ARIS SUMMARY SHEET

District Geologist, Kamloops

Off Confidential: 90.02.10

ASSESSMENT REPORT 18408

MINING DIVISION: Similkameen

PROPERTY:

WH LAT

LOCATION:

49 46 00

LONG 120 11 00

UTM NTS

10 5516276 702830

092H16E

CLAIM(S):

WH 1-4

OPERATOR(S):

Fairfield Min.

AUTHOR(S):

Rowe, J.

REPORT YEAR:

1989, 62 Pages

COMMODITIES

SEARCHED FOR: Gold, Silver, Zinc

KEYWORDS:

Coast Intrusions, Granite, Otter Intrusions, Porphyritic Granite

Pyrite, Quartz Veins, Galena, Chalcopyrite

WORK DONE:

Geochemical

SOIL

923 sample(s); AU, AG, ZN

Map(s) - 3; Scale(s) - 1:10 000

MINFILE:

092HNE

ACTION:		
150110211.		
and the state of t	-	

1988 GEOCHEMICAL REPORT

FILMED

On the WH #1-4 MINERAL CLAIMS
Similkameen Mining Division, B.C.
NTS: 92/H-9E,16E; Lat 49°46'N; Long 120°11'W

FEBRUARY 1989. (BC '88 ASSESSMENT)

REPORT DISTRIBUTION

- Mining Recorder: 2

- Fairfield Minerals Ltd. 1
- Field 1
- Cordilleran Engineering Ltd. 1
Total: 5

GEOLOGICAL BRANCH ASSESSMENT REPORT

1988 GEOCHEMICAL REPORT

ON THE WH #1-4 MINERAL CLAIMS

Similkameen Mining Division, B.C.
Latitude 49 degrees 46'N; Longitude 120 degrees 11'W
NTS: 92/H-9E, 16E

For

FAIRFIELD MINERALS LTD.
Vancouver, British Columbia

Ву

J. D. Rowe, B.Sc.
Geologist

CORDILLERAN ENGINEERING LTD. 1980-1055 W. Hastings St. Vancouver, B.C. V6E 2E9

Date Submitted: February, 1989

Field Period: September 13 to October 27, 1988

TABLE OF CONTENTS

Tab		Page
1.0	SUMMARY AND CONCLUSIONS	1
2.0	RECOMMENDATIONS	3
3.0	INTRODUCTION	4
	3.1 Location and Physiography	4
	3.2 Claim Data	4
	3.3 History	7
	3.4 1988 Exploration Program	7
4.0	GEOLOGY	8
1	4.1 Regional Geology	8
	4.2 Property Geology and Mineralization	8
5.0	GEOCHEMISTRY	10
	5.1 Sampling Procedure	10
•	5.2 Results	10
6.0	PERSONNEL	14
7.0	STATEMENT OF EXPENDITURES	15
8.0	BIBLIOGRAPHY	16
9.0	STATEMENT OF QUALIFICATIONS	17
10.0	ANALYTICAL RESULTS 1988 Soil & Rock Samples	
	FIGURES	
	<u> </u>	
Figure 1	Location Map	5
Figure 2	Claim and Grid Location	6
Figure 3	Regional Geology	9
Figure 4	Reconnaissance Sample Locations	11
	TABLES	
<u>Table l</u>	Claim Status as at January 1, 1989	4
<u>Table 2</u>	Reconnaissance Sample Results	13
1		
	<u>PLATES</u>	
	(in pocket)	Casla
Plate 1		<u>Scale</u> 10,000
Plate 2		10,000
Plate 3		10,000
		, , , , , ,

The WH property comprises 4 claims (65 units) in the Similkameen Mining Division, located 57 kilometres southeast of Merritt, B.C. The claims, staked during 1988, are owned 100 percent by Fairfield Minerals Ltd.

Logging roads provide excellent access to all parts of the property. The terrain consists of rolling forested hills and scattered clear cut logged areas.

Previous exploration near the property included mapping, soil sampling, magnetometer surveys, trenching, diamond drilling, limited underground drifting and small scale placer mining. The best drill intercept was five feet of 0.43 oz/ton gold, 5.67 oz/ton silver and 0.23% copper from a showing 1.0 km east of the WH claims. Within the property area a narrow quartz vein/alteration zone yielded 15,900 ppb (0.46 oz/ton) gold and 1100.9 ppm (32.1 oz/ton) silver across 10 cm.

The 1988 program consisted of soil sampling, prospecting and rock sampling on the WH-1 and WH-2 claims.

The claims are underlain by coarse granite of the Coast Intrusions injected by a stock and abundant dykes of porphyritic granite of the Otter Intrusions. Clay alteration, with local disseminated pyrite, occurs along major structures, many of which trend northeasterly. Chlorite alteration is strongly developed locally.

Significant gold and silver values were returned from a sample of pyritic clay altered granite with a narrow quartz-limonite stringer. Galena, chalcopyrite and zinc oxide were found disseminated or in narrow quartz veinlets in chlorite altered granite.

A total of 923 soil samples were collected from WH-1 and WH-2 claims on a 200m by 50m grid and analyzed for gold, silver and zinc. In addition, 152 soils were collected on 50m by 25m fill-in grids from WH-1 claim and analyzed for gold.

Three northeast trending, linear gold anomalies were defined across the south part of the soil grid. Gold values on the north part are generally low. Silver and zinc anomalies show poor correlation with high gold values. A broad northwest trending silver and zinc anomaly across the southern grid has several northeast trending branches which suggest that the anomalies may be caused by intersecting northwest and northeast striking veins.

SUMMARY AND CONCLUSIONS Continued

Extensive gold soil geochemical anomalies parallel to a major northeast trending lineament along Spring Creek indicate good potential for locating gold bearing veins of economic tenor. The geologic environment is very similar to the nearby Elk property where hydrothermally altered zones several metres wide cut granite host rocks near dykes of andesite or granite porphyry.

2.0

RECOMMENDATIONS

A 200m by 50m grid should be established on the WH-3 and WH-4 claims and soils collected for gold, silver and zinc analyses. Detailed fill-in sampling on 50m by 25m grids should be completed around stations with anomalous gold values on the new grid and on the southern part of the existing grid to "close off" anomalous trends.

The entire property should be geologically mapped and areas of anomalous geochemistry should be prospected.

Areas with mineral showings or strongly anomalous gold, silver or zinc geochemistry should be trenched to bedrock with an excavator. Overburden on the property appears to average less than 3 metres in thickness. Trenches should be cleaned, mapped and chip sampled.

Respectfully submitted

CORDILLERAN ENGINEERING LTD.

J. D. Rowe, B.Sc.

ID Rowe

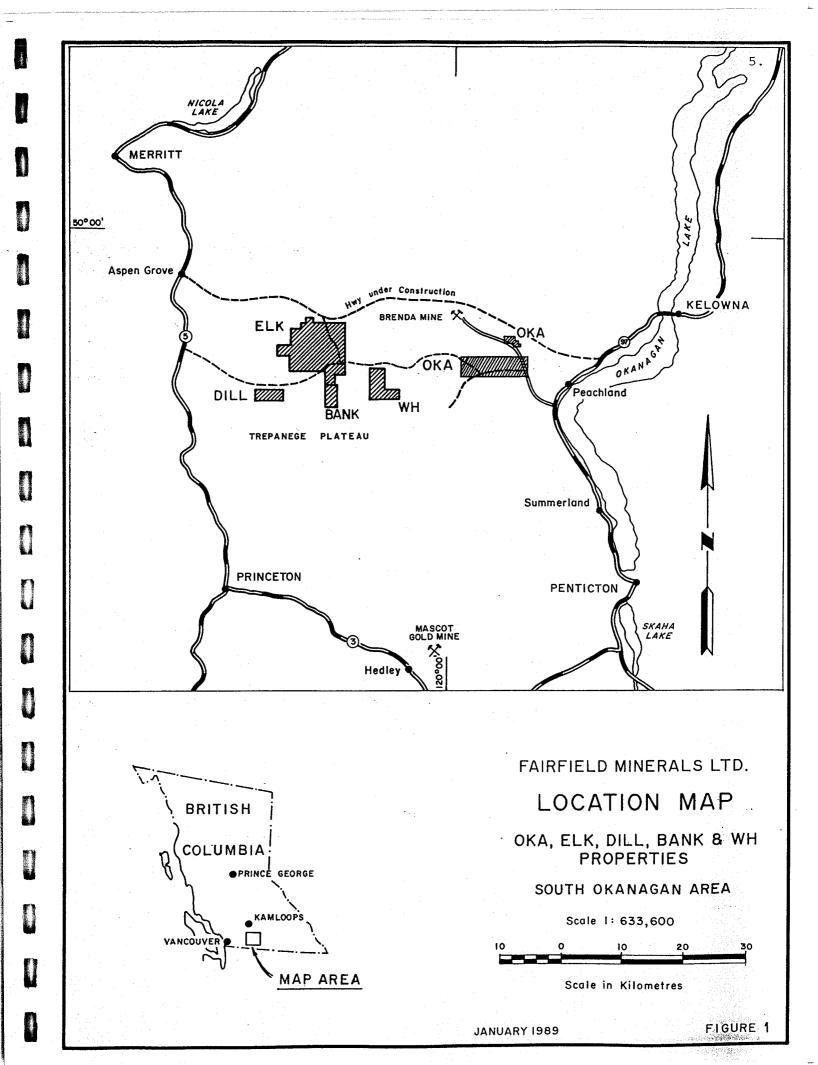
Geologist

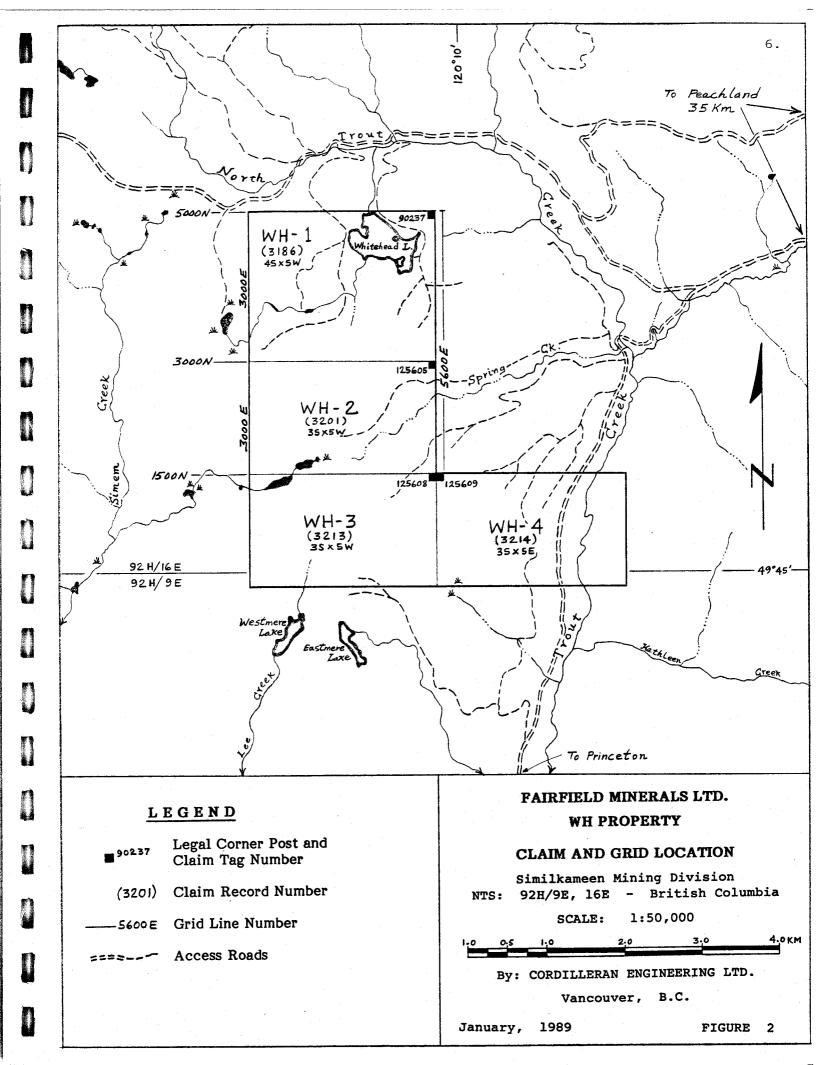
JDR/z February, 1989 INTRODUCTION

3.1 LOCATION AND PHYSIOGRAPHY (Figure 1)

3.0

The WH property is located 32 kilometres west of Peachland and 57 kilometres southeast of Merritt in south-central British Columbia (Figure 1). The property is centered on latitude 49 degrees 46'N and longitude 120 degrees 11'W within NTS map areas 92H/9E + 16E. Good gravel roads extend to the area from Peachland and from the Princeton-Merritt highway. Several logging roads traverse the claims providing excellent access.


