ARIS SUMMARY SHEET

、たませた

Distanti

District	Geologist,	Smithers		Off Confid	ential: 9	0.02.24
ASSESSMEN	T REPORT 1	8465 MINING DI	IVISION: Lia	ard		
PROPERTY: LOCATION:	Fred LAT UTM NTS	57 35 00 LONG 09 6383102 589690 094E11W 094E12E	127 30 00			
CAMP:	051	Toodoggone Camp				
CLAIM(S): OPERATOR(AUTHOR(S) REPORT YE COMMODITI SEARCHED KEYWORDS: WORK	Adoog S): Proli : Aussa AR: 1989, ES FOR: Coppe Trias Borni	8-10,Fred 1-5,Stik 1 fic Res. nt, C.H.;Davis, J.W. 140 Pages r,Gold,Silver sic,Takla Group,Andes te,Jurassic,Toodoggor	L-10,Jim,Mik site,Quartz ne Volcanics	ke,Doog veins,Chal s	copyrite,	Chalcocite
PONE:	Geologica GEOL 865 Map(s LINE 1	l,Geochemical,Physica 0.0 ha) - 4; Scale(s) - 1:1 0.8 km	al LO 000			
	ROCK 35 SOIL 72 TREN 1	5 sample(s) ;ME 2 sample(s) ;ME 9.0 m 1 trench(es	5)			
RELATED REPORTS:	15618 094E	043.094E 054.094E	090.094E			

- addition

- singletor

and the second s

All the second

ALC: NO

Approx 100

Contraction of the local distribution of the

Defendence.

Sector Sector

Newsian

And a second second

GEOLOGICAL, GEOCHEMICAL, AND PROSPECTING REPORT on the 'TOODOGGONE' PROPERTIES NTS 94-E/5E,11W,12E Liard Mining Division Latitude 57°35' North Longitude 127°30' West British Columbia

November 22, 1988

FILML

by

C. H. Aussant, P.Geol., F.GAC

J. W. Davis, P.Geol., F.GAC 🗢 <

TAIGA CONSULTANTS LTD. #400, 534 - 17th Avenue S.W. Calgary, Alberta T2S OB1

- Langev

a tradut

inden generation

Ŋ

TABLE OF CONTENTS

INTRODUCTION Location and Access Property Status and Ownership	
REGIONAL HISTORY OF EXPLORATION PROPERTY HISTORY OF EXPLORATION REGIONAL GEOLOGY	. .
Summary of Personnel Summary of Expenditures Rock Sample Descriptions Analytical Techniques Certificates of Analysis	
TABLES1 - Claims Data2 - Table of Formations	
FIGURES 1 - Property Location Map 2 - Claim Location Map 3 - Property Geology Map 4 - Idealized Section of Epithermal De 5 - British Columbia Epithermal Model 6 - Mike 1 Claim, 'M' Grid, Au (ppb). 7 - Mike 1 Claim, 'M' Grid, Ag (ppm). 8 - Stik 4 Claim, Trench T-88-3 9 - Stik 6 Claim, 'S' Grid, Au (ppb). 10- Stik 6 Claim, 'S' Grid, Ag (ppm). 11- Stik 6 Claim, Trench T-88-4	
MAPS 1 - Doog 7, Exploration Coverage 2 - Jim 1, Exploration Coverage 3 - 1988 Exploration Coverage - North 4 - 1988 Exploration Coverage - South	1:10,000 1:10,000 Half 1:10,000 Half 1:10,000

TAIGA CONSULTANTS LTD.

- Street -

A ALLERANDA

1. Laboration

Wanness

and a state

and the second

The second s

A Distant and the second s

INTRODUCTION

Taiga Consultants Ltd. was contracted by Prolific Resources Ltd. of Vancouver, British Columbia, to complete a field exploration program on claims located in the Toodoggone gold camp of north-central British Columbia. The objective of this program was to locate and evaluate the gold potential of epithermal quartz-breccia systems on these claims.

Exploration consisted of prospecting, geological mapping, hand trenching, and geochemical sampling. Geochemical sampling consisted of grid-controlled soil sampling, reconnaissance soil sampling, and lithogeochemical sampling.

Location and Access

The 'Toodoggone' properties (Figure 1) are located approximately 300 km north of Smithers within NTS map-areas 94-E/5E, 11W, and 12E. The approximate geographic coordinates for the centre of the properties are $57^{\circ}35'$ North latitude and $127^{\circ}30'$ West longitude. The properties are bounded by latitude $57^{\circ}30'$ to $57^{\circ}40'$ North and $127^{\circ}36'30"$ to $127^{\circ}23'15"$ West.

Access to the properties from Smithers is via fixed-wing aircraft to the Sturdee Airstrip 300 km to the north, and then by helicopter for a distance of 42 to 60 km north-northwest. With the completion of the Omar Road Extension, which connects the Omineca Resource Road to the Cheni Mine Site, road access is now available to within 27 km at the closest point.

Property Status and Ownership

The 'Toodoggone' properties consist of one contiguous block of 18 claims and three isolated claims, within the Liard Mining Division. These claims are currently registered in the name of either Prolific Resources Ltd. or Delaware Resources Corp. Prolific Resources is the operator of the properties, having optioned Delaware's properties from them. The exact location and configuration

nanst.

- Assessed

Sec. 1

1

Langer and

PROPERTY LOCATION MAP BRITISH COLUMBIA

FIGURE 1

- Array -

and the second

of the properties are illustrated in Figure 2. Relevant claim data are listed in Table 1.

Claim Name	Record <u>Number</u>	No.of <u>Units</u>	Size <u>hectares</u>	Record <u>Date</u>	Anniversary Date	Recorded <u>Owner</u>
Adoog 8 Adoog 9 Adoog 10 Fred 1 Fred 2 Fred 3 Fred 4 Fred 5 Stik 1 Stik 2 Stik 3 Stik 4 Stik 5 Stik 6	3539 3538 4615 3537 4621 4622 4623 4624 3400 3401 3402 3403 3536 4616	20 10 15 20 15 15 20 20 20 20 20 20 20	500 250 375 500 375 375 500 375 500 500 500 500 500 500	1985 1987 1987 1987 1987 1987 1987 1985 1985 1985 1985 1985 1985	May 02 1989 May 02 1989 May 17 1989 May 02 1989 May 02 1989 May 17 1989 May 17 1989 May 17 1989 May 17 1989 May 04 1989 May 04 1989 May 04 1989 May 04 1989 May 02 1989 May 17 1989	Delaware Resources Delaware Resources Delaware Resources Prolific Resources Prolific Resources Prolific Resources Prolific Resources Delaware Resources Delaware Resources Delaware Resources Delaware Resources Delaware Resources Delaware Resources Delaware Resources
Stik 7 Stik 8 Stik 9 Stik 10	4617 4618 4619 4620	18 4 12 10	450 100 300 250	1987 1987 1987 1987	May 17 1989 May 17 1989 May 17 1989 May 17 1989 May 17 1989	Delaware Resources Prolific Resources Delaware Resources Delaware Resources
Jim 1	4611	20	500	1987	May 17 1989	Prolific Resources
Mike 1 Doog 7	4612 4613	12 20	300 500	1987 1987	May 17 1989 May 17 1989	Prolific Resources Delaware Resources
		346	8,650	(21,373	.9 acres)	

<u> TABLE 1 - Claims Data</u>

<u>Physiography</u>

The claims lie within the Cassiar Mountains physiographic subdivision of the Interior Plateau. The region is entirely glaciated and is characterized by wide U-shaped drift-filled major valleys and deeply incised V-shaped interior upland valleys. Mountain peaks in the area average 1,980 m ASL, rising fairly abruptly from the major valleys. The topography of the areas underlain by Toodoggone volcanic rocks is usually more subdued than in those areas underlain by Takla Group volcanic rocks.

127* 30'

CLAIM LOCATION MAP

FIGURE 2

1. Ecologica

a de la compañía de l

Re-room

Non-Section Section Se

NAME OF T

Elevations range from 1300 m in the valley of Adoogacho Creek to 2240 m on the JIM 1 claim, giving the area a maximum relief of 940 m.

Vegetation varies from mixed woodlands consisting of spruce and poplar in the valley bottoms to alpine meadows generally located above 1600 m. The highest elevations within the claims area have permanent snow cover.

Bedrock is moderately well exposed within the area. In the valleys, bedrock for the most part is mantled by glacial and glaciofluvial deposits with occasional scattered exposures. However, in the uplands (especially above treeline), bedrock exposures and felsenmeer are abundant, allowing effective prospecting and geological mapping to be conducted.

Page 5

No.

REGIONAL HISTORY OF EXPLORATION

The Toodoggone region was initially explored for porphyry copper deposits during the period 1966-1968, most notably by Kennco Exploration (Western) Limited. While Kennco did not locate any significant base metals mineralization, their stream sediment geochemical results did indicate anomalous gold and silver concentrations. In 1969, ore-grade gold and silver values in an exposed quartz vein were discovered by Kennco on what is now the Baker Mine site. In 1973, Kennco entered into an agreement with Conwest Exploration Ltd. to carry out further exploration in the region and to instigate underground testing of the Baker deposit. The results were only marginally encouraging and the agreement lapsed that year.

In 1987, DuPont of Canada Exploration Limited optioned the Chappelle property and subsequently brought the Baker deposit into production. This mine produced some 70,000 tons of gold and silver ore with an equivalent tenor of 0.9 ounces of gold per ton while it was operating.

In 1979, the Lawyers property was optioned by SEREM Ltd., owned by the French government. The property is currently being brought into production by Cheni Mines Inc., a successor company of SEREM. Ore reserves in all categories are estimated at 1,938,000 tons grading 0.198 oz/ton gold and 7.09 oz/ton silver. A throughput of 550 tons per day is projected by February 1989.

Commencing in 1980 until the present, over 60 different companies have been involved in gold exploration in the Toodoggone camp. Significant reserves have been developed by Energex Minerals Ltd. on various zones on Albert's Hump, on the Shasta property, and on the Mets property to date. Thus, the Toodoggone district is rapidly developing into an important new gold camp in the province of British Columbia.

PROPERTY HISTORY OF EXPLORATION

The earliest documented exploration within the property area was conducted in 1973 by Sumac Mines Ltd. This exploration led to the discovery of the 'Fred' showing as a result of follow-up work on anomalous copper/silver values in a regional stream sediment geochemical program conducted a year earlier. The Fred 1 to 8 claims were acquired, and geological mapping and systematic soil sampling were completed as part of the 1973 exploration program.

The 'Fred' showing consists of thin quartz-carbonate veins, accompanied by argillic alteration of the andesitic Takla volcanics, containing chalcopyrite, malachite, galena, and sphalerite, which yielded assays of up to 0.33 oz/ton Au and 1.44 oz/ton Ag over narrow widths. The veins and adjacent propylitic alteration have a total width of 1.2 m, strike approximately eastwest, and appear to be of extremely limited strike length.

The most recent geological map of the area (Diakow, et al., 1985) erroneously places the 'Fred' showing within the Fred 1 claim. The correct location of this occurrence is within the Fred 4 claim and is shown on Figure 3.

In 1974, Union Mineral Explorations and Mining Corporation Limited completed an exploration program on the Jimo 1 to 16 claims (present Jim 1 claim). The exploration consisted of surface geological mapping and reconnaissance geochemical soil surveying. They located the 'Jimo' occurrence which consists of chalcocite and malachite occurring in fractures, in or near the basal part of a porphyritic andesite unit, near its contact with volcaniclastic rocks.

Prospecting by Newmont Exploration of Canada Ltd. in 1982 on the Dar claims (present Stik 8 claim) resulted in the discovery of four relatively narrow quartz veins striking N58°E in ash flow tuffs of the Adoogacho Creek Formation of the Toodoggone Volcanics ('Dar' showing). The quartz veins are less than 2 m wide and have a strike length in the order of 20 m. Mineralization consists of chalcopyrite, galena, and sphalerite. Sampling of the occurrence yielded values of up to 670 ppb Au and 5.7 ppm Ag. In 1985, Newmont completed a reconnaissance geochemical soil survey across the property. As

with the 'Fred' showing, the 'Dar' showing is also erroneously located on the Diakow's geological map of the area. Figure 3 depicts the correct location of this showing.

In 1985, Delaware Resources Corp. completed a helicopter-supported reconnaissance geological mapping, prospecting, rock sampling, and stream silt sampling program on the Stik 1 to 4 mineral claims. A zone of quartz-barite float was discovered along a ridge directly east of the Stik 1 claim (on the present Stik 6 mineral claim), with one rock sample yielding a value of 0.257 oz/ton Au. On the Stik 2 claim, a 1.5 to 2.3 m wide quartz vein was discovered, and a silicified fracture zone was delineated on the Stik 3 claim. In 1986, an airborne magnetometer survey was flown over the Stik 2 and 4 claims, and in 1987, a brief reconnaissance prospecting program was carried out but adverse weather conditions curtailed this exploration.

In 1986, the Toodoggone Syndicate completed a prospecting and reconnaissance soil geochemical survey on their Gacho 1 mineral claim. This area is now covered by the Adoog 10 and Stik 9 claims. Several multi-element anomalies were found by soil and rock sampling.

In 1986, Delaware Resources Corp. completed a reconnaissance stream silt sampling program on the Adoog 7 (present Doog 7 claim), and the Adoog 8 and 9 claims (present Adoog 8, 9, and 10 claims). Prolific Resources completed a reconnaissance stream silt sampling program on the Stik 5 and Fred 1 claim in the same year. A brief reconnaissance geological mapping and prospecting program was carried out on these claims in 1987. Sediments from the Stik 5 claim returned two significant values of 35 and 320 ppb Au; the Fred 1 claim contained four silt samples with significant values ranging from 35 to 85 ppb Au. The 1987 prospecting program on the Fred 1 claim uncovered a quartz vein system approximately 5 m wide, traced for 20 m, which returned anomalous Au and Ag values (up to 0.22 oz/ton Au and 35.4 oz/ton Ag).

Significant results from the previous exploration programs completed on the properties is depicted on the accompanying Exploration Coverage Maps. and a second

REGIONAL GEOLOGY

The initial geological mapping of the Toodoggone area was completed during the period 1971-1975 by H. Gabrielse of the Geological Survey of Canada. The results of this undertaking were published in 1977 at a map scale of 1:250,000 as G.S.C. Open File 483.

The British Columbia Ministry of Energy Mines and Petroleum Resources undertook geological mapping within the area from 1971 to 1984 under the direction of T. G. Schroeter. These data have been published at a scale of 1:50,000 as Preliminary Map 61 (1985). The table of formations presented as Table 2 of this report is excerpted from this publication.

The following description of the regional geology is excerpted from Schroeter's 1981 report:

The Toodoggone area lies within the eastern margin in the Intermontane Belt. The oldest rock exposed are wedges of crystalline limestone more than 150 metres thick that have been correlated with the Asitka Group of Permian age. The next oldest rocks consist of andesitic flows and pyroclastic rocks including augite-tremolite andesite porphyries and crystal and lapilli tuffs that belong to the Takla Group of Late Triassic The Omineca intrusions of Jurassic and Cretaceous age (potassiumage. argon age of 186 to 200 Ma obtained by the Geological Survey of Canada) range in composition from granodiorite to quartz monzonite. Some syenomonzonite bodies and quartz feldspar porphyry dykes may be feeders to the Toodoggone rocks which unconformably overlie the Takla Group. The 'Toodoggone' volcanic rocks (named informally by Carter, 1971) are complexly intercalated volcanic and volcanic-sedimentary rocks of Early and Middle Jurassic age, 500 metres or more in thickness, along the west flank of a northwesterly trending belt of 'basement' rocks at least 90 km in length by 15 km in width. A potassium-argon age of 186 \pm 6 Ma was obtained by Carter (1971) for a hornblende separate from a sample collected from a volcanic sequence 14 km southeast of Drybrough Peak. Four principal subdivisions of 'Toodoggone' rocks have been recognized:

- Lower Volcanic Division -- dominantly pyroclastic assemblage including purple agglomerate and grey to green to purple dacitic tuffs.
- (2) Middle Volcanic Division -- an acidic assemblage including rhyolites, dacites, 'orange' crystal to lithic tuffs, and quartz feldspar porphyries; includes welded tuff. The 'orange' colour of the tuffs resulted from oxidation of the fine-grained matrix while the rock was still hot. A coeval

TABLE 2 TABLE OF FORMATIONS

_ -

QUATERNARY

PLEISTOCENE AND RECENT

UNCONSOLIDATED GLACIAL, FLUVIOGLACIAL, ALLUVIAL, AND COLLUVIAL DEPOSITS

CRETACEOUS

UPPER CRETACEOUS

SUSTUT GROUP (TANGO CREEK FORMATION)

POLYMICTIC CONGLOMERATE, SANOSTONE, SHALE, CARBONACEOUS MUDSTONE

JURASSIC

LOWER AND (?) MIDDLE JURASSIC

"TOODOGGONE VOLCANICS" = (?) HAZELTON GROUP

9 UNDIVIDED: PREDOMINANTLY GREY, GREEN, PURPLE AND ORANGE-BROWN HORNBLENDE PLAGIOCLASE AND PLAGIOCLASE PHYRIC ANDESITE PORPHYRY FLOWS, TUFFS, BRECCIA. SOME LAHAR. CONGLOMERATE, GREYWACKE, SILT-STONE, RARE RHYOLITE-PERLITE, INCLUDES SOME DYKES AND SILLS

LOWER TO MIDDLE JURASSIC

"TOODOGGONE VOLCANICS" (CARTER, 1972)

"GREY DACITE"

8 DARK TO PALE GREY OR GREEN QUARTZOSE BIOTITE HORNBLENDE PLAGIOCLASE ASH FLOWS OF ANDESITIG AND RARELY DACITIC COMPOSITION. VARIABLY WELDED WITH LOCALLY WELL-DEVELOPED COMPACTION LAVERING. CONTAINS ABUNDANT GREY DACITE AND PARE GRANITIC CLASTS: OUTCROPS ARE COMMONLY BLOCKY AND STRONGLY JOINTED

8A POLYMICTIC CONGLOMERATE WITH ABUNDANT TAKLA AND GREY DACITE CLASTS

8B GREYWACKE, CONGLOMERATE DERIVED ENTIRELY FROM GREY DACITE

TOODOGGONE CRYSTAL ASH TUFFS AND FLOWS

7 RECESSIVE, GREY, MAUVE, PURPLE QUARTZOSE PLAGIOCLASE CRYSTAL TUFF, LAPILLI TUFF, AND BRECCIA, WITH LESSER AGGLOMERATE, LAHAR, AND EPI-CLASTIC BEDS; INCLUDES SOME WELDED TUFFS AND PYROXENE HORNELNOE FELDSPAR PORPHYRY FLOWS WHICH ARE LOCALLY DOMINANT: SOME MEMBERS CONTAIN NO QUARTZ. PINK WEATHERING WHERE LAUMONTITE IS ABUNDANT

7A EPICLASTIC RED BEDS - ARKOSIC SANDSTONE, SILTSTONE, CONGLOMERATE, AND SLIDE DEBRIS; CONTAINS SOME CRYSTAL TUFF

TUFF PEAK FORMATION

6

6A

6B

5

5A

4

PALE PURPLE, GREY, AND GREEN BIOTITE AUGITE HORNBLENDE PLAGIOCLASE PORPHYRY FLOWS: SOME AUTOBRECCIATED FLOWS, MINOR SILLS AND PLUGS. SOME CRYSTAL AND LAPILLI TUFF

CONGLOMERATE OR LAHAR DERIVED FROM UNITS 6 AND 58, WITH GRADED AND CROSSLAMINATED MUDSTONE AND SANOSTONE INTERBEDS; DEBRIS FLOWS. LAPILLI AND CRYSTAL TUFFS

	FLOWS SIMILAR TO UNIT	6 BUT CONTAIL	VING SPARSE ORTHOC	LASE MEGACRYSTS
_				

MCCLAIR CREEK FORMATION

PURPLE, LAVENDER. GREY, RARELY GREY-GREEN. "CROWDED" FINE 1	O MEDIL	JM-
GRAINED PLAGIOCLASE PORPHYRITIC FLOWS: INCLUDES SOME LA	PILLI TU	JFF.
BRECCIA, AND MINOR EPICLASTIC BEDS		

INTRUSIVE DOME WITH AUTOBRECCIATED CARAPACE AND FLANKING BRECCIA

MAFIC FLOW AND TUFF UNIT

BASALT FLOWS-THIN BEDDED. PURPLE TO DARK GREEN. COMMONLY EPIDOTIZED. FINE-GRAINED PYROXENE BASALT FLOWS AND TUFFS: INCLUDES SOME SILLS AND DYKES

4A PURPLE TO MAUVE, MEDIUM-GRAINED PORPHYRITIC BASALT: LOCALLY MAUVE TO PINK, ZEOLITIZED WITH LAUMONTITE, POSSIBLE INTRUSIVE (LACCOLITH)

48 LAPILLI. CRYSTAL, AND ASH TUFF: WELL BEDDED, INCLUDES MINOR THINLY BED-DED SANDSTONE AND RARE CALCAREOUS SILTSTONE IMARLI. TOTALLY OR IN PART EQUIVALENT TO UNIT 7

4C PYROXENE BIOTITE HORNBLENDE PORPHYRY FLOWS WITH TRACES OF QUARTZ AND K-FELDSPAR: INTERBEDDED MINOR BRECCIA AND LAPILLI TUFF. TOTALLY OR IN PART EQUIVALENT TO UNIT 6 JURASSIC (CONTINUED)

LOWER TO MIDDLE JURASSIC (CONTINUED) "TOODOGGONE VOLCANICS" (CARTER, 1972) (CONTINUED)

LAWYERS-METSANTAN QUARTZOSE ANDESITE

3	GREEN TO GREY QUARTZOSE PYROXENE (?) BIOTITE HORNBLENDE PLAGIOCLASE PORPHYRY FLOWS AND TUFFS. QUARTZ CONTENT RANGES FROM NEGLIGIBLE TO ABOUT3 PER CENT. IN THE NORTH FLOWS PREDOMINATE WITH LOCAL FLOW BREC. CIA. LAPILL TUFF. AND RARE WELDED TUFF UNITS: TOWARD THE SOUTH ASH FLOWS ARE COMMON. INCLUDING RARE SURGE DEPOSITS. THE UNIT CONTAINS EXTENSIVE ZONES OF EPIDOTIZED. PYRITIC ROCK WITH CHARACTERISTIC SAL- MON. PINK. AND ORANGE PLAGIOCLASE CRYSTALS
•	MOYEZ CREEK VOLCANICLASTICS
2	CONGLOMERATE WITH SOME GRANITIC CLASTS, GRADED, CROSS-BEDDED GREYWACKE, WELL-BEDDEDCRYSTAL TUFF, EPICLASTIC SEDIMENTS: LOCAL LAMI- NATED CALCAREOUS SILT (MARL), RARE THIN LIMESTONE AND CHERT: LOCAL COARSE LANDSLIDE DEBRIS AND LAHAR. IN PART OR TOTALLY EQUIVALENT TO UNIT 6A
2A	CRYSTAL TUFFS IN THIN. WELL-LAYERED UNITS: SOME EPICLASTIC SANDSTONE AND MUDSTONE; RARE PLANT FRAGMENTS IN SOME BEDS; MINOR LAPILLI TUFF
	ADDOOGATCHO CREEK FORMATION
1	PALE REDDISH GREY TO DARK RED-BROWN QUARTZOSE BIOTITE HORNBLENDE PHYRIC ASH FLOWS: THE ROCKS CONTAIN MINOR SANIDINE AND RARE AUGITE. WELDING IS WIDESPREAD AND RANGES FROM INCIPIENT TO EUTAXITIC: LOCALLY ORANGE TO BROWN VITROPHYRIC CLASTS ARE COMMON. INCLUDES LAPILLI TUFF AND BRECCIA UNITS AS WELL AS MINOR LAYERED GROUND SURGE DEPOSITS
1A	CRYSTAL ASH TUFF, LAPILLI TUFF, AND RARE AGGLOMERATE WITH INTERSPERSED EPICLASTIC BEDS. TUFFACEOUS SEDIMENTS AND MINOR CONGLOMERATE THAT LOCALLY CONTAINS GRANTIC CLASSTS: MINOR MORNBLENDE PLAGIOCLASE PHY- RIC FLOWS FORMING SINGLE OR THIN COMPOSITE FLOW UNITS
18	QUARTZOSE PLAGIOCLASE PORPHYRY JOINTED. DOMAL INTRUSION (?) OF HOMOGE- NOUS-APPEARING GREY TO GREEN. CHLORITIZED AND EPIDOTE-ALTERED ROCK CON- TAINING ABUNDANT INCLUSIONS OF TAKLA VOLCANICS AND RARE METAMORPHIC ROCK CLASTS
TRIASS	C
UPPE	R TRIASSIC
TA	LKA GROUP
,	DARK GREEN AUGITE PORPHYRY BASALT FLOWS AND BRECCIAS WITH LESSER FINE-GRAINED ANDESITE TO BASALT FLOWS AND MINOR INTERBEDDED SILT- STONE, TUFFACEOUS SEDIMENTS, AND CHERT CONTAINS LIMESTONE LENSES THAT MAY BE PART OF THE ASITKA GROUP"
PALEOZ	OIC
PERM	IAN A CARACTERISTIC AND A CARACTERISTIC
P	ASITKA GROUP?
	PREDOMINANTLY LIMESTONE (INCLUDING MARBLE AND MINOR SKARN) WITH SOME ARGILLITE, BLACK SHALE, AND CHERT, UNITS COMPOSED OF LIMESTONE. CHERT, ARGILLITE, AND BASALT (IPV. c) MAY BE. IN PART OR TOTALLY TAKLA GROUP
	INTRUSIVE ROCKS
JURASS	NC
LOWE	R JURASSIC (DYKES, SILLS, AND SMALL PLUGS)
A	BASALT

B AUGITE HORNBLENDE PORPHYRY - BASALTIC STOCK, DOMAL INTRUSION (OR TAKLA INLIER) C BIOTITE HORNBLENDE DIORITE GABBRO

D PYROXENE PLAGIOCLASE PORPHYRY

F

LOWER TO MIDDLE JURASSIC (DYKES AND STOCKS)

CUARTZ MONZONITE, GRANODIORITE-MEGACRYSTIC IN PART: MINOR SYENITE

E1 GRANODIORITE, QUARTZ DIORITE - MEDIUM GRAINED, PORPHYRITIC, FOLIATED

FELDSPAR PORPHYRY HORNBLENDE FELDSPAR PORPHYRY - DYKES AND PLUGS:

after L.J. Diakow et al 1985

Pite in the

in contraction

period of explosive volcanism included the formation of 'laharic' units and intrusion of syenomonzonite bodies and dykes. This event was accompanied by explosive brecciation along zones of weakness, predominantly large-scale faults and attendant splays, followed by silicification and deposition of precious and base metals to varying degrees in the breccias.

