ARIS SUMMARY SHEET

Off Confidential: 90.03.23 District Geologist, Kamloops ASSESSMENT REPORT 18604 MINING DIVISION: Kamloops **PROPERTY:** Mow 120 53 00 51 02 00 LONG LOCATION: LAT 10 5655445 648417 UTM 092P02W NTS CLAIM(S): Mow Iron River Res. OPERATOR(S): AUTHOR(S): Hendrickson, G.A. **REPORT YEAR:** 1989, 31 Pages COMMODITIES SEARCHED FOR: Copper, Silver, Gold Triassic, Nicola Group, Deadman River Formation, Basalt **KEYWORDS:** WORK Geophysical, Physical DONE: 1.0 km IPOL Map(s) - 1; Scale(s) - 1:20002.0 km ROAD RELATED **REPORTS:** 08342,08430,09136 092P 156 MINFILE:

LOG NO:	0404	R	ID.
ACTION:			
			· .
FILE NO:		•	

REPORT

ON THE

INDUCED POLARIZATION SURVEY

FILMED

MOW #1 MINERAL CLAIM

ARROWSTONE PROJECT

DEADMAN RIVER VALLEY, BRITISH COLUMBIA

KAMLOOPS MINING DIVISION

LAT. 51 02'N, LONG. 120 53'W.

N.T.S. 92P/2W

O	WNER: MICHA SAVON	EL DICKENS A, B.C.		
OPERATOR:	IRON RIVER VANCOUVER,	RESOURCES B.C.		()
	ВҰ			0
GRANT	A. HENDRICK	SON, P.GEO	() [4] PH: 2 (0)	
			(4) (4) (4) (4) (5) (5)	
	· · · · · · · · · · · · · · · · · · ·		12) (?) (?) <	

TABLE OF CONTENTS

Introduct	ion	• •	••	••	••	•••	• •	Page	1.
Location	and Ac	cess	••	••	••.	••	••	Page	2.
Topograph	iy and	Clima	te	••	• •	••	••	Page	2.
History	••	• •	••	•	••	••	••	Page	2.
Index Map		••	••	••	••	• •	• •	Fig.	#1.
Location	Мар	• •	• •	••	• •	• •	••	Fig.	# 2.
Claims	• •	••	• •	•••	• •	• •	••	Page	3.
Claims Ma	up 1:50	0000	• •	••	••	••	••	Fig.	#3.
Geology:	Regior Local Geolog M	hal Ge Geolo gy Mag Nicola Nicola Intrus Fertia Struct Ainera	eology ogy Gp. Gp. Gp. Sive F ary Ro Cures	volca Sedin Volca Rocks ocks	nents nics	 . .<	••• •• •• •• •• •• ••	Page Page Fig. Page Page Page Page Page	4. 4. 4. 5. 5. 6.
Explorati	ion Pro	ogram	••	••	•	• •	••	Page	7.
Geophysic	cal Equ	lipmer	nt	• •	• •	•	• •	Page	8.
Personnel	l (Delt	ta Geo	oscier	nce Lt	:d.)	• •	• •	Page	8.
Survey Re	esults	.••.	* •	• •	• •	• •	• •	Page	9.
Grid Map	with a	Anomal	lies 1	1:5000)	••	••	Fig.	#5.
Reference	3 5	••	••	• •	• •	••	••	Page	10.

 \mathbf{O}

APPENDICES

- 1. Cost Statement.
- 2. Qualifications and Certifications.
- 3. Induced Polarization Data.

MAPS (IN POCKET)

Figure #6: Gradient Array Profiles 1:2000.

INTRODUCTION

This report describes an Induced Polarization survey conducted November 10, 11 and 12, 1988, on 940 meters of line on the MOW 1 claim. The survey was done over a strong VLF electromagnetic anomaly, in combination with a magnetic low found in an earlier survey (see references), in an effort to determine if the anomaly was caused by the presence of sulphides.

The property consists of 72 units in 4 claims located approximately 60 kms northwest of Kamloops, B.C., in the Deadman River Valley. The property is held under option by Iron River Resources Limited of Vancouver from the owner Michael Dickens of Savona, B.C.

Copper mineralization was found in two areas on the property by M. Dickens in 1980, with subsequent exploration being done in 1983 and 1984 by Canamax Resources and Northair Mines Ltd. The recent geophysical surveys were over an area containing angular clasts of chalcocite with good gold and silver values located in the overburden. The work in 1988 has been done in an effort to find the source of the chalcocite mineralization.

LOCATION AND ACCESS

The property is located approximately 60 kms northwest of Kamloops, B.C., in the Mowich Lake area of the Deadman River Valley. Access is by 29 kms of paved and gravel road from the Trans-Canada Highway at a point 5 kms west of the village of Savona.

TOPOGRAPHY AND CLIMATE

The Deadman River Valley is relatively narrow with moderately steep sides. Topography on the claims is moderate to rugged with elevations ranging from 650m to 1200m.

Outcrop is best along cliffs, creeks and road cuts and relatively poor elsewhere. There are very few exposures in the area of the present program.

The claims are forested mainly by Lodgepole Pine, with generally light underbrush.

The climate is typical of the interior plateau, with warm summers and cold winters. Snow free conditions usually exist from April to mid-November.

HISTORY

The area has seen sporadic activity since the late 1870's, with the earliest reference in the Index to Annual Reports of the Minister of Mines being 1879. The only major producer in the immediate area was the Vidette Mine located 14 kms north of Mowich Lake. During the 1930's, 54190 tons grading 0.550z/ton gold, 0.860z/ton silver and 0.09% copper were produced from narrow quartz veins.