The claims cover an area of approximately 16 square kilometres in rolling, hilly terrain on a broad uplands plateau. Elevations range from 1150m to 1500m above sea level. The east side of the property drops down steeply to Trout Creek, a two to four metre wide stream flowing to the south. Spring Creek follows a northeast trending depression across the middle of the property. Whitehead Lake, measuring 800 metres by 400 metres lies on the plateau at the north end of the claim group. A dam on the lake has caused a tributary creek to back up forming a long swampy zone to the southwest. Outcrop exposures are scarce but till cover appears to be relatively thin. Mature stands of spruce, balsam, fir and pine have been logged from several scattered plots. Annual temperatures range from -20 degrees C to 30 degrees C and precipitation is low to moderate. The area is basically snow-free from late June through October.


3.2 CLAIM DATA (Figure 2)

The current status of the WH claims is indicated in Table 1, and their locations are shown on Figure 2. The claims, located in the Similkameen Mining Division, were staked in September and October, 1988 and are 100 percent owned by Fairfield Minerals Ltd.

ee 1 7 .	•	AT 3 744	~~~~	-	-	T 3 2 7 7 7 3 5 4 7	-	1000
Tania	i .	('I A I M	CTATHE	W C-	Δ.ε.	IANHADV		1020
Table	1	CLATI	DINIUD	α	N.	JANUARY		1303

CLAIM	UNITS	RECORD NO.	EXPIRY DATE
WH 1	20	3186	2 SEPT. 1989
WH 2	15	3201	16 SEPT. 1989
WH 3	15	3213	10 OCT. 1989
WH 4	15	3214	11 OCT. ` 1989

INTRODUCTION Continued

3.3 <u>HISTORY</u>

There is no record of work within the borders of the WH claims, but areas to the east and southeast have been previously explored. In the Spring Creek area, from 1972 to 1985 various companies conducted mapping, soil sampling, a magnetometer survey, trenching and limited diamond drilling in search of copper, molybdenum, lead, zinc and silver, with little success. nearby, along North Trout Creek, a small, intermittent placer mining operation has recovered small amounts of gold. During 1988 a large area east of WH was explored for gold by soil sampling, magnetometer and VLF-EM surveys, mapping and prospecting.

Directly southeast of the WH claim group a gold, silver, copper showing has been explored by diamond drilling, trenching, a magnetometer survey and soil sampling between 1973 and 1987. A 64 metre adit is reported to have been excavated in 1898. The best drill intercept was 5 feet of 0.43 oz/ton gold, 5.67 oz/ton silver and 0.23% copper within a 15 foot section averaging 0.30 oz/ton gold.

Prospecting of the area near Whitehead Lake in 1988 by Fairfield Minerals Ltd. located a narrow quartz vein/alteration zone in granite which yielded 15,900 ppb (0.46 oz/ton) gold, 1100.9 ppm (32.1 oz/ton) silver across 10 cm. This initiated the staking of the WH claims.

3.4 1988 EXPLORATION PROGRAM

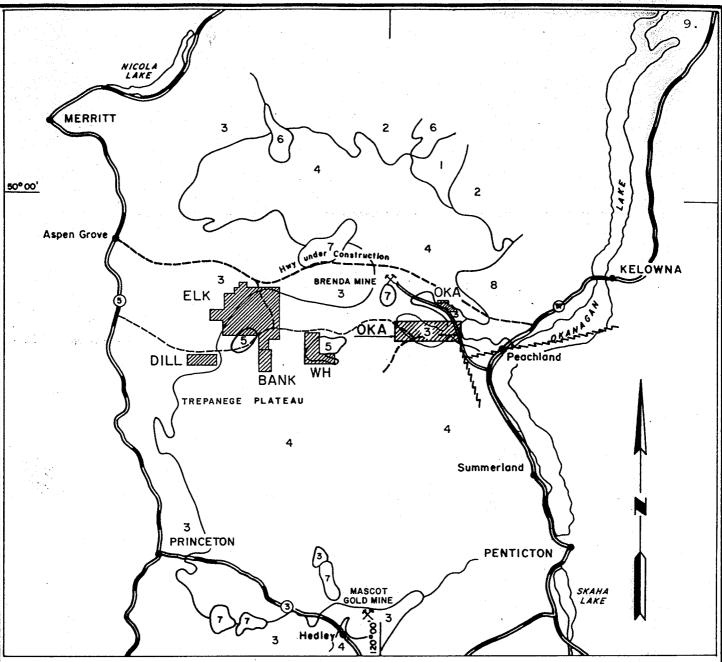
The 1988 program consisted of grid soil sampling on WH-1 and WH-2 claims as well as some follow-up detailed soil sampling, prospecting and rock sampling in areas of anomalous geochemistry. Time constraints did not allow sampling of the WH-3 and WH-4 claims or follow-up sampling of the anomalies on WH-2 claim.

4.0

GEOLOGY

4.1 REGIONAL GEOLOGY (Figure 3)

The WH property regional geology is shown on the northeast part of GSC Map 888A, Princeton, mapped by H.M.A.Rice, 1939-1944 and condensed on Figure 3. The area is underlain by an Upper Cretaceous to Tertiary stock of porphyritic granite in contact with Upper Jurassic Coast intrusive granite to the west and north. A 1 km-wide pendant of Upper Triassic Nicola Group intermediate volcanics with local interbedded sediments is mapped immediately southwest of the property.


4.2 PROPERTY GEOLOGY AND MINERALIZATION

Sparse exposures on the WH property consist of coarse, equigranular granite of the Coast Intrusions injected by dykes and a major stock of porphyritic granite of the Otter Intrusions. The porphyry contains phenocrysts of feldspar ranging from less than 1 cm to 5 cm long and quartz eyes up to 1 cm in diameter. Local zones of strong clay alteration with disseminated pyrite occurring in both units appears to be related to shearing and hydrothermal alteration along major structures. Chlorite alteration is strongly developed locally and may be associated with andesite dykes or small pendants of volcanic rocks within the granite. Northeast trending lineaments cutting the property may be indicative of major fault structures, which are associated with mineralization in the region.

Significant gold and silver values were returned from a 10 cm chip sample across a quartz veinlet less than 1 cm wide and weakly clay altered granite wallrock with disseminated pyrite. The sample yielded 15,900 ppb (0.46 oz/ton) gold and 1100.9 ppm (32.1 oz/ton) silver. Other quartz veins, up to 10 cm wide, have been located in outcrop. Some contain disseminated pyrite but selected samples returned low gold and silver values.

Disseminations and small masses of galena, chalcopyrite and zinc oxide were found in chlorite altered granite near the west end of the road along the north side of Spring Creek. Chlorite and carbonate alteration occur in small irregular zones in the granite near the contact with a quartz-feldspar porphyry stock. Fine veinlets of hematite, manganese oxide, siderite and quartz are common. Selected samples gave values up to 13.3 ppm (0.4 oz/ton) silver but low gold values of 12 ppb.

LEGEND

8 Eocene/Oligocene Andesite flows

7 Miocene/earlier Princeton Group-shale, sandstone

6 Miocene/earlier Kamloops Group-rhyolite, andesite

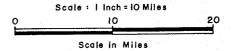
5 Upper Cretaceous Otter Intrusions—granite

4 Jurassic/Cretaceous Coast Intrusions - granite, granodiorite

3 Upper Triassic Nicola Group-sediments, greenstone

2 Carbonaceous Cache Creek Group-argillite, quartzite

Pre Permian Chapperon Group-schist


FAIRFIELD MINERALS LTD.

PROPERTY LOCATION

REGIONAL GEOLOGY

OKA, ELK, DILL, BANK & WH PROPERTIES

SOUTH OKANAGAN AREA, B.C.

CORDILLERAN ENGINEERING LTD.
1980-1055 W. HASTINGS STREET
VANCOUVER, B.C. V6E 2E9

JANUARY 1989

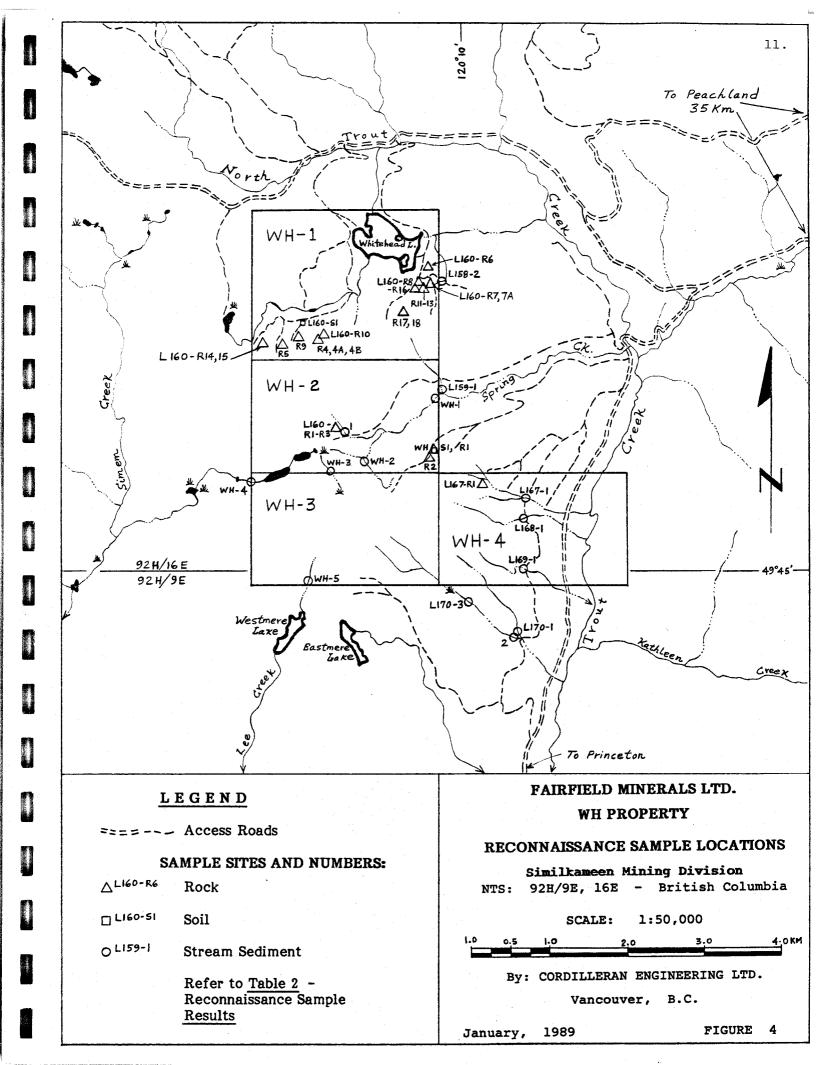
FIGURE 3

5.0

GEOCHEMISTRY

5.1 SAMPLING PROCEDURE

A 200m by 50m soil geochemical grid was established over the WH-1 and WH-2 claims. East-west claim lines were marked at 50 metre intervals and used as control for locating north-south soil lines which were measured by hip chain and compass, and stations were marked with numbered pink and blue flagging. Samples were collected from the "B" soil horizon with mattocks and placed in kraft paper bags. A sample number consisting of grid coordinates was marked on each bag. The samples were sent to Acme Analytical Laboratories Ltd. in Vancouver, where they were dried, sieved and the -80 mesh fraction used for gold, silver and zinc analyses. Gold was analyzed by atomic absorption following aqua regia digestion and MIBK extraction from a 10 gram sample. Silver and zinc were analyzed by I.C.P. on a 0.5 gram sample digested with HCl-HNO₃-H₂O for one hour.


A total of 923 soil samples were collected from the 200m by 50m grid. Of these, 512 were collected from the WH-1 claim prior to staking of WH-2, WH-3 and WH-4 and 411 were collected from WH-2 after all the claims were staked. Fill-in sampling was conducted at 50m by 25m spacings around most of those samples on WH-1 claim which returned 10 ppb gold or higher. The fill-in sampling, comprising 152 soils, was carried out following staking of all the claims. These samples were analyzed for gold only.

In addition, 14 stream sediments, 2 reconnaissance soils and 24 rock samples were collected from the property area although most were taken prior to the claim staking.

5.2 RESULTS (Figure 4, Plates 1 to 3)

The 1988 gold, silver and zinc soil geochemical results are plotted on Plates 1, 2 and 3. Reconnaissance stream sediment, soil and rock sample locations are shown on Figure 4 and results are compiled in Table 2.

Statistical analysis of gold, silver and zinc values from 923 coarse grid soils indicated low threshold values for gold, so anomalous gold categories were selected based on those determined for the nearby Bank and Dill properties. The following categories were used.

