ARIS SUMMARY SHEET

District Geologist, Smithers Off Confidential: 90.01.26 į. **ASSESSMENT REPORT 18602** MINING DIVISION: Omineca PROPERTY: LOCATION: JP 54 28 00 LONG 128 16 00 LAT 09 6035476 UTM 547531 103I08W NTS CLAIM(S): OPERATOR(S): McNeil 2-4, Zymex 1-3 Univex Min. AUTHOR(S): Symonds, D.F. REPORT YEAR: 1989, 69 Pages COMMODITIES SEARCHED FOR: Gold, Silver, Lead, Zinc, Copper **KEYWORDS:** Coast Plutonic Complex, Granodiorite, Quartz Diorite, Chalcopyrite Argentiferous galena, Covellite, Sphalerite, Malachite WORK DONE: Geological, Geochemical, Physical GEOL 100.0 ha Map(s) - 2; Scale(s) - 1:10002.0 km ROAD 73 sample(s) ;CU,PB,ZN,AG,AU ROCK No. SOIL 131 sample(s) ;CU,PB,ZN,AG,AU Map(s) - 6; Scale(s) - 1:1500TREN 375.0 m 15 trench(es) UNDV 560.0 m 500.0 m USUR MINFILE: 103I 107

MINFILE:

Contraction of the local distance of the loc

LOG NO:	0404
ACTION:	

Anima (Sans)

T have

and later

e f

00

()

RD.

FILMED

FILE NO:

GEOLOGICAL, GEOPHYSICAL & PHYSICAL

ASSESSMENT REPORT

on the

J.P. PROPERTY Omineca Mining Division Terrace, B.C.

CLAIMS: Mineral Lease M-88 consisting of the following 4 claims:

- Money Maker #1

- Money Maker #2
- Money Maker #3

- McNeil #1

and

McNeil #2(1 claim) McNeil #3(1 claim) McNeil #4(1 claim) Zymex 1(20 units) Zymex 2(20 units) Zymex 3(16 units)

LATITUDE: 54⁰ 28'N LONGITUDE: 128⁰ 16'W NTS: 103 I/8,9

for

UNIVEX MINING CORPORATION HERE ST. CONTINUES ST. CONTINUES

by

D.F. SYMONDS, B.Sc. (Geol.)

BURTON CONSULTING INC. 901-626 West Pender Street Vancouver, B.C., V6B 1V9

FEBRUARY 17, 1989

BURTON CONSULTING INC.

This report may not be reproduced in whole or in part without the written permission of Burton Consulting Inc.

TABLE OF CONTENTS

ingenetigen.

1 md S.R. in

and the second se

Contraction of the local distribution of the

Sector Sector

A STATE OF A

A CONTRACTOR OF

<u>Paqe</u>

1.0	ASSESSMENT REPORT TITLE PAGE & SUMMARY	
2.0	INTRODUCTION	1
3.0	SUMMARY & CONCLUSIONS	2
4.0	LOCATION & ACCESS	4
5.0	CLAIM INFORMATION	6
6.0	PREVIOUS WORK	8
7.0	PHYSICAL WORK	9
	7.10 General Physical Work	9
	7.20 Trenching & Blasting	9
	7.30 Future Physical Work Considerations	10
8.0	SURVEYING	11
9.0	GEOLOGY	12
	9.10 Regional Geology & Mineral Occurrences	12
	9.20 Local Geology	12
	9.210 Rock Types & Alteration	12
	9.220 Structure	13
	9.230 Rock Sampling & Mineralization	13
	9.240 Assays & Sample Descriptions	20
	9.250 Geological Discussion	24
10.0	GEOCHEMISTRY	25
	10.10 Geochemical Orientation Survey	25
	10.20 Discussion of Geochemical Results	28
	GENERAL DISCUSSION OF RESULTS	29
12.0	PROJECTIONS, CONCLUSIONS & RECOMMENDATIONS	30
13.0	COST STATEMENT	33
14.0	CERTIFICATE	34

APPENDICES

I - Geochemical Analysis & Assay Certificates
II - Statistical Analysis of Geochemical Data
III - References

BURTON CONSULTING INC.

This report may not be reproduced in whole or in part without the written permission of Burton Consulting Inc.

LIST OF ILLUSTRATIONS

- 1994

1. 1986

	Location Map	5
	(1:2,500,000)	7
	Claim Map (1:50,000)	•
9-1	Regional Geology (after Duffell & Souther, 1963)	15
	(1:253,440)	
9-2	Regional Geology(after Woodsworth et al, 1985)	17
	(1:125,000)	
9-3	Mineral Occurrences, Terrace Area	19
	(1:500,000)	
9-4A	Composite Map - Surface	pocket
	(1:1000)	magicat
9-4B	Composite Map - Underground	pocket
	(1:1000)	medicet
L0-1A	Geochemical Orientation Survey(Gold)	pocket
1.1	(1:1500)	nograt
LO-1B	Geochemical Orientation Survey(Silver)	pocket
	(1:1500)	necket
10-1C	Geochemical Orientation Survey(Lead)	pocket
	(1:1500)	pocket
10-1D	Geochemical Orientation Survey(Zinc)	pocket
	(1:1500)	pocket
10-1E	Geochemical Orientation Survey(Copper)	POCKEC
	(1:1500)	

BURTON CONSULTING INC.

<u>Page</u>

2.0 INTRODUCTION

This report, written on behalf of Univex Mining Corporation, of Vancouver, B.C., describes field work carried out during the 1988 field season on the J.P. gold property, located near Terrace, B.C. This field work underground building, included physical work(road refurbishment, trenching, construction), blasting, surveying, geological mapping and sampling (underground and geochemical surface), grid establishment and a soil orientation survey.

A statement of costs incurred directly as a result of the 1988 work program is included. This cost statement was prepared by a representative of Univex Mining Corporation and supplied to Burton Consulting Inc.

Recommendations are made for further work on the property.

BURTON CONSULTING INC.

3.0 SUMMARY & CONCLUSIONS

This report, written on behalf of Univex Mining Corporation, of Vancouver, B.C., describes field work carried out on the J.P. property near Terrace, B.C. during the 1988 field season.

The J.P. property is located approximately 22 airkilometres east of Terrace, B.C. on the north side of the Copper(Zymoetz) River. Access to the property is by 4-wheel drive vehicle from Terrace, B.C. using Highway 16 and the Copper River road, which runs along the north side of the Copper River.

The property consists of a mineral lease made up of four claims, three reverted crown-granted claims and three metric claims(56 units) in the Omineca Mining Division.

Previous work on the property includes trenching, shaft sinking, underground development of 560 metres of adit, geological/geochemical surveys and limited(1,000 feet) diamond drilling. This work was carried out from 1914 to 1970. Many of the records of this old work are lost.

Recent work on the property(1988) has included slash clean-up, road repair, underground refurbishment, general clean-up around adit, a storage building, a log bridge over McNeil Creek, trenching and blasting at 15 sites, surveying, geological mapping and sampling and a geochemical orientation survey with subsequent baseline extension.

Regional geological studies show the property area to be underlain by intrusive rocks(granodiorite, granite, quartz diorite) representing various facies of the Coast Intrusions. Larger scale faulting(Dardanelle Fault and associated faults) bounds the intrusives. Several gold occurrences lie northwest of the property.

The property is underlain by intrusive rocks ranging in composition. quartz diorite granodiorite to from Boundaries between intrusive units are indistinct. Α section of highly deformed, unfoliated pink granite is The intrusives have been cut by a buff exposed underground. to light-green coloured fine-grained aplitic dyke, 5 metres to 10 metres or more in thickness. Quartz veins associated with the footwall and hanging wall of this dyke contain chalcopyrite, visible mineralization(pyrite, sulphide argentiferous galena, covellite, sphalerite, and malachite) and gold mineralization.

A series of sub-parallel faults with a strike range of $1000 \text{ to } 130^{\circ}$ and a dip range of $50^{\circ}(\text{North})$ to $65^{\circ}(\text{North})$ repeat themselves at 80 metre to 90 metre intervals throughout the underground workings, imparting a right-lateral displacement of 10 metres to 40 metres to the aplite dyke and associated quartz veins.

3

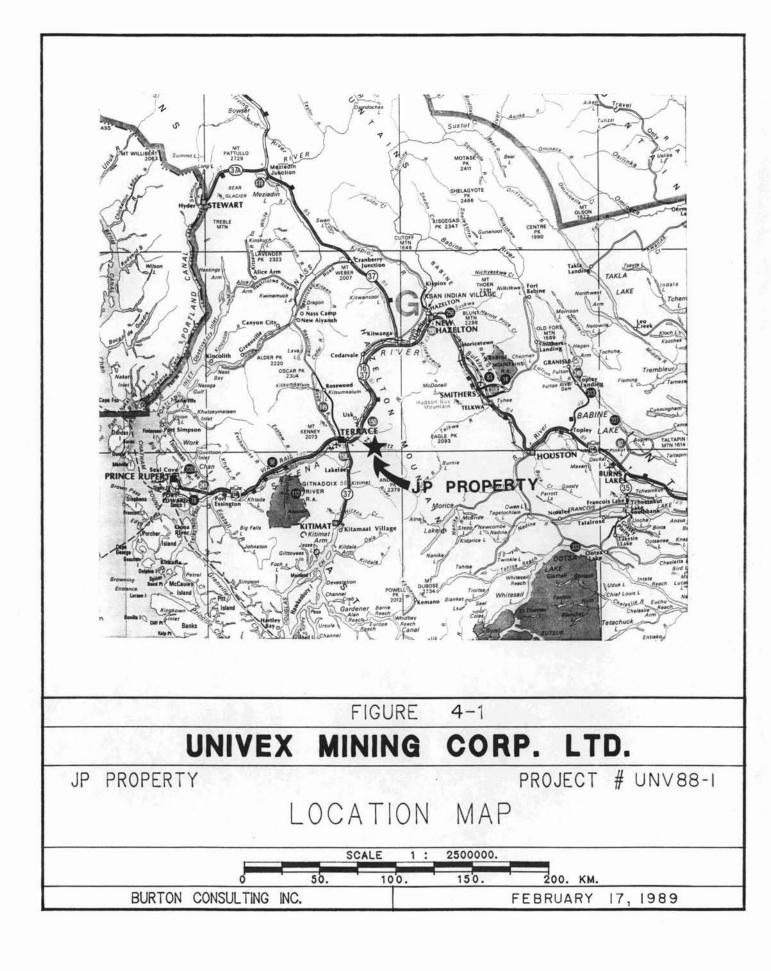
The best gold assays occur to-date in the footwall vein material associated with the aplite dyke. Gold values do with visible sulphide not correlate appear to mineralization, indicating some type of zoning or multiple event mineralization. There are only a limited number of places that the footwall vein could be accessed to be sampled. The footwall vein appears to be the most important limited) assays from systematic(although vein. Gold (underground) ranged from 0.22 gm./tonne(0.006 sampling oz./ton) to 5.42 gm./tonne(0.158 oz./ton). Surface gold assays from limited systematic sampling in footwall vein material ranged from 4.17 gm./tonne(0.122 oz./ton) to 13.30 gm./tonne(0.388 oz./ton). Specimens of vein material ran up to 122.55 gm./tonne(3.575 oz./ton) Au.

A geochemical orientation survey carried out over the east end of the workings detected an Au, Ag, Pb, Cu anomaly related directly to known mineralization in Trench T-13. Α Cu anomaly on the east edge of the second Pb, Zn, orientation grid is on strike with the projected dyke The presence of galena in the mineralizedlocation. footwall vein and the relative immobility of lead in the soil makes it an excellent pathfinder element to be used in geochemical prospecting on the property. The baseline for the orientation survey was extended eastward to the eastern edge of the claims, in preparation for a larger scale geochemical survey over previously untested ground to the east of the known mineralized zone.

Recent work on the property has provided very encouraging results. Only a small portion of the footwall vein has been tested. The dyke structure continues to the east as evidenced by Trench T-13 and the geochemical anomaly on the east edge of the orientation grid. Reference is made in old reports to "mineralized quartz veins which parallel the structure, but do not contact the aplite dyke". The J.P. property has had virtually no exploration carried out laterally, to the north and south.

An integrated work program, including physical work(road building, trenching, blasting), geochemical and geophysical surveying, geological mapping, surface and underground drilling and underground exploration(cross-cuts and adit driving) is recommended on the property. This program will explore the property on strike, laterally and at depth.

4.0 LOCATION & ACCESS


Access to the property is by 4-wheel drive vehicle from Terrace, B.C., east on Highway 16 to the Copper River Road turnoff, a distance of approximately 11 kilometres. This turnoff is taken east along the north side of the Copper(Zymoetz) River for a distance of approximately 20 kilometres. The right-of-way for the B.C. Hydro 500,000 volt transmission line is used currently as access for part of the way, as the lower road is in a state of disrepair and requires rebridging at several locations.

A 3 kilometre stretch of the old wagon road from the Hydro access road to the adit portal was cleared of second growth during 1987.

The area is characterized by moderate to extreme topography with easterly-trending mountain ranges exceeding 2,000 metres in elevation, plunging to deeply-cut valleys with elevations in the 200 metre range. Timber covers the lower portions of the mountainsides. There is an ample supply of good trees to meet mining needs.

Location information is shown in Figure 4-1.

