ARIS SUMMARY SHEET

j 🕖 - San Albania					
istrict Geol	ogist, Smithers		Off Cor	fidential:	90.02.07
SSESSMENT REI	PORT 18639 MI	INING DIVISION:	Liard		
PERATOR(S): UTHOR(S): EPORT YEAR: OMMODITIES		537227 ,Pink One,Pink ' mation,Sericito	Iwo e schist,Tu	lff,Pyrocla	stics
GEOI GRAN	chemical,Geophysical L 600.0 ha Map(s) - 1; Scale(s	L,Geological s) - 1:5000 s) - 1:2500 4E			
ORTS:	04863,05120,05294,0 06343,06373,07433,0		78,06025,06	026,06038,0	06039,06273

(

ACTION:	LOG NO: 041	4	RD.
	ACTION:		

FILMED

F*----

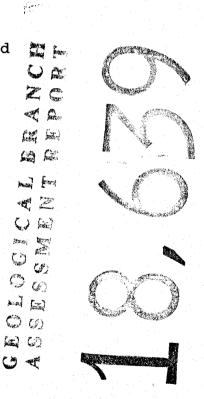
1988 GEOCHEMICAL AND GEOPHYSICAL - REPO

on the

KUTCHO CLAIM GROUPS: 89A AND 89B

Liard Mining Division NTS: 104I/1 Latitude: 58 12'N Longitude: 128 22'

Owned and Operated by :


Esso Minerals Canada Limited 1600-409 Granville Street Vancouver, B.C. V6C 1T2

SUB-RECORDER RECEIVED									
NoR	4 1989								
M.R. # VANCO	\$ DUVER, B.C.								

Report by:

Peter Holbek

March 10, 1989

<u>Distribution:</u> Ministry - 2 copies EMC Files - 1 copy EMC Field - 1 copy

MA22.C.934 5068.B

TABLE OF CONTENTS

PAGE NO.

	SUMMARY	i
1	INTRODUCTION 1.1 Location and Access 1.2 Climate and Physiography 1.3 Property and History 1.4 Current Work	1 1 1 4 5
2	GEOLOGY 2.1 Regional Geology 2.2 Property Geology	7 7 9
3	GEOCHEMISTRY 3.1 Methods 3.2 Description of Results 3.3 Discussion of Results	11 11 11 17
4	GEOPHYSICS 4.1 Methods and Equipment 4.2 Description of Results 4.3 Discussion of Results	19 19 20 21
5	CONCLUSIONS AND RECOMMENDATIONS	23

APPENDICES

- I STATEMENT OF COSTS
- II STATEMENT OF QUALIFICATIONS
- III GEOCHEMICAL DATA
- IV GEOPHYSICAL DATA

LIST OF FIGURES

0

O

		PAG	E NO.
1.1	LOCATION MAP		2
1.2	CLAIM MAP		3
2.1	REGIONAL GEOLOGY		8
2.2	TARGET C GEOLOGY	In	Pocket
3.1	DIAGRAM SHOWING SIGNIFICANT ELEMENT CORRELATIONS		14
3.2	- 3.4 GEOCHEMICAL GRID PLOTS	In	Pocket
4.1	- 4.8 BOUGER GRAVITY PROFILE PLOTS	In	Pocket

LIST OF TABLES

TABLE	1	CLAIM STATUS 4	
TABLE	1.2	WORK PERFORMED AT EACH TARGET 6	
TABLE	3.1	SUMMARY OF BASIC STATISTICS 1	3

SUMMARY

- i -

The Kutcho-89A and 89B claim groups are located in the Liard Mining Division, approximately 100km east of Dease Lake. The claim groups lie immediately to the south of, and are contiguous with, claims hosting the Kutcho Creek volcanogenic massive sulphide deposits.

Exploration work in the area of the 89 claim groups was sporadic 1968 and 1983. Since 1984-85, between when geological mapping and a Questor airborne INPUT survey identified EM conductors within areas of favourable geology, exploration has been carried out on an annual basis. This report describes a program of soil geochemical and gravity surveys designed to locate drill targets along previously defined airborne and ground EM conductors.

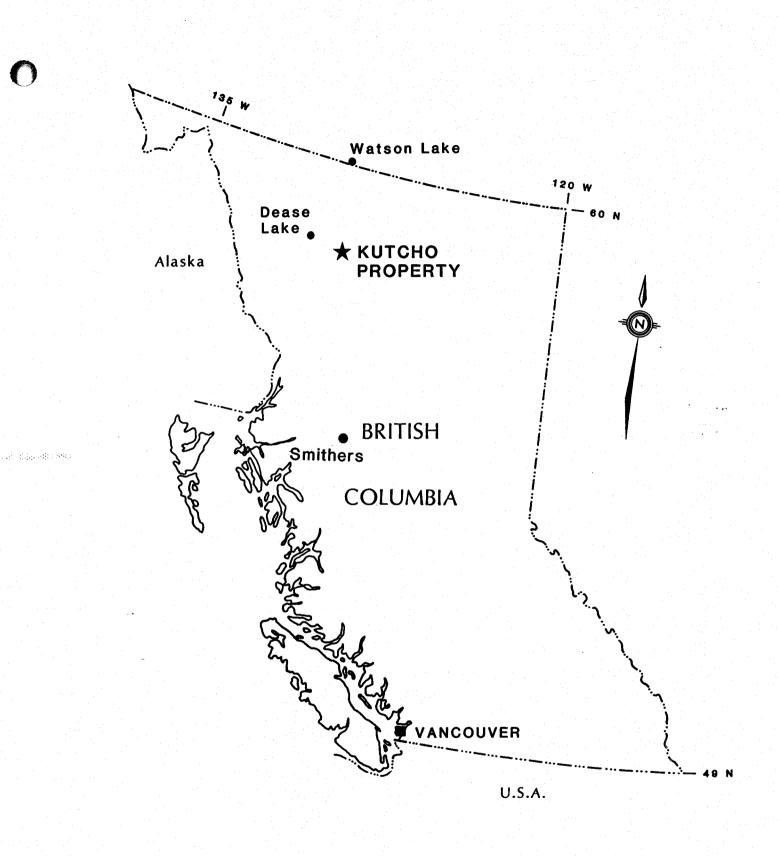
Gravity surveys were carried out on four conductors. The surveys indicate that near-surface large sulphide lenses are not present in the areas tested. However, in two of the areas surveyed, gravity anomalies were detected in the vicinity of EM conductors. In general, gravity anomalies were low contrast and could indicate lithological changes or narrow (<10m) sulphide lenses at depths greater than 25m.

The soil survey covered an area 1800 by 2200m and yielded a number of weakly-defined multi-element anomalies parallel to an EM conductor trend. Copper, zinc and silver anomalies, although displaced relative to source by glaciation, suggest that the conductor is caused by sulphide mineralization and indicate two zones of metal enrichment along the conductor trend.

Further evaluation of EM conductors with coincident gravity and/or geochemical anomalies will require drill testing.

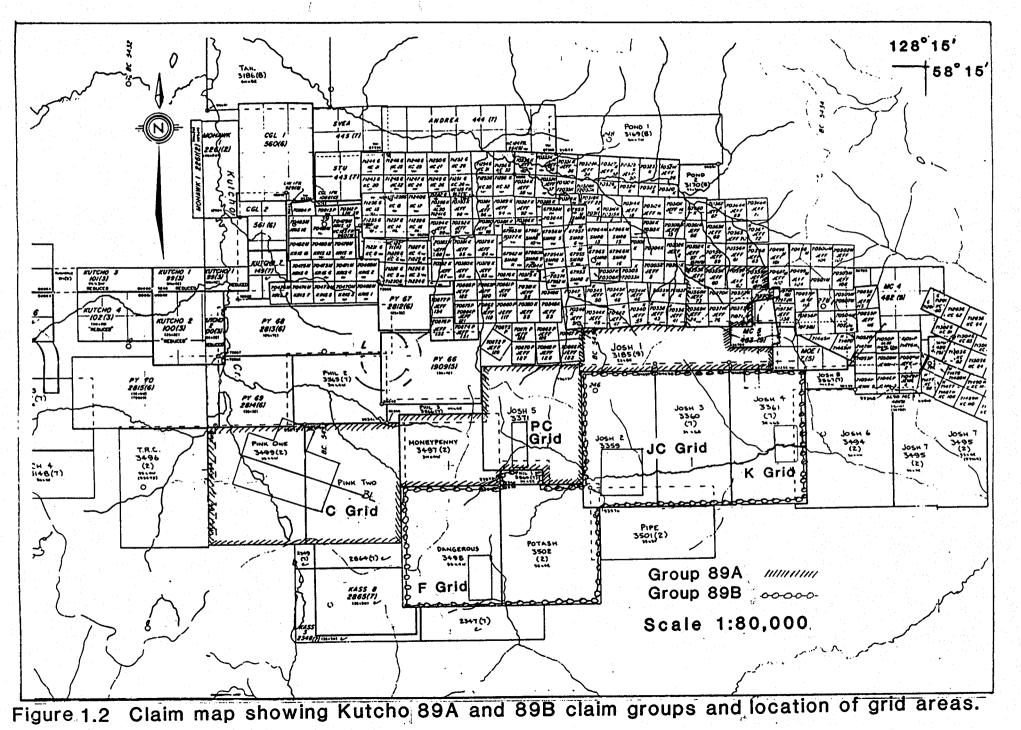
1.0 INTRODUCTION

1.1 Location and Access


The Kutcho Creek property is located within the Liard Mining Divison, NTS 104I/1, approximately 100 km east of Dease Lake, in northwest British Columbia (Figure 1.1). Geodetic coordinates are 58° 12' N and 128° 22' W.

- 1 -

Access to the property is by fixed-wing aircraft from Smithers, Dease Lake or Watson Lake to the 1100m gravel airstrip located beside Kutcho Creek. The property is connected to the airstrip by an 8km long road, however, the large size of the property requires helicopter access to the southern claim groups.


1.2 Climate and Physiography

Located within the Cassiar Mountains, on the divide between Arctic and Pacific watersheds, the area is moderately rugged with elevations ranging from 1400m to 2200m. Most of the area is alpine, with treeline at approximately 1500m. Snow cover can persist for nine months of the year. Structural fabric and two periods of glaciation have produced an intersecting pattern of east-west and north-south ridges. Major valleys are often filled with a deep layer of till.

Figure 1.1 Property location map.

C

TABLE 1 - CLAIM STATUS

GROUP 89A

CLAIM <u>NAME</u>	<u>UNITS</u>	DATE LOCATED	EXPIRY <u>DATE</u>	RECORD NUMBER
PINK ONE	20	Jan. 26/86	Feb. 7/91	3499
PINK TWO	20	Jan. 25/86	Feb. 7/91	3500
MONEY PENNY	12	Jan. 24/86	Feb. 7/92	3497
JOSH 1	16	Aug. 25/84	Sept. 7/89	3185
JOSH 5	20	July 21/85	Aug. 19/91	3371
JEFF 58	1	Aug. 27/73	Aug. 27/92	70353
JEFF 60	1	Aug. 27/73	Aug. 27/92	70355
JEFF 62	1	Aug. 27/73	Aug. 27/92	70357
JEFF 64	1	Aug. 27/73	Aug. 27/92	70359
JEFF 73	1	Aug. 27/73	Aug. 27/92	70368
JEFF 74	1	Aug. 27/73	Aug. 27/92	70369
JEFF 75	1	Aug. 27/73	Aug. 27/92	70370
JEFF 76	1	Aug. 27/73	Aug. 27/92	70371
JEFF 77	1	Aug. 27/73	Aug. 27/92	70372
JEFF 78	1	Aug. 27/73	Aug. 27/90	70373
JEFF 135	1	Aug. 20/74	Aug. 20/92	71970
JEFF 136	1	Aug. 20/74	Aug. 20/92	71970

CLAIM GROUP 89B

CLAIM <u>NAME</u>	<u>UNITS</u>	DATE <u>LOCATED</u>	EXPIRY <u>DATE</u>	RECORD <u>NUMBER</u>
DANGEROUS	20	Jan. 24/86	Feb. 7/91	3498
POTASH	20	Jan. 24/86	Feb. 7/91	3502
PHIL 1	2	June 27/86	July 7/92	3564
JOSH 2	18	June 21/85	July 17/91	3359
JOSH 3	18	June 21/85	July 17/90	3360
JOSH 4	18	June 21/85	July 17/90	3361

1.3 Property and History

The property lies to the south of, and is contiguous with, claims covering the Kutcho Creek polymetallic volcanogenic massive sulphide deposits. Claim groups are shown on Figure 1.2 and claim status is summarized in Table 1.1.

Various portions of the property have been held and worked by different companies in the past. The most significant exploration was carried out by Imperial Oil (Esso Minerals Canada) who, in 1975, drilled three Ltd. short holes to test conductors indentified by a 1974 Aerodat airborne EM survey. Geological mapping in 1984 and 1985 suggested that altered felsic volcanics on the property were structurally related to rocks hosting the Kutcho deposits. A Questor helicopter-borne MKVI INPUT EM and Magnetic survey flown in November 1985 identified a number of conductors within areas of favourable geology on the property. Since then, evaluation of the airborne conductors, consisting of relogging and lithogeochemical sampling of drill core from the 1975 program, ground geophysics, geology and geochemical surveys, has been carried out on an annual basis.

1.4 Current Work

The 1988 exploration program was carried out between August 23 and 31, and consisted of gravity surveys and a soil geochemical survey over selected target areas (Fig. 1.2). Target areas are primarily airborne EM conductors coincident with favourable geology.

A total of 6.2 line kilometers of gravity survey was completed over four targets (JC, PC, F and K). An 1800m by 2200m soil geochemical survey was completed over a fifth target area (C). The soil grid consisted of 25m sample spacing on lines spaced 200m apart along the trend of the EM conductor. A total of 551 soil samples were collected. A summary of work performed on each target and claim is given in Table 1.2.

- 5 -

The exploration crew was mobilized from Vancouver or Smithers and lodged at the Esso/Sumac camp located on the north side of the Kutcho deposit area. A Hughes 500D helicopter was contracted from Okanogan Helicopters in Smithers to transport the crew from the camp to the grid areas.

<u>TARGET</u>	<u>GRAVITY</u> (km)	<u>GEOCHEM</u> (km)	CLAIM
С		16.8	Pink Two
PC	1.2		Josh 5
F	1.0		Dangerous
JC	2.6		Josh 2
к	1.4		Josh 4
TOTAL	6.2	16.8	

TABLE 1.2 - WORK PERFORMED AT EACH TARGET

- 6 -

2.0 GEOLOGY

2.1 <u>Regional Geology</u>

The Kutcho property lies within the King Salmon Triassic Allochthon, a narrow belt of island arc volcanics and Jurassic sediments sandwiched between two northerly dipping thrust faults. Penetrative foliation and axial planes of the major folds are parallel to these The belt of volcanics is thickest in bounding faults. the area where it hosts volcanogenic massive sulphide deposits; due in part to primary deposition, but also to stratigraphic repetition by folding and thrusting. Major folds are delineated by the Sinwa Limestone and the contact between Kutcho Formation volcanics and Inklin Formation argillites (Fig. 2.1).

Volcanogenic mineralization of the Kutcho deposits occurs at the contact between footwall lapilli tuffs and hanging wall quartz and quartz-feldspar crystal tuffs. The main sulphide bearing horizon is marked by extensive hydrothermal alteration and the presence of thinly bedded ash tuffs, the latter indicating a temporary hiatus in volcanic activity. This sulphide horizon is geochemically, and often visually, recognizable over a strike length of 8 km.

The coarsest grained pyroclastic rocks of the Kutcho Formation occur in the vicinity of the known sulphide deposits and become noticeably finer grained towards the south and east. The major center of volcanism is postulated to be northeast of the Kutcho sulphide lens, although subordinate centers may exist elsewhere on the property.

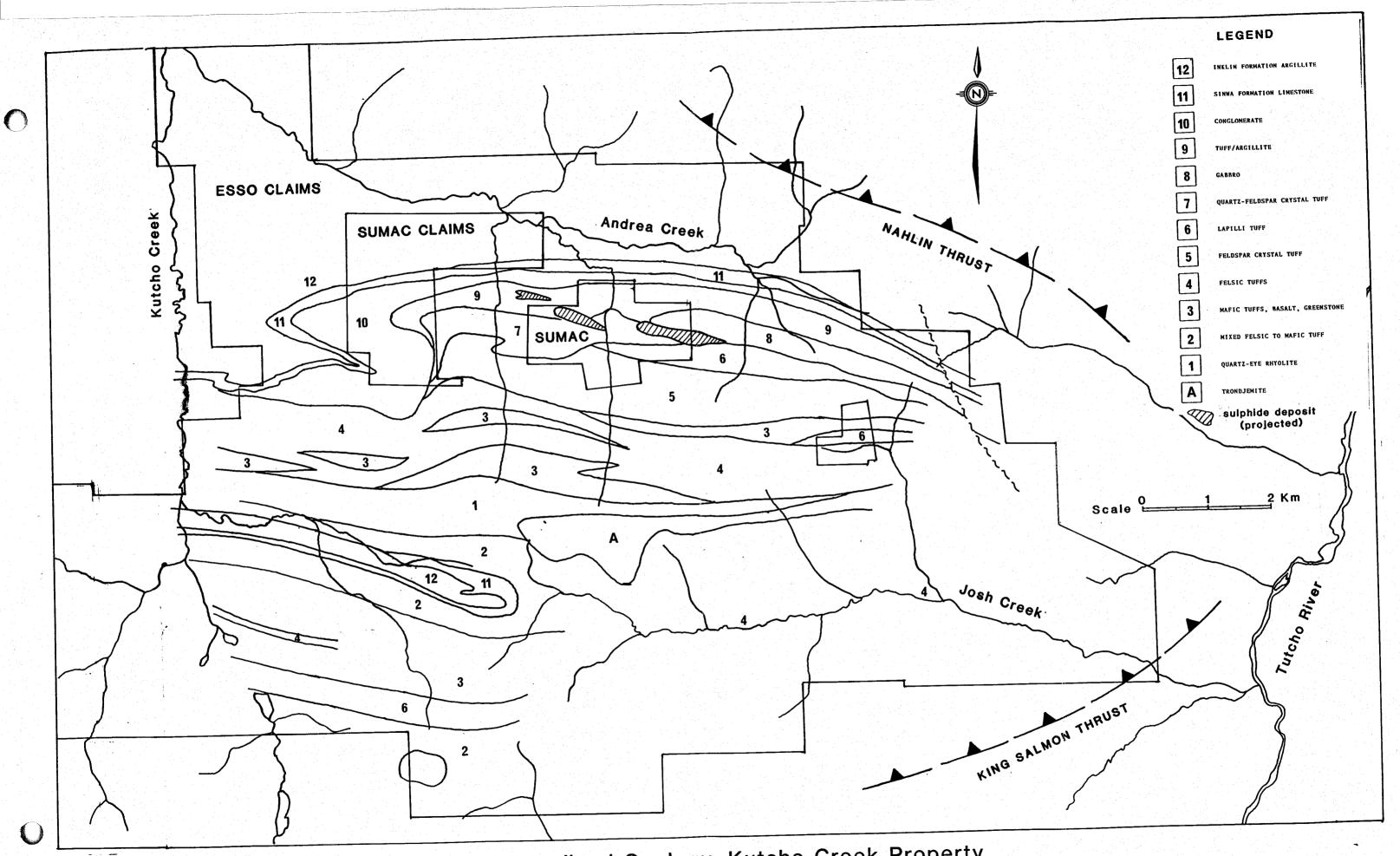


Figure 2.1 Generalized Geology, Kutcho Creek Property.

2.2 Property Geology

Rocks which underlie the Kutcho 89A and B claim groups are part of the Kutcho formation and consist of pyroclastic, flow and minor sedimentary units of mafic and felsic compositions. Lithological units tend to be thinly bedded and are finer grained than their compositional counterparts which host the Kutcho sulphide deposits. All rock units dip steeply to moderately to the north.

Geology of target C is reasonably well known from current and previous mapping (Figure 2.2). The main EM conductor is underlain, at its eastern end, by a thin (10 50m) band of sericite schist which hosts weakly to mineralized chert or silica exhalite layers and small lenses of semi-massive to massive pyrite (Holbek and Thiersch, 1986). This felsic band is bounded on both sides by chlorite-epidote schists, inferred to be basalt flows. Outcrops are sparse within the geochemical grid area but the few that were observed indicate that the geology on the eastern end likely continues under the rest of the grid area. Sinwa limestone and argillite occur along the northern margin of the grid and support the hypothesis that the stratigraphic positions of the target C conductors and the Kutcho sulphide deposits are correlative.

Geology of the F grid is unknown. Outcrop areas to the north and east suggest that the conductor occurs within thinly interbedded mafic and felsic ash tuffs. The conductor may be part of an east-northeast trending set of conductors; some of which have been drilled and shown to be sulphide-rich argillaceous beds within hydrothermally altered felsic tuffs.

The PC grid overlies altered and mineralized pyroclastic rocks exposed in а northeast trending tributary of Josh Creek. A series of silicified. sericitic and pyritic quartz crystal tuff outcrops occur over an apparent thickness of 70m within the stream bed. Downstream from these outcrops there are numerous rounded boulders of sphalerite and galena bearing, finely banded, cherts or exhalites. No significant ground or airborne EM conductors have been found in this area.

The JC and K grids straddle Josh Creek with the EM conductors located on the north side of the Creek in areas of deep and swampy overburden. Rocks exposed in the stream bed consist of siliceous and sericitic schists derived from felsic ash tuffs. Pyritic layers, up to 30cm wide and traceable over 100m along strike, occur on the cliffs along the stream gully in the JC grid area. Neither the EM conductors nor the gravity anomalies correlate well with the pyritic exposures. On the K grid, the EM conductor occurs along the northern slope of the Josh Creek canyon. Rocks in this area are weakly altered crystal and crystal ash tuffs which are interbedded with minor amounts of mafic ash. The conductor appears to coincide with a narrow band of sericitic and pyritic ash tuff. Small fragments of graphitic argillite float were observed at one locality in this area.

3.0 GEOCHEMISTRY

3.1 Methods

A total of 551 soil samples were collected at 25m stations on grid lines spaced at 200m intervals along the EM conductor axis. Samples were taken from the B horizon where possible, at depths between 10-15cm. Some sample lines were located in moderately swampy areas, particularly near the central part of the grid. Samples were placed in kraft paper bags and air dried before shipment.

Analyses were performed by Acme Analytical Ltd. of Vancouver using Induction Coupled Plasma methods for 30 elements. Samples are sieved to -80 mesh and a 0.5g subsample is digested in 3ml of hot aqua regia for 1 hour and then diluted to 10ml with water prior to analysis.

Of the 30 elements analyzed 14 are deemed insignificant due to a combination of high detection limits, partial digestion and low background values. Analytical results for the remaining elements, which consist of Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, Ca, P, La, Cr, Mg, Ba, and Al, were statistically evaluated using Geomicro Systems' computer program GEOCHEM. 1:5,000 scale proportional symbol plots (Figs. 3.2 to 3.14) were used to define anomalous areas.

3.2 <u>Description of Results</u>

Previous geochemical surveys in the property area establised that copper and zinc, being major components of the sulphide deposits, were the best geochemical

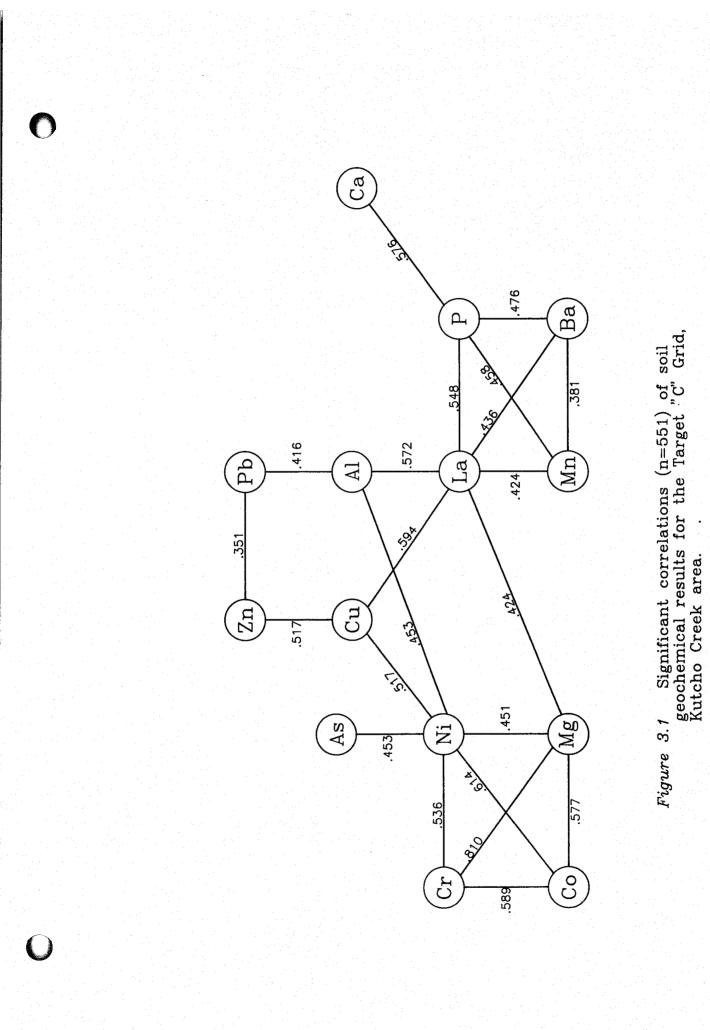

Arsenic and silver, although very minor indicators. components of the sulphide lenses, were also found to be useful as they were less influenced by background lithological changes. Similarly, lead and barium, trace components of the sulphide deposits, are useful geochemical indicators due to their different dispersion characteristics in the surficial environment, relative to copper and zinc. Rocks which underlie the grid area consist of interlayered basalt flows and tuffs and felsic Sulphide deposits are typically hosted by ash tuffs. altered felsic rocks. It was thought that the altered felsic rocks would have a detectable difference in soil from the basaltic rocks, qeochemical signature particularly for Ni, Co, Cr, Al, Mg and Ca, and therefore element plots would help with geological mapping in overburden areas. However, this does not appear to be the case.

Table 3.1 is a summary of the basic statistics for the 16 elements investigated. Histograms and cumulative probability plots (Sinclair, 1974) were produced for each element and "threshold" values were chosen to separate different sample populations. In many cases, particularly for the major elements, sample populations were normally or log normally distributed and data were plotted as proportional sized symbols between values of mean minus 2 standard deviations and mean plus 2 standard associated with elements sulphide deviations. The deposits were generally bimodal and threshold values were chosen to separate background from anomalous populations. For those metals that did not have two (or more) distinct the cumulative probability plots, populations on thresholds were subjectively chosen between values at the mean plus one standard deviation and the 90th percentile.

To aid in the evaluation of multi-element data, element correlations were investigated. Both expected unexpected correlations were noted. Elements and associated with mafic lithologies (Mg, Cr, Co, and Ni) displayed a high degree of intercorrelation (Fig. 3.1) with the exception of Fe which did not correlate with any elements. Although Cu and Zn other are strongly other with correlated, the elements associated mineralization (Pb, Aq, As, and Ba) correlate poorly. Ρ and La are strongly associated, which is not surprising as they occur in the same mineral, monazite, which is enriched in felsic, relative to mafic, rocks. Ba, Ca and Mn show strong correlations to P and La, suggesting a 'felsic' association. However, Cu correlates equally Indeed, there is a high level well with both Ni and La. of correlation between many of the elements that connot be accounted for by geological association and suggests that at least some element distribution is controlled by sample medium.

ELEMENT	MIN	MAX	MEAN	<u>s.D.</u>	THRESHOLD
Al	0.22	5.04	2.4	0.75	
Ca	0.04	4.86	0.67	0.68	
Cr	3	295	54	25	85
Co	2	47	12	6	20
Fe	0.26	28.46	4.2	1.8	
Mg	0.05	3.16	0.79	0.34	
Mn	48	4176	640	380	1000
La	2	91	15	10	
Ni	8	304	52	30	80
\mathbf{P} and \mathbf{P}	0.01	0.23	0.06	0.03	0.10
As	2	66	9	7.5	18
Ba	12	604	150	75	225
Cu	10	514	55	65	100
Ag	0.1	1.3	.14	.1	0.15
Pb	2	59	13.6	5	20
Zn	37	1358	130	115	150

TABLE 3.1

Silver values were generally low and of low contrast, consequently the anomalies are small and not well clustered. Anomalous values (Fig. 3.2) form a weak trend which follows the trend of the EM conductor, although displaced 50 to 100m to the north in the "downice" direction. A single point anomaly occurs in the extreme southwest corner of the grid and may relate to the southernmost conductor, although this anomaly was not duplicated by any other elements.

Copper has a bimodal log normal population which is due to the influence of mineralization. The anomalies are not well clustered (Fig. 3.3) and suggest multiple sources. In a general way, the anomalous values appear to have been smeared in the down ice direction, northwesterly, from the northern two conductor trends. A small anomaly occurs on line 1600W at 950N and is unexplained.

Zinc displays good range and contrast with similar population characteristics to copper. The zinc anomaly is, however, much better clustered forming an egg shaped area, approximately 350m wide and 1400m long, centered near 2000W and 200N (Fig. 3.4). This anomalous area could be caused by down-ice dispersion from the northernmost conductor. The more southern conductors do not have significant zinc expressions. A single point anomaly at 1600W-950N corresponds to the copper anomaly at that location.

Lead has a log-normal population, low contrast, and weak, poorly clustered anomalies (Fig. 3.5). Spatial distribution of lead anomalies is similar to that of copper, but they are closer to the EM conductor trends. A composite variable, combining Cu, Pb, Zn and Ag (Fig. 3.6) gives a slightly more informative plot than any of the single metals. Anomalies display down-slope and/or down-ice dispersion from the northern two conductor trends. The strongest geochemical response is associated with the northernmost conductor between lines 1800 and 2200W.