GEOCHEMISTRY Continued

	Gold (ppb)	Silver (ppm)	Zinc (ppm)
Background	<6	<0.6	<350
Weakly Anomalous	6 - 14	0.6 - 1.0	350 - 699
Anomalous	15 - 39	1.1 - 2.2	700 - 1599
Strongly Anomalous	<u>≥</u> 40	<u>≥</u> 2.3	<u>≥</u> 1600

Contouring of the gold soil geochemical values defined three northeast trending linear anomalies, each 800 to 1000 metres long, across the south part of the grid. Anomalous samples are on lines spaced 200 metres apart. Detailed sampling around these points has not yet been conducted. Anomalous gold locations on the north part of the grid had fill-in samples collected around them, but these did not show any strong continuity, although the distribution of spot anomalies fall roughly along northeast trends.

The silver soil geochemistry map shows a broad northwest trending anomaly approximately 400 metres wide across the south part of the grid. A core of moderately to strongly anomalous values 700 metres long and 50 to 200 metres wide is centred at station 4400E, 2450N. The broad anomaly contour has several northeast trending branches which suggest that the high values may be caused by intersecting mineralized veins or vein systems which trend northeast and northwest. Silver values on the north part of the grid are generally low. There is very poor correlation between gold and silver anomalies.

Contoured zinc geochemical anomalies also have northeast and northwest trending branches which correlate moderately well with silver anomalies, but poorly with high gold values. There are three main areas of moderately to strongly anomalous zinc. Centered at 4300E, 2400N an 800 metre by 50 to 200 metre wide zone coincides well with a northwest trending silver anomaly. At 3200E, 2200N a northwest-trending zone is 400 metres long by 50 to 100 metres wide. Centered at 5200E, 2600N several scattered high zinc values partially coincide with a northeast trending silver anomaly.

Brief, preliminary prospecting of some gold geochemical anomalies on the north grid on WH-1 claim did not reveal any significant mineralization, although several of the sites were predominantly overburden covered. The original gold-silver discovery (L160-R4) is located near grid station 3800E, 3350N which gave a moderately anomalous silver value of 1.2 ppm and weakly anomalous zinc, but gold values in that area are all low.

GEOCHEMISTRY Continued

	Table 2		RECONNAISS	SANCE SAM	PLE RESULTS			
	Sample No.	Au (ppb)	Au (oz/ton)	Ag (ppm)	Ag (oz/ton)	Cu (ppm)	Pb (ppm)	Zn (ppm)
A.	<u>ROCK</u> : 1988 sa	mples excep	t L160.R1-	-R3 and L	167-R1 (1987	7)		
	L160-R1	12		13.3				
	-R2	9		8.2				
	-R3	16		12.1				
	-R4	15,900	0.464	1100.9	32.1			
	-R4A	5,760	0.168	365.5	10.7			
	-R4B	46		1.4				
	-R5	21		11.1				
	-R6	23		3.2				
	-R7	121		8.3				
	-R7A	21		3.1				
	-R8	2		0.6				
	-R9	3		0.1				
	-R10	46		4.9				
	-R11	25		0.1				
	-R12	4		0.2				
	-R13	1		0.1				
	-R14	12		3.2				
	-R15	1		0.1				
	-R16	. 6		1.1				
	-R17	1		0.1				
	-R18	1		5.1				
	L167-R1	4		7.7				
	WH-R1	22		2.1				
	WH-R2	2		1.7				
В.	SOIL: 1988 Sam	ples						
	L160-S1	1		0.6		20	12	87
	WH-S1	24		4.1		50	163	230
c.	STREAM SEDIMEN		ples excep		to 170-2 ir			
	L158-2	3		0.4		14	9	137
	L159-1	1		2.3		36	77	923
	L160-1	7		3.5		56	145	1480
	L167-1	5		2.6		38	32	209
	L168-1	1		0.9		19	26	222
	L169-1	1		0.2		9	28	120
	L170-1	1		0.6		11	16	139
	L170-2	2		0.7		15	14	200
	L170-3	2		0.2		25	28	150
	WH-1	1		0.9		39	55	759
	WH-2	1 6		0.7		17	28	173
	WH-3	6		0.9		21	28	227
	WH-4	2		0.2		15	12	81
	WH-5			0.4		21	12	114

6.0

D. Escott, Sampler

PERSONNEL

							
J.	D. Rowe, Geol	ogist	Oct.	13,14,15,16 20,22,25,26,27 18,	1	day	sampling prospecting report preparation
						•	
Ε.	A. Balon, Pro	spector	Oct.	13,14,15 20,22,25,26,27 18, Oct. 16			-
G.	Harris, Geolo	gist	Sept.	14	1	day	sampling
М.	Muscat, Sampl	er	Sept.	14,15	2	days	sampling
c.	J. Tanner, Sa	mpler	Sept.	14	1	day	sampling

Days Worked - 1988:

Sept. 14 1 day sampling

7.0 STATEMENT OF EXPENDITURES

WH PROPERTY

S	WH #1 (20 Units) Sep 2 - Oct.10, 1988			nits) L, 1989
SALARIES & BENEFITS:			 	
-E.A.Balon 4 days -G.Harris 1 day		\$1,728.57	10 days \$1,871.05 5.5 days 690.76	\$2,561.81
GEOCHEMICAL ANALYSIS		4,429.00		4,400.75
FREIGHT		75.25		
LIABILITY INSURANCE	••••	38.89		32.77
TOTAL EXPEN	DITURES:	\$6,271.71		\$6,995.33

It Rowe

* * * *

8.0

BIBLIOGRAPHY

1947: RICE, H.M.A.:

Geol. Surv. of Canada Memoir 243, Geology and Mineral Deposits of

Princeton Map-Area, British Columbia

<u>1981</u>: B.C.M.M., Annual Report: p.205

1984: KRUECKL, G.P.:

Report on the Disko 2 & 3 Claims for De La Mothe Exploration Services.

1984: ASSESSMENT REPORT 12790:

Thomas P.

Geological Report on Disko 2 & Disko 3, Kathleen Mountain.

1985: B.C.M.M. Annual Report: p. C189

1985: ASSESSMENT REPORT 14556:

Weymark, W.J.

Diamond Drilling Assessment Report: Kathleen Mineral Claims Group.

1986: LIVGARD, E:

Report on the Kathleen Mountain Mineral Property for Transglobe

Resources Ltd.

CORDILLERAN ENGINEERING LTD.

1980 GUINNESS TOWER, 1055 WEST HASTINGS STREET, VANCOUVER, B.C. V6E 2E9 TEL: (604) 681-8381

9.0 STATEMENT OF QUALIFICATIONS

I, Jeffrey D. Rowe, of North Vancouver, British Columbia hereby certify that:

- 1. I am a geologist residing at 2596 Carnation Street, and employed by Cordilleran Engineering Ltd, of 1980 1055 West Hastings Street, Vancouver, British Columbia V6E 2E9.
- 2. I have received a B.Sc. degree in Honours Geology from the University of British Columbia, Vancouver, B.C. in 1975.
- 3. I have practiced my profession for fifteen years in British Columbia, Yukon and Quebec.
- 4. I am the author of this report and supervisor of the field work conducted on the WH claims during the period September 13 to October 27, 1988.

CORDILLERAN ENGINEERING LTD.

Jeffrey D. Rowe, B.Sc., Geologist

Rowe

JDR/z February, 1989 Vancouver, B.C. ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: AUG 20 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: $\frac{24}{88}$.

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 ROCK P2 SOIL/STREAM SED AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

ASSAYER: D. TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS 2 4.

SAMPLE#	Cu	Ag	Au*
	PPM	PPM	PPB

			/
L160-R4		1100.9	15900
L160-R5	-	11.1	21
L160-R6	-	3.2	23
L160-R7		8.3	121
L160-R8		. 6	2

L160-S1 1 20 12 87 .6 16 6 328 2.55 2 5 ND 3 38 1 2 2 49 .39 .034 14 25 .45 190 .08 3 2.09 .02 .08 1 1

ACME ANALYTICAL LABORATORIES LTD.

BATE RECEIVED: SEP 7 1988
852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED: 17./98.

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

ASSAYER: . C. D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT PROSPECTING #18 FILE # 88-4297

Ag	Au*
PPM	PPB
,	
365.5	5760
1.4	46
3.1	21
. 1	3
4.9	46
. 1	25
. 2	4
. 1	1
	PPM 365.5 1.4 3.1 .1 4.9 .1

ASSAY REQUIRED FOR CORRECT RESUL" -

CORDILLERAN E	ENGINEERING	PROJECT	PROSPECTING	#19	FILE #	88-4339	Page	2

) constant

SAMPLE#	Ag PPM	Au* PPB	SEFT 1 4.1 c.
L160-R14 L160-R15	3.2	12 1	CC 3WS

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: SEP 19 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED: SEP 19 1988

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P15 SOIL P16 STREAM SED.

AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. P - Pulverized.

CORDILLERAN ENGINEERING PROJECT PROSPECTING (WH PRO) FILE # 88-4600 Page 1

SAMPLE#	Zn PPM	Ag PPM	Au* PPB
WH 3000E 5000N WH 3000E 4950N WH 3000E 4900N WH 3000E 4850N WH 3000E 4800N	42 70 50 44 35	.1 .1 .1 .1	1 3 4 2 1
WH 3000E 4750N WH 3000E 4700N WH 3000E 4650N WH 3000E 4600N WH 3000E 4550N	40 72 91 69 64	.1 .2 .1 .2	4 3 1 1 2
WH 3000E 4500N WH 3000E 4450N WH 3000E 4400N WH 3000E 4350N WH 3000E 4300N	47 49 34 49 35	.1 .1 .1 .1	1 2 3 1 2
WH 3000E 4250N WH 3000E 4200N WH 3000E 4150N WH 3000E 4100N WH 3000E 4050N	50 53 64 101 59	.2 .2 .1 .3	1 1 1 4 1
WH 3000E 4000N WH 3000E 3950N WH 3000E 3900N WH 3000E 3850N WH 3000E 3800N	51 59 74 78 53	.1 .1 .1 .1	2 1 1 1 3
WH 3000E 3750N WH 3000E 3700N WH 3000E 3650N WH 3000E 3600N WH 3000E 3550N	60 61 56 84 78	.1 .1 .1 .2	1 1 2 4 1
WH 3000E 3500N WH 3000E 3450N WH 3000E 3400N WH 3000E 3375N WH 3000E 3350N	55 73 109 139 85	.1 .3 .2 .3	2 1 2 1 1
WH 3000E 3330N WH 3000E 3250N STD C/AU-S	130 201 132	.3 .7 6.6	1 1 50

SAMPLE#	Zn PPM	Ag PPM	Au* PPB
WH 3000E 3200N WH 3000E 3150N WH 3000E 3100N WH 3000E 3050N WH 3000E 3000N	110 212 248 262 123	.2 .2 .6 .6	3 1 1 3 1
WH 3200E 5000N WH 3200E 4950N WH 3200E 4900N WH 3200E 4850N WH 3200E 4800N	32 29 49 75 104	.1 .1 .1 .1	6 1 5 1 28
WH 3200E 4750N WH 3200E 4700N WH 3200E 4650N WH 3200E 4600N WH 3200E 4550N	36 29 39 33 40	.1 .1 .1 .1	2 1 5 4 4
WH 3200E 4500N WH 3200E 4450N WH 3200E 4400N WH 3200E 4350N WH 3200E 4300N	38 38 64 98 76	.1 .1 .1 .1	2 1 2 1 5
WH 3200E 4250N WH 3200E 4200N WH 3200E 4150N WH 3200E 4100N WH 3200E 4050N	87 93 93 84 105	.2 .1 .1 .1	3 1 1 1 1
WH 3200E 4000N WH 3200E 3950N WH 3200E 3900N WH 3200E 3850N WH 3200E 3800N	112 112 35 44 46	.1 .1 .1 .2	2 1 3 1
WH 3200E 3750N WH 3200E 3700N WH 3200E 3650N WH 3200E 3600N WH 3200E 3550N	36 62 36 41 106	.1 .1 .1 .2 .2	4 1 4 2 1
WH 3200E 3500N STD C/AU-S	128 132	.4 6.8	4 48