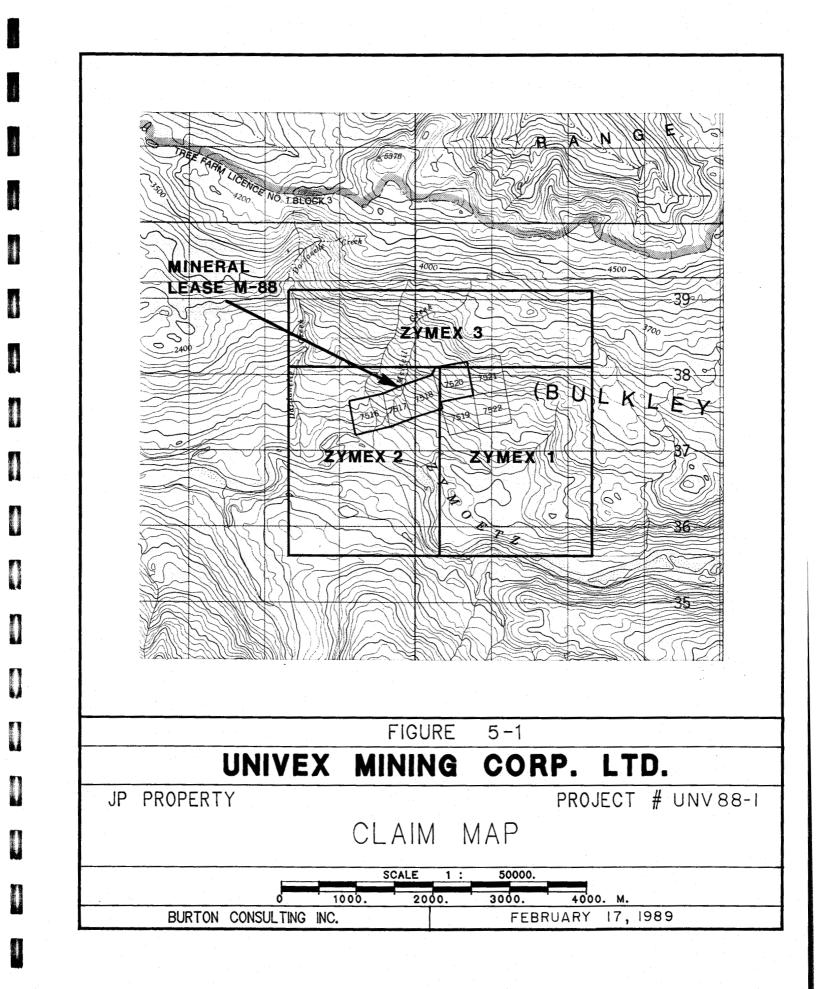
BURTON CONSULTING INC.

5.0 CLAIM INFORMATION

No.

The property consists of four reverted crown grants(grouped as Mineral Lease M-88), three other reverted crown grants and three metric claims, for a total of 63 units and claims, in the Omineca Mining Division. Claim information is summarized in the following table:

6


CLAIM NAME ____ RECORD # DATE OF RECORD EXPIRY DATE

MINERAL LEASE M-88(4 CLAIMS)

	1 (old lot 7516) 2 (old lot 7517)	02FEB68 02FEB68	02FEB89 02FEB89
Money Maker #	3 (old lot 7518)	02FEB68	02FEB89
McNeil #1	(old lot 7520)	02FEB68	02FEB89
4 - 11			
	8206(old lot 7519)	12MAR87	12MAR94
	8207 (old lot 7521)	12MAR87	12MAR94
McNeil #4	8208 (old lot 7522)	12MAR87	12MAR94
Zymex 1(20 un	its) 9282	01MAR88	01MAR95
Zymex 2(20 un	its) 9477	17JUN88	17JUN95
Zymex 3(16 un	its) 9478	17JUN88	17JUN95

The expiry dates for claims other than those contained in the Mineral Lease are pending acceptance of 1988 assessment work.

Claim information is shown in Figure 5-1.

6.0 PREVIOUS WORK

The claim group was known originally as the Dardanelle Group. During 1915¹, approximately 100 feet of development work including open cuts, adit, drift and shaft was carried out on a portion of the property. The purpose of this work was to investigate a "series of fissure veins filled with quartz containing minute particles of galena, iron pyrites and occasionally a little bornite and copper glance". Sampling across vein structures gave gold assays in the range of 0.10 oz./ton to 0.22 oz./ton. Visible gold was reported in one location.

Limited exploration, consisting of surface trenching, blasting and sampling, was carried out between 1915 and the mid-1930's. 2,3,4,5

An adit was begun in 1936(?) to "intersect the surface showings".⁶ This adit was driven for a length of approximately 485 metres(1,600 feet) and had a rough dimension of 2.3 metres by 2.0 metres(7.5 feet by 6.5 feet). Tracks and air ducting were installed, but have since been removed.

Surface trenching was carried out by Consolidated Mining & Smelting Co. during 1948.

During the 1969 field season, Univex Mining Corporation carried out surface and underground mapping, geochemical soil sampling, hand and bulldozer trenching and refurbishing the underground workings.8,9 In 1970, the claims and workings were surveyed and 1000 feet of diamond drilling was done on the Money Maker #1 to #3 claims. There are no records available for any of this work.

BURTON CONSULTING INC.

7.0 PHYSICAL WORK

7.10 General Physical Work

A considerable stretch of slash was created during 1987 when the new road access was constructed from the Hydro right-of-way to the portal area on the property. This slash had to be cleaned up(i.e. felled so that it was flat on the ground).

The adit portal area was cleaned up. The old machine shop could now be used for a core storage facility if a roof and core racks were built into it.

An 8' by 12' frame building was constructed on site. This building will serve as an office and core-logging facility.

A log bridge was constructed over McNeil Creek, adjacent to the crossing that was used previously.

All of the existing access trails on the property were cleaned up using a D6D crawler tractor. Two switchbacks were constructed to facilitate 4-wheel drive access to the eastern portion of the property.

The portal area was cleaned up and cribbed, and a lockable door was installed. The walls of the adit were washed to aid mapping and sampling. Minimal timbering had to be replaced in the adit, which was in remarkably good condition, considering that it was over 50 years old.

7.20 Trenching & Blasting

A total of fifteen surface sites(Trenches "T-1" to "T-15") were investigated on the property. Figure 9-4A shows the locations and sample assay results for these trenches, and more detailed sample descriptions can be found in Section 9.240. Trails were cut where required to provide access to the sites. A Mitsubishi 240 excavator with toothed rock bucket was used to strip overburden from trench sites. An air-driven jackleg drill with truck-mounted compressor was used on all sites(except "T-1") to prepare the sites for blasting, in an attempt to expose fresh material.

BURTON CONSULTING INC.

7.30 Future Physical Work Considerations

When further physical work is carried out, the following points should be kept in mind:

1) Road access to the portal area from Terrace is a major Any snowfall makes the present access route problem. unusable. An estimate has been obtained for the refurbishment of the lower road to enable potential yearround access to the property. This estimate of some \$70,000.00 does not include bridge decking if required by government agencies (which would raise the estimate to \$100,000.00), and presupposes that an adequate supply of suitable timber can be found along the way to use for bridge abutments and stringers. It is recommended that B.C Hydro, the Provincial Government and any logging companies with potential interests in the area be contacted, with the thought of a cooperative road-building venture in mind.

2) The main access road on the claims needs to be rerouted across the top of the main adit and a large switchback constructed to the north to join up with the existing road at a suitable location at a much higher elevation. The nature of the material available for roadbuilding(gravel with very little clay included and hence poor compacting characteristics) makes it imperative that future roadbuilding on the property be carried out using conservative grades suitable for 4-wheel drive travel on these gravelly slopes.

3) Any trails constructed to potential trenching/blasting sites should be suitable for 4-wheel drive travel, so that the compressor and other equipment can be mobilized easily to the site.

4) Any slash created by bulldozer or excavator, should be pushed over flat and buried, if possible. This should be done at the time the slash is created. Any slash that needs to be cut down with a chainsaw should be attended to at the time.

5) To make the most effective use of trenching and blasting on surface for the purpose of sampling, overburden should be stripped off well above trench sites to prevent sloughing of overhanging material after blasting takes place.

8.0 SURVEYING

An initial brunton compass/tripod/hip chain survey was carried out over all surface and underground workings, roads and trails. As work progressed, it became obvious that a more precise survey was required.

A theodolite/electronic distance meter(EDM) survey was carried out by a certified land surveyor over all surface and underground workings, roads and trails. A base map at a scale of 1:500 was prepared by the surveyor. Permanent survey bench marks with elevations were located for future reference.

9.0 GEOLOGY

9.10 Regional Geology & Mineral Occurrences

The regional geology has been mapped by Duffell & Souther in 1963 at a scale of $1:253,440^{11}$ and more recently by Woodsworth et al in 1985 at a scale of $1:125,000^{12}$. Pertinent sections of these maps are shown in Figures 9-1 The earlier map shows the claim area to be and 9-2. underlain by Upper Cretaceous or later granitic rocks (Border Facies of the Coast Intrusions). These rocks range typically from hornblende-biotite granodiorite to quartz diorite. Pink granodiorites representing the Inner Facies of the same intrusive belt are shown to the north of the claims. Lower down in the section near the Copper River are found Carboniferous and Permian limestones. A major fault (the Dardanelle Fault) passes to the west of the claim group. On the west side of this fault, Paleozoic and Triassic sediments are exposed.

The later map shows the claim area to be underlain exclusively by Early to Middle Jurassic granite to granodiorite. Typically this rock type is highly altered, unfoliated and exhibits intense brittle deformation. This pink granitic unit is mapped as being fault-bounded to the west by the Dardanelle Fault and to the east by a fault showing a similar orientation to the Dardanelle Fault.

Mineral occurrences in the map area are shown in Figure 9-3. Several gold occurrences are shown, extending northwest from the claim area.

9.20 Local Geology

9.210 Rock Types & Alteration

The claim area is underlain by intrusive rocks which range from granodiorite to quartz diorite in composition, as shown in Figures 9-4A and 9-4B. These rocks grade imperceptibly from one type to the other, making rigorous naming difficult. The granodiorite "end member" appears as a medium-grey medium-grained rock exhibiting moderate to intense chloritization. The quartz diorite "end member" has a much darker green colour, relating to a higher chlorite content. These rocks are all quite sheared in general and in places contain abundant pyrite and calcite.

BURTON CONSULTING INC.

One section of the underground workings exposes highly deformed, unfoliated pink granite. In the dioritic rock surrounding this granitic exposure, a "stockwork" of abundant calcite stringers has developed.

The intrusive rocks are cut by an aplitic dyke(quartz and albite) with a general trend of 070/70N. This dyke, which is over 1800 metres(6000 feet) in length, is buff to light-green in colour and is fine-grained. The aplitic dyke, which is 5 metres to 10 metres in apparent thickness, contains minor pyrite in places. Quartz veins are associated with the dyke hanging wall and footwall and it is in these veins that most of the mineralization has developed.

Minor rock types encountered on the claim group include a calcareous mudstone(?) and some dark green chloritic dykes.

9.220 Structure

The most significant structural feature encountered while mapping underground was a series of sub-parallel faults with strike directions ranging from 100 degrees to 130 degrees. These faults have a dip range of 50 degrees to degrees to the south, with the exception of two 65 northerly-dipping(range 66N to 67N) faults. The subparallel faults repeat themselves at 80 to 90 metre intervals throughout the underground workings. One of these faults has been exposed by surface trenching. These faults impart a right-lateral displacement with an apparent strike slip of 10 metres to 40 metres to the aplite dyke and associated mineralized veins.

9.230 Rock Sampling & Mineralization

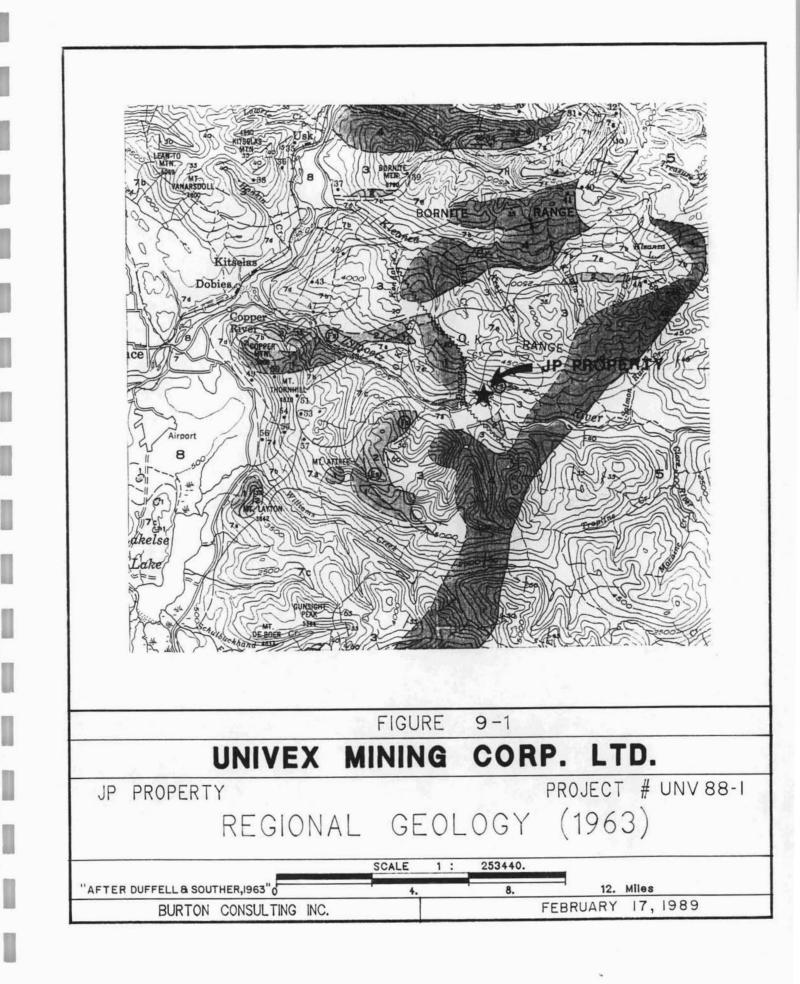
Mineralization detected to-date on the claims is associated with quartz veins alongside or close to the hanging wall and/or the footwall of the aplite dyke. Visible mineralization consists of pyrite, chalcopyrite, argentiferous(argentite?) galena, sphalerite, covellite and malachite. gold and silver mineralization has been detected in assays. The quartz veins range from 5 cm. to 280 cm.(9.0 feet) in apparent thickness and have been sampled rigorously and also selectively both on surface and underground.

Visual observation of sample data indicates that the best gold values are found in the footwall vein material, although some good hanging wall intersections were obtained. Selected samples from sulphide-rich zones within quartz veins showed <u>lower</u> gold values, in general, than systematic samples across the entire vein width in most areas. This may be the result of some type of zoning within the vein.

