
### ARIS SUMMARY SHEET

Off Confidential: 89.12.02 District Geologist, Smithers MINING DIVISION: Liard ASSESSMENT REPORT 18508 **PROPERTY:** Stu 4 130 54 00 56 40 00 LONG LAT LOCATION: 09 6281682 383553 UTM NTS 104B10W 050 Stewart Camp CAMP: Stu 4-5 CLAIM(S): Hector Res. OPERATOR(S): Todoruk, S.L.; Ikona, C.K. AUTHOR(S): REPORT YEAR: 1989, 85 Pages COMMODITIES SEARCHED FOR: Gold, Silver Mesozoic, Sediments, Volcanics, Intrusives, Quartz veins, Limonite, Gold KEYWORDS: NORK DONE: Geochemical ROCK 19 sample(s) ;ME SOIL 421 sample(s) ;ME Map(s) - 4; Scale(s) - 1:5000RELATED 17128 REPORTS: MINFILE: 104B

| 100.10   |      |         |
|----------|------|---------|
| LOG NO:  | 0306 | RD.     |
| ACTION:  |      | ** **** |
|          |      |         |
| FILE NO: |      |         |

FILMED

GEOLOGICAL REPORT ON THE STU 4 & 5 AND NWG 6 & 7 MINERAL CLAIMS



中 U 金

ii. B

.

.

da is

à Â

.

k i

5

N. a

k

L


Located in the Iskut River Area Liard Mining Division NTS 104B/10W 56°39' North Latitude 130°46' West Longitude

- prepared for -

HECTOR RESOURCES INC.

- prepared by -

S.L. TODORUK, Geologist C.K. IKONA, P.Eng.



February, 1989

GEOLOGICAL REPORT on the STU 4 & 5 and NWG 6 & 7 MINERAL CLAIMS

## TABLE OF CONTENTS

|     | , and the second s | Page |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.0 | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1    |
| 2.0 | LIST OF CLAIMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1    |
| 3.0 | LOCATION, ACCESS AND GEOGRAPHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2    |
| 4.0 | AREA HISTORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3    |
| 5.0 | REGIONAL GEOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7    |
| 6.0 | PROPERTY GEOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9    |
| 7.0 | AIRBORNE GEOPHYSICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9    |
| 8.0 | GEOCHEMISTRY AND MINERALIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10   |
| 9.0 | DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11   |
|     | 9.1 1989 Budget                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |

LIST OF FIGURES

|           |                                                        | Following<br><u>Page</u> |
|-----------|--------------------------------------------------------|--------------------------|
| Figure 1  | Property Location Map                                  | 1                        |
| Figure 2  | Claim Map                                              | 2                        |
| Figure 3  | Regional Mineral Occurrence Map                        | 3                        |
| Figure 4  | Regional Geology Map                                   | 7                        |
| Figure 5  | Airborne Geophysical Magnetics Survey Map              | 9                        |
| Figure 6  | Rock Chip and Anomalous Au Soil Sample Compilation Map | 10                       |
| Figure 7  | Stu 4 Detailed Grid Area - Au Soil Geochemical Map     | 10                       |
| Figure 8  | Stu 4 Detailed Grid Area - Ag Soil Geochemical Map     | 10                       |
| Figure 9  | Stu 4 Detailed Grid Area - Cu Soil Geochemical Map     | 10                       |
| Figure 10 | Stu 4 Detailed Grid Area - Zn Soil Geochemical Map     | 10                       |
| Figure 11 | Stu 4 & 5 Au Soil Sample Location Map                  | pocket                   |
| Figure 12 | Stu 4 & 5 Ag Soil Sample Location Map                  | pocket                   |
| Figure 13 | Stu 4 & 5 Cu Soil Sample Location Map                  | pocket                   |
|           |                                                        |                          |

GEOLOGICAL REPORT on the STU 4 & 5 and NWG 6 & 7 MINERAL CLAIMS

## TABLE OF CONTENTS

-

## APPENDICES

R.

The second se

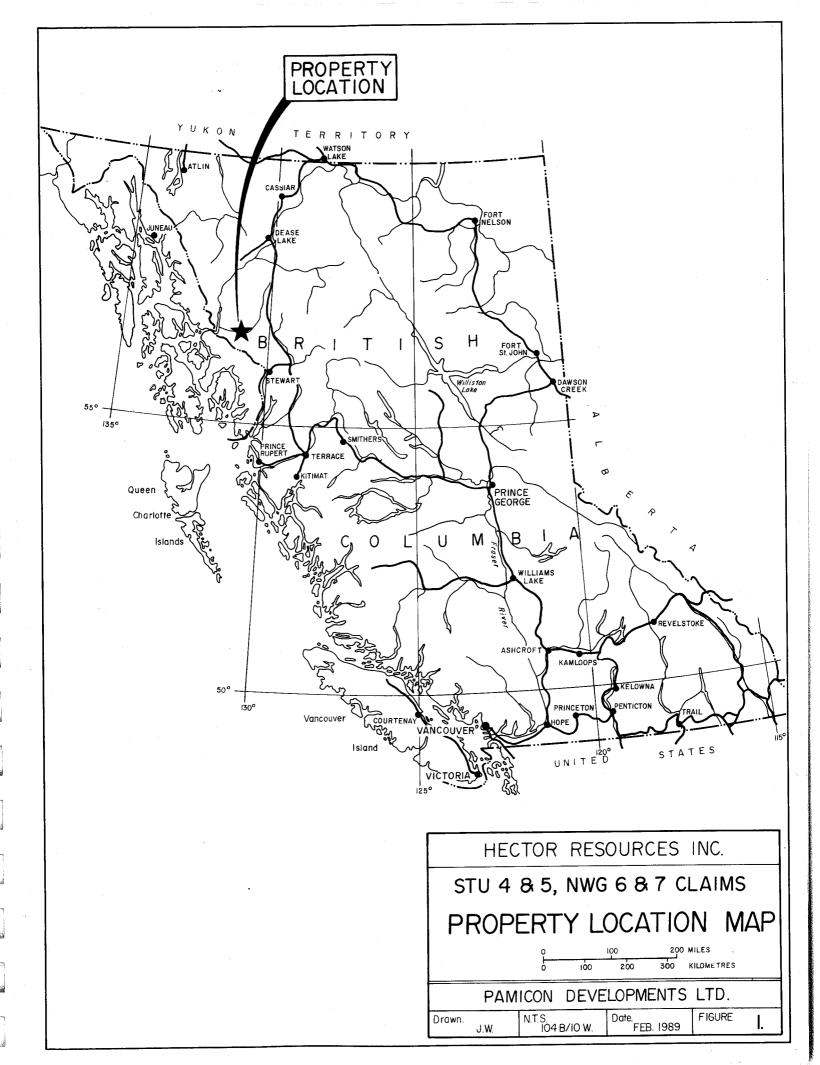
-

á

| Appendix | I   | Bibliography                           |
|----------|-----|----------------------------------------|
| Appendix | II  | Cost Statement                         |
| Appendix | III | Lepeltier Soil Geochemistry Statistics |
| Appendix | IV  | Assay Certificates                     |
| Appendix | v   | Statement of Qualifications            |
| Appendix | VI  | Engineer's Certificate                 |
|          |     |                                        |

## 1.0 INTRODUCTION

The Stu 4 & 5 and NWG 6 & 7 claims (67 units) are situated within the Liard Mining Division of northwestern British Columbia 10 km east-northeast of Skyline Explorations Ltd.'s Stonehouse Gold deposit and Cominco/Delaware Resource Corp.'s Snip deposit. Skyline reports reserves in all categories as 686,000 tons grading 0.57 oz/ton Au while the Snip deposit hosts in excess of two million tons grading 0.648 oz/ton Au. The Sulphurets Gold Camp (Newhawk/ Lacana, Catear and Western Canadian Mining Corp.) is situated 40 kilometres to the southeast. Calpine Resources Inc./Consolidated Stikine Silver's Eskay Creek gold project is 25 kilometres to the east. Bob Quinn Lake and the Stewart-Cassiar Highway are located 50 kilometres to the northeast.


A total of 421 soil samples and 19 rock chip samples were collected from the property in 1988 following up a gold geochemical soil anomaly from the 1987 field season.

To date, soil sampling has identified three anomalous gold geochemical anomalies which may represent one large zone of stockwork quartz veining with significant gold-silver mineralization measuring 500 metres in diameter. Soil values range up to 2,000 ppb gold while quartz veins discovered in this area assay up to 1.695 oz/ton Au.

This report is intended to summarize information available and work carried out on the Hector property and recommends a follow-up work program for the 1989 season.

## 2.0 LIST OF CLAIMS

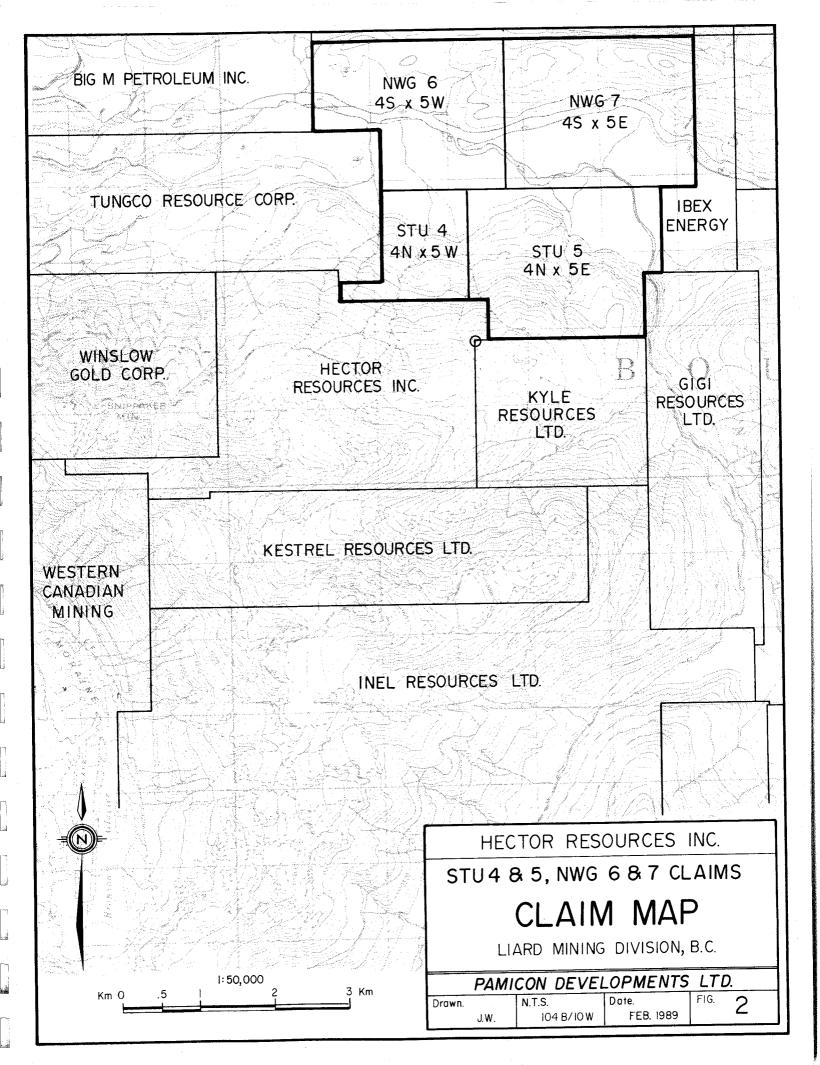
Records of the British Columbia Ministry of Energy, Mines and Petroleum Resources indicate that the Stu 4 & 5 claims are owned by Mr. Ian Hagemoen. Separate documents indicate that these claims are under option to Hector Resources Inc. Hector has a 100% interest in the NWG 6 & 7 claims.



| Claim<br><u>Name</u> | Record<br><u>Number</u> | No. of<br>Units | Record<br>Date    | Expiry<br>Date    |
|----------------------|-------------------------|-----------------|-------------------|-------------------|
| Stu 4                | 3721                    | 7               | December 5, 1986  | December 5, 1992  |
| Stu 5                | 3722                    | 20              | December 5, 1986  | December 5, 1992  |
| NWG 5                | 4514                    | 20              | February 24, 1988 | February 24, 1990 |
| NWG 6                | 4515                    | 20              | February 24, 1988 | February 24, 1990 |

### 3.0 LOCATION, ACCESS AND GEOGRAPHY

た 活動


The Stu 4 & 5 and NWG 5 & 6 claims are located approximately 110 kilometres east of Wrangell, Alaska, and 100 kilometres north of Stewart, British Columbia, on the eastern edge of the Coast Range Mountains (Figure 1). Bob Quinn Lake on the Stewart-Cassiar Highway is situated 50 kilometres to the northeast while Bronson airstrip (servicing Cominco/Delaware's Snip deposit and Skyline Exploration's Stonehouse Gold deposit) is 11 kilometres to the west. Coordinates of the claims area are 56°39' north latitude and 130°46' west longitude, within the jurisdiction of the Liard Mining Division.

Access to the property is via helicopter from the Bronson Creek or Forrest Kerr gravel airstrips. Daily scheduled flights to the Bronson strip from Smithers, Terrace and Wrangell, Alaska have been available during the field season using a variety of fixed wing aircraft.

The construction of a road 65 kilometres long has been proposed by C.K. Ikona of Pamicon Developments Ltd. on behalf of Skyline Explorations Ltd. The road would be situated along the south side of the Iskut River to connect the Stewart-Cassiar Highway with the Cominco/Delaware-Skyline gold mines at Bronson Creek. This road, if constucted, would pass through the Hector claims.

Geographically, the claims area is moderately forested below treeline and easily accessible above this elevation. Elevations on the property vary between 200 to 700 metres.

Pamicon Developments Ltd.

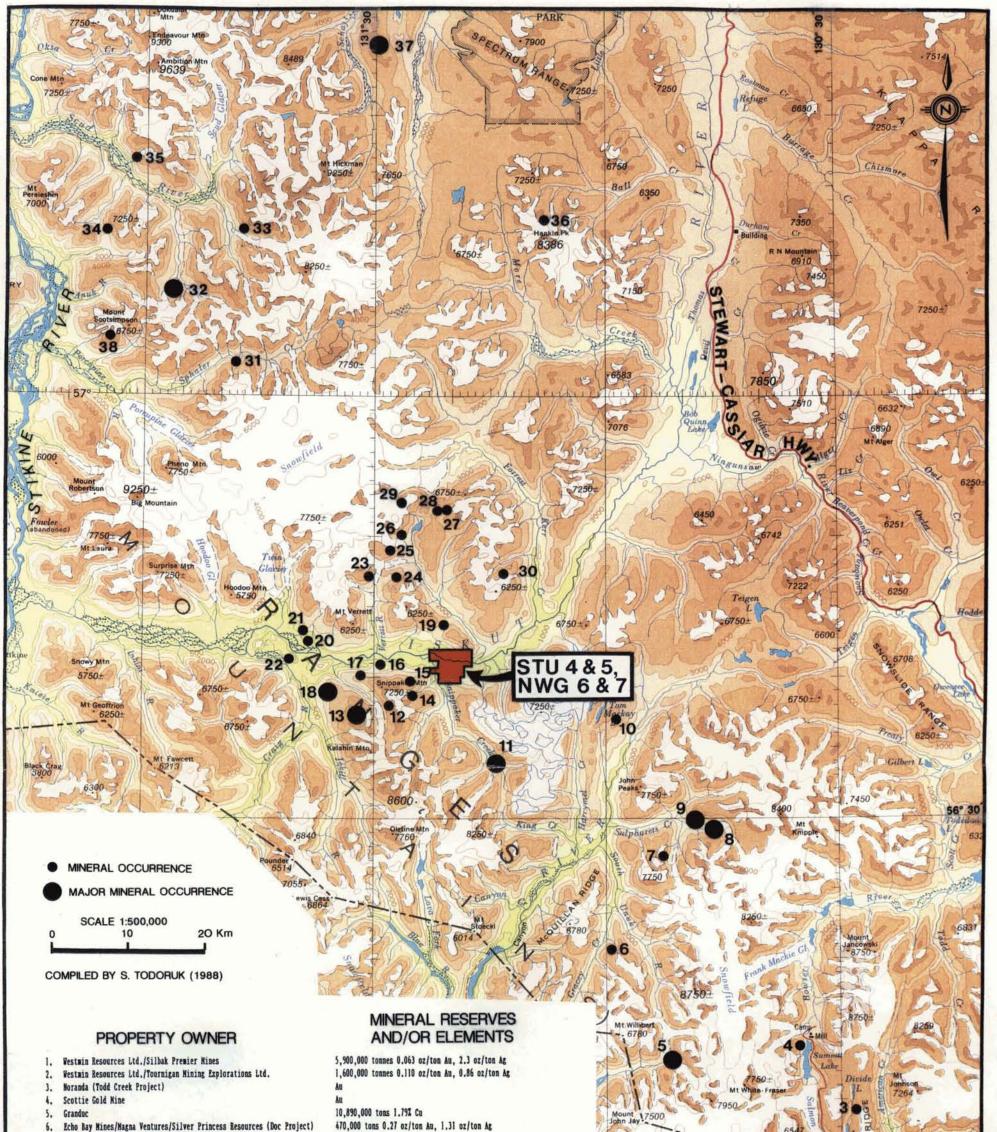


## 4.0 AREA HISTORY

Į.

14.3

à...


Figure 3 of this report presents a 1:500,000 scale area of northwestern B.C. from Stewart in the south to near Telegraph Creek in the north. This represents some 225 km. Within this area, which has been referred to as the Stikine Arch, mining activity goes back to the turn of the century. Due to the size of the region it historically has been referred to in more specific areas ranging from the Stewart area to Sulphurets, Iskut and Galore Creek. As can be noted in Figure 3, however, all of these individual camps appear to be related to the Stikine Arch as a whole. Recent discoveries appear to be filling in areas between these known mineralized camps. It is probable that the entire area be considered as one large mineralized province with attendant subareas. As Hector's claims are located near the Iskut and Sulphurets-Tom MacKay areas a more detailed history of these areas is presented below.

The first recorded work done in the Iskut Region occurred in 1907 when a prospecting party from Wrangell, Alaska staked nine claims north of Johnny Mountain. Iskut Mining Company subsequently worked crown granted claims along Bronson Creek and on the north slope of Johnny Mountain. Up to 1920, a 9 metre adit revealed a number of veins and stringers hosting galena and gold-silver mineralization.

In 1954, Hudsons Bay Mining & Smelting located the Pick Axe showing and high grade gold-silver-lead-zinc float on the open upper slopes of Johnny Mountain, which today is part of Skyline Explorations Ltd.'s Stonehouse Gold deposit. The claims were worked and subsequently allowed to lapse.

During the 1960s, several major mining companies conducted helicopter borne reconnaissance exploration programs in a search for porphyry-copper-molybdenum deposits. Several claims were staked on Johnny Mountain and on Sulphurets Creek.

Between 1965 and 1971, Silver Standard Mines, and later Sumitomo, worked the E + L prospect on Nickel Mountain at the headwaters of Snippaker Creek. Work



<sup>6.</sup> Echo Bay Mines/Magna Ventures/Silver Princess Resources (Doc Project) 7. Western Canadian Mining (Kerr Project) 8. Catear Resources Ltd.

291,916 tons 0.835 oz/ton Au, 2.44 oz/ton Ag

Cu, Au

| <ol> <li>Newhawk/Lacana/Granduc (Sulphurets Project)</li> <li>Calpine/Consolidated Stikine Silver Ltd. (Eskay Creek Project)</li> <li>Consolidted Silver Standard Mines Ltd. (E &amp; L Deposit)</li> <li>Inel Resources Ltd.</li> <li>Skyline Explorations Ltd. (Stonehouse Gold Deposit)</li> <li>Kestrel Resources Ltd.</li> </ol> | 2,000,000 tons 0.462 oz/ton Au, 21.78 oz/ton Ag<br>Au, Cu, Ag<br>3,200,000 tons 0.80% Hi, 0.60% Cu<br>Au, Ag, Cu, Pb, Zn<br>1,100,000 tonnes 0.700 oz/ton Au, 1.0 oz/ton Ag, 1% Cu<br>Au, Ag, Cu, Pb, Zn | 6198<br>5505<br>Ninemile<br>5340                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| <ol> <li>15. Hector Resources Inc. (Golden Spray Vein)</li> <li>16. Tungco Resources Corp.</li> <li>17. Winslow</li> <li>18. Cominco/Delaware Resource Corp. (Snip Deposit)</li> <li>19. Pezgold Resource Corp.</li> <li>20. Meridor Resources Ltd.</li> <li>21. Delaware Resource Corp./American Ore Ltd./Golden Band</li> </ol>     | Au, Ag<br>Au, Ag, Cu, Pb, Zn<br>Au, Ag, Cu, Pb, Zn<br>1,200,000 tons 0.700 oz/ton Au<br>Ag, Au<br>Au<br>Au                                                                                               | 6398 6635 Noumtuin 5475 Buildings 6950          |
| <ol> <li>Magenta Development Corp./Crest Resources Ltd.</li> <li>Ticker Tape Resources Ltd. (King Vein)</li> <li>Pezgold Resource Corp.</li> </ol>                                                                                                                                                                                    | Au, Ag, Cu, Pb<br>Au<br>Au                                                                                                                                                                               | Hector Resources Inc.                           |
| <ol> <li>Consolidated Sea-Gold Corp.</li> <li>Gulf International Minerals Ltd. (Northwest Zone)</li> <li>Kerr Claims</li> <li>Pezgold Resource Corp. (Cuba Zone)</li> </ol>                                                                                                                                                           | Au<br>Au, Ag, Cu<br>Ag, Cu, Au<br>Ag, Pb, Zn                                                                                                                                                             | STU 4 & 5, NWG 6 & 7<br>MINERAL CLAIMS          |
| 29. Pezgold Resource Corp. (Ken Zone)<br>30. Forrest Project                                                                                                                                                                                                                                                                          | Cu, Au<br>Au, Ag, Cu                                                                                                                                                                                     | Regional Mineral                                |
| <ol> <li>Pass Lake Resources Ltd. (Trek Project)</li> <li>Galore Creek</li> <li>Continental Gold Corp.</li> </ol>                                                                                                                                                                                                                     | Cu, Au<br>125,000,000 tonnes 1.06% Cu, 0.397 g/t Au, 7.94 g/t Ag<br>Au, Ag, Cu                                                                                                                           | Occurrence Map                                  |
| <ol> <li>Bellex Resources Ltd./Sarabat Resources Ltd. (Jack Wilson Project)</li> <li>Pass Lake Resources Ltd. (JD Project)</li> <li>Lac Minerals (Hankin Peak Project)</li> </ol>                                                                                                                                                     | Au, Cu<br>Au, Cu<br>Au                                                                                                                                                                                   | PAMICON DEVELOPMENTS LTD.                       |
| 37. Schaft Creek<br>38. Paydirt                                                                                                                                                                                                                                                                                                       | 910,000,000 tonnes 0.30% Cu, 0.020% Mo, 0.113 g/t Au, 0.992 g/t Ag<br>200,000 tons 0.120 oz/ton Au                                                                                                       | Geologist: NTS: 103, 104 Date; AN. 1989 FIGURE: |

3 1989 FIGURE:

56°

included trenching, drilling and 460 metres of underground development work. Reserves include 3.2 million tons of 0.80% nickel and 0.60% copper.

4

Pamicon Developments Ltd.

F N

F.

k i

ن الأسطا

2

4

-

100

In 1969 Skyline staked the Inel property after discovering massive sulphide float originating from the head of the Bronson Creek glacier.

During 1972, Newmont Mining Corporation of Canada Limited carried out a field program west of Newmont Lake on the Dirk claim group. Skarn-type mineralization was the target of exploration. Work consisted of airborne and ground magnetic surveys, geological mapping and diamond drilling. One and one-half metres grading 0.220 ounces gold per ton and 15.2 metres of 1.5% copper was intersected on the Ken showing.

In 1980 Dupont Canada Explorations Ltd. staked the Warrior claims south of Newmont Lake on the basis of a regional stream sediment survey. In 1983, Skyline Explorations Ltd. and Placer Developments Ltd. optioned the Warrior claims from Dupont. Efforts were directed at sampling and extending several narrow quartz-pyrite-chalcopyrite veins with values ranging from 0.1 to 3.0 oz/ton gold. Geophysics and coincident geochemical values indicated a significant strike length to the mineralized structure. The Warrior claims were allowed to lapse in 1986, at which time, Gulf International Minerals Ltd. acquired the McLymont claims covering much the same area.

Assays of interest from recent Gulf drilling are listed below (Gulf International Minerals Ltd., Annual Report, 1988 and news releases):

| Drill<br><u>Hole</u> | Interval<br>(feet) | Length<br>(feet) | Copper<br>(%) | Silver<br>(oz/ton) | Gold<br>(oz/ton) |
|----------------------|--------------------|------------------|---------------|--------------------|------------------|
| 87-25                | 343.0-373.0        | 30.0             | 0.23          | 0.11               | 0.404            |
|                      | 409.3-412.0        | 2.7              | 0.55          | 0.35               | 0,250            |
|                      | 470.2-473.8        | 3.6              | 0.42          | 0.19               | 1,520            |
| 87-29                | 167.0-170.0        | 3.0              | 0.001         | 0.01               | 0.140            |
|                      | 205.0-241.5        | 36.5             | 0.97          | 1.16               | 1.605            |

| Drill<br><u>Hole</u> | <u>Interval</u><br>(feet) | <u>Length</u><br>(feet) | Copper<br>(%) | Silver<br>(oz/ton) | Gold<br>(oz/ton) |
|----------------------|---------------------------|-------------------------|---------------|--------------------|------------------|
| 88-28                | 213.9-229.0               | 15.1                    | 0.41          | 0.29               | 0.810            |
|                      | 260.5-276.6               | 16.1                    | 0.24          | 0.29               | 0.645            |
|                      | 300.2-301.5               | 1.3                     | 0.15          | 0.17               | 0.320            |
|                      | 330.1-338.9               | 8.8                     | 1.99          | 0.31               | 0.340            |
|                      | 353.0-363.2               | 10.2                    | 1.02          | 0.22               | 0.288            |

(average grade = 149.0 feet of 0.207 oz/ton gold)

After restaking the Reg property in 1980, Skyline carried out trenching and drilling for veined high-grade gold and polymetallic massive sulphide mineralization on the Reg and Inel deposits between 1981 and 1985.

In 1986, drilling and 460 metres of underground cross-cutting and drifting on the Stonehouse Gold Zone confirmed the presence of high grade gold mineralization with additional values in silver and copper over mineable widths with good lateral and depth continuity. With production commencing in August, 1988 a total of 196,927 lbs copper, 19,329 oz silver and 9,894 oz gold were produced up to the end of 1988. Remaining reserves reported to date in all categories are 686,000 tons grading 0.57 oz/ton gold.

On the Cominco/Delaware Snip claims immediately north of the Stonehouse Gold deposit, approximately 20,000 metres of diamond drilling has been carried out defining the Twin Zone gold deposit. Three thousand metres of underground development work has also been completed as the project readies for production. As of January, 1989, reserves on the Twin Zone were reported as:

|                | <u>Au</u><br>(oz) | Tons      |
|----------------|-------------------|-----------|
| Total Inferred | 0.648             | 2,446,000 |

During 1987, Inel Resources Ltd. commenced an underground drifting and diamond drilling program along the main cross-cut intent on intersecting the Discovery Zone. Mineralization is thought to represent broadly zoned fracture networks and sulphide veins along basalt/sandstone contacts. Underground drilling on the centre section of workings has returned in 88-U-40 a grade of 0.770 oz/ton gold for 13.3 feet. As of November, 1988, 2,471 feet of underground development has been completed in the area of the Discovery Zone.

ii Lii a

k.

6

Western Canadian Mining Corp. in 1987 drilled tested to Khyber Pass massive sulphide showing on their Gossan claims in the Iskut area while in 1988 drilling was carried out on their Kerr project copper-gold porphyry deposit in the Sulphurets camp to the southeast.

Tungco Resources Corporation has drill tested four main gold/copper quartz vein targets; the Bluff, No. 7, Swamp and Gold Bug Zones. The Bluff Zone has been delineated 70 metres along strike and 60 metres downdip with better intersections grading up to 0.243 oz/ton gold across 2.45 metres. The No. 7 Vein returned 1.12 metres of 0.651 oz/ton gold. Drill testing was also carried out near the western edge of the claims on the Boot Zone lead/zinc/ copper/silver/gold prospect.

During 1988 Pezgold Resource Corp./International Prism Exploration drill tested the old Newmont Ken Zone magnetite/chalcopyrite/gold skarn zone north of Gulf International Minerals' Northwest Gold Zone. High grade silver-leadzinc was also found on the eastern side of the property.

In late 1988, Calpine Resources Incorporated/Consolidated Stikine Silver announced several exciting drill holes on their Eskay Creek Project at Tom McKay Lake. Drill hole CA88-6 reported values of 0.730 oz/ton gold across 96.5 feet.

South of Calpine's Eskay Creek Project and in the Sulphurets Gold Camp several properties are quickly moving into production phases as listed below:

– Pamicon Developments Ltd. –

## **Project**

### Mineral Reserves

Newhawk/Granduc/Lacana Mine

2,000,000 of 0.462 oz/ton Au, 21.78 oz/ton Ag

7

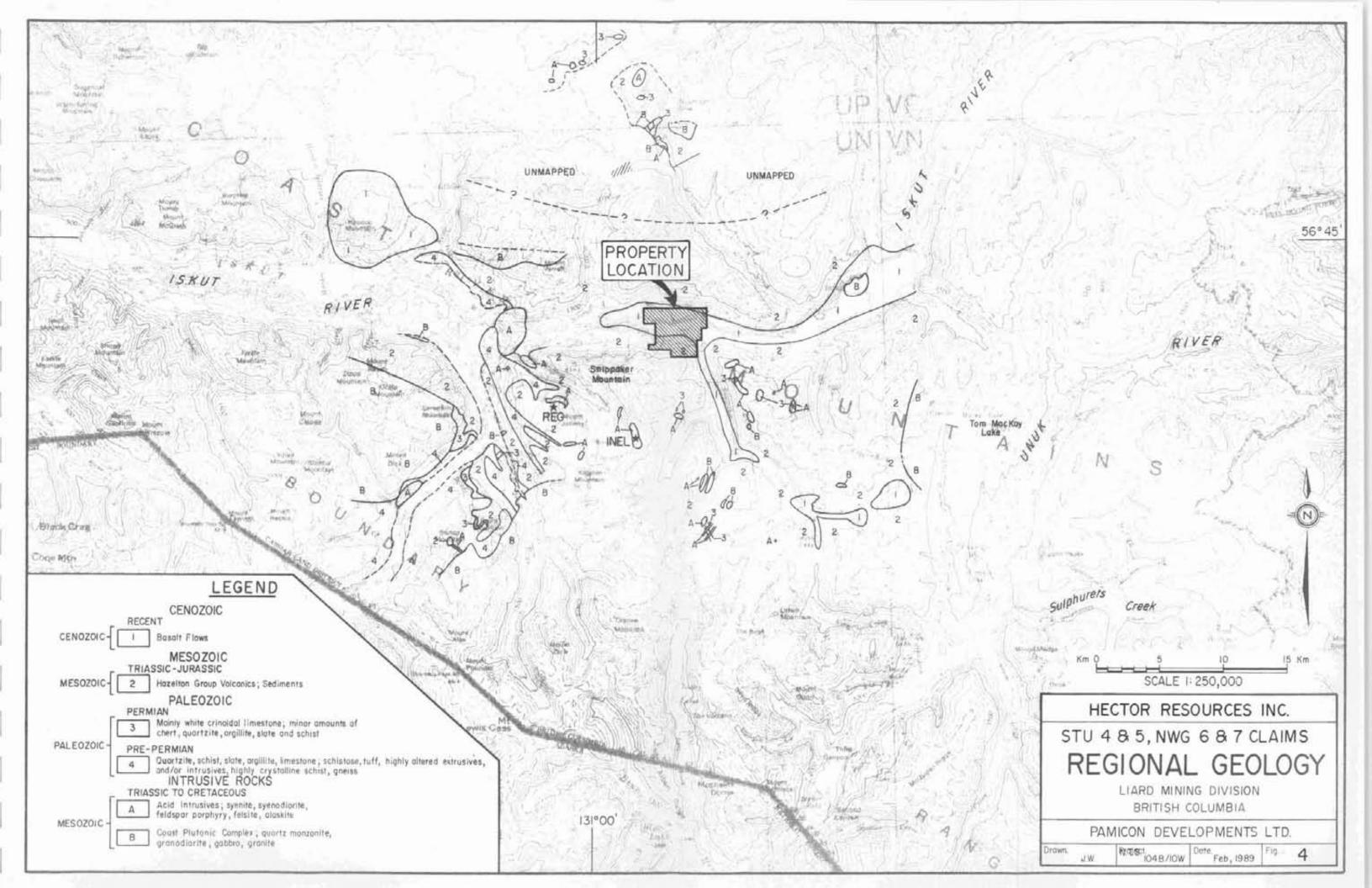
Catear Resources Ltd. Mine

291,916 of 0.835 oz/ton Au, 2.44 oz/ton Ag

Echo Bay Mines/Magna/ Silver Princess Project

470,000 of 0.270 oz/ton Au, 1.31 oz/ton Ag

Crest Resources Ltd./Magenta Development Corp. also discovered an exciting gold/silver/copper/lead quartz vein in 1988 on the Rob claims in the Skyline area with values in trenches up to 2.567 oz/ton Au across 9.8 feet including 7.394 oz/ton Au across 3.3 feet.


East of the Crest/Magenta property, an American Ore Ltd./Golden Band Resources/Delaware joint venture has discovered a gold zone near the northwestern corner of the Meridor Resource Corp. Iskut 1 & 2 mineral claims which Meridor has also intersected.

5.0 REGIONAL GEOLOGY

The following regional geological interpretation is taken from B.C. Geological Survey Branch publication, in press, Exploration in British Columbia 1987 by D.V. Lafebure and M.H. Gunning (Figure 4).

A northwest-trending belt of Permian to Lower Jurassic volcanic and sedimentary rocks and their metamorphic equivalents trends northward from Alice Arm to Telegraph Creek and forms part of Stikinia. It is bounded to the west by the Coast Complex and is overlapped to the east by the clastic sediments of the Bowser Basin.

The dominant lithologies in the Bronson Creek area are clastic sediments and volcanics with minor carbonate lenses which are intruded by a diverse suite of



intrusive rocks, most commonly granitic and syenitic. The sedimentary rocks are sandstones (typically greywackes), siltstones, shales, argillites, conglomerates and minor limestones. Volcanic rocks vary in composition from mafic to felsic and display a wide variety of igneous, pyroclastic and volcaniclastic textures.

Quaternary and Tertiary volcanics occur at Hoodoo Mountain, along the Iskut River near Forrest Kerr Creek, and in several localities along Snippaker Creek.

Kerr (1948) correlated most of the rocks along Bronson Creek with Triassic volcanics that he had seen farther to the north and northwest. These volcanics consist of intensely folded and sheared tuffs, agglomerates, lavas, rare pillow lavas and bedded sediments. He believed that the volcanics are overlain by Triassic argillites with lenses of limestone. The lower northern and western slopes of Johnny Mountain are underlain by pre-Permian metamorphosed shale, sandstone and limestone.

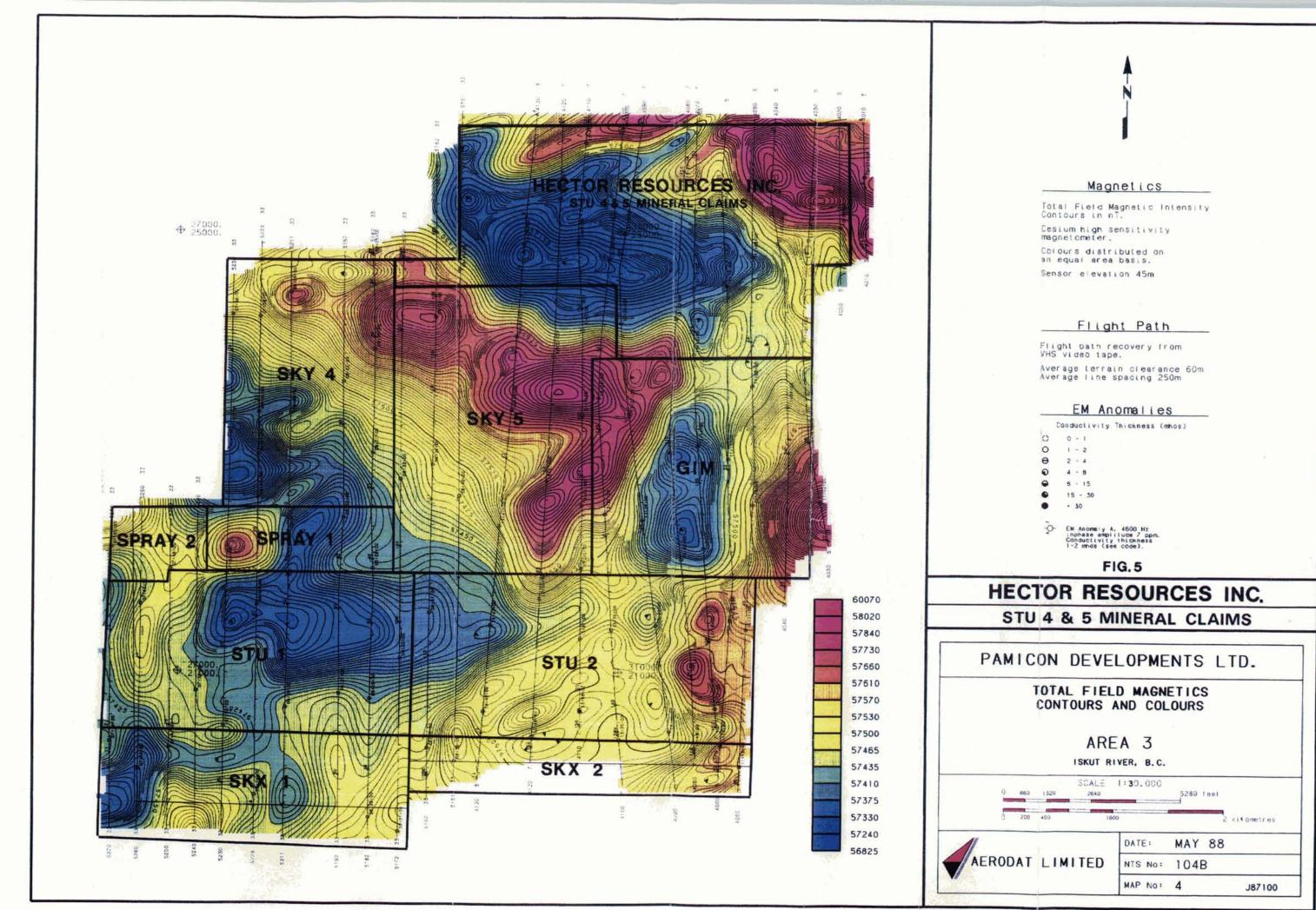
Exploration geologists have defined stratigraphic columns for specific properties (Birkeland and Gifford, 1972; Sevensma, 1981) and for the area as a whole (Parsons, 1965; Bending, 1983). Bending defined a stratigraphic column with black argillite conformably overlain by banded siltstone which underlies a green volcanic unit composed principally of intermediate to felsic rocks. The green volcanic unit has an irregular upper contact with the "Upper Tuffaceous Sedimentary Unit," a sequence of limestones, tuffaceous sandstones, argillites and siltstones with lenses of conglomerate near the upper contact. At the top of Bending's sequence is hornblende-biotite andesite tuff and subordinate breccia. Based on descriptions by Kerr (1930, 1948), Bending correlated the basal argillite and siltstone with the upper Paleozoic, the green volcanic unit with the Triassic and the upper tuffaceous sediments with the lower Jurassic. Fossils collected from 350 metres southwest of Snippaker Peak have been determined as Lower Jurassic, probably Toarcian age, by H.W. Tipper of the Geological Survey of Canada (Graf, 1985).

Grove (1986b) subdivided the sedimentary and volcanic rocks on the top of Mount Johnny into the Unuk River and Betty Creek formations of the Hazelton Group, based on correlations with his work to the east.

