ARIS SUMMARY SHEET

\mathbf{O}		
District Geolo	ogist, Smithers Off Confidentia	1: 90.02.27
ASSESSMENT REI	PORT 18463 MINING DIVISION: Omineca	
PROPERTY: LOCATION: CAMP:	Trac Lake LAT 54 24 00 LONG 126 35 00 UTM 09 6030502 656879 NTS 093L07E 041 New Nadina - Equity Area	
CLAIM(S): OPERATOR(S): AUTHOR(S): REPORT YEAR: COMMODITIES	Trac Lake,Trac Lake 5-7,Coramar Amanda Res. Whiting, F.B. 1989, 41 Pages	
SEARCHED FOR: KEYWORDS: WORK DONE: Geo EMG LIN	Jurassic,Hazelton Group,Rhyolite ophysical,Physical GR 6.5 km;HLEM	
MINFILE:		

GEOPHYSICAL AND GRIDDING REPORT

TRAC LAKE GROUP: Trac Lake #1-#2-#7, Coramar, Trac. Fraction, Trac #3-4--5-6 M.Cs.

1. O.S.

100 10 0301

Omineca M.D.

FILMED

 $\{2\}\}$

93 L 7E NTS : Sheet 92-J-15W

> Coords.: N 6030000 m, E 657500 m. Lat. 54° 24' N; Long. 126°35' W.

OWNERS: Amanda Resources Ltd.

Francis B. Whiting

OPERATOR: Amanda Resources Ltd.

CONSULTANTS: Tom Richards Prospecting Ltd. Interpretex Resources Ltd.

AUTHOR: F.B. Whiting

(Of attached report : L.M. Bzdel, E.R. Rockel).

Date Submitted: February 27, 1989.

SUD-RECORDER RECEIVED FEB 27 1989 VANCOUVER, B.C.

GEOLOGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

Α.	INTRODUCTION	Page 1
в.	DETAILED TECHNICAL DATA & INTERPRETATION	3
с.	ITEMIZED COST STATEMENT	3
D.	AUTHOR'S QUALIFICATIONS	5
APPI	ENDIX: Report on Vertical Loop Survey	

on the Trac Lake Property, Omineca M.D., Houston Area: by Interpretex Resources Ltd. : bound separately and accompanying this report.

Illustrations:

Fig. 1: Location Map

Fig. 2: Index Map and Claim Map

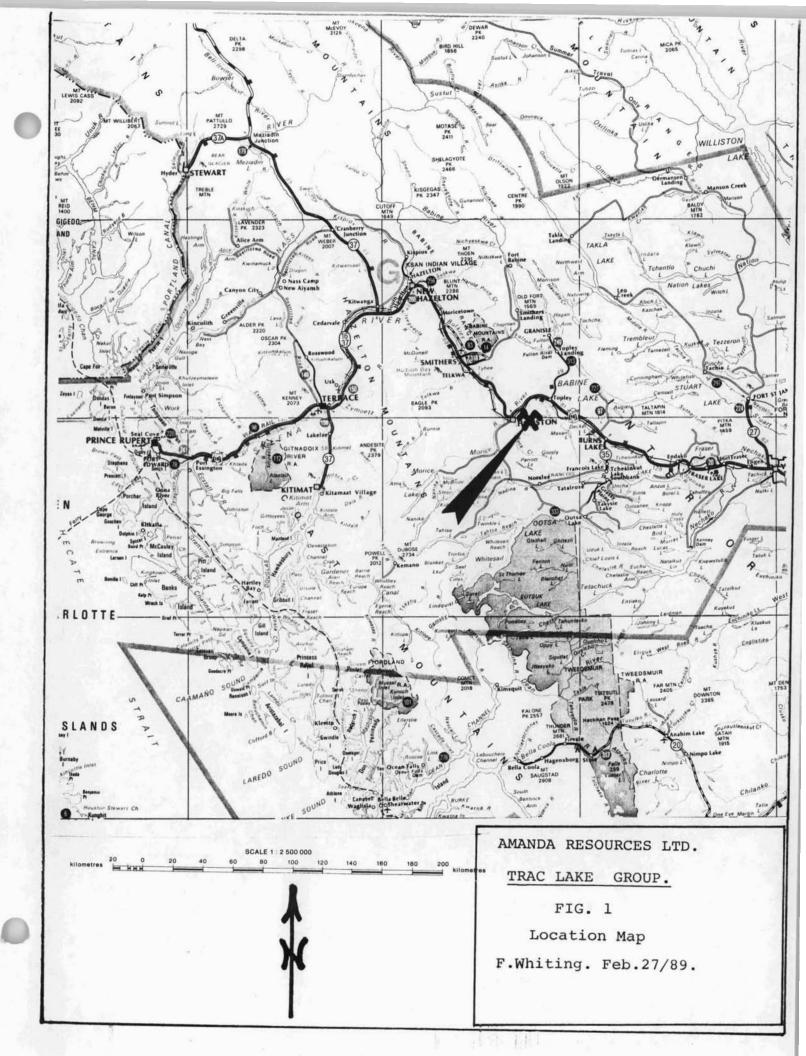
Fig. 3: Grid Lines Done

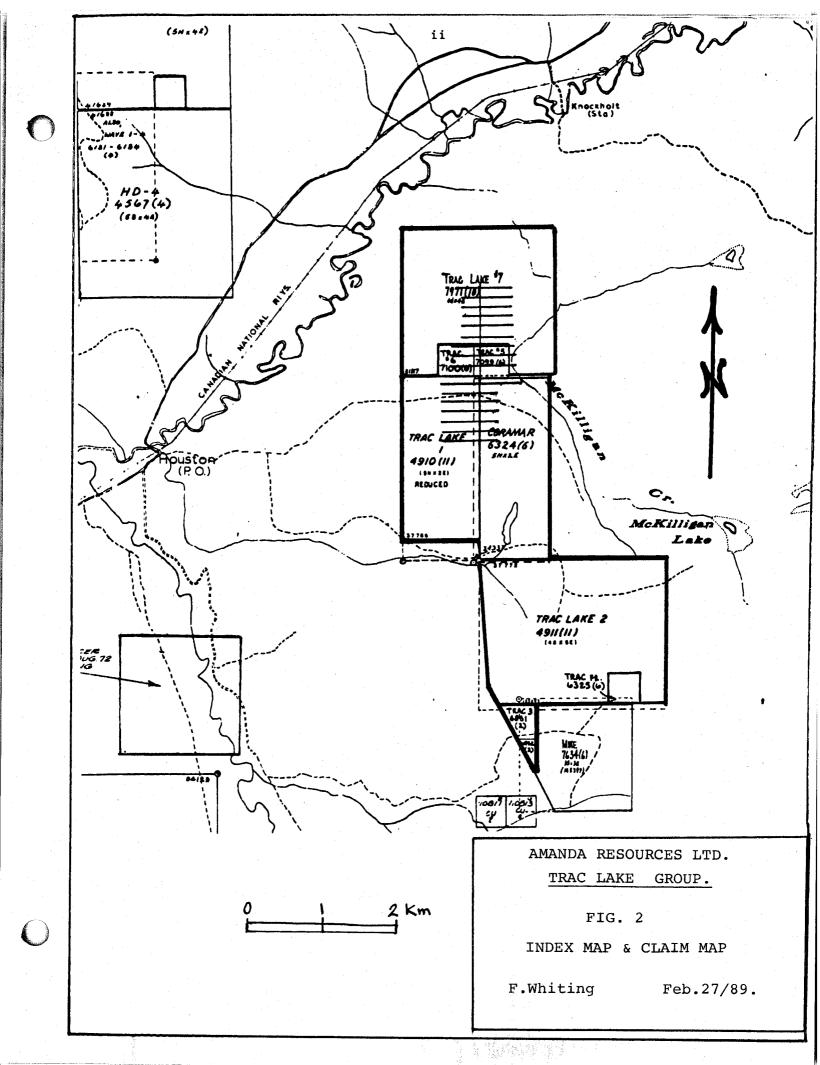
A. INTRODUCTION

LOCATION & ACCESS:

The Trac Lake Group is situated 4.5 km due east of Houston, B.C. (about 7 km by road) and can be reached by the Mud Lake logging road. Access to the southern portion of the property is by a logging road that branches from the Equity Silver road at Km 5. Figure 1 is the Location Map.

1.

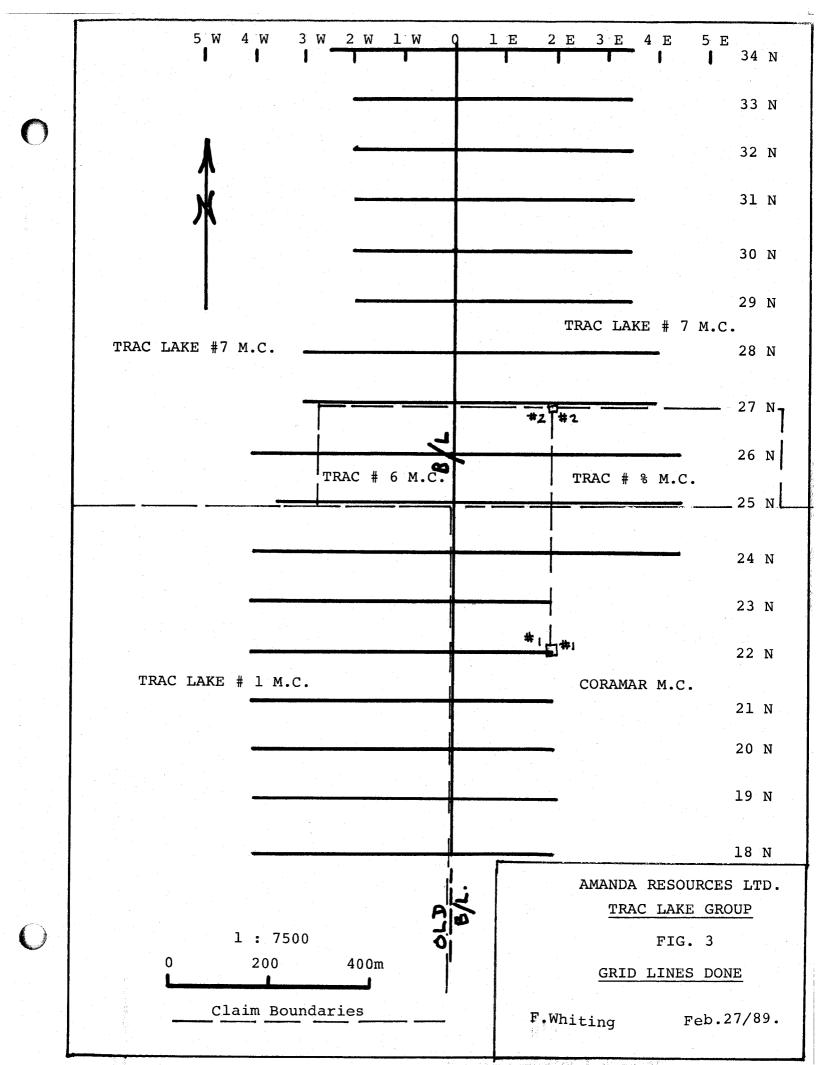

PROPERTY, HISTORY, OWNERS, OPERATOR, ECONOMIC ASSESSMENT:


The property consists of the following claims: Trac Lake #1-#2 & #7, Rec. #s 4910(11)-4911(11)-7971(10) Trac Fraction Rec. # 6325(6) Coramar Rec.# 6324(6) Trac #3-4-5-6 Rec. #s 6851(2)-6852(2)-7099(6)-7100(6). The total is 56 units and 5 2-Post (or Frac.) claims.

The claims were staked by or for F.B.Whiting and (Coramar M.C. only) Cora A. Whiting in 1982-84-85-86. They cover showingSwest of Mud Lake and north of Dungate Creek that formerly were owned by a succession of owners, and had been subjected to geological mapping, geophysical surveys and drilling in the late 1960s to late 1970s. Most of the drilling was done in the southern portion of the property on a porphyry plug carrying weak copper-molybdenum mineralization with traces of lead, zinc, gold and silver. The showings near Mud Lake carry copper, lead, zinc, fluorite and some silver. Some of the claims were held by Orion Resources Ltd. which optioned those to Amanda Resources Ltd. The current owners are Amanda Resources Ltd. and

F.B. Whiting (whose claims are under option to Amanda Resources Ltd.) The Operator is Amanda Resources Ltd.

The economic potential of the Trac Lake Group rests upon two distinct geological environments. In the northern or Mud Lake sector there is a belt of Jurassic Hazelton rhyolite breccias interpreted as being an explosive volcanic pile. Persistent conductors



may indicate the presence of stratabound sulphide layers, possibly carrying significant amounts of copper-lead-zinc-silver. The best known conductor has been followed for a strike length of 1000 m , open at both ends. In the southern sector there is an un-tested I.P. chargeability high adjacent to the Dungate Creek plug. This could be caused by a mineralized breccia mass or vein stockwork carrying copper, lead, zinc, gold and silver. Figure 2 is the combined Index Map and the Claim Map, upon which is superimposed the geophysical grid.