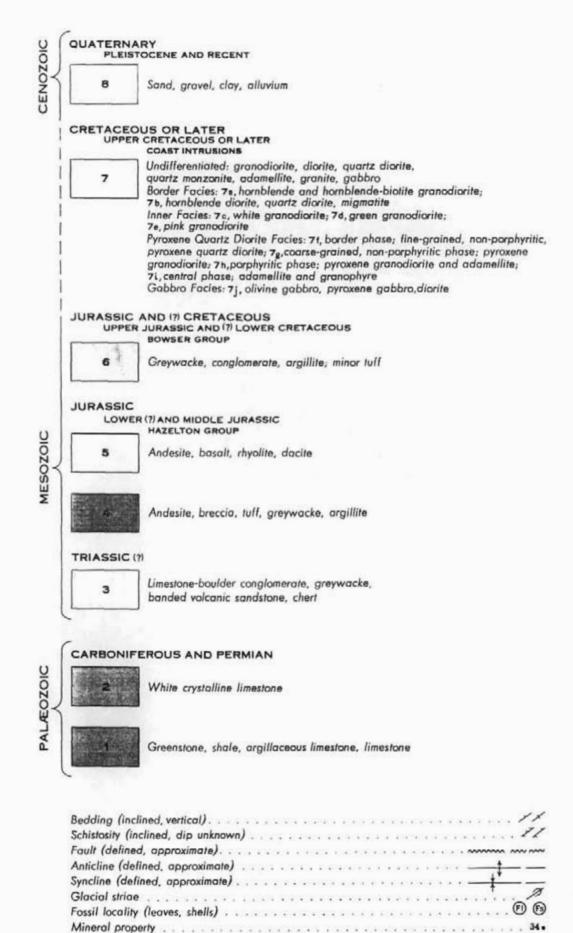
Gold assays from systematic sampling in footwall vein material(underground) ranged from 0.22 gm./tonne(0.006 oz.ton) to 5.42 gm./tonne(0.158 oz./ton). Surface assays from systematic sampling in footwall vein material ranged from 4.17 gm./tonne(0.122 oz./ton) to 13.30 gm./tonne(0.388 oz./ton).

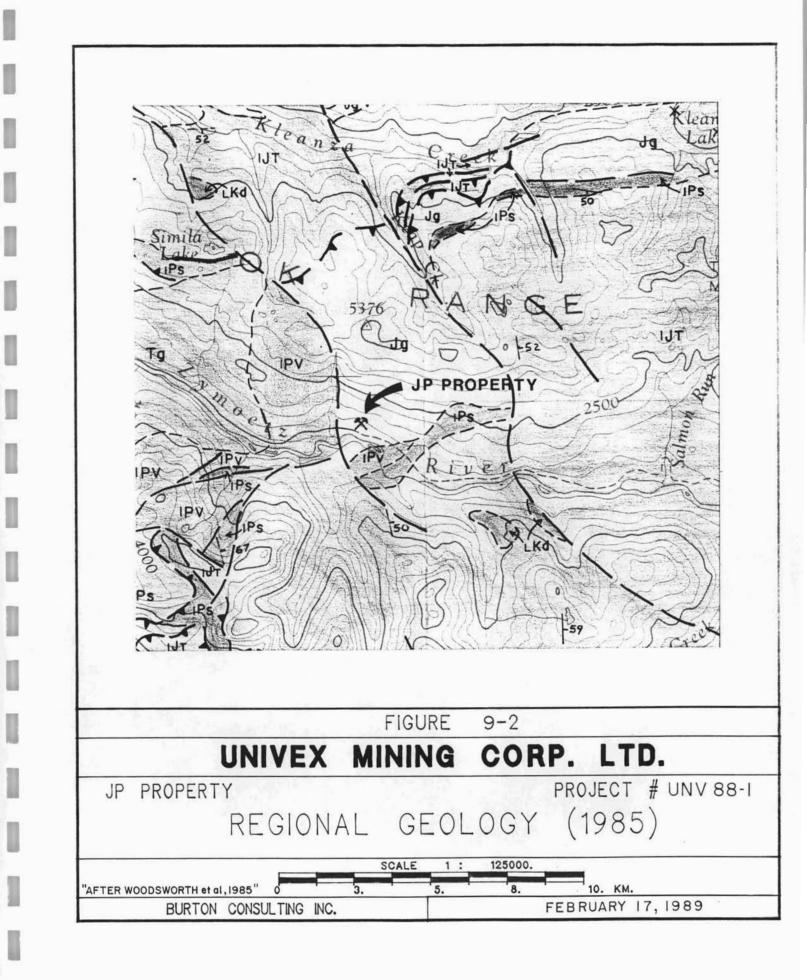
10110

ACCARACTER OF


THAN AND

Subjection of the


Not state


BURTON CONSULTING INC.

This report may not be reproduced in whole or in part without the written permission of Burton Consulting Inc.

FIG. 9-1 LEGEND

UPPER TRIASSIC AND LOWER JURASSIC CARNIAN AND LOWER SINEMURIAN TELKWA FORMATION

Γ	JT	

CALC-ALKALINE BASALT TO RHYOLITE BRECCIA, TUFF, AND FLOWS, MINOR INTRAVOLCANIC SEDIMENTS, INCLUDES METAMORHOSED EQUIVALENTS

TRIASSIC

SMITHIAN TO CARNIAN

ARGILLITE, CHERT, MINOR LIMESTONE

LOWER PERMIAN

SAKMARIAN TO ARTINSKIAN

LIMESTONE, SILTY LIMESTONE, CALCAREOUS MUDSTONE, MINOR TUFF

LOWER PERMIAN (?)

IPV

GREY-GREEN CHERTY VOLCANICS, TUFF, BRECCIA, MINOR GREYWACKE, INCLUDES METAMORHOSED EQUIVALENTS

TERTIARY

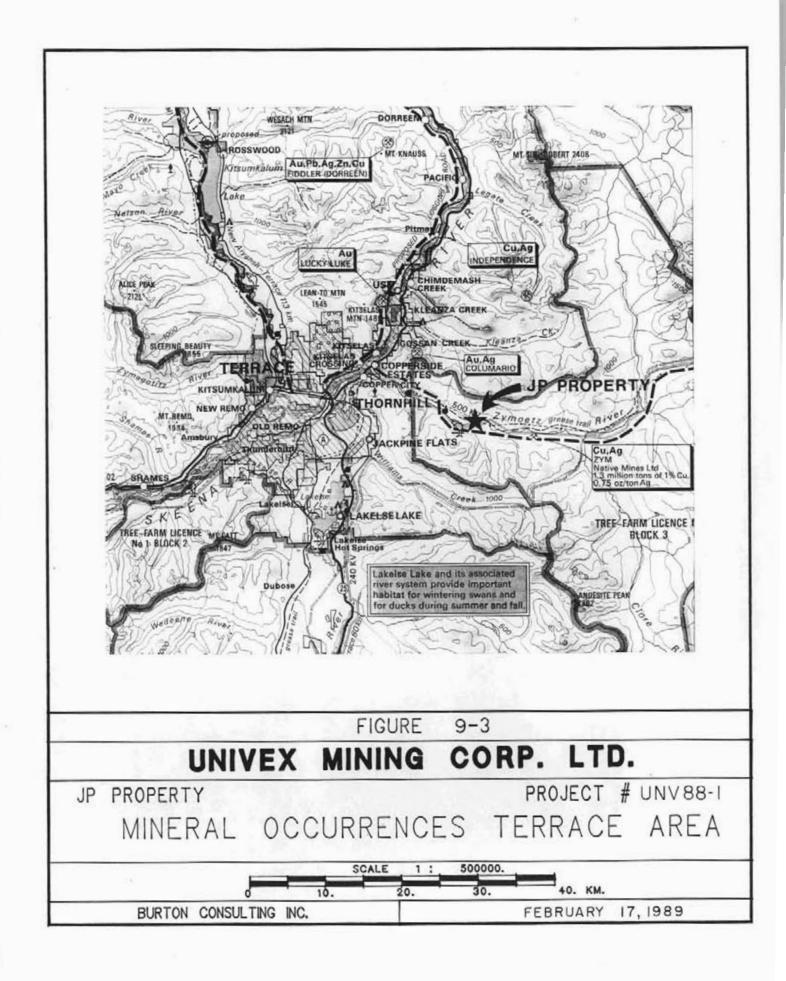
Tg

POST-TECTONIC GRANITE, GRANODIORITE, MOST HAVE MORE BIOTITE THAN HORNBLENDE, GENERALLY FRESH, UNFOLIATED TO WEAKLY FOLIATED

LATE CRETACEOUS (?) TO EARLY TERTIARY

PRE- TO POST - KINEMATIC GRANODIORITE, TONALITE, GRANITE, GENERALLY FRESH, LOCAL DUCTILE DEFORMATION, UNFOLIATED TO STRONGLY FOLIATED

EARLY TO MIDDLE JURASSIC (?)


Jq

PINK GRANODIORITE TO GRANITE, HIGHLY ALTERED, UNFOLIATED, INTENSE BRITTLE DEFORMATION

SYMBOLS

CONTACT (MAPPED, APPROXIMATE OR ASSUMED, GRADATIONAL)

BEDDING (INCLINED, VERTICAL)

9.240 Assays & Sample Descriptions

indefender

- Constants

A CONTRACTOR OF

And a second

D

The following tables describe 43 underground and 30 surface samples taken on the property. Assay values are shown in Figures 9-4A and 9-4B and also in Appendix I:

SURFACE SAMPLING

SAMPLE #		APPARENT WIDTH(cm.)	LOCATION	DESCRIPTION
5001	cont.chip	150	Trench T-1	quartz vein 075/50N
5002	selected	-	"	20 cm. sulphide rich zone in quartz vein
5003	cont.chip	30	FT	wallrock(alt'd granodiorite in hanging wall)
5004	11	30	11	
5005	selected	-	Trench T-13	qtz. vein mtl. sulphide zone
5006	qrab	about 50 cm.	· 11	quartz vein
5007	cont.chip		Trench T-12	
	· · · · ·			vein(hanging wall)Cpy,Py
5008	11	30	11	sheared dyke
5009	n H	30	11	sheared quartz
5005				diorite
5010	selected	-	11	sulphide zone in quartz vein
5011	cont.chip	o 15	Trench T-11	
5012	11	160	Trench T-10 e. side shaft	banded quartz
5013		165	2.0 m. above	
5015		100	Sample #5012	
5014	selected	· ·	Trench T-10	
5015	cont.chip	p 60	Trench T-9	quartz vein (footwall)
5016		60	Trench T-6	quartz vein in alt'd qtz. dior.
5017	grab	-	H.	alt'd qtz. dior. near qtz. vein
5018	cont.chij	o 25	Trench T-7	quartz vein
5018	grab	-		alt'd qtz. dior. near qtz. vein

BURTON CONSULTING INC.

This report may not be reproduced in whole or in part without the written permission of Burton Consulting Inc.

5020	cont.chip	15	Trench T-8	narrow qtz. vein
5021		30	Trench T-4	qtz. vein in
				alt'd qtz. dior.
5022	grab		11	alt'd qtz. dior.
5000			Trench T-15	near qtz. vein sulphide zone in
5023	selected	-	Trench 1-15	quartz vein
5024	grab		H .	sheared & alt'd
0021	9			footwall
			sample from	quartz diorite
			100 cm. zone	
5025	cont.chip	80	Trench T-15	qtz. vein with
				abund. sulphides
			·	(footwall)
5026	**	80	11	footwall side of
	11		- 1 - 14	dyke
5027		40	Trench T-14	qtz. vein (hanging wall)
5020	anah		Trench T-3	qtz. vein mtl.
5028	grab	-		qtz. vein mer.
5029**	cont.chip	120	Trench T-2	(hanging wall)
5030**	11	160	Trench T-2	gtz. vein
2020**		TOO	ITCHCH I Z	(hanging wall)
**62mol	og #5020 f	#5030 are	across a singl	Le 280 cm. wide
	z vein.	#3030 are	ucross a singi	
quall	·C A CTITO			

utitette

. Tenzo

Û

UNDERGROUND SAMPLING

SAMPLE #		APPARENT WIDTH(cm.)	LOCATION	DESCRIPTION
9051	cont.chip	16	3.00 m. west of (U-4) in south wall	-qtz. vein
9052	11	8	30 cm. west of (U-4) in south wall	-qtz. vein
9053	II	14	50 cm. west of (U-4) in north wall	-qtz. vein
9054		25		-qtz. exposure in roof (hanging wall)
9055	11 12 12	25	1.40 m. west of(U-5) in roof	-qtz. exposure
9056	11	80	9.80 m. east of (U-6) in south wall	
9057	11	60	10.6 m. east of (U-6) in south wall	-qtz. vein (footwall)

BURTON CONSULTING INC.

This report may not be reproduced in whole or in part without the written permission of Burton Consulting Inc.

9058	11	150	2.70 m. west -qtz. vein of (U-7) in (footwall)
9059	. H	120	roof at (U-7) in -qtz. vein roof & north (footwall)
9060	11	55	wall 1.60 m. east -breccia zone
0001	11	12	of (U-8) in in fault north wall 6.20 m. west -discontinuous
9061		12	of (U-9) in qtz. zone south wall
9062	n	6	7.00 m. east -qtz. zone of (U-10) in in granite south wall
9063	• 11	15	9.10 m. east -qtz. vein of (U-10) in in granite
9064	**	20	south wall 10.00 m. east -qtz. vein of (U-16) in (hanging wall)
9065	11	15	roof 13.30 m. east -qtz. vein of (U-16) in (hanging wall)
9066	"	85	north wall 2.40 m. east -qtz. vein
9067	11	75	of (U-18) in (footwall) south wall 6.20 m. east -qtz. vein
9067		75	of (U-18) in (footwall) roof & s. wall
9068	11	45	4.50 m. west -qtz. vein of (U-19) in (footwall) roof
9069	11	95	2.50 m. east -qtz. vein of (U-20) in
9070	11	40	north wall east of x-cut -qtz. vein on west side
9071	N .	30	end of x-cut -qtz. vein on east side
9072	11	45	2.20 m. east -faulted off of (U-21) in qtz. vein roof (hanging wall)
9073	11	70	4.40 m. east -qtz. vein of (U-21) in (hanging wall)
9074	"	30	north wall 2.40 m. east -gougy qtz. vein of (U-22) in (in footwall)
9075	11	30	south wall 4.70 m. east -qtz. vein of (U-22) in (in footwall)
9076	. 11	15	south wall 11.00 m. east -qtz. vein of (U-22) in (in footwall)

sately.

-cidadese

-magneter-

D

Ŋ

0

and the second

l

BURTON CONSULTING INC.

This report may not be reproduced in whole or in part without the written permission of Burton Consulting Inc.