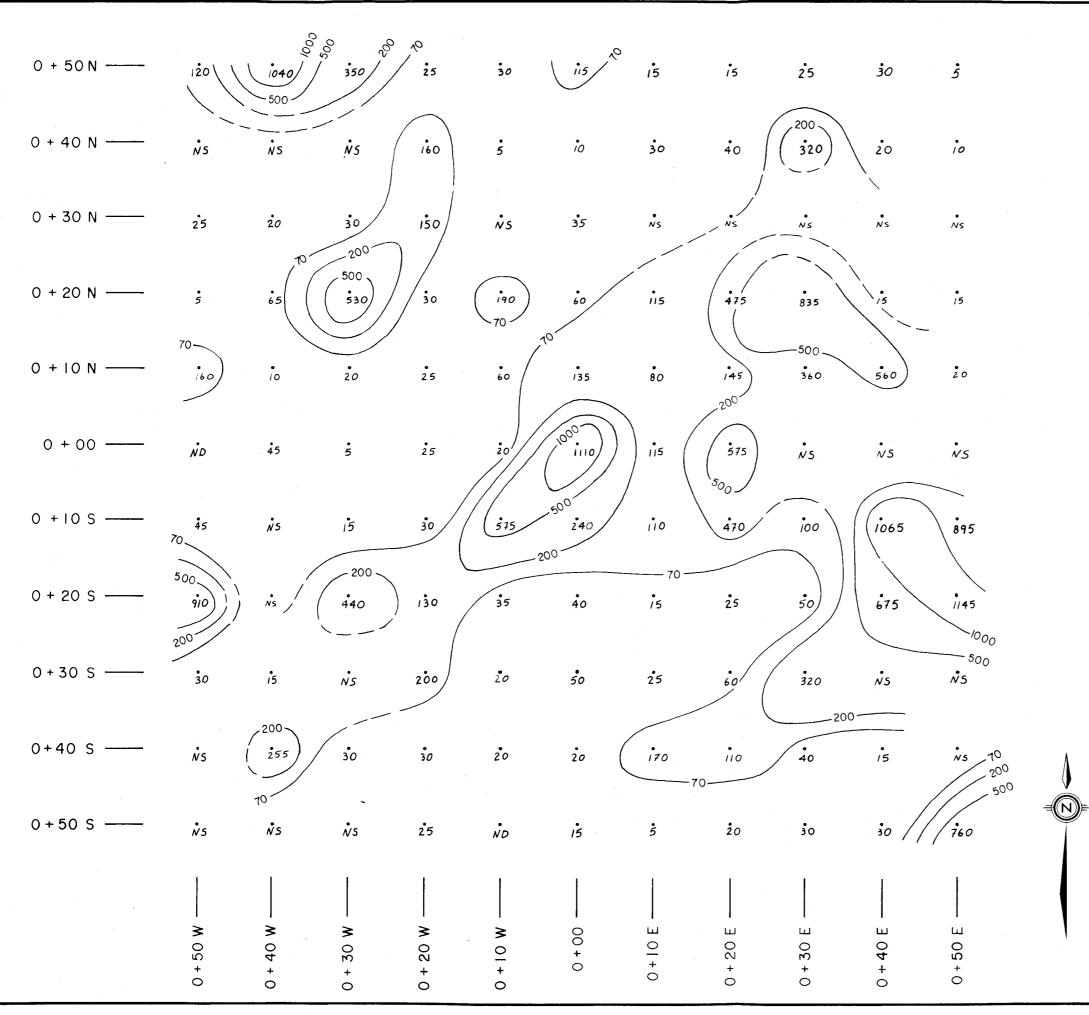
## 6.0 PROPERTY GEOLOGY

Minimal geological mapping was carried out on the property in 1988. Based on knowledge of surrounding properties and brief property mapping it is inferred that the subject claims are predominantly underlain by Mesozoic sedimentary and volcanic rocks which in turn are intruded by younger dioritic intrusive complexes. Diorite is known to occur in several locations within a large gold soil anomaly found on the Stu 4 claim block.

## 7.0 AIRBORNE GEOPHYSICS


.

8.3

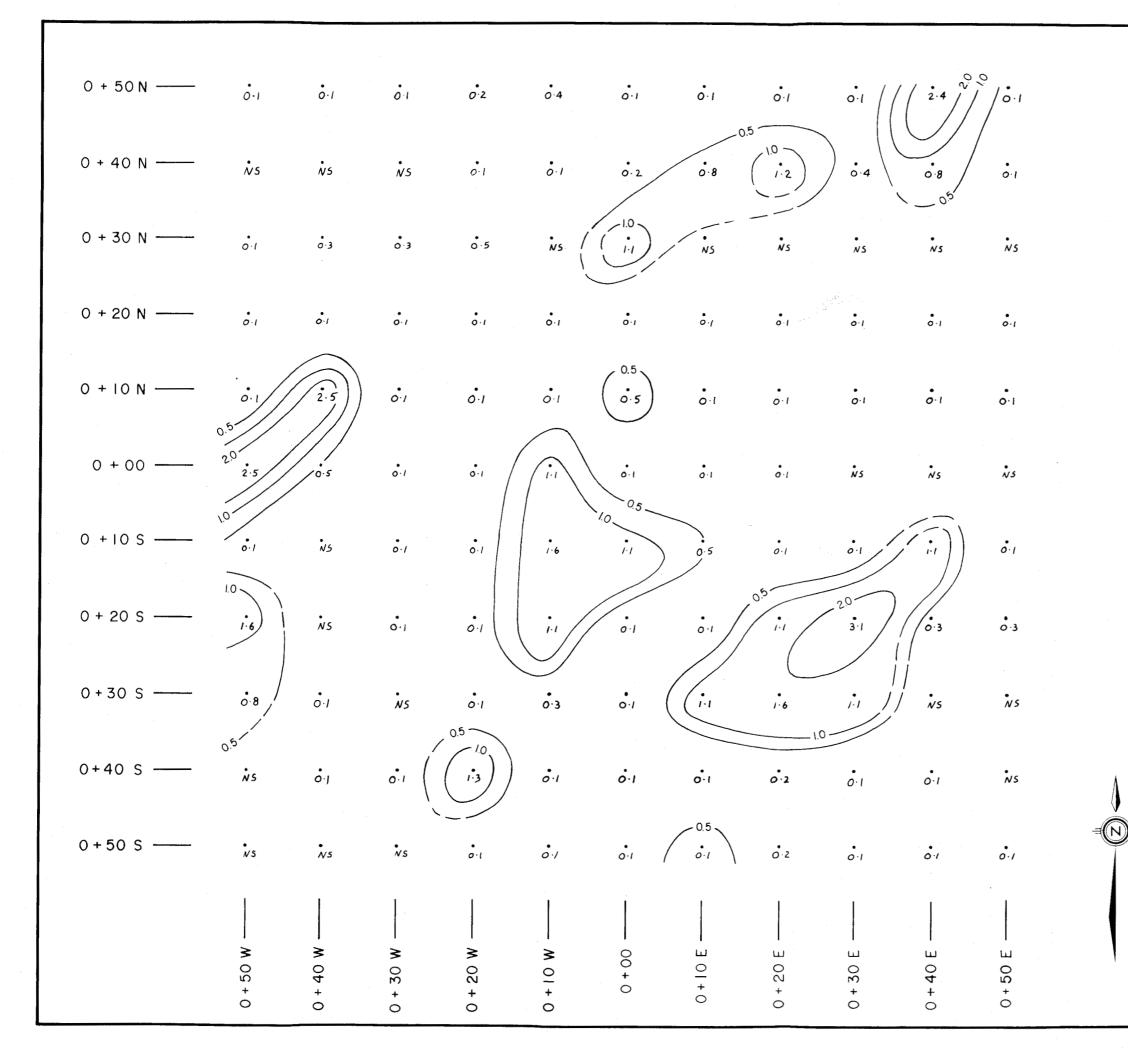

An airborne geophysical survey was carried out between November, 1987 and June, 1988 on behalf of Pamicon Developments Ltd. in the Iskut River area of northwestern B.C. Magnetic-electromagnetic-VLF surveys were flown over Hector Resources' Stu 4 & 5 and NWG 6 & 7 mineral claims (Figure 5).

A large magnetic low along the south side of the Iskut River suggests the claims are predominantly underlain by sedimentary rocks. Immediately north of this low, primarily on the NWG 6 & 7 claims, a large body of Coast Range intrusive (diorite) is inferred from strong magnetic features. Along the southern boundary of the Stu 4 & 5 claims a magnetic high suggests the presence of a smaller intrusive which is believed to be a magnetite-rich hornblende porphyry. This intrusive has not been verified on the subject property but on claims located immediately to the south (held in a Hector Resources/Skyline Explorations joint venture) this intrusive has been intersected in diamond drilling and in close proximity to known gold mineralization. Also unverified is the possibility that this magnetic high is in some way related to widespread gold soil values over an area some 550 to 600 metres

Pamicon Developments Ltd. –



|   | Conductivity                   | Thickness             | (mhos) |
|---|--------------------------------|-----------------------|--------|
| O | 0 - 1                          |                       |        |
| 0 | 1 - 2                          |                       |        |
| θ | 2 - 4                          |                       |        |
| 0 | 4 - 8                          |                       |        |
| • | 8 - 15                         |                       |        |
|   | 15 - 30                        |                       |        |
| ٠ | - 30                           |                       |        |
| 0 | - EM Anomaly A<br>inphase ampl | 4600 Hz<br>Lude 7 ppm |        |

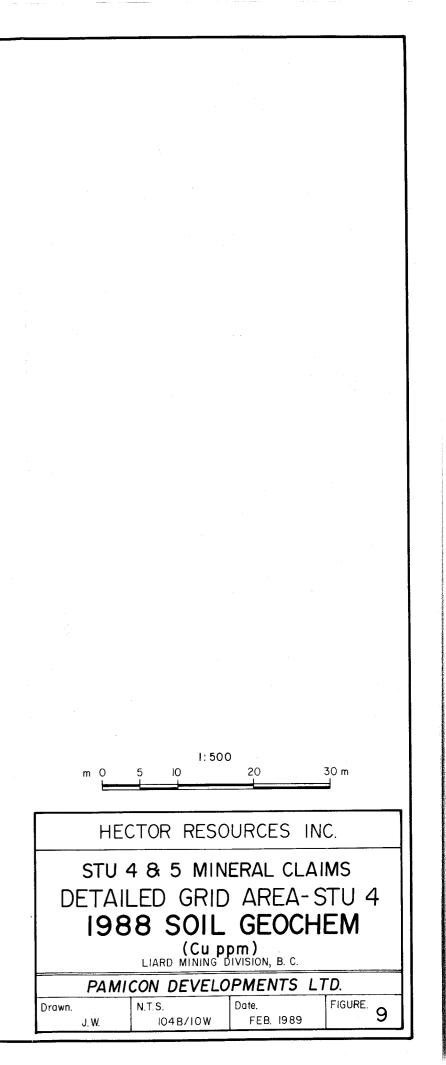



.

## CONTOUR INTERVALS

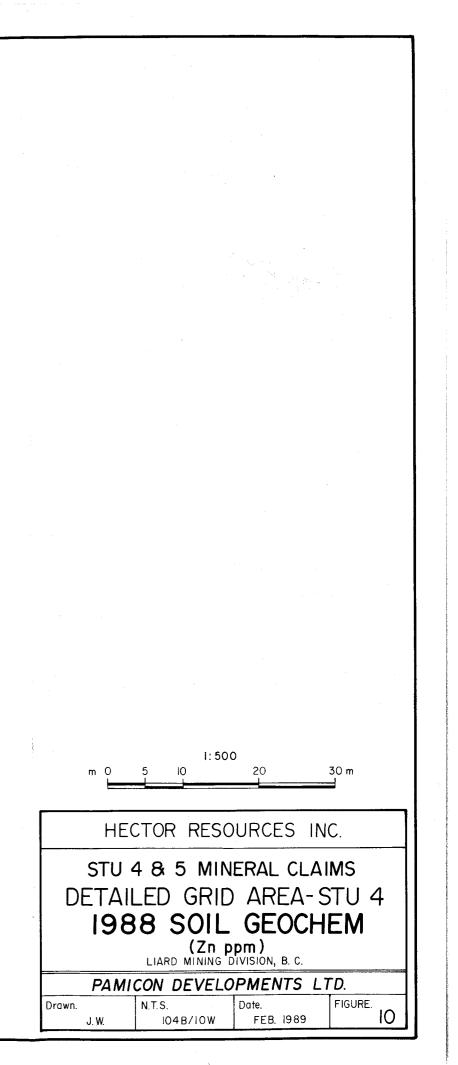
- >70 ppb Au = Threshold (anomalous)
- > 200 ppb Au
- > 500 ppb Au
- > 1000 ppb Au

| 1:500                                    |         |         |        |                  |  |
|------------------------------------------|---------|---------|--------|------------------|--|
| m O                                      | 5 10    | 20      | 30     | ) m              |  |
|                                          |         |         |        |                  |  |
| HE                                       | CTOR R  | ESOURCI | ES INC | •                |  |
| STU 4                                    | 4851    | MINERAL |        | 15               |  |
| DETAI                                    | _ED GI  | rid ar  | EA-ST  | <sup>-</sup> U 4 |  |
| 198                                      | 8 SO    | IL GE   | OCHE   | EM               |  |
| (Au ppb)<br>LIARD MINING DIVISION, B. C. |         |         |        |                  |  |
| PAMICON DEVELOPMENTS LTD.                |         |         |        |                  |  |
| Drawn.                                   | N.T.S.  | Date.   | F      | igure.           |  |
| J. W.                                    | 104B/10 | )W FEB. | 1989   | (                |  |




## CONTOUR INTERVALS

>2.3 ppm Ag = Threshold (Anomalous)


| m 0                                                                                                                          | 1:50<br>5 IO       | 20<br>             | 30 m      |  |  |
|------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------|--|--|
| HE                                                                                                                           | CTOR RES           | OURCES IN          | C.        |  |  |
| STU 4 & 5 MINERAL CLAIMS<br>DETAILED GRID AREA-STU 4<br><b>1988 SOIL GEOCHEM</b><br>(Ag ppm)<br>LIARD MINING DIVISION, B. C. |                    |                    |           |  |  |
| PAMICON DEVELOPMENTS LTD.                                                                                                    |                    |                    |           |  |  |
| Drawn.<br>J. W.                                                                                                              | N.T.S.<br>104B/10W | Date.<br>FEB. 1989 | FIGURE. 8 |  |  |

| 0 + 50 N | 35               | 130      | •<br>55  | •<br>51      | 63       | 37         | 37       | <b>4</b> 2      | <b>3</b> 6 | 33       | 27         |
|----------|------------------|----------|----------|--------------|----------|------------|----------|-----------------|------------|----------|------------|
| 0 + 40 N | NS               | NS.      | NS       | 26           | 35       | <b>4</b> 3 | 37       | 37              | 34         | 47       | <b>4</b> 1 |
| 0 + 30 N | 22               | 18       | 27       | 24           | NS       | 29         | NS<br>NS | <b>.</b><br>N 5 | NS         | •<br>N 5 | NS<br>NS   |
| 0 + 20 N | , <b>9</b>       | 26       | 49       | 30           | 84       | 40         | 55       | 55              | 62         | 70       | •<br>21    |
| 0 + 10 N | , <sup>*</sup> 3 | 26       | 25       | •<br>68      | •<br>151 | •<br>41    | •<br>41  | 89              | 73         | •<br>52  | 54         |
| 0 + 00   | 47               | 61       | 37       | 34           | 29       | 158        | 29       | <b>4</b> 2      | NS         | NS       | •<br>N 5   |
| 0 + 10 S | •<br>9           | NS       | 4/       | 3/           | 130      | 56         | 59       | •<br>56         | 127        | 62       | <b>5</b> 1 |
| 0 + 20 S | 29               | NS       | •<br>/3  | 68           | 33       | 30         | 28       | 27              | 33         | 134      | ,03        |
| 0+30 S   | 48               | 34       | •<br>N5  | , <b>5</b> 6 | 27       | <b>3</b> 9 | 38       | <b>3</b> 5      | 47         | •<br>N 5 | •<br>N5    |
| 0+40 S   | N5               | 27       | 59       | 39           | 3/       | 25         | •<br>66  | •<br>46         | •<br>27    | •<br>17  | •<br>NS    |
| 0+50 S   | •<br>NS          | •<br>√5  | *<br>N5  | 30           | •<br>43  | •<br>28    | 35       | <b>.</b> 50     | 34         | 27       | •<br>104   |
|          | 0 + 50 W         | 0 + 40 W | 0 + 30 W | 0 + 20 W     | M 01+0   | 00 + 0     | 0 + 10 E | 0 + 20 E        | 0 + 30 E   | 0 + 40 E | 0 + 50 E   |



((N))

| 0 + 50 N | 300            | 99          | 109            | <b>i</b> 31     | 70           | 105      | 157      | 114            | /49      | 271      | 89             |
|----------|----------------|-------------|----------------|-----------------|--------------|----------|----------|----------------|----------|----------|----------------|
| 0 + 40 N | Ňs             | ŅS          | NS             | 25 <b>8</b>     | 149          | •<br>90  | 174      | •<br>144       | •<br>121 |          | •<br>67        |
| 0 + 30 N | 140            | 112         | 311            | 228             | NS           | in       | •<br>N 5 | •<br>N 5       | N5       | N5       | NS             |
| 0 + 20 N | 124            | <b>,</b> 38 | 151            | 231             | 159          | 215      | ,73      | 210            | 215      | 221      | •<br>76        |
| 0 + 10 N | <b>.</b><br>33 | 149         | 200            | 142             | 347          | ioı      |          | •<br>141       | 278      | •<br>//3 | <i>i</i> /3    |
| 0 + 00   | ้อง            | 184         | ·<br>/53       | 174             | <i>.</i> ,15 | 153      | •<br>62  | 78             | •<br>N 5 | NS       | NS             |
| 0 + 10 S | 47             | •<br>N5     | 164            | <i>.</i><br>116 | 187          | <i>.</i> | 145      | 116            | .53      | •<br>/25 | •<br>142       |
| 0 + 20 S | •<br>67        | NS          | 30             | •<br>78         | •            | • 52     | •3       | •<br>126       | •<br>98  | 139      | •<br>/61       |
| 0+30 S   | 184            | iu          | •<br>NS        | •<br>92         | .26          | •        | •<br>87  | 172            | 58       | •<br>N 5 | N5             |
| 0+40 S   | •<br>N 5       | •<br>95     | 2.78           | 218             | 125          | /82      | •<br>96  | <b>.</b><br>80 | 88       | 50       | <b>.</b><br>N5 |
| 0 + 50 S | NS             | <b>N</b> 5  | <b>.</b><br>N5 | 129             | 228          | •<br>62  | 139      | 198            | 66       | 146      | <b>.</b><br>83 |
|          | 0 + 50 W       | 0 + 40 W    | 0 + 30 W       | 0 + 20 W        | M 01 + 0     | 00+0     | 0 + 10 E | + 20 E         | ) + 30 E | + 40 E   | 0 + 50 E       |
|          | + 0            | +<br>0      | +              | +               | +            |          | 0        | 0              | +        | +        | 0              |



in diameter on the Stu 4 claim. High-grade gold mineralization has recently been discovered within this soil anomaly but is as yet not fully understood.

There were no VLF bedrock conductors intercepted on the Stu 4 & 5 and NWG 6 & 7 claims with flight lines flown at 250 metre spaced intervals.

Reference may be made to R.J. de Carle's REPORT ON A COMBINED HELICOPTER-BORNE MAGNETIC, ELECTROMAGNETIC AND VLF SURVEY, ISKUT RIVER AREA, September 23, 1988.

# 30' samples taken with a hor at a depth of about is can from the B horizon, which is poor by developed in alpine terrain

The emphasis of the 1988 field exploration program on the Hector Stu 4 & 5 property was aimed at following up gold soil anomalies located on two separate contour soil traverse lines ran in 1987 on the Stu 4 claim. In this area, anomalous soil values ranged from 70 to 520 ppb Au. Investigation of the 520 ppb Au soil hole identified pyrite quartz veining talus material which was subsequently found in situ approximately 15 metres uphill (Figure 6). Rock chip samples of this material assayed as follows:

| Sample | Gold     |
|--------|----------|
| Number | (oz/ton) |
| 22201  | 0.117    |
| 22202  | 0.219    |

Detailed contour and grid soil sampling was then undertaken in this area as is presented in Figures 7 to 10. Figure 7 presents a 10 metre spaced grid around the 1987 520 ppb Au soil sample station and clearly indicates an anomalous area measuring at least 80 x 100 metres with gold values ranging up to 1,110 ppb Au.

Approximately 150 metres higher in elevation from the above mentioned zone several additional geochemical samples also returned very encouraging assays

with spot high values of 160, 300, 780, 1,180, 1,400 and 2,000 ppb Au (Figure 11). Continued fill-in sampling may connect these values with the well defined anomaly located lower downslope where mineralization has been discovered.

Approximately 300 to 400 metres west of the above two geochemical anomalies is a third gold anomaly (Figure 11). Here, an area measuring approximately 100 metres in diameter may again be expressing part of the same geochemical feature. Anomalous assay values in this area range from 190 to 1,020 ppb Au. Brief follow-up prospecting near some of these anomalous soil values resulted in the discovery of several limonitic quartz veins varying in size from 10 to 30 cm (Figure 6). Assay values from these veins are listed below:

| Sample<br>Number | <u>Silver</u><br>(ppm) | Gold<br>(oz/ton) |
|------------------|------------------------|------------------|
| 33415            | 17.4                   | 0.490            |
| 22205            | 13.7                   | 0.467            |
| 22208            | 66.4                   | 1.695            |
| 22209            | 8.8                    | 0.162            |
| 22210            | 16.4                   | 0.871            |
| 22214            | 8.2                    | 1.668            |
| 22215            | 16.9                   | 1.406            |
|                  |                        |                  |

Silver value soil plots indicate slightly anomalous areas near the gold highs on the Stu 4 while copper was generally low (Figures 12 and 13).

## 9.0 DISCUSSION AND CONCLUSIONS

During the 1988 field season, emphasis was placed on following up a gold geochemical anomaly discovered in 1987 on Hector's Stu 4 mineral claim. In the 1987 program soil values up to 520 ppb Au were reported. In 1988, investigation led to the discovery of mineralized quartz-pyrite veining yielding assay values up to 0.219 oz/ton Au. Detailed soil grid work in this

area has identified an anomalous zone measuring at least 80 x 100 metres with soil values ranging up to 1,110 ppb Au. Outcrop exposure is extremely limited in this area.

Two additional areas of geochemically anomalous gold values were also located in 1988. Approximately 150 metres uphill in elevation from the 1987 discovery area several spot high soil samples ranged in values up to 2,000 ppb Au. 300 to 400 metres to the west a third anomaly measuring 100 metres in diameter included soil values up to 1,020 ppb Au. In this area quartz veins 10 to 30 cm wide returned sample values up to 1.695 oz/ton Au and 66.4 ppm Ag.

From work done to date on the Hector Stu 4 & 5 and NWG 6 & 7 claims, soil sampling combined with follow-up prospecting has discovered an area of anomalous gold in soils possibly measuring up to 600 metres in diameter. Soil geochemical assay values obtained within this area are of an extremely anomalous nature by Iskut River Area standards. Quartz veining discovered late in the field season has returned extremely encouraging results with values greater than one ounce gold per ton.

Initial interpretation of field data and investigations to date of the Hector property suggests the presence of a gold-silver quartz vein stockwork system possibly measuring up to 500 metres in diameter. Continued soil sampling on a cut line grid, prospecting, geological mapping and geophysical surveying are recommended to gain a better understanding of the property's potential. For the 1989 field season, \$150,000 should be made available for a Phase I program to carry out the above mentioned work. An additional \$150,000 should be made accessible contingent upon favorable results for a modest trenching and drill testing program.

A more detailed cost estimate for the Phase I recommended program is outlined below.

## 9.1 RECOMMENDED BUDGET

.

| Wages<br>Senior Geologist - 10 days @ \$400<br>Field Geologist - 21 days @ \$300<br>Prospectors - 15 days @ \$265<br>Samplers - 2 x 21 days @ \$200 | \$ 4,000<br>6,300<br>8,400<br>3,975 |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|
|                                                                                                                                                     |                                     | \$ 22,675 |
| Line Cutting - 25 km @ \$1,200                                                                                                                      |                                     | 30,000    |
| Geophysics - 2 x 10 days @ \$375                                                                                                                    |                                     | 7,500     |
| Room and Board<br>Geophysics - 20 man days<br>Line Cutters - 100 man days<br>Field Crew - <u>88</u> man days<br>208 man days @ \$105                |                                     | 21,840    |
| Assays<br>800 soil samples @ \$15.50<br>150 rock chip samples @ \$17.50                                                                             | \$12,400<br><u>2,625</u>            | 15,025    |
|                                                                                                                                                     |                                     | 15,025    |
| Freight                                                                                                                                             |                                     | 2,500     |
| Travel and Accommodation                                                                                                                            |                                     | 5,000     |
| Communication                                                                                                                                       |                                     | 2,000     |
| Fixed Wing                                                                                                                                          |                                     | 5,000     |
| Helicopter - 27 hours @ \$625                                                                                                                       |                                     | 17,000    |
| Trenching Supplies                                                                                                                                  |                                     | 2,000     |
| Equipment Rentals                                                                                                                                   |                                     | 6,240     |
| Report                                                                                                                                              |                                     | 3,000     |
| Contingency @ 10%                                                                                                                                   |                                     | 13,978    |
| Management Fee                                                                                                                                      |                                     | 14,036    |
| Total                                                                                                                                               |                                     | \$167,794 |
| NESSION AND AND AND AND AND AND AND AND AND AN                                                                                                      |                                     |           |
| Respectfully submitted,                                                                                                                             |                                     |           |
| B S D CHARLES K. KONA                                                                                                                               | UM                                  |           |

Steve Todoruk, Geologist

Charlest K. Ikona, P.Eng.

APPENDIX I

BIBLIOGRAPHY

### BIBLIOGRAPHY

Bilodeau, P.J. and C.K. Ikona (1989): Geological Report on the Rob 15 & 16 Mineral Claims.

Calpine Resources Inc.: News Release, Vancouver Stockwatch, December 13, 1988.

Caulfield, D.A. and C.K. Ikona (1987): Geological Report on the GIM Mineral Claim.

Caulfield, D.A. and C.K. Ikona (1987): Geological Report on the Josh, Josh 2-4 Mineral Claims.

Costin, C.P. (1973): Assessment Report 4150, Dirk Claims, Newmont.

de Carle, R.J. (1988): Report on a Combined Helicopter-Borne Magnetic, Electromagnetic and VLF Survey, Iskut River Area, Liard Mining Division, British Columbia.

Delaware Resources Corp.: Progress Report, Snip Prospect, November 19, 1987.

Delaware Resources Corp.: News Release, Vancouver Stockwatch, November 11, 1988.

Delaware Resources Corp.: News Release, Vancouver Stockwatch, January 16, 1989.

Gulf International Minerals Ltd.: Annual Report, 1987.

Gulf International Minerals Ltd.: Annual Report, February 1988.

Grove, E.W. (1985): Geological Report and Work Proposal on the Skyline Explorations Ltd. Inel Property. Grove, E.W. (1986): Geological Report, Exploration and Development Proposal on the Skyline Explorations Ltd. Reg Property.

Ikona, C.K. (1988): Geological Report on the Gab 7, 8 & 10, Joy 12, New 3 & 4, Joy 3, Ver 1 & 2, Ret 2, 3, 4, 5, 6 & 7, Cam 7 & 8, Hag 5, 6 & 7 Mineral Claims.

Kiesman, W. and C.K. Ikona (1989): Geological Report on the Gab 7, 8 & 10 Mineral Claims.

Kowalchuk, J. (1982): Assessment Report 10,418, Warrior Claims, Dupont Exploration.

Lafebure, D.V. and M.H. Gunning (1987): Exploration in British Columbia 1987, in press, B.C. Geological Survey Branch publication.

Meridor Resources Ltd.: News Release, Vancouver Stockwatch, January 11, 1988.

Montgomery, A. and C.K. Ikona (1989): Geological report on the New 3 & 4 and Joy 12 Mineral Claims.

Montgomery, A. and C.K. Ikona (1989): Geological report on the Rob 17, 19, 20, 21 Mineral Claims.

Scroggins, E.A. and C.K. Ikona (1989): Geological Report on the Rob 13 & 14 Mineral Claims.

Skyline Explorations Ltd.: Annual Report, 1987.

h. :

Skyline Explorations Ltd.: Annual Report, 1988.

Sorbara, J. Paul (January 11, 1988): Geological Report on the Joy 1 & 2 Mineral Claims for Brenwest Mining Ltd.

- Pamicon Developments Ltd.

Ticker Tape Resources Ltd.: News releases dated September 21, 1987 and October 13, 1987.

1

أشيفا

. .

Todoruk, S.L. and C.K. Ikona (1987): Geological Report on the Stu 1 & 2 Mineral Claims.

Todoruk, S.L. and C.K. Ikona (1987): Geological Report on the Gab 11 & 12 Mineral Claims and Stu 8 & 9 Mineral Claims.

Todoruk, S.L. and C.K. Ikona (1987): 1987 Summary Report on the Sky 4 & 5 and Spray 1 & 2 Claims.

Todoruk, S.L. and C.K. Ikona (1987): Geological Report on the Stu 4 & 5 Mineral Claims.

Todoruk, S.L. and C.K. Ikona (1988): Geological Report on the Forrest 1-15 Mineral Claims.

Todoruk, S.L. and C.K. Ikona (1989): Geological Report on the Kerr 1-6 Mineral Claims.

Todoruk, S.L. and C.K. Ikona (1989): Geological Report on the Gab 9 Mineral Claim.

Todoruk, S.L. and C.K. Ikona (1989): Geological Report on the Gab 11 & 12, Mon 1 & 2, Wei & Zel, Stu 8 & 9 Mineral Claims.

Tungco Resources Corporation: News release dated December 1, 1987.

Western Canadian Mining Corp.: News release dated November 12, 1987.

- Pamicon Developments Ltd. -

APPENDIX II

COST STATEMENT

## COST STATEMENT STU 4 & 5 AND NWG 6 & 7 MINERAL CLAIMS LIARD MINING DIVISION JULY 5 TO NOVEMBER 30, 1988

## WAGES

Ref Street

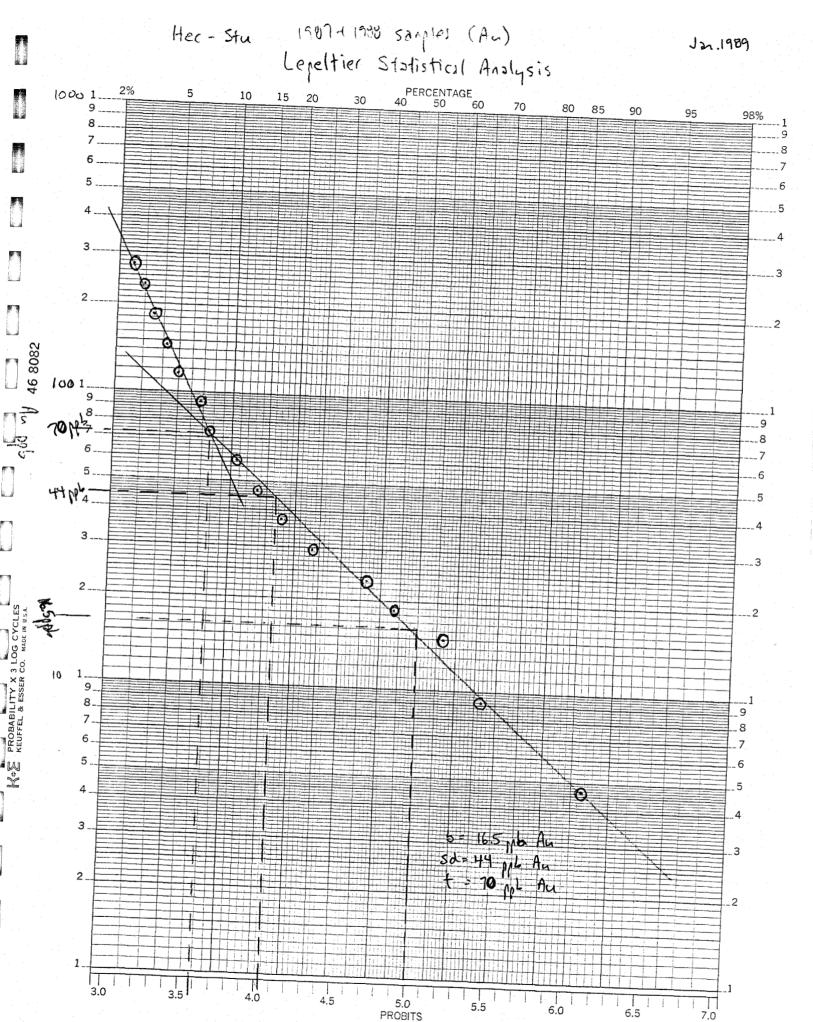
| Field Geologist - 2 days @ \$250     | \$ 500.00   |
|--------------------------------------|-------------|
| Samplers - 7.5 days @ \$200          | 1,500.00    |
| Geophysical Crew - 8.25 days @ \$300 | 2,475.00    |
| Field Support Crew                   | 810.58      |
|                                      | \$ 5,285.58 |

## EXPENSES

| Man Day Camp Support Costs  | 2,388.75     |
|-----------------------------|--------------|
| Equipment and Supplies      | 568.75       |
| Travel and Accommodation    | 169.45       |
| Communication and Telephone | 76.84        |
| Freight                     | 56.34        |
| Assays                      | 4,438.00     |
| Fixed Wing                  | 471.79       |
| Helicopter                  | 2,161.36     |
| Project Supervision         | 998.35       |
|                             | \$ 16,614.86 |

- Pamicon Developments Ltd. -

LEPELTIER SOIL GEOCHEMISTRY STATISTICS

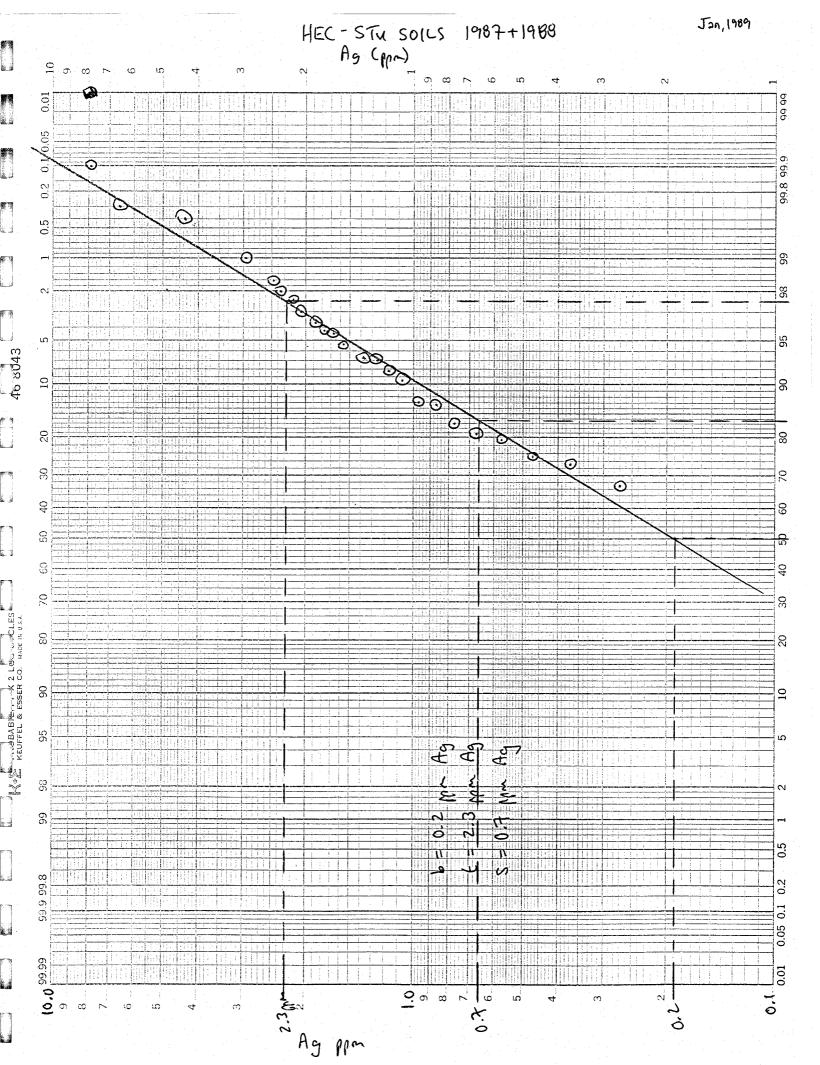

APPENDIX III

Hector Resources Inc. 1987+1988 soils Stu 4+5 and NWG 6+7 claims

Jan 1989

Lepelfier Soil Data Statistics

|                                         | Project: He       | c - Stu                               | Metal:                   | Au M3 Type:  | i.                                    |   |
|-----------------------------------------|-------------------|---------------------------------------|--------------------------|--------------|---------------------------------------|---|
|                                         | Lower Class Limit | Frequency                             | Cumpulstive<br>Frequency | Cumulstive % | Celculations                          |   |
| ·····                                   |                   |                                       |                          |              |                                       |   |
|                                         | 1.17              |                                       |                          |              |                                       |   |
|                                         | 1.48              | · · · · · · · · · · · · · · · · · · · |                          |              |                                       |   |
|                                         | 1.86              |                                       |                          |              |                                       |   |
|                                         | 2.24              |                                       |                          |              | •                                     |   |
|                                         | 2.95              |                                       |                          |              |                                       |   |
|                                         | 3.72              |                                       |                          |              |                                       |   |
| <b>X</b>                                | 4.67              | 77                                    | 77                       | 86.6         |                                       |   |
|                                         | 5.89              |                                       |                          |              |                                       |   |
| -                                       | 7.41              |                                       |                          |              |                                       |   |
|                                         | 9.33              | 117                                   | (94.                     | 66.3         |                                       |   |
|                                         | 11.75             |                                       |                          |              |                                       |   |
|                                         | 14.79             | 55                                    | 249                      | 56.8         |                                       | 1 |
|                                         | 18.62             | 75                                    | 324                      | 43.8         | · · ·                                 |   |
| · • • • • • • • • • • • • • • • • • • • | 23.43             | 43                                    | 367                      | 36.0         |                                       |   |
|                                         | 29.51             | 75                                    | 442                      | 23.3         |                                       |   |
|                                         | 37.15             | 32                                    | 474                      | 17.7         |                                       |   |
|                                         | 46.77             | 25                                    | 499                      | (3.4         | · · · · · · · · · · · · · · · · · · · |   |
| 10 - 20 <b>14</b>                       | 58.30             | 16                                    | 515                      | 10.6         |                                       |   |
|                                         | 74.13             | 16                                    | 531                      | 7.8          |                                       |   |
| <u>.</u>                                | 93.32             | 6                                     | 537                      | 6.8          |                                       |   |
|                                         | 117.49            | 10                                    | 547                      | 5.0          |                                       |   |
|                                         | 147.9/            | 5                                     | 552                      | 4.2          |                                       |   |
|                                         | 186.21            | 4                                     | 556                      | 3.5          | <u> </u>                              |   |
|                                         | 234.42            | 3                                     | 559                      | 3.0          |                                       |   |
|                                         | 295.12            | 2                                     | 561                      | 2.6          |                                       |   |
| • •                                     | 37!.53            | Ō                                     |                          | •            |                                       |   |
|                                         | 467.74            | 6                                     | 567                      | 1.6          |                                       |   |
|                                         | 588.24            | 1                                     | 568                      | 1.4          | · · · · · · · · · · · · · · · · · · · |   |
| ······································  | 741.31            |                                       | 569                      | (.2          |                                       |   |
|                                         | 933.25            | 2                                     | 571                      | 6.9          | <u></u>                               |   |
|                                         | 1174.89           | 2                                     | .573                     | 0.5          |                                       | · |
| -                                       | 1479.11           | 2                                     | 575                      | 0.7          | <u></u>                               |   |
| •••••                                   | 1862.09           |                                       | 576                      | 0.0          |                                       |   |
|                                         | 2344.22           |                                       |                          |              |                                       |   |
|                                         | 2951.21           |                                       |                          |              |                                       |   |
|                                         | 2715.35           | · ····                                |                          |              |                                       |   |




PROBITS

| 1987 + | -1988 |
|--------|-------|
|--------|-------|

|              |                      | 1987+19   | 788                     |           |         |        |
|--------------|----------------------|-----------|-------------------------|-----------|---------|--------|
|              |                      | ter - stu | Me                      | tal Ag    | Type MM |        |
|              | Lower class<br>limit | Frequency | Cumulation<br>Frequence | e   C   } |         |        |
|              | -0.13                |           |                         | <u></u>   |         |        |
|              | - 0.03               | 428       | 428                     | 38.8%     | 0       |        |
|              | 0.27                 | 38        | 466                     | 33.3      |         |        |
|              | 0.37                 | 44        | 510                     | 27.0      | •       |        |
|              | 0.47                 | 16        | 526                     | 24.7      |         | •      |
|              | 0.57                 | 29        | 555                     | 20.6      |         | 19 - 1 |
|              | 0.67                 | (4        | 569                     | 18.6      |         | •      |
|              | 0.77                 | 29        | 598                     | 14.4      |         |        |
|              | 0.87                 | e         | 606                     | 13.3      |         |        |
|              | 0.97                 | (         | 607                     | 13.2      |         |        |
|              | 1.07                 | 24        | 631                     | 9.7       |         |        |
| -            | 1.17                 | 10        | 641                     | 8.3       |         |        |
|              | 1.27                 | 9         | 650                     | 7.0       |         |        |
|              | 1.37                 |           | -                       |           |         |        |
|              | 1.47                 | 1         | 651                     | 6.9       |         |        |
| ۶ ۹ <u> </u> | 1.57                 | . (1      | 662                     | 5.3       |         |        |
|              | 1.67                 | 4         | 666                     | 4.7       |         |        |
|              | 1.77                 | 3         | 669                     | 4.3       |         |        |
|              | 1.87                 | 4         | 673                     | 3.7       |         |        |
|              | 1.97                 |           | -                       |           |         |        |
|              | 2.07                 | 5         | 678                     | 3.0       |         |        |
|              | 2.17                 | Ч         | 682                     | 2.4       |         |        |
|              | 2,27                 |           |                         |           |         |        |
|              | 2.37                 | 3         | 685                     | 2.0       |         |        |
|              | 2.47                 | 3         | 688                     | 1.6       |         |        |
|              | 2.57                 |           |                         | <u> </u>  |         |        |
|              | 2.67                 |           | 689                     | (.4       |         |        |
| 2 C2A        | 2.77                 |           | 690                     | 1.3       |         |        |
|              | 2.87                 |           |                         | <u> </u>  |         |        |
|              | 2.97                 | 2         | 692                     | 1.0       |         |        |

| <u> </u>              | 1987+198  | AR SOICZ  |                   |              | •<br>•<br>•                           |
|-----------------------|-----------|-----------|-------------------|--------------|---------------------------------------|
| Project HE            |           | Meta      | Ag T              | ype MM       |                                       |
| Lower class<br>limit. | Frequency | Frequency | Commutative<br>20 | calculations |                                       |
|                       |           |           |                   |              |                                       |
| 3.07                  |           | -         |                   |              |                                       |
| 3.17                  |           |           | <u> </u>          |              | · · · · · · · · · · · · · · · · · · · |
| 3.27                  | 1         | 693       | 0.9 %             |              |                                       |
| 3.37                  |           |           | <u> </u>          |              |                                       |
| 3.47                  |           |           |                   |              |                                       |
| 3.57                  |           | 694       | 0.7               |              |                                       |
| 3.67                  | <u> </u>  |           |                   |              |                                       |
| 3.77                  |           | ~         | ~                 |              |                                       |
| 3.87                  | ~         |           | _                 |              |                                       |
| 3.97                  |           | ~ ~       |                   |              |                                       |
| 4.07                  |           |           |                   |              | · .                                   |
| 4.17                  | -         | _         | <u> </u>          |              |                                       |
| 4.27                  |           | ~         | -                 |              | -                                     |
| 4.37                  | 2         | 696       | 0.4               |              |                                       |
| 4.47                  | _         |           | -                 |              |                                       |
| 6.27                  |           | 697       | 0.3               |              |                                       |
| 7.97                  | 1         | 698       | 6.1               |              | · · · · · ·                           |
| 15.77                 |           | 699       | 0.0               |              | · · ·                                 |
|                       |           |           |                   |              |                                       |
|                       |           |           |                   |              |                                       |
|                       |           |           |                   |              |                                       |
|                       |           |           |                   |              |                                       |
|                       |           |           |                   |              |                                       |
|                       |           |           |                   |              | · · · · · · · · · · · · · · · · · · · |
|                       |           |           |                   |              |                                       |
|                       |           |           |                   |              |                                       |
|                       |           |           |                   |              |                                       |
|                       |           |           |                   |              |                                       |



#### APPENDIX IV

in the second second

ġ

ŝ

#### ASSAY CERTIFICATES



MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

December 23, 1987

1.