SAMPLE#	Zn PPM	Ag PPM	Au* PPB
WH 3200E 3450N WH 3200E 3400N WH 3200E 3350N WH 3200E 3300N WH 3200E 3250N	73 113 304 78 96	.1 .2 .6 .1	1 1 1 1
WH 3200E 3200N WH 3200E 3150N WH 3200E 3100N WH 3200E 3050N WH 3400E 5000N	108 86 132 68 53	.3 .3 .2 .2	13 1 1 1 1
WH 3400E 4950N WH 3400E 4900N WH 3400E 4850N WH 3400E 4800N WH 3400E 4750N	40 55 70 36 30	.1 .2 .2 .1	1 1 1 1
WH 3400E 4700N WH 3400E 4650N WH 3400E 4600N WH 3400E 4550N WH 3400E 4500N	38 24 39 34 46	.1 .1 .2 .1	1 3 1 1
WH 3400E 4450N WH 3400E 4400N WH 3400E 4350N WH 3400E 4300N WH 3400E 4250N	60 45 28 42 50	.1 .1 .2 .1	1 1 1 2 1
WH 3400E 4200N WH 3400E 4150N WH 3400E 4100N WH 3400E 4050N WH 3400E 4000N	48 58 52 56 64	.2 .1 .2 .3	1 3 1 1 3
WH 3400E 3950N WH 3400E 3900N WH 3400E 3850N WH 3400E 3800N WH 3400E 3750N	61 79 74 39 48	.1 .2 .1 .1	1 1 1 5 1
WH 3400E 3700N STD C/AU-S	69 132	.4 7.2	1 53

SAMPLE#	Zn PPM	Ag PPM	Au* PPB
WH 3400E 3600N WH 3400E 3550N WH 3400E 3500N WH 3400E 3450N WH 3400E 3400N	134 304 118 1008 98	.1 .3 .2 1.0	19 1 1 1
WH 3400E 3350N WH 3400E 3300N WH 3400E 3250N WH 3400E 3200N WH 3400E 3150N	287 144 118 104 119	.3 .1 .1 .3	1 1 11 1
WH 3400E 3100N WH 3400E 3050N WH 3400E 3000N WH 3600E 5000N WH 3600E 4950N	219 674 169 29 45	.4 .6 .6 .1	1 1 1 1 2
WH 3600E 4900N WH 3600E 4850N WH 3600E 4800N WH 3600E 4750N WH 3600E 4700N	44 40 46 45 37	.1 .1 .1 .1	1 1 1 1
WH 3600E 4650N WH 3600E 4600N WH 3600E 4550N WH 3600E 4500N WH 3600E 4450N	34 34 39 36 66	.1 .1 .1 .1	1 2 1 1 2
WH 3600E 4400N WH 3600E 4350N WH 3600E 4300N WH 3600E 4250N WH 3600E 4200N	47 53 45 54 34	.1 .1 .1 .1	1 1 1 3 18
WH 3600E 4150N WH 3600E 4100N WH 3600E 4050N WH 3600E 4000N WH 3600E 3950N	33 34 40 92 71	.1 .1 .1 .1	1 1 1 1
WH 3600E 3900N STD C/AU-S	148 132	.6 6.8	22 47

SAMPLE#	Zn PPM	Ag PPM	Au* PPB
WH 3600E 3850N WH 3600E 3800N WH 3600E 3750N WH 3600E 3650N WH 3600E 3600N	58 72 108 50 97	.3 .2 .1 .2	3 1 1 2 2
WH 3600E 3550N WH 3600E 3500N WH 3600E 3450N WH 3600E 3400N WH 3600E 3350N	71 100 103 105 34	.2 .6 .7 .3 2.4	1 3 1 2 1
WH 3600E 3300N WH 3600E 3250N WH 3600E 3200N WH 3600E 3150N WH 3600E 3100N	131 152 115 350 362	.6 .7 1.0 1.6 1.9	1 3 1 1 6
WH 3600E 3000N WH 3800E 5000N WH 3800E 4950N WH 3800E 4900N WH 3800E 4850N	222 40 69 40 29	.7 .2 .1 .1	4 1 1 1
WH 3800E 4800N WH 3800E 4750N WH 3800E 4700N WH 3800E 4650N WH 3800E 4600N	25 40 42 43 50	.1 .1 .1 .1	1 2 2 2 4
WH 3800E 4550N WH 3800E 4500N WH 3800E 4450N WH 3800E 4400N WH 3800E 4350N	64 88 58 73 57	.1 .2 .2 .1	1 1 1 2 1
WH 3800E 4300N WH 3800E 4250N WH 3800E 4200N WH 3800E 4150N WH 3800E 4100N	66 40 54 52 50	.1 .1 .2 .3	1 1 4 6 1
WH 3800E 4050N STD C/AU-S	64 132	.1 6.8	1 53

SAMPLE#	Zn PPM	Ag PPM	Au* PPB
WH 3800E 4000N WH 3800E 3950N WH 3800E 3900N WH 3800E 3850N WH 3800E 3625N	129 53 43 37 42	.1 .1 .1 .2	1 1 1 1 1
WH 3800E 3600N WH 3800E 3550N WH 3800E 3500N WH 3800E 3450N WH 3800E 3400N	41 62 137 162 165	.2 .3 .5 .5	4 1 2 1 1
WH 3800E 3350N WH 3800E 3300N WH 3800E 3250N WH 3800E 3200N WH 3800E 3150N	421 134 116 157 106	1.2 .3 .5 .8	3 1 2 1 3
WH 3800E 3100N WH 3800E 3050N WH 3800E 3000N WH 4000E 5000N WH 4000E 4950N	94 116 154 38 33	.2 .3 .4 .1	1 1 1 1
WH 4000E 4900N WH 4000E 4850N WH 4000E 4800N WH 4000E 4750N WH 4000E 4700N	41 47 56 102 58	.1 .1 .2 .3	1 1 2 1 1
WH 4000E 4650N WH 4000E 4600N WH 4000E 4550N WH 4000E 4500N WH 4000E 4450N	67 43 78 72 65	.1 .1 .1 .1	1 1 1 1
WH 4000E 4400N WH 4000E 4350N WH 4000E 4300N WH 4000E 4250N WH 4000E 4200N	48 33 43 49 41	.1 .1 .1 .1	1 1 1 1 3
WH 4000E 4150N STD C/AU-S	65 132	.1 7.0	1 48

SAMPLE#	Zn PPM	Ag PPM	Au* PPB
WH 4000E 4100N WH 4000E 4050N WH 4000E 3950N WH 4000E 3700N WH 4000E 3650N	105 135 86 42 47	.1 .3 .8 .2 .1	1 1 9 1 1
WH 4000E 3600N WH 4000E 3550N WH 4000E 3500N WH 4000E 3450N WH 4000E 3400N	45 41 34 89 98	.2 .1 .1 .3	1 32 1 1
WH 4000E 3350N WH 4000E 3300N WH 4000E 3250N WH 4000E 3200N WH 4000E 3150N	202 172 151 177 368	.7 .4 .3 .5	1 1 4 1 4
WH 4000E 3100N WH 4000E 3050N WH 4000E 3000N WH 4200E 5000N WH 4200E 4950N	319 398 283 50 50	.6 1.0 1.2 .2	1 14 1 1
WH 4200E 4900N WH 4200E 4850N WH 4200E 4800N WH 4200E 4750N WH 4200E 4700N	34 40 56 84 65	.1 .1 .1 .2	2 1 1 1 1
WH 4200E 4650N WH 4200E 4600N WH 4200E 4550N WH 4200E 4500N WH 4200E 4450N	37 39 61 42 29	.1 .2 .1 .1	1 2 1 1 3
WH 4200E 4400N WH 4200E 4350N WH 4200E 4300N WH 4200E 4250N WH 4200E 4200N	46 54 53 56 47	.1 .2 .1 .1	1 1 5 1
WH 4200E 4150N WH 4200E 4100N STD C/AU-S	96 81 132	.1 .3 7.0	1 1 51

	CORDILLERAN	ENGINEERING	PROJECT	PROSE	ECTING	(WH PRO) FILE	# 88-4600	Page 8
1		SA	MPLE#		Zn PPM	Ag PPM	Au* PPB		
		WH	4200E	4050N	97	. 1	10		
			4200E		54	. 1	1		
			4200E		86	. 1	_ 1		
4.5			4200E		123	. 2	1		
		WH	4200E	3700N	108	. 1	4		
# #			4200E		74	. 1	1		
_			4200E		222	. 1	1		
			4200E		119	.3	2		
			4200E		212	. 1	1		
		WH	4200E	3400N	81	. 1	1		
O			4000=		50		-		
U			4200E		60	.1	1		
			4200E		67	. 1	1		
П			4200E		120	. 1	. 1		
			4200E		456	. 8	1 2		
		WH	4200E	3120N	240	.3	2		
6		WH	4200E	3100N	507	. 6	1		
			4200E		261	.2	1		
			4200E		265	.5	1		
and the same			4300E		60	.1	1		
			4300E		44	.1	1		
U	,)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10001	1,001	• •	• •	-		
		WH	4300E	4650N	43	. 1	2		
0			4300E		45	. 8	1		
U			4300E		56	. 1	1	9	
			4300E 4		48	. 1	1		
		WH	4350E	4100N	55	. 1	2		
		WH	4350E 4	4050N	122	. 1	1		
		WH	4350E	4000N	70	. 1	1		
			4350E		25	. 1	1		
			4350E		29	. 1	6		
		WH	4350E	3850N	30	. 1	1		
									. •
U			4350E		26	. 1	1		
			4400E 5		75	. 1	1		
			4400E		34	. 1	1		
U			4400E 4		47	. 1	1		
_		WH	4400E	4850N	38	. 1	12		

WH 4400E 4800N STD C/AU-S 42 .1 132 6.9

SAMPLE#		Zn PP M	Ag PPM	Au* PPB
WH 4400E WH 4400E WH 4400E WH 4400E	4750N 4500N 4450N 4400N 4350N	55 52 38 62 29	.1 .1 .1 .1	3 4 1 6 1
WH 4400E WH 4400E WH 4400E WH 4400E	4300N 4250N 4200N 4150N 3750N	23 37 48 34 42	.2 .1 .1 .1	1 1 1 1
WH 4400E WH 4400E WH 4400E WH 4400E	3700N 3650N 3600N 3550N 3500N	27 238 207 302 203	.1 .4 .3 .2	1 2 1 1
WH 4400E WH 4400E WH 4400E WH 4400E	3450N 3400N 3350N 3300N 3250N	661 311 315 276 169	1.3 .3 .2 .2	1 1 1 1 3
WH 4400E WH 4400E WH 4400E WH 4400E	3200N 3150N 3100N 3050N 3000N	339 237 280 235 454	.4 .2 .3 .1	1 1 1 1
WH 4600E WH 4600E WH 4600E WH 4600E	4250N 4200N 4150N 4100N 4050N	60 52 54 53 126	.1 .2 .1 .1	3 1 2 1 1
WH 4600E WH 4600E WH 4600E	4000N 3950N 3900N 3850N 3800N	89 141 64 66 71	.1 .1 .1 .1	1 1 1 1
WH 4600E STD C/AU-		76 132	.1 6.8	1 51

SAMPLE#	Zn PPM	Ag PPM	Au* PPB
WH 4600E 3700N WH 4600E 3650N WH 4600E 3600N WH 4600E 3550N WH 4600E 3500N	88 129 341 116 138	.1 .1 .1 .1	2 1 1 5 1
WH 4600E 3450N WH 4600E 3400N WH 4600E 3350N WH 4600E 3300N WH 4600E 3250N	95 272 108 128 120	.1 .3 .2 .2 .3	1 1 12 1 1
WH 4600E 3200N WH 4600E 3150N WH 4600E 3100N WH 4600E 3050N WH 4600E 3000N	366 157 150 149 192	.6 .3 .2 .1	345 1 1 1 1
WH 4800E 5000N WH 4800E 4950N WH 4800E 4300N WH 4800E 4250N WH 4800E 4200N	33 38 66 36 35	.1 .1 .1 .1	1 2 1 1 3
WH 4800E 4150N WH 4800E 4100N WH 4800E 4050N WH 4800E 4000N WH 4800E 3950N	42 86 63 71 38	.1 .1 .1 .1	1 1 1 1 5
WH 4800E 3900N WH 4800E 3850N WH 4800E 3800N WH 4800E 3750N WH 4800E 3700N	49 51 111 77 88	.1 .1 .1 .1	1 1 1 1
WH 4800E 3650N WH 4800E 3600N WH 4800E 3550N WH 4800E 3500N WH 4800E 3450N	63 121 218 322 333	.1 .1 .1 .4	1 1 1 2
WH 4800E 3400N STD C/AU-S	220 132	.1 7.4	1 52

