Off Confidential: 90.01.05 District Geologist, Smithers ASSESSMENT REPORT 18522 MINING DIVISION: Atlin PROPERTY: Catfish 59 52 30 134 50 00 LAT LONG LOCATION: 08 6637295 509331 UTM 104M15W NTS CLAIM(S): Catfish 1-7, Catfish 10-11, Iguana OPERATOR(S): Frame Min. AUTHOR(S): Morris, R.J. 1989, 107 Pages **REPORT YEAR:** COMMODITIES SEARCHED FOR: Gold, Arsenic Triassic, Yukon Group, Lewes River Group, Coast Intrusive Complex KEYWORDS: Granite Porphyry, Aplite, Arsenopyrite, Quartz Veins WORK Geological, Geochemical DONE: 1900.0 ha GEOL PETR 31 sample(s) ROCK 47 sample(s) ;ME 19 sample(s) ;ME SILT SOIL 277 sample(s) ;ME Map(s) - 6; Scale(s) - 1:5000**P-FLATED** PORTS: 15972 MINFILE: 104M 061

LOG NO:	0310	RD.
ACTION:		

FILE NO:

CATFISH PROPERTY

NORTHWEST B.C. (104 M/15 W)

GEOLOGICAL AND GEOCHEMICAL REPORT

GEOLOGICAL BRANCH ASSESSMENT REPORT

.522

R.J. Morris, M.Sc. Beacon Hill Consultants Ltd. December, 1988

TABLE OF CONTENTS

an an a state and a state of an address of the state of the

and the state of the second second

Summary	1
Introduction	2
Property Description	
Location and Access	3
Claim Status	3
Summary of Previous Work	4
Summary of 1988 Exploration	4
Geology	
General Geology	10
Property Stratigraphy	10
Property Structure	15
Mineralization	15
Geochemistry	
Sample Types	28
Discussion of Results	28
Conclusions and Recommendations	43
References	47
Certificate	48

Appendix

I	Laboratory Techniques
11	Geochemistry and Assay Results

III Petrographic Descriptions

LIST OF ENCLOSURES

Figure No.	Description	Scale	Page No.
1	Index Map	1:2 000 000	5
2	Location Map	1:250 000	6
3	Claim Map	1:50 000	7
4	Reconnaissance Stream Sediment and		
	Lithogeochemical Survey (1987)	1:50 000	8
5	Summary of 1988 Exploration	1:50 000	9
6	Property Geology	1:50 000	19
7	Sketch of the North Side of the Middle Ridge	as shown	20
8	Sketch of the South Side of the Middle Ridge	as shown	21
9	Sketch of the Northwest Side of the South		
	Mountain	as shown	22
10	Stereonet Plot of Bedding Attitudes	as shown	23
11	Stereonet Plot of Foliation Attitudes	as shown	24
12	Stereonet Plot of Jointing	as shown	25
13	Stereonet Plot of Shear Attitudes	as shown	26
14	Stereonet Plot of Vein Orientations	as shown	27
15	Sample Locations, North Half	1:5 000	in pocket
16	Sample Locations, South Half	1:5 000	in pocket
17	Frequency Distribution, Silver in soil	as shown	30
18	Frequency Distribution, Arsenic in soil	as shown	31
19	Frequency Distribution, Antimony in soil	as shown	32
20	Frequency Distribution, Gold in soil	as shown	33
21	Cumulative Frequency, Gold in soil	as shown	34
22	Cumulative Frequency, Arsenic in soil	as shown	35
23	Correlation Distribution, Copper vs. Gold	as shown	36
24	Correlation Distribution, Lead vs. Gold	as shown	37
25	Correlation Distribution, Zinc vs. Gold	as shown	38
26	Correlation Distribution, Silver vs. Gold	as shown	39
27	Correlation Distribution, Arsenic vs. Gold	as shown	40
28	Correlation Distribution, Antimony vs. Gold	as shown	41
29	Duplicate Analyses, Gold in soil	as shown	42
30	Geology and Gold in soil, North Mountain	1:5 000	in pocket
31	Geology and Gold in soil, Middle Ridge	1:5 000	in pocket
32	Geology and Gold in soil, South Mountain	1:5 000	in pocket
Table No.	Description		Page No.
1	Summary of Claims		3

1	Summary of Claims	3
2	Summary of 1988 Exploration	4
3	Table of Formations	14
4	Petrographic Descriptions; Boundary Ranges Metamorphics	10
5	Petrographic Descriptions; Middle to Upper Jurassic Volcanics	12
6	Petrographic Descriptions; Coast Intrusives	13
7	Petrographic Descriptions; Minor Intrusives	13
8	Selected Sampling; North Mountain	16
9	Selected Sampling; South Mountain	16
10	Selected Sampling; Middle Ridge, Intrusive Host	17
11	Selected Sampling; Middle Ridge, Metamorphic Host	18

SUMMARY

The Catfish property is comprised of ten claims, totalling 76 units, and is located in the northwest corner of British Columbia along the west shore of Tutshi Lake. Access is via the Klondike Highway, a paved all season road, and by helicopter to the higher portions of the property.

Previous work includes regional geological mapping by the G.S.C. and B.C. Geological Survey as well as reconnaissance stream sediment and lithogeochemical sampling by the B.C.G.S. The property was explored for molybdenum in the 1970's and gold at the turn of the century as evidenced by a road on the north side of Paddy Pass creek circa 1970 (?), and four adits and trenching, circa 1900 (?).

The 1988 work program included air photo enlargements, topographic mapping, geological mapping, petrographic descriptions, and rock, soil, and stream sediment geochemistry.

The Catfish property straddles the contact of the Coast Plutonic Complex and the Intermontane Belt to the east. The Coast Intrusions comprise coarse granites and fine grained equivalents. Layered rocks include the basal Boundary Ranges metamorphics, Upper Triassic Stuhini Group, Lower Jurassic Inklin Formation, and a Middle to Upper Jurassic volcanic sequence. Structurally, the strata are folded and oriented at 340 degrees with the Llewellyn fault zone forming the east edge of the property.

Mineralization includes molybdenite in granite, a pyritized shear zone, an antimony rich tuff horizon, and important quartz veins with arsenopyrite. The arsenopyrite in quartz veins occur in fine grained intrusives and metamorphics. In the intrusive host, the mineralization is typified by arsenopyrite veins within a green-yellow alteration envelope, scorodite. In the metamorphics, the veins host coarsely disseminated and banded arsenopyrite with trace chalcopyrite. The veins are up to 3.1 meters thick in the intrusive, though sections up to 30 m thick host pervasive veining. Veins are up to 1.4 meters thick in the metamorphics. Maximum gold values of 1.4 oz/ton were observed within a mineralized zone which has a strike length of 2.5 kilometers.

Detailed soil sampling was completed to determine the geochemical signature of the quartz veins and their hosts. Arsenic and gold in soil is an effective tool to explore for extensions of the mineralized zones.

The recommended exploration program is divided into two phases. Phase I work is designed to determine grades of the intrusive hosted mineralization and the extent of the high grade veins. This work will allow an assessment of the mining potential of the property. With positive results from Phase I, a program of road construction and drilling is recommended.

-1-

INTRODUCTION

The Catfish property is owned by Mr. C.J.R. Hart of Whitehorse, and is under option to Frame Mining Corp., Whitehorse.

Between August 19 and September 9, 1988, a two man crew under the supervision of the author, completed a geological and geochemical reconnaissance of the property.

This report summarizes the results, conclusions and recommendations of the 1988 work.

PROPERTY DESCRIPTION

Location and Access

The Catfish property is located in the Boundary Ranges of the Coast Mountains, in the extreme northwest corner of British Columbia, Figure 1. The property is on the west side of Tutshi Lake and straddles Paddy pass, an east-west valley between Tutshi and Bennett Lakes.

The east side of the Catfish property is crossed by the Klondike Highway which traverses the west side of Tutshi Lake. The east, central portion of the property is 64 km by road north of Skagway, Alaska and 42 km by road south of Carcross, Yukon Territory, Figure 2. The Klondike Highway is a paved, all season, road which is used by Curragh Resources Inc. to move concentrate from its Faro lead-zinc mine to the ice-free port of Skagway.

Access on the property was gained by an old, overgrown, road on the north side of Paddy Pass which originates at the Klondike Highway. The road goes approximately three kilometers to the west, less that half a kilometer from the west edge of the property. It is proposed that the road was built in the 1970's to access molybdenite showings in the area.

Geological and geochemical work on the property was accomplished using helicopter support for day traverses and fly camps for detailed work.

Claim Status

The Catfish property consists of ten contiguous mineral claims comprising a total of 76 units, Figure 3. Table 1 lists the valid mineral claims.

TABLE 1

SUMMARY OF CLAIMS

Claim Name	No. of Units	Record No.	Expiry Date
Catfish	4	2640	June 24, 1990
Catfish 2	2	2755	Oct. 30, 1990
Catfish 3	3	2756	Oct. 30, 1990
Catfish 4	2	2757	Oct. 30, 1990
Catfish 5	15	3116	March 4, 1990
Catfish 6	8	3117	March 4, 1989
Catfish 7	20	3118	March 4, 1989
Iguana	12	3100	Jan. 5, 1989
Catfish 10	4	3433	Sept. 3, 1989
Catfish 11	6	3434	Sept. 6, 1989

Summary of Previous Work

The area has been mapped by the Geological Survey of Canada, Christie, 1957 and the B.C. Geological Survey, Mahalynuk and Rouse, 1988 a and b, and Rouse, Mihalynuk, Moore and Friz, 1988.

Prospectors first entered the study area in 1878 with the building of the White Pass and Yukon Railroad. The Klondike Gold Rush between 1897 and 1898 brought a large number of prospectors. The Catfish property hosts four old adits as well as numerous trenches indicating considerable time and effort was spent in the area.

More recent work includes molybdemen-copper exploration in the 1970's (?) which included the building of the three kilometer long road on the north mountain. The area was previously staked as "Linda" and more recently as "Friendship Silver". The B.C. mineral inventory lists "Linda" as a molybdenite occurrence.

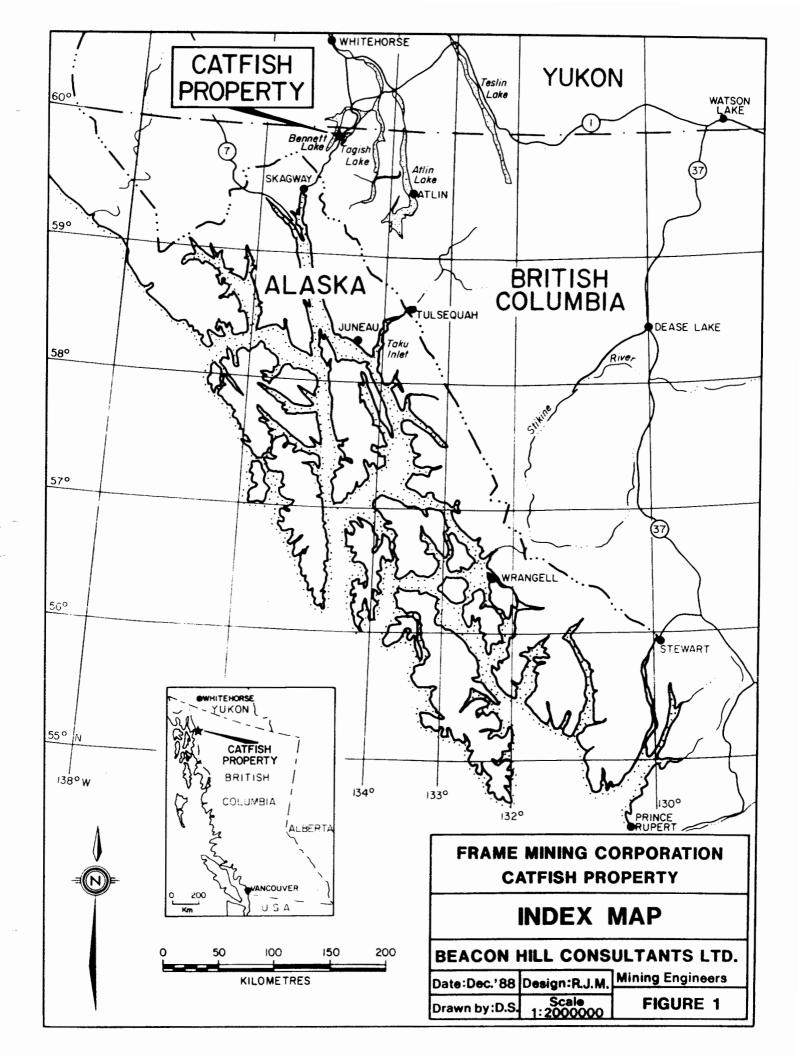
In 1986, Hugh Copland of Whitehorse, Yukon Territory, completed a geological and prospecting program on the north mountain, Copland, 1987. In 1987, the B.C. Geological Survey mapped the area and did reconnaissance stream sediment and lithogeochemical sampling, Figure 4. The results indicate that the creek from Paddy Pass and its most easterly, south tributary are anomalous in gold, arsenic and antimony.

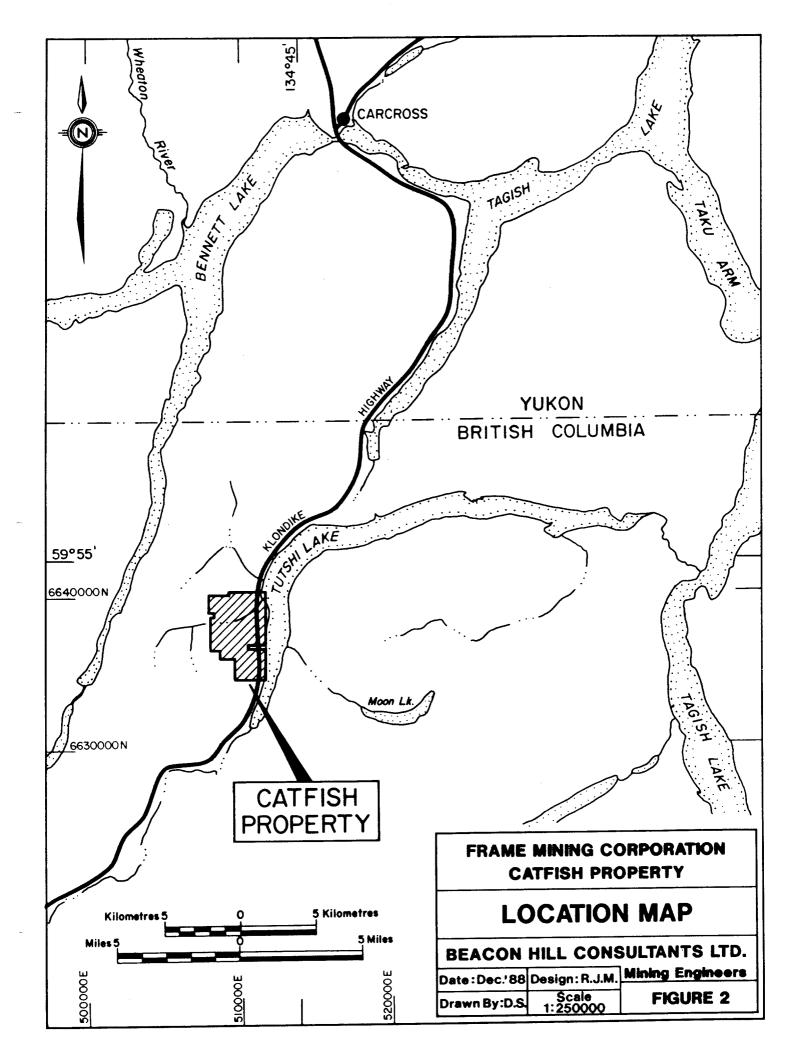
Summary of 1988 Exploration

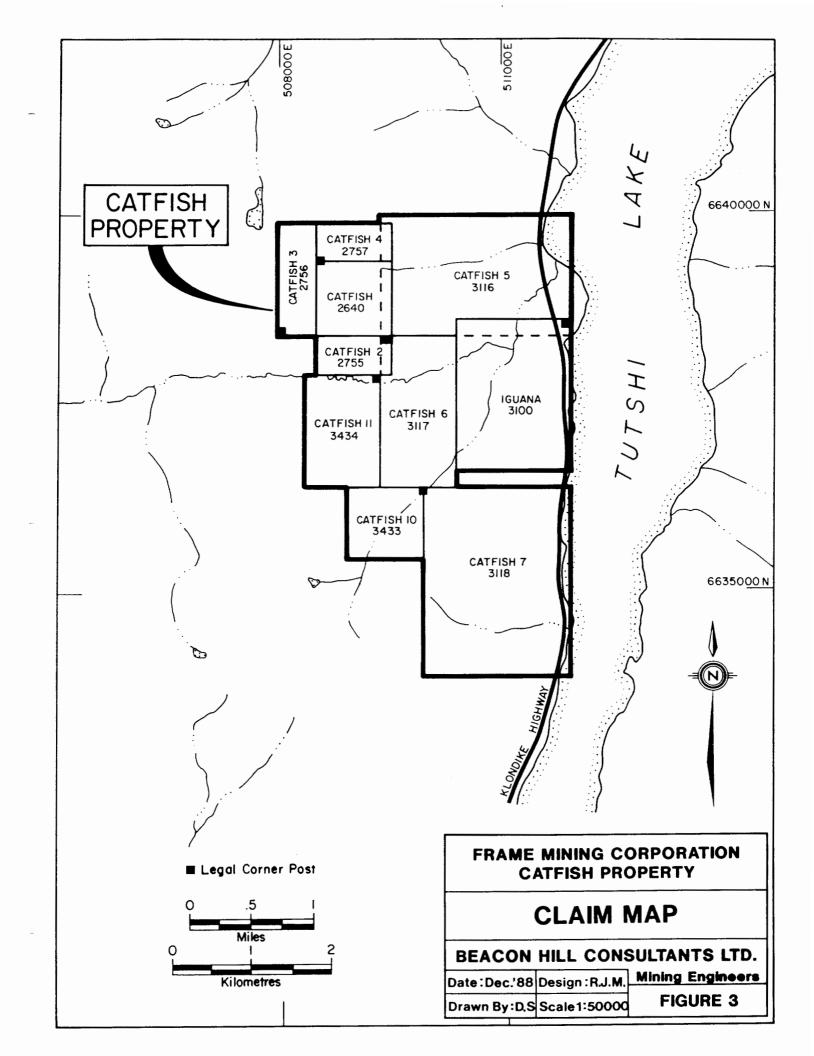
The 1988 exploration program was designed to evaluate the entire Catfish property and to provide recommendations concerning its potential.

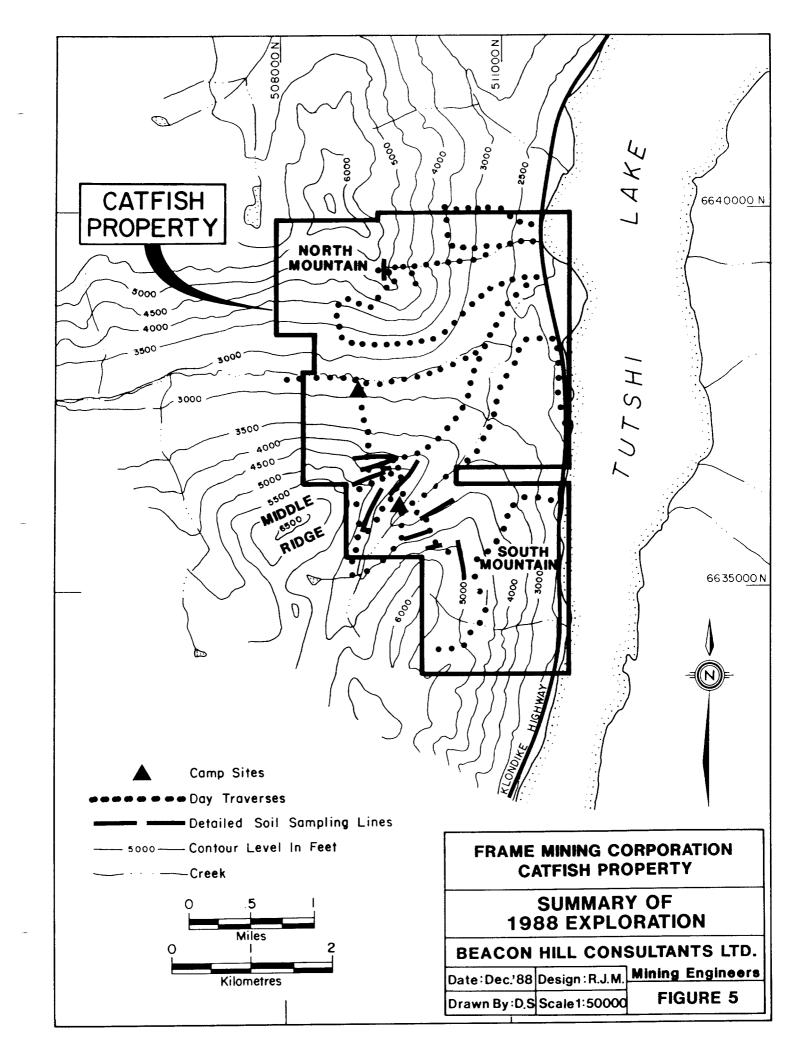
The field program was completed between August 19 and September 9, 1988. The scope of work was limited to a geological appraisal with geochemical sampling to provide reconnaissance coverage as well as detailed sampling where deemed necessary.

A summary of the 1988 work program is listed in Table 2 and shown on Figure 5.


TABLE 2


SUMMARY OF 1988 EXPLORATION


The work completed in 1988 includes:


- nine day traverses.
- two fly-camps.
- twelve detailed soil sampling lines.
- a total of 297 soil and stream samples, 61 rock samples and 31 petrographic samples.
- air photo enlargements.
- 1:5 000 scale topographic base map from air photos; BC 5500 83-86, 132-135.

Able assistance was provided by Nick Morris who collected the majority of the soil and stream samples.

GEOLOGY

General Geology

The Tutshi Lake area marks the transition between the Coast Plutonic Complex and the Intermontane Belt to the east. Three terranes are evident, Stikinia, Nisling and Cache Creek. Stikinia is dominated by rocks of the Whitehorse trough and is separated from Cache Creek terrane to the northeast by the Nahlin fault and Nisling terrane to the southwest by the Llewellyn fault. Nisling terrane comprises metamorphic rocks called "Boundary Ranges", Mihalynuk and Rouse, 1988 (a). This metamorphic terrane is bounded on the west by granites and granodiorites of the Coast Plutonic Complex, Figure 6.

Property Stratigraphy

The oldest rocks covered by the Catfish property are the Boundary Ranges metamorphics, Table 3. These strata are strongly foliated and appear to be folded within northwest trending belts. Protoliths include basalt and siltstone as well as minor granite (?) and carbonate. Diorite dykes are common and appear to be confined to this sequence. Quartz veining within the unit was observed on both the north mountain and middle ridge. On the north mountain the veins are up to one meter wide and appear to be weakly mineralized. At the adit on the north mountain the west contact of the vein is highly silicified and altered over 1.5 meters. On the middle ridge the quartz veins are highly mineralized with arsenopyrite. The veins are very common and range in thickness from a centimeter to 1.5 meters.

Nine samples of the metamorphics were collected for petrographic description, Table 4 lists the samples and a brief description.

TABLE 4

PETROGRAPHIC DESCRIPTIONS - BOUNDARY RANGES METAMORPHICS

Sample No.	Description	Sample Location
5P	Altered andesite; dark gray, pervasively altered	Middle Ridge
8P	Sheared wacke; green to black, foliated	Middle Ridge
9P	Andesite; dark green to black, vesicular	Middle Ridge
10P	Meta-arkose; dark gray, foliated	Middle Ridge
21P	Sheared feldspathic wacke; dark green strongly foliated	Middle Ridge

24P	Brecciated impure meta-chert; green	Middle Ridge
25P	Meta-basalt; dark green, foliated	Middle Ridge
27P	Chloritic wacke; green, weakly foliated	Middle Ridge
30P	Sheared metasediment; green, strongly foliated	Paddy Pass Creek (Fig. 15)

Stratigraphically (?) above the metamorphic terrane is the Upper Triassic, Stuhini Group. Within the Catfish property the Shuhini Group is dominated by lapilli and ash tuffs and green pyroxene porphyry tuffs. On the north mountain a prominent shear zone is exposed in one of the steep east drainages. The shear appears to be oblique to contacts and comforms with strong east-west jointing developed in the overlying sediments. Alteration within the shear includes carbonate and pervasive pyrite; with weathering massive, white, bleached layers and gossanous pods. Mineralization other than pyrite was not observed. No samples were collected for petrographic analysis.

Contact relationships between the Boundary Ranges metamorphics and the overlying Stuhini Group appears stratigraphic on the north mountain. Mihalynuk and Rouse 1988 (a) observed both stratigraphic and tectonic contact relationships on the north mountain. Detailed work in the area shows that the tectonic contact is probably a later structural feature which is exemplified by the shear on the east side of the mountain.

Above the Stuhini Group is the Lower Jurassic, Inklin Formation which is dominated by black, carbonaceous, siltstone and argillite within the Catfish property. The best exposure of the Inklin Formation is on the middle ridge where it is highly folded and occasionally cut by dykes. At the extreme northeast edge of the property the formation is coarser grained and a cleaner, more mature, sediment. No mineralization was observed in the Inklin Formation though associated alteration, with dykes, included pyrite. Rock sample 22 P is from the middle ridge and represents the Inklin Formation. It is described as a carbonaceous mudstone. Rock sample 23 P is described as a wacke with mudstone intercalations and is probably from the Inklin Formation, Appendix III.

The contact between the Stuhini Group and Inklin Formation on the north mountain is covered though Mihalynuk and Rouse (1988 a) believe it to be gradational. On the middle ridge the Inklin Formation overlies the Boundary Ranges metamorphic terrane. The contact does not include a basal conglomerate, as at other localities, but it could be faulted as it appears to be a conduit for a major intrusive.

Above the Inklin Formation is a Lower to Middle Jurassic volcanic sequence. Within the Catfish property the volcanic sequence is dominated by dark grey, bladed-feldspar porphyry flows and tuffs and cobble conglomerates. No mineralization was observed within the sequence though a rock sample collected by Rouse, Mihalynuk, Moore and Friz 1988 carried 975 p.p.m. antimony.

Six rock samples from the volcanics were collected for petrographic analysis, a brief description is given in Table 5.

TABLE 5

PETROGRAPHIC DESCRIPTIONS - LOWER TO MIDDLE JURASSIC VOLCANICS

Sample No.	Description	Sample Location
1P	Altered andesite; grey, massive	South Mountain
2P	Altered rhyolite; grey, massive	South Mountain
4P	Andesite lapilli tuff; massive	South Mountain
15P	Andesite tuff; grey, massive	South Mountain
*16P	Hematitic chert; pink-red, iron rich	South Mountain
18P	Altered andesite; rusty, dark grey, some pyrrhotite	Middle Ridge
20P	Sericitized andesite;	Middle Ridge

*16 P is probably a sedimentary equivalent to the volcanics.

The contact between the Inklin Formation and the overlying volcanics is poorly exposed on the middle ridge. Mihalynuk and Rouse (1988 a) mapped the contact as undulating and erosional. Clasts within the cobble conglomerates of the upper sequence are composed dominantly of Inklin Formation.

Intrusive rocks are dominated by Upper Cretaceous, Coast Intrusions. The granites are mapped as medium to coarse-grained, equigranular and undivided, Mihalynuk and Rouse 1988 (b). On the middle ridge, detailed mapping located another mass of granite which is believed to be part of the same core as the main bodies to the north, south and west. Associated with the middle ridge granite is a fine crystalline equivalent which is believed to be the chilled contact. These fine intrusives host altered veins which carry arsenopyrite. One old adit as well as numerous trenches explored the mineralization within the intrusives on the middle ridge.

Six rock samples from the Coast Intrusives were collected for petrographic analysis, Table 6 provides a brief description.

TABLE 6

PETROGRAPHIC DESCRIPTIONS - COAST INTRUSIVES

Sample No.	Description	Sample Location
3 P	Aplite; yellow-white massive	South Mountain
11 P	Aplite; white, massive, quartz phenocrysts	Middle Ridge
12 P	Aplite; white, massive, quartz phenocrysts	Middle Ridge
19 P	Granite porphyry; white, coarse crystalline	Middle Ridge
*28 P	Granite porphyry; white, coarse crystalline	Middle Ridge
*29 P	Aplite; yellow-white, massive	Middle Ridge
98 P	Silicified rhyolite; white-yellow, massive, mineralized	I Middle Ridge
*samples 28 a	and 29 P are in contact with one another.	

Minor intrusives include a variety of rock types, Table 7 provides a brief summary.

TABLE 7

PETROGRAPHIC DESCRIPTIONS - MINOR INTRUSIVES

Sample No.	Description	Sample Location
6 P	Diorite porphyry; dark green-black, massive	Middle Ridge
7 P	Latite; yellow-white, massive	Middle Ridge
*13 P	Trachyte; yellow-white, massive	Middle Ridge
17 P	Monzonite porphyry; light grey	Middle Ridge
26 P	Monzonite porphyry; yellow-white	Middle Ridge

*13 P appears to be a structural inclusion within the metamorphics.

Mihalynuk and Rouse 1988 (b) have also mapped a Mesozoic, granodiorite intrusive on the eastern edge of the Catfish property which is closely associated with the Llewellyn fault zone.

TABLE OF FORMATIONS

Era	Period of Epoch	Formation	Lithology
Quaternary		Quaternary alluvium	Poorly sorted sands, gravels and till
	Upper Cretaceous?	Montana Mountain volcanics	Intermediate to felsic pyroclastics and flows: typically altered an orange weathering: crosscut by 64-Ma intrusive*
		Fault or intrusive conta	act * *
	Upper Cretaceous	Coast intrusions	K-feldspar megacrystalline granite varying to alkaline granite an granodiorite; dated at 77.9 and 89.5 Ma***
		Chilled intrusive con	tact
		STIKINIA	
	Probable lower to mid- Jurassic	Volcanics	Dominantly variegated pyroclastic lapilli tuffs; rhyolitic tuffs; bladed-feldspar porphyry flows
Mesozoic	· · · · · · · · · · · · · · · · · · ·	Unconformity and/or grad	dational
	Lower Jurassic	Laberge Group. Inklin Formation	
	Erosional unconformity		
	Upper Triassic	Stuhini Group	Green pyroxene feldspar porphyry tuffs and breccias; variegated tuffs; minor tuffaceous sediments, limestone
		Erosional unconform	ity
	Triassic?	Early intrusives	Polyphase granodiorite to alkali granite, typically sheared, foliated and/or altered
		Intrusive and/or fault	ed
		NISLING TERRAM	NE
	pre-Permian (maximum age unknown)	"Boundary Ranges metamorphics"	Argillaceous siltstones, greywackes, lesser basalts, felsic pyroclastcis and carbonates; variably-metamorphosed to upper greenschist grade
Paleozoic/	Not ot) served — separate terranes assumed	l in fault contact, if at all
Proterozoic	Į	CACHE CREEK	
	Mississippian	Nakina Formation	Massive greenschist, altered basic flows and tuffaceous sediment

***Bultman (1979)

From: Mihalynuk and Rouse B.C.G.S. Paper 1988-1

TABLE 3

Property Structure

The dominant structure within the Catfish property is the Llewellyn fault zone which is oriented at 340 degrees. All of the contacts and major structures follow this trend.

Eight bedding attitudes were measured, Figure 10, which show an average orientation of 156/52 W (strike/dip). These measurements conform with the overall trend of the map area.

Twenty-one foliation attitudes were measured, Figure 11, which show an average orientation of 348/73 E (strike/dip). These measurements represent prominant layers, though not necessarily bedding, and conform with the map trend.

Twenty-five jointing attitudes were measured, Figure 12. Two joint set are apparent, the most prominent is perpendicular to bedding and there is a weak set paralleling bedding.

Five shear structures were measured, Figure 13, all along the Klondike Highway. The average attitude of the shears is 245/75 NW (strike/dip). The shears represent vein and gouge zones, occasionally extremely rusty, and they conform to the vein orientations.

An analysis of thirty-eight vein orientations from the three main areas shows that the veins are approximately perpendicular to the 340 degree trend. Seventy-nine percent of the veins have an average orientation of 58/77 SE (strike/dip), Figure 14.

Mineralization

At least four types of mineralization was observed, molybdenum in quartz veins, in granite; a bleached, pyritized shear zone; a high antimony tuff horizon; and quartz veins with arsenopyrite. Only the latter is deemed to have economic importance at present.

The molybdenum in quartz veins was observed on the north mountain west of the main adit, and was not investigated further. The bleached, pyritized shear zone is in an east drainage of the north mountain. Although large gossans have formed, no mineralization other than pyrite was observed. The high antimony tuff horizon is an interesting though questionable target.

The quartz veins with arsenopyrite are hosted by Boundary Ranges metamorphics and the fine grained granitic intrusions. The veins have been located on both the north and south mountains and the middle ridge. Four old adits along with numerous trenches were found.

On the north mountain, one major quartz vein up to one meter wide was traced for at least 100 meters on surface. The vein hosts an adit, 15 meters long, as well as several trenches. Sampling of high grade (?) material from the vein at the adit, an upper trench and the west contact at the adit, respectively, produced the following results:

TABLE 8

SELECTED SAMPLING - NORTH MOUNTAIN

Sample No.	Description	Results							
		Au p.p.b <u>.</u>	Ag p.p.m.		Pb p.p.m.	Zn p.p.m.	Sb p.p.m.	As p.p.m.	
C8R 12R	high grade, grab, trench	6720	110.9	451	25215	159	12462	17162	
C8R 13R	high grade, grab, adit	730	105.5	72	3462	8	619	3035	
C8R 14R	chips over 1.5 m, west contact	1660	15.7	250	1915	262	121	11399	

The mineralization occurs as coarse blebs within the vein while the west contact is essentially a stockwork of quartz veining with finely disseminated mineralization.

On the south mountain, mineralized quartz veins are confined to the fine intrusive host. The northeast contact with the metamorphics is a sharp linear feature which has been made more obvious by erosion and a gully. The veins are generally thin, 0.6 meters was the thickest vein noted. There appears to be some zoning within the host, between the elevations of 1400 and 1385 meters veining is scarce while above and below this zone veins are more common. Only one grab sample was taken on the south mountain with the following results:

TABLE 9

SELECTED SAMPLING - SOUTH MOUNTAIN

Sample No.	Description		Results					
		Au p.p.b.	Ag p.p.m.	Cu p.p.m.		Za p.p.m.	Sb p.p.m.	As p.p.m.
C8R 10R	grab, high grade	13210	351.4	2153	14646	75	5292	43076

The mineralization is confined to quartz veins which have an arsenopyrite rich core and a green to yellow alteration envelope, scorodite.

On the middle ridge, the mineralized veins occur in both the fine intrusive and the metamorphics. The mineralization is of two forms, arsenopyrite rich cores with scorodite envelopes in the intrusive host and coarse arsenopyrite, with rare chalcopyrite, in quartz veins, with no alteration in the metamorphic host.

In the fine intrusive host there is one adit, 5 meters long, and two major trenches. On the south side of the middle ridge, the veins are up to 3.1 meters thick and have an overall east-west trend. On the north side of the middle ridge, from the ridge top down approximately 25 meters there is an altered, mineralized zone up to 1.6 meters thick which trends north-south. At approximately 1260 meters elevation on the north side there is a zone up to 30 meters thick with weak, pervasive quartz-arsenopyrite veining which trends east-west.