WORK DONE:

A survey grid had been established in 1986 with a north-south base line and east-west crosslines at 200-m separations. A VLF-EM survey by Interpretex Resources Ltd, coupled w a magnetic survey, found one long conductor extending NNW from Mud Lake, and several short conductors farther west. Recent logging activities had destroyed most of the northern portion of that grid, so in preparation for a detailed electromagnetic survey aimed at confirming the presence of the VLF-EM conductors, and determining their directions of dip (so as to pick out the best drill sites, directions and angles), the north part of the grid had to be reestablished. Tom Richards Prospecting Ltd. of Smithers, B.C. was contracted to re-establish the north part of the base line and parts of existing cross lines at 200-m separations, and to put in fill-in lines at 100-m separations. Their work totalled 12450 m, flagged and picketted at 25m spacings. They also noted where grid lines crossed logging roads. After the detailed grid had been marked out Interpretex Resources Ltd., a geophysical consulting firm, carried out a vertical-loop electromagnetic survey over the locations of the earlier VLF-EM conductors. The report by Interpretex Resources Ltd. is given in the Appendix. The Vertical Loop survey covered a select ϵ 6.5 km of detailed lines. This survey confirmed the presence of the main "A" conductor which was found on every line from 2400 N to 3400 and is open both to the south and the northwest. There are no outcrop

2.

along the length of the anomaly.

In summary, the gridding totalled 12450 m and the E.M. survey covered 6.5 km of lines.

B. DETAILED TECHNICAL DATA & INTERPRETATION

For this, refer to the report by Interpretex Resources Ltd. which is attached as the APPENDIX. In summary, the "A" conductor was detected on every cross-line from 2400 N to 3400 N and is open at both ends.

C. ITEMIZED COST STATEMENT

Gridding

Labor costs:

F.B.Whiting	: Nov.9/88: 1 day @ \$ 300	\$ 300
Sam Watling	: Nov.9, 10(1/2), Nov.22-27/88	
		¢ 1646

= 7.5 days @ \$ 227/day\$	1646
S. Soby : Nov.22-27/88: 6 days @ \$ 220\$	1320
R. Clark: Dec.2/88: 3.5 hours @ \$12.hr\$	42
D. Tetreau: Dec. 1-2/88: 16.5 hours @ \$ 30/hr\$	495
S. Evans: Dec. 2/88: 3 hrs @ \$ 16/hr\$	48
Other costs:	
Accomodation: 6 nights @ \$40.67 \$	244
Gasoline	99
Field supplies	300
Groceries	111
Meals	136
Vehicle rentals: 3 days @ 4 days @ \$55 <u>\$</u>	325
Total Costs: ag.::::\$	5066

Vertical Loop Survey:

Mobilization/demobilization: Personnel: Lawrence Bzdel: Dec.9/88: 1 day @ \$200 \$ 200 Ed Rockel: Dec.9/88: 1 day @ \$ 330 \$ 330 Air fares etc Sub-total..... \$ 1760 Field Work: Personnel: Lawrence Bzdel: Dec.10-12/88: 3 days @ \$ 200 . . \$ 600 Ed Rockel: Dec.10-12:3 days @ \$ 330 \$ 990 Vehicle, accomodation, meals Dec.10-12..... \$ 270 Sub-total..... \$ 1860 Interpretation & Geophysical Report: Personnel: Lawrence Bzdel: Jan. 19, 20, 24-26 /89 & Feb. 6/89 Ed Rockel: Jan.26/89 1 day @ \$ 330 \$ 330 Map preparation, report writing, copying \$ 195 Sub-total.....\$ 1725 Total Costs, Geophysical Survey....\$ 5345 Assessment Report F.B. Whiting : Feb. 24-24/89: 2 days @ \$300 \$ 600 Map prints, report copies, binders \$ 53 Assessment Report : Total.....\$ 653 TOTAL PROGRAM COSTS.....\$ 11,064

Respectfully submitted:

F.B. Whiting P.Eng.

D. AUTHOR'S QUALIFICATIONS

This is to certify that :

- I am a graduate in Geological Engineering from the University of British Columbia, 1946; received the degree of Master of Science in Geology from McGill University in 1948; and received the degree of Ph.d. in Geology and Economics from the Mass. Inst. of Technology in 1951.
- 2. I have practised my profession of geological engineer since 1946, as exploration assistant, field geologist, mine geologist, chief geologist, exploration manager and regional manager for Hedley Mascot Gold Mines, New Jersey Zinc Explorations, St. Joseph Lead Co., Cia. Minera Aguilar, Brascan Resources Ltd., and Arrow Inter-America Corp, up to 1976.
- 3. Since 1977 I have been President of Whiting Mining Services International Ltd., a mining service firm, with consulting activities in Canada, the U.S.A. and Brazil.
- 4. I am a registered member in good standing of the Assoc. of Prof. Engineers of B.C., and of the Assoc. of Prof. Engs. of the Yukon.
- 5. I am President of Orion Resources Ltd. and of Amanda Resources Ltd.

5.

F.B. Whiting

APPENDIX

n

 \bigcirc

file name: RPT88622

REPORT ON

VERTICAL LOOP SURVEY

ON THE TRAC LAKE PROPERTY OMINECA MINING DIVISION HOUSTON, BRITISH COLUMBIA

FOR

AMANDA RESOURCES LTD.

BY

INTERPRETEX RESOURCES LTD.

Vancouver, B.C. January, 1989 Project #88622 L.M. Bzdel E.R. Rockel

TABLE OF CONTENTS

\mathbf{O}			page	
		List of Figures List of Tables	i i	
	1.	SUMMARY	1	
	2.	MINERAL CLAIMS	1	
	з.	INTRODUCTION		
		3.1 General	2	
		3.2 Objectives		
		3.3 Method	2 2 2 2	
		3.4 Location	2	
		3.5 Access	2	
		3.6 Operations and Communications 3.7 Physiography	23	
		3.8 Previous Work	3	
	4.		Э	
		4.1 Survey Parameters	3	
		4.2 Equipment Parameters 4.3 Equipment Specifications	3	
		Alo rdarbwent phetiicatious	Appendi	X TTT
	5.	DATA	4	
		5.1 Calculations	4	
		5.2 Presentation	4	
	6.	INTERPRETATION	5	
		6.1 Discussion of Results	5	
		6.2 Conclusions	5	
	7.	RECOMMENDATIONS		
	/•	RECOMMENDATIONS	6	
		CERTIFICATE		
		REFERENCES		
		APPENDIX I - Present Survey Expenditures		
		WIFWARY I - LIEBOUL AUTABA EXDEUGICULAS		
		APPENDIX II - Personnel		
		APPENDIX III - Equipment Specifications		
		APPENDIX IV - Vertical Loop Data Listing		
		The second roop hata fisting		
U	}			

