ARIS SUMMARY SHEET

District Geologist, Prince George Off Confidential: 89.12.30 ASSESSMENT REPORT 18660 MINING DIVISION: Cariboo **PROPERTY:** Fly LAT 52 22 00 LOCATION: LONG 121 16 00 UTM 5803017 618019 10 NTS 093A06W CAMP: 036 Cariboo - Quesnel Belt CLAIM(S): Fly OPERATOR(S): Geva Res. AUTHOR(S): Allen, D.G. **REPORT YEAR:** 1989, 79 Pages COMMODITIES SEARCHED FOR: Copper, Gold **KEYWORDS:** Jurassic, Lemon Lake Stock, Gabbro, Syenodiorite, Monzonite, Syenite Chalcopyrite WORK DONE: Geological, Geochemical, Geophysical, Physical 4.8 km;VLF EMGR GEOL 500.0 ha Map(s) - 1; Scale(s) - 1:500017.2 km IPOL Map(s) - 2; Scale(s) - 1:500039.1 km MAGG Map(s) - 2; Scale(s) - 1:500028 sample(s) ;ME ROCK SOIL 723 sample(s) ;ME RELATED 10005,10509,15456,15925 **REPORTS:** MINFILE: 093A 002,093A 061

exploration Itd.

GEOLOGY · GEOPHYSI	CS
MINING ENGINEERI	NG
#704 - 850 WEST HASTINGS ST., VAN	COUVER, B.D. V6C 1E1
ACTION: (604) 681-0191	FAX 081-7400
1	
FILE NO:	

GEOLOGICAL, GEOCHEMICAL and GEOPHYSICAL REPORT

on the

LEMON LAKE PROPERTY

(FLY 1, JACK and JILL CLAIMS)

Cari	boo Mining Divisio	on – British (Columbia	
Lat. 52 [°]	21' N.	Long.		. ()
	N.T.S 9	3 A/6W	L B R A N T R E P O	
	fo GEVA RESOURCE	r COMPANY LTD.	OGICASSMEN	
SUB-RECORDER RECEIVED		· · · ·	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
. # \$ VANCOUVER, B.C.			A G	

by

Donald G. Allen, P. Eng. (B.C.) and Carol Ditson, B.Sc.

Vancouver, B.C.

February 28, 1989

M.R. #

TABLE OF CONTENTS

SUMMARY	1
CONCLUSION	1
RECOMMENDATION	2
ESTIMATED COST OF RECOMMENDATION	3
INTRODUCTION	4
LOCATION, ACCESS, PHYSIOGRAPHY	4
CLAIM DATA	5
GEOLOGY Regional Geology Mineral Deposits of the Quesnel Gold Belt Property Geology	5 5 6 6
PREVIOUS WORK	9
1988 WORK PROGRAM Grid Geochemical Survey Magnetometer Survey Induced Polarization Survey	11 11 12 14 15
VLF-Electromagnetic Survey	17

REFERENCES

CERTIFICATES

ILLUSTRATIONS

Figure	1	Location Map	1:10,000,000	After p.	4
Figure	2	Access Map	1:25,000	After p.	4
Figure	3	Claim Map	1:50,000	After p.	5
Figure	4	Cariboo Gold Belt — Regional Geology and Mineral Occurrences		After p.	5

After p. 5

TABLE OF CONTENTS (Cont'd.)

ILLUSTRATIONS (Cont'd.)

Figure	5	Geology of the Central Quesnel Terrane in the Horsefly Area		After p. 5
Figure	6a	Geological Map	1:5.000	In pocket
0	6b	Geological Map	1:10,000	After p. 6
Figure	7a	Grid and Soil Geochemical Sample Sites	1:10,000	After p. 13
Figure	7ь	Geochemistry - Gold	1:10,000	After p. 13
0	7c	Geochemistry - Copper	1:10,000	After p. 13
	7d	Geochemistry - Silver	1:10,000	After p. 13
	7e	Geochemistry - Zinc	1:10,000	After p. 13
	7f	Geochemistry — Lead	1:10,000	After p. 13
	7g	Geochemistry - Arsenic	1:10,000	After p. 13
Figure	8a	Magnetic Contour Map	1:10,000	After p. 14
	8b	Magnetometer Survey Profiles	1:5,000	In pocket
	8c	Magnetometer Survey Profiles	1:5,000	In pocket
Figure	9a	Induced Polarization Contour Map-Apparent Resistivity N=1	1:10,000	After p. 16
	9Ъ	Induced Polarization Contour Map - Chargeability N=1	1:10,000	After p. 16
	9c	Induced Polarization Contour Map-Apparent Resistivity N=2	1:10,000	After p. 16
	9d	Induced Polarization Contour Map - Chargeability N=2	1:10,000	After p. 16
	9e	Induced Polarization Survey Profile N=1	1:5,000	In pocket
	9f	Induced Polarization Survey Profile N=2	1:5,000	In pocket
Figure	10	VLF-Electomagnetic Survey Profile	1:5,000	After p. 18
Figure	11a	Geochemical Compilation Map	1:10,000	After p. 18
	11b	Geophysical Compilation Map	1:10,000	After p. 18

TABLES

Table ITable of Geological Events for Lemon LakeAfter p. 5Property and Adjacent Areas
(After R.L. Morton, 1975)

Table II

Rock Sample Descriptions

After p. 18

TABLE OF CONTENTS (Cont'd.)

APPENDICES

APPENDIX I Analytical Results APPENDIX II Affidavit of Expenses

SUMMARY

Geva Resources Co. Ltd. holds the Lemon Lake property, comprising the FLY 1, JACK and JILL claims totalling 40 claim units in the Cariboo Mining Division. The property is situated nine kilometres east northeast of Horsefly, B.C. and is readily accessible by road.

The property is in the Quesnel Trough, which comprises a thick sequence of Upper Triassic-Lower Jurassic volcanic rocks which forms a northwest-trending belt extending much of the length of British Columbia. This belt contains a number of coeval alkalic intrusions (alkali gabbro to syenite), which are hosts for important copper-gold deposits throughout the belts. The Lemon Lake stock is one of these stocks.

The claims cover the northern part of the Lemon Lake Stock, an alkalic stock which locally hosts low grade copper mineralization. The property was explored for copper in the 1960's and 1970's and again for copper \pm gold in 1986. The best copper values obtained in a 1974 drill hole were 21 metres grading 0.25% copper. Weakly anomalous gold values (up to 210 parts per billion) were obtained in drilling conducted in the area surveyed in this study.

In 1988, a program of geological mapping, geochemical surveys and geophysical surveys were conducted on the Lemon Lake property. Results of the work revealed a large area of interest defined by multi-element soil geochemical data and semi-coincident induced polarization anomalies. At least two targets, within this area, have not been tested by previous drilling and are recommended for follow-up drilling. A two phase exploration program is proposed to fully evaluate the Lemon Lake property.

CONCLUSION

Geochemical and geophysical surveys on the Lemon Lake property have outlined a large area of multi-element soil geochemical anomalies. Within this area are two high priority targets which have not been tested by previous drilling:

- an area of 600 by 300 metres with anomalous copper values along with weaker and/or scattered anomalous lead, zinc and gold values, with associated induced polarization anomalies, and
- 2) the zone of copper mineralization (21 metres grading 0.25% copper) encountered in a percussion drill hole L-4 is open to the north. Both should be tested by drilling.

RECOMMENDATION

A two phase exploration program is recommended to further evaluate the Lemon Lake property. Phase I will comprise preliminary diamond drilling of the two high priority target areas. Should results be favorable, then a follow-up program of additional diamond drilling would be warranted to fully define any zones of copper-gold mineralization encountered.

ESTIMATED COSTS OF RECOMMENDATION

Phase I Preliminary drill testing of priority targets.

Salaries

	TOTAL PHASE I	\$70	6,000
	Subtotal Contingencies	\$ 69	9,400 6,600
Room and board	40 man days @ \$50/day		2,000
Assay	200 samples @ \$17/sample	:	3,400
Drilling	1500 metres @ \$100/m (all incl.)	50	0,000
Bulldozer – drill site prepartaion	20 hours @ \$100/hr.	:	2,000
Geologist Assistant	25 days @ \$400/day 20 days @ \$200/day	\$ 8 2	3,000 4,000

Phase II Provision for additional diamond drilling.

\$150,000

INTRODUCTION

The Lemon Lake property, located near Horsefly, British Columbia, consists of 40 units, known as the FLY 1, JACK and JILL claims, staked over an early Jurassic zoned alkalic stock that was explored for copper porphyry mineralization in the mid 1970's and more recently for gold and copper. Similar alkalic intrusions throughout the Quesnel Trough, host or are related to copper-gold mineralization and are important exploration targets. Two of the most significant deposits in the immediate Quesnel River area include the QR and Cariboo Bell deposits.

During May and June of 1988, A & M Exploration Ltd. was retained by Geva Resource Company Ltd. to conduct a program of geochemical and geophysical surveying combined with geologic mapping. This program was designed to test for porphyry copper-gold and/or QR-type mineralization and to further investigate a series of skarns mapped by Hudson's Bay Oil and Gas Company in 1975. Immediately prior to commencement of the exploration program, the adjoining JACK and JILL claims were staked to expand the property across an area of promising alteration indicated by previous mapping (Morton, 1985).

LOCATION, ACCESS AND PHYSIOGRAPHY

The Lemon Lake property is located in the Cariboo Mining Division approximately nine kilometres east-northeast of the village of Horsefly, British Columbia (Figures 1 and 2). The claims lie between Horsefly Lake on the northwest, Chain Lake on the east and Gibbons Creek which roughly parallels much of the southern claim boundary.

Access from Horsefly is northerly, then easterly along paved and stabilized gravel road toward Likely, B.C., then southeasterly toward Lemon Lake. The 8500 logging road crosses the claim block in a northeasterly direction. Numerous cat roads and skidder trails cross the claims; most are driveable, providing excellent access to most portions of the property. Driving time from Horsefly is approximately 30 minutes.

N.T.S. 93 A / 6

GEVA RESOURCE CO. LTD. LEMON LAKE PROPERTY Cariboo Mining Division - British Columbia

ACCESS MAP

FIGURE 2

Topography is, for the most part, gently rolling with elevations ranging from about 1036 metres above sea level near the eastern edge of the FLY 1 claim to approximately 800 metres above sea level at Horsefly Lake. Forest cover consists of primarily open stands of spruce, fir, pine, birch and poplar. Steep south-facing slopes can support locally dense undergrowth. Part of the timber cover on the western portion of the property has been logged and the area cleared for grazing.

CLAIM DATA

The Lemon Lake property consists of three modified grid system claims totalling 40 units, all located within the Cariboo Mining Division. Pertinent data is detailed as follows:

		Record	
<u>Claim Name</u>	Units	Number	Expiry Date
FLY 1	20	8970	Jan. 13, 1992
JACK	8	9200	June 15, 1992
JILL	12	9201	June 15, 1992

Claims are shown on B.C. Ministry of Energy, Mines and Petroleum Resources Claim Map 93 A/6W, a portion of which is shown on Figure 3.

GEOLOGY

Regional Geology

The Lemon Lake claims are situated within the Quesnel Trough (Campbell and Tipper, 1970), a thick northwesterly trending sequence of fault bounded upper Triassic and lower Jurassic submarine volcanic and sedimentary rocks of the Takla Group (Figures 4 and 5). These rocks are intruded by a number of small early Jurassic alkalic stocks which range in composition from pyroxenite and gabbro to syenite. These intrusions are known hosts for gold and copper-gold deposits (Fox, 1987). The Cariboo-Bell, QR and Maud Lake deposits, located 35, 50 and 60 kilometres, respectively, to the northwest, are typical examples in similar geologic settings.

GEVA RESOURCE CO. LTD. LEMON LAKE PROPERTY Cariboo Mining Division - British Columbia

CLAIM M A P exploration ltd. A۰

 \bigcirc

 \bigcirc

 \bigcirc

N.T.S. 93 A / 6

GEVA RESOURCE CO. LTD. LEMON LAKE PROPERTY Cariboo Mining Division - British Columbia

CARIBOO GOLD BELT - REGIONAL GEOLOGY AND OCCURRENCES

Figure 5. Geology of the central Quesnel terrane in the Horsefly area.

(After Pantelyev and Hancock, 1989)

TABLE I

TABLE OF GEOLOGICAL EVENTS FOR LEMON LAKE PROPERTY AND ADJACENT AREAS (After R. L. Morton, 1975)

YOUNGEST

	BURIAL STAGE	Zeolite facies or lower greenschist facies meta- morphism (variable throughout area).
ILCS	Ч У W W W Secondary Silicates H U	Albite, analcite, Na-zeolites, epidote, carbonate, chlorite.
VOLCAN	Divides and Sulphides	Hematite, pyrite, trace chalcopyrite.
II S	VOLCANIC CENTRE	Nepheline tephrite dykes.
CYCLE	STAGE	Nepheline syenodiorite intrusive breccias Nepheline lapilli tuff to tuff-breccia (north of Horsefly Lake).
	LATE VEIN STAGE	Zeolites-carbonate-epidote.
OLCANICS	(HYDROTHERMAL EQUIVALENT OF	Carbonate-chalcopyrite.
	DOME STAGE)	Perthite-aegerine or actinolite.
	DOME BUILDING STAGE	Syenite stocks and dykes. Laharic breccias. Orthoclase lapilli tuff to tuff-breccia (east of Lemon Lake Property).
	「】 Secondary WW Silicates 日日 日日	Ortholcase, albite, biotite, epidote, zoisite, aegerine, zeolites, scapolite, chlorite, apatite, carbonate.
YCLE I	요 여 0xides and 슈 Sulphides	Chalcopyrite, bornite, traces of tetrahedrite and chalcocite; pyrite, arsenopyrite, magnetite.
0	VOLCANIC CENTRE STAGE	Trachybasalt flows. Syenodiorite-monzonite breccias, zoned syenodiorite to syenite stock; felsic lapilli tuff to tuff-breccia, felsic volcaniclastic sediments and reefoidal limestone.
	PLATFORM STAGE	Olivine and alkali basalts. Olivine gabbro and alkali gabbro sills and dykes, mafic lapilli tuff and tuff-breccias, mafic volcaniclastic sediments, minor limestone and sandy shale.

Mineral Deposits of the Quesnel Gold Belt

In addition to the well known placer gold deposits, two significant mineral deposits occur in the Quesnel River area. The QR prospect is a gold discovery currently being explored by Q.P.X Minerals and Placer Dome Inc. Reserves reported by Dome are 1,100,000 tons grading 0.21 oz/ton gold (Preto, 1988). The Cariboo Bell deposit is a large tonnage low grade copper-gold deposit currently being explored by Imperial Metals. Reserves are 128 million tons grading grading 0.31% copper and 0.012 ounces per ton gold including 3 to 5 million tons grading at least 0.2 ounces per ton gold..

Copper <u>+</u> gold mineralization is widespread in the Quesnel Trough, a number of which are shown on Figure 4. Several of the porphyry copper prospects and deposits that occur in association with alkalic intrusive rocks have been noted to contain significant gold values.

Property Geology

The FLY 1 claim roughly covers the northern part of a concentrically zoned alkalic stock, the "LEM Stock" (Fox and Payne, 1986). Compositions within the stock range from pyroxenite and alkali gabbro at the south through hornblende diorite, syenodiorite and finally monzonite at the northernmost exposures. Compositional variation appears to result from magmatic segregation during emplacement as illustrated by hornblende diorite breccias with gabbro and pyroxenite clasts and by an aphanitic chill margin along much of the monzonite intrusive contact. Surrounding the LEM Stock on the north and east are massive flow basalts and basalt breccias with minor intercalated greywacke and argillite to the east. Lithologies are more fully described below in order of decreasing age.

Basalt (Unit 1, Figure 6): Massive flow basalts, which underlie the northern and eastern portions of the FLY 1 claim, are invariably porphyritic. Phenocrysts consist primarily of 1 to 5 millimetre pyroxene crystals and smaller (1 millimetre or less) plagioclase laths with rare bluish nepheline phenocrysts. Basalt is locally amygdaloidal with crystalline epidote filled vesicles. Faint flow banding is often visible on weathered surfaces.

.

Disseminated pyrite is common in basalt; thin films of smeary pyrite, occasionally with minor amounts of chalcopyrite, occur locally as fracture coatings.

Pillow basalts are present near the eastern claim boundary; argillite and metagreywacke are intercalated with flow basalts in the same vicinity. Minor basaltic breccia (altered basalt clasts in a basaltic matrix), present to the north, most likely represent individual flow bottoms.

Alteration and metamorphism in basalts range from diagenetic (zeolite facies metamorphism) to lightly moderate propylitization with hornfelsing occurring proximal to intrusive contacts. Rare silicification is also present locally.

Gabbro and Pyroxenite (Unit 2): These dark gray to black rocks, which consist primarily of plagioclase and black pyroxene, show a considerable degree of compositional variation ranging from gabbro to pyroxenite as the pyroxene/plagioclase ratio increases. These rocks are usually coarse grained with large, often poikilitic, pyroxene crystals averaging 0.5 centimetres in size. Gabbros are usually moderately to heavily chloritized and can contain small amounts of secondary biotite. No sulphides were noted in these rocks.

On the north, gabbro and pyroxene have been forcefully intruded by hornblende diorite resulting in a wide zone of brecciation which parallels much of the lithologic contact.

Hornblende Diorite (Unit 3): Light to medium gray hornblende diorite shows an extremely variable degree of crystallinity, ranging from medium to extremely coarse grained with poikilitic hornblende crystals up to 2.5 centimetres in length. Ubiquitous schlieren, which are approaching gabbroic composition, appear to result from better assimilation of gabbroic xenoliths away from the brecciated contact zone.

Light to moderate propylitic alteration is present throughout the unit, while light potassic alteration only occurs in proximity to syenitic intrusions. No mineralization was found to be associated with these rocks.

Syenodiorite (Unit 4): Syenodiorite is present in an easterly trending belt that crosses the central portion of the FLY 1 claim, intruding hornblende diorite on the south and basalt to the northwest. This phase of the intrusive has a distinctive mottled appearance resulting from the presence of pyroxene and less common plagioclase phenocrysts set in a medium grained matrix of gray plagioclase, pyroxene, golden biotite and potassium feldspar. No visible sulphides were detected in syenodiorite; however, clusters of magnetite crystals up to 1 centimetre in size are present.

Syenodiorite has patchy propylitic alteration, potassic alteration where cut by syenitic stringers and dykelets, and very minor local silicification.

Monzonite (Unit 5): Monzonite, which occurs in the north-central portion of the FLY 1 claim, is a fine to medium grained, gray to dull pinkish-gray, equigranular rock that has intruded both syenodiorite and basalt. It is composed of nearly equal portions of plagioclase and potassic feldspar with black pyroxene and biotite.

Where monzonite becomes a narrow dykelike body at its westernmost exposures, it is an aphanitic, massive medium-gray rock that often contains up to 5% pyrite with minor chalcopyrite, usually as blebs, stringers and fracture coatings. Local potassic alteration is present with minor propylitization and silicification.

Syenite (Unit 6): Salmon-pink colored, medium to coarse grained syenite has intruded all other lithologies on the property as stringers and dykes. Previous mapping (Morton, 1975) shows an elongate syenite stock outcropping approximately three kilometres northeast of Lemon Lake which appears to have intruded into the core of the zoned intrusion where it was penetrated by percussion drilling some 60 metres below monzonite.

Syenite is composed primarily of potassic feldspar (60-70%) with plagioclase and minor amounts of pyroxene, amphibole, biotite and nepheline and often contains a small percentage of epidote as crystalline clusters and fracture coatings.

One dyke-like body of latite porphyry was identified, crosscutting hornblende diorite at the extreme western edge of the grid area.

It should be noted that most of the property is covered with a thin veneer of glacial till with up to three metres thickness visible in road cuts. Outcrops are rare and almost entirely confined to hilltops and road cuts.

Alteration on the property consists of rare diagenetic (zeolite facies metamorphism) in basalts at the northwestern portion of the FLY 1 claim, to propylitic alteration over most of the claim area, overprinted by a large zone of intermittent potassic alteration. This potassically altered area is a northwesterly trending zone extending from the baseline at line 1400 N to the eastern edge of the property between lines 700 and 1000 N. Rare local silicification occurs sporadically along the margin of the potassic altered zone.

Propylitic alteration appears to be related to emplacement of hornblende diorite, syenodiorite and monzonite into the zoned complex while potassic alteration has resulted from the later intrusion of syenite. The potassic zone is likely the surface expression of the unexposed syenitic intrusion that was penetrated in the 1975 percussion drilling program (Morton, 1975). It should be noted herein that potassic alteration was defined, for mapping purposes, by the presence of visible secondary biotite and potassic feldspar. No staining or other chemical tests were performed.

The LEM Stock is cut by a northwesterly trending fault, visible on the topographic map. As a prominent lineament extending from Lemon Lake, separating the two topographic high points on the property. Surface traces are marked by swampy ground.

PREVIOUS WORK

The first mention of exploration on the Lemon Lake property occurred when Taylor-Helicon British Columbia Exploration selected the Lem Stock environment as a target for reconnaissance prospecting and staked the area (GI claims). A small portion of the western FLY 1 claim was included in

their subsequent 1966 work program (Ware, 1966); however, the identified target lay just outside the present property boundary. Sometime later, the property was restaked as the ARON and FLY claims and optioned to Silver Standard Mines. Records indicate that, by 1971, limited geologic mapping, geochemical and induced polarization surveys, and extensive percussion drilling, trenching and stripping had been accomplished by Silver Standard (B.C. Dept. of Mines - GEM, 1969-1971). Very little information is available on their findings.

Sometime prior to September, 1973, when the property was optioned to Hudson's Bay Oil and Gas Company Limited, it was restaked as the FLY and LEM claims. During 1983 and 1984, Hudson's Bay conducted geochemical, magnetometer and induced polarization surveys, geologic mapping and percussion drilling to evaluate the property for copper porphyry mineralization.

Weakly to moderately anomalous copper (up to 21 metres grading 0.25%) values along with weakly anomalous amounts of lead (up to 80 parts per million), zinc (up to 550 parts per million) and silver (up to 4.5 parts per million) values were obtained in all holes. Best copper values obtained were in hole L-4 which intersected 37 metres grading 0.19% copper including 21 metres grading 0.25% copper. Hegge (1974) concluded that "fair to moderate copper mineralization is associated with potassium feldspar altered biotite monzonite which erratically intrudes syenodiorite in the north part of the tested area. The area near 74L-4 is considered encouraging and further drilling is warranted to the north and west where no previous drilling has been conducted."

An eleven year hiatus in the record of exploration at Lemon Lake follows, terminating with staking of the LEM 1-4 claims in October, 1985. During 1986, Orbex Industries Inc. conducted geochemical and geophysical surveys designed to explore for QR type gold mineralization. The survey succeeded in outlining a zone of anomalous gold coincident with an induced polarization anomaly in the northwestern portion of the present grid area. Three subsequent diamond drill holes (totalling 448 metres), collared in the anomalous area, intersected weakly anomalous gold values ranging from 50 to 210 parts per billion. Payne (1987) concluded that the nearby gold soil anomalies, because of glacial-fluvial reworking, possibly are not related to a nearby bedrock source. The claims were subsequently allowed to expire. No assessment work was filed and the foregoing information is not a matter of public record.

In January of 1988, the FLY 1 claim was restaked as the ground was still considered a likely target for porphyry copper-gold and/or QR type mineralization. The JACK and JILL claims were staked in May to expand the property across an area of promising alteration indicated by Hudson's Bay Oil and Gas Company's geologic mapping.

1988 WORK PROGRAM

The subject exploration program was conducted by C. Ditson, geologist, and an A & M Exploration Ltd. crew between the dates of May 24 and June 20, 1988. The program consisted of grid establishment with geologic mapping, geochemical and magnetometer surveys over the entire grid and limited induced polarization and VLF-electromagnetic surveying over designated areas of interest.

Grid

A central baseline was instituted utilizing a point one kilometre due east of the FLY 1 legal corner post as the point of initiation (00 N, 00E). From this point, a 1900 metre northerly trending baseline was surveyed. Crosslines were turned off the baseline at right angles to the east and west, spaced at 100 metre intervals, commencing at 400 N. Stations are marked at 25 metre intervals along the baseline and all crosslines. All lines were surveyed with compass and hip chain. The baseline and 18.5 kilometres of crossline were cut to facilitate induced polarization surveying. The remaining lines were flagged only.

A total of 37.25 kilometres of crossline and 1.9 kilometres of baseline were instituted for a total of 39.15 line kilometres of grid.

Geochemical Survey

A total of 723 soil samples were collected from the B horizon using a steel bladed shovel. Samples were obtained from depths of 5 to 50 centimetres and placed in Kraft paper bags. Site specific information was collected on specially prepared forms. All samples were taken to Acme Analytical Laboratories Ltd. in Vancouver, B.C., where they were analyzed for 30 elements using the standard I.C.P. technique and for aqua regia extractable gold by atomic absorption. Twenty-eight rock samples were also collected and analyzed by Acme for 30 elements and gold as above. Rock sample sites are plotted on Figure 6 and soils sample sites on Figure 7a. Analytical results are incorporated into this report as Appendix I.

Statistical analyses were performed on selected elements, with the following results:

Element	Minimum	Maximum	Mean	Standard Deviation
Gold	0 ppb	405.0 ppb	11.5 ppb	27.1
Silver	0.1 ppm	3.5 ppm	0.3 ppm	0.2
Copper	5.0 ppm	5168.0 ppm	181.9 ppm	293.8
Lead	2.0 ppm	79.0 ppm	13.6 ppm	9.2
Zinc	1.0 ppm	1187.0 ppm	191.1 ppm	116.7
Arsenic	2.0 ppm	152.0 ppm	5.1 ppm	6.5

Survey results from the above elements are plotted in parts per million (ppm) or parts per billion (ppb) on Figures 7b to 7g, on these plots, analytical values up to and including the mean value are equated to background level mineralization. Data occurring between the mean and the mean plus one standard deviation are considered to be "elevated" while values that lie between this point and the mean plus two standard deviations are considered "Anomalous" data are those values which exceed the foregoing.

Gold on the Lemon Lake property shows a broad arcuate pattern of elevated values (Figure 7b and 11a) that extends from the west side of line 11 N, in a northeasterly direction, to cross the baseline at approximately 18 N, then trends southeasterly to the eastern end of line 7 N. Anomalous gold values (up to 405 ppb) occur sporadically along this trend with most of the values in excess of 100 ppb occurring in the northwestern quadrant of the Fly 1 claim. Elevated and anomalous gold values occur either within basalt or within a few hundred metres of basalt intrusive contacts. The elevated gold values halo a large zone of elevated and anomalous copper situated immediately to the south. A comparison of a plot of gold values in the western part of the grid area with those obtained by Payne and Fox (1987) show a very rough correlation. It is interesting to note that a higher range of values and larger number of anomalous values were obtained in this study (1 to 405 ppb, 27 samples greater than 30 ppb, versus 1 to 106 ppb, 13 samples greater than 30 ppb).

Copper is unusually high at Lemon Lake with background levels up to 182 ppb (Figure 7c). Elevated copper forms a broad belt, approximately 120 metres wide, that trends northwesterly from the southeast corner of the grid to the ends of lines 14 N to 16 N on the western edge of the grid. Highly elevated and anomalous copper values, up to 5168 parts per million, occur sporadically within this zone. Several of these highs coincide with an apparent fault that crosses the property in a northeasterly direction from Lemon Lake. This could reflect a partially genetic relationship or downhill migration of this element. Copper mineralization occurs primarily within the intrusive complex with minor occurrences in basalt.

Silver geochemistry, which correlates well with copper occurrences, shows an erratic, patchy distribution of elevated values across the entire grid area (Figure 7d). There appears to be a spotty distribution of anomalous values along the northeasterly trending fault where copper is also enriched. One of these, a large 150 to 200 metre dual copper-silver anomaly, is centered on line 9 N, 250 E (silver to 3.5 ppm; copper to 3531 ppm). Two other points of interesting coincident mineralization occur at 6 N, 1000 E (silver to 2.9 ppm; copper to 5168 ppm) and at 11 N, 1500 E where gold is also anomalous (silver to 0.9 ppm; copper to 3975 ppm; gold to 285 ppb). Anomalous silver occurs in virtually every lithology on the property.

FIGURE 7a

LEGEND

Greater	than	66 ppb.
40 ppb.	to	66 ppb.
13 ppb.	to	39 ppb.
0 ррв.	to	12 ppb.

GEVA RESOURCE CO. LTD

Cariboo Mining Division - British Columbia

DATE: JANUARY ,1989 NTS 93 A/6

FIGURE 7b

LEGEND

S.

\$ \$

Greater than 771 ppm. 477 ppm.to 770 ppm. 183 ppm.to 476 ppm. 0 ppm. to 182 ppm.

Cariboo Mining Division - British Columbia

FIGURE 7c

LEGEND

Greater than 0.8 ppm. 0.6 ppm. to 0.7 ppm. 0.4 ppm. to 0.5 ppm. O ppm. to 0.3 ppm.

GEVA RESOURCE CO. LTD LEMON LAKE PROPERTY

Cariboo Mining Division - British Columbia

FIGURE 7d

 \bigcirc

 \bigcirc

LEGEND

Greater than 33 ppm. 24 ppm. to 32 ppm. 15 ppm. to 23 ppm. a ppm. to 14 ppm.

GEVA RESOURCE CO. LTD

Cariboo Mining Division - British Columbia

DATE: JANUARY ,1989 NTS 93 A/6

FIGURE 7f

<u>LEGEND</u>

	Greater th	ian 20 ppm.	
5	1 3 ppm. l	to 19 ppm.	
)	6 ppm. l	to 12 ppm.	
,	0 ppm. l	to 5 ppm.	

FIGURE 7g

Elevated values of lead (+30 parts per million, Figure 7f) occur in the northwestern part of the grid area. Some correlation with gold in that area is noted in that, but gold anomalies in the southeastern part of the grid, do not have associated lead anomalies.

Although arsenic occurs in low amounts throughout the grid area (Figure 7g), these appear to be a pattern of enrichment in a north northeast-trending belt across the northern half of the grid area. Since glacial movement was from southwest to northeast this trend could reflect glacial dispersion.

Magnetometer Survey

A magnetometer survey was conducted over the entire Lemon Lake grid, a total of 39.15 line kilometres. The survey was accomplished utilizing a Scintrex MP-2 proton precession magnetometer with a sensitivity of 1 gamma. Readings taken at 25 metre stations. Correction for diurnal variation was accomplished by adjusting crossline data to readings obtained along the baseline.

The magnetometer survey was accomplished to assist in delineating intrusive/volcanic contact zones and faults. Data is presented in contour and profile form on Figures 8a - 8c, respectively.

The survey shows and increased magnetic field strength in the southern portion of the grid. The 59000 gamma contour line coincides approximately with the volcanic/intrusive contact zone. The area showing a magnetic field strength greater than 59000 gammas defining intrusive rock units.

There are two zones which do not exhibit the expected magnetics. The first area is a magnetic high within the volcanic rock unit. This area is bounded by line 14+00N, between stations 0+50W and 5+00W, and line 12+00N, between stations 0+50W and 4+50W. This area is also coincident with high chargeabilities and high resistivity. The second zone is a magnetic low within the intrusive rock units. This is likely the dipole to the magnetic high within the volcanic rock unit. The survey provided little aid in delineating faults with the survey area.

LEGEND Dashed contours > 58500 gammas. heavier contours on odd thousands. 580007 Mag low. 0 Ο 10 Mag high. 0 - Contour interval 500 gammas. lso - magnetic contours, total magnetic field magnitude. NOTE: Instrument Scientrex mp-2 Proton Precession Magnetometer. Survey date: June , 1988. GEVA RESOURCE CO. LTD LEMON LAKE PROPERTY Cariboo Mining Division — British Columbia MAGNETOMETER SURVEY CONTOUR PLAN, MAP all exploration ltd. DATE: JANUARY ,1989 NTS 93 A/6

Induced Polarization Survey

An induced polarization (I.P.) survey was conducted across two separate portions of the Lemon Lake grid to cover intrusive/volcanic contacts and areas of propylitic alteration as mapped by Hudson's Bay Oil and Gas Company in 1985. The major I.P. area included all of the western grid from and including lines 700 N to 1900 N and often included several stations on the eastern portions of the grid, a total of 14.4 line kilometres. A smaller portion of the grid, 2.8 kilometres, was surveyed on the northeastern corner of the property between lines 1400 N and 1800 N from approximately 950 E to 1575 E.

The induced polarization equipment used was of the frequency domain type, manufactured by Sabre Electronic Instruments Ltd. of Burnaby, B.C. The system has a maximum power output of 500 watts from a 12 volt lead-acid battery supply. Frequencies are variable from 0.1 to 10 hertz.

The induced polarization method is based on the electro-chemical phenomenon of overvoltage, that is, on the establishment and detection of double layers of electrical charge at the interface between ionic and electronic conducting material when an electric current passes across the interface.

Naturally occurring sulphides such as pyrite, oxides such as magnetite, graphite, as well as certain clay minerals, sericite and chlorite, give rise to induced polarization responses. These responses are generally characteristic of certain rock or soil types.

The frequency domain method is based on the fact that induced polarization effects are greater at lower frequencies and, therefore, the change of measured resistivities with frequency is an indication of the polarization effects. The factor measured is called the "Percent Frequency Effect" or PFE and is defined as:

$$PFE = \frac{R_1 - R_2}{R_1} \times 100$$

where R_1 and R_2 are the apparent resistivities at the lower and higher frequencies used. This factor is directly read by the I.P. receiver.

The apparent resistivities were calculated for each station, using the following formula for a dipole-dipole array:

$$Pa = a\pi n (n+1) (n+2) \underline{Vp}_{T}$$

where Pa = apparent resistivity (ohm metres)

- a = a spacing = dipole length (metres)
- n = number of dipole lengths between the transmitter electrode
 and the receiver porous pot.
- Vp = primary voltage across receiver porous pots (millivolts).
- I = transmitter current (milliamps).

A total of 17.2 line kilometres was surveyed with an 'a' spacing of 50 metres at n = 1 and n = 2. Data is presented in both contour and profile form, comprising Figures 9a, through 9f and is also summarized on Figure 11b.

The induced polarization survey indicates several areas of high percent frequency effect (PFE). The zones where the PFE is high generally coincides with zones of higher resistivity (+1000 ohm-metres).

The largest and strongest zone of high PFE is located in the area bounded by lines 15+00N and 12+00N between the base line and 5+00W. Within this zone PFE's reach as high as 22.0% (line 13+00N, station 1+00W; n=z). This zone of high PFE, high resistivity coincides with an area of high magnetic field strength and lies within the volcanics, which are generally of lower magnetic field strength. The combination of high PFE, high magnetics and high resistivity may indicate a high percentage of disseminated pyrrhotite or magnetite.

The only other area of high PFE lies within the volcanics in the northern portion of the survey area. This area has PFE's no higher than 13.0% (line 1800+00N, station 0+50E, n=z). Though the magnetics in this rea are relatively low the resistivities are similar (+1000 ohm-metres) are similar to those in the high PFE zone mentioned above. This could also be an area with disseminated sulphides (though little pyrrhotite or magnetite).

FIGURE 9a

FIGURE 9b

.

LEGEND - Resistivity contour (Contour interval 500 ohm - metres) Resistivity high. Resistivity low. READING STATION: a=50 metres, n=2 NOTE: Instrument: Saber frequency domain, ----dipole – dipole array. Frequency: 0.3 and 10 hz. Survey date: May 30 to June 14, 1988. GEVA RESOURCE CO. LTD LEMON LAKE PROPERTY Cariboo Mining Division — British Columbia APPRENT RESISTIVITY CONTOUR PLAN MAP exploration Itd. DATE: JANUARY ,1989 NTS 93 A/6 FIGURE 9c

LEGEND Percent Frequenxy Effect contour, (Contour interval 2.5 %). ~ ତ ଜି) NINIG Chargeablity high. e finit \cap Chargeablity low READING STATION: a=50 metres, n=2. NOTE: Instrument: Saber frequency domain, NUMBER OF STREET dipole – dipole array. Frequency: 0.3 and 10 hz. Survey date: May 30 to June 14, 1988. GEVA RESOURCE CO. LTD LEMON LAKE PROPERTY Cariboo Mining Division - British Columbia CHARGEABLITY CONTOUR PLAN MAP exploration Itd DATE: JANUARY ,1989 NTS 93 A/6

FIGURE 9d

In the southern portion of the survey grid, on line 8+00N between stations 1+50W and 3+50W there lies a weak zone of high PFE's (+10.0%) which coincides with high resistivity. This zone lies within the intrusive rocks. The high PFE values indicate the presence of some sulphides.

In the southwest corner of the survey area there are zones with weak PFE anomalies (+10.0%). These zones lie in an area of resistivities which are in the 500 ohm-metre range. This may be an area with a moderate amount of sulphides in a relatively conductive rock unit.

VLF-Electromagnetic Survey

VLF-electromagnetic data was collected over selected portions of the western grid area where difficulty was experienced in the collection of I.P. data and over I.P. anomalous areas. A total of 4.8 line kilometres was surveyed on lines 1000 N, 1100 N, 1200 N and 1400 N.

The VLF-electromagnetic method utilizes an electromagnetic field transmitted from radio stations in the 12 to 24 kilohertz range (long range submarine communication signals). The signals are propagated with the magnetic component of the field being horizontal in undisturbed areas.

Conductivity contrasts (such as the presence of massive sulphides or fault structures) in the earth's crust, produce a local vertical component to the electromagnetic field and changes in field strength or amplitude. These conductive areas may be located and, to a degree, evaluated by measuring the various parameters of this electromagnetic field. A Sabre Model 27 VLF-electromagnetic receiver, tuned to Annapolis, was used for all observations. This instrument is manufactured by Sabre Electronic Instruments. It measures the dip angle of the resultant field (in degrees) and the normalized horizontal component of the field strength (in relative percent).

Data is filtered by a technique described by Fraser (1969 – Geophysics, Vol. 34, No. 6, pp. 958–967). Conductive zones are interpreted to underlie the point on a traverse line where changes in dip angle of the resultant field (from negative to positive – operator facing transmitter station) are associated with increased field strength. Fraser filtered values, which are derived from dip angle measurements, show high positive values at this point. Data is presented in profile form on Figure 10.

The VLF-electromagnetic (VLF-EM) survey shows several anomalies along the lines traversed. In particulary, two conductors were delineated by the survey.

The fault which has been mapped near line 11+00N, station 2+50E created anomalies on the VLF-EM survey on both lines 11+00N and 10+00N. Another conductor in the western protion of the gid created an anomaly on every line surveyed. This conductor trends N040E. It is likely a shear zone associated with the fault mentioned above as it has similar strike.

Due to the limited extent of the VLF-EM survey interpretation of others would be difficult as they lack sufficient continuity throughout the survey area.

Dorald 9. alle

Transmitter station: Annapolis.

