ARIS SUMMARY SHEET

District Geologist, Prince George Off Confidential: 90.03.30 ASSESSMENT REPORT 18610 MINING DIVISION: Cariboo **PROPERTY:** Eureka LOCATION: LAT 52 19 00 LONG 120 37 00 UTM 10 5798716 662453 NTS 093A07E CAMP: 036 Cariboo - Quesnel Belt EN 5 CLAIM(S): OPERATOR(S): Sirius Res. AUTHOR(S): Rowan, L.G. **REPORT YEAR:** 1989, 35 Pages COMMODITIES SEARCHED FOR: Gold, Copper **KEYWORDS:** Triassic - Jurassic, Takla Group, Volcanics, Sediments, Intrusives Calcite, Pyrite, Pyrrhotite WORK DONE: Drilling, Geochemical 172.5 m DIAD 2 hole(s)Map(s) - 3; Scale(s) - 1:50 000,1:5000,1:250 SAMP 46 sample(s) ;AU,CU,ZN ATED ORTS: 02137,02662,03814,05215,09786,10723,11935,13365,15527 MINFILE: 093A 011

	LOG NO: 0509 RD.2
DRILLING REPORT ON THE 1988 EXPLORATION PROGRAM FOR THE	ACTION: Date received report back from amendments
EUREKA CLAIM GROUP	FILE NO:

LORNE G. ROWAN, B.Sc.

MACKAY RIVER AREA, CARIBOO MINING DIVISION BRITISH COLUMBIA, CANADA

LATITUDE: 52°18'N

LONGITUDE: 120°38'W

FILMED

NTS: 93A/7E

PROPERTY OWNERS: ERIC SCHOLTES ROBERT CARSON UMEX INC.

OPTIONORS: SIRIUS RESOURCE CORPORATION

MARCH 10, 1989

1257 GEOLOGICAL LTD. 1150-609 West Hastings St. Vancouver, B.C. V6B 4W4

860

SUMMARY

The Ashton Copper-Gold project focuses attention on the Eureka group of mineral claims which comprise 51 claim units covering approximately 23 square kilometers on Eureka Peak Mountain, in the Horsefly River region of the Cariboo Mining Division in Central British Columbia.

i

Interest in the area began in 1958 with the discovery of porphyry copper mineralization associated with calcic-alkaline granitoid stocks in the vicinity of Eureka Peak. Work on the property has occurred intermittently since then for its copper-porphyry potential by several companies; including Helicon Exploration, Amax, Riocanex, Noranda and in 1981 by Umex Corporation. The rock geochemical survey conducted bv Umex Corporation identified several gold anomalies in the Eureka Peak area. More recently, copper mineralization with gold in association has been identified in samples taken from the property.

In the Fall of 1988, Sirius Resource Corporation optioned the Eureka group from its owners and conducted a limited exploration program consisting of data compilation and diamond drilling. The purpose of the drilling was to test a small portion of the alteration halo surrounding the nearby Eureka Peak intrusive. The drilling produced anomalous copper values, but the alteration halo was not reached.

Plutons compositionally related to the type of intrusive found at Eureka Peak have historically hosted significant gold deposits as zoning features accompanying porphyry copper mineralization. At current metal prices, the discovery of a large tonnage coppergold porphyry type deposit would be economically attractive.

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
	1.1 Scope	1
. ·	1.2 Location and Access	1
	1.3 Claims	1
	1.4 Property	3 /
	1.5 1988 Exploration Program	4 /
2.0	GEOLOGY	5
3.0	DISCUSSION OF RESULTS	6
4.0	CONCLUSIONS	Xŧ
5.0	ITEMIZED COST STATEMENT	89
	REFERENCES	
	STATEMENT OF QUALIFICATIONS	

O

0

LIST OF FIGURES

1. LOCATION MAP (After Page 1)

2. REGIONAL LOCATION MAP (After Page 1)

3. CLAIM INDEX AND LOCATION MAP (After Page 2) /

THE FOLLOWING FIGURES ARE CONTAINED IN POCKETS AT THE END OF THE REPORT:

4. REGIONAL GEOLOGICAL MAP

5. DRILL HOLE LOCATION MAP

6. CROSS SECTION OF SEP-88-08

LIST OF APPENDICES

APPENDIX I DRILL LOGS: SEP-88-07,08

APPENDIX II ASSAY PROCEDURE AND ANALYTICAL RESULTS \checkmark

1.0 INTRODUCTION

1.1 Scope

In November of 1988, 1257 Geological Ltd. was commissioned by Sirius Resource Corporation to conduct an assessment of the geology and to supervise a short diamond drilling program on the Ashton Copper-Gold project. This report is based upon the results of the diamond drilling and from information contained in previous reports that were made available to the author.

1

1.2 Location and Access

The Ashton Copper Gold Project is situated at approximately 120°38'W and 52°18'N about 375 km northeast of Vancouver. Access is by highway 97 from the 150 Mile House junction easterly for 55 km to the town of Horsefly, then northeasterly along an all-weather gravel road for 55 km to about Post 153. From there, a branch road crosses the Horsefly River and enters into the MacKay River valley. The base camp at Hawkley Creek is reached after 7 km and the drill site is approximately 4 km beyond camp. Topography is quite steep on the property with Eureka Peak at 2388 metres (7959 feet) being the highest point.

1.3 <u>Claims</u>

The property consists of 25 claims totalling 51 units covering an area of 11.8 square kilometers. The claims are grouped, for assessment purposes, in the Eureka Group.

BOT LARE COPPER GOLD & CA COPPER GOLD & CA COPPER TOP COPPER T
PRINCE GEORGE WILLIAMS LAKE ASHTON COPPER-GOLD & P. T. PROPERTY C. T. DADANS LAKE ADANS LAKE REVELSTORE LAKE KAMLOOPS
WILLIAMS WILLIAMS UAKE WILLIAMS UAKE ABAMS ADAMS ADAMS ADAMS ADAMS ADAMS ADAMS ARE SHUSWAP REVELSTOKE LAKE KAMLOOPS
ADAMS AD
KAMLOOPS
50° POWELL R. VANCOUVER VANCOUVER VANCOUVER VANCOUVER VANCOUVER VANCOUVER
U. S. A. 20 40 60 80 100 Km
1257 GEOLOGICAL LTD
SIRIUS RESOURCE CORPORATION
ASHTON COPPER-GOLD PROJECT
LOCATION MAP
GEOLOGIST : LR SCALE : 1 : 2,500,000 DRAWN BY : EBC DATA : MARCH 1989 CHECKED BY : LR FIGURE 1