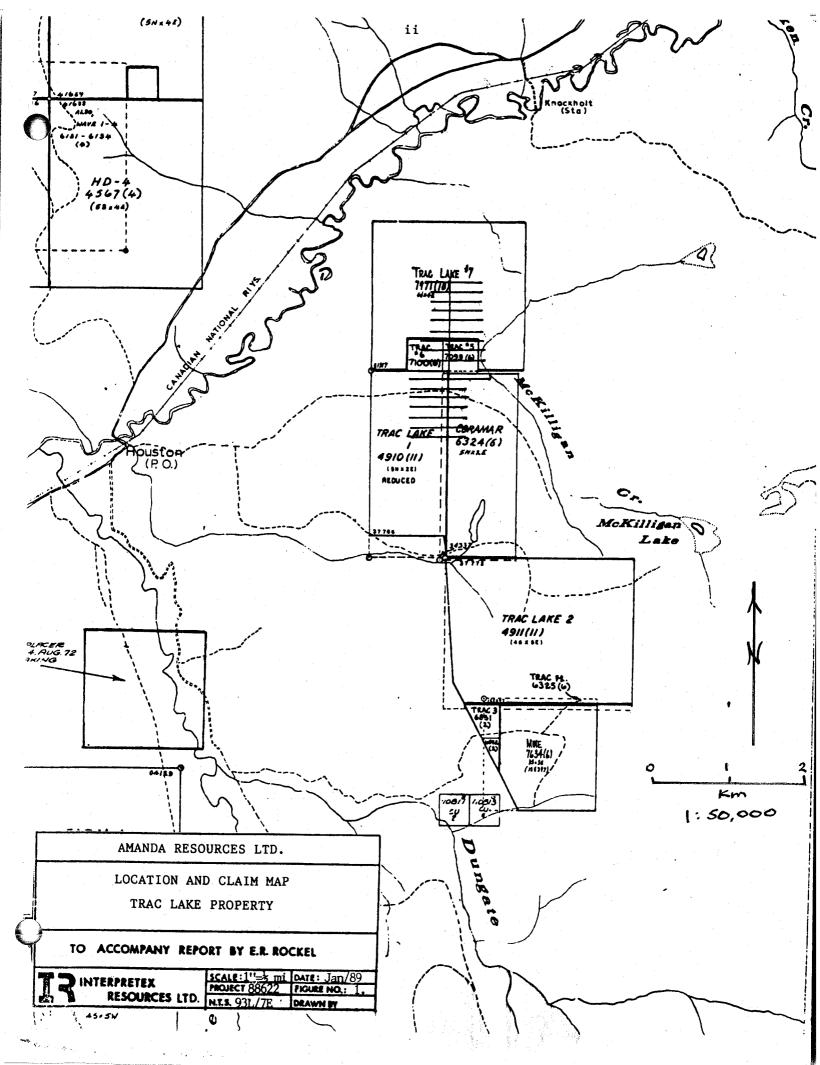
LIST OF FIGURES

i

FIGURE #	MAP	LOCATION IN REPORT
1	Location and Claim Map	Page ii
2	Vertical Loop Profiles High Frequency (2400 Hz.)	Map Pocket
3	Vertical Loop Profiles Low Frequency (600 Hz)	Map Pocket

LIST OF TABLES

TABLE


TITLE PAGE

4

1

`**'

Transmitter Locations

1. SUMMARY

The vertical loop electromagnetic survey has delineated two conductive trends within the survey area. Conductor A has a strike length of 1000 meters within the grid area, and appears to be open to the north and south. The long strike length of this conductor suggests a bedrock structure. The relatively strong responses of the high frequency may indicate associated mineralization.

Conductor B exhibits a poor response on the high frequency and is believed to represent conductive overburden along a topographic depression.

Geophysical targets recommended for additional investigation are:

1.	L	32+00	N,	0+50	Ε
2.	L	31+00	N,	0+75	E
з.	L	30+00	N,	1+25	Ε
4.	L	33+00	N,	0+40	Ê.

2. MINERAL CLAIMS

Claim Name	Record Number	Expiry Date	Owner	Number of Units
Trac Lake #1	4910	Nov. 17/89	F.B. Whiting	10
Trac Lake #2	4911	Nov. 17/89	F.B. Whiting	20
Coramar	6324	June, 28/91	Amanda Res. Ltd.	10
Trac Fraction	6325	June, 28/90	F.B. Whiting	1
Trac #3	6851	Feb. 27/91	Amanda Res. Ltd.	1
Trac #4	6852	Feb. 27/91	Amanda Res. Ltd.	1
Trac #5	7099	June, 20/92	F.B. Whiting	1
Trac #6	7100	June, 20/92	F.B. Whiting	1
Trac Lake #7	7971	Oct. 7/91	Amanda Res. Ltd.	16

3.1 General

A vertical loop electromagnetic (VLEM) survey was carried out on a single grid located approximately 7 km. northeast of Houston, B.C. during December, 1988.

3.2 Objectives

- to determine the significance of previously established VLF-EM conductor trends using the low frequencies of the vertical loop method. - to approximately determine attitude and depth of the conducting source using theoretical curves.

3.3 Method

The vertical loop survey was conducted using the set-up method. The survey was carried out on a refurbished portion of a previously established grid.

3.4 Location

- Omineca Mining Division

- Trac Lake Grid Trac Lake Group (see section 2. MINERAL CLAIMS)
- NTS 93 L/7E
- Lat. 54 deg. 24 min. North
- Long. 126 deg. 35 min. West

3.5 Access

Access to the Trac Lake property was by four wheel drive truck from Houston, B.C. via the Mud Lake Road.

3.6 Operations and Communications

- personnel and equipment were mobilized from Vancouver, B.C. by plane, and from Smithers, B.C. by truck.
- accommodation for personnel was at the Upland Motel, west of Topley, B.C.
- food was obtained at the Upland Motel.
- communications were by land line telephone from the Upland Motel.
- field communications were by Motorola HT-90 transceivers.
- a four wheel drive truck was used to carry personnel and equipment into the grid area and for transportation within the survey grid.

...3

-2-

3.7 Physiography

The topography of the survey area was moderate with a few steep slopes. Vegetation consisted primarily of fir and pine. Extensive logging has taken place on the grid.

