ARIS SUMMARY SHEET

District Geologist, Prince George Off Confidential: 90.01.17

ASSESSMENT REPORT 18558 MINING DIVISION: Cariboo

PROPERTY: Wingdam

LOCATION: LAT 53 02 00 LONG 121 58 00

UTM 10 5876260 569295

NTS 093H04W

CAMP: 038 Cariboo - Barkerville Camp

CLAIM(S): Wingdam, Wing 2

OPERATOR(S): Silver Sceptre Res.

AUTHOR(S): Newton, D. REPORT YEAR: 1989, 66 Pages

COMMODITIES

SEARCHED FOR: Gold

KEYWORDS: Paleozoic, Cariboo Group, Phyllite, Limestone, Quartzite

WORK

DONE: Drilling, Geochemical

ROTD 1066.8 m 9 hole(s)

Map(s) - 1; Scale(s) - 1:5000

SAMP 614 sample(s); ME

RELATED

PORTS: 06295,07094,07540,07550,08269,09740,10640,10815,12738,12950,16113

17010

MINFILE: 093H 012,093H 086

			LOG NO: 0314	RD.
			ACTION:	
RISE	RESOURCES	INC	FILE NO:	

REVERSE CIRCULATION ROTARY DRILLING REPORT ON THE WINGDAM (LIGHTNING CREEK) PROPERTY CARIBOO MINING DIVISION, B.C.

> NTS 93 A/13W, 93 B/16E NTS 93 G/1W, 93 H/4W

> > Ву

David Newton, B.Sc. Geology

FEBRUARY, 1989

CLAIMS WORKED

CLAIM NAME UNITS RECORD NO. ANNIVERSAR'

PURDY 16 9525 DECEMBER

WING 2 20 8370 APRIL

FILMED

LOCATION:

53° 02' N, 121° 58' W

OWNERS:

RISE RESOURCES INC.

SILVER SCEPTRE RESOURCES LTD.

OPERATOR:

SILVER SCEPTRE RESOURCES LTD.

CONSULTANT:

RALPH GONZALEZ

ARCHEAN ENGINEERING LTD.

PROJECT GEOLOGIST:

DAVID NEWTON

SUMMARY

REVERSE CIRCULATION ROTARY DRILLING REPORT ON THE LIGHTNING CREEK (WINGDAM) PROPERTY

The Wingdam prospect is comprised of 9 Modified Grid claims, totalling 120 units, and 14 two-post claims. The property is located approximately 45 km east of the city of Quesnel in central British Columbia. The property was optioned by Rise Resources in late 1986 as a lode gold prospect mainly due to its location in a historically rich placer area.

Exploration by Rise Resources began in 1987 with an airborne geophysical survey flown over the entire claim group. The results of this survey were used as a basis for the 1987 ground programme. Work consisted of flagging 46 line km on three grids all of which were geophysically surveyed with a VLF-EM 16 and a proton procession magnetometer to confirm results of the airborne survey. All three grids were geochemically sampled and a total of 646 soil samples were collected. Approximately 800 m of road was constructed to access geophysical targets for future drilling.

The 1988 drill program consisted of nine reverse circulation rotary drill holes totalling 1067 m (3500 ft). The goal of the drilling was to test two areas on grid 2. A large, broad zone of irregular magnetic lows trending east/west across the northern portion of the claim group was detected during the airborne survey and further defined by the 1987 ground magnetometer survey. The exploration programme was based on the premise that hydrothermal solutions responsible for depositing quartz veins would produce an alteration halo detectable as a magnetic low.

Two fences of three 50 m spaced rotary holes were drilled across the best defined anomaly. All six holes were 122 m (400 ft) in length. Drillsite construction exposed foliated, chloritic to micaceous to graphitic clastic sediments. No significant gold values were encountered.

The other area of exploration was in the vicinity of the old Wingdam underground placer mine. A total of 335 m (1100 ft) in three holes were drilled to test for the cause of an airborne magnetic low, for quartz veins exposed in underground workings, for hydrothermally altered rocks reported to have been encountered during drilling in the 1960's and for a nearby source of the gold found in the rich bedrock gravels. Two 122 m holes (WG 88-8 and 9) drilled near Wingdam's Sanderson shaft encountered mineralization. Elevated lead and zinc values, up to 3200 ppm and 7100 ppm respectively, were obtained from hole WG 88-8. In hole WG 88-9 gold values of 0.537 and 0.036 oz/ton, each over 1.5 m, were returned. Further work is required in the area of the Wingdam mine to determine the extent of gold bearing mineralization encountered during the 1988 drilling and to explore for other gold bearing structures.

TABLE OF CONTENTS

SUM	IARY			Page	i
1.0	1.1 1.2 1.3 1.4	DUCTION Location and Access Physiography, Vegetation Claim Information History 1987 Exploration Progra	on and Climate	Page Page Page Page Page	1 3 3 6
2.0		GY Regional Geology Property Geology		Page Page	
3.0		ING Drilling Techniques Drilling Geology		Page Page	
4.0	DISCUS	SSION		Page	15
5.0	COSTS	STATEMENT		Page	16
6.0	REFER	ENCES		Page	17
7.0	STATE	MENT OF QUALIFICATIONS		Page	19
		FIGURE	S		
Figu Figu	ire 2-0 ire 3-1	Location Map Claim Map Regional Geology Map Drillhole Location Map	1:10,000,000 1:50,000 1:50,000 1:5000	Page Page Page Pocke	5 9
		TABLE	s		
		laim Status otary Drillhole Data		Page Page	

APPENDICES

Appendix A: Certificates of Analyses Appendix B: Drill Cuttings Descriptions

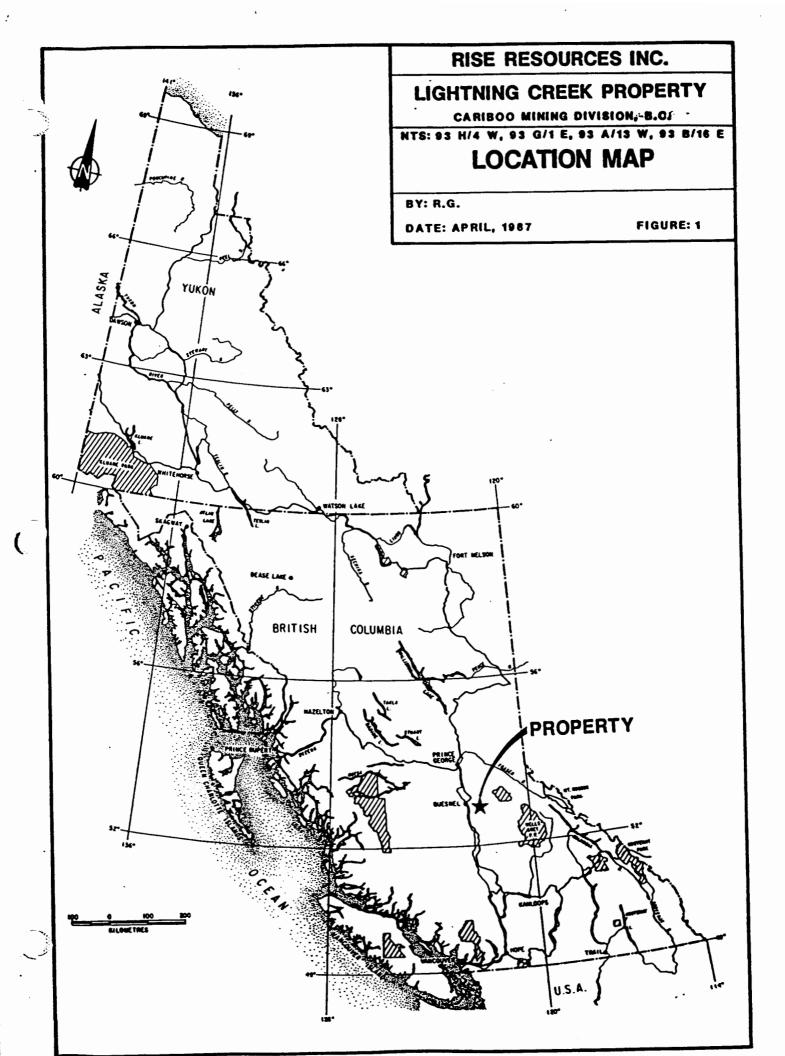
WINGDAM (LIGHTNING CREEK) PROPERTY CARIBOO MINING DIVISION NTS 93 A/13W, 93 B/16E NTS 93 G/01E, 93 H/04W

1.0 INTRODUCTION

The Wingdam property is a gold prospect located in the historic Cariboo Gold District of central British Columbia.

This report is based on field work done between October 13 and November 30, 1988. Work was supervised by Mark Management Project Geologist David Newton and was carried out by a five man crew based out of the community of Wells. A nine hole, 1067 m (3500 feet) reverse circulation rotary drill programme was conducted. These holes were designed to test magnetometer low anomalies discovered during a 1987 airborne geophysical survey as possible lode sources of placer gold mined in the area.

1.1 LOCATION AND ACCESS


The Wingdam (Lightning Creek) prospect is located approximately 45 km east of the city of Quesnel, the principal supply center in the area, and 25 km west of the village of Wells (Figure 1). The property covers an area of approximately 120 km², most of which is mountainous terrain. Relief ranges from 880 m (2900 feet), along Lightning Creek, to over 1310 m (4300 feet) near the southeast corner of the property.

Terrestrial co-ordinates for the center of the property are;

53⁰ 02' North Latitude 122⁰ 58' West Longitude

Access to the property is along the paved Quesnel-Barkerville Highway (B.C. No. 26) which is located along the north side of Lightning Creek. The Everton Creek forestry road provides access to grid 2 (Figure 4). Holes WG 88-2 to WG 88-7 are connected to the forestry road by a 450 m road constructed in 1987 and upgraded in 1988. Approximately 150 m of roads and drillsites were cleared in 1988. Mild weather conditions in November necessitated the use of four-wheel drive vehicles equipped with winches and, as well, a D-8 bulldozer to pull the truck mounted drill into the sites.

WG 88-1 was located in a clearing on the highway side. Roads which formerly serviced the underground placer mine at Wingdam provided access to holes WG 88-8 and WG 88-9.

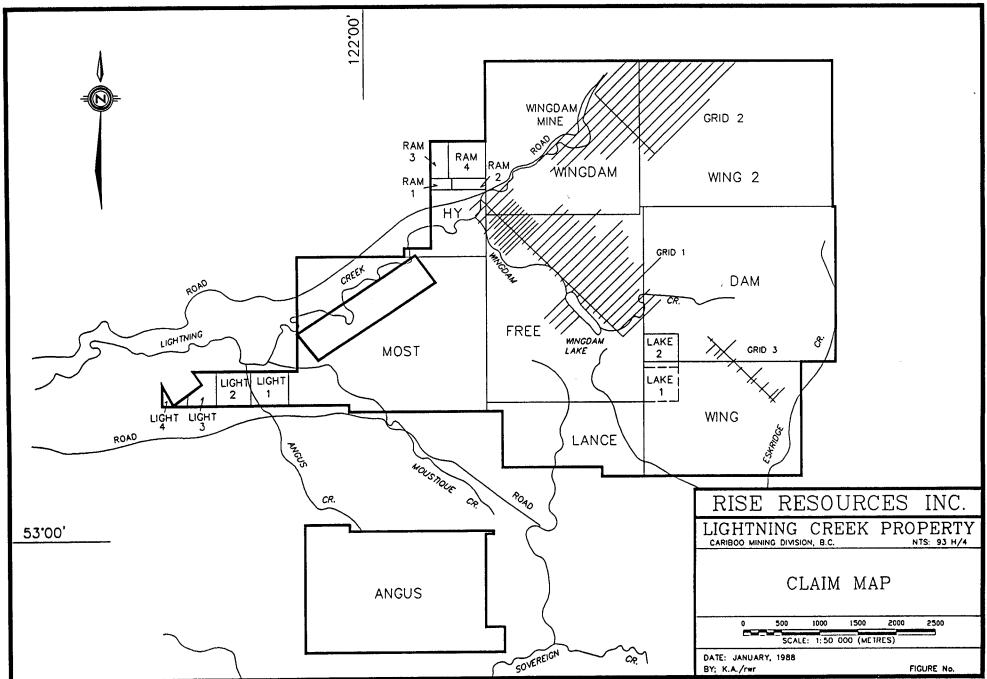
1.2 PHYSIOGRAPHY, VEGETATION AND CLIMATE

The Wingdam (Lightning Creek) property is located in a region transitional between the Interior Plateau of the Intermontane Belt to the west and the Cariboo Mountains to the east. The claims straddle the boundary between the Quesnel Trough and the Omenica Crystalline Belt in the central portion of the province within the physiographic division known as the Intermontane Plateau. The Interior Plateau is characterized by a rolling upland surface at an altitude of approximately 1825 m (6000 feet) and with a regional dip of about 14 m per km to the southwest. This surface bevels all pre-Tertiary formations. Surrounding the claims, the undulations of the upland surface are related to lithology, the highest areas being underlain by quartzite, conglomerate, chert, or diabase, and most of the lower hills by phyllites or limestone. The surface is moderately well dissected, with a local relief of about 600 m (2000 feet). The Cariboo Mountains proper seem to represent the complete and deep dissection of this surface to a stage at which local relief is as great as 1825 m.

All creeks and tributaries show a markedly irregular pattern owing to the deep dissection and various controlling factors that seem to be related to lithology and structure. The valleys are narrow and steep-sided in the upper parts, but locally have the U-shaped cross section of glaciated valleys. They broaden in the lower parts, where they are deeply drift-filled and have alluvial flats with a general elevation of about 1200 m.

Tree line is at approximately 1,900 m (6300 feet), but below this level, the area is well timbered. In order of abundance the common trees are, white and black spruce, aspen, balsam, poplar, white birch, lodgepole pine and western cedar. In wet areas, and along stream courses, alder, aspen and dwarf birch, as well as willow and minor stunted buckbrush, are encountered.

1.3 CLAIM INFORMATION


The Wingdam (Lightning Creek) prospect is located in the Cariboo Mining Division and is comprised of 9 Modified Grid claims, totalling 140 units, and 14 two-post claims.

The claims were first optioned in late 1986 and then purchased in late 1988 by Rise Resources Inc. from John C. Bot and Donald C. Ulett of Quesnel, B.C. Several of the claims represent over-staking, and the total area covered by the claim block is approximately 30 km².

All claims are contiguous except for Mac 1 to Mac 4 which are located along Naver Creek, 45 kilometers to the northwest, and Angus, which is separated from the rest of the claim block by the Dang claims (Figure 2). Claim information is listed below:

TABLE 1
CLAIM STATUS

CLAIM NAME	UNITS	RECORD NO.	ANNIVERSARY DATE
MOST	20	7253	JANUARY 13
LIGHT#1 (2-POST	') 1	7254	JANUARY 13
LIGHT#2 (2-POST	') 1	7336	FEBRUARY 17
LANCE	8	7365	FEBRUARY 25
FREE	20	7366	FEBRUARY 25
WING	12	7402	MARCH 14
НУ	4	7410	MARCH 14
LAKE#1 (2-POST)	1	7437	MARCH 25
LAKE#2 (2-POST)	1	7438	MARCH 25
LIGHT#3(2-POST)	1	7486	APRIL 7
LIGHT#4(2-POST)	1	7483	APRIL 7
ANGUS	20	7512	APRIL 14
RAM#1 (2-POST)	1	7785	JULY 18
RAM#2 (2-POST)	1	7786	JULY 18
RAM#3 (2-POST)	1	7787	JULY 18
RAM#4 (2-POST)	1	7788	JULY 18
PURDY	16	9525	DECEMBER
DAM	20	7933	SEPTEMBER 5
MAC 1 (2-POST)	1	5778	FEBRUARY 1
MAC 2 (2-POST)	1	5779	FEBRUARY 1
MAC 3 (2-POST)	1	5780	FEBRUARY 1
MAC 4 (2-POST)	1	5781	FEBRUARY 1
WING 2	20	8370	APRIL 29

Prepared by: RWR MINERAL GRAPHICS LTD.

1.4 HISTORY

In 1859 placer gold was discovered along the Quesnel River approximately 50 km south of the Wingdam. That discovery sparked the Cariboo gold rush which began in 1860 and lasted for five years. Placer discoveries made during that rush resulted in an estimated 3 million ounces of placer gold being mined in the Cariboo (Boyle, 1979). In addition, from 1933 to 1953 over 840,000 ounces of lode gold was produced from the famous Cariboo Gold Quartz Mine at Wells and the Island Mountain Mine, near Barkerville, B.C.

During the heyday of placer mining, the lower portion of Lightning Creek, especially near the town of Stanley, was one of the richest placer creeks in the Cariboo. One of those operations was the Wingdam underground placer mine which operated sporadically from 1896 to 1939. Although rich, the bedrock gravels are located, on average, 36 to 52 m below surface and the depth, combined with the high water pressures flow rates encountered, created and operations with problems and most ended slumping underground. Development was largely from the Melvin (downstream) and Sanderson (upstream) shafts. Mining from the Sanderson shaft was more successful as the pay gravels were located on a false bedrock at a shallowed depth, 36 m, Although extensive gravels were better drained. underground development was undertaken from the Melvin shaft, over 975 m of drives, only a small amount of material was ever mined and the operation ended with a major flood in 1938.

Although the area is rich in placer gold, only modest surface stripping and pitting has taken place for lode-type deposits. The Free Lance vein is located 2 km downstream of Wingdam and is reported to have been exposed, at three different points along its 70 m strike length, by shallow pits. The main structure is described as being a 0.6 to 1.5 m wide quartz vein which lies parallel to the bedding and is sparsely mineralized with pyrite and galena and returned only trace amounts of gold and silver.

Except for the previously mentioned Mac claims, the property was staked to cover ground believed to be the source for the placer gold found in the lower portions of Lightning Creek.

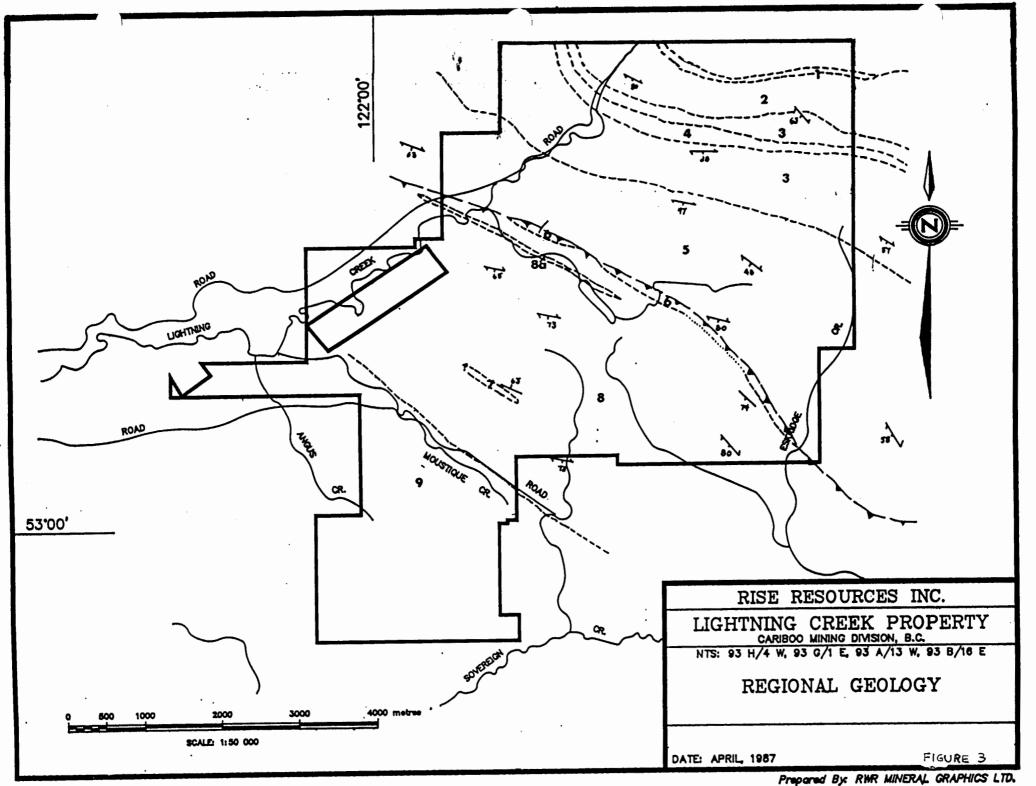
1.5 1987 FIELD PROGRAMME

In 1987 an airborne geophysical survey flown over the entire claim block located several anomalous zones. From late-August to late-October a surface exploration programme was undertaken to further delineate the anomalies (Gonzalez and Akhurst, 1988). Work consisted of:

- 1) 46 km of flagged line on three grids. Lines were compassed and chained with stations at 25 m intervals on 100 m spaced lines.
- 2) 46 line km of geophysical surveys using a Scintrex Portable Procession Magnetometer and a Geonics VLF EM-16.
- 3) partially soil sampled all three grids for a total of 646 soil samples.
- 4) approximately 800 m of road building into two areas on grid 2.

2.0 GEOLOGY

2.1 REGIONAL GEOLOGY


Bedrock outcrops over less than 5% of the property. Rock is only well exposed on steep slopes and along the canyon section of Lightning Creek and near the mouths of its tributaries. It also occurs as scattered exposures along road cuts and occasionally through the glacial drift that mantles most of the property.

The Wells-Barkerville District, of which the Wingdam Property is located on the western edge, is underlain by five major groups of rocks. All groups are compressed into northwesterly trending folds of greater or lesser The complexity. oldest rocks are schist, schistose greywackes and micaceous quartzite which form the Kaza Group (Late Precambrian to Paleozoic). The Cariboo Group (Early Cambrian and Later) comprises phyllites, limestones and micaceous quartzites and unconformably overlies the Kaza Group. The Black Stuart Group unconformably overlies the Cariboo and Kaza Groups and is comprised of dark shale, chert-carbonate unit, minor basalt flows, conglomerate and Slide quartzite. The Mountain Group (Carboniferous) comprises cherts, argillites, basic pillow lavas conglomerates. It unconformably overlies the older Groups and is much less deformed and metamorphosed. The Quesnel River Group (Jurassic and Later?) comprises shales and andesitic volcanic rocks.

The geology of the area is not simple. Multiple deformation has rendered most of the rocks schistose and tightly compressed in complex repetitive folds. A subtlety of rock differences, an obscurity of bedding, facies changes in some formations and a variation in intensity of hydrothermal alterations all combine to make a complex relationship which poor exposure further compounds.

The glacial history of the region is not well known beyond the fact that a mountain ice-sheet covered the entire area at least once, and though the ice must have been almost static, some movement occurred to the southwest. Glaciation has modified the topography of the area slightly with only minor deepening or widening of the main valleys. It is believed that the glacial episode ended, as it may have begun, with a stage of valley glaciers.

The direction of ice flow probably varied at different times but generally it must have been channeled by the main valleys during the early and late stages of the ice-sheet and during the periods of valley glaciation. However, during the maximum stage of ice-sheet development, ice moved across the area to the southwest.

LEGEND

Geological contact

Fault

Strike and dip of bedding

Strike and dip of foliation

- 9 Greenstone, augite-porphyry breccia, tuff breccia tuff; possible dykes and sills (greenschist facies metamorphics). 8 Dark grey argillite, slate, and phyllite, sandstone and minor limestone. 8a; conglomerate. 7 Diabase dykes 6 Diorite, basalt, serpentinite and sheared mafic rocks. 5 Olive and grey micaceous quartzite, dark grey phyllite and slate limestone, and meta-tuff. Amphibolite, diorite, and sheared equivalents. 3 Black argillite, slate, and siltite, muddy conglomerate, and
 - 2 Grey siltite and quartzite

limestone.

Marble, calcareous, sandstone, quartzite, calcareous phyllite, and phyllite.

2.2 PROPERTY GEOLOGY

Bedrock exposures may be seen along the canyon section of Lightning Creek and some of its tributaries, but most of the property is covered beneath glacial drift

The property straddles the contact between Lower Paleozoic metamorphosed sediments of the Cariboo Group and Mesozoic, mainly volcanic, rocks of the Quesnel Trough (Figure 3). The Cariboo Group, which is present in the eastern portion of the property, is comprised predominantly of clastic rocks with lesser amounts of carbonate rocks. The rocks have been subjected to low-grade regional metamorphism and intense deformation, but they still commonly show bedding and other sedimentary features. Deformation has impressed a secondary foliation on most clastic units, and most rocks have a marked dimensional orientation involving mica, quartz, feldspar and even carbonate minerals.

The rocks of the Quesnel Trough are exposed mainly southwest and south of Wingdam and include a variety of basic and intermediate volcanics, argillites hornblende diorite and occasionally acidic intrusive rocks. Argillites are exposed along the western half of the property and appear to be the most common of the Lower Mesozoic rock types. An exposure in a pit on the west side of the property indicated that this unit is highly deformed. The strike direction varies from \$23°E to \$553°E with dips steeply to the west, although local reversals are not uncommon.

Mesozoic rocks are in fault contact with the Lower Paleozoic, Cariboo Group, metamorphics. The fault contact passes through the property in a northwest direction and is located east of Wingdam Creek. Both Groups are invaded at a number of points along this contact by stocks and tongues of younger intrusives. These same intrusives invade the metamorphics in the Wells-Barkerville District and associated veins peripheral to the intrusives are often auriferous.

On the Wingdam Property, quartz veins are associated with acidic intrusives. Small irregular quartz veins, up to 1 m wide have been reported and often occur at the contact between the intrusives and the argillites. Sulphides have been noted in these veins and consist mostly of pyrite with minor galena. Mineralized quartz veins hosted in the Cariboo Group (B.C. Dept. of Mines, 1935) were exposed in the underground development at the Wingdam mine (Melvin shaft). Pyrite is also reported to occur within the argillites near the western end of the property. Here pyrite is present as fracture fillings, disseminations and sometimes as massive concentrations.

The Free Lance Prospect is the only known showing that has been worked. The showing is located 2 km downstream of Wingdam and is reported (B.C. Dept. of Mines,,1932, 1933) to have been exposed, at three different points along its 70 m strike length, by shallow pits. The main structure is described as being a 0.6 to 1.5 m wide quartz vein which lies parallel to the bedding and sparsely mineralized with pyrite and galena. Only trace amounts of gold and silver were reported from this showing.

3.0 DRILLING

3.1 REVERSE CIRCULATION ROTARY DRILLING

From November 8 to 30, 1988 nine vertical rotary drill holes totalling 1067 m (3500') were drilled on the property by Tonto Drilling Ltd. of Burnaby, B.C. These were drilled using a 13.3 cm (5 1/4 inch) diameter rod size, T 64 Schramm, truck-mounted, reverse circulation drill. Upon reaching the surface, drill cuttings passed through a Cyclone splitter followed by a Jones 3 tier splitter. Two 2 to 7 kg samples, weight depending on whether samples were wet and recovery rates, were taken at 1.5 m (5 ft) intervals throughout the entire length of each hole. One sample from each interval was stored on the property for future reference while duplicates were sent to Chemex Labs Ltd. of North Vancouver, B.C. A total of 615 bedrock samples were analyzed.

Samples from holes WG 88-2 to WG 88-9 were stored on their respective drillsites. Samples from hole WG 88-1 were stored on drillsite WG 88-8. Brief color descriptions of the sample cuttings are listed in Appendix A

At Chemex Labs the samples were analysed for gold by fire assay followed by atomic absorption analyses, and for 32 elements by the I.C.P.-A.E.S technique. Certificate of Analyses are presented in Appendix B. A summary of rotary drill hole information is presented in Table 2.

TABLE 2

ROTARY DRILL HOLE DATA

HOI	Æ #	LENGTH	OVERBURDEN	LOCATION (grid 2)
WG	88-1	91 m	15.2 m	
WG	88-2	122 m	3.1	904 N, 052 W
WG	88-3	122 m	9.1	904 N, 000 W
WG	88-4	122 m	6.1	907 N, 050 E
WG	88-5	122 m	1.5	1007 N, 065 W
WG	88-6	122 m	1.5	1000 N, 003 W
WG	88-7	122 m	7.6	990 N, 050 E
WG	88-8	122 m	16.9	420 N, 545 W
WG	88-9	122 m	68.6	315 N, 530 W

3.2 DRILLING GEOLOGY

The 1988 drill program was designed to test two areas on grid 2. A large, broad zone of irregular magnetic lows trending east/west across the Wing and Purdy claims was detected during the airborne survey and was further defined during a 1987 ground magnetometer survey. Fences of three 50 m spaced vertical holes were drilled on lines 900 N and 1000 N across the best defined anomaly. These holes, WG 88-2 to WG 88-7, were all 122 m (400 ft) in length. Drillsite construction exposed foliated, chloritic to micaceous to graphitic clastic sediments. Cuttings from the six holes showed numerous colour changes during drilling, probably reflecting the above mentioned rock types, but were marked by a uniform and almost complete lack of quartz and sulphides. No significant gold values were returned.

Three holes were drilled in the vicinity of the old Wingdam underground placer mine. WG 88-1 was drilled adjacent to the Melvin shaft while holes 88-8 and 88-9 were located near the Sanderson shaft (Figure 4). These holes were designed to test an airborne magnetic low, for quartz veins exposed in underground workings, for hydrothermally altered rocks reported to have been encountered during drilling in the 1960's and for a nearby source of the gold found in the rich bedrock gravels. Hole WG 88-1 was planned for a 122 m length but very high water pressures prevented penetration beyond 91 m using either the down-the-hole hammer drilling technique or a rotary bit.

Elevated Zn and Pb levels, up to 7100 ppm and 3200 ppm respectively, were returned from hole 88-8. Gold values of 0.036 and 0.537 oz/ton, each over 1.5 m, were encountered in hole 88-9. Heavy snowfalls buried the on site duplicate samples preventing an examination of the cuttings to determine mineralogy of the anomalous samples. The 0.537 oz/ton gold bearing sample did not contain elevated values of any other elements. The geochemistry combined with the area's history suggest that the gold was probably hosted in a quartz vein.

4.0 DISCUSSION

The Lightning Creek (Wingdam) property is located in a historically rich placer area. Exploration consisted of drilling magnetic lows discovered during an airbourne geophysical surveys and further defined by magnetometer surveys. The six holes drilled along Everton Creek returned neither mineralized rocks or anomalous Au values. Of the three holes drilled near the old Wingdam mine, one returned anomalous Zn and Pb values and another intersected significant gold values including 0.537 oz./ton over 1.5 m. As well, mineralized quartz veins were reported to have been exposed during underground development of the Wingdam mine. Further work is warranted to test the mineralization encountered during the 1988 drilling and to explore for other Au bearing structures. Due to the depth of overburden along Lightning Creek, future work will be largely limited to rotary and diamond drilling.

Respectfully submitted,

David Newton, B.Sc.

5.0 COSTS STATEMENT

RISE RESOURCES INC. LIGHTNING CREEK PROPERTY 13 OCTOBER-30 NOVEMBER, 1988

ROTARY DRILL PROGRAMME

SALARIES AND WAGES, 3 PERS., 21 MDAYS @ \$125.27 BENEFITS @ 20 % FOOD & ACCOMM., 3 PERS., 21 MDAYS @ \$55.25 SHIPPING SUPPLIES FUEL RENTALS	2630.71 526.14 1160.25 877.89 61.33 420.75
STANDARD 4WD BLAZER, 3 DAYS @ \$55 165.00 GABRIEL 4WD BLAZER, 15 DAYS @ \$55 825.00 EZEKIEL FIELD EQUIPMENT 21 MDAYS @ 6.00 126.00)
REPAIRS AND MAINTENANCE	1116.00 388.83
BULLDOZERS-K2 CONTRACTING -CARIBOO REDIMIX, 30.9 HRS @ \$140.00 BULLDOZER MOVES-TURBO TRANSPORT ASSAYS & ANALYSES- CHEMEX LABS, 615 SAMPLES FOR AU & 32 ELEM. ICP @ \$22.75 CONSULTANT FEES-ARCHEAN ENGINEERING ADDER DEVELOPMENTS 2250.00 ADDER DEVELOPMENTS 104.17	
PURDY 9525 (WINGDAM 7810)	37393.10
WING 2 8370	49857.46 87250.56
OTHER COSTS	
PURDY 9525 (STAKING COSTS)	2376.00 89626.56

6.0 REFERENCES

Bot, John, 1986; A Report on Wingdam Mineral Property: Botco Mining & Exploration Ltd., Unpub. Rpt.

British Columbia Department of Mines; Minister of Mines Annual Reports: 1924, p. Al22-124.

British Columbia Department of Mines; Minister of Mines Annual Reports: 1932, p. 92

British Columbia Department of Mines; Minister of Mines Annual Reports: 1933, p. 115-117, 126.

British Columbia Department of Mines; Minister of Mines Annual Reports: 1935, p. C12-16.

British Columbia Department of Mines; Minister of Mines Annual Reports: 1937, p. C35

British Columbia Department of Mines; Minister of Mines Annual Reports: 1938, p. C50, G43.

Gonzalez, R.A. and Akhurst, K.; January, 1988; Geochemical and Geophysical Report on the Wingdam (Lightning Creek) Prospect, Cariboo Mining Division, B.C.

Hanson, G., 1935; Barkerville Gold Belt, Cariboo District, Central British Columbia: Geological Survey of Canada, Memoir 181, 42 p.

Holland, S.S., 1954; Yanks Peak-Roundtop Mountain Area, British Columbia: B.C. Department of Mines, Bulletin No. 34, 112 p.

Rees, C.J., 1981: Western Margin of the Omenica Belt at Quesnel Lake, British Columbia: in Current Research, Part A, Geological Survey of Canada, Paper 81-1A, p. 223-226.

Rees, C.J. and Ferri, F., 1983; A Kinematic Study of Mylonitic Rocks in the Omenica-Intermontane Belt Tectonic Boundary in East-Central British Columbia: in Current Research, Part B, Geological Survey of Canada, Paper 83-1B, p. 121-125.

Richards, F., 1948; Cariboo Gold Quartz Mine: in Canadian Institute of Mining and Metallurgy, Structural Geology of Canadian Ore Deposits, Jubilee Volume, p. 162-168.

Skerl, A.C., 1948; Geology of the Cariboo Gold Quartz Mine, Wells, British Columbia: Economic Geology, Volume XLIII, p. 571-597.

Struik, L.C., 1979; Stratigraphy and Structure of the Barkerville-Cariboo River Area, Central British Columbia: in Current Research, Part B, Geological Survey of Canada, Paper 79-1B, p. 33-38.

Struik, L.C., 1981; Open File Map OF 858; Geological Survey of Canada.

Struik, L.C., 1981; Snowshoe Formation, Central British Columbia: in Current Research, Part A, Geological Survey of Canada, Paper 81-1A, p. 213-216.

Struik, L.C., 1982; Snowshoe Formation (1982), Central British Columbia: in Current Research, Part B, Geological Survey of Canada, Paper 82-1B, p. 117-124.

Sutherland-Brown, A., 1957; Geology of the Antler Creek Area, British Columbia: B.C. Department of Mines, Bulletin 38, 105 p.

Tipper, H.W., Campbell, R.B., Taylor, G.C. and Stott, D.F., 1979; Parsnip River, British Columbia: Geological Survey of Canada, Map 1424A.

7.0 STATEMENT OF QUALIFICATIONS

DAVID NEWTON, B.Sc. (Hon.) Geology

Academic

1986 B.Sc. (Hon) in Geology	University of British Columbia Vancouver, British Columbia
1981 Mining Technologist	B.C. Institute of Technology Burnaby, British Columbia

Practical

1986 - present	Project	geologist	with	Mark	Management,
Hughes-Lang Group					

1988	Mark Management	Diamond and rotary drilling programs in Iskut River and Wells areas.
1987	Mark Management	Diamond and percussion drilling programs in Quesnel area.
1986	Mark Management	Diamond drilling, geophysics and geochemical surveys near Atlin and Quesnel.
06 1985 -09 1985	St. Joe Canada	Backhoe trenching and geophysical surveys in Toodoggone.
05 1984 -08 1984	Mark Management	Geological mapping, geochemical and geophysical surveys in Atlin.
05 1983 -09 1983 06 1981 -09 1982	Mohawk Oil Co. Ltd (Mining Division) Vernon, B.C.	Geological mapping, geochemical and geophysical surveys in B.C.
05 1980 -08 1980	Dentonia Resources	Geochemical and geophysical surveys in southern B.C.

APPENDICES

APPENDIX A: CERTIFICATES OF ANALYSES

Analytical Chemists * Geochemists * Registered Assayers
212 BROOKSBANK AVE., NORTH VANCOUVER,
BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To:MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC V6C 2W2

A8827386

Comments: ATTN: ART TROUP CC: DAVID NEWTON

CERTIFICATE A8827386

MARK MANAGEMENT LIMITED

PROJECT : ANTLER P.O.# : NONE

Samples submitted to our lab in Vancouver, BC.

This report was printed on 21-NOV-88.