 \bigcirc

 \bigcirc

 \bigcirc

January ,1989

;	NE	10+0	10N					
STN	4	DIFides) FS%	F.FILTER				
SIN: 18-201 3-201 3-201 3-201 3-201 5-201 5-201 3-201 3-201 1-		1 2 + 2 DJP (des) 2 4 2 4 2 4 -2 2 4 -2 -2 -3 4 -6 -2 -6 -2 -8 -3 4 -2 -4 -6 -2 -2 -4 -6 -2 -2 -2 -4 -2 -2 -2 -4 -2 -2 -4 -2 -2 -4 -2 -2 -2 -4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	51 51 46 49 52 54 52 53 44 52 54 52 55 54 42 55 54 42 55 55 57 55 57 55 57 55 57 55 57 55 55	F.FILIER 8 12 -2 -14 -20 -14 -20 -14 -20 -14 -20 -14 -10 -13 -5 -5 -7 -13 -13 -13 -13 -13 -14 -13 -14 -13 -14 -14 -14 -5 -5 -7 -14 -14 -5 -5 -7 -14 -5 -7 -14 -5 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	L I N E 61N4 18+884 9-584 3-884 8+584 8+584 2+584 4-884 4-584 4-584 4-584 4-584 4-584 1-584]]++[D]F(deg -3 -6 -12 -8 -6 -8 -2 -3 -6 -8 -2 -2 -2 -2	2 2 N 5 55 5 555	F.FJLTER 8 -11 1 23 19 -2 -3 -6 -14 -14 -14 -14 -14 -3 -2 3 4 8 12 6 8
LINE Stree] 24 Dirca -2	- ØØN (3) FSX 58	F.Fil	IER	9-98 9-98 1-98 1-98 1-38 2-38 2-38 3-88 3-88 3-88	-28 -8 -2 -3 2 -6 -8	41 42 42 42 42 42 48 38	8 6 14 -6 13 8 8 8
-52р -820 -580 -820	8 3 9 - 4	55 68 53 55	-5 2 19	* .	LINE]4+]	80N	
-584 -584 -584	-12 -8 -2	55 55 52	-6 -16		STNE	DIPCas) F52	F.FJLTER
-284 -284 -594 -594 -994 -994 -594 -594 -594 -59	-22-12268681629493	53 56 56 53 54 52 52 58 68 68 68 68 69 69 69	-11 -26 -55 -107 -16 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13		2-881 6-881 5-581 5-581 5-581 5-581 4-581 4-581 3-881 3-881 1-581 1-881 9-581 1-885 1-885 1-885 2-885 2-885 2-885 2-885 2-885	1 - 4 - 1- 	51 54 52 52 52 52 52 52 52 52 52 52 52 52 52	8) 119 40 20 20 20 20 20 20 20 20 20 20 20 20 20
GEN EMO	VA F	RESO	urc KE	e co. PRO	LTD.	ΓY		
(CARIE	00 M	INING	DIVIS	100			
E	M	10-1-1		[PRO	FIL	E	S
L.	INE	1010	DU to	14 1	00		•	
						200) NETRE FEFT	s I
500		1:	° 5,00	0	50	0		
			I	N.T.S	93A /6	5		

