District Geologist, Prince George

```
ASSESSMENT REPORT 18610 MINING DIVISION: Cariboo
\begin{tabular}{lllllll} 
PROPERTY: & Eureka & & & \\
LOCATION: & LAT & 52 & 19 & 00 & LONG & 120 \\
& UTM & 10 & 5798716 & 662453 & & \\
& & NTS & \(093 A 07 E\) & & & \\
& & & &
\end{tabular}
CAMP: 036 Cariboo - Quesnel Belt
CLAIM(S): EN 5
OPERATOR(S): Sirius Res.
AUTHOR(S): Rowan, L.G.
REPORT YEAR: 1989, }35\mathrm{ Pages
COMMODITIES
SEARCHED FOR: Gold,Copper
KEYWORDS: Triassic - Jurassic,Takla Group,Volcanics,Sediments,Intrusives
WORK
DONE: Drilling,Geochemical
DIAD 172.5 m 2 hole(s)
    Map(s) - 3; Scale(s) - 1:50 000,1:5000,1:250
        SAMP 46 sample(s) ;AU,CU,ZN
    02137,02662,03814,05215,09786,10723,11935,13365,15527
    093A 011
```

DRILLING REPORT ON THE 1988 EXPLORATION PROGRAM FOR THE EUREKA CLAIM GROUP

LOG NO: OSO9 $\frac{\text { RD Q } 2}{\text { RCTINN Date received report }}$ bade from amendments 35 p :

FILE WO:

MACKAY RIVER AREA, CARIBOU MINING DIVISION BRITISH COLUMBIA, CANADA

LATITUDE: $52^{\circ} 18^{\prime} \mathrm{N}$ LONGITUDE: $120^{\circ} 38^{\prime} \mathrm{W}$

NTS: 93A/7E

PROPERTY OWNERS: ERIC SCHOLTES

ROBERT CARSON
MEX INC.

OPTIONORS: SIRIUS RESOURCE CORPORATION

MARCH 10, 1989

SUMMARY

The Ashton Copper-Gold project focuses attention on the Eureka group of mineral claims which comprise 51 claim units covering approximately 23 square kilometers on Eureka Peak Mountain, in the Horsefly River region of the Cariboo Mining Division in Central British Columbia.

Interest in the area began in 1958 with the discovery of porphyry copper mineralization associated with calcic-alkaline granitoid stocks in the vicinity of Eureka Peak. Work on the property has occurred intermittently since then for its copper-porphyry potential by several companies; including Helicon Exploration, Amax, Riocanex, Noranda and in 1981 by Umex Corporation. The rock geochemical survey conducted by Umex Corporation identified several gold anomalies in the Eureka Peak area. More recently, copper mineralization with gold in association has been identified in samples taken from the property.

In the Fall of 1988, Sirius Resource Corporation optioned the Eureka group from its owners and conducted a limited exploration program consisting of data compilation and diamond drilling. The purpose of the drilling was to test a small portion of the alteration halo surrounding the nearby Eureka Peak intrusive. The drilling produced anomalous copper values, but the alteration halo was not reached.

Plutons compositionally related to the type of intrusive found at Eureka Peak have historically hosted significant gold deposits as zoning features accompanying porphyry copper mineralization. At current metal prices, the discovery of a large tonnage coppergold porphyry type deposit would be economically attractive.

TABLE OF CONTENTS

Page
1.0 INTRODUCTION 1
1.1 Scope 1
1.2 Location and Access 1
1.3 Claims 1
1.4 Property 3.
1.5 1988 Exploration Program 4
2.0 GEOLOGY3.0 DISCUSSION OF RESULTS64.0 CONCLUSIONS$x 6$
5.0 ITEMIZED COST STATEMENT 89
REFERENCES
STATEMENT OF QUALIFICATIONS