SAMPLE#	Zn PPM	Ag PPM	Au* PPB
WH 4800E 3350N WH 4800E 3300N WH 4800E 3250N WH 4800E 3200N WH 4800E 3150N	274 237 504 385 250	.1 .2 .3 .2 .3	1 1 1 1 1
WH 4800E 3100N WH 4800E 3050N WH 4800E 3000N WH 5000E 5000N WH 5000E 4950N	146 238 188 50 32	.1 .1 .1 .1	1 2 1 1
WH 5000E 4900N WH 5000E 4850N WH 5000E 4800N WH 5000E 4750N WH 5000E 4100N	59 82 51 41 129	.1 .2 .1 .1	2 1 1 1
WH 5000E 4050N WH 5000E 4000N WH 5000E 3950N WH 5000E 3900N WH 5000E 3850N	107 52 119 160 628	.1 .1 .1 .1	2 1 1 1 2
WH 5000E 3800N WH 5000E 3750N WH 5000E 3700N WH 5000E 3650N WH 5000E 3600N	197 615 771 306 257	.1 .1 .1 .1	1 1 1 36 1
WH 5000E 3550N WH 5000E 3500N WH 5000E 3450N WH 5000E 3400N WH 5000E 3350N	178 398 243 130 136	.1 .2 .4 .2	3 1 1 1
WH 5000E 3300N WH 5000E 3250N WH 5000E 3200N WH 5000E 3150N WH 5000E 3100N	275 274 272 276 266	.3 .2 .2 .1	2 1 1 2 1
WH 5000E 3050N STD C/AU-S	474 132	.5 7.1	1 47

	SA	MPLE#		Zn PP M	Ag PPM	Au* PPB
	WH	5000E	3000N	254	. 1	1
	WH	5200E	5000N	74	. 1	285
	WH		4950N	57	. 1	1
	WH			59	. 1	1
	WH		4850N	65	. 1	1
	WH	5200E	4800N	87	. 1	5
	WH		4750N	54	. 1	1
	WH		4700N	38	. 1	4
	WH		4650N	44	. 1	1
٠.	WH		4625N	73	. 1	1
Α	WH	5200E	4100N	91	. 1	1
	WH	5200E	4050N	75	. 1	1
	WH	5200E	4000N	89	. 2	1
	WH		3950N	70	.1	1
	WH		3900N	86	. 1	1
	WH	5200E	3850N	104	. 1	1
	WH	5200E	3800N	153	. 1	8
	WH	5200E	3750N	244	.2	1
	WH	5200E	3700N	136	. 1	1
	WH		3650N	121	. 2	1
	WH	5200E	3550N	327	. 1	1
	WH	5200E	3500N	116	. 1	1
	WH	5200E	3450N	133	. 1	4
	WH	5200E	3400N	107	. 1	1
	WH	5200E	3350N	115	. 1	1
	WH	5200E	3300N	112	. 1	1
	WH	5200E	3250N	148	. 1	1
	WH	5200E	3200N	281	. 2	1
	WH	5200E	3150N	105	. 1	1
		5200E		159	. 1	1
	WH	5200E	3050N	416	. 2	1
	WH	5400E	3000N	512	.3	2
	WH		5000N	90	. 1	1
		5400E		51	. 1	3
			4900N	60	. 1	1
	WH	5400E	4850N	77	.1	1
	STI	C/AU-	-s	132	7.1	49

SAMPLE#	Zn PPM	Ag PPM	Au* PPB
WH 5400E 4800N WH 5400E 4750N WH 5400E 4700N WH 5400E 4650N WH 5400E 4600N	164 107 116 69 42	.1 .2 .1 .1	1 2 1 1
WH 5400E 4550N WH 5400E 4500N WH 5400E 4450N WH 5400E 4400N WH 5400E 4350N	69 60 52 41 43	.2 .1 .2 .1	1 1 1 1 1
WH 5400E 4300N WH 5400E 4250N WH 5400E 4200N WH 5400E 4150N WH 5400E 4100N	32 39 50 56 26	.1 .1 .2 .1	1 2 1 1 2
WH 5400E 4050N WH 5400E 4000N WH 5400E 3950N WH 5400E 3900N WH 5400E 3850N	62 62 109 74 196	.1 .1 .1 .2	1 1 2 1
WH 5400E 3800N WH 5400E 3750N WH 5400E 3700N WH 5400E 3650N WH 5400E 3600N	217 107 191 371 251	.1 .1 .1 .1	1 1 1 2 1
WH 5400E 3550N WH 5400E 3500N WH 5400E 3450N WH 5400E 3400N WH 5400E 3350N	149 479 237 334 143	.1 .6 .3 .2	1 1 1 2 1
WH 5400E 3300N WH 5400E 3250N WH 5400E 3200N WH 5400E 3150N WH 5400E 3100N	365 209 311 381 245	.3 .1 .1 .1	1 1 1 2
WH 5400E 3050N STD C/AU-S	198 132	7.1	1 48

SAMP	LE#	Zn PPM	Ag PPM	Au* PPB
WH 56 WH 56 WH 56	400E 3000N 600E 5000N 600E 4950N 600E 4900N 600E 4850N	76 89 88	.2 .1 .1 .1	6 2 1 4 1
WH 56 WH 56 WH 56	500E 4800N 600E 4750N 600E 4700N 600E 4650N 600E 4600N	27 68	.1 .1 .1 .1	5 2 3 1 1
WH 56 WH 56	600E 4550N 600E 4500N 600E 4450N 500E 4400N 600E 4350N	49 101 79	.1 .1 .1 .1	1 2 1 2 1
WH 56 WH 56 WH 56	500E 4300N 600E 4250N 500E 4200N 600E 4150N 500E 4100N	P 264 P 299 435 P 188 P 514	.1 .3 .5 .2	1 1 1 1 2
WH 56 WH 56 WH 56	600E 4050N 500E 4000N 600E 3950N 500E 3900N 600E 3850N	139	.6 .4 .1 .1	2 1 2 1 1
WH 56 WH 56 WH 56	500E 3800N 600E 3750N 500E 3700N 600E 3650N 500E 3600N	70 112 101 95 117	.1 .1 .1 .1	1 1 3 4 2
WH 56 WH 56 WH 56	500E 3550N 500E 3500N 500E 3450N 500E 3400N 500E 3350N	740 618 379	.1 .5 .3 .3	1 1 1 3 2
	500E 3300N C/AU-S	209 132	.1 6.9	1 53

CORDILLERAN	EN	IGII	NEER	ING	PROJEC'	r PROSPI	ECTING	(WH PRO) FILE	# 88-4	1600	Page 1	15
				SA	MPLE#		Zn PPM	Ag PPM	Au* PPB				
					5600E		198 447	. 2	1				
				WH	5600E 5600E	3150N	157 183	.1	2				

144

132

. 1

. 2

6.8

3

1

WH 5600E 3050N

WH 5600E 3000N

STD C

CME TYTIC LABOR TORIES TO. 852 HASTINGS ST. VANCOUVER B.C. V6A TAG PRONE(6037253-5158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LINITED FOR MA K AND AL. AU DETECTION LINIT BY ICP IS 3 PPM.

- SAMPLE TYPE: STREAM SED

AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: SEP 19 1988 DATE REPORT MAILED: Sept 23/88 ASSAYER. ... D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT PROSPECTING (WH PRO) File # 88-4600 Page 16

WH-1 5 39 55 759 .9 13 10 9066 4.74 4 8 ND 4 454 2 2 2 43 1.60 .120 100 16 .30 1213 .03 2 2.38 .01 .14 1 1 WH-2 1 17 28 173 .7 8 5 633 2.29 3 8 ND 7 121 1 2 2 33 .61 .053 56 13 .33 339 .04 2 1.83 .02 .11 1 1

(

(

(

6

(

(. . . .

C

. .

(

A ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. COUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (60)3-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: P1 SOIL/S.S. P2 ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

CORDILLERAN ENGINEERING PROJECT PROSPECTING #22 File # 88-4760 Page 1

Cu Pb In Ag Ni Co Mn Fe As U Au Th Sr Cd Sb

Bi V Ca

P La Cr Mg Ba

Ti B

≠ - √ SAMPLE#

:)

(

.)

,)

7)

			i de la companya de				
ACDULT LEDAN	アメノイエンドアカインバ	$DD \cap TD \cap DD$	- DDACDBAMTNA #1	ຸກາ	TTT T #	00-1760	מסים כו
CORDITIONRAN	CNGTMCCKTMG	PRUDELT	PROSPECTING #3	~	C T T D C ++	00-4/00	raue z

İ

D

SAMPLE#	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Fe %	Au* PPB	
WH-R1		_	<u></u>	2.1		22	OCT 03.
WH-R2	_	-	_	1.7		2	CC 75.16

ACME ANALYTICAL LABORATORIES LTD.

DATE RECEIVED:

OCT 24 1988

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

Oct 28/88

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: P1-P2 SOIL P3 STREAM SED P4 ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SIGNED BY D. TOYE, C. LEONG, B. CHAN, J. WANG; CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT PROSPECTING #27 FILE # 88-5372 Page 1

SAI	MPLE#			AU* ppb
WH	3150E 3150E 3150E	4850N 4825N 4800N 4775N 4750N		2 1 1 1 2
WH WH	3200E 3200E 3200E 3250E 3250E	4775N		1 1 2 1 1
WH WH WH	3250E 3250E 3250E 4550E 4550E	3775N 3750N 3250N		2 1 1 1 2
WH	4550E 4550E 4550E 4600E 4600E			1 1 1 1 2
WH			P	1 2 1 1 2
WH WH WH	4650E	3175N 3150N 3700N		1 1 1 2 1
WH WH WH	4950E 4950E 5000E 5000E	3600N 3675N 3625N		1 1 1 2 1
WH	5050E	3700N		1

SAI	MPLE#		AU* ppb
WH WH WH	5050E 5050E 5050E	3675N 3650N 3625N 3600N 5050N	3 1 2 1 1
WH WH WH	5150E 5150E 5150E 5150E 5200E	5000N 4975N	1 1 1 1
WH WH	5200E	5000N	1 1 19 3 1
WH WH WH		4975N	1 1 1 1

SAMPLE#	Cu	Pb	Zn	Ag	Au*
	PPM P	PM	PPM	PPM	PPB
WH-4	15	12	81	. 2	2
WH-5	21	12	114	. 4	2

SAMPLE#	Ag PPM	Au* PPB	(20g)	
L160-R16 L160-R17	1.1	6 1		NOV 0 1 88
L160-R18	5.1	1		

NOV 1 6 88

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: Soil -80 Mesh AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SIGNED BY D. TOYE, C. LEONG, B. CHAN, J. WANG; CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT PROSPECTING #28 FILE # 88-5721 Page 1

SA	MPLE#		AU*
WH WH WH	3150E 3150E 3150E	3250N 3225N 3200N 3175N	1 1 1
WH	3150E	3150N	11
WH WH	3200E 3250E 3250E	3225N 3175N 3250N 3225N 3200N	6 1 1 1 3
WH WH WH	3250E 3300E	3250N 3225N	1 1 1 73 1
WH WH		3150N 3650N 3625N	1 1 1 1
WH WH WH	3350E 3350E 3350E 3350E 3350E	3550N 3300N 3275N	1 1 1 1
WH WH WH	3350E 3350E 3395E 3400E 3400E	3200N 3625N 3575N	7 1 1 1
WH WH WH	3400E 3450E 3450E 3450E 3450E	3650N 3625N 3600N	1 1 3 1 1
HW	3450E	3550N	1

SA	MPLE#		AU*
WH WH WH	3450E 3450E 3450E	3300N 3275N 3250N 3225N 3200N	2 1 1 1 2
WH WH	3550E 3550E 3550E	4250N 4225N 4200N 4175N 4150N	1 2 1 3 1
WH WH	3550E 3550E 3550E	3950N 3925N 3900N 3875N 3850N	2 1 1 4 4
WH WH	3600E 3600E	4175N	1 1 1 1
WH	3650E 3650E 3650E		4 1 5 2 1
WH WH WH	3650E 3650E 3650E 3950E	3900N 3875N 4000N	11 17 2 3 1
WH WH WH	3950E 3950E 3950E 3950E 3950E	3925N 3900N	1 3 1 6 2
WH	3950E	3550N	1

SA	MPLE#		AU*
		3525N	3
WH	3950E	3500N	6
WH	4000E	3975N	7
WH	4000E	3575N	1
WH	4000E	3525N	4
WH	4050E	4000N	2
WH	4050E	3975N	260
		3950N	12
WH	4050E	3600N	2
WH	4050E	3575N	3
WH	4050E	3550N	1
WH	4050E	3525N	2
WH	4050E	3500N	1
WH			1
WH	4150E	4075N	2
WH	4150E	4050N	1
WH	4150E	4025N	1
WH	4150E	4000N	1
WH	4200E	4075N	1
WH	4200E	4025N	3
WH	4250E	4100N	1
WH	4250E	4075N	2
WH	4250E	4050N	2
WH	4250E	4025N	2
WH	4250E	4000N	2

ACME ANALYTICAL LABORATORIES LTD.

