#### ARIS SUMMARY SHEET

District Geologist, Smithers

Off Confidential: 90.04.12

ASSESSMENT REPORT 18637

MINING DIVISION: Omineca

PROPERTY: LOCATION: Loon

T. T. T.

LAT 53 38 00

LONG 125 59 00

UTM 10 5946647 302748

NTS 093F12W

CLAIM(S): OPERATOR(S): Loon 1-5, Loon 8 Mingold Res.

AUTHOR(S): REPORT YEAR: Taylor, K.J. 1989, 39 Pages

COMMODITIES

SEARCHED FOR: Silver, Gold

KEYWORDS:

Eocene, Ootsa Lake Formation, Rhyolite, Quartz Veins

WORK

DONE:

Geochemical, Geophysical, Physical

EMGR 9.2 km; VLF

Map(s) - 1; Scale(s) - 1:2500

LINE 1.5 km

ROCK 42 sample(s); ME SOIL 161 sample(s); ME

Map(s) - 1; Scale(s) - 1:2500REN 27.2 m 7 trench(es) Geochemical and Geophysical Surveys Mapping, Rock Sampling, Trenching and Linecutting

-on the-

Loon 1-5 and Loon 8 Claims

Omineca Mining Division FILE NO:
British Columbia

N.T.S. 93E/9 and F/12

Lat. 53° 38'N Long. 125° 59'W

-for-

Mingold Resources Inc. 709-837 W. Hastings St. Vancouver, B.C. V6C 1B6



RD.

LOG NO: 0414

ACTION:

-by-

K.J. Taylor, B.Sc., F.G.A.C.

GEOLOGIC March B1989ANCH ASSESSMENT REPORT

## TABLE OF CONTENTS

|                                | Pg. |
|--------------------------------|-----|
| INTRODUCTION                   | 1   |
| LOCATION & ACCESS              | 1   |
| CLAIMS                         | 4   |
| PROPERTY HISTORY               | 4   |
| GEOLOGY                        | 6   |
| LINECUTTING & GRID PREPARATION | 8   |
| GEOCHEMISTRY                   |     |
| Soil Geochemistry              | 8   |
| Analytical Procedure           | 9   |
| Discussion of Results          | 9   |
| Rock Geochemistry              | 11  |
| Discussion of Results          | 11  |
| TRENCHING                      |     |
| Trenching (Physical Work)      | 13  |
| Trench Mapping                 | 13  |
| VLF-EM                         | 22  |
| Interpretation                 | 23  |
| SELECTED BIBLIOGRAPHY          | 25  |
| BREAKDOWN OF COSTS             | 26  |
| STATEMENT OF OUALTEICATIONS    | 20  |

| F | Ι | G | U | R | E | S |
|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |

End of Report

| 1. | General Location Map  |           | page    | 2  |
|----|-----------------------|-----------|---------|----|
| 2. | Ootsa Lake Project    |           |         | 3  |
| 3. | Claim Map             |           |         | 5  |
| 4. | Loon Claims Trench #1 |           |         | 14 |
| 5. | Loon Claims Trench #2 |           |         | 15 |
| 6. | Loon Claims Trench #3 |           |         | 16 |
| 7. | Loon Claims Trench #4 |           |         | 17 |
| 8. | Loon Claims Trench #5 |           |         | 18 |
| 9. | Loon Claims Trench #6 |           |         | 19 |
| .0 | Loon Claims Trench #7 |           |         | 20 |
|    |                       |           |         |    |
|    |                       | PLATES    |         |    |
| 1. | Soil Geochemistry     |           | In Pock | et |
| 2. | VLF-EM 16 Profiles    |           | In Pock | et |
|    |                       |           |         |    |
|    | A                     | PPENDICES |         |    |

I. Geochemical Analysis Certificates

### INTRODUCTION

The Loon claims were staked July and August of 1988 as a result of a reconnaissance prospecting/sampling program in the Ootsa Lake area. The focus of attention was the Ootsa Lake Volcanics, a sequence of Lower Tertiary felsic flows and pyroclastics of subaerial origin. The target was a Nevadan type epithermal gold deposit of which the Loon appears to be a noteworthy candidate.

A modest program of linecutting, soil geochemistry, VLF-EM, trenching and rock sampling was carried out September 4 and September 27 to October 11, 1988. The surveys were done over an area where initial prospecting and sampling indicated gold and silver bearing epithermal veins and breccias. The results of these surveys are the subject of this report.

### LOCATION & ACCESS

The Loon property is located 70 kilometers south of Burns Lake and 216 kilometers west of Prince George (see Fig.1). The claims occur in the Windfall Hills area north and east of Uduk Lake near the eastern boundary of Tweedsmuir Provincial Park (see Fig.2). Latitude 53°38'N; longitude 125°59'W. The claims straddle the boundary between NTS mapsheets 93E/9 (Ghitezli Lake) and 93F/12 (Marilla). The camp was located on the east side of an unnamed lake referred to in the field as Loon Lake.

Access to the claims is by fixed-wing aircraft from Burns Lake to Loon Lake. Logging roads pass within 7 kilometers of both the northeastern and southeastern claim boundaries. These are seasonal roads used by West Fraser's Eurocan Division based out of their East Ootsa Camp. Ferry transportation across Ootsa Lake is on an availability basis only.

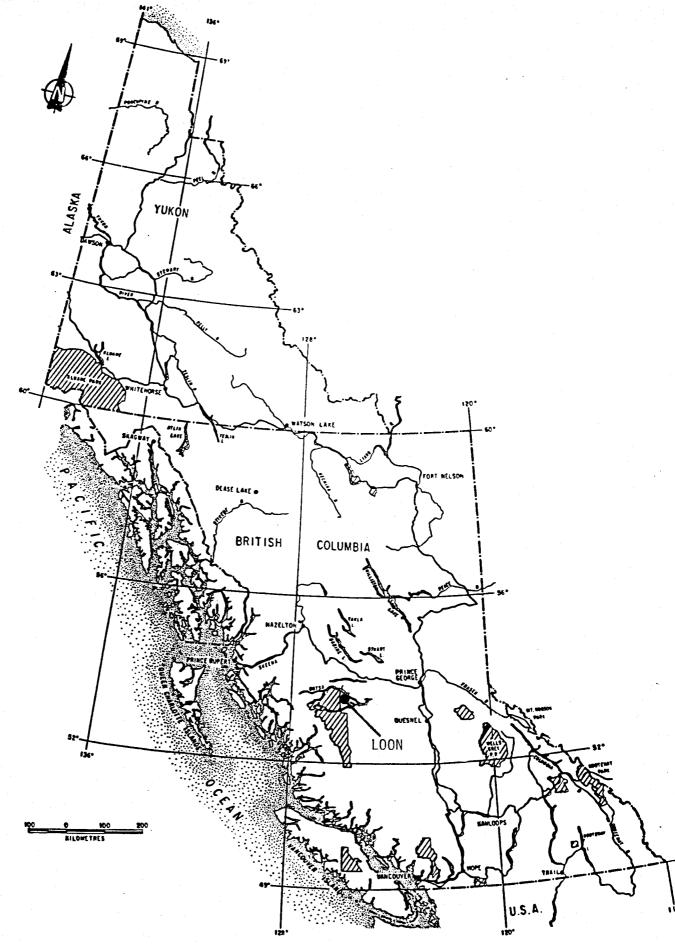
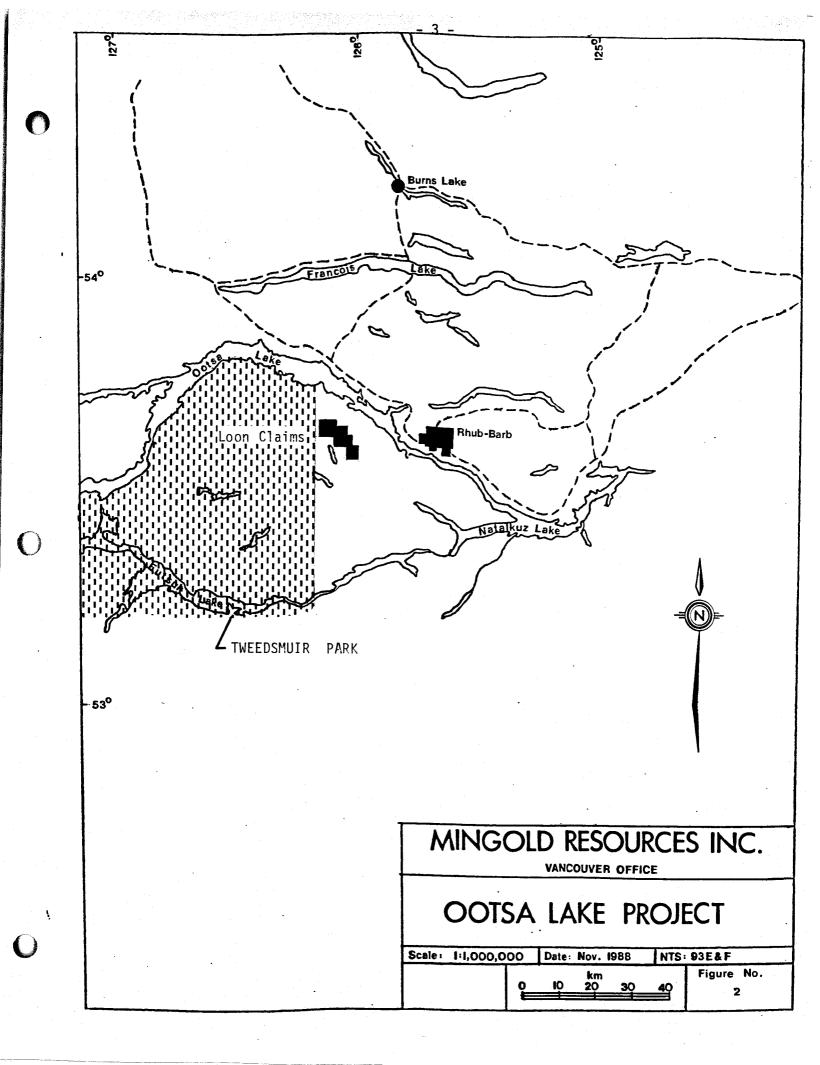



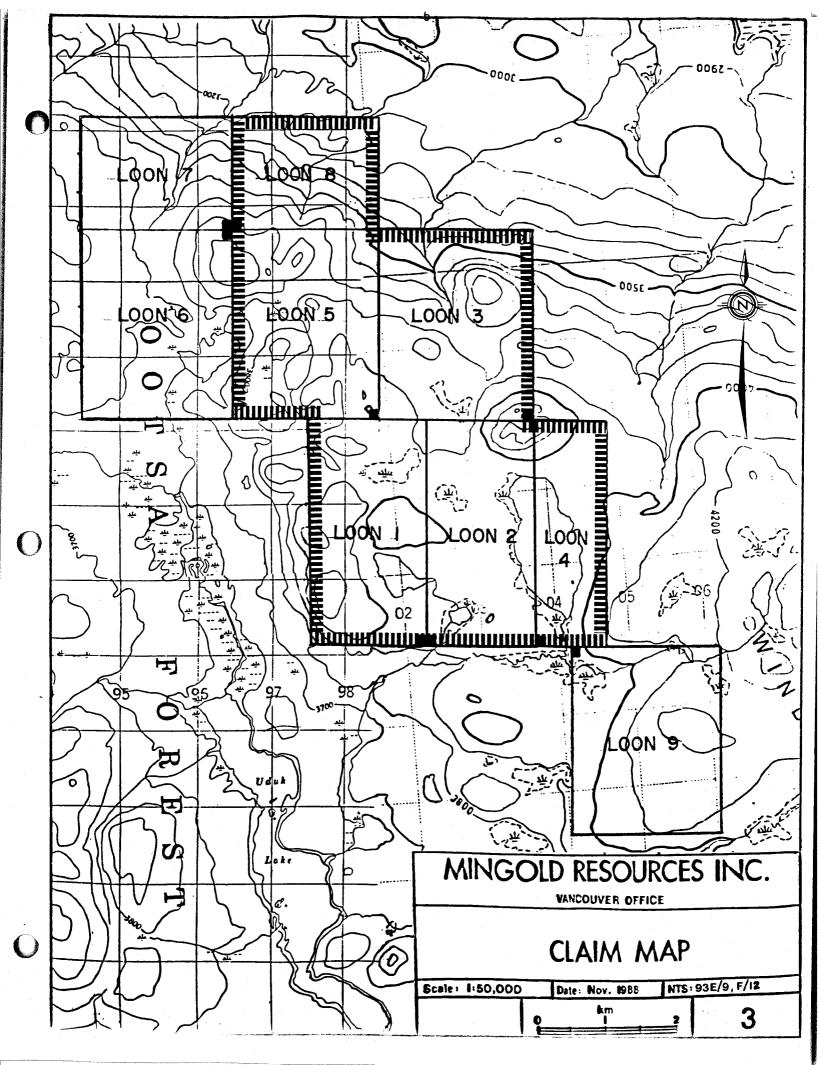

Figure 1. General Location Map (1:10,000,000)



#### CLAIMS

The Loon property consists of a contiguous block of 9 claims totalling 152 units in the Omineca Mining Division The claims are wholly owned by Mingold Resources Inc. A breakdown of the claim information is shown in Table 1 and the location of the claims in Fig. 3.

Table 1. Loon Claims Summary


| <u>Claim</u> | No. of Units | Record No. | Record Date | Expiry Date* |
|--------------|--------------|------------|-------------|--------------|
| Loon 1       | 18           | 9568       | July 19/88  | July 19/91   |
| Loon 2       | 18           | 9569       | July 19/88  | July 19/91   |
| Loon 3       | 20           | 9570       | July 19/88  | July 19/91   |
| Loon 4       | 12           | 9661       | Aug. 17/88  | Aug. 17/91   |
| Loon 5       | 20           | 9662       | Aug. 17/88  | Aug. 17/91   |
| Loon 6       | 20           | 9719       | Aug. 18/88  | Aug. 18/89   |
| Loon 7       | 12           | 9720       | Aug. 18/88  | Aug. 18/89   |
| Loon 8       | 12           | 9721       | Aug. 18/88  | Aug. 18/91   |
| Loon 9       | 20           | 9722       | Aug. 18/88  | Aug. 18/89   |

<sup>\*</sup>Note the expiry dates shown include the assessment credits for work presently being applied.

The claims for which assessment is being applied have been grouped into a 100 unit contiguous block which includes Loon 1-5 and Loon 8. No work is presently being applied to Loon 6, 7 and 9.

### PROPERTY HISTORY

The first known work in the area was by H.W. Tipper of the Geological Survey of Canada in 1949. At that time, he carried out the initial government mapping of the area which was later published in G.S.C.



Memoir 324. Since that time no further work is indicated until 1980 at which time Amax Exploration staked claims in the Uduk Lake area just south of the Loon property. The claims were allowed to lapse by Amax and were subsequently restaked by A & M Exploration as the Duk claims. These claims are presently still in good standing and held by Comox Resources.

In 1985, Mingold Resources did an initial pass through the area just north and east of the Loon property. In 1986, Mingold staked 268 units due east of the Loon area as the Rhub and Barb claims. The claims covered epithermal gold and silver bearing rhyolites of the Ootsa Lake Volcanic package. In 1987, work was confined to the Rhub-Barb area with Newmont Exploration staking the Barb and Gusty claims along the eastern and southern boundaries of these claims. In 1988, Mingold extended their exploration to areas of Ootsa Lake Volcanics outside the Rhub-Barb and found an accumulation of mineralized epithermal veins and breccia boulders south of Ootsa Lake. These boulders were subsequently traced "up ice" to outcrops of similar material on what is now the Loon 1 and 2 claims. Ιn the course of staking, additional material was found in float or outcrop resulting in the expansion of the claim block to cover a total of 152 units. The claims tie onto the northern boundary of the Duk claims where similar material is found.

#### **GEOLOGY**

The Loon claims occur in the south-central part of the Intermontane Geological Belt of the Northern Cordillera.