Recent history of the property is as follows:
1980 - Prospecting and soil sampling by M. Dickens.
1983 - Preliminary evaluation report by N.L. Tribe.
1983 - Prospecting, soil sampling, magnetometer and I.P. surveys by Canamax Resources.
1984 - Road building and trenching by Northair Mines Ltd.
1988 - Property optioned to Iron River Resources Limited. Electromagnetic and Magnetometer Surveys.

CLAIMS (See Figure #3)

The property consists of four contiguous metric claims totalling 72 units.

<u>Claim</u>	<u>Name</u>	Units	Record Date	Record No.	<u>Expiry</u> Date
MOW	1	20	23/3/83	4383	23/3/89
MOW	3	20	25/10/84	5921	25/10/89
MER		12	23/3/83	4382	23/3/89
MER	2	20	27/4/88	7620	27/4/89

- 3 -

GEOLOGY

REGIONAL GEOLOGY (Figure #4)

The Mowich Lake property is located in the southern segment of the geological zone known as the Quesnel Trough; a northerly trending belt, up to 45 kms wide, of Upper Triassic age Nicola Group volcanic and sedimentary rocks.

4 -

The Quesnel Trough units lie between Permian and older volcanics and sediments to the east, and Permian Cache Creek limestones to the west. The Nicola Group has been intruded by Triassic/Jurassic age intrusives of the Thuya and Takomkane batholiths and younger Cretaceous alkaline to calcalkaline stocks.

The region is covered by a thin layer of Miocene siliceous ashes and tuffs (Deadman River Formation) and by Eocene plateau basalt.

LOCAL GEOLOGY

The Nicola rocks underlying the Mowich property have been partially exposed by erosion of the plateau basalt and Deadman River Formation along the Deadman River Valley. This recent erosional window traverses the centre of the property in a North-South direction exposing a section of Nicola Group rocks between the younger formations along the properties East and West margins.

A brief description of the rock types (after Canamax Resources 1984) exposed in the immediate area of the claims is as follows:

NICOLA GROUP SEDIMENTS

(a) Argillite - generally massive to poorly bedded with occasional thin bedded siltstones.

(b) Greywacke - interbedded with argillites and composed of subangular grains less than 1mm and black to grey in colour depending on the quartz and feldspar content.

(c) Limestone, Chert, Quartzite and Conglomerate occur in minor amounts with argillite and greywacke.

NICOLA GROUP VOLCANICS

(a) Polymictic Breccia - a distinctive maroon to green colour, composed of Fragments to 0.5 metres of sediments, syenodiorites, volcanic andesites and augite porphyry in an andesite groundmass. Hematite and epidote alteration is common.

(b) Andesite Breccia - occurs only along the east side of Mowich Lake and consists of rounded to angular clasts to 20cm of fine grained, light green andesite and augite porphyry with minor limestone. The groundmass is tuffaceous andesite and carbonate.

(c) Augite Porphyry - appears to be a flow rock forming the top of the Nicola Formation. It is massive, dark grey green, aphanitic groundmass with up to 8% phenocrysts of augite crystals to 5mm. It can contain up to 10% amygdaloidal material in brecciated areas.

INTRUSIVE ROCKS

The intrusive outcrops mapped by Canamax Resources all occur to the west of the Deadman River. They are reportedly diorite and syenite in composition with a maximum indicated surface exposure size of 300 metres.

TERTIARY ROCKS

(a) Deadman River Formation - this formation unconformably overlies the Nicola Group Rocks. It is composed of Miocene age non-marine tuffs, ashes and arkoses with minor conglomerates and agglomerates. The arkose unit is poorly consolidated and believed to be quite thin. The tuff is white to yellow in colour, fine grained and in at least one area 30 metres thick.

(b) Plateau Basalt - probably of Eocene age, dark grey to brown in colour and often vesicular.

STRUCTURES

The Nicola Group rocks strike northerly with moderate to steep dips to the east and west. Mapping to date suggests there is no repetition due to folding. The Deadman River Valley is believed to be underlain by a major fault with possible left lateral movement in the order of 600 metres. Several apparent northwest-southeast faults have been recognized with some suggestion of accompanying block faulting.

Quartz-carbonate veining in the Nicola and Deadman River formations indicate a hydrothermal system was operating in the post-Tertiary period. Serpentinite, ankerite and mariposite alteration found on the property are further evidence of the presence of a deep seated "plumbing" system.

MINERALIZATION

Mineralization is known at two areas on the property, but for the purposes of this report the area of interest is located 350 meters southeast of the south end of Mowich Lake and 85 meters southeast of the bridge over the Deadman River. A pit in the overburden near the top of the west bank of the Deadman River has exposed angular to subangular fragments of malachite coated chalcocite to 6 cms in diameter. Some of the chalcocite clasts are associated with serpentine and most of the rock fragments composing the overburden are sheared and serpentinized volcanic; possibly augite porphyry. Smaller fragments of similar mineralization were found in the road cut approximately 20 meters to the northwest.

Five samples of selected mineralized fragments averaged 58% copper, 8.47 oz/t. silver and 0.25 oz/t. gold.

- 6 -

EXPLORATION PROGRAM

This limited Induced Polarization survey was conducted to test the previously discovered VLF-EM and magnetic anomaly for sulphide content. The survey consisted of four short lines covering the locations at which the anomalous condition was detected. The total line distance surveyed was 940 meters.

The gradient array Induced Polarization technique was utilized for this survey. Current electrode separation was 500 meters. Potential electrode separation was 20 meters. Measurements were taken every 10 meters along the survey lines.