- (3) Upper Volcanic-Intrusive Division -- grey to green to maroon crystal tuffs and quartz-eye feldspar porphyries.
- (4) Upper Volcanic-Sedimentary Division -- lacustrine sedimentary rocks (sometimes varved), stream bed deposits, and possible local fanglomerate deposits and interbedded tuff beds.

Many Toodoggone rocks have a matrix clouded with fine hematite dust implying a subaerial origin, however, some varieties may have accumulated in shallow water. The host rock for mineralization (division 2) is an orange to chocolate brown coloured crystal tuff with varying minor amounts of lithic and vitric ash. Broken crystals of plagioclase and quartz are set in a fine-grained 'hematized' matrix of quartz and feldspar. The exact chemical composition(s) and rock name(s) await chemical analyses. Carter (1971) determined the composition of a suite of rocks collected from the Toodoggone area to range from latites to dacite.

To the west, Upper Cretaceous to Tertiary pebble conglomerates and sandstones of the Lower Tango Creek Formation of the Sustut Group unconformably overlie both Takla Group volcanic rocks and Toodoggone volcanic rocks.

The structural setting was probably the most significant factor in allowing mineralizing solutions and vapours to migrate through the thick volcanic pile in the Toodoggone area. The entire area has been subjected to repeated and extensive normal block faulting from Jurassic to Tertiary time. It is postulated that a northwesterly trending line of volcanic centres along a gold/silver-rich 'province' marks major structural breaks, some extending for 60 km or more (for example, McClair Creek system, Lawyers system). Prominent gossans are often associated with structural zones but many contain only pyrite; sulphides occur as disseminations and fracture fillings in Toodoggone and Takla Group rocks. Thrusting of Asitka Group limestones over Takla Group rocks probably occurred during Middle Jurassic time.

Today Toodoggone rocks display broad open folds with dips less than 25. The Sustut Group sedimentary rocks have relatively flat dips and do not appear to have any major structural disruptions. - Statester

-

- Statestates

Constanting of the

Contraction of the local distribution of the

Contraction of the local distribution of the

and the second se

No. of Contraction

PROPERTY GEOLOGY

The oldest rocks, underlying the north and eastern portions of the property area, consist of andesitic flows and pyroclastic rocks belonging to the Takla Group of Late Triassic age. Most of the remaining property area is underlain by a succession of Lower to Middle Jurassic subaerial volcanics and volcaniclastic sediments. This succession has been collectively termed the "Toodoggone Volcanics" by Carter (1971) and has been extensively faulted and folded. Upper Cretaceous conglomerates and sandstones of the Tango Creek Formation unconformably overlie these volcanics in the extreme northwestern portion of the property area.

All of the above are overlain by a blanket of Quaternary alluvium that begins at approximately 1600 m ASL and thickens downslope.

The property geology is illustrated on Figure 3, which is after mapping by Diakow, et al. (1985).

Adoog 8, 9, 10 Claims

The Adoog 8 to 10 claims are underlain by Lower to Middle Jurassic Toodoggone Volcanics. Unit 1 (Adoogacho Creek Formation), comprised of numerous ash flow sheets with intercalated crystal lithic tuffs, underlies all of the Adoog 9 and 10 and most of the Adoog 8 claims. Unit 2 (Moyez Creek Volcaniclastics), which is comprised of a diverse assemblage of interbedded air fall tuff, thin ash flow sheets, and epiclastic and sedimentary rocks, underlies the western portion of the Adoog 8 claim.

Fred 1 to 5 Claims

The Upper Triassic Takla Group (Unit TR), consisting of dark green augite porphyry, basalt, breccia, and minor andesite, underlies the southern and eastern portions of the Fred 1 claim, the northeastern portion of the Fred 2

PROPERTY GEOLOGY MAP

FIGURE 3

- Longer

Sector Sector

claim, most of the Fred 3 claim, all of the Fred 4 claim, and the northern portion of the Fred 5 claim. Unit 1B (Adoogacho Creek Formation, composed of quartzose plagioclase porphyry) underlies the southeastern portion of the Fred 5 claim. Most of the remaining property area is underlain by a younger member of the Adoogacho Creek Formation (Unit 1A), composed of ash flow sheets intercalated with crystal lithic tuffs. Conglomerates of the Upper Cretaceous Tango Creek Formation (Unit K) unconformably overlie the Takla Group volcanics in the northern and western portions of the Fred 1 claim and the northwestern corner of the Fred 2 claim. Except for the extreme northern boundary of the Fred 2 claim, the remaining claim area is mantled by a thick cover of Quaternary alluvium.

Stik 1 to 4 Claims

These claims are underlain by three members of the Toodoggone Formation. The northern portion of the Stik 3 claim and the eastern corner of the Stik 1 claim are underlain by the purple fine- to medium-grained plagioclase porphyry member of the McClair Creek Formation (Unit 5). This narrow belt is in contact with the Adoogacho Creek Formation volcanics to the south. Unit 1A (Adoogacho Creek Formation) occupies the south-central area of the Stik 3 claim, the north and north-central areas of the Stik 4 claim, the northern half of the Stik 2 claim; and as currently mapped, much of the southern and eastern areas of the Stik 1 claim. The rocks consist of a series of interbedded purple to grey crystal tuffs and rare purple agglomerate which overlies the tuff where The tuff varies from dark grey to maroon. encountered. The agglomerate consists of purple fine-grained to aphanitic volcanic clasts cemented by light grey chalcedonic silica. The southeastern part of the Stik 4 claim and much of the southern part of the Stik 2 claim are underlain by a younger member of the Adoogacho Creek Formation (Unit 1), consisting of pale reddish grey to dark red-brown quartzose biotite-hornblende phyric ash flows with rare occurrences of lapilli tuff and very narrow breccia units. Massive aphanitic leucocratic red altered rhyolitic dykes cut Units 1 and 1A as observed along ridges on the Stik 2 and 3 claims.

TAIGA CONSULTANTS LTD.

<u>Stik 5 Claim</u>

and and a second

A CONTRACTOR

Notes of

Service of

The Stik 5 claim is underlain by Unit 1A (Adoogacho Creek Formation), which is composed of ash flow sheets intercalated with crystal lithic tuffs. Conglomerates of the Tango Creek Formation (Unit K) unconformably overlie the volcanics to the northeast and southwest. Porphyritic rhyolite flows of the McClair Creek Formation (Unit 5) have been mapped in the extreme southeastern corner of the property.

Stik 6 Claim

The Stik 6 claim is underlain by two members of the Toodoggone Formation, by the Tango Creek Formation of the Cretaceous Sustut Group, and intruded in one area by a small plug of Middle Jurassic gabbro. The northeastern corner of the claim is underlain by quartzose plagioclase porphyry of the Adoogacho Creek Formation (Unit 1B). Unit 1A, which is composed of ash flow sheets intercalated with crystal lithic tuffs, underlies most of the remainder of the claim. A small outlier of conglomerates of the Tango Creek Formation (Unit K) unconformably overlies the volcanics at the eastern edge of the claim. A small plug of Middle Jurassic gabbro crops out in this same area.

Stik 7 to 10 Claims

These claims are underlain by Lower to Middle Jurassic Adoogacho Creek Formation volcanics. Unit 1A underlies the northern three-fourths of the Stik 7 claim and the northern one-third of the Stik 8 claim; it is composed of interbedded tuffs and agglomerates. Unit 1, composed of numerous ash flow sheets with intercalated crystal lithic tuffs, underlies all of the Stik 9 and 10 claims and the remainder of the Stik 7 and 8 claims.

<u>Jim 1 Claim</u>

a second

Sector Sector

ALC: NO

The Jim 1 claim is entirely underlain by Upper Triassic Takla Group (Unit TR), consisting of dark green augite porphyry basalt and breccia, and minor andesite.

<u>Mike 1 Claim</u>

The northeastern portion of this claim is underlain by Upper Triassic Takla Group (Unit TR) volcanics. The remaining claim area is underlain by Unit 1 (Adoogacho Creek Formation), composed of ash flows with rare occurrences of lapilli tuff and very narrow breccias.

<u>Doog 7 Claim</u>

The Doog 7 claim is underlain by Lower to Middle Jurassic Toodoggone Volcanics. Unit 1 (Adoogacho Creek Formation) underlies the southern half of the claims, and is comprised of numerous ash flow sheets with intercalated crystal lithic tuffs. Unit 2 (Moyez Creek Volcaniclastics) underlies the northern portion and is comprised of a diverse assemblage of interbedded airfall tuff, thin ash flow sheets, and epiclastic and chemical sedimentary rocks. Unit 6 (Tuff Peak Formation) is the youngest volcanic unit exposed and is composed of biotite-augite-hornblende plagioclase porphyry flows and some autobrecciated flows and crystal and lapilli tuffs.

The property area is disrupted by a conjugate set of northwest and northeast trending faults which appear to have significant vertical and/or horizontal displacement.

(and a

ECONOMIC GEOLOGY

The focus of exploration in the Toodoggone district to date has been epithermal gold/silver mineralization associated with subaerial Lower to Middle Jurassic volcanism (Toodoggone Volcanics). Gold mineralization is also found within Late Triassic alkaline andesitic rocks (Takla Group). However, this latter mineralization is viewed as occurring in the "root zone" of the epithermal event related to Toodoggone volcanism (e.g., Baker Mine).

The structural settings of these epithermal vein systems is of primary importance in the development of gold mineralization within the Toodoggone Faulting and concomitant brecciation form the conduits for Volcanics. ascending hydrothermal solutions and vapours. It is often secondary tensional fractures in crudely concentric fracture systems related to collapse structures, major faults, or dilatant zones within major fault systems, which supply the necessary plumbing system for gold mineralization in this camp. It is also necessary that repeated fault movement and brecciation occur, allowing hydrothermal solutions to continue to circulate. If only a single brecciation event occurs, the ascending solutions carrying silica will eventually heal the fractures and restrict passage of additional gold-bearing solutions. Only by recurrent faulting and brecciation can the process of mineralization be carried to the stage where economic concentrations of gold can be anticipated.

Adjacent to these epithermal deposits, both lateral and vertical alteration patterns have been noted. The outer 'propylitic' zone consists of chlorite, epidote, calcite, and pyrite. This grades inward to an 'argillic/ phyllic' zone characterized by sericite, montmorillonite, illite, and silica. Finally, there is the silicified core zone consisting dominantly of silica, adularia, and/or albite, immediately adjacent to the vein system.

Hematite and manganese oxides are normally abundant in the precious metal rich occurrences. Native gold, electrum, barite, and minor pyrite have been found within these silica-rich zones along with amethystine quartz. Anomalous silver, lead, zinc, and copper values are commonly associated with the epi-

Sector Sector

a decision of

States and a second

thermal vein systems. However, such systems appear to be relatively free of contaminants such as arsenic and antimony.

The pattern of gold mineralization also exhibits both vertical and lateral zonation. These variations are controlled by temperature and pressure conditions within the breccia zones which in turn control the boiling point levels for the mineralizing solutions. The upper levels of these systems are characterized by a barren silica cap, thus displaying increasing gold values with depth. This simple model is complicated by re-brecciation (which changes the physical characteristics of the system) and the changing chemical composition of hydrothermal solutions during the various pulses of mineralization. Figures 4 and 5 illustrate the epithermal model utilized in exploration for precious metals within the Toodoggone gold camp.

Nur al

Sec. 14

- paginger

1988 EXPLORATION PROGRAM AND RESULTS

The 1988 property exploration, completed July 19 to August 21, consisted of extensive prospecting, geological mapping, lithogeochemical sampling, hand trenching, and soil geochemical sampling. The soil geochemical sampling consisted of grid-controlled soil sampling, and reconnaissance single-line elevation-controlled soil sampling.

All of the samples collected were forwarded to TerraMin Research Labs Ltd. in Calgary, Alberta, for gold and silver analyses. Any samples containing values greater than 0.5 oz/ton Ag had a duplicate_Au/Ag_analysis completed from a second split.

The accompanying maps depict the property geology (modified after Diakow, et al., 1985) along with previous exploration results, 1988 prospecting traverses, sample locations, trench locations, grid locations, and analytical results. These results are also presented in the Appendix along with rock sample descriptions.

Descriptions of the exploration completed and the results from this exploration on each of the mineral claims follows.

<u>Jim 1 Claim</u> (Map 1)

The Jim 1 claim is underlain by Upper Triassic Takla Group volcanics consisting of dark green augite porphyry basalt and breccia, and minor andesite. It is centered about the 'Jimo' copper showing which consists of chalcocite and malachite occurring in fractures in or near the basal part of a porphyritic andesite unit.

A total of 45 rock samples were collected from this claim during the 1988 program. Extensive malachite staining with associated chalcopyrite and occasional bornite, was noted throughout the area, lining fracture planes and associated with guartz and calcite stringers within narrow shears. These

quartz and/or calcite stringers are frequently disseminated with galena and contain elevated silver values (0.5 to 6.1 oz/ton Ag).

Weakly elevated gold values (108 to 1560 ppb Au) from boulder or talus samples of quartz or calcite veins were collected in the southeastern portion of the claim. Check analyses of sample WM-45 (1560 ppb Au) returned a value of 284 ppb Au. A massive sulphide boulder (WM-44 0.34% Cu) was found in the same area.

A follow-up program consisting of tracing the sources of the massive sulphide boulder (WM-44) and the weakly gold-enriched quartz boulders (WM-45, DM-62, DM-63) should be completed. If positive results are received from this program, detailed rock sampling and trenching should be carried out.

Doog 7 Claim (Map 2)

The Doog 7 claim is located in an area of gentle relief and is covered by a thin blanket of Quaternary alluvium. Because of the scarcity of outcrops in the area, in addition to conventional prospecting, two reconnaissance elevation-controlled soil geochemical survey lines were emplaced across the property. A total of 98 soil samples and one rock sample were collected. No anomalous precious metals results were delineated by this exploration program.

<u>Mike 1 Claim</u> (Map 4)

The Mike 1 claim is underlain by Upper Triassic Takla Group volcanics and Lower Jurassic Adoogacho Creek Formation ash flows, tuffs, and breccias, disrupted by a conjugate set of northwest and northeast trending faults.

The property exploration program consisted of extensive reconnaissance prospecting combined with lithogeochemical sampling and the emplacement of a soil geochemical grid over the central portion of the property.

Outcrops on the property are generally restricted to the north-facing slope of the ridge transecting the property. Reconnaissance prospecting of this area discovered a number of quartz-barite veins and stringers. A total of eight rock samples were collected, only one of which returned weakly elevated gold content (104 ppb).

A small picketed flag-and-compass grid was emplaced over the central portion of the claim covering the south-facing grassy ridge slope. The grid covered the potential strike extension of the quartz-barite veining located on the north side of the ridge, and covered the intersection of two topographic lineaments.

A total of 183 soil samples were collected at 25 m station intervals on 100 m spaced lines. The results are presented in the Appendix and are plotted on Figures 6 and 7. There were no Au or Ag geochemical anomalies delineated by this survey.

Fred 1 Claim (Map 3)

Regional geological mapping by Diakow, et al. (1985) indicates the Fred 1 claim to be underlain by Triassic Takla Group volcanics unconformably overlain in the eastern and northern portions of the claim by Upper Cretaceous Tango Creek Formation (Sustut Group) conglomerates and sandstones. Geological mapping of this area as part of the 1988 exploration program delineated a number of limestone units in the northern portion of the claim. This indicates that the regional mapping completed in this area is probably erroneous, this area being underlain, at least in part, by Triassic limestone.

Extensive reconnaissance prospecting and lithogeochemical sampling were completed over the claim. Copper mineralization was noted throughout the property, consisting mostly of disseminated chalcopyrite within narrow calcite stringers and veinlets, with associated secondary malachite staining, and occasional massive sulphide veinlets up to 2 cm wide.

			N 00+6				1/L8+00W			V 00+7				6+00 W				M 00+9			4+00 W				3+00 W				2+00W				N 00 +				
																																				7 50	2
0+00																																				•	
L1+00S			1 0.08	0.04	0.02	0.04	0.05	40.0	0.04	40.04	0.04	0.03	0.08	0.08	6.04	0.04	0.02	0.03	0.03	8/18	600	000	000	0.11	0.10	0.15	0.14	0.24	2/0	0.20	0.12	0.16	0.28	0.15	0.24	0.20	
			"	/2	2/	40. 20	005	800	400	0.08	0.05	9.03	40.0	0.04	0.06	0.12	0.12	0.07	0.20	0.14	0.52		600	0.15	0.20	0.26	0.16	0.16	0./6	0.36	0.28	0.34	0.24	0.16	0.22	0.32 0.14	
L2+005			-	0	-+-					+	+-	-+		•				+-	•		1		+	~	+	~		*	4	80	9	4	2	/6	28	88 88	
L3+00S		0.14	0.12	0.14	0.14	0.16	al	0 22	7017	0.16	0.10	0.12	<i>0.19</i>	0.0	0.12	0.12	0.24	0.28	0.14	0.04	0.01	0.18	0.22	30.0	1.0	0.3	0.12	0.3	1 0.2	0.1	0.1	0.2	+ 0.	0	0.	00	-
		F			67.0	0.20	81.0	9/10	76.0	0.32	0.16	0.26		0.20	0.24	0.20	0.24	0.24	22.0	0.18	0.16	0.22	0.24	0.22	0.24	0.26	0.26	0.26	0.24	0.24	0.00	0.22	0.08	0.16	0.22	0.20 0.44	
L4+00S							+				,		•					•	•	+		-+-				+	• • •			+	••		+		-+-	•	-
				0.20	80.0	0.08	0.16	0.14	0.12	0.14	0.12	0.19	0.08	0.24	0.20	21.0	02.0	0.16	0.19	0.28	0.26	0./8	0.18	0.44	0.34	0.20	a	21.0	0.24	02.0	0.24	0.16	0.22	0.22	0.20	0.16	
15+00S				ſ											-			+		•		,		•	•	+	-	•	•	•			+				_

- Tradition

- Section -----

A CONTRACT OF

NAME OF

And a

ALC: N

Sector Sector

A total of 47 rock samples were collected from the property, nine of which returned elevated to anomalous gold geochemical results. These nine occur grouped in the east-central portion of the claim. They were collected from quartz-barite-calcite breccias within Upper Triassic Takla Group volcanics, generally containing associated disseminated galena. Previous exploration programs report anomalous gold and silver in quartz vein systems in this same general area.

Samples CS-62 (0.127 oz/ton Au) and BF-07 (0.106 oz/ton Au), the two best samples collected on the claim, were from a 30 cm wide quartz-calcite-barite breccia, traced over a strike length of 5 m.

Samples DM-1, DM-2, DM-3, and WM-1 (180, 694, 102, and 594 ppb Au respectively) were collected from two zones 30 and 80 cm wide, traced over a strike length of 10 m. These zones consist of basalt containing numerous calcite veinlets with disseminated pyrite, chalcopyrite, and galena, with minor malachite staining.

Samples DRM-5 (668 ppb Au) and JR-114 (1060 ppb Au) were talus samples of calcite-barite breccias collected from the same general area in which previous programs returned results of up to 0.22 oz/ton Au and 35.43 oz/ton Ag from narrow quartz-calcite stringers.

A detailed soil geochemical grid should be emplaced over this area of mineralized quartz-barite-calcite veining, combined with detailed geological mapping and trenching, to determine the width and extent of these veins.

Fred 2 Claim (Map 3)

The Fred 2 claim is located in an area of gentle relief and is covered by a blanket of Quaternary alluvium. Because of the lack of outcrop, a reconnaissance soil geochemical survey line was emplaced across the claim, extending on to the Fred 5 claim.

Fred 3 Claim (Map 3)

1000

The Fred 3 claim is underlain by Upper Triassic Takla Group volcanics consisting of dark green augite porphyry basalt and breccia, and minor andesite. Outcrops on the claim are generally restricted to two ridges in the southern portion of the claim; the remainder of the claim is covered by trees and shrubs.

Numerous calcite and quartz-calcite-barite stringers, veinlets, and veins (up to 30 cm wide) were located during prospecting of these two ridges. Copper mineralization consisting of chalcopyrite and occasionally chalcocite and bornite, with secondary malachite staining, is generally associated with these veinlets.

A total of 23 rock samples were collected from the Fred 3 claim during the 1988 exploration program. A series of samples collected near the south claim boundary on a ridge in the south-central portion of the claim returned elevated to anomalous gold/silver values.

Samples DM-111 to DM-114 (432, 436, 126, 204 ppb Au respectively) were collected from a number of quartz-barite veins occurring in an area approximately 25 m wide. Two talus boulder samples (DM-120, DM-110) collected down-slope from this mineralized zone returned anomalous gold values (0.03 and 0.08 oz/ton respectively).

A duplicate analysis from a second split of sample DM-110 returned a gold value of 0.239 oz/ton, an increase by a factor of 3. The variance of the two analyses indicates coarse gold is probably present.

Fred 4 Claim (Map 3)

No. of Lot

and the second

Reveral Section

The Fred 4 claim is underlain by Upper Triassic Takla Group volcanics. Exposures are frequent; the ridges noted on the Fred 3 claim extend across the Fred 4 claim. As on the Fred 3 claim, numerous calcite and quartz-calcitebarite stringers, veinlets, and veins (up to 30 cm wide) were located during prospecting. Copper mineralization (up to 17% Cu), as chalcopyrite, chalcocite, and bornite with secondary malachite staining, is generally associated with these veinlets.

A total of 76 rock samples were collected from the Fred 4 claim. Eight samples returned elevated gold values (up to 0.06 oz/ton Au). These samples were collected from narrow 2 to 15 cm wide quartz veinlets. A number of samples yielded significant silver values (up to 43.17 oz/ton), likewise collected from narrow quartz/quartz-calcite veinlets.

