> GEOLOGICAL, GEOCHEMICAL \&
> GEOPHYSICAL ASSESSMENT REPORT
> MODEL CLAIM GROUP
> KAMLOOPS MINING DIVISION
> Nov. $30 / 88$ M. Morrison, B.Sc.

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL SURVEYS

ON THE

MODEL CLAIM GROUP

TUNKWA LAKE AREA

KAMLOOPS MINING DIVISION

by
MURRAY MORRISON, B.Sc.

Claims:	Model 1-3, Anne 1-6 (65 units)
Location:	The Model property is situated $\mathbf{2 k m}$ east of Tunkwa Lake, or 13 km due north of Logan Lake, B.C. Latitude: $50^{\circ} 37$ '; Longitude $120^{\circ} 49^{\prime}$ N.T.S. Map 92-I-10 W
Owner:	Mad River Resources Inc.
Operator:	Mad River Resources Inc.
Date Startect	May 7, 1988
Date Completed	August 9, 1988

Kelowna, B.C.

TABLE OF CONTENTS

Page
Summary 1
Introduction 2
Location and Access 3
Physical Features and Climate 4
Claim Status 5
History 6
Regional Geology 7
Regional Mineralization 8
1988 - Surveys 9
Grid 9
Geological Mapping 10
Relogging of the 1984 Drill Core 10
VLF-EM 16 Survey 10
Ground Magnetometer Survey 11
Geochemical Soil Survey 12
Property Geology 13
Summary 13
Unit 1-Metasediments and Metavolcanics - Upper Triassic Nicola Group 14
Unit la - Andesite Agglomerate 15
Unit Ib - Amygdaloidal Andesite Flows 15
Unit Ic - Feldspar Porphyry Andesite Flows 15
Unit Id - Limestone / Dolomite 16
Units le, f and g - Sandstone, Siltstone and Argillite 16
Unit 2a - Diorite Dykes/Sills - Cretaceous(?) Intrusives 16
Unit 2b - Aplite Dyke - Early Tertiary(?) Intrusive 17
Unit 3 - Volcanics and Sediments - Tertiar y Kamloops Group 17
Unit 3a - Conglomerate and Breccia 17
Unit 3b - Andesite and Scoria 17
Unit 3 c - Olivine Basalt 18
Structural Geology and Faulting 18
Alteration and Mineralization 20

TABLE OF CONTENTS CONTINUED

Page
Discussion 22
VLF-EM 16 Survey 22
Ground Magnetometer Survey 23
Geochemical Soil Surveys 25
Mercury in Soil 25
Arsenic in Soil 26
Iron in Soil 28
Barium in Soil 29
Other Elements in Soil 30
Summary of All Surveys 30
Conclusions and Recommendations 31
Table of Reverse Circulation Drill Holes 33
References 34

APPENDICES

Appendix A	Lacana Mining Corporation's 1984 Diamond Drill Programme Sludge Sample ICP Analysis
Appendix B	1988 Soil Geochemical ICP Analysis
Appendix C	Statement of Qualifications
Appendix D	Statement of Expenditures on the Model 1-3 and ANNE 1-6 Mineral Claims

LIST OF ILLUSTRATIONS

	Following Page	
Figure 1	Property Location, Model Property	1
Figure 2	Claims and Access, Model Property	3
Figure 3	Regional Geology	7
Maps M-88-1A\&B	Geology, Model 1-3 Mineral Claims	in file
Maps M-88-2A\&B	VLF-EM Survey Basic Data and Profiles Model 1-3 Mineral Claims	
Maps M-88-3A\&B	VLF-EM Survey Fraser Filtered Data Model 1-3 Mineral Claims	"
Maps M-88-4A\&B	Ground Magnetometer Survey Model 1-3 Mineral Claims	
Maps M-88-6A\&B	Geochemical Survey, Arsenic in Soil Model 1-3 Mineral Claims	"
Model 1-3 Mineral Claims		

SUMMARY

The Tunkwa Lake area, Model property, comprised of 65 mineral claim units, is situated 13 km due north of the village of Logan lake, B.C. The property is centered over the old Tunkwa mercury prospect - a cinnabar occurrence associated with highly faulted, and carbonate-replaced Upper Triassic Nicola Group metasediments and metavolcanics. The mercury prospect is thought to represent the upper, low-temperature horizon of a sizeable epithermal system that could carry precious metal values at depth.

The property, staked by the writer in 1981, was first optioned to Placer Development Limited in 1981, and then to Lacana Mining Corporation in 1984, as a potential precious metal prospect. Placer Development conducted soil geochemical studies over the Model 1-3 mineral claims in 1981, and Lacana drilled five diamond drill holes, totalling 405 metres, during 1984 in the vicinity of the old mercury prospect. Neither company encountered precious metals, and each terminated their option.

The property was subsequently taken on by Mad River Resources Inc. of Calgary this year (1988) as a precious metal prospect, and several surveys were carried out. The work was concentrated upon the eastern halves of the Model 1-3 mineral claims, over an area of $1.5 \mathrm{~km}^{2}$, and included VLF-EM 16 and magnetometer ground surveys as well as detailed geological and geochemical surveys. Regional geological mapping of the entire 65 unit property at a scale of $1: 10,000$ was also completed.

The results of all of the recent surveys indicate that the old Tunkwa mercury prospect falls within an area identified as the Model Fault Zone - a strong zone of faulting and alteration trending 2 km northeast across the property that could well extend to considerable depth.

It appears that the 1984 diamond drilling programme by Lacana only superficially tested what may be a strong epithermal system associated with the Model Fault

Zone. Therefore, a Phase I programme of deeper drilling by a reverse circulation drill is recommended for the old Tunkwa mercury prospect, and the Model Fault Zone at large.

Reconnaissance drilling of two short reverse circulation drill holes is also recommended for an arsenic soil anomaly outlined on the Model 2 mineral claim.

It is further recommended that a Phase II diamond drilling programme await the results of the reverse circulation drilling programme.

INTRODUCTION

The Model property, comprised of nine mineral claims (65 units), covers 17 square kilometres of ground centred over the old Tunkwa mercury prospect, located 2 kilometres east of Tunkwa Lake, or 13 kilometres due north of the village of Logan Lake, B.C. The original Model 1-3 mineral claims were staked by the writer in March, 1981 to cover the old mercury showing which was considered to have potential as an epithermal gold prospect. The property was subsequently optioned to Placer Development Ltd. (1981-1984), and later, to Lacana Mining Corporation (1984-1985).

Placer Development Ltd. conducted a widely spaced soil geochemical survey across the Model 1-3 mineral claims in 1981. Based on the results of the survey, Placer decided that the property was not worthy of further exploration and returned it to the vendor. In 1984, Lacana Mining Corporation expanded the property to 64 units. The company then conducted geological and geophysical surveys over the immediate area of the old Tunkwa mercury prospect, and selected targets for five diamond drill holes. The drilling, totalling 405 metres, failed to encounter gold values and Lacana terminated their option on the property.

In May of this year (1988) the Model 1-3 mineral claims were optioned to Mad River Resources Inc. of Calgary, and the Model $4-8$ perimeter claims, first staked
for Lacana in 1984, were restaked as the ANNE 1-5 mineral claims and purchased by Mad River Resources Inc.

During May-August, 1988, an extensive exploration programme was conducted over the eastern half of the Model 1-3 mineral claims - an area broadly outlined by Placer Development Ltd.'s 1981 soil geochemical surveys, and centred over the old Tunkwa mercury prospect. The work included geological mapping, magnetometer and VLF-EM 16 geophysical surveys, and a detailed soil geochemical survey. Geological mapping at a scale of $1: 10,000$ was also carried out over the full 17 square kilometres of the Model property.

This report, with accompanying diagrams, includes the results of all of this year's surveys; incorporates some of the geochemical data collected by Placer Development Ltd. in 1981; and draws heavily on the results of the 1984 diamond drill programme by Lacana Mining Corporation.

LOCATION AND ACCESS

The Model property lies 1 to 3 km east of Tunkwa Lake, or 13 km due north of Logan Lake, B.C. The Logan Lake - Savona all-season gravel road transects the property from southwest to northeast at a point 18 km from Logan Lake or 21 km from the TransCanada Highway at Savona. The property can be reached in one hour's driving time from Kamloops via either the TransCanada Highway - Savona route or the Coquihalla Highway - Logan Lake route. Several dirt or gravel roads extend to most parts of the Model property from the Logan Lake - Savona Road (please see Figure 2).

PHYSICAL FEATURES AND CLIMATE

The Model property lies on the Thompson Plateau midway between the Uplands of Highland Valley, 20 km to the southwest, and Kamloops Lake, 20 km to the northeast. Kamloops Lake occupies a portion of the arid Thompson Valley which falls within the rain shadow of the British Columbia Coast Mountains.

The property at an average elevation of 1,150 metres features very gentle relief with glacial moraines and drumlins forming long ridges 10 to 40 metres above the surrounding countryside. Drainage from the property follows a course to the north via Tunkwa and Durand Creeks to the Thompson River (Kamloops Lake) at 340 metres.

Glacial deposits are extensive, greatly limiting the bedrock exposures on the property.

The climate on the Thompson Plateau is moderate with winter minimums seldom lower than $-30^{\circ} \mathrm{C}$, and summer maximums rarely exceeding $+30^{\circ} \mathrm{C}$. The spring and summer temperatures on the Model property are often five degrees cooler than those at Kamloops.

Annual precipitation on the property amounts to approximately 30 cms - half of it in the form of winter snow. The snow begins to accumulate in November and can equal up to 1 metre some years. Most of the snow melts from the property in early April.

Large open grassland areas, interrupted by shallow ponds or marshes, make up 30\% of the region covered by the Model property. Lodgepole pine cover level portions of the property, while Douglas fir are dominant on the rolling hills. Some of the forest has been recently stripped by logging and replanted. Cattle graze on the open grasslands from May until October.

CLAIM STATUS

The property is made up of the Model 1-3 and ANNE 1-5 metric grid mineral claims, totalling 64 units and the ANNE \#6, 2-post mineral claim.

The Model 1-3 mineral claims were staked by the writer, M. Morrison, of Kelowna, B.C., in March 1981. The ANNE $\# 6$ mineral claim was staked by the writer in August 1988.

The Model 1-3 mineral claims have been optioned to Mad River Resources Inc. of Calgary which can earn a 100% interest in the property subject to payments and conditions outlined in an agreement dated May 3, 1988. The ANNE \#6 mineral claim is included within the terms of the same option agreement. The ANNE 1-5 mineral claims, staked during April, 1988, have been purchased by Mad River Resources Inc.

Particulars on the Model property mineral claims are listed below:

Claim Name	Units	Date of Recording	Record \qquad	Mining Division	Expiry Date*
Model 1	4	Mar 16/81	3325	Kamloops	Mar 16/89
Model 2	4	Mar 16/81	3326	"	Mar 16/89
Model 3	4	Mar 16/81	3327	"	Mar 16/89
ANNE 1	2	Apr 13/88	7589	"	Apr 13/89
ANNE 2	12	Apr 13/88	7590	"	Apr 13/89
ANNE 3	8	Apr 13/88	7591	"	Apr 13/89
ANNE 4	12	Apr 13/88	7592	"	Apr 13/89
ANNE 5	18	Apr 13/88	7593	"	Apr 13/89
ANNE 6	1	Aug 9/88	7951	"	Aug 9/89
	65				

* The Exipry Date does not take into account the assessment work conducted on the property this year (1988).

It should be noted that the southeast corner of mineral claim ANNE $\# 3$ overlaps a Mineral Reserve, and that the area covered by this claim is thus reduced by approximately one-half unit (12.5 hectares).

HISTORY

The mercury occurrence located on the Model 1 mineral claim is first referred to in the Geological Survey of Canada Summary Report for 1918 (part B, p. 20) under the name of the "Summit Group". The occurrence has been restaked over the years as the Mercury, OK, Cinnabar Ridge, Bull Horn, RR, and the Tunkwa mineral claims.

The original workings consisted of a 5 metre vertical shaft and a 6 metre inclined shaft located at the north end of a knoll next to the Logan Lake - Savona Road. The remains of a small concrete retort are also located at this site, 550 metres north and 650 metres east of the Legal Corner Post of the Mode 1 mineral claim. The knoll has been explored by several small cuts and the production of mercury (amounting to less than 50 kg) apparently came from these shallow cuts and the shafts. There are also several shallow cuts into low rusty ridges fringing a pond east and southeast of the old retort. The work was designed to find mercury within the carbonate altered rocks and no mention of gold is made in any of the literature referring to the old mercury prospect.

The Model 1-3 mineral claims were staked over the old Tunkwa mercury prospect by the writer in March 1981 and Placer Development optioned the property in April 1981 as a gold prospect.

During 1981, Placer Development conducted a widely spaced (25 by 250 metre) soil geochemical program over the Model 1-3 mineral claims, and had 471 samples analyzed for mercury, gold, silver, arsenic, antimony, molybdenum, copper and zinc. Large mercury, arsenic and antimony soil anomalies were outlined, but gold and silver values were low and Placer Development Ltd. elected to return the property to the vendor in 1984.

Lacana Mining Corporation optioned the property in March 1984 as a potential epithermal gold occurrence, and had the Model 4-8 mineral claims staked around the perimeter of the Model 1-3 mineral claims. Lacana conducted VLF-EM and
magnetometer surveys over the immediate area of the old Tunkwa mercury prospect, and followed-up on the preliminary surveys with a diamond drilling programme. Five inclined drill holes, totalling 405 metres, were drilled from four sites. The longest drill hole was drilled to 124 metres at an inclination of minus 45 degrees, or to a depth of 95 metres below surface. The sludge of each 10 foot $(3.28 \mathrm{~m})$ intercept, as well as selected core intervals, were analyzed for 31 elements including gold, silver, mercury, antimony and arsenic. Although some carbonate/silica replaced drill intercepts yielded high mercury, antimony and arsenic values the precious metal values were negligible, and Lacana dropped their option on the property.

The property received no further attention until May of this year (1988) when Mad River Resources Inc. of Calgary, optioned the Model 1-3 mineral claims. The old Model 4-8 mineral claims were restaked as the ANNE $1-5$ mineral claims in April, 1988, and were purchased by Mad River Resources Inc. The ANNE 6, 2-post mineral claim was added to the property during surveys in August, 1988.

REGIONAL GEOLOGY

Figure 3 illustrates the regional geology of the Kamloops Lake area. The geology has been traced with some modifications from Map 886 A , entitled "Nicola" by W.E. Cockfield of the Geological Survey of Canada. The oldest rocks in the region are the metasediments and metavolcanics of the Upper Triassic Nicola Group which form a broad belt, widening to the south, and extending from 30 km nor thwest of Savona to 40 km southeast of Savona on Figure 3. The Nicola Rocks are intruded by the Guichon Batholith to the southwest and the Iron Mask Stock to the northeast - both Intrusives are related to the Jurassic-Cretaceous(?) Coast Intrusions. Jurassic sediments and volcanics overlie the Nicola rocks over narrow bands up to 25 km north and south of Savona, and these rocks, along with the Nicola Group rocks, have been intruded by small Tertiary(?) plugs of the Copper Creek Intrusions. Large areas to the southwest and to the northeast of Savona are covered by Kamloops Group Tertiary volcanic flows and intercalated sediments.

Finally, deep deposits of Pleistocene glacial drift are widespread throughout the map area and cover much of the Model property.

In the Savona district, the geology has a distinct northwesterly trend, with probable major faults aligning with Deadman River, Sabiston Creek, Carabine Creek, and Durand Creek. Open File Map 980 of the Ashcroft area by J.W.H. Monger et. al. of the Geological Survey of Canada indicates that the Deadman River Fault extends south at least as far as the Tunkwa mercury prospect. A splay from the Deadman River Fault continues south as the Guichon Creek Fault.

Several northwest and northeast lineaments of lesser order of magnitude, not shown on Map 980, also dissect the Nicola Group Rocks. Early Tertiary(?) intrusives with related carbonate and siliceous alteration zones appear to align with some of these lesser order lineaments.

REGIONAL MINERALIZATION

The Model property lies between two highly productive mining camps in southcentral British Columbia. The world-renowned Highland Valley coppermolybdenum mines lie 20 km to the southwest of the property, while the rich Afton copper-gold mine lies 25 km to the northeast. The large copper mines are associated with plutonic rocks of Jurassic-Cretaceous(?) age, and apparently predate the mercury occurrences of the Savona Mercury Belt.

Mercury prospects of the Savona Mercury Belt occur associated with faulted, ankeritic and/or siliceous alteration zones within Triassic or Jurassic metasediments or metavolcanics. North of Kamloops Lake there is a clear spatial relationship between Tertiary(?) Copper Creek Intrusions and mercury occurrences. South of Kamloops Lake the Copper Creek Intrusions are believed to underlie many of the faulted alteration zones associated with the mercury prospects, although at most, the Tertiary intrusives have not yet been exposed by erosion. The alteration
zone at the old Tunkwa mercury prospect (now covered by the Model 1 mineral claim) is believed to cap one such Tertiary intrusion.

It is suspected that the mercury prospects associated with high-level intrusive plugs of Tertiary age may represent the upper horizons of potential epithermal gold-bearing systems. Gold has been found associated with a Copper Creek intrusion at Criss Creek 30 km north of Savona. Also, gold, silver, antimony, lead, zinc and copper mineralization have all been found associated with ankeritic carbonate alteration zones south of Kamloops Lake on other properties examined by the writer. The Brussels property, 17 km to the northeast of the Model property, has yielded samples with 1750 parts per billion (ppb) gold, and the Sprout property, 15 km to the northeast of the Model property, has yielded samples with 1650 ppb gold, 316 ppm silver, up to 10% antimony, 1.5% lead and 1.5% zinc.

It appears that in addition to mercury, the alteration zones associated with Copper Creek Intrusions also have the potential to carry both precious and base metal values.

1988 - SURVEYS

Grid

During May, 1988, a flagged grid was established over the eastern half of the Model 1-3 mineral claims. A baseline of 2.9 km was lightly cut through the underbrush in a north-south direction and grid lines at 100 metre intervals were then flagged for 250 metres due west and east of the baseline. Stations were numbered on flagging every 25 metres along each grid line. In total, 14.7 km of flagged grid line was established. A Topolite belt chain and Silva Ranger compass were used to establish the grid lines which are illustrated on maps accompanying this report. The grid was tied-in to the Model $1 \& 2$ Legal Corner Posts. A total of 7 man days were required to establish the baseline and grid.

Geological Mapping

Geological mapping was conducted over the grid area on the east side of the Model 1-3 mineral claims at a scale of 1:2,500, as illustrated on Maps M-88-1A\&B. Mapping at a scale of $1: 10,000$ was also carried out over the property at large and is illustrated on Map M-88-9. Control for the smaller scale mapping was obtained by measuring from features such as roads, creeks, and power lines illustrated on the government 1:50,000 scale topographic map. An altimeter was also used in conjunction with contour lines on the government map.

Large areas of the property are mantled by glacial till and/or are covered by thin flows of Plateau Basalt. There are very few rock exposures within the grid area and most of these are in the immediate vicinity of Lacana's 1984 drill area. Glacial drift is believed to exceed 30 metres in depth over large portions of the property. Moraines and drumlins have been outlined on Maps M-88-1A\&B as they are believed to have greatly hampered the effectiveness of the geochemical and geophysical surveys carried out this year.

Relogging of the 1984 Drill Core

The 405 metres of core obtained from five diamond drill holes by Lacana Mining Corporation in 1984 was re-examined in detail by the writer in order to draw up the cross-sections of Figure $\mathrm{M}-88-10$. Copies of Lacana's drill logs were used in conjunction with the new study, and were depended upon entirely in cases where the core had been disturbed or dumped from some of the boxes over the years.

VLF-EM 16 Surveys

A Geonics VLF-EM 16 model instrument rented from Geolease of Mississauga, Ontario, was used to survey the 14.7 km of grid line on the Model $1-3$ mineral claims. The Annapolis, Maryland signal at 21.4 kHz was selected for the survey. The signal was received from a direction of 102 degrees azimuth, and all readings were taken perpendicular to the station, or at 12 degrees azimuth (facing
northeast). The Basic VLF-EM data and Line Profiles are displayed on Maps M-882A\&B, while the Fraser Filtered In-Phase values have been plotted and contoured on Maps M-88-3A\&B. Several weak conductors have been identified on the property and these will be discussed later. Five field days were required for the survey.

The Fraser filtering of VLF-EM data has had widespread use for several years, and a full explanation of the technique is given in the geophysical papers by Fraser, Peterson and Ronka that are listed with references at the end of this report.

The Fraser filtering technique may be briefly summarized as follows: by means of simple mathematical operations the tilt data can be transformed into contourable form, and the effects of noise and topography can be filtered from data. By averaging pairs of stations and taking differences between pairs separated by the appropriate distances, values may be plotted and contoured in plan that transform cross-overs into peaks and a low-pass smoothing mathematical operator reduces noise.

Ground Magnetometer Survey

The Scintrex MF-2 Portable Fluxgate Magnetometer owned by the writer was used to survey the grid area on the Model 1-3 mineral claims. The magnetometer with a resolution of 5 gammas was considered suitable for the survey.

Baseline station values were established by making a double traverse along the baseline on a day of slight diurnal variation. The baseline stations were corrected for diurnal variations, and the corrected values were used during the survey.

Looped traverses were made along pairs of grid lines, starting and ending at baseline stations (usually within 10 to 15 minutes), and corrections were made to all values for diurnal variation. In regions of moderate magnetic gradients intermediate readings were measured between flagged grid stations. All of the corrected readings are plotted on the contoured magnetometer maps M-88-4A\&B
accompanying this report. A constant 50,000 gammas has been subtracted from all of the values for ease of plotting and clarity.

The survey, including both baseline control and grid lines, required four days to complete.

Geochemical Soil Survey

A geochemical soil survey consisting of 490 samples was conducted over the grid on the Model 1-3 mineral claims. Seven man days were required to collect the samples over a grid spacing of 25×100 to 25×200 metres.

The Placer Development Ltd. soil survey of 1981 provided a guide for this year's survey. The 1981 survey indicated that the western half of the Model $1-3$ property was more or less "flat" from a geochemical point of interest, and not worthy of fur ther attention. On the other hand, the survey identified large soil anomalies for mercury, antimony and arsenic on the eastern half of the Model 1-3 mineral claims that needed better definition by means of a more detailed survey. The 1981 survey also pointed out that neither gold nor silver show up well in the soil. Gold was therefore eliminated from this year's survey as a cost saving measure. Four of the grid lines on the Model 3 mineral claim were also eliminated from this year's coverage, as it was recognized that this portion of the property is covered by extensive glacial drift, and the effectiveness of the geochemical soil survey under such conditions was in doubt.

A mattock was used to obtain B-horizon soil samples wherever possible. Two hunded grams of soil were placed in $10 \times 25 \mathrm{~cm}$ kraft sample bags at each site. Matters notated during the survey included: the soil type and composition, the depth to the B-horizon, the slope direction, and the possibility of contamination of the sample by exploration trenching or road building.

Most samples were made up of light brown soil of the B-horizon found at a depth of 30 cm below the black loam of the grasslands or the lightly forested country.

The samples were shipped to Acme Laboratories in Vancouver for ICP analysis (30 elements), and for mercury analysis by flameless AA. The results of the analysis and the laboratory procedures are listed in Appendix B.

Out of the 31 elements analyzed only mercury, arsenic, barium and iron appear to give meaningful results when compared with the geology of the property. The values obtained for arsenic, iron, barium and mercury have been plotted and contoured on Maps $\mathrm{M}-88-5,6,7$ and $8 \mathrm{~A} \& B$, respectively, which accompany this report.

PROPERTY GEOLOGY

Summary

Upper Triassic Nicola Group metavolcanics and metasediments underlie the eastern half of the Model 1-3 property as illustrated on Map M-88-9 accompanying this report. The Nicola Group rocks are believed to strike north to northwest and dip moderately east to northeast, although the attitudes have been affected by faulting at several localities.

The Nicola Group is made up of volcanic rocks predominantly of andesitic composition. Sedimentary rocks of clastic and chemical deposition are intercalated within the thick sequence of volcanic rocks and possibly account for 5% of the total rock volume.

The Nicola Group rocks are locally cut by dioritic dykes of possible Late Cretaceous age and by aplite dykes of possible Early Tertiary age.

Tertiary Kamloops Group volcanics and sediments unconformably overlie the Nicola Group rocks on the western side of the property. The Kamloops Group is made up of andesitic and basaltic flows with intercalated conglomerates and
breccias. The Tertiary volcanics are nearly flat-lying on the western side of the property (ANNE 4 mineral claim), but dip steeply to the northwest, north of Tunkwa Creek (on the ANNE 5 mineral claim).

Deep Pleistocene till and gravel cover much of the property.

Several strong faults are believed to pass through the Model property. The Deadman River Fault is thought to cut southeasterly through the centre of the claim group, while three northeast striking faults (the Model Fault, and the M1 and M2 Faults) have been inferred from this year's property work.

Wide zones of brecciated rock and gouge mark the trace of the larger faults, as well as pervasive carbonate alteration and some silica replacement. Weak zones of carbonate alteration and slickenside surfaces are also widespread within Nicola Group rocks on the property.

The cinnabar of the old Tunkwa mercury prospect occurs within highly faulted and carbonate/silica replaced metavolcanics and metasediments of the Nicola Group. The Lacana Mining Corporation diamond drilling at the old mercury prospect proved that elevated antimony and arsenic values also occur within the altered rocks. There is, therefore, strong evidence that the old Tunkwa mercury prospect defines the upper horizons of a strong epithermal system.