0

LIST OF FIGURES

1. LOCATION MAP (After Page 1)
2. REGIONAL LOCATION MAP (After Page 1)
3. CLAIM INDEX AND LOCATION MAP (After Page 2)

THE FOLLOWING FIGURES ARE CONTAINED IN POCKETS AT THE END OF THE REPORT:
4. REGIONAL GEOLOGICAL MAP
5. DRILL HOLE LOCATION MAP
6. CROSS SECTION OF SEP-88-08

LIST OF APPENDICES

APPENDIX I DRILL LOGS: SEP-88-07,08

APPENDIX II ASSAY PROCEDURE AND ANALYTICAL RESULTS

0

1.0 INTRODUCTION

1.1 Scope

In November of 1988, 1257 Geological Ltd. was commissioned by Sirius Resource Corporation to conduct an assessment of the geology and to supervise a short diamond drilling program on the Ashton Copper-Gold project. This report is based upon the results of the diamond drilling and from information contained in previous reports that were made available to the author.

1.2 Location and Access

The Ashton Copper Gold Project is situated at approximately $120^{\circ} 38^{\prime} \mathrm{W}$ and $52^{\circ} 18^{\prime} \mathrm{N}$ about 375 km northeast of Vancouver. Access is by highway 97 from the 150 Mile House junction easterly for 55 km to the town of Horsefly, then northeasterly along an all-weather gravel road for 55 km to about Post 153. From there, a branch road crosses the Horsefly River and enters into the MacKay River valley. The base camp at Hawkley Creek is reached after 7 km and the drill site is approximately 4 km beyond camp. Topography is quite steep on the property with Eureka Peak at 2388 metres (7959 feet) being the highest point.

1.3 Claims

The property consists of 25 claims totalling 51 units covering an area of 11.8 square kilometers. The claims are grouped, for assessment purposes, in the Eureka Group.

0

Claim Name	Units	Record Number	Expiry Date	Owner
EM 1	16	3367	APRIL 2, 1989	UMEX INC.
EM. 2	10	3368	APRIL 2, 1989	UMEX INC.
EM 4	3	3370	APRIL 2, 1989	UMEX INC.
EN 1	1	30398	AUGUST 5, 1989	ERIC SCHOLTES
EN 2	1	30399	AUGUST 5, 1989	ERIC SCHOLTES
EN 3	1	30400	AUGUST 5, 1989	ERIC SCHOLTES
EN 4	1	30401	AUGUST 5, 1989	ERIC SCHOLTES
EN 5	1	30402	AUGUST 5, 1989	ERIC SCHOLTES
EN 6	1	30403	AUGUST 5, 1989	ERIC SCHOLTES
EN 14	1	30477	AUGUST 5, 1989	ERIC SCHOLTES
EN 28	1	30646	SEPTEMBER 28, 1989	ERIC SCHOLTES
EN 29	1	30647	SEPTEMBER 28, 1989	ERIC SCHOLTES
EN 104	1	30618	AUGUST 30, 1989	ERIC SCHOLTES
EN 105	1	30619	AUGUST 30, 1989	ERIC SCHOLTES
EN 106	1	30620	AUGUST 30, 1989	ERIC SCHOLTES
EN 107	1	30621	AUGUST 30, 1989	ERIC SCHOLTES
EN 109	1	30623	AUGUST 30, 1989	ERIC SCHOLTES
NS 1		3373	APRIL 2, 1989	UMEX INC.
NS 2	1	3374	APRIL 2, 1989	UMEX INC.
CS 55	1	48017	OCTOBER 24, 1989	ROBERT J. CARSON
CS 56	1	48018	OCTOBER 24, 1989	ROBERT J. CARSON
SF 1	1	1688	MAY 30, 1989	ROBERT J. CARSON
SF 2	1	1689	MAY 30, 1989	ROBERT J. CARSON
SF 3	1	1690	MAY 30, 1989	ROBERT J. CARSON
SF 4	$\frac{1}{51}$	1691	MAY 30, 1989	ROBERT J. CARSON