TABLE 10

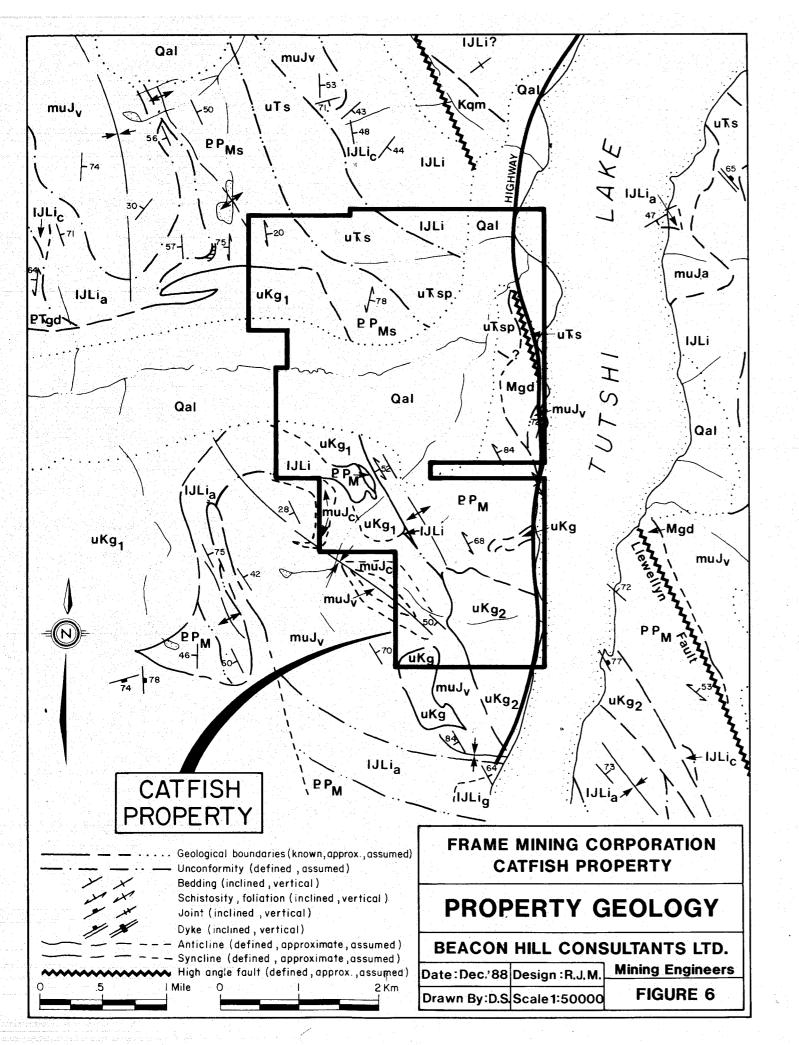
MIDDLE RIDGE: INTRUSIVE HOST.

Sample No.	Description				Results			
		Au*	Ag	Cu	Pb	Zn	Sb	As
		p.p.b.	р.р.т.	p.p.m.	p.p.m.	p.p.m.	p.p.m.	p.p.m.
C8R 4R	grab, high grade vein, 0.1 m	2420	20.9	614	29	56	186	42980
C8R 5R	grab, high grade vein, 0.1 m	16690	32.2	451	165	24	670	42779
C8R 54R	float, high grade	0.024	3.8	34	298	11	78	36131
C8R 55R	float, high grade	0.072	11.2	730	29	46	220	51538
C8R 56R	float, high grade	0.020	8.1	263	59	13	163	34784
C8R 60R	vein, 0.03 m	0.028	7.2	261	111	74	160	51072
C8R 61R	latite, host	92	0.1	15	13	25	12	4156
C8R 62R	vein, lower adit 0.1 m	0.157	6.0	19	37	17	563	50894
C8R 63R	vein, 0.35 m	525	1.0	7	11	11	816	99999
C8R 70R	grabs from 3.5 m vein	0.092	54.3	102	804	12	621	51076
C8R 85R	chips across altered zone, 1.0 m	245	147.1	190	13470	144	118	27414
C8R 86R	chips across rusty zone, 1.0 m	15	0.4	57	132	321	3	1166
C8R 87R	chips across rusty zone, 4.2 m	0.001	0.8	28	40	165	2	1093
C8R 88R	chips across vein, 1.6 m	0.051	9.3	206	136	41	36	24616
C8R 96R	chips across vein, 1.0 m	0.007	19.5	315	209	96	41	26680
C8R 98R	float	38	5.8	26	- 23	8	2	4472
C8R 101R	chips across vein, 1.0 m	1220	22.1	206	352	16	80	48314

* Results shown in decimal form are gold assay values in oz/ton.

Rock sample 98 P represents the mineralized fine intrusive and is described as a silicified rhyolite, Appendix III. Its origin is uncertain though it has a ghost prototexture which suggests a metasomatic origin. The rock is from the same intrusive body as rock samples 3, 11, 12 and 29 P which are all described as apilites. A possible explanation would see the siliceous solutions, carrying the arsenic and gold, invading the intrusive and totally replacing it.

In the metamorphics, on the south side of the middle ridge there are two adits and one major trench. The lowest adit, at approximately 1200 m elevation, is 12 meters long and was driven to test a 1.35 m thick quartz vein exposed on surface. Approximately 85 meters above the lower adit a major trench and a partially caved adit were located. The trench exposed a quartz vein up to 0.85 m thick and the adit was started some five meters below. The adit is approximately seven meters long and was abandoned before it reached the vein, the entrance is almost totally caved with only a 0.4 m opening. The vein is highly mineralized with bands up to 0.2 m of massive arsenopyrite. To the northeast the vein runs at least 200 meters, where it is 0.4 meters thick, while it is exposed approximately 20 meters to the southwest where it thins to 0.4 m and appears to be truncated by the intrusive. On the north side of the middle ridge, within the metamorphics, several important quartz veins were located. One highly mineralized vein was located at approximately 1308 meters elevation in a steep gully. The vein trends 60 degrees and is at least 1.4 meters thick, with bands of massive arsenopyrite. Sampling of veins within the metamorphics produced the following results:


TABLE 11

Sample	Description	Results						
No.		Au*	Ag	Cu	Pb	Zn	Sb	As
		p.p.b.	p.p.m.	p.p.m.	p.p.m.	p.p.m	p.p.m.	p.p.m.
C8R 57R	float, massive arsenopyrite	0.053	63.8	2681	178	44	522	51693
C8R 58R	vein, 0.03 m	0.002	1.7	82	26	46	5	5276
C8R 59R	metasediment host	32	0.1	19	12	104	2	100
C8R 64R	vein, 1.0 m	345	1.9	292	10	15	101	37054
C8R 65R	vein, 0.03 m	360	12.0	105	152	104	152	99999
C8R 66R	vein, 0.85 m	0.124	275.0	286	8195	28	3291	51311
C8R 67R	vein, high grade							
	arsenopyrite	0.038	184.2	240	1025	153	744	51340
C8R 97R	vein, 1.2 m	26	0.2	6	22	44	2	84
C8R 99R	vein, 0.6 m	1.380	28.0	123	585	43	533	51241
C8R 100R	vein, 1.4 m	1.120	22.3	318	218	484	302	51338

MIDDLE RIDGE: METAMORPHIC HOST

* Results in decimal form are gold assay values in oz/ton.

One rock sample of the vein material was procured, sample 67 P, Appendix III. The rock is described as arsenopyrite with vein quartz. Accessory minerals are minor, 1% marcasite, trace chalcopyrite and trace tetrahedrite (?) or Pb-Sb sulfosalt. The sample assays at 0.038 oz/ton gold.

E

	GEO
	Qal Unconsolidated glacial till and poorly sorted alluviu
	MIDDLE TO UPPER JURASSIC (?)
	muJv Variegated pyroclastic lapilli tuffs; bladed feldspar p
	muJc Clast-supported conglomerate derived primarily fro
	LOWER JURASSIC
	IJLig Siltstones, arenaceous wackes (grey
	IJLia Argillites (may be silty)
	IJLic Conglomerates; rarely contain macro.
	UPPER TRIASSIC
	STUHINI GROUP (where undivided denoted as uts)
	uTsp Green pyroxene-feldspar porphyry tul
	PALEOZOIC TO PROTEROZOIC (?)
	BOUNDARY RANGES METAMORPHICS (where undivide A polydeformed metamorphic terrane of uncertain of
	PPM within the map area, and reported up to amphiboli abundance are:
	PPMS Argillaceous siltstones, feldspathic w (carbonate bands diagonally hatched
	COAST INTRUSIONS (where undivided denoted as uKg) Medium to coarse-grained hornblend
	uKg1 Intrusive rocks; with local gradations t and lesser granodiorite (uKgd).
	uKg2 Equigranular uKg1 – lacking megacn
	CRETACEOUS
	Kgd, qm g,d Granodiorite, quartz monzonite, granite and diorite uKg; may rarely be crosscut by ?uKg1,2. Common
	MIDDLE TO UPPER JURASSIC
	muJa Hypabyssal andesites; medium grained andesitic fe green, weakly to strongly altered; probably coeval
	TRIASSIC (?)
-	Tgd, qm Porphyritic granodiorite to quartz monzonite; foliate 20 per cent. Minor secondary chlorite, epidote and
1	MESOZOIC
	Mgd Granodiorite; altered, sheared and brecciated felsic May in part include rocks of PTgd
	PALEOZOIC? TO TRIASSIC
	PTgd Altered and deformed intrusives. Typically altered a leucogranite and guartz-diorite; may be silicified.
	Adapted From Miholupuk and P

LOGY LEGEND

porphyry flows

m Inklin Formation siltstones and argillites

ed denoted as IJLi)

wackes); may contain macrofossils

ofossils

iffs and breccias characteristic of this group

ed denoted as PPM)

origin, variably metamorphosed to upper greenschist grade ite grade to the south.** Protoliths in approximate order of

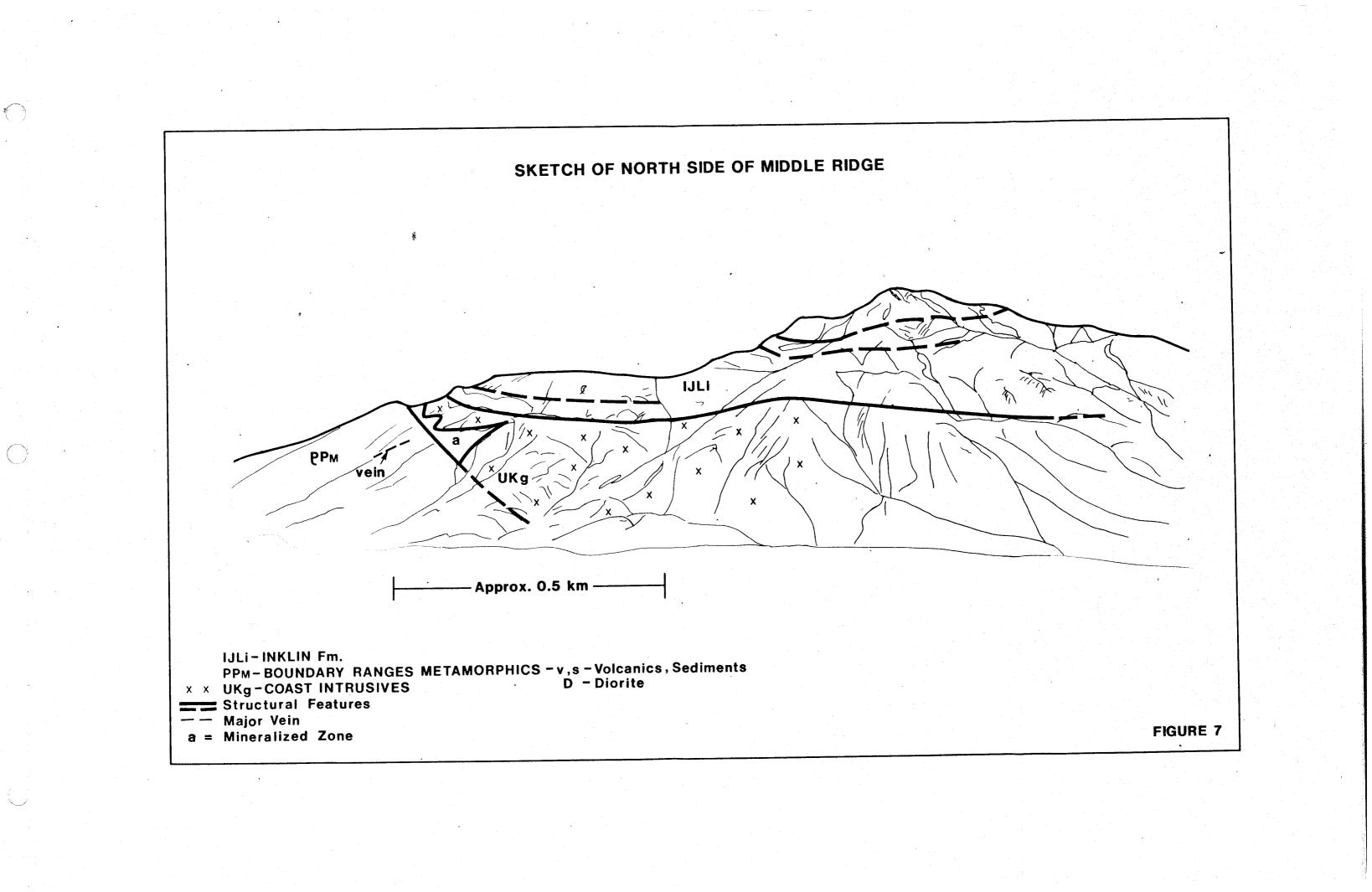
vackes and lesser felsic pyroclasts and carbonates d).

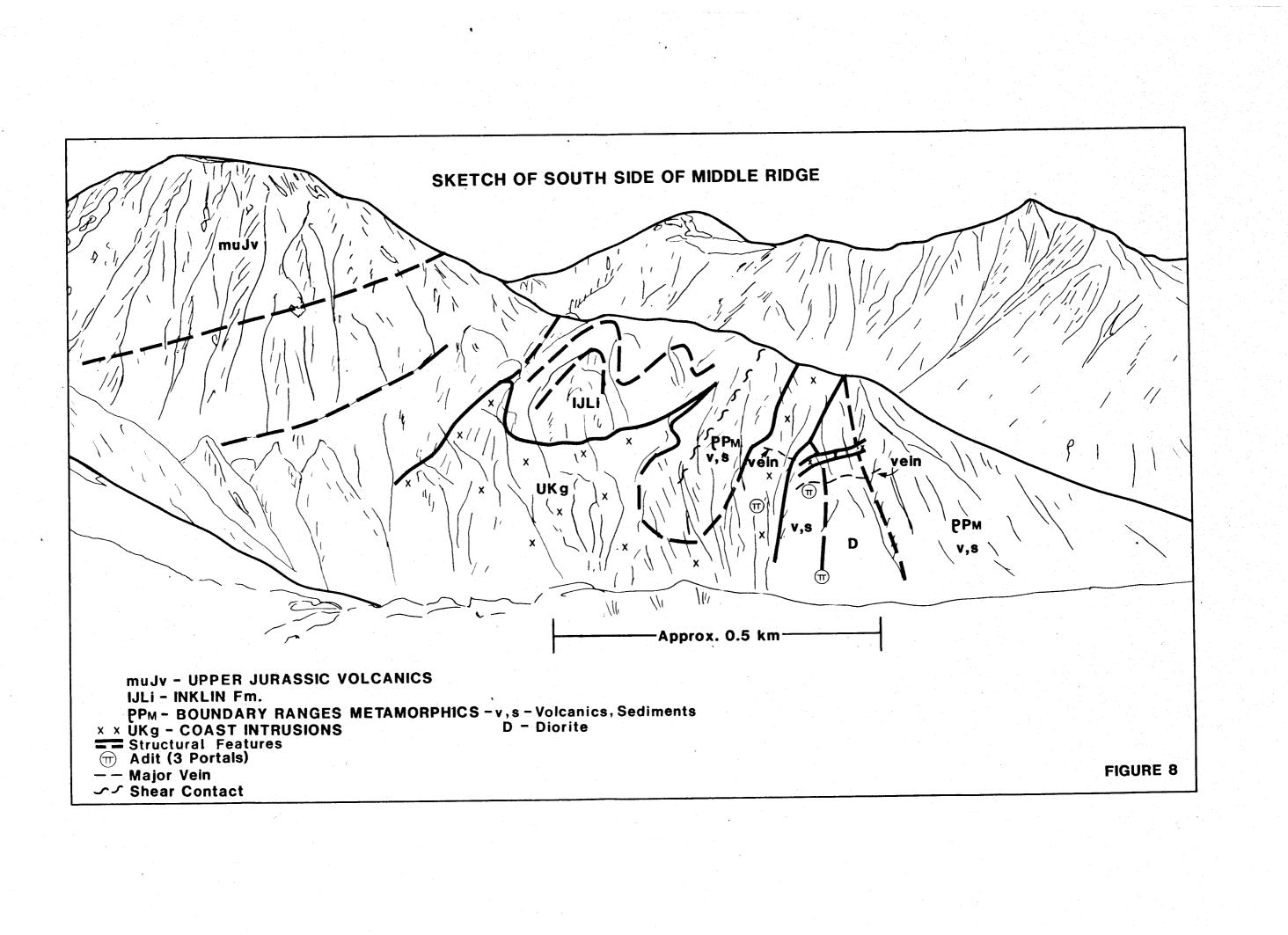
de and biotite granites are most characteristic of the Coast to potassium metasomatized alkaline granite (denoted "A")

stalline potassium feldspar with minor localized exceptions

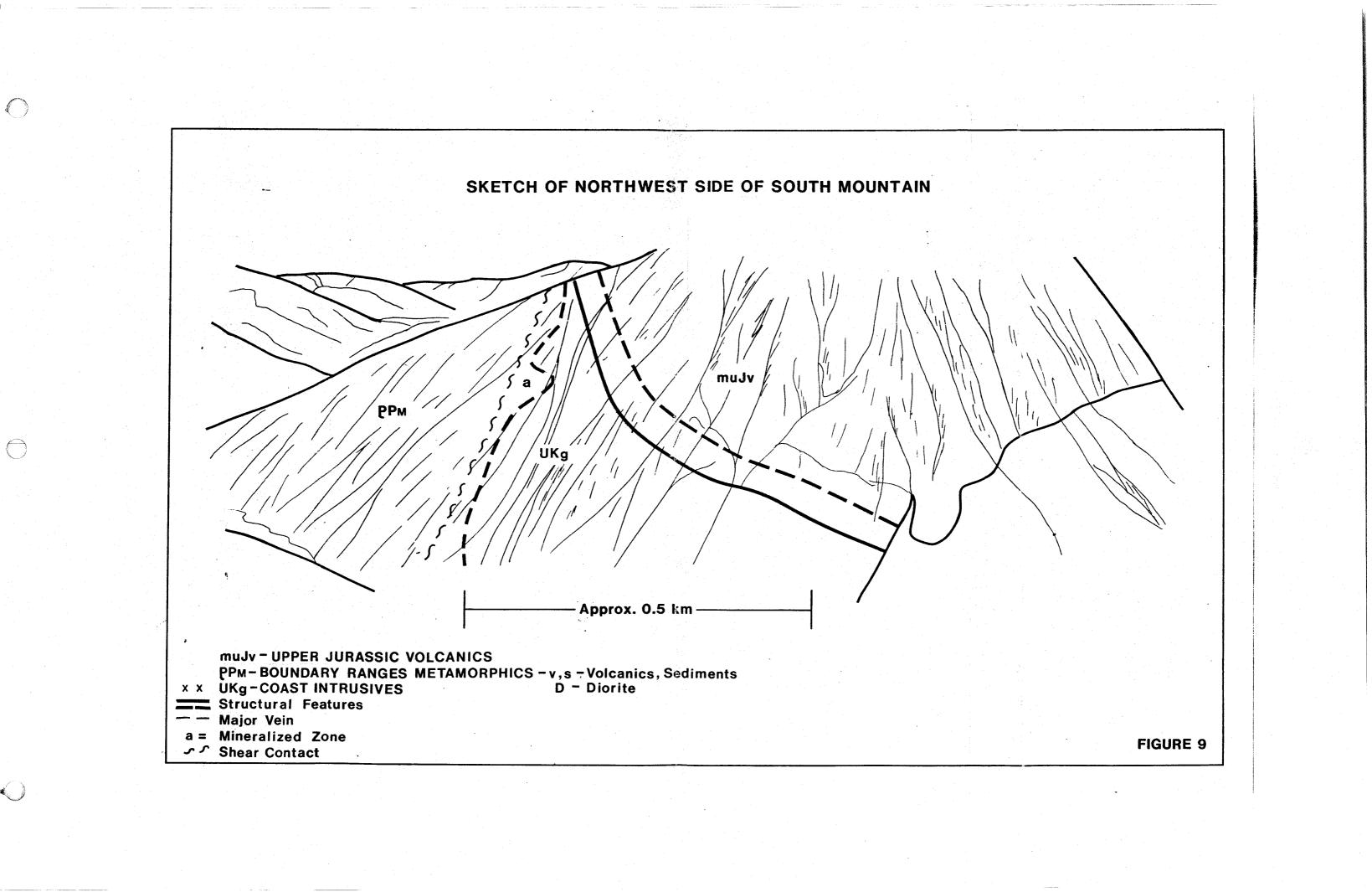
e. Medium to coarse grained and typically more altered than nly grades rapidly from one phase to another

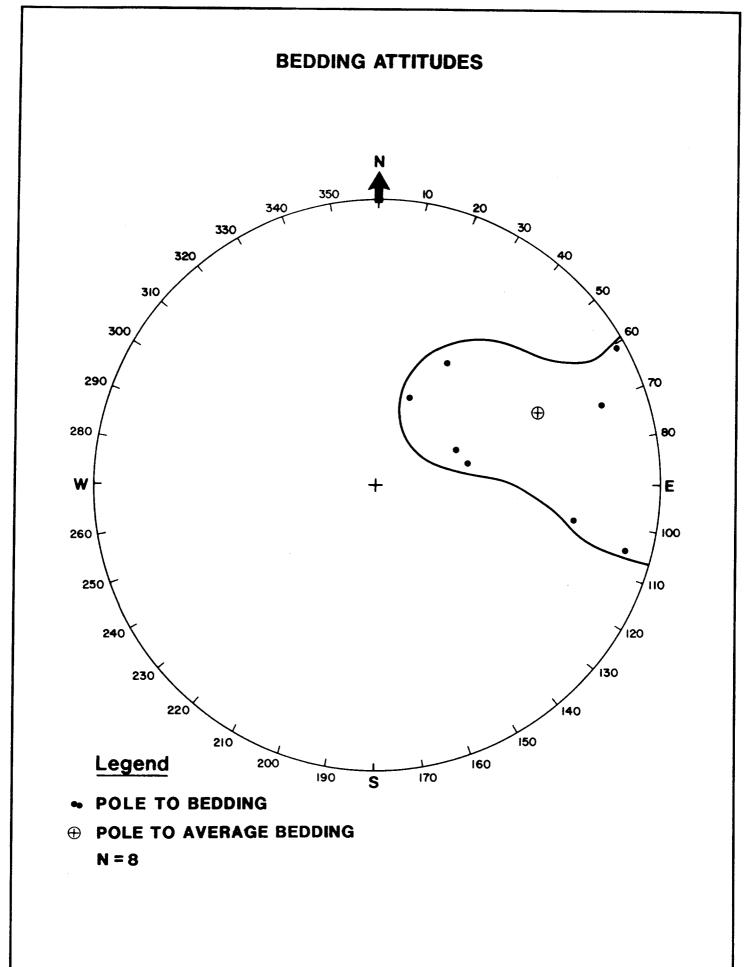
eldspar porphyries commonly containing hornblende. Grey to with muJy

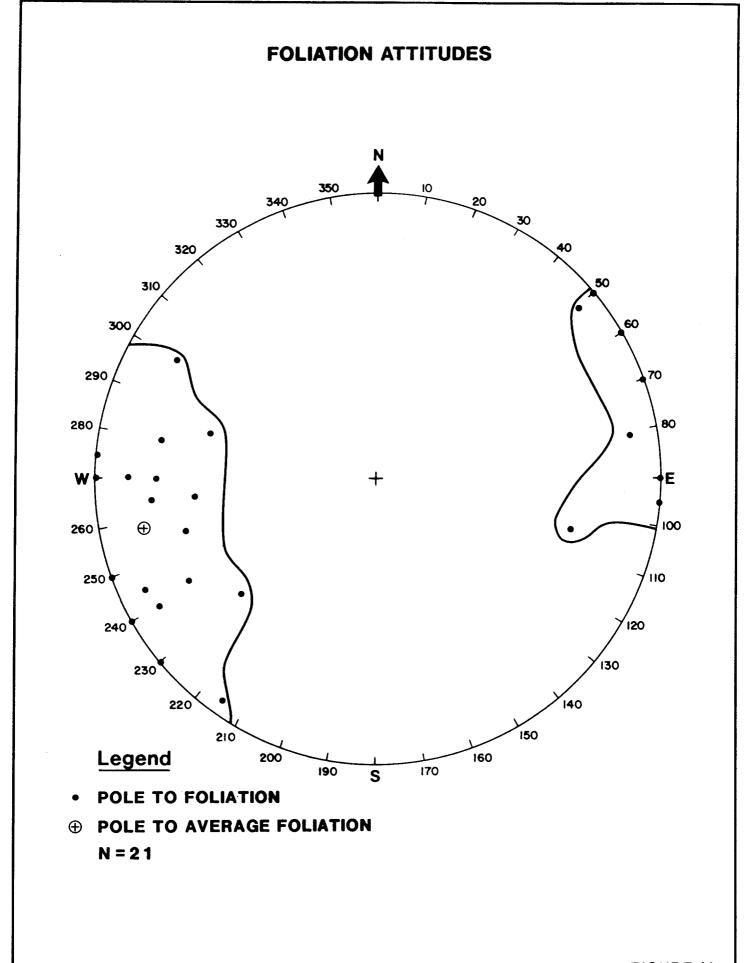

ed with potassium feldspar phenocrysts and hornblende up to nd quartz


ic intrusive rocks primarily confined to the Llewellyn fault zone.

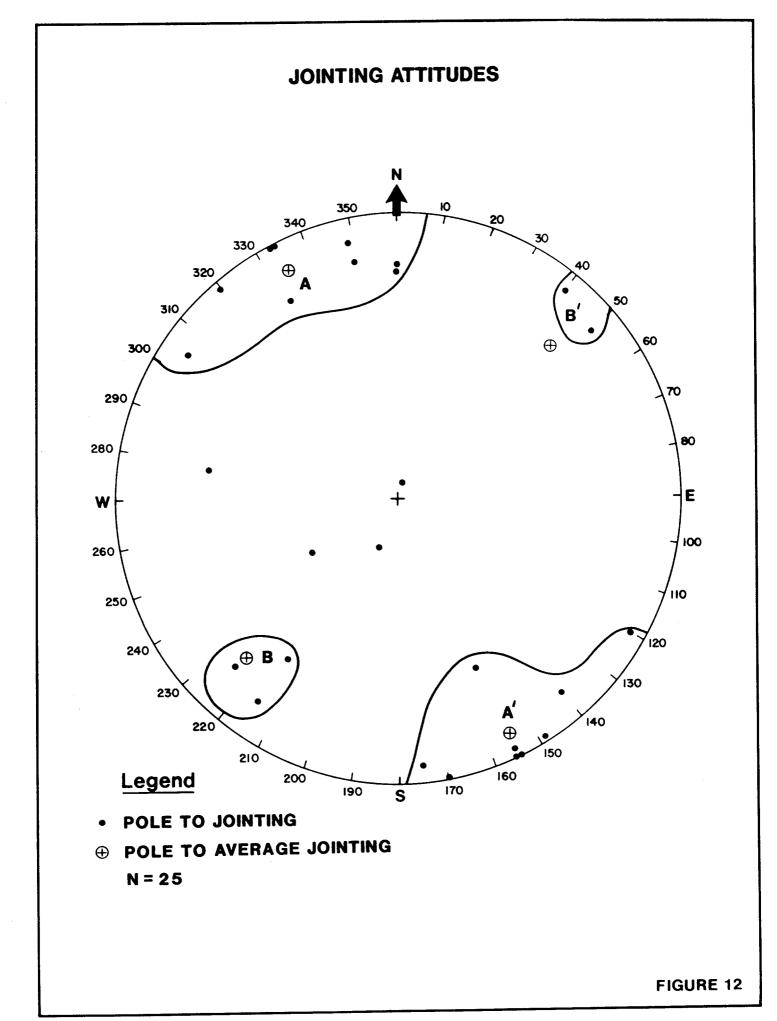
and/or deformed weakly to strongly. Composition variable to

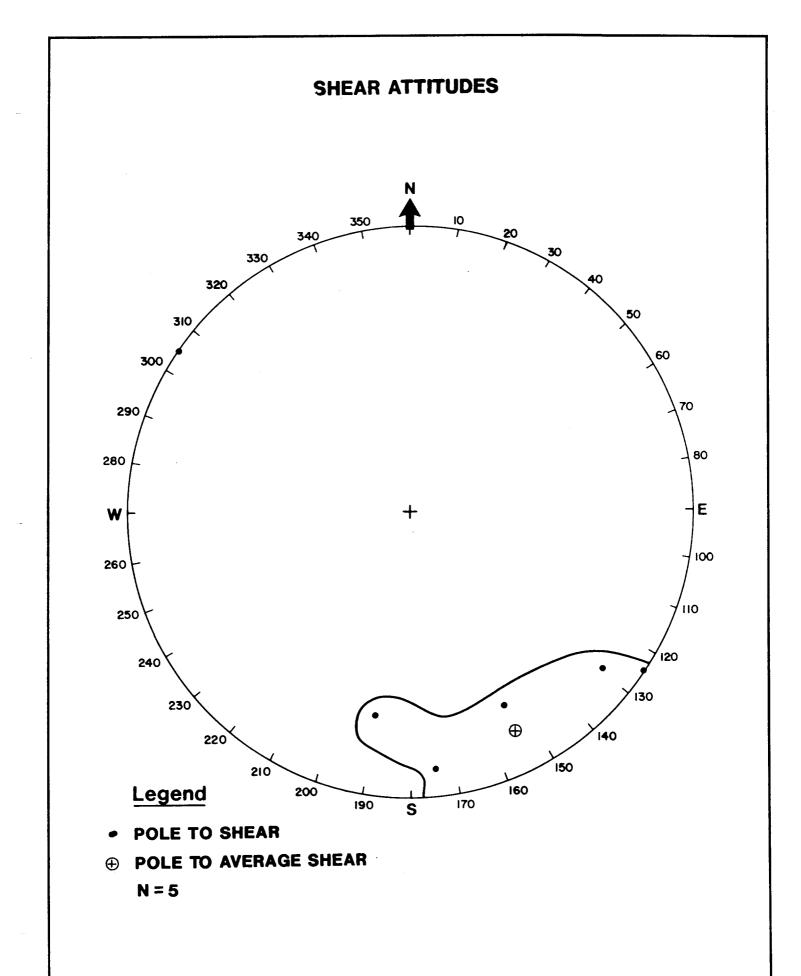

Adapted From: Mihalynuk and Rouse B.C.E.M.P.R. OPEN FILE MAP 1986-5


FIGURE 6



()




FIGURE 10

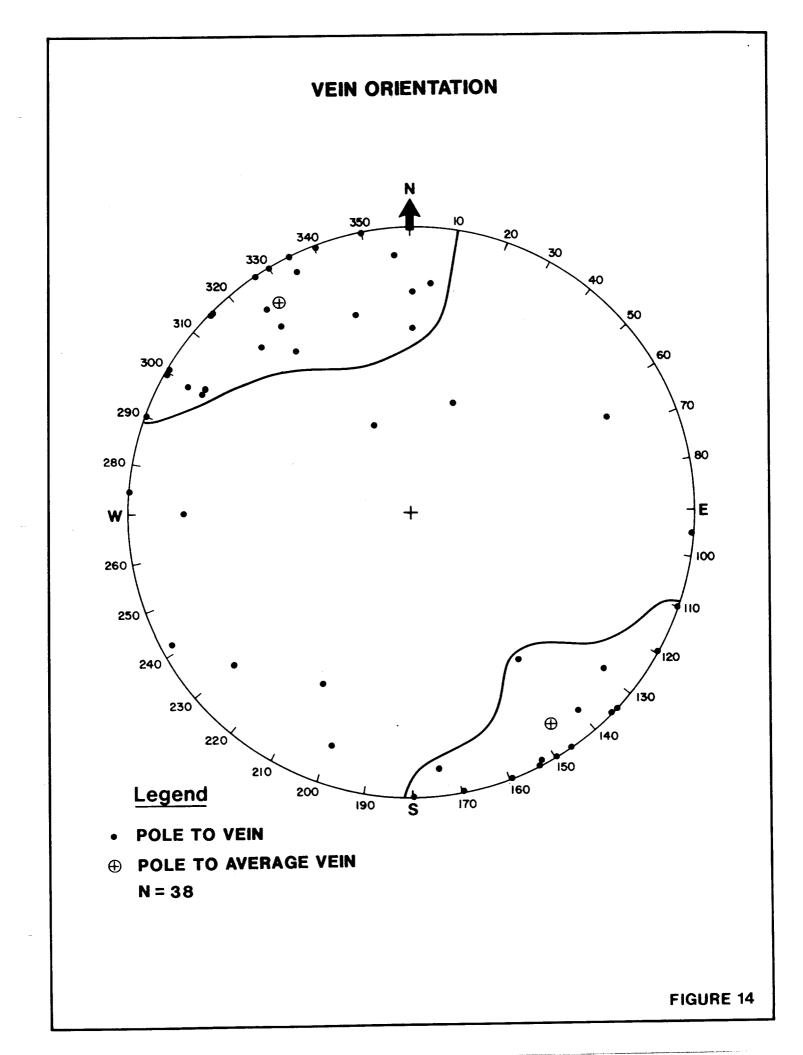

FIGURE 11

FIGURE 13

GEOCHEMISTRY

Sample Types

Three sample types were collected, soil, stream sediments and rock. The soil samples represent B-horizon material where available though generally soil is poorly developed at higher elevations. Where soil was not identified, the sample represents fine debris on scree slopes. Stream sediment samples represent fine material from the active portion of a stream. Rock samples are of several types, float samples, where the source is not known; grab samples, a sample from outcrop which may not be representative of the total outcrop; and chip or channel samples which have been collected to represent an outcrop or portion of an outcrop.

Discussion of Results

All sample locations are shown on Figures 15 and 16, while the results are listed in Appendix II. Figures 30 to 32 show sample locations, gold, arsenic and antimony in soil and geology for three important areas.

Figure 17 to 20 are frequency histograms showing the distribution of antimony and gold in soil. Figures 21 and 22 are cumulative frequency distribution graphs of gold and arsenic in soil. The frequency histograms all show highly skewed distributions with an over abundance of low values. The cumulative frequency graph of gold, Figure 21, shows a background and an anomalous population with a threshold value of 120 p.p.b. gold. Using this threshold value means that 34% of the samples are anomalous. Figure 22 shows the cumulative frequency distribution for arsenic in soil. The graph shows two major populations, background and anomalous with a threshold value of 600 p.p.m. The anomalous population could possible be interpreted to contain several subpopulations.