Arsenic has a log-normal distribution and low contrast anomalies. Anomalous values form single line clusters with an overall weak easterly trend that, unlike the other elements, occurs south of the north conductor trend (Fig. 3.7). This separation of arsenic from Cu, Zn and Ag anomalies has been noted in previous surveys on the property and may reflect preferential arsenic enrichment in the footwall relative to the hanging-wall.

Barium has a skewed normal distribution with three peaks on the histogram, possibly reflecting three overlapping populations. Spatial distribution of barium values (Fig. 3.8) appears to be unrelated to the location of EM conductors, with the higher values concentrating along the north and south edges of the grid area. This spatial distribution is possibly lithologically controlled and may reflect proximity to limestone as Ba which occurs as a substitute for Ca in carbonates is readily digestable by aqua regia whereas barite is not. However, distribution of calcium (Fig. 3.9), although similar to barium, is much more erratic and does not appear to indicate control by carbonate rocks.

Manganese (Fig. 3.10) and lanthanum (Fig. 3.11) have low contrast single populations and, like calcium, symbol plots are not particularly informative. There is a weak northwesterly trend defined by alternating areas of high and low values which is approximately parallel to topography. This suggests that surficial geology and ground water have more influence on Ca, Mn, La and P distribution than bedrock geology.

Iron has a skewed normal distribution and two extreme highs. A proportional symbol plot (Fig. 3.12) which emphasizes the high (>6.0%) iron values shows poorly clustered anomalies that could reflect dispersion from areas along the conductive trends or, alternatively, indicate areas of shallow overburden.

Nickel has a normal distribution and produces a symbol plot (Fig. 3.13) similar to that of iron. A symbol plot for a composite variable calculated from Cr, Co, Ni and Mg values (Fig. 3.14) may outline areas underlain by mafic rocks. However, comparisons of the anomalous areas with air photographs suggests that anomalies correspond to areas proximal to outcrop.

3.3 <u>Discussion of Results</u>

The northernmost of three EM conductors at target C is over 4 km long and is hosted, on its eastern end, by hydrothermally altered felsic volcanic rocks which contain bands of massive sulphide and weakly mineralized silica exhalites. Previous surveys demonstrated that poorly defined, low contrast soil geochemical anomalies coincide with this area. The soil geochemical grid was extended 1800m to the west of the previous grid to test the geochemical response of a western portion of the conductor and to determine whether geochemistry could help define lithological contacts in overburden covered areas. Factors anticipated to affect the soil geochemical response included: variations in depth of

glacial till and till content, variations in development of soil profile, drainage (or lack of), permafrost and These factors, together with only partial frost boils. digestion for certain elements, rendered major and trace element chemistry ineffective for defining underlying lithologies. Trends for composite values of closely correlated element groups were better defined than for the individual elements but, in the case of Cr, Co, Ni and Mg, appeared to be more related to topography (proximity to outcrop) and drainage than to bedrock Elements geology. associated with volcanogenic mineralization, particularly copper, zinc and silver, displayed anomalies that appear to correlate with EM conductors.

Significant soil response of copper, zinc and possibly iron, suggest that the northern two EM conductors are caused by sulphide mineralization. The strongest base metal anomalies are associated with the northern conductor between 1800 and 2200W.

4.0 GEOPHYSICS

4.1 Methods and Equipment

Gravity surveys were performed over EM conductors in an attempt to discriminate between massive sulphide and argillaceous conductors. Over six line kilometers of surveying was completed over four targets. At least two lines were surveyed on each grid, either 150 or 200m apart. Survey stations were located at 25m intervals along the grid lines.

geological condition that Any results in a horizontal variation in density, such as the presence of massive sulphides or a change in lithological density or porosity, will cause a gravity anomaly. The gravimeter is an extremely sensitive weighing device that records the relative variation in gravity, using an astatic system to measure minute changes in the length of a The unit of weighted spring. measurement is the milligal; one gal being equal to 1cm/sec/sec. Bouquer gravity is the result of corrections for various factors including: instrument drift; height of instrument; latitude and tidal effects; and changes in elevation between survey stations. The LaCoste-Romberg Model G gravimeter, with an accuracy of +/- 0.02 mgals, was used in this survey.

Station elevations were measured using a GDD Model C hydrostatic elevation meter. This instrument consists of a transducer and a fluid filled plastic tube 29m long that is stretched between survey stations. The instrument calculates the elevation difference based on relative fluid pressure and is accurate to +/- 0.005m.

4.2 Description of Results

The results are presented as profiles at a scale of 1:2,500 (Figures 4.1 to 4.8). The scales for the elevation and gravity profiles are 1 cm = 50 m and 0.5mgals respectively. The approximate location of the grids can be found on Figure 1.2.

JC GRID

Both fixed-source GENIE and airborne INPUT surveys have outlined a series of weak EM conductor trends over the grid area. Four lines near the center of the conductor trends were surveyed with gravity and elevation meters (Fig. 4.1 and 4.2) in order to determine the nature of the conductors. Lines 1450E and 1600E were extended to the south, over Josh Creek, where altered felsic volcanic rocks contain disseminated pyrite.

The survey outlined two areas of interest. The first is a gravity low centered at 350N on lines 1450E and 1600E. This anomaly correlates with highly altered felsic volcanics found in Josh Creek. A fixed-source GENIE conductor correlates with the north side of this gravity low and may indicate the contact between the altered volcanic rocks and denser rocks to the north. The second area is located between 500N and 600N and consists of two separate high density zones. The gravity profiles of these zones have a maximum relief of 0.5mgals and their shape suggests that the source is within 30m of EM conductors directly surface. There are no the coincident with either of these gravity trends. A weak conductor at 700N may be caused by the contact between these high density units and lighter rocks to the north.

PC GRID

Altered felsic volcanic rocks which contain disseminated to semi-massive pyrite are exposed in creek gullies that cross the grid area. This area was surveyed with fixed-source GENIE in 1986 but failed to locate any conductors coincident with the altered volcanic rocks. The gravity survey (Figs. 4.3 and 4.4) detected a low density anomaly between 325N and 375N on both lines which may be caused by a zone of altered and/or leached rocks.

K GRID

This grid covers an airborne INPUT EM conductor located on the north side of Josh creek. No significant density anomalies were detected along either of the two lines surveyed with the gravity meter (Figs. 4.5 and 4.6).

F GRID

The target on this grid is an airborne INPUT EM conductor. The EM anomaly has a low amplitude and may be caused by a deep conductor just north of a steeply incised creek valley. The gravity survey (Fig. 4.7 and 4.8) detected a weak gravity anomaly between 0 and 100N which is coincident with the interpreted trend of the INPUT conductor. The density anomaly has a maximum amplitude of 0.25 mgals and is not well defined.

4.3 <u>Discussion of Results</u>

Gravity highs were detected on grids JC and F. The two anomalous features on grid JC do not correlate directly with the EM conductors outlined in this area and could be caused by density contrasts between rock units. The weak EM anomaly at 700N could then be interpreted as the contact between high density rocks on the south and low density rocks to the north.

The airborne EM anomaly on grid F is interpreted to be caused by a deep conductor. A weak gravity high coincident with this conductor suggests a sulphide source.

Surface indications of mineralization on the PC grid do not have any associated EM or gravity anomalies and therefore a sulphide deposit at shallow to moderate depths is improbable. Surface features may mark potentially productive stratigraphy. The lack of a gravity high associated with the conductor on grid K indicates that if the conductor is caused by sulphides, then the sulphide horizon is thin.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The 1988 exploration program on the Kutcho claim groups was designed to further evaluate areas of favourable geology and/or geophysics and to identify areas for drill testing. Four areas were investigated with Bouguer gravity surveys (JC, PC, K & F) and one area with soil geochemistry (C).

Targets JC, PC and K appear to occur within approximately the same stratigraphic sequence which has a strike length in excess of 6 km. This sequence displays both favourable geology for volcanogenic deposits and evidence of hydrothermal alteration and mineralization. However, EM conductors do not correlate with the best surface indications of mineralization and both EM and gravity surveys indicate that there is little likelihood of any near-surface sulphide deposit. Potential for deep sulphide deposits cannot be ruled out and further evaluation of this package of stratigraphy will require drill testing.

Target F contains a deep EM anomaly with а coincident weak high-density anomaly. The EM conductor has a relatively short strike length (700 m) and the geology is unknown. The target area should be gridded and the conductor located with a deep-penetrating ground EM survey. Soil geochemistry may offer some encouragement but as the target is deep results are likely to be ambiguous. If the ground EM survey is successful the target should be drill tested.

Target C consists of multiple, parallel EM conductors. The northern-most conductor, which has a

0

strike length in excess of 4 km, is associated with exposed sulphide mineralization at its eastern end. Significant base metal soil anomalies associated with the central part of the conductor supports a sulphide source. This area should be surveyed with a ground EM system to accurately locate the conductor, which should then be drill tested. APPENDIX I

STATEMENT OF COSTS

 \bigcirc

STATEMENT OF COSTS

<u>LABOUR</u> - August 23-31

n

 Z. Doborzynski - 9 days @ 333/day P. Holbek - 5 days @ 253/day H. Marsden - 7 days @ 165/day B. Dupuis - 9 days @ 110/day A. McEntesh - 9 days @ 110/day D. Rawlek - 5 days @ 110/day G. Grant - 5 days @ 80/day B. McDonald - 5 days @ 80/day P. Wood - 4 days @ 80/day 	\$ 2,997 1,265 1,155 990 990 550 400 400 320	
		\$ 9,067
FOOD AND ACCOMMODATION		\$ 9,007
76 man days @ \$50/day	\$ 3,800	\$ 3,800
EQUIPMENT RENTAL		
Gravimeter \$200/day Software	\$ 1,800 260	
		<u> </u>
GEOCHEMICAL ANALYSIS		\$ 2,060
551 soil samples @ 7.10 (incl. prep.) Air Freight	\$ 3,912 102	
TRANSPORTATION		\$ 4,014
Canadian Airlines Central Mtn. Air - Twin Otter Flywest Airservices	\$ 1,460 3,640 720	
Okanagan Helicopters - Hughes 500D 9 hours @ \$665 (incl. fuel & oil) Freight	5,985 840	
		\$12,645
Report Preparation	\$ 3,000	\$ 3,000

TOTAL

<u>\$34,586</u>

APPENDIX II

STATEMENT OF QUALIFICATIONS

 \mathbf{O}

STATEMENT OF QUALIFICATIONS

I, Peter Holbek, DO HEREBY CERTIFY THAT:

- I am a project geologist presently employed by Esso Minerals Canada, a division of Esso Resources Canada Limited, located at 1600 - 409 Granville Street, Vancouver, B.C. V6C 1T2.
- 2) I graduated from the University of British Columbia with a B.Sc.(Hons.) in geology in 1980 and an M.Sc. in geology in 1988.
- 3) I have actively practiced my profession in North America since 1975.
- 4) The work described herein was done by me or under my direct supervision.

DATED THIS 29th DAY OF NOVEMBER, 1988 AT VANCOUVER, B.C.

Peter Holbek

APPENDIX III

()

GEOCHEMICAL DATA, GRID PLOTS

ACME ANALYTICAL LABORATORIES LTD. PHONE(604)253-3158 FAX(604)253-1716 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 ۰. GEOCHEMICAL ANALYSIS CERTIFICATE ł 3 0 1988 SFP ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR HN FE SR CA P LA CR_MG BA TI B W AND LIHITED FOR HA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. P - 40 mesh, Pulveriged. - SAMPLE TYPE: SOIL iept 29 188 CERTIFIED B.C. ASSAYERS DATE REPORT MAILED: ASSAYERD. TOYE OR C. LEONG, SEP 21 1988 DÂTE RECEIVED: ESSO MINERALS CANADA LTD. PROJECT 122-KUTCHO File # 88-4699 Page 1 V Na K Cu Pb Zn λg Ni Co Kn 7e ÀS Ū Au Th ST Cd Sb Bi Ca 2 La Cr Ng Ba Ti B - Al ï SAMPLE Mo PPN PPH PPK PPM PPN PPH PPN 1 PPM PPM PPN PPN PPM PPN PPM PPN PPN ł ł PPN PPN ł PPN ł PPN 2 ł ł PPN PPH 11 605 5.49 21 56 .35 .042 9 56 .81 151 .10 2 1.74 .01 .04 14 158 .1 46 - 7 -5 ND 2 24+00W 7+00N 3 34 C IN 1 52 .08 42 . 56 59 .18 2 3.00 .01 15 105 .1 23 8 489 6.22 2 5 ND 2 1 - 2 .062 12 .04 1 24+00W 6+75N 3 20 2 2 3.92 24+00W 6+50N 3 47 21 161 .3 44 14 759 5,80 2 5 ND 3 16 1 2 2 44 .24 .050 29 37 .74 109 . 21 .02 .05 47 18 .2 29 9 400 5.67 9 5 ND 2 9 3 49 .09 .037 20 .85 58 .07 2 2.97 .01 .03 24+00W 6+25N 5 49 110 1 2 53 1.28 11 113 22 8 457 5.13 2 5 ND 1 65 .08 .031 42 .12 2 2.34 .01 .02 24+00W 6-00N 1 18 .1 1 2 2 4 19 11 .2 845 5.22 5 ND 9 72 .08 .064 9 47 .65 68 .13 2 1.71 .01 .04 24+00% 5+75N 3 20 20 9 4 1 2 2 71 13 127 .1 38 15 768 5.07 8 5 ND 1 24 1 2 57 .40 .036 55 56 1.09 128 .07 2 1.97 .01 .04 24+00W.5+50N 1 2 ND 29 .48 .054 46 .98 122 .07 2 1.60 10 158 .1 36 17 819 3.76 2 5 1 1 2 2 48 15 .01 .03 24+00W 5+25N 80 1 369 3.85 26 .47 .043 21 34 . 59 181 . 01 .05 24+00¥ 4+75N 40 17 -134 .1 .31 8 4 -5 ND 1 1 2 2 45 .08 2 2.59 1 13 127 21 5 281 2.64 2 .5 ND 1 27 1 41 .38 .024 11 30 .56 130 .07 2 1.64 .01 .04 24+00W 4+50N .1 1 2 1 -14 24+00W 4+25N 38 14 1443 5.35 3 5 ND 24 2 2 58 .48 .073 15 49 . 69 147 .16 2 3.00 .01 .04 2 -57 19 326 .1 1 2 5 ND 3 11 2 59 .19 . . 087 10 60 .98 . 93 .20 2 2.63 :01 .05 32 12 109 .1 46 14 598 6.27 8 1 2 1 24+00W 4+00N 2 26 923 3.80 39 17 6 34 47 16 18 17 55 .46 .087 36 56 .83 167 .05 38 1.81 . 06 . .14 13 STD C 18 58 40 128 7.0 66 28 1 347 3.37 2 5 ND 2 15 1 2 49 .14 .051 8 40 .67 110 .06 2 1.81 .01 .04 24+00W 3+75N 1 21 13 -74 .1 2 1 .55 24+00W 3+50N 2 35 13 277 15 24 6 350 3.68 5 5 ND 1 16 1 2 2 52 .12 .014 13 44 104 .06 2 2.45 .01 .04 2 2.00 .05 24+00W 3+25N 19 11 - 81 .1 29 308 2.87 6 5 ND 26 , 2 41 .25 .045 10 -38 .61 119 .05 .01 1 - 7 - 1 1 .24 32 . 59 135 .05 .01 . 05 294 2.62 ND 25 3 41 .041 11 2. 1.50 24+00W 3+00N 16 8 109 .1 26 7 8 5 1 1 2 - 11 1 552 3.41 26 2 .56 .067 15 44 .67 131 .07 2 2.22 .01 . 04 24+00W 2+75N 50 14 224 .2 31 8 10 5 ND 1 1 2 46 1 5 .44 34 . 59 .04 61 .2 29 8 410 2.70 5 ND 1 32 1 2 40 .039 13 163 .04 2 1.79 .01 1 24+00W 2+50N 22 14 2 1 342 3.28 7 5 ND 22 Ż 45 .36 .036 10 39 . 64 142 .05 2 2.27 .01 .04 24+00¥ 2+25N 1 19 13 84 .3 31 8 1 1 2 343 4.06 55 .20 .033 10 54 .86 121 .06 2 2.41 .01 .07 24+00W 2+00N 1 20 12 11 . 2 37 8 3 5 ND 1 19 1 2 2 33 577 -5 5 ND 30 2 37 1.01 .057 42 .67 111 .0á 2 1.82 .01 .03 24+00¥ 1+75N 77 12 153 .2 9 3.04 1 1 2 14 1 1 . 62 .07 2 1.33 .04 10 46 .1 30 1 252 2.46 8 5 ND 2 32 1 2 2 42 .31 .048 11 35 115 .01 2 24+00W 1+50N -1 22 28 410 7 5 ND 1 19 1 2 63 . 31 .030 8 61 .95 113 .10 2 1.90 .01 .05 1 24+00¥ 1+25N 17 14 -81 .1 10 3.29 2 1 334 2.68 29 47 .36 .042 11 39 .63 121 .07 2 1.66 .01 .04 1 10 26 7 10 5 ND 1 2 24+00W 1+00N 1 29 84 .3 1 2 .19 49 . 89 .08 2 1.72 .04 350 3.23 19 54 .035 8 89 .01 24+00# 0+75N 1 36 11 97 .1 . 34 8 8 5 ND 1 1 2 3 47 .2 19 5 198 2.78 6 5 ND 2 18 1 2 2 47 .21 .024 9 31 .49 86 .06 2 1.34 .01 .05 24+00W 0+50N 13 9 1 53 1.03 18 678 5.96 5 ND 1 20 2 2 76 . 36 .055 8 119 .03 2 2.28 .01 .05 1 49 11 114 .2 56 2 1 24+00¥ 0+25N 1 82 .2 30 417 5 ND 19 2 64 .32 .030 9 61 . .97 114 .10 2 1.91 .01 .06 1 RE 24+00W 1+25N 1 18 13 10 3.34 10 1 1 2 .85 147 2 1.97 .05 - 55 610 3.43 14 5 ND 1 40 49 .98 .070 13 55 .05 .01 24+00W 0+00N 41 14 274 .2 12 2 1 1 1 32 1.17 .053 19 34 .50 126 .05 3. 1.52 . 01 .04 57 667 2.93 34 - 1 24+00% 0+255 1 92 9 340 .1 12 8 -5 ND -1 3 2 122 41 10 566 2.44 5 5 ND 1 40 2 35 1.27 .057 10 39 .56 125 .04 2 1.27 .01 .04 1 8 .1 1 24+00W 0+50S 68 2 1 42 . 59 107 .05 2 1.11 .01 .05 2 442 5 ND 1 37 2 2 35 1.16 .044 8 24+00% 0+758 1 31 7 49 .1 34 9 2.29 4 1 5 ND 31 1 2 2 47 .39 .051 11 64 .82 155 .05 2 1.75 .01 .05 1 66 45 13 489 3.26 4 1 24+00W 1+00S 31 11 .1 1 .40 63 . 86 124 2 1.72 .01 .D4 24+00% 1+255 41 11 62 .1 46 10 367 3.14 8 5 ND 1 29 1 2 2 50 .047 8 . 09 1 1 11 65 42 13 523 4.55 8 5 ND 15 2 2 66 .31 .052 5 67 .92 72 .13 2 1.80 .01 .04 1 24+00W 1+50S 1 22 .1 - 1 -1 75 136 1.72 .15 .74 .039 84 2 2.20 .01 .04 24+00% 1+755 11 189 .1 84 28 629 5.35 15 5 NC 1 22 1 2 2 8 1 1 366 24+00% 2+005 1 157 11 96 64 17 686 3.83 6 5 ND 1 33 1 2 2 42 1.25 .047 15 53 . 68 122 .09 2 1.30 .02 .04 .1 .1

AT 17 04 175

11

17 7 86

30

12

13

t

C

ESSO MINERALS CANADA LTD. PROJECT 122-KUTCHO FILE # 88-4699

SAMPLE‡	Ho PPN	Cu PPK	Pb PPN	Zn PPM	λg PPH	Ni PPM	CO PPN	Na PPN	Fe z	As PPN	U PPN	Au PPN	Th PPN	ST PPN	Cđ PPN	SD PPM	Bi PPM	V PPN	Ca ł	P 3	La PPN	CT PPN	Ng S	Sa PPM	71 3	B PPM	Al 3	Na 3	Х 2	¥ PPN	
24+00W 2+255 24+00W 2+505 24+00W 2+555 24+00W 2+755 24+00W 3+005 24+00W 3+255	1 1 2 1 1	75 37 47 47 22	7 10 13 12 14	78 61 113 108 90	.1 .1 .2 .1 .1	49 71 70 56 49	17 23 27 18 17	721 958	4.69 4.17 5.73 3.91 3.88	8 2 19 6 2	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	17 11 14 23 17	1 1 1 1	2 2 2 2 2 2	3 2 2 2 2 2	57 63 42 52 56	.86 .38 .71 .86 .41	.047 .036 .048 .063 .048	5 4 12 12 9	71 102 72 66 57	.88 1.23 .80 .80 .80 .82	76 41 63 99 79	.15 .22 .15 .09 .13	3 2 2	1.71 2.21 2.60 1.85 2.04	.01 .01 .01 .01 .01	.03 .03 .05 .05 .04	2 1 2 1 2	
24+00W 3+50S 24+00W 3+75S 24+00W 4+00S 24+00W 4+25S RB 24+00W 6+25S	1 1 1 1 1	17 55 22 91 21	10 25 13 37 19	59 218 76 110 64	.1 .1 .1 .1 .1	41 69 47 255 67	12 17 16 47 13	1435 613 1440	3.00 4.79 3.05 5.00 3.83	5 2 4 14 63	5 5 5 5	ND ND ND ND	1 1 1 1	18 13 16 27 17	1 2 1 1 1	2 2 2 2 2 2	2 2 2 2 2	49 30 54 49 56	.28 .18 .29 1.24 .23	.034 .105 .045 .144 .053	10 27 7 24 7		.92 .39 .97 3.16 1.12	74 161 81 147 95	.12 .05 .13 .03 .10	2 2 3	2.11 3.87 1.97 2.44 2.08	.01 .02 .01 .01 .01	.05 .06 .05 .06 .04	1 1 2 1 2	
24+00W 5+00S 24+00% 5+50S P 24+00W 5+75S P 24+00W 6+00S 24+00W 6+25S	1 1 1 1 1 1 1	84 34 40 36 20	13 19 19 27 21	271 74 56 96 54	.1 .1 .2 .1	50 84 148 96 65	16	1084	4.13 3.60 3.47 4.78 3.75	11 9 7 12 63	5 5 5 5	ND ND ND ND	I 1 1 1	33 41 28 23 17	1 1 1 1	2 2 3 2 3	2 3 2 2 2	52 56 58 60 55	.88 .89 .40 .35 .22	.070 .092 .044 .080 .050	24 11 8 9 6	102 91	.95 1.08 1.64 1.18 1.07	201 245 134 127 91	.07 .04 .09 .09 .10	4 5 2	2.53 2.13 1.90 2.31 2.02	.01 .02 .02 .01 .01	.05 .11 .10 .06 .04	1 2 1 1 3	
24+00W 5+50S 24+00W 6+75S 24+00W 7+00S STD C 24+00W 7+25S	1 1 18 1	13 28 21 57 31	15 15 11 45 11	63 79 64 132 63	.1 .1 7.1 .2	32 61 60 69 64	6 8 11 29 12	477 483 1026	3.57 2.80 3.19 4.04 3.18	5 4 6 35 8	5 5 18 5	ND ND ND 7 ND	1 1 37 1	17 39 25 46 32	1 1 18 1	2 2 2 17 2	2 2 2 19 2	56 48 52 58 48	.14 .75 .33 .49 .44	.033 .037 .039 .088 .064	9 15 8 37 11	58	.56 .72 1.22 .92 1.15	125 247 103 163 155	.06 .08 .11 .07 .08	2 3 31	2.11 1.72 1.61 2.02 1.90	.01 .01 .01 .06 .01	.04 .06 .06 .13 .06	1 2 1 13 1	
 24+00W 7+50S P 24+00W 7+75S P 24+00W 8+00S 24+00W 8+25S 24+00W 8+25S 24+00W 8+50S	1 1 1 1 1	21 23 22 35 38	15 12 13 16 14	70 87 59 84 85	.1 .1 .2 .1 .1	47 57 47 72 67	19 16 11 13 15	802 507 967	4.00 3.69 3.01 3.75 4.14	9 8 5 11 2	5 5 5 5 5	ND ND ND ND ND	1 1 1 3	24 27 29 31 26	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	76 53 50 56 54	.35 .45 .37 .34 .36	.040 .042 .059 .062 .052	9 10 9 9 16	61 65	.92 1.15 .93 1.08 1.17	110 124 168 154 141	.14 .12 .08 .09 .19	3 2 3	1.59 1.89 1.77 2.42 2.50	.02 .02 .01 .01 .02	.09 .08 .05 .04 .05	1 2 2 2 2	
24+00W 8+755 24+00W 9+005 24+00W 9+255 24+00W 9+505 24+00W 9+755	3 1 1 1 1	23 18 27 17 12	21 14 10 11 10	83 76 66 70 49	.3 .1 .1 1.0 .1	23 46 47 42 30	7 10 11 11 8	422 470 537	5.43 3.94 3.70 4.20 4.59	2 9 9 5 12	5 5 5 5	ND ND ND 6 ND	3 1 1 1 1	9 17 16 14 15	1 1 1 1	2 2 2 3	2 2 2 2 2	54 56 51 55 71	,16 .28 .36 .30 .27	.055 .041 .057 .049 .227	18 6 5 4	62	.45 1.15 1.14 1.09 .87	62 78 61 57 61	.25 .14 .14 .15 .10	3 2 2	2.80 2.40 2.14 2.33 1.84	.02 .01 .01 .01 .01	.06 .04 .03 .03 .03	1 1 2 1 3	
24+00W 10+00S 22+00W 7+00N 22+00W 6+75N P 22+00W 5+75N 22+00W 5+50N 22+00W 6+25N	1 2 4 1 1	18 86 215 78 61	9 14 22 17 19	62 155 271 157 179	.1 .5 .6 .1 .1	24 62 65 48 44	7 13 19 12 14	717 1393 633	4.16 5.01 6.74 4.27 4.18	6 2 7 2 2	5 5 5 5 5	ND ND ND ND ND	1 1 1 1 1	9 37 38 31 32	1 1 1 1	2 2 2 2 3	2 2 2 2 2 2	44 47 64 50 66	.58 .66 .43	.036 .058 .073 .045 .041	3 40 91 38 24	44	.72 .86 1.02 .77 1.32	32 296 296 182 193	.16 .05 .09 .11 .05	2 2 2	1.55 3.41 3.73 2.44 2.15	.01 .01 .02 .01 .01	.03 .09 .13 .06 .06	1 1 1 1 1	
22+00H 5+00N 22+00H 5+75N 22+00W 5+50N STD C	1 1 2 17	36 87 103 58	7 21 15 43	103 217 375 132	.1 .1 .1 6.8	35 58 79 68	-	720	2.87 4.36 6.58 4.02	7 2 7 36	5 5 5 16	ND ND ND 7	1 1 2 37	28 39 40 47	1 1 2 18	3 2 2 16	2 2 2 20	53 59 62 58	.43 .80 .93 .49	.044 .091 .066 .092	13 35 27 37	59	1.05 1.05 1.04 .91	97 252 219 175	.11 .05 .21 .06	2	1.38 3.10 3.20 2.00	.01 .01 .03 .06	.03 .07 .07 .13	1 1 1 12	