I

L

an an thaile an the second second

Claim <u>Name</u>	<u>Units</u>	Record <u>Number</u>	Expiry Date	Owner
EM 1	16	3367	APRIL 2, 1989	UMEX INC.
EM 2	10	3368	APRIL 2, 1989	UMEX INC.
EM 4	3	3370	APRIL 2, 1989	UMEX INC.
EN 1 EN 2 EN 3 EN 4 EN 5 EN 6	1 1 1 1 1 1 1	30398 30399 30400 30401 30402 30403	AUGUST 5, 1989 AUGUST 5, 1989 AUGUST 5, 1989 AUGUST 5, 1989 AUGUST 5, 1989 AUGUST 5, 1989	ERIC SCHOLTES ERIC SCHOLTES ERIC SCHOLTES ERIC SCHOLTES ERIC SCHOLTES ERIC SCHOLTES
EN 14 EN 28	1 1	30477 30646	AUGUST 5, 1989 SEPTEMBER 28, 1989	ERIC SCHOLTES ERIC SCHOLTES
EN 29	1	30647	SEPTEMBER 28, 1989	ERIC SCHOLTES
EN 104 EN 105 EN 106 EN 107 EN 109	1 1 1 1 1	30618 30619 30620 30621 30623	AUGUST 30, 1989 AUGUST 30, 1989 AUGUST 30, 1989 AUGUST 30, 1989 AUGUST 30, 1989	ERIC SCHOLTES ERIC SCHOLTES ERIC SCHOLTES ERIC SCHOLTES ERIC SCHOLTES
NS 1 NS 2	1 1	3373 3374	APRIL 2, 1989 APRIL 2, 1989	UMEX INC. UMEX INC.
CS 55 CS 56	1 1	48017 48018	OCTOBER 24, 1989 OCTOBER 24, 1989	ROBERT J. CARSON ROBERT J. CARSON
SF 1 SF 2 SF 3 SF 4	1 1 1 <u>1</u> 51	1688 1689 1690 1691	MAY 30, 1989 MAY 30, 1989 MAY 30, 1989 MAY 30, 1989	ROBERT J. CARSON ROBERT J. CARSON ROBERT J. CARSON ROBERT J. CARSON

.

1.4 Property History

The claims that comprise the Ashton Copper-Gold project were first staked by prospector Eric Scholtes of Williams Lake in 1958. Since then there has been extensive reconnaissance exploration work for a porphyry copper style deposit primarily in circues 1,2, and 7. Following is a list of the exploration work that has been carried out on the property:

- 1958 The copper showings were discovered on Eureka Peak property by prospector E. Scholtes of Williams Lake.
- 1965 E. Scholtes and J. Carson, prospectors, optioned the property to Helicon Explorations, subsidiary of Chapman, Wood & Griswold Ltd.
- 1965-66 Helicon performed following work on the property: X-ray drilling in Cirque 1 and 7, construction of the 72 foot long adit in Cirque 2, drilling of 630 foot horizontal hole from the adit, compilation of contours at 100 foot intervals onto the topographic maps, reconnaissance aeromagnetic, geochemical and geological surveys, ground EM and IP surveys in Cirque 2.
- 1967 Chapman, Wood and Griswold dropped their option after having spent a reported \$155,000.00.
- 1968 H. Trario spent \$20,000 on EM survey in Cirque 2 and diamond drilling (3 holes were drilled).
- 1968 Property was restaked by Scholtes and Carson.

UMEX Inc. optioned the property. A. Chevalier undertook detailed lithogeochemical sampling program and he concluded that the property had potential for 1) Cu-Au mineralization and 2) Zn, Ag, Pb and Mo mineralization.

4

Dome Exploration optioned the Eureka Peak property from UMEX Inc. Geochemical sampling of silt, soil and rock-chip was undertaken in order to confirm the gold anomalies indicated by UMEX's sampling program in 1981. Only trace amounts of gold were located with the exception of one very narrow shear zone within the auguite porphyry breccia (600 metres southeast of Eureka Peak) where samples ran 1.3 to 1.7 g/ton Au.

1984 Dome Exploration carried out another lithogeochemical sampling program which was concentrated on Cirque 2 and 3 in order to confirm gold anomalies indicated from previous sampling.

1986 Umex Inc. completed a 1:5000 geological mapping of Cirque 2,3,5 and 7. Further lithogeochemical sampling took place, with 98 samples being collected.

1.5 1988 Exploration Program

1981

1983

The purpose of the 1988 Exploration program was to compile available information on the property and to establish the volcanic/intrusive contact through diamond drilling. Two drill holes were sited from existing roads to cut the contact as it

was projected by UMEX in 1986. Diamond drilling began on November 22, 1988 and was completed on November 28, 1988. The first hole failed to reach bedrock after penetrating 25.3 metres of overburden, and the second hole reached a depth of 147.2 metres at an inclination of -50° , but failed to cut the The drill core was transported to the base camp at contact. Hawkley Creek for logging, sampling and subsequent storage. Lorne G. Rowan supervised the commencement of the diamond drilling and core sampling, and Mark A. Morrison continued and finished the logging and drill core sampling. A total of 46 samples were selected, split by a manual blade splitter and shipped to CDN Resource Laboratories in Burnaby for assaying. The remaining portion of the drill core has been stored in enclosed racks at the Hawkley Creek base camp, where it is available for future inspection. Anomalous values of copper were encountered along with alteration which was thought to be indicative of the periphery of the zonal alteration caused by the intrusive.

2.0 GEOLOGY

The Ashton Copper-Gold Project claim group is located on and around Eureka Peak and its ridgeline. Eureka ridge is formed on the Eureka Peak syncline; which lies on the eastern flank of the Quesnel Trough, near its boundary with the Omineca Belt. The rock units exposed on the property have been thought to be part of the Triassic-Jurassic Takla Group rocks of the Quesnel Trough. However they are non-typical and may constitute a unique sequence of a granitoid stock that has intruded into its own co-magmatic pile of sedimentary volcanics. The intrusive is thought to be Cretaceous in age and is an epizonal complex. Composition is primarily granodioritic, but ranges from felsic quartz monozonite through to peridotite and amphibolite. Underneath the assemblage of volcano-sedimentary and intrusive rocks is a series of ultramafic, sill-like intrusions. These have been metamorphosed and are thought to be older than the volcanics. Blocks and fragments of these intrusive ultramafics are found in the augite-porphyry breccia of the overlying mafic volcanics. A major fault exists above the ultra mafics and it is along this fault that the later granodioritic stock probably intruded.

The Diamond drill hole SEP-88-08 was drilled in a sequence of mafic volcanics. It intersected a series of both brecciated and non-brecciated flows, minor fine grained dykes and tuff beds. Weak, pervasive, propylitic alteration was present throughout all units. Calcite occurs as stringers, veinlets and blebs in the flow rocks and in the brecciated sections it supports up to 2 cm clasts and comprises between 10% and 20% of the rock. Both pyrite and pyrrhotite occur as disseminations and blebs. The pyrrhotite is anhedral and the pyrite as anhedral to euhedral, up to 2mm (cubic crystals). All rock types have sections of coarse, milky white quartz-calcite veins and veinlets. Sections of veining are often accompanied by stronger chloritic alteration of mafics and light green, sub 1mm stringers of probable epidote.

3.0 DISCUSSION OF RESULTS

The 1988 exploration program on the Ashton Copper Gold project was successful in accomplishing its objectives. The compilation of reports from previous work programs on the property has provided a foundation of information for Sirius Resource Corporation to interpret and utilize towards further

exploration.

Several drill targets have already been identified above the adit constructed by Helicon in 1966 and along the flank of the ridge which forms the north slope of Eureka Bowl. These drill targets will be accessible during the summer months only.

A ground EM survey conducted in 1966 outlined the boundaries of a large electromagnetic conductor surrounding the Eureka Peak intrusive. The conductor has been interpreted to represent the pyrrhotite halo which extends from the intrusive contact into the surrounding volcanic rocks. Reconnaissance mapping supports this interpretation.

