ARIS SUMMARY SHEET

istrict Geologist, Kamloops

Off Confidential: 90.01.23

ASSESSMENT REPORT 18641

MINING DIVISION: Clinton

ROPERTY:

Vidette

COCATION:

120 54 20 51 10 20 LONG LAT 649961

10 5559671 UTM

092P02W NTS

LAIM(S):

Vidette 2,CE Fr., Argenta, Valley 1-2, New Hope

OPERATOR(S): Booker Gold Ex. AUTHOR(S):

Stevenson, J.P. 1989, 34 Pages

REPORT YEAR: COMMODITIES

SEARCHED FOR: Gold, Silver

KEYWORDS:

Nicola Group, Volcanics, Hamilton Fault, Quartz veins, Sulphides, Gold

DONE:

VORK

Drilling, Geochemical

302.0 m DIAD

4 hole(s);BQ

SAMP

107 sample(s) ; CU, AG, AU

RELATED

MINFILE: 08955, 10103, 11273, 11731, 12670, 13453 REPORTS:

092P 086

LOG NO: 0417 RD.
ACTION:
FILE NO:
ORT
LOG NO: 0914 RD.S
ACTION: Date Amended Rpt Returned
Rpt Returnes
IVISTONE NO
o 20 54' 21" West Longitude

Booker Gold Explorations Ltd. Vancouver, B.C.

CLINTON MINING

20.5" North Longi

The Carlo **4 A** parmy franch W 2 (4)

second Council

Prepared By:

<mark>ბ 1989</mark>

Gold Commissioner's Office VANCOUVER, B.C.

J. Paul Stevenson & Associates Natural Resource Exploration And Development Ltd. 0 0

- (acts) 303 - 475 Howe Street 00 Vancouver, B.C. (4) (P) V6C 2B3 (604) 681-8556 () et

GOLD COMMISSIONER

APR 10 1989

CLINTON

March 30, 1989

LOG NO	RD.
ACTION:	
THE NO:	THE PLANT THE PARTY AND THE PA

TABLE OF CONTENTS

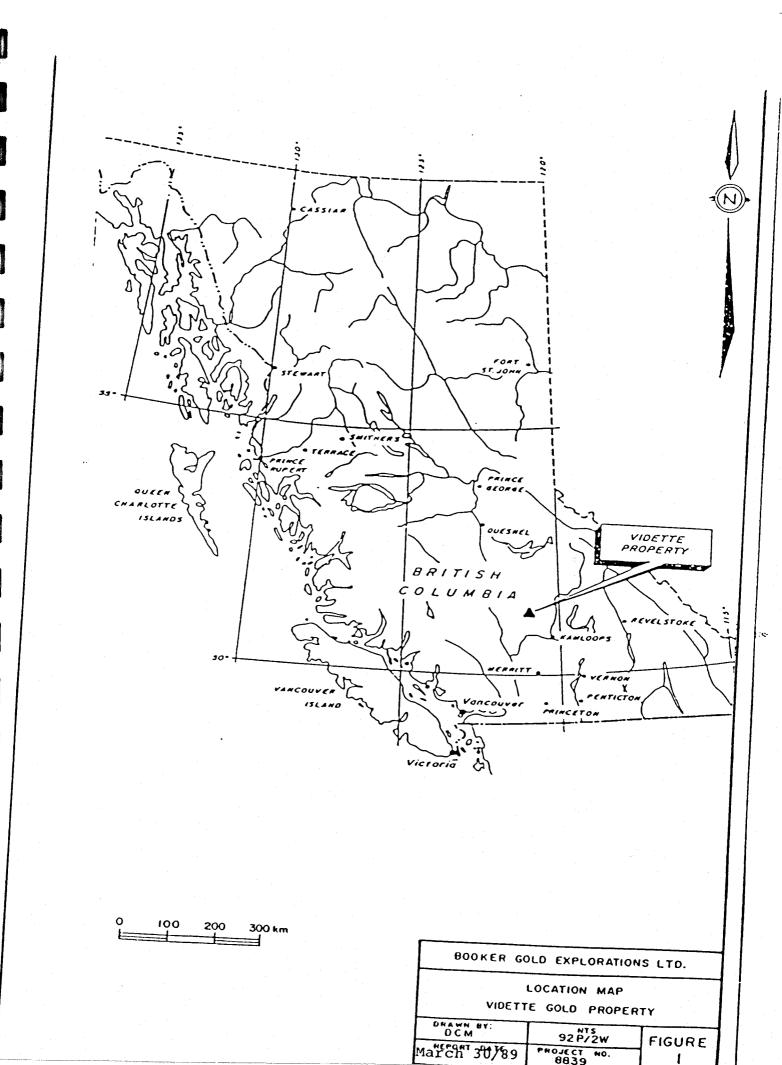
						Page
STATEMENT OF COSTS	• • • • • • •	F	Pollowin	g Table	of Fig	ures
DRILLING SUMMARY		Fol	llowing	Statemer	it of C	osts
1.0 INTRODUCTION		• • • • •		• • • • • • •		2
2.0 SUMMARY		• • • • •		• • • • • •	• • • • • •	2
3.0 LOCATION AND ACCESS		• • • • •			• • • • •	3
4.0 PROPERTY	• • • • • • •	• • • • •				3
5.0 PHYSIOGRAPHY AND CLIMA	TE	• • • • •	· • • • • • •			4
6.0 HISTORY						4
7.0 REGIONAL GEOLOGY	• • • • • • •	• • • • •	. 	• • • • • •	,	6
7.1 Property Geology					· · · · · ·	6
7.2 Mineralization		• • • • •				7
7.3 Geochemistry				• • • • • •		7
8.0 CONCLUSIONS	•••••					7
9.0 RECOMMENDATIONS			· · · · · · · · ·			8
9.1 Estimated Cost of	Propose	d Phas	se			8
10.0 REFERENCES		• • • • • •		• • • • • • •		9
11.0 CERTIFICATE						. 10

TABLE OF FIGURES

		Appendix I Assay D	ata
		Appendix II Drill L	ogs
Figure	1	••••••	Location Map
Figure	2	••••••	Claim Map
Figure	3, 4	• • • • • • • • • • • • • • • • • • • •	Drill Cross-sections
Figure	5		Compilation

1

STATEMENT OF COSTS - BOOKER GOLD EXPLORATIONS


1,000 Feet of B.Q. Drilling @ \$25.00 per foot - Wayne Spence Drilling25,000.00
3,000 Feet of B.Q. Drilling @ \$20.00 per foot - Grizzly Drilling
Line Cutting 10 kilometers @ \$250.00 per Km2,500.00
Property supervision
Assays800.00
TOTAL70,300.00