Lithologies range in age from late Triassic through Miocene with

intermediate to felsic volcanics being the dominant rock types.

The oldest rocks exposed in the area are the U.Triassic Takla Group Volcanics which consist of island arc sequences of intermediate to basic volcanics. These were superceded by the Hazelton Group Volcanics in early to mid-Jurassic time. This package of dominantly calc-alkaline basaltic to rhyolitic volcanics is prevalent in the area surrounding the Loon claims but only occurs on Loon 9 within the claim block.

The lower Mesozoic rocks are overlain unconformably by an extensive volcanic sequence known as the Ootsa Lake Volcanics. Recent work on the Whitesail (93E) mapsheet further west suggests this package is entirely Eocene in age (Drobe, 1988). These rocks occur over most of the claim area and consist typically of flows and tuffs of felsic to intermediate composition. The evolution of the rocks is believed to be related to a series of dome complexes within a collapsed cauldera setting. These rocks commonly host epithermal gold-silver mineralization in the area.

The Ootsa Lake Group is in turn overlain and intruded by andesitic to basaltic flows, dykes and plugs of the Oligocene to Miocene Endako Group. These rocks are typically in the basalt range and have likely resulted from "plateau-type" extrusion into the area. Alteration prevalent in the Ootsa Lake rocks seldom extends into the Endako sequence suggesting that the epithermal mineralizing event occurred prior to or contemporaneous with the implacement of the Endako volcanics.

The region is structurally complex with the complexity becoming all the more evident with the more intensive work in the area. Heavy glaciation has precluded the G.S.C. extrapolating the faulting evident both north and south of the area into the Ootsa Lake region. Our detailed work along with airphoto

interpretation is indicating that the northwesterly and northeasterly trending faults do in fact continue into this area along with a strong northerly trending system.

### LINECUTTING AND GRID PREPARATION

Linecutting was confined to a 1.5 kilometer baseline (50+00E) running north-south from 45N to 60N. The baseline occurs totally within the Loon 2 claim. Linecutting was done by three Mingold personnel over the period of September 28 to 29, 1988. Lines were cleared of all brush over a width of one meter.

East-west section lines were flagged in every 300 meters beginning at line 45N. A location line running through the trenched areas was put in 120 meters north of line 54N - that is at 55+20N. Stations were flagged in every 25 meters along the lines for a distance of one kilometer east and 500 meters west of the 50+00E baseline. A total of 8.83 kilometers of section line was established (see also under Soil Geochemistry below).

#### **GEOCHEMISTRY**

#### SOIL GEOCHEMISTRY

A total of 161 soil samples were collected over the Loon 1 and 2 claims during the period of September 30 to October 1, 1988.

Soil sampling was carried out on lines 300 meters apart from 45N to 60N with 50 meter stations (see Plate No.1). The section lines were flagged in concurrent with the sampling. In addition, soils were taken every 25 meters peripheral to the trenches along the 55+20N location line.

Samples were collected from a depth of 15 to 25 cm. using a grubhoe and then placed in a Kraft soil bag. The entire area has been glaciated however a rusty brown to grey brown soil has been developed within the till which represents a false "B" horizon. It is believed that sampling of this horizon yields a measure of the in-situ metal content however values may be somewhat suppressed due to the relatively impervious nature of the till. Overburden depths do not appear to be excessive in this area however further work may indicate otherwise.

Samples were air-dried and sent to Acme Analytical Labs in Vancouver for analysis. All samples were run for a 30 element ICP package plus A.A. for gold and mercury.

### ANALYTICAL PROCEDURE

In the lab, the soils are sieved to -80 mesh and then a 0.5 gram sample is digested with 3 ml. of 3-1-2 HCl-HNO $_3$ -  $H_2$ O at 95°C for one hour. This is then diluted to 10 ml. with water and analysed by an ICP unit. Gold detection limit by ICP is only 3 ppm so separate analysis was done for gold by AA. This method used a 10 gram sample which is ignited at 600°C, digested with hot aqua regia and extracted by MIBK. This is then analysed using a graphite furnace AA unit. Mercury analysis used the solution extracted during the ICP digestion. The aliquots of the extract are added to a stannous chloride-hydrochloric acid solution. The reduced mercury is swept out of solution and passed into the mercury cell of a cold vapor AA using a F & J scientific mercury assembly.

#### DISCUSSION OF RESULTS

The samples taken over areas of known mineralization along line

55+20N are probably the best to gauge the effectiveness of the soil geochem survey. In all cases, the soils detected a gold and/or silver anomaly in the trenched areas. However, overburden depths are minor in these areas so we may be looking at a special case scenario. In addition, the mineralization is associated with major structures which often occur as swampy depressions. These areas are not normally sampled so some of the main areas of mineralization may not have been tested.

The interrelationship between gold and silver in the soils is complex. In some areas, silver and gold anomalies coincide while in others they are distinctly separate. This may be due to zoning within the associated source or possibly a difference in mobility of the two elements in this geochemical environment.

No distinct lineal trends are obvious in either gold or silver anomalies. Two clusters of anomalies occur around the two areas of trenching and known mineralization. Another broad area of anomalies occurs along line 45N from 55E to 60E. The best silver anomalies occur in the western part of this area while the higher gold anomalies are to the east. A silver-only anomalous area occurs south of Boot Lake and may be traceable to the north where some single station anomalies occur.

Normal trace elements such as arsenic, antimony, mercury and molybdenum thus far appear to be erratic. Correlation between gold and silver and any one trace element is quite low and between the whole trace element group it falls into the realm of chance. The only sample which shows good correlation with all the elements is R2O (55+20N, 51+75E) which has both the highest gold and silver values (67ppb and 5.5 ppm respectively) obtained in soils.

#### ROCK GEOCHEMISTRY

A total of 29 rock geochem samples were collected in the areas trenched in 1988 (see Plate No.1). All the samples were continuous chip samples generally over 1.0 meter intervals across silica breccia and vein material and adjacent wallrocks as shown in the 1:50 detailed trench maps (Fig. 4 to 10).

An additional 13 rock (grab) samples were taken of various silica veined and brecciated rhyolite as shown on Plate No. 1 (in pocket).

All samples were analysed by Acme Analytical Labs in Vancouver. Samples are first pulverized then analysed by the same methods described above for the soil sample analysis.

### DISCUSSION OF RESULTS

Although nearly all the samples showed elevated levels in gold and silver, only trench #4 contained significant mineralization (2365 ppb Au). This coincides with the heaviest concentration of silica veins and breccia. Sampling was not done on a geological basis so it is difficult to relate where the silver and gold occurs in the system. There is a suggestion that silver is concentrated in the black chalcedonic veins while gold is dispersed into the adjacent wallrocks however this is definitely not clearcut.

The highest gold value obtained was 2365 ppb (.069 oz/t.) while the highest silver value was 25.0 ppm (0.74 oz/t).

## ROCK SAMPLE DESCRIPTION

The locations and descriptions of the trench samples are shown diagramatically in the 1:50 trench maps. The samples described below were taken in various areas of Loon 1 and 2 claims and are shown on Plate No. I

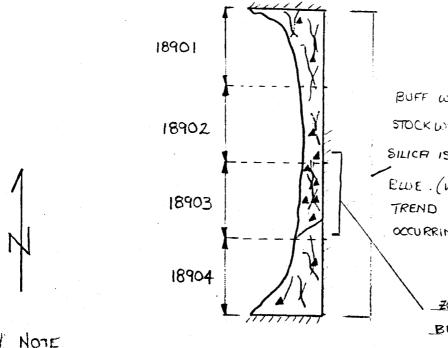
| Sample No. | Type | Description                                                                 |
|------------|------|-----------------------------------------------------------------------------|
| 24902      | Grab | Brecciated and silicified rhyolite. Tr-1% pyrite. 0.5 to 2 cm quartz veins. |
| 24980      | Grab | Brecciated and silicified rhyolite. Tr-1% pyrite 1 - 3 cm quartz veins.     |
| 24992      | Grab | Sheared rhyolite with silica flooding. Tr-1% pyrite                         |
| 24993      | Grab | Same as above                                                               |
| 24994      | Grab | Same as above                                                               |
| 24995      | Grab | Brecciated and silicified rhyolite. Tr-1% pyrite. 0.5 to 2 cm. quartz veins |
| 51187      | Grab | Altered rhyolite with 1-15 cm black chalcedonic quartz veins. Tr-2%         |
| 51188      | Grab | Same as above                                                               |
| 51189      | Grab | Brecciated and silicified rhyolite. Tr-1% pyrite 0.5 - 2 cm. quartz veins.  |
| 51190      | Grab | Same as above                                                               |
| 51191      | Grab | Same as above                                                               |
| 51192      | Grab | Same as above                                                               |
| 51193      | Grab | Same as above                                                               |

### TRENCHING

### Trenching (Physical Work)

A total of 27.2 meters of blast trenching was done in seven trenches. The dimensions of the trenches are summarized in Table 2 below. Blasting was done under contract by Hewitt Co. and Assoc. of Smithers, B.C. A total of seven mandays were spent drilling, blasting and cleaning out the trenches prior to sampling. This work was carried out from October 2 to October 7, 1988.

| Table 2 | Summary o | of | Trenching |
|---------|-----------|----|-----------|
|         |           |    |           |


| Trench # | Length | Width | Depth |
|----------|--------|-------|-------|
| 1        | 4.0M   | 0.5M  | 0.4M  |
| 2        | 5.2M   | 1.0M  | 0.4M  |
| 3        | 3.0M   | 1.0M  | 0.4M  |
| 4        | 5.0M   | 1.0M  | 0.4M  |
| 5        | 6.0M   | 1.0M  | 0.4M  |
| 6        | 1.0M   | 0.8M  | 0.4M  |
| 7        | 3.0M   | 1.0M  | 0.4M  |
|          |        |       |       |

## Trench Mapping

From October 9 to 10, 1988, two Mingold geologists detail mapped the seven trenches described above. The location of the rock sampling is shown on Figures 4 to 10 along with the geology.

All the trenches occur in argillically altered (kaolinized; sericitized) Ootsa Lake rhyolite which is a cream to orange colour. The rhyolite has been selectively silicified, brecciated and resilicified with

| SAMPLE | Au | Aq  | Ha  | WIDTH (m.) | TYPE |
|--------|----|-----|-----|------------|------|
| 18901  | 8  | 2.2 | 100 | 1.0        | CHIP |
| 18902  | 18 | 1,1 | 240 | 1.0        | CHIP |
| 18903  | 20 | 1.5 | 280 | 1.0        | CHIP |
| 18904  | 7  | . 7 | 110 | 1.0        | CHIP |

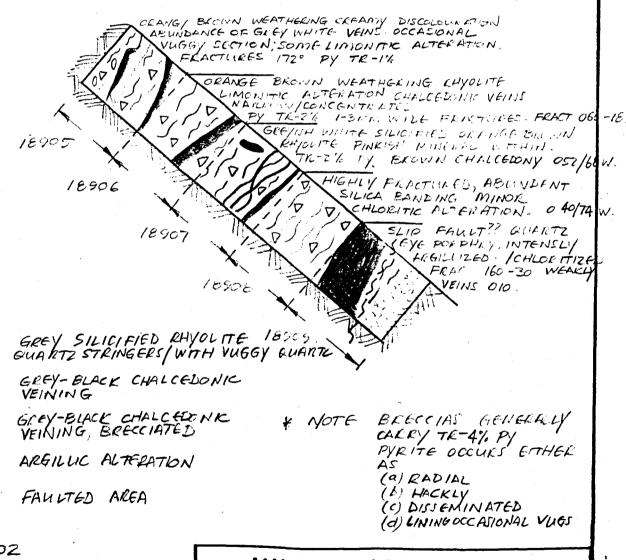


BUFF WHITE RHYOLITE WITH STOCK WORK VEINING AND BRECCIA. SILICA IS LIGHT GREY TO DARK ELUE . (VEINS .1 - 2CH WIDE) . VEINING TREND ~ N-S, TRACE OF PYRITE OCCURRING ALONG VEINLET WALLS.

> ZONE OF MORE INTENSE BRECCATION ( VEINING , 1% PYRITE,

Y NOTE

CHIP SAMPLING WAS DONE OFF A DERTICAL FACE OF LARGE FRACTURED SLABS.


88RTROI BEARING ~ 000° TRENCH LENGTH 4M TRENCH WIDTH .5M SCALE 1:50

# MINGOLD RESOURCES INC.

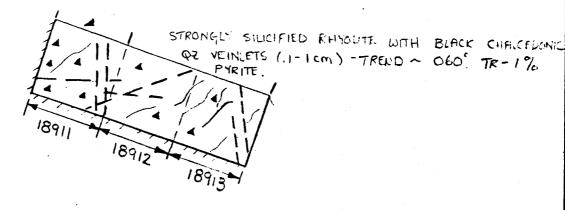
VANCOUVER OFFICE

| DRAWN BY:           | R.D. | DATE: |   | APPROVE | BY:    |
|---------------------|------|-------|---|---------|--------|
| BRITISH<br>COLUMBIA |      |       | • |         | Fiq. 4 |

| SAMPLE | AU | A9  | H9   | WIDTH (m.) | TYPE |
|--------|----|-----|------|------------|------|
| 18905  | 14 | 0.7 | 200  | 1.0        | CHIP |
| 18906  | 11 | 0.4 | 160  | 1.0        | CHIP |
| 16907  | 55 | 0.7 | 200  | 1.0        | CHIP |
| 18908  | 64 | 1.0 | 130  | 1.0        | CHIP |
| 18909  | 36 | 1.7 | 290  | 1.2        | CHIP |
| 16910  | 41 | 1.3 | 500. | -          | GRAB |



BETROZ BEARING 130° TRENCH LENGTH ≈ 5.2M TRENCH WIDTH ≈ 1M SCALE 1:50


## MINGOLD RESOURCES INC.

VANCOUVER OFFICE

| DRAWN BY:           | J.N. | DATE: | APPROVED BY: |  |
|---------------------|------|-------|--------------|--|
| BRITISH<br>COLUMBIA |      |       | Fig. 5       |  |

| SAMPLE | Aυ | Aq  | Ha  | WIDTH (m.) | TYPE |
|--------|----|-----|-----|------------|------|
| 18911  | 28 | 1.9 | 190 | 1.0        | CHIP |
| 18912  | 20 | 1.5 | 480 | 1.0        | CHIP |
| 18913  | 27 | 7.5 | 300 | 1.0        | CHIP |

MORE INTENSE SINCIPICATION WITH BLUE - GREY SILICA, 1-2 % PYRITE LINING VEINLETS.



N

FRACTURE

 $\sim$ 

BRECCIA

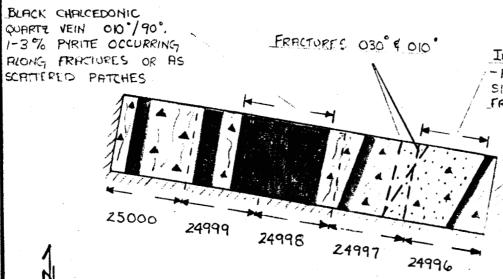
VEINING

88 TRO3

BEARING ~ 110°

TRENCH LENGTH ~ 3 M

TRENCH WIDTH ~ 1 M


SCALE 1:50

## MINGOLD RESOURCES INC.

VANCOUVER OFFICE

| DRAWN BY:           | R.D. | DATE: | APPROVED BY: |   |
|---------------------|------|-------|--------------|---|
| BRITISH<br>COLUMBIA |      |       | Fiq.         | 6 |

| SAMPLE | Pυ   | Ag   | Ha  | WIDTH (m.) | TYPE |
|--------|------|------|-----|------------|------|
| 24996  | 2365 | 10.2 | 280 | 1.0        | CHIP |
| 24997  | 1375 | 7.3  | 300 | 1.0        | CHIP |
| 24998  | 1325 | 25.0 | 930 | 1.0        | CHIP |
| 24999  | 385  | 10.4 | 250 | 1.0        | CHIP |
| 25000  | 24   | 1.4  | 70  | 1.0        | CHIP |



Intense Argilic Auteration - Fault Goure, with Silkified Brechated Fragments. TR-2% Pyrite.



