ARIS SUMMARY SHEET

District Geologist, Smithers

Off Confidential: 89.12.02

ASSESSMENT REPORT 18490

MINING DIVISION: Liard

PROPERTY: Gab

56 49 00 LAT

LONG 130 51 00

MTU 09 6298291 387068

NTS 104B15W

CLAIM(S):

LOCATION:

Gab 1-4

OPERATOR(S): AUTHOR(S): Achilles Res.

Kiesman, W.D.; Ikona, C.K. 1989, 66 Pages

REPORT YEAR:

COMMODITIES

SEARCHED FOR: Silver, Zinc

KEYWORDS:

Triassic, Jurassic, Cretaceous, Limestone, Quartz Monzonite, Skarn

Wollastonite, Galena, Sphalerite

WORK

.

DONE:

Geochemical, Geological

GEOL 2000.0 ha

Map(s) - 1; Scale(s) - 1:10 000

ROCK 140 sample(s);ME

Map(s) - 2; Scale(s) - 1:10 000

79 sample(s);ME SILT SOIL 103 sample(s);ME

RELATED

REPORTS: 17211

OBO \

GEOLOGICAL REPORT
ON THE
GAB 1-4 MINERAL CLAIMS

FILMED

Located in the Iskut River Area
Liard Mining Division
NTS 104B/15W
56°49' North Latitude, 130°51' West Longitude

SUB-RECORDER RECEIVED FEB 24 1989

 - Prepared for -

ACHILLES RESOURCES LTD.

- Prepared by -

W.D. KIESMAN, Geologist C.K. IKONA, P.Eng.

ASSESSMENT REPORT

November, 1988

GEOLOGICAL REPORT on the GAB 1-4 MINERAL CLAIMS

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	LIST OF CLAIMS	1
3.0	LOCATION, ACCESS AND GEOGRAPHY	2
4.0	AREA HISTORY	3
5.0	REGIONAL GEOLOGY	6
6.0	GEOPHYSICS	8
7.0	PROPERTY GEOLOGY	9
	7.1 Ridge Showing	9
8.0	MINERALIZATION	10
	8.1 Ridge Showing	10
9.0	STREAM AND SOIL GEOCHEMISTRY	11
10.0	RECOMMENDATIONS	12

LIST OF FIGURES

			Following Page
Figure	1	Property Location Map	1
Figure	2	Claim Map	1
Figure	3	Regional Geology Map	6
Figure	4	Property Geology Map	pocket
Figure	5	Aerodat Ltd. Total Field Magnetic Contour Map	8
Figure	6	Aerodat Ltd. EM Anomaly Interpretation Map	8
Figure	7	Rock Chip and Soil/Stream Geochemistry Sample Location Map	pocket
Figure	7a	Rock Chip and Soil/Stream Geochemistry Sample Values Map	pocket
Figure	8	Ridge Showing Detailed Geology Map	9

GEOLOGICAL REPORT on the GAB 1-4 MINERAL CLAIMS

TABLE OF CONTENTS

APPENDICES

Appendix	I	Bibliography

Appendix II Analytical Procedures

Appendix III Assay Certificates
Appendix IV Rock Chip Summary

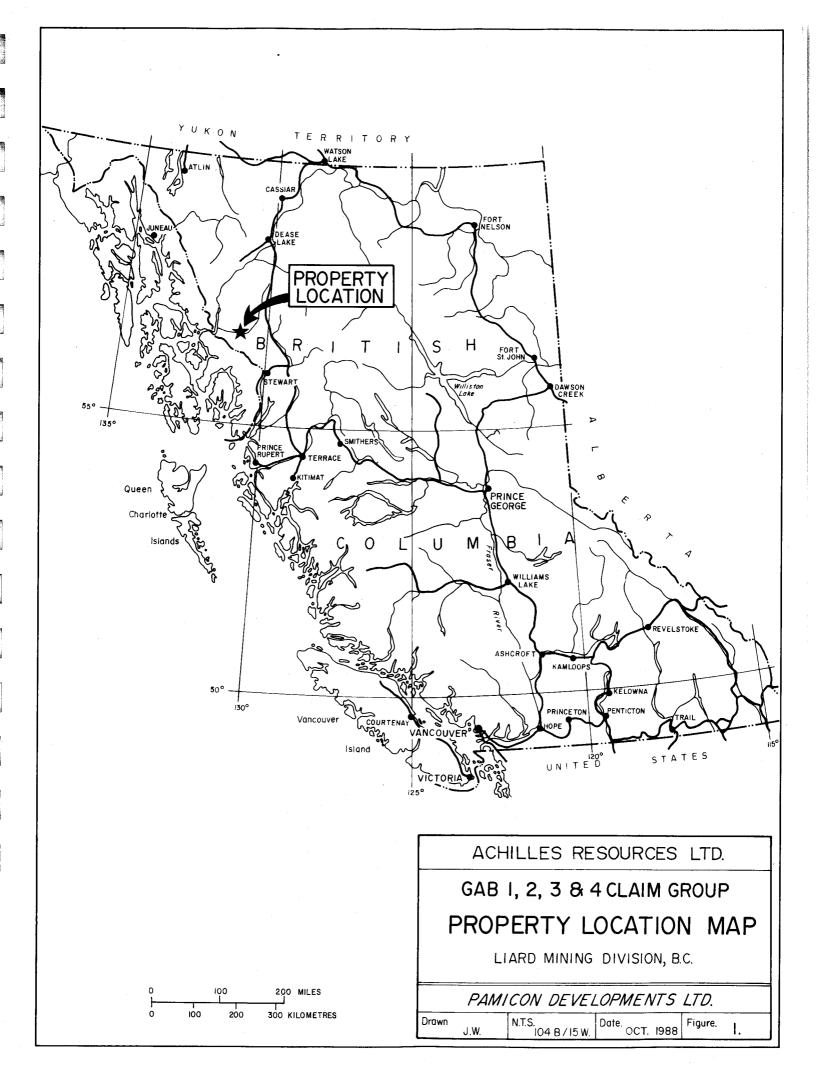
Appendix IV Rock Chip Summary

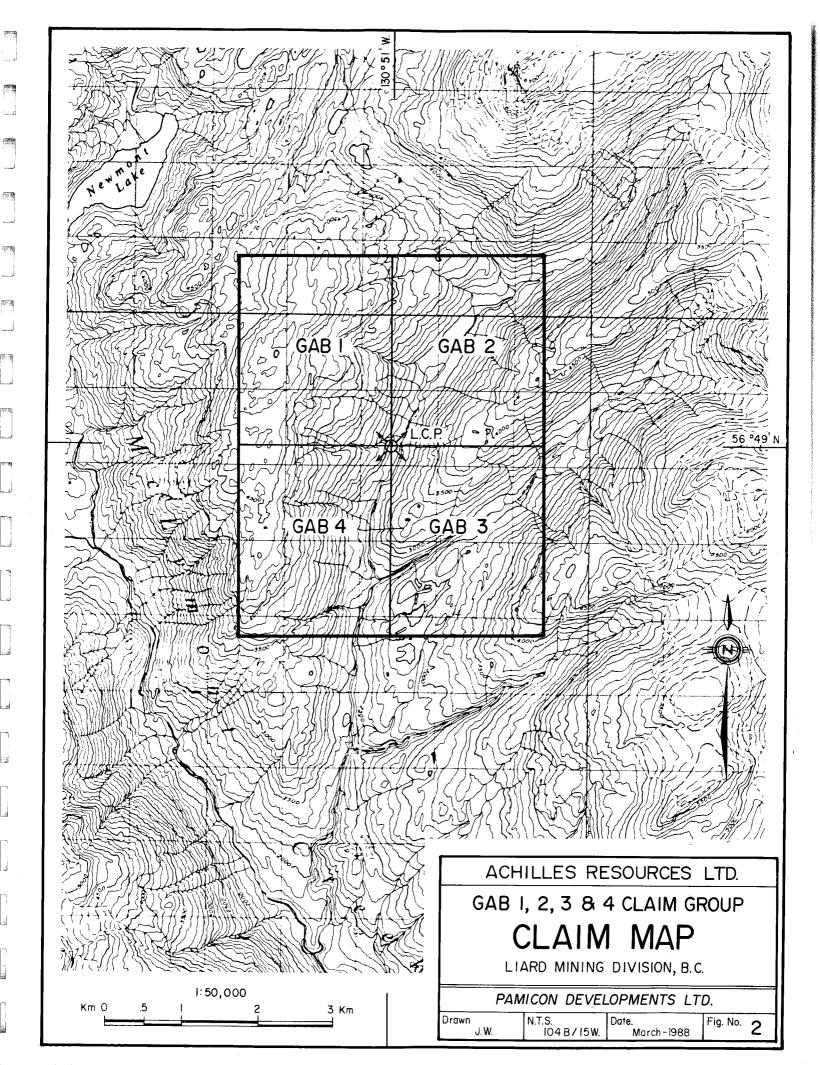
Appendix V Statement of Qualifications

Appendix VI Engineer's Certificate

1.0 INTRODUCTION

At the request of the Directors of Achilles Resources Ltd. a reconnaissance exploration program was undertaken by Pamicon Developments on the Gab 1-4 claims in July, 1988.

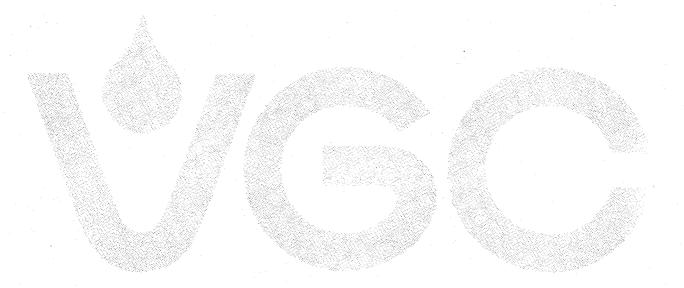

Exploration techniques consisted of stream geochemistry, rock chip and soil sampling with geological personnel recording traverse location and sample sites.


A helicopter airborne geophysical survey was conducted over the property by Aerodat Ltd. from November, 1987 to June, 1988. Four electromagnetic conductors were identified from flight tapes after data was reduced. These conductive zones are associated with mineral occurrences located in July, 1988 and their possible strike extensions. Sphalerite, galena, chalcopyrite, tennantite, argentite associated with altered limestone beds (skarns) have been traced, by prospecting crews, for 600 metres along strike.

2.0 LIST OF CLAIMS

Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the following claims (Figure 2) are owned by I. Hagemoen. Separate documents indicate the claims are under option to Achilles Resources Ltd.

Claim Name	Record Number	No. of Units	Record Date	Expiry Date
Gab 1	3826	20	December 22, 1986	December 22, 1989
Gab 2	3827	20	December 22, 1986	December 22, 1989
Gab 3	3828	20	December 22, 1986	December 22, 1989
Gab 4	3829	20	December 22, 1986	December 22, 1989



VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

R	PORT	NUMBER:	880854	6A	JOB	NUMBER:	880854	- Garan	PAHICON	DEVELOPMENT	LTD.			PAGE	1 OF	e de la companya de l
S	AMPLE	•			Au					•						
					ppb											
2	2 96 7				nd										استعمر	AND CONTRACTOR
2:	2968				nd							~ r	701			$I \cap I$
	2969				nd							lín i	LIL	1 1 1 1 1 1 1	سللل	1
	2970				nd							4م	-ساملىرل			(0.10)
	2971				nd							101	AHG	16 1	988	
												1 111	HOO			[[الم
2	3045				nd							1114	140	75U	UL	كسال
												ساليا	- س			

VANGEOCHEM L LIMITED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. VSL 1K5 PH: (604)251-5656 TELEX: 04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. VSL 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 95 DEG. C FDR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, MN, FE, CA, P, CR, MG, BA, PD, AL, NA, K, N, PT AND SR. AU AND PD DETECTION IS 3 PPM.

IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

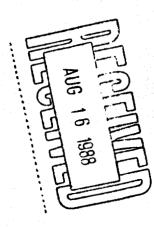
COMPANY: PAMICON DEVELOPMENTS LTD. ATTENTION: MR. B. KEISMAN PROJECT: ACHILLIES

DETECTION LIMIT

REPORT#: 88085 4PA JOB#: 880854 INVOICE#: 880854NA

3 . .01 .1 1 1 .01 .01 .01 1

DATE RECEIVED: 88/08/03 DATE COMPLETED: 88/08/12 COPY SENT TO: MR. B. KEISMAN


1 .01

ANALYST U

																							PAG	SE 1 0	F 1					
SAMPLE NAME	A	G A	AL AS		AU PPM	BA PPM	BI PPH	CA X	CD PPM	CO PPM	CR PPM	CU PP#	FE 1	K Z	#6 %	MN PPM	MO PPM	NA Z	NI PPM	P	PB PPM	PD PPM	PT PPM	SB PPM	SN PPH	SR PP#	U PPM	H PPM	ZN PPM	
22967 22968 22969 22970 22971	26 6	.1 .1 .5 3.	04 22 06 45	11 87 23 98	ND ND ND ND	43 24 21 33 71		.23 .18 11.64 11.56 .83	1.5 176.0	24 66 19 47 15	76 141 8 65 60	158 135 1042 312 116	3.93 6.13 6.43 5.68 2.35	.07 .07 .67 .67	5.07 2.78	300 169 4669 1883 230	3 50 1 37 10	.01 1.10	27 260 13 48 22	.02 .14 .01 .03	15 13 4 1489 54	ND ND ND ND	ND ND ND ND	ND ND ND ND	3 NB ND ND ND 3	4 3 49 207 34	ND ND ND ND	ND ND ND ND	75 76 106 27803 714	
23045		.1	41 !	ND	ND	856	ND	2.21	.8	2	153	25	1.91	.33	1.30	1012	. 5	.01	4	.01	7	ND	ND	ND	ND	22	ND	ND	161	

ANOMALOUS RESULTS:

FURTHER ANALYSES
BY ALTERNATE
METHODS SUGGESTED

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 s3 (604)251-5656 FAX:254-5717'8

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL SET 055

CLIENT: PAMICON DEVELOPMENT LTD.

DATE: Aug 03 1988

ADDRESS: 711-675 W. Hastings St.

/II-D/U W. Hastings of

: Vancouver, B.C.

: V6B 1N4

REPORT#: 880838 GA

JOB#: 880838

PROJECT#: Achilles

SAMPLES ARRIVED: July 30 1988

REPORT COMPLETED: Aug 03 1988

ANALYSED FOR: Au (FA/AAS) ICP

INVOICE#: 880838 NA

TOTAL SAMPLES: 7

SAMPLE TYPE: Rock

REJECTS: SAVED

SAMPLES FROM: Smithers, B.C.

COPY SENT TO: Smithers & Vancouver Offices

PREPARED FOR: Mr. Bill Keisman

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

BRANCH OFFICE
1630 PANDORA ST.
VANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPO	RT NUMBE	ER:	880838	6A	JOB	NUMBER:	880838	 PAMICON	DEVELOP	MENT	LTD.		PAGE	1	OF	1
SAMP	LE #				Au					ı						
					ppb											
2303	8				40											
2303					nd											
2304					nd											
2304					nd											
2304	2				nd											
2304	2				nd											
2304	9				20											

3.0 LOCATION, ACCESS AND GEOGRAPHY

The Gab 1-4 claims are located approximately 100 kilometres east of Wrangell, Alaska, and 110 kilometres northwest of Stewart, British Columbia, on the eastern edge of the Coast Range Mountains (Figure 1). Newmont Lake is situated approximately five kilometres to the northwest and the Iskut River 15 kilometres to the south of the Gab 1-4 claims.

Coordinates of the claims area are 56°49' north latitude and 131°51' west longitude, and the property falls under the jurisdiction of the Liard Mining Division.

Access to the Gab 1-4 claims would be via fixed wing aircraft from Wrangell, Alaska or Stewart, British Columbia to either the Forrest Kerr gravel airstrip 9 km to the north of the Gab 1-4 claims or the Bronson Creek gravel airstrip located 23 km southwest from the claims. From these gravel airstrips, helicopter support is needed to reach the Gab 1-4 mineral claims. In addition, the Bob Quinn gravel airstrip is located 40 kilometres to the northeast on Highway 37 at Kilometre 139. Access to the property by helicopter or fixed wing can also be accomplished from this airstrip.

C.K. Ikona of Pamicon Developments Ltd., on behalf of Skyline Explorations Ltd., has proposed the construction of a 65 kilometre long road. The road would be situated on the south side of the Iskut Valley to connect the Stewart-Cassiar Highway with Skyline's Stonehouse Gold deposit and the Cominco/Delaware Snip deposit near Bronson Creek.

Geographically, the area is typical of mountainous and glaciated terrain with the elevations ranging from 700 metres above sea level in the river valley bottoms to in excess of 1500 metres at the ridge tops. Major drainages are U-shaped, whereas smaller side creeks tend to be steeply cut due to the intense erosional environment. Active glaciation is prevalent above the 1200 metre contour, with the tree line existing at 1000 metres. The upper reaches of the area are covered with alpine vegetation. The lower slopes are

predominantly timbered with a variety of conifers with an undergrowth of devil's club. More open areas and steeper slopes contain dense slide alder growth. Both summer and winter temperatures would be considered generally moderate and in excess of 200 centimetres of precipitation may be expected during any given year.

4.0 AREA HISTORY

The first recorded work done in the Iskut Region occurred in 1907 when a prospecting party from Wrangell, Alaska staked nine claims north of Johnny Mountain. Iskut Mining Company subsequently worked crown granted claims along Bronson Creek and on the north slope of Johnny Mountain. Up to 1920, a 9 metre adit revealed a number of veins and stringers hosting galena and gold-silver mineralization.

In 1954, Hudsons Bay Mining & Smelting located the Pick Axe showing and high grade gold-silver-lead-zinc float on the open upper slopes of Johnny Mountain, which today is part of Skyline Explorations Ltd.'s Stonehouse Gold deposit. The claims were worked and subsequently allowed to lapse.

During the 1960s, several major mining companies conducted helicopter borne reconnaissance exploration programs in a search for porphyry-copper-molybdenum deposits. Several claims were staked on Johnny Mountain and on Sulphurets Creek.

Between 1965 and 1971, Silver Standard Mines, and later Sumitomo, worked the E + L prospect on Nickel Mountain at the headwaters of Snippaker Creek. Work included trenching, drilling and 460 metres of underground development work. Reserves include 3.2 million tons of 0.80% nickel and 0.60% copper.

In 1969 Skyline staked the Inel property after discovering massive sulphide float originating from the head of the Bronson Creek glacier.

During 1972, Newmont Mining Corporation of Canada Limited carried out a field program west of Newmont Lake on the Dirk claim group. Skarn-type mineralization was the target of exploration. Work consisted of airborne and ground magnetic surveys, geological mapping and diamond drilling. One and one-half metres grading 0.220 ounces gold per ton and 15.2 metres of 1.5% copper was intersected on the Ken showing.

In 1980 Dupont Canada Explorations Ltd. staked the Warrior claims south of Newmont Lake on the basis of a regional stream sediment survey. In 1983, Skyline Explorations Ltd. and Placer Developments Ltd. optioned the Warrior claims from Dupont. Efforts were directed at sampling and extending several narrow quartz-pyrite-chalcopyrite veins with values ranging from 0.1 to 3.0 oz/ton gold. Geophysics and coincident geochemical values indicated a significant strike length to the mineralized structure. The Warrior claims were allowed to lapse in 1986, at which time, Gulf International Minerals Ltd. acquired the McLymont claims covering much the same area.