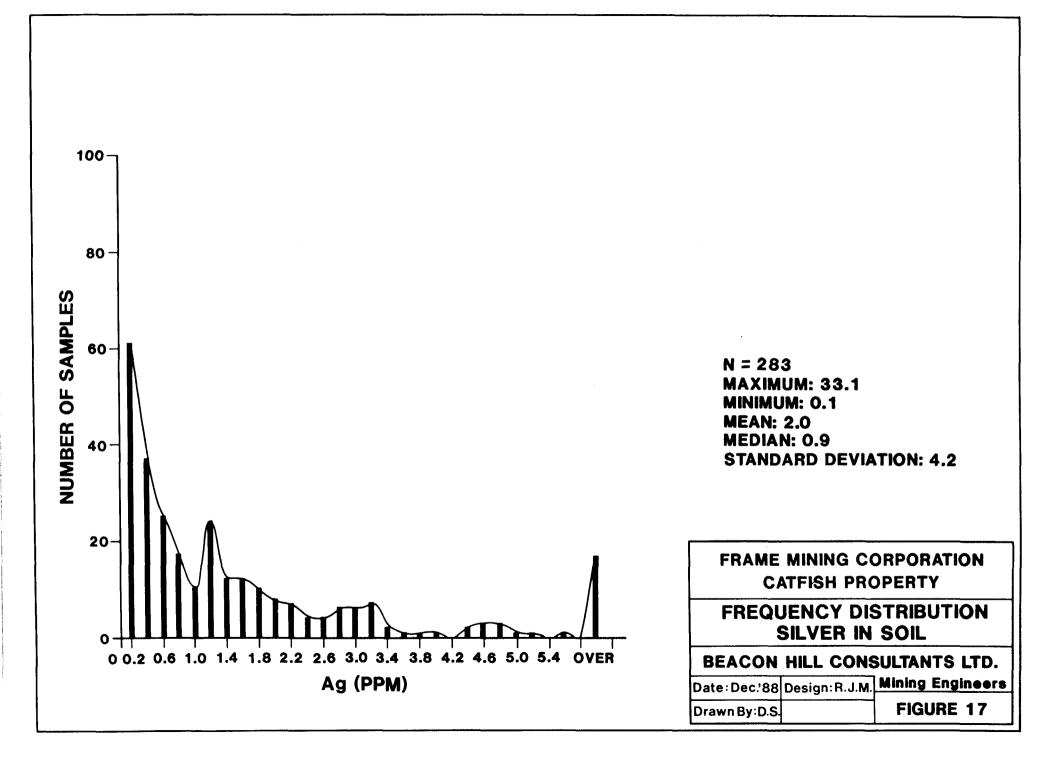
Figures 23 to 28 show the correlation distribution of copper, lead, zinc, silver, arsenic and antimony versus gold. Only arsenic appears to have any correlation with gold, though the correlation factor would not be useable in exploration.

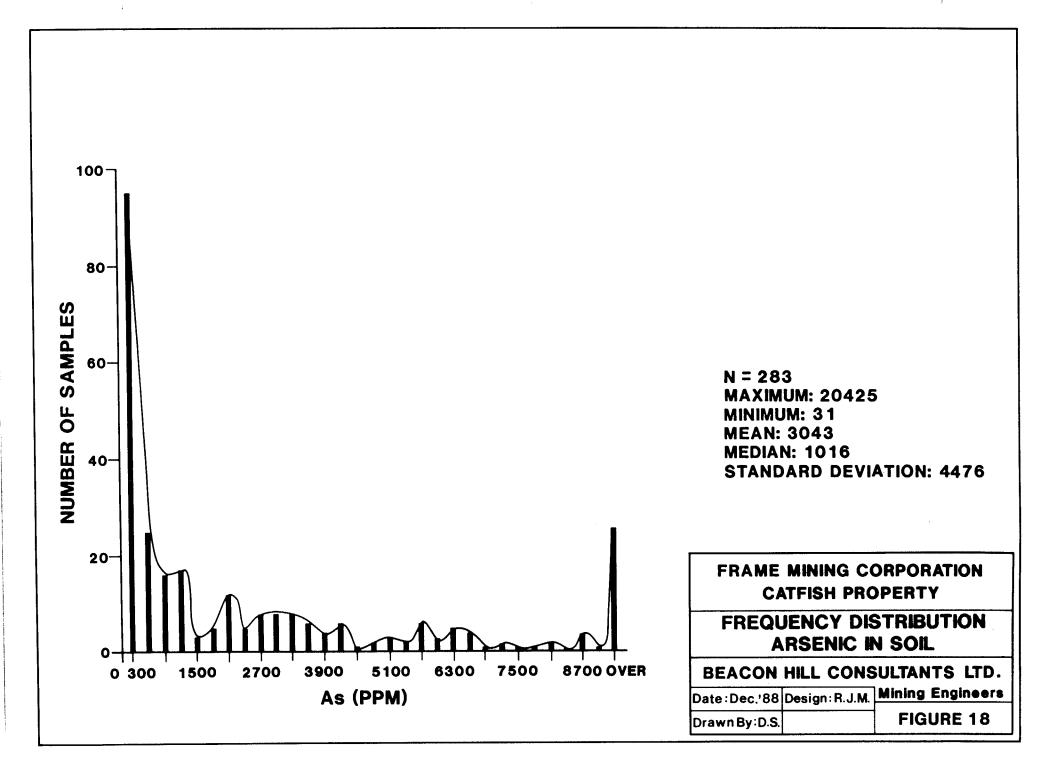
Stream sediment sampling by the B.C. Geological Survey in 1987, Rouse et al. 1988, showed that the creek draining east from Paddy Pass and its most easterly, south drainage are anomalous in gold, arsenic and antimony. Detailed stream sediment sampling by the author in 1988 can be used to locate mineralized areas. Samples from Paddy Pass creek, C8R 104S, 105S and C8N 254S show very low values (maximum 3 p.p.b. gold) while the south creek, between the middle ridge and the south mountain, has values up to eight times higher (maximum 25 p.p.b. gold) samples C8N 61S, 110S and 111S.

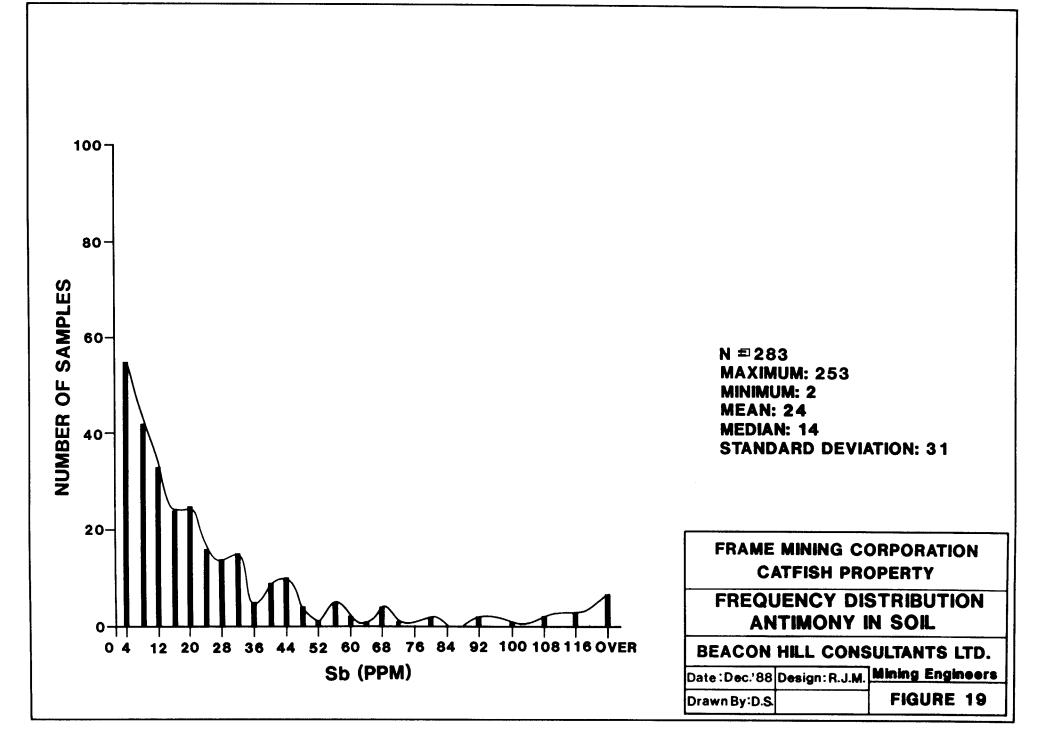
The mineralized areas were located by prospecting while geochemistry was used to explore for extensions and to determine the geochemical signature of the mineralization.

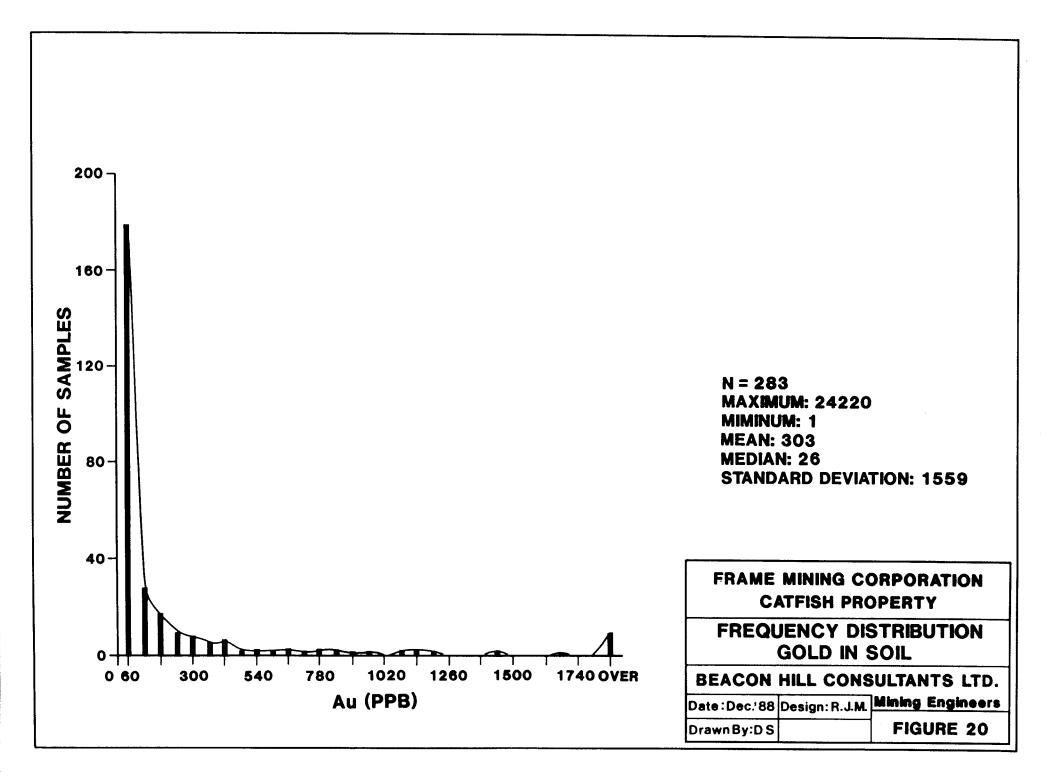
Four days were spent on the north mountain, one day prospecting and sampling along the old road on the east and south slopes, a day on the east slope prospecting gullies, a day in the rusty gully on the east slope and one day on the ridge and around the old adit, Figure 5. Sampling on the east slope indicates no anomalous areas. Sampling along the ridge top as well as detailed work around the adit indicates no anomalies, Area A, Figure 30. Sample C8N 80L shows up to 2 605 p.p.b. gold but represents dump debris from the old adit.

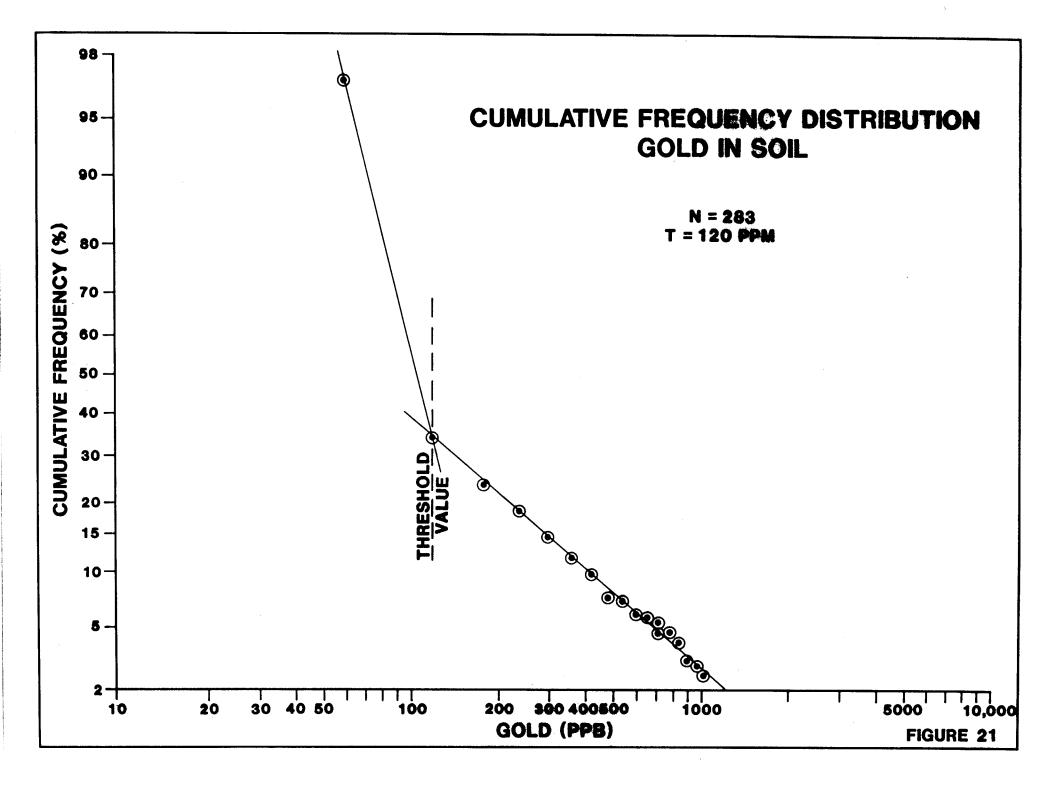
Three days were spent on the south mountain, one day prospecting and sampling to the south and along the east side, a day on the ridge and northwest side, a half day sampling and prospecting the lower northwest slopes and a half day along the Klondike Highway, Figure 5. Sampling in the southeast and northeast drainages produced no anomalies. Detailed sampling on the ridge and northwest side has outlined the mineralized area, Area B, as well as an extension to the southeast, Area C, Figure 32.


Area B, Figure 32, comprises three level soil lines designed to outline the extent of mineralization. The top line, shows only a single arsenic anomaly, C8N 12L. The middle sample line shows an extensive arsenic anomaly with results up to ten times background. Gold in soil is up to twice background though the anomalies are scattered. The anomalous zone is at least 250 meters wide with the southwest edge defined though sampling was not carried far enough to the northeast to define the anomalous zone. The bottom sample line was designed to test the northeast extent of mineralization. Results indicate a single weak gold anomaly but an anomalous arsenic zone up to 150 meters wide.

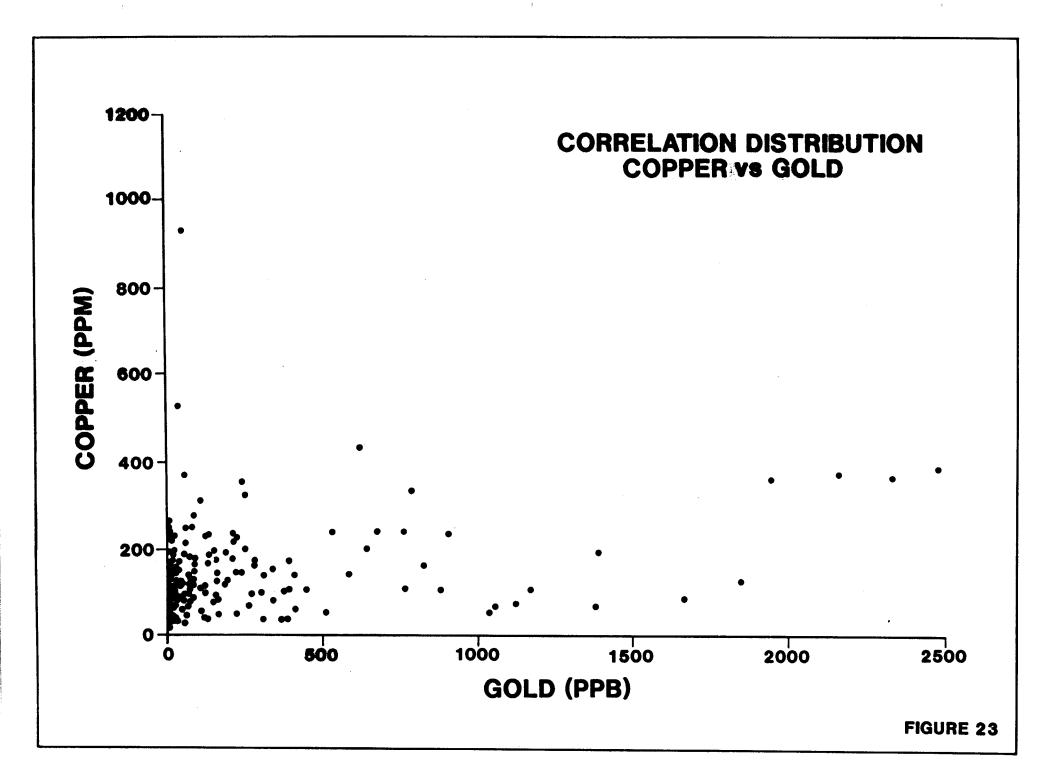

Area C, Figure 32, hosts a level soil sample line over a narrow intrusive body. Gold in soil is up to eight times background, sample C8N 104L, while arsenic values are up to 13 times background, sample C8N 105L. Area C is up to 750 meters southeast of Area B and appears to represent an extension of the mineralized zone.

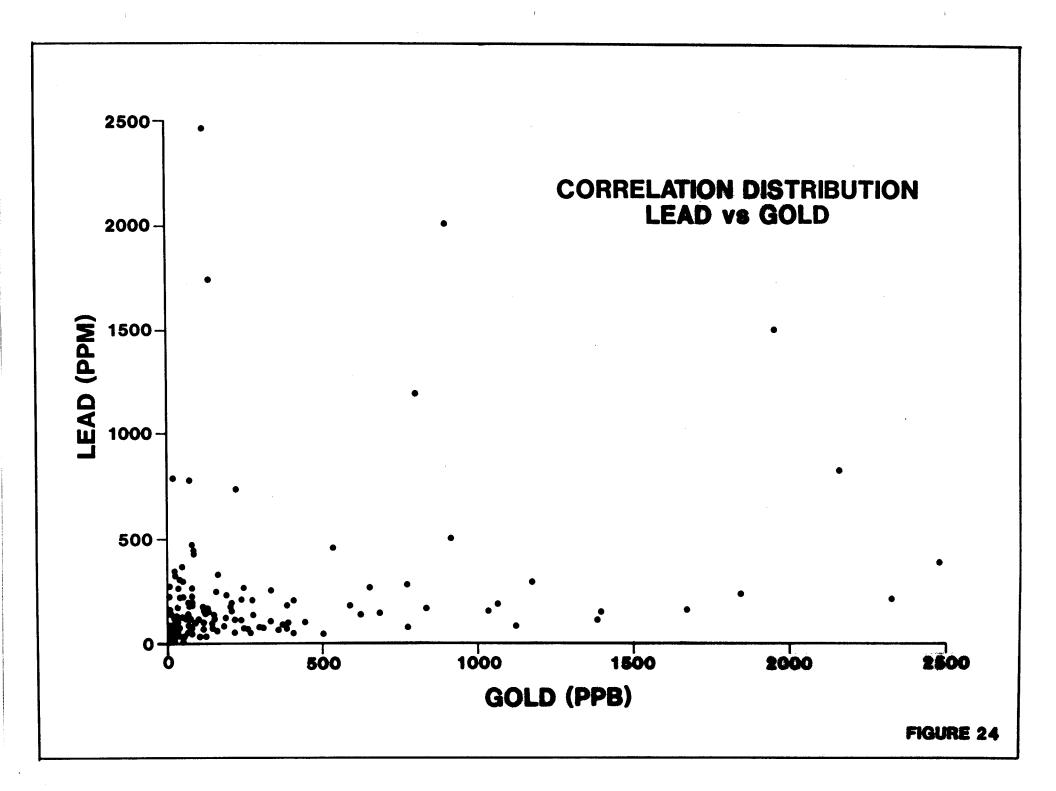

At least eight man days were spent on the middle ridge prospecting and sampling. Five detailed soil sampling lines were completed to outline the area of mineralization and explore for extensions. Two anomalous area, D and E, are outlined on Figure 31.

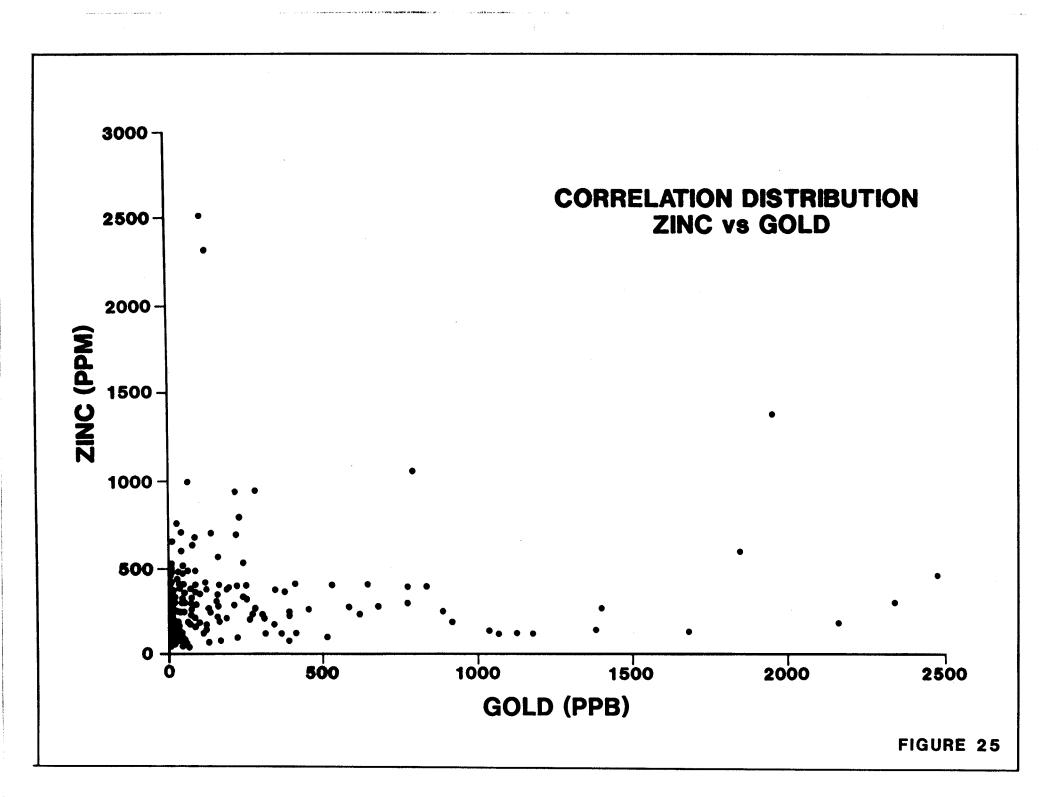

Area D, Figure 31, represents the main intrusive body on the middle ridge. Soil samples show up to 24 220 p.p.b. (0.71 oz/ton) gold, sample C8R 90L, 200 times background and up to 20 425 p.p.m. arsenic, sample C8N 140L, 34 times background. Gold in soil is effective in showing the extent of mineralization as shown by the southeast sample line, above the south creek. Arsenic shows a larger dispersion trend and indicates the whole middle ridge is anomalous.

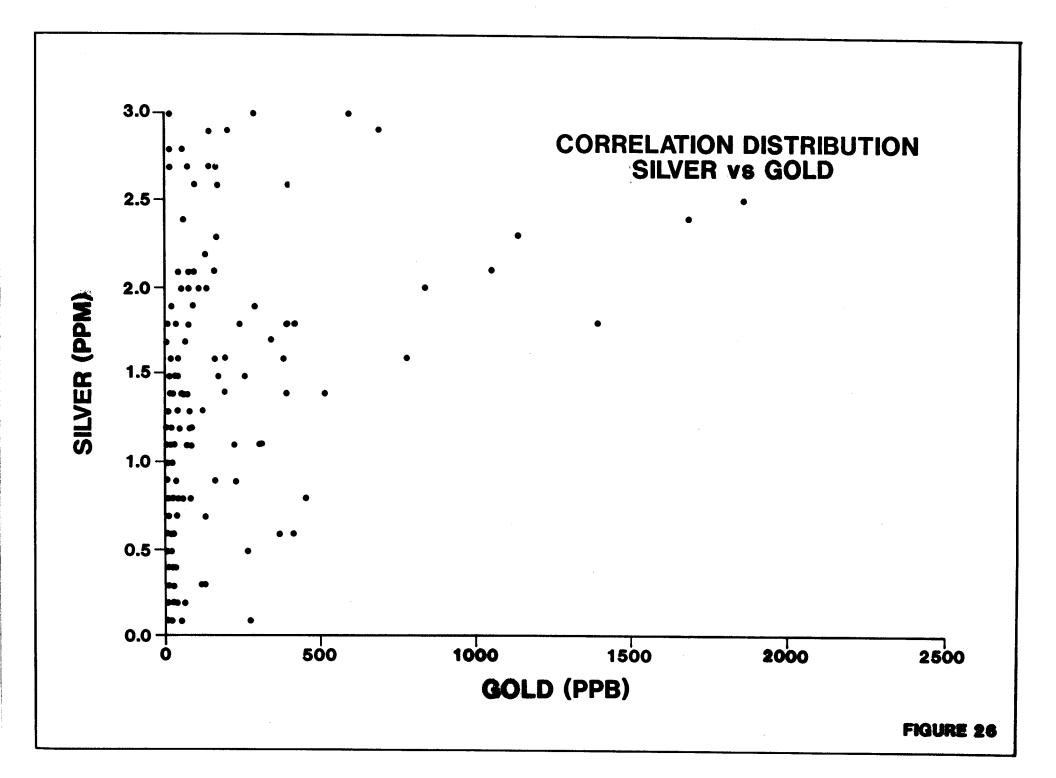

Area E, Figure 31, represents the northeast end of the southeast sample line above the south creek. Gold values are up to 1 950 p.p.b., sample C8N 151L, and arsenic is up to 19 895 p.p.m., from the same sample. The samples indicate mineralized material above the line.

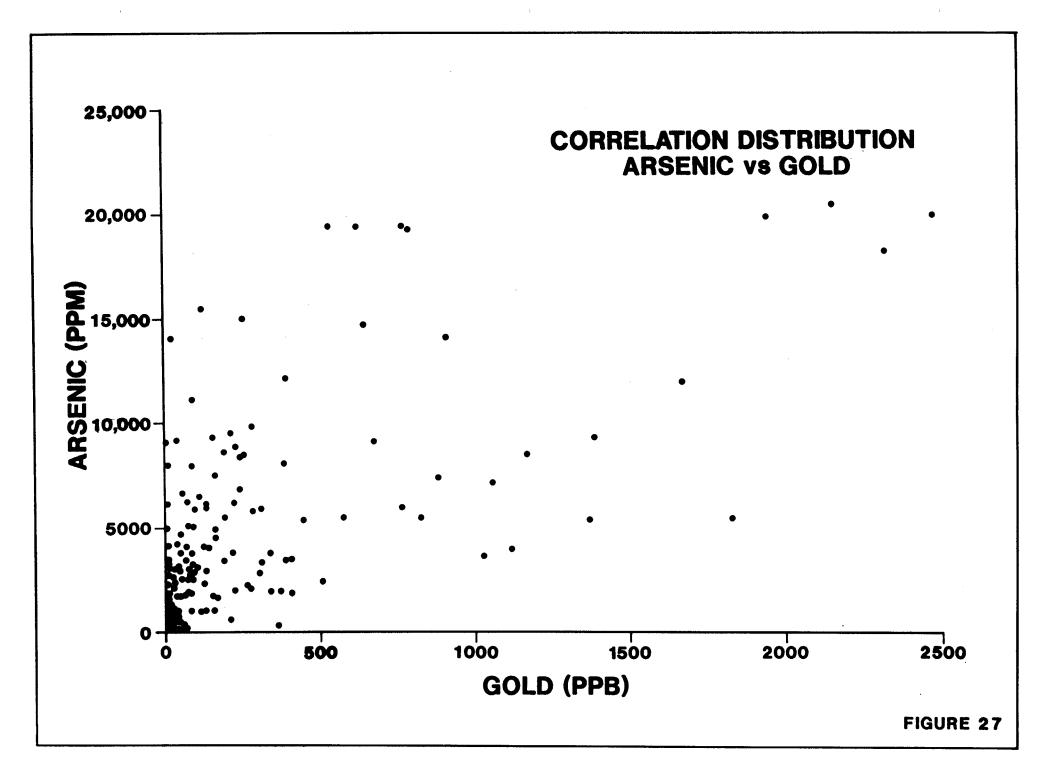


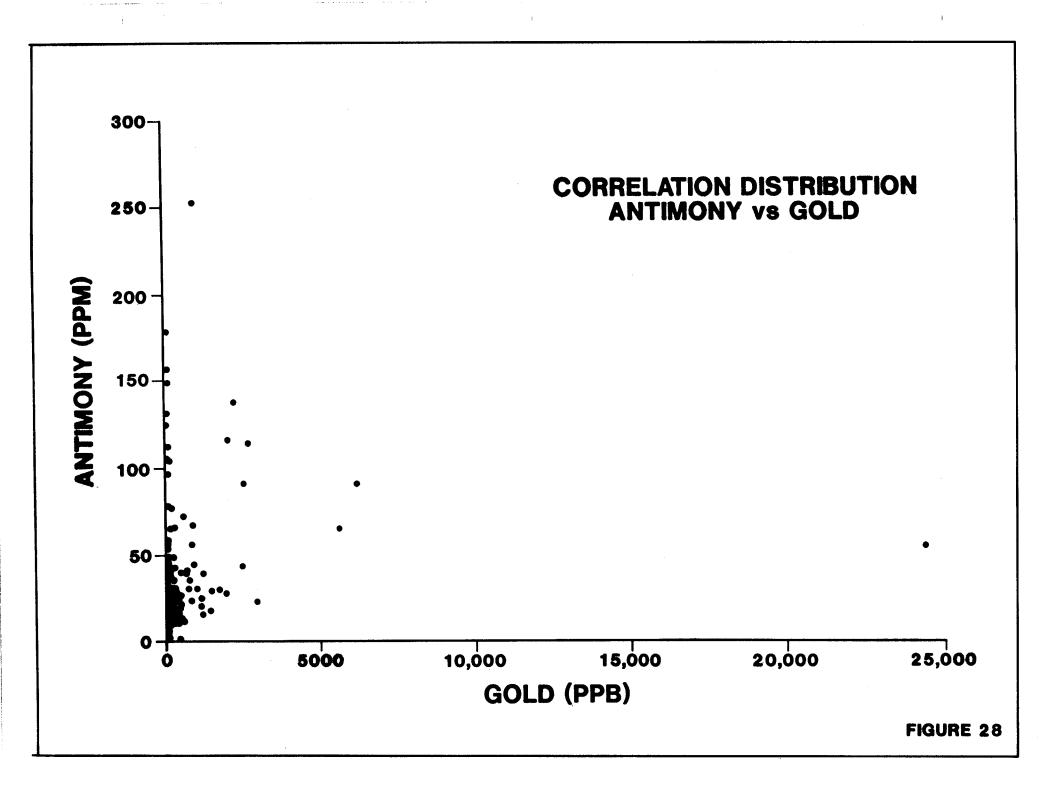


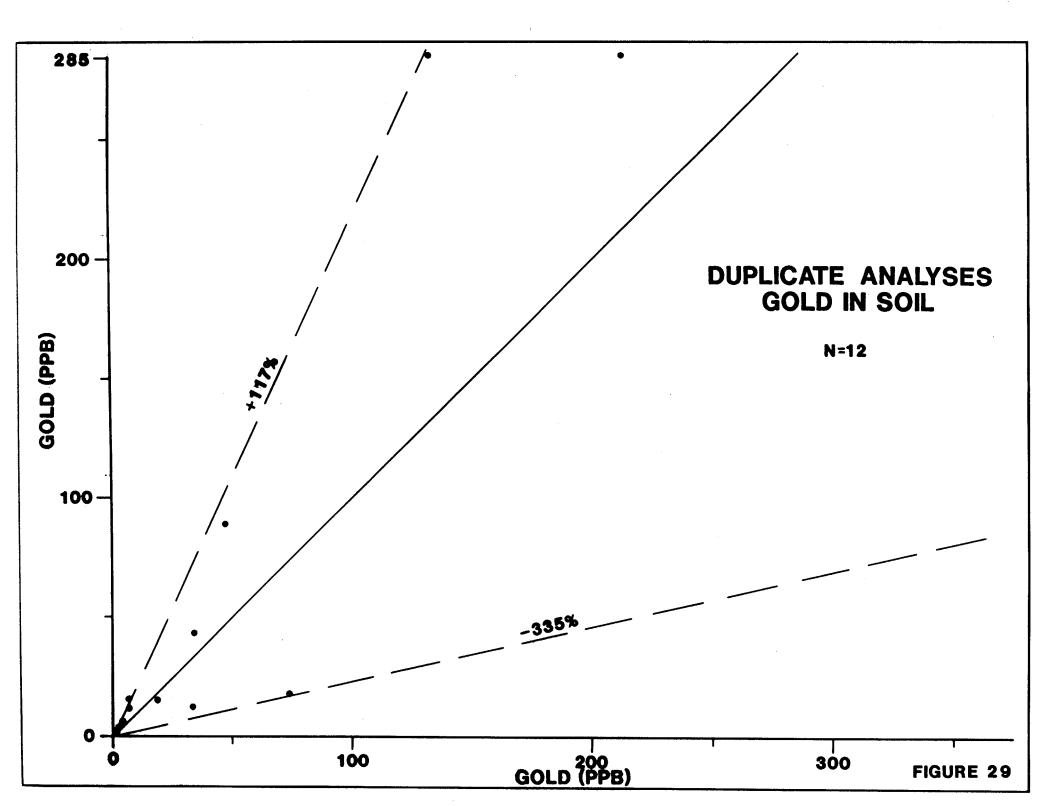












CONCLUSIONS AND RECOMMENDATIONS

Conclusions

It is apparent, from reconnaissance stream sediment sampling in 1987 by the B.C. Geological Survey that the creek draining east from Paddy Pass and its most easterly, south drainage are anomalous in gold, arsenic and antimony. The original Catfish claims covered an old adit which was probably driven at the turn of the century in the quest for gold. The enlarged Catfish property now covers three additional old adits as well as numerous old trenches.

A significant zone of quartz veining with arsenopyrite and gold values up to 47 325 p.p.b. (1.38 oz/t) was traced for 2.5 kilometers. The mineralized zone is within a fine grained intrusive which has intruded metamorphic terrane. Within the intrusive the mineralization is quartz veining cored by arsenopyrite with a green-yellow alteration envelope, scorodite. Separate veins are up to 3.1 meters thick and there are also sections with pervasive "stockwork" veining up to 30 meters thick. Within the metamorphics, the veins are up to 1.4 meters thick and carry massive arsenopyrite bands up to 20 cm.

Geochemistry has been shown to be an effective tool in exploration on the property. Arsenic appears to be weakly related to gold and shows broad anomalous zones with more discreet gold anomalies within. Five anomalous areas have been outlined, three of which B, C, and D, fit the known mineralized trend. Two anomalous areas deserve more detailed prospecting and sampling, areas A and E.

