3	1	10		
7 5	1 こכ00	16	7こ	4	0.3	1	16		
75	1 ここら0	こ®	75	5	0.3	8	10		
77	$1 \Xi 450$	E6	58	4	0.2	10	10		
78	$1:=500$	5 5	100	4	0.3	1 こ	10		
79	1：5ㄴㅇㅇ	16	50	4	0． 2	14	10		
80	$1=500$	こ0	58	6	（．）$\underbrace{\circ}$	13	10		
81	$1: 550$	こ4	50	6	0.8	4	10		
BE	$1 \approx 700$	56	64	5	6． 5	4	10		
83	12750	18	5	8	0.3	こ	10		
84	1E800	14	45	4	0.8	1	10		
85	1 5850	츤	54	4	$0 . \Xi$	4	30		
85	12700	40	58	4	0.5	4	10		
87	$1: 950$	140	120	12	0.8	ミะ	． 800		
88	13000	ぶ	$8 ะ$	Ξ	O．	4	10		
83	13050	0110	68	Ξ	O． $0^{\text {O }}$	6	10		
90	13100	46	7こ	Σ	0.5	6	10		
91	13 こ00	40	48	2	0.0	1	10		
$9 ๕$	13550	40	64	Ξ	0.8	4	10		
93	13300	18	5	4	0.5	5	10		
94	13450	38	7シ	E	0．	6	10		
95	7000E－13500N	46	48	Ξ	$0 . \Xi$	1	10		
96	$7500 E-7500 N$	44	5	1	0.3	4	10		
97	7550	5	80	Ξ	0.6	16	10		
98	7500	180	69	1	0.6	75	10		
99	7500E－7650N	58	94	1	0.5	8	10		
100	EHESH－NE．	－	144	E	－	－	\sim		
101	7500E－7700N	42	55	1	0.3	34	10		
100	7800	34	1こ0	E	0.2	玉	10		
103	7900	120	74	2	0.8	30	-30		
104	8050	46	50	1	0.3	4	10		
105	8150	40	44	1	$0 . E$	1	10		
105	7SOUE－GESON	こ0	50	1	0.3	E	10		

$\begin{aligned} & \because \mathrm{T} \\ & \mathrm{de} . \end{aligned}$	SAMPLE No．	Cu	$2 n$	Fb	Al_{3}	As	PPE Au	$\begin{array}{r} 8807-00 \\ \mathrm{Pg} .4 \mathrm{Cf} \end{array}$	ξ
16	7500E－1ごこON	16	4こ	4	0.3	8	10		
17	12950	こロ	68	6	0.8	8	10		
18	13050	38	62	B	0.8	10	10		
13	13100	34	48	6	0.3	4	10		
EO	13150	34	46	E	O．E	Ξ	10		
き1	$13 こ 50$	38	66	4	O． 3	\pm	10		
ミニ	13300	6	24	E	0.3	；	30.		
こ3	13550	4	20	4	$0 . \mathrm{E}$	1	10		
24	13400	6	34	6	©． 0^{2}	5	10		
토	$7500 E-13450 N$	46	64	6	0.4	8	10		
E6	E0OOE－10000N	10	48	4	0.2	8	10		
E7	10050	7こ	60	6	O．E	14	10		
Es	10100	44	万ご	4	O．E	35	10		
E9	10150	ご	34	4	$0 . \square$	6	10		
30	10500	15	5 E	4	0.2	8	10		
51	10050	38	50	4	O．シ	10	10		
35	10300	ご	46	4	0． 2	10	10		
33	10450	32	40	\because	0.2	4	10		
34	10500	14	38	1	0．E	1	110		
35	10550	8	40	E	0.8	1	10		
36	10600	16	4E	4	0.2	1	100.		
37	10650	だー	50	4	0.2	1	10		
38	10750	14	34	E	0.3	3	10		
33	10800	10	55	Ξ	0.5	1	10		
40	10850	16	$5 E$	4	C． 2	1	10		
41	10300	14	5 5	6	C． 2	1	30		
4 2	10550	18	46	6	0． 3	1	30		
43	11000	ご	46	6	0.2	1	E0		
44	11200	10	$2 \square$	4	O．$\#$	1	10		
45	11400	30	48	5	0.4	1	10		
46	11500	10	Эこ	8	0． 5	1	10		
47	1：550	8	28	4	0.5	1	10		
48	11600	16	46	10	0.3	1	10		
43	11550	46	46	5	C． 4	1	10		
50	11700	90	44	플	0． 3	⓪	10		
51	11750	80	68	4	0.4	14	10		
딘	11800	42	58	4	0.4	E	10		
53	11850	44	48	6	0.3	8	10		
54	11900	34	45	4	O．	16	10		
5	11350	3 J	68	10	0.6	14	10		
55	12000	10	उ	4	0.2	6	10		
57	12050	4Ξ	68	8	0.4	14	10		
58	$1 E 100$	44	E8	10	0.4	20	10		
53	1こ：50	ぢき	72	15	0.8	EO	30		
50	1ご00	38	50	8	6． 3	30	10		
61	1 Eこ50	14	60	4	$0 . \Xi$	こ	10		
58	ミころ00	コこ	86	10	0.4	$\Sigma 0$	10		
63	12350	ミ2	50	E	0.3	14	10		
64	12400	ご	45	10	O．$こ$	5	10		
55	15450	10	3\％	6	¢．シ	4	10		
66	1：こ500	40	EE	6	6.3	ミ	10		
67	12500	E	18	4	$0 . \geq$	1	20		
68	1E650	6	36	6	0.2	1こ	10		
67	1E700	15	46	6	C． 3	12	10		
70	$1 \approx 750$	8	30	4	0.2	16	10		
71	： 5900	こ4	46	6	0.8	4	30		
75	80OOE－15850N	38	52	8	0.2	16	10		