Assays of interest from recent Gulf drilling are listed below (Gulf International Minerals Ltd., Annual Report, 1987 and news releases):

Drill Hole	Interval (feet)	Length (feet)	Copper (%)	Silver (oz/ton)	Gold (oz/ton)
87-25	343.0-373.0	30.0	0.23	0.11	0,404
	409.3-412.0	2.7	0.55	0.35	0.250
	470.2-473.8	3.6	0.42	0.19	1.520
87-29	167.0-170.0	3.0	0.001	0.01	0.140
	205.0-241.5	36.5	0.97	39.73	1.605
88-28	213.9-229.0	15.1			0.810
	260.5-276.6	16.1			0.645
	354.0-363.2	9.2			0.319
		The second secon			

(average grade = 149.0 feet of 0.290 oz/ton gold)

After restaking the Reg property in 1980, Skyline carried out trenching and drilling for veined high-grade gold and polymetallic massive sulphide mineralization on the Reg and Inel deposits between 1981 and 1985.

In 1986, drilling and 460 metres of underground cross-cutting and drifting on the Stonehouse Gold Zone confirmed the presence of high grade gold mineralization with additional values in silver and copper over mineable widths with good lateral and depth continuity. As of January 1988, reserves on the Stonehouse Gold Zone were reported as:

		Au (oz/ton)	Tons
Total Measured		1.246	121,000
Total Drill-Indicate	ed	0.556	236,875
Total Inferred		0.570	700,000
Subtotal		0.644	1,057,875
McFadden		2.800	30,000
Ore Reserve Total		0.704	1,087,875

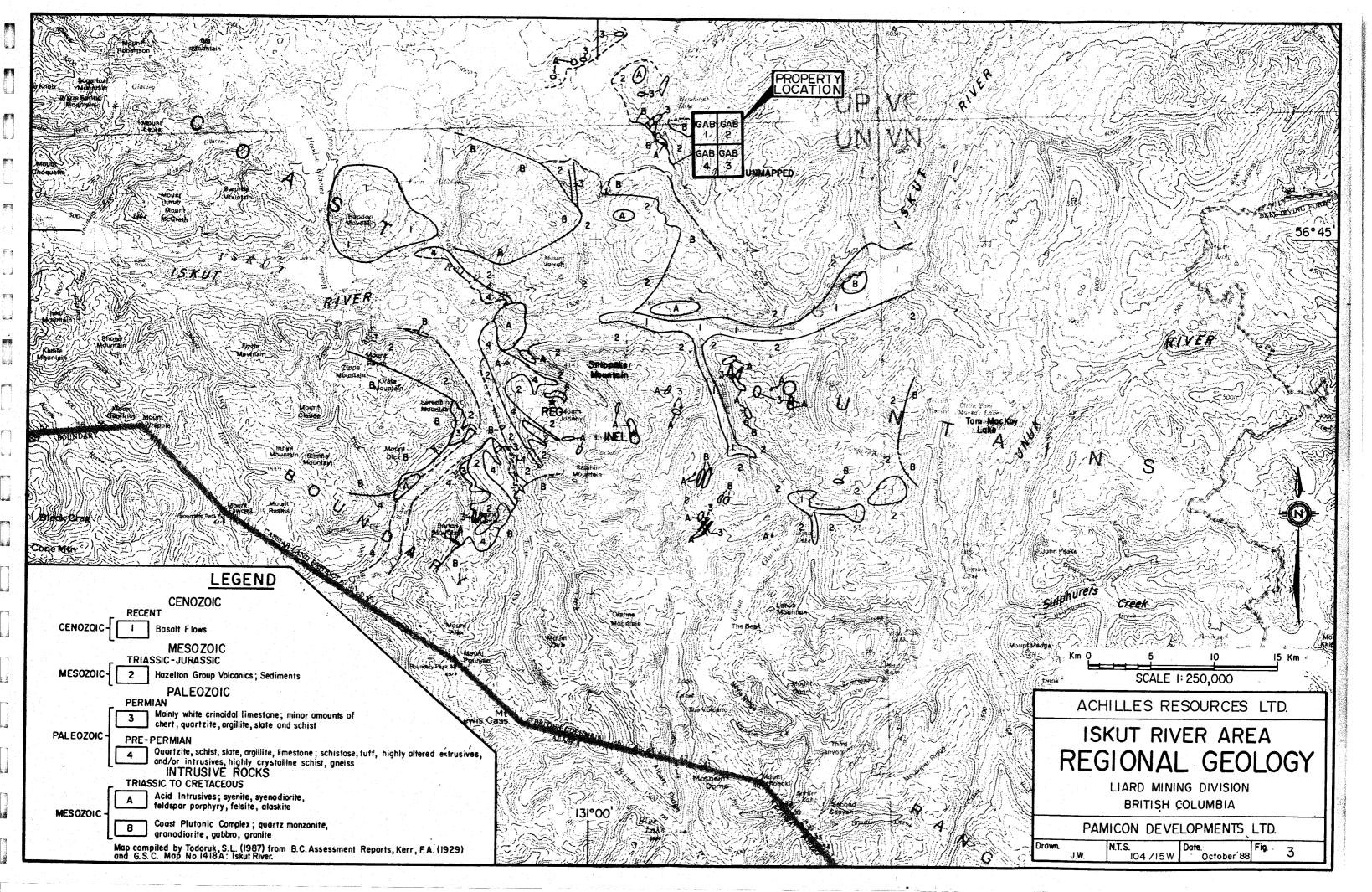
On the Cominco/Delaware Snip claims immediately north of the Stonehouse Gold deposit, approximately 20,000 metres of diamond drilling has been carried out defining the Twin Zone gold deposit. Three thousand metres of underground development work has also been completed as the project readies for production. As of December, 1987, reserves on the Twin Zone were reported as:

		Au (oz)	Tons
Total	Inferred	0.700	1,100,000

Also, during 1987, Inel Resources Ltd. commenced an underground drifting and diamond drilling program along the main cross-cut intent on intersecting the Discovery Zone which hosts gold-bearing polymetallic massive sulphide mineralization. Underground drilling on the centre section of workings has returned in U88-3 a grade of 0.769 oz/ton gold for 4.1 metres (September, 1988). As of

November, 1988, 730 metres of underground development has been completed in the area of the Discovery zone.

Western Canadian Mining Corp. carried out an extensive diamond drilling program on their Gosson claims, concentrating on the Khyber Pass Gold Zone which is 45 metres thick. The best drill hole intersection in this zone to date is as follows:


Drill	From	To	Lei	ngth	Gold	Silver	Copper
<u>Hole</u>	(m)	(m)	<u>(m)</u>	(ft)	(oz/t)	(oz/t)	(%)
85-3	11.2	16.8	5.6	18.4	0.12	6.48	1.74
	30.2	44.2	5.2	17.1	0.17	2.66	0.90
	54.5	60.1	5.6	18.4	0.15	1.77	- ·
	66.0	69.0	3.0	9.8	0.28	1.54	. · · <u></u> .

Tungco Resources Corporation drill tested three main gold/copper quartz vein targets; the Bluff, No. 7 and Swamp Zones. The Bluff Zone has been delineated 70 metres along strike and 60 metres downdip with better intersections grading up to 0.243 oz/ton gold across 2.45 metres. The No. 7 Vein returned 1.12 metres of 0.651 oz/ton gold.

During 1988 Pezgold Resource Corp./International Prism Exploration drill tested their Ken Zone magnetite/chalcopyrite/gold skarn zone north of Gulf International Minerals' Northwest Gold Zone. High grade silver-lead-zinc was also found on the property.

5.0 REGIONAL GEOLOGY

Government mapping of the general geology in the Iskut River area (Kerr, 1948, GSC Memoir 246, "Operation Stikine", GSC Maps 9-1957 and 1418-1979, "Iskut River") has proved to be incomplete and unreliable. Subsequent mineral exploration studies have greatly enhanced the lithological and stratigraphic knowledge of this geo-entity known as the Stewart Complex (Grove, 1986) (Figure 4).

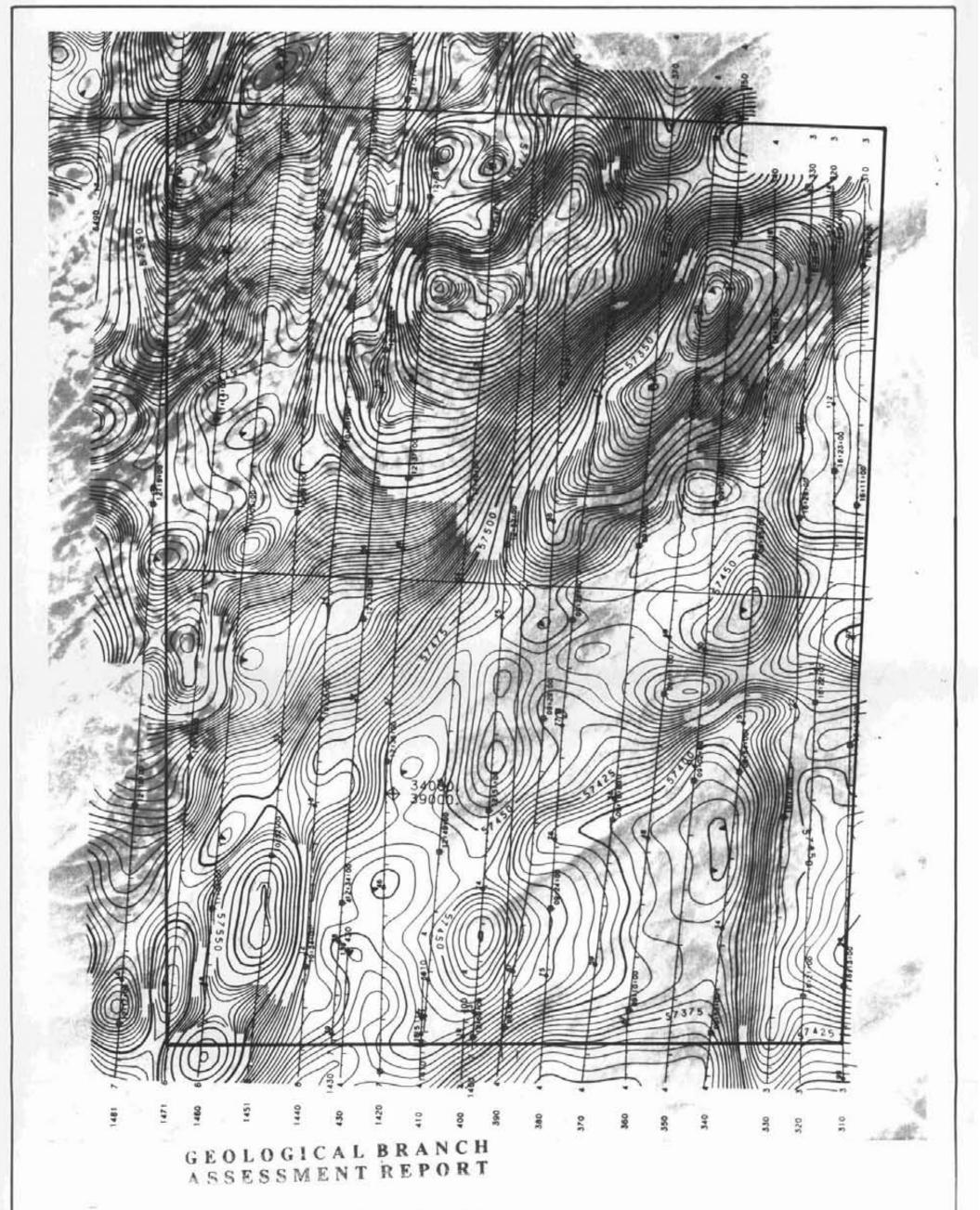
Grove (1986) defines the Stewart Complex in the following manner:

"The Stewart Complex lies within the Intermontane tectonic belt along the contact between the Coast Plutonic Complex on the west, the Bowser Basin on the east, Alice Arm on the south and the Iskut River on the north."

Within the Stewart Complex, Paleozoic crinoidal limestone overlying metamorphosed sedimentary and volcanic members are the oldest rock group. Correlation has been made between this oceanic assemblage and the Cache Creek Group.

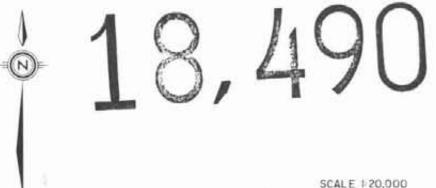
Unconformably overlying the Paleozoic limestone unit are Upper Triassic Hazelton Group island arc volcanics and sediments. These rocks have informally been referred to as the "Snippaker Volcanics." Grove (1981) correlates this assemblage to the Unuk River Formation of the Stewart Complex whereas other writers match this group with the time equivalent Stuhini Volcanics. Monotis fossils have been recognized on the north slope of Snippaker Peak and west of Newmont Lake, 20 km to the north, giving an age Late Triassic. It is within these rocks that Skyline's Reg and Inel gold deposits occur.

Grove reports an unconformable contact between Carboniferous and Middle Jurassic strata on both sides of Snippaker Ridge, north of Snippaker Peak. The same unconformable relationship between these major rock units appears to extend from Forrest Kerr Creek west, along the Iskut River, to the Stikine River junction. Present interpretation suggests an east-west trending thrust along the axis of the Iskut River which, like the King Salmon Thrust Fault, pushed up and over to the south.


Following the Iskut River thrust faulting, the entire region was overlain by Middle Jurassic Hazelton Group volcanic-sedimentary rocks named the Betty Creek Formation by Grove (1973, 1982). It is believed that the Betty Creek rocks act as a mineralizing trap and as such are useful in delineating underlying older units such as the Unuk River Formation.

Intrusion of the batholithic Coast Plutonic Complex in the Iskut region of Cretaceous and Tertiary age followed. Composition varies from quartz monzonite, granodiorite to granite. Important in many instances to the localization of mineralization are satellite facies of epizonal or subvolcanic acidic porphyries.

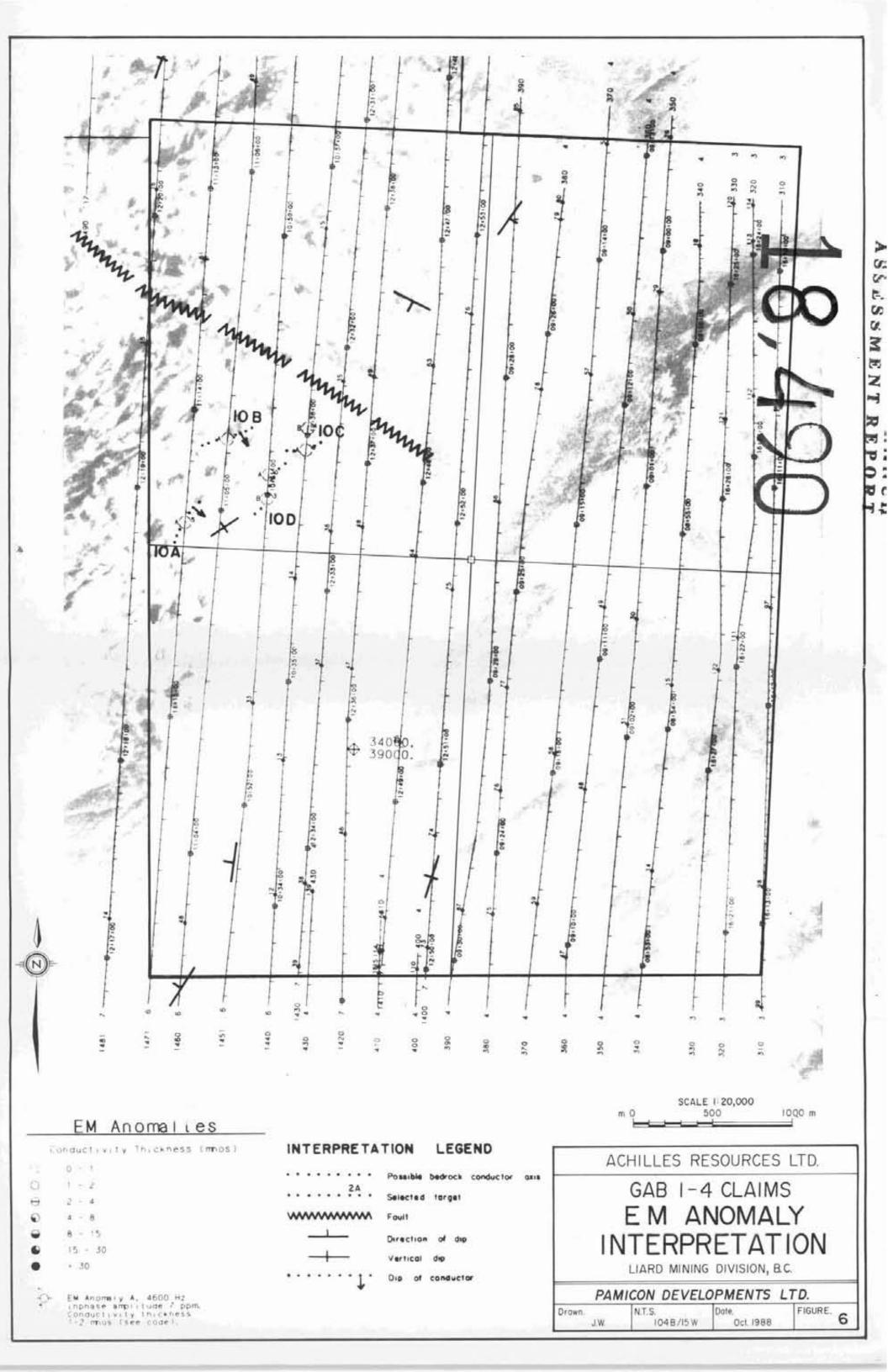
Quaternary and Tertiary volcanics occur at Hoodoo Mountain, along the Iskut River near Forrest Kerr Creek, and in several localities along Snippaker Creek.


6.0 GEOPHYSICS

During November, 1987 to June, 1988, an Aerodat Ltd. helicopter airborne geophysical survey was conducted over mineral claims located adjacent to Skyline, Delaware/Cominco and Gulf International claims. A total of 2000 kilometres of recorded data was taken on 29 flights in 23 separate areas. The flight lines were oriented north-south and flown at a 250 metre spacing. Elevation of airborne sensors was between 45 and 60 metres from ground Flight tapes were reviewed and filtered to eliminate surficial conductors and ambient "noise". A total field magnetic contour map (Figure 5) and an airborne electromagnetic survey interpretation map (Figure 6) for the Gab 1-4 mineral claims are presented in this report. Figure 5 shows contoured magnetic values which can be correlated to individual lithologies and lithological boundaries as shown on Figure 4, Property Geology. A large total field magnetic high approximates the centre of a monzonite stock, north from the Ridge Showing (Figure 8). Figure 6 shows anomalous conductivity and in-phase amplitudes on 4600 Hz which are interpreted to be near surface conductive zones. Mineralization (massive and disseminated) is often associated with zones of high conductivity. Four electromagnetic (EM) conductors were identified from flight data and appear coincident with the Ridge Showing location, this report, Section 7.0. The Ridge Showing comprises two separate structures, with the conductor axis trace correlating with known mineralization trends (AZ 035 - 040). The conductor axis trace, from the airborne

1000 m

Drawn.