3.8 Previous Work

In 1986 magnetic and electromagnetic (VLF-EM) surveys were carried out on the Trac Lake property (Rockel, 1986).

4. SURVEY SPECIFICATIONS

4.1 Survey Parameters

- survey line separation 100 m.
- survey station spacing 25 m. on all survey lines
- horizontal control lines were surveyed by compass - stations were located using wooden pickets
 - sprayed red and marked with metal tags
- baseline direction north-south
- survey lines were perpendicular to the baseline
- vertical loop survey total was 6.5 km.

4.2 Equipment Parameters

- a McPhar VHEM vertical loop electromagnetic system was used to carry out the survey
- all survey lines were read using the high frequency (2400 Hz.), and selected lines were read using both frequencies (600 Hz. and 2400 Hz.)
- the dip angle was measured in degrees.

4.3 Equipment Specifications - see Appendix III

DATA

5.

5.1 Calculations

Estimates of the dip and depth to the top of conductor were carried out using a scheme devised by Grant and West (1965).

5.2 Presentation

- the profiles of the dip angle for the high and low frequencies are presented at scale of 1:5000 on Figure # 2 and Figure # 3 respectively.
- the transmitter locations for each survey line are listed below in Table #1.

TABLE #1: Transmitter Locations

Line #	Stations Read	Transmitter Location
34+00 N	2+00 E - 1+75 W	L 33+00 N, 0+40 E
33+00 N	2+00 E - 1+25 ₩	L 32+00 N, 0+50 E
32+00 N	2+50 E - 1+00 W	L 31+00 N, 0+75 E
31+00 N	3+00 E - 0+50 W	L 30+00 N, 1+25 E
30+00 N	3+50 E - BL O	L 29+00 N, 1+70 E
29+00 N	3+75 E - BL O	L 28+00 N. 2+00 E
28+00 N	4+00 E - BL 0	L 27+00 N, 2+10 E
27+00 N	4+00 E - 0+25 E	L 26+00 N. 2+25 E
26+00 N	3+50 E - 0+50 E	L 25+00 N, 2+00 E
25+00 N	3+50 E - 0+75 E	L 26+00 N. 2+25 E
24+00 N	3+50 E - 0+25 E	L 25+00 N. 2+00 E
27+00 N	0+50 E - 2+50 W	L 26+00 N. 1+00 W
26+00 N	0+50 E - 2+50 W	L 27+00 N. 1+00 W
25+00 N	0+50 E - 2+50 W	L 26+00 N. 1+00 W
25+00 N	1+25 W - 3+25 W	L 24+00 N. 2+50 W
24+00 N	0+25 W - 3+25 W	L 23+00 N. 1+80 W
23+00 N	0+75 E - 2+25 W	L 22+00 N. 0+75 W
22+00 N	0+25 W - 3+25 W	L 23+00 N, 1+80 W
21+00 N	0+25 W - 3+25 W	L 22+00 N. 1+75 W
20+00 N	0+50 E - 2+50 W	L 21+00 N. 1+00 W
20+00 N	0+50 W - 3+50 W	L 21+00 N. 2+00 W
20.00 N	0.00 # 0.00 #	

...5

5. INTERPRETATION

6.1 Discussion of Results

The low frequency (600 Hz.) was tested on lines 26+00 N. 30+00 N and 31+00 N along conductor A. and on lines 25+00 N. 26+00 N and 27+00 N along conductor B (see Figure 3). The data indicates a weak response from this frequency along both trends, therefore additional readings were not taken using the low frequency.

6.2 Conclusions

The vertical loop data has delineated two conductive trends which have been denoted A and B on Figure 2. Conductor A has a strike length of 1000 meters within the survey area. The relatively large amplitude of the curves at lines 34+00 N and 24+00 N suggests that the trend continues to the north and south. Conductor B extends for 400 meters within the survey area and appears to continue off the grid in a northwesterly direction.

Conductor A exhibits the highest conductance and is the best candidate for sulphide mineralization. The extended strike length of A suggests a possible mineralized bedrock structure. Estimations of the dip of the conductor indicate an easterly dip of less than 30 degrees for L 34+00 N to L 27+00 N. At lines 26+00 N and 25+00 N the dip is believed to be aproximately 30 degrees and for L 24+00 N the dip appears closer to 50 degrees. Depth estimates suggest a shallow source, approximately 10 to 20 meters below surface, along most of the conductor.

Conductor B exhibits a relatively weak response which can probably be attributed to weakly conductive overburden along a topographic depression.

...6

7. RECOMMENDATIONS

No de la

The geophysical data should be correlated with geological and geochemical information. Based only on the geophysical data the following locations should be considered for further investigation by diamond drilling:

Line			Stati		ion	on	
32+00	N			0+50	E		
31+00	N			0+75	E		
30+00	N			1+25	E		
33+00	N	,		0+40	Ε		

These locations represent the best responses. Additional investigation of conductor A should be based on the results of these targets.

The geophysical data alone does not indicate targets worthy of further consideration along conductor B.

Respectfully Submitted

INTERPRETEX RESOURCES LTD. Vancouver, British Columbia

L.M. BZDEL

Geophysicist

2

E.R. ROCKEL

Consulting Geophysicist

PERMIT TO PRACTICE
INTERPRETEX RESOURCES LID.
Signature
Date Feb. 7 989 PEASAT NUMBER: P 3100
The Association of Professional Engineers,
Geologists and Geophysicists of Alberta

CERTIFICATE

I, Lawrence Michael Bzdel, Geophysicist of Burnaby, British Columbia, Canada, hereby certify that:

1. I received a B.Sc. Adv. degree in Geophysics from the University of Saskatchewan in 1986.

2. I have been practising my profession since graduation.

3. I hold no direct or indirect interest in, nor expect to receive any benefits from, the mineral property or properties described in this report.

4. This report may be used for the development of the property, provided that no portion will be used out of context in such a manner as to convey meanings from that set out in the whole.

5. Consent is hereby given to the company for which this report was prepared to reproduce the report or any part of it for the purposes of development of the property, or facts relating to the raising of funds by way of a prospectus and/or statement of material facts.

Date: 7/89 _____ Signed:__

Vancouver, British Columbia

Janeny

Lawrence Michael Bzdel B.Sc.