Page 2

STD C

18 58 41 132 7.1 68

30 1030

4.17

Cđ Cu Pb ZD λg Ni Co НD *l*e λs ្ប Au Th Sr SD Bi ۷ Ca P La Cr Χđ Ba Ti В λl Na K ¥ SAMPLEA MC PPN PPN PPN PPN PPK PPM PPH PPN 3 PPN 1 \$ PPN PPN PPN PPN PPN PPM PPN PPK PPN ł PPN PPM PPN PPN Ł ł ł 2 ND 39 63 .50 .081 19 63 1.28 198 .07 3 2.41 .02 .09 18 259 . 2 51 24 1487 4.58 2 3 2 1 22+00% 5+25N 78 -5 1 4 1 59 14 54 2 1.37 .01 ND 25 2 .35 .065 1.06 137 .06 .06 22+00W 5+00N 1 59 15 182 .1 37 14 687 3.84 2 5 1 1 2 1 34 51 1.08 .05 161 22 302 .1 41 14 940 4.92 2 5 ND 1 4 2 2 .093 33 39 . 65 154 .10 2 2.51 .02 1 2 22+00W 4+75N 10 2 -51 .12 23 39 .53 94 .02 .08 2 2 5 ND 3 1 2 .042 .16 2 2.42 22+00W 4+50N 2 24 20 185 .2 19 6 336 4.59 .1 10 1309 3.86 2 5 ND 1 1 2 2 50 .14 ...047 3 29 .58 61 .04 2 1.25 . 91 .04 9 173 15 8 1 22+00W 4+25N 28 1 562 4.05 16 2 79 . 38 .026 5 99 2.05 89 .09 2 2.53 . 02 .05 22+00W 4+00N 12 216 53 13 -5 5 ND 2 1 1 38 .1 1 15 44 .25 27 40 .47 . 5 33 12 571 4.99 10 5 ND 1 2 2 2 .046 113 .10 2 2.99 .01 .05 22+00W 3+75N 3 124 20 360 1 1 47 17 19 19 58 .47 38 55 . 89 .06 .15 13 STD C 18 56 43 129 6.8 65 28 998 3.97 37 18 38 .088 170 .07 32 2.02 15 75 .32 .051 95 1.34 .01 908 6.00 2 5 ND 3 3 2 6 78 .10 2 2.57 .04 1 22+00W 3+50N 199 17 1042 .3 52. 21 1 8 32 42 1.58 .082 1698 5.02 2 5 ND 2 2 2 26 34 .51 133 .07 2 2.55 .01 .05 1 22+00W 3+25N 2 150 19 422 .1 26 17 1 121 .36 .047 72 1.22 54 .25 2 2.57 .01 .06 22+00W 3+00N 3 47 19 150 . 2 40 19 732 8.61 10 5 ND 2 14 1 3 2 10 1 30 RE 22+00W 1+75N 63 16 181 .6 44 12 530 4.23 5 5 ND 1 1 2 2 58 1.24 .041 11 69 1.31 88 .07 2 2.43 .01 .05 .1 1 15 .36 .044 187 19 795 5.52 2 5 ND 1 1 2 2 97 9 87 1.52 94 .12 2 2.59 .01 .04 22+00W 2+75N 27 14 .1 44 1 1 19 46 641 4.13 2 5 NC 1 1 2 2 .99 .066 5 20 . 34 40 .01 2 .89 .01 . 02 22+00W 2+50N 1 68 5 160 .1 15 10 1 14 224 36 15 983 3.48 2 5 ND 1 40 1 2 2 46 1.45 .089 15 51 .85 123 .04 2 2.13 .01 .03 1 22+00W 2+25N 81 .4 1 22+00W 2+00N 127 12 279 .1 57 19 842 4.38 1 5 KD 1 27 2 2 62 . 96 .054 15 74 1.50 89 .10 2 2.47 . 02 .04 1 1 29 12 14 172 .4 42 12 506 4.07 2 5 ND 1 1 2 2 55 1.22 .041 67 1.25 87 .07 2 2.32 .01 .04 1 61 22+00W 1+75N 1 ND 35 2 29 2.01 .105 29 34 .50 .04 2 2.25 .01 .03 30 1261 3.03 2 5 1 2 2 126 1 22+00W 1+50N 1 307 13 238 .1 45 12 96 6 217 3.03 3 5 ND 1 20 2 2 73 .41 .017 1 44 . 65 101 . 21 2 1.36 .01 .05 1 16 .1 20 t 22+00W 1+25M 2 30 67 . 55 .068 18 124 4.57 6 S ND 2 2 86 1.47 184 .07 2 3.03 .01 .07 22+00¥ 1+00N 219 17 318 .2 81 17 1 1 1 1 58 . 63 .054 18 66 -1.13 142 .08 2 2.40 .01 .06 22+00% 0+75N 124 13 495 .2 74 18 811 4.36 3 ŝ ND 1 27 2 2 2 1 1 15 35 15 36 13 467 4.23 4 5 ND 1 2 2 2 69 .28 .038 14 51 .11 108 . 21 2 1.74 .01 .05 1 22+00W 0+50N 140 .2 2 ND 31 2 56 1.22 .061 25 68 .98 .01 97 29 1046 4.69 2 5 1 .1 2 136 .10 2 2,54 .05 1 22+00¥ 0+25N 264 13 196 .1 1 22 13 92 .1 94 33 867 4.88 1 5 ND 1 1 2 2 63 1.03 .045 13 189 1.32 82 .13 2 2.31 .01 .03 1 22+00% 0+00N 1 35 32 ND 1 .34 11 49 .84 42 10 359 2.77 9 5 1 2 2 50 .052 117 .10 2 1.42 . 02 .04 1 26 50 .1 22+00W 0+50S 1 8 1.07 .55 .05 .05 26 40 .045 13 35 107 2 1.60 .01 601 2.86 5 ND 3 2 1 22+00W 0+75S 1 60 8 68 .1 48 10 8 1 1 .86 9 61 .1 47 13 625 3.22 6 5 ND 1 26 1 2 2 53 . 59 .035 14 55 102 . 08 2 1.75 .01 .02 1 22+00W 1+005 104 1 3 5 ND 1 29 1 2 2 56 .68 .041 14 68 . 95 125 .09 2 1.92 .02 .04 1 704 3.72 22+00% 1+25S 1 60 10 65 .1 66 16 36 11 91 .2 63 18 479 4.36 2 5 ND 1 21 1 3 2 61 .70 .042 12 74 .92 110 .09 2 2.09 .01 .05 1 22+00W 1+50S 1 29 .053 13 17 .05 514 3.72 6 5 ŇĎ 2 60 .51 1.01 115 .08 2 1.88 .01 1 1 1 -2 22+00W 1+755 1 50 11 72 .1 67 15 .03 23 ND 23 59 .49 .050 13 110 1.35 106 .12 3 2.02 .01 1 22+00¥ 2+255 58 70 .1 82 715 4.53 6 5 1 1 2 2 1 9 55 459 6.70 11 5 ND 12 1 2 2 14 . 39 .040 5 87 1.51 54 .15 2 2.52 .01 .01 1 22+00¥ 2+50S 1 48 10 61 .1 21 1 1257 3.61 2 5 ĦD 25 2 38 1.54 .072 14 36 . 60 103 . 09 2 1.95 .02 .01 75 22 1 1 2 1 22+00¥ 2+755 1 73 2 83 .1 .73 .052 52 24 593 5.01 13 5 ND 1 18 1 2 2 69 9 53 .95 71 .11 2 1.95 .01 .02 1 22+00W 3+00S 2 50 14 102 .1 21 1228 5.26 ND 1 19 1 2 2 58 .73 .056 15 48 .76 124 .13 2 2.31 .01 .04 1 22+00W 3+255 58 12 100 .1 50 4 5 1 53 .41 .046 40 . 65 108 .15 2 2.26 .01 .03 1 22+00W 3+50S 29 13 101 36 15 810 4.49 5 ND 17 1 2 2 15 1 .1 8 1 1 405 4.34 5 11 2 .23 .031 62 .91 65 .32 2 1.72 .01 73 .1 33 13 16 ND 1 1 2 102 4 .01 1 22+00W 3+755 20 9 87 .1 19 609 4.82 11 5. ND 1 13 1 2 2 81 . 39 .019 8. 77 1.34 61 .27 2 2.38 .01 .04 1 1 23 11 44 22+00¥ 4+00S .50

18

16 20 . 093

60

40

52 .94 182 .07 33 1.95

.15

.06

12

20

6 39 49

42

ESSO MINERALS CANADA LTD. PROJECT 122-KUTCHO FILE # 88-4699

Page 3

1

f

C

t

1

1

1

(

ł

Ť

(

(

¢

ſ

ESSO MINERALS CANADA LTD. PROJECT 122-KUTCHO FILE # 88-4699

SAMPLE‡		HO PPM	Cu PPN	PD PPM	Zn PPM	Ag PPN	NI PPM	Co PPN	Hn PPN	Fe 3	As PPN	U PPN	Au PPN	Th PPN	Sr PPN	Cd PPN	SD PPN	Bi PPN	V PPN	Ca ł	P t	La PPN	CT PPN	. Xg S	Ba PPN	Ti %	B PPN	Al }	Na Ł	K ł	¥ PPN
22+00W 4+25S 22+00W 4+50S 22+00W 4+75S 22+00W 5+00S 22+00W 5+25S		1 1 2 2 1	285 268 19 53 26	12 35 19 20 13	108 120 83 114 75	.1 .1 .1 .1	48 73 36 57 51			2.54 4.67 5.45 5.50 3.94	17 12 3 6 3	5 5 5 5 5	ND ND ND ND ND	1 1 3 2 1	46 31 14 29 21	1 1 1 1	2 2 2 2 2 2	3 2 2 2 2	37 46 47 63 57	3.04 1.56 .30 1.11 .59	.160 .079 .052 .081 .037	25 34 13 22 8	52 38 40 43 56	.55 .60 .65 .52 1.20	122 156 85 166 95	.03 .18 .22 .27 .15	4 2 2	2.14 3.33 3.95 3.59 2.27	.04 .03 .02 .02 .01	.04 .04 .04 .04 .04	1 1 1 1 1
22+00W 5+50S STD C 22+00W 5+75S 22+00W 6+00S 22+00W 6+50S	P	1 1B 2 1 1	37 56 25 25 33	18 41 19 18 16	118 128 104 93 76	.1 6.6 .1 .1	46 65 22 128 73	16 27 8 21 13		5.47 3.90 5.38 4.51 3.55	2 42 7 3	5 19 5 5 5	ND 6 ND ND ND	2 38 1 1 1	27 45 7 17 29	1 17 1 1 1	2 17 2 2 2	2 20 2 3 2	57 54 51 64 49	1,35 .46 .12 .24 .49	.081 .085 .045 .057 .068	22 36 16 9 9	55 41 152	1.00 .87 .40 1.71 1.11	125 161 53 88 148	.33 .06 .19 .08 .05	32 2 3	3.94 1.97 2.31 2.65 2.19	.03 .06 .01 .02 .01	.03 .14 .03 .07 .06	1 12 1 1 1
22+00¥ 6+755 22+00¥ 7+005 22+00¥ 7+255 22+00¥ 7+505 22+00¥ 7+755	P	1 1 1 1	3B 37 43 59 42	13 11 15 15 13	84 66 81 81 71	.1 .1 .1 .1	78 65 71 86 67	11 11 14 13 12	495 690 561	3.19 2.95 3.35 2.98 3.11	5 10 13 11 11	5 5 5 5 5	ND ND ND ND	1 2 1 1 2	30 51 52 54 49	1 1 1 1	3 2 3 2 2	2 2 2 2 2 2		.49 .80 .82 1.30 1.08	.069 .060 .060 .064 .069	14 10 12 12 11	54	1.02 .97 1.10 .93 .95	119 189 184 232 190	.06 .07 .09 .05 .05	- 4 - 5 - 4	1.93 1.65 1.86 1.94 1.86	.01 .01 .02 .01 .01	.06 .06 .09 .07 .05	1 1 1 1 1
22+00% 8+00S 22+00% 8+25S 22+00% 8+55S RE 20+00% 6+ 22+00% 8+75S	75N	1 1 1 1	40 47 33 25 40	11 12 11 15 14	94 80 69 89 81	.1 .1 .2 .1	75 65 61 31 82	12 13 11 7 14	1022 528 288	3.25 3.08 2.88 2.84 3.13	8 4 3 5 5	5 5 5 5 5	ND ND ND ND	1 1 1 1	39 39 36 34 40	I 1 1 1	2 2 3 2 2	2 3 2 3 3	45 40 43 46 47	.84 1.08 .67 .41 .59	.066 .078 .052 .049 .056	10 12 10 14 11	58 59 39	1.09 .92 1.00 .69 1.12	149 162 138 212 153	.06 .04 .07 .04 .09	5 3 2	1.76 1.82 1.59 2.11 1.75	.01 .01 .01 .01 .01	.06 .05 .05 .06	1 1 1 1
22+00W 9+00S 20+00W 7+00N 20+00W 5+75N 20+00W 6+25N 20+00W 6+00N	P	1 1 1 1 1	49 20 27 47 47	12 13 15 16 18	69 83 96 161 211	.1 .1 .2 .3 .1	92 31 32 42 49	24 7 8 8 17	383	3.73 2.47 2.94 3.26 4.40	13 2 4 10 4	5 5 5 5 5	ND ND ND ND ND	2 1 1 1 1	32 36 35 38 37	1 1 1 1	3 2 2 2 2 2	2 2 2 2 2 2	57 43 48 42 59	.35 .47 .44 .97 .88	.059 .031 .051 .079 .071	10 10 15 18 15	36 40 37	1.25 .74 .72 .67 1.17	130 151 225 -248 214	.11 .07 .04 .03 .D4	3 2 2	1.77 1.36 2.21 2.44 2.64	.01 .01 .01 .01 .01	.06 .05 .06 .08 .09	1 1 1 1
20+00W 5+75N 20+00W 5+50N 20+00W 5+25N 20+00W 5+25N 20+00W 5+00H 20+00W 4+75N	P P	1 1 1 1	58 35 71 44 25	15 13 17 15 14	205 190 138 216 85	.3 .1 .2 .2 .1	35 36 53 39 35	6 8 10 11 7	453 632 718	2.29 2.98 3.49 3.27 2.81	3 5 10 6 2	5 5 5 5 5	ND ND ND ND	1 1 1 1	62 33 39 33 25	1 1 1 1	2 2 2 2 2	2 3 2 2 2	46	1.92 .83 1.14 .60 .26	.101 .045 .066 .078 .048	21 9 26 10 9	32 44 45 47 47	.57 .88 .83 .84 .38	299 152 253 206 102	.02 .05 .04 .04 .09	2 2 2	2.09 1.74 2.27 2.16 1.75	.01 .02 .02 .01 .01	.07 .07 .09 .06 .04	1 1 1 1 1 1
20+00W 4+50N 20+00W 4+25N 20+00W 4+00N 20+00W 3+75N 20+00W 3+50N		2 2 1 1 1	66 88 79 80 176	18 21 17 14 16	279 304 478 326 317	.1 .1 .2 .3	56 40 43 36 88	13 22 20 14 29	1023 682 855	5.12 6.70 4.25 3.62 6.04	3 7 4 8 10	5 5 5 5 5	ND ND ND ND	2 1 2 1 2	21 14 20 29 35	1 1 1 2 1	2 3 2 2 2	2 2 2 2 2 2	61 59 58 44 62	.30 .16 .26 1.01 1.04	.055 .071 .033 .056 .045	18 12 9 13 15	42	.88 .94 1.07 .76 1.45	195 92 119 126 170	.18 .07 .05 .08 .18	2 2 2	2.96 2.18 2.31 2.01 2.53	.02 .01 .01 .01 .02	.05 .05 .05 .04 .06	1 1 1 1
20+00W 3+25N 20+00W 3+00N 20+00W 2+50N STD C		1 1 1 18	128 122 86 57	15 18 15 43	143 277 559 132	.1 .1 .1 6.6	18 66 51 67	17 27 21 29	1551 1829 1394 1032	4.68 6.09 5.22 4.02	4 2 3 37	5 5 5 20	ND ND ND 6	1 3 1 36	28 24 22 47	1 2 1 17	2 2 2 15	3 2 3 21	39 64 67 57	1.41 .81 .72 .50	.077 .045 .035 .089	21 19 12 37	28 45 65 55	.53 .86 1.15 .92	120 87 92 175	.13 .30 .08 .06	2 2	2.48 3.51 2.30 2.02	.02 .02 .01 .06	.04 .05 .04 .13	1 1 1 11

Page 4

1

C

(

Ċ

ť.

€

ESSO MINERALS CANADA LTD. PROJECT 122-KUTCHO FILE # 88-4699

Page 5

SAMPLE#	No PPN	Cu PPK	Pb PPH	Zn PPN	Ag PPN	NI PPN	Co PPN	Hn PPN	Fe %	As PPN	U PPN	Au PPN	Th PPN	Sr PPN	Cd PPM	SD. PPM	Bi PPN	V PPH	Ca 3	P %	La. PPM	Cr PPM	Ng ł	Ba PPM	Ti ł	B PPM	ג ג ג	Na z	K Ş	¥ 298	
20+00W 2+25N 20+00W 2+00N 20+00W 1+75N 20+00W 1+50N 20+00W 1+25N	1 2 1 3 2	301 62 66 253 97	14 16 9 11 14	3D3 222 233 455 174	.1 .2 .1 .1 .4	105 20 70 59 30	21 10 14 20 8	1073 685 810	5.66 4.44 4.96 4.54 2.90	3 2 9 7 5	5 5 5 5	ND ND ND ND ND	2 1 1 1	30 25 11 18 18	1 1 1 1	2 2 3 2 3	2 2 2 2 2 2		1.12 1.61 .18 .44 .25	.046 .072 .028 .032 .039	21 16 5 6 10	68 23 127 90 50	1.45 .36 2.32 1.62 .56	160 92 66 118 130	.24 .07 .05 .08 .96	2 2 2	3.12 1.37 2.98 2.62 1.95	.02 .01 .01 .01 .01	.05 .03 .04 .05	1 1 1 1 1	
20+00% 1+00N 20+00% 0+75N 20+00% 0+50N 20+00% 0+25N RE 15+00% 7+00N	1 1 1 1 1	447 72 59 326 34	44 18 14 12 13	1358 128 602 353 101	.3 .1 .1 .1 .1	56 71 40 105 43	31 10 7 25 7	595 501 900	4.41 3.97 3.51 3.61 2.51	4 9 5 24 5	5 5 5 5	ND ND ND ND	1 1 1 1	32 35 27 37 53	5 1 1 1	2 2 2 2 3	2 2 2 2 2	38 39 41 40 39	1.55 .96 .80 1.49 .96	.092 .053 .035 .067 .080	30 29 30 39 18	43 39 36 40 35	.55 .70 .60 .69 .61	155 171 149 160 274	.04 .08 .08 .05 .03	2 2 2	3.00 2.32 2.19 2.14 2.05	.01 .02 .01 .01 .01	.05 .06 .05 .06 .06	1 1 1 2	
20+00% 0+00K 20+00% 8+255 20+00% 8+505 20+00% 9+005 18+00% 7+00M	2 1 1 1	149 25 40 57 32	13 11 8 5 13	181 98 90 80 96	.1 .2 .1 .1	111 32 45 49 41	16 15 12 16 8	837 554 622	4.50 3.06 3.28 3.36 2.63	12 2 7 10 3	5 5 5 5	ND ND ND ND	1 1 1 1	37 23 29 32 57	1 1 1 1 1	2 2 3 3 2	2 3 3 2 2	50 55 49 51 40	1.76 .41 .48 .49 .98	.095 .100 .095 .059 .084	28 7 11 10 18	47 54 56 55 34	.54 .38 .78 1.00 .64	196 110 163 105 281	.12 .05 .04 .13 .03	2 2 3	3.24 1.79 1.87 1.52 2.14	.02 .01 .01 .01 .01	.06 .05 .05 .06 .07	1 1 1 2	
18+00N 6+75N STD C 18+00X 6+50N 18+00W 6+25N 13+00M 6+00N P	2 18 2 1 1	44 55 48 22 29	16 40 17 11 15	112 132 137 73 143	.1 6.7 .2 .1	45 69 56 35 53	13 30 13 7 13	1001 730 368	4.01 3.97 4.53 2.68 4.08	9 38 4 5 8	5 19 5 5 5	ND B ND ND ND	1 36 2 1 2	32 48 44 43 57	1 18 1 1	2 17 2 2 2	2 20 2 3 2	61 59 67 46 62	.32 .49 .67 .51 .95	.109 .093 .072 .050 .075	22 - 37 17 15 18	44 53 48 33 51	.69 .87 .35 .64 .83	370 171 335 208 332	.03 .07 .02 .05 .03	32 2 2	3.35 1.94 3.83 1.77 3.15	.01 .06 .01 .01 .01	.09 .14 .14 .07 .11	2 11 1 2 1	
18+00W 3+75N 18+00W 5+50N 18+00W 5+00N 18+00W 4+50N P 18+00W 4+25N	1 1 1 1 1	24 49 14 39 37	10 15 15 14 10	94 104 89 289 325	.1 .1 .3 .1 .1	39 49 21 44 43	10 10 5 15 8	747 221 752	3.18 4.05 2.55 3.84 2.91	2 8 4 10 9	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	35 43 26 25 39	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	51 59 56 64 51	.53 1.36 .45 .66 .60	.045 .163 .032 .049 .030	15 27 11 10 14	33 40 26 53 35	.65 .66 .44 1.18 .68	221 349 154 148 185	.05 .02 .04 .05 .07	2 2 4	2.27 3.47 1.80 2.18 1.95	.01 .01 .01 .01 .01	.08 .09 .07 .08 .07	1 2 1 1	
19+00N 4+00N /> 18+00N 3+75N 18+00N 3+50N 18+00N 3+25N 18+00N 3+00N	1 1 1 2 2	302 17 26 27 10	12 12 11 20 19	563 120 162 291 63	.1 .1 .1 .1	84 25 19 27 14	13 6 7 12 3		2.42 2.59 4.79	10 4 5 4	5 5 5 5	ND ND ND ND	1 1 1 1	41 30 20 34 8	4 1 2 1 1	2 2 2 2 2 2	2 2 2 3	47 51 50 74 74	1.65 .63 .26 .87 .08	.146 .040 .064 .121 .033	28 10 12 13 11	48 33 31 34 42	.70 .53 .34 .49 .69	326 177 210 179 78	.02 .05 .06 .08 .17	2 3 2	3.70 1.60 1.39 1.90 1.32	.01 .01 .01 .01 .01	.09 .05 .05 .06 .03	1 1 1 1	
13+00W 2+75N 18+00W 2+50N 18+00W 2+25N 15+00W 2+20N 18+00W 2+00N 18+60W 1+75N	1 2 11 5 3	97 26 187 30 58	18 19 59 10 14	256 149 463 96 276	.1 .1 .1 .1 .4	50 29 52 13 32	17 8 23 6 8	1799 330	5.57	5 2 33 2 7	5 5 5 5 5	ND ND ND ND ND	1 2 1 1 1	39 11 17 5 11	1 1 3 1 1	2 2 3 2 2	2 2 2 2 2 2	36 82 46 61 77	1.58 .16 .53 .06 .11	.089 .032 .093 .028 .039	29 15 19 9 8	30 40 33 30 56	.54 .67 .61 .60 .84	163 60 78 41 87	.11 .20 .05 .08 .09	2 2 2	3.27 2.23 2.90 1.73 2.87	.02 .01 .01 .01 .01	.05 .05 .04 .03 .04	1 1 1 1	
18+00W 1+50N 18+00W 1+25N 18+00W 1+00N STD C	2 1 4 17	53 24 13 58	18 14 15 41	373 395 83 132	.1 .1 .1 6.8	63 55 22 63	10 12 3 29	451	5.62 4.49 7.80 3.95	6 7 18 38	5 5 16	ND ND ND B	1 2 2 36	9 18 6 45	1 1 18	2 2 3 15	2 3 3 21	48 55 87 58	.09 .33 .07 .47	.067 .020 .055 .094	37 10 8 37	43 56 61 56	.58 .99 .63 .86	153 116 51 176	.04 .08 .19 .06	2	4.44 2.77 2.16 1.97	.01 .01 .01 .06	.06 .05 .04 .14	1 1 1 11	

Page 6

1

 $^{\circ}E$

í

1

ŧ

	•						2	ESSO	MI	NERJ	ALS	CANA	DA	LTD.	PRC	JEC	T 1	22 - K	UTCI	HO	FIL	E #	88-	4699)						· .	F
SAMPLE#		Ho P?H		Cu PK	PD PPN	Zn PPN	Ag PPN	NI PPN	Co PPN	Na PPN	Fe 3	As PPM	U PPN	AU PPN	Th PPN	ST PPM	Cđ PPM	SD PPM	BI PPM	V P?M	Ca %	P %	La PPM	CT PPN	Kg Z	Ba PPN	Ti X	B PPN	Al B	Na R	I S	¥ PPM
18+00¥ 0+ 18+00¥ 0+ 18+00¥ 0+ 18+00¥ 0+ 18+00¥ 0+ 18+60¥ 0+	+50N +25N +00N	2 2 : 1 1		45 9 40 22 26	19 16 11 12 13	114 64 94 67 66	.1 .1 .1 .1	101 18 74 40 46	36 5 11 10 11	592 193 504 505 495	2.94	25 6 11 6 8	5 5 5 5 5 5	ND ND ND ND	3 2 1 1 1	11 23 27 28 34	1 1 1 1	2 2 2 2 2 2	2 2 2 3 2	82 73 58 56 56		.047 .013 .030 .037 .049	17 10 9 11 12	72 43 52 44 47	.95 .49 .84 .78 .84	117 140 209 159 141	.16 .10 .06 .06	2 3 2	4.79 1.58 2.78 2.08 2.14	.01 .01 .01 .01 .01	.04 .05 .06 .07 .06	1 2 1 2
18+00% 0 18+00% 0 18+00% 0 19+00% 1 STD C	+505 +755	2 1 3 1 18	1	02 15 27 14 59	13 9 20 12 42	170 81 161 73 136	.1 .1 .4 .1 6.9	102 43 43 27 58	16 7	487 1380 1148 303 1020	2.83 6.39 4.18	16 9 7 9 45	5 5 5 19	ND ND ND ND 7	2 1 1 1 37	29 35 14 25 46	1 1 1 19	2 2 2 2 17	2 2 2 2 2 21		2.95 .63 .36	.085 .139 .058 .021 .098	23 1 9 18 8 38	35 18 34 37 53	.52 .20 .52 .60 .93	167 135 125 143 169	.08 .03 .09 .07 .06	222	2.93 1.78 3.61 2.30 1.95	.01 .01 .01 .01 .06	.05 .03 .06 .04 .14	1 2 1 1 13
18+05W 1 18+06W 1 18+06W 2 18+06W 2 18+06W 2 18+06W 2	+755 +005 +505	1 1 1 2 1		42 30 38 32 47	E 13 2 7 15	78 67 67 86 80	.2 .1 .1 .1 .1	47 52 13 66 70	21 12 25 11	440 379 131 511 541	3.80 .26 6.40	12 10 2 21 41	5 5 5 5 5	ND ND ND ND ND	2 2 1 1 2	6 28 57 7 30	1 1 1 1	2 2 2 2 2 2 2	2 2 2 2 2 2	112	.31 4.51	.034 .016 .051 .031 .036	2 9 2 2 21	128 55 3 104 38	.92 ,05	12 161 77 40 101	.63 .09 .01 .51 .11	2 3 2	2.49 2.85 .22 2.04 2.78	.01 .01 .01 .01 .02	.01 .05 .02 .01 .06	1 2 1 1
18+00M 3 18+00M 3 18+00M 3 18+00M 4 18+00M 4 18+00M 4	+505 +755 +005	1 1 1 1 1		47 67 13 11 93	20 12 8 11 10	108 92 49 50 117	.1 .1 .1 .1 .1	52 44 29 24 26	14 11 8 7 8	513 441 241	5.05 3.51 2.62 2.61 3.10	39 10 5 4 6	5 5 5 5 5	ND ND ND ND ND	4 1 1 1	18 31 20 21 31	1 1 1 1	2 2 2 2 2 2 2	2 2 2 2 2 2	66 53 52 52 41	.97 .43	.029 .044 .019 .019 .019	17 13 8 8 13	44 47 44 40 34	.66 .72 .72 .57 .52	134 117 120 135 126	.16 .07 .08 .09 .03	2 2 2	3.10 2.33 1.85 1.60 1.66	.01 .01 .01 .01 .01	.05 .04 .03 .03 .03	1 2 2 1
18+00% 4+ 18+00% 4+ 18+00% 5+ RE 18+00% 5+ 18+00% 5+	+755 +005 W 4+255	1		34 32 19 93 41	11 12 8 10 4	158 110 53 117 73	.1 .1 .1 .1	38 38 43 28 19	10 16 11 9 5	883 430 1010		7 9 8 7 2	5 5 5 5 5	ND ND ND ND	1 1 1 2 1	24 25 22 30 72	1 1 1 1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2		.72 .35 2.00	.070 .060 .026 .095 .081	13 11 7 13 7	46 58 50 35 22	.75 .87 .78 .51 .36	121 112 66 127 127	.09 .09 .08 .03 .01	2 2 2	2.24 2.04 1.44 1.66 .85	.01 .01 .01 .01 .01	.08 .04 .03 .02 .02	1 I 1 I
18+00% 6 16+00% 6 18+00% 5 18+00% 7 18+00% 7	+505 +755 +005	1 1 1 1		14 21 27 25 24	13 15 11 19 17	75 110 177 189 124	.1 .1 .1 .1	18 49 79 63 102	7 11 14 13 17	523 639	3.26 4.80 4.72 5.50 6.10	9 12 7 12 13	5 5 5 5 5	ND ND ND ND	1 1 1 1	15 17 26 20 19	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	73 77 59 83 72	.22 .41 .36	.054 .063 .096 .074 .070	9 6 9 6 9		.43 .87 1.18 1.03 .87	120 114 167 153 194	.13 .09 .04 .11 .07	2 3 2	1.26 1.89 2.32 1.91 2.26	.01 .01 .01 .01 .01	.05 .05 .07 .06 .06	1 2 1 1 1
18+00¥ 7 18+00¥ 7 18+00¥ 8 16+00¥ 1 16+00¥ 1	+755 +005 1+75N	1 1 2 1 1		67 15 19 69 91	2 5 17 7 9	91 78 63 92 136	.1 .1 .1 .2 .1	32 54 36 39 52	4 26 11 6 9	690 352 516	.64 5.83 4.73 1.85 2.48	2 22 12 2 5	5 5 5 5 5	ND HD ND ND ND	1 1 1 1	53 10 20 71 53	1 1 1 1	2 2 2 2 2 2 2	2 2 2 2 2 2	89 67 17	.44		4 2 8 14 27	16 103 59 21 38	.17 .91 .63 .50 .63	113 19 85 257 284	.01 .64 .16 .01 .01	2 2 4	.40 2.21 2.48 1.32 1.83	.01 .01 .01 .01 .01	.02 .01 .03 .03 .03	2 1 2 2 1
16+00W 1 16+00W 1 16+00W 10 STD C	0+75N	1 1 2 17		57 22 14 5B	4 10 15 42	59 62 81 132	.1 .1 .2 6.6	49 51 35 68	5 10 9 29		3.55 4.96	2 9 6 44	5 5 5 17	ND ND ND 7	1 1 2 37	66 15 10 47	1 1 1 18	2 2 2 17	2 2 2 19	15 59 76 58	1.99 .31 .16 .51	.147 .048 .039 .094	34 8 8 37	23 65 62 56	.30 1.07 .97 .90	250 80 59 171	.01 .12 .15 .06	3	1.47 2.40 2.42 2.03	.01 .01 .01 .05	.02 .02 .04 .14	1 1 2 12