Unit 1: Metasediments and Metavolcanics - Upper Triassic Nicola Group

Rock exposures are scarce on the Model property, but it appears that the Nicola Group rocks generally strike north to northwest and dip moderately to steeply east to northeast. The lowermost unit exposed on the property appears to be made up of andesitic agglomerate that is in excess of 300 metres thick. The agglomerate is overlain by a 300 metre sequence of thin andesitic flows. The flows are in turn overlain by 70 metres(?) of clastic and chemical sediments that are best exposed at the old Tunkwa mercury prospect. East of the prospect, and on towards the eastern border of the property, there appears to be another 700 metre sequence of
thin andesitic volcanic flows. Within the andesitic flow sequences across the property there are small lenses of intercalated sediments.

Unit 1a: Andesite Agglomerate

The andesite agglomerate, Unit la, is exposed over a width of up to 400 metres on the western side of the Model $1 \& 2$ mineral claims, and is best exposed at the northeast corner of the Model 2 mineral claim. The true thickness of the agglomerate sequence is unknown as the western limit is covered by Tertiary volcanics on the property. The agglomerate is massive to blocky and green in outcrop. Volcanic bombs and debris range from 2 to 30 cm and equal up to 80% of the well indurated rock. The matrix is made up of the same composition as the ejecta.

In hand specimen, the rock is distinctly porphyritic with 15 to 25% plagioclase phenocrysts (2-5 mm), 5 to 10% augite phenocrysts ($1-3 \mathrm{~mm}$) and 2% biotite, all in a very fine-grained groundmass. The rock varies from moderately fresh to moderately altered. Chlorite and zoisite are the common products of alteration.

Unit 1b: Amygdaloidal Andesite Flows

The predominant rock of the Nicola Group on the property is made up of thick sequences of thin (1 to 2 metre) amygdaloidal andesite flows. A 300 metre sequence of these rocks (Unit lb) underlies the sedimentary sequence on the Model 1 and 2 mineral claims, and overlies the sedimentary sequence for at least 700 metres to the east on the ANNE 1 and 2 mineral claims.

The flow rocks are green to purple in colour and blocky in outcrop. They exhibit breccia zones (30 cm) at the base and vesicular or amygdaloidal zones $(30 \mathrm{~cm})$ at the top. The crystal size is variable within the flows ranging from fine to mediumgrained. Some flows contain 10% augite phenocrysts.

Unit 1c: Feldspar Porphyry Andesite Flows

Feldspar porphyry andesite flows occur as a variation within the lb andesite flows, much like the augite porphyries, and they have not been mapped as a separate unit at the scale of this year's mapping.

Unit 1d: Limestone / Dolomite

The limestone / dolomite, Unit 1d, make up a large part (25 metres) of the main sedimentary sequence at the old Tunkwa mercury prospect. The rock encountered in Lacana's diamond drilling (DDH 283) is generally very fine-grained and grey to buff in colour. The original limestone has been largely altered to dolomite.

Units le, f and g: Sandstone, Siltstone and Argillite

Thin-bedded sandstones (le), siltstones (lf), and argillites (lg) make up one-third of the main sedimentary sequence at the oid Tunkwa mercury prospect, and also occur as minor intercalated lenses within volcanic flow rocks elsewhere on the property. In most instances the sandstones and siltstones (derived from andesites) are rusty, carbonate-altered rocks. The argillites are black, highly indurated rocks.

Unit 2a: Diorite Dykes/Sills - Late Cretaceous(?) Intrusives

Diorite dykes or sills (Unit 2a) up to 8 metres thick were encountered in Lacana's drilling (DDH 3, 4 and 5) at the old Tunkwa mercury prospect. The dykes/sills are fine-grained and equigranular and are composed of 15% mafics and 60% plagioclase feldspar. The dykes are moderately to strongly altered to chlorite and zoisite as are the intruded andesite flow rocks.

Unit 2b: Aplite Dyke Early Tertiary(?) Intrusive

A foliated pink to white aplite dyke (Unit 2b) made up of fine-grained quartz and feldspar intrudes Nicola metavolcanics on the ANNE 6 mineral claim. The dyke strikes slightly north of west and is parallel to the M2 Fault zone. It is exposed over a 50×150 metre area.

Unit 3: Volcanics and Sediments - Tertiary Kamloops Group

Unit 3a: Conglomerate and Breccia

Unit 3a conglomerate and breccia, composed of Kamloops Group basaltic and andesitic clasts occurs intercalated within the Kamloops Group flow rocks on the western side of the property.

These rocks are particularly well exposed near the north border of the ANNE 5 mineral claim in the valley of the northwest branch of Tunkwa Creek.

The red hematitic conglomerate and breccia are made up of poorly sorted clasts ranging from 2 to 60 cm in size set in a matrix (20\%) of hematitic sand. The rock is poorly indurated.

Unit 3b: Andesite and Scoria

Brick red scoria and brown to red fine to medium-grained andesite make up approximately 30% of the Kamloops Group rock on the western half of the Model property. These flow rocks (Unit 3b) are thickly interbedded with olivine basalts. They appear to be most prevalent near the northern border of the ANNE 5 mineral claim where they dip steeply to the northwest.

Unit 3c: Olivine Basalt

Olivine basalt (Unit 3c) is believed to underlie much of the ANNE 3 and 4 mineral claims on the western half of the property. Most of the basalt is horizontal or gently dipping and it is believed to be seldom greater than 30 metres thick.

The basalt is massive to blocky and black in outcrop and it locally exhibits columnar jointing.

In hand specimen the basalt is a dense black, fine-grained rock with up to 2% olivine crystals of 2 mm .

Structural Geology and Faulting

The sequence of Upper Triassic Nicola Group metavolcanics and metasediments underlying the eastern half of the Model property are believed to strike north to northwest and dip moderately to steeply east to northeast. The sequence presumably forms the limb of a syncline, the axis' of which lies to the east, of of the property.

Local variations in the attitudes of the Nicola Group mapped on parts of the property possibly reflect drag-folding associated with major faulting.

The Nicola Group rocks are unconformably overlain by Tertiary Kamloops Group volcanics and sediments. Attitudes of the Kamloops Group rocks range from horizontal to gently dipping on the western side of the property to moderately dipping (to the northwest) near the northern border of the ANNE 5 mineral claim.

At least four major Tertiary aged vertical or near vertical faults are inferred to cross the Model property and these have been named the Deadman River Fault, the Model Fault and the M1 and M2 Faults.

The Deadman River Fault has been projected south to the Tunkwa mercury prospect from the Deadman River area on Monger's (1984) Ashcroft Map \#980. Evidence of strong faulting has been noted by the writer along the valley of the north branch of Tunkwa Creek 1 to 3 km north of the Model property; near the northwest corner of the Model 2 mineral claim at a point where the power line crosses the logging road; and on the south shore of the lake 300 metres to the southwest of the Tunkwa mercury prospect. The fault has a strike of 170 degrees, and it may continue to the southeast, across the Model 3 and ANNE 3 mineral claims, along a chain of lakes and marshes, although evidence in this area is concealed by heavy drift cover.

The Model Fault should more properly be called the Model Fault Zone. It passes through the old Tunkwa mercury prospect at 050 degrees and is marked by a chain of lakes and marshes, and carbonate altered bedrock for a distance of 2 km to the northeast corner of the ANNE 2 mineral claim. The fault zone is at least 100 metres wide at the old Tunkwa mercury prospect and it may be as much as 150 metres wide overall. Attitudes of slickenslide surfaces within the Model Fault zone are highly variably, but the dominant attitude appears to be 050/90. Much of the rock encountered by Lacana's 1984 diamond drilling at the old Tunkwa mercury prospect was highly faulted.

The MI fault is subparallel to the Model Fault zone and lies 500 to 1,000 metres to the south (see Map M-88-9). The fault at 062 degrees has been entirely inferred from a study of topography and magnetic data. This year's magnetometer survey indicates some drag-folding of magnetite-rich rock units in the vicinity of the fault.

The M2 Fault, or M2 Fault zone, crosses the southern end of the ANNE 2 mineral claim and cuts through the middle of the ANNE 6 mineral claim with a strike of 095 degrees. Rock along the trace of the fault is highly fractured and carbonate altered over a width of up to 100 metres. The foliated aplite dyke on the ANNE 6 mineral claim is warped and drag-folded into several different attitudes. The fault zone is believed to be near vertical.

Alteration and Mineralization

Alteration and mineralization are intimately associated with faulting on the Model property. The extent of carbonate alteration (ankerite and dolomite replacement and veining) is seen to be directly proportional to the degree to which the Nicola Group rocks have been fractured by faulting. The rock unit involved in the fracturing seems to be of lesser importance.

Carbonate alteration is widespread across the property and ranges from weak to intense. The rock at the old Tunkwa mercury prospect represents the most altered rock of all.

Many zones of weak carbonate alteration occur on the property and those exposed by road cuts on the ANNE $1 \& 2$ mineral claims are typical of most. Andesite flows at these sites are rusty-weathering and moderately fractured. Ankerite replacement equals 5 to 10% of the rock and ankerite and dolomite veins equal 1 to 2%. Zones of alteration within the andesite range from 0.3 to 10 metres in width.

Moderately carbonate replaced (10 to 30% ankerite) Nicola Group metasediments are poorly exposed near the baseline on the northern half of the Model 2 mineral claim and near the southern border of the Anne 3 mineral claim. The natural porosity of the sediments has apparently allowed the easy passage of the hydrothermal solutions believed to have brought about the alteration.

The most intense carbonate alteration on the property occurs at the old Tunkwa mercury prospect where both the metavolcanics and metasediments of the Nicola Group have been highly fractured and brecciated by the Model Fault Zone. At this location ankerite replacement of the rock equals 50 to 70% over widths of more than 20 metres in Lacana's diamond dill core, while ankerite and dolomite veinlets equal up to 5% within these same zones. Zones of low temperature silica replacement occur up to 5 metres in width, and several 0.5 to 2 metre zones of silicified breccia, mended with late chalcedony, are exposed in both outcrop and drill core.

The cross sections on Figure M-88-10 illustrate that the strongest carbonate replacement zones occur within the sedimentary rocks within the upper sections of DDH 1, $2 \& 3$, and within the upper half of DDH 4, which was drilled entirely within volcanic rocks. Therefore, it appears that the main criteria for intense carbonate replacement is not so much the type of rock, but rather, faulting, and nearness to certain major fault planes.

Silica replacement and silica breccia zones are not as widespread as carbonate replacement zones within the drill core, but they too are believed to be directly related to the degree of faulting. The silica breccia zones are indeed evidence of faulting.

The silica replacement zones are weakly represented in DDH 4; are more apparent in DDH's 182; widen considerably down-dip within the sediments of DDH 3, and possibly provide the best key to finding the "roots" of the main epithermal system.

Mercury, antimony and arsenic values from sludge samples collected during Lacana's 1984 diamond drilling programme are shown in tables opposite the cross sections illustrated on Figure M-88-10. The better values recorded for each element shows a distinct relationship with the silicified zones logged in the drill core. The best mercury (2,900 parts per million (ppm) or 0.29%) occurs within the highly carbonate-altered upper levels of DDH 4 where late cross-cutting quartz veinlets carry blebs of cinnabar.

Some of the better arsenic values (310 to 428 ppm) encountered in DDH 2 occur within, and below, a 1.5 metre wide silicified zone at the 16 metre depth. The best arsenic values of DDH 3 (49 to 85 ppm) occur in those sections of core that are the most silicified (ie. at the 20 and 35 metre depths).

Elsewhere, Nicola metavolcanic rocks cut by the Deadman River Fault on the Model 182 mineral claims contain 5% epidote, calcite and quartz veinlets, but ankerite veining is noteably lacking.

DISCUSSION

VLF-EM 16 Survey

It was believed that the VLF-EM 16 survey would be useful in defining the trace of several large faults that are thought to cross the Model property. However, in practise the survey proved to be of little use. A fact possibly due to the very heavy glacial drift covering the grid area on the eastern side of the Model 1-3 mineral claims. Many of the weak to moderate VLF-EM conductors are entirely coincident with morainal deposits and no distinct fault structures were outlined by the survey.

The Line Profiles, illustrated on Map M-88-2A8B, give an indication of the weak magnitude of the VLF-EM conductors. The quadrature values are low in all cases and usually have a positive correlation with the In-Phase values. Weak to moderate near-surface conductors are indicated.

The seven conductors, A to G, on the Fraser Filtered VLF-EM Maps M-88-3 A \& B are described below:

Conductor A extends only 100 metres from L7N to L8N near the southwest corner of the grid area. The conductor is weak and coincides with two small moraines.

Conductor B is a weak to moderate conductor that is almost entirely coincident with the crest of a moraine extending from LION to LI9N on the western side of the baseline.

Conductor C occurs within the vicinity of the 1984 drilling by Lacana in an area of little or no glacial drift. This weak conductor, which extends just 100 metres between L21N and L22N may mark the trace of a north-south fault that is elsewhere concealed by heavy drift.

Conductor D , like B , is a weak to moderate conductor that is largely coincident with the crest of a moraine which crosses the eastern side of the grid area for 1,000 metres from L17N to L27N.

Conductor E strikes nor theasterly for just 100 metres from L23N to L24N just east of the Baseline, and it may represent a portion of a northeasterly striking fault that is elsewhere masked by heavy drift cover.

Conductor F crosses the northwestern corner of the grid area discontinuously for 700 metres from L28N to L35N. Much of the area is covered by drift. However, near L29N the drift cover is light and the conductor is coincident with a weak magnetic dipole. The conductor at this point could represent a magnetite-rich dyke, sill, or flow that strikes in a northerly direction.

Conductor G extends for 250 metres between L29N and L32N. Like conductor F, conductor G could represent a magnetite-rich dyke, sill or flow striking due north.

Ground Magnetometer Survey

The magnetometer survey was conducted over the grid area on the Model 1-3 mineral claims to aid in the interpretation of bedrock geology in an area that is largely drift covered. First, it was considered that some of the Nicola Group rock units might display a distinct magnetic character that would allow for the definition of fault displacements and geological structure in general. Second, it was thought that dioritic dykes might be distinguished as magnetic "highs" and that carbonate altered rocks might be distinguished as magnetic "lows", thus permitting the possible mapping of some sub-surface geology. Third, the magnetic survey was also considered to be of use in outlining the extent to which the highly magnetic basalts of the Kamloops Group might overlie the less magnetic Nicola Group rocks.

In practice, the heavy drift cover that is known to exceed 30 metres on much of the property has hampered the effectiveness of the magnetometer survey. The
magnetic relief is generally low in the survey area, and only the larger magnetic features show up through the overburden.

The magnetic survey, and subsequent geological mapping, indicate that the Kamloops Group basalts possibly overlie a small portion of the Nicola Group rocks within the grid area. The eastern limit of the basalt cover may be outlined by the elevated magnetic values of the western ends of grid lines 6 N to 10 N on Map M-884B.

The main feature of the magnetic survey is the lineal magnetic high, parallel the eastern border of the Model 3 mineral claim, and called the "Border Zone" on Map M-88-4B. This feature is interpreted to be a magnetite-rich volcanic flow or series of flows within the Nicola Group sequence that strikes north and dips moderately east. The interruption and slight displacement of the magnetic high at L9N may mark cross-faulting (the M2 Fault on Map M-88-9). The magnetic high also bends northeast, off of the grid, at 1.16 N which would indicate drag-folding and crossfaulting (the M1 Fault on Map M-88-9).

A weaker, parallel magnetic high, 150 metres to the west of the "Border Zone", or 50 to 75 metres east of the baseline extends from L10N to L16N. It also appears to represent a Nicola Group flow rock with elevated magnetite content that strikes north and dips moderately to the east.

A broad, weak, magnetic high with a sharp western contact lying between grid 11 W and 12 W and extending from L15N to $L 20 \mathrm{~N}$ probably represents yet another magnetite-rich sequence of flows within the Nicola Group which strike north and dip moderately east.

The magnetic relief on Map $\mathrm{M}-88-4 \mathrm{~A}$ is low in general, and apparently even the magnetite-rich flow rocks of the Nicola Group do not show well through the extensive cover of glacial drift. A weak magnetic high on L30N at $8+50 \mathrm{~W}$, and a weak magnetic dipole on L 29 N at $11+25 \mathrm{~W}$ may represent magnetite-rich dykes, sills
or flows within the Nicola Group. In both cases the features have a northerly strike, and they are coincident with weak VLF-EM conductors.

A series of magnetic lows, east of the baseline on lines $22 \mathrm{~N}, 23 \mathrm{~N}$ and 24 N , and aligning in a northeasterly direction, may mark the trace of the Model Fault zone, and may be coincident with carbonate altered Nicola Group metasediments and metavolcanics.

In summary, a liberal application of the very subtle magnetic data, used in conjunction with geological mapping has allowed for much of the geological interpretation illustrated on Map M-88-9. First of all, the Model Fault zone is expressed as a series of magnetic lows trending northeasterly as mentioned earlier. Secondly, the M1 Fault is marked by the apparent bending and drag-folding of the magnetite-rich horizon within the Nicola Group referred to as the "Border Zone". Thirdly, the M2 Fault is also marked by an apparent displacement of the "Border Zone" magnetic high.

Geochemical Soil Surveys

Mercury in Soil

The mercury content in the B horizon soil samples collected from the Model grid has been plotted on Maps M-88-8A\&B accompanying this report. Values of the survey range from 20 to 15000 parts per billion (ppb) mercury. A threshold value of 120 ppb was selected after analyzing the data visually, and the mercury has been contoured at $120,240,480$ and 960 ppb intervals on the maps.

A large mercury anomaly, Anomaly A, of up to 200 metres wide by 900 metres long has been outlined by the survey. The strongest portion of the anomaly (2400 to 15000 ppb mercury) occurs on L21N west of the baseline and is coincident with the old Tunkwa mercury prospect. The anomaly cuts-off abruptly to the northwest, but trails of f the southeast at least as far as L15N. The distribution of the mercury
has clearly been influenced by glacial dispersion, and the source of all of the mercury of Anomaly A is thought to be the Model Fault Zone.

Mercury Anomaly B, at the eastern end of 117 N , has a peak value of 780 ppb and supporting values of 360 and 480 ppb . The anomaly occurs in a drift covered area.

Mercury Anomaly C, at the east end of L12N, falls along the projected extension of Anomaly A, but reaches values of 500 to 1200 ppb , and may represent another source of mercury on the property. The area is one of deep glacial drift.

Mercury Anomaly D, on the east half of L 9 N , has a peak value of 5000 ppb , and some supporting values of 220 to 420 ppb . It too is in an area of deep overburden, but it may possibly be related to the M2 Fault Zone.

Mercury Anomaly E is at the eastern end of the L7N. It has a peak of 730 ppb , and supporting values of 150 ppb . It is open to the south and it is supported by some of the other elements tested during the survey (see following sections).

North of the old Tunkwa mercury prospect (in the opposite direction of ice movement) there is a total lack of anomalous mercury in soil (except for a single 1200 ppb on L27N West of the baseline). Mercury is also low in soil west of grid $11+50 \mathrm{~W}$ throughout the survey area with the exception of Anomaly A.

Arsenic in Soils

The arsenic content in B horizon soil samples collected during the survey is plotted on Maps M-88-5A\&B and has been contoured at the 10 and 20 parts per million (ppm) levels. Values of the survey range from 2 to 199 ppm . The threshold value of 10 ppm was selected after visually analyzing the data. No statistical calculations have been applied to the data.

The 10 ppm contour outlines two large areas of elevated arsenic values in soil. Arsenic Anomaly A, like Mercury Anomaly A, is centered over the old Tunkwa
mercury prospect on L21N. The peak value of 199 ppm arsenic comes from the same sample that yielded 15000 ppb mercury. Arsenic A nomaly B, located near the baseline on the Model 2 mineral claim, on the other hand, is supported with anomalous iron and barium values, but no mercury values.

Arsenic Anomaly A measures 200 metres by 600 metres, and like the mercury anomaly in the area, it appears to originate with the carbonate altered rocks of the Model Fault zone. Like the mercury anomaly, glaciation appears to have dispersed the arsenic to the south at least as far as L17N. The eastern half of Anomaly A coincides with the western flank of a high morainal ridge, and much of the arsenic in soils in this region is believed to have been transported to its present position.

Arsenic Anomaly B averages 200 metres in width and extends 900 metres in length from L25N to L34N. The highest values of the anomaly (34 and 72 ppm) occur at the northern end where carbonate altered metasedimentary rocks outcrop. The arsenic values average 15 ppm over the southern two-thirds of the anomaly where the glacial drift is thought to be 3 to 4 metres deep. The southern portion of the anomaly strikes 165 degrees, coincident with the glacial direction on the property, and it is thought to represent arsenic transported well to the southeast of the mapped metasedimentary rocks.

South of Anomaly A, on the Model 2 and 3 mineral claims, slightly elevated arsenic concentrations (11 to 15 ppm) on lines $12 \mathrm{~N}, 9 \mathrm{~N}$ and 7 N correlate with mercury anomalies C, D, and E on these lines respectively.

Arsenic is clearly a useful pathfinder element for locating epithermal systems on the Model property. In general it gives a slightly more focused target than mercury.

Iron in Soil

The iron content in B horizon soil samples collected from the Model property has been plotted on Maps M-88-6A\&B. The 3.70% and 4.50% levels of iron were selected for contouring after a visual examination of the data.

Iron values of the survey range from 1.61 to 6.43%. The 3.70% level of iron was selected for contouring as it closely correlates with the arsenic and mercury anomalies on Maps $\mathrm{M}-88-5 \mathrm{~A} \& \mathrm{~B}$ and $8 \mathrm{~A} \& \mathrm{~B}$ respectively, and they in turn correlate with known mineralization on at least one portion of the property.

Iron Anomaly A correlates roughly with mercury and arsenic Anomaly A, but is more diffuse. The peak value of 6.43% iron is from the same sample which yielded the peak mercury and arsenic values, and which came from the vicinity of the old Tunkwa mercury prospect. Three zones of greater than 4.50% iron lie immediately southeast of the Model Fault zone. The iron is believed to have been derived from the ankeritic rocks of the Model Fault zone. The iron has been dispersed to the southeast by glaciation (just as the mercury and arsenic has been). The southeastern tail of iron Anomaly A coincides with a high morainal ridge.

Iron Anomaly B , centered just east of the baseline on the Model 2 mineral claim, is 200 metres wide and 750 metres long and extends from L27N to L34N. The iron anomaly correlates well with arsenic Anomaly B except for a slight rotation of the axis. The axis of the iron anomaly strikes due south, while that of the arsenic anomaly is 165 degrees as mentioned earlier. The iron anomaly, like the arsenic anomaly, is believed to be related to the carbonate-altered metasedimentary sequence crossing this portion of the property.

Iron Anomalies C, and D-E on the Model 3 mineral claim correlate well with mercury anomalies in the same area, supporting the premise that the mercury anomalies represent material derived from local ankerite replacement zones possibly associated with the M2 Fault zone.

Iron Anomaly c , at the east end of Lines 12 N and 13 N , is centered slightly to the north of mercury Anomaly C.

Iron Anomaly D-E, located east of the baseline between Lines 9 N and 7 N , measures 100 by 200 metres, and it is open to the south. The strong iron anomaly covers much of same area that is covered by mercury anomalies D and E.

Fifty to 75 metres west of the baseline iron Anomaly F extends for 400 metres between Lines 13 N and 9N. This area is also weakly anomalous with mercury, and again, ankerite alteredrock may be represented.

Barium in Soils

Barium was selected for plotting and contouring from the list of 31 elements analyzed, because it appeared to show a good correlation with arsenic and iron in certain samples. Maps $M-88-7 A \& B$ show the distribution of barium in soils in the grid area. Barium at the 200 ppm level was selected for contouring after studying the data visually.

Barium does not correlate well with any of the other three elements selected for plotting, and most noteably fails in the vicinity of the old Tunkwa mercury prospect where the mercury, arsenic and iron values were all high. Areas of elevated barium lie well to the east and southeast of the old mercury prospect within an area of deep glacial drift for no apparent reason.

A second area of slightly elevated barium values, identified as "B" on Map M-887A, averages 125 metres in width, and extends 600 metres from L28N to L34N. The barium zone strikes slightly to the east of the north and it is believed to approximate the strike of the bedrock geology in the area. Unlike the iron and arsenic anomalies the barium anomaly, for some reason, has not been offset to the east or southeast by glaciation.

Another weak zone of elevated barium values, "C" on Map M-88-7A, extends nor thwesterly 600 metres from L24N to L29N on the western edge of the grid area. The zone occurs in a region of deep glacial drift, and it is not known what it may represent.

Barium Anomaly D extends for 800 metres along the eastern side of the Model 3 mineral claim. The anomaly runs of f the grid area to the east and south, but reaches a width of 300 metres on L9N. The strong anomaly, with values up to 413 ppm barium, encompasses mercury and iron anomalies C, D and E, and adds credence to those anomalies.

Other Elements in Soil

A study of the soil analysis for each element listed in Appendix B reveals that copper ($63-160 \mathrm{ppm}$) and vanadium ($102-127 \mathrm{ppm}$) values are elevated on L 7 N from $7+50 \mathrm{~W}$ to $8+75 \mathrm{~W}$ coincident with mercury Anomaly E. Copper is also anomalous (90-145 ppm) from $8+50 \mathrm{~W}$ to $9+00 \mathrm{~W}$ on L9N, 200 metres to the north.

Summary of All Surveys

Out of all of the data gathered and examined during this year's work programme the drill results of Lacana's 1984 diamond drilling programme proved to be the most useful. Deep glacial overburden over much of the property greatly hampered the effectiveness of all of this year's surveys. The VLF-EM survey yielded no conductors that could clearly be equated with faulting or mineralization. The magnetometer survey was of no value in locating local features, but it did aid with the understanding of the geology on a regional scale. Geological mapping on a regional scale also proved more useful than mapping within the grid area where the overburden is consistently deep. Even the geochemical survey was greatly hampered by deep overburden and glacial dispersion of anomalous values. The geochemical survey did, however, work well in the area of the old Tunkwa mercury prospect where the overburden is shallow and high values were obtained for the elements mercury, arsenic and iron.