- TO: Steve Todoruk PAMICON DEVELOPMENTS 711 - 675 W. Hastings St. Vancouver, B.C. V6B 1N4
- FROM: Vangeochem Lab Limited 1521 Pemberton Avenue North Vancouver, British Columbia V7P 283
- SUBJECT: Analytical procedure used to determine Aqua Regia soluble gold in geochemical samples.

#### Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

#### 2. Method of Digestion

- (a) 5.00 to 10.00 grams of the minus 80-mesh portion of the samples were used. Samples were weighed out using an electronic micro-balance and deposited into beakers.
- (b) Using a 20 ml solution of Aqua Regia (3:1 solution of HCl to HNO3), each sample was vigorously digested over a hot plate.
- (c) The digested samples were filtered and the washed pulps were discarded. The filtrate was then reduced in volume to about 5 ml.



1. I

-

2

### VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

- (d) Au complex ions were then extracted into a di-isobutyl ketone and thiourea medium (Anion exchange liquids "Aliquot 336").
- (e) Separatory funnels were used to separate the organic layer.

#### 3. <u>Method of Detection</u>

The detection of Au was performed with a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out onto a strip chart recorder. A hydrogen lamp was used to correct any background interferences. The gold values, in parts per billion, calculated by comparing them with a set of were gold standards.

#### Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. Eddie Tang and his laboratory staff.

Eddie Tang VANGEOCHEM LAB LIMITED



 MAIN OFFICE

 1521 PEMBERTON AVE.

 NORTH VANCOUVER, B.C. V7P 2S3

 (604) 986-5211

 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

December 23, 1987

È.

10 3

4.2

- TO: Steve Todoruk PAMICON DEVELOPMENTS 711 - 675 W. Hastings St. Vancouver, B.C. V6B 1N4
- FROM: Vangeochem Lab Limited 1521 Pemberton Avenue North Vancouver, British Columbia V7P 283
- SUBJECT: Analytical procedure used to determine gold by fire assay method and detect by atomic absorption spectrophotometry in geological samples.
- 1. Method of Sample Preparation
  - (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
  - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
  - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

#### 2. Method of Extraction

- (a) 20.0 to 30.0 grams of the pulp samples were used. Samples were weighed out using a top-loading balance and deposited into individual fusion pots.
- (b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are then fused at 1900 degrees Farenhiet to form a lead "button".
- (c) The gold is extracted by cupellation and parted with diluted nitric acid.



MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

(d) The gold bead is retained for subsequent measurement.

#### 3. Method of Detection

- (a) The gold bead is dissolved by boiling with aqua regia solution, then diluted with deionized water to 10 mls volume.
- (b) The detection of gold was performed with a Techtron model AA5 Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values, in parts per billion, were calculated by comparing them with a set of known gold standards.

#### <u>Ana lysts</u>

4.

The analyses were supervised or determined by Mr. Conway Chun or Mr. David Chiu and his laboratory staff.

David Chiu VANGEOCHEM LAB LIMITED



MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

December 23, 1987

1

1

- TO: Steve Todoruk PAMICON DEVELOPMENTS 711 - 675 W. Hastings St. Vancouver, B.C. V6B 1N4
- FROM: Vangeochem Lab Limited 1521 Pemberton Avenue North Vancouver, British Columbia V7P 2S3
- SUBJECT: Analytical procedure used to determine hot acid soluble for 28 element scan by inductively Coupled Plasma Spectrophotometry in geochemical silt and soil samples.

#### 1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

#### 2. Method of Digestion

- (a) 0.50 gram portions of the minus 80-mesh samples were used. Samples were weighed out using an electronic balance.
- (b) Samples were digested with a 5 ml solution of HCL:HNO3:H20 in the ratio of 3:1:2 in a 95 degree Celsius water bath for 90 minutes.
- (c) The digested samples are then removed from the bath and bulked up to 10 ml total volume with dimineralized water and thoroughly mixed.



 MAIN OFFICE

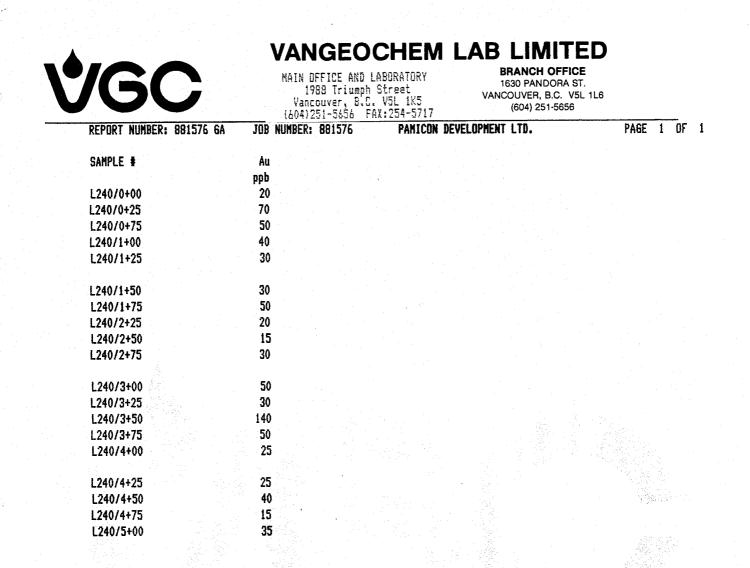
 1521 PEMBERTON AVE.

 NORTH VANCOUVER, B.C. V7P 2S3

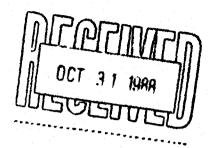
 (604) 986-5211

 TELEX: 04-352578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656


#### 3. Method of Analyses

The ICP analyses elements were determined by using a Jarrel-Ash ICAP model 9000 directly reading the spectrophotometric emissions. All major matrix and trace elements are interelement corrected. All data are subsequently stored onto disk.


#### 4. Analysts

The analyses were supervised or determined by either Mr. Eddie Tang, and, the laboratory staff.

Eddie Tang VANGEOCHEM LAB LIMITED



is = insufficient sample



#### VANGEOCHEM LAB LIMITED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDDRA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

#### ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, MN, FE, CA, P, CR, MG, BA, PD, AL, NA, K, N, PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NDT DETECTED, -= NOT ANALYZED

|                                                               |   |                            |                                      |                            |                            | IS= IN                      | SUFFICI                  | ENT SAM                         | PLE, ND                         | = NOT D                | ÉTECTED                    | ,= N                       | DT ANALY                             | ZED                             |                                 |                                  |                       |                                 |                            |                                 |                              |                            |                            |                            |                         |                       |                            | Ŷ                          | · ^                            |   |
|---------------------------------------------------------------|---|----------------------------|--------------------------------------|----------------------------|----------------------------|-----------------------------|--------------------------|---------------------------------|---------------------------------|------------------------|----------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|----------------------------------|-----------------------|---------------------------------|----------------------------|---------------------------------|------------------------------|----------------------------|----------------------------|----------------------------|-------------------------|-----------------------|----------------------------|----------------------------|--------------------------------|---|
| COMPANY: P<br>ATTENTION:<br>PROJECT: H                        | 9 | ТО                         | DORU                                 | <                          |                            |                             |                          | <u> </u>                        | <b>JOB#</b> :                   | T#:<br>881<br>CE#:     | 576                        |                            |                                      | •                               |                                 | DATE                             |                       | PLE                             | ED: 8<br>TED:<br>D:        |                                 |                              |                            |                            |                            |                         | ANAL                  | YST_                       | 1                          | 12                             | 1 |
|                                                               |   |                            |                                      |                            |                            |                             |                          |                                 |                                 |                        |                            |                            |                                      |                                 |                                 |                                  |                       |                                 |                            |                                 |                              |                            | PAG                        | E 1 OF                     | 1                       |                       |                            |                            |                                |   |
| SAMPLE NAME                                                   |   | AG<br>PPM                  | AL<br>Z                              | AS<br>PPH                  | AU<br>PPM                  | BÅ<br>PPN                   | BI<br>PPM                | CA<br>X                         | CD<br>PPH                       | CO<br>PPN              | CR<br>PPM                  | CU<br>PPN                  | FE<br>X                              | K<br>X                          | NG<br>X                         | NN<br>PPH                        | NO<br>PPM             | NA<br>Z                         | NI<br>PPM                  | P<br>I                          | PB<br>PPN                    | PD<br>PPH                  | PT<br>PPN                  | SB<br>PPM                  | SN<br>PPN               | SR<br>PPM             | U<br>PPM                   | N<br>PPN                   | ZN<br>PPH                      |   |
| L240/0+00<br>L240/0+25<br>L240/0+75<br>L240/1+00<br>L240/1+25 |   | .4<br>.2<br>.2<br>.3       | 3.97<br>2.34<br>4.33<br>3.24<br>5.67 | 30<br>14<br>27<br>23<br>25 | ND<br>ND<br>ND<br>ND<br>ND | 111<br>35<br>58<br>55<br>59 | nd<br>Nd<br>Nd<br>Nd     | .05<br>.04<br>.02<br>.03<br>.02 | 1.1<br>1.2<br>.7<br>1.2<br>1.1  | 16<br>5<br>7<br>6<br>7 | 20<br>24<br>28<br>27<br>17 | 30<br>30<br>25<br>25<br>22 | 4.26<br>5.55<br>3.81<br>4.01<br>4.88 | .16<br>.20<br>.14<br>.15<br>.18 | .35<br>.19<br>.34<br>.28<br>.13 | 552<br>197<br>235<br>204<br>284  | 4<br>4<br>4<br>7      | .05<br>.02<br>.02<br>.02<br>.03 | 38<br>12<br>24<br>18<br>16 | .02<br>.04<br>.04<br>.04<br>.04 | 95<br>73<br>94<br>80<br>115  | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>4  | 7<br>7<br>6<br>6<br>7   | 4<br>5<br>7<br>2      | nd<br>Nd<br>Nd<br>Nd<br>Nd | ND<br>ND<br>ND<br>ND       | 238<br>92<br>169<br>139<br>206 |   |
| L240/1+50<br>L240/1+75<br>L240/2+25<br>L240/2+50<br>L240/2+75 |   | .1<br>.1<br>.2<br>.3<br>.1 | 3.77<br>3.90<br>5.15<br>5.24<br>3.11 | 10<br>20<br>23<br>23<br>12 | ND<br>ND<br>ND<br>ND       | 83<br>80<br>35<br>67<br>68  | NÐ<br>ND<br>ND<br>ND     | .03<br>.07<br>.01<br>.03<br>.01 | 1.9<br>1.1<br>1.5<br>1.1<br>1.5 | 5<br>8<br>6<br>7<br>4  | 49<br>56<br>36<br>40<br>42 | 25<br>37<br>36<br>30<br>23 | 6.69<br>3.93<br>5.86<br>4.09<br>5.61 | .24<br>.15<br>.21<br>.15<br>.20 | .24<br>.58<br>.08<br>.39<br>.19 | 168<br>211<br>118<br>217<br>116  | 5<br>3<br>5<br>4<br>3 | .03<br>.02<br>.02<br>.02<br>.02 | 14<br>45<br>7<br>30<br>12  | .03<br>.06<br>.05<br>.04<br>.03 | 93<br>78<br>115<br>104<br>72 | ND<br>ND<br>ND<br>ND       | HD<br>HD<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 6<br>3<br>11<br>6<br>3  | 9<br>8<br>2<br>5<br>6 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 116<br>136<br>94<br>190<br>72  |   |
| L240/3+00<br>L240/3+25<br>L240/3+50<br>L240/3+75<br>L240/4+00 |   | .1<br>.2<br>.2<br>.3<br>.2 | 3.65<br>1.82<br>4.95<br>2.22<br>4.79 | 18<br>11<br>27<br>6<br>20  | ND<br>ND<br>ND<br>ND       | 253<br>55<br>62<br>46<br>37 | OK<br>3<br>ND<br>3<br>ND | .26<br>.03<br>.03<br>.04<br>.06 | .8<br>1.5<br>.7<br>1.7<br>1.1   | 9<br>8<br>7<br>4       | 27<br>25<br>40<br>27<br>25 | 31<br>39<br>28<br>43<br>29 | 3.94<br>6.31<br>3.83<br>8.05<br>4.81 | .18<br>.23<br>.14<br>.29<br>.18 | .29<br>.13<br>.61<br>.16<br>.10 | 2110<br>138<br>269<br>143<br>175 | 5<br>4<br>6<br>5      | .03<br>.02<br>.02<br>.03<br>.02 | 24<br>6<br>38<br>8<br>7    | .09<br>.04<br>.03<br>.07<br>.06 | 82<br>54<br>99<br>87<br>102  | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 6<br>10<br>5<br>14<br>7 | 14<br>7<br>7<br>5     | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 193<br>63<br>147<br>85<br>101  |   |
| L240/4+25<br>L240/4+50<br>L240/4+75<br>L240/5+00              |   | .2<br>.3<br>.1             | 4.57<br>4.55<br>4.65<br>3.08         | 22<br>17<br>19<br>8        | nd<br>Nd<br>Nd<br>Nd       | 55<br>54<br>56<br>51        | ND<br>ND<br>ND<br>ND     | .06<br>.03<br>.03<br>.07        | .8<br>.7<br>.8<br>.5            | 19<br>7<br>8<br>7      | 19<br>17<br>30<br>17       | 26<br>28<br>27<br>23       | 4.18<br>4.26<br>4.50<br>4.98         | .16<br>.15<br>.16<br>.19        | .12<br>.10<br>.27<br>.16        | 834<br>191<br>291<br>484         | 5<br>5<br>4           | .03<br>.03<br>.03<br>.02        | 9<br>9<br>16<br>6          | .09<br>.05<br>.05<br>.06        | 102<br>101<br>96<br>77       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 8<br>8<br>7<br>7        | 5<br>4<br>5<br>11     | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 143<br>144<br>142<br>104       |   |
| DETECTION LIMIT                                               |   | .1                         | .01                                  | 3                          | 3                          | i                           | 3                        | .01                             | .1                              | 1                      | 1                          | 1                          | .01                                  | .01                             | .01                             | 1                                | 1                     | .01                             | 1                          | .01                             | 2                            | 3                          | 5                          | 2                          | 2                       | 1                     | 5                          | 3                          | . 1                            |   |

5.)

 $(\cdot)$ 

ţ



PAMICON DEVELOPMENT LTD.

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

881561

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

PAGE 1 OF 1

| REPO  | RT NUMBER: | 881561                                                                                                                                                                                                                            | GA JOB  | NUMBER: |
|-------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| SAMP  | LE #       |                                                                                                                                                                                                                                   | Au      |         |
|       |            |                                                                                                                                                                                                                                   | ppb     |         |
| 2220  | 5          |                                                                                                                                                                                                                                   | > 10000 |         |
| 22206 | 5          |                                                                                                                                                                                                                                   | 1510    |         |
| 22207 | 7          |                                                                                                                                                                                                                                   | 360     |         |
| 22208 | }          |                                                                                                                                                                                                                                   | >10000  |         |
| 22209 | )          |                                                                                                                                                                                                                                   | 4300    |         |
| 22210 | ).         |                                                                                                                                                                                                                                   | > 10000 |         |
| 22211 |            |                                                                                                                                                                                                                                   | 495     |         |
| 22212 | <b>a</b> . |                                                                                                                                                                                                                                   | 130     |         |
| 22213 | 1          |                                                                                                                                                                                                                                   | 145     |         |
| 22214 |            |                                                                                                                                                                                                                                   | > 10000 |         |
| 22215 |            |                                                                                                                                                                                                                                   | > 10000 |         |
| 33381 |            | di sena di sen<br>Sena di sena di | 410     |         |
| 33382 |            |                                                                                                                                                                                                                                   | 150     |         |
| 33383 |            | 42.)<br>2000 - 64<br>2000 - 60<br>2000 - 60                                                                                                                                                                                       | 30      |         |

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

PAGE 1 OF 1

| REPORT NUMBER: | 881561 AA | JOB NUMBER: | 881561      | PAMICON DEVELOPH | IENT LTD. |
|----------------|-----------|-------------|-------------|------------------|-----------|
| SAMPLE #       |           |             | Ag<br>oz/st | Au<br>oz/st      |           |
|                |           |             |             |                  |           |
| 22205          |           |             |             | .467             |           |
| 22208          |           |             | 1.98        | 1.695            |           |
| 22209          |           |             |             | .162             |           |
| 22210          |           |             | anne Prot   | .871             |           |
| 22214          |           |             |             | 1.668            |           |

22215

DETECTION LIMIT .01 .00 1 Troy oz/short ton = 34.28 ppm 1 ppm = 0.0001% ppm = signed:

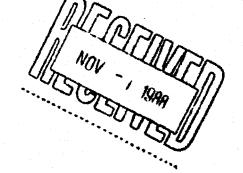
01 .005 0.0001% ppm= parts per million

1.406

< = less than</pre>

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717 esi bar

#### ICAP GEOCHEMICAL ANALYSIS


A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, MN, FE, CA, P, CR, MG, BA, PD, AL, NA, K, W, PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

| COMPANY: F<br>ATTENTION:<br>PROJECT: F    | <b>S.</b>                        | TODOF                              | NK                          |                            |                              |                            | · · ·                           | REPOR<br>JOB#:<br>(NV01     | 881                     | 561                           |                            |                                      |                                 |                                  |                                 | e rei<br>E coi<br>Y sei |                                 | TED:                    |                                 |                            |                            |                            |                            |                        | ANAL                     | YST_                       | V                    | k                           | ŀ. |
|-------------------------------------------|----------------------------------|------------------------------------|-----------------------------|----------------------------|------------------------------|----------------------------|---------------------------------|-----------------------------|-------------------------|-------------------------------|----------------------------|--------------------------------------|---------------------------------|----------------------------------|---------------------------------|-------------------------|---------------------------------|-------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------------|--------------------------|----------------------------|----------------------|-----------------------------|----|
|                                           |                                  |                                    |                             |                            |                              |                            |                                 |                             |                         |                               |                            |                                      | •                               |                                  |                                 |                         |                                 |                         |                                 |                            |                            | PAG                        | E 1 OF                     | 1                      |                          |                            |                      |                             |    |
| SAMPLE NAME                               | AG<br>PPM                        | AL<br>Z                            | AS<br>PPN                   | AU<br>PPR                  | BA<br>PPM                    | BI<br>PPM                  | CA<br>X                         | CD<br>PPM                   | CO<br>PPN               | CR<br>PPM                     | CU<br>PPM                  | FE<br>X                              | K<br>Z                          | NG<br>X                          | NN<br>PPN                       | NO<br>PPN               | NA<br>Z                         | NI<br>PPH               | P<br>X                          | PB<br>PPM                  | PD<br>PPM                  | PT<br>PPM                  | SB<br>PPN                  | SN<br>Pph              | SR<br>PPM                | U<br>PPM                   | W<br>PPH             | ZN<br>PPM                   |    |
| 22205<br>22206<br>22207<br>22208<br>22209 | 13.7<br>2.1<br>.5<br>66.4<br>8.8 | .96<br>1.07<br>1.50<br>.81<br>1.29 | 22<br>28<br>15<br>376<br>42 | 17<br>ND<br>ND<br>45<br>5  | 69<br>98<br>38<br>164<br>169 | ND<br>ND<br>ND<br>ND<br>ND | .23<br>.12<br>.16<br>.02<br>.10 | .5<br>.7<br>.8<br>1.5<br>.3 | 8<br>5<br>8<br>47<br>21 | 93<br>79<br>81<br>207<br>155  | 47<br>32<br>25<br>84<br>21 | 2.79<br>2.69<br>2.51<br>8.65<br>3.80 | .12<br>.10<br>.11<br>.29<br>.14 | .51<br>.52<br>.81<br>.25<br>.51  | 438<br>442<br>728<br>292<br>571 | 4<br>5<br>4<br>22<br>10 | .02<br>.02<br>.02<br>.02<br>.02 | 14<br>3<br>5<br>8       | .09<br>.08<br>.08<br>.02<br>.05 | 21<br>36<br>92<br>87<br>37 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 1<br>2<br>2<br>ND<br>1 | 18<br>7<br>7<br>7<br>9   | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 53<br>98<br>178<br>33<br>44 |    |
| 22210<br>22211<br>22212<br>22213<br>22214 | 16.4<br>.3<br>.3<br>1.5<br>8.2   | .95<br>1.17<br>1.70                | 11<br>14<br>11<br>5<br>45   | 17<br>ND<br>ND<br>ND<br>31 | 29<br>90<br>75<br>73<br>67   | 3<br>ND<br>ND<br>ND<br>4   | .05<br>.08<br>.35<br>.54<br>.03 | .1<br>.6<br>.8<br>1.4       | 3<br>5<br>7<br>18<br>37 | 225<br>123<br>87<br>78<br>183 | 12<br>23<br>29<br>33<br>90 | .68<br>1.94<br>2.14<br>3.29<br>5.07  | .03<br>.07<br>.12<br>.18<br>.21 | .14<br>.20<br>.59<br>1.05<br>.12 | 205<br>256<br>768<br>666<br>97  | 5<br>5<br>3<br>4<br>29  | .01<br>.02<br>.02<br>.02<br>.02 | 7<br>9<br>10<br>16<br>5 | .02<br>.07<br>.08<br>.03<br>.01 | 12<br>25<br>32<br>31<br>18 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 1<br>ND<br>2<br>6      | 4<br>7<br>34<br>21<br>11 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 13<br>51<br>90<br>96<br>9   |    |
| 22215<br>33381<br>33382<br>33383          | 16.9<br>.5<br>1.1<br>.3          | .37<br>1.71<br>1.26<br>1.23        | 49<br>20<br>11<br>5         | 43<br>ND<br>ND<br>ND       | 8<br>113<br>62<br>289        | 4<br>ND<br>ND<br>ND        | .06<br>.76<br>.25<br>.69        | 1.5<br>.5<br>.2<br>.2       | 31<br>10<br>9<br>8      | 193<br>131<br>52<br>98        | 48<br>41<br>15<br>16       | 8.92<br>2.59<br>2.32<br>2.07         | .24<br>.19<br>.11<br>.17        | .12<br>.75<br>.71<br>.54         | 161<br>856<br>794<br>827        | 16<br>5<br>5<br>4       | .02<br>.02<br>.02<br>.02        | 5<br>4<br>3<br>5        | .01<br>.10<br>.09<br>.08        | 56<br>37<br>29<br>26       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 1<br>2<br>3<br>3       | 37<br>18<br>28<br>170    | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 44<br>35<br>69<br>74        |    |
| DETECTION LIMIT                           | .1                               | .01                                | 3                           | 3                          | 1                            | 3                          | .01                             | <u>;</u> .1                 | 1                       | t                             | 1                          | .01                                  | .01                             | .01                              | 1                               | $\sim^1$                | .01                             | 1                       | .01                             | 2                          | 3                          | 5                          | 2                          | 2                      | 1                        | 5                          | 3                    | 1                           |    |

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

 $\{\cdot\}$ 

()

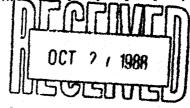




.

## VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABDRATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656


| REPOR       | RT NUM | BER: 881556 | GA JOB | NUMBER:          | 881556             |           | PAMIC         | IN DEV | ELOPHEN | T LTD. |    |              | PAGE       | 1 OF        | 1 |
|-------------|--------|-------------|--------|------------------|--------------------|-----------|---------------|--------|---------|--------|----|--------------|------------|-------------|---|
| SAMP        | LE #   |             | Au     |                  |                    | · . •     |               |        |         |        |    |              |            |             |   |
|             |        |             | ppb    |                  |                    |           |               |        |         |        |    |              |            |             |   |
| H\$88       | L270   | 0+25W       | 20     |                  |                    |           |               |        |         |        |    |              |            |             |   |
| HS88        | L270   | 0+50W       | 45     |                  |                    |           |               |        |         |        |    |              |            |             |   |
| HS88        | L270   | 0+75W       | 40     |                  |                    |           |               |        |         |        |    |              |            |             |   |
| HS88        | L270   | 1+00W       | 220    |                  |                    |           |               |        |         |        |    |              |            |             |   |
| <b>HS88</b> | L270   | 1+250       | 30     |                  |                    |           |               |        |         |        |    |              |            |             |   |
|             |        |             |        |                  |                    |           |               |        |         |        |    |              |            |             |   |
| HS88        | L270   | 1+50        | 275    |                  |                    |           |               |        |         |        |    |              |            |             |   |
| HS88        | L280   | 0+00W       | 80     |                  |                    |           |               |        |         |        |    |              |            |             |   |
| <b>HS88</b> | L280   | 0+25₩       | 70     |                  |                    |           |               |        |         |        |    |              |            |             |   |
| <b>HS88</b> | L280   | 0+50W       | 80     |                  |                    |           |               |        |         |        |    |              |            |             |   |
| HS88        | L280   | 0+75₩       | 50     |                  |                    |           |               |        |         |        |    |              |            |             |   |
| H588        | L280   | 1+00W       | 20     |                  | 1. autorit         |           |               |        |         |        |    |              |            |             |   |
| HS88        | L280   | 1+25₩       | 80     |                  |                    |           |               |        |         |        |    | 이라는<br>아파 문화 | B          |             |   |
| HS88        | L280   | 1+50W       | 90     |                  |                    |           |               |        | r       |        |    |              |            |             |   |
| <b>HS88</b> | L310   | 0+00W       | 30     |                  |                    | 1359 a    |               |        |         |        |    |              |            |             |   |
| <b>HS88</b> |        | 0+25W       | 30     |                  |                    |           |               |        |         |        |    |              |            |             |   |
|             |        |             |        |                  | 11-6- <sup>1</sup> |           |               |        |         |        |    |              |            |             |   |
| H588        | L310   | 0+50N       | 40     |                  |                    |           |               |        |         |        |    | 2            | 21-638     | angeden:    |   |
| <b>HS88</b> | L310   | 1+00W       | 20     | 1868)<br>- 1868) | - 2017<br>2017     | 14.1<br>1 |               |        |         |        |    |              |            |             |   |
| H588        |        | 1+25₩       | 30     | 있었다.<br>한번       |                    |           |               |        |         |        |    |              | si della   | 33-3-3-<br> |   |
| HS88        |        | 0+00W       | 40     |                  |                    |           |               |        |         |        |    |              |            |             |   |
| HS88        |        | 0+25N       | 25     |                  | La Senara          |           |               |        |         |        | 1. |              |            |             |   |
| HS88        | L320   | 0+50W       | 65     |                  |                    |           |               |        |         |        |    |              |            |             |   |
| HS88        | 6      | 0+75W       | 20     |                  |                    |           | 1923-19<br>19 |        |         | all a  |    | 영상 이상<br>승규는 | μ.<br>Mari |             |   |
| HS88        |        | 1+00W       | 20     |                  |                    |           |               |        |         |        |    |              |            |             |   |
| HS88        |        | 1+25W       | 190    |                  |                    |           |               |        |         |        |    |              |            |             |   |
| HS88        |        | 1+50W       | 25     |                  |                    |           |               |        |         |        |    |              |            |             |   |

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

#### ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN,MN,FE,CA,P,CR,MG,BA,PD,AL,NA,K,N,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

| COMPANY: P<br>ATTENTION:<br>PROJECT: H                                                                         | S | . T                         | ODOR                                 | UK                         |                            |                               |                           | j                               | OB#:                            | T#:<br>881<br>CE#:       | 556                        |                             |                                      |                                 |                                 | DATE                              | CO                    |                                 |                            |                                 | 0/04                          | •                          |                            |                            |                        | ANAL                     | YST_                       | 4                          | by                            | <u>/.</u> |
|----------------------------------------------------------------------------------------------------------------|---|-----------------------------|--------------------------------------|----------------------------|----------------------------|-------------------------------|---------------------------|---------------------------------|---------------------------------|--------------------------|----------------------------|-----------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------------------|-----------------------|---------------------------------|----------------------------|---------------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|------------------------|--------------------------|----------------------------|----------------------------|-------------------------------|-----------|
|                                                                                                                |   |                             |                                      |                            |                            |                               |                           |                                 |                                 |                          |                            |                             |                                      | •                               |                                 |                                   |                       |                                 |                            |                                 |                               |                            | PAG                        | E I DF                     | 1                      |                          |                            |                            |                               |           |
| SAMPLE NAME                                                                                                    |   | AG<br>PPh                   | AL<br>X                              | AS<br>PPM                  | AU<br>Ppm                  | BA<br>PPM                     | BI<br>PPM                 | CA<br>X                         | CD<br>PPM                       | CO<br>PPM                | CR<br>PPM                  | CU<br>PPM                   | FE<br>X                              | K<br>X                          | MG<br>%                         | NN<br>PPM                         | KO<br>PPM             | NA<br>Z                         | NI<br>PPM                  | P<br>X                          | PB<br>PPM                     | PD<br>PPM                  | PT<br>PPM                  | SB<br>PPM                  | SN<br>PPH              | SR<br>PPM                | U<br>PPM                   | W<br>PPM                   | 21N<br>PPM                    |           |
| HS88 L270 0+25W<br>HS88 L270 0+50W<br>HS88 L270 0+50W<br>HS88 L270 0+75W<br>HS88 L270 1+00W<br>HS88 L270 1+25W |   | .3<br>.3<br>8.0<br>.1<br>.2 | 4.59<br>4.30<br>2.97<br>2.38<br>2.50 | 36<br>28<br>64<br>16<br>19 | ND<br>ND<br>ND<br>ND       | 51<br>55<br>148<br>169<br>81  | ND<br>ND<br>ND<br>ND      | .03<br>.02<br>.08<br>.08<br>.05 | 2.5<br>1.8<br>4.5<br>1.1<br>1.8 | 5<br>5<br>5<br>5<br>5    | 40<br>38<br>48<br>3<br>16  | 39<br>32<br>200<br>19<br>26 | 5.14<br>4.05<br>4.15<br>2.48<br>4.74 | .18<br>.14<br>.15<br>.10<br>.17 | .20<br>.20<br>.60<br>.17<br>.16 | 175<br>147<br>212<br>258<br>270   | 2<br>2<br>1<br>3<br>3 | .02<br>.02<br>.02<br>.01<br>.02 | 14<br>12<br>32<br>3<br>4   | .05<br>.05<br>.05<br>.05<br>.04 | 106<br>92<br>75<br>52<br>83   | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 5<br>6<br>3<br>1<br>7  | 5<br>5<br>12<br>15<br>15 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 96<br>79<br>284<br>58<br>94   |           |
| HS88 L270 1+50W<br>HS88 L280 0+00W<br>HS88 L280 0+25W<br>HS88 L280 0+50W<br>HS88 L280 0+75W                    |   | .3<br>.1<br>.1              | 2.37<br>1.92<br>3.57<br>2.87<br>4.57 | 15<br>16<br>31<br>19<br>33 | ND<br>ND<br>ND<br>ND<br>ND | 100<br>62<br>50<br>74<br>92   | ND<br>ND<br>ND<br>ND      | .11<br>.02<br>.03<br>.02<br>.04 | 4.1<br>5.5<br>2.2<br>3.1<br>1.8 | 4<br>6<br>4<br>12        | 21<br>26<br>42<br>23<br>45 | 30<br>40<br>32<br>29<br>35  | 4.38<br>7.75<br>4.66<br>5.81<br>4.46 | .17<br>.27<br>.16<br>.20<br>.16 | .17<br>.13<br>.38<br>.16<br>.39 | 211<br>124<br>175<br>184<br>273   | 2<br>3<br>2<br>2<br>2 | .02<br>.03<br>.02<br>.02<br>.03 | 8<br>5<br>19<br>5<br>35    | .05<br>.02<br>.04<br>.04<br>.04 | 72<br>66<br>80<br>78<br>98    | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 4<br>9<br>5<br>6<br>5  | 1B<br>7<br>5<br>5<br>5   | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 136<br>62<br>67<br>87<br>174  |           |
| HS88 L280 1+00W<br>H588 L280 1+25W<br>H588 L280 1+25W<br>H588 L280 1+50W<br>H588 L310 0+00W<br>H588 L310 0+25W |   | .3<br>.1<br>.2<br>.4<br>.1  | 4.05<br>4.22<br>5.19<br>3.67<br>3.66 | 30<br>35<br>37<br>21<br>25 | ND<br>ND<br>ND<br>ND<br>ND | 223<br>161<br>105<br>68<br>65 | ND<br>ND<br>ND<br>3<br>ND | .24<br>.09<br>.04<br>.02<br>.02 | 1.1<br>1.5<br>.8<br>2.2<br>1.1  | 10<br>14<br>11<br>5<br>7 | 23<br>32<br>39<br>34<br>81 | 43<br>35<br>29<br>42<br>33  | 4.68<br>4.65<br>4.63<br>9.36<br>5.97 | .20<br>.18<br>.17<br>.33<br>.21 | .24<br>.40<br>.33<br>.18<br>.50 | 1250<br>1288<br>244<br>129<br>154 | 3<br>3<br>2<br>3<br>2 | .05<br>.03<br>.03<br>.04<br>.02 | 25<br>27<br>27<br>12<br>32 | .08<br>.08<br>.05<br>.05<br>.05 | 96<br>99<br>105<br>101<br>81  | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 8<br>6<br>4<br>9<br>4  | 18<br>14<br>7<br>5<br>5  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 252<br>188<br>195<br>95<br>95 |           |
| HSBB L310 0+50W<br>HSBB L310 1+00W<br>HSBB L310 1+25W<br>HSBB L320 0+00W<br>HSBB L320 0+25W                    |   | .2<br>.3<br>.2<br>.1<br>.9  | 3.69<br>1.97<br>2.84<br>2.11<br>6.92 | 34<br>13<br>24<br>16<br>45 | ND<br>ND<br>ND<br>ND       | 58<br>35<br>69<br>61<br>53    | ND<br>ND<br>ND<br>ND      | .02<br>.04<br>.03<br>.01<br>.01 | .5<br>1.3<br>1.3<br>.3<br>.8    | 5<br>7<br>6<br>4<br>5    | 38<br>32<br>44<br>29<br>26 | 23<br>36<br>28<br>19<br>28  | 4.11<br>6.45<br>4.74<br>3.92<br>4.48 | .14<br>.23<br>.17<br>.14<br>.16 | .30<br>.17<br>.22<br>.15<br>.13 | 129<br>119<br>150<br>104<br>218   | 2<br>2<br>1<br>3      | .02<br>.02<br>.02<br>.01<br>.03 | 18<br>10<br>15<br>8<br>8   | .03<br>.03<br>.03<br>.03<br>.05 | 80<br>73<br>70<br>53<br>132   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 4<br>11<br>5<br>4<br>5 | 6<br>4<br>6<br>7<br>2    | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 80<br>65<br>89<br>63<br>93    |           |
| HS88 L320 0+50W<br>HS88 L320 0+75W<br>HS88 L320 1+00W<br>HS88 L320 1+25W<br>HS88 L320 1+50W                    |   | .2<br>.4<br>.5<br>.5<br>.9  | 3.99<br>4.90<br>5.25<br>2.93<br>4.69 | 31<br>34<br>54<br>23<br>31 | ND<br>ND<br>ND<br>ND       | 58<br>55<br>108<br>60<br>77   | ND<br>ND<br>ND<br>ND      | .05<br>.04<br>.07<br>.06<br>.03 | .5<br>.8<br>2.9<br>.7<br>1.1    | 5<br>6<br>11<br>5<br>11  | 38<br>37<br>34<br>35<br>27 | 27<br>26<br>46<br>25<br>29  | 4.45<br>4.22<br>4.97<br>4.10<br>4.45 | .15<br>.15<br>.18<br>.15<br>.16 | .22<br>.29<br>.28<br>.18<br>.27 | 128<br>204<br>657<br>160<br>273   | 2<br>2<br>3<br>2<br>2 | .02<br>.02<br>.04<br>.02<br>.04 | 27<br>22<br>32<br>13<br>26 | .05<br>.04<br>.08<br>.05<br>.04 | 88<br>101<br>118<br>77<br>108 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 5<br>5<br>7<br>7<br>8  | 7<br>6<br>7<br>7<br>5    | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 75<br>183<br>391<br>97<br>181 |           |
| DETECTION LINIT                                                                                                |   | .1                          | .01                                  | 3                          | 3                          | 1                             | 3                         | .01                             | .1                              | 1                        | 1                          | • 1                         | .01                                  | .01                             | .01                             | 1                                 | 1                     | .01                             | 1                          | .01                             | ~ }-                          |                            | 5                          | 2                          | 2                      | - 1                      | . 5                        | 3                          | 1                             |           |



\*\*\*\*\*\*\*\*\*\*\*

A CONTRACTOR OF THE OWNER

11



.

## VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

| SAMPLE   |          | Au   |    |                                                                                                                |       |  |                       |                                    |  |
|----------|----------|------|----|----------------------------------------------------------------------------------------------------------------|-------|--|-----------------------|------------------------------------|--|
|          |          | ppb  |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L300  |          | 50   |    |                                                                                                                |       |  |                       |                                    |  |
| HS,L300  | 0+25E    | 40   |    |                                                                                                                |       |  |                       |                                    |  |
| H5.L300  | 0+50E    | 35   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L300  | 0+75E    | 30   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L300  | 1+00E    | 25   |    |                                                                                                                |       |  |                       |                                    |  |
| H5.L300  | 1+25E    | 35   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L300  |          | 30   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L300  | 1+75E    | 15   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L300  | 2+00E    | 20   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L300  | 2+25E    | 15   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L300  |          | 60   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L300  | 2+75E    | 120  |    |                                                                                                                |       |  |                       | lan sa<br>Talihin Mala             |  |
| HS.L300  | 3+00E    | 40   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 0+00W    | 30   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 0+25₩    | 20   |    |                                                                                                                |       |  |                       | 1990<br>1990 - 1990<br>1990 - 1990 |  |
| HS.L350  | 0+50W    | 100  |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 1+00W    | 160  |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 1+25W    | 55   |    | 가 있는 것<br>- 프로그램<br>- 프로그램                                                                                     |       |  |                       |                                    |  |
| HS.L350  | 1+50W    | 55   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 1+75W    | 50   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 2+00W    | 15   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 2+25W    | 20   | 5. |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 2+75W    | 780  |    | the state of the second se | ESEN. |  | And the second second |                                    |  |
| HS.L350  | 3+25W    | 2000 |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 3+75W    | 15   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 4+00W    | 20   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 4+50W    | 35   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 4+75W    | 15   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 5+00W    | 25   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 5+25W    | 20   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 5+50W    | 50   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 5+75W    | 55   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 6+00W    | 1400 |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 6+25W    | 1400 |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 6+50W    | 40   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 6+75W    | 40   |    |                                                                                                                |       |  |                       |                                    |  |
|          |          |      |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L350  | 7+00₩    | 30   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L400  | 0+00E    | 25   |    |                                                                                                                |       |  |                       |                                    |  |
| HS.L400  | 0+25E    | 10   |    |                                                                                                                |       |  |                       |                                    |  |
| DETECTIO | IN LIMIT | 5    |    |                                                                                                                |       |  |                       |                                    |  |



MAIN OFFICE AND LABORATORY 1989 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

| REPORT NUMBER: 881081 GA | JOB NUMBER:    | 881081                                                                                                                                                                                                                             | PAMICON DEVELOPMENT LTD.                 | PAGE 2 OF 4 |
|--------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|
| SAMPLE #                 | Au             |                                                                                                                                                                                                                                    |                                          |             |
|                          | ppb            |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 0+50E            | 5              |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 0+75E            | 20             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 1+00E            | 40             |                                                                                                                                                                                                                                    |                                          |             |
| H5.L400 1+25E            | 20             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 1+50E            | 30             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 1+75E            | 20             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 2+00E            | 10             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 2+25E            | 30             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 2+50E            | 60             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 2+75E            | 30             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 3+00E            | 20             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 3+50E            | 300            | an de Care da                                                                                                                                                                                                                      |                                          | SANASELL.   |
| HS.L400 0+25W            | 30             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 0+50W            | 20             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 0+75W            | 20<br>30       |                                                                                                                                                                                                                                    |                                          |             |
|                          | VL             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 1+25W            | 30             | a garage and a star and a star a s<br>A star a star |                                          |             |
| HS.L400 1+50W            | 40             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 1+75W            | 20             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 2+00W            | 30             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 2+25W            | 20             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 2+50W            | 25             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 2+75W            | 25             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 3+00W            | 30             |                                                                                                                                                                                                                                    | an a |             |
| H5.L400 3+25W            | 30             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 3+50W            | 30             |                                                                                                                                                                                                                                    |                                          |             |
| H5.L400 3+75W            | 35             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 4+00W            | 30             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 4+25W            | 30             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 4+50W            | 50             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 4+75W            | 90             |                                                                                                                                                                                                                                    |                                          |             |
| 10,2100 17,00            | 20             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 5+00W            | 40             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 5+25W            | 10             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 5+50W            | 35             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 5+75W            | 30             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 6+25W            | 35             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 6+50W            | 25             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 6+75W            | 40             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L400 7+00W            | 20             |                                                                                                                                                                                                                                    |                                          |             |
| HS.L450 0+00E            | 35             |                                                                                                                                                                                                                                    |                                          |             |
| DETECTION LIMIT          | 5              |                                                                                                                                                                                                                                    |                                          |             |
| 1. 1.1.1.1               | = not analysed | in - i4                                                                                                                                                                                                                            | ficient sample                           |             |



6

## VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

| CAMDIP # |          | •              |                                                                                                                                                                                                                                                                                                                                                       |              |
|----------|----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| SAMPLE # |          | Au<br>ppb      |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 0+25E    | 15             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 0+50E    | 25             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 0+75E    | 15             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 1+00E    | 20             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 1+25E    | 30             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 1+50E    | 40             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 1+75E    | 15             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 2+00E    | 45             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 2+25E    | 30             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 2+50E    | 30             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 2+75E    | 35             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 3+00E    | 30             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 3+25E    | 15             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 3+50E    | 20             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 3+75E    | 75             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 4+00E    | 30             |                                                                                                                                                                                                                                                                                                                                                       |              |
| IS.L450  | 4+25E    | 25             |                                                                                                                                                                                                                                                                                                                                                       |              |
| IS.L450  | 4+50E    | 30             |                                                                                                                                                                                                                                                                                                                                                       |              |
| HS.L450  | 4+75E    | 30             |                                                                                                                                                                                                                                                                                                                                                       | 1.1.1 読み合わせる |
| IS.L450  | 5+25E    | 20             |                                                                                                                                                                                                                                                                                                                                                       |              |
| IS.L450  | 5+50E    | 30 States      |                                                                                                                                                                                                                                                                                                                                                       |              |
| IS.L450  | 5+75E    | 115            | 1999년 1993년 1993년 1997년 - 1997년 1<br>1997년 1997년 199<br>1997년 1997년 199 |              |
| IS.L450  | 6+00E    | 35             |                                                                                                                                                                                                                                                                                                                                                       |              |
| IS.L450  | 6+00E A  | 25             |                                                                                                                                                                                                                                                                                                                                                       |              |
| IS.L450  | 6+25E    | 45             |                                                                                                                                                                                                                                                                                                                                                       |              |
| IS.L450  | 6+25E A  | 30             |                                                                                                                                                                                                                                                                                                                                                       |              |
| IS.L450  | 6+50E A  | 10             |                                                                                                                                                                                                                                                                                                                                                       |              |
| S.L450   | 6+75E    | 35             |                                                                                                                                                                                                                                                                                                                                                       |              |
| IS.L450  | 6+75E A  | 30             |                                                                                                                                                                                                                                                                                                                                                       |              |
| S.L450   | 7+00E    | 20             |                                                                                                                                                                                                                                                                                                                                                       |              |
| S.L450   | 7+25E    | 15             |                                                                                                                                                                                                                                                                                                                                                       |              |
| S.L450   | 7+50E    | 25             |                                                                                                                                                                                                                                                                                                                                                       |              |
| S.L450   | 7+75E    | 10             |                                                                                                                                                                                                                                                                                                                                                       |              |
| S.L450   | 8+00E    | 10             |                                                                                                                                                                                                                                                                                                                                                       |              |
| S.L450   | 8+25E    | 20             |                                                                                                                                                                                                                                                                                                                                                       |              |
| S.L450   | 8+50E    | 15             |                                                                                                                                                                                                                                                                                                                                                       |              |
| S.L450   | 9+00E    | 10             |                                                                                                                                                                                                                                                                                                                                                       |              |
| S.L450   | 9+25E    | 10             |                                                                                                                                                                                                                                                                                                                                                       |              |
| S.L450   | 9+50E    | 20             |                                                                                                                                                                                                                                                                                                                                                       |              |
| ETECTION | LIMIT    | 5              |                                                                                                                                                                                                                                                                                                                                                       |              |
|          | detected | = not analysed | is = insufficient sample                                                                                                                                                                                                                                                                                                                              |              |



فل ا

10 million 100 mil

1

and the second

1

## VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

| REPORT NUMBER: 881081 GA | JOB NUMBER: 881081 | PAMICON DEVELOPMENT LTD.                                                                                        | PAGE 4 OF 4                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAMPLE #                 | Au                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
|                          | ppb                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L450 9+75E            | 20                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L450 10+00E           | 30                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L450 10+25E           | 10                 | and the second secon |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L450 10+50E           | 20                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L450 10+75E           | 1180               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L450 11+00E           | 20                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L500 0+00W            | 20                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L500 0+25W            | 25                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L500 0+50W            | 15                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L500 0+75W            | 55                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L500 1+00W            | 80                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| H5.L500 1+25W            | is?                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L500 1+50W            | 80                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L500 1+75W            | 20                 | 행동법 이상의 이미 이가 많은 것은 것같                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L500 2+25W            | 20                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
|                          |                    |                                                                                                                 | $\left( \begin{array}{c} \left( \left( \begin{array}{c} \left( \left( \begin{array}{c} \left( $ |
| HS.L500 2+50W            | 60                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L500 2+75₩            | 70                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L500 3+00W            | 60                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L500 3+25₩            | 35                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HS.L500 3+50W            | 20                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
|                          |                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HST 400 01               | 45                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HST 350 02               | 30                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |
| HHM 350 01               | 55                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |

IN CE: TR H ST, V UVE ... V K5 604 565 LEX 8525 BRANCH DFFICE: 1630 PANDORA STREET. V OUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

1.15

#### ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HMO3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED D O H MITH WITH WATER THIS LEACH IS PARTIAL FOR SM, NM, FE, CA, P, CR, MG, BA, PD, AL, NA, K, W, PT AND SR. AU AND PD DETECTION IS 3 PPN. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

3

)

3

•

.

|                                                                                                    |                            |                                      |                           |                            | IS= I)                      | ISUFFICI                   | IENT SAI                        | MPLE, NI                      | )= NOT I               | ETECTE                     | ), -≖ )                    | IOT ANAL'                            | YZED                            |                                 |                                  |                       |                                 |                           |                                 | ע ן                        | <del>-</del> -لـــل        | -L-L},                     |                      | 1.11                    | Ц                         |                            | 1                          | 1                             |
|----------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|---------------------------|----------------------------|-----------------------------|----------------------------|---------------------------------|-------------------------------|------------------------|----------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|----------------------------------|-----------------------|---------------------------------|---------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------|-------------------------|---------------------------|----------------------------|----------------------------|-------------------------------|
| COMPANY: F<br>ATTENTION:<br>PROJECT: F                                                             | : 8 TC                     | DORU                                 |                           | PMEN                       | TS                          |                            |                                 | REPOR<br>JOB#1<br>INVO        | 881                    | 081                        |                            | -                                    |                                 |                                 | DAT                              | e re<br>E coi<br>Y se | MPLE                            | TED:                      |                                 |                            | S                          |                            |                      |                         | ANAL                      | YST_                       | 4                          | wy                            |
|                                                                                                    |                            |                                      |                           |                            |                             |                            |                                 |                               |                        |                            |                            |                                      |                                 |                                 |                                  |                       |                                 |                           |                                 |                            | <u>المار</u>               | <b>OPAG</b>                | 51                   | UC                      | 50                        | )                          |                            |                               |
| SAMPLE NAME                                                                                        | AG<br>PPN                  | NL<br>Z                              | AS<br>PPM                 | AU<br>PPH                  | BA<br>PPN                   | 81<br>PPM                  | CA<br>X                         | CØ<br>PPH                     | CO<br>PPN              | CR<br>PPN                  | CU<br>PPN                  | FE<br>X                              | K<br>Z                          | MG<br>X                         | HN<br>PPH                        | NO<br>PPM             | NA<br>Z                         | NI<br>PPM                 | P<br>I                          | PB<br>PPN                  | PO<br>PPN                  | PT<br>PPM                  | SB<br>PPM            | SN<br>PPM               | SR<br>PPM                 | U<br>PPN                   | N<br>PPN                   | ZN<br>PPH                     |
| HS.L300 0+00E<br>HS.L300 0+25E<br>HS.L300 0+50E<br>HS.L300 0+75E<br>HS.L300 1+00E                  | .1<br>.2<br>.1<br>.1       | 3.60<br>4.26<br>2.99<br>3.10<br>3.56 | 11<br>17<br>16<br>17<br>9 | ND<br>ND<br>ND<br>ND       | 31<br>49<br>43<br>41<br>367 | ND<br>ND<br>ND<br>ND<br>ND | .09<br>.04<br>.03<br>.05<br>.99 | 1.1<br>1.1<br>.5<br>.8<br>1.6 | 3<br>8<br>4<br>7<br>10 | 12<br>42<br>45<br>35<br>18 | 19<br>32<br>22<br>24<br>35 | 3.86<br>4.38<br>4.36<br>3.79<br>3.11 | .03<br>.02<br>.01<br>.01<br>.18 | .08<br>.42<br>.21<br>.47<br>.44 | 172<br>276<br>148<br>326<br>3381 | 7<br>5<br>5<br>4<br>4 | .02<br>.02<br>.02<br>.02<br>.02 | 7<br>29<br>17<br>28<br>23 | .06<br>.04<br>.06<br>.05<br>.12 | 57<br>55<br>47<br>45<br>45 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 6<br>6<br>5<br>6        | 7<br>6<br>5<br>8<br>56    | nd<br>Nd<br>Nd<br>Nd       | ND<br>ND<br>ND<br>ND       | 82<br>115<br>92<br>112<br>202 |
| HS.L300 1+25E<br>HS.L300 1+50E<br>HS.L300 1+75E<br>HS.L300 2+00E<br>HS.L300 2+25E                  | .1<br>.1<br>.1<br>.1<br>.1 | 3.92<br>5.17<br>.87<br>1.85<br>2.36  | 13<br>ND<br>5<br>14<br>17 | ND<br>ND<br>ND<br>ND       | 76<br>81<br>29<br>89<br>44  | 5<br>7<br>ND<br>ND<br>5    | .05<br>.10<br>.08<br>.15<br>.05 | 1.1<br>1.6<br>.1<br>1.1<br>.9 | 11<br>6<br>2<br>6<br>7 | 45<br>27<br>5<br>17<br>44  | 30<br>23<br>8<br>22<br>23  | 4.39<br>6.79<br>.65<br>4.74<br>5.20  | .01<br>.02<br>.03<br>.04<br>.01 | .67<br>.22<br>.06<br>.10<br>.42 | 373<br>399<br>49<br>135<br>179   | 4<br>6<br>1<br>5<br>4 | .02<br>.03<br>.01<br>.02<br>.02 | 42<br>12<br>2<br>6<br>21  | .04<br>.10<br>.02<br>.04<br>.03 | 52<br>73<br>17<br>60<br>48 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 6<br>8<br>2<br>11<br>7  | 7<br>12<br>25<br>12<br>B  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 173<br>177<br>39<br>96<br>91  |
| HS.L300 2+50E<br>HS.L300 2+75E<br>HS.L300 3+00E<br>HS.L350 0+00W<br>HS.L350 0+25W                  | .1<br>.1<br>.3<br>.4       | 1.99<br>3.01<br>1.96<br>5.59<br>9.73 | 14<br>16<br>16<br>8<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 35<br>19<br>67<br>63<br>26  | ND<br>ND<br>3<br>4         | .02<br>.03<br>.04<br>.03<br>.01 | .8<br>.6<br>.9<br>.9<br>1.1   | 5<br>3<br>14<br>8<br>6 | 29<br>18<br>9<br>74<br>41  | 19<br>16<br>13<br>36<br>22 | 4.96<br>5.25<br>5.95<br>4.79<br>5.20 | .01<br>.01<br>.01<br>.01<br>.01 | .19<br>.12<br>.22<br>.65<br>.46 | 130<br>93<br>2303<br>195<br>208  | 5<br>6<br>4<br>4      | .02<br>.02<br>.02<br>.01<br>.02 | 10<br>3<br>2<br>52<br>28  | .04<br>.03<br>.11<br>.04<br>.04 | 48<br>52<br>54<br>52<br>77 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 7<br>8<br>5<br>5        | 5<br>7<br>15<br>6<br>3    | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 64<br>59<br>55<br>81<br>86    |
| HS.L350 0+50W<br>HS.L350 1+00W<br>HS.L350 1+25W<br>HS.L350 1+25W<br>HS.L350 1+50W<br>HS.L350 1+75W | .1<br>.1<br>.1<br>.1       | 1.81<br>4.31<br>5.45<br>4.25<br>6.39 | 13<br>11<br>ND<br>7<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 38<br>80<br>56<br>69<br>72  | ND<br>ND<br>ND<br>ND<br>ND | .07<br>.02<br>.01<br>.03<br>.09 | .3<br>1.2<br>.8<br>.5<br>1.1  | 5<br>6<br>4<br>8<br>3  | 13<br>49<br>40<br>23<br>1B | 23<br>22<br>16<br>22<br>15 | 3.18<br>5.52<br>4.97<br>3.68<br>5.96 | .01<br>.01<br>.01<br>.01        | .24<br>.45<br>.23<br>.19<br>.06 | 136<br>194<br>153<br>363<br>108  | 5<br>5<br>4<br>5<br>4 | .01<br>.02<br>.02<br>.02<br>.02 | 6<br>26<br>16<br>15<br>3  | .03<br>.17<br>.04<br>.05<br>.05 | 37<br>52<br>60<br>59<br>66 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 6<br>5<br>6<br>8<br>7   | 22<br>7<br>4<br>5<br>13   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 64<br>91<br>93<br>124<br>78   |
| HS.L350 2+00W<br>HS.L350 2+25W<br>HS.L350 2+75W<br>HS.L350 3+25W<br>HS.L350 3+75W                  | .1<br>.1<br>.1<br>.1       | .81<br>6.92<br>1.78<br>.92<br>1.08   | 6<br>ND<br>3<br>ND<br>6   | ND<br>ND<br>ND<br>ND       | 35<br>83<br>325<br>53<br>37 | ND<br>3<br>ND<br>ND<br>ND  | .25<br>.04<br>.11<br>.06<br>.23 | .1<br>1.1<br>.1<br>.1         | 9<br>7<br>4<br>2<br>9  | 9<br>32<br>5<br>4<br>8     | 22<br>21<br>4<br>5<br>13   | 1.66<br>4.72<br>1.42<br>.35<br>1.75  | .01<br>.01<br>.01<br>.01        | .23<br>.31<br>.15<br>.06<br>.43 | 151<br>189<br>189<br>29<br>187   | 1<br>5<br>3<br>1<br>1 | .01<br>.02<br>.01<br>.01<br>.01 | 14<br>30<br>2<br>2<br>7   | .12<br>.05<br>.02<br>.01<br>.04 | 18<br>66<br>25<br>22<br>17 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 6<br>7<br>2<br>3<br>5   | 29<br>8<br>11<br>12<br>38 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 69<br>179<br>51<br>23<br>47   |
| HS.L350 4+00H<br>HS.L350 4+50H<br>HS.L350 4+75W<br>HS.L350 5+00H<br>HS.L350 5+25W                  | .1<br>.1<br>.4<br>.4       | .58<br>4.86<br>6.36<br>6.39<br>2.12  | ND<br>10<br>4<br>4<br>9   | KD<br>ND<br>ND<br>ND<br>ND | 23<br>42<br>44<br>41<br>53  | ND<br>ND<br>5<br>4<br>ND   | .06<br>.02<br>.03<br>.02<br>.03 | .1<br>.9<br>.9<br>1.1<br>.5   | 2<br>5<br>6<br>4<br>3  | 3<br>38<br>25<br>19<br>19  | 6<br>24<br>29<br>23<br>25  | .67<br>5.01<br>5.00<br>5.53<br>3.51  | .01<br>.01<br>.01<br>.01<br>.01 | .05<br>.35<br>.19<br>.09<br>.10 | 39<br>152<br>249<br>210<br>87    | 1<br>5<br>7<br>5<br>4 | .01<br>.02<br>.03<br>.03<br>.02 | 2<br>25<br>20<br>6<br>9   | .02<br>.05<br>.03<br>.05<br>.05 | 13<br>59<br>79<br>80<br>45 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 2<br>7<br>10<br>10<br>7 | 19<br>5<br>3<br>3<br>7    | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 35<br>145<br>241<br>157<br>91 |
| HS.L350 5+50N<br>HS.L350 5+75N<br>HS.L350 6+00N<br>HS.L350 6+25N<br>HS.L350 6+25N<br>HS.L350 6+50N | .1<br>.1<br>.4<br>.1       | 5.42<br>1.54<br>.90<br>6.77<br>2.41  | 7<br>15<br>4<br>6<br>10   | ND<br>ND<br>ND<br>ND<br>ND | 63<br>65<br>36<br>39<br>32  | ND<br>ND<br>ND<br>ND       | .05<br>.13<br>.10<br>.02<br>.02 | .9<br>.4<br>.1<br>1.1<br>.1   | 9<br>9<br>4<br>6<br>2  | 31<br>21<br>3<br>44<br>20  | 26<br>20<br>8<br>30<br>14  | 4.59<br>3.91<br>.94<br>5.38<br>2.62  | .01<br>.01<br>.01<br>.01<br>.01 | .31<br>.26<br>.14<br>.43<br>.10 | 276<br>325<br>80<br>198<br>60    | 5<br>5<br>1<br>6<br>4 | .05<br>.02<br>.01<br>.03<br>.01 | 25<br>10<br>3<br>32<br>5  | .05<br>.08<br>.04<br>.04<br>.02 | 67<br>37<br>13<br>75<br>39 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 8<br>6<br>2<br>9<br>4   | 6<br>17<br>15<br>2<br>6   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 164<br>101<br>48<br>153<br>63 |
| HS.L350 6+75W<br>HS.L350 7+00W<br>HS.L400 0+00E<br>HS.L400 0+25E                                   | .1<br>.1<br>.4<br>.1       | 2.38<br>3.67<br>5.44<br>.39          | 15<br>17<br>10<br>4       | ND<br>ND<br>ND<br>ND       | 50<br>25<br>17<br>114       | 6<br>3<br>11<br>ND         | .04<br>.03<br>.03<br>.07        | 1.3<br>.8<br>1.7<br>.1        | 3<br>4<br>5<br>3       | 35<br>29<br>36<br>5        | 20<br>19<br>30<br>12       | 6.81<br>5.43<br>7.95<br>.94          | .01<br>.01<br>.01<br>.01        | .20<br>.11<br>.11<br>.11        | 149<br>233<br>162<br>46          | 6<br>6<br>8<br>2      | .02<br>.02<br>.03<br>.01        | 9<br>6<br>5               | .07<br>.05<br>.03<br>.03        | 56<br>62<br>84<br>14       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 6<br>9<br>13<br>4       | 12<br>4<br>4<br>18        | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 83<br>66<br>93<br>29          |
| DETECTION LIMIT                                                                                    | .1                         | .01                                  | 3                         | . 3                        | 1                           | 3                          | .01                             | .1                            | 1                      | 1                          | 1                          | .01                                  | .01                             | .01                             | 1                                | 1                     | .01                             | 1                         | .01                             | 2                          | 3                          | 5                          | 2                    | 2                       | 1                         | 5                          | 3                          | 1                             |

| CLIENT: PANICON DE                                                                                 | VELOPMEI                   | ITS JOB                              | <b>1:</b> 8810             | 81 PR                      | OJECT:                      | HEC-STU                    | REPOR                           | 11 8810                         | 081 PA                 |                            |                            |                                       |                                 |                                 |                                 |                       |                                 |                          |                                 |                             |                            |                            | . 1                        | PAGE 2                   | DF 4                    |                            |                            |                              |
|----------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|---------------------------------|---------------------------------|------------------------|----------------------------|----------------------------|---------------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------|---------------------------------|--------------------------|---------------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|--------------------------|-------------------------|----------------------------|----------------------------|------------------------------|
| SAMPLE NAME                                                                                        | AG<br>PPN                  | AL<br>X                              | AS<br>PPH                  | AU<br>PPN                  | BA<br>PPN                   | BI<br>PPN                  | CA<br>Z                         | CD<br>PPN                       | CD<br>PPM              | CR<br>PPN                  | CU<br>PPM                  | FE<br>X                               | K<br>Z                          | NG<br>X                         | NN<br>PPN                       | NO<br>PPN             | NA<br>Z                         | NI<br>PPM                | P<br>Z                          | PB<br>P <b>PN</b>           | PD<br>PPN                  | PT<br>PPN                  | SB<br>PPN                  | SN<br>PPN                | SR<br>PPM               | U<br>PPN                   | N<br>PPN                   | ZN<br>PPN                    |
| HS.1400 0+50E                                                                                      | 4                          | 4.16                                 | 11                         | ND                         | 17                          | 3                          | .03                             | 1.6                             | 4                      | 22                         | 28                         | 7.95                                  | .01                             | .05                             | 137                             | 6                     | .03                             | 2                        | .04                             | 77                          | ND                         | ND                         | ND ·                       | 14                       | 3                       | e ND                       | ND                         | 76                           |
| HS.L400 0+75E<br>HS.L400 1+00E<br>HS.L400 1+25E<br>HS.L400 1+25E<br>HS.L400 1+75E                  | .2<br>.6<br>.1<br>.1       | 4.23<br>4.18<br>3.17<br>5.38<br>7.44 | 22<br>18<br>17<br>8<br>ND  | ND<br>ND<br>ND<br>ND       | 35<br>37<br>38<br>63<br>35  | 3<br>4<br>ND<br>ND<br>ND   | .02<br>.02<br>.01<br>.01<br>.06 | 1.9<br>2.2<br>1.1<br>1.4<br>.9  | 4<br>5<br>4<br>4<br>1  | 25<br>36<br>48<br>40<br>12 | 27<br>29<br>20<br>23<br>15 | 8.99<br>11.14<br>5.85<br>6.43<br>4.55 | .01<br>.01<br>.01<br>.01<br>.01 | .07<br>.22<br>.14<br>.15<br>.05 | 197<br>232<br>110<br>292<br>121 | 7<br>7<br>4<br>3      | .03<br>.04<br>.02<br>.02<br>.02 | 3<br>10<br>10<br>8<br>3  | .05<br>.03<br>.03<br>.74<br>.07 | 86<br>98<br>58<br>72<br>75  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | NQ<br>ND<br>ND<br>ND<br>ND | 14<br>15<br>9<br>8<br>6  | 4<br>5<br>3<br>5<br>9   | NB<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 121<br>94<br>71<br>112<br>82 |
| <br>HS.L400 2+00E<br>HS.L400 2+25E<br>HS.L400 2+50E<br>HS.L400 2+75E<br>HS.L400 3+00E              | .6<br>.1<br>.1<br>.1       | 1.58<br>5.92<br>3.66<br>2.04<br>3.11 | 13<br>10<br>17<br>11<br>17 | nd<br>Nd<br>Nd<br>Nd       | 20<br>24<br>59<br>303<br>53 | 4<br>3<br>ND<br>ND<br>ND   | .02<br>.01<br>.01<br>.06<br>.05 | 1.4<br>1.6<br>.6<br>.1<br>1.1   | 10<br>5<br>6<br>5      | 10<br>15<br>29<br>25<br>44 | 43<br>33<br>22<br>17<br>22 | 7.08<br>7.91<br>4.13<br>2.63<br>4.69  | .01<br>.01<br>.02<br>.02        | .05<br>.04<br>.55<br>.32<br>.44 | 147<br>109<br>196<br>321<br>167 | 9<br>8<br>3<br>1<br>3 | .03<br>.03<br>.02<br>.01<br>.02 | 2<br>29<br>17<br>26      | .03<br>.04<br>.03<br>.06<br>.04 | 83<br>95<br>52<br>30<br>54  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 27<br>16<br>6<br>4<br>8  | 3<br>2<br>4<br>7<br>7   | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 63<br>60<br>107<br>72<br>89  |
| HS.L400 3+50E<br>HS.L400 0+25W<br>HS.L400 0+50W<br>HS.L400 0+75W<br>HS.L400 0+75W<br>HS.L400 1+25W | .1<br>.2<br>.1<br>.9<br>.2 | 2.05<br>4.14<br>2.19<br>9.24<br>4.05 | 16<br>15<br>10<br>ND<br>15 | ND<br>ND<br>ND<br>ND       | 68<br>26<br>57<br>23<br>61  | ND<br>ND<br>ND<br>ND       | .13<br>.04<br>.03<br>.03<br>.02 | .4<br>.9<br>.8<br>1.2<br>1.1    | 6<br>6<br>4<br>4<br>5  | 17<br>31<br>16<br>19<br>19 | 14<br>30<br>21<br>25<br>20 | 3.55<br>5.26<br>4.09<br>7.07<br>5.68  | .01<br>.01<br>.01<br>.01<br>.01 | .30<br>.23<br>.10<br>.09<br>.13 | 310<br>139<br>111<br>195<br>149 | 3<br>4<br>3<br>5<br>5 | .01<br>.02<br>.02<br>.03<br>.03 | 8<br>13<br>6<br>2<br>8   | .05<br>.05<br>.04<br>.06<br>.04 | 40<br>67<br>57<br>97<br>77  | ND<br>Ng<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>18<br>ND | 5<br>10<br>9<br>12<br>11 | 38<br>7<br>7<br>3<br>5  | nd<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 57<br>87<br>88<br>94<br>109  |
| HS.L400 1+50W<br>HS.L400 1+75W<br>HS.L400 2+00W<br>HS.L400 2+25W<br>HS.L400 2+50W                  | .6<br>.1<br>.2<br>.6<br>.1 | 6.69<br>3.51<br>3.81<br>6.24<br>3.19 | 14<br>17<br>17<br>8<br>21  | nd<br>Nd<br>Nd<br>Nd<br>Nd | 32<br>38<br>28<br>15<br>38  | ND<br>3<br>ND<br>ND<br>3   | .02<br>.01<br>.01<br>.01<br>.01 | 1.1<br>1.9<br>1.4<br>1.4<br>1.5 | 6<br>4<br>3<br>5       | 29<br>52<br>41<br>13<br>57 | 27<br>30<br>26<br>25<br>28 | 5.64<br>8.72<br>6.96<br>6.55<br>8.14  | .01<br>.01<br>.01<br>.01        | .38<br>.10<br>.09<br>.05<br>.23 | 284<br>117<br>113<br>191<br>153 | 5<br>4<br>5<br>5<br>5 | .04<br>.03<br>.03<br>.03<br>.03 | 25<br>8<br>5<br>ND<br>19 | .04<br>.06<br>.03<br>.04<br>.04 | 82<br>79<br>73<br>88<br>66  | NÐ<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 10<br>11<br>13<br>10     | 2<br>5<br>4<br>2<br>9   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 135<br>66<br>62<br>79<br>79  |
| HS.L400 2+75W<br>HS.L400 3+00W<br>HS.L400 3+25W<br>HS.L400 3+50W<br>HS.L400 3+75W                  | .1<br>.2<br>.2<br>.4<br>.2 | 2.15<br>6.22<br>7.44<br>3.03<br>6.77 | 14<br>ND<br>ND<br>13<br>9  | ND<br>ND<br>ND<br>ND<br>ND | 34<br>23<br>26<br>19<br>22  | ND<br>ND<br>ND<br>5<br>ND  | .02<br>.05<br>.02<br>.02<br>.02 | .9<br>1.2<br>1.2<br>2.7<br>1.1  | 4<br>1<br>2<br>4<br>3  | 28<br>13<br>14<br>21<br>13 | 17<br>24<br>19<br>36<br>25 | 5.38<br>5.39<br>6.63<br>13.03<br>6.35 | .01<br>.01<br>.01<br>.01        | .16<br>.10<br>.04<br>.03<br>.04 | 106<br>145<br>166<br>153<br>175 | 3<br>3<br>4<br>6<br>4 | .02<br>.02<br>.03<br>.04<br>.03 | 8<br>4<br>1<br>ND<br>1   | .04<br>.05<br>.10<br>.06<br>.08 | 48<br>72<br>94<br>109<br>86 | nd<br>Nd<br>Nd<br>Nd       | nd<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>6<br>ND<br>ND  | 8<br>7<br>10<br>15<br>9  | 7<br>9<br>5<br>4<br>4   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 55<br>63<br>61<br>49<br>67   |
| HS.L400 4+00W<br>HS.L400 4+25W<br>HS.L400 4+50W<br>HS.L400 4+75W<br>HS.L400 5+00W                  | -1<br>-1<br>-1<br>-1       | 3.77<br>2.13<br>2.28<br>3.67<br>5.97 | 18<br>16<br>22<br>21<br>8  | ND<br>ND<br>ND<br>ND       | 54<br>42<br>33<br>28<br>29  | ND<br>ND<br>ND<br>ND       | .03<br>.08<br>.05<br>.05<br>.15 | 1.2<br>.6<br>.4<br>.9<br>.8     | 4<br>3<br>4<br>6<br>15 | 36<br>24<br>23<br>24<br>15 | 21<br>20<br>20<br>25<br>59 | 6.09<br>5.05<br>3.39<br>4.36<br>3.24  | .01<br>.02<br>.01<br>.03<br>.05 | .20<br>.16<br>.21<br>.25<br>.12 | 200<br>177<br>301<br>282<br>703 | 5<br>3<br>3<br>4<br>1 | .02<br>.02<br>.01<br>.02<br>.01 | 13<br>8<br>10<br>9<br>6  | .07<br>.06<br>.08<br>.08<br>.15 | 68<br>56<br>45<br>66<br>66  | ND<br>ND<br>ND<br>ND       | nd<br>Nd<br>Nd<br>Nd<br>Nd | ND<br>ND<br>ND<br>ND<br>ND | 9<br>8<br>5<br>7<br>5    | 6<br>11<br>9<br>8<br>19 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 95<br>58<br>68<br>88<br>91   |
| HS.L400 5+25W<br>HS.L400 5+50W<br>HS.L400 5+75W<br>HS.L400 6+25W<br>HS.L400 6+50W                  | .1<br>.1<br>.1<br>.1       | 4.22<br>.97<br>1.15<br>1.29<br>2.11  | 11<br>19<br>13<br>19<br>16 | ND<br>ND<br>ND<br>ND<br>ND | 24<br>23<br>53<br>19<br>145 | nd<br>Nd<br>Nd<br>Nd<br>Nd | .03<br>.07<br>.06<br>.02<br>.19 | .5<br>.1<br>.5<br>.8            | 2<br>3<br>2<br>4<br>6  | 17<br>11<br>18<br>14<br>13 | 34<br>23<br>40<br>26<br>23 | 4.43<br>2.54<br>1.89<br>4.49<br>4.40  | .02<br>.02<br>.03<br>.02<br>.05 | .07<br>.10<br>.07<br>.09<br>.22 | 139<br>99<br>114<br>177<br>4082 | 4<br>2<br>1<br>5<br>7 | .02<br>.01<br>.01<br>.03<br>.03 | 4<br>7<br>14<br>6<br>10  | .11<br>.56<br>.17<br>.07<br>.13 | 89<br>35<br>26<br>49<br>47  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 6<br>4<br>11<br>8        | 8<br>10<br>5<br>3<br>16 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 36<br>54<br>61<br>68<br>85   |
| HS.L400 6+75W<br>HS.L400 7+00W<br>HS.L450 0+00E                                                    | .1<br>.2<br>.1             | 2.05<br>3.02<br>1.42                 | 21<br>14<br>19             | ND<br>ND<br>ND             | 40<br>105<br>37             | ND<br>ND<br>ND             | .09<br>.05<br>.02               | 1.1<br>.5<br>.9                 | 5<br>6<br>4            | 29<br>20<br>23             | 20<br>19<br>25             | 5.07<br>4.30<br>5.64                  | .03<br>.03<br>.02               | .44<br>.27<br>.06               | 250<br>391<br>89                | 4<br>6<br>4           | .02<br>.03<br>.02               | 21<br>8<br>6             | .10<br>.16<br>.04               | 51<br>67<br>58              | ND<br>ND<br>ND             | ND<br>Dy<br>ND             | ND<br>ND<br>ND             | 7<br>8<br>12             | 11<br>8<br>11           | ND<br>ND<br>ND             | ND<br>ND<br>ND             | 71<br>83<br>48               |
| DETECTION LIMIT                                                                                    | .1                         | .01                                  | 3                          | 3                          | 1                           | 3                          | .01                             | .1                              | 1                      | 1                          | 1                          | .01                                   | .01                             | .01                             | 1                               | , <b>1</b> .          | .01                             | 1                        | .01                             | 2                           | 3                          | 5                          | 2                          | 2                        | 1                       | 5                          | 3                          | . <b>1</b> -                 |

9

)

)

)

)

)

1

)

)

)

)

)

)

)