CERTIFICATE

I, Edwin Ross Rockel, Geophysicist of Vancouver, British Columbia, Canada, hereby certify that:

- 1. I received a B.Sc. degree in Geophysics from the University of British Columbia in 1966.
- 2. I am a Consulting Geophysicist and owner of Interpretex Resources Ltd. of Box 48239, Bentall P.O., in the City of Vancouver, in the Province of British Columbia.
- 3. I currently reside at 13000 54A Ave, in the City of Surrey, in the Province of British Columbia.
- 4. I have been practising my profession since graduation.
- 5. I am a Professional Geophysicist registered in the Province of Alberta.
- 6. I am a Professional Engineer registered in the Province of Saskatchewan.
- 7. I am a Certified Professional Geological Scientist registered in the United States of America.
- 8 I hold no direct or indirect interest in, nor expect to receive any benefits from, the mineral property or properties described in this report.
- 9. This report may be used for the development of the property, provided that no portion will be used out of context in such a manner as to convey meanings different from that set out in the whole.
- 10. Consent is hereby given to the company for which this report was prepared to reproduce the report or any part of it for the purposes of development of the property, or facts relating to the raising of funds by way of a prospectus and/or statement of material facts.

Date:

Vancouver, British Columbia

Fe.6.7

1989

Signed:

Edwin Ross Rockel B.Sc., P.Geoph., P. Eng.

REFERENCES

1. Grant, F.S., West, G.F., 1965. Interpretation Theory in Applied Geophysics, pg. 556-563.

 \mathbf{O}

2. Rockel, E.R., 1986. Geophysical Survey Results, Trac Lake Project for Amanda Resources Ltd., Vancouver, British Columbia.

APPENDIX I

 \mathbf{O}

C

Present Survey Expenditures

TRAC LAKE PROPERTY

HOUSTON AREA, OMINECA MINING DIVISION, B.C.

Present Survey Expenditures

MOBILIZATION/DEMOBILIZATION

- contractural flat rate -

\$1,760.00

CONTRACTURAL FIELD WORK

(during the period from Dec. 10 to 12, 1988 not including mob-demob)

- included all survey equipment, one four wheel drive truck, ancillary equipment, office supplies, field supplies, fuel, food and accommodation
- field work included vertical loop electromagnetic survey, supervisionon and preliminary data interpretation in the field.

\$1,860.00

INTERPRETATION AND REPORT

- included final data interpretation, report writing, computer processing, computer plotting and reproduction for seven copies of final report

\$1,725.00

TOTAL SURVEY PROGRAM EXPENDITURE

\$5,345.00

APPENDIX II

Personnel

PERSONNEL

The following personnel worked on the property and/or were engaged in the supervision for all or part of the days noted (includes mobilization and demobilization):

Name	Position	Dates
Lawrence Bzdel Burnaby, B.C.	Geophysicist	Dec. 9 - Dec. 12, 1988
Ed Rockel Surrey, B.C.	Consulting Geophysicist	Dec. 9 - Dec. 12. 1988

The following personnel were involved in data preparation or reporting of the project for all or part of the days noted:

Name	Position	Dates
Lawrence Bzdel Burnaby, B.C.	Geophysicist	Jan. 19,20,24-26, 1989 Feb. 6, 1989
Ed Rockel Surrey, B.C.	Consulting Geochysicist	Jan. 26, 1989

· .

APPENDIX III

Equipment Specifications

O

McPhar VHEM

Vertical Loop - Horizontal Loop Electromagnetic Unit

(1) Vertical Loop Mode

Frequencies:

Measurements:

600 Hz and 2400 Hz

Dip angle in degrees read on a clinometer at a signal null in earphones

Transmitter Orientation:

By sound or by orientation plate on tripod. Levelling by bubble level.

(2) Horizontal Loop Mode

Frequencies:

Measurements:

Orientation:

600 Hz and 2400 Hz

In-phase and out-of-phase measurements made by nulling signal in earphones using potentiometer controls. In-phase and outof-phase readings are in percentage of the total field at the receiver.

Both receiver and transmitter are held in the horizontal plane.

Headphones:

Power Requirements:

Size:

Weight:

LT-700 50K ohm tuned crystal

45 volts supplied by 30 D size dry cells in a back pack

Receiver -52 cm x 15 cm x 6 cm Transmitter -52 cm x 15 cm x 6 cm Wire Reels -23 cm x 23 cm x 20 cm Battery Pack -57 cm x 37 cm x 6 cm

Receiver - 3.5 kg Transmitter - 4.5 kg Wire Reels (200 ft) - 5.0 kg (300 ft) - 6.5 kg Battery Pack - 5.0 kg

APPENDIX IV

Vertical Loop Data Listings

INTERPRETEX RESOURCES LTD. Vertical Loop EM Reaults EM values in degrees GRID: TRAC LAKE File Name: TLVL.PRN

()

Station Int. 25 meters Station # + = east, - = west

•			HIGH FREQ. (5000 Hz)	LOW FREQ. (1000 Hz)
	LINE	STATN	angle	angle
	3400	200	1	
	3400	175	1	
	3400	150	2	
	3400	125	4	
~ *	3400	100	5	
	3400	75	6	
	3400	50	6	
	3400	25	6	
	3400	0	5	
	3400	~25	4	
	3400	-50	2	
	3400	-75	-2	
	3400	-100	-4	
	3400	-125	-6	
	3400	-150	-7	
	3400	-175	-9	
	3300	200	0	
	3300	175	· 1	
	3300	150	3	
	3300	125	5	
	3300	100	6	
	3300	75	6	
	3300	50	2	
	3300	25	- 4	
	3300	0	-11	
	3300	-25	-15	
	3300	-50	-19	
	3300	-75	-23	
	3300	-100	-23	
	3300	-125	-22	
	3200	250	4	
	3200	225	5	
	3200	200	6	
	3200	175	6	
	3200	150	6	
•	3200	125	6	
	3200	100	5	
	3200	75	3	
	3200	50	0	
	3200	25	-8	
	3200	0	-14	
	3200	-25	-14	

3200 3200 3200	-75	5 –	12 12 13
3100 3100 3100 3100 3100 3100 3100 3100	275 250 250 225 200 175 150 150 100 100 50 50 250 200 100 100 250 200 100 100 250 200 <td>5</td> <td>-7 -6 -4 -1 2 4 5 3 0 -4 10 15 17</td>	5	-7 -6 -4 -1 2 4 5 3 0 -4 10 15 17
3000 3000 3000 3000 3000 3000 3000 300	325 300 275 250 225 200 175 150 125 100 75 50 25	5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	
2900 2900 2900 2900 2900 2900 2900 2900	350 325 300 275 250 225 200 175 150 125 100 75 50 25		1 0 3
2800 2800 2800	375		3 4 6