BLACK CHALCEDONIC QUARTZ VEINING, BRECCIATED TR-1% PYRITE

ATA

STOCKWORK VEINING (1-1 cm)
WITH ASSOCIATED BRECCIA

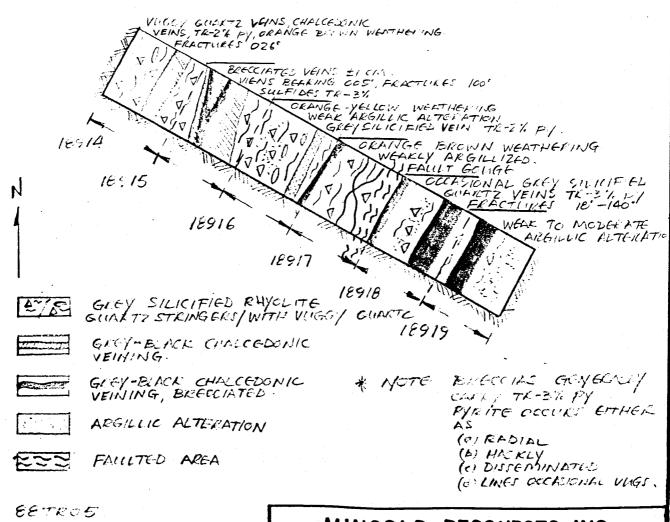
····

ARGILLIC PLTERATION

--- FRACTURE

88 TRO 4

BEARING 100° TRENCH LENGTH ≈ 5M TRENCH WIDTH & 1M


SCALE 1:50

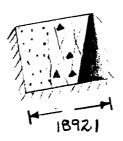
## MINGOLD RESOURCES INC.

VANCOUVER OFFICE

| DRAWN BY:           | e.D. | DATE: | APPROVED BY: |
|---------------------|------|-------|--------------|
| BRITISH<br>COLUMBIA |      |       | Fiq. 7       |

| SAMIRE | AU  | 1 44  | 149   | WIDTH (m) | TYPE |
|--------|-----|-------|-------|-----------|------|
| 18:14  | 128 | 6.4   | 460   | 1.0       | CHIP |
| 18:15  | 67  | 2.3   | 190   | 1.0       | CHIP |
| 18916  | 42  | 1.1   | 90    | 1.0       | CHIP |
| 16917  | 69  | 2.4   | 170   | 10        | CHIP |
| 18918  | 34  | 0.8   | 1 60  | 1.0       | CHIP |
| 18919  | 191 | 39    | . 130 | 1.0       | CHIP |
| 18920  | 184 | - 5.3 | 80    |           | GRAB |




EETROS BEAKING 120' TRENCH LENGTH & 6M TRENCH WIDTH & 1'M SCALE 1:50

## MINGOLD RESOURCES INC.

VANCOUVER OFFICE

| DRAWN BY:           | J. N. | DATE: | APPROVED BY: |
|---------------------|-------|-------|--------------|
| BRITISH<br>COLUMBIA |       |       | Fiq. 8       |

| SAMPLE | Rυ  | Aq  | Ha | WIDTH (m) | TYPE |
|--------|-----|-----|----|-----------|------|
| 18921  | 184 | 5.3 | 80 | 1.0       | CHIP |



N

`.A.·

INTENSE ARGILLIC ALTERATION
FAULT GOUGE WITH SINCIPIED - BRESCIETED FRAGMENTS

~+·

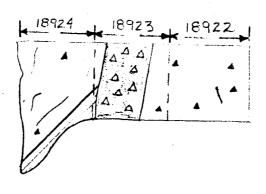
\_STOCKWORK VEINING (.1-1cm) LIGHT GREY - DLACK QUARTE WITH ASSOCIATED BRECCIA.

BLACK CHALCEDONIC QUARTE VEIN 010°/90° WITH TR-1% PYRITE

BEARING 080°

TRENCH LENGTH ~ IM

TRENCH WIDTH ^ 8M


SCALE 1:50

## MINGOLD RESOURCES INC.

VANCOUVER OFFICE

| DRAWN BY:           | R.D. | DATE: | APPROVED BY: |
|---------------------|------|-------|--------------|
| BRITISH<br>COLUMBIA |      | -     | Fiq.         |

| SAMPLE | Rυ  | Qq   | Ha   | WIDTH (m.) | TYPE |
|--------|-----|------|------|------------|------|
| 18922  | 54  | 2.0  | 1100 | 1.0        | CHIP |
| 18923  | 117 | 80   | 160  | 1.0        | CHIP |
| 18924  | 345 | 12.7 | 600  | 1.0        | CHIP |



1

STRONG ARGILLE ALTERATION WITH LIGHT GREY
SILICA BANDING O48. MINOR BLACK QZ AND BRECCIA

BRECCIA VEIN 010°/80 W. DARK BLUE TO ELACK

CHARGEDONIC QUARTE WITH BUFF WHITE PHYOUTE CLASTS.

1-2 % PYRITE, SPOTTY.

OPALEXENT QZ VEIN LIGHT GREY TO BLUE SILICA (042°). TR OF PYRITE

WITH MINOR BEECCH, TR. OF PYRITE,

88TRO7
BEARING ~ 90°
TRENCH LENGTH ~ 3M
TRENCH WIDTH ~ IM
SCALE 1:50

## MINGOLD RESOURCES INC.

VANCOUVER OFFICE

| DRAWN BY:           | R.D. | DATE: | APPRO | VED BY: |
|---------------------|------|-------|-------|---------|
| BRITISH<br>COLUMBIA |      | •     |       | Fiq. 10 |

amorphous quartz. The silicified zones occur along major structural breaks as:

- (i) selective replacements in the more porous layers in the rhyolite
- (ii) discontinuous veinlets and vuggy fracture fills
- (iii) discrete veins or vein stockworks traceable over some distance
- (iv) silica healed tectonic and/or hydrothermal breccias which often show several stages of brecciation/silicification.

Overall the veins are oriented northerly to northeasterly however at any one location virtually any orientation is possible. The black chalcedonic veins and breccias are visually the most spectacular and often carry strong pyrite with anomalous to strong silver values. For gold mineralization however they can be a red herring. The tendency is to focus on the prominent veins and breccias however the best gold values often are associated with the argillically altered wallrock rhyolites especially where they show evidence of shearing. A good example of this is in trench #4 where the silver values are best in the vein while gold is highest in the gougy rhyolite wallrock. This "zoning" of silver and gold values may be responsible for the soil anomaly patterns in which gold is often adjacent to the silver values.

### VLF-EM

A VLF-EM survey was carried out from October 2 to 4 over the same grid lines established for the soil geochem; the exception being that line 48N was not surveyed. In addition the 50E baseline was surveyed from 45N to 61N. A total of 9.21 kilometers of survey was completed.

A Geonics EM-16 unit was used for the survey. The operation of this instrument is well documented in the literature and will not be reiterated

in this report. The Seattle, Washington transmitting station (NLK-24.8 KHz.) was used for all east-west lines with the operator facing west. The Cutler, Maine transmitting station (NAA-24.0KHz) was used for the baseline survey with the operator facing south. The results of the survey are shown on Plate No. 2 (in pocket).

### INTERPRETATION

The east-west survey indicates a series of northerly trending conductors which are probably delineating faults. The strongest of these can be traced over at least a kilometer in length. Two of these straddle the claim line (Loon 1 & 2) and are traceable from Line 60N to the south to 51N. Both appear to die out further south. A third conductor starts on line 55 + 20N at about 55E and is traceable to the south right to the claim boundary. Two weaker subparallel conductors occur about 200 meters east of this and are traceable over the same distance. Another conductor is present about 300 meters west of the 50E B.L. and can be traced south to Boot Lake and possibly to the southern claim boundary.

The single north-south line surveyed (50E B.L.) indicates one very major transverse conductor near the toe of Boot Lake. Several other strong conductors are also apparent from Lou's Puddle northward. With only one line surveyed no orientation can be given for any of these conductors.

There appears to be a complex interplay of faulting in this area which has resulted in considerable "noise" in the VLF-EM survey. Some of the multiple peak anomalies in the survey could be caused by "interference" from cross-faults. More detailed surveys using 100 meter spaced lines are necessary to property interpret these anomalies. As well, additional

north-south lines will help delineate the cross-faults and indicate where "interference" might be expected.

K.J. Taylor

Senior Project Geologist

### SELECTED BIBLIOGRAPHY

| Andrew, K.         | "Epithermal Precious Metal Mineralization in the Ootsa<br>Lake Group, Wolf Prospect, Central British Columbia"<br>Paper presented at the G.A.C Smithers Exploration<br>Group Workshop; October, 1988. |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drobe, J.          | "Stratigraphy and Petrology of the Ootsa Lake Group<br>in the Whitesail Range", Paper presented at the G.A.C.<br>Smithers Exploration Group Workshop; October, 1988.                                  |
| Halsor, S.P. et al | "Geology of the Delamar Silver Mine, Idaho - A Volcanic<br>Dome Complex and Genetically Associated Hydrothermal<br>System", Econ. Geol. Vol.83 p.1159 - 1169; 1988.                                   |
| Taylor, K.J.       | "Geochemical and Trenching Report on the Barb 1 and Rhub 1-13 claims", Report for assessment; November, 1987.                                                                                         |
|                    | "Geochemical and Geophysical Surveying, Trenching and Drilling Report on the Rhub 1-13 and Barb 1 Claims", Report for assessment; December, 1988.                                                     |
| Thomason, R.E.     | "Geology of the Paradise Peak Gold/Silver Deposit,<br>Nye County, Nevada" FMC Corp. Paper received during<br>field trip to Paradise Peak in October 1987.                                             |
| Tipper, H.W.       | "Nechako River Map-area, British Columbia", Geol.<br>Surv. Can. Memoir 324; 1963.                                                                                                                     |
| Watson, B.N.       | "Geological Setting and Characteristics of Bulk Tonnage,<br>Low-Grade Silver Deposits in the Southern Cordillera"<br>World Mining Magazine, P.44-49; March, 1977.                                     |
| Wood, J.D.         | "General Geology of the Sleeper Gold Deposit, Humboldt County Nevada", Amax Exploration Paper, 1987.                                                                                                  |

## BREAKDOWN OF COSTS

LOON GROUP I ( Loon 1,2,3,4,5,8) = 100 units

## Personnel

| J. Nicholson - Geologist/Supervisor R. Diment - Geologist W. Kowal - Geological Technician Blaster - Contract from Hewitt Co. and Assoc. J. Thomlinson - Fieldman                                                                                                                                                                                                                                                                       | \$200/day<br>\$200/day<br>\$150/day<br>\$375/day<br>\$150/day                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Linecutting (Physical Work) -1.5km., Sept. 28-29, 1988  4 mandays @ \$200/manday 2 mandays @ \$150/manday Supplies - 60 1" x 1" x 48" pickets @ 75¢ - Flagging Room/Board - 6 mandays @ \$35/manday *Truck rental - 2 days @ \$50/day                                                                                                                                                                                                   | \$800.00<br>\$300.00<br>45.00<br>20.00<br>210.00<br>100.00                                   |
| Trenching (Physical Work) - 27.2 meters in 7 trenches Oct.  Drilling - 3 mandays @ \$375/manday Blasting - 2 mandays @ \$375/manday Cleanout - 2 mandays @ \$150/manday Powder, magazine rental *Truck rental - 2/3 of 1 day @ \$50/day Room/Board - 7 mandays @\$35/manday                                                                                                                                                             | 2-7, 1988<br>1125.00<br>750.00<br>300.00<br>201.95<br>33.33<br>245.00                        |
| Rock Sampling - 42 samples; Sept. 4 & Oct. 7-8, 1988  Analysis - 29 trench samples @\$12/sample - 29 sample preps. @\$3/sample Analysis - 13 rock samples @ \$12/sample - 13 sample preps @ \$3/sample Trench Sampling - 2 mandays @ \$200/manday Other rock sampling - 1 manday @ \$200/manday Supplies - bags, tags, etc. Room/Board - 3 mandays @ \$35/manday *Truck rental - 1 day @ \$50/day Shipping - 1 Cessna load @ \$158/load | 348.00<br>87.00<br>156.00<br>39.00<br>400.00<br>200.00<br>10.00<br>105.00<br>50.00<br>158.00 |
| - Bus from Burns Lake to Vancouver  Mapping Trenches - 7 trenches, Oct. 9-10, 1988  Mapping - 4 mandays @ \$200/manday Room/Board - 4 mandays @ \$35/manday *Truck Rental - 1 1/3 days @ \$50/day                                                                                                                                                                                                                                       | 27.00<br>800.00<br>140.00<br>66.67                                                           |
| Total page 1 =                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                              |

| Soil Geochem - 161 samples, Sept. 30 & Oct. 1, 1988  Analysis - 161 samples @ \$12/sample                                                                                                                                                  | 1932.00<br>136.85<br>800.00<br>300.00<br>25.00<br>210.00<br>100.00<br>158.00<br>21.00 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| VLF-EM - 9.21 km., Oct. 2-5, 1988  Surveying - 3 mandays @ \$150/manday Plotting - 1 manday @ \$200/manday Room/Board - 4 mandays @ \$35/manday *Truck rental - 1 1/3 days @ \$50/day                                                      | 450.00<br>200.00<br>140.00<br>66.67                                                   |
| Mob-Demob (To/From Loon Claims) Sept. 27 & Oct. 11, 1988  Mob into Loon - 2 Beaver loads @ \$256/load Travelling/Camp Construction - 2 mandays @ \$200/manday                                                                              | 512.00<br>400.00<br>150.00<br>256.00<br>512.00<br>400.00<br>150.00<br>210.00          |
| Mob-Demob (Burns Lake From/To Vancouver) Sept. 25-16,& Oct Travelling - Vancouver to Burns Lake to Vancouver - 8 mandays @ \$200/manday - 4 mandays @ \$150/manday Hotel/Meals - 12 mandays @ \$50/manday Truck rental - 4 days @ \$50/day | . 12-13, 1988<br>1600.00<br>600.00<br>600.00<br>200.00                                |
| Report Preparation March 6-9, 1989 Writing - 4 days @ \$250/day Drafting - 15 hours @ \$20/hour Total Pg. 2                                                                                                                                | 1000.00<br>300.00<br>\$11529.52                                                       |
| Total Pg. 1 & 2                                                                                                                                                                                                                            | \$18246.47                                                                            |
| PAC Withdrawal                                                                                                                                                                                                                             | 1753.53                                                                               |
| Grand Total                                                                                                                                                                                                                                | \$20,000.00                                                                           |

<sup>\*</sup>Truck Rental apportioned by assuming one day rental for every 3 mandays of work.

### STATEMENT OF QUALIFICATIONS

- I, Kenneth J. Taylor of 15732 92B Avenue, Surrey, British Columbia do hereby certify that:
- 1. I am a geologist with a B.Sc. in Geology from the University of British Columbia, 1973.
- 2. I have practised my profession continuously since 1973.
- 3. I supervised the work on the Loon 1 9 Claims in the Omineca Mining Division.
- 4. I have been involved with exploration in the Ootsa Lake area since 1985 to the present. During this time I have worked exclusively on epithermal gold/silver occurrences similar to that on the Loon.
- 5. I have examined the fieldwork on which this report is based and found it to conform to accepted standards within the mining industry.

K.J. Taylor

Senior Project Geologist Mingold Resources Inc.

March 15, 1989.

## APPENDIX I

Geochemical Analysis Certificates

#### GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM PE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Soil -80 Mesh AU\* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. HG ANALYSIS BY FLAMLESS AA.