FIGURE 10b

LEGEND

Boundary of Copper anomaly in soil Cu > 200 ppm. Boundary of Gold anomaly in Soit Au > 30 ppb. Boundary of Lemon Lake Stock.

~~~~ Fault.

 $\langle \rangle$ 

● <sup>L</sup> 4

يميلا

Diamond drill site, Hole number.

Percussion drill site, Hole number. (locations approximate.) Roads; Gravel, dirt.

Creek, Swamp.

Legal corner post, Claim boundary.

Topographic contours, Contour interval 50 feet.

# GEVA RESOURCE CO. LTD LEMON LAKE PROPERTY

Cariboo Mining Division - British Columbia

GEOCHEMICAL COMPLATION MAP exploration ltd

DATE: JANUARY ,1989 NTS 93 A/6

FIGURE IIa



LEGEND

VLF -Electromagnetic conductor. Induced Polarization anomaly ; Boundary of Resisitivity High >1300 \_\_\_\_\_; Boundary of P.F.E. High > 5%. Boundary of Lemon Lake Stock. Fault. Diamond drill site, Hole number. Percussion drill site, Hole number. (locations approximate.) Roads, Gravel, dirt. Creek, Swamp. Legal corner post, Claim boundary. Topagraphic contours, Contour interval 50 feet.

# GEVA RESOURCE CO. LTD

Cariboo Mining Division — British Columbia

GEOPHYSICAL COMPILATION MAP exploration Itd

DATE: JANUARY ,1989 NTS 93 A/6

FIGURE 11b

## TABLE II

## ROCK SAMPLE DESCRIPTIONS

| Sample<br>No. | Description                                                                                                                                                                                                                        | Grid<br>Locati | lon  | Cu<br>ppm | Au<br>ppb |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-----------|-----------|
| 825-01        | Grab, outcrop.<br>Aphanitic medium-gray monzonite? with traces of<br>pyrite as stringers, disseminated chalcopyrite<br>and magnetite crystals measuring up to 1 mm in<br>diameter. Minor propylitic alteration is also<br>present. | 1225N,         | 140W | 503       | 46        |
| 825-02        | Grab, subcrop.<br>Aphanitic, medium gray monzonite? with potassic<br>alteration along stringers. Rock is moderately<br>silicified and contains pyrite stringers and<br>traces of malachite.                                        | 1225N,         | 335W | 56        | 4         |
| 825-03        | Grab, outcrop.<br>Basalt porphyry with small pyroxene and plagio-<br>clase phenocrysts. Contains traces of dissemin-<br>ated pyrite and smeary pyrite as fracture coatings.                                                        | 1270N,         | 420W | 66        | 2         |
| 825-04        | Grab, outcrop.<br>Basalt porphyry with pyroxene phenocrysts, rare<br>epidote filled vesicles, trace chalcopyrite and<br>up to 3% disseminated, blebby and stringer pyrite.<br>Fractures are limonitic.                             | 1270N,         | 385W | 123       | 5         |
| 825-05        | Grab, outcrop.<br>Silicified porphyritic basalt? with 10% dissemin—<br>ated pyrite and chalcopyrite. Limonitic frac—<br>tures are locally coated with smeary pyrite.                                                               | 1310N,         | 120W | 121       | 7         |
| 825-06        | Grab, outcrop<br>Very cherty, hornfelsed basalt porphyry with<br>phenocrysts of epidote and diopside? and 1% sec-<br>ondary biotite. No. visible sulphides are present.                                                            | 1600N,         | 290W | 233       | 4         |
| 825-07        | Grab, subcrop.<br>Fine grained, equigranular monzonite with patchy<br>potassic alteration and trace chalcopyrite.                                                                                                                  | 1490N,         | 350E | 62        | 1         |
| 825-08        | Grab, outcrop.<br>Limonitic basalt porphyry with trace to 2%<br>pyrite as blebs and disseminations. Basalt is<br>locally hornfelsed and has patchy silicification.<br>Minor propylitic alteration is also present.                 | 1735N,         | 135E | 142       | 6         |
| 825-09        | Grab, float.<br>Muscovite-garnet schist contains pink garnets up<br>to 1 cm diameter (commonly 0.5 cm) and biotite.                                                                                                                | 1715N,         | 125E | 36        | 1         |

| Sample     |                                                                                                                                                                                                                                                                                        | Grid   | l     | Cu  | Au         |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-----|------------|
| No.        | Description                                                                                                                                                                                                                                                                            | Locati | on    | ppm | <u>ppb</u> |
| 825-10     | Grab, outcrop.<br>Silicified, amygdaloidal basalt has epidote<br>filled vesicles and up to 2% pyrite with trace<br>chalcopyrite as disseminations, blebs, stringers<br>and fracture coatings. Surfaces are heavily<br>limonitic. Sample is taken from shear zone<br>exposed in trench. | 1945N, | 80W   | 214 | 1          |
| 825-11     | Grab, float.<br>Limonitic tuff breccia with basalt porphyry<br>clasts contains local pyrite and arsenopyrite<br>in matrix and fractures. Sulphide content is<br>up to 35%.                                                                                                             | 1960N, | 80₩   | 151 | 58         |
| 825-12     | Grab, float.<br>Collection of heavily propylitized basalt and<br>monzonite from area of contact zone. Trace to<br>1% blebby pyrite is present in monzonite.                                                                                                                            | 1510N, | 390E  | 153 | 8          |
| 825-13     | Grab, subcrop.<br>Fine grained medium green-gray metagreywacke,<br>argillite and basalt porphyry with traces of<br>pyrite as blebs.                                                                                                                                                    | 1810N, | 1350E | 101 | 1          |
| 825-14     | Grab, subcrop?<br>Cherty, medium gray rock (chill zone monzonite?)<br>with rare amphibole phenocrysts and trace pyrite<br>as stringers and blebs.                                                                                                                                      | 1370N, | 145E  | 88  | 3          |
| 825-15     | Grab, outcrop.<br>Dark gray, cherty, silicified basalt? cut by<br>quartz stringers 1-2 mm wide. Surfaces have<br>limonitic and hematitic slickensides. No visible<br>mineralization is present.                                                                                        | 1380N, | 1240E | 65  | 2          |
| 825-16     | Grab, subcrop.<br>Pillowed basalt is aphanitic on pillow edges<br>and more granular toward centres. Faint flow<br>banding is visible on weathered surface.<br>Contains trace of clustered euhedral dissemin-<br>ted pyrite.                                                            | 1390N, | 1570E | 131 | 1          |
| 82517<br>2 | Grab, subcrop.<br>Fine grained, vuggy purplish-gray volcanic<br>(tephrite?) with epidote filled vugs, often<br>rimmed by potassic feldspar. Epidote is also                                                                                                                            | 770N,  | 1060W |     | 77         |
|            | present as fracture coatings. Porphyritic with<br>rare pyroxene phenocrysts up to 0.5 cm. Trace<br>blebby pyrite, chalcopyrite and crystalline<br>magnetite.                                                                                                                           |        |       |     |            |
| 825-18     | Grab, subcrop.<br>Lightly propylitic hornblende diorite and<br>gabbro from contact zone with 10 cm cross-<br>cutting syenite vein. No visible sulphides.                                                                                                                               | 520N,  | 715E  | 139 | . 1        |

| Sample |                                                                                                                                                                                                                                                                      | Gri    | d     | Cu   | Au  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------|-----|
| No.    | Description                                                                                                                                                                                                                                                          | Locat  | ion   | ppm  | рръ |
| 825-19 | Grab, outcrop.<br>Coarse grained gabbro with pyroxene crystals<br>up to 0.5 cm, patchy chlorite and no visible<br>sulphides. Fine syenitic stringers up to 0.5 cm<br>wide crosscut gabbro.                                                                           | 390N,  | 1130E | 27   | 1   |
| 825–20 | Grab, float.<br>Hornblende diorite with syenitic stringers<br>and veinlets. Diorite is locally potassically<br>altered while syenite veinlets contain epidote.<br>No visible mineralization.                                                                         | 710N,  | 1395E | 67   | 4   |
| 825-21 | Grab, outcrop and talus.<br>Collection of hornblende diorite chips with<br>syenitic stringers, light potassic and pro-<br>pylitic alteration. No visible mineralization.                                                                                             | 885N,  | 1360E | 88   | 2   |
| 825-22 | Grab, subcrop.<br>Hornblende diorite with large (0.5–1.0 cm)<br>poikilitic hornblende crystals with crosscutting<br>salmon pink syenite dykelet. No visible<br>mineralization.                                                                                       | 815N,  | 965E  | 101  | 6   |
| 825-23 | Grab, subcrop.<br>Collection of fine grained, potassically<br>altered syenodiorite chips with syenite<br>stringers. Patchy propylitic alteration.<br>No visible mineralization.                                                                                      | 1000N, | 1415E | 128  | 11  |
| 825–24 | Grab, outcrop.<br>Propylitically altered, silicified basalt por-<br>phyry with chloritized pyroxene and rare bluish<br>nepheline phenocrysts. Basalt is cut by<br>numerous syenite stringers and contains trace<br>blebby pyrite and minute amounts of chalcopyrite. | 1060N, | 1490E | 249  | 2   |
| 825–25 | Grab, outcrop.<br>Extremely hard, silicified syenite dyke intrud-<br>ing the above altered basalt (Sample 825-24).<br>No visible mineralization.                                                                                                                     | 1060N, | 1490E | 146  | 1   |
| 825-26 | Grab, outcrop.<br>Same rock and outcrop as Sample 825–24,<br>however, surfaces here are extremely limonitic.<br>Smeary pyrite and chalcopyrite are present as<br>fracture coatings in amounts up to 5% of rock.                                                      | 1095N, | 1515E | 3975 | 285 |
| 825-27 | Grab, outcrop.<br>Aphanitic, cherty monzonite? with limonitic<br>fractures and trace blebby pyrite.                                                                                                                                                                  | 1290N, | BLOO  | 50   | 2   |
| 825-28 | Grab, outcrop.<br>Aphanitic monzonite? with limonitic fractures<br>and local 5% pyrite and chalcopyrite as blebs,<br>disseminations, stringers and fracture costings                                                                                                 | 1305N, | 05E   | 193  | 1   |

#### REFERENCES

- British Columbia Department of Energy, Mines and Petroleum Resources. Geology, Exploration and Mining in British Columbia, 1969, 1970, 1971, 1973, 1974, 1986.
- Campbell, R.B. (1978). Quesnel Map Sheet. Geological Survey of Canada, Open File 574.
- Campbell, R.B. and Tipper, H.W. (1970). Geology and Mineral Exploration Potential of the Quesnel Trough, British Columbia. C.I.M. Bulletin, Vol. 63, pp. 785-790.
- Chaplin, R.E. and Currie, R.G. (1970). Report on the Induced Polarization and Resistivity Survey on the Aron and Fly Claim Group (Gibbons Creek). A report for Silver Standard Mines Ltd., July 15, 1970, Assessment Report No. 2779.
- Durfeld, R.M. (1986). Report on the Mandy Property for Mandalla Resources Ltd., August 11, 1986.
- Fox, P.E. (1982). Diamond Drill Program on the Maud 1-7 Mineral Claims, for Dome Exploration (Canada) Limited, June 30, 1982, Assessment Report 10527.
- Fox, P.E. and Payne, C.W. (1986). Compilation Report on the Gibbon's Creek Gold Property, February 20, 1986.
- Hegge, M.R. (1974). Report on Percussion Drilling Program, Fly No. 1 Group, for Hudson's Bay Oil and Gas Company Limited, June 14, 1974, Assessment Report No. 5117.
- Hegge, M.R. (1973). Report on Line-Cutting and Geochemical Soil Survey, Lem No's. 1, 2 and 3 Groups for Hudson's Bay Oil and Gas Company Limited, October 26, 1973, Assessment Report No. 4679.
- Melling, D.R. and Watkinson, D.H. (1987). Alteration of Fragmental Basaltic Rocks: The Quesnel River Gold Deposit, Central British Columbia. B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1987, Paper 1988-1.
- Morton, R.L. (1975). Summary Report, Lemon Lake Copper Prospect, for Hudson's Bay Oil and Gas Company Limited, February, 1975.
- Olson, D.P. (1974). Report on Magnetometer Survey of the Fly Claims for Hudson's Bay Oil and Gas Company Limited, November 1, 1974, Assessment Report No. 5260.

#### **REFERENCES** (Cont'd.)

- Payne, C.W. and Fox, P.E. (1987). Report on Soil Geochemical Survey, Gibbons Creek Property, January 9, 1987.
- Payne, Craig W. (1987). 1986 Gibbons Creek Drill Program, Lem 1 to 5 Claims, February 16, 1987.
- Preto, V.A. (1988). Exploration and Development Highlights, British Columbia 1988. B.C. Ministry of Energy, Mines and Petroleum Resources Information Circular 1988-10.
- Saleken, L.W. and Simpson, R.G. (1984). Cariboo Quesnel Gold Belt: A Geological Overview, Western Miner, April, 1984, pp. 15-20.
- Sheldrake, Ronald F. (1981). Report on a Helicopter E.M. and Magnetometer Survey on Three Projects in the Quesnel River Area, for Dome Exploration (Canada) Limited, May 25, 1981.
- Tipper, H.W., Campbell, R.B., Taylor, G.C. and Stott, D.F. (1979). Parsnip River, Geological Survey of Canada, Map 1424A, Sheet 93, 1979.
- Ware, G. Hunter (1966). Report on the Induced Polarization and Resistivity Survey, Gibbons Creek Claim Groups, August 8, 1966.

#### CERTIFICATE

I, Donald G. Allen, certify that:

- 1. I am a Consulting Geological Engineer, at A & M Exploration Ltd., with offices at Suite 704, 850 West Hastings Street, Vancouver, British Columbia, V6C 1E1.
- 2. I am a graduate of the University of British Columbia with degrees in Geological Engineering (B.A.Sc., 1964; M.A.Sc., 1966).
- 3. I have been practising my profession since 1964 in British Columbia, the Yukon, Alsaka and various parts of the Western United States.
- 4. I am a member in good standing of the Association of Professional Engineers of British Columbia.
- 5. This report is based on fieldwork carried out by C. Ditson and on information listed under References.
- 6. I hold no interest, nor do I expect to receive any, in Geva Resource Co. Ltd. or in the Lemon Lake property.

2 an

Donald G. Allen P. Eng. (B.C.)

February 28, 1989 Vancouver, B.C.

## CERTIFICATE

- I, Carol Ditson, certify that:
  - I am a Consulting Geologist at #202-1910 West 6th, Vancouver, British Columbia.
  - 2. I am a 1985 graduate of the University of British Columbia with a Bachelor of Science in Geology.
  - 3. I have been employed as a geologist since 1979 in British Columbia and the western United States.
  - 4. This report is based upon data collected in the field by myself and an A & M Exploration Ltd. crew during May and June, 1988 and upon an evaluation of publicly and privately held literature pertaining to the Lemon Lake property and listed in the Reference section of this report.
  - 5. I have no interest, nor do I expect to receive any, in Geva Resource Co. Ltd. or in the Lemon Lake property.

Carol I. Ditson, B. Sc.

February 28, 1989 Vancouver, B.C.

# APPENDIX I

Analytical Results

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

•

(

(

(

Û

C

t

#### GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HHO3-HZO AT 95 DEG. C FOR OWE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P4 SOIL P5 ROCK AU\* AWALTSIS BY ACID LEACH/AA FROM 10 GH SAMPLE...

| SAMP13                                                                                 | No<br>PPN             | CU<br>PPN                       | Pb<br>PPM                  | ZD<br>PPN                       | Ag<br>PPN                  | Nİ<br>PPK                   | Co<br>PPM                  | Nn<br>PPN                         | Fe<br>t                              | As<br>PPM             | U<br>PPM              | λu<br>PPM                  | Th<br>PPK             | ST<br>PPK                    | Cd<br>PPM             | SD<br>PPM                  | Bİ<br>PPM             | V<br>PPM                        | Ca<br>ł                           | P<br>ł                               | La<br>PPN              | CT<br>PPM                   | Kg<br>ł                              | Ba<br>PPK                       | Ti<br>1                         | B<br>PPM                  | A1<br>3                              | Na<br>X                                | K<br>ł                          | V<br>PPN              | Au*<br>PPB             |
|----------------------------------------------------------------------------------------|-----------------------|---------------------------------|----------------------------|---------------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------------|--------------------------------------|-----------------------|-----------------------|----------------------------|-----------------------|------------------------------|-----------------------|----------------------------|-----------------------|---------------------------------|-----------------------------------|--------------------------------------|------------------------|-----------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------|--------------------------------------|----------------------------------------|---------------------------------|-----------------------|------------------------|
| 50-440-821-058<br>50-440-821-059<br>50-440-821-060<br>50-440-821-061<br>50-440-821-062 | 1<br>1<br>1<br>1      | 99<br>30<br>42<br>44<br>64      | 18<br>12<br>11<br>7<br>10  | 247<br>266<br>153<br>177<br>118 | .3<br>.2<br>.3<br>.3       | 32<br>24<br>34<br>27<br>31  | 20<br>16<br>16<br>16<br>13 | 872<br>1119<br>460<br>1044<br>525 | 6.96<br>5.30<br>5.14<br>4.91<br>4.37 | 5<br>3<br>2<br>3<br>3 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>2<br>2<br>1 | 111<br>121<br>65<br>64<br>73 | 2<br>1<br>1<br>2<br>2 | 3<br>2<br>2<br>2<br>2      | 2<br>3<br>2<br>3<br>2 | 215<br>162<br>144<br>139<br>125 | .98<br>1.04<br>.84<br>.71<br>1.01 | .673<br>.322<br>.061<br>.265<br>.099 | 7<br>5<br>7<br>6<br>9  | 48<br>44<br>54<br>48<br>52  | 1.34<br>.95<br>.95<br>.73<br>.88     | 180<br>209<br>69<br>113<br>78   | .21<br>.21<br>.24<br>.19<br>.19 | 8<br>5<br>7<br>9<br>5     | 3.85<br>2.43<br>3.39<br>2.65<br>3.14 | .02<br>.02<br>.02<br>.02<br>.02<br>.02 | .10<br>.12<br>.10<br>.09<br>.08 | 1<br>1<br>1<br>1      | 9<br>7<br>4<br>5<br>12 |
| 50-440-821-063<br>50-440-821-064<br>50-440-821-065<br>50-440-821-066<br>50-440-821-066 | 1<br>1<br>1<br>1      | 118<br>82<br>126<br>69<br>73    | 9<br>8<br>12<br>12<br>6    | 121<br>146<br>109<br>104<br>124 | .4<br>.3<br>.5<br>.3<br>.4 | 33<br>29<br>29<br>22<br>23  | 19<br>18<br>22<br>18<br>18 | 647<br>661<br>709<br>1120<br>1041 | 6.50<br>6.90<br>7.77<br>5.18<br>5.90 | 2<br>2<br>2<br>3      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>2<br>2 | 113<br>87<br>124<br>82<br>94 | 1<br>2<br>1<br>1<br>2 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2 | 208<br>223<br>280<br>166<br>189 | 1.23<br>.91<br>1.11<br>.82<br>.88 | .378<br>.455<br>.073<br>.234<br>.334 | 6<br>5<br>5<br>4       | 53<br>49<br>45<br>37<br>39  | 1.35<br>.99<br>1.35<br>.94<br>1.01   | 101<br>10B<br>112<br>106<br>112 | .23<br>.21<br>.31<br>.22<br>.21 | 6<br>5<br>6<br>5<br>10    | 3.69<br>3.21<br>3.95<br>3.07<br>2.69 | .03<br>.02<br>.03<br>.02<br>.02        | .11<br>.10<br>.07<br>.08<br>.09 | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>2<br>1  |
| 50-440-821-068<br>50-440-821-069<br>50-440-821-070<br>50-440-821-071<br>50-440-821-072 | 1<br>1<br>1<br>1      | 85<br>202<br>102<br>87<br>165   | 11<br>9<br>10<br>13<br>16  | 120<br>192<br>185<br>124<br>85  | .6<br>.2<br>.4<br>.2<br>.3 | 28<br>33<br>40<br>33<br>135 | 22<br>21<br>18<br>15<br>26 | 578<br>660<br>548<br>465<br>513   | 7.58<br>6.16<br>5.02<br>5.73<br>6.67 | 3<br>2<br>2<br>2<br>3 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>2<br>1 | 89<br>90<br>73<br>49<br>68   | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>2           | 2<br>2<br>2<br>2<br>2 | 222<br>183<br>136<br>163<br>194 | .95<br>.89<br>.85<br>.60<br>.86   | .420<br>.485<br>.474<br>.260<br>.081 | 6<br>5<br>5<br>5<br>4  | 47<br>56<br>63<br>58<br>199 | 1.44<br>1.28<br>1.15<br>1.06<br>2.33 | 73<br>147<br>135<br>88<br>114   | .25<br>.22<br>.21<br>.24<br>.29 | 8<br>3<br>7<br>5<br>9     | 4.04<br>3.42<br>3.20<br>3.03<br>4.33 | .03<br>.02<br>.02<br>.02<br>.02<br>.03 | .07<br>.09<br>.09<br>.06<br>.08 | 1<br>1<br>1<br>1      | 9<br>42<br>6<br>1<br>4 |
| 50-440-821-073<br>50-440-821-074<br>50-440-821-075<br>50-440-821-076<br>50-440-821-077 | 1<br>1<br>1<br>1      | 263<br>353<br>217<br>200<br>154 | 16<br>12<br>10<br>12<br>11 | 170<br>240<br>124<br>130<br>137 | .6<br>.3<br>.4<br>.2<br>.5 | 74<br>38<br>28<br>30<br>40  | 24<br>24<br>21<br>22<br>19 | 720<br>916<br>1040<br>792<br>559  | 6.65<br>5.83<br>6.61<br>6.52<br>5.00 | 3<br>4<br>2<br>2<br>4 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 3<br>1<br>1<br>1<br>2 | 79<br>91<br>115<br>86<br>67  | 3<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2 | 175<br>144<br>185<br>187<br>132 | .85<br>.91<br>.98<br>.92<br>.77   | .238<br>.361<br>.161<br>.082<br>.133 | 7<br>B<br>7<br>6<br>7  | 102<br>40<br>42<br>50<br>63 | 1.97<br>1.52<br>1.34<br>1.66<br>1.27 | 122<br>282<br>191<br>130<br>125 | .25<br>.28<br>.26<br>.31<br>.25 | 10<br>3<br>5<br>5<br>9    | 4.28<br>3.95<br>4.02<br>3.75<br>3.23 | .02<br>.03<br>.02<br>.03<br>.01        | .14<br>.14<br>.10<br>.15<br>.13 | 1<br>1<br>1<br>2<br>1 | 7<br>46<br>9<br>1      |
| 50-440-821-078<br>50-440-821-079<br>50-440-821-080<br>50-440-821-081<br>50-440-821-082 | 1<br>3<br>1<br>1<br>1 | 163<br>315<br>175<br>385<br>330 | 8<br>18<br>17<br>10<br>13  | 133<br>98<br>265<br>514<br>102  | .4<br>.3<br>.5<br>.6<br>.2 | 40<br>38<br>33<br>52<br>51  | 19<br>28<br>36<br>33<br>29 | 714<br>4509<br>3001<br>761<br>719 | 4.94<br>6.72<br>6.52<br>5.43<br>7.25 | 3<br>5<br>4<br>5<br>5 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>1<br>1<br>2 | 71<br>77<br>69<br>65<br>55   | 1<br>2<br>1<br>1<br>1 | 3<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2 | 135<br>182<br>163<br>134<br>209 | .88<br>1.63<br>1.13<br>.76<br>.85 | .120<br>.122<br>.204<br>.507<br>.168 | 9<br>11<br>7<br>6<br>7 | 65<br>60<br>62<br>64<br>99  | 1.43<br>1.68<br>1.55<br>1.29<br>2.34 | 94<br>137<br>309<br>175<br>112  | .27<br>.26<br>.32<br>.25<br>.38 | 10<br>12<br>15<br>8<br>12 | 2.89<br>2.94<br>3.27<br>3.44<br>3.76 | .01<br>.02<br>.02<br>.02<br>.02<br>.01 | .16<br>.10<br>.14<br>.16<br>.18 | 1<br>1<br>1<br>1      | 1<br>2<br>24<br>1<br>2 |
| 50-440-821-083<br>50-440-821-084<br>50-440-821-085<br>50-440-821-086<br>50-440-821-087 | 1<br>1<br>1<br>1      | 198<br>159<br>238<br>108<br>205 | 12<br>15<br>18<br>7<br>8   | 296<br>184<br>150<br>171<br>181 | .4<br>.3<br>.5<br>.4<br>.3 | 44<br>40<br>46<br>32<br>37  | 25<br>24<br>21<br>18<br>24 | 627<br>726<br>448<br>1156<br>542  | 6.00<br>5.57<br>5.17<br>4.60<br>5.75 | 5<br>3<br>3<br>2<br>3 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>3<br>1<br>1 | 42<br>51<br>44<br>59<br>62   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2 | 159<br>143<br>125<br>132<br>166 | .71<br>.64<br>.61<br>.72<br>.68   | .147<br>.358<br>.445<br>.179<br>.186 | 6<br>6<br>5<br>4       | 71<br>50<br>53<br>49<br>51  | 1.45<br>1.27<br>1.36<br>1.12<br>1.47 | 86<br>181<br>151<br>181<br>171  | .28<br>.26<br>.24<br>.23<br>.31 | 9<br>4<br>8<br>7<br>6     | 3.19<br>3.47<br>3.45<br>2.81<br>3.68 | .01<br>.01<br>.01<br>.02<br>.02        | .15<br>.12<br>.10<br>.11<br>.08 | 1<br>1<br>1<br>1      | 8<br>1<br>2<br>1<br>4  |
| 50-440-821-088<br>50-440-821-089<br>50-440-821-090<br>50-440-821-091<br>50-440-821-092 | 1<br>2<br>1<br>1<br>1 | 318<br>691<br>118<br>174<br>218 | 15<br>15<br>12<br>7<br>19  | 145<br>222<br>221<br>225<br>172 | .2<br>.4<br>.2<br>.5<br>.4 | 31<br>42<br>28<br>53<br>67  | 24<br>26<br>20<br>19<br>22 | 719<br>2916<br>708<br>979<br>679  | 6.87<br>5.61<br>5.23<br>4.74<br>6.14 | 2<br>3<br>2<br>2<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>3<br>2 | 88<br>85<br>89<br>85<br>82   | 1<br>1<br>2<br>1      | 2<br>4<br>3<br>2<br>2      | 2<br>2<br>2<br>2<br>2 | 218<br>147<br>129<br>115<br>160 | .89<br>1.63<br>.88<br>.83<br>.94  | .159<br>.046<br>.423<br>.356<br>.419 | 5<br>13<br>6<br>7<br>6 | 58<br>42<br>37<br>62<br>90  | 1.80<br>1.47<br>1.16<br>1.45<br>1.66 | 151<br>180<br>197<br>183<br>146 | .33<br>.26<br>.22<br>.21<br>.22 | 2<br>3<br>2<br>9<br>2     | 3.47<br>3.76<br>3.46<br>3.62<br>3.86 | .02<br>.03<br>.02<br>.03<br>.02        | .13<br>.11<br>.10<br>.11<br>.13 | 1<br>1<br>1<br>1      | 5<br>18<br>2<br>1<br>9 |
| 50-440-821-093<br>STD C/AU-S                                                           | 1<br>18               | 113<br>58                       | 11<br>38                   | 181<br>132                      | .2<br>5.7                  | 38<br>67                    | 17<br>29                   | 888<br>1063                       | 4.67<br>4.09                         | 3<br>41               | 5<br>24               | ND<br>8                    | 1<br>39               | 86<br>47                     | 1<br>18               | 2<br>17                    | 2<br>17               | 134<br>58                       | .92<br>.48                        | .253<br>.089                         | 5<br>40                | 54<br>54                    | 1.16<br>.94                          | 158<br>180                      | .19<br>.07                      | 2<br>30                   | 2.95<br>1.95                         | .03                                    | .11<br>.15                      | 1<br>13               | 6<br>52                |

| SAMPLE#                                                                                | HO<br>PPN             | Cu<br>PPN                        | Pb<br>PPN                  | Zn<br>PPN                       | Ag<br>PPN                   | NI<br>PPH                  | Co<br>PPN                  | Kn<br>PPN                         | re<br>t                              | As<br>PPN             | U<br>PPK              | Au<br>PPH                  | Th<br>PPN             | SŤ<br>PPM                      | Cđ<br>PPN        | SD<br>PPN                  | Bi<br>PPM             | V<br>PPK                        | Ca<br>ł                            | P<br>Ł                                | La<br>PPN               | Cr<br>PPN                  | Ng<br>ł                              | Ba<br>PPM                       | Ti<br>X                         | B<br>PPN               | ۸1<br>۲                              | Na<br>t                                | K<br>ł                          | W<br>PPN              | Au*<br>PPB              |  |
|----------------------------------------------------------------------------------------|-----------------------|----------------------------------|----------------------------|---------------------------------|-----------------------------|----------------------------|----------------------------|-----------------------------------|--------------------------------------|-----------------------|-----------------------|----------------------------|-----------------------|--------------------------------|------------------|----------------------------|-----------------------|---------------------------------|------------------------------------|---------------------------------------|-------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|------------------------|--------------------------------------|----------------------------------------|---------------------------------|-----------------------|-------------------------|--|
| 50-440-821-034<br>50-440-821-095<br>50-440-821-096<br>50-440-821-097<br>50-440-821-098 | 1<br>1<br>1<br>1<br>1 | 87<br>60<br>115<br>69<br>97      | 10<br>14<br>8<br>12<br>14  | 141<br>158<br>134<br>107<br>134 | .2<br>.1<br>.1<br>.1<br>.2  | 33<br>25<br>26<br>25<br>30 | 20<br>16<br>19<br>16<br>17 | 569<br>919<br>619<br>588<br>725   | 6.66<br>6.19<br>6.91<br>5.79<br>5.67 | 3<br>3<br>7<br>4<br>4 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>1<br>1<br>2 | 99<br>85<br>101<br>101<br>86   | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>3<br>5      | 216<br>205<br>235<br>194<br>185 | .89<br>.77<br>.87<br>.92<br>.78    | .300<br>.310<br>.299<br>.195<br>.153  | 4<br>3<br>3<br>4<br>5   | 45<br>45<br>43<br>44<br>49 | 1.15<br>.88<br>1.26<br>1.14<br>1.15  | 86<br>138<br>82<br>81<br>93     | .23<br>.20<br>.22<br>.22<br>.23 | 6<br>2<br>7<br>5       | 3.76<br>2.55<br>3.02<br>2.83<br>2.99 | .02<br>.02<br>.02<br>.02<br>.02        | .08<br>.07<br>.07<br>.09<br>.10 | 1<br>2<br>1<br>1      | 11<br>6<br>1<br>17<br>2 |  |
| 50-440-821-099<br>50-440-821-100<br>50-440-821-101<br>50-440-821-102<br>50-440-821-103 | 1<br>1<br>1<br>1<br>1 | 92<br>56<br>167<br>93<br>71      | 14<br>16<br>12<br>14<br>16 | 138<br>145<br>117<br>160<br>140 | .1<br>.3<br>.1<br>.2<br>.3  | 27<br>22<br>31<br>26<br>34 | 20<br>18<br>23<br>18<br>15 | 750<br>1263<br>914<br>1093<br>569 | 6:60<br>5.79<br>8.17<br>6.80<br>5.20 | 5<br>4<br>4<br>2<br>3 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>1<br>3 | 117<br>79<br>128<br>91<br>61   | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>4<br>2<br>4<br>2 | 220<br>190<br>289<br>229<br>139 | 1.17<br>.75<br>1.12<br>.90<br>.68  | .427<br>.255<br>.159<br>.251<br>.274  | 4<br>5<br>4<br>6        | 44<br>44<br>51<br>45<br>50 | 1.25<br>.90<br>1.86<br>1.27<br>1.08  | 74<br>116<br>92<br>139<br>107   | .21<br>.21<br>.27<br>.23<br>.21 | 3<br>5<br>2<br>3<br>11 | 3.26<br>2.69<br>3.74<br>3.24<br>3.29 | .02<br>.02<br>.03<br>.02<br>.02        | .09<br>.07<br>.12<br>.09<br>.09 | 1<br>1<br>1<br>1<br>1 | 18<br>1<br>1<br>5<br>1  |  |
| 50-440-821-104<br>50-440-821-105<br>50-440-821-106<br>50-440-821-107<br>50-440-821-108 | 1<br>1<br>1<br>1      | 73<br>56<br>107<br>190<br>226    | 14<br>16<br>10<br>12<br>17 | 165<br>106<br>205<br>154<br>157 | .3<br>.1<br>.1<br>.1<br>.4  | 28<br>18<br>48<br>79<br>31 | 14<br>13<br>17<br>20<br>19 | 715<br>685<br>720<br>1050<br>914  | 4.45<br>4.26<br>3.95<br>4.71<br>5.23 | 2<br>4<br>2<br>3<br>3 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 3<br>2<br>1<br>1<br>3 | 72<br>64<br>81<br>78<br>75     | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>4<br>2<br>5<br>2 | 105<br>144<br>104<br>135<br>151 | .69<br>.75<br>.83<br>.85<br>.84    | .627<br>.131<br>.406<br>.175<br>.305  | 5<br>3<br>4<br>5        | 49<br>32<br>61<br>98<br>45 | .90<br>.72<br>1.30<br>1.58<br>1.32   | 224<br>74<br>205<br>173<br>151  | .17<br>.17<br>.21<br>.24<br>.21 | 7<br>4<br>2<br>7<br>10 | 2.83<br>1.97<br>2.79<br>2.90<br>3.28 | .02<br>.02<br>.02<br>.03<br>.02        | .10<br>.09<br>.09<br>.10<br>.10 | 1<br>1<br>1<br>1      | 6<br>14<br>1<br>1<br>1  |  |
| 50-440-821-109<br>50-440-821-110<br>50-440-821-111<br>50-440-821-112<br>50-440-821-113 | 1<br>1<br>1<br>1      | 188<br>140<br>204<br>260<br>1435 | 9<br>12<br>15<br>14<br>12  | 204<br>139<br>229<br>171<br>156 | .3<br>.2<br>.3<br>.8        | 25<br>25<br>24<br>51<br>25 | 20<br>18<br>27<br>23<br>14 | 1312<br>804<br>959<br>755<br>446  | 5.07<br>5.04<br>5.88<br>6.35<br>3.64 | 2<br>2<br>3<br>2<br>3 | 5<br>5<br>5<br>5<br>5 | NŬ<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>1<br>2<br>1 | 107<br>94<br>114<br>82<br>96   | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>3           | 2<br>3<br>2<br>3<br>2 | 147<br>149<br>189<br>181<br>108 | .96<br>.87<br>.92<br>.85<br>1.56   | .214<br>.251<br>.255<br>.241<br>.378  | 5<br>5<br>4<br>56       | 38<br>41<br>39<br>73<br>58 | 1.15<br>1.06<br>1.12<br>1.56<br>.56  | 226<br>175<br>211<br>173<br>172 | .22<br>.21<br>.28<br>.26<br>.17 | 9<br>7<br>9<br>2<br>15 | 3.05<br>3.00<br>2.64<br>3.89<br>1.97 | .03<br>.02<br>.02<br>.03<br>.02        | .09<br>.11<br>.10<br>.09<br>.12 | 1<br>1<br>1<br>1      | 13<br>7<br>8<br>1<br>1  |  |
| 50-440-821-114<br>50-440-821-115<br>50-440-821-116<br>50-440-821-117<br>50-440-821-118 | 1<br>1<br>1<br>1<br>1 | 5168<br>175<br>176<br>173<br>220 | 14<br>17<br>16<br>14<br>22 | 214<br>193<br>228<br>85<br>92   | 2.9<br>.3<br>.2<br>.1<br>.1 | 43<br>24<br>33<br>40<br>32 | 21<br>19<br>22<br>21<br>25 | 613<br>823<br>854<br>585<br>801   | 4.51<br>5.49<br>5.93<br>7.01<br>9.17 | 7<br>3<br>2<br>2<br>4 | 8<br>5<br>5<br>5<br>5 | NC<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>1<br>1      | 202<br>78<br>57<br>88<br>110   | 3<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>3<br>4<br>2 | 122<br>146<br>157<br>245<br>320 | 3.36<br>.85<br>.71<br>1.05<br>1.49 | 1.365<br>.515<br>.384<br>.157<br>.164 | 185<br>5<br>5<br>4<br>4 | 56<br>38<br>60<br>66<br>59 | .65<br>1.25<br>1.36<br>1.62<br>1.72  | 342<br>280<br>188<br>65<br>98   | .14<br>.25<br>.25<br>.26<br>.26 | 59<br>4<br>2<br>5<br>4 | 3.65<br>3.28<br>3.36<br>3.40<br>3.92 | .03<br>.02<br>.02<br>.03<br>.02        | .19<br>.11<br>.11<br>.10<br>.09 | 1<br>1<br>1<br>2      | 1<br>16<br>3<br>1<br>1  |  |
| 50-440-821-119<br>50-440-821-120<br>50-440-821-121<br>50-440-821-122<br>50-440-821-123 | 1<br>1<br>1<br>1      | 94<br>160<br>158<br>118<br>58    | 13<br>14<br>10<br>14<br>12 | 115<br>125<br>114<br>125<br>147 | .2<br>.3<br>.1<br>.1<br>.2  | 31<br>26<br>25<br>26<br>23 | 23<br>23<br>22<br>21<br>17 | 762<br>892<br>911<br>747<br>1127  | 8.14<br>8.00<br>7.74<br>8.12<br>6.14 | 3<br>2<br>3<br>2<br>2 | 5<br>5<br>5<br>5<br>5 | כת<br>כת<br>כת<br>כת<br>כת | 2<br>2<br>1<br>1<br>1 | 93<br>117<br>104<br>107<br>96  | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 4<br>2<br>4<br>5      | 279<br>279<br>284<br>288<br>202 | 1.00<br>1.16<br>1.07<br>.97<br>.84 | .186<br>.182<br>.134<br>.131<br>.277  | 5<br>5<br>3<br>3<br>3   | 51<br>43<br>41<br>45<br>40 | 1.62<br>1.63<br>1.52<br>1.32<br>.84  | 93<br>94<br>90<br>112<br>132    | .28<br>.28<br>.28<br>.27<br>.27 | 4<br>8<br>5<br>2<br>2  | 3.72<br>3.99<br>3.34<br>3.26<br>2.75 | .03<br>.03<br>.03<br>.02<br>.02        | .08<br>.12<br>.09<br>.07<br>.08 | 1<br>1<br>1<br>1      | 2<br>1<br>12<br>7<br>32 |  |
| 50-440-821-124<br>50-440-821-125<br>50-440-821-125<br>50-440-821-127<br>50-440-821-128 | 1<br>1<br>1<br>1      | 92<br>151<br>199<br>111<br>80    | 11<br>20<br>16<br>15<br>14 | 102<br>122<br>131<br>113<br>144 | .2<br>.2<br>.3<br>.3<br>.2  | 23<br>27<br>27<br>37<br>35 | 18<br>21<br>22<br>18<br>18 | 939<br>830<br>750<br>635<br>882   | 6.54<br>7.82<br>7.63<br>6.83<br>6.07 | 3<br>4<br>3<br>2<br>4 | 5<br>5<br>5<br>5<br>5 | ND<br>Kd<br>ND<br>Kd<br>Kd | 1<br>2<br>2<br>3<br>1 | 100<br>110<br>125<br>108<br>98 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 4<br>3<br>2<br>2<br>2 | 227<br>281<br>264<br>240<br>187 | .94<br>1.06<br>1.06<br>1.00<br>.99 | .141<br>.142<br>.155<br>.079<br>.458  | 3<br>4<br>5<br>5<br>5   | 40<br>50<br>50<br>57<br>52 | 1.05<br>1.33<br>1.46<br>1.28<br>1.05 | 113<br>79<br>91<br>60<br>114    | .24<br>.26<br>.28<br>.29<br>.21 | 6<br>4<br>8<br>14<br>7 | 3.05<br>3.39<br>3.89<br>3.11<br>3.21 | .02<br>.02<br>.02<br>.02<br>.02<br>.02 | .08<br>.14<br>.07<br>.08<br>.12 | 1<br>1<br>1<br>1      | 2<br>10<br>1<br>1<br>9  |  |
| 50-440-821-129<br>STD C/AU-S                                                           | 1<br>18               | 126<br>57                        | 13<br>41                   | 69<br>132                       | .5<br>7.2                   | 27<br>68                   | 17<br>29                   | 578<br>1070                       | 7.48                                 | 3<br>41               | 5<br>15               | ND<br>B                    | 1                     | 160<br>47                      | 1<br>16          | 2<br>16                    | 3<br>18               | 267<br>58                       | 1.84                               | .025<br>.090                          | 5<br>40                 | 49<br>55                   | 1.14                                 | 126<br>179                      | .27                             | 10<br>34               | 3.94<br>1.99                         | .04                                    | .08                             | 1<br>13               | 1<br>50                 |  |

Page 2

(

(

(

C

| SAMPLE#                                                                                | No<br>PPN              | Cu<br>PPM                       | PD<br>PPK                  | ZO<br>PPN                       | λg<br>PPN                  | NI<br>PPM                  | Co<br>PPN                  | HD<br>PPK                         | Fe<br>X                              | λs<br>PPN              | U<br>PPN              | Au<br>PPN                                  | Th<br>PPN             | ST<br>PPM                   | Cd<br>PPM             | Sb<br>PPN             | B1<br>PPN                  | V<br>PPN                        | Ca<br>t                          | P<br>X                               | La<br>PPN              | CT<br>PPN                  | Kg<br>t                              | Ba<br>PPN                       | Tİ<br>X                         | B<br>PPM                   | ג<br>ג                               | Na<br>t                         | K<br>ł                          | ¥<br>PPN              | Au*<br>PPB                |  |
|----------------------------------------------------------------------------------------|------------------------|---------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|--------------------------------------|------------------------|-----------------------|--------------------------------------------|-----------------------|-----------------------------|-----------------------|-----------------------|----------------------------|---------------------------------|----------------------------------|--------------------------------------|------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|---------------------------|--|
| 50-440-821-130<br>50-440-821-131<br>50-440-821-132<br>50-440-821-133<br>50-440-821-134 | 1<br>1<br>1<br>1       | 209<br>100<br>245<br>193<br>313 | 21<br>19<br>20<br>16<br>14 | 411<br>300<br>291<br>211<br>511 | .3<br>.5<br>.5<br>.4       | 45<br>32<br>33<br>35<br>34 | 21<br>18<br>23<br>20<br>24 | 748<br>766<br>948<br>1007<br>1543 | 6.51<br>5.87<br>6.93<br>6.61<br>7.08 | 3<br>4<br>5<br>4<br>5  | 5<br>5<br>6<br>6      | ND<br>ND<br>ND<br>ND<br>ND                 | 3<br>3<br>3<br>3<br>3 | 52<br>69<br>96<br>91<br>102 | 2<br>4<br>5<br>3<br>4 | 2<br>2<br>3<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 171<br>163<br>208<br>188<br>189 | .92<br>.83<br>.92<br>1.02<br>.88 | .288<br>.192<br>.151<br>.176<br>.375 | 6<br>5<br>6<br>5       | 47<br>46<br>54<br>50<br>64 | 1.53<br>1.42<br>1.81<br>1.58<br>1.82 | 106<br>113<br>107<br>173<br>197 | .32<br>.31<br>.33<br>.31<br>.34 | 9<br>10<br>11<br>17<br>20  | 3.76<br>2.94<br>3.18<br>3.13<br>3.06 | .01<br>.01<br>.01<br>.01<br>.01 | .11<br>.13<br>.13<br>.12<br>.12 | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1          |  |
| 50-440-821-135<br>50-440-821-136<br>50-440-821-137<br>50-440-821-138<br>50-440-821-139 | 1<br>1<br>1<br>1<br>1  | 80<br>84<br>862<br>75<br>348    | 12<br>15<br>15<br>11<br>19 | 184<br>110<br>213<br>242<br>328 | .1<br>.2<br>.7<br>.2<br>.4 | 29<br>30<br>46<br>27<br>36 | 18<br>16<br>26<br>16<br>25 | 767<br>539<br>837<br>545<br>858   | 5.08<br>4.81<br>6.47<br>5.11<br>6.91 | 4<br>4<br>3<br>4       | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND                 | 2<br>2<br>3<br>3      | 66<br>52<br>52<br>38<br>75  | 2<br>3<br>4<br>4      | 2<br>3<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 128<br>132<br>213<br>129<br>190 | .87<br>.80<br>.99<br>.54<br>.79  | .334<br>.076<br>.073<br>.185<br>.152 | 5<br>7<br>14<br>5<br>5 | 46<br>48<br>56<br>39<br>50 | 1.17<br>1.26<br>2.43<br>1.05<br>1.86 | 101<br>89<br>124<br>85<br>127   | .23<br>.28<br>.43<br>.25<br>.32 | 11<br>11<br>17<br>10<br>16 | 2.66<br>2.76<br>3.79<br>2.57<br>3.43 | .01<br>.01<br>.02<br>.01<br>.01 | .13<br>.12<br>.16<br>.10<br>.13 | 1<br>1<br>2<br>1<br>1 | 14<br>1<br>6<br>1<br>2    |  |
| 50-440-821-140<br>50-440-821-141<br>50-440-821-142<br>50-440-821-143<br>50-440-821-144 | 1<br>11<br>1<br>1<br>1 | 92<br>144<br>151<br>125<br>131  | 20<br>4<br>9<br>13<br>7    | 211<br>94<br>284<br>271<br>199  | .2<br>.5<br>.7<br>.5<br>.3 | 24<br>9<br>32<br>32<br>38  | 23<br>24<br>19<br>17<br>16 | 624<br>848<br>655<br>708<br>604   | 6.07<br>9.81<br>6.46<br>5.72<br>4.73 | 2<br>11<br>3<br>3<br>4 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND                 | 1<br>2<br>3<br>3<br>3 | 63<br>97<br>48<br>42<br>40  | 1<br>3<br>2<br>3<br>3 | 2<br>2<br>2<br>2<br>2 | 2<br>2<br>3<br>2<br>2      | 200<br>310<br>184<br>154<br>132 | .57<br>2.59<br>.71<br>.73<br>.66 | .022<br>.319<br>.188<br>.352<br>.111 | 4<br>14<br>5<br>5<br>5 | 44<br>10<br>43<br>47<br>55 | 1.39<br>2.09<br>1.54<br>1.35<br>1.34 | 90<br>85<br>84<br>138<br>95     | .37<br>.35<br>.29<br>.26<br>.27 | 2<br>20<br>8<br>7<br>12    | 2.40<br>2.99<br>3.03<br>2.94<br>2.94 | .01<br>.01<br>.01<br>.01<br>.01 | .10<br>.06<br>.12<br>.10<br>.11 | 1<br>1<br>1<br>1      | 2<br>14<br>1<br>4<br>1    |  |