The limited drill program completed in November, 1988 by 1257 Geological Ltd. on behalf of Sirius Resource Corporation, was intended to confirm the location of the inferred contact between the intrusive and the volcanic rocks at depth. The second drill hole intersected a series of weakly propylitic altered mafic volcanic rocks and tuffs. The presence of small veinlets and disseminations of pyrite and pyrrhotite as well as minor amounts of disseminated chalcopyrite in the drill core are thought to be peripheral products of the zonal alteration caused by the intrusive. Mapping has shown that copper mineralization extends up to 70 metres into the altered mafic volcanics, with the pyritic halo extending another 30 metres beyond that. The diamond drill hole did not reach the area of strongest alteration, although anomalous copper values up to 295 ppm were intersected. All indications are that the potential exists for an economic copper porphyry deposit closer to the intrusive.

4.0 <u>CONCLUSIONS</u>

The property which comprises the Ashton Copper-Gold project has potential for hosting an economic copper porphyry deposit with associated gold mineralization. Previous work on the property has identified a halo of disseminated copper mineralization which extends approximately 70 metres into the surrounding volcanic rocks from the intrusive. The drilling completed in November 1988 on behalf of Sirius Resource Corporation intersected zoning features of this alteration halo, returning anomalous values of copper.

Plutons compositionally related to the Eureka Peak intrusive have historically hosted economic gold deposits in British Columbia. Results to date warrant continued exploration of this intrusive complex.

5.0 ITEMIZED COST STATEMENT

0

 \cap

 \bigcirc

B.G. Richards, P. Eng. 3 days @ \$400.00 per day	\$ 1,200.00
M. Morrison, Geologist 7 days @ \$230.00 per day	1,610.00
D. Barrett, Core Splitter 2 days @ \$100.00 per day	200.00
Diamond Drilling 172.5 metres @ 101.10/metre	17,440.29
Road Maintenance, Snow Removal Grader	1,500.00
Camp Costs Rental of trailer complex and associated equipment 2,080.00 Catering 1,764.00 Maintenance <u>1,200.00</u>	5,044.00
Transportation Trucks and ATV's	883.38
Assay Costs CDN Resource Laboratories 46 samples @ \$12.40	570.40
Report Writing Geologist, draftsman, typing, reproductions	3,240.00
TOTAL COSTS	\$31,688.07

9

REFERENCES

- 1. Chevalier, A. (1982) Eureka Project, Report on the 1981 Exploration Program
- 2. DUBA, D. (1986) Geological and Geochemical Report for the 1986 Eureka Peak Project. Report for UMEX Inc.
- 3. HURD, G.M. (1966) Summary Report, Eureka Project.
- 4. MUSTARD, D.K. (1969) Property Examination, Eureka Mountain Prospect Report for AMAX
- 5. ODDY, R.W. and CAMERON, R.S. (1984) Geological and Geochemical Report for 1983, Eureka Peak Project 237. Report for Dome Exploration (Canada) Ltd.

Author's Statement of Qualifications

I, Lorne G. Rowan, do hereby certify:

- 1. That I am a self-employed geologist with an office at 32595 Dalhstrom Avenue, Abbotsford, B.C.
- 2. That I graduated from the University of British Columbia in 1985 with a degree of Bachelor of Science in Geology.
- 3. That I have practiced my profession since graduation in British Columbia and the Yukon Territory.
- 4. That I am a member in good standing of the Geological Association of Canada.
- 5. That I personally conducted or supervised the work program described in this report dated February 28, 1989.
- 6. That I own shares in Sirius Resource Corporation.
- 7. That written permission from the author is required to publish this report in any Prospectus or Statement of Material Facts.

Dated at Vancouver, British Columbia this day of March, 1989.

Loine Rouan

Lorne G. Rowan, B.Sc. Geologist

APPENDIX I - DRILL LOGS: SEP-88-07,08

ŧ

AT.

AT

(mcov

No core to be logged or sampled.

DIP TESTS :

TO

(feet)

(m). 25.3

FROM

(leet)

(m)

în.

FT.

ROCX

TYPE

DIAMOND E PROPERTY: Ashton Copper-Gol FT. LOCATION: Eureka Bowl FT. CLAIM: EN 5 FT. ZONE: Not Applicable FT. STARTED ON: Nov. 22, 1988	DRILL LO	G HOLE NO. LTITUDE : PARTURE : DRIZ. TRACE : ERT. TRACE : DMPLETED ON ;	<u>SEP-88-07</u> 16.2 m 20.2 m Nov.23, 1988	DIP - LENGTH : BEARING : ELEV. COLLAP LOGGING ON	-50° 83ft/25.3.m 270° 1520 m Not applicable	CORE SIZE . N DRILLING CO	PAGE: <u>1</u> of <u>1</u> 0 0 0 0 0 0 0 0 0 0 0 0 0
	รบเคห	IDES	G	ANGUE - ALTERA	TION SAMP	LE INTERY. ASSAY	ASSAT AVERAGE
LITHOLOGY	H A H	AIN AII	H AIH AI	н ам ам	AIH AIH A	(Teet) oz/ton Au (m.)	ASSAT oz/len/!1
Casing							
- hole abandoned at 83 ft. after failing							
to reach bedrock.							

ABBREVIATIONS FOR DRILL LOGS

AMOUNT: A=amount in percentage; t=trace; m=minor; 10=percentage,eg.10%.

COLOURS: bk=black; bl=blue; br=brown; grn=green; gry=grey

MODE OF OCCURRANCE: B=blebs; brx=breccid(ted); CBA=core to bedding angle; Clv=cleavage-plane; diss.=disseminat(ions,ed) F=foliation; G=gouge; I=irregular veins; MSV=massive; Q=guilted, disseminated patches; V=veins; W=box work.

MINERALS: Ars=arsenopyrite; Au=visible gold; bio=biotite; cal.=calcite; ch1=chlorite; cpy=chalocopyrite; F-spar=feldspars; Fe-carb=iron carbonate; gn=galena; Mag=magnetite; PO=pyrrhotite; py=pyrite; ;lag=plagioclase; gtz=guartz; ser=sericite; spl=sphalerite

\bigcirc

DIAMOND DRILL LOG HOLE NO. SEP-88-08 PROPERTY: Ashton Copper-Gold LATITUDE: LOCATION: S.E. corner of cut. block DEPARTURE: CLAIM: EN-5 DIP TESTS : -50° 019 CORE SIZE . AT 0 FT -50° AT 488 FT -51° 483 ft/147.2 m Rogers Drilling LENGTH DRILLING CO. : <u>93 m</u> JKS 300 240° AT _____ FT. _ HORIZ TRACE : MACHINE : BEARING : ZONE: Not applicable STARTED ON: Nov.25. 1988 ELEV. COLLAR: 1574 m LOGGING ON : NOV. 20-28/88 ---- 57. -----115 m AT. AT _____ FT. ____ VERT. TRACE : Locaed by: M. Morrison COMPLETED ON , a.M. NOV . 28 . 1988 AT FT. AT _ _ FT _ FROM то SULPHIDES GANGUE - ALTERATION ROCX ECO. SAMPLE INTERY. ARRAY ASSAY MERAGE (feet) (feet) LITHOLOGY TYPE NT. . (feet) ASSAY tim 1 (m)oz/1on/11 H AIH AIM AIH AIH AIM (m) AIH ALH AIH opb AIH Å 0.91m 0 Casing to Bed rock 0 91 3.96 Amp -amphibolite w/minor calcic stgs 2,14 3,75 <3 58126 I -minor epidote and hornblende laths to small_crystals -more epi and hbl x'ls up to 2mm at 2.44m w/m. dissem. Py -m.calcite in fractures w/py @ 20° to C/A -3.6 m more epi and hbl in anhedral x'1s 3.96 5.10 Amp -epi stgs in a more mafic alt'd amp., 3.96 5.05 58127 3 flowage direction 30° to C/A -hbl average $\simeq 10\%$ overall w/calcite blebs & stgs and chlorite w/mafic f.g. matrix

ABBREVIATIONS FOR DRILL LOGS

AMOUNT: A=amount in percentage; t=trace; m=minor; 10=percentage,eg.10%.