٢

|                                                                                                            |                             | ана<br>1910 ж. – 1917 г. – 1<br>1917 г. – 1917 г. – 1 |                            |                            |                              |                            |                                  |                                |                         |                            |                              |                                       |                                 |                                  |                                  |                        |                                 |                          |                                 |                              |                            |                            |                            |                         |                          |                            |                      |                               |
|------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|------------------------------|----------------------------|----------------------------------|--------------------------------|-------------------------|----------------------------|------------------------------|---------------------------------------|---------------------------------|----------------------------------|----------------------------------|------------------------|---------------------------------|--------------------------|---------------------------------|------------------------------|----------------------------|----------------------------|----------------------------|-------------------------|--------------------------|----------------------------|----------------------|-------------------------------|
| CLIENT: PANICON I                                                                                          | DEVELOPHE                   | NTS JO                                                                                                                                                                                                                                    | B\$: 8810                  | 181 PF                     | OJECT:                       | HEC-ST                     | U REPDI                          | T: 8810                        | 81 PA                   |                            |                              |                                       |                                 |                                  |                                  |                        |                                 |                          |                                 |                              |                            |                            |                            | PAGE 3                  | 0F 4 -                   |                            |                      |                               |
| SAMPLE NAME                                                                                                | AG<br>PPN                   | AL<br>Z                                                                                                                                                                                                                                   | AS<br>PPN                  | AU<br>PPN                  | BA<br>PPN                    | BI<br>PPM                  | CA<br>Z                          | CD<br>PPN                      | CO<br>PPM               | CR<br>PPK                  | CU<br>PPN                    | FE<br>1                               | K<br>1                          | NG<br>1                          | HN<br>PPH                        | NO<br>PPM              | NA<br>- 7                       | NI<br>PPN                | P<br>X                          | PB<br>PPN                    | PD<br>PPN                  | PT<br>P <b>PN</b>          | SB<br>PPN                  | SN<br>PPN               | SR<br>PPM                | U<br>PPN                   | W<br>PPN             | ZN<br>PPM                     |
| HS.L450 0+25E<br>HS.L450 0+50E                                                                             | .1<br>.1                    | 1.65<br>2.57                                                                                                                                                                                                                              | 11<br>13                   | ND<br>ND                   | 33<br>46                     | ND<br>ND                   | .03<br>.03                       | .3                             | 3<br>3                  | 13<br>21                   | 14<br>28                     | 3.02<br>4.29                          | .02<br>.02                      | .05<br>.12                       | 66<br>98                         | 3<br>4                 | .01                             | - 6<br>9                 | .04<br>.09                      | 39<br>57                     | ND<br>ND                   | ND<br>ND                   | ND<br>ND                   | 7<br>9                  | 12<br>7                  | ND<br>ND                   | ND<br>ND             | 57<br>49                      |
| HS.L450 0+75E<br>HS.L450 1+00E<br>HS.L450 1+25E<br>HS.L450 1+50E<br>HS.L450 1+75E                          | .1<br>.1<br>.4<br>.4        | .91<br>1.19<br>1.47<br>2.26<br>1.50                                                                                                                                                                                                       | 12<br>10<br>11<br>13<br>12 | ND<br>ND<br>ND<br>ND       | 41<br>31<br>25<br>23<br>68   | ND<br>ND<br>ND<br>ND<br>ND | .03<br>.09<br>.04<br>.06<br>.40  | .3<br>.3<br>.1<br>.6<br>.5     | 3<br>7<br>3<br>5<br>20  | 13<br>13<br>16<br>19<br>15 | 15<br>33<br>26<br>43<br>40   | 2.91<br>2.57<br>1.35<br>3.47<br>2.99  | .02<br>.02<br>.03<br>.02<br>.10 | .06<br>.22<br>.16<br>.27<br>.79  | 54<br>139<br>64<br>151<br>896    | 3<br>2<br>2<br>5<br>2  | .01<br>.01<br>.02<br>.03        | 6<br>10<br>7<br>12<br>15 | .04<br>.10<br>.10<br>.13<br>.14 | 36<br>32<br>43<br>51<br>32   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 7<br>7<br>5<br>6<br>9   | 8<br>15<br>9<br>12<br>54 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 42<br>77<br>54<br>68<br>87    |
| HS.L450 2+00E<br>HS.L450 2+25E<br>HS.L450 2+50E<br>HS.L450 2+75E<br>HS.L450 3+00E                          | .2<br>.2<br>.1<br>.1        | 3.46<br>1.89<br>5.14<br>2.37<br>1.35                                                                                                                                                                                                      | 17<br>20<br>12<br>16<br>8  | ND<br>ND<br>ND<br>ND       | 19<br>38<br>26<br>84<br>48   | ND<br>ND<br>ND<br>ND       | .04<br>.12<br>.04<br>.06<br>.08  | 1.1<br>1.1<br>1.1<br>.7<br>.1  | 4<br>5<br>5<br>6        | 17<br>19<br>22<br>12<br>7  | 44<br>33<br>35<br>16<br>16   | 6.53<br>4.96<br>4.54<br>3.81<br>1.76  | .03<br>.04<br>.03<br>.03<br>.03 | .11<br>.28<br>.17<br>.26<br>.19  | 178<br>271<br>187<br>291<br>137  | 8<br>6<br>5<br>5<br>3  | .03<br>.02<br>.02<br>.02<br>.02 | 5<br>10<br>8<br>7<br>7   | .07<br>.09<br>.09<br>.06<br>.07 | 7B<br>54<br>65<br>51<br>30   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 12<br>8<br>8<br>6<br>5  | 7<br>13<br>6<br>22<br>28 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 63<br>57<br>70<br>62<br>54    |
| HS.L450 3+25E<br>HS.L450 3+50E<br>HS.L450 3+75E<br>HS.L450 4+00E<br>HS.L450 4+25E                          | .1<br>.1<br>.4<br>.2        | 1.43<br>2.52<br>5.60<br>4.09<br>3.54                                                                                                                                                                                                      | 13<br>14<br>12<br>16<br>18 | ND<br>ND<br>ND<br>ND       | 62<br>28<br>38<br>43<br>32   | ND<br>ND<br>ND<br>ND       | .10<br>.02<br>.03<br>.04<br>.09  | .2<br>.3<br>.8<br>1.1<br>1.3   | 5<br>3<br>6<br>9        | 12<br>12<br>34<br>23<br>12 | 22<br>24<br>44<br>42<br>53   | 2.39<br>3.36<br>4.62<br>5.06<br>5.21  | .04<br>.03<br>.03<br>.03<br>.04 | .17<br>.08<br>.26<br>.19<br>.14  | 257<br>97<br>306<br>361<br>405   | 4<br>5<br>4<br>5<br>5  | .01<br>.02<br>.02<br>.02<br>.02 | 8<br>5<br>19<br>11<br>6  | .07<br>.06<br>.06<br>.07<br>.15 | 45<br>49<br>64<br>71<br>85   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | nd<br>ND<br>ND<br>ND<br>ND | 5<br>7<br>8<br>10<br>10 | 27<br>7<br>5<br>9<br>15  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 65<br>44<br>108<br>103<br>87  |
| HS.L450 4+50E<br>HS.L450 4+75E<br>HS.L450 5+25E<br>HS.L450 5+50E<br>HS.L450 5+75E                          | .8<br>1.1<br>.1<br>.2<br>.1 | 1.84<br>9.08<br>.89<br>3.30<br>2.79                                                                                                                                                                                                       | 22<br>ND<br>7<br>134<br>17 | ND<br>ND<br>ND<br>ND       | 26<br>23<br>172<br>285<br>48 | 6<br>3<br>ND<br>ND         | .03<br>.04<br>.24<br>.40<br>.06  | 2.6<br>1.6<br>.1<br>1.1<br>.7  | 9<br>4<br>3<br>6<br>4   | 12<br>14<br>2<br>19<br>17  | 56<br>39<br>14<br>36<br>17   | 12.55<br>8.08<br>1.09<br>5.90<br>3.46 | .02<br>.04<br>.07<br>.11<br>.05 | .05<br>.07<br>.06<br>.23<br>.33  | 237<br>228<br>39<br>231<br>258   | 14<br>7<br>1<br>8<br>4 | .04<br>.04<br>.01<br>.03<br>.02 | 2<br>3<br>6<br>19<br>12  | .04<br>.06<br>.09<br>.07<br>.07 | 100<br>114<br>19<br>68<br>49 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 24<br>11<br>3<br>9<br>6 | 4<br>7<br>30<br>49<br>12 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 56<br>63<br>72<br>124<br>70   |
| HS.L450 6+00E<br>HS.L450 6+00E A<br>HS.L450 6+25E<br>HS.L450 6+25E A<br>HS.L450 6+25E A<br>HS.L450 6+50E A | .1<br>.1<br>1.2<br>1.2      | 4.44<br>.85<br>3.80<br>8.71<br>9.29                                                                                                                                                                                                       | 51<br>9<br>71<br>ND<br>ND  | ND<br>ND<br>ND<br>ND       | 100<br>46<br>306<br>30<br>19 | ND<br>ND<br>ND<br>3        | .12<br>.31<br>.45<br>.03<br>.02  | 1.1<br>.1<br>1.9<br>2.3<br>1.6 | 17<br>9<br>21<br>3<br>3 | 21<br>6<br>20<br>21<br>14  | 120<br>28<br>126<br>30<br>24 | 5.51<br>1.71<br>5.12<br>10.58<br>8.28 | .05<br>.08<br>.12<br>.03<br>.03 | .75<br>.31<br>1.36<br>.05<br>.06 | 992<br>471<br>2667<br>181<br>182 | 4<br>1<br>4<br>7<br>6  | .03<br>.01<br>.03<br>.04<br>.04 | 18<br>8<br>23<br>1<br>1  | .09<br>.10<br>.10<br>.04<br>.04 | 69<br>19<br>61<br>121<br>115 | ND<br>ND<br>ND<br>ND       | nd<br>Nd<br>Nd<br>Nd<br>Nd | ND<br>ND<br>ND<br>ND       | 8<br>4<br>7<br>12<br>12 | 20<br>35<br>44<br>6<br>2 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 143<br>117<br>190<br>62<br>61 |
| HS.L450 &+75E<br>HS.L450 &+75E A<br>HS.L450 7+00E<br>HS.L450 7+25E<br>HS.L450 7+50E                        | .1<br>.4<br>1.1<br>.8<br>.1 | .71<br>6.05<br>6.76<br>8.62<br>3.31                                                                                                                                                                                                       | 7<br>11<br>ND<br>ND<br>20  | ND<br>ND<br>ND<br>ND<br>ND | 76<br>35<br>17<br>15<br>55   | ND<br>ND<br>7<br>3<br>ND   | 2.68<br>.05<br>.01<br>.01<br>.04 | .1<br>1.1<br>3.7<br>1.8<br>1.1 | 5<br>4<br>2<br>7        | 4<br>37<br>32<br>22<br>57  | 17<br>28<br>47<br>26<br>29   | .80<br>5.03<br>17.37<br>8.53<br>5.78  | .29<br>.04<br>.01<br>.03<br>.02 | .12<br>.21<br>.05<br>.05<br>.51  | 89<br>153<br>285<br>224<br>170   | 1<br>5<br>8<br>5<br>4  | .01<br>.02<br>.05<br>.04<br>.02 | 9<br>14<br>1<br>2<br>29  | .07<br>.04<br>.04<br>.05<br>.02 | 18<br>70<br>162<br>120<br>49 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 3<br>8<br>16<br>10<br>7 | 116<br>7<br>4<br>1<br>7  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 84<br>73<br>96<br>86<br>72    |
| HS.L450 7+75E<br>HS.L450 B+00E<br>HS.L450 8+25E<br>HS.L450 8+50E<br>HS.L450 9+00E                          | .2<br>.2<br>.6<br>.1        |                                                                                                                                                                                                                                           | 15<br>15<br>3<br>11<br>6   | ND<br>ND<br>ND<br>ND       | 51<br>47<br>21<br>26<br>18   | ND<br>3<br>ND<br>ND<br>ND  | .02<br>.02<br>.03<br>.02<br>.01  | 1.1<br>1.8<br>1.6<br>.1<br>1.1 | 7<br>6<br>3<br>6<br>5   | 74<br>104<br>20<br>8<br>24 | 39<br>37<br>35<br>16<br>23   | 5.33<br>8.41<br>7.67<br>1.75<br>5.42  | .02<br>.01<br>.03<br>.02<br>.03 | .43<br>.58<br>.05<br>.03<br>.25  | 164<br>177<br>208<br>130<br>212  | 4<br>5<br>4<br>6       | .02<br>.03<br>.03<br>.01<br>.03 | 36<br>32<br>3<br>9<br>15 | .04<br>.03<br>.06<br>.01<br>.05 | 69<br>83<br>104<br>22<br>90  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 7<br>B<br>12<br>7<br>9  | 4<br>7<br>5<br>5<br>1    | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 108<br>79<br>66<br>63<br>110  |
| HS.L450 9+25E<br>HS.L450 9+50E                                                                             | .4                          | 3.57<br>.92                                                                                                                                                                                                                               | 23<br>12                   | ND<br>ND                   | 31<br>26                     | ND<br>ND                   | .03<br>.13                       | 1.1<br>.2                      | 5<br>12                 | 29<br>6                    | 51<br>56                     | 5.70<br>1.87                          | .03<br>.04                      | .20<br>.19                       | 217<br>159                       | 6<br>1                 | .02<br>.01                      | 11<br>6                  | .04                             | 70<br>26                     | ND<br>ND                   | ND<br>ND                   | ND<br>ND                   | 11<br>4                 | 6<br>43                  | ND<br>ND                   | ND<br>ND             | 106<br>58                     |
| DETECTION LIMIT                                                                                            | .1                          | .01                                                                                                                                                                                                                                       | 3                          | 3                          | 1                            | 3                          | .01                              | .1                             | 1                       | 1                          | 1                            | .01                                   | .01                             | .01                              | 1                                | 1                      | .01                             | 1                        | .01                             | 2                            | 3                          | 5                          | 2                          | 2                       | 1                        | 5                          | 3                    | 1                             |

)

)

)

)

)

)

)

٦

)

)

.)

)

)

)

)

)

)

)

)

| CLIENT: PANICON I                                                                    | evelophe                   | NTS JO                               | 88: 8810                    | 81 PRC                     | JECT: H                        | EC-STU                   | REPORT                            | : 88108                         | IL PA                      |                            |                              |                                      |                                 |                                    |                                      |                         |                                 |                            |                                 |                             |                            |                            | ۶                          | A6E 4 0                 | F 4                         |                      |                            |                                 |
|--------------------------------------------------------------------------------------|----------------------------|--------------------------------------|-----------------------------|----------------------------|--------------------------------|--------------------------|-----------------------------------|---------------------------------|----------------------------|----------------------------|------------------------------|--------------------------------------|---------------------------------|------------------------------------|--------------------------------------|-------------------------|---------------------------------|----------------------------|---------------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|-------------------------|-----------------------------|----------------------|----------------------------|---------------------------------|
| SAMPLE NAME                                                                          | AG<br>PPM                  | AL<br>I                              | AS<br>PPN                   | AU<br>PPM                  | BA<br>PPM                      | BI<br>PPN                | CA<br>I                           | CD<br>PPN                       | CO<br>PPN                  | CR<br>PPN                  | CU<br>PPN                    | FE<br>Z                              | K<br>Z                          | NG<br>1                            | MN<br>PPH                            | NO<br>Ppn               | NA<br>Z                         | NI<br>PPN                  | P                               | PB<br>PPM                   | PD<br>PPN                  | PT<br>PPN                  | SB<br>PPN                  | SN<br>PPN               | SR<br>PPN                   | U<br>PPH             | N<br>PPN                   | ZN<br>PPM                       |
| HS.L450 9+75E<br>HS.L450 10+00E<br>HS.L450 10+25E                                    | .1<br>.1<br>.1             | .74<br>2.56<br>3.20                  | 4<br>12<br>12               | ND<br>ND<br>ND             | 23<br>40<br>32                 | ND<br>ND<br>3            | .05<br>.26<br>.03                 | .1<br>1.1<br>.8                 | 2<br>11<br>9               | 7<br>20<br>13              | 8<br>79<br>33                | .66<br>4.53<br>4.92                  | .03<br>.06<br>.01               | .13<br>.65<br>.95                  | 40<br>610<br>452                     | 1<br>5<br>5             | .01<br>.02<br>.02               | 3<br>12<br>6               | .02<br>.05<br>.04               | 19<br>69<br>40              | ND<br>ND<br>ND             | ND<br>ND<br>ND             | ND<br>KD<br>ND             | 3<br>7<br>5             | 12<br>28<br>7               | ND<br>ND<br>ND       | ND<br>ND<br>ND             | 38<br>118<br>88                 |
| HS.L450 10+50E<br>HS.L450 10+75E<br>HS.L450 11+00E<br>HS.L500 0+00W<br>HS.L500 0+25W | .1<br>.1<br>.8<br>.3       | 4.57<br>2.07<br>2.57<br>7.46<br>4.50 | 30<br>17<br>270<br>13<br>28 | ND<br>ND<br>ND<br>ND<br>ND | 85<br>49<br>28<br>19<br>46     | 3<br>ND<br>5<br>6<br>3   | .07<br>.06<br>.42<br>.02<br>.03 - | 1.1<br>.2<br>.7<br>1.6<br>1.1   | 16<br>5<br>41<br>5<br>7    | 49<br>25<br>38<br>22<br>28 | 45<br>19<br>75<br>50<br>52   | 4.82<br>3.10<br>5.61<br>8.79<br>5.68 | .04<br>.03<br>.08<br>.02<br>.02 | .78<br>.39<br>1.56<br>.14<br>.26   | 375<br>193<br>2295<br>201<br>166     | 5<br>5<br>9<br>11<br>11 | .02<br>.01<br>.02<br>.04<br>.02 | 46<br>15<br>17<br>6<br>12  | .06<br>.03<br>.19<br>.06        | 59<br>36<br>83<br>113<br>69 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 6<br>4<br>7<br>14<br>10 | 8<br>16<br>20<br>2<br>5     | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 127<br>66<br>169<br>75<br>76    |
| HS.L500 0+50W<br>HS.L500 0+75W<br>HS.L500 1+00W<br>HS.L500 1+25W<br>HS.L500 1+50W    | .4<br>.1<br>.1<br>.1<br>.4 | 1.64<br>5.05<br>3.48<br>.02<br>4.37  | 7<br>16<br>36<br>ND<br>24   | ND<br>ND<br>ND<br>ND       | 30<br>48<br>142<br>ND<br>36    | 4<br>Nđ<br>3<br>Nd<br>Nd | .45<br>.12<br>.21<br>.01<br>.03   | .6<br>1.1<br>2.5<br>.1<br>.6    | 23<br>20<br>19<br>ND<br>5  | 17<br>22<br>20<br>ND<br>21 | 43<br>151<br>123<br>ND<br>51 | 3.82<br>5.32<br>5.08<br>.03<br>4.44  | .09<br>.04<br>.06<br>.01<br>.02 | .82<br>.50<br>1.10<br>.01<br>.28   | 845<br>885<br>1963<br>8<br>244       | 4<br>9<br>7<br>ND<br>7  | .03<br>.02<br>.03<br>.01<br>.02 | 13<br>16<br>21<br>ND<br>12 | .29<br>.13<br>.14<br>.01<br>.09 | 31<br>76<br>61<br>2<br>79   | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | NÐ<br>ND<br>ND<br>ND       | 12<br>7<br>6<br>ND<br>8 | 56<br>21<br>28<br>ND<br>8   | NÐ<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 93<br>127<br>300<br>1<br>84     |
| HS.L500 1+75W<br>HS.L500 2+25W<br>HS.L500 2+50W<br>HS.L500 2+75W<br>HS.L500 3+00W    | .2<br>.3<br>.1<br>.1       | 4.56<br>3.95<br>2.78<br>3.21<br>8.12 | 17<br>21<br>13<br>22<br>29  | ND<br>ND<br>ND<br>ND       | 30<br>51<br>30<br>25<br>33     | 3<br>3<br>ND<br>ND<br>ND | .06<br>.02<br>.17<br>.20<br>.08   | 1.1<br>.8<br>.7<br>1.1<br>.6    | 7<br>4<br>9<br>15<br>10    | 26<br>18<br>12<br>14<br>16 | 35<br>25<br>79<br>112<br>75  | 5.93<br>5.47<br>4.28<br>5.44<br>4.29 | .02<br>.01<br>.03<br>.05<br>.03 | .16<br>.14<br>.80<br>.65<br>.35    | 229<br>160<br>690<br>940<br>625      | 9<br>9<br>7<br>6<br>4   | .02<br>.02<br>.02<br>.02<br>.02 | 9<br>7<br>8<br>10<br>8     | .08<br>.07<br>.07<br>.12<br>.16 | 81<br>77<br>71<br>80<br>79  | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 11<br>11<br>5<br>7<br>6 | 8<br>6<br>30<br>24<br>12    | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 82<br>74<br>121<br>108<br>83    |
| HS.L500 3+25W<br>HS.L500 3+50W<br>H5T 400 01<br>H5T 350 02<br>HHM 350 01             | .1<br>.1<br>.1<br>.1<br>.1 | 3.93<br>3.75<br>2.21<br>1.70<br>2.35 | 130<br>20<br>52<br>39<br>32 | ND<br>ND<br>ND<br>ND<br>ND | 327<br>77<br>152<br>209<br>125 | 5<br>6<br>ND<br>ND<br>3  | .25<br>.27<br>.86<br>i.81<br>.42  | 1.3<br>1.3<br>1.1<br>4.7<br>1.3 | 22<br>23<br>14<br>10<br>17 | 25<br>14<br>24<br>19<br>39 | 81<br>180<br>65<br>142<br>55 | 6.28<br>6.29<br>3.65<br>2.49<br>4.12 | .05<br>.05<br>.14<br>.22<br>.09 | .95<br>1.26<br>1.04<br>.56<br>1.58 | 2039<br>1714<br>1264<br>2127<br>1511 | 7<br>7<br>5<br>4<br>4   | .03<br>.02<br>.02<br>.03<br>.02 | 21<br>14<br>32<br>17<br>39 | .07<br>.08<br>.08<br>.14<br>.08 | 78<br>58<br>46<br>84<br>48  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 8<br>6<br>4<br>6        | 32<br>47<br>74<br>125<br>41 | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 203<br>148<br>150<br>711<br>199 |
| DETECTION LINIT                                                                      | .1                         | .01                                  | 3                           | 3                          | 1                              | 3                        | .01                               | .1                              | 1                          | 1                          | 1                            | .01                                  | .01                             | .01                                | - 1                                  | . 1                     | .01                             | 1                          | .01                             | 2                           | 3                          | 5                          | 2                          | 2                       | 1                           | 5                    | 3                          | 1                               |

)

)

2

)

•

)

)

)

)

),

| Ľ | /G            |                | MAIN DF<br>190<br>Vanco | FICE AND LABO<br>BB Triumph Str<br>Duver, B.C. VS<br>51-5656 FAX:2 | reet<br>5L 1K5 2S3                       | BRANC<br>1630 PA<br>VANCOUVE | MITED<br>CH OFFICE<br>NDORA ST.<br>R, B.C. V5L 1L6<br>251-5656 |        |    |   |
|---|---------------|----------------|-------------------------|--------------------------------------------------------------------|------------------------------------------|------------------------------|----------------------------------------------------------------|--------|----|---|
|   | REPORT NUMBER | : 881019 GA    | JOB NUMBI               | ER: 881019                                                         | PANICON DEV                              | ELOPHENT LTD.                |                                                                | PAGE 1 | OF | 5 |
|   | SAMPLE #      |                | Au                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   |               |                | ppb                     |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HSHM 850 1    |                | 65                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HSHN 850 2    |                | 30                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HSi 850 1     |                | 5                       |                                                                    |                                          |                              |                                                                |        |    |   |
|   | H588 L 0+00   | 0+30W          | 5                       |                                                                    |                                          |                              |                                                                |        |    |   |
|   | H588 L 0+00   | 0+40W          | 45                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   |               |                |                         |                                                                    |                                          |                              |                                                                |        |    |   |
|   | H588 L 0+00   | 0+50W          | nd                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+10N  | 0+30E          | 360                     | •                                                                  |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+10N  | 0+40E          | 560                     |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+10N  | 0+50E<br>0+30¥ | 20<br>20                |                                                                    |                                          |                              |                                                                |        |    |   |
|   | H588 L 0+10N  | UTJUN          | ZV                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+10N  | 0+40W          | 10                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+10N  | 0+50W          | 160                     |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+105  | 0+308          | 190                     |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+105  | 0+40E          | 1065                    |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+105  | 0+50E          | 895                     |                                                                    |                                          |                              |                                                                |        |    |   |
|   | 1000 C V1100  | 0.305          | 410                     |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+105  | 0+30W          | 15                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+105  | 0+50W          | 45                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | H588 L 0+20N  | 0+30E          | 835                     |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+20N  | 0+40E          | 15                      |                                                                    | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                              |                                                                |        |    |   |
|   | HS88 L 0+20N  | 0+50E          | 15                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   |               |                |                         |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+20N  | 0+30W          | 530                     |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+20N  | 0+40W          | 65                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+20N  | 0+50W          | 5                       |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+20S  | 0+30E          | 50                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+20S  | 0+40E          | 675                     |                                                                    |                                          |                              |                                                                |        |    |   |
|   |               | A. FAF         |                         |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+205  | 0+50E          | 1145                    |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+205  |                | 440                     |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+205  |                | 910                     |                                                                    | •                                        |                              |                                                                |        |    |   |
|   | HS88 L 0+30N  |                | 35                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS8B L 0+30N  | 0+20W          | 150                     |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+30N  | 0+30W          | 30                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+30N  | 0+40W          | 20                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+30N  |                | 25                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+308  | 0+00E          | 50                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+305  |                | 25                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | 1100 L V1303  | V. IVL         | LJ                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+305  | 0+20E          | 60                      |                                                                    |                                          |                              |                                                                |        |    |   |
|   | HS88 L 0+305  |                | 320                     |                                                                    |                                          |                              |                                                                |        |    |   |
|   | U000 6 4-000  | A . ( AL)      |                         |                                                                    |                                          |                              |                                                                |        |    |   |

DETECTION LINIT nd = none detected

H588 L 0+305 0+10W

HS88 L 0+305 0+20W

R. 

<u>5</u>. 

100

5 -- = not analysed

20

200

is = insufficient sample



.

F

.

### VANGEOCHEM LAB LIMITED

MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 '283 (604)251-5656 FAX:254-5717:578

BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

|         |          |           |      |                  | · · · · · | FAX:254- |        |              | (604) 251-5656 | <u></u> |      |   |    | _ |
|---------|----------|-----------|------|------------------|-----------|----------|--------|--------------|----------------|---------|------|---|----|---|
| REPORT  | NUMBER:  | 881019 GA | JOB  | NUMBER:          | 881       | 019      | PANICO | n develophen | T'LTD.         |         | PAGE | 2 | OF | 5 |
| SAMPLE  | ÷        |           | Au   |                  |           |          |        |              |                |         |      |   |    |   |
|         |          |           | ppb  |                  |           |          |        |              |                |         |      |   |    |   |
| 8888 L  | 0+30S    | 0+401     | 15   |                  |           |          |        |              |                |         |      |   |    |   |
|         |          | 0+50₩     | 30   |                  |           |          |        |              |                |         |      |   |    |   |
|         |          | 0+00E     | 10   |                  |           |          |        |              |                |         |      |   |    |   |
|         | 0+40N    |           | 30   |                  |           |          |        |              |                |         |      |   |    |   |
|         | 0+40N    |           | 40   |                  |           |          |        |              |                |         |      |   |    |   |
| 1999 L  | VTSVR    | VTZVE     | 40   | •                |           |          |        |              |                |         |      |   |    |   |
| UC00 1  | 0+40N    | 0430E     | 320  |                  |           |          |        |              |                |         |      |   |    |   |
|         | 0+40N    |           | 20   |                  |           |          |        |              |                |         |      |   |    |   |
|         |          |           |      |                  |           |          |        |              |                |         |      |   |    |   |
|         | 0+40N    |           | 10   |                  |           |          |        |              |                |         |      |   |    |   |
|         | 0+40N    |           | 5    |                  |           |          |        |              |                |         |      |   |    |   |
| H588 L  | 0+40N    | UTZUW     | 160  | •<br>•           |           |          |        |              |                |         |      |   |    |   |
| 10000   |          |           |      |                  |           |          |        |              |                |         |      |   |    |   |
|         | 0+405    |           | 20   |                  |           |          |        |              |                |         |      |   |    |   |
|         | 0+405    |           | 170  |                  |           |          |        |              |                |         |      |   |    |   |
|         | 0+405    |           | 110  |                  |           |          |        |              |                |         |      |   |    |   |
|         | 0+405    |           | 40   |                  |           |          |        |              |                |         |      |   |    |   |
| H\$88 L | 0+405    | 0+40E     | 15   | <b>i</b>         |           |          |        |              |                |         |      |   |    |   |
|         |          |           |      |                  |           |          |        |              |                |         |      |   |    |   |
|         | 0+405    |           | 20   | )                |           |          |        |              |                |         |      |   |    |   |
| HS88 L  |          |           | 30   | )                |           |          |        |              |                |         |      |   |    |   |
| HS88 L  | 0+405    | 0+30¥     | 30   | ) <sup>- 1</sup> |           |          |        |              |                |         |      |   |    |   |
| HS88 L  | 0+405    | 0+40W     | 255  | 5.               |           |          |        |              |                |         |      |   |    |   |
| HS88 L  | 0+50N    | 0+00E     | 115  | i i              |           |          |        |              |                |         |      |   |    |   |
|         |          |           |      |                  |           |          |        |              |                |         |      |   |    |   |
| H\$88 L | . 0+50N  | 0+10E     | 1    | 5                |           |          |        |              |                |         |      |   |    |   |
| HS88 L  | 0+50N    | 0+20E     | 1    | 5                |           |          |        |              |                |         |      |   |    |   |
| HS88 L  | 0+50N    | 0+30E     | 2    | 5                |           |          |        |              |                |         |      |   |    |   |
| HS88 L  | 0+50N    | 0+40E     | - 30 | )                |           |          |        |              |                |         |      |   |    |   |
|         | 0+50N    | 0+50E     |      | 5                |           |          |        |              |                |         |      |   |    |   |
|         | ·        |           |      |                  |           |          |        |              |                |         |      |   |    |   |
| HS88    | 0+50N    | 0+10W     | 3    | 0                |           |          |        |              |                |         |      |   |    |   |
|         | 0+50N    | 0+201     | 2    | 5                |           |          |        |              |                |         |      |   |    |   |
|         | 0+50N    | 0+30W     | 35   |                  |           |          |        | ÷ .          |                |         |      |   |    |   |
|         | L 0+50N  | 0+40W     | 104  |                  |           |          |        |              |                |         |      |   |    |   |
|         | 0+50N    |           | 12   |                  |           |          |        |              |                |         |      |   |    |   |
|         |          |           | :    | -                |           |          |        |              |                |         |      |   |    |   |
| HS88    | 0+505    | 0+10E     |      | 5                |           |          |        |              | -              |         |      |   |    |   |
|         | 0+505    | 0+20E     | 2    |                  |           |          |        |              |                |         |      |   |    |   |
|         | 0+508    | 0+30E     | 3    |                  |           |          |        |              |                |         |      |   |    |   |
|         | 0+505    | 0+40E     | 3    |                  |           |          |        |              |                |         |      |   |    |   |
|         | L 0+50S  | 0+50E     | . 76 |                  |           |          |        |              |                |         |      |   |    | - |
| 11300   |          | VIUVE     | . 70 | •                |           |          |        |              |                |         |      |   |    |   |
| HCOD I  | 0+505    | 0+00W     | 1    | 5                |           |          |        |              |                |         |      |   |    |   |
|         | L 0+50S  | 0+10₩     |      |                  |           |          |        |              |                |         |      |   |    |   |
|         | L 0+50S  | 0+20₩     | 2    |                  |           |          |        |              |                |         |      |   |    |   |
| HSL80   |          | 0+00      | 4    |                  |           |          |        |              |                |         |      |   |    |   |
| naLov   |          | VTVVW     | . 4  | V .              |           |          |        |              |                |         |      |   |    |   |
| NETER.  | TION LIN | TT        |      | 5                |           |          | e e te |              |                |         |      |   |    |   |
| UCIEL   | 1104 110 | 11        |      |                  | . 2       |          |        |              |                |         |      |   |    |   |

nd = none detected

-- = not analysed

#### ICAP GEOCHEMICAL ANALYSIS

)

)

3

AIN 1CE 1630 FANDORA STREET. COUVER B.C. VOL 1L6 PH: (604)251-7282 FAX: (604)254-57

10

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 95 DEG. C FOR 90 NIMUTES AND IS DIVUTED TO AO ML WITH-WATER. THIS LEACH IS PARTIAL FOR SN, NN,FE,CA,P,CR, NG,BA,PD,AL,NA,K,N,PT AND SR. AU AND PD DETECTION IS 3 PPH.

| COMPANY: PA<br>ATTENTION:<br>PROJECT: HE                                                         | STO                          | DORU                                 |                            | PMEN                       | TS                            |                           | •                                | REPOR<br>JOB#1<br>INVOJ         | 881                      | 019                         |                                   |                                       |                                 |                                   | - Del l                            | e rei<br>E coi<br>Y sei  | 1.9L. P. C.                     | ICDI                       | 88/08<br>88/0                   | 17/ 10                        | SFP<br>DO                  | 14                         |                      | 20                       |                            | .Y8T_                      | 6                          | la f                            | / |
|--------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------|----------------------------|----------------------------|-------------------------------|---------------------------|----------------------------------|---------------------------------|--------------------------|-----------------------------|-----------------------------------|---------------------------------------|---------------------------------|-----------------------------------|------------------------------------|--------------------------|---------------------------------|----------------------------|---------------------------------|-------------------------------|----------------------------|----------------------------|----------------------|--------------------------|----------------------------|----------------------------|----------------------------|---------------------------------|---|
| SAMPLE NAME                                                                                      | AG<br>PPN                    | AL<br>Z                              | AS<br>PP <del>N</del>      | AU<br>Pph                  | BA<br>PPN                     | BI<br>PPM                 | CA<br>I                          | CD<br>PPM                       | CO<br>PPM                | CR<br>PPN                   | CU<br>PPN                         | FE<br>X                               | K<br>Z                          | MG<br>Z                           | HN<br>PPH                          | NO<br>PPN                | NA<br>Z                         | NI<br>PPM                  | P<br>X                          | PB<br>PPM                     | PD<br>PPM                  | PT<br>PPM                  | SB<br>PPM            |                          | SR<br>PPN                  | U<br>PPN                   | W<br>PPN                   | ZN<br>PPH                       |   |
| HSHN 850 1<br>HSHM 850 2<br>HSI 850 1<br>HSB8L0+00 0+30W<br>KS88L0+00 0+40W                      | .1<br>.1<br>.1<br>.5         | 2.41<br>2.31<br>1.26<br>5.11<br>6.08 | 40<br>97<br>41<br>46<br>50 | ND<br>ND<br>ND<br>ND<br>ND | 166<br>499<br>232<br>56<br>92 | 5<br>4<br>ND<br>5<br>ND   | .47<br>.29<br>1.87<br>.07<br>.09 | 7.4<br>4.4<br>5.6<br>1.3<br>1.1 | 28<br>22<br>7<br>11<br>8 | 31<br>62<br>18<br>101<br>23 | 179<br>109<br>59<br>37<br>61      | 4.78<br>4.60<br>1.64<br>6.00<br>4.93  | .08<br>.04<br>.24<br>.01<br>.01 | 1.29<br>1.87<br>.37<br>.42<br>.16 | 1768<br>1447<br>1487<br>242<br>272 | 6<br>4<br>2<br>8<br>13   | .03<br>.03<br>.01<br>.02<br>.03 | 41<br>65<br>12<br>45<br>19 | .12<br>.15<br>.14<br>.08<br>.10 | 76<br>146<br>50<br>99<br>118  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 6<br>4<br>3<br>9<br>11   | 43<br>37<br>114<br>8<br>8  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 480<br>642<br>287<br>153<br>184 |   |
| HS88L0+00 0+50W<br>HS88L0+10N 0+30E<br>HS88L0+10N 0+40E<br>HS88L0+10N 0+50E<br>HS88L0+10N 0+30W  | 2.5<br>.1<br>.1<br>.1        | 4.38<br>5.31<br>1.97<br>2.65<br>3.34 | 29<br>57<br>28<br>17<br>41 | ND<br>ND<br>ND<br>ND       | 34<br>62<br>74<br>90<br>35    | 11<br>3<br>ND<br>ND<br>ND | .02<br>.15<br>.12<br>.23<br>.21  | 2.8<br>2.1<br>.7<br>1.1<br>1.5  | 6<br>20<br>6<br>7<br>11  | 27<br>27<br>14<br>19<br>23  | 47<br>73<br>52<br>54<br>25        | 11.54<br>5.53<br>3.55<br>4.02<br>4.03 | .01<br>.01<br>.05<br>.03        | .05<br>.42<br>.22<br>.15<br>.83   | 207<br>3160<br>278<br>763<br>448   | 16<br>9<br>4<br>4<br>6   | .04<br>.03<br>.01<br>.02<br>.02 | 1<br>17<br>5<br>8<br>14    | .06<br>.14<br>.11<br>.16<br>.07 | 118<br>131<br>57<br>69<br>82  | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 17<br>9<br>5<br>5<br>8   | 6<br>16<br>18<br>24<br>8   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 89<br>278<br>113<br>113<br>200  |   |
| HS88L0+10N 0+40W<br>HS88L0+10N 0+50W<br>HS88L0+10S 0+30E<br>HS88L0+10S 0+40E<br>HS88L0+10S 0+50E | 2.5<br>.1<br>1.1<br>1.1      | 5.56<br>1.21<br>2.97<br>3.90<br>3.87 | 50<br>10<br>62<br>48<br>41 | ND<br>ND<br>ND<br>ND<br>ND | 50<br>75<br>26<br>50<br>162   | 3<br>ND<br>3<br>4<br>3    | .06<br>.11<br>.24<br>.08<br>.06  | 1.1<br>.1<br>1.6<br>1.6<br>1.1  | 7<br>4<br>21<br>8<br>12  | 32<br>7<br>21<br>23<br>17   | 26<br>13<br>127<br>62<br>51       | 4.58<br>.98<br>5.86<br>7.04<br>5.56   | .01<br>.03<br>.03<br>.01<br>.01 | .26<br>.11<br>.38<br>.22<br>.49   | 259<br>86<br>380<br>273<br>567     | 16<br>2<br>5<br>9<br>8   | .03<br>.01<br>.02<br>.02<br>.02 | 18<br>3<br>8<br>7<br>5     | .07<br>.02<br>.11<br>.09<br>.06 | 111<br>33<br>166<br>109<br>99 | ND<br>ND<br>ND<br>ND       | NÐ<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 10<br>4<br>6<br>10<br>7  | 6<br>15<br>13<br>10<br>11  | NÐ<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 149<br>33<br>153<br>125<br>142  |   |
| HS88L0+105 0+30W<br>HS88L0+105 0+50W<br>HS88L0+20N 0+30E<br>HS88L0+20N 0+40E<br>HS88L0+20N 0+50E | .1<br>.1<br>.3<br>.1         | 3.56<br>1.97<br>5.63<br>1.58<br>1.27 | 31<br>17<br>48<br>8<br>3   | ND<br>ND<br>ND<br>ND       | 72<br>34<br>57<br>113<br>59   | 6<br>ND<br>ND<br>ND       | .07<br>.09<br>.14<br>.72<br>.08  | 2.1<br>.1<br>1.5<br>1.5<br>.2   | 6<br>3<br>14<br>8<br>4   | 28<br>13<br>30<br>13<br>12  | 41<br>9<br>62<br>70<br>21         | 8.24<br>1.42<br>5.20<br>1.89<br>2.17  | .01<br>.03<br>.02<br>.12<br>.02 | .13<br>.18<br>.34<br>.22<br>.12   | 304<br>83<br>491<br>1848<br>118    | 23<br>3<br>9<br>1<br>2   | .03<br>.01<br>.02<br>.01<br>.01 | 8<br>4<br>15<br>11<br>5    | .05<br>.02<br>.08<br>.20<br>.07 | 101<br>42<br>125<br>45<br>32  | ND<br>ND<br>ND<br>ND<br>ND | nd<br>Nd<br>Nd<br>Nd<br>Nd | ND<br>ND<br>ND<br>ND | 13<br>4<br>10<br>3<br>4  | 13<br>15<br>14<br>38<br>14 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 164<br>47<br>215<br>221<br>76   |   |
| HS88L0+20N 0+30W<br>HS88L0+20N 0+40W<br>HS88L0+20N 0+50W<br>HS88L0+20S 0+30E<br>HS88L0+20S 0+40E | .1<br>.1<br>3.1<br>.3        | 2.36<br>4.74<br>.73<br>5.57<br>3.95  | 32<br>44<br>ND<br>44<br>81 | nd<br>Nd<br>Nd<br>Nd       | 71<br>93<br>120<br>17<br>57   | ND<br>3<br>ND<br>5<br>7   | .48<br>.27<br>.47<br>.10<br>.12  | 1.1<br>1.1<br>.1<br>2.1<br>2.2  | 19<br>7<br>4<br>4<br>19  | 46<br>26<br>6<br>26<br>26   | 49<br>26<br>19<br>33<br>134       | 3.90<br>4.75<br>1.30-<br>7.46<br>8.35 | .08<br>.05<br>.08<br>.01<br>.01 | .62<br>.20<br>.10<br>.05<br>.54   | 786<br>402<br>216<br>123<br>611    | 5<br>8<br>ND<br>10<br>10 | .02<br>.02<br>.01<br>.03<br>.03 | 53<br>12<br>4<br>2<br>11   | .05<br>.08<br>.07<br>.08<br>.10 | 62<br>98<br>20<br>124<br>133  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 6<br>10<br>2<br>14<br>9  | 19<br>24<br>35<br>7<br>24  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 151<br>138<br>124<br>98<br>139  |   |
| HS88L0+205 0+50E<br>HS88L0+205 0+30W<br>HS88L0+205 0+50W<br>HS88L0+30W 0+00W<br>HS88L0+30W 0+20W | .3<br>.1<br>1.6<br>1.1<br>.5 | 2.81<br>1.23<br>1.44<br>2.62<br>5.22 | 67<br>21<br>26<br>35<br>57 | NÐ<br>ND<br>ND<br>ND       | 68<br>27<br>32<br>55<br>69    | 5<br>ND<br>ND<br>3        | .09<br>.13<br>.05<br>.06<br>.35  | 1.3<br>.1<br>.8<br>.7<br>.8     | 17<br>4<br>7<br>7<br>10  | 21<br>19<br>16<br>22<br>24  | 103<br>13<br>29<br>29<br>29<br>24 | 6.66<br>2.13<br>3.29<br>3.97<br>4.22  | .02<br>.05<br>.04<br>.02<br>.08 | .64<br>.13<br>.10<br>.10<br>.29   | 895<br>106<br>226<br>218<br>462    | 9<br>3<br>6<br>11<br>7   | .03<br>.02<br>.02<br>.03<br>.03 | 11<br>7<br>5<br>7<br>18    | .08<br>.02<br>.06<br>.04<br>.09 | 176<br>38<br>58<br>74<br>108  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 7<br>4<br>8<br>11<br>11  | 14<br>6<br>10<br>5<br>15   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 161<br>30<br>67<br>111<br>228   |   |
| HS88L0+30N 0+30N<br>HS88L0+30N 0+40N<br>HS88L0+30N 0+50N<br>HS88L0+30S 0+00E<br>HS88L0+30S 0+10E | .3<br>.3<br>.1<br>.1<br>1.1  | 3.07<br>6.42<br>4.39<br>5.58<br>3.45 | 39<br>55<br>46<br>48<br>40 | ND<br>ND<br>ND<br>ND       | 51<br>59<br>80<br>59<br>26    | ND<br>ND<br>ND<br>ND<br>6 | .63<br>.09<br>.05<br>.06<br>.19  | 2.1<br>.8<br>1.1<br>1.1<br>1.6  | 11<br>3<br>11<br>11<br>8 | 19<br>17<br>36<br>36<br>33  | 27<br>18<br>22<br>39<br>38        | 3.16<br>5.21<br>4.12<br>5.12<br>8.14  | .14<br>.01<br>.01<br>.01        | .19<br>.05<br>.48<br>.27<br>.10   | 2144<br>218<br>279<br>356<br>290   | 5<br>10<br>7<br>9<br>16  | .03<br>.02<br>.02<br>.02<br>.03 | 15<br>4<br>30<br>14<br>4   | .12<br>.08<br>.05<br>.07<br>.05 | 83<br>119<br>89<br>107<br>94  | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 9<br>12<br>9<br>10<br>14 | 23<br>9<br>8<br>7<br>3     | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 311<br>112<br>140<br>172<br>87  |   |
| HS88L0+305 0+20E<br>HS88L0+305 0+30E<br>HS88L0+305 0+10W<br>HS88L0+305 0+20W                     | 1.6<br>1.1<br>.3<br>.1       | 5.06<br>1.72<br>3.38<br>1.53         | 62<br>41<br>45<br>35       | ND<br>ND<br>ND<br>ND       | 50<br>26<br>59<br>28          | 3<br>5<br>ND<br>6         | .06<br>.06<br>.12<br>2.67        | 1.3<br>1.8<br>1.1<br>2.9        | 11<br>10<br>7<br>13      | 49<br>21<br>34<br>14        | 35<br>47<br>27<br>156             | 4.59<br>7.90<br>3.73<br>11.35         | .03<br>.03<br>.06<br>.28        | .74<br>.19<br>.26<br>.14          | 300<br>143<br>440<br>1971          | 9<br>9<br>6<br>77        | .03<br>.03<br>.03<br>.03        | 45<br>5<br>16<br>3         | .04<br>.05<br>.09<br>.05        | 108<br>65<br>83<br>56         | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 9<br>9<br>8<br>6         | 8<br>10<br>8<br>5          | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>29       | 172<br>58<br>126<br>92          |   |
| DETECTION LINIT                                                                                  | .1                           | .01                                  | 3                          | 3                          | 1                             | 3                         | .01                              | •1                              | 1                        | 1                           | 1                                 | .01                                   | .01                             | .01                               | 1                                  | 1                        | .01                             | 1                          | .01                             | 2                             | 3                          | 5                          | 2                    | 2                        | 1                          | 5                          | 3                          | 1                               |   |