DRILLING SUMMARY

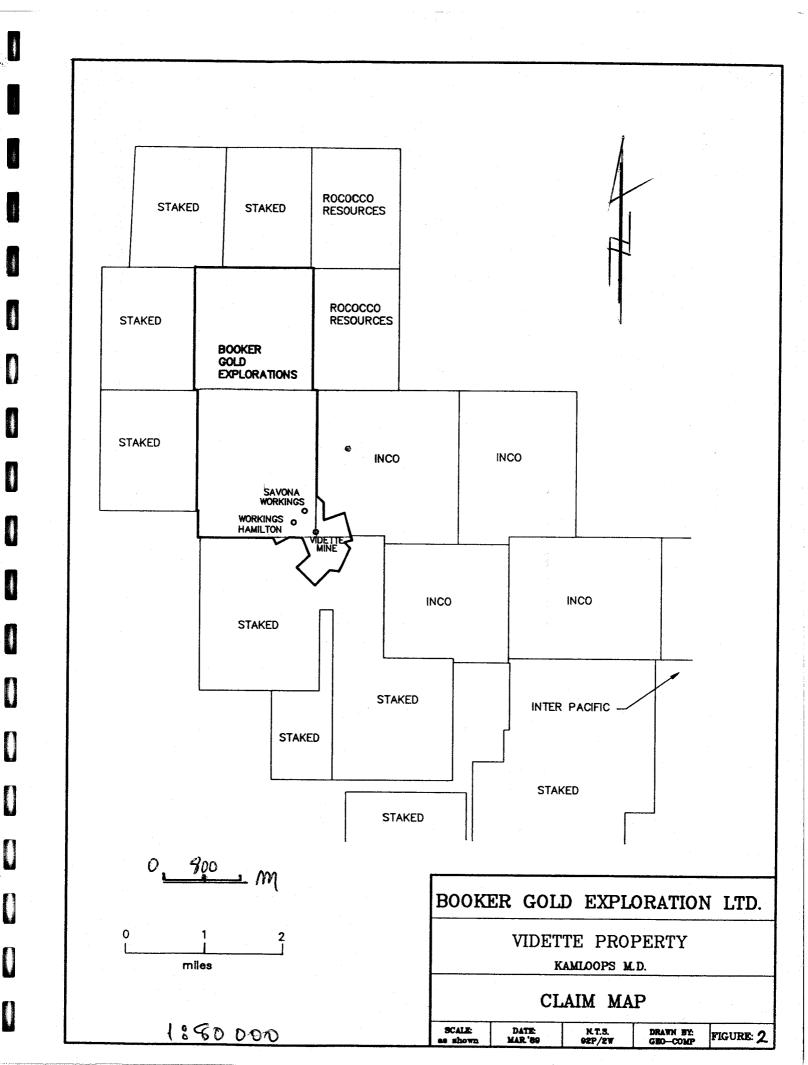
A total of 12 B.Q. Diamond Drill Holes were completed on the Vidette Property. 1250 meters of drilling was completed. Unfortunately, a local land owner destroyed our first core shack, wiping out any chance of logging much of the core. This vandalism was reported to the Clinton Gold Commissioner and the R.C.M.P. The remainder of the core is now stored 500 meters north of Kilometre 52 on the Clinton-Loon Lake Road on the other claims.

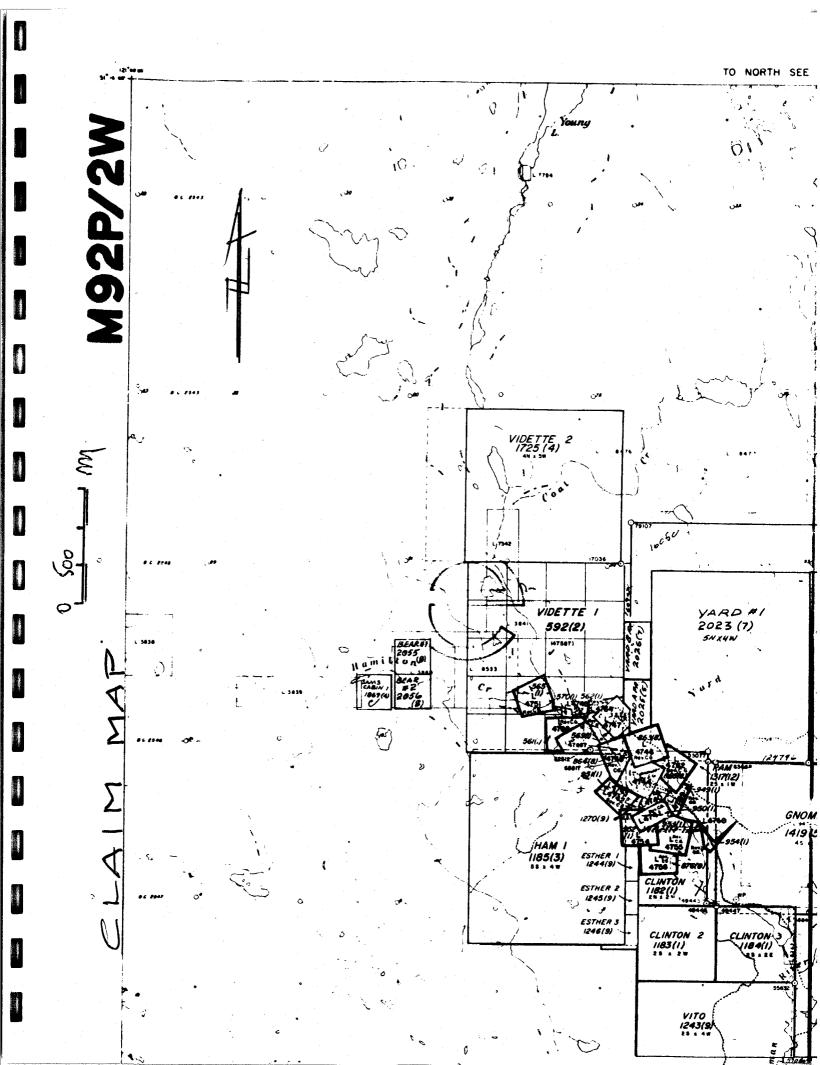
The purpose of this program was to investigate the Hamilton Creek fault. This major structure runs sub-parallel to high grade gold/quartz veins. The drilling encountered two major quartz shears with anomalous gold results.

Further drilling will be necessary to delineate this target.

1.0 INTRODUCTION

At the request of Booker Gold Explorations Ltd., J. Paul Stevenson & Associates has been managing a diamond-drill program for the company. The property known as the Vidette Project is being examined as an epithermal gold target. The following report is a summary of work to date and contains recommendations for continuation of the project. The author suggests this report be submitted to a professional engineer or professional geologist for approval or change.


2.0 SUMMARY


The Vidette mine was placed in production in 1933 following prospecting and some 1150 feet of underground development work in 1931 and 1932. Total production was reported to be 29,869 oz/ton of gold from 54,199 tons of ore, some of which was direct shipping ore. The mine was developed by several adits, winzes and shafts of which the main shaft was driven 650 feet deep on a slope of 45 degrees.

Gold mineralization occurs in quartz veins which average about 11 in. in thickness with an average grade of slightly over 1 oz/ton over this thickness. The veins strike northwest and dip an average of about 45 degrees northeast; dips vary considerably. mineralization is associated with quartz, pyrite chalcopyrite and the gold grade increases with increased chalcopyrite and to a lesser extent, pyrite. There is little wallrock alteration and gold is confined to veins. principal veins mined, the most productive was the Broken Ridge veins which produced 20,950 tons from a vein averaging 1.6 oz/ton over 13 in. The actual mining width would have been at least 2.5 feet.

The veins are cut by a number of faults which have displacements in the order of several feet ranging up to over 200 feet. This faulting had and adverse effect on mining and was eventually responsible for the mine closure when the main Broken Ridge vein was faulted off as mining progressed eastward.

Vein host rocks are the Nicola volcanics which consist primarily of andesite at the property. These volcanics occur as a window within younger cover rocks comprising mainly basalts and related rocks. At several locations at the property the Nicola volcanics have been intruded by feldspar porphyry stocks and dykes. These rocks are of interest because they are mineralized with pyrite and locally carry anomalous gold values.

