ARIS SUMMARY SHEET

District Geolo	ogist, Victoria Off Confidential: 90.04.13
ASSESSMENT REI	PORT 18659 MINING DIVISION: Nanaimo
PROPERTY: LOCATION:	Rainier LAT 50 19 30 LONG 127 15 30 UTM 09 5575998 623977 NTS 092L06W
CLAIM(S): OPERATOR(S): AUTHOR(S): REPORT YEAR: COMMODITIES	Rainier 1-4 Taywin Res. Clarke, T. 1989, 39 Pages
SEARCHED FOR: KEYWORDS:	Zinc Jurassic, Parson Bay Formation, Argillite, Shale, Limestone, Diorite Monzonite, Sphalerite, Galena
WORK DONE: Geoo SOII	chemical 196 sample(s) ;ME 0921 058

and the first of

LOG NO: DH	25	RD.
ACTION:		
FILE NO:		

-U M ZO **2** <Z C E

0 0

REPORT ON

SOIL GEOCHEMICAL AND PRELIMINARY GEOLOGICAL SURVEYS on the RAINIER 1 - 4 CLAIMS

near Port McNeill, Northern Vancouver Island, B.C.

Nanaimo Mining Division NTS Map Area 92L/6 Latitude 50° 19.5' N Longitude 127° 15.5' W

Owned by: Taywin Resources Ltd. SUB-RECORDER RECEIVED by: Taywin Resources Ltd.	NY	
APR 13 1989	BR	C C
M.R. #	AL	
Prepared by: Tiro Clarke, B.Sc. (Geology)	C	A E
Submitted	0	U

Submitted: February 28th, 1989

TABLE OF CONTENTS

<u>Page</u>

1

2

2

2

3

3

3

4 5

5

6

7

9

Summary and Recommendations Introduction Location and Access Property Description Summary of Work Performed Technical Data Regional Geology Group Geology Soil Collection and Preparations Description of Results Discussion and Recommendations

Declaration

FIGURES

		Page
1.	Location index map	11
2.	Regional geology of the Rainier Creek area	12
3.	Locations of Rainier geochemical grid and samples	13
4.	Zn soil geochemical results	14
5.	Ag soil geochemical results	15
6.	Pb soil geochemical results	16
7.	Cu soil geochemical results	17
8.	Au soil geochemical results	18
9.	Interpretation of Zn results	19
10.	Interpretation of Ag results	20
11.	Interpretation of Pb results	21
12.	Interpretation of Cu results	22
13.	Interpretation of Au results	23

Appendix I

30 element ICP and AA analysis results from the Rainier soil geochemistry survey

Appendix II

Statistical analysis for geochemical Zn, Ag, Pb, Cu, and Au

SUMMARY AND RECOMMENDATIONS

The Rainier 1-4 claims comprising the Rainier Group are located in the Nanaimo Mining Division, approximately claims cover part of the Rainier Creek valley.

The group totals 4 units, staked and recorded in June of 1988; they are owned by Taywin Resources Ltd. and J.W. Laird, and are operated by Taywin Resources Ltd.

The Rainier Group is underlain by Quatsino Formation limestones, Parson Bay Formation argillites and carbonaceous limestones, and Island Intrusion diorites. Greenstone bodies are ubiquitous on the property.

A 30cm+ thick stratabound Zn (sphalerite) showing, containing 42.08% Zn has been located on the Rainier 2 claim. Float and subcrop talus bearing sphalerite, galena, chalcopyrite, pyrrhotite, and pyrite have also been located on the Rainier Group. Soil geochemical survey results indicate strong Zn anomalies associated with above normal values of Ag, Pb, Co, and Ni. Co-occurring anomalies of Cu and Au have also been identified.

It is recommended that both the Zn-Ag-Pb-Ni-Co and Cu-Au anomaly groups be trenched. Controls and constraints of mineralizaton revealed by trenching will then provide information and a focus for geological mapping.

-page 1-

INTRODUCTION

Location and Access

The Rainier Group is located in northern Vancouver Island, approximately 30 km SSW of Port McNeill:

> Latitude 50° 10.5' N, Longitude 127° 15.5' W NTS Map Area 92 L/6 Nanaimo Mining Division

The Rainier Group straddles the Rainier Creek valley, approximately 1.5 km below the headwaters of Rainier Creek. Several small streams run through the group and into Rainier Creek.

The valley is moderately steep and is currently being logged.

Property Description

The Rainier Group consists of 4 claims totalling 4 units as follows:

l unit; record No. 2989,
recorded June 14, 1988.
l unit; record No. 2990,
recorded June 14, 1988.
l unit; record No. 2991,
recorded June 14, 1988.
l unit; record No. 2992,
recorded June 14, 1988.

The claims are owned by Taywin Resources Ltd. and prospector J.W. Laird. Taywin Resources Ltd. is the operator of the property.

The claims were staked by J. Laird in June of 1988, on the basis of previously reported mineral showings, as well as a stratabound sphalerite showing and other mineralized float located during reconnaissance prospecting.

Summary of Work Performed

Between October 11th and 14th, 1988, the following work was done on the Rainier Group:

- Soil geochemicl survey: Two men spent 4 days collecting soil samples from a grid; all samples were later analyzed for 30 element ICP and geochemical Au. A total of 5 line kilometres were established.
- Prospecting: One man spent 2 days prospecting along logging roads and Rainier Creek.
- 3. Reconnaissance geological mapping: One man spent onehalf day establishing major geological features of the Rainier Group.

TECHNICAL DATA AND INTERPRETATION

<u>Regional Geology</u> (Figure 2)

The northern Vancouver Island area is underlain by a comformable sequence comprised of, from oldest to youngest, Karmutsen Formation basalts, Quatsino Formation limestones, Parson Bay Formation sediments and carbonates, and Bononza Formation andesitic to rhyolitic volcanics.

The Bonanza volcanics are Early Jurassic; Karmutsen, Quatsino, and Parson Bay Formations are all Late Triassic. Intruding the sequence are Middle Jurassic quartz diorites and quartz monzonites of the Island Intrusion¹. Basalt, feldspar porphyry, and greenstone intrusions are also present in the Rainier Creek area. Their ages are unknown, although the greenstones appear to be most recent.

1. Muller, J.E., Northcote, K.E., and Carlisle, D., 1974. Geology and Mineral Deposits of Alert Bay-Cape Scott Map Area, Vancouver Island, British Columbia: Geol. Surv. Can. Paper 74-8. Several skarn deposits exist in the region, generally hosted by Karmutsen and Quatsino rocks near intrusion-country rock contacts. The most significant are the Merry Widow and Kingfisher deposits which have a combined production of over 3.7 million tons of iron ore, and the Old Sport Mine, which has produced over 2 million tons of predominantly Cu ore, with some Au.

Group Geology

A half day reconnaissance geological examination of the Rainier Group was made. Much of the group is underlain by black argillites, shales, and carbonaceous limestones belonging to the Parson Bay Formation. The northwestern part of the group is underlain by locally bleached Quatsino Formation limestones. In the southwestern region of the group is a diorite(?) intrusion.

The Rainier Group is extensively intruded by greenstone dykes and sills, as well as altered green diorite. Float of more felsic intrusive material was found, but no outcrops were located.

A major northeast trending fault extends down at least part of the Rainier Creek valley. Another lesser northwest trending fault crosses the valley in the Rainier 2 claim.