The gradient array technique is a cost effective method for examining large blocks of ground with excellent horizontal resolution.

With the spacings used on this survey, the depth of investigation is confined to the first 100 meters, with the array focused at the 50 meter depth.

The pulse duration of the I.P. transmitter was 2 seconds. The I.P. receiver analysed the decay curve through four windows of 120, 220, 420 and 820 millseconds width respectively. The delay time prior to the start of an I.P. measurement was 160 millseconds. The 3rd window (width 420 ms) is the data displayed in the accompanying map. Data is displayed in stacked profile form to facilitate viewing the relative differences in response along the lines. The raw I.P. data (computer listing) is appended to the back of this report.

GEOPHYSICAL EQUIPMENT

- 1 BRGM I.P-2 Induced Polarization Receiver (time domain).
- 1 Huntec 2.5kva I.P. Transmitter and Motor Generator.
- 3 King VHF Portable Radios.
- 1 Toshiba 3100 Field Computer.
- 1 Hewlett Packard Quietjet Printer.

PERSONNEL (DELTA GEOSCIENCE LTD)

Grant Hendrickson		Supervisor/Senior Geophysicist
Rick Ofner	-	Junior Geophysicist/Crew Chief
Greg Martin	-	Technician.
Michael Dickens	-	Helper - Savona, B.C.

SURVEY RESULTS

A perusal of the data suggests that the VLF response is most likely due to a geological contact between rock types that have a good resistivity contrast. This contact zone trends E-W, with the rocks to the north being much more resistive (higher resistivity).

Typical resistivities for various rock types are:

- greater than 2000 ohm-m.
- greater than 3000 ohm-m.
- approx. 1000 ohm-m.
- approx. 400 ohm-m.
- approx. 200 ohm-m.
- less than 100 ohm-m.
- approx. 50 ohm-m.

In conjunction with the noted resistivity contrast, the rocks to the north have a higher chargeability (sulphide?) background, perhaps 2 to 3% more sulphide.

The uniform or gradual increase in chargeability and resistivity as you move north along the lines, is consistent with a buried geological contact. To the northeast corner of the I.P. grid, the changes in resistivity and chargeability are much more abrupt, which is interesting. These abrupt changes may be due to there being much less overburden and/or thin sulphide rich zones with accompanying silicification. Graphite can cause higher chargeability readings, however these are normally accompanied by much lower resistivity values.

In any event, the sulphide content of the bedrock is likely higher in the northeast corner of the grid. thus this area could be the source of the sulphide float. More I.P. work would be required to fully evaluate this area, however this recommendation should be preceded by detailed surface prospecting of the area in question.

Respectfully Submitted,

Grant A. Hendrickson, P.Geoph.

REFERENCES

- Geological Survey of Canada, G.C.S., Memoir 363: Geology of Bonaparte Lake Map Area, R.B. Campbell and H.W. Tipper (1971). Map 1278A Bonaparte Lake.
- 2. Ministry of Energy, Mines and Petroleum Resources: (I) 1983, pp. 357 Exploration in British Columbia (II) 1984, pp. 256 Exploration in British Columbia
- 3. Ministry of Energy, Mines and Petroleum Resources: Assessment Report No's 08342, 08430, 12022 and 13432.
- Read, P: Petrography of Nicola Group Rocks South of Mowich Lake, Deadman River, Southern British Columbia.
- 5. Roth, J: Report on the IP/Resistivity Surveys, Kamloops Copper, (Internal report by Canamax), 1975.
- Ministry of Energy, Mines and Petroleum Resources, Resource Data Section, <u>Minfile</u> 092P-156.
- 7. Vanderpoll, Wim: 1983 Property Report Mowich Lake Property (Internal report by Canamax 1984).
- Bristow, J.F: A Preliminary Report on the MER, MOW 1, MOW 3 and MER 2 Claims (for Iron River Resources Limited, 1988).
- 9. Fraser, D.C., 1969: Contouring of VLF-EM Data: Geophysics 34, 958-967.
- Karous, M., and Hjelt, S.E., 1983: Linear Filtering of V.L.F. Dip-Angle Measurements: Geophysical Prospecting.
- 11. Bristow, J.F., and Hendrickson, G.A., 1988: Report on the VLF-EM and Magnetometer Surveys, Mow #1, Mineral Claim.
- 12. Coggon, J.H., 1973: A Comparison of I.P. Electrode Arrays: Geophysics, Vol.38, 737-761,

COST STATEMENT

 \bigcirc

 \mathbf{O}

		\$ 3,303.00.
3.	Drafting, Printing etc	\$ 125.00.
2.	Report Draft	\$ 1,000.00.
1.	I.P. Survey - Delta Geoscience Ltd	\$ 2,178.00.

DELTA GEOSCIENCE LTD.

Mineral Exploration Geophysics Consulting and Contracting

642 English Bluff Rd. Delta, B.C. V4M 2N4 Tel: (604) 943 0983

November 13, 1988.

inv. C.066.

INVOICE

Iron River Resources Ltd., Suite 600, 890 West Pender Street, Vancouver, B.C., V6C 1J9.

Attn: Mr. Dan Berkshire.

Re: Geophysical Survey -Arrowstone Project, Savona, B.C.

1 day @ \$1050.00/day (I.P work)	\$ 1,050.00.
Mob/Demob Charges	\$ 900.00.
Board: 2 men x \$20.00/day each x 3 days	\$ 120.00.
Motel	\$ 108.00.
	\$ 2,178.00.