ACHILLES RESOURCES LTD

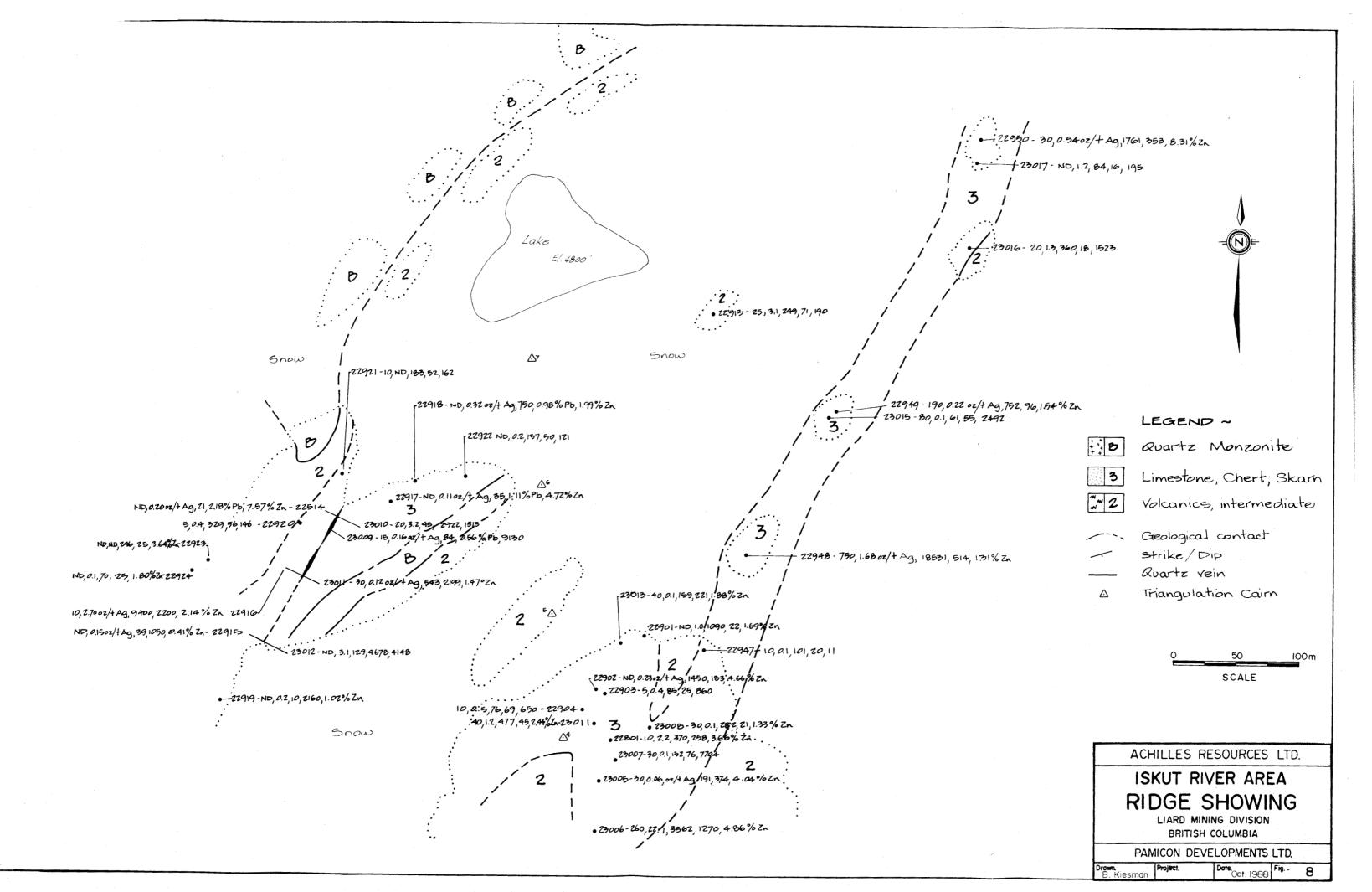
TOTAL FIELD MAGNETIC CONTOURS

LIARD MINING DIVISION, B.C.

PAN	IICON	DEVEL	OPMENTS	LTD.
J.W.	NTS.	048/I5W	Date. Oct 1988	FIGURE.

geophysical survey, indicate possible strike lengths of some 300 metres.

7.0 PROPERTY GEOLOGY


The geology of the Gab 1-4 mineral claims (Figure 4) consists of folded and metamorphosed Triassic sediments/volcanics intruded by Late Jurassic-Cretaceous quartz monzonite intrusions. Areally these intrusions form the dominant rock type in the Gab 1-4 mineral claims. Geological contacts, between the quartz monzonite and Triassic sediments/volcanics, are usually marked by extensive gossans of pyrite. Deformation intensifies near geological contacts with marker units becoming segmented and dislocated by abundant fractures. Dykes of variable compositions and structural orientations intrude the Triassic sediments/volcanics.

Limestones and marls found stratigraphically within the sediments appear to be the favourable lithology for hosting sphalerite, galena, chalcopyrite, tennantite, argentite as replacement style mineralization. Large isoclinal folds with inclined axial planes can be traced using the limestone marker (Figure 8).

7.1 RIDGE SHOWING

On the Gab 1 claim at 1500 metres elevation, two zones, 300 metres apart have been located. In this area, limestones have been altered to skarn by the elevated pressures and temperatures related to intrusive emplacement.

The north zone, closer to the monzonite contact, is marked by extensive brecciation. Associated with this, the skarn was thickened and thinned structurally during deformation. Widths vary from 0.3 to 1.2 metres with strike length traced to date for 120 metres. Cherts with very fine laminations appear conformable in both the hanging wall and footwall to the skarn.

Monzonite dykes form ridge crests immediately north and south from the north zone.

The south zone, also interpreted as a skarn, mineralogically has wollastonite as small acicular intergrown crystals set in a fine grained siliceous matrix. The wollastonite is recessive weathering, buff in colour while the white, siliceous matrix stands in higher relief forming a distinctive and recognizable texture.

This skarn has been traced to the northeast, from the Ridge Showing, by prospecting crews for 600 metres along strike. Skarn widths are variable due to thickening associated with folding however thickness is about 3.0 metres wide. Attitudes are interpreted to be N35-40°E and 60° southeast. Minor folds, associated with northeast-southwest directed shear stresses, may have acted as loci for replacement mineralization in these structurally favourable zones.

8.0 MINERALIZATION

8.1 RIDGE SHOWING

Pamicon Developments prospecting crews, upon arrival to the Gab 1 ridge, located a north and south zone separated by 300 metres of snow. These two zones comprise the Ridge Showing.

The north zone resembles a quartz-carbonate breccia. Visible galena and sphalerite with traces of malachite are hosted along drusy breccia interstices. Smithsonite forms a thin patina along fractures within the breccia. Malachite, in the absence of chalcopyrite, suggests tennantite is responsible for assay values in copper and arsenic. Silver values are interpreted to be linked to the occurrence of tetrahedrite-tennantite with argentite. Argentiferous galena may be a possibility however little galena was encountered. For assay results complete with sample description refer to the appended Rock Chip

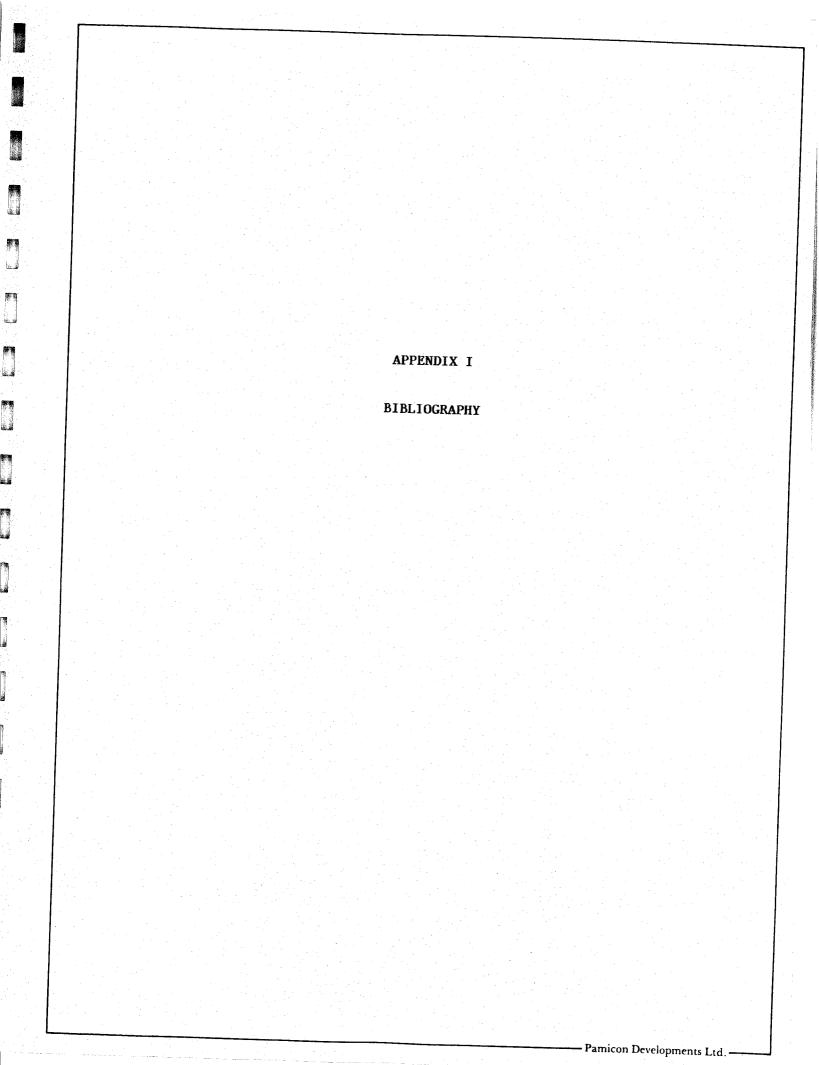
Summary (Table 1). Gold values to 220 ppb Au have been returned from rock chip grab sample taken on the north zone.

At the south zone, chalcopyrite is also found with sphalerite and galena. The skarn matrix is wholly replaced with sphalerite. Galena and chalcopyrite are found as anhedral blebs in the fine grained brown sphalerite. Close examination of the skarn matrix proved difficult to distinguish between buff wollastonite and sphalerite replacing the skarn matrix. The occurrence of sphalerite within the skarn appears discontinuous laterally along strike. However, the skarn with sphalerite and associated silver values, has been traced for 600 metres by prospecting crews.

For assay results complete with sample descriptions refer to Table 1, Rock Chip Summary appended to this report. Gold values to 750 ppb Au have been returned from rock chip grab samples taken on the south zone.

9.0 STREAM AND SOIL GEOCHEMISTRY

Forty heavy mineral and silt samples were taken on stream drainages within the Gab 1-4 claim boundaries. Where possible, both a heavy mineral and silt sample were taken at the same sample site. At the onset of snow melting and the exposure of alpine soils, an extensive soil geochemistry program was undertaken on the western and eastern slopes of the Gab 1 ridge. A total of 103 soil samples were taken from B horizon soils at an average depth of 0.30metres. No anomalous gold values were returned from heavy mineral, silt or soil sampling, however, sphalerite and galena rich outcrops were discovered by soil sampling crews. These outcrops, located on the western slopes of Gab 1 ridge are interpreted to represent strike extensions of Ridge Showing located on the Gab 1 ridge. For assay results complete with sample description refer to the appended Rock Chip Summary (Table 1). For sample location and results refer to Figures 7 and 7a.


10.0 RECOMMENDATIONS

Due to snowcover at Ridge Showing elevations, a 1989 exploration program should be undertaken in August-September when snow is at its lowest level. Based on 1988 exploration results it is recommended that additional soil sampling, prospecting and geological mapping on the Ridge Showing should focus on:

- 1. The inferred sediment and volcanic-monzonite contact for veins hosted in sediments/volcanics.
- The source of anomalous soil geochemical results which appear coincident with strike extensions from known mineralized zones.
- 3. Trenching of both the south and north zone on the Ridge Showing over full widths.

William D. Kiesman, Geologist

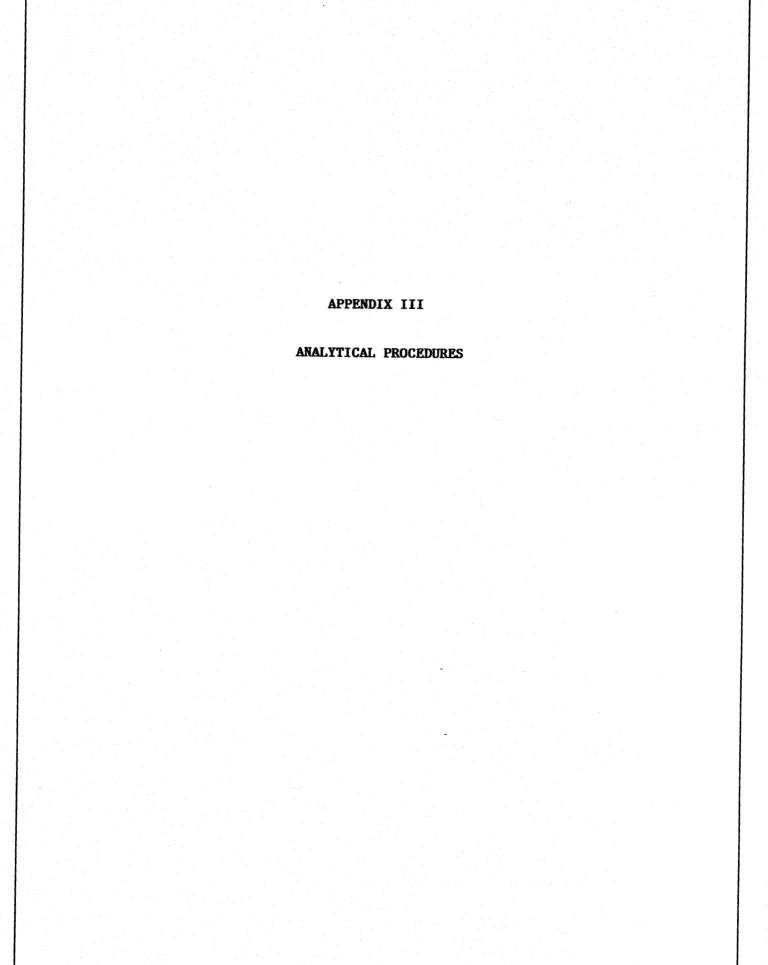
Charles K. Ikona, P.Eng.

BIBLIOGRAPHY

- Caulfield, D.A. and C.K. Ikona (1987): Geological Report on the GIM Mineral Claim.
- Costin, C.P. and W.H. Mitchell (1972): Stikine Kerr Project, Newmont Mining Corp., private report.
- Costin, C.P. (1973): Report on Geological, Geophysical and Physical Work, Dirk Claim Group, Department of Mines and Petroleum Resources No. 4150.
- de Carle, R.J. (1988): Aerodat Report on a Combined Helicopter-Borne Magnetic, Electromagnetic and VLF Survey, Iskut River Area, Liard Mining Division.
- Delaware Resources Corp.: Progress Report, Snip Prospect, November 19, 1987.
- Gulf International Minerals Ltd.: Annual Report, February 1988.
- Ikona, C.K. and W.D. Kiesman (August 1988): Progress Report on the Gab 1-4 Mineral Claims.
- Ikona, C.K. and S.L. Todoruk (March 1988): Geological Report on the Gab 1-4 Mineral Claims.
- Skyline Explorations Ltd.: Annual Report 1987.
- Todoruk, S.L. and C.K. Ikona (1987): Geological Report on the Stu 1 & 2 Mineral Claims.
- Todoruk, S.L. and C.K. Ikona (1987): Geological Report on the Gab 11 & 12 Mineral Claims and Stu 8 & 9 Mineral Claims.
- Todoruk, S.L. and C.K. Ikona (1987): 1987 Summary Report on the Sky 4 & 5 and Spray 1 & 2 Claims.

Tungco Resources Corporation: News release dated December 1, 1987.

Western Canadian Mining Corp.: News release dated November 12, 1987.


APPENDIX II

COST STATEMENT

- Pamicon Developments Ltd. -

COST STATEMENT GAB 1 - 4 MINERAL CLAIMS LIARD MINING DIVISION JULY 5 TO NOVEMBER 30, 1988

WAGES	
Senior Geologist - 9 days @ \$350	6 2 150 00
Field Geologist - 7 days @ \$265	\$ 3,150.00
Prospectors - 13 days @ \$265	1,855.00
Samplers - 15 days @ \$225	3,445.00
Field Support Crew	3,375.00
Project Supervision	4,583.35
Jose papervision	2,319.58
	\$ 18,727.9
EXPENSES	
Man Day Camp Support Costs	
Equipment and Supplies	8,875.0
Travel and Accommodation	1,350.0
Communication and Telephone	1,415.4
Freight	362.2
Reproductions	488.9
	301.56
Assays	5,235.00
Fixed Wing	1,072.46
Helicopter	6,882.24
Report	3,000.00
	3,000,00
ANAGEMENT FEE	7 156 (2
	7,156.63
	<u>\$ 54,867.51</u>

- Pamicon Developments Ltd.

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 ● (604) 251-5656 ● FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

Nov 8th, 1988

TO:

Bill Kiesman

PAMICON DEVELOPMENTS LTD. 711 - 675 W. Hastings St. Vancouver, B.C. V6B 1N4

FROM:

Vangeochem Lab Limited 1988 Triumph Street

Vancouver, British Columbia

USL 1K5

SUBJECT:

Analytical procedure used to determine gold by fire assay method and detect by atomic absorption spectrophotometry in geological samples.

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, $4" \times 6"$, Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. Method of Extraction

- (a) 20.0 to 30.0 grams of the pulp samples were used. Samples were weighed out using a top-loading balance and deposited into individual fusion pots.
- (b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are then fused at 1900 degrees Farenhiet to form a lead "button".
- (c) The gold is extracted by cupellation and parted with diluted nitric acid.

(d) The gold bead is retained for subsequent measurement.

3. Method of Detection

- (a) The gold bead is dissolved by boiling with aqua regia solution, then diluted with deionized water to 10 mls volume.
- (b) The detection of gold was performed with a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values, in parts per billion, were calculated by comparing them with a set of known gold standards.

4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. David Chiu and his laboratory staff.

David Chiu

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 ● (604) 251-5656 ● FAX (604) 254-5717

BRANCH OFFICES
PASADENA, NFLD.
BATHURST, N.B.
MISSISSAUGA, ONT.
RENO, NEVADA, U.S.A.

Nov 8th, 1988

TO:

Bill Kiesman

PAMICON DEVELOPMENTS LTD. 711 - 675 W. Hastings St. Vancouver, B.C. V6B 1N4

FROM:

Vangeochem Lab Limited

1988 Triumph Street

Vancouver, British Columbia

VSL 1K5

SUBJECT:

Analytical procedure used to determine hot acid soluble for 28 element scan by Inductively Coupled Plasma Spectrophotometry in geochemical silt and scil samples.

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

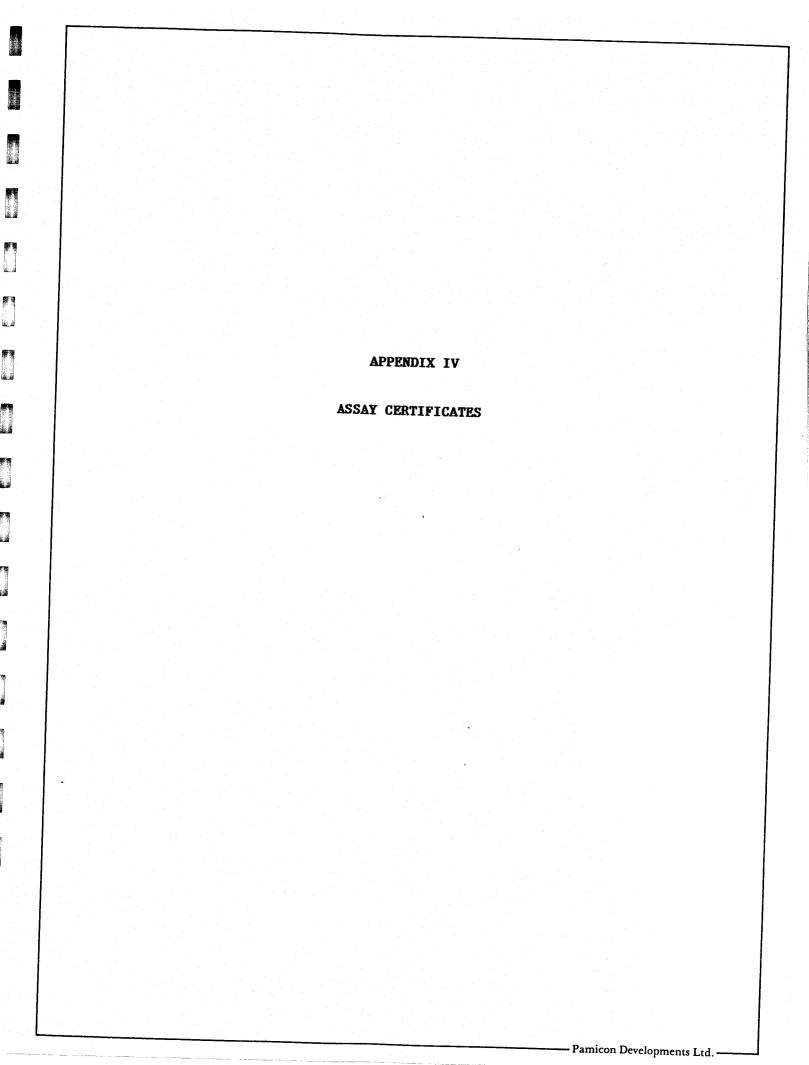
2. Method of Digestion

- (a) 0.50 gram portions of the minus 80-mesh samples were used. Samples were weighed out using an electronic balance.
- (b) Samples were digested with a 5 ml solution of HCL: HNO3: H2O in the ratio of 3:1:2 in a 95 degree Celsius water bath for 90 minutes.
- (c) The digested samples are then removed from the bath and bulked up to 10 ml total volume with dimineralized water and thoroughly mixed.