In summary, most of the data obtained this year identifies the old Tunkwa mercury prospect as being the best exploration target on the property. The geochemistry obtained from the sludge samples of Lacana's drilling, and a study of the core, strongly suggests that the old mercury prospect does represent the upper horizons of an epithermal system. The Lacana drilling has tested only the upper, lowtemperature, levels of the system, and there is a need for deeper drilling to test for a possible precious metal horizon in the system.

CONCLUSIONS AND RECOMMENDATIONS

It has been concluded from the results of all of the surveys outlined in the foregoing discussion that the old Tunkwa mercury prospect, surrounding the dry pond on the Model 1 mineral claim, and centered over grid $21+50 \mathrm{~N}$ and $11+00 \mathrm{~W}$, does represent the upper, low-temperature, level of a sizeable epithermal system. The epithermal system falls within the Model Fault zone, a zone that appears to be traceable for at least 2 kilometres northeasterly across the Model property.

Only 100 metres of strike length of the fault zone have been tested by drilling and most of this at shallow depths. Although some of the Lacana 1984 diamond drill holes were drilled to depths of up to 124 metres the design of the drill holes was such that only 70 vertical metres of the epithermal system was tested. Some of the holes drilled through the fault zone and well into footwall rocks, and DDH 5 was drilled away from the Model Fault zone, as it is now understood. The drill holes penetrated only the low temperature (chalcedony, cinnabar, stibnite, orpiment and realgar) levels of a very strong epithermal system.

Deeper drilling from sites located to the east of Lacana's drilling is highly recommended to test the down-dip levels of the altered metasediments. Deeper levels of drill penetration are also recommended for the Model Fault zone.

The two tests might be accomplished from the same drill sites, with a vertical hole drilled at each site to test the down-dip metasediments, and an inclined drill hole
of minus 60 degrees drilled at 320 degrees azimuth across the Model Fault zone (please see the list of proposed drill holes). The holes should be drilled with a reverse circulation drill to the 120 metre depth. All drill cuttings should be analyzed for mercury, antimony, arsenic, silver and gold at 3 metre intervals. The geochemistry of each drill hole should be carefully recorded.

The reverse circulation drill should be used to drill two shallow (60 m) test holes into the " B " arsenic soil anomaly in the Model 2 mineral claim.

All of the proposed drilling sites are very accessible from the Logan Lake - Savona Road, and drill water is readily available from lakes in the imme diate area.

TABLE OF PROPOSED REVERSE CIRCULATION DRILL HOLES

TARGET 1 - OLD TUNK $\mathbf{V A}$ MERCURY PROSPECT

RC DH \#	North	West	Azimuth	Inclination	Depth
1	$21+30$	$11+00$	-	-900	120 m
2	$21+30$	$11+00$	3200	-600	120 m
3	$21+55$	$10+72$	-	-90 ${ }^{\circ}$	120 m
4	$21+55$	10+72	$320{ }^{\circ}$	-60 ${ }^{\circ}$	120 m
5	21+05	11+32	320°	-60 ${ }^{\circ}$	120 m
6	20+76	11+65	$320{ }^{\circ}$	-600	120 m
7	$21+10$	$10+73$	-	-90°	120 m
Contingent upon favourable results from RCDH 1-4:					
8	22+34	$10+77$	140°	-600	120 m
9	22+60	$10+45$	140°	-600	120 m

TARGET 2 - OLD TUNK $\overline{\text { WA }}$ MERCURY PROSPECT

RCDH \#	North	West	Azimuth	Inclination	Depth
10	$30+75$	$9+50$	270°	-60°	60 m
11	$31+75$	$9+50$	2700	-60°	60 m

REFERENCES

Boyce, R.A.
1982: Geochemical Report, Model Claim Group, Tunkwa Lake Area, Kamloops Mining Division, British Columbia Assessment Report, January 1982.

Cockfield, W.E.
1948: Geology and Mineral Deposits of Nicola Map-Area, British Columbia, G.S.C. Memoir 249.

1947: Map 886A, Nicola, Kamloops and Yale Districts, British Columbia, G.S.C.

Fraser D.C.
1969: Contouring of VLF-EM Data, Geophysics, Vol. 14, No. 6, December, 1969.

Johnson, D.
1985: Report on Exploration Work, Model 1-8 Mineral Claims, Kamloops Mining Division, British Columbia Assessment Report, February, 1985.

Jones, H.M.
1986: A Report on the Mustang Property, Brussels Creek, Savona Area, Kamloops Mining Division. (Company Report for Vault Explorations Inc. of Kelowna, B.C.)

Monger, J.W.H. and MacMillan, W.J.
1984: Bedrock Geology of Ashcroft Map Area (921), British Columbia, G.S.C. Open File 980.

Morrison, M.S.
1986: Percussion Drilling Assessment Report, Brussels Group of Mineral Claims, Kamloops Mining Division, B.C. Assessment Reports, March 15, 1986.
1986: Geological Assessment Report, British 1-5 Mineral Claims, Kamloops Mining Division, B.C. Assessment Report, June 1, 1986.
1986: Geological Assessment Report, Mustang Group of Mineral Claims, Kamloops Mining Division, B.C. Assessment Report, August 15, 1986.

Peterson, N.R. and Ronka V.
1969: Five Years of Surveying with the VLF-EM Method, a paper presented at the 1969 Annual International Meeting, Society of Exploration Geophysicists.

APPENDIX A

LACANA MINING CORPORATION'S 1984 DIAMOND
DRILL PROGRAMME SLUDGE SAMPLE ICP ANAL YSIS

ACTE ANAL．YTICAL LABORATORIES LTD．BSZ E．HASTINGS ST．VANCOUVER B．C．VGA IRG PHONE 253－315日 DATA LINE 251－10II ASSAV CERTIFICATE

date feceived：serit ith date refoft mailed：chyft $19 / 84$ assayer．A．Medg．．dean tove．certified e．c．assayer

$$
\text { LACAMA MINING CORP PROJECT * } 6907 \text { FILÉ 日4-2603 }
$$

Smitut	湖	$\underset{\sim}{W}$	$\underset{\mathrm{PH}}{\mathrm{P}}$	$\underset{\sim}{n i n}$	菓	$\underset{\text { IIII }}{\text { II }}$	${ }^{\infty}$	再	$\begin{gathered} \text { FE } \\ \mathbf{z} \end{gathered}$	$\begin{gathered} \text { M } \\ \text { M } \end{gathered}$	Hin	$\underset{\sim}{M}$	$\underset{\text { PMin }}{\text { TH }}$	$\underset{i n}{9 n}$	$\underset{~}{\boldsymbol{C l}}$	9	int	Min	$\begin{gathered} \mathbf{C H} \\ \mathbf{t} \end{gathered}$	1	Hin	品	I	$\underset{m}{M}$	It	$m i$	\mathbf{N}	$\underset{\mathbf{I}}{\mathbf{m}}$	\bar{i}	H	$\begin{aligned} & \text { ajp } \\ & \text { int } \end{aligned}$	
49－2－19	1	12	16	67	－ 1	4	4	432	5.4	2	5	0	2	102	1	3	2	13	5.50	．01	4	2	2.14	1＊	． 11	－	d）	． 91	． 03	42	5	6．4
5－2（1－1）	1	5	1	4	． 2	23	11	104	4．2．	3	5	－	2	115	1	11	2	\dagger	5.71	． 6	2	15	2.55	194	． 01	10	． 49	． 45	． 03	4	5	19.0
01－2 17－27	2	7	11	4	． 2	4	1	107\％	4．\％	8	5	m	2	103	1	17	2	7	S．04	，＊	5	21	2.53	121	． 18	16	． 36	． 31	． 13	4	\＄	14.0
6－2 27－57	1	5	5	0	.2	30	1	64	5.42	21	5	－	，	2	1	1	2	154	5.52	． 6	2	3	2.10	171	． 28	1	． 76	． 4	.03	2	5	11.5
4－2 31－4］	2	6	4	＊	.1	2	14	＊	5.4	14	5	I	2	5	1	21	1	14	4．52	． 0	5	23	3.44	240	.01	11	． 17	． 4	． 01	3	5	8.8
（1－2 47－57	1	72	1	6	1.1	5	15	58	4.01	4	5	\cdots	2	14	1	17	2	114	4.72	． 02	2	3	4.02	285	． 01	10	． 5	． 4	.08	51	5	1.5
0－2 57－61	2	7	9	52	． 1	4	${ }^{17}$	－ 9	5.71	310	\＄	1	2	1\％	1	14	2	${ }_{*}$	4.40	．0	5	7	2.11	17	． 01	14	＊	． 4	． 4	54	5	4.4
4－2 4－7	2	162	3	163	2.4	61	14	48	5．14	43	5		2	7	1	21	2	ω	4．85	．$*$	4	5	2.47	118	． 01	It	． 5	． 4	． 01	17	，	12．＊
8－2 7171	2	＊	2	1	． 2	54	16	N3	5．te	（2）	10	H	，	7	1	15	2	a	4．44	． 10	11	4	t．m	102	． 62	12	． 0	． 4	． 11	42	5	3.5
（4－2 \＃1－47	2	11	3	4	1.1	51	15	78	4．\％	121	1	\cdots	2	112	1	－	2	7	S．ll	． 6	1	5	1．1\％	24	． 11	13	1.50	． 6	． 4	3	5	5.4
4－2 5］－107	3	$\boldsymbol{ท}$	1	76	． 1	3	14	44	6．4	\cdots	1	m	2	101	1	10	2	n	4.14	．${ }^{\text {m }}$	\＄	0	2．31	17	． 01	15	1.6	． 1	．04	40	5	4.5
＊－2 107－117	3	142	4	112	． 1	4	15	64	3.15	＊	5	4	2	16	1	7	\leqslant	74	6.78	． 67	5	n	2．5	104	． 81	2	1.3	． 0	． 07	132	5	4.0
44－2 $113-127$	2	4	7	5	． 1	5	16	11	5.14	4	5		2	102	1	11	2	14	4．35	． 10	1	ग	1.15	412	． 1	14	． 8	． 4	． 11	14	5	6．5
（0－2 127－131	1	51	6	\boldsymbol{n}	． 4	3	15	\％	5.25	31	5	\cdots	2	43	1	11	2	91	5.93	． 0	4	21	2.12	51	． 61	－	b． 20	． 0	． 11	10	5	4.5
84－2（3）－14］	1	4	1	4	． 1	24	15	Wr	5.54	51	1		2	12	1	1	2	\＃	4．04	＋	4	2	1.77	SM	． 01	11	1.71	． 07	． 12	4	5	1.5
04－2 147－157	1	\％	4	73	． 1	28	is	40	5.43	3	，		2	150	1	5	2	121	3．34	． 12	7	2	2.01	24	． 11	2	2.3	．＊	． 14	3	5	7.5
04－2 157－167	1	103	1	91	． 1	43	18	92	5．73	24	5	－	2	129	1	2	2	（2）	3.37	． 12	1	37	2．34	78	． 4	31	3.19	． 16	．$*$	17	5	4.5
4－2 167－17	2	7	2	101	2.1	ω	2	1＊9	6.31	37	5	－	2	\％	1	3	2	121	1.4	． 14	5	\dagger	2.45	\cdots	． 24	2	3.14	． 01	．	12	5	4.0
4－2 117－107	2	103	J	12	． 1	14	10	ns	$5 . \pi$	5	5		，	10	1	＋	2	（24）	4．04	． 0	4	7	3.74	101	． 21	2	2.12	． 17	． 0	19	5	6.0
（4－2 113－197	2	101	1	\cdots	.1	4	14	1017	S．65	5	16	－	2	H	I	2	3	185	4\％	.12	3	10	3.47	14	． 5	2	2.8	．＊	．4	\mathbf{Z}	5	6.4
（4－2（9）－23）	2	10	5	102	.1	10	2	tw	b． 15	24	5		2	0	I	3	1	112	2．\％	．11	1	10	2.4	＊	． 24	23	2．s3	． 07	． 0	5	5	3.5
	2	10	7	\cdots	.2	＊	2	H	S．ly	5	40	ω		4	I	1	2	7	2，${ }^{\text {d }}$	． 10	4	ก	2.77	10	． 15	19	2．73	． 47	． 0	13	5	4.4
4－2 217－271	3	110	4	12	.1	3	21	4	6．14	＊	1			111	1	11	2	165	4.25	． 0	2	7	2.11	24	． 12	13	1．7	． 01	． 07	$\boldsymbol{2}$	5	12.4
N－2 20－23）	4	371	4	16	.2	16	2	143	6．5	7	5		2	103	1	12	2	4	88	． 1	1	4	3.13	343	．$\%$	15	1.4	． 14	． 67	11	5	5.5
14－2 257－247	3	140	2	10\％	． 2	4	17	28	6.21	53	1	－	2	10	1	$1 *$	2	110	4．4	．+1	4	4	2.74	44.	． 4	12	J．4．${ }^{\text {d }}$	． 01	． 01	57	\＄	1.5
24－2 247－20）	2	94	3	4	1	17	14	414	5.72	30	15.		2	153	$!$	1	2	124	4.87	． 11	－	45	2．00	271	． 20	15	2.31	． 13	． 14	11	5	5.0
स－317－17	5	8	1	7	I	4	1	315	3.15	11	\％		1	1%	i	2		12	4.15	． 6	1	1	2.15	5	． 1	16	． 11	． 6	． 2	7	5	8.6
64－3 17－27	2	5	12	7	． 1	8	17	132	5.14	5	5	－	2	74	1	15	2	13	2．11	． 07	5	15	1.51	4	． 41	14	． 11	． 6	＊＊	16	5	22.9
（4－3 27－37	，	\％	1	＊	2.1	7	17	124	5.6	4	1	－		4	1	17	2	113	2.9	． 0	4	1	1.63	5	． 01	－	． 0^{8}	． 4	．4	2	5	21.1
4－3 57－47	1	77	7	02	． 2	19	19	1101	4．10	餪	5		2	7	1	7	2	101	4．23	．＊	3	28	2.21	7	． 01	12	． 11	． 4	． 4	4	5	31.1
4－3 47－51	，	5	5	41	1	19	15	1141	6．\＃	30	5	1		＊	，	n	2	141	4.53	．4	4	17	2.11	24	． 11	12	． 4	．${ }^{(1)}$	． 0	12	5	H．${ }^{1}$
0－3 5－67	2	4	1	6	4.1	2	14	94	5．65	4	\＄	－	2	7	2	2	2	116	4.92	．4	5	\％	2.25	4	． 11	1	． 51	． 6	． 12	12	5	11.0
N－3 $\mathbf{6}-7 \mathbf{7}$	3	52	5	4	.2	2	15	\％	S．44	5	3		2	4	1	$\boldsymbol{*}$	2	115	3.1	＋4	t	4	1.0	0	． 1	6	． 5	． 3	． 02	12	5	14.5
44－3714	J	4	4	5	． 5	2	11	77	5.53	4	5	，	2	5	1	2	2	153	8.10	． 6	2	24	2.02	5	． 01	3	． 51	． 01	． 02	11	5	4.5
（N－3 $\mathrm{IT}_{\mathrm{HI}}$	3	5	1	68	． 5	3	10	112	4.41	4	5	m	1	4	I	2	2	［ ${ }^{14}$	4．4	．＊	3	31	2.6	3	． 41	10	． 3	． 0	．＊1	－	5	18.4
（4－3 97－107	4	5	，	64	． 4	3	$t 6$	51	4.58	3	3	－	7	5	I	n	2	111	3.76	． 0		37	1.0	101	． 01	1	． 31	． 03	． 01	2	）	4.5
（4－3 107－117	2	7	3	13	． 5	11	17	m！	5.47	0	1	0	2	4	1	2	2	131	3.59	． 0	2	6	2.0	14	． 4	1	． 34	． 12	． 41	3	5	11.5
STIL cim 0.5	24	5	4	I2	7.1	N	27	（0）	4.57	4	14	1	35	${ }^{4}$	17	14	17	9	． 44	． 15	4	5	．10	10\％	． 6	4	1.64	． 10	． 13	14	58	－

surita	$\begin{gathered} \text { MO } \\ \text { PPM } \end{gathered}$	$\underset{r\|l\|}{C H}$	$\begin{gathered} \text { PQ } \\ \text { PPh } \end{gathered}$	$\underset{\text { Pin }}{\text { lin }}$	$\underset{P P i n}{d i n}$	$\begin{gathered} \mathbf{M I} \\ \text { PPM } \end{gathered}$	$\begin{gathered} \text { Co } \\ \text { HPM } \end{gathered}$	$\underset{+M n}{m m}$	$\mathbf{~ F E}$	$\begin{gathered} \text { 部 } \\ \text { PMM } \end{gathered}$	$\underset{N}{1}$		$\begin{gathered} \text { IN } \\ \text { Prin } \end{gathered}$	$\begin{gathered} 5 \text { sf } \\ \text { PPM } \end{gathered}$	$\underset{~ C P M}{c}$	$\begin{gathered} \text { st } \\ \boldsymbol{p} \% \end{gathered}$	$\begin{aligned} & n \\ & \text { Hen } \end{aligned}$	$\stackrel{V}{P P M}$	$\begin{gathered} C a \\ t \end{gathered}$	I	in	$\underset{\text { Pin }}{\text { ch }}$	$\begin{gathered} 6 \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{Im} \\ \mathrm{mp} \end{gathered}$	\mathfrak{t}	PM	$\begin{aligned} & 4 \\ & i \end{aligned}$	m	i	H ${ }_{\text {M }}$		$\begin{gathered} 1 / 6 \\ P_{P+1} \end{gathered}$
（4－3 117－（2）	2	6	4	n	1.2	ω	17	4	S．04	4	5	\％	2	72	1	21	2	194	\＄． 41	． 18	2	10	2.67	11\％	． 01	1	． 33	．03	． 02	5	5	9.0
6－3 327－137	1	4	6	61	1.3	4	16	03	4.18	4	＊	\％	2	103	1	13	2	${ }^{1}$	5.4	．05	2	57	2.44	75	． 4	3	． 32	． 0	． 62	4	5	7.5
4－3 157－147	3	4	1	67	． 1	51	16	\％ 1	5.63	40	1		2	4	1	15	2	5	5.21	． 0	λ	4	2．75	143	．t1	5	． 41	． 04	． 03	3	5	6.0
4－3 147－159	3	73	1	73	.1	4	16	104	6．31	30	0	4	2	4	1	17	2	\dagger	5.55	． 0	5	4	2.27	24	． 11	5	． 40	． 03	． 63	4	5	1.0
64－3 $557-169$	3	33	7	14	． 5	5	16	1071	6．01	41	1	4	2	1＊	1	16	2	9	5.21	． 0	4	42	2.21	1＊	． 01	4	． 41	． 63	． 63	5	5	12.5
44－3 167－17	2	62	7	7	． 5	53	17	4 M	5．11	4	1	\cdots	2	4	1	20	2	4	4.72	．${ }^{*}$	5	14	2.21	22	． 01	1	．34	． 03	． 03	41	5	4.0
14－3 171－917	2	＊	7	47	． 5	67	15	1063	5.97	7	7	$\underline{0}$	2	101	1	22	2	14	4．4	， 6	5	52	2．27	2\％	． 11	6	． 41	． 3	． 3	4	5	9.5
4－5 107－197	2	5	7	0	2.4	52	14	1043	5．65	4）	5	\pm	，	43	1	24	2	11	4.58	． 6	1	43	2．4	334	． 01	5	． 43	．4）	．6	4	5	13.6
4－3［77－297	2	01	1	73	． 4	37	15	1012	3．4	36	7		2	14	1	2	2	H	3．\％	＊${ }^{*}$	4	3	1．0	34	． 01	3	． 43	． N	．6	＊	5	11.5
EN－3 201－261	1	5	5	N	． 2	5	13	115	4.7	21	1		2	1610	I	15	2	6	3.67	． 07	7	31	1.51	113	． 01	4	． 5	． 4	． 6	27	\＄	0.0
（4－3 217－27）	2	70	）	0	． 3	50	17	1011	5.72	30	1	－	2	143	I	41	2	35	4．t7	． 07	4	4	2.17	71	． 01	4	． 52	． 4	．＊	21	5	4.0
04－3 217－237	1	6	1	4	． 2	42	15	53	4.71	27	1	－	2	164	1	14	2	${ }^{4}$	4．5	． 6	2	4	2．06	71	． 11	4	． 45	． 6	．＊	10	5	4.5
4－5 231－247	2	04	1	4	． 2	5	17	1681	5.14	23	1		2	1＊	1	13	2	0	4．68	． 07	4	6	2.56	74	． 61	6	I．N	． 4	． 07	7	5	6.1
44－5 217－281	2	\％	4	n	． 2	6	11	979	\＄． 10	23	1	－	2	8	1	12	2	11	3.6	． 4	3	14	2.43	542	． 11	7	8.47	， 0	． 4	！	5	4.4
4－5 2 ¢1－34	2	118	7	71	． 3	72	14	98	5.50	21	\bullet	\cdots	2	＊	I	1	2	22	3.51	． 10	\＄	日	2.48	4ts	． 17	12	2.68	． 6	．＊	12	5	3.5
（4－5 267－271	2	\％	1	45	． 1	9	17	173	5.51	20	14	－	2	103	1	1	2	76	3.72	． 10	1	n	2．76	7	．3）	1	1.53	．＊	． 6	10	5	3.5
44－3 271－297	2	\uparrow	10	16	． 2	4	11	1014	5．01	24	1	河	2	14	1	13	2	\dagger	4.67	．08	4	30	2.52	\＄33	． 11	$)$	1.21	． 6	． 6	11	5	13.0
04－ 2 297－207	1	0	1	0	3.1	4	1	103	b． 21	23	E		2	41	1	12	2	4	4.51	． 0	1	${ }^{4}$	2.44	341	． 02	1	1．3	．＊	． 4	1	5	12.5
44－3 247－39］	1	138	7	\cdots	． 2	5	14	1016	5.6	20	1	＊	2	（1）	I		2	1	4．97	． 1	3	d	2.19	J72	． 62	1	1.74	．4	． 10	4	5	5.1
4－3 307－315	1	12］	5	0	． 2	38	17	ILSE	5.52	12	18	，	2	0	！	6	2	72	3.1	． 6	9	41	2.20	3	． 1	1	1．\％	． M	． 0	5	5	2.1
5－3 317－53	1	103	4	4	． 3	45	17	1984	5.54	4	11	m		4	1	I	2	11	4.73	． 0	2	5	2.0	4it	． 01	4	4.53	． 6	． 0	1	\＄	3.5
（4－3 573－58．5	1	144	1	16	． 1	4	10	142	S． 94.	12	12		2	4	1	1	2		4．1．	．t	2	4	2.12	m	． 11	1	2.12	．${ }^{\text {d }}$	． 12	1	1	3.0
［4－4 17－27	3	n	4	0	－1	31	10	7 W	3．77	6）	3	＋	2	＊	1	111		7	3.45	．t1	2	47	2．01	\％	． 41	3	． 30	． 12	． 41	17	5	40.1
64－4 27－31	1	3	1	＊	． 2	101	15	1020	4.67	75	1	4	2	12	1	14	2	\％	4.45	．6	2	9	2．32	3	． 01	1	． 7	． H	＊	25	5	＋10．0
4－4747	1	5	5	4	． 2	4	17	＊）	4．w	3	12		2	18	1	41	2	¢	\＄． 67	． 12	0	6	2.65	5	． 01	3	． 5	． 6	． 015	1	5	155．\％
64－4（7－5）	1	3	＋	4	． 3	52	15	4	4.71	14	\cdots	－	2	07	1	31	2	n	4．5	． 11	\boldsymbol{J}	52	2.16	674	． 61	－	． 78	＊＊	．$*$	1	5	n．t
6－4 57－4）	1	27	1	4	． 2	53	4	102	4.76	47	11	楌	2	78	1	2	2	ω	4．71	． 11	10	4	2.24	57	． 01	1	． 1	．＊	． 10	1	5	24.6
04－4 67－71	1	3	4	4	． 1	S	16	104\％	4.62	5	10	m	2	167	1	3	2	\dagger	6．tb	．${ }^{1}$	7	42	2.51	114	． 11	4	． 51	．03	． 6	5	5	43.0
14－4 7－47	I	4	4	4	． 2	15	4	1069	4.7	41	1	H	1	15	1	21	2	N	5.45	．${ }^{*}$	t	47	2．5	247	． 01	1	． 5	． 1	． 1	7	5	4.0
$04-40$	t	3	7	4	． 1	4	14	W	4．69	15	13	m	2	1＊	1	17	2	\cdots	4．20	． 10	16	44	2.54	43	． 01	7	． 41	． 6	． 11	4	5	14.0
0－4 87－197	1	35	1	75	.2	16	2］	9	5.43	\％	1	ω	2	43	I	5	2	16	4.7	．$*$	4	4	2.10	17	． 01	\＄	． 52	． 6	． 0	14	5	41.6
64－4 107－317	1	32	1	1	． 2	4	15	134	3.54	8	10	\cdots	2	165	1	31	2	3	4．4）	．$*$	1	4	2.51	＊17	．01	－	． 5	． 8	． 10	14	3	35.6
00－4 t1－12］	1	4	1	11	． 1	\＄	14	1118	S．4	1	14	\square	2	14	1	14	2	7	4．14	．+	1	5	4.51	TM	． 01	－	． 5	．＊	．${ }^{(1)}$	1	5	7.5
44－4 127－177	1	0	5	112	． 5	102	21	1307	6.54	4	4	－	2	12	I	2	2	113	4．＊）	． 1	1	H	2.73	230	．01		． 12	． 4	．4	，	5	37.0
04－4［5］－147	1	W2	4	7	． 2	4	14	1839	\＄．54	24	15	\cdots	2	W	1	3	2	H	3.17	.11	10	4	2．04	31	． 4	1	1.4	． 67	． 6	\＄	J	14.0
（0－4 147－15	1	0	1	6	． 1	＊	8	11\％	4.12	5	13	ω	2	4	t	37	2	15	4.0	． 11	14	0	2.0	265	． 11	7	． 3	．$\%$	． 0	7	5	24.5
4－4 157－16）	I	127	1	11	.2	4	1	43	5.18	16	14	－	1	8	1	14	2	＊	4.98	． 11	4	31	2.13	214	． 4	14	2.44	． 61	． 04	2	5	6.0
04－4 167－177	1	119	1	4	． 2	n	11	${ }^{7} 3$	5.65	14	－	\square	2	5	1	8	2	103	4.6	． 11	5	4	2.57	［31	．01	14	2.69	． 0	． 61	2	5	6.1
3－4［7］－18）	2	4	1	3	.2	7	21	1121	6.11	23	13	1	2	＊	1	16	1	IN）	4.53	． 16	\cdots	n	2.71	371	． 12	1	1．\％	． 6	． 10	3	5	3.5
sti cran e． 5	11	5	3	124	t．	6	27	IW	4.35	7	11	1	5	4	16	16	10	5	． 4	． 14	3	5	．＊	IN	． 0	7	1.44	．6	． 12	13	514	－