SAMPLE PREPARATION CHEMEX NUMBER CODE SAMPLES DESCRIPTION 2 0 7 5 7 Assay: Crush, split, pulv -150 ICP: Aqua regia digestion

* NOTE 1:

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

ANALYTICAL PROCEDURES

CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
398	5 7	Au oz/T: 1/2 assay ton	FA-AAS	0.002	20.00
921	5 7	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
922	5 7	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
923	5 7	As ppm: 32 element, soil & rock	ICP-AES	5	10000
924	5 7	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
925	5 7	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
926	5 7	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
927	5 7	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
928	5 7	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
929	5 7	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
930	5 7	Cr ppm: 32 element, soil & rock	ICP-AES	l	10000
931	5 7	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
932	5 7	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
9 3 3	57	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
951	5 7	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
9 3 4	5 7	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
9 3 5	5 7	La ppm: 32 element, soil & rock	ICP-AES	10	10000
9 3 6	5 7	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
9 3 7	5 7	Mn ppm: 32 element, soil & rock	ICP-AES	1	10000
9 3 8	5 7	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
939	5 7	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
940	5 7	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
9 4 1	5 7	P ppm: 32 element, soil & rock	ICP-AES	10	10000
9 4 2	5 7	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
9 4 3	5 7	Sb ppm: 32 element, soil & rock	ICP-AES	5	10000
9 5 8	5 7	Sc ppm: 32 elements, soil & rock	ICP-AES	1	100000
9 4 4	5 7	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
9 4 5	5 7	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
946	5 7	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
947	5 7	U ppm: 32 element, soil & rock	ICP-AES	10	10000
9 4 8	5 7	V ppm: 32 element, soil & rock	ICP-AES	1	10000
949	5 7	W ppm: 32 element, soil & rock	ICP-AES	5	10000
950	5 7	Zn ppm: 32 element, soil & rock	ICP-AES	5	10000

L A Y DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

CERTIFICATION: B. CO-CL

DAVID NEWTON

CERTIFICATE OF ANALYSIS A8827473

SAMPLE DESCRIPTION	PRE		Au oz/T	A1 %	Ag ppm	At ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Çu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	M pp
G88-1 50-55	207	7,1	< 0.002	3.06	0.2	5	70			2.40											
G88-1 55-60			< 0.002	1.47	0.2	< 5	60	< 0.5 < 0.5	< 2	2.49 1.07	< 0.5 < 0.5	26	172	68	5.08	< 10	< 1	0.24	20	2.42	6
G88-1 60-65			< 0.002	2.47	0.2	< 5	90	< 0.5	2	0.41	< 0.5	12 16	26 29	8 9	3.10	10	< 1	0.24	40	0.79	4
G88-1 65-70			< 0.002	1.84	0.2	< 3	80	< 0.5	2	0.51	< 0.5			-	4.35	10	< !	0.55	60	1.19	3
G88-1 70-75			< 0.002	1.26	0.2	< 5	60	< 0.5	4	0.79	< 0.5	13	30 29	1 5 7	3.47 2.55	10 10	< I	0.44 0.24	30 20	0.94 0.69	3 3
G88-1 75-80	207	238	< 0.002	1.30	0.2	< 5	50	< 0.5	< 2	0.60	< 0.5	9	30	7	2.41	< 10	< 1	0.23	10	0.65	
G88-1 80-85	207	238	< 0.002	1.98	0.2	< 5	80	< 0.5	4	0.57	< 0.5	15	28	11	3.44	< 10	₹i	0.38	30	0.97	3
G88-1 85-90	207	238	< 0.002	2.42	0.2	< 5	120	< 0.5	2	0.65	< 0.5	15	32	5	3.75	10	₹i	0.50	40	1.22	4
G88-1 90-95	207	238	< 0.002	1.83	0.2	< 5	80	< 0.5	< 2	0.52	< 0.5	14	22	17	3.03	< 10	₹i	0.40	30	0.92	3
G88-1 95-100	207	238	< 0.002	1.71	0.2	< 5	60	< 0.5	2	0.42	< 0.5	12	27	ii	3.03	< 10	< i	0.28	30	0.86	3
G88-1 100-105			< 0.002	1.68	0.2	< 5	70	< 0.5	2	0.72	< 0.5	13	35	15	3.01	< 10	< 1	0.28	20	0.98	3
G88-1 105-110			< 0.002	1.43	0.2	5	40	< 0.5	2	0.61	< 0.5	13	21	17	2.91	< 10	< 1	0.19	40	0.79	3
G88-1 110-115	207	238	< 0.002	1.92	0.2	< 5	70	< 0.5	2	1.04	< 0.5	18	48	26	3.97	10	< 1	0.26	40	1.31	3
G88-1 115-120	207	238	< 0.002	2.89	0.2	10	80	< 0.5	2	0.98	< 0.5	24	8.5	34	5.59	10	< 1	0.34	40	1.81	4
G88-1 120-125	207	238	< 0.002	2.25	0.2	< 5	50	< 0.5	2	1.07	< 0.5	18	46	24	4.73	10	< 1	0.23	40	1.39	4
G88-1 125-130			< 0.002	2.55	0.2	< 5	60	0.5	8	0.50	< 0.5	22	47	40	5.53	10	< 1	0.32	30	1.60	3
G88-1 130-135			< 0.002	2.23	0.2	< 5	50	0.5	8	0.81	< 0.5	21	41	35	4.50	10	< 1	0.28	40	1.28	3
G88-1 135-140			< 0.002	2.22	Q. 2	10	50	1.0	4	0.89	< 0.5	19	32	25	4.25	10	< 1	0.26	30	1.22	3
G88-1 140-145			< 0.002	2.22	0.2	5	50	0.5	8	0.74	< 0.5	18	44	24	4.22	10	< !	0.25	40	1.34	4
G88-1 145-150	207	238	< 0.002	2.78	0.2	< 5	80	1.0	6	1.04	< 0.5	19	45	16	4.95	10	< 1	0.35	50	1.42	4:
G88-1 150-155			< 0.002	2.23	0.4	< 5	80	< 0.5	< 2	2.53	< 0.5	18	42	23	3.95	< 10	< 1	0.58	20	1.31	4.
G88-1 155-160			< 0.002	1.87	< 0.2	< 5	50	< 0.5	< 2	3.90	< 0.5	22	42	26	3.72	< 10	< 1	0.37	< 10	1.25	4
G88-1 160-165			< 0.002	1.71	0.2	5	40	0.5	8	1.91	< 0.5	20	44	15	3.19	10	< !	0.12	20	1.19	4
G88-1 165-170			< 0.002	2.25	0.2	5	70	1.0	6	1.46	< 0.5	23	46	24	3.87	10	< 1	0.25	30	1.47	4
G88-1 170-175	207	238	< 0.002	1.98	0.2	<u> </u>	70	1.0	2	1.99	< 0.5	20	38	25	4.25	10	< 1	0.28	40	1.39	4
G88-1 175-180	207	238	< 0.002	1.20	0.2	70	80	1.0	< 2	2.26	3.0	23	22	48	4.17	< 10	< 1	0.32	30	0.58	4
G88-1 180-185	207	238	< 0.002	1.20	1.4	125	120	0.5	< 2	1.07	1.0	28	40	111	7.52	< 10	< 1	0.30	30	0.54	i
G88-1 185-190	207	238	< 0.002	1.97	1.2	75	1 50	0.5	4	5.85	< 0.5	37	140	79	6.05	< 10	< 1	0.33	< 10	1.71	5
G88-1 190-195			< 0.002	3.34	1.2	135	110	< 0.5	2	9.98	< 0.5	53	454	36	6.00	< 10	< 1	0.23	< 10	3.76	9
G88-1 195-200	207	238	< 0.002	5.21	0.6	20	110	1.0	< 2	4.58	< 0.5	57	729	26	7.40	10	< 1	0.09	< 10	4.64	11
G88-1 200-205			< 0.002	4.27	0.6	< 5	60	1.0	< 2	4.32	< 0.5	50	602	70	6.12	10	< 1	0.02	< 10	4.17	9
G88-1 205-210			< 0.002	3.59	0.2	10	50	1.0	< 2	3.25	< 0.5	39	346	27	5.20	10	< 1	0.07	10	3.43	8
G88-1 210-215			< 0.002	3.88	0.6	50	100	1.0	2	5.91	< 0.5	46	393	86	5.89	< 10	< 1	0.15	< 10	3.48	9
G88-1 215-220			< 0.002	4.26	0.4	50	160	0.5	< 2	4.71	< 0.5	45	508	8 i	6.78	10	< 1	0.24	< 10	3.67	8
G88-1 220-225	207	238	< 0.002	3.82	0.6	10	140	1.0	< 2	10.75	< 0.5	39	353	128	6.50	< 10	< 1	0.18	< 10	3.46	11
388-1 225-230			< 0.002	3.82	0.4	15	100	2.0	2	8.53	< 0.5	40	326	82	5.81	< 10	< 1	0.11	< 10	3.75	14
G88-1 230-235			< 0.002	3.50	0.2	< 5	70	1.0	4	3.74	< 0.5	40	366	54	4.91	< 10	< 1	0.06	< 10	3.66	8
G88-1 235-240			< 0.002	3.77	0.2	10	130	1.5	4	3.17	< 0.5	39	292	• •	6.12	10	< 1	0.21	< 10	3.33	8
388-1 240-245			< 0.002	3.96	0.2	10	190	1.5	4	3.39	< 0.5	41	255	57	6.89	10	< 1	0.47	10	2 82	9
38-1 245-250	207	238 -	< 0.002	4.10	0.2	< 5	90	1.0	< 2	2.89	< 0.5	39	238	78	6.15	10	< 1	0.22	20	3.62	_ 11

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

CERTIFICATION

B. Cargain

Analytical Chemists • Geochemists • Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To : MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. 1-B

Tot. Pag

. 26-NOV-88 Date Invoice #: I-8827473 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8827473

		_															
SAMPLE	PREP		Мо	Na ~	Ni	P	Pb	Sb	Sc	Sr	Ti ~	Tl	U	v	w	Zn	
DESCRIPTION	CODE	۱,	ppm	%	ppm	bbm	ppm	bba	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	
MG88-1 50-55	207 2	38	1	0.02	113	8 20	14	< 5	7	71	0.51	< 10	< 10	56	10	97	
WG88-1 55-60	207 2		2	0.01	31	420	< 2	< 5	2	25	0.04	< 10	< 10	13	< 3	63	
	207 2		< 1	0.01	38	570	2	< 5	3	16	0.08	< 10	< 10	1.5	< 5	86	
MG88-1 65-70	207 2	38	< 1	0.01	29	410	6	< 5	2	10	0.17	10	< 10	15	5	69	
WG88-1 70-75	207 2	38	1	0.02	25	320	4	< 5	2	20	0.11	< 10	< 10	13	< 5	52	
WG88-1 75-80	207 2		< 1	0.03	31	270	4	< 5	2	13	0.13	< 10	< 10	14	< 5	43	
	207 2		1	0.02	34	420	. 8	< 5	3	12	0.17	< 10	< 10	16	10	71	
	207 2		< 1	0.02	34	490	14	< 5	3	13	0.18	< 10	< 10	18	< 5	75	
	207 2		< 1	0.02	32	460	4	< 5	2	11	0.09	< 10	< 10	14	< 5	60	
WG88-1 95-100	207 2	38	< 1	0.03	30	370	4	< 5	2	13	0.07	< 10	< 10	15	< 5	59	
WG88-1 100-105	207 2	38	< 1	0.02	33	430	6	< 5	3	20	0.12	< 10	< 10	20	< 5	5.5	
WG88-1 105-110	207 2	38	< 1	0.01	29	380	2	< 5	2	21	0.01	< 10	< 10	10	< 5	49	
MG88-1 110-115	207 2	38	< 1	0.02	53	470	10	< 5	3	25	0.01	< 10	< 10	22	< 5	54	
	207 2		1	0.02	73	650	12	< 5	4	21	0.02	< 10	< 10	35	< 5	83	
MG88-1 120-125	207 2	38	1	0.01	52	500	16	< 5	3	22	0.05	< 10	< 10	22	< 5	66	
WG88-1 125-130	207 2	38	< 1	0.01	51	540	16	< 5	3	9	0.17	10	< 10	25	< 5	99	
	207 2		1	0.02	54	580	22	< 5	3	18	0.11	10	< 10	21	< 5	8.5	
WG88-1 135-140	207 2	38	2	0.01	44	750	14	< 5	2	19	0.14	10	< 10	20	< 5	74	
MG88-1 140-145	207 2	38	< 1	0.01	46	520	12	< 5	2	18	0.04	20	< 10	19	< 5	72	
WG88-1 145-150	207 2	38	< 1	0.02	53	1070	8	< 5	3	25	0.11	20	< 10	18	< 5	94	
WG88-1 150-155	207 2	38	5	0.01	41	460	10	< 5	5	33	0.06	< 10	< 10	17	25	70	
	207 2		3	0.01	37	600	28	< 5	5	39	0.13	< 10	< 10	22	40	74	
	207 2		1	0.03	42	620	4	< 5	3	39	0.15	10	< 10	28	10	56	
	207 2		1	0.02	54	580	< 2	5	4	40	0.12	< 10	< 10	23	< 5	83	
WG88-1 170-175	207 2	38	1	0.01	60	580	4	< 5	3	42 <	< 0.01	< 10	< 10	19	< 5	67	
WG88-1 175-180	207 2	38	< 1	0.01	61	620	2	< 5	2	52 <	< 0.01	10	< 10	11	< 5	328	
WG88-1 180-185	207 2	38	2	0.01	104	1350	24	5	4		< 0.01	10	< 10	22	< 5	184	
	207 2		5	0.01	182	1260	4	< 5	6	92	0.02	10	< 10	43	< 5	103	
	207 2		< 1	0.01	319	1610	< 2	5	12	151	0.19	10	< 10	71		58	
NG88-1 195-200	207 2	38	< 1	0.01	347	2280	< 2	5	16	97	0.45	< 10	< 10	89	10	84	
NG88-1 200-205	207 2	38	< 1	0.05	287	1820	2	5	15	109	0.37	10	< 10	95	5	72	
	207 2		< 1	0.07	174	1660	< 2	5	11	97	0.39	10	< 10	88	< 5	67	
	207 2	38	< 1	0.05	201	1850	2	5	13	126	0.52	10	< 10	94	< 5	77	
	207 2		< 1	0.03	249	1740	< 2	5	13	94	0.55	10	< 10	80	5	75	
WG88-1 220-225	207 2	38	< 1	0.01	201	1780	< 2	5	15	175	0.33	< 10	< 10	90	5	57	
WG88-1 225-230	207 2	38	< 1	0.04	167	1770	< 2	5	17	199	0.41	< 10	< 10	126	5	68	
	207 2		< 1	0.04	189	1220	< 2	5	10	8.5	0.38	< 10	< 10	90	< 5	63	
	207 2		< 1	0.04	1 50	1640	< 2	10	11	74	0.38	< 10	< 10	90	< 5	67	
	207 2		< 1	0.04	170	2720	< 2	< 5	8	82	0.41	< 10	< 10	84	< 5	76	
WG88-1 245-250	207 2	38	< 1	0.05	1 56	2790	< 2	5	8	91	0.41	< 10	< 10	105	< 5	76	

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To : MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST.

VANCOUVER, BC V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page ' :2-A Tot. 1 :3:2

Date : 26-NOV-88 Invoice #: I-8827473 P.O. #: NONE

CERTIFICATE OF ANALYSIS A8827473

SAMPLE DESCRIPTION	PREP	Au oz/T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bí ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Ma
MG88-1 250-255 MG88-1 255-260 MG88-1 260-265 MG88-1 265-270 MG88-1 270-275	207 23 207 23 207 23	8 < 0.002 8 < 0.002 8 < 0.002	2.75 3.50	0.6 < 0.2 < 0.2 < 0.2 < 0.2	20 10 < 5 5	180 160 180 110 40	2.0 0.5 1.0 1.0	8 < 2 < 2 < 2 < 2 < 2	5.07 7.41 6.42	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	41 39 41 32 38	308 230 226 191 265	123 76 42 63 100	6.74 6.42 6.51 6.38 5.24	20 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.43 0.40 0.27 0.26 0.05	20 < 10 < 10 < 10 < 10	3.08 3.04 3.21 2.46 3.93	879 1063 1033 748 648
WG88-1 275-280 WG88-1 280-285 WG88-1 285-290 WG88-1 290-295 WG88-1 295-300	207 23 207 23 207 23	8 < 0.002 8 < 0.002	3.69 3.27 3.11	< 0.2 < 0.2 < 0.2 0.2 0.2 < 0.2	10 < 5 < 5 < 5 < 5		< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2 2 2	2.42 2.15 2.29	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	57 43 36 30 26	874 517 316 215 177	43 88 79 101 129	5.08 4.04 3.61 3.54 3.53	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	< 0.01 0.01 0.07 0.12 0.16	< 10 < 10 < 10 < 10 < 10	5.80 4.75 3.76 2.92 2.07	756 600 539 526 561
										,										
																			·	,

CERTIFICATION:

Chemex Labs Ltd

Analytical Chemists • Geochemists • Registered Assayers
212 BROOKSBANK AVE., NORTH VANCOUVER,
BRITISH COLLIMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST.

VANCOUVER, BC

V6C 2W2 Project: LIGHTNING

The second of th

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No 2-B

Tot. Pa 2

Date : 26-NOV-88 Invoice #: I-8827473 P.O. #: NONE

CERTIFICATE OF ANALYSIS A8827473

SAMPLE DESCRIPTION	PRI		Mo ppm	Na %	Ni ppm	ppm p	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
WG88-I 250-255 WG88-I 255-260 WG88-I 260-265 WG88-I 265-270 WG88-I 270-275	207 207 207	238 238 238	< 1 < 1 < 1 1	0.06 0.03 0.03 0.06 0.07	174 182 167 99 161	2590 1670 1450 1460 1050	< 2 < 2 < 2 < 4 < 2	5 5 5 5 < 5	11 19 24 13	93 175 137 92 51	0.41 0.01 0.12 0.66 0.52	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	98 67 93 111 99	\$ < 5 < 5 < 5 < 5 < 5	80 79 77 97 68	
MG88-1 275-280 MG88-1 280-285 MG88-1 285-290 MG88-1 290-295 MG88-1 295-300	207 207 207	238 238 238	< 1 < 1 < 1 < 1	0.02 0.02 0.05 0.11 0.21	486 326 251 151 74	540 550 630 850 1030	< 2 < 2 < 2 < 2 < 2	< 5 5 < 5 < 5 5	6 5 4 7 16	43 36 43 68 105	0.34 0.30 0.28 0.36 0.59	10 10 10 < 10 10	< 10 < 10 < 10 < 10 < 10	61 47 44 61 101	\$ < 5 < 5 < 5 < 5 < 5	67 45 44 44 54	

CERTIFICATION:

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA. CANADA V7J-2C1 PHONE (604) 984-0221 To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CZ: DAVID NEWTON

Page No. : 1 A
Tot. Pages:
Date : 2y-NOV-88
Invoice #: I-8827627
P.O. # : NONE

CERTIFICATE OF ANALYSIS A8827627

SAMPLE DESCRIPTION	PREP		Au 02/T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm		La ppm	Mg %	Ma ppm
WG88-2 10-15	207 2	38	< 0.002	2.76	< 0.2	< 5	280	< 0.5	< 2	1.48	1.0	19	223	149	4.40	10	< 1	0.18	30	2.80	59
			< 0.002	5.44	0.4	80	130	< 0.5	< 2	0.79	2.5	48	514	158	7.07	10	< 1		30	6.05	8.5
			< 0.002	3.48	< 0.2	5.5	140	< 0.5	< 2	1.01	1.0	53	347	73	4.66	10	< 1		20	3.46	75
		_	< 0.002	3.74	< 0.2	35	180	< 0.5	< 2	1.30	1.0	57	397	111	5.27	10	< 1		20	3.76	94:
MG88-2 30-35	207 2.	38	< 0.002	4.12	< 0.2	8.5	120	< 0.5	< 2	2.00	< 0.5	50	484	21	5.19	< 10	< 1	0.05	20	4.14	924
WG88-2 35-40	207 2		< 0.002	4.05	< 0.2	< 5	50	< 0.5	< 2	1.22	1.0	46	377	50	5.52	10	< 1		30	3.95	102
			< 0.002	4.76	0.4	25	70	< 0.5	< 2	0.89	4.5	95	454	93	6.37	10		< 0.01	30	4.91	220
			< 0.002	4.17	0.4	80	160	< 0.5	< 2	0.95	6.0	135	355	193	6.39	10	< 1		40	3.99	2966
			< 0.002	2.18	0.2	10	160	< 0.5	< 2	0.39	1.0	32	70	71	4.44	10	< 1		40	1.49	624
MG88-2 55-60	207 2.	38	< 0.002	2.14	0.2	30	120	< 0.5	4	0.47	< 0.5	25	47	45	3.93	10	< 1	0.20	40	1.46	46
WG88-2 60-65			< 0.002	2.97	0.4	5.5	80	< 0.5	< 2	0.45	2.0	39	163	90	5.11	10	< 1		50	2.34	64
			< 0.002	3.07	0.6	110	80	< 0.5	< 2	1.00	2.5	28	254	156	4.85	10	< 1		50	2.84	58
			< 0.002	1.88	0.6	300	90	< 0.5	< 2	0.61	2.0	33	68	166	4.75	10	< 1		60	1.41	38
			< 0.002	2.26	0.6 0.4	55 30	80 80	< 0.5	< 2	0.44	1.5	37 33	51 56	54 50	5.66 5.75	10 10	< !		60	1.25	55
WG88-2 80-85	207 2.	<u>"</u>	< 0.002	2.40	0.4	30	80	< 0.5		0.98	<u> </u>				3.73	10	< 1	0.17	50	1.34	619
WG88-2 85-90			< 0.002	3.31	0.2	50	200	< 0.5	2	0.60	< 0.5	43 33	72	49 40	5.91	20	< !		50	1.42	80
			< 0.002	2.69	0.2	5 25	90 110	< 0.5 < 0.5	< 2 < 2	0.57 0.84	< 0.5	59	56 137	72	5.64 5.49	10 10	< 1 < 1		50 40	1.28	716 142
WG88-2 95-100			< 0.002	2.78	0.4 < 0.2	23 5	60	< 0.5	2	0.66	< 0.5	33	49	39	5.79	10	≥ i		40	1.26	521
	207 2		< 0.002 0.002	2.57 2.58	< 0.2	< 5	70	< 0.5	< 2	0.39	< 0.3	38	39	43	5.88	10	≥ i		30	1.16	419
WG88-2 105-110	207 2.	<u>"</u> [0.002	2.30			····			0.35								V.17			71:
WG88-2 110-115	207 2	38 k	< 0.002	2.52	< O.2	< 5	70	< 0.5	6	0.53	< 0.5	30	42	34	5.34	10	< 1		40	1.14	454
MG88-2 115-120	207 2	38 🕇	< 0.002	2.37	< O.2	< 5	80	< 0.5	2	0.75	< 0.5	31	43	41	5.06	10	< 1		50	1.05	537
			< 0.002	1.83	0.4	35	60	< 0.5	< 2	0.78	0.5	24	26	43	4.28	10	< 1		40	0.95	438
			< 0.002	0.57	< 0.2	< 5	10	< 0.5	2	0.52	7.5	7	17	40	2.42	< 10	< !		10	0.25	207
WG88-2 130-135	207 2	38 F	< 0.002	0.71	< 0.2	50	10	0.5	6	0.19	3.0	9	22	88	3.25	< 10	< 1	0.05	20	0.31	142
WG88-2 135-140			< 0.002	0.47	< 0.2	5	10	0.5	< 2	0.27	3.5	10	27	183	3.22	< 10	< 1		10	0.71	12:
			< 0.002	0.99	< 0.2	25	50	0.5	< 2	0.67	4.5	13	34	59	3.36	< 10	< 1		20	0.40	237
	207 2		0.002	0.90	< 0.2	10	30	< 0.5	4	0.22	1.0	9	24	25	2.43	< 10	< 1		30	0.34	165
			< 0.002	1.29	< 0.2	20	30	0.5	< 2	0.34	0.5	11	27	23	3.64	10	_ !	0.11	40	0.48	256
WG88~2 155-160	207 2	³⁸	< 0.002	0.76	0.2	25	20	< 0.5	< 2	0.19	< 0.5	5	31	6	1.96	< 10	< 1	0.06	30	0.25	131
			< 0.002	0.50	< 0.2	25	10	< 0.5	< 2	0.44	< 0.5	5	22	20	1.87	< 10	< 1		20	0.21	137
			< 0.002	0.99	< 0.2	10	40	0.5	< 2	1.52	1.5	18	29	40	3.63	10	< 1		50	0.48	45:
		1	< 0.002	1.06	< 0.2	< 5	30	0.5	2	0.73	2.0	12	4.5	20	3.07	10	1	0.10	40	0.47	299
			< 0.002	1.50	< 0.2	35	40	0.5	< 2	0.97	< 0.5	20	36	32	3.90	10	< 1		40	0.73	492
WG88-2 180-185	207 2	³⁸ [< 0.002	80.1	< 0.2	35	30	0.5	< 2	0.38	1.0	12	29	14	3.09	< 10	< 1	0.11	30	0.45	240
WG88-2 185-190	207 2	38	< 0.002	0.45	< 0.2	20	10	< 0.5	< 2	0.35	< 0.5	5	22	10	1.71	< 10	< 1	0.04	10	0.21	143
	207 2	38 k	< 0.002	0.69	< 0.2	30	20	< 0.5	< 2	0.32	1.5	11	23	27	2.40	~ 10	< 1	0.06	20	0.31	179
			< 0.002	1.07	< O.2	15	30	0.5	< 2	0.44	< 0.5	9	29	18	3.25	< 10	< 1	0.09	30	0.40	214
WG88-2 200-205	207 2	38 k	< 0.002	0.44	0.4	5	< 10	< 0.5	6	0.26	< 0.5	3	26	6	1.51	< 10	< 1	0.03	10	0.17	100
WG88-2 205-210	207 2	38 k	< 0.002	1.20	< 0.2	< 5	30	0.5	< 2	1.21	< 0.5	18	32	18	4.01	< 10	< 1	0.12	40	0.61	38.5

CERTIFICATION

B. Congli

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

Analytical Chemists • Geochemists • Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLEMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No.: 1-B Tot. Pages: 2

Date :2 DV-88 Invoice #:I-8827627 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8827627

		\neg													····		
SAMPLE	PREF		Мо	Na	Ni	P	Ръ	Sb	Sc	Sr	Ti	TI	U	v	w	Zn	
DESCRIPTION	CODE	³	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	
WG88-2 10-15	207 2	38	7	0.01	92	6460	16	< 5	8	56	0.13	< 10	< 10	219	< 5	252	
WG88-2 15-20	207 2			< 0.01	237	2320	< 2	< 5	17	41	0.35	< 10	< 10	241	< 5	612	
WG88-2 20-25	207 2		3	0.02	224	1890	< 2	5	6	45	0.33	< 10	< 10	107	5	218	
	207 2 207 2		< 1	0.02 0.02	271 245	1740 1730	< 2 < 2	< 5 10	6 4	47 65	0.37 0.36	< 10 < 10	< 10 < 10	100 79	< 5 15	203 160	
WG88-2 30-35	20, 2			0.02	243	1730					U. 30					100	
NG88-2 35-40	207 2		3	0.02	190	1800	< 2	< 5	5	56	0.32	< 10	< 10	91	5	201	
NG88-2 40-45	207 2		4 10	0.01 0.01	306 315	1770 1370	< 2 < 2	5 5	7	30	0.32	< 10	< 10	114	< 5	355	
WG88-2 45-50 WG88-2 50-55	207 2 207 2		2	0.01	91	720	< 2	< 5	10 4	31 17	0.26 0.19	< 10 < 10	< 10 < 10	132 40	< 5 < 5	434 191	
WG88-2 55-60	207 2		ī	0.01	58	460	< 2	< 3	3	13	0.13	< 10	< 10	25	< 5	133	
					1.44				·								
MG88-2 60-65 MG88-2 65-70	207 2 207 2		5	0.01 < 0.01	146 181	680 4550	< 2 < 2	< 5 5	6 5	13 29	0.05 0.01	< 10 < 10	< 10 < 10	52 233	< 5 < 5	246 489	
MG88-2 03-70 MG88-2 70-75	207 2			< 0.01	98	2140	4	< 5	3	22	0.01	< 10	< 10	83	< 5	272	
MG88-2 75-80	207 2		i	0.01	66	860	< 2	< 5	3	12	0.17	< 10	< 10	33	< 5	3 59	
WG88-2 80-85	207 2	238	2	0.01	59	900	< 2	< 5	4	22	0.22	< 10	< 10	34	< 5	199	
WG88-2 85-90	207 2	238	1	0.03	84	650	< 2	< 5	5	17	0.26	< 10	< 10	47	< 5	139	
NG88-2 90-95	207 2		2	0.01	67	590	< 2	5	3	14	0.18	< 10	< 10	32	< 5	125	
MG88-2 95-100	207 2		2	0.01	135	1080	2	< 5	4	22	0.21	< 10	< 10	56	< 5	218	
	207 2		2	0.01	53 57	1120 1080	< 2	< 5 < 5	4	13	0.17	< 10 < 10	< 10 < 10	34 26	< 5 < 5	93	
WG88-2 105-110	207 2	.30	< 1	0.01		1080			3	10	0.08	< 10	< 10			100	
WG88-2 110-115	207 2		2	0.01	53	990	4	< 5	3	13	0.10	< 10	< 10	28	< 5	107	
WG88-2 115-120	207 2		< 1	0.01	57 37	1180 540	2 262	< 5 < 5	3 2	17 20	0.11 0.04	< 10 < 10	< 10 < 10	29 12	< 5 5	138 284	
MG88-2 120-125 MG88-2 125-130	207 2			< 0.01	9	340	102	< 5	i		< 0.01	< 10	< 10	2	5	1675	
WG88-2 130-135				< 0.01	6	460	14	< 5	i		< 0.01	< 10	< 10	5	< 5	1015	
WG88-2 135-140	207 2	238	1 .	< 0.01	17	360	36	< 5	< 1	7 <	< 0.01	< 10	< 10	1	< 5	903	
WG88-2 140-145	207 2		2	0.01	24	450	44	< 5	i	17	0.03	< 10	< 10	13	< 5	1255	
	207 2		1	0.01	14	590	< 2	< 5	1	10	0.01	< 10	< 10	8	< 5	325	
	207 2		1	0.01	21	580	8 4	< 5	2	13	0.01	< 10	< 10	12	< 5	321	
MG88-2 155-160	207 2	2.38	<u> </u>	< 0.01	8	670	4	< 5	1	8	0.01	< 10	< 10	6	< 5	132	
WG88-2 160-165	207 2			< 0.01	8	510	14	< 5	1		< 0.01	< 10	< 10	4	< 5	147	
	207 2		<u> </u>	0.01	31	570	2	5	2		< 0.01	< 10	< 10	9	< 5	471	
MG88-2 170-175 MG88-2 175-180	207 2		< 1 2	0.01 0.01	22 38	610 580	4 16	< 5 < 5	2 2	17 22	0.02 0.04	< 10 < 10	< 10 < 10	12 16	< 5 < 5	635 302	
	207 2		< 1	0.01	20	560	< 2	< 5	ĺ	12	0.01	< 10	< 10	10	< 3	421	
1500-2 100-100	207 2	,,,		< 0.01	1 4	410	•		< 1		0.01	< 10	- 10		< 5	78	
	207 2			< 0.01 < 0.01	14 20	410 420	8 12	< 5 < 5	1	10 10	0.01 0.03	< 10	< 10 < 10	4 9	10	78 464	
	207 2			< 0.01	16	670	2	< 5	i	16	0.01	< 10	< 10	8	< 5	233	
	207 2			< 0.01	11	470	< 2	< 5	i		< 0.01	< 10	< 10	4	3	62	
WG88-2 205-210			2		32	580	< 2	< 5	ī		< 0.01	< 10	< 10	11	< 5	101	•
	<u></u>									~							$ \sim$ \sim \sim

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

CERTIFICATION

B. Cagli

Analytical Chemists • Geochemists • Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2 Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. : 2-4 Tot. Pages: 2

Date : 25 .- 0V-88 Invoice #: I-8827627 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8827627

SAMPLE DESCRIPTION	PREI		Au oz∫T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr Ppm	Ou ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Ma ppm
WG88-2 210-215	207 2	,,	< 0.002	1.72	0.4	5	80	< 0.5	2	1.22	< 0.5	2.5	32	32	4.63	10	1	0.33	40	0.64	44
WG88-2 215-220			< 0.002	1.00	0.4	25	40	< 0.3	< 2	0.91	< 0.5	24	32	157	4.74	< 10	< i	0.13	40	0.52	33
WG88-2 220-225			< 0.002	1.29	0.2	< 5	40	< 0.5	6	1.18	< 0.5	19	40	16	3.26	10	< 1	0.16	50	0.60	40
WG88-2 225-230			< 0.002	1.41	0.2	5	40	< 0.5	2	1.63	< 0.5	22	37	23	4.19	10	1	0.16	60	0.68	50
WG88-2 230-235			< 0.002	1.92	0.2	5	60	< 0.5	6	1.67	< 0.5	38	51	29	5.85	10	1	0.21	70	0.86	63
NG88-2 235-240	207 2	38	< 0.002	2.33	0.4	30	40	< 0.5	14	1.49	< 0.5	29	51	24	5.41	10	< 1	0.20	70	1.02	55
NG88-2 240-245	207 2	38	< 0.002	2.24	< 0.2	< 5	60	< 0.5	< 2	1.13	< 0.5	30	46	29	5.16	10	< 1	0.25	70	0.93	46
NG88-2 245-250			< 0.002	2.37	< 0.2	< 5	40	< 0.5	2	1.10	< 0.5	28	45	28	5.64	10	< 1	0.18	70	1.05	48
WG88-2 250-255			< 0.002	2.27	< 0.2	< 5	50	< 0.5	< 2		< 0.5	27	39	39	5.08	10	< 1	0.20	60	1.09	599
WG88-2 255-260	207 2	38	< 0.002	2.38	< 0.2	< 5	70	< 0.5	< 2	1.29	< 0.5	31	45	31	5.66	10	< 1	0.28	70	1.05	482
WG88-2 260-265			< 0.002	1.77	< 0.2	20	70	< 0.5	4		< 0.5	30	30	35	5.74	10	< 1	0.25	70	1.09	62
WG88-2 265-270			< 0.002	0.76	< 0.2	10	70	< 0.5	< 2	2.48	< 0.5	26	27	47	4.31	< 10	< 1	0.24	30	0.94	863
			< 0.002	1.25	< 0.2	25	140	< 0.5	< 2	2.87	< 0.5	25	29	15	4.69	< 10	< 1	0.45	40	1.14	704
			< 0.002	0.60	< 0.2	< 5	60	< 0.5	6	4.04	< 0.5	27	22	58	5.18	< 10	< !	0.14	40	1.43	989
WG88-2 280-285	207 2	238	< 0.002	0.82	< 0.2	< 5	110	< 0.5	< 2	2.34	< 0.5	33	25	24	6.08	< 10	1	0.26	30	1.26	720
WG88-2 285-290	1		< 0.002		< 0.2	15	90	< 0.5	< 2	2.82	< 0.5	30	34	47	6.06	< 10	< !	0.20	20	1.39	8.5
			< 0.002	0.72	< 0.2	15	80	< 0.5	4	1.64	< 0.5	31	28	27	5.76	10	1	0.22	40	1.25	599
WG88-2 295-300			< 0.002	0.93	< 0.2	< 5	70	< 0.5	< 2	3.44	< 0.5	29	37	19	5.79	10	< !	0.25	20	1.89	849
			< 0.002	1.21	< 0.2	10	90	< 0.5	< 2	1.98	< 0.5	28	36	31	6.06	10	< 1	0.28	30	1.43	540
WG88-2 305-310	207 2	238	< 0.002	1.08	< 0.2	5	90	< 0.5	< 2	2.15	< 0.5	30	28	44	6.10	< 10	< 1	0.26	20	1.49	612
WG88-2 310-315			< 0.002	1.01	< 0.2	10		< 0.5	< 2	3.78	< 0.5	31	25	53	5.27	< 10	< 1	0.27	20	1.57	901
WG88-2 315-320			< 0.002	0.79	< 0.2	5	70	< 0.5	2	2.92	< 0.5	29	29	32	5.30	< 10	< 1	0.20	40	1.56	774
			< 0.002	0.78	< 0.2	< 5	80	< 0.5	< 2	3.32	< 0.5	31	44	25	5.63	10	1	0.15	40	1.72	78
WG88-2 325-330			< 0.002	0.73	< 0.2	< 5	120	< 0.5	< 2	2.95	< 0.5	34	46	31	5.60	10	< 1	0.18	40	1.45	64
WG88-2 330-335	207	238	< 0.002	0.76	< 0.2	10	150	< 0.5	< 2	4.27	< 0.5	28	39	34	5.62	10	< 1	0.18	30	1.90	683
WG88-2 335-340	207	238	< 0.002	0.91	< 0.2	20	240	< 0.5	< 2	5.30	< 0.5	23	43	41	3.96	< 10	< 1	0.20	< 10	2.07	634
			< 0.002	0.57	< 0.2	15	140	< 0.5	2	7.45	< 0.5	25	49	75	4.53	< 10	< 1	0.12	< 10	3.07	9 59
WG88-2 345-350				0.59	< 0.2	30	70	< 0.5	< 2	6.49	0.5	36	136	58	4.43	< 10	2	0.05	< 10	3.40	110
WG88-2 350-355	207 2	238	< 0.002	1.24	-	50	120	< 0.5	< 2	5.76	< 0.5	44	58	64	6.12	< 10	< 1	0.10	< 10	3.20	1525
WG88-2 355-360	207	238	< 0.002	0.82	< 0.2	295	40	< 0.5	< 2	9.93	< 0.5	5 5	378	29	6.70	< 10	< 1	0.01	< 10	5.00	2450
			< 0.002	0.79	< 0.2	290		< 0.5	< 2		< 0.5	64	329	23	6.39	< 10	< !	0.03	< 10	4.65	2650
WG88-2 365-370				1.02	< 0.2	340	70	< 0.5	< 2	9.70	< 0.5	61	339	28 54	6. 08 6.11	< 10 < 10	< ! < !	0.05 0.11	< 10 < 10	4.89 3.18	2190 1910
WG88-2 370-375			< 0.002	0.68		135	100	< 0.5	2 6	5.83 2.21	< 0.5 < 0.5	51 23	78 27	23	4.08	< 10	< i	0.11	30	1.56	903
WG88-2 375-380					< 0.2	5 5	100 180	< 0.5 < 0.5	< 2	1.54	< 0.5	21	29	27	4.35	< 10	< i	0.13	30	1.48	800
WG88-2 380-385	207	438	0.002	0.93	< 0.2	<u> </u>	100	~ 0.3													
WG88-2 385-390			< 0.002	0.72	< 0.2	5	130	< 0.5	4	2.59	< 0.5 < 0.5	19 27	35 60	23 58	3.37 4.78	< 10 < 10	< 1 1	0.15 0.17	20 < 10	1.42	8.50 1185
WG88-2 390-395	207	238	< 0.002	1.00	< 0.2	< 5	160	< 0.5	2	5.29		35	134	38 84	4.78	< 10	< 1	0.17	< 10	3.03	1153
WG88-2 395-400	207	238	C 0.002	1.06	< 0.2	60	1 50	< 0.5	< 2	3.89	< 0.5	33	134	54	4.77	~ 10	_ 1	0.12	~ 10	3.03	1133