| CLIENT: PANICON DE                                                                               | VELOPHE                     | NTS JO                               | 88: 8810                    | 19 PRC                     | JECT: H                     | ECT-SK1                   | REPOR                           | t: 8810                         | 19 PA                    |                            |                             |                                       |                                 |                                 |                                  |                         |                                 |                           |                                 |                               |                            |                            |                      | PAGE 2                    | OF 5                      |                            |                            |                                |  |
|--------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|-----------------------------|----------------------------|-----------------------------|---------------------------|---------------------------------|---------------------------------|--------------------------|----------------------------|-----------------------------|---------------------------------------|---------------------------------|---------------------------------|----------------------------------|-------------------------|---------------------------------|---------------------------|---------------------------------|-------------------------------|----------------------------|----------------------------|----------------------|---------------------------|---------------------------|----------------------------|----------------------------|--------------------------------|--|
| SAMPLE NAME                                                                                      | AG<br>PPM                   | AL<br>Z                              | AS<br>PPH                   | AU<br>Pph                  | BA<br>PPN                   | BI<br>PPN                 | CA<br>Z                         | CD<br>PPN                       | CO<br>PPN                | CR<br>PPM                  | CU<br>PPM                   | FE :<br>X                             | L.K.                            | MG<br>X                         | NN<br>PPN                        | NO<br>Ppn               | NA<br>X                         | NI<br>PPM                 | P<br>Z                          | PB<br>PPM                     | PD<br>PPN                  | PT<br>PPN                  | SB<br>PPN            | SN<br>PPM                 | SR<br>PPN                 | U<br>PPN                   | W<br>PPN                   | ZN<br>PPH                      |  |
| HSBBL0+305 0+40W                                                                                 | 1                           | 1.27                                 | 9                           | ND                         | 103                         | ND                        | .30                             | .9                              | 10                       | 13                         | 34                          | 2.21                                  | .07                             | .32                             | 519                              | 3                       | .02                             | 9                         | .08                             | 83                            | ND                         | ND                         | ND                   | 5                         | 34                        | ND                         | ND                         | .111                           |  |
| HS88L0+30S 0+50W<br>HS88L0+40N 0+00E<br>HS88L0+40N 0+10E<br>HS88L0+40N 0+20E<br>HS88L0+40N 0+30E | .9<br>.2<br>.8<br>1.2<br>.4 | 2.61<br>2.04<br>3.80<br>3.81<br>1.78 | 30<br>23<br>41<br>43<br>26  | ND<br>ND<br>ND<br>ND       | 81<br>38<br>62<br>67<br>36  | 3<br>ND<br>3<br>3<br>ND   | .14<br>.11<br>.06<br>.19<br>.18 | 1.2<br>.9<br>1.4<br>1.1<br>.8   | 10<br>9<br>12<br>10<br>8 | 24<br>22<br>40<br>45<br>18 | 48<br>43<br>37<br>37<br>34  | 4.61<br>3.39<br>4.56<br>3.75<br>2.38  | .05<br>.04<br>.05<br>.08<br>.08 | .37<br>.19<br>.27<br>.37<br>.25 | 607<br>365<br>364<br>303<br>1031 | 8<br>5<br>8<br>8<br>4   | .02<br>.02<br>.02<br>.02<br>.02 | 12<br>10<br>23<br>26<br>8 | .07<br>.08<br>.07<br>.09<br>.11 | 76<br>69<br>93<br>89<br>72    | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 9<br>8<br>10<br>9<br>6    | 20<br>9<br>6<br>13<br>17  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 184<br>90<br>174<br>144<br>121 |  |
| HSBBL0+40N 0+40E<br>HSBBL0+40N 0+50E<br>HSBBL0+40N 0+10W<br>HSBBL0+40N 0+20W<br>HSBBL0+40S 0+00E | .8<br>.1<br>.1<br>.1<br>.1  | 3.90<br>1.68<br>4.97<br>3.82<br>5.84 | 46<br>10<br>40<br>332<br>51 | nd<br>Nd<br>Nd<br>Nd<br>Nd | 54<br>107<br>50<br>81<br>47 | 3<br>ND<br>ND<br>ND<br>ND | .07<br>.17<br>.05<br>.35<br>.05 | 1.4<br>.4<br>1.6<br>.1<br>1.1   | 12<br>11<br>6<br>14<br>7 | 29<br>13<br>28<br>29<br>25 | 47<br>41<br>35<br>26<br>25  | 4.58<br>2.99<br>4.63<br>4.39<br>4.48  | .05<br>.03<br>.01<br>.06<br>.01 | .27<br>.25<br>.21<br>.43<br>.19 | 548<br>475<br>404<br>961<br>339  | 8<br>3<br>8<br>6<br>9   | .03<br>.01<br>.01<br>.01<br>.02 | 16<br>5<br>16<br>17<br>14 | .08<br>.06<br>.10<br>.12<br>.08 | 99<br>45<br>98<br>86<br>113   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 11<br>5<br>10<br>9<br>11  | 10<br>20<br>6<br>18<br>6  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 150<br>67<br>149<br>258<br>182 |  |
| HS88L0+405 0+10E<br>HS88L0+405 0+20E<br>HS88L0+405 0+30E<br>HS88L0+405 0+40E<br>HS88L0+405 0+10W | .1<br>.2<br>.1<br>.1<br>.1  | 3.49<br>1.33<br>2.91<br>1.51<br>3.85 | 39<br>25<br>28<br>9<br>38   | ND<br>ND<br>ND<br>ND       | 57<br>20<br>56<br>51<br>59  | S<br>3<br>ND<br>ND<br>ND  | .07<br>.04<br>.06<br>.07<br>.06 | 3.1<br>1.2<br>.9<br>.1<br>1.1   | 19<br>9<br>7<br>4<br>6   | 25<br>19<br>40<br>12<br>45 | 66<br>46<br>27<br>17<br>31  | 9.45<br>5.73<br>4.38<br>1.71<br>4.79  | .01<br>.01<br>.02<br>.01        | .49<br>.13<br>.40<br>.10<br>.35 | 752<br>241<br>153<br>124<br>471  | 10<br>6<br>5<br>2<br>7  | .02<br>.02<br>.01<br>.01<br>.01 | 7<br>5<br>21<br>5<br>20   | .11<br>.16<br>.03<br>.03<br>.05 | 77<br>83<br>72<br>49<br>83    | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 7<br>10<br>7<br>6<br>9    | 17<br>9<br>11<br>20<br>11 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 96<br>80<br>88<br>50<br>125    |  |
| HSBBL0+405 0+20W<br>HSBBL0+405 0+30W<br>HSBBL0+405 0+40W<br>HSBBL0+50N 0+00E<br>HSBBL0+50N 0+10E | 1.3<br>.1<br>.1<br>.1       | 5.34<br>3.10<br>2.03<br>2.20<br>4.33 | 57<br>44<br>21<br>23<br>33  | ND<br>ND<br>ND<br>ND       | 51<br>134<br>72<br>27<br>39 | ND<br>ND<br>ND<br>ND      | .04<br>.15<br>.12<br>.09<br>.05 | 1.2<br>1.2<br>1.2<br>.9<br>2.1  | 7<br>13<br>11<br>11<br>9 | 40<br>36<br>22<br>58<br>30 | 39<br>59<br>27<br>37<br>37  | 4.87<br>4.12<br>4.10<br>4.28<br>4.84  | .03<br>.04<br>.03<br>.02<br>.01 | .28<br>.63<br>.21<br>.42<br>.28 | 345<br>1690<br>749<br>546<br>524 | 10<br>10<br>7<br>6<br>7 | .02<br>.02<br>.02<br>.01<br>.01 | 20<br>27<br>8<br>11<br>17 | .08<br>.08<br>.10<br>.12<br>.17 | 124<br>191<br>67<br>63<br>90  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 12<br>6<br>9<br>7<br>9    | 5<br>18<br>17<br>10<br>7  | NÐ<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 218<br>278<br>95<br>105<br>157 |  |
| HS88L0+50N 0+20E<br>HS88L0+50N 0+30E<br>HS88L0+50N 0+40E<br>HS88L0+50N 0+50E<br>HS88L0+50N 0+10W | .1<br>2.4<br>.1<br>.4       | 5.10<br>7.43<br>7.76<br>1.25<br>1.43 | 40<br>58<br>65<br>ND<br>25  | ND<br>ND<br>ND<br>ND       | 55<br>48<br>46<br>85<br>47  | 3<br>3<br>ND<br>ND        | .12<br>.06<br>.02<br>.42<br>.05 | 1.7<br>1.2<br>1.2<br>.4<br>1.1  | 8<br>4<br>7<br>7<br>11   | 26<br>28<br>21<br>18<br>15 | 42<br>36<br>33<br>27<br>63  | 6.39<br>5.94<br>5.36<br>1.87<br>3.80  | .01<br>.01<br>.01<br>.06<br>.01 | .10<br>.10<br>.14<br>.28<br>.07 | 636<br>335<br>385<br>366<br>193  | 9<br>14<br>12<br>1<br>6 | .01<br>.02<br>.03<br>.01<br>.01 | 5<br>8<br>11<br>9<br>4    | .11<br>.09<br>.07<br>.10<br>.04 | 105<br>130<br>145<br>33<br>63 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 12<br>13<br>15<br>4<br>13 | 18<br>6<br>2<br>36<br>8   | nd<br>Nd<br>Nd<br>Nd<br>Nd | ND<br>ND<br>ND<br>ND       | 114<br>149<br>271<br>89<br>70  |  |
| HSBBL0+50N 0+20W<br>HSBBL0+50N 0+30W<br>HSBBL0+50N 0+40W<br>HSBBL0+50N 0+50W<br>HSBBL0+50S 0+10E | .2<br>.1<br>.1<br>.1        | 4.70<br>3.13<br>1.95<br>4.54<br>6.25 | 46<br>37<br>30<br>44<br>60  | ND<br>ND<br>ND<br>ND<br>ND | 44<br>36<br>49<br>166<br>42 | 6<br>ND<br>ND<br>ND<br>4  | .04<br>.20<br>.22<br>.31<br>.05 | 2.1<br>1.5<br>1.2<br>2.1<br>2.2 | 8<br>11<br>13<br>8<br>6  | 43<br>51<br>20<br>26<br>47 | 51<br>55<br>130<br>35<br>35 | 8.27<br>4.84<br>4.16<br>4.71<br>6.80  | .01<br>.03<br>.03<br>.07<br>.01 | .10<br>.30<br>.57<br>.42<br>.29 | 227<br>852<br>623<br>1473<br>317 | 12<br>7<br>6<br>7<br>11 | .02<br>.01<br>.01<br>.02<br>.02 | 7<br>21<br>12<br>21<br>16 | .09<br>.09<br>.10<br>.11<br>.12 | 118<br>98<br>55<br>98<br>129  | nd<br>Nd<br>Nd<br>Nd<br>Nd | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 16<br>8<br>5<br>11<br>14  | 8<br>16<br>27<br>23<br>8  | NÐ<br>ND<br>ND<br>ND<br>NÐ | ND<br>ND<br>ND<br>ND       | 131<br>109<br>99<br>300<br>139 |  |
| HS88L0+505 0+20E<br>HS8BL0+505 0+30E<br>HS8BL0+505 0+40E<br>HS8BL0+505 0+50E<br>HS88L0+505 0+00W | .2<br>.1<br>.1<br>.1        | 6.46<br>2.09<br>3.53<br>2.80<br>.83  | 56<br>23<br>34<br>35<br>ND  | ND<br>ND<br>ND<br>ND<br>ND | 36<br>44<br>86<br>61<br>46  | 3<br>ND<br>ND<br>9<br>ND  | .04<br>.05<br>.11<br>.18<br>.15 | 2.2<br>1.6<br>2.1<br>2.9<br>.1  | 6<br>6<br>5<br>24<br>4   | 33<br>19<br>53<br>49<br>11 | 50<br>34<br>27<br>104<br>28 | 6.99<br>4.78<br>4.30<br>10.57<br>1.13 | .01<br>.01<br>.01<br>.01<br>.03 | .29<br>.26<br>.58<br>.49<br>.12 | 318<br>149<br>189<br>793<br>94   | 11<br>4<br>5<br>16<br>1 | .02<br>.01<br>.01<br>.02<br>.01 | 12<br>6<br>35<br>10<br>3  | .10<br>.05<br>.04<br>.09<br>.06 | 136<br>55<br>69<br>98<br>40   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 14<br>7<br>7<br>9<br>4    | 6<br>13<br>13<br>27<br>18 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 198<br>66<br>146<br>83<br>62   |  |
| HS88L0+505 0+10W<br>HS88L0+505 0+20W<br>HSL800 0+00W                                             | .1<br>.1<br>.6              | 5.36<br>3.96<br>2.41                 | 53<br>39<br>33              | ND<br>ND<br>ND             | 67<br>51<br>16              | ND<br>ND<br>3             | .05<br>.04<br>.03               | 1.2<br>1.2<br>1.2               | 11<br>5<br>4             | 39<br>23<br>17             | 43<br>30<br>42              | 5.03<br>4.06<br>5.60                  | .01<br>.01<br>.03               | .39<br>.13<br>.13               | 517<br>269<br>146                | 10<br>10<br>9           | .02<br>.02<br>.02               | 25<br>9<br>4              | .08<br>.07<br>.06               | 112<br>94<br>82               | ND<br>ND<br>ND             | ND<br>ND<br>ND             | ND<br>ND<br>ND       | 12<br>12<br>12            | 6<br>7<br>4               | ND<br>ND<br>ND             | ND<br>ND<br>ND             | 228<br>129<br>54               |  |
| DETECTION LINIT                                                                                  | .1                          | .01                                  | 3                           | 3                          | t                           | 3                         | .01                             | .1                              | i                        | 1                          | 1                           | .01                                   | .01                             | .01                             | 1                                | 1                       | .01                             | 1                         | .01                             | 2                             | 3                          | 5                          | 2                    | 2                         | 1                         | 5                          | 3                          | 1                              |  |

) -

)

)

3

)

)

)

)

)

)

3



NATAS TANK

1 4

.

F 

and the second 

## VANGEOCHEM LAB LIMITED MAIN OFFICE AND LABORATORY 1989 Triumph Street Vancouver, B.C. V5L 1K5 (604) 251-5656 FAX:254-5717 VANCOUVER, B.C. V5L 1L6 (604) 251-5656

---

-----

(604) 251-5656

| REPORT  | NUMBER: | 881018 GA | JOB | NUMBER: | 881015 | PAMICON | DEVELOPMENT | LTD. | PAGE | OF | 1 |
|---------|---------|-----------|-----|---------|--------|---------|-------------|------|------|----|---|
| SAMPLE  | #       |           | Au  |         |        |         |             |      |      |    |   |
|         |         |           | ppb |         |        |         |             |      |      |    |   |
| HSL290  | 3+25¥   |           | 5   |         |        |         |             |      |      |    |   |
| HSL290  | 3+50W   |           | 10  |         |        |         |             |      |      |    |   |
| HSL290  | 3+75W   |           | nd  |         |        |         |             |      |      |    |   |
| HSL290  | 4+00W   |           | 10  |         |        |         |             |      |      |    |   |
| HSL290  | 4+25₩   |           | 10  |         |        |         |             |      |      |    |   |
|         |         |           |     |         |        |         |             |      |      |    |   |
| HSL290  | 4+50W   |           | 5   |         |        |         |             |      |      |    |   |
| HSL290  | 4+75    |           | 20  |         |        |         |             |      |      |    |   |
| HSL290  | 5+00¥   |           | 15  |         |        |         |             |      |      |    |   |
| HSL380  |         |           | nd  |         |        |         |             |      |      |    |   |
| HSL380  | 0+25W   |           | 25  |         |        |         |             |      |      |    |   |
| HSL380  | 0+50W   |           | 10  |         |        |         |             | •    |      |    |   |
| H5L380  | 0+75W   |           | 20  |         |        |         |             |      |      |    |   |
| HSL380  | 1+00₩   |           | 15  |         |        |         |             |      |      |    |   |
| HSL380  | 1+25W   |           | nd  |         |        |         |             |      |      |    |   |
| HSL380  | 1+50₩   |           | 5   |         |        |         |             |      |      |    |   |
| 101.000 | 4.754   |           |     |         |        |         |             |      |      |    |   |
| HSL380  | 1+75₩   |           | 25  |         |        |         |             |      |      |    |   |
| HSL380  | 2+00₩   |           | 15  |         |        |         |             |      |      |    |   |
| HSL380  | 2+25W   |           | 10  |         |        |         |             |      |      |    |   |
|         | 2+50₩   |           | 10  |         |        |         |             |      |      |    |   |
| HSL380  | 2+75W   |           | 5   |         |        |         |             |      |      |    |   |
| HSL380  | 3+00₩   |           | 5   |         |        |         |             |      |      |    |   |
| HSL380  | 3+25₩   |           | 15  |         |        |         |             |      |      |    |   |
| HSL380  | 3+50W   |           | 10  |         |        |         |             |      |      |    |   |
| HSL380  |         |           | 10  |         |        |         |             |      |      |    |   |
|         |         |           |     |         |        |         |             |      |      |    |   |

)

4

)

•

)

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH:(604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH:(604)251-7282 FAX:(604)254-5717

11

#### ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN,MN,FE,CA,P,CR,MG,BA,PD,AL,NA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

| COMPANY: PA<br>ATTENTION:<br>PROJECT: H                                      | S TC                           | DORU                                 | K                          | PMEN                       | TS                          |                          |                                  | REPOF<br>JOB#:<br>INVOJ         | 881                    | 018                        |                            |                                      |                                 |                                 | DATE                             | E CO                   | CEIV<br>MPLE<br>NT T            | TED:                      | 88/0                            |                              | 7                          |                      |                      |                          | ANAL                    | YST_                       | V                    | by_                          |   |
|------------------------------------------------------------------------------|--------------------------------|--------------------------------------|----------------------------|----------------------------|-----------------------------|--------------------------|----------------------------------|---------------------------------|------------------------|----------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|----------------------------------|------------------------|---------------------------------|---------------------------|---------------------------------|------------------------------|----------------------------|----------------------|----------------------|--------------------------|-------------------------|----------------------------|----------------------|------------------------------|---|
|                                                                              |                                |                                      |                            |                            |                             |                          |                                  |                                 |                        |                            |                            |                                      |                                 |                                 |                                  |                        |                                 |                           |                                 |                              |                            | PA                   | 6E 1 OF              | 1                        |                         |                            |                      |                              |   |
| SAMPLE NAME                                                                  | AG<br>PPN                      | AL<br>Z                              | AS<br>PPN                  | AU<br>PPH                  | BA<br>PPH                   | BI<br>PPM                | CA<br>X                          | CD<br>PPM                       | CO<br>PPH              | CR<br>PPM                  | CU<br>PPH                  | FE                                   | K<br>X                          | NG<br>X                         | MN<br>PPH                        | NO<br>PPN              | NA<br>Z                         | NI<br>PPM                 | P<br>X                          | PB<br>PPM                    | PD<br>PPM                  | PT<br>PPN            | SB<br>PPM            | SN<br>PPN                | SR<br>PPM               | U<br>PPM                   | W<br>PPN             | ZN<br>PPM                    |   |
| HSL290 3+25W<br>HSL290 3+50W<br>HSL290 3+75W<br>HSL290 4+00W<br>HSL290 4+25W | .1<br>.1<br>.1<br>.1           | 1.25<br>2.89<br>1.22<br>1.54<br>1.49 | 5<br>6<br>ND<br>13<br>11   | nd<br>Nd<br>Nd<br>Nd<br>Nd | 87<br>92<br>232<br>64<br>57 | ND<br>ND<br>ND<br>ND     | .42<br>.15<br>.19<br>.02<br>.03  | .7<br>.7<br>.1<br>1.2<br>.8     | 4<br>4<br>7<br>5<br>7  | 14<br>15<br>9<br>41<br>36  | 18<br>31<br>10<br>20<br>22 | 3.46<br>.94<br>1.17<br>4.81<br>4.33  | .07<br>.04<br>.05<br>.01<br>.01 | .12<br>.18<br>.10<br>.18<br>.20 | 788<br>236<br>677<br>94<br>103   | 12<br>3<br>1<br>4<br>4 | .02<br>.07<br>.01<br>.01<br>.01 | 13<br>19<br>5<br>12<br>14 | .03<br>.13<br>.04<br>.04<br>.02 | 40<br>51<br>28<br>37<br>33   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 6<br>4<br>3<br>5<br>6    | 37<br>8<br>15<br>5<br>9 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 97<br>132<br>78<br>66<br>45  | • |
| HSL290 4+50W<br>HSL290 4+75W<br>HSL290 5+00W<br>HSL380 0+00W<br>HSL380 0+25W | 1.1<br>.1<br>1.9<br>6.3<br>1.1 | 2.49<br>2.37<br>4.50<br>9.25<br>2.10 | 22<br>16<br>7<br>ND<br>16  | ND<br>ND<br>ND<br>ND       | 86<br>207<br>58<br>19<br>53 | ND<br>ND<br>ND<br>ND     | .44<br>1.23<br>.02<br>.01<br>.03 | 1.2<br>1.5<br>1.5<br>1.1<br>1.1 | 5<br>11<br>4<br>2<br>6 | 22<br>19<br>20<br>17<br>16 | 26<br>49<br>21<br>22<br>19 | 4.87<br>2.72<br>6.55<br>5.08<br>5.00 | .08<br>.23<br>.14<br>.16<br>.14 | .17<br>.51<br>.05<br>.03<br>.20 | 182<br>2263<br>114<br>161<br>158 | 8<br>3<br>7<br>6<br>16 | .03<br>.03<br>.03<br>.03<br>.02 | 12<br>22<br>5<br>1<br>7   | .04<br>.11<br>.04<br>.05<br>.03 | 63<br>44<br>95<br>135<br>58  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 8<br>6<br>9<br>7<br>8    | 41<br>87<br>4<br>1<br>5 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 138<br>182<br>60<br>51<br>51 |   |
| HSL380 0+50H<br>HSL380 0+75W<br>HSL380 1+00W<br>HSL380 1+25W<br>HSL380 1+50W | .1<br>.2<br>.5<br>1.1<br>.1    | 4.44<br>4.67<br>5.17<br>6.92<br>3.21 | 9<br>12<br>12<br>ND<br>12  | ND<br>ND<br>ND<br>ND       | 54<br>74<br>42<br>23<br>186 | 3<br>ND<br>ND<br>ND      | .02<br>.02<br>.03<br>.01<br>.65  | 1.7<br>1.2<br>.8<br>.B<br>1.2   | 4<br>5<br>3<br>10      | 43<br>41<br>31<br>22<br>18 | 33<br>39<br>29<br>26<br>45 | 7.17<br>5.63<br>3.86<br>4.69<br>3.75 | .12<br>.13<br>.13<br>.12<br>.22 | .24<br>.29<br>.32<br>.11<br>.36 | 161<br>162<br>269<br>149<br>2993 | 6<br>6<br>4<br>5<br>6  | .02<br>.02<br>.02<br>.02<br>.02 | 14<br>17<br>20<br>8<br>22 | .06<br>.05<br>.07<br>.06<br>.09 | 82<br>81<br>75<br>98<br>60   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 7<br>7<br>5<br>7<br>7    | 4<br>5<br>2<br>45       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 76<br>82<br>85<br>64<br>173  |   |
| HSL380 1+75W<br>HSL380 2+00W<br>HSL380 2+25W<br>HSL380 2+50W<br>HSL380 2+75W | 1.3<br>1.3<br>3.1<br>.1<br>3.7 | 2.17<br>4.18<br>3.82<br>2.53<br>8.65 | 10<br>13<br>11<br>12<br>ND | ND<br>ND<br>ND<br>ND       | 37<br>35<br>28<br>51<br>24  | ND<br>4<br>5<br>ND<br>ND | .07<br>.04<br>.03<br>.10<br>.01  | 1.5<br>1.7<br>2.1<br>1.1<br>1.7 | 7<br>5<br>5<br>9<br>3  | 14<br>29<br>16<br>22<br>16 | 40<br>31<br>32<br>28<br>24 | 5.47<br>7.21<br>9.07<br>4.83<br>6.40 | .11<br>.12<br>.11<br>.12<br>.10 | .06<br>.07<br>.05<br>.37<br>.04 | 193<br>157<br>151<br>4242<br>228 | 9<br>9<br>9<br>4<br>6  | .02<br>.02<br>.03<br>.02<br>.03 | 4<br>5<br>3<br>13<br>2    | .04<br>.03<br>.04<br>.16<br>.05 | 64<br>91<br>109<br>54<br>125 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 13<br>12<br>15<br>7<br>9 | 13<br>9<br>B<br>10<br>1 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 65<br>48<br>55<br>125<br>60  |   |
| HSL380 3+00W<br>HSL380 3+25W<br>HSL380 3+50W<br>HSL380 3+75W                 | 1.1<br>1.9<br>.1<br>.5         | 4.74<br>5.35<br>2.11<br>2.14         | 13<br>8<br>4<br>6          | ND<br>ND<br>ND<br>ND       | 31<br>36<br>37<br>37        | ND<br>ND<br>ND<br>ND     | .04<br>.03<br>.18<br>.18         | 1.2<br>1.3<br>.6<br>1.1         | 4<br>5<br>10<br>12     | 47<br>15<br>6<br>9         | 22<br>82<br>57<br>76       | 5.25<br>6.05<br>3.50<br>4.05         | .09<br>.09<br>.10<br>.10        | .26<br>.18<br>.48<br>.51        | 150<br>263<br>359<br>643         | 4<br>5<br>2<br>3       | .02<br>.03<br>.01<br>.02        | 24<br>8<br>6<br>9         | .04<br>.07<br>.04<br>.07        | 78<br>98<br>45<br>70         | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | 7<br>9<br>6<br>7         | 6<br>8<br>40<br>29      | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND | 67<br>96<br>58<br>80         |   |
| DETECTION LIMIT                                                              | .1                             | .01                                  | 3                          | 3                          | ı                           | 3                        | .01                              | .1                              | 1                      | - 1                        | 1                          | .01                                  | .01                             | .01                             | 1.1                              | 1                      | .01                             | 1                         | .01                             | 2                            | 3                          | 5                    | 2                    | 2                        | 1                       | 5                          | 3                    | 1                            |   |

|                                       |                                       | רשט בזוונובט                                                                                         | רשה יהו                                          | 1 660                                                                         |          |        |
|---------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|----------|--------|
|                                       | /GC                                   | VANGEOC<br>MAIN DFFICE AND LABOR<br>1988 Triumph Stre<br>Vancouver, B.C. V5L<br>(604)251-5656 FAI:25 | CHEM LAR<br>ATDRY<br>et<br>1K5 13 VA<br>4-5717 8 | BRANCH OFFICE<br>1630 PANDORA ST.<br>ANCOUVER, B.C. VSL 116<br>(604) 251-5656 |          |        |
| · · · · · · · · · · · · · · · · · · · | REPORT MUNBER: BB1012 GA              | JDB NUMBER: 881012                                                                                   | PARICON DEVELOPHE                                | ·                                                                             | PAGE J ( | JF 1   |
| •                                     | SAMPLE .                              | Au<br>Dob                                                                                            |                                                  |                                                                               |          |        |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          |        |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          |        |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          |        |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          |        |
|                                       | · · · · · · · · · · · · · · · · · · · |                                                                                                      |                                                  |                                                                               |          |        |
| -                                     | 33415 >1                              | 0000                                                                                                 |                                                  |                                                                               |          |        |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          |        |
|                                       | •                                     | • • • • • • • • • • • • • • • • • • •                                                                |                                                  |                                                                               | •        |        |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          |        |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          |        |
| •                                     |                                       |                                                                                                      |                                                  |                                                                               |          | Yuunaa |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          |        |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          |        |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          |        |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          | •      |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          |        |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          |        |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          | ·.     |
|                                       |                                       |                                                                                                      |                                                  |                                                                               |          | ·      |
|                                       | DETECTION LIMIT                       | 5                                                                                                    |                                                  |                                                                               |          |        |
|                                       | nd = none detected = no               | ot analysed is m insu                                                                                | fficient sample                                  |                                                                               |          |        |

| VGC                          | VANGEOC<br>MAIN DEFICE AND LABOR<br>1988 Triumph Striv<br>Vancouver, B.C. VSI<br>(604)251-5656 FAX:25 | RATORY     | BR<br>165<br>VANCO | ANCH OFFICE<br>IN PANDORA ST<br>UVER, B.C. V5L 1L6<br>(04) 251 (056 |      |      |   |
|------------------------------|-------------------------------------------------------------------------------------------------------|------------|--------------------|---------------------------------------------------------------------|------|------|---|
| <br>REPORT NUMBER: BB1012 AA | JOB NUMBER: 881012                                                                                    | PANICON DE | VELOPHENT L        | .TD.                                                                | PAGE | 1 OF | 1 |
|                              |                                                                                                       |            |                    |                                                                     |      |      |   |
| SAMPLE #                     | Au                                                                                                    |            |                    |                                                                     |      |      |   |
|                              | oz/st                                                                                                 |            |                    |                                                                     |      |      |   |
| 33415                        | . 490                                                                                                 |            |                    |                                                                     |      |      |   |
|                              |                                                                                                       |            |                    |                                                                     |      |      |   |

110, 020

CHARLED

DETECTION LIMIT 1 Troy oz/short ton = 34.28 pps

signed:

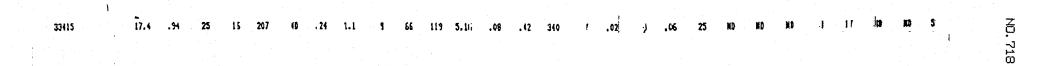
.005 1 ppa = 0.00011 parts per million 000

< = less than

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. VSL 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. VSL 1L6 PH: (604)251-7282 FAX: (604)254-5717 10/05/88

Ø9:16

VANGEOCHEM LAB LIMITED


P003

11

#### ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIRESTED WITH 5 ML DF 3:113 HCL 'D HMO3 TO H20 AT 95 DEG. C ('DR 90 N(MUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PIRTIAL FOR SM, NM, FE, CA, F, CR, NG, BA, PD, HL, NA, K, W, PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIEN' SAMPLE, ND= NOT DETECTED, -= NOT ANULYZED

| COMPANY:<br>ATTENTION<br>PROJECT: | Na . | MR. |    | ODOR        | UK  |     |     |   | REPOR<br>JOB#:<br>INVOI | 881        | 012:        |     |    |   |             | DAT |      | MPLE | ED: 1<br>TED:<br>0: |    |                     | 2   |     |            |     | ANAL         | YST_ | 17  | /2 fr          |  |
|-----------------------------------|------|-----|----|-------------|-----|-----|-----|---|-------------------------|------------|-------------|-----|----|---|-------------|-----|------|------|---------------------|----|---------------------|-----|-----|------------|-----|--------------|------|-----|----------------|--|
| sanple kuhe                       |      | AG  | AL | AS          | ÂŬ  | M   | BL  |   | CD                      | <b>C</b> 3 | CR          | CU  | FE | x | <b>1</b> 16 | HAN | H-1  | XA   | 11                  | P  | PB                  | 20  | PT  | £ 10<br>58 | 536 | 58           | U    | ¥   | //<br>[/<br>[] |  |
|                                   |      | FPN | 1  | <b>P</b> PN | PFX | PPN | PPR | : | FPN                     | P1%        | . <b>PP</b> | PPN | X  | 1 | 1           | PPH | P.14 | I    | ррн                 | X. | <b>P</b> P <b>R</b> | PPI | pph | PPN        | 191 | <b>P?</b> 11 | PP#  | PPN | 171            |  |



| 1 -             |    |     |   |   |   |   |     |    |     |   |   |     |     |     |   |      | 1 |     |   |   |   |   |    |   | 1  |   |   |  |
|-----------------|----|-----|---|---|---|---|-----|----|-----|---|---|-----|-----|-----|---|------|---|-----|---|---|---|---|----|---|----|---|---|--|
| DETECTION LINIT | .1 | .01 | 3 | 3 | 1 | 3 | . H | .1 | - 1 | 1 | 1 | .0: | .01 | .01 | 1 | 1 .0 |   | .91 | 2 | 3 | 5 | 2 | 2. | 1 | 15 | 3 | • |  |

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED



SAMPLE #

H88/290

H88/330

H88/330

H88/330

H88/330

H88/330

H88/330

H88/330

HB8/330

H88/330

H68/330

H88/330

H88/330

H88/330

H88/330

H88/330

H88/330

H88/330

H88/330

HS 930

HS 930

HS 930

HS 930

HS 930

HS-87 08/08/88

HS-88 08/08/88 HS-89 08/08/88 H88/290

**REPORT NUMBER: 880982 GA** 

0+00W

0+25₩

0+50W

0+75

1+00W

1+25W

1+501

1+75₩

2+00W

2+25

2+50₩

2+75₩

3+00₩

0+00₩

0+25₩

0+50W

0+75#

1+50W A

1+50W B

1+75₩

2+00W

2+25#

2+50W

2+75W

3+00W

3+25W

3+50W

3+75₩

4+00₩

4+25W

4+50W

0+00NE

0+10NE

0+20NE

0+30NE

0+50NE

## VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578

**BRANCH OFFICE** 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

| JOB NUMBER: 880982                         | 31 soils on Hec-Stu<br>PANICON DEVELOPMENT LTD. PAGE 3 OF 5 |
|--------------------------------------------|-------------------------------------------------------------|
| Au<br>ppb<br>685<br>20<br>30<br>130<br>585 |                                                             |
| 95<br>1020<br>40<br>45<br>50               |                                                             |
| 30<br>25<br>35<br>25<br>5                  |                                                             |
| 40<br>30<br>35<br>75<br>45<br>Hec          | - Stu                                                       |
| 30<br>60                                   |                                                             |