DATE RECEIVED: NOV 8 1988
852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: SOIl -80 Mesh AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SIGNED BY. D. TOYE, C.LEONG, B.CHAN, J.WANG; CERTIFIED B.C. ASSAYERS NOV 17. CORDILLERAN ENGINEERING PROJECT PROSPECTING FILE # 88-5723 Page 1

SAMPLE#		Zn PPM	Ag PPM	Au* PPB
WH3000E WH3000E WH3000E WH3000E	2950N 2900N 2850N 2800N 2750N	507 198 198 268 421	1.3 .1 .1 .1	3 1 6 1 1
WH3000E WH3000E WH3000E WH3000E WH3000E	2700N 2650N 2600N 2550N 2500N	500 377 120 134 120	.3 .1 .1 .1	1 26 2 1
WH3000E WH3000E WH3000E WH3000E WH3000E	2450N 2400N 2350N 2300N 2250N	265 160 855 256 298	.1 .1 .2 .1	1 2 1 1 4
WH3000E WH3000E WH3000E WH3000E WH3000E	2200N 2150N 2100N 2050N 2000N	209 176 236 174 197	.1 .1 .3 .3	1 1 1 1
WH3000E WH3000E WH3000E WH3000E WH3000E	1950N 1900N 1850N 1800N 1750N	260 293 527 414 229	.3 .5 1.8 1.2	2 1 1 5 1
WH3000E WH3000E WH3000E WH3000E WH3000E	1700N 1650N 1600N 1550N 1500N	204 101 139 128 119	.1 .3 .2 .2	1 2 6 12 29
WH3200E	2850N	247 197 143 226 161	.5 .3 .2 .4	3 1 1 1 1
WH3200E STD C/AU		186 132	.3 6.6	1 50

1 7. 88

	SAMPLE#	Zn PPM	Ag PPM	Au* PPB	NOV
	WH3200E 2650N	203	. 2	1	The second second
	WH3200E 2600N	210	. 2	1	
	WH3200E 2550N	156	. 2	2	
	WH3200E 2500N	196	.3	38	
	WH3200E 2300N	238			
	WH3200E 2430N	236	. 2	1	
	WH3200E 2400N	104	4	4	
		184	. 1	1	
	WH3200E 2350N	324	. 4	1 .	
	WH3200E 2300N	408	. 1	1	
	WH3200E 2250N	821	. 1	1	
	WH3200E 2200N	719	. 1	1	
-	WH3200E 2150N	2414	. 5	2	
	WH3200E 2100N	355	.1	1	
	WH3200E 2050N	185	. 2	1	
	WH3200E 2000N	192	. 4	1	
	WH3200E 2000N	179		1	
	WU2500F 1320N	179	. 2	1.	
	WH3200E 1900N	221	. 2	1	
	WH3200E 1850N	183	. 2	1	
	WH3200E 1800N	150	. 3	1	
	WH3200E 1750N	148	.3	_ 1	
	WH3200E 1700N	124	.3	2	
•	WH3200E 1650N	95	. 1	330	
	WH3200E 1600N	153	. 3	10	
	WH3200E 1550N	223	. 1	1	
	WH3200E 1500N	104	. 2	1	
	WH3400E 2950N	127	. 2	9	
			• •		
	WH3400E 2900N	105	. 1	1	
	WH3400E 2850N	107	. 2	1	
	WH3400E 2800N	103	. 1	2	
	WH3400E 2750N	118	. 3	1	
	WH3400E 2700N	125	.3	2	
	1312400H 2650M	011	•	4. G	
	WH3400E 2650N	211	. 3	1	
	WH3400E 2600N	148	. 1	1	•
	WH3400E 2550N	177	. 7	1	
	WH3400E 2500N	195	. 6	1	
	WH3400E 2450N	614	. 5	1	
	WH3400E 2400N	534	.3	1	
	STD C/AU-S				
	DID C/AU-D	132	6.8	49	

SAMPLE#	•	Zn PPM	Ag PPM	Au* PPB	NOV 17.88
WH3400E WH3400E WH3400E WH3400E	2300N 2250N 2200N	571 362 472 1038 367	.1 .5 .3 .6	1 2 1 1 1	
WH3400E WH3400E WH3400E WH3400E	2050N 2000N 1950N	539 411 348 305 578	.7 .4 .1 .2	6 1 1 1	
WH3400E WH3400E WH3400E WH3400E	1800N 1750N	266 117 84 91 176	.3 .2 .1 .3	4 1 37 5 3	
WH3400E WH3400E WH3600E WH3600E WH3600E	1600N 1550N 2950N 2900N 2850N	104 64 220 125 108	.2 .1 .5 .4	5 1 1 1	
WH3600E WH3600E WH3600E WH3600E WH3600E	2800N 2750N 2700N 2650N 2600N	116 201 527 234 313	.1 .2 .7 .3	1 1 2 1 1	
WH3600E WH3600E WH3600E WH3600E	2550N 2500N 2450N 2400N 2350N	325 410 692 269 216	.2 .6 1.8 .3	1 1 1 1	
WH3600E WH3600E	2250N 2200N	280 304 343 393 465	.3 .3 .3 .3	1 2 1 2 4	
WH3600E STD C/AU		432 132	.3 6.6	5 49	

İ

SAMPLE#	Zn PPM	Ag PPM	Au* PPB	NOV 1 7. 88
WH3600E 2000N	378	. 2	1	
WH3600E 1950N	375	. 3	1	
WH3600E 1900N	137	.1	13	
WH3600E 1850N	103	. 2	7	
WH3600E 1800N	90	. 2	46	
WH3600E 1760N	64	. 2	3	
WH3800E 2950N	167	. 4	1	
WH3800E 2900N	391	. 4	1	
WH3800E 2850N	268	.5	1	
WH3800E 2800N	208	1.0	1	
WH3800E 2750N	223	. 3	1	
WH3800E 2730N WH3800E 2700N	299	.8	2	
WH3800E 2650N	230	.5	1	
WH3800E 2600N	503	.5	1	
WH3800E 2550N	172	.5	1	
W113000E 2330N	1/2	• •	1	
WH3800E 2500N	217	.3	1	
WH3800E 2450N	206	.3	3	
WH3800E 2400N	174	.5	1	
WH3800E 2350N	227	. 4	1	
WH3800E 2300N	207	. 4	· . 1	
WH3800E 2250N	240	. 4	1	
WH3800E 2200N	175	.5	1	
WH3800E 2150N	178	.5	1	
WH3800E 2130N WH3800E 2100N	361	.5	3	
WH3800E 2050N	309	.6	2	
WII3000H 2030N	303	. 0	2	
WH3800E 2000N	205	. 4	1	
WH3800E 1950N	157	. 4	9	
WH3800E 1900N	111	.3	4	
WH3800E 1850N	114	.3	19	
WH3800E 1800N	100	. 2	3	
WH3800E 1750N	64	. 4	1	
WH3800E 1650N	106	. 7	5	
WH3800E 1600N	1,28	. 4	13	
WH3800E 1550N	139	. 4	1	
WH3800E 1500N	129	.5	1	
WH4000E 2950N	178	. 7	1	
STD C/AU-S	132	7.1	53	
SID C/AU-B	1 J L	, . L	33	

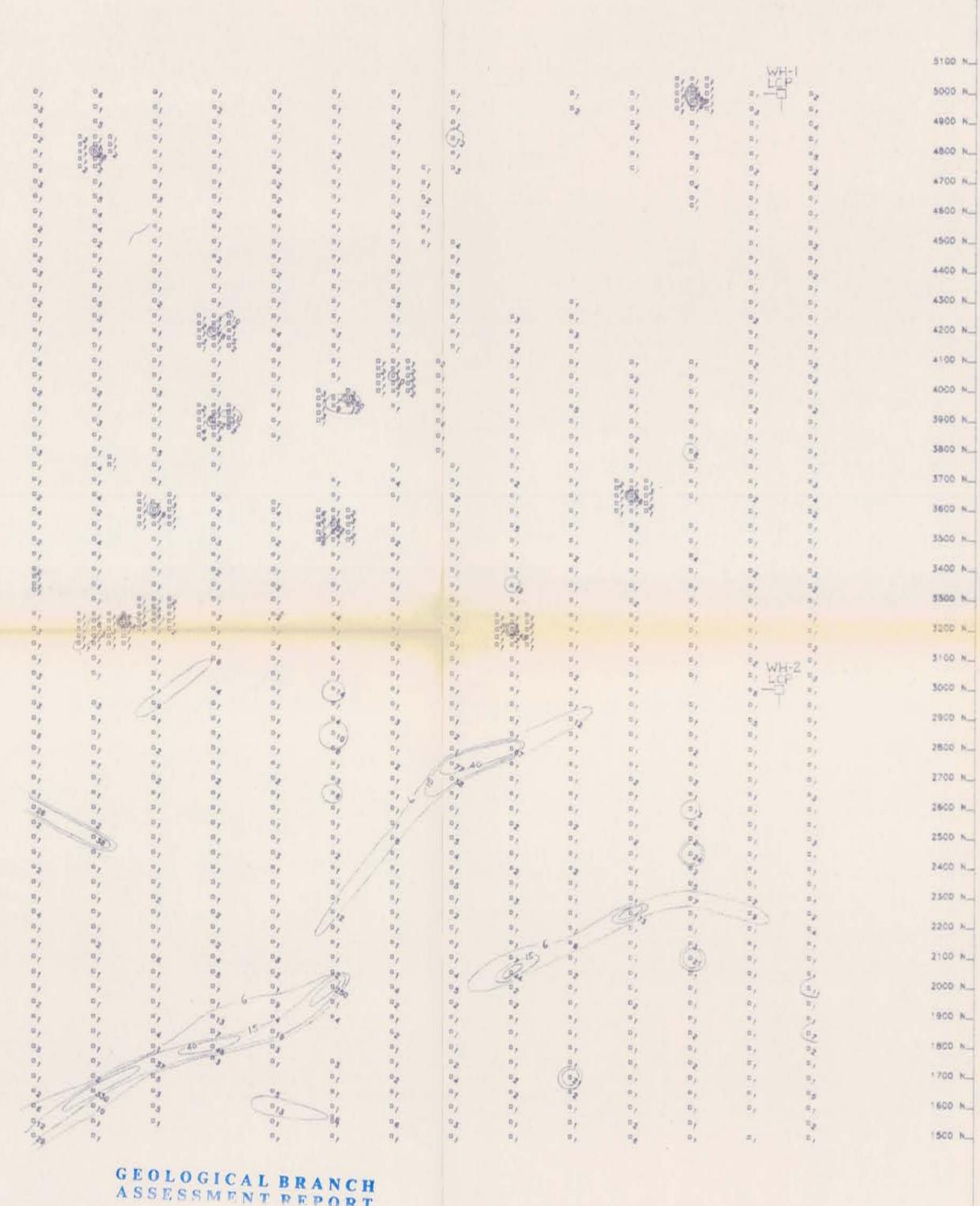
NOV 1 7. 88

SAMPLE#		Zn PPM	Ag PPM	Au* PPB
WH4000E WH4000E WH4000E WH4000E WH4000E	2900N 2850N 2800N 2750N 2700N	368 594 611 263 1717	.6 1.1 2.0 .6 1.2	4 10 6 1 3
WH4000E WH4000E WH4000E WH4000E WH4000E	2650N 2600N 2550N 2500N 2450N	214 384 1090 399 258	1.4 .4 .8 .4	8 1 1 1 2
WH4000E WH4000E WH4000E WH4000E WH4000E	2400N 2350N 2300N 2250N 2200N	335 357 349 247 224	.5 .2 .2 .3 .1	1 1 1 12 1
WH4000E WH4000E WH4000E WH4000E WH4000E	2150N 2100N 2050N 2000N 1950N	241 214 345 169 282	.5 .2 .1 .1	1 1 2 250 1
WH4000E WH4000E WH4000E WH4000E WH4000E	1900N 1750N 1700N 1650N 1600N	139 130 114 44 172	.2 .1 .3 .2	4 3 1 1 1
WH4000E WH4000E WH4000E WH4200E WH4200E	1565N 1550N 1500N 2950N 2900N	232 192 107 189 243	.7 .8 .2 .6	6 1 1 1 3
WH4200E WH4200E WH4200E WH4200E WH4200E	2800N 2750N 2700N	347 484 383 512 524	.6 .7 .4 .5	1 1 2 1 1
WH4200E STD C/AU		714 133	1.3 7.0	1 48