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 ● (604) 251-5656 ● FAX (604) 254-5717 BRANCH OFFICES
PASADENA, NFLD.
BATHURST, N.B.
MISSISSAUGA, ONT.
RENO, NEVADA, U.S.A.

3. Method of Analyses

The ICP analyses elements were determined by using a Jarrel-Ash ICAP model 9000 directly reading the spectrophotometric emissions. All major matrix and trace elements are interelement corrected. All data are subsequently stored onto disk.


4. Analysts

1

The analyses were supervised or determined by either Mr. Eddie Tang, and, the laboratory staff.

Eddie Tang

VANGEOCHEM LAB LINITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

ASSAY ANALYTICAL REPORT

OCT 14 1988

CLIENT: PAMICON DEVELOPMENT CTD. U DE TE: Oct 13 1988

ADDRESS: 711-675 W. Hastings St.

: Vancouver, B.C.

: V6B 1N4

REPORT#: 881612 AA

JOB#: 881612

PROJECT#: Achilles Res.

SAMPLES ARRIVED: Oct 11 1988

REPORT COMPLETED: Oct 13 1988

ANALYSED FOR: Pb Zn Ag Au

INVOICE#: 881612 NA

TOTAL SAMPLES: 40

REJECTS/PULPS: 90 DAYS/1 YR

SAMPLE TYPE: Pulp

SAMPLES FROM: PAMICON DEVELOPMENT LTD.

COPY SENT TO: Mr. Steve Todoruk

PREPARED FOR: Mr. Steve Todoruk

ANALYSED BY: David Chiu

SIGNED:

Registered Provincial Assayer

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 8	881612 AA JOB NUMBER	8: 881612	PAMICON DEVELO	PHENT LTD.	PAGE	1 OF 2
SAMPLE #		Рb %	Zn %	Ag oz/st	Au oz/st	
(880857)	H 88309		****	.30	in the second	
(880854)	2 2 969	ditter arrays		1.12	***	
(88 0854)	22970	Non-suite	3.19	. 29	-	
(880729)	22816		-	.23	- Spel alian	
(86 0729)	22856		2.85		enten heidy	
· · · · · · · · · · · · · · · · · · ·	(1992年) 2004年 <u>- 1997年</u> - 1997年					
(880729)	22857		1.02			
(880729)	22862			1.85		
(880729)	22863		1.42			
(880729)	22948		1.31	1.68	ानुसार राज्य 	
(98 0729)	22949	2일 2004	1.54	.22		
(880729)	22950		8.31	. 54		
(880729)	23005		4.04	.06		
(880729)	23006		4.86	*****	·— ····	
(880729)	23008		1.33	***	arms stars	
(880729)	23009	.56		. 16	ma ma	
(880729)	23011	ditain prime	1.47	.12		
(880729)	23013		1.88	* * * *		
(880729)	23014		2.44			
(880729)	23024	****	1.27	.31		
(880683)	22801	No.	3.66	. 31	WHICH CANAL	

DETECTION LIMIT
1 Troy oz/short ton = 34.28 ppm

.01 1 ppm = 0.0001%

.91 .01
pp/= parts per million

.005

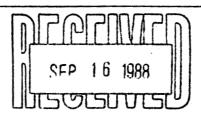
signed:

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

4. *	REPORT NUMBER:	881612 AA	JOB NUMBER: 881612	PANICON BEVEL	OPMENT LTD.	PAGE	2 OF 2
	SAMPLE #		Pb %	Zn %	Ag oz/st	Au oz/st	
	(880683)	22803	entité elles	3.48	. 16	***	
	(880683)	22806	97400 Strate	. 29	.30	. Other man	
	(880683)	22901		1.69		shirtle trade	
	(880683)	22902	to the same	4.66	.23	-	
	(880683)	22905		****	1.14	.012	
	(880683)	22906	. 	. 16		dien ente	
	(880683)	22908	2.18	7.57	. 28		
	(880683)	22914	1.80	7.71	.20		
	(880683)	22915		.41	. 15		
	(880683)	22916		2.14	2.70		•
	(880683)	22917	1 (1845) 1 (1845)	4.72	.11		
	(880683)	22918	. 98	1.99	.32		
	(880683)	22919		1.02	-		
	(880683)	22923	44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.64	****		
	(880683)	22924		1.80	Primo Bridge	Magil selab	
	(880683)	22925	animo situa	1.48		-	
	(880683)	22926		3.43	-	*****	
	(880683)	22927	****	1.62	- 40000 60000		
	(880683)	22931		2.04			
	(880683)	22932	***	2.47	NATION ANNUAL	-	

DETECTION LIMIT
1 Troy oz/short ton = 34.28 pps

.O1 1 ppm = 0.00017 (yO1 .O1 ppm = parts per million


.005
< = less than

signed:

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPO

CLIENT: PAMICON DEVELOPMENT LTD.

ADDRESS: 711-675 W. Hastings St.

: Vancouver, B.C.

: V6B 1N4

DATE: Sept. 01 1988

REPORT#: 881167 GA

JOB#: 881167

PROJECT#: Ach. Gab

SAMPLES ARRIVED: Aug 30 1988

REPORT COMPLETED: Sept. 01 1988

ANALYSED FOR: Au (FA/AAS) ICP

INVOICE#: 881167 NA

TOTAL SAMPLES: 9

SAMPLE TYPE: Rock Chip.

REJECTS: SAVED

SAMPLES FROM: Bronson Camp

COPY SENT TO: Bronson Camp & Vancouver Office

PREPARED FOR: Mr. Steve Todoruk

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

VANCOUVER, B.C. V5L 1L6
(604) 251-5656

(604) 251-5656

REPORT NUMBER: 881167 GA	JOB NUMBER: 881167	PANICON DEVELOPMENT LTD. PAGE	1 OF	1
SAMPLE #	Au		,	•
	ppb			
17501	nd			
17502	20			
17503	nd			
17504	nd			
17505	nd			
17506	45			
17507	nd			
17508	nd			
17509	nd			

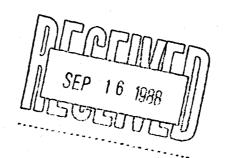
MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX: 04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN,MN,FE,CA,P,CR,MG,BA,PD,AL,NA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPM.

IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: PAMICON ATTENTION: S. TODORUK PROJECT: ACH. GAB

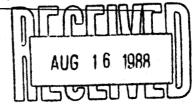

REPORT#: 881167PA JOB#: 881167 INVOICE#: 881167NA

DATE RECEIVED: 88/08/30 DATE COMPLETED: 88/09/15 COPY SENT TO:

ANALYST VW

PAGE 1 OF 1

																													•	
\$	SAMPLE NAME	AG PPM	AL	AS PPN	AU PPM	BA PPM	DI PPH	CA 1	CD PPH	CO PPM	CR PPM	CU PPM	FE %	K Z	M6 1	NN PPH	MO PPM	NA Z	NI PPH	P	PB PPM	PD PPM	PT PPM	SB PPM	SN PPM	SR PPN	U PPM	W PPM	ZN PPH	
1	17501 17502 17503 17504 17505	.8 .1 .1 .1	.41 1.67 .93 .54 .08	48 162 28 195 17	ND ND ND ND	87 52 51 4 23	3 ND ND 3 ND	.32 .10 .04 .12 .14	2.1 .8 .3 2.2	9 16 6 63 4	36 79 101 127 222	265 102 50 98 12	10.25 4.37 2.52 11.46 .91	.06 .03 .02 .04 .03	.16 1.33 .88 .56 .05	450 362 154 167 252	12 3 5 55 7	.02 .01 .01 .02 .01	11 20 12 347 19	.05 .03 .03 .08 .02	77 33 20 25 3	0M 0M 0M 0M 0M	MD MD MD MD MD	ND ND ND ND	5 3 2 4 ND	14 5 3 3 4	ND ND ND ND	ON ON ON ON	182 87 28 35 16	
	17506 17507 17508 17509	1.1 .1 .2 .4	3.29 .78 2.72 2.72	23 10 13 27	ND ND ND	9 65 50 25	3 ND ND ND	.86 .64 2.95 1.00	3.9 .1 7.1 1.2	13 4 9 19	534 104 155 78	230 12 41 86	9.88 1.86 1.82 6.65	.15 .12 .30	1.41 .14 .20 1.20	596 342 521 546	18 1 4 4	.03 .01 .05	213 8 12 20	.14 .01 .06	50 12 24 38	ND ND ND ND	ND DN DN	ND ND ND ND	8 1 4 8	11 25 37 70	ND ND ND	ND ND ND	188 17 2184 76	
1	DETECTION LINIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	1	i	.01	1	.01	2	3	5	2	2	i	5	3	1	



VANGEOCHEM LAB LIMITED MAIN OFFICE AND LABORATORY BRANCH OFFICE

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENT LTD.

ADDRESS: 711-675 W. Hastings St.

: Vancouver, B.C.

: V6B 1N4

DATE: Aug 11 1988

REPORT#: 880857 GA

JOB#: 880857

PROJECT#: Achillies

SAMPLES ARRIVED: Aug 03 1988

REPORT COMPLETED: Aug 11 1988 ANALYSED FOR: Au ICP INVOICE#: 880857 NA

TOTAL SAMPLES: 68

SAMPLE TYPE: Soil

REJECTS: DISCARDED

SAMPLES FROM: Bronson Camp

COPY SENT TO: Bronson Camp & Vancouver Offices

PREPARED FOR: Mr. Bill Keisman

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver office

nd = none detected

-- = not analysed

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

1 OF 2

RE	PORT NUMBER:	880857 GA	JOB	NUMBER: 880857	7 PAMIC	ON DEVELOPMENT	LTD.	PAGE
SA	MPLE #		Au	-				
			ppb					
AM	880132		5					4
AM	880133		10				للم	1_11_11
MA			10				1 2	AUG 16 19
AM			5				1 11	AUG 16 1
AM	880136		10				1114	TEL MINISTER
AM			กต่					
MA			nd					
AM			5					
AM			5					
AM	880142		10					
AM	880144		5					
AM	880145		15					
AM	880146		15					
AM	880147		nd					
AM	880148		nd					
	000150							
AM			10 5		our and the second		12	
AM	880154		10					
AM			15					
AM	880156		nd					
****	004100		110				grad John Cha	a N. Can
AM	880157		15					- A A B A R
AM	880158		10					
AM	880159		nd					
AM	880160		10					NORMAL BEONE
AM	880161		10					
AM	880162		20					
AM	880163		15					
AM	880164		10					
MA	880165		30					
AM	880166		10					
AM	880168		20					
AM	880169		35					
AM	880170		15					
AM	880171		25	•				
AM	880171		nd nd					
	******		110					
882	278 DH		10					
882			5					
882			5					
882			10					

is = insufficient sample

VANGEOCHEM LAB LIMITED

MAIN DFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

BRANCH OFFICE
1630 PANDORA ST.
VANCOUVER, B.C. V5L 1L6
(604) 251-5656

REPORT	NUMBER:	880857	GA	JOB	NUMBER:	880857	PANICO	N DEVELO	PHENT LTD.	PAG	SE 2 OF 2
SAMPLE	#			Au					1		
				ppb							
88282				15							וכתותם
88283	DH			15							144411
88285	DH			5						المسلمال المال	المسالسال المار المار
88286	DH			15						AUG 1	6 1988
88287	DH			15						AUG	0 1300
88288	DH			5							
88289	DH			5							• • • • • • • • • • • • • • • • • • • •
88290	DH			10							
88291	DH			10							
88292	DH			20	: .						
88293	DH			15							
88295	DH			10							
88296	DH			20							
88297	DH			nd				å.			
88299	DH			25							
											9 84.4
	DH			30							
	DH			20				Star .			
	DH			10							
	DH			20							
88305	DH			25							
88306	DH			15							
	DH			5							
	DH			nd							
	DH			40						The second of the second of	
88311	DH			10							
88312	DH			20							
	DH			15							
	DH			30							
	DH			10							

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX: 04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

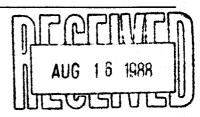
ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SM, NM, FE, CA, P, CR, H6, BA, PD, AL, NA, K, N, PT AND SR. AU AND PD DETECTION IS 3 PPM.

IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: PAMICON DEVELOPMENT ATTENTION: B KEISMAN REPORT#: 880857 PA JOB#: 880857 DATE RECEIVED: 88/08/03
DATE COMPLETED: 88/08/14

ANALYST //


PROJECT:	AC	HILL	LIES						INVO	ICE#:	880) 8 57	NA			COP	Y SE	NT T	0:			•				ANAL	YST_	0//	(4)	
																							PAG	iE 1 0 f	2					
SAMPLE NAME		AG PPH	AL Z	AS PPH	AU PPM	BA PPM	BI PPH	CA 1	CD PPM	CO PPM	CR PPM	CU PPN	FE 1	K	#6 %	MN PPM	MO PPM	NA Z	NI PPH	P	PB PPN	PD PPH	PT PPM	SB PPM	SN PPH	SR PPN	U	W PPM	ZN PPN	
AM 880132 AM 880133 AM 880134 AM 880135 AM 880136			2.86 3.26 2.70 3.51 3.22	MD 39 45 MD 11	MD MD MD MD MO	27 112 124 36 33	ND ND ND ND	.02 .04 .04 .02 .02	2.1 1.1 1.4 .9	5 14 24 10 3	9 28 21 10 9	30 106 101 34 27	2.48 3.87 4.00 4.54 5.18	.02 .03 .04 .03	.09 .84 .95 .15	122 467 1436 1200 214	3 3 6 6	.04 .03 .03 .05	4 23 23 5 5	.07 .03 .09 .09	135 42 42 36 63	MD MD MD MD	ND NB ND ND	MD MD MD MD	3 ND ND 2 2	3 5 5 3 2	MB MB MB MB MD	MD MD MB MB	144 174 240 11B 105	
AM 880137 AM 880138 AM 880139 AM 880140 AM 880142		.1 .9 .1 .1	2.84 4.88 5.69 3.35 5.35	22 ND ND 14 ND	ND ND ND NB	56 29 46 44 52	MB MD MD MB	.02 .01 .03 .02	.8 1.1 1.1 .9	5 1 5 5 3	17 14 34 33 3	35 28 75 36 16	3.99 4.70 3.87 5.27 3.96	.02 .03 .02 .02	.21 .04 .10 .20	778 190 535 376 646	5 5 3 4 5	.02 .05 .02 .03	8 1 7 8 6	.11 .05 .10 .07	35 49 85 90 46	ND ND ND NO	MB ND ND MB ND	MD MD MD MD	NB ND ND ND	3 1 3 3	ND ND ND NB ND	ND ND ND ND ND	113 78 118 130 157	
AM 880144 AM 880145 AM 880146 AM 880147 AM 880148			5.51 2.74 6.10 2.90 5.38	12 9 ND 10 ND	NO ND ND ND	55 47 55 46 44	MD MB MB MD MB	.04 .02 .02 .04	1.1 .8 .9 .6	9 6 4 7 4	12 11 1 12 4	109 50 20 46 28	4.66 5.41 4.29 3.60 4.91	.03 .01 .02 .01	.39 .22 .09 .34	517 303 892 334 780	6 7 5 3 6	.04 .03 .05 .02	10 6 4 8 3	.08 .07 .05 .07	42 28 39 24 66	ND ND ND ND	ND ND ND ND	MB MD MB MB MB	ND 3 ND ND	4 3 1 4	ND ND ND ND	ND ND ND ND	152 93 162 100 178	
AM 880152 AM 880153 AM 880154 AM 880155 AM 880156		.1	4.77 4.58 4.23 7.29 4.63	ND 4 77 ND ND	ND ND ND ND	96 101 41 34 57	ND ND ND ND ND	.03 .04 .02 .02	1.1 1.4 .7 .9 1.2	3 14 8 3 7	2 19 11 3 15	23 52 49 19 33	4.50 4.48 4.51 4.50 5.19	.05 .01 .03 .04	.09 .57 .27 .05	762 705 314 868 740	7 5 9 8 7	.07 .02 .05 .05	4 47 11 3 7	.04 .06 .09 .08	44 23 77 51 50	MD MD MD MD MD	ND ND ND ND	MD MD MD MD	ND ND 1 ND	1 4 2 1 2	MD MD MD MB	NB NB ND ND	208 249 166 128 105	
AM 880157 AM 880158 AM 880159 AM 880160 AM 880161		.4 .2 .1 .1	3.30 2.66 3.22 3.56 3.59	8 14 14 16 8	MB MD MD MD	43 38 54 54 51	ND ND NO ND	.03 .04 .04 .04	.9 .8 .8 1.1	5 5 8 7 8	10 7 12 18 9	65 25 50 44 44	4.28 3.04 3.72 5.90 4.30	.03 .03 .04 .02	.25 .21 .39 .59	200 507 315 375 534	6 4 4 6 5	.04 .03 .04 .03	9 7 9 12	.07 .09 .07 .08	92 43 33 33 42	OPA ME ME ME ME ME ME ME ME ME ME ME ME ME	NO ND ND ND	MD MB MB MD	3 2 1 ND ND	3 4 4 4 3	N# NED NED NED NED	ND NB NG ND	174 101 139 115	
AM 880162 AM 880163 AM 880164 AM 880165 AM 880166		.2 .1 .1 .1	2.88 3.40 2.22 2.87 5.36	22 16 14 24 12	ND ND ND ND	77 55 118 68 46	MD MD MB MB	.08 .73 .06	1.1 1.7 4.4 .9	17 6 32 9 4	21 10 8 14 7	79 33 25 51 78	3.84 5.76 3.22 4.90 3.69	.05 .04 .15 .02	.73 .41 .35 .42 .18	765 371 14545 1197 186	4 4 2 4 4	.05 .03 .04 .03	25 5 8 10 5	.08 .09 .14 .09	39 29 248 30 41	ND ND ND ND	MD MD MD MD	ND ND ND ND	NED NED NED NED NED	6 4 11 5 5	160 160 160 160	MD MD MD MD	245 127 705 137 105	
AM 890168 AM 880169 AM 880170 AM 880171 AM 880172		.1 .1 .1	2.74 4.57 3.79 3.61 3.46	61 380 12 120 22	MD MD MD MD	278 102 126 216 34	MD 4 ND 3 NO	.06 .28 .02 .11	1.6 .2 1.2 2.3	24 50 12 46 2	18 35 15 31 7	97 209 59 178 17	4.70 8.01 4.95 5.87 4.58	.03 .07 .01 .05	1.04 1.09 .66 1.16	1168 1560 851 3481 119	3 B 3 4 6	.04 .03 .02 .05	32 35 11 32 2	.05 .17 .08 .11	20 83 21 243 43	NO NO NO NO	ND ND ND ND	MB MB MB MB	NB NB NB NB NB	7 8 5 7	MD MD MD MD	NB ND ND NB	189 166 143 569 83	
88278 BH 88279 BH 88280 BM 88281 BH		.2 .1	6.17 3.52 2.90 2.82	ND 9 4 ND	ND ND ND	146 81 46 75	MD MD MD	.03 .03 .02	1.1 1.1 .6 .7	3 9 4 6	1 9 7 7	11 29 17 33	4.60 4.23 2.71 3.42	.04 .03 .02 .03	.08 .36 .12 .15	757 1236 123 569	6 5 5 4	.07 .04 .03 .03	3 14 4 5	.07 .10 .09	47 33 37 27	ND ND ND	ND ND ND	HD HB HB	ND NB 3	1 2 2 2	MD MD MD	160 118 160 110	168 179 70 92	
RETECTION LINES	₹ .	4 .	84	*			-		4					64	44					44		-	-			•		2	4	

.01 .01 .01

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENT LTD.