9077	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10	2.00 m. down -qtz. vein right branch (hanging wall) in s. wall from (U-29)
9078	1 	10	5.40 m. down -qtz. vein right branch (hanging wall) in s. wall from
9079	10	20	(U-29) towards (U-30) 2.10 m. east -qtz. vein of (U-31) in (hanging wall) south wall
9080	H .	15	4.10 m. east -qtz. vein of (U-31) in (hanging wall) south wall
9081	"	25	6.70 m. east -qtz. vein of (U-31) in (hanging wall) south wall
9082	11	10	8.50 m. east -qtz. vein of (U-31) in (hanging wall)
9083	11	50	5.60 m. east -breccia gouge of (U-33) zone(hanging in roof wall)
9084	"	20	5.80 m. east -qtz. vein of (U-34) in (hanging wall) south wall
9085	"	8	8.50 m. east -qtz. vein of (U-34) in (hanging wall) south wall
9086	11	50	end of wkngsbreccia gouge (right fork) zone
9087	n	60	4.60 m. into $-faulted off$ x-cut/e. wall qtz. vein
9088	selected	-	5.80 m. east -10 cm. wide of (U-22) in sulphide zone roof (footwall)
9089	11	-	5.00 m. east -10 cm. wide of (U-21) sulphide zone (hanging wall)
9090	11	· _	4.60 m. into -15 cm. gouge x-cut on e. & qtz. zone wall near 9087 with sulphides
9091	11	-	3.00 m. east -10 cm. wide of 9069 sulphide zone in qtz. vein
9092	Π	_	6.20 m. east -10 cm. wide of (U-18) in sulphide zone s. wall near in qtz. vein 9067
9093		-	at (U-7) in -15 cm. wide north wall sulphide-rich near 9059 banded vein? (footwall)
			•

- aligner c

- The second

.....

0

BURTON CONSULTING INC.

This report may not be reproduced in whole or in part without the written permission of Burton Consulting Inc.

9.250 Geological Discussion

Encouraging gold assays have been obtained from both vein, sampling of the footwall quartz rigorous underground and on surface. It should be stressed that only very limited sections of the footwall have been tested todate(about 20 metres of the 560 metre adit and a few This is due, in part, to a locations in surface trenches). previous lack of understanding of structural(fault) controls and the previous difficulty in developing an effective the investigation of technique for surface In addition, only a dyke/footwall/hanging wall package. portion of the strike length of the dyke structure has been investigated at all. Old reports¹³ indicate that the dyke has a strike length of over 1800 metres(6000 feet) of which work has been carried out on only 600 metres(2000 feet).

It should be noted further that old references are made to mineralized quartz veins of appreciable width occurring adjacent to, but not in contact with the aplite dyke. It would be important to investigate the dyke area laterally as well as along strike.

10.0 GEOCHEMISTRY

10.10 Geochemical Orientation Survey

A geochemical orientation survey was carried out over an area at the extreme east end of the present surface workings, covering a known footwall quartz vein exposure which carries good gold mineralization. A chunk of vein exposure, representing from this footwall material approximately 50 cm. of apparent thickness(Sample #5006) 1040.0 gm./tonne(0.388 oz./ton) gold; 13.3 assayed gm./tonne(29.28 oz./ton) silver; 0.34% lead; 0.71% zinc and 0.362% copper.

The purpose of this geochemical orientation survey was to attempt to find a cost effective method of exploring the property and tracing mineralized structures in overburden-covered areas. The western portion of the property is covered largely by well-washed gravels, with poor local soil development. Soils appear to be better developed to the east and north, with less gravel and more fine-grained component.

A total of 131 soil samples were taken in the rusty "B" horizon at depths of 20 cm. to 50 cm. These samples were taken on a tightly-spaced survey grid, with 25 metre line spacing and 10 metre sample spacing. A total of 7 lines, each 200 metres in length were sampled. Lines were orientated to cut across the projected strike direction of taken the known mineralization. No samples were in or roads culturally disturbed areas(for example near trenches) or in areas of outcrop or heavy talus. A good effort was made to dig down below light talus cover to sample the undisturbed soil below.

Samples were placed in numbered kraft soil sample bags and sent to Min-En Laboratories in North Vancouver, B.C. for analysis. Samples were analysed for Au, Ag, Pb, Zn and Cu using a -150 mesh grind of the whole sample. Sample results are shown in Figures 10-1A through 10-1E and a discussion of the results follows:

GOLD(Au):

Data Used: 131 samples from 1988 Sample Preparation: screen to -150 mesh Analytical Method: fire assay/atomic absorption Detection Limit: 5 ppb Note: samples with values less than

BURTON CONSULTING INC.

This report may not be reproduced in whole or in part without the written permission of Burton Consulting Inc.

detection limit were set at 1 ppb for statistical purposes

Arithmetic and logarithmic histograms for Au were previewed on the computer. A total of 69 samples were at the detection limit. Examination of the histogram of logarithmic values indicated many "bins" containing no data points. Visual examination of the histogram indicated that contour intervals could be established as follows:

Population From(ppb)		To(ppb)
Background	Detection Limit	20
Anomalous	20	>20

Sample results are shown in Figure 10-1A.

COPPER(Cu):

Data Used: Sample Preparation: Analytical Method:	131 samples from 1988 screen to -150 mesh nitric-perchloric digestion atomic absorption
Detection Limit:	1 ppm

Arithmetic and logarithmic histograms for Cu were previewed on the computer. The distribution for Cu is lognormal. A probability plot of logarithmic Cu values indicated 5 populations, from which contour intervals could be established as follows:

Population	From(ppm)	To(ppm)
Anomalous Low	Detection Limit	20
Background(I)	20	30
Background(II)	30	41
Anomalous	41	73
"High Grade"	73	>73

Sample results are shown in Figure 10-1E.

LEAD(Pb):

Data Used: 131 samples from 1988 Sample Preparation: screen to -150 mesh Analytical Method: nitric-perchloric digestion atomic absorption Detection Limit: 1 ppm

Arithmetic and logarithmic histograms for Pb were previewed on the computer. The distribution for Pb is

BURTON CONSULTING INC.

This report may not be reproduced in whole or in part without the written permission of Burton Consulting Inc.

lognormal. A probability plot of logarithmic Pb values indicated 4 populations, from which contour intervals could be established as follows:

Population From(ppm) To	o(ppm)
Anomalous Low Detection Limit	10
Background 10	33
Anomalous 33	57
"High Grade" 57	>57

Sample results are shown in Figure 10-1C.

ZINC(Zn):

Data Used: 131 samples from 1988 screen to -150 mesh Sample Preparation: nitric-perchloric digestion Analytical Method: atomic absorption Detection Limit: 1 ppm

Arithmetic and logarithmic histograms for Zn were previewed on the computer. The distribution for Zn is lognormal. A probability plot of logarithmic Zn values indicated 4 populations, from which contour intervals could be established as follows:

Population	From(ppm)	To(ppm)
Anomalous Low	80	120
Background	120	200
Anomalous	200	320
"High Grade"	320	>320

Sample results are shown in Figure 10-1D.

SILVER(Ag):

Data Used: 131 samples from 1988 screen to -150 mesh Sample Preparation: aqua regia digestion Analytical Method: atomic absorption Detection Limit: 0.1 ppm

Arithmetic and logarithmic histograms for Ag were previewed on the computer. The distribution for Ag is A probability plot of logarithmic Ag values lognormal. indicated 4 populations, from which contour intervals could be established as follows:

Population	From(ppm)	To(ppm)
Anomalous Low	Detection Limit	0.27
Background	0.27	0.55
Anomalous	0.55	>0.75
"High Grade"	0.75	>0.75

Sample results are shown in Figure 10-1B.

10.20 Discussion of Geochemical Results

Examination of the geochemical plots(Figures 10-1A through 10-1E) indicates an Au, Ag, Pb anomaly concurrent with and downslope from a known mineralized area(Trench T-13). In addition, a copper anomaly covers the entire trench area. These anomalies relate directly to Au, Ag, Pb, Zn and Cu mineralization in quartz veins associated with the footwall and hanging wall of the aplite dyke. A second Pb, Zn, Cu anomaly on the east edge of the orientation grid is on strike with the projected dyke location.

Gold and lead values in the soils would appear to be the most useful pathfinders for tracing mineralized horizons on the property. Geochemical sampling should prove to be a valuable and cost effective method for preliminary exploration of areas with mineralization potential. The sampling requires some care and attention, as the nature of the material sampled, especially with respect to the coarse gravel content, is well understood.

BURTON CONSULTING INC.

11.0 GENERAL DISCUSSION OF RESULTS

Recent work carried out on the J.P. property has provided very encouraging results. Surface and underground mapping and sampling of quartz vein material associated with the aplite dyke indicates good gold values over significant sample widths.

It should be stressed that the footwall vein material, which contains the highest gold values, has not been explored or tested to any appreciable extent. The recent geological work will serve to guide further work programs on the property.

A geochemical orientation survey, carried out over the eastern end of the present workings, detected an Au, Ag, Pb, Cu anomaly associated with known mineralization at Trench T-13. A second Pb, Zn, Cu anomaly was detected on strike(of the dyke trend) to the east edge of the survey grid, over 100 metres east of the known mineralization. This anomaly is open to the east.

12.0 PROJECTIONS, CONCLUSIONS & RECOMMENDATIONS

As a general rule of thumb, 20% to 25% of the mineralized quartz veins in a deposit of this type can be expected to produce "ore shoot" material, even though the veins may be mineralized to a lesser extent throughout. Proximity to faults would appear to be an important control for mineralization.

The best assay section underground is a 70 metre zone around an area of extensive faulting, from sample location 9066(west end of section as known) to sample location 9088(east end of section as known). Further investigation of this zone may show it to be more extensive than it is known at present.

A study of assays of footwall vein material in the zone yields an average footwall vein width of 55 cm. and a weighted average grade of 4.047 gm./tonne(0.118 oz./ton) Au from limited(although rigorous) sampling. A block of material 70 metres long, 55 cm. wide and 1 metre deep would represent approximately 1000 tonnes(1,100 tons) of quartz vein material with a gold content of approximately 400 grams(11.7 oz.).

This 70 metre section represents about 20% of the total length of the areas explored to-date, with a possibility of expanding the length of known "ore shoot" material and developing more "ore shoots" with further sampling and assaying. This will be accomplished in part via an underground drilling program.

There are many other encouraging assay results both on surface and underground. Assays from 4.61 gm./tonne(0.134 oz./ton) Au to 4.72 gm./tonne(0.138 oz./ton) Au(samples 9072, 9073) can be found underground in hanging wall quartz vein material near areas of extensive faulting. This hanging wall mineralization appears to be localized in the fault zone areas.

Very limited rigorous surface sampling of the footwall quartz vein material(samples 5015, 5025) gave a weighted average grade of 6.098 gm./tonne(0.176 oz/ton) Au. A grab sample from the footwall vein on surface at the extreme east end of the present workings from Trench T-13(sample 5006) gave a value of 13.306 gm./tonne(0.388 oz./ton) Au.

Good gold assays can be found in surface hanging wall quartz vein material, but lack of information regarding the surface expression of faults mapped underground prevents a

complete understanding of the spatial relationship of this mineralization with the structures as observed underground.

Further work on the property will help to delineate systematically ore grade sections of footwall and hanging wall material in areas already partially explored as well as in areas yet to be explored, both on strike with and laterally across the major mineralized structure.

An integrated work program is recommended to be carried out on the J.P. Property as follows:

Physical Work:

- rerouting of access & property road to facilitate easier access.
- building new road to east section of property.
- bulldozer/excavator trenching including more work on existing sites to expose footwall veins and new work on strike extension and possible lateral vein locations.
- blasting pits on the veins for sampling.
- grid establishment and prospecting.

Geochemistry:

- a soil profile study of the property followed by a systematic geochemical survey on a grid which extends at least 200 metres on either side of the aplite dyke location. This grid will extend east and be oriented to stay on strike with the aplite dyke projected location.

Geophysics:

- a 10 gamma sensitivity magnetic orientation survey should be carried out across several known aplite dyke locations on surface. If there is enough magnetic contrast between the dyke rock and the surrounding country rock this could be a very useful mapping tool.
- a VLF electromagnetic orientation survey should be carried out over several locations where there are known fault traces on surface. This may be a useful tool for mapping faults and shear zones on the property.
- contingent upon the success of the geophysical orientation surveys, they should be carried out systematically over the same grid used for the geochemical survey. This grid can be extended for strictly geophysical purposes if required.

Geology:

- an ongoing geological map of the property to be developed.

Surface & Underground Drilling:

- surface and underground drilling may be a useful method of exploring the mineralized structures. It is imperative with this type of mineralization that core recovery be high enough in the mineralized intersections to provide adequate systematic sampling data. The largest practicable drill core size should be utilized.

<u>Underground Exploration:</u>

- the existing underground workings provide a very useful basis for further underground work. This work could include cross-cutting to intersect the structure, driving more adit along strike and drilling from underground set-ups. The amount of underground work actually required would depend upon the success (core recovery) of any drilling that was carried out.

13.0 COST STATEMENT

The following statement of costs incurred directly on the property was supplied by a representative of Univex Mining Corporation and was based, in part, on information received from Burton Consulting Inc.:

33

UNVEX MINING CORPORATION LTD.

ANALYSIS - J.P. GROUP EXPENSES (JUNE 10, 1988 - OCTOBER 31, 1988)

1) Consultant

No.

A PERSONAL PROPERTY AND A PERSON AND A PERSO

No. of Concession, Name

and a second

A. Burton S D. Symonds	4,687.50 12,667.95	(includes report prep.)
2) Food & Accomadation	3,565.58	
3) <u>Vehicle & Equipment Rent</u>	8,716.66	(includes gas, mileage and repairs)
4) <u>Equipment & Supplies</u>	3,744.28	
5) <u>Laboratory Analysis</u>	4,460.50	
6) <u>Miscellaneous</u>	1,553.06	(includes telephone, service charges, ins.)
7) Excavator	17,532.75	(excavating and bulldozing)
8) <u>Field Personnel</u>	25,125.00	burruozing)
9) <u>Drafting</u>	6,064.95	

TOTAL <u>\$88,118.23</u>

BURTON CONSULTING INC.

This report may not be reproduced in whole or in part without the written permission of Burton Consulting Inc.

14.0 CERTIFICATE

I, Douglas Frederick Symonds, of 10081 120th Street, Surrey, B.C. do certify that:

1. I am a geologist and a graduate of the University of British Columbia (B.Sc. (Geol.), 1972).

2. I have practised my profession in Canada and the United States since 1972.

3. I have based this report on field work carried out under my direct supervision during 1988.

4. I have no personal interest, directly or indirectly in the property or securities of UNIVEX MINING CORPORATION, nor do I expect to receive directly or indirectly any such property or securities.