Known mineralization on the Rainier Group consists of a stratabound sphalerite showing on the Rainier 2 claim. In addition, magnetite boulders have been found near the intrusive contact in the western region of the group. Float containing pyrite, sphalerite, galena, pyrrhotite, and chalcopyrite has also been found in the Rainier Creek and along logging roads in the Rainier valley (J. Laird, pers. comm.).

U

-page 5-

Soil Collection and Preparation

A total of 195 soil samples were collected at 25m intervals along 11 lines on the grid. Nine of the these lines were oriented north-south at 100m intervals; the remaining two lines were oriented east-west, spaced 250m apart in the southwest quadrant of the Rainier Group (Figure 4). The baseline was measured with a hand chain, while all other lines were measured with hip chains. Sample locations were marked with pink and orange flagging tape. Soil samples were collected from the "B" soil horizon and bagged in standard kraft paper envelopes.

All samples were submitted to Acme Analytical Laboratories Ltd., of Vancouver, B.C. Sample preparation involved drying at 60 degrees c and sieving through -80 mesh. Each sample was analyzed for 30 element ICP and geochemical Au acording to the procedure detailed at the beginning of Appendix I.

Description of Results

Complete 30 element ICP and Au atomic absorption results for the Rainier geochemical survey are presented in Appendix I. Statistical analysis for the elements Zn, Ag, Pb, Cu, and Au are presented in Appendix II. Grid plots and anomaly interpretations for these elements are shown in Figures 4 to 8, and 9 to 13, respectively. Contoured anomaly interpretations are based upon the first three standard deviations from the geochemical mean of each element.

Zn values range from 29ppm to 2814ppm. Anomalous values (>521 ppm) are mostly from the southwestern slope of the Rainier valley, in the northern third of the Rainier 1 and southern half of the Rainier 2 claims. Ag anomalies (>0.5 ppm) and Pb anomalies (>37 ppm), as well as low level Ni and Co anomalies, have distributions similar to those of Zn, occurring mostly on the southwestern slopes of Rainier valley. Cu and Au geochemical values range from 5 to 339 ppm, and 1 to 81 ppb, respectively. Anomalous values of Cu (> 99 ppm) and Au (> 16 ppb) have analogous distributions, occurring almost exclusively on the northwestern slopes of Rainier valley.

Discussion and Recommendations

Soil geochemistry indicates distinct two types of mineralization, the more significant being a Zn-Ag-Pb-Ni-Co association which is best defined by Zn distribution (Figure 9). Although the located Zn (sphalerite) showing is on the northwest slope of Rainier valley (Figure 2, sample #6152), the bulk of anomalous Zn, Ag, and Pb soil geochemical values occurring in the bottom, and on the southeast slopes of the valley. Preliminary observations indicate that the mineralization is stratabound and at least 30cm thick. The second type of mineralization revealed by soil geochemistry is a Cu-Au association. The presence of chalcopyrite in nearby float indicates that this may be the mineral primarily responsible for these Cu-Au geochemical anomalies. Potential Cu-Au mineralization may occur as a result of greenstone intrusion/extrusion activity within the Parson Bay, and possibly Ouatsion Formations.

Two surface exploration phases are recommended. The first phase involves trenching over the Zn-Ag-Pb-Ni-Co and Cu-Au anomaly groups in order to examine controls and constraints on the two types of mineralization. The second phase, geological mapping, will establish the Rainier Group geology and provide information concerning the distribution and extent of potentially mineralized areas. Information gained from trenching will serve to focus geological mapping and further prospecting. Further work, such as diamond drilling, is contingent upon the results of trenching and mapping.

U

ITEMIZED COST STATEMENT

WAGES

()

James Laird - Prospector, Project Manager Oct 12/13, 1988 - 2 days 2 days @ \$200.00 per day	\$	400.00
Rennie Dickinson - Soil Sampler Oct. 11/12/13/14, 1988 - 4 days 4 days @ \$100.00 per day	\$	400.00
Alexander Von Kersell - Soil Sampler Oct. 11/12/13/14, 1988 - 4 days 4 days @ \$100.00 per day	\$	400.00
Tiro Clarke - Geologist Fieldwork: Oct 9, 1988 - 1/2 day 1/2 day @ \$165.00 per day Report preparation:	\$	82.50
Jan. 16/17/19(1/2 day)/24(1/2)/ 25(1/2)/30/ Feb.1/6 - 6 days		
6 days @ \$90.00 per day	\$	540.00
6 days @ \$90.00 per day TOTAL WAGES	\$ \$1	540.00 ,822.50
6 days @ \$90.00 per day TOTAL WAGES <u>MEALS AND ACCOMODATIONS</u>	\$ \$1	540.00 ,822.50
6 days @ \$90.00 per day TOTAL WAGES <u>MEALS AND ACCOMODATIONS</u> Food	\$ \$1 \$	540.00 ,822.50 180.10
6 days @ \$90.00 per day TOTAL WAGES <u>MEALS AND ACCOMODATIONS</u> Food Accomodations	\$ \$1 \$ \$	540.00 ,822.50 180.10 43.21
6 days @ \$90.00 per day TOTAL WAGES <u>MEALS AND ACCOMODATIONS</u> Food Accomodations Camp Equipment Rental Oct 11/12/13/14, 1988 - 4 days 4 days @ \$10.00 per day	\$ \$1 \$ \$ \$	540.00 ,822.50 180.10 43.21 40.00

TRANSPORTATION

n

4 X 4 truck rental from R. Dickinson Oct 11/12/13/14 - 4 days	
4 days @ \$35.00 per day	\$ 140.00
Mileage: 150 km's @ \$.10 per km	\$ 15.00
4 x 4 truck rental from J. Laird Oct 12/13, 1988 - 2 days 2 days @ \$35.00 per day Mileage: 370 km's @ \$.10 per km	\$ 70.00 \$ 37.00
Gas	\$ 95.23
	······
TOTAL TRANSPORTATION	\$ 357.23
SAMPLE PREPARATION AND ANALYSIS	
195 x 30 element ICP analysis @ \$6.25 per sample	\$1,218.75
195 x geochemical Au analysis	
@\$4.50 per sample	\$ 877.50
195 x soil sample preparation	
0 \$.85 per sample	\$ 165.75
Statistical Analysis	\$ 50.00
TOTAL SAMPLE PREPARATION AND ANALYSIS	\$2,312.00
TOTAL OF RAINIER GROUP EXPENSES	\$4,755.04

Respectfully Submitted,

Tin Clashe

Tiro Clarke B.Sc., Geology

DECLARATION OF TIRO CLARKE, B.Sc. Geology:

I, Tiro Clarke of #215 - 651 Moberley Road, Vancouver, British Columbia, V5Z 4B2 declare:

- I am a geologist, presently residing at the above 1. address.
- I am a graduate of Geological Sciences from the University of British Columbia, in 1988, with a Bachelor of Science 2. (Hon.) degree.
- 3. I have practiced geology since graduation.
- This report is based upon a geochemical survey, and a one-4. half day reconnaissance geological examination of the Rainier Group.
- 5. I consent to the use of this report in connection with the raising of funds for work recommended in this report.

DATED AT VANCOUVER B.C. this 28th day of February, 1989.