COLOURS: bk=black; bl=blue; br=brown; grn=green; gry=grey

MODE OF OCCURRANCE: B=blebs; brx=breccid(ted); CBA=core to bedding angle; Clv=cleavage-plane; diss.=disseminat(ions,ed) F=foliation; G=gouge; I=irregular veins; MSV=massive; Q=quilted, disseminated patches; V=veins; W=box work.

MINERALS: Ars=arsenopyrite; Au=visible gold; bio=biotite; cal.=calcite; chl=chlorite; cpy=chalocopyrite; F-spar=feldspars; Fe-carb=iron carbonate; gn=galena; Mag=magnetite; PO=pyrzhotite; py=pyrite; ;lag=plagioclase; gtz=guart2; ser=sericite; spl=sphalerite

PAGE: 1 OF 10

C

.

PAGE - 2 OF 10

FROM	TO	ROCX	AE		SUL	PHIOE	5				GAN	GUE	- A	LTERA	TION		SAMPLE	INTERY.	ASSAY	ASSAY	MERAGE
(Jeet)	(leet)	TYPE	ő	LITHOLOGY													N9.	[]00]]	nnh		ASSAT
E 10	5.00	natic	Y.	mafik duke yery chlonitic come course	H A		ATH		· A	<u>H A</u>	<u>ін</u>		H	<u>un</u>	AIH	58128	5 05	5.60	< 3	-	
5.10	5.60	цуке		* alt'd softer						_	+		•				3.03	0.00	~~~		
5 60	7 /0	Amo		Amph w/coloite star or 1% hbl hlw/my		·{	+-			· · ·			-			_					
5.00	/.40	Ашр		-Amph w/catcite stgs=1% hbt, blu/gry			+-							<u> </u>		58129	5.60	7.48	<3	<u> </u>	
				replaced mag(:) grading to brx at 0.0		- <u> </u>					+									<u> </u>	
			<u> </u>	\rightarrow 7.0 w/py c/d along shallow fractures			+												-		
						<u> </u>	+		<u> </u>		+			<u> </u>	_		1				
				7.48 grade to more chloritic										<u> </u>			·				
·		Pav			<u> </u>	ļ	-				<u> </u>			<u> </u>	1		<u> </u>	1		<u> </u>	
7.48	10.88	Amp		-Brx Amph. (gabbroic-like resemblance)	<u> </u>	ļ								<u> </u>		_	1	<u> </u>		ļ	1
		<u> </u>		w/calcite_stgs_med_grn-gry_green_w/			_			······							<u> </u>	1			
L		<u> </u>		variable m. hbl						-											
			l	-calc/talc on fract \simeq 45° to C/A														1			
				displaying lateral movement thru core(?)	·										_ [
	-																				
10.88	11.38	dyke		-grade to more epi content, .1 m dyke												58130	10.88	11.38	<3		1
		Amp		w/ py (stretched in flowage dir'n														1			1
				\simeq 60° to C/A) looks syenitic							1									1	
11.38	13.36	dyke		-dyke		1	1						1			5813	1 11.38	13.36	<3		
			1	variable epi up to 70% in .1 m sections;			1													1	
		1	1	hbl overall≃15% m. dissem. py, dk grn/gry	/		1						1			····				1	
				matrix dissem. m. mafic, m. calc.	Í					1	1				_						
		I	1	-lower contact chloritic	1					1	1				<u> </u>			1			
													<u> </u>					1			
		1			1.				· · · · ·	·	+							1			
		1																	-	1	-
		ł				1				1			1						-	1	1
-			1		1	-				1			<u>†</u>				-				<u>-'</u>
	1			<u> </u>	1									+							
	1	+		· · · · · · · · · · · · · · · · · · ·	1				<u>_</u>		-+										
L	I		1			_					·		<u></u>								<u> </u>

PAGE - 3 OF 10_

FROM	TO	ROCX	RE		su	LPH	10 6 5	3				GA	NGUE	- A	LTERA	NOI		SAMPLE	INTERV.	ASSAY	ASSAY	WERAGE
[]eei] (m]	(1111) (m)	TYPE	Ö	LITHOLOGY														N ² .	(1001)	anb		ASSAT
12 26	16 67	Amp		Amph						-	н		A	<u> </u>	<u>ин</u>		AIH A		/ fact			
13.30	10.07	Amp		Amph													5012		16 67	<u> </u>		<u> </u>
· · · · ·				-Very childrifte in. brx. and relict													1 58134	15.25	10.0/	<u> </u>		
				clasts (nbl?) dk.grn.													-					1
]	<u> </u>	-14.3 - 14./ dissem. py.				·										<u> </u>	-			1
			<u> </u>	-continue chloritic w/same epi														<u> </u>				1
			ļ	overprint and Brx. at $15.25 \rightarrow 15.5$											<u> </u>						1	<u> </u>
			ļ	-some dissem.py.		<u> </u>		<u> </u>						<u> </u>	·						<u> </u>	<u> </u>
				- 1cm fracture @ 67° C/A calc/epi						•				ļ				<u> </u>			<u> </u>	
										,								1				
16.67	19.92	Amp		-more calcic w/epi v.f.g. mafics,													58133	3 16.67	18.81	< 3		
				calcite stgs up to 1 cm wide and swirled									-									
				w/dissem. py																		
	·			-continued variable calc/epi w/diss. py																		
				cubes, fractures @ 45° C/A																		
19.92	21.37		1	-epistgs variable in clusters	1							Í		1	1		58134	1 19.92	22.25	∢ 3	1	
		1		-one section, .2 m w/calc diss.											1							
-					1			1						1					1		1	
21.37	22.25	tuff	1	-py in Tuff 21.37 - 22.2 calcic/episwirls									•••• ••••	1	1				1	1	1	1
		1	1	stgs & vn in f.g. dk grn tuffaceous matrix	×						1			\dagger				1		1		
			1	w/py cubes (2 mm) or diss.	<u>†</u>			+			\uparrow					1			1			
			1					1												<u> </u>		-
22.25	23.77	Amp	+	-Amph w/variable hbl epi stg calc stgs				1											1			
		1	+	fracture ≃30° C/A	+														1	+		
		1	<u> </u>	<u></u>		- †																
23.77	29.9	· Amn	+	Amph. Brx appearance chloritic/epi and	-						+			-		_	5813	5 24.2	1 26.0	<3		
		1 / 1112	1	lamph calcic stas m/nv/d/c	+						+											1
		-	+		+						+						1				<u></u>	
			+		+			_										<u></u>		<u> </u>		1
. ·	<u> </u>								1													1