A preliminary deposit model would envisage the Coast Intrusives generating the heat to drive hydrothermal solutions which have migrated to favorable sites. The mineralizing solutions post-date the Upper Cretaceous granitic host and are thus related to the latestage, low-temperature thermal aureole associated with the intrusions. Favorable sites for mineralizing solutions would have to be structurally and chemically attractive, the intrusives for example, a brittle host which provides permeability and porosity. The metamorphics may have been the source of the metalliferous solutions.

Recommendations

A two phase exploration program is recommended for the Catfish property. The Phase I program is designed to physically test the mineralized area so that an assessment of the mining potential of the property can be made. The main objectives are to better define the known mineralized areas and to explore for extensions.

The known high grade quartz veins should be traced by prospecting and geochemistry to determine their size potential. The lower grade, though greater volume, intrusive host material should be sampled in detail to determine its grade potential. Possible extensions to the mineralization should be explored by prospecting, geochemistry and trenching.

The Phase II program will be contingent on positive results from Phase I. A road is recommended at this stage to access the mineralized areas. The road will greatly reduce future exploration costs, by limiting helicopter time.

A 600 meter drilling program is recommended at this stage to test the depth potential of surface exposures. The drilling will be helicopter supported with water being pumped from the creek between the middle ridge and the south mountain.

Multi element and gold analyses should be completed on all rock and core samples. A check assay program of one sample from every twenty should be continued. A preliminary metallurgical test program is recommended to estimate the total gold recovery. The test can be completed on coarse rejects from drill core intercepts.

PHASE I

Geologist,	20 days @ \$450/day		\$9,000.00
Assistant,	20 days @ \$150/day		3,000.00
Laboratory,	500 soil samples @ \$ 250 rock samples @		7,875.00 6,437.50
Truck Rental,	1 month @ \$1,000/m	ionth	1,000.00
Helicopter,	20 hrs @ \$600/hr		12,000.00
Expenses,	food, 40 mandays @ gas hotel and meals, 15 r camp costs	\$25/day nandays @ \$125/day	1,000.00 1,000.00 1,875.00 1,000.00
Reporting,	10 days @ \$450/day		4,500.00
Report Preparation			1,500.00
		Sub-total	\$50,187.50
		15% contingency	\$7,528.00
		Total	\$57,715.60
		Say	\$58,000.00

PHASE II

Geologist,	40 days @ \$450/day	\$18,000.00
2 assistants,	80 mandays @ \$150/day	12,000.00
Laboratory,	500 rock samples @ \$25.75 ea. 50 petrographic analyses @ \$70 ea. 3 metallurgical samples @ \$1,500 ea.	12,875.00 3,500.00 4,500.00
Truck rental,	2 months @ \$1,000/month	2,000.00
Excavator rental,	20 days @ \$1500/day	30,000.00
Drilling,	600 meters @ \$125/meter	75,000.00
Camp,	7 men, 40 days, @ \$30/day	8,400.00
Helicopter,	20 hrs @ \$600/hr	12,000.00
Camp construction a	nd expenses	5,000.00

Reporting, 15 days @ \$450/day

6,750.00

Report Preparation

2,500.00

Sub-total \$192,525.00

15% contingency \$28,880.00

Total \$221,400.00

Say \$220,000.00

Detailed Cost Summary

Geological

- field work, 20.5 days @ \$400/day	\$8,200.00
- sampler, 18.5 days @ \$100/day	\$1,850.00
- report compilation, 113.5 hrs @ \$40/hr 2 hrs @ \$75/hr	\$4,540.00 \$150.00
- report preparation	\$5,481.04
Geochemical	
- shipping	\$223.05
- analyses	\$4,362.70
Petrography - shipping - analyses	\$61.64 \$2,433.25
Field expenses	
- truck rental, Norcan Leasing	\$1,190.80
- food	\$700.00
- air charter, Trans North Air	\$7,162.60
- mobilization, de-mob	\$1,722.00
- accommodation	\$592.31
	\$38,669.39

REFERENCES

Christie, R.L. (1957):	Bennett, British Columbia; Geological Survey of Canada, Map 19-1957.
Copland, H. (1987):	Geological and geochemical report on the Catfish claims; Report on field work during the summer of 1986.
Hart, C.J. R. (1988):	Summary report on the Catfish and Sal properties; Internal report.
Mihalynuk, M.G. and Rouse, J.N. (1988 a):	Preliminary geology of the Tutshi Lake area, northwestern British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1, Pages 217-231.
Mihalynuk, M.G. and Rouse, J.N. (1988 b):	Geology of the Tutshi Lake area; B.C. Ministry of Energy, Mines and Petroleum Resources, Open file map 1988-5.
Rouse, J.N., Mihalynuk, M.G., Moore, D. and Friz, P. (1988):	1987 Stream sediment and lithogeochemical survey results for the Tutshi Lake map area; B.C. Ministry of Energy, Mines and Petroleum Resources, Open file map 1988-5.
Shraatar T.C. (1986).	Bannatt Project: B.C. Ministry of Energy Mines and

Shroeter, T.G. (1986): Bennett Project; B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1985, Paper 1986-1, pages 184-189.

CERTIFICATE

I, Robert J. Morris, Associate, Beacon Hill Consultants Ltd., do declare:

- THAT I graduated as a geologist from the University of British Columbia, Vancouver, with a degree of Bachelor of Science in 1973.

- THAT I graduated as a geologist from Queen's University, Kingston, Ontario, with a degree of Master of Science in 1978.

- THAT I am a Fellow of the Geological Association of Canada.

- THAT I have no direct or indirect interest in the subject property or in the securities of Frame Mining Corp. or its affiliates.

- THAT I personally wrote and supervised the preparation of this report.

- THAT I grant permission to use this report in raising funds for the exploration program described herein.

Dated December 20, 1988, in Vancouver, British Columbia.

R.J. Morris, M.Sc. Beacon Hill Consultants Ltd.

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysia 1 852 E. Hastings St., Vancouver, B.C. V&A 1R6 Telephone: 253-3158

1987

Acme Amalytical continues to update with mass spectrographic analysis which is now operational. In general, mass spec offers detection limits which are at least 100 fold lover than ICP or flame AL These detection limits rise comparable to graphite iurnace AA, but the mass spec can analyze up to 60 elements simultaneously.

Acme has pioneered low cost multi-element ICP analysis which has better detection and precision than AA. Mass spec will jurther expand the range of elements and isotopes available to mineral exploration programs.

PACE

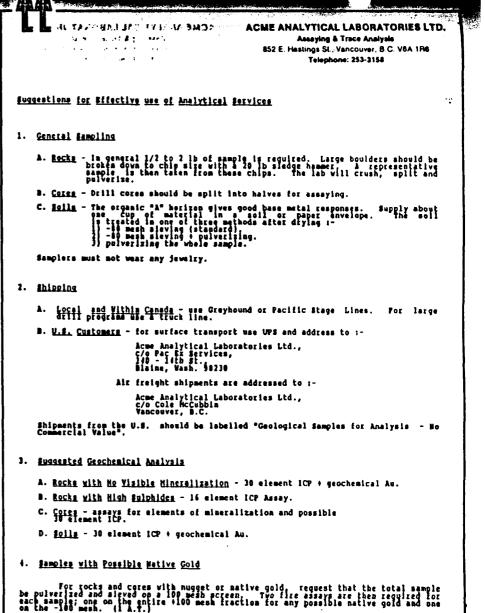
Total laboratory, sample preparation and sample storage has been expanded to 12,000 square fest.

FOULPHENT

- Our ICP system has been expanded, and a flitb unit has been purchased which will allow us to determine up to 45 elements simultaneously.
- 2. AA spectrophotometers have been increased to 8.
- 3. Sample preparation, weighing and dissolution facilities have been increased.
- A LECO induction Furnace has been installed for determining Carbon and Sulfur simultaneously in geological and metallurgical samples.
- An UA3 Laser Fluorometer from Scintrex is now used for determination of U in water to .01 ppb.
- 6. Two ICP mass spectrographs.

TECHNOLOGI

- Fire Assay for Aq, As, Pt, Pd, Rh, Ru & Ir,; the precious metal bead can be analysed by gravimetric, AA, ICP or Hass spec.
- ICP multi element packages for water, geochem and assay programs have been developed.
- Lower detection limits for some elements have been achieved by graphite furnace AA.


TECHNICAL ACNIEVEMENTS

- 1. Background corrected Atomic Absorption analysis of Ag and Au since 1971.
- 2. Best provem precision, accuracy and price for NoS2 assays in North America.
- Pionesred geochemical analysis by 1CP at or to better detection limits than AA, Including Ag, As, U, Th and W.
- 4. First to offer Mass spectrographic scan analysis.

PROVEN PERFORMANCE

Our logistical and technical performance for our clients has been demonstrated on the Gambler, Capoose Labe, Trout Labe, Blackdome, Red Hountain, Carella, Cirque, Minago Elver, Quesnel River, Terra Swede, Husto and other major projects. We are capable of handling up to 2500 samples per day.

1

Pap or sluice concentrates are best treated by cyclone concentration and fire assay for total Au.

2

ACME ANALYTICAL LABORATORIES LTD. ACME ANALYTICAL LABORATORIES LTD. Assaying &Trace Analysis Assaying & Trace Analysis 652 E. Hastings St., Vancouver, B.C. V6A 1R6 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone: 253-3158 Telephone: 253-3158 GEOCHEHICAL ANALYSES - Rocks and Soils GROCHEMICAL LABORATORY HETHODOLOGY & PRICES - 1987 Group 1 Digestion .50 gram sample is digrated with 3 mls 3-1-2 HC1-HH03-H20 at 95 deg.C for one hour and is diluted to 10 ml with water. This leach is near total for base meight by its for pock forming elements and year slight for retractory elements. Solution to the second seco fample Preparation Soils or silts up to 2 lbs drying at 60 day.C and sieving 30 gam -80 mesh (other size on request) 1.75 Group 14 - Analysis by Atomic Absorption. . 35 Saving part or all reject Petection Detection 0.01 Detection Elenent Soils or silts - drying at 60 deg.C and sleving -20 mesh & pelverizing (other mesh size on request.) 2.88 ic pent \$20E licon Lead Lithium Bismyth 1.1 1.50 Soils or milts - drying at 60 deg.C pulverizing (approx. 100 gms) Chrosiu Vanadlus Bocks or cores - crushing to -3/16" up to 10 lbs, then pulverizing 1/2 lb to -100 mesh (304) Mangapese 3.00 80100 First Element \$2.25 Subsequent Element \$1.00 .25/16 Over 10 1bs Group 18 - Wydride generation of volatile elements and analysis by ICP. This technique is unsuitable for sample grading ever 10 BT or Cu. 3.75 Same as RP100 except sieving to -100 mesh and saving +100 mesh 225100 Detection 0.1 ppm 0.1 ppm 0.1 ppm 0.2 ppm 0.2 ppm Element Arsenic Antimony Bismuth 2.50/15 Same as above except pelverizing 1/2 the reject RPS100 1/2 Same as above except pelverizing all the reject 2.50/15 First Element \$4.00 All Elements \$5.00 128108 8 Germanlum Compositing pulps - each pulp Mixing & pulverizing Seleniom Tellurium 1.2 ppm 0.3 ppm COP 1.50 3.00 Price \$2.25 Drying vegetation and pulverizing 50 gas to -80 mesh Detection limit - 5 ppb Group 1C - Mg In the solutions are determined by cold vapour AA using a F & J scientific Hg assembly. The aliquits of the extract are added to a stannous chloride/hydrochloric scid solution. The reduced Hg is swept out of the solution and passed into the Ng cell where it is masted by AA. Ashing up to 1 1b wet vegetation at 475 deg.C 2.00 16.00/hr Special Handling Group 10 - ICP Analysis, same digestion Sample Storage lement Detection Čd, Co, Cr, Cu, Hn, Ho, Mi, Sr, In As, Au, B, Ba, Bi, La, PD, 3D, Th, V, V Rejects - Approx. 2 lbs of rock or total cere are stored for three months and discarded unless claimed. Ål,Ca,Fe,K,Nq,Na,P,Tl Pulps are retained for one year and discarded unless claimed. Any 2 elements \$3 5 elements \$ 18 elements 5 All 30 elements 5 **Eupplies** Group 18 - Analysis by ICP/HS Envelopes vith gusset Detection I ppm 0.1 ppm tlement. ast C Baga Rh, In, Re, Os, Ir, Tl, Th, U 1.8.5 First Element # 4.00 Additional Element 2.00 All Elements 15.00 Aisay Tage /liker (Hinimum 20 samples per batch) bropping bottles /each liter Nydro Geochemical Analysia Natural water for mineral exploration Conversion Factors \$8.00 26 element ICP - Ho.Cu.Pb.In.Ag.Co.Hi.Hn.Fe.As.Sr.Cd.V.Ca.P. Li.Cr.Hg.Ti.B.Al.Ha.K.Ce.Be.Si Troy or = 31.10 g gz/ton = 14.3 ppm = 34.3 g/tonne = 34,300 ppb P by Specific Ion Electrode U by UA3 \$3.50 1.58 1.50 detection

* Minimum 28 samples or \$5.00 surcharge for ICP or AA and \$15.00 surcharge for ICP/NS. All prices are in Canadian Dollars

3

...

1J

17

71

¥2

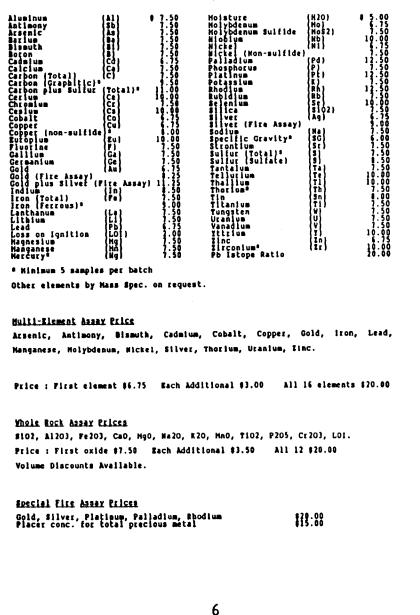
81

4

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St. Vancouver, B.C. V6A 1R6 Telephone: 253-3158

.

1


Group 2 - Geochemistry by Specific Extraction and Instrumental Techniques

eteds 1	t - neec	nemistry by	SPECIFIC SXC	CACCION AND IN		. iscumid	~ .	
. Element		He thed				etection	Price	
Barina		Ling dissol	anoles are fu ved in 50 mis ICP, (other w ermined)	sed with .6 gm 5% NHO3 and hole rock elem	ents	10 ppm	\$3.50	
Carbon			as C er C02)			.01 %	5.25	
Carboni	t Sul fur	Both by LECO)			.01 🔪	6.25	
Carboa (Graphi	ite)	NCl leach be				.01 %	1.25	
Chroniu				ed with 3 gm H. 1, analysed IC		5 ppm	3.75	
Fluorin	ne .	0.25 gram sa leached solu analysed by	moles are fus itlos is adjus specific ios	ed with HaOH; ted for pN and electrode.		18 ppm	4.25	
selphe		LECO [Total				.01 🔪	5.25	
Sulphus Insolu			5% HCl leach)			.01 🔪	1.25	
Tin		1.00 gram sa sublimed Iod and analysed	oples are fus line is leache i by Atomic Ab	ed with NH4I. d with 5 ml 10 serption.	The NC1,	1 ppm	3.25	
Tungsti				d with Na202 nalysed by ICP		1 ppm	3.25	
<u>Group</u> 1 - G	eochemic	cal Moble Me	tala					
Element.	Nethod				Detectio	a frice		
ka⁴	ligest	an samples and with hot a language by the second se	are ignited at aqua [[]] graphite form	500 deg.C, itracted by ice AA.	1 ppb	4 .25		
byta Pø,Pt,Rh		ram samples ire assay il ead is disc		a Ag inquart cupulation, the ysed by AA or	• <u>} 555</u>	\$.75 10.00	-first eleme -per additio -lor All	int Inal
	Larger	samples -	38 gm add 81:					
Group 4A -	Geochen	ical Whole B	ock Assar					
-	•			are dissolved				
-	-			0, T102, P205,		DI + Ba by	1029.	
•••••			00 each addit	ional \$9.00 £				
Group it -								
Elepent Co, Cu, Mi, In Ce, Mb, Ta, T,	n i r , ir	Detection 10 ppm 20 ppm	Analysia ICP ICP	83.75 fir \$1.00 add \$6.80 for \$1.50 eac	<u>tice</u> st elemen itional t	t er e 41	·	
Cs,Rb		10 ppm	**	\$1.50 eac	h.			
Group 4C -	analysi	a by <u>ICP/HR.</u>	1					
• • •			Ce, Pr, Nd,	Sm, Bu, Gd, Tb	, Dy, Ne,	Er, Tm,		
Ib, Lu, Mf	, Ta, V,	Th, U						
Detection:	1 to 5	ppa	Price :	.17:88 185 111	st elemen	it		

⁴ Misimum 28 samples or \$5.08 surcharge for ICP or AL and \$15.08 surcharge for ICP/MS. All prices are in Canadian Dollars

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone: 253-3158

Regular Assay

CATFISH PROPERTY

Corrections For Appendix II

11th January, 1989

File 88-4527

......

.

Page	Sa	mple No.	Should Read
2	C8R	104L	stream sediment (S)
		105L	stream sediment (S)
2	C8N	97S	soil sample (L)
		98S	soil sample (L)
		102S	soil sample (L)
		103S	soil sample (L)
		104S	soil sample (L)
		105S	soil sample (L)
		106S	soil sample (L)
		107S	soil sample (L)
		108S	soil sample (L)
5	C8N	218L	lost by lab
6	C8N	238L	lost in field
7	C8R	133R	C8N 133R (vein material found on sample line)

1 . N. J

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

-4-7

1 m

PHONE(604)253-3158 FAX(604)253-1716

1

E

(· -

£

(

ί. Ι

1

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL/SILT AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

CURRAGH RESOURCES INC. File # 88-4172 Page 1

SAMPLE#	No PPM	Cu PPM	PD PPM	Zn PPN	Ag PPN	NÍ PPM	Co PPM	Mn PPM	Fe %	As PPM	U PPM	Au PPM	Th PPN	Sr PPM	Cd PPM	SD PPM	BÍ PPM	V PPM	Ca %	P %	La PPM	CT PPM	Mg %	Ba PPM	Ti %	B PPM	Al %	Na %	K %	W PPM	Au* PPB
C8N 15 C8N 25 C8N 35 C8N 45 C8N 5L	4 1 1 1 2	406 109 161 143 62	45 18 28 28 17	276 76 107 150 100	.9 .3 .5 .3 .2	89 29 43 33 32	17 23	866 1276	8.23 3.51 4.33 5.36 5.03	556 163 220 396 358	5 5 5 5 5	ND ND ND ND ND	2 4 6 3 5	100 83 94 171 467	4 1 1 1	40 22 24 25 8	11 6 2 4 2	87 49 65 70 59	.89 .77 .88 .73 .60	.090 .081 .082 .088 .068	7 13 14 13 15	42 64	1.83 .88 1.25 1.30 .91	108 72 95 111 153	.08 .07 .09 .06 .06	2 5 3	3.71 2.05 2.73 3.36 3.87	.04 .03 .04 .02 .02	.36 .19 .27 .27 .16	55 15 18 11 1	41 19 35 41 29
C3N 6L C8N 7L C8N 8L C8N 9L C8N 10L	2 2 28 8 10	63 115 104 130 123	20 15 17 228 174	100 112 232 361 611	.1 .1 .4 1.9 .7	19 21 44 60 87	15 42	1169 560	4.52 6.61 5.19 8.47 7.55	519 763 851 2920 1771	5 5 5 5 5	ND ND ND ND ND	2 5 7 4 6	285 556 647 311 153	1 1 5 4	6 6 22 150 53	2 2 2 2 3	68 69 63 80 89	.81 1.23 .47 .71 .69	.077 .097 .069 .105 .086	11 21 20 15 41		.88 .85 .66 1.57 2.06	162 142 138 134 149	.06 .04 .04 .06 .08	2 3 3	4.53 4.66 3.24 5.01 4.73	.03 .06 .03 .02 .02	.20 .27 .13 .46 .47	1 1 10 2	54 13 9 88 42
CBN 11L CBN 12L CBN 13L CBN 14L CBN 15L	15 3 3 4 4	180 93 72 66 104	428 60 45 25 56	315 214 170 170 222	4.6 .5 .1 .1 .1	29 23 27 28 26	48 56	4551 3838	7.09 6.33	5121 640 203 213 280	5 5 5 5 5	ND ND ND ND ND	19 4 6 7 7	115 54 33 33 41	11 1 1 1 1	42 9 11 9 9	5 2 3 2 2	60 70 60 43 69	.30 .56 .28 .36 .47	.088 .118 .098 .114 .146	31 31 32 38 39	32 9 11 6 7	.99 .75 .64 .38 .87	163 256 189 185 278	.07 .01 .01 .01 .01	3 3 4	3.18 2.96 2.50 1.90 2.89	.02 .01 .01 .01 .01	.30 .10 .06 .04 .07	7 1 2 1 1	91 11 - 4 7
C8N 16L C8N 17L C8N 18L C8N 19L C8N 20L	4 6 40 49	79 79 95 111 99	41 50 47 37 29	172 199 195 436 428	.1 .1 .1 .2	31 32 32 98 121	63 64 35	4256 5847 5035 2061 1359	7.74	218 180 243 119 139	5 5 5 5 5	ND ND ND ND ND	8 7 6 5 6	40 48 39 32 29	1 1 1 1 1	7 7 8 13	2 5 2 2 2	62 64 75 71 56	.41 .34 .35 .31 .20	.127 .119 .136 .125 .115	36 32 35 27 22	10 11 9 15 16	.60 .56 .67 .74 .57	286 414 297 138 127	.01 .01 .01 .01 .01	2 2 2	2.36 2.52 2.61 1.98 1.30	.01 .01 .01 .01	.06 .07 .08 .06 .05	1 1 1 2	6 5 7 5 4
C8N 21L C8N 22L C8N 23L C8N 24L C8N 25L	34 21 2 1 9	86 65 33 16 100	27 22 22 23 2008	354 276 100 80 259	.1 .1 .1 9.1	101 73 23 15 27	22 17 13 9 19		6.31 4.82 3.31 2.85 5.83	104 76 54 31 7437	5 5 5 5 19	ND ND ND ND	6 4 5 3 49	35 21 21 92 140	1 1 1 16	8 6 5 253	2 2 2 2 5	66 55 45 32 37	.21 .15 .20 .28 .21	.123 .093 .073 .061 .069	22 20 19 19 49	18 21 24 14 13	69 .66 .69 .65 .51	138 133 142 98 183	.01 .03 .06 .04 .01	3 3 3	1.67 2.07 2.30 2.64 1.72	.01 .01 .01 .01 .01	.07 .13 .20 .16 .14	3 2 1 3 1	3 11 6 10 890
CBN 26L CBN 27L CBN 28L CBN 29L CBN 30L	6 4 5 9 4	90 118 230 312 89		396 768 2329 2521 416	1.8 3.3 8.7 18.9 1.6	43 38 44 42 44	41 49 58	1840 3246 2798 3779 1869	5.73 7.75 10.41	929 1109 2995 6573 751	5 5 8 5	ND ND ND ND ND	9 9 11 9 8	76 151 160 71 69	5 18 75 95 5	36 41 77 97 30	6 3 2 8 2	79 83 78 58 76	.30 .81 .48 .51 .30	.095 .090 .090 .104 .093	29 24 30 49 27	39 34 21	1.23 1.38 1.43 1.20 1.20	181 175 171 158 175	.06 .08 .05 .01 .06	7 3 4	3.55 3.37 3.23 2.86 3.35	.02 .03 .02 .01 .02	.24 .34 .32 .23 .24	1 3 9 9 2	33 26 129 112 43
C8N 31L C8N 32L C8N 33L C8N 34L C8N 35L	9 11 11 12 13	96 78 97 101 110	124 120 101 91 118	310 415 399 381 365	1.4 1.1 1.3 1.6 2.0	46 44 50 57 48	17 26 26	1251 1955 2019	6.86 6.22 6.67 6.97 6.52	2575 2412 2034	5 23 7 5 11	ND ND ND ND ND	13 13 14 13 36	70 66 76 73 121	2 1 2 2 4	23 22 25 23 30	5 4 7 2	77 68 78 85 65	.44 .31 .40 .41 .35	.107 .082 .104 .111 .085	42 61 51 45 52	20 22 20 21 20	.96 .91 .97 1.06 .86	200 168 216 223 224	.01 .01 .01 .01 .01	4 2 3	2.86 2.98 2.87 3.05 2.52	.01 .01 .01 .01 .01	.12 .11 .13 .14 .14	1 2 4 1 3	58 87 123 380 106
C8N 36L STD C/AU-S	6 17	62 60	60 37	173 132	.6 6.6	34 71		1049 1129		772 42	5 18	н р 7	7 36	55 47	1 17	15 17	2 20	59 57	.26 .50	.084 .091	27 37	21 57	.74 .95	158 175	.03 .06		2.50 1.95	.01 .06	.13 .14	1 12	22 51

SAMPLE#	H0 PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPN	Nİ PPM	Co PPN	Mn PPN	Fe %	AS PPM	U PPM	Au PPN	Th PPN	Sr PPN	Cđ PPM	SD PPM	Bi PPM	V PPM	Ca १	P %	La PPM	CT PPM	Ng %	Ba PPM	Ti %	B PPM	Al %	Na %	K z	¥ PPM	Au* PPB	
CBN 371 CBN 38L CBN 391 CBN 401 CBN 411	3 9 19 11 18	70 82 95 78 91	41 67 68 71 72	153 268 412 309 373	.9 1.2 1.0 1.6 .9	31 38 83 49 70	17 28	1169 1503 1708 1576 1491	4.99 6.82 5.93	763 1908 949 1824 1075	5 5 5 5 5	ND ND ND ND ND	9 24 5 9 6	55 89 113 79 104	1 3 3 2 3	8 17 12 20 14	2 2 2 2 2 2	63 56 142 68 103	.35 .46 .34 .24 .38	.078 .077 .095 .078 .100	29 36 18 34 21	25 23 40 24 31	.81 .71 1.79 .84 1.37	159 170 340 264 322	.04 .03 .02 .02 .02	4 5 2	2.48 1.98 4.61 2.89 3.90	.01 .01 .01 .01 .01	.14 .13 .17 .13 .15	1 1 2 2	2 81 25 157 159	
C8N 42L C8N 43L C8N 44L C8N 45L C8N 45L C8N 46L	24 25 31 25 24	116 125 143 117 157	79 57 252 82 70	480 537 582 487 481	1.2 .7 4.3 1.2 .9	92 105 93 94 92	37 41 33	1606 1607 2971 1603 2182	7.82 8.80 7.52	1064 628 4983 1069 1778	6 5 5 5 5 5	ND ND ND ND ND	8 6 18 9 8	183 140 157 182 217	4 9 3 5	12 13 30 13 16	2 2 10 6 2	111 118 87 115 100	.47 .39 .37 .47 .59	.096 .110 .081 .101 .115	22 19 39 22 29	33 26 32	1.56 1.74 1.21 1.61 1.31	393 299 332 388 276	.02 .03 .02 .02 .01	2 3 4	4.41 4.94 3.98 4.57 4.06	.01 .01 .01 .01 .01	.17 .16 .15 .18 .14	1 1 1 2	47 16 165 89 34	
C8N 47L C8N 48L C8N 49L C8N 50L C8N 51L	5 55 50 20 17	128 213 153 152 174	42 198 60 42 54	194 705 664 419 351	.3 3.2 .8 .3 .5	45 139 120 90 81	59 41 48	1640	10.59 8.75	371 3900 964 309 334	5 5 5 5 5	ND ND ND ND ND	4 14 5 7	65 209 237 147 299	1 7 5 3 3	11 29 15 10 9	2 2 2 2 2	97 103 95 92 102	.55 .35 .48 .43 .54	.128 .110 .102 .099 .104	31 40 22 24 27	31 31 39	1.38 1.07 1.25 1.45 1.47	207 293 284 221 298	.02 .01 .02 .04 .02	2 4 2	3.16 4.62 4.47 4.19 4.08	.01 .02 .02 .02 .02	.14 .17 .17 .21 .14	2 7 1 1 1	6 220 13 4 8	
C8N 52L C8N 53L C8N 54L C8N 55L C8N 55L C8N 56L	3 3 5 3 2	141 165 187 250 76	47 42 53 51 32	164 170 167 176 110	.4 .6 .7 .5	36 38 45 34 32	47 62 62	2624 2804	8.82 9.12	301 271 297 468 183	5 5 5 5 5	ND ND ND ND ND	4 6 3 6	98 87 115 122 138	1 1 1 1	9 9 8 8 2	2 2 2 2 2	111 127 125 132 90	.73 .63 .41 .79 .56	.121 .128 .128 .111 .087	28 28 31 27 24	24 28 18	1.46 1.50 1.28 1.44 1.59	220 226 213 213 287	.02 .03 .02 .02 .07	2 2 2	3.49 3.54 3.88 4.11 3.68	.01 .02 .02 .02 .02	.16 .17 .16 .19 .35	1 1 1 1	3 1 3 6 4	
C8N 57L C8N 58L C8N 59L C8N 60L C8N 61S	2 2 2 2 2 2	89 100 96 139 44	31 39 66 49 31	127 134 158 163 112	.6 .4 2.8 .6 .4	33 35 38 39 25	44 4E	1472 1755 2514		236 166 531 398 275	5 5 5 5 5	ND ND ND ND ND	7 6 4 4	119 413 172 106 65	1 2 1 1 1	2 3 14 8 7	2 2 2 2 2 2	91 80 97 110 55	.62 .89 .61 .50 .40	.098 .088 .096 .117 .081	24 27 27 26 23	37 69	1.55 1.34 1.86 1.86 .90	375 423 296 240 144	.09 .04 .06 .04 .06	3 2 2	4.11 4.66 3.93 3.91 2.43	.03 .03 .02 .02 .02	.47 .32 .38 .23 .22	1 1 1 1	3 19 12 6 25	
C8N 62S C8N 63L C8N 64L C8N 65L C8N 66L	3 2 1 3 2	60 147 95 238 199	560 65 36 229 101	177 166 99 232 154	2.1 1.3 .6 2.7 .8	37 40 29 53 35	31 14 48	1055 1506	5,43	335 293 104 278 329	5 5 5 5 5	ND ND ND ND ND	6 1 1 2 2	75 76 374 149 144	3 4 1 5 3	196 44 7 37 48	2 2 17 2		1.10	.086 .166 .091 .120 .128	21 18 7 16 17	39 45 36	1.32 .90 1.14 1.01 1.06	159 104 51 121 146	.09 .01 .02 .03 .02	2 2 2	2.81 2.87 4.77 3.23 2.91	.03 .01 .04 .02 .04	.45 .29 .32 .15 .20	1 3 2 40 8	16 8 6 14 28	
C8N 67L C8N 68L C8N 69L C8N 70L C8N 71L	7 4 7 12 3	369 191 213 928 251	300 150 122 224 172	253 209 201 313 283	2.4 1.9 1.7 5.9 3.5	25 65 60 60 51	23 23	1296 1317 2346	9.09 5.25 5.60 6.36 5.19	413 89 84 379 290	5 5 5 5 5	ND ND ND ND ND	7 3 1 3 1	327 317 88 123 129	3 4 2 5 5	25 3 10 18 3	8 17 35 136 16		.34 1.73 .68 1.12 2.37	.171 .062 .078 .072 .091	26 12 13 19 8	98 102 79	1.04 1.51 2.04 2.17 1.92	320 125 134 115 107	.04 .06 .09 .12 .09	6 2 3	4.56 4.67 3.96 4.92 5.93	.04 .02 .01 .01 .01	.31 .45 .25 .38 .52	59 10 28 48 24	58 21 63 56 6	
C8N 72L STD C/AU-S	48 19	198 62	96 40	323 132	2.1 7.0	116 71		1961 1090	7.30 4.24	1037 42	5 19	ND 7	3 36	84 48	4 19	38 19	55 19	79 60	1.35 .48	.093 .088	16 39	154 60	2.01 .94	194 180	.07 .07		3.37 2.02	.03 .06	.55 .14	170 12	154 49	

Page 2

((:.

(

Ċ

£:

 $\tilde{\boldsymbol{\zeta}}^{(2^{n})}$

(

ŧ

(

(,

(

i'

(

(. .

(**

1

C

SAMPLE#	No PPN	CU PPM	Pb PPM	Zn PPM	Ag PPM	Nİ PPM	CO PPN	Mn PPN	Fe ۶	As PPN	U PPM	Au PPM	Th PPM	ST PPM	Cd PPM	Sb PPM	Bİ PPM	V PPM	Ca १	P %	La PPM	Cr PPM	Ng %	Ba PPN	Ti Ş	B PPM	Al X	Na %	K Z	W PPN	Au* PPB
C8N 73L C8N 74L	27 10	234 164	165 62	311 308	3.9 .5	100 125			6.21 5.32	690 227	5 5	ND ND	2 1	49 68	3 3	35 17	39 20	106 100	.53 1.01	.077	10 7	141 209	2.36 2.89	153 319	.15 .19		3.86 3.58	.01 .02	.57 .89	242 66	216 18
CBN 75L	3	228	173	258	3.0	49			4.98	252	5	ND	1	119	4	14	9	91	2.19	.080	1	65	1.79	92	.11		5.48	.01	.44	33	11
C8N 76L	17	168	76	352	.6	125			6.03	333	5	ND	2	57	3	19	23	106	. 64	.089	9	220	3.01	207	. 21		4.02	.02	1.00	75	15
C8N 77L	31	231	99	445	1.1	86	36	1999	6.87	588	5	ND	4	52	3	19	13	100	.38	.059	13	165	2.57	187	.19	2	4.39	.01	,88	60	27
C8N 78L	28	265	63	480	.4	75		2094		438	5	ND	3	73	1	15	18	95	.55	.080	14		2.35	189	.18		4.50		1.00	55	9
C8N 79L	18	116	58	251	2.1	55			3.85	247	5	ND	4	48	10	2	38	59	. 59	.052	8			108	.10		2.39	.01	.27	82	74
CSN SOL	118	440	1358	515	30.9	53	17	1204	6.21	6134	5	ND	3	130	37	114	459	57	.43	.054	10			136	.09		2.65	.01	.38	98	2605
C8N 81L	16	59	222	75	4.6	8	4	189	.86	868	2	ND	1	17	6	24	43	9	.07	.009	2	14	.21	19	.01	2	.27	.01	.08	17	48
C8N 82L	20	115	56	238	.7	45	20	2231	4.17	183	5	ND	1	106	8	á	5	67	1.37	.104	8	79	1.53	365	.10	4	2.51	.01	.57	99	11
CBN 83L	22	173	48	188	.4	50	18	1393	4.71	206	5	ND	1	50	3	9	9	75	.58	.083	11	88	1.65	170	.13	2	3.12	.01	.51	88	24
C8N 84L	24	132	46	213	1.0	44	20	2004	5.18	225	5	ND	3	47	2	13	3	90	.48	.081	9	86	1.78	237	.15		3.16	.02	.54	106	9
CBN 85L	30	111	46	257	.2	43	21	2482	5.23	770	5	ND	1	50	3	12	18	84	.49	.102	12	87	1.73	242	.12	4	3.12	.02	. 63	90	8
C8N 86L	29	530	112	252	2.1	65	32	1435	6.23	233	5	ND	3	51	3	17	72	109	.52	.084	12	116	2.24	166	.17	3	4.08	.02	.53	251	42
CBN 87L	4	99	37	109	.4	40	16	518	3.77	161	5	ND	2	49	1	12	4	61	.58	.044	9	69	1.04	65	.10	3	3.74	.01	.14	18	14
C8N 88L	2	143	41	104	.6	37	24		4.43	182	5	ND	3	177	ì	23	4	67	1.98	.068	10	45		64	.07	2	4.08	.03	.22	9	24
C8N B9L	5	44	30	63	.2	12	21		6.04	69	5	ND	3	375	1	15	3	53	1.19	.105	9	14	.81	67	.08		4.05	.03	.21	5	67
C8N 90L	2	87	29	68	.4	20	16		3.87	76	5	ND	1	300	1	8	4	61	2.61	.075	6	30	.90	48	.07	2	4.49	.02	.16	2	18
CBN 91L	3	103	33	82	.6	23	21		4.18	94	5	ND	2	231	1	16	2		1.87	.077	9	32	.99	71	.07		3.68	.02	.18	5	23
C8N 92L	5	76	79	148	. 8	29	32	1779	7.99	57	5	ND	4	109	1	29	2	44	1.01	.120	10	26	.86	108	.01	2	1.84	.01	.20	3	. 33
C8N 93L	13	44	80	154	1.1	15		1459		66	5	ND	6	136	1	57	10	49	.19	.215	15	14	.83	158	.02		2.02	.02	.27	3	31
C8N 945	8	47	37	117	.3	16	14		5.92	73	5	ND	ز بر	92	1	18	5	58	. 49	.096	13	30	1.09	294	.05		2.46	.02	.31	2	17
STD C/AU-S	18	61	40	132	6.9	72	28	1103	4.12	40	18	8	36	47	19	17	20	60	.49	.087	39	61	.93	177	.07	33	1.96	.06	.13	13	51

Page 3

C

¢

41.0

(

C

¢

C

C

Ę.