GEDCHEMICAL ICP ANALYEIE

LACANA MINING CGRP PROJECT 6907 FILE 84－2610

samerti	测	$\underset{\sim}{\boldsymbol{p}}$	$\begin{gathered} \text { H } \\ \text { H } \end{gathered}$	$\underset{\text { Y }}{\text { ITH }}$	$\underset{m}{m}$	$\begin{gathered} \text { ut } \\ \text { HWM } \end{gathered}$	位	$\begin{gathered} \text { W } \\ \text { W } \end{gathered}$	$\begin{gathered} \text { FE } \\ \mathbf{Z} \end{gathered}$	$\underset{\sim}{\text { wis }}$	$\underset{\sim}{\\|}$	$\underset{\sim}{n}$	TM	蚝	$\underset{\sim}{\mathbf{N}}$	$\underset{m}{5 m}$	$\begin{gathered} \text { H } \\ \text { PMin } \end{gathered}$	\#	en	t	un	n	I	4 Hin	$!$	$\underset{\sim}{\mu}$	$\underset{z}{2}$	$\begin{aligned} & m \\ & : ~ \end{aligned}$	I	$\underset{\sim}{n}$	$\underset{P M}{ }$	H5
10－5 47－57	1	54	12	45	1.1	3	11	65	3．3	11	5	0	3	7	1	2	2	11	2.60	． 11	7	2	1.90	453	． 16	10	1.67	． 0	． 14	7	5	440
14－5 57－67	2	41	$t 0$	N	． 6	4	11	14	3.55	14	5	＊	3	13	1	2	2	92	2.76	． 13	1	33	1.5	35	． 13	14	1.59	． 11	． 12	81	5	590
＊－5 67－7\％	2	It	5	7	． 3	3	11	1127	\＄．75	6	5	1	2	211	1	2	2	77	2.4	． 14	1	3	1.53	46	． 4	13	1.22	．H	． 13	15	5	320
04－5 7 －17	2	91	5	57	． 2	23	12	1419	4.15	2	5	\square	2	485	1	2	2	121	3.21	． 17	\％	22	I．4	344	． 12	4	． 1	．${ }^{*}$	． 18	2	5	150
06－5 17－43	2	74	1	34	． 1	23	11	144	4．6	4	5	－	2	421	1	2	2	112	3.24	． 4	1	2	1.5	211	． 68	1	．7	． 07	． 16	3	5	810
（t－S（27－13）	5	12	＋	4	． 2	3	12	（27）	3.31	15	5	m	1	177	1	3	2	73	3．4	．${ }^{\text {m }}$	，	27	1.17	19	． 01	1	． 57	， 1	． 23	32	9	70
（4－3 137－137	3	167	7	155	． 1	5	12	＊）	4．4	13	5		2	17	I	2	7	17	1．48	． 6	1	4	1.54	20\％	． 01	2	． 12	． 12	． 13	121	5	14
（6－5 147－15）	3	7	1	6	． 1	$\boldsymbol{\sim}$	12	167	4．50	17	5	4	2	14	1	5	2	7	3.107	． 0	10	15	1.71	341	． 03	9	． 7	． 12	．13	14	5	1000
4－5 557－147	4	4	1	71	1.7	4	16	1137	5.71	4	\＄	\cdots	2	143	1	1	3	＊	4．28	．＊	1	3	2.15	31	． 11	－	． 5	． 01	． 0	30	5	440\％
10－5 66－1\％7	5	$\boldsymbol{*}$	10	6	． 7	50	17	121	4．8	2	\＄	－	2	143	1	1	2	1	4．4	．＊	3	\pm	2.12	58	． 11	10	． 12	．n	． 11	\％	5	276
（4－5 17－107	t	116	1	62	． 7	58	1］	I22t	6．m	2	5	m	2	14	I	2	2	H	5.5	． 61	2	4	2．04	44	． 11	－	． 11	． 4	． 11	10	5	3109
84－5 197＋177	1	117	5	7	.1	5	I）	1 H	4．35	23	5	m	2	（3）	1	3	2	先	3．22	． 0	9	4	2．0	478	．nt	1	8．00	．＊	，JI	17	5	2000
Et－5 197－207	t	161	1	4	． 1	4	4	186）	4.77	21	3	H	2	12\％	1		2	7	5.43	． 47	1	7	2.12	10	． 11	1	1.11	． 4	． 11	14	9	2 W
（4－5 297－21？	5	105	t	4	． 1	3	11	107	5.71	28	5		2	146	1	5	2	0	4．71	． 01	5	4	2．0．w	273	． 4	$1 *$	l． 10	． 4	． 10	21	5	270
0－5 217－27	4	tiet	9	${ }^{6}$	1.3	4	37	（16）	4.53	あ	5		2	151	2	7	2	＊	5.4	．f	4	12	2.52	53	． 6	12	． 67	． 07	． 0	34	3	400
64－5 277－237	7	120	1	6	． 2	4	17	157	6.3	$\boldsymbol{7}$	5		2	147	1	5	2	7	4．414	.01	1	4	t．77	5	． 11	1	． 17	．${ }^{+1}$	． 11	20	\＄	2100
＊－5 237－247	1	75	5	4	． 3	7	19	1019	6.54	18	5	\cdots	2	124	1	3	2	7	4.12	＊＊	7	n	2．24	5	． 0	14	1．72	． 0^{6}	． 10	16	！	2504
00－5 247－257	5	17	4	1	． 1	75	17	160	4.21	14	5		2	123	1	2	2	9	36	． 13	7	4	2.38	45	． 4	12	1.17	． 17	．$*$	14	5	160
（N－5 207－267	1	121	1	9	1.0	8	2	148\％	3.11	2	5	－	2	141	1	2	2	102	3.32	．ti	11	73	2.63	48	．＊	15	1．9\％	． 08	． 0	21	5	180
H0－5 26i－27t	5	12	1	138	.2	7	21	1075	6.57	16	5	E	2	7	t	2	2	4	3.22	． 0	$1{ }^{1}$	2	2.45	30	． 63	18	1.74	． 07	． 10	11	3	1000
44－5 273 －247	5	1	5	2	． 3	4	24	1001	6． 31	14	5	，	7	4	I	2	2	\boldsymbol{n}	3.19	． 10	7	3	2.22	35	． 03	1	l． 13	． 07	． 0	31	＊	1500
04－5 297－297	5	101	5	72	． 1	6%	2	11.5	6.45	16	5	\cdots	2	102	1	2	2	7	3.15	． 1	7	11	2.75	1071	． 4	1	1.73	． 17	． 10	16	5	1400
40－5 297－307	5	16	1	12	． 1	10	2	114	6.51	17	5	4	t	142	1	2	2	47	4.10	．	11	4	2.2	107	． 12	11	1．43	． 01	． 12	15	5	2000
04－5 307－317	3	4	1	17	． 1	0	21	117	4． 51	17	5	2	2	142	1	2	1	2	4．50	－	4	5	2.41	1578	． 01	7	1.22	． 14	． 12	2	5	2400
4－5 317－3n	3	10	3	1	． 1	4	17	144	5.0	15	\％		2	J01	1	2	2	＊	3.11	．t	4	7	2.218	4	． 02	1	1.6	． 08	． 14	E	5	1400
64－5 377－57	3	4	3	1	． 1	5	24	16\％	5.54	14	5	1	2	143	1	3	2	tit	4．110	．4		4	2.31	34	． 1	$t 0$	8.74	． 14	． 14	11	5	1500
04－537－397	3	13s	3	131	． 3	85	22	112	5.40	26	5	14	2	153	1	14	2	101	4.58	．t	1	5	2.85	78	． 01	1	．n	． 6	． 11	72	5	4904
0－5 317－27	1	$16!$	2	150	． 1	7	21	1072	5.30	\％	5	1	2	14	J	，	9	101	4.53	－10	1	\pm	2.4	42	． 11	2	． 13	． 1	． 11	101	5	4000
	3	14	7	121	． 1	7	21	117	5.4	17	5	1	2	1685	1	7	2	105	4.21	－ 0	\＄	3	2.47	512	． 01	＊	． 5	． 64	． 11	77	5	50\％
14－5 317－377	4	103	1	10	． 1	17	17	1111	3.74	20	5	\％	2	128	1	7	2	＊	4．35	． 68	\dagger	4	2．25	6\％	． 11	1	1.27	． 4	． 12	\％	5	5500
04－5 37－317	3	n	－	n	1.4	52	16	4	4．90	15	3	\pm	2	124	1	4	3	b 7	3．38	． 10	1	4	2.07	67	． 4	10	1． 5	.10	．W	24	5	2 ten
64－5 30］－527	3	100	，	10	． 1	45	2	104	3.414	17	5	m	2	141	1	1	2	143	4．6	．H	1	55	2.40	714	．tt	13	1．21	． 11	． 14	15	5	1000
14－5 367－400	\％	H	＋	72	． 1	5	24	1114	5.4	14	5	\pm	2	1si	1	1	2	16	4．33	． 17	1	54	2.10	4）	． 02	1	． 14	． 6	． 51	20	5	260
5to c／at 0.5	1	54	3	124	d．J	6	71	ses	3.12	40	11	，	3	4	16	15	31	5	． 4	． 15	7	5	． 1	1til	． 6	7	1．4	．${ }^{*}$	． 13	14	5 Sto	1200

APPENDIXB

1988 SOIL GEOCHEMICAL ICP ANALYSIS

GEOCHEMICAI ANAIXSIS CERTIEICATE

 M.S. MORRISON File \#88-1837R Page 1

sarthit	Ho	cl	Pb	th	49	31	Co	3	19	28	V	14	9h	55	cd	Sb	Bi	∇	Ca	p	la	Cr	$\mathbf{H g}$	$8{ }^{\text {a }}$	1	${ }^{3}$	11	18	I	*	89
	PPM	PRP	P9\%	PR	PPI	PPE	PPK	P8\%	1	PP\%	PPK	Pr	PFK	PPN	PP\%	PPM	PPM	PPM	1	1	PFM	PPM	1	PPY	\$	PPM	\%	1	1	PPM	PP8
634112+594	1	23	7	57	. 1	20	10	118	2.82	5	5	vid	1	10	1	2	4	36	. 48	. 030	4	31	. 46	125	. 11	6	1.65	. 02	. 19	1	30
[318 $12+250$	1	32	6	4	. 2	18	7	285	1.99	3	5	10	1	253	1	2	1	31	9.58	. 071	10	6	2.79	117	. 01	12	1.46	. 04	.11	1	50
b34I $12+004$	1	31	1	54	. 1	33	12	622	3.58	,	S	rid	3	10	1	4	6	68	, 57	.030	17	51	.6]	142	.13	4	2.11	. 03	. 21	1	50
W18: $11+75$	1	20	6	58	. 1	21	10	534	2.95	4	5	明	2	33	1	2	2	51	. 41	. 027	11	12	. 13	132	. 11	1	1.18	. 03	.11	1	30
b34 114503	1	16	1	12	. 1	18	B	571	2.71	2	5	IVD	1	32	1	2	2	50	. 15	. 1228	8	34	. 34	117	. 13	3	1.67	. 02	. 11	1	20
L3411 11+254	1	11	1	59	. 1	20	9	571	2.80	3	5	15	3	31	1	2	3	51	. 18	. 030	12	34	. 36	111	. 13	1	1.71	. 02	. 20	1	20
L31111+0014	1	29	4	75	. 1	36	12	1051	3.59	1	5	10	2	38	1	2	2	62	. 57	. 034	15	51	. 52	222	. 11	5	2.07	. 02	. 21	1	30
L3411 10+754	1	32	1	64	. 1	26	11	628	3.59	1	5	50	3	39	1	,	J	61	. 68	. 054	15	31	. 53	182	. 10	3	2.01	. 02	. 21	1	60
L248104501	1	13	1	74	. 1	27	14	1088	3.63	1	5	10	3	31	1	2	,	60	1.22	. 036	16	31	. 16	191	. 10	6	2.21	. 03	. 21	1	10
L34) $10+250$	$!$	39	J	119	. 1	26	12	971	3.92	36	5	10	$!$	11	1	2	3	60	. 66	. 049	11	37	. 16	231	. 08	3	2.17	02	. 21	$!$	10
L3418 $10+001$	1	36	8	102	. 1	23	13	1005	4.51	12	5	10	2	39	1	5	2	59	.67	. 051	14	27	. 15	265	. 07	t	2.31	. 02	. 21	1	50
L3II 94754	1	48	1	101	, 1	24	16	1227	4.52	10	5	D	1	18	1	2	1	60	. 89	. 048	18	32	. 55	198	. 07	1	2.64	. 02	. 22	1	10
134119+304	1	12	6	91	. 1	22	11	916	4.33		5	1 D	J	13	,	1	1	68	. 35	. 033	21	33	. 62	179	. 10	5	3.29	. 02	. 21	1	40
L34T 9+25in	1	34	1	6	. 1	24	15	1076	3.98	5	5	Ib	2	15	1	2	1	61	. 89	. 029	16	13	. 68	16	. 11	1	2.32	. 02	. 1	1	30
131119+001	1	13	5	60	. 3	21	12	433	3.53	1	5	W	4	41	1	2	4	57	. 68	. 034	15	37	.71	170	. 10	5	2.15	. 03	. 27	1	30
L341 $8+7511$	1	50	1	101	.	19	16	193	4.64	,	5	\$0	3	41	1	6	2	85	. 13	. 065	15	30	1.12	161	. 10	1	3.70	. 02	, 31	1	20
L313 $8+504$	1	16	9	83	. 1	28	15	839	1.03	1	3	10	3	51	1	3	2	66	. 66	. 047	18	37	. 13	162	. 11	1	2.64	. 03	. 33	1	40
43311 8+25il	1	31	9	63	, $]$	19	10	631	2.15	2	5	10		41	1	2	,	17	. 12	. 040	11	30	. 49	138	. 09	3	1.59	. 02	. 24	1	10
[3IT 640.011	1	41	5	10	. 1	24	11	617	3.10	3	5	V	1	13	1	2	1	50	. 6	. 044	14	34	. 12	117	. 10	11	1.91	. 03	. 31	1	50
L3417 7 754	1	12	10	82	. 2	26	11	896	3.92	5	5	W	2	45	1	4	2	13	. 66	. 855	19	18	(1)	102	. 12	4	2.74	. 03	. 31	1	100
$13119+5014$	1	45	7	75	. 1	34	19	861	4.20	6	5	W	3	60	1	,	3	56	. 74	. 019	22	41	. 92	101	. 13	4	2.16	. 03	. 32	$!$	150
L3311 12+504	1	26	1	10	. 1	22	11	840	2.94	2	5	10	,	35	1	\%	2	55	10	. 025	10	33	. 15	159	.11	2	1.64	. 02	. 20	1	40
(331124254	1	13	10	83	. 1	28	11	154	3.18	1	5	W	3	15	1	2	2	55	. 49	. 031	11	10	. 65	220	. 13	!	2.96	. 02	. 21	1	50
23331120003	1	27	12	11	. 2	21	1	415	3.04	5	5	10	1	30	1		3	12	. 34	. 030	1	35	. 41	156	. 13	1	1.17	. 02	. 15	1	50
b331 11+754	1	31	7	81	. 1	22	10	681	3.24	12	5	10	2	31	1	2	2	59	. 34	. 937	12	35	. 39	248	. 12	5	2.05	. 12	. 18	1	10
L331 $11+501$	1	20	1	62	. 1	26	10	604	3.26	1		10	3	37	1	2	3	62	. 54	. 032	14	15	. 15	132	. 13	5	2.02	. 02	. 25	1	10
23311 11+251	1	28	7	75	. 1	22	10	635	3.05	2	6	VID	1	36	1	2	3	54	. 19	. 018	16	31	. 39	185	. 13	1	2.12	. 02	. 21	1	30
L331 11+004	$!$	33	6	74	.	28	11	906	3.43	1	5	10	3	12	1	2	1	62	. 01	. 038	14	11	. 15	221	. 11	1	2.03	. 03	. 21	2	100
2331\% 10+75	1	37	\%	93	. 1	22	11	1031	3.39	11	5	ID	1	12	1	7	2	51	. 11	. 052	11	36	. 39	282	. 08	7	2.33	. 02	. 23	1	50
1331 10+504	1	41	11	44	. 1	25	13	976	3.90	10	5	10	1	13	1	2	2	4	. 75	. 014	15	31	. 54	269	. 11	\dagger	2.83	. 02	. 11	1	60
L.3311 $10+251$	1	35	16	102	. 3	22	12	1182	3.71	21	5	10	3	41	1	4	2	57	. 78	. 032	15	35	. 14	215	. 10	5	2.59	. 02	. 20	!	50
13311 10+0014	1	4	10	14	. 1	26	12	772	4.21	18	5	ID	1	44	,	2	2	34	. 64	. 060	11	38	49	221	. 10	5	2.48	. 02	. 21	2	10
2331 9+754	1	38	9	B8	. 1	23	10	914	3.13	16	5	1 l	1	61	1	2	2	46	. 64	. 052	13	27	. 18	188	. 07	3	1.73	. 02	. 22	1	30
L331 9+50\%	1	43	11	81	. 2	29	14	1123	4.04	21	5	0	!	49	1	2	2	55	. 75	. 059	16	35	. 50	263	. 01	1	2.41	. 02	. 20	,	20
L3311 9+254	1	53	9	95	. 1	28	11	195	4.4	7	5	10	2	12	1	2	2	10	. ${ }^{1}$. 659	15	36	. 67	233	. 05	1	2.61	. 02	. 23	1	20
13319 94004	1	40	10	15	. 1	26	13	180	3.83	13	5	12	3	11	1	$?$	2	63	. 12	. 011	18	38	. 57	110	. 10	1	2.60	. 02	. 21	1	30
5706	19	63	39	132	1.1	11	31	1103	1.22	10	20	-	39	51	19	16	20	61	. 49	. 030	10	61	. 85	181	. 07	31	2.02	. 07	. 11	11	1400

SAMPLIt	Ho	${ }^{C 1}$	Pb	70	mg	Ii	Co	Na	Ie	48	\square	kI	7 b	St	cd	Sb	晾	v	Ca	P	4	Cr	Hg	Bi	81	B	11	Iz	1	V	Eg
	PPX	PPK	P?	PPF	PFE	PPM	PP:	PPK	1	PPK	PPM	PPM	PP\%	PPK	PPK	PFY	PPM	PPK	1	1	PR	PR	\%	PPK	1	PPK	1	1	1	PPY	PFP
L339 3+754	1	12	2	65	. 3	29	13	174	1.24	3	5	m	3	50	1	3	2	63	. 71	. 027	18	39	. 70	176	. 09	2	2.65	. 02	. 27	$!$	10
W3148+504	1	19	2	18	. 2	22	13	921	4.09	1	5	1 D	3	45	1	2	5	65	. 59	. 056	14	35	. 61	180	. 10	5	2.11	. 02	. 28	1	30
313I $8+254$	1	38	5	30	. 2	26	11	382	3.61	2	5	10	1	59	1	2	,	61	. 65	. 031	13	34	. 18	158	. 11	5	2.24	. 03	. 31	1	60
L331189004	1	35	7	92	. 3	22	9	1122	1.2!	1	5	Id	3	53	1	3	1	49	. 55	. 054	13	31	. 50	213	. 11	2	2.50	. 12	. 24	I	10
[3311 $7+754$	1	40	2	56	. 1	21	8	77	3.07	3	5	10	3	96	1	2	2	17	. 55	. 021	11	32	. 76	117	.10	B	2.04	. 03	. 31	1	30
1339 748014	1	36	8	51	. 1	19	¢	106	2.27	2	7	10	1	133	1	1	2	42	1.34	. 059	11	23	2.05	152	. 03	15	1.58	. 09	. 30	1	50
6321 12+500	1	31	5	93	. 2	25	11	951	3.64	1	5	ITD	3	43	1	2	2	65	. 73	. 127	16	37	. 61	215	. 11	3	2.34	. 02	. 20	1	10
1321112+254	1	23	2	59	. 1	17	5	SH_{1}	2.11	2	5	70	2	31	1	2	2	48	. 19	. 029	9	29	. 10	112	. 12	5	1.80	. 02	. 21		30
[32112+004	1	28	1	68	. 1	19	8	546	3.27	2	5	0	3	41	1	2	4	59	. 69	. 033	12	31	. 46	155	.11	1	2.17	. 02	. 25	1	30
1321112751	1	28	1	69	.1	21	10	524	1.59	3	5	T0	3	4	1	3	2	61	. 64	. 036	12	41	. 56	166	. 11	10	2.61	. 03	. 26	1	10
2321111+304	1	52	8	90	. 3	10	20	796	3.11	12	5	110	3	68	1	2	1	94	1.31	. 011	11	105	1.11	171	. 19	9	4.85	. 06	. 25	1	40
[321111+25\%	1	56	6	106	. 1	79	21	1229	5. 36	24	5	10	2	41	1	2	3	85	. 91	. 050	11	112	. 01	381	. 87	5	3.10	. 02	. 23	1	50
L32M 11+6013	1	3	4	17	. 2	32	10	671	3.86	15	5	TD		36	1	2	3	51	. 53	. 027	13	17	. 17	198	. 11		2.50	. 02	. 18	1	70
4,32x 10+75\%	1	34	1	17	. 1	28	9	885	3.63	9	5	ID	3	31	1	2	,	59	. 60	. 055	11	11	. 11	258	. 11	1	2.47	. 02	. 21	1	40
L3211 $10+500$	1	34	11	13	.2	28	11	140	3.63	12	5	10	3	4	\dagger	2	3	60	. 68	. 041	11	37	. 46	212	. 12	1	2.19	. 03	.22	1	50
W32110 1025%	1	34	1	104	. 4	21	9	861	3.11	4	5	罟	1	17	1	1	1	50	. 59	. 012	14	33	. 17	268	. 10	5	2.14	. 02	.72	1	40
L321 10+004	1	31	6	91	. 2	21	9	1002	2.96	6	5	10	2	16	1	2	5	13	. 63	. 012	12	29	. 14	202	. 09	2	2.17	. 02	. 19	1	40
L321194754	1	14	2	1	.1	25	12	1098	1.79	13	5	d	2	58	1	2	2	56	. 71	. 143	15	32	. 56	211	. 09	6	2.36	. 02	. 29	,	50
132149+50il	1	45	5	79	. 1	24	8	327	3.15	10	5	10	,	92	,	2	2	52	. fB	.066	13	37	. 92	119	. 99	5	2.11	. 03	. 34	1	40
1321 9+25U	1	$6!$	5	12	. 2	31	11	339	4.73	18	5	10	1	57	1	2	1	19	. 82	.069	22	45	. 71	215	. 12	3	3.52	. 02	. 33	1	40
L32119 900\%	1	52	2	82	. 1	30	17	993	4.53	11	5	10	,	52	1	,	1	35	. 97	. 065	III	12	. 12	233	. 09	1	3.32	. 02	. 21	1	20
L321 84754	1	54	1	80	. 1	23	18	845	4.75	6	5	ITI	3	51	,	2	4	11	. 78	. 054	20	14	. 14	177	. 11	1	3.32	. 02	. 14	1	30
L32198501	1	11	9	61	. 1	32	15	8t5	1.01	5	5	10	1	61	1	2	2	61	. 18	. 043	20	46	. 74	165	. 10	5	2.48	. 01	. 30	1	40
L32118 $8+2511$,	47	3	J0	. 1	23	11	575	3.61	6	5	If	,	89	1	2	,	57	. 64	. 059	16	33	. 78	160	. 49	4	2.13	. 03	. 36	1	30
L321 8+0014	1	34	9	68	. 2	24	11	164	3.36	5	5	Wiol	2	59	1	2	5	5	. 78	. 054	15	34	. 36	166	. 10	3	2.18	. 03	. 33	1	50
L3219 97511	\pm	34	2	65	. 1	13	13	891	3.17	s	5	IVD	,	51	1	2	4	61	. 13	. 038	15	35	. 6	141	. 11	1	2.21	. 03	. 31	1	00
L321 $7+5011$	1	31	1	13	. 2	22	10	396	3.11	3	5	10	3	51	1	2	1	54	. 61	.017	14	31	. 45	209	. 12	1	2.28	. 02	. 21	,	30
L3iM 12+504	1	35	4	11	. 1	29	12	771	1.85	1	5	10	2	13	1	2	2	12	.f6	. 049	15	44	. 6	107	.11	2	2.71	. 82	. 24	1	40
13111 12+254	1	30	2	4	. 1	27	10	795	3.57	7	5	D	3	43	1	2	,	16	.6)	. 027	13	4	. 57	192	. 14	1	2.45	. 03	. 21	1	30
L311 $12+0014$	1	29	T	S!	. 1	23	1	530	1.42	6	5	\% 10	2	41	1	2	2	6	. 61	. 021	13	36	. 52	147	. 14	5	2.33	. 02	. 21	1	30
W311 11+75i	1	27	5	60	. 1	28	10	635	3.13	3	5	11	,	40	1	2	2	62	. 57	. 033	13	4	. 51	161	. 15	2	2.49	. 82	. 21	1	40
131111+504	1	30	5	51	. 1	21	10	594	3.14	2	5	IID	3	49	1	1	2	62	. 56	. 033	12	12	. 60	148	. 14	6	2.39	. 03	. 22	1	30
2311 11+250	1	35	9	61	. 1	30	11	704	3.67	8	5	ID	3	52	1	2	5	6	. 12	. 037	15	46	. 60	183	. 11	5	2.18	. 03	. 25	1	40
L31\% 11+50\%	1	37	11	68	. 2	31	11	871	3.31	6	5	D	3	53	1	2	J	51	. 71	. 047	11	14	. 57	221	. 11	1	2.37	. 03	. 21	1	50
L.311 10+15\%	1	410	1	7	. 3	37	16	89	1.27	16	5	17	3	39	1	4	5	12	. 68	. 017	16	4	. 6	218	. 09	1	2.57	. 02	. 26	2	10
231\% 10+504	1	4	5	3	. 1	33	13	913	1.11	18	5	1 l	3	11	1	2	3	65	. 67	. 019	15	46	. 53	241	. 00	1	2.12	. 02	. 28	1	50
57] C	19	4	31	132	1.0	33	31	1118	4.28	4	18	7	39	51	13	15	19	61	. 50	. 091	40	63	. 90	110	. 07	32	2.02	. 08	. 11	13	1404