PAGE - 4 OF 10

FROM	TO	ROCX	A E		su	LPH	10 6 5					GAN	IGUE	- 44	TERAT	ON		SAMPLE	INTERV	ASSAY	ASSAT	WERAGE
(1001)	[feet]	TYPE	6	LITHOLOGY														N\$.	[feef]	nnh		ASSAT
			<u> </u>		H	AIH	A	н	AIH	-	н	AIH	<u> </u>	A A	H A	H	Ин	<u>.</u>	(@)	- udd		at/148/11.
29.9	32.9	Amp	<u> </u>	-increasing epi swirls and hbl, fract.	!				_			_		-				_				
				\simeq 43° to C/A w/chl - calc infilling	ļ																	
				-small hbl xls (euhedral) up to 3x1 cm	<u> </u>																	
				and cut by calc vn -> softer : altered																		
				& chloritic (replacement)																		
32.9	39.2	Amp		-increase in bl/gry remnant mag and calc.											•							
				-also py diss. cubes (up to 1 cm)																	1	
				-calc/chl. in fractures $\simeq 10^{\circ}$ to C/A,													1					1
				fractures≃50° to C/A								1										
			1	-grades to more mafic (dkr grn-blk →	1											1	1	İ	1		1	
				chlorite) and epi 36.0	1			1				1	1					İ	1	1	1	1
	1	1	1	-epi, plag.? (pale pink/brn.)									Ì		<u> </u>	1	1			i	1	
			1	-dissem. py in small clusters or in mag.	1								Ì			1			1		1	1
				xls									i		1	1	1 .	-		1	1	1
			1	-calc, stos & Vn≃80° to 88° C/A									. 1		1		i					1
			1									<u> </u>			1					1		1
39.2	39.6	Tuff	1	-alt'd tuff w/epi swirls and amph w/m. py	1									-	1	1				1	1	
			1	cubes	1			1							1	1	-		1		1	1
		1	1		1											+			+			1 .
39.6	42.2			-Amph., $40 \rightarrow 40.6$ lesser chl	<u>†</u>						<u> </u>				1			-				+
		1	1	-40.6 increasing chl and mafic swirls	+			-	-+-							+	5813	39 42.06	42.5	<3	·	
		+	+		+						1		<u></u>		+			<u> </u>			+	
42 2	42 35	+		-calci/gtz vn w/epi and m. dissem. pv					-+-						+							-
	12.00	+	1	$\approx 50^{\circ}$ to C/A					+													
		 F	+	-grade to amph then more calcic swirls	-				+			-+-				+					1	1
				w/epi	+					-												
		+	+		+	-+			+		+			<u> </u>	+	+						
	1		+			 -					+			1					-		-	
	1										1								1			

PAGE - 5 OF 10

Itent Trig § LITHOLOGY And Alm Alm	FROM	TO	ROCX	RE		sui	_ P 1	110 8 5					GAI	NGUE	-	ALT	ERATI	ON		SAMPLE	INTERV.	ASSAY	ASSAY	WERLGE
Image: Structure in the st	(issi) (m)	lices)	TYPE	ő	LITHOLOGY						_									N9,	[] == 1]	nnh	a anna	ASSAY
42.35 57.2 Amo Amoh Image: Constraint of the state of the				<u> </u>				A .	н		-	<u>H A</u>	<u> H</u>	A	N	A11	<u>n Al</u>	<u>H A</u>	<u>IH A</u>		101			
42.35 57.2 Amp Amph				 	<u>-epi py cubes variable</u>				<u> </u>	-	-								- ·					<u> </u>
42.35 57.2 Amph						<u> </u>			-							<u> </u>								1
-40./t 046.// qtz wrept overprint 5010 [43.2 (43.0 (24) Win 90° to C/A, w/overall dark xls 5011 [47.3 340.13] ->increasing epi content 5011 [47.3 340.13] 47.6 → 88.0 qtz Yn w/epi and 2 mm long 5011 [47.3 340.13] - 47.6 → 88.0 qtz Yn w/epi and 2 mm long 5011 [47.3 340.13] - 47.6 → 88.0 qtz Yn w/epi and 2 mm long 5011 [47.3 340.13] - 47.6 → 88.0 qtz Yn w/epi and 2 mm long 1 - - - - 47.6 → 88.0 qtz Yn w/epi and 2 mm long 1 - - - - swirled and ≈40° to C/A, grades to amph. 1 - - - - -49.95 to 49.99 ≈65° to C/A calcic Vn 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td>42.35</td> <td>57.2</td> <td>Amp</td> <td><u> </u></td> <td>Amph</td> <td>┼───</td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>42.0</td> <td>42.00</td> <td>62</td> <td></td> <td><u> </u></td>	42.35	57.2	Amp	<u> </u>	Amph	┼───										_				42.0	42.00	62		<u> </u>
Image: Set 1 47.3 Mound in the set 1 in				<u> </u>	-46./ to 46.// qtz w/epi overprint	<u> </u>	-						+-			_			58140	43.2	43.89	₹ 3	· · ·	<u> </u>
And Sector 2012 Sector 2012 </td <td></td> <td></td> <td></td> <td> </td> <td>Vn 90° to C/A, w/overall dark xis</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td>58141</td> <td>47.33</td> <td>48.13</td> <td>< 3</td> <td><u> </u></td> <td><u> </u></td>				 	Vn 90° to C/A, w/overall dark xis								+		<u> </u>				58141	47.33	48.13	< 3	<u> </u>	<u> </u>
47.5 ~ 38.0 qtz V m Wepi and 2 mm long			-	<u> </u>	⇒increasing epi content	<u> </u>						•	_						58142	49.2	50.06	<3		<u> </u>
dk anhedrai xis(b)/augite) <				<u> </u>	$47.6 \rightarrow 48.0$ qtz Vn w/epi and 2 mm long	<u> </u>			ļ				_		ļ				ļ					<u> </u>
i -swirled and #40° to C/A, grades to ampn. i </td <td>·</td> <td></td> <td></td> <td></td> <td>dk anhedral xls(hbl/augite)</td> <td>ļ</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td>1</td> <td><u> </u></td>	·				dk anhedral xls(hbl/augite)	ļ			<u> </u>		·									<u> </u>			1	<u> </u>
-49.95 to 49.99 = 65° to C/A calcic Vn Image: Constraint on each side of contacts, Image: Constraint on each side of eac					-swirled and≃40° to C/A, grades to amph.	<u> </u>		·					1						<u> </u>					
w/diss. py cubes w/diss. py cubes <td< td=""><td></td><td></td><td>·</td><td></td><td>-49.95 to 49.99≈65° to C/A calcic Vn</td><td><u> </u></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· ·</td><td> </td><td></td><td></td><td> </td><td><u> </u></td></td<>			·		-49.95 to 49.99≈65° to C/A calcic Vn	<u> </u>													· ·					<u> </u>
-f.g. matrix on each side of contacts,					w/diss. py cubes																			
chloritic & w/epi					-f.g. matrix on each side of contacts,																1			1
-continue more Brx. pattern very magnetic					chloritic & w/epi																			
-variable epi/ch1, m.mag w/py cubes 2 mm					-continue more Brx. pattern very magnetic					1													}	
-55.0 mag. cluster then m. amounts -55.0 mag. cluster then m. amounts -55.0 mag. cluster then m. amounts -55.0 mag. cluster then m. amounts 57.2 58.4 Dyke Dyke Dyke 58.14 S7.06 S8.5 <3					-variable epi/chl, m.mag w/py cubes 2 mm																		1	1
57.2 58.4 Dyke Dyke Dyke 57.2 58.4 Dyke Dyke 58.4 57.06 58.5 <3					-55.0 mag. cluster then m. amounts										1									1
57.2 58.4 Dyke Dyke 58143 57.06 58.5 <3				1						1			Τ		1				1.					1
-m.diss. py cubes and calc. -alt. amph, very chloritic, epi 260% and Image: Contract of the contrac	57.2	58.4	Dvke		Dyke								Τ						58143	57.06	58.5	<3	1	T
-alt. amph, very chloritic, epi≃60% and					-m.diss. py cubes and calc.								T										1	
alt. plag. (cream-brn colour) alt. plag. (cream-brn colour)					-alt. amph, very chloritic, epi~60% and	T			1	1												1		
58.4 61.87 Amp -amp. w/variable epi & calcite stgs 58144 61.75 62.75 <3					alt. plag. (cream-brn colour)														1	1				T
58.4 61.87 Amp -amp. w/variable epi & calcite stgs 58144 61.75 62.75 <3				T		T							T		1								1	
m. Brx., more Brx around 61.7 w/more mafics <td< td=""><td>58.4</td><td>61.87</td><td>Amp</td><td>1</td><td>-amp. w/variable epi & calcite stgs</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>58144</td><td>61.75</td><td>62.75</td><td><3</td><td></td><td></td></td<>	58.4	61.87	Amp	1	-amp. w/variable epi & calcite stgs				1						1			1	58144	61.75	62.75	<3		
mafics Image: Constraint of the second		1		1	m. Brx., more Brx around 61.7 w/more	1.				1											1			· ·
					mafics								T		1.			1	1		1	1	1	1
			ŀ			1							T							-		1		1
						T											1							1
												1					1					1		1
				1		—			1			1	\neg				1	1	1		1			1