£

(

(.,

(

t -

20

C

(

(

FILE # 88-4172 CURRAGH RESOURCES INC.

SAMPLE#	MO PPK	Cu PPH	Pb PPM	Zn PPM	Ag PPN	Ni PPM	Co PPM	Mn PPM	Fe %	As PPN	U PPH	AU PPH	Th PPM	ST PPM	Cd PPN	SD PPM	BÍ PPM	V PPN	Ca %	P %	La PPM	CT PPM	Ng %	Ba PPM	Ti %	B PPM	Al %	Na %	R Z	W PPM	Au* PPB	
C8R 1R C8R 2R C8R 4R C8R 5R C8R 5R C8R 6R	12 5 9 2 8	4 24 614 451 123	2 3 29 165 13	45 55 56 24 12	.1 .1 20.9 32.2 1.9	5 11 1 1 7	2 8 2 22 17	22 60	4.22 3.74 13.89 13.48 2.14	148 81 42980 42779 3333	5 5 5 5 5	ND ND ND 7 ND	3 11 23 12 2	223 274 2 1 278	1 1 5 2 1	32 4 185 670 10	2 2 119 130 4	8 43 1 1 3	24.80 .69 .06 .01 .73	.002 .082 .001 .001 .013	7 23 2 2 2	7 18 9 25 8	.37 .50 .01 .01 .21	13 149 8 6 31	.01 .06 .01 .01 .01	2 2	.85 2.79 .17 .07 1.24	.01 .05 .01 .01 .12	.01 .68 .13 .05 .23	3 1 1 497 4	6 2 2420 16690 136	
CBR 7R CBR 8R C8R 9R C8R 10R C8R 11R	264 5 146 8 4	54 12 277 2153 15	11 14 13 14646 135	16 17 83 75 111	1.1 .1 1.1 351.4 14.7	6 8 6 1 6	9 5 6 3 5	55 800 7	7.09 1.67 4.48 21.11 3.97	1997 582 241 43076 997	5 5 24 5	ND ND ND 5 ND	1 2 4 123 4	98 74 109 19 99	1 1 10 1	10 2 4 5292 17	5 2 2 1734 8	13 3 11 1 20	.27 .33 2.44 .01 .91	.015 .034 .020 .001 .088	2 4 5 45 6	51 7 38 15 17	.25 .20 .78 .01 .86	14 51 11 8 18	.03 .01 .01 .01 .03	2	.86 .96 1.01 .13 2.63	.09 .08 .01 .01 .16	.28 .17 .32 .03 .76	5 1 1 1 1	195 13 112 13210 132	
C8R 12R C8R 13R C8R 14R C8R 15R C8R 15R C9R 16R	525 65 141 2745 887	451 72 250 33 110	25215 3462 1915 60 8329	159 8 262 6 6	110.9 105.5 15.7 6.9 325.2	9 7 6 11 12	1 1 3 1 1	34 32 141 88 93	2.65 .78 3.43 .45 .46	17162 3035 11399 795 250	5 5 8 5 5	2 ND ND ND	1 1 4 1 1	36 8 139 6 2	355 5 46 2 39	12462 619 121 33 1316	96 1186 77 16 21072	1 1 8 1 4	.04 .02 .13 .12 .02	.003 .002 .009 .001 .002	2 2 8 2 2	7 44 9 101 12	.01 .01 .08 .01 .02	6 5 25 6 6	.01 .01 .01 .01 .01	2 2 2 2 2	.11 .03 .57 .01 .06	.01 .01 .01 .01 .01	.02 .01 .25 .01 .02	1	5720 730 1660 35 3720	
CSR 17R CSR 18R CSR 19R CSR 20R CSR 21R	13 8 4 3	12 10 8 107 5	40 42 19 42 20	42 31 30 76 10	1.8 2.4 .9 1.8 .5	5 4 5 13 3	9 5 4 10 2	292 195 245 351 86	4,87	58 106 59 61 58	5 5 5 5 5	ND ND ND ND ND	5 3 4 3 4	239 131 107 98 87	1 1 2 1 2	5 10 4 8 2	15 41 6 3 2	41 45 45 89 4	1.89 .48 .29 .87 .09	.056 .070 .074 .066 .024	10 6 12 4 17	20 10 17 22 26	.71 .52 .54 1.09 .06	294 29 64 113 396	.08 .12 .05 .13 .01	2 6	3.36 2.09 2.27 3.53 .50	.13 .03 .04 .01 .03	.19 .18 .29 .28 .20	2 2 1 1 2	163 49 56 81 20	
CBR 22R CBR 23R STD C/AU-R	2 5 20	19 12 63	18 28 42	72 56 133	.5 .9 7.3	17 7 72	21 7 31	408	6.14 3.77 3.99	29 1499 40	5 5 20	ND ND 8	4 4 40	115 210 50	1 1 20	3 13 17	2 5 19		5.73 2.26 .51	.096 .083 .085	4 5 42	11 34 60	.75 .76 .93	14 36 180	.01 .05 .07		.55 4.20 1.95	.01 .37 .06	.20 .33 .16	1 1 13	350 11 475	

- ASSAY REQUIRED FOR CORRECT RESULT for Pb As >10,000 ppm Mu, 56)1000 ppm Ay>35 ppm

Section of the sectio

¥

X X.

Page 4

1

Ċ.

(-.

1

(

6

£.,

٤...

{

(

€

Ł,

ť

(-...

Ċ

€

t

 $\gamma \to q < 1$

ACME ANALYTICAL LABORATORIES LTD.

PHONE(604)253-3158 FAX(604)253-1716

(F

(

t

(

GEOCHEMICAL ANALYSIS CERTIFICATE

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P6 SOIL P7-P8 ROCK AU* AMALTSIS BY ACID LEACH/AA FROM 10 GN SAMPLE. P - 20, -45, Pulverked.

Sept 22/8 DATE RECEIVED: SEP 15 1988 DATE REPORT MAILED: CURRAGH RESOURCES File # 88-4527 Page 1 SAMPLES Cđ Sb Хo Cu Pb Zn Àσ Ni Co Mn Fe As IJ Au Th sr Bi V Ca P La Cr Mď Ba Ti B Al Na K ¥ Au* PPN PPN PPN PPN PPN PPN PPN PPN z PPM PPM PPM PPN PPM PPN PPM PPN PPN 2 ž PPM PPN ş PPM PPN Ł ž PPN PPB Ŷ \$ 367 11.21 20138 C8R-3L 97 55 212 .3 29 15 5 ND 7 1083 401 2 .21 .240 23 .57 60 1 62 20 24 .04 2 2.58 .02 .91 10 1090 16 4.43 5 C8R-30L 1 36 26 123 .1 24 161 ND 2 33 1 5 2 64 .18 .101 23 29 1.04 177 .06 3 3.58 .01 .23 6 6 40 22 108 1 21 16 947 4.32 127 5 ND 5 41 1 3 3 62 .24 .077 26 29 1.10 C8R-31L 1 197 .08 3 3.47 .01 .23 4 1 24 114 24 17 1020 4.46 130 5 ND 1 31 1 2 63 .21 .089 25 C8R-32L 1 39 .1 2 30 1.08 180 8 3.43 .08 .01 .21 1 2 C8R-33L 1 32 10 80 .1 19 14 720 3.55 93 5 ND 8 101 1 2 2 47 .49 .079 24 19 .90 165 2 2.33 .02 .10 .27 1 3 C8R-34L 33 79 .1 23 15 735 3.90 65 5 ND 78 55 .39 .062 .89 198 1 11 -7 1 - 2 2 24 24 .11 2 2.57 .02 .25 41 12 101 22 15 935 4.36 80 5 ND 42 3 62 .27 .090 28 C8R-35L 1 .1 8 - 1 2 28 1.10 208 .10 2 3.40 .01 .24 1 1 730 3.86 C8R-36L 1 30 16 80 .1 23 14 64 5 ND 6 78 1 3 2 55 . 39 .065 24 25 .90 200 .11 3 2.57 .02 .26 2 1 5 47 40 24 25 16 819 4.82 129 ND 3 2 67 .19 22 C8R-37L 1 119 .1 3 1 .085 29 1.13 253 .06 2 4.71 .01 .25 6 3 C8R-38L 41 17 107 .1 27 16 886 4.65 113 5 ND 41 1 3 67 .23 .076 22 30 1.18 238 1 4 2 .09 2 4.08 .02 . 22 2 1 CBR-39L 1 45 25 115 .1 27 18 1007 4.57 114 5 ND 5 47 1 -2 2 63 .27 .084 27 31 1.12 255 .08 5 3.96 .02 .27 2 7 22 .22 37 99 .1 28 16 844 4.44 131 5 ND 5 34 1 3 2 62 .079 23 28 1.09 209 C8R-40L 1 .08 4 3.96 .02 .23 3 1 C8R-411 31 15 91 .1 19 14 785 4.07 112 5 ND 3 40 1 2 2 55 .27 .078 25 25 .87 168 1 .06 2 3.18 .01 .21 3 1 72 38 C8R-42L 1 28 16 80 .2 18 13 677 3.69 5 ND 5 1 2 2 49 .28 .072 25 23 .80 169 .06 4 2.64 .02 .19 59 1 760 3.84 .23 .076 C8R-43L 32 91 21 13 86 5 ND 5 36 54 26 25 1 16 .1 1 2 2 .93 203 .08 2 3.20 .01 .24 2 3 C8R-44L 859 4.54 156 36 .26 1 45 15 115 .1 29 19 5 ND 6 2 2 70 .070 21 37 1.25 260 .11 2 4.26 .01 .34 5 4 C8R-45L 1 55 28 141 .2 37 21 895 4.95 343 5 ND 5 89 1 2 73 .65 .070 20 41 1.61 2 4.58 ı. 279 .13 .02 .39 5 1 43 102 25 12 676 3.71 153 5 ND 3 2 57 .37 .088 C8R-46L 1 34 26 .1 1 2 22 30 . 99 185 .09 2 2.96 .01 . 30 4 5 C8R-47L 1 37 11 96 .1 25 15 772 4.03 112 5 ND 4 67 1 3 2 62 .39 .077 19 34 1.30 224 .02 .12 5 3.47 .34 1 1 774 4.04 76 5 64 C8R-48L 34 9 92 .1 24 14 ND å 2 2 62 .41 .071 23 32 1.20 180 1 .11 4 3.25 .02 .28 2 2 620 3.51 11 71 .38 C8R-49L 1 28 13 80 .1 19 5 ND 7 50 2 2 52 .076 22 26 .84 178 .12 2 2.55 .02 . 26 1 5 C8R-50L 1 33 13 90 .2 24 13 769 3.97 80 6 ND 5 63 1 2 2 61 .40 .071 22 31 1.20 180 .11 2 3.22 .02 .27 1 17 43 39 19 111 .2 29 927 4.48 105 5 ND 3 2 66 .27 .074 C8R-51L 1 1 2 22 32 1.20 233 .09 3 4.20 .01 .28 2 5 27 746 4.13 5 ND 5 64 C8R-52L 1 38 16 105 . 2 14 114 1 2 4 61 .42 .067 24 30 1.14 233 .11 3 3.62 .02 .31 1 1 28 79 638 3.42 93 ND 54 C8R-53L 19 .2 19 11 5 8 2 .39 .079 1 1 2 48 25 28 .82 134 .09 3 2.02 .02 .25 1 3 64 C8R-68L 2 1264 1252 1234 23.6 46 43 3306 12.41 20258 5 6 142 90 108 62 .43 .118 28 33 1.30 11 .02 2 3.39 .01 .31 3 5520 50 2264 9.73 19923 5 285 91 73 1.26 C8R-69L 4 375 379 447 14.3 45 6 9 89 .087 26 58 1.66 189 - 3 .06 4 4.32 .03 .54 3 2480 C8R-71L 152 57 334 32 61 3131 9.98 1305 5 ND 5 224 1 4 2 79 .67 .104 30 23 1.20 7 1.1 573 .04 2 4.44 .03 .23 3 24 5 5 487 C8R-76L 3 70 18 123 .4 16 30 940 7.34 272 ND 1 4 2 54 1.60 .125 18 10 .71 233 .04 5 5.79 .04 .35 7 7 C8R-77L 79 24 105 14 21 629 12.16 303 5 ND 1 339 1 2 56 1.02 .151 2 4.73 5 . 3 2 14 14 .81 182 .05 .03 .26 6 1 C8R-78L 5 104 23 129 17 31 968 10.01 255 5 ND 6 490 2 .03 .4 2 51 1.84 .130 13 10 .67 196 .05 2 6.84 .31 3 - 5 47 177 C8R-79L 120 126 223 1.6 34 27 835 7.01 3495 11 ND 1 17 3 41 .41 .077 52 . 69 146 13 18 .03 2 2.54 . 02 .15 2 192 ND 27 444 C8R-SOL 17 167 101 195 3.1 41 38 1020 8.75 5955 6 1 105 2 51 .18 .145 46 21 .55 537 .02 2 2.72 .02 1 99 .16 C8R-83L 8 101 134 31 19 802 5.40 4121 9 ND 22 95 2 28 3 61 .23 .080 25 .94 132 116 1.4 36 .07 2 3.38 .02 .23 6 72 62 622 6.93 15545 6 ND 244 C8R-84L 33 109 176 186 3.7 26 14 2 36 15 34 .19 .071 80 19 .53 120 .03 3 2.18 .04 .36 3 122 ND 6 236 C8R-89L 10 106 179 398 1.1 43 26 1254 6.70 3113 9 5 47 2 64 .44 .087 31 38 1.12 151 .05 2 3.85 .02 .26 6 79 18 37 47 17 STD C/AU-S 18 59 39 132 7.1 68 31 1049 4.21 43 8 17 17 58 .48 .089 39 55 .91 176 .06 34 1.97 .06 .13 13 47

SAMPLE#	Mo PPN	Cu PPM	Pb PPN	Zn PPM	Ag PPN	Nİ PPM	Co PPM	Nn PPN	Fe ۶	As PPM	U PPM	Au PPN	Th PPN	Sr PPM	Cđ PPM	SD PPM	BÍ PPN	V PPM	Ca १	P %	La PPN	Cr PPM	Mg %	Ba PPM	Ti %	B PPN	Al %	Na %	K Z	W PPN	Au* PPB
C8R-90L C8R-91L C8R-92L C8R-93L C8R-93L	9 11 11 17 13	109 147 167 234 148	281 110 178 171 445	395 349 287 260 175	9.7 1.8 2.1 2.9 2.6	49 51 44 42 23	25 32 25 19 13	1352 981 607	8.02 7.67 7.15 8.03 5.48	8485 8059 6091	6 7 8 11 11	24 ND ND ND ND	4 14 19 17 81	268 254 227 200 212	7 5 3 2 3	53 66 39 65 41	7 2 13 16 19	71 68 63 64 35	.31 .47 .26 .22 .15	.091 .108 .074 .124 .063	27 27 35 24 77	40	1.36 1.22 1.14 .98 .58	149 160 147 162 113	.05 .05 .05 .05 .03	2 2 2	3.64 3.92 3.46 3.42 2.31	.02 .02 .02 .02 .02	.37 .36 .26 .28 .30	2 : 3 2 3 8	24220 245 89 137 90
C8R-95L C8R-102L C8R-104L C8R-105L C8N-955	14 5 2 2 1	119 154 5 15 42	230 166 6 12 27	505 144 34 54 104	2.0 3.2 .1 .4 .8	35 19 4 6 27	27 13 3 4 16	1221 490 227 325 973	6.76 4.68 1.15 1.90 3.84	4699 6451 41 64 88	5 9 5 5 5	ND ND ND ND ND	8 54 8 27 12	151 169 14 24 161	11 5 1 1 1	29 23 2 2 5	2 25 2 3 2	69 38 10 23 45	.28 .29 .13 .29 .54	.092 .049 .017 .053 .065	29 48 12 40 28	25 16 4 8 23	.99 .55 .17 .26 1.15	134 148 31 37 238	.05 .05 .03 .03 .06	2 3 2	3.32 2.16 .53 .82 2.76	.02 .02 .01 .01 .02	.24 .24 .08 .08 .34	2 4 1 20 2	53 2820 1 3 5
C8N-965 C8N-975 C8N-985 C8N-995 C8N-1005	1 2 3 1 4	26 41 71 46 79	17 21 27 17 75	73 129 108 95 157	.6 .6 .9 .9 1.5	18 36 88 36 29	10 38 40 27 31	604 765 1642 1097 1661	4.97 7.35 4.40	65 689 438 109 66	5 5 5 5 5	ND ND ND ND	9 5 4 7 4	99 58 53 98 108	1 1 1 2	3 2 13 2 20	2 2 3 2 2	44 30 50 55 44	.40 .33 .55 .75 .98	.065 .091 .113 .079 .131	23 25 26 24 11	20 8 35 27 20	.85 .35 .47 1.10 .87	194 212 308 261 94	.07 .01 .01 .04 .01	2 2 2	1.90 1.90 1.81 2.45 1.93	.03 .01 .01 .02 .01	.32 .09 .11 .24 .23	1 1 1 1 4	1 1 3 12
C8N-101S C8N-102S C8N-103S C8N-104S C8N-105S	1 12 13 9 5	61 110 78 52 36	28 32 89 158 77	107 383 314 140 97	.9 1.6 1.8 2.1 1.4	28 67 57 14 11	32 41 28 26 14		4.76 6.09 5.68 4.48 4.35	122 190 1898 3694 8150	5 5 7 5	ND ND ND ND ND	9 8 11 36 16	78 84 52 26 32	1 3 4 2 1	2 3 16 20 13	2 2 2 2 2	61 103 75 37 38	.63 .41 .22 .09 .09	.109 .110 .107 .068 .061	32 24 25 39 32		.93 1.17 1.11 .49 .54	283 248 223 133 194	.03 .02 .03 .02 .02	2 2 3	2.41 3.54 3.43 1.95 2.21	.02 .01 .01 .01 .01	.22 .21 .18 .12 .15	1 3 3 1 2	2 14 75 1040 390
CBN-1065 CBN-1075 CBN-1085 CBN-1095 CBN-1105	5 1 1 1 1	37 33 34 53 37	81 88 73 60 18	134 155 134 109 92	1.1 .4 .6 .9 1.2	13 16 15 26 26	14	1231 1701 2001 1506 517	4.04	3441 785 382 94 105	6 5 5 5 5	ND ND ND ND ND	16 8 21 3 8	41 39 25 24 65	1 1 1 2 1	13 2 2 3 2	2 2 2 2 3	32 43 44 67 73	.14 .20 .13 .33 .67	.054 .073 .058 .081 .105	45 59 45 19 23		.52 .71 .73 1.49 1.17	188 152 141 345 151	.02 .02 .03 .03 .08	2 2 3	2.04 3.02 2.77 2.87 2.70	.01 .01 .01 .01 .01	.14 .17 .16 .25 .32	1 1 1 1	315 36 370 14 10
C8N-1115 C8N-1125 C8N-113L C8N-114L C8N-115L	1 1 1 1	56 68 75 78 70	30 59 38 35 8	117 159 138 129 84	1.0 1.1 1.2 1.2 1.7	19 16 18 20 22	21 24 24 25 18	1512 1431		278 317 117 164 49	5 5 5 5 11	ND ND ND ND ND	9 6 3 5 7	97 269 319 221 263	1 1 1 1 1	3 3 2 2 2	2 2 3 2 2	70 73 80 75 56	.80 .71 1.14 .62 .69	.124 .101 .128 .114 .974	35 31 20 20 13	17 19 20	1.03 1.26 1.49 1.38 1.45	222 170 235 191 160	.11 .06 .09 .09 .09	2 3 3	3.00 4.44 4.21 4.17 2.45	.06 .03 .04 .04 .04	.40 .31 .42 .30 .21	3 4 4 2 1	12 4 11 1 3
C8N-116L C8N-117L C8N-118L C8N-119L C8N-120L	1 4 2 1 1	117 78 73 94 122	21 32 31 32 32	106 106 123 120 135	1.2 .8 .9 1.1 1.2	39 14 13 21 31	25 27 35 31 38	934 985	9.94 6.80 5.76	60 173 244 174 482	5 5 5 5	ND ND ND ND ND	3 8 6 3 10	351 622 539 378 243	1 1 1 1 1	2 3 2 4	2 2 2 2 2	82 43 54 70 73	.93 .65 1.52 .93 .81	.109 .156 .108 .107 .100	16 20 21 23 39	49 9 8 15 16	2.11 .63 .73 .95 .80	230 179 205 200 153	.10 .02 .03 .04 .02	2 2 2	4.12 5.09 5.55 4.33 4.16	.04 .08 .03 .03 .03	.26 .22 .37 .30 .23	3 2 4 4 2	4 6 7 9 46
C8N-121L STD C/AU-S	1 18	125 61	37 36	129 132	1.5 7.1	28 57		1264 1022		579 44	5 21	ND B	9 37	311 48	1 18	11 16	2 22	78 60	.70 .49	.123 .096	32 40	18 55	1.06 .94	159 183	.04 .07		4.00 2.06	.02 .06	.27 .15	5 12	29 47

Page 2

0

(-

f.

(

í

ŧ.

(

(

ł

(† 1

(

(

(

£

and the second field of the second second second second second second second second second second second second

.

۰.

SAMPLE ‡	No PPN	Cu PPM	Pb PPM	Zn PPN	Ag PPN	NI PPM	Co PPN	Nn PPM	Fe %	As PPN	U PPM	Au PPM	Th PPM	Sr PPM	Cd PPN	SD PPM	Bİ PPM	V PPM	Ca %	P %	La PPN	Cr PPN	Ng ł	Ba PPM	Ti %	B PPM	Al %	Na %	K Z	W PPH	Au* PPB
C8N-122L C8N-123L C8N-124L C8N-125L C8N-125L C8N-126L	5 5 5 11 13	81 143 154 144 141	38 64 68 135 115	134 187 160 254 224	.3 1.4 1.2 3.3 2.7	23 47 44 43 43	41 44 38	1218 2051 1666 1606 1310	6.28 6.78 6.62 6.86 7.09	305 962 1256 3038 3498	5 5 5 5 5	ND ND ND ND ND	9 12 17 22 25	278 207 274 205 186	1 2 2 1	6 8 10 37 47	2 2 2 2 2 2	71 72 65 50 47	.74 .50 .56 .35 .28	.117 .112 .095 .119 .096	29 52 40 46 42	19 21 21 16 14	1.08 .88 .85 .68 .59	183 137 128 247 255	.07 .04 .03 .02 .02	2 4 3	4.02 3.28 2.99 2.79 2.41	.03 .01 .02 .02 .01	.30 .23 .17 .19 .16	2 2 1 1 1	33 14 25 35 71
C8N-127L C8N-128L C8N-129L C8N-130L C8N-131L	27 55 63 5 31	117 248 171 72 131	80 53 51 30 65	349 1009 718 124 395	1.3 .8 .7 .2 1.1	55 217 166 17 80	59 46 34	1388 997	7.26 14.75 11.00 5.72 7.97	2855 6768 9204 282 6373	5 5 5 6	ND ND ND ND	18 7 7 6 11	142 295 271 513 202	2 7 6 2 3	21 113 157 4 48	2 2 2 2 2	59 77 76 52 74	.38 .66 .51 1.44 .31	.090 .175 .180 .103 .145	58 14 16 21 29	15 15 17 9 20	.59 .77 .86 .69 .84	129 266 314 201 228	.02 .02 .03 .03 .03	2 2 4	2.69 4.77 4.07 5.16 3.94	.01 .01 .01 .03 .01	.15 .22 .23 .35 .20	1 4 5 6 4	78 63 41 15 74
C8N-132L C8N-134L C8N-135L C8N-136L C8N-137L	27 30 21 17 9	127 199 193 188 148	123 77 86 53 141	422 410 391 377 301	2.3 1.5 1.4 .8 1.5	77 91 62 70 47	47 38 46	1435 1582 1596	13.60 9.77 12.14	7579 8574 8647 3875 3247	5 6 7 5 5	ND ND ND ND ND	9 16 15 8 4	197 183 255 264 287	4 2 7 3 4	31 66 49 36 56	2 2 2 4 2	79 68 65 74 74	.42 .55 .63 .48 1.22	.134 .158 .166 .148 .134	24 17 32 17 15		.87 .83 .91 1.04 1.29	138 239 234 98 110	.03 .04 .03 .05 .06	2 4 2	3.88 4.98 4.31 4.96 4.18	.01 .02 .02 .02 .02	.19 .31 .34 .47 .54	1 2 4 1 3	163 255 192 54 44
C3N-138L C8N-139L C8N-140L C8N-141L C8N-141L C3N-142L	1 5 11 6 2	144 148 362 236 352	25 119 825 461 213	186 419 172 416 545	.6 1.1 33.1 6.7 4.9	56 40 20 41 75	35 14 32	1566		19504	5 5 12 9 5	ND ND 3 ND ND	2 9 139 41 5	173 187 112 182 105	1 10 5 11 10	8 25 138 72 19	2 15 377 41 21	102 73 28 73 125	1.91 .62 .14 .80 .79	.090 .100 .046 .064 .087	7 20 56 32 21	38 16 46	2.09 1.26 .42 1.21 2.83	153 183 117 216 201	.11 .05 .02 .06 .10	2 2 2	5.75 4.00 2.22 3.33 4.54	.05 .02 .02 .03 .04	.93 .38 .28 .45 .66	2 7 62 73 9	30 225 2160 535 245
CBN-143L CBN-144L CBN-145L CBN-146L CBN-147L	4 5 3 3 7	236 175 199 127 187	283 191 270 117 149	401 948 414 331 713	10.4 3.1 7.3 1.4 2.7	41 47 58 94 47	55 32 29	1639 1396	7.09 7.92 6.94 5.78 5.96	9654 14745 2929	8 5 5 9	ND ND ND ND ND	29 11 18 8 6	133 131 155 100 100	18 22 9 4 8	56 24 30 6 10	87 12 45 2 5	94	1.33 .55 1.30 .62 .61	.099 .081 .091 .073 .091	28 38 23 20 24	68 81 233	1.59 1.83 2.05 2.30 1.50	142 154 155 158 135	.06 .10 .08 .14 .10	4 2 2	3.03 3.89 4.01 4.96 3.97	.03 .03 .04 .03 .02	.52 .39 .59 .55 .36	14 7 14 3 8	775 213 650 49 139
CSN-148L CSN-149L CSN-150L CSN-151L CSN-152L	5 3 1 1 7	227 127 330 352 171	741 232 1195 1501 211	806 398 1076 1382 952	5.6 2.9 18.5 27.5 3.0	49 58 89 89 48	28 40 52	2386 1696 2035	7.13 5.08 8.70 10.84 7.91	5612 19304 19895	5 5 5 5 5	ND ND ND ND ND	11 5 4 3 11	160 124 185 178 130	22 8 35 54 22	30 19 67 116 25	2 16 20 32 15		.89 .99 1.11 1.17 .54	.090 .086 .107 .106 .076	23 16 15 16 37	105 86 83	1.86 1.59 2.25 2.30 1.83	213 222 175 151 148	.09 .09 .09 .07 .10	3 3 2	4.00 3.31 4.07 4.13 3.87	.04 .03 .04 .03 .03	.60 .43 .74 .75 .35	20 8 15 11 19	226 199 795 1950 285
CBN-153L CBN-154L CBN-155L CBN-156L CBN-157L	3 4 7 3 6	151 277 249 183 138	259 265 475 785 210	387 416 689 643 419	3.1 3.2 4.7 4.8 1.8	81 72 59 78 53	36 33 33	1317 1456 1249 1412 1285	6.96 7.34 7.40 6.34 5.78	3832 3902 5169 5098 3600	5 5 5 5 5	ND ND ND ND ND	9 6 7 5 4	128 112 121 123 122	6 5 7 9 4	11 16 21 31 20	2 2 2 5 2	91 100 84 73 68	.84 1.07 .39 .47 .49	.074 .073 .059 .073 .064	17 14 17 17 17	104	2.36 1.91	183 230 175 179 137	.17 .18 .12 .09 .09	2 2 3	5.58 5.55 4.90 4.02 4.18	.06 .07 .02 .02 .02	.76 .98 .45 .50 .37	13 4 9 13 10	345 88 86 74 415
C8N-158L STD C/AU-S	4 18	77 60	203 41	308 132	1.2 6.6	40 67	15 30	910 1062	4.77 4.14	2633 37	5 18	ND 8	1 37	89 47	3 18	27 18	2 21	61 58	.28 .48	.070 .089	14 39	56 55	1.19 .90	132 175	.07 .05	2 33	3.19 1.92	.01 .06	.26 .13	11 12	75 50

rage 3

C

ŧ

Ċ

0

C

(.

Ŕ÷

6.2

ť

(

(

(

(

Ċ

(...

Ç.

(

€

(

ŧ

2.2.4

1

SAMPLE¥	NO PPM	CU PPN	PD PPM	Zn PPM	Ag PPM	NI PPN	Co PPM	Mn PPM	Fe 3	As PPN	U PPN	Au PPM	Th PPM	ST PPM	Cd PPN	SD PPN	BÍ PPM	V PPM	Ca %	P. 45	La PPM	Cr PPM	Ng %	Ba PPM	Ti z	B PPN	Al ş	Na %	K %	W PPN	Au* PP5
C8N-159L C8N-160L C8N-161L C8N-162L C8N-163L	3 6 5 12 12	68 52 50 115 81	140 35 31 163 333	284 201 156 430 412	2.0 .1 .3 2.2 2.1	94 30 31 65 47	12	991 1095 1945	5.70 4.57 4.58 6.75 5.82	1875 1048 4187	5 9 5 5 5	ND ND ND ND ND	4 8 15 17	94 73 67 95 56	2 1 1 6 10	12 6 4 19 26	2 2 2 2 2	78 66 62 91 66	.33 .39 .34 .53 .40	.075 .076 .076 .099 .097	13 37 28 33 37	26 21	1.91 1.04 .83 1.32 .90	149 179 150 214 184	.12 .05 .04 .04 .03	3 2 4	4.10 3.05 2.56 3.23 2.24	.01 .02 .02 .02 .02	.44 .21 .18 .31 .21	9 4 1 5 2	74 6 8 125 36
C8N-164L C8N-165L C8N-156L C8N-167L C9N-163L	11 2 3 2 2	82 65 86 124 31	369 138 111 51 46	414 270 269 143 110	2.3 1.6 .7 .4 .2	46 84 51 39 24	25 20 29 22 11	1048 1206	4.98		5 5 5 5 5	ND ND ND ND ND	17 4 5 5 1	63 95 56 36 38	11 2 3 1 1	29 12 6 9	2 2 2 2 2	63 74 96 88 50	.34 .32 .55 .32 .22	.091 .067 .096 .066 .068	37 14 18 20 21	60	.86 1.78 1.86 1.37 .70	176 141 197 192 123	.02 .11 .12 .12 .05	4 2 7	2.16 3.89 4.05 4.21 2.30	.02 .01 .04 .02 .01	.17 .41 .51 .33 .19	1 12 2 2 4	56 18 5 4 5
C8N-1691 C8N-1701 C8N-1711 C8N-1721 C8N-1731	3 2 2 1 2	30 58 23 29 31	39 46 30 28 38	112 174 85 85 101	.3 .3 .1 .1 .2	20 47 19 24 24	9 20 10 12 12	1120 562 705	3.03	165 273 83 90 114	5 5 5 5 5	ND ND ND ND ND	1 7 3 8 2	48 76 35 42 32	1 2 1 1	6 8 5 6	2 2 2 2 2	53 67 42 49 53	.21 .50 .25 .32 .19	.062 .082 .078 .087 .087	16 23 21 27 22	23 60 18 20 22	.71 1.58 .54 .76 .81	114 229 115 154 136	.03 .11 .05 .07 .06	3 6 4	2.22 3.37 1.76 2.23 2.86	.01 .04 .02 .02 .01	.14 .60 .18 .23 .20	4 5 1 1 2	3 6 2 1 3
CSN-174L CSN-175L CSN-176L CSN-177L CSN-179L	2 2 1 1 1	44 30 43 31 24	47 49 36 32 30	122 94 117 94 85	.4 .2 .2 .2 .2	35 25 32 23 18	14 12 14 12 11	648		182 131 152 100 100	5 5 5 5	ND ND ND ND ND	6 8 5 2	39 44 71 40 47	1 1 1 1	7 7 8 2 6	2 2 2 2 2	58 49 63 51 54	.30 .36 .71 .30 .30	.093 .073 .115 .079 .084	24 27 20 23 19	28	1.11 .82 1.21 .92 .76	179 123 164 146 128	.08 .07 .10 .07 .96	2 5 2	3.07 1.94 2.71 2.51 2.65	.02 .02 .06 .02 .02 .01	.32 .23 .50 .30 .23	2 1 3 1 . 2	5 3 16 38 10
CBN-179L CBN-180L CBN-181L CBN-182L CBN-183L	2 1 1 1 1	42 47 26 33 38	33 31 30 32 29	108 116 81 113 101	.3 .2 .3 .2	28 31 21 30 23	13 20 9 13 13		4.46	147 147 102 94 134	5 5 5 5 5	ND ND ND ND ND	10 8 4 9 14	76 79 41 40 77	1 1 1 1	7 5 6 4 2	2 2 2 2 2	56 69 46 54 53	.63 .58 .31 .35 .66	.097 .080 .077 .089 .094	23 24 23 24 28	40 27	1.07 1.32 .80 1.16 .98	161 201 116 162 151	.09 .11 .07 .09 .11	3 2 3	2.18 3.00 2.00 3.01 2.15	.05 .04 .03 .02 .04	.37 .37 .21 .40 .30	3 2 1 1 2	22 5 4 12 8
C8N-184L C8N-1851 C8N-186L C8N-187L C8N-188L	4 15 12 1 15	60 80 89 30 75	38 151 78 50 70	134 249 197 88 199	.3 .7 .6 .2 .6	54 27 31 25 26	29 22 17 11 14	1320 777 617		1075 4160 2813 152 3513	5 5 5 5 5	ND ND ND ND ND	6 2 2 5 1	93 206 150 42 179	1 2 1 1	17 132 59 8 78	2 3 2 2 2	71 59 55 48 58	.31 .20 .33	.050 .111 .144 .073 .136	16 16 17 25 14	- 44 19 21 28 17	1.33 .76 .73 .80 .77	122 165 139 121 155	.08 .04 .03 .06 .03	7 3 4	3.91 2.73 3.27 1.93 2.81	.01 .01 .01 .02 .01	.27 .32 .22 .24 .29	2 6 3 1 5	11 12 13 6 9
C8N-189L C8N-190L C8N-191L C8N-191L C8N-192L C8N-193L	10 12 15 6 5	72 239 144 136 140	110 71 60 38 25	203 252 277 263 238	1.1 1.1 .5 .3 .3	29 47 60 58 48	40	703 1109 1144 1317 1756	11.89 9.84	3039 5035 1788 976 2390	5 5 5 5 5	ND ND ND ND ND	2 7 5 5	98 247 197 187 554	3 1 2 2 2	37 54 29 13 12	2 2 2 2 2 2	61 67 62 84 74	.36 .76 .53	.115 .153 .139 .106 .088	14 12 18 14 15	20 25	.79 1.17 1.04 2.05 1.83	136 81 73 111 155	.04 .07 .07 .09 .06	2 5 . 2	2.81 5.31 5.30 5.00 5.46	.02 .02 .07 .04 .03	.25 .55 .45 .91 .89	2 4 6 1 4	35 5 14 18 8
C8N-194L STD C/AU-S	25 18	194 58	50 37	223 132	.6 6.5	69 68		1777 1054		6249 39	5 17	ND 8	7 38	742 47	2 18	43 20	2 17	78 58		.223 .091	14 39	21 54	.80 .91	171 174	.06 .06		4.85 1.93	.03 .06	.58 .14	9 13	6 51

Page 4

C

¢.:

C

(

(

(...