DETECTION LIMIT nd = none detected

-- = not analysed

20

30

25

20

30

25

15

10

25

35

15

10

25

15

45

20

5

5

Hect - Sky

is = insufficient sample

| -                            |        | 1                                                                                                  |          |                              |                                      |                            |                            |                              |                           |                                 |                                |                          |                            |                            |                                      |                                 |                                   |                                   |                         |                                 |                            |                                 |                             |                            |                            |                            |                        |                            |                            |                            |                                 |
|------------------------------|--------|----------------------------------------------------------------------------------------------------|----------|------------------------------|--------------------------------------|----------------------------|----------------------------|------------------------------|---------------------------|---------------------------------|--------------------------------|--------------------------|----------------------------|----------------------------|--------------------------------------|---------------------------------|-----------------------------------|-----------------------------------|-------------------------|---------------------------------|----------------------------|---------------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|------------------------|----------------------------|----------------------------|----------------------------|---------------------------------|
| )                            |        | CLIENT: PANICO                                                                                     | IECT SKI | REPOR                        | RT: 8809                             | 182 PA                     |                            |                              |                           |                                 |                                |                          |                            |                            |                                      |                                 |                                   |                                   |                         |                                 | PAGE 3                     | DF 5                            |                             |                            |                            |                            |                        |                            |                            |                            |                                 |
| )                            |        | SAMPLE NAME                                                                                        |          | AG<br>PPN                    | AL<br>Z                              | AS<br>PPM                  | AU<br>PPh                  | BA<br>PPM                    | BI<br>PPM                 | CA<br>Z                         | CD<br>PP <b>N</b>              | CO<br>PPN                | CR<br>PPM                  | CU<br>PPN                  | FE<br>X                              | K<br>X                          | MG<br>X                           | NN<br>PPH                         | на<br>Рри               | NA<br>I                         | NI<br>PPN                  | P<br>X                          | PB<br>PPN                   | PD<br>PPM                  | PT<br>PPN                  | SB<br>PPN                  | SN<br>PPM              | SR<br>PPM                  | U<br>PPN                   | N<br>PPN                   | ZN<br>PPN                       |
| jeð-                         | 51-7   | SHS-87 08/08/88                                                                                    | 2        | 2.1                          | 3.30<br>2.24                         | 29<br>35                   | ND<br>ND                   | 51<br>88                     | ND<br>7                   | .09                             | 1.3                            | 8<br>21                  | 17<br>15                   | 70<br>145                  | 4.59<br>8.67                         | .05<br>.24                      | .33                               | 283<br>1500                       | 5<br>11                 | .02<br>.03                      | 10<br>10                   | .07<br>.07                      | 118<br>54                   | ND<br>ND                   | ND<br>ND                   | ND<br>ND                   | 4                      | 15<br>23                   | ND<br>ND                   | ND<br>ND                   | 127<br>126                      |
| )                            | •      | HS-89 08/08/88<br>HB8/290 0+00W<br>H88/290 0+25W<br>H88/290 0+50W<br>H88/290 0+75W                 |          | .6<br>.1<br>.1<br>1.6<br>2.5 | 5.18<br>2.12<br>1.48<br>4.77<br>2.99 | ND<br>12<br>4<br>19<br>43  | ND<br>ND<br>ND<br>ND       | 38<br>43<br>31<br>76<br>83   | ND<br>ND<br>ND<br>6       | .71<br>.03<br>.02<br>.02<br>.11 | 1.3<br>.2<br>.1<br>1.1<br>1.5  | 12<br>4<br>2<br>5<br>5   | 20<br>28<br>2<br>24<br>12  | 22<br>16<br>9<br>24<br>42  | 2.49<br>2.47<br>.92<br>5.30<br>6.30  | .15<br>.04<br>.04<br>.05<br>.06 | .15<br>.24<br>.12<br>.22<br>.35   | 351<br>67<br>56<br>178<br>313     | ND<br>4<br>ND<br>5<br>6 | .03<br>.01<br>.01<br>.03<br>.03 | 31<br>11<br>2<br>14<br>7   | .09<br>.01<br>.01<br>.03<br>.05 | 66<br>30<br>18<br>71<br>96  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>6<br>5  | 25<br>6<br>7<br>39         | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 336<br>42<br>36<br>128<br>125   |
| • )                          |        | H88/290 1+00W<br>H88/290 1+25W<br>H88/290 1+50W<br>H88/290 1+75W<br>H88/290 2+00W                  |          | 2.1<br>.1<br>.4<br>.1        | 5.63<br>2.98<br>4.12<br>3.84<br>5.38 | 11<br>14<br>12<br>8<br>13  | ND<br>ND<br>ND<br>ND<br>ND | 86<br>49<br>62<br>66<br>57   | ND<br>ND<br>ND<br>ND      | .02<br>.02<br>.05<br>.03<br>.04 | 1.1<br>.8<br>.6<br>.5<br>.8    | 7<br>4<br>7<br>4<br>5    | 36<br>38<br>29<br>36<br>48 | 29<br>21<br>21<br>17<br>26 | 5.24<br>4.57<br>4.10<br>3.91<br>4.76 | .05<br>.04<br>.05<br>.04<br>.05 | .24<br>.23<br>.24<br>.24<br>.32   | 242<br>96<br>185<br>97<br>156     | 5<br>4<br>4<br>2<br>3   | .03<br>.02<br>.02<br>.02<br>.02 | 19<br>12<br>21<br>13<br>25 | .05<br>.03<br>.04<br>.02<br>.03 | 61<br>49<br>50<br>39<br>51  | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 6<br>4<br>5<br>3       | 5<br>6<br>12<br>6          | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 150<br>58<br>144<br>67<br>118   |
| )                            | ituz   | H88/290 2+25W<br>H88/290 2+50W<br>H88/290 2+50W<br>H88/290 3+00W<br>H88/330 0+00W                  | 1        | .1                           | 2.27<br>3.81<br>1.64<br>4.27<br>7.08 | 9<br>6<br>ND<br>19<br>5    | ND<br>ND<br>ND<br>ND<br>ND | 226<br>202<br>64<br>78<br>94 | ND<br>ND<br>ND<br>4<br>ND | .12<br>.17<br>.05<br>.04<br>.14 | 1.1<br>1.1<br>1.6<br>1.1       | 9<br>11<br>3<br>5<br>6   | 36<br>27<br>8<br>54<br>10  | 11<br>28<br>8<br>24<br>14  | 4.99<br>3.98<br>1.27<br>6.95<br>5.53 | .05<br>.07<br>.03<br>.06<br>.07 | . ,22<br>.25<br>.13<br>.24<br>.39 | 811<br>1015<br>116<br>126<br>288  | 3<br>3<br>2<br>6<br>3   | .02<br>.02<br>.01<br>.03<br>.02 | 9<br>18<br>2<br>15<br>6    | .05<br>.06<br>.02<br>.03<br>.09 | 43<br>47<br>21<br>53<br>54  | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 4<br>5<br>3<br>6<br>ND | 17<br>28<br>15<br>10<br>86 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 130<br>190<br>39<br>80<br>66    |
| ې<br>مو                      |        | H88/330 0+25W<br>H88/330 0+56W<br>H88/330 0+56W<br>H88/330 1+56W<br>H88/330 1+56W                  |          | .1                           | 2.46<br>5.48<br>2.21<br>2.12<br>.83  | 20<br>8<br>16<br>26<br>5   | ND<br>ND<br>ND<br>ND<br>ND | 73<br>79<br>80<br>36<br>25   | ND<br>3<br>ND<br>4<br>ND  | .07<br>.03<br>.11<br>.02<br>.01 | .8<br>1.1<br>.8<br>1.3<br>.1   | 6<br>12<br>7<br>7<br>4   | 50<br>27<br>17<br>48<br>12 | 23<br>24<br>21<br>28<br>12 | 4.71<br>4.82<br>5.18<br>6.25<br>1.28 | .05<br>.05<br>.05<br>.05<br>.02 | .46<br>.31<br>.16<br>.20          | 157<br>1087<br>223<br>82<br>44    | 3<br>7<br>14<br>5<br>2  | .02<br>.03<br>.03<br>.02<br>.01 | 24<br>18<br>9<br>18<br>6   | .04<br>.13<br>.06<br>.03<br>.01 | 40<br>54<br>57<br>45<br>20  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 5<br>5<br>10<br>8<br>5 | 11<br>5<br>36<br>4<br>3    | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 89<br>158<br>91<br>50<br>20     |
| )                            |        | H88/330 1+75W<br>H88/330 2+00W<br>H98/330 2+25W<br>H88/330 2+50W<br>H88/330 2+75W                  | 2        | 2.2                          | 1.88<br>6.14<br>5.30<br>5.21<br>2.52 | 23<br>7<br>9<br>11<br>15   | ND<br>ND<br>ND<br>ND<br>ND | 51<br>40<br>31<br>41<br>76   | 5<br>ND<br>ND<br>ND<br>ND | .05<br>.02<br>.04<br>.05<br>.04 | 1.3<br>1.1<br>.8<br>.8<br>1.6  | 7<br>7<br>8<br>7<br>8    | 24<br>26<br>13<br>32<br>36 | 26<br>27<br>26<br>37<br>30 | 6.35<br>4.48<br>4.23<br>4.60<br>5.16 | .05<br>.05<br>.06<br>.06<br>.04 | .16<br>.25<br>.18<br>.27<br>.28   | 267<br>214<br>289<br>233<br>201   | 8<br>5<br>5<br>4<br>4   | .03<br>.03<br>.03<br>.03<br>.03 | 14<br>22<br>12<br>23<br>16 | .04<br>.04<br>.04<br>.04<br>.03 | 58<br>60<br>60<br>56<br>48  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 11<br>6<br>7<br>6<br>7 | 9<br>3<br>4<br>9           | ND<br>ND<br>ND<br>ND       | nd<br>Nd<br>Nd<br>Nd       | 112<br>168<br>150<br>140<br>81  |
| )                            |        | H88/330 3+00W<br>H88/330 3+25W<br>H88/330 3+50W<br>H88/330 3+75W<br>H88/330 3+75W<br>H88/330 4+00W |          | .1<br>.1<br>.6<br>.4         | 3.65<br>1.03<br>1.92<br>5.94<br>1.76 | 16<br>8<br>26<br>11<br>22  | ND<br>ND<br>ND<br>ND<br>ND | 50<br>62<br>52<br>37<br>52   | ND<br>ND<br>ND<br>ND<br>4 | .07<br>.40<br>.06<br>.03<br>.09 | 1.5<br>.2<br>.6<br>.8<br>1.1   | 6<br>7<br>8<br>6<br>8    | 38<br>13<br>56<br>37<br>27 | 28<br>21<br>23<br>30<br>32 | 5.78<br>2.04<br>3.35<br>4.69<br>5.56 | .04<br>.09<br>.04<br>.05<br>.06 | .23<br>.25<br>.80<br>.21<br>.24   | 153<br>114<br>210<br>194<br>267   | 4<br>3<br>2<br>5<br>7   | .02<br>.01<br>.02<br>.02<br>.03 | 13<br>9<br>46<br>20<br>14  | .04<br>.07<br>.02<br>.03<br>.04 | 59<br>28<br>29<br>60<br>67  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 8<br>5<br>3<br>7<br>11 | 14<br>45<br>10<br>4<br>12  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 81<br>84<br>89<br>121<br>94     |
| ن<br>د د<br>د <del>د</del> م | Ster ( | H88/330 4+25W<br>H88/330 4+25W<br>H5 930 0+00NE<br>H5 930 0+10NE<br>H5 930 0+20NE                  | 1        | .1                           | 9.82<br>5.25<br>2.50<br>3.24<br>4.66 | ND<br>17<br>55<br>48<br>35 | ND<br>ND<br>ND<br>ND<br>ND | 47<br>46<br>86<br>44<br>29   | ND<br>6<br>3<br>ND<br>5   | .05<br>.03<br>.51<br>.23<br>.06 | .8<br>1.8<br>1.1<br>1.1<br>1.5 | 7<br>8<br>22<br>14<br>29 | 26<br>75<br>69<br>84<br>45 | 71<br>50<br>60<br>54<br>96 | 5.08<br>7.12<br>3.54<br>4.56<br>5.92 | .06<br>.05<br>.12<br>.08<br>.07 | .16<br>.62<br>1.46<br>.96<br>.64  | 365<br>219<br>1705<br>901<br>3568 | 2<br>3<br>6<br>3<br>8   | .03<br>.03<br>.03<br>.03<br>.03 | 20<br>40<br>79<br>63<br>32 | .07<br>.04<br>.17<br>.18<br>.14 | 64<br>48<br>50<br>139<br>85 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 3<br>5<br>3<br>4<br>6  | 3<br>64<br>28<br>9         | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 193<br>107<br>226<br>192<br>147 |
| رت .<br>م                    | (      | HS 930 0+30NE                                                                                      |          | 1.1                          | 4.49<br>3.65                         | 38<br>39                   | ND<br>ND                   | 46<br>14                     | ND<br>16                  | .13                             | 1.3<br>3.8                     | 17<br>5                  | 39<br>69                   | 58<br>54                   | 4.51<br>14.09                        | .07<br>.08                      | .49<br>.05                        | 1742<br>202                       | 6<br>11                 | .04                             | 33<br>4                    | .13<br>.05                      | 7B<br>108                   | ND<br>MD                   | ND<br>ND                   | ND<br>ND                   | 4<br>16                | 16<br>3                    | ND<br>ND                   | ND<br>ND                   | 236<br>70                       |
| -                            |        | DETECTION LINI                                                                                     | ſ        | .1                           | .01                                  | 3                          | 3                          | · 1                          | 3                         | .01                             | .1                             | 1                        | 1                          | t                          | .01                                  | .01                             | .01                               | 1                                 | l                       | .01                             | t                          | .01                             | 2                           | 3                          | 5                          | 2                          | 2                      | 1                          | 5                          | 3                          | 1                               |

. أحد رو

600

)



1

100 P. C. C.

# VANGEOCHEM LAB LIMITED MAIN DFFICE AND LABDRATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604) 251-5656 FAX: 254-5717

(604) 251-5656

JISOISUU

| <br>REPORT    | NUMBER: | 880869 GA | JOB | NUMBER; | 880869 | PAMICON DEVELOPMENT | LTD.   | PAGE 1 OF 1 | 1   |
|---------------|---------|-----------|-----|---------|--------|---------------------|--------|-------------|-----|
| SAMPLE        |         |           | Au  |         |        |                     |        |             |     |
|               |         |           | ppb |         |        |                     |        |             |     |
| <b>H88 ST</b> | - 1     |           | 65  |         |        |                     |        |             | ~   |
| H88 ST        | - 2     |           | 60  |         |        |                     | DRA    |             | U)  |
| H88 ST        | - 3     |           | 5   |         |        |                     |        |             | 111 |
| H88 ST        | - 4     |           | nd  |         | •      |                     | J      |             |     |
|               |         |           |     |         |        |                     | IN AUG | 1 6 1988    |     |
|               |         |           |     |         |        |                     |        |             |     |

DETECTION LIMIT 5 nd = none detected -- = not analysed is = insufficient sample

#### VANGEOCHEM LAB LIMITED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

#### ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, NN,FE,CA,P,CR,MG,BA,PD,AL,NA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NDT DETECTED, -= NOT ANALYZED

| COMPANY:<br>ATTENTIO<br>PROJECT:                     | N: I | MR.       |                              | VELO                 |                | Т                        |                    |                          | REPO<br>JOB#<br>INVO     | : 880                | 0869                 |                      |                              |                          |                              | DAT                          | e re<br>e co<br>y se | MPLE                     | TED:                 | 88/01<br>88/0            |                      | 2              |                |                      |                | ANAL                 | .vst_          | N              | lix                      |  |
|------------------------------------------------------|------|-----------|------------------------------|----------------------|----------------|--------------------------|--------------------|--------------------------|--------------------------|----------------------|----------------------|----------------------|------------------------------|--------------------------|------------------------------|------------------------------|----------------------|--------------------------|----------------------|--------------------------|----------------------|----------------|----------------|----------------------|----------------|----------------------|----------------|----------------|--------------------------|--|
|                                                      |      |           |                              |                      |                |                          |                    |                          |                          |                      |                      |                      |                              |                          |                              |                              |                      |                          |                      |                          |                      |                | PAG            | ie 1 of              | 1              |                      |                |                |                          |  |
| SAMPLE NAME                                          |      | AG<br>PPN | AL .<br>I                    | AS<br>PPN            | AU<br>Pph      | BA<br>Ppn                | BI<br>PPN          | CA<br>X                  | CD<br>PPH                | CO<br>PPN            | CR<br>PPH            | CU<br>PPM            | FE                           | K<br>I                   | NG<br>Z                      | NN<br>PPN                    | NO<br>PPN            | NA<br>Z                  | NI<br>PPN            | P<br>Z                   | PB<br>PPH            | PB<br>PPH      | PT<br>PPM      | SB<br>PPM            | SN<br>PPN      | SR<br>PPH            | U<br>PPN       | N<br>PPH       | ZN<br>PPN                |  |
| H88 ST - 1<br>H88 ST - 2<br>H88 ST - 3<br>H88 ST - 4 |      | .1        | 2.11<br>2.17<br>2.53<br>1.97 | 44<br>45<br>13<br>52 | ND<br>ND<br>ND | 150<br>245<br>146<br>147 | 3<br>ND<br>3<br>ND | .66<br>.54<br>.64<br>.59 | 3.2<br>2.9<br>4.0<br>3.0 | 15<br>16<br>17<br>15 | 27<br>28<br>41<br>27 | 60<br>57<br>44<br>54 | 3.91<br>4.13<br>3.79<br>3.77 | .13<br>.12<br>.13<br>.12 | 1.39<br>1.49<br>1.07<br>1.35 | 1595<br>1549<br>1943<br>1318 | 2<br>2<br>6<br>2     | .02<br>.02<br>.03<br>.02 | 20<br>20<br>40<br>19 | .13<br>.12<br>.07<br>.12 | 14<br>13<br>15<br>15 | ND<br>ND<br>ND | ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND | 44<br>42<br>31<br>44 | ND<br>ND<br>ND | ND<br>ND<br>ND | 331<br>351<br>525<br>332 |  |
| DETECTION LINI                                       | T    | .1        | .01                          | 3                    | 3              | 1                        | 3                  | .01                      | .1                       | 1                    | 1                    | 1                    | .01                          | .01                      | .01                          | 1                            | 1                    | .01                      | 1                    | .01                      | 2                    | 3              | 5              | 2                    | 2              | i                    | 5              | 3              | 1                        |  |



•

€



## VANGEOCHEM LAB LIMITED MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717

(604) 251-5656

|         | REPORT               | NUMBER: | 880779 GA | JOB       | NUMBER: 880779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PANICON DEVELOPMENT LTD.              | PAGE 1 OF 3                                                                                                                                                                                                                        |
|---------|----------------------|---------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                      |         |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | SAMPLE               |         |           | Âu        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               | 1       |           | ppb<br>25 | 0+205/0+205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               |         |           | 25<br>15  | 0+205/ 0+20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               |         |           | . 13      | 01205/ 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               |         |           | 35        | 0+205/0+100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               |         |           | 130       | 0+205/0+20W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                    |
|         |                      |         |           |           | 0100901000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               | 6       |           | 470       | 0 +105/0+205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               |         |           | 110       | 0 +105/0+10E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               | 8       |           | 240       | 0+105/0+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               |         |           | 575       | 0+105/0+10W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               |         |           | 30        | 0+105/0+20W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                    |
|         |                      |         |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               | 11      |           | 575       | 0100/ 01205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               | 12      |           | 115       | Otoo/ OtioE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               | 13      |           | 1110      | 0+00/0+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | Alexandra de la companya de la comp                                                                                                                     |
|         | H 88 -               | 14      |           | 20        | Otuo/Otiow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               | 15      |           | 25        | 0+00/0+2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                    |
|         |                      |         |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               |         |           | 145       | 04102/04205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               |         |           | 80        | OtION/ OTIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               |         |           | 135       | 0+10N/ 0+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               |         |           | 60        | 0+10~/0+10~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               | 20      |           | 25        | otion/ otzow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                                                                                                                                                                                                    |
|         | U 00                 |         |           |           | 0+20N/0+20E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                    |
|         | H 88 - :<br>H 88 - : |         |           | 475       | 0+2010/0+108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                                                                                                                                                                                                    |
|         | H 88 -               |         |           | 115       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | H 88 - :             |         |           | 60<br>100 | 6+20 N/0+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                    |
|         | H 88 - :             |         |           | 190       | 0+20 N/ 0+10W<br>0+20 N/ 0+20W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                    |
|         | 11 00                |         |           | 30        | 0720 07 0700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                                                                                                                                                                                                    |
|         | H 88 L 2             | 2+00 0- | +000      | - 25      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | H 88 L 2             |         | +25W      | 75        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | H 88 L 2             |         | +50W      | 15        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | H 88 L 2             |         | +75W      | 20        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | H 88 L 2             |         | HOON      | 50        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         |                      |         |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                    |
| ан<br>С | H 88 L 2             | +00 1+  | -251      | 50        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | H 88 L 2             |         | -50W      | 25        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | H 88 L 2             |         | -75W      | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | H 88 L 2             |         | HOOW      | 20        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | H 88 L 2             |         | 251       | 35        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         |                      |         | у.<br>У т |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | en de la companya de<br>La companya de la comp |
|         | 188 L 2              |         | -50W      | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | H 88 L 2             |         | 754       | 25        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         | 188L2                |         | -OOW      | 30        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
| ļ       | 188 L 2              | +00 3+  | 25₩       | 50        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         |                      |         |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
| 1       | )ETECTIO             | N LIMIT |           | 5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                    |
|         |                      | ~ ***** | - m af    |           | A REAL PROPERTY AND A REAL |                                       |                                                                                                                                                                                                                                    |

nd = none detected

-- = not analysed

is = insufficient sample



# VANGEOCHEM LAB LIMITED MAIN OFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604) 251-5656 FAX:254-5717

3

| REPORT NUMBER: 880779 GA | JOB NUMBE | R: 880779     | PANICON D                                 | EVELOPMENT | LTD. | PAGE 3                                   | OF |
|--------------------------|-----------|---------------|-------------------------------------------|------------|------|------------------------------------------|----|
| SAMPLE #                 | Au        |               |                                           |            |      |                                          |    |
|                          | ppb       |               |                                           |            |      |                                          |    |
| LH 8810+01 3+00W         | 10        |               |                                           |            |      |                                          |    |
| LH 8810+01 3+25W         | 35        |               |                                           |            |      |                                          |    |
| LH 8810+02 0+00E         | 30        |               |                                           |            |      |                                          |    |
| LH 8810+02 0+25E         | 20        |               |                                           |            |      |                                          |    |
| LH 8810+02 0+50E         | 10        |               |                                           |            |      |                                          |    |
| LH 8810+02 0+75E         | 10        |               |                                           |            |      |                                          |    |
| LH 8810+02 1+00E         | 15        |               |                                           |            |      |                                          |    |
| LH 8810+02 1+25E         | 25        |               |                                           |            |      |                                          |    |
| LH 8810+02 1+50E         | 80        |               |                                           |            |      |                                          |    |
| LH 8810+02 1+75E         | 40        |               |                                           |            |      |                                          |    |
| LH 8810+02 2+00E         | 10        |               |                                           |            |      |                                          |    |
| LH 8810+02 2+25E         | 25        |               |                                           |            |      |                                          |    |
| LH 8810+02 2+50E         | 30        |               |                                           |            |      | an a |    |
| LH 8810+02 2+75E         | 160       |               |                                           |            |      |                                          |    |
| LH 8810+02 3+00E         | 5         |               |                                           |            |      |                                          |    |
| LH 8B10+02 3+25E         | 20        |               |                                           |            |      |                                          |    |
| LH 8810+02 3+50E         | 700       |               | An |            |      |                                          |    |
| LH 8810+02 3+75E         | 300       | ê <u>8</u> 83 |                                           |            |      | a construction                           |    |
| LH 8810+02 4+00E         | 1500      |               |                                           | d. 338-4   |      |                                          |    |
| LH 8810+02 4+25E         | 5         |               |                                           |            |      |                                          |    |
| HS 88 DUPLICATE          | 1700      |               |                                           |            |      |                                          |    |



**\*** 

Mainten in sur

## VANGEOCHEM LAB LIMITED MAIN DFFICE AND LABORATORY 1988 Triumph Street Vancouver, B.C. V5L 1K5 (604)251-5656 FAX:254-5717 VANCOUVER, B.C. V5L 1L6 (604) 251-5656

(604) 251-5656

| REPORT   | NUMBER: 8                                                                                                                                                                                                                                                                                                                                   | 80779 GA | JOB    | NUMBER: | 880779                                         | PANICON DEV            | ELOPMENT LTD                                                                                                    | •         | PAGE           | 2 OF     | 3 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---------|------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|----------------|----------|---|
| SAMPLE   | <b>#</b>                                                                                                                                                                                                                                                                                                                                    |          | Au     |         |                                                |                        |                                                                                                                 |           |                |          |   |
|          |                                                                                                                                                                                                                                                                                                                                             |          | ppb    |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             | 75₩      | 10     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             | 000      | 30     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             | ·25W     | 15     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             | 000      | nd     |         |                                                |                        |                                                                                                                 | · · · · · |                |          |   |
| H 88 L   | 2+50 0+                                                                                                                                                                                                                                                                                                                                     | 25₩      | 10     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   | 2+50 0+                                                                                                                                                                                                                                                                                                                                     | 50W      | 50     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   | 2+50 0+                                                                                                                                                                                                                                                                                                                                     | 75₩      | 80     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             | OOW      | 175    |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             | 25W      | 130    |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             | 50W      | 55     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   | 2+50 1+                                                                                                                                                                                                                                                                                                                                     | 75W      | 25     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   | 14.2.2.2.2.2                                                                                                                                                                                                                                                                                                                                | 00W      | 25     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   | 그는 것을 잘 하는 것을 수 있다. | 25W      | 20     |         |                                                | ta series de la c      |                                                                                                                 |           |                |          |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             | 50W      | 20     | 17<br>2 |                                                | 영양 않는 것이 같아.           |                                                                                                                 |           |                |          |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             | 75W      | 10     | 8 - S   |                                                |                        |                                                                                                                 |           | 양양은 성공.        |          |   |
| 1 20 -   | 1.00 1.                                                                                                                                                                                                                                                                                                                                     | , un     | 14     |         |                                                |                        | A.C.                                                                                                            |           |                |          |   |
| H 88 L   | 2+50 3+                                                                                                                                                                                                                                                                                                                                     | OOW      | 30     |         |                                                |                        |                                                                                                                 | -4"<br>-  |                |          |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             | 25W      | 30     |         | 1.<br>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | a ta State Balance and |                                                                                                                 |           | 65 61<br>6 6 7 |          |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             | 50₩      | 20     |         |                                                |                        |                                                                                                                 |           |                | 1.00.000 |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             | 75W      | 20     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             | OOW      | 25     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   | 21E0 AL                                                                                                                                                                                                                                                                                                                                     | 25₩      |        |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             | 20W      | 65     |         |                                                |                        |                                                                                                                 |           |                | ы.<br>Г  |   |
| H 88 L   |                                                                                                                                                                                                                                                                                                                                             |          | 20     |         |                                                |                        | a da serie de la companya de la comp |           |                |          |   |
|          |                                                                                                                                                                                                                                                                                                                                             | 75W      | 20     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L 3 |                                                                                                                                                                                                                                                                                                                                             | 00W      | 10     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L   | 2+30 3+3                                                                                                                                                                                                                                                                                                                                    | 25₩      | 200    |         |                                                |                        |                                                                                                                 | · · · ·   |                |          |   |
| H 88 L 3 |                                                                                                                                                                                                                                                                                                                                             | 50W      | 25     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| H 88 L 3 |                                                                                                                                                                                                                                                                                                                                             |          | 10     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| LH 88104 |                                                                                                                                                                                                                                                                                                                                             |          | 25     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| LH 8810- |                                                                                                                                                                                                                                                                                                                                             |          | 150    |         |                                                |                        |                                                                                                                 |           |                |          |   |
| LH 88104 | +01 0+5(                                                                                                                                                                                                                                                                                                                                    | )W       | 30     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| LH 8810  | +01 0+7:                                                                                                                                                                                                                                                                                                                                    | 5W       | 10     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| LH 88104 |                                                                                                                                                                                                                                                                                                                                             |          | 10     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| LH 8810  |                                                                                                                                                                                                                                                                                                                                             |          | 120    |         |                                                |                        |                                                                                                                 |           |                |          |   |
| LH 88104 |                                                                                                                                                                                                                                                                                                                                             |          | 100    |         |                                                |                        |                                                                                                                 |           |                |          |   |
| LH 88104 |                                                                                                                                                                                                                                                                                                                                             |          | 5      |         |                                                |                        |                                                                                                                 |           |                |          |   |
| 111 652- |                                                                                                                                                                                                                                                                                                                                             |          |        |         |                                                |                        |                                                                                                                 |           |                |          |   |
| LH 8810+ |                                                                                                                                                                                                                                                                                                                                             |          | 15     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| LH 8810+ |                                                                                                                                                                                                                                                                                                                                             |          | 245    |         |                                                |                        |                                                                                                                 |           |                |          |   |
| LH 8810+ |                                                                                                                                                                                                                                                                                                                                             |          | 25     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| LH 8810+ | 01 2+75                                                                                                                                                                                                                                                                                                                                     | W        | 20     |         |                                                |                        |                                                                                                                 |           |                |          |   |
| DETECTIO | IN LIMIT                                                                                                                                                                                                                                                                                                                                    |          | 5      |         |                                                |                        |                                                                                                                 |           |                |          |   |
| nd = non | e detecte                                                                                                                                                                                                                                                                                                                                   | d =      | not an | alvsed  | is =                                           | insufficient samp      | le                                                                                                              |           |                |          |   |

### VANGEOCHEM L 3 LIMITED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04PS52578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX (604)254-754-75

#### ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WAT THIS LEACH IS PARIIAL FOR SN,MN,FE,CA,P,CR,MG,BA,PD,AL,NA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NDT DETECTED, -= NDT ANALYZED

| COMPA<br>ATTEN<br>PROJE                                                    | ITION                   | 4: 9 | 5 TC                         |                                      |                            | PMEN                 | T                           |                           |                                  | JOB#                            | RT#:<br>: 880<br>ICE#:     | 779                        |                             |                                       |                                 |                                  | DAT                               | E CO                    |                                 | TED:                       | 88/0<br>88/0                    | 7/25<br>08/07                     | 7                          | •                          | •••••                      |                           | ANAL                       | YST_                       | ¥1                         |                                 |  |
|----------------------------------------------------------------------------|-------------------------|------|------------------------------|--------------------------------------|----------------------------|----------------------|-----------------------------|---------------------------|----------------------------------|---------------------------------|----------------------------|----------------------------|-----------------------------|---------------------------------------|---------------------------------|----------------------------------|-----------------------------------|-------------------------|---------------------------------|----------------------------|---------------------------------|-----------------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|----------------------------|----------------------------|---------------------------------|--|
|                                                                            |                         |      |                              |                                      |                            |                      |                             |                           |                                  |                                 |                            |                            |                             |                                       |                                 |                                  |                                   |                         |                                 |                            |                                 |                                   |                            | PAG                        | E 1 DF                     | 3                         |                            |                            |                            | ſĴ.                             |  |
| SAMPLE N                                                                   | AHE                     |      | AG<br>PPH                    | AL<br>X                              | AS<br>PPN                  | AU<br>Ppm            | BA<br>PPN                   | BI<br>PPM                 | CA<br>X                          | CD<br>PPM                       | CO<br>PPN                  | CR<br>PPM                  | CU<br>PPM                   | FE<br>Z                               | K<br>X                          | NG<br>X                          | NN<br>Ppm                         | NO<br>Ppn               | NA<br>Z                         | NI<br>PPN                  | P<br>X                          | PB<br>PPM                         | PD<br>PPN                  | PT<br>PPM                  | SB<br>PPM                  | SN<br>PPN                 | SR<br>PPN                  | U<br>PPN                   | W<br>PPN                   | ZN<br>PPH                       |  |
| H88 1<br>H88 2<br>H88 3<br>H88 4<br>H88 5                                  |                         |      | 1.1<br>.1<br>1.1<br>.1       | 5.44<br>3.41<br>1.86<br>5.79<br>5.49 | ND<br>ND<br>9<br>ND<br>ND  | ND<br>ND<br>ND<br>ND | 42<br>27<br>28<br>54<br>54  | ND<br>ND<br>ND<br>ND<br>4 | .05<br>.14<br>.14<br>.07<br>.64  | 1.8<br>1.7<br>1.6<br>2.1<br>3.1 | 5<br>7<br>12<br>8<br>10    | 36<br>33<br>21<br>44<br>34 | 27<br>28<br>30<br>33<br>68  | 5.05<br>6.00<br>5.75<br>6.55<br>10.99 | .02<br>.01<br>.02<br>.02<br>.08 | .28<br>.22<br>.38<br>.30<br>.22  | 251<br>198<br>329<br>503<br>696   | 4<br>5<br>4<br>20       | .03<br>.03<br>.03<br>.07<br>.04 | 21<br>10<br>7<br>23<br>9   | .04<br>.04<br>.05<br>.05<br>.07 | 61<br>43<br>28<br>67<br>51        | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>2<br>4<br>ND<br>ND  | 5<br>8<br>14<br>7<br>20    | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 126<br>63<br>52<br>198<br>78    |  |
| H88 6<br>H88 7<br>H88 8<br>H88 9<br>H88 10                                 |                         |      | .1<br>.5<br>1.1<br>1.6<br>.1 | 2.72<br>6.05<br>3.75<br>6.45<br>4.69 | 6<br>ND<br>ND<br>ND<br>ND  | ND<br>ND<br>ND<br>ND | 42<br>39<br>43<br>50<br>39  | ND<br>ND<br>3<br>ND<br>3  | .48<br>.11<br>.17<br>.15<br>.07  | 1.7<br>2.1<br>2.1<br>2.1<br>1.9 | 16<br>9<br>12<br>14<br>6   | 21<br>29<br>29<br>29<br>50 | 56<br>59<br>56<br>130<br>31 | 5.14<br>6.48<br>5.80<br>7.01<br>8.19  | .05<br>.02<br>.03<br>.01        | .24<br>.22<br>.22<br>.20<br>.30  | 811<br>359<br>668<br>691<br>302   | 4<br>6<br>5<br>6<br>7   | .04<br>.10<br>.07<br>.14<br>.07 | 10<br>15<br>11<br>16<br>17 | .06<br>.07<br>.08<br>.07<br>.05 | <b>51</b><br>71<br>57<br>68<br>54 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>3<br>ND<br>ND | 14<br>10<br>13<br>9<br>7   | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 116<br>145<br>111<br>187<br>116 |  |
| H88 11<br>H88 12<br>H88 13<br>H88 14<br>H88 15                             |                         |      | .1<br>.1<br>1.1<br>.1        | 2.22<br>2.16<br>3.22<br>4.87<br>5.55 | 10<br>5<br>ND<br>ND<br>ND  | ND<br>ND<br>ND<br>ND | 39<br>36<br>82<br>42<br>64  | ND<br>ND<br>4<br>ND<br>ND | .20<br>.19<br>1.35<br>.17<br>.30 | 1.7<br>1.7<br>2.4<br>1.7<br>2.1 | 8<br>6<br>27<br>8<br>10    | 20<br>23<br>19<br>25<br>47 | 42<br>29<br>158<br>29<br>34 | 6.33<br>5.04<br>10.89<br>5.67<br>6.12 | .02<br>.01<br>.14<br>.01<br>.03 | .30<br>.15<br>.30<br>.22<br>.58  | 320<br>261<br>2207<br>364<br>357  | 4<br>4<br>14<br>4       | .04<br>.07<br>.04<br>.11<br>.07 | 7<br>7<br>7<br>12<br>38    | .04<br>.05<br>.08<br>.06<br>.05 | 68<br>43<br>46<br>58<br>57        | ND<br>ND<br>ND<br>ND<br>ND | nd<br>Nd<br>Nd<br>Nd<br>Nd | ND<br>ND<br>ND<br>ND       | 2<br>5<br>ND<br>ND        | 14<br>13<br>26<br>16<br>13 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>12<br>ND<br>ND | 78<br>62<br>153<br>115<br>174   |  |
| H88 16<br>H88 17<br>H88 19<br>H88 19<br>H88 20                             |                         |      | .1                           | 3.80<br>4.16<br>4.58<br>3.62<br>2.79 | ND<br>ND<br>S<br>6         | ND<br>ND<br>ND<br>ND | 61<br>58<br>57<br>170<br>30 | ND<br>3<br>ND<br>ND<br>ND | .22<br>.34<br>.60<br>1.39<br>.50 | 2.4<br>1.8<br>1.7<br>3.2<br>1.6 | 11<br>8<br>10<br>37<br>20  | 30<br>43<br>24<br>58<br>92 | 89<br>41<br>41<br>151<br>68 | 6.48<br>7.46<br>7.08<br>7.19<br>6.15  | .01<br>.03<br>.05<br>.14<br>.04 | .41<br>.22<br>.15<br>1.28<br>.54 | 528<br>616<br>755<br>2428<br>481  | 4<br>7<br>7<br>8<br>8   | .06<br>.08<br>.08<br>.05<br>.05 | 20<br>15<br>6<br>51<br>64  | .11<br>.06<br>.07<br>.08<br>.06 | 80<br>52<br>61<br>27<br>41        | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | nd<br>Nd<br>Nd<br>Nd       | ND<br>1<br>2<br>ND<br>2   | 19<br>11<br>18<br>50<br>15 | NÐ<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 141<br>110<br>101<br>347<br>142 |  |
| H88 21<br>H88 22<br>H88 23<br>H88 24<br>H88 25                             |                         |      | .1<br>.1<br>.1<br>.1         | 5.54<br>4.95<br>4.77<br>2.00<br>2.75 | ND<br>ND<br>ND<br>10<br>ND | ND<br>ND<br>ND<br>ND | 46<br>68<br>54<br>69<br>78  | ND<br>3<br>ND<br>ND<br>ND | .20<br>.48<br>.34<br>1.18<br>.72 | 1.7<br>1.8<br>1.7<br>1.6<br>1.8 | 11<br>16<br>15<br>22<br>11 | 22<br>49<br>40<br>55<br>35 | 55<br>55<br>40<br>84<br>30  | 5.82<br>7.26<br>5.66<br>6.55<br>4.90  | .01<br>.04<br>.03<br>.11<br>.07 | .25<br>.46<br>.40<br>.43<br>.34  | 576<br>808<br>696<br>3424<br>2763 | 4<br>49<br>6<br>10<br>3 | .08<br>.11<br>.12<br>.03<br>.08 | 15<br>33<br>33<br>25<br>19 | .07<br>.06<br>.06<br>.08<br>.10 | 71<br>51<br>53<br>26<br>34        | nd<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | ND<br>1<br>ND<br>1<br>ND  | 11<br>10<br>10<br>27<br>24 | Nð<br>Nd<br>Nd<br>Nd<br>Nd | nd<br>Nd<br>Nd<br>Nd<br>Nd | 210<br>173<br>215<br>159<br>231 |  |
| H88 L2+00<br>H88 L2+00<br>H88 L2+00<br>H88 L2+00<br>H88 L2+00<br>H88 L2+00 | 0+25W<br>0+50W<br>0+75W |      |                              | 6.16<br>5.19<br>5.94<br>1.97<br>5.84 | ND<br>ND<br>ND<br>7<br>ND  | ND<br>ND<br>ND<br>ND | 48<br>40<br>29<br>52<br>125 | ND<br>ND<br>ND<br>ND      | .06<br>.03<br>.04<br>.07<br>.24  | 1.5<br>1.3<br>1.7<br>1.2<br>2.2 | 5<br>5<br>3<br>18          | 21<br>35<br>24<br>17<br>18 | 27<br>28<br>34<br>26<br>32  | 6.50<br>6.75<br>7.24<br>4.89<br>8.21  | .01<br>.01<br>.01<br>.01        | .17<br>.14<br>.20<br>.12<br>.20  | 299<br>123<br>301<br>211<br>878   | 6<br>4<br>6<br>4<br>8   | .27<br>.14<br>.28<br>.11<br>.22 | 13<br>8<br>10<br>6<br>5    | .07<br>.04<br>.05<br>.06<br>.08 | 69<br>59<br>72<br>50<br>144       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>1<br>ND<br>4<br>ND  | 6<br>5<br>3<br>9<br>21     | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 14B<br>82<br>187<br>85<br>232   |  |
| H88 L2+00<br>H88 L2+00<br>H88 L2+00<br>H88 L2+00<br>H88 L2+00<br>H88 L2+00 | 1+50W<br>1+75W<br>2+00W |      | .1<br>.1<br>.1               | 3.99<br>4.94<br>1.41<br>1.98<br>5.74 | ND<br>ND<br>10<br>6<br>ND  | ND<br>ND<br>ND<br>ND | 58<br>43<br>54<br>49<br>51  | ND<br>ND<br>ND<br>ND      | .17<br>.10<br>.10<br>.16<br>.10  | 1.2<br>1.5<br>1.2<br>1.2<br>1.6 | 6<br>4<br>4<br>4           | 27<br>24<br>20<br>25<br>51 | 24<br>49<br>27<br>20<br>28  | 4.51<br>5.89<br>5.12<br>5.35<br>6.56  | .01<br>.01<br>.01<br>.01<br>.01 | .36<br>.13<br>.08<br>.13<br>.34  | 405<br>215<br>201<br>177<br>236   | 2<br>5<br>4<br>7<br>4   | .03<br>.20<br>.12<br>.08<br>.08 | 16<br>8<br>7<br>7<br>21    | .07<br>.08<br>.04<br>.03<br>.03 | 51<br>57<br>36<br>43<br>53        | ND<br>ND<br>ND<br>ND       | nd<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>NB<br>7<br>5<br>ND  | 14<br>7<br>13<br>16<br>11  | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | 82<br>111<br>84<br>79<br>111    |  |
| HBB L2+00<br>H88 L2+00<br>H88 L2+00<br>H88 L2+00                           | 2+75W<br>3+00W<br>3+25W |      | .5<br>.1<br>.1               | 4.48<br>6.44<br>4.42<br>3.27         | ND<br>ND<br>ND             | ND<br>ND<br>ND<br>ND | 132<br>67<br>54<br>95       | ND<br>ND<br>3<br>ND       | .13<br>.03<br>.03<br>.19         | 1.8<br>1.7<br>1.8<br>.8         | 6<br>5<br>2<br>5           | 36<br>26<br>22<br>31       | 23<br>23<br>20<br>16        | 5.16<br>6.39<br>9.03<br>5.64          | .01<br>.01<br>.01<br>.01        | .32<br>.19<br>.05<br>.27         | 227<br>324<br>131<br>211          | 4<br>6<br>6<br>4        | .11<br>.32<br>.10<br>.11        | 27<br>16<br>1<br>17        | .04<br>.05<br>.03<br>.04        | 52<br>67<br>58<br>41              | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>5<br>2        | 16<br>3<br>6<br>12         | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | 178<br>215<br>66<br>118         |  |
| DETECTION                                                                  | LINIT                   |      | •1                           | .01                                  | 3                          | 3                    | 1                           | 3                         | .01                              | .1                              | 1                          | 1                          | 1                           | .01                                   | .01                             | .01                              | 1                                 | 1                       | .01                             | 1                          | .01                             | 2                                 | 3                          | 5                          | 2                          | 2                         | 1                          | 5                          | 3                          | 1                               |  |