DATE RECEIVED: OCT 14 1988 DATE REPORT MAILED: Oct. 19, 1988 SIGNED BY Bernard Claud. Total, C. LEONG, B. CHAN, J. HANG; CERTIFIED B.C. ASSAYERS

| DATE                                                               | REC                   | 3 T A D                   | υ.                         | 001                           | 14 1700              | ים                         | WID                      | KEF                             | ORT                                  | MAI                       | יבט:                  | - 0                        |                       | 7                          |                   | 5                          | IGNE                  | ם עו                       | Y See                           |                              | · · · ·                    | ~. D.                      | ruik,                    | C. LEON                        | G, B.C                   | HAN, J      | .WANG;                               | CERTI                    | FIED B                   | .C. AS                | SAYERS                 |                            |   |
|--------------------------------------------------------------------|-----------------------|---------------------------|----------------------------|-------------------------------|----------------------|----------------------------|--------------------------|---------------------------------|--------------------------------------|---------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-------------------|----------------------------|-----------------------|----------------------------|---------------------------------|------------------------------|----------------------------|----------------------------|--------------------------|--------------------------------|--------------------------|-------------|--------------------------------------|--------------------------|--------------------------|-----------------------|------------------------|----------------------------|---|
|                                                                    |                       |                           |                            |                               |                      |                            |                          | MIN                             | GOLD                                 | RES                       | OUR                   | CES                        | PRO                   | JECI                       | 60                | 3                          | Fil                   | e #                        | 88-                             | 5215                         | i                          | Pag                        | re 1                     |                                |                          |             |                                      |                          |                          |                       |                        |                            |   |
| SAMPLE#                                                            | MO<br>PPN             | Cu<br>PPM                 | Pb<br>PPM                  | Zn<br>PPN                     | Ag<br>PPH            | Ni<br>PPM                  | Co<br>PPM                |                                 |                                      | As<br>PPM                 | U<br>PPN              | Au<br>PPM                  | Th<br>PPM             | Sr<br>PPM                  | Cd<br>PPM         | SD<br>PPM                  | Bi<br>PPM             | V<br>PPM                   | Ca<br>%                         | P                            | La<br>PPM                  | Cr<br>PPM                  | Ng<br>%                  | Ba<br>PPM                      | Ti<br>Ł                  | B<br>PPM    | Al<br>%                              | Na<br>%                  | K<br>L                   | W<br>PPH              | Au*<br>PPB             | Hg<br>PPB                  |   |
| L60N 4500E<br>L60N 4550E<br>L60N 4600E<br>L60N 4650E<br>L60N 4700E | 1<br>1<br>1<br>1      | 15<br>17<br>11<br>15<br>8 | 10<br>15<br>12<br>11<br>13 | 152<br>86<br>107<br>139<br>69 | .4<br>.2<br>.2<br>.6 | 19<br>14<br>24<br>34<br>11 | 10<br>7<br>11<br>13<br>6 | 203<br>210<br>294               | 4.09<br>3.40<br>3.76<br>4.82<br>2.37 | 3<br>21<br>3<br>9<br>5    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>1<br>2<br>2<br>2 | 24<br>35<br>20<br>30<br>20 | 1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2 | 57<br>43<br>56<br>73<br>42 | .24<br>.25<br>.15<br>.24        | .055                         | 10<br>16<br>8<br>9         | 33<br>23<br>27<br>33<br>18 | .61<br>.41<br>.45<br>.59 | 87<br>121<br>91<br>121<br>67   | .18<br>.05<br>.13<br>.13 | 2<br>2<br>2 | 3.02<br>2.34<br>2.87<br>3.68<br>1.39 | .01<br>.01<br>.01<br>.01 | .05<br>.08<br>.06<br>.07 | 1<br>1<br>2<br>1      | 1<br>4<br>1<br>1       | 40<br>30<br>30<br>20<br>20 |   |
| L60N 47502<br>L60N 4800E<br>L60N 4850E<br>L60N 4900E<br>L60N 4950E | 1<br>1<br>2<br>1<br>1 | 8<br>8<br>7<br>7<br>8     | 11<br>13<br>8<br>10<br>10  | 60<br>83<br>71<br>53<br>73    | .1<br>.1<br>.1<br>.1 | 9<br>12<br>11<br>11<br>12  | 5<br>6<br>5<br>5         | 192<br>145<br>203               | 1.34<br>2.50<br>2.66<br>2.50<br>2.63 | 3<br>2<br>5<br>8<br>7     | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>2<br>2 | 18<br>20<br>15<br>12<br>13 | 1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>3<br>2<br>2 | 35<br>43<br>46<br>47<br>44 | .18<br>.19<br>.13<br>.12        | .027<br>.053<br>.048<br>.030 | 12<br>10<br>11<br>15<br>15 | 17<br>23<br>22<br>18<br>19 | .29<br>.33<br>.18<br>.27 | 82<br>72<br>71<br>52<br>71     | .07<br>.15<br>.07<br>.10 | 2<br>2<br>2 | 1.87<br>1.65<br>1.51<br>1.30<br>1.87 | .01<br>.01<br>.01<br>.01 | .05<br>.04<br>.04<br>.05 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1       | 10<br>20<br>10<br>10<br>20 |   |
| 160N 5000E<br>160N 505CE<br>160N 5100E<br>160N 5150E<br>160N 5200E | 1<br>1<br>1<br>1      | 12<br>9<br>7<br>4<br>5    | 17<br>14<br>11<br>9<br>15  | 85<br>68<br>57<br>39          | .1<br>.1<br>.1<br>.1 | 15<br>11<br>8<br>6<br>7    | 7<br>5<br>3<br>3         | 269<br>170<br>158<br>126<br>125 | 2.04<br>1.56<br>1.13                 | 11<br>5<br>5<br>3<br>5    | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>2<br>1 | 18<br>15<br>17<br>12<br>14 | 1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>3<br>2 | 38<br>32<br>30<br>22<br>23 | .19<br>.14<br>.18<br>.12<br>.13 | .058<br>.036<br>.023<br>.018 | 17<br>15<br>16<br>16<br>17 | 21<br>18<br>15<br>12<br>14 | .42<br>.27<br>.26<br>.15 | 82<br>74<br>57<br>41<br>47     | .05<br>.07<br>.09<br>.08 | 3<br>2<br>2 | 2.30<br>1.73<br>.96<br>.88<br>1.04   | .01<br>.01<br>.01<br>.01 | .06<br>.04<br>.04<br>.04 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>2<br>1  | 30<br>20<br>10<br>10<br>20 |   |
| L60N 5250E<br>L60N 5300E<br>L60N 5350E<br>L60N 5400E<br>L60N 5450E | 1<br>1<br>1<br>2<br>3 | 5<br>7<br>6<br>11<br>21   | 10<br>10<br>10<br>11<br>17 | 45<br>110<br>69<br>127<br>116 | .1<br>.1<br>.1<br>.1 | 7<br>15<br>6<br>16<br>17   | 3<br>7<br>4<br>7<br>9    | 360<br>131<br>266               | 1.46<br>2.56<br>1.73<br>2.53<br>3.51 | 6<br>11<br>4<br>9<br>21   | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 2<br>1<br>2<br>1<br>2 | 14<br>19<br>15<br>19<br>38 | 1<br>.1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2 | 27<br>39<br>32<br>57<br>38 | .13<br>.19<br>.14<br>.20        | .023<br>.050<br>.029<br>.093 | 16<br>15<br>17<br>12<br>27 | 13<br>20<br>14<br>23<br>21 | .20<br>.37<br>.18<br>.30 | 52<br>73<br>61<br>100<br>177   | .08<br>.06<br>.09<br>.08 | 3<br>2<br>2 | .92<br>1.73<br>1.01<br>2.48<br>3.82  | .01<br>.01<br>.01<br>.01 | .05<br>.06<br>.04<br>.05 | 2<br>1<br>1<br>1<br>1 | 1<br>1<br>12<br>1<br>2 | 5<br>10<br>5<br>30<br>30   |   |
| L60N 5500E<br>L60N 5550E<br>L60N 5600E<br>L60N 5800E<br>L60N 5900E | 2<br>1<br>2<br>1      | 19<br>5<br>12<br>8<br>8   | 15<br>18<br>9<br>13<br>12  | 95<br>57<br>93<br>58<br>59    | .2<br>.1<br>.1<br>.1 | 19<br>4<br>15<br>10        | 12<br>3<br>9<br>5<br>4   | 179<br>1127<br>223              | 3.42<br>1.57<br>2.92<br>2.64<br>1.74 | 20<br>5<br>16<br>11<br>5  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>1<br>1<br>3<br>1 | 28<br>12<br>29<br>18<br>20 | 1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2 | 44<br>34<br>38<br>47<br>30 | .19                             | .075<br>.024<br>.048<br>.069 | 18<br>19<br>23<br>16<br>15 | 21<br>13<br>18<br>19       | .54<br>.14<br>.52<br>.20 | 126<br>50<br>95<br>68<br>74    | .02<br>.12<br>.06<br>.07 | 2<br>2<br>2 | 2.80<br>.80<br>1.54<br>1.33<br>1.24  | .01<br>.01<br>.02<br>.01 | .11<br>.05<br>.11<br>.05 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1       | 20<br>10<br>20<br>10<br>30 |   |
| L57N 4550R<br>L57N 4600R<br>L57N 4650E<br>L57N 4700E<br>L57N 4750E | 2<br>1<br>1<br>4<br>3 | 29<br>20<br>8<br>13<br>11 | 22<br>13<br>8<br>15<br>18  | 137<br>106<br>76<br>157<br>70 | .3<br>.1<br>.2<br>.7 | 25<br>18<br>9<br>15        | 15<br>10<br>5<br>8<br>9  | 669<br>247<br>398               | 4.78<br>3.49<br>2.16<br>3.70<br>3.25 | 62<br>19<br>8<br>87<br>50 | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 1<br>1<br>2<br>3<br>3 | 49<br>36<br>13<br>16<br>20 | 1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2 | 59<br>48<br>36<br>49<br>56 | .34<br>.13<br>.12               | .088<br>.075<br>.033<br>.132 | 24<br>23<br>15<br>17<br>25 | 29<br>26<br>18<br>22<br>18 | .80<br>.51<br>.24<br>.24 | 174<br>138<br>56<br>109<br>103 | .04<br>.04<br>.08<br>.04 | 2 2 2       | 1.29<br>2.78<br>1.27<br>2.53<br>1.91 | .01<br>.01<br>.01<br>.01 | .17<br>.11<br>.04<br>.08 | 1<br>1<br>2<br>1      | 4<br>1<br>1<br>18      | 20<br>30<br>10<br>40       | • |
| L57N 4850E<br>L57N 4850E<br>L57N 4900E<br>L57N 4950E<br>L57N 5009E | 2<br>4<br>2<br>1<br>2 | 10<br>19<br>9<br>6<br>5   | 9<br>22<br>17<br>9         | 73<br>95<br>65<br>55<br>72    | .2<br>.2<br>.1<br>.1 | 10<br>18<br>11<br>5        | 8<br>9<br>7<br>2<br>4    | 317<br>336<br>104               | 2.61<br>4.56<br>2.64<br>1.03<br>1.97 | 32<br>70<br>20<br>5       | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 2<br>2<br>1<br>1      | 14<br>20<br>16<br>11       | 1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2 | 35<br>61<br>39<br>19<br>34 | .15<br>.16<br>.10               | .058<br>.101<br>.058<br>.020 | 21<br>20<br>21<br>16<br>17 | 13<br>27<br>19<br>12<br>13 | .33<br>.45<br>.35<br>.12 | 58<br>126<br>61<br>44<br>59    | .03<br>.01<br>.04<br>.04 | 2 2         | 1.39<br>3.22<br>1.65<br>1.02         | .01<br>.01<br>.01<br>.01 | .11<br>.14<br>.10<br>.05 | 1<br>1<br>2<br>1      | 3<br>2<br>2<br>1<br>1  | 30<br>30<br>10<br>20       |   |
| L57N 5100E<br>STD C/AU-5                                           | 2                     | 8<br>61                   | 13<br>42                   | 82<br>132                     | .1                   | 10<br>67                   | 5<br>30                  | 179<br>1018                     | 2.65<br>4.14                         | 13                        | 5<br>20               | ND<br>7                    | 3<br>38               | 16<br>48                   | 1<br>18           | 2<br>20                    | 2<br>21               | 43<br>59                   | .16                             |                              | 16<br>40                   | 19<br>56                   | .24                      | 57<br>175                      | .06                      |             | 1.63                                 | .01                      | .05                      | 1 12                  | 1 53                   | 10                         |   |