ŧ

(-

C

(

0

Ć.

Ć

(:

C

£

· .

+

and the second second second second second second second second second second second second second second secon

SAMPLE#	Mo PPM	Cu PPM	Pb PPN	Zn PPM	Ag PPM	NI PPM	CO PPN	Mn PPM	Fe ۶	As PPM	U PPM	Au PPN	Th PPN	Sr PPM	Cd PPN	Sb PPM	Bi PPM	V PPM	Ca १	P %	La PPN	Cr PPN	Mg %	Ba PPM	Ti %	B PPM	A1 %	Na %	K Z	W PPN	Au* PPB
CBN-1951 CBN-1961 CBN-1971 CBN-1981 CBN-1991	10 12 5 36 27	66 130 131 82 67	27 51 31 31 31	135 260 254 181 180	.2 .6 .1 .3 .4	34 61 52 33 30	15 31 39 12 13	899	5.64 11.60 9.91 6.51 6.58	1953 1016 8082	5 5 5 5 5	ND ND ND ND ND	6 5 5 2	108 776 196 312 337	1 1 1 1	26 37 14 106 125	2 8 4 5 2	53 93 84 63 48	.15 .91 .53 .16 .20	.069 .123 .104 .135 .151	19 14 13 20 14	21 30 29 22 16	.72 1.40 1.99 .64 .46	195 60 115 449 414	.05 .10 .08 .03 .02	2 2 2	3.08 4.40 4.83 2.64 1.85	.01 .03 .04 .02 .01	.20 .87 .89 .21 .20	2 2 4 3	27 12 15 12 4
C8N-200L C8N-201L C8N-202L C8N-203L C8N-204L	61 29 6 15 12	67 116 61 119 126	119 25 25 18 31	105 246 104 133 160	1.4 .3 .2 .3	11 49 23 39 48	5 20 13 15 25	142 625 615 687 791	4.33 6.87 4.18 5.80 5.74	14148 2506 817 2801 3148	5 5 5 5 5	ND ND ND ND ND	13 14 12 7 3	757 349 67 100 151	1 1 1 1	179 22 10 20 26	2 4 2 2 2	33 64 60 69 68	.04 .20 .18 .16 .28	.181 .086 .045 .077 .135	22 36 27 39 31	10 26 26 33 30	.09 .63 .82 .69 .71	139 108 165 102 146	.01 .03 .07 .04 .03	2 2	.67 2.80 2.94 2.83 2.85	.01 .01 .01 .01 .01	.32 .12 .19 .12 .12	13 2 2 3 6	25 19 8 5 13
CBN-205L CBN-206L CBN-207L CBN-208L CBN-209L	5 2 11 6 5	64 42 86 85 57	22 16 337 189 135	120 85 208 386 269	.2 .2 2.6 1.1 .5	28 19 22 32 19	14 11 10 23 14	588 506 460 898 643	4.09 3.22 6.14 5.41 4.26	612 313 4612 3295 2328	5 5 5 5 5	ND ND ND ND ND	9 8 7 4 1	89 49 106 130 143	1 1 12 5	6 2 28 21 19	2 2 11 6 2	59 46 60 73 50	.26 .18 .11 .42 .71	.073 .049 .064 .085 .104	21 20 27 17 12	25 20 32 62 33	.80 .66 .77 1.29 .71	145 117 131 176 162	.07 .06 .04 .05 .02	2 2 2	2.99 2.58 3.23 3.15 1.72	.02 .01 .01 .02 .01	.19 .15 .15 .27 .36	3 1 9 8 2	2 3 166 89 5
C8N-210L C8N-211L C8N-212L C8N-213L C8N-214L	3 4 9 6	151 40 224 109 66	268 67 87 80 74	519 164 320 267 220	1.3 .3 .4 .5 .5	37 17 40 38 54	32 11 40 24 28	1303 567 979 705 910	6.58 4.00 7.32 6.23 4.89	4254 1190 2486 2196 2269	5 5 5 5	ND ND ND ND ND	8 2 5 5 3	279 52 135 185 309	17 1 2 2 2	16 11 17 20 18	6 3 5 4 6	94 50 81 74 69	.69 .14 .38 .36 .81	.069 .077 .080 .071 .086	19 18 23 17 11	25 50 46	1.43 .65 1.44 1.22 1.43	190 113 185 163 145	.09 .04 .08 .08 .08	2 4 2	3.95 2.97 4.38 3.81 4.47	.03 .01 .02 .02 .02	.46 .16 .32 .27 .27	1 2 9 9 4	45 125 19 28 265
CBN-215L CBN-215L CBN-217L CBN-219L CBN-220L	8 17 13 12 13	99 323 166 105 172	277 270 140 105 103	540 338 276 272 231	1.8 5.1 2.0 .8 1.8	31 28 28 39 42	21 15 21 21 21	1090 775 862 986 882	6.09 6.84 6.04 6.32 7.02	6213 5455	5 13 5 5 8	ND ND ND ND ND	8 18 47 17 22	162 139 139 207 205	9 6 5 3 2	18 43 23 27 40	10 23 10 4 26	74 51 60 57 57	.67 .18 .33 .27 .20	.078 .064 .064 .062 .057	33 38 36 33 33	32 36	1.34 .82 1.06 1.01 .94	144 132 120 155 177	.06 .04 .06 .05 .05	2 2 2	3.97 2.90 3.11 3.16 2.84	.02 .01 .02 .02 .02	.30 .23 .27 .21 .23	4 13 5 3 5	12 255 133 455 395
C8N-221L C8N-222L C8N-223L C8N-224L C8N-225L	13 11 11 11 7	431 176 137 159 106	136 141 80 169 75	247 234 227 405 312	4.8 2.7 1.1 2.0 1.6	42 49 33 45 56	24 17 29	956 953 1266	7.43 6.47 6.07 7.61 6.13	9434 5983 5589	6 5 5 5 5	ND ND ND ND ND	30 8 8 13 7	241 244 198 349 246	3 3 3 8 4	39 44 24 44 24	48 51 24 3 17	55 62 57 64 59	.30 .57 .19 .70 1.05	.063 .076 .065 .089 .071	39 32 36 29 28	66 44 37	1.03 1.13 .89 1.23 1.36	167 166 209 152 124	.05 .06 .05 .05 .05	4 2 2	3.07 3.26 2.96 3.86 3.35	.02 .02 .01 .02 .02	.23 .26 .18 .37 .26	9 6 1 4 2	625 158 315 835 775
C8N-226L C8N-227L C8N-228L C8N-229L C8N-229L C8N-230L	11 12 14 12 12	119 160 237 352 187	233 142 147 208 151	592 278 291 291 269	2.5 1.9 2.9 4.6 3.2	44 31 34 43 42	22 22	1429 866 987 1017 1042	6.39 5.94 7.09 8.20 7.35	5439 5876 9197 18172 9347	5 5 5 5 5	ND ND ND ND ND	8 47 20 26 26	256 136 277 375 272	12 5 7 5 3	28 23 35 43 29	7 14 11 36 10	56 59 58 58 58 59	.54 .33 .36 .73 .43	.071 .062 .077 .069 .095	33 35 42 35 36	36 30	1.23 1.06 .93 1.10 .99	135 118 183 165 168	.05 .06 .05 .05 .05	3 2 2	3.76 3.14 3.37 3.59 3.77	.01 .02 .02 .03 .02	.24 .27 .25 .35 .28	4 4 14	1850 285 685 2335 1395
C8N-231L STD C/AU-S	17 17	353 59	1372 36	198 132	26.1 7.1	25 58	15 30	603 1015	6.97 4.21	19360 44	5 22	12 8	36 37	235 47	6 18	90 16	20 19	46 58	.23 .48	.060 .090	52 39	22 55	.67 .91	164 179	.04 .07		2.7 4 1.96	.02 .06	.27 .14	7 13	5115 53

Page 5

(

(*:.

<u>(</u>,

(°.

(

(

C

()

(

(

(

Ċ

(

(

(

(

(

(

£.

C

(

ţ

· • ;

SAMPLE#	No PPM	Cu PPM	Pb PPN	Zn PPN	Ag PPM	Nİ PPM	CO PPM	Nn PPM	Fe १	AS PPM	U PPN	Au PPN	Th PPM	Sr PPM	Cd PPM	SD PPN	BÍ PPM	V PPM	Ca %	P %	La PPN	Cr PPM	Mg %	Ba PPM	Ti %	B PPN	Al %	Na %	K Z	W PPN	Au* PPB
CBN-232L	13	140	183	294	3.0	47	30	1355	7.10	5578	5	ND	15	324	4	41	9	66	.51	.084	23	33	1.14	154	.05	2	4.32	.02	.37	2	585
C8N-233L	14	231	504	200	1.1	32	19	913	6.33		15	ND	39	277	3	30	11	47	.37	.082	26	32	.80	146	.04		3.35	.02	.25	3	915
C8N-234L	4	64	110	153	1.8	18	10	517	3.91	5421	5	ND	10	59	2	18	3	41	.18	.055	22	24	. 59	97	.04		2.77	.01	.12	1	1385
C8N-235L	1	63	189	130	4.4	18	10	668	4.44	7183	5	ND	14	93	2	25	8	47	.21	.047	21	26	. 58	99	.05		2.24	.01	.16		1065
C8N-236L	3	49	54	112	.9	23	12		3.64	2054	5	ND	16	69	1	11	2	46	.26	.046	25	28	.73	101	.07		2.40	.02	.18	1	225
											_																				
C8N-237L	6	76	159	135	2.4	18	10		4.53		5	ND	27	105	3	29	9	41	.22	.044	29	23	.61	128	.05		2.17	.01	.19	1	1675
C8N-239L	3	51	52	112	1.4	19	11	634	3.40	2519	5	ND	10	93	2	12	5	44	.35	.055	26	21	.65	95	.06		2.25	.01	.19	1	515
C8N-240L	5	67	81	127	2.3	18	10		3.97	3984	5	ND	14	72	3	16	1	45	.18	.043	27	23	.64	117	.05		2.61	.01	.20	4	1125
C8N-241L	3	48	62	95	1.5	16	10	542	3.20	1727	5	ND	9	65	1	10	2	43	.27	.042	23	22	.61	117	.05		2.17	.01	.18	1	169
C8N-242L	6	58	51	138	.6	15	9	574	3.75	1924	5	ND	15	81	2	13	2	37	.19	.057	33	18	.50	91	.04	3	2.00	.01	.13	1	415
C8N-243L	4	36	39	87	.7	17	9	464	3.19	1024	5	ND	10	68	1	11	2	39	.23	.047	19	19	.51	84	.05	2	1.97	.01	.15	5	131
C8N-244L	10	95	49	238	.1	13	10	674	4.50	2155	11	ND	36	53	3	12	2	27	.16	.041	36	14	.42	72	.03		1.93	.01	.12	1	275
C8N-245L	7	97	83	237	1.1	45	26	1270	5.73	2872	5	ND	14	251	2	27	5	57	. 80	.081	23	36	1.08	126	.06		3.85	.02	.34	1	305
C8N-246L	2	37	26	108	.2	20	11	600	3.17	451	5	ND	15	60	1	7	2	39	.38	.060	28	16	.56	104	.06		1.83	.02	.17	3	26
C8N-247L	5	105	184	252	2.6	46	20	994	5.44	3531	5	ND	14	255	4	19	5	55	. 66	.084	20	59	1.14	115	.07		4.47	.01	.30	1	395
	,			100							r	1170	•	0.0	•	20	75	43	17	AE 3	21	24		146		•	1 50	41	10	•	1175
C8N-248L	6	100	294	129	6.8	17	8	434		8564	3	ND	9	89	2	39	25	42	.16	.052	31	24	.61	146	.04		2.50	.01	.16	2	1175
C8N-249L	4	81	112	187	1.1	30	15	B12	4.35	1997	5	ND	15	118	4	16	6	52	.43	.054	25	27	. 84	109	.07		3.18	.02	.24	1	345
C8N-250L	5	56	36	139	.3	27	16	709		1040	2	ND	13	165	1	11	4	49	.80	.074	25	20	.77	94	.07		2.84	.02	.25	2	114
C8N-251L	6	91	54	230	.8	43	22	893	5.77	1903	2	ND	1	208	2	12	2	60	. 59	.085	21	31	1.05	163	.06		3.37	.02	.23	2	86
C8N-252L	7	72	39	159	.3	34	18	775	4.92	779	5	ND	9	118	1	10	2	60	. 42	.084	21	25	.86	123	.07	2	3.43	.02	.25	1 ·	15
C8N-253L	9	97	53	205	.4	41	22	1015	6.56	1393	5	ND	9	155	1	18	2	72	.46	.117	19	29	1.10	135	.08	2	4.70	.02	.36	3 -	19
C8N-254S	5	15	14	63	.1	7	4	320	1.69	81	6	ND	14	27	1	2	2	17	.27	.035	22	8	. 31	38	.04	2	. 9 2	.01	.08	5	2
STD C/AU-S	17	58	42	132	6.6	68	29	1037	4.13	41	17	6	36	47	18	16	18	57	.50	.091	38	56	.92	175	.07	33	2.07	.05	.13	11	47

rage 6

(

Ç

(-...

(

(

(*

 $\hat{k}^{(n)} \in$

ſ

€

(

(

(

€...

 $\zeta_{\rm cf}$

(

(

t

ł,

t

egenerative en el completa, com constituir el constituir en constituir de la constituir de la constituir de sec

.

SAMPLE#	MO PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPM	N1 PPM	Co PPN	Mn PPM	Fe १	As PPH	U PPM	Au PPM	Th PPM	ST PPH	Cd PPM	SD PPN	Bi PPM	V PPM	Ca %	P %	La PPM	Cr PPM	Mg %	Ba PPN	Ti %	B PPN	Al %	Na %	K %	W PPN	Au* PPB
C8R-24R C8R-25R C8R-26R C8R-27R C8R-28R	1 2 4 1 2	249 39 6 14 127	12 21 12 11 28	105 57 17 52 72	.6 .2 .1 .1 .6	54 11 7 36 22	27 7 9 11 20	206 176 2768	5.75 3.76 4.27 2.76 24.19	34 17 50 90 2244	5 5 5 5 5	ND ND ND ND	1 4 2 1 5	451 212 72 397 21	1 1 1 1	2 2 2 2 9	2 2 2 2 2	58 15	7.34 3.71 1.58 10.54 .45	.090 .062 .099 .037 .043	4 4 6 3	92 15 5 28 23	2.66 .43 .41 1.55 .53	58 61 41 73 6	.02 .06 .01 .01 .01		2.75 4.24 2.67 .88 3.22	.01 .10 .13 .01 .01	.19 .22 .25 .06 .03	1 1 1 1	6 6 15 11 222
C8R-29R C8R-59R C8R-61R C8R-63R C8R-64R	12 1 6 4 3	50 19 15 7 292	39 12 13 11 10	89 104 25 11 15	2.6 .1 .1 1.0 1.9	23 104 6 40 12	14 20 5 206 27	861 50 11	10.98 9.13 1.10 12.18 4.65	189 100 4156 99999 37054	5 5 5 5 5	ND ND ND ND ND	14 4 13 15 1	53 58 4 13 2	1 1 1 1	8 2 12 816 101	2 2 3 6	116 135 1 1 1	.62 .59 .03 .01 .01	.064 .125 .004 .001 .005	21 11 14 8 2	27 378 42 3 84	.54 4.06 .04 .02 .01	72 807 32 19 13	.02 .26 .01 .01 .01	2 2 2 2 4	3.42 6.46 .36 .26 .06	.01 .09 .01 .01 .01	.10 2.75 .20 .16 .03	1 2 1 1 1	28 32 92 525 345
C8R-65R C8R-72R C8R-73R C8R-74R C8R-75R	8 3 1 1 4	105 33 10 4659 37	152 20 10 7 19	104 42 42 16 56	12.0 .1 .1 5.3 .1	10 6 12 9 8	19 7 5 2 17	125 527 501	14.82 4.69 5.62 1.40 6.28	99999 722 416 67 110	5 5 5 5	ND ND ND ND ND	1 11 8 1 3	1 68 46 250 149	4 1 1 1	152 2 2 84 2	44 2 2 2 2	3 15 18 27 11	.01 .40 .08 8.02 .78	.003 .098 .061 .018 .042	2 13 15 2 7	5 10 20 23 3	.03 .19 .37 .20 .32	8 95 62 21 33	.01 .02 .02 .03 .01	2 3	.09 1.06 2.63 .51 2.48	.01 .07 .03 .01 .22	.04 .18 .14 .01 .10	1 2 1 1 1	360 7 9 845 10
C8R-81R C8R-82R C8R-85R C8R-86R C8R-97R	12 2 89 3 4	127 49 190 57 6	5 27 13470 132 22	41 21 144 321 44	.1 .2 147.1 .4 .2	24 5 6 9 13	5 2 1 5 3	78		17437 25227 27414 1155 34	5 5 9 5	ND ND ND ND ND	1 4 13 10 2	19 18 27 21 21	1 7 12 1	203 136 118 3 2	2 2 322 3 2	36 3 5 52 17	.07 .05 .02 .27 .35	.011 .013 .027 .073 .029	2 19 25 32 5	20 13 15 24 12	.25 .01 .02 .92 .33	42 25 31 207 73	.03 .01 .01 .07 .02	4 3 2 2 2	.92 .26 .47 2.83 .92	.01 .01 .01 .02 .03	.18 .17 .22 .71 .19	1 2 62 1. 2	2 8 245 15 26
CSR-95R CSR-101R CSR-103R CSR-106R CSR-133R	2 6 18 1 2	26 206 169 7680 84	23 352 86 11 16	8 16 21 19 9	5.8 22.1 3.2 8.1 1.5	3 9 4 7 3	1 1 2 1 5	48 411	$\begin{array}{c} 1.75\\ 1.14 \end{array}$	4472 48314 10460 152 60631	5 5 8 5 5	ND ND ND ND ND	7 4 25 1 8	1 5 184 229 3	1 1 2 1 1	2 80 11 36 326	5 85 5 2 8	1 1 21 1	.01 .01 .03 7.51 .04	.001 .002 .003 .002 .001	3 2 48 2 2	35 10 39 4 26	.01 .01 .01 .08 .01	16 4 12 7 17	.01 .01 .01 .01 .01	2 2 2 2 2	.28 .08 .24 .38 .13	.01 .01 .02 .01 .01	.22 .04 .14 .02 .09	3 43 1 1 1	38 1220 355 315 415
STD C/AU-R	18	59	43	133	6.8	67	29	1056	4.18	41	21	7	37	48 /	18	18	18	59	.50	.093	38	58	.92	177	.07	33	2.01	.06	.14	11	525

- ASSAY REQUIRED FOR CORRECT RESULT for AS>10,000 ppm Ay>35 ppm Page 7

C

(

(

Č

- (

С.

 ϵ_{\pm}

(

(

C

(

(

(

(

Ç.

Ć

(

ί.

(

(

. ****

a....

· · · · ·

and the second second second second second second second second second second second second second second second

1.000

SANPLE#	MO PPN	Cu PPN	Pb PPN	Zn PPN	Ag PPN	Nİ PPM	CO PPN	Mn PPN	Fe %	As PPM	U PPM	Au PPN	Th PPM	Sr PPM	Cd PPN	Sb PPM	Bİ PPM	V PPN	Ca %	P %	La PPN	Cr PPM	Ng %	Ba PPM	Ti %	B PPN	Al Ş	Na %	K X	W PPN	Au OZ/T
C8R-54R	2	34	298	11	3.8	6	2	21	3.05	36131	5	ND	1	1	1	78	2	1	.01	.001	2	36	.01	1	.01	2	.01	.01	.01	1	.024
C8R-55R	6	730	29	46	11.2	1	1	11 2	21.19	51538	5	ND	8	1	1	220	84	1	.01	.001	2	7	.01	7	.01	2	.05	.01	.06	1	.072
C8R-56R	1	263	59	13	8.1	4	2	33	2.98	34784	5	ND	3	1	1	163	30	1	.01	.001	2	36	.01	10	.01	2	.11	.01	.09	2	.020
C8R-57R	7	2681	178	44	63.8	1	99	6 3		51693	5	4	23	1	1	522	149	1	.01	.002	2	15	.01	3	.01	2	.01	.01	.01	1	.053
C8R-58R	2	82	26	45	1.7	5	3		3.49	5276	5	ND	11	20	2	5	2	29	.11	.046	15	48	. 63	81	.10	7	1.12	.03	1.16	3	.002
								••			-										••		••				••		.,		
C8R-60R	20	261	111	74	7.2	4	16		8.72	51072	2	ND	15	2	3	160	20	1	.01		11	6	.01	17	.01	4	.22	.01	.16	1	.028
C8R-62R	2	19	37	17	6.0	10	105		9.51	50894	5	ND	3	1	1	563	27	1	.01	.001	2	36	.01	12	.01	2	.05	.01	.04	1	.157
C8R-66R	8	286	8195	28	275.0	8	19	27 2	23.84	51311	5	ND	3	2	20	3291	11817	3	.02	.016	3	11	.02	7	.01	2	.09	.01	.05	1	.124
C8R-57R	3	240	1025	153	184.2	16	33	31 2	26.10	51340	5	ND	3	2	6	744	1089	4	.01	.019	2	25	.03	13	.01	3	.14	.01	.09	1	.038
C8R-70R	4	102	804	12	54.3	6	26	18 1	2.01	51076	5	ND	8	1	1	621	176	1	.01	.001	2	8	.01	10	.01	3	.08	.01	.08	1	.092
C8R-87R	3	28	40	165	. 8	4	1	41	.97	1093	5	ND	22	21	1	2	2	1	.05	.007	20	4	.04	30	.01	2	.62	.02	.10	1	.001
C8R-88R	18	206	136	41	9.3	2	,	18	2.37	24616	5	ND	21	23	5	36	19	1	.01	.002	13	14	.01	19	,01	2	.20	.01	.13	2	.051
C8R-96R	57	315	209	96	19.5	8	-		2.39	26680	5	ND	10	19	15	41	34	1	,01	.006	6	5	.02	23	.01	,	.33	.01	.18	1	.007
C8R-99R	31	123	585	43	28.0	1	ŝ		4.13	51241	5	42	3	5	1	533	105	÷	.02	.037	Å	16	.03	16	.01	2	.17	.01	.07	1 1	1.380
	2					- -	21				5		5	,	10			11	.02	.033	1					5	.73				
C8R-100R	2	318	218	484	22.3	8	21	210 1	9.60	51338	3	31	5	4	20	302	60	11	.07	.033	4	30	.33	23	.01	3	./3	.01	.11	1.	1.120
STD C	18	58	42	132	7.2	66	28	1042	3.80	41	18	7	36	48	20	17	17	55	.45	.088	36	57	.83	174	.06	33	1.80	.06	.14	11	-

_age 8

- . . · ·

C

€

 $\ell_{\rm N}$

Ċ.

€

(

 $\langle \cdot \rangle$

Ç.,

£.

¢

C

e

C

(,

€...

 \in

C

(

C

 λ_{ic}

(

C

Copy to: R.J.Morris, Fernie, B.C.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph.D. Geologist A.L. LITTLEJOHN, M.Sc. Geologist JEFF HARRIS, Ph.D. Geologist Vancouver Petrographics Ltd.

P.O. BOX 39 8887 NASH STREET FORT LANGLEY. B.C. VOX 1JO

PHONE (604) 888-1323

Report for: Greg Jilson, Curragh Resources Inc., 117 Industrial Rd., Whitehorse, Yukon, Y1A 2T8

Invoice 7649

October 7th, 1988

Samples:

31 rock samples, submitted by Bob Morris, for sectioning and petrographic description.

Samples are all suffixed "P" and consist of numbers 1 - 13, 15 - 30, 67 and 98.

Samples 1, 5, 7, 8, 11, 21, 23, 25 and 67 were prepared as polished thin sections to allow observation of opaques; the remainder were prepared as conventional thin sections.

Summary:

The rocks of this suite can be classified in four main categories, corresponding to those used for the field identifications given in the covering letter: i.e. intrusives, volcanics, tuffs and sediments.

Although the presence of these four groups is confirmed, the petrographic study - not surprisingly - reveals a fair degree of mis-classification in the assigned field names, especially as regards the last three groups. Identification of a few samples is uncertain, even with benefit of the microscopic data.

1. INTRUSIVES

a) Medium grained, porphyritic.

i) Granite porphyry (major proportions of quartz, plagioclase and K-feldspar). Samples 19, 28.

ii) Monzonite porphyry (K-feldspar > plagioclase; quartz minor). Samples 17, 26.

iii) Diorite porphyry (mainly plagioclase; quartz and K-spar minor). Sample 6.

b) Fine-grained, virtually non-porphyritic

i) Aplite (abundant quartz and K-spar; accessory plagioclase). Samples 3, 11, 12, 29.

ii) Latite-Trachyte (K-spar≫ plagioclase; quartz minor). Samples 7, 13.

The coarser, abundantly porphyritic rocks (Group 1a) have textures typical of minor intrusives, such as marginal phases or satellite plugs associated with batholiths.

The finer, non-porphyritic rocks (Group 1b) have homogenous textures characteristic of dykes or chilled margin phases.

2. VOLCANICS

a) Andesitic

i) Mafic-poor (mainly plagioclase and sericite). Samples 1, 18, 20.

ii) Mafic-rich (include major biotite, chlorite, or hornblende). Samples 5, 9, 25.

b) Rhyolite(?)

Quartz-rich, with plagioclase and/or sericite. Samples 2, 98.

The samples classified as volcanics are a somewhat diverse group. They are fine-grained and sometimes porphyritic. They lack fragmental features which might indicate a pyroclastic origin, and are typically non-foliated. They mostly show strong pervasive alteration (to sericite, biotite and secondary amphibole, and - in the rhyolites - quartz). The andesites often contain notable amounts of finely disseminated sulfides.

3. TUFFS

Samples 4, 15.

Tuffs are much less common in the suite than the field naming suggests. The above two rocks are unquestionably andesitic lapilli-tuffs, consisting of abundant, vari-sized lithic clasts and plagioclase crystals in a fine biotitic matrix. They are non-foliated and show well-preserved primary textures.

4. SEDIMENTS

a) Unmetamorphosed

- i) Wacke. Sample 23
- ii) Carbonaceous mudstone. Sample 22
- iii) Hematitic chert. Sample 16

b) Foliated

- i) 'Sheared wacke'. Samples 8, 21, 27.
- ii) Siliceous sediments. Samples 24, 30.
- iii) Amphibolite. Sample 10.

This is a varied group, some of which are of ambiguous character.

Those of sub-group a) are unequivocal and, like the majority of rocks of the suite, show a notable lack of regional metamorphic features. Sub-group b) includes all the rocks of the suite having more or less strongly foliated fabrics - in part of recrystallized and/or cataclastic aspect.

The 'sheared wackes' are of quartzo-feldspathic composition, and could be of felsic volcaniclastic affinities. Sample 27P differs from the first two in lacking K-feldspar and having chlorite (rather than sericite and/or biotite) as the principal accessory.

Sub-group b) ii comprises siliceous sediments, poor in feldspar. It includes a possible impure meta-chert and a dolomitic quartzite.

The remaining sample (10P) is quartz-free, and has the mineralogy of an amphibolite (plagioclase-hornblende), but a similar meta-clastic fabric to group b) i. It could be a metacalcareous arkose or, more likely, a recrystallized andesitic crystal tuff.

Individual petrographic descriptions are attached

SPECIFIC QUERIES:

Sample	Field name	Comment
1 P	Hornfelsed(?) sediment	This is an altered andesite. The biotite <u>could</u> be of hornfelsic origin. It may well be related to the tuffs, 4 and 15. The other samples you list are not tuffs.
2P	Altered volcanic	This is a silicified rhyolite. It is of totally different composition to the tuffs (which are andesitic).
3P	Rhyolite dyke	Actually quartz-latite composition: has textural characteristics of an aplite. Yes, similar to 11P, 12P (and also 29P).
4P	Tuff, in contact with 3P	Yes: this is an andesite lapilli- tuff.
5P	Meta-sediment	Not a metasediment. This is a mafic-rich andesite - altered, but not obviously metamorphosed (except possibly in a thermal sense).
6P	Diorite dyke	Yes: this is a diorite porphyry
7P	Rhyolite dyke	Not of rhyolitic composition. This is the quartz-poor type of fine- grained felsic rock (latite/ trachyte). i.e. different composition to 11P, 12P (more similar to 13P).
8P	Metasediment	Yes: this is one of the sheared wackes.
9P	Meta-basalt	One of the mafic-rich andesites: could be basaltic. Somewhat similar to 5P (though 5P contains no amphibole), but unrelated to 8P.
10P	Metasediment	This is a foliated, crypto-clastic amphibolite - possibly metasedimentary or a meta-andesitic tuff.
11P	Rhyolite dyke	See comment for 3P.
12P	Rhyolite dyke	See comment for 3P.

13P	Rhyolite dyke	Different composition to 11P, 12P. Quartz-free, K-rich: trachyte. More similar to 7P.
14P	No sample	
15P	Tuff	Yes: this is an andesite lapilli tuff. The biotitic composition of the matrix (as in 4P) could be a hornfelsic effect.
16P	Tuff	No: this is a chert, composed almost entirely of quartz. Red stain is hematitic.
17P	Tuff	No: this is a porphyritic latite or monzonite, texturally intermediate between 7P and 26P. Unrelated to 15P (though possibly intrudes it?)
18P	Tuff	No: this is one of the mafic-poor andesites. It has a high content of sulfides (pyrrhotite with traces of pyrite, marcasite and sphalerite). No obvious source of Sb: could be undetected traces of tetrahedrite.
19P	Granite	Yes: granite porphyry. Not altered or metamorphosed. Texture more typical of minor satellite plug than of 'normal' (batholithic) Coast Intrusives.
20P	Tuff	No: this is another altered andesite, without fragmental features. It is similar to 18P, but strongly sericitized. It is unrelated to 22P (carbonaceous mudstone).
21P	Metavolcanic	Probably not. This is one of the 'sheared wackes'. Could be felsic volcaniclastic.
22P	Black argillite	Yes: carbonaceous silty mudstone. Appears essentially unmetamorphosed No relation to 1P, 20P (andesites).
23P	Rhyolite dyke	No: this is totally unlike the other 'rhyolite dyke' samples (aplites, trachytes). It is a non- foliated, argillaceous wacke with mudstone intercalations.

24P	Metavolcanic	No: this is a foliated siliceous rock with plagioclase-sericite segregations: possibly an impure meta-chert.
25P	Metavolcanic	Yes: volcanic, mafic-rich - essentially an amphibolite, possibly meta-basaltic. Compositionally and texturally unlike 21P.
26P	Granite	Not strictly. This is a quartz- poor porphyry of monzonitic composition. Similar composition to 7P, 17P rather than to 19P or 26P.
27P	Metavolcanic	No: strongly foliated, wacke- textured. Probably related to 8P, 21P. Could be volcaniclastic.
28P	Granite	Yes: granite porphyry. Similar to 19P, but not to 28P (low quartz). Yes: compositionally similar to 11P, 12P, 29P: these could be fine-grained equivalents.
29P	Rhyolite dyke	Yes: aplite. Could be fine equivalent of 28P; similar to 10P, 11P.
30P	Metavolcanic	No: this is a metasediment of calcareous quartzitic type. Yes, could be related to 27P, 21P.
67P	Quartz vein	Yes: mainly homogenous arsenopyrite No gold seen.
98P	Rhyolite dyke	Quartz-sericite rock. Could be a silicified form of the fine-grained (aplitic) intrusives - though no

6

silicified form of the fine-grained (aplitic) intrusives - though no K-spar. No actual sulfides in slide. Saw some scorodite, after arsenopyrite; this is presumably the 'green yellow stain'.

J.F. Harris Ph.D.

(phone: (604) 929-5867)

Plagioclase 68 K-feldspar 1 2 Ouartz 15 Sericite Phlogopite 10 Tourmaline trace trace Apatite Rutile trace Pyrite 4 Pyrrhotite trace

This is a fine-grained, altered rock of volcanic affinities.

It consists predominantly of an even, minutely fine-grained matrix of felsitic plagioclase, strongly pervasively dusted with micron-sized sericite.

Scattered throughout this matrix are diffuse, wispy to more distinct, sub-prismatic patches of slightly coarser felsite and/or felted micas, the latter often being a pale brown variety of apparent phlogopitic composition.

These features range in size from about 0.2 - 2.0mm, and appear to represent totally altered phenocrysts. They exhibit a partial preferred orientation which may represent a primary flow feature.

A common variant of the altered phenocrysts consists of prismatic forms defined by micron-sized opaque dust and/or clusters of tiny subhedral pyrite grains, locally with minor interstitial pyrrhotite. Others consist of felted phlogopite with diffuse patches of microgranular quartz and/or sulfides.

Accessories are tiny, randomly distributed euhedra of apatite, and scattered, tiny subhedra or acicular sheafs of green tourmaline.

The rock contains no recognizable lithic fragments, and the fabric of scattered, discrete, sub-oriented, sub-prismatic patches in a homogenous felsitic matrix - is more suggestive of origin as a porphyritic flow than a tuff.

Plagioclase	37
K-feldspar	4
Quartz	42
Sericite	5
Phlogopite	10
Sub-opaque dust	2

This is a rock of similar general texture to the previous sample, but of notably different mineralogy. It is an altered volcanic of strongly siliceous composition, possibly gradational in character with 98P.

It consists predominantly of a matrix of brownish, turbid, cryptocrystalline, feldspathic material, strongly pervaded by microgranular quartz of grain size 20 - 50 microns.

The abundance and grain size of the quartz varies in a diffusely patchy manner, and it is often possible to recognize a pseudomorphed, pellety/cuspate fabric typical of a glassy rhyolite.