İ

SAMPLE#	Zn PPM	Ag PPM	Au* PPB	NOV 1 7. 88
WH4200E 2550N WH4200E 2500N WH4200E 2450N WH4200E 2400N WH4200E 2350N	307 341 783 390 423	.4 .3 .5 .5	1 8 1 1	
WH4200E 2300N WH4200E 2250N WH4200E 2200N WH4200E 2150N WH4200E 2100N	404 690 716 305 249	.3 .9 .9 .3	1 1 1 1	
WH4200E 2050N WH4200E 2000N WH4200E 1950N WH4200E 1900N WH4200E 1850N	725 199 190 172 110	.7 .2 .1 .3	1 4 2 1 2	
WH4200E 1800N WH4200E 1750N WH4200E 1700N WH4200E 1650N WH4200E 1600N	156 105 138 363 148	.5 .1 .8 4.9 .4	1 1 2 1	
WH4200E 1550N WH4200E 1500N WH4400E 2950N WH4400E 2900N WH4400E 2850N	154 185 197 221 489	.3 .4 .2 .4 1.1	6 1 1 1 2	
WH4400E 2800N WH4400E 2750N WH4400E 2700N WH4400E 2650N WH4400E 2600N	325 331 252 426 279	.9 .6 .3 .5	1 77 38 1 1	
WH4400E 2550N WH4400E 2500N WH4400E 2450N WH4400E 2400N WH4400E 2350N	425 1321 1177 573 2004	1.0 1.8 3.3 1.4 5.4	1 5 4 1 5	
WH4400E 2300N STD C/AU-S	437 132	.6 6.6	1 51	

SAMPLE#	Zn PPM	Ag PPM	Au* PPB	NO	V 17.88
WH4400E 2250N	473	. 3	2		en en en en en en en en en en en en en e
WH4400E 2200N	238	. 3	1		
WH4400E 2150N	252	. 4	1		
WH4400E 2100N	486	. 5			
WH4400E 2050N	1154	3.5	4		
WH4400E 2000N	193	. 4	5		
WH4400E 1950N	230	. 2	2		
WH4400E 1900N	171	.3	1		
WH4400E 1850N	121	. 3	1		
WH4400E 1800N	186	. 1	1		
WH4400E 1750N	212	. 6	2		
WH4400E 1700N	178	.5	4		
WH4400E 1700N WH4400E 1650N	130	.3	1		
WH4400E 1600N	152	.3	1		
WH4400E 1550N	94	. 2	3		
MILET TOOP TOOM	J- 1	. 4	,		
WH4400E 1500N	179	. 4	1		
WH4600E 2950N	193	. 2	1		
WH4600E 2900N	246	.1	1		
WH4600E 2850N	66	.6	1		
WH4600E 2800N	312	. 6	67		
WH4600E 2750N	419	. 4	1		
WH4600E 2700N	445	.2	1		
WH4600E 2650N	269	. 4	1		
WH4600E 2600N	281	. 2	1		
WH4600E 2550N	304	.6	2		
WILTOOOD 2550N	304	. 0			
WH4600E 2500N	352	.5	1		
WH4600E 2450N	595	1.5	1		
WH4600E 2400N	404	.7	2		
WH4600E 2350N	411	.8	1		
WH4600E 2300N	366	. 9	3		
WH4600E 2250N	269	. 7	1		
WH4600E 2200N	1089	. 4	1		
WH4600E 2150N	343	.4	1		
WH4600E 2100N	223	1.1	7		
WH4600E 2050N	162	.3	44		
WII 2000H 2000H	102	• • •	- का का -		
WH4600E 2000N	257	. 4	2		
STD C/AU-S	132	6.8	5 1		
•		-			


SAMPLE#	Zn PPM	Ag PPM	Au* PPB		NOV 17. 88
WH4600E 1950N	141	. 2	2		
WH4600E 1900N		.1	1		
WH4600E 1850N		.1	1		
WH4600E 1800N		.1	1		
WH4600E 1750N		.1	ī		
WH4600E 1700N	105	4	2		
WH4600E 1700N WH4600E 1650N		. 1	2		
		.1	2		
WH4600E 1600N WH4600E 1550N		. 1	1		
WH4600E 1500N		.6 .3	1 1		
					
WH4800E 2950N		. 2	1	. *	
WH4800E 2900N		. 2	12		
WH4800E 2850N		. 6	1		
WH4800E 2800N		. 5	1		
WH4800E 2750N	157	.3	1		
WH4800E 2700N	298	. 7	1		
WH4800E 2650N	248	. 2	. 1		
WH4800E 2600N	276	. 2	1		
WH4800E 2550N	271	. 2	2		
WH4800E 2500N	306	.3	1		
WH4800E 2450N	321	. 3	1		
WH4800E 2400N		.3	2		
WH4800E 2350N		. 2	1		
WH4800E 2300N		. 6	$ar{ ilde{1}}$		
WH4800E 2250N		. 4	1		
WH4800E 2200N	207	. 5	1		
WH4800E 2200N WH4800E 2150N		.3	1		
WH4800E 2100N			6		
WH4800E 2050N		.3	1		
		. 4	2		
WH4800E 2000N	179	. 2	1		
WH4800E 1950N	243	1.0	1		
WH4800E 1900N	173	. 4	1		
WH4800E 1850N	183	. 6	1		
WH4800E 1800N	195	.5	1		
WH4800E 1750N		. 4	1		
WH4800E 1700N	150	. 2	21		
STD C/AU-S	130	7.1	47		
			,		

	SAMPLE#	Zn PPM	Ag PPM	Au* PPB	NOV 1 7. 88
	WH4800E 1650N WH4800E 1600N WH4800E 1550N WH4800E 1500N WH5000E 2950N	105 109 86	.2 .9 .3 .3	2 1 1 1 1	
	WH5000E 2900N WH5000E 2850N WH5000E 2800N WH5000E 2750N WH5000E 2700N	250	.3 .2 .3	1 1 1 2	
·	WH5000E 2650N WH5000E 2600N WH5000E 2550N WH5000E 2500N WH5000E 2450N	220 267 255 283 305	.7 .3 .3 1.1	1 1 1 2 1	
	WH5000E 2400N WH5000E 2350N WH5000E 2300N WH5000E 2250N WH5000E 2200N	505 141 171 221 258	2.4 .3 .4 .3	1 1 1 173 1	
	WH5000E 2150N WH5000E 2100N WH5000E 2050N WH5000E 2000N WH5000E 1950N	117 184 133 119 128	.2 .5 .3 .4	1 1 1 2	
	WH5000E 1900N WH5000E 1850N WH5000E 1800N WH5000E 1750N WH5000E 1700N	134 178 169 213 113	.3 3.9 .5 .5	1 1 1 1	
	WH5000E 1650N WH5000E 1600N WH5000E 1550N WH5000E 1500N WH5200E 2950N	132 183 104 144 558	.6 .4 .2 .6	1 1 2 6 1	
	WH5200E 2900N STD C/AU-S	199 132	.4 6.6	1 53	

WH5200E 2850N 329 .3 1 WH5200E 2800N 338 .4 2 WH5200E 2750N 319 .1 1 WH5200E 2750N 319 .1 1 WH5200E 2650N 254 .3 1 WH5200E 2650N 254 .3 1 WH5200E 2650N 242 .2 4 WH5200E 2550N 242 .2 4 WH5200E 2550N 783 1.3 2 WH5200E 250N 783 1.3 2 WH5200E 2450N 635 1.6 24 WH5200E 2450N 635 1.6 24 WH5200E 2350N 180 .1 5 WH5200E 2350N 180 .1 5 WH5200E 2350N 149 .2 7 WH5200E 2250N 166 .5 1 WH5200E 2250N 166 .5 1 WH5200E 2150N 124 .2 3 WH5200E 2150N 124 .2 3 WH5200E 2150N 124 .2 3 WH5200E 2100N 143 .3 21 WH5200E 200N 163 .2 1 WH5200E 200N 163 .2 1 WH5200E 1950N 191 .3 1 WH5200E 1950N 191 .3 1 WH5200E 1950N 191 .3 1 WH5200E 1950N 161 .5 2 WH5200E 1750N 165 .5 1 WH5200E 1550N 192 .6 1 WH5200E 1550N 199 .3 1 WH5200E 1550N 199 .3 1 WH5200E 1550N 199 .3 1 WH5200E 1550N 199 .3 1 WH5200E 1550N 199 .3 1 WH5200E 1550N 199 .3 1 WH5200E 1550N 199 .3 1 WH5200E 1550N 199 .3 1 WH5200E 1550N 199 .3 1 WH5200E 1550N 199 .3 1 WH5200E 1550N 199 .3 1 WH5400E 2950N 215 .5 1 WH5400E 2950N 255 .5 1 WH5400E 2850N 337 .8 1 WH5400E 2850N 377 .8 1 WH5400E 2750N 186 .5 1 WH5400E 2750N 186 .5 1 WH5400E 2650N 274 .2 1 WH5400E 2650N 274 .2 1 WH5400E 2650N 274 .2 1 WH5400E 2650N 274 .2 1 WH5400E 2600N 316 .2 1 STD C/AU-S 132 6.9 47	SAMPLE#		Zn PPM	Ag PPM	Au* PPB	NOV 17.88
WH5200E 2550N 242 .2 4 WH5200E 2500N 783 1.3 2 WH5200E 2450N 635 1.6 24 WH5200E 2400N 180 .4 2 WH5200E 2350N 183 .1 5 WH5200E 2300N 149 .2 7 WH5200E 2250N 166 .5 1 WH5200E 2250N 166 .5 1 WH5200E 2150N 124 .2 3 WH5200E 2150N 124 .2 3 WH5200E 2050N 163 .2 1 WH5200E 2050N 163 .2 1 WH5200E 2050N 173 .3 1 WH5200E 1950N 191 .3 1 WH5200E 1950N 191 .3 1 WH5200E 1950N 143 .7 1 WH5200E 1800N 143 .7 1 WH5200E 1800N 143 .7 1 WH5200E 1750N 161 .5 2 WH5200E 1750N 161 .5 2 WH5200E 1750N 165 .5 1 WH5200E 1650N 155 .5 1 WH5200E 1650N 192 .3 1 WH5200E 1650N 195 .5 1 WH5200E 1550N 119 .3 1 WH5200E 150NN 192 .6 1 WH5200E 150NN 192 .6 1 WH5200E 150NN 192 .6 1 WH5400E 2950N 215 .5 1 WH5400E 2950N 215 .5 1 WH5400E 2850N 337 .8 1 WH5400E 2850N 337 .8 1 WH5400E 2850N 378 .3 1 WH5400E 2750N 186 .5 1 WH5400E 2750N 186 .5 1 WH5400E 2750N 278 .3 1 WH5400E 2650N 274 .2 1	WH5200E WH5200E WH5200E	2800N 2750N 2700N	338 319 1032	. 4 . 1 . 4	2 1 3	
WH5200E 2300N 149 .2 7 WH5200E 2250N 166 .5 1 WH5200E 2200N 89 .1 1 WH5200E 2150N 124 .2 3 WH5200E 2150N 124 .2 3 WH5200E 2050N 163 .2 1 WH5200E 2050N 163 .2 1 WH5200E 1950N 191 .3 1 WH5200E 1950N 191 .3 1 WH5200E 1850N 150 .4 2 WH5200E 1850N 150 .4 2 WH5200E 1850N 161 .5 2 WH5200E 1750N 161 .5 2 WH5200E 1750N 161 .5 2 WH5200E 1650N 165 .5 1 WH5200E 1650N 150 .4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WH5200E WH5200E WH5200E	2550N 2500N 2450N	242 783 635	.2 1.3 1.6	4 2 24	
WH5200E 2050N 163 .2 1 WH5200E 2000N 173 .3 1 WH5200E 1950N 191 .3 1 WH5200E 1900N 200 .4 1 WH5200E 1850N 150 .4 2 WH5200E 1800N 143 .7 1 WH5200E 1750N 161 .5 2 WH5200E 1700N 212 1.6 1 WH5200E 1650N 165 .5 1 WH5200E 1650N 165 .5 1 WH5200E 1550N 119 .3 1 WH5200E 1500N 192 .6 1 WH5400E 2950N 215 .5 1 WH5400E 2900N 696 .7 5 WH5400E 2850N 337 .8 1 WH5400E 2850N 337 .8 1 WH5400E 2800N 255 .5 1 WH5400E 2750N 186 .5 1 WH5400E 2750N 186 .5 1 WH5400E 2700N 278 .3 1 WH5400E 2650N 274 .2 1	WH5200E WH5200E WH5200E	2300N 2250N 2200N	1 4 9 166 89	.2 .5 .1	7 1 1	
WH5200E 1800N 143 .7 1 WH5200E 1750N 161 .5 2 WH5200E 1700N 212 1.6 1 WH5200E 1650N 165 .5 1 WH5200E 1650N 125 .5 1 WH5200E 1550N 119 .3 1 WH5200E 1500N 192 .6 1 WH5400E 2950N 215 .5 1 WH5400E 2900N 696 .7 5 WH5400E 2850N 337 .8 1 WH5400E 2800N 255 .5 1 WH5400E 2750N 186 .5 1 WH5400E 2750N 186 .5 1 WH5400E 2700N 278 .3 1 WH5400E 2650N 274 .2 1	WH5200E WH5200E WH5200E	2050N 2000N 1950N	163 173 191	.2 .3 .3	1 1 1	
WH5200E 1550N 119 .3 1 WH5200E 1500N 192 .6 1 WH5400E 2950N 215 .5 1 WH5400E 2900N 696 .7 5 WH5400E 2850N 337 .8 1 WH5400E 2800N 255 .5 1 WH5400E 2750N 186 .5 1 WH5400E 2700N 278 .3 1 WH5400E 2650N 274 .2 1 WH5400E 2600N 316 .2 1	WH5200E WH5200E WH5200E	1800N 1750N 1700N	143 161 212	.7 .5 1.6	1 2 1	
WH5400E 2800N 255 .5 1 WH5400E 2750N 186 .5 1 WH5400E 2700N 278 .3 1 WH5400E 2650N 274 .2 1 WH5400E 2600N 316 .2 1	WH5200E WH5200E WH5400E	1550N 1500N 2950N	119 192 215	.3 .6 .5	1 1 1	
	WH5400E WH5400E WH5400E	2800N 2750N 2700N	255 186 278	.5 .5 .3	1 1 1	