ESSO MINERALS CANADA LTD. PROJECT 122-KUTCHO FILE # 88-4699

SAMPLE#		Mi PP:		Cu PPN	Pb PPM	ZO PPN	Àợ PPN	Ni PPM	CO PPN	Na PPN	7e 3	As PPM	U PPH	Au PPN	Th PPN	Sr PPM	Cđ PPM	SD PPN	Bİ PPM	V PPN	Ca	Р . 3	La PPN	CT PPN	Ng L	Ba PPM	Ti t	B PPM	Al ş	Na B	R Z	¥ PPM	
16+00W 9+75N 16+00W 9+70N 16+00W 9+25N 16+00W 9+00N RE 16+00W 74	N N N	1	2	13 26 96 355 28	22 9 18 19 12	103 96 298 1020 73	.2 .1 .1 .1 .1	18 30 44 82 37	4 11 12 22 7		4.77 3.49 5.20 5.62 2.54	6 4 2 12 3	5 5 5 5 5	ND ND ND ND ND	3 1 2 1 1	9 21 34 27 54	1 1 2 2 1	2 2 2 2 3	3 2 2 2 2	82 63 67 66 38	.09 .52 .68 .48 1.25	.044 .048 .089 .170 .087	21 6 18 20 19	50	.31 1.23 .72 1.29 .66	65 79 180 250 246	.24 .16 .25 .02 .04	2 2 2	1.90 1.90 2.35 4.44 1.78	.01 .01 .02 .01 .01	.06 .05 .05 .07 .05	1 1 1 1	
16+00W 3+75N 16+00W 3+25N 16+00W 3+00N 16+00W 7+75N 16+00W 7+75N	N N N		1 1 1	90 29 34 24 26	21 13 6 8 12	749 143 91 56 65	.1 .1 .3 .1	61 57 51 36 37	29 15 9 12 7	1264 573 469 846 209	6.99 4.62 2.29 2.28 2.51	11 7 2 4 3	5 5 5 5 5	ND ND ND ND ND	1 1 1 1 1	10 21 72 75 56	1 1 1 1	2 3 2 3	2 2 2 2 2 2	85 62 29 34 37	.19 .42 2.30 2.50 1.24	.046 .039 .107 .122 .036	5 8 15 10 19	123 74 47 40 44	2.52 1.02 .70 .56 .65	58 112 313 286 251	.11 .08 .02 .02 .02	2 5 2	3.15 1.83 1.78 1.63 1.90	.01 .01 .01 .01 .01	.03 .04 .05 .04 .05	1 1 1 1 1	
16+00W 7+25 16+00W 6+25 16+00W 6+00 16+00W 5+75 16+00W 5+75 16+00W 5+50	N N N		2 1 1 1 2	7 36 14 23 21	14 12 13 15 19	43 55 57 78 76	.1 .1 .1 .1	11 63 23 35 25	3 13 6 9 6	122 518 305 359 374	1.67 3.09 3.12 3.53 4.25	2 6 4 5 9	5 5 5 5 5	ND ND ND ND	1 1 2 2 2	16 23 15 18 12	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	61 53 53 54 76	.13 .30 .08 .13 .07	.026 .041 .031 .037 .052	10 10 11 11 12	30 60 27 38 36	.23 1.02 .42 .62 .49	64 130 114 139 111	.23 .10 .05 .05 .04	2	.94 I.93 1.98 2.97 3.08	.01 .01 .01 .01 .01	.04 .05 .05 .07 .09	2 1 1 1 1	
15+00W 5+251 16+00W 5+001 15+00W 4+751 16+00W 4+501 16+00W 4+251	X N N		1 1 1 1	28 19 19 49 22	14 12 11 17 14	72 49 51 105 85	.1 .1 .3 .1	41 26 33 58 33	12 5 8 9 8	507 217 447 319 324	3.07 2.29 2.50 4.12 3.52	9 8 4 5 6	5 5 5 5 5	ND ND ND ND	2 1 2 1 1	21 25 38 30 20	1 1 1 1	3 2 2 2 2	2 2 2 2 2 2	48 46 48 62 55	.14 .15 .36 .23 .15	.031 .037 .047 .112 .030	12 10 13 11 10	35 35 43 60 37	.67 .48 .72 .82 .59	144 15D 147 313 148	.05 .04 .09 .01 .03	2 2 2	2.61 2.09 1.43 4.69 2.47	.01 .01 .01 .01 .01	.07 .06 .05 .10 .07	I 1 1 1 1	
16+00W 4+001 16+00W 3+75N 16+00W 3+501 16+00W 3+25N 16+00W 3+001	N N H		1 1 1 1 1	36 19 21 19 16	12 12 13 12 12	83 58 70 63 75	.1 .1 .1 .1 .2	47 36 51 38 30	8 7 11 7 7	414 413 547 353 280	3.09 2.51 2.96 2.64 3.14	6 4 9 2	5 5 5 5 5	ND ND ND ND	1 2 2 1 1	25 27 34 29 20	1 1 1 1	2 2 2 2 2 2 2	2 2 2 2 2 2	45 38 45 44 52	.56 .53 .65 .45 .20	.077 .023 .030 .034 .031	16 13 14 15 9	37 27 43 32 32	.59 .51 .88 .65 .57	200 152 182 183 161	.03 .07 .05 .04 .03	2 2 2	2.59 1.78 1.72 2.16 2.07	.01 .01 .01 .01 .01	.06 .06 .06 .05 .06	1 1 1 1	
16+00W 2+751 16+00W 2+551 16+00W 2+251 15+00W 2+001 16+00W 1+751	N N		1 1 1 1	24 20 24 12 40	18 11 17 14 17	100 77 90 37 121	.1 .1 .2 .1	34 34 38 9 42	8 9 3 10	435 406 425 103 494	4.75 3.33 4.30 2.02 4.31	5 2 9 2 6	5 5 5 5	ND ND ND ND ND	1 1 2 1 1	12 19 17 13 15	1 1 1 1 1	2 2 3 2 3	2 2 2 2 2 2	70 60 62 39 67	.08 .14 .11 .06 .11	.042 .043 .040 .049 .048	10 9 12 12 15	40 42 40 24 42	.63 .65 .70 .19 .62	107 124 126 89 187	.03 .05 .06 .03 .02	2 2 2	3.11 1.92 2.88 2.90 3.74	.01 .01 .01 .01 .01	.09 .08 .07 .05 .09	1 1 1 2 1	
16+00W 1+50 16+00W 1+25 16+00W 1+00 16+00W 0+75 STD C	in In		1 1 3 2 8	17 10 41 169 57	9 13 13 13 40	128 48 89 104 128	.1 .1 .1 5.7	38 13 51 138 66	13 3 9 14 29	689 142 741 563 981	4.06 1.97 3.70 3.93 4.03	5 2 5 52 37	5 5 5 5 18	HD ND ND ND ND 8	2 1 1 1 37	14 17 32 34 45	1 1 1 1 18	2 3 2 2 18	2 2 2 2 17	62 61 44 50 57	1.08	.031 .013 .081 .067 .092	9 3 19 19 38	90 23 36 47 53	1.33 .27 .60 .74 .90	96 123 224 218 165	.13 .04 .04 .04 .04	2 3 2	2.28 1.51 2.53 3.05 1.96	.01 .01 .01 .01 .01	.05 .06 .07 .07 .14	1 2 1 1 13	
16+00% 0+50 16+00% C+25 16+00% 0+00 STD C	SN -		5 7 3 7	28 21 49 58	14 13 19 41	133 121 141 132	.1 .2 .1 7.0	34 28 58 68	8 15 12 30	400 661 707 1027	3.44 6.17 5.14 4.13	11 4 14 41	5 5 5 18	ND ND ND 7	1 2 1 36	22 16 23 47	1 1 1 18	2 3 3 17	2 2 2 19	49 84 49 59	. 53 . 81	.045 .032 .075 .095	15 6 29 38	37 40 33 52	.57 1.28 .57 .93	139 114 191 171	.07 .15 .11 .07	2	2.11 2.37 3.95 2.02	.01 .01 .01 .06	.05 .05 .06 .13	1 1 1 12	

Page 7

Ċ.

£

t

ESSO MINERALS CANADA LTD. PROJECT 122-KUTCHO FILE # 88-4699

SAMPLE		Ko PPN	Cu PPM	PD PPM	Zn PPM	λg PPN	NÍ PPM	Co PPN	Na PPN	Fe 3	ÀS PPM	U PPN	Au PPN	Th PPN	ST PPN	Cđ PPN	SD PPH	Bi PPM	V PPM	Ca %	P %	La PPN	CT PPM	Ng t	Ba PPN	Ti 3	B PPK	Al .8	Na %	К 3	¥ PPN	
16+00W 0+00S 16+00W 0+25S 16+00W 0+50S 15+00W 0+75S 16+00W 1+00S		2 1 1 1 1	41 95 73 197 137	15 13 13 13	116 132 113 106 102	.1 .1 .1 .1 .1	51 106 61 251 71	11 11 11 29 15	594 1150 699	4.71 4.34 3.74 5.37 3.60	13 17 9 13 14	5 5 5 5	ND ND ND ND ND	3 3 2 6 2	22 23 28 20 32	1 1 1 1 1	2 2 3 2 2	2 2 2 2 2 2	44	.82 .92 1.38 .37 2.36	.074 .061 .095 .055 .114	24 26 24 26 25	33 36 33 41 34	.50 .50 .47 .39 .50	192 138 201 191 116	.08 .07 .04 .09 .02	2 2 2	3.25 2.98 2.45 3.52 2.55	.01 .01 .01 .01 .01	.05 .06 .05 .07 .05	1 1 1 1	
16+00W 1+25S 16+00W 1+50S 16+00W 1+75S 16+00W 2+00S 16+00W 2+25S		2 1 1 1	169 108 17 55 24	17 16 10 18 13	106 130 75 159 43	.1 .1 .1 .1	57 54 30 57 14	14 10 8 11 4	1037 302 545	4.39 4.13 2.95 4.84 1.44	25 19 10 27 2	5 5 5 5 5	ND ND ND ND ND	2 2 2 1 1	22 24 19 19 13	1 1 1 1	3 2 2 2 3	2 2 3 2	41 37 63 67 41	.81 .92 .30 .81 .45	.107 .099 .012 .037 .036	25 20 9 16 9	35 31 33 42 25	.46 .46 .63 .67 .22	133 202 127 199 110	.02 .02 .06 .06 .11	2	2.75 2.67 2.19 3.32 .34	.01 .01 .01 .01 .01	.06 .06 .05 .08 .03	1 1 1 1 2	
15+COW 2+505 15+OOW 2+755 16+OOW 3+255 16+OOW 3+505 16+OOW 3+755		2 1 1 1	31 17 30 24 21	13 9 30 13 11	131 76 111 112 80	.1 .1 .1 .1	53 26 25 28 36	21 11 12 14 8	448 566 747	4.91 3.45 3.73 3.61 2.96	21 2 5 4 10	5 5 5 5	ND ND ND ND	2 1 1 1 1	15 13 15 18 31	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	74 93 82 71 59	.62 .83 .73 .64 .32	.033 .037 .049 .045 .031	12 6 11 9 9	57 56 47 41 37	1.03 .85 .62 .57 .54	110 37 143 125 182	.15 .30 .18 .09 .05	2 2 2	2.74 1.52 1.97 1.86 1.94	.01 .01 .01 .01 .01	.05 .03 .04 .07 .08	1 1 1 1 1	
16+00W 4+00S 16+00W 4+25S 16+00W 4+50S 16+00W 4+75S 15+00W 5+00S	r	1 1 1 1 2	16 22 25 41 23	12 13 12 10 8	63 79 80 94 92	.1 .1 .1 .1	30 36 45 49 37	7 9 12 11 9	689	2.68 2.78 3.24 3.09 2.64	8 9 15 9 7	5 5 5 5	ND ND ND ND	1 1 1 1	31 36 35 42 32	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	52 52 56 50 46	.24 .44 .42 1.58 .96	.026 .047 .041 .077 .056	9 10 11 12 8	32 35 47 43 47	.57 .67 .35 .71 .67	162 168 171 248 176	.05 .06 .07 .03 .04	3 2 3	1.69 1.59 2.06 2.20 1.74	.01 .01 .01 .01 .01	.07 .10 .09 .10 .09	1 1 1 1	
16+00W 5+258 16+00W 5+508 RE 16+00W 4+75 16+00W 5+758 STD C		1 1 1 17	48 16 40 36 58	11 2 11 8 41	86 45 93 95 128	.1 .1 .1 .1 6.7	44 8 48 35 67	11 2 11 7 29	48 689 438	3.16 .46 3.07 2.22 4.07	10 2 11 9 41	5 5 5 5 18	ND ND ND ND 7	1 1 1 36	32 73 42 59 45	1 1 1 1 18	2 3 3 2 17	2 2 2 2 18	6 50	1.17 4.73 1.62 2.92 .50	.073 .063 .077 .083 .092	14 3 12 11 36	51 7 42 32 55	.77 .07 .71 .53 .86	114 103 244 216 162	.02 .01 .03 .01 .07	4 3 3	1.66 .34 2.19 1.60 1.96	.01 .01 .01 .01 .06	.05 .02 .10 .05 .14	1 2 1 1 13	
15+00W 5+00S 16+00W 5+25S 16+00W 6+75S 16+00W 7+00S 16+00W 7+25S		1 1 1 1 1 1	30 15 23 10 37	13 13 8 9 7	90 82 59 53 96	.1 .1 .1 .1 .1	41 40 48 18 77	9 9 10 6 40	365 381 242	2.50 3.86 3.01 2.37 6.38	5 9 5 6 9	5 5 5 5 5	ND ND ND ND ND	2 1 1 1 1	51 21 26 15 14	1 1 1 1	3 2 2 3 2	2 2 2 3 2	37 62 47 54 89		.052 .040 .034 .024 .061	12 9 10 8 3	36 56 54 43 87	.63 .81 .81 .39 1.09	220 142 125 116 73	.02 .11 .09 .12 .35	6 2 2	1.56 1.74 1.71 1.19 1.39	.01 .01 .01 .01 .01	.06 .05 .04 .04 .03	1 1 1 1	
16+00W 7+50S 16+00W 7+75S 16+00W 8+00S 16+00W 8+25S 16+00W 8+75S		1 1 1 2 1	24 21 19 81 30	16 7 14 17 15	94 69 94 129 95	.1 .1 .2 .1 .1	55 62 39 78 49	16 15 20 14 12	692 1468 969	4.15 3.43 4.15 5.25 5.43	9 7 10 13 11	5 5 5 5 5	ND ND ND ND ND	2 1 1 1 2	25 23 19 35 84	1 1 1 1	2 2 2 2 3	2 2 2 2 3	66 56 63 62 70	.41 .34 .88	.041 .038 .043 .106 .078	8 7 8 35 26		1.03 1.04 .86 .69 .71	132 79 113 217 333	.12 .10 .10 .10 .24	2 2 2	1.79 1.40 1.76 3.11 3.43	.01 .01 .01 .01 .02	.06 .06 .06 .06 .05	1 1 1 1	
16+00W 9+00S 16+00W 9+25S 15+00W 9+75S STD C		1 1 18	43 43 14 60	13 20 17 45	104 142 181 132	.1 .1 .1 5.9	52 83 56 69	10 17 12 30	836	3.64 4.56 4.22 4.24	10 16 12 44	5 5 5 18	ND ND ND 7	1 1 1 37	50 43 17 47	1 1 1 18	2 2 3 16	2 2 2 20	51 57 51 59	. 80	.061 .096 .060 .096	21 17 19 38	43 90 46 55	.79 1.15 .60 .90	345 233 129 175	.06 .07 .12 .07	3 2	2.40 2.49 3.45 2.04	.01 .01 .01 .06	.07 .07 .07 .14	1 1 1 11	

Page 8

1

ſ

f

(

0

1 ···

Ċ

ſ

													77 11	DA 1		חסס	0 7 8 0	1 m	77-14		чo	FTT	E #	88 <u>-</u>	A 6 9 6	5								Page	9
	SAMPLE			Mo 2PN	Cu PPM	Pb PPK	2n PPN	Ag PPK	Ni PPN	CO PPN	MER. Mn PPN	FILS IE	AS PPN	UA I PPN	Au PPM	Th	ST PPN	Cd PPN	SD PPN	BI	V PPM	Ca 3	р 3	La PPM	CT PPK	Ng	Ba PPM	Ti t	B	λ1 - ξ	Na k	Ā 3	N PPM		-
	15+00¥ 14+00¥ 14+00¥ 14+00¥ STD C	11+75N		1 1 2 1 18	28 15 13 14 56	8 14 12 11 38	82 79 70 52 128	.1 .1 .1 .1 6.7	58 21 16 28 67	12 8 7 7 30	388 337	4.06 3.47 3.79 3.86 4.10	5 9 8 41	5 5 5 5 17	ND ND ND ND 7	1 2 1 36	15 10 10 12 48	1 1 1 18	2 2 2 16	2 2 2 2 21	73 108 118 72 59	.24 .14 .10 .19 .49		12 5 8 37	53 45 40 54 57	.73 .45 .46 .57 .91	98 66 61 71 161	.09 .19 .20 .15 .06	2 2 2	1.76 .99 1.33 1.75 1.92	.01 .01 .01 .01 .01	.04 .03 .04 .02 .13	1 1 2 13		
	14+00W 14+00W 14+00W 14+00W 14+00W 14+00W	10+75N 10+50N 6+75N		1 1 1 1	19 20 8 24 51	12 13 13 7 13	56 75 39 56 85	.3 .1 .1 .1 .1	37 33 13 59 68	9 B 3 17 11	369 131 635	3.85 4.00 1.96 3.21 3.85	10 4 2 6 7	5 5 5 5 5	ND ND ND ND	2 2 1 1 1	14 14 12 25 32	1 1 1 1	3 2 2 2 2	3 2 2 2 2	65 72 62 57 63	.23 .10 .10 .36 .76		9 9 7 9 19	58 44 40 75 73	.97 .68 .31 1.19 .97	87 106 80 102 317	.09 .05 .07 .12 .96	2 2 2	2.31 2.27 1.36 1.55 2.59	.01 .01 .01 .01	.03 .05 .04 .03 .06	2 1 2 1 1		
•	14+00¥ 14+00¥ 14+09¥ 14+00¥ 14+00¥	6+00N 5+50N 5+25N] 5 1]	18 97 50 65 37	5 17 12 10 8	63 148 107 113 81	.1 .1 .4 .2	54 183 89 139 96	10 27 13 16 17	4176 970 719	3.97 5.58 3.23 5.05 3.92	7 17 3 10 12	5 5 5 5 5	ND ND ND ND	1 1 1 1	14 48 44 32 29	1 2 1 1	2 3 2 2 4	2 2 2 2 2	68	.22 1.46 1.52 1.17 1.01	.062	7 34 12 14 8	133 74 105	1.21 1.35 1.04 1.57 2.80	82 604 292 248 145	.11 .03 .04 .08 .07	2 2 2	2.00 4.31 2.12 3.02 2.34	.01 .01 .01 .01 .01	.03 .08 .05 .07 .04	1 1 1 1		
	14+00¥ 14+00¥ 14+00¥ 14+00¥ 14+00¥ 14+00¥	4+50N 4+25N 4+00%		1 1 1 2	73 71 27 24 20	21 9 13 13 14	181 458 102 54 85	.1 .1 .1 .1 .1	101 133 105 25 26	23 25 16 8 6	594 299	5.14 5.23 5.60 3.04 4.22	14 13 8 8 10	5 5 5 5 5	ND ND ND ND	1 1 1 1	27 20 14 16 10	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 3 2 2	54 69 86 74 43	1.39 .94 .23 .14 .10	.059 .048	19 16 12 5 20	131	1.04 1.87 2.21 .73 .46	235 137 108 109 105	.07 .09 .14 .15 .10	4 2 2	2.83 2.89 2.60 1.63 2.09	.01 .01 .01 .01 .01	.06 .04 .04 .03 .04	1 1 1 1		
	14-00% 14+00% 14+00% 14+00% 14+00% 14+00%	3+25N 3+00N 2+75N		1 1 1 1 2	36 151 148 55 140	5 13 13 9 21	72 204 321 128 245	.1 .1 .2 .1 .6	45 103 102 57 93	17 14 15 15 39	542 828 659	4.56 4.90 4.26 5.82 6.20	9 16 10 10 15	5 5 5 5	ND ND ND ND	1 1 3 2	12 32 36 11 21	1 1 2 1 1	2 2 2 2 2 2	2 2 2 2 3	65 63 53 65 42	.21 1.26 1.67 .35 .79		8 21 2D 16 21	93 88	1.21 1.15 1.11 1.11 .57	50 254 267 86 61	.07 .04 .04 .30 .11	2 2 2	2.83 3.69 3.14 4.41 3.58	.01 .01 .02 .01	.02 .05 .06 .03 .03	1 1 1 1		
)	14+00% 14+00% 14+00% 14+00% RE 14+	2+00N 1+75N	ion	1 2 1 1 2	17 73 18 27 140	11 17 12 31 22	53 103 63 70 245	.1 .1 .1 .1 .7	15 78 34 50 97	4 21 8 10 39	3920 343	2.71 4.14 4.22 4.10 6.19	9 15 10 12 15	5 5 5 5 5	ND ND ND ND	1 1 1 1	15 35 15 14 21	1 1 1 1 1	2 2 2 3 3	2 2 2 2 2	62 54 73 56 43	1.74	.042 .043	8 44 8 8 20	29 49 54 60 56	.28 .64 .64 .78 .57	88 368 110 103 59	.04 .02 .08 .07 .10	2 2 2	1.60 3.60 2.12 2.63 3.60	.01 .01 .01 .01 .01	.02 .06 .04 .03 .03	1 1 1 1		
	14+00¥ 14+00¥	0+75N 0+50N		1 1 1 1	29 33 19 41 32	16 15 14 10 13	98 80 61 60 96	.1 .1 .2 .1 .2	55 69 30 102 46	11 15 8 13 9	445 289	3.27	11 11 16 11	5 5 5 5 5	ND ND ND ND ND	1 2 2 1 1	12 16 10 11 33	1 1 1 1	2 2 4 2 2	2 2 3 3 2	61 55 65 52 52	.15 .09 .12	.041 .029 .035 .026 .077	10 10 12 5 15	58 54 46 57 41	.81 .79 .50 .68 .56	111 135 85 81 245	.08 .09 .15 .07 .02	2 3 2	3.51 3.31 2.38 1.99 2.85	.01 .01 .01 .01 .01	.05 .04 .03 .03 .05	1 1 1 1		
	14+00% 14+00% 14+00% STD C			1 1 1 17	17 19 15 59	8 15 24 41	69 80 52 132	.1 .1 .2 7.0	32 38 29 69	8 9 7 30	396 250		1 15 10 43	5 5 5 18	ND ND ND 7	1 2 2 36	16 14 13 47	1 1 16	2 2 3 16	2 4 2 22	59 61 58 59	,14 ,12	.023 .030 .022 .095	7 10 8 38	47 63 52 58	. 63 . 88 . 59 . 93	81 83 94 172	.05 .10 .10 .07	2	1.31 2.75 2.24 2.D2	.01 .01 .01 .05	.03 .03 .03 .13	1 1 1 13		

59

44 132

18

STD C

30

69

7.0

1030 4.17

44 18

7 37 48

18 17 21 50

ESSO MINERALS CANADA LTD. PROJECT 122-KUTCHO FILE # 88-4699 SD La CT Mg Ba Ti В 31 Na X ii ii SAMPLE Th Sr Cd Bi V Ca P Мо Pb Ζn ÂĢ Ni Co Mn Fe As U Aŭ Cu PPN PPM PPN PPM PPM PPN PPH 1 PPM 3 PPN ł ł PPN PPN PPN PPN PPN PPN PPN PPN PPN ł PPN PPN PPM PPN ł ł 1 14+00W 1+00S 23 67 47 12 455 3.51 - 7 -5 ND 2 19 1 2 2 62 .19 . 019 9 56 .92 119 .08 2 2.9B .01 .04 1 -14 .1 79 11 494 4.37 12 5 ND 2 17 3 2 55 .16 .031 18 56 . 80 145 .07 4 - 3.34 .01 .07 1 30 15 46 1 14+00% 1+255 2 .1 .17 .025 2 61 9 57 .96 .01 14+00W 1+505 1 27 13 67 .1 46 9 296 3.95 6 5 ND 15 1 2 2 130 .05 3 3.54 . 08 1 5 ND 18 3 78 .50 .035 11 47 . 60 124 .08 2 2.74 .01 .04 17 1 211 3.76 1 1 2 14+00W 2+00S 1 15 118 .3 - 31 1 1 32 18 2 2.87 14+00¥ 2+255 1 36 12 153 :1 55 9 848 3.98 14 5 ND 1 1 2 2 44 1.44 .131 43 .73 163 .04 .01 .07 1 60 1.83 .114 76 1.26 .02 14+00W 2+505 1 35 14 303 .1 55 16 1032 4.63 13 -5 ND 1 31 1 2 2 11 209 2 4.05 .01 .08 1 481 6.98 5 12 2 137 .34 .028 13 76 . 80 108 2 3.07 .01 .04 14+00W 3+00S 53 10 102 51 21 5 ND 1 1 2 .01 1 .1 1 330 3.65 5 21 .43 48 .70 2 2.47 21 14 75 36 8 9 ND 1 1 3 3 68 :013 9 150 .07 .01 .04 1 14+00W 3+50S 1 .1 13 771 3.55 8 5 ND 1 34 1 3 2 52 1.30 .056 20 50 .72 200 .03 2 2.99 . 01 .07 14+00W 3+75S 1 65 100 .1 50 12 1 15 14 717 3.68 5 ND 22 60 .56 .066 12 51 .61 174 .04 2 2.33 .01 .07 1 14+00W 4+00S .1 24 107 .1 38 1 1 3 2 1 .04 14+00% 4+255 66 26 1 332 2.25 ND 28 46 .43 .026 8 37 . 59 121 .06 2 1.38 .01 1 1 -14 -7 .1 8 5 1 1 3 2 14+00% 4+505 1 20 12 69 .1 36 . 9 442 2.70 6 5 ND 1 33 1 2 2 50 .42 .041 9 43 . 66 156 .06 2 1.54 .01 .07 1 13 51 .57 .060 42 .67 2 1.97 .01 . 09 14+00W 4+755 1 25 9 107 .1 39 9 398 2.88 3 5 ND 1 40 1 2 2 227 .03 1 12 491 2.78 10 5 ND 53 2 2 50 .54 .049 13 41 .71 212 .05 3 1.64 .01 .08 1 14+00% 5+00S 1 25 78 .1 40 10 1 1 23 2 . 42 .76 .07 357 3.03 5 ND 1 1 3 60 .030 8 54 106 .09 2 1.89 .01 1 14+00W 6+25S 1 12 9 103 .1 25 8 4 .05 .14 .056 46 .70 124 .06 2 2.64 .01 1 14+00% 6+505 18 15 122 .1 41 -11 539 4.25 10 5 ND 15 2 2 71 9 1 1 1 10 15 93 5 321 3.85 9 5 ND 1 16 1 3 2 61 . 09 .056 11 32 .35 140 .06 2 2.12 .01 .05 1 14+00W 6+755 1 .1 13 72 254 3.75 5 15 2 62 .11 .029 11 39 .46 139 .09 2 1.90 .01 .04 1 14+00W 7+00S 1 12 11 . 2 24 5 8 ХD 1 1 2 14+00W 7+255 64 1 269 3.00 12 5 ND 2 23 i 3 2 56 .22 .033 8 47 .11 155 .08 2 1.91 .01 .05 1 1 15 12 .1 41 14+00# 7+505 1 12 46 3 106 1.66 5 5 ND 17 2 41 .11 .023 8 26 .23 119 .05 2 1.19 .01 .03 2 1 .1 11 1 1 2 359 3.08 21 2 58 .20 .050 10 49 . 69 143 ,06 2 1.52 .01 .04 1 14+00% 7+755 -1 16 14 76 .1 34 8 - 7 5 ND 1 1 2 5 2 15 .63 45 .78 .077 43 251 .03 2 1.93 .01 .05 14+00% 9+255 1 27 11 98 .1 42 10 914 2.74 6 ND 1 44 1 2 -1 415 2.70 5 47 2 45 1.28 . 059 12 54 . 81 195 .04 4 1.68 .01 .07 14+00W 9+255 1 31 10 84 .1 .55 9 9 ND 1 1 2 1 .13 65 12 611 3.65 10 5 ND 1 36 2 2 62 . 88 .097 17 74 .97 193 .03 2 2.84 .01 .06 1 14+00W 9+50S 1 42 108 .1 1 14 707 4.77 5 ND 10 2 63 .14 .052 13 49 .55 95 .10 2 1.74 .01 .05 1 14+00% 9+755 2 19 100 .1 29 8 9 1 1 2 .01 59 .20 .050 10 50 . 69 143 . 06 3 1.53 .04 RE 14+00W 7+755 1 16 12 76 .1 34 8 365 3.12 6 - 5 ND 1 21 1 3 2 1 13 .12 .094 13 61 .59 142 .27 2 1.97 .01 .04 2 12 23 99 .1 32 10 646 7.79 10 5 ND 2 1 2 2 88 1 14+00W 10+00S 43 3 2 47 1.34 .137 34 64 .72 387 .05 2 3.82 .01 .06 19 88 11 337 3.82 11 . 5 ND 1 1 1 12+00W 7+00N 2 70 336 .1 2 10 5 ND 29 1 2 2 64 .46 .090 12 75 .76 194 .05 2 1.93 .01 .05 1 12+00W 6+75N 23 -13 127 .2 36 11 533 4.10 1 998 4.06 44 17 19 19 58 .48 .093 36 53 .90 160 .06 33 1.96 .06 .14 12 56 40 127 66 29 40 18 1 34 STD C 19 6.7 .26 .043 105 1.46 .23 2 2.57 .01 .04 5 ND 121 1 114 1 12+00W 6+50N 1 21 13 109 .2 70 20 510 6.31 . 5 1 17 -1 2 2 26 12 65 54 12 426 3,18 11 5 ŇD 22 2 2 54 .26 .040 9 58 .94 120 .08 4 2.30 .01 .04 1 12+00W 6+25N 1 .1 1 1 15 41 .34 73 .01 .06 3 2 51 .06 ,053 .06 2 2.94 1 16 18 69 .2 23 4 243 4.42 10 - 5 ND 2 10 1 12+00W 6+00N 3 16 5 ND 13 2 2 56 .23 .068 9 66 1.01 94 . 09 2 2.99 .01 .04 1 13 70 52 11 380 4.08 1 1 12+00¥ 5+75N 1 24 .1 .26 .035 6 75 1.09 73 .12 2 2.22 .01 .04 20 10 58 10 309 3.39 6 5 ND 1 14 1 2 2 65 1 12+00¥ 5+50N 1 .1 44 59 .17 .050 65 .84 85 .08 2 2.22 .01 .05 1 12+00W 5+25N 1 22 12 63 .1 43 9 325 3.30 1 5 ND 14 3 3 8 .036 1 56 .78 .08 3 1.99 .01 .04 15 11 59 .1 35 8 313 3.44 10 5 ND 1 13 1 3 2 61 .16 80 1 12+00W 5+00N 1 3 39 .07 .094 8 36 .25 79 .01 .01 .03 .1 5 11 2 2 1.60 12+00% 4+75N 1 13 12 61 . 6 13 1 130 2.14 6 ND 1 1

38 . 55

.94 175 .07

.50 .096

Page 10

1.