STATEMENT OF QUALIFICATION

Grant A. Hendrickson

- B.Science, U.B.C. 1971, Geophysics option.
- For the past 18 years, I have been actively involved in mineral exploration projects throughout Canada and the United States.
- , I am a registered Professional Geophysicist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
 - I am an active member of the S.E.G., E.A.E.G., and B.C.G.S.

Dated at Delta, British Columbia, this <u>20th</u> day of <u>February</u>, 1989.

Grant A. Hendrickson, P.Geoph.

MOW NOE 11.1P

C D - _ / DO- FO F

RECAL-L 10 SP=-4	RECTGL RO= 59.5			
M= 7 M1= 14 X=-40.0	VP= 12.9 M2= 10 Y=-50.0	E= 0 M3= 7 MN/2= 10.0	I = 2100.0 M4 = 4 AB/2 = 250.0	TIME=2000
O RECALL 11 SP=-15 M= 6 M1= 14 X=-30.0	RECTGL RO= 50.5 VP= 10.6 M2= 10 Y=-50.0	E= 0 M3= 7 MN/2= 10.0	I = 2100.0 M4= 4 AB/2= 250.0	T I ME = 2000
RECALL 12 SP=-18 M= 7 M1= 16 X=-20.0	RECTGL RO= 55.4 VP= 11.4 M2= 12 Y=-50.0	E= 0 M3= 8 MN/2= 10.0	I = 2100.0 M4= 4 AB/2= 250.0	T I ME = 2000
RECALL 13 SP=-13 M= 8 M1= 17 X=-10.0	RECTGL RO= 48.8 VP= 9.9 M2= 12 Y=-50.0	E= 0 M3= 8 MN/2= 10.0	I = 2100.0 M4= 5 AB/2= 250.0	T I M E = 2000
RECALL 14 SP = -11 M = 8 M1 = 19 X = 0.0	RECTGL RO= 72.0 VP= 14.5 M2= 14 Y=-50.0	E= 0 M3= 9 MN/2= 10.0	I = 2100.0 M4= 5 AB/2= 250.0	T I M E = 2000
RECALL 15 SP=-3 M= 10 M1= 23 X= 10.0	RECTGL RO= 248.4 VP= 50.4 M2= 17 Y=-50.0	E= 0 M3= 11 MN/2= 10.0	I = 2100.0 M4= 6 AB/2= 250.0	T I M E = 2000
RECALL 16 SP=-1 M= 12 M1= 25 X= 20.0	RECTGL RO= 388.4 VP= 79.8 M2= 19 Y=-50.0	E= 0 M3= 13 MN/2= 10.0	I = 2100.0 M4= 8 AB/2= 250.0	T I M E = 2000
RECALL 17 SP=-9 M= 12 M1= 25 X= 30.0	RECTGL RO= 310.1 VP= 65.0 M2= 19 Y=-50.0	E= 0 M3= 13 MN/2= 10.0	I = 2100.0 M4= 8 AB/2= 250.0	T I M E = 2000
$ \begin{array}{c} \text{O} & \text{SP} = -17 \\ \text{M} = & 13 \\ \text{M1} = & 26 \\ \text{X} = & 40.0 \end{array} $	RECTGL RO= 227.2 VP= 49.1 M2= 20 Y=-50.0	E= 0 M3= 14 MN/2= 10.0	I = 2100.0 M4= 9 AB/2= 250.0	T I M E = 2000
RECALL 19	RECTG			

-- -- --

				RECTGL	RECALL 28
1 I W E = 2 0 0 0	78\5= 520°0	0°01 21 0	= Z / NW = 2 = 3	<pre></pre>	X= 120.0 SP=-12 M1= 32 M1= 32 M1= 32
11WE = 2000	XB\S= 520.0 W4= 10 I= 5100.0	0.01 91 0	= 7/NW = 2 = 3	X=-20:0 W2= 24 Nb= 67:3 KO= 181:Σ KECTGL	RECALL 26 M= 15 M= 22 M= 22 M= 15
11WE=2000	I= 5100.0 ₩4= 10 I= 2100.0	0.01 16 10.0	WN \ 5 = W3 = E = E =	Y=-50.0 NP= 66.1 NP= 66.1 RO= 196.7 RO= 196.7	X= 110°0 WI= 50 W= 14 BECVFF 52
LIWE = 2000	I= 5100.0 M4= 10 M5 = 250.0	0.01 91 0	WN/5 = W3 = E =	X=-20°0 M5= 23 M5= 25°1 K0= 100°2 K6⊂10	RECALL 24 R= 100.0 M= 15 M= 15 M= 21
1 I W E = 5 0 0 0	1= 2100.0 M4= 9 M4= 9	0.01 15 0	= 2 / NW = 8W = 9	X=-20°0 W5= 55 K0= 42°2 K0= 100°4 KECL€Γ	X= 20.0 W1= 29 W= 14 Sb=-9 RECALL 23
1 I WE = 2000	I= 5100.0 M4= 10 I= 2100.0	0.01 15 0	= 2 / NW = 8W = 3	λ=-20°0 W5= 55 Λb= 43°3 K0= 103°8 Kect0Γ	X= 80°0 WI= 53 W= 14 Sb=-5 BECVFF 55
1 I WE = 2000	I = 5100°0 ₩4= 10 I = 2100°0	0°01 91 0	WN/5= W3= E=	X=-20°0 WS= 55 Nb= 45°2 KO= 131°5 KECL€Γ	X= 20°0 WI= 50 K= 14 KECALL 21
1 I W E = 5 0 0 0	I= 2100.0 M4= 9 N4= 250.0	0.01 21 0	WA / 2 = W3 = E =	X=-20°0 WS= 51 ND= 23°3 KO= 553°3 KEC⊥€Γ	X= 0000 WI= 53 W= 13 B=-11 KECVEF 50
LIWE=2000	8∖5= 520°0 ₩⊄= ∂ I= 5100°0	0.01 21 0	WN/5= W3= E=	A=-20°0 WS= 51 Ab= 22°8 KO= 522°8 KECL€F	X= 20'0 X= 20'0 K= 14 K=CKL 13 K=CKL 13