Scattered, more or less discrete, clumpy concentrations of coarser quartz, with intergrown meshwork flakes of sericite and pale brown phlogopitic mica, probably represent replaced phenocrysts. Finer grained sericite occurs as a pervasive dusting of the cryptocrystalline feldspathic glass matrix, and, together with phlogopite, forms small, random, diffuse wisps and patches delineating relict vitric features.

The cryptocrystalline felsite component appears to represent original glass. It is partially potassic in composition (see stained cut-off block) and is often impregnated by micron-sized, brownish, sub-opaque material (leucoxene?). This clearly distinguishes it, in thin section, from the superimposed pervasive silicification (probably of late magmatic/deuteric origin).

This rock is an altered, sparsely porphyritic, glassy rhyolite. There is no petrographic evidence to indicate that it is a tuff. APLITE

Estimated mode

Plagioclase	20
K-feldspar	46
Quartz	30
Sericite	3
Limonite	1

This is an evenly microgranular rock of essentially identical type to several others of the suite (e.g. 29P, \$2P etc.).

It consists of an anhedral mosaic of quartz, of grain size 0.1 - 0.3mm, within which are developed abundant smaller sub-prismatic grains, and coalescent grain clusters, of K-feldspar and lesser plagioclase. The feldspars are essentially fresh. The resultant texture can be described as saccharoidal, locally grading to micro-graphic.

Rare microphenocrysts of quartz and plagioclase, 0.5 - 2.0mm in size, are seen.

Mafics are sparse, as in all the rocks of this type, and consist of scrappy grains of sericite, often impregnated with limonite. These may represent altered biotite.

The rock is of granitic composition and has the texture of a minor intrusive (dyke rock). It is probably an aplite.

Sample 4P

Estimated mode

Plagioclase 30 Sericite 36 Biotitic(?) matrix 30 Chlorite trace Epidote 2 Apatite trace Tourmaline trace Rutile) 2 Leucoxene)

This is one of the few samples of the suite to show undisputable fragmental character.

It is a strongly altered rock, apparently devoid of quartz and probably of andesitic composition.

It consists of abundant, angular, lithic fragments, 0.1 - 20.0mm or more in size, set in a fine-grained brown matrix or interstitial phase.

The fragments are almost all of similar type, being composed of felsitic plagioclase, showing strong, rather even, pervasive sericitization. The larger fragments contain more or less abundant remnant phenocrysts of plagioclase together with tiny accessory euhedra of apatite, and, in a few cases, fine-grained opaques.

Some of the plagioclase phenocrysts, and rare disaggregated plagioclase crystal clasts, show pervasive fine-grained epidotization as well as sericitization.

A few clasts of different, chlorite-rich composition are also present.

Fragment shapes are typically irregular and of 'torn-off' appearance. The larger, strongly porphyritic clasts often show a tendency for flow-orientation of the constituent phenocrysts.

The matrix appears to be of felsite, and is probably made up of progressively tinier clasts, grading to cryptocrystalline volcanic dust. It is clearly differentiated from the sericitized clasts by its high content of micron-sized, brown, felted material which is tentatively identified as a form of biotite. Wisps and flecks of rutile and leucoxene are an accessory component.

Traces of tourmaline are seen, as sporadic tiny clusters.

No bedding is recognizable, but there is a weak tendency for alignment of the clasts, and this rock may be a form of pyroclastic flow.

Plagioclase 34 Quartz 8 Biotite 28 Chlorite 28 Apatite trace Ilmenite trace Pyrrhotite 2 Chalcopyrite trace

This is a pervasively altered rock whose primary features are largely obscured. It is unquestionably of volcanic origin, but it is debatable whether it is a fragmental or a normal, sparsely porphyritic flow.

It consists predominantly of a matrix of felsitic plagioclase, of grain size 5 - 20 microns, intimately intergrown with abundant, chlorite and pale brown biotite, as tiny, random flakes and felted, meshwork aggregates.

The dominant biotite/chlorite component locally concentrates as small, sub-prismatic clumps which may be pseudomorphs.

The commonest heterogeneities are diffuse clumps of more coarsely granular, blocky material which may include some plagioclase but appears to be mainly quartz. This is of grain size 0.05 - 0.2mm, and occurs as clusters and aggregated mosaic patches.

These granular clumps (siliceous replacements? altered phenocrysts? fragments?) show varying contents of intergranular and cross-cutting chlorite and biotite, and have diffuse margins suggestive of partial assimilation by the fine groundmass. They often contain obscure ghost textures defined by minute acicular inclusions.

A few definite, discrete, rounded to subhedral phenocrysts of quartz, 0.5 - 1.0mm in size, are also seen.

The rock contains fine-grained pyrrhotite, with traces of intergrown chalcopyrite and secondary pyrite. The sulfides form patches of meshwork impregnation of the chlorite/biotite felsite, and locally concentrate as sub-prismatic clumps, sometimes associated with granular quartz.

This sample is tentatively classified as an altered andesite.

Plagioclase 75 K-feldspar 2 Quartz trace Sericite 2 Biotite 18 Hornblende 3 Apatite trace Rutile trace

This is a porphyry of somewhat similar macroscopic appearance to 19P and 28P. However, it differs compositionally from those samples in being essentially devoid of quartz and K-feldspar. It also contains a slightly higher proportion of mafics. The rock is composed essentially of plagioclase.

Euhedral phenocrysts of plagioclase, 0.5 - 7.0mm in size, make up about 40% of the rock. These show partial twinning and appear to be of oligoclase composition. They are generally fresh but for an occasional slight dusting of very fine-grained sericite.

The groundmass is of distinctive texture. It appears to consist of a diffuse, anhedral, equigranular aggregate of plagioclase, on the scale 0.2 - 0.4mm, upon which is superimposed a meshwork/microlitic to felsitic fabric on the scale 10 - 100 microns. This composite texture may have formed by the devitrification of an original glassy matrix. Minor pockets of K-spar and rare quartz are also seen as groundmass components.

Mafics are of distinctive type. They appear to be largely of secondary character, consisting of minutely felted aggregates of red-brown biotite and lesser pale green, fibrous amphibole. These occur as abundant, sub-prismatic to irregular clumps and as tiny wisps and shreds throughout the groundmass. Sometimes the amphibole appears to develop peripherally to cores of biotite.

In part the secondary biotite/hornblende aggregates show pseudomorphic outlines suggestive of derivation from original euhedral amphibole phenocrysts.

Rutile occurs as diffuse flecks associated with the mafics. Apatite is seen as tiny, randomly disseminated, individual euhedra.

This rock is of dioritic composition and has the texture of a minor intrusive.

Plagioclase 21 K-feldspar 70 Quartz 4 Sericite 2 Amphibole trace Carbonate 3 Pyrrhotite trace

This is a member of the quartz-poor sub-group of fine-grained potassic rocks (like 13P).

In thin section it is found to exhibit a texture very similar to that of the groundmass of the diorite porphyry, 9P. This consists of a somewhat diffuse, equigranular mosaic, of grain size 0.1 - 0.4mm, upon which is superimposed a random meshwork fabric of tiny prismatic grains. The base mosaic shows shadowy extinction, and sometimes appears to approach fibrous/radiate character.

This assemblage appears to be composed largely of K-feldspar, though the stained cut-off block indicates that there is also a significant proportion of finely intergrown plagioclase. Quartz is also present as a minor constituent, recognizable as scattered, small patches which seem to be gradational to the feldspar matrix. The feldspars are fresh and clear.

Accessories are random, rather evenly distributed, tiny flecks and wisps of minutely fine-grained carbonate and shreds of sericite. These tend to be intergranular to the coarser mosaic fabric.

The rock contains very rare, tiny microphenocrysts of plagioclase and some small, pockety, amygdule-like segregations composed of various proportions of plagioclase, granular quartz, pale acicular amphibole and fine-grained pyrrhotite.

This rock has the mineralogical proportions of a latite. As with 13P, it exhibits no diagnostic textural features to indicate whether it is a flow or a dyke rock. The incipient banding of more and less potassic composition, apparent in the stained block, is not recognizable in the thin section.

68-9

24 Quartz 20 Plagioclase 20 K-feldspar Sericite 15 Phlogopite 20 Chlorite 1 Apatite trace Rutile trace Pyrite trace Altered pyrrhotite trace

This sample is an irregularly foliated, partially recrystallized quartzo-feldspathic rock of distinctive, possibly cataclastic texture.

It consists predominantly of an aggregate of quartz, plagioclase and K-feldspar, as sub-equant grains 0.1 - 0.5mm in size. The fabric is often mosaic-like and presumably granoblastic.

Quartz is often segregated as lenses and laminae of crenulate-margined, vari-granular mosiac. The feldspars generally show simpler grain shapes, sometimes partially flattened.

The granular feldspars are fresh and water-clear, and hence difficult to distinguish from the quartz, except by virtue of occasional twinning. Some quartz is probably present as an intergrown component of the feldspar mosaics.

A proportion of much finer-grained felsitic material (plagioclase and/or K-spar) is present throughout, as interstitial pockets and networks. This is commonly somewhat sericitized.

The rock contains abundant sericite and pale brown phlogopite. These form strongly oriented, relatively coarse, semi-connected flakes and discontinuous schlieren, interspersed with laminae and apparent sheared slices and/or augen of the granular, quartzitic mosaic. The micas also occur as substantial lenses of fine felted texture in their own right, and in dispersed fashion throughout as intergranular networks and wisps.

Opaques are sparse. They consist mainly of disseminated flecks and granules of rutile. Rare, tiny grains of partially oxidized pyrrhotite, and one or two tiny euhedra of pyrite are also seen.

This rock is of apparent metasedimentary origin, and is tentatively classified as a sheared feldspathic wacke.

37
8
6
18
trace
24
6
1

This is a volcanic rock of distinctive type. It is composed essentially of fine-grained plagioclase and abundant altered mafics, but contains a few percent of phenocrysts which, somewhat surprisingly, are quartz.

The quartz phenocrysts are of rounded to sub-polygonal form and 0.5 - 1.0mm in size. Sometimes they occur as small, coalescent clumps.

The groundmass is a rather diffuse-margined, sub-trachytic aggregate of prismatic feldspars, 0.02 - 0 lmm in size, with rare sub-phenocrysts to 0.2mm. The feldspar is predominantly plagioclase but, as is apparent from the patchy stain developed on the cut-off block, includes a proportion of intergrown K-feldspar. Scattered, tiny interstitial flecks of quartz are also seen in the groundmass. The feldspars are fresh.

Mafics are notably abundant, but appear to be entirely of secondary type. They consist of felted aggregates of pale brown biotite, and very fine-grained, fibrous/acicular masses of probable pale amphibole - often with intimately intergrown carbonate.

The fine-grained mafic aggregates form semi-coalescent, sub-prismatic patches, 0.1 - 1.0mm in size, which are apparently pseudomorphs of primary subhedral mafics of unknown type - most probably hornblende or pyroxene. The same secondary-type mafics form diffuse, fine-grained permeations throughout the microlitic plagioclase matrix.

Tiny specks of rutile and sphene are the remaining constituent.

The rock is cut by occasional hairline veinlets of carbonate.

Classification of this rock is difficult as the plagioclase composition is indeterminate. The abundance of mafics could indicate a composition as mafic as basalt, though the content of quartz and K-spar is atypical. Possibly it is a specialized form of andesite.

Plagioclase 60 K-feldspar trace Hornblende 32 Biotite 2 Sericite 3 Epidote 2 Sphene) 1 Rutile)

This is a rock of simple mineralogy, composed essentially of plagioclase and hornblende.

The plagioclase occurs as abundant, individual, equant, rounded to sub-prismatic grains, 0.05 - 0.3mm in size, or aggregate mosaic clumps of such grains.

Generally the plagioclase is clear and unaltered, and has the aspect of a partially recrystallized arkose. Rarely it shows a light dusting of sericite.

Sericite also occurs locally as an intergranular network, possibly representing remnants of a pervasively altered felsitic matrix.

The other main component is green hornblende, as very fine-grained, fibrous/felted aggregates, locally grading to prismatic clumps. The hornblende forms an intimately pervasive, intergranular phase, and concentrates as abundant irregular pockets and networks.

Minor proportions of fine-grained biotite, granular epidote and flecks and granules of rutile and sphene are associated with the hornblende.

A weak preferred orientation is apparent in the reticulate distribution of the hornblende matrix or cementing phase, and the elongation of clumps and individual grains of plagioclase.

The nature of this rock is obscure. The fabric has a distinctly metasedimentary aspect, but the mineralogy is atypical. The hornblende may be a metamorphic development from an original limey matrix in an arkosic wacke - though the total absence of quartz is atypical. Alternatively, this could be a partially recrystallized andesitic crystal tuff. The mixture of individual, discrete plagioclase grains and aggregate clumps suggests a partial cataclastic element in its formation.

Quartz	33
K-fe ldspar	45
Plagioclase	20
Sericite	2
Rutile	trace

This sample is essentially identical, in composition and texture, to 3P and the other rocks of the suite classified as aplites.

It consists of an equigranular mosaic of anhedral quartz, of grain size 0.1 - 0.3mm, which acts as a matrix to abundant small subhedral/prismatic grains of K-feldspar and plagioclase. The latter sometimes coalesce as irregular interlocking clusters.

This rock shows occasional clumps and elongate segregations of coarser quartz and plagioclase, of grain size to 0.5mm, and is cut by rare hairline veinlets of these minerals. It also contains a few individual euhedral microphenocrysts of quartz, to 1.0mm in size.

Accessories are scattered, small, ragged grains of sericite with flecks of rutile and ferruginous material - possibly representing altered biotite.

APLITE

Estimated mode

Quartz	30
Plagioclase	20
K-feldspar	47
Biotite	3

This rock is closely similar to the previous sample (q.v.) and is one of several such essentially identical rocks in the suite.

It consists of an evenly microgranular intergrowth of anhedral quartz, K-feldspar and plagioclase, in the grain size range 0.05 -0.3mm. Grain boundaries are sharply defined, and the texture is an interlocking, saccharoidal aggregate. Feldspars are fresh and clear throughout.

Sparsely scattered microphenocrysts of quartz and plagioclase, 0.5 - 2.0mm in size, are present, as in the other aplite samples.

This particular example of the aplite lithotype differs from most others in that the accessory biotite - as randomly scattered, irregular flakes, 0.1 - 0.5mm in size - is mainly fresh.

TRACHYTE

Estimated mode

K-feldspar 84 Plagioclase 8 Quartz 1 Sericite 4 Carbonate 3 Epidote trace Rutile trace

This is another fine-grained, K-rich rock. Though superficially similar to the aplites, such as 11P and 12P, it is seen, in thin section, to be of significantly different type.

The principal distinguishing feature is the paucity of plagioclase and virtual absence of quartz. It closely resembles 7P, but has a slightly higher K-spar/plagioclase ratio.

The rock is composed essentially of K-feldspar. This forms a felsitic aggregate, of grain size 10 - 50 microns, within which are developed relatively abundant coarser grains (to 0.2mm), showing a radiate or eutectoid/microgranophyric internal texture.

Rare, tiny pockets and elongate clumps of quartz are seen, and the stained cut-off block indicates the presence of a minor proportion of intergrown plagioclase (etched white).

Accessories are diffuse flecks and pockets of sericite and minutely fine-grained carbonate. Rare microgranular epidote is a possible additional trace component.

This rock has the mineralogical composition of a trachyte. It shows no flow textures or other features diagnostic of extrusive origin; however, its very fine grain size and sub-spherulitic texture seem atypical of an intrusive.

Plagioclase 77 Quartz trace Sericite 5 Biotite 15 Epidote 1 Rutile) 2 Opaques)

This is another of the relatively few undoubted tuffs of the suite. It is similar, in many respects, to sample 4P, though the clasts tend to be a little smaller (mostly in the range 0.2 - 3.0mm) and include a higher proportion of crystal vs lithic fragments. Also, this rock lacks the weak tendency for flow orientation seen in 4P.

Clasts are of various felsitic, meshwork-textured and strongly porphyritic andesites, and derived disaggregated plagioclase crystal clasts. The felsitic groundmass material and the plagioclase crystals show pervasive fine-grained sericitization to a greater or lesser degree. Plagioclase phenocrysts and clasts occasionally show pervasive epidotization.

Lithic clasts are sub-equant in shape and often ragged. The slide includes one rather ill-defined lithic clast to 10mm in size.

The clasts are randomly packed, with the smallest ones (down to 0.05mm or less) filling interstitially between the coarser ones. The whole aggregate is set in an evenly distributed matrix or cement of cryptocrystalline felsite, strongly pervaded by minutely fine-grained, felted biotite.

Minor flecks granules and micron-sized dust of rutile and opaques occur both within some clasts and in the matrix.

A few lithic clasts show diffuse wisps of biotitization - suggesting that this mineral is of post depositional, possibly metamorphic origin.

Chert 92 Sericite 1 Carbonate 3 Secondary biotite(?) 1 Barite trace Hematite 3

Macroscopically, this sample is an aphanitic red rock, structureless but for an obscure mottling, cut by a micro-stockwork of veinlets and hairline fractures.

In thin section, it is found to be a chert, consisting of an even, interlocking aggregate of quartz, of grain size 5 - 20 microns.

The overall red colour is apparently due to sub-microscopic hematite, which is recognizable as an even dispersion of opaque dust throughout.

Partial redistribution and segregation of the hematitic pigmentation is seen. Some hairline fractures and quartz veinlets show 'de-hematization', with expulsion of opaques from the immediate fracture, and concentration as diffuse marginal envelopes.

The hematitic dust tends to aggregate as tiny, disseminated, acicular forms up to 200 microns in length. These have a pseudomorphous appearance, but are often quite diffuse. They may represent a process of incomplete diffusive crystal growth in a ferruginous silica gel medium. Locally, hematitic segregations are in the form of clusters of pellety or ovoid forms.

The veinlets are principally of quartz and carbonate. Minor accessories in the veinlet phase are sericite, a brown mineral which may be a form of biotite (or possibly just Fe-stained sericite), and barite - which forms segments alternating with carbonate in some of the thinnest, hairline veinlets.

Plagioclase 18 K-feldspar 67 Quartz 2 Sericite 9 Carbonate 1 Biotite 3 Chlorite trace Rutile trace

This is another of the quartz-poor type of felsic igneous rocks of the suite. Samples 7P and 26P are of similar composition.

It is noticeably porphyritic, and phenocrysts constitute approximately 10% of the rock. They are mainly of euhedral plagioclase, 0.5 - 3.0mm in size. Rare, rounded to amoeboid quartz phenocrysts are also seen.

The plagioclase phenocrysts typically show a rather even, mild to moderate, pervasive dusting of minutely fine-grained sericite and carbonate.

The groundmass is a somewhat diffuse-margined, blocky, microgranular aggregate of grain size 0.02 - 0.1mm, composed of anhedral K-feldspar with intergrown subhedral plagioclase and possibly a little very fine-grained quartz. The K-feldspar shows occasional incipient development of the feathery, granophyric texture characterising sample 26P.

Accessories consist of small, irregular to sub-prismatic patches of felted, secondary-type brown biotite with inclusions of rutile and opaques. Tiny intergranular wisps of minutely fine-grained sericite are dispersed throughout the groundmass.

Rare pseudomorphs (sericite-rutile-carbonate) of mafic phenocrysts are also seen.

The rock has the composition of a latite. Its sparsely porphyritic texture could be that of a flow or a minor intrusive.

Plagioclase 85 Sericite 10 Rutile 1 Pyrrhotite 4 Pyrite trace Marcasite trace Sphalerite trace

This is an andesitic volcanic of somewhat similar type to sample 1P, but with primary phenocrysts better preserved. It also lacks the phlogopitic biotite component of that sample.

It is notably lacking in mafics, and consists largely of plagioclase, in the form of abundant, randomly oriented phenocrysts in a felsitic groundmass.

The phenocrysts are mainly 0.1 - 1.0mm in size (rarely to 3.0mm), and are subhedral, prismatic in shape. They are often clumped. The groundmass is of grain size 5 - 20 microns.

Both phenocrysts and groundmass are more or less strongly altered.

Phenocrysts are patchily turbid and sometimes show wispy and dusty sericitization. They are typically rather ill-defined, and tend to merge with the groundmass - in part by virtue of actual peripheral or core replacement/assimilation by groundmass felsite, and in part because of the overlap of pervasive groundmass seritization into the phenocrysts.

The groundmass is strongly pervaded by minutely wispy, reticulate sericite. The latter shows a weak preferred orientation throughout the whole rock, and may have developed under conditions of mild regional metamorphism.

The rock contains rather abundant disseminated pyrrhotite and traces of other sulfides. The pyrrhotite occurs as clusters of tiny irregular granules, commonly (though not exclusively) concentrated within plagioclase phenocrysts and small altered mafic phenocrysts composed of sericite and reticulate rutile. Its distribution appears to be without structural control.

Quartz20Plagioclase25K-feldspar45Sericite5ChloritetraceCarbonate5Rutiletrace

This is a prominently porphyritic rock consisting of abundant euhedral phenocrysts of quartz and plagioclase, and occasional K-feldspar, 0.5 - 5.0mm in size, in a microgranular groundmass composed largely of K-feldspar. Phenocrysts make up about 50% of the rock.

The plagioclase phenocrysts seldom show good twinning, but are tentatively classified as of oligoclase composition. They are mostly turbid and show weak to moderate pervasive alteration to very fine-grained sericite. Occasionally they show patchy replacement by carbonate.

A few glomerophenocrysts are seen. These are composed of clusters of small, prismatic plagioclase crystals, sometimes with a few included grains of altered mafics.

Mafics are minor. They appear to have originated as biotite, in the form of individual euhedral grains, 0.2 - 1.0mm in size. They are now totally pseudomorphed by lamellar intergrowths of sericite, carbonate and rutile.

The groundmass consists of an interlocking aggregate of anhedral to subhedral K-feldspar, with lesser intergrown quartz and plagioclase. It is of grain size 0.02 - 0.2mm. A herringbone-textured, eutectoid variant (a form of granophyre) is very common - particularly (though not exclusively) as fringes to the larger quartz phenocrysts. This is clearly a product of the rapid, simultaneous crystallization of the groundmass phases.

The groundmass feldspar is typically fresh.

Carbonate occurs as scattered, random pockets and rare hairline veinlets, as does felted chlorite.

Plagioclase 20 Sericite 72 Quartz trace Apatite trace Opaques 8

This is an intensely altered rock which now consists essentially of a minutely felted mass of compact sericite, of grain size 1 - 10 microns. Minor proportions of remnant plagioclase are sometimes diffusely recognizable within the sericite mass, as are pseudomorphous textures clearly indicating that the latter represents the almost total alteration of a sub-trachytic, minutely microlitic to glassy volcanic groundmass.

Scattered relict phenocrysts are recognizable as clumps of prismatic forms, 0.3 - 2.0mm in size, composed of slightly coarser felted sericite.

Quartz, as tiny grains and microgranular pockets associated with the altered phenocrysts, and apatite as rare relict euhedra, are trace accessories.

The other principal constituent(s) are fine-grained opaques. These occur rather evenly dusted throughout, as individual, minute granules, 5 - 15 microns in size. These commonly show clustering, and tend to aggregate as small, sub-prismatic patches, clearly pseudomorphing micro-phenocrysts (original mafics?). Some of the coarser sericitized phenocrysts - assumed to have been mainly plagioclase - are also more or less strongly impregnated by the fine-grained opaques. The denser concentrations of the latter are recognizable in the cut-off block as pyrrhotite, though some rutile or Fe-Ti oxides are probably also present.

The rock appears to be a pervasively sericitized volcanic, probably of andesitic composition. It shows no sign of structural deformation or metamorphic recrystallization.

Quartz27Plagioclase43K-feldspar10Sericite14Biotite3Chlorite3AmphiboletraceCarbonatetraceApatitetraceRutiletraceMagnetitetrace

This is a strongly foliated, quartzo-feldspathic rock of similar type to sample 8P.

It consists essentially of a recrystallized mosaic of anhedral, locally flattened grains of quartz and plagioclase, 0.02 - 0.1mm in size. The stained cut-off block indicates that a proportion of the feldspar (largely untwinned) is of potassic composition.

The rock exhibits a strongly foliated, platy, deformational fabric, whereby thin laminar and micro-lenticular slices of the quartzofeldspathic aggregate are separated by semi-continuous schlieren of well-oriented sericite flakes, and by flattened reticulate networks of fine-grained, felted/fibrous, green biotite and chlorite. The latter also forms partial intergranular wisps within the guartz-feldspar.

Occasional clusters of acicular amphibole are seen, and may be present as an incipient development in some of the diffuse biotite/chlorite schlieren.

Local crumpling of the foliation is common. Some clumpy, augen-like segregations of coarser plagioclase may be of micro-structural (remobilized) origin, or may represent recrystallized primary, clastic features.

The rock is tentatively classified as a sheared feldspathic wacke. Alternatively, it could be of meta-intrusive or felsic volcaniclastic origin.

Quartz 6 Sericite) 94 Carbonaceous pigmentation)

This is a minutely fine-grained, black rock which, in thin section, is clearly revealed as a silty carbonaceous mudstone.

It consists of a foliated matrix of minutely fine-grained sericite, strongly and evenly impregnated by sub-microscopic black pigmentation - almost certainly of carbonaceous character. For the most part, this renders the matrix essentially opaque to transmitted light.

The lensy features seen on the etched cut-off block are areas of less intense carbonaceous impregnation, in which the cryptocrystalline sericitic composition of the matrix is clearly recognizable.

The rock contains a minor silt-sized component of individual, sub-angular quartz grains, 10 - 100 microns in size. These occur evenly scattered throughout, together with tiny lenticles and flakes of carbon-free sericite.

The more elongate silty particles show a consistent preferred orientation which defines a distinct, undisturbed foliation. The sedimentary origin of this rock is unquestionable.

20 Ouartz Plagioclase 22 K-feldspar trace Sericite 49 Biotite 5 Tourmaline trace Rutile 1 Pyrrhotite 2 Pyrite 1 Marcasite trace

This is a rock of distinctive textural type not seen elsewhere in the suite. It is clearly of sedimentary origin and shows the typical, poorly sorted, vari-granular fabric of a rather fine-grained wacke.

Unlike other rocks of related type in the suite, it is non-foliated and shows little or no recrystallization or metamorphic effects. Original clastic textures and sedimentary structures are perfectly preserved.

It consists of angular to sub-rounded, individual grains of quartz, 0.05 - 0.5mm in size, randomly scattered through an abundant matrix of minutely felted sericite. Much of the latter is distinguishable, on close examination, as almost totally sericitized felsitic lithic clasts of a similar size range to the quartz. Occasional remnants of crystalline plagioclase are also seen, representing original feldspathic sand grains.

Brown biotite, as diffuse fine-grained, felted wisps and clumps, is a common accessory. It may represent the alteration of more mafic lithic clasts. Acicular tourmaline, as sheafs of tiny needles, is a common trace associate.

The presence of biotite may indicate some degree of thermal metamorhpism, but the totally non-foliated fabric indicates a total lack of dynamic effects.

The rock shows a central zone of heterogenous intermingling with a much finer sericitic mudstone, devoid of sandy clasts. This incorporates torn-off fragments of the coarser sandy phase, and probably represents the effect of slump-type, soft sediment deformation.

Finely disseminated sulfides (pyrrhotite and pyrite) are widespread in the coarser wacke. They form minute flecks, 10 - 20 microns in size, commonly aggregating as small clumps. They are often (though not exclusively) associated with the biotite and tourmaline.

Ouartz 65 Plaqioclase 12 K-feldspar 2 17 Sericite Biotite 1 Amphibole 3 Chlorite trace Carbonate trace Sphene trace

This is a rock of highly siliceous composition and uncertain origin.

It is composed predominantly of a fine-grained, crenulate-margined, strain-polarized aggregate of anhedral quartz, of grain size 10 -150 microns. This has the aspect of a quartzite, showing extensive intergranular granulation/recrystallization, or is possibly a recrystallized chert.

The quartz aggregate shows a weak laminar structure defined by sub-parallel wisps and flecks of sericite, fibrous/acicular green amphibole and more or less sericitized felsite (plagioclase and minor K-spar). Similar wisps also cement a local micro-fragmented fabric.

The same constituents form relatively extensive, discordant, irregular veniform to pockety masses which appear to follow a coarser fracture pattern and may represent remobilized (soft-sediment/diapiric?) tuffaceous intercalations. These segregations are composed primarily of rather coarse foliaceous sericite, and sericitized and biotitized feldspar.

The slide includes a hairline veinlet of chlorite which cuts both the chert matrix and the sericitized segregation.

Plagioclase 18 K-feldspar trace 55 Amphibole 22 Sericite Epidote 3 Carbonate trace Apatite trace Sphene) 1 Rutile) Pyrite 1

This is a fine-grained, streakily foliated to clumpy-textured rock of quartz-free, mafic rich composition. It is clearly of volcanic affinity.

It consists predominantly of amphibole. This ranges from minutely fine-grained, pale-coloured or sub-opaque, felted aggregates, to compact masses of sub-oriented, tiny, prismatic grains, to 0.1mm in size, showing the typical green colour of hornblende.

Cryptocrystalline to granular epidote is a common minor accessory intergrown with the amphibole. Epidote also forms rare hairline veinlets. Rutile and sphene form sub-oriented needles and granules.

The other main constituents are sericite and plagioclase. The sericite typically occurs as groups of small (0.1 - 0.2mm), discrete, sub-equant to rounded patches of fine-felted material, scattered through the hornblende aggregate. These have the appearance of pseudomorphs or altered amygdules.

Sericite also locally forms a matrix or interstitial phase to densely disseminated amphibole needles.

The sericite most likely represents an altered form of primary, possibly felsitic, plagioclase. However, the rock also contains a component of essentially fresh plagioclase, as clumps of subhedral prismatic grains, 0.5 - 3.0mm in size. These are often twinned, and have the composition of labradorite, confirming the intermediate to mafic character of the rock.

Possibly these fresh plagioclase clumps represent remnant phenocrysts, whereas the totally sericitized material is original groundmass?

Pyrite occurs as a few segregated clumps of skeletal, poikilitic euhedra, heavily sieved with matrix silicate inclusions. Sample 25P cont.

The rock shows streakily banded textural variations, chiefly defined by the grain size and colour of the amphibole and the proportion of intergrown sericite. The coarser amphibole zones show an oriented grain fabric.

There is no specific evidence for tuffaceous origin, and this rock is tentatively classified as a weakly sheared, possibly flow banded, meta-basalt.

3 Quartz Plagioclase 26 K-feldspar) 65 Granophyre) 4 Biotite Amphibole trace Sericite 1 Sphene) 1 Rutile)

This is a potassic granitoid of somewhat similar macroscopic appearance to the granite porphyries, 19P and 28P. However, it differs in having generally smaller and less abundant phenocrysts. In particular, the prominent euhedral quartz crystals of those samples are lacking.

Compositionally it equates to the fine-grained latite, 7P.

Phenocrysts make up about 30% of the rock. They consist mainly of plagioclase, as euhedral crystals, 0.5 - 2.0mm in size. These are fresh but for a patchy, brownish turbidity and a very light dusting of sericite. They have the composition of oligoclase.

Minor quartz phenocrysts are also seen. These are smaller (0.2 - 1.0mm) and range from equant/subhedral to amoeboid in shape. Occasional plagioclase phenocrysts have graphically intergrown quartz.

The groundmass is an equigranular, anhedral aggregate of K-feldspar, mainly in the range 0.05 - 0.2mm, but with some finer, felsitic patches. It typically shows a strong, feathery/eutectoid, internal texture which is a form of granophyre, and presumably includes a substantial proportion of intimately intergrown quartz and/or plagioclase. It closely resembles 19P in this respect. The rock may thus be more siliceous, overall, than the minor content of quartz phenocrysts suggests.

Mafics are sparse. They consist of small, scrappy patches and wisps of olive-coloured biotite. Much of this is a very fine-grained felted type, of secondary aspect, locally intergrown with minutely acicular amphibole. Small granules of sphene and diffuse, sub-opaque rutile/leucoxene are often associated with the mafic patches.

This rock is probably a minor intrusive of monzonite to quartz-monzonite composition.

Sample 27P

Estimated mode

22 Ouartz Plagioclase 48 K-feldspar trace Chlorite 20 Sericite) 8 Biotite) Carbonate trace Apatite trace Rutile) 2 Sphene)

This is a weakly foliated rock consisting predominantly of plagioclase and quartz as individual grains and microgranular clumps and lenses in a foliaceous matrix of chlorite.

Plagioclase occurs as individual, randomly oriented, stumpy subhedra, 0.2 - 0.7mm in size. These are fresh and clear and appear to represent crystal clasts. Quartz occurs as clumpy/lensy, microgranular aggregates of grain size 20 - 200 microns. Plagioclase grains - largely untwinned - are intergrown with the guartz in uncertain proportion.

Plagioclase also occurs as diffuse, granular mosaics often showing pervasive sericitization, and having the appearance of a devitrified glass. This material occurs as patches, 0.5 - 2.0mm in size, possibly representing remnant lithic clasts.

These quartzo-feldspathic components are intergranularly cemented by chlorite, which forms flaky pockets and irregular networks outlining the trains of plagioclase crystals and quartz aggregate lenses. The chlorite exhibits a general preferred orientation and defines an irregular 'lumpy' foliation.

Very fine-grained sericite and or biotite locally occurs intergrown with the chlorite, and pervasively permeates some fine felsitic patches (altered lithic clasts).

Flecks and wisps of sphene and rutile are closely associated with the chloritic interstitial phase.

The textural aspect of this rock is of a mildly sheared volcaniclastic or wacke, in which the chloritic matrix has been partially recrystallized, but the primary clastic outlines are still well preserved. It is probably of related type to the sericitic wackes 8P and 21P, but is of less potassic composition.

Quartz 33 Plagioclase 28 K-feldspar 38 Sericite 1 Biotite trace Jarosite trace

This is a rock of similar general type to 19P, though differing in some particulars.

It is made up of phenocrysts of quartz, K-feldspar (microcline microperthite) and plagioclase, 0.5 - 5.0mm in size, in a finer grained groundmass.

The feldspar phenocrysts show pervasive mild turbidity and, in the case of plagioclase, are sometimes flecked with sericite.

Mafics are extremely sparse, being limited to rare, tiny grains of altered biotite. These are variably replaced by sericite, rutile and a brownish cryptocrystalline material which may be jarosite. The latter is also seen as rare hairline veinlets.

The groundmass is of distinctive texture. It consists of abundant, blocky, subhedral grains of microcline and minor plagioclase, 0.02 -0.2mm in size, densely disseminated through a continuum of rather coarser, anhedral quartz. Locally this fabric approaches a graphic texture. The feathery eutectoid groundmass textures seen in 19P are not present here.

Like that sample, however, the rock is notably devoid of trace accessories or opaques. It is a typical siliceous, felsic porphyry of minor intrusive aspect. APLITE

Estimated mode

Quartz 31 Plagioclase 18 K-feldspar 48 Sericite 2 Biotite 1 Rutile trace Limonite trace

This sample is an evenly fine-grained igneous rock of strongly potassic composition (see stained cut-off block).

Its texture is essentially identical to that of the groundmass in sample 28P, and it is probably of related origin. It lacks coarse phenocrysts characterising the previous sample, and is evenly microgranular but for rare, euhedral, microphenocrysts of quartz, to 0.5mm in size.

It consists of K-feldspar, quartz and minor plagioclase in intimate intergrowth. The quartz forms an anhedral mosaic, of grain size 0.2mm, within which abundant, smaller (0.02 - 0.1mm) blocky, prismatic grains of feldspar are developed - often concentrating as clumpy segregations. Occasional areas of aggregated K-spar show incipient development of the feathery eutectoid texture seen in 19P.