<u>Tiro Clarke</u>, B.Sc. (Geology)

	A LIBY B B B B B B B B B B B B B B B B B B B
JURASSIC	ISLAND INTRUSIONS: quartz diorite, granodiorite, quartz monzonite, quartz feldspar porphyry
TRIASSIC	AND JURASSIC VANCOUVER GROUP
IJBV	BONANZA VOLCANICS: andesitic to rhyodacitic lava, tuff, breccia
НI	HARBLEDOWN FORMATION: argillite, greywacke
UPPER	TRIASSIC
UTPB	PARSON BAY FORMATION: calcareous siltstone, shale, limestone, greywacke, conglomerate, breccia
uīto	QUATSINO FORMATION: limestone
mukk	KARMUTSEN FORMATION: basaltic lava, pillow lava, breccia, aquagene tuff

-page 12-

mukk

ົ້ນັ້້ຄຸດັ

uko

Muynard Muynard

> <u>FIGURE 2</u> Regional geology of the Rainier Creek area

 \mathbf{O}

0

O

-page 16

-page 17-

C

page

page

.

Ô

APPENDIX I

30 element ICP and AA analysis results from the Rainier soil geochemistry survey

C

A ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS STANANCOUVER B.C. V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HNC3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR NN FE SR CA P LA CR NG BA TI B W AND LINITED FOR NA K AND AL. AU DETECTION LINIT BY ICP IS 3 PPN. - SAMPLE TYPE: Soil -30 Mesb AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

JAMES W. LAIRD PROJECT RAINIER File # 88-5506 Page 1

SAMPLE	65K No	CU PPK	Pb PPH	Zn PPK	Àg PPH	NÍ PPH	Co PPH	ND PPM	Fe	As PPH	U PPH	Au PPN	Th PPN	ST PPM	Cd PPM	SD PPN	BÍ PPM	V PPM	Ca ł	P R	La PPM	CT PPN	Ng %	Ba PPM	Ti ł	E PPN	A1 . %	Na %	K Z	W PPN	Au* PPB
R OE 300W R OE 275W R OE 250W R OE 225W R OE 200W	2 4 2 3 2	78 48 63 62 62	9 10 6 2 8	190 131 158 134 122	.3 .4 .3 .5 .5	16 12 12 10 12	40 19 27 23 19	1305 563 898 708 581	5.92 8.51 7.69 7.94 8.24	32 36 32 37 40	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	27 17 23 19 19	1 1 1 1	2 9 4 10 8	2 2 2 2 2 2	75 160 125 142 138	.93 .63 .78 .66 .71	.144 .095 .134 .094 .092	5 4 5 5 4	23 29 27 28 26	.85 .36 .60 .48 .47	16 14 19 19 18	.11 .24 .19 .21 .21	5 6 4 5 7	4.93 6.14 5.45 5.99 5.51	.01 .01 .01 .01 .01	.03 .02 .02 .02 .02	1 1 1 1	8 1 3 5 1
R OE 175W R OE 150W R OE 125W R OE 100W R OE 075W	2 3 2 2 1	46 70 339 36 114	4 3 4 2	118 115 192 88 112	.5 .4 .3 .4 .5	8 11 20 18 13	14 23 47 20 28	500 1131 3936 830 994	9.79 11.49 7.58 7.99 8.54	43 107 84 68 45	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	16 18 39 32 34	1 1 1 1	8 6 3 2	2 2 3 2	164 140 80 132 70	.54 .93 2.22 1.44 2.13	.076 .048 .121 .035 .095	3 3 5 2 3	29 30 27 36 26	.34 .65 1.90 .50 1.15	14 17 34 15 16	.26 .20 .07 .18 .11	4 8 8 4 7	5.37 3.14 3.35 2.41 2.38	.01 .01 .01 .01 .02	.02 .03 .04 .03 .05	1 1 1 1	1 3 16 7 6
R OE 050W R OE 025W R OE 250N R OE 225N R OE 200N	2 2 3 2 2	70 50 39 40 42	9 16 11 4 14	154 219 80 88 92	.4 .3 .4 .4	32 17 11 10 12	45 22 10 12 11	998 1093 284 308 1 323	8.29 7.65 9.41 0.05 9.67	101 73 22 22 25	5 5 5 5 5	ND ND ND ND	1 1 1 2 2	25 19 17 19 17	1 1 1 1	8 2 9 9 11	2 3 3 2 2	93 94 199 214 202	.91 .72 .56 .59 .56	.077 .107 .066 .060 .067	4 5 4 3 3	57 29 40 40 43	.96 .61 .21 .26 .27	16 21 11 12 12	.12 .06 .39 .41 .40	4 5 4 6	4.95 3.11 6.10 5.42 6.37	.01 .01 .01 .01 .01	.02 .04 .02 .02 .02	1 1 1 2	9 1 1 1 1
R OE 175N R OE 150N R OE 125N R OE 100N R OE 075N	2 1 3 3 3	44 39 44 45 88	16 4 8 7 16	87 85 91 92 198	.4 .3 .4 .2 .1	9 11 13 11 21	11 11 12 12 28	272 1 308 1 289 1 306 2744	0.12 10.13 0.57 9.59 8.31	17 22 26 25 92	5 5 5 5 5	ND ND ND ND ND	2 1 2 1 1	18 18 19 19 21	1 1 1 1 1	11 7 9 9 7	2 2 2 2 2 2 2	235 215 223 192 143	.60 .57 .63 .63 .50	.065 .058 .064 .067 .092	3 3 3 3 7	38 38 42 39 40	. 22 . 25 . 24 . 21 . 99	13 11 13 12 25	.44 .41 .43 .39 .20	5 3 4 2 4	5.90 5.34 5.97 6.25 6.08	.01 .01 .01 .01 .01	.02 .02 .02 .02 .02 .04	1 1 1 1 1	4 1 1 1 10
R OE 050N R OE 025N R OE 000N R OE 025S R OE 050S	3 3 4 4 3	75 85 38 37 125	30 17 30 16 25	370 197 225 187 424	.1 .3 .2 .1 .1	24 20 13 17 33	18 27 10 14 27	1455 2806 688 896 2038	7.14 8.05 7.68 8.09 8.22	117 88 62 65 75	5 5 5 5 5 5	ND ND ND ND ND	1 1 1 1 1	53 21 20 21 45	3 1 1 1 3	3 7 7 3 3	2 2 3 2 2	90 139 118 124 99	1.33 .51 .47 .35 .81	.089 .090 .043 .055 .117	12 7 5 7 14	31 38 37 37 29	1.19 .98 .91 .81 1.46	22 25 25 19 38	.11 .19 .17 .14 .13	5 4 5 2 3	3.01 5.89 5.85 4.01 3.12	.01 .01 .01 .01 .01	.04 .04 .02 .03 .04	1 1 1 1	1 6 1 1
R OE 0755 R OE 1005 R OE 1255 R OE 1505 R OE 1755	2 8 7 8	53 24 50 39 31	29 10 9 15 6	326 182 286 204 402	.4 .1 .6 .3	28 28 29 18 33	36 15 27 16 23	2040 545 1567 881 1803	6.86 9.55 9.64 9.36 9.36 9.06	140 76 116 105 93	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	47 21 21 13 48	2 1 2 .1 4	7 8 4 7 8	2 2 2 2 2	81 122 106 124 87	2.27 .19 .16 .11 .55	.146 .056 .076 .095 .097	9 9 10 9 13	33 46 41 48 40	1.36 .79 .88 .72 .62	36 40 48 34 63	.07 .10 .08 .06 .01	3 4 3 2 3	1,70 3.66 1,79 5.00 3.96	.01 .01 .01 .01 .01	.03 .05 .04 .03 .06	I 2 1 4 1	1 6 1 1
R OE 2005 R OE 2255 R OE 2505 R 50E 250N R 50E 250N R 50E 225N	20 20 8 1 5	54 31 33 72 243	32 12 9 4 8	258 179 179 134 256	.2 .3 .3 .4 .2	16 19 31 24 103	15 11 14 19 81	376 1 347 1 538 1 508 1162 1	0.93 0.96 0.41 7.91 3.29	207 76 70 57 164	5 5 5 5 5	ND ND ND ND ND	2 1 1 1 2	18 39 10 21 15	1 1 1 1	7 8 8 6 10	2 2 2 3	136 122 102 120 112	.08 .36 .06 .64 .75	.030 .031 .057 .072 .026	6 4 10 7 5	31 38 45 42 181	.46 .50 1.12 .71 1.21	23 21 37 27 30	.04 .06 .10 .19 .19	2224	4.50 1.50 5.21 5.03 5.83	.01 .01 .01 .01 .01	.04 .04 .04 .03 .04	1 2 3 1 1	1 1 1 5 32
R 50E 200N STE C/AU-S	1 18	104 50	14 39	133 132	.5 6.9	57 68	23 30	1859 1016	6.45 4.05	46 39	5 18	ND 7	1 37	42 48	1 19	8 15	2 22	110 59	1.32	.100 .096	4 39	74 55	2.01	26 177	.09 .07	10 38	84 99	.01 .06	.05 .14	1 12	1 48