-E

t

ŧ

ſ

1

Ċ

(

(

C

f

.14

.06

33 2.04

12

•	•							ESSC	MI	NER	ALS	CAN	ADA	LTD.	PR	OJE	CT 1	22-I	UTC	HO	FIL	E #	88-	4699	€								Page	11
	SAMPLE¥	Mc PPI			PD PN	Zn PPN	Ag PPN	NI PPM	CO PPN	Nn PPN	Fe	As PPM	U PPN	ÀU PPN	Th PPN	Sr PPM	Cđ PPN	SD PPM	Bİ PPM	V PPM	Ca	2	La PPN	CT PPN	¥ġ. 3	Ba PPM	T1 3	B PPN	Al 3	Na 3	Ā Ş	W PPM		
	12+00W 4+30N 12+00W 4+25N 12+00W 4+00N 12+00W 3+75N 12+00W 3+50N	1	1 1 1 2 2	4 7 1	13 13 17 15 12	117 31 99 95 91	.1 .1 .1 .4 .2	12 18 32 21 40	3 5 11 6 10	385 862 520	4.52 3.54 7.69 4.37 3.02	9 3 11 2 6	5 5 5 5 5	NC ND ND NC ND	1 1 2 1 1	8 9 11 12 17	1 1 1 1 2	2 2 2 2 2	2 2 3 2 2	56 67 79 73 82	.04 .06 .09 .21 .24	.035 .056 .081 .074 .051	\$ 15 14 15 9	22 33 65 56 66	.81 .34 .55 .46 .75	63 101 99 91 108	.07 .06 .14 .10 .13	2 2 2	2.07 2.09 2.88 1.92 2.42	.01 .01 .02 .01 .01	.05 .05 .06 .05 .04	1 2 1 1 1		
	12+00W 3+25N 12+00W 3+00N 12+00W 2+75N RE 12+00W 1+75N 12+00W 2+50N	1 1 2 1 1	1	4 5 9	15 12 16 14 15	533 54 79 82 86	.1 .2 1.0 .1 .1	109 22 35 37 87	16 6 9 8 14	397 389 262	4.69 3.19 8.81 3.91 4.13	10 3 14 7 8	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 1	33 11 8 13 26	1 1 1 1	2 2 2 2 2	2 2 3 2 2 2	55 75 98 66 44	.91 .10 .08 .14 1.29	.151 .050 .081 .051 .067	33 8 10 8 19	80 53 75 66 54	.93 .42 .66 .69 .91	358 67 63 85 145	.04 .10 .19 .10 .05	2 2 5	4.40 1.44 2.83 1.82 2.71	.01 .01 .01 .01 .01	.08 .05 .04 .05 .06	1 2 1 1 1 2		
	12+00W 2+25N 12+00W 2+00N 12+00W 1+75N STD C 12+00W 1+50N	1 1 17 2	24 2 5	6 1 7	17 13 12 39 10	58 108 83 129 73	.1 .1 7.0 .2	12 69 37 66 50	4 15 8 29 11	1044 263 983	2.03 4.16 3.85 4.02 4.73	4 9 5 40 9	5 5 5 18 5	ND ND ND 7 ND	1 1 35 1	10 31 13 45 11	1 1 1 17 1	2 2 18 2	2 2 2 2 2 2 2 2 2	60 58 65 57 83	.26 1.43 .15 .47 .19	.016 .104 .050 .091 .054	11 35 8 36 6	34 50 66 55 96	.54 .96 .69 .89 1.01	69 224 85 160 70	.19 .04 .10 .06 .11	2 2 32	1.41 3.27 1.82 1.94 1.96	.01 .03 .01 .05 .01	.03 .08 .05 .14 .05	1 1 13 1		
	12+00W 1+25N 12+00W 1+00N 12+00W 0+73N 12+00W 0+50N 12+00W 0+25N	1	5 16 1 4 2	2 0 3	5 9 19 13 14	81 142 59 117 89	.3 .4 .2 .1 .1	144 146 14 81 57	28 27 4 12 10	1384 286 527	6.80 6.95 4.25 4.89 4.56	18 22 3 7 7	5 5 5 5 5	ND ND ND ND	1 1 1 1 2	10 31 7 20 15	1 1 1 1 1	2 2 2 2	2 2 2 2 2 2	101 76 84 53 64	.10 1.19 .07 .66 .17	.036 .107 .034 .058 .044	4 35 13 21 11	222 67 38 53 60	1.95 1.30 .39 .71 .92	55 193 59 86 101	.39 .13 .23 .13 .15	2 2 2	2.71 3.45 2.06 3.23 2.66	.01 .01 .01 .01 .01	.03 .06 .04 .05 .05	1 1 1 1		
	12+00W 0+00N 12+00W 0+25S 12+00W 0+50S 12+00W 0+75S 12+00W 0+75S 12+00W 1+00S	1	20 1 2 1 3 4	3 5 3	21 16 18 13 19	208 77 1D2 65 146	.1 .1 .1 .1	126 19 49 21 51	12 5 9 5 8	370 359 270	4.45 5.01 4.24 3.60 5.65	16 4 4 6 15	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	33 8 11 12 8	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	36 69 71 74 65	1.95 .08 .08 .06 .11	.137 .046 .034 .034 .046	33 14 12 11 19	47 45 54 35 48	.73 .32 .69 .34 .51	146 58 123 96 97	.04 .18 .06 .08 .03	2 2 2	3.50 1.82 3.21 1.97 4.00	.01 .01 .01 .01 .01	.07 .05 .06 .06 .08	1 1 1 1 1		
	12+00W 1+25S 12+60W 1+50S 12+00W 1+75S 12+00W 2+00S 12+00W 2+25S			6 5 4	15 10 9 12 20	113 79 78 68 76	.1 .1 .1 .1 .1	62 32 39 26 13	7 12 12 8 3	459 395 593	4.39 4.81 5.65 3.20 2.01	9 6 16 2 2	5 5 5 5 5	ND ND ND ND ND	1 1 1 1 1	21 9 5 53 12	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	36 114 102 50 63		.080 .034 .025 .227 .015	37 4 7 24 16	40 63 68 35 32	.60 .90 .86 .21 .25	131 76 35 108 96	.05 .29 .43 .02 .16	2 2 2	3.38 1.99 2.05 2.12 1.26	.01 .01 .01 .01 .01	.05 .03 .02 .02 .02 .03	1 1 1 1 1		
	12+0CW 2+505 12+00% 3+005 12+00% 3+255		1 2 2 3 1 1	6	13 16 10	130 120 72	.2 .1 .1	47 36 25	11 6 6		4.73	7 10 2	5	ND ND ND	1 1 1	25 21 14	1 1 1	2 2 2	2 2 2	56 31 83	.57 1.35 .22	.091 .114 .012	15 45 7	55 26 46	.50 .31 .66	278 175 115	.02 .03 .13	2 2	2.90 3.72 1.87	.01 .01 .01	.06	1 1 1		

1

1

° (

٠**(**

Υ.

.07

.07

.01

.01 .05

.01 .07

.01 .09

33 1.98 .06 .14

2 2.73

3 2.55

3 2.45

.73

. 99

142 .04

165 .05

53 .92 171 .07

42

42 . 69 147 .03

51

14

12

10

38

49 1.08 .055

48 1.33 .077

60 1.02 .035

58 .50 .095

1

1

1

1

1

12

1 14 10 72 .1 25 6 246 3.33 2 5 ND 1 -14 1 2 2 83 .22 .012 1 46 .66 115 .13 2 1.87 .1 5 ND 1 26 2 60 .84 .058 28 105 1.29 187 .09 2 3.14 .01 146 105 14 1844 5.86 11 1 2 1 149 14 . 53 43 1.83 142 21 28 35 147 .03 2 2.94 1 69 15 163 .1 45 8 849 3.75 3 5 ND 1 1 2 2

32

1

1

18 16 21

1

2 2

2

3

2

2

1 23

1 27

- 2

12+00¥ 3+755 12+00W 4+00S 1 12+00W 4+255 1

98 13 121

50

1 45

17 58 14 145

15 101

42 132

.1 73

.1 48

.1

6.8

56

68

-12

11 15

665 3.65

881 3.47

757 3.70

30 1025 4.11

27

7

1

42 18

5 ND

5

5 ND

ND

1 36 47

12+00W 4+50S STD C

12+00W 3+50S

ESSO MINERALS CANADA LTD. PROJECT 122-KUTCHO FILE # 88-4699

SAMPLE‡		No PPM	Cu PPN	PD PPN	Zn PPN	Ag PPN	NÍ PPN	Co PPN	Nn PPM	Fe	AS PPN	U PPN	Au PPN	Th PPN	ST PPN	Cd PPN	SD PPN	Bi PPM	V PPN	Ca १	P	La PPN	Cr PPN	Ng Z	Ba PPN	71 3	B PPN	A1	Na 3	ľ ł	W PPM	
12+00W 4+755 12+00W 5+00S 12+00W 5+255 12+00W 5+50S 12+00W 5+75S		1 1 1 1 1	31 28 21 19 25	17 15 12 14 17	73 85 88 87 85	.1 .1 .1 .1	39 39 35 36 45	10 10 8 9 10	511 353 462	3.32 2.81 3.05 2.79 3.07	3 6 5 10 5	5 5 5 5	ND ND ND ND	1 1 1 1	33 38 22 30 39	1 1 1 1	2 2 2 2 2 2	2 3 3 2 3	56 47 56 51 54	.57 .65 .21 .33 .49	.090 .055 .031 .025 .041	14 12 7 8 11	48 43 50 47 53	.73 .66 .71 .70 .82	236 131 137 163 230	.02 .03 .04 .05 .04	2	2.47 1.89 1.91 1.64 2.10	.01 .01 .01 .01 .01	.08 .09 .07 .07 .07	1 1 1 1 1	
12+00W 6+00S 12+00W 6+25S 12+00W 6+75S 12+00W 7+00S 12+00W 7+25S		1 1 1 1 1	30 23 40 76 28	14 15 14 16 17	85 83 95 101 78	.1 .1 .1 .1 .1	48 43 59 79 51	8 10 11 12 11	531 564 712	2.78 2.74 3.08 3.28 3.08	6 3 5 8 9	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	55 35 49 52 36	1 1 1 1 1	2 2 3 2 2	2 2 2 2 2 2	47 48	1.11 .64 .98 1.79 .67	.067 .046 .054 .095 .034	12 10 15 28 14	51 54 63 64 55	.78 .82 .98 .85 .30	230 176 203 327 214	.03 .05 .05 .01 .05	2 3 2	2.02 1.77 1.92 2.91 2.16	.01 .01 .01 .01 .01	.08 .07 .08 .10 .05	I 1 1 1 1	
12+00W 7+505 12+00W 7+755 12+00W 8+00S 12+00W 8+25S 12+00W 8+50S		1 1 1 1 1	20 21 19 50 30	15 12 18 21 22	73 113 88 120 100	.1 .1 .1 .1	37 36 27 72 50	7 9 7 16 11	397	2.86 2.68 3.26 5.13 4.01	5 2 5 5 3	5 5 5 5 5	ND ND ND ND ND	1 1 1 1 1	34 36 19 24 28	1 1 1 1 1	2 2 2 2 2 2	2 2 2 3 2	52 45 60 67 65	.58 .68 .13 .20 .23	.040 .062 .055 .063 .038	11 8 12 23 15	44 42 47 64 52	.56 .65 .44 .81 .66	222 128 143 263 297	.03 .02 .13 .13 .13	2 2 2	1.93 1.75 1.62 3.82 2.63	.01 .02 .01 .02 .01	.07 .08 .07 .07 .07	1 1 1 2	
12+00W 8+75S RE 12+00W 10+ 12+00W 9+00S 12+00W 9+25S STD C	005	1 1 1 1 17	19 21 18 24 58	10 13 9 10 40	54 72 61 66 122	.1 ⁴ .1 .1 .1 7.1	35 36 33 36 67	8 7 8 8 8 27	284 368 408	2.39 2.20 2.24 2.48 3.77	4 7 2 7 42	5 5 5 18	ND ND ND ND 6	2 1 1 37	36 46 35 39 48	1 1 1 17	2 2 3 3 16	2 2 3 18	43 41 39 41 54	.40 .43 .46 .53 .45	.045 .042 .050 .053 .086	9 12 9 9 38	46 39 45 45 53	.70 .63 .67 .78 .85	121 191 141 148 160	.08 .04 .05 .06	4 2 2	1.05 1.23 1.35 1.31 1.87	.01 .02 .01 .01 .06	.05 .05 .05 .05 .14	1 1 2 2 13	
12+00W 9+755 12+00W 10+005 10+00W 6+75N 10+00W 6+50N 10+00W 6+25N	· ·	1 1 1 2 1	110 21 30 15 49	25 14 15 12 11	149 74 62 76 99	,1 .1 .1 .1 .5	85 37 46 21 37	13 7 10 10 7	386 602	3.84 2.25 3.11 3.83 1.88	2 5 5 4 2	5 5 5 5 5	ND ND ND ND ND	1 1 1 1 1	59 47 16 16 40	1 1 1 1 1	2 2 2 2 2 2	2 3 2 3 2	42 59 52	1.57 .44 .16 .30 1.52	.108 .043 .025 .063 .164	26 12 8 12 17	78 39 61 39 38	.79 .64 .84 .57 .34	378 197 111 102 275	.05 .04 .06 .07 .01	3 2 2	3.03 1.24 2.19 1.39 1.90	.02 .02 .01 .01 .01	.06 .08 .04 .08 .03	1 1 1 1	
10+00W 6+00N 10+00W 5+75N 10+00W 5+50N 10+00W 5+25N 10+00W 5+00N		1 2 1 1 3	16 50 30 29 201	15 15 10 13 20	76 101 58 73 83	.1 .3 .1 .1 .2	29 59 53 56 15	7 11 12 20 3	1228 611 713	3.12 3.65 2.88 3.63 2.80	6 4 10 2	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 1	14 41 32 17 7	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	68 51 50 54 23	.22 1.66 .38 .38 .07	.034 .114 .050 .043 .082	7 23 12 8 36	53 75 59 82 31	.53 .66 .95 1.38 .19	112 331 153 90 61	.07 .08 .11 .17 .04	2 2 2	1.48 2.83 1.35 1.94 4.10	.01 .02 .01 .01 .02	.04 .05 .04 .01 .04	1 1 1 1 2	
10+00W 4+75W 10+00W 4+50W 10+00W 4+25W 10+00W 4+25W 10+00W 4+00N 10+00W 3+75W		1 2 2 2 2	21 28 24 24 21	18 18 16 15 12	88 186 137 113 79	.2 .1 .3 .1 .1	29 28 23 53 33	.8 13 7 10 11	430 321 591	4.08 4.24 2.94 4.67 4.39	5 10 3 3 2	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	9 9 10 11 10	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	55 75 57 57 68	.05 .16 .12 .10 .12	.034 .047 .058 .052 .045	11 9 10 11 8	35 57 46 71 51	.56 .64 .50 .68 .67	83 53 70 73 63	.03 .20 .09 .10 .11	2 2 2	2.81 1.83 1.83 2.09 1.66	.01 .01 .01 .01 .01	.05 .02 .03 .04 .03	2 1 1 1 1	
10+00W 3+50N 10+00W 3+25N 10+00W 3+00N STD C		3 1 2 18	51 28 55 57	22 18 16 42	118 212 183 132	.3 .2 1.3 6.7	41 27 65 67	9 9 11 29	758 1812	4.76 3.35 3.02 4.06	2 2 2 36	5 5 5 17	ND ND ND 6	1 1 1 37	9 18 34 48	1 1 1 18	2 2 2 19	2 2 2 20	58 61 30 59	.06 .53 .99 .50	.089 .045 .210 .092	17 15 28 39	61 57 56 57	.55 .51 .47 .93	104 184 265 177	.04 .07 .01 .07	2 2	3.17 1.69 2.53 2.06	.01 .01 .01 .06	.06 .06 .04 .13	2 1 1 13	

Page 12

•							ESSC	т м	NER	ALS	CANA	DA	LTD.	PR	OJEC	T 1	22-x	UTCI	НО	FIL	E #	88-	4699						-			Page	13
SAMPLE	··· . 1	No PPN	Cu PPM	PD PPN	Zn PPM	Ag PPN	NI PPM	Co PPN	Hn PPN	Fe 3	As PPM	U PPM	Au PPN	Th PPM	Sr PPN	Cd PPN	SD PPM	Bi PPN	V PPN	Ca	F	La PPM	Cr PPN	Ng ł	Ba PPN	Ti X	B ?PN	Al 3	Ka 3	٦ ٤	W PPK		
10+00W 2+75N 10+00W 2+50N 10+00W 2+25N 10+00W 2+00N 10+00W 2+00N 10+00W 1+75N		2 1 1 1 2	36 20 54 54 86	24 13 15 12 18	101 73 86 98 103	.1 .2 .1 .1 .1	50 42 56 85 100	13 16 12 15 20	860 472	4.15 5.17 3.31 3.76 5.56	20 20 11 17 23	5 5 5 5 5	ND ND ND ND	1 1 1 1 2	30 17 26 29 36	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	40 73 44 46 65	.96 .26 .62 .68 1.16	.069 .067 .042 .077 .082	29 3 17 23 49	55 68 41 48 60	.52 .58 .63 .71 .97	196 153 219 163 368	.05 .10 .02 .04 .17	2 2 2	2.11 1.81 2.81 2.59 3.76	.01 .01 .01 .01 .22	.04 .02 .05 .04 .06	1 1 1 1		
10+00W 1+50N 10+00W 1+25N 10+00W 1+00N 10+00W 0-75N 10+00W 0+50N		1 3 1 1 1	93 514 70 68 39	16 11 12 14 12	142 96 119 141 90	.1 .1 .1 .2	193 304 80 100 56	19 20 12 15 20	662 556	5.31 3.01 3.01 4.33 5.04	23 66 16 19 18	5 5 5 5 5	HD ND ND ND ND	2 1 1 1	32 54 50 30 12	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2		.88 3.29 2.42 .67 .29	.079 .220 .095 .095 .057	31 39 15 18 6		.38 .54 .78 1.12 1.51	257 296 205 251 73	.15 .02 .03 .04 .11	2 3 2	2.47 2.84 2.12 3.24 2.78	.01 .01 .01 .01 .01	.05 .04 .04 .05 .03	1 1 1 1 2		
10+00W 0+25N 10+00W 0+00N 10+00W 0+25S 10+00W 0+50S 10+00W 1+00S		2 1 1 1 2	52 371 134 18 54	22 13 15 15 15	121 139 136 82 115	.1 .1 .2 .1	79 131 101 39 81	16 15 10 9 15	1039 644 359	5.60 3.86 4.85 4.91 5.75	22 50 40 14 13	5 5 5 5 5	ND ND ND ND	2 1 1 2 3	17 34 30 11 14	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	55 26 41 80 74	.86 2.60 1.34 .14 .19	.051 .175 .110 .019 .029	22 77 42 8 15	42 33 44 58 52	.72 .30 .49 .86 .72	112 107 104 57 80	.09 .03 .09 .15 .24	3 3 2	3.29 4.66 3.94 2.21 2.77	.01 .01 .02 .01 .01	.05 .03 .04 .04 .04	1 1 1 1		
10+00W 1+25S 10+00W 1+50S 10+00W 2+25S RE 10+00W 0+509 10+00W 2+50S	S	3 1 3 1	391 78 28 16 16	13 19 24 15 14	99 156 115 83 159	.1 .1 .1 .1	74 44 21 38 44	12 7 3 9 18		4.03 4.79 5.44 5.01 4.98	43 34 26 15 12	5 5 5 5	ND ND ND ND ND	1 1 3 2 1	18 37 12 11 13	1 1 1 1 1	2 2 2 2 2 2	2 2 3 2 2	25 39 15 81 79	1.35 1.83 .69 .13 .42	.167 .124 .078 .019 .039	90 50 33 8 11	42 43 14 58 76	.27 .33 .17 .87 .99	103 118 58 56 157	.03 .04 .07 .16 .11	3 3 3	4.88 3.53 4.71 2.26 2.41	.01 .01 .01 .01 .01 .31	.03 .04 .03 .04 .03	1 1 1 1 1		
19+00W 2+755 19+00W 3+00S 10+00W 3+25S 10+00W 3+755 10+00W 3+755 10+00W 4+005		2 3 1 1	24 71 42 13 21	16 14 10 12 6	115 128 94 95 77	.1 .1 .1 .1	58 79 85 32 62	9 14 15 6 15	544 654 287	4.59 4.92 3.72 3.62 3.36	17 24 14 9 9	5 5 5 5	ND ND ND ND ND	3 1 1 1 1	16 19 19 11 18	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	47 38 51 54 54	.61 .92 .61 .16 .28	.030 .069 .031 .046 .022	19 31 10 10 7	50	.67 .64 1.33 .50 1.12	111 69 104 93 93	.05 .06 .06 .05 .08	3 3 3	2.42 3.12 2.02 1.76 1.93	.01 .01 .01 .01 .01	.04 .04 .04 .04 .04	1 1 1 1		
STD C 10+00W 4+255 10+00W 4+505 10+00W 4+755 10+00W 5+005		18 1 1 1 1	58 23 22 38 44	41 11 13 12 8	125 77 76 105 90	5.6 .2 .1 .1 .1	64 54 50 68 69	29 11 14 11 12	651 638	3.43	43 13 15 18 12	19 5 5 5 5	7 ND ND ND	37 1 1 1 1	48 23 25 39 42	18 1 1 1 1	16 2 2 2 2	20 2 2 2 2 2	55 62 58 57 50	.45 .23 .28 .66 1.35	.092 .029 .031 .073 .058	37 9 7 15 13	55 65 58 65 58	.95 .89 .97 .94 .90	168 137 118 230 181	.06 .06 .09 .03 .03	6 3 3	1.85 1.83 1.67 2.52 1.36	.06 .01 .01 .01 .01	.13 .07 .05 .06	13 1 1 1 1		
10+00W 5+50S 10+00W 5+00S 10+00W 5+25S 10+00W 6+50S 10+00W 5+75S		1 1 1 1	78 14 16 55 34	12 10 7 11 12	109 59 80 96 9 6	.2 .1 .2 .1 .1	129 25 38 76 46	16 5 7 14 11	294 525	3.95 2.16 2.94 3.80 3.32	16 9 11 13 13	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	59 29 23 25 33	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	55 41 59 61 48	2.08 .78 .34 .67 .91	.084 .033 .018 .026 .060	19 9 6 27 15	27 49	1.12 .45 .56 1.06 .64	365 207 111 181 211	.01 .03 .07 .05 .04	2 2 3	2.99 1.43 1.34 2.13 1.98	.01 .01 .01 .01 .01	.09 .04 .05 .05 .05	1 1 1 1 2		
10+00W 7+50S 10+00W 7+75S 10+00W 8+25S STD C		1 1 1 18	42 36 52 58	9 12 11 42	117 134 119 132	.1 .2 .2 7.1	69 63 83 69	9 12 9 30	782	2.88 3.42 2.86 4.20	8 10 15 43	5 5 5 19	ND ND ND 8	1 1 1 36	52 44 58 47	1 1 1 18	2 2 2 15	2 2 2 19	45	1.55 1.61 2.17 .51	.091 .083 .094 .096	19 12 15 38	53 54 57 53	.69 .71 .79 .89	273 225 231 172	.02 .02 .02 .02	2	2.12 2.20 1.96 2.01	.01 .01 .01 .06	.06 .07 .06 .13	1 1 1 12		

13

÷.

1

i.

ŧ

(

Ĺ

Ç

(

1

C

 $\{ j \}$

÷.

C

ł

Page 14

ESSO MINERALS CANADA LTD. PROJECT 122-KUTCHO FILE # 88-4699

SAMPLE	No PN	Cu FPN	Pb PPN	Zn PPN	Ag PPN -	NI PPN	Co PPN	Nn PPN	Fe \$	As PPM	U PPN	Au PPN	Th PPN	Sr PPN	Cd PPN	SD PPN	Bİ PPN	V PPN	Ca \$	P 3	La PPN	CT PPN	Ng 3	Ba PPN	Ti 3	B PPN	21 3	Na L	r z	¥ PPM	
10+00W 8+75S 10+00W 9+25S 10+00W 9+75S 10+00W 10+00S 8+00W 6+75N	1 1 1 1	60 43 51 85 82	12 12 14 18 14	98 102 100 125 159	.1 .1 .1 .1	82 73 64 99 50	13 11 8 13 8	704 537 505 739 460	3.60 3.35 2.90 3.89 3.30	10 14 10 17 11	5 5 5 5	nd Nd Nd Nd Nd	1 1 1 1 2	44 44 54 55 47	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	46 48 41 51 39	1.19 .94 1.16 1.29 1.25	.082 .056 .065 .086 .176	20 12 15 29 38	70 70 52 77 37	.99 .94 .75 1.01 .54	235 213 283 348 503	.03 .03 .02 .02 .01	3 2 2	2.27 2.09 1.93 2.75 3.87	.01 .01 .01 .01 .01	.07 .07 .05 .07 .06	1 1 1 1 1	
8+00W 6+50N 8+00W 6+25N 8+00W 6+00N 8+00W 5+75N 8+00W 5+50N	1 1 1 2	24 21 26 17 86	20 13 15 17 16	110 90 98 88 229	.1 .1 .1 .1	37 33 51 35 99	9 8 13 9 19	468 407 577 403 1473	4.56 3.51 3.43 3.32 5.24	15 14 11 10 21	5 5 5 5 5	ND ND ND ND ND	1 1 1 1 2	12 13 15 15 34	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2	56 43 51 45 55	.09 .09 .16 .18 .94	.053 .038 .046 .052 .086	15 11 9 9 35	36 33 50 41 92	.50 .52 .85 .59 1.01	129 112 109 120 342	.09 .03 .05 .05 .05	4	2.89 2.29 2.49 2.64 3.12	.01 .01 .01 .01 .01	.05 .04 .05 .04 .08	1 1 1 1 1	
8+00W 5+25N 8+00W 5+00N 8+00W 4+75N 8+00W 4+50N 8+00W 4+25N	1 1 1 1	30 18 21 21 21 24	8 13 15 17 15	65 76 95 80 94	.1 .1 .1 .1 .1	41 30 28 28 38	13 8 7 7 10	350 423 370	3.03 3.54 3.74 3.34 3.10	4 11 9 8 11	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	22 10 12 12 20	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	49 68 57 50 46	.30 .10 .05 .07 .13	.050 .030 .052 .055 .044	10 6 8 9 10	45 46 34 31 33	.91 .69 .52 .50 .62	120 76 117 111 160	.08 .05 .01 .02 .02	2 2 3	1.50 1.94 2.54 2.21 2.24	.01 .01 .01 .01 .01	.03 .03 .05 .05 .05	1 1 1 1	
8+00W 4+00N 8+00W 3+75N 8+00W 3+50N 8+00W 3+25N 8+00W 3+25N	4 1 1 3	24 17 30 36 37	20 17 11 14 20	181 104 95 79 100	.1 .1 .1 .1 .2	15 28 58 64 28	3 12 15 15 7	406 728 579 543 534	5.30 6.06 5.04 3.68 5.26	13 14 13 10 7	5 5 5 5 5	ND ND ND ND	2 2 1 1 1	5 9 10 19 7	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	25 89 69 59 60	.05 .10 .17 .28 .05	.073 .084 .038 .049 .074	29 8 8 10 14		.20 .73 1.24 1.05 .36	82 89 70 123 80	.08 .13 .12 .08 .02	3 2 4	3.36 2.32 2.45 2.10 2.55	.02 .01 .01 .01 .01	.05 .06 .03 .04 .05	1 2 1 1 1	
STD C 8+00W 2+75N 8+00W 2+50N RE 8+00W 3+25N 8+00W 2+25N	17 2 1 1 1	58 96 147 36 23	40 14 18 12 15	124 149 154 76 102	6.5 .1 .1 .1	65 53 68 59 35	29 12 16 15 11	1093	4.45 4.30 3.50	42 13 9 11 12	18 5 5 5 5	7 ND ND ND ND	34 1 1 1	47 16 24 18 11	17 1 1 1	17 2 2 2 2 2	19 2 2 2 2	54 43 42 56 84		.090 .127 .139 .048 .043	34 28 44 10 8	55 45 36 62 54	.83 .49 .35 1.00 .63	169 171 233 119 <i>98</i>	.05 .02 .02 .08 .12	2 2 3	1.82 3.26 3.80 2.01 1.90	.05 .01 .01 .01 .01	.13 .05 .03 .04 .03	13 1 1 1 1	
8+00¥ 2+00N 8+00¥ 1+75N 8+00¥ 1+50N 8+00¥ 1+25N 8+00¥ 1+00N	1 1 1 1 1	56 17 30 34 61	15 12 17 9 10	178 67 94 86 89	.2 .1 .3 .1 .1	71 31 57 49 72	13 8 14 8 25	555	3.77 4.38 2.52	11 6 39 6 9	5 5 5 5 5	ND ND ND ND	1 1 1 2	33 11 13 42 17	1 1 1 1 1	2 2 2 2 2 2	2 3 3 2 3	54 73 58 38 71	1.85	.161 .036 .044 .083 .041	19 7 7 11 8	64 54 62 50 85	.88 .66 .91 .72 1.59	334 85 96 206 129	.02 .06 .05 .03 .13	2 3 3	3.17 1.89 2.79 1.93 2.41	.01 .01 .01 .01 .01	.06 .03 .03 .03 .03	1 2 1 1 1	
8+00W D+75N 8+00W 0+50N 8+00W 0+25N 8+00W 0+00N 6+00W 7+00N	1 1 1 2	36 22 35 156 19	20 12 14 12 12	128 102 107 77 100	.1 .1 .1 .1	49 31 40 110 25	12 8 16 12 7	407 644	4.44 7.53	11 11 15 27 5	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 2 1 1	11 15 6 22 10	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	67 62 86 33 54	.15 .21 1.27	.043 .038 .036 .049 .058	11 12 9 19 10	63 47 72 32 37	.86 .52 .76 .53 .49	115 97 36 104 82	.05 .06 .45 .05 .07	2 2 3	3.00 2.19 2.49 2.37 2.15	.01 .01 .01 .01 .01	.05 .03 .03 .04 .04	1 1 1 1 1	
6+00W 6+75N 6+00W 6+25N 6+00W 6+00N 6+00W 5+75N STD C	 1 4 2 1 17	43 92 58 32 58	9 9 13 16 43	130 149 198 209 132	.1 .1 .2 6.5	52 41 45 44 68	9 11	764 2155 363 632 1020	4.29 3.61 4.87	15 7 6 7 44	5 5 5 5 18	ND ND ND ND 7	1 2 2 37	20 51 39 34 47	1 1 1 18	2 2 2 2 20	2 2 2 2 21		1.44 1.04 .83	.060 .128 .083 .068 .094	9 35 35 22 37	58 31 37 38 56	.89 .33 .34 .51 .89	118 325 225 190 172	.05 .06 .20 .17 .07	2 3 4	2.23 2.13 3.24 3.02 2.01	.01 .01 .02 .01 .01	.04 .03 .04 .04 .14	1 1 1 1 11	