| 50-440-821-145<br>50-440-821-146<br>50-440-821-147<br>50-440-821-148<br>50-440-821-148 | 1<br>1<br>1<br>1       | 225<br>150<br>117<br>255<br>45  | 13<br>18<br>14<br>12<br>4  | 236<br>211<br>286<br>205<br>120 | .2<br>.1<br>.3<br>.3<br>.3 | 35<br>32<br>26<br>33<br>25 | 18<br>18<br>16<br>21<br>10 | 696<br>778<br>749<br>776<br>539   | 5.54<br>6.28<br>4.92<br>6.61<br>3.35 | 5<br>2<br>5<br>5<br>2  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND                 | 3<br>2<br>2<br>2<br>2 | 44<br>36<br>41<br>46<br>36  | 2<br>3<br>1<br>2<br>1 | 2<br>2<br>4<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 147<br>186<br>129<br>191<br>86  | .71<br>.61<br>.69<br>.81<br>.73  | .271<br>.119<br>.261<br>.119<br>.176 | 4<br>4<br>4<br>4       | 54<br>63<br>51<br>72<br>49 | 1.58<br>1.59<br>1.44<br>2.00<br>.82  | 121<br>90<br>135<br>89<br>90    | .29<br>.33<br>.30<br>.35<br>.19 | 4<br>11<br>13<br>8<br>11   | 3.20<br>2.91<br>2.76<br>3.04<br>2.15 | .01<br>.01<br>.01<br>.01<br>.01 | .11<br>.11<br>.11<br>.11<br>.07 | 1<br>1<br>1<br>1      | 1<br>5<br>1<br>1<br>1     |  |
| 50-440-821-150<br>50-440-821-151<br>50-440-821-152<br>50-440-821-153<br>50-440-821-154 | 1<br>1<br>1<br>1       | 118<br>146<br>185<br>207<br>144 | 11<br>19<br>15<br>17<br>12 | 159<br>251<br>186<br>129<br>172 | .2<br>.1<br>.2<br>.4<br>.2 | 25<br>29<br>27<br>21<br>20 | 15<br>17<br>19<br>19<br>19 | 601<br>643<br>714<br>714<br>642   | 4.21<br>5.15<br>5.92<br>6.15<br>4.77 | 2<br>2<br>2<br>4<br>2  | 6<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND                 | 2<br>1<br>2<br>3<br>1 | 43<br>51<br>44<br>51<br>48  | 3<br>1<br>1<br>3<br>3 | 2<br>2<br>4<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 121<br>142<br>175<br>193<br>141 | .69<br>.84<br>.83<br>.90<br>.68  | .072<br>.162<br>.075<br>.050<br>.062 | 5<br>4<br>6<br>4       | 44<br>45<br>49<br>42<br>37 | 1.36<br>1.62<br>2.00<br>1.68<br>1.42 | 78<br>93<br>63<br>45<br>59      | .30<br>.32<br>.34<br>.34<br>.32 | 18<br>10<br>5<br>9<br>3    | 2.44<br>2.86<br>3.03<br>2.66<br>2.62 | .01<br>.01<br>.01<br>.01<br>.01 | .10<br>.14<br>.09<br>.20<br>.10 | 1<br>1<br>2<br>1      | 1<br>10<br>6<br>8<br>37   |  |
| 50-440-821-155<br>50-440-821-156<br>50-440-821-157<br>50-440-821-158<br>50-440-821-159 | 1<br>1<br>1<br>1       | 171<br>138<br>135<br>251<br>125 | 17<br>14<br>15<br>16<br>14 | 275<br>281<br>225<br>132<br>114 | .4<br>.2<br>.3<br>.1       | 24<br>24<br>22<br>23<br>29 | 20<br>19<br>22<br>21<br>22 | 696<br>710<br>707<br>539<br>593   | 4.46<br>4.32<br>5.23<br>5.32<br>4.64 | 4<br>2<br>3<br>4<br>3  | 5<br>5<br>5<br>5<br>5 | DU<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U | 2<br>3<br>1<br>1<br>2 | 43<br>50<br>45<br>61<br>35  | 2<br>1<br>1<br>1<br>2 | 2<br>2<br>3<br>4<br>5 | 3<br>2<br>2<br>2<br>2      | 122<br>117<br>154<br>151<br>132 | .68<br>.66<br>.85<br>.91<br>.64  | .076<br>.073<br>.067<br>.045<br>.054 | 5<br>6<br>5<br>5<br>6  | 39<br>40<br>43<br>32<br>56 | 1.26<br>1.23<br>1.53<br>1.75<br>1.44 | 81<br>89<br>60<br>64<br>62      | .31<br>.31<br>.33<br>.34<br>.32 | 8<br>9<br>5<br>11<br>8     | 2.50<br>2.60<br>2.68<br>3.95<br>2.59 | .01<br>.01<br>.01<br>.01<br>.01 | .14<br>.14<br>.12<br>.14<br>.15 | 1<br>1<br>1<br>3      | 1<br>16<br>7<br>17<br>8   |  |
| 50-440-821-160<br>50-440-821-161<br>50-440-821-162<br>50-440-821-163<br>50-440-821-164 | 1<br>1<br>1<br>1       | 97<br>158<br>127<br>256<br>306  | 11<br>10<br>13<br>21<br>13 | 97<br>103<br>220<br>159<br>212  | .1<br>.3<br>.3<br>.3<br>.8 | 28<br>31<br>28<br>32<br>36 | 24<br>23<br>18<br>21<br>20 | 744<br>502<br>780<br>681<br>673   | 5.01<br>5.25<br>4.47<br>5.13<br>5.18 | 4<br>3<br>3<br>7       | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND                 | 1<br>2<br>2<br>2<br>2 | 64<br>50<br>49<br>41<br>40  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>3 | 2<br>2<br>2<br>2<br>2<br>2 | 142<br>157<br>117<br>142<br>141 | .73<br>.70<br>.92<br>.68<br>1.01 | .079<br>.034<br>.172<br>.166<br>.133 | 5<br>6<br>5<br>4<br>7  | 55<br>65<br>39<br>53<br>42 | 1.43<br>1.50<br>1.39<br>1.69<br>1.35 | 74<br>47<br>155<br>80<br>73     | .32<br>.31<br>.30<br>.32<br>.32 | 11<br>3<br>13<br>12<br>6   | 2.39<br>2.43<br>2.87<br>3.12<br>3.86 | .01<br>.01<br>.01<br>.01<br>.01 | .15<br>.21<br>.19<br>.15<br>.12 | 1<br>1<br>1<br>1      | 40<br>28<br>22<br>11<br>9 |  |
| 50-440-821-165<br>STD C/AU-S                                                           | 1<br>18                | 244<br>57                       | 8<br>42                    | 238<br>132                      | .4<br>7.1                  | 26<br>67                   | 16<br>28                   | 687<br>1051                       | 3.85<br>4.07                         | 4<br>42                | 5<br>14               | ND<br>8                                    | 2<br>36               | 52<br>47                    | 3<br>17               | 2<br>16               | 2<br>19                    | 96<br>58                        | .87<br>.48                       | .195<br>.090                         | 5<br>40                | 29<br>54                   | 1.32<br>.95                          | 100<br>178                      | .26<br>.07                      | 6<br>33                    | 3.07<br>1.98                         | .01<br>.06                      | .19<br>.14                      | 1<br>11               | 1<br>52                   |  |

Page 3

(

(

C

Ċ

(

¢

Ć

| SANPLE#        | No  | Cu  | Pb   | Zn  | λg  | Ni  | Co  | Xn  | <b>F</b> e | λs  | U   | λu  | Th  | Sr  | Cđ  | Sb  | Bi  | ¥   | Ca   | P    | La  | Cr  | Xg   | Ba  | Ti   | B   | <b>M</b> | Na  | I.   | ¥   | Au* |
|----------------|-----|-----|------|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|-----|------|-----|------|-----|----------|-----|------|-----|-----|
|                | PPN | PPN | PPN  | PPH | PPK | PPK | PPN | PPK | \$         | PPK | PPN | PPM | PPN | PPM | PPN | PPM | PPM | PPN | ١    | 1    | PPN | PPM | ١    | PPM | ١    | PPN | 1        | ١   | \$   | PPM | PPB |
| 50-440-321-166 | 1   | 142 | 11   | 124 | .3  | 32  | 18  | 414 | 4.57       | 2   | 5   | ND  | 3   | 45  | 1   | 2   | 2   | 134 | .71  | .095 | 6   | 52  | 1.27 | 54  | .26  | 12  | 2.73     | .01 | .11  | 1   | 9   |
| 50-440-821-167 | 1   | 85  | 17   | 103 | .2  | 24  | 13  | 538 | 3.75       | 2   | 5   | ND  | 2   | 34  | 1   | 3   | 2   | 99  | .66  | .197 | 6   | 51  | .79  | 100 | .21  | 10  | 2.43     | .01 | .10  | 2   | 1   |
| 50-440-821-168 | 1   | 71  | - 14 | 117 | .3  | 25  | 14  | 492 | 4.12       | 2   | 5   | ND  | 3   | 39  | 1   | 2   | 2   | 122 | .71  | .087 | 6   | 43  | .98  | 60  | .26  | 17  | 2.40     | .01 | .12  | 1   | 1   |
| 50-440-821-169 | 1   | 72  | -13  | 107 | .3  | 19  | 11  | 478 | 3.02       | 2   | 5   | ND  | 2   | 40  | 1   | 2   | 2   | 89  | .67  | .059 | 6   | 37  | .87  | 57  | .23  | 6   | 1.98     | .01 | .08  | 1   | 6   |
| 50-440-821-170 | 1   | 113 | 12   | 154 | .4  | 27  | 17  | 539 | 5.04       | 2   | 5   | ND  | 2   | 44  | 1   | 2   | 2   | 149 | .65  | .131 | 5   | 47  | 1.30 | 138 | .30  | 2   | 2.82     | .01 | .10  | 1   | 1   |
| 50-440-821-171 | i   | 114 | 14   | 174 | .1  | 27  | 18  | 802 | 5.63       | 2   | 5   | ND  | 2   | 41  | 1   | 2   | 2   | 184 | .69  | .072 | 3   | 50  | 1.41 | 77  | . 32 | 9   | 2.57     | .01 | . 09 | 1   | 1   |
| 50-440-821-172 | 1   | 211 | 21   | 224 | .3  | 33  | 21  | 662 | 5.81       | 2   | 5   | ND  | 2   | 52  | 1   | 2   | 2   | 169 | . 69 | .133 | 4   | 45  | 1.60 | 172 | .32  | - 4 | 3.32     | .01 | .10  | 1   | 3   |

Page 4

0

(

(

£

ana ang ang kabupatèn Tang kabupatèn

| SAMPLE;                                                            | Ko<br>PPM             | CU<br>PPH                      | Pb<br>PPM                 | Zn<br>PPM                   | Ag<br>PPN                   | Nİ<br>PPH                  | CO<br>PPM                   | Nu<br>PPN                        | Fe<br>3                              | As<br>PPN             | U<br>PPM              | Au<br>PPM                  | Th<br>PPM              | ST<br>PPM                      | Cd<br>PPM             | SD<br>PPM                  | Bİ<br>PPN             | V<br>PPH                        | Ca<br>ł                              | P<br><b>X</b>                        | La<br>PPN                 | CT<br>PPM                  | Hg<br>S                              | Ba<br>PPN                     | Ti<br>ł                         | B<br>PPN               | A1<br>\$                             | Na<br>ł                         | K<br>X                             | ¥<br>PPK              | Au*<br>PPB             |
|--------------------------------------------------------------------|-----------------------|--------------------------------|---------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------------|--------------------------------------|-----------------------|-----------------------|----------------------------|------------------------|--------------------------------|-----------------------|----------------------------|-----------------------|---------------------------------|--------------------------------------|--------------------------------------|---------------------------|----------------------------|--------------------------------------|-------------------------------|---------------------------------|------------------------|--------------------------------------|---------------------------------|------------------------------------|-----------------------|------------------------|
| 440 825-01<br>440 825-02<br>440 825-03<br>440 825-04<br>440 825-05 | 1<br>1<br>1<br>1<br>1 | 503<br>56<br>66<br>123<br>121  | 4<br>9<br>6<br>8<br>29    | 52<br>56<br>28<br>34<br>61  | .2<br>.2<br>.3<br>.4        | 11<br>5<br>6<br>7<br>6     | 15<br>11<br>16<br>16<br>16  | 584<br>427<br>369<br>374<br>585  | 7.56<br>5.50<br>6.48<br>6.58<br>6.52 | 5<br>2<br>2<br>2<br>6 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 3<br>2<br>2<br>3<br>2  | 38<br>60<br>97<br>90<br>66     | 1<br>1<br>2<br>1<br>2 | 3<br>2<br>2<br>2<br>2      | 2<br>4<br>2<br>2<br>2 | 192<br>176<br>217<br>227<br>201 | 1.71<br>1.54<br>1.42<br>1.42<br>1.97 | .147<br>.131<br>.142<br>.146<br>.141 | 8<br>7<br>7<br>8<br>7     | 17<br>9<br>6<br>6<br>10    | 1.84<br>1.23<br>1.71<br>1.66<br>1.55 | 100<br>48<br>207<br>172<br>47 | .32<br>.26<br>.33<br>.35<br>.27 | 6<br>8<br>9<br>9<br>11 | 2.31<br>1.85<br>2.39<br>2.45<br>2.42 | .03<br>.04<br>.10<br>.07<br>.05 | 1.11<br>.26<br>1.29<br>1.03<br>.18 | 2<br>1<br>2<br>2<br>1 | 46<br>4<br>2<br>5<br>7 |
| 440 825-06<br>440 825-07<br>440 825-08<br>440 825-09<br>440 825-10 | 1<br>1<br>3<br>1<br>1 | 233<br>62<br>142<br>36<br>214  | 29<br>5<br>9<br>5<br>79   | 228<br>70<br>32<br>97<br>76 | .1<br>.2<br>.1<br>.4<br>.9  | 20<br>4<br>11<br>47<br>22  | 22<br>16<br>14<br>22<br>47  | 2232<br>643<br>457<br>177<br>431 | 6.18<br>6.14<br>6.33<br>1.98<br>5.00 | 7<br>2<br>2<br>2<br>3 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>3<br>2<br>13<br>2 | 55<br>148<br>92<br>6<br>41     | 1<br>1<br>2<br>3<br>3 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2 | 162<br>191<br>159<br>19<br>98   | 1.08<br>1.95<br>2.03<br>.09<br>2.25  | .099<br>.236<br>.163<br>.025<br>.142 | 2<br>11<br>11<br>23<br>3  | 36<br>5<br>24<br>17<br>57  | 2.58<br>1.09<br>1.76<br>.93<br>1.83  | 76<br>303<br>64<br>164<br>6   | .23<br>.33<br>.25<br>.14<br>.29 | 6<br>7<br>11<br>9<br>9 | 2.21<br>2.14<br>2.52<br>1.47<br>2.51 | .04<br>.10<br>.06<br>.01<br>.04 | .21<br>.92<br>.31<br>.91<br>.08    | 2<br>1<br>1<br>1      | 4<br>1<br>6<br>1<br>1  |
| 440 825-11<br>440 825-12<br>440 825-13<br>440 825-14<br>440 825-15 | 1<br>1<br>1<br>1<br>1 | 151<br>153<br>101<br>88<br>65  | 67<br>7<br>12<br>3<br>26  | 80<br>63<br>95<br>50<br>138 | 1.4<br>.2<br>.2<br>.1<br>.1 | 25<br>27<br>15<br>11<br>9  | 176<br>18<br>20<br>16<br>15 | 403<br>601<br>874<br>500<br>1121 | 8.72<br>5.86<br>5.63<br>6.61<br>6.25 | 2<br>2<br>4<br>2<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>2<br>2<br>2  | 61<br>111<br>156<br>36<br>63   | 1<br>2<br>2<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2 | 71<br>193<br>170<br>206<br>172  | 1.48<br>1.77<br>2.35<br>1.07<br>2.70 | .131<br>.167<br>.115<br>.148<br>.133 | 3<br>12<br>5<br>9<br>8    | 45<br>85<br>19<br>18<br>15 | 1.64<br>2.14<br>2.13<br>1.48<br>1.99 | 6<br>192<br>71<br>133<br>32   | .19<br>.39<br>.36<br>.34<br>.27 | 8<br>4<br>5<br>4<br>6  | 1.95<br>2.50<br>2.53<br>1.87<br>2.73 | .04<br>.06<br>.05<br>.10<br>.04 | .06<br>.99<br>.43<br>1.24<br>.18   | 1<br>1<br>1<br>1      | 58<br>6<br>1<br>3<br>2 |
| 440 825-16<br>440 825-17<br>440 825-18<br>440 825-19<br>440 825-20 | 1<br>1<br>1<br>1      | 131<br>77<br>139<br>27<br>67   | 5<br>19<br>11<br>12<br>10 | 58<br>85<br>34<br>35<br>72  | .3<br>.1<br>.2<br>.1<br>.1  | 16<br>16<br>5<br>129<br>12 | 26<br>16<br>15<br>13<br>14  | 569<br>775<br>462<br>327<br>744  | 5.81<br>6.22<br>6.74<br>3.52<br>5.32 | 2<br>3<br>2<br>2<br>2 | 5<br>5<br>7<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>2<br>1<br>1  | 168<br>122<br>860<br>346<br>67 | 1<br>1<br>2<br>1<br>2 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>3<br>2      | 147<br>173<br>214<br>95<br>160  | 1.65<br>2.65<br>3.89<br>2.64<br>3.17 | .140<br>.307<br>.356<br>.110<br>.132 | 6<br>6<br>12<br>4<br>7    | 19<br>23<br>8<br>287<br>49 | 2.50<br>1.92<br>.76<br>1.21<br>1.66  | 50<br>36<br>136<br>128<br>104 | .26<br>.17<br>.17<br>.13<br>.24 | 6<br>7<br>4<br>7<br>10 | 2.66<br>2.70<br>4.42<br>3.12<br>2.86 | .04<br>.03<br>.32<br>.19<br>.04 | .30<br>.08<br>.16<br>.26<br>.21    | 1<br>1<br>1<br>1      | 1<br>2<br>1<br>1       |
| 440 825-21<br>440 825-22<br>440 825-23<br>440 825-24<br>440 825-25 | 1<br>1<br>1<br>1<br>1 | 88<br>101<br>128<br>249<br>146 | 8<br>9<br>24<br>5<br>11   | 57<br>47<br>114<br>77<br>67 | .1<br>.1<br>.3<br>.2        | 10<br>15<br>4<br>22<br>3   | 13<br>13<br>12<br>17<br>8   | 555<br>488<br>793<br>592<br>735  | 5.52<br>5.02<br>4.62<br>6.01<br>3.81 | 2<br>2<br>3<br>2<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2  | 104<br>90<br>112<br>67<br>37   | 2<br>2<br>1<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2 | 177<br>154<br>152<br>198<br>111 | 3.06<br>1.57<br>1.79<br>1.91<br>2.00 | .165<br>.119<br>.172<br>.146<br>.100 | 13<br>8<br>12<br>10<br>10 | 21<br>59<br>11<br>47<br>7  | 1.12<br>1.14<br>1.26<br>1.68<br>1.01 | 70<br>308<br>80<br>139<br>32  | .21<br>.24<br>.25<br>.36<br>.15 | 7<br>4<br>5<br>8<br>7  | 2.65<br>1.73<br>1.90<br>2.15<br>1.74 | .03<br>.08<br>.04<br>.04<br>.03 | .22<br>.41<br>.30<br>.77<br>.13    | 1<br>1<br>1<br>1      | 2<br>5<br>11<br>2<br>1 |
| 440 825-26<br>440 825-27<br>440 825-28<br>STD C/AU-R               | 1<br>1<br>18          | 3975<br>50<br>193<br>58        | 7<br>6<br>9<br>38         | 44<br>33<br>51<br>133       | .9<br>.2<br>.2<br>7.1       | 45<br>9<br>9               | 34<br>11<br>24<br>29        | 384<br>507<br>524<br>1057        | 6.52<br>6.87<br>6.36<br>4.24         | 5<br>3<br>2<br>42     | 5<br>5<br>5<br>17     | ND<br>ND<br>ND<br>7        | 2<br>3<br>2<br>36      | 65<br>33<br>30<br>47           | 1<br>1<br>2<br>17     | 2<br>2<br>2<br>1 B         | 2<br>2<br>2<br>19     | 209<br>205<br>196<br>58         | 2.10<br>1.68<br>1.45                 | .232<br>.145<br>.156                 | 9<br>9<br>7<br>40         | 56<br>16<br>15<br>57       | 1.79<br>1.78<br>1.47<br>.97          | 127<br>92<br>54<br>181        | .40<br>.33<br>.29               | 7<br>11<br>5<br>31     | 2.37<br>2.18<br>1.89<br>2.01         | .08<br>.04<br>.04               | 1.13<br>.90<br>.23<br>.13          | 1<br>1<br>1           | 285<br>2<br>1<br>495   |

Page 5

(

t

C

#### ACME ANALYTICAL LABORATORIES LTD.

(

(

ŧ

t

(

#### GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR HA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AU\* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

A & M EXPLORATION PROJECT-440 File # 88-2021 Page 1

| SANPLE #                                                                               | Mo<br>PPM             | CU<br>PPK                       | .Pb<br>PPH                 | Zn<br>PPM                               | Ag<br>PPM                  | NÍ<br>PPM                  | Co<br>PPM                  | Mn<br>PPM                        | 7e<br>ł                              | AS<br>PPN             | U<br>PPN              | AU<br>PPN                  | Th<br>PPM             | ST<br>PPM                  | Cd<br>PPN        | SD<br>PPN                  | B1<br>PPN                  | V<br>PPM                        | Ca<br>\$                          | P<br>\$                              | La<br>PPM               | CT<br>PPN                  | Ng<br>ł                              | Ba<br>PPM                     | 71<br>- <b>1</b>                | B<br>PPM              | 11<br>1                              | Na<br>ł                         | ł                               | Y<br>PPN              | Au*<br>PPB                 |  |
|----------------------------------------------------------------------------------------|-----------------------|---------------------------------|----------------------------|-----------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|--------------------------------------|-----------------------|-----------------------|----------------------------|-----------------------|----------------------------|------------------|----------------------------|----------------------------|---------------------------------|-----------------------------------|--------------------------------------|-------------------------|----------------------------|--------------------------------------|-------------------------------|---------------------------------|-----------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|----------------------------|--|
| 50-440-521-041<br>50-440-521-042<br>50-440-521-043<br>50-440-521-044<br>50-440-521-045 | 1<br>1<br>1<br>1      | 50<br>33<br>35<br>73<br>80      | 14<br>11<br>14<br>20<br>48 | 169<br>115<br>144<br>199<br>295         | .4<br>.3<br>.1<br>.1<br>.5 | 34<br>38<br>27<br>38<br>29 | 18<br>14<br>15<br>20<br>21 | 376<br>364<br>350<br>511<br>1051 | 4.27<br>3.38<br>3.34<br>5.24<br>4.69 | 2<br>3<br>2<br>2<br>4 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>2<br>1<br>1<br>1 | 51<br>46<br>50<br>65<br>74 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>3      | 105<br>83<br>81<br>128<br>118   | .54<br>.60<br>.61<br>.68<br>.68   | .104<br>.108<br>.050<br>.089<br>.115 | 7<br>7<br>6<br>5        | 49<br>59<br>44<br>52<br>50 | 1.14<br>.99<br>.85<br>1.41<br>.94    | 52<br>47<br>64<br>89<br>67    | .17<br>.14<br>.14<br>.18<br>.14 | 5<br>4<br>6<br>3<br>3 | 2.16<br>1.69<br>1.91<br>3.24<br>2.63 | .01<br>.01<br>.02<br>.01<br>.01 | .15<br>.09<br>.06<br>.10<br>.05 | 1<br>1<br>1<br>1      | 3<br>1<br>1<br>1<br>1      |  |
| 50-440-521-046<br>50-440-521-047<br>50-440-521-048<br>50-440-521-049<br>50-440-521-050 | 1<br>1<br>1<br>1<br>1 | 62<br>83<br>215<br>153<br>84    | 18<br>25<br>27<br>40<br>31 | 185<br>292<br>165<br>181<br>216         | .1<br>.1<br>.3<br>.3       | 32<br>26<br>42<br>38<br>35 | 19<br>27<br>22<br>22<br>24 | 576<br>735<br>1472<br>599<br>436 | 3.93<br>4.41<br>5.29<br>5.52<br>4.91 | 2<br>2<br>5<br>2      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 61<br>58<br>53<br>97<br>49 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 89<br>107<br>139<br>144<br>122  | .74<br>.85<br>.89<br>.77<br>.62   | .167<br>.081<br>.056<br>.146<br>.131 | 4<br>4<br>10<br>5<br>4  | 40<br>37<br>60<br>54<br>43 | 1.13<br>1.21<br>1.31<br>1.75<br>1.23 | 91<br>71<br>105<br>40<br>61   | .15<br>.17<br>.14<br>.17<br>.15 | 7<br>6<br>4<br>7<br>3 | 2.26<br>2.10<br>4.17<br>3.03<br>2.99 | .03<br>.02<br>.02<br>.03<br>.02 | .08<br>.09<br>.07<br>.07<br>.05 | 1<br>1<br>1<br>1      | 2<br>14<br>5<br>6<br>1     |  |
| 50-440-521-051<br>50-440-521-052<br>50-440-521-053<br>50-440-521-054<br>50-440-521-055 | 1<br>1<br>2<br>1<br>1 | 152<br>73<br>346<br>45<br>45    | 35<br>18<br>9<br>12<br>9   | 161<br>250<br>164<br>147<br>158         | .9<br>.3<br>.4<br>.3<br>.4 | 30<br>37<br>29<br>28<br>31 | 18<br>27<br>50<br>20<br>22 | 473<br>496<br>458<br>679<br>605  | 5.61<br>6.04<br>5.11<br>4.26<br>4.55 | 6<br>3<br>4<br>2<br>3 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 60<br>45<br>68<br>59<br>45 | 1<br>1<br>1<br>1 | 2<br>2<br>3<br>4<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 147<br>145<br>136<br>112<br>115 | .55<br>.61<br>1.04<br>.76<br>.68  | .144<br>.155<br>.068<br>.082<br>.145 | 5<br>5<br>4<br>4        | 47<br>47<br>33<br>45<br>45 | 1.27<br>1.20<br>1.28<br>1.22<br>1.35 | 32<br>61<br>37<br>43<br>56    | .15<br>.18<br>.18<br>.18<br>.18 | 3<br>4<br>9<br>4      | 3.30<br>3.48<br>2.60<br>2.07<br>2.31 | .02<br>.01<br>.03<br>.03<br>.02 | .06<br>.07<br>.08<br>.09<br>.10 | 1<br>1<br>1<br>1      | 25<br>7<br>11<br>9<br>10   |  |
| 50-440-521-056<br>50-440-521-057<br>440-820-343<br>440-820-344<br>440-820-344          | 1<br>1<br>1<br>1      | 69<br>55<br>182<br>138<br>123   | 13<br>11<br>6<br>4<br>5    | 160<br>346<br>151<br>94<br>87           | .3<br>.1<br>.1<br>.1       | 35<br>33<br>34<br>37<br>38 | 27<br>25<br>22<br>19<br>17 | 515<br>686<br>508<br>581<br>397  | 5.91<br>4.95<br>5.11<br>5.14<br>4.40 | 2<br>2<br>2<br>2<br>3 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 56<br>47<br>46<br>50<br>39 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>3<br>2      | 152<br>119<br>140<br>155<br>126 | .60<br>.75<br>.78<br>.64<br>.73   | .186<br>.126<br>.151<br>.049<br>.034 | 4<br>4<br>5<br>6        | 47<br>45<br>53<br>68<br>60 | 1.56<br>1.32<br>1.32<br>1.51<br>1.29 | 42<br>61<br>100<br>120<br>43  | .17<br>.16<br>.22<br>.25<br>.22 | 4<br>6<br>4<br>8      | 2.96<br>2.72<br>2.42<br>2.26<br>2.18 | .02<br>.02<br>.02<br>.01<br>.01 | .08<br>.10<br>.10<br>.11<br>.11 | 2<br>1<br>1<br>1<br>1 | 26<br>5<br>17<br>12<br>7   |  |
| 440-820-346<br>440-820-347<br>440-820-349<br>440-820-349<br>440-820-349<br>440-820-350 | 1<br>1<br>1<br>1      | 136<br>195<br>255<br>423<br>191 | 8<br>7<br>7<br>10<br>10    | 110<br>88<br>101<br>117<br>136          | .1<br>.1<br>.1<br>.1<br>.4 | 26<br>35<br>30<br>32<br>30 | 19<br>20<br>23<br>25<br>22 | 681<br>654<br>517<br>857<br>510  | 5.71<br>5.49<br>5.83<br>6.59<br>5.05 | 2<br>2<br>3<br>4<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1<br>2 | 49<br>46<br>56<br>60<br>52 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>3      | 2<br>2<br>2<br>2<br>2<br>2 | 180<br>156<br>181<br>200<br>151 | .84<br>.97<br>.81<br>1.11<br>.69  | .030<br>.068<br>.035<br>.107<br>.035 | 5<br>7<br>5<br>7<br>5   | 47<br>64<br>50<br>54<br>44 | 1.31<br>1.45<br>1.42<br>1.87<br>1.38 | 74<br>68<br>48<br>75<br>46    | .28<br>.26<br>.27<br>.26<br>.21 | 4<br>6<br>4<br>3      | 2.70<br>2.51<br>2.50<br>3.14<br>2.82 | .01<br>.01<br>.02<br>.02<br>.02 | .14<br>.18<br>.12<br>.22<br>.15 | 1<br>1<br>1<br>1      | 38<br>4<br>17<br>102<br>18 |  |
| 440-820-351<br>440-820-352<br>440-820-353<br>440-820-353<br>440-820-354<br>440-320-355 | 1<br>1<br>1<br>1      | 137<br>164<br>279<br>187<br>112 | 9<br>10<br>8<br>9<br>9     | 189<br>210<br>2 <b>25</b><br>210<br>202 | .4<br>.3<br>.4<br>.3<br>.1 | 33<br>35<br>32<br>34<br>27 | 26<br>27<br>20<br>21<br>18 | 559<br>599<br>544<br>619<br>718  | 5.53<br>5.41<br>5.05<br>6.07<br>4.91 | 2<br>4<br>2<br>3      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>1 | 41<br>58<br>57<br>62<br>60 | 1<br>1<br>1<br>1 | 2<br>3<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 138<br>134<br>142<br>168<br>130 | .71<br>.80<br>.65<br>.87<br>.85   | .178<br>.176<br>.137<br>.133<br>.132 | 5<br>4<br>6<br>5        | 51<br>47<br>30<br>49<br>45 | 1.20<br>1.26<br>1.33<br>1.55<br>1.18 | 58<br>84<br>75<br>76<br>147   | .19<br>.20<br>.18<br>.23<br>.21 | 5<br>4<br>3<br>4<br>4 | 2.84<br>2.83<br>2.83<br>3.04<br>2.23 | .01<br>.03<br>.01<br>.02<br>.01 | .13<br>.11<br>.09<br>.12<br>.10 | 1<br>3<br>1<br>2<br>1 | 7<br>9<br>14<br>3<br>13    |  |
| 440-820-356<br>440-520-357<br>440-810-358<br>440-320-359<br>440-320-360                | 1<br>1<br>1<br>3<br>1 | 123<br>61<br>124<br>84<br>281   | 5<br>8<br>5<br>5<br>7      | 117<br>158<br>119<br>53<br>45           | .1<br>.2<br>.2<br>.1       | 29<br>28<br>36<br>31<br>26 | 18<br>14<br>13<br>9<br>11  | 506<br>508<br>487<br>278<br>274  | 5.05<br>3.55<br>4.62<br>3.68<br>3.81 | 2<br>2<br>4<br>3      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>2<br>3<br>3 | 41<br>37<br>47<br>52<br>56 | 1<br>1<br>1<br>1 | 3<br>2<br>2<br>2<br>3      | 2<br>2<br>2<br>2<br>2<br>2 | 138<br>93<br>128<br>123<br>100  | .61<br>.61<br>.76<br>1.24<br>1.21 | .133<br>.098<br>.114<br>.041<br>.023 | 5<br>5<br>6<br>10<br>11 | 55<br>56<br>71<br>52<br>62 | 1.29<br>.95<br>1.32<br>1.05<br>1.01  | 127<br>143<br>110<br>98<br>68 | .23<br>.20<br>.22<br>.16<br>.19 | 4<br>3<br>3<br>4      | 2.46<br>2.04<br>2.18<br>1.90<br>1.72 | .02<br>.01<br>.01<br>.03<br>.03 | .09<br>.08<br>.11<br>.03<br>.07 | 2<br>1<br>1<br>1<br>3 | 44<br>2<br>4<br>5<br>4     |  |
| 440-820-351<br>STD C/AU-S                                                              | 1<br>18               | 54<br>39                        | · 3<br>37                  | :46<br>132                              | .1<br>6.8                  | 28<br>68                   | 14<br>29                   | 427<br>1060                      | 3.39<br>4.07                         | 2<br>;4               | 5<br>16               | ם א<br>7                   | 1<br>36               | 39<br>49                   | 1<br>17          | 2<br>17                    | 2<br>19                    | 102<br>58                       | .71<br>.49                        | .148<br>.084                         | 4<br>39                 | 68<br>58                   | .79<br>.92                           | 96<br>178                     | .16<br>.07                      | 3<br>37               | 1.98<br>1.73                         | .01<br>.06                      | .34<br>.14                      | 1<br>13               | 1<br>50                    |  |

, O.

| SAMPLE #                                                                                     |                                  | No<br>PPK        | Cu<br>PPN                       | P5<br>PPN                | Zn<br>PPM                       | Ag<br>PPN                  | Nİ<br>PPM                  | CO<br>PPN                  | ND<br>PPN                        | Fe<br>S                              | A5<br>PPM             | U<br>PPK              | Au<br>PPM                  | Th<br>PPM             | ST<br>PPM                    | Cd<br>PPN             | SD<br>PPM                  | Bİ<br>PPM                  | V<br>PPM                        | Ca<br>%                           | Р<br><b>%</b>                        | La<br>PPM              | CT<br>PPN                  | Ng<br>ł                              | Ba<br>PPM                       | Ti<br>ł                                | B<br>PPM                | A1<br>1                              | Na<br>ł                         | I<br>ł                          | ¥<br>PPK              | Au*<br>PPB              |
|----------------------------------------------------------------------------------------------|----------------------------------|------------------|---------------------------------|--------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|--------------------------------------|-----------------------|-----------------------|----------------------------|-----------------------|------------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-----------------------------------|--------------------------------------|------------------------|----------------------------|--------------------------------------|---------------------------------|----------------------------------------|-------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-------------------------|
| 440-820-362<br>440-820-363<br>440-820-364<br>440-820-364<br>440-820-365<br>440-820-366       |                                  | 1<br>1<br>1<br>1 | 178<br>283<br>333<br>86<br>150  | 9<br>8<br>7<br>6<br>4    | 173<br>203<br>178<br>245<br>151 | .1<br>.2<br>.1<br>.1<br>.1 | 37<br>40<br>40<br>25<br>29 | 22<br>23<br>23<br>18<br>17 | 699<br>581<br>602<br>574<br>739  | 6.04<br>5.40<br>6.35<br>5.05<br>5.40 | 2<br>3<br>3<br>2<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 53<br>54<br>76<br>80<br>79   | 1<br>I<br>I<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 187<br>148<br>190<br>133<br>156 | .74<br>.73<br>.73<br>.70<br>.78   | .104<br>.179<br>.137<br>.268<br>.116 | 3<br>4<br>4<br>4<br>4  | 72<br>63<br>68<br>45<br>52 | 1.59<br>1.63<br>1.72<br>1.27<br>1.27 | 193<br>160<br>148<br>272<br>161 | .24<br>.24<br>.23<br>.20<br>.19        | 8<br>8<br>3<br>5<br>9   | 2.99<br>3.00<br>3.82<br>2.74<br>2.79 | .01<br>.01<br>.01<br>.02<br>.01 | .10<br>.09<br>.09<br>.11<br>.09 | 1<br>1<br>1<br>1      | 4<br>10<br>3<br>1<br>5  |
| 440-820-367<br>440-820-368<br>440-820-369<br>440-820-370<br>440-820-371                      |                                  | 1<br>1<br>1<br>1 | 137<br>217<br>135<br>373<br>60  | 7<br>5<br>11<br>8<br>2   | 431<br>181<br>326<br>326<br>25  | .3<br>.1<br>.1<br>.4<br>.1 | 29<br>25<br>31<br>48<br>4  | 18<br>20<br>20<br>22<br>3  | 794<br>743<br>916<br>783<br>121  | 5.00<br>6.42<br>6.01<br>5.37<br>1.11 | 2<br>2<br>4<br>3<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>1<br>2<br>1 | 86<br>135<br>130<br>69<br>12 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 130<br>196<br>171<br>138<br>31  | .84<br>1.27<br>.97<br>1.22<br>.19 | .220<br>.218<br>.187<br>.062<br>.016 | 5<br>5<br>4<br>15<br>2 | 42<br>42<br>41<br>41<br>6  | 1.31<br>1.46<br>1.39<br>1.22<br>.23  | 193<br>180<br>139<br>72<br>12   | .18<br>.18<br>.20<br>.22<br>.03        | 10<br>10<br>5<br>9<br>2 | 2.93<br>3.07<br>2.96<br>3.49<br>.50  | .01<br>.01<br>.02<br>.01        | .12<br>.11<br>.08<br>.08<br>.02 | 1<br>1<br>1<br>1      | 3<br>29<br>5<br>2<br>13 |
| 440-820-372<br>440-820-373<br>440-820-374<br>440-820-375<br>440-820-376                      |                                  | 1<br>1<br>1<br>1 | 5<br>295<br>182<br>121<br>176   | 2<br>9<br>12<br>7<br>11  | 1<br>231<br>307<br>194<br>138   | .1<br>.2<br>.2<br>.1<br>.4 | 1<br>26<br>27<br>25<br>19  | 1<br>24<br>26<br>18<br>19  | 6<br>732<br>654<br>910<br>554    | .09<br>7.29<br>5.98<br>6.14<br>6.86  | 2<br>2<br>2<br>5      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>1<br>1 | 1<br>78<br>92<br>61<br>83    | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>3           | 2<br>2<br>2<br>2<br>3      | 3<br>228<br>147<br>189<br>246   | .02<br>.83<br>.94<br>.79<br>.99   | .001<br>.249<br>.506<br>.085<br>.026 | 2<br>5<br>3<br>3<br>5  | 1<br>36<br>42<br>42<br>31  | .02<br>1.79<br>1.31<br>1.26<br>1.42  | 1<br>117<br>264<br>133<br>97    | .01<br>.22<br>.18<br>.21<br>.27        | 2<br>5<br>5<br>9<br>10  | .03<br>4.23<br>3.22<br>2.83<br>3.43  | .01<br>.01<br>.01<br>.01<br>.01 | .01<br>.08<br>.11<br>.09<br>.06 | 1<br>1<br>1<br>1      | 4<br>11.<br>1<br>1      |
| 440-820-377<br>440-820-378<br>440-820-379<br>440-820-380<br>440-820-381                      |                                  | 1<br>1<br>1<br>1 | 704<br>81<br>156<br>265<br>175  | 8<br>11<br>10<br>9<br>11 | 86<br>118<br>185<br>187<br>295  | .5<br>.1<br>.2<br>.1<br>.2 | 29<br>29<br>30<br>26<br>25 | 17<br>20<br>18<br>21<br>20 | 913<br>663<br>575<br>778<br>807  | 6.95<br>7.46<br>5.70<br>7.25<br>6.47 | 2<br>2<br>2<br>4<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>1<br>1 | 66<br>44<br>51<br>80<br>64   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 225<br>243<br>151<br>224<br>190 | 1.55<br>.70<br>.74<br>.96<br>.76  | .053<br>.085<br>.181<br>.189<br>.184 | 7<br>3<br>5<br>4<br>4  | 55<br>49<br>46<br>47<br>39 | 1.33<br>1.36<br>1.47<br>1.67<br>1.53 | 51<br>86<br>103<br>135<br>256   | .18<br>.22<br>.21<br>.21<br>.21<br>.22 | 4<br>4<br>11<br>6<br>6  | 2.10<br>3.22<br>3.17<br>3.01<br>2.82 | .01<br>.01<br>.01<br>.01<br>.01 | .07<br>.09<br>.11<br>.12<br>.10 | 1<br>1<br>2<br>1      | 11<br>1<br>2<br>15<br>1 |
| 440-820-382<br>50-440-821-(<br>50-440-821-(<br>50-440-821-(<br>50-440-821-(<br>50-440-821-(  | 017 &<br>018<br>019<br>021       | 1<br>1<br>1<br>1 | 97<br>70<br>130<br>96<br>217    | 8<br>6<br>8<br>6         | 258<br>149<br>103<br>178<br>146 | .1<br>.2<br>.4<br>.2<br>.4 | 26<br>31<br>31<br>25<br>27 | 17<br>16<br>17<br>17<br>17 | 575<br>568<br>573<br>879<br>1174 | 5.17<br>5.80<br>7.00<br>6.56<br>4.76 | 5<br>3<br>2<br>2<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>2      | 54<br>71<br>76<br>81<br>107  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 3<br>2<br>2<br>2<br>2      | 133<br>182<br>251<br>220<br>142 | .75<br>.87<br>.77<br>.73<br>.87   | .303<br>.185<br>.105<br>.205<br>.198 | 5<br>4<br>3<br>3<br>5  | 43<br>52<br>63<br>47<br>46 | 1.17<br>.96<br>1.08<br>1.02<br>.97   | 211<br>84<br>57<br>138<br>119   | .20<br>.15<br>.16<br>.15<br>.13        | 5<br>11<br>4<br>8<br>4  | 2.47<br>3.11<br>3.11<br>2.81<br>3.89 | .01<br>.01<br>.01<br>.01<br>.01 | .13<br>.11<br>.09<br>.07<br>.10 | 1<br>1<br>1<br>1<br>1 | 1<br>3<br>5<br>2<br>3   |
| 50-440-821-0<br>50-440-821-0<br>50-440-821-0<br>50-440-821-0<br>50-440-821-0                 | 021A<br>022<br>023<br>024<br>025 | 1<br>1<br>1<br>1 | 97<br>129<br>65<br>177<br>208   | 10<br>5<br>9<br>6<br>6   | 249<br>216<br>147<br>140<br>162 | .5<br>.3<br>.3<br>.3<br>.1 | 26<br>28<br>27<br>29<br>37 | 18<br>17<br>17<br>19<br>20 | 793<br>892<br>573<br>1056<br>732 | 6.38<br>5.00<br>4.71<br>6.38<br>5.59 | 4<br>5<br>3<br>2      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>2<br>1<br>1 | 103<br>74<br>63<br>96<br>75  | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>5<br>3<br>2      | 2<br>2<br>2<br>2<br>2      | 205<br>137<br>130<br>197<br>165 | .81<br>.65<br>.59<br>.76<br>.67   | .275<br>.255<br>.271<br>.311<br>.235 | 3<br>4<br>4<br>3<br>4  | 49<br>49<br>46<br>55<br>52 | 1.05<br>1.01<br>1.07<br>1.10<br>1.18 | 98<br>170<br>127<br>177<br>105  | .16<br>.16<br>.15<br>.13<br>.17        | 3<br>19<br>5<br>3<br>5  | 2.97<br>2.93<br>2.88<br>3.15<br>3.76 | .02<br>.02<br>.01<br>.01<br>.02 | .08<br>.07<br>.09<br>.10<br>.08 | 1<br>1<br>1<br>2      | 1<br>3<br>1<br>2<br>12  |
| 50-440-821-0<br>50-440-821-0<br>50-440-821-0<br>50-440-821-0<br>50-440-821-0<br>50-440-821-0 | 026<br>027<br>028<br>029<br>030  | 1<br>1<br>1<br>1 | 207<br>119<br>167<br>120<br>162 | 7<br>4<br>9<br>8<br>7    | 147<br>207<br>159<br>129<br>76  | .2<br>.3<br>.3<br>.1<br>.7 | 33<br>27<br>35<br>25<br>25 | 19<br>18<br>25<br>18<br>17 | 544<br>483<br>1198<br>739<br>334 | 5.76<br>6.13<br>8.47<br>5.73<br>5.45 | 3<br>2<br>3<br>2<br>4 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 70<br>89<br>95<br>85<br>103  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 169<br>171<br>246<br>166<br>159 | .64<br>.88<br>.85<br>.79<br>1.44  | .197<br>.262<br>.178<br>.242<br>.027 | 4<br>4<br>3<br>4<br>11 | 47<br>42<br>72<br>40<br>37 | 1.24<br>1.18<br>2.06<br>1.12<br>.88  | 100<br>100<br>154<br>135<br>98  | .19<br>.18<br>.23<br>.18<br>.24        | 5<br>2<br>2<br>4<br>2   | 4.05<br>3.68<br>4.05<br>3.21<br>4.65 | .02<br>.03<br>.01<br>.03<br>.02 | .07<br>.08<br>.08<br>.08<br>.08 | 1<br>1<br>1<br>1      | 2<br>5<br>1<br>2<br>4   |
| 50-440-821-0<br>STD C/AU-S                                                                   | 131                              | 1<br>17          | 114<br>57                       | 6<br>37                  | 158<br>132                      | .1<br>7.1                  | 29<br>57                   | 20<br>28                   | 991<br>1054                      | 5.31<br>4.01                         | 2<br>39               | 5<br>15               | ND<br>6                    | 1<br>37               | 61<br>48                     | 1<br>17               | 2<br>17                    | 2<br>20                    | 147<br>55                       | .77<br>.49                        | .173<br>.081                         | 5<br>38                | 62<br>55                   | 1.25                                 | 169<br>172                      | .20                                    | 5<br>35                 | 2.81<br>1.74                         | .02<br>.06                      | .12                             | 1<br>10               | 55<br>500               |

Page 2

(

•

C

 $r \subset$ 

| SANPLE‡                                                                                                  | NO<br>PPN        | Cu<br>PPN                       | PD<br>PPM               | Zn<br>PPN                       | Ag<br>PPN                  | NI<br>PPM                  | Co<br>PPM                  | Kn<br>PPN                          | Fe<br>X                              | As<br>PPN             | U<br>PPM              | Au<br>PPN                  | Th<br>PPN             | Sr<br>PPM                     | Cđ<br>PPM             | SD<br>PPM                  | Bi<br>PPM                  | V<br>PPN                        | Ca<br>ł                            | P<br>8                               | La<br>PPM             | Cr<br>PPM                   | Kg<br>t                              | Ba<br>PPM                       | TÍ<br>ł                                | B<br>PPM               | Al<br>R                              | Na<br>ł                         | I<br>ł                          | W<br>PPM         | Au*<br>PPB                |
|----------------------------------------------------------------------------------------------------------|------------------|---------------------------------|-------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|------------------------------------|--------------------------------------|-----------------------|-----------------------|----------------------------|-----------------------|-------------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|------------------------------------|--------------------------------------|-----------------------|-----------------------------|--------------------------------------|---------------------------------|----------------------------------------|------------------------|--------------------------------------|---------------------------------|---------------------------------|------------------|---------------------------|
| 50-440-821-032<br>50-440-821-033<br>50-440-821-034<br>50-440-821-035<br>50-440-821-036                   | 1<br>1<br>1<br>1 | 108<br>69<br>185<br>180<br>196  | 7<br>8<br>5<br>6<br>7   | 297<br>195<br>199<br>157<br>149 | .4<br>.3<br>.5<br>.3       | 31<br>24<br>33<br>37<br>35 | 19<br>15<br>24<br>22<br>22 | 1039<br>681<br>914<br>802<br>583   | 4.69<br>3.59<br>5.39<br>5.16<br>4.83 | 5<br>4<br>9<br>5<br>5 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>3<br>2<br>2<br>1 | 79<br>47<br>67<br>58<br>55    | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>3<br>2      | 2<br>2<br>3<br>2<br>2      | 121<br>99<br>135<br>143<br>121  | .78<br>.68<br>.94<br>.77<br>.70    | .208<br>.044<br>.333<br>.125<br>.198 | 6<br>6<br>4<br>4<br>4 | 53<br>46<br>61<br>62<br>60  | 1.11<br>1.05<br>1.41<br>1.45<br>1.32 | 245<br>92<br>281<br>148<br>179  | .19<br>.22<br>.20<br>.22<br>.22        | 4<br>9<br>7<br>4<br>4  | 2.82<br>2.06<br>2.98<br>2.79<br>2.65 | .01<br>.01<br>.01<br>.01<br>.01 | .13<br>.10<br>.16<br>.20<br>.14 | 1<br>1<br>1<br>1 | 3<br>13<br>9<br>1<br>11   |
| 50-440-621-037<br>56-440-821-038<br>50-440-821-039<br>50-440-821-040<br>50-440-821-040<br>50-440-826-018 | 1<br>1<br>1<br>1 | 140<br>54<br>40<br>36<br>95     | 6<br>12<br>10<br>9<br>8 | 192<br>199<br>155<br>183<br>112 | .1<br>.3<br>.2<br>.1<br>.1 | 36<br>27<br>27<br>23<br>22 | 23<br>17<br>15<br>13<br>14 | 772<br>838<br>554<br>788<br>699    | 4.93<br>3.63<br>3.69<br>3.40<br>4.22 | 2<br>5<br>3<br>2<br>3 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>2<br>2<br>1<br>1 | 61<br>56<br>57<br>71<br>43    | 1<br>1<br>1<br>1      | 2<br>3<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 134<br>89<br>91<br>87<br>117    | .84<br>.77<br>.69<br>.77<br>.57    | .197<br>.082<br>.096<br>.106<br>.093 | 3<br>5<br>5<br>6<br>5 | 63<br>44<br>46<br>43<br>40  | 1.42<br>.95<br>.99<br>.83<br>.89     | 190<br>67<br>57<br>65<br>70     | .22<br>.14<br>.15<br>.15<br>.18        | 4<br>8<br>7<br>5<br>5  | 2.66<br>1.97<br>1.99<br>1.77<br>1.97 | .01<br>.01<br>.01<br>.02<br>.01 | .13<br>.12<br>.09<br>.08<br>.11 | 1<br>1<br>1<br>1 | 20<br>2<br>1<br>6<br>9    |
| 50-440-825-090<br>50-440-826-091<br>50-440-826-092<br>50-440-826-093<br>50-440-826-093                   | 1<br>1<br>1<br>1 | 76<br>77<br>169<br>236<br>89    | 4<br>5<br>5<br>3<br>4   | 116<br>164<br>148<br>105<br>181 | .2<br>.1<br>.3<br>.1<br>.2 | 20<br>24<br>28<br>28<br>28 | 17<br>16<br>19<br>20<br>18 | 724<br>919<br>741<br>741<br>923    | 5.20<br>4.83<br>6.14<br>7.55<br>5.37 | 5<br>4<br>4<br>4<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 84<br>106<br>106<br>104<br>91 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 162<br>152<br>215<br>294<br>158 | .77<br>1.03<br>.95<br>.94<br>.73   | .381<br>.254<br>.169<br>.171<br>.316 | 4<br>4<br>3<br>3      | 35<br>34<br>40<br>50<br>37  | .92<br>1.02<br>1.34<br>1.52<br>1.20  | 130<br>118<br>76<br>81<br>159   | .15<br>.15<br>.17<br>.18<br>.14        | 6<br>8<br>5<br>5<br>6  | 2.66<br>2.63<br>3.10<br>3.17<br>2.73 | .02<br>.01<br>.01<br>.01<br>.03 | .05<br>.09<br>.09<br>.07<br>.09 | 1<br>1<br>1<br>1 | 1<br>1<br>23<br>1<br>1    |
| 50-440-826-095<br>50-440-826-096<br>50-440-826-097<br>50-440-826-098<br>50-440-826-099                   | 1<br>1<br>1<br>1 | 69<br>77<br>320<br>81<br>139    | 4<br>6<br>5<br>2        | 178<br>188<br>105<br>183<br>160 | .2<br>.2<br>.1<br>.1<br>.1 | 25<br>33<br>67<br>55<br>49 | 16<br>17<br>23<br>19<br>17 | 1122<br>1376<br>823<br>782<br>632  | 4.83<br>5.47<br>6.74<br>5.04<br>4.08 | 3<br>2<br>2<br>4<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 100<br>63<br>128<br>79<br>90  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 144<br>170<br>238<br>151<br>104 | .83<br>.68<br>.97<br>.75<br>.78    | .280<br>.262<br>.106<br>.211<br>.329 | 4<br>4<br>3<br>4<br>4 | 39<br>58<br>100<br>82<br>66 | 1.07<br>1.90<br>2.00<br>1.29<br>1.15 | 194<br>146<br>111<br>144<br>164 | .14<br>.13<br>.20<br>.18<br>.15        | 6<br>6<br>11<br>7<br>6 | 2.78<br>2.55<br>4.22<br>2.81<br>2.83 | .01<br>.02<br>.01<br>.03<br>.03 | .10<br>.07<br>.09<br>.09<br>.08 | 1<br>1<br>1<br>1 | 1<br>3<br>8<br>1<br>1     |
| 50-440-826-100<br>50-440-826-101<br>50-440-826-102<br>50-440-826-103<br>50-440-826-103<br>50-440-826-104 | 1<br>1<br>1<br>1 | 103<br>156<br>239<br>245<br>110 | 3<br>4<br>5<br>6<br>5   | 152<br>184<br>102<br>179<br>206 | .2<br>.2<br>.5<br>.2<br>.3 | 36<br>33<br>35<br>30<br>28 | 15<br>19<br>18<br>20<br>18 | 741<br>571<br>1147<br>762<br>730   | 4.21<br>5.21<br>4.46<br>5.04<br>5.04 | 2<br>3<br>2<br>2<br>2 | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 63<br>65<br>88<br>75<br>79    | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>3<br>3<br>2<br>2      | 115<br>144<br>111<br>136<br>149 | .56<br>.72<br>1.29<br>.80<br>.74   | .159<br>.265<br>.023<br>.257<br>.272 | 4<br>6<br>5<br>4      | 49<br>46<br>47<br>45<br>48  | .89<br>1.29<br>1.03<br>1.07<br>.94   | 104<br>118<br>112<br>130<br>160 | .15<br>.17<br>.16<br>.17<br>.15        | 4<br>3<br>5<br>6<br>7  | 2.96<br>3.14<br>3.47<br>3.52<br>2.73 | .02<br>.03<br>.03<br>.02<br>.01 | .06<br>.08<br>.07<br>.06<br>.07 | 1<br>1<br>1<br>1 | 1<br>4<br>1<br>5          |