1257 GEOLOGICAL LTD.			
SIRIUS RESOURCE CORPORATION			
ASHTON COPPER-GOLD PROJECT			
CLAIM MAP			
OEOLOAIST	LR	scale	30,000
DRAWN 日Y	EBC	date	MARCH 19
CHECKED Br	MM		URE 3

1.4 Property History

The claims that comprise the Ashton Copper-Gold project were first staked by prospector Eric Scholtes of Williams Lake in 1958. Since then there has been extensive reconnaissance exploration work for a porphyry copper style deposit primarily in cirques 1,2, and 7. Following is a list of the exploration work that has been carried out on the property:

1958 The copper showings were discovered on Eureka Peak property by prospector E. Scholtes of Williams Lake.

1965-66 Helicon performed following work on the property: X-ray drilling in Cirque 1 and 7 , construction of the 72 foot long adit in Cirque 2, drilling of 630 foot horizontal hole from the adit, compilation of contours at 100 foot intervals onto the topographic maps, reconnaissance aeromagnetic, geochemical and geological surveys, ground EM and IP surveys in Cirque 2.

1967 Chapman, Wood and Griswold dropped their option after having spent a reported $\$ 155,000.00$.

1968 H. Trario spent $\$ 20,000$ on EM survey in Cirque 2 and diamond drilling (3 holes were drilled).

1968 Property was restaked by Scholtes and Carson.

1981 UMEX Inc. optioned the property. A. Chevalier undertook detailed lithogeochemical sampling program and he concluded that the property had potential for 1) $\mathrm{Cu}-\mathrm{Au}$ mineralization and 2) $\mathrm{Zn}, \mathrm{Ag}, \mathrm{Pb}$ and Mo mineralization.

1983 Dome Exploration optioned the Eureka Peak property from UMEX Inc. Geochemical sampling of silt, soil and rock-chip was undertaken in order to confirm the gold anomalies indicated by UMEX's sampling program in 1981. Only trace amounts of gold were located with the exception of one very narrow shear zone within the auguite porphyry breccia (600 metres southeast of Eureka Peak) where samples ran 1.3 to $1.7 \mathrm{~g} /$ ton Au .

1984 Dome Exploration carried out another lithogeochemical sampling program which was concentrated on Cirque 2 and 3 in order to confirm gold anomalies indicated from previous sampling.

1986
Umex Inc. completed a 1:5000 geological mapping of Cirque $2,3,5$ and 7. Further lithogeochemical sampling took place, with 98 samples being collected.

1.51988 Exploration Program

The purpose of the 1988 Exploration program was to compile available information on the property and to establish the volcanic/intrusive contact through diamond drilling. Two drill holes were sited from existing roads to cut the contact as it
was projected by UMEX in 1986. Diamond drilling began on November 22, 1988 and was completed on November 28, 1988.
The first hole failed to reach bedrock after penetrating 25.3 metres of overburden, and the second hole reached a depth of 147.2 metres at an inclination of -50°, but failed to cut the contact. The drill core was transported to the base camp at Hawkley Creek for logging, sampling and subsequent storage. Lorne G. Rowan supervised the commencement of the diamond drilling and core sampling, and Mark A. Morrison continued and finished the logging and drill core sampling. A total of 46 samples were selected, split by a manual blade splitter and shipped to CDN Resource Laboratories in Burnaby for assaying. The remaining portion of the drill core has been stored in enclosed racks at the Hawkley Creek base camp, where it is available for future inspection. Anomalous values of copper were encountered along with alteration which was thought to be indicative of the periphery of the zonal alteration caused by the intrusive.