0

PAGE - 6 OF 10

FROM	та	ROCX	ame		SUL	PHIOE	5			6	ANGU	٤ -	ALTE	RATI	0 N		SAMPLE	INTERV.	ASSAY	ASSAY	WERAGE
[m].	(m)	TYPE	Š		H A	IN 4	н	AIN	Ă IN		H 4	1			M A	H A	Nº.	(ieei) (m)	ррь		A35AT 06/108/11.
61 97	62 2	Tuff		-alt m tuff w/eni overprint					Ť			1									
01.0/	02.5	1411					1					1			-				<u></u>		1
62.3	80.3	Amp		-m. amph. w/dissem, pv		-	1		\uparrow												
				-63.42 - 63.63 coarse grain (.5-1 mm)			1					1				58145	63.05	63.90	<3		
				mainly epi & mafics w/m. py cubes	1		1					1.				58146	67.1	68.0	< 3		
				-grade to amph. gradually w/py xls (2)		1		1		-											1
				up to 1.5 cm		1	1	1					ŀ							1	
,				-variable chloritic epi.																	
				-67.24 m. mag w/relict mag. w/py dissem.																	
				& cubic								1 .									
			<u> </u>	-67.6 -> amph. m. Brx																	
				-72.0 -> start m. mag. grade to up to																	
			1	(70% 2 mm mag xls) more mag.																	
				-variable small xls w/ lg. clusters in																	1
				f.g. amph. matrix																	
			1	calcic stgs, m.epi, m. py															1		
				-at≃79.4 mag. disappears								1									
				-80.0 epi swirls w/m. calc stgs							1									1	
			1																		
80.3	81.0	1		-f.g. tuffaceous matrix epidote matrix											1	58147	80.2	81.3	<3		
1			1	(≈80%) →80.5 py cubes & diss. (up to	1		1				1		Ì		1						
				.5 mm diss cubes)							1				1						
		1	T	-grade to f.g. Lt grey/bl. amph/tuff	1																
		1		· · · · · · · · · · · · · · · · · · ·	1					<u></u>									1		·
81.0	85.0			Amph w/diss. py									Ì								
		·													1						
			1																		
							-														
			1																	1	-

0

PAGE - 7 OF 10

FROM	TO (ices) (m)	ROCX	R		รบเ	PHIOE	5				GANGU	٤.		ERATI	ON		SAMPLE	INTERV	ASSAY	ASSAT	MERAGE
(leat)	(les)	TYPE	ŝ	LITHOLOGY													Nº.	(1001)	nnb		ASSAT
	0 90.03 Amp		<u> </u>	Dur (all star 2 Va to COE 2 than		<u> </u>	<u>AIH</u>	AIH	A	<u>H 4</u>	H A	L H	A(H A	H A	H A	1	(A)			
85.0	90.03	Amp	 	Brx w/calc stgs & Vn to 285.3 then								+-	·		-				<u> </u>		
ļ			<u> </u>	increasingly siliceous w/epi swirls and		-					<u> </u>	1	<u> </u>			58148	85.1	86.9	< 3		1
<u> </u>		· · · ·		qtz swirls in dk grn mafic matrix, diss.										•••••••		58149	86.9	88.64	1		<u> </u>
				py (cpy?) up to 5% in places.		<u> </u>										58150	88.64	90.03	53		<u> </u>
				-grade to more darker matrix (softer									·								<u> </u>
(astronom				chloritic) at \approx 87.5 w/same as above		<u> </u>	_													<u> </u>	<u> </u>
where the second s				≃88 m epi: Brx w/subrounded clasts up		diss	ру														<u> </u>
+				to 6x3 cm 88.75 (x.1 m) qtz gangue w/epi		throu	ghout				lincre	eals i	ingly	•							<u> </u>
				/ py and amph ≃ 40° to C/A							silic	celor	is &								
				-grade to epi ~> 65% w/subrounded amph.							chlor	riti	ic								1 .
			1	clasts, v. chloritic (m. hbl) and diss. py	1												1		ļ		
	1			89.5 - 89.6 ≥ 50° to C/A qtz (m.calc.)												Ī	1			1	T
	1	1	1	milky colour w/py conc. along upr. contact	:													1			1
	1	1		-open cavities Sol'ns travelling thru.		1										1			<u> </u>		1
	1	1	<u> </u>	-more epi. w/amph clasts (chloritic) and																	1
				more "honeycombed" sol'n courses w/py.							Í										1
90.3	93.6	Amp		-upr contact more calcic w/ qtz v.										1		1					
	T			$(\simeq 50^{\circ}$ to C/A V.both sides) w/ diss. py,	1											58151	92.03	92.4	13		
		1		m.epi. amph and sol'n course cavities												58152	92.4	93.64	<3		1
	1	1		-grade to (90.15) higher calcic content	T					1.							1	1			1
		1	1	in amph epi ≃5% w/diss. py along calc						1					1	Ī		1			1
		1	1	$vn \simeq 34^{\circ}$ to C/A		1				1					1.	1		1			1
			1	-91.3 higher epi calcic stgs and diss. py				Ī			1			1	1			1	1		
				in f.g. bl.gry matrix amph py cubes up to									11 4								
		ł		1cm, m. Brx.																	1
			1				1			1				1							1
	1	1												1							1
		1												1	1			1			