CERTIFICATION :

B. Cogli

Analytical Chemists • Geochemists • Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project ; LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. :2-b Tot. Pages: 2

Date :29:40V-88 Invoice #:I-8827627 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8827627

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1	U ppm	V ppm	ppm ppm	Zn ppm	
WG88-2 210-215	207 238	< 1	0.02	40	490	< 2	< 5	2	35	0.01	< 10	< 10	16	< 5	99	
	207 238	1	0.01	31	4 50	4	5	2		< 0.01	< 10	< 10	11	< 5	233	
	207 238	1	0.01	30	530	< 2	< 5	2		< 0.01	< 10	< 10	11	5	88	
	207 238	< 1	0.01	44	5 50	18	< 5	2		< 0.01	< 10	< 10	11	5	90	
WG88-2 230-235	207 238	< 1	0.01	70	580	8	< 5	2	34	0.04	< 10	< 10	17	40	125	
	207 238	1	0.01	52	560	< 2	5	2	31	0.04	< 10	< 10	20	25	128	
WG88-2 240-245		< 1	0.01	55	640	< 2	< 5	3	28	0.02	< 10	< 10	20	10	103	
	207 238	< 1	0.01	58	580	14	< 5	3	30	0.02	< 10	< 10	21	< 5	124	
	207 238	1	0.01	50	520	24	< 5	4		< 0.01	< 10	< 10	31	< 5	116	
WG88-2 255-260	207 238	2	0.01	58	570	16	< 5	2	45	0.02	< 10	< 10	21	5	134	
	207 238	< 1	0.01	54	620	12	< 5	2	59	0.01	< 10	< 10	17	< 5	122	
	207 238	1	0.01	49	570	< 2	5	2		< 0.01	< 10	< 10	11	< 5	63	
	207 238	< 1	0.02	51	560	< 2	< 5	3	_	< 0.01	< 10 < 10	< 10 < 10	20 8	< 5 < 5	59 53	
	207 238	< 1 < 1	0.01 0.01	50 64	580 490	14 < 2	< 5 < 5	2 2		< 0.01 < 0.01	< 10	< 10	14	< 3	72	
WG88-2 280-285	20/ 230		U.UI					<u></u>								
	207 238	< 1	0.01	58	490	12	< 5	2		< 0.01	< 10	< 10	17	< 5	92	
	207 238	3	0.01	54	580	. 8	< 5	2		< 0.01	< 10	< 10	16	< 5	68	
WG88-2 295-300		< 1	0.01	49	570	10	< 5	4		< 0.01	< 10	< 10	23	< 5	80	
WG88-2 300-305		2	0.01	51	600	22	5	4	-	< 0.01	< 10	< 10	24	< 5	86	
WG88-2 305-310	207 238	2	0.01	57	610	28	5	3	111 -	< 0.01	< 10	< 10	23	< 5	91	
WG88-2 310-315	207 238	3	0.01	48	510	12	5	3	162 -	< 0.01	< 10	< 10	14	< 5	65	
WG88-2 315-320		2	0.01	48	500	2	< 5	3		< 0.01	< 10	< 10	18	< 5	111	
WG88-2 320-325		2	0.01	55	570	18	< 5	4		< 0.01	< 10	< 10	29	< 5	106	
WG88-2 325-330		3	0.01	74	510	< 2	5	3		< 0.01	< 10	< 10	23	< 5	94	
WG88-2 330-335	207 238	< 1	0.01	63	660	< 2	< 5	4	67 <	< 0.01	< 10	< 10	26	< 5	109	
WG88-2 335-340		6	0.01	59	2800	4	< 5	3		< 0.01	< 10	< 10	40	< 5	110	
WG88-2 340-345		6	0.02	69	2020	20	\$	3		< 0.01	< 10	< 10	57	< 5	113	
NG88-2 345-350		6	0.01	170	1350	32	\$	11		< 0.01	< 10	< 10	70	10	147	
NG88-2 350-355 NG88-2 355-360		1	0.01 0.01	79 274	1040 1040	4 66	< 5 < 5	12 12		< 0.01 < 0.01	< 10 < 10	< 10 < 10	63 61	< 5 20	136 174	
							·									
WG88-2 360-365		2	0.01	259	1080	26	< 5	14		< 0.01	< 10	10	60	10	178	
WG88-2 365-370		3	0.01	264 114	1340	58 18	< 5	15 7		< 0.01	< 10 < 10	< 10	78 39	15 < 5	163	
NG88-2 370-375 NG88-2 375-380		1	0.01 0.01	44	810 490	< 2	< 5	3		< 0.01 < 0.01	< 10	< 10 < 10	15	< 3	161 123	
WG88-2 380-385		< i	0.01	46	380	$< \frac{1}{2}$	5	3		< 0.01	< 10	< 10	15	≥ 3	120	
WG88-2 385-390	207 238	1	0.01	49	1010	14	5	2	01 -	< 0.01	< 10	< 10	22	< 5	92	
MG88-2 383-390 MG88-2 390-395		2	0.01	77	2240	30	5	4		< 0.01	< 10	< 10	39	< 3	126	
WG88-2 395-400		4	0.01	139	1160	42	5	7		< 0.01	< 10	< 10	51	\	148	
		7	0.01	• • •		-₹&	,	•			- 10	- 10		•	. 79	

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

CERTIFICATION :

B. Cargli

Analytical Chemists • Geochemists • Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST.

VANCOUVER, BC V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP QZ: DAVID NEWTON

Page No. :1 Tot. Pages: 2

Date :29-NOV-88 Invoice #:I-8827628 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8827628

SAMPLE DESCRIPTION	PRE		Au 02/T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Ma ppm
MG88-3 30-35	207	238	0.002	1.37	0.2	15	50	1.0	< 2	0.34	1.5	31	40	45	5.63	10	< 1	0.13	40	0.55	1195
WG88-3 35-40	207	238	< 0.002	2.37	< 0.2	< 5	60	1.0	2	0.73	1.5	35	59	43	6.30	< 10	< 1	0.17	30	1.24	1445
NG88-3 40-45			< 0.002	1.52	< 0.2	5	70	1.0	< 2	0.87	1.0	35	54	44	6.41	10	< 1	0.17	50	0.96	1460
WG88-3 45-50			< 0.002	0.57	< 0.2	< 5	40	1.0	< 2	0.93	< 0.5	27	34	31	5.59	10	< 1	0.14	40	0.96	5 50
WG88-3 50-55	207	238	< 0.002	Q.75	< 0.2	25	40	0.5	< 2	1.88	< 0.5	31	36	33	5.85	10	< 1	0.12	30	1.40	635
WG88-3 55-60			< 0.002	0.89	< 0.2	< 5	40	1.0	< 2	1.34	< 0.5	26	42	20	6.16	10	< 1	0.14	30	1.21	552
WG88-3 60-65			< 0.002	0.75	< O.2	10	50	0.5	< 2	1.31	< 0.5	28	25	24	5.72	10	1	0.16	30	0.99	484
WG88-3 70-75			< 0.002	1.20	< 0.2	40	110	0.5	< 2	3.73	< 0.5	30	22	29	5.02	< 10	< 1	0.25	10	1.54	673
WG88-3 75-80			< 0.002	1.04	< 0.2	< 5	90	1.0	< 2	3.58	< 0.5	28	36	186	6.37	< 10	< 1	0.16	< 10	1.45	674
WG88-3 80-85	207	238	< 0.002	0.66	0.2	20	70	1.0	2	2.28	< 0.5	29	35	237	8.03	< 10	< 1	0.11	10	0.85	466
WG88-3 85-90			< 0.002	0.78	< 0.2	20	110	0.5	< 2	5.59	1.0	19	40	128	4.72	< 10	< 1	0.13	< 10	2.22	702
WG88-3 90-95			< 0.002	0.85	< 0.2	15	130	0.5	< 2	4.98	1.0	31	145	1 58	5.23	< 10	< 1	0.11	< 10	2.28	866
WG88-3 95-100	B 1		< 0.002	0.59	< 0.2	10	200	0.5	6	3.27	< 0.5	19	28	127	4.37	< 10	< 1	0.13	< 10	1.41	695
MG88-3 100-105			C 0.002	0.89	< 0.2	25 35	260 180	0.5	< 2 < 2	4.84	< 0.5	34 31	43	89	5.72	< 10	< 1	0.10	< 10	2.58	1035
WG88-3 105-110	207	236	< 0.002	1.01	< 0.2		180	0.5		4.14	< 0.5		109	67	4.40	< 10	< 1	0.06	< 10	2.79	8 3 4
WG88-3 110-115			< 0.002	1.37	< 0.2	40	390	0.5	< 2	2.57	0.5	41	300	106	5.23	< 10	< 1	0.14	20	4.12	660
WG88-3 115-120			K 0.002	1.69	< 0.2	115	10	0.5	< 2	4.90	< 0.5	74	1035	11	6.05	< 10		< 0.01	< 10	11.85	1 580
			C 0.002	1.04	< 0.2	40	170	1.0	< 2	4.14	< 0.5	36	86	71	6.06	< 10	< 1	0.09	< 10	4.06	1280
WG88-3 125-130			< 0.002 < 0.002	1.11	< 0.2 1.6	< 5 15	200 180	1.0	< 2	4.64 2.40	< 0.5 0.5	34 37	152 228	218 149	5.84 5.56	< 10 < 10	1 > 1 >	0.12 0.08	< 10 10	3.42	903
WG88-3 130-135	207		0.002	1.02	1.0					2.40	U. J			177	J. JO	<u> </u>		0.00	10	3.68	597
WG88-3 135-140	1		< 0.002	0.70	< 0.2	< 5	190	0.5	2	3.74	2.0	22	4.5	172	4.50	< 10	< 1	0.13	< 10	2.33	1065
			< 0.002	1.15	< 0.2	10	120	0.5	6	0.52	< 0.5	27	29	43	5.26	< 10	< 1	0.11	30	1.58	1170
			< 0.002	1.81	< 0.2	10	100	0.5	< 2	0.77	< 0.5	29	30	47	4.65	< 10	</td <td>0.15</td> <td>30</td> <td>1.26</td> <td>1195</td>	0.15	30	1.26	1195
			< 0.002 - 0.002	2.44	< 0.2	3	60	0.5	< 2	2.45	< 0.5	37	40	45	6.16	10	< 1	0.10	20	2.10	1845
WG88-3 155-160	207	238	< 0.002	1.85	< 0.2	20	50	0.5	< 2	3.24	< 0.5	34	33	39	6.22	10	< 1	0.10	20	2.13	2240
	207		0.002	1.41	< 0.2	4.5	60	0.5	< 2	2.78	< 0.5	41	50	2.5	6.62	10	< 1	0.11	30	2.03	1895
WG88-3 165-170			< 0.002	1.94	< 0.2	10	80	0.5	< 2	2.27	< 0.5	32	40	59	5.07	10	< 1	0.14	40	1.71	1835
			< 0.002	2.43	0.2	< 5 5	110 80	0.5	< 2 < 2	0.91	< 0.5 < 0.5	38 30	34 35	29 45	5.40 5.38	10 10	< 1 < 1	0.17	50 50	1.22	1815
			< 0.002 < 0.002	2.32 2.11	< 0.2 < 0.2	5	120	0.5 0.5	< 2	0.56	< 0.5	29	29	22	5.55	10	≥ i	0.13 0.19	60	1.33 1.36	1 5 3 0
WEE-1 144-155	207	2 20	< 0.002	1.66	< 0.2	< 5	210	0.5	< 2	2.02	< 0.5	30	19	37	3.47	< 10	< 1	0.31	40	1.06	8 30
WG88-3 185-190 WG88-3 190-195			< 0.002 < 0.002	0.63	< 0.2	25	80	0.5	< 2	1.85	< 0.5	26	20	41	4.71	10	2	0.11	40	1.50	1755
WG88-3 195-200			< 0.002	0.85	< 0.2	< 3	110	0.5	< 2		< 0.5	26	24	25	4.52	io	< î	0.15	30	1.15	1315
	207			1.05	< 0.2	< 5	140	0.5	< 2	0.62	< 0.5	28	24	26	5.50	10	< i	0.16	50	1.42	1470
WG88-3 205-210			< 0.002	0.80	0.2	5	140	0.5	< 2	0.44	< 0.5	25	17	35	5.12	10	< i	0.17	40	1.19	1 300
WG88-3 210-215	207	2 38	< 0.002	1.10	< 0.2	5	190	0.5	< 2	0.41	< 0.5	26	23	5.5	5.77	< 10	< 1	0.18	30	1.25	1325
WG88-3 215-220			< 0.002	0.82	< 0.2	5	140	0.5	< 2	2.41		25	20	70	5.57	< 10	≥i	0.11	10	1.51	1090
			< 0.002	1.05	< 0.2	15	190	0.5	< 2		< 0.5	36	40	55	5.31	< 10	≥i	0.18	< 10	1.88	1045
WG88-3 225-230				1.59	< 0.2	5	200	0.5	< 2	4.06		45	133	113	6.72	< 10	< i	0.13	< 10	4.19	993
WG88-3 230-235	207	238	< 0.002	2.25	< 0.2	105	20	0.5	< 2		< 0.5	48	571	46	5.23	< 10		< 0.01	< 10	5.98	1105
																		0			لتـــــ

ERTIFICATION: B. Cargo

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. :1-B Tot. Pages: 2

Date :25 JV-88 Invoice #:I-8827628 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8827628

SAMPLE DESCRIPTION	PRE		Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	ppm St	Ti %	Ti ppm	U ppm	ppm V	W ppm	Zn ppm		
AG88-3 30-35	207	238	2	0.01	68	1090	6	5	4	17	0.02	< 10	< 10	46 77	< 5 < 5	406 481		
VG88-3 35-40	207		2	0.01	66	1280	24	< 5	7	25	0.03	< 10	< 10 < 10	49	< 5	375		
G88-3 40-45	207		2	0.01	68	1180	12	< 5	5	28	0.02	< 10 < 10	< 10	21	< 5	141		
VG88-3 45-50	207		3	0.01	56	610	8	5	2		CO.01	< 10	< 10	33	< 5	153		
NG88-3 50-55	207		2	0.01	55	580	8	5	4	41 <	. 0.01	~ 10	\ 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~ .			
									3	20 <	< 0.01	< 10	< 10	24	< 5	202		
AG88-3 55-60	207	238	1	0.01	53	520	< 2	< 5	2		< 0.01	< 10	< 10	18	< 5	136		
AG88-3 60-65	207	238	1	0.01	56	5 50	< 2	< 5 5	3		< 0.01	< 10	< 10	25	5	119		
NG88-3 70-75	207		2	0.02	63	1930	18	5	3	-	< 0.01	< 10	< 10	62	< 5	155		
NG88-3 75-80	207		5	0.01	87	2680	10	5	2		< 0.01	< 10	< 10	65	< 5	144		
WG88-3 80-85	207	238	8	0.01	119	2800	16											
NG88-3 85-90	207	238	10	0.01	82	4140	36	5	3		< 0.01	< 10	< 10	122	5 5	213 182		
MG88-3 90-95	207		10	0.01	1 54	4090	16	10	5		< 0.01	< 10	< 10	91	_	145		
NG88-3 95-100	207		1.5	0.01	64	2280	20	5	2	-	< 0.01	< 10	10	77	< 5 < 5	188		
WG88-3 100-105	207		11	0.01	68	3310	20	5	. 8		< 0.01	< 10	< 10	83 119	\	157		
WG88-3 105-110	207		16	0.01	105	1730	60	5	13	107 <	< 0.01	< 10	< 10	119				
			4	0.01	192	990	4	10	8	119 <	< 0.01	< 10	< 10	60	5	125		
WG88-3 110-115	207	238	-	< 0.01	497	450	< 2	15	12	251 <	< 0.01	10	< 10	65	45	69		
WG88-3 115-120	1207	238	l 2i		72	1190	6	10	7	102 <	< 0.01	< 10	< 10	53	10	133		
WG88-3 120-125	1207	230	10		150	4890	< 2	10	4		< 0.01	< 10	< 10	107	10	131		
MG88-3 125-130 MG88-3 130-135	207	230	E	< 0.01	177	3070	292	5	7	92 <	< 0.01	< 10	< 10	123	5	177		
MO28-3 130-133	1207	2,50	l												< 5	202		
WG88-3 135-140	207	238	3	0.01	70	1230	38	5	2		< 0.01	< 10	< 10	45	< 5	115		
WG88-3 140-145	207			< 0.01	54	400	< 2	< 5	2		< 0.01	< 10	< 10	19 20	< 5	92		
NG88-3 145-150			2		47	500	14	< 5	3		< 0.01	< 10 < 10	< 10 < 10	60	< 5	118		
WG88-3 150-155			< 1	0.01	47	440	32	< 5	8		< 0.01	< 10	< 10	58	< 5	132		
WG88-3 155-160		238	2	0.01	40	470	30	< 5	8	90 •	< 0.01	< 10	\ . 0					
	-	-	 	^ ^1	56	410	52	< 5	8	81 4	< 0.01	< 10	< 10	52	< 5	1 56		
MG88-3 160-165	207	238	1 :		39	400	18	< 5	7	76	< 0.01	< 10	< 10	32	< 5	103		
AG88-3 165-170	207	238			40	380	18	< 5	5	40 -	< 0.01	< 10	< 10	26	< 5	103		
WG88-3 170-175					45	390	6	< 5	4		< 0.01	< 10	< 10	26	< 5	117		
MG88-3 175-180 MG88-3 180-185		238			51	410	< 2	< 5	4	26 -	< 0.01	< 10	< 10	20	< 5	127		
MG88-3 180-163	1.07	-30									< 0.01	< 10	< 10	14	< 5	66		
WG88-3 185-190	207	238	< 1		46	450	2	< 5	4		< 0.01	< 10	< 10	14	< 5	108		
MG88-3 190-195	207	238			42	360	. 4	< 5	4		< 0.01	< 10	< 10	13	< 5	97		
MG88-3 195-200	207	238			39	280	12	< 5 < 5	5		< 0.01	< 10	< 10	20	< 5	118		
MG88-3 200-205		238			41	340 290	< 2 8	< 5	3		< 0.01	< 10	< 10	13	< 5	100		
WG88-3 205-210	207	238	< 1	0.01	42	290	•											
MG88-3 210-215	207	238	< 1	0.01	49	360	< 2	< 5	4		< 0.01	< 10	< 10	20	< 5	115		
MG88-3 210-213 MG88-3 215-220		238	1		49	590	20	< 5	6		< 0.01	< 10	< 10	38	< 5	123 124		
WG88-3 220-225		238			105	920	26	< 5	6	-	< 0.01	< 10	< 10	28	< 5 5	196		
WG88-3 225-230		238			164	1800	18	< 5	10		< 0.01	< 10	< 10	99 102	25	112		
WG88-3 230-235		238	· .		345	510	50	< 5	16	172	< 0.01	< 10	< 10	102	23	112	R	

CERTIFICATION

B. Cargli

Analytical Chemists • Geochemists • Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No.: 2-A Tot. Pages: 2

Date : 29 JV-88 Invoice #: I-8827628 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8827628

SAMPLE DESCRIPTION	PREP CODE	Au oz/T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Ma ppm
WG88-3 235-240	207 238	< 0.002	1.11	< 0.2	5	180	< 0.5	< 2	2.58	< 0.5	23	91	45	5.71	< 10	< 1	0.10	30	3.80	732
WG88-3 240-245		< 0.002	0.98	< 0.2	60	300	< 0.5	< 2	3.63	< 0.5	34	204	61	4.07	< 10	< 1		10	3.05	640
WG88-3 245-250		< 0.002		< 0.2	115	30	< 0.5	< 2		< 0.5	60	820	59	4.51	< 10		< 0.01	< 10	7.68	8 38
WG88-3 250-255		0.002		< 0.2	< 5	490	< 0.5	2		< 0.5	31	263	119	4.88	< 10	</td <td></td> <td>20</td> <td>3.24</td> <td>651</td>		20	3.24	651
WG88-3 255-260	20/ 238	< 0.002	3.74	< 0.2		410	< 0.5	< 2	6.63	< 0.5	40	660	24	5.57	< 10	< 1	0.43	< 10	5.37	1085
WG88-3 260-265		< 0.002		< 0.2	75	50	< 0.5	< 2	5.31	< 0.5	56	335	68	7.25	< 10		< 0.01	< 10	4.39	1175
WG88-3 265-270		< 0.002		< 0.2	70	230	< 0.5	< 2		< 0.5	52	438	72	5.48	< 10		0.06	< 10	3.27	905
		< 0.002		< 0.2	< 5	60	< 0.5	2		< 0.5	40	185	72	6.71	< 10		< 0.01	< 10	2.97	1100
WG88-3 275-280		0.002		< 0.2	< 5	30	< 0.5 < 0.5	< 2		< 0.5	40	294	78	6.96	< 10		< 0.01	< 10	4.11	1150
WG88-3 280-285	207 238	0.002	2.92	< 0.2	< 5	40	< 0.3	< 2	5.74	< 0.5	49	468	66	6.58	< 10	< 1	< 0.01	< 10	4.08	975
WG88-3 285-290		< 0.002	3.24		< 5	230	< 0.5	< 2		< 0.5	41	142	65	6.46	< 10	< 1	0.40	< 10	3.31	922
WG88-3 290-295		< 0.002	3.29	< 0.2	< 5	300	< 0.5	< 2		< 0.5	35	145	66	5.67	< 10	< 1		< 10	2.98	786
WG88-3 295-300		< 0.002		< 0.2	< 5	300	< 0.5	< 2		< 0.5	33	71	50	5.03	< 10	< 1	0.62	< 10	2.42	678
WG88-3 300-305		< 0.002		< 0.2	5	350	< 0.5	< 2	7.04	< 0.5	39	84	87	5.68	< 10	< 1	0.77	< 10	2.99	902
WG88-3 305-310	207 238	< 0.002	2.97	< 0.2	< 5	140	< 0.5	< 2	8.99	< 0.5	37	212	95	5.13	< 10	< 1	0.31	< 10	2.71	983
		< 0.002		< 0.2	5	130	< 0.5	< 2		< 0.5	36	167	8.5	5.48	< 10	< 1	0.35	< 10	2.72	880
WG88-3 315-320				< 0.2	< 5	80	< 0.5	< 2		< 0.5	36	180	101	6.47	< 10	< 1		< 10	3.04	892
		< 0.002		< 0.2	< 5	100	< 0.5	< 2		< 0.5	40	407	109	5.88	< 10	< 1	0.12	< 10	3.59	9 54
•••		K 0.002		< 0.2	5	80	< 0.5	< 2		< 0.5	45	405	105	6.24	< 10	< 1	0.09	< 10	4.39	998
WG88-3 330-335	207 238	0.002	2.63	< 0.2	< 5	110	< 0.5	< 2	6.53	< 0.5	35	137	78	6.18	< 10	< 1	0.17	< 10	3.17	945
WG88-3 335-340	207 238	< 0.002	2.64	< 0.2	< 5	160	< 0.5	2	3.74	< 0.5	31	127	92	6.64	< 10	< 1	0.23	< 10	3.12	8 3 4
WG88-3 340-345		0.002		< 0.2	< 5	270	< 0.5	2		< 0.5	32	197	72	7.00	< 10	< 1	0.47	< 10	3.41	919
		< 0.002		< 0.2	5	60	< 0.5	6	5.99	< 0.5	42	266	98	6.76	< 10	< !	0.12	< 10	4.07	966
		< 0.002	-	< 0.2	< 5	90	< 0.5	< 2		< 0.5	42	148	92	7.57	< 10	< 1	0.11	10	3.40	863
WG88-3 355-360	207 238	0.002	2.09	< 0.2	10	40	< 0.5	< 2	2.74	< 0.5	42	219	73	7.85	< 10	< 1	0.02	10	3.99	871
WG88-3 360-365	207 238	< 0.002	0.76	< 0.2	5	110	< 0.5	< 2	2.88	< 0.5	8	31	34	2.64	< 10	< 1	0.19	10	1.58	411
WG88-3 365-370		< 0.002		< 0.2	< 5	70	< 0.5	< 2	5.35	1.0	8	13	30	2.07	< 10	< 1	0.12	< 10	2.92	422
WG88-3 370-375		< 0.002		< 0.2	< 5	100	< 0.5	< 2		< 0.5	6	10	16	1.80	< 10	< 1	0.13	< 10	3.25	374
MG88-3 375-380		C 0.002		< 0.2	< 5		< 0.5	2	5.27	< 0.5	13	14	24	2.27	< 10	_ !	0.20	< 10	2.92	397
MG88-3 380-385	207 238	< 0.002	0.68	< 0.2	< 5	140	< 0.5	6	2.97	< 0.5	10	14	22	1.92	< 10	< 1	0.22	10	1.58	279
WG88-3 385-390		< 0.002		< 0.2	< 5	170	< 0.5	< 2	2.02	< 0.5	10	17	24	1.97	< 10	< 1	0.26	10	1.05	199
MG88-3 390-395		< 0.002		< 0.2	< 5	190	< 0.5	< 2		< 0.5	12	23	38	2.37	< 10	< !	0.30	10	1.35	229
WG88-3 395-400	207 238	0.002	0.62	< 0.2	< 5	1 30	< 0.5	< 2	2.66	< 0.5	10	15	24	1.98	< 10	< 1	0.21	< 10	1.36	180

CERTIFICATION : ____

B. Cargli

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY BC CERTIFIED ASSAYERS

Analytical Chemists * Geochemists * Registered Assayers
212 BROOKSBANK AVE , NORTH VANCOUVER,
BRITISH COLLEGEIA. CANADA V7J-2C1
PHONE (604) 984-0221

To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. :2-n Tot. Pages: 2

Date : 29-140V-88 Invoice #: I-8827628 Invoice # : I-88276 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8827628

SAMPLE DESCRIPTION	PREP	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	
MG88-3 240-245 MG88-3 245-250	207 238	1 1	0.01 0.01 < 0.01 0.01 0.01	69 161 523 114 178	570 510 460 1300 790	< 2 < 2 < 2 < 2 < 2 < 2	< 5 5 < 5 5 < 5	8 5 13 14 28		0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	61 33 65 282 163	10 10 15 10	162 93 77 99 93	
MG88-3 265-270 MG88-3 270-275 MG88-3 275-280	207 23	3 < 1	0.01 0.01 < 0.01 0.01 0.01	327 416 157 157 261	810 890 920 1000 810	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	\$ 5 5 5 5	24 9 26 28 25	120 < 97 < 99 < 169 < 132 <	0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	174 71 141 171 157	20 10 20 20 20 20	113 89 89 92 87	
WG88-3 295-300	207 238 207 238 207 238	1 1	0.01 0.03 0.04 0.02 0.01	94 73 54 51 92	970 1070 1050 870 860	< 2 < 2 < 2 < 2 < 2 < 2	< 5 < 5 < 5 < 5 < 5	21 14 6 9	114	0.19 0.56 0.38 0.34 0.23	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	167 163 114 160 139	20 10 5 15	98 76 71 73 75	
WG88-3 310-315 WG88-3 315-320 WG88-3 320-325 WG88-3 325-330 WG88-3 330-335	207 23 207 23 207 23		0.02 0.01 0.01 0.01 0.01	91 92 176 172 73	950 1100 950 900 1100	< 2 < 2 < 2 < 2 < 2	< 5 < 5 5 10 5	14 22 25 26 21	90 117 159 147 125	0.29 0.20 0.06 0.07 0.08	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	171 195 165 164 161	10 15 15 15	80 127 79 89 93	
WG88-3 335-340 WG88-3 340-345 WG88-3 345-350 WG88-3 350-355 WG88-3 355-360	207 23 207 23 207 23	< 1 < 1 < 1	0.01 0.01 0.01 0.01 < 0.01	84 110 195 175 152	1170 1260 930 970 1160	< 2 < 2 < 2 < 2 < 2 < 2	5 < 5 < 5 5 < 5	13 15 22 13 25			< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	116 134 137 106 172	10 10 15 5	88 97 85 86 132	
WG88-3 360-365 WG88-3 365-370 WG88-3 370-375 WG88-3 375-380 WG88-3 380-385	207 23 207 23 207 23	5 1 5 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	47 37 16 27 23	1110 640 290 470 430	< 2 10 8 2 < 2	< 5 < 5 < 5 < 5	3 2 1 1	74 < 166 < 168 < 137 < 88 <	0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	38 26 6 10 7	< 5 < 5 < 5 < 5 < 5	8 2 9 6 3 8 5 9 3 9	
MG88-3 385-390 MG88-3 390-395 MG88-3 395-400	207 23	1	< 0.01 < 0.01 < 0.01	25 30 23	480 760 790	4 2 2	< 5 < 5 < 5	1 2 1	47 < 54 < 60 <	0.01	< 10 < 10 < 10	< 10 < 10 < 10	10 18 9	< 5 < 5 < 5	35 60 33	

CERTIFICATION :

B. Cagli

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC. DAVID NEWTON

Page No. :1 Tot. Pages: 2

: 29-NOV-88 Date Invoice #: I-8827629 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8827629

						,											**		* -	14-	
SAMPLE DESCRIPTION	PRE		Au oz/T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	ppm Cr	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppm	Mg %	Ma ppm
		_								0.72	< 0.5	30	43	57	6.54	< 10	< 1	0.08	30	1.89	709
WG88-4 20-25			< 0.002	1.25 0.63	< 0.2 < 0.2	< 5 < 5	80 90	< 0.5	6 10	0.63	1.0	24	32	43	5.15	< 10	ì	0.08	30	0.96	625
WG88-4 25-30 WG88-4 30-35			< 0.002 < 0.002	0.63	< 0.2	3	80	< 0.5	6	0.93	0.5	25	67	74	4.35	< 10	1	0.07	10	0.70	540
WG88-4 35-40			< 0.002	0.48	< 0.2	< 5	90	< 0.5	4	0.91	0.5	26	52	110	4.81	< 10	< 1	0.06	20	0.49	443
WG88-4 40-45			< 0.002	0.73	< 0.2	5	70	< 0.5	< 2	4.24	< 0.5	30	117	69	5.19	< 10	< 1	0.04	< 10	2.51	771
WG88-4 45-50	207	238	< 0.002	2.25	< 0.2	3.5	40	< 0.5	2	6.21	0.5	47	665	37	5.20	< 10 < 10		< 0.01 < 0.01	< 10 < 10	4.37 5.78	888 875
WG88-4 50-55			< 0.002	1.71	< 0.2	< 5	30	< 0.5	< 2	7.68	< 0.5 < 0.5	64 38	1400 604	83 40	4.67	< 10		< 0.01	< 10	4.26	728
WG88-4 55-60			< 0.002	2.48	< 0.2	10	60	< 0.5 < 0.5	< 2 < 2	4.61 4.37	< 0.5	18	120	19	3.55	< 10	₹i	0.05	10	2.44	5 5 7
WG88-4 60-65			< 0.002	1.65	< 0.2 < 0.2	< 5 < 5	90 80	< 0.5	< 2	3.63	0.5	20	150	63	3.50	< 10	₹ i	0.02	10	1.45	675
WG88-4 65-70	207	238	< 0.002	1.47																	
WG88-4 70-75	207	238	< 0.002	2.32	< 0.2	< 5	80	< 0.5	4	3.83	0.5	30	141	62	5.26	< 10	< 1	0.05	10	2.59	793 771
MG88-4 75-80	207	238	< 0.002	2.11	< 0.2	< 5	160	< 0.5	4	4.88	< 0.5	33	127	96 114	4.92 3.40	< 10 < 10	< 1 < 1	0.19 0.03	< 10 < 10	2.44 1.73	489
WG88-4 80-85			< 0.002	1.67	< 0.2	10	40	< 0.5	2	2.73	< 0.5	23 38	99 238	37	6.12	< 10		< 0.01	< 10	3.25	976
NG88-4 85-90			< 0.002	1.52	< 0.2	< 5	40	< 0.5	6 2	5.78 5.21	< 0.5 < 0.5	50	394	97	5.87	< 10		< 0.01	< 10	3.14	962
WG88-4 90-95	207	238	< 0.002	1.65	< 0.2	5	50	< 0.5		J. 21											
WG88-4 95-100	207	238	< 0.002	2.51	< 0.2	< 5	180	< 0.5	4	3.76	< 0.5	38	556	144	5.18	< 10	< !		< 10	3.49 3.88	739 80 7
WG88-4 100-105	207	238	< 0.002	3.40	< 0.2	< 5	420	< 0.5	< 2	4.90	< 0.5	33	322	6 8 46	5.36 4.10	< 10 < 10	< 1	0.47	< 10 < 10	4.98	546
WG88-4 105-110			< 0.002	2.77	< 0.2	< 5	80	< 0.5	6	2.88	< 0.5	41 42	1340 1155	24	4.13	< 10		< 0.01	10	4.85	491
WG88-4 110-115	207	238	< 0.002	2.93	< 0.2	10	90	< 0.5	2	2.28 4.14	< 0.5 < 0.5	33	342	118	4.39	< 10	< î		< 10	3.21	593
WG88-4 115-1203	207	238	< 0.002	2.62	< 0.2	20	140	< 0.5	< 2	4.17											
WG88-4 120-125	207	238	< 0.002	3.43	0.2	< 5	280	< 0.5	4	4.22		31	204	90	5.63	< 10	< !	0.58	< 10	3.13	823
WG88-4 125-130			< 0.002	2.60	0.2	20	140	< 0.5	8	3.54	< 0.5	34	420	90	4.48	< 10	< 1	0.18	< 10	2.90 3.24	630 825
WG88-4 130-135	207	238	< 0.002	1.94	< O.2	< 5	110	< 0.5	< 2	5.91	< 0.5	30	210	136 99	4.93 4.72	< 10 < 10	< 1 < 1	0.13 0.39	< 10 < 10	2.51	698
WG88-4 135-140			< 0.002	2.65	< 0.2	< 5	200	< 0.5	2	4.88	< 0.5	29 34	215 243	141	6.15	< 10	< i	0.39	< 10	3.03	880
WG88-4 140-145	207	238	< 0.002	3.32	< 0.2	< 5	340	< 0.5	4	6.22	< 0.5										
WG88-4 145-150	207	238	< 0.002	1.98	< 0.2	< 5	90	< 0.5	2	5.97	< 0.5	28	189	119	3.76	< 10	< 1		< 10	1.89	720 795
NG88-4 150-155		238	< 0.002	1.71	< O.2	< 5	1 30	< 0.5	< 2	7.79	< 0.5	23	187	107	3.22	< 10 < 10	< 1	0.20 0.28	< 10 < 10	1.57	960
WG88-4 155-160			< 0.002	2.65	< 0.2	< 5	200	< 0.5	2	6.54	< 0.5	34 34	279 258	129 105	5.03 5.11	< 10	< î		< 10	2.74	904
WG88-4 160-165			< 0.002	2.77	< 0.2	< 5	220	< 0.5	2 2	6.27 7.81	< 0.5 < 0.5	38	320	98	6.02	< 10	₹i	0.38	< 10	3.86	996
NG88-4 165-170	207	238	< 0.002	3.74	< 0.2	< 5	270	< 0.5		7.01											
WG88-4 170-175	207	238	< 0.002	3.97	< 0.2	< 5	3 50	< 0.5	< 2	6.10	< 0.5	41	542	69	6.09	< 10	< 1 1	0.47 0.81	< 10 < 10	4.59 3.83	902 939
WG88-4 175-180			< 0.002	3.69	< 0.2	< 5	600	< 0.5	< 2	6.19	< 0.5	33 38	322 375	93 121	6.34 6.04	< 10 < 10	< 1		< 10	3.83	797
WG88-4 180-185			< 0.002	3.49	< 0.2	< 5	440	0.5	< 2 < 2	5.21	< 0.5 < 0.5	38 43	3/3 349	77	6.98	< 10	3	0.50	< 10	4.07	920
WG88-4 185-190			< 0.002	4.18	< 0.2	< 5	440 460	< 0.5	< 2	5.80	< 0.5	33	347	21	8.41	< 10	< i		< 10	2.61	936
WG88-4 190-195	207	238	< 0.002	3.83	< 0.2	< 5	400	U. 3													
NG88-4 195-200	207	238	< 0.002	1.77	< 0.2	< 5	270	< 0.5	2	5.62	< 0.5	31	26	19	8.27	< 10	1		< 10	2.13	1065
WG88-4 200-205			< 0.002	1.25	< 0.2	< 5	250	0.5	2	3.02	< 0.5	35	70	78	7.93	< 10	_ !		10	2.14 1.83	1320
MG88-4 205-210			< 0.002	1.92	0.2	< 5	60	< 0.5	6	1.66	< 0.5	34	43	51	10.30	< 10 < 10	< I	0.02 0.01	30 40	2.72	1550
WG88-4 210-215	207		< 0.002	2.85	< 0.2	< 5	30	< 0.5	< 2	3.05	< 0.5 < 0.5	36 35	80 182	43 75	8.06 6.77	< 10			< 10	3.22	1080
WG88-4 215-220	207	238	⋉ 0.002	2.35	< 0.2	< 5	70	< 0.5	< 2	5.37	< 0.3	33	102	,,	0.77			0.03	->-		7