Recent exploration has been primarily directed to an area northwest of the Vidette Mine where several geological, geochemical and geophysical surveys have been done over the last ten years. The most recent drill program (November 1988 to February 1989) has focused on the Hamilton Fault as a primary target. Two drill holes have intersected major quartz filled-shears with anomalous gold values. The logs of these holes are titled DDH 88-6 and DDH 88-7. Two drill holes, log titles 89-12, 89-15, intersected feldspar porphyry with hole 89-15 carrying anomalous gold values (figures 3 and 4).

Follow-up drilling is definitely warranted. A system of delineating the major structure along Hamilton-Coal Creek is necessary with close attention paid to rock geochemistry. EM is probably not effective with the deep overburden and known mineralized veins are not pyritized enough for IP response.

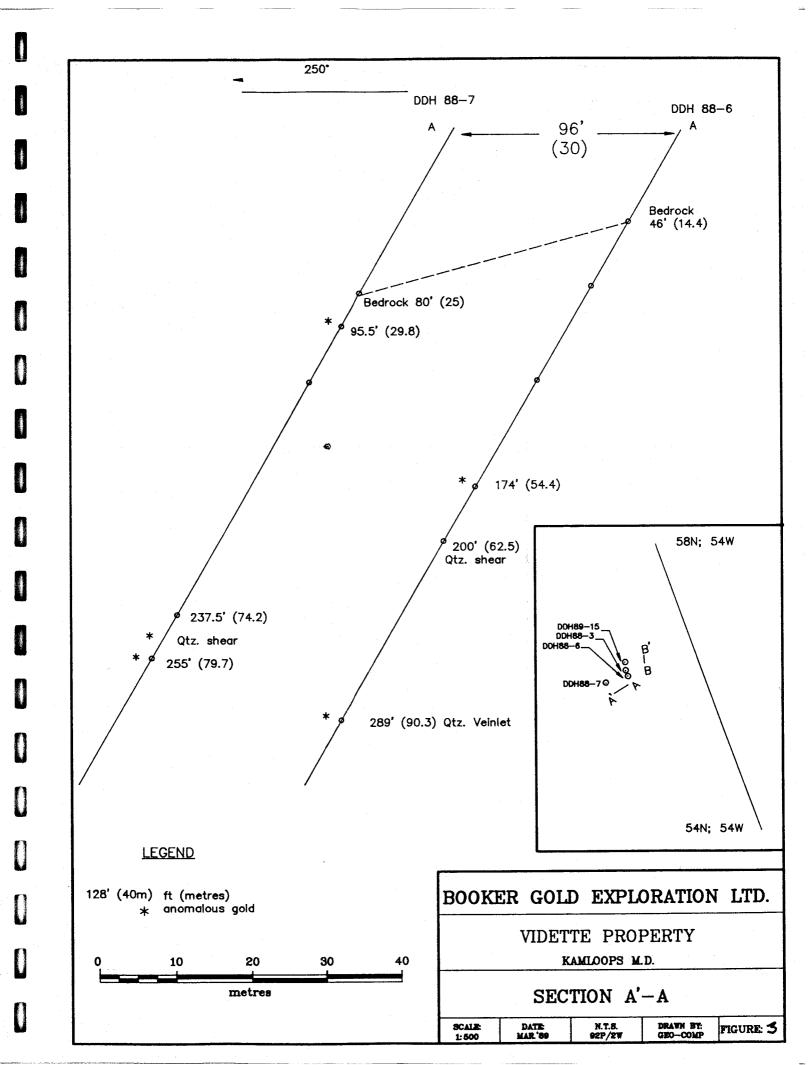
3.0 LOCATION AND ACCESS

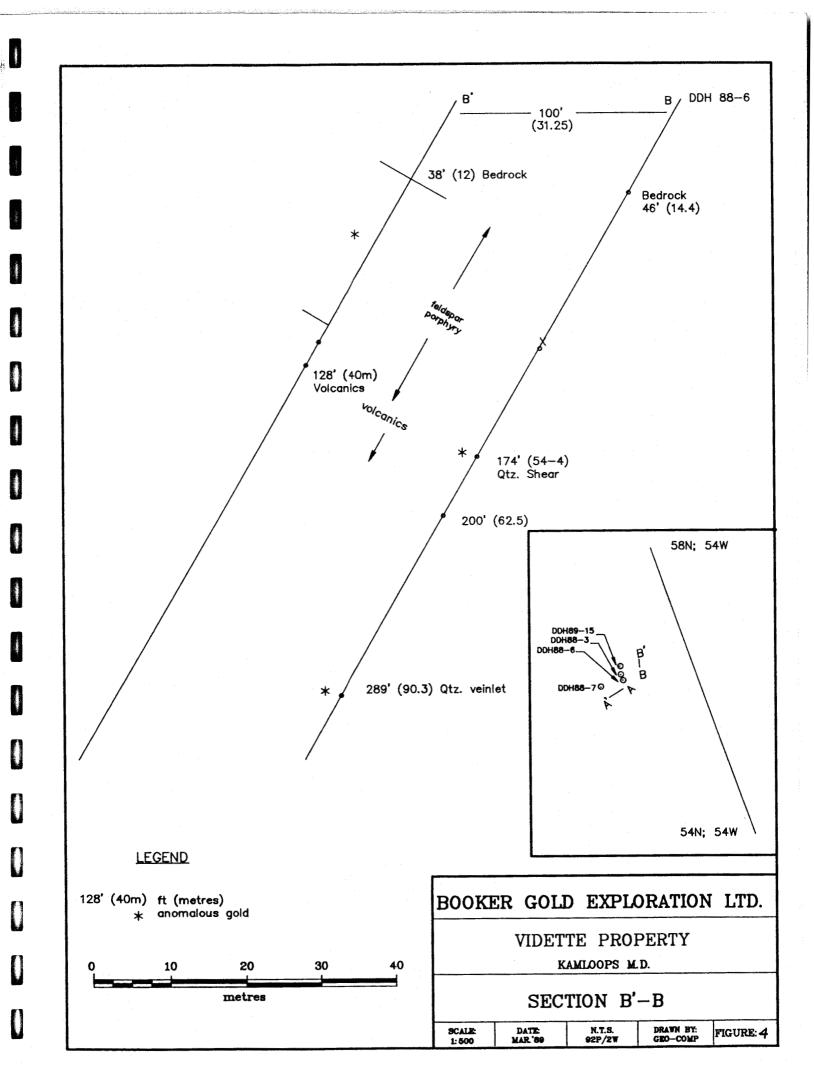
The Vidette Property entails the old Vidette Gold Mine, Hamilton Mine workings and the former property of Savona Gold Mines. These properties encompass what is now known as the Vidette Project, owned and operated by Booker Gold Explorations, Ltd. The property can be found on map sheet NTS 92P/2W at approximately 50 degrees, ten minutes, twenty point five seconds north latitude and 120 degrees, 54 minutes, 21 seconds west longitude. Access can be made either via Dead-Man's Creek Road from Highway 1 near Savona, B.C. or the Clinton-Loon Lake Forestry Road from Highway 97 near Chasm, B.C.