$\underset{C-}{+}$	SAMPLE Na．	Cu	Zn	Pb	Ag	As	$\begin{array}{r} P \rho G \\ A u \end{array}$	$\begin{aligned} & 8 B 07-00 \\ & \text { Pge } 8 \text { of } \end{aligned}$	3
96	$10500 E-10150 N$	100	50	2	C． 2	6	10		
37	10200	64	50	こ	0.2	๕	10		
98	10350	70	180	16	0.4	1	10		
93	$10500 E-10300 N$	E0	60	4	0.2	1	10		
00	CHECK NE－S	5	146	68		－58	－		
01	$10500 \mathrm{E}-10350 \mathrm{~N}$	48	75	8	0.4	4	10		
ロこ	10400	Эコ	5こ	4	0.3	4	10		
03	10450	110	58	4	0． 4	6	10		
04	10500	34	4ミ	こ	0.2	2	10		
05	10550	60	160	6	0.4	1	10		
06	10700	1 こ0	らご	16	c． 4	36	10		
07	10750	38	45	4	$0 . \Xi$	4	10		
08	10900	38	48	6	O． $0^{\text {O }}$	1	10		
03	10950	160	54	5	0.3	4	10		
10	11000	42	94	4	0.2	1	10		
12	11050	З3	36	6	0.5	4	10		
1Ξ	11500	46	86	28	0.4	E4	10		
13	1：250	68	110	8	0.4	8	10		
14	11300	180	100	15	0.6	10	10		
15	11350	1 100	34	4	0.4	E	10		
15	11450	350	55	10	0.8	14	10		
17	11500	170	48	5	0.4	4	10		
18	11600	32	88	4	0． 4	4	10		
13	11650	35	44	4	0．E	1	10		
EO	11700	74	5	6	0.4	6	10		
E1	10500E－11750N	170	8 8	8	0.4	B	40		
ここ	$11000 E-F 500 N$	170	120	4	0.4	Ξ	10		
こう	9550	Е6	150	4	0.8	1	10		
ご	9600	16	Fs	4	0.2	1	10		
． 5	3650	46	68	6	0.5	1	10		
こ6	3700	18	58	4	0.3	4	30		
．ミ7	9800	42	76	4	－．ミ	6	40.		
28	9850	24	38	4	$0 . \geq$	6	10		
E3	9550	Е8	75	4	0.5	き	10		
30	10050	50	180	$\stackrel{\rightharpoonup}{2}$	0.2	E	， 20		
31	10100	36	150	1	0. －	6	10		
52	10150	\＃8	64	4	0． 2	4	10		
． 33	10こ00	6こ	56	6	0.3	4	10		
． 34	10550	18	42	6	O． 3	1	10		
35	10300	30	45	こ	0.2	1	10		
35	10350	30	5¢	4	O．E	1	10		
37	10400	38	190	6	6．E	1	10		
35	10450	38	46	E	0.2	1	10		
－39	10550	［170．	56	6	0.3	1	10		
40	10500	1150．	58	G	0． 0^{2}	1	10		
44	10700	ciia	48	4	O． 2	1	10		
42	10750	80	56	10	6．E	1	10		
43	10800	C110．	E6	6	0.3	1	10		
44	10850	－190	78	4	0.4	E	10		
45	10900	88	180	10	0.2	64	10		
46	11000	120	58	10	$0 . E$	8	10		
47	11050	58	70	6	0.2	8	10		
148	11100	T140．	84	9	0.4	1	10		
143	11000E－11200N	35	38	4	0.4	8	10		
150	CHECK NL－6	－	\pm	GG	－	¢f	－		
151	$11000 \mathrm{E}-11$ ESON	5.4	140	4	0.4	6	10		
15.	11000E－1：300N	54	56	4	O．${ }^{2}$	4	10		

(