B. Carglin

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

Analytical Chemists • Geochemists • Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (664) 984-0221

To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. 1-B Tot. Pag

Date .9-NOV-88 Invoice #:I-8827629 P.O. #:NONE

CERTIFICATE OF ANALYSIS A8827629

	1						_	_							·
SAMPLE PREP	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Ti	U	v	W	Zn	
DESCRIPTION CODE	ppm	%	bba	bba	bbm	ppm	bbm	ppm	%	ppm	ppm	ppn	ppm	ppm	
MG88-4 20-25 207 238		< 0.01	60	2240	2	< 5	9	23	0.01	< 10	< 10	70	< 5	248	
MG88-4 25-30 207 23		< 0.01	60	1910	< 2	< 5	6		< 0.01	< 10	< 10	50	< 5	219	
WG88-4 30-35 207 231		< 0.01	103	2260	< 2	< 5	5	20	0.01	< 10	< 10	84	< 5	192	
MG88-4 35-40 207 238 MG88-4 40-45 207 238		< 0.01 < 0.01	115 139	1450 890	< 2 < 2	< 5 < 5	4 7		< 0.01 < 0.01	< 10 < 10	< 10 < 10	72 82	< 5 10	184 197	
		<u> </u>		670											
WG88-4 45-50 207 23		< 0.01	377	800	< 2	< 5	13		< 0.01	< 10	< 10	124	5	131	
MG88-4 50-55 207 238 MG88-4 55-60 207 238		< 0.01 < 0.01	684 277	500 860	< 2 < 2	< 5 < 5	18 13		< 0.01 < 0.01	< 10 < 10	< 10 < 10	88 97	20 5	101 197	
NG88-4 55-60 207 238 NG88-4 60-65 207 238		< 0.01	73	790	< 2	5	5		< 0.01	< 10	< 10	52	< 5	66	
MG88-4 65-70 207 23		< 0.01	89	860	4	< š	8		< 0.01	< 10	< 10	62	5	77	
WG88-4 70-75 207 238	+	< 0.01	101	1060	< 2	< 5	15	60.4	< 0.01	< 10	< 10	123	5	95	
MG88-4 75-80 207 23		0.01	77	820	< 2	< 5	iš	94	0.18	< 10	< 10	126	5	80	
WG88-4 80-85 207 23		0.02	77	940	2	< 5	8	59	0.22	< 10	< 10	73	< 5	64	
WG88-4 85-90 207 23		0.01	125	920	< 2	< 5	23	100	0.01	< 10	< 10	132	10	101	
NG88-4 90-95 207 23	8 1	< 0.01	177	960	2	< 5	28	92 -	< 0.01	< 10	< 10	1 50	5	115	
NG88-4 95-100 207 23	8 < 1	0.01	196	870	< 2	< 5	15	71	0.22	< 10	< 10	97	< 5	86	
WG88-4 100-105 207 23		0.01	122	790	2	< 5	20	128	0.20	< 10	< 10	155	< 5	77	
WG88-4 105-110 207 23		< 0.01	417	410	< 2	< 5	9	57	0.16	< 10	< 10	8.3	< 5	58	
WG88-4 110-115 207 23		< 0.01	3 50	690	< 2	< 5	. 7	47	0.11	< 10	< 10	100	< 5	63	
WG88-4 115-1203 207 23	8 < 1	< 0.01	153	890	< 2	< 5	11	109	0.06	< 10	< 10	94	< 5	78	
WG88-4 120-125 207 23		0.01	8.5	980	2	< 5	15	106	0.35	< 10	< 10	166	< 5	78	
MG88-4 125-130 207 23	- 1	0.01	174	840	8	< 5	. 8	74	0.22	< 10	< 10	101	< 5	76	
MG88-4 130-135 207 233 MG88-4 135-140 207 233		0.02 0.02	110 104	7 7 0 930	< 2 < 2	5 5	10 7	121 97	0.24 0.35	< 10 < 10	< 10 < 10	93 113	< 5 < 5	65 64	
MG88-4 135-140 207 23 MG88-4 140-145 207 23		0.01	108	940	< 2	5	11	117	0.31	< 10	< 10	160	< 5	79	
WG88-4 145-150 207 23	8 < 1	0.03	89	910	< 2	5	4	94	0.29	< 10	< 10	68	< 5	52	
WG88-4 150-155 207 23	-	0.03	87	930	< 2	5	3	118	0.26	< 10	< 10	61	< 5	47	
MG88-4 155-160 207 23		0.01	127	880	< 2	< 5	8	116	0.28	< 10	< 10	110	< 5	75	
WG88-4 160-165 207 23	8 1	0.02	121	910	< 2	< 5	10	116	0.28	< 10	< 10	117	< 5	76	
MG88-4 165-170 207 23	8 < 1	0.01	148	920	< 2	5	19	245	0.10	< 10	< 10	152	< 5	80	
WG88-4 170-175 207 23	8 < 1	0.01	233	760	< 2	< 5	18	166	0.21	< 10	< 10	154	< 5	84	
WG88-4 175-180 207 23		0.01	133	810	< 2	< 5	18	164	0.35	< 10	< 10	170	< 5	86	
MG88-4 180-185 207 23		0.01	160	780	< 2	5	15	134	0.44	< 10	< 10	1 58	< 5	77	
WG88-4 185-190 207 23		0.01	148	940	< 2	5	21	179	0.15	< 10	< 10	179	< 5	85	
MG88-4 190-195 207 23	8 1	0.01	22	1790	< 2	5	20	184	0.22	< 10	< 10	217	< 5	118	
WG88-4 195-200 207 23		< 0.01	15	1750	2	5	8	150	0.03	< 10	< 10	96	< 5	109	
WG88-4 200-205 207 23		< 0.01	68	1120	< 2	10	15	68	0.01	< 10	< 10	120	< 5	110	
MG88-4 205-210 207 23		< 0.01	33	1920	< 2	10	22	39	0.01	< 10	< 10	195	< 5	140	
WG88-4 210-215 207 23 WG88-4 215-220 207 23	-	< 0.01 < 0.01	43 112	1880 1190	< 2 < 2	5 10	2 i 1 5	57 <	0.01 0.01	< 10 < 10	< 10 < 10	178 121	< 5 < 5	129 106	
213-220 207 23	<u> </u>	<u> </u>	* 1 4	1170		- 10			0.01	<u> </u>		141		100	

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

certification: B. Cargo

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2CI PHONE (604) 984-0221

To MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. 2-A Tot. Pai

. 29-NOV-88 Date Invoice #: I-8827629 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8827629

SAMPLE DESCRIPTION	CODE		Au oz/T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Ma ppm
WG88-4 220-225	207 2	38	< 0.002	3.41	< 0.2	< 5	120	1.0	6	7.48	< 0.5	37	193	87	6.18	< 10	< 1	0.10	< 10	3.39	108
WG88-4 225-230			< 0.002		< 0.2	< 5	60	1.0	2	5.89	< 0.5	35	250	96	5.71	< 10	< 1	0.12	< 10	2.95	914
NG88-4 230-235	207 2	38	< 0.002	2.97	< 0.2	< 5	90	1.0	4	6.31	< 0.5	41	256	86	7.06	< 10	< 1	0.15	< 10	3.19	1110
NG88-4 235-240	207 2	38	< 0.002	3.20	< 0.2	< 5	190	1.5	4	5.22	< 0.5	37	176	77	7.48	< 10	< 1	0.16	< 10	3.08	105
NG88-4 240-245	207 2	38	< 0.002	1.27	< 0.2	< 5	180	0.5	< 2	2.45	1.5	20	75	57	3.24	< 10	< 1	0.25	20	1.64	418
VG88-4 245-250			< 0.002	1.01	< 0.2	10	140	0.5	< 2	5.97	0.5	12	4.5	28	2.11	< 10	< 1	0.19	< 10	3.36	524
G88-4 250-255			< 0.002	1.35	< 0.2	5	180	0.5	< 2	3.73	< 0.5	12	60	29	2.51	< 10	2	0.21	< 10	2.55	440
G88-4 255-260			< 0.002	0.84	< 0.2	< 5	120	< 0.5	< 2	4.27	< 0.5	11	3.5	21	2.16	< 10	< 1	0.13	< 10	3.00	3 3 8
NG88-4 260-265			< 0.002	0.67		< 5	140	0.5	< 2	3.26	< 0.5	13	36 39	28	2.36	< 10	< !	0.14	10	2.52	252
VG88-4 265-270	207 2	38	< 0.002	0.80	< 0.2	< 5	170	0.5	< 2	2./1	< 0.5	13	34	30	2.17	< 10	< 1	0.31	20	1.81	231
MG88-4 270-275	207 2	38	< 0.002	1.62	< 0.2	5	150	0.5	< 2	5.25	< 0.5	12	49	23	1.98	< 10	< 1	0.70	< 10	3.38	264
VG88-4 275-280	207 2	38	< 0.002	0.67	< 0.2	< 5	110	< 0.5	4	3.57	< 0.5	11	32	19	2.14	< 10	< 1	0.18	10	2.11	302
NG88-4 280-285	207 2	38	< 0.002	0.48	< 0.2	< 5	140	< 0.5	2	5.48	1.0	12	36	61	2.07	< 10	< 1	0.18	< 10	2.92	366
NG88-4 285-290	207 2	38	< 0.002	1.11	< 0.2	< 5	330	< 0.5	< 2	7.56	6.5	11	108	190	3.26	< 10	1	0.60	< 10	2.82	441
NG88-4 290-295	207 2	38	< 0.002	1.27	< 0.2	10	240	< 0.5	2	4.42	0.5	27	109	41	4.03	< 10	< 1	0.27	< 10	3.21	587
VG88-4 295-300	207 2	38	< 0.002	1.35	1.0	< 5	280	< 0.5	2	4.10	6.5	12	53	55	2.42	< 10	< 1	0.34	10	2.60	369
NG88-4 300-305			< 0.002	1.74	< 0.2	< 5	440	< 0.5	4	4.55	< 0.5	24	72	76	5.01	< 10	< 1	0.50	10	2.77	642
VG88-4 305-310			< 0.002	2.07	0.6	< 5	350	< 0.5	6	2.62	0.5	24	62	115	5.07	< 10	< !	0.31	30	2.59	574
VG88-4 310-315			< 0.002	1.79	0.4	5	230	< 0.5	6	0.91	< 0.5	30	5 5	75	5.98	< 10	< 1	0.22	40	2.30	640
WG88-4 315-320	207 2	38	< 0.002	3.64	0.2	< 5	160	0.5	< 2	0.97	< 0.5	41	212	49	6.01	< 10	< 1	0.25	50	3.05	982
AG88-4 320-325			< 0.002	2.45	0.2	< 5	120	< 0.5	8		< 0.5	31	71	58	5.82	< 10	< 1	0.20	50	1.58	1120
4G88-4 325-330			< 0.002	1.90	0.2	< 5	110	< 0.5	2	0.86	< 0.5	31	56	45	7.87	< 10	< 1	0.35	40	0.92	799
MG88-4 330-335			< 0.002	2.47	0.2	< 5	110	0.5	< 2	1.42	•	26	46	68	4.51	< 10	< !	0.25	40	1.36	1800
NG88-4 335-340			< 0.002	3.39	0.2	< 5	70	< 0.5	4	1.93	< 0.5	33	108 49	52	6.98	< 10	< 1	0.21	50	1.90	1 560
NG88-4 340-345	20/ 2	38	< 0.002	2.21	0.2	< 5	60	< 0.5	2	1.69	< 0.5	26	49	18	4.78	< 10	< 1	0.22	40	1.02	1470
NG88-4 345-350			< 0.002	2.75	0.2	< 5	50	< 0.5	2	2.91	< 0.5	31	68	40	5.29	< 10	< 1	0.16	30	1.67	1705
NG88-4 350-355			< 0.002	2.52	0.2	< 5	70	< 0.5	8	1.21	< 0.5	36	46	5	5.49	< 10	< 1	0.19	50	1.14	1 200
MG88-4 355-360			< 0.002	3.04	0.2	< 5	80	0.5	4	0.53	< 0.5	25	47	20	5.36	< 10	< !	0.42	50	1.07	767
MG88-4 360-365 MG88-4 365-370			< 0.002 < 0.002	2.83	0.2 0.2	< 5 < 5	60 60	< 0.5 < 0.5	< 2	0.83	< 0.5 < 0.5	25 25	57 54	27 39	5.20 5.20	< 10 < 10	< 1 < 1	0.31 0.35	50 50	1.09 1.04	704 619
	 -																				
MG88-4 370-375			< 0.002	2.47	0.2	< 5	30	0.5	2	0.72	< 0.5	22	50	33	5.57	< 10	< !	0.19	50	1.09	868
NG88-4 375-380			< 0.002	2.45	0.2	< 5	30	< 0.5	4	0.93	< 0.5	22	57 57	24	5.10	< 10	</td <td>0.16</td> <td>50</td> <td>1.07</td> <td>742</td>	0.16	50	1.07	742
NG88-4 380-385			< 0.002	2.88	0.2	< 5	70	1.0	4	0.98	< 0.5 < 0.5	21 31	37 47	29 34	4.99 5.48	< 10 < 10	< 1 < 1	0.34	50 50	1.07	756 990
NG88-4 385-390		1	< 0.002	3.16	0.2	< 5 < 5	70	0.5 0.5	< 2 4	1.33	< 0.5	34	65	47	5.70	< 10	< 1	0.29 0.29	50 50	1.61	1155
NG88-4 390-395	20/ 4	35	< 0.002	3.36	0.2	< >	180	0.3	4		~ 0.3		03	- '	3.70			U. 19	JU	1.01	1133
NG88-4 395-400	207 2	38	< 0.002	3.95	0.2	< 5	120	0.5	8	4.41	< 0.5	29	49	148	8.00	< 10	< 1	0.C4	10	2.78	1085

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

Analytical Chemists • Geochemists • Registered Assayers
212 BROOKSBANK AVE., NORTH VANCOUVER,
BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: MARK MANAGEMENT LIMITED

1800 - 000 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. -2-B

Tot. Pag

Date 20-NOV-88 Invoice #:I-8827629 P.O. #:NONE

CERTIFICATE OF ANALYSIS A8827629

SAMPLE DESCRIPTION	PREP	Mo ppm	Na %	Ni pp m	P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Ti ppm	U ppm	V ppm	W ppm	Zn ppm	
NG88-4 220-225 NG88-4 225-230 NG88-4 230-235 NG88-4 235-240 NG88-4 240-245	207 238 207 238 207 238	< 1 < 1 < 1	< 0.01 0.01 0.01 0.01 < 0.01	104 137 141 98 79	920 1080 1100 1340 1130	< 2 < 2 < 2 < 2 < 2	<pre>5 < 5 5 5 5</pre>	18 15 17 18 5	200 131 152 128 81	0.02 0.22 0.20 0.11 0.02	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	130 128 136 154 85	5 10 10 < 5 < 5	90 90 92 118 178	
WG88-4 245-250 WG88-4 250-255 WG88-4 255-260 WG88-4 260-265 WG88-4 265-270	207 238 207 238 207 238 207 238 207 238	1 1 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	34 43 22 29 34	480 400 240 770 460	8 2 14 12 10	< 5 5 5 5	3 4 3 3 2	170 96 104 79 62	0.02 0.03 0.01 0.01 0.02	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	39 37 21 26 21	< 5 < 5 < 5 < 5 < 5	124 144 65 63 57	
WG88-4 270-275 WG88-4 275-280 WG88-4 280-285 WG88-4 285-290 WG88-4 290-295	207 238 207 238 207 238 207 238 207 238		< 0.01 < 0.01 0.01	29 24 35 98 >	490 390 1560 >10000 1830	4 14 26 < 2 14	< 5 5 5 5 < 5	2 2 2 3 7	190 320	0.04 < 0.01 < 0.01 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	25 15 20 149 52	< 5 < 5 < 5 < 5 < 5	66 77 190 725 145	
WG88-4 295-300 WG88-4 300-305 WG88-4 305-310 WG88-4 310-315 WG88-4 315-320	207 238 207 238 207 238		- 2 :	38 73 53 56 124	3250 1440 1560 1260 910	184 < 2 40 2 < 2	< 5 < 5 < 5 < 5 < 5	3 4 3 4 13	91 91 44 32 41	0.01 0.01 0.01 < 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	81 46 65 53 72	< 5 < 5 < 5 < 5 < 5	412 146 158 179 132	
MG88-4 320-325 MG88-4 325-330 MG88-4 330-335 MG88-4 335-340 MG88-4 340-345	207 238 207 238 207 238	1 2 < 1 1	0.01 0.02 0.03 0.01 0.02	57 53 37 64 40	930 720 870 820 680	< 2 < 2 < 2 < 2 < 2	< 5 < 5 < 5 < 5 < 5	6 5 6 9 4	54 49 79 102 97	0.03 0.09 0.04 0.02 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	52 57 32 76 32	< 5 < 5 < 5 < 5 < 5	110 91 102 128 84	
NG88-4 345-350 NG88-4 350-355 NG88-4 355-360 NG88-4 360-365 NG88-4 365-370	207 238 207 238	1 > 1 1 1 1 1 1 1 1 1	0.02 0.02 0.03 0.03 0.03	45 44 47 47 43	800 650 490 440 460	< 2 < 2 < 2 6 < 2	< 5 < 5 < 5 < 5	8 6 5 4 4	136 67 37 41 43	0.02 0.06 0.02 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	58 36 23 25 21	< 5 < 5 < 5 < 5	114 100 99 92 92	
NG88-4 370-375 NG88-4 375-380 NG88-4 380-385 NG88-4 385-390 NG88-4 390-395	207 238 207 238 207 238	1 <1 <1 <1	0.02 0.01 0.03 0.03 0.03	45 47 45 50 60	460 430 440 400 930	< 2 < 2 < 2 18 6	< 5 < 5 < 5 < 5 < 5	3 3 4 5 6	_	< 0.01 < 0.01 0.01 0.01 0.13	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	1 5 1 7 2 1 3 7 5 6	< 5 < 5 < 5 < 5 < 5	103 96 89 119 124	
WG88-4 395-400	207 238	4	0.02	59	2850	< 2	< 5	8	165	0.40	< 10	< 10	138	< 5	156	

CERTIFICATION: S. Cargo

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To : MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CO. DAVID NEWTON

Page N Tot. Pa

: 29-NOV-88 Date Invoice #: I-8827630 : NONE P.O. #

CERTIFICATE OF ANALYSIS A8827630

SAMP DESCRI		PRE		Au oz/T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Ma ppm
WG88-5	5-10	207	238	< 0.002	3.24	0.2	< 5	90	0.5	2	0.73	1.0	13	93	46	4.93	< 10	< 1	0.08	30	2.26	674
WG88-5				< 0.002	3.04	0.2	< 5	150	1.0	4	0.54	0.5	29	46	30	5.71	< 10	< 1	0.24	40	1.33	819
WG88-5				< 0.002	2.85	0.2	< 5	110	0.5	2	0.21	0.5	22	36	25	5.87	< 10	< 1	0.22	40	1.10	714
WG88-5 WG88-5				< 0.002 < 0.002	2.85 2.79	0.2 0.2	< 5 5	100 120	1.0 0.5	4	0.20 0.21	0.5 < 0.5	22 21	38 38	36 24	5.98 5.70	< 10 < 10	< 1	0.21 0.21	40 50	1.11	728 7 67
WG88-5	30-35	207	238	< 0.002	2.18	0.2	< 5	190	0.5	6	0.26	< 0.5	6	39	29	3.88	< 10	< 1	0.23	30	1.09	449
WG88-5	35-40	207	238	< 0.002	1.27	0.2	< 5	280	0.5	4	0.73	1.5	8	68	76	3.55	< 10	2	0.21	30	0.70	237
WG88-5				< 0.002	1.35	2.8	< 5	440	0.5	2	1.05	1.5	7	42	82	2.19	< 10	< 1	0.31	30	0.98	163
NG88-5				< 0.002	1.34	2.6	< 5	430	1.0	2	0.74	1.5	5	51	84	2.87	< 10	< 1	0.29	30	1.01	176
WG88~5	50-55	207	238	< 0.002	1.31	1.2	< 5	220	< 0.5	4	0.38	1.5	6	44	98	3.04	< 10	< 1	0.16	20	1.27	200
WG88-5				< 0.002	1.03	0.2	5	310	< 0.5	< 2	0.49	1.0	6	54	56	2.22	< 10	< 1	0.22	20	0.70	1 54
WG88-5				0.002	0.93 1.02	0.2 0.4	10 10	240 240	0.5	4 2	0.44	3.0	10	47	95	4.07	< 10	< 1	0.17	30	0.46	270
WG88~5 WG88~5				< 0.002	1.02	2.0	20	180	1.0 1.0	4	0.41	3.0 6.0	14 39	49 48	124 186	4.90	< 10 < 10	< 1 < 1	0.17	30	0.43	284
WG88-5				0.002	1.53	2.4	20	220	0.5	4	0.45	3.0	18	40	111	5.18 4.35	< 10	< i	0.13 0.12	50 40	1.39 1.43	944 389
WG88-5				< 0.002	1.53	1.8	15	160	0.5	8	0.42	2.0	16	42	116	3.98	< 10	< 1	0.10	40	1.40	365
WG88-5	••••			< 0.002	1.92	0.8	30	270	0.5	4	0.42	1.0	6	43	116	4.77	< 10	< 1	0.14	40	1.89	2 50
WG88-5				< 0.002	2.92	0.2	70	140	0.5	8	0.28	4.0	39	231	62	5.50	< 10	< 1	0.08	30	2.45	782
WG88-5 WG88-5				< 0.002 < 0.002	3.93 3.38	0.2 0.2	50 30	130 190	1.0 1.0	8 6	1.38 1.73	1.0 0.5	35 25	248 141	40 55	6.24 5.64	< 10 < 10	< 1	0.11 0.26	50 60	3.23 2.44	908 620
WG88-5	105-110	207	238	< 0.002	2.75	0.2	10	180	0.5		0.71	0.5	24	56	66	4.88	< 10	<u>1</u>	0.28	80	1.66	417
WG88-5	110-115	207	238	< 0.002	2.49	0.2	15	200	0.5	4	0.68	< 0.5	23	47	63	4.37	< 10	1	0.31	60	1.46	409
NG88-5	115-120	207	238	< 0.002	2.34	0.2	25	140	0.5	2	0.69	< 0.5	31	46	118	5.77	< 10	< 1	0.27	50	1.45	472
WG88-5				< 0.002	2.48	0.2	25	110	0.5	2	0.57	< 0.5	23	39	34	5.68	< 10	< 1	0.25	50	1.29	562
WG88-5	125-130	207	238	< 0.002	2.13	0.6	5	130	0.5	2	0.98	1.0	2 5	40	75	5.52	< 10	< 1	0.29	30	1.23	638
NG88-5	130-135	207	238	< 0.002	2.53	0.4	25	220	0.5	4	1.31	< 0.5	24	52	54	5.75	< 10	< 1	0.36	40	1.50	608
WG88-5	135-140	207	238	< 0.002	2.55	0.6	< 5	140	0.5	2	1.27	0.5	32	46	71	6.42	< 10	< 1	0.29	40	1.43	611
NG88-5				< 0.002	2.43	0.2	5	120	0.5	2	0.92	< 0.5	24	34	29	5.28	< 10	< 1	0.29	40	1.16	470
WG88-5 WG88-5				< 0.002 < 0.002	2.25 1.43	0.2 0.2	5 10	170 170	0.5 0.5	< 2 < 2	1.87 1.28	1.0 0.5	24 24	33 31	61 57	6.00 4.48	< 10 < 10	< 1 < 1	0.41 0.31	30 30	1.19 0.82	690 518
WG88-5	155-160	207	238	< 0.002	0.95	0.2	10	60	0.5	< 2	2.07	0.5	36	18	59	4.82	< 10	< 1	0.17	20	0.85	905
WG88-5		207	238	< 0.002	1.83	0.2	< 5	80	0.5	< 2	1.70	< 0.5	30	35	44	5.63	< 10	< 1	0.23	30	1.08	893
WG88-5	165-170	207	238	< 0.002	1.76	0.2	10	70	0.5	< 2	2.48	< 0.5	25	34	50	4.98	< 10	< 1	0.19	40	1.10	918
	170-175			< 0.002	1.64	0.2	5	70	0.5	< 2	3.39	0.5	33	34	52	5.71	< 10	< 1	0.14	30	1.26	1150
WG88-5	175-180	207	238	< 0.002	1.82	0.2	< 5	70	0.5	4	1.41	< 0.5	21	35	23	4.76	< 10	< 1	0.19	50	1.03	503
	180-185			< 0.002	1.57	0.2	< 5	60	0.5	4	1.93	< 0.5	21	30	15	4.87	< 10	< 1	0.18	40	1.06	796
	185-190	207			1.31	0.2	< 5	80	0.5	< 2	2.17	< 0.5	11	25 14	14	3.42	< 10	< 1	0.20	30	0.82	609
	190-195			0.002	0.47 0.96	0.2 0.2	5 10	50 60	< 0.5 < 0.5	< 2 < 2	1.18	< 0.5 < 0.5	12	20	6 19	1.64 2.84	< 10 < 10	< 1 >	0.08 0.19	20 30	0.47 0.62	329
				< 0.002 < 0.002	1.18	0.2	10	50	< 0.5	< 2	1.34	< 0.5	12	24	20	4.01	< 10	< i	0.19	30 30	0.62	407 578

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No 1-B Tot. Pa 2

Date : 29-NOV-88 Invoice #: I-8827630

P.O. # :NONE

CERTIFICATE OF ANALYSIS A8827630

T																	
SAMPLE	PRE	P.	Мо	Na	Ni	P	Ръ	Sb	Sc	Sr	Ti	Ti	U	v	w	Zn	
DESCRIPTION	COE	E	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	bbm	ppm	
WG88-5 5-10	207	238	1	0.01	34	1420	6	< 5	6	33	0.27	< 10	< 10	96	< 5	202	
MG88-5 10-15	207	238	2	0.01	50	660	< 2	< 5	4	22	0.18	< 10	< 10	37	< 5	186	
WG88-5 15-20	207		2	0.01	45	490	< 2	< 5	3	11	0.12	< 10	< 10	21	< 5	179	
MG88-5 20-25	207 207		2	0.01	45 35	480 440	< 2 < 2	< 5 < 5	3 4	11 13	0.12 0.15	< 10 < 10	< 10 < 10	21 20	< 5 < 5	190 135	
WG88-5 25-30	207	238		0.01					-	13	0.13	<u> </u>	< 10	20		133	
WG88-5 30-35	207		6	0.01	18	840	4	< 5	4	2.5	0.18	< 10	< 10	91	< 5	98	
WG88-5 35-40	207			< 0.01	73	2440	16	< 5	3	46	0.09	< 10	< 10	708	< 5	254	
MG88-5 40-45 MG88-5 45-50	207 207		11	0.01 < 0.01	23 37	4760 3330	214 184	< 5 < 5	4	49 29	0.10 0.08	< 10 < 10	< 10 < 10	190 363	< 5 < 5	99 178	
WG88-5 50-55	207			< 0.01	41	1880	48	< 3	3	16	0.03	< 10	< 10	385	< 5	217	
WG88-5 55-60	207			< 0.01	27	2370	10	5	2	16	0.01	< 10	< 10	607	< 5	129	
WG88-5 60-65	207			< 0.01	49	2820	4	5	2		< 0.01	< 10	< 10	555	< 5	259	
WG88-5 65-70	207			< 0.01	56	2840		5	2	25	0.01	< 10	< 10	545	< 5	332	
WG88-5 70-75 WG88-5 75-80	207 207			< 0.01 < 0.01	113 62	3280 2830	112 170	5 5	3 2	37 26	0.02 0.01	< 10 < 10	< 10 < 10	250 153	< 5 < 5	4 54 3 30	
1000 77-80	20,	230		- 0.01		1030										330	
WG88-5 80-85	207			< 0.01	46	2340	88	< 5	2	20	0.02	< 10	< 10	141	< 5	272	
WG88-5 85-90	207			< 0.01	33	2790	40	< 5	2	21	0.06	< 10	< 10	66	< 5	186	
WG88-5 90-95	207			< 0.01	1 38	1450	6	< 5	5	13	0.02	< 10	< 10	94	< 5	294	
MG88-5 95-100 MG88-5 100-105	207 207		< 1	0.01 0.01	146 102	680 620	< 2 8	< 5 < 5	8 5	48 63	0.01 0.01	< 10 < 10	< 10 < 10	9 5 76	< 5 < 5	317 247	
W088-5 100-105	20,	238	,		102				,		····						
WG88-5 105-110			1	0.01	87	470	4	< 5	3		< 0.01	< 10	< 10	43	< 5	260	
WG88-5 110-115			3	0.01	62	5 50	< 2	< 5	3	29	0.01	< 10	< 10	60	< 5	220	
WG88-5 115-120			7	0.01	80	930	4	< 5	3	28 4 22	0.01 0.01	< 10 < 10	< 10 < 10	90 44	< 5 < 5	215 149	
WG88-5 120-125 WG88-5 125-130			3	0.01 0.01	53 60	580 710	< 2 36	< 5 < 5	3	37	0.01	< 10	< 10	52	< 5	295	
WG66-5 125-130	207	236		U.UI		7.10											
WG88-5 130-135			7	0.02	63	1350	22	< 5	4	47	0.01	< 10	< 10	103	< 5	182	
WG88-5 135-140	207		3	0.02	61	1240	20	< 5	4	47	0.02	< 10	< 10	64	< 5	273	
WG88-5 140-145			_	0.02	41 54	840 1380	< 2 < 2	< 5 < 5	4	36 68	0.03 0.02	< 10	< 10 < 10	37 38	< 5 < 5	168 277	
MG88-5 145-150 MG88-5 150-155			< 1 2	0.02 0.02	40	850	10	< 3	2	46	0.02	< 10	< 10	59	< 3	190	
ļ									1				<u> </u>		< 5	144	
WG88-5 155-160	207		< 1	0.01 0.01	37 52	510 600	< 2 < 2	< 5 < 5	1 2	54	0.01 0.01	< 10 < 10	< 10 < 10	13 30	< 5	164 151	
MG88-5 160-165 MG88-5 165-170			< 1	0.01	45	490	< 2	< 3	2	74	0.01	< 10	< 10	24	< 5	101	
	207		2	0.01	53	830	2	3	2	93	0.01	< 10	< 10	47	< 3	134	
WG88-5 175-180			< ī	0.01	40	490	< 2	< 5	2	-	< 0.01	< 10	< 10	15	< 5	78	
WG88-5 180-185	207	238	< 1	0.01	42	450	< 2	< 5	2	58 -	< 0.01	< 10	< 10	14	< 5	83	
WG88-5 185-190			l < i	0.01	24	430	< 2	< 5	. 2		< 0.01	< 10	< 10	15	< 5	62	
	207			< 0.01	8	310	< 2	< 5	< 1	34 -	< 0.01	< 10	< 10	12	< 5	33	
WG88~5 195-200	207		< 1	0.01	22	400	2	< 5	1		< 0.01	< 10	< 10	12	< 5	60	
WG88-5 200-205	207	238	< 1	0.01	36	480	4	< 5	1	48 -	< 0.01	< 10	< 10	13	< 5	78	

CERTIFICATIO

B. Cogli

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2CI

PHONE (604) 984-0221

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

2-A Page No Tot. Pa. : 29-NOV-88 Date

Invoice #: I-8827630 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8827630

SAMPLE DESCRIPTION	PRE		Au oz/T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Ma ppm
WG88-5 205-210	207	238	< 0.002	1.98	0.2	15	150	< 0.5	< 2	1.69	< 0.5	2.5	36	37	4.99	< 10	1	0.38	40	1.02	59
WG88-5 210-215	207	238	< 0.002	2.42	0.2	< 5	190	< 0.5	4	1.12	0.5	25	45	54	6.09	< 10	< 1		50	1.27	43
WG88-5 215-220	207	238	< 0.002	2.55	0.4	< 5	190	< 0.5	< 2	1.40	< 0.5	25	44	31	6.07	< 10	< 1	0.43	50	1.16	52
WG88-5 220-225				3.00	0.2	< 5	180	< 0.5	4	1.58	< 0.5	30	54	37	6.51	< 10	< 1	0.48	40	1.34	646
WG88-5 225-230	207	238	< 0.002	3.19	0.2	< 5	180	< 0.5	2	1.75	< 0.5	33	57	39	6.40	< 10	< 1	0.47	50	1.45	67
WG88-5 230-235			< 0.002	3.00	0.2	25		< 0.5	< 2		< 0.5	34	71	51	6.21	< 10	< 1		40	1.51	868
WG88-5 235-240			K 0.002	2.63	0.2	< 5	70	< 0.5	< 2	3.20	< 0.5	32	66	39	5.64	< 10	< 1		30	1.60	81.
WG88-5 240-245				2.50	0.4	5	100	< 0.5	< 2	3.11	< 0.5	38	58	130	5.96	< 10	< 1		20	1.38	866
WG88-5 245-250				2.17	0.2	15	90	< 0.5	< 2	3.14	< 0.5	33	50	53	5.32	< 10	< 1		30	1.44	1030
WG88-5 250-255	207	238	0.002	1.71	0.4	5	110	< 0.5	< 2	2.43	< 0.5	26	42	45	5.44	< 10	< 1	0.26	30	1.51	862
WG88-5 255-260	207	238	< 0.002	1.66	0.2	20	120	< 0.5	< 2	2.86	< 0.5	32	42	54	6.08	< 10	< 1	0.26	40	1.62	946
			< 0.002	1.32	0.4	< 5	140	< 0.5	< 2	2.56	< 0.5	32	30	32	6.30	< 10	< 1	0.31	40	1.58	685
WG88-5 265-270				0.99	0.2	20	200	O.5	< 2	4.25	< 0.5	32	28	81	6.02	< 10	< 1	0.33	< 10	1.90	899
WG88-5 270-275				0.82	< 0.2	10	160	< 0.5	4	7.55	< 0.5	28	104	114	4.53	< 10	< 1	0.16	< 10	3.50	1320
NG88-5 275-280	207	238	< 0.002	0.88	0.2	20	170	< 0.5	< 2	3.08	< 0.5	22	69	116	4.82	< 10	< 1	0.16	10	1.77	642
WG88-5 280-285	207	238	< 0.002	1.07	2.0	30	170	< 0.5	2	5.18	18.5	27	145	129	5.19	< 10	< 1	0.14	< 10	3.12	1 300
WG88-5 285-290			< 0.002	0.90	2.0	15	220	< 0.5	< 2	4.63	7.5	24	66	109	4.90	< 10	< 1	•	< 10	2.26	932
WG88-5 290-295				2.39	0.6	80	100	< 0.5	< 2	5.69	1.5	42	348	52	6.73	< 10	< 1	0.04	< 10	5.31	1440
WG88-5 295-300			< 0.002	2.93	0.8	195	90	0.5	< 2	7.12	1.0	61	672	25	6.00	< 10	< 1		< 10	6.74	1825
MG88-5 300-305	207	238	C 0.002	2.80	< 0.2	115	130	< 0.5	< 2	7.18	0.5	52	636	48	5.41	< 10	< 1	0.03	< 10	6.91	1425
WG88-5 305-310				2.22	0.4	95	440	0.5	< 2	1.55	0.5	27	116	61	5.08	< 10	< 1	0.34	40	2.27	1085
WG88-5 310-315			< 0.002	2.37	0.4	5	3 50	1.0	< 2	0.64	< 0.5	26	5.5	35	5.55	< 10	< 1	0.35	50	1.58	1365
WG88-5 315-320				2.16	0.4	20	390	< 0.5	2	0.80	< 0.5	26	48	39	6.00	< 10	< 1	0.39	50	1.58	1415
WG88-5 320-325				1.38	0.4	20	320	0.5	< 2	0.91	< 0.5	26	30	43	5.61	< 10	< 1	0.29	30	1.65	931
WG88-5 325-330	207	238	< 0.002	1.58	0.2	< 5	3 50	< 0.5	< 2	0.71	< 0.5	26	32	44	5.63	< 10	< 1	0.37	40	1.42	1230
WG88-5 330-335	207	238	< 0.002	1.60	< 0.2	< 5	320	< 0.5	< 2	2.21	< 0.5	26	31	83	5.66	< 10	< 1	0.23	40	1.90	1450
NG88-5 335-340				3.31	< O.2	5	130	< 0.5	< 2	4.81	0.5	48	125	148	6.34	< 10	< 1	0.11	10	3.48	1 340
NG88-5 340-345				3.58	< 0.2	< 5	410	< 0.5	< 2	4.69	0.5	37	196	59	5.54	< 10	< 1	0.14	< 10	3.20	1 540
WG88-5 345-350			< 0.002	4.21	< 0.2	< 5	190	< 0.5	< 2	4.29	< 0.5	40	258	70	5.84	< 10	< 1	0.09	< 10	3.77	1865
MG88-5 350-355	207	238	C 0.002	3.52	< 0.2	< 5	870	0.5	< 2	3.23	< 0.5	33	123	64	5.53	< 10	< 1	0.36	30	2.54	1180
WG88-5 355-360			< 0.002	3.51	< 0.2	< 5	340	< 0.5	< 2	3.45	< 0.5	35	225	47	5.33	< 10	< 1	0.13	10	3.27	1220
WG88-5 360-365			< 0.002	3.42	< 0.2	< 5	70	< 0.5	< 2	4.92	< 0.5	32	189	92	5.20	< 10	< 1	0.04	< 10	3.42	1375
MG88-5 365-370			< 0.002	2.79	< 0.2	< 5	170	< 0.5	< 2	2.66	< 0.5	31	41	58	5.54	< 10	< 1	0.14	40	2.01	1335
WG88-5 370-375				1.80	0.2	< 5	240	0.5	< 2	0.84	0.5	27	32	6.5	5.26	< 10	</td <td>0.31</td> <td>50</td> <td>1.42</td> <td>1750</td>	0.31	50	1.42	1750
WG88-5 375-380	20/	238	0.002	1.47	0.4	< 5	230	< 0.5	< 2 	0.78	1.0	25	34	80	5.59	< 10	< 1	0.26	.:0	1.51	1390
WG88-5 380-385			< 0.002	1.58	< 0.2	< 5	270	< 0.5	< 2	2.26	< 0.5	22	45	49	5.20	< 10	< 1	0.26	50	1.59	1135
WG88-5 385-390			C 0.002	1.29	< 0.2	- 5	260	< 0.5	< 2	6.04	2.0	27	108	175	4.14	< 10	< 1	0.20	< 10	2.67	874
WG88-5 390-395				1.14	< 0.2	< 5	320	< 0.5	< 2	5.89	< 0.5	22	37	34	4.32	< 10	< 1	0.26	< 10	2.90	880
NG88-5 395-400	207	438	r 0.002	2.18	< 0.2	5	80	0.5	< 2	6.50	< 0.5	42	310	96	6.79	< 10	< 1	< 0.01	< 10	3.63	1210
			l															\sim			,