4.0 PROPERTY

The property includes the former Vidette Mine, the Hamilton Workings and the Savona workings. The following claims are included in the property:

<u>Name</u>	Record No.	Lot No.	<u>Hectares</u>
Searcher No. 2	953	4755	19.02
Searcher No. 3	864	4745	15.16
Searcher No. 4	876	4756	Approx. 14.50
Searcher No. 5	949	4739	7.32
Searcher No. 6	951	4743	13.72
Pioneer	863	4746	20.90
Monarch	952	4754	14.86
Whitepass	950	4741	10.41
T.F. Fraction	865	4762	16.42
E.B. Fraction	954	4760	Approx. 4.80
Searcher No. 1		4744	18.13
Searcher No. 1 Fr.	-	4740	6.98
Vidette No. 1	592		500.00
Vidette No. 2	2623		500.00
Argenta 1,			
C.E. Fraction	2531		
New Hope	2533		
Valley 1 and 2	2532		


5.0 PHYSIOGRAPHY AND CLIMATE


The property is centred in a valley containing Vidette Lake and the confluence of Hamilton and Coal Creeks. The valley floor is narrow and valley walls rise steeply to a plateau surface at an elevation of 1100 m with an elevation change of about 200 m. lodgepole pine. stands of fir and Vegetation includes Undergrowth is light except in portions of the valley bottom. Precipitation is relatively light and the climate is similar to that at 100 Mile House with moderate temperatures in summer and Adequate water relatively cold winters. exploration and mining purposes.

6.0 HISTORY

Between 1931 and 1932 the property was prospected and some 1150 feet of underground development work was done. Production began in 1933 and continued until 1940 when further financing was unavailable and the mine was abandoned. Total production was 54,199 tons or ore yielding 29,860 oz. of gold, 46,573 oz of silver, 96,619 pounds of copper and 356 pounds of lead.

Production came mainly from the Tenford-Broken Ridge vein system as well as from the Bluff, "70" and Dexheimer veins. The last work done was to crosscut under Vidette Lake to the Dexheimer vein and complete a small amount of drifting and raising in the zone.

On the nearby Hamilton and Savona properties that adjoin the Vidette property to the northwest, underground work was carried out between 1931 and 1938. The Hamilton property was tested by 3 diamond drill holes and a long crosscut (250 m.) driven at about 248 degrees, two shorter drifts on veins and a winze sunk on the most westerly vein. Values of up to 0.56 oz/ton over 20 in. were reported (1934).

On the Savona property, a number of veins and shears were tested with open cuts, 2 connecting adits, drifting and a winze at the 3095 ft. elevation. A lower adit was driven at the 3030 level and connected to the winze from the upper level. In general, low values were reported (1936), however, a 34 in. sample taken from the collar of the winze assayed 0.62 oz/ton gold over 36 inches.

In recent years, exploration work has included various geological, geochemical and geophysical surveys which were largely carried out northwest of all the underground workings. Some diamond drilling was done as well. This work includes the following:

- 1) 1980 A reconnaissance geochemical survey was carried out by Kerr, Dawson and Associates which covered the northwest part of the property with samples at stations 50 m apart along lines 500 m apart. Analysis was done for gold, mercury and copper and several anomalies were determined.
- 2) 1982 A more detailed geochemical survey was carried out by Alan Reed over most of the same area and samples were analyzed for copper. Several strong copper anomalies were found.
- 3) 1983 Some samples from the 1982 survey were analyzed for gold and reported on by J.S. Karmeen. The survey was inconclusive due to lack of key samples, but indicated one anomalous area (Figure 5). The work was done for Hawkeye Resources Ltd.
- 4) 1983 the property was optioned to Consolidated Paymaster Resources Ltd. who drilled 3 diamond drill holes totalling 1016.8 m between the Vidette Mine and the Savona Workings. Results were largely discouraging although one quartz vein assaying 0.09 oz/ton over 0.5

meters was intersected in hole 83-2. Also, some geochemically high silver values were reported, in particular near the collar of hole 83-3, associated with a pyritic intrusive. Some geochemically anomalous copper values were also reported in this hole within and adjacent to a pyritic intrusive.

- 5) 1984 The property was acquired by Tugold Resources Inc. which conducted geological, geochemical and VLF survey over the area northwest of the Savona Workings. The work was supervised and reported on by J. Murphy. A number of anomalies were determined (Figure 5).
- 6) 1985 Three diamond drill holes totalling 807 feet were drilled on the southwest shore of the lake to test VLF-EM and copper soil anomalies. Results were negative.

7.0 REGIONAL GEOLOGY

The oldest rocks in the area are members of the Upper Triassic Nicola Group which comprises andesite flows with lesser sedimentary rocks. The Nicola Group is generally poorly exposed in the area and occurs as erosional windows within younger, flat lying mafic volcanic rocks and sedimentary rocks of Tertiary age. The Nicola Group has been intruded by a number of small to large bodies of granitic rock of Upper Triassic to Jurassic age.

7.1 Property Geology

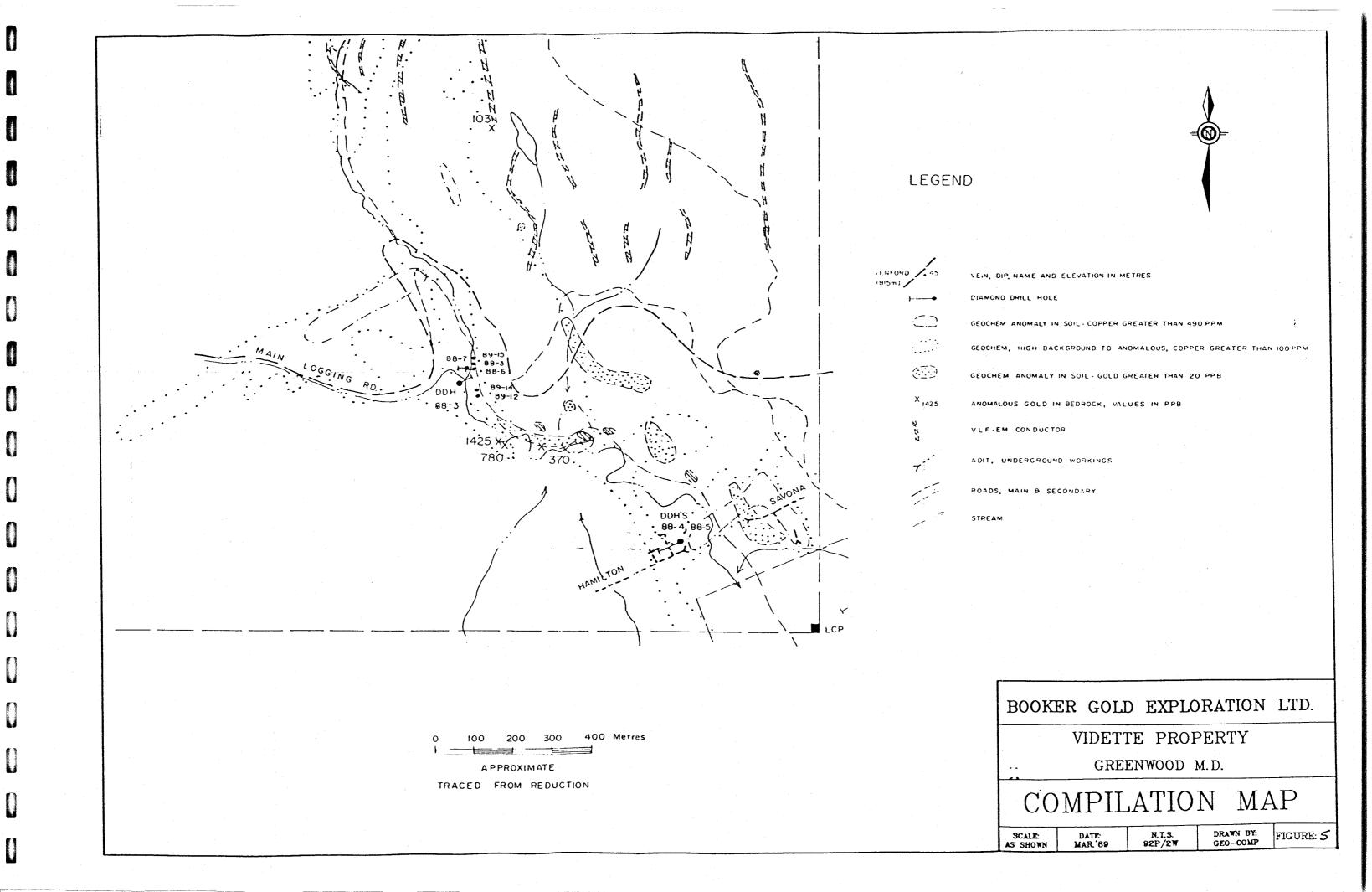
The various veins and showings on the property all occur within Nicola andesites. The Nicola rocks have been intruded locally by several small feldspar porphyry bodies which are probably of syenite to monzonite composition. These intrusives carry some pyrite and are locally anomalous in gold. They may be related to the gold-bearing veins.