#### MINGOLD RESOURCES PROJECT 603 FILE # 88-5215

|            | Sample#                                                            | Mo<br>PPM             | Cu<br>PPM                  | Pb<br>PPM                  | Zn<br>PPN                    | Ag<br>PPM            | Ni<br>PPM                  | Co<br>PPN                | MD<br>PPN                        | Fe<br>%                              | As<br>PPN               | U<br>PPM         | Au<br>PPM            | Th<br>PPM             | sr<br>PPN                  | Cd<br>PPM        | Sb<br>PPM                       | Bi<br>PPM                  | V<br>PPM                   | Ca<br>%           | P<br>%                       | La<br>Pp <u>y</u>          | Cr<br>PPM                  | Mg<br>%                         | Ba<br>PPM                     | Ti<br>3                  | B<br>PPM    | Al<br>3                              | Na<br>%                  | ,<br>}                   | W<br>PPM              | Au*<br>PPB            | Hg<br>PPB                  |
|------------|--------------------------------------------------------------------|-----------------------|----------------------------|----------------------------|------------------------------|----------------------|----------------------------|--------------------------|----------------------------------|--------------------------------------|-------------------------|------------------|----------------------|-----------------------|----------------------------|------------------|---------------------------------|----------------------------|----------------------------|-------------------|------------------------------|----------------------------|----------------------------|---------------------------------|-------------------------------|--------------------------|-------------|--------------------------------------|--------------------------|--------------------------|-----------------------|-----------------------|----------------------------|
|            | L57N 5150E<br>L57N 52008<br>L57N 5250E<br>L57N 5350E<br>L57N 5350E | 2<br>2<br>3<br>2<br>1 | 9<br>7<br>10<br>6<br>5     | 17<br>15<br>18<br>21<br>14 | 90<br>56<br>79<br>54<br>36   | .1<br>.1<br>.1<br>.4 | 11<br>6<br>11<br>4<br>4    | 5<br>3<br>7<br>3<br>3    | 137<br>180<br>118                | 2.20<br>1.38<br>3.28<br>1.31         | 8<br>9<br>22<br>5<br>6  | 5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND | 3<br>3<br>3<br>1<br>3 | 16<br>12<br>18<br>14<br>10 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2           | 3<br>2<br>2<br>2<br>2<br>2 | 40<br>26<br>47<br>25<br>24 | .10<br>.18<br>.12 | .044<br>.014<br>.106<br>.027 | 17<br>20<br>18<br>18<br>17 | 18<br>13<br>18<br>11<br>10 | .26<br>.17<br>.30<br>.13        | 85<br>49<br>98<br>60<br>42    | .08<br>.08<br>.05<br>.06 | 2           | 1.71<br>.90<br>2.54<br>1.35<br>.89   | .01<br>.01<br>.01<br>.01 | .05<br>.04<br>.06<br>.04 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>2      | 40<br>10<br>30<br>20<br>10 |
|            | L57N 5400E<br>L57N 5450E<br>L57N 5500E<br>L57N 5550E<br>L57N 5600E | 1<br>3<br>2<br>1<br>2 | 5<br>16<br>7<br>7<br>9     | 13<br>11<br>7<br>8<br>16   | 42<br>105<br>53<br>76<br>73  | .1<br>.1<br>.1<br>.1 | 5<br>16<br>5<br>8<br>12    | 3<br>10<br>4<br>4<br>6   | 595<br>120<br>168                | 1.35<br>3.36<br>1.30<br>1.69<br>2.45 | 4<br>14<br>3<br>2<br>11 | 5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND | 3<br>2<br>1<br>3<br>3 | 11<br>27<br>16<br>15       | 1<br>1<br>1<br>1 | 2<br>3<br>2<br>2<br>2           | 2<br>2<br>3<br>2<br>2      | 26<br>45<br>25<br>32<br>38 | .13               | .021<br>.081<br>.026<br>.023 | 17<br>23<br>13<br>15<br>15 | 12<br>21<br>12<br>13<br>16 | .16<br>.48<br>.18<br>.23<br>.26 | 44<br>120<br>72<br>67<br>95   | .10<br>.05<br>.07<br>.11 | 3<br>2<br>4 | 1.06<br>2.71<br>1.33<br>1.31<br>2.36 | .01<br>.01<br>.01<br>.01 | .04<br>.10<br>.03<br>.03 | 2<br>1<br>1<br>1<br>1 | 1<br>1<br>7<br>2<br>2 | 20<br>40<br>30<br>20<br>30 |
|            | L57N 5650E<br>L57N 5700E<br>L57N 5750E<br>L57N 5800E<br>L57N 5850E | 2 2 1                 | 9<br>8<br>9<br>11<br>16    | 20<br>15<br>13<br>14<br>17 | 96<br>101<br>93<br>124       | .1<br>.2<br>.1<br>.1 | 10<br>7<br>14<br>15<br>21  | 7<br>5<br>9<br>9         | 301<br>399                       | 3.55<br>2.35<br>2.96<br>3.68<br>2.74 | 34<br>28<br>19<br>5     | 5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND | 4<br>2<br>2<br>3<br>1 | 12<br>17<br>12<br>16<br>28 | 1<br>1<br>1<br>1 | 2 2 2                           | 2 2 2 2 3                  | 47<br>39<br>44<br>63<br>38 | .12<br>.12<br>.15 | .151<br>.040<br>.139<br>.106 | 17<br>18<br>13<br>12<br>13 | 16<br>16<br>17<br>23<br>24 | .16<br>.16<br>.23<br>.26        | 75<br>87<br>81<br>89<br>156   | .03<br>.06<br>.08<br>.14 | 3<br>2<br>3 | 2.48<br>1.32<br>1.91<br>2.32<br>3.61 | .01<br>.01<br>.01<br>.01 | .06<br>.05<br>.05<br>.04 | 1<br>1<br>1<br>1      | 1<br>8<br>1<br>2      | 30<br>20<br>30<br>30<br>40 |
|            | L57N 5900E<br>L54N 5050E<br>L54N 5100E<br>L54N 5250E<br>L54N 5300E | 1<br>1<br>2<br>2<br>1 | 10<br>13<br>14<br>13<br>11 | 11<br>10<br>19<br>12<br>13 | 81<br>159<br>156<br>76<br>89 | .1<br>.3<br>.1<br>.1 | 11<br>22<br>27<br>18<br>13 | 5<br>12<br>12<br>10<br>7 | 551<br>244<br>326                | 1.99<br>3.87<br>4.16<br>3.54<br>2.66 | 3<br>5<br>13<br>8<br>2  | 5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND | 1<br>3<br>2<br>2<br>3 | 26<br>19<br>20<br>17<br>18 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>3      | 31<br>60<br>50<br>61<br>47 | .20<br>.21<br>.17 | .041<br>.137<br>.150<br>.056 | 17<br>11<br>14<br>10<br>12 | 15<br>23<br>26<br>23<br>17 | .28<br>.41<br>.55<br>.45        | 96<br>130<br>132<br>69<br>100 | .04<br>.13<br>.09<br>.15 | 2 2 3       | 2.10<br>3.05<br>4.28<br>2.24<br>1.94 | .01<br>.01<br>.01<br>.01 | .05<br>.05<br>.05<br>.04 | 1<br>2<br>1<br>2<br>1 | 1<br>1<br>1<br>1      | 30<br>20<br>50<br>20<br>20 |
|            | L54N 5350E<br>L54N 54008<br>L54N 5450E<br>L54N 5500E<br>L54N 5550E | 1<br>2<br>1<br>1      | 15<br>11<br>10<br>13<br>10 | 15<br>13<br>12<br>9<br>12  | 83<br>93<br>194<br>71<br>64  | .1<br>.1<br>.1<br>.1 | 27<br>15<br>19<br>13<br>11 | 12<br>8<br>11<br>7<br>6  | 205<br>398<br>249                |                                      | 2,<br>6<br>7<br>6<br>4  | 5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND | 3<br>3<br>2<br>1<br>3 | 17<br>20<br>18<br>23<br>18 | 1<br>1<br>1<br>1 | 3<br>2<br>2<br>2<br>2           | 2<br>2<br>2<br>3<br>2      | 52<br>52<br>56<br>36<br>41 | .17<br>.25<br>.23 | .108<br>.072<br>.139<br>.045 | 11<br>13<br>14<br>16<br>14 | 22<br>20<br>23<br>17<br>17 | .39<br>.28<br>.31<br>.43        | 160<br>87<br>86<br>94<br>84   | .13<br>.11<br>.08<br>.08 | 5<br>2<br>3 | 3.51<br>2.12<br>2.64<br>1.99<br>1.70 | .01<br>.01<br>.01<br>.01 | .04<br>.04<br>.04<br>.04 | 1<br>1<br>1<br>1      | 2<br>1<br>1<br>1      | 20<br>30<br>30<br>20<br>20 |
|            | L54N 5600B<br>L54N 5650E<br>L54N 5700B<br>L54N 575GE<br>L54N 5800E | 2<br>1<br>1<br>1<br>3 | 11<br>9<br>13<br>12<br>26  | 15<br>12<br>16<br>13       | 115<br>65<br>90<br>77<br>129 | .1<br>.1<br>.1<br>.1 | 19<br>8<br>17<br>14<br>42  | 10<br>4<br>8<br>7<br>27  | 205<br>164<br>207<br>165<br>2338 | 2.86<br>2.61                         | 5<br>6<br>12<br>7<br>20 | 5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND | 3<br>3<br>2<br>3<br>3 | 18<br>14<br>21<br>13<br>48 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2           | 2<br>3<br>2<br>2<br>2      | 59<br>39<br>42<br>39<br>72 | .13<br>.20<br>.12 | .111<br>.042<br>.073<br>.078 | 10<br>13<br>19<br>14<br>20 | 25<br>16<br>22<br>20<br>32 | .32<br>.17<br>.40<br>.25        | 98<br>64<br>125<br>82<br>186  | .13<br>.13<br>.07<br>.07 | 2<br>2<br>2 | 3.30<br>1.29<br>3.02<br>2.64<br>4.46 | .01<br>.01<br>.01<br>.01 | .04<br>.03<br>.04<br>.04 | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>1      | 20<br>20<br>40<br>30<br>30 |
| <b>-</b> > | L54N 5850E<br>L54N 5900K<br>L54N 5950E<br>L54N 6000E<br>L51N 4500E | 1<br>1<br>1<br>1<br>6 | 13<br>6<br>11<br>8<br>8    | 14<br>13<br>15<br>13<br>38 | 69<br>50<br>117<br>54<br>71  | .1<br>.1<br>.1<br>.1 | 15<br>8<br>14<br>9         | 7<br>4<br>7<br>4<br>5    | 225<br>173<br>198<br>170<br>695  | 1.69<br>2.64<br>1.83                 | 4<br>2<br>7<br>7<br>66  | 5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND | 1<br>2<br>2<br>2<br>2 | 28<br>18<br>14<br>21<br>14 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2           | 2<br>3<br>2<br>2<br>2      | 40<br>31<br>42<br>32<br>23 | .18<br>.13<br>.16 | .037<br>.028<br>.117<br>.035 | 15<br>16<br>15<br>16<br>41 | 16<br>13<br>20<br>14<br>7  | .33<br>.27<br>.25<br>.26        | 80<br>68<br>87<br>94<br>195   | .09<br>.09<br>.09<br>.09 | 2<br>2<br>2 | 1.46<br>1.24<br>2.92<br>1.63<br>1.55 | .02<br>.01<br>.01<br>.01 | .03<br>.03<br>.04<br>.03 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1      | 10<br>10<br>30<br>20       |
|            | L51N 4550E<br>STD C/AU-S                                           | 3<br>18               | 14<br>61                   | 21<br>43                   | 131<br>132                   | .2<br>5.7            | 17<br>70                   |                          | 273<br>1023                      |                                      | 31<br>40                | 5<br>18          | ND<br>7              | 3<br>39               | 15<br>49                   | 1<br>18          | 4<br>16                         | 2<br>22                    | 52<br>60                   |                   | .137<br>.097                 | 18<br>40                   | 19<br>55                   | . 23<br>. 95                    |                               | .07                      |             | 3.11<br>1.96                         | .01                      | .05<br>.13               | 2<br>12               | 1<br>51 1             | 5 <b>0</b><br>1300         |

į

**(**:

| SAMPLE#                                                            | Mo<br>PPM              | Cu<br>PPK                  | Pb<br>PPH                  | ZE<br>MPN                     | Ag<br>PPM            | Ni<br>PPM                  | Co<br>PPM                 | Mn<br>PPK         | Fe<br>%                              | As<br>PPM                | U<br>PPM              | Au<br>PPM            | Th<br>PPM             | Sr<br>PPM                  | Cd<br>PPN             | Sb<br>PPM                  | Bi<br>PPM             | V<br>PPM                           | Ca<br>%                         | P<br>%                               | La<br>PPM                  | Cr<br>PPM                  | Mg<br>%                         | Ba<br>PPM                      | Ti.                             | B<br>PPM    | Al<br>%                              | Na<br>%                  | 3                        | PPK                   | Au*<br>PPB            | Hg<br>PPB                  |
|--------------------------------------------------------------------|------------------------|----------------------------|----------------------------|-------------------------------|----------------------|----------------------------|---------------------------|-------------------|--------------------------------------|--------------------------|-----------------------|----------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|------------------------------------|---------------------------------|--------------------------------------|----------------------------|----------------------------|---------------------------------|--------------------------------|---------------------------------|-------------|--------------------------------------|--------------------------|--------------------------|-----------------------|-----------------------|----------------------------|
| L51N 4600E<br>L51N 4650E<br>L51N 4700E<br>L51N 4750E<br>L51N 4800E | 1<br>7<br>8<br>1<br>14 | 16<br>6<br>21<br>4<br>13   | 12<br>17<br>24<br>10<br>17 | 91<br>55<br>85<br>47<br>106   | .4<br>.5<br>.1<br>.1 | 13<br>8<br>22<br>6<br>20   | 7<br>4<br>11<br>3<br>11   | 171<br>510<br>153 | 2.99<br>2.10<br>3.98<br>1.37<br>4.28 | 14<br>4<br>22<br>3<br>24 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND | 3<br>2<br>1<br>1<br>3 | 15<br>17<br>36<br>13<br>14 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2 | 47<br>38<br>61<br>27<br>60         | .11<br>.14<br>.36<br>.15        | .088<br>.040<br>.055<br>.013         | 12<br>12<br>15<br>11<br>15 | 20<br>17<br>23<br>12<br>28 | .20<br>.18<br>.55<br>.18        | 76<br>62<br>117<br>40<br>124   | .10<br>.11<br>.05<br>.10        | 3<br>2<br>2 | 2.10<br>1.30<br>2.77<br>.91<br>3.31  | .01<br>.01<br>.01<br>.01 | .04<br>.04<br>.09<br>.02 | 1<br>1<br>1<br>2<br>1 | 1<br>1<br>1<br>1      | 20<br>20<br>10<br>10<br>30 |
| L51N 4850E<br>L51N 4900E<br>L51N 4950E<br>L51N 5000E<br>L51N 5300E | 1<br>1<br>1<br>4       | 10<br>16<br>11<br>10<br>33 | 17<br>18<br>11<br>11       | 120<br>66<br>101<br>74<br>82  | .3<br>.1<br>.1<br>.1 | 19<br>15<br>18<br>14<br>22 | 11<br>7<br>9<br>8<br>12   | 213<br>246<br>514 | 3.86<br>3.13<br>3.68<br>2.71<br>5.73 | 7<br>7<br>5<br>2<br>14   | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND | 2<br>2<br>3<br>1<br>1 | 19<br>31<br>18<br>28<br>56 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>3<br>2<br>2<br>2 | 61<br>53<br>58<br>45<br>103        | .14<br>.26<br>.20<br>.27        | .090<br>.041<br>.127<br>.047<br>.083 | 10<br>16<br>10<br>14<br>23 | 26<br>21<br>25<br>20<br>32 | .29<br>.47<br>.35<br>.42        | 90<br>106<br>110<br>95<br>202  | .14<br>.10<br>.12<br>.12<br>.04 | 2<br>2<br>2 | 2.90<br>2.60<br>2.91<br>1.86<br>3.86 | .01<br>.01<br>.01<br>.01 | .04<br>.05<br>.04<br>.04 | 2<br>1<br>1<br>1      | 1<br>1<br>1<br>1      | 30<br>10<br>20<br>10<br>30 |
| L51N 5550E<br>L51N 5600R<br>L51N 5650E<br>L51N 5700E<br>L51N 5750E | 1<br>1<br>2<br>1<br>2  | 13<br>20<br>19<br>13<br>16 | 15<br>17<br>21<br>9<br>15  | 63<br>97<br>122<br>112<br>112 | .1<br>.1<br>.2<br>.1 | 12<br>19<br>18<br>20<br>28 | 6<br>10<br>13<br>10<br>14 | 446<br>633<br>252 | 2.39<br>3.75<br>4.16<br>3.67<br>4.31 | 4<br>, 9<br>12<br>7<br>4 | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND | 1<br>2<br>3<br>3<br>3 | 27<br>35<br>33<br>21<br>18 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2 | 39<br>55<br>61<br>55<br>63         | .26<br>.33<br>.28<br>.19        | .039<br>.063<br>.081<br>.101         | 16<br>18<br>19<br>13       | 21<br>25<br>26<br>26<br>33 | .37<br>.61<br>.54<br>.40        | 94<br>133<br>156<br>163<br>170 | .11<br>.10<br>.06<br>.12<br>.14 | 3<br>2<br>2 | 2.05<br>2.90<br>3.50<br>3.35<br>4.19 | .01<br>.01<br>.01<br>.01 | .05<br>.08<br>.07<br>.04 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>2<br>1<br>1 | 20<br>20<br>30<br>10<br>20 |
| L51N 5800E<br>L51N 5850E<br>L51N 5900E<br>L51N 5950E<br>L51N 6000E | 1<br>1<br>1<br>1       | 12<br>19<br>11<br>8<br>6   | 13<br>12<br>11<br>15<br>15 | 112<br>97<br>68<br>63<br>65   | .1<br>.1<br>.1<br>.1 | 16<br>20<br>11<br>10<br>4  | 9<br>9<br>7<br>5<br>4     | 283<br>366<br>193 | 4.02<br>3.40<br>2.41<br>2.09<br>2.98 | 3<br>2<br>5<br>10<br>9   | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND | 2<br>2<br>1<br>1<br>1 | 17<br>43<br>29<br>16<br>9  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2 | 64<br>51<br>41<br>36<br>52         | .15<br>.36<br>.28<br>.17        | .164<br>.042<br>.045<br>.042         | 10<br>18<br>18<br>14<br>12 | 29<br>27<br>18<br>18<br>19 | .32<br>.59<br>.30<br>.24        | 80<br>135<br>107<br>87<br>43   | .13<br>.09<br>.08<br>.07        | 2<br>2<br>2 | 2.61<br>3.08<br>1.67<br>1.60<br>1.43 | .01<br>.01<br>.01<br>.01 | .04<br>.05<br>.05<br>.03 | 1<br>1<br>1<br>1      | 1<br>1<br>4<br>5      | 20<br>30<br>30<br>20<br>30 |
| L48N 4500E<br>L48N 4550E<br>L48N 4600E<br>L48N 4650B<br>L48N 4700E | 1<br>1<br>1<br>1       | 10<br>9<br>6<br>10<br>8    | 13<br>10<br>12<br>12<br>14 | 70<br>58<br>57<br>72<br>65    | .1<br>.1<br>.1<br>.1 | 14<br>11<br>7<br>11<br>10  | 9<br>6<br>4<br>6<br>5     | 194<br>182<br>273 | 3.03<br>1.84<br>1.73<br>1.92<br>1.96 | 2<br>2<br>3<br>3<br>2    | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND | 2<br>1<br>1<br>2<br>2 | 28<br>33<br>21<br>24<br>17 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2 | 55<br>34<br>33<br>30<br>33         | .28<br>.36<br>.23<br>.23        | .046<br>.029<br>.025<br>.046         | 12<br>16<br>13<br>15       | 24<br>17<br>16<br>18<br>17 | .40<br>.29<br>.24<br>.32        | 84<br>80<br>58<br>95<br>69     | .15<br>.11<br>.13<br>.10        | 3 2         | 1.90<br>1.39<br>1.11<br>1.75<br>1.61 | .01<br>.01<br>.01<br>.01 | .04<br>.03<br>.03<br>.04 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1<br>2 | 10<br>20<br>10<br>20<br>10 |
| L48N 4750E<br>L48N 4800E<br>L48N 4850E<br>L48N 4900E<br>L48N 4950B | 1<br>1<br>1<br>1<br>2  | 8<br>9<br>11<br>6<br>18    | 14<br>7<br>14<br>13<br>16  | 61<br>68<br>95<br>71<br>132   | .1<br>.1<br>.1<br>.1 | 11<br>11<br>17<br>8<br>20  | 5<br>5<br>8<br>5<br>17    | 263<br>240        | 2.13<br>3.29<br>1.99                 | 2<br>3<br>5<br>2<br>3    | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND | 1<br>2<br>2<br>2<br>1 | 16<br>18<br>20<br>15<br>32 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>3      | 31<br>37<br>48<br>37<br>70         | .18<br>.20<br>.19<br>.15<br>.26 | .032<br>.046<br>.087<br>.040         | 13<br>15<br>15<br>12<br>16 | 17<br>19<br>24<br>17<br>27 | .28<br>.30<br>.33<br>.22<br>.53 | 71<br>81<br>144<br>66<br>140   | .12<br>.13<br>.10<br>.15        | 3<br>3<br>3 | 1.65<br>1.61<br>2.83<br>1.22<br>4.01 | .01<br>.01<br>.01<br>.01 | .03<br>.03<br>.04<br>.03 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1      | 10<br>20<br>30<br>10       |
| L48N 5000E<br>L48N 5025E<br>L48N 5500E<br>L48N 5550E<br>L48N 5600E | 1<br>1<br>1<br>1       | 10<br>8<br>10<br>8<br>9    | 15<br>11<br>14<br>11<br>14 | 66<br>57<br>63<br>49<br>63    | .1<br>.2<br>.1<br>.1 | 11<br>10<br>14<br>11       | 8<br>5<br>8<br>5<br>7     | 238<br>251<br>226 | 2.40<br>1.78<br>3.12<br>2.10<br>2.53 | 3<br>4<br>4<br>2<br>3    | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>2<br>2 | 27<br>20<br>21<br>24<br>22 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>3<br>2<br>2<br>2 | 39<br>- 33<br>- 56<br>- 39<br>- 45 | .25<br>.21<br>.21<br>.22<br>.22 | .047<br>.022<br>.055<br>.028<br>.049 | 18<br>15<br>12<br>16<br>14 | 20<br>18<br>23<br>18<br>20 | .34<br>.29<br>.37<br>.33        | 94<br>74<br>89<br>78<br>80     | .09<br>.13<br>.14<br>.12<br>.14 | 2<br>2<br>2 | 1.98<br>1.51<br>1.83<br>1.38<br>1.56 | .01<br>.01<br>.01<br>.01 | .04<br>.03<br>.03<br>.03 | 1<br>1<br>1<br>1      | 1<br>1<br>8<br>1      | 20<br>5<br>10<br>5<br>20   |
| L48N 5650E<br>STD C/AU-S                                           | 1<br>18                | . 9<br>60                  | 12<br>43                   | 59<br>132                     | .1<br>6.6            | 9<br>67                    | 5<br>30                   | 196<br>1019       | 2.26<br>4.10                         | 3<br>36                  | 5<br>17               | ND<br>7              | 2<br>38               | 16<br>47                   | 1<br>18               | 2<br>16                    | 2<br>25               | 41<br>58                           | .17                             | .049                                 | 13<br>39                   | 17<br>55                   | .27<br>.94                      | 58<br>176                      | .11                             |             | 1.45<br>1.95                         | .01<br>.06               | .03                      | 1<br>11               | 1 42                  | 10<br>1400                 |