PHONE (604) 253-3158 FAX (253-1716

STANDI 21	¥.	a Cr		h 7	n) a	Wi																									
01111 205	PPI	4 PPN	, 11 1 ppi	U U U P9)	N POV	וה שכס		ע ט מכיש	a 16 v 1	2 AS	U	AU	Th	Sr	Cd	Sb	Bí		V C	a P	La	I C	r Ng	Ba	Ti	B	Al	Na	. K	. ¥	Au*
	•••				u na	rra	rr	a rr	3 6	rra	PPR	PPR	PFN	258	PPM	PPN	PPH	P P	X	؛ ؛	PPB	PP	({	PPH	ł	PPN	\$	\$	٤	PPM	PPB
R 50E 175N		3 61	1	1 11	6 .1	21	. 1	9 42	7 6.35	405	5	ND	1	15	1	0	,		0 T								_				
R 508 150N	1	57	19) 11	5.1	22	2	0 45	6 6 05	345	5	พก	1	16	1	7	2	. 0	,	4 .089	8	8.	5.45	12	.17	5	7.82	.01	.03	1	6
R 50E 125N	1	96	11	22!	8 .1	31	2	1 71	6 1 CI	91	5	10 10	1	10	1. 1	,	2	5.	J , 6/	1 .093	1	1	.50	12	.15	3	7.64	.01	.03	1	5
R 50E 100N	. 2	72	35	419	9 1	20	2	1 157	7 7 76	165		สม มห	1	10	- 1	3	1	1:	9 1.35	9 .097	7	31	5 1.25	20	. 09	6	3.55	.02	.03	- 1	7
R 50E 075N		46	29	153	, , , ,	7		1 133 0 254	1 L.T.A.	101	.) 2	ND	· 1	17	1	. 2	2	84	1.01	.091	12	28	1.19	27	.07	. 8	3.01	.01	.04	1	1
	-							10 20	6.33	34	3	NU	1	- 13	1	4	2	100	.28	3 .070	6	28	.45	11	.14	2	6.10	.01	.02	1	1
R 50K 025S	5	26	20	213	1.1	1	. 9	365	8.78	57	ş	ND	1	. 21	1	,	,	171	5 6		,	••				· ·					
R 50E 0505	7	26	23	233	.1	20	1	5 921	9.04	88	ş	มก		14	1		2	111		.039	0	10	.38	16	.16	2	4.36	.01	.02	1	1
R 50E 0755	2	30	21	2814	.3	15	4	681	8 17	255	ŝ	ND.	1	19	1	1	2	123	.15	.099	8	44	. 57	29	.10	2	4.03	.01	.06	3	1
R 50E 100S	4	27	20	256	.1	11	ĥ	145	7 07	66		มบ	1	11	1	2	4	124	1.12	.034	5	28	.40	19	.16	2	3.03	.01	.02	1	2
R-100E 300N	1	88	15	145	1	32	- 14	572	7 75	12	ć	ND ND	,	11	1	2	4	113	.19	.022	6	25	.48	15	.08	2	3.31	.01	02	- 2	1
					••		41		1.13	10		ΝU	1	31	1	0	2	117	1.13	.028	4	54	.86	29	.22	6	5.05	.01	.02	1	3
R 100E 275N	1	106	13	224	.1	40	42	1334	7.47	86	5	ND	1	44	1	2	2	95	1.96	.033	. 6	15	1 29	73	11	ç	3 70				
R 100E 250N	1	60	23	98	.1	21	18	450	8.76	48	5	ND	1	21	1	6	2	135	. 67	.039	ĭ	51	53	10	- 1 1	2	5.19	.01	.02	1	10
R 100E 225N	. 3	55	18	139	.3	20	44	2947	B.31	317	5	ND	1	24	1	2	,	143	63	058			.03	. 10	.23	4	3.01	.01	.03	1	11
R 100E 200N	5	135	14	108	. 2	27	32	534	12.01	205	5	ND	2	21	ī	7	,	181	57	076		71	.15	10	.12	3	4.19	.01	.03	1	3
R 100E 175N	- 4	125	15	161	.4	50	45	1809	9.77	91	5	ND	1	17	1	;	2	130	1 04	.070	2	113	. 40	12	. 30	4	5.03	.01	.02	1	2
													-	• /	•	,	•	120	1.01	.030	2	112	.92	20	. 18	6	4.03	.01	.03	1	31
R 100E ISON	3	148	15	188	.4	71	28	649	10.10	116	5	ND	1	19	1	4	2	105	. 84	.126	3	117	1 48	23	15	,	6 31	01	4.0	1	11
R 100E 125N	. 1	216	22	298	.5	114	56	3440	8.57	111	5	ND	1	33	1	7	2	95	1.40	.107	6	128	2 94	25	.13	6	4 40	.01	. 0 %	1	12
R 100E 100N	1	86	11	121	.5	42	20	572	8.19	61	5	ND	1	21	1	2	2	121	.89	.073	5	84	1 16	17	.07	,	1.10	. VZ	. UJ	4	19
R 100E 075N	1	59	18	110	.3	9	7	178	10.20	42	5 -	ND	2	15	1	6	2	179	20	225		A1	1.10	11	.11	;	3.00	.01	.03	1	40
R 100E 050N	2	11	- 5	44	.4	6	4	46	1.98	1	5	ND	1	42	i	2	2	116	.09	.017	2	4	.06	23	. 48	9 7	4.39	.01	.U2 01	2	1
P 100F 025W	6	75	11	221	•					~~												-			•••	•	. 11		. • 1	J	1
R 1002 0258	6	20	20	231			8	240	11.70	63	ં <u>ડે</u>	ND	1	б.	1	6	2	161	. 06	.061	6	31	.36	17	.03	3	4.49	.01	.04	2	3
P 1005 0505	2	17	2.3.	105	. 1	0	12	325	9.43	89	5	ND	Z	8	1	2	2	138	.11	.076	4	31	. 37	18	.08	2	6.01	.01	.04	1	1
R 1002 0303	د الا	1/	19	103				131	8.02	63	5	ND	1	6	1	. 3	2	163	.07	.036	6	21	. 28	14	.04	2	3.72	.01	.02	3	1
P 1005 0753	1	10	23	111		10	10	298	8.87	50	5	ND	2	5	1	6	2	123	.05	.041	4	36	. 53	19	.05	5	7.01	.01	.02	2	;
K 1005 1003		34	24	210	.1	33	13	807	11.59	57	5	ND	2	10	1	10	2	78	.10	.074	8	48	.55	35	.03	5	5.61	.01	.05	3	1
R 150E 300N	2	75	13	97	.3	19	17	375	10 59	116	5	រក	,	17			•				_										
R 150E 275N	2	103	30	249	.4	20	42	1628	10.05 0 30	126	s s	ND ND	1	22	1	4	4	131	. 49	.065	3	58	.56	16	. 27	1	5.86	.01	.03	2	24
R 1508 250N	2	37	. 17	345		16	15	1146	5 40	53	5	มม แก	1	33	2	3	1	111	.80	.090	10	31	.90	29	.09	8	4.34	.01	.04	1	14
R 150E 225N	3	46	22	604	1	17	15	1070	6 20	152	5	10	1	77	4	2	2	81	1.16	.093	8	27	1.51	27	.08	10	2.64	.03	.08	1	2
R 150K 200N	3	11	15	149		1	15	1073	0.30	100	2	NU	1	33)	2	2	78	. 55	.077	8	30	1.21	21	.06	7	2.29	.02	.05	1	.1
	•		17	112	.1	'	3	222	0.30	. 13	3	ND	1	6	1	2	Z	165	.04	.024	5	25	.36	22	.05	2	5.56	.01	.02	1	1
R 150E 175N	4	37	25	174	.6	10	10	279	8.33	45	5	ND	,	۶	1	2	•	157				••									
R 1503 150N	3	36	24	159	.4	9	9	247	1.74	43	ŝ	ND	1	ç	1	2	2	132	. 89	.029	;	30	.44	23	.04	2	5.91	.01	.02	1	3
R 150E 125N	12	67	50	336		27	36	1185	8 51	395	5	NU	1	10	1	3	4	120	. U /	.028	3	31	.35	22	.05	3	5.69	.01	.02	2	1
R 150E 100N	4	35	26	1053	.1	18	25	917	g 66	170	5	40 140	1	17	1	J .	2	84	.13	.032	15	37	. 92	29	.01	8 :	3.67	.01	.03	1	2
R 150E 075N	18	53	54	672	<u>,</u>	26	22	3500	0.00	210	1	ע א הש	1	21	1	4	2	100	. 51	.072	10	37	.65	20	.09	3 4	1.16	.01	.03	1	4
						20	66	1103	0.0	410	J	ND.	1	21	12	1	3	44	.63	.104	19	27	.78	33	.01	9 2	2.09	.01	.05	1	3
R 150E 050N	9	86	57	853	1.1	19	19	851	7.83	300	5	ND	2	6	1	10	,	97	<u>م</u> د	A57	ø		1.							•	
STD C/AU-S	18	61	43	132	7.0	68	31	1015	4.07	42	20	8	38	18	10	20	4 21	C N	10	1037	ð 20	34	.40	24	.03	76	.82	.01	.03	1	6
										••		•		10	13	4 V	21	00	, 10	. 033	39	22	. 88	179	. 07	41 1	.97	06	14	12	49