The 'Fred' showing, discovered by Sumac Mines Ltd. in 1973, is located in the southeastern corner of the claim. This showing consists of thin quartzcarbonate veinlets accompanied by argillic alteration of the andesitic Takla volcanics. Detailed sampling was completed across this showing by Sumac Mines. A best result of 0.33 oz/ton Au was obtained from a 5 cm wide veinlet. This is similar to what was found elsewhere on the property during the present exploration program; however, resampling of the original showing returned negligible results.

ALC: NO.

The second

Fred 5 Claim (Map 3)

The northern half of the Fred 5 claim is underlain by Upper Triassic Takla Group volcanics. As on the Fred 3 and 4 claims, numerous calcite and quartzcalcite-barite stringers, veinlets, and veins (up to 30 cm wide) were located in this area. Copper mineralization consisting of chalcopyrite, chalcocite, and bornite with secondary malachite staining is generally associated with these veinlets. None of the rock samples collected from this portion of the claim returned anomalous Au or Ag geochemical results.

The southern half of the Fred 5 claim is underlain by Lower to Middle Jurassic Adoogacho Creek Formation quartzose plagioclase porphyry and ash flow sheets intercalated with crystal lithic tuffs and volcanic agglomerates. Elevated gold values (up to 478 ppb Au) with associated weak copper mineralization were found in the east-central portion of the claim occurring in narrow quartz stringers (up to 15 cm wide) in siliceous tuffs and porphyries.

A total of 48 rock samples were collected from this claim, five of which returned elevated gold values; all of these are from the above-mentioned area.

The reconnaissance soil geochemical survey line emplaced on the Fred 2 claim extended on to the western end of the Fred 5 claim. Seven soil samples were collected but no anomalous Au or Ag values were delineated.

Stik 1 Claim (Map 3)

The Stik 1 claim is located in an area of subdued relief, covered by a blanket of Quaternary alluvium. Sparse outcrops occur in the southern and extreme eastern portions of the claim. A total of nine rock samples were collected from this area. One sample (WM-50) of a white to grey calcite boulder returned elevated gold geochemical results (204 ppb).

A reconnaissance soil geochemical survey line that was emplaced on the Stik 3 claim extended on to the Stik 1 claim. Consequently, four soil samples

No.

were collected in the extreme northwestern corner of the claim. No anomalous Au or Ag values were delineated.

Exploration of this area in 1985 delineated mineralized quartz breccias along the eastern edge of the Stik 1 claim, on the present Stik 6 claim. A soil geochemical grid was emplaced over this area, a portion of which extends on to the Stik 1 claim. A weakly elevated Ag trend was delineated across this portion of the grid. No gold anomalies were detected.

Stik 2 Claim (Map 4)

The Stik 2 claim is also located in an area of subdued relief, covered by a thin blanket of Quaternary alluvium. Consequently, outcrops are scarce in this area.

A program of extensive prospecting was completed on this mineral claim. However, because of the scarcity of outcrops, only six rock samples were collected, none of which returned anomalous Au or Ag geochemical results.

Stik 3 Claim (Map 3)

The Stik 3 claim is located in an area of gentle relief, underlain by purple plagioclase porphyries of the McClair Creek Formation, and quartzose plagioclase porphyry and ash flow sheets with intercalated crystal lithic tuffs and volcanic agglomerates of the Adoogacho Creek Formation. The northern portion of the claim is covered by a blanket of Quaternary alluvium.

The 1988 exploration program consisted of the emplacement of a reconnaissance soil geochemical survey line across the northern portion of the claim. No anomalous Au or Ag values were delineated.

1.1994.5

n santa

- AND - AND

a line a sur

Stik 4 Claim (Map 4)

The 1988 exploration program was concentrated along the eastern edge of the claim. A total of 10 rock samples were collected and one hand trench was dug (three samples). Previous exploration in this area for Delaware Resources Corp. delineated a potentially mineralized zone ("C" Zone) in the northeastern corner of the claim. A very thick snow cover prevented a complete examination of this area. During the present exploration program, this area was reexamined. A 20 cm wide calcite veinlet was located which returned elevated gold values (0.072 oz/ton Au).

The Delaware Resources program also located a sample in the southeastern portion of the claim which returned an elevated gold value (553 ppb). This area was re-examined and numerous angular quartz breccia boulders up to 1.75 m wide were located. Grab samples collected from this area returned elevated gold values (238 to 394 ppb).

A small hand trench was dug across this zone (T-88-3, Figure 8). Bedrock was not reached. The angular quartz breccia boulders found in this trench indicate a nearby bedrock source.

Additional exploration of this area is required. This exploration should consist of grid-controlled soil geochemical surveying coupled with trenching and additional prospecting.

<u>Stik 5 Claim</u> (Map 3)

The central portion of the Stik 5 mineral claim is underlain by Lower to Middle Jurassic Toodoggone volcanics, Unit 1A (Adoogacho Creek Formation), composed of numerous ash flow sheets with intercalated crystal lithic tuffs and agglomerates. Upper Cretaceous conglomerates of the Tango Creek Formation (Sustut Group) underlie the southwestern guarter of the claim.

1.55

Supervised in the

Regional geological mapping of this area (Diakow, et al., 1985) indicated that the northeastern corner of the claim is also underlain by Upper Cretaceous sediments. Prospecting of this area during the current program indicates this area to be underlain by limestones. This indicates that the regional mapping completed in this area is wrong; the area underlain by limestones probably belongs to the Triassic Takla Group.

A total of 19 rock samples were collected from this claim during the 1988 program. No anomalous Au or Ag geochemical results were delineated.

Stik 6 Claim (Map 3)

The Stik 6 claim is underlain by Lower to Middle Jurassic Adoogacho Creek Formation volcanics, comprised of numerous ash flow sheets with intercalated crystal lithic tuffs and agglomerates. A small outlier of Upper Cretaceous Tango Creek Formation (Sustut Group) conglomerates unconformably overlies these volcanics in the northwestern portion of the claim. A number of small gabbro intrusions occur on the ridge located in the west-central part of the claim. Quaternary alluvium covers the central and southeastern portions of the claim.

Previous exploration programs for Delaware Resources Corp. discovered a zone ("B" Zone) of quartz-barite float and outcrop in the western portion of the claim. One sample collected from a 1.5 to 2.3 m wide quartz-barite vein returned a value of 0.257 oz/ton Au. Snow cover prevented the recovery of this sample site during the current program.

Extensive prospecting was completed in this area during the 1988 program. Numerous quartz-barite float boulders and veins up to 50 cm wide were located. No anomalous Au or Ag geochemical results were obtained from the samples collected.

A small picket flag-and-compass grid was emplaced over this area. A total of 143 soil samples were collected at 25 m station intervals on 100 m spaced lines. The results are presented in the appendix and are plotted on Figures

Number of

9 and 10. There were no gold geochemical anomalies detected by the survey. A weakly elevated silver trend was delineated, striking northwest across the grid.

Prospecting completed over the northeastern portion of the claim located a wide zone of argillic alteration coinciding with a topographic linear. Two hand trenches were dug across this zone. One trench (T-88-4, Figure 11) was mapped and sampled in detail. No geochemically anomalous Au or Ag results were obtained from the samples collected.

Although no anomalous results were obtained during the initial evaluation along this zone of argillic alteration, additional exploration should be completed to fully evaluate its potential.

Stik 7 Claim (Maps 3 and 4)

The Stik 7 claim is underlain by Lower to Middle Jurassic Adoogacho Creek Formation volcanics and is covered by a blanket of Quaternary alluvium. Consequently, outcrops are scarce.

A minor amount of prospecting was done on this claim. Two talus rock samples were collected, neither of which returned anomalous gold or silver geochemical results.

<u>Stik 8 Claim</u> (Map 4)

The Stik 8 claim is located in an area of subdued relief, covered by a thin blanket of Quaternary alluvium. Consequently, outcrops are scarce in the area.

This claim was previously covered by the DAR claim. Exploration carried out on that claim by Newmont Exploration of Canada Ltd. led to the discovery

0

CONTOUR INTERVAL = 1 ppm 5 ppm

			° 0 ▲	
SAMPLE No). Au in ppb	Ag in ppm		
16 ¹	4	0.70	\bigcap	
15	8	0.86		
14	4	1.00		
13	10	0.88		
12	4	1.06		
i i i i i i i i i i i i i i i i i i i	4	0.90		
10	6	1.37	Ť	
9	6	1.40		
8	2 · · ·	1.27		
7	4	2.40	† }	
6	2	2.40		
5	4	3.60		
4	10	2.80		
3	4	2.60		
2	6	2.50		
1	4	3.40		

PROLIFIC RESOURCES LTD.					
STIK#6 CLAIM TRENCH DETAIL T-88-4					
DATE SEPT., 1988	NTS 94E/11.12				
PROJECT BC-88-5	MAPPED/ DRAWN BY C.AUSSANT				
SCALE I:100	2 3 4 5m				
TAIGA CONSULTA	NTS LTD. FIG. 11				

Ň

. company.

- Contraction

Handard Street

of the 'Dar' showing, consisting of four quartz veins (up to 2 m wide, 20 m long) mineralized with chalcopyrite, galena, and sphalerite.

Six rock samples were collected from the claim as part of the 1988 exploration program. Four samples were collected in the vicinity of the 'Dar' showing from quartz stringers and veins up to 1.5 m wide; these returned elevated to anomalous gold geochemical results. The two best results were from samples WM-24 (0.039 oz/ton Au) and WM-25 (0.055 oz/ton Au) collected from a 1.0 m and a 1.5 m quartz vein respectively mineralized with chalcopyrite, galena, and pyrite.

Additional work is required in this area to fully evaluate the significance of this showing.

Stik 9 Claim (Map 4)

The Stik 9 claim is also located in an area of subdued relief, covered by a thin blanket of Quaternary alluvium. Consequently, outcrops are scarce in this area. A limited amount of prospecting was completed on this claim as part of the 1988 exploration program, with four rock samples collected. One sample, of a lithic tuff mineralized with secondary copper, returned elevated silver geochemical results. No anomalous gold geochemical results were obtained.

<u>Stik 10, Adoog 8, 9, 10 Claims</u> (Map 4)

These claims are located in an area of gentle relief and are covered by a thin blanket of Quaternary alluvium. Consequently, outcrops are scarce. Because of the scarcity of outcrops in the area, along with conventional prospecting, two reconnaissance elevation-controlled soil geochemical survey lines were emplaced across the claims. A total of 189 soil samples were collected from the four claims.

Alleria .

- Sector

a second

-

- Andrews

States -

Constant of

S. Long

A total of 26 soil samples were collected from the Stik 10 claim. No anomalous results were delineated.

A total of 68 soil samples and 2 rock samples were collected from the Adoog 8 claim. Two adjacent soil samples collected near the southeastern corner of the claim returned anomalous gold geochemical results (84 and 182 ppb). This area should be re-examined as to the significance of these results.

A total of 42 soil samples were collected from the Adoog 9 claim. Only one anomalous gold geochemical result (192 ppb) was obtained. This area should be re-examined to determine the significance of this result.

A total of 53 soil samples were collected along the survey line emplaced across the Adoog 10 claim. No anomalous results were obtained.

SHEET.

Sector Sector

SUMMARY AND RECOMMENDATIONS

The 'Toodoggone' properties comprise 21 mineral claims totalling 8,650 hectares (21,373.9 acres) located approximately 300 km north of Smithers, British Columbia, directly south of the Chukachida River and east of the Stikine River.

Access to the properties from Smithers is via fixed-wing aircraft to the Sturdee Airstrip and then by helicopter for a distance of 42 km at the closest point. With the completion of the Omar Road Extension, which connects the Omineca Resource Road to the Cheni Mine site, road access is now available to within 27 km at the closest point.

The properties lie within the Toodoggone district which is one of the most active exploration camps in British Columbia. The oldest rocks, underlying the northern and eastern portions of the property area, consist of Late Triassic andesitic flows and pyroclastic rocks of the Takla Group. Most of the remaining property area is underlain by Lower to Middle Jurassic sub-aerial felsic to intermediate volcanics collectively termed the 'Toodoggone Volcanics' (Carter, 1971). This 'Toodoggone' sequence is transected by a series of fault structures, some of which have been discovered to be the locus of epithermal gold/silver mineralization. This district hosts the past-producing Baker Mine and the new Cheni Mine, currently being brought into production.

Previous exploration on the properties has consisted of geological mapping, prospecting, and soil/silt geochemical sampling. A number of quartz breccia and argillic alteration zones and quartz-barite veins have been delineated on the properties, some of which contain gold mineralization.

The 1988 exploration consisted of extensive prospecting, geological mapping, lithogeochemical sampling, hand trenching, and soil geochemical sampling. Soil geochemical sampling consisted of grid-controlled soil sampling and reconnaissance single-line elevation-controlled soil sampling. The trenching and grid-controlled soil sampling surveys investigated geological trends and geochemical results defined by this and previous exploration

- appen-

- Andrew

A STATE

- North States

Numerous calcite and quartz-calcite-barite stringers and veins up to 30 cm wide were located on the claims underlain by Takla Group volcanics (Fred 1, 3, 4, 5, and Jim 1 claims). Copper mineralization consisting of chalcopyrite and occasionally chalcocite and bornite with secondary malachite staining, is generally associated with these veinlets.

One massive sulphide talus boulder and weakly elevated gold values from talus boulders of quartz or calcite veins were found on the Jim 1 claim. A follow-up program consisting of tracing the source of the massive sulphide boulder and the weakly gold-enriched quartz boulders should be completed. If negative results are received from this program, the claim should be allowed to lapse.

Anomalous gold geochemical results up to 0.127 oz/ton were located from narrow (up to 30 cm wide) quartz-calcite-barite breccias in the east-central portion of the Fred 1 claim. A detailed soil geochemical survey combined with detailed geological mapping and trenching should be completed over this area to determine the width and extent of these veins.

A number of quartz-barite veins occurring over an area approximately 25 m wide near the southern Fred 3 claim boundary returned elevated gold values. Talus boulder samples collected from this same area returned values up to 0.239 oz/ton Au. Additional exploration consisting of detailed geological mapping, trenching, and grid-controlled soil geochemical sampling should be completed in this area extending down the ridge on to the Fred 4 claim.

A number of narrow 2 to 15 cm wide quartz veinlets returned elevated gold and silver values (up to 0.06 oz/ton Au, 43.17 oz/ton Ag) on the Fred 4 claim. The 'Fred' showing, discovered by Sumac Mines Ltd. in 1973, was re-sampled. The previously located mineralization of 0.33 oz/ton Au was returned from a 5 cm wide quartz veinlet. This is similar to what was found elsewhere on the

properties during the present exploration program; re-sampling of this showing returned negligible results.

Examination of a major topographic linear on the Stik 4 claim uncovered an area containing numerous quartz-breccia boulders up to 1.75 m wide. Grab samples collected returned elevated gold values (up to 394 ppb). A small trench was dug across this area but did not reach bedrock. Additional work is require in this area, consisting of grid-controlled soil geochemical surveying coupled with trenching and prospecting.

A wide zone of argillic alteration, coincident with a major topographic linear, was located in the northeastern portion of the Stik 6 claim. Although no anomalous results were obtained from this area, further work should be completed over this trend, consisting of trenching, prospecting, and if warranted, detailed soil geochemical surveying.

A number of quartz stringers and veins up to 1.5 m wide were found in the vicinity of the 'Dar' showing, located by Newmont Exploration of Canada Ltd. in 1982 on the northern boundary of the Stik 8 claim. Grab samples collected from this area returned values up to 0.055 oz/ton Au. Additional exploration is needed to fully evaluate the significance of the 'Dar' showing.

Three anomalous soil geochemical results were obtained from the reconnaissance sampling completed on the Adoog 8 and 9 claims. These sample sites should be re-examined as to the significance of these results.

No significant anomalous results were found on the remaining claims making up the 'Toodoggone' properties.

The Stik 1, 2, 6, and 7 mineral claims occur adjacent to areas in which additional work is required to fully evaluate mineral occurrences delineated by the current exploration program. These claims should be kept in good standing until these areas have been evaluated as to their significance. The Doog 7, Mike 1, Fred 2, Fred 5, Stik 3, Stik 5, Stik 9, Stik 10, and Adoog 10 claims should be allowed to lapse. Contraction of the local distance

CHARACTER OF THE PARTY OF THE P

CERTIFICATE - C. H.Aussant

I, Claude Henry Aussant, of 31 Templebow Way N.E. in the City of Calgary in the Province of Alberta, do hereby certify that:

- 1. I am a Consulting Geologist with the firm of Taiga Consultants Ltd. with offices at Suite 400, 534 17th Avenue S.W., Calgary, Alberta.
- 2. I am a graduate of the University of Calgary, B.Sc. Geology (1976), and I have practised my profession continuously since graduation.
- 3. I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta; and I am a Fellow of the Geological Association of Canada.
- 4. I am the co-author of the report entitled "Geological, Geochemical, and Prospecting Report on the Toodoggone Properties, Liard Mining Division, British Columbia", dated November 22, 1988. I personally supervised the exploration work (completed on the properties July 19 to October 21, 1988) on which this report is based.
- 5. I own 24,000 common shares of **Prolific Resources Ltd.** I do not expect to receive any interest (direct, indirect, or contingent) in the property described herein nor in the securities of **Prolific Resources Ltd.** in respect of services rendered in the preparation of this report.

DATED at Calgary, Alberta, this 22nd day of November, A.D. 1988.

Respectfully submitted,

anna

C. H. Aussant, B.Sc., P.Geol., F.GAC

BARREN

Sector Sector

CERTIFICATE - J. W. Davis

I, James Wilson Davis, of 116 MacEwan Drive N.W. in the City of Calgary in the Province of Alberta, do hereby certify that:

- 1. I am a Consulting Geologist with the firm of Taiga Consultants Ltd. with offices at Suite 400, 534 17th Avenue S.W., Calgary, Alberta.
- I am a graduate of St.Louis University, B.Sc. Geology (1967) and M.Sc. Geology (1969), and I have practised my profession continuously since graduation.
- 3. I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta; and I am a Fellow of the Geological Association of Canada.
- 4. I am the co-author of the report entitled "Geological, Geochemical, and Prospecting Report on the Toodoggone Properties, Liard Mining Division, British Columbia", dated November 22, 1988.
- 5. I am the Secretary/Treasurer of **Prolific Resources Ltd.** and as such have a substantial position in the capital stock of **Prolific Resources Ltd.**

DATED at Calgary, Alberta, this 22nd day of November, A.D. 1988.

Respectfully submitted,

J. W. Davis, M.Sc., P.Geol., F.GAC

BIBLIOGRAPHY

- Aussant, C.H. (1986): Geochemical Report on the ADOOG 7 Mineral Claim, Liard Mining Division, British Columbia; <u>for</u> Delaware Resources Corp., private company report
- ----- (1986): Geochemical Report on the ADOOG 8 and 9 Mineral Claims, Liard Mining Division, British Columbia; <u>for</u> Delaware Resources Corp., private company report
- ----- (1986): Geochemical Report on the STIK 5 Mineral Claim, Liard Mining Division, British Columbia; <u>for</u> Delaware Resources Corp., private company report
- ----- (1986): Geochemical Report on the FRED 1 Mineral Claim, Liard Mining Division, British Columbia; <u>for</u> Delaware Resources Corp., private company report
- Beattie, B.C. (1988): Reconnaissance Prospecting Report on the ADOOG 1-6 Mineral Claims, Liard Mining Division, British Columbia; <u>for</u> Delaware Resources Corp., private company report
- ----- (1988): Prospecting Report on the ADOOG 7 Mineral Claim, Liard Mining Division, British Columbia; <u>for</u> Delaware Resources Corp., private company report
- ----- (1988): Prospecting report on the ADOOG 8 and 9 Mineral Claims, Liard Mining Division, British Columbia; <u>for</u> Delaware Resources Corp., private company report
- ----- (1988): Reconnaissance Geological and Prospecting Report on the STIK 5 Mineral Claim, Liard Mining Division, British Columbia; <u>for</u> Prolific Resources Ltd., private company report
- ----- (1988): Reconnaissance Geological and Prospecting Report on the FRED 1 Mineral Claim, Liard Mining Division, British Columbia; <u>for</u> Prolific resources Ltd., private company report
- ----- (1988) Reconnaissance Prospecting Report on the STIK 1-4 Mineral Claims, Liard Mining Division, British Columbia; <u>for</u> Delaware Resources Corp., private company report

British Columbia Ministry of Energy, Mines and Petroleum Resources

GEM 1973 p.463; GEM 1975 p.E167; GEM 1982 p.343;

GEM 1985 p.C361; GEM 1986 p.C412-3

assessment reports 4643, 5434, 11150, 13846, 15069

Davis, J.W. (1987): Geological Evaluation of the ADOOG 1-9, STIK 1-5, and FRED 1 Mineral Claims, Liard Mining Division, British Columbia; <u>for</u> Delaware Resources Corp. and Prolific Petroleum Ltd., private company report

and the second

a subscription of the subs

State of

Sec.

. Sector

- Diakow, L.J.; Panteleyev, A.; Schroeter, T.G. (1985): Geology of the Toodoggone River Area, NTS 94-E; B.C.Min.Energy & Mines; Prelim.Map 61
- Gabrielse, H.; Dodds, C.J.; Mansy, J.L.; Eisbacher, G.H. (1977): Geology of Toodoggone River (94-E) and Ware West Half (94-F); Geol.Surv.Cda., Open File 483
- Geological Survey of Canada:
- National Mineral Inventory, No.94-E/11 Cu3
- Griep, J.L. (1987): Evaluation Report on the STIK 5 and FRED 1 Mineral Claims, Liard Mining Division, British Columbia; <u>for</u> Prolific Petroleum Ltd., private company report
- Netolitzky, R.K. (1986): Reconnaissance Geological and Geochemical Report, STIK 1-4 Mineral Claims, Liard Mining Division, British Columbia; <u>for</u> Delaware Resources Corp., private company report
- Pezzot, E.T. (1987): Geophysical Report on an Airborne Magnetometer Survey, STIK 2 and STIK 4 Claims, Liard Mining Division, British Columbia; <u>for</u> Delaware Resources Corp., private company report
- Schroeter, T.G. (1981): Toodoggone River (94-E); <u>in</u> B.C. Min.Energy & Mines; Geological Fieldwork 1980, pp.6-7

· Upperfert...

. And the second se

APPENDIX

Summary of Personnel Summary of Expenditures Rock Sample Descriptions Analytical Techniques Certificates of Analysis

.