ADDRESS: 711-675 W. Hastings St.

: Vancouver, B.C.

: V6B 1N4

DATE: Aug 08 1988

REPORT#: 880854 GA

JOB#: 880854

PROJECT#: Achilles

SAMPLES ARRIVED: Aug 03 1988

REPORT COMPLETED: Aug 08 1988

ANALYSED FOR: Au (FA/AAS)

INVDICE#: 880854 NA

TOTAL SAMPLES: 6

SAMPLE TYPE: Rock

REJECTS: DISCARDED

SAMPLES FROM: Bronson Camp

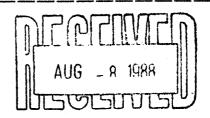
COPY SENT TO: Smithers & Vancouver Offices

PREPARED FOR: Mr. Bill Keisman

ICP

ANALYSED BY: VGC Staff

SIGNED:


GENERAL REMARK: Invoice sent to Vancouver Office

VANGEOCHEM LAB LIMITED
MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

VANCOUVER, B.C. V5L 1L6
(604) 261-6656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENT LTD:

ADDRESS: 711-675 W. Hastings St.

: Vancouver, B.C.

: V6B 1N4

DATE: Aug 03 1988

REPORT#: 880791 GA

JOB#: 880791

PROJECT#: Achillies

SAMPLES ARRIVED: July 26 1988 REPORT COMPLETED: Aug 03 1988

ANALYSED FOR: Au (FA/AAS) ICP

INVOICE#: 880791 NA

TOTAL SAMPLES: 2

SAMPLE TYPE: Rock

REJECTS: SAVED

SAMPLES FROM: Smithers, B.C.

COPY SENT TO: Smithers & Vancouver Offices

PREPARED FOR: Mr. Bill Keisman

ANALYSED BY: VGC Staf

SIGNED:

GENERAL REMARK: Invoice sent to Smithers & Vancouver Offices

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
1630 PANDORA ST.
VANCOUVER, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717
VANCOUVER, B.C. V5L 1L6

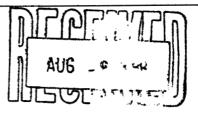
VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 880791 GA	JOB NUMBER: 880791	PANICON DEVELOPMENT LTD.	PAGE 1 OF 1
SAMPLE #	Au		
SMALLE #	Au		
	ppb		
23036	nd		
	•		
23037	nd		

REPORT 8: 880791 PA		1	ANICON	DEVELOP	HENT	1	^t roj: M	CHILLIE	S	Date	in: 88/	07/26	Date	e Out:81	/08/05	At	t: B KE	ESMAN		V8C	ICP RE	PORT			Pag	ge la	of 1	
Sample Number	Ag	A1	As	Au	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mo	No	Na	Ni	P	Pb	Pd	Pt	Sb	Sn	Sr	U	*	Zo
	ppa	1	ppa	990	998	ppa	Z	ppa	ppa	pps	ppa	1	1	ž	pps	ppe	1	ppa	7	ppa	ppa	ppa	ppe	224	666		-	800
23036	0.6	1.58	R	(3	17		0.48	2.1	• • • • •	35		8.53	0.06	1.22	509	77						• •		• • •	pps	ppe	ppa	ppe
					**			211								,	0.02	11	0.04	17	₹3	₹5	(2	⟨2	15	(5	₹3	87
23037	9.6	1.64	41	₹3	67	5	0.80	1.1	22	61	196	4.40	0.08	1.48	306	4	0.02	10	0.17	16	⟨3	₹5	₹2	2	19	⟨5	₹3	90
Minimum Detection	0.1	0.01	3	3	1	3	0.01	0.1	. 1	1		0.01	0.01	0.01	1	•	0.01	1	0.01	•	•		•	•				
Maximum Detection	50.0	10.00	2000	100	1000	1000			****		****				*****							. 3		7	i	3	3	1
				100	1000				20000	1000			10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	2000	1000	10000	100	1000	20000
< = Less than Minimum	is = Insu	lficient	Sample	AS #	No samp	le >¤	Greate	r than	Maxieue	AuFA	= fire	assay/	AS															

AUG -R IUAR

(


(

•

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. VSL 1K5
(604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENT LTD.

ADDRESS: 711-675 W. Hastings St.

: Vancouver, B.C.

: V6B 1N4

DATE: July 30 1988

REPORT#: 880788 GA

JOB#: 880788

PROJECT#: Achillies

SAMPLES ARRIVED: July 26 1988

REPORT COMPLETED: July 30 1988

ANALYSED FOR: Au ICP

INVOICE#: 880788 NA

TOTAL SAMPLES: 35

SAMPLE TYPE: 35 Soil

REJECTS: DISCARDED

SAMPLES FROM: Bronson Camp

COPY SENT TO: Vancouver & Bronson Camp Offices

PREPARED FOR: Mr. Bill Keisman

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office.

VANGEOCHEM
MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717

VANCOUVER, B.C. V5L 1L6
(604) 251-5656

(604) 251-5656

REPORT	NUMBER:	880788	GA JO	B NUMBER:	880788	PAMICON DEVELOPMENT LTD.	PAGE	1 OF
SAMPLE 88101 88102 88103 88104 88105				b 0 5 5 5				
88106 88107 88108 88109 88110			1 2 1 1	0 5 5				
88111 88112 88113 88114 88115 88116 88117 88118 88119 88120	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1 1	0 5 5 5 0 0				
88121 88122 88123 88124 88125			2 2 1 1)				
88126 88127 88128 88129 88130			20 11 10 3	i) 				
88131 88132 88133 88134 88135			2: 1: 1: 1: 2:))				

AUG - 8 1988

(

(

(

110

VANGEOCHEM LAB LIMITED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, MN, FE, CA, P, CR, MG, BA, PD, AL, NA, K, N, PT AND SR. AU AND PD DETECTION IS 3 PPM.

IS= INSUFFICIENT SAMPLE, NO= NOT DETECTED, -= NOT ANALYZED

COMPANY: PAMICON DEVELOPMENT REPORT#: 880788 PA DATE RECEIVED: 88/07/26 ATTENTION: B KEISMAN JOB#: 880788 DATE COMPLETED: 88/08/07 PROJECT: ACHILLIES INVOICE#: 880788 NA COPY SENT TO: ANALYST PAGE 1 OF 1 SAMPLE NAME CA CD CO CR CU FE MO NI PR SR PPM PPH 7 PPM PPM PPH PPN PPH PPM PPH 88101 2.74 12 1.1 14 21 4.89 .02 .79 662 -01 15 22 102 9 88102 3.29 .1 8 ND 65 .14 1.1 19 20 82 4.49 .02 .91 1159 2 .01 14 .06 19 M9 ND ₩Ð 10 MB Mħ 106 88103 . 1 3.59 3 ND 94 ND .17 20 1.6 21 110 4.90 .02 .93 1235 3 .02 14 .05 24 ND ND ND MĐ 14 110 88104 2.1 8.00 ND ND 23 MB .04 1.2 2 29 5.14 .03 .06 704 7 .06 ND 64 ND МΛ NĐ ₩D 1 .10 136 1 88105 4.23 ND ND 14 ND .03 .8 4.75 .03 .10 631 .04 45 ND ND ND 3 3 ND 93 88106 .1 4.87 23 .15 1.3 12 10 155 5.16 .03 .52 1245 38 .02 32 121 88107 1.8 6.09 NB ND 3 .04 33 6.79 . 04 .05 528 1.7 1 6 .06 .07 55 2 ND ND ND ND 73 88108 ND .1 4.59 ND 35 ND .06 15 35 .02 .34 267 1.5 5 6.71 .02 .08 ND 5 29 ND ND NĐ 69 88109 .1 4.27 ND ND 54 3 .25 1.3 17 20 126 5.19 .04 .85 1037 .03 ND 19 .06 32 ND ND 40 ND 111 88110 1.92 12 MD 13 ND .27 .1 1.1 10 7 5.22 .03 .22 288 .01 .08 30 ND 35 65 88111 2.62 .40 3.2 21.39 .06 1.13 1212 .04 3 .20 29 70 101 88112 4.58 26 ND 75 .12 31 19 186 .1 1.2 6.30 .02 .64 1933 .02 12 .10 40 ND MB 14 NĐ ND 133 88113 2.22 ND 93 .1 36 .13 2.4 66 19 459 4.91 .03 .91 2020 6 .04 31 .08 18 ND ND ND ND NĐ 468 11 88114 .1 3.75 ND 9 .03 1.2 9 23 6.85 .02 .07 1064 .03 ND 7 .08 ND MD ND 98 3 44 2 2 ND 88115 .3 5.24 ND ND 15 .03 9 10 25 5.79 .07 1468 1.2 .02 7 -04 .07 48 ND NO MD ND ND 3 2 94 88116 273 . 1 2.27 30 .22 1.1 18 22 177 4.55 .03 .85 .01 17 .08 25 128 14 88117 .4 2.32 9 ND 20 ND .17 1.1 7 95 3.04 .02 .08 335 .02 .08 MD MD ND 9 3 51 12 MĐ 72 88118 .1 2.43 11 ND 61 HD .11 15 17 60 4.09 .02 .77 1060 2 ND MD 1.1 .01 13 .02 19 MD MD 12 ND MD 115 88119 .3 5.67 ND ND 39 ND .05 545 1.1 3 5 14 4.59 .02 .08 6 .05 2 .06 52 ×D ND М MO 1 MA ND 108 88120 1.1 5.85 ND MD 21 ND .04 2 17 5.29 .02 .08 673 . 05 2 .07 54 ND WD MB ND 124 2.83 88121 MO 600 32 .03 5067 .1 .12 7.41 .45 .03 1.2 .10 20 88122 2.08 MD ND 63 .05 19 3822 .1 2.1 16 11.67 .01 .30 10 .02 .11 5 ND MB ΝĐ 78 88123 .4 4.94 ND ND 22 MD .02 1.6 11 22 8.76 .02 .05 176 7 .04 .05 43 ND NĐ 69 ND 88124 .1 3.95 ND 70 ND .06 5 21 .03 .25 351 .03 .8 4.35 6 .05 39 ND ND ND ND NĐ 110 4 88125 1.1 4.87 NB 14 ND .02 19 782 4.99 .01 .07 .03 .05 50 ND ND ND 90 88126 .1 2.91 MD 79 MB .07 1.1 10 15 5.04 .02 .05 1304 .02 2 35 81 .06 88127 .1 4.65 168 ND MD .07 12 18 57 .32 622 51 4.62 .03 12 .03 65 ND MD .4 .06 47 5 НĐ 240 88128 3.4 5.66 MD MD 96 KĐ .07 25 4.77 .05 .07 808 ND 1.2 8 9 .07 4 .04 63 ND MD MD 2 MD MD 126 88129 6.05 MĐ ND ND .02 1.8 11 1.6 2 8 13 6.37 .04 .04 169 .05 .05 59 MD ND ND 1 MĐ ND 61 88130 .5 3.24 10 MD 27 ND .05 26 .03 .20 702 .04 ND MD 117 88131 2,97 .06 1.2 21 6.23 .04 .08 2441 9 .05 3 82 .08 3 88132 3.1 6.56 ND ыD 21 3 .03 1.3 2 7 12 7.08 .04 .03 618 .07 .05 ND ND MD 8 1 61 MD MĐ 75 88133 .1 4.04 3 NĎ 34 ND .03 1.3 10 20 5.73 .02 .14 736 7 .03 .08 39 ND ΝĐ MĐ MĐ MD ш 98 2 88134 ND ND 112 ND . 20 1.1 4.69 1.2 2 12 13 .04 .04 123 7 .03 .07 49 ND MD ND MD 61 5.73 2

6.08

1.8

MD

ĦĐ

23

ND

.04

1.2

21 5.59

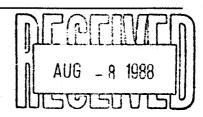
.04

.08

1013

9

2 .08


88135

VANGEOCHEM LAB LIMITED MAIN OFFICE AND LABORATORY BRANCH OFFICE

1988 Triumph Street Vancouver, B.C. VSL 1K5 (604)251-5656 FAX:254-5717

1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENT LTD.

ADDRESS: 711-675 W. Hastings St.

: Vancouver, B.C.

: V6B 1N4

DATE: Aug 03 1988

REPORT#: 880775 GA

JOB#: 880775

PROJECT#: Achillies

SAMPLES ARRIVED: July 25 1988 REPORT COMPLETED: Aug 03 1988

ANALYSED FOR: Au (FA/AAS)

INVOICE#: 880775 NA

TOTAL SAMPLES: 3

SAMPLE TYPE: Rock

REJECTS: SAVED

SAMPLES FROM: Smithers, B.C.

COPY SENT TO: Smithers & Vancouver Offices

PREPARED FOR: Mr. Bill Keisman

ICP

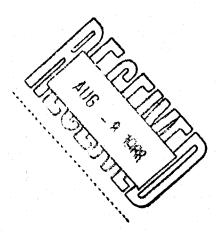
ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Smithers & Vancouver Offices

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX: 254-5717


SPANCH OFFICE
1630 PANDORA ST.
VANCOUVER, B.C. V5L 1L6
(604) 251-5656

VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER:	880775 GA	JOB NUMBER:	880775	PANICON DEVELOPMENT	LTD.	PAGE 1 OF 1
SAMPLE #		Au ppb				
23033		nd				
23034 23035		nd nd				

REPORT 8: 880775 PA		. 1	AMICOM	DEVELOP	MENT	F	roj: AC	RILLES		Date	la: 88/	07/25	Bate	Out :81	3/08/05	Atl	t: B KE	ESMAN -		Vec	ICP RE	PORT			Pag	je t	of 1	
Sample Number	Ag	-	As	Au	Ba	Bi	Ca	Cq	Co	Cr	Cu	Fe	K	Ħg	Kn	No	Na	Ni	P	Pb	Pd	Pt	Sb	Sa	Sr	U		Ze
	ppa		. ppa	ppa	ppa	ppa	I	ppa	ppa	ppa	ppa	Z	I	Z	ppa	pps	- 1	ppe	1	ppe	ppa	ppa	ppe	994	994	998	ppe	808
21033	0.6	0.88	20	₹3	25	⟨3	1.01	3.2	37	103	236	4.44	0.11	0.44	251	6	0.02	35	0.17	54	⟨3	(5	(2	7	24	75	(3	360
21034	1.6	2.13	65	₹3	60	4	0.17	3.2	14	31	136	5.98	0.03	1.76	512	13				260	⟨3	(5	(2	(2		(5	⟨3	
21035	0.1	0.88	8	⟨3	105	⟨3	0.26	0.8	13	111	30		0.05	0.43	673	(1	0.01	5	0.03	11	(3	₹5	(2	⟨2	i	(5	⟨3	
Minious Detection	0.1	0.01	3	3	. 1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	. 2	3	S	2	. 2		5	3	. 1
Maximum Detection	50.0	10.00	2000	100	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	2000	1000	10000	100	1000	20000
< = Less than Minimum	is = lasu	fficient	Sample	AS = 1	lo sampi								AS	2		-300							*444	. 444	14440	100	1400	20000

(

(

•

(

1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

1630 PANDORA ST VANCOUVER, B.C. V5L 116 (604) 251-5656 AUG (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENT LTD.

ADDRESS: 711-675 W. Hastings St.

: Vancouver, B.C.

: V6B 1N4

DATE: July 22 1988

REPORT#: 880743 GA

JOB#: 880743

PROJECT#: Achillies

SAMPLES ARRIVED: July 20 1988 REPORT COMPLETED: July 22 1988

ANALYSED FOR: Au (FA/AAS) ICP

INVOICE#: 880743 NA

TOTAL SAMPLES: 7

SAMPLE TYPE: Rock Chip

REJECTS: SAVED

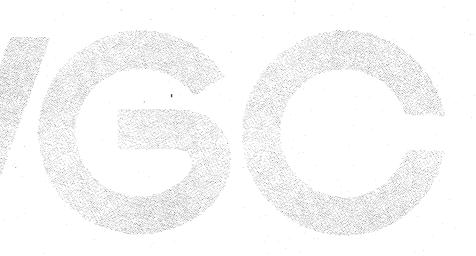
SAMPLES FROM: Smithers, B.C.

COPY SENT TO: Vancouver Office & Bronson Office

PREPARED FOR: Mr. Bill Keisman

ANALYSED BY: VGC Stat

SIGNED:


GENERAL REMARK: Invoice sent to Vancouver Of Nice

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

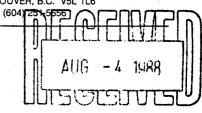
BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 880743 GA	JOB NUMBER: 880743	PANICON	DEVELOPHENT	LTD.	PAGE 1	OF 1
SAMPLE #	Au		· ·			
	ppb					
23026	nd					
23027	nd					
23028	nd .					
23029	nd					
23030	nd					
23031	nd					
23032	nd					

MAIN OFFICE: 1521 PEMBERTON AVE. N. VANCOUVER B.C. V7P 263 PH: (604)986-5211 TELEX: 04-352578 BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L 1L6 PH: (604)251-5656

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:2 HCL TO HWO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH MATER. THIS LEACH IS PARTIAL FOR SM, MM, FE, CA, P, CR, MG, BA, PD, AL, NA, K, N, PT AND SR. AU AND PD DETECTION IS 3 PPM.


IS= INSUFFICIENT SAMPLE, MD= MOT DETECTED, -= MOT AMALYZED

COMPANY: P ATTENTION: PROJECT: A			VELO	PMEN	ſΤ			REPOF JOB#: INVO	886	743						E CO		TED:		7/20 07/3	•				ANAL	.YST_	4	by	
																						PA	E 10	Fl					
SAMPLE MAHE	AG PPN	M.	AS PPH	AU PPH	SA PPH	BI	CA I	C9 PPH	CO PPH	CR PPH	CU PPN	FE I	K	#6 Z	MN PPN	MO PPM	MA Z	NI PPH	P	PB PPH	PB PPH	PT	SB PPH	SN PPN	SR PPM	8 PPN	U PPH	ZN PPN	
23026 23027 23028 23029 23030	.2 .1 .1 .1	.22 .15 .15 .11	29 31 ND 25 92	NO NO NO	87 65 2108 69 133	160 160 160 160 160	.28 .63 1.01 2.09 .18	.1 .3 .4 .4	3 1 3 1 2	82 74 89 50	103 36 28 49 1588	.56 .97 1.40 1.68 .82	.02 .04 .08 .11	.03 .12 .16 .82	163 567 774 952 313	1 1 1 1 2	.01 .01 .01 .01	9 4 8 8	.01 .01 .01 .01	78 40 20 20 15	MB MB MB MB	MB MB MB MD MB	HB HB HB HB)(5))(5))(6))(5))(8)	3 5 52 9 4	119 149 149 149 149	165 165 165 165 165	41 28 23 35 27	
23031 23032	.1 .1	.34 .31	31 17	119 119	96 335)69)48	.03 4.%	.1 .2	2	7 3 72	33 31	.46 2.16	.01 .19	.03 2.12	101 1061	1	.01 .01	6 64	.01 .02	16 12	MB MB	ND NS	MB	ND NO	5 25	16 0 110	119 119	19 18	
DETECTION LINIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	. 1	

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6

GEOCHEMICAL ANALYTICAL

CLIENT: PAMICON DEVELOPMENT LTD.