SAMPLE	No PPH	CU PPM	PBN PPN	Zn PPX	Ag PPN	Nİ PPM	Co PPH	Nn PPM	Fe X	AS PPM	U PPX	Au PPK	Th PPX	ST PPN	Cđ PPM	Sb PPN	Bi PPM	V Rađ	Ca %	P	La PPN ⁻	Cr PPM	Ng %	Ba PPN	Ti Z	B PPM	Al %	Na ł	Х \$	¥ Rea	Au* PP3
R 150E 023N R 150E 000N R 200E 400N R 200E 475N R 200E 350N	1 1 1 4	82 89 41 47 67	46 52 23 26 35	889 832 202 248 554	.7 .8 .2 .1 .1	21 21 22 25 20	25 26 20 24 22	1075 1224 1064 1419 1966	7.53 7.54 7.31 7.84 8.71	359 363 42 42 307	5 7 5 5 5	ND ND ND ND ND	2 2 1 1 1	6 5 22 21 15	3 3 2 3 7	2 5 2 2 3	2 2 2 2 2 2 2	81 89 141 143 61	.06 .06 1.03 .91 .24	.030 .037 .054 .082 .093	7 8 4 8 18	28 31 36 49 25	.47 .49 3.59 4.04 .73	23 24 16 22 19	.03 .03 .13 .12 .04	5 2 7 8 10	6.43 6.35 4.58 5.90 2.91	.01 .01 .01 .01 .01	.03 .03 .05 .05 .05	1 2 1 1 1	5 2 1 1 13
R 200E 325N R 200E 300N R 200E 275N R 200E 250N R 200E 225N	1 3 1 3 1	102 73 107 50 37	17 18 17 23 20	101 233 88 469 405	.2 .2 .2 .1 .1	18 28 20 17 15	49 28 51 19 15	719 909 755 1280 1066	8.59 7.41 8.86 6.96 6.28	237 107 243 99 62	5 5 5 5 5 5	ND ND ND ND ND	1 1 1 1	43 37 44 30 25	1 2 1 3 3	2 2 2 2 2 2	2 2 2 2 2	117 136 123 79 74	.54 1.77 .60 .86 .85	.041 .077 .047 .095 .091	3 7 3 9 7	27 43 26 26 24	.67 1.49 .70 1.56 1.51	12 18 12 20 17	.26 .17 .28 .07 .06	3 2 9 8	5.20 4.22 5.39 2.77 2.52	.01 .01 .01 .02 .02	.02 .04 .02 .05 .06	1 1 1 1	70 16 72 2 3
R 200E 200N R 200E 175N R 200E 159N R 200E 159N R 200E 125N R 200Z 100N	8 10 2 19 5	69 71 59 84 63	59 52 45 69 47	364 391 276 443 559	.1 .1 .2 .4	19 21 16 29 20	23 27 18 42 22	932 1036 862 1509 1 3053	8.72 9.47 8.62 12.35 8.71	279 342 109 567 237	5 5 5 5 5	ND ND ND ND ND	1 1 2 1	11 11 14 12 7	2 1 2 2 5	2 2 10 5	2 2 2 2 2	82 86 102 97 45	.10 .09 .09 .08 .10	.082 .074 .073 .060 .093	10 13 6 19 24	25 28 31 28 23	.99 1.06 .90 1.32 .60	25 30 24 36 20	.04 .03 .07 .01 .01	3 3 5 5	4.23 4.48 5.34 4.54 2.57	.01 .01 .01 .01 .01	.04 .05 .04 .05 .03	2 1 2 1 1	4 2 1 2 1
R 200E 075N R 200E 050N R 200E 025N R 200E 025N R 200E 025S	4 7 1 1	65 52 28 28 52	45 32 23 22 19	663 354 150 185 241	1.0 .B .3 .2 .3	19 12 10 12 17	16 9 9 10 16	1546 445 1 387 443 573	8.40 10.95 7.39 6.84 7.99	229 107 45 50 64	5 5 5 5 5	ND ND ND ND ND	1 1 1 2	10 8 6 5 8	3 1 1 1 1	4 2 3 2	2 2 3 3 2	76 108 117 101 102	.16 .05 .05 .05 .08	.080 .069 .042 .052 .079	11 4 4 6	24 30 25 28 27	.78 .52 .60 .75 .80	21 25 17 19 22	.06 .04 .08 .10 .09	7 2 2 2 3	3.22 4.41 5.55 5.91 5.45	.01 .01 .01 .01 .01	.04 .03 .03 .03 .03	1 1 3 3 1	2 1 2 1 2
R 200E 0508 R 200B 0755 R 200E 1005 R 200E 1255 R 250E 400N	8 10 7 1 1	33 37 62 54 111	24 38 21 25 24	779 400 256 257 154	.4 .3 .1 .5	25 16 20 29 90	16 10 14 24 32	904 175 677 921 3442 1	7.33 9.63 8.61 8.95 0.83	253 72 72 75 155	5 5 5 5 5	ND ND ND ND ND	1 1 1 2	50 6 19 7 13	11 1 1 1 1	2 2 2 2 2 2	3 2 2 2 2 2	76 183 102 94 126	.95 .02 .16 .03 .18	.046 .028 .049 .080 .066	8 2 6 9 8	46 41 31 36 145	.62 .15 .57 1.27 2.79	45 26 23 40 33	.01 .01 .03 .06 .01	2 2 2 3 2	3.56 3.43 4.62 5.45 7.24	.01 .01 .01 .01 .01	.04 .02 .04 .05 .04	1 2 1 2 1	2 1 2 1 57
R 2502 375N R 250E 350N R 250E 325N R 250E 325N R 250E 300N R 250E 275N	1 1 1 2	104 104 67 108 60	28 33 20 21 20	153 157 165 234 205	.5 .6 .2 .1 .1	92 95 38 49 22	34 33 24 36 21	2917 1 2532 1 1204 4031 1693	1.16 0.96 7.70 7.71 8.51	153 142 47 89 63	5 5 5 5 6	ND ND ND ND ND	2 2 1 1 2	11 10 52 25 42	1 1 1 2 2	2 2 2 2 2 2	2 2 2 3	133 130 134 110 139	.17 .15 .60 .76 1.78	.064 .055 .079 .133 .072	7 6 8 13 7	157 161 63 65 47	2.73 2.83 2.62 2.17 2.42	31 30 22 31 24	.01 .01 .13 .07 .13	2 2 3 4 7	7.25 7.15 5.33 4.76 4.95	.01 .01 .01 .01 .01	.04 .04 .04 .04 .04	1 1 1 1	3 4 2 2 1
R 2508 250N R 2508 225N R 2508 200N R 2508 175N R 2508 175N	1 2 3 2 1	106 72 70 46 49	19 43 38 31 38	97 528 539 334 405	.3 .3 .7 .4	23 27 22 10 12	50 28 25 9 9	716 2187 2082 432 1 376 1	8.51 7.99 7.73 0.63 1.41	251 101 105 191 231	5 5 5 5 5	ND ND ND ND ND	1 1 1 2 2	42 43 41 10 6	1 5 5 1 1	3 4 2 2 2	2 2 2 2 2	115 72 70 105 84	.56 1.49 1.38 .09 .04	.055 .112 .115 .084 .056	3 9 10 4 4	28 33 26 34 38	.79 1.43 1.32 .45 .48	13 31 32 21 16	.25 .05 .05 .05 .05 .03	6 11 14 4 2	5.35 3.02 2.87 1.00 5.57	.01 .01 .01 .01 .01	.03 .05 .05 .02 .02	1 1 1 1	81 16 8 1
R 250E 125N STD C/AU-S	2 18	45 60	29 39	301 132	.6 7.0	10 68	7 30	274 1 1017	1.88	181 43	5 20	ND 7	2 37	7 47	1 18	3 19	2 19	116 58	.04	.048 .094	3 38	32 55	.38 .88	14 175	.04 .07	3 3 37 1	1.37 1.98	.01 .06	.02 .14	3 11	1 51