- 1-1-1-1

1. Bartanta

1046401

SUMMARY OF PERSONNEL

J. W. Davis, P.Geol. Calgary, Alberta	Project Supervisor	Jul.22-Aug.20	9.00
C. H. Aussant, P.Geol. Calgary, Alberta	Project Geologist	Jul.22-Aug.20	8.00
C. L. Swanson Calgary, Alberta	Assistant Geologist	Jul.22-Aug.20	21.50
B. C. Beattie Calgary, Alberta	Assistant Geologist	Jul.19-Aug.10	12.00
M. D. Jamieson Calgary, Alberta	Assistant Geologist	Aug.12-Aug.20	5.00
B. A. Fyke Calgary, Alberta	Junior Geologist	Jul.19-Aug.16	13.50
Don McLeod LaRonge, Sask.	Senior Prospector	Jul.22-Aug.20	21.25
Wally McLeod Stanley Mission, SK	Senior Prospector	Jul.22-Aug.20	20.75
Don Roberts LaRonge, Sask.	Senior Prospector	Jul.22-Aug.20	13.75
Dennis McLeod Stanley Mission, SK	Jr.Prospector/ Labourer	Jul.19-Aug.20	18.75
Irvine Roberts Stanley Mission, SK	Jr.Prospector/ Labourer	Jul.10-Aug.20	15.75
T. J. Clack Calgary, Alberta	Labourer	Jul.22-Aug.20	17.50
James Roberts Stanley Mission, SK	Labourer	Jul.22-Aug.20	17.25
Vanessa Willett Calgary, Alberta	Labourer	Jul.22-Aug.20	11.00
J. C. B. McGinnis Grande Prairie, AB	Cook	Jul.19-Aug.20	13.00
I. Q. Young Calgary, Alberta	Cat Operator/ Labourer	Jul.19-Aug.20	6.50
M. Poole [contract]	Helicopter Pilot	Jul.19-Aug.20	$\frac{14.50}{239.00}$

SUMMARY OF EXPENDITURES

<u>Pre-Field</u>

and the second

Logistics, assembly of personnel and gear, data compilation	4,231.36
Field PersonnelProject Supervisor9.00 days @ \$450/day4,050.00Project Geologist8.00 days @ \$375/day3,000.00Assistant Geologists38.50 days @ \$275/day10,587.50Prospectors75.75 days @ \$250/day18,937.50Labourers80.25 days @ \$195/day15,648.75Cook13.00 days @ \$185/day2,405.00	54,628.75
<u>Camp & Accommodation</u> (including pilot) 239 man days @ \$50/day	11,950.00
Travel Expenses mob & demob	7,060.13
Equipment Rentals Generator17 days @ \$15/day255.00FM radio-telephone17 days @ \$10/day170.00HF radio-telephone17 days @ \$ 9/day153.00Water pump17 days @ \$ 6/day102.00Chainsaw17 days @ \$ 6/day102.00	782.00
Aircraft Support Helicopter 24,446.43 Fixed-Wing 5,837.41	30,283.84
<u>Fuel</u>	7,781.93
<u>Geochemical Analyses</u> soil, silt, rock, core	11,535.63
MiscellaneousDisposable field supplies; lumber2,951.70Communications612.81Maps and reproductions884.85Expediting and freight6,253.33	10,702.69
<u>Post-Field</u> Data compilation, report writing, drafting, secretarial	10,326.57
Administration	5,896.90
GRAND TOTAL	\$ <u>155,179.80</u>

- contraction -

į

Page 1

ROCK SAMPLE DESCRIPTIONS

	Au _ppb	Ag ppm	Ag T	
<u>JIM 1</u>	sample	descriptions		
CA-12	8	9.70	0.283	(talus) purple basalt with numerous calcite stringers, stained with secondary malachite
CA-13	6	0.43		(talus) calcareous breccia, angular fragments, pale green, clay fracture filling in coarse-grained purple trachy- andesite feldspar porphyry
CA-14	4	17.80 17.70	0.519	(outcrop) coarse-grained purple trachy- andesite feldspar porphyry, extensive malachite stain along fractures, striking N-S/85°E, calcite lining fracture planes with a halo of Cpy stringers in the trachy porphyry, frequent number of these frac- tures with staining observed over a wide outcrop area (100m)
CA-15	14 10	148.00 149.00	4.317	(outcrop) calcite & quartz-calcite strin- gers and veinlets in purple trachy-andesite feldspar porphyry, malachite staining frequent, minor galena in the calcite, activated area 2m true width, striking 160°/80°W
CA-16	8	0.71		(outcrop) shear zone, slickensides noted on edge of main brecciated calcite veinlet, numerous calcite and quartz-calcite stringers and veinlets, area of disturbance 1-2m wide, trace malachite, shearing probably associated with narrow green-grey andesite dyke intruding the trachy-andesite feldspar porphyry
CA-17	17	27.00	0.787	(outcrop) quartz veining in a dark rusty-
	10	28.00		red tuff layer approx 2m wide, quartz and tuff impregnated with diss galena, mala- chite, Cpy, striking 340°
BB-16	12 14	27.00 33.00	0.788	(outcrop) trachy-andesite feldspar por- phyry, phenocrysts up to 1cm diameter, malachite staining diss throughout
BB-17	10 8	23.00 27.00	0.671	(outcrop) trachy-andesite feldspar porphyry as above containing large Cpy blebs up to 2cm in diameter

a second

-

ł

- All and a second

. Tankana ta

	Au ppb	Ag ppm	Ag _oz/T	
BB-18	4	2.30		(outcrop) pale green tuff with calcite veinlets up to lcm in diameter
BB-19	6 8	25.00 26.00	0.729	(outcrop) dark grey, fine grained tuff cut by numerous quartz veins, containing malachite, galena and covellite
BB-21	24	1.76		(outcrop) light green andesite porphyry, up to 5% Py as blebs and stringers, trace Cpy, minor argillic alteration, limonite staining
BB-22	16	1.12		(outcrop) same as above, pale green, limonite stained
BB-23	4	0.51		(outcrop) same as above
BB-24	2	0.91		(outcrop) light grey andesite porphyry, fine grained, occasional feldspar pheno- crysts, trace galena, minor Py
BB-25	10	0.24		(outcrop) pink trachy-andesite feldspar porphyry, light grey, diss Py, trace Cpy, epidote alteration
BB-26	8	0.51		(outcrop) andesite porphyry, light grey, slightly siliceous, diss Py
DM-53	42 36	34.00 37.00	0.992	(outcrop) 20cm quartz-calcite vein in a light brown tuff, minor galena, malachite
DM-54	52 92	44.00 43.00	1.28	(outcrop) same as above
DM-55	72 66	47.00 50.00	1.37	(outcrop) same as above
DM-56	6	1.36		40cm soil sample: clay alteration, yellow- brown, medium grained with light brown tuff fragments
DM-57	6	9.10	0.265	chip sampled across 20cm in a 5-10 m mineralized zone; trachy-andesite feldspar porphyry, weak argillic alteration, trace galena, malachite, calcite stringers
DM-58	6 4	28.00 27.00	0.817	(outcrop) 6cm quartz-calcite veinlet in green andesite, minor galena, Py, trace malachite

Page 2

-47

- Szelők Ju - Szel - Szel

- Andread -

Alexander and and a second sec

	Au _ppb	Ag ppm	Ag oz/T	
DM-59	22 14	44.00 43.00	1.28	(outcrop) 30cm wide malachite stained trachy-andesite feldspar porphyry, minor diss Py
DM-60	4 4	21.00 21.00	0.613	(float) trachy-andesite feldspar porphyry, purple, 1% galena, malachite, trace Py
DM-61	14 14	18.40 19.40	0.537	(float) light brown trachy-andesite feld spar porphyry, calcite stringers and veinlets, galena and malachite along calcite veinlet edges, minor malachite staining on the calcite
DM-62	308 156	78.00 87.00	2.28	(float) calcite vein with minor galena and malachite staining
DM-63	108 82	56.00 57.00	1.63	(float) mafic volcanic, dark grey, fine grained with calcite veinlets containing galena and malachite
CS-49	12	1.02		(outcrop) medium green trachy-andesite porphyry, rusty weathering, 3-5% Py, 1% Cpy, trace secondary malachite and chryso- colla, mineralized zone 4m wide
CS-50	26	1.68		(outcrop) beige-yellow alteration clay with moderately argillically altered bleached volcanic fragments, zone 5m wide
CS-51	4	0.72		(outcrop) medium green trachy-andesite porphyry, rusty weathering, 10% Py, 1-3% Cpy, weak argillic alteration, weakly siliceous, moderate propylitic alteration
CS-52	10	0.54		(outcrop) same as above, trace of secondary malachite
CS-53	6	0.11		(outcrop) 3cm wide limonite stained calcite vein
WM-35	32 32	53.00 48.00	1.55	(outcrop) mafic volcanic dyke, 1% bornite, 1% chalcocite, secondary malachite and azurite (up to 3%), mineralized zone 40cm wide
WM-36	46 42	53.00	1.55	(outcrop) same as above

k

August

Autom

Section 2

- Manual -

	Au _ppb	Ag pm	Ag _oz/T	
WM-37	14	7.00	0.204	(outcrop) 20cm calcite vein, 1% galena, specular hematite, trace malachite and chrysocolla
WM-38	32 24	32.00 34.00	0.933	(outcrop) 5cm quartz calcite vein as above
WM-39	16 20	44.00 43.00	1.28	(outcrop) rusty weathering mafic volcanic, 1% galena, trace Py, 50cm chip sample
WM-40	48 38	62.00 81.00	1.81	(outcrop) dark green silicified trachy- andesite porphyry, 1-3% galena, trace Py, trace secondary malachite, weak argillic alteration
WM-41	30 36	42.00 46.00	1.23	(outcrop) 5cm calcite veinlet, 1-3% galena, 1% secondary malachite
WM-42	10 10	37.00 38.00	1.08	(talus) trachy-andesite porphyry, purple, 1% galena, trace malachite and chrysocolla
WM-43	28 32	44.00 43.00	1.28	(talus) calcite vein in dark green mafic volcanic, 1-3% galena, trace malachite
WM-44	244	1.20		(talus) massive sulfide boulder, 40% Py, 50% bornite, 10% Cpy (3400 Cu ppm)
WM-45	<u>1560</u> 284	210.00 220.00	6.13	(0.046 Au oz/T) (talus) quartz vein, 5% bornite 1% Py, 1% Cpy, secondary malachite and chrysocolla
WM-46	6	9.60	0.28	(talus) porphyritic mafic volcanic, silici- fied, argillically altered, 1-3% Py as diss and blebs, 1% Cpy, secondary malachite and chrysocolla
WM-47	20	16.40	0.48	(talus) lithic tuff, 1% malachite, moderate argillic alteration

States -

Contraction of the

- Andrews

- Vergener

n.

1000

1 Politica

. .

and the second

and the second second

DOOG 7 Claim Contour soil sampling TC-1 to TC-33 incl JR-16 to JR-50 incl WM-51 to WM-66 incl DM-69 to DM-82 incl Au Ag

	ppb	ppm	
JR-51	6	0.20	

(talus) argillically altered andesite porphyry, diss Py, epidote alteration

- Statistical

-

<u>MIKE 1</u> "M" Gr	<u>Claim</u> id - soil	geochemical	survey	
	Au _ppb	Ag ppm		
WM-9	12	0.14		(outcrop) rusty weathering trachy-andesite porphyry, relict phenocrysts of plagioclase and pyroxene up to 1.5cm diameter, 3-10% diss Py, propylitic and argillic alteration
WM-10	10	0.54		(talus) trachy-andesite porphyry, same as above
WM-11	10	0.16		(outcrop) up to 4cm wide quartz-barite vein
WM-12	18	0.20		(outcrop) quartz barite veining up to 3cm wide (frequency of 3 to 5 veins/metre over a 10x150m zone), trace Py, hematitic alteration
WM-13	104	0.12		(outcrop) same as above
CS-11	4	0.09		(talus) barite vein, white, coarsely crystalline, massive in a propylitically altered basalt
CS-12	14	0.08		(talus) 3cm wide barite vein, massive, white to beige
CS-13	10	0.11		(outcrop) quartz-barite veining (up to 3cm wide) in rusty weathering volcanics occurring in a zone 10m wide, drusy quartz, coarsely crystalline barite, trace mag- netite, trace Py

n dalari Vitebri

20 Martine -

(minutes)

- Andrewson

- Alternation

a desired a

	FRED 1	<u>Claim</u>			
		Au _ppb	Ag ppm	Ag _oz/T	
. (CS-01	2	0.15		(outcrop) basalt, dark green, brown weathering, 2cm wide quartz veinlets
(CS-02	2	0.16		(outcrop) silicified dark green basalt, brown weathering
	CS-03	4	0.10		(outcrop) pale green andesite with beige weathering relict phenocrysts up to 3mm long
	CS-04	172	3.40		(talus) silicified volcanic agglomerate, 10% diss Py, <1% Cpy
	CS-05	22	7.20		(outcrop) silicified volcanic agglomerate, 10% diss Py, <1% Cpy, sulphides occurring as blebs and disseminates
	CS-06	12	0.62		(outcrop) silicified volcanic agglomerate, 8% diss Py, 2% Cpy, 90% of total sulphides occur as stringers
	CS-57	48	0.41		(talus) coarsely crystalline, white barite breccia with mafic volcanic clasts, trace malachite and limonite staining
. (CS-58	18	0.07		(talus) white coarsely crystalline barite and sucrosic quartz, trace Py
(CS-59	28	0.46		(outcrop) quartz-barite breccia with green mafic volcanic clasts, minor drusy quartz, white, coarsely crystalline, up to 3% Cpy, trace Py, minor malachite staining, maximum width 30cm
(CS-60	34	4.50		(felsenmeer) massive sulphide veinlet, 2cm wide, in coarsely crystalline barite veinlet composed of 50% Py, 50% Cpy; limonite stained (6.40% Cu)
(CS-61	10	0.19		(felsenmeer) massive, coarsely crystalline white barite, limonite stained
(CS-62	<u>4340</u> <u>4040</u>	340.00 340.00	9.92	(0.127 Au oz/T) (outcrop) quartz-barite- calcite breccia with calcified volcanic clasts, quartz is slightly amethystine; 2% diss Py, 1% galena, 1% Cpy, trace malachite staining, 5m along strike of BF-07 & 08, max width 30cm

0.000

- Oralization

- Salestan -

Approx 10

- States

- Section -

1999-1999-1 12,002-2

DM-05

2

0.07

	Au ppb	Ag ppm	Ag _oz/T	
CS-63	16	0.72		(outcrop) drusy to sucrosic, white to grey quartz veinlets & massive limonite stained quartz veins up to 35cm wide (3 veins over
				10m), 3% Cpy, trace Py, minor malachite staining (0.44% Cu)
WM-01	594	8.60		(outcrop) basalt with numerous calcite veinlets diss with Py Cpy, galena(?), tetrahedrite(?); propylitic alteration, mineralized zone 80cm wide
	_			
WM-02	2	0.11		(outcrop) 20cm wide barite veinlet within propylitic altered basalt, barite is massive with trace Py and Cpy
WM-03	4	0.16		(outcrop) 3cm wide barite vein with minor calcite within propylitic altered basalt, 50cm wide chip sample
WM-04	24	0.23		(outcrop) quartz-barite vein, vuggy with drusy quartz, 3-5% diss Cpy, trace mala- chite, within a propylitically altered basalt
WM-05	2	0.48		(outcrop) 30cm wide quartz-barite breccia, 1-3% diss Cpy, minor calcite
DM-01	180 172	15.70 17.10	0.458	(outcrop) metabasalt with veinlets of calcite containing 1-3% Py, 1-3% Cpy, zone 30cm x 5-10 m long
DM-02	694 636	22.00 22.0	0.642	(outcrop) same as above, with 1-3mm wide veinlets of galena/tetrahedrite (same location as DM-01)
DM-03	96 102	156.00 152.00	4.55	(outcrop) metabasalt with 0.5cm wide stringers of calcite containing trace Py, up to 5% Cpy, malachite staining
DM-04	4	0.41		(outcrop) dark green basalt containing a

(outcrop) dark green basalt containing a 30cm wide barite-calcite vein, trace diss Cpy, vein traced for 20m

(outcrop) 30cm wide massive, coarsely crystalline white barite vein containing trace Cpy, Py and malachite, occurring in dark green basalt as above

- unitation -

and the second s

- Charlen -

- Longenterson Longenterson

1 August

	Au ppb	Ag ppm	Ag _oz/T	
DM-06	4	0.10		(outcrop) same location as DM-05, quartz- barite breccia, trace Cpy and sphalerite
DM-07	4	0.17		(outcrop) 1.2m barite vein, trace Py, Cpy and malachite
DM-08	8	0.25		(outcrop) 15-30cm white massive coarsely crystalline barite vein, trace Cpy, Py
DM-09	4	0.31		(outcrop) 15cm wide white massive barite vein, with trace drusy quartz and trace malachite staining
DM-10	4	0.23		(outcrop) 3-4m quartz-barite breccia (white, massive crystalline barite), 1-3% Cpy, trace malachite, trace Py
DM-11	4	0.18		(outcrop) same as DM-10
BF-03	34	0.64		(talus) quartz-barite vein, rusty weath- ered, diss Cpy, occasional Cpy blebs
BF-04	58	1.75		(talus) quartz breccia, angular rhyolite fragments, vugs lined with quartz inter- growths, diss Cpy and Py, minor malachite, minor smoky quartz, minor barite
BF-05	4 • • • • • • • • • • • • • • • • • • •	3.30		(outcrop) light to medium grey rhyolite, numerous quartz stringers fracture filling, lcm Py veinlet adjacent to quartz stringers, malachite staining (10m south of CS-59)
BF-06	6 10	36.00 37.00	1.05	(outcrop) 7cm quartz barite veinlet, vuggy, vugs lined with drusy quartz, contains large Cpy blebs (1x6cm), malachite stain- ing, minor bornite, hematite staining, veinlet occurs in a hematized rhyolite
BF-07	<u>3640</u>	16.30	0.475	(0.106 Au oz/T) (outcrop) quartz breccia, weakly argillically altered, minor calcite, malachite staining, diss Py

Page 9

a subjective

indiana.

Press .

JR-120

10

0.30

	Au _ppb	Ag ppm	Ag _oz/T	
BF-08	88	3.40		(outcrop) 15cm barite-calcite veinlet, diss Cpy blebs up to 1 cm diameter, diss Py
BF-09	14	2.60		(outcrop) greenish grey calcareous rhyo- lite, 5% diss Py, argillically altered
DRM-05	668	2.50		(talus) barite-calcite breccia with silici- fied light green volcanic fragments, 1% Cpy, trace malachite
DRM-06	2	0.12		(outcrop) barite-quartz breccia with green mafic volcanic fragments, 1% diss Cpy
DRM-07	8	0.52		(talus) same as DRM-06, trace secondary malachite, purple volcanic fragments
JR-113	6	0.17		(talus) quartz breccia with weakly argil- lically altered volcanic fragments and 1% diss Cpy
JR-114	<u>1040</u> 1060	51.00 52.00	1 .49	(0.030 Au oz/T) (talus) calcite breccia with light green aphanitic volcanic fragments, 15% galena, 2% Py, trace arseno- pyrite
JR-115	6	0.08		(talus) quartz breccia, weakly argillically altered volcanic fragments, 1% diss Cpy
JR-116	30	0.10		(talus) drusy quartz-calcite breccia with medium green aphanitic volcanic fragments, 1% Cpy, trace Py
JR-117	2	0.17		(talus) drusy quartz stringers up to 1cm wide in silicified beige volcanics, 1% Cpy, trace Py in quartz veinlets
JR-118	4	0.11		(talus) quartz breccia with silicified weakly argillically altered volcanic fragments, 1% Py, trace Cpy and hematite in veinlets
JR-119	4	0.48		(talus) calcite veinlets in green aphanitic volcanics, 1% diss Py, trace Cpy

(talus) quartz-barite breccia with andesite porphyry fragments, 2% Cpy, trace Py, trace malachite

FRED 2 Claim

A COLUMN

a second

N. Salation

Contour soil sampling TC-109 to TC 158 incl

COCO

and second

「小原語」

- 建建立

D

-

FRED 3				
	Au ppb	Ag ppm	Ag T	
DM-110	<u>2640</u> 8200	195.00 240.00	5.69	(0.08 Au oz/T) (6.20% Cu) (talus) quartz breccia with bleached mafic volcanic frag- ments and extensive malachite, chrysocolla staining, minor bornite and chalcocite
DM-111	432 440	30.00 30.00	0.875	(outcrop) quartz barite veining with minor galena and malachite staining, mineralized area approx 25m wide
DM-112	436 436	76.00 90.00	2.22	(outcrop) same as DM-111 but with 3% galena and no barite (same area as DM-111)
DM-113	126	4.90	0.143	(outcrop) same as DM-111; same area as DM-111
DM-114	204 203	31.00 42.00	0.904	(outcrop) same as DM-111
DM-115	4	0.59		(outcrop) coarsely cryst. white barite, chip sampled across limonite-stained quartz-barite vein ~2m wide, 100m long
DM-116	14	0.61		(outcrop) same as DM-115 with minor Cpy and malachite
DM-117	56	3.10		(outcrop) massive white coarsely crystal- line barite with trace Py, Cpy and mala- chite, limonite stained
DM-120	<u>1020</u>	2.40		(0.030 Au oz/T) (talus) ~20cm quartz-barite breccia vein, mafic volcanic fragments, trace malachite staining
DM-121	6	1.24		(talus) coarsely cryst. massive calcite with 1% Cpy as blebs, malachite staining
CS-65	12	0.22		(talus) white to grey, coarsely cryst. barite vein in purple trachy-andesite porphyry, minor malachite staining
CS-66	4	0.08		(felsenmeer) massive quartz-barite, coarsely crystalline white barite and sucrosic hematite stained quartz
IR-12	10	0.05		(float) barite, colour banded white to medium grey due to sheared inclusions of country rock, minor malachite staining

12 - Da - 1

and a stranger of

Ì

- Carbonastero

	Au ppb	Ag ppm	Ag T	
IR-13	2	0.17		(float) dark green fine-grained mafic volcanic with calcite fracture filling
WM-67	2	0.11		(outcrop) quartz-calcite vein, 1% Py, rusty stained
WM-68	4	0.33		(talus) medium-green brecciated andesite, frequent calcite stringers, 3% Py, 1% Cpy,
				malachite and chrysocolla, weak argillic alteration
WM-69	6	1.19		(outcrop) calcite vein in mafic volcanic, 3-5% Py, 1% Cpy, 1-3% malachite and chrysocolla
WM-70	4 .	0.93		(outcrop) brecciated mafic volcanic with calcite, 7% Py, 1% Cpy, trace chalcocite, 2% secondary malachite, trace chrysocolla
WM-71	66	3.10		(outcrop) basalt, 10% Py as fracture fillings and diss, 3% Cpy, 1% malachite
WM-72	4	0.25		(outcrop) mafic volcanic with calcite stringers up to 1cm wide, 1-3% Py, trace malachite
DR-28	12	0.46		(outcrop) andesite breccia, quartz-calcite infilling, 1% diss Py, weak argillic alteration
DR-29	64 60	136.00 144.00	3.97	(17.1% Cu) (outcrop) up to 10cm wide quartz-calcite vein (quartz: medium crystalline, drusy, white; calcite: medium crystalline, white), up to 20% bornite, up to 25% Py, secondary malachite and chryso- colla
DR-30	26	13.00	0.38	(outcrop) up to 6cm wide quartz-calcite vein, 2% bornite, 1% Py, trace malachite

Page 13

CACA		~ 7	
FKF11	а.		2.1 m
1 1160	T		CL I III

in feilige : Linder

(Transferrer)

	Au _ppb	Ag mqq	Ag _oz/T	
WM-73	4	0.17		(talus) massive white to grey quartz, finely crystalline, 1% Py, slight rust staining
WM-74	76 58	350.00 380.00	10.21	(17.20% Cu) (talus) brecciated mafic volcanic unit with quartz veining, 30% bornite, trace chalcocite, 5% malachite
WM-75	6	13.40	0.391	(1.21% Cu) (talus) brecciated andesite with drusy quartz veining, 7% bornite, trace Py, trace malachite, weak argillic alteration
WM-76	10	13.50	0.394	(1.52% Cu) (outcrop) quartz vein in mafic volcanic, minor calcite, 7% bornite, 3% secondary chrysocolla, series of quartz stringers in a 40cm wide zone
WM-77	6 10	34.00 390.00	0.988	(talus) quartz vein, 2% diss Py, trace Cpy, limonite stained, trace chrysocolla and malachite
WM-78	10	4.80		(outcrop) quartz veins in weakly argil- lically altered mafic volcanics, 1% Py, 1% galena, trace Cpy, trace malachite
WM-79	4	0.45		(outcrop) 30cm wide drusy, white quartz vein, 1% Py, trace malachite
WM-80	6	0.82		(talus) quartz-calcite-barite boulder, trace Py, trace malachite
WM-81	4	3.10		(outcrop) quartz-calcite stringers in silicified slightly brecciated andesite porphyry, trace Py, trace Cpy, trace malachite
WM-82	4	9.60	0.280	(outcrop) brecciated purple mafic volcanic with quartz-calcite stringers, 1% Py, trace Cpy, 1-3% malachite staining
WM-83	8	5.10	0.149	(outcrop) same as WM-82
WM-84	4	8.00	0.233	(outcrop) same as WM-82, 2% diss Py

it.

Alman A

tamin.

Printers.

