Off Confidential: 90.03.28 District Geologist, Victoria ASSESSMENT REPORT 18568 MINING DIVISION: Nanaimo PROPERTY: Holberg 50 40 00 LONG 128 05 00 LOCATION: LAT UTM 09 5612940 564783 NTS 102109E 031 CAMP: Island Copper Area Orp 1-2 CLAIM(S): Formosa Res. OPERATOR(S): AUTHOR(S): Leighton, D.G. **REPORT YEAR:** 1989, 85 Pages COMMODITIES SEARCHED FOR: Silver, Arsenic Triassic, Quatsino Formation, Parson Bay Formation, Limestone, Shale **KEYWORDS:** Orpiment, Realgar WORK Geophysical, Geochemical, Drilling, Physical DONE: 330.8 m DIAD 4 hole(s);BQ Map(s) - 1; Scale(s) - 1:250015.0 km LINE MAGG 15.0 km Map(s) - 1; Scale(s) - 1:500023 sample(s) ;ME SAMP SOIL 1415 sample(s) ;ME Map(s) - 1; Scale(s) - 1:250010ŽI 010 MINFILE:

| LOG NO: | 0330 | RD. |
|---------|------|-----|
| ACTION: |      |     |
|         |      |     |
|         |      |     |

FILE NO:

GEOLOGICAL AND DRILLING

# REPORT ON

HOLBERG PROPERTY

FILMED

INCLUDING ORP 1-2 MINERAL CLAIMS

Nanaimo Mining Division

GEOLOGICAL BRANCH ABSESSMENT REPORT

Longitude 128°5'W Latitude 50°40'N N.T.S. Map 1021/9E



|        | 45.98.9 | an inter | n <sup>b</sup> i |
|--------|---------|----------|------------------|
|        | 5       |          |                  |
| 1.1.R. | <br>    |          |                  |

| OWNER     | Lone Trail Prospecting Ltd.   |
|-----------|-------------------------------|
| OPERATOR  | Formosa Resources Corporation |
| AUTHOR    | D.G.Leighton B.Sc.,FGAC       |
| SUBMITTED | March 28, 1989                |

## CONTENTS

| 1.  | SUMMARY                                                                     | 1                |
|-----|-----------------------------------------------------------------------------|------------------|
| 2.  | INTRODUCTION                                                                | 1                |
| 3.  | PROPERTY<br>3.1 Location and Access<br>3.2 Claims<br>3.3 History            | 1<br>1<br>2<br>2 |
| 4.  | GEOLOGY<br>4.1 Regional Geology<br>4.2 Structure<br>4.3 Property Geology    | 3<br>3<br>3<br>4 |
| 5.  | GEOCHEMISTRY<br>5.1 Ground Control<br>5.2 Sampling Procedure<br>5.3 Results | 4<br>4<br>5      |
| 6.  | GEOPHYSICS                                                                  | 5                |
| 7.  | DIAMOND DRILLING                                                            | 6                |
| 8.  | CONCLUSIONS                                                                 | 6                |
| 9.  | REFERENCES                                                                  | 7                |
| 10. | CERTIFICATION                                                               | 8                |

APPENDIX ICost StatementAPPENDIX IIAnalytical ResultsAPPENDIX IIIDrill Logs

## ILLUSTRATIONS

| Figure | 1 | Holberg | Property-LOCATION            | follows | page  | 2 |
|--------|---|---------|------------------------------|---------|-------|---|
| Figure | 2 | Holberg | Property-CLAIMS              | follows | page  | 3 |
| Figure | 3 | Holberg | Property-GENERAL COMPILATION | in      | pocke | t |
| Figure | 4 | Holberg | Property-GEOCHEMISTRY SURVEY | in      | pocke | t |
| Figure | 5 | Holberg | Property-MAGNETIC PROFILES   | follows | page  | 5 |

### HOLBERG PROPERTY

### 1. SUMMARY

The Holberg property, located at the north end of Vancouver Island, is a prospect with potential for Hot Spring type gold mineralization . It is comprised of two contiguous claims (35 units) located in the Nanaimo Mining Division. The claims are owned by Lone Trail Prospecting Ltd., a company based on Gabriola Island B.C. Formosa Resources Corporation has an option to acquire a 100 percent interest in the property.

The claims cover a realgar-orpiment showing which crops out on the bank of the San Josef River. Soils in the vicinity of the showing are highly anomalous in mercury and arsenic. A major fault zone which appears to run through the claims may be the conduit of hydrothermal solutions which precipitated arsenic-mercury-antimony sulphides.

In the spring of 1988, Formosa Resources Corporation completed an exploration program on the property which involved: grid controlled geological, geochemical and geophysical surveys, prospecting, and diamond drilling. The objective was to test the area for potential low temperature gold mineralization. One moderately deep, and three shallow holes were drilled in the area of the showings. Results were disappointing, but, not necessarily conclusive. A key objective was to test the anomalous area at depth - where Karmutsen basalt meets Quatsino limestone. Part of the deep drill hole cut dike rock.

### 2. INTRODUCTION

An exploration program was completed on the Holberg property by Formosa between March 13 and June 15, 1988. Crews operated out of a motel located in the logging community of Holberg. The objective of the work was to test the ORP claim group for "Hot Spring type" gold mineralization associated with occurrences of mercury-arsenic showings found by Mr. Ron Bilquist.

This report summarizes results of the 1988 program.

### 3. PROPERTY

3.1 Location and Access (see figure 1)

The Holberg property is located near the Canadian Forces Base at San Josef on northern Vancouver Island. Claims are located in N.T.S. map-area 102I/9E. The property is at 50° 40' north latitude, 128° 5' west longitude. Topographically the area is quite subdued with elevations ranging between about 200 and 500 metres. Access is via a logging road from Western Forest Products' Holberg camp (a distance of approximately six kilometres). The claims straddle the San Josef River. Holberg itself is about an hour's drive from Port Hardy.

3.2 Claims (ess figure 2)

The Holberg property consists of two metric claims in the Nanaimo Mining Division. Pertinent claim data is listed below:

### Holberg Property

| Claim | <u>1</u> | Record | No. | Units | Exp  | iry | Dat | te   |  |
|-------|----------|--------|-----|-------|------|-----|-----|------|--|
| 0rp 1 |          | 2921   |     | (20)  | Maro | rh  | 28. | 1989 |  |
| Orp 2 | 2        | 2922   |     | (15)  | Marc | ch  | 28, | 1989 |  |

It should be noted that the Holberg property originally involved the following two post claims:

| Realgar | 1 | 2690 | (1) | May | 24, | 1989 |
|---------|---|------|-----|-----|-----|------|
| Realgar | 2 | 2691 | (1) | May | 24, | 1989 |
| Realgar | 3 | 2692 | (1) | May | 24, | 1989 |
| Realgar | 4 | 2693 | (1) | May | 24, | 1989 |

The four Realgar claims were completely overstaked by Orp 1 and subsequently (March 13, 1989) incorporated into the larger four post claim by employing provisions of Section 31 of the Mineral Tenure Act.

A representative number of claim lines and posts were examined in the course of the 1988 exploration program. Staking appears to conform to the requirements of British Columbia's Land Tenure Act, and the area covered closely matches that shown on the Mining Recorder's map of the area.

### 3.3 History

The earliest recorded work in the Holberg property area dates from about 1916, when the Spooner Bros. and their associates did some development work on copper occurrences located on the north side of Mount Hansen. Work at the Mount Hansen showings proceeded intermittently by various operators up to 1971 when Holberg Mines Ltd. completed an extensive exploration program. Showings at Mount Hansen consist of disseminated bornite and stringers in dark green amygdaloidal Karmutsen basalt.

In 1978, Sergeant Garrett, while stationed at the San Josef military base, noticed bolders composed mainly of orpiment and realgar in the San Joseph River. This was brought to the



attention of prospector Mr. Ron Bilquist who traced the mineralized rock to its source, a mineralized fault zone, located about one kilometre up river from the Canadian Forces bridge over the San Josef River. The exploration work described in this report is the first serious evaluation of the showing.

### 4. GEOLOGY

### 4.1 Regional Geology

The Holberg property is located on northern Vancouver Island. This region is underlain by a sequence of Upper Triassic to Lower Jurassic volcanic and sedimentary rocks which have been intruded by various stocks. These stocks are thought to be comagnatic with the extrusive rocks.

The oldest unit consists of a thick plate of Triassic basalts known as the Karmutsen Formation. Karmutsen basalts include massive flows, pillow lavas, and breccias which have a total thickness of between 3000 and 6,000 metres.

The basalts are conformably overlain by sediments of the Quatsino Formation. Quatsino limestone is at least several hundred metres thick, however, the true thickness is difficult to establish due to the possibility of repetition of formation by faulting.

Quatsino Formation limestone is conformably overlain by the Bonanza Subgroup. The Bonanza is subdivided into two major units, a lower, mainly sedimentary unit and an upper volcanic unit. The lower sedimentary part consists of thick-bedded, black, argillaceous, carbonaceous limestone, calcareous shale, siltstone, and greywacke (Northcote, 1970). The upper volcanic portion of the Bonanza Subgroup is comprised of varied intermediate to acid flows and volcanoclastic rock. In the vicinity of the Holberg property, lithologies are cut by numerous dikes which are thought to be feeders to Bonanza volcanics located higher in the geologic section.

### 4.2 Structure

The structure of northern Vancouver Island is dominated by block faulting. Northwesterly trending faults dominate. An important effect is repetition and loss of parts of the stratigraphic section. The most significant fault is a major break which follows Holberg Inlet and continues northward toward Cape Scott. A subsidiary "splay" of the Holberg fault, based in part on airphoto interpretation, diverges from the main break near William Lake and runs almost directly south through the center of the Holberg property. It is this north-south splay fault that controls



mineralization on the property.

4.3 Property Geology (see figure 3)

The geology of the Holberg property, in the vicinity of the San Josef River orpiment-realgar showings, based on limited outcrop mapping, is shown on figure 3 entitled General Compilation.

Western slopes of Mt. Hansen are dominated by massive basalt flows of the Upper Triassic Karmutsen Formation. The basalt is conformably overlain by massive grey Quatsino Formation limestone. Karmutsen and Quatsino rocks dip at moderate angles to the southeast.

Outcrop exposed along the San Josef River is mainly Parson Bay Formation shale. This shale is contorted but mostly flat lying. Showings occur in Parson Bay rock and in Quatsino limestone stratigraphically below.

East of the river, Bonanza volcanics are exposed. The Bonanza here consists mainly of massive porphyritic flows of intermediate composition which contain distinctive orange phenocrysts.

A massive dike crops out along the Realgar claim access road. This dike is similar in appearance to the massive Bonanza extrusives (based on colour and phenocryst composition) described above and is probably a comagmatic unit.

### 5. GEOCHEMISTRY

5.1 Ground Control (see figure 3)

Ground conditions on the Holberg property vary from good to extremely difficult. Some areas are open and easy to traverse, however, most are covered by very dense second grouth. Lines for a control grid were cut out using chainsaws and axes. The base line runs approximately northsouth (330° true) with cross lines at 100 metre intervals (in some areas 50 or 25 metre intervals). Stations were established using a chain and compass at 20 (in some areas 10) metre intervals. The location of the Holberg property grid relative to claim boundaries, roads, and topographic features is shown on figure 3 entitled General Compilation (in pocket). In total about 15 line kilometres of grid were cut and surveyed.

### 5.2 Sampling and Analytic Procedure

Soil development on the Holberg property is typical of Vancouver Island. In general, bedrock is covered by a layer of glacial till and gravel and the surface by up to one metre of organic material. The B-zone is usually poorly developed but in some places forms a layer up to 50cm thick. Soil samples were collected using hand augers. Wherever possible samples were collected from the top of the B-zone, otherwise material was taken from the top of the C-horizon immediately below organic rich topsoils.

Samples were sent to Acme Analytical Laboratories Ltd. at 852 E. Hastings Street, Vancouver, B.C. for geochemical analysis for mercury plus the 30 group ID elements. The analysis method used by Acme is as follows:

- 1) Soils are dried at 60°C and sieved to -80 mesh size.
- 2) Pulp is digested with 3 mls 3-1-2 HCl-HNO $3-H_2O$  at  $95^{\circ}C$  for one hour and then diluted with water. This leach is near total for base metals.
- 3) In the case of group ID elements analysis is by ICP
- 4) In the case of mercury, analysis is by cold vapour AA using a F & J scientific assembly. The aliquotes of the extract are added to a stannous chloride/hydrocloric acid solution. The reduced Hg is swept out of the solution and passed into the Hg cell where it is measured by AA.

#### 5.3 Results

The Holberg property grid is shown on figures 3 and 4 (see pocket). Figure 4 shows mercury in soils and sample locations where molybdenum values equal or exceed 10 ppm. An area about 100 by 400 metres in extent outlines a soil anomaly where most samples returned values of between 1000 to 4000 ppb in mercury. Anomalous molybdenum values cluster in the vicinity of intermediate dike rocks on the south side of the San Josef River. High molybdenum values on the north side of the river in the vicinity of grid coordinates 4750N-4600E occur in an area of no outcrop. Results from all 1,415 ICP plus gold analysis (1,113 include Hg) are included in Appendix II.

### 6. GEOPHYSICS

A aeromagnetic survey was made of the northern end of Vancouver Island in 1962 by the Geological Survey of Canada. Results are presented on one inch to one mile maps. Map 1730G covers the area of the Orp mineral claims. On this map the Holberg property coincides with a broad magnetic low. The Holberg property grid was surveyed using an EDA Omni-Plus VLF/Magnetic system. Electromagnetic measurements produced a very flat response. The magnetic field, on the other hand, provided information which aided in the interpretation of geological mapping. Results of the vertical field magnetic measurements in the form of stacked profiles are shown on figure 5. The high linear trend which runs sub-parallel to the base line coincides with a moderately acidic dike which is described in more detail under geology. The high magnetic values located on the eastern edge of the Holberg property grid reflect the Karmutsen basalts which form the bulk of Mt. Hansen.

### 7. DIAMOND DRILLING

Four BQ size holes were drilled from two sites on the Holberg property. The objective was to test bedrock, at depth, beneath a possible paleo hot spring deposit for Carlin type gold mineralization (Radtke, 1985). Three shallow and one deep (187m) holes were drilled. Hole locations relative to claim boundaries and local topographic features are shown on figure 3. Drill hole logs are attached as Appendix III. Core is stored on site at a location indicated on figure 3.

### 8. CONCLUSIONS

The Holberg property contains potential for low temperature gold mineralization based on the widespread presence of arsenic mineralization and highly anomalous mercury and arsenic levels in soils. By way of comparison, the geochemical signature of Homestake Mining's McLaughlin mine (Lehrman, 1986) includes mercury, antimony and arsenic. These elements are considered useful pathfinders to hot spring type precious metal deposits.

Hole No. 88-4 penetrated 132 metres horizontally and vertically through the center of the main target area. Minor mercury and arsenic mineralization was noted throughout this hole. No evidence of vertical zoning was evident in sulphides or in alteration minerals. In particular, no evidence of silica vein stockworking was seen which one would expect in a productive system (Nelson, 1988).

The north side of the river was not adequately tested and highly anomalous molybdenum values in soils encountered there remain an enigma. Possibly the Mo had a hydrothermal origin. No outcrop was seen in the vicinity of these high values.

### 9. REFERENCES

Geophysical Paper 1730. (1963) Cape Parkins-San Josef, Vancouver Island B.C., Sheet 1021/8,1/9

Lehrman, N.J. (1986) The McLaughlin Mine, Napa and Yolo Counties, California, Nevada Bur. Mines and Geology Report 41, p. 85-89.

Muller, J.E. (1969) Northern Vancouver Island, Report of Activities, Pt,A, Geol. Surv. Canada, Paper 69-1, p.27-29.

Nelson C.E. (1988)

Gold Deposits in the Hot Spring Environment <u>In</u> Bulk Mineable Precious Metal Deposits of the Western United States, Symposium Proceedings, The Geological of Nevada, p. 417-431.

- Northcote K.E. (1970) Rupert Inlet-Cape Scott map-area, B.C. Ministry of Energy Mines and Petroleum Resources, G.E.M.,p.254-258
- Radtke, A.S. (1985) Geology of the Carlin gold deposit, Nevada, U.S. Geol. Survey Prof. Paper 1267, 124p.

### 10. CERTIFICATION

### CERTIFICATE OF QUALIFICATION

I, Douglas G. Leighton, do hereby certify that:

1. I am a professional geologist with offices at 3155 West 12th Avenue, Vancouver, B.C. V6K 2R6.

2. I am a graduate of the University of British Columbia, B.Sc., (1968).

3. I am a Fellow in the Geological Association of Canada.

4. I have practised my profession as a geologist since 1968.

5. I personally examined the Holberg Property of Lone Trail Prospecting Ltd. and supervised exploration work carried out there.

6. I have not received, nor do I expect to receive, any interest, direct or indirect, in the Holberg Property, in the Formosa - Lone Trail project or in the securities of Formosa Resources Corporation.

7. I hereby consent to the publication of this report for purposes of a prospectus or a statement of material facts.

Dated at Vancouver, British Columbia, this 28th day of March, 1989

Douglas G. Leighton B.Sc ELLOW

## APPENDIX I STATEMENT OF COSTS (1988 Work Program)

| Wages and Professional Fees*<br>including benefits                         | \$ 40,370.                |
|----------------------------------------------------------------------------|---------------------------|
| Transportation (mainly truck rental)                                       | 4,890.                    |
| Geochemical and Assay                                                      | 22,513.                   |
| Meals and Accommodation                                                    | 10,500.                   |
| Miscellaneous; including, supplies, rentals, office, telephone, maps, etc. | 3,250.                    |
| Contract Engineering Charge                                                | 22,602.                   |
| DIAMOND DRILLING<br>Road access and site preparation<br>Drill contract     | 4,330.<br><u>46,810</u> . |
| TOTAL                                                                      | <u>\$155,265.</u>         |

\* Breakdown showing pay rates and days worked follows.

gen

# TIME SHEET SUMMARY

والمحاج المركز والمراجع والمراجع

# HOLBERG PROJECT

1

1

•

Year 1988

| NAME             | RATE     | MONTH         | 1 | 2        | 3        | 4 | 5 | 6                    | 7 | . 8 | 3   | 9           | 10 | 11 | 12 | 13       | 14         | 15 | 16         | 17 | 18 | 19                   | 20 | 21            | 22 | 23 | 24           | 2   | 5 2     | 3            | 27            | 28 | 29       | 30 | 31 | Time<br>Total |
|------------------|----------|---------------|---|----------|----------|---|---|----------------------|---|-----|-----|-------------|----|----|----|----------|------------|----|------------|----|----|----------------------|----|---------------|----|----|--------------|-----|---------|--------------|---------------|----|----------|----|----|---------------|
| Clark G          | \$175.00 | May -         |   |          | 14       | / | / | X                    | X | X   |     | $\langle  $ | X  | Х  | X  | X        | X          | X  | X          |    | /  | X                    | X  | <u>  x</u>    | X  | X  |              |     | ×       | +            | +             | -  |          |    |    | 19            |
|                  | •        | May -         | X | X        | X        | X | X | X                    | ) | (   | X X | x           | X  | Х  | X  |          |            |    |            |    |    | 1                    |    |               |    |    |              | 1   | 1       | +            |               | -  |          |    |    | 12            |
| Faiers, B.       | \$150.00 | June          |   |          | 1        | - | 1 | $\frac{1}{\sqrt{2}}$ | + |     |     |             |    | v  |    |          |            |    |            |    | -  | $\frac{1}{\sqrt{2}}$ |    |               |    |    | +            |     | +       | +            | $\rightarrow$ |    | _        |    |    | 19            |
| Lu, H.           | \$120.00 | May -<br>June |   |          |          |   |   |                      | 1 |     |     |             |    | ^  | ^  |          | Ê          | Â  | Ê          |    |    | Ê                    | Ê  |               |    | Ĺ  | Ľ            |     |         |              |               |    |          |    |    | 10            |
|                  |          | May -         | X | X        | X        | X | X | X                    |   | x   | X   | x           | χ  | X  |    | <u> </u> | <u>  x</u> | X  | <u>( x</u> | X  | X  | ⊥x                   |    |               |    | X  | $\downarrow$ | 4   | хĻ      | 4            | <u>x</u>      |    |          |    |    | 25            |
| 0'Neil, D.       | \$135.00 | June          | 1 | <u> </u> | <u> </u> |   | L | -                    | 1 | 1   |     |             |    |    |    | <u> </u> | -          |    | ļ          | X  | X  | +                    |    | <u> </u>      |    |    | +-           |     | +       | +            | _             |    |          |    |    | 2             |
| Plumpton, B.     | \$120.00 | May -<br>June | X | X        |          |   |   |                      |   |     |     |             |    |    |    | X        | X          | X  | X          | X  |    |                      |    |               | X  | X  |              |     | XIX     |              | <u>X</u>      | X  | <u>X</u> | X  | X  | 20            |
| Walski, L.       | \$135.00 | May -<br>June | Х | X        | X        | X | X | +                    |   | X   | X   | X           | X  | X  |    |          |            | -  | <u> </u>   |    |    | +                    | ┼  | -             |    |    | +            | +   |         | +            |               |    |          |    |    | 11            |
|                  |          | May -         | 1 | X        |          | X | X | $\downarrow$         | ( | 1   |     | Х           | 1  | 1  |    |          |            | X  | 1          |    |    |                      |    |               |    |    |              | x x |         |              | /             |    |          |    |    | 11            |
| Leighton, D.     | \$250.00 | June          |   |          |          |   |   |                      |   |     |     |             |    |    |    |          | X          | X  | X          | X  |    |                      |    | 1             |    |    | 1            | 1   | $\perp$ | $\downarrow$ | <br>          |    |          |    |    | 4             |
|                  |          |               | - |          |          |   |   |                      |   | -   |     |             |    |    |    | <br>     | 1          |    | +          |    | +  | +                    | +  |               | +  |    | ╞            | _   | +       | +            |               |    |          | _  |    |               |
|                  |          |               |   | -        |          |   | + |                      |   |     |     |             |    |    |    | †<br>†   |            |    |            |    |    | -                    |    |               | -  |    | +            |     | 1       | $\neg$       |               |    |          |    |    |               |
|                  |          |               |   | +        |          | + | + | _                    |   | _   |     |             |    | -  |    | +        | 1          |    |            |    | +  | +                    | +  | $\frac{1}{1}$ | +  | +  | +            | +   | +       | $\dashv$     |               |    |          |    |    | <u>-</u>      |
|                  |          |               | - |          |          | - | + |                      |   | -+  |     |             |    |    |    |          |            | +  |            |    |    |                      |    |               |    |    | $\uparrow$   |     | +       |              |               |    |          |    |    |               |
| Total chargeable |          |               |   |          |          |   |   |                      |   |     |     |             |    |    |    |          |            |    |            |    |    |                      |    |               |    |    |              |     |         |              |               |    |          |    |    |               |

# TIME SHEET SUMMARY

# Year 1988

# HOLBERG PROJECT

ļ

, .

| NAME             | RATE     | MONTH            | 1 | 2 | 3 | 4  | 5 | 6 | 1 | 7 8 | 8 | 9 | 10 | 11 | 12 | 13       | 14 | 15 | 16      | 17 | 18     | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26               | 27 | 28 | 29 | 30 | 31 | Time<br>Total                                                  |
|------------------|----------|------------------|---|---|---|----|---|---|---|-----|---|---|----|----|----|----------|----|----|---------|----|--------|----|----|----|----|----|----|----|------------------|----|----|----|----|----|----------------------------------------------------------------|
| Faiers, B.       | \$150.00 | March -<br>April |   |   |   |    |   |   |   |     |   |   |    |    | X  | X        | X  | X  | X       | X  | X      | X  | X  |    | X  | X  | X  | X  | X                | X  | X  | X  | X  |    | 19                                                             |
| O'Neil, D.       | \$135.00 | March -<br>April |   |   |   |    |   |   |   |     |   |   |    |    |    | x        | x  | X  | X       | X  | X      | X  | X  | X  | x  | X  | X  | X  | X                | X  | X  | x  | X  |    | 18                                                             |
| Walski, L.       | \$135.00 | March -<br>April |   |   |   |    |   |   |   |     |   |   |    |    |    | x        | X  | X  | X       | X  | x      | x  | X  | x  | X  | X  | x  | x  | x                |    |    | X  | X  |    | 16                                                             |
| Plumpton, B.     | \$120.00 | March -<br>April |   |   |   |    | - | + |   | +-  |   | _ |    |    | .  | X.       | X  | X  | X       | x  | X      | X  | X  | X  | X  | x  | X  | X  | x                | X  | X  | X  | X  |    | 18                                                             |
| Leighton, D.     | \$250.00 | March -<br>April | F |   |   | () | < | + |   | x   | / |   |    | x  | X  | X        | X  | /  | /  <br> |    | X<br>X | 1  | /  | /  | /  |    | X  | X  | X                |    |    | X  |    |    | 6 <sup>1</sup> / <sub>2</sub><br>9 <sup>1</sup> / <sub>2</sub> |
|                  |          |                  |   |   |   |    |   | - |   |     |   |   |    |    | -  | -        |    |    |         |    |        |    |    |    |    |    |    |    |                  |    |    |    |    |    |                                                                |
|                  |          |                  |   |   | Ţ |    |   | 1 |   | +   | _ |   |    |    |    | <u> </u> |    |    |         |    |        |    |    | -  |    |    |    | -  | $\left  \right $ |    |    |    |    |    |                                                                |
|                  |          |                  | - |   |   |    |   |   |   | _   |   |   |    |    |    |          |    |    |         |    |        |    |    |    |    | -  | -  | -  |                  | -  | -  |    |    |    |                                                                |
|                  |          |                  | - |   |   |    |   | + |   |     |   |   |    |    |    |          | -  |    |         |    |        | 1  |    |    |    |    | -  |    |                  |    |    |    |    |    |                                                                |
|                  |          |                  | - |   |   |    |   |   |   |     |   |   |    |    |    |          | +  |    |         |    |        |    |    |    |    |    |    |    |                  |    |    | 1  |    |    |                                                                |
| Total chargeable | <u> </u> | -!               |   |   |   |    |   |   |   |     |   |   |    |    |    |          |    |    |         |    | Ì      |    |    |    |    |    |    |    |                  |    |    |    |    |    |                                                                |

## APPENDIX II

## ANALYTICAL RESULTS

PHONE(604)253-3158 FAX(604,\_33-1716 ACME ...ALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. V. COUVER B.C. V6A 1R6

e

t

í.

(

£

ſ

(

(

7

£

(

1

.

(

(

ſ

£ .

€

#### GEOCHEMICAL ANALYSIS CERTIFICATE

ICT - .500 GRAM SAMPLE IS DIGKSTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACE IS PARTIAL FOR ME FE CA P LA CE NG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPR. - SAMPLE TYPE: P1 ROCK P2-3 SOIL AUF AWALTSIS BY AN FROM 10 GRAM SAMPLE. 1

DATE REPORT MAILED: May & /88 صا DATE RECEIVED: APR 25 1988 File # 88-1183 Page 1 BOUNDARY DRILLING INC. PROJECT-103 W Au\* P La CT Xg Ba 71 B λl Ma I Co Ξŧ λs 1 λu Th sr Cd Sb Bi 7 Ca ¥1 Χn SAMPLES No Cu 2b Zn λς PPH PPH ł PPM PPM 1 PPH 1 PPH Ł 1 1 PPN PPB PPM PFM PPM PPM 1 PPH PPH PPH PPH PPM PPM PPM PPM 1 PPM PPM PPM .09 .24 3 1.33 . 93 2 170 .18 .032 50 15 .03 2 2 15 4 9 449 5.39 4284 5 ND 2 - 9 1 5 25 3 39 .1 6 5000% 4760E

15

1

1 24

4 193 5.55 46993

21 .2

8

12

11

5000X 4770B

1

5 D 32 .17

2

67

2

.25 .031

34 .11 4 .70

.02 .02

1 1

| Dures 1990         0         1         7         7         1         1         2         1         1         2         1         1         2         1         1         2         1         1         2         1         1         2         1         1         2         1         1         2         1         1         2         1         1         2         1         1         2         1         1         2         1         1         1         2         1         1         1         2         1         1         2         1         1         2         1         1         1         2         1         1         2         1         1         2         1         1         2         1         1         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30003 4110A                |     | 17   | ,  | 75       |     | ŝ     | ŝ   | 208  | 5 85 | 79349 | ŝ      | 80        | ; | 15 | 1 | 21  | 2   | 107 | .36       | .035  | 3   | 35  | .16  | 29 | .15  | 8.90    | .01  | .03   | 2 | 1  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----|------|----|----------|-----|-------|-----|------|------|-------|--------|-----------|---|----|---|-----|-----|-----|-----------|-------|-----|-----|------|----|------|---------|------|-------|---|----|--|
| Norm         House         L         Li         Ji         Ji <th< td=""><td>20002 41202</td><td>•</td><td>11</td><td></td><td>18<br/>71</td><td>•••</td><td>71</td><td>51</td><td>1416</td><td>1 74</td><td>515</td><td>ć</td><td>¥75</td><td>•</td><td>20</td><td>1</td><td></td><td>,</td><td>107</td><td>.70</td><td>.019</td><td>6</td><td>47</td><td>.41</td><td>29</td><td>.18</td><td>5 2.54</td><td>.02</td><td>.04</td><td>1</td><td>1</td><td></td></th<>                                                            | 20002 41202                | •   | 11   |    | 18<br>71 | ••• | 71    | 51  | 1416 | 1 74 | 515   | ć      | ¥75       | • | 20 | 1 |     | ,   | 107 | .70       | .019  | 6   | 47  | .41  | 29 | .18  | 5 2.54  | .02  | .04   | 1 | 1  |  |
| SIGG 46000         1         35         7         33         1.2         21         1.4         2.4         1.4         1.4         2.4         1.4         1.4         2.4         1.4         1.4         2.4         1.4         1.4         2.4         1.4         1.4         2.4         1.4         1.4         2.4         1.4         1.4         2.4         1.4         1.4         2.4         1.4         1.4         2.4         1.4         1.4         2.4         2.4         1.4         1.4         2.4         2.4         1.4         1.4         2.4         2.4         1.4         1.4         2.4         2.4         1.4         1.4         2.4         2.4         1.4         1.4         2.4         2.4         1.4         2.4         2.4         1.4         1.4         2.4         2.4         1.4         1.4         2.4         2.4         1.4         1.4         2.4         2.4         1.4         1.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4 <td>5000H 4790E</td> <td>1</td> <td>23</td> <td>4</td> <td>11</td> <td>.1</td> <td>41</td> <td>31</td> <td>1410</td> <td>1.11</td> <td>343</td> <td>J<br/>E</td> <td>10</td> <td>4</td> <td>11</td> <td></td> <td>,</td> <td>,</td> <td>267</td> <td></td> <td>070</td> <td>i</td> <td>54</td> <td>- ii</td> <td>25</td> <td>.37</td> <td>4 3.04</td> <td>. 07</td> <td>.07</td> <td>ī</td> <td>1</td> <td></td> | 5000H 4790E                | 1   | 23   | 4  | 11       | .1  | 41    | 31  | 1410 | 1.11 | 343   | J<br>E | 10        | 4 | 11 |   | ,   | ,   | 267 |           | 070   | i   | 54  | - ii | 25 | .37  | 4 3.04  | . 07 | .07   | ī | 1  |  |
| Store 44105         1         120         9         157         7.02         21         5         PD         2         11         1         2         2         220         3.3         3.17         3         67         3.6         7.16         42         .62         1.02         1         1         2         200         33         0.17         3         121         46         13         .73         14         23         44         13         14         13         14         13         14         13         14         13         14         13         14         14         13         14         14         14         14         14         14         14         14         14         14         14         15         10         2         11         14         2         2         10         13         14         12         2         2         10         11         10         14         14         14         14         14         14         14         14         13         1         2         2         14         13         14         14         14         14         14         14         14         14                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SODOR ABGOE                | 1   | 35   | 1  | 63       | .2  | 21    | 14  | 246  | 6.32 | 79    | 3      | NU.       | 4 | 19 | 1 | 4   | 4   | 203 | . 11      |       | •   | 43  | . 11 |    |      |         |      |       | • | •  |  |
| Deck Walles         1         Deck         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F         F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |     | ••   |    | 53       | 1   | 78    | ۵   | 197  | 7 07 | 71    | ç      | WD.       | , | 11 | 1 | ,   | 2   | 220 | . 39      | .017  | 3   | 67  | .36  | 22 | .40  | 3 2.76  | .02  | .02   | 1 | I  |  |
| Source 4205         1         1         1         1         2         2         1         2         2         1         2         2         1         1         2         2         1         1         2         2         1         1         2         1         1         2         1         1         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         <th1< th=""> <th1< th=""> <th1< <="" td=""><td>5000N 48102</td><td>1</td><td>32</td><td></td><td>27</td><td>•</td><td>20</td><td>,</td><td>135</td><td>7 74</td><td></td><td>5</td><td>AD<br/>VR</td><td>5</td><td>2</td><td>÷</td><td>,</td><td>,</td><td>200</td><td>11</td><td>017</td><td>3</td><td>171</td><td>.40</td><td>14</td><td>.37</td><td>2 6.33</td><td>. 03</td><td>.02</td><td>2</td><td>3</td><td></td></th1<></th1<></th1<></th1<>                                                                    | 5000N 48102                | 1   | 32   |    | 27       | •   | 20    | ,   | 135  | 7 74 |       | 5      | AD<br>VR  | 5 | 2  | ÷ | ,   | ,   | 200 | 11        | 017   | 3   | 171 | .40  | 14 | .37  | 2 6.33  | . 03 | .02   | 2 | 3  |  |
| Source 44305         2         43         6         53         1.1         20         2         1.1         1.1         2         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         1.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.1         1.1         1.1         1.1         2.1         2.1         2.1         2.1         2.1         2.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1 <th1.1< th="">         1.1         1.1</th1.1<>                                                                                                                                                                                                                                                                                                                                                                                                        | 5000% 4820E                | 1   | 75   | 1  | 50       | •4  | 28    | 8   | 208  | 1.24 |       | 2      | #U<br>T0  | 3 | ,, | 1 | 4   | ,   | 104 |           | 071   | 1   | 70  | 14   | 71 | 31   | 3 3 47  | 05   | 03    | Ť | 1  |  |
| Signed Harde         4         32         6         45         .2         17         8         22         2.1         1         1         2         2         13         1         2         2         13         1         2         2         13         1         2         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         22         21         1         1         2         2         12         2         12         12         2         12         12         2         13         2         21         13         14         14         14         14         14         1         15         10         2         11         15         11         14         2         13         2         21         13         14         14         14         14         14         14         14         14         14         14 <th< td=""><td>5000N 4830E</td><td>2</td><td>43</td><td>6</td><td>53</td><td>.1</td><td>20</td><td>8</td><td>185</td><td>6.54</td><td>1201</td><td>3</td><td>ND</td><td>4</td><td>17</td><td>1</td><td>2</td><td>4</td><td>133</td><td>16.<br/>SE</td><td>. 441</td><td>•</td><td>53</td><td>10</td><td>22</td><td></td><td>3 7 44</td><td>07</td><td>03</td><td>÷</td><td>1</td><td></td></th<>                                                                           | 5000N 4830E                | 2   | 43   | 6  | 53       | .1  | 20    | 8   | 185  | 6.54 | 1201  | 3      | ND        | 4 | 17 | 1 | 2   | 4   | 133 | 16.<br>SE | . 441 | •   | 53  | 10   | 22 |      | 3 7 44  | 07   | 03    | ÷ | 1  |  |
| SOUR 43502         1         25         6         44         .2         14         6         153         6.41         589         5         80         2         16         1         2         2         21         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1                                                                                                                                                                                                                                                                                                                                                                                                                       | 5000B 4840E                | 4   | 32   | 6  | 49       | .2  | 17    | 8   | 26Z  | 5.18 | 18581 | 2      | ND        | 2 | 15 | 1 | 8   | 4   | 100 |           |       | -   | 10  | . 20 |    | .20  | J 2.11  |      |       | ÷ | ÷  |  |
| SOON 46602       1       14       2       65       .2       7       5       375       1.10       16       5       9D       1       3D       1       2       2       16       1.21       .01       18       .02       5       .86       .01       .02       1         SOOM (\$100       2       17       6       65       .1       8       4       918       1.68       9       5       TD       1       42       1       2       2       12       1.22       1.00       16       .02       15       2       10       11       .01       .01       .01       .01       .01       .01       .01       .01       .02       1       14       1.1       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .02       1       .1       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01       .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5000N 4350E                | 1   | 25   | 6  | 44       | .2  | н     | 6   | 153  | 6.81 | 589   | 5      | ED        | 2 | 16 | 1 | 2   | 2   | 232 | .20       | .022  | 4   | 18  | •11  |    |      | 3 .81   |      | . 0.3 | 1 | I  |  |
| Double 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5000V 10537                | 1   | 14   | ,  | 65       | ,   | 7     | q   | 379  | 1 15 | 16    | 5      | ND        | 1 | 30 | 1 | 2   | 2   | 15  | r.21      | .035  | 2   | 1   | .10  | 18 | .02  | 5.86    | .01  | . 02  | 1 | 1  |  |
| DUDW 19/04         Source         Sou                                                                                                                                                                                                                                                                                                  | JUUUA 18CUL                | 1   | 17   | ÷  | 60       | •   | é     | í   | 012  | 1 68 |       | ç      | TB        | 1 | 17 | 1 | ,   | 2   | 24  | 222       | .109  | 2   | 12  | .12  | 17 | .02  | 10 .81  | .04  | .05   | 1 | 1  |  |
| Source 4800.       8       32       7       8       .2       13       6       90       0.0       1720       5       00       2       1       12       2       201       13       0.01       2       13       0.01       2       13       0.01       2       13       0.01       2       13       0.01       2       13       0.01       2       13       0.01       2       13       0.01       2       13       0.01       2       13       0.01       2       13       0.01       2       13       0.01       2       11       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>5000X 45/0E</td> <td>4</td> <td>11</td> <td>9</td> <td>03</td> <td>• •</td> <td>• • •</td> <td>1</td> <td>100</td> <td>5 01</td> <td>17781</td> <td>-</td> <td>100</td> <td>;</td> <td>28</td> <td></td> <td>15</td> <td>,</td> <td>120</td> <td>.71</td> <td>.038</td> <td>3</td> <td>55</td> <td>.21</td> <td>23</td> <td>.19</td> <td>5 2.18</td> <td>.01</td> <td>.03</td> <td>1</td> <td>1</td> <td></td>                                                                                                                                                                        | 5000X 45/0E                | 4   | 11   | 9  | 03       | • • | • • • | 1   | 100  | 5 01 | 17781 | -      | 100       | ; | 28 |   | 15  | ,   | 120 | .71       | .038  | 3   | 55  | .21  | 23 | .19  | 5 2.18  | .01  | .03   | 1 | 1  |  |
| 50008 (43)CC       1       1       4       1.1       4       1.4       4       1.1       3       0.0       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50008 48805                | 9   | 32   | 1  | 10       | -4  | 12    | •   | 434  | 0.01 | 11201 | 5      | 20<br>50  | • | 6  |   | ,   | ;   | 281 | 11        | 017   | ,   | 54  | 78   | 10 | .45  | 2 1.18  | .01  | . 07  | 2 | t  |  |
| SDODY 45002       7       30       6       51       .2       12       8       618       6.71       1394       5       800       2       15       1       13       2       13       7       13       4       1.11       4       1.01       4       1.01       4       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01       1.01 <th1.01< th="">       1.01       1.0</th1.01<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5000H 489CE                | 1   | 14   | 1  | 41       | -1  | . 11  | 4   | 144  | 4.01 | 111   |        | #U        | 4 | 3  |   |     | -   | 121 |           |       | ;   | 10  | 18   | 21 | 17   | 4 2 07  | 01   | 03    | 1 | 1  |  |
| 5000 H 4910E       1       28       9       35       .1       15       6       181       7.49       108       5       ND       2       9       1       2       2       222       .33       .012       1       11       13       .42       2       1.77       .01       .02       1       1         SOODH 4910E       1       21       8       27       .3       12       4       119       6.04       22       5       ND       2       11       1       2       2       227       .25       .012       2       14       .38       4       1.45       .01       .02       2       1         SOODM 4910E       1       22       7       39       .1       13       5       ND       2       11       1       2       2       222       .22       23       14       .33       4       1.85       .01       .02       1       12         SOODM 4910E       1       27       7       13       2       102       2       10       01       22       2       15       .11       14       .45       2       1.02       1       12       2 <t></t>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5000K 490DE                | 1   | 30   | 6  | 51       | .2  | 12    | 8   | 618  | 6./1 | 12394 | 3      | AD.       | 4 | 13 | 1 | 13  | 4   | 194 | ./•       |       | 1   | 17  |      | 11 |      | 1 2.04  |      |       | • | •  |  |
| STORE       1211       1       21       2       12       13       12       4       119       6.04       22       5       BD       2       11       1       2       2       227       .25       .012       2       77       .30       14       .33       4       1.45       .01       .02       1       12         STORE       1       33       5       43       .1       23       7       175       7.08       17       5       BD       2       113       1       4       2       179       .29       .023       2       60       .46       2       1.31       2       2       205       3.33       13       .42       4       1.48       .01       .02       1       1       2       2       2       25       .033       .13       2       1.44       .01       .02       1       1       2       2       25       .01       .01       2       2       .01       .01       2       .14       .45       2       1.02       .01       .02       1       1       2       2       25       .01       .01       .21       .01       .01       .21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5000K 1910E                | 1   | 28   | 9  | 35       | .1  | 15    | 6   | 181  | 7.49 | 108   | 5      | ID        | 2 | 9  | 1 | 2   | 2   | 222 | .33       | .012  | 1   | 67  | .31  | 13 | .42  | 2 1.77  | .01  | .02   | 1 | 1  |  |
| SOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50008 19707                | ī   | 21   | 8  | 27       | .3  | 12    | 4   | 119  | 6.04 | 22    | 5      | ND.       | 2 | 11 | 1 | 2   | 2   | 227 | .25       | .012  | 2   | 72  | .30  | 14 | .38  | 4 1.85  | .01  | .02   | 1 | 12 |  |
| JOID       Join       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L       L <thl< th="">       L       <thl< th=""> <thl< td="" thd<=""><td>50008 19205</td><td>1</td><td>11</td><td>ç</td><td>- 13</td><td>1</td><td>23</td><td>7</td><td>179</td><td>7.08</td><td>17</td><td>5</td><td>ID.</td><td>2</td><td>13</td><td>1</td><td>4</td><td>2</td><td>179</td><td>. 29</td><td>.023</td><td>2</td><td>80</td><td>. 46</td><td>24</td><td>. 33</td><td>2 3.51</td><td>.01</td><td>.02</td><td>2</td><td>1</td><td></td></thl<></thl<></thl<>                                                                                                                                                                                            | 50008 19205                | 1   | 11   | ç  | - 13     | 1   | 23    | 7   | 179  | 7.08 | 17    | 5      | ID.       | 2 | 13 | 1 | 4   | 2   | 179 | . 29      | .023  | 2   | 80  | . 46 | 24 | . 33 | 2 3.51  | .01  | .02   | 2 | 1  |  |
| Sourt 4502       1       27       6       42       .1       10       6       279       8.05       13       5       FD       2       5       1       2       2       259       .10       .11       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       1       2       2       2       2       1       1       2       2       2       1       1       2       2       2       1       1       2       2       2       1       1       2       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       2       1       1       1       1       2       1       1       1       2       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th=""> <th1<< td=""><td>10000 43366<br/>EARAY (0102</td><td></td><td>23</td><td>;</td><td>18</td><td>•••</td><td>13</td><td>ţ</td><td>178</td><td>6 27</td><td>14</td><td>Ę</td><td>XD</td><td>2</td><td>10</td><td>1</td><td>2</td><td>2</td><td>205</td><td>.33</td><td>.011</td><td>3</td><td>69</td><td>.33</td><td>13</td><td>. 12</td><td>4 1.84</td><td>.01</td><td>.02</td><td>2</td><td>1</td><td></td></th1<<></th1<>                                                                                                                                                                                            | 10000 43366<br>EARAY (0102 |     | 23   | ;  | 18       | ••• | 13    | ţ   | 178  | 6 27 | 14    | Ę      | XD        | 2 | 10 | 1 | 2   | 2   | 205 | .33       | .011  | 3   | 69  | .33  | 13 | . 12 | 4 1.84  | .01  | .02   | 2 | 1  |  |
| SUDDH       4530E       1       21       6       42       1.1       10       6       213       1.0       2       0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       <th1< th=""></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20004 4940E                |     |      | -  | 33       | •   | 10    | ć   | 378  | 1 14 | 12    | ć      | ED        | ; |    | i | ,   | ,   | 259 | .10       | .012  | 3   | 56  | .24  | 14 | .45  | 2 1.20  | .01  | .02   | 3 | 1  |  |
| SOUDH       4550E       1       78       8       50       .1       32       9       230       7.48       7       5       ND       2       7       1       3       2       192       .23       .021       3       120       .43       14       .33       2       5.41       .02       .02       1       1         5000K       4970E       1       33       47       .1       16       5       186       5.46       11       5       ND       2       11       1       2       165       .31       .024       2       58       .24       12       .23       4       2.02       .01       .02       1       1       1       5       ND       2       11       4       2       209       .25       .037       4       62       .23       20       .04       4       2.05       .05       .06       3       1       1       .02       .2       177       2.11       .035       5       35       1.04       7       .39       41       4.14       .05       .06       1       2       177       2.11       .035       5       35       1.04       7       .39<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20008 4320K                | 1   | 21   | 8  | 42       | ••  | te    | 4   | 213  | 4.40 | 14    | -      | AU        | - | J  | • | •   | •   |     |           |       | •   |     |      |    |      |         |      |       |   |    |  |
| SOUCH 4970E       1       33       3       47       .1       16       5       186       5.46       11       5       MD       2       11       1       2       2       165       .31       .024       2       58       .24       12       .23       4       2.02       .01       .02       1       1         500CH 4930E       1       35       6       44       .1       16       5       753       5.62       9       5       MD       2       12       1       4       2       209       .25       .037       4       65       .34       4       2.06       .05       .06       3       1         500CH 4930E       1       57       10       55       .2       19       7       1141       6.31       9       5       ND       2       18       1       3       2       198       .51       .049       4       65       .34       4       4.14       .05       .06       1       1       5000       5000       5000       5       35       10       1       2       2       189       .51       .049       3       .04       7       .39 <td< td=""><td>5000<b>0</b> 4950E</td><td>1</td><td>78</td><td>8</td><td>50</td><td>.1</td><td>32</td><td>9</td><td>Z30</td><td>7.48</td><td>1</td><td>5</td><td>ND.</td><td>2</td><td>7</td><td>1</td><td>3</td><td>2</td><td>192</td><td>. 29</td><td>.021</td><td>3</td><td>120</td><td>.43</td><td>14</td><td>.33</td><td>2 5.41</td><td>.02</td><td>.02</td><td>1</td><td>1</td><td></td></td<>                                                                                                                                                                     | 5000 <b>0</b> 4950E        | 1   | 78   | 8  | 50       | .1  | 32    | 9   | Z30  | 7.48 | 1     | 5      | ND.       | 2 | 7  | 1 | 3   | 2   | 192 | . 29      | .021  | 3   | 120 | .43  | 14 | .33  | 2 5.41  | .02  | .02   | 1 | 1  |  |
| SOUCH 49SDE       1       35       6       44       .1       16       6       753       5.62       9       5       ND       2       12       1       4       2       209       .25       .037       4       62       .23       20       .34       4       2.06       .05       .06       3       1         500CH 499DE       1       57       10       55       .2       19       7       1141       6.31       9       5       ND       2       18       1       3       2       198       .51       .049       4       65       .34       4       2.06       .05       .06       1       1         500CH 5020E       1       61       6       53       .2       26       9       842       6.20       8       5       ND       2       14       1       2       2       189       .52       .033       3       83       .37       13       .34       3       .06       .02       .06       1       1       5000H 5020E       1       1       1       2       2       189       .52       .033       5       26       .22       20       .11       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5000N 4970E                | 1   | 33   | 3  | 47       | .1  | 16    | 5   | 196  | 5.46 | 11    | 5      | ND.       | 2 | 11 | 1 | 2   | 2   | 165 | .31       | .024  | 2   | 58  | .24  | 12 | .25  | 4 2.02  | .01  | .0Z   | 1 | 1  |  |
| SOUCH 4900       1       57       10       55       .2       19       7       1141       6.31       9       5       ND       2       18       1       3       2       198       .51       .049       4       65       .34       18       .31       8       2.50       .01       .05       1       1         SOUCH 50105       1       200       6       143       .1       31       20       770       6.43       2       5       ND       2       18       1       2       2       177       2.11       .036       5       36       1.04       7       .39       41       4.14       .05       .06       1       2         SOUCH 50208       1       61       6       53       .2       25       9       842       6.20       8       5       ND       2       14       1       2       2       165       .039       5       2       .02       .11       6       1.09       .02       .08       1       1       5       .039       5       26       .22       20       .11       6       1.09       .02       .08       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5000¥ 4980E                | 1   | 35   | 6  | 44       | .1  | 16    | 5   | 753  | 5.62 | 9     | 5      | ND        | 2 | 12 | 1 | 4   | 2   | 209 | . 25      | .037  | 4   | 62  | .23  | 20 | .34  | 4 2.06  | .05  | .05   | 3 | I  |  |
| JOIGN SOIDE       1       ZOO       6       143       .1       31       ZO       770       6.43       Z       5       ED       Z       68       1       Z       2       177       2.11       .036       5       35       1.04       7       .39       41       4.14       .05       .06       1       Z         SOUCH SOIDE       1       61       6       53       .2       26       9       842       6.20       8       5       ND       2       14       1       2       2       189       .52       .039       3       83       .37       13       .34       3       3.06       .02       .06       1       1         SOUCH SOIDE       1       27       5       58       .1       11       4       288       2.35       2       5       HD       2       2       65       .54       .039       5       26       .22       20       .11       6       1.09       .02       .08       1       1         SOUCH SOIDE       1       77       51       .1       33       33       7.30       2       5       HD       1       1       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500CX 49905                | 1   | 57   | 10 | 55       | .2  | 19    | 7   | 1141 | 6.31 | 9     | 5      | ND        | 2 | 18 | 1 | 3   | 2   | 198 | .51       | .049  | - 4 | 65  | .34  | 18 | .31  | 8 2.50  | .01  | .05   | I | 1  |  |
| SOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50008 50105                | . 1 | 200  | 6  | 143      | .1  | 31    | 20  | 770  | 6.43 | 2     | 5      | ID        | 2 | 68 | 1 | 2   | 2   | 177 | 2.11      | .036  | 5   | 36  | 1.04 | 1  | . 39 | 41 4.14 | .05  | .05   | 1 | 2  |  |
| 5000H       5000H <th< td=""><td>35568 36162</td><td>•</td><td></td><td>•</td><td></td><td>••</td><td>••</td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                       | 35568 36162                | •   |      | •  |          | ••  | ••    |     |      |      | •     |        |           |   |    |   |     |     |     |           |       |     | -   |      |    |      |         |      |       |   |    |  |
| 5000H       5000H <th< td=""><td>5000R 5020E</td><td>. 1</td><td>61</td><td>6</td><td>53</td><td>.2</td><td>25</td><td>9</td><td>842</td><td>6.20</td><td>8</td><td>5</td><td>10</td><td>2</td><td>14</td><td>1</td><td>. 2</td><td>2</td><td>189</td><td>.52</td><td>.039</td><td>]</td><td>83</td><td>.37</td><td>13</td><td>.34</td><td>3 3.06</td><td>.02</td><td>.05</td><td>1</td><td>1</td><td></td></th<>                            | 5000R 5020E                | . 1 | 61   | 6  | 53       | .2  | 25    | 9   | 842  | 6.20 | 8     | 5      | 10        | 2 | 14 | 1 | . 2 | 2   | 189 | .52       | .039  | ]   | 83  | .37  | 13 | .34  | 3 3.06  | .02  | .05   | 1 | 1  |  |
| 5000x       5000x       1       72       7       51       .1       35       13       338       7.30       2       5       HD       3       10       1       2       2       207       .39       .023       3       114       .51       17       .44       2       5.11       .02       .02       1       1         5000x       50502       2       37       7       40       .1       17       7       230       7.15       9       5       ND       1       9       1       3       2       209       .33       .023       3       114       .51       17       .44       2       5.11       .02       .02       1       1       17       7       230       7.15       9       5       ND       1       9       1       3       2       209       .33       .023       3       114       .51       17       .44       2       5.11       .02       .1       9       5       ND       10       1       5       2       218       .33       .023       3       116       .44       7       17       .48       3       .93       .02       1 <th< td=""><td>5000H 5030E</td><td>1</td><td>27</td><td>5</td><td>58</td><td>.1</td><td>11</td><td>- 4</td><td>288</td><td>2.35</td><td>2</td><td>5</td><td>HD</td><td>2</td><td>23</td><td>1</td><td>• Z</td><td>2</td><td>65</td><td>.54</td><td>.039</td><td>5</td><td>26</td><td>.11</td><td>20</td><td>.11</td><td>6 1.05</td><td>.02</td><td>.08</td><td>1</td><td>1</td><td></td></th<>                                                                                                                                                                            | 5000H 5030E                | 1   | 27   | 5  | 58       | .1  | 11    | - 4 | 288  | 2.35 | 2     | 5      | HD        | 2 | 23 | 1 | • Z | 2   | 65  | .54       | .039  | 5   | 26  | .11  | 20 | .11  | 6 1.05  | .02  | .08   | 1 | 1  |  |
| SOUDH 5050E       2       37       7       40       .1       17       7       230       7.15       9       5       HD       1       9       1       3       2       209       .33       .029       3       84       .31       12       .42       3       2.56       .02       .03       2       1       1       5       2       218       .39       .023       3       116       .47       17       .48       3       .93       .02       1       3       2       218       .39       .023       3       116       .47       17       .48       3       .92       1       3       2       218       .39       .023       3       116       .47       17       .48       3       .93       .02       1       3         S000H 5060E       2       58       8       47       .2       77       259       7.96       9       5       HD       2       8       1       3       2       266       .34       .015       2       109       .36       9       .53       2       2.91       .01       .02       1       1       5       5000H       500E       .024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5000X 5040E                | 1   | 72   | 1  | 51       | .1  | 35    | 13  | 338  | 7.30 | 2     | 5      | RD        | 3 | 10 | 1 | · 2 | 2   | 207 | . 39      | .023  | 3   | 114 | .51  | 17 | .44  | 2 3.11  | .02  | . UZ  | 1 | 1  |  |
| SOUDH SOGOR       Z       58       47       .2       27       9       259       7.96       9       5       HD       1       1       5       2       218       .39       .023       3       116       .47       17       .48       3       3.94       .03       .02       1       3         SOUDH SOGOR       1       44       7       41       .1       21       7       241       8.74       9       5       HD       2       8       1       3       2       266       .34       .016       2       109       .36       9       .53       2       2.91       .01       .02       1       1         SOUGH SOBOR       1       44       7       19       .3       15       5       178       9.25       11       5       HD       2       7       1       5       2       293       .24       .024       2       107       .18       10       .55       7       2.78       .02       .02       1       1         SUBOR SOBOR       1       28       5       37       .2       10       5       7       2.78       .02       .02       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5000K 5050E                | 2   | 37   | 7  | 40       | .1  | 17    | 1   | 230  | 7.15 | 9     | 5      | ND        | 1 | 9  | 1 | 3   | ÷ 2 | 209 | .33       | .029  | 3   | 84  | .31  | 12 | .42  | 3 2.56  | .02  | .03   | Z | 1  |  |
| 5000M 5070E       1       44       7       41       .1       21       7       241       8.74       9       5       ND       2       8       1       3       2       266       .34       .016       2       109       .35       9       .53       2       2.91       .01       .02       1       1         5000M 5080E       1       44       7       39       .3       15       5       178       9.25       11       5       ND       2       7       1       5       2.93       .24       .024       2       107       .18       10       .55       7       2.78       .02       1       1         5000M 5090E       1       28       6       37       .2       10       5       7       2.78       .02       .02       1       1         5000M 5090E       1       28       6       37       .2       10       5       7       2.78       .02       .02       .04       2       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50001 5060K                | 2   | 58   | 8  | 47       | .2  | 27    | 9   | 259  | 7.96 | 9     | 5      | <b>ED</b> | 3 | 10 | 1 | 5   | 2   | 218 | . 39      | .023  | 3   | 116 | .47  | 17 | .48  | 3 3.94  | .03  | .0Z   | 1 | 3  |  |
| 5000X 5070E 1 44 7 41 .1 21 7 241 8.74 9 5 HD 2 8 1 3 2 265 .34 .015 2 109 .35 9 .53 2 2.91 .01 .02 1 1<br>5000X 5080X 1 44 7 39 .3 15 5 178 9.25 11 5 HD 2 7 1 5 2 293 .24 .024 2 107 .18 10 .55 7 2.78 .02 .02 1 1<br>5000X 5090E 1 28 6 37 .2 10 5 279 8.71 11 5 HD 2 8 1 2 2 259 .25 .023 2 92 .17 8 .52 5 2.20 .02 .04 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | •   |      | -  |          |     |       | -   |      |      |       |        |           |   |    |   |     |     |     | • •       |       |     |     |      |    |      |         |      |       |   |    |  |
| 5000H 5080X 1 44 7 39 .3 15 5 178 9.25 11 5 HD 2 7 1 5 2 293 .24 .024 2 107 .18 10 .55 7 2.78 .02 .02 1 1<br>5005H 5090E 1 28 6 37 .2 10 5 279 8.71 11 5 HD 2 8 1 2 2 259 .25 .023 2 92 .17 8 .52 5 2.20 .02 .04 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5000X 5070E                | 1   | - 44 | 7  | 41       | .1  | 21    | 7   | 241  | 8.74 | 9     | 5      | ND.       | 2 | 8  | 1 | 3   | 2   | 256 | .34       | .015  | Z   | 109 | .36  |    | . 33 | 2 2.91  |      | .02   | 1 | 1  |  |
| 5000¥ 5090E 1 28 6 37 .2 10 5 279 8.71 11 5 ¥D 2 8 1 2 2 259 .25 .023 2 92 .17 8 .52 5 2.20 .02 .04 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5000N SOBOR                | : 1 | 44   | 7  | 39       | .3  | 15    | 5   | 178  | 9.25 | 11    | 5      | XD.       | 2 | 1  | 1 | 5   | 2   | 293 | .24       | .024  | 2   | 107 | .18  | 10 | . 33 | 7 2.78  | .02  | .02   | 1 | 1  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5000H 5090E                | : 1 | 28   | 6  | 37       | .2  | 10    | 5   | 279  | 8.71 | 11    | 5      | nd        | 2 | 8  | 1 | 2   | 2   | 269 | .25       | .023  | 2   | 92  | .17  | 5  | .5Z  | 5 Z.20  | .02  | .04   | Z | I  |  |

5 12 291 7.13 2 5000E 5100E 122 51 .1 49 1 6 12 .53 2 4.85 .02 .92 1 .47 1 250 .38 .021 2 133 ND 2 74 30 9 199 8.95 7 5 2 8 1 2 500CH 5110E 1 2 48 .1 3 4.37 .01 .02 3 136 .51 16 .51 1 1 .39 .019 28 199 7.81 10 5 D 2 9 1 5 2 264 50008 5120E 61 46 .1 9 1 8 2 104 .32 14 .49 2 2.45 .01 .02 1 1 3 . .2 292 .37 .025 TD 2 5000¥ 5130E 45 3 **4**B .1 21 7 240 9.80 11 5 8 1 1 40 63 .88 182 .07 35 1.84 .08 .13 13 48 24 60 .50 .091 31 1087 4.15 40 50 19 21 STD C/AU-5 19 63 41 132 7.4 72 43 22 8 • . •

2

1

D

2 10 3 199

.51 .022

3 124 .85

15 .49

14 5.92 .02

.02

2 1

ŝ.

•

| SAMPLE #                                                                               | No<br>PPN             | Cu<br>PPN                     | Pb<br>PPM                | Zn<br>PPM                  | Ag<br>PPM                  | HÍ<br>PPM                  | Co<br>PPM                 | M2<br>PPM                          | Te<br>Z                                 | AS<br>PPM              | U<br>PPM                   | Au<br>PPM                                 | Th<br>PPN                  | ST<br>PPM                  | Cd<br>PPN             | S5<br>PPM                  | Bi<br>PPM                  | V<br>PPH                        | Ca<br>t                             | P<br>S                               | La<br>PPH             | CT<br>PPM                      | Xg<br>l                          | Ba<br>PPM                 | 71<br>2                         | B<br>PPM                                     | A1<br>3                         | Na<br>Z                         | I<br>ł                          | ¥<br>PPX              | Au*<br>PP3             |
|----------------------------------------------------------------------------------------|-----------------------|-------------------------------|--------------------------|----------------------------|----------------------------|----------------------------|---------------------------|------------------------------------|-----------------------------------------|------------------------|----------------------------|-------------------------------------------|----------------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-------------------------------------|--------------------------------------|-----------------------|--------------------------------|----------------------------------|---------------------------|---------------------------------|----------------------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------|------------------------|
| 5000N 5140E<br>5000N 5150E<br>5000N 516DE<br>5000N 5170E<br>5000N 518CE                | 1<br>1<br>1<br>2<br>1 | 52<br>52<br>80<br>105<br>133  | 7<br>3<br>7<br>9<br>6    | 41<br>57<br>57<br>49<br>68 | .1<br>.2<br>.3<br>.1<br>.1 | 23<br>14<br>45<br>40<br>51 | 8<br>7<br>17<br>12<br>37  | 202<br>294<br>433<br>274<br>3480   | 6.78<br>10.99<br>8.35<br>12.69<br>9.38  | 8<br>31<br>5<br>2<br>2 | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND                      | 2<br>3<br>1<br>3<br>1      | 14<br>8<br>19<br>7<br>15   | 1<br>1<br>1<br>1      | 3<br>2<br>3<br>2<br>2      | 2<br>3<br>2<br>2<br>2      | 257<br>311<br>252<br>423<br>278 | .49<br>.45<br>.58<br>.29<br>.66     | .020<br>.019<br>.046<br>.035<br>.060 | 3<br>2<br>5<br>3<br>5 | 105<br>85<br>111<br>200<br>129 | .53<br>.22<br>.67<br>.53<br>.93  | 17<br>8<br>18<br>10<br>24 | .45<br>.46<br>.53<br>.30<br>.46 | 3 3.<br>3 1.<br>3 4.<br>2 6.<br>5 4.         | .27<br>57<br>.99<br>.72<br>.87  | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.02<br>.02<br>.03<br>.02 | 3<br>1<br>1<br>2<br>1 | 1<br>1<br>2<br>1       |
| 5000N 5130E<br>5000N 5200Z<br>5000N 5210N<br>5000N 5220E<br>5000N 5230E                | 1<br>1<br>1<br>2<br>1 | 147<br>114<br>72<br>102<br>68 | 7<br>11<br>9<br>7<br>8   | 72<br>49<br>47<br>52<br>45 | .1<br>.3<br>.2<br>.2<br>.1 | 74<br>35<br>30<br>33<br>25 | 28<br>11<br>10<br>12<br>9 | 1423<br>435<br>422<br>301<br>212   | 6.86<br>12.74<br>12.81<br>8.57<br>3.69  | 7<br>2<br>2<br>2<br>2  | 5<br>5<br>5<br>5<br>5      | 10<br>10<br>10<br>10                      | 2<br>3<br>2<br>3<br>2      | 21<br>9<br>9<br>9<br>9     | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 231<br>367<br>399<br>318<br>409 | 1.16<br>.41<br>.58<br>.55<br>.46    | .029<br>.022<br>.021<br>.027<br>.022 | 7<br>3<br>2<br>3<br>3 | 92<br>208<br>174<br>165<br>146 | 1.31<br>.65<br>.60<br>.67<br>.54 | 43<br>14<br>8<br>9<br>10  | .49<br>.76<br>.72<br>.71<br>.71 | 7 4.<br>2 5.<br>2 3.<br>2 5.<br>2 5.<br>2 3. | 40<br>.52<br>.37<br>.57<br>.71  | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.03<br>.03<br>.02 | 1<br>1<br>1<br>2      | 1<br>1<br>1<br>1       |
| 50001 5240E<br>50008 5250E<br>50008 5250E<br>50008 5250E<br>50008 5270E<br>50008 5250E | 2<br>1<br>1<br>1<br>1 | 59<br>153<br>63<br>81<br>33   | 10<br>9<br>7<br>7<br>5   | 51<br>64<br>51<br>58<br>51 | .1<br>.2<br>.1<br>.2<br>.2 | 22<br>62<br>32<br>37<br>31 | 9<br>14<br>15<br>18<br>13 | 251<br>263<br>250<br>1025<br>372   | 7.61<br>3.79<br>6.87<br>6.91<br>4.91    | 2<br>2<br>3<br>2       | 5<br>5<br>5<br>5<br>5      | nd<br>ND<br>ND<br>ND                      | 2<br>2<br>1<br>1<br>1      | 14<br>13<br>9<br>12<br>13  | 1<br>1<br>1<br>1      | 2<br>4<br>3<br>3<br>3      | 4<br>2<br>2<br>2<br>2      | 365<br>206<br>369<br>347<br>224 | .51<br>.88<br>.82<br>.84<br>1.30    | .028<br>.045<br>.028<br>.042<br>.030 | 3<br>6<br>5<br>6<br>4 | 130<br>144<br>114<br>110<br>70 | .53<br>1.12<br>.75<br>.74<br>.86 | 12<br>10<br>9<br>12<br>10 | .63<br>.56<br>.62<br>.51<br>.46 | 2 3.<br>2 6.<br>2 4.<br>3 4.<br>4 3.         | .11<br>.04<br>.89<br>.40<br>.13 | .01<br>.01<br>.01<br>.01<br>.01 | .04<br>.03<br>.01<br>.02<br>.03 | 1<br>3<br>1<br>1<br>1 | I<br>I<br>1<br>1       |
| 5000H 5290E<br>5000H 5300E<br>5000H 5310E<br>5000H 5310E<br>5000H 5330E                | 1<br>1<br>1<br>1      | 106<br>71<br>69<br>15<br>7    | 5<br>22<br>20<br>7<br>7  | 58<br>67<br>65<br>52<br>63 | .1<br>.3<br>.2<br>.2<br>.1 | 43<br>38<br>36<br>5<br>2   | 20<br>67<br>66<br>5<br>1  | 1394<br>3568<br>3496<br>606<br>623 | 9.98<br>7.70<br>7.52<br>1.65<br>.11     | 6<br>7<br>7<br>2<br>2  | 5<br>5<br>5<br>5<br>5      |                                           | 2<br>2<br>1<br>1           | 13<br>23<br>23<br>25<br>25 | I<br>1<br>1<br>1      | 3<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 317<br>193<br>186<br>55<br>4    | .53<br>.78<br>.72<br>.39<br>.55     | .036<br>.045<br>.043<br>.041<br>.051 | 4<br>5<br>5<br>2<br>2 | 148<br>75<br>74<br>26<br>2     | .71<br>.75<br>.71<br>.17<br>.12  | 19<br>21<br>20<br>15<br>9 | .59<br>.36<br>.35<br>.17<br>.01 | 2 4.<br>6 2.<br>3 2.<br>4<br>7               | .87<br>.60<br>.52<br>.50<br>.07 | .01<br>.01<br>.01<br>.01<br>.03 | .04<br>.04<br>.03<br>.05<br>.08 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1       |
| SOCON 5340E<br>Socon 5350E<br>Socon 5360E<br>Socon 5370E<br>Socon 5330E                | 1<br>1<br>1<br>1      | 8<br>54<br>29<br>64<br>67     | 5<br>8<br>9<br>7<br>6    | 47<br>55<br>42<br>62<br>81 | .1<br>.1<br>.2<br>.1<br>.1 | 2<br>20<br>9<br>24<br>35   | 1<br>10<br>5<br>49<br>51  | 105<br>288<br>221<br>1254<br>2195  | .08<br>11.41<br>11.57<br>10.11<br>7.68  | 2<br>3<br>2<br>2<br>2  | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND                      | 1<br>2<br>1<br>2<br>2      | 23<br>8<br>10<br>9<br>13   | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>2           | 2<br>2<br>2<br>2<br>2      | 2<br>389<br>475<br>328<br>279   | .37<br>.62<br>.47<br>.84<br>1.23    | .025<br>.020<br>.016<br>.024<br>.021 | 2<br>2<br>3<br>4      | 1<br>138<br>102<br>102<br>85   | .12<br>.39<br>.14<br>.58<br>.88  | 5<br>6<br>8<br>11         | .01<br>.79<br>.90<br>.66<br>.60 | 3<br>2 4<br>2 1<br>2 4<br>4 4                | .06<br>.16<br>.60<br>.12<br>.07 | .05<br>.01<br>.01<br>.01<br>.01 | .03<br>.02<br>.04<br>.03<br>.02 | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>3<br>1  |
| 5000K 5390K<br>5000K 5400Z<br>5000K 5410K<br>5000K 5420K<br>5000K 5420K                | 1<br>1<br>2<br>1<br>1 | 62<br>38<br>78<br>74<br>87    | 10<br>3<br>11<br>9<br>10 | 62<br>50<br>57<br>67<br>80 | .3<br>.1<br>.1<br>.1<br>.2 | 26<br>13<br>21<br>30<br>40 | 14<br>9<br>15<br>26<br>33 | 361<br>260<br>322<br>478<br>751    | 11.22<br>3.43<br>15.02<br>10.25<br>8.54 | 2<br>2<br>2<br>3<br>3  | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND                      | 2<br>2<br>2<br>2<br>2<br>2 | 9<br>18<br>7<br>8<br>10    | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 364<br>358<br>484<br>341<br>288 | .97<br>1.00<br>.59<br>1.04<br>.96   | .021<br>.017<br>.021<br>.019<br>.032 | 3<br>3<br>4<br>4      | 120<br>74<br>141<br>101<br>95  | .58<br>.38<br>.34<br>.67<br>.72  | 9<br>10<br>9<br>8<br>13   | .78<br>.74<br>.98<br>.73<br>.64 | 2 4<br>2 2<br>2 4<br>2 4<br>2 4              | .17<br>.36<br>.62<br>.80<br>.76 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.03<br>.02<br>.04<br>.02 | 1<br>1<br>1<br>2      | 5<br>1<br>2<br>3<br>1  |
| 5000X 5440E<br>5000X 5450X<br>5000X 5460X<br>5000X 5460X<br>5000X 5470X<br>5000X 5480E | 1<br>1<br>1<br>1      | 92<br>101<br>84<br>77<br>47   | 7<br>11<br>10<br>10<br>7 | 86<br>84<br>86<br>88<br>55 | .1<br>.1<br>.1<br>.2<br>.1 | 43<br>42<br>39<br>39<br>13 | 23<br>37<br>34<br>38<br>8 | 505<br>862<br>1238<br>2211<br>317  | 9.15<br>9.38<br>8.45<br>8.10<br>13.94   | 2<br>2<br>3<br>5<br>2  | 5<br>5<br>5<br>5<br>5<br>5 | U<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | 3<br>2<br>2<br>1<br>2      | 9<br>9<br>12<br>20<br>8    | 1<br>1<br>1<br>1      | 3<br>3<br>2<br>3<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 307<br>331<br>297<br>284<br>455 | 1.06<br>1.17<br>1.24<br>1.29<br>.57 | .024<br>.021<br>.023<br>.032<br>.025 | 5<br>5<br>5<br>5<br>2 | 91<br>101<br>81<br>80<br>110   | .81<br>.84<br>.82<br>.78<br>.24  | 12<br>11<br>13<br>16<br>6 | .69<br>.73<br>.58<br>.60<br>.83 | 2 4<br>2 5<br>2 4<br>5 4<br>2 3              | .52<br>.12<br>.42<br>.31<br>.51 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.03<br>.03<br>.03<br>.04 | 1<br>2<br>1<br>1<br>1 | 17<br>2<br>1<br>1<br>1 |
| 50000 54900<br>50000 55000<br>STD C/AU-S                                               | 1<br>1<br>20          | 52<br>41<br>63                | 1 T<br>1 1<br>1 12       | 50<br>80<br>131            | .1<br>.3<br>7.4            | 16<br>16<br>71             | 8<br>16<br>30             | 416<br>751<br>1068                 | 12.10<br>13.72<br>4.05                  | 2<br>3<br>41           | 5<br>5<br>22               | ND<br>ND<br>7                             | 3<br>2<br>39               | 9<br>13<br>53              | 1<br>1<br>19          | 2<br>2<br>19               | 2<br>2<br>22               | 359<br>603<br>61                | .57<br>.64<br>.50                   | .028<br>.028<br>.089                 | 3<br>2<br>42          | 106<br>40<br>61                | .35<br>.35<br>.95                | 6<br>6<br>179             | .75<br>.91<br>.07               | 2 4<br>2 2<br>33 1                           | .09<br>.15<br>.86               | .01<br>.01<br>.05               | .03<br>.04<br>.15               | 1<br>1<br>13          | 1<br>3<br>50           |

Page 2

j

1

t

t

i

ſ

ſ

(

(

t.

t

(

£.