PAGE - 8 01 10

FROM	то	ROCX	RE		su	срни	0 6 5					GAN	GUE	- A	LTERA	TION		SAMPLE	E INTERV.	ASSAY	SSAY ASSAY	WERAGE
[]aai] : [m]	[]ses] (m)	TYPE	- <u>5</u> -	LITHOLOGY						-								N#.	(1001)	opb -		ASSAT
93.6	96.9			-m Bry Amph							<u> </u>	1		<u>H 4</u>			AIH A		(104			
55.0	50.5			more epi swirls and increase up to						-†			-+				58153	93.64	95.5	<u> </u>		
				\simeq 70% w/amph or alt hbl (120°c1)						+		+					58154	95 5	96.9	43		
				Chloritic w/diss_pv	 					\rightarrow		┼──				-	0010		50.5			
				-clasts 1x1.5 cm grade to much larger		+	$\neg \uparrow$		+	+		+	-+									
				(massive) to 6x2 cm)					- <u>-</u>	+		+										1
				-clasts of Amph. in epi also 8 cm x 8 cm					+	\rightarrow				· · · ·						<u> </u>	<u>}</u>	
				-more Brx appearance of m.calc/gtz						-+		+				-				·		1
				w/epi stg in alt. amph.						-					1	-						1
										\uparrow	·••	+										1
96.9				f.g. matrix tuffaceous w/epi swirls	1			*		\neg		\uparrow										
			1	and diss. py								1				1	58155	96.9	98.9	<́3		
	<u> </u>		1	grade to amph w/epi and back to f.g. mafic	2							1				1	58156	98.9	101.5	43		
				matrix w/epi calc stgs and py in flow													58157	102.5	103.35	<u>د ۲</u>		
				dir.																		1
				\sim 50° to C/A and shallower 101.5 grade																		
			1	to Amph. w/epi and calc stgs																		
				1 cal. V. 3 cm ~ 50° to C/A and shallower																		
				101.5 grade to Amph. w/epi and calc. stgs															1			
				1 cal. V. 3 cm~ 50° to C/A					1								58158	105.3	7107.36	13		
				-epi m. past 103.3 frctr calcic w/m.																		
				sulph. @ 30° to C/A										1						1		
				108.2 - increasing epi swirls to flow																		
				dike w/ amph clasts										1						1		
				-lower contact 107.1													58159	108.3	5 110.6	3		
		ŀ		107.1 Amph.																		
				w/ variable epi m. diss. py													58160	114.8	3 116.4	K 3		1

PAGE - 9 OF 10

FROM	TO	ROCX	REC		SUL.	P H 10 E	5			GANGUE - ALTERATION						AMPLE	INTERV.	ASSAY	ASSAT	WERAGE
{1eet} · (m)	[]e=1] [m]	TTPE	Ş	LITHOLOGY	H A	1						-				.N.8	(fee)) (m)	ррр		ASSAY
· · · ·				-a series of f.g. tuffaceous chloritic						1										
				w/epi overprint dikes 5 of them up to		1					1 I			581	61	117.07	118.46	7		
			<u> </u>	.18m. most w/diss.pv. contacts & flow	1	·					1								1	
				~58° C/A		1		1		1							Í			1
			1						l	1						······································				1 · ·
			1	120.2 → increasing epi w/gtz		1	Τ->	121.3	in ca	Icite	swir1			581	62 1	19.58	120.42	〈 3		1
				(epi overprint)	ŀ	1	also p	on logop	ite mi	cla	1	ŀ	1	581	63 J	20.9	123.0	< 3	1	1
				V. & stgs (90° to C/A)													1			
			<u> </u>	m. diss. py - lg. dk. amph xls→give					1A	1	1								1	
			1	Brx appearance				m.	silic	eous										
			1	123.26 increasing calc. w/ .3m section					V					581	.64 🏻	23.26	124.3	3	1	1
			1	w/diss. py/c. cpy?																
			1																	
				125.0 → variable epi/calc in crackle																
				Brx amph. m. hbl.						T										
				129.1->129.3 v.f.g. tuffaceous / calc.										58	3165	128.93	3130.95	1 < 3		
				w/epi overprint dike w/m. py c.																
			1	130.45 - dkr. amph w/ diss. py and c.																
				up to 1 cm																
				130.8 m m.Brx w/m. tuff flow (132.4 m.						T										
				diss. py)																
		ŀ		135.3 -> 135.5 and 136.0 - 136.2 epi										5	8166	135.2	2 136.5	43		
				overprint in f.g. tuffaceous matrix @	-											•				
				60° to C/A																

PAGE - 10 OF _10

FROM	TO	ROCX	RE		SUL	PH1	230				G.	UDKA	٤ -	AL	TERATI	0 N		SAMPLE	INTERV.	ASSAY	TABLA	MERAGE
[ises]	(1441) TTPE	Ğ	LITHOLOGY														N\$.	[]001]	nnh		TASSAT	
			Y				A 1	1 A	<u>н</u>	<u> H</u>		H/	<u>I H</u>	A	H A	H A	H A		[.			
ļ				m.f.g. d/c more conc. around 136.4-136.5		-				+				·		.	<u> </u>	· ·		<u> </u>		
				<u> </u>		-				-				_			<u> </u>	<u> </u>			<u> </u>	1
ļ				137.0 - calc/m. tuff & epi swirls mainly	ļ							· · ·	<u> </u>				58167	136.6	139.0	7		<u> </u>
]				60° to C/A \rightarrow 137.1	ļ	+				<u> </u>							58168	139.0	140.97	10		<u> </u>
				-amph.	<u> </u>								<u> </u>				ļ			ан на на 1919 г. – Стана 1919 г. – Стана Пара		· ·
	-			137.95 dike f.g. alt m. tuff						_											<u> </u>	<u> </u>
				epi w/ m. amph grade to amph w/ diss.								<u></u>		. •	•	- 1.	ļ	1			<u> </u>	<u> </u>
				py, back to same dike matter, 138.5 -													<u> </u>			l	-	1
				^{138.65} →			1															
				amph Brx																		<u> </u>
				139.1 same dike material as previous -																		
				flow ~ 30° to C/A w/ py diss. in	<u> </u>																	
				foliations																		
		1																				
				140.5 more calcic until to Amph]												58169	140.9	142.34	(3		1
		1		(~140.7) then increasing calc						1							1	1				
		1		Siliceous			1															1
		1		-Amph. m. Brx. w/	1				1			1		•		T						1
				pccasional m. py. in folin w/ epi stgs.	1	1										1 .			1.			1
		1													1	1	-					1 .
143.9				increasing to m. tuffaceous	1					-j-		1			1	1	58170	142 8	145 2	10		
		1		(to chl. schist)	1				1			i –		<u>.</u>		1	68171	145 2	147 2	7		
				matrix f.g. w/					·	1		†—				<u> </u>	1	1 143.2	1			
	1			diss amph	1.							<u> </u>			1	<u> </u>			1		1	
		1		-calc / eni / chl /stas in fol'n w/ nv	1	- <u> </u>			1			<u> </u>										- <u></u>
	<u> </u>	·		diss overall	1	1			1						1	-		-	+		1	1
				-bedded effect 144 0 m to btm of bolo								+	-+		+							
	+		l																			<u> </u>
												+	-+						1			1
1	1	1	1	1 E.U.H. 14/.21 m	<u> </u>			l	1			1			1	1						1

0

()

CDN RESOURCE LABORATORIES LTD. 6329 BERESFORD STREET, BURNABY, B.C. V5E 1B3 / PH: 435-8376 / FAX: 435-9746

Lorne Rowan 1257 Geological Ltd. 1150 - 609 West Hastings Box 26 Vancouver, B.C. V6B 4W4

December 14, 1988

Dear Lorne:

The following are the procedures we followed for analysis of your samples from the Frasergold project:

Geochem Au - 30g of sample was fire assayed. The resultant prill was dissolved in 2.0 ml of aqua regia. bulked to 5.0 ml with distilled water and then presented to the AA for gold determination.