- Ander

Û

	Au _ppb	Ag ppm	Ag _oz/T	
WM-85	10 8	196.00 188.00	5.72	(11.9% Cu) (outcrop) brecciated mafic vol- canics with quartz-calcite stringers containing sulphides, 10% bornite, 1-3% Py, 3% malachite
WM-86	6	0.07		(outcrop) 8cm wide brecciated bornite vein with mafic volcanic inclusions
WM-87	2	0.16		(outcrop) 10cm wide barite vein in weakly argillically altered trachy-andesite porphyry, trace diss Py, trace malachite
WM-88	22	0.93		(outcrop) silicified, brecciated, pale pink-grey trachy-andesite porphyry with quartz stringers, 1% Py and trace malachite occurring with the quartz stringers
CS-67	76 82	53.00 57.00	1.55	(talus) very siliceous mafic volcanic, 3-5% galena, 2% Py, 1% Cpy, limonite stained
CS-68	192	13.80	0.403	(talus) massive creamy white sucrosic quartz with 1-3% diss Py, 1% Cpy, trace galena, and small veinlets of white drusy quartz with 3% Cpy and chlorite
CS-69	2	0.07		(talus) massive coarsely crystalline white barite
CS-70	14	0.37		(talus) trachy-andesite porphyry, propylit- ically altered, 3-5% diss Py
CS-71	2	1.54		(talus) massive coarsely crystalline white barite-calcite vein in argillically altered beige mafic volcanic, <1% diss Py and Cpy
CS-72	6	0.24		(talus) drusy quartz-breccia with bleached, weakly argillically altered mafic vol- canics, 1% Cpy and trace malachite
CS-73	16	0.36		(talus) same as above
DRM-2	4	1.28		(outcrop) silicified trachy-andesite porphyry, 3-5% Py, 1% Cpy
DRM-3	6	0.16		(talus) quartz breccia, weakly argillically altered andesite porphyry fragments, 1% Py, 1% Cny. trace malachite

· usianti i ·

Page 16

	Au ppb	Ag ppm	Ag _oz/t	
DRM-4	22	0.13		(talus) massive quartz-calcite boulder with 1% Cpy, trace malachite
DR-31	6	4.90	0.143	(3.20% Cu) (outcrop) epidote-calcite vein up to 6cm wide, contains stringers of bornite up to 0.5cm wide (total 10% bornite), 3% malachite, trace chalcocite
DR-32	12 18	350.00 370.00	10.21	(10.8% Cu) (outcrop) mafic volcanic, calcite stringers, 5% bornite, 1% chalco- cite, 3% malachite
DM-83	12 10	28.00 28.00	0.82	(outcrop) chip sample across a moderately argillically altered volcanic outcrop, 1.5m wide and 7-10m long; at least 2 quartz veins in alteration zone approx 10cm wide striking 300°/S; 1% Cpy, 1-3% Py, minor malachite
DM-84	6	13.00	0.38	same as DM-83
DM-85	6 6	19.50 16.80	0.57	same as DM-83
DM-86	4	5.80	0.17	(outcrop) calcite-chlorite vein from above alteration zone, 2% Py, rusty stained, trace Cpy, trace malachite
DM-87	6 6	21.00 21.00	0.61	(outcrop) same as DM-86, 1% galena
DM-95	16	13.90	0.41	(talus) trachy-andesite porphyry, purple, plagioclase phenocrysts up to 1cm long, weak propylitic alteration, trace diss Cpy and malachite
DM-96	4	0.43		(outcrop) massive calcite-quartz veins and inclusions in green mafic volcanics, 1% galena in the calcite blebs
DM-97	4	0.33		(outcrop) massive coarsely crystalline white barite vein approx 20cm wide, trace galena
DM-98	6	1.41		(talus) calcite veinlets with 1% diss Py, trace Cpy and trace secondary malachite in green mafic volcanics, weakly brecciated

	Au _ppb	Ag ppm	Ag _oz/T	
DM-99	2	15.50	0.45	(outcrop) light beige alteration clay, moderately argillically altered, bleached mafic volcanic fragments, 60cm wide zone
DM-100	6 6	127.00 146.00	3.70	(outcrop) same as DM-99
DM-101	14 18	88.00 89.00	2.57	(outcrop) rusty-beige alteration clay, moderately argillically altered, hematized volcanic fragments
DM-102	10 6	45.00 46.00	1.31	(outcrop) same as DM-101
DM-103	180 184	1480.00 1340.00	43.17	(outcrop) quartz-calcite vein, 10% diss galena/tetrahedrite, 1% diss Py in dark grey mafic volcanics
DM-104	50 38	36.00 39.00	1.05	(outcrop) collected from alteration clay, quartz-calcite boulder with 1% diss Py, trace Cpy, trace galena
DM-105	10	15.60	0.46	(felsenmeer) quartz-calcite boulder 20cm wide, containing 5% Py and trace galena
DM-106	6	0.39		(talus) green mafic tuff, with calcite stringers and 1% diss Cpy and Py
DM-107	58	0.51		(outcrop) grey alteration clay with bleached volcanic fragments
DM-108	576	2.60		(felsenmeer) quartz breccia with hematite altered volcanic clasts, trace malachite
DM-109	2	0.68		(felsenmeer) calcareous mafic volcanic, with extensive limonite staining
DM-122	74	2.80		(talus) massive sucrosic quartz-calcite boulder with 1% diss Py
DM-123	12	1.80		(talus) sucrosic pink calcite boulder, slightly brecciated, trace Cpy, 1% hematite (specularite)
DM-124	16	1.06		(talus) calcite breccia with weakly argillically altered beige volcanic fragments, up to 3% Py, trace Cpy, trace malachite

Contraction of

e angeler e

- Anthenet -

- the state

and the second

Υ.

- "weight

100

- - - Program

in Alexandre

and street

A MARKED

	Au ppb	Ag ppm	Ag _oz/T	
DM-125	48 44	19.50 19.10	0.57	(talus) quartz-calcite breccia with silicified mafic volcanic fragments, 3-5% Py, 1% Cpy, trace malachite and limonite
DM-126	90	0.98		(talus) quartz calcite breccia with very weakly argillically altered, trachy- andesite porphyry, 1% Cpy, trace Py, trace malachite
IR-1	4	0.62		(float) sucrosic quartz, vuggy, drusy quartz lining vugs, contains narrow calcareous bands which contain most of the sulphides present (chalcopyrite, Py, minor malachite staining)
IR-2	66 64	26.00 18.10	0.758	(outcrop) 7cm quartz vein, vuggy with quartz intergrowths lining vugs, intense malachite staining, up to 1cm blebs of bornite, inclusions of sheared trachy- andesite feldspar porphyry containing minor calcite, Cpy, Py
IR-3	14	5.00		(outcrop) weakly argillically altered calcareous purple to brown mafic volcanic, calcite fracture filling, minor diss Py, Cpy, malachite staining, bornite, <1% total sulphides
IR-4	8	3.10		(outcrop) 6cm wide quartz-calcite breccia vein, numerous weakly argillically altered beige mafic volcanic fragments, extensive malachite staining, minor Cpy occurring as blebs to 2mm wide
IR-5	4	0.24		(outcrop) massive mafic volcanic, greenish grey with mauve tinge, trace galena, up to 4% Py as diss and stringers
IR-6	6	0.52		(outcrop) quartz-breccia vein 50cm wide, vuggy with quartz intergrowths, quartz veinlets randomly oriented in weakly argillically altered trachy-andesite porphyry, beige coloured, minor Cpy and Py, minor malachite staining
IR-7	4	0.20		(outcrop) white crystalline barite veins, slightly calcareous and siliceous, in beige weakly argillically altered fine grained trachy-andesite porphyry, minor sulphides along edges of barite veins

-Theorem

An test

1 March 1997

Ŋ

- Second

0

Second State

0

	Au _ppb	Ag ppm	Ag _oz/T	
IR-8	8	3.40		(talus) greenish grey mafic volcanic with numerous randomly oriented calcite string- ers, minor bornite within the calcite stringers, diss Cpy in the volcanics and stringers, minor malachite staining
IR-9	2080	5.00	0.146	(0.06 Au oz/T) (outcrop) 2cm wide quartz vein containing minor Cpy, galena, Py and malachite staining within a weakly argil- lically altered mafic volcanic
IR-10	6	0.06		(outcrop) narrow quartz stringer, rusty weathered, calcite envelope around veinlet, minor diss Cpy in weakly argillically altered mafic volcanic
IR-11	4	0.05		(outcrop) 30cm wide coarsely crystalline massive white barite vein with trace malachite staining
JR-57	24	0.67		(outcrop) mauve-green mafic volcanic with numerous quartz stringers, diss Cpy and Py
JR-58	8	0.48		(outcrop) calcareous mafic volcanic with quartz-calcite fracture filling, diss Py and Cpy, malachite lining fracture planes
JR-59	244	9.20		(talus) rusty weathering, brecciated, siliceous, mafic volcanics, pyritic, minor Cpy, extensive malachite staining fracture planes
JR-60	134	8.30		(0.63% Cu) (talus) quartz breccia, 40-60% sulphides, galena, Py, Cpy, malachite (2/3 galena, 1/3 Py)
JR-61	176	6.00		(outcrop) 2" quartz breccia vein, rusty weathering, 5-10% sulphides, Py, minor galena, minor malachite
JR-62	<u>1060</u> 852	36.00 42.00	1.05	(0.031 Au oz/T) (outcrop) 6" quartz breccia vein, 15-30% sulphides, extensive malachite staining, Py, Cpy, minor calcite

-

1999

- safeting

and the second second

1921

Page	20

	Au _ppb	Ag ppm	Ag _oz/T	
JR-63	794 664	46.00 47.00	1.34	(0.023 Au oz/T) (outcrop) 4" breccia, siliceous, minor Cpy, minor galena, minor malachite, rusty weathering, greenish to purple-grey on fresh surface, 20% sul- phides, Py occurring diss in siliceous bands or as stringers
JR-64	62	1.15		(talus) quartz, minor barite breccia, 3% diss Py
JR-65	12	4.30		(boulder) mottled grey-green quartz-calcite breccia, minor barite, minor Cpy, minor galena, 1% diss Py, occ medium to dark grey quartz stingers
JR-110	12	0.82		(outcrop) silicified, slightly brecciated, trachy-andesite porphyry, 3-5% Py, 2% Cpy
JR-111	2	0.24		(talus) massive quartz-calcite boulder, 1% Cpy, trace malachite
JR-112	4	0.12		(talus) quartz breccia, weakly argillically altered bleached volcanic fragments, occ drusy quartz, trace diss Py

FRED 5 Claim

and the second s

-

- Calleran

and the

Soil Geochemical Contour Sampling TC-159 to TC-165 incl

	Au ppb	Ag ppm	Ag _oz/T	
BB-5	106	1.05		(talus) silicified tuff, light grey quartz stringer, pyritic bands, limonite stained
BB-6	478	0.53		(talus) calcite vein, malachite stained, in a light grey fine-grained tuff
BB-7	108	0.74		(outcrop) quartz stringers in siliceous trachy-andesite feldspar porphyry, diss Py, Cpy, striking 030°/60°E, 15cm wide
BB-08	42	0.47		(outcrop) light grey siliceous trachy- andesite porphyry, up to 2% diss Py
BB-09	156	1.03		(outcrop) siliceous light grey fine-grained trachy-andesite porphyry, up to 1% diss Py, striking 130°/70°S
BB-10	22	0.24		(outcrop) coarse-grained, pale grey siliceous trachy-andesite porphyry, Py as diss and stringers, trace Cpy
BB-11	8	1.20		(outcrop) siliceous light grey fine-grained trachy-andesite porphyry, diss Py
BB-12	2	0.89		(outcrop) grey fine-grained siliceous trachy-andesite porphyry, up to 5% diss Py, weakly brecciated
BB-13	18	1.62		same as BB-12
BB-14	14	0.13		(outcrop) 2m barite vein in greenish grey trachy-andesite porphyry, blebs of Cpy up to 3mm diameter, diss Py, trace malachite, strike 130°
BB-15	4	0.03		(outcrop) 2 to 20cm barite vein, contains trachy-andesite porphyry fragments
CA-7	224	7.30	0.21	(talus) quartz latite, weakly rusty weathered, siliceous, med.grey, glassy quartz phenos, 5% diss Py
Page	22			
------	----			
------	----			

	Au _ppb	Ag ppm	Ag _oz/T	
CA-8	4	0.22		(talus) pink trachy-andesite porphyry, diss Py, dark rusty weathered, glassy quartz phenos
CA-9	6	0.52		(outcrop) tuff, dark rusty weathered, siliceous, medium grey, remnant feldspar phenos, Py stringers throughout
CA-10	2	0.32		(outcrop) volcanic tuff, 15m wide zone, silicified, dark rusty weathered, highly fractured, medium grey, 5% diss Py, trends approx 330°
CA-11	12	0.93		(outcrop) rusty weathered zone, light grey siliceous andesite, 5-10% diss Py, 5m wide, trends 010°
CS-30	16	13.6	0.40	(outcrop) weakly brecciated volcanic tuff, purple on fresh surface, minor Py
CS-31	4	1.02		(outcrop) chip sampled across 40cm wide shear zone of altered mafic volcanics and calcite veining up to 0.5cm wide, trace Py, some beige alteration clays and rusty weathering
CS-32	4	0.28		(outcrop) mafic volcaniclastics found in alteration zone, 1-3% diss Py
CS-33	4	0.09		(outcrop) 5cm white coarsely crystalline barite vein
CS-34	2	0.10		(outcrop) barite breccia vein, white, coarsely crystalline, massive, volcani- clastic clasts, 1-3% Py in the clasts
CS-35	4	0.30		(outcrop) light green, moderately argilli- cally altered volcaniclastics, 1-3% diss Py, rusty weathering, alteration zone 1.5m wide
CS-36	8	1.44		(outcrop) lahar, rusty weathering, silice- ous, pyritic, clasts up to 15cm rounded to subrounded
CS-37	4	0.16		(outcrop) medium grey felsic volcanic, rusty weathering, weakly siliceous, 5-10% diss Py

đ

- Andrews

The second s

n fan de la composition de la

e settere e

X

nissier -

And the second second

onused).

Ņ

	Au ppb	Ag ppm	Ag _oz/T	
CS-38	6	0.23		(outcrop) lahar, rusty weathering, clasts up to 30cm in diameter rounded to sub- rounded, up to 10% Py, blebs of calcite, minor veinlets and blebs of Py
CS-39	6	0.12		(talus) white coarsely crystalline barite
CS-40	4	0.14		(outcrop) same as CS-38
CS-41	4	0.35		(outcrop) pyritic volcaniclastic beige on fresh surface, up to 5% diss Py, moderate argillic alteration
CS-42	2	0.12		(felsenmeer) dacite, dark green on fresh surface, 3-5% Py as diss, stringers, blebs
CS-74	4	0.81		(outcrop) yellow-orange alteration clay with weakly bleached limonite stained volcanic fragments
CS-75	4	0.79		(outcrop) propylitically altered dacite porphyry, 3-5% diss Py, limonite staining
JR-52	6	0.88		(outcrop) purple andesite, 1-3% Py, weakly brecciated, minor quartz stringers, trace malachite and chrysocolla
JR-53	30	3.40		(talus) rhyolite with quartz stringers, 1- 3% Py, 1% Cpy, trace bornite, trace malachite, rusty weathering
JR-54	6	0.98		(outcrop) 30cm calcite vein in rhyolite
JR-55	12	0.10		(talus) intermediate to mafic volcanic, irregular calcite stringers up to 2cm diameter, fractured, diss Py, minor Cpy
JR-56	16	0.67		(boulder) brecciated quartz calcite in greenish grey mafic volcanic, diss Cpy within the quartz-calcite breccia, minor malachite
DM-88	16 16	37.00 29.00	1.08	(talus) calcite veining in mafic volcanic, 1-3% galena, trace chalcocite, trace malac- hite, slickensides noted
DM-89	66	1.45		(talus) grey calcite with fragments of andesite porphyry, 1% Py, trace Cpy, trace malachite

Page 23

And a second second

- second second

- distant

111

Harrison and

es

	Au _ppb	Ag pm	Ag _oz/T	
DM-90	4	0.78		(outcrop) 10cm wide quartz-calcite vein, 1-3% diss Py, 1% Cpy, 1% malachite
DM-91	16	1.80		(outcrop) brecciated mafic volcanic with fracture fillings of epidote and calcite, rusty weathering, 3% Py, 1% Cpy, trace malachite
DM-92	6	0.44		(talus) brecciated mafic volcanic, calcite fracture filling, minor epidote, 5% Py, trace Cpy, trace malachite
DM-93	4	0.19		(talus) quartz-calcite, massive, white to grey, 1% Py, trace malachite
DM-94	14 14	32.00 27.00	0.93	(talus) brecciated mafic volcanic with calcite stringers, 1-3% bornite, 3-5% covellite, trace magnetite, trace Cpy, trace malachite
DR-33	16	2.90		(outcrop) grey andesite, disseminated white calcite flooding, with Py, Cpy and mala-chite
WM-89	62 44	19.10 18.10	0.56	(outcrop) light grey trachy-andesite porphyry, greenish grey, calcareous, numerous calcite stringers, diss Cpy and minor diss bornite within calcite string- ers, minor malachite
WM-90	50	8.10	0.24	(outcrop) same as WM-89, with quartz stringers, Cpy diss throughout
MJ-09	14 16	24.00 18.20	0.70	(outcrop) dacite tuff, dark grey-green with 1% diss covellite, abundant malachite, thin 1 cm coarse grained barite stringers
MJ-10	4	2.40		(outcrop) dacite porphyry tuff with moderate argillic alteration, abundant limonite staining, minor quartz, gossan zone approx. 6 m wide, strike 045°/56° north

Page 24

<u>STIK 1 Claim</u>

and the second

A strangenerics.

a state of

u hana ang ku

Contour soil geochemistry survey	
TC-34 to TC-37	
<pre>small part of "S" soil geochemical</pre>	grid

	Au _ppb	Ag ppm	Ag _oz/T	
WM-48	32 32	97.00 88.00	2.83	(talus) calcite breccia, 1% galena, trace Cpy, trace malachite
WM-49	4	1.11		(outcrop) quartz veins up to 3mm in mafic volcanic altered to chlorite and muscovite, weak rusty weathering
WM-50	204 122	37.00 46.00	1.08	(talus) white to grey calcite boulder, coarsely crystalline, <1% bornite, trace Cpy, trace malachite and chrysocolla
DM-64	4	0.13		(outcrop) 10cm wide quartz vein, white, massive
DM-65	18 14	22.00 18.10	0.64	(outcrop) purple lithic tuff, trace limonite and malachite staining, weakly siliceous
DM-66	2	0.06		(outcrop) brecciated white calcite vein, coarsely crystalline, trace galena, trace chrysocolla
DM-67	2	0.06	ан 1997 - Алар Алар 1997 - Алар Алар Алар	(outcrop) calcite vein, white to grey, coarsely crystalline, massive
DM-68	4 4 4	0.46		(talus) calcite boulder, coarsely crystal- line, white, massive, trace galena, trace malachite
BF-11	6	0.56		(outcrop) coarsely crystalline white barite vein in purple trachy-andesite porphyry

 $\frac{1}{2} \int_{-\infty}^{\infty} |\theta|_{1}^{2} dt = 1$

- Transferra

Ex-rule

STIK 2 (<u>laim</u>		
	Au ppb	Ag ppm	
CS-54	10	0.22	(talus) brecciated dark green mafic volcanic, hematite stained, trace Py, calcite stringers
DRM-1	8	0.05	(outcrop) calcite vein in purple trachy- andesite porphyry, rusty stained
WM-23	44	0.56	(outcrop) lcm quartz stringers in dark grey trachy-andesite feldspar porphyry, minor Py, chip sampled across 60cm
DM-42	6	0.09	(outcrop) brecciated purple mafic volcanic, calcite veinlets
DM-43	6	1.26	(talus) calcite, 1-2% galena, secondary malachite, epidote and hematite
DM-44	4	0.27	(talus) calcite, minor chrysocolla, malachite and galena

STIK 3 Claim

and the second

states.

Address

-

n Pagin Ngan

real and the second sec

Contour soil geochemical survey

TC-38 to TC-64 incl

TC-87 to TC-108 incl

Page 28

<u>ST</u>	<u>IK</u>	4	<u>C1</u>	a	im	
				-		

in singer

- Andrews

- and the

- Normania

- States

12.22

Hand Trench T-88-3

	Au _ppb	Ag ppm	Ag _oz/T	
01	10	0.06		purple andesite porphyry, weak to moderate argillic alteration, extensive limonite staining
02	28	0.11		same as 01, weakly silicified, trace Py
03	42	0.10		same as 01, moderately silicified, occ quartz stringers up to 1cm wide
<u>Rock sa</u>	mples			
CS-43	394	0.19		(outcrop) well developed quartz breccia system with rust and manganese staining, zone 1.75m minimum width, trace Py
CS-44	238	0.15		same as CS-43
CS-45	352	0.23		same as CS-43
CS-46	16	0.05		(outcrop) pyritic purple tuff, weak argillic alteration, host rock for above quartz-breccia system
CS-47	4	0.06		(talus) quartz breccia, white massive quartz with moderate argillically altered bleached tuff clasts
CS-48	6	0.05		(talus) white quartz, weak limonite staining
CS-56	34	0.06		(outcrop) 5cm wide quartz veinlet, limonite stained, 30m west of T-88-3
WM-29	24	2.70		(talus) andesite, light brown, rusty weathered, siliceous, frequent quartz
				stringers, minor calcite stringers, fractured
DM-46	<u>2480</u> 2460	24.00 29.00	0.700	(0.072 Au oz/T) (outcrop) 20cm x 1m calcite veinlet in light-brown fine-grained tuff, malachite and azurite staining, calcite veinlet
DM-47	24	1.62		(talus) calcite speckled with malachite

- -

<u>311K 3 (</u>				
	Au ppb	Ag ppm	Ag _oz/T	
JR-66	6	1.26		(outcrop) light grey calcite, massive
IR-14	4	0.29		(outcrop) limestone, black with calcite fracture filling, trace Py
IR-15	4	1.00		(outcrop) limestone, black, very fine- grained, with coarse calcite fracture filling
IR-16	2	0.25		(outcrop) limestone, black to medium green, calcite fracture filling, minor Py in calcite stringers
DRM-8	2	0.91		(outcrop) limestone, black with abundant calcite fracture filling
WM-127	26 28	22.00 19.20	0.642	(outcrop) lahar, clasts up to 7cm diameter, 1-3% Py, 1% chalcocite, malachite
WM-128	14	16.80	0.488	same as WM-127, trace bornite
WM-129	44	5.60	0.163	same as WM-127, trace epidote alteration
WM-130	76	9.80	0.286	(outcrop) slightly bleached, propylitically altered andesite porphyry, 3% Py, 1% Cpy, 1% malachite and chrysocolla
WM-131	8	0.07		(talus) pyritic aphanitic dacite, limonite stained, 3-5% finely diss Py
WM-132	2	0.78		(outcrop) limestone, pale grey, trace galena
DM-127	34	0.22		(outcrop) lahar, conglomerate with 1-3% Py, 1% Cpy, trace malachite
DM-128	16	0.13		grey alteration clay, fragments moderate to strongly argillically altered (from near above lahar)
DM-129	244	3.90		(outcrop) lahar with abundant chrysocolla, trace Cpy
DM-130	174 126	18.80 17.80	0.548	(outcrop) same as DM-129

4

1144A

- Jogenster -

Nav.

199

. Santa

A LANDAU

Landstates V. J. -Transformer

0

	Au ppb	Ag ppm	Ag _oz/T	
DM-131	62	0.83		(outcrop) boulder imbedded in conglomerate outcrop, andesite porphyry, 10-12% diss Py, replacing hornblende phenocrysts
DM-132	26 22	24.00 27.00	0.700	(float or part of conglomerate outcrop) altered andesite porphyry, slightly bleached, phenocrysts replaced by ten- nantite (15%) and secondary azurite and malachite
DM-133	64	4.20		(outcrop) andesite porphyry, weakly argillically altered, bleached, light green, 1% diss Cpy, trace malachite
DM-134	2	7.10		(talus) dacite tuff, medium grey, car- bonized organic matter, fine-grained Py halo and inclusions in the organic matter, 1% very fine diss Py in the tuff

No.

in a sub-

Page 31

. Ster

(interplaying) (interplaying)

and the second se

Sulfano.