SANPLE	No PPM	CU PPN	PD PPN	Zn PPN	Ag PP4	NI PPH	Co PPH	Na 22X	īe t	As PPN	U PPM	AU PPH	Th PPM	ST PPM	Cđ PPH	SE PPM	Bi PPM	V PPH	Ca %	P &	La PPX	Cr PPM	Ng %	Ba PPH	Ti %	B PPN	Al X	Na 8	К १	W PPH	Au* PPB
R 2502 100N R 2502 075N R 2502 050N R 2502 025N R 2502 025N R 2502 000N	4 5 3 2 3	54 92 38 29 48	37 33 37 28 44	547 420 302 227 415	.4 .7 .4 .9	20 15 11 8 11	19 16 7 6 9	1679 1339 336 227 4 36	6.26 7.84 8.90 8.24 10.43	125 104 161 145 197	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	8 11 9 11 8	3 2 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	45 83 116 129 95	.13 .10 .04 .05 .05	.092 .094 .093 .098 .082	12 9 3 3 4	29 27 32 27 35	.75 .72 .34 .35 .47	22 27 21 21 21 21	.03 .07 .05 .05	9 5 7 8	2.82 3.61 4.54 2.98 4.82	.01 .01 .01 .01 .01	.03 .04 .02 .02 .02	1 1 2 1 1	1 2 1 1 1
R 250E 025S R 250E 100S R 250E 125S R 250E 150S R 250E 150S R 250E 175S	5 5 6 2 1	30 29 32 42 30	26 31 22 40 31	507 553 130 139 158	.7 .7 .2 .3 .4	21 24 11 8 9	16 15 7 13 7	1212 1126 261 542 260	7.77 7.39 7.45 12.03 12.53	63 61 30 22 25	5 5 5 5 5	ND ND ND ND ND	1 1 1 2	47 45 10 5 5	7 7 1 1	2 2 2 2 2 2	2 2 2 2 2	100 99 84 123 136	1.06 1.03 .05 .06 .05	.068 .065 .038 .087 .058	9 9 6 7 2	39 41 20 20 34	.57 .59 .28 .28 .36	43 44 27 10 10	.08 .08 .04 .10 .13	4 3 6 3 5	4.38 4.26 2.81 5.01 3.67	.01 .01 .01 .01 .01	.04 .04 .03 .03 .03	1 1 2 1 1	1 1 2 1 1
R 300E 450N R 300E 425N R 300E 400N R 300E 400N R 300E 375N R 300E 350N	2 1 3 1 1	69 85 62 70 101	29 30 24 24 22	136 159 148 159 149	.7 .9 .6 1.2 .1	30 34 34 39 18	19 22 18 25 21	649 726 611 826 953	8.34 8.60 9.79 8.22 9.36	35 43 34 34 52	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 2	16 17 13 18 15	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	141 151 132 139 143	.63 .58 .46 .71 .37	.065 .068 .069 .070 .071	5 6 5 6	85 78 96 79 52	1.05 1.17 1.23 1.34 1.11	16 17 15 17 18	.15 .13 .15 .16 .07	6 7 6 8 6	6.84 6.78 7.74 6.41 6.85	.01 .01 .01 .01 .01	.03 .03 .03 .04 .03	1 1 1 1	1 4 1 5 21
R 300E 325N R 300E 300N R 300E 275N R 300E 250N R 300E 225N	1 2 4 3 1	109 66 48 44 17	20 33 40 33 28	246 534 762 759 112	.1 .1 .3 .2 .5	49 19 16 15 7	36 21 18 17 7	4487 1784 1467 1466 302	8.43 7.46 7.22 7.05 8.51	95 126 176 169 59	5 5 5 5 5	ND ND ND ND	1 1 1 2	28 39 27 27 8	2 4 7 7 1	2 2 2 2 2	2 2 2 2 2 2	113 71 64 65 142	1.03 1.36 .75 .72 .09	.131 .101 .093 .088 .023	13 10 11 11 4	72 29 30 28 28	2.23 1.23 .96 .89 .39	30 25 21 20 10	.08 .05 .04 .04 .04	8 13 10 8 4	5.04 2.73 2.33 2.31 3.20	.01 .01 .01 .01 .01	.05 .05 .04 .04 .02	1 1 1 1 1 1	6 11 1 3 1
P 300E 200H R 300E 175N R 300E 150N R 300E 125N R 300E 100N	1 1 2 2	14 13 16 107 26	23 26 21 76 32	100 100 113 684 213	.3 .3 .1 .1	6 6 23 7	5 5 20 9	367 211 211 2372 633	6.89 5.22 8.23 9.35 9.79	48 49 55 115 44	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	5 7 10 30 20	1 1 1 6 1	2 2 2 2 2 2	2 2 2 2 2	123 130 137 92 106	.05 .26 .07 .59 .44	.020 .017 .023 .101 .098	4 4 18 6	23 18 23 32 33	.44 .25 .26 .99 .43	10 9 14 31 15	.05 .06 .06 .06 .06 .03	2 4 2 4 4	2.79 2.84 2.64 4.00 4.33	.01 .01 .01 .01 .01	.02 .02 .02 .04 .03	1 1 1 1	1 3 1 1 5
R 300E 075N R 300E 059N R 300E 025N R 300E 025N R 300E 000N R 300E 025S	3 2 2 2 6	23 28 31 33 57	30 27 32 34 57	184 160 164 193 319	.3 .3 .3 .1	7 9 9 9 21	9 11 10 12 15	704 774 801 956 541	3.22 7.32 8.51 8.29 9.97	39 38 46 48 70	5 5 5 5	ND ND ND ND ND	1 1 1 2	20 8 10 7 8	1 1 1 2 1	2 2 2 2 2	2 2 2 2 2 2	109 83 89 85 111	.44 .08 .10 .08 .05	.090 .078 .080 .090 .055	5 4 5 6	29 28 29 32 39	. 48 . 54 . 57 . 63 . 75	19 13 14 15 29	.03 .03 .04 .03 .05	5 3 5 4 2	3.45 2.80 2.68 3.46 6.05	.01 .01 .01 .01 .01	.03 .03 .03 .03 .03	1 3 1 1	1 1 1 1 2
R 3002 0505 R 3002 0755 R 3005 1005 R 3002 1255 R 3002 1505	3 4 7 9 7	23 37 26 29 16	49 23 42 58 31	187 141 272 250 145	.1 1.2 .4 1.1 .2	10 7 17 19 15	7 8 11 16 10	313 323 1260 1707 671	7.60 8.99 7.78 8.81 7.81	58 46 117 155 136	5 5 5 5 5	ND ND ND ND ND	1 1 2 1	5 26 39 4 8	1 1 2 1 1	2 2 2 2 2 2	2 2 2 2 2 2	109 157 80 68 102	.04 .60 1.09 .05 .15	.029 .044 .064 .062 .067	4 6 4 11 7	29 17 38 47 40	.38 .21 .63 1.34 .57	12 14 29 30 16	.12 .23 .01 .01 .03	2 6 3 2 3	3.52 3.41 2.87 3.77 3.10	.01 .01 .01 .01 .01	.05 .02 .05 .05 .03	1 1 1 2 1	1 2 1 2 1
R 300E 1755 STD C/AU-S	5 17	44 61	41 42	128 132	.5 7.0	19 67	13 30	1110 1057	5.98	54 40	5 21	ND 7	1 38	9 48	1 18	2 16	2 21	38 59	.20	.079	12 39	25 55	.56	18 177	.01	5 37	1.58	.01	.04 .14	1 11	4 53