RECALL 28 SP= 3 M= 16 M1= 33 X= 110.0	RECTGL RO= 241.4 VP= 95.2 M2= 25 Y= 0.0	E= 0 M3= 17 MN/2= 10.0	I = 2100.0 M4= 11 AB/2= 250.0	TIME=2000
RECALL 29 SP= 2 M= 16 M1= 33 X= 100.0	RECTGL RO= 249.7 VP= 88.2 M2= 25 Y= 0.0	E= 0 M3= 17 MN/2= 10.0	I = 2100.0 M4 = 10 AB/2 = 250.0	TIME = 2000
RECALL 30 SP=-4 M= 15 M1= 30 X= 90.0	RECTGL RO= 256.5 VP= 82.1 M2= 23 Y= 0.0	E= 0 M3= 16 MN/2= 10.0	I = 2100.0 M4= 10 AB/2= 250.0	TIME = 2000
RECALL 31 SP=-12 M= 15 M1= 30 X= 80.0	RECTGL RO= 297.1 VP= 87.2 M2= 23 Y= 0.0	E= 0 M3= 16 MN/2= 10.0	I = 2100.0 M4= 10 AB/2= 250.0	TIME = 2000
RECALL 32 SP = -25 M = 14 M1 = 29 X = 70.0	RECTGL RO= 283.2 VP= 77.1 M2= 22 Y= 0.0	E= 0 M3= 15 MN/2= 10.0	I = 2100.0 M4= 10 AB/2= 250.0	TIME = 2000
RECALL 33 SP=-15 M= 14 M1= 28 X= 60.0	RECTGL RO= 285.0 VP= 72.8 M2= 21 Y= 0.0	E= 0 M3= 15 MN/2= 10.0	I = 2100.0 M4= 9 AB/2= 250.0	T I ME = 2000
RECALL 34 SP= 4 M= 13 M1= 27 X= 50.0	RECTGL RO= 252.5 VP= 61.1 M2= 21 Y= 0.0	E= 0 M3= 14 MN/2= 10.0	I = 2100.0 M4= 9 AB/2= 250.0	T I ME = 2000
RECALL 35 SP=-5 M= 11 M1= 23 X= 40.0	RECTGL RO= 146.7 VP= 34.0 M2= 17 Y= 0.0	E= 0 M3= 12 MN/2= 10.0	I = 2100.0 M4= 7 AB/2= 250.0	T I ME = 2000
OCALL 36 SP=-9 M= 9 M1= 20 X= 30.0	RECTGL RO= 95.8 VP= 21.4 M2= 15 Y= 0.0	E= 0 M3= 10 MN/2= 10.0	I = 2100.0 M4= 6 AB/2= 250.0	T I M E = 2000
-				

RECALL 37 RECTGL

RECALL 37	RECTGL			
M = 8 M1 = 17 X = 20.0	VP= 16.9 M2= 13 Y= 0.0	E= 0 M3= 9 MN/2= 10.0	I = 2100.0 M4= 5 AB/2= 250.0	T I M E = 2000
0		,		
RECALL 38 SP=-4	RECTGL RO= 60.2			
M= 8 M1= 16	VP= 13.0 M2= 12	E= 0 M3= 8	I= 2100.0 M4= 5	TIME=2000
X = 10.0	Y= 0.0	MN/2 = 10.0	AB/2= 250.0	
RECALL 39	RECTGL			
M= 6	VP = 12.5	E = 0	I = 2100.0	TIME=2000
M = 15 X = 0.0	Y = 0.0	MN/2= 10.0	M4 = 3 AB/2 = 250.0	
RECALL 40	RECTGL			
M= 6	VP= 10.9	E = 0	I = 2100.0	T I ME = 2000
M1 = 13 X = -10.0	M2= 10 Y= 0.0	M3 = 7 MN/2 = 10.0	M4 = 4 AB/2 = 250.0	
RECALL 41 SP=-11	RECTGL RO≕ 53.3			
M = 5 M1 = 13	VP= 11.7 M2= 9	E≕ O M3≕ 6	I= 2100.0 M4= 2	TIME=2000
X = -20.0	Y= 0.0	MN/2 = 10.0	AB/2 = 250.0	
RECALL 42	RECTGL			
SP=-9 M= 6	VP= 16.6	E= 0	I = 2100.0	TIME=2000
M1 = 13 X = -30.0	M2 = 9 Y = 0.0	M3 = 6 MN/2 = 10.0	M4 = 4 AB/2 = 250.0	, v
RECALL 43	RECTG		х. Х	
SP=-14	RO = 84.0	F= 0	I = 2100 0	T T ME ~ 2000
M = 3 M = 12 N = 40	M2= 9	M3 = 6	M4 = 3	1182-2000
X = - 40.0	1- 0.0	MN/2- 10.0	AB/2- 250.0	
RECALL 44	RECTGL			
M = 5	VP = 20.3	E= 0	I = 2100.0	TIME=2000
M1 = 12 X = -50.0	M2 = 8 Y = 0.0	M3 = 5 MN/2 = 10.0	M4 = 3 AB/2 = 250.0	
CTALL 45	RECTO			
SP=-10	RO= 93.6	r- 0	1- 2100 0	TIME-2000
m = 5 M1 = 12	M2 = 8	M3= 5	M4 = 3	11ME = 2000
X=-60.0	Y= U.U	MN/2 = 10.0	AB/2= 250.0	