 $\mathcal{C}^{+}$ 

**(** 

(

C

(

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

4

.

1

1

1

1

(

# GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HM03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-17 SOIL P18 ROCK AU<sup>2</sup> ANALYSIS BY AA FROM 10 GRAM SAMPLE. HG AMALTSIS BY FLAMLESS AA.

| DATE RECE                                                                              | IVED                       | : 1                         | PR 27                 | 1988                                  | DAT                                  | E RI                       | EPOR                       | TM                               | AILE                                 | D:                           | MO                         | w b                        | -   83                | ?                          | ASS                   | AYEI                       | а. <u></u>                 | ·. J                            | بجب                               | 7 D                                          | . TOY                  | E OI                        | R C.                              | LEON                       | IG,                             | CER                     | FIFI                                 | ED E                            | 3.C.                            | ASS                   | SAYE                   | RS                                           |
|----------------------------------------------------------------------------------------|----------------------------|-----------------------------|-----------------------|---------------------------------------|--------------------------------------|----------------------------|----------------------------|----------------------------------|--------------------------------------|------------------------------|----------------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-----------------------------------|----------------------------------------------|------------------------|-----------------------------|-----------------------------------|----------------------------|---------------------------------|-------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|------------------------|----------------------------------------------|
|                                                                                        |                            |                             |                       |                                       |                                      |                            | вои                        | NDAF                             | ום צא                                | RILI                         | ING                        | INC                        | . PI                  | ROJE                       | CT-                   | 103                        | F                          | ile                             | # 8                               | 8-12                                         | 211                    | F                           | age                               | 1                          |                                 |                         |                                      |                                 |                                 |                       |                        |                                              |
| SAMPLE                                                                                 | Ko<br>PPN                  | Cu<br>PPM                   | Pb<br>PPH             | Zn<br>PPN                             | λg<br>PPK                            | HI<br>PPN                  | Co<br>PPM                  | Ha<br>PPK                        | Fe                                   | As<br>PPM                    | U<br>PPN                   | Au<br>PPM                  | Th<br>PPM             | ST<br>PPM                  | Cd<br>PPM             | SD<br>PPM                  | Bi<br>PFM                  | A<br>Nil<br>Nil                 | Ca<br>3                           | P                                            | La<br>PPM              | CT<br>PPN                   | Xg<br>L                           | Ba<br>PPM                  | Ti<br>ł                         | B<br>PPM                | A1<br>%                              | Na<br>X                         | K<br>ł                          | ¥<br>PPM              | Au*<br>PPB             | Eg<br>?PB                                    |
| 5150N 45902<br>5150N 45102<br>5150N 45202<br>5150N 45303<br>5150N 45402                | 3<br>3<br>1<br>1<br>2      | 44<br>47<br>75<br>69<br>86  | 7<br>8<br>4<br>7      | 65<br>62<br>59<br>54<br>76            | .2<br>.1<br>.1<br>.1                 | 21<br>24<br>30<br>33<br>57 | 11<br>13<br>10<br>11<br>18 | 374<br>393<br>254<br>373<br>570  | 7.34<br>7.68<br>5.35<br>7.76<br>8.83 | 50<br>41<br>11<br>13<br>13   | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>1      | 18<br>14<br>10<br>13<br>25 | 1<br>1<br>1<br>2      | 5<br>2<br>2<br>2<br>3      | 2<br>2<br>2<br>2<br>2      | 213<br>237<br>195<br>224<br>224 | .72<br>.57<br>.57<br>.80<br>1.34  | .031<br>.032<br>.021<br>.016<br>.044         | 4<br>5<br>3<br>4<br>5  | 80<br>94<br>103<br>83<br>82 | .44<br>.45<br>.71<br>1.04<br>1.42 | 15<br>14<br>13<br>14<br>31 | .35<br>.44<br>.42<br>.49<br>.51 | 2<br>2<br>2<br>2<br>2   | 2.74<br>3.41<br>6.16<br>3.55<br>5.40 | .02<br>.01<br>.02<br>.04<br>.01 | .02<br>.02<br>.01<br>.02<br>.02 | 1<br>1<br>2<br>1<br>1 | 1<br>1<br>1<br>1       | 180<br>210<br>200<br>150<br>210              |
| 5150N 45503<br>5150N 45602<br>5150N 45703<br>5150N 45302<br>5150N 4590X                | 3<br>1<br>1<br>1<br>1      | 55<br>77<br>50<br>103<br>77 | 5<br>4<br>5<br>4<br>5 | 78<br>63<br>55<br>64<br>63            | .2<br>.2<br>.1<br>.1<br>.3           | 32<br>31<br>22<br>35<br>33 | 13<br>12<br>8<br>11<br>12  | 552<br>578<br>273<br>300<br>318  | 7.01<br>5.18<br>8.70<br>6.54<br>5.61 | 32<br>10<br>7<br>11<br>11    | 5<br>5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1<br>1 | 31<br>25<br>12<br>15<br>14 | 1<br>1<br>2<br>1<br>1 | 2<br>3<br>4<br>5<br>7      | 2<br>2<br>2<br>2<br>2<br>2 | 193<br>207<br>289<br>207<br>213 | 1.63<br>1.09<br>.52<br>.52<br>.51 | .040<br>.029<br>.020<br>.029<br>.029<br>.026 | 4<br>5<br>3<br>5<br>5  | 76<br>77<br>113<br>93<br>91 | .66<br>.98<br>.58<br>.96<br>.90   | 24<br>27<br>12<br>19<br>18 | .39<br>.45<br>.65<br>.48<br>.50 | 2<br>10<br>2<br>2<br>2  | 3.46<br>3.98<br>3.87<br>5.94<br>5.75 | .03<br>.01<br>.03<br>.02<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>1<br>3<br>4      | 1<br>2<br>3<br>2<br>1  | 220<br>130<br>160<br>150<br>170              |
| 5150N 46002<br>5150N 4690X<br>5150N 47102<br>5150N 4720N<br>5150N 4720N<br>5150H 4730E | 1<br>2<br>1<br>1<br>3      | 50<br>35<br>45<br>54<br>25  | 5<br>6<br>5<br>5      | 48<br>48<br>71<br>63<br>41            | .1<br>.4<br>.1<br>.1                 | 19<br>10<br>22<br>25<br>12 | 8<br>6<br>8<br>10<br>5     | 224<br>143<br>367<br>443<br>171  | 8.79<br>5.68<br>3.43<br>5.08<br>3.27 | B<br>7<br>9<br>17<br>27      | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 9<br>7<br>32<br>25<br>12   | 1<br>1<br>1<br>1      | 3<br>5<br>2<br>3<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 265<br>162<br>126<br>180<br>264 | .30<br>.05<br>.82<br>.74<br>.40   | .020<br>.032<br>.035<br>.038<br>.024         | 3<br>4<br>3<br>4<br>3  | 81<br>44<br>45<br>54<br>84  | .47<br>.32<br>.70<br>.80<br>.27   | 11<br>28<br>21<br>30<br>9  | .55<br>.27<br>.26<br>.35<br>.49 | 2<br>2<br>4<br>3        | 5.22<br>6.85<br>2.71<br>2.83<br>1.74 | .03<br>.03<br>.03<br>.02<br>.01 | .01<br>.01<br>.01<br>.02<br>.02 | 3<br>6<br>1<br>1      | 3<br>1<br>4<br>2<br>1  | 190<br>180<br>160<br>150<br>130              |
| 5150N 4740E<br>5150N 47502<br>5150N 47602<br>5150N 4770E<br>5150N 47702                | 2<br>2<br>2<br>2<br>2<br>2 | 20<br>25<br>36<br>39<br>36  | 5<br>6<br>9<br>5<br>7 | 53<br>54<br>54<br>68<br>54            | .2<br>.1<br>.1<br>.1                 | 9<br>13<br>16<br>19<br>10  | 4<br>5<br>7<br>7<br>5      | 160<br>205<br>279<br>360<br>229  | 5.11<br>5.95<br>7.26<br>5.53<br>8.45 | 47<br>34<br>25<br>19<br>63   | 5<br>5<br>5<br>5<br>5      | HD<br>ND<br>HD<br>ND<br>ND | 1.<br>1<br>1<br>1     | 11<br>28<br>18<br>25<br>14 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>3      | 2<br>2<br>2<br>2<br>2<br>2 | 205<br>213<br>243<br>191<br>263 | .14<br>.42<br>.56<br>.69<br>.22   | .038<br>.032<br>.028<br>.036<br>.024         | 3<br>3<br>3<br>3<br>3  | 32<br>56<br>75<br>59<br>71  | .12<br>.31<br>.45<br>.54<br>.22   | 11<br>19<br>13<br>15<br>14 | .28<br>.37<br>.45<br>.36<br>.38 | 6<br>5<br>3<br>4<br>4   | .92<br>1.48<br>2.08<br>2.02<br>2.07  | .02<br>.02<br>.01<br>.03<br>.01 | .02<br>.02<br>.02<br>.02<br>.01 | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>1<br>10 | 150<br>160<br>130<br>140<br>100              |
| 5150N 47902<br>5150N 4800E<br>5150N 4810E<br>5150N 4810E<br>5150N 4820E<br>5150N 48302 | 1<br>2<br>1<br>25<br>24    | 38<br>27<br>9<br>34<br>126  | 7<br>3<br>5<br>8      | 45<br>48<br>59<br>133<br>70           | .1<br>.1<br>.3<br>.3                 | 11<br>15<br>5<br>35<br>61  | 5<br>5<br>1<br>17<br>21    | 189<br>194<br>69<br>885<br>940   | 8.49<br>6.79<br>.84<br>7.09<br>5.30  | 77<br>45<br>10<br>155<br>70  | 5<br>5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 11<br>13<br>43<br>29<br>11 | 1<br>1<br>1<br>1      | 2<br>2<br>7<br>3           | 3<br>2<br>2<br>3<br>2      | 257<br>209<br>24<br>112<br>127  | .25<br>.34<br>2.02<br>1.20<br>.45 | .019<br>.023<br>.055<br>.070<br>.028         | 3<br>3<br>2<br>6<br>15 | 53<br>57<br>8<br>48<br>59   | .17<br>.28<br>.16<br>.10<br>.54   | 9<br>10<br>8<br>32         | .39<br>.31<br>.03<br>.04<br>.19 | 3<br>11<br>11<br>7<br>6 | 1.37<br>1.71<br>.30<br>2.18<br>4.55  | .03<br>.02<br>.03<br>.01<br>.02 | .02<br>.01<br>.05<br>.01<br>.01 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>2<br>1  | 110<br>170<br><del>360</del><br>2400<br>1700 |
| 5150N 4840Z<br>5150N 485JZ<br>5150N 4860Z<br>5150N 4870Z<br>5150N 4880Z                | 18<br>2<br>19<br>5<br>3    | 97<br>18<br>48<br>44<br>71  |                       | 68<br>79<br>63<br>54<br>74            | .3<br>91<br>11<br>11                 | 46<br>9<br>31<br>24<br>48  | 16<br>3<br>10<br>7<br>20   | 746<br>163<br>524<br>354<br>1039 | 3.88<br>.57<br>8.67<br>5.57<br>7.14  | 51<br>8<br>161<br>2648<br>93 | 5<br>5<br>5<br>5<br>5      | KD<br>YD<br>KD<br>KD       | 1<br>1<br>1<br>1      | 17<br>23<br>7<br>15<br>17  | 1<br>1<br>1<br>1      | 2<br>2<br>5<br>2           | 2<br>2<br>3<br>2<br>2      | 94<br>14<br>193<br>137<br>210   | .34<br>.14<br>.24<br>.30<br>.46   | .035<br>.042<br>.032<br>.035<br>.035         | 11<br>2<br>6<br>3<br>7 | 45<br>8<br>101<br>50<br>92  | .47<br>.27<br>.37<br>.39<br>.87   | 25<br>7<br>10<br>10<br>34  | .14<br>.02<br>.28<br>.20<br>.39 | 2<br>3<br>2<br>3<br>4   | 3.36<br>.51<br>3.70<br>2.01<br>5.43  | .03<br>.01<br>.02<br>.01<br>.02 | .03<br>.04<br>.01<br>.02<br>.03 | 1<br>1<br>1<br>1      | 2<br>1<br>1<br>1<br>2  | 1050<br>340<br>240<br>360<br>210             |
| 5150N 4830E<br>5150N 4900Z<br>5150N 4913E<br>5150N 4920Z<br>5150N 4933E                | 1<br>3<br>1<br>4           | 5<br>4(<br>4<br>3)<br>9     | 9<br>6<br>9<br>0      | 5 5<br>1 4<br>2 5<br>5<br>5<br>5<br>7 | 7 .1<br>9 .1<br>5 .1<br>4 .1<br>8 .3 | 35<br>19<br>23<br>21<br>51 | 13<br>8<br>9<br>9          | 606<br>342<br>439<br>299<br>658  | 7.25<br>6.78<br>6.56<br>6.94<br>5.89 | 12<br>36<br>17<br>122<br>21  | 5<br>5<br>5<br>5<br>5      | עע<br>אם<br>אם<br>אם       | 1<br>1<br>1<br>1      | 16<br>28<br>16<br>13<br>14 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 195<br>201<br>193<br>192<br>154 | .36<br>.34<br>.52<br>.38<br>.52   | .022<br>.019<br>.024<br>.024<br>.026         | 4<br>3<br>3<br>4<br>6  | 85<br>60<br>65<br>87        | .68<br>.28<br>.41<br>.32<br>.96   | 20<br>25<br>14<br>13<br>35 | .30<br>.25<br>.32<br>.31<br>.31 | 6<br>5<br>6<br>3<br>4   | 3.45<br>1.70<br>2.08<br>2.29<br>6.18 | .04<br>.03<br>.02<br>.03<br>.01 | .02<br>.01<br>.02<br>.02<br>.02 | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>2<br>1  | 140<br>220<br>200<br>220<br>220              |
| 5150N 4940B<br>STD C/RU-S                                                              | 19                         | 4                           | 3<br>1 3              | 6 4<br>8 13                           | 3.1<br>27.1                          | 21                         | 10<br>1 30                 | 399<br>1068                      | 8.58<br>1.07                         | 10<br>40                     | 5                          | ND<br>8                    | 1<br>38               | 14<br>52                   | 1<br>. 19             | 2<br>20                    | 2<br>21                    | 237<br>62                       | .26                               | .017<br>.087                                 | 3<br>40                | 68<br>60                    | .34<br>.96                        | 21<br>17b                  | .38<br>.07                      | 5<br>35                 | 2.29<br>1.71                         | .01<br>.08                      | .02<br>.13                      | 2<br>11               | 1<br>49                | 110<br>1300                                  |

7

| Sampleş                                                                                | Ko<br>PPN                 | CU<br>PPM                   | Pb<br>PPM              | Zn<br>PPN                  | λg<br>PPN                  | Ni<br>PPM                  | Cə<br>PPM                  | HD<br>PPK                          | Fe<br>t                                | AS<br>PPH                  | 0<br>PPM                   | Au<br>PPM                        | Th<br>PPM             | ST<br>PPM                  | Cd<br>PPM             | SD<br>PPM             | BÍ<br>PPM                  | V<br>PPN                        | Ca<br>ł                         | P                                    | La<br>PPN              | CT<br>PPM                       | Ng<br>t                          | Ba<br>PPM                  | Ti<br>ł                         | B<br>PPM              | Al<br>2                              | Na<br>ł                         | ł                               | ¥<br>PPM              | Au*<br>PPB             | Eg<br>PPB                       |  |
|----------------------------------------------------------------------------------------|---------------------------|-----------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------------------------|----------------------------------------|----------------------------|----------------------------|----------------------------------|-----------------------|----------------------------|-----------------------|-----------------------|----------------------------|---------------------------------|---------------------------------|--------------------------------------|------------------------|---------------------------------|----------------------------------|----------------------------|---------------------------------|-----------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|------------------------|---------------------------------|--|
| 5150N 4950E<br>5150N 4960E<br>5150N 4970E<br>5150N 4980E<br>5150N 4990E                | 3<br>1<br>1<br>1          | 28<br>62<br>29<br>34<br>61  | 9<br>10<br>7<br>2<br>5 | 40<br>53<br>41<br>51<br>54 | .1<br>.1<br>.1<br>.1       | 12<br>26<br>12<br>17<br>28 | 6<br>11<br>5<br>8<br>11    | 311<br>508<br>347<br>3853<br>543   | 8.12<br>5.73<br>9.37<br>5.94<br>6.52   | 9<br>10<br>13<br>9<br>14   | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND             | 1<br>1<br>1<br>2<br>1 | 8<br>14<br>12<br>13<br>14  | 1<br>1<br>1<br>1<br>1 | 3<br>3<br>5<br>2<br>3 | 2<br>2<br>2<br>2<br>2<br>2 | 334<br>174<br>293<br>265<br>216 | .10<br>.35<br>.25<br>.39<br>.45 | .016<br>.031<br>.019<br>.015<br>.029 | 4<br>4<br>3<br>4       | 49<br>83<br>77<br>53<br>79      | .11<br>.49<br>.20<br>.34<br>.52  | 9<br>22<br>16<br>15<br>19  | .44<br>.30<br>.45<br>.40<br>.39 | 3<br>2<br>3<br>3<br>2 | 1.06<br>4.90<br>1.76<br>1.46<br>3.78 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.02<br>.02 | 1<br>1<br>2<br>1<br>1 | 2<br>1<br>1<br>1<br>2  | 90<br>190<br>130<br>90<br>200   |  |
| 5150N 500GE<br>5130N 5010Z<br>5150N 5020E<br>5150N 5030Z<br>5150N 5040E                | 3<br>16<br>17<br>13<br>11 | 36<br>40<br>40<br>45<br>42  | 8<br>8<br>7<br>7<br>8  | 45<br>54<br>57<br>59<br>58 | .1<br>.1<br>.1<br>.1       | 16<br>20<br>24<br>23<br>19 | 7<br>10<br>12<br>11<br>9   | 366<br>500<br>596<br>531<br>495    | 9.59<br>10.09<br>3.97<br>8.89<br>7.11  | 14<br>38<br>41<br>33<br>23 | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND             | 1<br>1<br>1<br>1<br>1 | 12<br>7<br>7<br>10<br>14   | 1<br>1<br>1<br>1      | 5<br>5<br>3<br>4<br>3 | 2<br>2<br>2<br>2<br>2<br>2 | 310<br>295<br>274<br>278<br>226 | .42<br>.24<br>.22<br>.30<br>.47 | .016<br>.025<br>.026<br>.026<br>.025 | 3<br>4<br>5<br>4<br>4  | 101<br>84<br>76<br>80<br>68     | .24<br>.18<br>.16<br>.25<br>.29  | 9<br>9<br>9<br>12<br>12    | .56<br>.41<br>.36<br>.41<br>.36 | 2<br>3<br>3<br>5<br>2 | 1.48<br>2.55<br>2.81<br>2.87<br>2.43 | .01<br>.01<br>.01<br>.01        | .02<br>.01<br>.01<br>.02<br>.02 | 2<br>1<br>1<br>1<br>1 | 1<br>1<br>9<br>1       | 60<br>230<br>240<br>230<br>210  |  |
| 5150N 5050K<br>5150N 5060B<br>5150N 5070E<br>5150N 5080B<br>5150N 5080B<br>5150N 509CE | 13<br>16<br>7<br>1        | 39<br>46<br>50<br>122<br>82 | 7<br>9<br>7<br>6<br>7  | 56<br>48<br>68<br>68<br>57 | .1<br>.1<br>.3<br>.1       | 20<br>20<br>23<br>57<br>37 | 12<br>9<br>9<br>18<br>12   | 609<br>288<br>356<br>541<br>331    | 6.82<br>11.42<br>9.88<br>6.76<br>9.00  | 26<br>38<br>24<br>15<br>10 | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND             | 1<br>1<br>1<br>1<br>1 | 10<br>7<br>10<br>12<br>10  | 1<br>1<br>1<br>1      | 2<br>3<br>3<br>5<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 209<br>335<br>302<br>195<br>314 | .32<br>.18<br>.29<br>.59<br>.51 | .025<br>.015<br>.019<br>.031<br>.019 | 4<br>3<br>3<br>8<br>9  | 60<br>72<br>81<br>96<br>102     | .22<br>.34<br>.39<br>.97<br>.72  | 9<br>6<br>10<br>22<br>15   | .31<br>.53<br>.45<br>.41<br>.58 | 5<br>2<br>3<br>2<br>3 | 2.07<br>1.60<br>2.22<br>6.09<br>4.08 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.02<br>.02<br>.02 | 1<br>1<br>1<br>1<br>1 | 1<br>5<br>3<br>8<br>2  | 170<br>80<br>140<br>310<br>170  |  |
| 5150N 51008<br>5150N 51102<br>5150N 51208<br>5150N 51302<br>5150N 51302<br>5150N 51408 | 3<br>1<br>1<br>2<br>2     | 62<br>91<br>101<br>85<br>58 | 9<br>10<br>6<br>5<br>9 | 63<br>76<br>88<br>58<br>45 | .3<br>.1<br>.1<br>.1<br>.1 | 30<br>42<br>50<br>26<br>17 | 10<br>35<br>36<br>12<br>6  | 334<br>3448<br>3494<br>458<br>222  | 7.59<br>6.94<br>7.20<br>13.55<br>14.28 | 12<br>15<br>19<br>16<br>9  | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND             | 1<br>1<br>1<br>1      | 12<br>21<br>21<br>9<br>9   | 1<br>1<br>1<br>2<br>2 | 2<br>4<br>3<br>3<br>3 | 2<br>2<br>2<br>2<br>2<br>2 | 241<br>220<br>229<br>397<br>487 | .41<br>.75<br>.85<br>.26<br>.33 | .029<br>.050<br>.046<br>.032<br>.020 | 7<br>5<br>5<br>3<br>2  | 97<br>80<br>80<br>156<br>130    | .49<br>.77<br>.92<br>.37<br>.29  | 16<br>22<br>22<br>10<br>8  | .44<br>.42<br>.43<br>.76<br>.92 | 2<br>8<br>7<br>2<br>2 | 3.79<br>3.49<br>3.59<br>4.43<br>2.91 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.03<br>.03<br>.02<br>.03 | 1<br>1<br>1<br>1      | 2<br>15<br>1<br>4<br>2 | 240<br>230<br>190<br>340<br>160 |  |
| 5150H 5150E<br>5150N 5160R<br>5150N 5170E<br>5150N 5180R<br>5150N 5180R<br>5150N 5190Z | 1<br>1<br>1<br>1          | 71<br>79<br>94<br>73<br>78  | 4<br>4<br>7<br>9<br>7  | 50<br>48<br>63<br>53<br>63 | .1<br>.1<br>.1<br>.1       | 41<br>36<br>47<br>30<br>40 | 11<br>10<br>13<br>10<br>14 | 267<br>249<br>278<br>308<br>480    | 5.15<br>5.52<br>6.00<br>9.60<br>8.13   | 8<br>9<br>10<br>13<br>17   | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 13<br>12<br>13<br>11<br>12 | 1<br>1<br>1<br>1      | 2<br>3<br>5<br>3<br>4 | 2<br>2<br>2<br>2<br>2<br>2 | 334<br>343<br>344<br>391<br>246 | .67<br>.66<br>.76<br>.52<br>.55 | .022<br>.034<br>.029<br>.026<br>.026 | 5<br>6<br>4<br>4       | 112<br>107<br>123<br>122<br>122 | .86<br>.79<br>1.03<br>.57<br>.78 | 12<br>10<br>11<br>10<br>17 | .65<br>.42<br>.50<br>.67<br>.47 | 2<br>2<br>2<br>2<br>4 | 2.75<br>2.80<br>3.22<br>2.95<br>4.56 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.02<br>.03<br>.03<br>.03 | 1<br>1<br>1<br>1      | 6<br>1<br>1<br>1<br>1  | 180<br>170<br>240<br>190<br>150 |  |
| 5150N 5200K<br>5150N 521CZ<br>5150N 5220R<br>5150N 5230Z<br>5150N 5230Z<br>5150N 524CB | 1<br>1<br>2<br>2<br>2     | 67<br>62<br>49<br>52<br>44  | 5<br>6<br>3<br>9       | 66<br>59<br>60<br>61<br>59 | .1<br>.2<br>.1<br>.1       | 32<br>32<br>29<br>32<br>30 | 15<br>14<br>13<br>13<br>12 | 720<br>609<br>712<br>702<br>836    | 11.22<br>8.34<br>8.08<br>5.45<br>5.71  | 10<br>19<br>19<br>18<br>18 | 5<br>5<br>5<br>5<br>5      | ND<br>HD<br>HD<br>HD<br>HD       | 1<br>1<br>1<br>1      | 11<br>11<br>12<br>13<br>13 | 1<br>1<br>1<br>1<br>1 | 2<br>5<br>2<br>3<br>3 | 2<br>2<br>2<br>2<br>2<br>2 | 263<br>224<br>238<br>184<br>173 | .45<br>.42<br>.41<br>.42<br>.45 | .034<br>.032<br>.037<br>.033<br>.026 | 5<br>6<br>6<br>5       | 107<br>96<br>74<br>74<br>64     | .62<br>.50<br>.45<br>.55<br>.53  | 15<br>18<br>16<br>19<br>19 | .39<br>.34<br>.27<br>.24<br>.26 | 4<br>6<br>3<br>5      | 4.04<br>4.06<br>3.76<br>3.95<br>3.58 | .01<br>.01<br>.01<br>.01<br>.04 | .03<br>.03<br>.03<br>.04<br>.03 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>1  | 170<br>180<br>240<br>230<br>170 |  |
| 515CN 5250E<br>515CN 5260E<br>515ON 5270E<br>515ON 5280E<br>515ON 5280E<br>515ON 5290E | 2<br>1<br>3<br>2<br>1     | 42<br>71<br>34<br>47<br>59  | 7<br>5<br>7<br>8<br>5  | 66<br>64<br>42<br>59<br>67 | .1<br>.1<br>.1             | 28<br>34<br>14<br>21<br>31 | 13<br>17<br>7<br>24<br>26  | 1125<br>783<br>416<br>1375<br>1122 | 5.90<br>10.70<br>8.92<br>7.33<br>7.55  | 18<br>14<br>11<br>5<br>11  | 5<br>5<br>5<br>5<br>5<br>5 | DH<br>Dh<br>Dh<br>Dh<br>Dh<br>Dh | 1<br>1<br>1<br>1      | 13<br>10<br>13<br>14<br>13 | 1<br>1<br>1<br>1<br>1 | 2<br>5<br>3<br>3<br>5 | 2<br>2<br>2<br>2<br>2<br>2 | 154<br>246<br>303<br>269<br>276 | .42<br>.45<br>.41<br>.54<br>.78 | .029<br>.031<br>.020<br>.035<br>.028 | 10<br>5<br>3<br>5<br>5 | 57<br>110<br>76<br>75<br>97     | .57<br>.66<br>.19<br>.37<br>.67  | 27<br>15<br>9<br>14<br>14  | .17<br>.41<br>.53<br>.49<br>.56 | 7<br>2<br>2<br>7<br>3 | 3.36<br>4.15<br>1.27<br>2.02<br>3.43 | .01<br>.01<br>.02<br>.01<br>.02 | .06<br>.03<br>.03<br>.05<br>.04 | 1<br>1<br>2<br>1<br>1 | 2<br>1<br>4<br>1<br>1  | 200<br>190<br>80<br>220<br>190  |  |
| 5150N 5300E<br>STD C/AU-S                                                              | 1<br>18                   | 76<br>62                    | i 2<br>2 36            | 93<br>131                  | .1                         | 47<br>69                   | 27<br>30                   | 904<br>1089                        | 7.95                                   | 9<br>44                    | 5<br>20                    | КD<br>7                          | 1<br>39               | 13<br>52                   | 1<br>19               | 3<br>19               | 2<br>20                    | 275<br>64                       | .79<br>.49                      | .025<br>.088                         | 4<br>41                | 125<br>59                       | .88<br>.95                       | 13<br>179                  | .58<br>.07                      | 3<br>32               | 3.95<br>1.73                         | .02                             | .04<br>.13                      | 1<br>10               | 1<br>50                | 170<br>1300                     |  |

Page 2 (

(

é

ť

ł

ł

í

ć

t

(

C

ł

(

(

...

. .

.1

| SAMPLE                                                                                 | Ho<br>PPM               | Cu<br>PPM                    | PD<br>PPH                 | Zn<br>PPM                   | Ag<br>PPN                  | NI<br>PPM                  | Co<br>PPH                  | nn<br>PPN                           | Fe<br>X                              | As<br>PPN                 | U<br>PPM              | du<br>PPN                  | Th<br>PPM             | ST<br>PPM                  | Cđ<br>PPM             | SD<br>PPM                  | B1<br>PPN                  | PPK                             | Ca<br>ł                              | ł                                    | La<br>PPN               | PPM                            | Ry<br>E                           | PPM                        | ŝ                               | PPM                        | 3                                    | ла<br>¥                         | ł                               | PPK                   | PPB                    | 22B                               |
|----------------------------------------------------------------------------------------|-------------------------|------------------------------|---------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|-------------------------------------|--------------------------------------|---------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|--------------------------------------|--------------------------------------|-------------------------|--------------------------------|-----------------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|------------------------|-----------------------------------|
| 5150N 53102<br>5150N 5320E<br>5150N 53302<br>5150N 53405<br>5150N 53502                | 1<br>15<br>3<br>1<br>1  | 59<br>106<br>69<br>60<br>62  | 13<br>14<br>9<br>15<br>14 | 67<br>68<br>69<br>64<br>73  | .2<br>.2<br>.3<br>.1       | 32<br>50<br>37<br>26<br>33 | 33<br>26<br>27<br>32<br>39 | 1102<br>1021<br>822<br>1074<br>1408 | 7.33<br>6.16<br>7.83<br>8.02<br>7.58 | 2<br>38<br>4<br>2<br>2    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>2<br>1<br>1      | 13<br>11<br>12<br>12<br>13 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 331<br>200<br>341<br>359<br>322 | .85<br>.58<br>.92<br>.72<br>.90      | .024<br>.025<br>.024<br>.024<br>.024 | 5<br>12<br>6<br>5<br>5  | 112<br>78<br>121<br>123<br>119 | .56<br>.60<br>.74<br>.60<br>.65   | 9<br>24<br>10<br>8<br>8    | .82<br>.42<br>.84<br>.90<br>.83 | 4<br>2<br>3<br>3           | 2.89<br>4.14<br>3.35<br>2.78<br>2.95 | .01<br>.01<br>.01<br>.02<br>.01 | .05<br>.03<br>.04<br>.04<br>.04 | 1<br>1<br>1<br>1      | 5<br>2<br>4<br>6<br>1  | 460<br>1300<br>450<br>260<br>880  |
| 51508 53602<br>51508 53702<br>51508 53805<br>51508 53902<br>51508 54002                | 1<br>15<br>7<br>3       | 54<br>61<br>108<br>81<br>64  | 12<br>7<br>13<br>12<br>10 | 71<br>75<br>70<br>72<br>69  | .1<br>.2<br>.1<br>.2<br>.1 | 28<br>37<br>53<br>42<br>35 | 31<br>29<br>27<br>28<br>25 | 1046<br>915<br>1071<br>951<br>880   | 7.95<br>7.35<br>5.18<br>7.39<br>8.01 | 2<br>2<br>43<br>12<br>4   | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>2      | 14<br>13<br>11<br>12<br>12 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 333<br>346<br>209<br>287<br>296 | 1.03<br>.95<br>.58<br>.77<br>1.07    | .024<br>.022<br>.026<br>.025<br>.022 | 4<br>+<br>12<br>8<br>5  | 106<br>124<br>32<br>101<br>92  | .70<br>.78<br>.62<br>.70<br>.78   | 8<br>8<br>25<br>16<br>11   | .89<br>.88<br>.45<br>.55<br>.72 | 2<br>3<br>2<br>2<br>7      | 2.68<br>3.05<br>4.13<br>3.48<br>2.97 | .01<br>.02<br>.01<br>.01<br>.01 | .04<br>.04<br>.02<br>.05<br>.03 | I<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>4       | 290<br>1500<br>1400<br>640<br>420 |
| 5150N 541CE<br>5150N 542OE<br>5150N 5430E<br>5150N 5440E<br>5150N 5440E<br>5150N 5440E | - 1<br>2<br>2<br>1<br>1 | 65<br>56<br>60<br>- 76<br>50 | 11<br>14<br>10<br>7<br>12 | 76<br>66<br>70<br>75<br>56  | .1<br>.1<br>.3<br>.1       | 39<br>28<br>32<br>31<br>19 | 24<br>27<br>28<br>42<br>17 | 678<br>898<br>831<br>1950<br>477    | 7.98<br>7.20<br>6.39<br>7.94<br>8.37 | 2<br>2<br>32<br>47        | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>1<br>1<br>1<br>2 | 13<br>14<br>11<br>13<br>11 | 1<br>1<br>1<br>1      | 2<br>3<br>2<br>2<br>2      | 2<br>2<br>3<br>2<br>2      | 336<br>322<br>355<br>280<br>304 | .91<br>.81<br>.85<br>.94<br>.55      | .019<br>.027<br>.023<br>.030<br>.019 | 4<br>5<br>5<br>6<br>4   | 135<br>105<br>127<br>98<br>81  | .79<br>.62<br>.72<br>.68<br>.39   | 8<br>10<br>8<br>13<br>8    | .88<br>.84<br>.88<br>.65<br>.61 | 4<br>6<br>3<br>- 2         | 3.23<br>2.53<br>3.10<br>3.49<br>2.06 | .01<br>.92<br>.02<br>.01<br>.01 | .05<br>.07<br>.05<br>.05<br>.02 | 1<br>1<br>1<br>1      | 1<br>1<br>2<br>2<br>1  | 400<br>330<br>290<br>300<br>220   |
| 5150N 5460E<br>5150N 5470E<br>5150N 5480E<br>5150N 5490E<br>5150N 5500E                | 1<br>1<br>1<br>1        | 63<br>59<br>49<br>51<br>51   | 13<br>9<br>12<br>14<br>13 | 69<br>62<br>55<br>69<br>60  | .1<br>.2<br>.1<br>.1       | 32<br>28<br>18<br>25<br>28 | 24<br>29<br>26<br>25<br>19 | 593<br>1096<br>1080<br>692<br>425   | 8.38<br>7.98<br>7.54<br>7.52<br>6.64 | 6<br>2<br>2<br>19<br>2    | 5<br>5<br>5<br>5<br>5 | NC<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>2<br>2 | 11<br>12<br>12<br>13<br>13 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 359<br>363<br>337<br>288<br>345 | .76<br>.89<br>.87<br>.86<br>.93      | .018<br>.021<br>.019<br>.022<br>.013 | 4<br>5<br>4<br>4        | 140<br>125<br>105<br>90<br>119 | .72<br>.61<br>.41<br>.67<br>.60   | 7<br>8<br>8<br>8<br>7      | .90<br>.93<br>.92<br>.71<br>.95 | 1<br>3<br>2<br>2<br>2      | 3.26<br>2.84<br>2.20<br>2.41<br>2.44 | .01<br>.02<br>.01<br>.01<br>.01 | .03<br>.05<br>.06<br>.05<br>.02 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>3<br>8       | 280<br>630<br>380<br>310<br>400   |
| 5100N 4500E<br>5100N 4510E<br>5100N 4520E<br>5100N 45203<br>5100N 4540E                | 1<br>1<br>1<br>10       | 50<br>77<br>72<br>66<br>38   | 5<br>10<br>9<br>2<br>5    | 113<br>59<br>47<br>62<br>84 | .2<br>.1<br>.1<br>.1<br>.1 | 50<br>37<br>29<br>27<br>20 | 24<br>13<br>13<br>15<br>13 | 523<br>280<br>212<br>339<br>361     | 7.46<br>4.64<br>5.84<br>5.90<br>6.53 | 10<br>3<br>9<br>3<br>70   | 5<br>5<br>5<br>5<br>5 | NC<br>ND<br>ND<br>ND       | 1<br>2<br>1<br>2<br>1 | 23<br>13<br>12<br>12<br>27 | 1<br>1<br>1<br>1<br>2 | 2<br>4<br>2<br>4<br>4      | 2<br>2<br>2<br>2<br>7      | 205<br>158<br>182<br>240<br>179 | 1.03<br>.69<br>.50<br>.52<br>1.17    | .059<br>.021<br>.028<br>.016<br>.025 | 8<br>6<br>5<br>6        | 93<br>78<br>83<br>127<br>114   | 1.03<br>.92<br>.60<br>.55<br>3.68 | 25<br>16<br>15<br>18<br>12 | .30<br>.43<br>.44<br>.56<br>.21 | 7<br>4<br>2<br>6<br>3      | 4.04<br>4.48<br>3.92<br>5.39<br>5.48 | .01<br>.01<br>.01<br>.01        | .03<br>.03<br>.01<br>.04<br>.02 | 1<br>1<br>1<br>1      | 2<br>1<br>4<br>1<br>3  | 160<br>210<br>190<br>140<br>200   |
| 5100N 45502<br>5100N 43602<br>5100N 4570X<br>5100N 45802<br>5100N 45802                | 1<br>1<br>1<br>2<br>1   | 80<br>57<br>63<br>62<br>73   | 7<br>10<br>5<br>4<br>2    | 55<br>56<br>83<br>98        | .1<br>.1<br>.2<br>.3       | 34<br>23<br>29<br>33<br>42 | 15<br>12<br>15<br>19       | 360<br>232<br>354<br>339<br>336     | 7.83<br>7.77<br>4.64<br>6.40<br>3.61 | 14<br>8<br>7<br>54<br>131 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>1<br>1      | 11<br>9<br>11<br>18<br>19  | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>2<br>5      | 2<br>2<br>2<br>2<br>2<br>2 | 196<br>284<br>238<br>205<br>153 | .59<br>.31<br>.50<br>.99<br>.74      | .015<br>.016<br>.023<br>.041<br>.123 | 4<br>3<br>6<br>7<br>14  | 157<br>93<br>108<br>66<br>66   | .97<br>.33<br>.55<br>.86<br>.75   | 13<br>10<br>14<br>21<br>22 | .43<br>.52<br>.65<br>.49<br>.23 | 2<br>2<br>2<br>2<br>2<br>2 | 5.23<br>3.02<br>5.14<br>3.73<br>4.00 | .01<br>.01<br>.01<br>.01        | .01<br>.03<br>.01<br>.03<br>.03 | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>46<br>2 | 210<br>240<br>180<br>170<br>350   |
| 5100N 4600E<br>5100N 4610E<br>5100N 4620E<br>5100N 4630E<br>5100N 4640E                | 1<br>1<br>4<br>2<br>1   | 71<br>52<br>174<br>30<br>77  | 2<br>3<br>3<br>9<br>8     | 55<br>51<br>72<br>89<br>72  | .1<br>.1<br>.1<br>.1       | 40<br>35<br>40<br>39<br>30 | 11<br>10<br>11<br>16<br>17 | 194<br>198<br>363<br>620<br>513     | 4.95<br>4.22<br>2.50<br>2.92<br>7.87 | 8<br>7<br>43<br>14<br>11  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>1<br>1      | 8<br>11<br>22<br>30<br>19  | 1<br>1<br>1<br>1      | 5<br>2<br>2<br>2<br>2<br>2 | 2<br>3<br>2<br>2<br>2      | 200<br>145<br>111<br>108<br>216 | . 29<br>. 34<br>. 69<br>. 89<br>. 40 | .036<br>.037<br>.142<br>.075<br>.046 | 5<br>4<br>25<br>13<br>5 | 95<br>70<br>68<br>68<br>76     | .93<br>.76<br>.51<br>.90<br>.69   | 9<br>14<br>24<br>31<br>20  | .37<br>.31<br>.12<br>.31<br>.48 | 2<br>2<br>2<br>2<br>2<br>2 | 5.46<br>4.21<br>4.19<br>3.07<br>3.89 | .01<br>.01<br>.01<br>.02<br>.02 | .03<br>.01<br>.02<br>.05<br>.03 | 1<br>1<br>1<br>1      | 1<br>2<br>110<br>5     | 170<br>230<br>370<br>230<br>210   |
| 5100N 4650E<br>STE C/AU-S                                                              | 1<br>20                 | . 95<br>) 52                 | 6<br>40                   | 60<br>132                   | .1<br>8.1                  | 27                         | 14<br>31                   | 290<br>1041                         | 6.23<br>6.23                         | 2<br>42                   | 5<br>22               | סא<br>3                    | I<br>40               | 20<br>52                   | 1<br>20               | 3<br>19                    | 2<br>23                    | 181<br>51                       | .38<br>.46                           | .033<br>.089                         | 5<br>40                 | 55<br>54                       | .52<br>.94                        | 21<br>183                  | .42<br>.03                      | 4<br>30                    | 3.51<br>1.89                         | .02<br>.07                      | .04                             | 2<br>13               | 1<br>48                | 230<br>1400                       |

Page 3

t

r

1

£

r

ć

1

ŧ

(

C

(

1

(

(

| SAMPLZ                                                                  | HO<br>PPM                | Cu<br>PPM                  | Pb<br>PPM             | Zn<br>PPM                  | Ag<br>PPN                  | NI<br>PPM                  | Co<br>PPH                 | Ma<br>PPN                        | Fe<br>X                               | As<br>PPM                     | U<br>PPM              | Au<br>PPM                  | 7h<br>PPM             | ST<br>PPM                  | Cd<br>PPH             | SD<br>PPN             | Bi<br>PPM                  | V<br>PPN                        | Ca<br>ł                          | P                                    | La<br>PPK              | CT<br>PPK                      | Kg<br>t                          | Ba<br>PPM                  | Ti<br>ł                         | B<br>PPM                   | A1<br>}                              | Na<br>ł                         | ۲<br>۲                          | ¥<br>PPM              | Au*<br>PPB            | Hg<br>PPB                       |  |
|-------------------------------------------------------------------------|--------------------------|----------------------------|-----------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------------|---------------------------------------|-------------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|-----------------------|----------------------------|---------------------------------|----------------------------------|--------------------------------------|------------------------|--------------------------------|----------------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|---------------------------------|--|
| 5100N 4700E<br>5100N 4720E<br>5100N 4730E<br>5100N 4740E<br>5100N 4750E | 1<br>1<br>2<br>2         | 57<br>49<br>51<br>49<br>52 | 5<br>2<br>5<br>3<br>4 | 76<br>62<br>60<br>63<br>70 | .1<br>.2<br>.2<br>.2<br>.1 | 31<br>29<br>30<br>27<br>43 | 25<br>11<br>10<br>9<br>17 | 623<br>284<br>249<br>246<br>372  | 6.74<br>6.94<br>6.81<br>7.19<br>6.42  | 6<br>103<br>116<br>124<br>126 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 25<br>10<br>10<br>10<br>11 | 1<br>1<br>1<br>1      | 2<br>2<br>4<br>5<br>5 | 2<br>2<br>2<br>2<br>2      | 247<br>188<br>186<br>193<br>175 | .84<br>.40<br>.39<br>.36<br>.50  | .034<br>.034<br>.028<br>.031<br>.036 | 4<br>5<br>5<br>4<br>9  | 90<br>104<br>104<br>101<br>103 | .66<br>.46<br>.45<br>.40<br>.60  | 15<br>13<br>13<br>13<br>13 | .57<br>.29<br>.28<br>.27<br>.26 | 2<br>2<br>2<br>2<br>4      | 3.35<br>3.78<br>3.93<br>3.66<br>4.01 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>1<br>3<br>3      | 1<br>2<br>5<br>2<br>7 | 350<br>230<br>270<br>220<br>290 |  |
| 5100N 4760E<br>5100N 4770E<br>5100N 4770E<br>5100N 4790E<br>5100N 4800E | 2<br>1<br>2<br>10<br>2   | 53<br>29<br>28<br>43<br>43 | 8<br>6<br>5<br>3      | 61<br>45<br>45<br>74<br>50 | .1<br>.1<br>.1<br>.1       | 27<br>13<br>12<br>56<br>25 | 10<br>6<br>5<br>18<br>9   | 260<br>190<br>216<br>299<br>299  | 8.44<br>7.06<br>8.15<br>6.19<br>8.16  | 156<br>66<br>42<br>65<br>20   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 8<br>11<br>9<br>17<br>11   | 1<br>1<br>1<br>1      | 4<br>4<br>2<br>2<br>2 | 2<br>3<br>4<br>2<br>2      | 216<br>229<br>256<br>161<br>223 | .28<br>.34<br>.24<br>.58<br>.51  | .029<br>.017<br>.018<br>.024<br>.016 | 6<br>3<br>3<br>4<br>3  | 101<br>65<br>78<br>81<br>95    | .39<br>.29<br>.19<br>.57<br>.52  | 15<br>12<br>10<br>23<br>15 | .29<br>.36<br>.41<br>.30<br>.45 | 2<br>2<br>2<br>2<br>2      | 4.01<br>1.39<br>2.27<br>5.41<br>3.42 | .01<br>.01<br>.01<br>.03<br>.02 | .01<br>.01<br>.01<br>.02<br>.01 | 1<br>1<br>1<br>2      | 5<br>1<br>1<br>1<br>2 | 230<br>120<br>110<br>960<br>190 |  |
| 5100K 4810E<br>5100N 48203<br>5100N 4830E<br>5100N 4840K<br>5100N 4850E | 4<br>11<br>. 3<br>4<br>6 | 35<br>48<br>52<br>60<br>53 | 5<br>6<br>7<br>5<br>7 | 51<br>82<br>60<br>66<br>58 | .1<br>.3<br>.1<br>.1       | 19<br>45<br>40<br>38<br>30 | 8<br>14<br>15<br>12<br>9  | 275<br>1754<br>432<br>265<br>229 | 8.72<br>6.47<br>6.14<br>6.44<br>6.71  | 29<br>122<br>24<br>29<br>35   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>1<br>1<br>1<br>1 | 10<br>56<br>15<br>12<br>9  | I<br>1<br>1<br>1      | 3<br>7<br>3<br>5<br>6 | 2<br>4<br>3<br>2<br>2      | 232<br>141<br>181<br>176<br>175 | .37<br>3.64<br>.92<br>.55<br>.33 | .025<br>.064<br>.023<br>.022<br>.022 | 3<br>10<br>7<br>5<br>4 | 103<br>42<br>84<br>90<br>83    | .43<br>2.31<br>.87<br>.54<br>.35 | 12<br>33<br>24<br>17<br>14 | .44<br>.20<br>.34<br>.28<br>.26 | 2<br>6<br>2<br>2<br>2      | 3.62<br>2.65<br>5.29<br>5.56<br>4.71 | .02<br>.02<br>.01<br>.01<br>.01 | .01<br>.02<br>.01<br>.01<br>.02 | 1<br>1<br>2<br>4      | 1<br>1<br>51<br>1     | 320<br>850<br>220<br>600<br>540 |  |
| 5100N 48602<br>5100H 48702<br>5100N 48805<br>5100N 48902<br>5100N 49902 | I<br>1<br>2<br>1<br>2    | 32<br>13<br>25<br>55<br>61 | 7<br>4<br>5<br>8      | 45<br>60<br>56<br>71<br>63 | .1<br>.1<br>.1<br>.1<br>.2 | 17<br>8<br>14<br>46<br>44  | 7<br>3<br>6<br>17<br>18   | 245<br>125<br>278<br>472<br>379  | 7.53<br>2.38<br>4.86<br>6.22<br>7.24  | 12<br>13<br>51<br>17<br>18    | 5<br>5<br>5<br>5<br>5 | HD<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1<br>1 | 11<br>17<br>17<br>13<br>12 | 1<br>1<br>1<br>1<br>1 | 3<br>2<br>3<br>4<br>3 | 2<br>2<br>2<br>2<br>2<br>2 | 275<br>86<br>133<br>165<br>195  | .42<br>.29<br>.36<br>.33<br>.32  | .010<br>.013<br>.028<br>.025<br>.031 | 2<br>2<br>4<br>6       | 55<br>30<br>58<br>73<br>88     | .26<br>.22<br>.31<br>.67<br>.63  | 12<br>6<br>9<br>24<br>22   | .43<br>.15<br>.23<br>.25<br>.33 | 2<br>2<br>2<br>4<br>2      | 1.47<br>.95<br>1.95<br>3.72<br>5.58  | .01<br>.02<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>1      | 4<br>1<br>7<br>1<br>1 | 80<br>170<br>250<br>200<br>160  |  |
| 5100N 491CE<br>5100H 492CE<br>5100N 4930E<br>5100N 4940E<br>5100N 4950E | 1<br>1<br>1<br>1         | 42<br>41<br>45<br>43<br>40 | 6<br>8<br>7<br>4<br>5 | 48<br>48<br>47<br>56<br>43 | .1<br>.1<br>.1<br>.1       | 19<br>20<br>18<br>23<br>16 | - 7<br>8<br>8<br>9<br>7   | 257<br>248<br>252<br>283<br>250  | 7.74<br>10.13<br>9.18<br>5.69<br>7.84 | 10<br>19<br>19<br>20<br>15    | 5<br>5<br>5<br>5<br>5 | HD<br>ND<br>ND<br>ND       | I<br>2<br>2<br>1<br>1 | 13<br>11<br>8<br>14<br>11  | I<br>1<br>1<br>1      | 2<br>3<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 219<br>265<br>282<br>170<br>22D | .27<br>.35<br>.20<br>.30<br>.30  | .027<br>.022<br>.020<br>.030<br>.026 | 3<br>3<br>4<br>3<br>3  | 74<br>90<br>98<br>64<br>81     | .36<br>.48<br>.28<br>.41<br>.38  | 17<br>17<br>14<br>15<br>16 | .34<br>.45<br>.45<br>.27<br>.37 | 2<br>2<br>2<br>2<br>2<br>2 | 2.71<br>2.55<br>3.43<br>2.81<br>2.85 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.01<br>.02<br>.01 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>2      | 180<br>130<br>270<br>200<br>250 |  |
| 5100N 4960E<br>5100N 4970E<br>5100N 4980E<br>5100N 4990E<br>5100N 5000E | 1<br>1<br>1<br>1<br>1    | 35<br>37<br>48<br>34<br>66 | 5<br>8<br>5<br>3<br>5 | 37<br>43<br>51<br>36<br>60 | .1<br>.1<br>.1<br>.1       | 13<br>17<br>22<br>16<br>35 | 7<br>5<br>8<br>6<br>11    | 243<br>163<br>173<br>172<br>273  | 7.48<br>2.90<br>3.45<br>4.18<br>6.70  | 17<br>7<br>10<br>10<br>11     | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>2      | 11<br>14<br>17<br>15<br>11 | 1<br>1<br>1<br>1      | 3<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 246<br>121<br>130<br>181<br>199 | .26<br>.39<br>.37<br>.39<br>.44  | .023<br>.052<br>.069<br>.032<br>.030 | 3<br>4<br>5<br>4<br>3  | 78<br>56<br>61<br>63<br>91     | .28<br>.41<br>.50<br>.39<br>.62  | 17<br>17<br>25<br>20<br>18 | .41<br>.26<br>.24<br>.30<br>.39 | 2<br>3<br>3<br>3<br>2      | 2.56<br>2.67<br>3.91<br>2.26<br>5.23 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.02<br>.02<br>.01 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>2<br>1<br>1 | 150<br>300<br>240<br>260<br>180 |  |
| 5100N 501DE<br>5100H 5020E<br>5100H 5030E<br>5100H 5040E<br>5100N 5050E | 1<br>1<br>1<br>1         | 49<br>48<br>62<br>81<br>71 | 4<br>5<br>5<br>5<br>7 | 49<br>45<br>47<br>62<br>55 | .1<br>.1<br>.2<br>.1       | 22<br>23<br>28<br>37<br>38 | 8<br>9<br>1D<br>12<br>13  | 298<br>380<br>347<br>348<br>462  | 7.44<br>7.74<br>7.10<br>7.22<br>7.1B  | 12<br>13<br>10<br>13<br>11    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>1<br>1<br>1 | 12<br>12<br>12<br>10<br>13 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2 | 4<br>2<br>2<br>3           | 216<br>205<br>197<br>184<br>194 | .43<br>.47<br>.50<br>.43<br>.54  | .023<br>.029<br>.021<br>.037<br>.021 | 3<br>3<br>3<br>3<br>3  | 99<br>95<br>100<br>106<br>92   | .49<br>.53<br>.65<br>.67<br>.71  | 18<br>14<br>15<br>16<br>15 | .41<br>.42<br>.43<br>.38<br>.35 | 2<br>2<br>2<br>2<br>2      | 3.53<br>2.92<br>3.54<br>4.60<br>3.59 | .01<br>.01<br>.01<br>.01<br>.03 | .02<br>.02<br>.02<br>.02<br>.02 | 1<br>1<br>1<br>1      | 1<br>2<br>9<br>1<br>2 | 150<br>270<br>230<br>300<br>240 |  |
| 5100N 5060E<br>STD C/AU-S                                               | 2<br>19                  | 60<br>61                   | 6<br>36               | 58<br>132                  | .1<br>7.5                  | 23<br>69                   | 11<br>30                  | 414<br>1075                      | 10.21                                 | 44<br>41                      | 5<br>20               | ND<br>8                    | 1<br>39               | 20<br>52                   | 1<br>18               | 2<br>22               | 4<br>23                    | 288<br>63                       | .37<br>.49                       | .028<br>.088                         | 2<br>40                | 85<br>59                       | .62<br>.96                       | 21<br>179                  | .29<br>.07                      | 2<br>31                    | 2.35                                 | .01<br>.08                      | .01<br>.14                      | 1<br>10               | 1<br>51               | 120<br>1400                     |  |

Page 4

1

.

Ę

ι

1

í

ŧ.

(

(

Ĺ

(

(

- (

(

ŧ

i

| SAMPLE                                                                                 | NO<br>PPM               | Cu<br>PPN                       | Pb<br>PPH              | Zn<br>PPM                   | ÂĢ<br>PPM                  | Ni<br>PPM                  | Co<br>PPM                  | ND<br>PPM                           | le<br>1                                | as<br>PPM                     | U<br>PPH                   | Au<br>PPK                  | Th<br>PPM             | ST<br>PPM                  | Cd<br>PPK             | SD<br>PPN             | Bi<br>PPX                  | V<br>PPM                        | Ca<br>t                            | P<br>2                               | La<br>PPM             | CT<br>PFM                       | Ng<br>t                             | Ba<br>PPN                  | Ti<br>ł                         | B<br>PPN                   | ۸1<br>۲                              | Na<br>S                                | K<br>1                          | ¥<br>PPM         | Au*<br>PPB             | HĢ<br>PP9                       |
|----------------------------------------------------------------------------------------|-------------------------|---------------------------------|------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|-------------------------------------|----------------------------------------|-------------------------------|----------------------------|----------------------------|-----------------------|----------------------------|-----------------------|-----------------------|----------------------------|---------------------------------|------------------------------------|--------------------------------------|-----------------------|---------------------------------|-------------------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|----------------------------------------|---------------------------------|------------------|------------------------|---------------------------------|
| 5100N 50702<br>5100N 50503<br>5100N 50902<br>5100N 51002<br>5100N 51102                | 1<br>1<br>2<br>3        | 56<br>90<br>68<br>78<br>71      | 4<br>5<br>5<br>4<br>11 | 57<br>117<br>60<br>59<br>63 | .1<br>.2<br>.1<br>.2<br>.1 | 30<br>56<br>35<br>39<br>42 | 12<br>21<br>11<br>12<br>12 | 467<br>3214<br>456<br>377<br>263    | 6.89<br>5.46<br>9.10<br>6.93<br>10.10  | 10<br>8<br>14<br>20<br>97     | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>2      | 13<br>15<br>13<br>15<br>5  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>4 | 2<br>3<br>3<br>3<br>3      | 207<br>153<br>266<br>189<br>255 | .48<br>.56<br>.55<br>.56<br>.25    | .032<br>.052<br>.025<br>.024<br>.024 | 4<br>6<br>3<br>5<br>4 | 91<br>38<br>90<br>94<br>118     | .57<br>.81<br>.66<br>.74<br>.44     | 16<br>37<br>16<br>22<br>14 | .37<br>.28<br>.52<br>.39<br>.40 | 3<br>3<br>2<br>2<br>2<br>2 | 3.48<br>4.35<br>2.82<br>4.72<br>6.18 | .01<br>.02<br>.01<br>.02<br>.02        | .03<br>.03<br>.02<br>.01<br>.01 | 1<br>1<br>1<br>1 | 2<br>1<br>2<br>1<br>3  | 210<br>200<br>180<br>250<br>830 |
| 5100N 51203<br>5100N 51302<br>5100N 51403<br>5100N 51403<br>5100N 51502<br>5100N 51602 | 1<br>74<br>75<br>8<br>7 | 59<br>60<br>58<br>85<br>95      | 2<br>7<br>7<br>7<br>9  | 71<br>36<br>35<br>66<br>75  | .1<br>.1<br>.1<br>.1       | 36<br>35<br>39<br>40<br>56 | 12<br>7<br>7<br>13<br>21   | 461<br>169<br>145<br>330<br>476     | 9.87<br>9.01<br>3.25<br>10.05<br>9.44  | 15<br>169<br>162<br>98<br>104 | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 13<br>13<br>11<br>7<br>9   | 2<br>1<br>1<br>1<br>1 | 2<br>5<br>2<br>6      | 2<br>3<br>2<br>3<br>3      | 307<br>180<br>188<br>326<br>261 | .80<br>.06<br>.04<br>.25<br>.35    | .029<br>.013<br>.012<br>.022<br>.026 | 3<br>2<br>2<br>3<br>7 | 106<br>46<br>40<br>91<br>104    | .69<br>.08<br>.06<br>.35<br>.44     | 12<br>3<br>12<br>21        | .56<br>.08<br>.11<br>.41<br>.36 | 2<br>2<br>2<br>2<br>2      | 2.73<br>1.31<br>1.02<br>2.52<br>4.44 | .01<br>.01<br>.01<br>.01<br>.02        | .02<br>.01<br>.01<br>.02<br>.01 | 1<br>1<br>1<br>1 | 1<br>2<br>1<br>1<br>3  | 210<br>113<br>90<br>430<br>760  |
| 5100N 5170Z<br>5100N 5120E<br>5100N 5190E<br>5100N 520CZ<br>5100N 5213Z                | 1<br>1<br>1<br>14       | 208<br>202<br>203<br>198<br>102 | 2<br>5<br>4<br>9<br>7  | 84<br>80<br>58<br>72<br>56  | .4<br>.3<br>.4<br>.1       | 82<br>78<br>72<br>67<br>45 | 28<br>29<br>18<br>17<br>15 | 617<br>638<br>413<br>402<br>519     | 11.29<br>10.99<br>8.50<br>8.88<br>8.55 | 2<br>2<br>2<br>2<br>35        | 5<br>5<br>5<br>5<br>5      | ND<br>KD<br>ND<br>ND<br>ND | 2<br>1<br>1<br>1<br>2 | 10<br>9<br>12<br>12<br>12  | 2<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>3 | 3<br>2<br>2<br>2<br>2<br>2 | 311<br>312<br>233<br>247<br>257 | .67<br>.65<br>.68<br>.70<br>.50    | .035<br>.035<br>.029<br>.029<br>.026 | 5<br>5<br>4<br>4      | 201<br>192<br>148<br>149<br>110 | 1.44<br>1.43<br>1.43<br>1.37<br>.74 | 14<br>14<br>15<br>14       | .65<br>.65<br>.51<br>.54<br>.43 | 2<br>2<br>2<br>2<br>2<br>2 | 7.47<br>7.40<br>5.91<br>5.77<br>3.80 | .01<br>.02<br>.01<br>.01<br>.02        | .01<br>.02<br>.02<br>.02<br>.03 | 1<br>1<br>1<br>1 | 1<br>2<br>4<br>2<br>1  | 14C<br>160<br>21D<br>250<br>220 |
| 5100N 5220E<br>5103N 5230E<br>5100N 5240E<br>5100N 5250E<br>5100N 5260E                | 1<br>1<br>1<br>1        | 133<br>80<br>104<br>108<br>69   | 7<br>7<br>6<br>4<br>3  | 63<br>63<br>72<br>71<br>70  | .1<br>.1<br>.1<br>.1       | 48<br>33<br>44<br>47<br>31 | 18<br>20<br>27<br>30<br>20 | 307<br>377<br>369<br>889<br>648     | 9.79<br>9.64<br>9.74<br>9.27<br>5.76   | 2<br>3<br>2<br>8<br>2         | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>XD | 2<br>1<br>1<br>1<br>1 | 10<br>11<br>11<br>12<br>12 | 1<br>1<br>2<br>1      | 2<br>2<br>3<br>2      | 2<br>3<br>2<br>2<br>2      | 343<br>416<br>377<br>300<br>264 | .65<br>.83<br>.96<br>.90<br>1.10   | .031<br>.055<br>.058<br>.028<br>.037 | 6<br>7<br>7<br>5<br>8 | 179<br>138<br>142<br>128<br>101 | .88<br>.65<br>.80<br>.90<br>.74     | 11<br>10<br>10<br>11<br>9  | .70<br>.59<br>.58<br>.65<br>.62 | 2<br>2<br>2<br>2<br>2<br>2 | 6.05<br>5.58<br>5.90<br>4.61<br>4.37 | .02<br>.02<br>.02<br>.01<br>.01        | .01<br>.02<br>.02<br>.03<br>.01 | 1<br>1<br>1<br>1 | 9<br>7<br>11<br>1<br>2 | 230<br>660<br>460<br>270<br>470 |
| 5100N 5270E<br>5100N 5280E<br>5100N 5290E<br>5100N 5300E<br>5100N 5310E                | 1<br>1<br>1<br>1<br>2   | 49<br>33<br>143<br>103<br>160   | 5<br>4<br>2<br>6<br>8  | 56<br>61<br>68<br>65<br>77  | .1<br>.1<br>.1<br>.1<br>.2 | 24<br>35<br>56<br>44<br>66 | 12<br>67<br>17<br>15<br>22 | 400<br>9263<br>479<br>363<br>528    | 7.42<br>8.43<br>7.70<br>7.07<br>9.36   | 2<br>5<br>7<br>13<br>36       | 5<br>5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 13<br>12<br>14<br>12<br>10 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>4<br>6 | 2<br>2<br>2<br>2<br>2<br>2 | 279<br>277<br>235<br>232<br>267 | 1.21<br>.81<br>.87<br>.76<br>.60   | .024<br>.031<br>.030<br>.030<br>.031 | 3<br>5<br>5<br>4<br>6 | 85<br>104<br>123<br>117<br>142  | .54<br>.72<br>1.12<br>.82<br>1.05   | 7<br>24<br>12<br>11<br>17  | .60<br>.62<br>.50<br>.53<br>.50 | 2<br>2<br>2<br>2<br>2<br>2 | 2.74<br>3.75<br>4.57<br>3.92<br>5.85 | .02<br>.01<br>.01<br>.01<br>.01<br>.02 | .03<br>.03<br>.03<br>.01<br>.01 | 1<br>1<br>1<br>2 | 1<br>1<br>1<br>1       | 310<br>390<br>330<br>520<br>410 |
| 5100R 532C3<br>5100N 53333<br>5100N 5343E<br>5100N 5353E<br>5100N 5350E                | 1<br>1<br>1<br>1        | 96<br>72<br>25<br>116<br>142    | 6<br>7<br>5<br>8<br>8  | 86<br>73<br>47<br>92<br>66  | .1<br>.1<br>.1<br>.1       | 61<br>35<br>11<br>51<br>98 | 51<br>21<br>7<br>58<br>35  | 2553<br>431<br>256<br>7339<br>1269  | 7.46<br>10.01<br>9.94<br>8.95<br>7.94  | 2<br>5<br>6<br>4              | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 14<br>11<br>11<br>13<br>14 | 1<br>2<br>2<br>1<br>1 | 4<br>5<br>2<br>2<br>6 | 2<br>2<br>3<br>2           | 247<br>425<br>489<br>264<br>262 | 1.33<br>1.04<br>.69<br>1.07<br>.67 | .034<br>.031<br>.017<br>.029<br>.024 | 4<br>4<br>2<br>4<br>4 | 112<br>153<br>89<br>141<br>147  | 1.36<br>.73<br>.26<br>.93<br>1.24   | 10<br>7<br>6<br>11<br>11   | .57<br>.76<br>.93<br>.53<br>.56 | 11<br>9<br>3<br>8<br>5     | 4.37<br>4.36<br>1.61<br>5.30<br>3.97 | .02<br>.01<br>.02<br>.02<br>.04        | .01<br>.01<br>.01<br>.01<br>.02 | 2<br>2<br>1<br>1 | 1<br>1<br>2<br>1       | 560<br>470<br>730<br>380<br>260 |
| 5100N 53732<br>5100N 5330E<br>5100N 5330E<br>5100N 5400E<br>5100N 54102                | 1<br>1<br>1<br>1<br>1   | 110<br>98<br>105<br>83<br>57    | 5<br>7<br>12<br>8<br>9 | 76<br>76<br>75<br>69<br>86  | .1<br>.1<br>.1<br>.2       | 51<br>47<br>46<br>35<br>32 | 24<br>29<br>34<br>23<br>37 | 893<br>2120<br>3073<br>1190<br>4152 | 9.37<br>7.35<br>8.96<br>8.98<br>4.71   | 13<br>19<br>8<br>10<br>2      | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 12<br>19<br>13<br>16<br>36 | 2<br>1<br>1<br>1<br>1 | 3<br>3<br>4<br>4<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 334<br>250<br>263<br>310<br>158 | .75<br>.39<br>.76<br>.95<br>1.24   | .033<br>.039<br>.042<br>.029<br>.057 | 5<br>6<br>7<br>5<br>8 | 140<br>109<br>115<br>110<br>68  | .85<br>.78<br>.77<br>.57<br>.63     | 12<br>16<br>15<br>13<br>23 | .64<br>.48<br>.51<br>.66<br>.38 | 2<br>6<br>5<br>4<br>9      | 4.43<br>4.02<br>4.24<br>3.77<br>2.91 | .02<br>.03<br>.02<br>.04<br>.91        | .01<br>.01<br>.01<br>.01<br>.02 | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>7<br>1  | 420<br>600<br>660<br>411<br>320 |
| 5100N 5420E<br>STD C/AU-S                                                              | 1<br>19                 | 4 <u>1</u><br>62                | 5<br>39                | 46<br>132                   | .1<br>7.3                  | 12<br>70                   | 8<br>31                    | 246<br>1038                         | 11.15                                  | 2<br>41                       | 5<br>18                    | םא<br>7                    | 1<br>39               | 9<br>53                    | 2<br>19               | 2<br>20               | 2<br>20                    | 437<br>60                       | .55<br>.49                         | .016<br>.038                         | 2<br>41               | 130<br>60                       | .28<br>.97                          | 9<br>180                   | .31<br>.07                      | 2<br>33                    | 2. <b>4</b> 7<br>1.77                | .01<br>.07                             | .01<br>.14                      | 1<br>11          | 1<br>47                | 180<br>1400                     |