| 50-440-826-105<br>50-440-826-106<br>50-440-826-107<br>50-440-826-108<br>50-440-826-109                   | 1<br>1<br>1<br>1 | 170<br>48<br>113<br>151<br>158  | 9<br>5<br>7<br>7<br>6   | 107<br>248<br>176<br>196<br>221 | .3<br>.1<br>.3<br>.5<br>.4 | 21<br>22<br>27<br>26<br>29 | 17<br>15<br>21<br>25<br>21 | 582<br>721<br>1095<br>2550<br>1026 | 3.86<br>3.94<br>5.74<br>4.86<br>5.19 | 2<br>2<br>3<br>2<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 96<br>84<br>73<br>141<br>77   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 101<br>126<br>168<br>127<br>157 | 1.42<br>.83<br>.73<br>1.06<br>1.20 | .046<br>.127<br>.205<br>.310<br>.203 | 9<br>4<br>5<br>3      | 34<br>39<br>46<br>41<br>58  | .74<br>.72<br>1.14<br>1.17<br>1.29   | 103<br>126<br>199<br>613<br>238 | .18<br>.16<br>.19<br>.19<br>.20        | 9<br>6<br>4<br>9       | 2.38<br>1.63<br>3.03<br>2.66<br>2.56 | .04<br>.03<br>.01<br>.01<br>.03 | .05<br>.13<br>.11<br>.16<br>.12 | 1<br>1<br>1<br>1 | 4<br>2<br>1<br>5          |
| 50-440-826-110<br>50-440-826-111<br>50-440-826-112<br>50-440-826-113<br>50-440-826-114                   | 1<br>1<br>1<br>1 | 172<br>288<br>220<br>250<br>54  | 9<br>4<br>8<br>13<br>6  | 170<br>149<br>131<br>193<br>120 | .4<br>.3<br>.3<br>.1       | 26<br>25<br>38<br>32<br>35 | 22<br>24<br>26<br>29<br>17 | 537<br>1140<br>1145<br>1066<br>901 | 5.94<br>6.31<br>5.71<br>5.06<br>4.62 | 6<br>3<br>3<br>6<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>1<br>1 | 56<br>80<br>50<br>52<br>46    | 1<br>1<br>1<br>1      | 3<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 173<br>190<br>166<br>143<br>124 | .90<br>.82<br>.64<br>.68<br>.72    | .255<br>.167<br>.119<br>.112<br>.050 | 4<br>4<br>5<br>4<br>7 | 53<br>58<br>73<br>65<br>53  | 1.26<br>1.71<br>1.61<br>1.40<br>1.00 | 172<br>162<br>160<br>136<br>121 | .24<br>.22<br>.24<br>.22<br>.22<br>.20 | 6<br>4<br>5<br>4       | 3.07<br>2.92<br>3.07<br>2.67<br>2.39 | .01<br>.01<br>.01<br>.01<br>.02 | .11<br>.09<br>.14<br>.13<br>.18 | 1<br>1<br>1<br>1 | 1<br>112<br>35<br>49<br>1 |
| 50-440-826-115                                                                                           | 1<br>17          | 82<br>58                        | 2                       | 83<br>137                       | .1<br>7.1                  | 37<br>67                   | 18<br>29                   | 766<br>1066                        | 4.55                                 | 2<br>41               | 5<br>18               | ND<br>6                    | 1                     | 39<br>49                      | 1<br>17               | 2                          | 2<br>1.8                   | 132                             | . 64                               | .051                                 | 5<br>79               | 73<br>56                    | 1.31                                 | 96<br>176                       | .23                                    | 7                      | 2.09                                 | .02                             | .14                             | 1                | 1                         |

Page 3

(

£

(

(

(

| SAMPLE‡                                                                                                   | NO.<br>PPN            | CU<br>PPM                      | PD<br>PPM                  | Zn<br>PPN                       | Ag<br>PPN                  | NI<br>PPM                  | Co<br>PPM                  | Mn<br>PPN                         | Fe<br>t                              | As<br>PPN             | U<br>PPM              | Au<br>PPM            | Th<br>P?N             | ST<br>PPM                  | Cd<br>PPN        | SD<br>PPN             | BÍ<br>PPN             | V<br>PPN                        | Ca<br>ł                           | P<br>8                               | La<br>PPM               | Cr<br>PPM                  | Ng<br>t                            | Ba<br>PPN                   | Tİ<br>X                         | B<br>PPN               | Al<br>X                              | Na<br>ł                         | K                               | W<br>PPN         | Au*<br>PPB                |  |
|-----------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|--------------------------------------|-----------------------|-----------------------|----------------------|-----------------------|----------------------------|------------------|-----------------------|-----------------------|---------------------------------|-----------------------------------|--------------------------------------|-------------------------|----------------------------|------------------------------------|-----------------------------|---------------------------------|------------------------|--------------------------------------|---------------------------------|---------------------------------|------------------|---------------------------|--|
| 50-440-826-116<br>50-440-826-117<br>50-440-826-120<br>50-440-826-121<br>50-440-826-122                    | 1<br>2<br>1<br>2      | 136<br>122<br>779<br>78<br>306 | 10<br>10<br>14<br>10<br>10 | 155<br>124<br>87<br>142<br>88   | .1<br>.1<br>.3<br>.1<br>.2 | 29<br>25<br>39<br>26<br>49 | 16<br>14<br>24<br>16<br>19 | 539<br>833<br>854<br>924<br>687   | 4.87<br>4.15<br>6.64<br>4.08<br>4.65 | 2<br>2<br>4<br>2<br>6 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1<br>1 | 4B<br>36<br>91<br>51<br>58 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2 | 2<br>2<br>3<br>2<br>2 | 134<br>112<br>197<br>111<br>116 | .68<br>.66<br>1.42<br>.73<br>1.20 | .104<br>.068<br>.101<br>.116<br>.073 | 5<br>5<br>22<br>5<br>12 | 49<br>47<br>57<br>38<br>57 | 1.11<br>.72<br>2.00<br>.97<br>1.40 | 82<br>76<br>84<br>105<br>59 | .20<br>.19<br>.29<br>.20<br>.18 | 11<br>8<br>5<br>8<br>8 | 2.25<br>2.04<br>3.55<br>2.09<br>2.26 | .01<br>.01<br>.01<br>.01<br>.01 | .07<br>.08<br>.11<br>.11<br>.15 | 1<br>1<br>1<br>1 | 12<br>4<br>32<br>13<br>47 |  |
| 50-440-826-123<br>50-440-826-124<br>50-440-826-125<br>50-440-826-125<br>50-440-826-1253<br>50-440-862-119 | 3<br>1<br>1<br>2<br>2 | 275<br>231<br>44<br>414<br>239 | 12<br>11<br>6<br>10<br>11  | .89<br>208<br>117<br>108<br>177 | .3<br>.1<br>.1<br>.1<br>.2 | 48<br>33<br>22<br>45<br>28 | 22<br>20<br>13<br>20<br>18 | 829<br>2955<br>495<br>929<br>1120 | 5.59<br>3.97<br>3.32<br>4.47<br>4.04 | 7<br>2<br>2<br>3<br>3 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 60<br>66<br>39<br>49<br>42 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2 | 141<br>96<br>92<br>123<br>109   | 1.30<br>.78<br>.72<br>.86<br>.57  | .035<br>.192<br>.059<br>.025<br>.071 | 13<br>5<br>4<br>6<br>6  | 62<br>51<br>51<br>59<br>46 | 1.56<br>.81<br>.69<br>1.23<br>.91  | 81<br>248<br>85<br>86<br>94 | .22<br>.17<br>.18<br>.22<br>.17 | 7<br>8<br>10<br>7<br>4 | 2.96<br>2.08<br>1.75<br>2.69<br>2.02 | .01<br>.01<br>.01<br>.01<br>.01 | .15<br>.08<br>.07<br>.06<br>.07 | 1<br>1<br>1<br>1 | 6<br>1<br>1<br>1<br>46    |  |
| STD C/AU-S                                                                                                | 18                    | 60                             | 39                         | 133                             | 6.6                        | 68                         | 29                         | 1063                              | 4.08                                 | 44                    | 22                    | 7                    | 36                    | 50                         | 17               | 17                    | 19                    | 56                              | . 49                              | .084                                 | 3,9                     | 58                         | .93                                | 178                         | .07                             | 40                     | 1.74                                 | .06                             | .13                             | 13               | 46                        |  |

Page 4

(

(

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

(

(

(

Ĺ

C

ŧ

(

#### GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HHO3-H20 AT 95 DEG. C FOR OME HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MW FE CA P LA CR MG BA TI B W AND LINITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AU\* AMALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

| DATE | DATE RECEIVED: JUN 10 1988                                                       |                       |                                    |                            |                                |                              | E RE                       | POR                        | тм                                | AILE                                 | <b>D:</b> )            | Jun                   | × .                              | 15   8                | <i>38</i>                       | ASS                   | AYEI                  | ۰ <u>۰</u>                 | :.ŀ.                            | أننه                                 | D                                    | . точ                    | E O                         | R C.                                 | LEON                          | iG,                             | CER                        | FIFI                                 | ED E                            | s.c.                            | ASS                   | SAYERS                       |
|------|----------------------------------------------------------------------------------|-----------------------|------------------------------------|----------------------------|--------------------------------|------------------------------|----------------------------|----------------------------|-----------------------------------|--------------------------------------|------------------------|-----------------------|----------------------------------|-----------------------|---------------------------------|-----------------------|-----------------------|----------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------|-----------------------------|--------------------------------------|-------------------------------|---------------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|------------------------------|
|      |                                                                                  |                       |                                    |                            |                                |                              |                            |                            |                                   | A &                                  | ME                     | XPL                   | ORAI                             | TION                  |                                 | Fil                   | e #                   | 88-                        | 187                             | 9                                    | Pa                                   | ge 1                     |                             |                                      |                               |                                 |                            |                                      |                                 |                                 |                       |                              |
|      | SAMPLE                                                                           | NO<br>PPN             | Cu<br>PPM                          | Pb<br>PPN                  | Zn<br>PPN                      | Ag<br>PPN                    | NI<br>PPN                  | CO<br>PPN                  | Nn<br>PPN                         | Fe<br>3                              | As<br>PPN              | U<br>PPN              | Au<br>PPN                        | Th<br>PPN             | Sr<br>PPN                       | Cđ<br>PPN             | Sb<br>PPM             | Bi<br>PPN                  | V<br>PPM                        | Ca<br>ł                              | P<br>ł                               | La<br>PPN                | Cr<br>PPN                   | Ng<br>ł                              | Ba<br>PPK                     | Ti<br>ł                         | B<br>PPM                   | A1<br>3                              | Na<br>1                         | K<br>ł                          | ¥<br>PPK              | Au*<br>PPB                   |
|      | 440-820232<br>440-820233<br>440-820234<br>440-820235<br>440-820235               | 1<br>1<br>1<br>1      | 122<br>128<br>257<br>76<br>85      | 10<br>7<br>8<br>8<br>9     | 126<br>61<br>118<br>83<br>129  | .1<br>.4<br>.5<br>.4<br>.6   | 38<br>34<br>45<br>28<br>34 | 22<br>22<br>31<br>18<br>18 | 667<br>723<br>736<br>544<br>769   | 7.06<br>7.79<br>6.57<br>6.44<br>7.56 | 6<br>9<br>2<br>8<br>7  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND       | 1<br>3<br>1<br>1<br>3 | 88<br>113<br>102<br>132<br>99   | 1<br>1<br>1<br>1<br>1 | 2<br>6<br>3<br>5<br>6 | 2<br>2<br>2<br>2<br>2<br>2 | 244<br>291<br>175<br>239<br>285 | 1.05<br>1.76<br>2.39<br>1.17<br>1.00 | .062<br>.082<br>.140<br>.027<br>.103 | 5<br>6<br>9<br>5<br>5    | 78<br>97<br>92<br>50<br>60  | 1.49<br>1.51<br>2.20<br>.99<br>1.08  | 100<br>148<br>93<br>69<br>76  | .27<br>.27<br>.30<br>.26<br>.22 | 2<br>2<br>2<br>2<br>2<br>2 | 3.82<br>2.97<br>3.45<br>3.17<br>3.13 | .01<br>.03<br>.03<br>.02<br>.02 | .07<br>.09<br>.08<br>.06<br>.08 | 1<br>1<br>1<br>1      | 7<br>13<br>10<br>5<br>11     |
|      | 440-820237<br>440-820238<br>440-820239<br>440-820240<br>440-820241               | 1<br>1<br>1<br>1      | 113<br>86<br>166<br>1404<br>94     | 6<br>5<br>4<br>9<br>7      | 58<br>102<br>93<br>66<br>98    | .4<br>.2<br>.2<br>1.3<br>.2  | 26<br>32<br>23<br>25<br>29 | 17<br>18<br>15<br>13<br>18 | 626<br>672<br>813<br>757<br>692   | 7.34<br>5.86<br>5.09<br>3.41<br>5.29 | 3<br>6<br>4<br>5<br>4  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND       | 3<br>2<br>1<br>1<br>1 | 124<br>111<br>179<br>196<br>80  | 1<br>1<br>1<br>1<br>1 | 4<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 294<br>196<br>167<br>98<br>150  | 1.06<br>1.09<br>2.30<br>3.82<br>1.19 | .047<br>.126<br>.158<br>.105<br>.056 | 4<br>5<br>8<br>13<br>5   | 57<br>55<br>45<br>41<br>54  | .96<br>1.07<br>1.25<br>.79<br>.82    | 79<br>78<br>73<br>77<br>63    | .23<br>.21<br>.17<br>.08<br>.17 | 2<br>4<br>7<br>7<br>2      | 2.91<br>3.16<br>2.46<br>2.08<br>2.71 | .02<br>.04<br>.05<br>.03<br>.02 | .07<br>.09<br>.07<br>.05<br>.06 | 1<br>1<br>1<br>1      | 1<br>7<br>4<br>5<br>1        |
|      | 440-820242<br>440-820243<br>440-820244<br>440-820244<br>440-820245<br>440-820246 | 1<br>10<br>1<br>1     | 517<br>500<br>95<br>86<br>58       | 6<br>8<br>10<br>6<br>8     | 103<br>87<br>66<br>52<br>111   | .4<br>1.1<br>.5<br>.5<br>.1  | 38<br>59<br>24<br>26<br>31 | 25<br>28<br>17<br>15<br>16 | 652<br>11695<br>625<br>537<br>588 | 5.30<br>4.50<br>5.36<br>4.96<br>4.54 | 8<br>7<br>7<br>5<br>5  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND             | 1<br>1<br>2<br>3<br>1 | 149<br>177<br>106<br>124<br>130 | 1<br>2<br>1<br>1<br>1 | 2<br>2<br>4<br>3<br>2 | 2<br>2<br>2<br>2<br>2      | 146<br>144<br>192<br>171<br>160 | 3.43<br>3.41<br>1.35<br>1.51<br>1.46 | .118<br>.080<br>.014<br>.033<br>.038 | 8<br>15<br>9<br>8<br>7   | 73<br>55<br>48<br>57<br>55  | 1.80<br>1.36<br>.88<br>.97<br>1.16   | 78<br>285<br>79<br>86<br>82   | .23<br>.17<br>.21<br>.20<br>.22 | 7<br>9<br>3<br>12<br>4     | 2.64<br>2.52<br>2.88<br>2.70<br>3.05 | .03<br>.01<br>.04<br>.03<br>.03 | .04<br>.08<br>.06<br>.06        | 1<br>1<br>2<br>1      | 4<br>8<br>21<br>1<br>5       |
|      | 440-820247<br>440-820248<br>440-820249<br>440-820250<br>440-820251               | 1<br>1<br>1<br>1<br>1 | 117<br>321<br>98<br>79<br>81       | 6<br>4<br>7<br>8<br>8      | 79<br>27<br>82<br>165<br>160   | .2<br>.7<br>.1<br>.1<br>.3   | 35<br>15<br>27<br>28<br>30 | 16<br>5<br>18<br>17<br>16  | 709<br>533<br>664<br>866<br>694   | 5.97<br>1.07<br>6.52<br>5.45<br>5.35 | 7<br>4<br>5<br>4<br>6  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND       | 2<br>1<br>1<br>1<br>3 | 140<br>310<br>134<br>-99<br>86  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2 | 2<br>3<br>2<br>2<br>3      | 208<br>47<br>254<br>179<br>172  | 1.70<br>5.45<br>1.45<br>.93<br>.87   | .076<br>.180<br>.021<br>.205<br>.226 | 9<br>5<br>5<br>5<br>6    | 64<br>131<br>69<br>55<br>58 | 1.18<br>.37<br>1.13<br>1.02<br>.93   | 95<br>53<br>84<br>132<br>103  | .20<br>.02<br>.24<br>.17<br>.17 | 9<br>23<br>9<br>4<br>5     | 3.00<br>.88<br>3.15<br>2.82<br>3.14  | .02<br>.03<br>.02<br>.02<br>.03 | .08<br>.02<br>.07<br>.06<br>.06 | 1<br>3<br>1<br>1<br>1 | 2<br>1<br>6<br>2<br>1        |
|      | 440-820252<br>440-820253<br>440-820254<br>440-820255<br>440-820256               | 1<br>1<br>1<br>1<br>1 | 284<br>172<br>1099<br>1098<br>3531 | 10<br>13<br>10<br>8<br>7   | 95<br>107<br>146<br>134<br>81  | .5<br>.4<br>1.2<br>.9<br>3.5 | 36<br>26<br>30<br>21<br>23 | 21<br>20<br>19<br>16<br>11 | 976<br>788<br>1360<br>844<br>812  | 6.65<br>7.32<br>4.63<br>5.27<br>3.10 | 6<br>5<br>3<br>2<br>5  | 5<br>5<br>5<br>5<br>5 | UD<br>ND<br>ND<br>ND<br>ND<br>ND | 2<br>3<br>1<br>1<br>1 | 97<br>107<br>132<br>158<br>326  | 1<br>1<br>1<br>2      | 5<br>4<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>3      | 196<br>255<br>110<br>149<br>101 | 1.73<br>1.59<br>2.74<br>2.74<br>5.10 | .057<br>.053<br>.104<br>.086<br>.204 | 13<br>7<br>15<br>7<br>16 | 57<br>40<br>36<br>32<br>39  | 1.30<br>1.32<br>1.05<br>1.19<br>.63  | 104<br>72<br>130<br>86<br>102 | .23<br>.26<br>.13<br>.14<br>.05 | 3<br>2<br>4<br>6<br>9      | 3.21<br>3.54<br>3.10<br>2.69<br>2.01 | .04<br>.02<br>.03<br>.04<br>.04 | .07<br>.08<br>.09<br>.07<br>.05 | 1<br>1<br>1<br>1      | 9<br>1<br>1<br>1<br>6        |
|      | 440-820257<br>440-820258<br>440-820259<br>440-820260<br>440-820261               | 1<br>1<br>1<br>1      | 245<br>192<br>258<br>474<br>345    | 9<br>12<br>11<br>18<br>12  | 96<br>159<br>137<br>326<br>173 | .7<br>.2<br>.3<br>.8<br>.7   | 28<br>31<br>36<br>36<br>28 | 20<br>20<br>22<br>22<br>22 | 795<br>740<br>700<br>567<br>371   | 8.82<br>6.88<br>6.82<br>5.44<br>5.74 | 3<br>7<br>4<br>10<br>5 | 9<br>5<br>5<br>8<br>5 | ND<br>ND<br>ND<br>ND<br>ND       | 3<br>2<br>3<br>4<br>3 | 121<br>109<br>101<br>193<br>39  | 1<br>1<br>1<br>2      | 4<br>3<br>6<br>7<br>4 | 2<br>2<br>3<br>2           | 314<br>204<br>209<br>128<br>159 | 1.34<br>1.07<br>.90<br>1.75<br>1.25  | .185<br>.308<br>.193<br>.384<br>.028 | 7<br>6<br>13<br>12       | 63<br>46<br>51<br>41<br>26  | 1.31<br>1.28<br>1.44<br>.94<br>1.15  | 78<br>151<br>183<br>218<br>40 | .21<br>.20<br>.22<br>.18<br>.27 | 9<br>2<br>4<br>2           | 4.37<br>4.02<br>4.39<br>5.66<br>2.66 | .03<br>.05<br>.03<br>.04<br>.02 | .10<br>.09<br>.10<br>.14<br>.05 | 1<br>2<br>1<br>1<br>1 | 5<br>1<br>2<br>1<br>1        |
|      | 440-820262<br>440-820263<br>440-820264<br>440-820264<br>440-820265<br>440-820266 | 1<br>1<br>1<br>1      | 142<br>189<br>171<br>174<br>151    | 11<br>13<br>10<br>17<br>16 | 114<br>83<br>169<br>224<br>184 | .4<br>.1<br>.1<br>.1         | 30<br>29<br>33<br>35<br>36 | 22<br>22<br>29<br>29<br>29 | 622<br>710<br>617<br>625<br>606   | 5.72<br>6.44<br>5.63<br>5.93<br>6.11 | 3<br>7<br>2<br>4<br>4  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND       | 4<br>1<br>1<br>2<br>2 | 50<br>43<br>44<br>50<br>53      | 1<br>1<br>1<br>1<br>1 | 3<br>5<br>2<br>2<br>4 | 2<br>2<br>2<br>2<br>2<br>2 | 173<br>207<br>173<br>171<br>182 | .99<br>1.33<br>.66<br>.69<br>.58     | .027<br>.026<br>.086<br>.088<br>.072 | 6<br>7<br>5<br>5<br>5    | 40<br>39<br>44<br>40<br>43  | 1.43<br>1.77<br>1.43<br>1.55<br>1.66 | 72<br>71<br>70<br>75<br>67    | .26<br>.30<br>.26<br>.24<br>.26 | 2<br>6<br>2<br>2<br>2      | 2.77<br>2.85<br>2.55<br>3.26<br>3.05 | .02<br>.01<br>.03<br>.01<br>.03 | .10<br>.12<br>.12<br>.09<br>.07 | 1<br>1<br>1<br>1      | <b>4</b><br>3<br>5<br>7<br>1 |
|      | 440-820267<br>STD C/AU-5                                                         | 1<br>17               | 186<br>59                          | 10<br>39                   | 153<br>132                     | .2<br>6.6                    | 38<br>68                   | 33<br>29                   | 887<br>1123                       | 6.81<br>4.15                         | 9<br>40                | 5<br>16               | ND<br>6                          | 3<br>37               | 51<br>49                        | 1<br>17               | 6<br>17               | 2<br>20                    | 199<br>58                       | .68<br>.49                           | .087<br>.083                         | 6<br>39                  | <b>49</b><br>57             | 1.50<br>.92                          | 100<br>179                    | . 25<br>. 07                    | 2<br>34                    | 2.82                                 | .01                             | .14<br>.14                      | 1<br>13               | 29<br>47                     |

| SAMPLE                                                                           | NO<br>PPN             | Cu<br>PPK                       | PD<br>PPN                  | ZO<br>PPN                       | Ag<br>PPN                   | Ni<br>PPM                  | Co<br>PPN                  | Na<br>PPN                        | Fe<br>3                              | As<br>PPN                | U<br>PPN              | Au<br>PPM                  | Th<br>PPM             | ST<br>PPN                       | Cđ<br>PPM             | SD<br>PPM                  | Bİ<br>PPN                  | V<br>PPM                        | Ca<br>Ł                             | P<br>R                               | La<br>PPN             | CT<br>PPX                  | Xg<br>t                              | Ba<br>PPN                      | 71<br>1                         | B<br>PPM               | 71<br>\$                             | Na<br>ł                         | ۲<br>۲                          | ¥<br>PPK              | Au*<br>PPB               |
|----------------------------------------------------------------------------------|-----------------------|---------------------------------|----------------------------|---------------------------------|-----------------------------|----------------------------|----------------------------|----------------------------------|--------------------------------------|--------------------------|-----------------------|----------------------------|-----------------------|---------------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-------------------------------------|--------------------------------------|-----------------------|----------------------------|--------------------------------------|--------------------------------|---------------------------------|------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|--------------------------|
| 440-820268<br>440-820269<br>440-820270<br>440-820271<br>440-820272               | 1<br>1<br>3<br>1      | 79<br>106<br>179<br>794<br>161  | 11<br>8<br>13<br>14<br>12  | 234<br>80<br>190<br>548<br>188  | .4<br>.2<br>.1<br>.4<br>1.2 | 47<br>55<br>36<br>62<br>34 | 29<br>21<br>30<br>32<br>25 | 546<br>565<br>769<br>764<br>735  | 5.52<br>4.87<br>6.54<br>6.62<br>6.36 | 4<br>7<br>4<br>3<br>6    | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND       | 1<br>2<br>1<br>1<br>1 | 41<br>48<br>53<br>59<br>76      | 1<br>1<br>1<br>1<br>1 | 2<br>4<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 135<br>127<br>193<br>174<br>168 | .68<br>.89<br>.66<br>1.16<br>1.61   | .046<br>.020<br>.027<br>.033<br>.079 | 6<br>8<br>4<br>8<br>7 | 51<br>62<br>46<br>42<br>40 | 1.35<br>1.57<br>1.68<br>1.89<br>1.70 | 56<br>48<br>59<br>61<br>76     | .23<br>.23<br>.27<br>.28<br>.26 | 10<br>4<br>6<br>8      | 2.96<br>2.39<br>2.94<br>2.94<br>3.16 | .01<br>.02<br>.02<br>.02<br>.03 | .09<br>.11<br>.13<br>.14<br>.09 | 1<br>1<br>1<br>1      | 6<br>11<br>9<br>23<br>10 |
| 440-820273<br>440-820274<br>440-820275<br>440-820275<br>440-820276<br>440-820277 | 1<br>1<br>2<br>1      | 79<br>228<br>89<br>124<br>78    | 14<br>17<br>15<br>17<br>10 | 136<br>133<br>134<br>418<br>113 | .1<br>.3<br>.5<br>.9<br>.4  | 26<br>42<br>26<br>48<br>30 | 30<br>30<br>24<br>26<br>21 | 1023<br>682<br>561<br>415<br>485 | 7.08<br>6.62<br>5.41<br>5.63<br>5.22 | 5<br>3<br>3<br>6<br>2    | 5<br>5<br>6<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>1      | 49<br>71<br>145<br>75<br>130    | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 194<br>192<br>159<br>153<br>161 | 1.30<br>.89<br>.98<br>1.10<br>.91   | .028<br>.142<br>.099<br>.072<br>.050 | 4<br>5<br>5<br>6<br>6 | 41<br>48<br>24<br>41<br>32 | 1.93<br>1.88<br>1.32<br>.84<br>1.21  | 54<br>62<br>64<br>58<br>44     | .34<br>.24<br>.18<br>.22<br>.21 | 7<br>4<br>5<br>13<br>5 | 3.53<br>3.87<br>3.97<br>4.31<br>3.22 | .01<br>.02<br>.01<br>.01<br>.02 | .01<br>.12<br>.10<br>.09<br>.09 | 2<br>1<br>1<br>1      | 7<br>6<br>8<br>3<br>5    |
| 440-820278<br>440-820279<br>440-820280<br>440-820281<br>440-820282               | 1<br>1<br>1<br>1      | 53<br>148<br>73<br>259<br>200   | 11<br>12<br>15<br>11<br>17 | 111<br>79<br>100<br>124<br>242  | .3<br>.3<br>.3<br>.3<br>.2  | 21<br>28<br>37<br>36<br>37 | 15<br>22<br>24<br>29<br>31 | 462<br>708<br>637<br>662<br>689  | 4.21<br>5.93<br>5.93<br>5.76<br>6.65 | 4<br>3<br>2<br>152<br>28 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>1<br>1<br>1<br>1 | 136<br>186<br>187<br>142<br>184 | 1<br>1<br>1<br>1<br>1 | 3<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 122<br>183<br>153<br>139<br>183 | 1.49<br>1.26<br>1.09<br>.94<br>1.03 | .029<br>.074<br>.081<br>.143<br>.094 | 6<br>5<br>6<br>7<br>6 | 28<br>34<br>36<br>39<br>44 | 1.29<br>1.81<br>1.64<br>1.57<br>1.86 | 52<br>34<br>57<br>48<br>46     | .24<br>.20<br>.21<br>.17<br>.21 | 6<br>5<br>5<br>4<br>3  | 2.92<br>4.98<br>4.51<br>4.26<br>4.24 | .02<br>.02<br>.03<br>.02<br>.02 | .06<br>.12<br>.05<br>.06<br>.03 | 2<br>1<br>1<br>7<br>1 | 9<br>8<br>5<br>25<br>16  |
| 440-820283<br>440-820284<br>440-820285<br>440-820286<br>440-820287               | 1<br>1<br>1<br>1      | 80<br>99<br>43<br>48<br>237     | 10<br>9<br>6<br>8<br>29    | 145<br>292<br>62<br>119<br>272  | .2<br>.4<br>.1<br>.4<br>.3  | 42<br>54<br>49<br>50<br>23 | 23<br>23<br>19<br>17<br>25 | 570<br>500<br>492<br>542<br>766  | 5.41<br>5.01<br>4.52<br>4.53<br>6.74 | 10<br>6<br>3<br>2<br>2   | 5<br>5<br>7<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>3<br>1      | 129<br>64<br>62<br>44<br>57     | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>3           | 2<br>2<br>2<br>2<br>2      | 155<br>134<br>126<br>109<br>214 | .90<br>.97<br>1.07<br>.70<br>.73    | .061<br>.020<br>.016<br>.097<br>.039 | 7<br>6<br>7<br>6      | 49<br>68<br>63<br>61<br>38 | 1.65<br>1.55<br>1.46<br>1.20<br>1.73 | 40<br>43<br>61<br>46<br>54     | .23<br>.23<br>.23<br>.18<br>.30 | 4<br>5<br>5<br>6<br>8  | 3.25<br>2.92<br>2.86<br>2.70<br>2.81 | .03<br>.01<br>.04<br>.03<br>.02 | .07<br>.10<br>.06<br>.10<br>.17 | 1<br>1<br>1<br>1      | 35<br>57<br>3<br>1<br>1  |
| 440-820288<br>440-820289<br>440-820290<br>440-820291<br>440-820292               | 1<br>1<br>1<br>1<br>1 | 149<br>170<br>155<br>291<br>215 | 20<br>18<br>15<br>24<br>17 | 395<br>274<br>174<br>264<br>324 | .3<br>.2<br>.3<br>.1<br>.3  | 21<br>19<br>18<br>26<br>25 | 28<br>24<br>22<br>23<br>22 | 750<br>919<br>804<br>769<br>575  | 5.60<br>6.28<br>6.91<br>6.80<br>5.96 | 4<br>3<br>3<br>7<br>4    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>2      | 52<br>53<br>58<br>43<br>36      | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 162<br>181<br>212<br>200<br>168 | .75<br>.70<br>.69<br>.55<br>.47     | .090<br>.116<br>.057<br>.144<br>.178 | 4<br>4<br>4<br>4      | 26<br>26<br>31<br>36<br>35 | 1.38<br>1.51<br>1.71<br>1.83<br>1.42 | 100<br>89<br>63<br>86<br>91    | .27<br>.27<br>.28<br>.31<br>.28 | 7<br>5<br>3<br>8<br>2  | 2.76<br>2.91<br>2.64<br>3.27<br>2.97 | .03<br>.01<br>.01<br>.02<br>.01 | .15<br>.11<br>.14<br>.08<br>.13 | 1<br>1<br>1<br>1      | 1<br>1<br>9<br>5<br>1    |
| 440-820293<br>440-820294<br>440-820295<br>440-820295<br>440-820296<br>440-820297 | 1<br>1<br>1<br>1      | 111<br>154<br>164<br>322<br>266 | 15<br>21<br>18<br>15<br>22 | 128<br>342<br>395<br>234<br>436 | .1<br>.5<br>.4<br>.7<br>.6  | 16<br>23<br>27<br>29<br>24 | 17<br>21<br>19<br>21<br>28 | 378<br>747<br>550<br>601<br>837  | 5.29<br>5.36<br>4.97<br>6.29<br>6.29 | 3<br>2<br>5<br>5<br>6    | 5<br>5<br>8<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>3<br>3      | 31<br>44<br>38<br>49<br>67      | 1<br>1<br>1<br>1      | 2<br>2<br>4<br>4           | 2<br>2<br>2<br>2<br>3      | 182<br>148<br>129<br>196<br>176 | .46<br>.62<br>.49<br>.72<br>.74     | .014<br>.325<br>.165<br>.099<br>.165 | 4<br>5<br>6<br>5<br>5 | 24<br>40<br>38<br>37<br>35 | .92<br>1.17<br>1.24<br>1.53<br>1.65  | 40<br>155<br>88<br>67<br>102   | .28<br>.23<br>.24<br>.27<br>.27 | 19<br>2<br>4<br>5<br>3 | 2.09<br>2.51<br>2.78<br>2.85<br>3.11 | .01<br>.01<br>.01<br>.02<br>.01 | .13<br>.09<br>.12<br>.15<br>.12 | 1<br>1<br>2<br>1      | 8<br>3<br>1<br>15<br>3   |
| 440-820298<br>440-820299<br>440-820300<br>440-820301<br>440-820302               | 1<br>1<br>1<br>1      | 286<br>189<br>159<br>233<br>256 | 15<br>13<br>12<br>16<br>14 | 402<br>330<br>419<br>453<br>525 | .1<br>.1<br>.5<br>.4        | 23<br>23<br>19<br>22<br>27 | 21<br>18<br>18<br>18<br>18 | 966<br>545<br>610<br>610<br>579  | 5.28<br>5.61<br>5.03<br>5.47<br>4.44 | 7<br>2<br>3<br>3<br>4    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>3      | 59<br>45<br>55<br>70<br>53      | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 157<br>162<br>141<br>146<br>102 | .85<br>.64<br>.68<br>.77<br>.74     | .145<br>.181<br>.254<br>.314<br>.262 | 3<br>4<br>4<br>5      | 26<br>27<br>24<br>27<br>29 | 1.33<br>1.22<br>1.14<br>1.17<br>1.26 | 134<br>92<br>189<br>202<br>115 | .25<br>.23<br>.23<br>.22<br>.22 | 6<br>4<br>6<br>6       | 2.38<br>2.51<br>2.40<br>2.54<br>2.80 | .03<br>.02<br>.03<br>.02<br>.03 | .13<br>.09<br>.11<br>.11<br>.11 | 1<br>1<br>1<br>1      | 1<br>3<br>2<br>4<br>1    |
| 440-820303<br>STD C/AU-S                                                         | 1<br>18               | 248<br>61                       | 13<br>40                   | 297<br>132                      | .1<br>7.2                   | 26<br>70                   | 20<br>30                   | 629<br>1089                      | 5.58<br>4.27                         | 2<br>43                  | -5<br>19              | ND<br>B                    | 2<br>38               | 50<br>51                        | 1<br>18               | 2<br>19                    | 3<br>21                    | 152<br>59                       | .66<br>.51                          | .145                                 | 4                     | 33<br>59                   | 1.45                                 | 62<br>183                      | .24                             | 9<br>36                | 3.12<br>1.83                         | .01                             | .10                             | 1                     | 4<br>4 R                 |

Page 2

1

(

Ċ

(

ŧ

| SAMPLE‡                                                                          | No<br>PPN             | Cu<br>PPN                       | Pb<br>PPN                  | Zn<br>PPN                       | Ag<br>PPM                  | Ni<br>PPM                  | Co<br>PPN                  | ND<br>PPK                         | Te<br>t                              | As<br>PPN             | D<br>Bbw              | Au<br>PPK                  | Th<br>PPM             | ST<br>PPM                   | Cd<br>PPM             | SD<br>PPM                  | Bİ<br>PPM                  | V<br>PPM                        | Ca<br>%                          | P<br>S                               | La<br>PPM             | CT<br>PPM                  | Ng<br>X                              | Ba<br>PPM                      | Ti<br>S                              | B<br>PPM                   | а1<br>З                              | Na<br>1                         | K<br>X                          | V<br>PPK              | Au*<br>PPB                |
|----------------------------------------------------------------------------------|-----------------------|---------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|--------------------------------------|-----------------------|-----------------------|----------------------------|-----------------------|-----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|----------------------------------|--------------------------------------|-----------------------|----------------------------|--------------------------------------|--------------------------------|--------------------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|---------------------------|
| 440-820304<br>440-820305<br>440-820306<br>440-820307<br>440-820308               | 1<br>1<br>1<br>1<br>1 | 305<br>224<br>280<br>285<br>217 | 12<br>16<br>9<br>12<br>12  | 224<br>316<br>212<br>193<br>296 | .1<br>.3<br>.6<br>.5       | 25<br>26<br>22<br>26<br>19 | 20<br>19<br>22<br>20<br>21 | 804<br>830<br>927<br>704<br>1056  | 5.45<br>5.13<br>5.53<br>5.20<br>4.88 | 5<br>6<br>3<br>3<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>2<br>3 | 53<br>64<br>53<br>69<br>55  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 154<br>135<br>169<br>161<br>144 | .66<br>.80<br>.65<br>.82<br>.70  | .171<br>.234<br>.128<br>.098<br>.132 | 5<br>5<br>5<br>5<br>6 | 33<br>29<br>27<br>35<br>29 | 1.66<br>1.41<br>1.58<br>1.52<br>1.30 | 75<br>115<br>63<br>56<br>81    | .25<br>.23<br>.26<br>.24<br>.24      | 2<br>2<br>2<br>2<br>2<br>2 | 3.14<br>3.16<br>3.08<br>2.97<br>2.36 | .01<br>.02<br>.01<br>.03<br>.02 | .07<br>.12<br>.09<br>.11<br>.11 | 1<br>2<br>1<br>1<br>1 | 2<br>7<br>4<br>7<br>14    |
| 440-820309<br>440-820310<br>440-820311<br>440-820312<br>440-820313               | 1<br>1<br>1<br>1      | 135<br>189<br>191<br>190<br>161 | 11<br>12<br>14<br>18<br>12 | 204<br>123<br>120<br>334<br>241 | .2<br>.1<br>.1<br>.1       | 24<br>21<br>25<br>27<br>24 | 22<br>27<br>25<br>28<br>23 | 554<br>705<br>720<br>698<br>837   | 4.68<br>6.11<br>5.82<br>5.37<br>5.64 | 6<br>2<br>2<br>4<br>7 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>1<br>1<br>1 | 46<br>66<br>78<br>52<br>57  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 132<br>200<br>194<br>145<br>165 | .61<br>.70<br>.80<br>.77<br>.71  | .125<br>.073<br>.053<br>.129<br>.187 | 5<br>5<br>6<br>5<br>4 | 32<br>39<br>43<br>32<br>37 | 1.24<br>1.82<br>1.75<br>1.29<br>1.60 | 60<br>40<br>36<br>67<br>75     | .21<br>.28<br>.30<br>.24<br>.24      | 2<br>2<br>2<br>7<br>2      | 2.43<br>2.62<br>2.66<br>2.98<br>2.61 | .01<br>.03<br>.01<br>.02<br>.01 | .11<br>.12<br>.13<br>.10<br>.12 | 1<br>1<br>1<br>1      | 5<br>16<br>12<br>15<br>16 |
| 440-820314<br>440-820315<br>440-820316<br>440-820316<br>440-820317<br>440-820318 | 1<br>1<br>1<br>1      | 141<br>102<br>202<br>300<br>301 | 15<br>10<br>13<br>10<br>10 | 193<br>130<br>116<br>106<br>128 | .2<br>.1<br>.1<br>.3<br>.5 | 40<br>33<br>26<br>28<br>28 | 22<br>21<br>24<br>27<br>21 | 697<br>623<br>709<br>592<br>683   | 4.79<br>4.13<br>5.16<br>4.47<br>4.91 | 6<br>2<br>6<br>3<br>2 | 5<br>5<br>7<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>2<br>3<br>4 | 49<br>84<br>70<br>48<br>56  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>3<br>3<br>2      | 125<br>118<br>166<br>128<br>140 | .76<br>.77<br>.82<br>.68<br>.76  | .172<br>.053<br>.095<br>.071<br>.147 | 6<br>7<br>6<br>7<br>6 | 44<br>56<br>50<br>50       | 1.13<br>1.15<br>1.69<br>1.35<br>1.55 | 77<br>54<br>45<br>39<br>72     | .18<br>.23<br>.28<br>.22<br>.25      | 2<br>2<br>2<br>2<br>2      | 2.52<br>2.16<br>2.31<br>2.26<br>2.61 | .02<br>.01<br>.01<br>.01<br>.01 | .12<br>.07<br>.09<br>.11<br>.13 | 1<br>1<br>1<br>1      | 10<br>5<br>11<br>37<br>9  |
| 440-820319<br>440-820320<br>440-820321<br>440-820322<br>440-820323               | 1<br>1<br>1<br>1      | 268<br>142<br>244<br>252<br>474 | 5<br>14<br>10<br>9<br>15   | 172<br>333<br>301<br>388<br>328 | .2<br>.1<br>.1<br>.1<br>.1 | 23<br>18<br>22<br>24<br>26 | 20<br>20<br>23<br>21<br>26 | 577<br>1024<br>628<br>604<br>696  | 4.39<br>4.30<br>4.91<br>4.36<br>5.48 | 2<br>2<br>2<br>6      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>1<br>1<br>1 | 35<br>47<br>49<br>40<br>65  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 4<br>2<br>2<br>2<br>2      | 123<br>105<br>138<br>119<br>154 | .52<br>.64<br>.81<br>.55<br>.86  | .147<br>.250<br>.278<br>.144<br>.272 | 4<br>5<br>5<br>4<br>4 | 37<br>36<br>40<br>32<br>31 | 1.37<br>1.06<br>1.38<br>1.34<br>1.60 | 76<br>154<br>139<br>95<br>109  | . 23<br>. 25<br>. 24<br>. 26<br>. 25 | 3<br>2<br>5<br>5<br>2      | 2.54<br>2.18<br>2.35<br>2.38<br>2.99 | .01<br>.02<br>.01<br>.01<br>.01 | .10<br>.09<br>.10<br>.10<br>.10 | 1<br>1<br>1<br>1      | 8<br>24<br>13<br>57<br>68 |
| 440-820324<br>440-820325<br>440-820326<br>440-820327<br>440-820328               | 1<br>1<br>1<br>1      | 331<br>300<br>135<br>189<br>183 | 14<br>11<br>10<br>12<br>11 | 313<br>273<br>358<br>399<br>400 | .1<br>.1<br>.2<br>.1       | 26<br>23<br>26<br>19<br>23 | 30<br>23<br>19<br>19<br>18 | 557<br>868<br>573<br>748<br>697   | 5.18<br>5.06<br>4.90<br>4.69<br>4.59 | 3<br>4<br>2<br>3<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>2<br>2 | 43<br>56<br>47<br>47<br>43  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 142<br>131<br>136<br>136<br>137 | .65<br>.76<br>.62<br>.73<br>.77  | .129<br>.340<br>.176<br>.160<br>.120 | 5<br>5<br>5<br>4      | 29<br>29<br>30<br>30<br>31 | 1.27<br>1.15<br>1.21<br>1.17<br>1.14 | 58<br>182<br>99<br>88<br>89    | .25<br>.21<br>.25<br>.24<br>.26      | 2<br>2<br>7<br>8           | 2.77<br>2.80<br>2.83<br>2.21<br>2.32 | .01<br>.02<br>.01<br>.01<br>.02 | .12<br>.10<br>.11<br>.09<br>.10 | 1<br>1<br>1<br>1<br>1 | 22<br>12<br>4<br>17<br>3  |
| 440-820329<br>440-820330<br>440-820331<br>440-820332<br>440-820333               | 1<br>1<br>1<br>1      | 92<br>180<br>417<br>100<br>202  | 6<br>12<br>21<br>7<br>12   | 268<br>251<br>249<br>232<br>267 | .1<br>.5<br>.1             | 30<br>37<br>56<br>31<br>33 | 17<br>22<br>30<br>19<br>22 | 479<br>517<br>426<br>467<br>788   | 4.68<br>5.65<br>5.64<br>4.47<br>5.96 | 3<br>4<br>2<br>2<br>7 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>3<br>1<br>1 | 38<br>40<br>40<br>40<br>52  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 143<br>180<br>190<br>130<br>167 | .70<br>.58<br>.74<br>.57<br>.69  | .107<br>.095<br>.054<br>.117<br>.246 | 4<br>4<br>5<br>3      | 66<br>51<br>54<br>53<br>59 | 1.03<br>1.50<br>1.13<br>1.11<br>1.61 | 89<br>99<br>185<br>89<br>122   | . 22<br>. 28<br>. 33<br>. 24<br>. 27 | 4<br>2<br>5<br>2           | 2.35<br>3.01<br>4.47<br>2.38<br>3.05 | .01<br>.02<br>.01<br>.01<br>.02 | .06<br>.11<br>.13<br>.10<br>.13 | 1<br>1<br>1<br>1      | 7<br>9<br>7<br>16<br>1    |
| 440-820334<br>440-820335<br>440-820336<br>440-820337<br>440-820338               | 1<br>1<br>1<br>2<br>1 | 243<br>186<br>152<br>410<br>333 | 8<br>7<br>11<br>9<br>17    | 334<br>289<br>330<br>165<br>257 | .1<br>.2<br>.2<br>.1<br>.3 | 38<br>30<br>35<br>28<br>28 | 28<br>26<br>24<br>28<br>26 | 801<br>1044<br>718<br>1007<br>886 | 5.77<br>6.69<br>5.63<br>6.98<br>7.17 | 2<br>2<br>3<br>2<br>4 | 5<br>5<br>8<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>3<br>3<br>4 | 46<br>67<br>58<br>61<br>103 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>3<br>2<br>3      | 2<br>2<br>2<br>2<br>2<br>2 | 160<br>193<br>151<br>225<br>219 | .62<br>.71<br>.72<br>1.19<br>.75 | .177<br>.174<br>.285<br>.131<br>.143 | 4<br>4<br>5<br>8<br>5 | 66<br>43<br>46<br>38<br>34 | 1.72<br>1.78<br>1.35<br>2.75<br>1.93 | 106<br>170<br>166<br>95<br>145 | .28<br>.28<br>.23<br>.44<br>.35      | 6<br>2<br>2<br>2<br>2      | 3.07<br>2.94<br>2.69<br>3.82<br>3.95 | .01<br>.02<br>.01<br>.02<br>.01 | .09<br>.14<br>.11<br>.13<br>.11 | 1<br>1<br>1<br>1      | 8<br>7<br>4<br>38<br>13   |
| 440-820339<br>STD C/AU-S                                                         | 1<br>18               | 184<br>59                       | 8<br>40                    | 183<br>132                      | .1<br>7.2                  | 39<br>71                   | 21<br>30                   | 710<br>1084                       | 5.46<br>4.07                         | 4<br>40               | 5<br>25               | ND<br>8                    | 2<br>38               | 91<br>50                    | 1<br>17               | 2<br>17                    | 2<br>18                    | 159<br>60                       | .89<br>.51                       | .197<br>.086                         | 6<br>41               | 51<br>58                   | 1.49                                 | 139<br>181                     | .25                                  | 2                          | 2.79                                 | .01                             | .15                             | 1<br>13               | 7<br>50                   |

Page 3

4

| SAMPLE‡                                                                           | NO<br>PPN             | Cu<br>PPM                      | PD<br>PPM                 | Zn<br>PPM                       | Ag<br>PPN                  | Ni<br>PPN                  | Co<br>PPN                  | Kn<br>PPK                        | Te<br>t                              | As<br>PPN                  | U<br>PPN              | Au<br>PPN                  | Th<br>PPN             | ST<br>PPM                     | Cđ<br>PPK             | SD<br>PPN                  | Bİ<br>PPM                  | V<br>PPN                        | Ca<br>ł                           | P<br>%                               | La<br>PPN             | Cr<br>PPN                  | Ng<br>ł                              | Ba<br>PPN                     | Ti<br>X                         | B<br>PPN                | 14<br>1                              | Na<br>1                         | K<br>X                          | ¥<br>PPH              | Au*<br>PPB              |  |
|-----------------------------------------------------------------------------------|-----------------------|--------------------------------|---------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|--------------------------------------|----------------------------|-----------------------|----------------------------|-----------------------|-------------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-----------------------------------|--------------------------------------|-----------------------|----------------------------|--------------------------------------|-------------------------------|---------------------------------|-------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-------------------------|--|