ShMPist	Ho	Cu	Pb	In	19	Ni	Co	Mn	14	${ }^{2} 5$	0	λ	7b	St	cd	Sb	Bi	∇	ca	p	la	cr	kg	$B 2$	71	B	11	Na	I	-	Hg
	2PK	PPM	PPK	PPE	PPY	PPK	P9\%	PPY	1	PPM	PPX	PPX	PPK	PPK	PPM	PPM	89\%	PPM	1	;	PPK	PPM	1	PPM	,	PPM	1	1	1	PPK	PPB
131310 10254	1	35	f	75	. 3	26	12	120	3.83	17		\%	3	11	1	2	2	65	. 57	. 012	16	39	. 56	154	. 11	1	2.23	. 03	. 28	1	50
2311100001	1	35	5	88	.2	25	11	814	1.71	20	5	N0	3	16	1	2	2	60	. 58	. 015	17	37	. 56	175	. 10	2	2.23	. 03	. 33	1	50
L311 9+75\%	1	45	2	bs	1	27	16	44	4.36	34	5	10	3	19	1	3	2	66	. 11	. 016	13	36	. 70	175	. 09	3	2.23	. 03	. 32	,	60
L31) 94504	1	54	5	30	. 2	29	19	991	1.86	8	5	1 D	2	50	1	2	2	13	. 12	. 018	18	11	. 86	174	. 08	1	2.99	. 02	. 29	,	30
L3III 9+254	1	50	2	65	. 1	21	9	696	3.16	8	5	10	1	159	1	2	3	14	1.23	. 066	13	23	1.60	99	. 05	15	2.02	. 05	. 29	1	30
bilir seour	1	11	5	71	. 1	15	12	779	3.45	1	5	10	2	97	1	2	2	55	. 30	. 074	14	11	. 60	14	. 08	8	2.23	. 02	. 41	J	30
L31\% 84754	1	18	3	73	. 3	21	13	190	3.86	6	5	ID	1	54	1	2	3	65	. 14	. 069	20	38	. 75	215	. 10	2	3.06	. 02	. 33	2	40
1311 8 +501\%	1	49	2	12	. 2	30	18	930	4.10	1	J	18	1	58	1	3	1	19	. 71	.056	22	45	. 94	172	. 11	2	3.78	. 02	. 34	1	30
L.31118425V	1	17	4	65	. 1	27	12	1050	3.72	1	5	10	2	63	1		3	63	. 35	. 061	19	31	. 85	180	. 08	5	2.34	. 03	, 33	1	50
L2118800014	1	35	2	11	.1	22	11	930	3.37	2	5	ND	2	99	1	2	2	58	. 75	. 067	16	32	. 81	151	. 08	6	2.24	. 03	. 36	1	30
L319 7 7 754	1	11	4	69	. 2	23	10	629	2.99	,	5	\%	2	114	1	2	2	30	1.28	. 067	13	27	1.12	86	. 07	13	1.90	. 05	. 30	1	30
6115 $7+50 \mathrm{H}$	1	52	5	70	. 1	20	8	536	3.04	j	5	10	1	151	1	2	2	11	. 88	. 066	15	27	1.12	85	. 08	1	2.39	. 06	. 25	1	11
129\% $12+50 \mathrm{y}$	1	48	10	11	. 3	35	15	524	4.11	8	5	rb	1	52	1	3	2	17	. 83	. 041	16	50	. 85	233	. 16	1	3.70	. 02	. 24	2	50
629112+25i	1	51	8	12	. 2	28	15	151	4.15		5	1 y	,	51	,	3	2	81	. 93	. 058	11	40	, 90	225	. 11	1	3.05	. 02	. 21	1	10
129812+0014	1	41	5	12	1	31	14	122	4.88	10	5	10	1	44	!	2	2	81	. 68	.063	15	12	. 75	205	. 13	5	3.08	. 02	. 26	1	50
L293 : $1+754$	1	36	6	60	. 1	21	10	645	3.06	2	5	10	3	71	,	,	2	5]	. 71	. 031	13	31	. 71	117	. 12	1	2.34	. 03	. 30	,	30
:2911 11+504	1	13	1	59	. 1	26	11	64	3.00	1	5	17	1	90	1	2	3	8	2.08	.098	12	31	1.17	150	. 09	11	1.81	. 03	. 24	1	60
L29911+254	1	39	2	111	. 1	20	9	400	3.12	5	5	10	3	57	1	2	,	13	.15	. 191	15	38	. 65	259	. 12	5	3.00	. 02	. 29	.	30
[29\% 11+80\%	1	39	4	19	4	29	12	505	3.56	10	5	10	3	51	,	,	1	1	. 76	.017	16	15	. 65	263	. 13	1	3.05	. 03	. 31	1	40
$123210+7511$	1	30	8	61	. 3	21	12	761	3.12	7	5	Vid	1	57	,	,	2	64	. 63	. 052	18	11	. 63	183	. 14	2	2.41	. 03	. 34	1	30
L2911 $10+501$	1	36	5	11	.2	32	12	159	3.60	10	5	10	3	55	,	2	2	63	. 70	. 054	18	44	. 62	213	. 12	d	2.54	. 03	. 28	1	40
L29\% 10+25\#	1	11	1	14	. 1	33	13	135	3.99	14	5	17	1	43	1	2	1	10	. 51	. 061	17	50	. 70	155	. 12	1	2.61	. 03	. 35	1	50
129\% $10+0011$	1	46	5	76	1	35	17	1013	4.54	17	5	10	2	4	1	2	6	69	. 10	. 043	16	47	.18	188	. 01	2	2.31	. 02	. 33	1	60
L2915 9+751	1	14	7	15	. 3	23	9	381	3.83	5	5	10	3	70	1	,	2	54	. 65	.043	15	40	1.22	115	. 10	5	2.14	. 04	. 11	1	50
129\% 9+5011	1	4	3	75	. 2	25	10	660	3.54	10	5	1 I	1	77	1	2	2	50	. 66	. 653	14	30	. 86	130	. 08	9	2.28	.03	. 39	1	10
12919 9+254	1	61	2	75	. 1	21	16	de7	4.59	20	5	17	2	68	1	$?$,	76	. 11	. 049	17	32	1.85	115	. 09	5	2.51	. 03	. 32	1	120
629194004	1	11	6	14	1	24	10	1098	3.69	10	5	10	2	60	1	?	1	51	. 97	. 059	14	31	. 65	206	. 01	4	2.13	. 02	. 25	,	60
L29888475	i	13	5	15	. 2	30	14	675	4.55	15		0	1	53	,	2	3	10	. 55	. 062	18	4	. 13	206	. 12	2	3.14	. 01	. 19	1	110
629188504	1	11	3	14	. 1	22	1	312	2.98	5	5	110	1	209	1		4	4	1.12	. 678	12	31	1.17	10	. 06	15	2.67	. 05	. 31	1	40
129118825\%	1	36	6	58	. 2	19	9	155	3.13	4	5	ND	2	122	1	,	1	51	. 16	. 018	14	30	. 94	112	. 01	5	2.15	. 04	. 31	1	30
529184004	1	44	1	59	. 1	20	11	975	3.31	1	5	10	2	73	1	2	3	56	. 60	. 059	11	30	. 15	137	. 07	6	2.21	. 02	. 29	1	10
L29119751\%	1	41	1	67	.1	12	13	419	3.68	1	5	ID	2	56	1	2	2	61	. 75	. 012	11	12	. 17	164	. 05	5	2.32	. 02	. 21	1	50
L233 7450 C	1	35	6	76	. 2	15	11	1104	3.13	3	5	5	2	16	1		3	56	. 61	. 055	15	31	. 62	182	. 88)	2.36	. 02	. 25	,	10
L28II 12+504	1	38	9	76	. 1	20	11	172	3.78	8	5	\$1	1	51	1	2	1	14	. 4	. 144	12	34	.12	219	. 11	1	3.01	. 02	. 11	1	30
12811 $12+254$	1	39	5	72	. 2	22	10	1189	3.09	5	5	IV	2	53	1	1	2	31	. 5	. 061	11	30	. 61	259	. 11	3	2.40	. 02	. 26	1	40
L2811 $12+004$	1	15	J	12	.	21	12	341	3.65	f	5	10	3	19	1	2	1	51	. 33	. 010	14	31	. 11	249	. 12	1	2.99	. 02	. 21	1	50
Spd C	19	61	41	132	7.2	12	30	1120	4.29	10	18	1	39	31	19	17	24	11	. 50	.69:	10	11	. 5	It1	. 07	3	2.08	. 08	. 15	15	1300

SAMPLat

$3 \quad \mathrm{Lt} \quad \mathrm{Cr} \quad \mathrm{Mg} \quad \mathrm{BL}$ 71 $\begin{array}{rr}8 & \text { Al } \\ \text { PPH } & 8\end{array}$ Hz
3 1 PFH时
PY

L281 11+75	1	18	10	61	. 1	33	13	712	3.70	5	5	10	3	82	1	,	2	70	. 86	. 040	15	43	1.08	179	. 12	1	2.88	. 02	. 38	2	80
2281 11+5014	$!$	38	1	67	. 1	23	10	573	3.47	1	5	ID	2	65	1	3	6	63	. 73	.053	14	37	. 32	181	. 12	1	2.56	. 03	. 30	1	10
2281111+254	1	19	6	81	. 1	2	1	370	2.91	2	5	Ti	1	31	1	2	2	49	1.30	. 053	12	30	1.47	153	. 09	16	2.01	. 83	. 26	1	40
t2at 11+0014	1	12	4	71	. 1	23	10	447	3.23	2	5	T0	3	55	1	2	5	55	. 65	. 049	19	42	. 70	157	. 12	5	2.36	. 03	. 32	1	40
2281 10+754	1	35	5	66	. 1	31	12	930	3.45	1	5	枵	2	58	1	2	7	6	. 91	. 04	14	15	.69	181	. 12	2	2,11	. 03	. 21	1	60
22017 10750il	1	42	8	11	. 1	34	13	553	3.85	9	,	1 l	4	61	1	2	7	70	. 36	. 053	19	49	. 92	111	. 14	9	2.67	. 03	. 32	1	70
L288 10+25i4	1	38	9	66	. 1	29	11	729	3.26	8	5	10	3	62	1	2	2	56	.61	. 018	15	13	.13	118	. 10	1	2.11	. 03	. 29	1	50
L281104001	1	12	6	91	. 1	35	15	968	1.10	15	5	16	1	13	1	2	2	67	. 61	. 057	14	15	. 58	189	. 08	1	2.19	. 02	. 26	1	70
L2Bx 94754	1	4	9	34	. 1	30	15	1056	4.22	11		10	2	61	t	2	2	10	. 83	. 050	15	31	. 75	215	. 87	1	2.44	. 02	. 33	,	50
L29\% $8+504$	1	45	1	13	. 2	11	11	130	3.62	3	5	K0	2	94	1	2	5	57	. 75	. 864	15	30	. 19	141	. 07	1	2.33	. 03	. 33	1	10
22819 $9+25 \%$	1	45	11	85	. 1	15	12	45	4.01	12	5	10	$?$	71	1	,	2	69	. 90	. 054	16	33	. 35	153	. 09	7	2.41	. 01	. 35	1	50
L288 9400\%	1	51	2	! 3	. 1	26	13	931	3.65	14		10	1	103	1	2	2	4	1.59	. 087	11	13	. 85	137	. 08	12	1.93	. 03	. 36	1	10
62814 87754	1	52	7	11	. 1	19	1	228	3.06	3	5	m	1	111	,	2	2	40	1.10	. 075	14	28	1.00	118	. 08	1	2.27	. 03	. 41	1	50
L268 $8+504$,	4	6	18	. 1	28	14	1029	4.01	12	5	10	1	68	1	2	2	13	. 93	. 069	14	11	. 75	207	. 10	9	2.51	. 02	. 36	1	60
124\% 84251	1	13	5	63	. 1	25	9	531	3.13	2	5	11	1	349	1	2	2	55	2.56	. 049	13	39	1.31	76	. 08	25	1.77	. 03	. 32	1	30
L281 0+001	1	18	7	71	. 1	26	15	964	3.98	O	5	ID	2	65	,	2	,	15	1.35	. 063	17	38	. 83	170	. 08	4	2.30	. 03	. 30	1	50
L2811 7+751	1	39	1	62	. 1	23	12	1015	3.62	5	5	did	2	55	1	2	2	1	. 74	.059	16	35	. 13	170	. 09	5	2.22	. 02	. 31	1	30
L28 $7+5018$	1	38	7	70	. 1	$2)$	11	843	3.61	3	5	11	3	51	1	2	2	60	. 12	.066	16	32	. 66	203	. 10	1	2.13	. 02	. 21	1	20
L27Y 12+50\%	\pm	39	1	61	. 1	23	12	14	3.10	2		10	3	56	1	2	6	70	. 35	. 058	12	32	. 72	222	. 13	5	2.12	. 02	. 31	1	30
L2711 $12+254$	1	18	2	67	. 1	26	12	193	3.65	3	5	10	2	52	1	2	2	80	1.13	. 070	14	35	. 80	213	. 11	1	2.40	. 02	. 28	1	50
127Y 12+004	1	11	7	74	. 1	28	11	885	3.83	,		IV	2	59	,	2	2	85	1.08	.889	15	38	.83	261	. 11	5	3.07	. 02	. 31	1	10
L27111+754	!	4 B	3	13	.2	31	15	025	4.07	4	5	10	1	13	1	2	$?$	19	. 10	. 016	16	13	. 74	268	. 15	1	1.18	. 02	. 28	1	50
L271 1i+504	1	13	6	8	. 1	25	10	136	3.25	2	5	1 D	2	41	1	2	2	60	. 13	.058	13	35	. 65	258	. 12	3	2.51	. 02	. 27	1	40
L271 11+259	1	59	2	75	. 1	30	12	729	1.56	2	5	ND	1	51	1	2	2	56	1.02	. 043	15	38	. 78	256	.11	10	2.54	. 02	. 26	1	10
127\% 11+001	1	14	1	68	.1	24	12	135	3.36	1	3	10	3	62	1	2	2	62	. 91	. 693	11	11	.73	185	. 10	1	2.11	. 02	. 27	1	60
L27M 10+75	1	42	5	59	. 2	11	1	215	2.83			10		80	,	2	2	43	1.10	. 058	13	31	. 87	134	. 03		2.11	. 02	. 29	1	1200
L2711 10+504	1	31	1	11	. 1	34	12	123	3.60	f	5	1 m	2	53	1	2	2	18	. 34	. 018	14	43	. 73	178	. 10	7	2.24	. 02	. 30	1	50
1275 10+25\%	1	42	5	38	. 3	26	1	152	2.95	,	5	N	2	71	1	2	2	15	. 92	. 656	16	37	. 70	151	. 10	1	2.39	. 03	. 14	,	40
$627110+604$	1	12	10	11	. 2	37	12	6^{60}	3,38	6	5	10	3	71	1	?	2	51	1.27	. 070	18	39	. 82	169	.11	10	2.01	. 01	. 28	1	10
L2714 9+754	1	4	5	4	.2	32	11	699	3.85	17	5	10	2	58	1	2	4	62	. 12	. 861	15	41	. 69	171	. 04	1	2.05	. 02	. 30	1	50
L274 9+504		46	1	84	4	30	13	819	3.97	15	5	10	2	58	1	$?$	2	64	1.02	. 073	13	37	. 71	179	. 08	,	2.15	. 03	. 42	1	60
12719 94251	1	13	10	14	.1	21	12	151	3.88	10	5	1 l	1	53	,	2	2	64	. 17	. 052	15	35	. 11	111	. 818	3	2.25	. 83	. 31	1	50
L271 94004	1	45	1	33	. 1	28	11	914	3.58	10	5	IV	2	63	1	2	2	61	. 73	. 064	16	35	. 61	176	. 10	2	2.04	. 03	. 21	1	70
L271 8+754	1	36	5	73	. 3	25	11	876	3.53	10	f	50	3	51	1	2	2	64	. 61	. 044	15	35	. 59	175	. 10	5	1.93	. 13	. 31	1	60
L2711845014	1	40	7	71	. 1	25	12	850	3.13	15	5	10	2	58	1	2	2	59	. 71	. 050	15	34	. 55	111	. 10	2	1.4	. 02	. 29	1	50
12718 $8+25$	1	51	5	69	. 1	21	14	1010	3.76	11	5	110	1	52	-	2	1	10	1.16	. 013	15	33	1.01	156	. 07	10	1.99	. 01	. 21	1	110
STD C	11	64	36	133	1.0	13	30	1101	1.23	12	16	1	10	50	11	17	19	61	. 49	. 085	40	61	. 91	182	. 07	31	1.98	. 09	. 11	13	1330

SAMPLIF	Ho	CH	Fb	q0	$\mathrm{Ag}^{\text {g }}$	Ni	Co	Km	Ie	$1{ }^{\text {s }}$	J	10	Th	Sr	cd	5	Bi	V	ca	P	1.	Cr	Mg	Bi	Ti	1	Al	\%	I	V	89
	PPM	PPX	PPM	PPM	PPH	PP!	PPM	PFK	;	PPK	PPK	PPK	PPK	PPK	PPK	PP\%	PP*	PPM	\$	\$	P9\%	PPE	\%	PPY	1	PPM	\%	\%	1	PPK	PP8
22718 $8+0814$	1	39	1	62	. 1	25	11	802	3.57	5	5	5	2	90	1	2	2	52	. 69	. 030	15	33	. 71	112	. 10	7	2.34	. 03	. 19	2	60
2274 1+798	1	15	1	74	. 1	26	11	918	4.15	4	5	ND	3	61	1	2	2	15	. 80	. 057	21	19	. 85	159	. 11	12	2.58	. 03	. 32	1	60
5271474001	1	17	2	19	. 1	29	15	938	4.05	5	5	110	1	56	1	2	4	70	. 15	.076	21	54	. 69	197	. 11	3	2.97	. 03	. 33	1	10
L2515 12+50ّ̂	1	19	6	65	. 1	24	10	606	3.01	2	5	H0	2	66	1	1	3	60	. 97	. 012	12	29	. 69	199	. 12	5	2.33	. 02	. 32	1	10
L25) $12+254$	1	39	5	65	. 1	25	11	830	3.28	2	5	1 D	2	59	1	2	2	68	. 91	. 061	13	31	. 12	186	. 13	6	2.39	. 02	. 32	1	70
125\% 12+004	1	10	5	10	. 1	24	11	122	3.61	3	5	19	1	57	1	2	3	69	. 95	. 881	14	38	. 56	331	. 12	1	2.85	. 02	. 30	1	10
225y $11+75$	1	40	7	53	. 1	23	11	819	3.31	3	5	10	3	57	1	2	5	66	. 85	. 056	11	32	. 60	219	. 12	5	2.69	. 02	. 30	2	30
625\% 11+5011	1	14	6	58	. 1	21	14	161	4.00	1	5	W1	1	58	1	,	2	102	1.16	. 069	15	40	. 81	$15!$. 18	1	2.76	. 03	. 26	2	6
2754111+254	1	63	4	65	. 1	29	11	963	3.80	5	5	10	2	13	1	2	3	90	1.10	. 110	15	12	. 81	205	. 15	7	2.77	. 03	. 31	1	60
L2511 13+004	1	14	4	60	. 1	6	10	773	3.72	1	5	1 D	1	50	1	2	2	80	. 96	.058	15	10	.13	165	.13	3	2.54	. 02	. 36	1	40
425410+75i1	1	39	5	64	. 2	25	11	107	3.12	7	3	vo	3	65	,	,	2	69	1.01	. 872	13	38	. 63	169	. 12	8	2.30	. 02	. 31	?	50
125\% 10+50\%	1	10	4	61	. 1	23	9	437	1.03	6	5	10	1	75	1	2	2	59	1.05	. 019	12	12	. 68	132	. 11	1	2.11	. 03	. 25	l^{*}	40
L25110+254	1	38	2	61	. 1	4	8	291	3.32	4	5	ND	2	13	!	,	4	62	. 96	.053	14	35	. 86	130	. 12	g	2.33	. 03	. 32	2	40
L25510+0014	1	31	2	63	. 1	25	8	319	3.25	3	5	10		61	1	,		61	. 80	. 053	11	10	. 68	143	. 12	1	2.38	. 03	. 34	1	50
L25119+754	$!$	10	5	12	. 2	29	11	906	3.52	5	5	ND	2	57	1	2	3	63.	. 90	. 070	16	4	.60	225	. 11	1	2.31	. 03	. 29	1	50
L2519 9+5031	1	36	3	67	1	26	10	700	3.58	10	5	ID	,	53	,	2	2	68	. 13	. 065	16	38	. 55	181	. 12	5	2.32	. 03	. 29	1	30
125\% 9+25\%	1	33	2	66	. 1	27	11	781	3.24	1	5	10	,	53	1	2	2	58	. 69	. 051	16	38	. 49	111	. 11	2	2.08	. 03	. 25	1	60
125\% 9+004	1	35	8	13	. 2	12	8	335	2.85	5	5	M	2	58	1	2	3	41	. 86	. 054	12	30	. 54	157	. 09	,	2.17	. 03	. 21	$!$	50
L251189754	1	12	2	85	. 1	27	11	914	1.12	11	5	\%	2	13	,	2	2	68	. 66	. 010	11	38	. 61	170	. 08	1	2.31	. 03	. 29	1	10
L25\% 8+50\%	1	13	2	81	. 1	21	12	978	3.91	9	5	10	1	50	-	,	,	65	. 11	.06s	15	38	. 57	205	. 10	t	2.14	. 02	. 35	1	40
L2548250	1	11	2	30	. 1	21	12	768	4.20	11	3	10	2	4	1	2	2	72	. 72	. 047	17	31	. 59	170	. 12	2	2.50	. 03	. 26	1	50
L25888004	,	4	5	78	. 1	4	13	979	3.98	13	5	10	2	55	1	2	3	65	. 92	. 063	15	31	. 61	163	. 09	1	2.09	. 03	. 29	t	60
4259 7+75\%	1	12	7	77	. 1	25	13	983	3.93	ξ	5	UD	2	11	1	2	2	71	. ${ }^{1}$.056	15	31	. 65	161	. 11	5	2.52	. 03	. 31	1	60
L2517 7 5014	1	56	6	69	. 1	25	13	909	3.88	1	5	10	2	91	1	2	4	12	1.45	.063	15	34	. 14	159	. 11	8	2.31	. 03	. 26	2	80
	1	50	5	66	. 1	31	18	862	4.30	1	5	10	3	73	1	2	2	111	1.34	. 014	15	10	1.08	170	.22	I	3.19	. 03	. 36	1	30
124112025	,	45	3	59	. 1	37	17	128	4.17	1	5	10	3	63	,	2	3	103	1.05	. 055	15	41	. 89	168	. 22	3	3.11	. 03	. 30	1	10
L2411 12+5041	1	46	5	59	. 1	25	13	121	3.65	,	5	10	2	30	,	2	2	17	1.15	. 072	14	36	. 81	163	. 19	5	2.88	. 03	. 39	,	40
L211 11+754	,	43	5	68	. 1	25	12	765	3.13	3	5	10	J	53	,	2	1	70	. 34	. 066	11	10	. 66	252	. 13	2	3.01	. 09	. 30	1	10
L2411115014	1	52	2	61	. 2	28	10	465	3.52	2	5	Y0	3	30	1	2	6	59	1.08	. 857	15	10	. 76	246	.11	,	2.45	. 03	. 30	2	120
L21I 11+25\%	1	19	2	59	. 1	22	10	642	3.28	2	5	10	2	69	1	2	2	6	1.14	. 057	12	35	. 81	156	. 14	1	2.37	. 03	. 39	1	10
L211 11+004	1	41	3	62	. 1	24	11	311	3.69	3	5	m	1	73	1	2	7	80	1.15	. 061	15	11	. 35	159	. 18	9	2.52	. 03	. 36	1	10
L241104151	1	13	1	68	. 2	24	11	761	3.92	1	5	10	3	6	1	2	2	14	1.02	. 511	15	13	. 11	161	. 14	4	3.81	. 01	. 35	1	30
L2411 10+504	1	51	10	12	1	28	14	109	4.04	6	5	ITI	3	60	,	2	2	04	. 35	. 079	15	13	. 40	185	. 12	1	2.95	. 02	. 32	1	50
L245 10+251	1	56	5	12	1	32	13	833	3.83	6	5	IID	1	60	1	2		80	1.11	. 056	15	12	. 36	219	. 11	1	2.15	. 03	. 11	,	100
L2111 $10+001$	1	12	5	70	. 1	27	13	880	3.10	5	5	It	3	5	1	2	2	15	. 90	. 174	15	41	. 64	212	. 12	6	2.61	. 02	. 34	1	50
L21119+751	1	31	2	66	. 2	25	13	112	3.12	6	5	10	1	13	1	2	2	11	. 69	.675	15	42	. 52	218	. 14	3	2.11	. 03	. 26	1	60
5T0 C	18	13	41	132	3.2	13	31	1113	4.28	39	18	8	40	51	19	17	21	61	19	. 890	40	6	, 89	181	. 07	34	2.01	. 08	. 11	13	1400