-

Page 15

E

t

ć

Ł

ŀ

ESSO	MINERALS	CANADA	LTD.	PROJECT	122-KUTCHO	FILE #	88-4699

SAMPLE #		MO PPN	CU PPM	PD PPN	Zn PPN	Ag PPN	Ni PPN	Co. PPN	Nn PPN	re 3	As PPN	U PPM	Au PPN	Th PPN	ST PPM	Cd PPN	SD PPN	BI PPN	V PPN	Ca	. P 8	La PPN	Cr PPK	Ng ł	Ba PPN	Ti 3	B PPN	۸1 ۶	Na ł	I ł	V PPN	
6+00¥ 5+50N 6+00¥ 5+25N 6+00¥ 5+00N STD C 6+00¥ 4+75N		2 2 18 2	36 41 16 58 42	16 11 10 38 18	169 113 90 124 133	.2 .1 .1 7.0 .2	41 37 16 68 46	13 13 6 28 11	1110 394	4.37 4.24 3.16 4.10 5.74	8 2 9 44 2	5 5 5 17 5	ND KD ND 7 ND	1 1 1 37 1	36 35 17 48 26	1 1 17 1	2 2 2 17 2	2 2 2 19 2	59 45 83 53 68	.72 .52 .21 .46 .37	.058 .082 .048 .092 .078	14 18 7 35 26	41 34 32 55 46	.71 .62 .42 .87 .72	205 223 101 157 263	.07 .03 .10 .05 .14	31	2.35 3.00 1.20 2.04 4.99	.01 .01 .01 .06 .01	.07 .06 .06 .14 .07	1 1 1 1 1	
6+00W 4+50N 6+00W 4+25H 6+00W 4+00N 6+00W 3+75H 6+00W 3+50H		2 1 1 1 1	50 30 28 25 25	11 18 14 16 18	187 128 101 98 92	.1 .1 .1 .1	65 41 41 37 36	15 11 9 10 10	641 539	5.28 4.42 3.80 3.46 3.44	2 10 5 7 6	5 5 5 5	ND ND ND ND	1 1 1 1	28 25 27 19 21	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	64 54 52 47 47	.28 .28 .25 .14 .15	.080 .052 .078 .051 .047	19 12 12 11 11	51 40 44 34 33	.93 .70 .74 .67 .68	333 203 245 130 142	.07 .09 .02 .04 .03	2 2 2	4.73 3.10 3.44 3.00 2.99	.01 .01 .01 .01 .01	.09 .06 .07 .07 .07	1 1 1 1	
6+00W 3+25N 6+00W 3+00N 6+00W 2+75N 6+00W 2+50N 6+00W 2+25N		2 1 1 2	26 27 15 20 18	19 15 13 15 12	129 94 77 99 76	.1 .1 .1 .1	34 42 28 38 19	8 10 5 10 7	305 507	4.88 3.99 3.57 3.96 3.70	10 13 8 5 5	5 5 5 5 5	ND ND ND ND	1 1 3 1 1	12 18 14 15 10	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	53 55 48 55 65	.08 .15 .08 .14 .07	.072 .048 .029 .042 .045	13 9 11 7 11	40 41 32 47 32	.64 .80 .53 .85 .47	124 128 132 110 72	.03 .04 .03 .04 .07	2	3.84 3.26 3.03 3.04 1.99	.01 .01 .01 .01 .01	.08 .07 .08 .06 .05	1 1 1 1	
6+00W 2+00N 6+00W 1+75N 6+00W 1+50N 6+00W 1+25N 6+00W 1+00N		6 1 1 1 2	25 25 20 34 81	14 14 11 10 11	69 73 95 102 153	.2 .6 .1 .1 .1	17 43 39 41 142	5 12 15 10 14	528 1034 581	9.50 4.31 5.20 4.15 5.51	13 5 10 2 9	5 5 5 5	ND ND ND ND	1 1 1 1	7 14 13 11 17	1 1 1 1	2 2 2 2 2	2 2 2 2 2	47 49 73 46 50	.04 .16 .30 .11 .21	.132 .051 .064 .064 .116	11 7 7 12 38	41 52 64 47 58	.30 .90 1.18 .62 .72	54 84 56 83 181	.05 .05 .10 .05 .10	2 2 2	2.23 2.79 2.15 2.63 5.04	.01 .01 .01 .01 .01	.05 .05 .05 .05 .05	1 1 1 1	
6+00W 0+75N 6+00W 0+50N 6+00W 0+25N 6+00W 0+00N 20+00S 0+00		3 1 2 1 2	22 125 215 179 159	14 5 6 15 11	115 131 154 175 173	.1 .2 .1 .1 .2	30 78 68 69 99	10 15 12 9 15	1362 871	3.48	2 5 2 27 6	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	9 40 18 25 40	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	29 37	.17 2.16 .56 1.27 1.84	.064 .162 .110 .140 .098	15 35 50 48 28	45 52 34 36 42	.58 .80 .45 .45 .58	63 200 150 136 198	.31 .02 .06 .04 .10	2 2 4	3.96 2.98 4.00 3.73 3.81	.01 .01 .01 .01 .02	.05 .07 .07 .07 .07	1 1 1 1	
20+00S 0+25 20+00S 0+50 20+00S 0+75 20+00S 1+00 20+00S 1+25		1 1 1 3 1	24 83 41 22 22	9 11 8 18 11	82 118 55 84 72	.1 .1 .1 .1 .1	34 58 46 29 35	9 10 13 9 11	440 688 372	4.67 5.21 3.11 6.19 4.11	7 7 8 13 4	5 5 5 5 5	ND ND ND ND ND	2 1 1 1 1	12 11 22 11 15	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	69 60 44 75 59	.25 .19 .87 .18 .18	.038 .054 .022 .039 .024	7 8 9 10 8	51 50 50 56 48	.74 .90 .83 .60 .79	84 127 128 91 91	.16 .06 .05 .12 .07	2 2 3	2.17 3.47 2.16 2.52 2.27	.01 .01 .01 .01 .01	.04 .07 .03 .04 .04	1 1 1 1 1	
RE 20+005 0+ 20+005 1+50 20+005 1+75 20+005 2+00 20+005 2+25	25	1 1 5 1 1	22 112 211 30 123	8 8 7 6 15	84 141 112 84 142	.1 .3 .1 .2 .1	35 83 82 27 74	9 39 18 8 18	3182 1076 278	28.46	4 2 35 4 8	5 5 5 5 5	nd Nd Nd Nd Nd	1 1 3 3 1	13 48 12 9 25	1 2 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	28 84	.26 3.92 .76 .58 1.19	.039 .124 .073 .074 .057	7 19 14 3 28	52 25 40 58 68	.76 .23 .15 .73 .81	86 255 65 36 143	.16 .02 .06 .23 .14	4 2 2	2.34 2.14 2.82 1.39 4.05	.01 .01 .01 .01 .01	.04 .05 .04 .03 .04	1 1 1 1	
20+00S 2+50 20+00S 2+75 20+00S 3+00 STD C		1 3 1 19	15 10 257 59	10 16 5 39	69 74 83 132	.1 .1 .1 5.7	29 18 116 68		356	4.82 4.19 3.57 4.08	11 14 13 43	5 5 5 16	ND ND ND 8	1 2 1 36	11 7 31 48	1 1 1 18	2 2 2 19	2 2 2 22	67 117 38 55	.16 .12 1.98 .50	.040 .041 .076 .095	8 14 24 36	50 42 31 55	.76 .48 .62 .90	75 72 151 173	.13 .37 .11 .06	2 2	1.98 1.21 2.10 1.98	.01 .01 .01 .06	.04 .04 .04 .14	1 1 1 12	

0

•						ES	so i	INE	RALS	CAI	NADA	LTI). P	ROJ	ECT	122-	- אטז	сно	F	LE	# 88	-46	99								Page
SAMPLE	96K M955	Cu PPN	Pb PPN	Zn PPN	Aç PPM	NÍ PPM	Co PPK	ND PPH	Fe 3	AS PPM	U PPN	Au PPM	Th PPN	ST PPN	Cđ PPM	SD PPM	BÍ PPM	V PPN	.Ca %	P 3	La PPM	CT PPN	Ng 3	Ba PPN	Ti ł	B PPN	A1 3	Na ł	K t	W PPM	
20+005 3+25 20+005 3+50 20+005 3+75 20+005 4+25 20+005 4+25	1 1 1 1	204 34 19 12	15 2 7 4	134 119 73 75	.1 .2 .2 .2	86 36 42 18	13 13 13 6	237	3.60 4.38 4.27 2.46 2.75	12 5 6 6	5 5 5	ND ND ND ND	1 2 2 1	36 25 20 23 27	3 2 1 2 1	2 2 2 2 2	2 2 2 2 2	41 72 79 62 53	2.20 1.25 .41 .37 .72	.133 .039 .032 .025 .037	24 11 6 3	39 57 61 33 45	.17	148 111 98 121 129	.06 .15 .21 .11	3 3 2	2.27 1.95 2.06 1.43 1.69	.02 .01 .01 .02 .01	.06 .04 .05 .05 .05	1 1 1	
20+005 4+50 20+005 5+00 20+005 5+75 20+005 5+75 20+005 5+00 20+005 6+25	2 1 2 1 1	23 12 120 26 35 114	10 11 17 6 9 4	61 108 124 99 89 82	.1 .1 .1 .1	35 20 48 62 51 47	10 3 13 24 17 8	364 1468 479 597 1072	4.99 5.30 7.77 4.21	6 15 8 2	5 5 5 5 5 5	ND ND ND ND ND	2 2 2 1 1	15 27 12 25 57	2 4 1 1 2	2 2 3 2 2	2 2 2 2 2 2 2	53 74 68 90 75 23	.12 .13 1.38 .23 .68 1.29	.037 .077 .031 .038 .220	14 20 8 8 27	41 64 104 55 41	.45 .79 1.55 1.16 .34	77 199 90 190 198	.27 .10 .32 .08 .01	2 2 2 2 2	1,69 2,38 2,69 2,65 1,42	.02 .01 .01 .01 .01 .02	.05 .06 .06 .10 .06	1 1 1 1 1	
STD C	18	60	37	131	7.0	67	30	1026	4.15	40	17	1	38	49	19	17	18	61	. 48	.095	40	56	.92	181	.07	32	1.90	.06	.15	11	

Page 16

APPENDIX IV

GEOPHYSICAL DATA

BOUGUER GRAVITY DATA

JOSH CREEK GRID

Line 1150E, Kutcho South

Date=880826 GMT=-7 SC=1.03057 GB1=1987.315 GB2=1987.315 Units=metr BD=2.67 Gf=67 Long=-128.211350 Lat=58.0958 Ydir=0 Cls=0.080 Dft=0.021

Station	Line(X)	Stn(Y)	Time	Reading	I.H.	Elev.	TideC.	Obs.Grv.	Bgr.Grv.
1.00	1300.00	800.00	921.	4762.080	0.32	1507.930	-0.025	*	*
2.00	1150.00	325.00	1133.	4769.690	0.45	1473.850	0.038	1995.31	514.56
3.00	1150.00	350.00	1137.	4768.700	0.39	1479.460	0.040	1994.27	514.61
4.00	1150.00	375.00	1141.	4768.220	0.29	1482.320	0.041	1993.75	514.63
5.00	1150.00	400.00	1146.	4767.720	0.39	1484.860	0.043	1993.27	514.63
6.00	1150.00	425.00	1156.	4767.360	0.29	1487.320	0.046	1992.87	514.70
7.00	1150.00	450.00	1200.	4766.880	0.33	1489.350	0.047	1992.39	514.60
8.00	1150.00	475.00	1205.	4766.110	0.27	1493.500	0.048	1991.58	514.59
9.00	1150.00	500.00	1208.	4765.700	0.34	1495.260	0.049	1991.18	514.52
10.00	1150.00	525.00	1212.	4765.420	0.35	1496.600	0.050	1990.90	514.48
11.00	1150.00	550.00	1216.	4765.290	0.39	1496.940	0.050	1990.78	514.41
12.00	1150.00	575.00	1221.	4765.070	0.37	1498.050	0.051	1990.55	514.38
13.00	1150.00	600.00	1224.	4764.880	0.38	1500.280	0.052	1990.36	514.61
14.00	1150.00	625.00	1230.		0.29	1500.370	0.053	1990.21	514.46
15.00	1150.00	650.00	1234.	4764.210	0.41	1502.340	0.053	1989.68	514.30
16.00	1150.00	675.00	1238.		0.34	1504.270	0.054	1989.14	514.12
17.00	1150.00	700.00	1242.		0.41	1505.380	0.054	1988.79	513.97
18.00	1150.00	725.00	1247.		0.17	1506.600	0.055	1988.34	513.74
19.00	1150.00	750.00	1251.		0.33	1508.080	0.055	1987.93	513.61
20.00	1150.00	775.00	1255.		0.31	1512.360	0.055	1986.97	513.47
21.00	1150.00	800.00	1300.		0.37	1517.820	0.056	1985.82	513.37
22.00	1300.00	800.00		4761.960	0.32	1507.930	0.056	*	*
22.00	2000.00								

Line 1300E, Kutcho South

Date=880826 GMT=-7 SC=1.03057 GB1=1987.315 GB2=1987.315 Units=metr BD=2.67 Gf=67 Long=-128.210430 Lat=58.0958 Ydir=0 Cls=0.080 Dft=0.021

Station	Line(X)	Stn(Y)	Time	Reading	I.H.	Elev.	TideC.	Obs.Grv.	Bgr.Grv.
								•	
1.00	1300.00	800.00	921.		0.32	1407.930	-0.025	* *	*
2.00	1300.00	300.00	1112.	4772.070	0.37	1461.440	0.030	1997.72	514.55
3.00	1300.00	325.00	1108.	4771.680	0.37	1463.430	0.029	1997.32	514.52
4.00	1300.00	350.00	1104.	4770.940	0.37	1467.110	0.027	1996.55	514.46
5.00	1300.00	375.00	1100.	4770.290	0.33	1470.320	0.025	1995.86	514.39
6.00	1300.00	400.00	1056.	4769.740	0.36	1473.110	0.024	1995.30	514.36
7.00	1300.00	425.00	1051.	4770.240	0.35	1470.470	0.021	1995.81	514.33
8.00	1300.00	450.00	1043.	4769.880	0.30	1473.220	0.017	1995.42	514.46
9.00	1300.00	475.00	1037.	4768.930	0.24	1478.700	0.015	1994.42	514.51
10.00	1300.00	500.00	1033.	4768.300	0.44	1481.740	0.013	1993.82	514.50
11.00	1300.00	525.00	1028.	4767.950	0.36	1483.580	0.010	1993.44	514.46
12.00	1300.00	550.00	1024.	4767.250	0.33	1486.660	0.008	1992.70	514.31
13.00	1300.00	575.00	1021.		0.38	1487.630	0.007	1992.41	514.19
14.00	1300.00	600.00	1017.	4766.930	0.39	1487.520	0.005	1992.38	514.12
15.00	1300.00	625.00	1013.		0.33	1488.550	0.002	1992.05	513.98
16.00	1300.00	650.00	1009.		0.31	1491.140	0.000	1991.34	513.76
17.00	1300.00	675.00	1004.		0.37	1493.700	-0.002	1990.70	513.60
18.00	1300.00	700.00	1000.		0.37	1496.790	-0.004	1989.94	513.43
19.00	1300.00	725.00	956.		0.37	1500.290	-0.006	1989.13	513.29
20.00	1300.00	750.00	951.		0.28	1503.270	-0.009	1988.32	513.05
21.00	1300.00	775.00	946.		0.39	1505.470	-0.012	1987.83	512.97
22.00	1300.00	800.00	921.	4762.080	0.32	1507.930	-0.025	1987.31	512.92
23.00	1300.00	800.00	1312.		0.32	1507.930	0.056	*	*
23.00	T200.00	000.00	TOTC.	4/01.900	0.52	T201.220	0.000	1	

Line 1450E, Kutcho South

Date=880825 GMT=-7 SC=1.03057 GB1=2000 GB2=2000 Units=metr BD=2.678 Gf=67 Long=-128.205570 Lat=58.095

Station	Line(X)	Stn(Y)	Time	Reading	I.H.	Elev.	TideC.	Obs.Grv.	Bqr.Grv.
1.00	1600.00	0.00	932	4774.410	0.35	1457.320	0.022	*	*
2.00	1450.00	0.00		4774.540	0.30	1455.510	-0.053	2000.12	516.00
3.00	1450.00	25.00		4774.620	0.28	1454.440	-0.050	2000.20	515.85
4.00	1450.00	50.00		4774.090	0.41	1455.860	-0.048	1999.69	515.61
5.00	1450.00	75.00		4774.690	0.28	1452.250	-0.045	2000.28	515.46
6.00	1450.00	100.00		4775.300	0.30	1448.150	-0.042	2000.91	515.27
7.00	1450.00	125.00		4776.580	0.27	1441.400	-0.039	2002.22	515.24
8.00	1450.00	150.00		4777.040	0.30	1438.010	-0.036	2002.71	515.04
9.00	1450.00	175.00		4776.210	0.37	1441.250	-0.032	2001.88	514.83
10.00	1450.00	200.00		4777.110	0.37	1435.420	-0.029	2002.81	514.59
11.00	1450.00	225.00		4777.380	0.36	1433.730	-0.025	2003.08	514.52
12.00	1450.00	250.00		4778.270	0.27	1427.280	-0.021	2003.98	514.12
13.00	1450.00	275.00		4776.360	0.36	1436.990	-0.015	2002.04	514.08
14.00	1450.00	300.00		4775.990	0.37	1439.280	-0.011	2001.67	514.14
15.00	1450.00	325.00		4775.020	0.34	1444.140	-0.007	2000.66	514.07
16.00	1450.00	350.00		4773.690	0.29	1451.350	0.007	1999.28	514.09
17.00	1450.00	375.00		4772.240	0.31	1460.010	0.009	1997.80	514.29
18.00	1450.00	400.00		4771.380	0.33	1464.870	0.012	1996.92	514.35
19.00	1450.00	425.00		4770.570	0.40	1468.680	0.015	1996.11	514.27
20.00	1450.00	450.00		4769.980	0.36	1472.190	0.017	1995.49	514.32
21.00	1450.00	475.00		4769.840	0.37	1472.970	0.020	1995.35	514.32
22.00	1450.00	500.00		4770.400	0.38	1469.720	0.024	1995.93	514.24
23.00	1450.00	525.00		4768.760	0.34	1477.430	0.028	1994.23	514.04
24.00	1450.00	550.00		4768.340	0.33	1480.150	0.030	1993.80	514.12
25.00	1450.00	575.00	1459.	4768.000	0.36	1482.910	0.032	1993.46	514.31
26.00	1450.00	600.00		4767.620	0.26	1484.780	0.034	1993.04	514.24
27.00	1450.00	625.00		4767.210	0.22	1486.250	0.035	1992.60	514.07
28.00	1450.00	650.00		4766.860	0.26	1487.540	0.037	1992.26	513.96
29.00	1450.00	675.00		4766.410	0.27	1489.220	0.044	1991.80	513.82
30.00	1450.00	700.00		4765.920	0.25	1491.010	0.047	1991.29	513.64
31.00	1450.00	725.00		4765.540	0.22	1492.490	0.048	1990.89	513.51
32.00	1450.00	750.00		4764.850	0.26	1495.650	0.050	1990.19	513.42
33.00	1450.00	775.00		4764.120	0.18	1498.860	0.052	1989.42	513.26
34.00	1450.00	800.00		4763.460	0.32	1501.750	0.054	1988.78	513.17
35.00	1600.00	0.00		4774.410	0.35	1457.320	-0.057	*	*

Line 1600E, Kutcho South

Date=880825 GMT=-7 SC=1.03057 GB1=2000 GB2=2000 Units=metr BD=2.678 Gf=67 Long=-128.204550 Lat=58.095

<u>Station</u>	Line(X)	Stn(Y)	Time	Reading	<u>I.H.</u>	Elev.	TideC.	Obs.Grv.	Bgr.Grv.
1.00	1600.00	0.00		4774.380	0.35	1457.320	0.022	*	*
2.00	1600.00	0.00		4774.380	0.35	1457.320	0.022	2000.00	516.24
3.00	1600.00	25.00		4774.300	0.41	1456.660	0.025	1999.94	516.03
4.00	1600.00	50.00		4774.730	0.38	1453.530	0.028	2000.37	515.83
5.00	1600.00	75.00	948.	4775.070	0.37	1450.730	0.030	2000.72	515.61
6.00	1600.00	100.00		4775.320	0.38	1448.600	0.032	2000.99	515.44
7.00	1600.00	125.00	958.	4775.630	0.44	1446.330	0.035	2001.33	515.31
8.00	1600.00	150.00	1003.	4776.180	0.41	1443.190	0.038	2001.89	515.24
9.00	1600.00	175.00		4776.330	0.33	1441.400	0.039	2002.02	515.00
10.00	1600.00	200.00		4776.470	0.39	1440.050	0.042	2002.19	514.88
11.00	1600.00	225.00	1018.	4777.480	0.30	1434.730	0.044	2003.20	514.83
12.00	1600.00	250.00	1024.	4778.425	0.30	1428.360	0.047	2004.18	514.54
13.00	1600.00	275.00	1030.	4779.230	0.38	1422.390	0.049	2005.04	514.21
14.00	1600.00	300.00	1040.	4779.200	0.35	1420.940	0.053	2005.00	513.87
15.00	1600.00	325.00	1055.	4777.830	0.37	1427.500	0.059	2003.60	513.74
16.00	1600.00	350.00	1108.	4777.910	0.28	1425.550	0.063	2003.66	513.40
17.00	1600.00	375.00	1127.	*	0.40	1443.040	0.068	*	* * * * * * *
18.00	1600.00	400.00	1145.	4773.380	0.40	1454.340	0.071	1999.04	514.40
19.00	1600.00	425.00	1159.	4772.340	0.34	1460.050	0.073	1997.96	514.42
20.00	1600.00	450.00	1204.	4771.710	0.33	1463.770	0.074	1997.30	514.48
21.00	1600.00	475.00	1208.	4771.090	0.39	1467.050	0.074	1996.68	514.49
22.00	1600.00	500.00	1214.	4770.620	0.40	1469.500	0.074	1996.20	514.47
23.00	1600.00	525.00	1218.	4770.040	0.34	1472.200	0.075	1995.59	514.37
24.00	1600.00	550.00	1223.	4769.680	0.31	1474.190	0.075	1995.21	514.36
25.00	1600.00	575.00	1227.	4769.060	0.37	1476.950	0.075	1994.59	514.26
26.00	1600.00	600.00	1233.	4768.550	0.25	1479.550	0.075	1994.03	514.20
27.00	1600.00	625.00	1309.	4767.950	0.33	1482.070	0.071	1993.43	514.08
28.00	1600.00	650.00	1314.	4767.580	0.24	1483.580	0.070	1993.02	513.95
29.00	1600.00	675.00	1318.	4767.070	0.29	1485.760	0.070	1992.51	513.85
30.00	1600.00	700.00		4766.480	0.37	1488.080	0.069	1991.93	513.70
31.00	1600.00	725.00	1328.	4765.810	0.35	1491.000	0.067	1991.23	513.56
32.00	1600.00	750.00		4765.400	0.28	1493.150	0.066	1990.79	513.52
33.00	1600.00	775.00		4764.810	0.28	1495.200	0.063	1990.17	513.29
34.00	1600.00	800.00	1349.	4764.600	0.28	1496.420	0.062	1989.96	513.30
35.00	1600.00	0.00		4774.410	0.35	1457.320	-0.057	* *	*

PC GRID

Line 150E, Kutcho South

Date=880826 GMT=-7 SC=1.03058 GB1=2000 GB2=2000 Units=metr BD=2.67 Gf=67 Long=-128.2343 Lat=58.10

Station	Line(X)	Stn(Y)	Time	Reading	I.H.	Elev.	TideC.	Obs.Grv.	Bgr.Grv.
<u>D cu d rom</u>	<u>ny(n)</u>			<u></u>					
1.00	150.00	0.00	1356.	4742.420	0.43	1555.000	0.051	*	*
2.00	150.00	0.00	1356.	4742.420	0.43	1555.000	0.051	2000.00	534.51
3.00	150.00	25.00	1359.	4742.980	0.39	1552.190	0.050	2000.56	534.50
4.00	150.00	50.00	1404.	4743.620	0.31	1548.800	0.049	2001.20	534.45
5.00	150.00	75.00	1407.	4744.220	0.33	1545.650	0.049	2001.82	534.43
6.00	150.00	100.00	1410.	4744.740	0.35	1542.590	0.048	2002.36	534.36
7.00	150.00	125.00	1413.	4745.150	0.28	1540.280	0.047	2002.76	534.28
8.00	150.00	150.00	1417.	4745.040	0.31	1540.290	0.046	2002.65	534.16
9.00	150.00	175.00	1420.	4744.670	0.28	1542.330	0.045	2002.26	534.15
10.00	150.00	200.00	1424.	4744.370	0.31	1543.600	0.044	2001.96	534.08
11.00	150.00	225.00	1427.	4744.170	0.40	1544.640	0.043	2001.78	534.08
12.00	150.00	250.00	1430.	4744.090	0.29	1545.150	0.042	2001.66	534.05
13.00	150.00	275.00	1433.	4743.720	0.33	1546.750	0.041	2001.29	533.98
14.00	150.00	300.00	1440.	4743.890	0.39	1545.070	0.039	2001.48	533.82
15.00	150.00	325.00	1445.	4744.050	0.30	1543.820	0.037	2001.61	533.69
16.00	150.00	350.00	1449.	4744.460	0.29	1541.510	0.036	2002.03	533.63
17.00	150.00	375.00	1453.	4744.640	0.33	1540.720	0.034	2002.23	533.65
18.00	150.00	400.00	1456.	4745.010	0.31	1540.590	0.033	2002.60	533.98
19.00	150.00	425.00	1500.	4745.190	0.34	1539.050	0.031	2002.79	533.85
20.00	150.00	450.00	1506.	4744.800	0.41	1540.610	0.029	2002.41	533.76
21.00	150.00	475.00	1511.	4744.210	0.32	1543.720	0.027	2001.77	533.71
22.00	150.00	500.00	1515.	4743.840	0.30	1545.120	0.025	2001.38	533.58
23.00	150.00	525.00	1519.	4743.750	0.36	1545.310	0.023	2001.30	533.52
24.00	150.00	550.00	1523.	4743.640	0.38	1545.260	0.021	2001.19	533.38
25.00	150.00	575.00	1527.		0.43	1546.460	0.019	2000.83	533.24
26.00	150.00	600.00	1532.	4743.450	0.31	1545.130	0.017	2000.97	533.10
27.00	150.00	0.00		4742.540	0.44	1555.000	-0.058	*	*