<u>Assay Au</u> - 30g of sample was fire assayed. The resultant prill was parted in dilute nitric acid. The gold bead obtained was then weighed if large enough. Those beads too small for accurate gold determination by weighing are dissolved in aqua regia and presented to the AA for gold determination.

Geochem Ag, Cu - 0.5 g of sample was digested in aqua regia on a hot water bath for 2 hours. The solution was bulked to 10 ml with distilled water and then presented to the AA for silver and copper determinations. **CDN RESOURCE LABORATORIES LTD.** 6329 BERESFORD STREET, BURNABY, B.C. V5E 1B3 / PH: 435-8376 / FAX: 435-9746

GEOCHEMICAL REPORT

1257 Geological Ltd. 1150 - 609 West Hastings Box 26 Vancouver, B.C., V6B 4W4

;-*(...*)

Number: 88621 Date: December 5, 1988 Proj.: Ashton Gold Area EN5

Attn: Lorne Rowan

To:

cc. Sirius Resource Corporation

Αυ	Cu	Zn	
ppb	ppm	ppm	
58126 < 3	26	30	
58127 3	78	40	
58128 < 3	52	44	
58129 < 3	22	19	
58130 < 3	5	26	
58131 < 3	44	52	
58132 < 3	24	17	
58133 < 3	40	24	
58134 < 3	108	44	
58135 < 3	40	9	
58136 < 3	15	18	
58137 < 3	38	24	
58138 < 3	19	15	
58139 < 3	168	10	
40 < 3	122	20	
38141 < 3	28	26	
58142 < 3	174	26	
58143 < 3	24	32	
58144 < 3	134	34	
58145 < 3	28	28	
58146 < 3	26	14	
58147 < 3	18	18	
58148 7	118	54	
58149 53	98	76	
58150 13	240	72	
58151 < 3	52	34	
58152 < 3	28	22	
58153 < 3	285	28	
58154 < 3	164	20	
58155 < 3	205	44	
58156 43	280	56	
58157 < 3	64	26	
58158 13	74	17	
58159 3	182	36	
58160 < 3	76	20	
58161 7	104	24	
58162 < 3	44	13	
58163 < 3	64	24	
58164 3	295	28	
< 65 < 3	68	19	

Diman Sanderoo

C DN RESOURCE LABORATORIES LTD.

6329 BERESFORD STREET, BURNABY, B.C. V5E 1B3 / PH: 435-8376 / FAX: 435-9746

GEOCHEMICAL REPORT

1257 Geological Ltd. 1150 - 609 West Hastings Box 26 Vancouver, B.C., V6B 4W4

(-)

Number: 88621 Date: December 5, 1988 Proj.: Ashton Gold Area EN5

Attn: Lorne Rowan cc. Sirius Resource Corporation

	ppb	 	Zn ppm	
58166	< 3	74	20	
58167	7	90	17	
58168	10	76	- 30	
58169	< 3	64	13	
58170	10	86	20	
58171	7	44	28	

Duncan Sanderson

ACME /

GEOCHEMICAL ANALYSIS CERTIFICATE

852 E. HASTINGS ST. VAN

ICP - .500 GRAH SANPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HHO3-H20 AT 95 DEG. C FOR OHE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR HW FE SR CA P LA CR HG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SANPLE TIPE: Pulp

CDN LABS PROJECT 1257G File # 89-0106

6 5.06 .007 2 247 .89 30 .03 2 .49 .01 .19 1 31 2 10 .1 25 8 198 .68 5 ND 1 1 2 58139 2 139 2 2 27 2.28 .062 2 404 2.67 22 .04 3 1.65 .01 .06 20 2 1 58142 161 2 20 .1 80 37 352 3.67 1 5 ND 1 1 2 1 41 3.13 .128 2 180 2.75 34 .07 2 2.05 .01 .08 1 11 2 58144 2 124 2 - 30 .1 28 21 406 2.88 2 5 ¥Ŋ 1 2 79 2.71 54 .12 2 2.20 .03 1.63 76 1.47 .285 26 528 3.67 35 2 2 58153 .1 14 3 221 2 62 5 ND 66 39 .93 .117 2 76 1.39 143 .10 2 1.18 .94 .76 1 272 21 15 227 1.33 5 ND 1 1 2 2 1 58153 1 .1 . 4 27 1.39 .096 2 144 1.14 299 .08 2 .90 .03 .53 59 2 1 5 XD 1 2 58154 3 146 11 .1 20 11 174 1.27 2 2 50 1.60 .106 2 101 1.99 64 .14 2 1.68 .02 .79 1 2 5 HD 135 1 2 28 282 2.79 1 58155 4 194 2 35 .1 18 136 2 66 1.57 .247 2 63 2.38 84 .15 3 2.08 .02 1.29 17 9 29 363 3.37 4 5 ND. 1 1 . 2 1 58156 4 276 2 .1

LEGEND	
++++	ANTICLINE ; UPRIGHT , OVERTURNED
+A	SYNCLINE ; UPRIGHT, OVERTURNED
	FRACTURE
	GEOLOGICAL CONTACT; DEFINED, INFERRED
	KNOWN MINERAL OCCURRENCE

ROCK UNITS

RECENT
Q - ALLUVIUM
- RV - OLIVINE BASALT FLOW
TERTIARY
TV - OLIVINE BASALT
JURASSIC AND CRETACEOUS
JKg – GRANODIORITE, MONZONITE, QUART DIORITE
TRIASSIC AND JURASSIC
TRJa - BASALTIC TUFF AND BRECCIA
UPPER TRIASSIC
uTRa1 — PHYLLITE, ARGILLITE, QUARTZITE SCHIST, MINOR GREENSTONE
uTRa2 - greenstone, augite, porphyry breccia, tuff
uTRa3 — UNDIVIDED uTRa1 AND uTRa2
PENNSYLVANIAN (?) AND PERMIAN (?)
PPab — ANTLER FORMATION - AMPHIBOLITE HORNBLENDE - CHLORITE SCHIST
ub - SERPENTINE
PALEOZOIC
HPsm — SNOWSHOE FORMATION - PHYLLITE, SCHIST AND GNEISS
ARCHEAN
APgn - QUESNEL LAKE GNEISS
Manufacture and a second second second second second
Becould file.

GEOLOGICAL BRANCH ASSESSMENT REPORT

18,610

1.50 1 2 3 4 Km.

1257 GEOLOGICAL LTD.

SIRIUS RESOURCE CORPORATION

REGIONAL GEOLOGY

GEOLOGIST M. BLOODGOOD

DRAWN

E.B.CATAPIA

J.M.ASHTON

ASHTON COPPER-GOLD PROJECT

SCALE | 50,000

DATE MARCH 1989

FIGURE 4