Dated this 17th day of February, 1989 in Vancouver, B.C.

DOUGLAS F. SYMONDS, B.SC. (Geol.) Geologist

BURTON CONSULTING INC.

APPENDIX I

-cherolden

-

Ŋ

Ŋ

GEOCHEMICAL AND ASSAY ANALYTICAL LABORATORY SHEETS

BURTON CONSULTING INC.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Analytical Report ompany: BURTON CONSULTING File: 9-864 oject: Date: JULY 11/88 tention: D.SIMMONDS Type:SOIL & ROCK ate Samples Received :JULY 5/88 imples Submitted by : D. SIMMONDS <u>Report</u> on 31 SOILS. Geochem Samples Sec. 1 Assay Samples pies sent to: 1. BURTON CONSULTING, VANCOUVER, B.C. 2. 3, Samples: Sieved to mesh Ground to mesh epared samples stored:....X....X discarded:. rejects stored:....X.... discarded:. thods of analysis: EU PE ZN AG - MULTI ACID.A.A. AU - WET.A.A. ASSAYS - CU PB IN A6 - ACID DIGESTION-CHEMICAL ANALYSIS. ASSAYS - AU - FIRE ASSAY. Remarks

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

<u>Certificate of GEOCHEM</u>

Pompany:BURTON CONSULTING Foject: Attention:D SIMMONDS File:8-864/P1 Date:JULY 9/88 Type:SOIL GEOCHEM

<u>e hereby certify</u> the following results for samples submitted.

n ample	AG	AU-WET	PB	ZN	CU	
Lumber	PPM	PPB	PPM	PPM	PPM	
0E 010S	0.8	10	31	104	43	
E 020S	0.4	90	20	136	21	
0E 030S	0.3	5	27	207	49	
0E 040S	0.4	5	24	117	25	
E 050S	0.4	10	30	134	24	
OE 060S	0.6	10	19	114	43	
E 070S	0.4	5	20	127	21	
E 080S	0.3	5	12	103	30	
OE 070S	0.4	5	18	129	26	
OE 100S	0.6	20	24	203	23	
0E 010N	0.6	70	33	117	61	
0E 020N	0.5	10	24	112	25	
E 030N	0.4	10	25	126	28	
E 040N	0.6	5	10	99	37	
0E 050N	0.4	5	15	106	50	
E 070N	0.4	5	18	103	25	
DE 080N	0.6	10	25	114	44	
DE 090N	0.6	5	23	142	38	
E 100N	0.4	5	18	93	23	
E 100N	0.6	5	21	94	47	
5E 030N 5E 040N 25E 070N 25E 070N 5E 100N	0.7 0.4 0.6 0.4 0.4 0.5	5 5 5 5 5	23 20 20 17 40	174 109 141 148 233	32 37 72 21 35	
50E 010N	0.5	10	19	87	53	
DE 020N	0.6	5	18	142	137	
DE 030N	0.7	5	17	126	37	
50E 040N	0.6	5	24	179	37	
PE 050N	0.8	10	90	144	23	

Certified by_

MIN-EN LOPORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

<u>Certificate of Geochem</u>

Dompany:BURTON CONSULTING Doject: Attention:D.SIMMONDS File:8-864/P2 Date:JULY 10/88 Type:SOIL GEOCHEM

hereby certify the following results for samples submitted.

ample umber	AB PPM	AU-WET PPB	PB PPM	ZN PPM	CU PPM	
DE 060N DE 070N SOE 080N SOE 090N DE 100N	0.6 0.5 0.4 0.6	5 30 5 5 5	18 37 18 13 14	148 164 130 98 270	28 220 40 12 97	
50E 0005 DE 0105 DE 0205 50E 0305 50E 0405	0.6 0.4 0.4 0.3 0.4	20 5 5 5 10	23 29 30 50 35	115 86 129 144 120	147 13 25 22 25	
DE 050S 50E 060S DE 070S DE 080S 50E 090S	0.4 0.4 0.5 0.5 0.5	5 5 5 5	27 21 27 22 27	126 100 300 142 140	33 25 29 75 54	
DE 1005 75E 010N 75E 020N 5E 030N 5E 030N 5E 040N	0.4 0.4 0.4 0.6 0.3	5 5 5 5 5	23 22 13 20 14	106 135 72 116 122	27 37 15 95 427	
BE 050N 5E 060N 75E 070N 6E 080N 5E 090N	0.4 0.4 0.3 0.5	5 5 10 5 5	15 23 20 18 17	135 154 190 163 290	107 44 37 21 26	
75E 000S 5E 010S 6E 020S 75E 030S 75E 040S	0.3 0.2 0.4 0.4 0.4 0.4	5 10 5 5 5	23 37 34 20 15	133 107 134 187 165	44 38 39 30 23	

Certified by

MIN-EN L'ABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of Geochem

Company:BURTON CONSULTING roject: Attention:D.SIMMONDS File:8-864/P3 Date:JULY 10/88 Type:SOIL GEOCHEM

e hereby certify the following results for samples submitted.

Nample Lumber	AG PPM	AU-WET PPB	PB PPM	ZN PPM	CU PPM	
00E 000N			29	143	24	
OOE OION	0.4	1 O	22	62	12	
100E 020N	0.4	5	22	111	45	
100E 030N	· 0.ය	63	17	119	43	
OOE 040N		5	18	106	23	
100E 050N	0,6	5.7	17	- 89	35	,
OOE OGON	0.6	5	20	156	29	
OOE OTON	0.4	5	15	138	26	
100E 080N	0.3	10 .	14	92	13	
OCE OFON	0.5	5	17	151	50	
100E 100N	0.5	анан ан	18	237	26	
100E 010S	0.5	5	14	96	17	
00E 020S	0.4	5	10	121	14	
100E 030S	0.6	5	15	243	35	
100E 040S	0.2	10	19	78	14	
00E 050S	0.4	10	21	159	27	
1005 0605	0.3	5	18	137	28	
AOOE OBOS	0.5	5	19	94	26	and the second
OOE 0908	0.7	10	16	142	62	
100E 100S	standa karlan O., 4 ., Saudi here di Alaman di Alama		15	67	15	
25E 010S	·····		23	493	53	
256 0205	0.6	5	20	169	18	
125E 030S	0.5	5	17	142	21	
125E 040S	0.6		13	144	38	and the second secon
25E 0508	0.4	10	12	76	19	
125E 0608	0.5		17	102	15	
25E 070S	o.3	5.0	13	68	10	
125E 0805	0.6	5	16	95	25	
1256 0905	0,6		15	93	42	a se
25E 100S	0.7	5	17	136	26	

Certified by___

MIN-EN ABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET

NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate マデ Geochem

Company: BURTON CONSULTING Project: Attention: D. SIMMONDS

File:8-864/P4 Date: JULY 10/88 Type:SOIL GEOCHEM

1_

We hereby certify the following results for samples submitted.

				영상에서 영상에 가지 않는 것이 같이 많이	동네한 것도 같은 것을 가지 않는 것을 위해야 한다.	승규는 승규는 것 같아요. 집에 집에서 집에서 집에 가지 않는 것이 없다.	
	Sample Number	AG PPM	AU-WET PPB	PB PPM	ZN PPM	CU PPM	
	125E 000N	0.8		23	229	73	a a construction and a construction of the second sec
	125E 010N	0.6	5	22	268	38	
	125E 020N	0.7	2	16	103	28	
	125E 030N 125E 040N	0.6	5 5 5	17	109 82	25 21	
	125E 050N	0.7	10	20	96	15	
	125E 060N	0.7	5	25	142	24	
Ē.	125E 070N	0.5	5	21	127	25	
	125E 080N	0.6	10 - 10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	23	124	28	an a
	125E 090N	0.4	10	14	56	17	
ě.j	125E 100N	0,4	5	17	94	17	
	150E 000S	0.6	5	20	226	35	
	150E 010S	0.5	15	28	159	40	
J	150E 0205	0.5	5	24	168	35	an an an an an an an an ann an an an an
	150E 030S	0.5	20	300	274	25° 25° 25° 25° 25° 25° 25° 25° 25° 25°	
	150E 0405	0.4	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	43	163		
	150E 050S	0.6	10	23	294	42	
	150E 070S	0.5	#13 1.3	15	82	23	
un de la competencia de la competencia En competencia de la c	150E 080S	0.5	5	18	51	10	
	150E 090S	0.6	1 - 5 - 1 - 1	19	107	24	
	150E 100S	0.4	5	14	72	32	
	150E 010N	0.7	5	23	333	60	
	150E 020N	0.8	5	18	172	39	
	150E 030N	0.5	5	17	77	18	en en en en angelander en
	150E 040N	0.6	5	18	109	28	
	150E-050N	0.7	5	23	131	50	n an
	150E 060N	0.6	5 ¹	20	98	30	
	150E 070N	0.5	5	14	83	58	
	150E-080N	0.8	5	16	94	52	e an an ann an a' ann an an ann an an ann an
	150E 090N	0.6	5	18	74		

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

<u>Certificate of Geochem</u>

Company:BURTON CONSULTING Project: Attention:D.SIMMONDS

NIN

EN

File:8-864/P5 Date:JULY 11/88 Type:SOIL GEOCHEM

He hereby certify the following results for samples submitted.

Sample Number	AG PPM	WET AU PPB	PB PPM	ZN PPM	CU PPM	
150E 100N 25E 10S 25E 20S 25E 30S 25E 40S	1.2 .5 .8 4.6 .8	5 30 20 135 10	26 54 29 83 47	17 142 156 181 183	30 47 42 104 28	
25E 508 25E 608 25E 708 25E 808 25E 908	.4 .3 .6 .6 .6	5 5 5 5 10	34 40 29 17 25	146 134 156 129 146	25 35 33 27 118	
25E 100S	<u>"</u> ф	70	18	124	73	

Certified by

として成功で学校であった。

MIN-EN LABORATORIES LTD.

> SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

VANCOUVER OFFICE:

VANCOVER OFFICE. 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate ASSAY Of

Company: BURTON CONSULTING Project: Attention:D SIMMONDS

N

File:8-864/P1 Date: JULY 8/88 Type:ROCK ASSAY

<u>He hereby certify</u> the following results for samples submitted.

Sample Number	AU G/TONNE	AU OZ/TON	AG G/TONNE	AG OZ/TON	PB %	ZN Z	CU %
5001	2.16	0.063	. 58	0.17	. 35	. 02	.064
5002	.03	0.001	1.7	0.05	.01	.01	.020
5003	4.68	0.137	9.8	0.29	. 40	.01	.091
5004	. 21	0.006	2.1	0.06	.09	.03	.084
5005	120.50	3.515	2890.0	84.29	2.38	3.97	.362
5006	13.30	0.388	1040.0	29.28	.34	.71	. 149
5007	1.61	0.047	8.4	0.25	.03	.04	.018
5008	.42	0.012	4.2	0.12	.02	.02	.016
5009	.05	0.001	4.3	0.13	.01	.02	.012
5010	41.15	1.200	1.8	0.05	. 16	.01	.030
5011	, 22	0.006	40.6	1.18		"O1	.022
5012	8.39	0.245	1.6	0.05	.40	.01	.016
5013	5.15	0.150	6.5	0.19	.02	.01	.014
5014	2,58	0.075	7.7	0.22	.02	.01	.020
5015	8.55	0.249	6.3	0.18	" O 1	.01	.016
5016	.02	0.001	2.7	0.08	.01	.01	.010
5017	. 18	0.005	1.8	0.05	.01	.01	.010
5018	. 62	0.018	5.9	0.17	.01	.01	.008
5019	.04	0.001	1.7	0.05	.01	.01	.018
5020	.01	0.001	1.3	0.04	.01	.01	.006
5021	. 02	0.001	1.8	0.05	.01	.01	.006
5022	.07	0.002	2.1	0.06	.01	.01	.008
5023	1.97	0.057	57.4	1.67	3.18	.02	1.830
5024	. 26	0.008	6.1	0.18	.04	.02	.240
5025	4.17	0.122	78.3	2.28	5.80	.02	1.750
5026	.10	0.003	6.9	0.20	.04	.01	.018
3027	.34	0.010	6.4	0.20	.40	.01	.044
5028	.03	0.001	2.2	0.06	.01	.01	.010
5029	.06	0.002	4.3	0.13	.01	.01	.019
5030	. 19	0.006	5.7	0.17	.01	.01	.040

Certified by

MIN-EX LABORATORIES LTD.

ENVECTO LABORATORIES LTD.

> SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

<u>Certificate</u> <u>Assay</u> of

Company: BURTON CONSULTING Project: Attention:D SIMMONDS

ИЛ

File:8-864/P2 Date: JULY 8/88 Type:ROCK ASSAY

<u>He hereby certify the following results for samples submitted.</u>

Sample Number	AU G/TONNE	AU OZ/TON	AG G/TONNE	AG OZ/TON	PB %	ZN %	CU %
9051	. 02	0.001	1.9	0.06	.01	.01	.005
9052	.01	0.001	1.8	0.05	.01	.01	.005
9053	.21	0.006	4.7	0.14	.01	.01	.006
9054	.06	0.002	2.1	0.06	.01	.01	.011
9055		0.005	7.8	0.23	. 08	.01	.018
9056	. 20	0.006	4.6	0.13	.01	.01	.026
9057	.23	0.007	2.2	0.06	.01	.01	.110
9058	.70	0.020	5.8	0.17	. 67	.02	.272
9059	1.34	0.039	8.4	0.25	.02	.01	.104
9060	. 15	0.004	1.6	0.05	.01	.01	.010
9061	.06	0.002	1.8	0.05	.01	.02	.012
9062	" Ö4	0.001	1.4	0.04	.01	.01	.008
9063	.11	0.003	1.3	0.04	.01	.01	.006
9064	1.38	0.040	1.7	0.05	.01	.01	.010
9065		0.006	1.6	0.05	.01	• 01	.017
9066	5.42	0.158	5.9	0.17	.04	.02	.120
9067	5.07	0.148	6.1	0.18	.01	.02	.320
9068	1.12	0.033	1.4	0.04	.01	.01	.014
9069	2.80	0.082	1.6	0.05	.01	.01	.030
9070	1.03	0.030	4.2	0.12	.01	.01	.014
9071	. 19	0.006	2.5	0.07	.01	.02	.006
9072	4.72	0.138	3.6	0.11	.15	.19	.028
9073	4.61	0.134	3.8	0.11	.01	.08	.033
9074	1.25	0.036	5.2	0.15	.01	.01	.088
9075	4.30	0.125	3.2	0.09	.01	.01	.016
9076	4.35	0.127	2.1	0.06	.01	.01	.012
9077	. Ü6	0.002	1.7	0.05	.01	.01	.011
9078	.01	0.001	1.3	0.04	.01	.02	.006
9079		0.011	2.0	0.06	.01	.02	.010
9080	.01	0.001	1.8	0.05	.01	.01	.014

Certified by

MIN-EN LABORATORIES LTD.