ADDRESS: 711-675 W. Hastings St.

: Vancouver, B.C.

: V6B 1N4

DATE: July 26 1988

REPORT#: 880737 GA JOB#: 880737

PROJECT#: Achillies

SAMPLES ARRIVED: July 20 1988

REPORT COMPLETED: July 26 1988

ANALYSED FOR: Au (FA/AAS)

ICP

INVOICE#: 880737 NA

TOTAL SAMPLES: 79

SAMPLE TYPE: Silt/Humus

REJECTS: DISCARDED

SAMPLES FROM: Smithers, B.C.

COPY SENT TO: Vancouver & Bronson Offices

PREPARED FOR: Mr. Bill Keisman

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office

nd = none detected

-- = not analysed

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 3 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REP	ORT N	UMBER:	880737	7 GA	JOB	NUMBER:	88073	37	PAMICON	DEVE	LOPMENT	LTD.			PAGE	1 OF
SAM	PLE #				Au											
DH	8800				ppb											
on DH	8800				10											
DH	8800				nd 10											
)H	8800				5											
DH	8800				10											
DH	8801				5											
DH	8801				10											
DH	88019				10											
DH RF	8802: 8800:				15 10											
•••	0000	_			10											
RF	8800				15											
RF	8800				5									1147-55-75w		
RF	8800				15							1,5				
RF DE	8801				20											5.4
RF	8801	L			15								Real West			
₹F	8801	4			10						75 T				100	
RF	8801				15					111						
₹F	8801				20					. V.W.						
RF	8801	7			20							de f Egrap				4641.8355x
RF	8801	B			20								:		J.	
oc	0000	۸			1.4								A Spanie		, 1879.	
rf Rf.	8802 8802				10 15											
	GC 01				20											
	GC 02				15			#6, 9 ms.	16 57 7					40.0984s		
	GC 03				25											
	GC 04				30											
	GC 05 GC 06				30											
	6C 07				10											
	GC 08				15 10											
1	vu				10											
88	GC 09				20											
	GC 10				10											
	6C 11				5											
	GC 12				10								5"			
58	6C 13				20											
RA I	GC 14				15											
	GC 15				25											
	GC 16				30											
	GC 17				10											
					Jan -		100								Springle Service	

is = insufficient sample

nd = none detected

-- = not analysed

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5 3
(604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

RE	PORT	NUMBER:	880737 GA	JOB NUMBE	R: 880737	PAMICON DEVELOP	PHENT LTD.	PAGE 2 OF 3
Si	MPLE	#		Au				
81	3 6C	18		ppb 20				
	GC :			30				
	GC :			30				
	GC :			15				
88	GC :	26		25				
00	60 :	77		20				
	6C :			30 30				
	GC :			15				
	6C			20				
88	GC :	31		25				
-		80		**				
	GC :			20				
	GC:			15 15				
		IS 01		35				
		HS 02		5				
		4S 03		10		. 11. 15.15.25.25.25.25.		
		HS 04 HS 05		20 25				
		HS 06		10				graduate / g .
		4S 07		15				
		HS 08		15		가 보고 있다. 이 경찰에 다 가장 시간 중 한 경우		
		IS 10		10				
		HS 11 HS 12		25 10				
		IS 12		20				
•								
		4S 14		20				
		HS 15		15				
		IS 16 IS 17		25				
		IS 18		15 25				
		.0 10		10				
88	GC I	HS 19		25				
		łS 25		5				
		HS 26		15				
		IS 27		20				
35) U	HS 29		10				
88	GC I	I S 30		10				
		HS 31		10				
86	6C I	HS 32		20				
88	6C 1	HS 33		15				
			and the second					

is = insufficient sample

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5 3
(604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT NUMBER: 880737 GA

JOB NUMBER: 880737

PAMICON DEVELOPMENT LTD.

PAGE 3 OF 3

SAMPLE #

Au

ppb

88 GC HS 34

10

DETECTION LIMIT nd = none detected

5

-- = not analysed is = insufficient sample

VANGEOCHEM LIMITED

MAIN OFFICE: 1521 PEMBERTON AVE. N. VANCOUVER B.C. V7P 283 PH: (604)986-5211 TELEX-04-352578 BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L 1L6 PH: (604)251-5656

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:2 HCL TO HNO3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH MATER. THIS LEACH IS PARTIAL FOR SM, MM, FE, CA, P, CR, MG, BA, PD, AL, MA, K, M, PT AND SR. AU AND PD DETECTION IS 3 PPM.

IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

COMPANY: PAMICON DEVELOPMENT ATTENTION: PROJECT: ACHILLIES REPORT#: 880737 PA JOB#: 880737 INVOICE#: 880737 NA DATE RECEIVED: 88/07/20 DATE COMPLETED: 88/07/30 COPY SENT TO: AUG -4 1088

ANALYST 2.6.

DACE	ar	2
TABL	ur	3

																														//
SA	MPLE NAME		AS PPM	AL I	AS PPM	PPH	BA PPN	B (PPM	CA I	CB PPN	CG PPH	CR PPM	CU PPM	FE I	K	MG Z	MM PPM	MO PPN	NA Z	NI PPN	P	PB PPN	PD PPH	PT PPH	SB PPH	SN PPH	SR PPM	U PPM	N PPH	ZN PPH
94 94 94	88001 88002 1 88005 1 88007		.1 .1 .1 .1	1.47 1.58 1.94 1.65 1.50	8 6 25 5 7	ND NO ND ND	134 112 564 141 114	MB MB MD MD	.49 .47 .29 .56 .70	.6 .7 1.0 .5	19 27 14 22 19	14 16 15 15	57 79 79 67 55	3.25 3.90 4.01 3.30 2.99	.03 .03 .02 .04	.98 1.08 .79 1.11 1.02	592 734 1345 661 580	ND 1 2 ND ND	.01 .01 .01 .01	9 12 14 10 10	.06 .05 .05 .05	8 10 16 9 11	MD MD MD MD	ND ND ND ND	ND ND NO ND	MD MD MD MD MD	26 24 17 29 26	MD MD MD MD	ND ND ND	62 52 146 70 53
84 84 84	1 88011 1 88013 1 88019 1 88022 88003		.1	1.11 1.63 2.57 3.31 2.00	137 11 ND ND 31	MD MD MB MB	449 217 510 623 204	MD MD MD MD	.23 .46 .62 .85 .48	2.7 .6 .6 .9 2.3	15 21 10 6 16	10 15 9 7 16	36 65 49 30 104	3.23 3.79 3.45 3.90 3.81	.02 .03 .05 .06	.42 1.05 .53 .32 .95	1562 789 1601 1578 1348	4 1 4 4 3	.01 .01 .01 .03	45 12 5 4 21	.04 .06 .08 .09 .07	12 8 22 38 17	MD MD MD MD	ND ND ND ND	MD OM OM OM OM	ND ND ND ND	12 26 41 113 19	MB MB MB MD MD	MD MD MD MD	303 78 114 146 291
RF RF	88004 88006 88008 88010 88012		.1	1.82 1.67 1.50 1.44 1.28	27 29 11 11 154	ND ND ND ND	231 327 115 112 602	MD MD MD MD	.42 .27 .49 .71	2.0 .9 .7 .5 3.0	15 15 21 19 17	18 14 15 14 14	89 75 63 60 50	3.71 3.59 3.52 3.01 3.28	.03 .02 .04 .05	.94 .81 1.01 .99 .44	1392 1053 616 562 1879	2 2 1 ND 4	.01 .01 .01 .01	21 14 11 10 53	.07 .06 .05 .05	14 18 9 8 18	ND ND ND ND	ND ND ND ND	MD ND ND MD ND	ND ND ND ND	19 15 24 24 16	MD MD MD MD	MD MD MD MD	189 108 51 47 307
RF RF	88014 88015 88016 88017 88018		.i .i .i .1	.87 1.60 1.69 1.59 2.70	16 3 ND 5 ND	MD MD MD MQ MQ	565 745 157 198 540	ND ND ND ND	.20 .31 .58 .30 .80	.5 .7 .7 .6	6 12 22 12 5	6 10 17 24 7	13 37 71 25 42	2.62 3.64 3.74 3.02 2.57	.02 .03 .04 .02	.36 .59 1.22 .85 .29	753 1454 669 947 969	2 3 ND 1	.01 .01 .01 .01	6 12 13 10 3	.05 .05 .05 .04 .08	9 16 6 12 33	MĐ MĐ MĐ MĐ	MD MD MD MD	MB MD MD MD	MD MD MD MD	15 22 24 17 51	ND ND ND ND	MD MD MD MD MD	48 81 62 68 123
86 88	88020 88021 9C 01 8C 02 SC 03		.1 .1 .2 .1	2.21 2.24 2.41 2.81 2.66	MD MD MD 89 199	ND ND ND ND	309 198 221 218 298	MB MB MB MB	.41 .56 .51 .33	.7 .9 1.3 4.2 6.8	11 22 31 10 9	10 31 22 5 6	35 69 193 45 60	4.24 4.33 5.59 3.37 2.84	.03 .03 .03 .03	.61 1.58 1.60 .23	683 853 1235 2319 2037	4 1 3 18 20	.01 .01 .01 .03	7 15 16 15 8	.06 .06 .07 .05	18 6 10 38 34	MD MD MB MD MD	ND ND ND ND	MD MD MD MD MD	MD MD MD MD	29 29 32 14 25	MD MB MB MD MD	MD MD MD MD	86 71 98 343 368
88 88 88	GC 04 8C 05 GC 06 GC 07 GC 08		.1 .1 .1	2.46 2.85 2.90 1.60 1.64	6 MD MD 5 14	ND ND ND ND	219 264 357 120 707	ND ND NS ND	.44 .68 1.25 .63	1.2 1.8 2.4 .5	28 22 25 19 16	20 19 7 14 14	239 490 1246 65 94	4.47 4.19 3.67 3.22 3.81	.03 .05 .09 .04	1.22 1.02 .30 1.08 .79	1457 1538 2350 587 1632	3 2 4 ND 1	.01 .01 .03 .01	17 17 8 9	.06 .07 .10 .04	23 20 32 6 11	MD MB MD MD MD	NED NED NED NED NED	MD OM OM OM OM	ND ND ND ND ND	28 24 21 23 20	MD 200 QM QM QM	ND ND ND ND	148 239 322 65 133
88 88	SC 09 SC 10 SC 11 SC 12 SC 13		.1 .1 .1 .1	2.81 1.65 1.25 2.15 3.16	ND 17 16 7 ND	ND ND ND ND	343 827 115 490 462	NO NO NO NO	.52 .27 .65 1.52 .63	1.3 1.0 .3 .3	28 15 15 6 20	29 15 11 17 23	290 72 42 55 73	5.63 3.98 2.61 2.00 3.96	.03 .02 .04 .08	1.61 .82 .85 .60 1.42	2548 1639 492 1111 1018	4 2 MB MD MD	.01 .01 .01 .01	26 17 7 5	.07 .05 .04 .12 .06	19 12 4 11 12	MD MD MD MD	MB MB MB MD MD	ND ND ND ND	ND ND ND ND	29 21 24 43 33	MS MD MD MD MD	ND ND ND ND	184 145 48 98 83
98 88	GC 14 GC 15 GC 16 GC 17		.1	2.57 2.83 2.50 2.50	ND ND ND	ND NO ND NO	326 598 493 507	ND ND ND	.45 .92 .73 .40	.8 1.2 .9 1.1	7 10 10 15	10 8 9 20	33 38 35 45	5.78 3.30 3.75 4.39	.03 .07 .05	.43 .31 .29 1.13	814 2520 3593 2177	7 6 8 2	.01 .03 .03 .01	3 6 5 14	.06 .10 .08	23 31 29 17	ND ND ND	ND ND ND ND	MD MD MD MD	ND ND ND	22 43 41 16	MD MD MD MD	MD MD MD MD	98 182 115 103
DE	TECTION LINIT	Ī	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	i	i	.01	1	.01	2	3	5	2	2	1	5	3	1

	CLIENT:	PAM	ICON	DEV	ELOP	MENT	JO	B#:	8807	37 1	PROJE	ECT:	ACH	ILLII	ES F	REPOF	?T: 8	8073	7 PA	DA ⁻	TE:	B8/ 07	7/30			PAG	E 2	OF 3		
	SAMPLE MANE		AG PPN	AL I	AS PPH	AU	BA PPM	BI	CA	CD PPM	CO PPM	CR PPM	CU PPM	FE 1	K 1	M6 1	MN PPM	MO PPN	NA 1	NI PPN	P 1	PB PPN	PD PPM	PT PPM	SB PPM	SN PPN	SR PPM	U PPM	U PPM	ZN PPN
	88 GC 18		.i	2.58	ND	ND	458	ND	.30	.8	17	24	48	4.55	.02	1.37	2174	2	.01	17	.05	17	ND	ND	MD	ND	11	ND	ND	110
	88 GC 19 88 GC 20 88 GC 25 88 GC 26 88 GC 27		.1 .1 .1	2.87 3.50 2.77 2.33 2.56	ND ND ND ND	ND ND ND ND	264 331 827 1413 1309	MD MD MD MD	.61 .34 .80 .83	.8 .8 1.1 1.2	10 7 13 10 8	17 15 17 8 14	53 80 45 16	3.49 3.75 3.79 3.06 2.90	.05 .06 .04 .07	.46 .28 .81 .26	1340 838 2683 3532 2958	3 5 3 3	.03 .04 .04 .02	6 2 16 8 10	.08 .07 .06 .08	31 45 25 25 31	ND ND ND ND NO	ND ND ND ND	MD MD MD MD	ND ND ND ND	19 41 16 40 41	MD MD MD MD	ND ND ND ND	105 131 139 193 219
	88 6C 29 88 6C 30 88 6C 31 88 6C 32 88 6C 33		.1	2.42 1.53 2.45 3.57 2.25	ND 10 ND ND ND	ND ND ND ND	995 282 801 435 897	ND ND ND ND	.52 .38 .78 .38 .86	1.2 .2 1.1 1.1 .8	9 4 9 6 B	15 14 11 12 7	23 23 36 29 24	3.60 1.75 3.04 4.82 2.66	.05 .03 .06 .03	.51 .29 .41 .27	3338 222 2962 936 3970	3 3 2 4 2	.02 .01 .03 .01	10 3 6 4 8	.06 .06 .11 .06	25 16 22 41 25	ND ND ND ND	MD DM DM DM DM	ND ND ND NO ND	MD MD MD MD MD	26 27 26 13 28	ND ND ND ND	MD MD MD MD	197 44 136 102 184
	88 6C 34 88 6C HS 01 88 6C HS 02 88 6C HS 03 88 6C HS 04		.1	3.34 2.32 1.93 2.07 2.20	ND ND 72 165 8	MD MB MB MD MD	1083 224 202 214 142	MD MD MD MD MD	.20 .41 .20 .19 .34	.6 1.2 2.4 3.2 1.1	4 33 7 6 22	23 10 8 31	18 241 34 27 137	1.37 5.87 2.92 2.92 4.12	.04 .03 .02 .02	.15 1.62 .25 .22 1.48	203 1137 1198 1256 1058	1 5 10 12 3	.05 .01 .02 .03	3 15 16 9 17	.04 .07 .03 .03	57 14 33 34 18	ND ND ND ND	ND ND ND ND	NB ND ND ND	1 ND 2 1 NO	8 31 10 8 27	ND ND ND ND	NO NO NO ND	135 96 315 306 116
	88 6C HS 05 88 6C HS 06 88 6C HS 07 88 6C HS 08 88 6C HS 10		.1 .1 .1	2.11 2.17 1.62 2.29 1.79	3 MB 10 MD MD	MD MD MD MD	237 232 1318 501 167	MD MD MD MD	.34 .88 .22 .39	.8 .8 .8 1.1	21 22 13 21 19	32 29 24 29 16	134 80 75 180 73	4.12 3.84 3.40 4.58 3.42	.02 .06 .02 .03	1.45 1.56 .88 1.51 1.29	1017 815 928 1278 742	2 1 2 3 ND	.01 .01 .01 .01	17 13 13 19 13	.05 .06 .05 .05	17 8 13 18 9	ND ND ND ND	ND ND ND ND	ND ND ND ND	MD MD MD MD MD	32 34 35 42 24	ND ND ND ND	ND ND ND ND	97 70 105 130 73
	88 GC HS 11 88 GC HS 12 88 GC HS 13 88 GC HS 14 88 GC HS 15		.1 .1 .1	2.97 3.45 2.43 2.83 2.41	11 ND 7 ND ND	MD MD MD MD MD	288 466 219 479 402	MD MD MD MD	.53 .53 .29 .38 .26	.8 .8 .8	15 23 10 9 15	19 23 10 9 21	45 69 28 23 40	4.14 4.30 3.77 3.85 4.30	.04 .04 .02 .03 .02	1.06 1.56 .56 .38 1.20	948 989 645 1910 1667	2 1 7 7 2	.01 .01 .01 .02	9 14 5 4 13	.06 .05 .04 .06	26 18 33 38 19	MD MD MD D MD	ND ND ND ND ND	ND ND NO ND	ND ND ND ND	28 31 18 20 12	NO ND ND ND ND	MD MD MD MD MD	98 79 93 176 87
;	88 GC HS 16 88 GC HS 17 88 GC HS 18 88 GC HS 19 88 GC 28		.1 .1 .1	3.06 1.81 2.66 3.25 2.84	ND 9 ND ND ND	ND ND ND ND	386 232 196 303 1605	ND ND ND NO	.35 .17 .35 .45 1.10	1.2 .6 .6 .6	10 12 9 7	9 33 11 13 12	26 25 39 61 28	4.15 3.09 3.75 3.74 2.66	.03 .01 .03 .05	.35 1.08 .48 .28 .32	2337 903 1169 908 3954	8 1 3 5 2	.02 .01 .02 .03	4 12 4 3 8	.06 .03 .05 .06	44 14 35 46 29	ND ND ND ND	ND ND ND ND	ND ND ND ND ND	ND ND ND ND	22 10 14 29 52	MD MD MD MD	ND ND ND ND	119 64 91 117 207
	88 SC HS 25 88 SC HS 26 88 SC HS 27 88 SC HS 29 88 SC HS 30		.1	2.32 1.73 2.31 1.87	MD 6 MD MD 17	ND ND ND ND	576 734 838 710 165	MD OM OM OM	.20 .20 .29 .22	1.1 .8 1.2 .8	11 7 8 8	10 5 15 12 8	22 10 14 17 8	4.10 3.02 3.35 3.34 1.35	.02 .02 .03 .02	.50 .24 .30 .51	2906 2140 2437 2091 246	4 3 3 2 1	.02 .01 .02 .01	8 6 9 9	.04 .03 .04 .03	32 25 35 20 11	ND ND ND ND	ND MD MD MD MD	ND ND ND ND	ND ND ND ND	8 14 17 15 13	ND ND ND ND	ND ND ND NB ND	161 134 202 165 35
1	88 GC HS 31 88 GC HS 32 88 GC HS 33		.1	2.24 2.38 2.34	ND ND ND	ND ND	431 530 568	ND ND ND	.20 .22 .26	1.1 1.1 1.1	11 11 8	13 13 8	29 26 18	4.19 4.34 3.62	.02 .02 .03	.50 .55 .29	2309 2179 2383	2 2 2	.01 .01 .02	10 10 7	.05 .05 .05	21 25 32	ND ND	ND ND	ND ND ND	ND ND ND	8 10 10	MD MD	ND ND ND	155 164 172
	DETECTION LIN	IT	.1	.01	3	3	1	3	.01	.1	i	1	1	.01	.01	.01	t	1	.01	1	.01	2	3.	5	2	2	1	5	3	1

E.