ë.

| SAMPLE                                                             | CM<br>M99             | Cu<br>PPK                  | Pb<br>Ppm                  | Zn<br>PPM                    | Ag<br>PPN            | PPN                        | Cc<br>PPM                | MO<br>PPN                        | Fe<br>%                              | As<br>PPM              | U<br>PPM              | Au<br>PPM                  | Th<br>PPM             | Sr<br>PPM                  | Cd<br>PPM        | Sb<br>PPM                  | Bi<br>PPM             | V<br>PPM                   | Ca<br>%                         | ?                                    | La<br>PPM                  | Cr<br>PPM                  | Hg<br>%                         | Ba<br>PPM                       | Ti<br>%                         | B<br>PPM    | Al<br>%                              | Na<br>%                  | ã<br>}                   | W<br>PPM              | Au*<br>PPB              | Hg<br>PPB                   |
|--------------------------------------------------------------------|-----------------------|----------------------------|----------------------------|------------------------------|----------------------|----------------------------|--------------------------|----------------------------------|--------------------------------------|------------------------|-----------------------|----------------------------|-----------------------|----------------------------|------------------|----------------------------|-----------------------|----------------------------|---------------------------------|--------------------------------------|----------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------------|-------------|--------------------------------------|--------------------------|--------------------------|-----------------------|-------------------------|-----------------------------|
| L48N 570CE<br>L48N 575C3<br>L48N 5600E<br>L48N 585C2<br>L48N 59CC2 | 1<br>1<br>1<br>1<br>3 | 9<br>6<br>8<br>10<br>21    | 16<br>12<br>15<br>19<br>18 | 75<br>61<br>48<br>59<br>94   | .2<br>.2<br>.1<br>.2 | 11<br>8<br>7<br>10<br>18   | 7<br>5<br>4<br>6<br>13   | 276<br>218<br>182<br>249<br>981  | 2.52<br>1.92<br>1.63<br>2.15<br>3.13 | 6<br>5<br>5<br>8<br>15 | 5<br>5<br>5<br>5      | ND<br>DN<br>ND<br>ON       | 3<br>2<br>3<br>5      | 19<br>15<br>15<br>16<br>62 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2 | 46<br>42<br>32<br>40<br>47 | .19<br>.15<br>.18<br>.20        | .056<br>.030<br>.045<br>.050         | 16<br>11<br>17<br>14<br>33 | 19<br>15<br>13<br>16<br>20 | .31<br>.23<br>.24<br>.35<br>.48 | 105<br>57<br>63<br>71<br>190    | .11<br>.15<br>.09<br>.10        | 2 . 2 .     | 1.84<br>1.32<br>1.24<br>1.75<br>3.13 | .01<br>.01<br>.01<br>.01 | .04<br>.04<br>.04<br>.04 | 1<br>1<br>1<br>1      | 2<br>1.<br>1<br>1<br>2  | 20<br>30<br>30<br>20<br>100 |
| L48N 59502<br>L48N 60002<br>L45N 4500E<br>L45N 4550E<br>L45N 4600E | 2<br>1<br>1<br>1      | 12<br>7<br>11<br>31<br>15  | 18<br>15<br>9<br>23<br>13  | 73<br>42<br>75<br>140<br>81  | .2<br>.1<br>.1<br>.1 | 10<br>8<br>12<br>32<br>16  | 7<br>5<br>8<br>16<br>10  | 336<br>859                       |                                      | 6<br>5<br>2<br>4<br>7  | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>3<br>2 | 19<br>12<br>35<br>60<br>40 | 1<br>1<br>1<br>1 | 2 2 2 5 3                  | 2 3 2 2 2             | 51<br>32<br>45<br>65<br>46 | .14<br>.13<br>.36<br>.58<br>.38 | .056<br>.036<br>.043<br>.093         | 11<br>14<br>15<br>29<br>25 | 18<br>13<br>19<br>35<br>20 | .32<br>.21<br>.38<br>.90<br>.46 | 98<br>71<br>92<br>243<br>138    | .11<br>.09<br>.14<br>.04        | 2<br>2<br>2 | 2.19<br>1.35<br>1.61<br>5.71<br>2.48 | .01<br>.01<br>.01<br>.01 | .04<br>.03<br>.05<br>.10 | 1<br>1<br>1<br>4<br>1 | 1<br>1<br>1<br>1        | 30<br>20<br>40<br>50<br>40  |
| 145N 4650E<br>145N 470CE<br>145N 4750E<br>145N 4800E<br>145N 4850E | 2<br>1<br>1<br>1      | 21<br>13<br>11<br>11<br>10 | 22<br>14<br>9<br>17<br>15  | 119<br>68<br>62<br>101<br>59 | .1<br>.1<br>.1<br>.2 | 25<br>19<br>13<br>16<br>13 | 24<br>8<br>6<br>8        | 326<br>263<br>235                | 3.86<br>2.77<br>2.10<br>2.80<br>2.51 | 8<br>2<br>2<br>3<br>2  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>4<br>2 | 63<br>28<br>27<br>20<br>28 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>3<br>2<br>3 | 53<br>51<br>40<br>51<br>50 | .57<br>.28<br>.27<br>.18<br>.29 | .107<br>.049<br>.042<br>.063         | 30<br>13<br>13<br>10<br>13 | 25<br>21<br>19<br>21<br>20 | .59<br>.46<br>.41<br>.31<br>.43 | 202<br>103<br>80<br>121<br>82   | .04<br>.12<br>.14<br>.14        | 2 2 2       | 4.22<br>2.13<br>1.64<br>1.97<br>1.50 | .01<br>.01<br>.01<br>.01 | .10<br>.05<br>.04<br>.05 | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>1        | 50<br>50<br>20<br>20<br>30  |
| L45N 4900E<br>L45N 4950E<br>L45N 5000E<br>L45N 5050E<br>L45N 5100E | 1<br>5<br>1<br>1<br>2 | 11<br>27<br>15<br>12<br>13 | 11<br>20<br>18<br>15<br>14 | 71<br>105<br>36<br>86<br>66  | .1<br>.1<br>.1<br>.1 | 14<br>24<br>17<br>16<br>15 | 7<br>18<br>7<br>6<br>7   | 288<br>3619<br>555<br>214<br>229 | 2.55<br>5.61<br>3.02<br>2.00<br>2.35 | 2<br>24<br>8<br>2<br>4 | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 2<br>1<br>1<br>1<br>1 | 27<br>61<br>61<br>38<br>34 | 1<br>1<br>1<br>1 | 2<br>3<br>3<br>2<br>2      | 2<br>3<br>2<br>2<br>3 | 52<br>73<br>42<br>31<br>36 | .30<br>.65<br>.59<br>.42<br>.37 | .063<br>.126<br>.086<br>.062<br>.058 | 12<br>31<br>27<br>24<br>26 | 19<br>28<br>23<br>22<br>20 | .39<br>.52<br>.46<br>.40        | 82<br>155<br>123<br>115<br>145  | .14<br>.03<br>.05<br>.07        | 3<br>3<br>2 | 1.39<br>3.46<br>2.26<br>2.42<br>2.35 | .01<br>.01<br>.01<br>.01 | .04<br>.07<br>.07<br>.05 | 1<br>2<br>1<br>1      | 1<br>1<br>1<br>2        | 20<br>60<br>40<br>40<br>30  |
| L45N 5150E<br>L45N 5200E<br>L45N 5250E<br>L45N 5300E<br>L45N 5350E | 1<br>1<br>1<br>1      | 11<br>12<br>10<br>9        | 15<br>13<br>16<br>16<br>16 | 52<br>77<br>63<br>68<br>75   | .1<br>.1<br>.1<br>.1 | 11<br>14<br>12<br>11<br>16 | 7<br>8<br>7<br>7<br>8    | 227<br>184                       | 2.40<br>2.95<br>2.66<br>2.57<br>3.11 | 9<br>4<br>2<br>3<br>5  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 3<br>3<br>2<br>1<br>2 | 45<br>23<br>23<br>17<br>23 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>5<br>3<br>2<br>2 | 44<br>51<br>51<br>48<br>58 | .46<br>.21<br>.20<br>.16        | .058<br>.077<br>.074<br>.088         | 23<br>11<br>13<br>10<br>11 | 20<br>20<br>20<br>19<br>22 | .46<br>.41<br>.32<br>.25<br>.32 | 122<br>140<br>139<br>107<br>109 | .11<br>.11<br>.14<br>.13<br>.14 | 3<br>2<br>2 | 1.56<br>2.40<br>1.87<br>1.97<br>2.14 | .02<br>.01<br>.01<br>.01 | .07<br>.04<br>.04<br>.04 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>2<br>1   | 20<br>30<br>20<br>30<br>20  |
| L45N 54008<br>L45N 54503<br>L45N 55008<br>L45N 5550E<br>L45N 56008 | 1<br>1<br>1<br>1      | 10<br>9<br>15<br>10<br>6   | 17<br>18<br>21<br>15<br>13 | 83<br>94<br>87<br>93<br>161  | .1<br>.6<br>.5       | 20<br>14<br>24<br>17<br>12 | 10<br>7<br>13<br>11<br>7 | 289<br>357<br>416                | 3.22<br>2.87<br>3.65<br>3.33<br>2.45 | 2<br>2<br>6<br>4<br>9  | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 1<br>2<br>3<br>2<br>3 | 29<br>20<br>23<br>18<br>10 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>3<br>2      | 2<br>2<br>3<br>2<br>2 | 62<br>53<br>64<br>61<br>42 | .18<br>.18<br>.17               | .072<br>.055<br>.094<br>.146         | 11<br>13<br>11<br>10<br>15 | 23<br>21<br>24<br>22<br>17 | .39<br>.29<br>.41<br>.31        | 144<br>79<br>124<br>97<br>75    | .14<br>.12<br>.14<br>.14        | 3<br>2<br>2 | 2.21<br>1.81<br>2.87<br>2.59<br>1.88 | .01<br>.01<br>.01<br>.01 | .05<br>.05<br>.05<br>.04 | 1<br>1<br>1<br>1      | 2<br>2<br>1<br>1        | 20<br>30<br>30<br>30<br>30  |
| L45N 5650Z<br>L45N 5700E<br>L45N 5750E<br>L45N 5800E<br>L45N 5850E | -1<br>1<br>1<br>1     | 7<br>11<br>6<br>4<br>9     | 13<br>15<br>13<br>12<br>15 | 93<br>88<br>55<br>34<br>60   | .4<br>.2<br>.1<br>.1 | 13<br>14<br>7<br>3<br>12   | 7<br>7<br>3<br>1<br>5    | 262                              | 2.82<br>2.66<br>1.49<br>.72<br>1.95  | 4<br>11<br>6<br>2<br>6 | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 1<br>3<br>2<br>1      | 16<br>12<br>11<br>11<br>16 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>3<br>4<br>2<br>2 | 52<br>45<br>25<br>15<br>35 | .08<br>.10                      | .115<br>.067<br>.047<br>.023         | 12<br>16<br>20<br>17<br>14 | 18<br>18<br>10<br>8<br>17  | .23<br>.26<br>.15<br>.07<br>.29 | 78<br>82<br>59<br>45<br>84      | .11<br>.07<br>.05<br>.04        | 2           | 1.56<br>2.45<br>1.38<br>.84<br>2.01  | .01<br>.01<br>.01<br>.01 | .05<br>.04<br>.04<br>.03 | 1<br>1<br>1<br>1      | 49<br>1<br>8<br>22<br>1 | 30<br>60<br>20<br>30<br>30  |
| L45N 5900E<br>STD C/AU-S                                           | 2<br>18               | 5<br>58                    | 15<br>38                   | 43<br>132                    | .1<br>6.5            | 6<br>69                    | 3<br>30                  | 137<br>1021                      |                                      | 5<br>40                | 5<br>18               | ND<br>7                    | 2<br>37               | 13<br>47                   | 1<br>18          | 2<br>19                    | 3<br>21               | 26<br>59                   |                                 | .035<br>.091                         | 22<br>39                   | 11<br>55                   | .15<br>.94                      | 67<br>175                       | .07<br>.07                      | 2<br>33     |                                      | .01<br>.06               | .04                      | 1<br>11               | 1<br>50 1               | 20<br>300                   |