SAMPLE#		Zn PPM	Ag PPM	Au* PPB	Nov 17. 88
WH5400E WH5400E WH5400E WH5400E	2550N 2500N 2450N 2400N 2350N	160 166 165 282 198	.1 .1 .1 .2	1 1 1 1	
WH5400E WH5400E WH5400E WH5400E	2300N 2250N 2200N 2150N 2100N	71 151 165 235 205	.8 .2 .2 .4	2 9 1 1	
WH5400E WH5400E WH5400E WH5400E	2050N 2000N 1950N 1900N 1850N	201 134 183 112 155	.4 .1 .1 .2 .5	1 1 1 1	
WH5400E WH5400E WH5400E WH5400E WH5400E	1800N 1750N 1700N 1650N 1600N	156 96 169 128 29	2.2 .8 .2 .4 .3	1 1 1 1	
WH5400E WH5600E WH5600E WH5600E WH5600E	1500N 2950N 2900N 2850N 2800N	136 195 184 164 234	.6 .2 .2 .3	1 1 1 1	
WH5600E WH5600E WH5600E WH5600E WH5600E	2750N 2700N 2650N 2600N 2550N	236 272 328 199 318	.2 .1 .2 .1	1 1 3 1 1	
WH5600E WH5600E WH5600E WH5600E	2500N 2450N 2400N 2350N 2300N	414 162 140 195 173	.7 .2 .3 .3	3 1 1 1 1	
WH5600E STD C/AU		71 132	.6 6.9	2 47	

SAMPLE#	Zn PPM	Ag PPM	Au* PPB	NOV 1 7. 88
WH5600E 2200N	270	. 4	4	
WH5600E 2150N	214	. 5	1	The second second second
WH5600E 2100N	174	. 2	1	
WH5600E 2050N	240	.2	$\bar{1}$	
WH5600E 2000N	220	.3	$\overline{11}$	
			·	
WH5600E 1950N	165	. 3	1	
WH5600E 1900N	149	. 2	1	
WH5600E 1850N	182	. 5	7	
WH5600E 1800N	174	. 5	2	
WH5600E 1750N	175	1.0	1	
WH5600E 1700N	263	. 3	1	
WH5600E 1650N	192	. 6	5	
WH5600E 1600N	126	. 2	1	
WH5600E 1550N	127	. 2	2	
WH5600E 1500N	175	. 2	1	
STD C/AU-S	133	7.2	53	

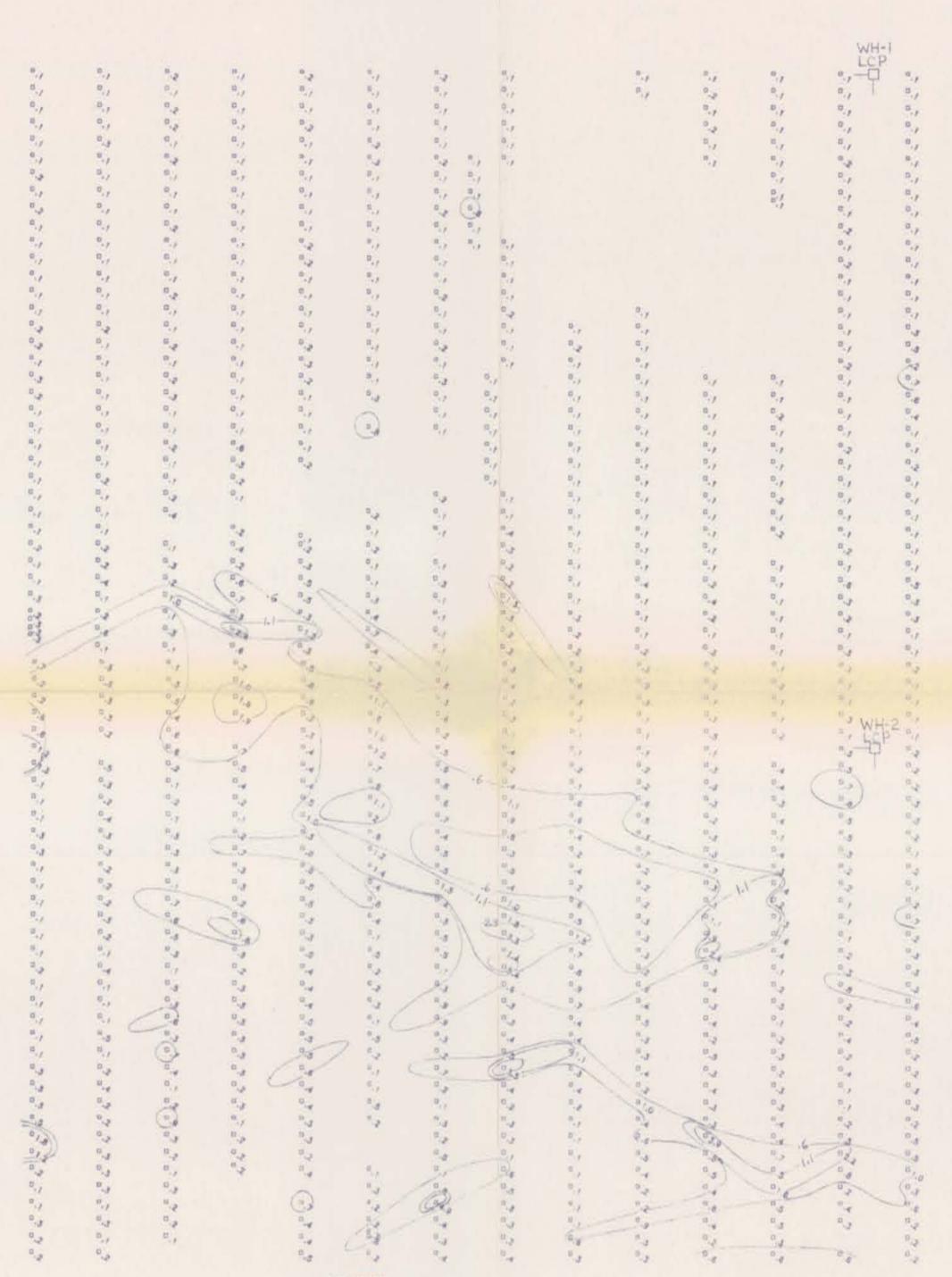
ASSESSMENT REPORT

JP Rowe

SYMBOLS

For Grid Location See Figure 2

3100


MINERALS LTD. FAIRFIELD

WH PROPERTY

AU SOIL GEOCHEM

SCALE 1: 10000 February 1989

Plate:1

GEOLOGICAL BRANCH ASSESSMENT REPORT

John 18, 408

3400

3500

3600

33500

SYMBOLS

For Grid Location Sas Figure 2

oAG ppm

FAIRFIELD MINERALS LTD.

3800

WH PROPERTY

0627

90089

4900

AG SOIL GEOCHEM

91100

4200

9 100 200 300 400 500 400 700 400 900 1000 February 1289 SCALE 1: 10000 Figure

5000 N.

4800 N.

4700 N.

4600 N_

4500 N.

4400 N_

4500 N_

4200 N...

4100 N_

4000 N.

3900 N.

3800 N.

3700 N.

3600 N_

3500 N_

3400 N.

5300 N.

3200 N

3100 N.

3000 N.

2900 N.

2800 N

2700 N.

2600 N.

2500 N.

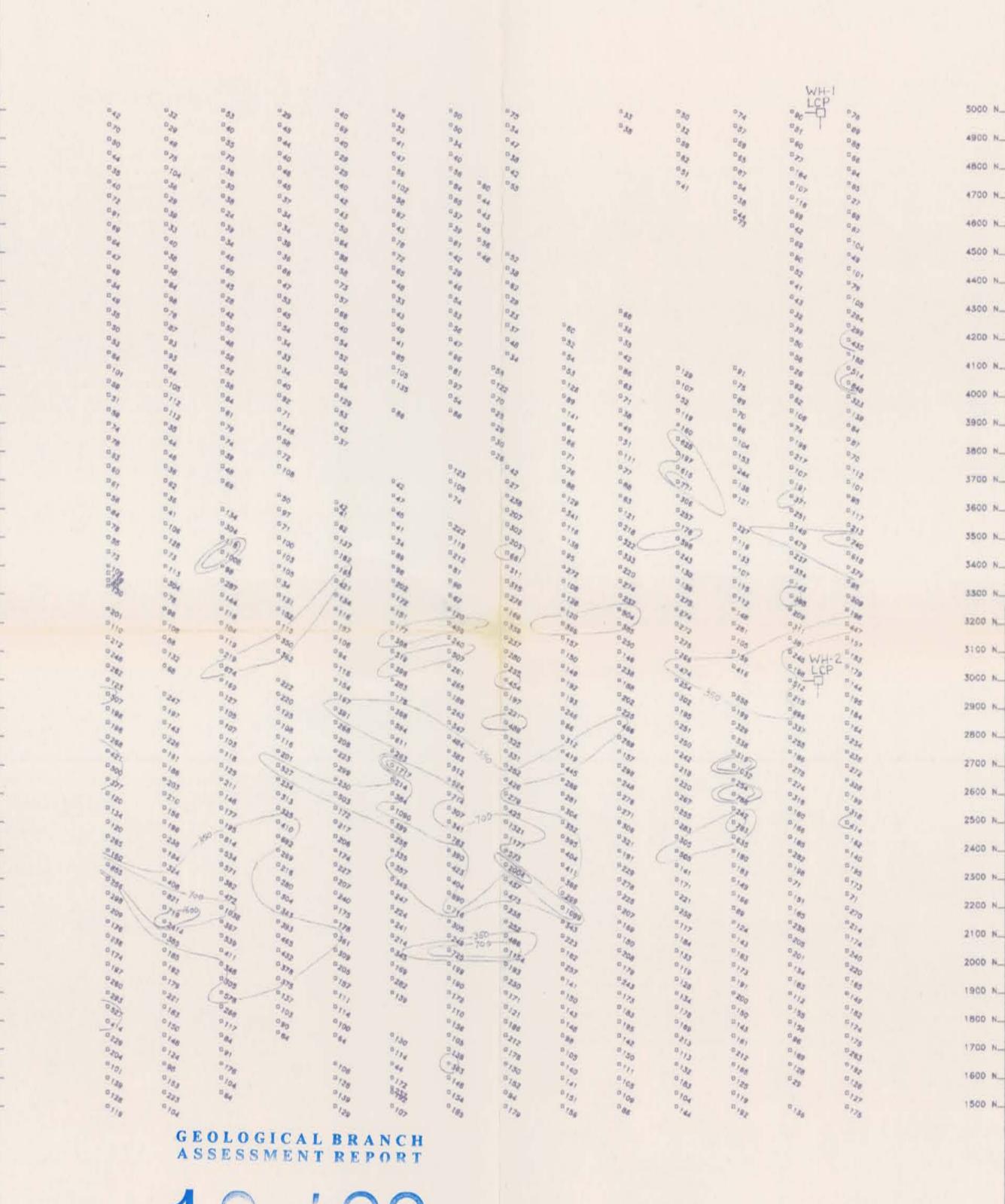
2400 N.

2300 N.

2200 N.

2100 N_

2000 N.


1900 N_

1800 N

1700 N

1600 N.

1500 N

Jakowe 12, 408

SYMBOLS

For Orld Location See Figure 2

3200

1648

FAIRFIELD MINERALS LTD. WH PROPERTY ZN SOIL GEOCHEM

4100

w

4800

4700

la?

5100

0 100 200 300 400 500 600 700 800 900 1000 February 1989 SCALE 1: 10000 Plote:3