Page 5

1

t

1

6

1

(

(

| SAMPLE                                                                  | XO<br>PPM               | Cu<br>PPK                  | PD<br>PPH               | Zn<br>PPN                   | ÀĢ<br>P?H                  | Ni<br>PPN                   | Co<br>PPM                  | NE<br>1995                                  | Ze<br>S                              | As<br>PPM                    | U<br>PPM              | Au<br>PPM                  | Th<br>PPN             | ST<br>PPM                  | Cd<br>PPM        | SD<br>PPM              | Bi<br>PPM                  | V<br>PPH                        | Ca<br>%                          | P                                    | La<br>PPM              | CT<br>PPM                       | Kg<br>t                          | Ba<br>PPM                  | Ti<br>ł                         | B<br>PPM               | Al<br>%                              | Na<br>X                                | K<br>S                          | ¥<br>??%              | Au*<br>2PB             | Hg<br>PFB                                  |
|-------------------------------------------------------------------------|-------------------------|----------------------------|-------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|---------------------------------------------|--------------------------------------|------------------------------|-----------------------|----------------------------|-----------------------|----------------------------|------------------|------------------------|----------------------------|---------------------------------|----------------------------------|--------------------------------------|------------------------|---------------------------------|----------------------------------|----------------------------|---------------------------------|------------------------|--------------------------------------|----------------------------------------|---------------------------------|-----------------------|------------------------|--------------------------------------------|
| 510CH 5430E<br>5100N 544CE<br>5100N 5450E<br>5100N 546GE<br>5100N 547CE | 1<br>1<br>1<br>1        | 61<br>38<br>61<br>33<br>70 | 5<br>7<br>8<br>4<br>6   | 84<br>52<br>71<br>55<br>77  | .1<br>.1<br>.1<br>.1<br>.2 | 55<br>18<br>35<br>19<br>51  | 99<br>15<br>34<br>11<br>26 | 5404 5<br>735 3<br>793 5<br>447 10<br>502 5 | .32<br>.70<br>.27<br>.53             | 16<br>8<br>12<br>11<br>4     | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 10<br>14<br>12<br>10<br>10 | 1<br>1<br>1<br>1 | 4<br>2<br>4<br>2<br>2  | 2<br>2<br>2<br>2<br>2<br>2 | 277<br>298<br>314<br>395<br>216 | .55<br>.47<br>.97<br>.67<br>.79  | .029<br>.027<br>.023<br>.018<br>.025 | 4<br>3<br>5<br>2<br>4  | 141<br>152<br>116<br>120<br>118 | .73<br>.30<br>.59<br>.32<br>.71  | 10<br>11<br>8<br>3<br>7    | .53<br>.61<br>.64<br>.77<br>.56 | 7<br>2<br>8<br>2<br>8  | 4.29<br>2.99<br>3.61<br>2.05<br>5.15 | .02<br>.02<br>.04<br>.03<br>.01        | .01<br>.01<br>.01<br>.01<br>.01 | 2<br>1<br>2<br>1<br>3 | 1<br>1<br>1<br>4<br>6  | 260<br>230<br>400<br>160<br>260            |
| 5100H 5480Z<br>5100H 5490Z<br>5100N 5500X<br>5050N 4500Z<br>5050N 4500Z | 1<br>1<br>1<br>2        | 65<br>88<br>97<br>63<br>77 | 7<br>4<br>3<br>3<br>4   | 83<br>90<br>90<br>49<br>166 | .1<br>.2<br>.1<br>.3       | 36<br>56<br>70<br>25<br>31  | 43<br>28<br>28<br>9<br>48  | 465 11<br>430 5<br>455 9<br>253 7<br>1932 6 | .06<br>.42<br>.73<br>.03             | 4<br>12<br>13<br>12<br>10    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | I<br>1<br>1<br>1<br>1 | 9<br>13<br>13<br>10<br>22  | 1<br>1<br>1<br>1 | 4<br>5<br>5<br>2<br>3  | 2<br>2<br>2<br>2<br>2      | 332<br>295<br>310<br>226<br>193 | .61<br>.82<br>.39<br>.55<br>.79  | .021<br>.022<br>.023<br>.019<br>.092 | 4<br>3<br>4<br>10      | 123<br>157<br>174<br>103<br>92  | .41<br>.68<br>.73<br>.56<br>.94  | 7<br>9<br>8<br>12<br>31    | .70<br>.59<br>.62<br>.48<br>.32 | 2<br>2<br>2<br>2<br>12 | 5.25<br>6.88<br>7.07<br>4.28<br>5.22 | .02<br>.02<br>.02<br>.02<br>.02<br>.02 | .01<br>.01<br>.91<br>.01        | 2<br>4<br>5<br>2<br>2 | 1<br>1<br>3<br>1       | 200<br>280<br>223<br>180<br>190            |
| 5050N 45202<br>5050N 4530B<br>505CN 45405<br>505CN 4550E<br>5050N 4550E | 2<br>2<br>1<br>2<br>1   | 42<br>51<br>55<br>65<br>91 | 8<br>9<br>5<br>7<br>5   | 60<br>49<br>50<br>50<br>59  | .1<br>.1<br>.1<br>.1       | 21<br>15<br>18<br>24<br>39  | 13<br>7<br>7<br>10<br>13   | 577<br>262<br>238<br>296<br>308             | 7.71<br>1.24<br>8.73<br>1.11<br>7.56 | 9<br>14<br>12<br>15<br>18    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 11<br>8<br>7<br>42<br>10   | 1<br>1<br>1<br>1 | 2<br>3<br>2<br>2<br>4  | 2<br>2<br>2<br>2<br>2<br>2 | 286<br>360<br>327<br>263<br>250 | .40<br>.27<br>.24<br>.52<br>.55  | .027<br>.015<br>.017<br>.018<br>.018 | 4<br>2<br>2<br>2<br>2  | 95<br>101<br>120<br>110<br>119  | .44<br>.29<br>.33<br>.59<br>.78  | 15<br>13<br>12<br>42<br>14 | .55<br>.64<br>.59<br>.52<br>.46 | 2<br>4<br>3<br>2<br>2  | 3.37<br>3.09<br>3.89<br>4.05<br>5.77 | .03<br>.01<br>.01<br>.04<br>.01        | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>2<br>1<br>3<br>2 | 1<br>4<br>1<br>1<br>3  | 150<br>210<br>5200<br>560<br>160           |
| 5050N 4570E<br>5050N 4580E<br>5050N 4590E<br>5050N 460DE<br>5050N 4610E | 1<br>2<br>1<br>1<br>1   | 82<br>55<br>38<br>96<br>70 | 4<br>5<br>4<br>5<br>4   | 55<br>82<br>110<br>99<br>94 | .1<br>.1<br>.2<br>.2       | 36<br>36<br>47<br>54<br>43  | 11<br>19<br>27<br>21<br>15 | 332<br>386<br>513<br>395<br>331             | 5.98<br>5.98<br>5.93<br>5.45<br>5.03 | 15<br>9<br>8<br>6<br>7       | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | I<br>1<br>1<br>1<br>1 | 11<br>13<br>16<br>19<br>18 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2  | 2<br>2<br>2<br>2<br>2      | 226<br>202<br>194<br>216<br>164 | .70<br>.52<br>.69<br>1.13<br>.76 | .014<br>.051<br>.089<br>.081<br>.058 | 4<br>6<br>9<br>12<br>9 | 104<br>95<br>98<br>83<br>81     | .77<br>.73<br>.36<br>.99<br>.92  | 15<br>14<br>18<br>15<br>15 | .43<br>.37<br>.33<br>.48<br>.47 | 4<br>6<br>8<br>2       | 4.00<br>5.34<br>5.47<br>5.13<br>5.32 | .04<br>.03<br>.02<br>.01<br>.01        | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>1      | 1<br>4<br>24<br>1<br>I | 240<br>290<br>230<br>2D0<br>200            |
| 5050N 46202<br>5050N 46303<br>3050N 46403<br>5050N 46502<br>5050N 46602 | 1<br>1<br>1<br>1        | 69<br>56<br>44<br>42<br>48 | 5<br>2<br>7<br>7<br>5   | 86<br>92<br>59<br>61<br>53  | .5<br>.1<br>.1<br>.1       | 36<br>119<br>23<br>25<br>22 | 19<br>25<br>13<br>11<br>9  | 441<br>343<br>322<br>279<br>283             | 1.57<br>1.74<br>1.04<br>5.15<br>5.34 | 5<br>5<br>4<br>6             | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 18<br>13<br>17<br>13<br>13 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2  | 2<br>2<br>2<br>2<br>2<br>2 | 207<br>173<br>197<br>264<br>213 | .61<br>.61<br>.89<br>.52<br>.32  | .066<br>.057<br>.037<br>.030<br>.028 | B<br>4<br>4<br>5       | 82<br>227<br>60<br>68<br>66     | .72<br>1.95<br>.64<br>.78<br>.55 | 21<br>20<br>18<br>16<br>15 | .43<br>.33<br>.37<br>.47<br>.43 | 4<br>11<br>7<br>2<br>5 | 4.23<br>3.38<br>2.13<br>3.55<br>4.08 | .01<br>.02<br>.02<br>.02<br>.01        | .01<br>.02<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>1      | 1<br>1<br>2<br>1       | 210<br>150<br>170<br>160<br>180            |
| 5050N 4670E<br>5050N 4680E<br>5050N 4760E<br>5050N 4770E<br>5050N 4730E | 1<br>2<br>3<br>42<br>20 | 60<br>45<br>60<br>49<br>57 | 5<br>5<br>7<br>15<br>10 | 62<br>53<br>58<br>76<br>87  | .1<br>.1<br>.3<br>.1<br>.2 | 31<br>21<br>41<br>38<br>54  | 10<br>8<br>15<br>8<br>20   | 253 5<br>263 5<br>355 6<br>418 1<br>257 5   | 5.67<br>5.51<br>5.99<br>1.99<br>9.56 | 2<br>8<br>345<br>1401<br>635 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>2      | 14<br>14<br>17<br>26<br>14 | 1<br>1<br>1<br>1 | 2<br>2<br>5<br>4       | 2<br>2<br>2<br>2<br>2      | 231<br>250<br>166<br>190<br>168 | .37<br>.41<br>.50<br>.66<br>.15  | .028<br>.027<br>.029<br>.019<br>.019 | 4<br>9<br>3<br>7       | 67<br>58<br>95<br>75<br>101     | .74<br>.54<br>.60<br>.15<br>.22  | 15<br>16<br>25<br>14<br>13 | .48<br>.49<br>.28<br>.11<br>.15 | 7<br>8<br>2<br>10<br>2 | 3.92<br>2.77<br>5.46<br>1.91<br>5.55 | .01<br>.02<br>.01<br>.01<br>.01        | .01<br>.02<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>2      | 3<br>1<br>1<br>3<br>1  | 190<br>16 <u>0</u><br>1100<br>1300<br>1400 |
| 5050N 4790E<br>5050N 4800E<br>5050N 4810E<br>5050N 4820E<br>5050N 4830E | 5<br>70_<br>1<br>1<br>1 | 40<br>32<br>79<br>27<br>68 | 4<br>18<br>6<br>4<br>3  | 50<br>106<br>61<br>51<br>63 | .1<br>.5<br>.1<br>.1<br>.2 | 22<br>77<br>49<br>13<br>45  | 8<br>29<br>13<br>6<br>18   | 241<br>3394 19<br>368<br>321<br>440         | 7.55<br>5.35<br>6.44<br>5.91<br>6.63 | 149<br>3075<br>36<br>2<br>60 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>1      | 11<br>46<br>15<br>9<br>12  | 1<br>1<br>1<br>1 | 2<br>73<br>2<br>2<br>2 | 2<br>4<br>2<br>3<br>2      | 204<br>178<br>163<br>282<br>211 | .30<br>.35<br>.42<br>.14<br>.47  | .013<br>.046<br>.018<br>.010<br>.027 | 4<br>13<br>4<br>2<br>8 | 71<br>66<br>39<br>43<br>94      | .28<br>.22<br>.97<br>.14<br>.74  | 15<br>32<br>22<br>9<br>24  | .25<br>.05<br>.34<br>.46<br>.39 | 4<br>5<br>2<br>3<br>2  | 3.21<br>2.41<br>5.15<br>1.08<br>5.20 | .01<br>.01<br>.02<br>.01<br>.01        | .01<br>.02<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>1<br>1 | 1<br>4<br>1<br>1       | 350<br>4200<br>200<br>100<br>210           |
| 5053N 4840Z<br>STD C/AU-S                                               | 1<br>19                 | 37<br>63                   | 5<br>41                 | 45<br>132                   | .1<br>7.5                  | 17<br>70                    | 7<br>31                    | 259<br>1100                                 | 9.64<br>4.10                         | 18<br>43                     | 5<br>23               | ND<br>7                    | 1<br>40               | 10<br>53                   | 1<br>19          | 2<br>21                | 2<br>20                    | 306<br>60                       | .29<br>.50                       | .017<br>.037                         | 3<br>41                | 78<br>6 D                       | .28<br>.92                       | 10<br>180                  | .52                             | 3<br>32                | 1.98<br>1.75                         | .01<br>.07                             | .01<br>.14                      | 1<br>11               | 1<br>48                | 150<br>1400                                |

Page 6

:

(

ſ

ŧ

i

1

C

ŧ

(

t

ι

| SANPLE‡                                                                 | Ko<br>PPK             | CU<br>PPM                     | PE<br>PPK                | Zn<br>PPM                  | Ag<br>PPM                  | Ni<br>PPM                  | Co<br>PPM                  | Mn<br>PPM                          | Fe<br>t                                | λs<br>?PH                  | U<br>PPM              | AU<br>PPM                  | Th<br>PPM             | ST<br>PPH                  | Cd<br>PPH             | SD<br>PPM                  | Bi<br>PPM                  | V<br>PPM                        | Ca<br>%                          | P                                            | La<br>PPM             | CT<br>PPM                      | Ng<br>L                           | Ba<br>PPK                  | Tí<br>ł                         | B<br>PPM                   | ۸1<br>۲                              | Na<br>ł                         | Z<br>ł                          | W<br>PPH              | Au*<br>PPB             | Hg<br>PP9                       |
|-------------------------------------------------------------------------|-----------------------|-------------------------------|--------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------------------------|----------------------------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|----------------------------------|----------------------------------------------|-----------------------|--------------------------------|-----------------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|------------------------|---------------------------------|
| 5050N 48502<br>5050N 48602<br>5050N 48702<br>5050N 48902<br>5050N 48902 | 1<br>1<br>2<br>2      | 33<br>26<br>81<br>48<br>47    | 9<br>9<br>12<br>11<br>11 | 43<br>31<br>62<br>46<br>46 | .1<br>.1<br>.2<br>.3       | 14<br>15<br>40<br>27<br>22 | 6<br>6<br>12<br>8          | 225<br>149<br>241<br>182<br>214    | 8.90<br>9.47<br>7.06<br>8.54<br>7.55   | 11<br>10<br>17<br>15<br>14 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>2      | 9<br>10<br>11<br>12<br>12  | 1<br>1<br>1<br>1<br>1 | 3<br>2<br>3<br>5<br>4      | 2<br>2<br>2<br>2<br>2<br>2 | 292<br>295<br>204<br>210<br>211 | .24<br>.22<br>.33<br>.29<br>.35  | .012<br>.010<br>.025<br>.021<br>.024         | 2<br>2<br>3<br>5<br>4 | 77<br>64<br>106<br>87<br>93    | .27<br>.34<br>.64<br>.60<br>.48   | 11<br>11<br>20<br>13<br>18 | .47<br>.49<br>.33<br>.31<br>.43 | 3<br>3<br>2<br>4<br>3      | 1.95<br>1.37<br>5.77<br>3.92<br>3.76 | .02<br>.03<br>.01<br>.04<br>.01 | .01<br>.01<br>.01<br>.02<br>.03 | 1<br>1<br>3<br>2      | 1<br>3<br>2<br>1<br>1  | 90<br>100<br>430<br>300<br>320  |
| 5050N 4900N<br>5050N 4913E<br>5050N 492CE<br>5050N 4933E<br>5050N 4933E | 1<br>1<br>1<br>1      | 41<br>32<br>38<br>57<br>39    | 9<br>7<br>7<br>7<br>7    | 42<br>37<br>41<br>52<br>45 | .1<br>.1<br>.1<br>.1<br>.2 | 24<br>16<br>16<br>29<br>17 | 8<br>5<br>9<br>6           | 247<br>170<br>171<br>235<br>188    | 4.75<br>5.88<br>6.53<br>5.74<br>6.51   | 13<br>8<br>10<br>9<br>13   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 11<br>10<br>11<br>14<br>12 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>3      | 165<br>293<br>212<br>162<br>198 | .54<br>.30<br>.28<br>.35<br>.29  | .013<br>.015<br>.020<br>.024<br>.027         | 3<br>3<br>4<br>4      | 61<br>81<br>68<br>71<br>69     | .68<br>.48<br>.36<br>.69<br>.33   | 12<br>11<br>15<br>21<br>17 | .33<br>.43<br>.35<br>.30<br>.32 | 5<br>6<br>3<br>4<br>2      | 2.71<br>2.32<br>2.47<br>4.00<br>2.67 | .03<br>.92<br>.02<br>.02<br>.02 | .01<br>.01<br>.01<br>.01<br>.01 | 3<br>1<br>3<br>1<br>3 | 1<br>2<br>1<br>4       | 160<br>190<br>150<br>200<br>260 |
| 5050N 4950E<br>5050N 4960E<br>5050N 4970E<br>5050N 4980B<br>5050N 4990E | 1<br>1<br>1<br>1      | 60<br>17<br>73<br>62<br>53    | 9<br>7<br>12<br>12<br>7  | 58<br>42<br>55<br>55<br>47 | .2<br>.1<br>.2<br>.1<br>.1 | 29<br>14<br>34<br>27<br>25 | 9<br>5<br>10<br>8<br>8     | 352<br>179<br>294<br>239<br>218    | 6.81<br>7.43<br>6.87<br>8.21<br>7.08   | 17<br>15<br>15<br>15<br>15 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1<br>1 | 11<br>11<br>11<br>10<br>13 | 1<br>1<br>1<br>1<br>1 | 4<br>2<br>5<br>3<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 209<br>231<br>198<br>236<br>187 | .42<br>.30<br>.46<br>.35<br>.42  | .027<br>.023<br>.027<br>.022<br>.025         | 3<br>2<br>3<br>3<br>5 | 92<br>65<br>99<br>107<br>78    | .56<br>.27<br>.70<br>.53<br>.56   | 16<br>13<br>19<br>17<br>19 | .36<br>.39<br>.36<br>.38<br>.31 | 8<br>11<br>5<br>5<br>6     | 3.93<br>2.08<br>4.95<br>4.14<br>3.58 | .03<br>.02<br>.04<br>.03<br>.02 | .01<br>.01<br>.01<br>.01<br>.01 | 2<br>2<br>3<br>2      | 1<br>1<br>2<br>2<br>1  | 190<br>170<br>200<br>229<br>230 |
| 505CH 5000E<br>5050N 5013E<br>505CH 5020E<br>505CN 5030E<br>505CN 5040E | 1<br>1<br>1<br>1      | 31<br>45<br>54<br>7<br>77     | 8<br>8<br>13<br>2<br>7   | 36<br>45<br>49<br>50<br>57 | .1<br>.1<br>.2<br>.3       | 11<br>21<br>25<br>2<br>35  | 4<br>7<br>9<br>1<br>12     | 159<br>232<br>288<br>42<br>368     | 6.64<br>7.05<br>9.29<br>.23<br>7.21    | 11<br>15<br>19<br>2<br>14  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 12<br>11<br>11<br>13<br>12 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 213<br>216<br>265<br>7<br>215   | .26<br>.43<br>.43<br>.41<br>.46  | .034<br>.026<br>.015<br>.038<br>.025         | 3<br>3<br>3<br>2<br>4 | 55<br>75<br>101<br>3<br>100    | .21<br>.45<br>.55<br>.11<br>.61   | 14<br>14<br>12<br>2<br>17  | .34<br>.37<br>.47<br>.01<br>.41 | 4<br>5<br>2<br>7<br>2      | 1.83<br>2.58<br>2.71<br>.14<br>3.98  | .03<br>.01<br>.03<br>.03<br>.03 | .02<br>.01<br>.01<br>.02<br>.01 | 1<br>2<br>2<br>1<br>1 | 4<br>1<br>1<br>1<br>1  | 200<br>220<br>150<br>130<br>280 |
| 5050N 5050E<br>5050N 5060E<br>5050N 5070E<br>5050N 5080E<br>5050N 5090E | 1<br>1<br>1<br>1      | 40<br>62<br>105<br>103<br>57  | 10<br>7<br>9<br>14       | 51<br>59<br>86<br>75<br>46 | .1<br>.1<br>.2<br>.2<br>.1 | 16<br>35<br>65<br>47<br>23 | 7<br>12<br>31<br>57<br>9   | 244<br>189<br>975<br>744<br>222    | 11.43<br>3.79<br>5.17<br>7.15<br>9.50  | 12<br>7<br>10<br>15<br>14  | 5<br>5<br>5<br>5<br>5 | D<br>ND<br>ND<br>ND<br>ND  | 1<br>1<br>1<br>1<br>1 | 9<br>12<br>19<br>9<br>11   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>3      | 2<br>2<br>2<br>2<br>2<br>2 | 353<br>189<br>154<br>215<br>267 | .24<br>.54<br>.96<br>.50<br>.40  | .021<br>.041<br>.045<br>.036<br>.024         | 3<br>6<br>4<br>3<br>2 | 98<br>74<br>62<br>105<br>107   | .25<br>.66<br>1.30<br>.75<br>.43  | 12<br>16<br>29<br>16<br>14 | .59<br>.39<br>.38<br>.44<br>.51 | 2<br>4<br>5<br>2<br>2      | 2.03<br>3.87<br>3.96<br>5.57<br>3.37 | .02<br>.03<br>.02<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>2<br>1<br>1<br>2 | 4<br>95<br>2<br>1<br>2 | 180<br>200<br>190<br>460<br>210 |
| 5050N 5100E<br>5050N 51102<br>5050N 5120E<br>5050N 5130E<br>5050N 5140E | 1<br>1<br>1<br>1      | 143<br>57<br>103<br>90<br>85  | 10<br>9<br>6<br>7<br>11  | 73<br>41<br>60<br>61<br>54 | .3<br>.1<br>.2<br>.1       | 73<br>21<br>53<br>41<br>35 | 22<br>7<br>14<br>12<br>10  | 444<br>207<br>292<br>309<br>256    | 6.51<br>5.03<br>7.28<br>9.65<br>9.34   | 9<br>5<br>9<br>7<br>4      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1<br>1 | 13<br>11<br>9<br>6<br>6    | 1<br>1<br>1<br>1      | 3<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 176<br>211<br>197<br>295<br>297 | .92<br>.41<br>.63<br>.43<br>.40  | .036<br>.025<br>.025<br>.025<br>.025<br>.024 | 5<br>4<br>3<br>3      | 64<br>79<br>108<br>134<br>135  | 1.40<br>.47<br>1.12<br>.58<br>.56 | 23<br>16<br>18<br>15<br>16 | .40<br>.42<br>.46<br>.51<br>.52 | 2<br>2<br>2<br>2<br>2<br>2 | 4.66<br>3.17<br>5.50<br>5.15<br>5.16 | .02<br>.01<br>.01<br>.01<br>.01 | .01<br>.02<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>1      | 1<br>1<br>3<br>3<br>1  | 170<br>220<br>300<br>220<br>310 |
| 505CN 5150Z<br>5050N 5150X<br>5050N 5170Z<br>5050N 5190Z<br>5050N 5190Z | 1<br>2<br>7<br>4<br>2 | 97<br>86<br>103<br>105<br>136 | 8<br>7<br>10<br>7<br>5   | 61<br>72<br>64<br>64<br>87 | .1<br>.2<br>.1<br>.1<br>.3 | 41<br>43<br>40<br>52<br>56 | 12<br>27<br>25<br>34<br>28 | 283<br>1804<br>955<br>3192<br>3593 | 10.51<br>9.13<br>10.47<br>9.13<br>7.01 | 9<br>33<br>56<br>90<br>36  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 8<br>12<br>24<br>18<br>28  | 2<br>1<br>1<br>1<br>1 | 2<br>2<br>3<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 339<br>274<br>306<br>227<br>202 | .69<br>.60<br>.36<br>.56<br>1.25 | .018<br>.038<br>.036<br>.053<br>.074         | 3<br>5<br>6<br>9      | 121<br>113<br>130<br>112<br>89 | .76<br>.62<br>.39<br>.65<br>1.02  | 21<br>17<br>14<br>14<br>27 | .65<br>.47<br>.50<br>.34<br>.37 | 2<br>7<br>7<br>6<br>9      | 3.61<br>3.87<br>3.26<br>3.75<br>3.88 | .02<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>75      | 290<br>360<br>380<br>520<br>570 |
| 5050N 5200K<br>STD C/AU-S                                               | 1<br>19               | 159<br>62                     | 6<br>39                  | 30<br>132                  | .4<br>7.5                  | 53<br>69                   | 27<br>30                   | 3061<br>1090                       | 5.75                                   | 8<br>42                    | 5<br>21               | ND<br>8                    | 1<br>38               | 29<br>53                   | 1<br>19               | 2<br>21                    | 2<br>21                    | 195<br>64                       | 1.71<br>.49                      | .055<br>.088                                 | 5<br>41               | 57<br>60                       | 1.44                              | 24<br>179                  | .45<br>.07                      | 10<br>33                   | 3.36<br>1.73                         | .01<br>.07                      | .02<br>.14                      | 1<br>11               | 1<br>53                | 220<br>1300                     |

Page 7

ť

ſ

£

t

f

f

t

(

(

í.

(

(

| SAMPLE:                                                                                | Ko<br>?PM             | CU<br>PPH                     | PE<br>PPN                | Zn<br>PPM                  | Ag<br>PPN                  | Nİ<br>PPM                  | Co<br>PPH                  | Nn<br>PPM                          | Fe<br>\$                               | λs<br>?PM                  | U<br>PPM              | Au<br>PPN                  | Th<br>PPM             | ST<br>PPH                  | Cd<br>PPH             | SD<br>PPM                  | Bİ<br>PPM                  | V<br>PPM                        | Ca<br>ł                          | P<br>Ł                                       | La<br>PPM             | CT<br>PPN                      | Kg<br>Z                           | Ba<br>PPM                  | Ti<br>ł                         | B<br>PPM               | ۸1<br>۲                              | Na<br>ł                         | ۲<br>۲                          | ¥<br>PPN              | Au*<br>PPB             | Hg<br>PPS                       |  |
|----------------------------------------------------------------------------------------|-----------------------|-------------------------------|--------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------------------------|----------------------------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|----------------------------------|----------------------------------------------|-----------------------|--------------------------------|-----------------------------------|----------------------------|---------------------------------|------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|------------------------|---------------------------------|--|
| 5050N 48502<br>5050N 48602<br>5050N 48702<br>5050N 48902<br>5050N 48902                | 1<br>1<br>2<br>2      | 33<br>26<br>81<br>48<br>47    | 9<br>9<br>12<br>11<br>11 | 43<br>31<br>62<br>46<br>46 | .1<br>.1<br>.2<br>.3       | 14<br>15<br>40<br>27<br>22 | 6<br>6<br>12<br>8          | 225<br>149<br>241<br>182<br>214    | 8.90<br>9.47<br>7.06<br>8.54<br>7.55   | 11<br>10<br>17<br>15<br>14 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>2      | 9<br>10<br>11<br>12<br>12  | 1<br>1<br>1<br>1      | 3<br>2<br>3<br>5<br>4      | 2<br>2<br>2<br>2<br>2<br>2 | 292<br>295<br>204<br>210<br>211 | .24<br>.22<br>.33<br>.29<br>.36  | .012<br>.010<br>.025<br>.021<br>.024         | 2<br>2<br>3<br>5<br>4 | 77<br>64<br>105<br>87<br>93    | .27<br>.34<br>.64<br>.60<br>.48   | 11<br>11<br>20<br>19<br>18 | .47<br>.49<br>.33<br>.31<br>.43 | 3<br>3<br>2<br>4<br>3  | 1.95<br>1.37<br>5.77<br>3.92<br>3.76 | .02<br>.03<br>.01<br>.04<br>.01 | .01<br>.01<br>.01<br>.02<br>.03 | 1<br>1<br>3<br>2      | 1<br>3<br>2<br>1<br>1  | 90<br>100<br>430<br>300<br>320  |  |
| 5050N 4900B<br>5050N 4910I<br>5050N 4920I<br>5050N 4923I<br>5050N 4923I<br>5050N 4940R | 1<br>1<br>1<br>1      | 41<br>32<br>38<br>57<br>39    | 9<br>7<br>7<br>7<br>7    | 42<br>37<br>41<br>52<br>45 | .1<br>.1<br>.1<br>.1<br>.2 | 24<br>16<br>16<br>29<br>17 | 8<br>5<br>9<br>6           | 247<br>170<br>171<br>235<br>188    | 4.75<br>5.88<br>6.53<br>5.74<br>6.51   | 13<br>8<br>10<br>9<br>13   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 11<br>10<br>11<br>14<br>12 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>3           | 165<br>293<br>212<br>162<br>198 | .54<br>.30<br>.28<br>.35<br>.29  | .013<br>.015<br>.020<br>.024<br>.027         | 3<br>3<br>4<br>4      | 61<br>81<br>68<br>71<br>69     | .68<br>.48<br>.36<br>.69<br>.33   | 12<br>11<br>15<br>21<br>17 | .33<br>.43<br>.35<br>.30<br>.32 | 6<br>3<br>4<br>2       | 2.71<br>2.32<br>2.47<br>4.00<br>2.67 | .03<br>.92<br>.02<br>.02<br>.02 | .01<br>.01<br>.01<br>.01<br>.01 | 3<br>1<br>3<br>1<br>3 | 1<br>1<br>2<br>1<br>4  | 160<br>190<br>150<br>200<br>260 |  |
| 5050¥ 4950E<br>5050¥ 4960E<br>5050¥ 4970E<br>5050¥ 4980E<br>5050¥ 4990E                | 1<br>1<br>1<br>1<br>1 | 60<br>31<br>79<br>62<br>59    | 9<br>7<br>12<br>12<br>7  | 58<br>42<br>55<br>55<br>47 | .2<br>.1<br>.2<br>.1<br>.1 | 29<br>14<br>34<br>27<br>26 | 9<br>5<br>10<br>8<br>8     | 352<br>179<br>294<br>239<br>218    | 6.81<br>7.43<br>6.87<br>8.21<br>7.03   | 17<br>15<br>15<br>15<br>14 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1<br>1 | 11<br>11<br>11<br>10<br>13 | 1<br>1<br>1<br>1<br>1 | 4<br>2<br>5<br>3<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 209<br>231<br>198<br>236<br>187 | .42<br>.30<br>.46<br>.35<br>.42  | .027<br>.023<br>.027<br>.022<br>.022         | 3<br>2<br>3<br>3<br>5 | 92<br>65<br>99<br>107<br>78    | .55<br>.27<br>.70<br>.53<br>.55   | 15<br>13<br>19<br>17<br>19 | .36<br>.39<br>.36<br>.38<br>.31 | 8<br>11<br>5<br>5<br>6 | 3.93<br>2.08<br>4.95<br>4.14<br>3.58 | .03<br>.02<br>.04<br>.03<br>.02 | .01<br>.01<br>.01<br>.01<br>.01 | 2<br>2<br>3<br>2      | 1<br>1<br>2<br>2<br>1  | 190<br>170<br>200<br>220<br>230 |  |
| 505CN 5000E<br>505CN 5010E<br>505CN 5020E<br>505CN 503DE<br>505CN 5040E                | 1<br>1<br>1<br>1<br>1 | 31<br>45<br>54<br>7<br>77     | 8<br>8<br>13<br>2<br>7   | 36<br>45<br>49<br>50<br>57 | .1<br>.1<br>.2<br>.3       | 11<br>21<br>25<br>2<br>35  | 4<br>7<br>9<br>1<br>12     | 159<br>232<br>288<br>42<br>368     | 6.64<br>7.05<br>9.29<br>.23<br>7.21    | 11<br>15<br>19<br>2<br>14  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 12<br>11<br>11<br>13<br>12 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 213<br>216<br>265<br>7<br>215   | .26<br>.43<br>.43<br>.41<br>.41  | .034<br>.026<br>.015<br>.038<br>.025         | 3<br>3<br>3<br>2<br>4 | 55<br>75<br>101<br>3<br>100    | .21<br>.45<br>.55<br>.11<br>.61   | 14<br>14<br>12<br>2<br>17  | .34<br>.37<br>.47<br>.01<br>.41 | 4<br>5<br>2<br>7<br>2  | 1.33<br>2.58<br>2.71<br>.14<br>3.98  | .03<br>.01<br>.03<br>.03<br>.03 | .02<br>.01<br>.01<br>.02<br>.01 | 1<br>2<br>2<br>1<br>1 | 4<br>1<br>1<br>1       | 200<br>220<br>160<br>130<br>280 |  |
| 5050N 5050E<br>5050N 50603<br>5050N 50603<br>5050N 5070E<br>5050N 50803<br>5050N 5090E | 1<br>1<br>1<br>1      | 40<br>62<br>105<br>103<br>57  | 10<br>7<br>7<br>9<br>14  | 51<br>59<br>86<br>75<br>46 | .1<br>.1<br>.2<br>.2<br>.1 | 16<br>35<br>65<br>47<br>23 | 7<br>12<br>31<br>57<br>9   | 244<br>189<br>975<br>744<br>222    | 11.43<br>3.79<br>5.17<br>7.16<br>9.50  | 12<br>7<br>10<br>15<br>14  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1<br>1 | 9<br>12<br>19<br>9<br>11   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>3      | 2<br>2<br>2<br>2<br>2<br>2 | 353<br>189<br>154<br>215<br>267 | .24<br>.54<br>.96<br>.50<br>.40  | .021<br>.041<br>.045<br>.036<br>.024         | 3<br>6<br>4<br>3<br>2 | 98<br>74<br>52<br>105<br>107   | .25<br>.66<br>1.30<br>.75<br>.43  | 12<br>16<br>29<br>16<br>14 | .59<br>.39<br>.38<br>.44<br>.51 | 2<br>4<br>5<br>2<br>2  | 2.03<br>3.87<br>3.96<br>5.57<br>3.37 | .02<br>.03<br>.02<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>2<br>1<br>1<br>2 | 4<br>95<br>2<br>1<br>2 | 180<br>200<br>190<br>460<br>210 |  |
| 5050N 5100E<br>5050N 5110E<br>5050N 5120E<br>5050N 5130E<br>5050N 5140E                | 1<br>1<br>1<br>1      | 143<br>57<br>103<br>90<br>85  | 10<br>9<br>6<br>7<br>11  | 73<br>41<br>60<br>61<br>54 | .3<br>.1<br>.2<br>.1<br>.1 | 73<br>21<br>53<br>41<br>35 | 22<br>7<br>14<br>12<br>10  | 444<br>207<br>292<br>309<br>256    | 6.51<br>5.03<br>7.28<br>9.65<br>9.34   | 9<br>5<br>9<br>7<br>4      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1<br>1 | 13<br>11<br>9<br>6<br>6    | 1<br>1<br>1<br>1<br>1 | 3<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 176<br>211<br>197<br>295<br>297 | .92<br>.41<br>.63<br>.43<br>.40  | .036<br>.025<br>.025<br>.025<br>.025<br>.024 | 5<br>4<br>3<br>3      | 64<br>79<br>108<br>134<br>135  | 1.40<br>.47<br>1.12<br>.68<br>.55 | 23<br>16<br>18<br>16<br>16 | .40<br>.42<br>.46<br>.51<br>.52 | 2<br>2<br>2<br>2<br>2  | 4.66<br>3.17<br>5.50<br>5.15<br>5.16 | .02<br>.01<br>.01<br>.01<br>.01 | .01<br>.02<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>1      | 1<br>1<br>3<br>3<br>1  | 170<br>220<br>300<br>229<br>310 |  |
| 5050N 5150E<br>5050N 5150E<br>5050N 5170E<br>5050N 5130E<br>5050N 5130E                | 1<br>2<br>7<br>4<br>2 | 97<br>86<br>103<br>105<br>136 | 8<br>7<br>10<br>7<br>6   | 61<br>72<br>64<br>87       | .1<br>.2<br>.1<br>.1       | 41<br>43<br>40<br>52<br>66 | 12<br>27<br>25<br>34<br>28 | 283<br>1804<br>955<br>3192<br>3593 | 10.51<br>9.13<br>10.47<br>9.13<br>7.01 | 9<br>33<br>56<br>90<br>36  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | I<br>1<br>1<br>1<br>1 | 8<br>12<br>24<br>18<br>28  | 2<br>1<br>1<br>1<br>1 | 2<br>2<br>3<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 339<br>274<br>306<br>227<br>202 | .65<br>.60<br>.36<br>.56<br>1.25 | .018<br>.038<br>.036<br>.053<br>.074         | 3<br>5<br>6<br>9      | 121<br>113<br>130<br>112<br>89 | .75<br>.62<br>.39<br>.65<br>1.02  | 21<br>17<br>14<br>14<br>27 | .65<br>.47<br>.50<br>.34<br>.37 | 2<br>T<br>7<br>6<br>9  | 3.61<br>3.87<br>3.36<br>3.75<br>3.88 | .02<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>1      | 1<br>1<br>2<br>1<br>75 | 290<br>360<br>380<br>520<br>570 |  |
| 50508 52008<br>STD C/AU-S                                                              | 1<br>19               | 159<br>62                     | 6<br>39                  | 30<br>132                  | .4<br>7.5                  | 53<br>69                   | 27<br>30                   | 3061<br>1090                       | 5.75<br>4.11                           | 8<br>42                    | 5<br>21               | ND<br>S                    | 1<br>38               | 29<br>53                   | 1<br>19               | 2<br>21                    | 2<br>21                    | 195<br>64                       | 1.71<br>.49                      | .055<br>.088                                 | 5<br>41               | 57<br>60                       | 1.44<br>.96                       | 24<br>179                  | .45<br>.07                      | 10<br>33               | 3.36<br>1.73                         | .01<br>.07                      | .02<br>.14                      | 1<br>11               | 1<br>53                | 220<br>1300                     |  |

Page 7

ť

£

÷

í

1

f

(

(

(

(

(

1

| SAMPLE                                                                                 | NO<br>PPM             | Cu<br>??¥                     | ?b<br>PPM                | Zn<br>PPM                  | Ag<br>PPN                  | NÍ<br>PPM                  | CC<br>PPM                  | Mn<br>PPN                          | ?t<br>\                                  | as<br>PPN                   | U<br>PPM                   | Au<br>PPM                  | Th<br>??N             | ST<br>PPM                  | Cd<br>PPK             | SD<br>PPH                  | Bi<br>PPN                  | V<br>PPM                        | Ca<br>t                             | P                                    | La<br>PPM              | CT<br>PPM                       | Ng<br>t                            | Ba<br>PPM                 | Ti<br>X                              | B<br>PPM                   | ۸1<br>۲                              | Na<br>ł                         | K                               | PPN                   | AU"<br>PPB            | Hç<br>PP3                            |
|----------------------------------------------------------------------------------------|-----------------------|-------------------------------|--------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------------------------|------------------------------------------|-----------------------------|----------------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-------------------------------------|--------------------------------------|------------------------|---------------------------------|------------------------------------|---------------------------|--------------------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|--------------------------------------|
| 5050N 521CE<br>5050N 5220E<br>5050N 522CE<br>5050N 5240R<br>5050N 5230E                | 1<br>1<br>1<br>1      | 154<br>94<br>167<br>115<br>42 | 7<br>7<br>5<br>6<br>12   | 87<br>69<br>62<br>53<br>45 | .3<br>.4<br>.3<br>.2       | 67<br>34<br>52<br>61<br>15 | 33<br>37<br>26<br>16<br>7  | 2244<br>3002<br>1019<br>431<br>197 | 6.77<br>7.15<br>7.03<br>5.69<br>8.80     | 90<br>10<br>11<br>10<br>5   | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 25<br>12<br>15<br>16<br>13 | 1<br>1<br>1<br>2      | 4<br>3<br>2<br>2<br>4      | 4<br>2<br>4<br>3<br>2      | 207<br>237<br>213<br>174<br>398 | 1.37<br>1.04<br>.94<br>1.29<br>.78  | .052<br>.051<br>.037<br>.017<br>.018 | 7<br>11<br>4<br>3<br>3 | 74<br>88<br>86<br>70<br>96      | 1.09<br>.77<br>1.05<br>1.32<br>.33 | 20<br>12<br>12<br>9<br>10 | .42<br>.52<br>.51<br>.38<br>.99      | 8<br>8<br>3<br>4<br>2      | 3.53<br>3.96<br>4.00<br>2.30<br>2.06 | .01<br>.01<br>.01<br>.01<br>.02 | .02<br>.01<br>.01<br>.01<br>.01 | 2<br>3<br>2<br>2<br>2 | 1<br>6<br>1<br>5<br>7 | 430<br>380<br>210<br>130<br>820      |
| 5050N 5250N<br>5050N 5270E<br>5050N 5230E<br>5050N 5290E<br>5050N 5290E                | 1<br>1<br>1<br>1      | 89<br>39<br>102<br>108<br>73  | 11<br>9<br>5<br>8<br>6   | 79<br>43<br>76<br>73<br>66 | .3<br>.1<br>.3<br>.3<br>.2 | 50<br>16<br>52<br>43<br>35 | 24<br>15<br>23<br>20<br>14 | 451<br>434<br>338<br>305<br>286    | 6.73<br>6.91<br>7.05<br>6.84<br>7.79     | 6<br>9<br>8<br>4<br>10      | 5<br>5<br>5<br>5<br>5      | nd<br>NC<br>ND<br>ND<br>NC | 1<br>1<br>1<br>1      | 13<br>12<br>12<br>11<br>11 | 1<br>1<br>1<br>1      | 4<br>2<br>3<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 286<br>340<br>286<br>310<br>296 | 1.32<br>.95<br>1.42<br>1.30<br>1.29 | .038<br>.019<br>.044<br>.025<br>.024 | 7<br>6<br>7<br>5       | 102<br>94<br>113<br>121<br>107  | .87<br>.40<br>.90<br>.51<br>.30    | 9<br>10<br>9<br>8         | .57<br>.84<br>.58<br>.69<br>.66      | 5<br>4<br>5<br>3<br>3      | 5.21<br>2.70<br>5.21<br>5.61<br>4.32 | .01<br>.02<br>.01<br>.03<br>.01 | .01<br>.01<br>.01<br>.01        | 2<br>2<br>1<br>1      | 8<br>1<br>5<br>3<br>1 | 980<br>720<br>510<br>500<br>540      |
| 5050N 5310E<br>5050N 5320E<br>5050N 5330E<br>5050N 5340R<br>5050N 5350Z                | 1<br>1<br>1<br>1      | 38<br>35<br>92<br>114<br>50   | 8<br>11<br>6<br>9<br>8   | 61<br>46<br>90<br>96<br>62 | .3<br>.1<br>.4<br>.2       | 19<br>11<br>61<br>55<br>23 | 21<br>9<br>33<br>39<br>14  | 1273<br>462<br>540<br>584<br>378   | 4.19<br>11.74<br>5.74<br>8.78<br>10.71   | 7<br>12<br>9<br>12<br>13    | 5<br>5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1<br>1 | 23<br>10<br>15<br>12<br>11 | 1<br>1<br>1<br>2<br>1 | 2<br>4<br>2<br>5<br>3      | 2<br>2<br>2<br>2<br>2<br>2 | 90<br>402<br>216<br>301<br>342  | .66<br>.86<br>2.01<br>1.27<br>1.08  | .055<br>.017<br>.024<br>.023<br>.024 | 4<br>2<br>5<br>5<br>5  | 41<br>105<br>65<br>121<br>99    | .37<br>.21<br>1.18<br>.93<br>.49   | 15<br>8<br>9<br>10<br>12  | .21<br>.87<br>.51<br>.71<br>.74      | 4<br>2<br>9<br>2<br>2      | 1.55<br>1.97<br>4.01<br>5.82<br>3.15 | .06<br>.01<br>.01<br>.01<br>.03 | .05<br>.01<br>.01<br>.01<br>.01 | 1<br>2<br>3<br>3<br>2 | 1<br>1<br>3<br>1<br>2 | 570<br>250<br>1300<br>290<br>250     |
| 5050N 5360R<br>5050N 5370E<br>5050N 5380E<br>5050N 53903<br>5050N 540CE                | 1<br>1<br>1<br>1      | 86<br>74<br>85<br>80<br>54    | 13<br>9<br>8<br>5<br>7   | 80<br>83<br>67<br>92<br>61 | .3<br>.3<br>.2<br>.4       | 38<br>37<br>35<br>44<br>21 | 34<br>55<br>18<br>30<br>10 | 458<br>3124<br>661<br>1999<br>352  | 9.41<br>9.33<br>8.92<br>5.55<br>10.70    | 10<br>12<br>5<br>4<br>10    | 5<br>5<br>5<br>5<br>5      | עא<br>סא<br>סא<br>אD<br>אD | 1<br>1<br>1<br>1      | 10<br>14<br>13<br>32<br>15 | 2<br>2<br>1<br>2      | 4<br>3<br>4<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 292<br>298<br>285<br>198<br>389 | 1.12<br>1.29<br>1.19<br>1.74<br>.93 | .022<br>.022<br>.023<br>.039<br>.019 | 8<br>5<br>5<br>6<br>4  | 115<br>105<br>145<br>67<br>136  | .67<br>.75<br>.73<br>.84<br>.47    | 12<br>15<br>9<br>19<br>11 | . 68<br>. 66<br>. 77<br>. 45<br>. 87 | - 2<br>6<br>2<br>6<br>2    | 5.35<br>4.05<br>5.18<br>3.33<br>3.27 | .02<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>2<br>1<br>1<br>1 | 1<br>1<br>5<br>1      | 600<br>480<br>570<br>720<br>750      |
| 5050N 5410E<br>5050N 5420E<br>5050N 5430E<br>5050N 5440E<br>5050N 5440E                | 1<br>1<br>1<br>1<br>1 | 71<br>51<br>54<br>90<br>67    | 4<br>11<br>13<br>10<br>4 | 76<br>53<br>63<br>82<br>79 | .3<br>.4<br>.2<br>.2<br>.2 | 37<br>18<br>26<br>56<br>52 | 43<br>12<br>20<br>35<br>25 | 1933<br>397<br>568<br>359<br>315   | 7.14<br>11.11<br>3.52<br>7.38<br>5.93    | 8<br>9<br>10<br>2<br>9      | 5<br>5<br>5<br>5<br>5      | ND<br>Kd<br>ND<br>Kd<br>ND | 1<br>1<br>1<br>1      | 21<br>9<br>12<br>11<br>13  | 1<br>2<br>2<br>1<br>1 | 2<br>5<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 252<br>357<br>349<br>332<br>281 | 1.66<br>.59<br>1.05<br>1.23<br>1.37 | .025<br>.031<br>.023<br>.037<br>.021 | 4<br>5<br>6<br>5       | 83<br>155<br>117<br>123<br>115  | .82<br>.33<br>.54<br>.90<br>.99    | 17<br>9<br>10<br>7<br>8   | .57<br>.30<br>.87<br>.68<br>.75      | 7<br>2<br>2<br>3<br>3      | 3.28<br>4.33<br>3.55<br>5.26<br>4.30 | .03<br>.02<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>2<br>1<br>1<br>1 | 3<br>1<br>1<br>1      | 1200<br>2500<br>440<br>1300<br>25200 |
| 5050N 54603<br>5050N 5470R<br>5050N 5480R<br>5050N 5490E<br>5050H 5500R                | 1<br>1<br>1<br>1<br>1 | 64<br>52<br>52<br>49<br>58    | 9<br>6<br>7<br>8<br>5    | 63<br>49<br>53<br>48<br>55 | .2<br>.2<br>.3<br>.2<br>.1 | 34<br>23<br>16<br>18<br>24 | 13<br>8<br>7<br>7<br>10    | 295<br>202<br>203<br>198<br>252    | 9.69<br>12.36<br>16.15<br>12.05<br>12.38 | > 10<br>12<br>9<br>11<br>10 | 5<br>5<br>5<br>5           | HD<br>NC<br>ND<br>ND       | 1<br>1<br>1<br>1      | 10<br>8<br>7<br>9<br>9     | 2<br>1<br>2<br>1<br>2 | 2<br>2<br>3<br>2           | 2<br>2<br>2<br>2<br>2<br>2 | 333<br>351<br>510<br>401<br>349 | 1.03<br>.67<br>.54<br>.73<br>.86    | .024<br>.022<br>.018<br>.018<br>.018 | 3<br>4<br>3<br>2<br>3  | 136<br>147<br>187<br>148<br>169 | .64<br>.42<br>.29<br>.34<br>.51    | 7<br>7<br>4<br>5<br>6     | .78<br>.79<br>1.01<br>.84<br>.78     | 2<br>2<br>2<br>2<br>2<br>2 | 3.92<br>3.43<br>3.31<br>2.76<br>4.19 | .04<br>.01<br>.02<br>.01<br>.02 | .01<br>.02<br>.01<br>.01<br>.01 | 1<br>2<br>1<br>2<br>1 | 1<br>3<br>2<br>4<br>1 | 720<br>960<br>1000<br>1600<br>2300   |
| 5000K 4500E<br>5000K 451CE<br>5000K 4520E<br>5000K 4520E<br>5000K 4530E<br>5000K 4540E | 1<br>1<br>1<br>1      | 35<br>25<br>10<br>30          | 8<br>10<br>9<br>7<br>6   | 45<br>36<br>25<br>46<br>47 | .1<br>.1<br>.1<br>.1       | 11<br>10<br>5<br>12<br>10  | 5<br>5<br>2<br>5<br>5      | 180<br>170<br>100<br>265<br>238    | 9.34<br>3.78<br>2.94<br>6.35<br>5.94     | 12<br>10<br>2<br>13<br>3    | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 8<br>10<br>14<br>13<br>11  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 337<br>300<br>166<br>242<br>343 | .25<br>.37<br>.15<br>.44<br>.15     | .016<br>.012<br>.015<br>.017<br>.010 | 3<br>3<br>3<br>2<br>3  | 39<br>78<br>39<br>70<br>44      | .21<br>.23<br>.10<br>.32<br>.07    | 9<br>10<br>13<br>15<br>8  | .67<br>.64<br>.50<br>.16<br>.36      | 2<br>2<br>2<br>3<br>2      | 2.41<br>1.45<br>.90<br>2.04<br>.52   | .01<br>.02<br>.03<br>.04<br>.91 | .02<br>.01<br>.01<br>.02<br>.01 | 2<br>1<br>1<br>1      | 1<br>1<br>1<br>1<br>1 | 250<br>130<br>80<br>140<br>60        |
| 5000E 4550E<br>STD C/AU-S                                                              | 1<br>19               | 19                            | 10<br>41                 | 61<br>132                  | .1<br>7.5                  | 8<br>70                    | 4                          | 164<br>1098                        | 5.29<br>4.10                             | 4<br>41                     | 5<br>21                    | םא<br>7                    | 1<br>39               | 20<br>53                   | 1<br>19               | 2<br>19                    | 2<br>20                    | 290<br>60                       | .19<br>.50                          | .016<br>.087                         | 2<br>41                | 33<br>60                        | .10<br>.92                         | 11<br>180                 | .46<br>.07                           | 2<br>35                    | .37<br>1.75                          | .02<br>.09                      | .02<br>.14                      | 1<br>12               | 1<br>50               | 100<br>1300                          |

Page 8

(

1

1

t

ŧ

÷

(

(

(

ć

ł

| SAMPLE                                                                                 | No<br>PPM                  | Cu<br>?PM                  | Pb<br>PPM              | Zn<br>PPM                   | λg<br>PPK                  | Ni<br>PPN                            | Co<br>PPM                 | KD<br>PPM                            | re<br>t                              | As<br>?PM                   | U<br>P?M                   | Au<br>PPM                  | Th<br>PPM             | ST<br>?PM                  | Cd<br>PPM             | sd<br>PPN                  | Bİ<br>PPM                  | V<br>PPN                        | Ca<br>ł                           | P                                    | La<br>PPM              | CT<br>PPH                   | Xg                                  | Ba<br>PPM                  | Ti<br>t                         | B<br>PPM                | 41<br>3                              | Na<br>Z                         | ł                               | PPH                   | AU*<br>PPB            | Hg<br>PPB                        |
|----------------------------------------------------------------------------------------|----------------------------|----------------------------|------------------------|-----------------------------|----------------------------|--------------------------------------|---------------------------|--------------------------------------|--------------------------------------|-----------------------------|----------------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-----------------------------------|--------------------------------------|------------------------|-----------------------------|-------------------------------------|----------------------------|---------------------------------|-------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|----------------------------------|
| 5000N 4550E<br>5000N 4570E<br>5900N 4580E<br>5000N 4590E<br>5000N 4600E                | 2<br>2<br>2<br>2<br>2<br>2 | 36<br>29<br>38<br>27<br>29 | 9<br>7<br>8<br>6<br>10 | 50<br>42<br>52<br>42<br>50  | .1<br>.1<br>.1<br>.1       | 10<br>12<br>11<br>12<br>11           | 7<br>7<br>6<br>6<br>42    | 347<br>235<br>266<br>234<br>2482     | 8.45<br>3.78<br>3.97<br>5.13<br>7.01 | 66<br>12<br>74<br>32<br>38  | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>I<br>1<br>1      | 11<br>12<br>12<br>12<br>11 | 1<br>1<br>1<br>1      | 2<br>2<br>5<br>3<br>2      | 2<br>3<br>2<br>3<br>2      | 296<br>198<br>308<br>222<br>243 | .21<br>.38<br>.21<br>.27<br>.34   | .025<br>.026<br>.026<br>.027<br>.048 | 4<br>4<br>4<br>5       | 79<br>83<br>83<br>70<br>67  | .20<br>.28<br>.23<br>.27<br>.24     | 12<br>13<br>13<br>13<br>13 | .41<br>.45<br>.43<br>.37<br>.30 | 3<br>4<br>5<br>8        | 2.48<br>2.28<br>2.52<br>2.40<br>2.51 | .01<br>.01<br>.03<br>.01<br>.02 | .01<br>.01<br>.01<br>.01<br>.01 | 2<br>2<br>2<br>2<br>1 | 1<br>1<br>2<br>1<br>1 | 160<br>370<br>110<br>190<br>220  |
| 50CON 4610K<br>500CN 462CE<br>50CON 463DE<br>50CON 464DE<br>50CON 464DE<br>50CON 465CE | 3<br>2<br>1<br>1<br>2      | 34<br>22<br>14<br>21<br>34 | 4<br>5<br>5<br>2       | 91<br>63<br>66<br>61<br>62  | .1<br>.1<br>.3<br>.1       | 26<br>13<br>8<br>11<br>18            | 91<br>33<br>19<br>6<br>7  | 8355<br>2709<br>1504<br>425<br>344   | 3.85<br>4.65<br>2.58<br>2.66<br>5.07 | 38<br>23<br>10<br>10<br>15  | 5<br>5<br>5<br>5<br>5      | HD<br>NC<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 20<br>21<br>25<br>24<br>20 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>3<br>2<br>3      | 230<br>154<br>89<br>93<br>177   | 1.25<br>.65<br>.56<br>.91<br>.78  | .060<br>.044<br>.040<br>.030<br>.023 | 9<br>4<br>2<br>2<br>2  | 70<br>46<br>27<br>30<br>55  | .27<br>.25<br>.26<br>.36<br>.53     | 55<br>22<br>17<br>12<br>14 | .21<br>.20<br>.11<br>.17<br>.34 | 6<br>4<br>4<br>5<br>2   | 4.22<br>2.05<br>1.23<br>1.16<br>1.96 | .03<br>.02<br>.04<br>.01<br>.02 | .01<br>.01<br>.02<br>.02<br>.01 | 3<br>1<br>1<br>1<br>1 | 8<br>4<br>1<br>3      | 270<br>290<br>300<br>190<br>180  |
| 5000N 46602<br>5000N 4670B<br>5000N 46802<br>5000N 4690B<br>5000N 4700E                | 7<br>3<br>2<br>2<br>2      | 42<br>32<br>7<br>28<br>46  | 4<br>6<br>7<br>2<br>7  | 103<br>86<br>28<br>61<br>77 | .1<br>.1<br>.1<br>.2<br>.2 | 58<br>31<br>3<br>17<br>23            | 24<br>12<br>3<br>12<br>12 | 26621<br>10216<br>4BC<br>548<br>583  | 4.52<br>4.95<br>1.82<br>5.09<br>5.42 | 15<br>10<br>2<br>5<br>91    | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 25<br>25<br>11<br>15<br>22 | 3<br>I<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 149<br>162<br>238<br>145<br>171 | 1.01<br>.84<br>.22<br>.46<br>.69  | .050<br>.040<br>.009<br>.040<br>.037 | 6<br>3<br>4<br>4<br>4  | 47<br>43<br>40<br>57<br>57  | .50<br>.51<br>.10<br>.55<br>.56     | 83<br>41<br>13<br>17<br>17 | .21<br>.28<br>.43<br>.28<br>.30 | 8<br>7<br>2<br>4<br>4   | 3.44<br>2.04<br>1.03<br>2.80<br>2.20 | .03<br>.02<br>.01<br>.01<br>.01 | .01<br>.02<br>.01<br>.03<br>.02 | 1<br>1<br>1<br>1      | 6<br>1<br>1<br>3<br>1 | 220<br>200<br>50<br>220<br>200   |
| 5000K 4710E<br>5000N 4720E<br>5000N 4730E<br>5000N 4730E<br>4950H 4500E                | 1<br>1<br>6<br>1<br>1      | 55<br>26<br>83<br>55<br>61 | 6<br>6<br>7<br>4<br>2  | 76<br>51<br>108<br>83<br>50 | .3<br>.1<br>.3<br>.2<br>.2 | 24<br>17<br>53<br>35<br>31           | 10<br>7<br>30<br>20<br>10 | 295<br>226<br>1085<br>856<br>286     | 5.55<br>5.80<br>5.42<br>5.57<br>4.55 | 13<br>8<br>759<br>170<br>11 | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 16<br>15<br>36<br>29<br>13 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 186<br>204<br>135<br>165<br>184 | .44<br>.55<br>.87<br>1.05<br>.77  | .040<br>.039<br>.111<br>.036<br>.025 | 3<br>2<br>10<br>6<br>5 | 89<br>37<br>69<br>47<br>70  | .81<br>.42<br>1.03<br>1.22<br>.80   | 18<br>16<br>28<br>28<br>14 | .42<br>.41<br>.10<br>.29<br>.46 | 2<br>3<br>10<br>14<br>6 | 5.28<br>1.51<br>2.52<br>2.94<br>3.98 | .02<br>.01<br>.05<br>.03<br>.01 | .01<br>.02<br>.09<br>.03<br>.01 | 1<br>1<br>1<br>2<br>1 | 1<br>1<br>1<br>1      | 230<br>130<br>210<br>180<br>150  |
| 49508 451CE<br>49508 452CE<br>49508 45303<br>49508 45303<br>49508 45503                | 1<br>1<br>1<br>1<br>1      | 92<br>59<br>57<br>65<br>81 | 2<br>3<br>2<br>4<br>2  | 61<br>56<br>49<br>53<br>62  | .2                         | 42<br>31<br>28<br>30<br>40           | 12<br>11<br>9<br>10<br>12 | 290<br>322<br>264<br>250<br>296      | 4.78<br>7.21<br>6.04<br>7.15<br>5.23 | 8<br>16<br>8<br>14<br>11    | 5<br>5<br>5<br>5<br>5      | HD<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 12<br>13<br>13<br>13<br>13 | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 199<br>246<br>207<br>225<br>172 | .79<br>.63<br>.67<br>.62<br>.75   | .023<br>.020<br>.024<br>.020<br>.021 | 5<br>4<br>5<br>4<br>5  | 93<br>99<br>82<br>103<br>73 | 1.01<br>.76<br>.71<br>.88<br>1.01   | 16<br>15<br>15<br>17<br>17 | .46<br>.51<br>.49<br>.55<br>.43 | 2<br>2<br>5<br>4<br>2   | 5.63<br>4.02<br>3.96<br>4.09<br>4.13 | .01<br>.01<br>.01<br>.01<br>.02 | .01<br>.02<br>.02<br>.01<br>.02 | 1<br>1<br>1<br>2<br>1 | 2<br>1<br>1<br>1      | 160<br>150<br>210<br>250<br>200  |
| 4950N 4560E<br>4950N 4570E<br>4950N 4530E<br>4950N 4590E<br>4950N 4600E                | 1<br>1<br>1<br>1<br>1      | 61<br>69<br>83<br>72<br>51 | 3<br>2<br>4<br>5       | 53<br>59<br>73<br>66<br>40  | .1<br>.1<br>.3<br>.3       | 23<br>36<br>52<br>42<br>25           | 9<br>12<br>17<br>14<br>8  | 321<br>332<br>350<br>270<br>168      | 9.13<br>5.91<br>5.06<br>4.85<br>4.18 | 10<br>11<br>11<br>8<br>4    | 5<br>5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 11<br>13<br>16<br>14<br>10 | 1<br>1<br>1<br>1      | 2<br>3<br>3<br>2<br>3      | 3<br>2<br>2<br>2<br>2<br>2 | 257<br>183<br>161<br>177<br>166 | .56<br>.83<br>.96<br>.76<br>.56   | .015<br>.023<br>.034<br>.031<br>.022 | 4<br>6<br>6<br>3       | 111<br>67<br>75<br>95<br>89 | .68<br>.97<br>1.15<br>.97<br>.63    | 14<br>17<br>20<br>16<br>12 | .56<br>.42<br>.38<br>.41<br>.32 | 2<br>3<br>10<br>3<br>3  | 4.05<br>3.82<br>4.86<br>5.03<br>3.66 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.03<br>.02<br>.01 | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>8<br>5 | 160<br>180<br>200<br>240<br>210  |
| 4950N 4610E<br>4350N 4620E<br>4950N 4630E<br>4950N 4640E<br>4950N 4650E                | 2<br>5<br>5<br>2<br>5      | 72<br>19<br>62<br>52       | 2 5<br>2 12<br>2 5     | 61<br>23<br>51<br>81<br>51  | 3 .4<br>6 .1<br>1 .1       | 1 62<br>1 13<br>2 50<br>1 47<br>1 2! |                           | i 353<br>582<br>1003<br>1014<br>1014 | 8.06<br>2.14<br>6.09<br>5.96<br>7.42 | 24<br>36<br>50<br>17<br>30  | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>2<br>1 | 12<br>43<br>23<br>16       | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>3      | 2<br>2<br>2<br>2<br>2<br>2 | 252<br>40<br>149<br>185<br>231  | .65<br>8.02<br>3.45<br>.81<br>.18 | .016<br>.023<br>.023<br>.031<br>.020 | 4<br>4<br>5<br>7<br>3  | 130<br>17<br>85<br>82<br>83 | 1.05<br>5.15<br>2.95<br>1.07<br>.39 | 17<br>4<br>12<br>18<br>11  | .43<br>.02<br>.15<br>.39<br>.14 | 5<br>11<br>3<br>4<br>3  | 4.75<br>.92<br>3.51<br>4.24<br>3.13  | .02<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.03<br>.02 | 1<br>1<br>1<br>1      | 2<br>5<br>1<br>1<br>1 | 450<br>1050<br>730<br>170<br>180 |
| 4950N 4660E<br>STD C/RU-S                                                              | 3<br>15                    | 1 41<br>1 6                | L 2<br>1 31            | 2 6i<br>3 13:               | 8.<br>27.                  | L 24<br>4 63                         | L 21<br>9 3               | 631<br>0 1071                        | 8.25<br>2 4.10                       | 19<br>43                    | 5<br>19                    | ם א<br>7                   | 1<br>39               | 12<br>52                   | 1<br>19               | 2<br>21                    | 3<br>23                    | 263<br>63                       | .57<br>.49                        | .023<br>.086                         | 4<br>40                | 76<br>59                    | .50<br>.96                          | 13<br>179                  | .47<br>.07                      | 3<br>37                 | 2.72                                 | .01<br>.08                      | .01<br>.14                      | 1<br>11               | 6<br>52               | 160<br>1300                      |

Page 9

4

£

1

ί

(

ŧ

E

t.

€

(

Į.

)

| SAMPLES                                                                                | No<br>PPN              | Cu<br>PPK                   | Pb<br>PPH              | Zn<br>PPN                   | Ag<br>?PM                  | Bi<br>PPM                  | Cə<br>PPM                  | Ma<br>PPN                            | ?e<br>\$                             | As<br>PPM                             | U<br>PPH              | Au<br>PPH                  | Th<br>PPM             | ST<br>PPM                  | Cd<br>29%             | Sb<br>PPN                  | Bi<br>PPM                  | V<br>PPM                        | Ca<br>ł                            | 2                                    | La<br>PPM                 | CT<br>PPH                      | Xg                                | Ba<br>PPM                  | Ti<br>ł                         | B<br>PPM                   | Al<br>3                              | Xa<br>X                         | X<br>X                          | ¥<br>PPN               | λu*<br>PPB            | Hg<br>PPB                       |  |
|----------------------------------------------------------------------------------------|------------------------|-----------------------------|------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|------------------------------------|--------------------------------------|---------------------------|--------------------------------|-----------------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|------------------------|-----------------------|---------------------------------|--|
| 4550N 4670E<br>4550N 46802<br>4950N 4690E<br>4950N 4700E<br>4950N 4730E                | 6<br>3<br>2<br>1<br>1  | 106<br>80<br>41<br>70<br>19 | 12<br>9<br>8<br>7<br>3 | 98<br>127<br>95<br>54<br>51 | .1<br>.4<br>.1<br>.1       | 38<br>41<br>40<br>29<br>16 | 33<br>21<br>32<br>14<br>9  | 3852<br>3047<br>1170<br>530<br>178   | 7.31<br>8.64<br>7.36<br>5.98<br>6.75 | 14<br>24<br>10<br>11<br>133           | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 15<br>24<br>19<br>17<br>6  | 1<br>1<br>1<br>1      | 2<br>4<br>3<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 256<br>231<br>205<br>171<br>151 | .43<br>.73<br>.64<br>.43<br>.21    | .053<br>.080<br>.045<br>.046<br>.050 | 15<br>20<br>5<br>6<br>3   | 101<br>96<br>72<br>61<br>65    | .29<br>.58<br>.80<br>.78<br>.35   | 28<br>30<br>19<br>20<br>8  | .45<br>.43<br>.39<br>.37<br>.02 | 3<br>3<br>2<br>3<br>5      | 3.93<br>4.22<br>3.42<br>3.37<br>2.24 | .01<br>.01<br>.01<br>.01<br>.02 | .01<br>.02<br>.01<br>.03<br>.04 | 2<br>2<br>1<br>1<br>1  | 1<br>1<br>1<br>1      | 250<br>230<br>170<br>150<br>100 |  |
| 4950N 476CE<br>4950N 477CE<br>4950N 477CE<br>4950N 4790E<br>4950N 4790E<br>4950N 4800E | 1<br>1<br>2<br>12<br>1 | 8<br>23<br>19<br>48<br>8    | 2<br>3<br>6<br>5       | 42<br>81<br>28<br>73<br>131 | .1<br>.3<br>.1<br>.3<br>.2 | 12<br>23<br>7<br>36<br>2   | 11<br>17<br>4<br>19<br>8   | 313<br>859<br>109<br>1160<br>1252    | 5.72<br>5.31<br>4.32<br>5.35<br>4.54 | 128<br>107<br>1715<br>15716<br>497    | 5<br>5<br>6<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 7<br>26<br>6<br>57<br>23   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>3<br>2<br>3<br>3      | 86<br>78<br>97<br>98<br>26      | .28<br>1.19<br>.15<br>1.12<br>.61  | .156<br>.233<br>.038<br>.067<br>.058 | 3<br>10<br>4<br>13<br>27  | 33<br>38<br>22<br>50<br>2      | .10<br>.18<br>.07<br>.12<br>.20   | 7<br>27<br>9<br>31<br>16   | .01<br>.02<br>.02<br>.01<br>.01 | 10<br>13<br>5<br>8<br>5    | 1.34<br>1.81<br>1.27<br>1.19<br>.54  | .01<br>.01<br>.01<br>.03<br>.01 | .11<br>.17<br>.02<br>.03<br>.09 | 1<br>1<br>1<br>1       | 2<br>4<br>1<br>1<br>1 | 60<br>120<br>180<br>3200<br>880 |  |
| 4950N 461CE<br>4950N 4820E<br>4550N 4820E<br>4950N 4850Z<br>4950N 4850Z<br>4950N 4860Z | 1<br>1<br>1<br>1       | 11<br>58<br>38<br>49<br>58  | 5<br>5<br>12<br>6<br>6 | 60<br>96<br>78<br>85<br>92  | .2<br>.1<br>.1<br>.1       | 2<br>29<br>27<br>48<br>66  | 5<br>15<br>15<br>20<br>24  | 1495<br>1359<br>2948<br>1126<br>1188 | 2.52<br>4.87<br>5.31<br>4.38<br>4.55 | 29<br>38<br>15<br>10<br>11            | 5<br>5<br>5<br>5<br>5 | nd<br>Nd<br>Nd<br>Nd       | 1<br>1<br>1<br>1      | 18<br>17<br>15<br>23<br>24 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 10<br>118<br>120<br>122<br>136  | .55<br>.78<br>.59<br>1.01<br>1.18  | .080<br>.029<br>.041<br>.056<br>.044 | 39<br>14<br>13<br>9<br>8  | 1<br>38<br>40<br>49<br>61      | .16<br>.80<br>.68<br>1.21<br>1.29 | 23<br>73<br>75<br>34<br>45 | .01<br>.16<br>.12<br>.30<br>.31 | 9<br>9<br>11<br>6<br>8     | .58<br>2.56<br>3.27<br>3.59<br>3.77  | .02<br>.01<br>.02<br>.01<br>.01 | .11<br>.06<br>.05<br>.02<br>.02 | 1<br>1<br>1<br>1       | 1<br>1<br>1<br>2      | 270<br>180<br>130<br>230<br>150 |  |
| 4950X 48308<br>4950X 48908<br>4950X 48908<br>4950X 49008<br>4550N 49108<br>4950X 49208 | 1<br>2<br>3<br>3<br>4  | 65<br>66<br>57<br>64<br>72  | 5<br>28<br>4<br>5      | 31<br>84<br>88<br>70<br>94  | .2<br>.5<br>.3<br>.1<br>.4 | 71<br>79<br>53<br>48<br>54 | 22<br>18<br>20<br>15<br>19 | 939<br>373<br>1407<br>874<br>2262    | 5.27<br>5.35<br>5.40<br>5.23<br>5.80 | 14<br>7 <u>1</u><br>885<br>49<br>1163 | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1<br>1 | 41<br>18<br>23<br>21<br>27 | 1<br>1<br>1<br>1      | 3<br>39<br>2<br>2<br>2     | 2<br>2<br>2<br>2<br>2<br>2 | 144<br>183<br>149<br>185<br>148 | 1.25<br>.72<br>1.06<br>.94<br>1.12 | .047<br>.038<br>.051<br>.034<br>.064 | 12<br>13<br>10<br>6<br>14 | 82<br>121<br>65<br>74<br>74    | 1.64<br>.79<br>.86<br>.73<br>.68  | 73<br>25<br>35<br>39<br>36 | .28<br>.33<br>.25<br>.29<br>.19 | 6<br>8<br>6<br>4<br>6      | 3.82<br>5.56<br>3.49<br>4.01<br>4.05 | .02<br>.02<br>.01<br>.01<br>.01 | .04<br>.01<br>.03<br>.02<br>.02 | 2<br>26<br>1<br>1<br>1 | 1<br>1<br>1<br>1      | 170<br>300<br>450<br>220<br>540 |  |
| 4950H 49303<br>4950N 4940K<br>4950N 4950B<br>4950N 4950B<br>4950N 4950B<br>4950N 4970B | 2<br>1<br>1<br>3       | 57<br>63<br>57<br>62<br>47  | 10<br>4<br>7<br>4      | 71<br>71<br>69<br>61<br>49  | .3<br>.1<br>.1<br>.1<br>.2 | 44<br>46<br>43<br>36<br>38 | 17<br>19<br>19<br>13<br>12 | 1860<br>1882<br>842<br>440<br>1221   | 5.71<br>5.24<br>5.97<br>6.42<br>4.33 | 26<br>13<br>14<br>21<br>29            | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1<br>1 | 23<br>24<br>21<br>15<br>19 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>3<br>2<br>2      | 173<br>146<br>170<br>202<br>132 | .89<br>.68<br>.70<br>.78<br>1.12   | .035<br>.035<br>.028<br>.022<br>.024 | 7<br>8<br>7<br>5<br>9     | 76<br>66<br>75<br>81<br>49     | .71<br>.87<br>.79<br>.78<br>.42   | 39<br>42<br>32<br>20<br>27 | .30<br>.25<br>.32<br>.38<br>.23 | 5<br>7<br>6<br>2<br>4      | 4.74<br>4.36<br>4.12<br>4.08<br>2.45 | .01<br>.01<br>.02<br>.01<br>.02 | .03<br>.02<br>.02<br>.02<br>.02 | 1<br>1<br>2<br>1<br>1  | 1<br>1<br>1<br>1      | 200<br>190<br>180<br>160<br>280 |  |
| 4950N 4980E<br>4950N 4990E<br>4950N 5010E<br>4950N 5020E<br>4950N 5030E                | 1<br>1<br>1<br>2       | 57<br>69<br>67<br>41<br>44  | 6<br>5<br>9<br>7<br>8  | 63<br>64<br>58<br>49<br>42  | .1<br>.1<br>.1<br>.1       | 34<br>48<br>31<br>23<br>13 | 14<br>15<br>10<br>8<br>6   | 396<br>602<br>272<br>208<br>259      | 8.06<br>6.78<br>7.44<br>5.94<br>9.98 | 17<br>175<br>19<br>14<br>20           | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 11<br>19<br>11<br>15<br>10 | 1<br>1<br>1<br>1      | 3<br>2<br>2<br>2<br>2      | 2<br>2<br>3<br>2           | 235<br>189<br>225<br>212<br>306 | .42<br>.75<br>.30<br>.39<br>.22    | .020<br>.027<br>.026<br>.025<br>.025 | 5<br>5<br>4<br>3<br>4     | 103<br>76<br>96<br>61<br>108   | .63<br>.91<br>.52<br>.48<br>.23   | 22<br>38<br>22<br>20<br>10 | .34<br>.34<br>.30<br>.27<br>.48 | 2<br>9<br>2<br>5<br>2      | 5.36<br>3.76<br>4.13<br>2.44<br>2.54 | .03<br>.02<br>.03<br>.01<br>.01 | .01<br>.02<br>.03<br>.02<br>.02 | 1<br>1<br>1<br>2       | 1<br>2<br>1<br>2<br>5 | 190<br>250<br>180<br>170<br>240 |  |
| 4950K 50403<br>4950K 50503<br>4950N 50502<br>4950N 50602<br>4950N 50708<br>4950N 50802 | 1<br>1<br>1<br>1<br>1  | 50<br>47<br>24<br>60<br>72  | 8<br>5<br>3<br>7       | 42<br>45<br>34<br>49<br>54  | .1<br>.1<br>.1<br>.1       | 20<br>20<br>13<br>24<br>37 | 7<br>7<br>5<br>8<br>11     | 259<br>232<br>220<br>272<br>327      | 8.81<br>9.69<br>7.09<br>3.22<br>8.43 | 15<br>11<br>8<br>18<br>20             | 5<br>5<br>5<br>5<br>5 | HD<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1<br>1 | 11<br>11<br>9<br>10<br>10  | 1<br>1<br>1<br>1      | 3<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 278<br>278<br>257<br>285<br>274 | .35<br>.39<br>.16<br>.35<br>.42    | .021<br>.013<br>.012<br>.027<br>.020 | 3<br>2<br>3<br>3<br>3     | 105<br>102<br>55<br>109<br>117 | .37<br>.41<br>.12<br>.40<br>.56   | 13<br>12<br>8<br>12<br>15  | .52<br>.51<br>.50<br>.53<br>.51 | 2<br>2<br>2<br>2<br>2<br>2 | 3.11<br>2.48<br>.94<br>3.48<br>4.08  | .02<br>.01<br>.01<br>.03<br>.03 | .02<br>.02<br>.01<br>.01<br>.01 | 1<br>1<br>3<br>1       | 1<br>4<br>1<br>2<br>1 | 250<br>160<br>70<br>200<br>190  |  |
| 4950N 5090E<br>STD C/AU-S                                                              | 1<br>19                | 71<br>62                    | 7<br>37                | 54<br>132                   | .1<br>7.4                  | 37<br>70                   | 12<br>31                   | 332<br>1088                          | 8.71<br>4.13                         | 16<br>43                              | 5<br>20               | ND<br>7                    | 1<br>39               | 11<br>53                   | 1<br>19               | 2<br>18                    | 2<br>18                    | 287<br>50                       | .44<br>.49                         | .017<br>.089                         | 3<br>41                   | 123<br>60                      | .65<br>.92                        | 16<br>180                  | .56<br>.07                      | 2<br>32                    | 4.77<br>1.75                         | .03<br>.07                      | .92<br>.14                      | 1<br>12                | 1<br>49               | 100<br>1400                     |  |

~

Page 10

ť

ŧ

.