SAMPLE 		No Ngq	Cu PPN	Pb PPX	Zn PPM	Ag PPN	NÍ PPM	CO PPN	Na PPK	Fe %	A5 PPN	U PPN	Au PPM	Th PPM	ST PPM	Cd PPM	SD PPM	Bİ PPM	V PPX	Ca %	P &	La PPM	Cr PPN	Ng %	Ba PPM	Ti X	B	Al ۶	Na %	K Z	W PPN	Au* PPB
R 350E R 350E R 350E R 350E R 350E	450N 425N 400N 375N 300N	3 4 3 1 1	26 27 29 84 119	24 31 27 13 17	192 205 214 206 284	.1 .3 .2 .1 .1	10 10 9 32 32	8 9 8 21 28	523 526 479 1429 2150	8.14 8.87 9.15 6.94 7.97	47 60 57 54 96	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	5 5 36 38	1 1 1 2	5 7 7 5 6	2 2 2 2 2 2	105 107 110 116 108	.04 .04 .04 .95 1.27	.079 .078 .094 .100 .133	5 5 12 15	31 37 36 46 41	.54 .60 .55 1.76 1.63	14 15 15 26 31	.08 .07 .08 .04 .03	2 2 3 6 7	4.47 4.54 4.81 3.10 3.41	.01 .01 .01 .02 .01	.02 .02 .02 .06 .05	1 2 1 1 1	1 2 1 2 19
R 350E R 350E R 350E R 350E R 350E	275N 250N 225N 200N 175N	3 4 5 6 7	67 34 35 38 41	28 22 24 22 22 22	529 235 231 255 270	.2 .3 .3 .3 .3	20 11 12 14 14	21 13 13 14 15	1632 610 610 657 736	6.93 7.80 7.97 8.12 8.30	138 44 47 48 47	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	33 9 9 8 9	5 1 1 1 1	2 3 7 7 8	2 2 2 2 2 2	68 110 111 105 103	1.05 .15 .13 .11 .13	.098 .060 .066 .071 .073	10 7 7 7 7	27 29 28 29 31	1.14 .48 .46 .50 .52	23 18 18 22 23	.04 .08 .08 .08 .08	8 2 3 5 3	2.57 4.60 4.74 5.36 5.60	.01 .01 .01 .01 .01	.04 .03 .03 .03 .03	1 1 2 2 1	7 3 2 1 1
R 350E R 350E 1 R 350E 1 R 350E 0 R 350E 0	150N 125N 100N 175N 150N	5 4 5 3 5	36 34 72 28 35	26 29 23 28 23	241 404 407 213 242	.4 .1 .1 .2 .3	11 13 21 9 13	13 13 20 9 14	662 1250 1387 504 560	7.96 6.83 8.06 9.06 7.87	47 87 84 62 45	5 5 5 5	ND ND ND ND	1 1 1 1	9 7 19 5 8	1 1 4 1 1	7 7 6 5 6	2 2 2 2 2 2	108 106 65 109 109	.14 .10 .31 .05 .11	.062 .061 .092 .083 .062	7 11 19 5 7	28 33 25 35 29	.46 .41 .96 .59 .52	20 19 21 16 21	.09 .06 .03 .08 .08	3 2 4 2 3	5.05 4.14 2.85 4.65 5.11	.01 .01 .01 .01 .01	.03 .02 .04 .02 .03	1 1 2 1	2 1 2 1 1
R 3508 0 R 3508 0 R 3508 0 R 3508 0 R 3508 0	25N 25S 505 75S	6 6 4 4 6	34 37 32 33 22	22 20 21 14 10	233 244 213 93 101	.3 .4 .3 .6 .6	12 13 9 8 12	13 13 13 9 9	572 627 1095 661 474	7.90 8.07 6.67 6.17 6.82	43 43 60 23 42	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	8 9 24 6	1 1 1 1 1	5 7 8 2 3	2 2 2 2 2 2	110 106 72 71 71	.10 .12 .12 .23 .03	.050 .070 .074 .070 .065	7 7 9 5 3	28 28 24 23 28	.47 .48 .71 .64 .33	19 20 18 16 23	.08 .08 .06 .05 .01	2 3 8 2 2	4.88 5.30 3.92 4.30 2.78	.01 .01 .01 .01 .01	.02 .02 .03 .02 .02	1 1 1 1 1	1 3 1 1 2
R 350E 1 R 350B 1 R 400E 2 R 400E 2 R 400E 2	005 255 50N 25N 00N	9 4 4 6	18 24 90 55 49	13 16 31 13 17	134 187 707 132 108	.9 .8 .2 .1 .2	17 38 20 9 8	7 12 20 8 6	207 1166 5179 407 194	5.68 7.72 7.36 8.47 5.29	92 63 94 33 34	5 5 5 5 5	ND NC ND ND ND	1 1 1 1	5 23 48 8 10	1 13 1 1	3 6 5 3 3	2 2 2 2 2 2	76 54 72 121 123	.02 .81 .84 .07 .03	.046 .078 .137 .063 .029	5 11 17 7 3	16 30 29 22 15	.09 .23 .79 .47 .19	22 55 53 22 18	.01 .01 .03 .03 .01	2 2 4 2 2	1.88 3.15 3.91 3.38 2.41	.01 .01 .01 .01 .01	.02 .03 .03 .02 .02	3 1 1 1	1 4 1 4
R 400E 1 R 400E 1 R 400E 1 R 400E 1 R 400E 1 R 400E 0	75N 50N 25N 00N 75N	5 3 4 11 8	102 36 52 55 59	25 18 25 33 32	324 166 323 555 436	.1 .2 .1 .1 .1	22 12 23 13 18	21 6 20 24 19	779 303 1506 1093 640	8.22 9.08 7.24 8.57 7.76	55 38 67 233 118	5 5 5 5 5 5	ND ND ND ND ND	1 1 1 1	7 12 15 13 8	1 1 3 3 3	6 2 6 5 11	2 2 2 2 3	77 121 87 98 80	.05 .08 .18 .15 .08	.097 .028 .100 .080 .096	8 4 12 10 21	33 41 31 42 36	.72 .74 .68 .67 .64	29 17 31 32 22	.05 .13 .06 .06 .06	2 2 2 2 4	5.71 2.66 5.10 5.32 6.46	.01 .01 .01 .01 .01	.03 .02 .03 .02 .02	1 1 1 1	1 2 1 1 1
R 4COE O R 400E O R 400E O R 400E O R 400E O	50N 25N 00N 25S 50S	8 1 4 3 3	42 23 39 26 24	36 40 24 11 21	214 159 124 86 117	.5 1.0 .1 .5 .3	15 7 10 7 10	12 5 8 5 6	470 309 468 232 242	B.62 7.06 9.04 7.50 7.30	50 22 41 21 25	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	8 5 10 13 11	1 1 1 1	6 2 5 3	2 2 2 2 2	65 126 116 120 83	.02 .04 .08 .13 .10	.049 .029 .038 .090 .052	5 7 8 4 4	27 39 35 30 27	.59 .69 .64 .31 .35	34 31 19 23 18	.01 .08 .11 .16 .04	2 2 2 2 2	5.20 3.15 4.99 4.91 4.50	.01 .01 .01 .01 .01	.03 .02 .02 .02 .02 .02	2 1 3 2 1	1 1 1 2 2
R 400E O STD C/AU	755 -S	4 18	17 61	20 40	94 132	.4 7.1	8 70	7 31	288 1027	9.93 4.18	66 44	5 22	ND B	1 37	4 48	1 19	9 17	2 24	84 60	.02 .50	.091 .097	7 40	36 58	.17	17 177	.01 .07	3 40	3.65 2.01	.01 .06	.02 .14	3 12	2 47