\$4.2

Mais ____a

CLIENT:	PAM	ICON	DEV	ELOP	MENT	JO	B#:	8807	37	PROJE	ECT:	ACH!	ILLIE	S F	REPOR	T: 8	8073	7 PA	DA	TE:	88/07	7/30			PAG	E 3	OF 3		
SAMPLE NAME		AG PPM	AL 1	AS PPM	AU PPM	BA PPM	BI PPH	CA	CD PPM	CO PPM	CR PPM	CU PPH	FE 1	K	M6	MN PPH	MO PPM	NA Z	NI PPH	P	PB PPM	PD PPM	PT PPM	SB PPM	SN PPH	SR PPM	U PPM	N PPM	ZN PPM
88 6C HS 34		.1	3.04	MD	ND	467	ND	.19	.8	6	5	16	3.75	.02	.17	966	3	.03	2	.04	45	ND	ND	ND	ND	7	ND	ND	142
DETECTION LIN	IT	, .1	.01	3	3	1	3	.01	1	1	1	1	.01	.01	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	1

C

(

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. VIL (604) 251-5656 AUG - 8 1988

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENT LTD.

ADDRESS: 711-675 W. Hastings St.

: Vancouver, B.C.

: V6B 1N4

DATE: July 26 1988

REPORT#: 880729 GA JOB#: 880729

PROJECT#: Achillies

SAMPLES ARRIVED: July 19 1988 REPORT COMPLETED: July 26 1988

ANALYSED FOR: Au (FA/AAS) ICP

INVOICE#: 880729 NA

TOTAL SAMPLES: 56

SAMPLE TYPE: Rock REJECTS: SAVED

SAMPLES FROM: Smithers, B.C.

COPY SENT TO: Smithers & Vancouver Offices

PREPARED FOR: Mr. Bill Keisman

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office

nd = none detected

-- = not analysed

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPOR	T NUMBER:	880729 GA	JOB NU	MBER:	880729	PANICO	N DEVELOP	MENT LTD.		PAGE	i OF	2
SAMPL	E #		Au									
			ppb									
22816			nd									
22851			10									
22852			15									
22853			nd									
22854			nd									
22856			5									
22857			20									
22858			10									
22859			30									
22860			20									
22861			30									
22862			10									
22863			90		us de abélitat de					Tana.		
22934			5		on State of the Control of the Contr							
22935			10									
22936									P			,
22937			10				Pau j					
22938			nd 10									
22939			nd									
22940			nd									
22941			20									
22942			20									
22943			nd									
22944			nd 20							20 May 1		
22945			10									
00045												
22946			nd									
22947			10									
22948 22949			750									
22950			190 30									
12300			30									
22954			nd									
23001			nd									
23002			nd									
23003			10									
23004			20									
23005			30									
23006			260									
23007			30									
23008			30		an ing kalangan kalangan Majarah Balangan							
DETECT	ION LIMI	r	5									

is = insufficient sample

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

REPORT	NUMBER:	880729 6	A JOB	NUMBER:	880729	PAMICON	DEVELOPME	NT LTD.		PAGE	2	OF	2
SAMPLE	#		Au										
			ppb										
23009			15										
23010			20										
23011			30										
23012			nd										
23013			40										
23014			40										
23015			80										
23016			20										
23017			nd										
23018			nd										
23010			HU										
23019			50										
23020													
			nd		i garaga.				arge:NB	r Plant e			
23021			nd										
23022			nd					- 150 Q			<u> </u>		
23023			nd										
					ential) in least					1483			
23024			nd										
23025		5	10							,	1-125-130		

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

ASSAY ANALYTICAL "REPORT"

CLIENT: PAMICON DEVELOPMENT LTD.

ADDRESS: 711-675 W. Hastings St.

: Vancouver, B.C.

: V6B 1N4

DATE: Aug 04 1988

REPORT#: 880729 AA

JOB#: 880729

HOHILLES

PROJECT#: Pez Gold North SAMPLES ARRIVED: July 19 1988

REPORT COMPLETED: Aug 04 1988

ANALYSED FOR: Ag

INVOICE#: 880729 NB

TOTAL SAMPLES: 2

REJECTS/PULPS: 90 DAYS/1 YR

SAMPLE TYPE: Rock Chip

SAMPLES FROM: Smithers, B.C.

COPY SENT TO: Vancouver & Bronson Camp Offices.

PREPARED FOR: Mr. Bill Keisman

ANALYSED BY: David Chiu

SIGNED:

Registered Provincial Assayer

GENERAL REMARK: Fire Assay for Ag > 50 ppm.

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY
1988 Triumph Street
Vancouver, B.C. V5L 1K5
(604) 251-5656 FAX:254-5717

BRANCH OFFICE
1630 PANDORA ST.
VANCOUVER, B.C. V5L 1L6
(604) 251-5656

(604) 251-5656

REPORT NUMBER: 880729 AA

JOB NUMBER: 880729

PANICON DEVELOPMENT LTD.

PAGE 1 OF 1

SAMPLE #

Αg

oz/st

22862

1.46

22948

1.27

DETECTION LIMIT 1 Troy oz/short ton = 34.28 ppm

1 ppm = 0.0001% ppm = parts per million

signed:

ANGEOCHEM L LIMITEI

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-8 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SM, MM, FE, CA, P, CR, MG, BA, PD, AL, MA, K, M, PT AND SR. AU AND PD DETECTION IS 3 PPM.

IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

AUG - 8 1988

COMPANY: PAMICON DEVELOPMENTS LTD. ATTENTION: PROJECT: ACHILLES

REPORT#: 880729PA JOB#: 880729

INVOICE#: 880729NA

DATE RECEIVED: 07/19/88 DATE COMPLETED: 08/02/88 COPY SENT TO:

ANALYST Val

																																A-	
		SAMPLE	NAME		A6	AL	AS	UA	BA	B	i c	A CD	CO	cc												1	PAGE 1	OF 2					
		2816			PPM	1	PPM	PPH		PF		PPI	1 PPM	CR PP			K Z	M: X	G NN PPI	10 1 PP			I P	P8 PP1	PD 1 PP1	PT 1 PPM	SB I PPM	SN PPH	SR	U	W	ZN	
	2	2851 2852			5.1 .1 .6	2.04 .30 .64	3 9 21	ND ND	553	N	2 3.8 D 3.9	7 18.3	1	2	6 593 7 12				15 1096 10 29572				1 .2	27 44	NE			n rea	PP# 195	PPM	PPI No		
		2853 2854			1.5 3.1	.20	127 101	ND ND			9 2.1 8 3.4 6 .8	7 13.8	15	7: 15:	9 35	0 3.12 7 1.75	.3	0 .1	6 660	N	i. 0	5	1 .0 6 .0 4 .0	8 68	NO	ND	ND	2	37 30	ND ND	ND ND		
		2856 2857			.1	.48	9	ND	74		4 11.0	•••	48 81	- 47						2			7 .1		NO NO	ND ND	ND ND	ND 3	25 9	ND ND	ND ND	1562 114	
	:- 2	2858 2859			4.6 .3 .1	1.41 1.48 1.31	49 ND 20	ND ND ND	106 74	15	5 6.8	8 97.4 6 16.2	113 20	90	145	8 3.59	.66 .53 .53	.1	9 2874	15 10 4	.81	1 1		8 1789	MD On	ND ND	ND ND	ND On	9 44	ND ND	67 12	30390 12660	
		2860			i	1.45	17	ND	29 4 5	13 18			32 28	53 98		5.26	.08	. 9:	3 457	4 0 9	.02	2 4	• .13	7 38	ND ND ND	ND ND	ND ND	ND ND	8 32	ND ND	ND ND	1444 174	
	22	2861 2862 2863		6	2.7 5.3	1.11 2.67	51 147	ND ND	70 36	12 15			59 77	4 7	6491 2240		.44			5	.14	-			ND MD	ND ND	ND ND	3 ND	23	MĐ	ND	145	
	22	934 935			3.1 .1 .1	1.92 .51 .86	162 18 15	ND ND ND	21 180	29 8	.44	112.6	848 12	57 111		12.81	.80 .17 .05	.75	707	ND 341 ND	1.29	180	.10	128 313	ND ND	ND ND	468 7	ND 2	20 86 42	ND ND ND	ND 5 24	2290 2640 13767	
		936			.1	.86	16	ND	68 121	6 7	.72	.3	4	170	32	1.12	.08	.20		7	.03		.01 .01	21 18	ND ND	ND ND	ND ND	ND .	20 63	ND ND	ND ND	205 73	
	22	937 938 939			.1	.44	15 17	ND ND	69 65	3	.78	.2	5 2	47 148 135	43 15 12	.59	.01	.43	117	ND 2	.02	5 6	.03 .01	18 12	ND ND	ND ND	ND ND	ND ND	7	ND	ND	73	
		940			.1	.11	25 ND	ND ND	46 1807	6 4	.63 .05	.1	2	57 138	1715 33		.01 .06 .01	.02 .01 .01	99 209 118	3 ND 1	.04	. 5 8	.01	8	ND NO	ND ND	ND ON	ND ND	31 5 7	ND ND	ND ND ND	82 34 25	
	229 229	142			.1	.07 .17	130 ND	ND ND	- 75 30	9 ND	2.54 9.66	1.2	6 7		27395	4.50	.25	.73	896	4	.01	7 31	.01	8 39	ND ND	ND	ND	ND	78	ND	ND	33	
	229 229	44			.1	.15 .07	76 44	ND ND	81 70	9	1.31	.1 .4 .6	4 3	81 132 73	854 12609 21399	1.27 2.63	.65	.11	715 462	ND 9	.01	21 21	.02	2 26	ND ND	ND ND ND	ND ND ND	OM D DM	11- 37	ND ND	ND ND	30 22	
	229	-			.1	.14	101	ND	143	. 6	.34	.2	4	141	4717	3.25 1.18	.17	.17	578 269	1	.01 10.	11 12	.01 .01	45 14	ND ND	ND ND	ND ND	ND ND	6 19 6	ND ND ND	ND ND ND	24 15	
	229 229	47			.1 .1 .5 2	.17 .24 2.20	ND 8 52	ND ND ND	720 32 34	10	11.4B .06	.5 .5	12 9	67 135	125 101	4.10 4.52	.72 .01	1.41	1792 42	ND 8	.01	16	.01	2	ND	NĐ	MD	ND	76	ND	ND	22 86	
	229 229			14. 23.	.6 1	.14	144 39	ND ND	62 23	66 48 35	1.29 .05 4.83	102.3 72.5	171 6	46		7.51 20.76	.12	1.06	2600 328	8 37	.02 1.75 2.38	6 10 2	.01 .05	20 514 96	ND ND	ND ND	ND ND	ND ND	5 96	ND ND	ND	11 0388	
* * *	2295 2300					.50	8	ND	257	9	3.87	843.2 7.5	27 5 25	101 135	1761	4.17	.44	.03	2089		17.21	13	.01	353	ND On	ND ND	ND ND	ND 2	3 5	MD MD		2905 9722	
	2300 2300 2300	2			1 1	.70 .37 .71	. 6 10 B	ND ND	85 27	12 12	.79	1.7	21 10	21 62	6161 189 74	3.07 4.12 2.66	.40 .08 .04	.69 1.01 .86	1504 565	5 ND	.08	. 12 7	.02	18 24	ND ND	ND ND	ND ND	ND 1	32 21	ND ND	MD MD	1040	
	2300	4				.70	_	ND ND	42 37	15 14	.55 .56	2.1 1.1	41 37	51 62	402 390	5.29 4.58	.04	.50	5 52 239 237	ND ND 3	.11 .03 .02	6 17 18	.02 .07	23 25	ND ND	MD MD	ND ND	i 2	24 11	ND ND	ND ND	297 246 225	
	2300	6		22.	1.			ND NO	16 34		25.75 1.72	286.5 433.8	106 249	27	191	1.95	.96	.06	7882	Ī	8.50	18	.07	23 374	ND ND	ND ND	MD	2	12	MD	ND	109	
	2300 2300					65 79		ND ND	22 33	4	7.30	69.5 113.8	38	126 109 112		4.85 1.81 3.54	.63	. 03	5000 1834	37 1 6	2.75 1. 6 7	10	.01	1270 76	ND ND	MD MD	ND ND ND	ND 2 ND	74 7 32		114 3: 200 41	594	
	DETEC	TEON	Limit	. 1		01	3	3	i	3	.01	.1	1	1	1		.30	.05	1461	10	2.52	6	.04	21	NB	ND	ND	1		ND ND	18 10	704 573	
																			4	1	.01		.01	2	3	5	2	2	1 -	5	3	1	

CLIENT: PANICON I	DEVELOPHE	NTS LTD	J08#:	880729	PROJE	ECT: AC	HILLES	REPORT:	880729	PA													,	PAG	E 2 OF	2			
SAMPLE NAME	AG PPN	AL Z	AS PPH	AU PPH	BA PPM	BI PPH	CA 1	CD PPM	CO PPM	CR PPM	CU PPM	ř Ž	K 1	MG X	PPH	MO PPM	NA Z	NI PPM	P I	PB PPM	PD PPM	PT PPM	SB PPM	SN PPN	SR PPM	U PPM	PPM	ZN PPM	
23009	3,5	.46	274	ND	562	ND	1.60	71.5	25	107	84	.81	-16	. 25	721	44	.34	47	.04	5879	ND	KD	ND	ND	131	ND	ND	9130	
23010 23011 23012 23013 23014 23015 23016 23017 23018	3.2 8.1 3.1 .1 1.2	.64 1.43 1.11 .55 .48 1.12 1.20 1.39 2.70	719 3537 1116 20 25 12 7 18 13	ND ND ND ND ND ND ND	1766 47 95 69 76 190 108 59 20	ND 5 NO ND ND ND ND ND	.48 1.68 3.02 6.05 11.36 4.27 4.66 .64 2.25	11.3 192.8 46.2 196.5 197.1 22.7 19.7 2.2 2.4	169 99 55 57 78 7 15 17 67	187 38 100 107 41 65 64 85 251	45 543 129 159 477 61 360 84 247	1.08 3.95 3.00 2.25 3.22 1.53 6.48 5.64 10.91	.08 .17 .25 .40 .55	.39 .81 .73 .03 .06 .14 .14	452 682 615 2080 3547 13345 1926 491 798	14 24 15 10 9 MB NB 5	.06 .50 .15 .72 .93 .08 .06	146 41 64 6 5 2 1 12 335	.04 .05 .04 .03 .02 .04 .06 .20	2922 2199 4678 221 45 55 18 16 45	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND 26 ND ND ND ND ND	ND ND 1 ND ND ND ND	71 40 270 36 18 12 23 11 22	NO ND ND ND ND ND ND	ND 14 45 ND ND ND ND	1515 12382 4148 17446 21356 2492 1523 195 131	
23019	.1	3.12	13	ND	22	6	2.65	1.7	56	149	128	6.51	.22	.80	539	8	.01	202	.03	68	ND	ND	KD	ND	40	ND	ND	103	
23020 23021 23022 23023 23024	.3 1.3 1.6 9.1	1.23 1.22 .96 2.07 2.72	72 41 37 42 ND	ND ND ND ND	16 15 13 10 13	4 5 4 9 16	1.29 2.66 2.70 2.54 2.02	2.7 1.6 1.7 2.7 146.8	61 63 67 54 51	190 244 165 318 225	47 122 96 93 246	6.85 8.08 6.33 8.69	.14 .22 .26 .25 .20	.27 .44 .26 .53	255 352 262 487 1324	10 9 4 16 8	.02 .01 .02 .02 .38	217 272 274 204 264	.06 .05 .04 .01	19 10 24 23 11327	ND ND ND ND	MD MD MD MD	ND ND ND ND	2 2 2 1 ND	20 22 18 16 21	ND ND ND ND	ND ND ND ND	224 100 120 133 8319	
23025	1.3	1.36	58	ND	17	- 5	2.81	4.1	49	89	132	5.30	.26	.32	379	7	.02	157	.08	103	ND	₩D	ND	3	21	ND	ND	343	
DETECTION LINIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	1	1	.01	1	.01	2	3	5	. 2	2	1	5	3	1	

ANOMALOUS RESULTS: FURTHER ANALYSES
BY ALTERNATE
METHODS SUGGESTED

VANGEOCHEM LAB LIMITED

MAIN OFFICE MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: PAMICON DEVELOPMENT LTD.

ADDRESS: 711-675 W. Hastings St.

: Vancouver, B.C.

: V6B 1N4

DATE: July 25 1988

REPORT#: 880683 GA

JOB#: 880683

Oblilles!

PROJECT#: None given

SAMPLES ARRIVED: July 11 1988

REPORT COMPLETED: July 25 1988

ANALYSED FOR: Cu Pb Zn Ag Au (FA/AAS)

INVOICE#: 880683 NA

TOTAL SAMPLES: 48

SAMPLE TYPE: Rock

REJECTS: SAVED

SAMPLES FROM: Iskut River COPY SENT TO: Mr. W. Kiesman

PREPARED FOR: Mr. W. Kiesman

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Invoice sent to Vancouver Office

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

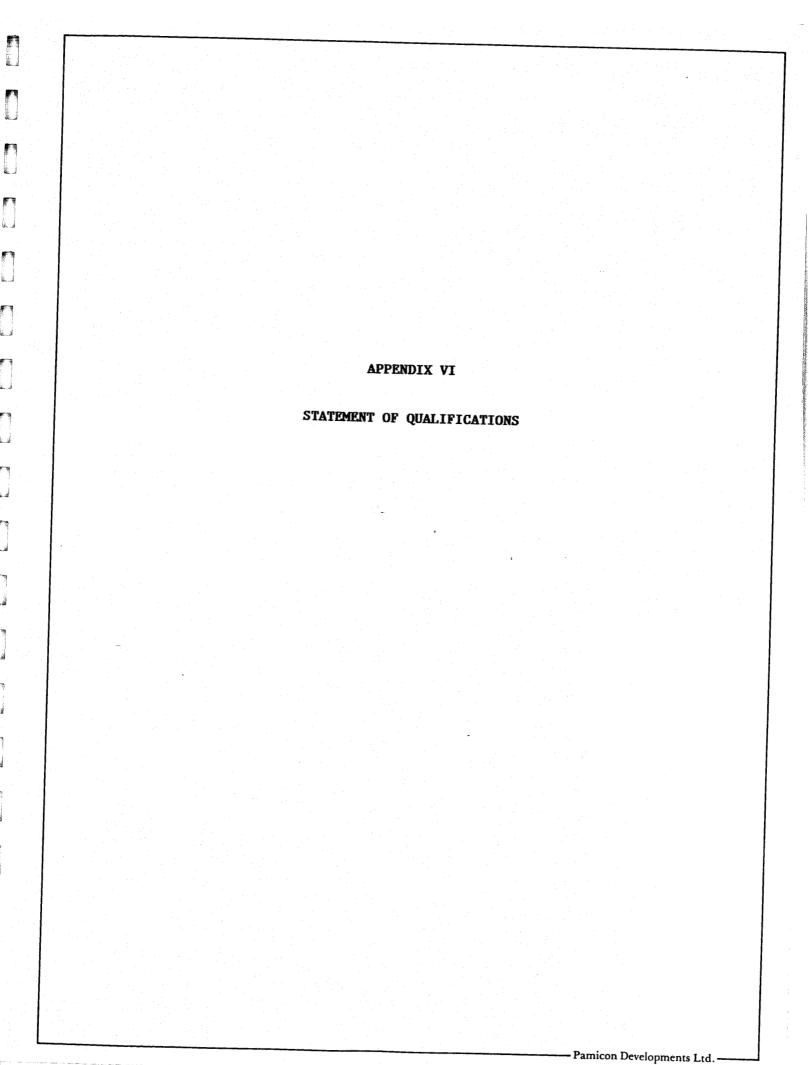
KEFUKI	NUMBER:	880683	6A	JOB	NUMBER:	880683	PANIC	ON DEVELO	PHENT LTD.	PAGE 1 OF
SAMPLE	#			Cu	Pb	Zn	Ag	Au	• • •	
				ppm	ppm		•	ppb		
22801				370	258			10		
22802				186	68	•		nd		
22803				1400	80			nd		
22804				160	30		.3	80		
22805				180	40			5		
22806				3460	37	2570	6.5	30		•
22807				160	64		.2	15		
22808		٠.		60	45	17	.3	nd		
22809				15	21		.5	25		
22810				33	24	5	.5	25 nd		
22811				450	20	34	-			
22812					39	31	.7	nd		
22813				62	61	26	.6	nd	. com/di	Class Latters
22814				159	117	124	.1	5		
				6	13	25	.4	nd		
22815	145 - 346			2	8	13	nd	nd		
22901	1 STURING			1090	22	15500	1.0	nd		
22902				1450	183	> 20000	4.6	nd .		
22903				85	25	860	.4	5		
22904		. X		76	69	650	.5	10		
22905				9600	76	1470	36.0	220		
22906	i (in Piagwo			750	79	7 20000	2.4	20		
22907				1210	70	255	3.2	nd		
22908				55	>20000	>20000	10.1	10		
22909				145	119	206	1.1			
22910				95	37	310	.2	15 nd		
22911				172	28	39	5	10		
22912				25	67	251	.5 .2	10		
22913				249	71			nd		
22914						190	3.1	25		
22915				21 39	> 20000 1050	>20000 5100	6.4 5.3	nd nd		
22916										
22917				9400	2200	> 20000	91.0	10		
				35	12900	> 20000	4.0	nd		
22918				750	9300	17100	13.9	nd		
22919				10	2160	11400	.2	nd		
22920				329	56	146	.4	5		
22921				183	52	162	nd	10		
22922				137	50	121	.2	nd		
22923				246	25	>20000	nd	nd		
22924				70	25	18500	.1	nd		
	LIHIT			1	2	1	0.1	5		

VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

RE	PORT NUMBER:	880683 GA	JOB	NUMBER: (380683	PANICO	N DEVELOPHE	NT LTD.	PAGE	2	OF	2
SA	MPLE #		Cu	Pb	Zn	Ag	Au	4				
			ppa	ppm	ppa	ppa	ppb					
	925		30	25	15600	.2	nd					
22	926		205	60	>20000	.3	10					
22	927		51	25	16000	.2	20					
22	928		71	25	127	.2	nd					
22	929		156	39	282	nd	20					
229	930		236	61	47	c	.					
22	931		2050			.6	5					
	332			77	>20000	7.7	110					
			18	142	> 20000	.3	20					
223	933		160	98	1000	1.5	40					

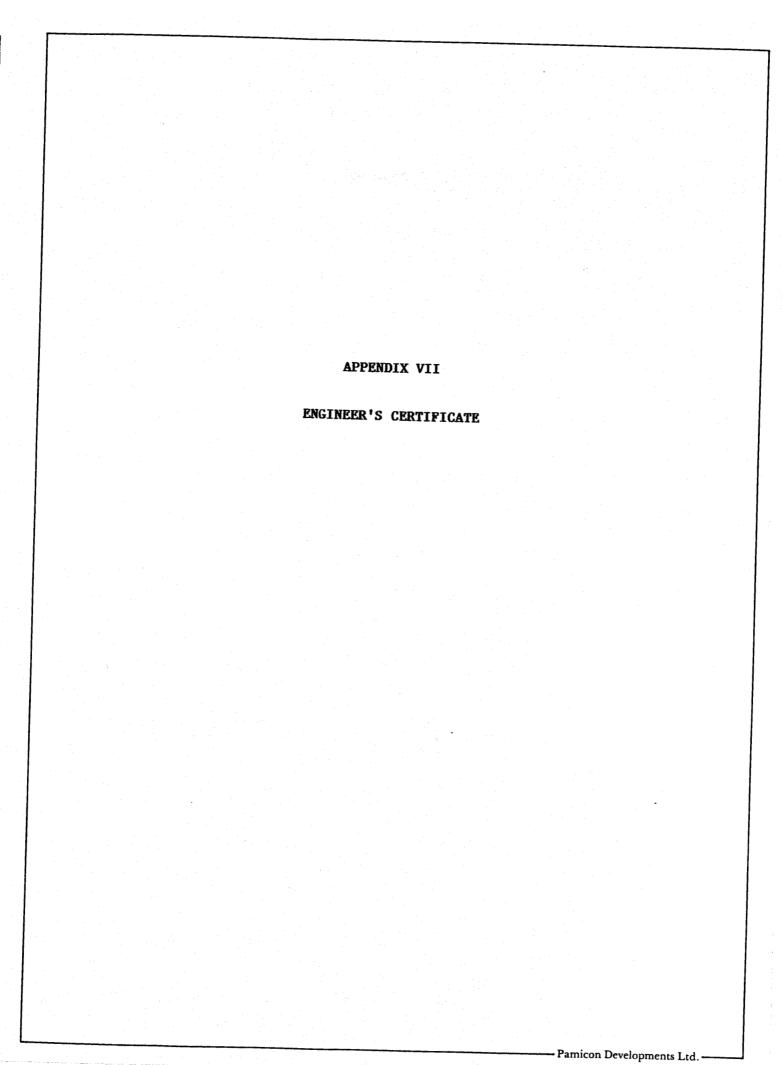

APPENDIX V ROCK CHIP SUMMARY

- Pamicon Developments Ltd. -

- Pamicon Developments

TABLE I
ROCK CHIP SUMMARY

Name	Location	Sample Number	Assay Description	Rock Type
Ridge Showing North Zone		22916	chip, 0.16 oz/st Ag, 1.2 m chip, 0.12 oz/st Ag, 1.47% Zn, 0.30 m grab, 1.88% Zn grab, 0.20 oz/st Ag, 1.80% Pb, 7.71% Zn grab, 0.15 oz/st Ag, 0.41% Zn grab, 2.70 oz/st Ag, 2.14% Zn grab, 0.11 oz/st Ag, 4.72% Zn	breccia, quartz-carbonat breccia, quartz-carbonat breccia, quartz-carbonat breccia, quartz-carbonat breccia, quartz-carbonate breccia, quartz-carbonate breccia, quartz-carbonate
Ridge Showing South Zone		22863 22948 22949	grab, 1.85 oz/st Ag grab, 1.42% Zn grab, 1.68 oz/st Ag, 1.31% Zn grab, 0.22 oz/st Ag, 1.54% Zn grab, 0.54 oz/st Ag, 8.31% Zn	skarn skarn skarn skarn skarn
Ridge Showing West Contour Soil Line	1	22969 g 22970 g	grab, 1.12 oz/st Ag grab, 0.29 oz/st Ag	breccia, quartz-carbonate breccia, quartz-carbonate

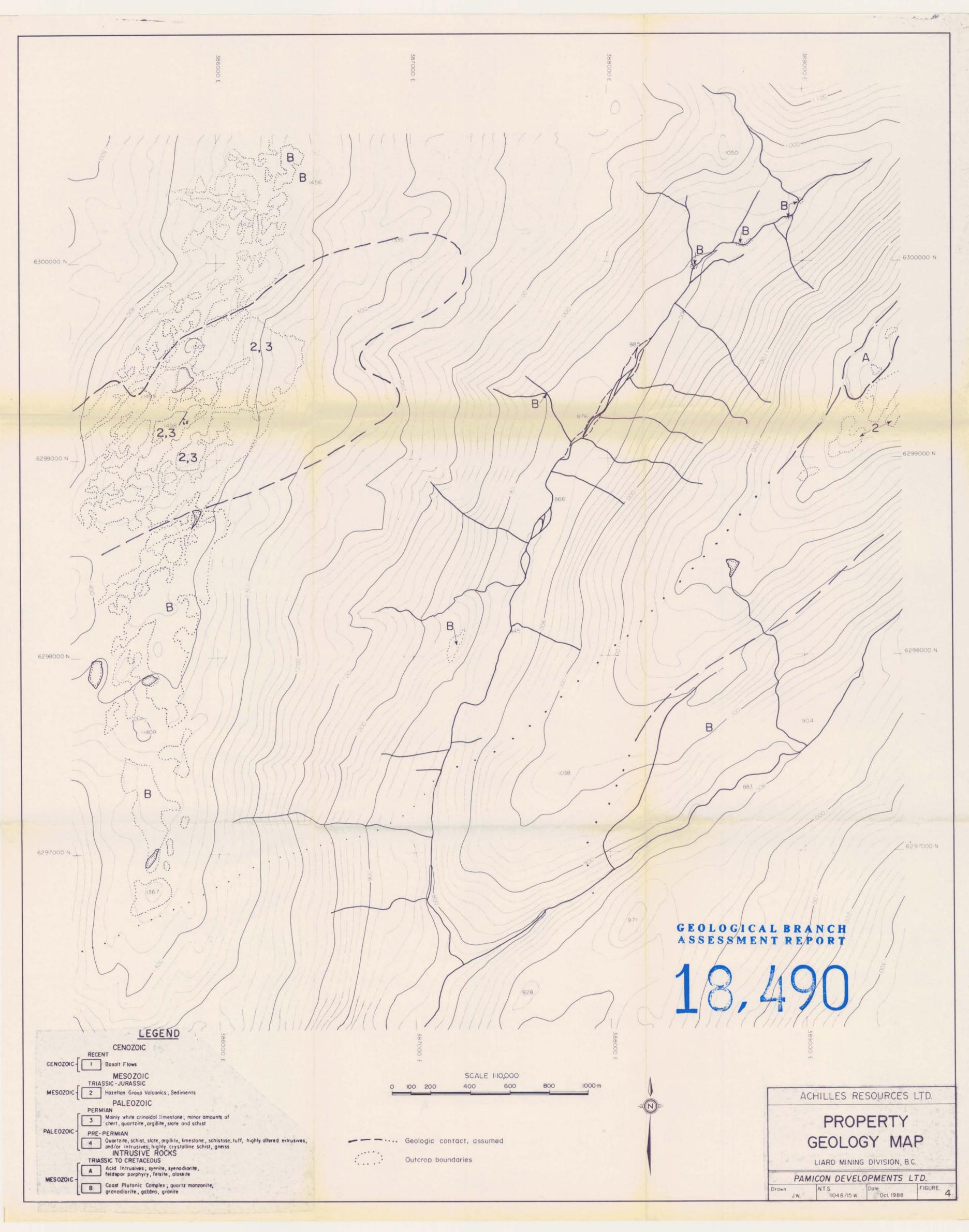

STATEMENT OF QUALIFICATIONS

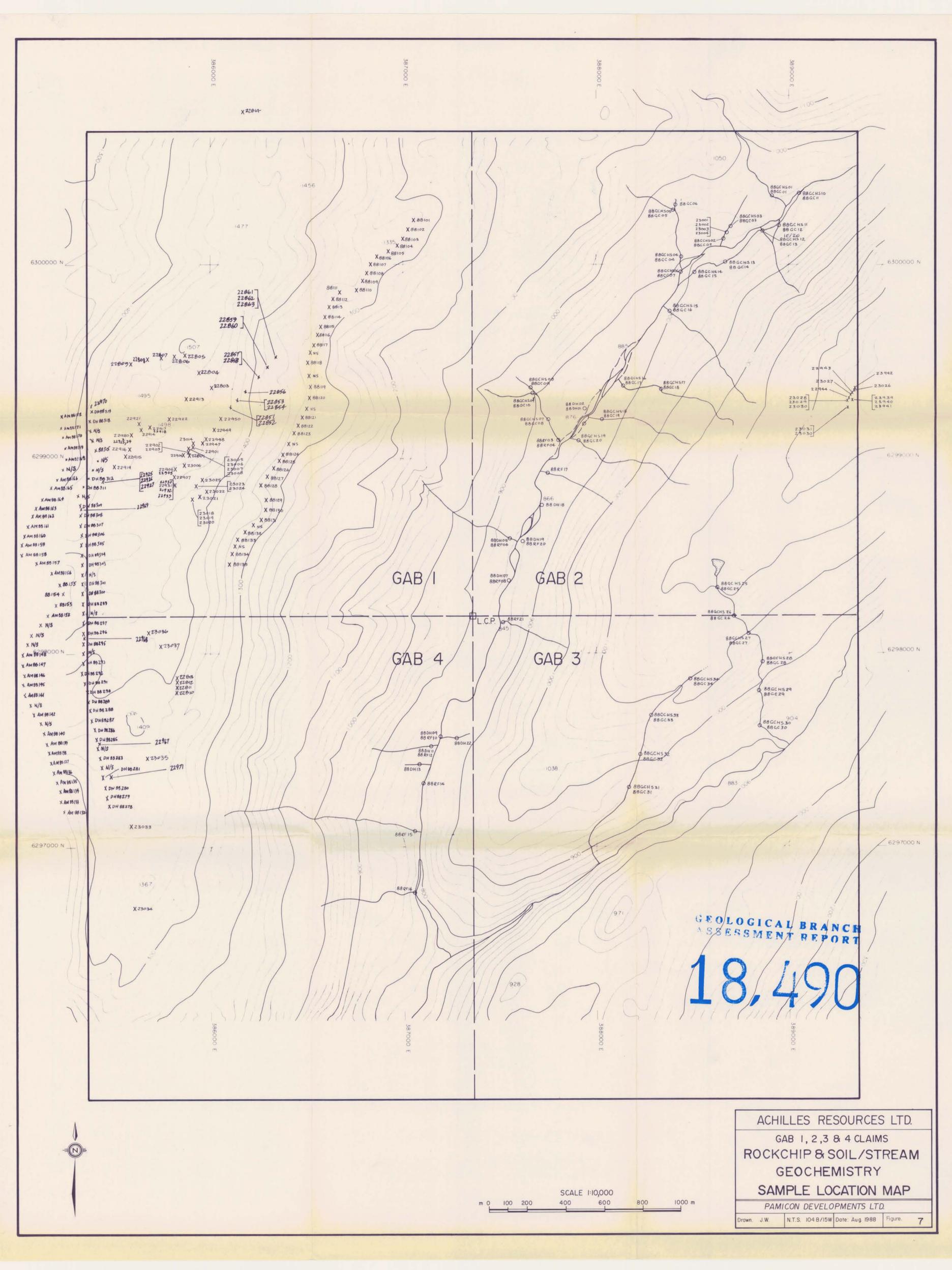
I, WILLIAM D. KIESMAN, of Suite 43, 866 Premier Street,	North Vonces	
the Province of British Columbia, DO HEREBY CERTIFY:	north vancouver,	ın

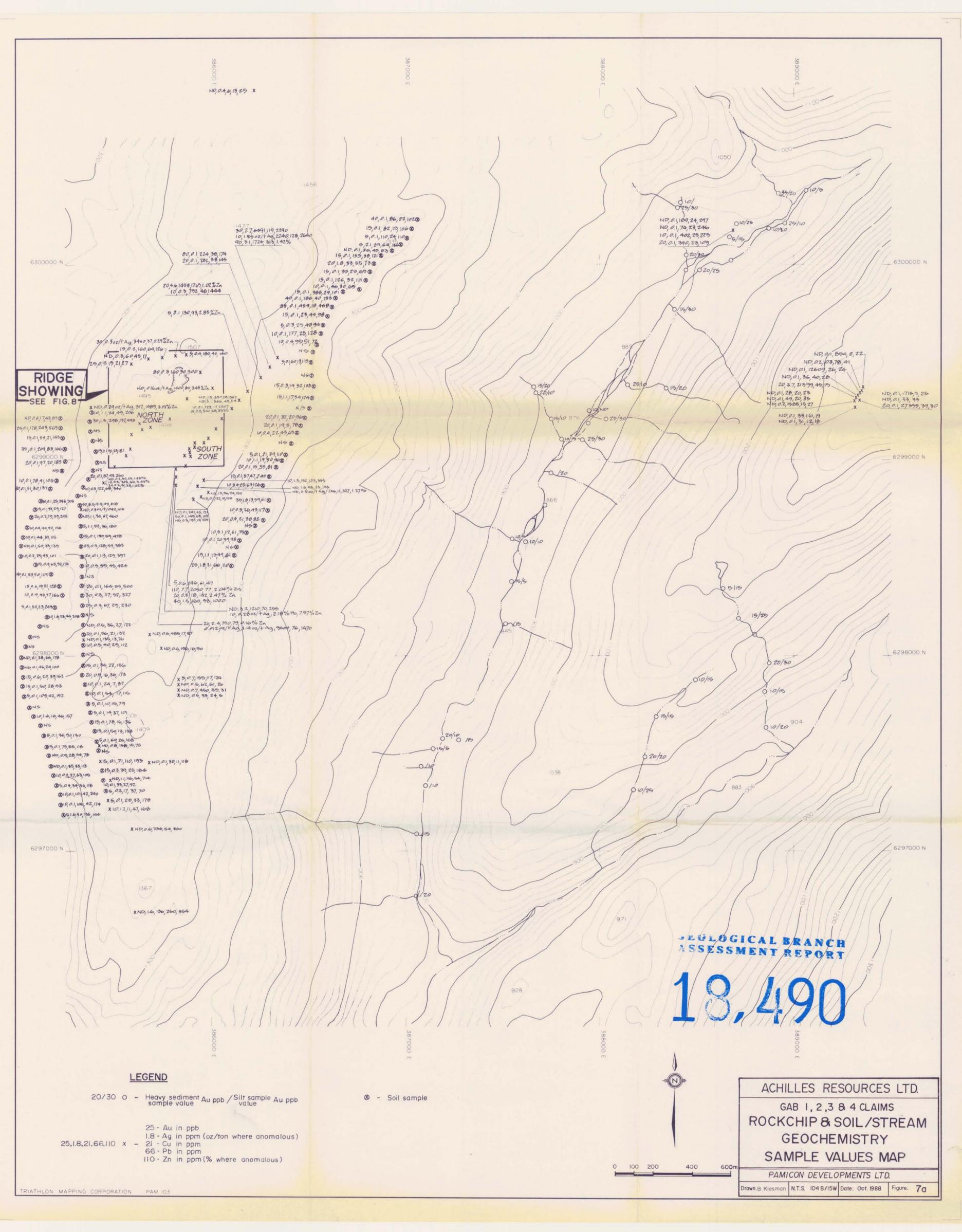
- 1. THAT I am a Geologist in the employment of Pamicon Developments Limited, with offices at Suite 711, 675 West Hastings Street, Vancouver, British Columbia.
- THAT I am a graduate of the University of Manitoba with a Bachelor of Science Degree in Geology.
- 3. THAT my primary employment since 1980 has been in the field of mineral exploration.
- 4. THAT my experience has encompassed a wide range of geologic environments and has allowed considerable familiarization with prospecting, geophysical, geochemical and exploration drilling techniques.
- 5. THAT this report is based on field work during July, 1988 and all available data.
- 6. THAT I have no interest in the property described herein, nor in securities of any company associated with the property, nor do I expect to receive any such interest.
- 7. THAT I hereby grant permission to Achilles Resources Ltd. for the use of this report in any prospectus or other documentation required by any regulatory authority.

DATED	at	Vancouver,	B.C.,	this	day	of			1000
							 	 	1988.

William D. Kiesman, Geologist




ENGINEER'S CERTIFICATE


- I, CHARLES K. IKONA, of 5 Cowley Court, Port Moody, in the Province of British Columbia, DO HEREBY CERTIFY:
- THAT I am a Consulting Mining Engineer with offices at Suite 711, 675
 West Hastings Street, Vancouver, British Columbia.
- THAT I am a graduate of the University of British Columbia with a degree in Mining Engineering.
- 3. THAT I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.
- 4. THAT this report is based on work conducted under my direction in 1988 and on a personal examination of the property in July 1988.
- 5. THAT I have no interest in the property described herein, nor in securities of any company associated with the property, nor do I expect to acquire any such interest.
- 6. THAT I consent to the use by Achilles Resources Ltd. of this report in a Prospectus or Statement of Material Facts or any other such document as may be required by the Vancouver Stock Exchange or the Office of the Superintendent of Brokers.

DATED at Vancouver, B.C., this 21 day of Feb , 1988.

Charles K. Ikona, P.Eng.