CERTIFICATION :

212 BROOKSBANK AVE., NORTH VANCOUVER.
BRITISH COLUMBIA. CANADA V7J-2C1
PHONE (604) 984-0221

To : MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. :7 R Tot. Pages:

Date :2y-NOV-88 Invoice #:I-8827630 P.O. #:NONE

CERTIFICATE OF ANALYSIS A8827630

SAMPLE DESCRIPTION	PREP	Mo ppm	Na	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Ti ppm	U ppm	V ppm	W ppm	Zn ppn	
225000	0022	. سرم	. 70	P	PP		PP		PP		PP	_	P	P	pp.	
MG88-5 205-210	207 238	2	0.02	49	520	4	< 5	3	59	0.01	< 10	< 10	24	< 5	74	
	207 238	4	0.01	60	1120	12	5	3		< 0.01	< 10	< 10	67	< 5	133	
WG88-5 215-220	207 238	< 1	0.02	57	6 50	< 2	5	4	56 -	< 0.01	< 10	< 10	31	< 5	85	
	207 238	ı	0.02	5.5	600	< 2	< 5	5	62	0.01	< 10	< 10	33	< 5	103	
WG88-5 225-230	207 238	< 1	0.02	54	630	< 2	< 5	5	59	0.01	< 10	< 10	38	< 5	90	
WG88-5 230-235	207 238	3	0.02	61	1240	14	< 5	7	76	0.01	< 10	< 10	94	< 5	143	
WG88-5 235-240	207 238	< 1	0.01	59	700	2	< 5	6	87 -	< 0.01	< 10	< 10	62	< 5	100	
WG88-5 240-245		< 1	0.02	57	520	< 2	< 5	5		< 0.01	< 10	< 10	44	< 5	112	
	207 238	< !	0.01	56	510	< 2	< 5	4	109	0.01	< 10	< 10	29	< 5	87	
WG88-5 250-255	207 238	ı	0.01	59	680	6	< 5	3	87	< 0.01	< 10	< 10	34	< 5	90	
	207 238	3	0.01	65	7 50	12	5	3		< 0.01	< 10	< 10	43	< 5	108	
	207 238	< 1	0.01	70	660	< 2	< 5	3		< 0.01	< 10	< 10	31	< 5	96	
	207 238	4	0.01	82	1870	12	5	4		< 0.01	< 10	< 10	46	< 5	98	
	207 238	8	0.01	107	2350	6	5	7		< 0.01	< 10	< 10	92	< 5	109	
WG88-5 275-280	20/ 238	3	0.01	78	2440	42	5		98 -	< 0.01	< 10	< 10	75	< 5	124	
MG88-5 280-285	207 238	7	0.01	126	3100	722	5	8	191	< 0.01	< 10	< 10	99	5	1095	
NG88-5 285-290	207 238	11	0.01	97	4370	736	< 5	5		< 0.01	< 10	< 10	115	< 5	510	
MG88-5 290-295		_	< 0.01	175	1960	76	< 5	15		< 0.01	< 10	< 10	103	5	261	
MG88-5 295-300			< 0.01	267	1110	30	< 5	18		< 0.01	< 10	< 10	116	5	247	
NG88-5 300-305	207 238	1 <	< 0.01	271	1 300	18	< 5	18	265	< 0.01	< 10	< 10	127	5	147	
WG88-5 305-310	207 238	3	0.01	82	1230	28	60	6		< 0.01	< 10	< 10	88	< 5	139	
WG88-5 310-315		4	0.01	56	860	6	< 5	5		< 0.01	< 10	< 10	81	< 5	153	
MG88-5 315-320		1	0.02	50	540	10	< 5	5		< 0.01	< 10	< 10	53	< 5	138	
WG88-5 320-325		2	0.01	59	360	14	< 5	4		< 0.01	< 10	< 10	51	< 5	150	
WG88-5 325-330	207 238	1	0.02	44	430	2	< 5	4	31 4	< 0.01	< 10	< 10	38	< 5	112	
MG88-5 330-335	207 238	1	0.01	41	8 30	< 2	< 5	9	50	< 0.01	< 10	< 10	69	< 5	122	
MG88-5 335-340		3	0.01	72	1 300	18	< 5	18	158	0.01	< 10	< 10	155	< 5	183	
WG88-5 340-345		< 1	0.02	97	1240	6	< 5	11	153	0.33	< 10	< 10	119	< 5	139	
NG88-5 345-350		1	0.04	115	1400	< 2	< 5	13	188	0.47	< 10	< 10	139	< 5	163	
MG88-5 350-355	207 238	1	0.02	65	870	2	< 5	13	172	0.21	< 10	< 10	103	< 5	111	
WG88-5 355-360	207 238	< 1	0.02	100	1160	2	< 5	12	146	0.35	< 10	< 10	122	< 5	130	
MG88-5 360-365		< 1	0.02	75	1150	< 2	< 5	12	169	0.38	< 10	< 10	133	< 5	124	
MG88-5 365-370		1	0.01	44	1110	< 2	< 5	7	93	0.17	< 10	< 10	83	< 5	125	
MG88-5 370-375		5	0.01	52	8 50	14	< 5	5		< 0.01	< 10	< 10	56	< 5	169	
MG88-5 375-380	207 238	6	0.01	53	1060	16	5	4	34	0.02	< 10	< 10	73	< 5	198	
MG88-5 380-385	207 238	2	0.01	54	2340	< 2	< 5	5	53 -	< 0.01	< 10	< 10	75	< 5	165	
MG88-5 385-390	207 238	7	0.01	125	4670	32	5	6		< 0.01	< 10	< 10	155	< 5	243	
MG88-5 390-395	207 238	1	0.01	42	960	< 2	- 5	4		< 0.01	< 10	< 10	34	< 5	141	
MG88-5 395-400	207 238	1	0.01	153	1260	< 2	5	25	101 -	< 0.01	< 10	< 10	178	< 5	133	
1	L	!														

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

CERTIFICATION :

5. (agli

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LICHTNING

Comments: ATTN: ART TROUP

CC DAVID NEWTON

Page No. : 1-Tot. Pages: 2

: 29-NOV-88 Date

Invoice #: I-8827631 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8827631

Sample Description	PREF		Au oz/T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %6	Cd ppm	Co ppm	Cr ppm	Cu ppm	Pe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Min ppm
MG88-6 5-10	207 2	38	< 0.002	2.43	< 0.2	115	320	< 0.5	< 2	0.96	0.5	34	184	14	6.35	< 10	< 1	0.17	50	2.25	119
NG88-6 10-15			< 0.002	2.26	0.6	155	550	< 0.5	4	0.26	0.5	27	74	22	5.20	10	< i	0.31	50	1.29	99
NG88-6 15-20			< 0.002	3.30	0.6	180	620	< 0.5	< 2	0.55	0.5	39	113	132	7.07	10	< 1	0.34	50	1.92	116
NG88-6 20-25	207 2	38	< 0.002	3.72	1.0	70	530	0.5	< 2	0.58	0.5	46	238	196	7.19	< 10	1	0.23	50	3.18	119
NG88-6 25-30	207 2	38	< 0.002	3.05	< 0.2	45	370	0.5	< 2	3.22	< 0.5	42	585	128	6.40	< 10	< 1	0.13	20	4.75	91
NG88-6 30-35			< 0.002	3.36	< 0.2	55	280	< 0.5	< 2	4.36	1.5	49	640	47	6.45	< 10	< 1	0.05	10	5.98	135
NG88-6 35-40			< 0.002	1.35	0.2	25	580	< 0.5	6	0.88	4.0	27	148	93	4.61	10	< 1	0.24	20	1.07	510
NG88-6 40-45	_		< 0.002	1.43	0.4	10	350	1.0	2	1.26	8.5	28	84	99	4.67	< 10	< 1	0.17	20	1.31	93
			< 0.002	2.62	< 0.2	5	140	< 0.5	< 2	1.30	2.0	29	8.3	37	5.96	< 10	< !	0.10	40	1.83	200
AG88-6 50-55	207 2	38	< 0.002	2.91	0.4	< 5	120	1.0	< 2	0.34	< 0.5	27	5 5	17	6.07	10	< 1	0.14	60	1.55	1686
NG88-6 55-60			< 0.002	3.23	< 0.2	< 5	140	1.0	< 2	0.85	< 0.5	28	51	60	5.58	10	< 1	0.23	50	1.55	153
NG88-6 60-65			< 0.002	3.94	< 0.2	< 5	160	1.0	< 2	2.98	< 0.5	27	74	30	5.80	< 10	ا د د	0.29	30	2.08	201
NG88-6 65-70	, ,		< 0.002 < 0.002	4.38	< 0.2	< 5 < 5	50 100	3.0 1.0	< 2 4	6.19 0.97	1.0 < 0.5	34 29	113	71 34	6.3 8 5.66	< 10	< 1	0.12	< 10	3.11	2210
NG88-6 70-75 NG88-6 75-80			< 0.002	3.09 3.20	0.4 0.2	< 5	140	1.5	6	0.61	< 0.5	31	43 46	24	6.02	10 10	1 >	0.18 0.24	50	1.44	167
	20, 2		V 0.002	J. 20	···		140			0.01					0.02			0.24	50	1.36	152
NG88-6 80-85			< 0.002	2.93	0.4	5	100	0.5	4	1.32	< 0.5	30	41	28	5.77	10	2	0.21	50	1.45	171
NG88-6 85-90			< 0.002	2.77	0.6	< 5	80	1.0	6	0.60	< 0.5	26	42	18	5.01	10	< 1	0.17	50	1.32	143
NG88-6 90-95			< 0.002	2.62	0.2	< 5	140	1.0	6	0.55	< 0.5	36	31	10	4.63	10	_ !	0.23	50	1.18	121
NG88-6 95-100			< 0.002	2.47	0.4	< 5	160	1.0	4	0.72	< 0.5	29	31	60	5.18	10	< 1	0.22	50	1.46	1870
NG88-6 100-105	207 2	38	< 0.002	2.87	0.4	< 5	260	3.5	6	0.41	< 0.5	27	38	15	5.43	10	< 1	0.32	60	1.49	1880
NG88-6 105-110			< 0.002	3.08	< 0.2	< 5	170	0.5	< 2	0.77	< 0.5	26	39	40	5.40	10	< i	0.17	50	1.65	1686
NG88-6 110-115			< 0.002	2.72	< 0.2	< 5	280	0.5	< 2	0.32	< 0.5	21	32	23	5.41	10	1	0.30	50	1.26	1370
			< 0.002	2.28	< 0.2	< 5	210	< 0.5	< 2	0.26	< 0.5	23	34	56	5.21	< 10	< 1	0.25	50	1.26	1250
	-		< 0.002	1.09	< 0.2	< 5	190	0.5	< 2	0.44	< 0.5	19	19	68	5.43	< 10	< 1	0.17	40	1.21	1250
NG88-6 125-130	207 2	38	< 0.002	1.49	< 0.2	< 5	430	0.5	< 2	5.45	10.5	11	6.5	217	2.94	< 10	< 1	0.28	< 10	1.04	51
	- 1		< 0.002	2.46	< 0.2	10	140	1.0	< 2	6.46	0.5	31	89	119	6.13	< 10	< 1	0.09	< 10	3.28	1170
NG88-6 135-140	- 1		< 0.002	4.06	< 0.2	< 5	100	1.0	< 2	9.86	0.5	28	104	44	5.60	< 10	1	0.09	< 10	3.36	106
			< 0.002	2.56	0.2	< 5	240	1.0	< 2	1.51	< 0.5	22	72	92	4.74	10	< 1	0.18	30	1.89	544
			< 0.002	3.51	< 0.2	15	160 90	0.5 1.5	< 2 < 2	4.57 4.15	< 0.5 < 0.5	36 40	573 760	46 38	5.22 5.37	< 10 < 10	< 1 < 1	0.06 < 0.01	10 < 10	4.05 4.41	1010
AG88-6 150-155	20/ 2	<u></u>	V 0.002	3.75	< 0.2	5		1.3		4.13											71
AG88-6 155-160	-		< 0.002	3.28	< 0.2	< 5	230	1.5	< 2	2.63	< 0.5	26	112	79	5.27	< 10	< 1	0.26	20	3.25	680
NG88-6 160-165	1.		< 0.002	3.21	< 0.2	15	30	1.0	< 2	3.62	< 0.5	48	1280	33	4.25 4.49	< 10 < 10	< !	< 0.01 0.09	< 10 < 10	4.38	818
NG88-6 165-170				2.87 3.51	< 0.2 < 0.2	< 5 < 5	140 320	1.5	< 2 < 2	4.21 3.94	< 0.5 < 0.5	29 33	361 233	164 94	6.03	< 10	< 1	0.09	< 10	2.60 3.18	718 904
AG88-6 170-175				3.31	< 0.2	< 5	580	1.0	< 2	2.22	< 0.5	33 30	142	146	6.26	< 10	< i 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	0.19	20	2.78	624
AG88-6 175-180	2		0.002	3.13	~ 0.2		,,00				~ 0	<u>.</u>									
NG88-6 180-185	207 2	38	< 0.002	2.60	< 0.2	5	320	1.0	< 2	4.61	< 0.5	20	136	124	4.71	< 10	< 1	0.19	10	2.44	722
NG88-6 185-190	207 2	38	< 0.002	2.06	< 0.2	< 5	470	0.5	4	2.85	< 0.5	16	62	110	3.70	< 10	1	0.47	20	1.56	390
NG88-6 190-195				2.25	< 0.2	< 5	280	1.0	< 2	3.84	< 0 '	17	129	77	3.79	< 10	< 1	0.28	10	2.18	588
AG88-6 195-200				2.51	< 0.2	5	230	< 0.5	< 2	2.10	< 0.5	23	324	105	4.08	~	1	0.18	20	2.64	590
NG88-6 200-205	207 2	38	< 0.002	2.43	< 0.2	< 5	450	< 0.5	< 2	1.38	< 0.5	18	155	120	4.01	< 10	1	0.57	20	2.17	_ 634

B. Cargli

212 BROOKSBANK AVE., NORTH VANCOUVER.
BRITISH COLUMBIA. CANADA V7.1-2C1

BRITISH COLUMBIA, CANADA V7J-2C1
PHONE (604) 984-0221

To : MARK MANAGEMENT ! !!!!! TED

1800 - 999 W. HASTINGS ST.

VANCOUVER, BC V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. :1-R Tot. Pages: 2

CERTIFICATE OF ANALYSIS A8827631

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	De De La Company de La Compa	U ppm	V ppm	W ppm	Zn ppm		
7500-4 4-10	207 238	3 /	< 0.01	148	1070	6	< 5	11	22.	< 0.01	< 10	< 10	59	5	192	· · · · · · · · · · · · · · · · · · ·	
MG88-6 5-10 MG88-6 10-15	207 238	3	0.01	84	650	10	₹ 5	5		< 0.01	< 10	< 10	24	10	145		
NG88-6 15-20	207 238	š	0.01	116	1 580	14	< 5	7	20	0.01	< 10	< 10	58	20	187		
NG88-6 20-25	207 238	13	0.01	177	2540	50	5	11	18	0.01	< 10	< 10	161	5	232		
WG88-6 25-30	207 238	11 <	< 0.01	271	3110	< 2	< 5	14	88	0.01	< 10	< 10	172	10	205		
WG88-6 30-35	207 238	10 <	< 0.01	3 3 6	2030	10	< 5	19	105	0.01	< 10	< 10	222	15	282		
NG88-6 35-40	207 238		< 0.01	136	1890	4	< 5	6		< 0.01	< 10	< 10	107	5	244		
NG88-6 40-45	207 238	15 <	< 0.01	125	2550	12	< 5	5		< 0.01	< 10	< 10	188	5	586		
WG88-6 45-50	207 238		< 0.01	84	6 50	8	< 5	7		< 0.01	< 10	< 10	54	15	199		
MG88-6 50-55	207 238	3	0.01	68	560	< 2	< 5		11 •	< 0.01	< 10	< 10	21	10	1 50		
WG88-6 55-60	207 238	1	0.01	46	460	8	< 5	6	30	0.01	< 10	< 10	24	10	123		
MG88-6 60-65	207 238	2	0.02	53	430	6	< 5	10	100	0.03	< 10	< 10	58	25	125		
MG88-6 65-70	207 238	1 !	0.02	66	430	8	< 5	15	187	0.01	< 10	< 10	109	15	141		
WG88-6 70-75	207 238	1	0.01	50 53	460 500	2 8	< 5 < 5	7 8	39 33	0.02 0.02	< 10 < 10	< 10 < 10	24	20 15	112		
WG88-6 75-80	207 238	< 1	0.02			• •		•		0.02	<u> </u>	<u> </u>	24	13	123		
WG88-6 80-85	207 238	!	0.01	48	520	4	< 5	7		< 0.01	< 10	< 10	20	20	128		
WG88-6 85-90	207 238	1 1	0.01	42	530	6	< 5	6		< 0.01	< 10	< 10	18	15	113		
WG88-6 90-95	207 238	< 1	0.02	42 45	480 550	2 8	< 5 < 5	5 7		< 0.01 < 0.01	< 10 < 10	< 10 < 10	15 19	13	101		
MG88-6 95-100 MG88-6 100-105	207 238 207 238	< 1	0.02 0.03	46	600	4	< 3	6		< 0.01	< 10	< 10	19	10 15	125 131		
	207 238													.,			· · · · · · · · · · · · · · · · · · ·
WG88-6 105-110	207 238	< 1	0.01	51	520	6	5	6		< 0.01	< 10	< 10	21	< 5	124		
NG88-6 110-115	207 238	1	0.02	44	390	10	< 5	4	22	0.01	20	< 10	16	< 5	125		
WG88-6 115-120	207 238	< 1	0.02	45	390	12	< 5	3	16	0.01	10	< 10	14	< 5	123		
MG88-6 120-125	207 238	2	0.01	47	640	2	< 5	3		< 0.01	< 10	< 10	16	< 5	131		
MG88-6 125-130	207 238	15	0.01	95	>10000	98	< 5	4	154	< 0.01	10	< 10	234	< 5	573		
WG88-6 130-135	207 238		< 0.01	97	2140	14	< 5	11		< 0.01	< 10	< 10	135	< 5	222	and the second s	
WG88-6 135-140	207 238	L .	< 0.01	70	920	2	5	11	190	0.37	< 10	< 10	95	5	177		
MG88-6 140-145	207 238		< 0.01	81	2080	8	< 5	6	30	0.06	< 10	< 10	83	< 5	115		
NG88-6 145-150	207 238		< 0.01	280	1020	- 4	< 5 < 5	9 11	89 91	0.10 0.44	< 10 < 10	< 10 < 10	88 146	< 5 < 5	149 88		
WG88-6 150-155	207 238	3	0.01	314	9 50	< 2	<u> </u>	11	91	·····	<u> </u>	<u> </u>	140	<u> </u>	• • • • • • • • • • • • • • • • • • •		
WG88-6 155-160	207 238	4	0.04	64	1190	< 2	< 5	1.5	71	0.59	< 10	< 10	198	< 5	72		
WG88-6 160-165	207 238		< 0.01	493	610	< 2	< 5	9	72	0.46	< 10	< 10	107	< 5	73		
MG88-6 165-170	207 238	1 1	0.04	101	1070	- 8	< 5	11	144	0.75	< 10	< 10	130	< 5	62		
MG88-6 170-175	207 238	1 1	0.02	110	1320	< 2	< 5	11	106	0.52	< 10	< 10	144 75	< 5 < 5	77 101		
WG88-6 175-180	207 238	6	0.01	112	1 2 50	2	5)	5 5	0.30	< 10	< 10	/)	<u> </u>	101		
WG88-6 180-185	207 238	3	0.01	87	1240	< 2	< 5	5	148	0.04	< 10	< 10	84	< 5	111		
WG88-6 185-190	207 238	6	0.01	60	1390	< 2	< 5	3	10.	9.03	10	< 10	95	< 5	81		
WG88-6 190-195	207 238	6	0.01	81	1130	10	< 5	5	129	0.13	10	< 10	107	< :	93		
WG88-6 195-200	207 238	2	0.01	145	910	6	5	4	67	0.12	< 10	< 10	65	5	109		
WG88-6 200-205	207 238	< 1	0.01	90	1 500	8	< 5	3	37	0.22	< 10	< 10	52	< 5	90		

CERTIFICATION

B. Cagli

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 To : MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. : 2-Tot. Pages: 2

Date :29-NOV-88 Invoice #:I-8827631 P.O. #:NONE CERTIFICATE OF ANALYSIS A8827631

SAMPLE DESCRIPTION	PRE COD	1	Au oz/T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K La % ppm	Mg %	Mo ppu
AG88-6 205-210	207	238	< 0.002	1.99	< 0.2	5	280	< 0.5	< 2	1.99	< 0.5	18	258	64		- 10				
AG88-6 210-215			< 0.002	2.16	< 0.2	35	10	< 0.5	< 2	3.80	< 0.5	71	1785	117	3.06 4.09	< 10 < 10	-	31 20	1.94	68
NG88-6 215-220			< 0.002	3.78	< 0.2	33	30	< 0.5	< 2	1.85	< 0.5	48	1375	22	5.03	< 10	< 1 < 0	-	6.43	90
AG88-6 220-225				4.81	< 0.2	< 5	20	< 0.5	< 2	1.71	< 0.5	49	1085	< 1	6.20	< 10	< 1 < 0		5.61 6.25	66 74
AG88-6 225-230				4.49	< 0.2	< 5	< 10	< 0.5	< 2	0.90	< 0.5	47	1180	2	5.40	< 10	2 < 0		6.57	50
			< 0.002	4.02	< 0.2	< 5	300	< 0.5	< 2	4.05	< 0.5	38	514	102	5.98	< 10	2 0	58 < 10	4.46	8.5
			< 0.002	4.18	< 0.2	< 5	230	< 0.5	< 2	8.84	< 0.5	34	264	32	6.56	< 10	< 1 0.	44 < 10	3.87	125
			< 0.002	4.32	< 0.2	< 5	260	< 0.5	< 2	8.79	< 0.5	39	383	42	6.83	< 10	1 0.	53 < 10	4.04	125
			< 0.002	3.02	< 0.2	< 5	90	< 0.5	< 2	6.52		32	328	68	5.20	< 10		15 < 10	2.95	88
AG88-6 250-255	207	238	< 0.002	3.56	< 0.2	< 5	3 50	< 0.5	< 2	7.11	< 0.5	37	275	89	6.26	< 10	< 1 0.	61 < 10	3.32	104
NG88-6 255-260	207	238	< 0.002	4.52	< 0.2	< 5	390	< 0.5	< 2	6.29	< 0.5	44	580	98	6.56	< 10	< 1 0.	66 < 10	4.96	109
NG88-6 260-265	207	238	< 0.002	4.47	< 0.2	< 5	370	< 0.5	< 2	7.61	< 0.5	43	726	52	6.40	< 10	_	58 < 10	4.90	111
			< 0.002	4.02	< O.2	< 5	280	< 0.5	< 2	8.33	< 0.5	39	546	- 50	6.10	< 10		41 < 10	4.43	113
			< 0.002	3.93	< 0.2	< 5	440	< 0.5	< 2	8.36	< 0.5	38	403	50	6.34	< 10	< 1 0.	77 < 10	3.78	110
MG88-6 275-280	207	238	< 0.002	3.31	< 0.2	< 5	1 30	< 0.5	< 2	5.50	< 0.5	33	356	36	5.47	< 10	< 1 0.	20 < 10	3.45	88.
G88-6 280-285			< 0.002	3.33	< 0.2	10	30	< 0.5	< 2	4.68	< 0.5	47	791	43	5.05	< 10	< 1 < 0.	01 < 10	3.89	819
			< 0.002	3.94	< 0.2	< 5	180	0.5	< 2	7.33	< 0.5	36	468	24	6.07	< 10	< 1 0.	31 < 10	3.89	1150
			< 0.002		< 0.2	< 5	270	0.5	< 2	7.08	< 0.5	35	281	57	5.46	< 10	< 1 0.	42 < 10	2.80	103
			< 0.002	2.84	< 0.2	< 5	190	1.0	< 2	7.12	< 0.5	34	164	120	5.07	< 10	< 1 0.	35 < 10	2.41	90
VG886 300-305	207	238	< 0.002	2.71	< 0.2	< 5	180	0.5	< 2	5.11	< 0.5	32	254	77	4.66	< 10	< 1 0.	31 < 10	2.70	784
			< 0.002	2.66	< 0.2	< 5	1 50	0.5	< 2	5.50	< 0.5	28	305	106	4.36	< 10	< 1 0.	26 < 10	2.54	784
			< 0.002	3.10	< 0.2	< 5	160	1.0	< 2	5.27	< 0.5	30	207	88	4.89	< 10	< 1 0.	29 < 10	2.71	80.
			< 0.002	3.17	< 0.2	< 5	90	0.5	< 2	7.30	< 0.5	29	141	35	5.07	< 10	1 0.		3.00	996
			< 0.002	2.86	< 0.2	< 5	120	0.5	< 2	3.36	< 0.5	27	180	73	4.65	< 10	< 1 0.		2.69	684
VG88-6 325-330	207	238	< 0.002	3.02	< 0.2	< 5	130	< 0.5	< 2	3.53	< 0.5	30	187	74	4.88	< 10	< 1 0.	24 < 10	2.83	711
VG88-6 330-335	207	238	< 0.002	3.17	< 0.2	5	190	< 0.5	< 2	5.55	< 0.5	36	468	82	5.08	< 10	< 1 0.	30 < 10	3.55	902
			< 0.002	3.11	< 0.2	< 5	220	< 0.5	< 2	5.36	< 0.5	36	422	82	5.01	< 10	< 1 0.		3.32	8 50
			< 0.002	2.96	< 0.2	< 5	160	< 0.5	< 2	4.41	< 0.5	33	329	112	4.84	< 10	< 1 0.	21 < 10	2.83	718
			< 0.002	2.96	< 0.2	< 5	210	< 0.5	< 4	5.29	< 0.5	32	404	88	4.87	< 10	< 1 0.	30 < 10	2.68	801
VG88-6 350-355	207	238	< 0.002	4.01	< 0.2	10	190	< 0.5	< 2	6.45	< 0.5	43	564	73	6.26	< 10	< 1 0.	21 < 10	4.23	1050
			< 0.002	3.21	< 0.2	< 5	460	< 0.5	< 2	5.90	< 0.5	30	69	36	5.87	< 10	< 1 0.		2.46	9 5 6
			< 0.002	4.12	< 0.2	< 5	190	< 0.5	< 2	5.06	< 0.5	36	241	75	7.05	< 10	< 1 0.		3.71	961
			< 0.002	3.51	< 0.2	< 5	680	< 0.5	< 2	7.69	< 0.5	34	303	72	6.00	< 10	< 1 0.		3.31	973
			< 0.002 < 0.002	3.74 2.38	< 0.2 < 0.2	< 5 < 5	220 60	< 0.5 < 0.5	< 2 < 2	11.15	< 0.5	42 47	248 231	95 104	6.82 6.29	< 10 < 10	1 0. < 1 0.	-	3.65	1195
		1														<u> </u>	<u> </u>	04 < 10	3.63	1310
			< 0.002	1.54	< 0.2	< 5	30	- 1 5	< 2	7.87	< 0.5	46	215	101	6.94	< 10	< 1 < 0.		3.07	1335
			< 0.002	1.60	< 0.2	< 5	30	< 0.5	< 2	9.45	< 0.5	4,	232	97	7.17	< 10	1 < 0.		3.68	1.:
			< 0.002	2.88	< 0.2	< 5	40	< 0.5	< 2	7.28	< 0.5	43	235	87	7.10	< 10	< 1 < 0.		3.68	1435
VG886 395400	40/	438 P	< 0.002	1.87	< 0.2	35	70	< 0.5	< 2	6.62	1.0	32	283	U /	3.13	< 10	< 1 0.	07 < 10	3.36	1080

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY BC CERTIFIED ASSAYERS

CERTIFICATION :

B. Carglin

Analytical Chemists • Geochemists • Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2CI PHONE (604) 984-0221

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2 Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Tot. Pages: 2 Date

: 29-NOV-88 Invoice #: I-8827631 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8827631

SAMPLE DESCRIPTION	PREP	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Sr ppm	Ti %	Ti ppm	U ppm	V ppm	W ppm	Za ppm	
G88-6 205-210	207 238	< 1	0.01	93	950	4	< 5	3	58	0.15	< 10	< 10	41	5	61	
G88-6 210-215		< 1 <	< 0.01	788	3 50	2	< 5	13	113	0.07	10	< 10	72	5	41	
G88-6 215-220		< 1	0.01	435	650	< 2	5	7	49	0.41	< 10	< 10	94	< 5	101	
G88-6 220-225		< 1	0.01	362	8 50	4	. 5	7	54	0.65	< 10	< 10	139	< 5	90	
G88-6 225-230	207 238	< 1 <	< 0.01	457	730	6	10	. 4 .	19	0.46	< 10	< 10	127	< 5	69	
G88-6 230-235		2	0.03	189	1180	4	5	11	120	0.69	< 10	< 10	190	10	81	
388-6 235-240		< !	0.02	98	1120	2	5	21	243	0.68	20	10	203	25	101	
G88-6 240-245		< !	0.01	167	980	4	5	24	222	0.55	< 10	< 10	200	30	93	
G88-6 245-250		< 1 < 1	0.04 0.03	129 118	1010 790	< 2 < 2	< 5 5	9 20	181 208	0.62 0.48	< 10 < 10	< 10 < 10	128 184	20 15	72 78	
G88-6 250-255	207 238	<u> </u>	0.03		790				206		<u> </u>	<u> </u>	107			
	207 238	< !	0.01	238	950	< 2	< 5	25	214	0.43	< 10	< 10	190	20	130	
G88-6 260-265		< !	0.01	2 5 2 209	8 50 720	< 2	< 5	28 27	275 288	0.32 0.14	< 10 20	< 10 < 10	191 177	30 25	102 97	
G88-6 265-270 G88-6 270-275	207 238	< 1 < 1	0.01 0.01	1 52	950	< 2	3	27	246	0.14	< 10	< 10	200	25	93	
G88-6 275-280		≥i	0.01	1 39	1050	- 4	5	10	133	0.59	< 10	< 10	156	15	125	
			V.03											 		
G88-6 280-285		< 1	0.01	381	1010	4	5	. 7	106	0.50	< 10	< 10	108	15	88	
G88-6 285-290		< 1	0.01	176	980	8	5	10	138	0.59	30	< 10	159	10	123	
G88-6 290-295		11	0.03	126	960	6	< 5	9	143	0.61	10	< 10	125 130	10 5	96 114	
G88-6 295-300		1	0.04	87 83	1100 1130	12 8	5	8	118 98	0.65 0.56	< 10 10	< 10 < 10	109	10	72	
G88-6 300-305	207 238	< 1	0.03	6.3	1130	• 			70		10		107	10		
G88-6 305-310	207 238	< 1	0.03	105	970	6	5	8	94	0.56	< 10	< 10	103	< 5	66	
G88-6 310-315		< 1	0.04	98	1110	4	< 5	11	152	0.61	10	< 10	99	< 5	69	
*** * * * * * * * * * * * * * * * * * *	207 238	1	0.02	109	950	10	5	8	91	0.49	< 10	< 10	135	10	96	
G88-6 320-325		< !	0.03	8.5	1220	< 2	< 5 5	6 7	48 52	0.46 0.53	20 < 10	< 10 < 10	108 114	< 5 < 5	79 82	
G88-6 325-330	207 238	< 1	0.03	90	1250	< 2				0.33	<u> </u>	_ 10	114		0.4	
G88-6 330-335		< 1	0.03	207	1010	4	5	12	127	0.45	< .0	< 10	126	5	84	
G88-6 335-340		< 1	0.02	172	980	< 2	< 5	12	128	0.48	10	< 10	125	< 5	169	
G88-6 340-345		1	0.04	142	1330	< 2	5	9 7	102 97	0.57 0.61	< 10 < 10	< 10 < 10	i 99	< 5 < 5	79 78	
G88-6 345-350		_ ;	0.04	162 258	1070 1060	< ⁶	5 5	12	114	0.51	< 10	< 10	161	- 3	76 96	
G88-6 350-355	207 238	< 1	0.02	4 30	1000					V. 76	<u> </u>	<u> </u>				
G88-6 355-360	207 238	< 1	0.02	39	1030	< 2	5	13	124	0.42	< 10	< 10	149	< 5	1 54	
G88-6 360-365		< 1	0.02	108	1210	< 2	5	14	121	0.51	< 10	< 10	162	< 5	99	
G88-6 365-370		< 1	0.01	153	1010	< 2	. 5	14	208	0.20	< 10	< 10	121	< 5	75	
G88-6 370-375			< 0.01	157	830	< 2	10	22	250	0.05	< 10	< 10	151 137	10 15	95 129	
G88-6 375-380	207 238	< 1	0.01	160	520	6	<u> </u>	24	208	0.01	< 10	< 10	13/		129	
G88-6 380-385	207 238	< 1	0.01	173	560	< 2	5	26	92	0.01	< 10	< 10	138	10	9 0	
G88-6 385-390	207 238	< 1	0.01	178	660	2	5	26	99	0.01	< 10	< 10	146	20	89	
VG88-6 390-395	207 238	< 1	0.01	153	1020	< 2	5	26	76	0.01	< 10	< 10	165	20	124	
	207 238	3	0.01	201	1710	8	5	14	104	0 01	< 10	< 10	106	1.5	211	

CERTIFICATION :

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V73-1C1

PHONE (604) 984-0221

To : MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CO! DAVID NEWTON

Page No. : ' Tot Pages:

: 29-NOV-88 Date Invoice #: I-8827725 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8827725