Line 350E, Kutcho South

Date=880826 GMT=-7 SC=1.03058 GB1=2000 GB2=2000 Units=metr BD=2.67 Gf=67 Long=-128.2332 Lat=58.10

Station	Line(X)	Stn(Y)	Time	Reading	I.H.	Elev.	TideC.	Obs.Grv.	Bgr.Grv.
1.00	150.00	0.00	1256	4742.420	0.43	1555.000	0.051	*	*
2.00	350.00	0.00		4743.630	0.38	1549.110	-0.052	2001.08	534.43
	350.00	25.00		4744.420	0.38	1544.850	-0.050	2001.08	534.40
3.00									534.38
4.00	350.00	50.00		4744.850	0.34	1542.710	-0.048	2002.33	
5.00	350.00	75.00		4745.460	0.36	1539.430	-0.045	2002.97	534.36
6.00	350.00	100.00		4745.850	0.38	1536.990	-0.043	2003.38	534.27
7.00	350.00	125.00		4746.150	0.31	1535.440	-0.041	2003.67	534.24
8.00	350.00	150.00		4746.440	0.30	1533.980	-0.036	2003.97	534.23
9.00	350.00	175.00		4746.600	0.31	1532.560	-0.033	2004.14	534.11
10.00	350.00	200.00	1700.	4746.850	0.34	1531.420	-0.031	2004.41	534.14
11.00	350.00	225.00	1655.	4747.060	0.32	1529.900	-0.028	2004.63	534.04
12.00	350.00	250.00	1650.	4747.820	0.29	1525.260	-0.025	2005.41	533.88
13.00	350.00	275.00	1646.	4749.415	0.41	1515.800	-0.023	2007.09	533.69
14.00	350.00	300.00	1644.	4748.470	0.40	1520.850	-0.022	2006.11	533.68
15.00	350.00	325.00	1637.	4747.800	0.34	1522.450	-0.018	2005.41	533.28
16.00	350.00	350.00	1632.	4748.150	0.34	1522.450	-0.015	2005.77	533.62
17.00	350.00	375.00	1628.	4748.620	0.32	1519.880	-0.013	2006.26	533.58
18.00	350.00	400.00	1624.	4749.000	0.37	1517.530	-0.011	2006.67	533.51
19.00	350.00	425.00	1619.	4749.240	0.33	1515.990	-0.008	2006.91	533.43
20.00	350.00	450.00	1616.	4748.490	0.35	1519.390	-0.006	2006.14	533.32
21.00	350.00	475.00		4748.120	0.36	1521.170	-0.005	2005.77	533.27
22.00	350.00	500.00		4747.790	0.32	1521.900	-0.002	2005.42	533.05
23.00	350.00	525.00		4747.600	0.31	1522.210	-0.000	2005.22	532.90
24.00	350.00	550.00		4747.450	0.32	1522.360	0.002	2005.07	532.76
25.00	350.00	575.00		4747.450	0.38	1520.690	0.006	2005.10	532.44
26.00	350.00	600.00		4746.040	0.35	1527.680	0.008	2003.64	532.33
27.00	150.00	0.00		4742.540	0.43	1555.000	-0.057	*	*

<u>K GRID</u>

Line 0, Kutcho South

Date=880827 GMT=-7 SC=1.03056 GB1=2000 GB2=2000 Units=metr BD=2.670 Gf=67 Long=-128.1355 Lat=58.09454

Station	Line(X)	Stn(Y)	<u>Time</u>	Reading	I.H.	Elev.	TideC.	Obs.Grv.	Bgr.Grv.
1 00		0 00		4000 070	0.00	1004 760	0.055		*
1.00	0.00	0.00		4832.270	0.36	1234.760	-0.055	*	
2.00	0.00	0.00		4832.270	0.36	1234.760	-0.055	2000.00	472.76
3.00	0.00	-25.00		4832.650	0.40	1232.590	-0.051	2000.41	472.73
4.00	0.00	-50.00		4832.670	0.40	1232.430	-0.049	2000.43	472.70
5.00	0.00	-75.00	957.		0.35	1233.220	-0.047	2000.25	472.66
6.00		-100.00		4832.410	0.39	1233.580	-0.046	2000.17	472.63
7.00		-125.00	1004.		0.39	1234.480	-0.044	1999.96	472.57
8.00		-150.00		4832.120	0.38	1234.730	-0.041	1999.87	472.52
9.00		-175.00		4832.290	0.40	1234.140	-0.039	2000.06	472.57
10.00		-200.00		4832.570	0.40	1232.790	-0.038	2000.35	472.58
11.00		-225.00		4832.900	0.41	1230.750	-0.036	2000.70	472.51
12.00		-250.00		4832.990	0.41	1230.310	-0.034	2000.79	472.50
13.00		-275.00		4833.720	0.38	1226.050	-0.032	2001.54	472.39
14.00		-300.00	1038.		0.31	1224.500	-0.027	2001.72	472.25
15.00	0.00	-325.00	1047.	4833.970	0.33	1223.330	-0.023	2001.80	472.08
16.00	0.00	-350.00	1051.	4833.950	0.41	1222.570	-0.021	2001.81	471.92
17.00	0.00	-375.00	1055.	4833.670	0.40	1222.830	-0.019	2001.52	471.66
18.00	0.00	-400.00	1059.	4833.480	0.35	1221.670	-0.017	2001.31	471.21
19.00	0.00	-425.00	1104.	4833.350	0.40	1221.330	-0.014	2001.19	471.01
20.00	0.00	-450.00	1108.	4833.150	0.41	1221.310	-0.013	2001.00	470.79
21.00	0.00	-475.00	1113.	4833.130	0.41	1219.970	-0.010	2000.98	470.49
22.00	0.00	-500.00	1120.	4835.410	0.25	1209.290	-0.007	2003.29	470.68
23.00	0.00	-525.00	1125.	4836.370	0.20	1203.590	-0.005	2004.26	470.51
24.00	0.00	-550.00	1130.	4837.760	0.23	1195.250	-0.003	2005.71	470.30
25.00		-575.00	1136.		0.30	1185.560	-0.000	2007.49	470.16
26.00		-600.00	1142.		0.30	1170.940	0.002	2009.75	469.52
27.00		-625.00	1150.		0.23	1160.300	0.005	2011.47	469.14
28.00		-650.00	1203.		0.32	1155.780	0.010	2012.19	468.95
29.00		-675.00	1211.		0.38	1154.990	0.013	2012.04	468.63
30.00	0.00	0.00		4832.130	0.37	1234.760	0.003	*	*

O

Line 250E, Kutcho South

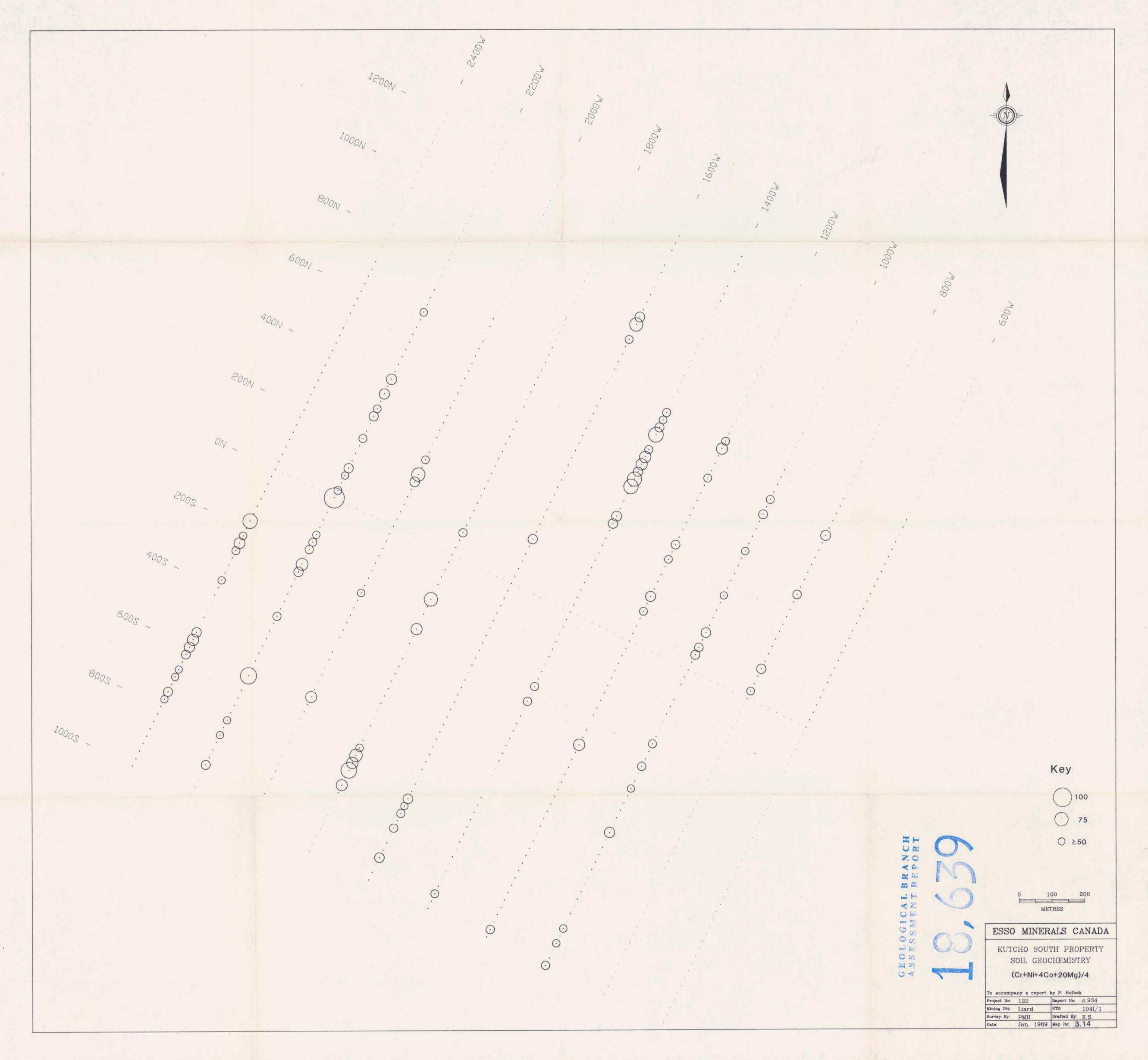
Date=880827 GMT=-7 SC=1.03056 GB1=2000 GB2=2000 Units=metr BD=2.670 Gf=67 Long=-128.1341 Lat=58.09454

Station	Line(X)	Stn(Y)	Time	Reading	<u>I.H.</u>	Elev.	TideC.	Obs.Grv.	Bgr.Grv.
1.00	0.00	0.00	942.	4832.270	0.36	1234.760	-0.055	*	*
2.00	250.00	-200.00	1528.	4833.460	0.37	1226.860	0.009	2001.42	472.48
3.00	250.00	-225.00	1524.	4833.360	0.38	1226.920	0.011	2001.32	472.38
4.00	250.00	-250.00	1518.	4833.290	0.39	1226.930	0.013	2001.25	472.29
5.00	250.00	-275.00	1511.	4833.280	0.41	1226.420	0.015	2001.24	472.17
6.00	250.00	-300.00	1506.	4833.290	0.32	1225.700	0.016	2001.23	471.99
7.00	250.00	-325.00	1501.	4833.120	0.42	1225.800	0.018	2001.08	471.85
8.00	250.00	-350.00	1456.	4832.950	0.38	1225.960	0.019	2000.89	471.67
9.00	250.00	-375.00	1451.	4832.800	0.42	1226.110	0.020	2000.75	471.54
10.00	250.00	-400.00	1447.	4832.630	0.34	1226.270	0.021	2000.55	471.36
11.00	250.00	-425.00	1443.	4832.330	0.42	1226.690	0.022	2000.27	471.14
12.00	250.00	-450.00	1439.	4832.280	0.42	1226.210	0.023	2000.21	470.97
13.00	250.00	-475.00	1433.	4832.400	0.38	1224.680	0.024	2000.32	470.76
14.00	250.00	-500.00	1428.	4832.670	0.39	1222.480	0.025	2000.60	470.59
15.00	250.00	-525.00	1424.	4832.760	0.41	1220.880	0.026	2000.70	470.36
16.00	250.00	-550.00	1418.	4832.380	0.31	1220.370	0.027	2000.28	469.81
17.00	250.00	-575.00	1411.	4834.560	0.38	1207.410	0.027	2002.54	469.51
18.00	250.00	-600.00	1402.	4837.670	0.32	1190.770	0.028	2005.73	469.41
19.00	250.00	-625.00	1353.	4840.410	0.24	1176.880	0.029	2008.53	469.45
20.00	250.00	-650.00		4843.360	0.28	1158.950	0.029	2011.57	468.96
21.00		-675.00		4846.240	0.37	1142.250	0.029	2014.57	468.65
22.00	0.00	0.00	1544.	4832.130	0.36	1234.760	0.003	*	*

F GRID

Line 0, Kutcho South

Date=880828 GMT=-7 SC=1.03059 GB1=2000 GB2=2000 Units=metr BD=2.67 Gf=67 Long=-128.2451 Lat=58.0823

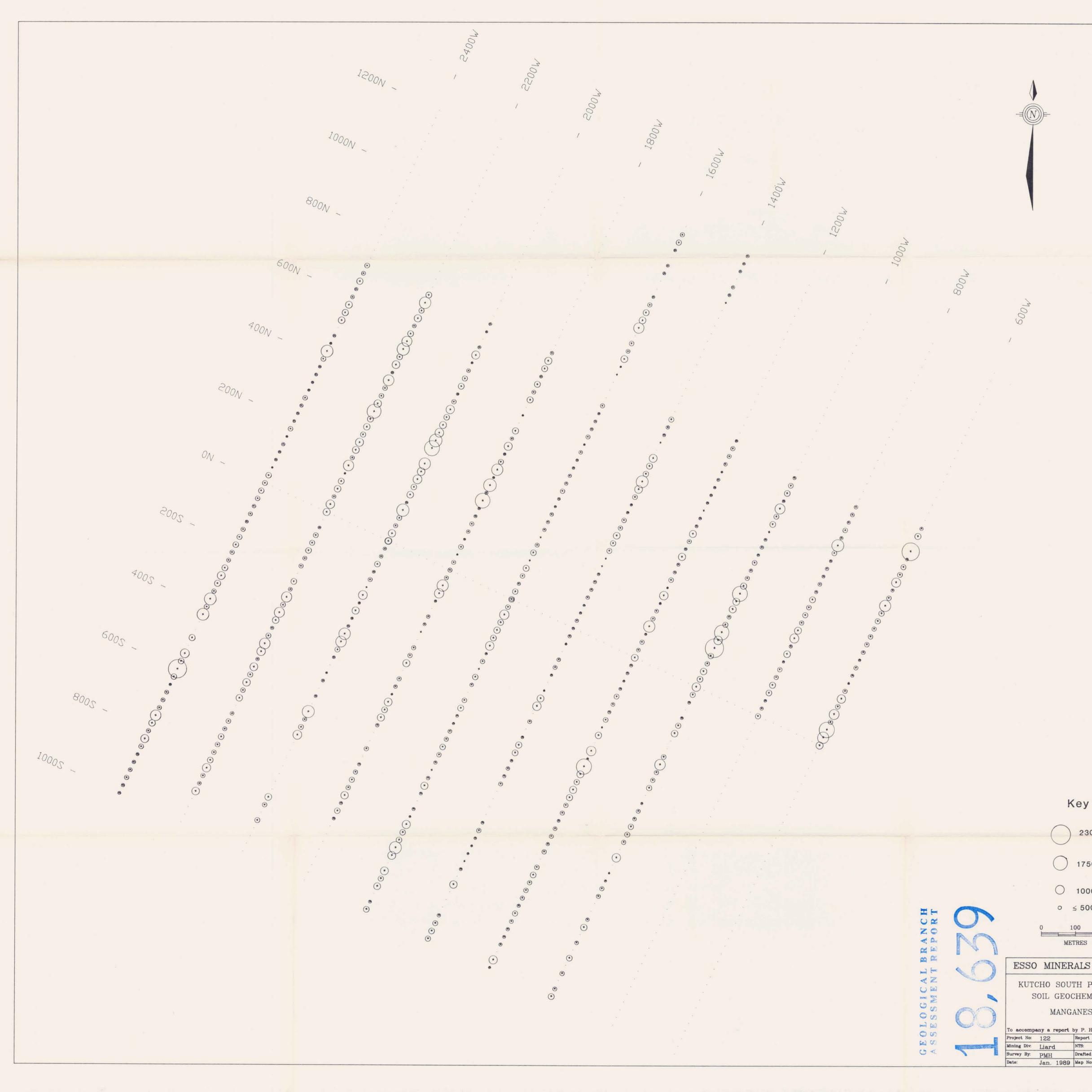

<u>Station</u>	Line(X)	Stn(Y)	Time	Reading	<u> I.Н.</u>	Elev.	TideC.	Obs.Grv.	Bgr.Grv.
1.00	0.00	0.00	015	4729.140	0.21	1742.890	-0.091	*	*
2.00	0.00	0.00	915.	and the second second second second second second second second second second second second second second second	0.21	1742.890	-0.091	2000.00	574.55
3.00	0.00	23.68	920.		0.19	1744.070	-0.091	1999.83	574.55
4.00	0.00	47.37	924.		0.46	1745.720	-0.089	1999.49	574.00
5.00	0.00	71.05	924.		0.40	1745.470	-0.089	1999.63	574.50
6.00	0.00	94.74	933.		0.34	1748.880	-0.086	1998.82	574.84
7.00	0.00	118.42	935.		0.40	1751.070	-0.085	1998.32	574.39
8.00	0.00	142.11	940.		0.34	1754.690	-0.084	1997.43	574.20
9.00	0.00	165.79	944.		0.34	1756.730	-0.084	1996.99	574.14
10.00	0.00	189.47	944.		0.35	1758.190	-0.081	1996.64	
11.00	0.00								574.06
		213.16	951.		0.40	1761.870	-0.080	1995.81	573.94
12.00	0.00	236.84	955.		0.40	1764.370	-0.079	1995.28	573.88
13.00	0.00	260.53		4724.100	0.35	1766.390	-0.078	1994.86	573.84
14.00	0.00	284.21	1001.		0.32	1768.940	-0.077	1994.34	573.80
15.00	0.00	307.89	1005.		0.46	1771.590	-0.075	1993.80	573.77
16.00	0.00	331.58	1008.		0.35	1774.850	-0.074	1993.07	573.66
17.00	0.00	355.26	1012.		0.34	1778.290	-0.073	1992.43	573.68
18.00	0.00	378.95	1015.		0.32	1780.370	-0.071	1991.96	573.60
19.00	0.00	402.63	1020.		0.42	1787.530	-0.070	1990.60	573.64
20.00	0.00	426.32	1024.	4719.380	0.36	1791.220	-0.068	1990.01	573.75
21.00	0.00	450.00	1029.	4719.040	0.37	1793.100	-0.066	1989.66	573.76
22.00	0.00	0.00	1218.	4729.100	0.21	1742.890	-0.023	*	*

.

Line 200E, Kutcho South

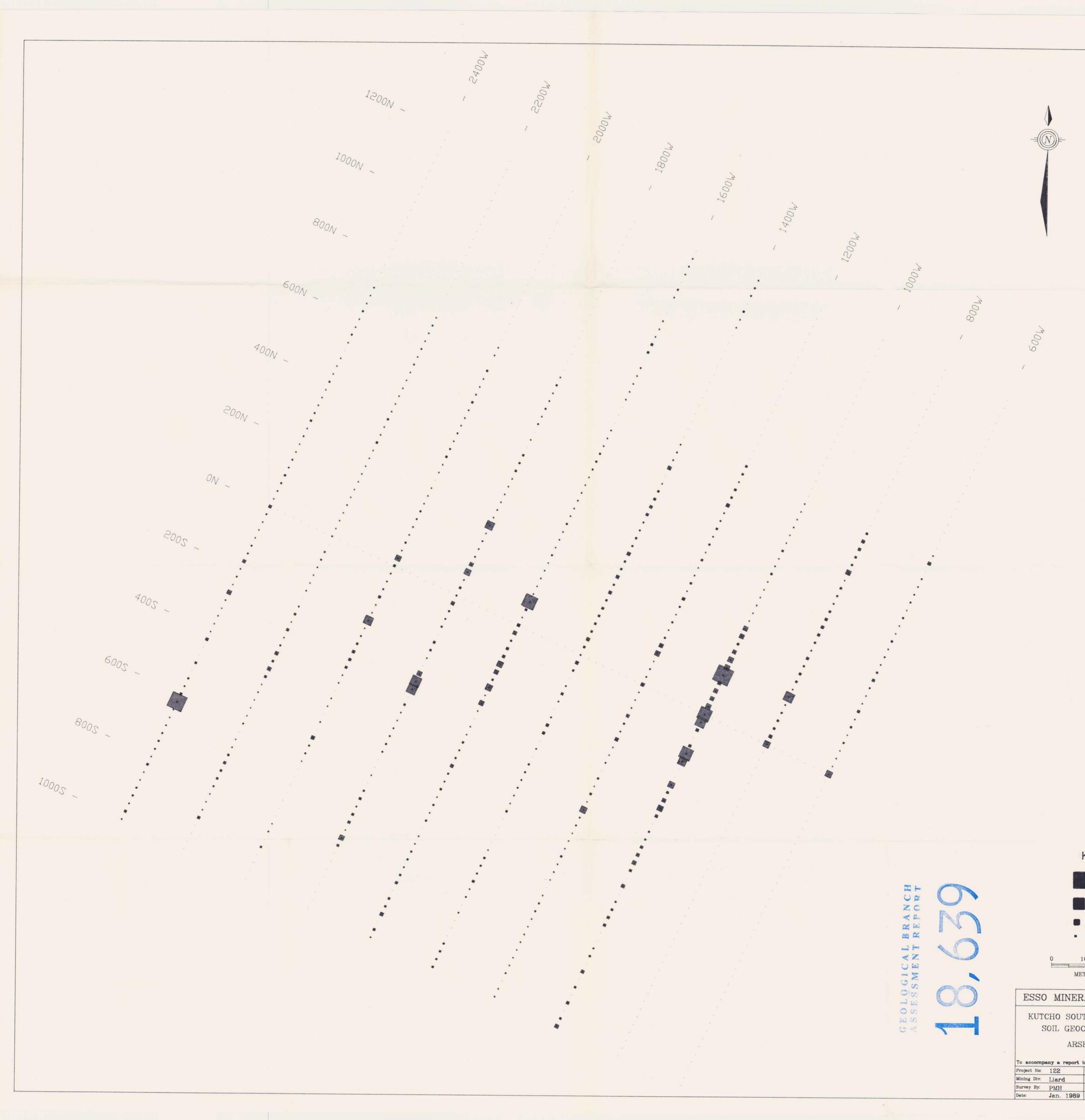
Date=880828 GMT=-7 SC=1.03059 GB1=2000 GB2=2000 Units=metr BD=2.67 Gf=67 Long=-128.2432 Lat=58.0823

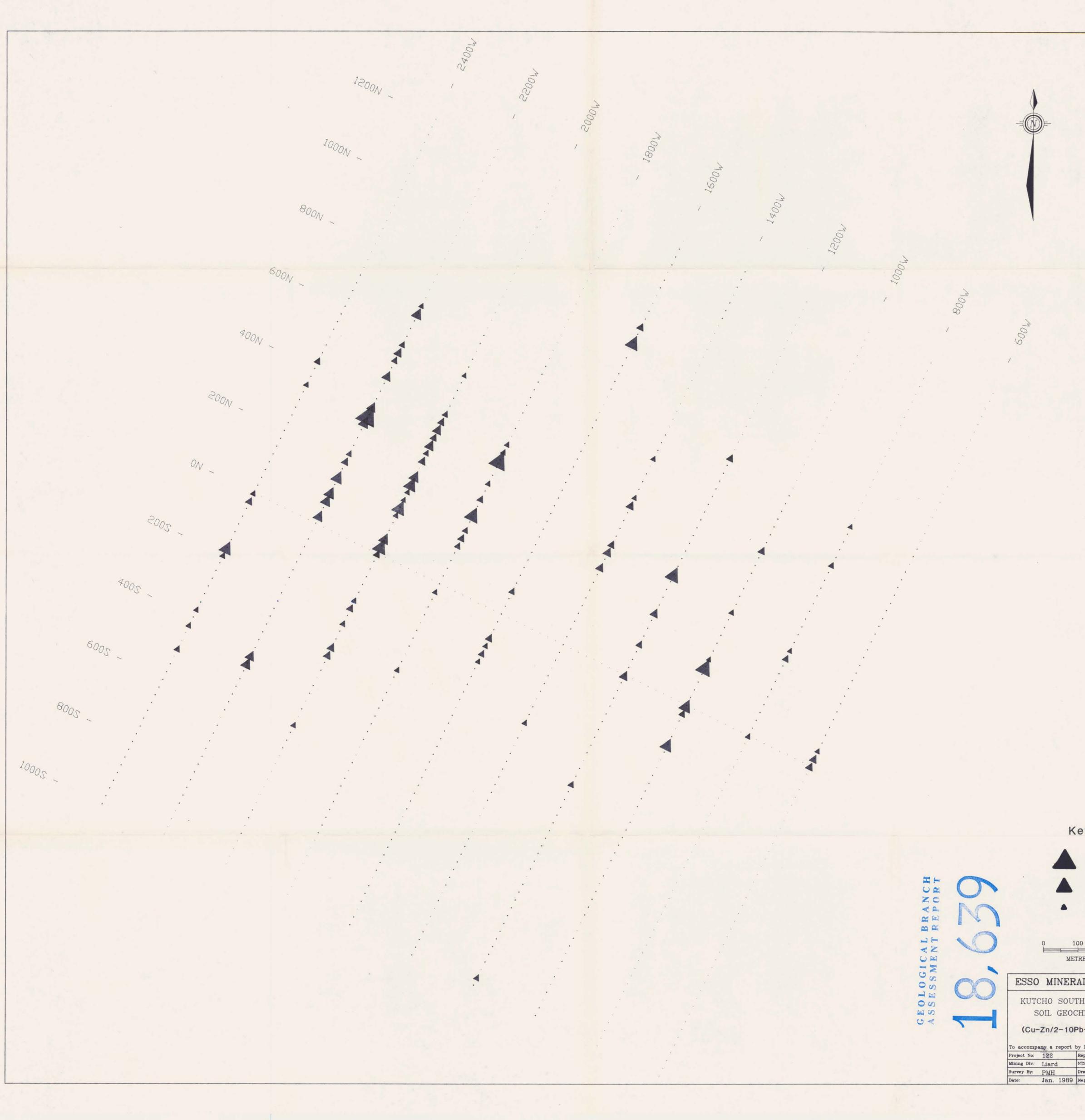
Station	Line(X)	Stn(Y)	Time	Reading	I.H.	Elev.	TideC.	Obs.Grv.	Bgr.Grv.
1.00	0.00	0.00	915.	4729.140	0.21	1742.890	-0.091	*	*
2.00	200.00	25.00	1158.	4734.880	0.36	1713.150	-0.031	2006.01	574.69
3.00	200.00	50.00	1154.	4734.280	0.29	1717.090	-0.032	2005.37	574.81
4.00	200.00	75.00	1149.	4733.560	0.24	1720.390	-0.034	2004.61	574.68
5.00	200.00	100.00	1145.	4733.130	0.25	1722.470	-0.036	2004.17	574.63
6.00	200.00	125.00	1142.	4732.640	0.31	1724.260	-0.037	2003.68	574.48
7.00	200.00	150.00	1139.	4732.170	0.31	1726.530	-0.038	2003.20	574.42
8.00	200.00	175.00	1135.	4731.650	0.28	1728.770	-0.039	2002.65	574.29
9.00	200.00	200.00	1131.	4731.090	0.31	1731.420	-0.041	2002.08	574.23
10.00	200.00	225.00		4730.640	0.28	1733.620	-0.043	2001.61	574.17
11.00	200.00	250.00	1121.	4730.200	0.33	1735.490	-0.045	2001.17	574.08
12.00	200.00	275.00	1117.	4729.650	0.38	1738.180	-0.047	2000.61	574.04
13.00	200.00	300.00	1114.	4729.260	0.32	1740.250	-0.048	2000.19	574.00
14.00	200.00	325.00	1110.	4728.480	0.25	1743.960	-0.050	1999.36	573.89
15.00	200.00	350.00	1108.	4727.630	0.37	1748.220	-0.050	1998.52	573.87
16.00	200.00	375.00	1104.	4726.480	0.26	1753.730	-0.052	1997.31	573.71
17.00	200.00	400.00	1100.	4725.410	0.31	1759.500	-0.054	1996.22	573.74
18.00	200.00	425.00		4724.430	0.35	1764.300	-0.055	1995.22	573.67
19.00	200.00	450.00		4723.580	0.44	1768.930	-0.056	1994.37	573.71
20.00	200.00	475.00	1050.		0.30	1773.870	-0.058	1993.27	573.57
21.00	0.00	0.00	1218.		0.21	1742.890	-0.023	*	*