0

Rock San	nples		
	Au _ppb	Ag ppm	
CS-07	6	0.25	(talus) barite breccia vein, white, coarsely crystalline, 1% galena, trace Cpy
CS-08	4	0.40	(felsenmeer) white, massive barite vein, coarsely crystalline, 1-3% galena, trace Cpy, vein width up to 10 cm
CS-09	4	0.09	(felsenmeer) extremely coarsely crystal- line white barite breccia vein, trace galena, minimum width 20 cm
CS-10	2	0.19	(felsenmeer) quartz barite veinlets in weakly argillically and propylitically altered trachyte, veinlets up to 5 cm in width
DR-27	6	0.50	(talus) L.0+00 1+45W, barite vein with trace galena and Cpy
JR-14	8	6.90	(talus) L.1+50N 0+50W, light green, fine grained mafic volcanic, barite crystals with minor calcite, minor Py
JR-15	8	0.17	(talus) L.0+00 0+87W, barite with light green, fine grained, mafic fragments, trace Py
WM-06	12	1.12	(outcrop) barite pod, white, coarsely crystalline, 30 cm X 2 metres
WM-07	6	3.70	(outcrop) barite breccia, white, coarsely crystalline, 1-3% disseminated galena, <1% Py, trace malachite, chip sampled across 50 cm wide zone
WM-08	6	6.80	(felsenmeer) quartz-barite veins 20 cm wide, white, coarsely crystalline, 1-3% galena, trace covellite, trace malachite
DM-12	2	0.52	(outcrop) barite vein 20 cm wide, 2 metres long, massive, white, coarsely crystalline, 1% galena, trace malachite
DM-13	4	0.46	(outcrop) barite vein, white, coarsely crystalline, 10 cm wide, 1 metre long

interest of the

. Street

Constant of the

-

 $\mathbf{0}$

. All and the

	Au b	Ag ppm	
DM-14	4	0.08	(outcrop) barite vein, white coarsely crystalline, 10 cm wide, 1 metre long, trace galena
DM-15	6	0.34	(outcrop) andesite porphyry, rusty weather- ing, 3% Py, argillic alteration, zone of alteration 1 metre wide
DM-16	6	1.90	hand trench in zone of argillic alteration, alteration clays with silicified moderately altered pyritic mafic volcanic fragments, sampled at 1 metre intervals
DM-17	4	2.40	same as DM-16
DM-18	2	1.95	same as DM-16
DM-19	6	1.62	same as DM-16
DM-20	10	0.97	same as DM-16
DM-21	6	0.08	(felsenmeer) barite up to 20 cm, massive, white, coarsely crystalline
DM-22	8	0.53	hand trench in zone of argillic alteration, alteration clays with silicified moderately altered pyritic volcanic fragments, sampled at 1 metre intervals
DM-23	14	0.45	same as DM-22
DM-24	8	0.34	same as DM-22
DM-25	6	0.05	(felsenmeer) barite vein coarsely crystal- line, white, collected from above clay alteration zone
DM-26	no	sample description,	not analyzed
CS-76	10	0.25	(outcrop) moderately argillically altered, bleached, slightly silicified, trachy- andesite porphyry

<u>STIK 7 Claim</u> Au _ppb

-

. And Anda

and the second second

DM-45	12	0.05
DM-119	4	1.04

Ag ppm

(talus) calcite with minor chlorite

(talus) white coarsely crystalline quartzbarite vein in purple andesite porphyry

Ŋ

0

<u>STIK 8</u>	<u>Claim</u>		
	Au _ppb	Ag ppm	
CS-55	6	0.05	(talus) massive white coarsely crystalline quartz, limonite stained
WM-24	<u>1320</u>	1.52	(0.039 Au oz/T) (outcrop) 1 metre wide quartz vein, grey, diss with Py, blebs of Cpy, malachite, trace galena, chip sampled
WM-25	1880	0.13	(0.055 Au oz/T) (outcrop) 1.5 metre wide quartz vein, minor Py, trace Cpy, chip sampled
WM-26	62	5.20	(talus) calcite vein diss with galena, trace malachite
WM-27	124	0.24	(outcrop) siliceous trachy-andesite feldspar porphyry, light grey medium grained, numerous quartz stringers, diss with Py, chip sampled across 50 cm
WM-28	158	0.21	(talus) quartz, trace galena, minor Py

- sciencester

1980 B

No.

States Have

<u>STIK 9</u>	<u>Claim</u>			
	Au _ppb	Ag ppm	Ag _oz/T	
MJ-11	58	0.08		(outcrop) calcite-barite breccia, in a purple dacite porphyry
CS-64	4	0.06		(talus) purple dacite porphyry tuff with 2 cm quartz veinlets, limonite stained
DM-41	50 28	107.00 114.00	3.12	(talus) lithic tuff 1-3% chrysocolla and malachite, moderate argillic alteration
WM-22	22	6.60	0.193	(talus) 6 cm calcite veinlet

<u>STIK 10 Claim</u>

luçõe.

Ŋ

Contour soil geochemical survey

JR-84 to JR-109 inclusive

ADOOG 8 Claim

0

1998

1 Participantes

Contour soil geochemical survey JR-67 to JR-83 incl IY-21 to IY-71 incl

Rock Samples:

	Au _ppb	Ag ppm		
BB-27	4	0.14	(talus) 10 cm wide quartz vein in tuff	brown
BF-02	8	0.08	(talus) same as BB-27	

ADOOG 9 Claim

. .

- second and

and the second

0

i kolter

Contour soil geochemical survey

IY-1 to IY20 incl TC-65 to TC-86 incl

ADOOG 10 Claim

0

0

Ŋ

0

Û

- Second Second

Contour soil geochemical survey

WM-92 to WM-119 incl DR-34 to DR-57 incl JR-66 TERRAMIN RESEARCH LABS LTD.

14-2235 - 30th Avenue N.E. Calgary, Alberta T2E 7C7 (403) 276-8668

SAMPLE PREPARATION

1000

-

-

1

States.

Particular.

- Indean

Soil and sediment samples are dried and sieved through 80 mesh nylon screen (maximum partlcle size 200 microns).

Rock or drill core samples are crushed to approximately 1/8" in a jaw crusher, riffled to obtain a representative sample, and pulverized to 100 mesh (180 micron particle size).

14-2235 - 30th Avenue N.E. Calgary, Alberta T2E 7C7 (403) 276-8668

TERRAMIN RESEARCH LABS LTD.

FIRE ASSAY/AA METHOD FOR GOLD AND SILVER PLATINUM AND PALLADIUM

5.

- States

- Adding

1.000

Approximately 1 assay ton of prepared sample is fused with a litharge flux charge to obtain a lead button. The button is cupelled down to a precious metal prill which is then dissolved in aqua regia. The resulting solution is analysed by atomic absorption spectrophotemetry to determine the precious metals. TERRAMIN RESEARCH LABS LTD.

14-2235 - 30th Avenue N.E. Calgary, Alberta T2E 7C7 (403) 276-8668

ANALYTICAL METHODS FOR BASE METALS

Cd, Cr, Co, Cu, Fe (soluble), Pb, Mn (soluble), Mo, Ni, Ag, Zn

Contraction of the local division of the loc

Contraction of the

Constant of

1000

- steamer

a subscription of the

A State of State

MAG

2:

A portion of the prepared sample is digested in hot nitric/perchloric acid mixture, or hot aqua regia (nitric/hydrochloric acids).

Elements are determined by atomic absorption spectrophotometry.

TERRAMIN RESEARCH LABS LTD. 14-2235 - 30th Avenue N.E. Calgary, Alberta T2E 7C7 (403) 276-8668

ANALYTICAL METHOD FOR ARSENIC AND ANTIMONY

A portion of the prepared sample is digested in acid at low temperature. As and Sb are determined with a vapour generation accessory with atomic absorption.

A STREET

adalaria.

No. and Address of the

Moderne

annaite an

÷

TERRAMIN RESEARCH LABS LTD. 14-2235 - 30th Avenue N.E. Calgary, Alberta T2E 7C7 (403) 276-8668

ANALYTICAL METHOD FOR BARIUM

A portion of the prepared sample is fused with a flux. The resulting melt is totally dissolved in an acid matrix, and Ba is determined by atomic absorption spectrophotemetry.

5

appropriate and a second

A COMPANY

Grades 2.

The second second

The Milder

TERRAMIN RESEARCH LABS LTD.

ANALYTICAL REPORT

Taiga Consultants Ltd.

Jim Davis

i. sigit c

140 A.

and the second se

- dagets -

and a state

1.16252

. "

Date: August 30, 1988

Job No: 88-336

Project: BC-88-5

P.O. No:

46 Rock 326 Soil

Signed: _______

14-2235 30th Avenue N.E., Calgary, Alberta, T2E 7C7 Phone (403) 250-9460 Fax (403) 291-7064

		T	ERRAMIN	RESEARCH	H LABS Ltd.	n Eisen an an Ale	
	Job#: 88	-336					
	Project:	BC-88-5	Rock				
	Sample Number	Au ppb	Ag ppm	Cu ppm			
BB-88- 	21 22 23 24 25	24 16 4 2 10	1.76 1.12 0.51 0.91 0.24		5 m # 1		
	26	8	0.51		J'n #1		
DR-98- Jim CS-98 / 1/2000	27 -49 (50 51	6 12 26 4	0.50 1.02 1.68 0.72		<u>STIK</u> # 51m # 1	6.	
Jim DM-88	52 53 -53 54 55	10 6 42 52 72	0.54 0.11 34.0 44.0 47.0				
	56 57 58 59 60	6 6 22 4	1.36 9.10 28.0 44.0 21.0				
Jim WM-88	61 62 63 -35 36	14 308 108 32 46	18.4 78.0 56.0 53.0 53.0				
	37 38 39 40 41	14 32 16 48 30	7.00 32.0 44.0 62.0 42.0				
	42 43 44 45 46	10 28 224 1560 6	37.0 44.0 1.20 210.0 9.60	3400			
Stik1DM88	47 14 215 64 65	20 8 8 4 18	$ \begin{array}{r} 16.4 \\ 6.90 \\ 0.17 \\ 0.13 \\ 22.0 \end{array} $	rot Flatte	<u>Jin #</u> <u>91</u> STI	1 7/c#6 K#1	

	•	Job#: 88	-336	
-	•	Project:	BC-88-5	
		Sample Number	Ац ррb	Ag ppm
212	Stik1DM88	66 67	2	0.06
	Stik1WM88	49 50	4 204	1.11 37.0
	Stik20M88	68	4	$\begin{array}{c} 0.46 \\ 0.46 \\ 0.46 \end{array} \xrightarrow{\mathcal{O}} \mathcal{O} \xrightarrow{\mathcal{O}} \xrightarrow{\mathcal{O}} \mathcal{O} \xrightarrow{\mathcal{O}} \xrightarrow{\mathcal{O}} \mathcal{O} \xrightarrow{\mathcal{O}} $
	Stik‡WM88	48	32	97.0

and the second second

19 **0**40 1

D

1.450 C

and the second s

- Andrew Aller

	Project:	BC-88-5	"M" Grid
	Sample	Au	Ag
	Number	ppb	ppm
L 1 S	9+00 W	8	0.08
	8+75	2	0.04
	8+50	2	0.02
	8+25	4	0.04
	8+00	10	0.05
	7+75 7+50 7+25 7+00 6+75	8 2 8 8 2	0.08 0.04 0.04 0.04 0.04 0.04
	6+50	4	0.03
	6+25	2	0.08
	6+00	8	0.08
	5+75	2	0.04
	5+50	2	0.04
	5+25	6	0.02
	5+00	4	0.03
	4+75	2	0.03
	4+50	6	0.18
	4+25	2	0.04
	4+00	4	0.09
	3+75	2	0.08
	3+50	2	0.11
	3+25	4	0.11
	3+00	22	0.10
	2+75	4	0.15
	2+50	4	0.14
	2+25	8	0.24
	2+00	2	0.12
	1+75	2	0.20
	1+50	2	0.12
	1+25	4	0.16
	1+00	8	0.28
	0+75	2	0.15
	0+50	2	0.24
L 2 S	0+25	8	0.20
	0+00	4	0.36
	9+00 W	2	0.16
	8+75	2	0.12
	8+50	2	0.12

Job#:	88-336
-------	--------

- Stranger

1 States

and the second

- Alexandre

- Strangerse

	Project:	BC-88-5	"M" Gi	rid	
	Sample Number	Au ppb	Ag ppm		
L 2 S	8+25 W 8+00 7+75 7+50 7+25	2 2 2 2 4	0.04 0.08 0.05 0.08 0.04		
	7+00 6+75 6+50 6+25 6+00	2 2 2 4 2	0.08 0.05 0.03 0.04 0.04		
	5+75 5+50 5+25 5+00 4+75	4 2 8 2 2	0.06 0.12 0.12 0.07 0.20		
	4+50 4+25 4+00 3+75 3+50	6 4 4 2 6	0.14 0.32 0.16 0.13 0.09		
	3+25 3+00 2+75 2+50 2+25	4 2 4 8 4	0.15 0.20 0.26 0.16 0.16		
	2+00 1+75 1+50 1+25 1+00	2 8 4 8 24	0.16 0.36 0.28 0.34 0.24		
L3S	0+75 0+50 0+25 0+00 9+00 W	4 4 8 8 8	0.16 0.22 0.32 0.14 0.14		
	8+75 8+50 8+25 8+00 7+75	4 4 4 8	0.12 0.14 0.14 0.16 0.16		

Section 2

Ŋ

- deserver

- Andrews

	Project:	BC-88-5	"M" Grid
	Sample	Au	Ag
	Number	ppb	ppm
LЗS	7+50 W 7+25 7+00 6+75 6+50	4 4 4 4	0.12 0.22 0.14 0.16 0.10
	6+25 6+00 5+75 5+50 5+25	4 4 4 4	0.12 0.18 0.10 0.12 0.12
	5+00	8	0.24
	4+75	4	0.28
	4+50	4	0.14
	4+25	4	0.04
	4+00	4	0.06
	3+75	8	0.18
	3+50	8	0.22
	3+25	4	0.08
	3+00	4	0.16
	2+75	4	0.34
	2+50	4	0.12
	2+25	4	0.34
	2+00	4	0.24
	1+75	4	0.18
	1+50	4	0.16
	1+25	4	0.24
	1+00	4	0.26
	0+75	8	0.16
	0+50	4	0.28
	0+25	4	0.34
L 4 S	0+00	4	0.28
	9+00 W	4	0.24
	8+50	20	0.20
	8+25	4	0.18
	8+00	4	0.16
	7+75	4	0.30
	7+50	4	0.26
	7+25	8	0.32
	7+00	4	0.16
	6+75	4	0.26

1.120 A.

- Indexes

	Project:	BC-88-5	"M" Grid	ł
	Sample Number	Ац ррб	Ag ppm	
L4S	6+25 W 6+00 5+75 5+50 5+25	8 4 4 4 4	0.20 0.24 0.22 0.24 0.24 0.24	
	5+00 4+75 4+50 4+25 4+00	8 8 4 4 4	0.22 0.28 0.18 0.16 0.22	
	3+75 3+50 3+25 3+00 2+75	4 4 8 4 8	0.24 0.22 0.24 0.26 0.26	
	2+50 2+25 2+00 1+75 1+50	4 4 4 4	0.26 0.24 0.24 0.20 0.18	
	1+25 1+00 0+75 0+50 0+25	12 4 4 4 8	0.22 0.08 0.16 0.22 0.20	
L 5 S	0+00 9+00 W 8+75 8+50 8+25	8 4 12 4 4	0.44 0.20 0.08 0.08 0.16	
	8+00 7+75 7+50 7+25 7+00	4 4 8 4 8	0.06 0.14 0.12 0.14 0.12	
	6+75 6+50 6+25 6+00 5+75	4 4 8 4 4	0.18 0.08 0.24 0.20 0.12	

Antibiotics of

s-integers .

r kanto

Newsels Constants

- All Aller

el algerere A standarte

: Catalor

, and the second se

-

Project: BC-88-5

	Sample	Ац	Ag
	Number	ррЪ	ppm
ML5S	5+50 W	12	0.20
	5+25	4	0.20
	5+00	8	0.16
	4+75	4	0.18
	4+50	8	0.28
	4+25 4+00 3+75 3+50 3+25	4 4 4 8	0.26 0.18 0.18 0.44 0.34
	3+00	4	0.20
	2+75	8	0.18
	2+50	8	0.12
	2+25	4	0.24
	2+00	8	0.20
	1+75	4	0.22
	1+50	8	0.24
	1+25	4	0.16
	1+00	4	0.22
	0+75	4	0.22
SL 5 N	0+50	8	0.20
	0+25	4	0.16
	0+00	4	0.12
	4+00 W	8	0.56
	3+75	12	1.62
	3+50	4	0.54
	3+25	8	0.50
	3+00	12	0.22
	2+75	4	0.38
	2+50	12	0.22
	2+25	4	0.26
	2+00	4	0.24
	1+75	8	0.20
	1+50	16	0.16
	1+25	4	0.32
	1+00	4	0.20
	0+75	4	0.20
	0+50	4	0.18
	0+25	4	0.08
	0+00	4	0.08

John Start

144

- Company

States -

- Substan

	Project:	BC-88-5	"S" Grid
	Sample	Au	Ag
	Number	ppb	ppm
L 4 N	4+00 W	4	0.44
	3+75	8	0.28
	3+50	4	0.24
	3+25	4	0.24
	3+00	12	0.20
	2+75	8	0.22
	2+50	4	0.08
	2+25	8	0.14
	2+00	8	0.10
	1+75	4	0.06
	1+50	4	0.10
	1+25	8	0.06
	1+00	8	0.06
	0+75	4	0.06
	0+50	4	0.08
LЗN	0+25	4	0.06
	0+00	8	0.20
	4+00 W	4	0.66
	3+75	4	0.24
	3+50	8	0.24
	3+25	4	0.16
	3+00	8	1.00
	2+75	8	0.68
	2+50	4	0.20
	2+25	4	0.20
	2+00	8	0.16
	1+75	8	0.12
	1+50	4	0.20
	1+25	4	0.24
	1+00	4	0.20
	0+75 0+50 0+25 0+00 0+25 E	4 4 4 8	0.12 0.40 0.20 0.26 0.16
L 2 N	2+45 W	4	0.40
	2+25	4	0.12
	2+00	8	0.14
	1+75	8	0.22
	1+50	4	0.10

: "7(x ?-

- States

all and the second

	Project:	BC-88-5	"S" Grid
	Sample	Au	Ag
	Number	ppb	ppm
L 2 N	1+25 W	4	0.22
	1+00	4	0.08
	0+75	4	0.18
	0+50	8	0.06
	0+25	4	0.22
L 1 N	0+00	4	0.40
	3+25 W	4	0.12
	3+00	4	0.16
	2+75	4	0.18
	2+50	4	0.16
	2+25	8	0.30
	2+00	8	0.08
	1+75	10	1.00
	1+50	4	0.26
	1+25	4	0.10
	1+00	8	0.24
	0+75	4	0.16
	0+50	4	0.16
	0+25	4	0.16
	0+00	4	0.34
LO	3+50 W	8	0.20
	3+25	4	0.26
	3+00	8	0.16
	2+75	8	0.16
	2+50	4	0.12
	2+25	4	0.10
	2+00	4	0.18
	1+75	8	0.18
	1+50	8	0.20
	1+25	4	0.40
	1+00	4	0.10
	0+75	4	0.22
	0+50	4	0.14
	0+25	8	0.16
	0+00	4	0.10
L 1 S	0+34 E 3+25 W 3+00 2+75 2+50	4 4 8 4	0.08 0.14 0.16 0.16 0.16

, Ng Ng

Û

Û

•	Project:	BC-88-5	"S" Grid
	Sample	Au	Ag
	Number	ppb	ppm
L1S	2+25 W	8	0.20
	2+00	8	0.28
	1+75	8	0.24
	1+50	4	0.16
	1+25	4	0.12
	1+00	4	0.14
	0+75	4	0.12
	0+50	8	0.22
	0+25	4	0.30
	1+00 E	8	0.30
L 2 S	3+75 W	4	0.32
	3+50	4	0.26
	3+25	4	0.28
	3+00	4	0.16
	2+75	4	0.34
	2+50 2+25 2+00 1+75 1+50	4 4 8 4	0.24 0.24 0.34 0.40 0.18
	1+25	4	0.16
	1+00	4	0.26
	0+75	4	0.26
	0+50	4	0.24
	0+25	4	0.44
LЗS	0+00	4	0.28
	0+25 E	8	0.52
	1+00	4	3.60
	4+00 W	4	0.50
	3+75	4	0.46
	3+50	4	0.40
	3+25	4	0.46
	3+00	4	0.64
	2+75	4	0.46
	2+50	4	0.22
	2+25	4	0.28
	2+00	4	0.38
	1+75	4	0.64
	1+50	4	0.38
	1+25	4	0.22

- sirijery

- Antonio - Anto

- Support

- Andrew -

(Association)

	Project:	BC-88-5	"S" Grid
	Sample	Au	Ag
	Number	ppb	ppm
L3S	1+00 W	4	0.44
	0+75	8	0.38
	0+50	8	0.28
	0+25	4	0.22
	0+00	4	0.22
	0+75 E	4	0.50
ANALYTICAL REPORT

Taiga Consultants Ltd.

Jim Davis

「読書」

ļ

States.

Date: September 7, 1988

Job No: 88-367

Project: BC-88-5

P.O. No:

13 Rock

26 Soil

Signed: _____//.___

	Job#: 88	-367				
	Project:	BC-88-5	Roci	k		
	Sample Number	Au ppb	Ag ppm			
Fred3 DF	:M-5	668	2.50	<u></u>		n den alle an
	6	2	0.12			
	7	8	0.52			
J	R 113	6	0.17	$\sim 10^{-1}$		
	114	1040	51.0	141		
	115	6.	0.08			the last of the
U	116	30	0.10	1 C	1	
	117	2	0 17	U Constant		
	118	् य	0.11			
	119	4	0.48			
	120	10	0.30			
N N		14	- <u></u>	an a		
	10	4	2.40	57	T, K #	6

1.0938-0

D

IERRADIIN RESEARCH LADS LUG.

Job#: 88-367

- Additional -

and the second

. Linear

Andres

0

J

	Project:	3-5	Soi l	
	Sample Number	PF A	hu эБ	Ag ppm
тс	70 71 72 73 74		2 0 2 0 2 0 2 0 2 0 2 0	.11 .15 .16 .14 .19
•	75 76 77 78 79		6 0 2 0 2 0 4 0 4 0	.14 .10 .07 .10 .09
	80 81 82 83 84		2 0 2 0 2 0 4 0 4 0	.23 .11 .07 .10 .11
	85 86 87 88 89	2	6 0 2 0 2 0 2 0 4 0	.41 .13 .16 .06 .12
	90 91 92 93 95 96		4 0 4 0 6 0 8 0 4 0 2 0	.08 .07 .07 .08 .12 .05

ADJOG # 9

57, -#3

ANALYTICAL REPORT

Taiga Consultants Ltd.

Jim Davis

middlerde

- set from

- .ruaisto

in the second of the second second

C. Caracita States

- Trappagal /

17000

and the second sec

 2.6^{21}

Date: August 9, 1988

Job No: 88-314

Project: BC-88-5

P.O. No:

41 Rock

Signed: _____

Job#: 88-314

ľ.

Project: BC-88-5

			Sample Number	Au ppb	Ag ppm	
Fred	1	CS-88-	1 2 3 4 5	2 2 4 172 22	0.15 0.16 0.10 3.40 7.20	1 #1
Fred	1	DM-88-	6 1 2 3 4	12 180 694 96 4	0.62 15.70 22.0 156.0 0.41	FRed
			5 6 7 8 9	2 4 4 8 4	0.07 0.10 0.17 0.25 0.31	
Fred	1	WM-88-	10 11 1 2 3	4 4 594 2 4	0.23 0.18 8.60 0.11 0.16	
Mike	1	CS-88-	4 5 11 12	24 2 4 14	0.23 0.48 0.09 0.08	M, Fe #1
Mike	1	WM-88-	13 9 10 11 12 13	10 12 10 10 18 104	0.11 0.14 0.54 0.16 0.20 0.12	
Stik Stik	6	CS-88- DM-88-	7 8 9 10 12	6 4 4 2 2	0.25 0.40 0.09 0.19 0.52	57.F#6.
Stik	6	WM-88-	13 14 15 6 7 8	4 6 12 6	0.46 0.08 0.34 1.12 3.70 6.80	

ANALYTICAL REPORT

Taiga Consultants Ltd.