ť

(

1

f

(

(

(

(

| SAMPLE                                                                                 | HO<br>PPH             | Cu<br>PPN                       | PD<br>PPK                  | ZC<br>PPM                   | λg<br>PPN                  | NÍ<br>PPH                   | CD<br>PPN                   | nn<br>195                        | Fe<br>L                                | AS<br>PPM                | U<br>PPK                   | du<br>PPM                  | Th<br>PPM             | ST<br>PPM                 | Cd<br>PPH             | SD<br>PPM                  | Bi<br>PPM                  | V<br>PPM                        | Ca<br>ł                           | P<br>\$                              | La<br>PPM             | CT<br>PPM                       | Ng<br>t                             | Ba<br>PPK                  | Ti<br>ł                          | B<br>PPM                   | XI<br>X                              | Na<br>R                         | ł                               | ¥<br>PPH              | AU*<br>PP3            | Hg<br>?PB                       |
|----------------------------------------------------------------------------------------|-----------------------|---------------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|-----------------------------|----------------------------------|----------------------------------------|--------------------------|----------------------------|----------------------------|-----------------------|---------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-----------------------------------|--------------------------------------|-----------------------|---------------------------------|-------------------------------------|----------------------------|----------------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|---------------------------------|
| 495CN 5100E<br>4950N 5110E<br>4950N 5120E<br>4950N 5130E<br>4950N 5140E                | 1<br>1<br>2<br>1<br>1 | 35<br>75<br>46<br>56<br>52      | 5<br>4<br>3<br>7           | 37<br>48<br>43<br>30<br>63  | .1<br>.2<br>.1<br>.1       | 15<br>29<br>13<br>14<br>25  | 13<br>10<br>8<br>7<br>11    | 637<br>254<br>423<br>215<br>482  | 3.55<br>8.45<br>9.02<br>10.23<br>8.75  | 8<br>18<br>16<br>33<br>3 | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 14<br>9<br>15<br>9<br>12  | 1<br>1<br>1<br>1      | 2<br>4<br>2<br>2<br>3      | 2<br>2<br>2<br>2<br>2<br>2 | 159<br>262<br>259<br>210<br>252 | .46<br>.34<br>.29<br>.17<br>.31   | .039<br>.027<br>.024<br>.032<br>.023 | 3<br>3<br>2<br>2<br>5 | 74<br>124<br>102<br>63<br>89    | .34<br>.49<br>.32<br>.30<br>.60     | 12<br>14<br>14<br>10<br>25 | .37<br>.49<br>.44<br>.14<br>.36  | 7<br>4<br>6<br>10<br>6     | 2.16<br>4.45<br>2.42<br>2.18<br>3.61 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.02 | 1<br>4<br>2<br>1<br>1 | 1<br>1<br>1<br>7      | 350<br>160<br>170<br>300<br>400 |
| 4950N 5150R<br>4950N 51502<br>4950N 5170E<br>4950N 5180E<br>4950N 5190E                | 1<br>1<br>1<br>1      | 157<br>109<br>183<br>120<br>95  | 2<br>2<br>2<br>2<br>2<br>2 | 69<br>61<br>93<br>71<br>47  | .9<br>.1<br>.1<br>.1<br>.1 | 74<br>46<br>98<br>62<br>45  | 16<br>15<br>37<br>18<br>12  | 371<br>277<br>1750<br>399<br>300 | 6.95<br>10.28<br>3.76<br>9.34<br>9.31  | 12<br>4<br>3<br>2<br>2   | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 15<br>9<br>21<br>8        | 1<br>1<br>2<br>2<br>1 | 3<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 223<br>321<br>272<br>303<br>244 | .89<br>.48<br>1.28<br>.36<br>.48  | .064<br>.022<br>.052<br>.023<br>.026 | 9<br>5<br>3<br>5      | 78<br>159<br>103<br>136<br>163  | 1.19<br>.71<br>1.78<br>1.09<br>.85  | 59<br>20<br>61<br>20<br>10 | .45<br>.52<br>.53<br>.61<br>.60  | 4<br>2<br>5<br>2<br>2      | 4.59<br>6.47<br>4.97<br>6.63<br>6.55 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.02<br>.02<br>.01<br>.02 | 2<br>1<br>1<br>1      | 1<br>2<br>1<br>3<br>1 | 330<br>100<br>200<br>160<br>260 |
| 495CN 5200E<br>4950N 5210E<br>495CN 5220E<br>4950N 5220E<br>4950N 5220E<br>4950N 524CE | 1<br>1<br>1<br>1      | 84<br>90<br>117<br>79<br>91     | 2<br>3<br>5<br>2<br>4      | 42<br>49<br>58<br>61<br>63  | .4<br>.1<br>.1<br>.3<br>.2 | 24<br>37<br>37<br>69<br>50  | 7<br>11<br>11<br>15<br>17   | 193<br>282<br>269<br>333<br>408  | 10.55<br>7.55<br>11.47<br>8.59<br>9.02 | 12<br>14<br>9<br>4<br>9  | 5<br>5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 7<br>11<br>9<br>25<br>13  | 1<br>1<br>1<br>1      | 2<br>3<br>2<br>4<br>2      | 2<br>2<br>2<br>2<br>3      | 255<br>263<br>312<br>244<br>263 | .24<br>.62<br>.51<br>.70<br>.76   | .037<br>.022<br>.029<br>.061<br>.044 | 2<br>3<br>4<br>3<br>5 | 175<br>128<br>136<br>100<br>115 | .30<br>.79<br>.72<br>1.57<br>1.07   | 10<br>9<br>15<br>12        | .53<br>.53<br>.71<br>.56<br>.51  | 2<br>2<br>6<br>5           | 6.18<br>3.98<br>4.92<br>2.46<br>4.59 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.04<br>.01 | 3<br>1<br>1<br>1<br>2 | 1<br>4<br>1<br>4      | 310<br>220<br>140<br>360<br>210 |
| 4950N 52508<br>4950N 52602<br>4950N 52708<br>4950N 5280E<br>4950N 5280E<br>4950R 52908 | 1<br>1<br>1<br>1      | 93<br>93<br>92<br>30<br>116     | 3<br>4<br>2<br>2<br>2      | 48<br>68<br>70<br>43<br>71  | .1<br>.1<br>.1<br>.1       | 31<br>40<br>19<br>14<br>65  | 9<br>14<br>13<br>5<br>20    | 197<br>331<br>333<br>127<br>349  | 8.46<br>9.35<br>9.07<br>2.93<br>6.93   | 6<br>16<br>12<br>4<br>2  | 5<br>5<br>5<br>5<br>5      | U<br>D<br>HD<br>ND<br>KD   | 1<br>1<br>1<br>1      | 8<br>10<br>10<br>23<br>12 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 300<br>284<br>271<br>88<br>267  | .47<br>.50<br>.51<br>.73<br>.62   | .018<br>.031<br>.028<br>.037<br>.030 | 3<br>5<br>4<br>2<br>4 | 155<br>129<br>118<br>38<br>145  | .70<br>.57<br>.65<br>.25<br>.98     | 9<br>16<br>16<br>6<br>12   | .65<br>.52<br>.48<br>.17<br>.62  | 4<br>3<br>5<br>8<br>2      | 5.51<br>5.18<br>4.49<br>1.30<br>5.48 | .01<br>.01<br>.01<br>.02<br>.01 | .01<br>.01<br>.01<br>.03<br>.02 | 3<br>1<br>1<br>1<br>1 | 4<br>1<br>1<br>1      | 160<br>150<br>180<br>160<br>260 |
| 4950N 530CE<br>4550N 531CZ<br>4950N 532CE<br>4950N 5330Z<br>4950N 5340E                | 1<br>1<br>1<br>1<br>1 | 122<br>105<br>64<br>50<br>98    | 2<br>2<br>4<br>5<br>2      | 74<br>82<br>51<br>65<br>73  | .1<br>.4<br>.1<br>.1       | 72<br>76<br>19<br>21<br>55  | 22<br>27<br>7<br>11<br>28   | 387<br>416<br>161<br>257<br>434  | 9.38<br>6.05<br>12.72<br>19.18<br>7.53 | 4<br>5<br>10<br>7<br>9   | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 10<br>18<br>6<br>20       | 1<br>1<br>1<br>3<br>1 | 2<br>3<br>3<br>4<br>2      | 3<br>2<br>2<br>2<br>2<br>2 | 334<br>226<br>454<br>518<br>258 | .60<br>1.07<br>.37<br>.64<br>.75  | .022<br>.027<br>.020<br>.016<br>.032 | 3<br>5<br>3<br>1<br>4 | 166<br>100<br>172<br>121<br>126 | .99<br>1.23<br>.40<br>.74<br>1.00   | 9<br>12<br>5<br>6<br>12    | .67<br>.55<br>.75<br>1.10<br>.60 | 2<br>6<br>2<br>2<br>2      | 6.51<br>4.35<br>3.62<br>3.11<br>5.06 | .02<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.02 | 3<br>3<br>1<br>1<br>2 | 1<br>2<br>1<br>1<br>1 | 160<br>170<br>180<br>200<br>170 |
| 4950N 5350K<br>4950N 5360Z<br>4950N 5270E<br>4950N 5380Z<br>4950N 5380Z<br>4950K 5390B | 1<br>1<br>1<br>1<br>1 | 129<br>104<br>157<br>149<br>146 | 6<br>2<br>2<br>2<br>5      | 74<br>58<br>57<br>63<br>62  | .1<br>.2<br>.1<br>.1       | 51<br>55<br>104<br>76<br>71 | 13<br>13<br>21<br>15        | 301<br>241<br>341<br>310<br>273  | 13.11<br>8.82<br>8.34<br>10.75<br>5.00 | 4<br>2<br>9<br>4<br>11   | 5<br>5<br>5<br>5           | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 6<br>7<br>10<br>7<br>16   | 2<br>1<br>1<br>1<br>1 | 5<br>3<br>3<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 495<br>251<br>300<br>380<br>219 | .33<br>.45<br>.65<br>.44<br>.83   | .016<br>.021<br>.015<br>.016<br>.034 | 2<br>3<br>2<br>2<br>3 | 170<br>178<br>219<br>228<br>121 | .69<br>.74<br>1.30<br>.95<br>1.23   | 7<br>8<br>10<br>10<br>13   | .81<br>.54<br>.61<br>.71<br>.55  | 2<br>2<br>2<br>2<br>2<br>2 | 7.20<br>7.50<br>7.26<br>8.00<br>4.70 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.01<br>.01<br>.01<br>.02 | 2<br>1<br>1<br>3<br>1 | 1<br>1<br>2<br>1<br>1 | 140<br>250<br>90<br>180<br>150  |
| 4950N 5400E<br>4950N 5410E<br>4950N 5420E<br>4950N 5420E<br>4950N 5430E<br>4950N 5440E | 1<br>1<br>1<br>1      | 142<br>142<br>89<br>126<br>121  | 2<br>4<br>4<br>3           | 61<br>65<br>66<br>97<br>110 | .2<br>.1<br>.2<br>.1<br>.2 | 69<br>87<br>46<br>101<br>75 | 16<br>17<br>13<br>32<br>199 | 297<br>228<br>407<br>479<br>2773 | 9.17<br>3.60<br>5.50<br>6.32<br>7.35   | 8<br>1<br>3<br>5<br>4    | 5<br>5<br>5<br>5<br>5      | KD<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1<br>1 | 8<br>15<br>15<br>18<br>29 | 1<br>1<br>1<br>1<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>3      | 291<br>284<br>197<br>215<br>260 | .57<br>.66<br>.70<br>1.07<br>1.18 | .021<br>.050<br>.029<br>.033<br>.033 | 2<br>6<br>3<br>6<br>8 | 179<br>119<br>111<br>107<br>96  | 1.09<br>1.29<br>.66<br>1.62<br>1.02 | 8<br>16<br>11<br>14<br>11  | .55<br>.54<br>.41<br>.66<br>.54  | 2<br>3<br>3<br>8<br>8      | 6.93<br>5.69<br>3.93<br>5.39<br>6.65 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.02<br>.03 | 1<br>1<br>1<br>1<br>1 | 5<br>1<br>1<br>1      | 130<br>160<br>170<br>150<br>240 |
| 49508 54508<br>STD C/AU-S                                                              | 1<br>19               | 98<br>62                        | 7<br>! 40                  | 69<br>132                   | .1<br>1.5                  | 54<br>69                    | 20<br>31                    | 411<br>1039                      | 14.11                                  | 11<br>44                 | 5<br>19                    | ND<br>7                    | 1<br>40               | 8<br>53                   | 2<br>19               | 5<br>20                    | 2<br>22                    | 435<br>60                       | .55<br>.49                        | .020<br>.089                         | 3<br>41               | 175<br>60                       | .75<br>.96                          | 8<br>180                   | .83<br>.07                       | 2<br>36                    | 6.86<br>1.75                         | .01<br>.07                      | .01<br>.15                      | 2<br>10               | 1<br>52               | 160<br>1400                     |

Page 11 (

ŧ

t

ŧ

1

t

t

÷.

- 1

f

| SAMPLE#                                                                                | No<br>PPM             | Cu<br>PPM                     | PD<br>PPN                          | Za<br>PPN                  | Ag<br>PPM                   | NÍ<br>PPH                  | Co<br>PPH                  | Nn<br>PPN                       | Fe<br>t                                | As<br>PPM                 | U<br>PPM                   | Au<br>PPH                  | Th<br>PPH             | ST<br>PPM                 | Cd<br>PPN             | SD<br>PPM                  | Bi<br>PPM                  | V<br>PPM                        | Ca<br>ł                           | P<br>Ł                               | La<br>PPH              | Cr<br>PPH                      | Kg<br>t                           | Ba<br>PPN                  | Ti<br>ł                         | B<br>PPM                   | Al<br>S                              | Na<br>ł                         | K<br>Ş                          | ¥<br>PPH              | Au*<br>PPB              | Hg<br>PPB                       |  |
|----------------------------------------------------------------------------------------|-----------------------|-------------------------------|------------------------------------|----------------------------|-----------------------------|----------------------------|----------------------------|---------------------------------|----------------------------------------|---------------------------|----------------------------|----------------------------|-----------------------|---------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-----------------------------------|--------------------------------------|------------------------|--------------------------------|-----------------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-------------------------|---------------------------------|--|
| 4950N 5460E<br>4950N 54708<br>4950N 5480E<br>4950N 5480E<br>4950N 5490E<br>4950N 5500E | 1<br>1<br>1<br>1      | 230<br>116<br>74<br>90<br>128 | 9<br>13<br>10<br>10<br>9           | 71<br>70<br>71<br>56<br>71 | .2<br>.1<br>.1<br>.1<br>.2  | 90<br>78<br>76<br>47<br>76 | 29<br>17<br>15<br>11<br>17 | 937<br>354<br>299<br>239<br>332 | 7.02<br>10.22<br>9.41<br>10.66<br>8.70 | 3<br>8<br>13<br>9<br>8    | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 20<br>9<br>11<br>8<br>8   | 1<br>2<br>2<br>2<br>2 | 2<br>5<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 215<br>343<br>340<br>329<br>269 | 1.17<br>.61<br>.59<br>.52<br>.80  | .039<br>.020<br>.019<br>.020<br>.017 | 6<br>4<br>3<br>4       | 73<br>184<br>131<br>178<br>146 | 1.74<br>.89<br>.94<br>.61<br>1.08 | 14<br>10<br>10<br>7<br>7   | .52<br>.69<br>.68<br>.70<br>.53 | 2<br>2<br>2<br>2<br>2<br>2 | 5.75<br>6.68<br>4.48<br>6.32<br>7.21 | .02<br>.01<br>.02<br>.02<br>.01 | .03<br>.02<br>.01<br>.01<br>.01 | 1<br>4<br>2<br>3<br>3 | 1<br>7<br>4<br>4<br>1   | 220<br>120<br>130<br>200<br>150 |  |
| 4900N 4500Z<br>4900N 4510E<br>4900N 4520E<br>4900N 4520E<br>4900N 4530E<br>4900N 4540E | I<br>1<br>1<br>1<br>2 | 60<br>37<br>176<br>84<br>36   | 12<br>B<br>11<br>5<br>13           | 48<br>52<br>69<br>84<br>46 | 4.9<br>.1<br>.3<br>.3<br>.1 | 22<br>12<br>73<br>37<br>13 | 7<br>5<br>23<br>12<br>7    | 217<br>160<br>776<br>420<br>245 | 9.72<br>7.09<br>6.06<br>2.85<br>10.68  | 12<br>9<br>6<br>3<br>9    | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | I<br>I<br>I<br>1      | 9<br>16<br>21<br>42<br>9  | 2<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 306<br>232<br>194<br>89<br>369  | .37<br>.34<br>1.02<br>.88<br>.43  | .022<br>.025<br>.039<br>.032<br>.018 | 3<br>2<br>5<br>2<br>2  | 125<br>82<br>70<br>33<br>79    | .39<br>.29<br>1.39<br>.71<br>.31  | 10<br>9<br>14<br>19<br>8   | .63<br>.49<br>.47<br>.22<br>.69 | 2<br>2<br>2<br>4<br>2      | 4.72<br>2.82<br>4.51<br>1.86<br>1.83 | .01<br>.02<br>.02<br>.02<br>.01 | .03<br>.03<br>.03<br>.03<br>.03 | 2<br>1<br>1<br>1<br>1 | 1<br>4<br>5<br>1        | 210<br>250<br>230<br>180<br>130 |  |
| 4900N 455CE<br>4900N 4560X<br>4900N 45702<br>4900N 45805<br>4900N 45805<br>4500N 45902 | 1<br>1<br>1<br>1      | 26<br>44<br>14<br>56<br>70    | 9<br>9<br>8<br>9                   | 36<br>49<br>27<br>52<br>52 | .1<br>.1<br>.1<br>.1        | 12<br>16<br>4<br>21<br>29  | 5<br>7<br>2<br>8<br>10     | 161<br>184<br>120<br>251<br>261 | 4.44<br>7.30<br>3.51<br>8.04<br>6.68   | 6<br>12<br>2<br>13<br>11  | 5<br>- 5<br>5<br>5<br>5    | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 12<br>11<br>10<br>8<br>11 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 290<br>341<br>328<br>308<br>227 | .39<br>.53<br>.25<br>.40<br>.62   | .017<br>.018<br>.008<br>.017<br>.021 | 3<br>4<br>3<br>3<br>4  | 59<br>79<br>58<br>94<br>87     | .32<br>.54<br>.11<br>.52<br>.71   | 11<br>11<br>12<br>10<br>12 | .64<br>.59<br>.64<br>.54<br>.45 | 2<br>4<br>7<br>2<br>2      | 1.65<br>2.88<br>1.01<br>3.52<br>4.57 | .01<br>.01<br>.03<br>.02<br>.01 | .02<br>.02<br>.02<br>.02<br>.02 | 1<br>1<br>1<br>1      | 1<br>12<br>1<br>1<br>1  | 160<br>210<br>90<br>160<br>200  |  |
| 4900N 460CE<br>4900N 4610Z<br>4900N 4620B<br>4900N 4630E<br>4900N 4640E                | 1<br>1<br>2<br>3      | 23<br>16<br>72<br>54<br>29    | 10<br>7<br>11<br><del>3</del><br>7 | 37<br>41<br>78<br>55<br>38 | .1<br>.1<br>.2<br>.1<br>.1  | 8<br>5<br>67<br>22<br>17   | 4<br>2<br>15<br>9<br>6     | 150<br>100<br>221<br>242<br>147 | 5.14<br>3.63<br>4.46<br>10.36<br>7.56  | 5<br>6<br>17<br>14<br>15  | 5<br>5<br>5<br>5           | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 11<br>18<br>12<br>11      | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>2           | 2<br>2<br>2<br>2<br>2      | 290<br>298<br>184<br>384<br>291 | .26<br>.28<br>.56<br>.23<br>.21   | .013<br>.013<br>.026<br>.019<br>.019 | 3<br>3<br>5<br>3<br>2  | 48<br>53<br>111<br>82<br>69    | .16<br>.16<br>1.30<br>.32<br>.30  | 11<br>12<br>24<br>11<br>11 | .59<br>.58<br>.39<br>.58<br>.37 | 2<br>11<br>5<br>4<br>3     | 1.27<br>.94<br>4.66<br>1.51<br>1.30  | .01<br>.01<br>.02<br>.01<br>.02 | .02<br>.02<br>.02<br>.02<br>.02 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>2<br>1   | 150<br>120<br>170<br>100<br>130 |  |
| 4900N 1650E<br>4900N 46603<br>4900N 46732<br>4900N 46732<br>4900N 46803<br>4900N 47502 | 3<br>1<br>1<br>2<br>2 | 33<br>22<br>17<br>20<br>83    | 7<br>2<br>8<br>6<br>3              | 60<br>60<br>32<br>34<br>88 | .1<br>.5<br>.1<br>.1<br>.2  | 25<br>8<br>5<br>9<br>28    | 6<br>1<br>2<br>2<br>11     | 117<br>111<br>160<br>221<br>210 | 5.91<br>.25<br>3.12<br>2.81<br>7.45    | 17<br>2<br>3<br>5<br>15   | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 11<br>50<br>14<br>28<br>5 | 1<br>1<br>1<br>1<br>1 | 3<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 193<br>9<br>299<br>253<br>232   | .25<br>3.54<br>.59<br>1.76<br>.20 | .025<br>.045<br>.011<br>.013<br>.115 | 2<br>2<br>3<br>4<br>7  | 96<br>5<br>57<br>50<br>112     | .32<br>.10<br>.10<br>.11<br>1.54  | 8<br>9<br>13<br>14<br>10   | .23<br>.01<br>.63<br>.53<br>.03 | 2<br>10<br>5<br>4<br>4     | 1.53<br>.36<br>1.05<br>1.16<br>5.88  | .03<br>.03<br>.02<br>.03<br>.01 | .04<br>.02<br>.01<br>.01<br>.02 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>2        | 200<br>180<br>120<br>170<br>190 |  |
| 4900N 4760K<br>4900N 47702<br>4900N 4780K<br>4900N 4780E<br>4900N 4790E<br>4900N 4800K | 2<br>1<br>3<br>2<br>1 | 87<br>19<br>26<br>22<br>11    | 8<br>7<br>5<br>5<br>2              | 96<br>46<br>41<br>38<br>44 | .2<br>.2<br>.1<br>.1        | 30<br>7<br>20<br>6<br>3    | 13<br>2<br>5<br>4<br>2     | 265<br>128<br>166<br>136<br>127 | 7.87<br>2.10<br>5.36<br>7.38<br>3.49   | 16<br>4<br>300<br>14<br>6 | 5<br>5<br>5<br>5<br>5<br>5 | NC<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 6<br>38<br>25<br>10<br>5  | 1<br>1<br>1<br>1      | 2<br>3<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 241<br>153<br>140<br>294<br>118 | .07<br>1.00<br>.14<br>.21<br>.07  | .110<br>.034<br>.013<br>.018<br>.010 | 5<br>3<br>5<br>3<br>6  | 116<br>38<br>35<br>65<br>17    | 2.07<br>.30<br>.06<br>.13<br>.12  | 11<br>16<br>5<br>14<br>6   | .03<br>.31<br>.08<br>.48<br>.09 | 8<br>4<br>3<br>2<br>4      | 5.59<br>1.01<br>.99<br>1.43<br>I.31  | .01<br>.03<br>.01<br>.01<br>.03 | .03<br>.02<br>.03<br>.01<br>.02 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>2        | 160<br>230<br>90<br>80<br>50    |  |
| 4900N 4810Z<br>4900N 4829E<br>4900N 4830E<br>4900N 4830E<br>4900N 4840E<br>4500N 4850E | 1<br>1<br>1<br>1      | 7<br>19<br>14<br>21<br>20     | 2<br>6<br>5<br>2<br>6              | 47<br>47<br>43<br>50<br>45 | .1<br>.1<br>.1<br>.2<br>.1  | 1<br>8<br>4<br>9<br>8      | 1<br>4<br>3<br>3<br>4      | 115<br>188<br>154<br>187<br>170 | 2.30<br>5.90<br>5.77<br>5.12<br>5.61   | 2<br>7<br>5<br>10<br>6    | 5<br>5<br>5<br>5<br>5<br>5 | HD<br>ND<br>ND<br>ND       | 1<br>1<br>2<br>1<br>1 | 5<br>5<br>5<br>13<br>11   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>3<br>2           | 54<br>127<br>125<br>113<br>144  | .07<br>.12<br>.07<br>.25<br>.20   | .012<br>.017<br>.018<br>.034<br>.023 | 5<br>9<br>11<br>5<br>5 | 4<br>34<br>26<br>46<br>35      | .09<br>.34<br>.23<br>.25<br>.23   | 4<br>15<br>10<br>11<br>9   | .02<br>.06<br>.04<br>.11<br>.14 | 5<br>4<br>3<br>4<br>5      | .98<br>2.38<br>2.35<br>2.68<br>2.04  | .01<br>.01<br>.01<br>.01<br>.02 | .02<br>.01<br>.03<br>.04<br>.03 | 1<br>1<br>1<br>1      | 1<br>1<br>3<br>10<br>11 | 80<br>70<br>60<br>160<br>130    |  |
| 4900N 4860E<br>STD C/AU-S                                                              | 1<br>19               | 46<br>62                      | 11<br>37                           | 10 <b>6</b><br>132         | .2                          | 34<br>70                   | 29<br>31                   | 10872<br>1043                   | 5.81<br>4.07                           | 23<br>39                  | 5<br>21                    | ND<br>7                    | 1<br>39               | 33<br>53                  | 1<br>19               | 2<br>19                    | 2<br>20                    | 109<br>60                       | 1.26                              | .069<br>.088                         | 10<br>41               | 41<br>60                       | .72<br>.95                        | 121<br>179                 | .09<br>.07                      | 7<br>33                    | 2.62<br>1.79                         | .01<br>.07                      | .05<br>.15                      | 1<br>10               | 2<br>52                 | 260<br>1300                     |  |

Page 12 ·

Ċ

(

(

t

(

(

ť

(

(

t

1

۰.

| SAMPLE‡                                                                                | HO<br>PPH             | Cu<br>PPM                  | Pb<br>PPM               | Zn<br>PPM                  | Ag<br>?PM                  | NI<br>PPM                  | Co<br>?PM                  | Ma<br>PPM                         | 7e<br>1                                 | A5<br>PPH                  | U<br>PPM              | Au<br>PPM                  | Th<br>PPN             | ST<br>PPM                  | Cd<br>PPH             | SD<br>PPM             | Bİ<br>PPM                  | V<br>2PM                        | Ca<br>ł                         | P                                    | La<br>PPM              | Cr<br>PPM                      | Hg<br>t                           | Ba<br>PPM                  | Ti<br>t                          | B<br>PPK               | A1<br>3                              | Na<br>Ł                         | K<br>Ł                          | ¥<br>PPN              | Au*<br>2P3            | Hg<br>PPB                       |
|----------------------------------------------------------------------------------------|-----------------------|----------------------------|-------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|-----------------------|----------------------------|---------------------------------|---------------------------------|--------------------------------------|------------------------|--------------------------------|-----------------------------------|----------------------------|----------------------------------|------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|---------------------------------|
| 4900N 4370E<br>4900N 4880E<br>4900N 489CE<br>4900N 490CE<br>4900N 490CE<br>490CN 491CE | 1<br>5<br>1<br>1<br>1 | 11<br>69<br>42<br>63<br>16 | 6<br>7<br>8<br>7<br>10  | 75<br>45<br>55<br>59<br>42 | .1<br>.1<br>.1<br>.1       | 5<br>27<br>23<br>33<br>7   | 10<br>22<br>8<br>13<br>4   | 2469<br>424<br>312<br>446<br>205  | 4.45<br>6.08<br>5.34<br>5.41<br>5.46    | 11<br>41<br>16<br>14<br>5  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 10<br>6<br>13<br>12<br>12  | 1<br>1<br>1<br>1      | 2<br>4<br>3<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 32<br>131<br>172<br>158<br>205  | .13<br>.15<br>.42<br>.56<br>.38 | .035<br>.029<br>.040<br>.042<br>.015 | 26<br>2<br>4<br>5<br>3 | 10<br>53<br>54<br>63<br>37     | .28<br>1.06<br>.41<br>.55<br>.15  | 48<br>26<br>16<br>17<br>14 | .01<br>.01<br>.29<br>.33<br>.35  | 10<br>9<br>2<br>2<br>3 | 1.46<br>3.74<br>2.84<br>4.07<br>1.25 | .01<br>.01<br>.01<br>.01<br>.01 | .10<br>.06<br>.01<br>.02<br>.01 | 1<br>2<br>3<br>1      | 1<br>2<br>1<br>1<br>4 | 130<br>210<br>250<br>250<br>80  |
| 4900N 4920E<br>4500N 4930E<br>4900N 4940E<br>4900N 4950E<br>4900N 4960E                | 2<br>3<br>1<br>1<br>1 | 40<br>57<br>45<br>54<br>60 | 9<br>11<br>9<br>9<br>8  | 61<br>91<br>78<br>62<br>64 | .1<br>.3<br>.1<br>.1       | 35<br>36<br>48<br>35<br>39 | 13<br>16<br>15<br>11<br>14 | 2550<br>3735<br>992<br>458<br>577 | 6.18<br>8.26<br>5.53<br>5.60<br>5.90    | 17<br>28<br>11<br>17<br>18 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 16<br>15<br>18<br>14<br>14 | 1<br>1<br>1<br>1      | 3<br>5<br>2<br>3      | 2<br>2<br>2<br>2<br>2<br>2 | 230<br>183<br>156<br>159        | .59<br>.65<br>.67<br>.38<br>.37 | .024<br>.948<br>.030<br>.024<br>.022 | 7<br>9<br>7<br>4<br>4  | 75<br>65<br>88<br>75<br>81     | .46<br>.42<br>.66<br>.73<br>.81   | 23<br>36<br>21<br>24<br>25 | .36<br>.23<br>.33<br>.29<br>.30  | 7<br>10<br>3<br>2<br>2 | 3.28<br>4.07<br>5.56<br>5.DB<br>5.51 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.02<br>.02<br>.02<br>.02 | 1<br>1<br>2<br>2<br>3 | 1<br>1<br>2<br>1      | 200<br>230<br>250<br>26D<br>240 |
| 49CCN 497CE<br>4900N 498CE<br>4900N 4990E<br>4900N 500C3<br>4900N 5010E                | 1<br>2<br>5<br>2<br>3 | 52<br>55<br>55<br>61<br>72 | 9<br>7<br>12<br>12<br>8 | 69<br>54<br>65<br>72<br>67 | .2<br>.1<br>.1<br>.1<br>.1 | 32<br>21<br>37<br>41<br>37 | 12<br>7<br>14<br>18<br>15  | 560<br>229<br>647<br>1135<br>624  | 6.52<br>7.67<br>7.64<br>8.43<br>7.18    | 22<br>29<br>44<br>49<br>34 | 5<br>5<br>5<br>5<br>5 | HD<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 15<br>12<br>13<br>13<br>10 | I<br>1<br>1<br>1<br>1 | 4<br>5<br>6<br>4      | 2<br>2<br>3<br>2<br>2      | 186<br>203<br>214<br>208<br>196 | .48<br>.29<br>.48<br>.34<br>.42 | .026<br>.020<br>.039<br>.030<br>.027 | 5<br>3<br>5<br>8<br>5  | 82<br>84<br>85<br>96<br>81     | .62<br>.50<br>.43<br>.68<br>.67   | 20<br>17<br>16<br>32<br>27 | .31<br>.31<br>.30<br>.26<br>.23  | 2<br>2<br>4<br>9<br>10 | 4.29<br>3.99<br>3.72<br>5.79<br>4.54 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.01<br>.02<br>.02<br>.02 | 3<br>I<br>1<br>3<br>3 | 1<br>1<br>1<br>3<br>1 | 390<br>620<br>280<br>270<br>300 |
| 4900N 50202<br>490CH 50302<br>490CH 5040E<br>490CN 5050E<br>490CN 5060K                | 1<br>1<br>3<br>1      | 43<br>64<br>74<br>42<br>46 | 7<br>9<br>5<br>5<br>10  | 60<br>61<br>57<br>44<br>52 | .1<br>.1<br>.1<br>.1       | 16<br>25<br>38<br>22<br>22 | 39<br>13<br>19<br>7<br>10  | 1730<br>374<br>616<br>189<br>349  | 7.70<br>7.47<br>9.03<br>6.72<br>9.01    | 13<br>15<br>59<br>11<br>19 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 14<br>10<br>8<br>14<br>11  | 1<br>1<br>1<br>1      | 4<br>3<br>4<br>2<br>4 | 2<br>2<br>2<br>2<br>3      | 238<br>241<br>212<br>253<br>284 | .37<br>.47<br>.19<br>.51<br>.39 | .039<br>.034<br>.029<br>.020<br>.021 | 5<br>5<br>2<br>4<br>4  | 66<br>87<br>99<br>90<br>96     | .31<br>.57<br>.55<br>.58<br>.51   | 21<br>17<br>36<br>13<br>14 | .28<br>.37<br>.23<br>.50<br>.48  | 4<br>6<br>2<br>5<br>3  | 3.12<br>4.00<br>4.11<br>2.52<br>2.74 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.01<br>.01<br>.01 | 2<br>1<br>2<br>1<br>1 | 1<br>1<br>1<br>1      | 210<br>320<br>250<br>450<br>220 |
| 4900N 5070E<br>4900N 5080B<br>4900N 50902<br>4900N 5100E<br>4900N 5110E                | 1<br>1<br>1<br>1      | 46<br>63<br>51<br>76<br>75 | 6<br>8<br>7<br>7<br>8   | 46<br>55<br>57<br>60<br>61 | .1<br>.2<br>.1<br>.1       | 23<br>31<br>27<br>42<br>42 | 8<br>9<br>10<br>14<br>15   | 238<br>419<br>371<br>455<br>476   | 9.00<br>6.93<br>8.32<br>6.95<br>7.11    | 13<br>11<br>16<br>14<br>15 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 11<br>14<br>13<br>13<br>12 | 1<br>1<br>1<br>1      | 2<br>2<br>4<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 303<br>206<br>265<br>202<br>207 | .36<br>.48<br>.45<br>.62<br>.57 | .019<br>.023<br>.025<br>.020<br>.022 | 3<br>2<br>3<br>3<br>3  | 96<br>105<br>95<br>117<br>121  | .46<br>.61<br>.48<br>.83<br>.84   | 12<br>14<br>13<br>16<br>17 | .52<br>.44<br>.49<br>.47<br>.48  | 2<br>4<br>9<br>2<br>2  | 2.75<br>3.71<br>2.72<br>4.52<br>4.96 | .01<br>.02<br>.01<br>.02<br>.01 | .02<br>.03<br>.02<br>.02<br>.02 | 1<br>1<br>2<br>1<br>1 | 1<br>4<br>1<br>3      | 190<br>380<br>250<br>260<br>210 |
| 4900N 5120E<br>4900N 5130E<br>4900N 5140E<br>4900N 5150E<br>4900N 5160E                | 1<br>1<br>1<br>1<br>1 | 58<br>33<br>70<br>58<br>33 | 5<br>6<br>9<br>8<br>9   | 55<br>47<br>55<br>51<br>41 | .2<br>.1<br>.1<br>.1<br>.1 | 23<br>1B<br>38<br>34<br>9  | 8<br>6<br>13<br>11<br>5    | 219<br>288<br>286<br>237<br>178   | 9.10<br>4.63<br>9.12<br>4.77<br>9.51    | 10<br>7<br>14<br>6         | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1<br>1 | 9<br>14<br>11<br>16<br>18  | 1<br>1<br>1<br>1      | 3<br>2<br>4<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 247<br>193<br>294<br>176<br>362 | .34<br>.35<br>.38<br>.47<br>.19 | .027<br>.029<br>.018<br>.031<br>.016 | 6<br>3<br>4<br>4<br>4  | 99<br>62<br>127<br>85<br>70    | .50<br>.36<br>.61<br>.54<br>.19   | 12<br>15<br>24<br>22<br>31 | .54<br>.38<br>.54<br>.40<br>.60  | 3<br>3<br>9<br>12<br>2 | 4.24<br>2.01<br>4.05<br>3.44<br>2.25 | .01<br>.02<br>.02<br>.01<br>.01 | .02<br>.03<br>.01<br>.02<br>.03 | 1<br>1<br>3<br>1<br>1 | 1<br>1<br>1<br>1      | 480<br>210<br>190<br>230<br>180 |
| 4900N 5170E<br>4900N 5130E<br>4900N 5130E<br>4900N 5200E<br>4900N 5210E                | 1<br>1<br>1<br>1<br>1 | 32<br>78<br>53<br>56<br>54 | 10<br>8<br>7<br>9<br>5  | 39<br>62<br>67<br>50<br>71 | .1<br>.1<br>.1<br>.1       | 9<br>63<br>18<br>24<br>53  | 5<br>14<br>7<br>8<br>34    | 199<br>284<br>239<br>168<br>1155  | 9.61<br>7.40<br>16.38<br>13.65<br>10.13 | 5<br>9<br>2<br>9<br>8      | 5<br>5<br>5<br>5<br>5 | HD<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>2<br>1 | 16<br>11<br>8<br>7<br>13   | 1<br>2<br>2<br>2<br>2 | 2<br>3<br>4<br>3<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 378<br>343<br>550<br>444<br>299 | .20<br>.83<br>.32<br>.33<br>.73 | .016<br>.020<br>.022<br>.021<br>.024 | 3<br>4<br>2<br>2<br>3  | 73<br>132<br>127<br>137<br>118 | .20<br>1.34<br>.20<br>.34<br>1.07 | 30<br>16<br>7<br>12<br>17  | .62<br>.71<br>1.00<br>.82<br>.64 | 2<br>5<br>2<br>2<br>2  | 2.37<br>3.52<br>1.86<br>3.63<br>4.08 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.01<br>.02<br>.01 | 1<br>2<br>1<br>1      | 1<br>1<br>1<br>1      | 160<br>180<br>170<br>230<br>260 |
| 4900N 5220E<br>STD C/AU-S                                                              | 1<br>19               | 92<br>62                   | 6<br>39                 | 79<br>132                  | .1<br>7.5                  | 54<br>69                   | 46<br>30                   | 4015<br>1027                      | 9.04<br>4.10                            | - 13<br>43                 | 5<br>20               | ND<br>7                    | 1<br>39               | 17<br>52                   | 2<br>19               | 2<br>20               | 2<br>22                    | 276<br>64                       | .70<br>.49                      | .047<br>.088                         | 4<br>40                | 103<br>60                      | .92<br>.96                        | 20<br>179                  | .52<br>.07                       | 5<br>33                | 3.96<br>1.72                         | .01<br>.08                      | .02<br>.14                      | 1<br>10               | 1<br>49               | 280<br>1400                     |

Page 13 i

í

1

÷

1

i

:

t

.

(

ŧ.

(

1

÷

| SAMPLE‡                                                                                | Ko<br>PPK             | Cu<br>PPM                   | Pb<br>PPM               | 2n<br>PPM                  | λg<br>PPM                  | HI<br>PPM                  | CO<br>PPM                  | MD<br>PPN                          | 7e<br>X                                 | λs<br>PPM                  | U<br>PPN              | Au<br>PPN                  | Th<br>7PH             | Sr<br>PPH                  | Cđ<br>PPK             | SD<br>PPM             | Bi<br>PPM                  | V<br>PPM                        | Ca<br>t                         | P<br>Z                               | La<br>PPH             | Cr<br>PPM                                 | Xg<br>t                           | Ba<br>PPH                  | Ti<br>ł                          | B<br>PPM                   | Al<br>ł                              | Ha<br>X                         | K<br>K                          | ¥<br>PPH              | Au*<br>PPB            | Hg<br>PPB                       |  |
|----------------------------------------------------------------------------------------|-----------------------|-----------------------------|-------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------------------------|-----------------------------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|-----------------------|----------------------------|---------------------------------|---------------------------------|--------------------------------------|-----------------------|-------------------------------------------|-----------------------------------|----------------------------|----------------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|---------------------------------|--|
| 4900N 5230E<br>4900N 5240E<br>4900N 5250E<br>4900N 5260E<br>4900N 5270E                | 1<br>1<br>1<br>1      | 57<br>87<br>65<br>63<br>57  | 11<br>9<br>8<br>8<br>8  | 70<br>78<br>79<br>84<br>63 | .2<br>.1<br>.3<br>.1       | 39<br>51<br>49<br>49<br>44 | 16<br>17<br>19<br>20<br>13 | 1537<br>432<br>1586<br>1509<br>396 | 5.97<br>8.24<br>5.13<br>5.81<br>7.54    | 13<br>9<br>59<br>161<br>21 | 5<br>5<br>5<br>5<br>5 | ND<br>NC<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 23<br>18<br>22<br>21<br>14 | 1<br>1<br>1<br>1      | 2<br>3<br>3<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 207<br>319<br>156<br>167<br>322 | .71<br>.80<br>.83<br>.81<br>.77 | .036<br>.049<br>.048<br>.042<br>.028 | 7<br>5<br>8<br>8<br>6 | 75<br>120<br>73<br>72<br>128              | .71<br>1.00<br>.94<br>1.01<br>.95 | 34<br>16<br>39<br>38<br>16 | .34<br>.55<br>.30<br>.28<br>.59  | 5<br>5<br>8<br>4           | 3.99<br>3.96<br>4.02<br>4.13<br>3.63 | .04<br>.03<br>.03<br>.02<br>.02 | .01<br>.01<br>.02<br>.01<br>.01 | 2<br>2<br>4<br>3<br>1 | 2<br>3<br>1<br>2<br>1 | 260<br>300<br>280<br>260<br>320 |  |
| 490CN 528CK<br>4900N 523DT<br>4900N 530DZ<br>490CN 531DT<br>4900N 532CK                | 1<br>1<br>1<br>1      | 44<br>75<br>103<br>25<br>75 | 7<br>10<br>9<br>5<br>10 | 74<br>74<br>75<br>43<br>62 | .2<br>.3<br>.1<br>.1       | 35<br>41<br>65<br>19<br>13 | 14<br>14<br>26<br>9<br>5   | 1083<br>769<br>394<br>193<br>171   | 3.96<br>4.63<br>13.25<br>3.90<br>19.36  | 64<br>49<br>10<br>4<br>12  | 5<br>5<br>5<br>5<br>5 | XD<br>XD<br>XD<br>XD<br>ND | 1<br>1<br>1<br>2      | 26<br>17<br>16<br>7<br>7   | 1<br>1<br>1<br>2      | 2<br>2<br>5<br>2<br>6 | 2<br>2<br>3<br>2           | 120<br>172<br>316<br>340<br>535 | .90<br>.78<br>.87<br>.44<br>.33 | .051<br>.042<br>.041<br>.009<br>.013 | 6<br>7<br>4<br>2<br>2 | 52<br>77<br>120<br>11 <del>1</del><br>208 | .59<br>.87<br>1.21<br>.58<br>.27  | 25<br>23<br>12<br>6<br>5   | .22<br>.35<br>.42<br>.83<br>1.06 | 9<br>9<br>6<br>2<br>2      | 2.63<br>3.47<br>5.53<br>2.01<br>2.43 | .03<br>.02<br>.03<br>.02<br>.04 | .02<br>.01<br>.01<br>.01<br>.01 | I<br>3<br>1<br>1      | 2<br>1<br>1<br>3<br>3 | 280<br>260<br>300<br>90<br>170  |  |
| 4900X 5330E<br>4900N 5340E<br>4900N 5350E<br>4900N 5360E<br>4900N 5370E                | 1<br>2<br>1<br>1      | 57<br>59<br>55<br>63<br>64  | 14<br>6<br>5<br>8<br>12 | 88<br>77<br>74<br>59<br>55 | .1<br>.3<br>.2<br>.2<br>.2 | 14<br>43<br>28<br>35<br>40 | 5<br>17<br>11<br>12<br>10  | 234<br>1102<br>846<br>452<br>243   | 24.56<br>5.69<br>3.84<br>7.05<br>6.99   | 5<br>403<br>45<br>52<br>5  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 8<br>19<br>21<br>15<br>12  | 2<br>1<br>1<br>1<br>1 | 5<br>2<br>2<br>2<br>3 | 2<br>2<br>2<br>3<br>2      | 859<br>170<br>144<br>232<br>315 | .09<br>.66<br>.59<br>.50<br>.47 | .009<br>.044<br>.047<br>.032<br>.017 | 2<br>9<br>6<br>5<br>4 | 169<br>76<br>60<br>97<br>209              | .09<br>.36<br>.55<br>.67<br>.85   | 5<br>31<br>23<br>20<br>11  | 1.38<br>.28<br>.27<br>.42<br>.63 | 2<br>4<br>3<br>2<br>2      | 1.22<br>3.93<br>2.49<br>3.93<br>4.64 | .05<br>.02<br>.04<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>3<br>1<br>3<br>2 | 1<br>1<br>1<br>1      | 220<br>350<br>290<br>260<br>250 |  |
| 4900N 5380E<br>4900N 5390E<br>4900N 5490E<br>4900N 5490E<br>4900N 5420E                | 1<br>1<br>7<br>3      | 63<br>80<br>51<br>77<br>77  | 10<br>7<br>7<br>9<br>9  | 54<br>52<br>54<br>78<br>90 | .1<br>.2<br>.1<br>.3<br>.2 | 29<br>35<br>24<br>42<br>42 | 9<br>10<br>8<br>15<br>16   | 289<br>240<br>251<br>1309<br>1782  | 8.15<br>10.23<br>8.40<br>7.44<br>3.85   | 15<br>6<br>11<br>44<br>13  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>1<br>1 | 15<br>11<br>13<br>14<br>14 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>3 | 2<br>2<br>2<br>2<br>2<br>2 | 267<br>381<br>391<br>207<br>331 | .41<br>.69<br>.36<br>.44<br>.60 | .025<br>.015<br>.020<br>.033<br>.033 | 3<br>3<br>5<br>6      | 111<br>181<br>102<br>94<br>92             | .53<br>.79<br>.45<br>.60<br>.54   | 16<br>5<br>13<br>23<br>25  | .51<br>.74<br>.69<br>.35<br>.51  | 2<br>2<br>5<br>6           | 3.75<br>4.28<br>2.37<br>4.23<br>3.95 | .04<br>.01<br>.01<br>.02<br>.03 | .01<br>.01<br>.02<br>.01<br>.01 | 1<br>I<br>1<br>I      | 2<br>1<br>2<br>1<br>1 | 260<br>380<br>190<br>510<br>260 |  |
| 4900H 5430E<br>4900H 5440Z<br>4900H 5440Z<br>4900H 5450Z<br>4900H 5460Z<br>4900H 5470E | 3<br>1<br>1<br>3<br>1 | 67<br>78<br>70<br>45<br>76  | 9<br>7<br>9<br>10<br>5  | 78<br>69<br>70<br>59<br>61 | .1<br>.1<br>.1<br>.1       | 33<br>51<br>13<br>20<br>46 | 13<br>13<br>6<br>8<br>13   | 853<br>394<br>177<br>364<br>302    | 11.37<br>5.24<br>22.59<br>10.92<br>5.19 | 21<br>25<br>7<br>15<br>7   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>2<br>1<br>1 | 11<br>14<br>4<br>10<br>12  | 1<br>1<br>2<br>1<br>1 | 2<br>2<br>3<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 377<br>221<br>767<br>512<br>248 | .52<br>.73<br>.11<br>.51<br>.80 | .030<br>.022<br>.015<br>.023<br>.021 | 4<br>5<br>2<br>3<br>4 | 97<br>104<br>170<br>75<br>111             | .56<br>.89<br>.13<br>.32<br>.70   | 16<br>15<br>5<br>9<br>10   | .67<br>.52<br>1.26<br>.81<br>.53 | 4<br>4<br>2<br>2<br>2      | 3.42<br>3.79<br>2.58<br>2.03<br>4.16 | .03<br>.02<br>.02<br>.03<br>.01 | .02<br>.01<br>.02<br>.01<br>.01 | 1<br>1<br>1<br>2      | 2<br>1<br>5<br>3<br>2 | 320<br>230<br>260<br>230<br>220 |  |
| 4900N 548CK<br>4900N 5490Z<br>4900N 5500K<br>485CN 4500E<br>4850N 4510K                | 1<br>3<br>1<br>1<br>1 | 65<br>68<br>74<br>59<br>49  | 5<br>5<br>9<br>7<br>7   | 61<br>58<br>62<br>59<br>50 | .1<br>.1<br>.2<br>.1       | 28<br>33<br>36<br>29<br>24 | 9<br>11<br>13<br>9<br>8    | 358<br>419<br>385<br>257<br>207    | 10.63<br>8.94<br>9.25<br>5.91<br>4.39   | 15<br>26<br>9<br>12<br>8   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 11<br>11<br>12<br>13<br>14 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 352<br>282<br>355<br>214<br>221 | .59<br>.44<br>.61<br>.52<br>.60 | .021<br>.022<br>.022<br>.021<br>.025 | 3<br>3<br>3<br>5<br>5 | 126<br>114<br>106<br>94<br>74             | .46<br>.57<br>.60<br>.77<br>.51   | 13<br>15<br>16<br>14<br>23 | .69<br>.52<br>.69<br>.51<br>.57  | 2<br>2<br>2<br>4           | 3.67<br>3.92<br>3.42<br>4.40<br>3.33 | .03<br>.03<br>.04<br>.02<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>2      | 9<br>1<br>3<br>1<br>2 | 320<br>330<br>270<br>150<br>180 |  |
| 4350N 452DE<br>4850N 453DE<br>4350N 454OE<br>4850N 4550E<br>4850N 4550E                | 1<br>1<br>1<br>1      | 53<br>62<br>83<br>75<br>89  | 5<br>9<br>6<br>7<br>7   | 52<br>56<br>59<br>53<br>64 | .1<br>.1<br>.1<br>.1       | 25<br>24<br>40<br>28<br>40 | 8<br>9<br>12<br>9<br>13    | 213<br>258<br>331<br>260<br>343    | 4.73<br>7.57<br>8.13<br>8.22<br>8.61    | 9<br>10<br>12<br>10<br>11  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1<br>1 | 12<br>12<br>10<br>10<br>9  | 1<br>1<br>1<br>1      | 2<br>2<br>4<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 210<br>261<br>273<br>250<br>270 | .59<br>.53<br>.44<br>.44<br>.37 | .019<br>.024<br>.014<br>.018<br>.015 | 6<br>5<br>2<br>3<br>2 | 88<br>106<br>140<br>113<br>130            | .58<br>.59<br>.36<br>.53<br>.70   | 13<br>14<br>17<br>17<br>21 | .58<br>.57<br>.58<br>.52<br>.56  | 2<br>2<br>2<br>2<br>2<br>2 | 4.02<br>4.77<br>5.91<br>5.59<br>6.45 | .01<br>.03<br>.01<br>.02<br>.02 | .01<br>.01<br>.01<br>.01<br>.02 | 1<br>1<br>3<br>2<br>1 | 1<br>1<br>1<br>2<br>4 | 270<br>190<br>70<br>200<br>110  |  |
| 4850N 4570E<br>STD C/AU-S                                                              | 1<br>19               | 79<br>63                    | 4<br>40                 | 62<br>132                  | .2<br>7.6                  | 44<br>70                   | 13<br>31                   | 288<br>1092                        | 7.04<br>4.12                            | 9<br>42                    | 5<br>23               | נוא<br>7                   | 1<br>40               | 12<br>53                   | 1<br>19               | 2<br>21               | 2<br>1 B                   | 169<br>60                       | .56<br>.49                      | .025<br>.088                         | 7<br>41               | 80<br>60                                  | .94<br>.97                        | 15<br>180                  | .38<br>.07                       | 2<br>32                    | 5.67<br>1.74                         | .01<br>.06                      | .01<br>.15                      | 2<br>11               | 1<br>48               | 190<br>1400                     |  |

Page 14

(

ć,

1

í

t

٢

¢

1

(

t:

(

1

· (

ŧ

4

- ---

| SAMPLE¥                                                                                | MO<br>PPM                       | Cu<br>PPM                  | PD<br>PPM               | ZE<br>PPM                    | Ag<br>?PM                   | Vi<br>PPM                   | Co<br>PPM                  | Nn<br>PPN                         | Te<br>t                              | AS<br>PPM                   | 0<br>PPM               | Au<br>PPM                  | Th<br>PPN             | ST<br>PPM                  | Cd<br>PPM             | Sb<br>PPM                  | 3i<br>?PM                  | V<br>PPH                        | Ca                                 | ?                                    | La<br>PPM                           | CT<br>?PM                     | Ng<br>1                              | Ba<br>PPM                   | Ti<br>ł                         | B<br>FPM                  | ۸1<br>۲                              | Na<br>%                         | r<br>Z                          | ¥<br>PPM               | Au*<br>PPB             | Ag<br>PPB                         |  |
|----------------------------------------------------------------------------------------|---------------------------------|----------------------------|-------------------------|------------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------------|--------------------------------------|-----------------------------|------------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|------------------------------------|--------------------------------------|-------------------------------------|-------------------------------|--------------------------------------|-----------------------------|---------------------------------|---------------------------|--------------------------------------|---------------------------------|---------------------------------|------------------------|------------------------|-----------------------------------|--|
| 4830N 4530E<br>4830N 4530E<br>4850N 4600E<br>4850N 4610E<br>4850N 4610E<br>4850N 4620E | 1<br>2<br>1<br>1<br>3           | 73<br>60<br>60<br>61<br>54 | 9<br>6<br>7<br>7        | 91<br>72<br>47<br>53<br>52   | .2<br>.1<br>.1<br>.1<br>.1  | 58<br>41<br>31<br>34<br>19  | 23<br>17<br>8<br>9<br>7    | 346<br>282<br>186<br>223<br>203   | 4.43<br>4.03<br>4.77<br>5.47<br>8.25 | 7<br>2<br>5<br>11<br>8      | 5<br>5<br>5<br>5<br>5  | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 22<br>29<br>12<br>12<br>7  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>4           | 175<br>166<br>235<br>243<br>367 | 1.26<br>1.20<br>.55<br>.60<br>.31  | .055<br>.051<br>.027<br>.015<br>.010 | 11<br>7<br>6<br>3<br>3              | 120<br>66<br>63<br>93<br>64   | .39<br>.87<br>.59<br>.75<br>.25      | 17<br>24<br>17<br>13<br>11  | .40<br>.33<br>.53<br>.54<br>.47 | 7<br>5<br>2<br>3<br>6     | 4.26<br>3.92<br>4.05<br>3.13<br>1.33 | .04<br>.03<br>.04<br>.04<br>.04 | .01<br>.01<br>.01<br>.01<br>.01 | 3<br>3<br>5<br>1<br>1  | 13<br>7<br>1<br>1      | 160<br>140<br>230<br>320<br>110   |  |
| 4950N 4630Z<br>4950N 464CZ<br>4850N 4640Z<br>4850N 4660Z<br>4850N 4660Z<br>4850N 4670Z | 3<br>5<br>4<br>10 <b>5</b><br>2 | 97<br>80<br>36<br>71<br>63 | 9<br>6<br>7<br>7<br>7   | 90<br>96<br>47<br>51<br>48   | .1<br>.1<br>.3<br>.1        | 68<br>279<br>15<br>45<br>24 | 24<br>29<br>6<br>25<br>9   | 789<br>404<br>228<br>1519<br>304  | 6.58<br>7.25<br>9.53<br>6.25<br>7.57 | 10<br>34<br>26<br>119<br>29 | 5<br>5<br>5<br>5<br>5  | מא<br>אם<br>אם<br>אם<br>אם | 1<br>1<br>1<br>1<br>1 | 17<br>3<br>20<br>15<br>10  | 2<br>1<br>1<br>1<br>1 | 2<br>4<br>2<br>5           | 2<br>2<br>3<br>3           | 226<br>199<br>299<br>119<br>237 | .90<br>.29<br>.79<br>.45<br>.39    | .025<br>.015<br>.020<br>.023<br>.025 | 6<br>3<br>1<br>1<br>4<br>4          | 110<br>245<br>96<br>50<br>112 | .91<br>2.01<br>.21<br>.29<br>.43     | 16<br>12<br>13<br>17<br>12  | .44<br>.18<br>.50<br>.08<br>.38 | 9<br>19<br>3<br>5<br>2    | 3.90<br>4.58<br>2.66<br>3.45<br>5.36 | .03<br>.04<br>.01<br>.05<br>.02 | .02<br>.01<br>.01<br>.01<br>.01 | 2<br>4<br>1<br>2<br>5  | 1<br>1<br>1<br>2       | 210<br>220<br>2100<br>2300<br>560 |  |
| 4850N 4586E<br>4850N 4690E<br>4850N 4700E<br>4850N 4750E<br>4850N 4750E                | 6<br>7<br>5<br>1<br>3           | 63<br>62<br>78<br>67<br>81 | 4<br>7<br>8<br>5<br>8   | 65<br>165<br>198<br>36<br>47 | .2<br>.5<br>.4<br>.2<br>.1  | 38<br>52<br>38<br>16<br>46  | 30<br>16<br>18<br>11<br>12 | 630<br>400<br>852<br>524<br>273   | 7.34<br>4.19<br>4.22<br>5.18<br>5.63 | 128<br>35<br>18<br>66<br>78 | 5<br>5<br>5<br>5<br>5  | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 32<br>39<br>29<br>22<br>10 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 187<br>39<br>45<br>81<br>151    | 1.02<br>1.32<br>1.07<br>.93<br>.30 | .104<br>.152<br>.074<br>.262<br>.024 | 15<br>13<br>15<br>12<br>5           | 43<br>32<br>27<br>48<br>85    | .15<br>.18<br>.45<br>.19<br>.44      | 16<br>60<br>63<br>15<br>21  | .02<br>.01<br>.01<br>.01<br>.11 | 10<br>14<br>13<br>13<br>5 | 2.13<br>1.08<br>1.28<br>1.51<br>3.08 | .03<br>.01<br>.01<br>.01<br>.01 | .05<br>.18<br>.18<br>.11<br>.02 | 1<br>1<br>1<br>1<br>2  | 1<br>1<br>2<br>1<br>1  | 620<br>170<br>210<br>340<br>460   |  |
| 4850N 4770Z<br>4850N 4730Z<br>4850N 4730Z<br>4850N 4790Z<br>4850N 4800Z<br>4350N 4810Z | 1<br>1<br>1<br>1<br>1           | 57<br>60<br>50<br>44<br>81 | 7<br>6<br>8<br>10<br>10 | 54<br>49<br>48<br>45<br>97   | .1<br>.1<br>.1<br>.1        | 32<br>28<br>24<br>23<br>68  | 11<br>8<br>8<br>13<br>21   | 264<br>225<br>216<br>253<br>392   | 5.99<br>6.15<br>7.47<br>4.80<br>4.53 | 16<br>11<br>13<br>9<br>3    | 5<br>5<br>5<br>5<br>5  | NC<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 10<br>11<br>12<br>12<br>22 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 204<br>185<br>226<br>174<br>158 | .29<br>.27<br>.39<br>.34<br>.60    | .020<br>.025<br>.020<br>.031<br>.090 | 6<br>5<br>4<br>7<br>14              | 105<br>81<br>80<br>77<br>99   | .43<br>.49<br>.53<br>.48<br>1.17     | 24<br>19<br>14<br>30<br>51  | .25<br>.28<br>.38<br>.27<br>.32 | 3<br>3<br>2<br>11<br>5    | 5.30<br>4.56<br>3.06<br>4.25<br>6.03 | .03<br>.02<br>.04<br>.03<br>.01 | .01<br>.01<br>.01<br>.02<br>.01 | 4<br>3<br>2<br>4<br>6  | 4<br>1<br>1<br>2       | 270<br>380<br>210<br>270<br>240   |  |
| 4850N 4820E<br>4850N 4830E<br>4850N 4840E<br>4850N 4850E<br>4850N 4850E<br>4850N 4860Z | 1<br>1<br>1<br>1                | 49<br>51<br>16<br>7<br>56  | 7<br>12<br>5<br>4<br>8  | 54<br>61<br>55<br>25<br>64   | .1<br>.1<br>.1<br>.1        | 29<br>33<br>6<br>2<br>39    | 15<br>9<br>3<br>1<br>15    | 295<br>239<br>211<br>80<br>527    | 4.56<br>3.33<br>4.24<br>2.43<br>5.72 | 6<br>12<br>7<br>9<br>7      | 5<br>5<br>5<br>5<br>5  | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 19<br>11<br>6<br>3<br>14   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 168<br>109<br>86<br>53<br>151   | .57<br>.30<br>.08<br>.02<br>.40    | .055<br>.035<br>.034<br>.018<br>.047 | 13<br>11<br>9<br>5<br>8             | 82<br>86<br>24<br>7<br>83     | .62<br>.76<br>.20<br>.27<br>.75      | 73<br>20<br>14<br>6<br>24   | .23<br>.16<br>.03<br>.01<br>.24 | 6<br>15<br>3<br>4<br>8    | 4.21<br>7.00<br>2.81<br>2.26<br>5.72 | .01<br>.05<br>.01<br>.01<br>.02 | .02<br>.01<br>.02<br>.03<br>.01 | 2<br>7<br>3<br>3<br>5  | 1<br>1<br>2<br>1       | 260<br>290<br>110<br>80<br>250    |  |
| 4850N 48738<br>4850N 48802<br>4850N 48908<br>4850N 490C2<br>4850N 4910E                | 1<br>1<br>1<br>2                | 17<br>35<br>46<br>65<br>68 | 7<br>7<br>9<br>6<br>7   | 43<br>47<br>50<br>66<br>70   | .1<br>.1<br>.1<br>.1        | 8<br>15<br>24<br>44<br>43   | 4<br>5<br>7<br>16<br>20    | 165<br>192<br>291<br>393<br>608   | 4.71<br>5.32<br>5.31<br>5.50<br>6.50 | 6<br>10<br>15<br>7<br>18    | 5<br>5<br>5<br>5<br>5  | HD<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 9<br>8<br>7<br>14<br>15    | 1<br>1<br>1<br>1      | 2<br>2<br>5<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 120<br>178<br>138<br>170<br>209 | .12<br>.20<br>.24<br>.39<br>.45    | .013<br>.016<br>.033<br>.051<br>.032 | 10<br>6<br>4<br>5                   | 29<br>60<br>102<br>99<br>85   | .31<br>.38<br>.47<br>1.38<br>1.67    | 13<br>11<br>14<br>27<br>27  | .09<br>.17<br>.21<br>.22<br>.27 | 6<br>7<br>2<br>4<br>7     | 2.08<br>2.96<br>7.19<br>4.77<br>4.03 | .01<br>.01<br>.01<br>.01<br>.04 | .02<br>.01<br>.01<br>.01<br>.04 | 3<br>2<br>5<br>3<br>1  | 1<br>2<br>1<br>1<br>1  | 140<br>260<br>500<br>280<br>210   |  |
| 4850N 4920E<br>4850N 4930E<br>4850N 4940E<br>4850N 4940E<br>4850N 4950E<br>STD C/AU-S  | 1<br>2<br>2<br>1<br>19          | 58<br>66<br>90<br>40<br>62 | 7<br>8<br>9<br>39       | 130<br>58<br>70<br>47<br>132 | .1<br>.1<br>.1<br>.1<br>7.4 | 56<br>31<br>50<br>14<br>71  | 26<br>11<br>17<br>5<br>31  | 3828<br>256<br>491<br>168<br>1049 | 5.81<br>7.73<br>6.50<br>6.03<br>4.13 | 15<br>47<br>20<br>26<br>43  | 5<br>5<br>5<br>5<br>22 | סא<br>סא<br>סא<br>10<br>7  | 1<br>1<br>1<br>40     | 23<br>8<br>15<br>6<br>53   | 1<br>1<br>1<br>19     | 2<br>2<br>2<br>2<br>17     | 2<br>2<br>3<br>22          | 139<br>221<br>210<br>160<br>61  | .92<br>.30<br>.71<br>.13<br>.49    | .061<br>.025<br>.031<br>.019<br>.089 | 10<br>3<br>6<br>5<br><del>1</del> 1 | 50<br>113<br>94<br>60<br>51   | . 89<br>. 49<br>. 86<br>. 27<br>. 92 | 67<br>12<br>20<br>12<br>180 | .17<br>.26<br>.42<br>.15<br>.07 | 7<br>4<br>5<br>3<br>33    | 3.84<br>5.60<br>4.46<br>3.77<br>1.78 | .02<br>.01<br>.01<br>.03<br>.08 | .03<br>.01<br>.01<br>.01<br>.14 | 1<br>3<br>5<br>3<br>10 | 1<br>2<br>1<br>4<br>52 | 260<br>520<br>280<br>220<br>1300  |  |

Page 15

.

.

ł

ŧ

.