2.0 GEOLOGY

The Ashton Copper-Gold Project claim group is located on and around Eureka Peak and its ridgeline. Eureka ridge is formed on the Eureka Peak syncline; which lies on the eastern flank of the Quesnel Trough, near its boundary with the Omineca Belt. The rock units exposed on the property have been thought to be part of the Triassic-Jurassic Takla Group rocks of the Quesnel Trough. However they are non-typical and may constitute a unique sequence of a granitoid stock that has intruded into its own co-magmatic pile of sedimentary volcanics. The intrusive is thought to be Cretaceous in age and is an epizonal complex. Composition is primarily granodioritic, but
ranges from felsic quartz monozonite through to peridotite and amphibolite. Underneath the assemblage of volcano-sedimentary and intrusive rocks is a series of ultramafic, sill-like intrusions. These have been metamorphosed and are thought to be older than the volcanics. Blocks and fragments of these intrusive ultramafics are found in the augite-porphyry breccia of the overlying mafic volcanics. A major fault exists above the ultra mafics and it is along this fault that the later granodioritic stock probably intruded.

The Diamond drill hole SEP-88-08 was drilled in a sequence of mafic volcanics. It intersected a series of both brecciated and non-brecciated flows, minor fine grained dykes and tuff beds. Weak, pervasive, propylitic alteration was present throughout all units. Calcite occurs as stringers, veinlets and blebs in the flow rocks and in the brecciated sections it supports up to 2 cm clasts and comprises between 10% and 20% of the rock. Both pyrite and pyrrhotite occur as disseminations and blebs. The pyrrhotite is anhedral and the pyrite as anhedral to euhedral, up to 2 mm (cubic crystals). All rock types have sections of coarse, milky white quartz-calcite veins and veinlets. Sections of veining are often accompanied by stronger chloritic alteration of mafics and light green, sub 1 mm stringers of probable epidote.

3.0 DISCUSSION OF RESULTS

The 1988 exploration program on the Ashton Copper Gold project was successful in accomplishing its objectives. The compilation of reports from previous work programs on the property has provided a foundation of information for Sirius Resource Corporation to interpret and utilize towards further
exploration.

Several drill targets have already been identified above the adit constructed by Helicon in 1966 and along the flank of the ridge which forms the north slope of Eureka Bowl. These drill targets will be accessible during the summer months only.

A ground EM survey conducted in 1966 outlined the boundaries of a large electromagnetic conductor surrounding the Eureka Peak intrusive. The conductor has been interpreted to represent the pyrrhotite halo which extends from the intrusive contact into the surrounding volcanic rocks. Reconnaissance mapping supports this interpretation.

The limited drill program completed in November, 1988 by 1257 Geological Ltd. on behalf of Sirius Resource Corporation, was intended to confirm the location of the inferred contact between the intrusive and the volcanic rocks at depth. The second drill hole intersected a series of weakly propylitic altered mafic volcanic rocks and tuffs. The presence of small veinlets and disseminations of pyrite and pyrrhotite as well as minor amounts of disseminated chalcopyrite in the drill core are thought to be peripheral products of the zonal alteration caused by the intrusive. Mapping has shown that copper mineralization extends up to 70 metres into the altered mafic volcanics, with the pyritic halo extending another 30 metres beyond that. The diamond drill hole did not reach the area of strongest alteration, although anomalous copper values up to 295 ppm were intersected. All indications are that the potential exists for an economic copper porphyry deposit closer to the intrusive.

4.0 CONCLUSIONS

The property which comprises the Ashton Copper-Gold project has potential for hosting an economic copper porphyry deposit with associated gold mineralization. Previous work on the property has identified a halo of disseminated copper mineralization which extends approximately 70 metres into the surrounding volcanic rocks from the intrusive. The drilling completed in November 1988 on behalf of Sirius Resource Corporation intersected zoning features of this alteration halo, returning anomalous values of copper.

Plutons compositionally related to the Eureka Peak intrusive have historically hosted economic gold deposits in British Columbia. Results to date warrant continued exploration of this intrusive complex.