Mafics are rare. They consist of scattered tiny flakes and shreds of biotite, sometimes altered to sericite and rutile. Diffuse flecks of limonite staining are also noted.

The composition of this rock is in the granite/rhyolite field. Its texture is atypical of an intrusive than granite or an extrusive rhyolite, and it is tentatively classified as an aplite.

SHEARED METASEDIMENT (DOLOMITIC SILICEOUS WACKE)

Estimated mode

Quartz 48 K-feldspar 1 Sericite 28 Carbonate 20 Chlorite 3 Apatite trace Rutile trace

This is a strongly foliated rock composed of a matrix of granular quartz with abundant schlieren and networks of intergrown sericite and carbonate.

The quartz is of grain size 0.02 - 0.1mm, and consists of a crenulate-margined aggregate of anhedral grains, 0.02 - 0.1mm in size. The grains are more or less flattened, strongly strained and partially recrystallized.

The fabric has the aspect of a sheared, fine-grained, impure quartzite.

Minor amounts of K-feldspar are present, as sporadic felsitic wisps and flecks, but the rock does not appear to contain plagioclase.

Sericite forms abundant, close-spaced, anastomosing wisps and semi-continuous, sinuous schlieren, made up of partially coalescent flakes to 0.3mm in length.

Minutely fine-grained carbonate (unreactive to dilute acid and probably dolomitic) forms irregular clumps and semi-continuous networks, partly intimately intergrown with the sericite, and partly independent of it: some of the larger carbonate clusters have intergrown very fine-grained chlorite.

This is a dynamically metamorphosed, impure (argillaceous/ dolomitic) quartzite or siliceous wacke.

Quartz26Sericite1ScoroditetraceArsenopyrite72Marcasite1Mineral XtraceChalcopyritetrace

This sample is a strongly mineralized rock consisting essentially of coarse-grained arsenopyrite with a quartz gangue.

The sulfides consist of homogenous, compact arsenopyrite, mainly of grain size 0.2 - 3.0mm. Grain size tends to be smaller at the peripheries of the sulfide masses, where the quartz gangue acts as an interstitial cement. Minor hairline veinlets and pockety segregations of quartz are seen throughout the coarse arsenopyrite clumps.

Accessories are minor. Marcasite and secondary pyrite (possibly after pyrrhotite) occur as small segments in some of the hairline quartz veins and interstitial pockets. Traces of chalcopyrite are sometimes also associated.

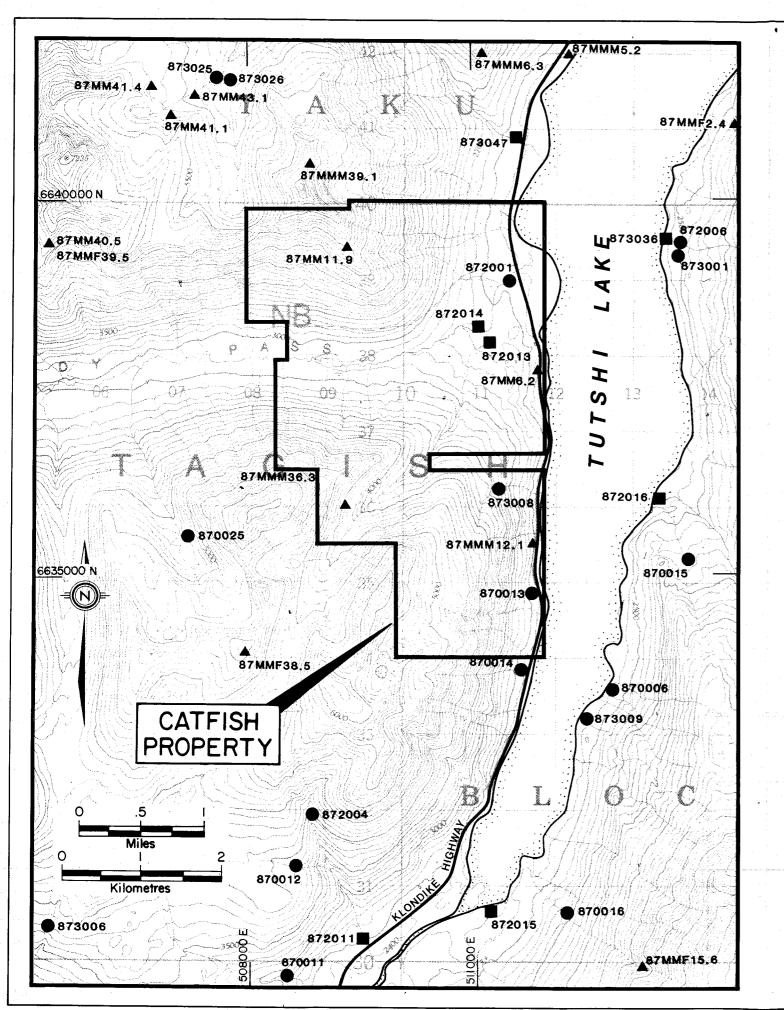
Mineral X is light grey and resembles tetrahedrite, but sometimes shows a weak birefringence. It may be a Pb-Sb sulfosalt. It occurs as rare, irregular pockets in quartz, peripheral to the arsenopyrite.

Rare flecks of scorodite (secondary Fe arsenate) are associated with some of the hairline quartz veinlets, or form threads in their own right.

The gangue is varigranular, anhedral, strained quartz of typical vein aspect. Minor sericite occurs as localized felted-textured pockets and discontinuous linear zones.

Quartz	75
Sericite	24
Scorodite(?)	1

This is a rock of simple mineralogy but uncertain origin.


It consists essentially of quartz, as an equigranular, anhedral mosaic of grain size 0.1 - 0.3mm.

Sericite is the other constituent, occurring as clusters and networks of randomly oriented, tiny flakes, 0.02 - 0.05mm (rarely to 0.1mm) in size, evenly distributed throughout and mainly developed in the grain boundaries of the quartz mosaic.

The latter is unstrained, and sometimes shows traces of an apparent, more finely granular proto-texture in ghost form, defined by minute inclusions. It may, therefore, be of metasomatic origin, representing a totally silicified rock - possibly a rhyolite. Rare coarser quartz grains, to 2.0mm in size, clearly represent relict phenocrysts.

The rock is cut by occasional hairline veinlets (healed fractures) of quartz, and by irregular, anastomosing threads, small pockets, and tiny euhedral pseudomorphs of a brown, felted-textured mineral which appears to be the Fe-arsenate scorodite (the typical secondary breakdown product of arsenopyrite).

No sulfides are present in the slide, but the cut-off block includes a few tiny euhedral casts, one of which contains traces of arsenopyrite. It seems likely that these all represent the sites of original disseminated arsenopyrite, now leached out and/or plucked during slide preparation.

 \bigcirc

														-													į
SAMPLE						Mo	Cụ	Pb	Zn	Ag	Ni	Co	Mn	Fe	U	Th	Sг	V	Au	Hg	As	Sb	Bi	Se	Тe	LOI	WT .
NO.	UTM E	UTM Ň	ROCK R	EP C	C B COMP	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppb	ppb	ppm	ррт	ppm	ppm	ppm	%	grams
87001	508450	6629800	GRNT 0	0 0	0 1 310	3	9	17	55	0.1	4	4	386	2.40	6	39	27	30	5	5	36.6	0.9	0.7	0.2	0.3	3.00	7.46
870012	508550	6631250			0 7 211	4	4	21	73	0.5	2	3	375	1.66	69	17	26	13	6	20	7.2	0.4	0.4	0.2	0.2	8.90	14.12
870013	511700	6634900	BGRN 00	0 1	1 4 211	2	30	13	73	0.2	26	15	688	3.64	5	14	60	43	24	.5	140.0	3.0	0.4	0.2	0.3	4.30	33.28
870014	511500	6633850	BGRN O	0 0	0 4 211	4	56	21	135	0.1	16	22	1710	5.81	5	10	134	62	9	20	177.5	2.9	0.7	0.3	0.2	9.10	17.69
87001		6635350	GRNT O	io Ò	0 7 311	. 3	32	16	101	0.2	16	-8	662	2.42	1Ō	Ž	84	43	1080	40	158.6	4.1	0.1	2.5	0.4	21.90	7.10
870010			MSDM 0		0 1 311,	9	95	30	271	0.3	80	22	745	6.57	5	4	169	88	11	5	155.0	7.9	0.1	2.4	0.3	12.60	32.27
87002			GRNT O		0 2 211	6	33	33	152	0.6	15	11	785	3.56	8	31	73	48	31	20	164.5	2.8	1.7	0.7	0.5	7.00	16.82
87200		6639000			0 7 211	4	14	10	51	0.1	6	4	324	1.40	5	20	24	17	2	5	63.8	1.7	0.7	0.2	0.2	2.40	59.95
.872004			GRNT O		0 0 220	3	16	. 37	110	0.9	10	10	670	2.79	6	12	35	22	59	5	34.3	2.0	2.0	0.3	0.2	3.00	10,92
872000		6639550	DORT O	0 0	0 1 220	9	45	40	78	0.1	11	9	614	3.24	6	23	32	34	12	5	11.1	1.0	0.6	1.0	0.3	3.20	12.77
* 872013	511050	6638100	MSDM 1	0 0	0 2 211	1	31	28	69	0.1	16	10	514	3.07	5	9	68	49	240	40	275.4	5.8	0.2	0.4	0.2	5.40	20.39
* 872113		6638100	MSDM 2	0 0	0 2 211	2	29	19	62	0.1	15	9	457	2.93	5	11	56	46	30	10	244.8	6.5	0.4	0.3	0.3	5.10	29.88
* 872014		6638250	MSDM 1	0 0	0 2 211	4	15	10	56	0.1	7	3	422	1.57	13	21	26	18	2	- 5	76.0	1.9	1.1	0.3	0.4	3.70	29.72
* 872114			MSDM 2	0 0	0 2 211	4	14	13	56	0.1	6	4	442	1.62	11	26	25	19	1040	20	72.7	2.1	1.1	0.2	0.3	3.70	25.32
* 87201		6631500			0 2 211	4	27	14	76	0.1	14	7	383	3.13	9	20	33	51	3	10	78.5	2.1	0.6	0.4	0.4	5.70	21.13
* 87211			GRNT 2		0 2 211	. 4	31	22	88	0.2	18	9	436	3.44	15	15	39	57	. 9	10	94.2	2.5	0.6	0.5	0.4	7.00	21.07
* 872016		6636050			0 2 211	2	38	18	76	0.1	23	11	631	3.49	5	8	70	61	3	5	39.7	3.6	0.1	0.4	0.2	3.80	13.19
* 872110			TUFF 2		0 2 211	3	33	9	80	0.1	26	11	742	3.31	5	11	71	57	19	10	43.9	3.7	0.1	0.6	0.5	4.50	32.98
87300		6639375			0 1 211	2	97	30	227	0.2	17	5	416	2.09	5	4	94	27	10	40	53.2	1.7	0.4	1.7	0.3	19.80	13.06
87300			SCST 0		0 2 212	2	71	39	194	0.5	30	18	1158	4.82	7	5	85	61	4	30	248.5	10.7	0.3	1.6	0.4	14.80	14.14
87300		6633225			0 1 113	- 7	51	18	254	0.4	51	13	665	3.92	5	5	93	66	38	20	273.2	5.3	0.3	2.3	0.2	16.40	15.29
87302) SCST 0		0 3 211		95	46	186	0.3	33	20	973	6.14	5	8	320	75	35	30	725.0	51.2	0.4	0.6	0.7	7.80	3.86
87302	5 507600	6641650) SCST 0	10 0	0 3 211	2	136	46	194	0.5	65	26	1116	5.81	5	6	120	99	45	20	500.9	20.6	1.9	0.6	0.6	9.20	43.65
DETECT	ON LIMITS	;				1	1	2	1	0.1	1	1	5	0.01	5	2	1	2	1	5	0.1	0.1	0.1	0.2	0.3		
								-	•			•	2		-	-		-	•								

EXPLANATION OF COLUMN HEADINGS

to sixth digits are sequential sample identifiers.

UTM E and UTM N Universal Transverse Mercator coordinates for Zone 08 as easting and northing respectively. Normally accurate to within 50 m.

ROCK Bedrock type mnemonic code as listed in alphabetical order below: ALRZ = alteration, ANDS = andesite, ARGL = argillite, BEXV = basic extrusive, BGRN = biotite granodiorite, DORT = diorite, GRCK = greywacke, GRDR = granodiorite, GRNT = granite, IEXV = intermediate extrusive, IMIV = intermediate intrusive, LMSN = limestone, MSDM = metasediment, SCST = schist, TUFF = tuff

REP Replicate status: 00 = routine sample site, 10 = first of duplicate pair, 20 = second of duplicate pair. Samples sites denoted as having been sampled in duplicate are also sites where 10 kg bulk samples and pan concentrates were taken -this data will be available in the near future.

C Contamination code: 0 = none, 1 = possible, 2 = probable, 3 = definite, 4 = mining activity

B Bank type: 0 = undefined, 1 = alluvial, 2 = colluvial, 3 = glacial till, 4 = glacial outwash, 5 = bare rock, 6 = talus, scree, 7 = organic

COMP Sediment composition as a three digit code representing abundance of sand (first digit, particles >0.125mm); fines (second digit, particles <0.125mm), and organics (third column) as follows: 0 = absent, 1 = minor (<33%), 2 = medium (33-67%), 3 = major (>67%).

LITHOGEOCHEMICAL RESULTS

	SAMPLE			•			
				Au	Ag	As	Sb
	NO.	UTM E	UTM N	ppb	ppm	ppm	ppm
	87MM6.2	511750	6637800	100	<0.5	11.2	3.3
	87MM11.9	509200	6639400	<20	0.5	8.8	0.6
	87MM40.5	505300	6639450	120	<0.5	1.3%	42
	87MM41.1	506900	6641200	20	1	109	26
	87MM41.4	506650	6641500	70	170	0.68%	2.0%
	87MM43.1	507200	6641400	<20	230	725	555
	87MMF2.4	514350	6641050	<30	1	12.2	<0.5
	87MMF15.6	513125	6629950		<0.5	148	2
	87MMF38.5	507900	6634050	<20	<0.5	10	1
•	87MMF39.5	505250	6639350	100	<0.5	0.37%	12
	87MMM5.2	501215	6655000	<30	<0.5	8.3	<0.5
	87MMM12.1	501175	6635500	40	0.5	31	26
	87MMM36.3	508875	6636300	50	8	6	975
	87MMM39.1	508700	6640500	<20	<0.5	636	99
	DETECTION	LIMIT		20	0.5	1	0.5

STREAM SEDIMENT GEOCHEMICAL RESULTS

Sample No. Sample number is a six digit identification code. The first two digits represent the year of collection. The third digit is the collector identifier. Fourth

LEGEND

Rock Sample Site ▲ 87MMF1.6

Standard Sediment Sample Site
873033 Standard and Bulk Sediment 873133 Sample Site

NOTE : samples marked * are duplicate samples

FRAME MINING CORPORATION **CATFISH PROPERTY**

RECONNAISSANCE STREAM SEDIMENT AND LITHOGEOCHEMICAL SURVEY-1987

BEACON HILL CONSULTANTS LTD.

Date:Dec.'88 Design:R.J.M. Mining Engineers Drawn By:D.S. Scale 1:50000

FIGURE 4

18522

Adapted From: Mihalynuk and Rouse B. C. E. M. P. R. OPEN FILE MAP 1988-5

SAMPLE TYPES

W.L 1556 2

A CBRIGR ROCK SAMPLE LOCATION AND NUMBER CBR BEL SOIL SAMPLE LOCATION AND NUMBER CON 35 STREAM SAMPLE LOCATION AND NUMBER X 30 P PETROGRAPHIC SAMPLE

LEGAL CORNER POST

6640500 N

SAMPLE NAMES

C8R - CATFISH, 1988, R.J. MORRIS (SAMPLER) C8N - CATFISH, 1988, NICK MORRIS (SAMPLER)

C8R 12 - SEQUENTIAL NUMBER C8R 12 R - ROCK SAMPLE L - SOIL SAMPLE

S - SILT SAMPLE (STREAM SEDIMENT)

SO O

N

0

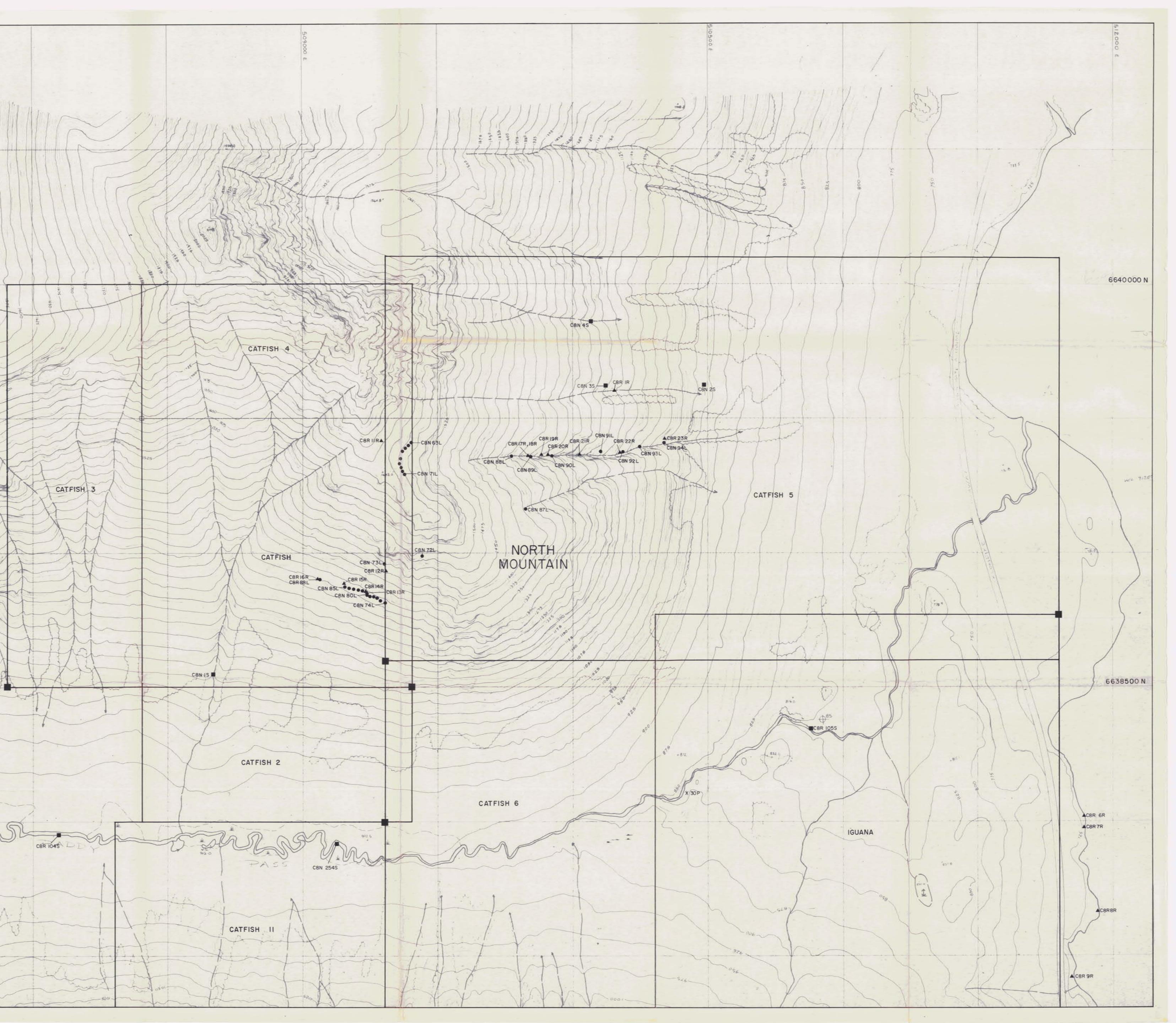
575

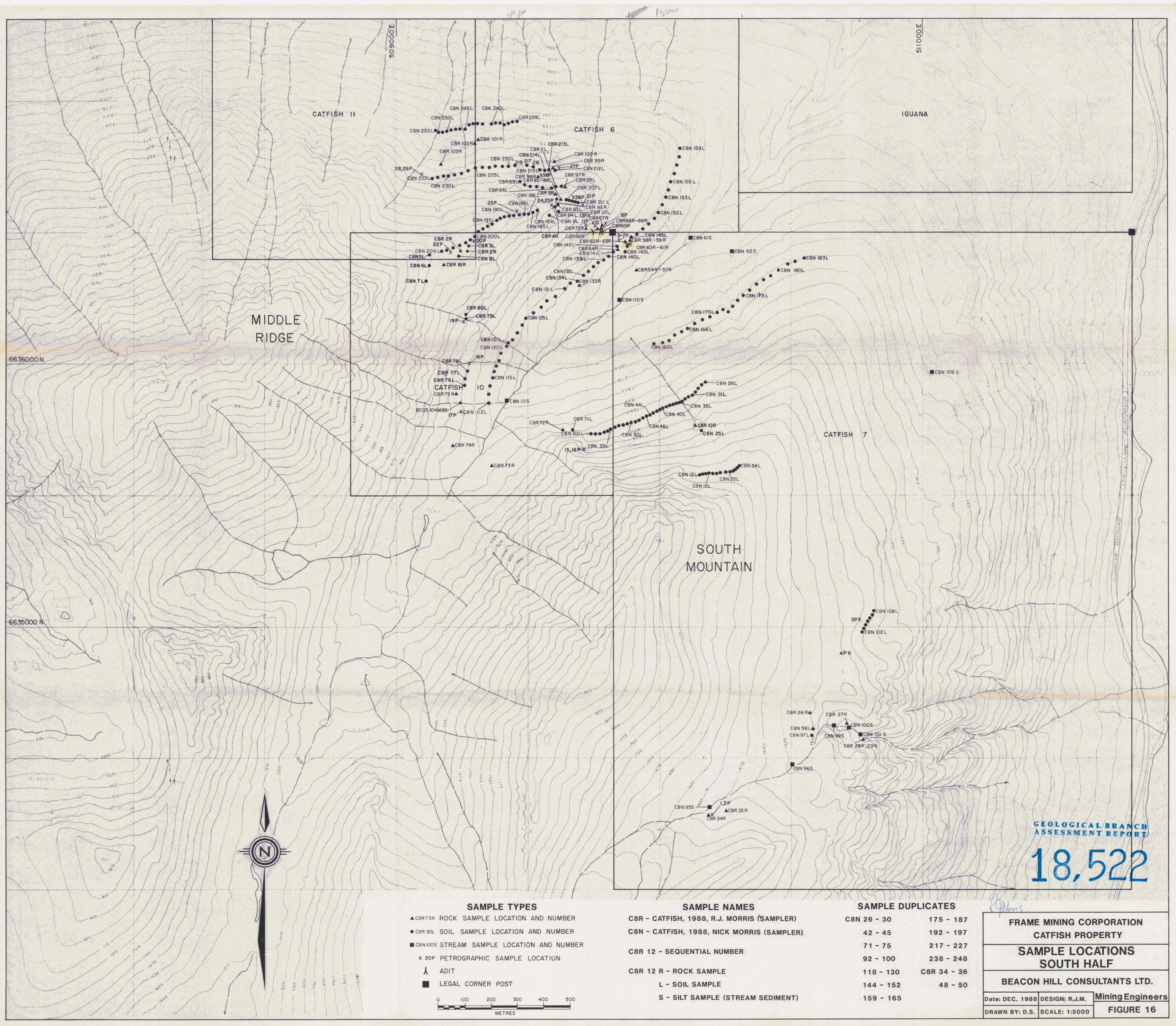
0001----

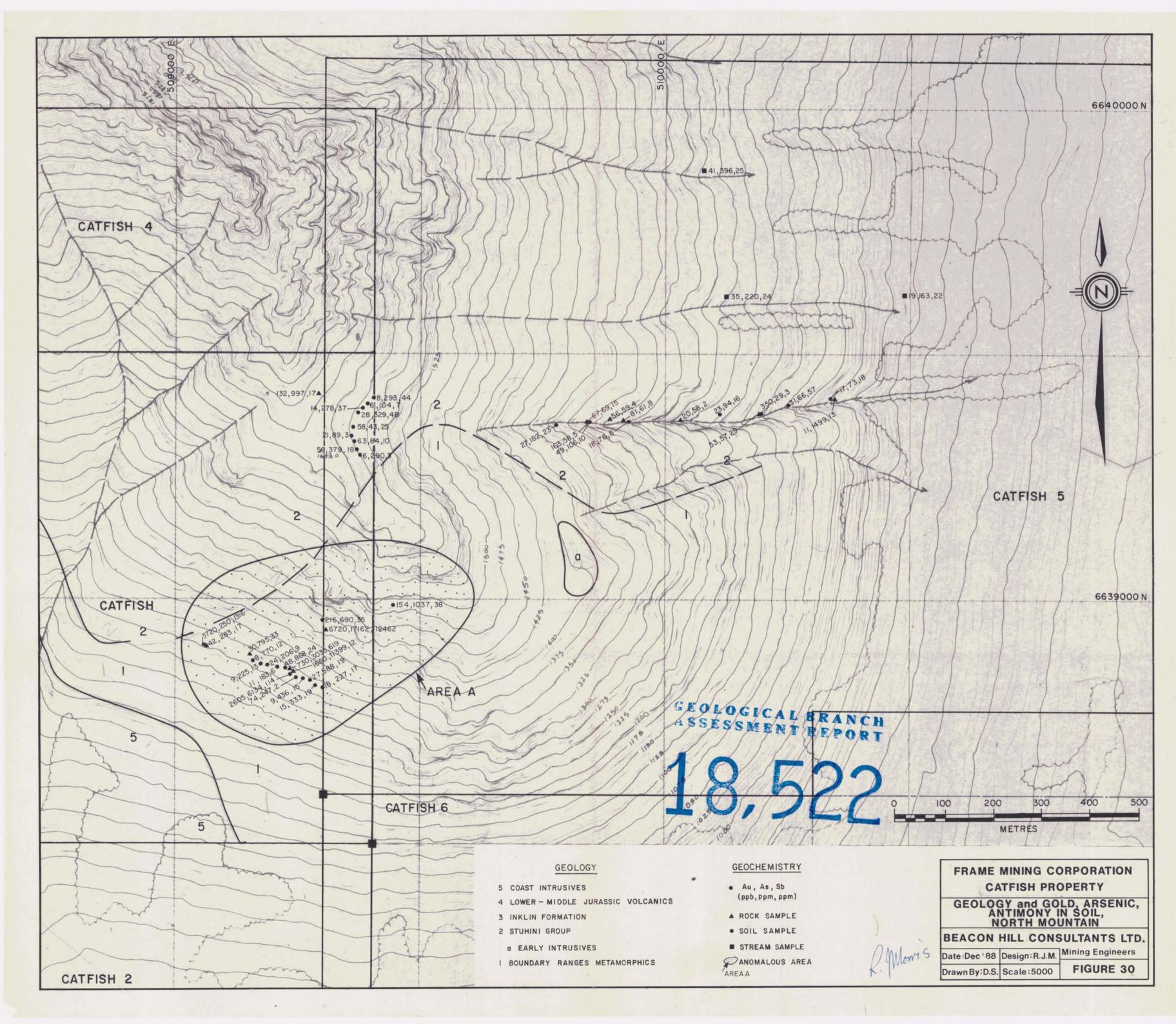
- 5701

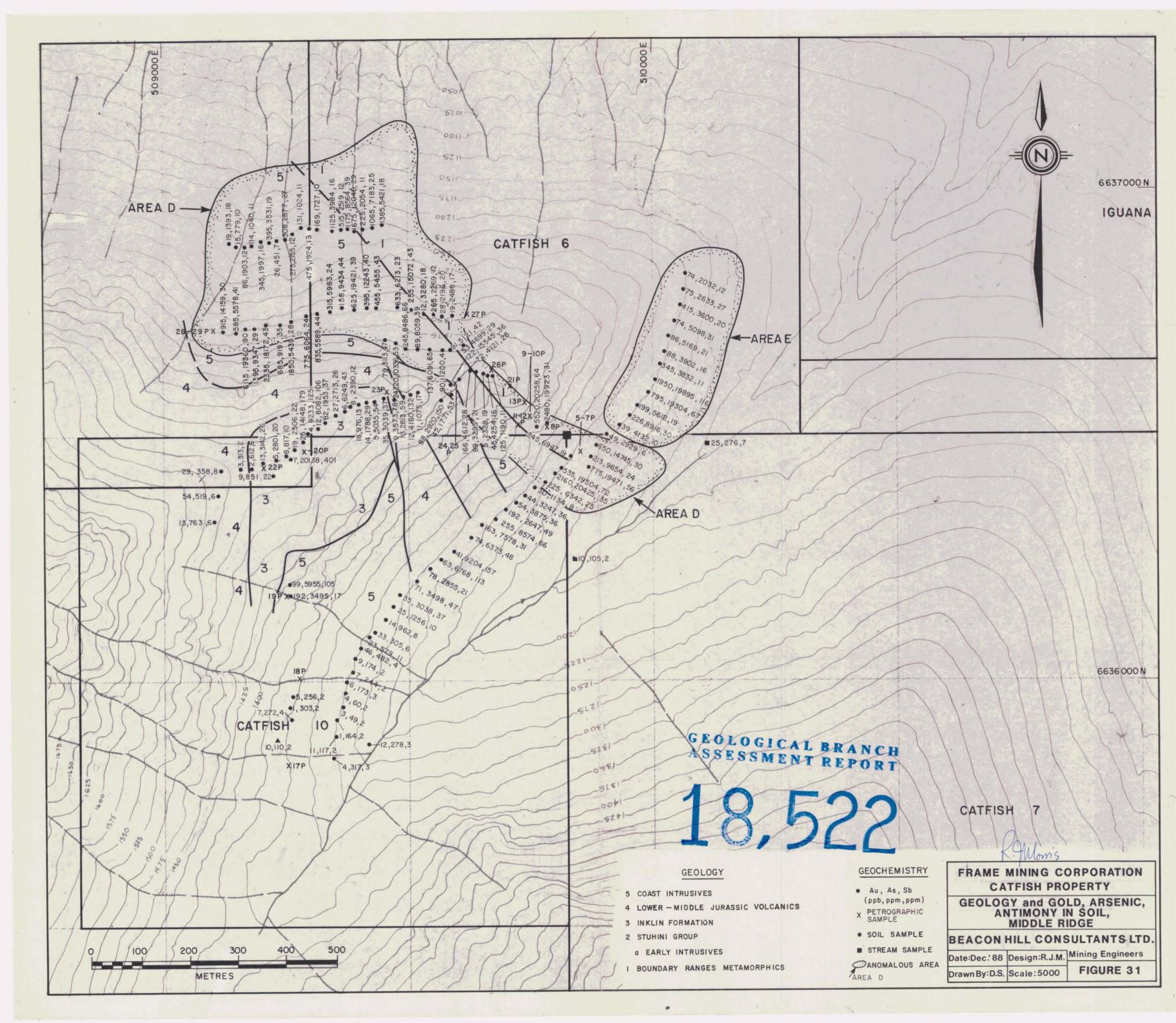
V PORT

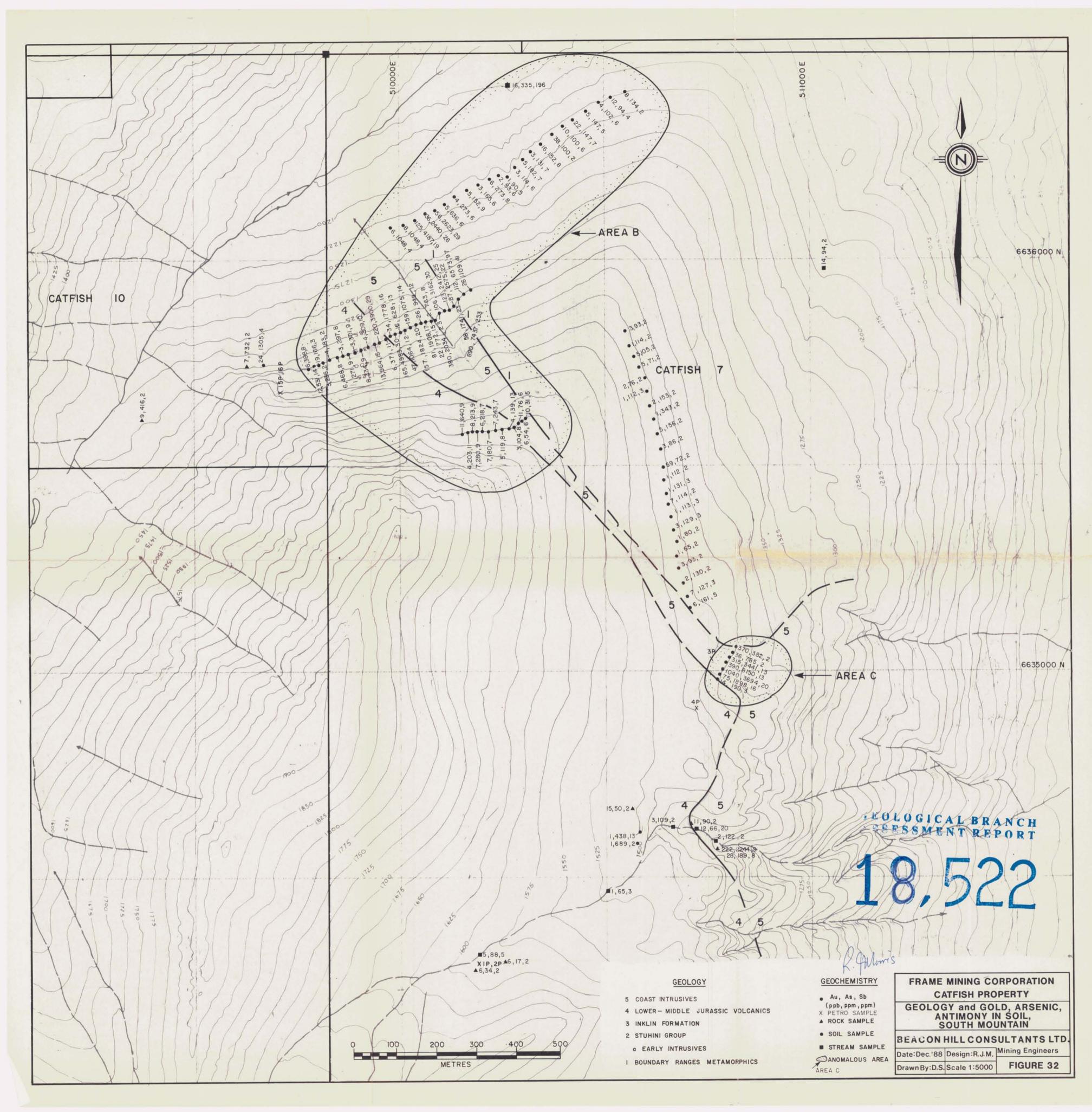
Y


C


SAMPLE DUPLICATES 175 - 187 C8N 26 - 30 192 - 197 42 - 45 217 - 227 71 - 75 92 - 100 238 - 248 C8R 34 - 36 118 - 130 144 - 152 48 - 50 159 - 165 400


FRAME MINING CORPORATION CATFISH PROPERTY SAMPLE LOCATIONS NORTH HALF


BEACON HILL CONSULTANTS LTD.


Date: DEC. 1988 DESIGN: R.J.M. Mining Engineers FIGURE 15 DRAWN BY: D.S. SCALE: 1:5000