(

1

ŧ

i

4

4

ŧ

1

ŧ

í

--

ŧ

 $\mathbf{r}$ 

| SAMPLE <b>:</b>                                                         | No<br>P?M             | Cu<br>?Ph                       | Pb<br>PPH                | Za<br>PPN                     | Ag<br>PPN                  | NI<br>PPM                     | Co<br>PPH                  | Kn<br>PPM                          | Fe<br>3                               | AS<br>PPM                  | U<br>PPM              | Au<br>PPM                  | Th<br>PPH             | ST<br>PPM                  | Cđ<br>PPM             | SD<br>PPM             | Bİ<br>2PM                       | V<br>PPM                        | Ca<br>ł                           | P<br>S                                       | La<br>PPM             | CT<br>PPM                      | Ng<br>ł                              | Ba<br>PPM                  | Ti<br>ł                         | B<br>PPH               | Al<br>t                              | Na<br>ł                         | K<br>K                          | W<br>PPM              | Au"<br>PPB            | Eg<br>?P3                       |  |
|-------------------------------------------------------------------------|-----------------------|---------------------------------|--------------------------|-------------------------------|----------------------------|-------------------------------|----------------------------|------------------------------------|---------------------------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|-----------------------|---------------------------------|---------------------------------|-----------------------------------|----------------------------------------------|-----------------------|--------------------------------|--------------------------------------|----------------------------|---------------------------------|------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|---------------------------------|--|
| 485CN 49602<br>4850N 4973E<br>4850N 49902<br>4850N 49902<br>4850N 53032 | 1<br>1<br>1<br>2      | 24<br>62<br>79<br>58<br>63      | 7<br>10<br>8<br>11<br>11 | 53<br>78<br>73<br>68<br>71    | .1<br>.1<br>.1<br>.1       | 18<br>43<br>43<br>24<br>25    | 12<br>41<br>18<br>14<br>13 | 496<br>1397<br>487<br>692<br>546   | 3.72<br>5.73<br>7.37<br>8.17<br>8.93  | 38<br>16<br>24<br>23<br>22 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>2<br>1<br>1 | 17<br>13<br>11<br>8<br>7   | 1<br>1<br>1<br>1      | 2<br>2<br>5<br>3<br>5 | 2<br>4<br>2<br>2<br>3           | 107<br>149<br>200<br>208<br>245 | .39<br>.47<br>.41<br>.17<br>.26   | .024<br>.039<br>.027<br>.036<br>.031         | 8<br>9<br>4<br>6<br>3 | 36<br>89<br>116<br>105<br>117  | .55<br>.31<br>1.29<br>1.06<br>.93    | 31<br>20<br>22<br>18<br>16 | .12<br>.26<br>.28<br>.15<br>.20 | 4<br>6<br>3<br>9<br>6  | 2.74<br>5.70<br>6.42<br>5.45<br>5.18 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.02<br>.01<br>.01<br>.01 | 1<br>2<br>4<br>4      | 5<br>1<br>1<br>3<br>1 | 150<br>250<br>250<br>210<br>430 |  |
| 4850N 501C3<br>4850N 502C2<br>4850N 50303<br>4850N 504C2<br>4850N 50503 | 1<br>1<br>1<br>1      | 56<br>22<br>18<br>17<br>54      | 6<br>6<br>8<br>11<br>8   | 73<br>88<br>68<br>68<br>51    | .1<br>.1<br>.1<br>.1       | 29<br>13<br>11<br>10<br>23    | 16<br>8<br>6<br>. 8        | 560<br>425<br>367<br>351<br>237    | 3.01<br>7.36<br>8.32<br>7.07<br>7.44  | 21<br>10<br>12<br>9<br>18  | 5<br>5<br>5<br>5<br>5 | KD<br>ND<br>ND<br>ND       | I<br>1<br>1<br>1      | 10<br>12<br>9<br>9         | 1<br>1<br>1<br>1<br>1 | 3<br>2<br>4<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2      | 241<br>242<br>323<br>266<br>229 | .34<br>.07<br>.08<br>.10<br>.42   | .027<br>.033<br>.021<br>.021<br>.021<br>.022 | 4<br>2<br>2<br>2<br>4 | 104<br>63<br>74<br>60<br>103   | 1.12<br>1.28<br>.78<br>.91<br>.64    | 17<br>16<br>10<br>9<br>14  | .29<br>.18<br>.28<br>.35<br>.40 | 4<br>10<br>7<br>5<br>2 | 4.27<br>2.12<br>2.35<br>2.23<br>3.98 | .01<br>.03<br>.01<br>.01<br>.01 | .02<br>.01<br>.01<br>.01<br>.01 | 3<br>1<br>1<br>1<br>2 | 1<br>1<br>1<br>1      | 233<br>140<br>90<br>110<br>190  |  |
| 4850N 5060Z<br>4850N 5070K<br>4850N 5060Z<br>4850N 5090Z<br>4850N 5100Z | 1<br>I<br>1<br>1      | 45<br>81<br>96<br>66<br>87      | 9<br>9<br>11<br>10<br>9  | 57<br>53<br>68<br>62<br>55    | .1<br>.1<br>.1<br>.1       | 34<br>37<br>55<br>43<br>43    | 10<br>11<br>15<br>12<br>11 | 233<br>332<br>315<br>284<br>271    | 8.34<br>8.23<br>6.36<br>6.78<br>7.96  | 17<br>22<br>23<br>12<br>16 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 11<br>12<br>13<br>13<br>11 | 1<br>1<br>1<br>1<br>1 | 2<br>4<br>2<br>2<br>3 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 267<br>223<br>204<br>264<br>237 | .47<br>.45<br>.64<br>.57<br>.53   | .019<br>.022<br>.022<br>.020<br>.022         | 3<br>4<br>4<br>4<br>4 | 80<br>94<br>80<br>85<br>122    | .84<br>.75<br>1.02<br>.87<br>.76     | 20<br>32<br>24<br>23<br>19 | .44<br>.43<br>.39<br>.49<br>.48 | 2<br>3<br>4<br>3<br>2  | 3.21<br>3.87<br>4.08<br>3.73<br>5.39 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.01<br>.01<br>.01<br>.01 | 1<br>2<br>2<br>1<br>1 | 1<br>1<br>2<br>3<br>1 | 285<br>230<br>260<br>225<br>300 |  |
| 4850N 51102<br>4350N 51202<br>4850N 51303<br>4850N 51402<br>4850N 5150E | 1<br>1<br>1<br>1      | 101<br>80<br>75<br>100<br>65    | 9<br>8<br>10<br>10<br>9  | 61<br>56<br>60<br>50<br>73    | .1<br>.1<br>.2<br>.1       | 50<br>52<br>43<br>38<br>53    | 13<br>13<br>14<br>11<br>19 | 268<br>289<br>329<br>293<br>761    | 7.93<br>7.92<br>6.35<br>9.07<br>5.71  | 24<br>17<br>15<br>19<br>16 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 9<br>11<br>14<br>10<br>19  | 1<br>1<br>1<br>1      | 6<br>2<br>2<br>3<br>4 | 3<br>2<br>2<br>2<br>2           | 226<br>218<br>217<br>254<br>184 | .46<br>.60<br>.73<br>.55<br>.63   | .019<br>.022<br>.018<br>.017<br>.054         | 2<br>4<br>5<br>4<br>5 | 149<br>109<br>109<br>144<br>96 | .86<br>1.03<br>.33<br>.72<br>1.01    | 15<br>15<br>18<br>14<br>23 | .46<br>.48<br>.46<br>.56<br>.34 | 2<br>2<br>2<br>2<br>4  | 6.93<br>5.42<br>5.07<br>5.68<br>4.11 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 6<br>1<br>2<br>3<br>2 | 1<br>1<br>2<br>30     | 290<br>310<br>200<br>300<br>230 |  |
| 4850N 5160X<br>4850N 5170X<br>4850N 5180E<br>4850N 5190E<br>4850N 5200Z | 1<br>1<br>1<br>1      | 83<br>105<br>143<br>114<br>51   | 8<br>7<br>10<br>11<br>10 | 80<br>73<br>61<br>62<br>57    | .1<br>.2<br>.1<br>.1       | 59<br>66<br>46<br>49<br>42    | 24<br>18<br>12<br>13<br>12 | 1031<br>413<br>298<br>293<br>293   | 5.05<br>4.68<br>9.94<br>10.08<br>7.87 | 11<br>12<br>21<br>19<br>21 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1<br>1 | 19<br>15<br>10<br>10<br>13 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>3<br>2<br>4 | 2<br>2<br>2<br>2<br>2<br>2      | 162<br>171<br>301<br>319<br>221 | .66<br>.83<br>.45<br>.46<br>.53   | .055<br>.034<br>.017<br>.017<br>.017         | 6<br>4<br>3<br>4      | 94<br>98<br>178<br>155<br>108  | 1.04<br>1.19<br>.74<br>.75<br>.39    | 29<br>33<br>17<br>18<br>21 | .36<br>.42<br>.57<br>.57<br>.48 | 8<br>5<br>2<br>2<br>2  | 4.40<br>4.70<br>6.53<br>6.26<br>5.56 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 2<br>1<br>2<br>1<br>4 | 2<br>1<br>1<br>1<br>1 | 210<br>260<br>470<br>280<br>300 |  |
| 4850N 5210X<br>4850N 5220Z<br>4850N 5220X<br>4850N 5240Z<br>4850N 5250X | 1<br>1<br>1<br>1<br>1 | 184<br>125<br>122<br>138<br>109 | 7<br>5<br>5<br>7<br>9    | 89<br>110<br>96<br>85<br>72   | .2<br>.2<br>.1<br>.1       | 95<br>89<br>79<br>80<br>63    | 30<br>48<br>43<br>35<br>18 | 880<br>3192<br>2601<br>1043<br>324 | 9.35<br>7.33<br>7.15<br>7.16<br>9.23  | 17<br>6<br>7<br>6<br>11    | 5<br>5<br>5<br>5      | nd<br>Nd<br>Nd<br>Nd<br>Nd | I<br>1<br>1<br>1      | 15<br>20<br>20<br>15<br>10 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2           | 289<br>223<br>221<br>235<br>333 | .76<br>1.05<br>1.11<br>.98<br>.64 | .040<br>.054<br>.054<br>.043<br>.023         | 5<br>5<br>5<br>6<br>4 | 129<br>97<br>39<br>110<br>158  | 1.37<br>1.41<br>1.27<br>1.41<br>1.14 | 53<br>21<br>18<br>17<br>13 | .56<br>.46<br>.46<br>.52<br>.70 | 2<br>5<br>7<br>2<br>7  | 6.42<br>5.04<br>5.05<br>5.43<br>5.71 | .01<br>.01<br>.01<br>.01<br>.02 | .01<br>.01<br>.01<br>.01<br>.01 | 2<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1      | 340<br>230<br>250<br>330<br>220 |  |
| 4850N 5260E<br>4850N 5270E<br>4850N 5280E<br>4850N 5290E<br>4850N 5290E | 2<br>1<br>1<br>1      | 54<br>220<br>132<br>125<br>117  | 9<br>9<br>6<br>4<br>5    | 60<br>91<br>110<br>103<br>105 | .1<br>.1<br>.2<br>.1<br>.1 | 31<br>117<br>121<br>88<br>123 | 12<br>30<br>34<br>53<br>36 | 305<br>327<br>622<br>2139<br>514   | 8.83<br>6.49<br>7.95<br>7.50<br>8.48  | 5<br>7<br>9<br>9<br>9      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 12<br>14<br>15<br>16<br>13 | 1<br>1<br>1<br>1      | 2<br>3<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2      | 350<br>242<br>232<br>233<br>242 | .51<br>.80<br>1.09<br>1.02<br>.92 | .020<br>.041<br>.032<br>.040<br>.031         | 3<br>7<br>4<br>5<br>5 | 135<br>130<br>92<br>99<br>110  | .58<br>1.61<br>2.16<br>1.46<br>2.23  | 11<br>15<br>16<br>21<br>13 | .82<br>.54<br>.54<br>.49<br>.51 | 2<br>3<br>5<br>4<br>2  | 3.78<br>6.36<br>5.26<br>4.96<br>5.57 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.01<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>1      | 2<br>1<br>4<br>1<br>1 | 255<br>390<br>210<br>250<br>280 |  |
| 4850N 5310E<br>STD C/AU-5                                               | 1<br>19               | 158<br>61                       | 6<br>38                  | 103<br>131                    | .1<br>7.4                  | 110<br>68                     | 27<br>30                   | 485<br>1077                        | 6.57<br>4.07                          | 7<br>42                    | 5<br>17               | ND<br>7                    | 1<br>38               | 16<br>52                   | 1<br>18               | 2<br>20               | 2<br>21                         | 252<br>53                       | 1.02<br>.49                       | .034<br>.087                                 | 6<br>40               | 126<br>60                      | 1.69<br>.96                          | 17<br>179                  | .63<br>.07                      | 2<br>38                | 5.90<br>1.73                         | .01<br>.07                      | .01<br>.15                      | 1<br>11               | 4<br>50               | 320<br>1300                     |  |

Page 16

. 1

đ

4

ĩ

:

1

\*

4

í

(

1

t

Ĺ

1

ſ

ï

j.
÷,

| SAMPLE‡     | No<br>PPM | Cu<br>PPM | PD<br>PPM | ZC<br>PPM | λg<br>PPM | Hi<br>PPM | Co<br>PPK | Ko<br>PPN | Fe    | As<br>PPM | U<br>Pem | Au<br>PPM | Th<br>PPH | ST<br>PPM | Cd<br>PPM | SD<br>PPK | Bi<br>PPM | V<br>PPM | Ca<br>1 | P    | La<br>PPM | CT<br>PPN | Kg<br>Z | Ba<br>PPN | Ti<br>ł | B<br>PPN | A1<br>3 | Na<br>ł | ł   | ¥<br>PPH | Au*<br>PPB | Hg<br>PPB |
|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|---------|------|-----------|-----------|---------|-----------|---------|----------|---------|---------|-----|----------|------------|-----------|
| 105AV 53367 | 1         | 150       | 9         | 95        | .1        | 174       | 32        | 382       | 6.62  | 2         | 5        | ND        | 1         | 13        | 1         | 2         | 2         | 306      | .96     | .035 | 1         | 138       | 1.96    | 15        | . 62    | 2        | 6.63    | .01     | .01 | 3        | 1          | 250       |
| 10500 JJ202 |           | 155       | á         | Q1        |           | 40        | 34        | 1077      | 6.69  | 3         | 5        | ND        | 1         | 17        | 1         | 2         | 2         | 257      | .99     | .044 | 1         | 117       | 1.43    | 16        | .53     | 2        | 5.88    | .04     | .01 | 2        | 4          | 230       |
| 4830N 3330E | ,         | 200       |           | 51        | ;         | 71        | 19        | 304       | 3.99  | 8         | 5        | ND        | 1         | 15        | 1         | 2         | 2         | 189      | .65     | .032 | 1         | 121       | 1.30    | 19        | .57     | 2        | 6.38    | .02     | .01 | 3        | 1          | 360       |
| 48308 33405 | 1         | 40<br>100 | 0         | 22        |           | 71        | 17        | 313       | 1 17  | 9         | 5        | ND        | ī         | 18        | 1         | Į.        | 2         | 184      | . 64    | .028 | 5         | 102       | 1.40    | 18        | .45     | 2        | 4.94    | .03     | .01 | 3        | 2          | 200       |
| 4850H 3350E | 1         | 103       | 3         | 00<br>53  |           | 71)<br>20 | 17        | 200       | 1 97  | 1         | Ę        | ND        | 1         | 13        | 1         | i         | 2         | 212      | .72     | .026 | 5         | 111       | 1.16    | 15        | .54     | 2        | 4.30    | .04     | .01 | 4        | 1          | 280       |
| 4850N 53602 | Ţ         | . 54      | 5         | 50        | • 4       | 28        | 11        | 220       | 3.35  |           |          |           | •         |           | •         | •         | •         | •••      |         |      | •         |           |         |           |         |          |         |         |     |          |            |           |
| 105AV 537AV | 1         | 116       | 8         | 78        | .1        | 80        | 29        | 1085      | 6.13  | 5         | 5        | ND        | 1         | 15        | 1         | 2         | 2         | 223      | .86     | .035 | 5         | 109       | 1.41    | 16        | .51     | 3        | 5.34    | .05     | .01 | 2        | 1          | 250       |
| 1010A JJ106 | 1         | 130       | 11        | 87        | 1         | 86        | 30        | 1008      | 6.40  | 9         | 5        | ND        | 1         | 16        | 1         | 4         | 2         | -233     | . 93    | .036 | 6         | 111       | 1.47    | 18        | .53     | 2        | 5.61    | .04     | .01 | 5        | 135        | 260       |
| 1050A 2300A | 1         | 175       | 4         | 76        | 1         | 71        | 21        | 155       | 4.83  | 4         | ŝ        | SD        | 1         | 17        | 1         | 4         | 2         | 303      | . 77    | .040 | 1         | 122       | 1.35    | 20        | .57     | 2        | 4.43    | .03     | .01 | 4        | 2          | 150       |
| 403UR 333UE | 1         | 777       |           | 01        |           | 100       | 26        | 150       | 1 73  | ģ         | 5        | ND        | 1         | 26        | 1         | 5         | 2         | 207      | 1.21    | .039 | 5         | 98        | 1.95    | 23        | .45     | 5        | 4.26    | .04     | .01 | 5        | 2          | 170       |
| 48308 3400Z | 1         | 160       | 1 7       | 74        |           | 103       | 15        | 177       | 6 17  | ĥ         | ç        | ND        | 1         | 16        | 1         | 5         | ž         | 218      | .74     | .030 | 5         | 135       | 1.44    | 14        | .58     | 4        | 5.78    | .05     | .01 | 5        | 1          | 240       |
| 4850N 341V6 | 1         | 143       | 14        | 11        | ••        | 94        | 20        | 114       | 0.11  | •         | •        |           | •         |           | •         | -         | -         |          |         |      | -         |           |         |           |         |          |         |         |     |          |            |           |
| 1850N 5470R | s 1       | 86        | 12        | 59        | .1        | 52        | 16        | 340       | 5.33  | 3         | 5        | ND        | 1         | 29        | 1         | 3         | 2         | 231      | .73     | .023 | 3         | 97        | 1.02    | 29        | .71     | 2        | 3.82    | .04     | .01 | 4        | 1          | 200       |
| 1950N 5130E | 1         | 99        | 11        | 78        | .1        | 40        | 36        | 1400      | 11.46 | 15        | 5        | ND        | 1         | 10        | 2         | 6         | 2         | 384      | .40     | .020 | 3         | 152       | .92     | 8         | .83     | 2        | 5.21    | .04     | .01 | 1        | 1          | 210       |
| 1050N 5110P | 1         | 85        | 11        | 76        | .1        | 41        | 60        | 2665      | 7.48  | 12        | 5        | ND        | 1         | 11        | 1         | 5         | 2         | 308      | . 58    | .019 | 4         | 152       | .76     | 13        | .80     | - 4      | 3.90    | .04     | .01 | 5        | 6          | 210       |
| 1550W 5450F | i         | 142       | 10        | 97        | 2         | 101       | 19        | 754       | 6.20  | 13        | 5        | HD        | 1         | 17        | 1         | 1         | 2         | 194      | 1.02    | .039 | 4         | 108       | 1.65    | 14        | .62     | 4        | 5.29    | .04     | .01 | 1        | 1          | 260       |
| tojun jijun | 1         | 170       | 10        | 117       | 1         | 148       | 13        | 499       | 5.18  |           | 5        | ND        | 1         | 18        | 1         | 4         | 2         | 150      | 1.14    | .042 | 6         | 100       | 2.05    | 14        | .50     | 5        | 5.85    | . 02    | .01 | 4        | 1          | 160       |
| 18JUN STOUL | •         | 119       |           | 110       | ••        | 110       |           |           |       | •         | -        |           | •         | • -       | -         |           | -         |          |         |      |           |           |         |           |         |          |         |         |     |          |            |           |
| 48508 54702 | 1         | 98        | 9         | 60        | .2        | 53        | 13        | 237       | 6.94  | 11        | 5        | ND        | 1         | 8         | 1         | 6         | 2         | 254      | .55     | .024 | 4         | 165       | .70     | 10        | .64     | 2        | 6.69    | .04     | .01 | 4        | 4          | 270       |
| 4850N 5480E | 1         | 97        | 10        | 56        | .1        | 65        | 14        | 278       | 8.12  | 6         | 5        | ND        | 1         | 9         | 1         | 5         | 2         | 243      | .56     | .022 | 6         | 146       | .11     | 8         | .58     | 2        | 6.82    | .02     | .01 | 6        | 3          | 280       |
| 1850N 5490R | 1         | 127       | 13        | 67        | .2        | 58        | 13        | 277       | 10.12 | 11        | 5        | SD        | 1         | 7         | 1         | 6         | 2         | 318      | .51     | .019 | 2         | 204       | .70     | 8         | .70     | 2        | 7.04    | .03     | .01 | 5        | 1          | 130       |
| 10100 51000 | 1         | 114       | 13        | 71        | .1        | 50        | 13        | 273       | 12.17 | 7         | 5        | ND        | 1         | 7         | 2         | 6         | 2         | 354      | . 42    | .019 | 2         | 221       | .56     | 9         | .73     | 2        | 7.40    | .02     | .01 | 5        | 1          | 200       |
| 19208 19108 | ;         |           | 6         | 69        | .1        | 35        | 13        | 340       | 6.44  | 15        | 5        | ND        | 1         | 14        | 1         | 4         | 2         | 200      | .75     | .025 | 5         | 61        | . 66    | 23        | .47     | 4        | 3.07    | .03     | .01 | 3        | 1          | 150       |
| 435AU 404AT | 4         | 11        | ٠         |           | ••        | ••        | ••        |           |       |           | •        |           | -         | - •       |           |           |           |          |         |      |           |           |         |           |         |          |         |         |     |          |            |           |
| 1950N 48707 | ,         | 58        | 9         | 76        | .2        | 56        | 19        | 903       | 4.28  | 11        | 5        | ND        | 1         | 23        | 1         | 2         | 2         | 163      | 1.19    | .044 | 9         | 68        | 1.05    | - 44      | . 32    | 5        | 4.01    | .03     | .02 | 2        | 3          | 180 -     |
| STD C/AU-S  | 19        | 63        | 37        | 132       | 7.5       | 71        | 31        | 1169      | 4.18  | 42        | 22       | 7         | 40        | 53        | 19        | 17        | 22        | 60       | . 50    | .090 | 42        | 61        | .92     | 181       | .07     | 34       | 1.32    | .07     | .14 | 12       | 48         | 1300      |

Page 17

ŧ

ŧ

1

.

ŧ

1

C

t

٢

ţ

4

ŧ

ACME ANALYTICAL LABORATORIES LTD.

. . .

5025N 48603

1 63

A CANADA AND A SACAR

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

ï

t

1

Ć

ť

ć

ć

(

(

€

Ć

(

(

C

• (

(

L.

2 5.10 .01 .02 1 1 350

6 90 .75 24 .33

# GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-ENO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CE NG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. FROM IN CRAW SAMPLE - HG AWALYSTS BY FLAMLESS 11.

|                                                                                        |                         |                            |                            |                             | - SAN                        | PLE TH                             | :K: S01                    | 11                               | AU' AN                                | AP1212                          |                       | IIUN .                     | LU GAA                | n JANI                           | 1 <b>2</b> . 1        |                            |                        | う                               | <u>r</u>                         |                                      |                          |                              |                                 |                            |                                 |                        |                                      |                                        |                                        |                       |                       |                                   |
|----------------------------------------------------------------------------------------|-------------------------|----------------------------|----------------------------|-----------------------------|------------------------------|------------------------------------|----------------------------|----------------------------------|---------------------------------------|---------------------------------|-----------------------|----------------------------|-----------------------|----------------------------------|-----------------------|----------------------------|------------------------|---------------------------------|----------------------------------|--------------------------------------|--------------------------|------------------------------|---------------------------------|----------------------------|---------------------------------|------------------------|--------------------------------------|----------------------------------------|----------------------------------------|-----------------------|-----------------------|-----------------------------------|
| DATE RECEI                                                                             | VED:                    | KAT                        | 13 19                      | 88                          | DA                           | TE I                               | REPO                       | RT I                             | MAIL                                  | ED:                             | Ma                    | y X                        | 89/85                 | 3                                | AS                    | SAYE                       | rC.                    |                                 | ,<br>                            | 71                                   | о.то                     | YE C                         | DR C                            | .LEC                       | NG,                             | CEI                    | RTIF                                 | IED                                    | B.C                                    | . AS                  | SAYI                  | IRS                               |
|                                                                                        |                         |                            |                            |                             |                              |                                    | BOU                        | NDA                              | RY D                                  | RILI                            | LING                  | INC                        | . PI                  | ROJE                             | ECT-                  | 103                        | F                      | ile                             | # 8                              | 8-14                                 | 124                      | F                            | age                             | 1                          |                                 |                        |                                      |                                        |                                        |                       |                       |                                   |
| SAMPLE‡                                                                                | NC<br>PPN               | Cu<br>PPH                  | P <u>b</u><br>PPM          | ZD<br>PPM                   | Ag<br>PPN                    | NI<br>PPH                          | Co<br>PPN                  | Mn<br>PPN                        | Ie<br>ł                               | as<br>PPN                       | U<br>PPX              | Au<br>?PX                  | ET<br>PPK             | ST<br>PPN                        | Cd<br>P?M             | SD<br>PPH                  | Bi<br>PPM              | V<br>PPX                        | Ca<br>ł                          | P                                    | La<br>PPN                | CT<br>PPH                    | Hg<br>۲                         | Ba<br>PPM                  | Ti<br>ł                         | B<br>PPM               | Al<br>3                              | Na<br>ł                                | K<br>ł                                 | ¥<br>PPM              | Au*<br>PPB            | Hç<br>PPB                         |
| 3075N 4753E<br>5075N 47503<br>5075N 4773E<br>5075N 4730E<br>5075N 4730E<br>5075N 4730E | 1<br>1<br>2<br>5<br>4   | 67<br>46<br>48<br>89<br>72 | E<br>10<br>11<br>5<br>7    | 26<br>40<br>55<br>65<br>85  | .1<br>.1<br>.1<br>.2<br>.1   | 18<br>21<br>39<br>38<br>52         | 7<br>9<br>14<br>19<br>20   | 142<br>216<br>220<br>437<br>1301 | 6.15<br>7.44<br>7.58<br>6.82<br>5.56  | 3E9<br>171<br>315<br>515<br>422 | 5<br>5<br>5<br>5<br>5 | ם א<br>סא<br>כא<br>סא      | 1<br>1<br>2<br>1<br>1 | 4<br>10<br>18<br>15<br>47        | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>12<br>2<br>2<br>2 | 99<br>201<br>205<br>169<br>137  | .05<br>.33<br>.43<br>.53<br>1.42 | .037<br>.022<br>.324<br>.021<br>.081 | 4<br>5<br>13<br>10<br>17 | 77<br>89<br>100<br>90<br>54  | .13<br>.39<br>.27<br>.38<br>.66 | 7<br>11<br>19<br>16<br>38  | .03<br>.27<br>.25<br>.21<br>.20 | 2<br>9<br>5<br>2<br>11 | 1.99<br>3.12<br>4.34<br>4.24<br>2.63 | .01<br>.01<br>.01<br>.01<br>.01<br>.02 | .02<br>.02<br>.02<br>.02<br>.02<br>.05 | 2<br>2<br>1<br>1<br>1 | 1<br>1<br>3<br>1<br>1 | 230<br>320<br>620<br>700<br>1200  |
| 5075X 48002<br>5075N 48102<br>5075N 48203<br>5075N 48203<br>5075N 48303<br>5075N 48408 | 2<br>1<br>14<br>14      | 51<br>44<br>46<br>42<br>33 | 17<br>11<br>9<br>5<br>21   | 54<br>53<br>48<br>75<br>113 | .1<br>.1<br>.1<br>.1         | 31<br>21<br>20<br>36<br>66         | 16<br>10<br>9<br>18<br>29  | 258<br>221<br>264<br>310<br>376  | 8.81<br>7.79<br>7.13<br>5.69<br>7.90  | 21<br>38<br>9<br>65<br>91       | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>3      | 9<br>10<br>10<br>12<br>15        | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 15<br>4<br>4<br>7<br>2 | 235<br>229<br>221<br>167<br>153 | .33<br>.43<br>.22<br>.41<br>.22  | .015<br>.019<br>.016<br>.017<br>.023 | 4<br>6<br>4<br>7<br>17   | 122<br>106<br>99<br>73<br>99 | .49<br>.28<br>.40<br>.49<br>.34 | 13<br>13<br>14<br>18<br>15 | .50<br>.39<br>.45<br>.32<br>.26 | 4<br>6<br>3<br>2<br>2  | 5.50<br>5.83<br>3.87<br>4.27<br>6.06 | .01<br>.01<br>.01<br>.01<br>.01        | .01<br>.03<br>.03<br>.02<br>.02        | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>2<br>1<br>1 | 660<br>380<br>130<br>460<br>820   |
| 5075N 485CE<br>5075N 486C2<br>5075N 486C2<br>5075N 48702<br>5075N 48302<br>5075N 4890E | 19<br>13<br>1<br>1<br>1 | 37<br>29<br>55<br>42<br>52 | 22<br>20<br>12<br>12<br>10 | 169<br>89<br>58<br>35<br>52 | .2<br>.1<br>.1<br>.1<br>.2   | 35<br>38<br>35<br>18<br>33         | 12<br>12<br>14<br>13<br>13 | 1408<br>870<br>348<br>205<br>270 | 5.37<br>6.02<br>8.40<br>9.78<br>6.94  | 178<br>151<br>15<br>9<br>2      | 5<br>5<br>5<br>5<br>5 | DR<br>Dr<br>Dr<br>Dr<br>Dr | 1<br>1<br>2<br>2<br>1 | 43<br>12<br>10<br>11<br>11       | 1<br>1<br>1<br>1      | 4<br>2<br>2<br>2<br>2      | 9<br>2<br>7<br>8<br>4  | 82<br>91<br>239<br>257<br>178   | 3.38<br>.58<br>.35<br>.24<br>.25 | .042<br>.025<br>.015<br>.019<br>.020 | 12<br>17<br>4<br>4       | 47<br>55<br>115<br>108<br>89 | .88<br>.17<br>.59<br>.44<br>.65 | 16<br>8<br>15<br>15<br>14  | .06<br>.09<br>.46<br>.46<br>.35 | 6<br>4<br>2<br>4<br>5  | 2.51<br>2.38<br>4.75<br>3.39<br>3.95 | .01<br>.01<br>.01<br>.01<br>.01        | .03<br>.01<br>.03<br>.03<br>.04        | 1<br>I<br>I<br>1      | 2<br>1<br>1<br>1<br>2 | 1200<br>1600<br>140<br>190<br>210 |
| 5075N 4900E<br>5075N 4910E<br>5075N 4910E<br>5075N 4930E<br>5075N 4930E<br>5075N 4940E | 1<br>1<br>1<br>1<br>1   | 46<br>41<br>37<br>73<br>58 | 8<br>7<br>14<br>9<br>10    | 47<br>51<br>39<br>58<br>55  | .1<br>.3<br>.2<br>.1         | 38<br>31<br>20<br>39<br>31         | 11<br>10<br>8<br>12<br>12  | 249<br>210<br>168<br>255<br>312  | 5.74<br>4.36<br>5.28<br>6.44<br>5.99  | 4<br>5<br>3<br>9<br>11          | 5<br>5<br>5<br>5<br>5 | KD<br>NC<br>ND<br>ND       | 1<br>1<br>1<br>2<br>2 | 12<br>13<br>12<br>12<br>15       | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>4<br>2<br>5<br>2  | 160<br>131<br>180<br>167<br>160 | .40<br>.41<br>.23<br>.29<br>.31  | .017<br>.038<br>.016<br>.022<br>.031 | 4<br>6<br>5<br>5         | 67<br>64<br>60<br>95<br>75   | .73<br>.59<br>.31<br>.61<br>.56 | 15<br>18<br>16<br>20<br>20 | .29<br>.27<br>.31<br>.32<br>.32 | 7<br>3<br>4<br>8<br>5  | 3.18<br>3.70<br>3.12<br>5.96<br>4.80 | .01<br>.01<br>.01<br>.01               | .02<br>.01<br>.02<br>.02<br>.03        | 2<br>1<br>2<br>1<br>1 | 1<br>1<br>1<br>1      | 260<br>170<br>160<br>170<br>200   |
| 5075N 49502<br>5075N 49502<br>5075N 49502<br>5075N 49702<br>5075N 49802<br>5075N 49802 | 111111                  | 41<br>51<br>37<br>41<br>56 | 12<br>7<br>12<br>14<br>3   | 47<br>52<br>35<br>44<br>50  | .1                           | 20<br>26<br>16<br>17<br>27         | 12<br>9<br>7<br>7<br>12    | 232<br>252<br>170<br>208<br>254  | 7.36<br>5.99<br>6.68<br>6.69<br>7.45  | 8<br>3<br>7<br>7<br>12          | 5<br>5<br>5<br>5<br>5 | YD<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>1<br>2 | 12<br>12<br>11<br>12<br>12<br>12 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 3<br>2<br>8<br>10<br>7 | 214<br>183<br>223<br>222<br>224 | .35<br>.45<br>.28<br>.30<br>.33  | .020<br>.018<br>.018<br>.026<br>.023 | 5<br>5<br>4<br>5<br>5    | 81<br>85<br>83<br>95<br>104  | .46<br>.60<br>.34<br>.35<br>.43 | 15<br>16<br>15<br>21<br>19 | .40<br>.35<br>.45<br>.42<br>.44 | 2<br>5<br>2<br>2<br>2  | 3.59<br>3.98<br>3.29<br>3.89<br>5.07 | .01<br>.01<br>.01<br>.01<br>.01        | .92<br>.02<br>.02<br>.02<br>.02<br>.03 | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>2<br>1 | 160<br>190<br>180<br>200<br>180   |
| 5075N 500CE<br>5025N 47702<br>5025N 4783E<br>5025N 4783E<br>5025N 47902<br>5025N 4800E | 14                      | 68<br>58<br>56<br>61       | 13<br>17<br>8<br>10        | 50<br>61<br>71<br>80        | ; .1<br>5 .1<br>1 .1<br>5 .1 | . 36<br>49<br>. 26<br>1 23<br>1 14 | 14<br>28<br>14<br>19<br>16 | 304<br>508<br>221<br>275<br>233  | 5.66<br>8.51<br>8.00<br>8.78<br>8.00  | 7<br>1865<br>85<br>236<br>253   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>1<br>3<br>2<br>2 | 13<br>35<br>5<br>6<br>3          | 1<br>1<br>1<br>1<br>1 | 2<br>19<br>2<br>2<br>2     | 2<br>2<br>5<br>2<br>2  | 189<br>190<br>144<br>195<br>147 | .47<br>.18<br>.05<br>.02<br>.01  | .025<br>.032<br>.023<br>.024<br>.024 | 4<br>15<br>2<br>4<br>4   | 83<br>105<br>98<br>52<br>42  | .64<br>.11<br>.31<br>.22<br>.15 | 25<br>10<br>14<br>7<br>8   | .40<br>.02<br>.01<br>.01<br>.01 | 3<br>2<br>2<br>3<br>2  | 3.99<br>2.48<br>5.53<br>2.55<br>2.44 | .01<br>.01<br>.01<br>.01<br>.01        | .02<br>.01<br>.02<br>.02<br>.04        | 1<br>1<br>2<br>1<br>1 | 1<br>1<br>1<br>2      | 170<br>2300<br>450<br>720<br>300  |
| 5023N 4810Z<br>5023N 48303<br>5023N 48402<br>5023N 48402<br>5025N 48308                |                         | 1 31<br>1 21<br>1 51       |                            | 3 <br>3 <br>3 <br>3 <br>4   | 8 .1<br>5 .1<br>0 .1<br>7 .1 | 1 14<br>1 14<br>2 26<br>2 30       | 11<br>12<br>13<br>13       | 20)<br>27(<br>3 25)<br>3 24)     | 5 10.23<br>) 9.09<br>3 3.02<br>4 7.61 | 22<br>4<br>8<br>12              | 5<br>5<br>5<br>5      | NC<br>Dr<br>Dr<br>Dr       | 2<br>2<br>3           | B<br>7<br>10<br>15               | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2           | 4<br>9<br>5<br>6       | 294<br>206<br>284<br>213        | . 29<br>. 06<br>. 13<br>. 35     | .011<br>.020<br>.013<br>.015         | 4<br>2<br>3<br>4         | 74<br>50<br>104<br>104       | .30<br>1.09<br>.43<br>.55       | 11<br>13<br>17<br>20       | .43<br>.05<br>.50<br>.45        | 2<br>2<br>2<br>2       | 2.50<br>2.38<br>3.85<br>4.70         | .01<br>.01<br>.01<br>.01               | .03<br>.04<br>.03<br>.02               | 1<br>1<br>1           | 1<br>1<br>1<br>1      | 230<br>100<br>80<br>221           |

6 153 .54 .332 7 81 .39 25 .33 3 4.42 .01 .04 1 1 210 ND 1 46 10 57 .1 54 39 795 5.07 5 5 18 1 2 - 5 1 5015% 4870Z .. .... • • . . . . . . . .

51 .1 33 16 227 5.79 8 5 KD 2 14 1 2 5 163 .32 .020

| SAMPLE                                                                                 | No<br>PPN             | Cu<br>PPM                  | Pb<br>PPM                  | Zn<br>PPN                  | λg<br>PPM            | Ni<br>PPM                  | Co<br>PPN                  | ND<br>PPK                        | Te<br>3                                      | λs<br>PPH                   | U<br>PPM              | Au<br>PPH                  | Th<br>PPN             | ST<br>PPM                  | Cd<br>PPM             | SD<br>PPM                  | Bi<br>PPM                  | V<br>PPN                        | Ca<br>t                          | P<br>1                               | La<br>PPH               | CT<br>PPM                    | Ng<br>X                         | Ba<br>PPN                  | Ti<br>Z                         | B<br>PPM              | ۸1<br>۲                              | Ha<br>Ł                         | K<br>ł                          | ¥<br>PPM         | Au*<br>PPB            | Eg<br>PPB                        |  |
|----------------------------------------------------------------------------------------|-----------------------|----------------------------|----------------------------|----------------------------|----------------------|----------------------------|----------------------------|----------------------------------|----------------------------------------------|-----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|----------------------------------|--------------------------------------|-------------------------|------------------------------|---------------------------------|----------------------------|---------------------------------|-----------------------|--------------------------------------|---------------------------------|---------------------------------|------------------|-----------------------|----------------------------------|--|
| 5025N 4880B<br>5025N 4890B<br>5025N 4900B<br>5025N 4910B<br>5025N 4910B<br>5025N 4920B | 1<br>1<br>1<br>1      | 86<br>53<br>48<br>76<br>42 | 17<br>13<br>10<br>14<br>13 | 85<br>62<br>47<br>61<br>40 | .1<br>.1<br>.1<br>.1 | 45<br>48<br>27<br>56<br>21 | 90<br>21<br>11<br>16<br>9  | 1895<br>350<br>227<br>280<br>187 | 8.06<br>4.97<br>6.86<br>4.13<br>7.77         | 6<br>2<br>11<br>5<br>2      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>2<br>1<br>2 | 8<br>15<br>13<br>12<br>13  | 1<br>1<br>1<br>1      | 3<br>3<br>2<br>2<br>2      | 2<br>2<br>6<br>2           | 188<br>128<br>202<br>130<br>207 | .20<br>.51<br>.26<br>.58<br>.26  | .065<br>.031<br>.015<br>.026<br>.016 | 9<br>5<br>3<br>8<br>4   | 124<br>72<br>91<br>70<br>80  | .39<br>.80<br>.48<br>.93<br>.44 | 16<br>21<br>21<br>25<br>15 | .21<br>.29<br>.37<br>.32<br>.34 | 2<br>4<br>5<br>2<br>3 | 8.72<br>4.75<br>4.91<br>5.22<br>3.58 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.03<br>.02<br>.03<br>.03 | 3<br>1<br>1<br>1 | 2<br>1<br>2<br>1<br>2 | 350<br>560<br>90<br>160<br>150   |  |
| 5025N 4930K<br>5025N 4940E<br>5025N 4950E<br>5025N 4960E<br>5025N 4960E<br>5025H 4970E | 1<br>1<br>1<br>1<br>1 | 57<br>42<br>67<br>38<br>61 | 17<br>17<br>9<br>10<br>16  | 58<br>42<br>52<br>45<br>47 | .1<br>.1<br>.1<br>.1 | 34<br>21<br>35<br>24<br>39 | 14<br>9<br>13<br>8<br>13   | 267<br>195<br>298<br>212<br>301  | 7.70<br>7.39<br>6.63<br>7.17<br>7.31         | 8<br>5<br>14<br>6<br>8      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2 | 10<br>13<br>12<br>10<br>10 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 213<br>216<br>195<br>233<br>215 | .46<br>.27<br>.39<br>.37<br>.41  | .017<br>.014<br>.019<br>.011<br>.015 | 5<br>4<br>5<br>4<br>4   | 98<br>81<br>101<br>80<br>105 | .69<br>.44<br>.70<br>.50<br>.69 | 17<br>24<br>23<br>14<br>22 | .45<br>.39<br>.39<br>.48<br>.42 | 3<br>2<br>6<br>2<br>2 | 4.54<br>4.03<br>5.32<br>3.03<br>5.08 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.03<br>.02<br>.03<br>.02 | 1<br>1<br>1<br>1 | 3<br>1<br>1<br>2<br>1 | 200<br>110<br>160<br>150<br>130  |  |
| 5025¥ 49808<br>5025¥ 49908<br>5025¥ 50008<br>4975¥ 47708<br>4975¥ 47808                | 1<br>1<br>7<br>28     | 58<br>64<br>60<br>61<br>87 | 12<br>20<br>9<br>11<br>20  | 53<br>52<br>53<br>72<br>84 | .1<br>.1<br>.1<br>.1 | 30<br>34<br>30<br>35<br>41 | 10<br>12<br>10<br>25<br>32 | 222<br>258<br>250<br>2519<br>840 | 7.22<br>6.73<br>6.70<br>8.14<br>11.37        | 7<br>8<br>6<br>5884<br>7812 | 5<br>5<br>5<br>6      | סא<br>סא<br>סא<br>סא<br>סא | 2<br>2<br>1<br>1<br>2 | 10<br>12<br>11<br>28<br>18 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>3<br>5           | 2<br>2<br>2<br>2<br>2<br>2 | 209<br>210<br>208<br>112<br>87  | .39<br>.40<br>.42<br>.86<br>.36  | .017<br>.018<br>.016<br>.139<br>.066 | 4<br>5<br>5<br>11<br>15 | 93<br>96<br>90<br>46<br>39   | .56<br>.59<br>.28<br>.19        | 19<br>19<br>16<br>29<br>11 | .35<br>.35<br>.37<br>.11<br>.03 | 4<br>2<br>5<br>2      | 4.34<br>4.60<br>4.18<br>2.89<br>1.83 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.03<br>.02<br>.07<br>.04 | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>1      | 170<br>180<br>160<br>400<br>1200 |  |
| 4975N 47908<br>4975N 48008<br>4975N 48108<br>4975N 48208<br>4975N 48208<br>4975N 48308 | 3<br>1<br>1<br>1<br>1 | 47<br>51<br>50<br>44<br>48 | 14<br>7<br>9<br>10<br>13   | 53<br>72<br>56<br>62<br>40 | .1<br>.1<br>.1<br>.1 | 19<br>38<br>46<br>28<br>23 | 17<br>16<br>40<br>12<br>8  | 493<br>437<br>1493<br>288<br>203 | 8.87<br>4.31<br>5.84<br>6.63<br>7.00         | 845<br>69<br>20<br>4<br>7   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>1<br>1<br>2<br>2 | 12<br>21<br>23<br>12<br>9  | 1<br>1<br>1<br>1      | 2<br>4<br>4<br>2<br>2      | 3<br>3<br>2<br>2<br>2<br>2 | 231<br>124<br>161<br>207<br>231 | .36<br>.84<br>.77<br>.38<br>.31  | .018<br>.034<br>.042<br>.016<br>.016 | 5<br>13<br>14<br>5<br>5 | 83<br>61<br>182<br>86<br>108 | .37<br>.90<br>.61<br>.47<br>.39 | 18<br>41<br>25<br>20<br>13 | .34<br>.18<br>.24<br>.35<br>.46 | 2<br>3<br>2<br>3<br>2 | 3.81<br>3.42<br>5.83<br>4.23<br>4.78 | .01<br>.01<br>.01<br>.01        | .03<br>.04<br>.03<br>.03<br>.03 | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>1      | 250<br>160<br>180<br>150<br>170  |  |
| 4975¥ 4840¥<br>4975¥ 48508<br>4975¥ 48608<br>4975¥ 48608<br>4975¥ 48808                | 1<br>1<br>3<br>2<br>4 | 52<br>55<br>51<br>73<br>47 | 12<br>12<br>19<br>7<br>11  | 51<br>56<br>77<br>35<br>64 | .1<br>.1<br>.1<br>.1 | 29<br>40<br>40<br>24<br>22 | 10<br>13<br>17<br>11<br>9  | 203<br>271<br>272<br>376<br>623  | 6.70<br>5.07<br>5.16<br>6.43<br>4.73         | 7<br>9<br>11<br>373<br>270  | 5<br>5<br>5<br>5<br>5 | ID<br>ID<br>ID<br>ID<br>ID | 2<br>2<br>1<br>1<br>1 | 9<br>15<br>14<br>7<br>28   | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>4<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 204<br>187<br>179<br>106<br>119 | .34<br>.48<br>.40<br>.25<br>1.57 | .021<br>.029<br>.045<br>.059<br>.032 | 5<br>6<br>8<br>8<br>7   | 101<br>78<br>75<br>82<br>56  | .49<br>.69<br>.53<br>.17<br>.37 | 14<br>20<br>18<br>9<br>22  | .39<br>.39<br>.29<br>.03<br>.16 | 7<br>5<br>2<br>2<br>7 | 5.29<br>4.72<br>5.08<br>2.70<br>2.78 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.03<br>.02<br>.02<br>.03 | 1<br>1<br>1<br>1 | 1<br>2<br>1<br>1<br>1 | 210<br>150<br>200<br>280<br>300  |  |
| 4975H 4890K<br>4975H 4900B<br>4975H 4910B<br>4975H 4920B<br>4975H 4930B                | 1<br>1<br>2<br>1<br>1 | 52<br>42<br>42<br>63<br>51 | 12<br>15<br>15<br>7<br>12  | 63<br>67<br>54<br>59<br>46 | .1<br>.1<br>.1<br>.1 | 49<br>55<br>43<br>35<br>28 | 20<br>20<br>15<br>11<br>10 | 243<br>265<br>232<br>243<br>288  | 4.80<br>4.34<br>3.53<br>7.13<br>5.72         | 8<br>2<br>5<br>5<br>4       | 5<br>5<br>5<br>5<br>5 | ID<br>ID<br>ID<br>ID<br>ID | 1<br>1<br>1<br>1      | 17<br>15<br>21<br>10<br>13 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>3<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 239<br>187<br>164<br>201<br>161 | .64<br>.67<br>.80<br>.27<br>.37  | .021<br>.032<br>.036<br>.014<br>.019 | 4<br>6<br>7<br>3<br>4   | 106<br>83<br>63<br>106<br>98 | .80<br>.86<br>.71<br>.65<br>.63 | 26<br>23<br>28<br>18<br>20 | .53<br>.38<br>.29<br>.38<br>.37 | 7<br>4<br>4<br>2<br>3 | 4.45<br>4.48<br>3.50<br>4.46<br>4.42 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.02<br>.04<br>.02 | 1<br>1<br>1<br>1 | 2<br>1<br>1<br>2<br>2 | 150<br>160<br>190<br>130<br>170  |  |
| 4975H 4940E<br>4975H 4950E<br>4975H 4950E<br>4975H 4960E<br>4975H 4970E<br>4975H 4980E | 1<br>1<br>1<br>1      | 39<br>44<br>80<br>61<br>51 | 14<br>17<br>13<br>11<br>13 | 55<br>39<br>71<br>58<br>54 | .1<br>.1<br>.1<br>.1 | 23<br>22<br>57<br>44<br>34 | 9<br>8<br>24<br>14<br>10   | 237<br>220<br>536<br>261<br>240  | 7 6.40<br>7.05<br>5 7.68<br>1 6.71<br>5 5.24 | 3<br>4<br>9<br>7<br>11      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>2<br>1<br>1 | 14<br>13<br>12<br>13<br>14 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 179<br>208<br>232<br>193<br>161 | .47<br>.33<br>.50<br>.43<br>.45  | .017<br>.014<br>.016<br>.016<br>.028 | 5<br>5<br>5<br>4        | 85<br>87<br>116<br>90<br>80  | .56<br>.45<br>.88<br>.67<br>.74 | 18<br>19<br>24<br>19<br>19 | .37<br>.39<br>.47<br>.35<br>.33 | 2<br>2<br>2<br>3<br>7 | 3.80<br>3.69<br>5.43<br>4.58<br>4.01 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.03<br>.02<br>.03 | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>1      | 150<br>170<br>90<br>160<br>280   |  |
| 4975N 4990K<br>STD C/AU-S                                                              | 1<br>20               | 62<br>61                   | 14                         | 50<br>132                  | .1<br>7.3            | 37<br>72                   | 12                         | 312<br>1083                      | 2 6.62<br>3 4.17                             | 6<br>41                     | 5<br>16               | ND<br>8                    | 1<br>40               | 12<br>53                   | 1<br>19               | 2<br>17                    | 2<br>23                    | 194<br>61                       | .35<br>.48                       | .020<br>.091                         | 5<br>40                 | 85<br>64                     | .56<br>.90                      | 22<br>182                  | .32<br>.08                      | 6<br>33               | 4.12<br>1.99                         | .01<br>.07                      | .02<br>.15                      | 1<br>13          | 2<br>52               | 200<br>1400                      |  |

Page 2

(

(

(

6

(

Ť.

Ć

(

(

C

(

(

(

Ċ

(

(

÷.

| SAMPLE                                                                                 | No<br>PPM              | Cu<br>PPM                  | PD<br>P <b>PK</b>          | Zn<br>PP¥                         | Ag<br>PPN                  | Bi<br>PPH                  | CD<br>PPH                  | ak<br>PPN                          | re<br>t                              | λs<br>PPM                     | U<br>PPN              | AU<br>PPM                  | th<br>PPM             | ST<br>PP¥                    | Cđ<br>PPM             | SD<br>PPN                  | Bi<br>PPM                  | V<br>PPM                        | Ca<br>\$                         | P<br>3                                       | La<br>PPM                 | CT<br>PPH                    | Ng<br>S                          | Ba<br>PPM                    | Ti<br>ł                         | B<br>PPM                | גן<br>ג                              | Na<br>K                         | K<br>L                          | 7<br>PPN              | AU"<br>PP3            | Hg<br>PPB                       |  |
|----------------------------------------------------------------------------------------|------------------------|----------------------------|----------------------------|-----------------------------------|----------------------------|----------------------------|----------------------------|------------------------------------|--------------------------------------|-------------------------------|-----------------------|----------------------------|-----------------------|------------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|----------------------------------|----------------------------------------------|---------------------------|------------------------------|----------------------------------|------------------------------|---------------------------------|-------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|---------------------------------|--|
| 4950N 488CE<br>4925N 47503<br>4925N 47603<br>4925N 47603<br>4925N 47703<br>4925N 4783E | 1<br>3<br>1<br>1<br>3  | 11<br>32<br>32<br>36<br>51 | 5<br>10<br>12<br>8<br>14   | 44<br>87<br>34<br>37<br>45        | .1<br>.1<br>.1<br>.1       | 2<br>23<br>16<br>19<br>17  | 2<br>6<br>8<br>8<br>12     | 145<br>290<br>114<br>231<br>155    | 4.28<br>5.87<br>7.45<br>5.19<br>3.73 | 2<br>477<br>131<br>107<br>555 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>2      | 5<br>9<br>7<br>6<br>5        | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>4<br>5      | 2<br>2<br>2<br>2<br>2<br>2 | 70<br>107<br>172<br>84<br>202   | .06<br>.29<br>.25<br>.22<br>.15  | .016<br>.088<br>.053<br>.240<br>.033         | 7<br>7<br>5<br>5<br>2     | 15<br>80<br>105<br>77<br>66  | .26<br>.27<br>.27<br>.19<br>.17  | 10<br>9<br>9<br>10<br>6      | .02<br>.05<br>.04<br>.01<br>.13 | 3<br>9<br>7<br>11<br>8  | 2.59<br>1.56<br>3.00<br>2.39<br>1.75 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.06<br>.03<br>.03<br>.04 | 1<br>1<br>1<br>2      | 1<br>1<br>1<br>1      | 90<br>290<br>160<br>180<br>100  |  |
| 4925N 47303<br>4925N 4803E<br>4925N 48102<br>4925N 48102<br>4925N 48102<br>4925N 48102 | 1<br>1<br>1<br>1       | 90<br>115<br>52<br>8<br>15 | 19<br>4<br>5<br>3<br>5     | <b>49</b><br>65<br>62<br>36<br>50 | .2<br>.1<br>.2<br>.2<br>.1 | 18<br>48<br>34<br>1<br>4   | 12<br>19<br>14<br>3<br>32  | 257<br>399<br>273<br>120<br>2563   | 9.36<br>3.57<br>4.63<br>2.90<br>4.36 | 36<br>10<br>5<br>4<br>5       | 5<br>5<br>5<br>5<br>5 | ND<br>NE<br>ND<br>ND       | 3<br>1<br>1<br>2<br>1 | 7<br>15<br>23<br>5<br>10     | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 3<br>2<br>4<br>2<br>2      | 331<br>155<br>204<br>23<br>78   | .45<br>.89<br>.79<br>.07<br>.15  | .031<br>.030<br>.040<br>.026<br>.064         | 4<br>7<br>7<br>8<br>12    | 114<br>66<br>63<br>5<br>30   | .44<br>1.29<br>.32<br>.47<br>.39 | 6<br>27<br>45<br>6<br>45     | .66<br>.49<br>.48<br>.01<br>.02 | 7<br>6<br>11<br>7<br>4  | 5.89<br>4.83<br>4.08<br>2.20<br>3.25 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.03<br>.05<br>.05<br>.05 | 1<br>1<br>1<br>1<br>1 | 3<br>1<br>1<br>1<br>2 | 200<br>180<br>210<br>60<br>170  |  |
| 4925N 4840E<br>4925N 4850E<br>4925N 4850E<br>4925N 4850E<br>4925N 48703<br>4925N 4880E | 2<br>2<br>1<br>1<br>2  | 24<br>24<br>13<br>67<br>13 | 9<br>6<br>6<br>9           | 55<br>64<br>51<br>62<br>34        | .1<br>.1<br>.1<br>.2       | 2<br>24<br>3<br>48<br>7    | 5<br>13<br>6<br>20<br>7    | 402<br>1112<br>2023<br>1298<br>291 | 4.05<br>5.34<br>3.02<br>4.58<br>5.80 | 7<br>23<br>5<br>4<br>3        | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>1<br>1<br>1<br>2 | 6<br>10<br>8<br>31<br>9      | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>3      | 4<br>2<br>2<br>2<br>2<br>2 | 71<br>125<br>31<br>145<br>159   | .12<br>.30<br>.22<br>1.70<br>.24 | .034<br>.040<br>.101<br>.048<br>.018         | 18<br>14<br>22<br>10<br>7 | 15<br>49<br>7<br>52<br>41    | .39<br>.33<br>.25<br>1.04<br>.23 | 33<br>31<br>47<br>53<br>16   | .01<br>.05<br>.01<br>.34<br>.27 | 10<br>9<br>9<br>11<br>5 | 2.63<br>3.33<br>1.49<br>3.13<br>2.29 | .01<br>.01<br>.01<br>.03<br>.03 | .06<br>.07<br>.09<br>.06<br>.01 | 1<br>1<br>1<br>2      | 1<br>1<br>1<br>1      | 110<br>210<br>220<br>200<br>80  |  |
| 4925N 489C8<br>4925N 49002<br>4925N 49102<br>4925N 49102<br>4925N 49202<br>4925N 49303 | 2<br>1<br>1<br>2<br>2  | 46<br>36<br>29<br>34<br>60 | 12<br>9<br>2<br>5<br>13    | 70<br>52<br>55<br>43<br>60        | .1<br>.1<br>.1<br>.1       | 46<br>25<br>28<br>25<br>54 | 25<br>9<br>12<br>14<br>24  | 974<br>240<br>291<br>512<br>2141   | 5.72<br>6.35<br>6.72<br>7.99<br>6.49 | 7<br>5<br>5<br>7<br>16        | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>2<br>1<br>1      | 16<br>15<br>20<br>19<br>20   | 1<br>1<br>1<br>1      | 2<br>3<br>2<br>2<br>2      | 2<br>3<br>2<br>2<br>2      | 186<br>188<br>188<br>239<br>149 | .76<br>.47<br>.67<br>.52<br>.88  | .035<br>.019<br>.017<br>.017<br>.018<br>.037 | 10<br>4<br>4<br>8         | 90<br>63<br>67<br>67<br>73   | .77<br>.45<br>.48<br>.41<br>.91  | 29<br>18<br>22<br>24<br>32   | .32<br>.30<br>.33<br>.39<br>.30 | 12<br>8<br>5<br>6<br>9  | 4.63<br>3.48<br>3.46<br>3.01<br>5.61 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.03<br>.03<br>.03<br>.03 | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>1<br>1 | 150<br>140<br>160<br>120<br>250 |  |
| 4925N 49403<br>4925N 49503<br>4925N 49608<br>4925N 49608<br>4925N 49708<br>4925N 49808 | 2<br>3<br>2<br>2<br>3  | 74<br>52<br>56<br>44<br>32 | 14<br>9<br>11<br>12<br>18  | 59<br>48<br>59<br>55<br>51        | .1<br>.2<br>.1<br>.1       | 49<br>24<br>30<br>25<br>17 | 17<br>12<br>12<br>10<br>14 | 517<br>48C<br>36B<br>354<br>202    | 6.38<br>8.33<br>6.88<br>6.54<br>8.94 | 13<br>25<br>57<br>16<br>15    | 5<br>5<br>5<br>5<br>5 | nd<br>Nd<br>Nd<br>Nd<br>Nd | 2<br>3<br>2<br>2<br>3 | 14<br>7<br>9<br>13<br>9      | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 183<br>214<br>192<br>171<br>207 | .43<br>.27<br>.30<br>.38<br>.27  | .025<br>.015<br>.021<br>.022<br>.022         | 7<br>4<br>4<br>5          | 94<br>99<br>82<br>84<br>94   | .97<br>.39<br>.47<br>.66<br>.30  | 29<br>15<br>17<br>22<br>12   | .34<br>.34<br>.19<br>.30<br>.41 | 13<br>5<br>4<br>12<br>3 | 5.67<br>4.73<br>4.08<br>4.44<br>5.94 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.03<br>.04<br>.03<br>.03 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>3      | 260<br>460<br>280<br>250<br>600 |  |
| 4925X 4990E<br>4750N 4840E<br>4750N 4860E<br>4750N 4800E<br>4750N 4900E<br>4750N 4920E | 14<br>1<br>1<br>1<br>I | 39<br>13<br>53<br>44<br>44 | 18<br>9<br>17<br>9<br>13   | 96<br>32<br>68<br>49<br>55        | .2<br>.1<br>.1<br>.2<br>.1 | 36<br>3<br>33<br>26<br>29  | 18<br>7<br>11<br>11<br>12  | 456<br>798<br>738<br>218<br>314    | 9.49<br>1.96<br>5.23<br>4.79<br>8.69 | 82<br>15<br>13<br>8<br>7      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 3<br>2<br>1<br>1<br>1 | 14<br>598<br>264<br>15<br>11 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>4<br>2      | 2<br>5<br>2<br>2<br>2      | 190<br>16<br>135<br>127<br>198  | .50<br>.50<br>.54<br>.32<br>.37  | .032<br>.077<br>.033<br>.033<br>.026         | 5<br>28<br>56<br>9<br>6   | 71<br>6<br>83<br>74<br>94    | .43<br>.55<br>.53<br>.65<br>.61  | 10<br>191<br>139<br>23<br>15 | .27<br>.01<br>.24<br>.24<br>.41 | 2<br>7<br>5<br>2<br>10  | 3.72<br>1.73<br>5.52<br>4.76<br>4.35 | .01<br>.01<br>.01<br>.01<br>.01 | .04<br>.12<br>.04<br>.02<br>.03 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>2<br>1 | 580<br>80<br>310<br>190<br>200  |  |
| 4750N 49402<br>4750N 49602<br>4750N 50202<br>4750N 50402<br>4730N 50402                | 1<br>1<br>1<br>1       | 44<br>42<br>93<br>72<br>45 | 10<br>10<br>11<br>10<br>13 | 57<br>56<br>100<br>60<br>43       | .1<br>.2<br>.2<br>.1<br>.1 | 30<br>24<br>54<br>27<br>20 | 11<br>10<br>25<br>14<br>9  | 273<br>176<br>453<br>322<br>200    | 6.19<br>2.79<br>4.84<br>6.83<br>5.34 | 7<br>7<br>15<br>20<br>6       | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>NC | 2<br>1<br>1<br>2<br>2 | 13<br>15<br>17<br>10<br>10   | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>3<br>2<br>2      | 183<br>146<br>190<br>190<br>228 | .46<br>.38<br>.58<br>.34<br>.33  | .027<br>.044<br>.064<br>.036<br>.020         | 8<br>12<br>11<br>25<br>5  | 90<br>66<br>110<br>116<br>75 | .75<br>.59<br>.71<br>.43<br>.39  | 15<br>34<br>25<br>18<br>11   | .43<br>.27<br>.38<br>.35<br>.46 | 2<br>11<br>11<br>7<br>4 | 4.73<br>4.51<br>5.59<br>4.33<br>3.21 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.04<br>.04<br>.23<br>.03 | 1<br>1<br>1<br>1      | 1<br>I<br>1<br>1      | 240<br>230<br>250<br>290<br>200 |  |
| 4750X 5030E<br>STE C/AU-S                                                              | 2<br>20                | 68<br>63                   | 4<br>40                    | 50<br>132                         | .1<br>7.5                  | 35<br>71                   | 14<br>31                   | 340<br>1049                        | 5.39<br>4.11                         | 11<br>43                      | 5<br>19               | NC<br>S                    | 1<br>40               | 11<br>53                     | 1<br>13               | 3<br>17                    | 2<br>21                    | 215<br>61                       | .64<br>.46                       | .027<br>.096                                 | 5<br>40                   | 79<br>64                     | .65<br>.92                       | 14<br>182                    | .52<br>.08                      | 10<br>35                | 4.33<br>1.98                         | .01<br>.07                      | .02<br>.15                      | 1<br>14               | 8<br>52               | 210<br>1300                     |  |

Page 3

(

(

(

(

Ć

(

(

•

(

(

(

i

(

ŧ.

i.

and the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the se

)

| SAMPLE                                                                                 | No<br>PPN             | CU<br>PPN                      | Pb<br>PPN                | Zn<br>PPK                   | Ag<br>PPN                  | NÍ<br>PPM                   | Co<br>PPH                  | Ma<br>PPN                         | Te<br>t                               | λs<br>PPN                  | U<br>PPN              | Au<br>PPK                        | Th<br>PPH             | ST<br>PPM                  | Cđ<br>PPN             | SD<br>PPM                  | Bİ<br>PPN                  | V<br>PPN                        | Ca<br>t                           | P<br>t                               | La<br>PPM              | CT<br>PPN                       | Ng<br>t                           | Ba<br>PPM                   | ti<br>t                         | B<br>PPM               | Al<br>3                              | Xa<br>t                         | r<br>ł                          | ¥<br>PPK              | Au*<br>PPB            | Hg<br>PPB                       |
|----------------------------------------------------------------------------------------|-----------------------|--------------------------------|--------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------------|---------------------------------------|----------------------------|-----------------------|----------------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-----------------------------------|--------------------------------------|------------------------|---------------------------------|-----------------------------------|-----------------------------|---------------------------------|------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|---------------------------------|
| 4750N 5100E<br>4750N 5120E<br>4750N 5140E<br>4750N 5160E<br>4750N 5180E                | 1<br>1<br>1<br>1      | 59<br>67<br>61<br>82<br>69     | 3<br>4<br>3<br>6<br>5    | 48<br>53<br>43<br>55<br>81  | .1<br>.1<br>.1<br>.1       | 35<br>50<br>26<br>51<br>68  | 13<br>17<br>12<br>17<br>44 | 222<br>291<br>218<br>277<br>3022  | 4.23<br>6.54<br>9.42<br>6.01<br>5.86  | 2<br>2<br>5<br>14<br>2     | 5<br>5<br>5<br>5<br>5 | 10<br>01<br>01<br>01<br>01<br>01 | 1<br>1<br>1<br>1      | 12<br>10<br>8<br>12<br>16  | 1<br>2<br>3<br>2<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 190<br>235<br>358<br>203<br>184 | .96<br>.81<br>.48<br>.79<br>.58   | .016<br>.011<br>.011<br>.017<br>.039 | 4<br>4<br>2<br>4<br>4  | 75<br>134<br>143<br>88<br>112   | .70<br>.77<br>.38<br>.77<br>1.13  | 9<br>11<br>6<br>15<br>21    | .55<br>.61<br>.85<br>.51<br>.42 | 2<br>8<br>5<br>3<br>7  | 3.82<br>5.00<br>4.20<br>3.85<br>4.24 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.03<br>.02<br>.02<br>.04 | 3<br>1<br>3<br>3<br>1 | 1<br>5<br>3<br>1<br>1 | 160<br>200<br>120<br>190<br>210 |
| 4750N 5200E<br>4750N 5220E<br>4750N 5240E<br>4750N 5260E<br>4750N 5280E                | 1<br>1<br>1<br>1      | 112<br>98<br>88<br>55<br>126   | 5<br>8<br>6<br>5<br>5    | 68<br>63<br>50<br>43<br>67  | .1<br>.1<br>.1<br>.1       | 64<br>57<br>32<br>32<br>95  | 24<br>19<br>13<br>13<br>22 | 630<br>351<br>231<br>202<br>343   | 5.92<br>7.53<br>10.54<br>6.81<br>5.16 | 8<br>4<br>2<br>2<br>2      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND       | 1<br>2<br>2<br>2<br>1 | 14<br>11<br>7<br>7<br>13   | 2<br>2<br>1<br>1      | 4<br>2<br>2<br>2<br>2      | 2<br>2<br>5<br>2<br>2      | 180<br>221<br>345<br>280<br>235 | .92<br>.69<br>.47<br>.68<br>.80   | .025<br>.023<br>.015<br>.012<br>.025 | 4<br>6<br>3<br>4<br>7  | 67<br>112<br>146<br>111<br>147  | 1.18<br>.93<br>.51<br>.74<br>1.27 | 25<br>17<br>10<br>7<br>9    | .45<br>.51<br>.72<br>.78<br>.53 | 11<br>6<br>2<br>5      | 4.35<br>5.23<br>4.60<br>3.62<br>6.58 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.02<br>.03<br>.03<br>.02 | 2<br>1<br>1<br>3<br>1 | 5<br>1<br>1<br>5      | 160<br>250<br>230<br>240<br>170 |
| 4750N 5300K<br>4750N 5320B<br>4750N 5340B<br>4750N 5360B<br>4750N 5380B                | 1<br>1<br>1<br>1      | 133<br>127<br>94<br>164<br>96  | 4<br>13<br>7<br>2<br>5   | 70<br>48<br>52<br>77<br>76  | .1<br>.2<br>.1<br>.1       | 111<br>49<br>56<br>94<br>68 | 22<br>12<br>15<br>22<br>27 | 336<br>233<br>236<br>397<br>1003  | 3.95<br>10.15<br>7.96<br>4.78<br>7.16 | 2<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND             | 1<br>2<br>1<br>1<br>2 | 23<br>6<br>9<br>21<br>16   | 1<br>2<br>1<br>1<br>1 | 9<br>2<br>2<br>2<br>2      | 2<br>3<br>7<br>6<br>2      | 177<br>395<br>251<br>248<br>251 | 1.16<br>.31<br>.47<br>1.41<br>.87 | .030<br>.015<br>.023<br>.038<br>.026 | 7<br>2<br>4<br>8<br>4  | 132<br>226<br>168<br>126<br>113 | 1.77<br>.64<br>.95<br>1.58<br>.94 | 17<br>7<br>6<br>14<br>15    | .43<br>.82<br>.68<br>.59<br>.57 | 2<br>2<br>3<br>2       | 4.98<br>7.78<br>5.81<br>5.26<br>4.53 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.03<br>.02<br>.01<br>.03 | 1<br>2<br>1<br>1<br>1 | 1<br>5<br>1<br>1      | 240<br>250<br>380<br>180<br>260 |
| 4750N 5400B<br>4750N 5420B<br>4750N 5440B<br>4750N 5440B<br>4750N 5460E<br>4750N 5470B | 1<br>1<br>1<br>1      | 112<br>132<br>180<br>133<br>90 | 7<br>14<br>10<br>10<br>6 | 84<br>99<br>55<br>57<br>59  | .1<br>.1<br>.3<br>.1<br>.1 | 52<br>71<br>75<br>72<br>61  | 55<br>74<br>20<br>17<br>15 | 2037<br>6270<br>478<br>302<br>281 | 9.69<br>8.24<br>7.02<br>7.75<br>9.58  | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND             | 2<br>1<br>2<br>1<br>3 | 10<br>13<br>10<br>8<br>10  | 2<br>2<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>4<br>2<br>6      | 289<br>250<br>213<br>241<br>295 | .74<br>1.00<br>.48<br>.47<br>.53  | .024<br>.031<br>.021<br>.021<br>.021 | 3<br>4<br>3<br>3<br>4  | 127<br>106<br>145<br>153<br>183 | .66<br>.94<br>1.15<br>.95<br>1.03 | 8<br>15<br>10<br>8<br>7     | .74<br>.55<br>.51<br>.54<br>.83 | 3<br>3<br>5<br>2<br>3  | 5.32<br>5.18<br>7.08<br>6.40<br>5.03 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.03<br>.01<br>.01<br>.03 | 1<br>1<br>1<br>1      | 1<br>1<br>3<br>1      | 230<br>229<br>250<br>260<br>220 |
| 4650N 4870E<br>4650N 4880E<br>4650N 4900E<br>4650N 4920E<br>4650N 4940E                | 1<br>1<br>1<br>1<br>1 | 44<br>47<br>33<br>12<br>39     | 7<br>6<br>4<br>2<br>2    | 55<br>54<br>53<br>53<br>48  | .1<br>.1<br>.1<br>.1       | 24<br>32<br>16<br>2<br>17   | 9<br>13<br>7<br>3<br>8     | 258<br>310<br>346<br>229<br>258   | 5.01<br>6.42<br>6.23<br>4.30<br>5.72  | 2<br>3<br>3<br>2<br>3      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND       | 2<br>2<br>1<br>1<br>1 | 10<br>11<br>9<br>5<br>10   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>3      | 156<br>170<br>147<br>83<br>167  | .35<br>.38<br>.27<br>.06<br>.34   | .019<br>.020<br>.018<br>.019<br>.017 | 9<br>7<br>5<br>3<br>4  | 83<br>84<br>56<br>14<br>65      | .52<br>.60<br>.36<br>.08<br>.40   | 25<br>24<br>12<br>12<br>15  | .22<br>.27<br>.19<br>.06<br>.28 | 5<br>8<br>3<br>4<br>7  | 4.72<br>4.30<br>3.30<br>2.13<br>3.76 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.02<br>.02<br>.02 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>2      | 240<br>160<br>190<br>110<br>180 |
| 4650N 4960B<br>4650N 4980B<br>4650N 5000B<br>4650N 5020E<br>4650N 5020E                | 1<br>1<br>1<br>1      | 48<br>9<br>52<br>36<br>22      | 2<br>4<br>2<br>9<br>4    | 50<br>39<br>65<br>64<br>64  | .1<br>.1<br>.1<br>.1       | 23<br>5<br>27<br>12<br>13   | 5<br>2<br>10<br>7<br>6     | 349<br>294<br>761<br>418<br>361   | 6.02<br>5.13<br>5.41<br>6.79<br>3.10  | 4<br>2<br>14<br>9          | 5<br>5<br>5<br>5<br>5 | 10<br>10<br>11<br>10<br>10<br>10 | 2<br>3<br>3<br>3<br>1 | 9<br>8<br>11<br>5<br>10    | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 160<br>81<br>134<br>132<br>127  | .40<br>.15<br>.43<br>.23<br>.37   | .021<br>.009<br>.037<br>.028<br>.037 | 6<br>4<br>8<br>7<br>11 | 87<br>21<br>55<br>51<br>47      | .60<br>.15<br>.71<br>.42<br>.32   | 14<br>12<br>29<br>13<br>29  | .36<br>.09<br>.25<br>.15<br>.20 | 2<br>6<br>12<br>2<br>2 | 4.57<br>4.18<br>3.94<br>4.12<br>2.50 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.03<br>.04<br>.02<br>.01 | 1<br>2<br>1<br>1<br>1 | 1<br>1<br>1<br>1      | 210<br>180<br>200<br>280<br>80  |
| 4650N 5060E<br>4650N 5080E<br>4650N 5100B<br>4650N 5120E<br>4650N 5140E                | 1<br>2<br>1<br>1<br>1 | 27<br>36<br>80<br>145<br>83    | 9<br>12<br>9<br>7<br>7   | 73<br>75<br>54<br>120<br>80 | .1<br>.1<br>.2<br>.2<br>.3 | 13<br>21<br>32<br>119<br>58 | 9<br>9<br>13<br>44<br>24   | 9799<br>716<br>279<br>5136<br>629 | 4.95<br>3.39<br>7.14<br>7.80<br>7.14  | 19<br>21<br>36<br>17<br>30 | 5<br>5<br>5<br>5<br>5 | UD<br>KD<br>KD<br>KD<br>KD       | 1<br>1<br>2<br>1<br>1 | 10<br>13<br>13<br>21<br>12 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>6<br>3<br>2      | 99<br>122<br>199<br>200<br>175  | .31<br>.31<br>.42<br>.74<br>.58   | .031<br>.069<br>.022<br>.052<br>.052 | 9<br>24<br>7<br>7<br>5 | 37<br>50<br>93<br>113<br>100    | .40<br>.33<br>.62<br>1.36<br>.77  | 102<br>36<br>16<br>36<br>17 | .09<br>.10<br>.36<br>.31<br>.32 | 2<br>2<br>4<br>2<br>5  | 3.36<br>3.72<br>5.05<br>5.39<br>4.92 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.01<br>.02<br>.03<br>.01 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>9      | 220<br>680<br>920<br>290<br>380 |
| 4650N 5160E<br>STD C/AU-R                                                              | 1<br>19               | 99<br>62                       | 3<br>38                  | 75<br>132                   | .1<br>7.5                  | 65<br>68                    | 23<br>31                   | 733<br>1101                       | 7.78<br>4.23                          | 56<br>40                   | 5<br>15               | ND<br>8                          | 1<br>40               | 15<br>53                   | 1<br>18               | 2<br>17                    | 2<br>19                    | 191<br>61                       | .57<br>.48                        | .024<br>.091                         | 5<br>40                | 106<br>63                       | .98<br>.90                        | 19<br>183                   | .31<br>.08                      | 11<br>32               | 4.55<br>1.85                         | .01<br>.97                      | .02<br>.14                      | 1<br>13               | 1<br>50               | 230<br>1300                     |

Page 4

1

ſ

۰.

C

(

.

1

1

(

.

(

(

Ì

· . .