| 440-820340<br>440-820341<br>440-820342<br>50-440-821001<br>50-440-821002          | 1<br>1<br>1<br>1<br>1 | 143<br>214<br>147<br>224<br>40 | 12<br>10<br>2<br>2<br>5   | 511<br>267<br>258<br>185<br>196 | .3<br>.1<br>.2<br>.2<br>.2 | 50<br>41<br>41<br>27<br>18 | 22<br>21<br>27<br>26<br>16 | 829<br>770<br>651<br>794<br>674  | 5.47<br>5.83<br>5.34<br>5.68<br>3.44 | 11<br>9<br>9<br>9<br>7     | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>2      | 69<br>36<br>43<br>47<br>44    | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 133<br>168<br>150<br>171<br>95  | .85<br>.91<br>.78<br>.83<br>.56   | .672<br>.115<br>.195<br>.093<br>.227 | 4<br>5<br>4<br>5<br>5 | 84<br>73<br>71<br>39<br>38 | 1.86<br>1.64<br>1.79<br>1.67<br>.66  | 200<br>86<br>94<br>57<br>52   | .29<br>.33<br>.31<br>.31<br>.18 | 2<br>4<br>6<br>8        | 3.09<br>3.17<br>2.94<br>3.02<br>1.94 | .01<br>.01<br>.01<br>.01<br>.01 | .15<br>.10<br>.11<br>.14<br>.12 | 1<br>1<br>1<br>1      | 3<br>1<br>17<br>19<br>1 |  |
| 50-440-821003<br>50-440-821004<br>50-440-821005<br>50-440-821006<br>50-440-821007 | 1<br>1<br>1<br>1<br>1 | 74<br>120<br>73<br>56<br>50    | 2<br>2<br>8<br>14<br>7    | 356<br>421<br>182<br>356<br>282 | .6<br>.3<br>.4<br>.2<br>.4 | 36<br>29<br>33<br>18<br>33 | 24<br>24<br>26<br>20<br>19 | 636<br>737<br>845<br>935<br>860  | 4.47<br>4.93<br>6.04<br>5.35<br>5.04 | 10<br>10<br>17<br>8<br>10  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>1<br>1<br>2<br>1 | 44<br>57<br>56<br>119<br>69   | 1<br>1<br>2<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 111<br>116<br>163<br>147<br>127 | .60<br>.80<br>.71<br>.83<br>.67   | .158<br>.290<br>.289<br>.175<br>.202 | 5<br>4<br>3<br>5      | 51<br>41<br>59<br>30<br>48 | 1.09<br>1.24<br>1.46<br>1.25<br>1.25 | 58<br>71<br>69<br>57<br>87    | .22<br>.20<br>.22<br>.21<br>.20 | 8<br>4<br>2<br>6<br>3   | 2.75<br>2.81<br>2.93<br>2.52<br>2.76 | .01<br>.01<br>.01<br>.01<br>.02 | .12<br>.12<br>.13<br>.14<br>.14 | 1<br>1<br>1<br>1      | 1<br>3<br>1<br>1<br>1   |  |
| 50-440-821008<br>50-440-821009<br>50-440-821010<br>50-440-821011<br>50-440-821012 | 1<br>1<br>1<br>1      | 48<br>83<br>111<br>49<br>69    | 21<br>17<br>2<br>2<br>6   | 334<br>195<br>160<br>222<br>225 | .5<br>.5<br>.2<br>.4<br>.5 | 36<br>30<br>32<br>32<br>34 | 23<br>22<br>28<br>21<br>23 | 579<br>587<br>583<br>731<br>619  | 5.22<br>5.24<br>5.66<br>5.34<br>5.43 | 22<br>17<br>16<br>15<br>14 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>3<br>3<br>4<br>2 | 110<br>104<br>155<br>96<br>64 | 1<br>1<br>1<br>1      | 2<br>4<br>2<br>2<br>2      | 3<br>2<br>2<br>2<br>2      | 146<br>150<br>152<br>139<br>139 | .77<br>.83<br>.78<br>.70<br>.76   | .061<br>.067<br>.102<br>.326<br>.318 | 5<br>5<br>5<br>5<br>5 | 50<br>48<br>51<br>43<br>51 | 1.41<br>1.32<br>1.42<br>1.13<br>1.21 | 57<br>39<br>30<br>62<br>42    | .24<br>.25<br>.22<br>.18<br>.20 | 2<br>9<br>7<br>6<br>5   | 3.39<br>3.33<br>3.52<br>3.35<br>3.02 | .02<br>.02<br>.02<br>.01<br>.01 | .10<br>.10<br>.07<br>.11<br>.11 | 1<br>1<br>1<br>I<br>I | 1<br>48<br>10<br>1<br>4 |  |
| 50-440-821013<br>50-440-821014<br>50-440-821015<br>50-440-821016<br>50-440-821017 | 1<br>1<br>1<br>2      | 98<br>81<br>118<br>126<br>96   | 2<br>11<br>17<br>12<br>14 | 234<br>258<br>271<br>200<br>192 | .4<br>.4<br>.4<br>.3       | 30<br>36<br>40<br>37<br>22 | 20<br>25<br>31<br>26<br>17 | 794<br>913<br>676<br>815<br>400  | 4.81<br>5.24<br>6.20<br>5.16<br>4.49 | 10<br>9<br>15<br>11<br>5   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>4<br>2<br>1<br>1 | 74<br>63<br>54<br>43<br>35    | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 129<br>139<br>157<br>131<br>111 | .79<br>.78<br>.66<br>.67<br>.82   | .252<br>.131<br>.201<br>.153<br>.042 | 4<br>5<br>5<br>6<br>4 | 47<br>57<br>62<br>53<br>37 | 1.23<br>1.39<br>1.70<br>1.31<br>1.12 | 74<br>49<br>57<br>63<br>44    | .22<br>.26<br>.28<br>.24<br>.28 | 9<br>6<br>7<br>3<br>4   | 2.69<br>3.05<br>3.51<br>2.77<br>2.78 | .01<br>.01<br>.01<br>.01<br>.01 | .14<br>.13<br>.10<br>.09<br>.06 | 1<br>1<br>2<br>1<br>1 | 3<br>1<br>2<br>1<br>3   |  |
| 50-440-826001<br>50-440-826002<br>50-440-826003<br>50-440-826004<br>50-440-826005 | 2<br>2<br>1<br>1<br>1 | 40<br>24<br>55<br>72<br>68     | 2<br>2<br>9<br>7          | 75<br>72<br>56<br>148<br>106    | .1<br>.1<br>.2<br>.1       | 33<br>26<br>24<br>30<br>27 | 12<br>10<br>12<br>21<br>19 | 340<br>305<br>335<br>753<br>590  | 3.60<br>4.17<br>4.67<br>6.84<br>6.61 | 2<br>2<br>6<br>14<br>12    | 5<br>5<br>5<br>5<br>5 | D<br>D<br>ND<br>ND<br>ND   | 1<br>1<br>1<br>3<br>1 | 44<br>44<br>90<br>90<br>69    | 1<br>1<br>1<br>2<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 3<br>5<br>2<br>2<br>2      | 89<br>119<br>157<br>186<br>210  | .68<br>.51<br>1.45<br>1.71<br>.84 | .047<br>.035<br>.025<br>.068<br>.047 | 4<br>2<br>4<br>8<br>4 | 54<br>37<br>45<br>56<br>56 | .87<br>.73<br>.84<br>1.67<br>1.20    | 49<br>37<br>49<br>76<br>67    | .16<br>.15<br>.19<br>.30<br>.28 | 2<br>2<br>8<br>2        | 2.42<br>2.14<br>2.46<br>3.43<br>2.87 | .01<br>.01<br>.02<br>.02<br>.02 | .06<br>.04<br>.05<br>.08<br>.11 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>2        |  |
| 50-440-826006<br>50-440-826007<br>50-440-826008<br>50-440-826009<br>50-440-826010 | 1<br>1<br>1<br>2<br>1 | 88<br>135<br>137<br>85<br>63   | 5<br>6<br>7<br>4<br>9     | 145<br>245<br>105<br>136<br>74  | .1<br>.6<br>.1<br>.1       | 25<br>27<br>29<br>29<br>29 | 23<br>22<br>24<br>21<br>23 | 629<br>1128<br>834<br>916<br>639 | 6.90<br>6.69<br>7.25<br>5.88<br>6.03 | 8<br>13<br>14<br>11<br>10  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 4<br>2<br>2<br>1      | 67<br>70<br>85<br>61<br>98    | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 212<br>190<br>230<br>153<br>188 | .65<br>.67<br>.97<br>.87<br>1.19  | .129<br>.437<br>.095<br>.123<br>.064 | 3<br>5<br>4<br>6      | 50<br>57<br>59<br>54<br>62 | 1.33<br>1.35<br>1.45<br>1.16<br>1.30 | 99<br>174<br>126<br>112<br>88 | .25<br>.24<br>.28<br>.21<br>.24 | 5<br>10<br>13<br>4<br>5 | 3.06<br>3.51<br>3.34<br>3.18<br>2.72 | .01<br>.02<br>.02<br>.02<br>.02 | .09<br>.10<br>.09<br>.08<br>.10 | 1<br>2<br>1<br>1<br>2 | 1<br>4<br>3<br>1<br>14  |  |
| 50-440-826011<br>50-440-826012<br>50-440-826013<br>50-440-826014<br>50-440-826015 | 1<br>1<br>1<br>1      | 65<br>52<br>51<br>60<br>42     | 13<br>11<br>6<br>5<br>3   | 180<br>252<br>153<br>110<br>120 | .4<br>.2<br>.3<br>.1<br>.2 | 29<br>27<br>29<br>28<br>29 | 20<br>17<br>16<br>15<br>14 | 858<br>873<br>649<br>447<br>522  | 5.14<br>4.94<br>4.81<br>5.37<br>3.98 | 9<br>11<br>9<br>7<br>8     | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 3<br>2<br>3<br>2<br>4 | 71<br>77<br>58<br>56<br>51    | 1<br>2<br>2<br>1<br>2 | 2<br>2<br>3<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 138<br>132<br>144<br>177<br>110 | .78<br>.79<br>.71<br>.66<br>.72   | .203<br>.236<br>.097<br>.049<br>.158 | 5<br>5<br>6<br>4<br>6 | 53<br>55<br>54<br>59<br>53 | 1.14<br>.99<br>.96<br>.95<br>.85     | 97<br>138<br>101<br>55<br>64  | .15<br>.17<br>.19<br>.20<br>.16 | 19<br>8<br>11<br>8<br>7 | 2.72<br>2.75<br>2.67<br>2.27<br>2.12 | .02<br>.02<br>.02<br>.01<br>.01 | .22<br>.13<br>.14<br>.09<br>.14 | 1<br>1<br>1<br>1      | 3<br>1<br>1<br>1        |  |
| 50-440-826016<br>STD C/AU-S                                                       | 1<br>18               | 20<br>57                       | 5<br>40                   | 72<br>132                       | .1<br>6.5                  | 20<br>68                   | 11<br>29                   | 507<br>1072                      | 3.76<br>4.06                         | 5<br>41                    | 5<br>17               | ND<br>9                    | 2                     | 44<br>47                      | 1<br>17               | 2<br>16                    | 2<br>20                    | 112<br>58                       | .59<br>.47                        | .087                                 | 4<br>40               | 49<br>60                   | .64<br>.93                           | 80<br>177                     | .17                             | 10<br>36                | 1.75                                 | .01                             | .08<br>.16                      | 1<br>11               | <b>4</b><br>50          |  |

Page 4

(

1

t

(

(

(

| SANPLE‡                                                                           | No<br>PPN             | Cu<br>PPM                      | Pb<br>PPM                  | Zn<br>PPN                       | Ag<br>PPN                  | NI<br>PPN                  | CO<br>PPN                  | Nn<br>PPN                          | Fe<br>S                              | As<br>PPN                  | U<br>PPN              | Au<br>PPN                    | Th<br>PPN             | Sr<br>PPM                  | Cđ<br>PPN             | SD<br>PPN             | BI<br>PPM             | V<br>PPM                        | Ca<br>1                           | P<br>N                               | La<br>PPM              | CT<br>PPN                  | Ng                                   | Ba<br>PPM                   | Ti<br>\$                        | B<br>PPN               | л1<br>Ъ                              | Na<br>t                         | I<br>ł                          | ¥<br>PPN              | Au*<br>PPB              |  |
|-----------------------------------------------------------------------------------|-----------------------|--------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|------------------------------------|--------------------------------------|----------------------------|-----------------------|------------------------------|-----------------------|----------------------------|-----------------------|-----------------------|-----------------------|---------------------------------|-----------------------------------|--------------------------------------|------------------------|----------------------------|--------------------------------------|-----------------------------|---------------------------------|------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-------------------------|--|
| 50-440-826017<br>50-440-826018<br>50-440-826019<br>50-440-826020<br>50-440-826021 | 1<br>1<br>1<br>1<br>1 | 40<br>38<br>49<br>34<br>41     | 3<br>7<br>3<br>2<br>2      | 138<br>161<br>182<br>120<br>96  | .2<br>.1<br>.2<br>.2<br>.1 | 27<br>25<br>34<br>29<br>25 | 15<br>16<br>17<br>15<br>13 | 622<br>704<br>561<br>514<br>528    | 4.48<br>4.41<br>3.88<br>3.79<br>3.45 | 9<br>10<br>7<br>6<br>6     | 5<br>5<br>8<br>5      | ND<br>ND<br>ND<br>ND<br>ND   | 3<br>2<br>3<br>4<br>1 | 54<br>52<br>40<br>37<br>40 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2 | 2<br>5<br>2<br>3<br>2 | 134<br>125<br>113<br>110<br>112 | .76<br>.71<br>.68<br>.58<br>.61   | .228<br>.530<br>.145<br>.255<br>.114 | 4<br>5<br>5<br>6       | 52<br>54<br>52<br>54<br>48 | .81<br>.63<br>.77<br>.76<br>.65      | 90<br>127<br>59<br>67<br>57 | .18<br>.16<br>.18<br>.18<br>.18 | 2<br>2<br>6<br>2<br>3  | 2.22<br>2.12<br>2.39<br>2.30<br>1.90 | .02<br>.01<br>.01<br>.01<br>.01 | .10<br>.29<br>.19<br>.09<br>.07 | 1<br>1<br>1<br>1      | 7<br>1<br>1<br>1<br>2   |  |
| 50-440-826022<br>50-440-826023<br>50-440-826024<br>50-440-826025<br>50-440-826026 | 1<br>1<br>1<br>2      | 34<br>68<br>48<br>46<br>59     | 3<br>2<br>3<br>4<br>12     | 111<br>60<br>79<br>64<br>82     | .1<br>.1<br>.1<br>.3       | 21<br>31<br>30<br>26<br>53 | 13<br>16<br>14<br>12<br>21 | 605<br>511<br>464<br>450<br>458    | 3.42<br>4.89<br>4.46<br>4.10<br>5.94 | 6<br>8<br>6<br>26          | 5<br>5<br>7<br>5      | ND<br>ND<br>ND<br>ND<br>ND   | 3<br>1<br>1<br>3<br>2 | 45<br>55<br>60<br>53<br>42 | 1<br>1<br>1<br>1      | 2<br>3<br>2<br>2<br>2 | 3<br>2<br>3<br>2<br>2 | 103<br>170<br>143<br>137<br>152 | .68<br>.77<br>.73<br>.78<br>1.29  | .148<br>.102<br>.217<br>.079<br>.057 | 5<br>5<br>5<br>4       | 46<br>67<br>59<br>54<br>76 | .67<br>.93<br>.87<br>.86<br>.98      | 78<br>58<br>74<br>70<br>52  | .19<br>.22<br>.20<br>.22<br>.22 | 4<br>2<br>3<br>2       | 1.88<br>2.17<br>2.10<br>2.07<br>2.58 | .01<br>.01<br>.01<br>.01<br>.01 | .09<br>.14<br>.08<br>.08<br>.11 | 1<br>1<br>1<br>1<br>1 | 17<br>1<br>1<br>3<br>1  |  |
| 50-440-826027<br>50-440-826028<br>50-440-826029<br>50-440-826030<br>50-440-826031 | 2<br>1<br>1<br>1<br>1 | 54<br>42<br>63<br>34<br>47     | 6<br>5<br>4<br>2<br>7      | 72<br>163<br>224<br>211<br>176  | .1<br>.4<br>.1<br>.2<br>.5 | 47<br>61<br>45<br>39<br>37 | 17<br>20<br>19<br>14<br>21 | 440<br>426<br>826<br>1175<br>796   | 5.18<br>5.71<br>5.13<br>3.54<br>4.32 | 10<br>13<br>13<br>11<br>12 | 5<br>5<br>6<br>5      | ND<br>ND<br>ND<br>ND         | 1<br>3<br>2<br>3<br>3 | 47<br>37<br>71<br>34<br>78 | 1<br>1<br>1<br>1      | 3<br>2<br>2<br>2<br>2 | 3<br>2<br>2<br>2<br>5 | 164<br>137<br>127<br>81<br>122  | 1.48<br>.72<br>.74<br>.43<br>.89  | .035<br>.134<br>.268<br>.289<br>.087 | 4<br>5<br>6<br>7       | 74<br>83<br>58<br>63<br>51 | 1.16<br>1.16<br>1.43<br>.71<br>1.01  | 31<br>61<br>63<br>58<br>44  | .28<br>.25<br>.23<br>.18<br>.22 | 2<br>2<br>2<br>6       | 2.50<br>3.21<br>3.45<br>2.49<br>3.20 | .01<br>.01<br>.01<br>.01<br>.01 | .14<br>.13<br>.14<br>.09<br>.09 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>1        |  |
| 50-440-826032<br>50-440-826033<br>50-440-826034<br>50-440-826035<br>50-440-826036 | 1<br>1<br>1<br>1      | 38<br>100<br>91<br>88<br>98    | 10<br>9<br>8<br>7<br>9     | 244<br>184<br>196<br>256<br>108 | .1<br>.3<br>.6<br>.3<br>.3 | 25<br>33<br>37<br>42<br>23 | 20<br>21<br>21<br>29<br>21 | 1307<br>727<br>652<br>656<br>567   | 4.22<br>5.12<br>5.11<br>5.82<br>5.06 | 9<br>12<br>15<br>19<br>10  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND   | 1<br>2<br>3<br>2<br>2 | 82<br>98<br>58<br>62<br>47 | 1<br>1<br>2<br>1<br>1 | 2<br>3<br>2<br>4<br>2 | 2<br>6<br>3<br>3<br>3 | 106<br>146<br>144<br>148<br>169 | .65<br>1.07<br>.73<br>.62<br>.54  | .291<br>.151<br>.204<br>.234<br>.042 | 6<br>7<br>7<br>6       | 41<br>41<br>49<br>45<br>38 | .88<br>1.45<br>1.42<br>1.18<br>1.20  | 89<br>46<br>42<br>79<br>45  | .18<br>.23<br>.24<br>.19<br>.34 | 2<br>2<br>4<br>4<br>2  | 2.61<br>3.30<br>2.98<br>4.08<br>2.45 | .01<br>.01<br>.01<br>.01<br>.01 | .09<br>.14<br>.14<br>.11<br>.09 | 1<br>1<br>1<br>2<br>1 | 1<br>1<br>1<br>9        |  |
| 50-440-826037<br>50-440-826038<br>50-440-826039<br>50-440-826040<br>50-440-826041 | 1<br>1<br>1<br>1<br>1 | 72<br>164<br>113<br>69<br>86   | 11<br>23<br>15<br>5<br>14  | 165<br>238<br>265<br>208<br>150 | .2<br>.5<br>.4<br>.4<br>.4 | 26<br>35<br>31<br>22<br>24 | 27<br>29<br>27<br>21<br>22 | 680<br>828<br>659<br>587<br>683    | 6.53<br>6.99<br>6.20<br>4.54<br>4.94 | 7<br>14<br>8<br>7<br>9     | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND   | 1<br>3<br>3<br>2<br>4 | 42<br>54<br>40<br>39<br>42 | 1<br>1<br>1<br>1      | 2<br>3<br>2<br>2<br>3 | 3<br>5<br>2<br>4<br>3 | 218<br>209<br>184<br>130<br>152 | .57<br>.79<br>.57<br>.53<br>.64   | .034<br>.095<br>.117<br>.213<br>.092 | 5<br>4<br>5<br>4<br>4  | 49<br>59<br>49<br>39<br>43 | 1.78<br>2.16<br>1.89<br>1.10<br>1.32 | 51<br>40<br>59<br>59<br>55  | .45<br>.37<br>.36<br>.26<br>.33 | 5<br>2<br>6<br>5<br>3  | 2.93<br>3.34<br>3.10<br>2.18<br>2.40 | .02<br>.01<br>.01<br>.01<br>.01 | .14<br>.13<br>.16<br>.12<br>.17 | 1<br>1<br>1<br>1<br>2 | 1<br>7<br>4<br>1<br>9   |  |
| 50-440-826042<br>50-440-826043<br>50-440-826044<br>50-440-826045<br>50-440-826046 | 1<br>1<br>1<br>1      | 101<br>115<br>119<br>170<br>79 | 15<br>11<br>17<br>17<br>22 | 210<br>377<br>403<br>276<br>178 | .1<br>.9<br>.8<br>.5<br>.6 | 23<br>25<br>29<br>31<br>28 | 21<br>25<br>28<br>27<br>23 | 973<br>1285<br>790<br>791<br>690   | 4.79<br>5.17<br>6.49<br>6.80<br>6.37 | 10<br>10<br>14<br>14<br>11 | 5<br>5<br>5<br>5<br>5 | ND<br>- ND<br>ND<br>ND<br>ND | 1<br>4<br>6<br>3<br>3 | 39<br>43<br>50<br>48<br>40 | 1<br>3<br>1<br>1      | 3<br>4<br>2<br>2<br>2 | 2<br>5<br>4<br>2<br>4 | 131<br>138<br>171<br>191<br>171 | .56<br>.63<br>.53<br>.82<br>1.01  | .172<br>.160<br>.287<br>.270<br>.041 | 4<br>7<br>6<br>5<br>6  | 39<br>38<br>43<br>43<br>45 | 1.28<br>1.33<br>1.77<br>1.82<br>1.62 | 64<br>101<br>58<br>61<br>47 | .29<br>.29<br>.35<br>.31<br>.37 | 2<br>7<br>10<br>2<br>3 | 2.55<br>2.72<br>3.41<br>3.62<br>3.20 | .01<br>.01<br>.01<br>.01<br>.01 | .12<br>.15<br>.20<br>.14<br>.10 | 1<br>1<br>1<br>1<br>2 | 1<br>1<br>4<br>1<br>3   |  |
| 50-440-826047<br>50-440-826048<br>50-440-826049<br>50-440-826050<br>50-440-826051 | 1<br>1<br>1<br>1      | 445<br>649<br>54<br>127<br>162 | 18<br>24<br>10<br>14<br>9  | 221<br>231<br>175<br>287<br>559 | .4<br>.9<br>.3<br>.4<br>.3 | 33<br>37<br>13<br>30<br>18 | 20<br>25<br>20<br>31<br>22 | 778<br>1140<br>1686<br>947<br>1171 | 5.74<br>6.75<br>4.08<br>6.67<br>4.13 | 9<br>11<br>6<br>13<br>11   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND   | 3<br>4<br>2<br>2<br>3 | 57<br>55<br>45<br>54<br>32 | 1<br>1<br>1<br>2      | 2<br>5<br>2<br>3<br>3 | 2<br>2<br>5<br>2<br>2 | 157<br>176<br>123<br>186<br>120 | 1.89<br>1.83<br>.58<br>.66<br>.46 | .108<br>.077<br>.065<br>.302<br>.189 | 9<br>13<br>5<br>4<br>4 | 46<br>44<br>33<br>46<br>26 | 1.95<br>2.04<br>.83<br>1.79<br>.98   | 47<br>56<br>90<br>110<br>95 | .30<br>.32<br>.26<br>.30<br>.28 | 10<br>7<br>2<br>8<br>7 | 2.61<br>2.90<br>1.70<br>3.08<br>2.13 | .02<br>.01<br>.01<br>.01<br>.01 | .11<br>.12<br>.09<br>.13<br>.11 | 1<br>1<br>1<br>1<br>2 | 18<br>21<br>7<br>5<br>6 |  |
| 50-440-826052<br>STD C/AU-S                                                       | 1<br>17               | 93<br>60                       | 9<br>40                    | 307<br>132                      | .1<br>6.9                  | 13<br>72                   | 16<br>30                   | 855<br>1094                        | 4.11<br>3.98                         | 6<br>44                    | 5<br>23               | ND<br>9                      | 1<br>38               | 31<br>47                   | 1<br>19               | 2<br>17               | 3<br>19               | 127<br>59                       | .45<br>.47                        | .120                                 | 4<br>40                | 23<br>59                   | .84                                  | 59<br>178                   | .26                             | 2<br>39                | 1.55                                 | .01                             | .11                             | 1<br>13               | 1<br>48                 |  |

Page 5

(

(

í

ť

١

4

t

| SAMPLE                                                                                             | NO<br>PPK             | Cu<br>PPH                       | PD<br>PPK                  | ZO<br>PPK                       | Ag<br>PPN                  | NI<br>PPH                  | Co<br>PPM                    | ND<br>PPM                         | Fe<br>3                              | A5<br>PPH              | . U<br>PPM            | AU<br>PPM                  | Th<br>PPM             | ST<br>PPK                  | Cd<br>PPM        | SD<br>PPM                  | Bİ<br>PPM                  | V<br>PPM                        | Ca<br>%                            | P<br>R                               | La<br>PPM              | CT<br>PPM                  | Hg<br>t                              | Ba<br>PPM                    | TÍ<br>ł                         | B<br>PPK                | Al<br>S                              | Na<br>S                         | х<br>1                          | W<br>PPK              | Au*<br>PPB               |  |
|----------------------------------------------------------------------------------------------------|-----------------------|---------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|------------------------------|-----------------------------------|--------------------------------------|------------------------|-----------------------|----------------------------|-----------------------|----------------------------|------------------|----------------------------|----------------------------|---------------------------------|------------------------------------|--------------------------------------|------------------------|----------------------------|--------------------------------------|------------------------------|---------------------------------|-------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|--------------------------|--|
| 50-440-825053<br>50-440-825054<br>50-440-825035<br>50-440-825055<br>50-440-825057                  | 2<br>1<br>1<br>1<br>1 | 271<br>432<br>529<br>377<br>123 | 15<br>8<br>3<br>7<br>10    | 114<br>437<br>130<br>112<br>322 | .1<br>.1<br>.1<br>.1       | 14<br>20<br>34<br>22<br>19 | 24<br>26<br>26<br>26<br>22   | 405<br>860<br>366<br>692<br>540   | 6.40<br>4.87<br>5.44<br>6.54<br>5.26 | 6<br>5<br>2<br>9       | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>1      | 16<br>43<br>24<br>55<br>39 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 226<br>153<br>152<br>214<br>141 | .36<br>.54<br>.73<br>1.10<br>.52   | .109<br>.146<br>.040<br>.123<br>.323 | 2<br>4<br>5<br>6<br>4  | 14<br>26<br>19<br>31<br>26 | 1.64<br>1.26<br>1.23<br>1.48<br>1.12 | 25<br>118<br>51<br>92<br>104 | .36<br>.31<br>.32<br>.26<br>.26 | 2<br>3<br>3<br>3<br>4   | 2.56<br>2.13<br>2.59<br>2.85<br>2.75 | .02<br>.01<br>.02<br>.01<br>.01 | .03<br>.15<br>.03<br>.10<br>.08 | 1<br>1<br>1<br>1<br>1 | 1<br>17<br>2<br>10<br>3  |  |
| 50-440-826058<br>50-440-826059<br>50-440-826060<br>50-440-826061<br>50-440-826062                  | 1<br>2<br>1<br>1<br>1 | 40<br>225<br>67<br>219<br>87    | 9<br>7<br>10<br>15<br>15   | 182<br>90<br>226<br>217<br>167  | .1<br>.1<br>.2<br>.1       | 11<br>25<br>21<br>29<br>18 | 14<br>26<br>17<br>24<br>15   | 424<br>745<br>802<br>908<br>518   | 4.82<br>6.16<br>5.17<br>6.59<br>4.97 | 3<br>4<br>7<br>10<br>3 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>3<br>1      | 48<br>68<br>51<br>69<br>46 | 1<br>1<br>1<br>1 | 2<br>2<br>3<br>2           | 2<br>2<br>2<br>3           | 178<br>229<br>156<br>208<br>155 | .42<br>1.52<br>.48<br>.71<br>.44   | .051<br>.031<br>.164<br>.139<br>.177 | 3<br>9<br>5<br>6<br>5  | 17<br>33<br>37<br>37<br>36 | .96<br>1.75<br>.96<br>1.71<br>1.06   | 59<br>80<br>106<br>81<br>102 | .28<br>.40<br>.26<br>.27<br>.26 | 2<br>2<br>4<br>5        | 1.54<br>3.14<br>2.09<br>3.24<br>1.90 | .01<br>.02<br>.03<br>.02<br>.01 | .10<br>.06<br>.09<br>.10<br>.15 | 1<br>1<br>1<br>1      | 1<br>7<br>1<br>2<br>1    |  |
| 50-440-826063<br>50-440-826064<br>50-440-826065<br>50-440-826066<br>50-440-826066                  | 1<br>1<br>1<br>1      | 207<br>173<br>261<br>213<br>214 | 16<br>17<br>14<br>14<br>17 | 265<br>357<br>275<br>227<br>255 | .1<br>.1<br>.3<br>.4       | 28<br>31<br>34<br>39<br>30 | 28<br>32<br>25<br>24<br>25   | 1125<br>661<br>739<br>814<br>967  | 5.88<br>5.94<br>6.46<br>6.43<br>6.43 | 8<br>4<br>2<br>8<br>6  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>2<br>3 | 51<br>53<br>54<br>56<br>63 | 1<br>1<br>1<br>1 | 2<br>2<br>3<br>3           | 2<br>2<br>2<br>2<br>2      | 210<br>148<br>205<br>191<br>197 | .71<br>.60<br>.64<br>.67<br>.61    | .227<br>.387<br>.111<br>.171<br>.109 | 5<br>5<br>5<br>5<br>5  | 40<br>41<br>44<br>46<br>40 | 1.49<br>1.16<br>1.62<br>1.73<br>1.66 | 72<br>123<br>38<br>52<br>61  | .23<br>.21<br>.25<br>.23<br>.23 | 2<br>8<br>5<br>5<br>6   | 3.15<br>2.99<br>3.34<br>3.21<br>3.12 | .02<br>.03<br>.02<br>.02<br>.02 | .07<br>.10<br>.06<br>.07<br>.09 | 1<br>1<br>1<br>1      | 34<br>2<br>11<br>4<br>12 |  |
| 50-440-826068<br>88-440-827001<br>88-440-827002<br>88-440-827003<br>88-440-827004                  | 1<br>2<br>1<br>1<br>1 | 540<br>148<br>121<br>144<br>64  | 17<br>3<br>8<br>3<br>5     | 244<br>136<br>150<br>134<br>128 | .9<br>.1<br>.1<br>.1<br>.1 | 40<br>21<br>24<br>28<br>28 | 25<br>18<br>21<br>20<br>19   | 910<br>830<br>946<br>767<br>765   | 5.87<br>4.95<br>6.32<br>5.45<br>5.20 | 8<br>3<br>6<br>7<br>6  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>1<br>1      | 54<br>85<br>70<br>94<br>60 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 189<br>158<br>192<br>156<br>157 | 1.23<br>1.79<br>.74<br>.95<br>.61  | .048<br>.107<br>.115<br>.218<br>.114 | 12<br>4<br>5<br>5<br>5 | 49<br>30<br>36<br>39<br>43 | 1.42<br>1.21<br>1.37<br>1.18<br>1.02 | 55<br>90<br>98<br>111<br>79  | .26<br>.23<br>.27<br>.21<br>.22 | 6<br>13<br>9<br>6<br>9  | 3.18<br>2.82<br>3.21<br>3.12<br>2.51 | .02<br>.01<br>.03<br>.03<br>.03 | .06<br>.05<br>.08<br>.10<br>.08 | 1<br>1<br>1<br>1      | 14<br>1<br>1<br>1        |  |
| 88-440-827005<br>88-440-827006<br>88-440-827007<br>88-440-827008<br>88-440-827008<br>88-440-827009 | 1<br>1<br>1<br>1      | 107<br>235<br>70<br>104<br>106  | 7<br>13<br>10<br>11<br>11  | 128<br>149<br>221<br>246<br>167 | .3<br>.3<br>.7<br>.4<br>.2 | 31<br>24<br>26<br>28<br>25 | 22<br>28<br>22<br>23<br>26   | 609<br>696<br>829<br>620<br>1229  | 6.27<br>6.90<br>5.27<br>5.83<br>6.19 | 9<br>9<br>10<br>5<br>6 | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 3<br>2<br>3<br>2<br>1 | 74<br>88<br>63<br>61<br>78 | 1<br>1<br>1<br>1 | 2<br>2<br>3<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 200<br>221<br>157<br>179<br>186 | .78<br>.80<br>.72<br>.61<br>.79    | .103<br>.133<br>.108<br>.144<br>.151 | 6<br>5<br>6<br>5       | 51<br>38<br>37<br>46<br>43 | 1.22<br>1.43<br>1.01<br>1.09<br>1.14 | 65<br>83<br>118<br>78<br>110 | .23<br>.25<br>.21<br>.20<br>.22 | 5<br>3<br>13<br>6<br>4  | 2.61<br>2.74<br>2.36<br>2.24<br>2.23 | .03<br>.03<br>.04<br>.02<br>.03 | .14<br>.11<br>.09<br>.09<br>.08 | 1<br>1<br>1<br>1      | 13<br>10<br>1<br>2<br>1  |  |
| 88-440-827010<br>88-440-827011<br>88-440-827012<br>88-440-827013<br>88-440-827014                  | 6<br>1<br>1<br>2<br>1 | 124<br>46<br>39<br>166<br>51    | 7<br>8<br>10<br>9<br>6     | 95<br>144<br>164<br>75<br>77    | .3<br>.1<br>.1<br>.3<br>.1 | 35<br>28<br>25<br>36<br>26 | 24 1<br>20<br>16<br>21<br>16 | 10160<br>992<br>702<br>592<br>550 | 5.77<br>4.67<br>4.59<br>5.48<br>4.67 | 2<br>3<br>3<br>6<br>3  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>1<br>2<br>1 | 83<br>61<br>58<br>73<br>56 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>3<br>2<br>3<br>2      | 163<br>135<br>139<br>170<br>149 | 2.21<br>1.01<br>.65<br>1.22<br>.69 | .183<br>.127<br>.116<br>.050<br>.135 | Β<br>6<br>9<br>δ       | 34<br>48<br>49<br>59<br>48 | 1.64<br>.96<br>.94<br>1.19<br>.90    | 257<br>78<br>98<br>94<br>99  | .25<br>.19<br>.19<br>.20<br>.19 | 23<br>7<br>3<br>9<br>3  | 2.10<br>2.01<br>1.91<br>2.39<br>1.91 | .03<br>.02<br>.03<br>.01<br>.02 | .10<br>.08<br>.07<br>.07<br>.07 | 1<br>1<br>1<br>1      | 1<br>1<br>2<br>1         |  |
| 88-440-827015<br>88-440-827016<br>88-440-827017<br>88-440-827018<br>88-440-827019                  | 1<br>1<br>1<br>1      | 73<br>107<br>176<br>73<br>154   | 6<br>7<br>19<br>8<br>7     | 110<br>148<br>358<br>154<br>110 | .3<br>.1<br>.3<br>.1<br>.5 | 26<br>32<br>30<br>24<br>25 | 18<br>19<br>25<br>19<br>22   | 614<br>520<br>729<br>512<br>496   | 5.00<br>5.24<br>6.45<br>5.28<br>5.63 | 2<br>8<br>2<br>5<br>7  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>1<br>4 | 62<br>72<br>83<br>63<br>79 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>3      | 2<br>2<br>2<br>2<br>2<br>2 | 159<br>161<br>215<br>177<br>181 | .71<br>.77<br>.80<br>.72<br>.82    | .117<br>.117<br>.063<br>.058<br>.076 | 5<br>6<br>4<br>6       | 50<br>52<br>50<br>47<br>46 | .86<br>1.08<br>1.33<br>1.02<br>1.44  | 101<br>82<br>71<br>58<br>67  | .18<br>.19<br>.24<br>.20<br>.24 | 10<br>6<br>3<br>10<br>4 | 1.87<br>2.34<br>2.70<br>1.92<br>2.21 | .03<br>.01<br>.01<br>.01<br>.01 | .07<br>.10<br>.07<br>.08<br>.13 | 1<br>1<br>1<br>1      | 1<br>9<br>3<br>8         |  |
| 88-440-827020<br>STD C/AU-S                                                                        | 1<br>18               | 105<br>61                       | 5<br>39                    | 103<br>130                      | .3<br>7.2                  | 24<br>71                   | 22<br>30                     | 616<br>1051                       | 5.22<br>4.07                         | 4                      | 5<br>18               | ND<br>8                    | 2<br>38               | 83<br>52                   | - 1<br>18        | 2<br>17                    | 3<br>20                    | 167<br>60                       | . 80<br>. 49                       | .074<br>.087                         | 5<br>41                | 43<br>59                   | 1.12                                 | 78<br>177                    | . 22<br>. 07                    | 11<br>35                | 2.00                                 | .02                             | .13<br>.13                      | 1<br>12               | 10<br>53                 |  |

Page 6

(

ŧ

| SAMPLE                                                                                                   | NO<br>PPN             | Cu<br>PPK                       | Pb<br>PPN                  | Zn<br>PPN                        | Ag<br>PPN                  | NI<br>PPN                  | Co<br>PPN                  | Nn<br>PPN                        | Fe<br>1                              | As<br>PPK                  | U<br>PPN              | ÂU<br>PPK                  | Th<br>PPN             | ST<br>PPM                   | Cd<br>PPN             | SD<br>PPN             | Bİ<br>PPN             | V<br>PPN                        | Ca<br>t                          | P<br>%                               | La<br>PPN             | CT<br>PPN                  | Ng<br>t                              | Ba<br>PPK                    | Ti<br>ł                         | B<br>PPN                 | Al<br>ł                              | Na<br>ł                         | K<br>ł                          | W<br>PPM              | Au*<br>PPB                 |
|----------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|--------------------------------------|----------------------------|-----------------------|----------------------------|-----------------------|-----------------------------|-----------------------|-----------------------|-----------------------|---------------------------------|----------------------------------|--------------------------------------|-----------------------|----------------------------|--------------------------------------|------------------------------|---------------------------------|--------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|----------------------------|
| 88-440-827021<br>88-440-827022<br>50-828-440-001<br>50-828-440-002<br>50-828-440-003                     | 1<br>1<br>1<br>1      | 117<br>72<br>35<br>47<br>45     | 8<br>6<br>8<br>12<br>9     | 89<br>110<br>115<br>75<br>68     | .1<br>.1<br>.1<br>.1       | 26<br>28<br>43<br>50<br>52 | 19<br>16<br>14<br>15<br>18 | 625<br>449<br>472<br>381<br>378  | 4.84<br>4.54<br>3.76<br>3.64<br>3.87 | 4<br>7<br>8<br>5<br>7      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>1<br>1<br>1 | 65<br>60<br>34<br>45<br>48  | 1<br>2<br>1<br>1<br>2 | 2<br>2<br>3<br>2<br>2 | 2<br>2<br>4<br>2<br>2 | 155<br>146<br>92<br>105<br>110  | .77<br>.78<br>.64<br>.84<br>.74  | .110<br>.059<br>.059<br>.030<br>.035 | 7<br>6<br>8<br>9<br>7 | 50<br>53<br>68<br>73<br>73 | 1.08<br>1.08<br>1.00<br>1.17<br>1.26 | 61<br>49<br>57<br>42<br>49   | .24<br>.24<br>.21<br>.25<br>.24 | 5<br>2<br>2<br>2<br>5    | 2.08<br>2.10<br>2.65<br>2.30<br>2.57 | .01<br>.01<br>.01<br>.01<br>.01 | .14<br>.10<br>.10<br>.06<br>.07 | 1<br>1<br>1<br>1      | 5<br>4<br>1<br>1<br>1      |
| 50-828-440-004<br>50-828-440-005<br>50-828-440-005<br>50-828-440-007<br>50-828-440-007<br>50-828-440-008 | 1<br>1<br>1<br>1<br>1 | 55<br>168<br>66<br>64<br>42     | 8<br>19<br>15<br>8<br>12   | 104<br>166<br>230<br>216<br>186  | .1<br>.2<br>.4<br>.1<br>.2 | 53<br>51<br>34<br>53<br>35 | 19<br>26<br>17<br>19<br>20 | 419<br>487<br>671<br>595<br>921  | 4.90<br>6.48<br>4.66<br>5.72<br>5.45 | 10<br>17<br>9<br>12<br>8   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 40<br>67<br>64<br>48<br>79  | 1<br>1<br>1<br>1      | 3<br>2<br>2<br>2<br>2 | 2<br>6<br>8<br>4<br>2 | 141<br>183<br>123<br>141<br>162 | .67<br>.78<br>.81<br>.82<br>.86  | .023<br>.061<br>.079<br>.243<br>.052 | 5<br>6<br>8<br>4<br>5 | 67<br>72<br>50<br>66<br>49 | 1.36<br>1.59<br>1.06<br>1.52<br>1.42 | 45<br>40<br>51<br>52<br>46   | .25<br>.33<br>.26<br>.25<br>.29 | 2<br>2<br>2<br>3         | 2.97<br>4.10<br>3.05<br>3.49<br>2.92 | .01<br>.02<br>.01<br>.01<br>.01 | .10<br>.13<br>.12<br>.09<br>.10 | 2<br>1<br>1<br>1<br>1 | 2<br>9<br>1<br>1<br>1      |
| 50-828-440-009<br>50-828-440-010<br>50-828-440-011<br>50-828-440-012<br>50-828-440-012<br>50-828-440-013 | 1<br>1<br>1<br>1      | 149<br>112<br>135<br>110<br>134 | 24<br>18<br>15<br>9<br>11  | 137<br>231<br>173<br>125<br>141  | .1<br>.4<br>.1<br>.1       | 40<br>46<br>35<br>48<br>36 | 30<br>26<br>25<br>22<br>23 | 842<br>593<br>712<br>532<br>569  | 7.03<br>5.95<br>5.86<br>5.04<br>5.74 | 13<br>14<br>10<br>8<br>7   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>3<br>1<br>1<br>1 | 130<br>87<br>80<br>67<br>68 | 1<br>2<br>1<br>1<br>1 | 3<br>2<br>2<br>3<br>2 | 9<br>2<br>2<br>6<br>7 | 216<br>171<br>172<br>140<br>164 | 1.02<br>.72<br>.74<br>.75<br>.72 | .059<br>.112<br>.048<br>.127<br>.117 | 5<br>6<br>5<br>6<br>5 | 54<br>56<br>55<br>55<br>50 | 2.00<br>1.54<br>1.64<br>1.46<br>1.58 | 37<br>53<br>37<br>40<br>38   | .35<br>.29<br>.33<br>.26<br>.27 | 4<br>2<br>2<br>2<br>2    | 3.68<br>3.77<br>3.05<br>2.95<br>3.07 | .01<br>.01<br>.01<br>.01<br>.01 | .12<br>.10<br>.09<br>.12<br>.10 | 1<br>1<br>1<br>1      | 8<br>1<br>5<br>1<br>7      |
| 50-828-440-014<br>50-828-440-015<br>50-828-440-015<br>50-828-440-017<br>50-828-440-018                   | 1<br>1<br>1<br>1      | 52<br>103<br>91<br>160<br>82    | 8<br>13<br>12<br>27<br>14  | 68<br>112<br>148<br>119<br>239   | .1<br>.2<br>.6<br>.2<br>.3 | 37<br>41<br>32<br>41<br>33 | 17<br>23<br>20<br>32<br>29 | 506<br>586<br>685<br>686<br>630  | 4.08<br>5.31<br>5.74<br>6.87<br>5.76 | 4<br>12<br>8<br>11<br>10   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>1<br>4 | 62<br>60<br>67<br>94<br>53  | 1<br>2<br>2<br>1      | 2<br>2<br>2<br>3<br>2 | 2<br>2<br>3<br>2<br>2 | 117<br>158<br>174<br>201<br>167 | .91<br>.97<br>.83<br>.82<br>.77  | .027<br>.030<br>.073<br>.063<br>.085 | 6<br>7<br>6<br>4      | 54<br>56<br>46<br>63<br>50 | 1.25<br>1.47<br>1.67<br>2.26<br>1.91 | 46<br>74<br>44<br>53<br>47   | .26<br>.31<br>.30<br>.34<br>.29 | 2<br>4<br>20<br>14<br>10 | 2.31<br>3.39<br>3.04<br>3.48<br>3.17 | .01<br>.01<br>.01<br>.01<br>.01 | .12<br>.10<br>.16<br>.24<br>.14 | 1<br>1<br>1<br>1      | 14<br>6<br>210<br>19<br>33 |
| 50-828-440-019<br>50-828-440-020<br>50-828-440-021<br>50-828-440-022<br>50-828-440-022<br>50-828-440-023 | 1<br>1<br>1<br>1      | 85<br>72<br>163<br>117<br>126   | 15<br>11<br>17<br>11<br>16 | 287<br>293<br>151<br>508<br>429  | .4<br>.2<br>.3<br>.1<br>.3 | 30<br>29<br>31<br>26<br>22 | 24<br>24<br>32<br>21<br>21 | 910<br>1126<br>799<br>801<br>634 | 5.22<br>4.79<br>7.03<br>4.51<br>4.97 | 10<br>9<br>10<br>7<br>7    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>1<br>1<br>1<br>2 | 49<br>51<br>52<br>33<br>34  | 2<br>1<br>1<br>2      | 4<br>2<br>4<br>3<br>2 | 2<br>3<br>6<br>2<br>2 | 133<br>124<br>187<br>129<br>143 | .68<br>.71<br>1.33<br>.63<br>.59 | .223<br>.157<br>.048<br>.106<br>.253 | 5<br>4<br>9<br>4      | 45<br>44<br>50<br>40<br>31 | 1.56<br>1.45<br>2.16<br>1.56<br>1.35 | 92<br>92<br>64<br>77<br>84   | .25<br>.25<br>.33<br>.29<br>.28 | 7<br>15<br>2<br>9<br>4   | 3.07<br>2.82<br>3.30<br>2.54<br>2.69 | .01<br>.02<br>.02<br>.01<br>.01 | .15<br>.15<br>.12<br>.13<br>.12 | 1<br>1<br>1<br>1      | 41<br>9<br>12<br>1<br>2    |
| 50-828-440-024<br>50-828-440-025<br>50-828-440-026<br>50-828-440-027<br>50-828-440-028                   | 1<br>1<br>1<br>1      | 402<br>154<br>151<br>120<br>213 | 26<br>22<br>28<br>23<br>21 | 292<br>748<br>504<br>375<br>414  | .4<br>.3<br>.2<br>.5<br>.5 | 34<br>20<br>22<br>20<br>30 | 26<br>23<br>23<br>20<br>22 | 687<br>735<br>877<br>542<br>715  | 6.83<br>5.40<br>5.92<br>4.65<br>5.65 | 8<br>15<br>11<br>12<br>14  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>1<br>3<br>3 | 34<br>35<br>36<br>42<br>44  | 1<br>1<br>1<br>2<br>2 | 3<br>5<br>4<br>5<br>6 | 2<br>2<br>2<br>2<br>2 | 220<br>136<br>174<br>124<br>157 | .59<br>.47<br>.54<br>.52<br>.53  | .087<br>.536<br>.251<br>.346<br>.278 | 4<br>5<br>4<br>5<br>5 | 46<br>29<br>30<br>30<br>39 | 1.67<br>1.50<br>1.31<br>1.10<br>1.51 | 52<br>103<br>117<br>88<br>85 | .30<br>.30<br>.31<br>.28<br>.28 | 5<br>12<br>7<br>16<br>9  | 3.06<br>3.21<br>3.02<br>2.88<br>3.57 | .01<br>.01<br>.01<br>.01<br>.01 | .12<br>.10<br>.11<br>.11<br>.13 | 1<br>1<br>2<br>1<br>1 | 4<br>1<br>5<br>10<br>7     |
| 50-828-440-029<br>50-828-440-030<br>50-828-440-031<br>50-828-440-032<br>50-828-440-033                   | 1<br>1<br>1<br>1      | 167<br>938<br>195<br>563<br>366 | 12<br>23<br>45<br>69<br>19 | 304<br>661<br>1187<br>572<br>130 | .3<br>.7<br>.6<br>.4<br>.4 | 32<br>43<br>38<br>35<br>21 | 22<br>34<br>36<br>35<br>18 | 591<br>868<br>828<br>845<br>972  | 5.77<br>7.54<br>7.02<br>7.14<br>6.99 | 11<br>17<br>23<br>16<br>12 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>2<br>2 | 47<br>63<br>37<br>68<br>75  | 2<br>2<br>1<br>1<br>1 | 2<br>6<br>3<br>2<br>2 | 3<br>2<br>2<br>3<br>2 | 169<br>229<br>210<br>222<br>233 | .72<br>.60<br>.47<br>.64<br>1.35 | .156<br>.123<br>.103<br>.121<br>.120 | 4<br>5<br>5<br>5<br>7 | 44<br>48<br>61<br>68<br>41 | 1.62<br>1.95<br>1.77<br>2.17<br>1.74 | 69<br>107<br>86<br>80<br>37  | .31<br>.35<br>.40<br>.41<br>.25 | 7<br>11<br>9<br>10<br>7  | 3.28<br>3.69<br>3.75<br>3.57<br>3.26 | .01<br>.01<br>.01<br>.01<br>.01 | .19<br>.14<br>.14<br>.16<br>.12 | 1<br>1<br>1<br>1      | 4<br>75<br>8<br>26<br>19   |
| 50-828-440-034<br>STD C/AU-S                                                                             | 1                     | 482<br>58                       | 28<br>44                   | 145<br>132                       | .8<br>6.5                  | 20<br>67                   | 25<br>29                   | 1033<br>1072                     | 7.52                                 | 18<br>38                   | 5<br>22               | ND<br>B                    | 3<br>38               | 120                         | 2<br>17               | 3<br>17               | 2<br>19               | 254<br>58                       | 1.03                             | .070                                 | 5<br>39               | 33<br>61                   | 2.31                                 | 57<br>175                    | .38                             | 12<br>40                 | 4.29<br>1.95                         | .01                             | .15<br>.16                      | 1<br>13               | 27<br>51                   |

Page 7

í

ť

C

Ć

Ć

Ĺ

C

| SAMPLE                                                                                 | No<br>PPN             | Cu<br>PPN                       | PD<br>PPN                  | Zn<br>PPN                       | Ag<br>PPN            | Ni<br>PPM                  | Co<br>PPN                  | Nn<br>PPN                       | Fe<br>t                              | As<br>PPK             | U<br>PPN              | Au<br>PPM                  | Th<br>PPN        | ST<br>PPN                  | Cđ<br>PPM             | SD<br>PPM                  | Bİ<br>PPM                  | V<br>PPM                        | Ca<br>t                         | P<br>t                               | La<br>PPN        | CT<br>PPN                  | Xg<br>t                              | Ba<br>PPM                  | Tİ<br>X                         | B<br>PPM         | A1                                   | Na<br>X                         | - K<br>2                        | ¥<br>PPM         | Au*<br>PPB                |
|----------------------------------------------------------------------------------------|-----------------------|---------------------------------|----------------------------|---------------------------------|----------------------|----------------------------|----------------------------|---------------------------------|--------------------------------------|-----------------------|-----------------------|----------------------------|------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|---------------------------------|--------------------------------------|------------------|----------------------------|--------------------------------------|----------------------------|---------------------------------|------------------|--------------------------------------|---------------------------------|---------------------------------|------------------|---------------------------|
| 50-828-440-035<br>50-828-440-036<br>50-828-440-037<br>50-828-440-038<br>50-828-440-039 | 1<br>1<br>1<br>1<br>1 | 268<br>313<br>107<br>277<br>307 | 17<br>16<br>13<br>10<br>14 | 313<br>309<br>311<br>211<br>223 | .3<br>.1<br>.1<br>.1 | 27<br>26<br>17<br>23<br>23 | 22<br>22<br>18<br>21<br>20 | 859<br>809<br>695<br>765<br>725 | 5.70<br>6.55<br>5.41<br>5.80<br>5.58 | 7<br>4<br>3<br>3<br>5 | 5<br>5<br>5<br>5<br>5 | ער<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1 | 63<br>67<br>55<br>68<br>66 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 165<br>185<br>150<br>178<br>162 | .67<br>.62<br>.67<br>.73<br>.81 | .131<br>.125<br>.203<br>.085<br>.108 | 5<br>5<br>4<br>4 | 33<br>26<br>23<br>28<br>29 | 1.58<br>1.68<br>1.09<br>1.64<br>1.53 | 60<br>80<br>70<br>59<br>65 | .24<br>.25<br>.22<br>.24<br>.24 | 4<br>5<br>7<br>4 | 3.38<br>4.15<br>2.87<br>3.10<br>3.04 | .01<br>.01<br>.01<br>.01<br>.01 | .07<br>.06<br>.04<br>.05<br>.06 | 1<br>1<br>1<br>1 | 14<br>17<br>8<br>15<br>26 |
| 50-828-440-040<br>50-828-440-041                                                       | 1                     | 289<br>170                      | 19<br>15                   | 153<br>288                      | .1<br>.1             | 22<br>20                   | 21<br>19                   | 871<br>604                      | 6.06<br>4.64                         | 3<br>5                | 5<br>5                | ND<br>ND                   | 1<br>1           | 77<br>54                   | 1<br>1                | 2<br>2                     | 2<br>2                     | 187<br>114                      | .95<br>.63                      | .080<br>.264                         | 4<br>5           | 29<br>28                   | 1.75<br>1.14                         | 48<br>56                   | .25<br>.19                      | 4<br>6           | 3.03<br>2.61                         | .01<br>.01                      | .08<br>.05                      | 1<br>1           | 22<br>15                  |

Page 8

.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

#### GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HMO3-H2O AT 95 DEG. C FOR OME HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MY FE CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P6 SOIL P7 SOIL/ROCK \_\_\_\_\_\_ AU\* AMALYSIS BY AA FROM 10 GRAM SAMPLE. \_\_\_\_\_

DATE RECEIVED: JUN 01 1988 DATE REPORT MAILED: June 8/80 ASSAYER. C. LONG, CERTIFIED B.C. ASSAYERS

A & M EXPLORATION PROJECT-440 File # 88-1710 Page 1

| SAMPLE #                                       | NO<br>PPN             | CU<br>PPN                       | PD<br>PPM                  | Zn<br>PPN                       | Ag<br>PPM                  | W1<br>PPN                  | CO<br>PPN                  | Nu<br>PPH                        | Fe<br>t                              | A6<br>PPH                  | U<br>PPN              | AU<br>PPK                        | Th<br>PPN             | ST<br>PPM                       | Cd<br>PPM             | SD<br>PPM                  | BI<br>PPM                  | V<br>PPN                        | Ca<br>ł                             | P -<br>\$                            | La<br>PPN              | CT<br>PPM                  | Xg<br>ł                              | Ba<br>PPM                     | Tİ<br>ł                         | B<br>PPM -                      | л1<br>₹                              | Na<br>ł                                | K<br>ł                          | W<br>PPM              | Au*<br>PPB              |
|------------------------------------------------|-----------------------|---------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|--------------------------------------|----------------------------|-----------------------|----------------------------------|-----------------------|---------------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|-------------------------------------|--------------------------------------|------------------------|----------------------------|--------------------------------------|-------------------------------|---------------------------------|---------------------------------|--------------------------------------|----------------------------------------|---------------------------------|-----------------------|-------------------------|
| 440 1<br>440 2<br>440 3<br>440 4<br>440 5      | 1<br>1<br>1<br>1<br>1 | 45<br>61<br>93<br>69<br>84      | 3<br>2<br>5<br>4<br>10     | 74<br>66<br>56<br>83<br>82      | .3<br>.2<br>.2<br>.2       | 36<br>35<br>36<br>34<br>32 | 14<br>15<br>20<br>16<br>19 | 504<br>478<br>535<br>490<br>664  | 3.76<br>4.55<br>5.25<br>4.79<br>5.40 | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>5<br>5<br>5 | HD<br>HD<br>HD<br>HD<br>HD       | 2<br>2<br>2<br>2<br>1 | 41<br>57<br>85<br>64<br>82      | 1<br>1<br>1<br>1      | 3<br>2<br>2<br>2<br>3      | 2<br>2<br>2<br>2<br>2<br>2 | 107<br>150<br>188<br>165<br>194 | .88<br>.88<br>1.02<br>.89<br>.86    | .125<br>.113<br>.080<br>.098<br>.150 | 7<br>5<br>6<br>5       | 79<br>78<br>75<br>70<br>65 | .90<br>.86<br>1.11<br>.91<br>1.00    | 69<br>71<br>67<br>73<br>106   | .20<br>.22<br>.24<br>.22<br>.22 | 11<br>7<br>2<br>5<br>2          | 2.62<br>2.86<br>3.26<br>3.28<br>3.47 | .01<br>.02<br>.02<br>.02<br>.03        | .11<br>.10<br>.11<br>.09<br>.10 | 1<br>1<br>1<br>1      | 1<br>1<br>15<br>1       |
| 440 6<br>440 7<br>440 8<br>440 9<br>440 10     | 1<br>1<br>1<br>1<br>1 | 86<br>106<br>86<br>105<br>149   | 4<br>10<br>8<br>11<br>17   | 100<br>104<br>161<br>146<br>216 | .1<br>.3<br>.2<br>.5<br>.5 | 27<br>29<br>31<br>34<br>29 | 17<br>21<br>20<br>20<br>25 | 610<br>687<br>671<br>643<br>919  | 6.20<br>6.50<br>5.86<br>6.18<br>7.50 | 2<br>2<br>3<br>6           | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND             | 1<br>2<br>2<br>2<br>1 | 92<br>120<br>106<br>108<br>147  | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 244<br>260<br>220<br>235<br>293 | .84<br>1.08<br>.92<br>.87<br>1.23   | .150<br>.158<br>.158<br>.146<br>.317 | 5<br>5<br>5<br>8       | 52<br>60<br>58<br>60<br>52 | 1.03<br>1.11<br>1.13<br>1.16<br>1.43 | 90<br>129<br>100<br>89<br>122 | .20<br>.22<br>.21<br>.23<br>.22 | 2<br>4<br>4<br>2<br>2           | 3.67<br>3.44<br>3.85<br>3.62<br>4.16 | .02<br>.02<br>.02<br>.02<br>.02        | .10<br>.14<br>.13<br>.08<br>.12 | 1<br>1<br>1<br>1      | 5<br>1<br>1<br>9<br>1   |
| 440 11<br>440 12<br>440 13<br>440 14<br>440 15 | 1<br>1<br>1<br>1<br>1 | 209<br>145<br>166<br>203<br>280 | 8<br>5<br>12<br>7<br>6     | 102<br>126<br>72<br>92<br>92    | .5<br>.3<br>.3<br>.6<br>.7 | 32<br>32<br>32<br>35<br>33 | 25<br>23<br>23<br>26<br>19 | 679<br>873<br>641<br>685<br>643  | 7.31<br>7.68<br>7.15<br>7.33<br>6.10 | 2<br>2<br>2<br>3<br>5      | 5<br>5<br>5<br>5<br>5 | DU<br>Du<br>Du<br>Du<br>Du<br>Du | 1<br>2<br>1<br>1<br>2 | 144<br>116<br>134<br>123<br>158 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 293<br>300<br>288<br>296<br>207 | 1.81<br>.99<br>1.05<br>1.16<br>2.00 | .056<br>.246<br>.147<br>.101<br>.141 | 8<br>6<br>5<br>6<br>11 | 56<br>61<br>55<br>49<br>51 | 1.03<br>.99<br>1.12<br>1.29<br>1.28  | 66<br>80<br>85<br>87<br>112   | .25<br>.22<br>.23<br>.24<br>.19 | 6<br>5<br>4<br>7<br>9           | 3.94<br>3.22<br>3.23<br>4.74<br>3.56 | .03<br>.02<br>.02<br>.03<br>.04        | .08<br>.08<br>.09<br>.08<br>.12 | 1<br>1<br>1<br>1      | 1<br>1<br>3<br>1<br>1   |
| 440 16<br>440 17<br>440 18<br>440 19<br>440 20 | 1<br>1<br>1<br>1      | 182<br>197<br>237<br>124<br>346 | 7<br>2<br>11<br>7<br>10    | 148<br>124<br>159<br>133<br>144 | .4<br>.2<br>.2<br>.2<br>.5 | 52<br>33<br>38<br>38<br>49 | 18<br>22<br>24<br>23<br>35 | 557<br>724<br>714<br>766<br>1061 | 5.41<br>7.09<br>6.97<br>7.85<br>7.51 | 3<br>2<br>4<br>4<br>2      | 5<br>5<br>5<br>5<br>5 | סת<br>סת<br>סת<br>סת<br>סת       | 2<br>1<br>1<br>1<br>1 | 74<br>117<br>115<br>108<br>68   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 171<br>269<br>260<br>293<br>281 | .81<br>.97<br>1.07<br>1.21<br>1.98  | .219<br>.166<br>.211<br>.200<br>.227 | 6<br>5<br>5<br>5<br>11 | 54<br>65<br>60<br>64<br>73 | 1.26<br>1.15<br>1.14<br>1.09<br>3.02 | 89<br>92<br>87<br>107<br>58   | .22<br>.23<br>.21<br>.22<br>.50 | 7<br>3<br>3<br>11<br>13         | 3.72<br>3.57<br>4.37<br>3.25<br>3.98 | .02<br>.03<br>.03<br>.03<br>.03<br>.02 | .12<br>.09<br>.11<br>.13<br>.08 | 2<br>1<br>1<br>1      | 1<br>1<br>1<br>8<br>1   |
| 440 21<br>440 22<br>440 23<br>440 24<br>440 25 | 1<br>1<br>1<br>1      | 456<br>124<br>157<br>220<br>175 | 15<br>11<br>10<br>13<br>26 | 184<br>128<br>138<br>229<br>303 | .4<br>.1<br>.2<br>.1       | 33<br>45<br>39<br>33<br>47 | 28<br>24<br>26<br>28<br>27 | 973<br>697<br>748<br>836<br>710  | 8.15<br>5.79<br>6.79<br>7.22<br>5.85 | 2<br>3<br>2<br>5<br>2      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>CH<br>ND<br>ND       | 2<br>2<br>1<br>1<br>1 | 128<br>79<br>75<br>85<br>52     | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 286<br>199<br>237<br>255<br>198 | 1.07<br>.77<br>.98<br>.90<br>.68    | .153<br>.095<br>.058<br>.097<br>.095 | 6<br>7<br>6<br>5<br>5  | 49<br>54<br>56<br>58<br>90 | 1.81<br>1.53<br>1.63<br>1.55<br>1.97 | 86<br>53<br>49<br>63<br>65    | .31<br>.32<br>.37<br>.34<br>.34 | 2 3<br>2 3<br>14 3<br>3 3       | 4.12<br>3.01<br>3.35<br>3.41<br>3.25 | .02<br>.01<br>.02<br>.01<br>.01        | .12<br>.13<br>.14<br>.15<br>.13 | 1<br>1<br>1<br>1      | 1<br>1<br>1<br>2        |
| 440 26<br>440 27<br>440 28<br>440 29<br>440 30 | 1<br>1<br>1<br>1      | 219<br>409<br>411<br>265<br>247 | 7<br>22<br>75<br>14<br>32  | 199<br>140<br>290<br>385<br>297 | .2<br>.5<br>.6<br>.2<br>.4 | 33<br>26<br>27<br>33<br>29 | 28<br>34<br>54<br>33<br>36 | 742<br>824<br>1156<br>824<br>921 | 6.97<br>7.43<br>8.47<br>5.83<br>6.54 | 2<br>5<br>12<br>2<br>4     | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND       | 2<br>2<br>1<br>1      | 82<br>92<br>71<br>48<br>58      | 1<br>1<br>2<br>2<br>1 | 2<br>2<br>2<br>4<br>2      | 2<br>2<br>2<br>2<br>2      | 242<br>269<br>251<br>176<br>204 | .77<br>.77<br>1.01<br>.72<br>.82    | .066<br>.067<br>.124<br>.213<br>.137 | 5<br>6<br>10<br>4<br>5 | 55<br>39<br>37<br>40<br>31 | 1.77<br>1.97<br>1.91<br>1.52<br>1.58 | 69<br>55<br>62<br>97<br>81    | .35<br>.31<br>.31<br>.27<br>.30 | 6 3<br>5 3<br>8 3<br>5 3<br>5 3 | 8.36<br>8.50<br>8.24<br>8.02<br>1.34 | .01<br>.01<br>.01<br>.01<br>.01        | .16<br>.19<br>.24<br>.14<br>.21 | 1<br>2<br>1<br>1<br>1 | 1<br>3<br>10<br>1<br>1  |
| 440 31<br>440 32<br>440 33<br>440 34<br>440 35 | 1<br>1<br>1<br>1      | 278<br>319<br>189<br>269<br>168 | 30<br>22<br>15<br>9<br>34  | 285<br>165<br>390<br>243<br>261 | .2<br>.2<br>.2<br>.1<br>.4 | 28<br>35<br>42<br>34<br>32 | 30<br>36<br>49<br>35<br>33 | 690<br>655<br>559<br>619<br>723  | 6.81<br>7.07<br>7.32<br>6.56<br>6.26 | 3<br>2<br>6<br>2<br>4      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 54<br>50<br>48<br>45<br>69      | 2<br>1<br>2<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>3      | 222<br>245<br>200<br>203<br>200 | .67<br>.57<br>.81<br>.71<br>.88     | .234<br>.109<br>.129<br>.099<br>.078 | 3<br>4<br>4<br>5       | 24<br>38<br>38<br>34<br>49 | 1.60<br>1.91<br>1.52<br>1.57<br>1.83 | 100<br>54<br>56<br>59<br>53   | .30<br>.33<br>.26<br>.26<br>.29 | 5 3<br>3 3<br>4 3<br>4 3<br>2 3 | 8.16<br>1.57<br>1.39<br>1.57<br>1.41 | .01<br>.02<br>.01<br>.01<br>.02        | .13<br>.12<br>.13<br>.14<br>.22 | 1<br>1<br>1<br>1<br>1 | 18<br>11<br>1<br>1<br>1 |
| 440 36<br>STD C/AU-S                           | 1<br>20               | 169<br>61                       | 29<br>39                   | 161<br>132                      | .1<br>7.6                  | 32<br>72                   | 31<br>31                   | 661<br>1123                      | 6.55<br>4.28                         | 4<br>42                    | 5<br>20               | ND<br>8                          | 2<br>40               | 51<br>53                        | 1<br>20               | 2<br>18                    | 2<br>20                    | 216<br>60                       | .84<br>.50                          | .042                                 | 6<br>40                | 52<br>59                   | 1.85<br>.92                          | 43<br>183                     | .30<br>.08                      | 73<br>381                       | .18<br>.95                           | .02<br>.08                             | .19<br>.16                      | 1<br>14               | 1<br>48                 |

| SAMPLE                                         | No<br>PPK             | Cu<br>PPK                       | Pb<br>PPM                  | Zn<br>PPN                        | λg<br>PPN                  | NI<br>PPM                  | Co<br>PPN                  | Na<br>PPN                        | Ie<br>ł                              | As<br>PPN                | U<br>PPN              | Au<br>PPN                  | Th<br>PPN             | ST<br>PPM                  | Cd<br>PPM             | Sb<br>PPN                  | Bİ<br>PPN                  | V<br>PPH                        | Ca<br>ł                            | P<br>Ł                               | La<br>PPN              | CT<br>PPN                  | Ng<br>t                              | Ba<br>PPN                   | Tİ<br>X                         | B<br>PPN                | A1<br>\$                             | Na<br>ł                         | ł                               | ¥<br>PPM              | Au*<br>PPB                |
|------------------------------------------------|-----------------------|---------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|--------------------------------------|--------------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|------------------------------------|--------------------------------------|------------------------|----------------------------|--------------------------------------|-----------------------------|---------------------------------|-------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|---------------------------|
| 440 37<br>440 38<br>440 39<br>440 40<br>440 41 | 1<br>1<br>1<br>1      | 216<br>250<br>188<br>157<br>197 | 11<br>47<br>28<br>42<br>43 | 155<br>327<br>424<br>333<br>222  | .2<br>.1<br>.3<br>.1<br>.4 | 27<br>26<br>28<br>25<br>30 | 33<br>40<br>29<br>29<br>36 | 619<br>749<br>1211<br>841<br>730 | 6.70<br>6.89<br>5.53<br>6.69<br>6.55 | 8<br>4<br>7<br>6         | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>1<br>1      | 53<br>93<br>78<br>97<br>89 | 1<br>1<br>2<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 206<br>199<br>141<br>186<br>182 | .82<br>1.23<br>1.11<br>.85<br>.86  | .042<br>.091<br>.131<br>.123<br>.071 | 5<br>4<br>4<br>4       | 37<br>33<br>30<br>39<br>39 | 1.82<br>1.85<br>1.84<br>1.80<br>1.76 | 42<br>44<br>115<br>41<br>44 | .32<br>.27<br>.24<br>.26<br>.28 | 2<br>7<br>6<br>2<br>3   | 3.01<br>3.00<br>3.24<br>2.90<br>3.10 | .02<br>.01<br>.02<br>.02<br>.02 | .17<br>.20<br>.17<br>.11<br>.13 | 1<br>1<br>1<br>1      | 7<br>5<br>11<br>56<br>68  |
| 440 42<br>440 43<br>440 44<br>440 45<br>440 45 | 1<br>1<br>1<br>1<br>1 | 112<br>118<br>87<br>114<br>206  | 37<br>31<br>55<br>37<br>32 | 262<br>296<br>301<br>237<br>266  | .3<br>.1<br>.2<br>.1<br>.2 | 32<br>26<br>33<br>32<br>32 | 27<br>29<br>31<br>26<br>23 | 741<br>913<br>824<br>733<br>658  | 5.19<br>6.19<br>5.71<br>5.23<br>5.90 | 5<br>2<br>8<br>4<br>10   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 74<br>60<br>91<br>59<br>66 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>3<br>2<br>4      | 135<br>183<br>153<br>143<br>156 | .91<br>1.09<br>.81<br>.87<br>1.43  | .085<br>.092<br>.097<br>.075<br>.067 | 6<br>7<br>4<br>5<br>7  | 44<br>30<br>49<br>48<br>42 | 1.38<br>2.28<br>1.89<br>1.45<br>1.62 | 56<br>53<br>47<br>51<br>67  | .23<br>.32<br>.24<br>.23<br>.25 | 4<br>8<br>2<br>4<br>13  | 2.67<br>2.79<br>2.63<br>2.31<br>2.61 | .02<br>.02<br>.02<br>.02<br>.02 | .15<br>.17<br>.13<br>.13<br>.12 | 1<br>1<br>1<br>1      | 37<br>16<br>225<br>2      |
| 440 47<br>440 48<br>440 49<br>440 50<br>440 51 | 1<br>1<br>1<br>1<br>1 | 202<br>182<br>156<br>90<br>166  | 21<br>34<br>16<br>14<br>15 | 188<br>202<br>234<br>235<br>122  | .5<br>.4<br>.3<br>.2<br>.1 | 35<br>27<br>38<br>28<br>23 | 22<br>24<br>30<br>25<br>19 | 532<br>719<br>686<br>735<br>494  | 5.82<br>5.62<br>5.87<br>5.06<br>5.05 | 9<br>3<br>4<br>5<br>2    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>2<br>2 | 55<br>65<br>53<br>55<br>53 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 162<br>149<br>163<br>133<br>152 | 1.04<br>1.34<br>.98<br>.75<br>.78  | .039<br>.040<br>.046<br>.187<br>.056 | 7<br>6<br>5<br>5<br>6  | 42<br>42<br>44<br>47<br>42 | 1.34<br>1.40<br>1.49<br>.97<br>1.06  | 66<br>80<br>74<br>82<br>36  | .26<br>.24<br>.26<br>.18<br>.21 | 5<br>10<br>5<br>3<br>3  | 2.75<br>2.76<br>2.88<br>2.37<br>2.04 | .02<br>.02<br>.02<br>.01<br>.02 | .09<br>.11<br>.12<br>.11<br>.14 | 1<br>1<br>1<br>1<br>1 | 32<br>23<br>1<br>1<br>11  |
| 440 52<br>440 53<br>440 54<br>440 55<br>440 56 | 1<br>1<br>1<br>1      | 176<br>57<br>86<br>186<br>65    | 18<br>11<br>20<br>20<br>25 | 137<br>122<br>219<br>297<br>599  | .5<br>.2<br>.1<br>.3<br>.2 | 34<br>24<br>31<br>35<br>32 | 35<br>17<br>31<br>43<br>36 | 720<br>494<br>559<br>788<br>804  | 5.71<br>4.48<br>5.67<br>6.52<br>5.49 | 9<br>3<br>3<br>5<br>4    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 71<br>53<br>54<br>64<br>48 | 1<br>1<br>1<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>4<br>2<br>2<br>2      | 149<br>130<br>160<br>170<br>129 | 1.36<br>.84<br>.84<br>.95<br>.79   | .054<br>.071<br>.098<br>.140<br>.300 | 9<br>5<br>5<br>6<br>5  | 45<br>43<br>44<br>42<br>39 | 1.21<br>.72<br>1.00<br>1.22<br>.92   | 63<br>35<br>61<br>73<br>85  | .23<br>.17<br>.21<br>.22<br>.20 | 10<br>7<br>10<br>4<br>6 | 2.56<br>1.95<br>2.71<br>2.83<br>2.69 | .02<br>.01<br>.02<br>.02<br>.02 | .12<br>.05<br>.10<br>.12<br>.12 | 1<br>1<br>1<br>1      | 10<br>7<br>15<br>28<br>2  |
| 440 57<br>440 58<br>440 59<br>440 60<br>440 61 | 1<br>1<br>1<br>1<br>1 | 81<br>58<br>122<br>185<br>689   | 22<br>17<br>31<br>14<br>31 | 283<br>143<br>579<br>369<br>1072 | .1<br>.1<br>.2<br>.3<br>.2 | 34<br>29<br>33<br>27<br>40 | 26<br>18<br>37<br>31<br>38 | 752<br>502<br>745<br>1053<br>951 | 5.26<br>4.14<br>5.74<br>7.11<br>6.87 | 6<br>5<br>9<br>10<br>5   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>3<br>2<br>1<br>1 | 54<br>51<br>50<br>54<br>74 | 1<br>1<br>1<br>1<br>3 | 2<br>3<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 139<br>107<br>135<br>207<br>186 | .76<br>.71<br>.68<br>.75<br>1.25   | .141<br>.056<br>.239<br>.150<br>.026 | 5<br>11<br>6<br>4<br>4 | 44<br>54<br>37<br>33<br>33 | 1.18<br>1.05<br>1.20<br>1.80<br>1.95 | 72<br>50<br>96<br>82<br>45  | .20<br>.23<br>.21<br>.25<br>.28 | 2<br>5<br>2<br>3<br>8   | 2.58<br>2.20<br>3.00<br>3.35<br>3.27 | .01<br>.02<br>.01<br>.02<br>.02 | .13<br>.14<br>.13<br>.13<br>.09 | 1<br>2<br>1<br>1<br>1 | 14<br>1<br>1<br>29        |
| 440 62<br>440 63<br>440 64<br>440 65<br>440 66 | 2<br>1<br>2<br>2<br>2 | 439<br>155<br>129<br>427<br>100 | 33<br>29<br>32<br>42<br>33 | 497<br>522<br>410<br>170<br>139  | .2<br>.1<br>.2<br>.3<br>.4 | 31<br>45<br>34<br>53<br>22 | 51<br>38<br>40<br>51<br>34 | 617<br>585<br>1187<br>974<br>502 | 7.57<br>6.67<br>6.93<br>7.81<br>7.02 | 9<br>8<br>11<br>13<br>14 | 5<br>5<br>5<br>5<br>5 | ID<br>ID<br>ID<br>ID<br>ID | 1<br>1<br>1<br>2<br>2 | 78<br>45<br>49<br>91<br>43 | 2<br>2<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>3      | 2<br>2<br>3<br>4           | 191<br>184<br>179<br>203<br>220 | .75<br>.68<br>1.58<br>1.53<br>1.04 | .395<br>.170<br>.081<br>.133<br>.028 | 5<br>4<br>5<br>9<br>7  | 25<br>45<br>43<br>59<br>25 | 1.77<br>1.23<br>1.46<br>1.87<br>1.34 | 171<br>54<br>58<br>52<br>45 | .34<br>.20<br>.26<br>.25<br>.37 | 4<br>3<br>8<br>10<br>2  | 2.95<br>2.74<br>2.54<br>3.24<br>3.21 | .01<br>.01<br>.02<br>.02<br>.02 | .33<br>.12<br>.11<br>.17<br>.06 | 1<br>1<br>1<br>2<br>2 | 10<br>17<br>35<br>58<br>8 |
| 440 67<br>440 68<br>440 69<br>440 70<br>440 71 | 1<br>2<br>1<br>1<br>1 | 69<br>235<br>195<br>164<br>150  | 16<br>49<br>47<br>11<br>16 | 258<br>256<br>603<br>253<br>265  | .1<br>.2<br>.1<br>.1<br>.2 | 18<br>35<br>26<br>29<br>27 | 32<br>41<br>37<br>23<br>25 | 502<br>622<br>853<br>596<br>717  | 6.63<br>7.67<br>6.46<br>5.35<br>5.81 | 2<br>8<br>11<br>2<br>8   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>1<br>1 | 41<br>57<br>66<br>58<br>69 | 1<br>1<br>2<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>4      | 217<br>224<br>161<br>170<br>174 | .50<br>.49<br>.76<br>.80<br>.79    | .030<br>.041<br>.251<br>.047<br>.102 | 4<br>5<br>4<br>5       | 23<br>33<br>23<br>60<br>48 | 1.30<br>1.71<br>1.37<br>1.51<br>1.27 | 65<br>79<br>106<br>68<br>89 | .36<br>.33<br>.29<br>.33<br>.29 | 2<br>10<br>7<br>5<br>3  | 2.53<br>3.42<br>2.97<br>2.81<br>3.22 | .02<br>.02<br>.01<br>.02<br>.01 | .18<br>.14<br>.16<br>.15<br>.15 | 1<br>1<br>1<br>1<br>1 | 4<br>9<br>13<br>9<br>6    |
| 440 72<br>STD C/AU-S                           | 1<br>20               | 151<br>61                       | 13<br>41                   | 297<br>132                       | .3<br>7.7                  | 30<br>71                   | 25<br>31                   | 990<br>1124                      | 5.77<br>4.25                         | 6<br>42                  | 5<br>18               | ND<br>9                    | 1<br>40               | 80<br>54                   | 1<br>20               | 2<br>16                    | 2<br>22                    | 165<br>59                       | .93<br>.50                         | .103                                 | 6<br>40                | 50<br>59                   | 1.34                                 | 113<br>186                  | .31                             | 2<br>33                 | 3.01<br>1.99                         | .01                             | .14<br>.14                      | 1<br>14               | 8<br>50                   |

Page 2

(
| SAMPLE                                              | No<br>PPN             | Cu<br>PPN                       | Pb<br>PPN                  | Zn<br>PPM                       | λg<br>PPN                  | NI<br>PPM                  | Co<br>PPN                  | No<br>PPN                         | Fe<br>S                              | AS<br>PPN                  | U<br>PPN              | Au<br>PPN                  | Th<br>PPN             | Sr<br>PPM                        | Cḋ<br>PPN        | Sb<br>PPN                  | Bİ<br>PPN                  | V<br>PPN                        | Ca<br>t                          | P                                    | La<br>PPN             | CT<br>PPN                        | Ng<br>Ł                              | Ba<br>PPN                   | Tİ<br>Ş.                        | B<br>PPN               | л1<br>\$                             | Na<br>ł                                | ۲<br>۲                          | V<br>PPN              | λu"<br>PPB                |
|-----------------------------------------------------|-----------------------|---------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|--------------------------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------------|------------------|----------------------------|----------------------------|---------------------------------|----------------------------------|--------------------------------------|-----------------------|----------------------------------|--------------------------------------|-----------------------------|---------------------------------|------------------------|--------------------------------------|----------------------------------------|---------------------------------|-----------------------|---------------------------|
| 440 73<br>440 74<br>440 75<br>440 76<br>440 77      | 1<br>1<br>2<br>1<br>1 | 146<br>154<br>122<br>127<br>160 | 19<br>19<br>19<br>17<br>13 | 267<br>254<br>619<br>230<br>191 | .1<br>.1<br>.1<br>.1       | 30<br>29<br>35<br>26<br>27 | 28<br>30<br>26<br>28<br>28 | 939<br>824<br>662<br>713<br>690   | 5.73<br>6.12<br>4.93<br>5.95<br>5.89 | 3<br>3<br>7<br>3<br>5      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>1      | 82<br>77<br>59<br>74<br>66       | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>4<br>2      | 198<br>210<br>174<br>216<br>211 | .86<br>.73<br>1.19<br>.76<br>.85 | .084<br>.099<br>.057<br>.056<br>.075 | 6<br>7<br>6<br>7<br>6 | 57<br>55<br>52<br>52<br>52<br>52 | 1.35<br>1.36<br>1.24<br>1.20<br>1.29 | 89<br>80<br>64<br>63<br>61  | .31<br>.29<br>.27<br>.30<br>.29 | 4<br>3<br>9<br>3<br>3  | 2.80<br>2.97<br>2.92<br>2.37<br>2.52 | .01<br>.01<br>.01<br>.02<br>.01        | .15<br>.13<br>.09<br>.12<br>.17 | 1<br>1<br>1<br>1      | 6<br>3<br>1<br>17<br>2    |
| 440 78<br>440 79<br>440 80<br>440 81<br>440 82      | 1<br>3<br>2<br>1<br>1 | 131<br>307<br>147<br>82<br>83   | 20<br>39<br>13<br>11<br>5  | 468<br>328<br>358<br>109<br>136 | .4<br>.5<br>.1<br>.1<br>.2 | 30<br>26<br>33<br>27<br>27 | 34<br>58<br>38<br>21<br>18 | 1082<br>804<br>822<br>615<br>496  | 5.23<br>7.59<br>5.76<br>4.75<br>4.58 | 5<br>12<br>5<br>2<br>2     | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>1<br>2<br>1 | 68<br>134<br>63<br>62<br>55      | 1<br>2<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>3<br>2<br>2      | 163<br>235<br>176<br>171<br>148 | .82<br>.96<br>.83<br>.74<br>.65  | .122<br>.095<br>.132<br>.087<br>.125 | 6<br>8<br>5<br>6<br>6 | 45<br>34<br>42<br>51<br>52       | 1.11<br>1.47<br>1.09<br>1.06<br>.93  | 114<br>55<br>83<br>60<br>62 | .24<br>.23<br>.22<br>.23<br>.20 | 9<br>2<br>5<br>5<br>7  | 2.82<br>3.48<br>3.06<br>2.16<br>2.43 | .02<br>.01<br>.01<br>.02<br>.02        | .14<br>.06<br>.10<br>.11<br>.08 | 1<br>1<br>1<br>1      | 2<br>16<br>14<br>8<br>2   |
| 440 83<br>440 84<br>440 85<br>440 86<br>440 87      | 1<br>1<br>1<br>1      | 74<br>75<br>53<br>54<br>57      | 9<br>8<br>9<br>10<br>8     | 95<br>88<br>82<br>106<br>63     | .1<br>.2<br>.1<br>.2<br>.1 | 27<br>36<br>29<br>41<br>29 | 19<br>18<br>18<br>19<br>17 | 530<br>446<br>439<br>479<br>492   | 4.29<br>4.05<br>4.03<br>4.32<br>3.93 | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>2<br>2<br>2 | 60<br>53<br>55<br>55<br>55<br>57 | 1<br>1<br>1<br>1 | 3<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>4      | 150<br>132<br>136<br>137<br>138 | .71<br>.66<br>.62<br>.63<br>.66  | .075<br>.082<br>.082<br>.099<br>.044 | 7<br>8<br>6<br>6<br>6 | 58<br>62<br>57<br>62<br>59       | 1.00<br>1.00<br>.96<br>.98<br>.96    | 54<br>54<br>47<br>75<br>61  | .21<br>.20<br>.20<br>.19<br>.21 | 7<br>5<br>3<br>2<br>4  | 2.14<br>2.29<br>2.11<br>2.73<br>2.01 | .02<br>.02<br>.02<br>.02<br>.02        | .09<br>.09<br>.07<br>.06<br>.06 | 1<br>1<br>1<br>1      | 6<br>3<br>4<br>5<br>4     |
| 440 88<br>440 89<br>440 90<br>440 91<br>440 92      | 1<br>1<br>1<br>1      | 45<br>66<br>94<br>95<br>87      | 9<br>5<br>13<br>9<br>8     | 96<br>95<br>78<br>103<br>89     | .1<br>.1<br>.4<br>.1<br>.1 | 32<br>36<br>34<br>31<br>34 | 17<br>19<br>22<br>22<br>20 | 466<br>477<br>516<br>537<br>618   | 3.83<br>3.97<br>4.73<br>4.84<br>4.28 | 2<br>4<br>4<br>2<br>2      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>1<br>1      | 54<br>51<br>66<br>66<br>61       | 1<br>1<br>1<br>1 | 2<br>2<br>4<br>2<br>2      | 2<br>2<br>5<br>2<br>2      | 135<br>122<br>154<br>165<br>142 | .61<br>.73<br>.74<br>.68<br>.71  | .065<br>.128<br>.092<br>.086<br>.089 | 6<br>6<br>6<br>8      | 57<br>59<br>54<br>49<br>61       | .87<br>.98<br>1.13<br>1.21<br>1.07   | 60<br>60<br>71<br>66<br>80  | .18<br>.17<br>.22<br>.25<br>.21 | 2<br>8<br>3<br>6<br>6  | 1.97<br>2.22<br>2.16<br>2.40<br>2.14 | .02<br>.02<br>.02<br>.02<br>.02        | .05<br>.09<br>.10<br>.11<br>.10 | 1<br>2<br>1<br>2<br>1 | 6<br>13<br>9<br>11<br>7   |
| 440 93<br>440 94<br>440 95<br>440 96<br>440 97      | 1<br>1<br>1<br>1      | 141<br>189<br>93<br>66<br>45    | 9<br>10<br>9<br>11<br>9    | 77<br>73<br>89<br>72<br>73      | .3<br>.2<br>.5<br>.1<br>_1 | 36<br>34<br>33<br>34<br>26 | 21<br>22<br>19<br>17<br>16 | 534<br>605<br>477<br>490<br>450   | 4.86<br>5.08<br>4.64<br>4.06<br>4.26 | 2<br>3<br>2<br>2<br>2      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 3<br>1<br>2<br>2<br>1 | 64<br>71<br>59<br>53<br>53       | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>3<br>2<br>2      | 169<br>183<br>165<br>139<br>153 | .67<br>.79<br>.67<br>.68<br>.59  | .064<br>.083<br>.084<br>.038<br>.036 | 7<br>7<br>6<br>8<br>6 | 62<br>62<br>57<br>60<br>52       | 1.28<br>1.27<br>1.02<br>1.13<br>.88  | 62<br>63<br>72<br>58<br>49  | .25<br>.24<br>.21<br>.21<br>.21 | 10<br>4<br>2<br>3<br>5 | 2.36<br>2.39<br>2.38<br>2.29<br>2.03 | .02<br>.02<br>.02<br>.02<br>.02<br>.02 | .10<br>.14<br>.07<br>.06<br>.07 | 1<br>1<br>1<br>1      | 5<br>11<br>10<br>6<br>142 |
| 440 98<br>440 99<br>440 100<br>440 101<br>440 102   | 1<br>1<br>1<br>1      | 92<br>56<br>61<br>69<br>79      | 12<br>10<br>12<br>5<br>2   | 76<br>81<br>83<br>55 .<br>84    | .3<br>.2<br>.2<br>.2<br>.1 | 26<br>22<br>26<br>27<br>26 | 21<br>17<br>18<br>15<br>17 | 493<br>547<br>404<br>432<br>. 452 | 4.90<br>4.34<br>4.09<br>3.50<br>4.41 | 2<br>2<br>2<br>3<br>2      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>3<br>1      | 65<br>63<br>67<br>52<br>61       | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2      | 176<br>156<br>142<br>116<br>157 | .66<br>.69<br>.64<br>.59<br>.66  | .070<br>.081<br>.059<br>.046<br>.061 | 7<br>6<br>8<br>5      | 56<br>55<br>54<br>56<br>51       | .93<br>.78<br>.82<br>.83<br>.88      | 51<br>55<br>43<br>42<br>50  | .22<br>.19<br>.19<br>.17<br>.20 | 6<br>7<br>6<br>9<br>5  | 1.93<br>1.91<br>2.01<br>1.87<br>2.15 | .02<br>.02<br>.02<br>.02<br>.02<br>.02 | .08<br>.08<br>.09<br>.10<br>.06 | 1<br>1<br>1<br>1<br>1 | 55<br>6<br>61<br>405<br>1 |
| 440 103<br>440 104<br>440 105<br>440 106<br>440 107 | 1<br>1<br>1<br>1      | 174<br>156<br>75<br>159<br>84   | 12<br>12<br>9<br>12<br>10  | 181<br>147<br>123<br>105<br>206 | .4<br>.3<br>.1<br>.2<br>.5 | 30<br>26<br>27<br>39<br>33 | 23<br>29<br>22<br>23<br>20 | 769<br>819<br>708<br>763<br>686   | 5.41<br>5.85<br>4.82<br>5.09<br>4.37 | 2<br>4<br>2<br>2<br>2      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>1<br>2<br>1<br>2 | 74<br>87<br>66<br>72<br>63       | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>3           | 2<br>2<br>2<br>2<br>2<br>2 | 188<br>212<br>175<br>179<br>137 | .78<br>.94<br>.85<br>.97<br>.72  | .114<br>.103<br>.036<br>.077<br>.118 | 8<br>9<br>7<br>8<br>6 | 49<br>50<br>53<br>64<br>51       | 1.10<br>1.34<br>1.06<br>1.57<br>1.12 | 74<br>73<br>60<br>54<br>76  | .25<br>.30<br>.29<br>.29<br>.25 | 5<br>5<br>7<br>3<br>2  | 3.00<br>2.49<br>2.20<br>2.72<br>2.46 | .02<br>.01<br>.02<br>.02<br>.01        | .10<br>.21<br>.19<br>.18<br>.12 | 1<br>1<br>1<br>1      | 2<br>14<br>4<br>6<br>2    |
| 440 108<br>STD C/AU-S                               | 1<br>19               | 229<br>63                       | 12<br>41                   | 94<br>133                       | .1<br>7.1                  | 37<br>69                   | 20<br>32                   | 711<br>1103                       | 4.70<br>3.84                         | 4<br>39                    | 5<br>18               | ND<br>8                    | 1<br>39               | 67<br>50                         | 1<br>17          | 2<br>17                    | 2<br>24                    | 157<br>60                       | 1.14<br>.44                      | .096<br>.091                         | 10<br>41              | 65<br>61                         | 1.33<br>.91                          | 49<br>188                   | .23<br>.07                      | 5<br>33                | 2.45<br>1.85                         | .02<br>.07                             | .13<br>.13                      | 1<br>13               | 10<br>52                  |

Page 3

(

- (

£

| SAMPLE                                              | No<br>PPK             | CU<br>PPK                       | Pb<br>PPM                  | Zn<br>PPM                       | Ag<br>PPK                  | Bİ<br>PPM                  | Co<br>PPN                  | ND<br>PPN                       | le<br>1                              | A6<br>PPK              | U<br>PPN              | AU<br>PPN                  | Th<br>PPN                  | ST<br>PPN                   | Cd<br>PPM        | Sb<br>PPN                  | Bi<br>PPN                  | V<br>PPM                               | Ca<br>ł                            | P<br>\$                              | La<br>PPN               | CT<br>PPN                  | Ng<br>t                              | Ba<br>PPN                  | Tİ<br>X                         | B<br>PPN                   | 11<br>1                              | Na<br>ł                         | K<br>Ł                          | ¥<br>PPN              | Au*<br>PPB                 |
|-----------------------------------------------------|-----------------------|---------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|---------------------------------|--------------------------------------|------------------------|-----------------------|----------------------------|----------------------------|-----------------------------|------------------|----------------------------|----------------------------|----------------------------------------|------------------------------------|--------------------------------------|-------------------------|----------------------------|--------------------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|----------------------------|
| 440 109<br>440 110<br>440 111<br>440 112<br>440 113 | 2<br>1<br>1<br>1<br>1 | 106<br>111<br>87<br>249<br>122  | 16<br>10<br>14<br>12<br>9  | 229<br>145<br>149<br>329<br>107 | .3<br>.1<br>.1<br>.4<br>.2 | 36<br>39<br>37<br>33<br>30 | 20<br>19<br>20<br>26<br>22 | 736<br>565<br>734<br>961<br>791 | 4.96<br>4.51<br>4.72<br>7.00<br>6.69 | 5<br>2<br>2<br>3<br>6  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>2<br>2<br>2<br>2<br>2 | 52<br>44<br>40<br>73<br>66  | 1<br>1<br>1<br>1 | 3<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 137<br>124<br>130<br>201<br>222        | .73<br>.77<br>.91<br>.97<br>1.12   | .119<br>.100<br>.056<br>.202<br>.064 | 6<br>6<br>8<br>7        | 53<br>56<br>61<br>40<br>47 | 1.16<br>1.21<br>1.20<br>1.49<br>1.53 | 82<br>51<br>69<br>82<br>75 | .23<br>.23<br>.23<br>.26<br>.30 | 5<br>2<br>2<br>2<br>2<br>2 | 2.56<br>2.40<br>2.48<br>3.61<br>2.92 | .01<br>.01<br>.01<br>.02<br>.02 | .14<br>.14<br>.19<br>.12<br>.10 | 1<br>1<br>1<br>1      | 3<br>10<br>16<br>8<br>6    |
| 440 114<br>440 115<br>440 116<br>440 117<br>440 118 | 1<br>1<br>1<br>1      | 120<br>210<br>88<br>108<br>101  | 9<br>10<br>8<br>12<br>17   | 137<br>70<br>107<br>135<br>129  | .1<br>.2<br>.1<br>.1<br>.1 | 31<br>37<br>31<br>34<br>35 | 21<br>19<br>18<br>20<br>22 | 697<br>580<br>487<br>541<br>608 | 6.12<br>5.92<br>4.65<br>4.84<br>5.49 | 3<br>5<br>3<br>5<br>5  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>2<br>2<br>3<br>1      | 57<br>89<br>54<br>57<br>51  | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 190<br>192<br>139<br>143<br>170        | .71<br>1.43<br>.89<br>.94<br>1.03  | .140<br>.070<br>.069<br>.066<br>.069 | 5<br>11<br>7<br>7<br>7  | 46<br>55<br>50<br>52<br>58 | 1.12<br>1.29<br>1.03<br>1.13<br>1.33 | 68<br>88<br>53<br>58<br>60 | .21<br>.21<br>.18<br>.20<br>.24 | 2<br>8<br>2<br>3<br>2      | 2.98<br>2.96<br>2.20<br>2.36<br>2.51 | .02<br>.03<br>.01<br>.01<br>.01 | .09<br>.10<br>.07<br>.09<br>.10 | 1<br>1<br>1<br>1<br>1 | 4<br>36<br>12<br>4<br>8    |
| 440 119<br>440 120<br>440 121<br>440 122<br>440 123 | 1<br>1<br>1<br>1<br>1 | 94<br>158<br>146<br>90<br>165   | 8<br>6<br>11<br>9<br>16    | 71<br>71<br>70<br>127<br>93     | .1<br>.2<br>.1<br>.1<br>.4 | 29<br>33<br>23<br>31<br>34 | 20<br>19<br>19<br>21<br>24 | 663<br>602<br>632<br>663<br>661 | 5.33<br>5.32<br>4.92<br>5.22<br>5.69 | 2<br>2<br>3<br>7       | 5<br>5<br>5<br>5<br>5 | סע<br>סע<br>סע<br>סע<br>סע | 2<br>2<br>1<br>1<br>3      | 66<br>64<br>56<br>47<br>65  | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 169<br>156<br>149<br>156<br>176        | 1.08<br>1.17<br>1.18<br>.54<br>.79 | .074<br>.087<br>.087<br>.105<br>.096 | 7<br>7<br>8<br>6<br>7   | 51<br>50<br>39<br>47<br>55 | 1.03<br>1.22<br>1.56<br>1.06<br>1.34 | 61<br>71<br>61<br>87<br>70 | .19<br>.19<br>.23<br>.22<br>.22 | 11<br>5<br>5<br>3<br>3     | 2.15<br>2.33<br>2.39<br>2.63<br>2.55 | .02<br>.02<br>.02<br>.01<br>.01 | .07<br>.10<br>.11<br>.09<br>.13 | 1<br>1<br>1<br>1      | 13<br>9<br>15<br>3<br>14   |
| 440 124<br>440 125<br>440 126<br>440 127<br>440 128 | 1<br>2<br>2<br>1<br>2 | 95<br>110<br>106<br>189<br>141  | 11<br>11<br>15<br>20<br>17 | 124<br>100<br>111<br>91<br>79   | .4<br>.1<br>.4<br>.3<br>.1 | 33<br>22<br>34<br>31<br>30 | 23<br>23<br>23<br>20<br>20 | 567<br>588<br>584<br>574<br>654 | 5.18<br>5.69<br>5.39<br>6.23<br>5.42 | 4<br>5<br>3<br>7<br>3  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 3<br>1<br>3<br>2<br>2      | 48<br>47<br>54<br>56<br>59  | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2      | 153<br>185<br>158<br>185<br>185<br>163 | .61<br>.67<br>.68<br>1.34<br>1.23  | .059<br>.038<br>.044<br>.069<br>.072 | 6<br>5<br>7<br>12<br>10 | 51<br>43<br>50<br>45<br>51 | 1.18<br>1.13<br>1.14<br>1.57<br>1.42 | 83<br>63<br>70<br>73<br>64 | .23<br>.25<br>.21<br>.29<br>.25 | 2<br>2<br>5<br>2           | 2.58<br>2.49<br>2.85<br>2.69<br>2.64 | .01<br>.01<br>.02<br>.02        | .10<br>.07<br>.08<br>.09<br>.06 | 1<br>1<br>1<br>1<br>1 | -19<br>4<br>9<br>8<br>11   |
| 440 129<br>440 130<br>440 131<br>440 132<br>440 133 | 2<br>1<br>1<br>1<br>2 | 216<br>218<br>211<br>206<br>265 | 34<br>31<br>22<br>17<br>35 | 213<br>197<br>115<br>194<br>174 | .1<br>.1<br>.1<br>.3       | 27<br>24<br>23<br>17<br>31 | 35<br>33<br>32<br>28<br>40 | 725<br>628<br>677<br>799<br>791 | 6.61<br>6.69<br>7.31<br>6.47<br>7.52 | 4<br>5<br>2<br>2<br>10 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 1<br>1<br>2<br>3           | 48<br>55<br>54<br>40<br>66  | 1<br>1<br>1<br>1 | 2<br>2<br>3<br>2<br>2      | 2<br>2<br>9<br>2<br>2      | 214<br>222<br>244<br>209<br>205        | .61<br>.75<br>.80<br>.90<br>.90    | .058<br>.043<br>.063<br>.115<br>.085 | 4<br>5<br>7<br>7<br>11  | 39<br>38<br>36<br>27<br>51 | 1.68<br>1.60<br>1.79<br>1.96<br>1.67 | 59<br>44<br>44<br>70<br>69 | .31<br>.30<br>.33<br>.37<br>.28 | 4<br>2<br>2<br>5<br>4      | 3.13<br>2.91<br>3.07<br>2.89<br>3.37 | .01<br>.01<br>.01<br>.01<br>.01 | .16<br>.18<br>.06<br>.27<br>.20 | 1<br>1<br>1<br>1      | 3<br>17<br>8<br>3<br>20    |
| 440 134<br>440 135<br>440 136<br>440 137<br>440 138 | 1<br>2<br>2<br>2<br>2 | 244<br>261<br>182<br>167<br>237 | 26<br>28<br>26<br>33<br>29 | 213<br>282<br>331<br>370<br>256 | .3<br>.2<br>.2<br>.1<br>.1 | 22<br>34<br>28<br>32<br>27 | 30<br>36<br>36<br>32<br>36 | 737<br>757<br>870<br>815<br>772 | 7.47<br>6.92<br>6.56<br>6.53<br>7.21 | 6<br>3<br>6<br>7<br>6  | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 1<br>2<br>2<br>2<br>2      | 70<br>53<br>63<br>66<br>69  | 1<br>1<br>1<br>1 | 2<br>2<br>5<br>2           | 2<br>2<br>2<br>2<br>2      | 209<br>208<br>188<br>178<br>222        | .81<br>.70<br>.73<br>.69<br>.77    | .085<br>.052<br>.067<br>.127<br>.074 | 6<br>6<br>6<br>7        | 33<br>57<br>42<br>44<br>46 | 1.58<br>1.82<br>1.46<br>1.45<br>1.58 | 88<br>55<br>83<br>84<br>68 | .27<br>.32<br>.26<br>.24<br>.28 | 2<br>7<br>4<br>6<br>5      | 3.32<br>3.05<br>2.96<br>2.98<br>3.19 | .01<br>.01<br>.01<br>.01<br>.01 | .22<br>.12<br>.13<br>.12<br>.09 | 1<br>1<br>1<br>1      | 140<br>30<br>7<br>13<br>12 |
| 440 139<br>440 140<br>440 141<br>440 142<br>440 143 | 2<br>1<br>3<br>2<br>1 | 141<br>142<br>247<br>181<br>114 | 25<br>18<br>29<br>21<br>13 | 281<br>252<br>213<br>209<br>188 | .3<br>.1<br>.2<br>.2<br>.1 | 32<br>29<br>38<br>36<br>24 | 35<br>33<br>46<br>40<br>32 | 747<br>589<br>705<br>583<br>690 | 6.29<br>6.51<br>7.13<br>6.47<br>5.47 | 6<br>4<br>6<br>10<br>6 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2<br>2 | 57<br>65<br>101<br>67<br>72 | 1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2 | 174<br>194<br>198<br>173<br>155        | .73<br>.80<br>.85<br>.70<br>.81    | .086<br>.074<br>.061<br>.127<br>.114 | 7<br>5<br>6<br>7<br>5   | 44<br>45<br>50<br>40<br>38 | 1.27<br>1.22<br>1.37<br>1.27<br>1.12 | 63<br>64<br>67<br>55<br>64 | .23<br>.24<br>.24<br>.19<br>.20 | 2<br>3<br>2<br>6<br>2      | 3.11<br>2.65<br>3.15<br>3.25<br>2.62 | .01<br>.01<br>.01<br>.01<br>.01 | .12<br>.13<br>.17<br>.13<br>.12 | 1<br>1<br>2<br>1<br>1 | 5<br>19<br>23<br>7<br>4    |
| 440 144<br>STD C/AU-S                               | 1<br>19               | 108<br>62                       | 15<br>44                   | 85<br>132                       | .1<br>5.8                  | 30<br>72                   | 26<br>31                   | 520<br>1103                     | 5.35<br>4.24                         | 7<br>41                | 5<br>17               | ND<br>B                    | 3<br>38                    | 75<br>50                    | 1<br>19          | 3.<br>16                   | 2<br>23                    | 171<br>59                              | .76<br>.49                         | .055<br>.086                         | 6<br>41                 | 48<br>60                   | 1.22                                 | 38<br>179                  | .21<br>.07                      | 8<br>33                    | 2.58                                 | .01<br>.07                      | .09<br>.14                      | 2<br>13               | 10<br>52                   |

Page 4

t

£

| SAMPLE#                                             | NO<br>PPN              | CU<br>PPK                       | PD<br>PPM                  | ZO<br>PPN                       | λg<br>PPN                  | NI<br>PPM                  | Co<br>PPN                  | Nu<br>PPH                        | Fe<br>R                              | As<br>PPN                | U<br>PPN              | Au<br>PPN                  | Th<br>PPM             | ST<br>PPN                    | Cd<br>PPK         | SD<br>PPM                  | Bİ<br>PPN                       | V<br>PPN                        | Ca<br>ł                              | P<br>\$                              | La<br>PPN             | CT<br>PPN                  | Ng<br>Ł                              | Ba<br>PPN                   | Ti<br>t                         | B<br>PPK                 | л1<br>- Ұ                            | 6K<br>\$                        | X<br>Ş                          | ¥<br>PPK              | Au*<br>PPB                  |
|-----------------------------------------------------|------------------------|---------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|--------------------------------------|--------------------------|-----------------------|----------------------------|-----------------------|------------------------------|-------------------|----------------------------|---------------------------------|---------------------------------|--------------------------------------|--------------------------------------|-----------------------|----------------------------|--------------------------------------|-----------------------------|---------------------------------|--------------------------|--------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------------|
| 440 145<br>440 146<br>440 147<br>440 148<br>440 149 | 1<br>1<br>1<br>1<br>2  | 143<br>73<br>82<br>67<br>131    | 8<br>2<br>8<br>7<br>20     | 92<br>161<br>107<br>119<br>253  | .1<br>.1<br>.1<br>.4       | 24<br>29<br>30<br>31<br>28 | 25<br>21<br>19<br>20<br>44 | 628<br>541<br>495<br>496<br>1497 | 5,72<br>4,43<br>4,72<br>4,59<br>6,62 | 7<br>4<br>2<br>7<br>15   | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 3<br>3<br>3<br>3<br>1 | 86<br>62<br>62<br>58<br>73   | 1<br>1<br>1<br>1  | 2<br>3<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2      | 184<br>127<br>147<br>139<br>162 | .92<br>.77<br>.70<br>.74<br>1.25     | .084<br>.121<br>.097<br>.105<br>.096 | 8<br>7<br>6<br>7<br>5 | 61<br>52<br>58<br>63<br>47 | 1.36<br>1.08<br>1.20<br>1.14<br>.94  | 49<br>57<br>53<br>54<br>116 | .27<br>.22<br>.23<br>.22<br>.19 | 2<br>2<br>7<br>2<br>5    | 2.76<br>2.64<br>2.65<br>2.60<br>2.82 | .02<br>.02<br>.02<br>.02<br>.02 | .17<br>.13<br>.09<br>.12<br>.18 | 3<br>1<br>1<br>1<br>1 | 6<br>1<br>7<br>1<br>22      |
| 440 150<br>440 151<br>440 152<br>440 153<br>440 154 | 1<br>1<br>3<br>1       | 160<br>269<br>123<br>230<br>100 | 13<br>17<br>21<br>22<br>17 | 214<br>208<br>338<br>215<br>246 | .1<br>.3<br>.1<br>.1       | 33<br>35<br>29<br>31<br>34 | 40<br>41<br>35<br>40<br>40 | 584<br>616<br>668<br>691<br>633  | 6.11<br>6.27<br>5.68<br>6.21<br>6.76 | 4<br>9<br>5<br>7<br>9    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>3<br>3      | 72<br>78<br>57<br>86<br>75   | 1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2      | 180<br>171<br>144<br>172<br>182 | .82<br>.87<br>.75<br>.91<br>.80      | .113<br>.138<br>.175<br>.112<br>.109 | 5<br>6<br>6<br>5      | 49<br>49<br>46<br>47<br>50 | 1.26<br>1.48<br>.99<br>1.50<br>1.44  | 57<br>60<br>70<br>52<br>51  | .23<br>.24<br>.20<br>.24<br>.25 | 2<br>12<br>5<br>4<br>4   | 3.08<br>3.50<br>2.69<br>3.27<br>2.89 | .02<br>.02<br>.02<br>.02<br>.02 | .11<br>.15<br>.19<br>.19<br>.19 | 2<br>1<br>1<br>2<br>1 | 158<br>47<br>10<br>11<br>25 |