Extensive faulting was recorded in the mine area and faults have been grouped into 2 main sets: one set trends northwest and dips southwest and the other set trends east-west and dips northerly. Both fault sets have measured displacements ranging up to 200 ft.

Recent drilling indicates the presence of large quartz filled shears in the Hamilton-Coal Creek Valley. Anomalous gold values have been encountered and further drilling is necessary to delineate these shears and possibly locate ore-grade material. Bedrock depth is being mapped with the intention of locating eroded sulphide zones.

7.2 Mineralization

At the Vidette Mine, gold mineralization in the form of native gold and with tellurides occurs in well defined quartz veins associated with pyrite, lesser chalcopyrite and minor galena. The gold content is commonly high where heavy sulphides One study (1936) indicated the gold was associated with chalcopyrite which was determined in polished sections to postdate pyrite. The gold-bearing quartz veins average 11 in. thick with little wall rock alteration and virtually all the gold is confined to the veins. The veins are commonly ribboned with fine The average grade of the veins was reported graphitic partings. to be a little higher than 1 oz/ton gold, however, the bulk of the production (16,500 tons) came from the Broken Ridge vein which averaged 1.6 oz/ton over 16 in.


The veins strike northwest and dip northeast at an average of 45 degrees, although there is considerable variation in the dip. Prior to faulting, the veins were fairly continuous with strike lengths up to 1200 ft. and dip lengths exceeding 1000 ft. After faulting, the strike lengths of mining blocks were up to 450 ft. while dip lengths were up to 300 ft.

7.3 Geochemistry

The earliest geochemical work was done in 1980 by Kerr, Dawson and Associates on lines spaced 500 m apart and with a 50 m spacing between samples. The line spacing was too great for correlation of data, but the survey did indicate a number of anomalies in copper, mercury and a few small gold anomalies. This work was done on the Vidette 1 claim. Later work by Reid, Kermeen and Murphy was more detailed and is shown on Figure. This work shows a large copper soil anomaly (+100ppm Cu) trending northwest with smaller northeast trends near the Savona workings and near the main logging road. Within this broad copper anomaly are smaller gold anomalies between the Savona Workings and the main logging road. A few spot gold highs also occur to the northwest of this area. Some high gold values also occur in bedrock samples, and one (780 ppb) is in a feldspar porphyry northwest of the Hamilton Workings.

8.0 CONCLUSIONS

1) The Vidette Property is located within the Nicola volcanics with associated feldspar porphyry intrusions. There is a favourable environment for epithermal copper-gold mineralization.

- 2) As a former producer it is apparent high-grade gold mineralization exists in the system.
- Narrow veins produced high grade ore. These veins are severely faulted and run parallel and sub-parallel to the Hamilton fault.
- 4) The present plan is to locate and delineate ore zones of greater widths and continuity.
- 5) Feldspar porphyry intrusives have been located in the area of present drilling. These intrusives are locally anomalous in gold and must be mapped and sampled.

9.0 RECOMMENDATIONS

- The Grid must be extended to the west and all outcrops mapped and sampled.
- 2) Some experimenting should be done with VLF-EM over the Hamilton Creek Valley to check response.
- 3) A further 5,000 feet of drilling is in order to further test known quartz shears and feldspar porphyry.

9.1 Estimated cost of Proposed Phase

5,000 feet of drilling at \$25.00 per foot
Prospecting and Mapping20,000.00
VLF-EM10,000.00
Assaying25,000.00
Management and Report
Contingency20,000.00
TOTAL ESTIMATED COST OF PROPOSED PHASE \$ 215,000.00

10.0 REFERENCES

Economic Geology; Seventy-Fifth Anniversary Volume (1981) Porphyry Copper Deposits, 1981; Titley and Beane

Porphyry Deposits of the Canadian Cordillera, CIM, 1976; Geological Setting of Porphyry Deposits of the Canadian Cordillera, 1976; Ney and Hollister

Structural Settings, 1976; Seraphim and Hollister

Cariboo-Bell, 1976; Hodgson, Bailes and Verzosa

Boss Mountain, 1976; Soregaroli and Nelson

Booker Gold Explorations, 1987; Christopher

Geological Fieldwork, 1987; B.C. Ministry of Energy, Mines and Petroleum Resources

Exploration in British Columbia, 1985; B.C. Ministry of Energy, Mines and Petroleum Resources

B.C. Mineral Exploration Review, 1986; B.C. Ministry of Energy, Mines and Petroleum Resources

Geological Fieldwork, 1978, 1979; B.C. Ministry of Energy, Mines and Petroleum Resources

Assessment Report for Tugold Resources, 1984; Murphy

Report on the Vidette Lake Claim Group, 1988; Miller

Summary Report on the Vidette Project, 1988; Stevenson

CERTIFICATE

I, J. Paul Stevenson, Prospector, of #303 - 475 Howe Street, in the City of Vancouver, in the Province of British Columbia, hereby certify as follows:

- that I am not a Professional Engineer or Professional Geologist;
- 2) that the work covered in this report was completed under my supervision;
- 3) that I have practiced my vocation continuously since 1965 in British Columbia, the Yukon Territories, and the Southwestern United States:

Respectfully Submitted,

The state of the s

1

Paul Stevenson

APPENDIX I

ASSAY DATA

ACME ANALYTICAL LABORATORIES LTD.

B52 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: Dec. 15/81.:

ASSAY CERTIFICATE

- SAKPLE TIPE: COTE

SIGNED BY D. TOTE, C. LEONG, B. CEAR, J. WANG: CERTIFIED B.C. ASSAYERS

J. PAUL STEVENSON & ASSOC. PROJECT VIDETTE FILE # 88-6256

SAMPL	E∉	Cu %	Ag OZ/T	Au OZ/T
V88-6	46-48	.01	.01	.001
V88-6	51-53	.02	.01	.001
V88-6	53-55	.01	.02	.001
V88-6	58-59	.01	.01	.001
V88-6	60-63	.01	.01	.001
V88-6	65-67	. 02	.01	.001
	92.5-93	.01	.02	.001
V88-6	120	.01	.01	.001
V88-6	140-141.5	.01	.01	.001
V88-6	141.5-143	.01		
V88-6	151.5-155.5	.01	.01	.001-
	174-176	.03		
V88-6	176-178	.01		
V88-6	178-180	.01	.01	.001-
V88-6	180-182	.02	.01	.003 -
V88-6	182-183.5	.01	.01	.001 _

ACME ANALYTICAL LABORATORIES LTD.