SAMPLE DESCRIPTION	PRE		Au oz/T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppun	Hg ppm	K %	La ppm	Mg %	Mh ppm
WG88-7 25-30	207	238	< 0.002	4.44	< 0.2	10	70	< 0.5	2	4.02	< 0.5	51	595	63	8.30	< 10	< 1 -	< 0.01	10	3.90	1025
WG88-7 30-35			< 0.002	3.77	< 0.2	< 5	170	< 0.5	2	6.90	0.5	47	519	134	7.88	< 10	< 1	0.16	< 10	3.37	1165
WG88-7 35-40			< 0.002	4.03	< 0.2	< 5	160	< 0.5	< 2	6.91	0.5	44	382	83	7.67	< 10	< 1	0.18	< 10	3.87	1210
WG88-7 40-45			< 0.002	4.68	< 0.2	< 5	190	< 0.5	4	6.52	< 0.5	47	386	105	7.20	< 10	< 1	0.26	< 10	5.07	995
WG88-7 45-50	207	238	< 0.002	4.06	< 0.2	< 5	270	< 0.5	2	9.47	< 0.5	44	726	71	6.04	< 10	< 1	0.44	< 10	5.31	1090
WG88-7 50-55			< 0.002	4.06	< 0.2	10	280	< 0.5	2	8.85	< 0.5	48	763	99	6.35	< 10	< 1	0.44	< 10	5.86	1045
WG88-7 55-60			< 0.002	4.57	< 0.2	< 5	160	< 0.5	< 2	8.92	< 0.5	54	863	27	6.86	< 10	< 1	0.22	< 10	6.20	1145
WG88-7 60-65			< 0.002	4.76	< 0.2	< 5	940	1.0	2	5.26	< 0.5	43	342	106	7.19	< 10	< 1	1.66	< 10	4.73	910
WG88-7 65-70			< 0.002	5.03	< 0.2	< 5	330	< 0.5	2	6.07	0.5	38	439	77	7.02	< 10	< 1	0.60	< 10	5.21	1065
WG88-7 70-75	207	238	< 0.002	4.87	< 0.2	< 5	500	0.5	2	8.09	< 0.5	43	509	86	7.16	< 10	< 1	0.83	< 10	4.74	1175
WG88-7 75-80			< 0.002	4.44	< 0.2	< 5	540	< 0.5	< 2	5.55	< 0.5	40	367	8.5	6.71	< 10	2	1.07	< 10	4.45	1000
MG88-7 80-85			< 0.002	4.65	< 0.2	< 5	340	< 0.5	2	9.39	< 0.5	38	286	67	6.95	< 10	2	0.59	< 10	4.37	1210
WG88-7 85-90			< 0.002	4.72	< 0.2	< 5	400	< 0.5	< 2	6.92	0.5	43	427	96	6.81	< 10	< 1	0.81	< 10	4.88	1075
WG88-7 90-95			< 0.002	3.53	< 0.2	< 5	320	< 0.5	< 2	5.55	0.5	34	243	127	5.87	< 10	2	0.57	< 10	3.17	860
WG88-7 95-100	207	238	< 0.002	3.45	< 0.2	< 5	230	< 0.5	2	4 . 58	< 0.5	33	286	97	5.57	< 10	1	0.41	< 10	3.35	7 58
WG88-7 100-105			< 0.002	3.25	< 0.2	< 5	260	< 0.5	< 2	6.96	< 0.5	33	303	96	5.06	< 10	< 1	0.54	< 10	3.01	829
		-	< 0.002	3.21	< 0.2	< 5	140	< 0.5	< 2	6.40	< 0.5	35	363	96	5.15	< 10	< 1	0.28	< 10	3.25	8 58
			< 0.002	2.72	< 0.2 < 0.2	< 5 < 5	150	< 0.5 < 0.5	2	4.44	< 0.5 < 0.5	33 33	228	118	4.74	< 10	< 1	0.25	< 10	2.47	695
MG88-7 115-120 MG88-7 120-125			< 0.002	2.88 2.75	< 0.2	< 5	190 140	< 0.5	< 2 < 2	4.43	< 0.3	33	241 252	91 94	5.25	< 10	1	0.31	< 10	2.74	792
MUSS-7 120-123	207		0.002	2.73			140						232		4.51	< 10	1	0.26	< 10	2.65	720
			< 0.002	2.80	< 0.2	15	160	< 0.5	4	6.66	< 0.5	33	287	110	4.54	< 10	1	0.29	< 10	2.53	797
			< 0.002	3.06	< 0.2	< 5	200	< 0.5	6	5.45	< 0.5	35	315	100	4.98	< 10	< 1	0.34	< 10	3.00	768
			< 0.002	3.50	< 0.2	< 5	230	< 0.3	< 2	6.35	< 0.5	36	338	105	5.96	< 10	< 1	0.36	< 10	3.32	892
			< 0.002	3.55	< 0.2	15	150	< 0.5	4	3.54	< 0.5	39	257	116	6.13	< 10	< 1	0.22	< 10	3.44	788
WG88-7 145-150	207	238	< 0.002	2.75	< 0 .2	< 5	2 50	< 0.5	2	6.20	< 0.5	32	231	88	4.78	< 10	< 1	0.35	< 10	2.49	821
WG88-7 150-155	207	238	< 0.002	2.69	< 0.2	5	190	< 0.5	< 2	2.78	< 0.5	34	524	80	3.69	< 10	< 1	0.09	< 10	2.80	539
WG88-7 155-160	207	238	< 0.002	2.51	< 0.2	< 5	1 50	< 0.5	2	3.44	< 0.5	32	145	137	4.44	< 10	< 1	0.21	< 10	2.10	601
			< 0.002	2.74	< 0.2	< 5	1 50	< 0.5	4	4.40	< 0.5	37	231	124	4.83	< 10 ,	2	0.19	< 10	2.44	691
			< 0.002	4.08	< 0.2	< 5	540	< 0.5	4	8.23	< 0.5	4.5	368	143	6.66	< 10 '	< 1	0.55	< 10	4.20	1100
WG88-7 170-175	207	238	< 0.002	4.54	< 0.2	20	90	< 0.5	< 2	5.82	< 0.5	56	1065	19	6.65	< 10	< 1 <	< 0.01	< 10	6.67	1065
WG88-7 175-180			< 0.002	3.62	< 0.2	< 5	100	< 0.5	< 2	7.86	< 0.5	46	442	76	6.57	< 10	< 1 <		< 10	5.37	1110
WG88-7 180-185			< 0.002	3.36	< 0.2	< 5	90	< 0.5	2	7.67	< 0.5	53	203	101	8.00	< 10		< 0.01	< 10	3.96	1315
			< 0.002	2.58	< 0.2	< 5	180	< 0.5	2	6.56	< 0.5	46	75	60	7.53	< 10	< 1	0.05	< 10	3.12	1175
			< 0.002	4.00	< 0.2	< 5	1390	< 0.5	< 2	7.92	0.5	46	168	53	7.82	< 10	< !	0.29	< 10	3.77	1030
WG88-7 195-200	207	238	< 0.002	3.52	< 0.2	< 5	330	< 0.5	4	8.43	< 0.5	42	291	76	6.93	< 10	< 1	0.24	< 10	3.89	1095
WG88-7 200-205			< 0.002		< 0.2	< 5		< 0.5	4	7.57	< 0.5	50	281	124	6.52	< 10	< !	0.27	< 10	3.49	1030
			< 0.002	4.34	< 0.2	< 5	370	< 0.5	4	7.56	< 0.5	44	176	103	7.24	< 10	< 1	0.67	< 10	3.69	1040
			< 0.002	4.80	< 0.2	< 5	160	< 0.5	2	7.73	0.5	54	328	144	7.09	< 10	< 1	0.32	< 10	4.33	1045
			< 0.002	3.64	< 0.2	< 5	260	< 0.5	< 2	8.84	< 0.5	48	281	118	5.67	< 10	< 1	0.64	< 10	3.11	976
WG88-7 220-225	207 2	238	< 0.002	3.60	< 0 .2	< 5	90	< 0.5	< 2	4.15	< 0.5	41	296	75	5.10	< 10	< 1	0.19	< 10	3.44	, 717

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

CERTIFICATION :

B. Cagli

212 BROOKSBANK AVE., NORTH VANCOLIVER, BRITISH COLUMBIA, CANADA V7J-2CI

PHONE (604) 984-0221

To : MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. -: 1-B Tot. Pa ;2

Date :29-NOV-88
Invoice #:I-8827725
P.O. #:NONE

CERTIFICATE OF ANALYSIS A8827725

																	 		
SAMPLE	PRE	P	Mo	Na	Ni	P	Ръ	Sb	Sc	Sr	Ti	Tı	U	v	w	Zn			
DESCRIPTION	COD	E	ppm	%	ppm	bbw	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm			
WG88-7 25-30	207	238	1	< 0.01	335	2560	< 2	< 5	23	99	< 0.01	< 10	< 10	250	5	168			
1	207 2			< 0.01	186	1290	< 2	< 5	35	74	0.02	< 10	< 10	260	10	129			
	207			< 0.01	138	1080	< 2	< 5	32	135	0.02	< 10	< 10	232	5	122			
	207		< 1	0.01	128	1060	< 2	5	32	179	0.03	< 10	< 10	226	10	115			
WG88-7 45-50	207	238	< 1	0.01	265	8 30	< 2	5	24	357	0.05	< 10	< 10	165	10	127			
WG88-7 50-55	207		< 1	0.01	322	800	< 2	5	25	312	0.05	< 10	< 10	171	15	109			
MG88-7 55-60	207			< 0.01	335	890	< 2	5	25	385	0.05	< 10	< 10	170	15	200			
MG88-7 60-65 MG88-7 65-70	207		< 1 < 1	0.01 0.01	132 148	1180 1120	< 2 < 2	< 5 < 5	30 30	244 260	0.22 0.46	< 10 < 10	< 10 < 10	239 229	5 10	123 114			
	207		< i	0.01	155	1120	< 2	< 3	31	309	0.40	< 10	< 10	240	3	108			
M366-7 70-73																100			
WG88-7 75-80	207		< 1	0.02	124	1050	< 2	< 5	25	192	0.77	< 10	< 10	230	10	196			
MG88-7 80-85	207		< 1	0.01	112	1070	< 2	5	27	306	0.49	< 10	< 10	220	20	128			
WG88-7 85-90	207		< 1	0.02	146	1140	< 2	< 5	25	198	0.66	< 10	< 10	232	10	126	•		
WG88-7 90-95 WG88-7 95-100	207 2 207 2		< 1 < 1	0.05 0.05	97 108	1240 1150	< 2	< 5 < 5	14 12	194 163	0.74	< 10 < 10	< 10 < 10	185	5	123			
				0.03	100	1130				103	0.77	<u> </u>	< 10	160	10	240			
WG88-7 100-105	207 3	238	< 1	0.04	118	1290	< 2	< 5	10	186	0.68	< 10	< 10	157	1.5	124			
WG88-7 105-110			< 1	0.03	137	1180	< 2	< 5	7	131	0.55	< 10	< 10	139	5	102			
WG88-7 110-115			< !	80.0	94	1290	< 2	< 5	.9	130	0.68	< 10	< 10	126	5	112			
MG88-7 115-120 MG88-7 120-125			< 1 < 1	0.05 0.06	121 121	1280 1140	< 2 < 2	< 5	1 2 7	118 108	0.49	< 10	< 10 < 10	144 115	5 5	161 79			
MG88-7 120-123	207			·····	121	1140		_ _ ,		100	0.63	< 10		113	<u> </u>	/9			
	207		< i	0.08	141	1150	2	< 5	8	142	0.79	< 10	< 10	118	5	75			
WG88-7 130-135			< 1	0.05	172	1100	< 2	< 5	9	115	0.74	< 10	< 10	1 39	5	77			
WG88-7 135-140			< 1	0.04	163	1200	< 2	< 5	14	129	0.62	< 10	< 10	183	10	102			
WG88-7 140-145 WG88-7 145-150			< 1 < 1	0.04 0.09	151 108	1260 1160	< 2 < 2	< 5 < 5	9	79 132	0.69 0.66	< 10 < 10	< 10 < 10	161 138	15 5	92 83			
W068-7 145-150	20,				100	1100		<u> </u>	,	132	0.00	_ 10	_ 10	1 30					· · · · · · · · · · · · · · · · · · ·
WG88-7 150-155			< 1	0.05	172	870	< 2	< 5	6	67	0.52	< 10	< 10	78	< 5	66			
WG88-7 155-160			< 1	0.09	86	920	< 2	< 5	8	96	0.63	< 10	< 10	103	5	76			
WG88-7 160-165			< !	0.10	122	960	< 2	< 5	10	112	0.65	< 10	< 10	120	10	75			
WG88-7 165-170			< 1 < 1	0.02 0.01	1 56 447	1070 630	< 2 < 2	< 5	23 16	198 192	0.42 0.36	< 10 < 10	< 10 < 10	210 150	20 15	90 110			
WG88-7 170-175	207	230		0.01		0.30			10		U. 30		<u> </u>		1,7	110			
WG88-7 175-180				< 0.01	213	8 50	< 2	5	22	251	0.02	< 10	< 10	165	15	101			
WG88-7 180-185			< 1	0.01	112	1500	< 2	10	29	229	0.02	< 10	< 10	224	20	128			
WG88-7 185-190			_ 1	0.01	56	1540	< 2		24	-	< 0.01	< 10	< 10	196	1.5	130			
WG88-7 190-195			< 1	0.01	106	1490	88	15	22	316	0.04	< 10	< 10	182	15 15	103			
WG88-7 195-200	207	4 5 6	< 1	0.01	160	1160	< 2	10	18	271	0.03	< 10	< 10	157	13	99			
WG88-7 200-205	207	238	< 1	0.02	151	1030	< 2	< 5	15	217	0.36	< 10	< 10	159	20	95	,		-
WG88-7 205-210	207	238	< 1	0.02	110	1210	< 2	< 5	17	147	0.40	< 10	< 10	212	15	98			
WG88-7 210-215			< 1	0.01	168	680	< 2	10	22	137	0.11	< 10	< 10	192	15	99			
WG88-7 215-220			< 1	0.03	160	680	< 2	10	16	157	0.30	< 10	< 10	140	20	79			
MG88-7 220-225	207	238	< 1	0.05	179	1120	< 2	15	9	89	0.40	< 10	< 10	801	15	74			
																	0/	_	

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

CERTIFICATION :

B. Cagli

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA. CANADA V7J-2C1 PHONE (404) 984-0221 To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No ?-A Tot. Pa ; Date .29-NOV

Date .29-NOV-88 Invoice #:I-8827725 P.O. #:NONE

CERTIFICATE OF ANALYSIS A8827725

DESCRIPTION	PREP	Au 02/T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppen	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Ma ppm
WG88-7 225-230	207 238	< 0.002	3.17	< 0.2	< 5	70	< 0.5	< 2	7.90	< 0.5	46	270	72	5.92	< 10	< 1	0.09	< 10	3.69	1040
	207 238		4.00	< 0.2	< 5	80	< 0.5	< 2	6.58	< 0.5	43	293	53	6.37	< 10	2	0.11	< 10	3.81	102
AG88-7 235-240	207 238		4.18	< O.2	< 5	130	< 0.5	< 2	11.85		45	259	147	6.38	< 10	2	0.19	< 10	3.82	130
	207 238		4.99		< 5	270	< 0.5	< 2		< 0.5	44	507	87	7.23	< 10	< 1	0.82	< 10	4.50	112
NG88-7 245-250	207 238	< 0.002	4.23	< 0.2	25	280	< 0.5	< 2	8.01	< 0.5	40	401	109	6.07	< 10	1	0.84	< 10	3.87	992
AG88-7 250-255	207 238	< 0.002	4.13	< 0.2	< 5	170	< 0.5	< 2	6.13	< 0.5	41	305	153	6.60	< 10	< 1	0.47	< 10	3.88	910
AG88-7 255-260	207 238	< 0.002	2.79	< O.2	< 5	160	< 0.5	< 2	3.22	< 0.5	30	113	116	4.87	< 10	< 1	0.48	< 10	2.22	648
MG88-7 260-265	207 238		2.70	< O.2	< 5	160	< 0.5	4	3.41	< 0.5	30	96	140	4.67	< 10	2	0.44	< 10	2.05	631
AG88-7 265-270	207 238		3.27	< 0.2	< 5	110	< 0.5	< 2	3.78	< 0.5	36	1 58	93	6.23	< 10	< 1	0.27	< 10	3.14	99:
AG88-7 270-275	207 238	< 0.002	1.80	< 0.2	< 5	40	0.5	< 2	5.34	< 0.5	41	132	96	7.24	< 10	< 1	0.04	< 10	2.87	1220
NG88-7 275-280	207 238		1.49	< 0.2	5	40	0.5	< 2	6.83	< 0.5	50	288	66	6.58	< 10	< 1	0.04	< 10	3.38	128
NG88-7 280-285	207 238		1.12	< 0.2	5	70	< 0.5	< 2	6.63	< 0.5	34	143	79	5.05	< 10	< 1	0.13	< 10	2.88	911
MG88-7 285-290	207 238		0.73	< 0.2	< 5	110	< 0.5	6	4.40	< 0.5	18	32	32	3.31	< 10	< 1	0.21	< 10	1.75	551
WG88-7 290-295	207 238		_	< 0.2	< 5	100	< 0.5	4	4.93	3.5	15	56	61	2.94	< 10	< !	0.22	< 10	2.23	443
WG88-7 295-300	207 238	₹ 0.002	0.78	< 0.2	< 5	140	< 0.5	10	5.59	< 0.5	10	17	22	2.07	< 10	< 1	0.29	< 10	3.05	301
NG88-7 300-305	207 238			< 0.2	< 5		< 0.5	2	6.47	< 0.5	7	19	12	2.08	< 10	< 1	0.17	< 10	3.15	518
MG88-7 305-310	207 238			< 0.2	< 5	120	< 0.5	6	4.58	< 0.5	10	19	29	2.03	< 10	< 1	0.14	< 10	2.47	307
AG88-7 310-315	207 238		-	< 0.2 < 0.2	< 5 < 5	140 100	< 0.5 < 0.5	- 6	4.00 5.37	< 0.5 < 0.5	8 9	19 27	18 23	2.00	< 10	< !	0.21	< 10	2.09	377
AG88-7 315-320 AG88-7 320-325	207 238 207 238			< 0.2	< 5		< 0.5	< 2 8	4.47	1.0	13	50	91	2.26 2.42	< 10 < 10	< 1 < 1	0.17 0.24	< 10 < 10	2.72 2.17	434 375
AG88-7 325-330	207 238	0 002	0.74	< 0.2	< 5	140	< 0.5	4	5.61	4.5	14	46	144	3.10	< 10	< 1	0.25	< 10	1.89	425
WG88-7 330-335	207 238		1.00		35	110	< 0.5	< 2	8.69	0.5	35	78	85	5.04	< 10	ì	0.15	< 10	3.09	908
			1.36	< 0.2	< 5	170	< 0.5	4	5.33	< 0.5	18	48	47	3.51	< 10	2	0.19	< 10	1.67	5 5 8
	207 238			< 0.2	5	270	< 0.5	< 2	3.71	< 0.5	20	59	67	3.81	< 10	< 1	0.25	< 10	1.92	560
WG88-7 345-350	207 238	< 0.002	2.97	< 0 .2	< 5	110	< 0.5	< 2	2.54	< 0.5	41	123	58	5.55	< 10	< 1	0.17	30	2.13	1170
NG88-7 350-355	207 238	< 0.002	2.09	< 0.2	< 5	70	< 0.5	4	1.30	< 0.5	28	39	53	5.63	< 10	1	0.16	30	1.12	943
AG88-7 355-360	207 238		1.55	< O.2	< 5	80	< 0.5	2	1.43	< 0.5	31	49	53	5.67	< 10	< 1	0.15	40	1.33	1245
	207 238		1.91	< O.2	< 5	100	0.5	2	0.57		102	36	16	6.54	< 10	< 1	0.23	50	1.19	1210
WG88-7 365-370			2.25	0.2	< 5	70	< 0.5	< 2	0.75	< 0.5	48	43	18	5.06	10	< 1	0.18	40	1.27	889
AG88-7 370-375	207 238	C 0.002	2.22	0.2	< 5	60	< 0.5	< 2	0.73	< 0.5	3.5	40	59	6.60	10	< 1	0.17	40	1.17	986
NG88-7 375-380	207 238			< 0.2	< 5		< 0.5	< 2		< 0.5	30	38	53	5.64	10	< 1	0.12	40	1.24	1530
WG88-7 380-385	207 238		2.71	< 0.2	< 5	110	< 0.5	< 2	1.08	< 0.5	30	41	39	5.41	10	2	0.20	50	1.12	1025
WG88-7 385-390	207 238		2.47	0.4	< 5	50	< 0.5	< 2		< 0.3	32 20	40 40	36 22	5.35 4.65	10 10	< 1 2	0.17	50 50	l .05 0.96	745 689
WG88-7 390-395	207 238		2.30	< 0.2 < 0.2	< 5 < 5	30 30	< 0.5 < 0.5	< 2 < 2	1.01	< 0.5 < 0.5	23	40	27	4.03	10	< 1	0.11 0.11	40	0.98	735
MG88-7 398-400	# AU/ 1438	r v.w.	4.37	~ ∪. ∠	_ ,	J U	~ • •	~ 4	1.01	~ 0.3	23	7,	A /	7.77	10	~ .	V. 11	70	V.70	133

CERTIFICATION:

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. :
Tot. Pages:
Date :29-NOV-88
Invoice #:I-8827725
P.O. # :NONE

CERTIFICATE OF ANALYSIS A8827725

T T		1				· · · · · · · · · · · · · · · · · · ·											
SAMPLE	PREI	P	Mo	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	Ti	U	v	w	Zn	
DESCRIPTION	CODI	E	ppm	96	ppm	blu	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	ppm	
MG88-7 225-230	207 2	238	1	0.01	155	540	< 2	5	20	135	0.08	< 10	< 10	131	30	76	
	207 2		1	0.01	1 58	740	< 2	5	20	109	0.08	< 10	< 10	141	30	86	
	207 2		< 1	0.01	135	470	4	10	15	144	0.03	< 10	< 10	117	30	80	
WG88-7 240-245 WG88-7 245-250			< 1 1	0.01 0.02	197 166	800 730	< 2	5 5	18 16	118 125	0.37 0.30	< 10 < 10	< 10 < 10	184 157	40 25	93 75	
WG68/ 243-230	207	.,.		<u> </u>		7.50					0.30						
	207 2		< 1	0.02	1 39	910	< 2	< 5	13	109	0.22	< 10	< 10	154	30	80	
MG88-7 255-260			< 1	0.04	75	1150	< 2	5	6	99	0.45	< 10	< 10	101	15	69	
NG88-7 260-265			1	0.08	70	1070	< 2	< 5	.6	122	0.62	< 10	< 10	108	10	62	
MG88-7 265-270 MG88-7 270-275			< 1 < 1	0.03 0.01	98 93	1130 980	< 2 2	< 5 < 5	12 26	106 109	0.42 0.08	< 10 < 10	< 10 < 10	134 160	20 15	79 104	
MU88-7 270-273	20, 2	· , ,		0.01	73	760				109	0.00	< 10	~ 10	100		104	
WG88-7 275-280	207 2	238	< 1	0.01	2 59	9 50	4	5	24	142	0.11	< 10	< 10	141	30	114	
MG88-7 280-285			< 1	0.01	162	1040	2	5	13	124	0.05	< 10	< 10	78	25	124	
WG88-7 285-290			< 1	0.01	53	620	10	< 5	3	112	0.02	< 10	< 10	20	15	90	
MG88-7 290-295 NG88-7 295-300			18 < 1	0.01 0.01	100 26	3880 460	116 10	< 5 < 5	3 2	170 161	0.07 0.01	< 10 < 10	10 < 10	128 15	10 10	278 49	
MG88-7 293-300	207	, , , , , , , , , , , , , , , , , , ,	` '	0.01	20	400	10		4	101	0.01	< 10	< 10	1.5	10	49	
WG88-7 300-305	207 2	238	2	0.01	15	230	12	< 5	3	105	< 0.01	< 10	< 10	15	5	43	
WG88-7 305-310			< 1	0.01	20	300	10	5	2		< 0.01	< 10	< 10	14	5	46	
WG88-7 310-315			< 1	0.01	24	410	4	< 5	2	71	0.01	< 10	< 10	12	5	56	
WG88-7 315-320			< 1 2	0.01 0.02	28 49	420 2930	4 20	< 5	2	135 158	0.07 0.14	< 10 < 10	< 10 < 10	21 42	< 5 10	60 146	
MG88-7 320-325	207 2	′"	2	0.02	49	2930	20	- ,	,	136	0.14	< 10	< 10	74	10	140	
MG88-7 325-330	207 2	238	11	0.01	80	8080	20	5	2	199	0.06	< 10	< 10	80	10	508	
WG88-7 330-335			2	0.01	125	3000	< 2	5	5	266	0.02	< 10	< 10	43	15	194	
WH88-7 335-340			1	0.01	48	730	< 2	5	. 3 .	171	0.12	< 10	< 10	29	10	97	
MG88-7 340-345 MG88-7 345-350			4	0.01 0.01	50 82	1390 740	1 2 < 2	< 5 < 5	3 7	139 95	0.03 0.02	< 10 < 10	< 10 < 10	53 4 7	15 15	100 113	
MU88-7 343-330	207	,,,	•	0.01	02	740				7,7	0.02	~ 10	\ 10		.,	113	
MG88-7 350-355	207 2	238	1	0.01	42	730	< 2	< 5	5	64	0.03	< 10	< 10	36	15	92	
MG88-7 355-360			2	0.01	51	820	14	< 5	6	54	0.02	< 10	< 10	31	10	112	
WG88-7 360-365			2	0.01	59	620	< 2	< 5	5	28 41	0.01	< 10 < 10	< 10	26 29	5 5	120 104	
MG88-7 365-370 MG88-7 370-375			1 1	0.01 0.01	52 52	590 530	14 8	< 5 < 5	5 6	41	0.02 0.04	< 10	< 10 < 10	41	< 5	103	
		I		J.UI			•	~ <i>,</i>	····					~.			
WG88-7 375-380			2	0.01	42	630	1 2	< 5	6	107	0.02	< 10	< 10	31	10	113	
MG88-7 380-385			2	0.01	47	490	14	5	5	49	0.02	< 10	< 10	26	< 5	105	
MG88-7 385-390			< 1	0.01	46	450	16	< 5	4		< 0.01	< 10 < 10	< 10 < 10	20 15	< 5	105 87	
MG88-7 390-395 MG88-7 398-400	-		2 1	0.01 0.01	37 43	460 450	10 22	< 5 < 5	3		< 0.01 < 0.01	< 10	< 10	17	10	8 / 8 8	
7 370-400							~ ~	· · · · · · · · · · · · · · · · · · ·	<i>-</i>								
]																	
		- 1															
		ı															_

CERTIFICATION:

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLEMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. 1-A

Tot. Pag Date : 30-NOV-88 Invoice #: I-8827802 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8827802