| - | <b>′</b> |  |
|---|----------|--|
|   | Page     |  |

| SAMPLE#                                                 | Mo<br>PPM              | Cu<br>PPN              | Pb<br>PPM                  | Zn<br>PPM                   | Ag<br>PPN                   | Ni<br>PPN            | Co<br>PPN             | Mn<br>PPN          | Fe<br>3                              | As<br>PPM              | U<br>PPM         | Au<br>PPM                  | Th<br>PPN             | ST<br>PPM                  | Cd<br>PPH        | Sb<br>PPM             | Bi<br>PPM             | y<br>PPM                   | Ca<br>}                         | P<br>%                       | La<br>PPM                  | Cr<br>PPM                  | yā<br>Xā                        | Ba<br>PPM                    | Ti<br>}                         | B<br>PPM    | Al<br>3                              | Na<br>}                  | K<br>%                          | ¥<br>PPM         | Au*<br>PPB              | Hg<br>PPB                   |
|---------------------------------------------------------|------------------------|------------------------|----------------------------|-----------------------------|-----------------------------|----------------------|-----------------------|--------------------|--------------------------------------|------------------------|------------------|----------------------------|-----------------------|----------------------------|------------------|-----------------------|-----------------------|----------------------------|---------------------------------|------------------------------|----------------------------|----------------------------|---------------------------------|------------------------------|---------------------------------|-------------|--------------------------------------|--------------------------|---------------------------------|------------------|-------------------------|-----------------------------|
| L45N 5950E<br>L45N 6000E<br>R0<br>R1 TAN 6*<br>R1 BR 7* | 1<br>1<br>1<br>1<br>4  | 3<br>7<br>12<br>13     | 11<br>10<br>11<br>18<br>19 | 37<br>31<br>49<br>79<br>59  | .1<br>.1<br>.1<br>.1        | 9<br>16<br>14        | 2<br>2<br>4<br>9<br>6 | 195                | 1.13<br>1.03<br>1.94<br>3.04<br>2.28 | 3<br>2<br>5<br>8<br>13 | 5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>1<br>3<br>2<br>2 | 10<br>12<br>25<br>26<br>20 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2 | 2<br>2<br>3<br>2<br>2 | 20<br>22<br>35<br>49<br>33 | .09<br>.11<br>.22<br>.20<br>.14 | .031<br>.016<br>.044<br>.058 | 17<br>13<br>16<br>12<br>13 | 9<br>10<br>16<br>23<br>17  | .11<br>.12<br>.28<br>.35        | 47<br>43<br>81<br>150<br>87  | .05<br>.10<br>.09<br>.12        | 2 2 2       | 1.08<br>.73<br>1.23<br>2.77<br>2.18  | .01<br>.01<br>.01<br>.01 | .03<br>.03<br>.03<br>.04        | 1<br>1<br>1<br>1 | 6<br>20<br>5<br>1<br>66 | 60<br>10<br>30<br>20<br>30  |
| R2<br>R3<br>R7<br>R14<br>R15                            | 1<br>1<br>1<br>1       | 9<br>12<br>14<br>9     | 11<br>18<br>12<br>9        | 82<br>104<br>73<br>85<br>71 | 2.9<br>-1<br>-1<br>-1       | 16<br>17<br>18<br>13 | 7<br>9<br>8<br>8<br>5 | 195<br>183<br>541  | 2.93<br>3.60<br>2.68<br>2.80<br>2.00 | 8<br>6<br>5<br>7<br>2  | 5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>1<br>1 | 21<br>13<br>24<br>23<br>20 | 1<br>1<br>1<br>1 | 2 2 2 2               | 3<br>2<br>2<br>2<br>2 | 45<br>56<br>43<br>50<br>36 | .15<br>.08<br>.24<br>.24        | .082<br>.107<br>.045<br>.044 | 13<br>11<br>10<br>12<br>11 | 20<br>23<br>21<br>21<br>15 | .28<br>.27<br>.42<br>.40<br>.23 | 98<br>98<br>98<br>83<br>73   | .08<br>.12<br>.12<br>.13<br>.10 | 2<br>2<br>3 | 2.41<br>2.85<br>2.47<br>1.60<br>1.26 | .01<br>.01<br>.01<br>.01 | .05<br>.04<br>.03<br>.04<br>.03 | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>1        | 30<br>80<br>20<br>50<br>20  |
| R16<br>R17<br>R18<br>R19<br>R20                         | 1<br>4<br>3<br>2<br>28 | 6<br>12<br>7<br>7<br>7 | 13<br>13<br>14<br>14<br>31 | 56<br>82<br>51<br>67<br>115 | .1<br>.2<br>.1<br>.1<br>5.5 | 6<br>11<br>7<br>9    | 4<br>8<br>5<br>5<br>6 | 184<br>218         | 1.54<br>2.62<br>1.87<br>2.05<br>3.15 | 3<br>21<br>16<br>9     | 5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>2<br>3<br>2<br>4 | 17<br>33<br>18<br>15<br>17 | 1<br>1<br>1<br>1 | 2<br>2<br>3<br>2<br>2 | 2<br>2<br>2<br>2<br>2 | 28<br>37<br>32<br>37<br>37 |                                 | .032<br>.047<br>.021<br>.035 | 14<br>25<br>20<br>14<br>22 | 13<br>15<br>13<br>14<br>18 | .18<br>.27<br>.24<br>.21<br>.23 | 64<br>113<br>67<br>65<br>132 | .08<br>.03<br>.07<br>.08        | 2<br>2<br>2 | 1.03<br>1.93<br>1.15<br>1.12<br>2.89 | .01<br>.01<br>.01<br>.01 | .04<br>.07<br>.05<br>.04        | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>67       | 40<br>30<br>50<br>20<br>320 |
| R21<br>R22<br>STD C/AU-S                                | 4<br>1<br>17           | 11<br>6<br>57          | 20<br>18<br>41             | 84<br>43<br>132             | .4<br>.1<br>7.1             | 9<br>6<br>68         | 7<br>4<br>31          | 279<br>155<br>1028 | 2.39<br>1.50<br>3.99                 | 25<br>6<br>40          | 5<br>5<br>19     | ND<br>ND<br>6              | 1<br>1<br>36          | 21<br>16<br>47             | 1<br>1<br>17     | 2<br>2<br>20          | 3<br>2<br>23          | 32<br>28<br>56             | .16<br>.15                      | .053<br>.019<br>.090         | 20<br>13<br>37             | 17<br>13<br>55             | .27<br>.22<br>.88               | 86<br>65<br>174              | .03<br>.09<br>.06               |             | 1.94<br>1.08<br>1.91                 | .01<br>.01<br>.06        | .06<br>.03<br>.14               | 1<br>1<br>11     | 1<br>1<br>48            | 70<br>20<br>1400            |

| MINGOLD | RESOURCES  | PROJECT | 603 | FILE | #   | 88-5215 |
|---------|------------|---------|-----|------|-----|---------|
| MINGOLD | Kr.SUUKCES | FROUDCI | 000 |      | T . | 00 0000 |

| Sample#                                                | Mo<br>PPN                    | Cu<br>PPM             | PD<br>PPN                  | Zn<br>PPM              | Ag<br>PPM                         | Ni<br>PPN              | Co<br>PPN              | Mn<br>PPM                  | Fe<br>3                             | As<br>PPM                        | U<br>PPM              | Au<br>PPM            | Th<br>PPM              | Sr<br>PPM              | Cđ<br>PPM              | Sb<br>PPM                 | Bi<br>PFM                  | V<br>PPM               | Ca<br>}                  | P<br>3                       | La<br>PPM                  | Cr<br>?PN              | Hg<br>2                  | Ba<br>PPM                    | 71<br>}                  | B<br>PPM                    | lk<br>\$                         | Na<br>1                  | K<br>}                          | ¥<br>PPM              | Au*<br>PPB                       | Hg<br>PPB                       |
|--------------------------------------------------------|------------------------------|-----------------------|----------------------------|------------------------|-----------------------------------|------------------------|------------------------|----------------------------|-------------------------------------|----------------------------------|-----------------------|----------------------|------------------------|------------------------|------------------------|---------------------------|----------------------------|------------------------|--------------------------|------------------------------|----------------------------|------------------------|--------------------------|------------------------------|--------------------------|-----------------------------|----------------------------------|--------------------------|---------------------------------|-----------------------|----------------------------------|---------------------------------|
| D 18901<br>D 18902<br>D 18903<br>D 18904<br>D 18905    | 4<br>6<br>10<br>7<br>5       | 6<br>7<br>7<br>3      | 15<br>9<br>11<br>10        | 6<br>7<br>11<br>7<br>5 | 2.2<br>1.1<br>1.5<br>.7           | 2<br>1<br>3<br>3       | 1<br>1<br>1<br>1       | 54<br>38<br>58<br>26<br>55 | .67<br>.83<br>.80<br>.42            | 82<br>187<br>141<br>59<br>49     | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND | 6<br>6<br>7<br>5       | 4<br>7<br>6<br>5<br>6  | 1<br>1<br>1<br>1       | 7<br>13<br>10<br>6        | 2<br>2<br>2<br>2<br>2<br>2 | 1<br>1<br>1<br>1       | .02<br>.02<br>.01<br>.01 | .003<br>.004<br>.004<br>.003 | 25<br>29<br>26<br>31<br>23 | 3<br>2<br>4<br>3<br>5  | .01<br>.01<br>.01<br>.01 | 43<br>47<br>60<br>43<br>53   | .01<br>.01<br>.01<br>.01 | 2<br>2<br>2<br>2<br>2       | .28<br>.24<br>.22<br>.21<br>.19  | .01<br>.01<br>.01<br>.01 | .17<br>.16<br>.16<br>.15        | 1<br>1<br>1<br>1      | 8<br>18<br>20<br>7<br>14         | 100<br>240<br>280<br>110<br>200 |
| D 18906<br>D 18907<br>D 18908<br>D 18909<br>D 18910    | 4<br>6<br>7<br>5             | 1<br>1<br>1<br>3      | 11<br>8<br>10<br>12<br>10  | 4<br>3<br>3<br>6<br>4  | .4<br>.7<br>1.0<br>1.7<br>1.3     | 2<br>2<br>2<br>1<br>1  | 1<br>1<br>1<br>1       | 29<br>26<br>25<br>35<br>31 | .44<br>.42<br>.36<br>.75            | 43<br>78<br>53<br>139<br>155     | 5<br>5<br>5<br>5      | ND<br>DH<br>DH<br>DH | 6<br>5<br>5<br>5       | 4<br>5<br>5<br>10<br>6 | 1<br>1<br>1<br>1       | 4<br>5<br>5<br>16<br>14   | 2<br>2<br>2<br>2<br>2      | 1<br>1<br>1<br>1       | .01<br>.01<br>.01<br>.01 | .004<br>.004<br>.005<br>.005 | 21<br>20<br>18<br>26<br>17 | 2<br>6<br>1<br>6<br>2  | .01<br>.01<br>.01<br>.01 | 51<br>50<br>53<br>136<br>60  | .01<br>.01<br>.01<br>.01 | 2<br>3<br>2<br>2<br>2       | .14<br>.14<br>.15<br>.28<br>.14  | .01<br>.01<br>.01<br>.01 | .15<br>.14<br>.14<br>.18<br>.14 | 1<br>4<br>1<br>5      | 11<br>55<br>64<br>36<br>41       | 160<br>200<br>130<br>290<br>500 |
| D 18911<br>D 18912<br>D 18913<br>D 18914<br>D 18915    | 11<br>9<br>9<br>60<br>198    | 2<br>1<br>1<br>1<br>1 | 9<br>11<br>9<br>10<br>27   | 9<br>3<br>3<br>5       | 1.9<br>1.5<br>7.5<br>2.4<br>6.4   | 2<br>1<br>2<br>1<br>1  | 1<br>1<br>1<br>1       | 27<br>29<br>24<br>21<br>16 | .50<br>.53<br>.45<br>.79<br>1.57    | 71<br>103<br>73<br>211<br>522    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND | 6<br>5<br>5<br>5       | 5<br>4<br>4<br>3<br>4  | 1<br>1<br>1<br>1       | 5<br>10<br>8<br>15<br>48  | 2<br>2<br>2<br>2<br>2      | 1<br>1<br>1<br>1       | .01<br>.01<br>.01<br>.01 | .005<br>.003<br>.005<br>.003 | 26<br>27<br>24<br>23<br>22 | 6<br>2<br>6<br>1       | .01<br>.01<br>.01<br>.01 | 91<br>60<br>60<br>62<br>96   | .01<br>.01<br>.01<br>.01 | 2<br>2<br>2<br>2<br>2       | .25<br>.23<br>.20<br>.20<br>.17  | .01<br>.01<br>.01<br>.01 | .16<br>.17<br>.15<br>.17        | 5<br>1<br>5<br>1      | 28<br>20<br>27<br>235<br>128     | 190<br>480<br>300<br>290<br>460 |
| D 18916 D 18917 D 18913 D 18919 D 18920                | 38<br>22<br>142<br>27<br>136 | 2<br>1<br>3<br>2<br>2 | 12<br>10<br>15<br>10<br>14 | 11<br>4<br>11<br>5     | 2.3<br>1.1<br>2.4<br>.8<br>3.9    | 2<br>1<br>1<br>1       | 1<br>1<br>1<br>1       | 47<br>40<br>39<br>23<br>41 | 1.14<br>.52<br>.97<br>.55           | 335<br>125<br>258<br>123<br>224  | 5<br>5<br>5<br>5      | DN<br>DN<br>DN<br>GN | 6<br>6<br>5<br>7<br>6  | 9<br>3<br>4<br>3       | 1<br>1<br>1<br>1       | 17<br>9<br>17<br>8<br>15  | 2<br>2<br>2<br>2<br>2      | 2<br>1<br>1<br>1<br>1  | .02<br>.01<br>.01<br>.01 | .043<br>.010<br>.005<br>.007 | 24<br>26<br>23<br>47<br>21 | 6<br>2<br>3<br>2<br>3  | .01<br>.01<br>.01<br>.01 | 78<br>38<br>60<br>35<br>53   | .01<br>.01<br>.01<br>.01 | 2<br>2<br>3<br>3<br>2       | .26<br>.26<br>.31<br>.31         | .01<br>.01<br>.01<br>.01 | .18<br>.16<br>.19<br>.18<br>.17 | 1 1 1                 | 87<br>42<br>69<br>34<br>191      | 190<br>90<br>170<br>80<br>130   |
| D 18921<br>D 18922<br>D 18923<br>D 18924               | 108<br>18<br>102<br>78       | 5<br>2<br>2<br>3      | 19<br>13<br>11<br>12       | 4<br>7<br>5<br>8       | 2.0<br>8.0                        | 2<br>1<br>1<br>1       | 1<br>1<br>1<br>1       | 26<br>18<br>27<br>28       | .72<br>2.08<br>.75<br>1.02          | 156<br>706<br>170<br>305         | 5<br>5<br>5<br>5      | DM<br>DM<br>DM       | 5<br>6<br>4<br>3       | 4<br>3<br>6<br>5       | 1<br>1<br>1<br>1       | 11<br>45<br>9<br>22       | 2 2 2 2                    | 2<br>1<br>1<br>1       | .01<br>.01<br>.01        | .005<br>.004<br>.003         | 21<br>25<br>16<br>14       | 3<br>2<br>6<br>2       | .01<br>.01<br>.01        | 62<br>112<br>49<br>71        | .01<br>.01<br>.01        | 2<br>2<br>2<br>2            | .29<br>.24<br>.24<br>.20         | .01<br>.01<br>.01        | .16<br>.15<br>.17               | 1<br>1<br>6<br>1      | 54<br>117                        | 80<br>1100<br>160<br>600        |
| E 24992<br>E 24993<br>E 24994<br>E 24995<br>E 24996    | 14<br>29<br>21<br>35<br>47   | 2<br>1<br>5<br>4<br>3 | 14<br>14<br>11<br>11<br>13 | 5<br>6<br>6<br>9       | 2.1<br>.6<br>1.0<br>.6<br>10.2    | 1<br>2<br>1<br>3<br>2  | 1<br>1<br>1<br>2       |                            | .97<br>1.13<br>1.58<br>2.44<br>.77  | 63<br>63<br>90<br>51<br>158      | 5<br>5<br>5<br>5<br>5 | DN<br>DN<br>DN<br>DN | 7<br>4<br>5<br>2<br>6  | 8<br>6<br>5<br>5       | 1<br>1<br>1<br>1       | 4<br>4<br>3<br>2<br>13    | 2<br>2<br>2<br>2<br>2      | 1<br>1<br>1<br>1       | .01<br>.01<br>.01<br>.01 | .005<br>.005<br>.005<br>.004 | 29<br>21<br>16<br>12<br>28 | 2<br>5<br>2<br>5<br>1  | .01<br>.01<br>.01<br>.01 | 103<br>103<br>96<br>58<br>73 | .01<br>.01<br>.01<br>.01 | 2<br>2<br>2<br>2<br>2<br>2  | .27<br>.34<br>.45<br>.28<br>.24  | .01<br>.01<br>.01<br>.01 | .17<br>.17<br>.16<br>.17        | 1<br>2<br>1<br>2<br>1 | 55<br>39<br>48<br>15<br>2365     | 110<br>40<br>50<br>20<br>280    |
| B 24997<br>B 24998<br>E 24999<br>E 25000<br>STD C/AU-R | 46<br>262<br>293<br>50<br>18 | 1<br>4<br>5<br>5      | 11<br>22<br>18<br>12<br>42 | 8<br>8<br>7<br>133     | 7.3<br>25.0<br>10.4<br>1.4<br>6.6 | 1<br>1<br>1<br>1<br>68 | 1<br>2<br>1<br>1<br>30 | 39<br>32                   | .79<br>1.90<br>1.13<br>.75<br>4.08, | 216<br>657<br>7 339<br>133<br>39 | 5<br>5<br>5<br>5      | DN<br>DN<br>DN<br>B  | 5<br>4<br>5<br>4<br>40 | 4<br>3<br>5<br>7<br>49 | 1<br>1<br>1<br>1<br>18 | 16<br>47<br>21<br>9<br>18 | 3<br>2<br>2<br>2<br>18     | 4<br>3<br>2<br>2<br>59 | .01<br>.01<br>.01<br>.02 | .002<br>.003<br>.012<br>.008 | 20<br>15<br>24<br>21<br>40 | 6<br>5<br>6<br>3<br>58 | .01<br>.01<br>.01<br>.01 | 75<br>95<br>93<br>48<br>184  | .01<br>.01<br>.01<br>.01 | 3<br>2<br>2<br>2<br>2<br>33 | .30<br>.24<br>.31<br>.27<br>1.98 | .01<br>.01<br>.01<br>.01 | .20<br>.21<br>.18<br>.16<br>.13 |                       | 1375<br>1325<br>385<br>24<br>525 | 300<br>930<br>250<br>70<br>1300 |