B52 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: Dec 21 1988

ASSAY CERTIFICATE

- SAMPLE TYPE: Core

SIGNED BY . D. TOYE, C. LEONG, B. CHAN, J. WANG; CERTIFIED B.C. ASSAYERS

STEVENSON & ASSOC. LTD. FILE # 88-6343

S	AMPLE#	Cu %	Ag OZ/T	Au OZ/T
		5	04/1	OL/ I
F	41801	.01	. 01	.001
	41802	.01	.02	.001
	41803	.02	.01	.001
	41804	.02	.02	.001
В	41805	.01	.02	.001
D	41806	. 01	.02	.001
		.01	.01	.001
	41808	. 02	.03	
		.01	.03	.001
	41810	.01	.01	.001
13	41010	.01	.01	.001
P	41811	.02	.01	.001
	41612	.01		.001
	41813	.01	.01	.001
	41814	.01	.01	.001
B	41815	.01	.01	.001
р	41816	.01	.01	.001
	41817	.01	.01	
	41818	.02	.02	
	41819	.01		.001
	41820	.04	.02	
r	41821	.03	. 02	.028
	41822		.02	.003
	41822	.02	.01	.003
	41824		.03	
	3 41825	.04	.02	.001
Ł	9 41023	.04		.001
	41826	.01		.001
	41827	.01		.001
E	41828	.01	.04	.001 -

ACME ANALYTICAL LABORATORIES LTD.

BATE RECEIVED: JAN 25 1989

B52 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: Jan 27, 1989

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HH03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SE CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: CORE AU* AMALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SIGNED BY DANGER CLEONG, B.CHAN, J. WANG; CERTIFIED B.C. ASSAYERS

STEVENSON & ASSOC. LTD. PROJECT BOOKER FILE # 89-0168

SAMPLE#	Cu PPM	Ag PPM	Au* PPB
B 41829	86	. 5	17
B 41830	106	. 4	. 1
B 41831	166	. 4	4
B 41832	182	. 3	2
B 41833	153	. 2	5
В 41834	109	. 2	4
B 41835	9.2	. 1	10
B 41836	70	. 2	4
B 41837	216	. 5	6
В 41838	106	. 3	2
В 41839	75	. 7	460
B 41840	39	. 1	25
B 41841	101	. 3	10
B 41842	41	. 1	2
B 41843	42	. 2	28
в 41844	69	. 1	6
B 41845	116	. 2	2
B 41846	83	. 1	63
Б 41847	30	. 1	7
STD C/AU-R	60	7.4	520

ACME ANALYTICAL LABORATORIES LTD.

BATE RECEIVED: FEB 14 1989

BERNONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

1C? - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HMO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SE CA P LA CR MG BA TI B W AND LIMITED FOR MA E AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: COTE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SIGNED BY A RES. D. TOYE, C. LEONG, B. CHAN, J. WANG: CERTIFIED B.C. ASSAYERS

J. PAUL STEVENSON & ASSOCIATES PROJECT VIDETTE FILE # 89-0323

SAMPLE=	Cu PPM	PA M¶¶	AU* PPB
U 6463	43	. 2	?
U 6464	43	. 1	. 1
U 6465	∘ 33	1	3
U 6466	107	. 1	2
U 6467			3
0 6467	68	. 1	.)
U 6468	70	. 2	4
U 6469	36	. 1	3
U 6470	64	. 2	3
U 6471	128	. ::	. 4
U 6472	73	. 1	1
U 6473	31	. 2	, ₁
U 6474	65	. 1	. 1
U 6475	108	. 1	1
U 6476	66	2	.2
υ 6477	90	. 3	8
บ 6478	89	. 3	7
บ 6479	107	. 2	8
U 6480	28	. 1	3
U 6481	67	. 1	1
STD C/AU-R	61	7.2	510
2.0 0,	-		

DATE RECEIVED: FEB 21 1989 ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH BML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE MODE AND IS BILUTED TO 10 ML WITH WATER. THIS LEACH IS FARTIAL FOR MN FE SR CA F LA CE MG SA TI S W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PFM. - SAMPLE TYPE: COLE AU" ANALYSIS BY ACID LEACH/AA FROM 10 GK SAMPLE.

STEVENSON & ASSOC. LTD. PROJECT VIDETTE FILE = 89-0394

S	AMPLE=		Cu PPM	Ag PPM	Au* PPB
В			32	. 2	24
В	41852		37	. 2	36
В	41853		14	. 1	50
H	41854		21	1	17
R	41855		17	. 1	4
н	41356		16	. 1	18
ŀ.			32	. 1	14
	41858		56	. 1	97
	41859		15	. 1	20
R	41860		38	. 1	56
	41861		10	. 2	132
B	41862		40	. 1	65
			12	. 1	350
	41864		14	. 1	13
В	41866		18	. 1	14
В	41867		11	. 1	4
	41868		26	. 1	12
	41869		63	. 1	95
	41870		26	. 1	35
В	41871		25	1.	105
Ė	41872	W.	21	. 1	11
	41873		32	. }	52
B	41874		16	. 1	18
В	41875		22	. 1	21
В	41876		18	. 1	9
В			12	. 1	10
	41878		28	. 1	160
	41879		11	. 1	27
В	41880	•	12	. 1	10.
Б	41881		15	. }	69
В	41882		8	. 1	22
В	41883		9	. 1	9
B	41884		13	. 1	11
B	41885		25	. 1	. 1
В	41886		15	. 1	14

ACME ANALYTICAL LI DRATORIES LTD.

BA RECEIVED: FEB 21 1989

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: [2] [2] [5]

ASSAY CERTIFICATE

- SAMPLE TYPE: ROCK

SIGNED BY ... D. TOYE, C. LEONG, B. CHAN, J. WANG: CERTIFIED B.C. ASSAYERS

STEVENSON & ASSOC. LTD. PROJECT VIDETTE FILE # 89-0395

SAMPLE#	Cu	Ag	Au
	4,	OZ/T	OZ/T
n 41000	0.3	0.1	.001
B 41888	.03	.01	
B 41889	.02	.01	.001
B 41890	. 04	.01	.001
B 41891	. 45	.02	.001
B 41892	.09	.01	.001

1FT = 30,5cm

				DIAMOND	DRILL	LO	G			HOLE	No. 89 -	12		1 of 1	
Prope	rty Vi	dette	e	NTS 92P2W Claim		Elevation		T	Azimuth		Length		Dip 750		\neg
Coord	inates	55 +	75N	54 + 80W Dip Tests	Advance		· · · · · · · · · · · · · · · · · · ·	De	pth	Date	Collared Jan	14 '89	Date Comple	ted	\neg
Purpo				ct and test HAMILTON FAULT	Drille	ed by G	rizzl	y Dr	illing	Assays	by Acme	Lo	ged by JI	PS	
Inte From	rval To	Recty %	RQD	DESCRIPTION		Sample No.	Inte From	rval	Core Width	Cu	Ag	Au			
20	22	100		boulders, andesite, granite, Qtz shear		140.	rrom	10				·			
22	60	11						<u> </u>	BQ					 	-
49½	60	11		dark green fine granite, andesite, epidote broken across and lengthwise, same as above				<u> </u>	 					· · · · · · · · · · · · · · · · · · ·	
61	63	11				·····			 				·		
		11		ribbons of qtz, some Py lengthwise along core l"qtz filled shear at 66% limonite (red) on shear											
63 69½	69년 81년	11		gtz ribbons along length, Py	<u>-</u>		ļ								√
81½	84½	-11				 -	 		<u> </u>			· · · · · · · · · · · · · · · · · · ·			\subseteq
				ap, CaCOs, py			 		 		·	·			
84½ 89½	89½ 94½	" "		11 11					 				· · · · · · · · · · · · · · · · · · ·		
94½	94%								1						
		- <u>.</u>							1			·	···		
99½	104½			" epidote	[
$-104\frac{1}{2}$	_109½			11 11											
1095	110	11		small lcm caleite stronger					<u> </u>					··	
110	115½	"		ap small 2cm Otz stronger sampled py 2cm		6470				64	.2	3			
1155	121날	."		II .		¥*.							· ·		
121½	126½	"		II .											
126½	131	"		epidote ap											
131	135	11													
135	140	11	٠,	limonite, henatile red on fractures											
140	145	11		ap											्रा
150	155	11		ap "											
155	160	"		11										· · · · · · · · · · · · · · · · · · ·	
160	162	11										······································			
162	167	11	•	n .								•			
167	172	11		ii .								· · · · · · · · · · · · · · · · · · ·	 		
172	194	"		Broken stained epidote										 	
195	197	11		sampled py and epidote		6471				128	.2	4		•	\dashv
	217	"		sampled shear		6469				36	.1	3			
-214 217	221	11 :		sampled shear		6468	 			70	.2	4			
245	247	11		" Peldager P		6467			 	68	.1	3			
226	229	-		F.P. with Otz veinlets at 229 sampled		6465					• ±				
226	- //9			r.r. with Otz veniners at 229 sampled		0403		· · · -		33		3			
												· · · · · · · · · · · · · · · · · · ·			
	L	: 1	, ,		•		•		•						