RECALL 46 R

RECTGE

RECALL 46 SP=-8 M= 5 M1= 11 X=-70.0	RECTGL RO= 81.4 VP= 22.2 M2= 8 Y= 0.0	E= 0 M3= 5 MN/2= 10.0	I = 2100.0 M4= 3 AB/2= 250.0	T I M E = 2000
RECALL 47 SP=-5 M= 5 M1= 12 X=-80.0	RECTGL RO= 66.8 VP= 19.6 M2= 9 Y= 0.0	E= 0 M3= 6 MN/2= 10.0	I= 2100.0 M4= 3 AB/2= 250.0	T I M E = 2000
RECALL 48 SP=-5 M= 5 M1= 11 X=-90.0	RECTGL RO= 60.6 VP= 19.4 M2= 8 Y= 0.0	E= 0 M3= 5 MN/2= 10.0	I = 2100.0 M4= 3 AB/2= 250.0	T I ME = 2000
RECALL 49 SP=-8 M= 3 M1= 8 X=-100.0	RECTGL RO= 65.5 VP= 23.1 M2= 6 Y= 0.0	E= 0 M3= 4 MN/2= 10.0	I = 2100.0 M4= 2 AB/2= 250.0	T I M E = 2000
RECALL 50 SP = -21 M = 3 M1 = 7 X = -110.0	RECTGL RO= 95.5 VP= 37.7 M2= 5 Y= 0.0	E= 0 M3= 3 MN/2= 10.0	I = 2100.0 M4 = 2 AB/2 = 250.0	T I M E = 2000
RECALL 51 SP=-14 M= 3 M1= 7 X=-120.0	RECTGL RO= 96.5 VP= 43.1 M2= 5 Y= 0.0	E= 0 M3= 3 MN/2= 10.0	I = 2100.0 M4= 2 AB/2= 250.0	T I M E = 2000
RECALL 52 SP=-7 M= 3 M1= 6 X=-120.0	RECTGL RO= 75.3 VP= 31.3 M2= 4 Y= 30.0	E= 0 M3= 2 MN/2= 10.0	I = 2100.0 M4= 2 AB/2= 250.0	T I M E = 2000
RECALL 53 SP=-15 M= 3 M1= 7 X=-110.0	RECTGL RO= 47.9 VP= 17.8 M2= 5 Y= 30.0	E= 0 M3= 3 MN/2= 10.0	I = 2100.0 M4= 2 AB/2= 250.0	T I M E = 2000
RECALL 54 SP=-14 M= 3 M1= 8 X=-100.0	RECTGL RO= 32.2 VP= 10.8 M2= 5 Y= 30.0	E= 0 M3= 3 MN/2= 10.0	I = 2100.0 M4= 2 AB/2= 250.0	T I M E = 2000
RECALL 55	RECTGL			

SP=-17 RO= 54.5

RECALL 55 SP=-17 M= 3 M1= 8 X=-90.0	RECTGL RO= 54.5 VP= 16.7 M2= 6 Y= 30.0	E= 0 M3= 4 MN/2= 10.0	I = 2100.0 M4= 2 AB/2= 250.0	T I M E = 2000
RECALL 56 SP=-10 M= 4 M1= 10 X=-80.0	RECTGL RO= 76.0 VP= 21.5 M2= 7 Y= 30.0	E= 0 M3= 4 MN/2= 10.0	I = 2100.0 M4= 3 AB/2= 250.0	T I M E = 2000
RECALL 57 SP=-7 M= 5 M1= 11 X=-70.0	RECTGL RO= 95.9 VP= 25.2 M2= 8 Y= 30.0	E= 0 M3= 5 MN/2= 10.0	I = 2100.0 M4= 3 AB/2= 250.0	T I M E = 2000
RECALL 58 SP=-15 M= 5 M1= 12 X=-60.0	RECTGL RO= 99.3 VP= 24.6 M2= 9 Y= 30.0	E= 0 M3= 6 MN/2= 10.0	I = 2100.0 M4= 3 AB/2= 250.0	T I M E = 2000
RECALL 59 SP=-15 M= 5 M1= 11 X=-50.0	RECTGL RO= 95.2 VP= 22.4 M2= 8 Y= 30.0	E= 0 M3= 5 MN/2= 10.0	I = 2100.0 M4= 3 AB/2= 250.0	T I M E = 2000
RECALL 60 SP=-13 M= 4 M1= 10 X=-40.0	RECTGL RO= 90.1 VP= 20.3 M2= 7 Y= 30.0	E= 0 M3= 4 MN/2= 10.0	I = 2100.0 M4= 2 AB/2= 250.0	T I M E = 2000
RECALL 61 SP=-13 M= 4 M1= 10 X=-30.0	RECTGL RO= 70.8 VP= 15.5 M2= 7 Y= 30.0	E= 0 M3= 5 MN/2= 10.0	I= 2100.0 M4= 2 AB/2= 250.0	T I M E = 2000
RECALL 62 SP=-9 M= 5 M1= 12 X=-20.0	RECTGL RO= 76.5 VP= 16.3 M2= 9 Y= 30.0	E= 0 M3= 6 MN/2= 10.0	I = 2100.0 M4= 3 AB/2= 250.0	T I ME = 2000
QCALL 63 SP=-16 M= 5 M1= 12 X=-10.0	RECTGL RO= 82.4 VP= 17.4 M2= 9 Y= 30.0	E= 0 M3= 6 MN/2= 10.0	I = 2100.0 M4= 4 AB/2= 250.0	T I M E = 2000