CLIENT: PANICON DEVELOPMENT JOBA: 880779 PROJECT: HEC REPORT: 880779 PA PAGE 2 OF 3 SAMPLE NAME AG AL AS AU BA CD CO CR CU FE PT **B**I CA K 86 HN HO NA NI ρ PB PD 5B SN SR U ZK PPN ï PPN **PPN PPH** PPM 1 PPN PPN PPM PPN X PPN PPM PPN PPN PPN PPN PPN PPM PPN PPN PPH 1 7 1 ĩ PPH H88 L2+00 3+75W 1.2 4.79 ND ND 37 NÐ .04 1.7 5 40 22 6.44 .03 .19 182 .03 .05 60 ND 131 14 ND ND NĤ 4 ND 5 H88 L2+00 4+00W 1.3 5.66 ND ND 43 ND .05 1.7 23 5.80 .02 .05 147 6 39 .25 205 4 .03 19 91 ND N۵ ١N Nū 6 NÐ ыn HB8 12+00 4+25W 1.3 6.23 ND ND 55 ND .17 1.7 19 21 6.54 .04 .05 69 126 .06 191 .03 ND ND MD. MD ND ND - 4 4 - 4 7 H88 L2+50 0+00W .1 .53 11 ND 47 NØ . 58 .2 1.03 .06 62 11 .08 .08 7 ND ND 29 ND ND - 5 4 61 ND .01 3 ND 3 H88 L2+50 0+25W .8 .78 10 ND. 29 NØ .32 1.70 .03 55 .8 7 20 .17 162 12 ND ND ND -6 ND .01 3 .10 ND 3 24 ND H88 L2+50 0+50W 3.15 ND 50 NØ .13 12 49 88 6.08 .03 52 ND .1 3 1.6 .44 352 5 .02 28 .04 ND Nñ NO ND 9 NÐ 143 HB8 L2+50 0+75W .8 4.98 ND ND 69 NÐ .20 4.1 21 29 180 178 ND 13 222 5.84 .04 .30 925 .02 10 .08 ND ND ND ND ND 4 H88 L2+50 1+00W 1.2 1.75 20 ND 58 ND .12 5.85 .02 2.1 11 18 49 .19 380 .02 .04 71 ND ND NÐ 5 9 ŇÐ ND 88 4 H88 L2+50 1+25W un .8 4.19 NÐ 58 NØ .06 1.6 ٩ 39 34 5.42 .02 .40 303 4 .03 29 .05 50 ND ND ND ND 8 ND ND 149 3.65 H88 L2+50 1+50W · .1 ND NB 38 ND .05 2.2 6 47 27 6.46 .01 .26 197 .02 15 .05 42 ND NÐ ND 2 6 ND ND 111 4 H88 L2+50 1+75W 4.22 ND ND .1 74 MD .10 1.5 9 -54 30 5.58 .02 .70 299 2 .01 39 .04 61 ND ND NÐ ND 11 Ю ND 132 H88 L2+50 2+00W 2.61 NØ 55 NÐ .1 NB .44 2.2 17 20 65 5.62 .05 .48 2948 3 .03 8 .13 40 ND NÐ NÐ 3 28 NÐ ND 224 H88 L2+50 2+25 3.44 NB. NB 37 NO .3 .08 1.1 6 15 22 4.26 .01 .17 245 4 .02 4 .04 65 ND ND ND 2 12 MD ND 89 H88 L2+50 2+50W 1.3 6.16 ND ND 25 NÐ .08 27 1.7 ٩ 37 5.34 .01 .17 320 4 .03 8 .06 83 ND ND ND ND 10 ND ND 148 H88 L2+50 2+75W ND ND .8 4.87 33 ND .08 26 6.49 .03 .28 195 1.7 9 29 436 5 .03 12 .06 87 ND ND ND 8 ND NÐ 1 H88 L2+50 3+00W .8 2.62 NÖ ND 43 .06 ND 3 1.5 7 26 27 7.90 .01 .19 1063 5 .03 . 06 120 NÐ ND ND ND 115 4 4 8 H88 L2+50 3+25W .8 3.64 NB ND 43 ND .10 1.6 9 39 29 5.70 .02 .39 491 .03 24 .05 49 ND NÐ 2 NÐ ND 163 4 M 9 H88 L2+50 3+50W 5.37 ND ND 59 ND .8 .10 1.6 19 37 49 5.73 .03 .41 727 .04 31 .08 60 ND NÐ NØ ND ND 243 4 1 8 H88 L2+50 3+75W .1 2.86 -3 ND 64 ND .10 1.2 7 35 20 4.33 .02 .48 388 2 .02 25 .05 33 NÐ NÐ ND ND ND 113 1 8 H88 L2+50 4+00W .1 4.62 NÐ ND 56 ND .07 1.2 9 38 20 5.90 .01 .20 720 3 .02 12 .15 50 ND ND NÐ 10 NÐ NÐ 125 1 H88 L2+50 4+25W 3.62 .1 MD. MB 68 ND .08 1.1 22 14 4.37 .02 .19 **41**B 3 .02 11 .06 39 NÐ ND. NÐ ND 10 KD KB 100 H88 L2+50 4+50W 60 .8 5.07 NÐ ND NØ .06 1.2 5 16 21 5.41 .03 .13 407 4 .05 7 .06 54 NO NØ MT ND 8 ND ND 135 H88 L2+50 4+75W ND 1.2 4.41 MR 51 ND .06 2.2 21 22 5.76 .02 .12 298 10 .05 57 ND ND ND NG NÐ 191 6 Б .05 3 5 H88 L2+50 5+00W .1 3.72 ND ND 28 ND .07 1.2 -5 31 17 5.48 .01 .22 176 4 .02 14 .05 45 ND ND ND 1 б NÐ NĎ 94 H88 L2+50 5+25W .1 3.33 ND ND 37 ND. .24 32 20 7.86 .01 .19 476 69 ND ND NB 15 ND ND 67 1.6 -5 6 .02 8 .06 3 H88 L2+50 5+50W .1 2.86 ND ND 34 ND .05 46 22 5.24 .32 157 ND NB ND NĎ NÐ 86 1.2 3 .01 2 .01 17 .04 320 ND 8 HB8 L2+50 5+75W 66 .3 3.62 KD NO. NÐ .07 1.5 8 22 22 5.72 .02 .17 234 4 .04 8 .05 53 NB NÐ NB 4 6 ND MB 147 LH88 10+01 0+00W .1 2.91 NÐ ND 21 NÐ .08 1.6 5 17 23 6.16 .01 .05 162 .02 2 .08 46 ND ND ND ۶ ND NÐ 86 4 9 LHB8 10+01 0+25W .1 2.66 15 ND 80 NÐ .17 80 5.04 .53 754 ND ND ND ND 310 1.7 11 16 .01 .01 7 .11 105 ND 26 ND 4 LH88 10+01 0+50W .1 2.45 3 NØ 22 ND .53 2.2 11 19 22 5.34 .05 .41 910 2 .03 6 .07 39 HD NÐ NØ 5 19 ND NÐ 270 LH88 10+01 0+75W .1 3.08 ND MD 19 3 .60 1.7 21 28 31 4.22 .06 2.58 755 2 .01 19 .05 68 NB NÐ NÐ 2 16 ND. ND 325 LH88 10+01 1+00W .3 4.10 NÐ NÐ 17 NB .56 1.6 6 22 31 8.28 .05 .15 396 .03 .12 61 20 ND 5 12 20 ١Ň 125 4 5 ND LH88 10+01 1+25k NØ ND .1 4.75 85 MÐ 1.54 3.5 14 36 49 5.41 .16 2.16 4475 .05 23 56 NЪ ND ND ND 33 ND MD 402 2 .11 LH88 10+01 1+50W 7 NØ 1.98 .1 1.20 160 ND . 98 .8 9 9 29 .10 .17 703 ND .02 17 ND ND ND 46 NÐ MÐ 128 11 .14 2 LH88 10+01 1+75W MD. 220 1.76 .1 4.50 ND ND 1.33 .5 -5 7 21 .15 .08 1370 8 .05 5 .12 53 NĐ ND. ND 2 59 МÖ ND. 126 LH88 10+01 2+00W .1 4.73 ND ND 266 ND 1.29 27 30 6.08 .17 NÐ ND ND 1.7 8 .17 1161 7 .13 10 47 ND MA 40 166 .10 1 LH88 10+01 2+258 .3 3.70 #B 32 HD. NB. .07 17 20 6.53 .01 .08 146 7 .03 45 N/D ND 14 ND 63 1.3 2 .03 ND. 3 MB LH88 10+01 2+50W .3 3.54 ND ND 45 NØ .04 1.7 6 23 18 7.83 .01 .10 286 8 .04 3 .05 54 ND ND ND 5 9 HØ. ND 90 LH88 10+01 2+75W .1 2.54 5 ND. 45 NÐ HD. 56 .05 1.1 2 17 İİ. 3.64 .01 .07 196 .02 2 .04 36 Ыß ND NQ 2 R NB 4 DETECTION LINIT .01 3 .01 .01 .01 .1 - 3 - 3 .1 1 1 .01 1 1 .01 1 .01 2 3 -5 2 2 1 5 3 1

19

€

{

ŧ

ť

ŧ

ŧ

f

1

ŧ

{

€

(

f

Ĺ

1

| CLIENT: PAMICON DE                                                                               |                              | מאז זאס                              | 88077                      |                            | JECT: H                      | -                         | ORT: 88                          | 1770 04                         |                         |                            |                             |                                       |                                 |                                 |                                  |                       |                                 |                          |                                 |                            |                            |                            |                            |                           |                          |                      |                            |                                 |  |
|--------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------|----------------------------|----------------------------|------------------------------|---------------------------|----------------------------------|---------------------------------|-------------------------|----------------------------|-----------------------------|---------------------------------------|---------------------------------|---------------------------------|----------------------------------|-----------------------|---------------------------------|--------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|--------------------------|----------------------|----------------------------|---------------------------------|--|
| VETERIA THITOUR DE                                                                               | ALFOI U                      | LAI 900                              |                            | 2 180                      | JEC11 IN                     | LU KEF                    | 0411 001                         | 113 FM                          |                         |                            |                             |                                       |                                 |                                 |                                  |                       |                                 |                          |                                 |                            |                            |                            | PAGE 3                     | SU# 3                     |                          |                      |                            |                                 |  |
| SAMPLE NAME                                                                                      | AG<br>P <b>ph</b>            | AL<br>X                              | AS<br>PPM                  | AU<br>PPN                  | BA<br>PPN                    | BI<br>PPM                 | CA<br>X                          | CD<br>PPM                       | CO<br>PPN               | CR<br>PPH                  | CU<br>PPN                   | FE<br>X                               | K<br>I                          | ng<br>T                         | MN<br>PPH                        | NO<br>PPH             | NA<br>1                         | NI<br>PPH                | P<br>I                          | PB<br>PPM                  | PD<br>PPM                  | PT<br>PPH                  | S8<br>PPM                  | SN<br>PPN                 | SR<br>PPN                | U<br>PPN             | N<br>PPN                   | ZN<br>PPH                       |  |
| LH88 10+01 3+00W<br>LH88 10+01 3+25W                                                             | .5<br>3.1                    |                                      | ND<br>ND                   | ND<br>ND                   | 45<br>24                     | ND<br>3                   | .05                              | 2.2<br>2.2                      | 5<br>5                  | 37<br>23                   | 24<br>27                    | 6.76<br>7.44                          | .02<br>.03                      | .16<br>.06                      | 219<br>129                       | 6<br>16               | .02<br>.03                      | 10<br>3                  | .04                             | 52<br>70                   | ND<br>ND                   | ND<br>ND                   | ND<br>ND                   | 2                         | 6<br>3                   | ND<br>ND             | ND<br>ND                   | 152<br>117                      |  |
| LH88 10+02 0+00E<br>LH88 10+02 0+25E<br>LH88 10+02 0+50E<br>LH88 10+02 0+75E<br>LH88 10+02 1+00E | .1<br>.6<br>1.8<br>.1<br>.2  | 3.50<br>7.61<br>2.95                 | 8<br>ND<br>ND<br>5<br>12   | ND<br>ND<br>ND<br>ND<br>ND | 53<br>46<br>23<br>49<br>368  | ND<br>7<br>ND<br>ND       | .11<br>.05<br>.03<br>.08<br>.48  | 1.2<br>2.5<br>1.7<br>1.7<br>2.2 | 4<br>7<br>3<br>4<br>7   | 19<br>62<br>43<br>21<br>24 | 12<br>33<br>20<br>17<br>17  | 3.58<br>13.28<br>6.65<br>5.44<br>5.04 | .03<br>.04<br>.04<br>.03<br>.08 | .14<br>.26<br>.19<br>.12<br>.13 | 115<br>300<br>241<br>198<br>1100 | 2<br>5<br>4<br>6<br>4 | .02<br>.03<br>.03<br>.03<br>.08 | 5<br>10<br>8<br>4<br>10  | .03<br>.05<br>.05<br>.05<br>.05 | 30<br>42<br>59<br>45<br>49 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 1<br>5<br>ND<br>2<br>1    | 14<br>7<br>3<br>13<br>17 | KD<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 53<br>92<br>121<br>88<br>207    |  |
| LH88 10+02 1+25E<br>LH88 10+02 1+50E<br>LH88 10+02 1+75E<br>LH88 10+02 2+00E<br>LH88 10+02 2+25E | .5<br>.1<br>.1<br>2.1<br>1.1 | 6.29<br>5.40<br>7.86<br>5.39<br>5.91 | ND<br>NQ<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 70<br>32<br>264<br>156<br>39 | ND<br>ND<br>ND<br>ND      | .16<br>.60<br>.91<br>.24<br>.08  | 1.7<br>1.7<br>2.5<br>1.3<br>2.5 | 13<br>4<br>32<br>3<br>7 | 32<br>25<br>47<br>12<br>34 | 23<br>20<br>55<br>46<br>34  | 5.25<br>5.08<br>4.29<br>4.44<br>5.52  | .06<br>.08<br>.13<br>.07<br>.04 | .20<br>.16<br>.38<br>.11<br>.38 | 286<br>318<br>3545<br>332<br>274 | 6<br>4<br>8<br>9<br>4 | .08<br>.02<br>.11<br>.10<br>.03 | 20<br>7<br>40<br>9<br>21 | .07<br>.10<br>.12<br>.06<br>.05 | 55<br>43<br>43<br>61<br>50 | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>1<br>ND | 10<br>36<br>53<br>8<br>7 | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND | 184<br>127<br>425<br>167<br>135 |  |
| LH88 10+02 2+50E<br>LH88 10+02 2+75E<br>LH88 10+02 3+00E<br>LH88 10+02 3+25E<br>LH88 10+02 3+50E | 2.7<br>.2<br>1.2<br>.1<br>.1 | 8.23<br>4.12<br>5.44<br>6.66<br>3.47 | ND<br>3<br>ND<br>ND<br>8   | ND<br>ND<br>ND<br>ND       | 33<br>41<br>32<br>49<br>78   | ND<br>ND<br>ND<br>ND<br>4 | .05<br>.22<br>.17<br>.12<br>1.16 | 2.1<br>2.1<br>1.8<br>2.1<br>2.4 | 5<br>13<br>7<br>6<br>27 | 23<br>20<br>28<br>71<br>20 | 24<br>38<br>21<br>25<br>135 | 5.72<br>4.83<br>5.20<br>8.01<br>10.08 | .04<br>.04<br>.04<br>.03<br>.13 | .12<br>.20<br>.20<br>.39<br>.28 | 334<br>776<br>373<br>244<br>2189 | 4<br>14<br>3<br>14    | .03<br>.02<br>.04<br>.02<br>.02 | 8<br>7<br>14<br>21<br>3  | .05<br>.11<br>.07<br>.07<br>.08 | 61<br>57<br>56<br>57<br>48 | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND      | 6<br>13<br>7<br>9<br>27  | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND       | 165<br>151<br>155<br>116<br>150 |  |
| LH8B 10+02 3+75E<br>LH8B 10+02 4+00E<br>LH8B 10+02 4+25E<br>HS88 DUP                             | 1.6<br>1.1<br>.2<br>.1       | 3.55<br>4.90<br>6.14<br>2.54         | 5<br>ND<br>ND<br>14        | ND<br>ND<br>ND<br>ND       | 37<br>112<br>37<br>88        | 3<br>ND<br>ND<br>3        | .0B<br>.17<br>.11<br>1.83        | 2.1<br>2.2<br>2.4<br>2.7        | 9<br>18<br>4<br>24      | 26<br>21<br>39<br>19       | 52<br>47<br>18<br>187       | 7.95<br>7.46<br>6.50<br>10.64         | .03<br>.04<br>.02<br>.17        | .14<br>.32<br>.12<br>.28        | 228<br>703<br>240<br>1884        | 6<br>6<br>3<br>10     | .02<br>.02<br>.02<br>.02        | 2<br>7<br>5<br>10        | .07<br>.06<br>.06<br>.07        | 75<br>53<br>53<br>31       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND<br>ND       | ND<br>ND<br>ND             | 4<br>ND<br>ND             | 11<br>14<br>9<br>25      | nd<br>ND<br>ND       | ND<br>ND<br>ND             | 92<br>1 <b>98</b><br>130<br>101 |  |
| DETECTION LIMIT                                                                                  | .1                           | .01                                  | 3                          | 3                          | 1                            | 3                         | .01                              | .1                              | 1                       | 1                          | 1                           | .01                                   | .01                             | .01                             | . 1                              | 1                     | .01                             | 1                        | .01                             | 2                          | 3                          | 5                          | 2                          | 2                         | 1                        | 5                    | 3                          | 1                               |  |

أفتشد

Sec.

أعليت

أفند معقط

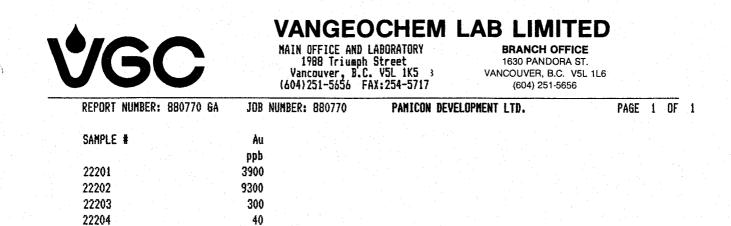
100-1

b.....

L.

\_

hi


(

i

(

(

| VGC                      | VANGEO<br>MAIN OFFICE AND<br>1988 Triumph<br>Vancouver, B.C<br>(604)251-5656 F                             | LABORATORY<br>Street<br>V5L 1K5<br>AX:254-5717 | AD LIIVIIIE<br>BRANCH OFFICE<br>1630 PANDORA ST<br>VANCOUVER, B.C. V5L<br>(604) 251-5656 |               |
|--------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------|---------------|
| REPORT NUMBER: 880770 AA | JOB NUMBER: 880770                                                                                         | PANICON DEVELOP                                |                                                                                          | PAGE 1 OF     |
|                          |                                                                                                            |                                                |                                                                                          |               |
| SAMPLE #                 | Au<br>oz/st                                                                                                |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
| 22201                    | .117                                                                                                       |                                                |                                                                                          |               |
| 22202                    | .219                                                                                                       |                                                |                                                                                          |               |
| 22203                    |                                                                                                            |                                                |                                                                                          |               |
| 22204                    | ***** *****                                                                                                |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          | 에 있는 것이 아파 가지 않는 것이 가지 않는 것이다.<br>이 가격은 것이 아파 가지 않는 것이 가지 않는 것이다.<br>같은 것이 있는 것이 같은 것이 하는 것이 아파 가지 않는 것이다. |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          | e ng a sin ta |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
|                          |                                                                                                            |                                                |                                                                                          |               |
| DETECTION LIMIT          | 1 .0d5                                                                                                     |                                                |                                                                                          |               |
| 1 Troy oz/short ton =    | 11                                                                                                         | 1% ppm = parts                                 | per million <=                                                                           | less than     |
|                          | igned:                                                                                                     |                                                |                                                                                          |               |



DETECTION LINIT 5 nd = none detected -- = not analysed

È.

 is = insufficient sample



e

€

€

¢

C

C

(

(

(

(

C

ŧ,

C

(

(

#### VANGEOCHEM LAB LIMITED

MAIN OFFICE: 1521 PEMBERTON AVE. N.VANCOUVER B.C. V7P 283 PH: (604)986-5211 TELEX:04-352578-... BRANCH OFFICE: 1630 PANDORA ST. VANCOUVER B.C. V5L 1L6 PH: (604)251-5656

#### ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:2 HCL TO HNO3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN,MN,FE,CA,P,CR,MG,BA,PD,AL,NA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT ANALYZED

| COMPANY<br>ATTENT                | ON:  |                       | in de                        | VELD                | PMEN           | T                    |                     |                           | REPOR<br>JOB#:<br>INVOI | 880                  | 0770                 |                         |         |                          |                              | DAT                         |                    | MPLE                     | ED: (<br>TED:<br>0: |                          |                    | )<br>)         |                |                      |                | ANAL                 | YST_           | 4              | ly                    | • |
|----------------------------------|------|-----------------------|------------------------------|---------------------|----------------|----------------------|---------------------|---------------------------|-------------------------|----------------------|----------------------|-------------------------|---------|--------------------------|------------------------------|-----------------------------|--------------------|--------------------------|---------------------|--------------------------|--------------------|----------------|----------------|----------------------|----------------|----------------------|----------------|----------------|-----------------------|---|
|                                  |      |                       |                              |                     |                |                      |                     |                           |                         |                      |                      |                         |         |                          |                              |                             |                    |                          |                     |                          |                    |                | PAG            | E 1 OF               | 1              |                      |                |                | Ü                     |   |
| SAMPLE NAME                      |      | AG.<br>PPH            | AL<br>Z                      | AS<br>PPM           | AU<br>Pph      | BA<br>PPM            | BI<br>PPN           | CA                        | CD<br>PPH               | CO<br>PPN            | CR<br>PPH            | CU<br>PPN               | FE<br>1 | K<br>X                   | NG<br>X                      | NN<br>PPN                   | MO<br>PPH          | NA<br>Z                  | NI<br>PPH           | P<br>I                   | PB<br>PPN          | PD<br>PPN      | PT<br>PPH      | SB<br>PPN            | SN<br>PPN      | SR<br>PPN            | U<br>PPN       | W<br>PPM       | ZN<br>PPM             |   |
| 22201<br>22202<br>22203<br>22204 |      | .6<br>2.2<br>.1<br>.1 | 1.95<br>2.82<br>3.40<br>2.37 | 25<br>5<br>ND<br>22 | ND<br>ND<br>ND | 43<br>27<br>49<br>24 | ND<br>ND<br>ND<br>3 | 1.60<br>.32<br>.24<br>.93 | .3<br>.1<br>.3<br>.6    | 15<br>40<br>54<br>18 | 41<br>39<br>37<br>40 | 175<br>320<br>167<br>79 | 12.88   | .07<br>.01<br>.01<br>.05 | 1.20<br>1.79<br>2.47<br>1.64 | 1403<br>1142<br>1290<br>845 | 8<br>ND<br>4<br>ND | .13<br>.19<br>.17<br>.08 | 17<br>9<br>1<br>6   | .08<br>.04<br>.05<br>.05 | 9<br>15<br>2<br>16 | ND<br>ND<br>ND | ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND | 19<br>10<br>23<br>11 | ND<br>ND<br>ND | ND<br>ND<br>ND | 94<br>98<br>95<br>126 |   |
| DETECTION L                      | INIT | .1                    | .01                          | 3                   | 3              | i                    | 3                   | .01                       | .1                      | 1                    | - 1                  | 1                       | .01     | .01                      | .01                          | 1                           | 1                  | .01                      | 1                   | .01                      | 2                  | 3              | 5              | 2                    | 2              | 1                    | 5              | 3              | 1                     |   |

### APPENDIX V

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se

<u>ار -</u>

j

100

Provide States

1

STATEMENT OF QUALIFICATIONS

#### STATEMENT OF QUALIFICATIONS

I, STEVE L. TODORUK, of Suite 129, 7451 Minoru Boulevard, Richmond, in the Province of British Columbia, DO HEREBY CERTIFY:

- THAT I am a Geologist in the employment of Pamicon Developments Limited, with offices at Suite 711, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of British Columbia with a Bachelor of Science Degree in Geology.
- 3. THAT my primary employment since 1979 has been in the field of mineral exploration.
- 4. THAT my experience has encompassed a wide range of geologic environments and has allowed considerable familiarization with prospecting, geophysical, geochemical and exploration drilling techniques.
- 5. THAT this report is based on data generated by myself, under the direction of Charles K. Ikona, Professional Engineer.
- 6. THAT I have no interest in the property described herein, nor in securities of any company associated with the property, nor do I expect to receive any such interest.
- 7. THAT I hereby grant permission to Hector Resources Inc. for the use of this report in any prospectus or other documentation required by any regulatory authority.

DATED at Vancouver, B.C., this <u>23</u> day of <u>February</u>, 1989.

في فأ

2 13

Steve L. Todoruk, Geologist

## APPENDIX VI

. .

1

j

500-

ŝ

ENGINEER'S CERTIFICATE

#### ENGINEER'S CERTIFICATE

1

r i

3

j

.

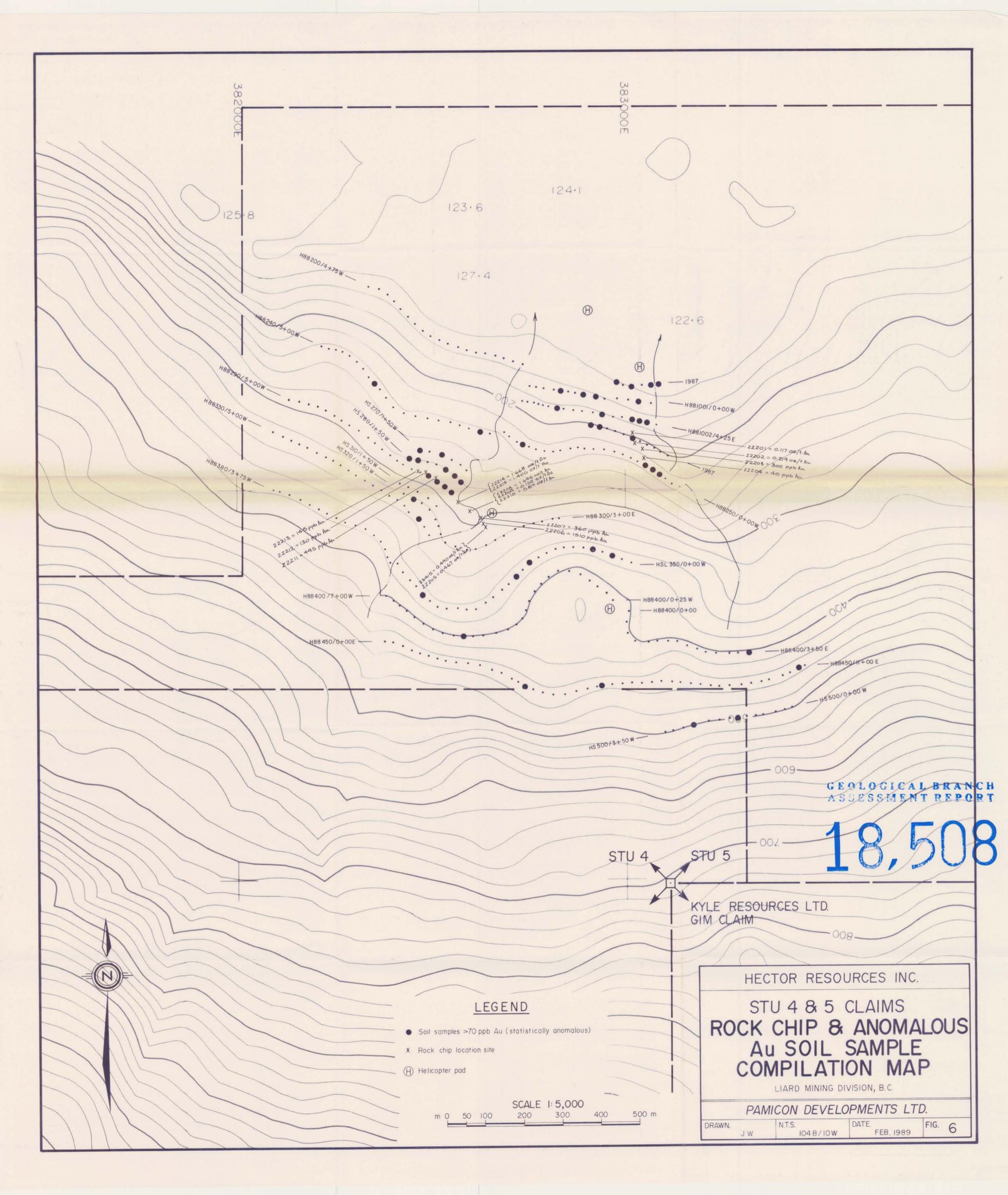
أن ا

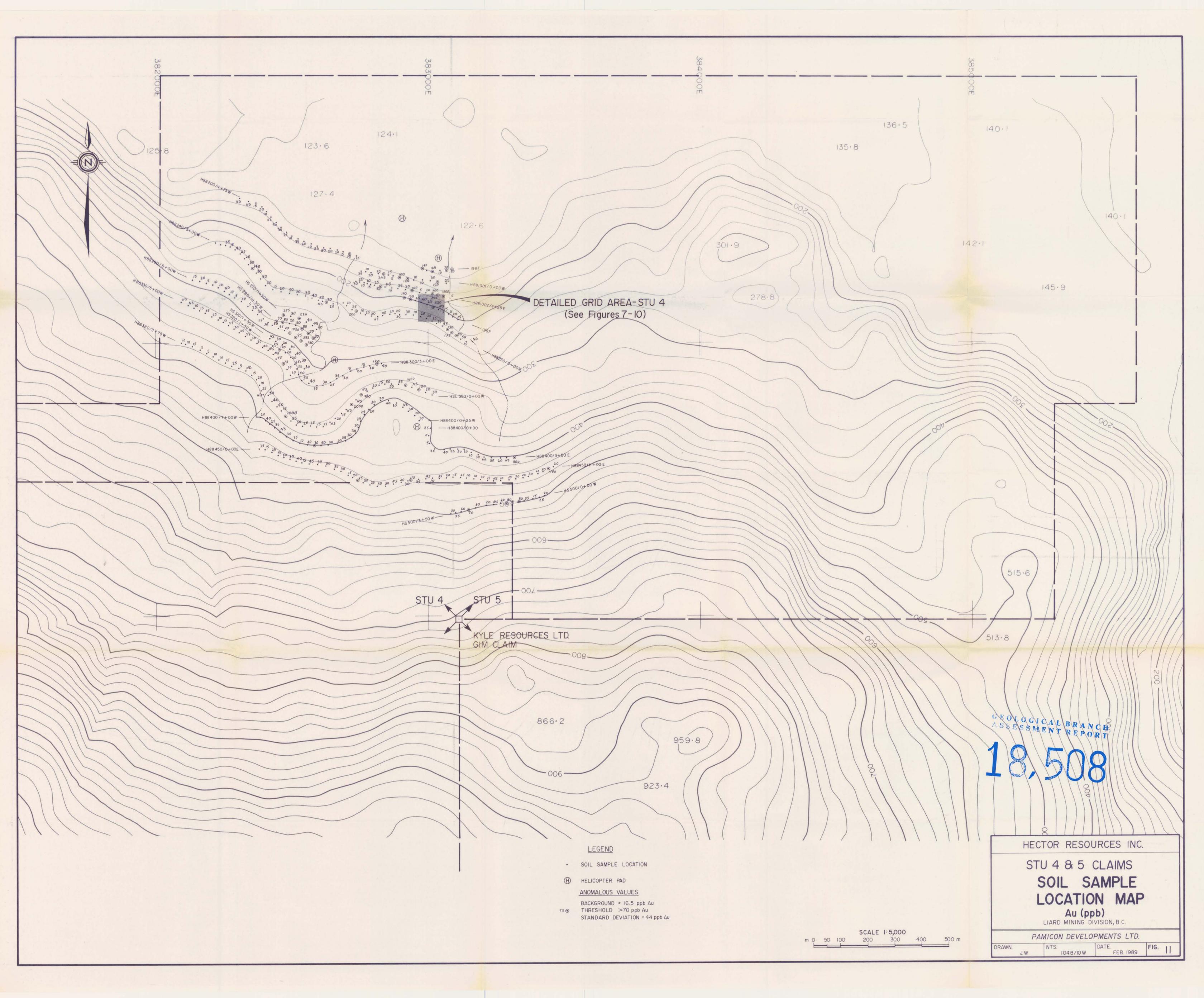
.

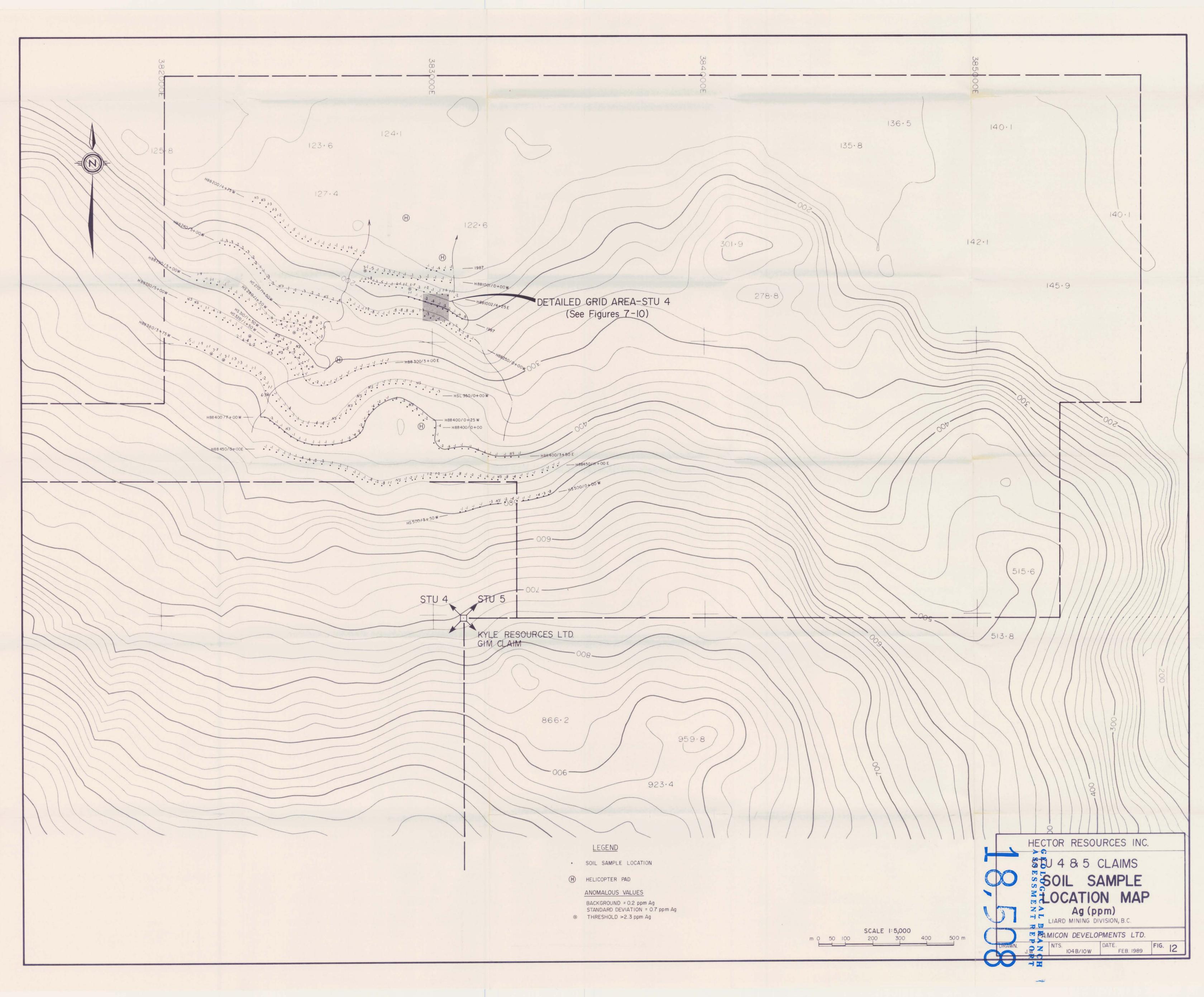
10

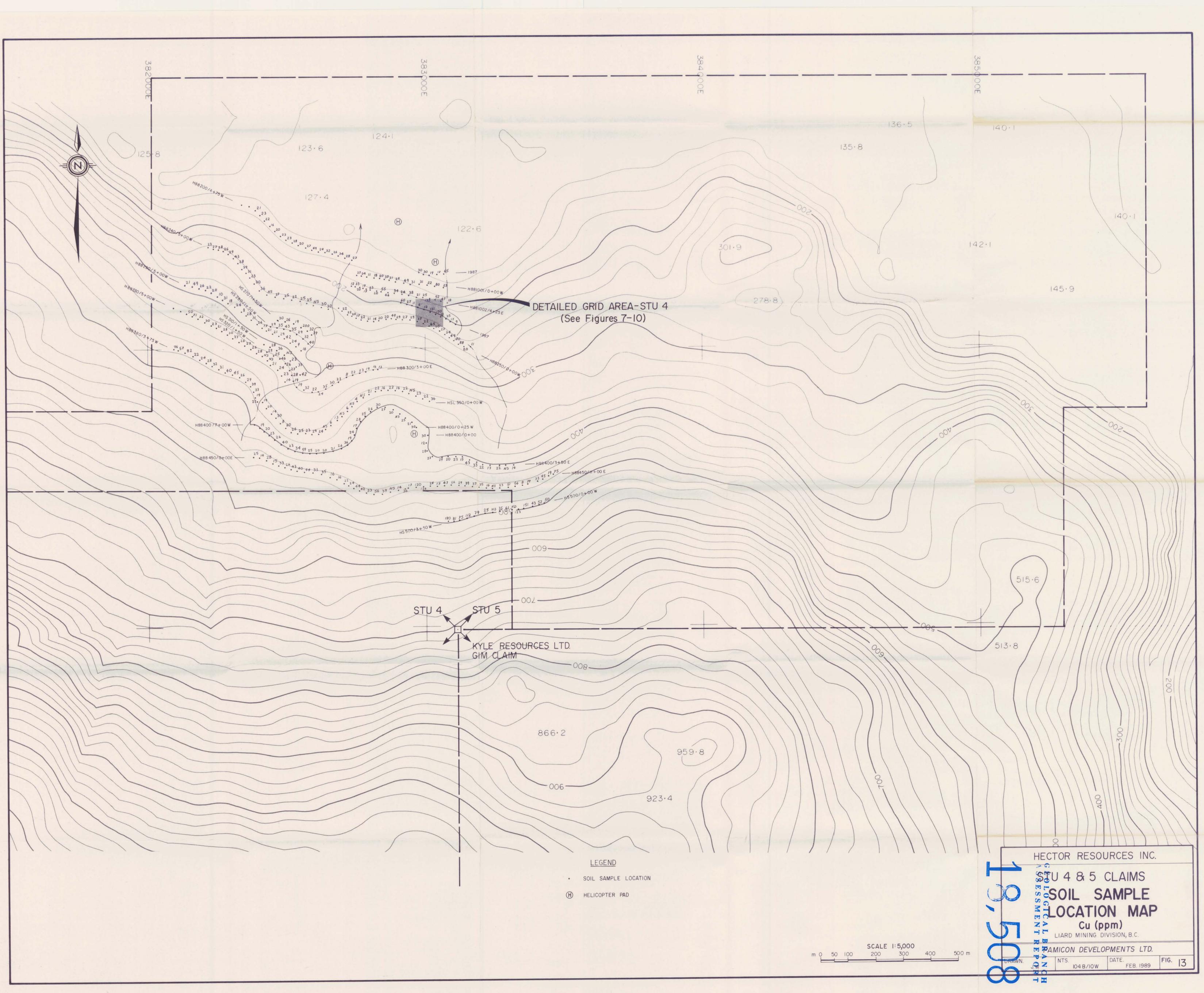
**R**....

-


1


a second


I, CHARLES K. IKONA, of 5 Cowley Court, Port Moody, in the Province of British Columbia, DO HEREBY CERTIFY:


- THAT I am a Consulting Mining Engineer with offices at Suite 711, 675 West Hastings Street, Vancouver, British Columbia.
- 2. THAT I am a graduate of the University of British Columbia with a degree in Mining Engineering.
- 3. THAT I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.
- 4. THAT this report is based on work conducted under my direction in 1988 and on extensive knowledge of the immediate area.
- 5. THAT I have no interest in the property described herein, nor in securities of any company associated with the property, nor do I expect to acquire any such interest.
- 6. THAT I consent to the use by Hector Resources Inc. of this report in a Prospectus or Statement of Material Facts or any other such document as may be required by the Vancouver Stock Exchange or the Office of the Superintendent of Brokers.

| DATED at Vancouver, B.C., | this <u>23</u> day of <u>Feb</u> , 1989. |
|---------------------------|------------------------------------------|
|                           | CONTRACTOR AND                           |
| $\mathcal{A}$             |                                          |
| hkk                       | CENTION A                                |
| Charles K. Ikona, P.Eng.  | CINE CAR                                 |