1FT = 30.5cm

					DIAMOND DRILL	LO	3			HOLE	No	89 - 12		Page 2 o	x2	
	Inte	rval	Rec'y %	DOD.	DESCRIPTION	Sample		rval	Core	ppm						7
	From	To	%	HUU	DESCRIPTION	No.	From	То	Width	Cu	Ag	Au				
	247	250	1 <u>00</u>		F.P. with Otz eyes py sampled	6466				107	.1	2			•]
	250	250 255	11		ap											
	250	270	"		n e e e e e e e e e e e e e e e e e e e											
	270	270 272	11		calcite filled shear py	6464				43	.1	1			* 	
			11		11 11 11											
	28 4 286	275 286 289	11		sampled " "	6463				43	.2	2			*******************	
Γ	286	289	11		1											
					1 ▼ 300 ap											
					-											_
																_
																_
															·····	_
					*											_
																_
					•											_
								,				· · · · · · · · · · · · · · · · · · ·				_
																4
																1
																4
																4
	<u> </u>													<u></u>		_
																4
		ļ														4
											· 					4
																-
									,		····		·			4
											<u></u>					4
	· · · · · · · · · · · · · · · · · · ·															_
															· · · · · · · · · · · · · · · · · · ·	4
										•			·			4
.[· · · · · · · · · · · · · · · · · · ·		_
																4
					•										· · · · · · · · · · · · · · · · · · ·	_
																1
												·				_
. 1			·										-			. •

1FT=30,5cm

	- 18. 		· · · · · · · · · · · · · · · · · · ·	DIAMOND DRIL	L LO	G			HOLE	No. <u>89 - 1</u>	$\frac{1 \cdot \Gamma 1 = 50.5}{\text{Page 1 of } 2}$
Property		idet	te	NTS Claim Vidette	Elevation			Azimuth 2		Length	
Coordina				Dip Tests · Advan		***	Der			Collared	Dip 60 Date Completed
Purpose	s te	st fe	eldsp	par porphyry, intersect fault Dr	illed by $_{ m Gr}$	izzlu D				by Acme	
Interv	'al	Rec'y	ROD	DESCRIPTION	Sample	Inter		Core	ppm		Logged by JPS
		96		† * 	No.	From	То	Width	Cu	ppm ppb Ag Au	
6 ' 3	81			broken core rounded leached volcanic reddish	41851	-		BQ	32		
3 4				leached grey matric Kspar phy	1	1		BQ.		.2 24	
4	2			leached grey matric Kspar phy py maybe some chales " " " darker matrix	41852 853	 		l ————————————————————————————————————	_37	-2 36	
2 44	4			as above	854	 -			14	_1 50	
46	5			as above	855	-			21	· <u>1</u> 17	
	48			leached, extensive by to 571 11-11		 -			17	.1 9	
50)			leached, extensive py to 57' lighter matrix " light coloured phenocrysts	856	 -			16	·1 18	
52					857 858	 			32	.1 14	
54	1			sausseritized (green) feldspar py	638	 _			56	·1 97	
56	:				859	11			15	·1 20	
58					860				38	·1 56	
60				0.1.1.	861				70	.2 132	
				Calcite very light matrix kspat leached rusty	862				40	.1 65	
63 66				felsitix rusty sections of greenish felds porph	863				12	.1 350	
<u> 00</u>				dark matrix py kspar green-blue felds pheno	864				14	.1 13	
				more kspar	865						
73				poor recovery, As py in porphyry	866					3.4	
76				Kspar porph small SiO2 veinlets, some blue groom phase	867	-			18	1 14	
79			1	white leached feldspar	868				11	.1 4	
82		I							26 63	 	
	84			" " " kspar 80' qtz veinlet py epidote A kspar porph with py	s 869 870					.1 95	•
	87			lenatite blocks, fine grained f.p. green sl	870	<u> </u>			26	.1 35	(
	88				872				25	·1 105	
9	91		\neg	6" Otz with " " greenish py in f.p.	0,2				21	.1 11	
	94			f.p., epidote, py	-873			l	32	.1 52	
	97			kspar some white	874				16	.1 18	
				" " "	875				22	.1 21	
	L00 L03	-+		**	876				18	.1 9	
	106			" 1 with py	877				12	.1 10	
	106			" 105 greenish felsite dikepy	878				28	.1 160	
				al agle material	879				11	27	
	12			" " " " " " " " " " " " " " " " " " " "	880	·	+		12		
	15			11 11 11	881		-+	<u>-</u>		60	
5 1	.18			11 11 11	882				15	1	
	T				002				8	.1 9	

1FT=30.5cm

				DIAMOND	DRILL	LO	}			HOLE	No8	9 - 15		Page <u>2</u> o ² _
Inte From	rval To	Rec'y %	ROD	DESCRIPTION		Sample No.	Inte From	rval To	Core Width	ppm Cu	ppm Ag	ppb Au		
	121					41883					<u></u>	9		
21	124			as above, some white phenocryst		884				13	.1	11		
18 21 24	127			black matrix , kspar phy, py as above, some white phenocryst		885				9 13 25	.1 .1	1		
27	128			H P		886				15	.1	14		
2/	120			end of f.p.		000								
				CIRC OI I. P.										· · · · · · · · · · · · · · · · · · ·
46	147			arigite phy epidote brecciated py										
													·····	
								•				-		
		1							1					

				•										
		 		William the for William Control of the Control of t										
		1								······································				
						·			·					
		 					·							
		 							-					<u> </u>
		 												
												· · · · · · · · · · · · · · · · · · ·	 	
_ <u>.</u> :	·					· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		
														
		 												
											,			
														
											·			
										•				
												•		
		1	***************************************											
	†	1												
	 	1												