RECALL 64 SP=-11 M= 5 M1= 12 X= 0.0	RECTGL RO= 85.5 VP= 17.9 M2= 9 Y= 30.0	E= 0 M3= 6 MN/2= 10.0	I = 2100.0 M4= 3 AB/2= 250.0	T I M E = 2000
RECALL 65 SP=-9 M= 6 M1= 13 X= 10.0	RECTGL RO= 69.9 VP= 14.7 M2= 10 Y= 30.0	E= 0 M3= 7 MN/2= 10.0	I = 2100.0 M4= 4 AB/2= 250.0	T I M E = 2000
RECALL 66 SP=-10 M= 6 M1= 12 X= 20.0	RECTGL RO= 77.1 VP= 16.5 M2= 9 Y= 30.0	E= 0 M3= 6 MN/2= 10.0	I = 2100.0 M4= 4 AB/2= 250.0	T I M E = 2000
RECALL 67 SP=-7 M= 5 M1= 10 X= 30.0	RECTGL RO= 73.5 VP= 16.1 M2= 8 Y= 30.0	E= 0 M3= 5 MN/2= 10.0	I = 2100.0 M4= 3 AB/2= 250.0	TIME=2000
RECALL 68 SP = -12 M = 7 M1 = 14 X = 40.0	RECTGL RO= 105.0 VP= 23.7 M2= 11 Y= 30.0	E= 0 M3= 7 MN/2= 10.0	I = 2100.0 M4 = 4 AB/2 = 250.0	T I M E = 2000
RECALL 69 SP=-13 M= 10 M1= 20 X= 50.0	RECTGL RO= 136.4 VP= 32.1 M2= 15 Y= 30.0	E= 0 M3= 11 MN/2= 10.0	I = 2100.0 M4= 6 AB/2= 250.0	T I M E = 2000
RECALL 70 SP=-8 M= 12 M1= 25 X= 60.0	RECTGL RO= 117.0 VP= 29.0 M2= 19 Y= 30.0	E= 0 M3= 13 MN/2= 10.0	I = 2100.0 M4= 8 AB/2= 250.0	T I M E = 2000
RECALL 71 SP=-8 M= 14 M1= 30 X= 70.0	RECTGL RO= 99.6 VP= 26.2 M2= 22 Y= 30.0	E= 0 M3= 15 MN/2= 10.0	I = 2100.0 M4= 9 AB/2= 250.0	T I M E = 2000
QALL 72 SP=-5 M= 13 M1= 28 X= 80.0	RECTGL RO= 130.4 VP= 36.8 M2= 21 Y= 30.0	E= 0 M3= 15 MN/2= 10.0	I = 2100.0 M4= 9 AB/2= 250.0	TIME=2000

DECALL 72 DECTO

				RECTGL	RECALL 82
	LIWE=2000	I= 2100.0 M4= 5 AB/2= 250.0	WN\S= 10°0 W3= 2 E= 0	<pre></pre>	18 1427 8 =M 8 =M 15 16 0.03-=X
	LIWE = 2000	VB∕S= 520°0	WN\S= IO'O W3= 3 E= 0	X=-100.0 W2= 12 K0= 33.3 KECTGL	K=-70.0 M1= 16 M= 8 K=CALL 80
	LIWE = 2000	I= 250.0 M4= 4 AB/2= 250.0	WN\5= IO'O W3= \ E= O	<pre></pre>	N=C&O.0 N= 6 SP=-6 RECALL 79
	1 I W E = 2 0 0 0	I= 250.0 M4= 4 AB/2= 250.0	WN/S= 10°0 W3= 2 E= 0	RECTGL R0= 70.0 R0= 70.4 R0= 70.4	X=-30.0 W= 13 W= 2 Sb=-2 BECMFF 18
	1 I W E = 2 0 0 0	I= 2100.0 M4= 4 AB/2= 250.0	W/S= 10.0 W3= C E= 0	RECTGL RECTGL RECTGL	X=-100'0 N= 1 W= 2 B=-⊄ BECALL 77
э,	11WE=2000	I= 250.0 №4= 3 ¥B/2= 250.0	WN\S= 10°0 W3= 2 E= 0	X=-100°0 M5= 8 K0= 20°4 K0= 20°4	RECALL 76 N= 5 M1= 11 M1= 11 M1= 21
	1 I W E = 5 0 0 0	I= 2100.0 A4= 3 AB/2= 250.0	WN\5= 10°0 W3= 2 E= 0	Х=-100°0 W5= 8 Nb= 15°2 R0= 25°3 Кесцег	RECALL 75 R=-120.0 M= 5 M= 5 M= 5 M= 5 M= 11 M= 11 R=-120.0
	1 I W E = 5 0 0 0	AB/2= 250.0 M4= 12 F100.0	WN\S= 10°0 W3= 10 E= 0	Y= 30.0 M2= 27 R0= 699.1 Rectgl	X= 100.0 W1= 36 W1= 18 W1= 13 Sb=-13 KECALL 74
	1 I W E = 5 0 0 0	∀B\S= S20°0 ₩d= IS I= S100°0	WN\S= 10°0 W3= 10 E= 0	λ= 30°0 W5= 51 Nb= 126°1 B0= 212°4	X= 00'0 WI= 30 W= 12 KECVFF 23 KECVFF 23