SAMPLEt

L214949014	1	33	1	64	. \ddagger	26	10	763	3.68	1	5	110	2	4	1	2	2	17	. 68	. 055	13	17	. 54	115	. 11	2	2.57	. 03	. 26	1	30
L24119+254	1	34	9	13	. 1	30	10	811	1.38	1	5	110	2	54	1	2	2	68	. 70	. 050	14	45	. 52	181	. 13	2	2.19	. 01	. 34	1	10
L219 9+00i1	1	31	1	70	. 1	29	11	813	3.60	11	3	1 m	2	58	1	2	2	6	. 69	. 071	11	12	. 72	169	. 11	2	2.05	.03	. 31	1	50
L241889154	1	jb	11	11	1	21	14	1202	3.78	10	5	ND	1	60	1	2	2	62	. 39	. 052	13	14	. 94	170	. 10	1	2.22	. 03	. 31	1	80
L24118 $8+50 \mathrm{y}$	1	33	2	17	. 1	23	10	786	3.28	2	5	31	1	127	1	3	2	42	1.81	.071	10	34	2.14	122	. 07	13	1.95	, to	. 58	1	B0
121188251	+	48	1	11	.2	1)	1	612	2.91	2	5	10	1	151	1	2	3	34	1.61	. 017	10	28	1.35	115	. 05	16	2.11	.13	. 56	1	10
L211 84005	1	11	7	12	. 1	27	13	1175	3.84	6	5	Y	1	82	1	2	2	69	. 12	. 055	13	31	1.06	152	. 89	1	2.21	. 03	. 36	1	10
L21: $7+751$	1	11	5	69	. 1	13	11	903	3.17	,	5	WD	2	60	1	2	2	61	. 12	. 018	13	32	. 65	$13 \pm$. 10	2	2.09	. 03	. 26	1	6
L24M 7+500	1	39	5	61	. 1	23	12	659	4.02	8	5	ID	3	66	1	2	6	71	. 13	. 053	13	36	. 13	152	. 12	2	2.49	. 03	. 28	1	80
622\% $12+50 \%$	1	14	2	57	. 2	52	18	118	4.12	3	5	ID	1	151	1	2	2	95	4.21	. 879	13	45	1.59	131	. 18	3	2.73	. 10	. 15	1	220
$122112+251$	1	52	11	65	. 1	36	15	125	1.01	4	5	50	1	12	1		1	92	1.31	. 082	13	41	1.01	160	. 18	3	2.95	. 03	. 33	1	10
L22112+001	1	12	5	5)	.1	26	10	636	3.47	5	5	ID	,	51	1	2	2	18	. 98	. 078	11	40	. 70	11	. 15	2	2.41	. 03	. 21	1	50
422Y 11+75\%	1	43	,	86	. 1	25	12	159	3.92	,	5	10	1	88	1	2	3	80	2.20	. 071	11	33	. 18	174	. 16	2	2.87	. 03	. 23	1	220
L221115501	1	12	1	51	. 1	25	3	691	3.43	1	5	10	2	66	1	3	1	13	. 98	. 017	11	33	, 71	150	. 15	14	2.85	. 03	. 32	1	40
122111425\%	1	19	3	56	. 1	26	13	656	3.04	5	5	1 D	1	323	1	2	4	70	3.10	. 056	10	29	5.00	111	. 13	5	2.19	. 09	. 30	1	150
1221111+8014	1	36	2	10	. 1	33	16	621	4.14	5	5	10	1	109	1	2	5	89	2.33	. 074	9	40	2.19	69	. 14	1	2.34	. 11	. 12	1	250
622110+754	1	63	5	71	.1	29	19	131	4.71	10	5	10	1	100	1	2	2	8	1.39	. 066	12	38	1.16	126	. 06	5	2.14	. 03	. 30	1	260
222110 $10+5011$	1	61	2	16	. 1	31	21	1064	5.15	27		WD	2	51	1	,	3	96	. 6	. 058	15	19	. 12	183	,06	2	2.61	. 02	. 21	1	3200
L22\%10+25\%	1	56	7	90	.	35	17	750	3.08	20	5	ID	3	61	1	3	2	17	. 62	. 051	19	50	. 67	297	. 12	2	3.59	. 02	. 21	1	200
L22: 10+004	1	5%	8	78	. 1	12	18	711	5.08	11	5	W	3	19	1	2	2	40	. 11	. 045	16	17	. 97	244	. 10	1	1.22	. 12	. 21	1	190
122119+751	1	38	3	81	. 1	28	11	332	3.91	1	j	10	3	43	1	2	2	64	. 68	. 051	12	41.	. 62	222	. 10	2	2.14	. 02	. 35	1	70
6220 9+504	1	35	2	66	. 1	21	13	566	4.13	6	5	10	1	40	1	2	2	45	. 63	. 027	13	12	. 61	155	. 14	2	2.62	. 32	. 21	\pm	00
L22119+254	1	48	2	97	. 1	30	14	1056	4.05	4	5	30	,	45	1	2	5	65	. 19	. 049	12	11	. 68	245	. 10	2	2.72	. 02	. 30	1	50
$1.2219+0011$	1	64	2	11	. 1	40	20	173	5.17	11	5	17	3	15	1	2	2	101	. 11	. 057	15	51	1.02	176	. 10	2	3.11	. 02	. 22	1	180
2223 8+754	1	52	2	91	. 2	30	14	14	4.10	8	5	10	1	51	1	3	2	71	. 11	. 056	14	14	. 12	211	. 11	2	2.69	. 02	. 31	1	60
L22\% 8 8 5011	1	4	3	82	. 1	28	11	704	1.07	3	5	30	1	僯	,	2	2	12	I	. 048	14	11	. 36	171	.11	3	2.79	. 02	. 29	1	588
W23 8+254	1	31	4	33	. 1	11	11	936	3.59	3	5	10	3	50	,	3	2	64	. 13	. 049	13	39	. 57	202	. 11	2	2.32	. 02	. 26	1	60
1221880018	1	50	2	14	. 1	$2)$	12	941	1,71	,	5	10	2	58	1	2	2	6	. 17	. 051	13	31	, 5	141	. 10	2	2.23	. 02	. 29	1	70
L221 7+754	1	14	1	79	. 1	32	15	130	4.23	8	5	IJ	2	51	,	2	3	71	. 12	. 072	11	4	. 59	203	. 12	2	2.59	. 02	. 23	1	10
L221175815	$!$	49	5	π	. 2	310	14	107	1.38	9	5	ND	3	51	1	2	1	11	. 18	. 062	11	11	. 69	201	. 13	2	2.71	. 02	. 38	1	230
L2011 $12+50 \mathrm{H}$	1	28	1	63	. 2	21	15	669	3.33	2	5	115	2	68	1	2	J	78	1.03	. 011	11	30	2.58	43	. 18	10	2.34	. 10	. 36	1	30
L201 $12+254$	1	25	2	54	. 2	25	11	553	2.69	2	5	51	1	276	,	2	2	57	3.11	. 066	,	6	3,34	1	. 11	16	2.02	. 13	. 33	2	60
L2011 12+006	1	4	1	5	. 1	21	13	529	2.92	3	5	\%	1	211	1	2	,	6	3.93	. 066)	31	2.98	110	. 12	12	2.32	.lf	. 40	1	50
L2016 11+75\%	1	\$5	1	60	. 2	38	16	175	1.20	2	5	19	1	131	1	2	,	71	3.55	. 039	,	35	1.69	138	. 13	7	2.18	. 05	. 32	1	70
220x $11+504$	1	61	6	86	. 1	33	19	143	4.51	9	5	ID	1	120	1	3	,	88	1.81	. 076	1	31	1.13	121	. 10	6	3.02	. 18	. 12	1	020
L20\% 11+25\%	1	62	4	102	. 1	31	20	1217	4.15	32	5	IID	2	63	1	2	2	94	1.12	. 085	11	12	. 14	224	. 06	2	2.61	. 02	. 26	1	1150
STD C	13	63	12	132	7.3	73	30	1119	4.29	40	13	1	40	52	19	11	23	61	. 50	. 091	39	61	. 30	111	. 01	31	2.05	. 08	. 14	13	1300

skikis:

220N 11+08Y	1	57	10	88	. 2	26	12	396	3.19	1	5	IV	2	148	1	1	4	61	1.16	. 0508	12	29	1.87	123	. 10	9	2.21	. 03	.12	1	70
L20x 104754	,	14	8	17	. 1	29	16	860	4.26	21	5	10	3	46	1	2	5	85	. 31	. 047	15	39	. 71	168	. 10		2.59	. 02	. 31	1	210
4201 10+501	1	46	3	81	. 1	31	12	B00	1.35	15	5	10	1	47	1	2	1	6	. 6	. 835	12	12	. 69	163	. 07	1	2.04	. 02	. 35	1	60
120110+25i	1	53	6	14	. 1	2 J	11	1098	3.12	5	5	10	,	63	1	2	2	65	1.13	. 042	12	36	. 68	247	. 05	5	2.23	.02	. 39	1	100
L20] 1040011	1	70	5	13	. 1	39	18	857	4.52	18	5	70	2	66	1	2	5	59	1.89	. 877	15	18	. 96	193	. 09	1	2.38	. 02	. 26	1	310
L201 9+754	1	64	2	81	. 2	10	16	836	4.56	15	5	ND	2	59	1	2	6	88	. 18	. 816	16	11	. 94	200	. 08	5	2.72	. 02	. 14	1	124
L20119+5014	1	62	11	82	. 1	39	18	179	4.70	22	5	110	2	54	1	2	2	90	. 83	. 130	15	49	1.07	135	. 06	6	2.51	. 01	. 33	1	110
l2011 9+25H1	1	54	1	91	.2	31	13	957	3.90	10		ID	1	57	,	2	2	68	. 93	. 488	14	14	. 65	279	. 09	1	2.72	. 02	. 34	1	100
L2019 9+004	1	50	1	75	. 1	34	15	799	4.12	13	5	IID	2	16	1	2	3	85	. 72	. 059	16	45	. 91	167	. 11	2	2.54	. 02	. 36	1	60
L20118+754	1	67	6	113	. 1	22	11	1159	3.32	3	5	R	2	73	1	2	3	10	1.29	.069	13	30	. 67	334	. 05	10	2.04	. 02	. 38	1	90
2204 8+5041	1	10	\$	106	. 1	22	11	902	3.59	1	5	10	2	45	1	2	2	61	. 56	.tis	13	37	. 58	261	. 13	2	3.04	. 02	. 21	1	70
L20: 8+25\%	1	38	1	13	. 1	25	11	615	3.69	5	5	10	2	11	1	2	2	11	. 54	. 859	15	42	. 58	215	. 13	2	2.70	. 02	. 21	1	60
L201188064	1	34	4	14	. 1	21	11	159	3.57	5	5	1 l	3	40	1	2	2	69	. 58	. 034	14	39	. 56	135	. 12	2	2.48	. 32	. 23	1	260
2208 $7+7511$	1	11	1	15	. 1	25	11	103	3.69	1	5	10	3	51	1	2	1	75	. 69	. 413	19	51	. 61	175	.13	2	2.69	. 02	. 26	,	100
L201 7+501	1	41	10	70	.2	27	12	13	3.81	7	5	䀦	3	4	1	2	2	73	. 68	. 050	17	39	. 45	205	. 12	2	2.75	. 02	.26	1	80
LIBN 12+50\%	1	31	2	61	.2	25	12	612	2.84	2	5	ID	2	274	1		,	49	1.27	. 065	11	11	6.06	116	. 09	8	2.15	. 30	. 39	1	30
b1811 $12+254$	1	51	7	67	. 1	38	19	142	4.26	5	5	no	2	56	1	2	1	97	1.16	. 175	15	45	1.25	150	. 14	1	2.78	. 03	. 32	1	50
b13) 12+00\%	1	46	1	70	.1	32	17	167	1.10	2	5	15	1	66	1	2	3	41	1.03	. 016	15	47	1.11	184	. 14	5	3.25	. 02	. 31	1	\$0
6181 11475\%	1	56	12	71	. 1	35	11	179	4.39	1	5	10	2	70	1	2	2	102	1.17	. 86	16	16	1.21	169	. 15	9	3.17	. 02	. 35	1	50
L18) 11450\%	t	41	9	62	. 1	14	11	834	1.03	1	5	10	1	11	1	2	2	91	1.25	. 071	15	4	1.08	166	. 11	1	3.34	. 01	. 31	1	46
[18Y 11+25\%	1	60	1	70	. 1	38	18	968	1.16	1	5	110	1	83	1	2	,	95	1.32	. 113	13	11	1.03	215	. 11	2	2.77	. 83	. 33	1	120
L1818 $11+003$	1	18	1	62	. 2	33	11	882	3.12	5	5	10	3	71	,	2	,	${ }^{3}$. 97	. 4 H	11	15	1.04	169	. 18	10	3.20	. 03	.13	1	50
b18y 10+7510	1	41	3	69	.1	31	16	126	4.17	15	5	ITI	2	86	1	?	2	97	. 91	. 688	15	40	1.04	170	. 15	1	2.94	. 03	. 34	1	560
L181 10+504	1	51	5	71	. 1	35	19	930	4.11	18	5	10	3	56	1	2	2	59	. 40	. 452	11	40	. 81	150	. 13	2	2.11	. 02	. 13	1	380
L181 10+254	1	12	3	81	.1	4	9	550	3.20	7	5	H0	1	68	1	2	,	34	.94	. 159	11	28	. 63	233	. 09	4	2.26	. 12	. 30	1	160
L182 100004	1	46	j	61	. 1	1 I	15	1119	1.89	17	5	明	2	62	1	2	2	if	. 88	. 660	14	31	. 68	242	. 10		2.42	. 02	. 31	1	210
Lfas 9473	1	57	1	65	. 1	34	15	130	3.87	11	5	ID	1	91	1	3	1	86	3.32	. 319	13	40	1.00	162	. 10	1	1.81	. 02	. 21	1	360
L1913 $3+50 \mathrm{~W}$	1	45	8	61	. 1	21	11	120	3.65	(5	IV	1	70	1	$?$	4	31	. 98	.031	15	41	.91	146	. 13	1	2.65	. 02	. 34	1	50
31315925	1	5	g	74	. 1	28	14	351	4.03	1	5	1 l	2	33	1	2	2	12	. 13	. 014	19	39	. 11	223	. 11	1	2.50	. 02	. 33	1	150
L1811 94006	1	43	1	10	.2	21	12	918	1.68	9	5	15	2	59	1	2	2	70	. 75	.869	15	15	. 64	243	. 10	5	2.10	. 02	. 34	1	150
L1814 1475\%	1	4	10	70	. 1	25	12	900	3.73	1	5	NT	2	63	1	2	2	33	. 75	. 061	15	37	. 63	230	. 11	3	2.37	. 12	. 33	1	120
L158 84504	1	16	2	59	. 1	11	1	250	2.90	3	5	WD	1	161	1	2	2	51	2.51	. 174	11	29	1.85	130	. 03	12	1.91	. 09	. 51	1	J0
L111 $8+254$	1	29	5	64	. 1	13	5	592	1.54	2	5	ID	1	294	1	2	2	17	8.30	. 168	4	14	2.67	198	. 04	25	1.21	. 12	. 29	1	50
11818 $8+0018$	1	11	10	65	. 1	11	10	531	2.54	1	5	ITI	1	231	1	2	2	12	1.76	. 012	11	31	2.50	16	. 08	8	1.79	. 13	. 40	1	90
Liby $9+7514$	1	13	g	10	. 1	27	12	130	4.00	11	5	W0	2	56	1	2	2	13	. 65	. 162	17	4	. 18	162	. 11	1	2.32	. 02	. 30	2	110
6185 7+503	1	63	4	101	. 1	$2 t$	16	1269	4.19	5	5	[10	1	57	1	2	2	69	1.07	. 675	17	35	. 71	281	. 10	7	2.45	. 02	. 11	1	100
550 C	18	63	10	132	1.1	11	31	1078	4.13	11	17	7	39	51	19	15	19	61	. 41	. 182	10	61	. 98	180	. 07	33	2.00	. 07	. 15	13	1400

SAMplat	Ho	Cl	Pb	27	29	Mi	Co	\%	fe	As	\downarrow	Au	Th	St	cd	$5 b$	Bi	V	Ca	P	li	Cr	Hg	Ba	7	1	11	Ma	I	\\|	89
	PP.	PPM	PFM	Pam	PPK	P9\%	PPM	PPY	1	PPY	PRIK	PPM	PPK	PPM	P2M	PPK	Peli	PPM	1	\%	PFK	PPK	i	PRM	1	PFI	;	1	1	PP\%	PPP
617\% 12+50 ${ }^{\text {c }}$	1	40	3	54	. 2	17	δ	158	1.61	1	5	10	1	539	1	2	1	33	7.74	. 088	1	18	4.94	151	. 04	39	1.40	. 08	.11	1	50
L178 12+25i\%	2	11	3	82	. 2	31	16	1016	1.58	3	5	10	1	101	1	2	3	11	1.17	.091	11	31	1.44	101	.11	19	2.06	. 29	. 39	!	30
L1711 12+0.08	1	50	1	61	. 2	35	17	190	4.05	3	5	17	,	73	1	2	2	89	1.06	. OBS	11	43	1.14	156	. 14	1	2.41	. 02	. 37	1	10
117111475	1	60	9	62	. 1	13	18	325	1.44	5	S	10	1	63	1	2	2	103	1.14	. 072	16	51	1.19	154	. 16	1	2.71	. 02	. 29	1	10
1178 11+501	1	43	2	67	. 4	29	16	865	3.96	3	5	ID	2	12	1	2	2	8	1.13	. 077	15	14	1.04	193	. 15	5	2.92	. 03	. 33	1	30
417111+254	1	51	5	65	. 2	32	16	882	4.07	5	5	T0	2	66	1	2	2	93	1.20	. 085	14	4	1.12	112	. 15	18	2.82	. 03	. 31	1	60
41711219004	!	13	3	30	. 1	28	13	191	3.81	3)	明	1	12	1	2	2	50	1.01	. 078	16	10	. 12	111	. 13	5	2.17	. 02	. 35	1	50
LitM 10+75	1	13	1	10	. 1	31	16	879	\$.03	2	5	T0	,	19	1	2	2	92	1.09	. 060	15	50	1.07	111	. 17	1	2.91	. 02	. 14	1	40
[179 10+504	,	49	2	70	. 1	31	16	621	3.96	-1	3	HD	1	69	1	2	2	88	1.04	. 074	14	38	1.00	178	. 15	6	2.62	. 03	. 31	1	260
41711 10+2511	1	56	3	69	. 2	12	18	881	4.51	21	5	\$,	58	1	3	2	102	1.01	. 046	16	16	1.13	167	. 12	7	2.34	. 02	. 21	1	960
L171 10+009	1	14	4	73	.1	21	1	245	2.98	1	,	IT	2	111	1	,	$\mathfrak{1}$	50	1.84	. 062	11	27	1.22	126	. 05	13	1.85	. 10	. 39	1	230
417898954	1	17	-	133	. 1	25	15	1308	1.48	5	5	10	1	80	I	,	2	58	1.12	. 122	1	13	. 62	388	. 09	1	2.65	. 02	. 31	1	560
W1711 9+504	1	12	5	19	. 1	31	9	511	3.11	2	5	110	1	70	1	\%	2	57	1.24	. 032	12	21	. 88	191	. 08	11	1.85	. 03	. 35	1	130
4171149254	1	52	1	11	. 1	25	11	196	1.65	5	5	10	1	146	1	2	2	69	. 99	. 071	11	35	. 81	129	. 09	1	2.05	. 02	. 19	1	110
L171 9+00\%	1	11	3	68	. 1	25	12	122	3.98	10	5	IT	\%	65	1	2	2	18	. 70	. 071	15	43	.75	161	. 12	6	2.29	. 02	. 37	1	100
L171188454	1	10	3	65	1	21	10	611	3.71	7	5	Vid	2	66	,	2		76	. 70	. 070	11	31	. 61	151	. 11	,	2.09	. 82	. 31	1	120
$11748+58$	1	47	6	67	. 3	27	13	567	3.16	1	5	110	1	208	,	2		69	1.98	. 1064	13	31	3.51	131	. 10	12	1.97	. 09	. 61	1	280
L171184254	1	11	2	11	. 3	23	12	635	3.31	3	5	10	1	204	,	2	2	56	2.32	. 068	11	10	1.86	105	. 010	12	1.65	. 11	. 65	,	160
41958 8+004	.	52	2	51	. 1	25	12	512	3.47	5	5	N0	1	298	1	2		81	1.90	. 017	11	34	2.92	$15!$. 10	13	1.65	. 04	. 30	1	360
6171 7+754	1	42	2	59	. 2	25	13	778	3.24	5	5	1 l	1	201	1	2	,	13	2.43	. 078	11	29	4.08	14	. 01	22	1.51	. 03	. 21	1	760
L17M $7+50 \mathrm{Y}$	1	37	2	42	. 3	22	13	520	2.78	2	5	10	1	298	1	2	2	61	6.44	. 054	10	31	3.49	83	. 01	11	1.17	. 87	. 21	1	480
STD C	19	63	11	133	1.5	13	31	1103	4.25	14	18	8	39	$5 t$	19	11	22	61	. 49	. 085	18	61	. 22	181	. 07	34	1.11	. 07	. 16	14	1100