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

> SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of Assay

Company:BURTON CONSULTING Project: Attention:D SIMMONDS

Sec. A.

МN

File:8-864/P3 Date:JULY 8/88 Type:ROCK ASSAY

<u>We hereby certify</u> the following results for samples submitted.

					en e	e en stanseren en b		antagalan ^k elantatanan	and the second
	Sample Number	AU G/TONNE	AU OZ/TON	AG G/TONNE	AG OZ/TON	PB %	ZN %	CU %	
	9081	.03	0.001	1.7	0.05	.01	.02	.014	
	9082 9083	.01	0.001	1.3 1.4	0.04 0.04	.01 .01	.01 .02	.011 .016	
	9084 9085	.05 .03	0.001 0.001	4.6	0.13	.01 .01	.02 .01	.173 .024	
	9086	. 01	0.001	1.6	0.05	. 01	.01	.017	
	9087 9088	1.73 14.55	0.050	1.5	0.04	.02	.01	.022	
	9089	13.00	0.379	5.6	0.16	.27	.08	.028	a da antes de la composición de la comp Composición de la composición de la comp
Hora San	9090	1.73	0.050	2.1	0.06	.02	.02	.019	
U	9091 9092	.30	0.009	1.8	0.05 1.29	.01	.01	.015	
	9093	1.28	0.037	22.6	0.66	.02	.01	.795	

S. Carra

Certified by

MIN-EN LOBORATORIES LTD.

APPENDIX II

-TRANSFER

-

 $\left(\right)$

Ŋ

and the second

A STREET

STATISTICAL ANALYSIS OF GEOCHEMICAL DATA

BURTON CONSULTING INC.

JP PROPERTY - TERRACE B.C.

SIMPLE STATISTICS

and the second

ł

Ŋ

Ŋ

Element	Unit	n	Mean	Median	Standard Deviation	Lowest Value	Highest Value	Coef. of Var.
AG	mag	131	.55	.50	. 39	.20	4.60	.70
AU	ppb	131	9.4	5.0	15.9	5.0	135.0	1.69
PB	ppm	131	24.7	20.0	26.6	10.0	300.0	1.08
ZN	ppm	131	138.7	129.0	61.8	17.0	493.0	.45
CU	ppm	131	38.8	30.0	29.4	10.0	220.0	.76

NOTE - Coefficient of Variation = Standard Deviation / Mean

JP PROPERTY - TERRACE B.C.

SIMPLE STATISTICS

. 1 - Origad,

The State

Û

 \int

Û

LOG (Base 10) Transformed

Element	Unit	n	Mean	Median	Standard Deviation	Lowest Value	Highest Value	Coef. of Var.
AG	ppm	131	2931	3010	.1520	6990	.6628	52
AU	ppb	131	.8237	.6990	.2658	.6990	2.1303	.32
PB	ppm	131	1.3298	1.3010	.1859	1.0000	2.4771	.14
ZN	ppm	131	2.1062	2.1106	.1779	1.2304	2.6928	.08
CU	ppm	131	1.5123	1.4771	.2416	1.0000	2.3424	.16

NOTE - Coefficient of Variation = Standard Deviation / Mean

JP PROPERTY - TERRACE B.C.

CORRELATION MATRIX

- seeges:-

Continues

- Statistics

Manual and

and the second

122

	AG	AU	PB	ZN	CU
AG	1.0000				
AU	.2745	1.0000			
\mathbf{PB}	.2108	.4117	1.0000		
ZN	.1346	.0717	.3137	1.0000	
CU	.3486	.2347	.1544	.3388	1.0000

131 SAMPLE PAIRS ARE COMPLETE

10:19:58 JP PROPERTY - TERRACE B.C.

- Antiperior

. The second

Ó

No.

a sector of

Variable = AU	Unit = ppb	N = 131
Mean = 0.8237 Std. Dev. = 0.2658 CV % = 32.2692	Min = 0.6990 1 Max = 2.1303 Skewness = 2.7771 3	st Quartile = 0.699 Median = 0.699 rd Quartile = 1.000
Anti-Log Mean	= 6.664 Anti-Log S	
% cum % antilog	cls int (# of bins = 22	- bin size = 0.068
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6649 0.7331 ***************	*************
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8012 0.8694 0.9375 1.0057 *************	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0037 1.0739 1.1420 1.2102 *	
0.00 92.05 18.982 3.05 95.08 22.207 0.00 95.08 25.981	1.2783 1.3465 *** 1.4147	
1.5396.5930.3960.0096.5935.5610.0096.5941.604	1.4828 * 1.5510 1.6191	
0.0096.5948.6740.0096.5956.9450.0096.5966.621	1.6873 1.7555 1.8236	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8918 * 1.9599 * 2.0281	
0.00 98.86 124.811 0.76 99.62 146.021	2.0963 2.1644 *	
	0 1	2 3

07/15/8

10:09:04 JP PROPERTY - TERRACE B.C.

- consequences

Constant of

Sec. 1

Ø

A state

No. of Concession, Name

Variable =	AG	Uni	t = pr	om		N =	131
Mean = Std. Dev. = CV % =	-0.2931 0.1520 51.8501	Mi Ma Skewnes	n = x = s =	-0.6990 0.6628 1.5767	lst Quar Me 3rd Quar	dian =	-0.3979 -0.3010 -0.2218
Ant	i-Log Mean	= 0.5	09	Anti-Log	Std. Dev		0.359 0.723
======================================	antilog	cls int	====== (# of	======================================	======= 2 - bin	size =	0.0648
0.00 0.38	0.186	-0.7314		•			
1.53 1.89			*				
0.00 1.89							
0.00 1.89		-0.5369					
7.63 9.47		-0.4720	****	***			
0.00 9.47	0.392	-0.4072					
29.01 38.26	0.455	-0.3423	****	********	*******	* * * *	
12.98 51.14	0.528	-0.2775	****	******			
35.11 85.98		-0.2126	****	*******	*******	*******	* *
6.87 92.80	0.712	-0.1478	*****	< *			
5.34 98.11	0.826	-0.0830	****	<			
0.00 98.11		-0.0181					
0.00 98.11		0.0467					
0.76 98.86		0.1116	*				
0.00 98.86		0.1764					
0.00 98.86		0.2413					
0.00 98.86		0.3061					
0.00 98.86		0.3710					
0.00 98.86		0.4358					
0.00 98.86	3.167	0.5006					
0.00 98.86		0.5655					
0.00 98.86	4.269	0.6303					
0.76 99.62	4.957	0.6952	*				
			0	1	2	3	

07/15/8

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = \DATA\JP.PPP

Variable = AG

- and the

No.

No.

Section of the

an desident

A CONTRACTOR OF A CONTRACTOR OF

and the second

New York

And a state

Unit = ppm

N = 131 N CI = 22

Transform = Logarithmic Number of Populations = 4 # of Missing Observations = 0.

Incomplete Iteration Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	0.202	_	0.173	2.67
		+	0.237	
2	0.486		0.390	77.93
		+	0.605	
3	0.570	-	0.522	17.29
		+	0.622	
4	0.723	-	0.417	2.10
		+	1.254	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds					
1 2	0.148	0.277				
3 4	$0.478 \\ 0.240$	$0.679 \\ 2.175$				

10:24:21 JP PROPERTY - TERRACE B.C.

A CONTRACTOR OF

Photo and

A State of the second

and the second

Manual Andrews

and the second se

the state

Variable =	PB	Uni	t = pr)m		N =	131
Mean = Std. Dev. = CV % =	$1.3298 \\ 0.1859 \\ 13.9773$	Mi Ma Skewnes	n = x = s =	1.0000 2.4771 2.4303	lst Quar Me 3rd Quar	tile = dian = tile =	1.2304 1.3010 1.3802
	-Log Mean	= 21.3	68	Anti-Log	g Std. Dev	· · : (-) (+)	13.928 32.781
======================================					======================================		
0.00 0.38	9.222	0.9648					
1.53 1.89	10.844	1.0352	*				
1.53 3.41			*				
7.63 10.98			****				
20.61 31.44				*******			
24.43 55.68					********		
19.85 75.38				********	****		
7.63 82.95							
6.11 89.02 3.82 92.80		1.5275	****	< ж			
	39.617	1.5979	****				
	$46.582 \\ 54.772$	1.6682	** **				
		1.7386	* *				
	$64.402 \\ 75.725$	$1.8089 \\ 1.8792$					
	89.039	1.9496	*				
	104.693	2.0199	*				
	123.099	2.0199	Ţ.				
0.00 98.86	144.742	2.1606					
0.00 98.86	170.190	2.2309					
	200.112	2.2003					
0.00 98.86	235.295	2.3716					
0.00 98.86	276.663	2.4420					
0.76 99.62	325.305	2.5123	*				
				·		· ··· ··· ··· ··· ··· ··· ··· ···	
			0	1	2	3	

07/15/8

10:33:13 JP PROPERTY - TERRACE B.C. 07/15/8 *****

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = \DATA\JP.PPP

Variable = PB

and the second s

Unit = ppm

131 N = N CI = 22

Transform = Logarithmic Number of Populations = 4 # of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	10.000	<u> </u>	9.886	1.50
		÷	10.116	
2	19.693	-	15.078	91.50
		+	25.722	
3	43.120	-	37.470	4.50
		+	49.623	
4	104.884	-	50.262	2.50
		+	218.867	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds				
1 2 3 4	9.772 11.544 32.559 24.086	10.233 33.596 57.107 456.720			

10:38:47 JP PROPERTY - TERRACE B.C. 07/15/8

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name = \DATA\JP.PPP

Variable = ZN Unit = ppm N = 131

N CI = 22

Transform = Logarithmic Number of Populations = 4

of Missing Observations = 0.

SPORTED IN

March 1999

in the second second

Statistical Statistica Statistical Statisticae Statisticae Statisticae Statist

ini terliptik

A STREET

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	63.926	_	42.805	10.00
		+	95.469	
2	126.854	-	101.289	81.00
		+	158.871	
3	259.026	-	232.863	7.10
		+	288.128	
4	366.554	-	282.093	1.90
		+	476.303	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Thresholds				
28.662	142.576			
80.876	198.969			
209.342	320.501			
217.093	618.913			
	28.662 80.876 209.342			

10:36:00 JP PROPERTY - TERRACE B.C.

.

の変換が

The second se

HERRICA

Contraction of the local distribution of the

Variable = ZN		Uni	t = ppm	N	= 131
Mean = Std. Dev. = CV % =	0.1779	Ma	$n = 1.2304 \\ x = 2.6928 \\ s = -0.4234$	Median =	= 2.110
Anti-L	og Mean :	= 127.7	05 Anti-Log		-) 84.787 +) 192.349
======================================	======== antilog	cls int	======================================	zzzzzzzzzzzzzz 2 – bin size	= 0.0696
		1.1956			
		1.2653	*		
0.00 1.14	21.623	1.3349			
0.00 1.14 0.00 1.14	25.383	1.4045			
$\begin{array}{cccc} 0.00 & 1.14 \\ 0.00 & 1.14 \end{array}$	29.798	1.4742			
0.00 1.14 0.00 1.14	$34.980 \\ 41.064$	1.5438			
0.00 1.14 0.00 1.14	41.084	$1.6135 \\ 1.6831$			•
0.76 1.89	48.205 56.589	1.7527	*		
	66.431	1.8224	*		
	77.985	1.8920	****		
	91.548	1.9616	****		
	107.470	2.0313	*****	***	
	126.161	2.1009	*****		
	148.102	2.1706	*****	****	
	173.860	2.2402	*****		
	204.098	2.3098	****		
	239.594	2.3795	* * * *		
		2.4491	***		
		2.5188	**		
		2.5884	*		
0.00 98.86		2.6580			
	534.153	2.7277	*		
			0 1	2	3

07/15/8

10:39:45 JP PROPERTY - TERRACE B.C. 07/15/8 **** SUMMARY STATISTICS and HISTOGRAM LOGARITHMIC VALUE Variable = CUUnit = ppmN = 131 Mean =1.5123 Min = 1.0000 1st Quartile = 1.3802 Std. Dev. = Max = 0.2416 2.3424 Median = 1.4698 CV % = 15.9784 Skewness = 0.6960 3rd Quartile = 1.633{ Anti-Log Mean = 32.531 Anti-Log Std. Dev. : (-) 18.649 (+)56.747 % cum % antilog cls int (# of bins = 22 - bin size = 0.0633____ ___ _____ -----____ -----0.00 0.38 9.290 0:9680 1.53 1.89 10.764 1.0320 * 1.53 3.41 12.471 1.0959 * 3.05 6.44 14.448 1.1598 *** 3.05 9.47 16.739 1.2237 *** 4.58 14.02 19.394 1.2877 **** 5.34 19.32 22.469 1.3516 ***** 20.61 39.77 26.032 1.4155 ****** 12.98 52.65 30.160 1.4794 ******** 3.82 56.44 34.943 1.5434 **** 15.27 71.59 40.484 1.6073 ********* 7.63 79.17 46.904 1.6712 ****** 7.63 86.74 54.342 ****** 1.7351 3.05 89.77 62.959 1.7991 *** 0.76 90.53 72.943 1.8630 * 2.29 92.80 84.511 1.9269 ** 1.53 94.32 97.912 1.9908 * 1.53 95.83 2.0548 113.439 * 1.53 97.35 131.427 2.1187 * 1.53 98.86 152.269 2.1826 * 0.00 98.86 176.415 2.2465 0.00 98.86 204.390 2.3105 0.76 99.62 236.802 2.3744 * ______ 0 1 2 3 ***** 10:43:27 JP PROPERTY - TERRACE B.C.

PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

```
Data File Name = \DATA\JP.PPP
```

Variable = CU Unit = ppm N = 131 N CI = 22

Transform = Logarithmic Number of Populations = 5

of Missing Observations = 0.