SAMPLE	NO PPN	Cu PPM	Pb PPN	Za PPN	Ag PPN	NÍ PPM	Co PPN	Мп РРМ	Te S	As PPX	U PPX	Au PPX	Th PPM	ST PPM	Cd PPM	SD PPM	Bi PPM	V PPM	Ca %	P %	La PPM	CT PPN	Ng %	Ba PPM	Ti ł	B PPM	Al %	Na %	K K	W PPN	Au* PPB
R 4COE 1005 R 400e 1255	5	18 18	13 7	128 98	.4 .2	16 10	10 5	257 85	5.37 4.73	35 16	5 5	ND ND	- 1 1	7 8	1 1	2 2	2 3	40 56	.04 .03	.037 .020	6 4	25 16	.38 .17	26 17	.02 .05	6 5	3.90 1.91	.01 .01	.03	3	1 1
R 400E 150S R OE 250S 300W B OF 250S 275W	1	5 6 10	5 3	161 55	.3 .3	2 3	2	60 80 180	.27 .68	4 6 30	5	ND ND ND	1	43 15 13	1 1 1	2 2 2	2 2 2	3 30 183	.25	.029 .009 .023	2 2	2 5 10	.08 .04 39	12 7 11	.01 .01	3 7 5	.20	.02 .01	.03 .02 .02	1	1 1 1
R OE 2505 250W	1	9	5	29	.4	1	4	93	3.23	23	5	ND	1	6	1	2	2	98	1.07	.012	2	4	.13	.6	.05	2	1.13	.01	.01	1	1
R DE 2505 225¥ R DE 2505 200¥ B DE 2505 175¥	3 7 6	13 - 32 - 35	- 7 14 15	33 167 191	.3	2 25 32	5 15 15	97 495 560	4.33	39 72 71	5 5 5	ND ND ND	1	10 11 10	1 1	2	2 2	132 102	.30 .05 .07	.018 .031	- 4 6 8	4	.15 .95	11 30 34	.03	4 5 8	1.75 4.79 5.00	.01 .01	.02 .03	1 2	1
R OF 2505 175W	- 6	33	20	185	.1	31	15	535	9.97	71	5	ND	2	10	1	5	2	93	.05	.034	1	44	1.12	34	.12	. 8 -	4.93	.01	.04	5	i
R OE 2505 125W R OE 2505 100W R OF 2505 075W	7 6	32 34	15 24	170 180	.1	28 32	14 15	489 535	9.98 10.49	63 69	5	ND ND ND	2 3	9	1	3	2	92 94 91	.05 :06	.035 .036	8 8	44	1.11	33 35 20	.11 .11	5 8 4	4.87	.01 .01	.04 .04	1 3 1	1 2
R OE 2505 075W R OE 2505 050W R OE 2505 025W	1 7	35 35	14 17	192 180 189	.1 .1 .1	29 32	14 15 16	506 521	9.87 10.18	71 76	. 5 5	ND ND ND	2 2 2	12 11	1 1	23	2	95 90	.06 .06	.033	5 6	45 46 46	1.03	33	.14 .13	5	4.90	.01	.04 .04 .04	2	1
STD C/AU-S	18	60	40	133	7.0	67	30	1014	4.32	44	16	7	37	48	18	18	18	59	. 49	.094	39	55	.92	179	.07	38	2,04	.06	.14	12	48

APPENDIX II

Statistical analysis for geochemical Zn,Ag,Pb,Cu, and Au.

 \mathbf{O}

0

 \cap

 \cap