1

| SAMPLE#                                                                 | No<br>PPN             | Cu<br>PPM                     | Pb<br>PPM                  | Zn<br>PPM                   | λg<br>PPN                  | Ni<br>PPN                   | Co<br>PPN                   | Nn<br>PPH                         | Ie<br>t                                | λs<br>PPN                   | U<br>PPM              | Au<br>PPH                      | Th<br>PPH             | ST<br>PPM                  | Cd<br>PPM        | Sb<br>PPM                  | Bİ<br>PPM                  | V<br>PPM                        | Ca<br>t                            | P<br>S                               | La<br>PPN                  | CT<br>PPM                       | Ng<br>t                            | Ba<br>PPM                  | Ti<br>ł                         | B<br>PPH              | ۸1<br>۲                              | Na<br>ł                         | I<br>ł                                 | ¥<br>PPH              | Au*<br>PPB             | Hg<br>PPB                        |
|-------------------------------------------------------------------------|-----------------------|-------------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------------|----------------------------------------|-----------------------------|-----------------------|--------------------------------|-----------------------|----------------------------|------------------|----------------------------|----------------------------|---------------------------------|------------------------------------|--------------------------------------|----------------------------|---------------------------------|------------------------------------|----------------------------|---------------------------------|-----------------------|--------------------------------------|---------------------------------|----------------------------------------|-----------------------|------------------------|----------------------------------|
| 4650N 5180B<br>4650N 5200R<br>4650N 5220B<br>4650N 5240B<br>4650N 5260B | 1<br>1<br>1<br>4      | 102<br>90<br>32<br>76<br>48   | 12<br>13<br>9<br>14<br>2   | 66<br>62<br>45<br>53<br>52  | .1<br>.1<br>.1<br>.1       | 69<br>51<br>22<br>39<br>31  | 20<br>17<br>5<br>15<br>9    | 350<br>296<br>131<br>267<br>230   | 8.97<br>9.23<br>5.37<br>9.00<br>5.13   | 4<br>5<br>4<br>3            | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND           | 2<br>1<br>1<br>1<br>1 | 12<br>11<br>12<br>9<br>13  | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>4<br>2<br>6      | 268<br>281<br>283<br>284<br>183 | .51<br>.45<br>.39<br>.45<br>.62    | .016<br>.015<br>.017<br>.015<br>.017 | 2<br>2<br>3<br>2<br>2<br>2 | 147<br>155<br>90<br>164<br>81   | .94<br>.73<br>.40<br>.68<br>.73    | 23<br>17<br>9<br>11<br>17  | .58<br>.59<br>.55<br>.60<br>.47 | 6<br>7<br>5<br>7<br>5 | 6.18<br>5.99<br>2.96<br>5.74<br>4.04 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.02<br>.01        | 1<br>1<br>1<br>1      | 1<br>1<br>3<br>7<br>1  | 230<br>150<br>260<br>200<br>210  |
| 4650H 5280E<br>4650H 5300E<br>4650H 5320E<br>4650H 5340E<br>4650H 5360E | 1<br>1<br>1<br>1      | 72<br>106<br>102<br>181<br>57 | 18<br>9<br>8<br>14<br>15   | 60<br>61<br>58<br>89<br>48  | .1<br>.1<br>.1<br>.1       | 31<br>52<br>55<br>13B<br>42 | 13<br>16<br>15<br>40<br>16  | 248<br>286<br>269<br>748<br>252   | 8.97<br>5.46<br>5.85<br>5.20<br>10.39  | 2<br>2<br>2<br>2<br>2       | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND           | 2<br>1<br>1<br>1      | 10<br>11<br>11<br>25<br>20 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 3<br>2<br>7<br>2<br>10     | 255<br>181<br>263<br>164<br>334 | .39<br>.75<br>.77<br>1.41<br>.57   | .014<br>.022<br>.012<br>.027<br>.010 | 2<br>5<br>3<br>3<br>3      | 206<br>110<br>136<br>105<br>113 | .53<br>1.04<br>1.25<br>2.08<br>.73 | 13<br>11<br>7<br>21<br>19  | .57<br>.53<br>.84<br>.60<br>.80 | 6<br>5<br>5<br>5<br>7 | 5.67<br>5.86<br>5.43<br>4.67<br>4.29 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.01<br>.01<br>.01<br>.01        | 1<br>1<br>1<br>1      | 22<br>3<br>5<br>1<br>1 | 160<br>200<br>190<br>140<br>220  |
| 4650N 5380X<br>4650N 5400X<br>4650N 5420B<br>4550N 4830X<br>4550N 4840B | 1<br>1<br>1<br>6<br>1 | 160<br>100<br>98<br>67<br>93  | 15<br>2<br>19<br>16<br>12  | 58<br>62<br>83<br>61<br>65  | .2<br>.1<br>.1<br>.1<br>.1 | 58<br>48<br>47<br>48<br>46  | 16<br>13<br>166<br>25<br>25 | 283<br>274<br>6420<br>616<br>372  | 7.27<br>6.03<br>10.21<br>10.64<br>7.92 | 2<br>2<br>2<br>77<br>13     | 5<br>5<br>5<br>5<br>5 | סו<br>סו<br>סו<br>סו           | 2<br>1<br>1<br>2<br>2 | 8<br>9<br>12<br>12<br>9    | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>4<br>2           | 236<br>240<br>329<br>248<br>221 | .68<br>.89<br>.63<br>.27<br>.29    | .010<br>.017<br>.025<br>.020<br>.020 | 2<br>6<br>3<br>11<br>9     | 175<br>121<br>154<br>96<br>110  | .89<br>.91<br>.74<br>.49<br>.52    | 5<br>5<br>12<br>64<br>31   | .65<br>.82<br>.78<br>.21<br>.24 | 6<br>5<br>7<br>7<br>6 | 7.65<br>5.69<br>5.68<br>5.23<br>5.77 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.02<br>.01        | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>4<br>1  | 240<br>180<br>220<br>620<br>1200 |
| 4550N 4860E<br>4550N 4880E<br>4550N 4900E<br>4550N 4920E<br>4550N 4940E | 1<br>1<br>1<br>1      | 115<br>83<br>39<br>17<br>64   | 16<br>14<br>17<br>11<br>12 | 68<br>81<br>59<br>49<br>58  | .1<br>.1<br>.1<br>.1       | 53<br>49<br>18<br>13<br>27  | 19<br>20<br>9<br>10<br>10   | 347<br>441<br>407<br>181<br>364   | 6.35<br>5.01<br>6.95<br>3.63<br>6.84   | 7<br>4<br>4<br>2<br>3       | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND     | 2<br>1<br>2<br>1<br>4 | 11<br>19<br>8<br>8<br>8    | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>6<br>2<br>2      | 177<br>169<br>169<br>93<br>197  | .50<br>.84<br>.28<br>.15<br>.40    | .015<br>.042<br>.017<br>.032<br>.020 | 5<br>10<br>9<br>11<br>4    | 111<br>101<br>88<br>31<br>107   | 1.02<br>.86<br>.52<br>.49<br>.59   | 25<br>33<br>20<br>33<br>14 | .27<br>.36<br>.12<br>.02<br>.39 | 5<br>5<br>4<br>5      | 6.09<br>4.35<br>6.09<br>3.83<br>5.84 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.03<br>.02<br>.04<br>.02        | I<br>1<br>1<br>1      | 1<br>1<br>1<br>1<br>2  | 310<br>270<br>160<br>80<br>230   |
| 4550N 4960X<br>4550N 4980X<br>4550N 5000X<br>4550N 5020X<br>4550N 5040X | 1<br>1<br>1<br>1<br>1 | 33<br>37<br>1<br>52<br>48     | 12<br>8<br>2<br>12<br>11   | 71<br>63<br>47<br>61<br>57  | .1<br>.1<br>.1<br>.1       | 16<br>32<br>2<br>31<br>22   | 8<br>10<br>1<br>9<br>7      | 308<br>402<br>176<br>276<br>342   | 6.95<br>5.62<br>1.04<br>3.16<br>7.02   | 5<br>2<br>2<br>2<br>12      | 5<br>5<br>5<br>5<br>5 | UD<br>CU<br>CU<br>CU<br>CU     | 2<br>3<br>1<br>1<br>3 | 17<br>11<br>3<br>14<br>7   | 1<br>1<br>1<br>1 | 4<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 223<br>149<br>22<br>176<br>200  | .39<br>.41<br>.01<br>.48<br>.25    | .025<br>.026<br>.012<br>.049<br>.012 | 3<br>5<br>2<br>11<br>3     | 100<br>81<br>3<br>69<br>106     | .40<br>.70<br>.09<br>.76<br>.43    | 12<br>18<br>5<br>29<br>17  | .45<br>.30<br>.03<br>.27<br>.25 | 5<br>5<br>3<br>4<br>6 | 3.63<br>5.78<br>1.11<br>4.79<br>5.10 | .01<br>.01<br>.02<br>.01<br>.01 | .03<br>.02<br>.02<br>.02<br>.02<br>.02 | 1<br>1<br>3<br>1<br>1 | 1<br>1<br>1<br>1       | 220<br>130<br>30<br>210<br>130   |
| 4550N 5060E<br>4550N 5080E<br>4550N 5100E<br>4550N 5120E<br>4550N 5140E | 1<br>1<br>2<br>1<br>1 | 41<br>58<br>16<br>13<br>74    | 13<br>10<br>9<br>8<br>18   | 54<br>59<br>61<br>36<br>80  | .1<br>.1<br>.1<br>.1       | 13<br>26<br>21<br>10<br>61  | 6<br>11<br>10<br>3<br>29    | 278<br>329<br>1350<br>517<br>388  | 6.36<br>8.28<br>4.69<br>2.22<br>8.99   | 12<br>28<br>38<br>38<br>362 | 5<br>5<br>5<br>5<br>5 | 10<br>17)<br>17)<br>17)<br>17) | 4<br>3<br>1<br>1<br>2 | 7<br>8<br>32<br>50<br>70   | 1<br>1<br>1<br>1 | 2<br>5<br>2<br>2<br>3      | 2<br>2<br>2<br>4           | 175<br>226<br>62<br>31<br>210   | .16<br>.18<br>9.23<br>14.76<br>.82 | .015<br>.019<br>.018<br>.013<br>.026 | 6<br>5<br>3<br>2<br>4      | 69<br>95<br>38<br>19<br>85      | .28<br>.39<br>4.56<br>7.02<br>.74  | 10<br>17<br>10<br>5<br>12  | .21<br>.23<br>.11<br>.05<br>.14 | 5<br>6<br>4<br>3<br>6 | 3.60<br>4.11<br>1.81<br>.69<br>3.71  | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.03<br>.01<br>.01<br>.03        | 1<br>1<br>1<br>2<br>1 | 6<br>1<br>1<br>1<br>1  | 180<br>210<br>500<br>560<br>1100 |
| 4550N 5160B<br>4550N 5180B<br>4550N 5200Z<br>4550N 5220B<br>4550N 5240B | 2<br>5<br>1<br>1<br>1 | 70<br>27<br>118<br>107<br>76  | 13<br>15<br>12<br>21<br>13 | 90<br>79<br>131<br>93<br>66 | .1<br>.1<br>.1<br>.1       | 51<br>29<br>109<br>83<br>54 | 29<br>17<br>40<br>30<br>20  | 1102<br>994<br>3719<br>463<br>473 | 8.32<br>7.59<br>7.39<br>6.72<br>7.77   | 49<br>62<br>25<br>2<br>7    | 5<br>5<br>5<br>5<br>5 | ID<br>ID<br>ID<br>ID           | 2<br>3<br>1<br>2<br>2 | 20<br>36<br>27<br>15<br>17 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>6<br>2           | 222<br>222<br>197<br>199<br>229 | .42<br>6.46<br>1.13<br>.85<br>.60  | .027<br>.019<br>.050<br>.035<br>.017 | 7<br>5<br>6<br>5<br>5      | 93<br>59<br>103<br>118<br>112   | .62<br>3.31<br>1.39<br>1.00<br>.96 | 33<br>10<br>38<br>27<br>30 | .34<br>.32<br>.35<br>.45<br>.52 | 6<br>6<br>5<br>6      | 5.04<br>2.35<br>4.95<br>7.04<br>4.73 | .01<br>.01<br>.02<br>.01<br>.01 | .02<br>.02<br>.02<br>.04<br>.03        | 1<br>1<br>1<br>1      | 3<br>1<br>1<br>1<br>2  | 260<br>320<br>260<br>300<br>150  |
| 4550N 5260B<br>STD C/AU-S                                               | 1<br>19               | 81<br>52                      | 18<br>41                   | 67<br>132                   | .1<br>7.5                  | 58<br>72                    | 19<br>30                    | 358<br>1065                       | 9.84<br>4.18                           | 11<br>40                    | 5<br>18               | ND<br>8                        | 2<br>40               | 10<br>53                   | 1<br>20          | 2<br>17                    | 13<br>20                   | 319<br>63                       | .37<br>.47                         | .008<br>.088                         | 2<br>40                    | 177<br>60                       | .73<br>.88                         | 17<br>183                  | .67<br>.08                      | 7<br>33               | 5.85<br>1.99                         | .01<br>.07                      | .01<br>.13                             | 1<br>14               | 3<br>48                | 100<br>1300                      |

Page 5

C

(

Ç

(

(

(

ŧ.

(

(

(

(

(

C

(

Ν.

. €

(

| SAMPLE                                                                                 | No<br>PPN              | CU<br>PPM                    | Pb<br>PPM                  | Za<br>PPK                   | Ag<br>PPN                  | NI<br>PPM                  | Co<br>PPN                  | Nn<br>PPN                           | Je<br>ł                                       | As<br>PPM                  | U<br>PPM              | λu<br>PPM                                    | Th<br>PPN             | ST<br>PPM                 | Cd<br>PPN             | SD<br>PPM                  | Bİ<br>PPM                  | V<br>PPN                        | Ca<br>ł                         | P                                    | La<br>PPM               | CT<br>PPN                      | Ng<br>t                          | Ba<br>PPM                  | Ti<br>ł                          | B<br>PPM               | ג<br>ג                               | ¥a<br>t                         | r<br>ł                          | ¥<br>PPN              | Au*<br>PPB             | Eg<br>PPB                              |
|----------------------------------------------------------------------------------------|------------------------|------------------------------|----------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|-------------------------------------|-----------------------------------------------|----------------------------|-----------------------|----------------------------------------------|-----------------------|---------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|---------------------------------|--------------------------------------|-------------------------|--------------------------------|----------------------------------|----------------------------|----------------------------------|------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|------------------------|----------------------------------------|
| 4550N 5280E<br>4550N 5300E<br>4550N 5320E<br>4550N 5340E<br>4550N 5360E                | 1<br>1<br>1<br>1       | 95<br>73<br>37<br>67<br>71   | 10<br>10<br>5<br>10<br>15  | 53<br>48<br>57<br>64<br>45  | .1<br>.1<br>.1<br>.1<br>.2 | 50<br>42<br>24<br>95<br>30 | 17<br>14<br>9<br>25<br>11  | 427<br>272<br>396<br>357<br>194     | 7.05<br>7.51<br>4.19<br>4.95<br>10.42         | 9<br>8<br>14<br>13<br>4    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND                   | 3<br>2<br>1<br>1<br>3 | 11<br>10<br>11<br>14<br>8 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>3           | 232<br>243<br>122<br>185<br>348 | .57<br>.52<br>.71<br>.37<br>.41 | .018<br>.014<br>.017<br>.022<br>.019 | 4<br>6<br>4<br>7<br>4   | 118<br>100<br>55<br>129<br>173 | .96<br>.87<br>.72<br>1.58<br>.59 | 18<br>13<br>15<br>33<br>9  | .51<br>.52<br>.19<br>.28<br>.85  | 7<br>4<br>5<br>4<br>2  | 4.62<br>4.04<br>2.91<br>4.67<br>4.90 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.02<br>.02<br>.02 | 1<br>1<br>1<br>1      | 1<br>2<br>3<br>1       | 280<br>260<br>150<br>390<br>220        |
| 4550N 5380R<br>4550N 5400R<br>4550N 5420B<br>4550N 5440B<br>4450N 4830R                | 1<br>1<br>1<br>1<br>1  | 72<br>89<br>68<br>167<br>85  | 4<br>14<br>14<br>9<br>11   | 41<br>53<br>57<br>52<br>161 | .1<br>.1<br>.1<br>.1       | 27<br>34<br>25<br>55<br>9  | 11<br>13<br>10<br>17<br>27 | 195<br>230<br>237<br>267<br>327     | 7.76<br>11.08<br>12.73<br>10.02<br>13.98      | 2<br>2<br>4<br>2<br>229    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND                         | 3<br>3<br>3<br>4<br>2 | 10<br>7<br>9<br>7<br>10   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 279<br>387<br>481<br>330<br>127 | .37<br>.36<br>.51<br>.52<br>.33 | .028<br>.017<br>.016<br>.017<br>.397 | 5<br>3<br>3<br>2<br>12  | 151<br>216<br>206<br>220<br>10 | .51<br>.45<br>.45<br>.81<br>.39  | 11<br>10<br>6<br>7<br>11   | .85<br>.92<br>1.07<br>.83<br>.01 | 2<br>2<br>2<br>5<br>11 | 7.02<br>7.38<br>4.31<br>7.57<br>1.99 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.02<br>.02<br>.02 | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>1<br>1  | 240<br>230<br>160<br><u>230</u><br>480 |
| 4450N 4840E<br>4450N 4860E<br>4450N 4880B<br>4450N 4900E<br>4450N 4920E                | 3<br>1<br>1<br>1<br>1  | 34<br>42<br>58<br>47<br>18   | 5<br>9<br>13<br>6<br>10    | 71<br>57<br>53<br>50<br>49  | .1<br>.1<br>.1<br>.1       | 7<br>29<br>28<br>21<br>10  | 28<br>13<br>28<br>14<br>6  | 347<br>339<br>1107<br>316<br>252    | 8.20<br>7.28<br>6.82<br>8.38<br>4.95          | 56<br>7<br>3<br>10<br>4    | 5<br>5<br>5<br>5<br>5 | UD<br>UD<br>UD<br>UD<br>UD                   | 1<br>2<br>1<br>3<br>2 | 13<br>14<br>16<br>9<br>13 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 163<br>256<br>212<br>264<br>154 | .33<br>.61<br>.70<br>.25<br>.27 | .051<br>.021<br>.033<br>.019<br>.025 | 7<br>5<br>13<br>11<br>5 | 18<br>111<br>98<br>100<br>43   | .32<br>.74<br>.64<br>.50<br>.40  | 15<br>18<br>22<br>14<br>18 | .02<br>.65<br>.56<br>.49<br>.23  | 7<br>3<br>7<br>5<br>4  | 2.53<br>4.36<br>4.56<br>4.71<br>2.47 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.02<br>.02<br>.02 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>2       | 640<br>140<br>230<br>220<br>190        |
| 4450N 4940K<br>4450N 4960K<br>4450N 4980K<br>4450N 5020B<br>4450N 5040K                | 1<br>1<br>1<br>1       | 26<br>19<br>33<br>5<br>49    | 10<br>6<br>17<br>7<br>9    | 43<br>43<br>51<br>38<br>70  | .1<br>.1<br>.2<br>.1<br>.1 | 11<br>9<br>13<br>2<br>29   | 6<br>4<br>6<br>1<br>15     | 253<br>170<br>281<br>178<br>751     | 7.86<br>3.14<br>7.04<br>1.17<br>6.06          | 4<br>2<br>7<br>2<br>16     | 5<br>5<br>5<br>5<br>5 | 10<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 2<br>1<br>3<br>1<br>2 | 10<br>8<br>9<br>7<br>15   | 1<br>1<br>1<br>1      | 2<br>4<br>2<br>2<br>2      | 2<br>6<br>2<br>2<br>2      | 237<br>175<br>224<br>62<br>185  | .18<br>.19<br>.25<br>.13<br>.96 | .025<br>.018<br>.017<br>.017<br>.032 | 3<br>6<br>4<br>2<br>6   | 70<br>43<br>94<br>22<br>82     | .26<br>.26<br>.34<br>.17<br>.77  | 15<br>10<br>12<br>9<br>23  | .41<br>.25<br>.40<br>.09<br>.34  | 2<br>2<br>3<br>2<br>7  | 3.01<br>2.37<br>3.64<br>1.68<br>3.86 | .01<br>.01<br>.01<br>.01        | .03<br>.03<br>.02<br>.02<br>.04 | 1<br>2<br>1<br>3<br>1 | 1<br>1<br>2<br>2<br>2  | 200<br>180<br>200<br>80<br>260         |
| 4450N 5060B<br>4450N 5080B<br>4450N 5100B<br>4450N 5120B<br>4450N 5140B                | 1<br>1<br>8<br>2<br>2  | 58<br>35<br>39<br>85<br>88   | 10<br>8<br>21<br>13<br>7   | 58<br>65<br>122<br>75<br>88 | .1<br>.1<br>.2<br>.1       | 33<br>18<br>41<br>66<br>69 | 14<br>7<br>21<br>26<br>30  | 365<br>277<br>1279<br>1649<br>2423  | 6.83<br>7.67<br>10.82<br>8.59<br>9.70         | 11<br>20<br>87<br>42<br>90 | 5<br>5<br>5<br>5<br>5 | HD<br>ND<br>ND<br>ND                         | 3<br>4<br>2<br>1<br>2 | 9<br>10<br>14<br>16<br>11 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 4<br>2<br>5<br>4<br>2      | 202<br>187<br>251<br>231<br>217 | .41<br>.29<br>.70<br>.51<br>.53 | .018<br>.021<br>.041<br>.025<br>.037 | 7<br>8<br>7<br>6<br>13  | 87<br>75<br>97<br>116<br>116   | .63<br>.33<br>.48<br>.77<br>.72  | 14<br>16<br>15<br>22<br>23 | .39<br>.26<br>.33<br>.47<br>.44  | 5<br>6<br>2<br>2<br>2  | 4.65<br>3.62<br>3.30<br>5.64<br>5.13 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.02<br>.04<br>.03<br>.03 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>2       | 190<br>180<br>380<br>480<br>560        |
| 4450N 5160B<br>4450N 5180B<br>4450N 5200B<br>4450H 5220B<br>4450H 5220B<br>4450N 5240B | 2<br>1<br>2<br>2<br>11 | 62<br>87<br>49<br>64<br>47   | 17<br>11<br>15<br>15<br>22 | 55<br>71<br>73<br>85<br>87  | .2<br>.1<br>.1<br>.1       | 35<br>62<br>23<br>48<br>47 | 20<br>27<br>20<br>23<br>14 | 721<br>1178<br>2346<br>1155<br>3912 | 10.39<br>7.90<br>14.82<br>6 8.76<br>6 .98     | 32<br>18<br>47<br>32<br>65 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND                         | 3<br>2<br>2<br>3<br>1 | 10<br>13<br>8<br>13<br>21 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 3<br>3<br>3<br>3<br>2      | 286<br>212<br>245<br>207<br>129 | .40<br>.54<br>.15<br>.36<br>.68 | .024<br>.024<br>.027<br>.028<br>.048 | 6<br>7<br>6<br>7<br>12  | 133<br>114<br>87<br>93<br>49   | .47<br>.93<br>.21<br>.61<br>.37  | 14<br>24<br>16<br>27<br>18 | .59<br>.46<br>.38<br>.35<br>.08  | 11<br>8<br>2<br>5<br>3 | 4.71<br>5.83<br>3.32<br>5.42<br>2.87 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.03<br>.03<br>.02<br>.03 | 1<br>1<br>1<br>2<br>1 | 11<br>2<br>2<br>1<br>1 | 320<br>400<br>660<br>600<br>1100       |
| 4450N 5260X<br>4450N 5280X<br>4450N 5300X<br>4450N 5320X<br>4450N 5320X<br>4450N 5340X | 11<br>1<br>1<br>1<br>1 | 45<br>106<br>74<br>64<br>115 | 17<br>9<br>10<br>12<br>7   | 71<br>60<br>55<br>45<br>69  | .2<br>.1<br>.1<br>.1<br>.1 | 30<br>64<br>45<br>33<br>63 | 18<br>20<br>15<br>14<br>17 | 781<br>326<br>301<br>248<br>281     | 1 11.22<br>6 8.70<br>1 6.84<br>9.89<br>8 4.32 | 60<br>3<br>12<br>7<br>7    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND                   | 2<br>2<br>2<br>3<br>1 | 12<br>10<br>16<br>9<br>14 | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>2<br>3      | 2<br>3<br>5<br>3<br>2      | 238<br>267<br>185<br>269<br>221 | .25<br>.44<br>.48<br>.32<br>.57 | .032<br>.025<br>.016<br>.015<br>.025 | 8<br>3<br>5<br>2<br>6   | 82<br>144<br>93<br>162<br>104  | .28<br>.76<br>.81<br>.56<br>1.19 | 14<br>24<br>20<br>13<br>22 | .33<br>.58<br>.45<br>.54<br>.48  | 2<br>2<br>6<br>3<br>5  | 3.22<br>5.75<br>4.85<br>4.79<br>5.40 | .01<br>.01<br>.01<br>.01<br>.01 | .04<br>.03<br>.03<br>.03<br>.03 | 1<br>1<br>2<br>2<br>1 | 2<br>1<br>1<br>2<br>1  | 300<br>320<br>160<br>240<br>200        |
| 4450N 5360E<br>STD C/AU-S                                                              | 1<br>20                | 252                          | 9<br>42                    | 87<br>131                   | .1<br>7.3                  | 222                        | 34<br>30                   | 48)<br>105                          | 5 4.03<br>7 4.09                              | 2<br>42                    | 5<br>19               | ND<br>B                                      | 1<br>40               | 22<br>53                  | 1<br>18               | 2<br>17                    | 2<br>24                    | 189<br>61                       | .50<br>.47                      | .044<br>.088                         | 6<br>40                 | 182<br>52                      | 2.93<br>.92                      | 21<br>182                  | .38<br>.08                       | 5<br>33                | 5.82<br>1.97                         | .02<br>.07                      | .02<br>.14                      | 1<br>13               | 1<br>48                | 220<br>1300                            |

Page 6

C

(

(

(

(

Ċ

(

(

(

(

(

(

(

3. •••

| SAMPLE                                                                                 | No<br>PPM              | Cu<br>PPM                       | PD<br>PPM                  | Zn<br>PPM                     | Ag<br>PPM                  | Ni<br>PPM                       | Co<br>PPH                  | HE<br>PPK                           | Fe                                     | A5<br>PPM                   | U<br>PPH                   | Au<br>?PX                  | Tà<br>PPM             | ST<br>PPM                  | Cd<br>PPX             | SD<br>PPN                  | Bi<br>PPM                  | V<br>PPK                        | Ca<br>%                             | P<br>\$                              | La<br>PPM              | CT<br>PPM                       | Ng<br>1                              | Ba<br>PPN                  | Ti<br>ł                         | B<br>PPN                | 31<br>3                              | Na<br>ł                         | K<br>Z                          | ¥<br>PPN              | 127<br>773             | Bg<br>PPB                       |
|----------------------------------------------------------------------------------------|------------------------|---------------------------------|----------------------------|-------------------------------|----------------------------|---------------------------------|----------------------------|-------------------------------------|----------------------------------------|-----------------------------|----------------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-------------------------------------|--------------------------------------|------------------------|---------------------------------|--------------------------------------|----------------------------|---------------------------------|-------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|------------------------|---------------------------------|
| 4450N 53802<br>4450N 54003<br>4450N 54202<br>4450N 54432<br>4450N 54432<br>4450N 54602 | 1<br>1<br>1<br>1       | 223<br>221<br>282<br>165<br>242 | 6<br>17<br>13<br>12<br>13  | 81<br>96<br>104<br>113<br>96  | .1<br>.1<br>.1<br>.1       | 233<br>201<br>221<br>247<br>200 | 39<br>34<br>41<br>39<br>37 | 941<br>740<br>326<br>439<br>395     | 6.27<br>6.36<br>5.70<br>5.95<br>7.03   | 2<br>2<br>2<br>2<br>2<br>2  | 5<br>5<br>5<br>5<br>5      | ne<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>2<br>1<br>2 | 22<br>18<br>19<br>22<br>20 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 157<br>165<br>202<br>202<br>225 | .62<br>.43<br>.55<br>.95<br>.80     | .033<br>.040<br>.048<br>.026<br>.028 | 5<br>5<br>7<br>5<br>5  | 153<br>184<br>186<br>146<br>146 | 3.45<br>2.13<br>2.32<br>3.24<br>2.33 | 17<br>20<br>19<br>21<br>15 | .36<br>.47<br>.47<br>.44<br>.58 | 3<br>6<br>10<br>10<br>4 | 5.37<br>7.27<br>7.59<br>5.68<br>7.12 | .01<br>.01<br>.02<br>.01        | .03<br>.03<br>.02<br>.02<br>.03 | 1<br>2<br>1<br>1<br>1 | 3<br>8<br>2<br>1<br>1  | 260<br>440<br>340<br>130<br>220 |
| 44505 54808<br>43505 48308<br>43505 48402<br>43505 48402<br>43505 48602<br>42505 48802 | 1<br>1<br>1<br>1       | 115<br>100<br>68<br>35<br>39    | 5<br>7<br>13<br>10<br>12   | 88<br>49<br>48<br>51<br>49    | .1<br>.1<br>.1<br>.1       | 105<br>25<br>24<br>21<br>22     | 28<br>12<br>11<br>12<br>17 | 592<br>230<br>228<br>267<br>1130    | 10.48<br>3.54<br>8.50<br>7.42<br>6.57  | 2<br>2<br>2<br>2<br>2       | 5<br>5<br>5<br>5<br>5      | nd<br>Nd<br>Nd<br>Nd       | 3<br>3<br>3<br>2<br>2 | 15<br>9<br>10<br>12<br>16  | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>5<br>2<br>2<br>2      | 306<br>400<br>252<br>233<br>199 | .54<br>.27<br>.34<br>.39<br>.53     | .023<br>.017<br>.027<br>.025<br>.025 | 3<br>4<br>5<br>6       | 213<br>101<br>111<br>109<br>86  | 1.26<br>.35<br>.40<br>.45<br>.53     | 12<br>12<br>9<br>13<br>15  | .73<br>.76<br>.65<br>.66<br>.57 | 2<br>2<br>2<br>9<br>2   | 5.60<br>4.20<br>4.62<br>4.11<br>3.32 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.02<br>.03<br>.02<br>.03 | 1<br>1<br>1<br>1      | 1<br>3<br>2<br>3<br>1  | 260<br>350<br>300<br>260<br>240 |
| 4250X 43003<br>4350X 43203<br>4350X 49402<br>4350X 49402<br>4350X 49602<br>4350X 49802 | 1<br>1<br>1<br>1       | 38<br>37<br>25<br>34<br>35      | 14<br>11<br>10<br>11<br>13 | 55<br>55<br>57<br>53<br>52    | .1<br>.1<br>.1<br>.1       | 22<br>25<br>17<br>16<br>19      | 23<br>15<br>13<br>19<br>9  | 2333<br>432<br>768<br>1547<br>473   | 6.73<br>5.22<br>6.13<br>5.90<br>5.33   | 2<br>2<br>2<br>2<br>2<br>2  | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 1<br>2<br>4<br>3<br>4 | 13<br>16<br>8<br>9         | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 4<br>2<br>3<br>2<br>2      | 228<br>192<br>145<br>154<br>168 | .42<br>.50<br>.18<br>.18<br>.25     | .031<br>.035<br>.025<br>.019<br>.021 | 16<br>13<br>6<br>5     | 101<br>89<br>65<br>66<br>89     | .41<br>.64<br>.23<br>.27<br>.33      | 21<br>29<br>21<br>15<br>18 | .51<br>.46<br>.21<br>.22<br>.30 | 2<br>5<br>4<br>2<br>2   | 3.97<br>3.88<br>4.33<br>4.11<br>4.54 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.03<br>.03<br>.03<br>.03 | 1<br>1<br>1<br>1      | 2<br>1<br>1<br>1<br>1  | 230<br>200<br>210<br>220<br>260 |
| 4350N 50203<br>4350N 50402<br>4250N 50603<br>4350N 50802<br>4350N 51303                | 1<br>1<br>1<br>1       | 9<br>19<br>8<br>60<br>67        | 6<br>4<br>8<br>10<br>10    | 49<br>55<br>58<br>96<br>73    | .1<br>.1<br>.1<br>.1       | 5<br>11<br>3<br>54<br>56        | 3<br>7<br>3<br>22<br>30    | 277<br>452<br>253<br>1950<br>1347   | 4.31<br>4.76<br>4.12<br>9.00<br>8.50   | 2<br>2<br>2<br>39<br>8      | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 2<br>3<br>2<br>2<br>2 | 7<br>7<br>4<br>18<br>10    | 1<br>1<br>1<br>1      | 3<br>3<br>2<br>2<br>2      | 2<br>2<br>3<br>2           | 107<br>126<br>67<br>202<br>248  | .10<br>.14<br>.03<br>.76<br>.42     | .016<br>.025<br>.025<br>.036<br>.025 | 2<br>5<br>9<br>9       | 28<br>44<br>10<br>95<br>124     | .20<br>.20<br>.10<br>.52<br>.52      | 7<br>10<br>10<br>27<br>19  | .09<br>.15<br>.04<br>.35<br>.49 | 5<br>2<br>5<br>5<br>10  | 2.08<br>3.00<br>2.67<br>4.19<br>5.84 | .01<br>.01<br>.32<br>.01<br>.01 | .03<br>.03<br>.03<br>.04<br>.03 | 1<br>1<br>1<br>1      | 1<br>1<br>3<br>1       | 80<br>160<br>110<br>540<br>320  |
| 4350¥ 51205<br>4350¥ 51408<br>4350¥ 51508<br>4350¥ 51808<br>4350¥ 51808<br>4250¥ 52008 | 94<br>2<br>2<br>2<br>1 | 66<br>73<br>26<br>66<br>32      | 69<br>18<br>10<br>12<br>9  | 233<br>64<br>26<br>82<br>83   | .5<br>.1<br>.2<br>.1<br>.2 | 110<br>44<br>74<br>57<br>30     | 31<br>17<br>2<br>18<br>13  | 7133<br>551<br>1039<br>2820<br>2159 | 27.12<br>9.36<br>1.11<br>6.60<br>5.35  | 370<br>14<br>30<br>28<br>16 | 6<br>5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 3<br>4<br>1<br>2<br>1 | 6<br>9<br>55<br>23<br>38   | 2<br>1<br>1<br>1<br>1 | 5<br>2<br>2<br>2<br>2      | 2<br>2<br>3<br>2<br>2      | 337<br>315<br>15<br>161<br>92   | .07<br>.45<br>17.82<br>3.22<br>9.44 | .099<br>.023<br>.021<br>.030<br>.031 | 10<br>4<br>2<br>6<br>4 | 97<br>148<br>12<br>78<br>47     | .19<br>.55<br>8.59<br>2.21<br>5.04   | 20<br>12<br>6<br>25<br>15  | .07<br>.67<br>.01<br>.30<br>.16 | 2<br>8<br>9<br>9<br>8   | 3.18<br>4.32<br>.21<br>3.74<br>2.17  | .01<br>.01<br>.02<br>.01<br>.01 | .03<br>.04<br>.02<br>.03<br>.02 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1       | 1100<br>240<br>90<br>400<br>310 |
| 43505 52208<br>43508 52402<br>43508 52608<br>43508 52808<br>43508 52808                | 1<br>5<br>1<br>1<br>2  | 84<br>58<br>22<br>56<br>131     | 15<br>15<br>9<br>16<br>12  | 110<br>146<br>42<br>125<br>97 | .1<br>.1<br>.2<br>.1<br>.1 | 57<br>49<br>19<br>65<br>95      | 24<br>25<br>8<br>27<br>31  | 2980<br>1897<br>951<br>3230<br>2211 | 9.11<br>9.04<br>3.77<br>10.57<br>11.07 | 20<br>60<br>21<br>25<br>49  | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>3 | 14<br>38<br>39<br>15<br>11 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>3      | 2<br>2<br>2<br>2<br>2<br>2 | 201<br>218<br>72<br>158<br>232  | .65<br>.34<br>10.96<br>1.78<br>.59  | .037<br>.032<br>.024<br>.037<br>.033 | 7<br>7<br>4<br>7<br>13 | 98<br>95<br>34<br>82<br>100     | .91<br>.41<br>5.59<br>1.50<br>1.08   | 31<br>19<br>18<br>30<br>51 | .40<br>.36<br>.06<br>.25<br>.40 | 6<br>3<br>2<br>5<br>4   | 4.73<br>4.58<br>1.90<br>4.29<br>5.48 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.04<br>.02<br>.02<br>.02 | 1<br>1<br>1<br>1      | 2<br>6<br>1<br>1<br>4  | 360<br>560<br>410<br>580<br>620 |
| 43508 53202<br>43508 53402<br>43508 53602<br>43508 53602<br>43508 54002                | 1<br>1<br>1<br>1<br>1  | 125<br>112<br>58<br>150<br>132  | 19<br>16<br>11<br>7<br>7   | 98<br>72<br>46<br>86<br>82    | .4<br>.1<br>.3<br>.3       | 121<br>69<br>30<br>94<br>135    | 34<br>22<br>13<br>29<br>29 | 456<br>385<br>220<br>265<br>624     | 6.91<br>7.36<br>7.55<br>4.80<br>7.17   | 2<br>6<br>2<br>2            | 5<br>5<br>5<br>5<br>5      | CN<br>DX<br>DR<br>DR<br>DR | 3<br>3<br>2<br>1<br>2 | 13<br>12<br>10<br>17<br>27 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>4<br>2<br>2<br>2      | 221<br>222<br>275<br>244<br>152 | .64<br>.51<br>.44<br>.63<br>.79     | .027<br>.020<br>.020<br>.092<br>.092 | 5<br>4<br>3<br>9<br>3  | 146<br>128<br>123<br>138<br>124 | 1.25<br>1.01<br>.61<br>1.25<br>2.40  | 37<br>20<br>8<br>17<br>17  | .53<br>.51<br>.67<br>.48<br>.42 | 7<br>5<br>2<br>8<br>6   | 6.78<br>6.27<br>3.75<br>6.16<br>4.59 | .01<br>.01<br>.01<br>.01<br>.03 | .03<br>.03<br>.03<br>.02<br>.04 | 1<br>1<br>1<br>1      | 2<br>12<br>1<br>3<br>1 | 250<br>280<br>170<br>260<br>185 |
| 43508 54203<br>STD C/AU-3                                                              | 1<br>20                | 157<br>53                       | 18<br>43                   | 86<br>133                     | .1<br>7.5                  | 114<br>70                       | 30<br>31                   | 53C<br>1057                         | 9.12<br>4.11                           | 2<br>43                     | 5<br>17                    | ND<br>8                    | 2<br>40               | 24<br>53                   | 1<br>17               | 2<br>15                    | 6<br>18                    | 257<br>61                       | .57<br>.47                          | .030<br>.083                         | 4<br>40                | 171<br>60                       | 1.37<br>.33                          | 16<br>183                  | .62<br>.08                      | 10<br>33                | 6.45<br>1.97                         | .02<br>.07                      | .03<br>.15                      | 2<br>14               | 4<br>51                | 430<br>1300                     |

Page 7

í

(

(

ć

(

(

í

(

(

(

(

(

 $V_{\rm c}$ 

(

(

| SAMPLE                                                                  | NO<br>PPK              | Cu<br>PPM                    | PD<br>PPM                  | Zn<br>PPN                   | λg<br>PPN                  | NI<br>PPM                   | Co<br>PPN                  | Mn<br>PPM                           | Te<br>२                                 | As<br>PPN                 | U<br>PPM              | Au<br>PPM                  | Th<br>PPM             | ST<br>PPM                  | Cđ<br>PPN             | SD<br>PPM                  | Bİ<br>PPM                  | V<br>PPM                        | Ca<br>t                           | P<br>S                                       | La<br>PPN                | CT<br>PPM                      | Ng<br>S                             | Ba<br>PPM                  | Ti<br>\$                             | B<br>PPM                 | 21<br>2                              | Na<br>t                         | ۲<br>۲                                 | ¥<br>PPM              | Au*<br>PPB            | Hg<br>PPB                               |
|-------------------------------------------------------------------------|------------------------|------------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-------------------------------------|-----------------------------------------|---------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-----------------------------------|----------------------------------------------|--------------------------|--------------------------------|-------------------------------------|----------------------------|--------------------------------------|--------------------------|--------------------------------------|---------------------------------|----------------------------------------|-----------------------|-----------------------|-----------------------------------------|
| 4350N 5440B<br>4350N 5450B<br>4250N 4520B<br>4250K 4710B<br>4250N 4720B | 1<br>1<br>1<br>1<br>1  | 134<br>144<br>7<br>51<br>61  | 17<br>11<br>9<br>15<br>15  | 99<br>86<br>71<br>60<br>64  | .2<br>.1<br>.1<br>.1<br>.1 | 147<br>129<br>5<br>34<br>39 | 37<br>37<br>3<br>19<br>18  | 1350<br>664<br>316<br>298<br>342    | 7.93<br>8.46<br>2.91<br>7.50<br>7.24    | 2<br>2<br>2<br>5<br>6     | 5<br>5<br>5<br>5<br>5 | 10<br>10<br>10<br>10<br>10 | 2<br>2<br>1<br>2<br>2 | 30<br>23<br>5<br>11<br>13  | 1<br>1<br>1<br>1      | 2<br>2<br>4<br>2           | 2<br>2<br>2<br>2<br>2<br>2 | 181<br>222<br>49<br>262<br>220  | 1.01<br>.62<br>.06<br>.37<br>.40  | .028<br>.032<br>.024<br>.025<br>.020         | 5<br>5<br>2<br>4<br>5    | 139<br>151<br>12<br>99<br>112  | 1.99<br>1.42<br>.10<br>.61<br>.76   | 21<br>20<br>10<br>19<br>19 | .46<br>.58<br>.03<br>.58<br>.51      | 8<br>8<br>7<br>9<br>7    | 5.68<br>6.21<br>1.71<br>4.16<br>4.82 | .02<br>.02<br>.01<br>.01<br>.01 | .03<br>.02<br>.03<br>.03<br>.03        | 1<br>1<br>1<br>1<br>1 | 1<br>6<br>1<br>1      | 340<br>360<br>70<br>260<br>210          |
| 4250N 4740R<br>4250N 4760R<br>4250N 4780R<br>4250N 4800R<br>4250N 4820R | 1<br>1<br>1<br>1       | 69<br>67<br>60<br>63<br>59   | 15<br>14<br>15<br>15<br>10 | 62<br>59<br>65<br>61<br>49  | .1<br>.1<br>.1<br>.1       | 28<br>29<br>46<br>50<br>33  | 12<br>16<br>18<br>19<br>16 | 286<br>342<br>413<br>451<br>334     | 7.57<br>9.42<br>8.84<br>5.82<br>6.40    | 7<br>2<br>2<br>2<br>2     | 5<br>5<br>5<br>5<br>5 | CU<br>CU<br>CU<br>CU<br>CU | 2<br>2<br>3<br>1<br>2 | 11<br>10<br>12<br>15<br>14 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 198<br>334<br>302<br>187<br>235 | .33<br>.61<br>.59<br>.94<br>1.04  | .028<br>.022<br>.025<br>.032<br>.013         | 6<br>4<br>5<br>5<br>4    | 110<br>95<br>135<br>91<br>90   | .59<br>.63<br>.84<br>1.03<br>.85    | 18<br>11<br>12<br>13<br>9  | .53<br>.81<br>.72<br>.57<br>.68      | 11<br>8<br>6<br>12<br>11 | 6.07<br>3.81<br>4.69<br>5.59<br>4.04 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.02<br>.02<br>.01<br>.02        | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>3<br>1 | 380<br>200<br>210<br>140<br>160         |
| 4250N 4840E<br>4250N 4860E<br>4250N 4880E<br>4250N 4900E<br>4250N 4920E | 6<br>15<br>2<br>1<br>1 | 41<br>63<br>43<br>74<br>42   | 2<br>30<br>21<br>19<br>15  | 58<br>100<br>65<br>59<br>59 | .1<br>.1<br>.1<br>.1       | 36<br>77<br>19<br>25<br>23  | 14<br>34<br>15<br>14<br>13 | 395<br>2311<br>824<br>437<br>242    | 7.94<br>10.59<br>10.78<br>9.49<br>11.22 | 4<br>124<br>2<br>2<br>2   | 5<br>5<br>5<br>5<br>5 | סו<br>סו<br>סו<br>סו       | 1<br>2<br>2<br>3      | 12<br>16<br>10<br>9<br>10  | 1<br>1<br>1<br>1      | 2<br>7<br>2<br>2<br>2      | 4<br>2<br>3<br>3<br>2      | 223<br>201<br>354<br>316<br>325 | .78<br>.35<br>.54<br>.55<br>.58   | .015<br>.040<br>.037<br>.030<br>.032         | 4<br>6<br>3<br>6<br>5    | 122<br>84<br>135<br>140<br>116 | .80<br>.27<br>.31<br>.41<br>.49     | 10<br>21<br>8<br>8<br>7    | . 64<br>. 26<br>. 92<br>. 89<br>. 89 | 2<br>3<br>8<br>11<br>14  | 5.08<br>3.68<br>3.69<br>5.41<br>4.79 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.02<br>.03<br>.03<br>.03        | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1      | 220<br>3100<br>250<br>200<br>190        |
| 4250N 4940E<br>4250N 4960E<br>4250N 4980E<br>4250N 5000E<br>4250N 5040E | 1<br>2<br>1<br>1<br>1  | 44<br>68<br>41<br>26<br>3    | 23<br>25<br>14<br>17<br>2  | 86<br>83<br>55<br>48<br>77  | .1<br>.1<br>.1<br>.1<br>.2 | 29<br>43<br>16<br>11<br>1   | 20<br>41<br>9<br>7<br>1    | 629<br>3065<br>225<br>284<br>556    | 10.20<br>6.28<br>7.63<br>6.87<br>2.74   | 7<br>16<br>2<br>2<br>2    | 5<br>5<br>5<br>5<br>5 | 10<br>10<br>10<br>10       | 2<br>1<br>3<br>4<br>1 | 19<br>12<br>10<br>9<br>4   | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 309<br>158<br>190<br>165<br>45  | .99<br>.53<br>.23<br>.22<br>.02   | .042<br>.048<br>.024<br>.022<br>.008         | 9<br>30<br>6<br>7<br>2   | 124<br>98<br>110<br>75<br>3    | .50<br>.53<br>.31<br>.24<br>.04     | 21<br>43<br>19<br>15<br>8  | .91<br>.16<br>.31<br>.32<br>.07      | 11<br>9<br>8<br>7<br>5   | 4.43<br>5.85<br>5.92<br>4.66<br>.80  | .01<br>.01<br>.01<br>.01<br>.02 | .03<br>.03<br>.03<br>.03<br>.03<br>.02 | 1<br>1<br>1<br>1      | 1<br>1<br>3<br>1<br>2 | 150<br>500<br>320<br>200<br>20          |
| 4250H 5060E<br>4250N 5080E<br>4250N 5100E<br>4250N 5120E<br>4250N 5140E | 1<br>2<br>5<br>5<br>1  | 6<br>16<br>84<br>117<br>153  | 9<br>17<br>17<br>25<br>17  | 60<br>55<br>156<br>93<br>82 | .1<br>.2<br>.1<br>.1       | 1<br>8<br>18<br>44<br>96    | 2<br>8<br>38<br>33<br>33   | 529<br>1154<br>5385<br>1337<br>603  | 2.87<br>2.94<br>12.30<br>11.71<br>8.35  | 2<br>2<br>409<br>157<br>2 | 5<br>5<br>5<br>5<br>5 | 10<br>10<br>10<br>10<br>10 | 1<br>2<br>1<br>3<br>2 | 7<br>11<br>25<br>16<br>10  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>4      | 47<br>77<br>120<br>191<br>235   | .05<br>.34<br>1.16<br>.10<br>.93  | .015<br>.044<br>.325<br>.077<br>.032         | 2<br>11<br>33<br>15<br>7 | 5<br>25<br>19<br>69<br>141     | .10<br>.23<br>.33<br>.35<br>1.36    | 10<br>32<br>37<br>36<br>25 | .05<br>.09<br>.02<br>.10<br>.65      | 3<br>12<br>15<br>8<br>15 | 1.21<br>4.70<br>1.73<br>4.71<br>7.75 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.07<br>.02<br>.02        | 1<br>2<br>1<br>1<br>1 | 1<br>1<br>1<br>1      | 40<br>230<br>1400<br>1050<br>230        |
| 4250N 5160E<br>4250N 5180E<br>4250N 5200E<br>4250N 5220E<br>4250N 5240E | 1<br>1<br>1<br>1<br>2  | 152<br>113<br>94<br>56<br>47 | 18<br>14<br>14<br>8<br>12  | 81<br>70<br>64<br>52<br>52  | .1<br>.1<br>.1<br>.1       | 114<br>72<br>60<br>42<br>35 | 35<br>22<br>19<br>18<br>16 | 521<br>327<br>454<br>753<br>1223    | 8.17<br>7.95<br>6.64<br>7.32<br>5.75    | 2<br>2<br>11<br>10<br>20  | 5<br>5<br>5<br>5<br>5 |                            | 3<br>2<br>1<br>2<br>1 | 10<br>11<br>15<br>22<br>30 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>4<br>4<br>2      | 225<br>217<br>175<br>211<br>121 | .61<br>.58<br>.74<br>3.67<br>6.15 | .025<br>.027<br>.021<br>.021<br>.021<br>.034 | 5<br>6<br>4<br>5<br>5    | 164<br>128<br>86<br>102<br>60  | 1.25<br>.93<br>1.16<br>2.37<br>3.35 | 50<br>31<br>49<br>24<br>16 | .58<br>.56<br>.45<br>.48<br>.27      | 6<br>13<br>9<br>5<br>11  | 8.08<br>6.63<br>4.22<br>3.55<br>2.87 | .01<br>.01<br>.02<br>.01<br>.01 | .03<br>.04<br>.03<br>.03<br>.03        | 1<br>1<br>1<br>1      | 1<br>3<br>1<br>1<br>2 | 1 <u>60</u><br>260<br>280<br>300<br>460 |
| 4250N 5260E<br>4250N 5280E<br>4250N 5300E<br>4250N 5320E<br>4250N 5340E | 1<br>2<br>2<br>1<br>1  | 110<br>91<br>61<br>76<br>91  | 12<br>20<br>15<br>16<br>12 | 76<br>84<br>78<br>58<br>67  | .1<br>.1<br>.1<br>.1       | 86<br>75<br>48<br>39<br>21  | 29<br>31<br>24<br>33<br>23 | 1139<br>1883<br>1412<br>2748<br>593 | 5.86<br>7.44<br>7.76<br>7.19<br>8.33    | 3<br>12<br>47<br>36<br>5  | 5<br>5<br>5<br>5<br>5 | נת<br>מת<br>תו<br>תו       | 1<br>2<br>1<br>1<br>2 | 25<br>12<br>19<br>10<br>8  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>5<br>2           | 156<br>200<br>157<br>165<br>219 | 3.17<br>.54<br>1.92<br>.30<br>.11 | .024<br>.038<br>.035<br>.030<br>.024         | 4<br>8<br>6<br>7<br>4    | 102<br>112<br>82<br>86<br>43   | 2.44<br>.96<br>1.26<br>.40<br>1.05  | 20<br>32<br>21<br>19<br>20 | .47<br>.42<br>.28<br>.19<br>.05      | 7<br>8<br>11<br>7<br>11  | 4.22<br>6.10<br>4.26<br>4.69<br>4.52 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.03<br>.03<br>.03<br>.03<br>.04 | 1<br>2<br>1<br>1<br>1 | 1<br>1<br>5<br>1<br>1 | 180<br>340<br>430<br>540<br>190         |
| 4250N 5360B<br>STD C/AU-S                                               | 1<br>20                | 123<br>58                    | 15<br>43                   | 72<br>132                   | .1<br>7.6                  | 95<br>74                    | 28<br>31                   | 705<br>1075                         | 7.11<br>4.13                            | 2<br>38                   | 5<br>17               | HD<br>8                    | 2<br>40               | 15<br>53                   | 1<br>19               | 2<br>15                    | 4<br>23                    | 280<br>59                       | .77<br>.47                        | .038<br>.094                                 | 4<br>40                  | 172<br>61                      | 1.35                                | 31<br>184                  | .55<br>.08                           | 7<br>39                  | 5.76<br>1.97                         | .01<br>.07                      | .03<br>.16                             | 1<br>13               | 1<br>49               | 150<br>1400                             |

Page 8

1

(

{

 $\epsilon^{+}$ 

(

(

(

(

(

(

C

6

.

| SAMPLE                                                                                 | Mo<br>PPN             | Cu<br>79N                     | PD<br>PPM                  | Zn<br>PPM                  | Ag<br>PPN                  | NI<br>PPM                  | CO<br>PPM                  | Na<br>PPN                          | Fe<br>X                               | As<br>PPN                 | U<br>PPM                   | Au<br>PPM                  | Th<br>PPM                  | ST<br>PPM                  | Cđ<br>FPM             | SD<br>PPM                  | Bí<br>PPM                  | V<br>PPN                        | Ca                                 | P<br>ł                               | La<br>PPM               | Cr<br>PPM                      | Hg<br>t                            | Ba<br>PPM                  | Ti<br>}                              | B<br>PPN                 | Al<br>ł                              | Na<br>X                              | I<br>ł                          | ¥<br>PPM              | AU"<br>PPB             | Hg<br>PPB                        |   |   |
|----------------------------------------------------------------------------------------|-----------------------|-------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------------------------|---------------------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|------------------------------------|--------------------------------------|-------------------------|--------------------------------|------------------------------------|----------------------------|--------------------------------------|--------------------------|--------------------------------------|--------------------------------------|---------------------------------|-----------------------|------------------------|----------------------------------|---|---|
| 4250N 53392<br>4250N 54302<br>4250N 54292<br>4250N 54408<br>4150N 45902                | 1<br>1<br>2<br>1<br>4 | 58<br>92<br>121<br>81<br>74   | 10<br>10<br>15<br>12<br>5  | 50<br>51<br>76<br>95<br>77 | .1<br>.1<br>.2<br>.1<br>.1 | 40<br>50<br>90<br>61<br>65 | 15<br>16<br>21<br>24<br>31 | 363<br>321<br>425<br>625<br>902    | 9.29<br>3.09<br>3.56<br>6.19<br>5.61  | 11<br>5<br>2<br>5<br>19   | 5<br>5<br>5<br>5<br>5      | NC<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>1      | 10<br>10<br>38<br>21<br>23 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>4<br>2<br>2      | 409<br>310<br>159<br>297<br>136 | .41<br>.54<br>.61<br>.99           | .015<br>.015<br>.056<br>.043<br>.031 | 3<br>3<br>14<br>5<br>11 | 93<br>155<br>113<br>99<br>55   | .63<br>.75<br>1.27<br>1.56<br>.84  | 11<br>11<br>75<br>22<br>82 | .75<br>.75<br>.33<br>.84<br>.13      | 5<br>8<br>13<br>3<br>9   | 1.84<br>5.28<br>4.25<br>4.26<br>3.56 | .01<br>.01<br>.02<br>.31<br>.01      | .02<br>.02<br>.18<br>.03<br>.03 | 1<br>1<br>1<br>2      | 1<br>1<br>35<br>4<br>: | 200<br>30<br>250<br>150<br>180   | ( | 1 |
| 4150N 46003<br>4150N 46203<br>4150N 4640E<br>4150N 4640E<br>4150N 46603<br>4150N 46603 | 1<br>1<br>1<br>1      | 48<br>55<br>24<br>46<br>31    | 10<br>2<br>11<br>9<br>9    | 49<br>54<br>40<br>48<br>48 | .1<br>.1<br>.1<br>.1       | 28<br>32<br>17<br>30<br>29 | 14<br>15<br>10<br>14<br>14 | 343<br>388<br>226<br>343<br>313    | 5.55<br>5.01<br>6.81<br>6.65<br>8.44  | 7<br>4<br>3<br>8          | 5<br>5<br>5<br>5<br>5<br>5 | NC<br>ND<br>ND<br>NC       | 2<br>1<br>2<br>2<br>2      | 14<br>16<br>9<br>14<br>14  | 1<br>1<br>1<br>1      | 2 4 2 2                    | 2<br>2<br>2<br>2<br>2<br>2 | 172<br>196<br>252<br>222<br>295 | .33<br>.56<br>.22<br>.45<br>.37    | .027<br>.015<br>.019<br>.017<br>.019 | 4<br>5<br>4<br>5<br>4   | 89<br>84<br>54<br>77<br>35     | .33<br>1.06<br>.55<br>.86<br>.78   | 19<br>19<br>12<br>15<br>14 | .42<br>.49<br>.50<br>.52<br>.76      | 6<br>4<br>2<br>6<br>3    | 4.52<br>3.81<br>2.66<br>3.30<br>2.44 | . 31<br>. 31<br>. 01<br>. 01<br>. 01 | .02<br>.02<br>.02<br>.03<br>.03 | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>1       | 220<br>220<br>180<br>200<br>170  | ( |   |
| 4150N 473CE<br>4150N 4720E<br>4150N 4720E<br>4150N 4740E<br>4150N 4760E<br>4150N 47ECE | 2<br>1<br>1<br>1      | 109<br>85<br>74<br>111<br>124 | 14<br>8<br>3<br>6<br>6     | 65<br>40<br>47<br>62<br>91 | .1<br>.4<br>.1<br>.1       | 62<br>34<br>41<br>47<br>93 | 24<br>17<br>17<br>29<br>33 | 1397<br>461<br>550<br>793<br>1774  | 7.10<br>5.14<br>4.35<br>5.34<br>5.17  | 28<br>8<br>3<br>5<br>11   | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>1<br>1      | 13<br>16<br>33<br>21<br>27 | 1<br>1<br>1<br>1<br>1 | 4<br>2<br>3<br>2           | 2<br>2<br>2<br>2<br>2<br>2 | 206<br>201<br>142<br>174<br>177 | .66<br>.53<br>1.58<br>1.38<br>1.22 | .023<br>.041<br>.047<br>.051<br>.044 | 7<br>8<br>8<br>9<br>7   | 135<br>88<br>32<br>49<br>82    | 1.11<br>.63<br>1.11<br>.89<br>1.41 | 21<br>17<br>25<br>43<br>37 | .38<br>.54<br>.44<br>.46<br>.37      | 11<br>8<br>9<br>10       | 3.78<br>5.13<br>2.44<br>3.62<br>4.15 | .01<br>.01<br>.03<br>.02<br>.02      | .02<br>.01<br>.03<br>.03<br>.02 | 2<br>1<br>1<br>1<br>1 | 1<br>9<br>3<br>1<br>1  | 400<br>250<br>140<br>210<br>2200 | ŗ |   |
| 4150N 480CZ<br>4150N 482CZ<br>4150N 484CZ<br>4150N 484CZ<br>4150N 4850Z<br>4150N 4880Z | 1<br>1<br>2<br>2<br>1 | 29<br>40<br>51<br>57<br>49    | 10<br>15<br>18<br>10<br>9  | 55<br>53<br>52<br>39<br>53 | .1<br>.1<br>.2<br>.2<br>.1 | 15<br>21<br>29<br>27<br>31 | 10<br>12<br>12<br>10<br>13 | 218<br>311<br>347<br>291<br>224    | 9.24<br>7.01<br>3.47<br>5.3E<br>7.27  | 2<br>5<br>3<br>113<br>17  | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2<br>2 | 10<br>12<br>9<br>16<br>11  | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>5<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 406<br>269<br>304<br>201<br>322 | .51<br>.44<br>.45<br>.45<br>.52    | .020<br>.019<br>.017<br>.022<br>.019 | 3<br>4<br>4<br>4<br>4   | 75<br>99<br>119<br>70<br>93    | .25<br>.44<br>.48<br>.51<br>.66    | 6<br>10<br>10<br>14<br>10  | . 33<br>. 55<br>. 68<br>. 45<br>. 86 | 2<br>7<br>4<br>7<br>8    | 2.05<br>3.36<br>3.36<br>3.43<br>2.96 | .01<br>.01<br>.01<br>.01<br>.01      | .01<br>.02<br>.01<br>.03<br>.02 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>32<br>1 | 150<br>140<br>160<br>180<br>170  | ( |   |
| 4150N 490CE<br>4150N 4920E<br>4150N 4940E<br>4150N 4940E<br>4150N 4960E<br>4130N 4960E | 1<br>1<br>1<br>1      | 49<br>37<br>25<br>75<br>37    | 11<br>10<br>13<br>6<br>11  | 62<br>46<br>57<br>53<br>59 | .1<br>.2<br>.1<br>.1       | 28<br>19<br>19<br>42<br>26 | 14<br>11<br>10<br>25<br>12 | 293<br>183<br>167<br>1299<br>243   | 7.84<br>11.26<br>8.68<br>4.83<br>9.85 | 7<br>7<br>2<br>5<br>3     | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND             | 2<br>2<br>1<br>3           | 13<br>7<br>13<br>30<br>10  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 7<br>2<br>2<br>2<br>2<br>2 | 306<br>423<br>361<br>155<br>374 | .£4<br>.43<br>.82<br>1.50<br>.44   | .025<br>.017<br>.021<br>.047<br>.017 | 4<br>3<br>8<br>3        | 90<br>124<br>105<br>,49<br>120 | .60<br>.31<br>.37<br>.95<br>.42    | 13<br>5<br>9<br>25<br>8    | .70<br>1.02<br>.94<br>.43<br>.86     | 9<br>7<br>3<br>13<br>6   | 2.98<br>3.21<br>2.87<br>2.73<br>2.50 | .01<br>.01<br>.01<br>.02<br>.01      | .02<br>.01<br>.02<br>.03<br>.03 | 1<br>2<br>1<br>1<br>2 | 5<br>1<br>1<br>1<br>1  | 140<br>150<br>70<br>200<br>160   | ( |   |
| 4150N SOCOE<br>4150N SOCCE<br>4150N SOCCE<br>4150N SOCCE<br>4150N SOCCE<br>4150N SOCCE | 1<br>1<br>2<br>1<br>1 | 70<br>100<br>38<br>9<br>43    | 7<br>4<br>17<br>6<br>18    | 47<br>63<br>70<br>56<br>51 | .1<br>.2<br>.1<br>.1       | 39<br>42<br>22<br>5<br>24  | 15<br>13<br>58<br>3<br>10  | 524<br>2458<br>2840<br>242<br>327  | 4.15<br>3.77<br>6.59<br>4.79<br>7.19  | 6<br>9<br>8<br>4<br>11    | 5<br>5<br>5<br>5<br>5      | NC<br>ND<br>ND<br>ND       | 1<br>1<br>2<br>2           | 31<br>27<br>12<br>5<br>9   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 8<br>2<br>7<br>2<br>2      | 137<br>125<br>197<br>7E<br>222  | 1.57<br>1.51<br>.80<br>.04<br>.36  | .042<br>.047<br>.040<br>.013<br>.018 | 7<br>10<br>10<br>4<br>3 | 35<br>53<br>75<br>12<br>117    | 1.00<br>.81<br>.35<br>.07<br>.50   | 24<br>31<br>25<br>7<br>15  | .42<br>.32<br>.32<br>.05<br>.46      | 12<br>7<br>11<br>7<br>8  | 2.40<br>2.52<br>5.15<br>3.48<br>4.33 | .02<br>.02<br>.01<br>.01<br>.01      | .03<br>.03<br>.02<br>.01<br>.01 | 2<br>1<br>1<br>2      | 3<br>1<br>5<br>1<br>3  | 120<br>170<br>210<br>30<br>130   | ( |   |
| 4150N 5100E<br>4150N 5120X<br>4150N 5140E<br>4150N 5160E<br>4150N 5160E                | 1<br>3<br>1<br>2<br>2 | 36<br>23<br>96<br>134<br>94   | 12<br>11<br>14<br>19<br>19 | 63<br>73<br>65<br>87<br>80 | .1<br>.1<br>.2<br>.1<br>.1 | 19<br>23<br>54<br>52<br>34 | 8<br>12<br>19<br>28<br>25  | 1427<br>963<br>452<br>1105<br>2195 | 5.64<br>7.08<br>5.89<br>8.75<br>7.95  | 8<br>49<br>23<br>20<br>40 | 5<br>5<br>5<br>5<br>5      | NC<br>ND<br>ND<br>ND       | 2<br>2<br>3<br>1           | 10<br>38<br>11<br>12<br>22 | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 141<br>91<br>224<br>257<br>164  | .45<br>9.31<br>.55<br>.54<br>4.22  | .031<br>.039<br>.017<br>.040<br>.031 | 8<br>5<br>4<br>7<br>12  | 72<br>44<br>109<br>140<br>94   | .33<br>4.49<br>.94<br>1.14<br>2.85 | 24<br>9<br>21<br>43<br>45  | .20<br>.08<br>.41<br>.47<br>.28      | 3<br>4<br>10<br>12<br>12 | 4.16<br>1.73<br>4.25<br>6.31<br>4.93 | .01<br>.01<br>.01<br>.01<br>.01      | .02<br>.02<br>.03<br>.05<br>.02 | 1<br>1<br>2<br>1      | 1<br>1<br>3<br>1       | 200<br>310<br>240<br>220<br>350  |   |   |
| 4150N 5230E<br>STD C/AU-3                                                              | 5<br>20               | 96<br>63                      | 19<br>42                   | 78<br>132                  | .2<br>7.4                  | 68<br>72                   | 25<br>31                   | 863<br>1069                        | 12.09                                 | 48<br>43                  | 5<br>16                    | ND<br>B                    | 41<br>41                   | 8<br>53                    | 1<br>18               | 2<br>16                    | 2<br>20                    | 254<br>54                       | .34<br>.47                         | . 324<br>. 387                       | 8<br>40                 | 135<br>60                      | .59<br>.93                         | 25<br>183                  | .39<br>.08                           | 5<br>39                  | 5.40<br>1.80                         | .01<br>.07                           | .92<br>.15                      | 1<br>15               | 1<br>49                | 440<br>1400                      | ſ |   |

( Page 9

(

.

(

ŧ

€

r

| SAMPLE                                                                                 | NC<br>PPM             | Cu<br>PPM                     | Pb<br>PPN                 | Zn<br>PPX                   | Ag<br>PPN                  | NÍ<br>PPM                  | Co<br>PPM                  | Mn<br>PPN                           | fe<br>1                                | As<br>PPM                  | U<br>P?H                   | Au<br>PPH                   | Th<br>PPM             | ST<br>PPM                  | Cd<br>PPM             | SD<br>PPM                  | B1<br>PPM             | V<br>PPN                        | Ca<br>ł                           | P<br>ł                               | La<br>PPM             | CT<br>PPN                       | Eg<br>t                             | Ba<br>PPN                  | Ti<br>ł                          | B AI<br>PPN 1                                    | Na<br>ł                         | X<br>X                          | ¥<br>PPX              | Au*<br>PP3             | Hç<br>PPS                       |   |
|----------------------------------------------------------------------------------------|-----------------------|-------------------------------|---------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|-------------------------------------|----------------------------------------|----------------------------|----------------------------|-----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|---------------------------------|-----------------------------------|--------------------------------------|-----------------------|---------------------------------|-------------------------------------|----------------------------|----------------------------------|--------------------------------------------------|---------------------------------|---------------------------------|-----------------------|------------------------|---------------------------------|---|
| 41509 32202<br>41508 32438<br>41509 32602<br>41509 52808<br>41509 33002                | 1<br>1<br>1<br>1      | 102<br>90<br>68<br>113<br>108 | 7<br>2<br>5<br>4<br>11    | 61<br>59<br>43<br>66<br>65  | .1<br>.1<br>.1<br>.1       | 51<br>58<br>36<br>80<br>69 | 18<br>15<br>14<br>22<br>22 | 233<br>295<br>255<br>401<br>581     | 6.24<br>5.89<br>8.04<br>8.37<br>7.61   | 9<br>2<br>11<br>20<br>13   | 5<br>5<br>5<br>5<br>5      | nd<br>NC<br>ND<br>ND<br>ND  | 1<br>1<br>2<br>2<br>2 | 13<br>13<br>10<br>12<br>13 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>4<br>2      | 181<br>156<br>242<br>257<br>241 | .59<br>.48<br>.42<br>.57<br>.54   | .020<br>.020<br>.019<br>.023<br>.023 | 5<br>4<br>5<br>6      | 100<br>34<br>126<br>133<br>114  | 1.11<br>1.03<br>.63<br>1.03<br>1.00 | 25<br>19<br>17<br>33<br>27 | .48<br>.42<br>.58<br>.48<br>.49  | 5 5.82<br>5 5.10<br>7 4.84<br>6 5.82<br>7 5.33   | .01<br>.31<br>.01<br>.01<br>.01 | .02<br>.02<br>.02<br>.02<br>.02 | 1<br>1<br>1<br>1<br>1 | 2<br>5<br>3<br>1<br>5  | 220<br>220<br>240<br>220<br>300 |   |
| 4150K 5320E<br>4150K 5340E<br>4150K 5360E<br>4150K 5360E<br>4150K 540E                 | 1<br>1<br>1<br>1      | 107<br>113<br>85<br>106<br>38 | 14<br>7<br>7<br>13<br>10  | 91<br>59<br>46<br>42<br>33  | .1<br>.1<br>.1<br>.1       | 77<br>58<br>37<br>40<br>30 | 27<br>21<br>16<br>15<br>13 | 472<br>593<br>357<br>297<br>250     | 3.75<br>6.85<br>9.09<br>8.60<br>8.32   | 126<br>16<br>4<br>2<br>2   | 5<br>5<br>5<br>5<br>5      | D<br>D<br>D<br>D<br>D<br>ND | 3<br>2<br>3<br>3<br>2 | 11<br>14<br>12<br>10<br>7  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>3<br>2<br>2<br>4 | 245<br>197<br>283<br>260<br>269 | .34<br>.57<br>.53<br>.46<br>.35   | .055<br>.031<br>.031<br>.030<br>.027 | 9<br>5<br>5<br>5<br>4 | 115<br>103<br>139<br>130<br>136 | .75<br>1.03<br>.68<br>.63<br>.50    | 31<br>21<br>10<br>3<br>7   | .36<br>.47<br>.71<br>.67<br>.70  | 11 7.26<br>11 5.71<br>7 5.32<br>3 6.71<br>2 7.03 | .01<br>.01<br>.01<br>.01        | .04<br>.02<br>.03<br>.03<br>.01 | 1<br>1<br>1<br>1<br>1 | 1<br>2<br>1<br>1<br>1  | 430<br>280<br>330<br>300<br>260 |   |
| 4150N 5419E<br>2225N 1300Z<br>2225N 1910E<br>2225N 1910E<br>2225N 1930E                | 2<br>1<br>1<br>1<br>1 | 116<br>32<br>44<br>56<br>55   | 13<br>4<br>7<br>6<br>5    | 39<br>57<br>60<br>92<br>124 | .1<br>.1<br>.1<br>.1       | 43<br>19<br>23<br>46<br>79 | 15<br>8<br>12<br>38<br>39  | 348<br>820<br>1182<br>3082<br>1980  | 7.42<br>1.80<br>2.62<br>8.16<br>7.36   | 4<br>2<br>2<br>4<br>6      | 5<br>5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND        | 2<br>1<br>1<br>1<br>1 | 9<br>16<br>17<br>22<br>20  | 1<br>1<br>1<br>1      | 4<br>2<br>2<br>2<br>2      | 2<br>2<br>5<br>4      | 230<br>84<br>108<br>299<br>210  | .41<br>.47<br>.54<br>.85<br>1.68  | .033<br>.043<br>.064<br>.044<br>.028 | 5<br>3<br>4<br>5<br>4 | 124<br>34<br>50<br>87<br>62     | .66<br>.28<br>.38<br>.88<br>1.37    | 10<br>12<br>16<br>24<br>19 | .68<br>.17<br>.27<br>.52<br>.56  | 6 7.91<br>6 1.63<br>4 1.92<br>2 3.29<br>8 3.79   | .01<br>.01<br>.02<br>.01<br>.02 | .02<br>.01<br>.01<br>.03<br>.02 | 2<br>1<br>1<br>1      | 2<br>1<br>1<br>1<br>2  | 180<br>200<br>290<br>220<br>120 |   |
| 2225X 19402<br>2225X 1950E<br>2225X 1950E<br>2225X 1960E<br>2225X 1980E                | 1<br>1<br>1<br>1<br>4 | 66<br>89<br>93<br>65<br>75    | 5<br>12<br>8<br>3<br>2    | 77<br>79<br>82<br>49<br>42  | .1<br>.2<br>.1<br>.1       | 28<br>26<br>33<br>34<br>31 | 14<br>47<br>62<br>10<br>10 | 1958<br>6643<br>10397<br>251<br>240 | 2.72<br>6.06<br>7.51<br>6.64<br>7.47   | 2<br>2<br>3<br>2<br>2      | 5<br>5<br>5<br>5<br>5      | nd<br>NC<br>ND<br>NC<br>ND  | 1<br>1<br>1<br>1<br>1 | 29<br>29<br>26<br>8<br>8   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>4<br>2      | 2<br>2<br>5<br>2<br>9 | 129<br>194<br>228<br>137<br>224 | 1.00<br>1.00<br>.98<br>.38<br>.38 | .064<br>.061<br>.065<br>.020<br>.013 | 5<br>6<br>6<br>5      | 49<br>72<br>79<br>105<br>115    | .49<br>.51<br>.63<br>.49<br>.45     | 19<br>26<br>33<br>8<br>7   | .24<br>.38<br>.43<br>.43<br>.58  | 9 2.27<br>8 3.31<br>11 4.12<br>2 5.50<br>3 5.31  | .02<br>.02<br>.02<br>.01<br>.01 | .03<br>.04<br>.04<br>.01<br>.02 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1       | 330<br>320<br>300<br>210<br>230 |   |
| 2225H 1990E<br>2200N 1900E<br>2200N 1910E<br>2200N 1912E<br>2200N 1925E<br>2200N 1930E | 2<br>1<br>1<br>1<br>1 | 101<br>49<br>66<br>15<br>18   | 8<br>12<br>10<br>10<br>11 | 46<br>55<br>68<br>74<br>81  | .1<br>.1<br>.2<br>.2       | 40<br>16<br>23<br>10<br>5  | 13<br>12<br>37<br>4<br>2   | 233<br>139<br>6204<br>239<br>305    | 7.62<br>10.53<br>7.13<br>2.07<br>.67   | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND  | 1<br>2<br>1<br>1<br>1 | 9<br>7<br>20<br>30<br>33   | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>1<br>2<br>2<br>2 | 220<br>565<br>293<br>135<br>34  | .42<br>.44<br>.70<br>.71<br>.70   | .020<br>.016<br>.044<br>.038<br>.044 | 8<br>4<br>5<br>3<br>2 | 126<br>135<br>85<br>33<br>11    | .57<br>.36<br>.47<br>.26<br>.25     | 8<br>5<br>22<br>19<br>22   | .58<br>1.31<br>.66<br>.37<br>.07 | 3 6.83<br>2 3.81<br>13 3.44<br>7 .77<br>7 .25    | .01<br>.01<br>.02<br>.02<br>.03 | .01<br>.02<br>.04<br>.03<br>.02 | 1<br>1<br>1<br>1      | 2<br>2<br>1<br>1<br>2  | 280<br>160<br>320<br>280<br>300 |   |
| 2200N 19403<br>2200H 1950E<br>2200N 1950E<br>2200N 19503<br>2200N 1980E                | 1<br>1<br>1<br>1      | 65<br>57<br>95<br>101<br>92   | 16<br>10<br>9<br>3<br>13  | 55<br>63<br>61<br>50<br>47  | .2<br>.1<br>.1<br>.1       | 24<br>23<br>31<br>38<br>28 | 12<br>20<br>22<br>12<br>12 | 295<br>1965<br>3591<br>232<br>186   | 12.40<br>9.54<br>8.01<br>8.67<br>8.95  | 2<br>2<br>2<br>7           | 5<br>5<br>5<br>5<br>5<br>5 | nd<br>ND<br>ND<br>ND<br>ND  | 2<br>1<br>1<br>1<br>2 | 7<br>11<br>14<br>9<br>8    | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>3      | 3<br>2<br>2<br>2<br>2 | 443<br>366<br>259<br>235<br>307 | .43<br>.58<br>.53<br>.41<br>.37   | .028<br>.031<br>.033<br>.024<br>.019 | 3<br>4<br>9<br>8      | 188<br>142<br>124<br>135<br>140 | .42<br>.40<br>.46<br>.59<br>.39     | 6<br>9<br>13<br>8<br>8     | 1.01<br>.84<br>.59<br>.65<br>.77 | 2 4.53<br>3 3.76<br>2 5.51<br>3 6.98<br>2 5.89   | .01<br>.01<br>.01<br>.01        | .02<br>.01<br>.02<br>.02<br>.02 | I<br>1<br>1<br>1      | 1<br>1<br>5<br>1       | 190<br>220<br>260<br>280<br>200 |   |
| 2200N 1990E<br>2175N 1900E<br>2175N 1910E<br>2175N 1920E<br>2175N 1920E                | 1<br>1<br>1<br>1      | 96<br>31<br>19<br>28<br>23    | 6<br>9<br>11<br>5<br>12   | 52<br>62<br>62<br>58<br>73  | .1<br>.1<br>.1<br>.1<br>.2 | 38<br>18<br>15<br>25<br>22 | 14<br>10<br>10<br>16<br>12 | 215<br>284<br>263<br>506<br>455     | 11.00<br>15.47<br>7.96<br>7.35<br>5.52 | 3<br>2<br>2<br>3<br>2      | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND        | 1<br>2<br>1<br>1<br>2 | 9<br>8<br>23<br>18<br>27   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>3           | 3<br>4<br>2<br>2<br>2 | 350<br>580<br>328<br>306<br>253 | .45<br>.40<br>.62<br>.34<br>.75   | .021<br>.018<br>.029<br>.039<br>.040 | 7<br>2<br>4<br>8      | 173<br>124<br>68<br>66<br>56    | .52<br>.31<br>.31<br>.79<br>.58     | 7<br>4<br>9<br>12<br>43    | .91<br>1.29<br>.77<br>.83<br>.59 | 2 5.89<br>3 2.09<br>2 1.23<br>3 1.88<br>4 1.93   | .01<br>.01<br>.02<br>.02<br>.02 | .02<br>.03<br>.04<br>.04<br>.12 | 1<br>1<br>1<br>1<br>1 | 1<br>2<br>1<br>1<br>19 | 260<br>60<br>210<br>210<br>350  |   |
| 2175N 19405<br>STD C/AU-S                                                              | 1<br>19               | 48<br>62                      | 11<br>41                  | 66<br>132                   | .1<br>7.1                  | 36<br>72                   | 13<br>21                   | 343<br>1055                         | 9.54<br>4.11                           | 3<br>42                    | 5<br>17                    | HD<br>B                     | 2<br>39               | 21<br>53                   | 1<br>13               | 2<br>15                    | 2<br>18               | 358<br>61                       | .61<br>.46                        | .025<br>.085                         | 3<br>40               | 120<br>63                       | .67<br>.92                          | 10<br>182                  | .35<br>.08                       | 2 2.53<br>35 1.91                                | . 02                            | .03<br>.15                      | 1<br>13               | 3<br>50                | 160<br>1400                     | · |

Page 10 (

Ċ

(

(

1

(

(

(

C.