Users Visual Parameter Estimates

Population	Mean		Std Dev	Percentage
		-		
1	14.192		11.810	12.00
		+	17.055	
2	24.813	-	21.886	38.50
		+	28.131	
3	34.839	-	31.953	19.50
		+	37.987	
4	49.926		41.044	23.00
		+	60.731	
5	117.710	-	87.687	7.00
		+	158.012	

Default Thresholds.

Standard Deviation Multiplier = 2.0

Pop.	Thresholds				
1	9.827	20.495			
2	19.304	31.893			
3	29.305	41.418			
4	33.742	73.874			
5	65.322	212.113			

APPENDIX III

Û

and the second s

REFERENCES

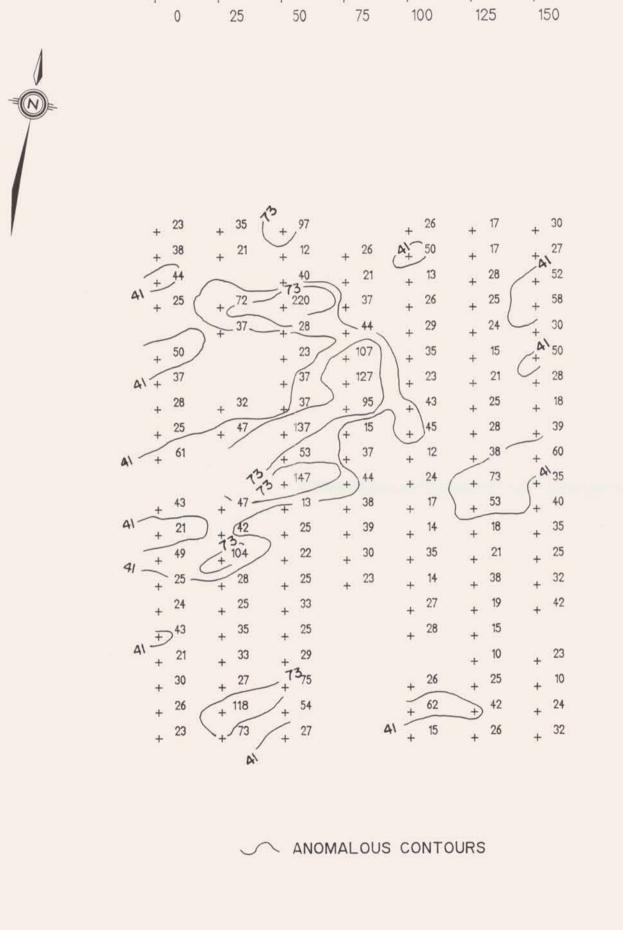
BURTON CONSULTING INC.

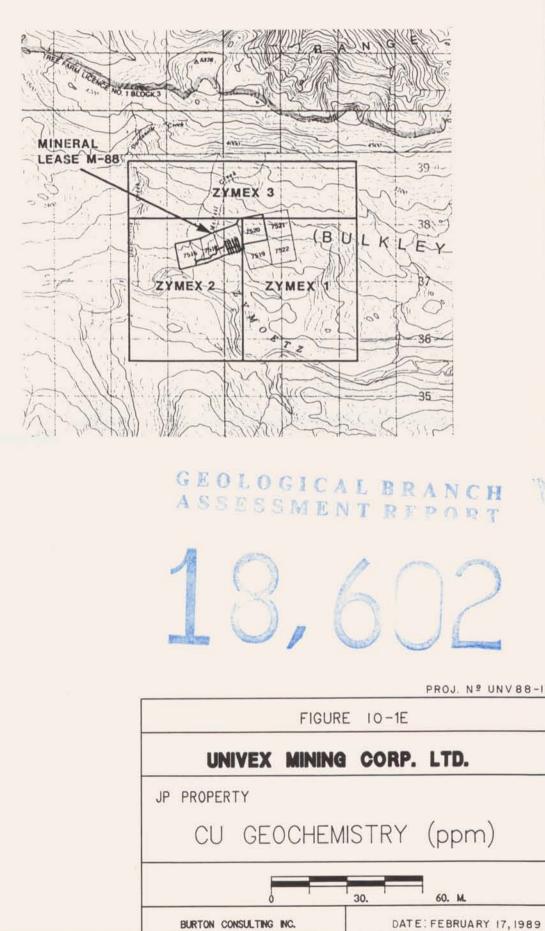
This report may not be reproduced in whole or in part without the written permission of Burton Consulting Inc.

REFERENCES

and the second second

Ŋ


Û


Ŋ

0

(1)	Report of the Minister of Mines, 1915, pp. K 116-117
(2)	Report of the Minister of Mines, 1919, pp. K 52-53
(3)	Report of the Minister of Mines, 1922, pp. G 94-95
(4)	Report of the Minister of Mines, 1927, pp. C 123-124
(5)	G.S.C. Summary Report, 1925, Part A, p. 115
(6)	Report of the Minister of Mines, 1937, p. C 32
(7)	Report of the Minister of Mines, 1948, p. A 76
(8)	Mines & Petroleum Resources Report, Exploration & Mining, 1969, p. 78
(9)	G.S.C. Memoir 329, 1963, pp. 78-79
(10)	Geology, Exploration & Mining, Metal Mines, 1970, p. 193
(11)	G.S.C. Map 1136A, Terrace, B.C. (to accompany G.S.C. Memoir 329, 1963)
(12)	G.S.C. Open File map O.F. 1136, Terrace, B.C., 1985
(13)	G.S.C. Memoir 223, 1954

BURTON CONSULTING INC.

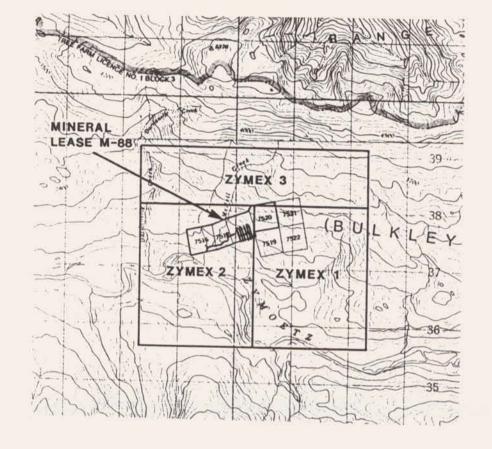
1 1 1 i. 1 25 0 50 75 100 125 150 200 + 233 + 93 + 270 + 237 + 94 + 17 + 142 + 290 + 74 151 148 98 66 + + 4 + 114 + 130 + 163 + 92 + 124 + 94 + 103 + 190 + 127 + 141 + 164 + 138 83 + + 154 + 142 + 109 + 148 + 98 + 156 + 135 + 106 + 144 + 131 96 89 + 4 + 99 + 179 + 122 + 82 + 109 + 106 + 126 + 126 + 116 + 109 + 77 + 174 + 119 + 112 + 142 + 72 + 111 + 103 172 94 320 + 117 + 87 + 135 + 62 + 268 + 115 + 133 + 143 +226 229 + 104 + 107 + 142 86 96 493 ++ + 136 + 129 + 134 + 156 +168 200 +274 12 169 200 E)207 + 187 200 243 + 181 + 144 142 + + + 117 + 183 + 165 + 144 + 120 + 78 + 163 + 134 + 126 + 146 + 159 + 76 + 294 + 114 + 134 + 137 + 102 + 100 29300 + 127 156 68 82 + + + 103 + 51 + 94 142 95 12,9 + + + + 129 + 140 + 142 + 146 + 107 93 + 2007 203 + 124 + 106 + 136 + 72 67 ANOMALOUS CONTOURS

1100

1075

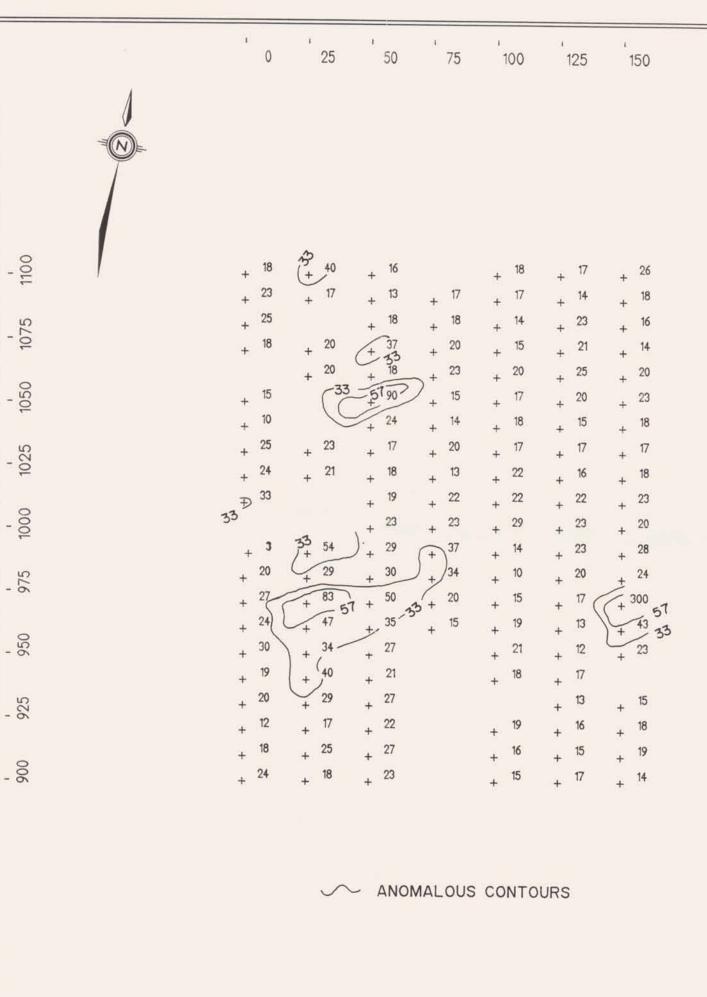
1050

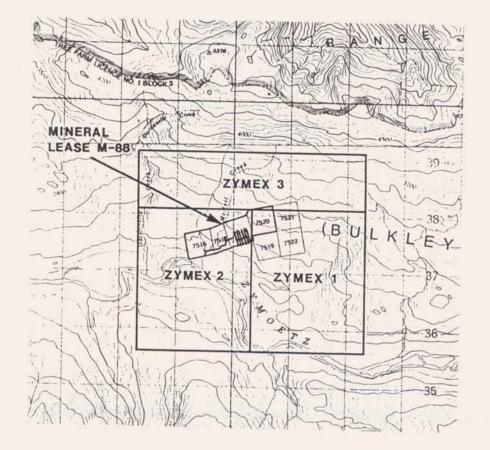
1025


1000

975

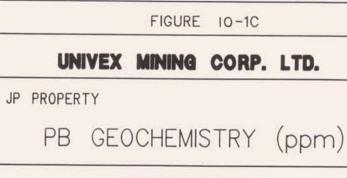
950


925

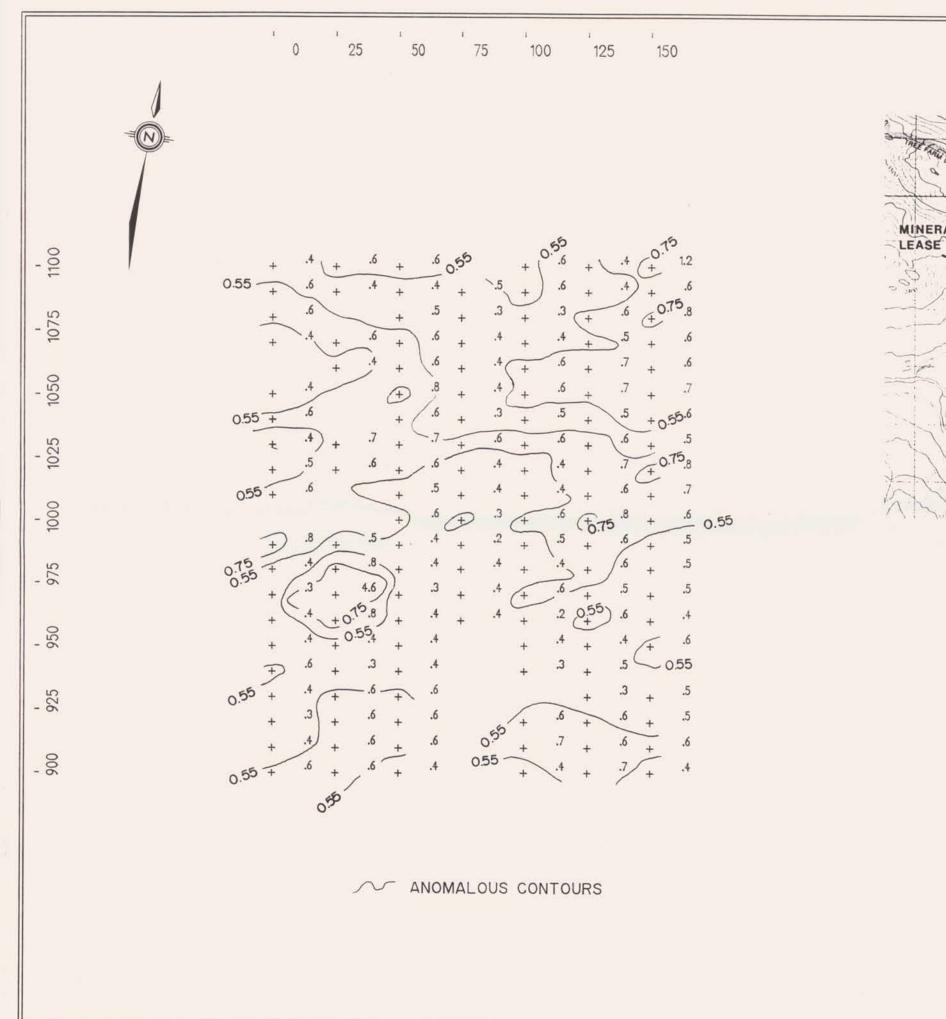

900

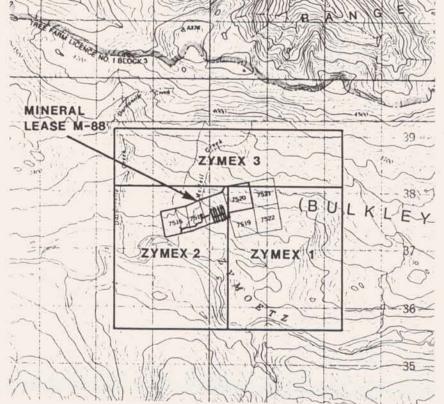
ASSESSMENT REPORT 18,602 PROJ. Nº UNV 88-1 FIGURE 10-1D