0
5.0 ITEMIZED COST STATEMENT
B.G. Richards, P. Eng.3 days @ $\$ 400.00$ per dayM. Morrison, Geologist7 days @ $\$ 230.00$ per day $1,610.00$
D. Barrett, Core Splitter
2 days @ $\$ 100.00$ per day 200.00
Diamond Drilling172.5 metres @ $101.10 /$ metre $17,440.29$
Road Maintenance, Snow RemovalGrader$1,500.00$
Camp CostsRental of trailer complex andassociated equipment
Catering
2,080.00
1,764.00
Maintenance
1,200.00

$$
5,044.00
$$

Transportation
Trucks and ATV's 883.38
Assay CostsCDN Resource Laboratories46 samples @ $\$ 12.40$570.40
Report Writing
Geologist, draftsman, typing,reproductions3,240.00
TOTAL COSTS $\$ 31,688.07$

REFERENCES

1. Chevalier, A. (1982) Eureka Project, Report on the 1981 Exploration Program
2. DUBA, D. (1986) Geological and Geochemical Report for the 1986 Eureka Peak Project. Report for UMEX Inc.
3. HURD, G.M. (1966) Summary Report, Eureka Project.
4. MUSTARD, D.K. (1969) Property Examination, Eureka Mountain Prospect Report for AMAX
5. ODDY, R.W. and CAMERON, R.S. (1984) Geological and Geochemical Report for 1983, Eureka Peak Project 237. Report for Dome Exploration (Canada) Ltd.

Author's Statement of Qualifications

I, Lorne G. Rowan, do hereby certify:

1. That I am a self-employed geologist with an office at 32595 Dalhstrom Avenue, Abbotsford, B.C.
2. That I graduated from the University of British Columbia in 1985 with a degree of Bachelor of Science in Geology.
3. That I have practiced my profession since graduation in British Columbia and the Yukon Territory.
4. That I am a member in good standing of the Geological Association of Canada.
5. That I personally conducted or supervised the work program described in this report dated February 28, 1989.
6. That I own shares in Sirius Resource Corporation.
7. That written permission from the author is required to publish this report in any Prospectus or Statement of Material Facts.

Dated at Vancouver, British Columbia this day of March, 1989.

0

APPENDIX I - DRML LOGS: SEP-88-07,08

DIAMOND DRILL LOG HOLE NO. SEP-88-07

ABBREVIATIONS FOR DRIEL EOGS

AMOUNT: A=amount in percentage; tetrace; m=minor; 10=percentage,eg.10\%.

COLOURS: bk=black; bl=blue; br=brown: grn=green; gry=grey

MODE OF OCCURRANCE: Bそblebs; Drx=brecこid(ted); CBA=core to becicing angle; Clv=cleavage-plane; diss, =disseminat(ions,eci) F=ioliation; G=gouge; $I=i$ megular veins; MSvmassive; Q=quilteci, disseminated patcines; $V=v e i n s ;$ W=icox work. MINERALS: Ars=arsenopysite; Au=visible gola; bio=biotite; cal.=calcite; chi=chlorite; cpy=chalocopyrite; F-spar=felcspars! Fe-carb=iron carbonate; gn=galema; Mag=uagnetite; POFpyr=hotite; py=pyrite; ;lag=plagioclase; gtz=quartz; ser=sericite; spl=spinaierite

DIAMOND DRILL LOG HOLE NO. SEP-88-08

latitude:
oeparture OEPARTURE:
MORIZ TRACE :
vear. trace: $\frac{93 \mathrm{~m}}{115 \mathrm{~m}}$ COMPLETED ON: A.M. NOV. 28 . 1988
pace: 1 or 10