GEOCHEMICAL ANALYSIS CERTIFICATE

M．S．MORRISON File \＃88－3667R Page 1

Sakrle	Ho	Cl	Pb	7n	ut	11	co	M2	ie	45	【	M0	\％h	55	cd	Sb	Bi	V	Cl	P	12	Cr	M9	Ba	71	8	$\lambda 1$	Ha	1	\％	89
	PPM	PFS	PPM	PPY	PP！	PRH	PRE	PPM	1	PFK	PFM	PPK	PFM	P？${ }^{\text {M }}$	PRI	PPM	PFK	PPM	1	1	PPY	P9M	\％	PPM	1	PPE	1	1	1	PPY	128
30112450 H	1	31	9	13	． 1	21	11	735	3.88	1	5	而	3	51	1	2	2	76	． 70	． 040	11	33	． 69	193	． 14	7	2.82	． 03	． 17	2	60
301． $12+25 \mathrm{I}$	1	35	8	68	． 1	23	11	635	1.80	8	5	0	5	18	1	2	2	80	． 62	． 053	13	31	． 68	172	． 14	1	2.65	． 02	． 11	1	50
3011 12＋000	1	4	10	69	． 2	27	11	559	3.79	1	5	vi	5	59	1	7	2	70	． 80	． 050	15	39	． 37	176	． 12	9	2.93	． 03	．18	1	10
$30111+151$	1	10	1	62	．	28	12	715	3.44	6	5	V1	1	11	1	2	2	6	． 84	． 068	13	36	－ 76	178	．11	8	2.29	． 03	． 18	1	410
301 13，5000	1	41	1	13	． 5	39	16	174	4.40	1	1	11	6	49	1	2	1	80	1.01	． 051	15	5	． 95	24	． 08	10	3.19	． 02	． 18	1	60
3011 $11+254$	1	43	8	11	． 5	14	16	713	1.50	8	5	m	7	44	1	2	2	81	． 91	． 063	15	62	． 99	253	.12	1	3.21	． 03	． 17	1	50
1013 11＋004	1	36	10	12	． 4	28	11	731	3.50	6	5	10	1	51	1	2	3	61	． 73	． 064	15	41	． 62	221	． 11	1	2.53	． 03	． 11	1	30
301100750	1	38	6	12	． 6	31	12	915	3.31	10	5	10	7	55	1	2	2	63	． 81	． 056	16	39	． 65	220	． 10	1	2.18	． 13	． 18	1	\＄0
$301810+50 \%$	1	11	7	88	． 6	35	13	988	3.51	16	3	10	6	17	1	2	2	60	． 93	． 063	14	13	． 51	190	． 07	9	2.16	． 02	． 18	1	90
30月 10＋25\％	1	11	11	90	． 8	31	14	898	4.25	11	5	no	8	48	1	2	1	68	． 64	． 056	18	15	． 59	261	10	5	3.06	． 02	． 18	！	60
3018 10，004	1	41	1	8	． 4	7	12	610	3.80	3	5	11	1	4	1	2	2	54	． 93	． 063	13	30	1.48	166	． 06	11	2.35	． 03	． 19	2	10
$30119+75$	1	41	9	101	． 1	21	12	JI3	3.88	7	5	10	6	61	1	2	2	61	［18	． 058	14	10	． 11	178	． 07	9	2.17	． 03	． 20	1	10
3015 $9+588$	1	49	9	85	． 1	11	13	736	3.85	13	8	10	6	105	1	2	2	69	1.63	． 071	17	31	1.20	91	． 09	21	2.39	． 04	． 20	1	120
301392954	1	17	9	82	． 2	26	11	1009	1.14	10	5	10	1	60	，	2	2	69	． 88	． 062	11	11	． 92	114	． 01	12	2.41	． 02	． 21	1	80
3019 $9+008$	1	15	9	39	． 2	24	9	131	3.69	5	5	m	4	109	1	2	2	$5 \$$	． 73	． 163	16	3	1.08	102	． 08	10	2.59	． 03	． 20	1	60
30181815	1	14	9	3	． 1	26	13	939	3.98	10		IT	2	54	1	2	2	65	． 94	． 059	15	34	． 11	161	． 08	21	2.60	． 02	． 19	2	40
$30118+504$	1	51	9	78	． 1	31	15	119	4.33	，		110	1	82	1	2	2	71	． 12	．071	16	38	1.10	137	． 89	15	2.45	． 03	． 18	1	70
$3018+254$	1	46	8	11	． 1	22	1	303	3.14	1	5	11	2	209	1	2	2	49	1.19	． 017	12	21	1.31	82	． 08	22	2.29	． 05	． 18	1	30
joy atpor	1	38	10	72	． 2	23	12	911	3.56	2	5	10	1	14	1	2	2	61	． 18	． 064	15	31	． 91	130	． 08	15	2.11	． 03	． 20	1	70
3011747314	1	32	9	80	． 1	19	11	127	3.10	2	5	10	3	4	1	2	，	56	． 58	． 051	13	31	.55	158	． 10	6	2.61	． 02	． 17	2	30
3011 $7+504$	1	32	9	31	.1	20	10	44	3.17	\dagger		ND	3	51	1	2		53	． 39	． 050	13	28	． 50	227	． 10	7	2.50	． 03	． 17	1	40
26112＋50\％	，	56	8	61	． 1	23	13	165	3．65	，	J	10	2	5	1	2		$t 8$	1.31	． 075	12	13	． 95	178	． 13	12	2.46	． 02	． 17	1	60
$26112+251$	1	37	B	65	． 3	22	12	017	3.49	1		T1］	，	5	1	2	2	72	．${ }^{1}$	． 083	13	30	． 12	226	． 14	1	2.66	． 02	． 19	1	30
25：12，008	1	41	9	65	． 2	23	12	101	3.68	3	6	樶	4	52	1	2	2	79	． 36	． 084	11	33	． 6	129	． 11	1	2.90	． 02	． 11	1	30
$26111+751$	1	34	8	80	． 1	23	12	192	3.55	1	5	30	6	40	1	2	1	75	． 12	.101	11	34	． 67	198	． 13	1	2.79	． 02	． 18	1	10
$26111+5011$	1	14	1	63	． 6	25	12	54t	3．53	6	）	T10	6	55	1	2	，	1	． 98	． 086	15	13	． 16	214	． 11	，	2.90	． 02	．17	1	50
2611 11＋25Y	1	36	7	［ 3	． 1	21	11	41	3.25	3	3	10	5	18	1	$?$	2	50	． 41	．066	12	32	． 66	197	． 11	7	2.63	． 02	． 11	1	40
26111＋00\％	1	14	1	65	． 1	26	11	456	3.13	5	10	5	5	51	1	2	2	65	． 91	． 070	13	31	． 12	233	． 69	1	2.17	． 02	． 15	1	60
261110＋759	1	38	9	61	． 5	23	10	755	3.14	7	B	10	6	57	1	2	2	60	． 11	． 060	13	30	． 50	192	． 10	12	2.4	． 02	． 18	1	50
$26110+5014$	1	36	9	62	． 1	21	8	111	2.15	3	5	ID	5	68	1	2	2	50	． 3	． 052	13	30	． 68	101	． 09	13	2.24	． 03	． 18	1	30
$26110+254$	1	34	9	70	.1	21	12	119	3.38	3	6	ND	5	54	1		2	65	． 80	． 058	16	13	． 59	156	． 11	9	2.46	． 03	． 18	，	50
$26110+0011$	1	3	11	14	． 2	20	11	151	3.39	2	\％	W	5	52	1		2	62	． 66	． 063	18	14	． 60	203	． 12	1	2.17	． 03	． 11	2	60
26） 94754	1	37	9	79	． 1	23	11	829	3．35	11	5	13	2	58	1	2	2	50	1.00	． 872	11	36	． 61	174	． 08	10	2.11	． 03	． 18	2	10
26194504	1	14	8	80	． 1	26	11	161	3.52	11	5	15	2	50	1		2	56	． 31	． 81	11	33	． 55	204	． 88	6	2.12	． 02	． 11	2	50
2619＋254	1	41	7	81	． 2	26	3	371	3.23	10	5	yo	2	77	1	2	2	48	1.13	． 073	10	32	． 83	133	． 06	16	1.97	． 03	． 13	1	10
$26119+0011$	1	38	1	11	． 1	24	12	937	3.73	11	5	W	1	91	1	2	2	60	． 11	． 065	13	11	． 60	134	． 88	1	2.32	． 02	． 10	1	50
ST0－	18	38	38	132	6.6	67	29	1060	4.01	38	23	7	38	19	11	17	19	59	． 58	．031	39	56	． 89	173	． 05	31	1.92	． 06	． 11	12	1300

26888754	1	38	9	82	. 3	23	12	451	4.15	10	5	W	2	43	1	1	2	6	. 61	. 059	14	32	. 62	189	. 10	6	2.44	. 02	. 16		60
2618850 K	1	36	5	65	. 3	21	12	1019	1.71	13	5	10	2	40	1	2	1	60	. 66	.053	12	21	. 52	185	. 09	B	2.21	. 02	. 11		40
263 8+254	1	31	5	85	. 1	20	12	914	3.96	16	5	10	1	43	1	2	3	65	. 61	. 067	13	32	. 59	165	. 10	5	2.37	. 02	. 11	1	10
2618 8 +0811	1	48	10	84	. 3	24	11	970	1.25	12	5	W	2	61	1	2	2	18	. 81	. 060	14	12	. 66	188	. 11	1	2.95	. 02	. 11	1	10
26119 $1+75$	1	38	9	31	. 3	22	12	909	3.90	10	5	70	2	63	1]	2	72	. 86	. 055	11	33	. 72	162	. 11	7	2.68	. 03	. 11	1	80
$26151+50 \mathrm{~K}$	1	15	6	34	. 1	22	13	1031	4.18	11	5	N0	1	73	1	2	3	78	. 96	. 072	13	32	. 85	176	. 11	1	3.22	. 02	. 11	1	50
2311 12+503	1	36	1	60	. 1	21	13	839	3.62	6	5	ID	1	65	1	2	2	82	1.06	. 017	11	34	. 98	160	. 15	11	2.99	. 02	. 19	1	30
231 12+254	1	38	1	60	. 1	21	11	41!	3.81	1	5	N	1	58	1	2	3	91	1.01	. 077	12	13	. 95	168	.11	1	3.02	. 02	. 11	1	20
235 $12+504$	1	36	1	58	. 1	26	13	914	3.73	\%	5	10	1	59	t	2	2	90	1.17	. 660	10	32	. 94	112	. 17	8	2.68	. 02	.17	$!$	30
231 $11+754$	1	31	5	59	.1	22	9	438	3.12	5	5	E	1	13	1	2	2	10	. 11	. 064	9	31	. 13	167	. 17	$?$	2.75	. 02	.11	1	20
234 114504	1	47	f	31	. 1	22	9	734	2.71	9	5	10	3	134	1	2	2	76	1.61	. 885	8	24	1.17	154	. 12	11	1.71	. 03	. 18	2	60
235 $11+25 \mathrm{~K}$	1	31	6	60	. 1	22	12	908	3.55	1	5	ID	1	51	1	3	2	12	. 98	. 880	12	34	. 12	110	. 15	10	2.71	. 02	. 18	1	50
23111+004	1	28	1	56	. 1	21	10	06	3.18	5	5	10	1	53	1	2	2	85	. 83	.0f8	12	35	. 01	81	. 16	9	2.20	. 06	. 18	1	20
2311047518	1	33	8	61	. 1	25	11	684	3.52	2	5	畮	1	75	1	2	2	16	. 11	. 065	13	12	. 91	97	.18	9	2.63	. 09	. 18	1	20
$23180+304$	1	45	1	15	. 1	31	12	184	1.02	11	5	II	1	60	1	2	3	80	. 17	. 084	15	46	. 93	170	. 13	8	3.12	. 03	. 19	1	50
$23110+254$	1	19	8	II	. 3	31	12	119	1.05	10	5	1D	,	59	1	2	2	IT	. 85	.083	15	4	. 85	197	. 12	16	1.00	. 02	. 15	1	60
2311040018	1	42	7	80	. 6	27	12	888	3.88	1	5	IV	3	13	1	,	2	11	. 82	.058	14	37	. 11	188	. 10	23	2.29	. 02	. 11	1	50
234 9+7514	1	37	1	71	. \ddagger	27	11	529	3.61	10	,	ND	2	13	1	2	2	63	. 52	. 056	13	35	. 57	214	. 09	11	2.76	. 02	. 12	1	320
2319+5013	1	32	8	66	. 3	21	10	738	3.15	7	5	It	2	12	1	2	3	54	, 51	. 051	11	21	. 51	211	. 10	1	2.13	. 02	. 15	1	50
231 9+254	1	34	8	78	. 2	22	11	568	3.13	\%	,	T1]	2	46	$!$	2	2	67	. 61	. 050	12	14	. 60	174	. 09	6	2.52	. 01	. 15	1	60
2315 9+004	1	44	1	15	. 4	30	11	105	1.41	10		10	3	55	1	3	3	1	. 36	. 059	15	42	. 91	220	. 10	12	2.75	. 01	. 16	1	40
2313 87790	,	33	1	di	. 1	21	$1!$	528	3.89	8	5	10	1	44	1	2	2	92	. 51	. 045	11	16	. 6	179	. 10	1	2.31	. 02	. 16	1	70
2318 8 +50\%	1	37	,	14	. 1	27	11	602	1.05	5	5	10	1	46	1	2	3	1	. 62	. 050	13	40	. 64	186	. 11	6	2.81	. 02	. 16	;	10
2318 8+25I	1	36	8	121	. 1	2	10	800	3.90	2	5	10	1	41	1	2		63	. 64	. 048	12	35	. 57	286	.11	10	3.15	. 02	. 11	1	60
23188004	1	31	\dagger	108	. 1	24	9	637	3.53	-	5	N0	1	13	1	2	2	59	. 31	. 080	10	31	. 31	226	. 11	11	3.06	. 02	.11	1	50
231 7+754	1	36	5	10	. 1	32	11	163	3.61	1		10	1	54	1	2	,	57	. 66	. 108	10	31	. 59	231	. 10	4	2.92	. 02	. 16	1	60
2311 $7+508$	1	35	1	76	. 1	21	11	6B8	3.75	1	5	ID	1	19	,	2	2	4	.63	. 051	12	35	. 61	193	. 11	8	3.05	. 02	. 11	1	100
211112+504	1	38	10	6	. 1	31	12	734	3.18	,		10	1	83	1	2		11	2.01	. 071	,	31	1.18	120	. 13	10	2.15	. 04	. 15	1	10
2111 $12+251$	1	62	1	59	. 1	11	15	835	1.47	3	5	10	.	72	1	2	2	101	1.70	. 080	14	12	1.37	119	. 15	10	2.61	. 01	. 16	1	120
2111 $12+0011$	1	12	1	6	. 1	45	15	429	1.05	5	5	H	1	113	1	2	,	85	2.70	. 078	10	13	1.54	104	. 15	15	2.75	. 04	. 15	1	80
211 11+75\%	1	6	5	115	. 1	110	33	2197	6.43	199	5	ID	1	61	1	9	2	146	2.12	. 0668	7	102	. 54	102	. 03	16	1.51	. 01	. 05		15080
211112950	1	61	8	98	. 1	32	16	355	5.14	20	5	ID	1	65	1	5	3	91	1.03	. 041	1	43	1.74	12	. 07	48	1.82	. 20	. 26	1	2100
$21111+254$	1	28	8	61	. 2	19	12	664	3.51	12	5	T0	3	140	1	3	2	98	2.68	. 074	1	19	2.18	76	. 09	21	1.66	. 14	. 20	1	2400
211111008	1	41	b	64	. 1	25	13	711	3.82	10	5	10	2	63	1	2	2	12	1.18	. 862	13	31	. 31	163	. 11	13	2.52	. 02	. 11	,	3300
211 10+154	1	48	7	19	. 5	30	14	486	4.13	22	5	10	3	63	1	2	2	11	. b	.066	12	35	. 11	178	. 05	11	2.34	. 02	. 19	1	50
$21110+501$	1	19	8	6	. 5	36	11	381	4.01	11	5	ID	1	62	1	3	1	12	. 90	. 014	13	18	. 15	218	. 07	9	2.58	. 02	. 19	1	100
570 C	18	58	12	132	6.5	68	29	1064	1.15	14	18	1	35	49	18	18	21	57	. 50	. 851	39	56	. 11	175	. 01	36	1.98	. 06	. 11	12	1300

samplst	No	ct	PD	t	2 g	H	co	Mig	?	15	0	λ	Ph	\$r	d	Sb	Bi	V	Cl	P	4	C5	3 g	Bi	71	B	11	3	1	4	㫙
	PPN	PFM	PrK	PPM	P? M	PPM	PPM	PPK	1	PPM	PPY	PPY	PPM	PPM	PRIL	PPM	PPH	PFK	\%	1	PPK	PPA	1	PPK	1	PPM	1	1	1	PFK	PPB
$21110+251$	1	65	\$	55	. 4	55	15	800	4.14	12	5	50	4	121	1	2	2	8	3.37	. 092	11	57	1.30	180	. 05	11	2.12	. 02	. 21	1	290
2111 $10+0011$	1	50	6	85	. 1	32	14	958	4.31	10	5	NI	5	50	1	2	1	75	. 63	. 084	11	12	. 61	222	. 06	1	2.48	. 01	. 18	1	110
2119 9+754	1	5	5	11	.6	39	15	107	4.39	13	5	5	4	56	1	2	2	19	1.22	. 081	14	42	. 89	156	. 05	14	2.11	. 01	. 16	1	350
21189+504	1	42	6	75	. 3	11	12	168	3.51	4	5	10	1	50	1	2	2	6	. 78	. 0981	13	35	. 61	226	. 01	1	2.52	. 02	. 11	1	70
$21119+254$	1	15	1	76	. 7	32	13	331	1.23	1	9	30	;	19	1	2	2	16	. 73	. 032	15	43	. 85	169	. 95	1	2.12	. 02	. 18	1	100
2111900015	1	41	8	13	. 5	26	$t 3$	471	3.75	1	3	\%	5	4	1	2	2	62	. 71	. 071	16	33	. 66	135	. 10	5	2.87	. 02	. 17	!	0
21188751	1	19	1	38	. 2	2!	15	896	4.29	5	3	vD	5	12	1	2	2	81	. 75	. 054	11	12	. 71	213	. 10	6	2.69	. 02	. 17	1	60
21184503	1	11	5	90	. 1	26	11	731	1.81	6	5	10	2	11	1	2	2	89	. 60	. 051	12	35	. 68	157	. 10	1	2.20	. 02	. 16	1	10
2118 $8+251$	1	36	6	75	. 1	33	11	786	3.74	2	5	17	3	39	1	1	2	6	. 58	. 014	11	35	. 64	14	. 10	1	2.40	. 02	. 16	1	50
2118 8 -009	1	36	5	13	. 1	25	11	591	3.60	5	5	IID	1	40	1	2	2	68	. 67	. 028	13	15	. 62	145	. 10	6	2.07	. 02	.17	1	130
$2117+75$	1	45	1	12	. 1	30	12	102	1.08	6	5	0	2	18	1	2	2	13	. ${ }^{7}$. 039	35	40	. 17	158	. 11	1	2.37	. 02	. 11	1	120
2114 7+50.1	1	45	7	13	. 1	85	11	134	3.56	2	5	11	1	14	1	2	2	59	. 71	. 012	12	31	. 11	113	. 09	1	2.21	. 02	. 18	1	90
191124504	1	4	3	10	. 1	54	11	190	4.08	3	5	10	1	225	1	$?$,	65	3.61	. 095	10	51	2.19	108	. 05	18	1.91	. 06	. 11	,	100
1914 $12+254$	1	48	5	11	. 1	39	14	151	1.14	2.	5	IV	2	10	1	2	,	80	1.16	. 090	13	15	1.21	216	. 13	9	3.63	. 02	. 11	t	50
$19112+001$	1	53	8	66	. 1	26	14	568	1.40	2	5	V10	2	65	1	2	,	96	1.15	. 085	13	29	1.19	170	. 88	11	3.18	. 02	. 16	,	50
$19115+75$	1	48	1	59	. 1	29	11	840	4.33	1	5	1 l	\pm	70	,	2	2	89	1.25	. 052	12	d]	1.44	184	. 11	1	3.56	. 02	. 17	1	110
19: $11+504$	1	15	1	6	. 1	11	1	\%31	3.50	2	5	10	2	81	1	2	,	13	1.68	. 064	10	32	1.20	168	. 12	13	2.30	. 83	. 17	1	80
1911 11+25i	1	43		6	. 2	25	8	367	3.03	5	5	11	1	99	1	2	3	51	1.01	. 061	10	28	1.01	155	. 09	11	2.44	. 03	. 18	1	180
19112003	1	49	1	92	. 1	36	15	1136	3.94	16	5	0	4	53	1	2	,	35	1.00	.081	12	38	. 19	205	. 08	11	2.25	. 02	. 18	1	210
19110+754	1	12	δ	15	. 2	26	13	42	3.81	7	5	10	1	36	1	2	,	17	. 80	. 061	12	32	. 65	232	. 10	,	2.68	. 12	. 11	,	230
191104003	1	3)	1	10	. 5	25	13	965	3.12	11	6	vo		54	1	2	,	70	. 33	. 074	12	31	. 63	200	. 08	11	2.35	. 02	. 17	1	120
198104254	1	37	7	79	. 9	23	9	565	3.21	3	,	0	5	80	,	?	2	56	. 19	. 079	13	11	. 70	188	. 8 d	1	2.74	. 02	. 18	1	478
$19110+001$	1	40	1	79	. 5	23	11	021	3.35	5	6	10	1	51	1	2	2	10	. 60	. 073	13	11	. 35	210	. 10	7	2.59	. 02	. 19	1	180
1919+75i1	1	48	,	11	. 1	29	13	321	3.3	10	5	10	4	66	1	2	,	75	1.12	. 076	12	39	. 15	180	. 09	9	2.21	. 02	. 18	1	120
1319345014	1	18	5	13	. 6	29	13	112	3.93	1	$?$	m	1	56	\downarrow	2	2	14	. 85	.087	11	37	. 0	198	. OS	11	2.26	. 02	. 18	1	150
$1319+25 i 1$	1	55	6	14	. 8	35	13	815	1.91	10	,	ID	5	65	1	2	2	7	1.00	. 086	13	41	. ${ }^{\text {d }}$	207	. 08	11	2.29	. 02	. 11	1	170
191940015	1	13	6	79	. 5	21	12	825	3.74	10	,	10	5	59	1	2	2	6	.78	.061	11	36	. 63	221	. 89	10	2.52	. 02	. 11	1	130
13x 8+754	1	16	1	0	. 5	22	1	693	2.80	1	5	M	4	13	1	2	2	12	1.87	. 074	11	25	. 12	232	. 05	17	2.01	. 02	.19	1	10
1911845011	1	16	5	61	. 1	18	8	585	2.36	2	5	10	3	160	1	3	2	31	2.50	. 012	10	22	1,35	219	. 01	31	1.58	. 02	. 19	1	60
[fir $8+2$ fit	1	10	J	67	. 1	3	11	123	3.56	1	9	10	2	47	1	2	2	67	. 76	. 874	13	35	1.00	116	. 08	12	1.95	. 02	.18	1	110
1918 8 +0014	1	38		70	. 1	25	11	713	3.73	1	5	10	2	41	1	2	2	11	. 79	. 852	13	35	. 66	151	. 11	11	2.07	. 02	118	1	50
1514 7475	1	10	$?$	11	.2	24	12	571	3.66	3	5	10	3	18	1	2	2	6	. 81	. 068	14	35	. 60	204	. 18	9	2.39	. 02	.18		10
1917 $7+5011$	1	45	8	12	. 1	28	12	798	1.07	5	5	10	1	45	1	2	2	14	. 30	. 057	16	11	. 70	173	. 11	1	2.60	. 02	. 18	1	110
STO C	18	51	38	132	7.1	17	29	1055	1.05	36	17	6	36	49	10°	16	19	5	. 19	. 891	30	56	. 90	171	. 06	3)	1.92	. 06	. 16	12	1400

H05-1	1	15	5	16	. 1	1	2	207	. 18	2	5	10	6	30	1	2	2	1	. 11	. 003	19	12	. 01	623	. 01	15	. 31	. 01	. 16	1	1	250
$\mathrm{nOD}-2$	1	6	5	10	. 1	5	1	226	. 60	?	5	10	1	17	1	2	2	1	. 85	. 001	16	20	. 01	160	. 01	1	. 23	. 02	. 13	1	1	170
M00-3	1	18	6	42	. 3	7	5	400	2.24	3	5	10	1	13	1	2	2	15	3.02	. 012	7	23	. 61	19	. 17	9	1.36	. 03	. 02	2	1	20
rod-4	1	28	19	21	. 5	35	16	162	6.71	12	5	刞	1	27	1	2	2	167	. 11	. 030	2	139	. 61	31	. 21	6	. 97	. 02	. 21	1	10	1500

GEDCFEMICAI ANAIYSIF CEFTIFIGATE

 M.S. MORRISON File $\# 88-5787$ Page 1

SAMPLEI	Ho	Cll	P)	20	19	II	60	Mi	$1 t$	As	0	Av	Th	St	cd	Sb	Bi	V	Cl	P	Ld	6	kg	BI	¢i	B	11	a	I	1	H
	PFK	PPM	P?	PFK	PPY	PPM	Prin	PPK	1	PFM	PPK	PPK	PPX	PFR	PFK	PR	PP\%	PRK	1	1	PPM	P9\%	1	P\%	$\}$	PFK	1	1	1	PPY	PPA
6154 12+004	.	15	2	23	. 1	11	1	176	. 11	11	5	Ho	1	\$15	1	2	2	34	4.85	.037	3		35.02	4	. 63	13	.88	.01	. 06	1	30
L154 11+350	1	52	1	69	. 1	25	15	751	3.12	4	5	W	1	119	1	2	2	83	1.15	. 100	10	27	1.14	108	. 10	11	2.25	. 06	. 25	1	50
115 $111+504$	1	51	11	65	. 1	33	15	639	4.05	2	5	VID	2	80	1	2	2	90	1.11	. 082	13	34	1.50	118	. 12	6	2.56	. 13	. 21	1	60
115 11+25i	1	19	10	61	. 1	16	15	695	4.01	1	5	10	?	61	1	t	2	96	1.07	. 080	12	10	1.15	127	. 13	5	2.12	. 02	. 25	1	50
L15N 11+03\%	1	51	3	63	.]	32	15	617	3.85	11	5	10	2	58	1	2	2	83	1.11	. 082	13	33	. 97	110	. 12	7	2.50	. 02	. 25	1	100
6155 10+759	1	16	1	10	. 1	28	11	725	3.19	1	5	V10	2	56	1	2	2	19	1.06	. 080	12	34	. 89	174	. 12	6	2.67	. 02	. 26	1	90
L1511 10-504	1	38	\%	59	. 1	32	11	711	3.81	8	5	y	2	go	1	2	2	83	. 95	. 070	14	10	. 87	178	.15	6	2.78	. 02	. 31	1	60
115: $10+2311$	1	38	9	14	. 1	11	16	115	3.58	1	5	11	1	69	,	2	2	68	1.68	. 068	11	31	. 55	174	.13	1	2.50	. 02	. 19	$!$	10
L15: 10+00\%	1	39	9	63	. 1	26	10	398	3.08	3	5	10	2	13	1	2	2	53	. 87	. 051	11	28	1.19	14	. 11	15	2.26	. 18	. 46	1	80
6154 9+754	1	47	6	12	. 1	26	13	520	1.10	7	5	10	1	135	1	i	2	60	2.65	. 053	10	30	1.2	99	. 07	20	1.95	. 09	. 50	1	340
615\% 9450\%	1	66	4	113	1	22	9	302	2.19	2	1	11	1	+3	1	2	2	16	1.05	. 080	8	21	1.2?	91	. 08	27	1.88	. 04	. 50	1	160
L151194254	1	37	10	7	. 1	21	11	521	3.69	8	5	nl	1	14	1	2	2	i3	1.19	.085	10	32	1.81	31	. 10	33	1.99	. 07	. 61	1	330
415199000	1	39	1	65	. 1	25	15	121	3.88	12	5	\%	2	13	,	2	5	81	. 63	. 074	13	15	. 80	88	. 12	11	2.00	. 08	. 28	1	220
L1518 $8+75$	1	37	1	65	. 1	23	13	812	3.68	7	5	10	,	55	1	2	3	13	. 79	. 058	12	12	. 68	160	.1!	13	2.30	. 02	. 32	1	15
L15\% $8+504$	1	44	9	11	. 1	23	15	792	3.71	8	5	\%	2	52	1	2	2	71	. 87	. 058	12	32	. 69	188	.10	7	2.07	. 02	. 28	1	130
1958 8+254	1	55	5	61	.1	$3!$	15	813	1.22	14	5	10	1	58	1	2	2	92	1.89	. 076	11	36	. 96	177	. 11	1	2.16	. 02	. 21	1	250
L15y 89004	1	43	6	70	. 1	27	16	591	4.20	1	5	IIT	2	49	1	2	2	85	. 11	. 056	13	31	. 14	171	. 10	9	2.38	. 02	. 32	1	120
L1515 $7+751$	1	41	1	69	. 1	75	15	765	\$.05	12	5	NB	2	19		2	,	80	. 79	. 054	13	35	. 70	191	.10	1	2.28	. 02	. 24	1	110
L151 7+504	1	60	$1:$	18	. 1	22	14	762	3.88	8	5	Tid	1	13	1	2	2	76	. 63	. 082	12	32	. 56	228	. 10	13	2.41	. 02	. 23	$!$	210
L131 12+504	1	4	10	68	. 1	27	15	692	4.16	5	5	If	2	50	1	2	2	4	. 8	. 066	15	18	. 76	209	. 14	9	3.06	. 02	. 22	2	60
133M 12+254	1	16	9	67	. 1	26	14	852	3.90	1	ξ	IV	1	55	1	,	2	71	1.00	. 082	14	31	. 79	210	. 11	8	3.10	. 02	. 27	1	50
613M 12+00\%	1	41	16	11	. 1	29	14	905	3.85	1	5	ID	1	59	,	?	2	75	1.12	. 080	11	38	. 30	197	. 11	1	3.05	. 02	. 29	1	10
113111+754	1	40	10	64	. 1	24	12	119	3.31	5	5	VD	1	110	1	2	2	56	1.11	. 678	11	31	1.38	137	. 10	20	2.27	. 02	. 31	2	60
H31 11+50\%	1	32	4	$¢ 1$. 1	4	15	709	3.73	4	5	a	,	54	1	1	2	81	. 81	. 073	11	35	. 98	119	.13	12	2.01	. 02	. 26	1	418
413\% $11+254$	1	36	1	53	. 1	21	11	45	2.81	9	5	ND	1	192	1	?	2	80	1.84	. 072	9	36	6.77	96	. 09	41	2.08	. 09	. 22	1	30
113\% 10+25\%	1	53	5	65	. 1	21	11	668	1.39	11	5	ND	1	177	$!$	2	2	30	2.92	. 086	10	11	1.95	1	. 09	31	1.90	. 08	. 25	1	130
L13N 10+006	1	37	?	54	. 1	22	10	367	2.82	3	5	70	1	212	1	2	?	53	2.75	. 091	9	26	1.63	95	. 07	33	1.69	. 03	. 38	1	80
Li31 9+754	1	78	2	47	. 1	25	9	256	2.49	5	5	15	1	116	1	2	2	61	1.69	. 084	11	22	1.32	116	. 01	17	1.87	. 04	. 35	2	70
L13) 945018	1	61	5	62	. 1	21	11	758	3.22	2	5	V10	1	79	$!$	2	2	62	. 81	. 058	12	30	. 3	181	. 11	δ	2.58	. 03	. 18	1	100
L131 9+254	1	11	1	60	. 1	4	12	654	3.14	6	5	*	2	56	1	2	2	61	. 86	. 042	11	26	. 70	159	. 11	1	2.18	. 02	. 23	1	25.
L13: 9+004	1	50	7	72	. 1	22	13	877	3.10	8	5	10	1	5	,	2	,	61	. 93	. 070	13	30	. 39	198	. 09	5	2.36	. 02	. 18	1	150
W13, 8+354	1	11	4	14	. 1	24	11	897	3.85	6	5	ND	1	19	,	2	,	76	. 19	. 065	14	31	. 62	204	. 11	9	2.59	. 02	. 24	1	120
L131188504	I	14	7	69	. 1	26	15	801	4.09	8	5	都	2	51	1	2	,	85	.95	. 064	13	31	. 16	181	. 12	6	2.60	. 02	. 25		150
Lidy $8+251$	1	17	10	13	. 2	21	15	180	3.69	10	5	ND	1	59	1	*	2	69	. 95	.179	12	29	. 69	219	. 09	5	2.40	. 02	. 27	1	130
L13) 8+009	1	53	12	83	. 1	23	16	831	4.49	8	5	N0	?	61	1	2	,	88	. 91	. 077	14	31	83	253	. 19	6	2.92	. 02	. 33	1	100
613* 71754	;	63	2	83	. 1	25	15	918	4.62	11	5	10	2	63	1	2	?	92	1.10	. 086	14	35	. 88	± 61	. 09	9	2.95	. 02	. 29	1	120
STD 6	19	60	38	132	6.9	68	31	1029	4.31	10	23	8	38	11	19	19	4	60	. 50	. 098	10	56	. 94	17 i	. 07	32	1.35	. 86	. 13	12	1300