Jim Davis

angura s

- 10° 444 (* ~

-

- State of the second

- Jungation

- Contraction

0

with the second

Date: August 31, 1988

Job No: 88-350

Project: BC-88-5 P.O. No:

119 Rock

98 Soil

Signed: _____M____

	TERRAMIN	RESEARCH LABS Ltd.
Job#: 88-350		
Project: BC-8	8-5 Rock	
Sample Number P	Au Ag pb ppm	Cu %
Fred 1 BF-3 4 9 CS-57 CS-58	34 0.64 58 1.75 14 2.60 48 0.41 18 0.07	Fred #
59 60 61 62 43 63	28 0.46 34 4.50 10 0.19 40 340.0 16 0.72	6.40 0.44
Fred DM-110 26 DR-28 29 30 IR-12	40 195.0 12 0.46 64 136.0 26 13.0 10 0.05	5.20 17.1 Fred 4.
13 WM-67 68 69	$\begin{array}{rrrr} 2 & 0.17 \\ 2 & 0.11 \\ 4 & 0.33 \\ 6 & 1.19 \\ 4 & 0.92 \end{array}$	Fred 4.
70 71 72 Fred 4 DM-83	4 0.33 66 3.10 4 0.25 12 28.0	Trest 2
84 85 86 87	6 19.5 4 5.80 6 21.0	Fred 4
95 96 97	16 13.9 4 0.43 4 0.33	
98 99 100 101 102	2 15.50 6 127.0 14 88.0 10 45.0	
103 104 105 106 107	180 1480.0 50 36.0 10 15.6 6 0.39 58 0.51	

Fred th

	Job#: 88	-350			
	Project:	BC-88-5	Rock	• • • • • • • • • • • • • • • • • • •	
	Sample Number	Au ppb	Ag ppm	Cu %	
Fred 4 DM- DR- IR-	-108 109 -31 32 -1	576 2 6 12 4	2.60 0.68 4.90 350.0 0.62	3.20 10.8	
	3 4 5 6 7	14 8 4 6 4	5.00 3.10 0.24 0.52 0.20		
JR-	8 9 10 11 -57	8 2080 6 4 24	3.40 5.00 0.06 0.05 0.67		
	58 59 60 61 62	8 244 134 176 1060	0.48 9.20 8.30 6.00 36.0	0.63	
ωm-	63 64 65 -73 74	794 62 12 4 76	46.0 1.15 4.30 0.17 350.0	17.2	
	75 76 77 78 79	6 10 6 10 4	13.4 13.5 34.0 4.80 0.45	1.21 1.52	
	80 81 82 83 84	6 4 4 8 4	0.82 3.10 9.60 5.10 8.00		
Fred 5 DM	85 86 87 88 -88	10 6 2 22 16	196.0 0.07 0.16 0.93 37.0	11.9	

Fred 5

	Job#: 88-	-350		
	Project:	BC-88-5	Rock	
	Sample Number	Au ppb	Ag ppm	
Fred 5 DM	-89 90 91 92 93	66 4 16 6 4	1.45 0.78 1.80 0.44 0.19	Fridj
DR JR	94 -33 -52 53 54	14 16 6 30 6	32.0 2.90 0.88 3.40 0.98	
WM 18-88- TR	55 56 -89 90 -2	12 16 62 50 66	0.10 0.67 19.1 8.10 26.0	EAEO AV
Stik 2 CS DRM Stik 4 CS Stik 5 JR Stik 8 CS	-54 -1 -56 \ -66 -55	10 <u>34</u> <u>6</u> 6	0.22 0.05 0.06 1.26 0.05	$\begin{array}{r} 9 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$
T-88-3- /////////////////////////////////	1 2 3 1 2	10 28 <u>42</u> 4 6	0.05 0.11 0.10 3.40 2.50	ST, F=4.
	3 4 5 6 7	4 10 4 2 4	2.60 2.80 3.60 2.40 2.40	
	8 9 10 98 1/ 12	2 6 6 4 4	1.27 1.40 1.37 0.90 1.06	9T.K#6.
	13 14 15 16	10 4 8 4	0.88 1.00 0.86 0.70	

	Job#: 88-	-350	
en e	Project:	BC-88-5	Soil
	Sample	Au	Ag
	Number	ppb	ppm
AD A -7	DM-69	4	0.22
	70	4	0.20
	71	2	0.13
	72	2	0.20
	73	8	0.42
	74	2	0.12
	75	2	0.16
	76	8	0.20
	77	2	0.36
	78	4	0.32
	79 80 81 82 JR-16	4 4 2 8	0.20 0.54 0.20 0.16
	7 17 18 19 20 21	8 8 6 2 2	0.16 0.16 0.09 0.36 0.32
	22	10	0.30
	23	8	1.56
	24	4	0.36
	25	4	1.36
	26	4	0.62
	27	8	0.24
	28	4	0.44
	29	2	0.48
	30	8	0.16
	31	4	0.52
	32	8	0.76
	33	2	0.20
	34	2	0.48
	35	4	0.32

2

6

8

4

8

4

0.32

0.32

0.13

0.20

0.30

0.24

0.86

Û

36

37

38

39

40

41

A0000 =7

all plant and the

20000 =7.

Page 4

Job#: 88-350

	Project:	BC-88-5	Soi l
	Sample	Au	Ag
	Number	ppb	ppm
AD 74 JF	?-42	4	0.62
	43	8	0.24
	44	2	0.12
	45	2	0.16
	46	4	0.26
ПАЦ 7 ТС-	47	8	0.26
	48	4	0.92
	49	8	0.40
	50	4	0.40
	1	2	0.08
	2	2	0.08
	3	4	0.16
	4	4	0.28
	5	8	0.20
	6	8	0.36
	7 8 9 10 11	8 8 8 8	0.52 0.68 0.88 0.36 0.32
	12 13 14 15 16	8 8 2 2	0.76 0.40 0.20 0.16 0.12
	17 18 19 20 21	4 8 8 8	0.16 1.16 0.88 0.56 0.52
	22	8	0.48
	23	10	0.25
	24	8	0.20
	25	8	0.24
	26	8	0.16
	27 28 29 30 31	4 8 2 2	0.16 0.92 0.16 0.40 0.20

AD006-7.

All myles the age

Page 5

	Job	#:	88-350
--	-----	----	--------

ſ

0

	Project:	BC-88-5	Soil
	Sample	Au	Ag
	Number	ppb	ppm
AD 4-7 WM	32	2	0.09
	33	8	0.32
	-51	2	0.13
	52 53	8	0.12
	54	8	0.16
	55	8	0.20
	56	4	0.14
	57	4	0.18
	58	4	0.16
	59	8	0.10
	60	8	0.20
	61	2	0.16
	62	8	0.32
	63	4	0.14
	64	4	0.14
	65	8	0.16
	66	2	0.24

ADODG-7

All angle and they

South States

- Andrewsky

and the second

a

TERRAMIN RESEARCH LABS LTD.

ANALYTICAL REPORT

Taiga Consultants Ltd.

Jim Davis

Date: September 13, 1988

Job No: 88-379

Project: BC-88-5

P.O. No:

19 Rock

69 Soil

Signed: _____MM_

S	EP 13 '88 13:	:47 TER	RAMIN RES	SEARCH LABS Ltd.	579 P02
	Job#: 88	-379			
	Project:	BC-88-5	Stik 5		
	Sample Number	Au ppb	Ag ppm		
	-127 128 129 130 131	34 16 244 174 62	0.22 0.13 3.90 18.8 0.83		
DRM-88- IR-88-	132 133 134 -08 -14	26 64 2 4	24.0 4.20 7.10 0.91 0.29	51. F. 12	
	15 16	4	1.00		
MJ-88- WM-88-	-11 -127 -128	58 26 14	0.08 22.0 16.8	57, 6 9.	
	129 130 131 132	44 75 8 2	5.60 9.80 0.07 0.78	ST, K # 5	

A CONTRACTOR

Sec. 1

No.

Page 1

· · · · · · · · · · · · · · · · · · ·	SEP 13 '88 13	:48 TERF	RAMIN RES RRAMIN	RESEAR	CH LABS	Ltd.	579 PØ3	
: . √ .	Job#: 88	3-379						
	Project:	BC-88-5		алан ¹ (
	Sample Number	Ац ррb	Ag ppm					
торания т о 1993 г. – Сталия 1993 г. – Сталия Прила	0-97 98 99 100 101	8 8 4 10 2	0.09 0.24 0.18 0.11 0.12					
	102 103 104 105 106	6 2 2 2 6	0.06 0.20 0.14 0.14 0.13		971	1-±	3	
	107	2	0.04		•			
	109 110 111	4 2 8	0.16 0.64 0.28					
	112 113 114 115 116	8 4 2 10 5	0.14 0.22 0.12 0.10 0.21		red	14	2	
	117 118 119 120 121	8828	0.24 0.28 0.24 0.11 0.36					
	122 123 124 125 126	2 8 10 8 2	0.24 0.20 0.70 0.52 0.07					
	127 128 129 130 131	6 8 8 2	0.14 0.44 1.80 5.60 1.02					
	132 133 134 135 136	8 8 14 10 4	0.96 1.44 0.58 0.55 0.39					

भारत सम्बद्ध संबद्ध संवत

Contractory of the

Page 2

21.2028/0000000000000000000000000000000000	DER 10, 00 10		KAMIN KES	KESEA	ARCH LA	ABS Lto	d .	שה כוב	↔ · · · · · · · · · · · · · · · · · · ·	
· · · ·	Job#: 88	-379								
	Project:	BC-88-5								
	Sample Number	Au ppb	Ag ppm							
TC	-137 138 139 140 141	2 6 4 8 4	0.20 0.26 0.31 0.64 0.26							
	142 143 144 145 146	2 6 8 9 2	0.34 0.35 0.48 1.48 0.64			N	1 1	2		
	147 148 149 150 151	6 6 6 16	0.57 0.38 0.52 0.24 0.44		K	N.	• • •			
	152 153 154 155 156	64 4 2 2	0.38 0.14 0.44 0.20 0.32							
	157 <u>158</u> 159 160 161	2 4 4 2 8	0.24 0.23 0.16 0.12 0.24			/	¥	.5.		
	162 163 164 165	2 4 2 2	0.18 0.16 0.15 0.08		F.	red	H			

A light ser

- New York

Allowed and

ANALYTICAL REPORT

Taiga Consultants Ltd.

Jim Davis

:

- Alter

1 NAMES IN .

and the second

. Sector

1440

- Andrews

1000

and the second

Date: August 24, 1988

Job No: 88-345

Project: BC-88-5

P.O. No:

74 Rock

Signed: _____

•		Т	ERRAMIN	RESEARCH LABS Ltd.
•	Job #: 88	-345		
	Project:	BC-88-5		
	Sample Number	Au ppb	Ag ppm	
BB-88	-5 6 7 8 9	106 478 108 42 156	1.05 0.53 0.74 0.47 1.03	
FREDS	10 11 12 13 14	22 8 2 18 14	0.24 1.20 0.89 1.62 0.13	Fread
J M I	\15 16 17 18 19	4 12 10 4 6	0.03 27.0 23.0 2.30 25.0	Matter Simth
CA-88	-7 8 9 10 11	224 4 6 2 12	7.30 0.22 0.52 0.32 0.93	FredIT
T.M	12 13 14 15 16	8 6 4 14 8	9.70 0.43 17.80 148.0 0.71	Noted 5.m #1
Fred-5-CS	(17 -30 31 32 33	10 16 4 4 4	27.0) 13.6 1.02 0.28 0.09	
	34 35 36 37 38	2 4 8 4 6	0.10 0.30 1.44 0.16 0.23	Fred5
Stik-2-DM	39 40 41 42 1-42	6 4 6 2 6	0.12 0.14 0.35 0.12 0.09	ST1F #2.

			Т	ERRAMIN	RESEARCH LABS Ltd.	n	
1. A GEORGE AN	-	Job#:	88-345	· · ·			
		Projec	t: BC-88-5				
		Sample Number	° Au ppb	Ag ppm			
	Stik-2-DM	-43 44	6 ⁶	1.26	ST, E # 2	n an shekara na shekar Mara na shekara na sheka Na shekara na shekara n	
_	Stik-4-CS	-43	394	0.19			
		44	238	0.15			
		45	352	0.23			
		46	16	0.05			
		47	4	0.06	- 1 16	• •	
	the second se	48	6	0.05	STFJT		
	Stik-4-DM	-46	2480	24.0			
		47	24	1.62			
_	Stik-6-DM	-16 6	6	1.90			
		17	4	2.40			
	Stik-6-DM	-18	2	1.95	STUTO		
		19	6	1.62	///		
1. Sector		20	10	0.97			
-	•	21	6	0.08			
-		22	8	0.53			
		23	14	0.45			
		24	8	0.34			
		25	6	0.05		· · · · · · · · · · · · · · · · · · ·	
	0++1 7 DM			0.05	ST.E.H.T		
-	OTIK-/-UM	1-22	<u>1 <</u>	0.00			
ÚŘ.	Stik-O-WH	24	1220	1 52	STIF #2	<u>~</u>	
		27	1920	0 13	· · · · · · · · · · · · · · · · · · ·		
		20	1000	5 20	57, = = 3		
-		20	UZ	0.20			
		27	124	0.24			
		28	158	0.21			
_	Stik-9-DM	1-41	50	107.0			
	Stik-9-WM	1-22	22	6.60	ST. F # 9.		
	T-88-2	2-0-1 m	332	20.07			
N		1-2 m	(Not 120-1- 94	7.70 (β (-38-6		
		2-3 m	<pre>{</pre>	3.80) a statistic statistica statistica (
)86	6,80	J		
a second	stik 4 WM-BE	3-29	24	2.70	STILEI	4	
						the second s	

in a substantial substantial substantial substantial substantial substantial substantial substantial substantia

D

ANALYTICAL REPORT

Taiga Consultants Ltd.

Jim Davis

a second second

A STREET

Contractory

- Santasia

the state of

and the second se

Date: September 7, 1988

Job No: 88-359

Project: BC-88-6

P.O. No:

39 Drill Core 65 Rock 133 Soil

Signed: _____

	Job#: 88-	-359			
	Project:	BC-88-6	Rock		
	Sample Number	Au ppb	Ag ppm		
	BF-88-2	8	0.08	A0006 #3	u da da la segura da casa da segura da casa da segura da segura da casa da segura da casa da segura da casa da
TA	10 DB-99-27	<u> </u>	<u>5.20-</u> 0.14	ADOOG #C	
195	DM-88-48 - 49-	8 4	0.04- 0.09		
	50- 51- 52- 118- JD-88-1	6 4 10 6 278	0.28- 0.20- 0.16- 0.11- 41.0	- 0-1- 2 1-00 : : : · · · · ·	
	2 3 4 5 6	290 1680 678 462 442	22.0 9.60 32.0 43.0 65.0	000: 0.5° 0 000 0.2° 0 000 0.2° 0 000 0.2° 1.254 0.013	
	7 8 9 10 11	166 214 126 230 46	19.2 22.0 16.2 14.6 5.60	0 006 0 542 0 007 0 426 - 33- 0 007 0 426 - 33- 0 001 0 163	
	12 13 14	488 126 	24.0 6.30 1.57	0.014 0.700 0.004 0.124 Tr 0.046	;
	K - 51 MJ-88-1	2900	0.20 42.0	(HDOUG) - 1- 15	
	2 3 4 5 6	1280 464 258 8 1340	38.0 14.2 20.0 3.60 59.0	0037 1103 0014 0.414 0.008 0.583 T-38-5 Tr 0.105 0.039 1.721	
	7 8 T-88-7-1 2 3	46 90 6 14 4	7.20 10.9 0.26 1.31 1.75	0.001 0.210 0.003 0.313	
	4 5 6 7 8	12 18 16 8 12	1.27 0.49 0.50 1.90 1.85	Jacob 33-r.	

Page 2

ANALYTICAL REPORT

Taiga Consultants Ltd.

Jim Davis

- tributto

Ŋ

D

0

Ű

D

Date: August 31, 1988

Job No: 88-358

Project: BC-88-5 6 P.O. No:

70 Rock & Core 201 Soil

Signed: ____/MH___

	Job#: 88-3	58			
	Project: B	0-88-5			
	Sample Number	Ац ррb	Ag ppm		
194-33-(37624 37625 37626 37627 37628	3240 128 252 210 74	95.0 1.37 4.60 1.85 1.32		
J BF	37629 37630 -5 6 7	432 2680 4 3640	2.60 3.00 3.30 36.0 16.3	Fre= = = 1	
Still Still 4 CS Freed 3	8 -64 65 66	88 6 4 12 4	3.40 0.56 0.06 0.22 0.08	STIE #1 STIE #9.	
	67 68 69 70 71	76 192 2 14 2	53.0 13.8 0.07 0.37 1.54	Fred 4.	
This / MM	72 73 74 76 -121	6 16 4 10 6	0.24 0.36 0.81 0.25 1.24	STIK #6 Fred 3	
Fred 3 DM	-111 112 113 114 115	432 436 126 204 4	30.0 76.0 4.90 31.0 0.59	Fred Y.	
0 Fred 4 DM	116 117 120 I-122 123	14 56 1020 74 12	0.61 3.10 2.40 2.30 1.80	Frid 3	
	124 125 126 1-2	16 48 90 4	1.06 19.5 0.98 1.28	Fred 4.	

Job#: 88-358

-

a second second

Project: BC-88-5

	Sample Number	Au ppb	Ag ppm	
	Fred4 DRM-4 JR-110 111 112	22 12 2 4	0.13 0.82 0.24 0.12	Fred 4.
	121	32	178.0	μ (- ψ , φ
	Fact 5 Stik & CS-75	4	0.79	Fred 5
	$\frac{\text{Stik} \ 7 \ \text{DM} - 119}{1}$	4	1.04	TK7_Tr 0.293
States .	2	256	132.0	2.207 2.05
-	3	1780	197.0	0.052 5.75
A STREET	4	146	51.0	0.004 1.49
-	5	260	71.0	009 7.07
	6	62	77.0	2 1 5
Salarian -	7	96	24.0	2.20
	8 · · · ·	284	28.0	2 7 2 2 4 2
	9	770	59 0	0.000 002
	10	642	34.0	0 0 2 5 1 7 2. 0 0 10 0 0 00
	11 · · · · ·	208	11.5	0006 0.335
	12	84	21.0	
	13	94	15.8	
		-		0.461
	14	312	39.0	0.007 1.138
	16		0.92	0,232
	17	14	0.72	이 이 집에서 가지 않는 것이 아직에서 가지 않는 것이 없다.
	18	6	0.69	
-	T-88-8- 1	14	1.65	
	1997 - S. S. <mark>2</mark> e yan set	36	1.64	
		136	2.00	
-	$\frac{1}{2}$	160	5.30	
	- 1919 - 1919 - 5 1919 - 191	26	1.07	

	•			FERRAMIN	RESEARCH LABS Ltd.
		Job #: 88	-358		
		Project:	BC-88-5		
		Sample Number	Au ppb	Ag ppm	
AD	00g-iy 8+10	42 43 44 45 46	4 10 8 4 4	0.22 0.10 0.12 0.18 0.30	ADDOF # 3.
		47 48 49 50 51	8 8 6 2 4	0.08 0.12 0.08 0.12 0.08	
	8-JR	52 53 66 67 68	2 6 2 2 4	0.08 0.08 0.16 0.16 0.08	A 2006 #13
		69 70 71 72 73	2 2 2 6 2	0.12 0.12 0.08 0.05 0.18	A0006#9.
		74 75 76 77 78	2 2 4 4 4	0.07 0.10 0.12 0.18 0.21	
		79 80 81 82 83	2 2 2 2 2 2	0.17 0.06 0.15 0.05 0.06	
	10-DR	84 85 86 34 35	2 6 4 2 2	0.07 0.07 0.16 0.17 0.15	9T.1- #10.
		36 37 38 39 40	2 2 2 4 2	0.08 0.08 0.09 0.08 0.08	A0006 \$10

The second se

Job#: 88-358

Ó

	Project:	BC-88-5		
	Sample Number	Au ppb	Ag ppm	
ADOOG10 D	R41 42 43 44 45	2 4 2 2 2	0.09 0.09 0.11 0.14 0.14	1000510
	46 48 4 7 50 51	2 2 6 6 2	0.12 0.08 0.11 0.12 0.11	H".
	52 53 54 55 56	4 2 2 2 2	0.09 0.40 0.11 0.14 0.08	
W	57 M92 93 94 95	2 6 4 4 4	0.12 0.10 0.12 0.23 0.14	ADJOG EIJ
	96 97 98 99 100	8 2 2 2 2	0.12 0.08 0.16 0.21 0.12	
	101 102 103 104 105	2 4 2 4 2	0.15 0.30 0.37 0.11 0.12	
	106 107 108 109 110	2 4 2 2 2	0.17 0.09 0.08 0.07 0.16	
	111 112 113 114 115	6 2 2 2 2 2	0.23 0.08 0.12 0.07 0.08	

Job#: 88-358

Project: BC-88-5

	Sample Number	Ац ррь	Ag ppm	
	ADOOG10 WM116 117 118 119 IY 1	2 2 8 2 8	0.20 0.20 0.20 0.12 0.24	40005-212
	Hlord ? 2 3 4 5 6	8 2 2 12 8	0.16 0.16 0.16 0.10 0.20	1
	7 8 9 10 11	2 4 10 8 2	0.16 0.28 0.24 0.12 0.12	Ano037
	12 13 14 15 16	2 2 2 192 4	0.28 0.17 0.22 0.20 0.14	
	17 18 19 20 21	14 2 2 <u>4</u> 4	0.12 0.12 0.16 0.09 0.08	
	22 23 24 25 26	2 8 4 4 6	0.08 0.16 0.22 0.06 0.27	A=>>======
	27 28 29 30 31	84 182 6 2 26	0.12 0.21 0.10 0.28 0.16	
	32 33 34 35 36	4 2 8 2 2	0.13 0.12 0.35 0.44 0.10	
U				

-

- Poster

- Sector

lints -

			TERRAMIN	RESEARCH	LABS L	.td.	
	Job #: 88	-358					
	Project:	BC-88-5					
	Sample Number	Au ppb	Ag ppm				
IΥ	37 38 39 40 41	2 4 2 2 2	0.27 0.12 0.21 0.11 0.18				
	54 55 56 57 58	2 2 2 2 6	0.08 0.11 0.12 0.08 0.07	ADO	س ر د	3	
	59 60 61 62 64	8 4 4 2 2	0.10 0.11 0.10 0.11 0.13				
	65 66 67 68 69	6 2 2 2 4	0.10 0.08 0.12 0.10 0.08				
	70 71	2	0.08				
Stik 10 JF	87 88 89	2 4 4	0.08 0.10 0.19				
	90 91 92 93 94	2 2 6 2 2	0.14 0.12 0.11 0.17 0.13				
	95 96 97 98 99	2 2 4 2 8	0.08 0.10 0.26 0.12 0.24	91	(V)	HIV	
	100 101 102 103 104	4 2 2 4 6	0.11 0.10 0.15 0.12 0.34				

Job#: 88-358

Project: BC-88-5

	Sample Number	Au ppb	Ag ppm	
Stik10 JR	105 106 107 108 109	2 4 2 2 2	0.17 0.23 0.13 0.21 0.13	51, 6 #10
τc	34 35 36 37 38	2 2 4 2 2	0.20 0.11 0.36 0.10 0.12	57.k#1
	39 40 41 42 43	4 4 2 6	0.18 0.26 0.09 0.20 0.23	c + L + 2
	44 45 46 47 48	8 2 4 4 4	0.10 0.11 0.08 0.11 0.09	77(F-4-0
	49 50 51 52 53	2 8 4 18 2	0.31 0.26 0.15 0.17 0.15	
	54 55 56 57 58	2 16 4 8 2	0.08 0.11 0.08 0.20 0.08	
	59 60 61 62 63	2 2 2 6 2	0.08 0.10 0.08 0.12 0.16	
	<u>64</u> 65 66 67 68	2 2 2 8 12	0.11 0.12 0.10 0.16 0.14	A000G-9.
	69	8	0.20	

ANALYTICAL REPORT

Taiga Consultants Ltd.