FROM (fent) in I	70 (feat) (m).	$\begin{aligned} & \text { ROCX } \\ & \text { fYpg } \end{aligned}$		619HOLOGY	suiphross					gangue - alieration							samples N\%. .	WTERY. (fat) (m)	assay ppb	ASSAY	$\left\|\begin{array}{c} \text { MVRAGE } \\ \text { assar } \\ 02 / T o n / i v \end{array}\right\|$
						-				-	1		I								
					1	AIH	41 m	4	H	411	$4{ }_{4}$	AIN	41 N	AIM	11	\pm					
0	0, 01 m			Casing to Bed rock																	
0.91	3.96	Amo		-amphibolite w/minor calcic stgs													2.14	3.75	<3		
				-minor epidote and hornblende laths																	
				to small crystals																	
				-more epi and hbl $x^{\prime} 1 \mathrm{~s}$ up to 2 mm at										1							
				$2.44 \mathrm{~m} \mathrm{w} / \mathrm{m}$. dissem. py																	
				-m calcite in fractures w/0y a 20°																	
				+مr/A																	
				-3.6 more epi and hbl in anhedral																	
				x^{\prime}]s														$=$			
3.96	5.10	Amp		-epi stgs in a more mafic alt'd amp.,																	
				flowage direction 30° to C/A													3.961	5.05	3		
				-hbl average $\simeq 10 \%$ overall w/calcite																	
				blebs \& stgs and chlorite w/mafic f.g.																	
				matrix																	

ABEREVIATIONS FOR DRIIT LOGS

AMOUNT: $A=$ mount in pescentage; t=tacs; maninor; 10mgercantage, eg. 10\%.
COLOURS: bk=black; bl=blue; br=iorown: grn=green; grf=grey

 spl=spinalerite

$\begin{aligned} & \text { EROM } \\ & \text { llaell } \\ & \text { lal } \end{aligned}$	$\begin{gathered} 70 \\ \|\operatorname{lent\|}\| \\ \|\mathrm{m}\| \end{gathered}$	$\begin{aligned} & \text { ROCX } \\ & \text { TYPE } \end{aligned}$	a$\stackrel{1}{6}$00\vdots	LITMOLOGY	SULPHIOES					GAMGUE - ALTERATION								samples $\mathrm{N}^{8 .}$	inteay. (teal) (a)	ASSAT ppb	Assat	$\begin{aligned} & \text { WERAGE } \\ & \text { LSSAY } \\ & \text { a/tea/II. } \\ & \hline \end{aligned}$
					H 4 / H									1		1						
							4	H	A/H			A1H	414	A1s	41 H	$1{ }_{14}$	4					
29.9	32.9	Amp		-increasing epi swirls and hbl, fract.														.				
				$\simeq 43^{\circ}$ to $\mathrm{C} / \mathrm{A} \mathrm{w} / \mathrm{chl}$ - calc infilling																		
				-sma $11 \mathrm{hbl} \times 1 \mathrm{~s}$ (euhedral) up to $3 \times 1 \mathrm{~cm}$																		
				and cut by calc vn \rightarrow softer \therefore altered																		
				\& chloritic (replacement)																		
32.9	39.2	Amp		-increase in bl/gry remnant mag and calc.																		
				-also py diss. cubes (up to 1 cm)																		
				-calc/chl. in fractures $\simeq 10^{\circ}$ to C / A,																		
				fractures $\simeq 50^{\circ}$ to C / A																		
				-grades to more mafic (dkr grn-blk \rightarrow																		
				chlorite) and epi 36.0																		
				-epi, plag.? (pale pink/brn.)																		
				-dissem. py in small clusters or in mag.																		
				x1s																		
				-calc. stgs \& $V \mathrm{n} \simeq 80^{\circ}$ to $88^{\circ} \mathrm{C} / \mathrm{A}$																		
39.2	39.6	Tuff		-alt'd tuff w/epi swirls and amph w/m. py																		
				cubes																		
39.6	42.2			-Amph., $40 \rightarrow 40.6$ lesser ch1																		
				-40.6. increasing chl and mafic swirls													58139	42.06	42.5	<3		
42.2	42.35			-calci/qtz vn w/epi and m. dissem. py																		
				$\simeq 50^{\circ}$ to C/A																		
				-grade to amph then more calcic swirls																		
				w/epi																		
			-																			
.				.																		