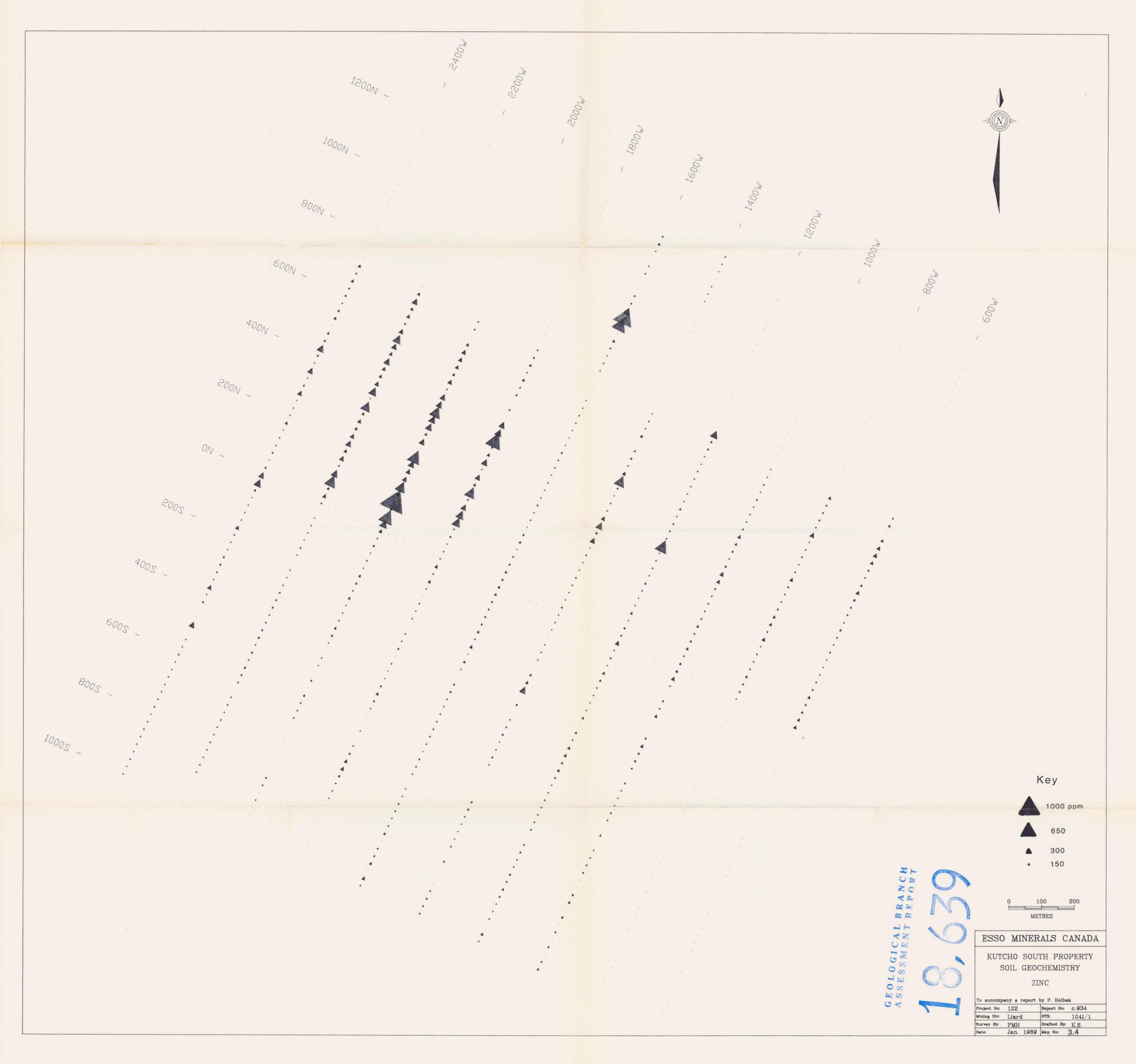
	2
Key	
145 ppm 85	
45 15 ppm	
100 200	
RALS CANADA	
UTH PROPERTY OCHEMISTRY ICKEL	
t by P. Holbek Report No: 0.934 NTS: 1041/1	
Drafted By: K.S. 9 Map No: 3.13	

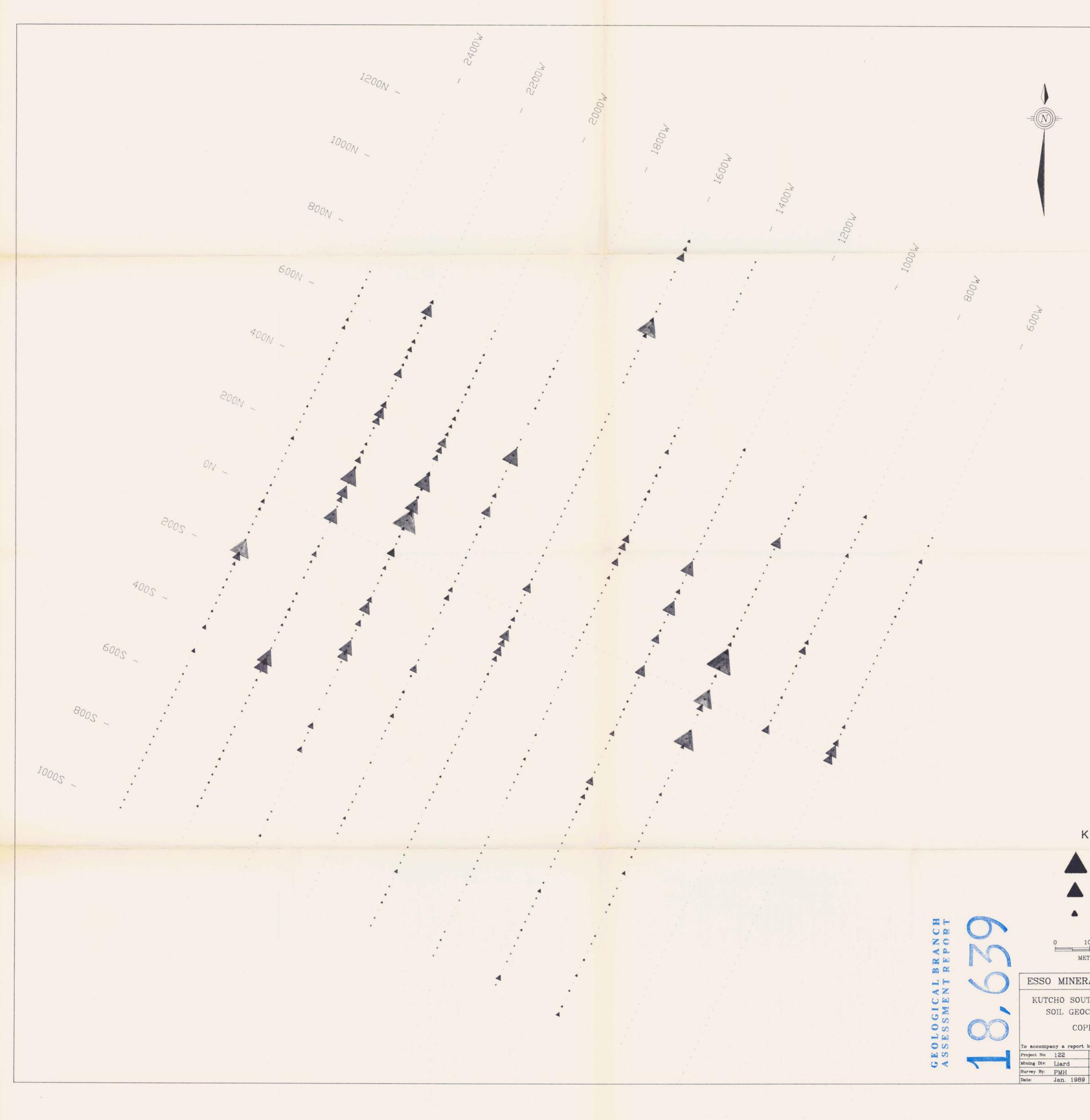
У	
50 ppm	
5	
0	
0 200 RES	
ALS CANADA	
H PROPERTY HEMISTRY ANUM	
y P. Holbek Report No: c.934 VTS: 104I/1 Drafted By: K.S.	
dap No: 3.11	


Key	
2300 ppm	
1750	
1000	
≤ 500	
100 200	
ETRES	
RALS CANADA	
UTH PROPERTY	
DCHEMISTRY	
GANESE	
t by P. Holbek	
Report No: c.934	
NTS: 104I/1	
Drafted By: K.S.	
9 Map No: 3.10	

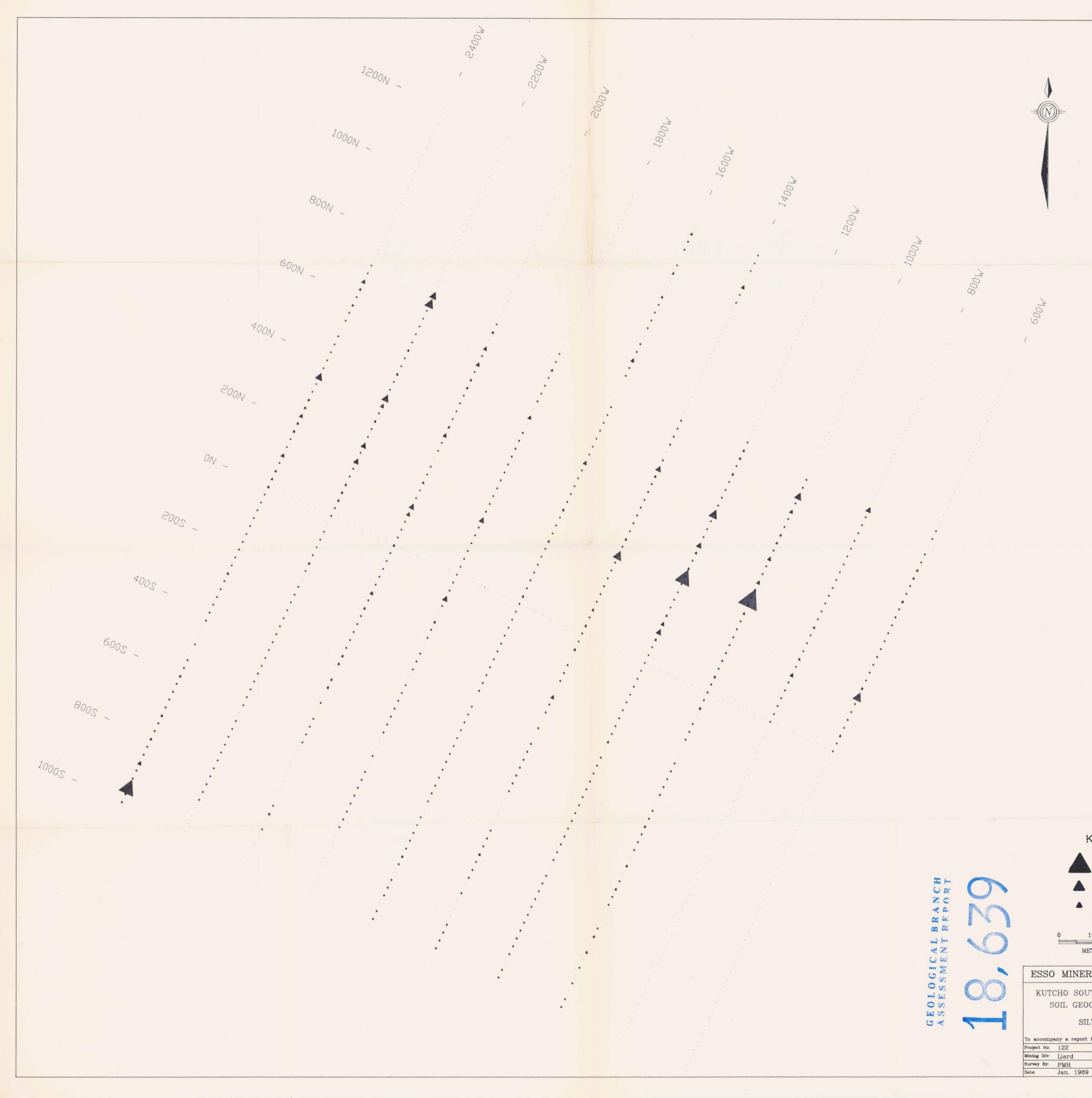

	_
	3
Key	
3.0%	
1.8%	
1.2%	
0.4%	
100 200	
TRES	
RALS CANADA	
TH PROPERTY	
CHEMISTRY	
CIUM	
by P. Holbek	
Report No: C.934 NTS: 104I/1	
Drafted By: K.S. Map No: 3.9	
0.0	


Key	
600 ppm	
500	
400	
200	
100 200 METRES	
NERALS CANADA	
SOUTH PROPERTY GEOCHEMISTRY	Ţ.
BARIUM	
P. Holbek Report No: c.934 NTS: 1041/1 Dratted Br. K.S.	-20
Drafted By: K.S. 1989 Map No: 3.8	1
	100

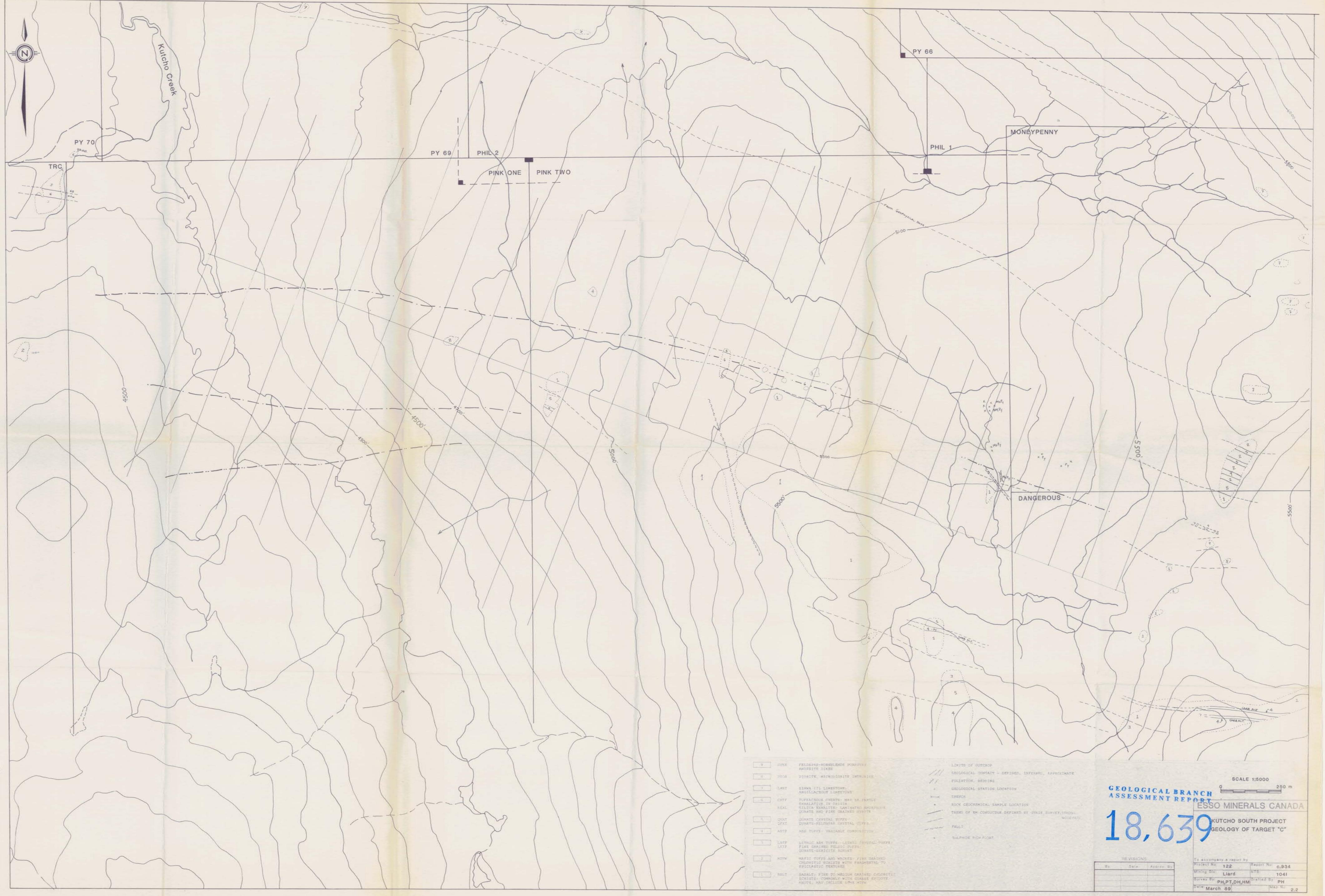

Key 65 ppm	
45 30 10	
100 200 ETRES	
RALS CANADA UTH PROPERTY	
CHEMISTRY SENIC t by P. Holbek Report No: c.934	
NTS: 104I/1 Drafted By: K.S. Map No: 3.7	

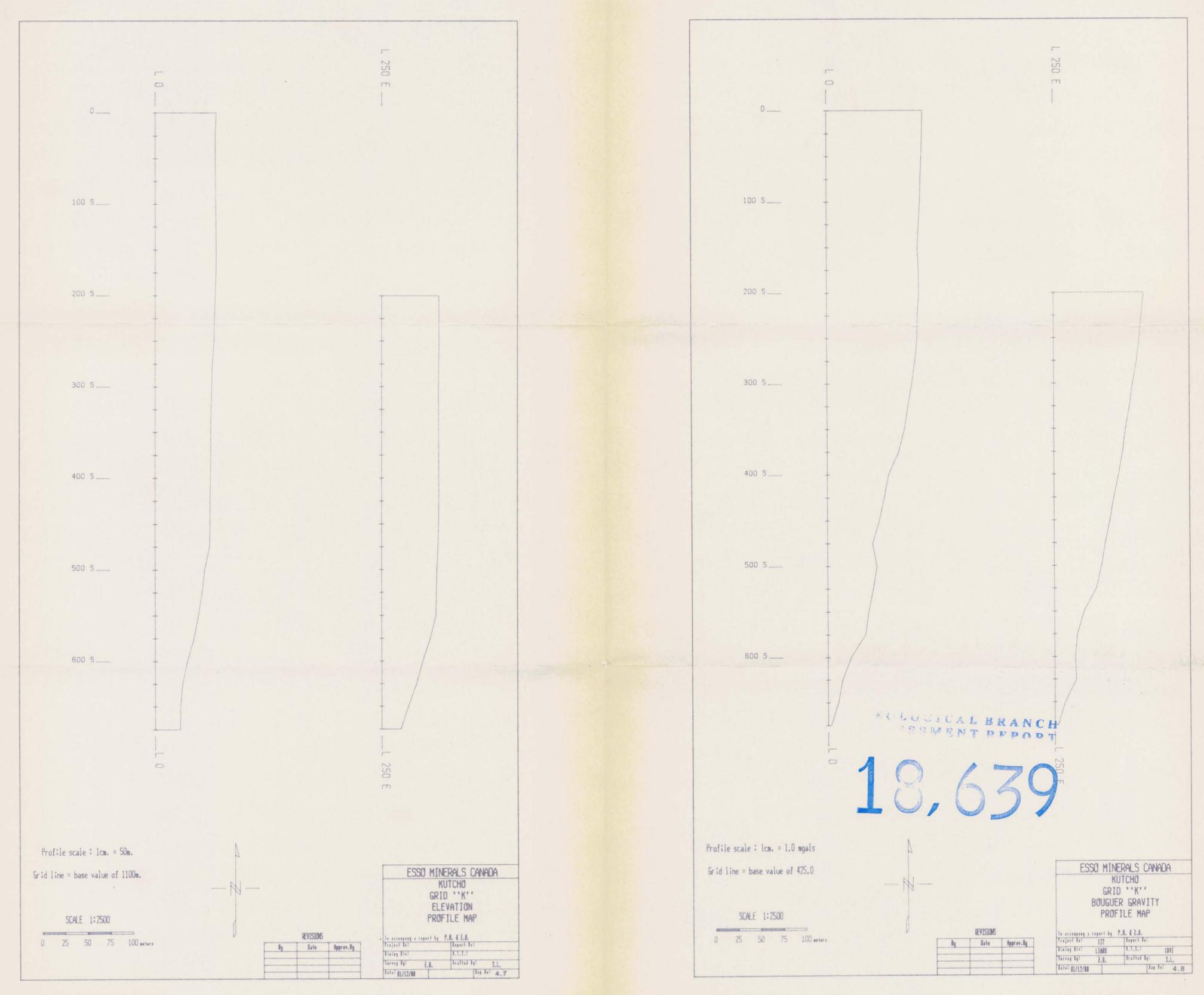


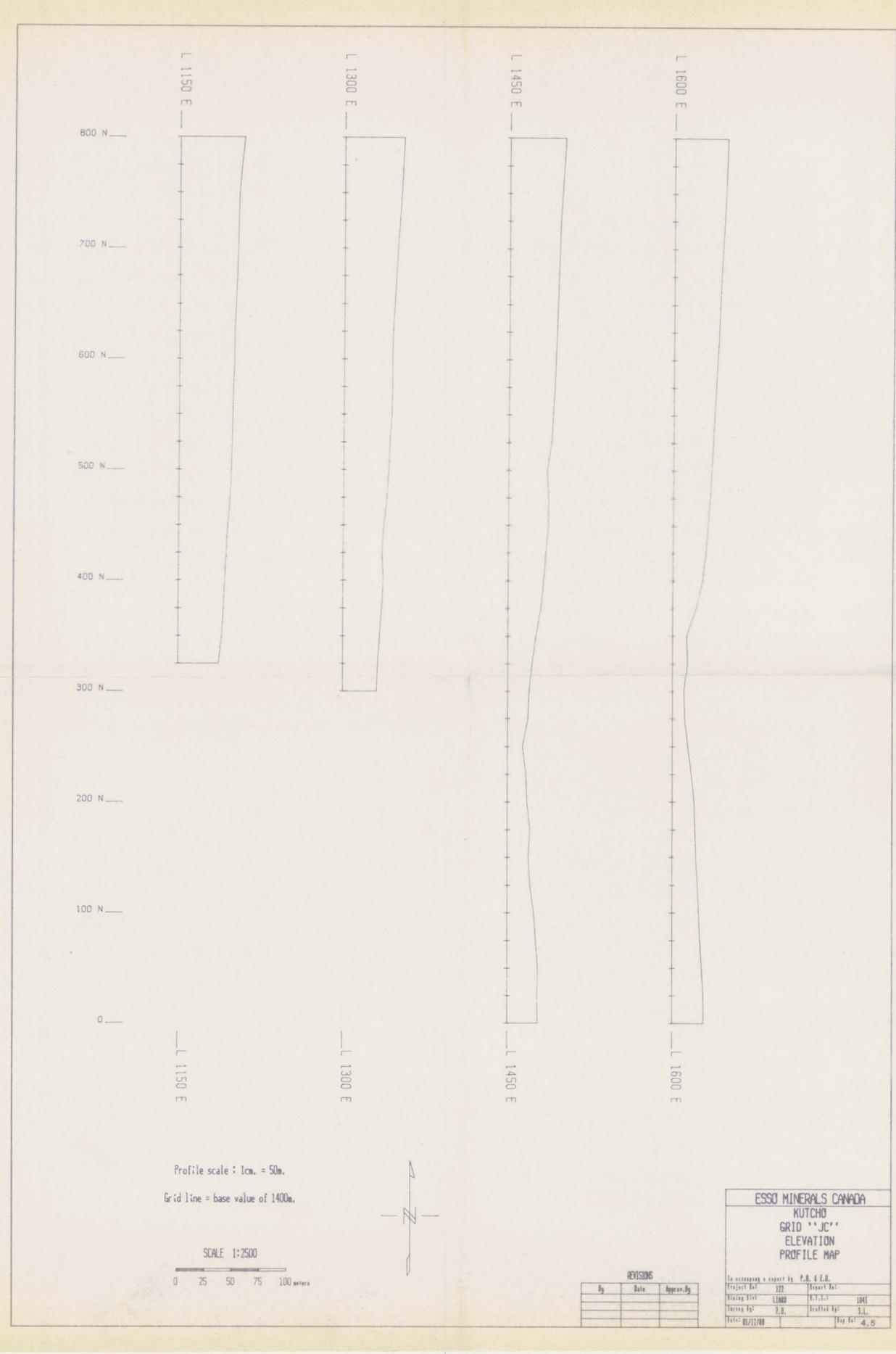
	N.
	1.1.1
	1.1
	1.0
	1.00
	30 A.
	1.1.1
	4 33
	1. 1. 1.
	1.1.1.1
	1
	1 1 1
	and the
÷	
	- 2
7	
еy	
.,	24
250	
1.5	
175	
75	1-11
75	
- 17 - C 1	1.1.1.1.1.1.
0 200	1
RES	
In custo	Sec. 2
LS CANADA	
H PROPERTY	No Car
HEMISTRY	
b-100Ag)/4	
P. Holbek	
eport No: c.934 TS: 104I/1	
rafted By: K.S. (ap No: 3.6	
0.0	



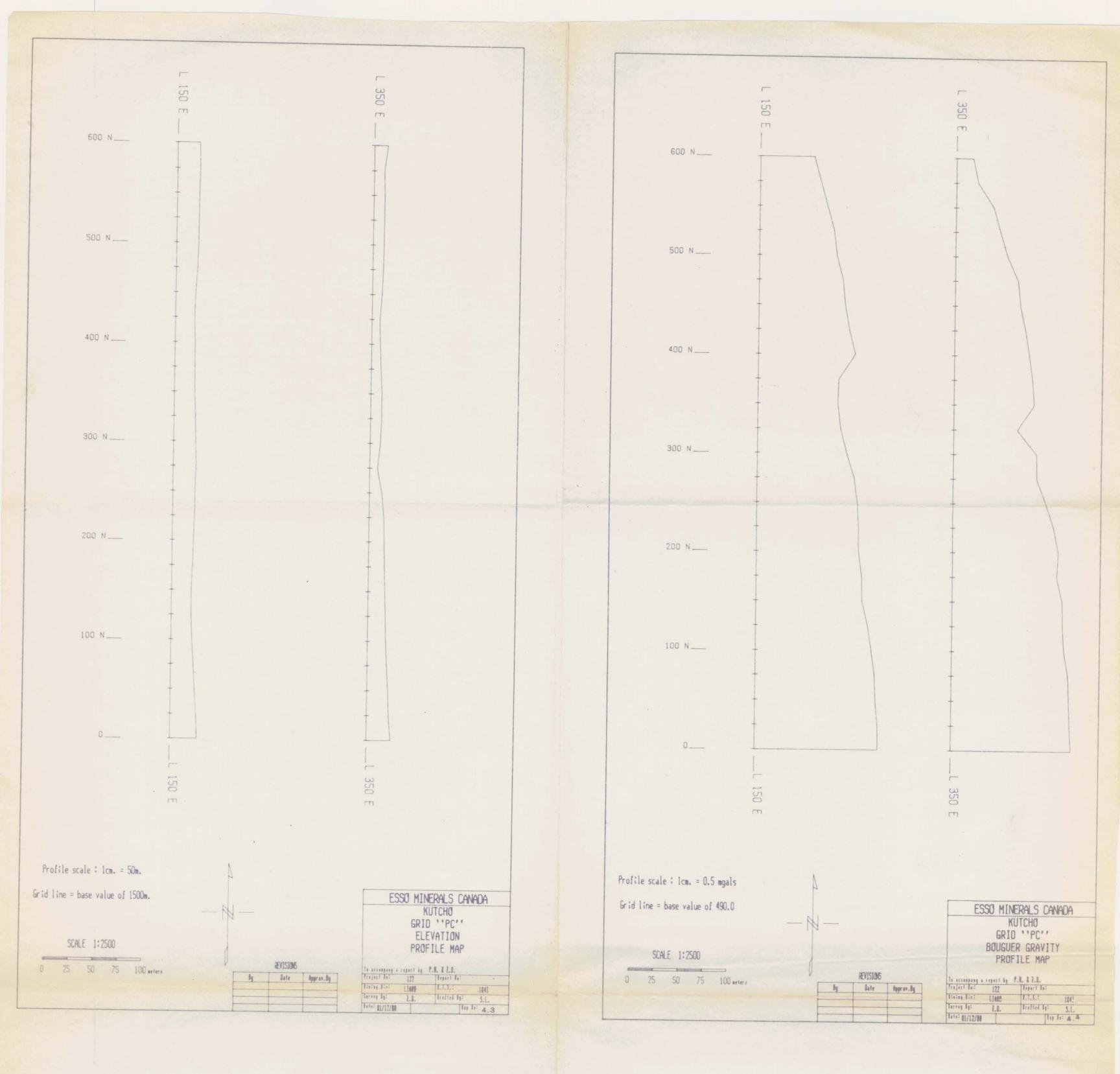
ey D ppm 5 0 00 200 TRES		
5 0 00 200 FRES		
5 0 00 200 FRES		
5 0 00 200 FRES		
5 0 00 200 FRES		
5 0 00 200 FRES		
5 0 00 200 FRES		
5 0 00 200 FRES		
5 0 00 200 FRES		
5 0 00 200 FRES		
5 0 00 200 FRES		
5 0 00 200 FRES		
5 0 00 200 FRES		
5 0 00 200 FRES	· · · ·	
5 0 00 200 FRES		
5 0 00 200 FRES	, y	
5 0 00 200 FRES		
0 00 200 FRES	ppm	
0 00 200 FRES		
00 200 FRES	5	
00 200 FRES)	
FRES		
FRES		
ALS CANADA	RES	
ALS CANADA		
	ALS CANADA	
TH PROPERTY	TH PROPERTY	
CHEMISTRY	HEMISTRY	
AD	AD	
Report No: C.934		
NTS: 1041/1	NTS: 1041/1	
Drafted By: K.S. Map No: 35	and the second se	
. 0.0	Drafted By: K.S. Map No: 3.5	
	Drafted By: K.S. Map No: 3.5	
	Drafted By: K.S. Map No: 3.5	






	2		
	_		
Key	-		
400 ppm			
300			
100			
100 200 TRES			
RALS CANADA	1		
TH PROPERTY CHEMISTRY PPER		8	
by P. Holbek Report No: C.934			
NTS: 104I/1 Drafted By: K.S. Map No: 3.3			




Key
1.3 ppm
0.7
0.4
100 200
RALS CANADA
TH PROPERTY
CHEMISTRY
by P. Holbek
Report No: c.934
NTS: 104I/1 Drafted By: K.S.
Map No: 3.2