(

(

ŧ.

Ę

۱

. .

| SAMPLE                                                                  | No<br>PPN              | Cu<br>PPH                      | Pb<br>PPN                 | Zn<br>PPM                    | Ag<br>PPN                   | Ni<br>PPM                    | Co<br>PPH                    | Nn<br>PPM                                        | Fe<br>R                              | As<br>PPK               | U<br>PPM               | AU<br>PPM                                    | Th<br>PPM              | ST<br>PPM                  | Cd<br>PPM         | Sb<br>PPM                  | B1<br>PPN              | V<br>PPN                        | Ca<br>ł                           | P<br>Z                               | La<br>PPK                  | CT<br>PPH                      | Ng<br>ł                             | Ba<br>PPN                  | Ti<br>ł                           | B<br>PPM                | 11<br>1                              | Na<br>X                         | r<br>f                          | ¥<br>PPN              | Au*<br>PPB              | Hg<br>PPB                           |
|-------------------------------------------------------------------------|------------------------|--------------------------------|---------------------------|------------------------------|-----------------------------|------------------------------|------------------------------|--------------------------------------------------|--------------------------------------|-------------------------|------------------------|----------------------------------------------|------------------------|----------------------------|-------------------|----------------------------|------------------------|---------------------------------|-----------------------------------|--------------------------------------|----------------------------|--------------------------------|-------------------------------------|----------------------------|-----------------------------------|-------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-------------------------|-------------------------------------|
| 2175N 1950E<br>2175N 1960E<br>2175N 1970E<br>2175N 1980E<br>2175N 1990E | 2<br>1<br>1<br>1<br>1  | 91<br>75<br>43<br>56<br>47     | 15<br>2<br>2<br>2<br>6    | 72<br>48<br>51<br>54<br>47   | .2<br>.2<br>.5<br>.1<br>.1  | 17<br>21<br>11<br>22<br>15   | 123<br>28<br>12<br>17<br>13  | 15356 10<br>385 4<br>307 2<br>526 9<br>387 11    | .36<br>.14<br>.06<br>.39<br>.11      | 10<br>2<br>7<br>9       | 5<br>5<br>5<br>5<br>5  | ND<br>ND<br>ND<br>ND<br>ND                   | 2<br>1<br>1<br>2<br>2  | 15<br>42<br>37<br>10<br>8  | 1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>2      | 4<br>2<br>3<br>5       | 303<br>115<br>54<br>461<br>439  | .48<br>1.23<br>.99<br>.41<br>.37  | .081<br>.069<br>.067<br>.025<br>.033 | 10<br>7<br>5<br>3          | 84<br>41<br>20<br>103<br>103   | .24<br>.38<br>.27<br>.30<br>.22     | 23<br>18<br>16<br>10<br>9  | .32<br>.18<br>.08<br>1.01<br>.99  | 7<br>8<br>9<br>2<br>3   | 4.91<br>2.27<br>1.07<br>3.79<br>3.47 | .01<br>.02<br>.02<br>.01<br>.01 | .04<br>.04<br>.06<br>.03<br>.03 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1<br>7   | 330<br>220<br>280<br>230<br>170     |
| 2150N 1900K<br>2150N 1910E<br>2150N 1920K<br>2150N 1930E<br>2150N 1940E | 1<br>1<br>1<br>1       | 46<br>54<br>51<br>114<br>71    | 5<br>9<br>12<br>28<br>16  | 73<br>47<br>48<br>46<br>50   | .2<br>.1<br>.3<br>.1        | 39<br>30<br>31<br>63<br>17   | 15<br>8<br>10<br>16<br>93    | 270 3<br>188 14<br>194 13<br>235 9<br>6097 10    | .08<br>.63<br>.52<br>.00<br>.37      | 4<br>9<br>10<br>2<br>8  | 5<br>5<br>5<br>5<br>5  | ND<br>ND<br>ND<br>ND                         | 1<br>2<br>3<br>3       | 18<br>6<br>6<br>9          | 1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>2      | 2<br>6<br>2<br>2       | 152<br>534<br>532<br>255<br>437 | .94<br>.33<br>.36<br>.28<br>.42   | .030<br>.019<br>.019<br>.024<br>.030 | 4<br>3<br>3<br>2<br>5      | 64<br>208<br>195<br>249<br>119 | .61<br>.40<br>.41<br>.87<br>.23     | 12<br>4<br>4<br>7<br>13    | .37<br>1.07<br>1.06<br>.50<br>.84 | 6<br>2<br>4<br>2<br>2   | 2.49<br>3.94<br>3.59<br>9.86<br>3.93 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.01<br>.02<br>.04 | 1<br>1<br>2<br>1<br>1 | 16<br>6<br>5<br>1<br>2  | 140<br>180<br>210<br>260<br>330     |
| 2150¥ 1950¥<br>2150N 1960¥<br>2150N 1970E<br>2150N 1980¥<br>2150N 1990₽ | 1<br>1<br>2<br>1<br>1  | 47<br>74<br>84<br>62<br>70     | 13<br>3<br>15<br>4<br>15  | 71<br>53<br>66<br>75<br>47   | .1<br>.1<br>.1<br>.3        | 18<br>21<br>23<br>40<br>34   | 19<br>49<br>195<br>21<br>12  | 3281 11<br>1743 8<br>12861 17<br>361 3<br>238 11 | .01<br>.19<br>.01<br>.95<br>.49      | 9<br>7<br>12<br>2<br>5  | 5<br>5<br>5<br>5<br>5  | ND<br>ND<br>ND<br>ND<br>ND                   | 2<br>1<br>2<br>1<br>2  | 12<br>26<br>9<br>22<br>6   | 1<br>1<br>1<br>1  | 2<br>2<br>3<br>2           | 3<br>2<br>2<br>2<br>5  | 511<br>246<br>323<br>192<br>392 | .60<br>.76<br>.31<br>1.06<br>.37  | .023<br>.067<br>.064<br>.042<br>.021 | 5<br>12<br>11<br>6<br>4    | 117<br>73<br>89<br>63-<br>226  | .36<br>.28<br>.23<br>.64<br>.52     | 16<br>20<br>34<br>14<br>5  | 1.12<br>.27<br>.30<br>.38<br>.96  | 7<br>3<br>7<br>4<br>5   | 3.24<br>3.88<br>5.55<br>2.91<br>5.75 | .01<br>.01<br>.01<br>.02<br>.01 | .04<br>.04<br>.04<br>.03<br>.03 | 1<br>1<br>1<br>1      | 1<br>5<br>3<br>1<br>4   | 150<br>300<br>260<br>180<br>220     |
| 2100N 1910E<br>2100N 1920Z<br>2100N 1930E<br>2100N 1940Z<br>2100N 1950E | 1<br>1<br>1<br>1<br>1  | 18<br>24<br>23<br>28<br>61     | 8<br>12<br>11<br>13<br>10 | 67<br>58<br>62<br>58<br>68   | .1<br>.1<br>.1<br>.1        | 8<br>12<br>12<br>11<br>25    | 9<br>13<br>78<br>11<br>77    | 442 5<br>570 7<br>3057 6<br>288 14<br>3813 7     | .53<br>.22<br>.52<br>.43<br>.24      | 3<br>3<br>4<br>6        | 5<br>5<br>5<br>5<br>5  | UN<br>Ch<br>Ch<br>Ch<br>Ch<br>Ch<br>Ch<br>Ch | 2<br>1<br>1<br>2<br>1  | 23<br>20<br>31<br>7<br>17  | 1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>2      | 3<br>2<br>6<br>2<br>3  | 381<br>460<br>288<br>526<br>293 | .54<br>.58<br>.77<br>.24<br>.80   | .024<br>.017<br>.041<br>.021<br>.035 | 3<br>4<br>3<br>3<br>7      | 53<br>71<br>58<br>142<br>104   | .25<br>.26<br>.19<br>.14<br>.51     | 11<br>13<br>21<br>8<br>13  | .87<br>1.01<br>.57<br>1.09<br>.62 | 9<br>8<br>5<br>5        | .97<br>1.19<br>1.21<br>2.09<br>3.78  | .02<br>.01<br>.02<br>.01<br>.01 | .05<br>.03<br>.05<br>.04<br>.03 | 1<br>1<br>1<br>1      | 7<br>1<br>8<br>1<br>2   | 140<br>120<br>210<br>150<br>240     |
| 2100N 1960E<br>2100N 1970E<br>2100N 1980E<br>2100N 1990E<br>2000N 1990E | 1<br>1<br>1<br>1       | 75<br>109<br>108<br>135<br>130 | 11<br>14<br>8<br>13<br>4  | 65<br>72<br>63<br>61<br>112  | .1<br>.4<br>.1<br>.1<br>.2  | 18<br>20<br>23<br>26<br>177  | 149<br>138<br>47<br>18<br>51 | 6051 6<br>9722 4<br>800 11<br>516 12<br>1741 7   | . 12<br>. 88<br>. 55<br>. 83<br>. 24 | 5<br>3<br>7<br>4<br>10  | 5<br>5<br>5<br>5<br>5  | UD<br>KD<br>KD<br>KD<br>KD                   | 1<br>1<br>3<br>2<br>1  | 23<br>28<br>8<br>7<br>44   | 1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>2<br>2 | 4<br>2<br>3<br>3       | 245<br>182<br>374<br>410<br>186 | .93<br>1.03<br>.48<br>.56<br>1.37 | .055<br>.058<br>.026<br>.027<br>.030 | 9<br>9<br>5<br>5<br>5<br>5 | 82<br>69<br>139<br>122<br>139  | .26<br>.27<br>.40<br>.44<br>2.58    | 18<br>41<br>6<br>47        | .43<br>.32<br>1.01<br>1.01<br>.41 | 5<br>10<br>5<br>2<br>12 | 3.59<br>3.34<br>5.56<br>5.32<br>5.54 | .02<br>.02<br>.01<br>.01<br>.03 | .04<br>.05<br>.03<br>.03<br>.02 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>3<br>2   | 430<br>400<br>310<br>360<br>420     |
| 2000N 1910E<br>2000N 192DE<br>2000N 1930E<br>2000N 1940E<br>2000N 1950E | 1<br>1<br>1<br>1       | 77<br>69<br>118<br>124<br>116  | 11<br>8<br>11<br>9<br>10  | 79<br>92<br>89<br>96<br>91   | .2<br>.1<br>.1<br>.1        | 71<br>52<br>62<br>144<br>100 | 32<br>34<br>27<br>59<br>33   | 2224 6<br>1049 9<br>736 8<br>2791 7<br>706 8     | .72<br>.44<br>.43<br>.43<br>.88      | 4<br>10<br>10<br>6<br>3 | 5<br>5<br>5<br>5<br>5  | ND<br>ND<br>ND<br>ND<br>ND                   | 1<br>1<br>2<br>1<br>1  | 21<br>18<br>23<br>33<br>13 | 1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>2      | 5<br>2<br>6<br>2<br>6  | 212<br>305<br>279<br>207<br>272 | .99<br>.82<br>1.05<br>1.24<br>.99 | .040<br>.033<br>.035<br>.024<br>.020 | 6<br>4<br>5<br>4<br>3      | 84<br>109<br>111<br>145<br>176 | 1.15<br>.98<br>1.02<br>2.14<br>1.41 | 31<br>26<br>20<br>51<br>23 | .50<br>.79<br>.69<br>.46<br>.59   | 3<br>2<br>10<br>6<br>6  | 4.07<br>3.94<br>4.72<br>5.74<br>5.86 | .02<br>.02<br>.02<br>.03<br>.02 | .03<br>.03<br>.03<br>.02<br>.03 | 1<br>1<br>1<br>1      | 1<br>1<br>2<br>4<br>12  | 1500<br>360<br>3200<br>1700<br>1900 |
| 2000H 1960E<br>2000H 1970E<br>2000H 1980E<br>2000H 1990E<br>STD C/AU-S  | 1<br>1<br>1<br>1<br>19 | 130<br>72<br>98<br>233<br>63   | 6<br>9<br>4<br>7<br>41    | 118<br>54<br>64<br>91<br>132 | .1<br>.1<br>.1<br>.1<br>7.3 | 193<br>28<br>35<br>34<br>71  | 40<br>14<br>20<br>26<br>31   | 1125 6<br>313 10<br>419 7<br>1652 6<br>1059 4    | .84<br>.58<br>.22<br>.19<br>.11      | B<br>11<br>7<br>2<br>41 | 5<br>5<br>5<br>5<br>18 | HD<br>HD<br>HD<br>HD<br>9                    | 1<br>2<br>1<br>1<br>40 | 39<br>10<br>13<br>92<br>53 | 1<br>1<br>1<br>17 | 2<br>2<br>2<br>2<br>17     | 6<br>2<br>5<br>3<br>19 | 182<br>384<br>275<br>164<br>61  | 1.70<br>.48<br>.75<br>3.48<br>.47 | .022<br>.023<br>.023<br>.055<br>.086 | 4<br>3<br>7<br>6<br>40     | 136<br>134<br>110<br>41<br>61  | 2.89<br>.43<br>.58<br>1.24<br>.88   | 40<br>9<br>10<br>9<br>182  | .44<br>1.01<br>.82<br>.41<br>.08  | 7<br>3<br>7<br>13<br>33 | 5.55<br>4.27<br>4.77<br>5.19<br>1.98 | .03<br>.01<br>.01<br>.06<br>.07 | .03<br>.02<br>.01<br>.16<br>.14 | 1<br>1<br>1<br>14     | 18<br>2<br>1<br>1<br>51 | 580<br>170<br>220<br>280<br>1400    |

Page 11

C

(

.

C

C

C

1

(

(

C

(

(

(

Ç

÷ Ç

(

C

ACME ANALYTICAL LABORATORIES LTD.

)

ì

PHONE(604)253-3158 FAX(604)253-1716 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

#### GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAK SAMPLE IS DIGKSTED WITH 3ML 3-1-2 HCL-HK03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACE IS PARTIAL FOR MN FE CA P LA CE NG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPK. - SAMPLE TYPE: P1-P6 SOIL P7 ROCK AU\* AMALYSIS BY AA FROM 10 GRAM SAMPLE. HG AMALYSIS BY FLAMLESS AA.

Man 25/88 DATE REPORT MAILED: DATE RECEIVED: MAY 17 1988 BOUNDARY DRILLING PROJECT-103 File # 88-1476 Page 1

| SAMPLE                                                               | I                                    | No<br>PM               | Cu<br>PPM                    | PD<br>PPK                  | ZD<br>PPM                  | Ag<br>PPH                  | Ni<br>PPK                   | Co<br>PPK                  | Mn<br>PPN                          | Fe<br>t                               | A5<br>PPM                     | U<br>PPM              | Au<br>PPN                  | Th<br>PPM             | ST<br>PPM                  | Cđ<br>PPN             | SD<br>PPM                  | Bi<br>PPK                  | V<br>PPK                        | Ca<br>t                           | P<br>L                               | La<br>PPM               | CT<br>PPN                     | Ng<br>t                            | Ba<br>PPN                   | Ti<br>ł                         | B<br>PPM              | A1<br>\$                             | Na<br>Ł                         | K<br>Ş                          | W<br>PPK              | Au*<br>PPB            | Eg<br>PPB                         |
|----------------------------------------------------------------------|--------------------------------------|------------------------|------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|------------------------------------|---------------------------------------|-------------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-----------------------------------|--------------------------------------|-------------------------|-------------------------------|------------------------------------|-----------------------------|---------------------------------|-----------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|-----------------------------------|
| 5300N 47<br>5300N 47<br>5300N 47<br>5300N 47<br>5300N 47             | 50E<br>60E<br>7DE<br>80E<br>90E      | 4<br>6<br>3<br>3<br>2  | 75<br>64<br>48<br>41<br>55   | 7<br>9<br>14<br>9<br>12    | 74<br>66<br>52<br>32<br>36 | .1<br>.3<br>.1<br>.1<br>.1 | 25<br>22<br>22<br>14<br>31  | 13<br>13<br>12<br>7<br>10  | 266<br>295<br>271<br>181<br>289    | 9.41<br>7.90<br>8.41<br>6.30<br>6.32  | 59<br>83<br>65<br>28<br>10    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1<br>1 | 5<br>6<br>10<br>8<br>13    | 1<br>1<br>1<br>1      | 3<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 365<br>287<br>269<br>268<br>219 | .08<br>.14<br>.20<br>.17<br>.36   | .033<br>.037<br>.025<br>.024<br>.038 | 2<br>2<br>2<br>2<br>4   | 63<br>62<br>79<br>57<br>97    | .15<br>.19<br>.22<br>.19<br>.70    | 11<br>13<br>10<br>9<br>19   | .24<br>.20<br>.37<br>.42<br>.44 | 2<br>2<br>2<br>2<br>7 | 1.06<br>1.20<br>1.19<br>1.35<br>3.35 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>3      | 1<br>2<br>1<br>1<br>1 | 40<br>60<br>100<br>90<br>250      |
| 5300N 48<br>5300N 48<br>5300N 48<br>5300N 48<br>5300N 48<br>5300N 48 | 00E<br>10E<br>20E<br>30E<br>40E      | 3<br>2<br>2<br>2<br>1  | 43<br>81<br>99<br>102<br>65  | 10<br>9<br>14<br>7<br>11   | 42<br>75<br>80<br>77<br>67 | .2<br>.2<br>.2<br>.2<br>.2 | 22<br>50<br>69<br>53<br>43  | 9<br>33<br>47<br>20<br>24  | 451<br>1627<br>1416<br>699<br>1195 | 5.43<br>5.88<br>6.73<br>6.13<br>5.58  | 26<br>92<br>64<br>102<br>194  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 14<br>32<br>16<br>26<br>29 | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>2           | 2<br>2<br>2<br>2<br>2      | 222<br>126<br>176<br>175<br>74  | .36<br>.89<br>.73<br>.80<br>1.17  | .041<br>.078<br>.036<br>.050<br>.087 | 5<br>10<br>9<br>7<br>12 | 60<br>46<br>72<br>70<br>28    | .25<br>1.04<br>1.12<br>1.09<br>.57 | 15<br>57<br>44<br>41<br>218 | .34<br>.11<br>.28<br>.25<br>.01 | 2<br>4<br>2<br>2<br>2 | 1.87<br>3.58<br>4.09<br>3.33<br>4.12 | .01<br>.04<br>.01<br>.02<br>.02 | .01<br>.02<br>.02<br>.02<br>.02 | 2<br>1<br>1<br>1<br>1 | 1<br>1<br>4<br>1<br>7 | 120<br>360<br>680<br>920<br>540   |
| 5300N 48<br>5300N 48<br>5300N 48<br>5300N 48<br>5300N 48<br>5300N 48 | 50E<br>60E<br>170E<br>80E<br>190E    | 7<br>29<br>3<br>3<br>2 | 89<br>29<br>102<br>96<br>69  | 31<br>29<br>9<br>13<br>9   | 80<br>58<br>96<br>70<br>63 | .4<br>.4<br>.2<br>.2<br>.1 | 71<br>65<br>63<br>52<br>51  | 27<br>21<br>30<br>31<br>15 | 2832<br>801<br>1947<br>938<br>367  | 12.09<br>9.77<br>6.02<br>7.63<br>5.78 | 1682<br>1137<br>61<br>75<br>7 | 5<br>5<br>7<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 69<br>32<br>29<br>12<br>18 | 2<br>2<br>1<br>1<br>1 | 22<br>13<br>2<br>5<br>2    | 2<br>2<br>2<br>2<br>2<br>2 | 203<br>244<br>159<br>207<br>149 | .83<br>1.05<br>1.47<br>.55<br>.38 | .054<br>.060<br>.061<br>.033<br>.025 | 18<br>7<br>9<br>6<br>4  | 88<br>119<br>66<br>83<br>76   | .96<br>.07<br>.97<br>.91<br>1.21   | 65<br>5<br>43<br>29<br>40   | .12<br>.02<br>.24<br>.30<br>.27 | 2<br>2<br>5<br>6<br>3 | 2.98<br>1.13<br>3.47<br>4.18<br>4.01 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.01<br>.04<br>.01<br>.01 | 8<br>1<br>1<br>1      | 2<br>1<br>1<br>1<br>2 | 8200<br>9300<br>460<br>630<br>190 |
| 5300N 49<br>5300N 49<br>5300N 49<br>5300N 49<br>5300N 49             | 00E<br>1DE<br>120E<br>130E<br>140E   | 1<br>2<br>2<br>1       | 72<br>74<br>36<br>35<br>34   | 13<br>14<br>19<br>11<br>14 | 92<br>62<br>37<br>34<br>28 | .1<br>.1<br>.1<br>.1       | 66<br>51<br>21<br>12<br>15  | 33<br>17<br>11<br>9<br>7   | 1230<br>322<br>239<br>226<br>179   | 6.15<br>5.40<br>7.76<br>6.74<br>8.28  | 14<br>5<br>4<br>12<br>5       | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 23<br>18<br>20<br>16<br>13 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 166<br>177<br>230<br>226<br>290 | .70<br>.38<br>.45<br>.33<br>.24   | .024<br>.032<br>.016<br>.018<br>.021 | 4<br>5<br>3<br>3<br>2   | 88<br>81<br>65<br>51<br>73    | 1.08<br>.81<br>.52<br>.29<br>.31   | 73<br>33<br>29<br>24<br>17  | .29<br>.30<br>.26<br>.31<br>.47 | 4<br>5<br>4<br>2<br>2 | 4.21<br>4.87<br>3.28<br>2.30<br>2.16 | .01<br>.01<br>.01<br>.01<br>.01 | .04<br>.01<br>.01<br>.01<br>.02 | 1<br>2<br>3<br>3<br>2 | 1<br>2<br>1<br>4<br>1 | 280<br>200<br>160<br>100<br>130   |
| 5300N 49<br>5300N 49<br>5300N 49<br>5300N 49<br>5300N 49<br>5300N 49 | 9508<br>9608<br>9708<br>9808<br>9908 | 2<br>2<br>1<br>1<br>1  | 59<br>85<br>105<br>91<br>122 | 14<br>18<br>17<br>15<br>14 | 47<br>46<br>51<br>64<br>53 | .1<br>.1<br>.1<br>.1       | 31<br>37<br>54<br>52<br>71  | 12<br>12<br>22<br>17<br>16 | 257<br>310<br>347<br>297<br>361    | 5.82<br>7.23<br>8.44<br>6.79<br>4.23  | 6<br>4<br>9<br>6<br>2         | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>1<br>1<br>1<br>1 | 16<br>13<br>9<br>12<br>20  | 1<br>1<br>1<br>1      | 3<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>6      | 183<br>231<br>309<br>224<br>152 | .38<br>.43<br>.52<br>.47<br>.95   | .017<br>.025<br>.028<br>.021<br>.042 | 4<br>4<br>5<br>4        | 87<br>108<br>173<br>114<br>78 | .70<br>.69<br>.85<br>.86<br>1.42   | 23<br>20<br>14<br>19<br>24  | .32<br>.49<br>.73<br>.52<br>.46 | 2<br>3<br>4<br>2<br>9 | 4.15<br>4.69<br>5.57<br>5.32<br>4.18 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.03<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>2<br>1<br>1 | 220<br>260<br>250<br>230<br>200   |
| 5300N 50<br>5300N 50<br>5300N 50<br>5300N 50<br>5300N 50             | 000E<br>010E<br>020E<br>030E<br>040E | 1<br>2<br>3<br>1<br>2  | 50<br>61<br>93<br>39<br>98   | 15<br>14<br>16<br>9<br>13  | 35<br>47<br>58<br>40<br>56 | .1<br>.1<br>.2<br>.1       | 23<br>29<br>45<br>17<br>50  | 10<br>11<br>15<br>10<br>14 | 364<br>215<br>457<br>253<br>375    | 6.52<br>5.96<br>7.46<br>7.76<br>7.81  | 6<br>11<br>12<br>5<br>6       | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>2<br>2<br>1<br>2 | 12<br>11<br>11<br>7<br>11  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>3           | 2<br>2<br>2<br>2<br>2      | 206<br>212<br>241<br>342<br>234 | .34<br>.40<br>.60<br>.20<br>.44   | .027<br>.020<br>.016<br>.014<br>.018 | 4<br>5<br>3<br>5        | 99<br>88<br>134<br>66<br>134  | .55<br>.65<br>.91<br>.33<br>.84    | 21<br>15<br>16<br>5<br>17   | .37<br>.39<br>.51<br>.67<br>.52 | 5<br>2<br>2<br>7<br>3 | 4.03<br>3.71<br>5.31<br>1.17<br>4.85 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.03<br>.01<br>.02<br>.03 | 1<br>1<br>1<br>1<br>1 | 6<br>3<br>4<br>1<br>1 | 270<br>280<br>190<br>130<br>260   |
| 5300N 50<br>5300N 50<br>5300N 50<br>5300N 50<br>5300N 50             | 050K<br>060E<br>070E<br>080E<br>090E | 1<br>3<br>60<br>3      | 148<br>91<br>93<br>62<br>231 | 17<br>14<br>2<br>19<br>13  | 75<br>69<br>48<br>78<br>91 | .1<br>.1<br>.1<br>.1       | 90<br>51<br>12<br>52<br>140 | 28<br>27<br>19<br>22<br>49 | 843<br>732<br>51<br>1833<br>543    | B.05<br>7.95<br>3.71<br>8.22<br>7.18  | 35<br>59<br>107<br>236<br>39  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>1<br>1<br>1<br>2 | 9<br>12<br>2<br>22<br>9    | 1<br>1<br>1<br>1      | 2<br>3<br>3<br>7<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 239<br>247<br>211<br>145<br>229 | .59<br>.53<br>.01<br>.50<br>.62   | .022<br>.031<br>.012<br>.034<br>.020 | 6<br>5<br>2<br>2<br>7   | 111<br>97<br>6<br>45<br>130   | 1.31<br>.78<br>.03<br>.08<br>1.56  | 42<br>24<br>1<br>12<br>84   | .41<br>.40<br>.01<br>.34        | 3<br>2<br>4<br>2<br>2 | 5.47<br>3.86<br>.57<br>2.02<br>6.48  | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.01<br>.01<br>.03<br>.03 | 1<br>1<br>1<br>1      | 1<br>3<br>1<br>2<br>1 | 330<br>880<br>30<br>400<br>220    |
| 5300N 51<br>STD C/A                                                  | 100K<br>U-S                          | 1<br>19                | 112<br>59                    | 15<br>44                   | 70<br>131                  | .1<br>6.8                  | 58<br>73                    | 65<br>29                   | 3867<br>1055                       | 8.54<br>3.79                          | 5<br>40                       | 5<br>20               | ND<br>8                    | 1<br>38               | 17<br>49                   | 1<br>19               | 2<br>17                    | 2<br>20                    | 295<br>60                       | .81<br>.46                        | .028<br>.082                         | 4<br>40                 | 176<br>50                     | 1.11<br>.90                        | 18<br>178                   | .72<br>.07                      | 7<br>34               | 3.96<br>1.75                         | .01<br>.07                      | .03<br>.13                      | 1<br>13               | 3<br>45               | 260<br>1300                       |

١

)

)

)

)

)

)

)

)

)

)

.

÷

)

)

)

ì

)

•

| SAMPLE                                                               |                                                                              | No<br>PPN              | Cu<br>PPN                      | Pb<br>PPN                  | Žn<br>PPM                   | Ag<br>PPK                  | NI<br>PPM                     | Co<br>PPK                   | Mn<br>PPN                          | Fe<br>S                               | As<br>PPK                   | U<br>PPM              | Au<br>PPN                  | Th<br>PPK             | ST<br>PPK                  | Cđ<br>PPK             | Sb<br>PPM                  | Bi<br>PPM                  | V<br>PPN                        | Ca<br>ł                           | P<br>t                               | La<br>PPM               | CT<br>PPN                       | Ng<br>L                             | Ba<br>PPM                  | Ti<br>t                         | B<br>PPM               | Al<br>Z                              | Na<br>Ł                         | K<br>Ł                          | ¥<br>PPK              | Au*<br>PPB            | Hg<br>PPB                        |
|----------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------|--------------------------------|----------------------------|-----------------------------|----------------------------|-------------------------------|-----------------------------|------------------------------------|---------------------------------------|-----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-----------------------------------|--------------------------------------|-------------------------|---------------------------------|-------------------------------------|----------------------------|---------------------------------|------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|----------------------------------|
| 5300N 51<br>5300K 51<br>5300N 51<br>5300N 51<br>5300N 51<br>5300N 51 | 10E<br>20E<br>30E<br>40E<br>150E                                             | 1<br>1<br>1<br>1       | 72<br>127<br>261<br>219<br>168 | 19<br>16<br>12<br>18<br>20 | 54<br>81<br>74<br>80<br>71  | .1<br>.1<br>.2<br>.1<br>.1 | 37<br>121<br>165<br>101<br>80 | 106<br>36<br>38<br>36<br>31 | 7474<br>850<br>908<br>990<br>455   | 9.98<br>5.46<br>5.47<br>7.53<br>6.20  | 2<br>2<br>2<br>2<br>2<br>2  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>1<br>2 | 12<br>18<br>32<br>18<br>17 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 288<br>198<br>144<br>208<br>239 | .63<br>1.17<br>1.20<br>.86<br>.79 | .034<br>.013<br>.032<br>.035<br>.031 | 4<br>6<br>6<br>8        | 112<br>139<br>111<br>135<br>111 | .81<br>1.84<br>2.83<br>1.90<br>1.55 | 21<br>39<br>30<br>21<br>19 | .67<br>.69<br>.51<br>.50<br>.56 | 2<br>2<br>2<br>8<br>2  | 3.26<br>4.28<br>5.55<br>4.99<br>4.73 | .01<br>.01<br>.02<br>.01<br>.01 | .04<br>.02<br>.05<br>.03<br>.04 | 1<br>1<br>1<br>1      | 4<br>1<br>3<br>2<br>4 | 180<br>130<br>220<br>310<br>210  |
| 5250N 47<br>5250N 47<br>5250N 47<br>5250N 47<br>5250N 47<br>5250N 47 | 50K<br>160K<br>170E<br>180R<br>190E                                          | 2<br>2<br>3<br>2<br>3  | 30<br>76<br>86<br>69<br>63     | 8<br>17<br>23<br>13<br>9   | 29<br>158<br>85<br>96<br>63 | .1<br>.1<br>.1<br>.1       | 13<br>55<br>53<br>70<br>22    | 10<br>21<br>45<br>38<br>11  | 146<br>6552<br>3955<br>1793<br>225 | 4.32<br>4.71<br>7.57<br>6.15<br>7.79  | 17<br>4<br>59<br>33<br>89   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 4<br>28<br>18<br>15<br>5   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 261<br>141<br>176<br>151<br>222 | .02<br>.67<br>.61<br>.45<br>.14   | .011<br>.107<br>.066<br>.044<br>.047 | 2<br>13<br>10<br>7<br>6 | 21<br>73<br>82<br>100<br>113    | .10<br>1.67<br>.71<br>.64<br>.20    | 5<br>85<br>47<br>23<br>10  | .26<br>.11<br>.24<br>.27<br>.15 | 3<br>5<br>2<br>2<br>2  | .63<br>4.26<br>4.82<br>5.14<br>3.36  | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.05<br>.04<br>.02<br>.02 | 3<br>1<br>1<br>1<br>1 | 1<br>1<br>2<br>1<br>1 | 50<br>220<br>480<br>300<br>320   |
| 5250H 48<br>5250H 48<br>5250H 48<br>5250H 48<br>5250H 48<br>5250H 48 | BOOR<br>B10E<br>B20E<br>B30E<br>B40E                                         | 3<br>2<br>3<br>4<br>2  | 38<br>38<br>34<br>50<br>80     | 16<br>9<br>11<br>17<br>7   | 25<br>29<br>45<br>77<br>46  | .1<br>.1<br>.1<br>.1       | 12<br>16<br>30<br>28<br>37    | 7<br>9<br>19<br>41<br>15    | 174<br>184<br>342<br>4047<br>466   | 6.51<br>8.24<br>5.04<br>6.30<br>8.03  | 36<br>21<br>12<br>15<br>101 | 5<br>5<br>5<br>5<br>5 | ND<br>HD<br>ND<br>ND       | 1<br>1<br>2<br>1<br>2 | 9<br>10<br>16<br>13<br>11  | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>3      | 251<br>261<br>170<br>169<br>233 | .17<br>.15<br>.30<br>.33<br>.45   | .017<br>.019<br>.037<br>.217<br>.049 | 3<br>2<br>5<br>6<br>5   | 58<br>62<br>73<br>92<br>78      | .21<br>.10<br>.32<br>.37<br>.64     | 13<br>10<br>24<br>26<br>16 | .44<br>.52<br>.33<br>.23<br>.36 | 2<br>2<br>4<br>3       | 1.93<br>1.05<br>3.19<br>4.71<br>2.93 | .01<br>.01<br>.01<br>.01<br>.01 | .04<br>.02<br>.04<br>.05<br>.03 | 1<br>1<br>1<br>1      | 1<br>6<br>1<br>1<br>1 | 150<br>70<br>200<br>340<br>450   |
| 5250N 4<br>5250N 4<br>5250N 4<br>5250N 4<br>5250N 4<br>5250N 4       | 850 <b>x</b><br>860 <b>x</b><br>870 <b>x</b><br>880 <b>x</b><br>890 <b>x</b> | 1<br>1<br>2<br>14<br>4 | 159<br>100<br>74<br>102<br>90  | 14<br>12<br>11<br>20<br>6  | 53<br>57<br>63<br>49<br>40  | .1<br>.1<br>.1<br>.1       | 74<br>62<br>56<br>45<br>28    | 21<br>24<br>21<br>14<br>16  | 607<br>801<br>819<br>448<br>365    | 6.26<br>5.75<br>6.30<br>5.49<br>7.95  | 54<br>10<br>30<br>62<br>67  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>3<br>1 | 13<br>16<br>14<br>9<br>6   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>4<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 187<br>149<br>174<br>126<br>225 | .76<br>.47<br>.42<br>.20<br>.14   | .026<br>.028<br>.028<br>.039<br>.027 | 5<br>4<br>3<br>7<br>2   | 98<br>79<br>104<br>89<br>67     | 1.31<br>1.21<br>.97<br>.49<br>.24   | 23<br>36<br>25<br>11<br>9  | .48<br>.34<br>.36<br>.09<br>.09 | 8<br>2<br>2<br>2<br>2  | 4.76<br>5.20<br>4.62<br>5.05<br>2.35 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.03<br>.03<br>.04<br>.03 | 1<br>1<br>1<br>1      | 1<br>2<br>5<br>2<br>1 | 660<br>460<br>580<br>2200<br>630 |
| 5250N 4<br>5250N 4<br>5250N 4<br>5250N 4<br>5250N 4                  | 9008<br>9108<br>9208<br>9308<br>9408                                         | 12<br>4<br>1<br>1<br>2 | 30<br>104<br>88<br>117<br>100  | 18<br>8<br>17<br>13<br>4   | 26<br>65<br>58<br>63<br>58  | .1<br>.1<br>.1<br>.1       | 11<br>60<br>57<br>61<br>51    | 8<br>23<br>23<br>28<br>25   | 192<br>746<br>1346<br>2104<br>904  | 12.03<br>6.88<br>7.22<br>8.61<br>6.54 | 106<br>57<br>54<br>39<br>32 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>1 | 10<br>11<br>14<br>13<br>20 | 1<br>1<br>1<br>1      | 2<br>3<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 347<br>168<br>192<br>213<br>180 | .23<br>.36<br>.47<br>.40<br>1.18  | .021<br>.021<br>.029<br>.046<br>.035 | 3<br>6<br>9<br>8<br>6   | 71<br>91<br>87<br>92<br>78      | .10<br>1.02<br>.88<br>.98<br>1.04   | 11<br>40<br>41<br>48<br>25 | .42<br>.27<br>.36<br>.36<br>.39 | 2<br>2<br>2<br>2<br>10 | 1.33<br>5.02<br>4.27<br>5.18<br>3.96 | .01<br>.01<br>.01<br>.01<br>.02 | .04<br>.04<br>.05<br>.05<br>.04 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>3      | 100<br>650<br>460<br>6200<br>320 |
| 5250N 4<br>5250N 4<br>5250N 4<br>5250N 4<br>5250N 4                  | 950E<br>960E<br>970E<br>980E<br>990E                                         | 2<br>1<br>1<br>1<br>1  | 99<br>82<br>109<br>107<br>119  | 18<br>11<br>10<br>17<br>15 | 72<br>59<br>70<br>50<br>67  | .1<br>.1<br>.1<br>.1       | 59<br>44<br>66<br>57<br>58    | 30<br>16<br>23<br>21<br>32  | 1735<br>324<br>543<br>450<br>2232  | 6.58<br>6.53<br>5.66<br>6.96<br>5.67  | 123<br>13<br>21<br>11<br>5  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>3<br>2<br>3<br>1 | 25<br>17<br>13<br>16<br>23 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 152<br>179<br>152<br>196<br>170 | 1.94<br>.46<br>.70<br>.62<br>1.02 | .041<br>.031<br>.035<br>.040<br>.044 | 10<br>5<br>6<br>7<br>4  | 68<br>86<br>68<br>90<br>62      | 1.46<br>.89<br>1.23<br>1.05<br>1.13 | 49<br>35<br>30<br>36<br>34 | .26<br>.42<br>.41<br>.50<br>.43 | 2<br>4<br>2<br>3       | 3.44<br>5.21<br>5.03<br>5.47<br>3.99 | .01<br>.01<br>.01<br>.01<br>.02 | .05<br>.05<br>.04<br>.03<br>.04 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>2 | 1000<br>360<br>250<br>300<br>280 |
| 5250N 5<br>5250N 5<br>5250N 5<br>5250N 5<br>5250N 5<br>5250N 5       | 000E<br>010E<br>020E<br>030E<br>030E                                         | 1<br>1<br>1<br>1       | 41<br>110<br>107<br>101<br>109 | 15<br>8<br>12<br>8<br>14   | 27<br>46<br>59<br>52<br>56  | .1<br>.1<br>.1<br>.1       | 21<br>52<br>68<br>59<br>57    | 10<br>16<br>23<br>21<br>16  | 219<br>296<br>352<br>469<br>292    | 7.55<br>6.99<br>5.33<br>6.10<br>5.17  | 4<br>2<br>20<br>7<br>4      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 3<br>2<br>2<br>1<br>2 | 12<br>12<br>15<br>14<br>13 | 1<br>1<br>1<br>1      | 3<br>2<br>3<br>2<br>3      | 2<br>2<br>5<br>2           | 269<br>190<br>154<br>179<br>189 | .41<br>.54<br>.75<br>.83<br>.63   | .017<br>.022<br>.038<br>.037<br>.034 | 2<br>5<br>5<br>4<br>5   | 82<br>118<br>67<br>75<br>83     | .51<br>1.03<br>1.30<br>1.28<br>1.09 | 12<br>18<br>26<br>18<br>20 | .54<br>.50<br>.39<br>.49<br>.46 | 2<br>2<br>2<br>11<br>2 | 2.41<br>4.71<br>4.52<br>3.78<br>5.06 | .01<br>.01<br>.01<br>.01<br>.01 | .04<br>.03<br>.04<br>.04<br>.04 | 1<br>1<br>2<br>1<br>1 | 3<br>1<br>4<br>1<br>1 | 290<br>260<br>270<br>230<br>300  |
| 5250N 5<br>STD C/J                                                   | 1050K<br>ND-S                                                                | 1<br>20                | 101<br>64                      | 14<br>42                   | 44<br>130                   | .1<br>7.4                  | 49<br>70                      | 19<br>31                    | 308<br>1068                        | 7.19<br>3.92                          | 5<br>40                     | 5<br>22               | ND<br>9                    | 2<br>41               | 12<br>53                   | 1<br>19               | 3<br>15                    | 2<br>18                    | 193<br>59                       | .52<br>.44                        | .022<br>.084                         | 4<br>39                 | 103<br>61                       | .98<br>.93                          | 19<br>185                  | .47<br>.08                      | 4<br>33                | 4.81<br>1.87                         | .01<br>.07                      | .04<br>.15                      | 1<br>14               | 2<br>49               | 250<br>1300                      |

Page 2

•

1

7

)

)

2

)

.1

ì

ì

)

•

| SAMPLB                                                                                 | MO<br>PPK             | Cu<br>PPK                      | Pb<br>PPM                 | Zn<br>PPM                    | Ag<br>PPN                  | Ni<br>PPM                   | CO<br>PPN                  | Ma<br>PPN                          | Fe<br>2                               | A5<br>PPK                   | U<br>PPM              | Au<br>PPH                  | Th<br>PPN             | ST<br>PPN                  | Cd<br>PPM             | Sb<br>PPN                  | Bİ<br>PPM             | V<br>PPM                        | Ca<br>t                          | P<br>%                               | La<br>PPK              | CT<br>PPM                       | Ng<br>ł                            | Ba<br>PPM                   | Ti<br>ł                         | B<br>PPN                 | A]<br>\$                             | Na<br>X                         | K<br>ł                          | W<br>PPH              | Au*<br>PPB             | Hg<br>PPB                        |
|----------------------------------------------------------------------------------------|-----------------------|--------------------------------|---------------------------|------------------------------|----------------------------|-----------------------------|----------------------------|------------------------------------|---------------------------------------|-----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|---------------------------------|----------------------------------|--------------------------------------|------------------------|---------------------------------|------------------------------------|-----------------------------|---------------------------------|--------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|------------------------|----------------------------------|
| 5250N 5060E<br>5250N 5070E<br>5250N 5080E<br>5250N 5090E<br>5250N 5100E                | 1<br>2<br>1<br>1<br>1 | 56<br>76<br>136<br>45<br>115   | 9<br>10<br>10<br>3<br>11  | 32<br>37<br>55<br>12<br>55   | .1<br>.1<br>.1<br>.1       | 21<br>26<br>72<br>11<br>48  | 10<br>15<br>23<br>4<br>20  | 253<br>262<br>378<br>57<br>213     | 7.66<br>9.14<br>5.42<br>.77<br>2.24   | 10<br>8<br>5<br>2<br>7      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>2<br>2<br>1 | 11<br>11<br>11<br>14<br>16 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>4 | 255<br>251<br>199<br>54<br>211  | .47<br>.51<br>1.03<br>.32<br>.80 | .019<br>.018<br>.023<br>.042<br>.104 | 3<br>3<br>4<br>5<br>8  | 109<br>118<br>76<br>36<br>107   | .57<br>.66<br>1.46<br>.15<br>.76   | 15<br>12<br>25<br>20<br>19  | .51<br>.53<br>.51<br>.11<br>.41 | 2<br>5<br>12<br>4<br>4   | 3.26<br>2.99<br>3.96<br>1.88<br>3.89 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.02<br>.03<br>.03<br>.01 | 2<br>1<br>1<br>1<br>1 | 2<br>1<br>3<br>1<br>1  | 190<br>340<br>160<br>170<br>180  |
| 5250H 5110E<br>5250H 5120E<br>5250H 5130E<br>5250H 5140E<br>5250H 5150E                | 2<br>2<br>2<br>2<br>1 | 134<br>164<br>61<br>110<br>187 | 11<br>7<br>21<br>14<br>6  | 65<br>78<br>32<br>32<br>52   | .1<br>.1<br>.1<br>.1       | 88<br>91<br>28<br>46<br>136 | 40<br>26<br>14<br>16<br>28 | 465<br>434<br>231<br>251<br>691    | 6.08<br>4.89<br>8.94<br>8.98<br>6.34  | 6<br>12<br>2<br>7<br>7      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>2<br>2 | 18<br>16<br>9<br>9<br>18   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>3<br>2 | 265<br>181<br>282<br>330<br>195 | .88<br>.89<br>.59<br>.54<br>.64  | .063<br>.069<br>.020<br>.025<br>.038 | 7<br>9<br>4<br>4<br>7  | 126<br>126<br>134<br>134<br>140 | 1.61<br>1.43<br>.68<br>.96<br>2.11 | 23<br>14<br>8<br>9<br>20    | .56<br>.59<br>.59<br>.56<br>.53 | 2<br>6<br>8<br>5<br>6    | 4.58<br>5.86<br>3.45<br>3.42<br>5.89 | .02<br>.01<br>.01<br>.01<br>.01 | .01<br>.02<br>.02<br>.02<br>.02 | 1<br>1<br>2<br>1      | 1<br>2<br>1<br>1<br>2  | 250<br>300<br>240<br>220<br>320  |
| 5200N 4750E<br>5200N 4760E<br>5200N 4770E<br>5200N 4780E<br>5200N 4790E                | 3<br>3<br>5<br>2<br>1 | 46<br>68<br>16<br>63<br>76     | 8<br>4<br>12<br>6<br>13   | 50<br>67<br>14<br>41<br>107  | .1<br>.1<br>.1<br>.3       | 20<br>24<br>5<br>38<br>84   | 8<br>11<br>3<br>12<br>34   | 201<br>475<br>71<br>283<br>5488    | 5.71<br>6.34<br>3.55<br>5.10<br>4.74  | 99<br>200<br>65<br>18<br>10 | 5<br>5<br>5<br>5<br>5 | HD<br>ND<br>ND<br>ND<br>ND | 1<br>3<br>1<br>2<br>1 | 10<br>12<br>17<br>20<br>24 | 1<br>1<br>1<br>1      | 2<br>2<br>4<br>2<br>2      | 2<br>2<br>3<br>2      | 165<br>174<br>160<br>171<br>123 | .17<br>.38<br>.10<br>.44<br>.75  | .026<br>.028<br>.010<br>.030<br>.144 | 4<br>6<br>2<br>4<br>5  | 69<br>83<br>36<br>65<br>92      | .26<br>.55<br>.08<br>.89<br>1.41   | 11<br>14<br>4<br>22<br>50   | .17<br>.26<br>.23<br>.33<br>.27 | 6<br>9<br>4<br>14<br>2   | 2.52<br>3.00<br>.63<br>2.90<br>4.49  | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.02<br>.01<br>.02<br>.03 | 1<br>1<br>1<br>1      | 1<br>1<br>4<br>1<br>1  | 240<br>230<br>70<br>180<br>330   |
| 5200N 4800E<br>5200N 4810E<br>5200N 4820E<br>5200N 4830E<br>5200N 4840E                | 6<br>4<br>2<br>1<br>1 | 81<br>65<br>71<br>51<br>58     | 13<br>15<br>15<br>9<br>13 | 152<br>121<br>50<br>42<br>76 | .1<br>.1<br>.1<br>.1       | 66<br>60<br>36<br>27<br>51  | 49<br>55<br>12<br>10<br>21 | 12289<br>5819<br>436<br>306<br>495 | 6.00<br>4.97<br>5.88<br>6.41<br>4.94  | 34<br>20<br>34<br>21<br>23  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>1<br>1<br>2 | 16<br>19<br>12<br>10<br>14 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>3<br>2<br>2<br>4 | 185<br>161<br>193<br>241<br>164 | .58<br>.70<br>.44<br>.42<br>.60  | .199<br>.104<br>.032<br>.023<br>.030 | 8<br>7<br>5<br>4<br>6  | 110<br>110<br>106<br>91<br>85   | .86<br>.89<br>.68<br>.53<br>1.06   | 40<br>28<br>18<br>15<br>21  | .24<br>.33<br>.42<br>.47<br>.42 | 6<br>13<br>9<br>5<br>4   | 6.16<br>4.43<br>4.16<br>3.17<br>4.81 | .01<br>.01<br>.01<br>.01<br>.01 | .04<br>.04<br>.01<br>.03<br>.03 | 1<br>1<br>1<br>1      | 1<br>34<br>3<br>1<br>2 | 500<br>350<br>400<br>260<br>270  |
| 5200N 4850E<br>5200N 4860E<br>5200N 4870E<br>5200N 4880E<br>5200N 4890E                | 2<br>4<br>2<br>1<br>2 | 57<br>91<br>47<br>196<br>41    | 14<br>11<br>8<br>10<br>15 | 63<br>51<br>43<br>74<br>32   | .1<br>.2<br>.1<br>.1       | 50<br>49<br>22<br>43<br>16  | 19<br>19<br>10<br>37<br>10 | 1793<br>729<br>523<br>2355<br>289  | 6.35<br>5.75<br>6.16<br>6.93<br>9.64  | 156<br>128<br>93<br>14<br>7 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>3<br>1<br>3<br>1 | 16<br>10<br>9<br>37<br>11  | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>4<br>4<br>2 | 184<br>190<br>226<br>208<br>319 | .54<br>.47<br>.35<br>.40<br>.27  | .033<br>.033<br>.026<br>.067<br>.022 | 12<br>7<br>4<br>7<br>3 | 89<br>118<br>72<br>55<br>111    | .52<br>.80<br>.42<br>1.56<br>.58   | 32<br>21<br>15<br>113<br>17 | .29<br>.40<br>.41<br>.02<br>.38 | 6<br>8<br>5<br>2<br>2    | 4.00<br>4.78<br>2.42<br>3.44<br>2.31 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.02<br>.01<br>.07<br>.03 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1       | 820<br>380<br>250<br>350<br>23D  |
| 5200N 4900E<br>5200N 4910E<br>5200N 4920E<br>5200N 4930E<br>5200N 4940E                | 1<br>1<br>5<br>2<br>1 | 40<br>57<br>113<br>54<br>14    | 7<br>9<br>15<br>6<br>2    | 32<br>40<br>67<br>59<br>18   | .1<br>.1<br>.1<br>.1<br>.2 | 17<br>31<br>58<br>40<br>2   | 10<br>18<br>30<br>12<br>1  | 399<br>1058<br>1019<br>396<br>60   | 5.90<br>6.98<br>7.13<br>5.17<br>.70   | 17<br>9<br>92<br>13<br>2    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>2<br>1<br>1<br>1 | 17<br>13<br>7<br>14<br>18  | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>3<br>2<br>2      | 2<br>5<br>2<br>2<br>4 | 291<br>224<br>194<br>148<br>20  | 1.03<br>.44<br>.33<br>.46<br>.11 | .030<br>.027<br>.042<br>.035<br>.026 | 3<br>4<br>8<br>4<br>2  | 69<br>105<br>87<br>82<br>9      | .54<br>.68<br>.71<br>.84<br>.22    | 16<br>21<br>37<br>24<br>4   | .31<br>.43<br>.21<br>.31<br>.03 | 6<br>5<br>10<br>3<br>3   | 2.19<br>3.77<br>4.37<br>4.76<br>.42  | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.01<br>.02<br>.03<br>.03 | 1<br>1<br>2<br>1      | 1<br>1<br>1<br>1       | 260<br>360<br>1500<br>280<br>130 |
| 5200H 4950E<br>5200H 4960E<br>5200H 4960E<br>5200H 4980E<br>5200H 4980E<br>5200H 4990E | 2<br>2<br>1<br>2<br>2 | 48<br>69<br>54<br>48<br>93     | 6<br>13<br>6<br>12<br>6   | 33<br>52<br>46<br>44<br>68   | .1<br>.1<br>.1<br>.1       | 20<br>31<br>42<br>19<br>55  | 11<br>23<br>19<br>11<br>25 | 462<br>1544<br>1278<br>513<br>784  | 7.29<br>10.13<br>5.91<br>6.42<br>5.33 | 5<br>47<br>19<br>11<br>20   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 3<br>2<br>1<br>3<br>2 | 10<br>10<br>15<br>12<br>15 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2           | 3<br>5<br>3<br>4<br>6 | 246<br>197<br>180<br>245<br>161 | .17<br>.24<br>.89<br>.38<br>.55  | .026<br>.033<br>.038<br>.023<br>.037 | 4<br>7<br>9<br>7<br>6  | 75<br>85<br>71<br>132<br>80     | .27<br>.40<br>.48<br>.41<br>.94    | 20<br>22<br>27<br>22<br>33  | .33<br>.24<br>.22<br>.44<br>.35 | 3<br>6<br>10<br>10<br>10 | 3.29<br>3.28<br>3.48<br>4.47<br>5.83 | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.03<br>.01<br>.03<br>.02 | 3<br>2<br>1<br>1<br>1 | 1<br>1<br>1<br>1       | 240<br>360<br>320<br>180<br>320  |
| 5200N 5000E<br>STD C/AU-S                                                              | 2<br>20               | 68<br>63                       | 11<br>44                  | 46<br>131                    | .1<br>7.0                  | 36<br>69                    | 22<br>33                   | 633<br>1080                        | 8.98<br>3.76                          | 18<br>44                    | 5<br>23               | ND<br>B                    | 3<br>40               | 10<br>52                   | 1<br>18               | 2<br>16                    | 2<br>20               | 272<br>52                       | .45<br>.47                       | .022<br>.091                         | 6<br>42                | 135<br>63                       | .68<br>.90                         | 18<br>195                   | .58<br>.07                      | 5<br>38                  | 4.40<br>1.84                         | .01<br>.07                      | .03<br>.14                      | 1<br>13               | 1<br>47                | 380<br>1400                      |

Page 3

.

4

ł

1

1

)

)

)

)

•

)

٠,

}

1

3

)

.

| SAMPLE      | No  | Cu  | Pb  | Žn             | λg  | Ní  | Co  | Mn    | <b>F</b> e | λs  | D   | Au  | Th  | Sr  | Cd  | Sb  | Bi  | V   | Ca   | P    | La  | Cr  | Ng   | Ba  | Ti   | B   | Al   | Na  | K   | ¥   | Au* | Hg  |
|-------------|-----|-----|-----|----------------|-----|-----|-----|-------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|-----|------|-----|------|-----|------|-----|-----|-----|-----|-----|
|             | PPN | PPN | PPN | PPM            | PPN | PPN | PPH | PPN   | 1          | PPN | PPH | PPM | PPH | PPK | PPK | PPK | PPN | PPN | \$   | ł    | PPK | PPK | ł    | PPN | ł    | PPN | ł    | ł   | ł   | PPK | PPB | PPB |
|             |     |     |     |                |     |     |     |       |            |     |     |     |     |     |     |     |     |     |      |      |     |     |      |     |      |     |      |     |     |     |     |     |
| 5200N 5010E | 18  | 59  | 10  | 71             | .3  | 64  | 22  | 2048  | 6.38       | 55  | 8   | ND  | 1   | 24  | 1   | 2   | 2   | 118 | 1.54 | .073 | 14  | 70  | .34  | 36  | .12  | 2   | 5.06 | .01 | .03 | 1   | 1   | 540 |
| 5200N 5020E | 1   | 73  | 8   | 35             | .1  | 26  | 10  | 181   | 7.75       | 21  | 5   | ND  | 3   | 1   | 1   | 2   | 2   | 260 | . 29 | .020 | 5   | 126 | .39  | 10  | .47  | 2   | 4.96 | .01 | .02 | 1   | 1   | 400 |
| 5200N 5030E | 3   | 127 | 7   | 62             | .1  | 58  | 23  | 546   | 6.34       | 12  | 5   | ND  | 1   | 14  | 1   | 2   | 2   | 184 | .73  | .026 | 4   | 71  | 1.23 | 25  | .35  | 3   | 4.29 | .01 | .01 | 1   | 2   | 620 |
| 5200N 5040E | 1   | 110 | 5   | 46             | .1  | 42  | 16  | 435   | 5.62       | 13  | 5   | ND  | 1   | 15  | 1   | 2   | 2   | 176 | .66  | .024 | 5   | 67  | . 88 | 25  | .39  | 3   | 4.00 | .01 | .01 | 1   | 1   | 280 |
| 5200N 5050E | 2   | 57  | 12  | 34             | .1  | 23  | 13  | 369   | 9.71       | 10  | 5   | ND  | 3   | 10  | 1   | 2   | 2   | 336 | .30  | .020 | 6   | 121 | .37  | 16  | .67  | 2   | 2.90 | .01 | .03 | 2   | 9   | 220 |
|             |     |     |     |                |     |     |     |       |            |     |     |     |     |     |     |     |     |     |      |      |     |     |      |     |      |     |      |     |     |     |     |     |
| 5200N 5060E | 2   | 119 | 2   | 56             | .1  | 53  | 27  | 795   | 5.71       | 1   | 5   | ND  | 1   | 16  | 1   | 2   | 2   | 171 | .71  | .034 | 6   | 70  | 1.00 | 37  | .32  | 2   | 5.21 | .01 | .04 | 1   | 5   | 320 |
| 5200N 5070E | 2   | 92  | 9   | 57             | .1  | 52  | 27  | 940   | 7.31       | 18  | 1   | ND  | 1   | 16  | 1   | 2   | 2   | 194 | .48  | .021 | 14  | 80  | .82  | 37  | .32  | 2   | 4.28 | .01 | .02 | 1   | 6   | 190 |
| 5200N 5080E | 8   | 124 | 6   | 87             | .2  | 78  | 43  | 4677  | 7.17       | 36  | 7   | ND  | 1   | 23  | 1   | 2   | 2   | 182 | 1.08 | .047 | 9   | 82  | .82  | 34  | .30  | 2   | 4.64 | .01 | .03 | 1   | 1   | 360 |
| 5200N 5090E | 1   | 139 | 4   | <del>9</del> 3 | .1  | 64  | 73  | 8624  | 7.56       | 21  | 5   | ND  | 1   | 21  | 1   | 2   | 2   | 222 | . 88 | .057 | 10  | 92  | .88  | 35  | .41  | 2   | 4.83 | .02 | .05 | 1   | 1   | 340 |
| 5200N 5100E | 1   | 252 | 9   | 74             | .5  | 81  | 34  | 2107  | 7.02       | 10  | 7   | ND  | 1   | 48  | 1   | 2   | 2   | 237 | 1.76 | .069 | 13  | 79  | 1.83 | 56  | .46  | 12  | 5.26 | .04 | .03 | 1   | 3   | 260 |
|             |     |     |     |                |     |     |     |       |            |     |     |     |     |     |     |     |     |     |      |      |     |     |      |     |      |     |      |     |     |     |     |     |
| 5200N 5110E | 2   | 104 | 14  | 32             | .5  | 35  | 18  | 277   | 11.06      | 2   | 5   | ND  | 1   | 9   | 1   | 2   | 2   | 394 | .32  | .034 | 5   | 165 | . 59 | 9   | . 89 | 2   | 5.77 | .01 | .01 | 1   | 1   | 500 |
| 5200N 5120K | 1   | 117 | 4   | 42             | .1  | 46  | 14  | 250   | 7.09       | 2   | 5   | ĦD  | 1   | 11  | 1   | 2   | 2   | 229 | . 69 | .018 | 4   | 167 | 1.00 | 10  | .60  | 4   | 5.54 | .01 | .01 | 1   | 1   | 270 |
| 5200N 5130B | 1   | 125 | 5   | 45             | .2  | 50  | 20  | 637   | 6.32       | 2   | 6   | ND  | 2   | 16  | 1   | 2   | 2   | 210 | . 98 | .031 | 6   | 117 | 1.24 | 10  | . 69 | 2   | 5.42 | .01 | .03 | 1   | 1   | 300 |
| 5200N 5140E | 1   | 160 | 14  | 47             | .1  | 60  | 84  | 9156  | 7.61       | 2   | 5   | ND  | 1   | 22  | 1   | 2   | 2   | 219 | 1.06 | .030 | 4   | 82  | 1.37 | 35  | .54  | 2   | 3.63 | .01 | .03 | 1   | 1   | 180 |
| 5200N 5150E | 1   | 165 | 13  | 46             | .1  | 87  | 174 | 12402 | 8.97       | 2   | 5   | ND  | 2   | 17  | 1   | 2   | 2   | 233 | .85  | .030 | 4   | 119 | 1.79 | 27  | .60  | 2   | 4.41 | .01 | .03 | 1   | 4   | 210 |

Page 4

.

ACME ANALYTICAL LABORATORIES LTD.

)

#### GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3KL 3-1-2 HCL-HHO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR ME FE CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AU\* AMALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE REPORT MAILED: June 10/83 ASSAYER. DATE RECEIVED: MAY 30 1988 BOUNDARY DRILLING File # 88-1639 Page 1 Mn Th Cd Sþ Pb Ni Co łe λs U Au ST Bi ۷ SAMPLE No Cu Zn λg Ca P La CT Xg Ba Ti B Al Na ¥ Au\* PPX PPN PPK PPM PPH PPM PPN PPM PPH PPK PPN PPH PPN PPH PPK PPN PPK 1 ł ł PPK PPK \$ PPN Ł PPN Ł PPN PPB ł Ł 112 -97 34 557 10.72 16 5 nd 10 300 .93 .032 171 .93 .76 5100N 5510E 1 117 19 .1 2 1 - 3 2 3 7 6 8.47 .01 .04 5 14 5 KD 5100K 5520E 100 19 64 .1 35 15 223 12.26 3 1 6 1 2 2 375 .39 .021 3 190 .43 8 .90 6 8.74 .01 1 .04 3 5 5100N 5530E 1 23 12 70 .3 20 22 591 7.75 3 5 ND 2 11 1 2 2 388 . 84 .017 3 84 .50 1 .98 8 2.53 .02 .04 1 1 5 ND. 12 32 15 68 27 21 412 12.95 5 1 2 2 2 371 .51 .021 2 107 .71 .93 5100N 5540K 1 .1 6 6 3.03 .02 .06 1 1 79 10 63 61 17 302 8.51 2 -5 ND. 1 13 313 1.13 .018 3 99 1.10 5100W 5550K 1 .1 1 2 1 . 86 12 3.50 .01 .03 1 1 5100N 5560E 111 13 81 .3 67 20 368 7.53 5 ND 2 12 248 1.29 .021 9 1 2 4 5 114 1.09 7 .94 13 5.36 .01 .04 13 1 1 65 16 5 ND 5100N 5570K BO 2 7B .1 330 5.21 4 1 14 1 2 5 185 1.36 .025 115 1.12 .93 1 4 B 5 4.40 .01 .03 1 1 5100X 5590E 1 30 10 70 .1 19 18 586 9.39 2 5 ND 1 11 1 2 2 442 .74 .013 3 111 .43 8 1.15 6 2.56 .01 .04 1 2 23 5 ND 17 89 68 60 650 7.27 2 5100N 5600K 1 3 .1 1 1 2 2 229 1.69 .014 3 86 1.28 8 .79 13 3.05 .02 .03 1 1 5100N 5610E 1 73 3 124 .2 37 78 3295 6.41 5 5 ND. 1 37 1 2 2 203 1.55 .057 9 70 .55 18 .51 .02 9 3.58 .06 1 5100N 5630E 121 86 58 34 1019 6.91 10 5 ND. 2 17 207 1.52 .032 6 113 11 .72 1 4 .1 1 2 2 1.119 5.06 .01 .03 1 3 57 13 5 .72 5100N 5640E 37 5 .1 16 253 8.86 2 KD. 2 9 1 2 2 438 .013 5 98 .28 8 1.29 3 3.23 1 .01 .03 1 1 105 38 94 5 ¥D. 12 5100N 5650E 1 68 8 .2 2696 9.52 8 1 1 2 2 307 1.04 .027 5 104 .51 9 .85 17 5.37 .02 .04 1 1 70 15 265 10.96 5 ND 12 5050N 5510E 89 13 .1 41 8 1 1 2 364 1.10 .018 3 199 .83 1 2 6 1.10 3 6.10 .01 .02 1 1 5050N 5520B 1 90 - 7 94 .1 55 21 287 9.88 14 5 ND 1 13 1 2 7 292 1.03 .028 3 132 .73 9 .84 12 7.21 .02 .04 1 5050N 5530E 1 74 8 68 .1 23 14 228 12.65 2 - 5 ND 1 11 9 382 .66 .021 3 134 .40 5 .98 6 5.27 .01 .03 1 5050N 5540B **B**3 11 122 .2 59 37 1175 B.21 7 5 ND 2 21 2 302 1.77 . 030 109 1.33 .93 1 1 4 15 16 4.99 .02 2 .04 1 7 22 379 5.37 7 5 5050N 5550E 1 81 7 100 .4 54 ND 1 14 1 3 3 296 1.33 .021 5 132 1.21 10 .96 16 5.68 .02 .04 1 8 20 5 5050N 5560E 1 42 6 83 .1 27 249 9.58 7 ND. 1 10 1 2 2 397 1.63 .020 4 107 .73 6 1.08 7 4.19 .01 .02 1 1 5 11 18 353 13.30 5 XD 5050N 5570K 1 39 78 .1 18 1 10 1 2 2 474 2.08 .016 3 98 .53 7 1.04 7 3.88 .02 .03 1 1 5050N 5580E 110 23 75 45 343 9.68 1 .1 20 10 -5 ND 1 7 1 - 7 6 289 .70 .024 3 195 . 69 6 .79 5 9.83 .01 .02 9 68 22 17 358 6.27 5 5050X 5590E 1 34 2 .1 2 ND 1 12 3 314 1.18 .017 3 82 .62 .99 1 2 9 9 3.10 .01 .04 1 69 45 327 5.30 5 5050N 5600E 1 46 2 .1 14 3 ND 1 12 1 2 2 227 1.00 .016 3 BO . 80 9 .95 10 2.64 .02 .04 1 5050N 5610B 15 250 5 60 44 4.16 2 KD 13 211 1 81 4 .1 1 1 2 2 1.09 .029 4 87 .88 10 .91 10 3.81 .01 .02 1 5 5050N 5620E 110 11 62 .1 40 16 290 9.68 7 5 ND 308 .82 .019 170 .65 1 1 ٩ 1 2 3 4 ß .92 5 7.69 .01 .03 3 1 5050R 5630E 39 13 70 .3 25 11 259 17.64 5 562 .90 .013 1 8 ND 3 8 2 2 2 3 144 .49 6 1.33 11 3.71 .01 .03 1 45 61 23 10 5 ND 391 5050H 5640E 1 7 .1 16 317 13.47 2 8 1 2 2 .91 .024 3 151 .51 7 1.04 8 4.84 .01 .04 1 1 5050N 5650B 33 60 .1 18 14 367 12.11 2 5 KD 1 12 557 1 6 1 2 2 1.50 .019 2 74 .35 5 1.51 10 1.97 .01 .04 1 1 5000N 5510E 55 5 92 .1 42 46 1675 9.13 ß 5 ND 1 12 342 1.72 .024 1 1 2 2 3 78 1.14 9 1.01 7 4.32 .01 .02 1 6 5000N 5520E 76 69 50 17 342 7.12 2 6 .1 2 5 ND 14 2 257 .95 .025 4 109 .88 -1 1 2 9 . 86 6 4.85 .01 . 04 1 Q 5000N 5530E 59 19 321 10.83 15 101 .2 42 -5 1 8 ND 2 11 1 2 2 364 1.13 .025 3 109 .85 6 . 99 2 3.76 .02 .04 1 1 69 5000N 5540E 1 43 8 .1 24 12 202 11.05 2 5 ND 2 8 1 2 2 468 .48 .015 3 138 .35 7 1.12 11 2.58 .02 .04 5 1 5000N 5550E 102 9 66 20 14 226 14.48 7 5 ND 1 .1 2 6 1 2 2 464 .42 .023 3 145 .30 4 1.07 6 4.77 .02 .01 1 3 5000N 5560B 93 13 98 57 4187 8.28 5 1 .1 144 9 XD 1 14 1 2 2 229 1.90 .033 4 72 1.35 10 .61 18 4.49 .02 .04 1 -1 5000N 5570E 1 39 12 92 .1 34 17 337 14.42 12 5 ND 1 9 405 1.32 .026 3 155 . 86 5 1.09 5 4.35 .02 .04 1 2 5000N 5580B 63 93 42 23 408 14.23 1 -7 .1 8 - 5 ND 1. - 14 2 2 2 410 1.00 .022 3 142 . 89 9 1.03 7 4.31 .02 .04 1 1 STD C/AU-S 20 30 1105 4.29 41 64 39 131 7.5 71 19 8 40 55 19 16 20 62 .49 .099 40 60 .91 195 .09 35 1.90 .08 13 52 . 16

BOUNDARY DRILLING FILE # 88-1639

÷

1

)

•

)

)

)

)

)

)

)

)

)

د.