| FROM \|lesil |al | | $\begin{aligned} & \text { ROCX } \\ & \text { IYPE } \end{aligned}$ | 晨 | LITMOLOGY | SUGPHIOES | | | | | GAMGUE - ALTERATION | | | | | | | SMapls | $\begin{gathered} \text { Mr ERY } \\ \text { (leen) } \\ \text { (an) } \end{gathered}$ | Assat
 ppb | ASSAY | $\begin{gathered} \text { WERAGE } \\ \angle S S A Y \\ \text { Oe/ten/tis. } \end{gathered}$ |
| :---: |
| | | | | | n | 41 m | A/H | A1H | 4 | 18 | $4 / \mathrm{M}$ | A $/ \mathrm{H}$ | AlH | AIM | AIM | 4 | | | | | |
| 61.87 | 62.3 | Tuff | | -alt. m. tuff w/epi. overprint | | | | | | | | | | | | | . | | | | |
| | | | | | | | | | | | | I | | | | | | | | | |
| 62.3 | 80.3 | Amp | | -m. amph. w/dissem. py | | | | | | | | | | | | | | | | | |
| | | | | -63.42-63.63 coarse grain (.5-1 mm) | | | | | | | | | | | | 58145 | 63.05 | 63.90 | <3 | | |
| | | | | mainly epi \& mafics w/m. py cubes | | | | | | | | | | | | 58146 | 67.1 | 68.0 | <3 | | |
| | | | | -grade to amph. gradually w/py x 1 s (2) | | | | | | | | | | | | | | | | | |
| | | | | up to 1.5 cm | | | | | | | | | | | | | | | | | |
| , | | | | -variable chloritic epi. | | | | | | | | | | | | | | | | | |
| | | | | -67.24 m. mag w/relict mag. w/py dissem. | | | | | | | | | | | | | | | | | |
| | | | | \& cubic | | | | | | | | | | | | | | | | | |
| | | | | $-67.6 \rightarrow$ amph. m. Brx | | | | | | | | | | | | | | | | | |
| | | | | $-72.0 \rightarrow$ start m. mag. grade to up to | | | | | | | | | | | | | | | | | |
| | | | | ($70 \% 2 \mathrm{~mm}$ mag x 7 s) more mag. | | | | | | | | | | | | | | | | | |
| | | | | -variable small xls w/ lg. clusters in | | | | | | | | | | | | | | | | | |
| | | | | f.g. amph. matrix | | | | | | | | | | | | | | | | | |
| | | | | calcic stgs, m.epi, m. py | | | | | | | | | | | | | | | | | |
| | | | | -at $\simeq 79.4$ mag. disappears | | | | | | | | | | | | | | | | | |
| | | | | -80.0 epi swirls w/m. calc stgs | | | | | | | | | | | | | | | | | |
| |
| 80.3 | 81.0 | | | -f.g. tuffaceous matrix epidote matrix | | | | | | | | | | | | 58147 | 80.2 | 81.3 | <3 | | |
| | | | | $(\approx 80 \%) \rightarrow 80.5$ py cubes \& diss. (up to | | | | | | | | | | | | | | | | | |
| | | | | . 5 mm diss cubes) | | | | | | | | | | | | | | | | | |
| | | | | -grade to f.g. Lt grey/b1. amph/tuff | | | | | | | | | | | | | | | | | |
| |
| 81.0 | 85.0 | | | Amph w/diss. py | | | | | | | | | | | | | | | | | |
| | 1 |
| |
| |
| |

0 APPENDIX II: ASSAY PROCEDURE AND ANALYTICAL RESULTS

```
Lorne Rowan
1257 Geological Ltd.
1150 - 609 West Hastings
Box 26
Vancouver. B.C.
VGB 4W4
December 14. 1988
```

Dear Lorne:
The following are the procedures we followed for analysis
of your samples from the Frasergold project:

Geccher A口. Cu - 0.5 g of sample was digested in aqua regia on a hot water bath for 2 hours. The solution was bulked to 10 ml with distilled water and then presented to the AA for silver and copper determinations.