L134 97504	1	89	2	64	. 1	34	18	110	4.15	14	5	nd	2	55	1	2	2	108	1.21	. 083	13	35	1.09	179	. 69	10	2.14	. 02	. 21	1	100
1120 12+5011	1	36	2	59	. 1	20	12	480	1.37	7		1 N	1	13	1	?	2	65	. 63	. 038	13	12	. 62	150	. 13	8	2.59	. 02	. 26	1	30
L12) 12+25\%	1	35	7	58	. 1	25	11	795	3.54	4	5	ID	1	48	1	2	2	15	. 93	. 055	13	31	. 71	165	. 11	5	2.48	02	. 33	1	40
L121112+0014	1	18	1	62	. 1	11	15	843	1.73	1	5	0	2	51	1	2	?	75	1.07	. 067	11	35	. 85	176	. 12	6	2.60	. 02	. 23	1	60
112) 11+754	1	11	9	66	. 1	2 B	16	175	3.98	6	5	10	2	54	1	2	2	85	1.03	.066	11	10	. 89	173	. 13	1	2.85	. 02	. 30	2	50
112M 11+001	1	41	9	81	. 1	26	15	855	3.96	9	5	ND	2	46	1	2	3	18	. 76	. 058	13	13	. 61	239	.12	1	2.88	. 02	. 30	1	30
L.129 10+754	1	48	13	86	. 1	33	19	167	4.71	9	5	10	2	58	1	2	2	99	. 73	. 069	15	4	. 77	213	. 13	4	3.54	. 02	. 26	1	270
L12\% 10,5011	1	60	6	65	. 1	35	18	526	1.91	9	5	110	3	51	,	2	,	114	. 81	. 047	13	43	1.01	164	. 14	6	1.17	. 02	. 18	1	150
212\% 10+254	1	30	4	69	. 1	21	13	526	3.12	7	5	Y	2	$4{ }^{3}$	1	$?$	2	71	. 71	. 040	10	30	. 56	168	. 11	11	2.21	. 02	. 25	1	40
11215 $10+004$	1	36	1	82	. 1	28	11	511	3.9	1	5	ND	2	19	1	2	$\hat{6}$	79	. 78	. 261	11	36	. 61	181	. 13	12	2.70	. 02	. 29	1	10
L1219 94754	1	30	3	80	. 2	23	12	519	3.38	2		ND	2	50	1	2	,	67	. 52	. 057	17	31	. 56	188	. 12	5	2.53	. 02	.17	1	60
W122 9+504	1	15	2	18	. 1	11	13	126	3.34	1	5	N0	2	18	1	2	2	64	. 69	. 058	11	33	. 59	203	.11	9	2.70	. 12	. 23	?	10
L12\# $9+25 \mathrm{H}$	1	42	2	68	. 1	28	13	175	3.44	8	5	10	.	12	1	2	2	13	. 99	. 030	12	13	. 80	159	. 13	1	2.66	. 02	. 22	1	50
L12N 9+609	1	35	7	10	. 2	28	14	170	3.56	9		Y0	2	53	1	2	2	76	. 86	. 049	11	33	. 68	166	. 13	6	2.50	. 02	. 24	1	130
L12 ${ }^{\text {S }}$ +75i	1	12	15	69	. 1	28	16	133	1.05	14	5	10	,	48	1	2	1	82	. 81	. 013	13	34	. 70	185	. 12	7	2.81	. 02	. 25	1	320
L12N 845014	1	58	7	69	. 1	21	17	181	4.55	1	5	H0	,	46	1	2	2	91	. 81	. 016	15	38	. 81	182	. 10	5	3.00	. 02	. 20	1	600
4128 84254	1	56	5	12	. 1	26	15	682	3.84	9	5	17	,	76	1	,	2	75	1.18	. 051	11	29	1.11	171	. 07	11	1.58	. 01	. 36	1	120
L12: $8+00 \mathrm{Cl}$	1	59	8	84	. 1	33	11	193	1.90	9	5	0	1	59	1	2	,	11	. 95	. 365	11	21	. 81	211	. 07	g	2.26	. 01	. 35	1	110
2123 9+354	1	80	3	12	. 1	31	18	192	4.67	12	5	Hid	,	56	1	2	3	101	. 96	. 076	15	18	1.03	228	. 09	6	2.72	. 02	. 27	1	510
L12N 7+504	1	99	6	69	.1	29	16	678	1.39	10	5	ND	2	51	1	2	2	94	. 33	. 061	15	35	. 79	226	. 12	1	2.11	. 02	. 31	1	1200
L10\% 12+304	1	49	5	12	. 1	28	16	167	4.04	7	5	Vic	1	54	1	2	2	81	. 97	. 065	14	37	. 76	226	. 11		2.66	. 02	. 29	1	110
L108 12+254	1	33	2	65	. 1	26	14	112	3.52	1	5	ND	2	50	1	2	2	75	. 71	. 074	13	34	. 70	151	. 12	9	2.26	. 02	. 26	1	50
LICN: $12+30010$	1	33	5	72	. 1	23	12	863	1.22	6	5	10	1	45	1	2	1	62	. 73	. 075	11	28	. 58	198	. 11	5	2.15	. 02	. 28	2	10
1108 11+154	1	49	10	66	1	21	16	172	1.29	8	5	W	2	49	1	2	,	15	1.06	. 072	11	39	. 81	[B1	. 13		2.16	. 02	. 19	2	60
L10\% 11+5cy	1	63	13	59	.1	33	16	798	1.25	12	5	y	3	52	1	2	2	100	1.27	. 070	15	43	1.00	174	. 12	,	2.21	. 02	. 15	1	200
LIOR : $1+251$	1	11	10	58	. 1	22	10	370	3.31	5	5	nd	1	159	,	2	2	65	1.99	. 044	11	30	1.97	129	. 09	26	1.95	. 11	. 30	2	80
L103 11,004	1	30	3	85	. 1	32	15	552	3.84	9	5	10	1	58	1	,	2	15	. 92	. 017	12	37	. 12	230	. 07	11	2.21	. 02	. 31	1	120
LIOH 10+754	1	12	7	67	.1	41	18	765	4.10	14	5	NO	1	79	1	2	2	95	2.88	. 097	12	12	1.11	155	. 06	12	2.33	. 01	. 16	2	350
L108 10, 501	1	65	4	81	1	33	17	151	4.30	10	5	VI	1	61	1	2	2	92	1.16	. 016	14	39	. 17	216	. 10	12	2.75	. 02	. 31	\hat{i}	110
b101 10+25\%	1	12	3	1	. 2	31	11	153	4.19	11	5	8	1	66	1	2	2	102	1.46	. 091	14	40	1.05	114	. 09	12	2.67	. 02	. 24	1	200
L10: $10+004$	1	66	11	7	.2	34	16	111	4.39	13	5	10	1	4	1	?	2	98	1.20	. 104	11	11	. 92	183	. 10	11	2.78	. 02	. 30	1	130
L10 $9+75 \%$	1	51	9	14	. 1	23	16	181	3.91	11	5	HD	1	60	1	i	2	87	1.88	. 192	13	37	. 13	193	. 11	11	2.51	. 02	. 31	1	60
L10489+504	1	55	13	73	.1	30	11	738	3.99	8	5	11	1	62	1	2	2	B6	1.01	. 051	14	36	. 80	197	. 11		2.71	. 12	. 32	1	90
L10119+2541	1	40	2	73	. 1	24	11	172	1.11	10	5	K0	f	50	1	$\stackrel{1}{2}$	2	81	. 92	. 049	13	37	. 64	206	. 12	,	2.50	. 02	. 30		80
L1011 $9+30 \%$	1	17	6	67	. 1	29	11	764	3.65	1	5	3		61	1	2	2	81	1.05	. 096	13	34	. 13	168	. 12	1	2.42	. 03	. 28	1	110
L10N $3+75$	1	41	1	71	. 1	26	13	116	3.50	1	5	1.10	1	63	1	2	2	16	1.06	. 097	13	31	. 18	169	. 11	1	2.55	. 02	. 33	1	90
Stic C	19	68	41	132	7.0	69	31	1035	4.14	40	19	1	38	19	20	19	22	$6!$. 45	. 096	11	55	. 93	174	. 07	31	1.85	. 06	. 13	12	1100

SAIPLI \ddagger

41018 $8+504$	1	48	8	86	. 1	26	12	830	3.32	8	5	10	1	56	1	2	2	58	96	.151	13	26	. 59	293	. 08	13	2.73	. 02	. 18	1	110
L101188254	,	59	10	18	. 1	27	15	832	4.11	9	5	10	1	53	$!$	2	2	18	. 91	. 099	16	32	. 72	346	. 10	6	1.58	. 02	. 17	1	210
L1018 $8+008$	1	62	16	4	. 1	26	17	$110 ?$	4.11	10	5	10	1	45	1	2	2	82	. 99	. 097	13	29	. 70	300	. 08	3	2.88	. 02	. 13	1	200
L1013 7 +75\%	1	51	1	111	. 1	25	15	925	3.60	8	5	10	1	46	1	2	2	58	. 11	. 090	13	26	.61	272	. 07	5	2.68	. 01	. 20	1	120
b10x 74501	1	88	1	65	. 1	21	11	340	2.96	11	5	10	1	138	1	2	2	4	2.05	. 070	10	23	. 19	231	. 05	17	1.96	. 01	. 13	1	110
19812450il	1	48	3	12	. 1	30	16	914	3.83	10	5	10	2	50	1	2	2	17	. 19	. 062	12	34	. 70	230	. 11	6	2.38	. 02	. 28	1	50
L9\% $12+254$	1	42	5	70	. 1	3	15	769	3.93	7	5	11	2	1?	1	?	2	19	. 81	. 069	12	35	. 75	202	. 11	1	2.47	. 02	. 21	1	60
69 12+004	1	31	10	61	. 1	27	15	855	3.96	1	5	10	3	11	1	2	6	13	. 13	. 073	13	17	. 12	118	. 12	1	2.14	. 02	. 29	1	30
L9 1 11+754	1	36	6	19	. 1	41	9	110	2.99	6	5	10	1	197	1	2	2	67	2.51	. 057	10	29	2.03	100	. 09	18	1.67	. 07	. 26	1	80
Lin : $11+254$	1	41	2	50	.	21	\$	355	3.08	10	5	0	1	155	1	2	2	11	2,32	. 051	\$1	10	1.55	119	. 09	17	1.94	. 06	. 20	1	100
L9x $11+004$	$!$	41	1	5	. 1	23	13	67	3.69	8	5	1 D	2	61	1	2	2	68	. 17	. 029	13	35	. 97	126	. 10	6	2.22	.02	. 29	1	150
LSE 10+754	1	35	10	104	. 1	26	12	990	3.08	5	5	10	1	45	,	,	2	50	. 74	. 062	11	26	. 51	236	. 08	10	2.19	. 01	. 25	$!$	0
L6H $10+5 \mathrm{CH}$	1	$6]$	11	13	. 1	11	17	172	4.63	9	5	10	2	51	1	2	2	91	1.02	. 076	15	12	1.00	194	. 09	7	2.76	. 02	. 20	1	320
LIM 10+254	1	5	1	71	. 1	10	15	121	4.10	12	5	20	1	53	1	2	2	80	1.02	. 089	15	17	. 76	244	. 09	10	2.51	. 02	. 30	1	110
L9410+00\%	1	60	16	71	. 1	34	15	785	1.19	9	5	10	-	\$1	1	3	2	81	. 95	. 083	16	38	. 85	223	. 10	1	2.89	. 02	. 29	1	150
L94 9+754	1	60	12	73	.2	39	15	866	3.96	,	5	ND	1	58	1		2	76	. 96	. 100	11	31	. 62	249	. 08	1	2.75	. 02	. 30	1	90
L9194904	1	53	12	14	. 1	21	15	915	3.88	$1!$	5	10	1	18	,	1	2	71	. 96	. 611	13	31	. 70	223	. 10	7	2.11	. 02	. 22	1	5200
L9119425	1	11	17	95	. 1	26	13	820	3.62	6	5	10	1	15	1	2	2	64	. 69	. 195	16	25	. 58	355	. 09	8	3.41	. 02	. 21	2	220
LiH19+004	1	110	12	84	. 2	38	21	1355	4.68	13	5	10	1	56	1	3	2	91	1.41	. 120	16	34	1.02	191	. 01	10	3.05	. 02	. 13	3	280
[93 8+75	1	145	1	81	. 1	31	21	1361	1.34	14	;	110	,	69	1	1	2	96	3.36	.138	15	33	1.18	413	. 04	3	2.69	. 02	. 12	1	420
69118+504	1	90	10	62	1	31	19	781	1.51	1	5	10	,	61	1		1	13	1.90	.047	13	29	1.04	224	. 07	1	2.55	. 09	. 29	1	260
29184254	1	60	10	82	. 1	29	18	621	4.63	11	5	10	2	65	1	3	2	80	1.04	. 057	11	30	. 69	110	. 01	10	2.84	. 03	. 24	2	130
L918 8 +09\%	1	11	11	14	.	24	14	1035	3.22	5	5	IT	1	49	1	2	2	53	. 11	. 047	10	21	. 53	245	. 08	9	2.71	. 02	. 20	1	60
194 7+754	1	41	8	13	. 1	26	14	815	3.11	11	5	10	1	44	1	,	2	13	. 19	.019	12	32	. 60	198	. 09	12	2.18	. 01	. 28	1	120
6.917 7×504	1	15	8	70	\therefore	21	14	533	3.90	5	5	II	,	39	1	2	5	76	. 11	. 030	15	35	. 61	219	. 11	1	2.50	. 02	. 22	1	210
271 12+504	1	11	10	10	. 1	22	11	970	3.59	6	5	UD	,	47	1	,	$?$	70	. 16	. 050	13	31	. 62	255	. 10	1	2.45	. 02	. 23	1	50
LTH $12+25 \mathrm{~K}$	1	38	9	70	.	26	13	550	3.53	7	5	10	?	4	,	3	2	6	. 78	. 067	13	30	. 60	259	. 10	1	2.40	. 02	. 20	1	60
LTX 12+00Y	1	51	10	61	. 1	34	15	815	3.91	9	5	ID	2	53	1	2	2	01	. 98	. 076	11	36	. 35	215	. 11	1	2.36	. 02	. 26	1	70
b71 1i+754	1	41	12	61	. 1	32	15	158	1.82	7	5	0	2	47	,	2	3	76	. 85	. 076	13	31	. 78	209	. 10		2.22	. 02	. 22	1	60
6711 $11+501$	1	11	4	56	. 2	22	1	418	2.69	3	5	Hid	1	169	1	2	2	50	2.10	. 065	,	23	3.81	120	. 08	21	1.92	. 06	. 27	1	50
218 10.754	1	51	15	52	. 1	29	14	672	3.99	10	5	10	1	78	1	2	2	82	1.81	. 044	13	34	1.68	131	. 10	17	2.26	. 06	. 23	1	200
1711 10+501	1	32	9	57	. 1	24	15	781	3.76	1	5	IV	1	5 ?	$!$?	2	79	. 85	. 071	12	14	. 83	155	. 11	9	2.10	. 02	. 26	,	90
[7\% 10+25\%	1	33	8	13	. 1	20	9	307	3.00	4	5	1 l	1	275	1	2	2	56	4.16	. 045	1	21	1.98	129	. 018	15	1.75	. 03	. 28	2	180
L72 9+004	1	59	6	59	. 1	28	17	923	3.85	10	5	ID	1	18	,	2	2	73	. 89	. 058	11	35	. 70	228	. 07	11	2.14	. 01	. 28	2	60
L71 847515	1	160	11	62	. 1	52	28	979	5.06	9	5	10	1	15	1	2	2	104	1.69	. 105	14	68	1.08	324	. 05	$\$$	2.61	. 01	. 22	1	120
LTI $3+5011$	1	80	13	64	1	27	18	979	4.66	12	5	10	1	65	1	2	2	108	1.11	. 113	12	31	. 90	268	. 08	13	2.36	. 01	. 25	2	110
STO 6	19	80	12	132	7.0	11	11	1042	4.26	12	21	1	39	19	19	15	23	51	. 50	. 036	41	57	. 94	178	. 07	38	1.95	. 08	. 13	13	1300

271 $8+2511$
111 $8+00 i 1$
671 $9+7514$
$1717+751$
ti4 $7+504$
STD C

1	110	9	18	.1	30	17	129	4.99
1	100	10	76	.1	29	20	1084	5.45
1	83	5	81	.1	26	11	793	5.29
1	63	9	72	.1	23	16	951	1.32
18	59	11	131	6.9	69	30	1024	3.96

5	ri	1	60	1	1	2
5	MD	1	59	1	2	2
5	30	1	51	1	1	2
5	30	1	57	1	3	3
18	7	31	49	19	16	21

$\begin{array}{rrr}114 & 1.00 & .092 \\ 127 & 1.19 & .057 \\ 121 & .92 & .053 \\ 102 & .94 & .050\end{array}$

15	38	.91	339	.12
14	37	.51	331	.10
15	42	.12	322	.12
14	35	.14	357	.10
11	55	.19	118	.17

$\begin{array}{ll}5 & 2.81 \\ 1 & 2.52 \\ 1 & 2.83 \\ 2 & 2.54 \\ 3 & 1.59\end{array}$ $\begin{array}{ll}.02 & .2 \\ .02 & .2 \\ .02 & .2 \\ .02 & .2\end{array}$.28
.26

120 $\begin{array}{rrrrrrrrrrrrrrr}2 & 121 & .32 & .853 & 15 & 42 & .12 & 322 & .12 & 1 & 2.83 & .02 & .25 & 1 & 730 \\ & 102 & .94 & .050 & 11 & 35 & .11 & 357 & .10 & 2 & 2.54 & .02 & .21 & 1 & 180 \\ 1 & 60 & .58 & .655 & 11 & 55 & .19 & 178 & .07 & 33 & 1.92 & .06 & .13 & 11 & 1380\end{array}$

APPENDIX C

STATEMENT OF QUALIFICATIONS

I, Murray Morrison, of the City of Kelowna, in the Province of British Columbia, do hereby state that:

1. 1 graduated from the University of British Columbia in 1969 with a B.Sc. Degree in Geology.
2. I have been working in all phases of mineral exploration in Canada for the past eighteen years.
3. During the past eighteen years, 1 have intermittently held responsible positions as a geologist with various mineral exploration companies in Canada.
4. I have examined several mineral properties in Southern British Columbia during the past eighteen years.
5. I personally conducted or supervised the surveys outlined in this report.
6. I am the vendor of the property and I retain interest in the property.

November 30, 1988
Kelowna, B.C.

Murray Morrison, B.Sc.

APPENDIX D

STATEMENT OF EXPENDITURES ON THE MODEL 1-3
AND ANNE 1-6 MINERAL CLAIMS

Statement of Expenditures - on the Nodel Group of iineral Claims

Statement of Expenditures in connection with Geological, Geochemical and Geophysical Surveys carried out on the vodel 1-3 and ANNE $1-6$ mineral claims, located near Tunkwa Lake, British Columbia (N.T.S. liap 92-T-10W) for the year 1988.

Baseline $(2.9 \mathrm{~km})$ and Grid Line $(14,7 \mathrm{~km})$ Establishment

Magnetometer Survey (14.7 km)
M. Morrison, geologist
A. Hunt, geologist's assistant

Jagnetometer rental
Truck, 4×4 (incl. gasoline) 1 day@ $\$ 65 . /$ day
Veals and Lodging - 5 man-days @ average $\$ 44.24 /$ day
Sub-total

4 225.

4 days @ \$100./day 400.
5 days @ $\$ 25 . /$ day 125.
1 day@ $\$ 65 . /$ day 65.
$\$ 1,036$.

VLF-EM 16 Survey $(14.7 \mathrm{~km})$

A. Hunt, geologist's
assistant 5 days@ \$100./day $\$ 00$.
VLF-E! 16 instrument rental (Geolease) 236.
Airfreight VLF-EM 16 instrument to and from Toronto 96.

Meals and Lodging - 5 man-days @ average $\$ 44.24 /$ day
Sub-total
221. $1,053$.

Statement of Expenditures - Continued

Soil Geochemical Survey (12 km)

$$
\begin{array}{lcc}
\text { A. Hunt, geologist's assistant } & 7 \text { days @ } \$ 100 . / \text { day } & \$ 700 . \\
\text { Veals and Lodging - } 7 \text { man-days @ average } \$ 44.24 / \text { day } & 310 . \\
\text { Bus express samples to lab. } & 61 . \\
490 \text { sample bags @ } \$ 0.13 \text { each } & 64 . \\
490 \text { soil samples analyzed for } 30 \text { elements by ICP, and } \\
\text { for mercury by flameless AA @ } \$ 9.60 \text { each } & 4,704 . \\
& \text { Sub-total } & \$ 5,839 .
\end{array}
$$

Geological Vapping (2.4 km^{2} at $1: 2,500$ scale;
$16.3 \mathrm{~km}^{2}$ at $1: 10,000$ scale).
M. Morrison, geologist 14 days @ $\$ 225 . /$ day $\$ 3,150$.
Truck, 4×4 (incl. gasoline) 14 days @ \$65./day 910.
Meals and Lodging - 14 man-days (a) average $\$ 44.24 /$ day 619.
Sub-total \$4,679.
Report Preparation
M. Horrison, geologist 4 days @ $\$ 225 . /$ day $\$ 900$.
(includes calculations for geophysical surveys; plotting and contouring for several surveys; and analyzing data in general).
Drafting - 3 figures and 18 maps 460.
Typing 148.
Copying - (2 copies of report)

	$\frac{40 .}{}$
Sub-total	$\$ 1,548$.
GRAND TOTAL	$\$ 15,600$.

I hereby certify that the preceding statement is a true statement of monies expended in connection with the Geological, Geochemical, and Geophysical Surveys carried out May 7 to August 9, 1988.

November 30, 1988

PLEASE SEE MAP M-88-IB FOR GEOLOGY

$\underset{\sim}{\sim} \quad$| 120 ppb |
| :---: |
| 240 Mercury |

GEOLOGICALBRANCH
ASSESSM
18,455

MAd river resources inc.			
MODEL PROPERTY Logan Lake area, kamloops m.o., b.c.			
GEOCHEMICAL SURVEY MERCURY IN SOIL			
MODEL 1-3 MINERAL CLAIMS			
Surver br A.H.	August 1988		92-1-10w
drawn вr m.m./a.h.	scale 1: 2500		M-88-88