RECALL 82	RECTO			
SP = -19 $M = 7$ $M1 = 15$ $X = -50.0$	RO= 100.3 VP= 18.4 M2= 11 Y=-100.0	E= 0 M3= 8 MN/2= 10.0	I= 2100.0 M4= 5 AB/2= 250.0	T I M E = 2000
RECALL 83 SP=-7 M= 8 M1= 16 X=-40.0	RECTGL RO= 87.8 VP= 15.7 M2= 12 Y=-100.0	E= 0 M3= 8 MN/2= 10.0	I = 2100.0 M4= 5 AB/2= 250.0	T I M E = 2000
RECALL 84 SP=-12 M= 8 M1= 17 X=-30.0	RECTGL RO= 72.5 VP= 12.7 M2= 12 Y=-100.0	E= 0 M3= 8 MN/2= 10.0	I = 2100.0 M4= 5 AB/2= 250.0	T I M E = 2000
RECALL 85 SP=-14 M= 8 M1= 17 X=-20.0	RECTGL RO= 92.5 VP= 16.0 M2= 13 Y=-100.0	E= 0 M3= 9 MN/2= 10.0	I = 2100.0 M4= 6 AB/2= 250.0	, TIME = 2000
RECALL 86 SP=-17 M= 9 M1= 18 X=-10.0	RECTGL RO= 123.8 VP= 21.3 M2= 14 Y=-100.0	E= 0 M3= 10 MN/2= 10.0	I = 2100.0 M4= 6 AB/2= 250.0	T I M E = 2000
RECALL 87 SP=-6 M= 11 M1= 22 X= 0.0	RECTGL RO= 270.9 VP= 46.4 M2= 16 Y=-100.0	E= 0 M3= 12 MN/2= 10.0	I = 2100.0 M4= 7 AB/2= 250.0	T I ME = 2000
RECALL 88 SP=-6 M= 12 M1= 23 X= 10.0	RECTGL RO= 383.4 VP= 65.9 M2= 18 Y=-100.0	E= 0 M3= 12 MN/2= 10.0	I = 2100.0 M4= 8 AB/2= 250.0	T I ME = 2000
RECALL 89 SP=-7 M= 12 M1= 25 X= 20.0	RECTGL RO= 307.8 VP= 53.3 M2= 19 Y=-100.0	E= 0 M3= 13 MN/2= 10.0	I = 2100.0 M4= 8 AB/2= 250.0	T I ME = 2000
ROLL 90 SP= 2 M= 12 M1= 24 X= 30.0	RECTGL RO= 206.9 VP= 36.3 M2= 18 Y=-100.0	E= 0 M3= 13 MN/2= 10.0	I = 2100.0 M4= 8 AB/2= 250.0	T I M E = 2000

RECALL 91

RECTO

RECALE 91 SP=-14 M= 13 M1= 25 X= 40.0	RECTGL RO= 166.2 VP= 29.7 M2= 19 Y=-100.0	E= 0 M3= 13 MN/2= 10.0	I = 2100.0 M4= 9 AB/2= 250.0	T I M E = 2000
RECALL 92 SP=-13 M= 13 M1= 26 X= 50.0	RECTGL RO= 138.1 VP= 25.3 M2= 19 Y=-100.0	E= 0 M3= 14 MN/2= 10.0	I = 2100.0 M4= 8 AB/2= 250.0	T I M E = 2000
RECALL 93 SP=-0 M= 13 M1= 26 X= 60.0	RECTGL RO= 139.6 VP= 26.3 M2= 20 Y=-100.0	E= 0 M3= 14 MN/2= 10.0	I = 2100.0 M4= 9 AB/2= 250.0	T I M E = 2000
RECALL 94 SP=-10 M= 13 M1= 27 X= 70.0	RECTGL RO= 133.3 VP= 26.0 M2= 20 Y=-100.0	E= 0 M3= 14 MN/2= 10.0	I = 2100.0 M4= 9 AB/2= 250.0	T I M E = 2000
RECALL 95 SP = 4 M = 14 M1 = 27 X = 80.0	RECTGL RO= 118.6 VP= 24.0 M2= 21 Y=-100.0	E= 0 M3= 15 MN/2= 10.0	I= 2100.0 M4= 9 AB/2= 250.0	T I M E = 2000
RECALL 96 SP= 12 M= 14 M1= 28 X= 90.0	RECTGL RO= 121.3 VP= 25.5 M2= 21 Y=-100.0	E= 0 M3= 15 MN/2= 10.0	I = 2100.0 M4= 9 AB/2= 250.0	T I M E = 2000
RECALL 97 SP=-11 M= 14 M1= 30 X= 100.0	RECTGL RO= 129.7 VP= 28.5 M2= 22 Y=-100.0	E= 0 M3≈ 15 MN/2= 10.0	l= 2100.0 M4= 10 AB/2= 250.0	T I ME = 2000
RECALL 98 SP=-7 M= 14 M1= 26 X= 110.0	RECTGL RO= 144.1 VP= 33.1 M2= 19 Y=-100.0	E= 0 M3= 13 MN/2= 10.0	I = 2100.0 M4= 11 AB/2= 250.0	T I ME = 2000
FOALL 99 SP=-9 M= 15 M1= 31 X= 120.0	RECTGL RO= 264.8 VP= 63.8 M2= 23 Y=-100.0	E= 0 M3= 16 MN/2= 10.0	I = 2100.0 M4= 10 AB/2= 250.0	T I ME = 2000

A.

.