2800 2800 2800 2800 2800 2800 2800 2800	325 300 275 250 225 200 175 150 125 100 75 50 25 0	6 8 7 5 3 0 -2 -4 -6 -7 -9 -10 -10 -10
2700 2700 2700 2700 2700 2700 2700 2700	400 375 350 325 300 275 250 225 200 175 150 125 100 75 50 25	5 5 4 4 5 4 3 -1 -3 -7 -8 -9 -12 -12 -13
2600 2600 2600 2600 2600 2600 2600 2600	350 325 300 275 250 225 200 175 150 125 100 75 50	8 7 5 2 0 -2 -2 -3 -4 -5 -4 -4
2500 2500 2500 2500 2500 2500 2500 2500	350 325 300 275 250 225 200 175 150 125	6 5 4 5 2 0 -1 -2 -3

2 2 1 0 0 0 -1 -1 -1 -1 -1

 \mathbf{O}

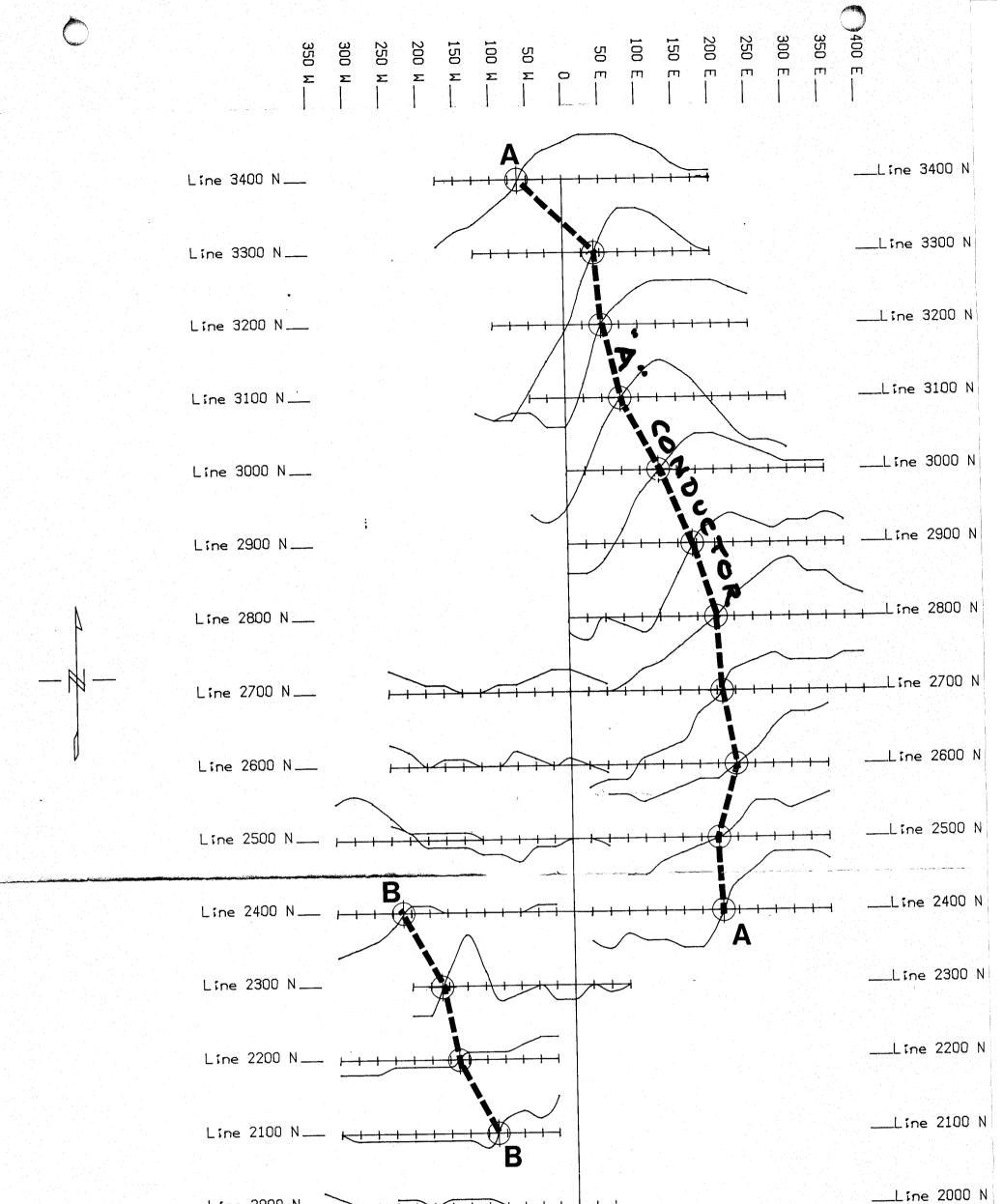
0

	2500 2500	100 75	-5 -5
		· · · · · · · · · · · · · · · · · · ·	
	2400	350	7
	2400	325	8
	2400	300	8
	2400	275	8
	2400	250	6
	2400 2400	225	4
		200 1 75	-1
	2400 2400	175	-5 -5
	2400	125	-5
	2400	100	-4
	2400	75	-3
	2400	50	-5
	2400	25	-4
	2700	50	1
	2700	25	2
	2700	0	3
	2700	-25	3
	2700	-50	2
	2700	-75	1
	2700	-100	1
	2700	-125	Ō
	2700	-150	0
	2700	-175	1
	2700	-200	-
	2700	-225	2
	2700	-250	3
	2600	50	-1
	2600	25	ō
	2600	0	1
	2600	-25	ō
-	2600	-50	1
	2600	-75	2
	2600	-100	ō
	2600	-125	Ō
	2600	-150	1
	2600	-175	1
	2600	-200	0
	2600	-225	2
	2600	-250	3
- - 1+2	2500	50	-1
	2500	25	0
	2500	0	0
	2500	-25	-1
-	2500	-50	-1
	2500	-75	-3
	2500	-100	-2
	2500	-125	-2
	2500	-150	-1
	2500	-175	-1

1 1 1 2 1 0 0 -1 -1 -1 -1 -1 -2 0 -1 0 0 0 0 0 0 0 0 0 1 1 -3 -2 -2 -2 -2 -1 -1 0

0

O


and a start of the start

2500 2500 2500	-200 -225 -250	1 1 2
2500 2500 2500 2500 2500 2500 2500 2500	-125 -150 -175 -200 -225 -250 -275 -300 -325	011113565
2400 2400 2400 2400 2400 2400 2400 2400	-25 -50 -75 -100 -125 -150 -175 -200 -225 -250 -275 -300 -325	4 5
2300 2300 2300 2300 2300 2300 2300 2300	75 50 25 0 -25 -50 -75 -100 -125 -150 -175 -200 -225	 0220122724
2200 2200 2200 2200 2200 2200 2200 220	-25 -50 -75 -100 -125 -150 -175 -200 -225 -250 -275 -300 -325	1122