Ω.

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

#### GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR OME HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B W AND LIMITED FOR WA R AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU\* AMALYSIS BY ACID LEACH/AA FROM 10 CM SAMPLE. HG\_AMALYSIS BY PLANLESS AA.

DATE RECEIVED: JUL 21 1986 DATE REPORT MAILED: July 26/88

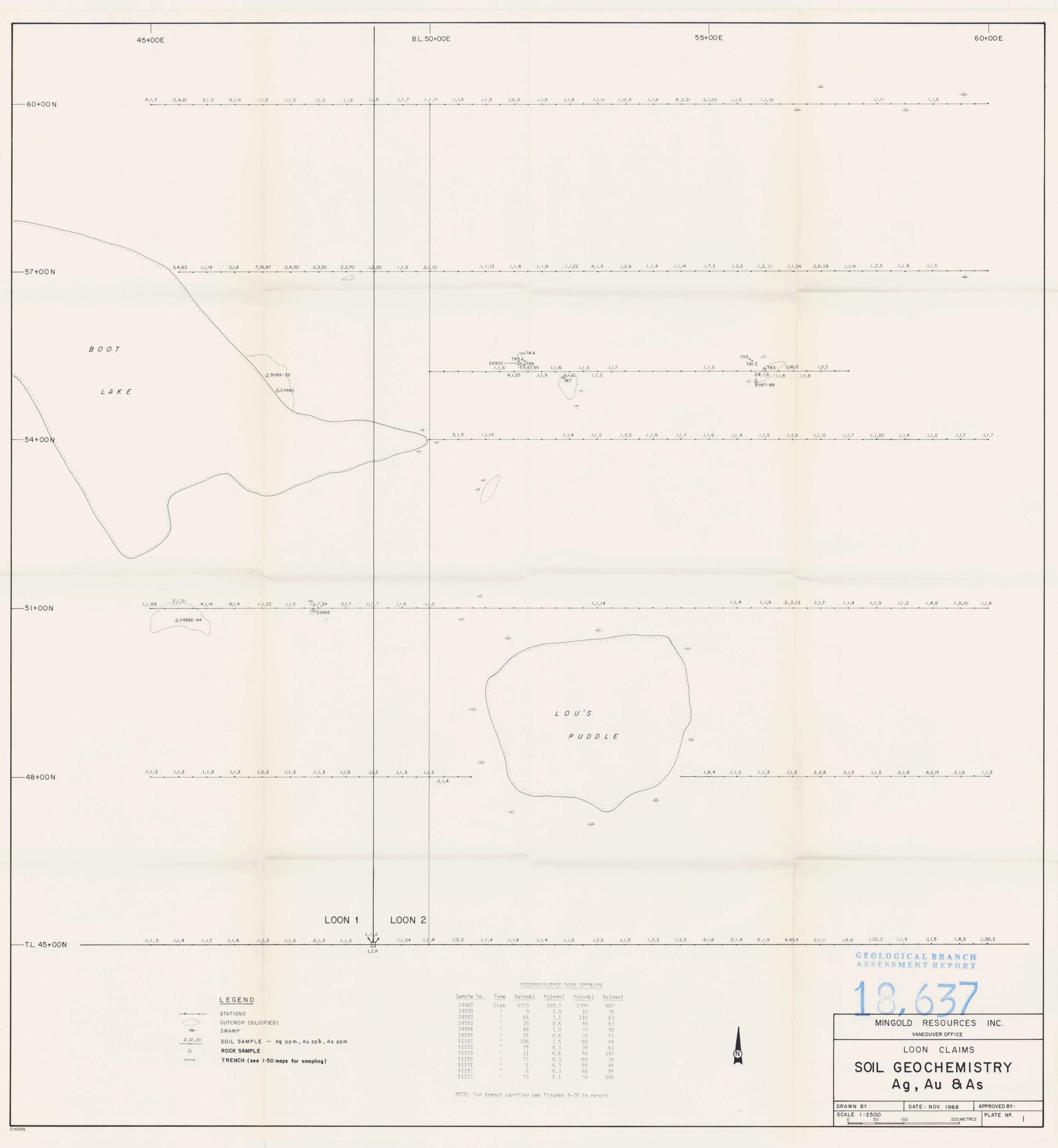
ASSAYER ... ... ... ... ... D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

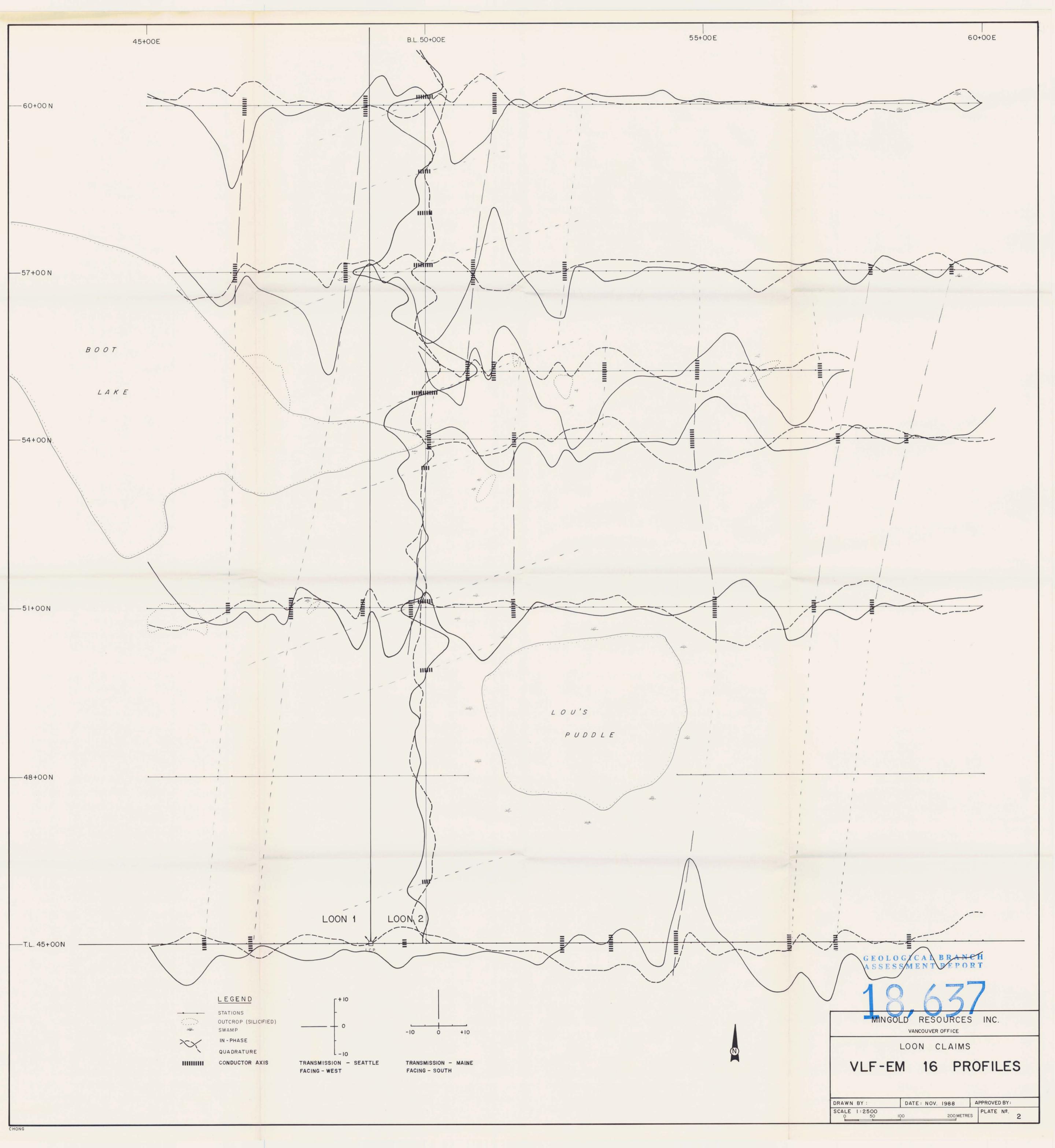
MINGOLD RESOURCES PROJECT 606 File # 88-2861

Bi SAMPLE: 

1 1 62 1.42 602 5 5 4 3 1 78 4 5 .01 .006 14 2 .02 107 .01 15 .19 .01 .21 1 5320 1300 E 24902 6 109.2

69 30 1083 3.94 42 17 8 39 49 18 21 18 60 .46 .389 42 61 .91 183 .07 33 1.96 .06 .14 13 490 1400 ACME ANALYTICAL LABORATORIES LTD.


852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6


PHONE(604)253-3158 FAX(604)253-1716

#### GEOCHEMICAL ANALYSIS CERTIFICATE

ICF - .500 GRAM SAMPLE IS DIGESTED WITH JNL 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: ROCK AUP ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. HG ANALYSIS BY FLAMLESS AA.

| E 24980<br>C | 10 | 6  | 15 | 18  | 1.0 | 4  | 1  | 37   | .95  | 35  | 5  | ND | 3  | 7   | . 1 | 2   | 2  | 1  | .01  | .008 | 25 | 5  | . 01 | 120 | .01 | 2  | . 25 | .01 | .19  |    | 9   | 10   |
|--------------|----|----|----|-----|-----|----|----|------|------|-----|----|----|----|-----|-----|-----|----|----|------|------|----|----|------|-----|-----|----|------|-----|------|----|-----|------|
| C<br>C 51187 | 80 | 9  | 10 | 6   | 1.5 | 5  | 1  | 53   | .56  | 84  | 5  | ND | 3  | 3   | 1   | 2 . | į  | 3  | . 02 | .006 | 14 | 5  | .01  | 25. | .01 | 2  | .15  | .01 | .11  | 1  | 106 | 60   |
| C 51188      | 1  | 6  | 12 | 8   | .3  | 2  | 1  | 34   |      | 61  | 5  | ND | 1  | 5   | 1   | . 2 | 2  | 2  | .01  |      | 17 | 22 | .01  | 86  | .01 | 4  | . 24 | .01 | . 20 | 1  | 29  | 70   |
| C 51189      | 5  | 6  | 15 | 10  | . 6 | 3  | 1  | 36   | 1.38 | 147 | 5  | ND | 5  | - 9 | 1   | 3   | 2  | 1  | .01  | .006 | 26 | 4  | .01  | 154 | .01 | 2  | .25  | .01 | . 20 | 1  | 11  | 20   |
| C 51190      | 11 | 10 | 35 | 18  | .3  | 5  | 1  | 127  | .67  | 38  | 5  | ND | 2  | 7   | 1   | 2   | 2  | 1  | . 18 | .006 | 21 | 27 | .08  | 75  | .01 | 2  | .18  | .01 | .16  | 1  | 27  | 60   |
| C 51191      | 5  | (  | 10 | 10  | . 7 | 2  | 1  | - 19 | . 55 | 45  | ş  | ND | 3  |     | 1   | 2   | 2  | 1  | .01  | .005 | 28 | 3  | .01  | 37  | .01 | 2  | .27  | ,01 | .19  | 1  | 5   | 20   |
| C 51192      | i  | 11 | 12 | 17  | .3  | 4  | i  | 35   |      | 26  | 5  | ND | 3  | 10  | 1   | . 2 | 2  | 1  | .01  |      | 25 | 28 | .01  | 139 | .01 | 2  | .16  | .01 | .15  | 1  | 8   | 60   |
| C 51193      | 5  | 6  | 12 | 12  | .1  | 2  | 1  | 29   | 1.44 | 145 | 5  | ND | 3  | 8   | 1   | 2   | 2  | 1  | .01  | .005 | 22 | 3  | .01  | 157 | .01 | 2  | . 26 | .01 | .21  | 1  | 23  | 20   |
| STD C/AU-R   | 17 | 58 | 45 | 132 | 7.1 | 67 | 30 | 1057 | 4.12 | 43  | 22 | 8  | 36 | 47  | 17  | 17  | 19 | 57 | . 48 | .084 | 37 | 58 | . 92 | 174 | .06 | 33 | 1.93 | .06 | .14  | 13 | 490 | 1400 |