MC68-8 130-110 207 238 < 0.002 1.00	SAMPLE DESCRIPTI	ЮИ	PRE		Au oz/T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Ma ppm
MGRI-R 60-65 207 218 C 0.002 0.83 0.4 C 5 370 C 0.5 C 2 2.79 11.0 9 28 79 1.45 C 10 3 0.27 T 10 0.13 MGRI-R 67-70-77 207 218 C 0.002 0.93 0.8 30 380 C 0.5 C 2 2.22 14.8 1.0 11 109 1.79 C 10 C 1 0.34 20 0.11 MGRI-R 67-70-77 207 218 C 0.002 0.93 0.8 30 380 C 0.5 C 2 2.22 14.8 1.10 13 26 86 2.44 C 10 2 0.31 C 10 0.32 MGRI-R 10-8-15 207 218 C 0.002 1.18 0.8 5 380 C 0.5 C 2 2.40 17.0 10 31 3 2 2 2 2 2 2 2 2 2	WG88-8 50-5					1.62	< 0.2	5	290	< 0.5	< 2	7.48	< 0.5	16	34	20	2.55	< 10	< 1	0.19	< 10	1.15	486
MG88=8 75-80 207 238 < 0.002		-	- 1															_					522
MCRE-1 70-75 207 238 0.002 0.93 0.8 30 380 0.5 0.5 0.2 2.91 13.0 13 26 86 2.44 0.10 2 0.31 0.0 0.52 MCRE-2 75-80 207 238 0.002 1.04 1.0 5 390 0.5 0.2 2.40 17.0 10 31 91 2.41 0.0 0.10 2.0 0.79 MCRE-2 80-81 207 238 0.002 0.18 0.34 0.35																			-				180
MC88-8 150-105 207 218 < 0.002 1.04 1.0 5 390 < 0.5 <2 2.40 17.0 10 33 93 2.41 < 10 < 1 0.32 20 0.79 MC88-8 80-85 207 218 < 0.002 1.18 0.8 5 380 < 0.5 <2 2.40 17.0 10 33 93 2.41 < 10 < 1 0.32 20 0.79 MC88-8 80-85 207 218 < 0.002 1.18 0.8 5 380 < 0.5 <2 2.40 17.0 10 33 93 2.41 < 10 < 1 0.32 20 0.79 MC88-8 80-85 207 218 < 0.002 1.18 0.8 5 380 < 0.5 < 2 2.40 17.0 10 41 87 2.62 < 10 < 1 0.32 10 1.16 < 0.10 27 10 1.49 MC88-8 80-95 207 218 < 0.002 0.99 0.4 < 5 370 < 0.5 < 2 4.09 11.5 10 41 87 2.62 < 10 < 1 0.32 10 1.16 < 0.1 0.27 10 1.49 MC88-8 90-95 207 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 2.90 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.002 0.99 < 0.7 218 < 0.								-								_							110
MG88-8 109-100 207 218 < 0.002 0.99	WG88-8 70-7	,	207	238	C 0.002	0.93	0.8	30	380	< 0.5	< 2	4.91	13.0	1.3	26	86	2.44	< 10	2	0.31	< 10	0.52	190
MCR8=8 85-90 207 238 < 0.002 0.99 0.4 < 5 370 < 0.5 < 2 4.09 11.5 10 36 85 2.50 < 10 < 1 0.27 10 1.49 MCR8=8 85-100 207 238 < 0.002 0.99 < 0.2 20 320 < 0.5 < 2 4.27 4.0 11 42 21 2.44 < 10 < 1 0.26 < 10 0.26 < 10 1.49 MCR8=8 MCR8								-								-					_		144
MC88-8 90-95								-										_					163
MCRE-8 100-105 207 238 < 0.002 0.99 < 0.2 35 430 < 0.5 < 2 4.27 4.0 11 42 21 2.44 < 10 < 1 0.30 < 10 1.18 MCRE-8 100-105 207 238 < 0.002 0.90 < 0.5 < 2 0.20 30 < 0.5 4 5.51 2.0 10 39 36 2.55 < 10 < 1 0.26 < 10 1.59 MCRE-8 110-115 207 238 < 0.002 1.00 0.4 10 350 < 0.5 < 2 4.03 24.5 10 45 10 39 36 2.55 < 10 < 1 0.26 < 10 1.59 MCRE-8 110-115 207 238 < 0.002 1.00 0.4 10 350 < 0.5 < 2 4.03 24.5 10 45 10 39 36 2.55 < 10 < 1 0.27 < 10 1.79 MCRE-8 110-115 20 207 238 < 0.002 1.15 < 0.2 30 250 < 0.3 5 < 2 4.03 24.5 10 45 105 2.55 < 10 < 1 0.27 < 10 1.73 MCRE-8 120-125 207 238 < 0.002 1.15 < 0.2 30 250 < 0.3 5 < 2 4.18 3.0 10 43 55 2.77 < 10 < 1 0.27 < 10 1.13 MCRE-8 130-135 207 238 < 0.002 1.00 < 0.4 10 350 < 0.5 < 2 4.18 3.0 10 43 55 2.77 < 10 < 1 0.18 < 10 1.57 MCRE-8 130-135 207 238 < 0.002 1.10 < 0.2 25 150 < 0.5 < 2 3.11 6.0 10 43 55 2.77 < 10 < 1 0.18 10 1.57 MCRE-8 130-135 207 238 < 0.002 1.10 < 0.2 25 150 < 0.5 < 2 3.11 6.0 10 43 55 2.77 < 10 < 1 0.18 10 1.57 MCRE-8 130-145 207 238 < 0.002 1.10 < 0.2 25 150 < 0.5 < 2 3.11 6.0 10 43 55 2.77 < 10 < 1 0.18 10 1.57 MCRE-8 135-140 207 238 < 0.002 1.12 2.8 10 220 < 0.5 4 4.8 13.0 10 43 55 2.77 < 10 < 1 0.18 10 1.51 MCRE-8 135-140 207 238 < 0.002 1.17 2.8 8 < 5 270 < 0.5 4 4.88 13.0 10 43 55 2.77 < 10 < 1 0.18 10 1.31 MCRE-8 145-150 207 238 < 0.002 1.17 2.8 8 < 5 270 < 0.5 4 4.88 13.0 14 42 2.2 2.83 < 0.00 < 1 0.2 2.9 50 1.11 MCRE-8 155-160 207 238 < 0.002 2.2 6 < 0.2 30 140 < 0.5 < 2 2.47 2.5 16 40 71 2.59 < 10 < 1 0.2 2.9 50 1.11 MCRE-8 155-160 207 238 < 0.002 2.2 6 < 0.2 20 10 10 0.5 < 2 2.0 0.0 0.5 35 35 36 40 0.0 1 0.2 1.2 0.2 10 0.2 1.1 0.1 1.1 0.1 1.1 MCRE-8 165-170 207 238 < 0.002 2.2 6 < 0.2 20 10 10 0.0 5 < 2 0.90 0.5 35 35 36 6 6 6 6.2 2 < 10 2 0.2 9 50 1.1 1.4 MCRE-8 165-170 207 238 < 0.002 2.2 6 < 0.2 25 110 < 0.5 < 2 0.0 5 < 2 0.0 5 < 2 0.0 5 27 40 31 5.0 < 0.0 1 0.2 1 0.2 1 0.1 1.1 0.1 1.1 1.1 1.1 1.1 1.1 1.1 1																							236
MC88-8 100-105 207 238 < 0.002 0.93 < 0.2 20 320 < 0.5 4 5.51 2.0 10 39 36 2.55 < 10 < 1 0.26 < 10 1.59 MC88-8 105-110 207 238 < 0.002 0.80 < 0.2 10 290 < 0.5 < 2 5.92 3.0 10 39 73 2.89 < 10 < 1 0.27 < 10 1.79 MC88-8 115-120 207 238 < 0.002 1.00 0.4 10 330 < 0.05 < 2 4.03 12 30 24.5 10 45 105 2.55 < 10 < 1 0.27 < 10 1.79 MC88-8 115-120 207 238 < 0.002 1.15 < 0.2 30 250 < 0.5 2 4.41 1.5 14 39 58 2.95 < 10 1 0.27 < 10 1.73 MC88-8 125-130 207 238 < 0.002 1.10 0.2 25 180 < 0.5 < 2 4.01 1.5 14 39 58 2.95 < 10 1 0.27 < 10 1.73 MC88-8 135-135 207 238 < 0.002 1.10 0.2 25 180 < 0.5 < 2 3.13 6.0 10 43 81 2.77 < 10 < 1 0.18 10 1.51 MC88-8 136-135 207 238 < 0.002 1.12 2.8 10 220 < 0.5 < 2 1.63 10.0 11 42 67 2.31 < 10 < 1 0.24 20 0.54 MC88-8 146-145 207 238 < 0.002 1.17 2.8 < 5 270 0.5 4 4.38 9.0 11 53 65 2.18 < 10 < 1 0.21 20 21 1.15 MC88-8 155-155 207 238 < 0.002 2.36 < 0.0 3 140 < 0.5 < 2 1.09 < 0.5 < 2 1.09 < 0.5 40 48 101 6.65 < 10 < 1 0.21 40 1.31 MC88-8 155-160 207 238 < 0.002 2.36 < 0.2 2.77 < 0.2 30 130 < 0.5 < 2 2.0 9.0 0.5 3 30 6.0 0.0 1 1 33 65 2.18 < 10 < 1 0.21 40 20 1.15 MC88-8 155-160 207 238 < 0.002 2.36 < 0.02 2.37 < 0.5 30 140 < 0.5 < 2 2.10 9 < 0.5 40 48 101 6.65 < 10 < 1 0.21 40 20 1.15 MC88-8 155-160 207 238 < 0.002 2.36 < 0.2 30 140 < 0.5 < 2 2.09 0.5 3 30 36 6.0 68 6.22 < 10 2 0.29 90 1.11 MC88-8 155-160 207 238 < 0.002 2.24 < 0.2 23 10 0.05 < 0.5 < 2 2.09 0.5 3 35 36 6.0 < 1 0.15 1.31 MC88-8 155-160 207 238 < 0.002 2.38 < 0.002 2.38 < 0.002 2.38 < 0.002 2.38 < 0.002 2.38 < 0.002 2.39 < 0.00 0.5 3 35 36 6.0 68 6.22 < 10 2 0.29 90 1.11 MC88-8 155-160 207 238 < 0.002 2.38 < 0.002 2.38 < 0.002 2.38 < 0.002 2.38 < 0.002 2.39 < 0.00 0.5 3 35 36 6.0 68 6.22 < 10 2 0.29 90 1.11 MC88-8 155-160 207 238 < 0.002 2.38 < 0.002 2.38 < 0.002 2.38 < 0.002 2.38 < 0.002 2.38 < 0.002 2.38 < 0.002 2.38 < 0.002 2.38 < 0.002 2.38 < 0.002 2.39 < 0.00 0.5 3 35 36 6.0 60 0.2 3 30 10 0.00 < 0.5 < 2 0.00 0.5 3 35 36 6.0 60 0.00 0.00 0.00 0.00 0.00 0.00							-														_		323 290
MC68-8 105-110 207 238 < 0.002 1.00 0.4 10 390 < 0.5 < 2 5.92 3.0 10 39 73 2.89 < 10 < 1 0.27 < 10 1.79 (MC68-8 110-115) 207 238 < 0.002 1.05	100		207	2 10	0.003				120									- 10					
MCGR-8 130-152 207 238 < 0.002 1.00 0.4 10 350 < 0.5 < 2 4.00 24.5 10 45 105 2.55 < 10 < 1 0.35 < 10 1.20 MCGR-8 113-102 207 238 < 0.002 1.05 < 0.2 30 180 < 0.5 2 4.41 1.5 14 39 58 2.95 < 10 < 1 0.127 < 10 1.27 < 10 1.27 MCGR-8 125-110 207 238 < 0.002 1.05 < 0.2 30 180 < 0.5 2 4.41 1.5 14 39 58 2.95 < 10 < 1 0.18 < 10 1.57 MCGR-8 125-120 207 238 < 0.002 1.06 < 0.2 30 180 < 0.5 2 4.18 3.0 10 43 55 2.77 < 10 < 1 0.18 < 10 1.57 MCGR-8 125-130 207 238 < 0.002 1.10 0.2 25 180 < 0.5 2 4.18 3.0 10 43 55 2.77 < 10 < 1 0.18 < 10 1.57 MCGR-8 125-130 207 238 < 0.002 1.10 0.2 25 180 < 0.5 < 2 3.13 6.0 10 43 55 2.77 < 10 < 1 0.18 10 1.57 MCGR-8 135-140 207 238 < 0.002 1.12 2.8 10 220 < 0.5 2 6.89 13.0 11 42 67 2.31 < 10 < 1 0.24 20 0.54 MCGR-8 135-140 207 238 < 0.002 1.12 2.8 10 220 < 0.5 2 6.89 13.0 14 54 122 2.83 < 10 < 1 0.22 .83 < 10 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1 0.23 < 1											•				•								3 54
MCG8-8 115-120 207 218 < 0.002 1.15 < 0.2 30 250 < 0.5 2 4.41 1.5 14 39 58 2.95 < 10 1 0.27 < 10 1.73 MCG8-8 120-122 207 218 < 0.002 1.06 < 0.2 30 180 < 0.5 < 2 4.18 3.0 10 43 55 2.77 < 10 < 1 0.18 < 10 1.57 MCG8-8 120-130 207 218 < 0.002 1.06 < 0.2 30 180 < 0.5 < 2 3.13 6.0 10 43 55 2.77 < 10 < 1 0.18 < 10 1.57 MCG8-8 120-130 207 218 < 0.002 1.10 0.2 25 180 < 0.5 < 2 1.61 10.0 11 42 67 2.11 < 10 < 1 0.24 20 0.54 MCG8-8 130-135 207 218 < 0.002 1.12 2.8 10 220 < 0.5 < 2 6.89 13.0 11 42 67 2.11 < 10 < 1 0.24 20 0.54 MCG8-8 130-145 207 218 < 0.002 1.17 2.8 < 5 270 0.5 4 4.38 3.0 11 45 41 22 2.83 < 10 < 1 0.21 0.21 1 MCG8-8 145-150 207 238 < 0.002 0.97 0.6 30 150 < 0.5 < 2 2.47 2.5 16 40 71 2.59 < 10 < 1 0.28 < 10 1.36 MCG8-8 150-155 207 238 < 0.002 2.26 < 0.2 30 140 < 0.5 < 2 2.10 0.5 < 2 2.47 2.5 16 40 71 2.59 < 10 < 1 0.21 40 1.31 MCG8-8 150-165 207 238 < 0.002 2.27 < 0.2 30 140 < 0.5 < 2 2.09 0.5 33 36 68 6.22 < 10 2.02 2.26 < 0.2 30 140 < 0.5 < 2 2.09 0.5 33 36 68 6.22 < 10 2.02 2.28 50 1.11 MCG8-8 150-165 207 238 < 0.002 2.27 < 0.2 30 130 < 0.5 < 2 1.00 < 0.5 < 2 1.00 < 0.5 36 < 0.5 36 < 0.2 30 10 < 0.5 < 2 1.00 < 0.5 36 < 0.2 30 10 < 0.5 < 2 1.00 < 0.5 36 < 0.2 30 10 < 0.5 < 0.5 36 < 0.2 30 10 < 0.5 < 0.5 36 < 0.2 30 10 < 0.5 < 0.5 36 < 0.2 30 10 < 0.5 < 0.5 36 < 0.2 30 10 < 0.5 < 0.5 36 < 0.2 30 10 < 0.5 < 0.5 36 < 0.2 30 10 < 0.5 < 0.5 36 < 0.5 36 < 0.2 30 10 < 0.5 < 0.5 36 < 0.00 < 0.5 36 < 0.00 < 0.5 36 < 0.00 < 0.5 36 < 0.00 < 0.5 36 < 0.00 < 0.5 36 < 0.00 < 0.5 36 < 0.00 < 0.5 36 < 0.00 < 0.5 36 < 0.00 < 0.5 36 < 0.00 < 0.00 < 0.5 36 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 <		_																					427
MCG8-8 120-125 207 238 < 0.002															-							-	246 315
MCSB-8 139-140 207 238 < 0.002 0.64																			_			_	418
MCSB-B 135-140 107 218 < 0.002 0.64	WG88-8 125-	-130	207	238	< 0.002	1.10	0.2	25	180	< 0.5	< 2	3.13	6.0	10	43	81	2.77	< 10	< 1	0.18	10	1 51	3 5 2
MG88-8 140-145 207 238 < 0.002							-																197
MG88-8 140-145 207 238 < 0.002 1.17 2.8 < 5 270 0.5 4 4.38 9.0 11 53 65 2.18 < 10 < 1 0.28 < 10 1.36 MG88-8 145-150 207 238 < 0.002 0.97 0.6 30 150 < 0.5 < 2 2.47 2.5 16 40 71 2.59 < 10 < 1 0.14 20 1.15 MG88-8 150-155 207 238 < 0.002 2.36 < 0.2 30 140 < 0.5 < 2 1.09 < 0.5 40 48 101 6.65 < 10 < 1 0.21 40 1.31 MG88-8 155-160 207 238 < 0.002 2.27 < 0.2 30 130 < 0.5 < 2 0.90 0.5 35 36 68 6.22 < 10 < 1 0.21 40 1.31 MG88-8 155-160 207 238 < 0.002 2.44 < 0.2 25 110 < 0.5 < 2 1.09 < 0.5 35 36 68 6.22 < 10 < 1 0.28 50 1.11 MG88-8 150-150 207 238 < 0.002 2.44 < 0.2 25 110 < 0.5 < 2 1.00 < 0.5 36 42 65 6.51 < 10 < 1 0.28 50 1.11 MG88-8 170-175 207 238 < 0.002 2.86 < 0.2 25 110 < 0.5 < 2 0.74 < 0.5 27 40 31 5.72 < 10 < 1 0.36 50 1.12 MG88-8 170-175 207 238 < 0.002 2.81 < 0.2 15 80 < 0.5 < 2 0.55 < 0.5 26 42 24 5.84 < 10 < 1 0.36 50 1.12 MG88-8 175-180 207 238 < 0.002 2.81 < 0.2 15 80 < 0.5 < 2 0.65 < 0.5 26 42 24 5.84 < 10 < 1 0.31 50 1.22 MG88-8 185-190 207 238 < 0.002 2.72 < 0.2 5 130 < 0.5 < 2 0.65 < 0.5 26 42 24 5.84 < 10 < 1 0.31 50 1.22 MG88-8 185-190 207 238 < 0.002 2.72 < 0.2 5 130 < 0.5 < 2 0.65 < 0.5 21 41 25 5.67 < 10 < 1 0.34 50 1.09 MG88-8 135-190 207 238 < 0.002 2.72 < 0.2 5 130 < 0.5 < 2 0.60 < 0.5 22 1.18 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5									220														547
MG88-8 150-155 207 238 < 0.002 2.36 < 0.2 30 140 < 0.5 < 2 1.09 < 0.5 40 48 101 6.65 < 10 < 1 0.21 40 1.31 MG88-8 155-160 207 238 < 0.002 2.27 < 0.2 30 130 < 0.5 < 2 0.90 0.5 35 36 68 6.22 < 10 2 0.29 50 1.11 MG88-8 160-165 207 238 < 0.002 2.44 < 0.2 25 110 < 0.5 < 2 0.90 0.5 36 42 65 6.51 < 10 < 1 0.28 50 1.14 MG88-8 165-170 207 238 < 0.002 2.58 < 0.2 30 110 < 0.5 < 2 0.96 < 0.5 29 40 39 5.66 < 10 < 1 0.32 50 1.12 MG88-8 170-175 207 238 < 0.002 2.58 < 0.2 25 110 < 0.5 < 2 0.96 < 0.5 27 40 31 5.72 < 10 < 1 0.36 50 1.12 MG88-8 180-185 207 238 < 0.002 2.58 < 0.2 25 110 < 0.5 < 2 0.65 < 0.5 27 40 31 5.72 < 10 < 1 0.31 50 1.22 MG88-8 180-185 207 238 < 0.002 2.58 < 0.2 20 130 < 0.5 < 2 0.65 < 0.5 26 42 24 5.84 < 10 < 1 0.31 50 1.22 MG88-8 180-185 207 238 < 0.002 2.75 < 0.2 20 130 < 0.5 < 2 0.65 < 0.5 26 42 24 5.84 < 10 < 1 0.31 50 1.22 MG88-8 180-185 207 238 < 0.002 2.75 < 0.2 20 130 < 0.5 < 2 0.65 < 0.5 26 42 24 5.84 < 10 < 1 0.31 50 1.22 < 0.688-8 180-185 207 238 < 0.002 2.75 < 0.2 5 130 < 0.5 < 2 0.65 < 0.5 26 42 24 5.84 < 10 < 1 0.31 50 1.22 < 0.688-8 180-185 207 238 < 0.002 2.75 < 0.2 5 130 < 0.5 < 2 0.65 < 0.5 26 42 24 5.84 < 10 < 1 0.31 50 1.22 < 0.688-8 180-185 207 238 < 0.002 2.75 < 0.2 5 130 < 0.5 < 2 1.18 < 0.5 27 48 27 5.60 < 10 < 1 0.47 50 1.05 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0	WG88-8 140-	-145	207	238	< 0.002	1.17	2.8	< 5	270	0.5	4	4.38	9.0	11	53	65	2.18	< 10	< 1		< 10		336
#G88-8 155-160 207 238 < 0.002 2.27 < 0.2 30 130 < 0.5 < 2 0.90 0.5 35 36 68 6.22 < 10 2 0.29 50 1.11 #G88-8 160-165 207 238 < 0.002 2.44 < 0.2 25 110 < 0.5 < 2 0.90 0.5 36 42 65 6.51 < 10 < 1 0.28 50 1.14 #G88-8 155-170 207 238 < 0.002 2.58 < 0.2 30 110 < 0.5 < 2 0.96 < 0.5 29 40 39 5.66 < 0.5 < 0.002 2.58 < 0.002 2.58 < 0.002 2.66 < 0.2 25 110 < 0.5 < 2 0.96 < 0.5 27 40 31 5.72 < 10 < 1 0.32 50 1.12 #G88-8 170-175 207 238 < 0.002 2.66 < 0.2 25 110 < 0.5 < 2 0.65 < 0.5 27 40 31 5.72 < 10 < 1 0.36 50 1.12 #G88-8 175-180 207 238 < 0.002 2.81 < 0.2 15 80 < 0.5 < 2 0.65 < 0.5 26 42 24 5.84 < 10 < 1 0.31 50 1.22 #G88-8 185-190 207 238 < 0.002 2.72 < 0.2 5 330 < 0.5 < 2 1.18 < 0.5 27 48 27 5.60 < 10 < 1 0.31 50 1.22 #G88-8 190-195 207 238 < 0.002 2.72 < 0.2 5 330 < 0.5 < 2 1.18 < 0.5 27 48 27 5.60 < 10 < 1 0.31 50 1.22 #G88-8 190-195 207 238 < 0.002 2.66 < 0.4 10 100 < 0.5 < 2 1.18 < 0.5 21 41 25 5.67 < 10 < 1 0.34 50 1.09 #G88-8 200-205 207 238 < 0.002 2.66 0.2 5 80 < 0.5 < 2 0.66 < 0.5 22 45 31 5.34 < 10 < 1 0.32 50 1.00 #G88-8 200-210 207 238 < 0.002 2.66 0.2 5 80 < 0.5 < 2 0.66 < 0.5 22 45 31 5.34 < 10 < 1 0.32 50 1.00 #G88-8 210-215 207 238 < 0.002 2.17 0.2 10 70 < 0.5 < 2 1.06 < 0.5 15 37 44 4.78 < 10 < 1 0.21 50 0.93 #G88-8 210-215 207 238 < 0.002 2.17 0.2 10 70 < 0.5 < 2 1.06 < 0.5 22 45 31 5.34 < 10 < 1 0.21 50 0.93 #G88-8 210-215 207 238 < 0.002 2.17 0.2 10 70 < 0.5 < 2 1.06 < 0.5 22 45 < 0.5 15 37 < 0.00	WG88-8 145-	-150	207	238	< 0.002	0.97	0.6	30	1 50	< 0.5	< 2	2.47	2.5	16	40	71	2.59	< 10	< 1	0.14	20	1.15	281
#G88-8 160-165 207 238 < 0.002	WG88-8 150-	-155	207	238	< 0.002	2.36	< 0.2	30	140	< 0.5	< 2	1.09	< 0.5	40	48	101	6.65	< 10	< 1	0.21	40	1.31	454
#G88-8 165-170 207 238 < 0.002 2.58 < 0.2 30 110 < 0.5 < 2 0.96 < 0.5 29 40 39 5.66 < 10 < 1 0.32 50 1.12 #G88-8 170-175 207 238 < 0.002 2.66 < 0.2 25 110 < 0.5 < 2 0.74 < 0.5 27 40 31 5.72 < 10 < 1 0.36 50 1.12 #G88-8 175-180 207 238 < 0.002 2.81 < 0.2 15 80 < 0.5 < 2 0.65 < 0.5 26 42 24 5.84 < 10 < 1 0.31 50 1.22 #G88-8 180-185 207 238 < 0.002 2.95 < 0.2 20 130 < 0.5 < 2 0.68 < 0.5 26 46 26 5.48 < 10 < 1 0.31 50 1.22 #G88-8 180-195 207 238 < 0.002 2.72 < 0.2 5 130 < 0.5 < 2 0.68 < 0.5 26 46 26 5.48 < 10 < 1 0.47 50 1.05 #G88-8 195-200 207 238 < 0.002 2.58 0.4 5 90 < 0.5 < 2 1.01 < 0.5 21 41 25 5.67 < 10 < 1 0.34 50 1.09 #G88-8 205-210 207 238 < 0.002 2.17 0.2 10 70 < 0.5 < 2 0.60 < 0.5 18 47 24 5.62 < 10 < 1 0.32 50 1.04 #G88-8 215-220 207 238 < 0.002 2.17 0.2 10 70 < 0.5 < 2 1.06 < 0.5 15 37 44 4.78 < 10 < 1 0.28 50 1.07 #G88-8 215-220 207 238 < 0.002 2.18 0.2 15 80 < 0.5 < 2 1.06 < 0.5 15 37 44 4.78 < 10 < 1 0.21 50 0.93 #G88-8 215-220 207 238 < 0.002 2.18 0.2 2.18 0.2 ≤ 5 50 < 0.5 < 2 1.06 < 0.5 15 37 44 4.78 < 10 < 1 0.21 50 0.93 #G88-8 225-230 207 238 < 0.002 2.40 < 0.2 440 60 < 0.5 < 2 1.38 < 0.5 16 35 29 5.05 < 10 < 1 0.15 40 1.09 #G88-8 235-240 207 238 < 0.002 2.47 < 0.2 10 110 < 0.5 < 2 1.45 < 0.5 21 44 39 5.38 < 10 < 1 0.24 40 1.25 #G88-8 235-240 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 13 43 21 4.46 < 10 < 1 0.19 30 1.17 #G88-8 235-240 207 238 < 0.002 2.49 < 0.2 40 80 < 0.5 < 2 2.48 < 0.5 13 43 21 4.46 < 10 < 1 0.19 30 1.17 #G88-8 235-240 207 238 < 0.002 2.49 < 0.2 40 80 < 0.5 < 2 2.48 < 0.5 13 43 21 4.46 < 10 < 1 0.19 30 1.17 #G88-8 240-245 207 238 < 0.002 2.41 < 0.2 < 5 100 < 0.5 < 2 0.59 < 0.5 22 4.48 < 0.5 13 43 21 4.46 < 10 < 1 0.21 < 0.01 < 10 0.4	WG88-8 155-	-160	207	238	< 0.002	2.27	< 0.2	30	130	< 0.5	< 2	0.90	0.5	35	36	68	6.22	< 10	2	0.29	50	1.11	422
MG88-8 170-175 207 238 < 0.002 2.66 < 0.2 25 110 < 0.5 < 2 0.74 < 0.5 27 40 31 5.72 < 10 < 1 0.36 50 1.12 MG88-8 175-180 207 238 < 0.002	WG88-8 160-					2.44			110							65				0.28	50	1.14	502
MG88-8 175-180 207 238 < 0.002 2.81 < 0.2 15 80 < 0.5 < 2 0.65 < 0.5 26 42 24 5.84 < 10 < 1 0.31 50 1.22					•						_				-								494
MG88-8 180-185 207 238 < 0.002 2.95 < 0.2 20 130 < 0.4 < 2 0.68 < 0.5 26 46 26 5.48 < 10 < 1 0.52 50 1.10 MG88-8 185-190 207 238 < 0.002 2.72 < 0.2 5 130 < 0.5 < 2 1.18 < 0.5 27 48 27 5.60 < 10 < 1 0.47 50 1.05 MG88-8 190-195 207 238 < 0.002 2.61 0.4 10 100 < 0.5 < 2 1.01 < 0.5 21 41 25 5.67 < 10 < 1 0.34 50 1.09 MG88-8 195-200 207 238 < 0.002 2.58 0.4 5 90 < 0.5 < 2 0.62 < 0.5 22 45 31 5.34 < 10 < 1 0.32 50 1.04 MG88-8 205-210 207 238 < 0.002 2.17 0.2 10 70 < 0.5 < 2 1.06 < 0.5 18 47 24 5.62 < 10 < 1 0.28 50 1.07 MG88-8 205-210 207 238 < 0.002 2.18 0.2 < 5 50 < 0.5 < 2 1.06 < 0.5 15 38 16 4.77 < 10 < 1 0.21 50 0.93 MG88-8 215-220 207 238 < 0.002 2.18 0.2 < 5 50 < 0.5 < 2 1.14 < 0.5 15 38 16 4.77 < 10 < 1 0.20 50 0.93 MG88-8 215-220 207 238 < 0.002 2.40 < 0.2 440 60 < 0.5 < 2 1.38 < 0.5 16 35 29 5.05 < 10 < 1 0.15 40 1.09 MG88-8 220-225 207 238 < 0.002 2.77 < 0.2 10 110 < 0.5 < 2 1.45 < 0.5 21 44 39 5.38 < 10 < 1 0.24 40 1.25 MG88-8 225-230 207 238 < 0.002 2.77 < 0.2 10 110 < 0.5 < 2 1.45 < 0.5 21 44 39 5.38 < 10 < 1 0.24 40 1.25 MG88-8 225-230 207 238 < 0.002 2.77 < 0.2 10 110 < 0.5 < 2 1.45 < 0.5 21 44 39 5.38 < 10 < 1 0.19 30 1.17 MG88-8 230-235 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 15 36 19 4.07 < 10 < 1 0.21 < 0.02 1.00 < 10 0.20 < 0.00 < 0.5 < 0.5 < 0.2 1.45 < 0.5 20 42 29 4.95 < 10 < 1 0.21 < 0.00 < 1 0.21 < 0.00 < 0.5 < 0.5 10 < 1 0.21 < 0.00 < 0.5 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0.5 10 < 0	WG88-8 170-	-175	207	238	< 0.002	2.66	< 0.2	25	110	< 0.5	< 2	0.74	< 0.5	27	40	31	5.72	< 10	< i	0.36	50	1.12	503
WG88-8 190-195 207 238 < 0.002 2.61 0.4 10 100 < 0.5 < 2 1.18 < 0.5 27 48 27 5.60 < 10 < 1 0.47 50 1.05 WG88-8 190-195 207 238 < 0.002 2.61 0.4 10 100 < 0.5 < 2 1.01 < 0.5 21 41 25 5.67 < 10 < 1 0.34 50 1.09 WG88-8 195-200 207 238 < 0.002 2.58 0.4 5 90 < 0.5 < 2 0.62 < 0.5 22 45 31 5.34 < 10 < 1 0.32 50 1.04 WG88-8 200-205 207 238 < 0.002 2.17 0.2 10 70 < 0.5 < 2 1.06 < 0.5 15 37 44 4.78 < 10 < 1 0.21 50 0.93 WG88-8 210-215 207 238 < 0.002 2.18 0.2 < 5 50 < 0.5 < 2 1.06 < 0.5 15 37 44 4.78 < 10 < 1 0.21 50 0.93 WG88-8 210-225 207 238 < 0.002 2.18 0.2 < 5 50 < 0.5 < 2 1.38 < 0.5 15 38 16 4.77 < 10 < 1 0.20 50 0.93 WG88-8 210-225 207 238 < 0.002 2.40 < 0.2 440 60 < 0.5 < 2 1.38 < 0.5 16 35 29 5.05 < 10 < 1 0.15 40 1.09 WG88-8 220-225 207 238 < 0.002 2.47 < 0.2 10 110 < 0.5 < 2 1.45 < 0.5 21 44 39 5.38 < 10 < 1 0.15 40 1.25 WG88-8 230-235 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 16 35 29 5.05 < 10 < 1 0.15 40 1.25 WG88-8 230-235 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 15 36 19 4.07 < 10 < 1 0.21 50 0.93 WG88-8 230-235 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 15 36 19 4.07 < 10 < 1 0.21 < 10 1.04 1.25 WG88-8 230-235 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 15 36 19 4.07 < 10 < 1 0.21 < 10 1.04 1.25 WG88-8 230-235 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 15 36 19 4.07 < 10 < 1 0.21 < 10 1.04 1.25 WG88-8 230-240 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 15 36 19 4.07 < 10 < 1 0.21 < 10 1.04 1.25 WG88-8 230-240 207 238 < 0.002 2.31 < 0.2 5 110 < 0.5 < 2 2.78 < 0.5 20 59 < 0.5 24 39 25 4.60 < 10 < 1 0.33 30 1.01																							582
NG88-8 190-195 207 238 < 0.002 2.61 0.4 10 100 < 0.5 < 2 1.01 < 0.5 21 41 25 5.67 < 10 < 1 0.34 50 1.09 NG88-8 195-200 207 238 < 0.002 2.58 0.4 5 90 < 0.5 < 2 0.62 < 0.5 22 45 31 5.34 < 10 < 1 0.32 50 1.04 NG88-8 200-205 207 238 < 0.002 2.66 0.2 5 80 < 0.5 < 2 0.60 < 0.5 18 47 24 5.62 < 10 < 1 0.28 50 1.07 NG88-8 205-210 207 238 < 0.002 2.17 0.2 10 70 < 0.5 < 2 1.06 < 0.5 15 37 44 4.78 < 10 < 1 0.21 50 0.93 NG88-8 210-215 207 238 < 0.002 2.18 0.2 < 5 50 < 0.5 < 2 1.14 < 0.5 15 38 16 4.77 < 10 < 1 0.20 50 0.93 NG88-8 215-220 207 238 < 0.002 2.40 < 0.2 440 60 < 0.5 < 2 1.38 < 0.5 16 35 29 5.05 < 10 < 1 0.15 40 1.09 NG88-8 220-225 207 238 < 0.002 2.77 < 0.2 10 110 < 0.5 < 2 1.45 < 0.5 21 44 39 5.38 < 10 < 1 0.24 40 1.25 NG88-8 225-230 207 238 < 0.002 2.31 < 0.2 40 80 < 0.5 < 2 2.48 < 0.5 13 43 21 4.46 < 10 < 1 0.24 40 1.25 NG88-8 230-235 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 13 43 21 4.46 < 10 < 1 0.21 50 1.07 NG88-8 235-240 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 13 43 21 4.46 < 10 < 1 0.19 30 1.17 NG88-8 235-240 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 15 36 19 4.07 < 10 < 1 0.21 < 10 1.04 1.04 1.05 NG88-8 235-240 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 15 36 19 4.07 < 10 < 1 0.21 < 10 1.04 1.04 1.05 NG88-8 235-240 207 238 < 0.002 2.31 < 0.2 < 5 130 < 0.5 < 2 1.78 < 0.5 20 42 29 4.95 < 10 < 1 0.33 30 1.01																						-	504
WG88-8 195-200 207 238 < 0.002 2.58 0.4 5 90 < 0.5 < 2 0.62 < 0.5 22 45 31 5.34 < 10 < 1 0.32 50 1.04 WG88-8 200-205 207 238 < 0.002 2.66 0.2 5 80 < 0.5 < 2 0.60 < 0.5 18 47 24 5.62 < 10 < 1 0.28 50 1.07 WG88-8 205-210 207 238 < 0.002 2.17 0.2 10 70 < 0.5 < 2 1.06 < 0.5 15 37 44 4.78 < 10 < 1 0.21 50 0.93 WG88-8 210-215 207 238 < 0.002 2.18 0.2 < 5 50 < 0.5 < 2 1.14 < 0.5 15 38 16 4.77 < 10 < 1 0.20 50 0.93 WG88-8 215-220 207 238 < 0.002 2.40 < 0.2 440 60 < 0.5 < 2 1.38 < 0.5 16 35 29 5.05 < 10 < 1 0.15 40 1.09 WG88-8 220-225 207 238 < 0.002 2.77 < 0.2 10 110 < 0.5 < 2 1.45 < 0.5 21 44 39 5.38 < 10 < 1 0.24 40 1.25 WG88-8 225-230 207 238 < 0.002 2.49 < 0.2 40 80 < 0.5 < 2 2.48 < 0.5 13 43 21 4.46 < 10 < 1 0.19 30 1.17 WG88-8 230-235 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 15 36 19 4.07 < 10 < 1 0.21 50 0 1.04 10 WG88-8 235-240 207 238 < 0.002 2.93 < 0.002 2.59 < 0.5 5 10 < 1 0.10 < 0.5 < 2 1.38 < 0.5 5 10 WG88-8 235-240 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 13 43 21 4.46 < 10 < 1 0.19 30 1.17 WG88-8 235-240 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 15 36 19 4.07 < 10 < 1 0.21 < 10 1.04 10 WG88-8 235-240 207 238 < 0.002 2.93 < 0.2 < 5 130 < 0.5 < 2 1.78 < 0.5 20 42 29 4.95 < 10 < 1 0.30 40 1.22 WG88-8 240-245 207 238 < 0.002 2.41 < 0.2 < 5 110 < 0.5 < 2 0.59 < 0.5 24 39 25 4.60 < 10 < 1 0.33 30 1.01								-															512 548
WG88-8 210-215 207 238 < 0.002 2.18 0.2 < 5 50 < 0.5 < 2 1.06 < 0.5 15 37 44 4.78 < 10 < 1 0.21 50 0.93 WG88-8 210-215 207 238 < 0.002 2.18 0.2 < 5 50 < 0.5 < 2 1.14 < 0.5 15 38 16 4.77 < 10 < 1 0.20 50 0.93 WG88-8 215-220 207 238 < 0.002 2.40 < 0.2 440 60 < 0.5 < 2 1.38 < 0.5 16 35 29 5.05 < 10 < 1 0.15 40 1.09 WG88-8 220-225 238 < 0.002 2.77 < 0.2 10 110 < 0.5 < 2 1.45 < 0.5 21 44 39 5.38 < 10 < 1 0.24 40 1.25 WG88-8 225-230 207 238 < 0.002 2.49 < 0.2 40 80 < 0.5 < 2 2.48 < 0.5 13 43 21 4.46 < 10 < 1 0.19 30 1.17 WG88-8 230-235 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 15 36 19 4.07 < 10 < 1 0.21 < 10 1.04 18 WG88-8 235-240 207 238 < 0.002 2.93 < 0.2 < 5 130 < 0.5 < 2 1.78 < 0.5 20 42 29 4.95 < 10 < 1 0.21 < 10 1.04 18 WG88-8 240-245 207 238 < 0.002 2.41 < 0.2 < 5 110 < 0.5 < 2 0.59 < 0.5 24 39 25 4.60 < 10 < 1 0.33 30 1.01																							512
WG88-8 210-215 VG88-8 215-220 VG88-8 220-225 VG9 238 < 0.002 2.17 0.2 10 70 < 0.5 < 2 1.06 < 0.5 15 37 44 4.78 < 10 < 1 0.21 50 0.93 VG88-8 210-215 VG88-8 215-220 VG88-8 220-225 VG9 238 < 0.002 2.18 0.2 < 5 50 < 0.5 < 2 1.14 < 0.5 15 38 16 4.77 < 10 < 1 0.20 50 0.93 VG88-8 220-225 VG9 238 < 0.002 2.40 < 0.2 440 60 < 0.5 < 2 1.38 < 0.5 16 35 29 5.05 < 10 < 1 0.15 40 1.09 VG88-8 225-230 VG9 238 < 0.002 2.77 < 0.2 10 110 < 0.5 < 2 1.45 < 0.5 21 44 39 5.38 < 10 < 1 0.24 40 1.25 VG88-8 225-230 VG9 238 < 0.002 2.49 < 0.2 40 80 < 0.5 < 2 2.48 < 0.5 13 43 21 4.46 < 10 < 1 0.19 30 1.17 VG88-8 230-235 VG9 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 15 36 19 4.07 < 10 < 1 0.21 < 10 1.04 18 VG88-8 235-240 VG9 238 < 0.002 2.93 < 0.2 < 5 130 < 0.5 < 2 1.78 < 0.5 20 42 29 4.95 < 10 < 1 0.30 40 1.22 VG9 VG88-8 240-245 VG9 238 < 0.002 2.41 < 0.2 < 5 110 < 0.5 < 2 0.59 < 0.5 24 39 25 4.60 < 10 < 1 0.33 30 1.01	VC 200	205	207	218	0.002	2 66	0.2		10	<0.5	<u>- 2</u>	0.60	<0.5	18	47	24	5 62	< 10	<i>-</i> 1	0.28	50	1 07	534
NG88-8 215-220 207 238 < 0.002 2.18 0.2 < 5 50 < 0.5 < 2 1.14 < 0.5 15 38 16 4.77 < 10 < 1 0.20 50 0.93 NG88-8 215-220 207 238 < 0.002 2.40 < 0.2 440 60 < 0.5 < 2 1.38 < 0.5 16 35 29 5.05 < 10 < 1 0.15 40 1.09 NG88-8 220-225 207 238 < 0.002 2.77 < 0.2 10 110 < 0.5 < 2 1.45 < 0.5 21 44 39 5.38 < 10 < 1 0.24 40 1.25 NG88-8 225-230 207 238 < 0.002 2.49 < 0.2 40 80 < 0.5 < 2 2.48 < 0.5 13 43 21 4.46 < 10 < 1 0.19 30 1.17 NG88-8 230-235 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 15 36 19 4.07 < 10 < 1 0.21 < 10 1.04 18 NG88-8 235-240 207 238 < 0.002 2.93 < 0.2 < 5 130 < 0.5 < 2 1.78 < 0.5 20 42 29 4.95 < 10 < 1 0.21 < 10 1.04 18 NG88-8 240-245 207 238 < 0.002 2.41 < 0.2 < 5 110 < 0.5 < 2 0.59 < 0.5 24 39 25 4.60 < 10 < 1 0.33 30 1.01					9																		455
WG88-8 215-220 207 238 < 0.002 2.40 < 0.2 440 60 < 0.5 < 2 1.38 < 0.5 16 35 29 5.05 < 10 < 1 0.15 40 1.09 WG88-8 220-225 207 238 < 0.002 2.77 < 0.2 10 110 < 0.5 < 2 1.45 < 0.5 21 44 39 5.38 < 10 < 1 0.24 40 1.25												- · · ·									7.7		441
WG88-8 220-225 207 238 < 0.002 2.77 < 0.2 10 110 < 0.5 < 2 1.45 < 0.5 21 44 39 5.38 < 10 < 1 0.24 40 1.25 WG88-8 225-230 207 238 < 0.002 2.49 < 0.2 40 80 < 0.5 < 2 2.48 < 0.5 13 43 21 4.46 < 10 < 1 0.19 30 1.17 WG88-8 230-235 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 2.48 < 0.5 15 36 19 4.07 < 10 < 1 0.19 30 1.17 WG88-8 235-240 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 6.27 < 0.5 15 36 19 4.07 < 10 < 1 0.21 < 10 1.04 1																							463
WG88-8 230-235 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 6.27 < 0.5 15 36 19 4.07 < 10 < 1 0.21 < 10 1.04 16 16 16 16 16 16 16 16 16 16 16 16 16						2.77	< 0.2	10	110	< 0.5	< 2	1.45	< 0.5	21	44	39	5.38	< 10	< 1	0.24	40	1.25	601
WG88-8 230-235 207 238 < 0.002 2.31 < 0.2 15 90 < 0.5 < 2 6.27 < 0.5 15 36 19 4.07 < 10 < 1 0.21 < 10 1.04 16 16 16 16 16 16 16 16 16 16 16 16 16	WG88-8 225-	-230	207	238	< 0.002	2.49	< 0.2	40	80	< 0.5	< 2	2.48	< 0.5	13	43	21	4.46	< 10	< 1	0.19	30	1.17	8 50
NG88-8 235-240 207 238 < 0.002 2.93 < 0.2 < 5 130 < 0.5 < 2 1.78 < 0.5 20 42 29 4.95 < 10 < 1 0.30 40 1.22 (NG88-8 240-245 207 238 < 0.002 2.41 < 0.2 < 5 110 < 0.5 < 2 0.59 < 0.5 24 39 25 4.60 < 10 < 1 0.33 30 1.01			- 1			2.31		15	90			6.27					4.07	< 10	< 1				1445
MG88-8 240-245 207 238 0.002 2.41 < 0.2 < 5 110 < 0.5 < 2 0.59 < 0.5 24 39 25 4.60 < 10 < 1 0.33 30 1.01						2.93	< 0.2		130	< 0.5	< 2			20	42	29	4.95	< 10	< i			-	607
NGB8-2 245-250 207 238 0.002 2.56 < 0.2 < 5 50 < 0.5 < 2 0.91 < 0.5 27 76 28 5.66 < 10 < 1 0.16 40 1.27					1	2.41	< 0.2	< 5	110	< 0.5	< 2	0.59	< 0.5	24	39	25	4.60	< 10	< 1	0.33	30		346
preservative programme and the control of the contr	WG88-8 245-	-250	207	238	< 0.002	2.56	< 0.2	< 5	50	< 0 5	< 2	0.91	< 0.5	27	76	28	5.66	< 10	< 1	0.16	40	1.27	446

B. Cagli

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY BC CERTIFIED ASSAYERS

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLEMBIA, CANADA V7J-2CI PHONE (604) 984-0221 To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. B Tot. Pages.