Ĵ

)

)

¢

5

)

)

| SAMPLE <b>‡</b>                                                                                   | NO<br>PPK               | Cu<br>PPK                  | PÈ<br>PPM                  | Zn.<br>PPM                  | λg<br>PPM                  | Ni<br>PPK                   | Co<br>PPK                  | ND<br>PPK                        | Fe<br>%                                | AS<br>PPH                    | U<br>PPK                   | Au<br>PPN                  | Th<br>PPK             | ST<br>PPM                  | Cd<br>PPK             | Sb<br>PPM             | Bi<br>PPM                  | V<br>PPN                        | sCa<br>لا                         | P<br>t                               | La<br>PPM             | CT<br>PPM                     | Ng                               | Ba<br>PPN                  | Ti<br>ł                         | B<br>PPM                 | Al<br>%                              | Na<br>%                                | К<br>%                          | ¥<br>PPH              | Au*<br>PPB            |
|---------------------------------------------------------------------------------------------------|-------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|----------------------------------|----------------------------------------|------------------------------|----------------------------|----------------------------|-----------------------|----------------------------|-----------------------|-----------------------|----------------------------|---------------------------------|-----------------------------------|--------------------------------------|-----------------------|-------------------------------|----------------------------------|----------------------------|---------------------------------|--------------------------|--------------------------------------|----------------------------------------|---------------------------------|-----------------------|-----------------------|
| 5000N 5590E<br>5000N 5600E<br>5000N 5610B<br>5000N 5620E<br>5000N 5630E                           | 1<br>1<br>1<br>1        | 55<br>28<br>67<br>65<br>35 | 16<br>11<br>17<br>18       | 94<br>60<br>62<br>59<br>74  | .1<br>.1<br>.2<br>.1<br>.1 | 40<br>23<br>23<br>17<br>17  | 18<br>11<br>11<br>10<br>56 | 301<br>288<br>230<br>272<br>1342 | 6.84<br>4.84<br>6.46<br>10.61<br>10.18 | 9<br>3<br>2<br>3<br>7        | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 13<br>10<br>8<br>6<br>10   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 282<br>307<br>337<br>335<br>412 | 1.01<br>.81<br>.86<br>.98<br>1.50 | .017<br>.015<br>.019<br>.019<br>.022 | 2<br>2<br>2<br>3      | 118<br>88<br>122<br>115<br>67 | 1.09<br>.66<br>.64<br>.60<br>.75 | 9<br>9<br>6<br>5<br>9      | .77<br>.74<br>.81<br>.76<br>.82 | 9<br>7<br>5<br>7         | 5.49<br>1.83<br>5.21<br>4.81<br>2.99 | .01<br>.01<br>.01<br>.01<br>.01        | .02<br>.03<br>.02<br>.02<br>.02 | 1<br>1<br>1<br>1      | 5<br>1<br>1<br>1<br>1 |
| 5000N 5640B<br>5000N 56502<br>4850N 4550E 30CH<br>4850N 4570E 80CH<br>4850N 4590E 50CH            | 1<br>1<br>2<br>1<br>2   | 49<br>77<br>31<br>53<br>77 | 21<br>17<br>12<br>17<br>11 | 58<br>63<br>27<br>51<br>62  | .1<br>.1<br>.2<br>.1<br>.1 | 13<br>27<br>8<br>23<br>35   | 8<br>14<br>5<br>13<br>21   | 267<br>349<br>110<br>256<br>361  | 13.73<br>10.35<br>5.20<br>7.15<br>4.42 | 3<br>7<br>11<br>6<br>5       | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>1<br>1 | 6<br>5<br>11<br>27         | 1<br>1<br>1<br>1      | 2<br>4<br>3<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 414<br>362<br>266<br>225<br>164 | .51<br>.73<br>.26<br>.56<br>1.39  | .022<br>.022<br>.021<br>.016<br>.038 | 3<br>2<br>4<br>3<br>4 | 154<br>164<br>76<br>86<br>60  | .30<br>.63<br>.31<br>.75<br>1.26 | 8<br>7<br>9<br>14<br>26    | .87<br>.77<br>.50<br>.47<br>.37 | 5<br>4<br>8<br>7<br>15   | 5.48<br>6.44<br>4.11<br>4.30<br>3.57 | .01<br>.01<br>.01<br>.01<br>.01<br>.02 | .03<br>.04<br>.02<br>.01<br>.02 | 1<br>1<br>1<br>1      | 4<br>1<br>1<br>3<br>1 |
| 4850N 4610E 70cm<br>4850N 4630E 70cm<br>4850N 4650E 80cm<br>4850N 4650E 120cm<br>4850N 4670E 60cm | 1<br>5<br>3<br>2        | 89<br>61<br>53<br>72<br>43 | 9 -<br>10<br>14<br>10<br>5 | 54<br>109<br>59<br>60<br>53 | .1<br>.1<br>.3<br>.1<br>.1 | 36<br>62<br>14<br>34<br>19  | 15<br>24<br>12<br>22<br>13 | 295<br>1137<br>214<br>454<br>331 | 5.52<br>5.24<br>8.95<br>6.29<br>7.65   | 15<br>40<br>45<br>49<br>18   | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>1<br>2 | 12<br>29<br>10<br>13<br>11 | 1<br>2<br>1<br>1<br>1 | 2<br>4<br>4<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 167<br>127<br>266<br>172<br>225 | .71<br>1.61<br>.44<br>.65<br>.61  | .022<br>.033<br>.016<br>.021<br>.016 | 3<br>6<br>2<br>3<br>2 | 80<br>69<br>89<br>86<br>99    | 1.05<br>.88<br>.40<br>.67<br>.70 | 16<br>30<br>12<br>17<br>11 | .39<br>.16<br>.37<br>.29<br>.44 | 11<br>13<br>7<br>15<br>5 | 4.79<br>3.19<br>3.26<br>5.20<br>3.25 | .01<br>.02<br>.01<br>.01<br>.01        | .02<br>.05<br>.02<br>.01<br>.04 | 1<br>2<br>1<br>1<br>1 | 1<br>1<br>5<br>1      |
| 4850N 4670E 80cm<br>4850N 4670E 100cm<br>4850N 4680E 25cm<br>4850N 4700E 30cm<br>4800N 4500E      | 1<br>2<br>8<br>4<br>1   | 43<br>33<br>61<br>71<br>92 | 11<br>13<br>8<br>11<br>6   | 65<br>54<br>56<br>189<br>76 | .2<br>.1<br>.1<br>.2<br>.1 | 31<br>23<br>38<br>36<br>40  | 19<br>14<br>25<br>14<br>17 | 425<br>319<br>1287<br>496<br>372 | 6.07<br>7.66<br>7.28<br>4.01<br>5.22   | 12<br>11<br>93<br>13<br>8    | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>1<br>1<br>1 | 13<br>9<br>19<br>43<br>12  | 1<br>1<br>1<br>1      | 4<br>2<br>7<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 196<br>244<br>178<br>19<br>155  | .72<br>.40<br>.63<br>2.95<br>.78  | .016<br>.019<br>.043<br>.082<br>.031 | 2<br>7<br>7<br>7<br>4 | 106<br>106<br>45<br>19<br>69  | .99<br>.57<br>.15<br>.27<br>1.03 | 15<br>19<br>16<br>50<br>28 | .40<br>.43<br>.01<br>.01<br>.38 | 6<br>8<br>4<br>12<br>13  | 4.40<br>4.22<br>2.05<br>.92<br>5.41  | .01<br>.01<br>.01<br>.01<br>.01        | .05<br>.03<br>.04<br>.15<br>.01 | 1<br>1<br>1<br>2<br>1 | 1<br>1<br>1<br>1<br>1 |
| 4800N 4510E<br>4800N 4520E<br>4800N 4530E<br>4800N 4540E<br>4800N 4550E                           | 1<br>1<br>1<br>1        | 29<br>70<br>40<br>28<br>65 | 7<br>5<br>5<br>9<br>12     | 37<br>58<br>49<br>41<br>64  | .3<br>.2<br>.1<br>.1       | 12<br>33<br>17<br>11<br>27  | 6<br>16<br>7<br>4<br>12    | 168<br>298<br>184<br>150<br>224  | 3.65<br>6.02<br>4.27<br>2.03<br>4.71   | 4<br>7<br>8<br>2<br>10       | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>2<br>1<br>1 | 10<br>10<br>11<br>10<br>9  | 1<br>1<br>1<br>1      | 5<br>2<br>3<br>4<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 193<br>189<br>214<br>251<br>178 | .52<br>.70<br>.50<br>.46<br>.55   | .012<br>.016<br>.020<br>.013<br>.022 | 2<br>3<br>3<br>2<br>5 | 58<br>88<br>86<br>84<br>86    | .45<br>.97<br>.55<br>.38<br>.74  | 9<br>12<br>12<br>9<br>14   | .51<br>.41<br>.58<br>.63<br>.43 | 6<br>9<br>4<br>7<br>7    | 2.23<br>4.45<br>3.78<br>2.52<br>5.47 | .01<br>.01<br>.01<br>.01<br>.01        | .04<br>.02<br>.02<br>.01<br>.01 | 2<br>1<br>1<br>3<br>1 | 1<br>1<br>1<br>1      |
| 4800N 4560E<br>4800N 4570E<br>4800N 4580E<br>4800N 4590E<br>4800N 4600E                           | 1<br>1<br>1<br>2        | 58<br>70<br>74<br>65<br>48 | 13<br>18<br>9<br>9<br>9    | 53<br>59<br>57<br>63<br>67  | .2<br>.1<br>.3<br>.1       | 21<br>26<br>29<br>31<br>30  | 12<br>12<br>13<br>16<br>18 | 225<br>255<br>321<br>290<br>415  | 8.86<br>6.09<br>6.78<br>5.60<br>5.25   | 11<br>10<br>7<br>5<br>19     | 5<br>5<br>7<br>5           | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>1<br>2<br>1 | 9<br>11<br>12<br>16<br>22  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 232<br>193<br>210<br>185<br>169 | .49<br>.63<br>.69<br>.85<br>1.21  | .020<br>.021<br>.022<br>.030<br>.022 | 3<br>4<br>5<br>5<br>2 | 123<br>94<br>85<br>67<br>88   | .62<br>.80<br>.84<br>1.00<br>.86 | 12<br>12<br>15<br>19<br>17 | .51<br>.44<br>.51<br>.41<br>.33 | 7<br>5<br>12<br>7<br>7   | 4.80<br>4.93<br>4.98<br>3.86<br>4.10 | .01<br>.01<br>.01<br>.01<br>.01        | .02<br>.01<br>.03<br>.03<br>.01 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1<br>1 |
| 4800N 4610E<br>4800N 4520E<br>4800N 4630E<br>4800N 4640E<br>4800N 4650B                           | 3<br>1<br>23<br>14<br>1 | 49<br>36<br>38<br>35<br>73 | 7<br>3<br>15<br>22<br>10   | 69<br>69<br>61<br>67<br>84  | .3<br>.1<br>.1<br>.2<br>.1 | 26<br>37<br>76<br>102<br>53 | 13<br>17<br>19<br>29<br>23 | 444<br>327<br>373<br>244<br>469  | 3.54<br>5.75<br>9.58<br>9.84<br>7.67   | 13<br>12<br>166<br>116<br>38 | 6<br>5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>4<br>2      | 33<br>17<br>8<br>5<br>9    | 1<br>1<br>1<br>1      | 4<br>2<br>5<br>2      | 2<br>2<br>2<br>2<br>2      | 123<br>213<br>191<br>202<br>162 | 2.19<br>1.09<br>.49<br>.20<br>.34 | .029<br>.020<br>.023<br>.017<br>.018 | 3<br>4<br>3<br>3<br>3 | 57<br>84<br>70<br>138<br>132  | .68<br>.64<br>.27<br>.25<br>.64  | 20<br>18<br>6<br>16<br>36  | .22<br>.45<br>.DB<br>.04<br>.24 | 10<br>7<br>11<br>10<br>5 | 3.09<br>4.38<br>1.70<br>7.36<br>7.62 | .01<br>.01<br>.01<br>.01<br>.01        | .02<br>.02<br>.01<br>.04<br>.02 | 2<br>1<br>2<br>1<br>1 | 1<br>1<br>2<br>3<br>1 |
| 4800N 4650BA<br>STD C/AU-S                                                                        | 4<br>18                 | 147<br>60                  | 3<br>39                    | 82<br>133                   | .1<br>6.9                  | 28<br>66                    | 31<br>29                   | 354<br>1079                      | 8.89<br>4.19                           | 162<br>38                    | 5<br>18                    | ND<br>7                    | 1<br>39               | 38<br>49                   | 1<br>19               | 5<br>17               | 2<br>25                    | 354<br>60                       | .20<br>.48                        | .019<br>.087                         | 2<br>37               | 17<br>59                      | .06<br>.96                       | 4<br>180                   | .02<br>.05                      | 9<br>38                  | .46<br>1.81                          | .01<br>.08                             | .02<br>.14                      | 2<br>13               | 1<br>51               |

.

Page 2

٠

BOUNDARY DRILLING FILE # 88-1639

3

,

)

)

)

.)

)

)

)

)

J

)

 $\mathcal{I}$ 

 $\cdot \cdot \cdot$ 

)

)

)

. )

3

| SAMFLE‡                                                                                 | NO<br>PPN                 | Cu<br>PPH                   | Pb<br>PPM                 | Zn<br>PPN                   | Ag<br>PPK                  | N1<br>PPH                  | Co<br>PPK                  | Nn<br>PPK                        | Fe<br>t                               | AS<br>PPK                  | U<br>PPK              | Au<br>PPK                  | Th<br>PPK             | ST<br>PPN                 | Cd<br>PPK             | Sb<br>PPM                  | Bi<br>PPM                  | V<br>PPM                        | Ca<br>%                           | P                                    | La<br>PPK             | Cr<br>PPM                     | Ng<br>t                          | Ba<br>PPM                  | Ti<br>%                         | B<br>PPM               | Al<br>%                              | Na<br>%                         | K<br>Z                          | W<br>PPK         | Au*<br>PPB            |
|-----------------------------------------------------------------------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|---------------------------------------|----------------------------|-----------------------|----------------------------|-----------------------|---------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-----------------------------------|--------------------------------------|-----------------------|-------------------------------|----------------------------------|----------------------------|---------------------------------|------------------------|--------------------------------------|---------------------------------|---------------------------------|------------------|-----------------------|
| 4800% 4660%<br>4800% 4670%<br>4800% 4680%<br>4800% 4690%<br>4750% 4500%                 | 9<br>3<br>35<br>7<br>2    | 27<br>41<br>121<br>45<br>27 | 4<br>5<br>13<br>11<br>10  | 35<br>46<br>78<br>44<br>34  | .1<br>.1<br>.1<br>.1       | 12<br>14<br>47<br>15<br>9  | 5<br>10<br>29<br>11<br>5   | 190<br>209<br>418<br>218<br>126  | 5.26<br>8.48<br>6.59<br>8.15<br>5.63  | 16<br>3<br>94<br>22<br>2   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 5<br>8<br>31<br>10<br>8   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>4<br>5           | 237<br>332<br>320<br>355<br>283 | .03<br>.24<br>.65<br>.11<br>.31   | .006<br>.011<br>.014<br>.015<br>.009 | 2<br>2<br>2<br>2<br>3 | 22<br>90<br>29<br>54<br>57    | .02<br>.25<br>.10<br>.09<br>.17  | 2<br>8<br>13<br>7<br>8     | .27<br>.67<br>.02<br>.42<br>.86 | 2<br>2<br>2<br>2<br>3  | .14<br>2.33<br>2.41<br>1.39<br>2.40  | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.02 | 1<br>1<br>1<br>1 | 1<br>1<br>9<br>1<br>1 |
| 4750k 4510B<br>4750k 4520B<br>4750k 4520B<br>4750k 4530B<br>4750k 4540B<br>4750k 4550B  | 1<br>1<br>1<br>1<br>1     | 72<br>31<br>55<br>80<br>42  | 18<br>16<br>12<br>9<br>6  | 52<br>37<br>58<br>61<br>50  | .1<br>.1<br>.1<br>.1       | 33<br>16<br>33<br>42<br>25 | 13<br>6<br>11<br>13<br>10  | 247<br>163<br>246<br>31B<br>211  | 6.21<br>3.21<br>3.32<br>5.17<br>5.17  | 5<br>2<br>2<br>5           | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 8<br>13<br>15<br>13<br>12 | 1<br>1<br>1<br>1      | 2<br>3<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 211<br>199<br>126<br>157<br>184 | .47<br>.50<br>.76<br>.87<br>.58   | .014<br>.019<br>.075<br>.036<br>.016 | 2<br>3<br>4<br>5<br>4 | 118<br>86<br>58<br>55<br>94   | .67<br>.48<br>.79<br>.93<br>.67  | 11<br>11<br>16<br>17<br>12 | .55<br>.61<br>.43<br>.48<br>.59 | 4<br>2<br>5<br>3       | 6.36<br>2.90<br>4.74<br>4.45<br>3.85 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>1 | 1<br>1<br>3<br>1<br>1 |
| 4750N 4560K<br>4750N 4570K<br>4750N 4580K<br>4750N 4590K<br>4750N 4600B                 | 1<br>1<br>2<br>1<br>2     | 54<br>79<br>73<br>61<br>56  | 5<br>17<br>12<br>17<br>4  | 59<br>61<br>65<br>64<br>82  | .1<br>.1<br>.1<br>.1       | 28<br>42<br>43<br>35<br>35 | 13<br>14<br>18<br>13<br>17 | 263<br>326<br>338<br>280<br>288  | B.63<br>6.25<br>4.87<br>7.85<br>3.43  | 2<br>5<br>14<br>4<br>2     | 5<br>5<br>5<br>5<br>5 | HD<br>HD<br>HD<br>HD<br>HD | 1<br>1<br>1<br>1<br>1 | 8<br>9<br>22<br>10<br>31  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>3<br>2<br>2      | 304<br>199<br>175<br>271<br>126 | .40<br>.53<br>1.02<br>.48<br>1.33 | .011<br>.021<br>.028<br>.016<br>.032 | 2<br>2<br>5<br>2<br>5 | 111<br>123<br>84<br>115<br>47 | .68<br>.81<br>.95<br>.71<br>.89  | 13<br>14<br>22<br>14<br>22 | .82<br>.57<br>.48<br>.73<br>.36 | 7<br>5<br>4<br>3<br>13 | 4.62<br>6.79<br>4.75<br>5.27<br>2.96 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.02<br>.01 | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>2      |
| 4750N 4610B<br>4750H 4620B<br>4750N 4630N<br>4750N 4640B<br>4750N 4640B                 | 1<br>2<br>10<br>226<br>56 | 30<br>54<br>74<br>88<br>40  | 12<br>8<br>12<br>18<br>15 | 40<br>63<br>101<br>67<br>53 | .1<br>.1<br>.1<br>.1       | 19<br>34<br>50<br>59<br>26 | 6<br>16<br>21<br>31<br>12  | 161<br>273<br>324<br>1051<br>231 | 3.14<br>3.90<br>5.60<br>14.66<br>8.75 | 2<br>2<br>128<br>221<br>45 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 13<br>24<br>24<br>81<br>4 | 1<br>1<br>1<br>1      | 2<br>2<br>4<br>6           | 2<br>2<br>4<br>2<br>2<br>2 | 193<br>150<br>179<br>281<br>349 | .53<br>1.29<br>1.23<br>.54<br>.03 | .021<br>.031<br>.031<br>.066<br>.009 | 3<br>5<br>9<br>7<br>2 | 84<br>58<br>65<br>67<br>38    | .48<br>.83<br>.72<br>.32<br>.04  | 12<br>20<br>18<br>16<br>6  | .59<br>.42<br>.32<br>.22<br>.37 | 4<br>4<br>5<br>2<br>4  | 2.87<br>3.26<br>3.77<br>2.44<br>.64  | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.02 | 1<br>1<br>1<br>1 | 4<br>1<br>1<br>10     |
| 4750N 4650XX<br>4750N 4660X<br>4750N 4670X<br>4750N 4680R<br>4750N 4680R<br>4750N 4690R | 45<br>9<br>2<br>1<br>11   | 40<br>51<br>44<br>90<br>39  | 23<br>13<br>12<br>9<br>17 | 93<br>55<br>50<br>69<br>51  | .2<br>.1<br>.1<br>.1<br>.1 | 32<br>18<br>20<br>32<br>20 | 14<br>12<br>13<br>20<br>12 | 786<br>200<br>293<br>275<br>217  | 8.92<br>8.49<br>10.00<br>8.31<br>9.20 | 113<br>28<br>4<br>15<br>22 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>2<br>1<br>2 | 11<br>9<br>8<br>10<br>11  | 1<br>1<br>1<br>1<br>1 | 6<br>2<br>2<br>2<br>2      | 2<br>2<br>4<br>2<br>2      | 250<br>257<br>494<br>235<br>280 | .21<br>.27<br>.26<br>.44<br>.35   | .019<br>.018<br>.007<br>.023<br>.019 | 3<br>2<br>2<br>2<br>2 | 51<br>80<br>63<br>79<br>87    | .05<br>.25<br>.13<br>1.21<br>.31 | 7<br>9<br>6<br>11<br>8     | .23<br>.44<br>.87<br>.33<br>.61 | 2<br>2<br>6<br>8<br>4  | 1.13<br>2.37<br>.71<br>4.79<br>2.64  | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.01<br>.01<br>.01<br>.01 | 1<br>1<br>1<br>1 | 1<br>1<br>3<br>1<br>1 |
| 4750H 4700E<br>4750H 4710E<br>4750H 4720E<br>4700F 4500E<br>4700F 4510E                 | 51<br>31<br>4<br>1        | 49<br>35<br>42<br>24<br>30  | 4<br>5<br>7<br>10<br>18   | 39<br>39<br>63<br>28<br>39  | .1<br>.1<br>.1<br>.1<br>.1 | 12<br>12<br>6<br>8<br>17   | 6<br>6<br>8<br>4<br>8      | 119<br>181<br>204<br>123<br>152  | 4.21<br>5.93<br>8.77<br>4.33<br>6.96  | 72<br>46<br>13<br>2<br>2   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>2<br>1<br>1 | 11<br>12<br>4<br>7<br>10  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>6      | 104<br>193<br>163<br>239<br>282 | .17<br>.06<br>.03<br>.23<br>.40   | .011<br>.009<br>.030<br>.011<br>.013 | 2<br>2<br>6<br>3      | 9<br>22<br>23<br>61<br>101    | .03<br>.03<br>.19<br>.18<br>.37  | 2<br>3<br>10<br>7<br>10    | .03<br>.17<br>.12<br>.51<br>.75 | 3<br>2<br>2<br>4<br>5  | .47<br>.44<br>1.84<br>2.31<br>2.89   | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.01<br>.03<br>.01<br>.01 | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>1      |
| 4700N 4520E<br>4700N 4530E<br>4700N 4540E<br>4700N 4540E<br>4700N 4560E                 | 1<br>1<br>1<br>1          | 33<br>25<br>43<br>66<br>64  | 11<br>10<br>12<br>10<br>3 | 34<br>49<br>57<br>57<br>48  | .1<br>.1<br>.1<br>.1       | 17<br>15<br>19<br>29<br>29 | 5<br>8<br>10<br>13<br>10   | 15D<br>148<br>200<br>249<br>207  | 3.91<br>5.97<br>10.65<br>7.93<br>4.03 | 2<br>2<br>8<br>4<br>6      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>3<br>1 | 10<br>12<br>8<br>10<br>12 | 1<br>1<br>1<br>1<br>1 | 2<br>3<br>2<br>2<br>3      | 2<br>2<br>2<br>2<br>6      | 193<br>245<br>340<br>243<br>222 | .36<br>.41<br>.35<br>.56<br>.57   | .013<br>.022<br>.013<br>.017<br>.026 | 6<br>2<br>2<br>3<br>5 | 81<br>57<br>93<br>109<br>112  | .35<br>.39<br>.38<br>.61<br>.67  | 11<br>10<br>10<br>12<br>12 | .66<br>.63<br>.88<br>.65<br>.63 | 2<br>3<br>5<br>3<br>2  | 3.14<br>2.46<br>2.64<br>5.22<br>4.71 | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.02<br>.01<br>.03<br>.05 | 2<br>1<br>1<br>1 | 1<br>2<br>1<br>1<br>1 |
| 4700k 4570k<br>STD C/AU-S                                                               | 1<br>21                   | 38<br>61                    | 17<br>41                  | 41<br>133                   | .1<br>7.9                  | 24<br>72                   | 9<br>31                    | 175<br>1077                      | 7.25<br>4.14                          | 2<br>41                    | 5<br>18               | ND<br>9                    | 2<br>40               | 11<br>56                  | 1<br>20               | 3<br>18                    | 2<br>22                    | 304<br>60                       | .28                               | .014<br>.091                         | 3<br>41               | 98<br>60                      | .48<br>.89                       | 12<br>187                  | .95<br>.08                      | 2<br>37                | 2.86<br>1.99                         | .01<br>.08                      | .04<br>.15                      | 3<br>15          | 1<br>50               |

.

Page 3

BOUNDARY DRIL G FILE # 88-1639

¥

1

ì

)

)

)

)

)

)

)

j

)

)

9

)

)

)

)

1

)

ł

| SAMPLE                                                                                 | NO<br>PPK              | CU<br>PPM                   | Pb<br>PPM                 | Zn<br>PPM                    | Ag<br>PPK                  | NI<br>PPM                         | CO<br>PPN                  | ND<br>PPM                        | Fe<br>t                                | AS<br>PPN                  | U<br>PPM                   | Au<br>PPK                  | TL<br>PPK             | ST<br>PPM                  | Cd<br>PPK             | SD<br>Ppn                  | Bi<br>PPM                  | V<br>PPK                        | Ca<br>لا                         | P<br>%                               | La<br>PPM                  | CT<br>PPK                    | Mg<br>ł                         | Ba<br>PPK                    | Ti<br>ł                         | E<br>PPM               | Al<br>%                             | Na<br>%                         | K<br>Ł                          | W<br>PPK              | Au*<br>PPB            |
|----------------------------------------------------------------------------------------|------------------------|-----------------------------|---------------------------|------------------------------|----------------------------|-----------------------------------|----------------------------|----------------------------------|----------------------------------------|----------------------------|----------------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|----------------------------------|--------------------------------------|----------------------------|------------------------------|---------------------------------|------------------------------|---------------------------------|------------------------|-------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|
| 4700N 4580E<br>4700N 4590E<br>470DN 4690E<br>4700N 4690E<br>4700N 4610E<br>4700N 4620E | 1<br>23<br>40<br>26    | 16<br>22<br>30<br>54<br>41  | 10<br>14<br>14<br>9<br>13 | 34<br>41<br>46<br>68<br>48   | .2<br>.3<br>.1<br>.3<br>.1 | 7<br>9<br>17<br>30<br>21          | 3<br>6<br>8<br>15<br>13    | 114<br>132<br>173<br>285<br>203  | 3.56<br>6.76<br>7.48<br>7.97<br>7.48   | 2<br>2<br>13<br>39<br>19   | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>1<br>2 | 11<br>9<br>6<br>7<br>7     | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>5<br>2           | 339<br>336<br>336<br>304<br>322 | .27<br>.20<br>.13<br>.24<br>.22  | .012<br>.014<br>.012<br>.014<br>.014 | 2<br>2<br>3<br>3<br>3      | 56<br>58<br>46<br>51<br>53   | .14<br>.19<br>.13<br>.23<br>.1B | 9<br>7<br>7<br>12<br>9       | .99<br>.87<br>.64<br>.41<br>.63 | 2<br>2<br>9<br>3<br>2  | .92<br>1.09<br>.90<br>1.56<br>1.80  | .01<br>.01<br>.01<br>.01<br>.01 | .04<br>.04<br>.04<br>.02<br>.02 | 1<br>1<br>1<br>1      | 1<br>1<br>3<br>4<br>1 |
| 4700N 4630B<br>4700N 4640E<br>4700N 4650B<br>4700N 4650B<br>4700N 4650B<br>4700N 4670B | 4<br>1<br>2<br>5<br>12 | 121<br>59<br>73<br>42<br>55 | 5<br>14<br>12<br>16<br>17 | 91<br>54<br>51<br>60<br>59   | .4<br>.3<br>.1             | 26<br>23<br>29<br>17<br>21        | 26<br>12<br>13<br>12<br>13 | 305<br>232<br>258<br>292<br>277  | 6.55<br>6.40<br>7.63<br>8.37<br>12.24  | 124<br>6<br>3<br>8<br>13   | 5<br>5<br>5<br>5<br>5      | ND<br>HD<br>ND<br>ND<br>ND | 1<br>1<br>2<br>1<br>2 | 34<br>14<br>10<br>8<br>10  | 1<br>1<br>1<br>1      | 5<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 252<br>219<br>263<br>362<br>451 | .68<br>.60<br>.46<br>.11<br>.11  | .026<br>.020<br>.018<br>.014<br>.021 | 2<br>2<br>2<br>2<br>2<br>2 | 13<br>97<br>118<br>55<br>73  | .10<br>.46<br>.52<br>.12<br>.10 | 7<br>14<br>13<br>5<br>7      | .02<br>.54<br>.67<br>.68<br>.93 | 5<br>6<br>5<br>5<br>2  | .44<br>3.90<br>4.83<br>.67<br>1.02  | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.03<br>.03<br>.02<br>.04 | 1<br>1<br>1<br>1      | 1<br>1<br>3<br>1<br>1 |
| 4700N 4680E<br>4700N 4690E<br>4700N 4700E<br>4700N 4710E<br>4700N 4720E                | 1<br>1<br>3<br>16      | 73<br>48<br>43<br>52<br>91  | 9<br>10<br>5<br>12<br>11  | 55<br>60<br>48<br>67<br>84   | .5<br>.1<br>.1<br>.1<br>.1 | 32<br>25<br>16<br>21<br>12        | 13<br>15<br>11<br>14<br>29 | 381<br>329<br>273<br>360<br>1850 | 5.17<br>8.10<br>8.05<br>9.05<br>7.40   | 3<br>5<br>4<br>5<br>122    | 5<br>5<br>5<br>5<br>5<br>5 | HD<br>HD<br>HD<br>HD<br>ND | 2<br>1<br>1<br>1<br>1 | 15<br>11<br>9<br>8<br>20   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 162<br>250<br>275<br>444<br>140 | .62<br>.58<br>.43<br>.15<br>.51  | .030<br>.016<br>.018<br>.011<br>.036 | 3<br>2<br>2<br>2<br>13     | 59<br>62<br>63<br>53<br>10   | .81<br>.81<br>.46<br>.09<br>.10 | 20<br>10<br>6<br>4<br>15     | .43<br>.59<br>.64<br>.59<br>.01 | 2<br>6<br>8<br>6<br>5  | 3.72<br>2.63<br>1.72<br>.52<br>.97  | .01<br>.01<br>.01<br>.01<br>.01 | .03<br>.02<br>.03<br>.03<br>.07 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1      |
| 4700N 4730E<br>4700N 474DE<br>4650N 4500E<br>4650N 4510E<br>4650N 4520E                | 11<br>4<br>2<br>1      | 32<br>42<br>66<br>18<br>12  | 9<br>9<br>9<br>11<br>3    | 45<br>60<br>161<br>134       | .3<br>.4<br>.1<br>.4<br>.3 | 8<br>20<br>32<br>4<br>4           | 13<br>18<br>17<br>2<br>1   | 966<br>544<br>438<br>1601<br>240 | 6.51<br>6.28<br>5.67<br>1.20<br>1.24   | 30<br>10<br>4<br>2<br>2    | 5<br>5<br>5<br>5<br>5      | KD<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 10<br>13<br>15<br>29<br>24 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 182<br>187<br>173<br>19<br>23   | .22<br>.56<br>.61<br>.84<br>.78  | .019<br>.018<br>.028<br>.050<br>.046 | 6<br>4<br>5<br>2           | 66<br>58<br>63<br>10<br>8    | .17<br>.53<br>.79<br>.13<br>.11 | 10<br>13<br>20<br>43<br>15   | .23<br>.36<br>.43<br>.03<br>.04 | 2<br>7<br>3<br>6<br>5  | 2.30<br>2.35<br>3.53<br>.58<br>.48  | .01<br>.01<br>.01<br>.02<br>.01 | .03<br>.03<br>.02<br>.03<br>.05 | 1<br>1<br>2<br>1      | 1<br>1<br>2<br>1<br>1 |
| 4650N 4530E<br>4650N 4540B<br>4650N 4550B<br>4650N 4550B<br>4650N 4570B                | 1<br>1<br>8<br>1<br>1  | 9<br>20<br>49<br>24<br>53   | 2<br>5<br>12<br>10<br>8   | 114<br>54<br>104<br>39<br>53 | .4<br>.2<br>.4<br>.1       | 4<br>9<br>19<br>10<br>19          | 2<br>4<br>12<br>8<br>13    | 137<br>127<br>729<br>172<br>224  | 1.01<br>4.39<br>4.90<br>7.37<br>8.45   | 2<br>2<br>44<br>2<br>2     | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>2<br>1 | 31<br>16<br>32<br>7<br>11  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 30<br>202<br>137<br>398<br>263  | .64<br>.46<br>.56<br>.09<br>.52  | .042<br>.023<br>.037<br>.010<br>.022 | 2<br>2<br>5<br>3<br>7      | 8<br>47<br>36<br>48<br>111   | .15<br>.27<br>.31<br>.06<br>.55 | 16<br>11<br>32<br>5<br>12    | .06<br>.60<br>.19<br>.76<br>.71 | 7<br>9<br>8<br>5<br>4  | .34<br>1.42<br>1.32<br>.77<br>4.20  | .02<br>.01<br>.02<br>.01<br>.01 | .07<br>.04<br>.04<br>.05<br>.02 | 2<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>3<br>1 |
| 4650N 4580B<br>4650N 4590B<br>4650N 4600B<br>4650N 4610B<br>4650N 4620B                | 1<br>1<br>1<br>1<br>1  | 29<br>35<br>21<br>14<br>12  | 15<br>16<br>4<br>9<br>9   | 42<br>43<br>31<br>36<br>40   | .1<br>.1<br>.2<br>.1       | 9<br>14<br>8<br><del>9</del><br>6 | 10<br>10<br>2<br>1<br>1    | 135<br>173<br>95<br>105<br>122   | 10.21<br>11.16<br>1.80<br>2.54<br>3.18 | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 2<br>3<br>2<br>2<br>1 | 8<br>7<br>10<br>9<br>7     | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 371<br>342<br>177<br>229<br>280 | .30<br>.25<br>.31<br>.27<br>.13  | .010<br>.018<br>.018<br>.011<br>.009 | 4<br>2<br>3<br>2           | 115<br>125<br>63<br>63<br>38 | .31<br>.37<br>.19<br>.25<br>.07 | 7<br>6<br>9<br>9<br>5        | .92<br>.84<br>.60<br>.89<br>.87 | 3<br>3<br>4<br>5<br>6  | 2.54<br>2.02<br>1.32<br>1.74<br>.60 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.05<br>.04<br>.01<br>.04 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1      |
| 4650N 4630B<br>4650N 4640B<br>4650N 4650B<br>4650N 4650B<br>4650N 4660B<br>4650N 4670E | 1<br>1<br>1<br>1       | 6<br>7<br>13<br>27<br>23    | 2<br>2<br>2<br>10<br>8    | 125<br>93<br>90<br>49<br>71  | .6<br>.2<br>.3<br>.1<br>.2 | 4<br>7<br>9<br>11                 | 1<br>1<br>4<br>4           | 188<br>395<br>126<br>185<br>155  | .30<br>.25<br>.57<br>6.43<br>3.80      | 2<br>2<br>3<br>2           | 5<br>5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>2<br>1 | 30<br>27<br>38<br>6<br>24  | 1<br>1<br>1<br>1      | 3<br>2<br>2<br>2<br>2<br>2 | 3<br>2<br>2<br>2<br>2<br>2 | 9<br>5<br>16<br>349<br>130      | .33<br>.98<br>1.24<br>.06<br>.90 | .053<br>.041<br>.061<br>.008<br>.030 | 2<br>2<br>3<br>2           | 3<br>3<br>7<br>35<br>29      | .16<br>.09<br>.15<br>.04<br>.23 | 11<br>- 3<br>17<br>- 4<br>11 | .02<br>.01<br>.03<br>.65<br>.30 | 9<br>10<br>8<br>7<br>5 | .20<br>.21<br>.43<br>.50<br>.91     | .02<br>.01<br>.02<br>.01<br>.01 | .05<br>.02<br>.03<br>.02<br>.05 | 1<br>1<br>1<br>1      | 1<br>1<br>2<br>8      |
| 4650N 4680E<br>STD C/AU-S                                                              | 2<br>21                | 47<br>63                    | 12<br>44                  | 58<br>135                    | .1<br>7.9                  | 17<br>73                          | 13<br>31                   | 313<br>1139                      | 8.16<br>4.15                           | 2<br>41                    | 5<br>18                    | ND<br>B                    | 2<br>40               | 6<br>50                    | 1<br>19               | 2<br>21                    | 2<br>19                    | 440<br>60                       | .04<br>.48                       | .009<br>.099                         | 4<br>40                    | 48<br>60                     | .04<br>.97                      | <b>4</b><br>186              | .85<br>.08                      | 5<br>38                | .37<br>1.99                         | .01<br>.08                      | .01<br>.16                      | 1<br>11               | 1<br>47               |

BOUNDARY DRIL NG FILE # 88-1639

)

)

ì

)

)

)

...)

)

)

)

)

)

)

)

)

)

)

)

Ĵ

Ť

)

1

| SAMPLE                                                                  | No<br>PPN        | Cu<br>PPN                   | Pb<br>PPN               | Zn<br>PPM                  | Ag<br>PPK                  | Nİ<br>PPH                 | CO<br>PPN                  | ND<br>PPN                       | Fe<br>X                              | AS<br>PPN                 | U<br>PPM              | Au<br>PPK                  | Th<br>PPN             | ST<br>PPM               | Cd<br>PPM        | SD<br>PPM                  | Bi<br>PPM             | V<br>PPM                        | Ca<br>%                         | P<br>%                               | La<br>PPM               | CT<br>PPM                   | Ng<br>%                         | Ba<br>PPM               | Ti<br>ł                         | B<br>PPM               | Al<br>\$                           | Na<br>%                         | K<br>Ł                          | W<br>PPM              | Au"<br>PPB            |
|-------------------------------------------------------------------------|------------------|-----------------------------|-------------------------|----------------------------|----------------------------|---------------------------|----------------------------|---------------------------------|--------------------------------------|---------------------------|-----------------------|----------------------------|-----------------------|-------------------------|------------------|----------------------------|-----------------------|---------------------------------|---------------------------------|--------------------------------------|-------------------------|-----------------------------|---------------------------------|-------------------------|---------------------------------|------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|
| 4650N 4690E<br>4650N 4700K<br>4650N 4710E<br>4650N 4720E<br>4650N 4730E | 1<br>1<br>1<br>1 | 35<br>109<br>93<br>41<br>48 | 11<br>8<br>8<br>11<br>4 | 54<br>72<br>69<br>61<br>73 | .1<br>.1<br>.1<br>.1<br>.2 | 9<br>44<br>46<br>17<br>15 | 10<br>18<br>17<br>14<br>11 | 203<br>441<br>396<br>286<br>182 | 8.13<br>6.99<br>9.65<br>7.62<br>5.32 | 6<br>28<br>54<br>10<br>38 | 5<br>5<br>5<br>5<br>5 | HD<br>HD<br>HD<br>HD<br>HD | 2<br>1<br>2<br>2<br>1 | 8<br>11<br>13<br>9<br>8 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>4      | 365<br>203<br>274<br>364<br>179 | .20<br>.56<br>.32<br>.05<br>.02 | .015<br>.031<br>.023<br>.012<br>.022 | 2<br>6<br>3<br>2<br>2   | 52<br>84<br>107<br>50<br>36 | .17<br>.89<br>.75<br>.07<br>.07 | 7<br>29<br>22<br>7<br>3 | .53<br>.37<br>.45<br>.38<br>.D1 | 2<br>7<br>2<br>6<br>5  | 1.14<br>5.30<br>3.79<br>.55<br>.82 | .01<br>.01<br>.01<br>.01<br>.01 | .02<br>.02<br>.03<br>.02<br>.02 | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>1<br>1 |
| 4650N 4740B<br>4650N 4750B<br>4650N 4760N<br>4650N 4770B<br>4650N 4780N | 1<br>1<br>1<br>1 | 6<br>16<br>6<br>30<br>49    | 2<br>4<br>4<br>10<br>7  | 15<br>42<br>43<br>50<br>61 | .1<br>.2<br>.1<br>.1<br>.1 | 1<br>4<br>1<br>13<br>17   | 1<br>3<br>4<br>20<br>18    | 16<br>103<br>113<br>1588<br>378 | .69<br>3.70<br>2.35<br>6.58<br>8.68  | 3<br>2<br>5<br>3<br>6     | 5<br>5<br>5<br>5<br>5 | nd<br>Nd<br>Nd<br>Nd       | 1<br>2<br>2<br>1<br>3 | 2<br>6<br>3<br>10<br>10 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>3<br>2<br>2 | 21<br>99<br>40<br>239<br>240    | .01<br>.17<br>.01<br>.36<br>.45 | .007<br>.014<br>.011<br>.018<br>.025 | 8<br>11<br>12<br>4<br>3 | 3<br>31<br>2<br>82<br>140   | .04<br>.20<br>.05<br>.37<br>.54 | 2<br>5<br>3<br>13<br>16 | .01<br>.1D<br>.01<br>.38<br>.37 | 6<br>9<br>8<br>10<br>9 | .73<br>1.65<br>.68<br>2.51<br>4.56 | .01<br>.01<br>.01<br>.01<br>.01 | .05<br>.06<br>.06<br>.02<br>.03 | 1<br>2<br>2<br>1<br>1 | 1<br>1<br>3<br>1      |
| STD C/AU-S                                                              | 19               | 62                          | 41                      | 133                        | 6.6                        | 71                        | 31                         | 1091                            | 4.23                                 | 40                        | 14                    | 1                          | 39                    | 50                      | 19               | 15                         | 21                    | 52                              | . <b>4</b> 8                    | .091                                 | 39                      | 62                          | .96                             | 183                     | .07                             | 38                     | 2.05                               | . DB                            | .15                             | 13                    | 50                    |

Page 5

i

## APPENDIX III

2-2-5 C 2 - 5-6 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C 200 C

DRILL LOGS

DIAMOND DRILL RECORD

i

1

| PROJECT: $Ho_{LRERG}$<br>LOCATION: San Josef<br>Prospect: $Orp^{\#1}$ Claim<br>Site: $N^{0}$<br>Longitude: $4917 N$<br>Latitude: $4988 W$<br>Elevation: $325 feet ASL$ | HOLE<br>Total Depth:<br>Total Recovery:<br>Bearing:<br>Inclination:<br>Core Size: | No. <u>/03</u><br><u>45.26m</u><br><u>255°</u><br><u>-45°</u><br><u>BX</u> | - 88 -/<br>Drill started on<br>Drill finished o<br>Sample No. serie<br>Logged by:<br>Date of draft: | FORMOSA<br>EXPLORATION, INC.<br>May 5, 88 $May 11, 88$ $D.G.L$ $March 5/89$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| DRILL HOLE LOC                                                                                                                                                         | ATION                                                                             |                                                                            | REM                                                                                                 | IARKS                                                                       |

Hole No. /03-88-/ Page / of 3. Alteration Columnar section Mepth-m Assay results ŧ Fracture nterval %Recovery 11p θ Depth Sample Descriptions Rock an ker (% = Volume %) OVERBURDEN Ζ オマイマイン ENTIRE HOLE MEDIUM 3 GREY QUATSING LIMESTONE 1.82 BADLY BROKEN IN PLACES 4 -INDICATED (See Fracture 5 column). ROCK IS MAINLY Sox ٢. MASSIVE - ONLY FEATURE OCCASIONAL STYOLITE OUTLINED 7 -\* BY BITUMEN ? RARE PYRITE 8 -BLEB. 9-10 -91% AXXXX 11-N /2 x 08 13 īY 1 14-15

PROJECT: HOLBERG

# DIAMOND DRILL RECORD

FORMOSA

| PROJECT: HOLISERG<br>Hole No. 103-88-1                                                     | DIAMOND DRILL RECORD                                                   |                   | Page 2 | FORMOSA<br>EXPLORATION, INC.                      |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------|--------|---------------------------------------------------|
| Mecovery       Depth-x       Depth-x       Columnar       Section       Fracture       D1p | Rock Descriptions<br>(% = Volume %)                                    | Depth<br>Interval | Assay  | results #<br>o<br>d<br>w<br>c<br>d<br>w<br>e<br>s |
| $   \begin{array}{c}                                     $                                 | A<br>Quatsino hst<br>Normal Quatsino linestone<br>but highly tractured |                   |        |                                                   |

ì

PROJECT: HOLBERG

Hole No. 103 - 88 - /

DIAMOND DRILL RECORD



FORMOSA EXPLORATION, INC. PROJECT: HOLBERG DIAMOND DRILL RECORD Hole No. 103-88-2 Page <u>/</u> of <u>3</u>. Columnar section Alteration Fracture %Recovery Assay results ≑ ]nterva1 Depth Depth e Dip Rock Descriptions Sampl (% = Volume %) TA Ζ 20% 3 BOX 1 4 5 TAN STAR 6. 8 9 1 10. ¥ 11. 1001 12 13 Ν 14-× 08 15

DIAMOND DRILL RECORD Hole No. 103 - 88 - 2 Page 2 of 3. Columnar section Alteration %Recovery Fracture Assay results a l # Depth Depth Sample > Dłp Interv Rock Descriptions (% = Volume %) 16 /8 19 20. 2/-5 X08 23 QUATSINO 24 KAR MUTSEN 25 23 2001 26 Y 127 130 X 28 29 130

PROJECT: HOLBERG

FORMOSA EXPLORATION, INC.

| PROJECT: HOLBERG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | DITT PECODA    |     |      |              | EXPLO       | RATION, INC. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|-----|------|--------------|-------------|--------------|
| Hole No. <u>/03 - 88 - 2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DIAMOND     |                |     | Pa   | age <u>3</u> | of <u>3</u> | _•           |
| Alteration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                | _   | va 1 | Assay        | result      | ;s #<br>ບ    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rock I      | Descriptions   | ept | ter  |              |             | mp 1         |
| C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | (% = Volume %) |     | u    |              |             | Sa           |
| $\frac{1}{32} = \frac{1}{32} $ | - 38.1m END | OF HOLG        |     |      |              |             |              |



· .

DIAMOND DRILL RECORD

| PROJECT: $Holbergenerative PROJECT: Holbergenerative Prospect: Orp #/ claimSite: N°2Longitude: 5075 NLatitude: 4842 EElevation: 275 feet ASL$ | HOLE NO<br>Total Depth: <u>60</u><br>Total Recovery:<br>Bearing:<br>Inclination: <u>9</u><br>Core Size: <u>/</u> 3 | <ul> <li><u>103-88-3</u></li> <li><u>44</u> Drill started of Drill finished Sample No. series</li> <li><u>0°</u> Logged by:</li> <li><u>X</u> Date of draft:</li> </ul> | FORMOSA<br>EXPLORATION, INC.<br>on: $May 19, 88$<br>on: $May 23, 88$<br>ies:<br>D.G.L.<br>March 5/89 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| DRILL HOLE LOCA                                                                                                                               | ATION                                                                                                              | RI                                                                                                                                                                      | EMARKS                                                                                               |
|                                                                                                                                               |                                                                                                                    |                                                                                                                                                                         |                                                                                                      |

| PROJECT: HOLBERG<br>Hole No. 103-88-3                                                                                               | DIAMOND           | DRILL RECORD                                 | Pa                | ge _/_ | exploration, inc |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------|-------------------|--------|------------------|
| Mecovery<br>Depth<br>Columnar<br>Scotion<br>Fracture<br>Dip<br>Dip                                                                  | Rock              | Descriptions<br>(% = Volume %)               | Depth<br>Interval | Assay  | results #        |
| $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$ | OVERBURDEN<br>J J | O O O<br>MED. GAREY<br>QUATSINO<br>LIMESTONE |                   |        | 2769             |

•

PROJECT: HOLBERG

| DIAMOND DRILL RECC |
|--------------------|
|--------------------|



RD Hole No. 103 - 88 - 3 Page Z 4. of Alteration Columnar section Fracture %Recovery Assay results Interval # llepth Depth Dip e Rock Descriptions Sample (% = Volume %) ¥ 16 17 0 MED. GREY QUATSING LIMESTONG 5 100/  $\sim$ 18  $\overline{\mathbb{S}}$ 19 Box 3 20-2/-/ 1 22 23 -24-25. 1001 - Badly Fractured 26 25.15<sup>.</sup> Jr 27 \* 28 Box 34.16 2

| PR<br>Hc              | OJE<br>le 1 | CT:      | Hoz.<br>103 · | <u>86</u><br>88 | RG<br>3 - 3 |     |    |         |     | DI                                                 | AM | 101 | ND    | D         | RI                  | LL                                    |                     | RE                                   | COF                                                    | 2D                                                                                        |       |          | Pag | e _ | 3   | FOF<br>EXF | RMO:<br>PLOR | SA<br>ATIO | N, IN | с.        |
|-----------------------|-------------|----------|---------------|-----------------|-------------|-----|----|---------|-----|----------------------------------------------------|----|-----|-------|-----------|---------------------|---------------------------------------|---------------------|--------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------|-------|----------|-----|-----|-----|------------|--------------|------------|-------|-----------|
| %Recovery             | Columnar    | Fracture | Dip           |                 | Alt         | era | on | PINK K? |     |                                                    |    | R   | ock   | I         | esc                 | ript<br>(%                            | tic<br>=            | ons<br>Vol                           | ume                                                    | %)                                                                                        | Depth | Interval |     | As  | say | res        | ult          | S          |       | Sample #  |
| Box 7 /00% Box 6 /00% |             |          |               |                 |             |     |    |         | Mir | ~° <sup>~,</sup> t<br>ρ <sub>1</sub> <sup>°,</sup> | Ē. | c , | 0~7 A | <u>c7</u> | )<br>(-<br>p,<br>(- | ME<br>QU<br>Pork<br>LIKE<br>QU<br>K-S | DATA<br>PIA<br>E IV | GI<br>TSI<br>MA<br>MALT<br>BRC<br>BR | REY<br>AND<br>EST<br>OCA<br>BON,<br>ENK<br>ENK<br>TERE | c<br>AN2M<br>C<br>D<br>D<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C |       |          |     |     |     |            |              |            |       | 8361 8360 |

| PROJECT: HOUBERG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |         |      |       | EXP  | LORATIO | N, INC. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-------|------|---------|---------|
| Hole No. /03-88-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DIAMOND DRILL RECORD                                                                                                                                                                                                            |         | Page | 4     | of   | 4       |         |
| Vacuum ar Alteration Obth Dip Dip Alteration (1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rock Descriptions                                                                                                                                                                                                               | nterval |      | Assay | rest | ults    | ample # |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (% = Volume %)                                                                                                                                                                                                                  | -       |      |       |      |         | S       |
| $ \begin{array}{c} 46 - \\ +47 - \\ +47 - \\ +48 - \\ +49 - \\ +49 - \\ +49 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\ +60 - \\$ | Green<br>Rorphyritic<br>Dike<br>Rock<br>Minor Pyrite<br>Minor Pyrite<br>Minor Pyrite<br>Minor Pyrite<br>Minor Pyrite<br>Minor Pyrite<br>SLEACHED ? WHITE QUATSING<br>LIMESTONE<br>Green Porphyritic Dike<br>Rock<br>END OF HOLE |         |      |       |      |         | 8362    |

E E E E E PANOSA

•

1

ì

DIAMOND DRILL RECORD

ì

| PROJECT: $\frac{H_{oLBERG}}{LoCATION: San Josef}$<br>Prospect: $\frac{O_{Lp}\#_{I}}{N^{\circ}2}$<br>Longitude: $\frac{5075N}{Latitude:}$<br>Elevation: $275 feef ASL$ | HOLE NC<br>Total Depth: /2<br>Total Recovery:<br>Bearing:<br>Inclination:<br>Core Size: | D· <u>103-88-4</u><br>B7m Drill started<br>Drill finishe<br>25° Sample No. se<br>45° Logged by:<br>3X Date of draft | FORMOSA<br>EXPLORATION, INC.<br>d on: $May 24, 88$<br>ed on: $June 15, 88$<br>eries:<br>D, G. L.<br>t: $March 5/89$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| DRILL HOLE LOCA                                                                                                                                                       | ATION                                                                                   |                                                                                                                     | REMARKS                                                                                                             |
|                                                                                                                                                                       |                                                                                         |                                                                                                                     |                                                                                                                     |
|                                                                                                                                                                       |                                                                                         |                                                                                                                     |                                                                                                                     |
|                                                                                                                                                                       |                                                                                         |                                                                                                                     |                                                                                                                     |
|                                                                                                                                                                       |                                                                                         |                                                                                                                     |                                                                                                                     |

FORMOSA EXPLORATION, INC. PROJECT: HOLBERG DIAMOND DRILL RECORD Hole No. 103-88-4 Page / of 13. Columnar section Alteration Fracture %Recovery Assay results CERTIFICATES FOLLOW Interval ŧ≑ Depth Depth ω Dłp Rock Descriptions Sample (% = Volume %) po O VER BURDEN MED. GREY QUATSINO 2 LIMESTONE ( Some what 3 styplitic with minor pyrobut mon ) 4 5 6 7 8 9 10 11 fault with gonze over 3.5 m /2 13. 14 -IS

•
PROJECT: HOLBERG

# DIAMOND DRILL RECORD



Hole No. 103 - 88 - 4

| HUI               | e NO               | NU. 703 - 08 - 7 |     |     |     |          |                   |  |  |  |      |       |      |        |      |       |               |           |       |         |                 |     | Pag | e. | 2   | of | 12 |  |   |     |
|-------------------|--------------------|------------------|-----|-----|-----|----------|-------------------|--|--|--|------|-------|------|--------|------|-------|---------------|-----------|-------|---------|-----------------|-----|-----|----|-----|----|----|--|---|-----|
| ΓY                | ar<br>on           | re               |     | 1 1 | Alt | teration |                   |  |  |  |      |       |      |        |      | 1 6   | Assay results |           |       |         |                 |     |     |    |     |    |    |  |   |     |
| epth              | Lumn               | actu             | 01p |     |     |          | Rock Descriptions |  |  |  |      |       |      |        |      | pth   | erv           |           |       |         |                 |     |     |    | ple |    |    |  |   |     |
| <u>%Rec</u><br>De | Co<br>So           | Fr;              |     |     |     |          |                   |  |  |  |      |       |      |        |      |       | (% =          | = Vo      | lume  | %)      | De              | Int |     |    |     |    |    |  |   | Sam |
| /6 -<br>/7 ·      |                    |                  |     |     |     |          |                   |  |  |  |      |       |      |        |      | Mı    | EDIU          | 1         | GR    | 'E7     | <br>-<br>-<br>- |     |     |    |     |    |    |  |   |     |
| 18-               | ┧┯┷                |                  |     |     |     |          |                   |  |  |  | -    |       |      |        |      |       | QUR           | 75        | IND   | _       | -               | -   |     |    |     |    |    |  |   |     |
| 19.               |                    |                  |     |     |     |          |                   |  |  |  | Ļ    |       |      |        |      |       | // <i>p</i>   | 7 ES<br>1 | 570 4 | ~E<br>) | -               | 1   |     |    |     |    |    |  |   |     |
| 20                |                    |                  |     |     |     |          |                   |  |  |  | -    |       |      |        |      | (     | as 1          | a 5 a     | ore j | /       | -               |     |     |    |     |    |    |  |   |     |
| 2/                |                    |                  |     |     |     |          |                   |  |  |  | -    |       | 4    | 7 c    | on 7 | ,<br> | F             |           |       |         | -               |     |     |    |     |    |    |  |   |     |
| ZZ -              |                    |                  |     |     |     |          |                   |  |  |  | F    |       | py.  | robi   | tun  |       | £             |           |       |         | -               |     |     |    |     |    |    |  |   |     |
| 23                | $\left  - \right $ |                  |     |     |     |          |                   |  |  |  | -    |       | mu   | mero   | 20   | Ca (  | <i>C 0</i> 3  |           |       |         | -               |     |     |    |     |    |    |  |   |     |
| 24                | $\frac{1}{1}$      | -                |     |     |     |          |                   |  |  |  | -    |       | vein | ,1/5   |      |       |               |           |       |         | -               |     |     |    |     |    |    |  |   |     |
| 25                |                    |                  |     |     |     |          |                   |  |  |  | -} N | lassi | ;e j | oyri b | L G  | crosj | 100           | m         |       |         |                 |     |     |    |     |    |    |  | P | 2 2 |
| 26                | $\frac{1}{1}$      | -                |     |     |     |          |                   |  |  |  | Ļ    |       |      |        |      |       |               |           |       |         |                 | ]   |     |    |     | -  |    |  |   | 83  |
| 27                |                    |                  |     |     |     |          |                   |  |  |  | -    |       |      |        |      |       |               |           |       |         |                 |     |     |    |     |    |    |  |   |     |
| 28                |                    |                  |     |     |     |          |                   |  |  |  | -    |       |      |        |      |       |               |           |       |         |                 |     |     |    |     |    |    |  |   |     |
| 29                |                    |                  |     |     |     |          |                   |  |  |  |      |       |      |        |      |       |               |           |       |         |                 |     |     |    |     |    |    |  |   |     |

%Recovery

3



| 32                          | Bleached med -<br>fine grammed MASSING DARK<br>Andonite (chill GREEN<br>gme") numnons PORPHY RITIC<br>calcite veinles ANDESITE |                |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------|
| 36                          | Reddish "rust" zone<br>Sta Tocm with rounded<br>White play. phenos. up to<br>O.Sca dia                                         |                |
| 40<br>41<br>42              | Mod. density of randomly<br>oriented calcite veinlets<br>te cinni Sax                                                          | 5-366<br>5-366 |
| 43 - ~<br>441 - ~<br>45 - ~ |                                                                                                                                |                |

PROJECT: HOLBERG

1

## DIAMOND DRILL RECORD

EXPLORATION, INC.

-

E FORMOSA

Hole No. 103-88-4

|      | HOIG                                                                                                                                      |           | · <u> </u> |      | - 00 | 2 - |     |     |    | <br> |  |  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |              |     |                 |      |        |      |     | Pag | e | <u> </u> | of | 12 |  |           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|------|------|-----|-----|-----|----|------|--|--|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|--------------|-----|-----------------|------|--------|------|-----|-----|---|----------|----|----|--|-----------|
| rγ   |                                                                                                                                           | on        | re         |      |      | Alt | era | tio | חכ | 1    |  |  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |              | al  | Assay           |      |        | res  | ŧ   |     |   |          |    |    |  |           |
| 2016 | spth                                                                                                                                      | Lumn      | lctu       | ol p |      |     |     |     |    |      |  |  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rc                | ck                    | Des          | scr | iptic           | ons  |        | ipth | erv |     |   |          |    |    |  | <br>ıp Le |
| %Rec | De                                                                                                                                        | Col<br>8( | Fri        |      |      |     |     |     |    |      |  |  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                       |              |     | (% =            | Volu | ume %) | De   | Int |     |   |          |    |    |  | Sair      |
|      | 46 -<br>47-<br>48 -<br>49 -<br>50 -<br>51 -<br>52 -<br>53 -<br>52 -<br>53 -<br>54 -<br>55 -<br>55 -<br>55 -<br>55 -<br>55 -<br>55 -<br>55 |           |            |      |      |     |     |     |    |      |  |  | Over of the Contract Con | r is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is it is i | Smilling Smilling | атой<br>2010<br>91 ал | ~<br>`~ c (~ | DA  | RK<br>POR<br>AN |      | REEN   |      |     |     |   |          |    |    |  |           |

PROJECT: HOLBERG

## DIAMOND DRILL

RECORD



Hole No. 103-88-5 Page 5 of 12. Columnar section Alteration %Recovery Fracture Assay results a I ÷ Depth Bleacher pth 2 G Dłp Rock Descriptions Sampl C 2 (% = Volume %) v 61-Coarse Andesiti 62-63 DARK GREEN 64-Minon dissem. pyrite Fine gramud Chilligne? PORPHYRIDC ANDES ITE 65 -66 -67-~ 68-69-70 ł v 7/ -ヤナナナナナ 72. Brecciated zone cemented with calcite contain, bitumen. 8368 A A 73 Δ ν 74 76-

| PROJECT: HOLBERG<br>Hole No. 103-88-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DIAMOND DRILL RECORD                                                                                                                                                      |       | Page 6           | FORMOSA<br>EXPLORATION, INC. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|------------------------------|
| Section<br>Bepth<br>Columnar<br>Section<br>Fracture<br>DIP<br>Bracie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rock Descriptions<br>(% = Volume %)                                                                                                                                       | Assay | results # oldues |                              |
| $76 - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}{77} - \frac{1}$ | DARK GREEN<br>POR PHYRIMC<br>ANDESITE<br>Fault - brecciation<br>and gonge 30' to core<br>axis<br>Fault - brecciation and<br>gonge 35° to core axis<br>Fault - brecciation |       |                  |                              |

ì

• , .

PROJECT: HOLBERG



| PROJECT: <u>Hol BERG</u><br>Hole No. <u>103 - 88 - 4</u>    | DIAMOND DRILL RECORD                                                                                  | FORMOSA<br>EXPLORATION, INC.<br>Page 8 of 13. |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Mecovery<br>Depth<br>Columnar<br>Section<br>Fracture<br>Dip | Rock Descriptions<br>(% = Volume %)                                                                   | Depth<br>Jepth<br>Interval<br>Sample #        |
| $ \begin{array}{c}                                     $    | AS ABOVE<br>PINK / BROWN<br>POR PHTRITTIC<br>VOLCAWIC<br>(DINE?)<br>Styolitic Lst<br>Lt. t. mod. stey |                                               |

. .

| PROJECT: <u>HolBERG</u><br>Hole No. <u>103 - 88 - 4</u>  | DIAMOND DRILL RECORD                                                                                                                                                                                                                |        | Page 9 | FORMOSA<br>EXPLORAT | TION, INC. |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---------------------|------------|
| Bit   Alteration     0   0     0   0     0   0     0   0 | Rock Descriptions                                                                                                                                                                                                                   | terval | Assa   | y results           |            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    | AS ABOUG<br>(% = Volume %)<br>AS ABOUG<br>PINK PHENCRYST<br>PORPHY RY<br>CONTRCT<br>MED. GREY<br>QUATSINO<br>LIMESTONE<br>STONE<br>Strectified to<br>breccinted to<br>Healed by calcite<br>veinlots - seams with<br>pyrobitumen and | Inter  |        |                     | Samp1      |

ł

•

;

FORMOSA EXPLORATION, INC. PROJECT: HOLBERG DIAMOND DRILL RECORD Hole No. 103 - 88 - 4 Page 10 of 12. Alteration Columnar section Fracture %Recovery nterval Assay results <del>#</del> Depth Depth ω a. Rock Descriptions Sample DI (% = Volume %) 136 Δ 137 MED. GREY 138-QUATSINO D LIMESTONG 139 Gouge 140-141-۵ 142 143 b Block ? Parson Bay Fm. Sediments IĤ **#**\$ 14 D 147 Ŷ 148 Δ 147-150-

FORMOSA EXPLORATION, INC. PROJECT: HOLBERG DIAMOND DRILL RECORD Hole No. 103 - 88-4 Page <u>//</u> of <u>/3</u>. Columnar section Alteration %Recovery Fracture Assay results a I ŧ Depth Depth > G Dip Descriptions Rock Sampl G Ē (% = Volume %) D 151. 152 ۵ MED. GREY 153 QUATSINO ۵ LIMESTUN G 154 155 Δ 156 157-Black ? fine banded black shale 12 158 Silica flooding + very fine grained pyrite 159-5 160-8372 161 Δ 162 163 Δ 164-165 ۱ ۸

PROJECT: HOLBERG

## DIAMOND DRILL RECORD

FORMOSA EXPLORATION, INC.

| Hole No. <u>/03-88-4</u>              | 22    |                | Page <u>/</u> | 2 of 12 | _•         |         |
|---------------------------------------|-------|----------------|---------------|---------|------------|---------|
| Alteration                            |       |                |               | Ass     | ay result: | 5 #     |
| COV6<br>ept1<br>ept1<br>act           | Rock  | Descriptions   | eptl          |         |            |         |
| C C C C C C C C C C C C C C C C C C C |       | (% = Volume %) |               |         |            | es<br>S |
|                                       | _     | 1              | 1             |         |            |         |
|                                       | -     |                |               |         |            |         |
|                                       | -     | MED. GREY      |               |         |            |         |
| 166                                   | -     | QUATSINO       | 4             |         |            |         |
| 169-1-0                               | -     | LIMESTONE      |               |         |            |         |
| 10-1                                  |       |                | +             |         |            |         |
| 11-10                                 |       |                | -             |         |            |         |
|                                       | -     |                | 1             |         |            |         |
|                                       |       |                |               |         |            |         |
|                                       |       |                |               |         |            |         |
|                                       | F     |                |               |         |            |         |
|                                       | -     |                |               |         |            |         |
| 176                                   | <br>L |                | 4             |         |            |         |
|                                       | -     |                | 4             |         |            |         |
| 178-1                                 |       |                | -             |         |            |         |
| 179-1-D                               | -     |                | 4             |         |            |         |
|                                       |       | $\checkmark$   | 4             |         |            |         |

PROJECT: HOLBERG

### DIAMOND RECORD DRILL



Hole No. 103-88-4 Page <u>13</u> of <u>13</u>. Columnar section Alteration Fracture %Recovery a l Assay results == Depth Depth > Dip ω nter Rock Descriptions Sample (% = Volume %) ۵ 181-Δ MED. GREY 182-QUATINO 183 Δ LIMESTONE 184 Δ Reddish Altudini 373 185 ± silicification ۵ 00 186-187-- END OF HOLE -188-189 190)

)

)

÷١

)

)

3

)

)

)

)

)

)

)

ز

.)

-)

### GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HH03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR ME FE CA P LA CE MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: CORE AU: AMALYSIS BY ACID LEACE/AA FROM 10 GM SAMPLE. EG AMALYSIS BY FLAMLESS AA. 1 D P

,

| D | ATE RECE   | IVED      | : J       | <b>UN</b> 03 | 1988      | D         | ATE       | REP       | ORT       | MAI     | LED:      | : Je     | ine       | 10        | 88        | A         | SSAY      | ER.       | <u> </u> | he      | Į.     | D.TC      | YE        | ORC     | C.LE      | ONG,    | CE       | RTIF    | IED     | B.C    | . A      | SSAY       | /ERS      |
|---|------------|-----------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|---------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|---------|--------|-----------|-----------|---------|-----------|---------|----------|---------|---------|--------|----------|------------|-----------|
|   |            |           |           |              |           |           |           |           |           |         | вс        | UND      | ARY       | DRI       | LLIN      | iG        | Fi        | le        | # 8      | 8-174   | 13/    |           |           |         |           |         |          |         |         |        |          |            |           |
|   | SAMPLE     | No<br>PPN | Cu<br>PPN | Pb<br>PPM    | ZD<br>PPN | Ag<br>PPN | Ni<br>PPM | Co<br>PPN | ND<br>PPK | Fe<br>L | λs<br>PPN | U<br>PPK | Au<br>PPK | Th<br>PPK | ST<br>PPM | Cd<br>PPK | SD<br>PPM | Bİ<br>PPM | V<br>PPK | Ca<br>% | P<br>t | La<br>PPK | CT<br>PPK | Ng<br>t | Ba<br>PPK | Ti<br>X | B<br>PPK | А1<br>Ъ | Na<br>ł | X<br>ł | ¥<br>PPH | Au*<br>PPB | Hg<br>PPB |
|   | D 8351     | 1         | 1         | 2            | 1         | .2        | 2         | 1         | 49        | .06     | 2         | 8        | ND        | 1         | 270       | 1         | 2         | 2         | 3        | 43.00   | .002   | 2         | 3         | .30     | 2         | .01     | 2        | .01     | .01     | .01    | 1        | 1          | 20        |
|   | U 8352     | 1         | 3         | 3            | 2         | .1        | 3         | 1         | 372       | .22     | 12        | 8        | ND        | 1         | 292       | 1         | 2         | 2         | 2        | 39.09   | .002   | 2         | - 4       | .58     | 1         | .01     | 3        | .01     | .01     | .01    | 1        | 1          | 60        |
|   | U 8353     | 1         | 2         | 2            | 2         | .1        | 2         | 1         | 152       | .44     | 5         | - 5      | nd        | 1         | 135       | 1         | 2         | 3         | 3        | 18.68   | .002   | 2         | 1         | 10.76   | 1         | .01     | 2        | .D1     | .01     | .01    | 1        | 1          | 10        |
|   | U 8354     | 1         | 2         | 5            | 2         | .1        | 1         | 1         | 181       | .51     | 6         | 6        | ND.       | 2         | 161       | 1         | 2         | 2         | - 4      | 18.17   | .003   | 2         | 1         | 11.91   | 1         | .01     | 8        | .01     | .01     | .01    | 2        | 1          | 30        |
|   | U 8355     | 5         | 1         | 4            | 3         | .1        | 2         | 1         | 223       | .85     | 6         | 5        | ID        | 1         | 114       | 1         | 2         | 4         | 4        | 17.60   | .003   | 2         | 1         | 11.81   | 1         | .01     | 4        | .01     | .01     | .01    | 1        | 2          | 60        |
|   | U 8356     | 1         | 3         | 4            | 24        | .1        | 1         | 1         | 304       | .27     | 5         | 5        | KD        | 1         | 178       | 2         | 6         | 4         | 4        | 30.25   | .003   | 2         | 1         | 6.05    | 1         | .01     | 6        | .02     | .01     | .01    | 2        | 1          | 180       |
|   | D 8357     | 1         | 25        | 9            | 40        | .1        | 9         | 10        | 872       | 4.28    | 9         | 1        | nd        | 5         | 138       | 1         | 3         | 2         | 58       | 6.80    | .088   | 9         | 20        | 1.09    | 51        | .01     | 1        | 2.36    | .15     | .16    | 3        | 1          | 20        |
|   | U 8358     | - 4       | 1         | 5            | 10        | .1        | 1         | 1         | 115       | .33     | 3         | 1        | ND        | 1         | 167       | 1         | 2         | 2         | 3        | 20.27   | .004   | 2         | 1         | 8.74    | 1         | .01     | 10       | .05     | .01     | .01    | 1        | 1          | 40        |
|   | U 8359     | 1         | 1         | 2            | 1         | .1        | 1         | 1         | 124       | .19     | 6         | 5        | ND.       | 1         | 180       | 1         | 4         | 2         | 3        | 31.47   | .002   | 2         | 1         | 4.65    | 1         | .01     | 2        | .01     | .01     | .01    | 1        | 1          | 30        |
|   | U 8360     | 8         | 7         | 3            | 6         | .3        | 3         | 2         | 243       | 1.02    | 10        | 5        | KD        | 2         | 138       | 1         | 2.        | 2         | 10       | 18.32   | .005   | 2         | 1         | 9.82    | 1         | .01     | 8        | .07     | .01     | .02    | 1        | 4          | 140       |
|   | U 8361     | 3         | 12        | 3            | B         | .2        | 3         | 3         | 495       | 1.46    | 17        | 5        | ND.       | 1         | 117       | 1         | 2         | 2         | 13       | 15.53   | .018   | 2         | 1         | 9.11    | 2         | .01     | 5        | .19     | .01     | .05    | 1        | 1          | 350       |
|   | U 8362     | 1         | 34        | 9            | 45        | .2        | 14        | 14        | 1109      | 4.65    | 10        | 5        | ND.       | 4         | 246       | 1         | 2         | 2         | 82       | 8.29    | .054   | 6         | 30        | 4.23    | 10        | .01     | 14       | .48     | .01     | .07    | 1        | 1          | 430       |
|   | U 8363     | 1         | 39        | 12           | 77        | .1        | 11        | 8         | 1381      | 3.20    | 9         | 5        | ND        | 2         | 329       | 1         | 2         | 2         | 36       | 13.64   | .030   | 5         | 7         | 5.75    | 120       | .01     | 10       | 1.73    | . 02    | . 08   | 1        | 5          | 360       |
| • | U 8364     | 1         | 5         | 2            | 19        | .1        | 1         | 1         | 417       | .32     | 3         | 5        | ND        | 1         | 344       | 1         | 2         | 2         | 1        | 30.10   | .002   | 2         | 1         | 2.48    | 27        | .01     | 10       | .02     | .01     | .01    | 1        | 2          | 190       |
|   | U 8365     | 1         | 30        | 8            | 48        | .2        | 18        | 14        | 1128      | 4.71    | 16        | 9        | ND        | 1         | 152       | 1         | 2         | 2         | 73       | 5.84    | .068   | 7         | 34        | 4.02    | 365       | .03     | 13       | 1.70    | .04     | .08    | 1        | 1          | 13D       |
|   | STD C/AU-R | 18        | 57        | 37           | 132       | 7.1       | 67        | 27        | 1069      | 4.05    | 38        | 18       | 8         | 40        | 47        | 18        | 17        | 19        | 58       | .49     | . 095  | 38        | 57        | . 93    | 177       | . 08    | 34       | 1.93    | .07     | .13    | 12       | 480        | 1400      |

### GEOCHEMICAL ANALYSIS CERTIFICATE

1.0

f

1

1

(

f

(

(

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 ECL-HH03-H20 AT 95 DEG. C FOR OHE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR MH FE CA P LA CR NG BA TI B W AND LINITED FOR WA K AND AL. AU DETECTION LINIT BY ICP IS 3 PPN. - SAMPLE TYPE: COTE AU\* AWALYSIS BY ACID LEACE/AA FROM 10 GM SAMPLE. HG AWALYSIS BY FLAMLESS AA.

Ag Hi Co Hn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Ng Ba SAMPLE Cu Pb In Ťi Xo В Al Na K W Au\* Ha S PPN PPN PPN PPN PPN PPN PPN PPN PPN 3 PPK PPN PPN PPN PPN PPN PPN PPN PPN PPN \$ \$ PPN 8 PPM 1 Ł \$ PPN PPB PPB 19 1029 5.70 ND 159 124 3.97 .072 73 .1 33 - 5 5 2 1 2 2 9 78 3.28 65 . 61 8 3.04 .10 U 8366 1 57 10 . 09 1 45 50 43 12 13 .1 33 12 204 5.32 113 5 ND 1 149 1 2 4 29 9.67 .028 2 8 4.33 4 .01 4 1.06 .01 .04 U 8367 147 1 1 1100 3 601 1.38 5 5 ND 2 144 1 U 8368 1 13 2 16 .2 6 2 2 6 4.34 .044 18 10 1.39 94 .01 13 .62 .01 .23 1 4 150 55 4 707 2.37 3 5 ND 1 76 1 2 2 19 1.93 .047 18 3 1.05 172 .01 7 7 .1 4 9 1.58 .02 .13 II 8369 1 1 1 30 116 U 8370 8 2 54 .1 5 3 800 2.35 ß 5 ND. 1 1 2, 2 15 3.46 = .7048 21 6 1.16 282 .01 8 .57 .01 .15 1 1 2 20 35 .2 3 124 1.98 2577 5 ND 87 1 10 5 8 13.90 .040 7 3 .11 .01 6 .47 .01 .11 U 8371 13 10 2 4 1 5 1 1 500 4 345 3.04 579 5 ND 1 194 1 7 4 13 26.94 .011 3 2.38 Ø 8372 1 11 2 6 .3 1 2 3 · . 01 5 .14 .01 .03 1 4 420 24 5 1 173 2 2 U 8373 1 3 2 2 .1 1 1 121 .10 ND 1 3 31.97 .001 2 2 .41 1 .01 2 .01 .01 .01 1 6 40 67 28 1050 4.09 42 17 8 36 47 17 16 21 56 .47 .082 39 57 .93 175 .06 31 1.93 .06 .14 11 480 1300 STD C/AU-R 17 60 38 132 7.1