Claude Aussant

K-

Π

0

SHORE STREET

. Section of the

1.000

- Charles

and the second

and south

Date: November 4, 1988

Job No: 88-472

Project: BC-88-5 & BC-88-6 P.O. No:

112 Check Assays from 2nd split

Signed: ______

_		이 같아요. 그는 것은 것은 것은 것이 없다.			والمساقدة المساقدة المسادية واستعاده	부수는 것이다. 또는 것을 가지 않는 것을 하는 것을 수 있다. 나는 것은 것을 가지 않는 것을 것을 수 있다. 이렇게 말 하는 것을 것을 것을 수 있다. 이렇게 말 하는 것을 것을 수 있다. 이렇게 말 하는 것을 것을 것을 것을 것을 수 있다. 이렇게 말 하는 것을
		Job#: 88	-472			
		Project:	BC-88-5	& BC-88-6		
		Sample	Au	Aa		
		Number	ppb	ppm		
	Fred 1	DM-88-1	172	17.1	88-314	
-	Fred 1	DM-88-2	636	22		승규는 김 씨는 경우는 것이 가 없는 것이다.
	Fred 1	DM-88-3	102	152		FRED 1
	Mets 2 Mets 2	DM-88-27 DM-88-28	234 214	106 129	88-315	
	Mets 2	DM-88-29	206	76		
	Mets 2	DM-88-31	2	240		
	Mets 2	DM-88-32	444	360		METSANTAN
	GN-2	DM-88-35	1260	250		
	GN-2	DM-88-36	1260	189		
	GN-3	DR-88-5 B	164	33		Golder Neighbour
	L 15 S	7+00 W	3620	19.2		METSANTAN
	Jim	DM-88-53	36	37	88-336	
	Jim	DM-88-54	92	43		
	Jim	DM-88-55	66	50		
	Jim	DM-88-58	4	27		
	Jim	DM-88-59	14	43		
	Jim	DM-88-60	4	21		
	Jim	DM-88-61	14	19.4		
	Jim	DM-88-62	156	87		
	Jim	DM-88-63	82	57		
	Jim	WM-88-35	32	48		
	Jim	WM-88-36	42	57		
	Jim	WM-88-38	24	34		
	Jim	WM-88-39	20	43		
	Jim	WM-88-40	38	81		
	Jim	WM-88-41	36	46		
	Jim	WM-88-42	10	38		
	Jim	WM-88-43	32	43		
	Jim	WM-88-45	284	220		<u> </u>
	Stik 1	DM-88-65	14	18.1		
	Stik 1	WM-88-50	122	46		
	Stik 3	WM-88-48	32	88	a de la composición d La composición de la c	STIK 1
	BB-88-	16	14	33	88-345	
	88-88-	17	8	27		
	BB-88-	19	8	26		
	UA-88-	14	4	17.7		
	LA-88-	15	10	149		
	LA-88-	17	10	28		5.m 1
						

		i i i i i i i i i i i i i i i i i i i	(KIME) (LEN) (KEEK	atamsteri tembos te		
	Job#: 88-	472				
	Project:	BC-88-5 &	BC-88-6			
	Sample	Au	Ag			
	Number	ppb	bbw			
Stik 9	DM-88-41	28	114	88-345		sr. # 9.
T-88-2	0-1 m	304	22		÷n,	TSANTAN
Fred 1	CS-88-62	4040	340	88-350	F	red 1
Fred 3	DM-88-110	8200	240			
Fred 3	DR-88-29	60	144			
Fred 4	DM-88-83	10	28			
Fred 4	DM-88-85	6	16.8			
Fred 4	DM-88-87	6	21			
Fred 4	DM-88-100	6	146			
Fred 4	DM-88-101	18	89			
Fred 4	DM-88-102	6	46			
Fred 4	DM-88-103	184	1340			
Fred 4	DM-88-104	38	39			
Fred 4	DR-88-32	18	370			
Fred 4	JR-88-62	852	42			
Fred 4	JR-88-63	664	47			
Fred 4	WM-88-74	58	380			
Fred 4	WM-88-77	10	390			
Fred 4	WM-88-85	8	188		Fr	e 1 4
Fred 5	DM-88-88	16	29			
Frad 5	DM-88-94	14	77	an a		
Fred 5	WM-88-89	44	18.1		F	REDS
Fred 5	TO 191-88-2	<u> </u>	25			and H
	37624	1520	90	88-358	88-1	NOTS ANTAN'
	BF-6	10	37			FREDI
	CS-67	82	57			
	DM-111	440	30			
	DM-112	436	90			
	DM-114	202	42			성 옷은 가격을 통
	DM-125	44	19.1		Fre	14
	IR-121	36	210			
	T-88-9-2	208	136		m	etsArtAnd
	T-88-9-3	1220	18.2			
	T-88-9-4	106	36			
	T-88-9-5	200	70			
		4 in 3 f 1 s 1 s 1 s s s s s s s s s s s s s s s s s s s				
	T-88-9-6	62	79			
	T-88-9-7	76	22			
	T-88-9-8	244	25			
	T-88-9-9	736	58			
	T-88-9-10	404	35			

	Job#: 88-	472			
	Project:	BC-88-5	& BC-88	3-6	
	Sample	Au	Ag		
	Number	ррь	bbw ⁻		
	T-88-9-12	88	21	88-358	
	T-88-9-14	272	37	영양이 많은 것이 같은 것이?	· · · · · · · · · · · · · · · · · · ·
88-2.	37661	6060	270	88-359	mel 3ArtAN
	JD-88-1	262	42		
	JD-88-2	238	22		
	JD-88-4	620	31		
	JD-88-5	384	41		
	JD-88-6	354	64		
	JD-88-7	132	16.2	1-80	
	JD-88-8	440	26		
	JD-88-12	264	17.6		
	MJ-88-1	3120	50	, (
	MJ-88-2	1300	42	1-80-2	
	MJ-88-4	204	17.4		
alay ing sing sing sing sing sing sing sing	MJ-88-6	1060	60		metsANTAN
	JR-114	1060	52	88-367	FRED 1
41, 41 · · · · ·	MJ-9	16	18.2		SFIK 6
	DM-88-130	126	17.8	88-379	
	DM-88-132	22	27		
	WM-88-127	28	19.2		7718-3
88-3	37666	1420	44	88-386	ACTSANTAN
	37699	1280	145	88-400	
88-4	37802	140	21		
	37803	224	70		
	37804	188	31		
	37815	204	102		
	37816	942	21		
	37817	808	32		
	37823	1360	230		
	37824	688	43		
	37825	5820	230		
T-10	0-1 m	620	24		

	1010
	and a second
	a la serent
	1
	1
	12
	1
	7
	h
	in the second se
RE AGGLOMERATE WITH INTERSPERSED	
RE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHY- MPOSITE FLOW UNITS	
RE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHY- MPOSITE FLOW UNITS MINTED, DOMAL INTRUSION (?) OF HOMOGE- ITIZED AND EPIDOTE-ALTERED ROCK CON- OLCANICS AND RARE METAMORPHIC ROCK	
RE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHY- MPOSITE FLOW UNITS MINTED, DOMAL INTRUSION (?) OF HOMOGE- ITIZED AND EPIDOTE-ALTERED ROCK CON- OLCANICS AND RARE METAMORPHIC ROCK V-GREEN, "CROWDED" FINE TO MEDIUM- FLOWS; INCLUDES SOME LAPILLI TUFF,	
RE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHY- MPOSITE FLOW UNITS MINTED, DOMAL INTRUSION (?) OF HOMOGE- ITIZED AND EPIDOTE-ALTERED ROCK CON- OLCANICS AND RARE METAMORPHIC ROCK Y-GREEN, "CROWDED" FINE TO MEDIUM- FLOWS; INCLUDES SOME LAPILLI TUFF. T FLOWS AND BRECCIAS WITH LESSER LOWS AND BRECCIAS WITH LESSER LOWS AND BIRECCIAS WITH LESSER LOWS AND BIRECCIAS WITH LESSER LOWS AND BIRECCIAS WITH LESSER LOWS AND BIRECCIAS WITH LESSER	Contraction of the Ministry
RE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHY- MPOSITE FLOW UNITS INTED. DOMAL INTRUSION (?) OF HOMOGE- ITIZED AND EPIDOTE-ALTERED ROCK CON- OLCANICS AND EPIDOTE-ALTERED ROCK CON- OLCANICS AND RARE METAMORPHIC ROCK Y-GREEN. "CROWDED" FINE TO MEDIUM- FLOWS; INCLUDES SOME LAPILLI TUFF. T FLOWS AND BRECCIAS WITH LESSER LOWS AND MINOR INTERBEDDED SILT- CHERT CONTAINS LIMESTONE LENSES IP"	
RE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHY- MPOSITE FLOW UNITS MINTED, DOMAL INTRUSION (?) OF HOMOGE- ITIZED AND EPIDOTE-ALTERED ROCK CON- OLCANICS AND RARE METAMORPHIC ROCK Y-GREEN, "CROWDED" FINE TO MEDIUM- FLOWS; INCLUDES SOME LAPILLI TUFF. T FLOWS AND BRECCIAS WITH LESSER LOWS AND MINOR INTERBEDDED SILT- CHERT. CONTAINS LIMESTONE LENSES (P"	The second
RE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHY- MPOSITE FLOW UNITS INTED, DOMAL INTRUSION (?) OF HOMOGE- ITIZED AND EPIDOTE-ALTERED ROCK CON- OLCANICS AND RARE METAMORPHIC ROCK Y-GREEN, "CROWDED" FINE TO MEDIUM- FLOWS; INCLUDES SOME LAPILLI TUFF. T FLOWS AND BRECCIAS WITH LESSER LOWS AND MINOR INTERBEDDED SILT- CHERT. CONTAINS LIMESTONE LENSES IP"	and the second of the second s
RE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHY- MPOSITE FLOW UNITS INTED. DOMAL INTRUSION (?) OF HOMOGE- TIZED AND EPIDOTE-ALTERED ROCK CON- OLCANICS AND RARE METAMORPHIC ROCK V.GREEN, "CROWDED" FINE TO MEDIUM- FLOWS; INCLUDES SOME LAPILLI TUFF. T FLOWS AND BRECCIAS WITH LESSER LOWS AND MINOR INTERBEDDED SILT- CHERT. CONTAINS LIMESTONE LENSES IP."	and the second of the second s
RE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHY- MPOSITE FLOW UNITS INTED. DOMAL INTRUSION (?) OF HOMOGE- TIZED AND EPIDOTE ALTERED ROCK CON- OLCANICS AND RARE METAMORPHIC ROCK VGREEN. "CROWDED" FINE TO MEDIUM- FLOWS: INCLUDES SOME LAPILLI TUFF. T FLOWS AND BRECCIAS WITH LESSER LOWS AND MINOR INTERBEDDED SILT- CHERT CONTAINS LIMESTONE LENSES IP" NE. SHALE, CARBONACEOUS MUDSTONE BRANCH REPOPT	A REAL PROPERTY AND A REAL
RE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHY- MPOSITE FLOW UNITS INTED. DOMAL INTRUSION (7) OF HOMOGE- TIZED AND EPIDOTE ALTERED ROCK CON- OLCANICS AND RARE METAMORPHIC ROCK VGREEN. "CROWDED" FINE TO MEDIUM- FLOWS: INCLUDES SOME LAPILLI TUFF. T FLOWS AND BRECCIAS WITH LESSER LOWS AND MINOR INTERBEDDED SILT- CHERT CONTAINS LIMESTONE LENSES IP. WE SHALE, CARBONACEOUS MUDSTONE BRANCH REPOPT	
ARE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT INDER HORNBLENDE PLAGIOCLASE PHY- MPOSITE FLOW UNITS INTED. DOMAL INTRUSION (?) OF HOMOGE- TIZED AND EPIDOTE-ALTERED ROCK. CON- OLCANICS AND RARE METAMORPHIC ROCK V.GREEN, "CROWDED" FINE TO MEDIUM- FLOWS; INCLUDES SOME LAPILLI TUFF. TFLOWS AND BRECCIAS WITH LESSER LOWS AND MINOR INTERBEDDED SILT- CHERT CONTAINS LIMESTONE LENSES P. WE SHALE, CARBONACEOUS MUDSTONE BRANCH REPOPT	AND
RE AGGLOMERATE WITH INTERSPERSED NING HORNBLENDE PLAGIOCLASE PHY. MPOSITE FLOW UNITS INTED. DOMAL INTRUSION (?) OF HOMOGE ITZED AND EPIDOTE ALTERED ROCK COM- OLCANICS AND RARE METAMORPHIC ROCK VGREEN, 'CROWDED' FINE TO MEDIUM; FLOWS: INCLUDES SOME LAPILLI TUF; IT FLOWS AND BRECCIAS WITH LESSER LOWS AND MINOR INTERBEDDED SIT- CHERT CONTAINS LIMESTONE LENSES IP. NE. SHALE, CARBONACEOUS MUDSTONE BRANCH REPORT	
RE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHY. MPOSITE FLOW UNITS INTED. DOMAL INTRUSION (?) OF HOMOGE. ITZED AND EPIDDTE ALTERED ROCK CON- OLCANICS AND RARE METAMORPHIC ROCK (CANICS AND BRECCIAS WITH LESSER LOWS AND MINOR INTERBEDDED SILT- CHERT. CONTAINS LIMESTONE LENSES (P) NE. SHALE, CARBONACEOUS MUDSTONE (P) BRANCH REPOPT (CARBONACEOUS MUDSTONE) (CARBONACEOUS MUDSTONE) (CARBONACE	
RE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHY- MPOSITE FLOW UNITS INTED, DOMAL INTRUSION (?) OF HOMOGE- TIZED AND EPIDOTE ALTERED ROCK CON- OLCANICS AND RARE METAMORPHIC ROCK (CANICS AND BRECCIAS WITH LESSER LOWS AND MINOR INTERBEDDED SILT- CHET. CONTAINS LIMESTONE LENSES "" NE. SHALE, CARBONACEOUS MUDSTONE BRANCH REPORT 655 END P/FELSEMEER R CTING TRAVERSE	
ARE AGGLOMERATE WITH INTERSPERSED INTED AND MINOP CONGLOMERATE THAT INOPOSITE FLOW UNITS INTED DOMAL INTRUSION (?) OF HOMOGE- ITZED AND EPIDOTE ALTERED POCK CON- OLCANICS AND BARE METAMORPHIC ROCK Y-GREEN. "CROWDED" FINE TO MEDIUM- FLOWS: INCLUDES SOME LAPILLI TUFF. T FLOWS AND BRECCIAS WITH LESSER COWS AND MINOR INTERBEDDED SITE SP." NE. SHALE, CARBONACEOUS MUDSTONE INTERDED OP T AGE 55 DO P/FELSEMEER R CTING TRAVERSE IR SOIL GEOCHEMICAL SURVEY	
RE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHYMO MPOSITE FLOW UNITS INITED. DOMAL INTRUSION (?) OF HOMOGE- ITED. DOMAL INTRUSION (?) OF HOMOGE- CALLER AND EPIDOTE ALTERED ROCK COM- OLCANICS AND RARE METAMORPHIC ROCK VGREEN, 'CROWDED' FINE TO MEDIUM- FLOWS, INCLUDES SOME LAPILLI TUFF. T FLOWS AND BRECCIAS WITH LESSER COMMAND MINOR INTERBEDDED SIT- GHERT CONTAINS LIMESTONE LENSES INCLUDES SOME LAPILLI TUFF. BRANCH REPOPT GOD P/FELSEMEER R CTING TRAVERSE R SOIL GEOCHEMICAL SURVEY 0.	
RE AGGLOMERATE WITH INTERSPERSED NIS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHY. MPOSITE FLOW UNITS INTED. DOMAL INTRUSION (?) OF HOMOGE- TIZED AND EPIDOTE ALTERED ROCK CON- OLCANICS AND RARE METAMORPHIC ROCK VGREEN. "CROWDED" FINE TO MEDIUM- FLOWS, INCLUDES SOME LAPILLI TUFF. IT FLOWS AND BRECCIAS WITH LESSER LOWS AND MINOR INTERBEDDED SILT- OHERT CONTAINS LIMESTONE LENSES INTERSENT ON AND AND AND AND AND STONE LESSEA BRANCH REPOPT JOINT SILVERSE R CTING TRAVERSE R SOIL GEOCHEMICAL SURVEY 	
RE AGGLOMERATE WITH INTERSPERSED NIS AND MINOR CONGLOMERATE THAT INOR HORNBLENDE PLAGIOCLASE PHAY MODSITE FLOW UNITS UNITED. DOMAL INTRUSION (?) OF HOMOGE IDEANICS AND EPIDOTE ALTERED ROCK CON- OLCANICS AND BARE METAMORPHIC ROCK VIGREEN. "CROWDED" FINE TO MEDIUM- FLOWS AND BRECCIAS WITH LESSER LOWS AND MINOR INTERBEDDED SILT- CHERE CONTAINS LIMESTONE LENSES P." WE SHALE, CARBONACEOUS MUDSTONE BRANCH REPORPT AG55 END P/FELSEMEER R CTING TRAVERSE R SOIL GEOCHEMICAL SURVEY P.	
ARE AGGLOMERATE WITH INTERSPERSED NYS AND MINOR CONGLOMERATE THAT INOPOSITE FLOW UNITS INITED DOMAL INTRUSION (?) OF HOMOGE- IDICANICS AND PARE METAMORPHIC ROCK VGREEN, "CROWDED" FINE TO MEDIUM- FLOWS INCLUDES SOME LAPILLI TUFF. T FLOWS AND BRECCIAS WITH LESSER COMMINS INTERBEDDED SIT- CHERT CONTAINS LIMESTONE LENSER INTERBEDDED SIT- CHERT CONTAINS LIMESTONE LENSER P/FELSEMEER R CTING TRAVERSE R SOIL GEOCHEMICAL SURVEY A. CCONTACT G, LAYERING, FOLIATION KES	
ARE AGGLOMERATE WITH INTERSPERSED NYS AND MINOR CONGLOMERATE THAT INDOSITE FLOW UNITS INTED DOMAL INTRUSION (1) OF HOMOGE IT ZED AND EPHODTE ALTERED ROCK COM- OLCANICS AND BARECCIAS WITH LESSER ZOWS AND BRECCIAS WITH LESSER ZOWS AND BRECCIAS WITH LESSER ID WINOR INTERBEDDED SLITS INTERSTONE LENSES IP. NE, SHALE, CARBONACEOUS MUDSTONE BRANCH REPOPT AG 55 END P/FELSEMEER R CTING TRAVERSE R SOIL GEOCHEMICAL SURVEY a. DIC CONTACT G, LAYERING, FOLIATION KES OUS SILT GEOCHEMICAL SITE (1986)(Au in ppb, Ag in ppm)	
ARE AGGLOMERATE WITH INTERSPERSED NYAND MINOR CONGLOMERATE THAT MPOSITE FLOW UNITS INTED, DOMAL INTRUSION (?) OF HOMOGE OLCANICS AND PARE METAMORPHIC ROCK CONCANICS AND PARE METAMORPHIC ROCK COUSS AND MINOR CLASS SOME LAPILLI TUFF. I FLOWS, INCLUDES SOME LAPILLI TUFF. I FLOWS, INCLUDES SOME LAPILLI TUFF. I CONTAINS LIMESTONE LENSES IP WE SHALE, CARBONACEOUS MUDSTONE BRANCH REPOODT I I FLOSE I SOLL GEOCHEMICAL SURVEY I I CONTACT G. LAYERING, FOLLATION ICS I CES LITS I CES LITS	
ARE AGGLOMERATE WITH INTERSPERSED INTED. AND MINOR CONGLOMERATE THAT MOPOSITE FLOW UNITS INTED. DOMAL INTRUSION (?) OF HOMOGE INTED. DOMAL INTERUSION (?) OF HOMOGE INTED. DOMAL INTERSPENDED INTED. DOMAL INTERUSION INTED. DOMAL INTERUSION INTED. DOMAL INTERSE INTERUSION INTER	
ARE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT MODIFIES TO MUNITS INTED. DOMAL INTRUSION (7) OF HOMOGE- ITZED AND EPIDOTE ALTERED ROCK CON- OLCANICS AND BARE METAMORPHIC ROCK CAUSES AND MINOR INTERBEDDED SILT COUSS INCLUDES SOME LAPILLI TUFF. T FLOWS AND BRECCIAS WITH LESSER COUSS AND MINOR INTERBEDDED SILT OFFER CONTAINS LIMESTONE LENSES PARE POPT AGE 50 END P/FELSEMEER R CTING TRAVERSE R SOIL GEOCHEMICAL SURVEY A. SIC CONTACT G, LAYERING, FOLIATION CES OUS SILT GEOCHEMICAL SURVEY DUS ROCK SAMPLES (1985, 1987) RCES LTD. ROPERTIES	
ARE AGGLOMERATE WITH INTERSPERSED INTED, DOMAL INTRUSION (7) OF HOMOGE- ITIZED AND EPIDOTE ALTERED ROCK COM- OLCANICS AND BARE METAMORIPHIC ROCK CYGREEN, "CROWDED" FINE TO MEDIUM- PLOWS, INCLUDES SOME LAPILLI TUPE T FLOWS AND BRECCIAS WITH LESSER CYCRET, CONTAINS LIMESTONE LENSES (PRE SHALE, CARBONACEOUS MUDSTONE BRANCH REPODE AG55 END P/ FELSEMEER R CTING TRAVERSE R SOIL GEOCHEMICAL SURVEY A COUS SILT GEOCHEMICAL SURVEY A COUS SULT GEOCHEMICAL SURVEY A COUS SUCK SAMPLES (1985, 1987) C C C C C C C C C C C C C	
ARE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONGLOMERATE THAT MODITE FLOW UNITS INTED. DOMAL INTRUSION (?) OF HOMOGE- ITZED AND EPIDOTE-ALTERED POCK. CON- OLCANICS AND PARE METAMORPHIC ROCK CONS. INCLUDES SOME LAPILLI TUFF. T. FLOWS AND BRECCIAS WITH LESSER LOWS. INCLUDES SOME LAPILLI TUFF. T. FLOWS AND BRECCIAS WITH LESSER LONG TRANCE BREACTION P. FELSEMEER R CTING TRAVERSE R SOIL GEOCHEMICAL SURVEY A. COUS SILT GEOCHEMICAL SURVEY A. COUS SILT GEOCHEMICAL SURVEY A. RCES LTD. RCES LTD. RCES LTD. ROPERTIES I COVERAGE 94 E / 11, 12 ED/Y C. AUSSANT	
ARE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONCLOMERATE THAT INOR HORMALENDE PLAGIOCLASE PHAAM MODSITE FLOW UNITS INTED. DOMAL INTRUSION (7) OF HOMOGE- TIZED AND EPIDOTE ALTERED ROCK CON- OLCANICS AND BARE METAMORPHIC ROCK AGREEN, "CROWDED" FINE TO MEDIUM- FLOWS, INCLUDES SOME LAPILLI TUPE- IT FLOWS AND BRECCIAS WITH LESSER LOWS AND MINOR INTERBEDDED SILT. CHERT. CONTAINS LIMESTONE LENSER INTED. DOMAL INTERBEDDED SILT. CHERT CONTAINS LIMESTONE LENSER INTED. DOMA INTERBEDDED SILT. CHERT CONTAINS LIMESTONE LENSER INTED. DOMA PLACE SAMP AND BRECCIAS WITH LESSER INTED. DOMA INTERBEDDED SILT. CHERT CONTACT INTED. SILT GEOCHEMICAL SURVEY INTED. SILT GEOCHEMICAL SURVEY INTED. SILT GEOCHEMICAL SILTE (1986) (Au in ppb, Ag in ppm) DUS ROCK SAMPLES (1985, 1987) RCES LTD. INTED. SILT GEOCHEMICAL SITE (1986) (Au in ppb, Ag in ppm) DUS ROCK SAMPLES (1985, 1987) RCES LTD. INTED. SOULD SOOM INTER CONTACT INTER TRAVERSE INTER INTERS INTER INTER INTERS INTER INTERS INTER INTERS INTER INTERS INTER INTER INTERS INTER INTER INTERS INTER INTER INTER INTERS INTER INTER INTER INTER INTERIOR INTER INTER INTER INTERIOR INTERS INTER INTER INTER INTERIOR INTERS INTER INTER INTERIOR INTERIOR INTERIOR INTERIOR INTER INTER INTERIOR INTERIOR INTERIOR INTERIOR INTER INTERIOR INTERIOR INTERIOR INTERIOR INTERIOR INTER INTERIOR INTER	
RE AGGLOMERATE WITH INTERSPERSED NTS AND MINOR CONOLOMERATE THAT MOPOSITE FLOW UNITS INTED. DOMAL INTRUSION (7) OF HOMOGE ITZED AND EPIDOTE-AITERED ROCK COM- OLCANICS AND BARE METAMORPHIC ROCK CAMICS AND MINOR INTERESTORE LENSES I.CONTACT C. LAYERING, FOLIATION RES I.CONTACT C. LAYERING, FOLIATION C. SILT GEOCHEMICAL SURVEY C. MARE S (1985, 1985, 1987) RCES LTD. RCES LTD. ROPERTIES I.COVERAGE 94 E / 11, 12 ED/ P/ C. AUSSANT 0 400 600 m TD MAP 3	