1FT = 30,5cm

Proper	ty BOOK	KER C	OLD E	XPLORATIONS NTS Claim		Elevation		$\neg \top$	Azimuth	250	Length 3021	Dip 60	
oordi	nates	56 +	50N +	55W Dip Tests	Advanc			Dep	oth	Date	Collared	Date Completed	
	es test	. Ham	ilton	fault	Dri	led by	GRIZZLY	<i>T</i> :		Assays	by ACME	Logged by JPS	
Inte	rval To	Rec'y %	RQD	DESCRIPTION		Sample No.	Inter	rval To	Core Width	Cu %	Ag oz/ton	Au oz/ton	
1	48'			Bedrock green augite porphyry Ca, dess, py					BQ	.01	.01	.001	
	51			" N.S.									
	53			A.P. (Augite porph.) QTz stringers some py broker	1					.02	.01	.001	
I	55			less py						.01	.02	.001	
3 5	58			" N.S.									
8	59			Otz tibbons, Ca, py			11			.01	.01	.001	
										.01	.01	.001	
<u>)</u> 5	63 67			extensove Ca Otz			1			.02	.01	.001	
0	90			Blocky, Some Ca, hemotite stain pn fractures, som	ne epido	te							
						 				.01	.02	.001	
2.5 23	93 134	 		qtz, py, epidote, Kspar in qtz extensive hemotite stain on vertical fractures		 	 						
	134			1½" qtz stringer			 		 	.01	.01	.001	
20	7.47 -	ļ				 	 		-	.01	.01	.001	
40 41.5	141.5 143			epidote, py, hematite Kspar, porphyry, py, qtz veinlets			 			.01	.01	. 001	7
		 				 -				.01	.01	.001	. :
51.5	155.5			qtz, Ca stringers, py		 			 	1.01	•01	.001	
57	168		<u> </u>	qtz stringers, py		 			 	 			
68	174	 	ļ	lighter coloured A.P. oreaks cleanly into shear		 	1			.03	.06	.004	
74	176	 		qtz filled shear, py, some specs chalco		 			 	.01	.01	.002	
76	178			H H H		 			 				
78	180			11 11		ļi			 	.01	.01	.001	
80	182	<u> </u>		ii ii ii		<u> </u>	1		<u> </u>				
82	183.5			11 11						01	.01	.001	
83.5	185.5			gtz micro veinlets, silicious andesite						.01	.01	.001	
8 5.5	187.5		<u> : </u>	3½" veins, ½" veins, py chlorite		ļ			ļ	ļ			
	188.5			silicious andesite, hematite, py 2" vein					 	.02	.01	.001	
88.5	190			hematite in qtz stringers			ļ		 	.02	.02	.001	
90	192			chlorite, slickenside, qtz, py					ļ	4			
9 2	195			11 11 11 11						.01	.02	.001	
.95	200			11 11 11						.01	.01	.001	
200	205			less qtz, small stringers						.02	.03	.001	
06	209		1	qtz, hemotite veinlets, py						.01	.01	.001	<u> </u>
210	212	1	1	n u u u		1	1			.01		.001	

1FT=30.5cm

				DIAMOND DRILL	LO	3 /			HOLE	No	88-6	Page 2_ of
Inte	erval	Rec'v		O TO COLUMN TO W	Sample	Inter	val	Core				
From	То	Rec'y	RQD	DESCRIPTION	No.	From	То	Width	Cu	Ag	Au	
212	223			A.P. N.S.				BQ				
	225			faulted mud seams py, Kspar			1 - 1		02	01	001	
225	228	t		porphyry zone, green tinge to some Feldspar, extensive py					.01	.02	.001	
228	232			" " " "		7			.01	.01	.001	
232	236			H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					.01	.01	.001	
236	240		-	11 11 11					.01	.01	.001	
				andesite with qtz, contact zone	• 1.				01	.01	.001	
240 242	242 252	1		A.P. N.S.								
252	303q	ļ		silicious chlorite, A.P. slickenside					.01	.01	.001	
	258	 		2 - 4 " vuggy qtzveins, py					. 02	.02	.001	
60.5	1-55	 		6" qtz vein, py					.01	.01	.001	
			ļ	4" qtz vein, py					04		.001	
.63 .89	290.5	1	<u> </u>	qtz in A.P.							.028 *	
idded	sample	5			***************************************							
		1	 -	ctz in A B stringer					01	02	.001	
L66 L62	168 164			qtz in A.P. stringer		:			.01	.04	.001	
172	173.5		t	layered qtz & py in A.P.					.01	.01	.01.1	
	-											
	 	1										
	 					-						
			1									
<u> </u>		1	 									
	1	<u> </u>	1									
		 	 									
	1	1										
		1										
		1										
	1	1	1									
		1							• 1			
	1	1										
	1		1									
	1	1										
		1	I						_		•	

		·	· · · · · · · · · · · · · · · · · · ·			DIAMOND	DRILL	Loc	3		٠	HOL	E No	88-7		Page 1	
				XPLORATION	NTS	Claim Vidette		Elevation	7 1		Azimuth 2	250	Leng	th 262!	Dip (0	
	inates				Dip Tests	•	Advance				th 2621.	Date	Collared	S	Date	Completed	
	ses che	ck Hai	<u>miltc</u>	n fault			Drill	ed by G	RIZZLY			Assays	by ACM	₹.	Logged	by _{JPS}	
Inte From	rval	Rec'y %	RQD		DESCRIPTION	l .		Sample No.		rval To	Core Width	Cu	Ag	Au			
	95.5			broken A.P. H	Redrock N S			140.	From	10			**9		·		
5.5				blebs of Py,							BQ	.02	.01	.003			· · · · · · · · · · · · · · · · · · ·
7.5	124			A.P. N.S.										•003			
	126			spec of chalc	co at 124',qtz strin	gers blebs of Pv.	epidote	frag.				.01	.01	.001			
.24	134			ap		j,02000 01 1 ₁ ,	OP LUC CO						•01	•001			
	137				ess & blebs on fract	ures imematite					l	.05	03	.001			
	139			epidote on qt	tz stringers Py	aresymetrice to		 -				.03	.03	.001			
L39	165.5	 		AP, hematite,													
65.5		•		gtz filled sh	near py graphite?			B41829				PPM 86	<u>PPM</u> .5	<u>PPB</u> 17			
	206			A.P. broken	14 7-4			_ 12027					•	<u> </u>			
	209	 			in, epidote fragment	s. some by		30	·			106	.4	1			
	211							··					. 4				
211	213			slickensines,	, Kaolin alteration,	gtz y, py		<u>31</u>				$\frac{166}{182}$	<u>.</u> 3	-4			
213	215			11	n n	H H											
215	217	l		11	11 11	11 11		33°.				1 <u>53</u> 109	.2	4			
217	219			11	II * If	" "+homatit							• -				
219	220	 		71	11 11	" "+hematit	e stain	35 36				92 70	<u>L</u>	<u> </u>			
220	229			A.P. pv. hear	matite stain on frac	tures		30				70	. 4	4			· · · · · · · · · · · · · · · · · · ·
229	230.5				fine grained greenso			27			<u> </u>	21.6					 -
230.5	237.5			A.P.	the granied greenso	ile		37		·		216	.5	6	<u> </u>		 (
37.5	239				light green volc py	on fractures		38				106	.3	2		 	
39	241	1		same	11			47				30	1	7			
241	243			II II				39		-		75	• <u>+</u>	460 *	* *		
43	245		•	11				40				39	<u>.</u> 1	25	· · · · · · · · · · · · · · · · · · ·		
245	247			11				41				101	.3	10		- 	
247	249			H .				42				41		2			
49	251			11				43				42	.1	28		- i.	
51	253			11				44			·	69	.1	6			
253	255			11				45				116	.2	2			
255	256.5			foliated		•		46				83	1	63			
256.5	262				hole squeezing end o	of hole		40				03	<u> </u>	<u> </u>		<u></u>	
																	