 \bigcap

2100 2100 2100 2100 2100 2100 2100 2100	-25 -50 -75 -100 -125 -150 -175 -200 -225 -250 -275 -300 -325	5 2 3 2 -2 -1 -1 -1 -1 -1 -1 -1 -1 0
2000 2000 2000 2000 2000 2000 2000 200	50 25 0 -25 -50 -75 -100 -125 -150 -175 -200 -225 -250	-5 -3 -2 -2 -2 -1 -1 0 0 0 1
2000 2000 2000 2000 2000 2000 2000 200	-50 -75 -100 -125 -150 -175 -200 -225 -250 -275 -300 -325 -350	-2 -1 0 1 1 1 1 0 0 -1 0 0 1 2

 \bigcirc

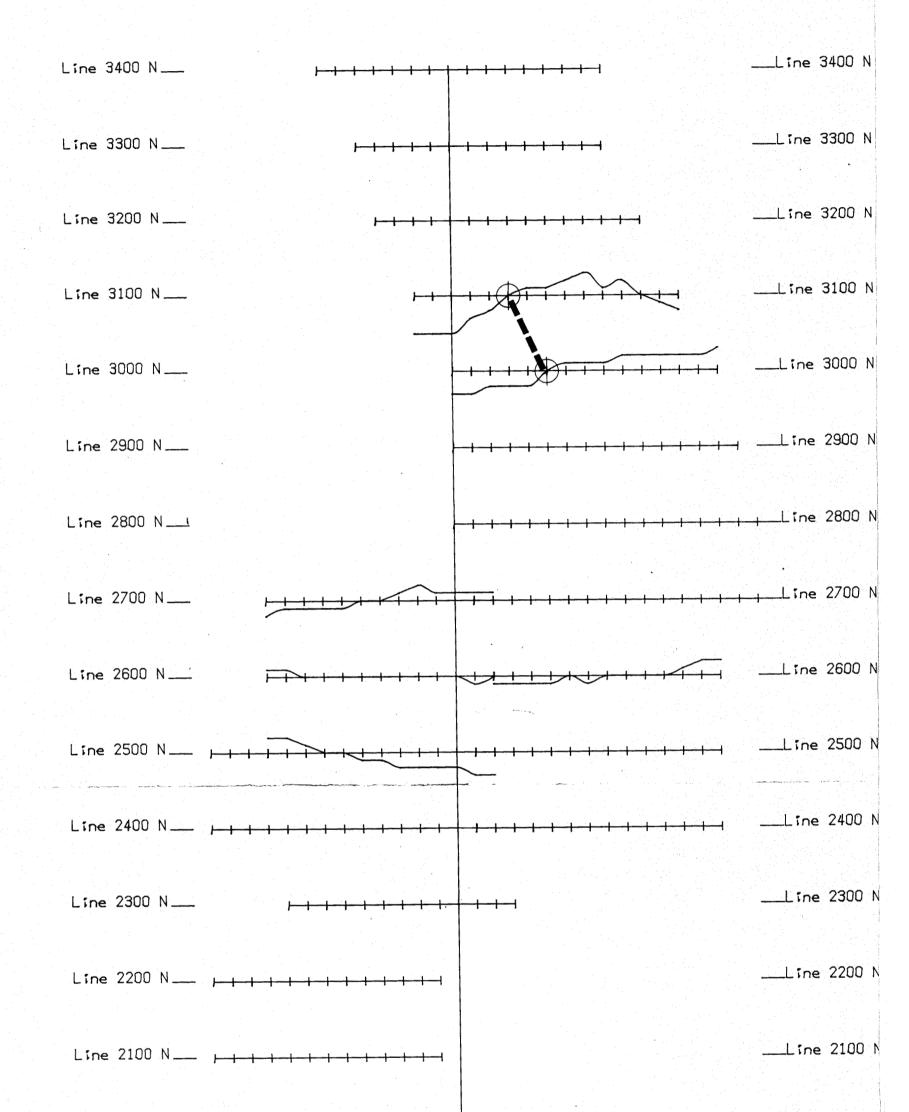
Line 2000 N

AMANDA RESOURCES LTD.

Vertical Loop Profiles Frequency: 2400 Hz Trac Lake Grid, Houston Area Omineca Mining Division, B.C.

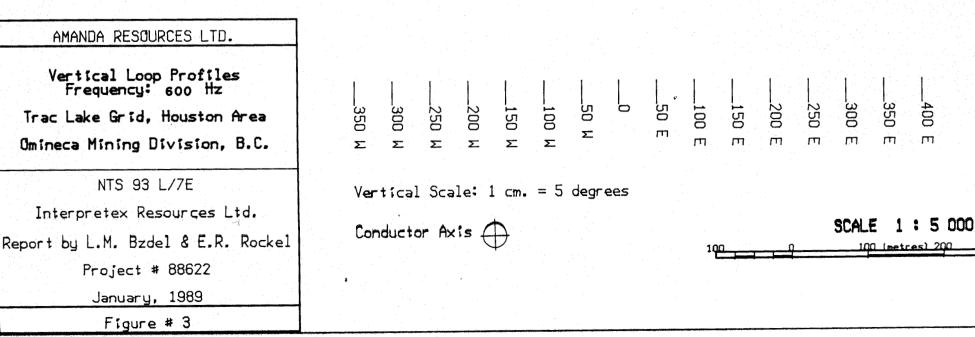
NTS 93 L/7E

Interpretex Resources Ltd. Report by L.M. Bzdel & E.R. Rockel Project # 88622 January, 1989 Figure # 2


ω	μ	2	2			 50 μ	_ភ្យ	• • •		20	25	30	ណ្ដ	40	
50	8	50		50	В	5	m	8	Ö	ō	6		0	O ·	
Σ		Σ	Σ	Σ	Σ			ויין	, 111	ΓΠ.	. ГП	Ш	111	111	

Vertical Scale: 1 cm. = 5 degrees

Conductor Axis


		SCALE	1 :	; 5	5 000	
100	1	100 (netre	द]	200	300

9350 E ____ 300 E ____ 250 E ____ 150 E ____ 150 E ____ 100 E ____ 50 E ____ 100 W ____ 150 W ____ 200 W ____ 300 W ____

Line 2000 N

Line 2000 N_____