UNIVEX MINING CORP. LTD. JP PROPERTY ZN GEOCHEMISTRY (ppm)



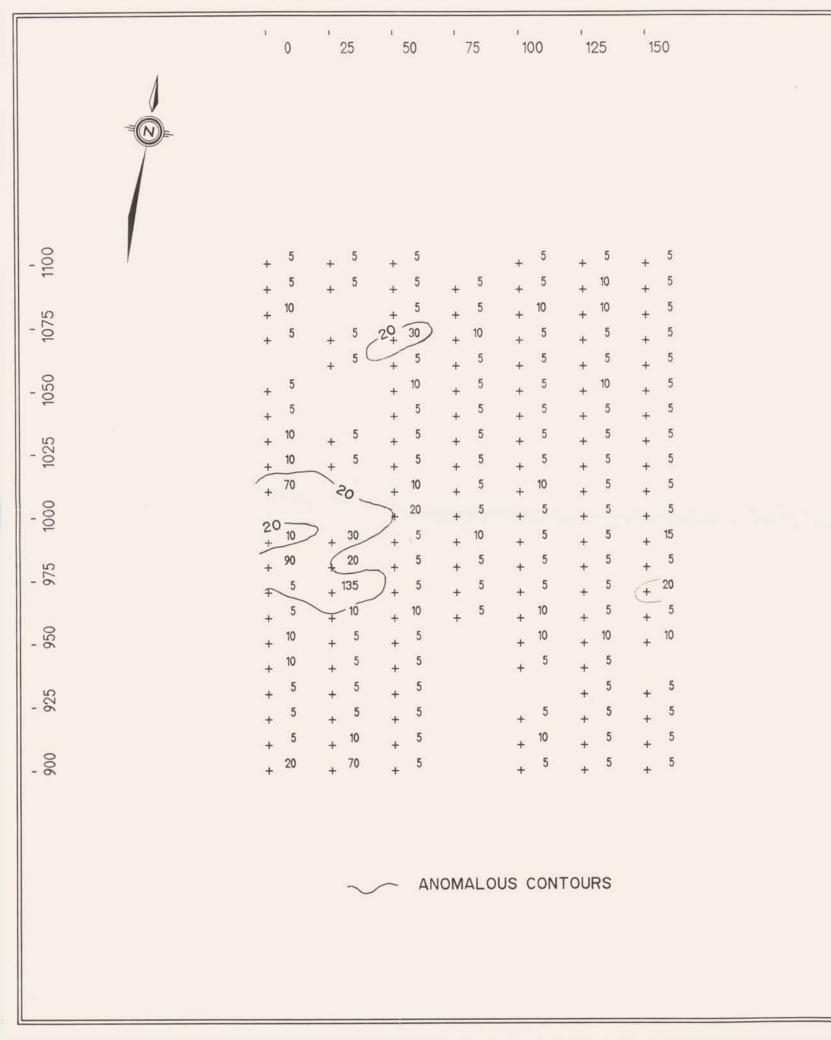
GEOLOGICAL BRANCH ASSESSMENT REPORT

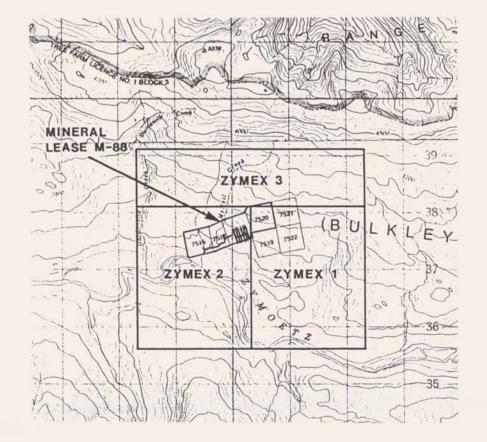

PROJ. Nº UNV 88-1


60. ML

30

BURTON CONSULTING NC. DATE: FEBRUARY 17, 1989




GEOLOGICAL BRANCH ASSESSMENT REPORT

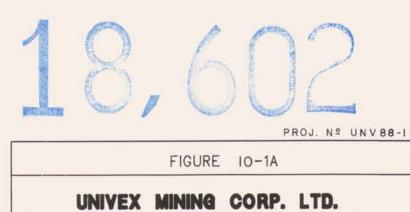

PROJ. Nº UNV 88 -1

FIGURE 10-18 UNIVEX MINING CORP. LTD. JP PROPERTY AG GEOCHEMISTRY (ppm) 0 30. 60. M. BURTON CONSULTING INC. DATE: FEBRUARY 17, 1989

GEOLOGICAL BRANCH ASSESSMENT REPORT

JP PROPERTY

AU GEOCHEMISTRY (ppb)

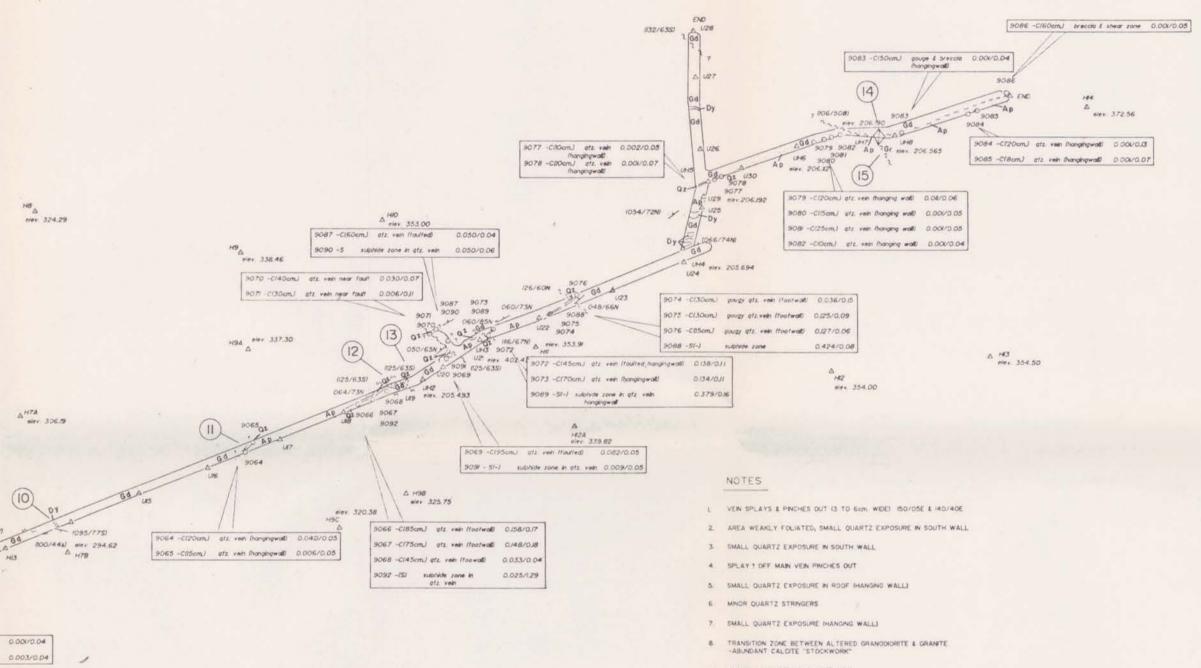
BURTON CONSULTING INC. DATE: FEBRUARY 17,1989

STRUCTURAL INTERPRETATION (SHOWING UNDERGROUND WORKINGS & EXTRAPOLATED FAULTS WITH INTERPRETED RIGHT-LATERAL DYKE OFFSET) 0 50 100 150 200 WETRES FAULTS (OBSERVED B EXTRAPOLATED) DYKE (OBSERVED & EXTRAPOLETED) NOTE HANGING WALL & FOOT WALL QUARTZ VEINS (MINERALIZED) ADJACENT TO DYKE NOT SHOWN

. . A H5 elev. 273.1 9060 -C125cm.1 breccio zone in fault 0.004/0.05 9055 -C(25cm) gtz exposure 0.005/0.23 Thanging wall 905 -Clificm) ofz. vein ins dykej 0.000/0.06 9052 -C(Born) gtz vain ine dyka) 0.000/0.05 9062 -Cl6cmJ atz. zone in granite 0.001/0.04 9053 - CR4cm.) gtz. vali (no dyka) 0.006/034 9063 -015cm.) ctz zone in granite 0.003/0.04 906 -R2cm) quarts zone 0.002/0.05 (discontinuous) A 144 z/ev. 259.86 9056 -CIBOcm./ gtz vein (footwall) 0.006/0.13 9057 -Cl60cm,1 atz. vein lloo twall 0.007/0.06 niev. 215.83 9058 -Cli50cmJ qtr. ven llootwall 0.039/0.17 9059 -CII20cmJ etz vein (loo1wall) 0.004/0.25 9054 -C(25cm.) atz exposure 0.002/0 In root near dyke) 9093 -SI-/ sublide band 0.037/0.66 PORTAL JU

A H3 Nev. 228.08

H6 A eler 2962


H7 A

elev. 309.00

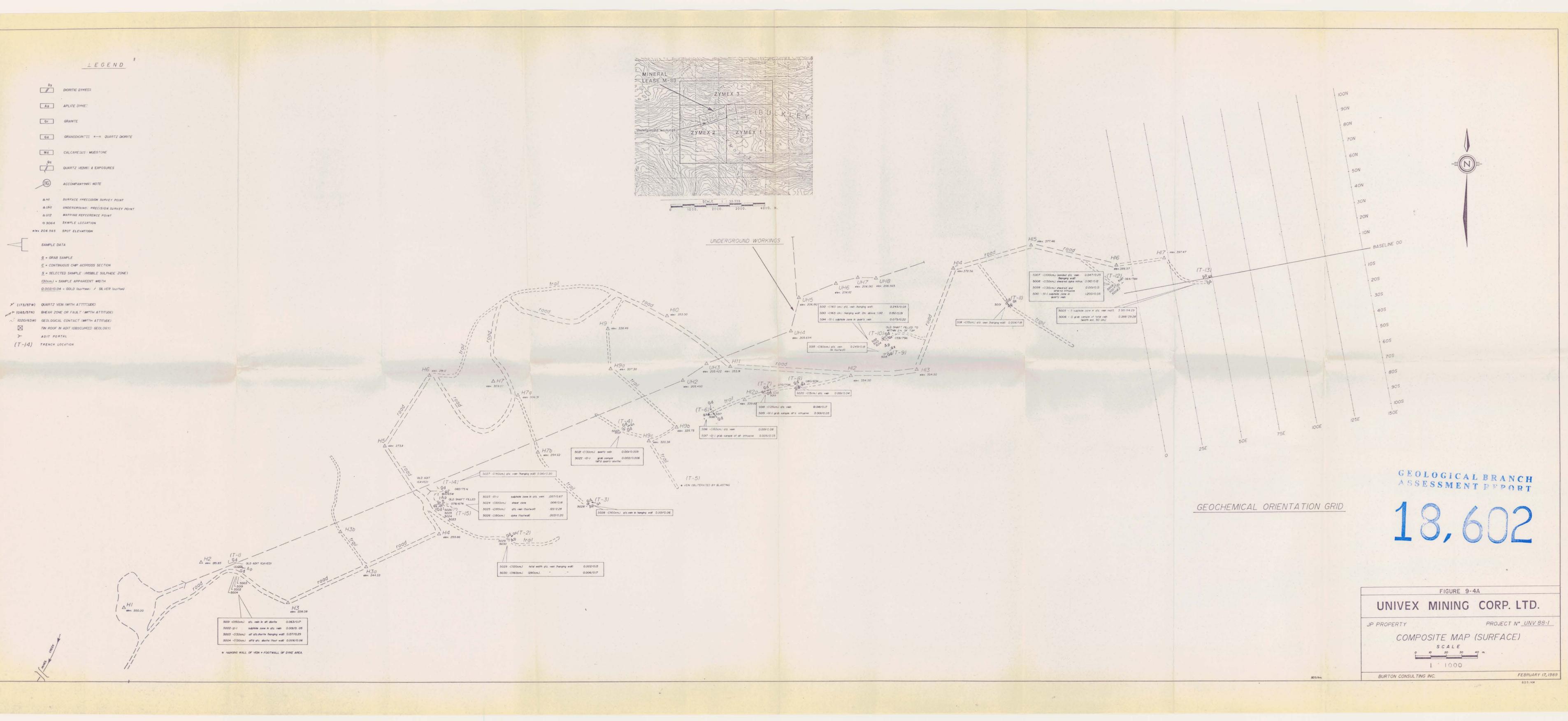
▲ HI elev 200.00

. .

d.

.


.


B NARROW SHEARED UP QUARTZ VEN

,

- 10 NARROW ISON DYKE- DANK GREEN- GREY
- IL QUARTZ VEW WITH SULPHIDE MINERALIZATION PHANGING WALLS
- 2. ROOF OBSCURED BY TIN & BRACING
- 3. QUARTZ VEN CUT OFF BY FAULT AND PINCHES OUT
- H ROOF OBSCURED BY TIN & BRACING
- 15. SMALL BROKEN UP QUARTZ EXPOSURE IN HANGING WALL

٨	LEGEND
	DIORITIC DYKES
	APLITE DYKE
Gr	GRANITE
Gď	GRANODIORITE + QUARTZ DIORITE
Md	CALCAREOUS MUDSTONE
	QUARTZ VEINS & EXPOSURES
. (6)	ACCOMPANYING NOTE
۵HI	SURFACE PRECISION SURVEY POINT
D. UHI	UNDERGROUND PRECISION SURVEY POINT
	MAPPING REFERENCE POINT
0 9064	SAMPLE LOCATION
eles 206 565	SPOT ELEVATION
	SAMPLE DATA
	<u>G</u> = GRAB SAMPLE
	C = CONTINUOUS CHIP ACROSS SECTION
	<u>S</u> * SELECTED SAMPLE (VISIBLE SULPHIDE ZONE)
	(30cm.) * SAMPLE APPARENT WIDTH
	0.002/0.04 = GOLD loz/tanJ / SHLVER loz/tanJ
× (173/57W)	QUARTZ VEW (WITH ATTITUDE)
	SHEAR ZONE OR FAULT (WITH ATTITUDE)
-	GEOLOGICAL CONTACT (WITH ATTITUDE)
	TIN ROOF IN ADIT IOBSCURED GEOLOGYI
CEA	0.010
0 2 0	LOGICAL BRANCH
1551	ESSMENT REPORT
10	\cap / $\cap \cap$
	and from the
Transfer Par	