6329 BERESFORD STREET, BURNABY, B.C. V5E 183 / PH: 435-8376 / FAX: 435-9746
GEOCHEMICAL REPORT

1257 Geological Ltd. 1150 - 609 West Hastings Box 26
Vancouver. B.C., V6B 4W4

Number: 88621
Date: December 5. 1988
Proj.: Aahton Gold Area ENS

Attn: Lorne Rowan
cc. Sirius Resource Corporation

	$\begin{array}{r} A u \\ p p b \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \text { ppm } \end{array}$
58126	$\leqslant 3$	26	30
58127	3	78	40
58128	< 3	52	44
58129	<3	22	19
58130	<3	5	26
58131	<3	44	52
58132	< 3	24	17
58133	<3	40	24
58134	<3	108	44
58135	<3	40	9
58136	<3	15	18
58137	<3	38	24
58138	< 3	19	15
58139	<3	168	10
140	<3	122	20
48141	<3	28	26
58142	<3	174	26
58143	<3	24	32
58144	<3	134	34
58145	<3	28	28
58146	<3	26	14
58147	<3	18	18
58148	7	118	54
58149	53	98	76
58150	13	240	72
58151	<3	52	34
58152	<3	28	22
58153	<3	285	28
58154	<3	164	20
58155	<3	205	44
58156	43	280	56
58157	<3	64	26
58158	13	74	17
58159	3	182	36
58160	<3	76	20
58161	7	104	24
58162	<3	44	13
58163	<3	64	24
58164	3	295	28
165	<3	68	19

6329 BERESFORD STREET, BURNABY, B.C. V5E 1B3 / PH: 435-8376 / FAX: 435-9746
GEOCHEMICAL REPORT

10: 1257 Geological Ltd.
1150 - 609 West Hastings
Box 26
Vancouver. B.C. V6B 464

Number: 88621
Date: December 5. 1988
Proj.: Ashton Gold Area ENS

Attn: Lorne Rowan
ce. Sirius Resource Corporation

	Au	cu	Zn
	$p p b$	$p p m$	$p p m$
58166	3	74	20
58167	7	90	17
58168	10	76	30
58170	3	64	13
58171	10	86	20
	7	44	28

\qquad
\qquad
\qquad
\qquad
\square
\square GEOCHEMICAL ANALYSIS CERTIFICATE

58139	2	139	2	10	. 1	25	1	!98	. 68	?	5	HD	1	31	1	2	1	6	5.06	. 007	1	111	. 19	30	. 03	2	. 19	. 01	. 19	
58142	1	161	2	20	. 1	30	31	332	3.67	1	5	k	1	20	I	2	,	27	2.21	. 05 ?	2	104	2.61	22	. 01	3	1.65	. 01	.06	1
58111	2	14	2	10	. 1	29	11	106	2.68	2	5	H0	1	4	1	2	2	11	3.13	. 128	1	180	2.15	3	. 01	2	2.05	. 01	. 08	1
$9815]$	3	221	2	62	.!	11	26	526	3.6	1	5	No	1	35	1	2	2	76	1.17	. 285	2	79	2.11	4	. 12	2	2.20	. 03	1.51	1
5015:	1	212	1	21	. 1	1	15	221	1.33	1	5	HD	1	66	1	1	2	19	. 93	. 111	1	13	1.39	13	. 10	2	1.11	. 21	. 76	1
30151	3	146	:	11	. 1	i0	11	121	1.27	1	5	yo	1	59	1	2	1	21	1.39	. 096	2	111	1.11	299	. 08	2	. 90	. 03	. 31	1
S8159	1	194	2	35	. 1	18	28	202	2.19	2	5	HD	1	135	,	,	2	50	1.60	. 166	2	101	1.95	11	. 11	2	1.68	. 02	. 19	1
58150	;	276	2	41	. 1	9	29	363	3.31	1	5	*	1	136	1	2	2	6	1.51	. 217	2	63	2.38	8	. 15	3	2.08	. 01	1.29	1