Date :30-NOV-88 Invoice #:I-8827802

P.O. # : NONE

CERTIFICATE OF ANALYSIS A8827802

SAMPLE DESCRIPTION	PREP	Мо	Na or	Ni	P	Pb	Sb	Sc	Sr	Ti	TI	U	v	w	Zn	
DESCRIPTION	CODE	ppm	%	ppm	ppm	bbm	ppm	ppm	ppm	%	ppm	ppm	bbm	ppm	ppm	
WG88-8 50-55	207 238	< 1	0.01	31	610	8	< 5	2	214	0.12	< 10	< 10	16	5	73	
NG88-8 55-60	207 238		0.01	41	1210	< 2	< 5	3	162	0.10	< 10	< 10	32	5	199	
NG88-8 60-65	207 238	12	0.01	59	58 50	4	5	2	75	0.06	< 10	< 10	203	< 5	729	
MG88-8 65-70	207 238		0.01	75	8050	16	< 5	2	74	0.07	< 10	< 10	264	< 5	1150	
WG88-8 70-75	207 238	16	0.01	72	5730	10	< 5	2	170	0.09	< 10	< 10	170	5	941	
WG88-8 75-80	207 238		0.01	8 5	4960	6	5	2	74	0.03	< 10	< 10	213	5	1150	
WG888 80-85	207 238		0.01	87	6120	6	< 5	2		< 0.01	< 10	< 10	269	10	1595	
NG88-8 85-90	207 238		0.01	82	6 500	6	5	2		< 0.01	< 10	< 10	216	< 5	720	
WG88-8 90-95	207 238		0.01	49	1980	< 2	< 5	2		< 0.01	< 10	< 10	47	10	167	
MG88-8 95-100	207 238	14	0.01	69	6270	2	5	2	185	< 0.01	< 10	< 10	178	5	321	
	207 238		0.02	82	8150	2	5	2		< 0.01	< 10	< 10	198	5	227	
	207 238		0.02	93	8360	< 2	< 5	2		< 0.01	< 10	< 10	183	5	238	
	207 238		0.02	92	8080	< 2 6	5 5	2 2		< 0.01 < 0.01	< 10 < 10	< 10 < 10	368 151	10 < 5	1395	
	207 238 207 238		0.01 0.01	73 102	3610 3770	2	< 5	2		< 0.01	< 10	10	278	< 3 5	159 251	
MU68-6 120-123	207 236		0.01	102	3770				104						231	
	207 238		0.01	112	2780	16	5	2		< 0.01	< 10	< 10	396	5	456	
	207 238		0.01	177	1800	50	< 5	1		< 0.01	< 10	20	247	5	787	
	207 238		0.01	91	9430	462	5 5	4	98	0.01 0.01	< 10 < 10	10	497	10	978	
MG88-8 140-145 MG88-8 145-150			0.01 < 0.01	102 129	8120 4110	286 44	5	2		< 0.01	< 10	10 10	513 303	5 5	686 246	
m068-8 143-130	207 236	77	<u> </u>		4110					<u> </u>	<u> </u>	10		,	240	
WG88-8 150-155			0.01	68	1010	8	< 5	4	27	0.14	< 10	< 10	49	< 5	134	
NG88-8 155-160			0.01	68	1040	16	5	3	19	0.16	< 10	< 10	46	< 5	134	
WG88-8 160-165			0.01	58	810	2	5	3	24	0.14	< 10	< 10	32	< 5	122	
WG88-8 165-170			0.01	61	920 700	6 2	< 5	3	19 17	O.18 O.26	< 10 < 10	< 10	40 32	< 5 < 5	134	
MG88-8 170-175	207 238	< 1	0.02	54	/00	<u> </u>	< 5				< 10	< 10	34		97	
WG88-8 175-180			0.01	54	730	< 2	< 5	3	1.5	0.25	< 10	< 10	33	< 5	121	
WG88-8 180-185			0.02	49	680	< 2	- (4	17	0.20	< 10	< 10	33	< 5	108	
WG88-8 185-190			0.02	54	6 50	2	< 5	3	23	0.17	< 10	< 10	28	< 5	111	
WG88-8 190-195			0.01	48 57	5 50	< 2	< 5 < 5	4	23 20	0.22 0.20	< 10	< 10 < 10	26 26	< 5 < 5	108	
MG88-8 195-200	207 238	< 1	0.01	3 /	590	< 2		·	20	0.20	< 10				106	
WG88-8 200-205			0.01	47	570	8	< 5	3	20	0.19	< 10	< 10	23	< 5	103	
WG88-8 205-210			0.01	33	760	4	< 5	3	38	0.12	< 10	- !0	18		74	
WG88-8 210-215			0.01	39	700	< 2	< 5	2 2	31 47	0.11 0.07	< 10	< 10	20	5	76	
MG88-8 215-220			0.01 0.01	41 45	1410 1670	< 2	< 5	4	51	0.07	< 10 \ 10	< 10 < 10	21 31	< 5 5	95 97	
MG88-8 220-225	20/ 238		0.01	4)	10/0		_ ` '	*		V. 17	<u> </u>	<u> </u>	3 1		y ,	
WG88-8 225-230	207 238	< 1	0.02	41	1260	< 2	< 5	4	61	0.22	< 10	< 10	28	5	88	
WG88-8 230-235			0.02	33	1170	10	5	4	114	0.16	< 10	< 10	25	5	83	
WG88-8 235-240			0.02	43	1 500	< 2	< 5	4	49	0.17	< 10	< 10	32	< 5	133	
NG88-8 240-245			0.02	48	1400	< 2	< 5	3	22	0.11	< 10	< 10	25	< 5	106	
MG88-8 245-250	207 238	1	0.02	60	1400	8	< 5	3	35	0.07	< 10	< 10	24	< 5	129	

CERTIFICATION :

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY BC CERTIFIED ASSAYERS

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLIMBIA, CANADA V7J-2CI

PHONE (604) 984-0221

To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. - '-A Tot. Pages

: >U-NOV-88 Date Invoice #: I-8827802 P.O. # : NONE

CERTIFICATE OF ANALYSIS A8827802

SAMP DESCRI		PRE		Au 02/T	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Ma ppm
WG88-8 2	50-255	207	238	< 0.002	2.63	0.2	< 5	90	< 0.5	2	0.81	< 0.5	21	39	27	4.99	< 10	< 1	0.22	50	1.18	409
WG88-8 2	55-260	207	238	< 0.002	2.89	0.2	10	100	< 0.5	2	0.70	< 0.5	26	42	33	5.92	< 10	< 1	0.23	40	1.32	485
WG88-8 2	60-265	207	238	< 0.002	2.79	0.2	5	90	< 0.5	8	0.68	< 0.5	25	38	33	5.50	< 10	< i	0.27	40	1.19	466
WG88-8 2					2.64	0.2	< 5		< 0.5	4	0.98	0.5	25	36	63	5.73	< 10	< 1	0.20	30	1.26	546
WG88-8 2	270-275	207	238	C 0.002	2.18	0.2	< 5	60	< 0.5	6	1.42	< 0.5	18	32	98	5.94	< 10	< 1	0.19	20	1.05	442
WG88-8 2					1.62	0.2	5		< 0.5	2	0.52	0.5	17	27	54	4.45	< 10	< 1	0.26	30	0.64	261
WG88-8 2					1.63	0.2	10		< 0.5	< 2	1.07		1 0	3.3	102	4.74	< 10	< 1	0.18	30	0.69	411
WG88-8 2					1.75	0.2	< 5		< 0.5	< 2	0.60	3.5	27	34	105	5.45	< 10	< 1	0.27	50	0.67	3 59
WG88-8 2					2.91	0.2	< 5		< 0.5	8	2.58	15.5	22	38	103	5.80	< 10	< 1	0.24	30	1.27	1070
WG88-8 2	195-300	207	238	< 0.002	2.65	0.2	< 5	90	< 0.5	2	2.66	0.5	23	37	60	5.02	< 10	< 1	0.22	40	1.20	639
WG88-8				< 0.002	2.21	0.4	5	60	< 0.5	< 2	2.24	3.0	19	46	32	4.63	< 10	< 1	0.16	30	1.06	730
WG88-8 3					2.66	< 0.2	10		< 0.5	< 2	2.75	< 0.5	23	58	24	4.33	< 10	< 1	0.16	10	1.57	8 50
WG88-8 3						< 0.2	15		< 0.5	< 2	1.27	0.5	9	25	16	2.26	< 10	< 1	0.12	20	0.45	409
WG88-8 3						< 0.2	5		< 0.5	< 2	0.40	1.5	6	15	6	1.13	< 10	< 1	0.08	10	0.19	1 36
WG88-8 3	120-325	207	238	< 0.002	0.72	< 0.2	5	30	< 0.5	2	1.08	1.0	7	24	11	1.48	< 10	< 1	0.09	10	0.29	327
WG88-8 3	325-330	207	238	< 0.002	0.96	< 0.2	< 5	50	< 0.5	2	0.71	3.0	9	26	24	2.46	< 10	< 1	0.18	30	0.34	306
WG88-8 3	30-335	207	238	< 0.002		< 0.2	5		< 0.5	< 2	1.18	4.0	2	16	17	1.68	< 10	< 1	0.08	10	0.22	233
WG88-8 3	35-340	207	238	< 0.002	1.11	3.6	< 5		< 0.5	4	1.03	25.0	19	24	159	5.83	< 10	< 1	0.19	30	0.45	327
WG88-8 3					1.74	0.2	< 5		< 0.5	2	2.10	4.0	19	33	46	4.28	< 10	< 1	0.23	40	0.74	578
NG88-8 3	145-350	207	238	< 0.002	2.38	0.2	15	280	< 0.5	4	0.73	1.0	20	34	33	5.20	< 10	< 1	0.35	40	0.94	515
WG88-8 3					1.66	< 0.2	< 5	80	< 0.5	6	1.61	1.0	13	33	54	4.42	< 10	< 1	0.29	40	0.61	491
WG88-8 3						< 0.2	5	_	< 0.5	< 2	0.93	5.5	20	39	41	4.76	< 10	< 1	0.31	40	0.84	490
WG88-8 3						< 0.2	< 5		< 0.5	< 2	0.72	< 0.5	15	29	18	4.79	< 10	< 1	0.29	40	0.97	441
WG88-8						< 0.2	10		< 0.5	4	0.51	< 0.5	14	27	22	4.74	< 10	< 1	0.20	30	1.05	3 58
WG88-8	370-375	207	238	< 0.002	2.57	< 0.2	5	110	< 0.5	< 2	0.41	< 0.5	19	38	13	4.79	< 10	< 1	0.24	40	1.16	389
WG88-8				< 0.002		< 0.2	< 5		< 0.5	2	1.11	0.5	29	66	30	5.28	< 10	< 1	0.09	20	1.97	628
WG88-8						< 0.2	< 5		< 0.5	< 2	1.27	< 0.5	34	78	23	6.14	< 10	< 1	0.04	10	2.45	756
WG88-8						< 0.2	< 5		< 0.5	< 2	0.94	< 0.5	27	58	30	5.54	10	< 1	0.17	30	1.77	5 5 2
WG88-8 3						< 0.2	5		< 0.5	< 2		< 0.5	18	39	18	5.41	< 10	< 1	0.26	40	1.27	403 472
WG88-8	395-400	207	238	K 0.002	3.00	< 0.2	50	140	< 0.5	< 2	0.48	< 0.5	18	46	18	5.50	< 10	< 1	0.32	40	1.33	4/2
									·													

CERTIFICATION :

212 BROOKSBANK AVE., NORTH VANCOUVER.
BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVIDENTON

Page No. : 2-B Tot. Page: ;

Date ...-NOV-88 Invoice #: I-8827802 P.O. #: NONE

CERTIFICATE OF ANALYSIS A8827802

SAMPLE DESCRIPTION	PREP	Mo ppm		Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Ti ppm	U ppm	V ppm	W	Zn ppm	
WG88-8 250-255 WG88-8 255-260 WG88-8 260-265 WG88-8 265-270 WG88-8 270-275	207 23 207 23 207 23	8 < 1 8 < 1 8 < 1	0.02 0.02 0.01	35 44 46 38 29	950 850 1310 1070 660	< 2 < 2 < 2 < 4 10	< 5 < 5 < 5 < 5	3 4 4 4 3	34 24 22 28 38	0.03 0.15 0.15 0.13	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	25 26 26 34 29	< 5 < 5 < 5 < 5	147 154 169 345 142	
WG88-8 275-280 WG88-8 280-285 WG88-8 285-290 WG88-8 290-295 WG88-8 295-300	207 23 207 23 207 23 207 23 207 23	8 < 1 8 < 1 8 < 1 8 < 1	0.01 0.01 0.01 0.01 0.01	31 28 39 29 42	650 590 700 1520 1170	32 10 10 34 30	< 5 < 5 < 5 < 5 < 5	2 2 2 2 4 3	18 23 19 49 58	0.08 0.05 0.03 0.18 0.13	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	13 13 15 33 23	< 5 5 5 15 10	324 1370 1035 4530 336	
WG88-8 300-305 WG88-8 305-310 WG88-8 310-315 WG88-8 315-320 WG88-8 320-325	207 23 207 23 207 23	8 < 1 8 1	0.01	37 33 15 5 7	740 610 510 350 380	114 52 14 10	< 5 < 5 < 5 < 5 < 5	3 5 1 < 1	45 68 21 8 18	0.13 0.25 0.06 0.01 0.04	< 10 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	19 64 8 4	10 5 5 < 5	961 273 346 414 285	
MG88-8 325-330 MG88-8 330-335 MG88-8 335-340 MG88-8 340-345 MG88-8 345-350	207 23 207 23	8 < 1 8 < 1 8 < 1	0.01 < 0.01 0.01 0.01 0.01	17 8 33 44 46	460 320 490 640 750	2 6 3270 136 228	< 5 < 5 < 5 < 5	1 < 1 2 2 3	13 14 20 37 18	0.08 0.03 0.13 0.23 0.26	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	7 4 10 15 18	< 5 5 5 5 5	753 1060 7190 1275 649	
MG88-8 350-355 MG88-8 355-360 MG88-8 360-365 MG88-8 365-370 MG88-8 370-375	207 23 207 23 207 23	8 < 1 8 < 1 8 < 1	0.01 0.01 0.01 0.01 0.01	45 47 35 33 34	5 50 5 70 9 60 4 60 5 8 0	38 4 20 < 2 4	< 5 < 5 < 5 < 5 < 5 < 5	3 3 3 2 3	29 20 19 16 13	0.23 0.22 0.14 0.10 0.12	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	16 20 16 13	\$ < 5 < 5 < 5 < 5 < 5	376 1745 184 148 123	
WG88-8 375-380 WG88-8 380-385 WG88-8 385-390 WG88-8 390-395 WG88-8 395-400	207 23 207 23 207 23	8 < 1 8 < 1	0.03 0.03 0.02 0.01 0.02	37 43 42 35 39	640 690 650 590 680	10 < 2 4 2 4	< 5 < 5 < 5 < 5	5 6 6 3 4	32 36 23 9	0.30 0.39 0.27 0.12 0.15	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	82 122 68 19 24	< 5 < 5 < 5 < 5	143 162 137 127 146	

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY BC. CERTIFIED ASSAYERS

CERTIFICATION: B.

Analytical Chemists * Geochemists * Registered Assayers

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC

V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. :1' Tot. Pages:1

Date : 30-NOV-88 Invoice #: I-8827903 P.O. #: NONE

CERTIFICATE OF ANALYSIS A8827903

8 < 0.002 8 < 0.002	02 1.85 03 1.63 02 1.96 02 1.51 02 1.29 02 1.29 02 2.14 02 1.77 02 2.03 02 1.83 02 1.93 02 1.95	<0.2 <0.2 0.2 <0.2 <0.2	10 < 5 13 < 5 5 5 5 5 5 5 5 5 5 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	250 180 200 240 160 120 110 120 110 140	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.36 0.28 0.93 0.80 3.67	< 0.5 < 0.5 < 0.5 < 0.5 0.5	13 14 9 11 10	37 32 30 32 33	23 21 34 41 29	3.12 3.40 2.93 3.42 3.07	10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.41 0.30 0.28 0.30 0.21	20 20 20 20 20	0.70 0.76 0.73 1.05 0.86	201 233
8 < 0.002 8 < 0.002	02 1.85 03 1.63 02 1.96 02 1.51 02 1.29 02 1.29 02 2.14 02 1.77 02 2.03 02 1.83 02 1.93 02 1.95	< 0.2 < 0.2	< 5 15 < 5 5 < 5 < 5 < 5 < 5 < 5	180 200 240 160 120 110 120 110	<0.5 <0.5 <0.5 <0.5 <0.5	< 2 < 2 < 2 < 2 < 2	0.28 0.93 0.80 3.67	< 0.5 < 0.5 < 0.5 0.5	14 9 11 10	32 30 32 33	21 34 41 29	3.40 2.93 3.42 3.07	< 10 < 10 < 10 < 10	< 1 < 1 1	0.30 0.28 0.30	20 20 20	0.76 0.73 1.05	220 201 233
8	1.63 1.96 1.96 1.51 1.02 1.02 1.29 1.29 1.77	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre>15 < 5 <</pre>	120 110 110 120 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.80 3.67	< 0.5 0.5	9 11 10	30 32 33	34 41 29	2.93 3.42 3.07	< 10 < 10 < 10	< i	0.28 0.30	20 20	0.73 1.05	201 233
8 < 0.002 8 < 0.002	02 1.51 02 1.02 02 1.29 02 2.14 02 1.77 02 2.03 02 1.83 02 1.93 02 1.95	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre></pre>	160 120 110 120 110	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2	3.67	0.5	10	33	29	3.07	< 10	-	0.30	20	1.05	233
8 < 0.002 8 < 0.002	02 1.02 02 1.29 02 2.14 02 1.77 02 2.03 02 1.83 02 2.13 02 1.93 02 1.95	<0.2 <0.2 <0.2 <0.2 <0.2 0.2	< 5 < 5 < 5 < 5 < 5	120 110 120 110	< 0.5 < 0.5 < 0.5	< 2 < 2	13.00	0.5		···				< 1	0.21	20	0.86	
8 < 0.002 8 < 0.002	1.29 2.14 2.14 2.17 2.03 2.13 2.13 2.13 2.193 2.195	< 0.2 < 0.2 < 0.2 0.2 < 0.2 < 0.2	< 5	110 120 110	< 0.5 < 0.5	< 2			-									315
8 < 0.002 8 < 0.002	2 2.14 2 1.77 2 2.03 2 1.83 2 2.13 2 1.93 2 1.95	<0.2 <0.2 0.2 <0.2 <0.2	\$ < \$ < \$	120 110	< 0.5		7.49			25	19	2.08	< 10	1	0.16	< 10	0.64	453
8 < 0.002 8 < 0.002 8 < 0.002 8 < 0.002 8 < 0.002 8 < 0.002	1.77 2.03 2.03 2.1.83 2.1.3 2.1.93 2.1.95	< 0.2 0.2 < 0.2 < 0.2	< 5 < 5	110				0.5	8	27	19	2.86	< 10	< 1	0.17	< 10	0.79	399
8 < 0.002 8 < 0.002 8 < 0.002 8 < 0.002 8 < 0.002	02 2.03 02 1.83 02 2.13 02 1.93 02 1.95	0.2 < 0.2 < 0.2	< 5	_			0.90	< 0.3	13	38	20	4.19	10	< 1	0.24	30	1.07	308
8 < 0.002 8 < 0.002 8 < 0.002 8 < 0.002	02 1.83 02 2.13 02 1.93 02 1.95	< 0.2 < 0.2		140		< 2	0.56	< 0.5	12	33	19	3.54	< 10	< 1	0.24	30	0.77	266
8 < 0.002 8 < 0.002 8 < 0.002	02 2.13 02 1.93 02 1.95	< 0.2			0.5	< 2	0.48	< 0.5	13	29	18	3.86	10	< 1	0.31	40	0.83	262
8 < 0.002 8 < 0.002	02 1.93 02 1.95		~)	110	0.5	< 2	3.09	< 0.5	t 2	30	19	3.44	< 10	< 1	0.22	30	0.83	453
8 < 0.002	1.95		< 5	130	1.0	2	0.41	< 0.5	15	32	16	3.86	10	< 1	0.27	30	0.99	285
		< 0.2	5	120	1.0	< 2	0.46	< 0.5	13	29	19	3.75	< 10	< 1	0.24	20	0.84	278
		< 0.2	5	110	0.5	< 2	0.46	< 0.5	14	28	24	3.76	10	< 1	0.23	20	0.82	2 59
8 < 0.002	02 1.98	< 0.2	< 5	110	< 0.5	< 2	0.28	< 0.5	14	25	26	3.75	10	< 1	0.24	20	0.82	260
8 < 0.002		< 0.2	< 5	150	0.5	< 2	0.33	< 0.5	19	32	24	4.46	10	< 1	0.31	30	1.01	314
8 < 0.002		< 0.2	5	90	0.5	< 2	0.83		16	34	21	3.86	10	< 1	0.17	20	1.07	383
8 < 0.002		< 0.2	15	. 80	0.5	< 2	1.29	< 0.5	20	44	28	4.46	10	1	0.16	20	1.34	484
8 < 0.002		0.2	< 5	1 50	0.5	< 2	0.36	< 0.5	16	30	29	3.91	10	< 1	0.31	20	0.87	315
8 0.004	2.18	< 0.2	< 5	1 50	< 0.5	< 2	0.36	< 0.5	13	34	22	3.94	10	< 1	0.33	20	0.85	303
8 < 0.002		< 0.2	15	120	0.5	< 2	0.46	< 0.5	17	41	30	4.97	< 10	< 1	0.27	30	1.02	398
8 < 0.002		< 0.2	20	1 50	0.5	< 2	0.51		19	40	30	6.40	< 10	< 1	0.33	30	1.17	432
8 < 0.002		< 0.2	5	1 50	O. 5	< 2	0.44	< 0.5	17	34	24	5.65	< 10	< 1	0.36	30	0.97	385
8 < 0.002		0.2	< 5	130	1.0	< 2	0.50	< 0.5	17	38	29	5.51	< 10	< 1	0.33	30	1.00	432
8 < 0.002	02 1.91	0.4	10	100	0.5	< 2	0.84	< 0.5	14	41	22	5.16	< 10	< 1	0.25	20	0.81	384
8 < 0.002		0.4	25	80	1.0	2	1.46	< 0.5	17	53	18	5.20	< 10	< 1	0.25	40	0.89	451
8 < 0.002		0.4	25	70	0.5	< 2	0.66	< 0.5	16	48	17	5.35	< 10	< 1	0.26	40	1.10	493
8 0.537		0.4	5	70	< 0.5	< 2	0.49	< 0.5	17	48	22	5.37	< 10	< !	0.25	40	1.07	4 59
8 < 0.002		0.4	< 3 5	80	1.5	< 2	0.66	< 0.5	19	61	18	6.66	< 10	5	0.24	50	1.35	462 529
8 < 0.002	72 2 8 5	0.2	10	70	< 0.5	< 2	0.44	< 0.5	20	55	24	6 25	< 10	< 1	0.26	50	1 25	497
8 < 0.002		•																459
8 < 0.002						< 2 €		< 0.5	18	47	26	5.92	< 10	₹i		40		492
		0.2	30	80	0.5	2	0.63	< 0.5	18	52	17	5.06	< 10	< 1	0.24	40	1.04	613
8 < 0.002		0.2	25	70	0.5	2	1.40	< 0.5	15	57	9	4.23	< 10	< 1	0.18	40	0.90	626
8 < 0. 8 < 0.	000000000000000000000000000000000000000	002 3.15 002 2.85 002 2.47 002 2.25 002 2.33	002 3.15 0.4 002 2.85 0.2 002 2.47 0.2 002 2.25 0.2 002 2.33 0.2	002 3.15 0.4 5 002 2.85 0.2 10 002 2.47 0.2 20 002 2.25 0.2 20 002 2.33 0.2 30	002 3.15 0.4 5 80 002 2.85 0.2 10 70 002 2.47 0.2 20 80 002 2.25 0.2 20 80 002 2.33 0.2 30 80	002 3.15 0.4 5 80 1.5 002 2.85 0.2 10 70 < 0.5	002 3.15 0.4 5 80 1.5 < 2	002 3.15 0.4 5 80 1.5 < 2	002 3.15 0.4 5 80 1.5 < 2	002 3.15 0.4 5 80 1.5 < 2	002 3.15 0.4 5 80 1.5 < 2	002 3.15 0.4 5 80 1.5 < 2	002 3.15 0.4 5 80 1.5 < 2 0.49 < 0.5 19 61 18 6.66 002 2.85 0.2 10 70 < 0.5 < 2 0.44 < 0.5 20 55 24 6.25 002 2.47 0.2 20 80 1.0 < 2 0.42 < 0.5 22 48 23 5.88 002 2.25 0.2 20 80 1.0 < 2 0.52 < 0.5 18 47 26 5.92 002 2.33 0.2 30 80 0.5 2 0.63 < 0.5 18 52 17 5.06	002 3.15 0.4 5 80 1.5 < 2 0.49 < 0.5 19 61 18 6.66 < 10 002 2.85 0.2 10 70 < 0.5 < 2 0.44 < 0.5 20 55 24 6.25 < 10 002 2.47 0.2 20 80 1.0 < 2 0.42 < 0.5 22 48 23 5.88 < 10 002 2.25 0.2 20 80 1.0 < 2 0.52 < 0.5 18 47 26 5.92 < 10 002 2.33 0.2 30 80 0.5 2 0.63 < 0.5 18 52 17 5.06 < 10	002 3.15 0.4 5 80 1.5 < 2 0.49 < 0.5 19 61 18 6.66 < 10 5 002 2.85 0.2 10 70 < 0.5 < 2 0.44 < 0.5 20 55 24 6.25 < 10 < 1 002 2.47 0.2 20 80 1.0 < 2 0.42 < 0.5 22 48 23 5.88 < 10 < 1 002 2.25 0.2 20 80 1.0 < 2 0.52 < 0.5 18 47 26 5.92 < 10 < 1 002 2.33 0.2 30 80 0.5 2 0.63 < 0.5 18 52 17 5.06 < 10 < 1	002 3.15 0.4 5 80 1.5 < 2 0.49 < 0.5 19 61 18 6.66 < 10 5 0.31 002 2.85 0.2 10 70 < 0.5 < 2 0.44 < 0.5 20 55 24 6.25 < 10 < 1 0.26 002 2.47 0.2 20 80 1.0 < 2 0.42 < 0.5 22 48 23 5.88 < 10 < 1 0.23 002 2.25 0.2 20 80 1.0 < 2 0.52 < 0.5 18 47 26 5.92 < 10 < 1 0.21 002 2.33 0.2 30 80 0.5 2 0.63 < 0.5 18 52 17 5.06 < 10 < 1 0.24	002 3.15 0.4 5 80 1.5 <2 0.49 <0.5 19 61 18 6.66 <10 5 0.31 50 002 2.85 0.2 10 70 <0.5 <2 0.44 <0.5 20 55 24 6.25 <10 <1 0.26 50 002 2.47 0.2 20 80 1.0 <2 0.42 <0.5 22 48 23 5.88 <10 <1 0.23 40 002 2.25 0.2 20 80 1.0 <2 0.52 <0.5 18 47 26 5.92 <10 <1 0.21 40 002 2.33 0.2 30 80 0.5 2 0.63 <0.5 18 52 17 5.06 <10 <1 0.24 40	002 3.15 0.4 5 80 1.5 < 2 0.49 < 0.5 19 61 18 6.66 < 10 5 0.31 50 1.35 002 2.85 0.2 10 70 < 0.5 < 2 0.44 < 0.5 20 55 24 6.25 < 10 < 1 0.26 50 1.25 002 2.47 0.2 20 80 1.0 < 2 0.42 < 0.5 22 48 23 5.88 < 10 < 1 0.23 40 1.12 002 2.25 0.2 20 80 1.0 < 2 0.52 < 0.5 18 47 26 5.92 < 10 < 1 0.21 40 1.05 002 2.33 0.2 30 80 0.5 2 0.63 < 0.5 18 52 17 5.06 < 10 < 1 0.24 40 1.04

CERTIFICATION: 3. Ca-S.

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

To: MARK MANAGEMENT LIMITED

1800 - 999 W. HASTINGS ST. VANCOUVER, BC V6C 2W2

Project : LIGHTNING

Comments: ATTN: ART TROUP CC: DAVID NEWTON

Page No. :!-B Tot. Pages:

Invoice #: I-8827903 P.O. #: NONE

CERTIFICATE OF ANALYSIS A8827903

NG88-9-225-230 207 238 21 207 238 207	Mo Na pm % p	PREP	P Pb Sb Sc Sr Ti Tl U ppm ppm ppm ppm ppm % ppm ppm	
MG88-9-275-280 207 238 < 1 MG88-9-280-285 207 238 < 1 MG88-9-290-295 207 238 < 1 MG88-9-290-295 207 238 < 1 MG88-9-295-300 207 238 < 1 MG88-9-305-310 207 238 < 1 MG88-9-315-320 207 238 < 1 MG88-9-315-320 207 238 < 1 MG88-9-320-325 207 238 < 1 MG88-9-340-345 207 238 < 1 MG88-9-340-345 207 238 < 1 MG88-9-345-350 207 238 < 1 MG88-9-345-350 207 238 < 1 MG88-9-345-350 207 238 < 1 MG88-9-365-370 207 238 < 1 MG88-9-375-380 207 238 < 1 MG88-9-385-390 207 238 < 1 MG88-9-390-395 207 238 MG88-9-390-395 207 238 207 238 MG88-9	1 0.02 2 0.02 3 0.02 5 0.01 2 0.01 2 0.01 1 0.02 1 0.02	207 2 207 2 207 2 207 2 207 2 207 2 207 2 207 2	750 10 < 5 3 19 0.08 < 10 < 10 560 4 < 5 2 15 0.07 < 10 < 10 090 6 < 5 3 31 0.07 < 10 < 10 570 86 < 5 3 31 0.07 < 10 < 10 310 32 < 5 3 74 0.10 < 10 < 10 880 18 < 5 2 362 0.06 10 < 10 020 50 < 5 2 202 0.08 < 10 < 10 680 4 < 5 3 30 0.13 < 10 < 10 680 4 < 5 3 30 0.13 < 10 < 10 480 6 < 5 3 20 0.15 < 10 < 10 480 6 < 5 3 20 0.15 < 10 < 10	18 < 5 96 101 < 5 76 132 < 5 108 45 < 5 85 0 30 < 5 53 0 22 < 5 65 0 19 < 5 97 17 < 5 78
WG88-9-315-320 207 238 1	1 0.02 1 0.02 1 0.02 1 0.02 1 0.02 1 0.02	207 2 207 2 207 2 207 2 207 2 207 2 207 2	590 12 < 5 3 46 0.12 < 10 < 10 570 < 2 < 5 3 14 0.13 < 10 < 10 560 6 < 5 3 16 0.09 < 10 < 10 430 4 < 5 3 15 0.09 < 10 < 10 460 < 2 < 5 3 13 0.08 < 10 < 10 500 < 2 < 5 3 15 0.12 < 10 < 10 510 42 < 5 4 21 0.17 < 10 < 10 480 58 < 5 5 27 0.22 < 10 < 10	23 < 5 79 18 < 5 98 18 < 5 84 16 < 5 82 15 < 5 80 19 < 5 100 42 < 5 112
MG88-9-355-360 207 238 < 1	1 0.02 1 0.02 1 0.03 1 0.02 1 0.02 1 0.02	207 2 207 2 207 2 207 2 207 2 207 2 207 2	480 < 2	19 < 5 118 18 < 5 121 18 18 18 18 18 19 18 19 19
NG88-9-385-390 207 238 < 1 NG88-9-390-395 207 238 < 1	1 0.02 1 0.01 1 0.02 1 0.02	207 2 207 2 207 2 207 2 207 2	550 4 < 5	27 5 112 26 < 5 117 28 5 105 33 < 5 140
	1 0.01	207 2 207 2	660 < 2 < 5 3 12 0.16 < 10 < 10 640 8 < 5 3 14 0.15 < 10 < 10 610 < 2 < 5 3 18 0.22 < 10 < 10 660 14 < 5 3 32 0.24 < 10 < 10	25 5 130 25 < 5 83

ALL ASSAY DETERMINATIONS ARE PERFORMED OR SUPERVISED BY B.C. CERTIFIED ASSAYERS

CERTIFICATION :

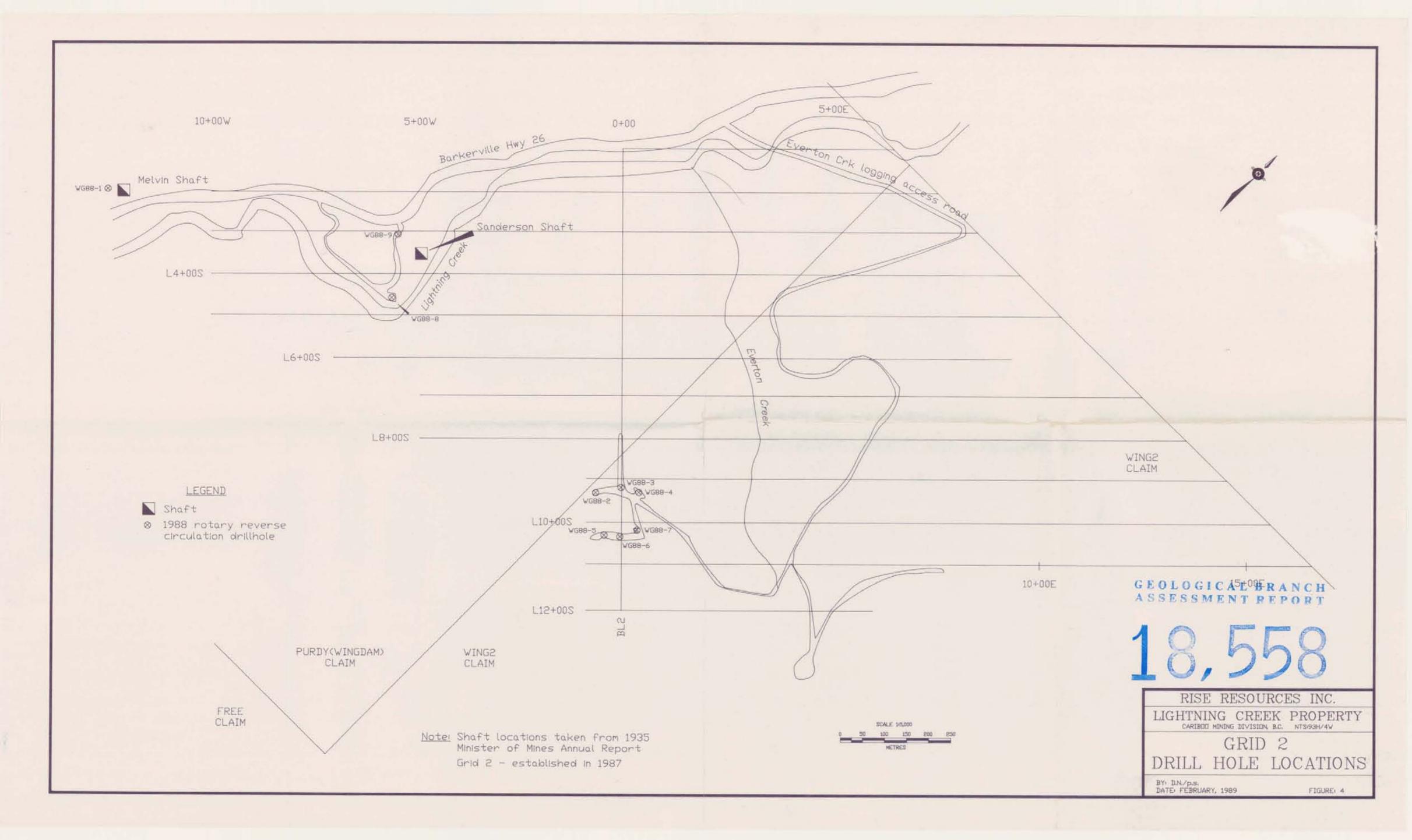
APPENDIX B: DESCRIPTION OF ROTARY CUTTINGS

WG 8	
8-1	
DEPTH (m)	COLOUR
0 to 15.2	overburden
15.2 to 18.2	light grey/green, dry
18.2 to 21.3	light grey, dry
21.3 to 24.4	med. grey, wet
24.4 to 25.9	green/grey, wet
25.9 to 30.5	med. grey, dry
30.5 to 32.0	green/grey, wet
32.0 to 48.8	med. grey, dry
48.8 to 50.3	light green/grey, wet
50.3 to 51.8	med. grey, dry
51.8 to 57.9	med. grey, wet
57.9 to 59.4	light green/dark grey, wet
59.4 to 64.0	med to dark grey w/minor qtz
WG 88-2	
DEPTH (m)	COLOUR
0 to 3.1	overburden
3.1 to 4.6	light grey
4.6 to 6.1	orange/brown
6.1 to 9.1	green/orange
9.1 to 12.2	green
12.2 to 19.8	green/brown/orange
19.8 to 25.9	grey
25.9 to 30.5	grey/brown
30.5 to 36.6	grey
36.6 to 41.1	very light grey
41.1 to 47.2	grey
47.2 to 50.3	light grey
50.3 to 71.6	light to med. grey
71.6 to 92.9	med. grey
92.9 to 97.5	grey/green
97.5 to 106.7	med. grey
106.7 to 108.2 108.2 to 114.3	grey/green
108.2 to 114.3 114.3 to 117.3	med. grey
114.3 to 117.3 117.3 to 122	beige
11/.3 LU 122	med. grey

WG 88-3	
DEPTH (m)	COLOUR
0 to 9.1	overburden
9.1 to 13.7	orange/brown
13.7 to 18.3	green/orange
18.3 to 22.9	green
22.9 to 29.0	black
29.0 to 32.0	med. grey
32.0 to 38.1	brown/orange
38.1 to 42.6	black
42.6 to 57.9	green
57.9 to 65.5	light green
65.5 to 67.1	med. grey
67.1 to 68.6	green/grey
68.6 to 71.6	grey
71.6 to 77.7	dark grey
77.7 to 80.8	green
80.8 to 83.8	grey/green
83.8 to 85.3	grey/brown
85.3 to 96.0	grey
96.0 to 99.1	green
99.1 to 109.7	grey/green
109.7 to 112.8	black
112.8 to 122	grey
WG 88-4	
DEPTH(m)	COLOUR
• •	
0 to 6.1	overburden
0 to 6.1 6.1 to 22.9	overburden brown
0 to 6.1	
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0	brown
0 to 6.1 6.1 to 22.9 22.9 to 25.9	brown green
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0	brown green brown
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5	brown green brown green brown green brown green
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1	brown green brown green brown
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2	brown green brown green brown green brown green brown green
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7	brown green brown green brown green brown green brown
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7 74.7 to 96.0	brown green brown green brown green brown green brown green
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7	brown green brown green brown green brown green brown green brown
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7 74.7 to 96.0 96.0 to 122	brown green brown green brown green brown green brown green brown green green
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7 74.7 to 96.0 96.0 to 122	brown green brown green brown green brown green brown green black grey green
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7 74.7 to 96.0 96.0 to 122 WG 88-5 DEPTH (m)	brown green brown green brown green brown green brown green black grey green
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7 74.7 to 96.0 96.0 to 122 WG 88-5 DEPTH (m) 0 to 1.5	brown green brown green brown green brown green black grey green
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7 74.7 to 96.0 96.0 to 122 WG 88-5 DEPTH (m) 0 to 1.5 1.5 to 10.7	brown green brown green brown green brown green black grey green COLOUR overburden brown
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7 74.7 to 96.0 96.0 to 122 WG 88-5 DEPTH (m) 0 to 1.5 1.5 to 10.7 10.7 to 18.3	brown green brown green brown green brown green black grey green COLOUR overburden brown grey
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7 74.7 to 96.0 96.0 to 122 WG 88-5 DEPTH (m) 0 to 1.5 1.5 to 10.7 10.7 to 18.3 18.3 to 21.3	brown green brown green brown green brown green black grey grey green COLOUR overburden brown grey black
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7 74.7 to 96.0 96.0 to 122 WG 88-5 DEPTH (m) 0 to 1.5 1.5 to 10.7 10.7 to 18.3 18.3 to 21.3 21.3 to 24.3	brown green brown green brown green brown green black grey green COLOUR overburden brown grey black brown
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7 74.7 to 96.0 96.0 to 122 WG 88-5 DEPTH (m) 0 to 1.5 1.5 to 10.7 10.7 to 18.3 18.3 to 21.3 21.3 to 24.3 24.3 to 57.9	brown green brown green brown green brown green black grey green COLOUR overburden brown grey black brown light dark grey
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7 74.7 to 96.0 96.0 to 122 WG 88-5 DEPTH (m) 0 to 1.5 1.5 to 10.7 10.7 to 18.3 18.3 to 21.3 21.3 to 24.3 24.3 to 57.9 57.9 to 59.4	brown green brown green brown green brown green black grey green COLOUR overburden brown grey black brown light dark grey brown/green
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7 74.7 to 96.0 96.0 to 122 WG 88-5 DEPTH (m) 0 to 1.5 1.5 to 10.7 10.7 to 18.3 18.3 to 21.3 21.3 to 24.3 24.3 to 57.9 57.9 to 59.4 59.4 to 80.8	brown green brown green brown green brown green black grey green COLOUR overburden brown grey black brown light dark grey brown/green green
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7 74.7 to 96.0 96.0 to 122 WG 88-5 DEPTH (m) 0 to 1.5 1.5 to 10.7 10.7 to 18.3 18.3 to 21.3 21.3 to 24.3 24.3 to 57.9 57.9 to 59.4 59.4 to 80.8 80.8 to 88.4	brown green brown green brown green brown green black grey green COLOUR overburden brown grey black brown light dark grey brown/green green dark grey
0 to 6.1 6.1 to 22.9 22.9 to 25.9 25.9 to 29.0 29.0 to 61.0 61.0 to 64.0 64.0 to 65.5 65.5 to 67.1 67.1 to 73.2 73.2 to 74.7 74.7 to 96.0 96.0 to 122 WG 88-5 DEPTH (m) 0 to 1.5 1.5 to 10.7 10.7 to 18.3 18.3 to 21.3 21.3 to 24.3 24.3 to 57.9 57.9 to 59.4 59.4 to 80.8	brown green brown green brown green brown green black grey green COLOUR overburden brown grey black brown light dark grey brown/green green

112.8 to 115.8 115.8 to 122 beige grey

WG 88-6 DEPTH (m) 0 to 1.5 1.5 to 7.6 7.6 to 10.7 10.7 to 13.7 13.7 to 38.1 38.1 to 39.6 39.6 to 44.2 44.2 to 53.3 53.3 to 64.0 64.0 to 122


colour overburden orange/brown brown black green black grey green dark grey green

WG 88-7 DEPTH (m) 0 to 7.6 7.6 to 12.2 12.2 to 85.3 85.3 to 91.4 91.4 to 94.5 94.5 to 105.2 105.2 to 122

colour overburden brown green dark grey light grey dark grey green

WG 88-9 DEPTH (m) 0 to 68.6 68.6 to 122

coLour
overburden
brown/grey-greyer with depth