| 440 155<br>440 156<br>440 157<br>440 158<br>440 159 | 1<br>1<br>1<br>1<br>1  | 127<br>293<br>217<br>370<br>259 | 15<br>20<br>16<br>13<br>18 | 264<br>316<br>293<br>273<br>394 | .2<br>.2<br>.2<br>.4<br>.1 | 31<br>41<br>32<br>34<br>32 | 36<br>55<br>48<br>51<br>43 | 616<br>673<br>749<br>659<br>733  | 5.98<br>7.24<br>5.85<br>7.51<br>6.87 | 7<br>8<br>9<br>8<br>7    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>1<br>3<br>1 | 75<br>83<br>69<br>77<br>74   | 1<br>1<br>1<br>1  | 2<br>2<br>2<br>4<br>2      | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 177<br>180<br>150<br>218<br>185 | .76<br>.91<br>.74<br>.79<br>.83      | .067<br>.220<br>.159<br>.143<br>.154 | 6<br>5<br>5<br>6      | 50<br>46<br>44<br>42<br>44 | 1.49<br>1.58<br>1.38<br>1.81<br>1.48 | 47<br>101<br>78<br>80<br>97 | .28<br>.25<br>.26<br>.33<br>.28 | 15<br>3<br>3<br>4<br>7   | 2.89<br>3.79<br>3.06<br>3.47<br>3.28 | .02<br>.02<br>.02<br>.02<br>.02 | .14<br>.16<br>.14<br>.21<br>.14 | 1<br>1<br>2<br>1<br>1 | 7<br>12<br>18<br>11<br>10   |
| 440 160<br>440 161<br>440 162<br>440 163<br>440 164 | 1<br>2<br>1<br>6<br>13 | 320<br>222<br>221<br>315<br>381 | 21<br>16<br>23<br>50<br>9  | 430<br>536<br>398<br>495<br>178 | .2<br>.3<br>.1<br>.2<br>.3 | 33<br>32<br>29<br>31<br>24 | 49<br>43<br>38<br>45<br>23 | 701<br>688<br>704<br>714<br>540  | 7.09<br>6.58<br>6.61<br>8.20<br>7.00 | 11<br>8<br>3<br>34<br>15 | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 2<br>2<br>3<br>2      | 79<br>53<br>70<br>63<br>30   | 1<br>1<br>1<br>1  | 2<br>2<br>3<br>2           | 2<br>2<br>2<br>2<br>2<br>2      | 199<br>155<br>192<br>187<br>287 | .81<br>.59<br>.70<br>.70<br>.69      | .209<br>.274<br>.112<br>.216<br>.208 | 5<br>6<br>5<br>7<br>8 | 37<br>37<br>40<br>31<br>13 | 1.71<br>1.32<br>1.59<br>1.47<br>1.71 | 93<br>87<br>84<br>83<br>80  | .30<br>.28<br>.31<br>.28<br>.37 | 9<br>2<br>4<br>6<br>6    | 3.81<br>3.35<br>3.07<br>2.95<br>3.39 | .02<br>.02<br>.02<br>.01<br>.01 | .15<br>.14<br>.21<br>.19<br>.10 | 1<br>1<br>1<br>1      | 42<br>31<br>1<br>12<br>1    |
| 440 165<br>440 166<br>440 167<br>440 168<br>440 169 | 1<br>1<br>1<br>1       | 294<br>182<br>129<br>164<br>100 | 30<br>23<br>11<br>41<br>18 | 489<br>153<br>223<br>254<br>197 | .1<br>.1<br>.3<br>.5       | 33<br>30<br>26<br>29<br>29 | 39<br>31<br>30<br>40<br>38 | 729<br>696<br>641<br>810<br>1073 | 6.78<br>6.24<br>5.82<br>6.32<br>5.83 | 5<br>4<br>3<br>7<br>4    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>3<br>1<br>2<br>2 | 66<br>61<br>48<br>75<br>79   | 1<br>1<br>-1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>3<br>2<br>2<br>2      | 199<br>202<br>181<br>183<br>151 | .68<br>.80<br>.67<br>.87<br>1.09     | .164<br>.059<br>.094<br>.097<br>.138 | 6<br>5<br>7<br>6      | 40<br>54<br>42<br>46<br>49 | 1.66<br>2.10<br>1.51<br>1.86<br>1.64 | 100<br>54<br>89<br>77<br>94 | .32<br>.32<br>.28<br>.27<br>.26 | 11<br>8<br>8<br>7<br>4   | 3.47<br>3.26<br>2.85<br>3.25<br>2.91 | .02<br>.02<br>.02<br>.02<br>.02 | .23<br>.22<br>.16<br>.16<br>.23 | 2<br>1<br>1<br>1<br>1 | 15<br>33<br>4<br>1<br>7     |
| 440 170<br>440 171<br>440 172<br>440 173<br>440 174 | 1<br>1<br>1<br>1<br>1  | 161<br>175<br>216<br>136<br>121 | 9<br>36<br>23<br>14<br>22  | 146<br>280<br>144<br>216<br>142 | .1<br>.3<br>.1<br>.2       | 33<br>39<br>35<br>27<br>28 | 39<br>47<br>41<br>46<br>41 | 586<br>615<br>756<br>805<br>606  | 6.04<br>6.66<br>7.22<br>6.34<br>6.58 | 5<br>6<br>4<br>6<br>3    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND       | 3<br>1<br>2<br>1<br>2 | 82<br>82<br>71<br>63<br>78   | 1<br>1<br>1<br>1  | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2      | 170<br>172<br>210<br>179<br>185 | 1.07<br>1.06<br>1.13<br>1.01<br>1.02 | .067<br>.077<br>.065<br>.043<br>.048 | 6<br>8<br>5<br>7      | 58<br>60<br>67<br>51<br>51 | 1.87<br>1.87<br>2.29<br>2.16<br>1.89 | 41<br>47<br>55<br>54<br>43  | .26<br>.28<br>.31<br>.30<br>.29 | 13<br>5<br>14<br>6<br>10 | 3.04<br>3.10<br>3.63<br>3.28<br>2.88 | .02<br>.03<br>.03<br>.02<br>.03 | .24<br>.28<br>.34<br>.20<br>.14 | 1<br>1<br>1<br>1      | 15<br>240<br>34<br>45<br>37 |
| 440 175<br>440 176<br>440 177<br>440 178<br>440 179 | 1<br>1<br>1<br>1       | 108<br>71<br>138<br>97<br>74    | 27<br>34<br>23<br>15<br>15 | 377<br>167<br>124<br>124<br>268 | .2<br>.3<br>.1<br>.1<br>.1 | 31<br>29<br>28<br>26<br>29 | 38<br>35<br>29<br>24<br>30 | 656<br>519<br>602<br>530<br>482  | 5.73<br>5.20<br>5.68<br>4.36<br>4.78 | 3<br>4<br>5<br>2<br>5    | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 3<br>3<br>2<br>1<br>3 | 75<br>84<br>104<br>121<br>85 | 1<br>1<br>1<br>1  | 2<br>5<br>2<br>2<br>2      | 2<br>3<br>2<br>2<br>2           | 155<br>139<br>170<br>128<br>131 | .95<br>.81<br>1.15<br>1.06<br>.78    | .060<br>.080<br>.092<br>.065<br>.085 | 7<br>6<br>6<br>7      | 55<br>54<br>57<br>49<br>52 | 1.84<br>1.37<br>1.97<br>1.49<br>1.38 | 56<br>50<br>48<br>44<br>56  | .29<br>.24<br>.27<br>.25<br>.24 | 5<br>2<br>3<br>4<br>9    | 3.13<br>2.49<br>2.94<br>2.39<br>2.55 | .02<br>.02<br>.03<br>.03<br>.03 | .21<br>.15<br>.14<br>.20<br>.14 | 1<br>1<br>1<br>1      | 10<br>16<br>4<br>1          |
| 440 180<br>STD C/AU-S                               | 1<br>21                | 105<br>61                       | 18<br>43                   | 182<br>132                      | .4<br>7.6                  | 34<br>68                   | 27<br>31                   | 517<br>1092                      | 4.89<br>4.17                         | 7<br>42                  | 5<br>17               | ND<br>B                    | 2<br>40               | 83<br>55                     | 1<br>20           | 2<br>17                    | 2<br>24                         | 135<br>59                       | .99<br>.48                           | .087                                 | 8<br>41               | 56<br>61                   | 1.43                                 | 63<br>187                   | .24                             | 2<br>33                  | 2.76                                 | .02                             | .12                             | 1                     | 2<br>50                     |

Page 5

C

(

(

(

(

63

Ċ

t.

| SANPLE‡                                                        | No<br>PPN             | Cu<br>PPN                       | PD<br>PPM                  | Zn<br>PPM                       | Ag<br>PPH                        | NI<br>PPM                  | Co<br>PPN                  | Nn<br>PPN                         | Ie<br>ł                              | λs<br>PPN                  | U<br>PPN              | Xu<br>PPM                  | Th<br>PPN             | ST<br>PPN                    | Cd<br>PPM             | SD<br>PPM                  | Bİ<br>PPN                  | V<br>PPN                        | Ca<br>t                            | P<br>\$                              | La<br>PPN              | CT<br>PPN                  | Ng<br>t                              | Ba<br>PPM                     | Tİ<br>Ş                                | B<br>PPM              | ۸1<br>۲                              | Wa<br>ł                                | K<br>Ş                          | ¥<br>PPN              | Au"<br>PPB                 |
|----------------------------------------------------------------|-----------------------|---------------------------------|----------------------------|---------------------------------|----------------------------------|----------------------------|----------------------------|-----------------------------------|--------------------------------------|----------------------------|-----------------------|----------------------------|-----------------------|------------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|------------------------------------|--------------------------------------|------------------------|----------------------------|--------------------------------------|-------------------------------|----------------------------------------|-----------------------|--------------------------------------|----------------------------------------|---------------------------------|-----------------------|----------------------------|
| 440 181<br>440 182<br>440 183<br>440 183<br>440 185            | 1<br>1<br>1<br>1      | 54<br>121<br>64<br>135<br>114   | 11<br>16<br>14<br>20<br>31 | 129<br>120<br>110<br>140<br>394 | .1<br>.2<br>.2<br>.1<br>.1       | 37<br>30<br>34<br>32<br>34 | 21<br>16<br>19<br>27<br>23 | 728<br>500<br>462<br>786<br>673   | 4.23<br>4.70<br>4.04<br>6.22<br>5.36 | 2<br>3<br>2<br>2<br>2      | 5<br>5<br>7<br>5<br>5 | nd<br>Rd<br>Rd<br>Rd<br>Nd | 2<br>2<br>3<br>2<br>2 | 61<br>64<br>58<br>54<br>43   | 1<br>1<br>1<br>1      | 2<br>2<br>4<br>2<br>2<br>2 | 2<br>6<br>5<br>2           | 112<br>119<br>118<br>203<br>146 | .76<br>1.48<br>.69<br>.74<br>.68   | .123<br>.047<br>.062<br>.090<br>.181 | 6<br>8<br>7<br>4<br>4  | 56<br>51<br>49<br>40<br>38 | .98<br>1.42<br>1.02<br>1.77<br>1.57  | 70<br>50<br>46<br>115<br>87   | .19<br>.22<br>.21<br>.30<br>.24        | 2<br>6<br>2<br>2<br>2 | 2.08<br>2.22<br>2.08<br>3.03<br>2.80 | .02<br>.02<br>.01<br>.01<br>.01        | .08<br>.10<br>.12<br>.19<br>.10 | 1<br>1<br>2<br>1<br>1 | 5<br>6<br>12<br>19<br>13   |
| 440 186<br>440 187<br>440 188<br>440 189<br>440 189<br>440 190 | 1<br>1<br>1<br>1      | 136<br>157<br>146<br>114<br>220 | 34<br>37<br>36<br>31<br>30 | 176<br>158<br>204<br>168<br>367 | .2<br>.1<br>.1<br>.1<br>.2       | 34<br>30<br>30<br>36<br>36 | 23<br>24<br>23<br>24<br>34 | 679<br>743<br>613<br>678<br>689   | 5.70<br>6.00<br>6.37<br>5.72<br>6.07 | 2<br>2<br>3<br>3<br>4      | 5<br>5<br>5<br>5<br>5 | HD<br>ND<br>ND<br>ND<br>ND | 1<br>1<br>2<br>3<br>2 | 46<br>54<br>46<br>53<br>54   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 6<br>2<br>10<br>2<br>2     | 177<br>185<br>185<br>170<br>162 | .63<br>.76<br>.58<br>.81<br>.66    | .079<br>.111<br>.209<br>.072<br>.150 | 4<br>8<br>4<br>6       | 47<br>46<br>44<br>47<br>38 | 1.62<br>1.69<br>1.62<br>1.66<br>1.40 | 53<br>71<br>81<br>58<br>82    | .28<br>.26<br>.26<br>.28<br>.28        | 2<br>2<br>3<br>2      | 2.89<br>2.85<br>3.29<br>2.62<br>2.91 | .01<br>.01<br>.01<br>.01<br>.01        | .09<br>.10<br>.09<br>.15<br>.16 | 1<br>1<br>1<br>1      | 9<br>15<br>18<br>17<br>4   |
| 440 191<br>440 192<br>440 193<br>440 194<br>440 195            | 1<br>1<br>1<br>1      | 79<br>56<br>75<br>78<br>66      | 26<br>15<br>24<br>25<br>20 | 162<br>190<br>184<br>167<br>103 | .2<br>.1<br>.1<br>.1<br>.1       | 33<br>36<br>38<br>34<br>34 | 24<br>19<br>21<br>22<br>19 | 555<br>481<br>535<br>517<br>466   | 5.54<br>4.60<br>4.69<br>5.01<br>4.66 | 4<br>2<br>3<br>4<br>2      | 5<br>5<br>5<br>5      | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>2<br>2<br>2 | 48<br>55<br>48<br>64<br>57   | 1<br>1<br>1<br>1      | 2<br>2<br>3<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 175<br>132<br>131<br>140<br>140 | .66<br>.81<br>.71<br>.94<br>.78    | .027<br>.078<br>.085<br>.134<br>.039 | 5<br>6<br>6<br>6       | 47<br>52<br>55<br>53<br>53 | 1.68<br>1.10<br>1.30<br>1.32<br>1.16 | 56<br>47<br>57<br>64<br>49    | .30<br>.23<br>.23<br>.23<br>.23<br>.24 | 3<br>2<br>5<br>3<br>2 | 2.47<br>2.11<br>2.48<br>2.46<br>2.16 | .02<br>.02<br>.02<br>.02<br>.02<br>.02 | .12<br>.12<br>.11<br>.13<br>.11 | 1<br>1<br>2<br>1<br>1 | 10<br>30<br>12<br>5<br>18  |
| 440 196<br>440 197<br>440 198<br>440 199<br>440 200            | 1<br>1<br>1<br>1      | 62<br>45<br>91<br>89<br>108     | 18<br>16<br>16<br>10<br>16 | 115<br>170<br>108<br>266<br>135 | .1<br>.3<br>.2<br>.2<br>.1       | 34<br>34<br>34<br>40<br>36 | 19<br>18<br>32<br>32<br>31 | 460<br>460<br>569<br>629<br>652   | 4.45<br>4.38<br>6.18<br>5.41<br>5.84 | 2<br>2<br>2<br>2<br>2      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>2<br>1<br>1<br>2 | 52<br>51<br>59<br>54<br>55   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | 2<br>2<br>2<br>2<br>2<br>2 | 129<br>119<br>178<br>137<br>167 | .74<br>.75<br>.71<br>.73<br>.73    | .045<br>.099<br>.044<br>.142<br>.063 | 5<br>5<br>4<br>5<br>5  | 48<br>51<br>46<br>41<br>46 | 1.12<br>1.01<br>1.73<br>1.46<br>2.01 | 53<br>58<br>42<br>61<br>51    | .22<br>.20<br>.28<br>.23<br>.29        | 4<br>2<br>3<br>3      | 2.18<br>2.34<br>2.72<br>3.16<br>3.24 | .02<br>.01<br>.02<br>.02<br>.02        | .06<br>.08<br>.19<br>.16<br>.17 | 1<br>1<br>1<br>1      | 12<br>6<br>2<br>3<br>46    |
| 440 201<br>440 202<br>440 203<br>440 204<br>440 205            | 1<br>1<br>1<br>1<br>1 | 134<br>91<br>174<br>179<br>154  | 14<br>19<br>19<br>21<br>23 | 204<br>198<br>171<br>199<br>137 | .3<br>.1<br>.1<br>.3<br>.1       | 46<br>49<br>46<br>35<br>25 | 34<br>33<br>43<br>29<br>26 | 587<br>584<br>756<br>708<br>668   | 5.99<br>5.77<br>6.60<br>6.54<br>6.39 | 2<br>2<br>2<br>2<br>2<br>2 | 7<br>5<br>5<br>6<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 3<br>2<br>1<br>3<br>2 | 59<br>52<br>81<br>68<br>63   | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 2<br>3<br>5<br>4<br>2      | 164<br>147<br>182<br>201<br>204 | .71<br>.60<br>.79<br>.69<br>.74    | .115<br>.116<br>.069<br>.116<br>.068 | 5<br>5<br>6<br>5       | 49<br>66<br>56<br>44<br>41 | 1.61<br>1.72<br>1.78<br>1.76<br>1.74 | 47<br>61<br>53<br>72<br>65    | .25<br>.24<br>.26<br>.29<br>.33        | 2<br>3<br>4<br>2<br>2 | 3.23<br>3.17<br>3.38<br>3.37<br>2.91 | .02<br>.02<br>.03<br>.02<br>.02        | .13<br>.21<br>.15<br>.15<br>.14 | 1<br>1<br>1<br>1      | 18<br>27<br>33<br>20<br>24 |
| 440 206<br>440 207<br>440 208<br>440 209<br>440 210            | 1<br>1<br>1<br>1      | 167<br>186<br>212<br>160<br>222 | 18<br>23<br>16<br>14<br>15 | 155<br>274<br>117<br>169<br>103 | .3<br>.2<br>.2<br>.1<br>.1       | 33<br>36<br>34<br>27<br>32 | 27<br>33<br>27<br>26<br>22 | 746<br>697<br>904<br>614<br>1100  | 6.29<br>5.84<br>7.37<br>6.25<br>6.90 | 3<br>3<br>7<br>2<br>3      | 5<br>5<br>5<br>5<br>5 | סון<br>סון<br>סון<br>סון   | 1<br>1<br>3<br>2<br>1 | 59<br>60<br>114<br>47<br>112 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2 | 7<br>2<br>2<br>2<br>2      | 191<br>154<br>230<br>196<br>222 | .70<br>.76<br>1.31<br>.65<br>2.10  | .114<br>.131<br>.127<br>.066<br>.142 | 5<br>5<br>9<br>4<br>10 | 44<br>44<br>55<br>43<br>56 | 1.74<br>1.31<br>1.62<br>1.74<br>1.52 | 78<br>78<br>96<br>81<br>73    | .29<br>.26<br>.32<br>.30<br>.25        | 4<br>2<br>4<br>2<br>3 | 2.93<br>2.85<br>3.80<br>3.02<br>2.73 | .02<br>.02<br>.03<br>.02<br>.03        | .16<br>.11<br>.13<br>.16<br>.09 | 1<br>1<br>2<br>1<br>1 | 99<br>49<br>8<br>22<br>2   |
| 440 211<br>440 212<br>440 213<br>440 214<br>440 215            | 1<br>1<br>1<br>1      | 182<br>283<br>231<br>184<br>189 | 15<br>24<br>17<br>27<br>19 | 74<br>183<br>172<br>151<br>135  | .1<br>.3<br>.2<br>.2<br>.2<br>.2 | 37<br>29<br>30<br>31<br>38 | 25<br>32<br>28<br>23<br>23 | 755<br>1135<br>1171<br>735<br>632 | 7.67<br>8.79<br>7.59<br>6.07<br>6.17 | 4<br>9<br>4<br>7<br>5      | 5<br>5<br>5<br>5<br>5 | ND<br>ND<br>ND<br>ND<br>ND | 2<br>4<br>1<br>2<br>2 | 158<br>102<br>96<br>88<br>66 | 1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | 5<br>4<br>7<br>2<br>2      | 260<br>241<br>211<br>192<br>186 | 1.30<br>1.21<br>1.11<br>.78<br>.72 | .103<br>.213<br>.175<br>.074<br>.105 | 9<br>10<br>8<br>6<br>6 | 62<br>42<br>41<br>49<br>44 | 1.55<br>1.92<br>1.76<br>1.70<br>1.38 | 109<br>106<br>117<br>85<br>71 | .32<br>.39<br>.35<br>.32<br>.29        | 2<br>5<br>2<br>6<br>2 | 4.41<br>4.50<br>4.46<br>3.01<br>2.84 | .04<br>.02<br>.02<br>.02<br>.02        | .15<br>.16<br>.13<br>.18<br>.13 | 1<br>1<br>1<br>1      | 3<br>25<br>9<br>12<br>33   |
| 440 216<br>STD C/AU-S                                          | 1<br>21               | 186<br>61                       | 15<br>41                   | 124<br>133                      | .2<br>7.7                        | 35<br>73                   | 23<br>28                   | 7 <b>46</b><br>1103               | 5.89<br>4.26                         | 8<br>43                    | 5<br>17               | ND<br>8                    | 1<br>40               | 64<br>50                     | 1<br>19               | 2<br>15                    | 2<br>22                    | 173<br>60                       | .78<br>.49                         | .080<br>.090                         | 7<br>41                | 50<br>61                   | 1.46<br>.91                          | 87<br>184                     | .30<br>.08                             | 2<br>31               | 2.98<br>1.93                         | .02<br>.08                             | .12<br>.15                      | 1<br>13               | 6<br>48                    |

Fage 6

C

ί

ŧ

(

| SAMPLE     | No         | Cu  | Pb  | Zn  | λg  | Ni  | Co  | Kn         | Te    | As  | U   | Au         | Th  | ST  | Cd  | Sb     | Bİ  | V    | Ca    | 2     | La   | Cr   | Kg   | Ba        | Ti   | B   | Al   | Na  | K    | ¥   | Au* |
|------------|------------|-----|-----|-----|-----|-----|-----|------------|-------|-----|-----|------------|-----|-----|-----|--------|-----|------|-------|-------|------|------|------|-----------|------|-----|------|-----|------|-----|-----|
| •          | PPN        | PPK | PPN | PPN | PPN | PPN | PPM | PPN        | ł     | PPK | PPN | PPK        | PPN | PPN | PPN | PPN    | PPH | PPM  | ł     | 1     | PPN  | PPM  | ŧ    | PPM       | 1    | PPM | 1    | ł   | 1    | PPM | PPB |
|            |            |     |     |     | •   |     |     |            |       |     |     |            |     |     |     |        |     |      |       |       |      |      |      |           |      |     |      |     |      |     |     |
| 440 217    | _ <b>1</b> | 109 | 10  | 115 | .1  | 42  | 23  | 597        | 5.39  | 2   | 5   | ND         | 1   | 59  | 1   | 2      | 2   | 174  | .11   | .119  | 6    | - 55 | 1.50 | 84        | .27  | 2   | 2.75 | .02 | .12  | 1   | 23  |
| 440 218    | 1          | 212 | 10  | 82  | .1  | 43  | 26  | 588        | 5.98  | 3   | 5   | ND         | 1   | 70  | 1   | 2      | 2   | 205  | .11   | .069  | 6    | 46   | 1.75 | 83        | . 29 | 6   | 3.01 | .02 | .09  | 1   | 1   |
| 440 219    | 1          | 271 | 18  | 113 | .3  | 41  | 28  | 911        | 6.19  | 3   | 5   | ND         | 1   | 71  | 1   | 2      | 2   | 204  | 1.12  | .072  | - 11 | - 44 | 1.61 | 88        | .28  | 13  | 3.10 | .02 | .13  | 1   | 13  |
| 440 220    | 1          | 230 | 18  | 113 | .1  | 37  | 22  | 1173       | 5.27  | 2   | 5   | ND         | 1   | 64  | · 1 | 2      | 2   | 173  | 1.01  | .053  | 9    | 50   | 1.30 | 101       | .25  | 1.  | 2.75 | .02 | .12  | 1   | 3   |
| 440 221    | 1          | 171 | 17  | 104 | .1  | 29  | 26  | 674        | 6.07  | 3   | 5   | ND         | 1   | 64  | 1   | 2      | 2   | 214  | .73   | .063  | 5    | 47   | 1.32 | 103       | . 27 | 2   | 2.70 | .02 | .08  | 1   | 3   |
|            |            |     |     |     |     |     |     |            |       |     |     |            |     |     |     |        |     |      |       |       |      |      |      |           |      | -   |      |     |      | -   | -   |
| 440 222    | 1          | 174 | 20  | 108 | .1  | 38  | 24  | 707        | 5.65  | 2   | 5   | ND.        | 1   | 70  | 1   | 2      | 2   | 195  | .94   | .125  | 9    | 58   | 1.36 | 75        | .23  | 6   | 2.68 | .02 | .13  | . 1 | 5   |
| 440 223    | 1          | 62  | 4   | 108 | .2  | 30  | 20  | 688        | 4.87  | ,   | 5   | ND         | 1   | 60  | 1   | 2      | ,   | 160  | .70   | 067   | 7    | 19   | 1.01 | 87        | 23   | ,   | 2 45 | 02  | ng   | 1   | 1   |
| AAN 224    | ī          | 60  | 8   | 167 | 1   | 40  | 23  | 556        | 5 17  | ;   | ,   | m          | i   | 52  | i   | ;      | ;   | 165  | 60    | 111   | ś    | 51   | 1 10 | 100       | 21   | 10  | 2 85 | 02  | 12   | ÷.  | 1   |
| 440 225    | 1          | 41  | 13  | 197 | 1   | 24  | 10  | 880        | 4 22  | ,   |     | 80<br>110  | i   | 56  | 1   | ;      | ;   | 124  | 70    | 175   | č    | 17   | 1.10 | 166       | 10   |     | 2.03 | 102 | .13  |     | - 1 |
| 110 225    | 1          | 15  | 11  | 102 |     | 20  | 10  | 2070       | 1.22  | ÷.  |     | <b>8</b> 0 | 1   |     | 1   | J<br>1 | 4   | 133  | . / V | 100   | , J  | 11   | 1 02 | 1 2 2     | 10   | . 4 | 2.13 | .01 | . 03 |     | 1   |
| 990 220    | 1          | 43  | 11  | 992 | • 4 | 34  | 20  | 333        | 4.30  | - 4 | 3   | <b>N</b> U | 1   | 03  | 1   | 4      | 4   | 197  | . 3 3 | 133   | 3    | 47   | 1.03 | 121       | . 20 | 3   | 2.82 | .02 | .09  | Ţ   | 2   |
| 440 227    | 1          | 184 | 17  | 162 | .1  | 41  | 29  | 587        | 6.05  | ,   | 5   | ND         | 1   | 79  | 1   | ,      | ,   | 196  | .71   | .207  | 6    | 53   | 1.42 | 94        | .21  | 3   | 2.97 | 02  | 14   | 1   | 48  |
| 440 228    | 1          | 146 | 23  | 231 | 1   | 34  | 26  | 874        | 5 18  | ;   | ŝ   | ND.        | i   | 90  | i   | ;      | ;   | 147  | 80    | 257   | ŝ    | 15   | 1 25 | 156       | 20   | ,   | 3 03 | 62  | 17   | ÷   | 1   |
| 440 229    | 1          | 101 |     | 206 |     | 31  | 27  | 730        | 5 14  | ;   | ŝ   | ND:        | i   | 16  | 1   | ;      | ;   | 150  |       | 240   |      | - ŭ  | 1 20 | 110       | 21   | ,   | 2 51 | 07  | 11   | 1   | 14  |
| 440 225    | ÷          | 125 | 18  | 178 |     | 25  | 20  | 724        | 5 6 5 | 5   | ź   | 10         | 1   | 70  | ;   | ,      |     | 1.00 |       | 206   | ;    | 51   | 1 14 | 164       | 10   | ÷   | 2.01 | .02 | 11.  |     | 17  |
| 110 230    | 1          | 211 | 11  | 1/1 | • • | 33  | 40  | 731<br>618 | 3.33  |     | 3   | 10         | 1   | 14  |     |        | 4   | 103  | .00   | . 388 |      | 31   | 1.14 | 103       | .18  |     | 2.13 | .02 | • 11 |     |     |
| 440 231    | · 1        | 211 | 8   |     | •1  | 32  | 43  | 012        | 3.32  | 2   | 3   | UU.        | 1   | 80  | 1   | 4      | 4   | 184  | ,93   | .089  | In   | 20   | 1.45 | - 67<br>- | .25  | 2   | 2.4/ | .02 | . 20 | 1   | 14  |
|            |            |     |     |     |     |     |     |            |       |     |     |            |     |     |     |        |     |      |       |       |      |      |      |           |      |     |      |     |      |     |     |
| STD C/AU-S | 20         | 60  | 39  | 129 | 7.2 | 75  | 31  | 1078       | 4,13  | 41  | 16  | 8          | 38  | 53  | 19  | 17     | 21  | 64   | .48   | .097  | 39   | 59   | .97  | 188       | .08  | 35  | 1.98 | .07 | .13  | 14  | 51  |

Page 7

ť

(

## APPENDIX II

Affidavit of Expenses

### AFFIDAVIT OF EXPENSES

This will certify that geological, geochemical and geophysical surveys were conducted on the FLY 1, JACK and JILL claims, Lemon Lake area, Cariboo Mining Division, during the period May 24 to June 20, 1988, to the value of the following:

### Field Personnel

|                                        | TOTAL                                                        | \$73,072.83           |
|----------------------------------------|--------------------------------------------------------------|-----------------------|
| Typing, compilation                    | 22 hours @ \$20/hr.                                          | 440.00                |
| Drafting, computer,<br>data processing | 40 hours @ \$20/hr.                                          | 800.00                |
| E. Sykes                               | 9.5 days @ \$220/day                                         | 1,900.00              |
| C. Ditson                              | 6.5 days @ \$290/day                                         | 1,885.00              |
| Report<br>Personnel<br>D.G. Allen      | 1 day @ \$400/day                                            | 400.00                |
| Stationery supplies                    |                                                              | 10.54                 |
| Comminication                          |                                                              | 164.11                |
| Equipment leasing                      |                                                              | 1,109.00              |
| Field supplies                         |                                                              | 1,333.50              |
| Room and board                         |                                                              | 6,201.49              |
| Transportation                         | Vehicle rental, mileage,<br>gas & oil, shipping              | 5,731.61              |
| Consulting                             | D.G. Allen, D.R. MacQuarrie                                  | 950.00                |
| Chemical Analysis                      |                                                              | 8,785.55              |
| J. Neilson<br>G. Barton                | 24.5 man-days @ \$240/man-day<br>98 man days @ \$230/man-day | 5,880.00<br>22,540.00 |
| E. Sykes                               | 18 days @ \$260/day                                          | 4,680.00              |
| C. Ditson                              | 33.5 days @ \$290/day                                        | \$ 9,715.00           |

D.G. Allen, P. Eng. (B.C.)





|                   | LEGEND                                                                                                       |
|-------------------|--------------------------------------------------------------------------------------------------------------|
| E                 | ARLY JURASSIC INTRUSIVE ROCKS                                                                                |
| 6                 | Syenite.                                                                                                     |
| 5                 | Monzonite.                                                                                                   |
| 4                 | Syeno diorite.                                                                                               |
| 3                 | Hornblende diorite.                                                                                          |
| 2                 | Gabbro & Pyroxenite.                                                                                         |
| L                 | ATE TRIASSIC VOLCANIC ROCKS                                                                                  |
| 1                 | Basalt. (Trachy & Alkali)                                                                                    |
|                   | <u>SYMBOLS</u>                                                                                               |
|                   | Geological contact, (inferred).                                                                              |
|                   | Outcrop; Suboutcrop; Rubble, Frost-heaved boulders.                                                          |
| 825-03<br>20,600  | Rock sample site, Sample number;<br>Gold values in parts per billion.<br>Copper values in parts per million. |
| ~~~ ?             | Fault; (inferred).                                                                                           |
|                   | Trench.                                                                                                      |
| 06-4              | Diamond drill site, Hole number.                                                                             |
| • 4               | Percussion drill site, Hole number.<br>(locations approximate.)<br>Roads; Gravel, dirt.                      |
| <b>.</b> <u>#</u> | Creek, Swamp.                                                                                                |
|                   | Legal corner post, Claim boundary.                                                                           |
| 800               | Topographic contours, Contour                                                                                |
|                   | interval 50 feet.                                                                                            |
|                   | GEVA RESOURCE CO LTD                                                                                         |
| l                 | EMON LAKE PROPERTY                                                                                           |
| С                 | ariboo Mining Division — British Columbia                                                                    |
|                   | GEOLOGICAL MAP                                                                                               |
| - ROAL            | 200 0 200<br>METRES                                                                                          |
| JUAL              | 500 0 500 FEET                                                                                               |
| d.                |                                                                                                              |

---- DATE: JANUARY ,1989 NTS 93 A/6



| upung R  | 580.62 ×     | 66895<br>853243      | + 122105                         | E PLESK                      | 9 53986<br>8 68 163 | * 68213<br>*<br>\$53824 | 4 58182              | ec165              | 539335<br>53425    | 85238              | * 59729<br>* 58668 | 90/95 <b>x</b>     | \$53443<br>\$53282 | * 53624              | 19282 ×            | 208833  | x 61313            | 985238       | 561342              | E 1589    | a 68933<br>a 68836                      | \$99123            | 58283                     | 8 00 000                                                           | 85353               | * 58853<br>* 58538                      | * 58437              | 198791             | a 58983<br>53487   | 50853<br>8            | 59985 +<br>50273                                                                            | * 531.73<br>* 5836.3    | \$ 58258<br>* 58325                           | 58833<br>58833<br>58833 | 28160<br>28160         | * 57513         |
|----------|--------------|----------------------|----------------------------------|------------------------------|---------------------|-------------------------|----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------|--------------------|---------|--------------------|--------------|---------------------|-----------|-----------------------------------------|--------------------|---------------------------|--------------------------------------------------------------------|---------------------|-----------------------------------------|----------------------|--------------------|--------------------|-----------------------|---------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------|-------------------------|------------------------|-----------------|
| - 1100+0 |              | 8+58E                | 1+88E -<br>- 1+58E -             | 2+895                        | 24586               | 3+885                   | - 3+58E              |                    | 4+826              | 4+50E -            | 5+885              | - 1                |                    | 6+88E                | - 385 -            | 1.6.1   | - 369+0            | - 345+6      | - 398+8             | L.        | - 38518                                 | 3+285 -            | 34536                     | 184895                                                             | 1                   | - 18+58E -                              | - 388+11             | 11+586             | 12+885             | 1                     | 12+58E -                                                                                    |                         | 134585                                        | - 34+91                 | - 1945451              | 15+88E -        |
| * 56031  | SEI35        | # 58879<br>* 68412   |                                  | E Sesto                      | * 68684<br>* 68161  | \$53957                 | * 50459<br>* 50318   | 22822              | 68231<br>A 68316   | bazes,             | * 53153<br>* 53463 | × 61253            | # 61544            | 9 61 7 3 4           | × 61836<br>* 62928 | 201822  | x61213             | P (51 ) 25 4 | \$ 62966            | \$ \$1334 | , 62342<br>, 61115                      | * 68688            | * 5883<br>* 53638         | a 52726<br>a 58145                                                 | ស<br>ធម្<br>ទទ<br>ទ | * 53184<br>*                            | 68212                | 8 68521            | * 68553            | - (8283               | ≠ 68313<br>,<br>, 53658                                                                     | * 68325<br>* 68656      | \$ 61215<br>\$ 68233                          | * 68652<br>* 59613      | * 58424                | × 68278         |
| - 100+0  |              | 8+295                | 1+586                            | 2+865                        | 2458E -             | 1 308-5                 | - 3454E              | 1                  | - 368-s            | 4+58E -            | - S+BBE            |                    | 5+50E +            | - 368+9              | - 385+9            |         | 7+88E              | 74585-       | <br>8+88E -         | 1<br>1    | 1 1                                     | 3+88E              | 3+29E                     | 18+885                                                             | 1                   | 18+585 -                                | - 385 - 1            | 11+586 -           |                    |                       | 124586                                                                                      | - 3484£ -               | 13458E -                                      | - 388+61                | 194528E -              | 15488E H        |
| × 58864  | a aracsk     | Sears<br>Asyene 00   | + 53652<br>* 68151               | * 55883<br>* 68275           | 8 00 00 0           | 18589×                  | * 68568              | 2 62864            | 4 61322<br>61325   | 612529             | * 62122<br>* 61229 | * 68588            | 58919 *            | * 61562              | a 61276<br>a 61278 | × 68883 | 65455 <b>*</b>     | 59563 K      | * 61882<br>* 68512  | \$ 6238B  | 1962188                                 | 961388<br>68519    | * 68385                   | × 61351<br>* 51856                                                 | 8.9194              | * 61038<br>* 61675                      | * 68288<br>* 53861   | 1 4 6 8 2 4 1      | *55738<br>*68512   | 88629 4               | * 00433                                                                                     | a 58224<br>A 59355      | * 68455<br>* 68467                            | \$ 53841                | C5353                  | 1 1 2 2 3 3 4 1 |
| 8+584    | 8818         |                      | 1+28E -                          | - 388+C                      | 24586               | 3+995                   | - 362+5              |                    | 4+8.06             | 4+58E -            | 54885              |                    | 1 385+0            | 6+ P.B.E.            | 6458E -            | •       | 7+845              | 7+506 -      |                     | 1         | - 385-8                                 | 3+89£ -            | - 365-6                   | - 368-61                                                           |                     | 1942961                                 | 100101               | 114586 -           | 12+885             |                       | - 100+21                                                                                    | - 348+61                | - 13+581                                      | 194.985 -               | - 14+582 -             | - 385+S1        |
| 5000 ×   | a<br>822318  | aescs .              | *28528<br>*61362 O               | * 68291 Z                    | 9 68146             | +CST9 6                 | 9 61 (22<br>9 61 255 | 9 (9 1 4           | * 61831<br>* 61548 | EEECO .            | 98929              | a 61773            | * 04103<br>* 68457 | 68135                | * 68432            | × 68132 | * 51152<br>* 61152 | 86919        | 18119               | \$ 68632  | 100 x                                   | a 61445<br>x 62383 | * 63836                   | ×61823                                                             | 61828               | 96389 ¢                                 | \$ 60238<br>\$ 50238 | 59819 4            | * 68756<br>* 68121 | × 58627               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | * 53535<br>*<br>* 58516 | * 54681<br>* 57548                            | \$ 57652                | × 58281<br>× 58484     | 92255 ×         |
|          | 8+88         | 8+585                | 1+28£ -<br><br>1+58£ -           | 2+885                        | 24586               | 3+895                   | - 362+E              | i.                 | 4-225              | - 362+P            | - 34845            |                    | 1 1                | 9994                 | - 385 -            |         | - 388+4            | 24586        | 8+285               |           | 84528                                   | 388+6              | 3+29E                     | 18-895                                                             |                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11-905               | 11-586 -           | 12+88E -           | -                     | -                                                                                           | - 3496 -                | - 1345461                                     | 1 4+RRE -               | 19×582 -               | 15+285 -1       |
| a 56348  | * 55858<br>* | 98/285 *             |                                  | 61568 Z                      | 6.0899 e            | 98038                   | × 68373<br>× 53443   | e tente            | \$ 61932           | \$61254<br>\$65592 | 002187             | 4 61 802           | C1219              | # 68923<br># ##**29  | 19619 x            | 8 61663 | # 61218<br>61848   | 80134B       | 5 1819 ×            | 62129 e   | \$ \$1373<br>\$ \$1573                  | a 61688<br>8 62286 | × (628.2                  | * 61556<br>* 53738                                                 | 68118               | × 0.000                                 | a 53328<br>a 68168   | 815CS              | # 55128            | LECCE A               |                                                                                             | 56585 e                 | 58687<br>\$58782                              | × 583.42                | × 68451<br>* 53214     | × 68158         |
|          | 6+38         | 3×58F                | - 385-1<br>-                     | 2-986                        | 24585               | 3+885                   | - 345+6              | 1                  | 1+285              | 4-362-             | 34845              | , interest         |                    | - 384-9              | - 382+9            | 1       | 2+895              | - 385+6      | - 308+8             |           | 1 1 1 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 | 3486               | 3425+6                    | 18+885                                                             | Loano               | 420.001                                 | 11+985 -             | 11+586 -           | - 388              | Lester                |                                                                                             | 13+886 -                | 13+58E -                                      | 1 4+886 -               | - 1945.82              | 15+882 -1       |
| Eddad    | a +50894     | ×68462               | + 001200<br>520355               | 2 2528 5<br>25815<br>2 25825 | 82683               | a 61623                 | CC469 4              | teriox             | 6/279 k            | × 61283            | E2C19 4            | ¥ 68627            | 23413              | * 537248<br>* 698245 | × 00000            | 16629×  | *5002*             | 68757        | , 561.86<br>* 56867 | \$ 68182  | 19999 ×                                 | × 61422            | 62162                     | C0189 ×                                                            | 51953 ×             | SELLES                                  | \$ 62317             | 68685              | a 68/366           | \$61468               | 20143                                                                                       | • 55828<br>• 58281      | 1 1 1 2 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 | a 582/25<br>a 5858/2    | 58639<br>55102         | × 160/81        |
|          | 68+8         | - 205 -              | 1+88£ -                          | - 34842                      | 2458E               | - 189rE                 |                      | 1                  | 1 11000000         | 4-58E -            | - 388rS            | - 10175            |                    | 6+225                | - 345+9            |         | 24886              | 24586 -      | - 388118            |           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3-885              | 3+58E +                   | 18+825                                                             | Jeste J             | -                                       | 11+981               | 11+585 -           | 124885 -           | - 365FC               | т.<br>Г.                                                                                    | - 1997 -                | 13+585 -                                      | - 14+002 -              | 144585 -               | 15+88£ -1       |
| 522194   | a 85835      | 4 - 282.38<br>286.52 | - 285 c2<br>- 285 c2<br>- 281 22 | • 5835.7<br>5835.7<br>5835.4 | a 57818<br>a 55288  | *<br>53655              | 8 00 00 M            | x 53682<br>x 68813 | 9 61374            | a 61132<br>8 68684 | a 61218            | # 61312<br># 61155 | ×583.75            |                      |                    |         |                    |              |                     | 4 53843   | acaes a                                 | a 68268<br>A 68285 | *<br>* 61268.<br>* 61368. | 0<br>9<br>9<br>7<br>8<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | a 62983<br>a 62641  | 8                                       | \$61230<br>\$23355   | e 1029             | 19585              | \$ 682'13<br>\$ 68222 | 60162                                                                                       | 2 6 8 7 3 2             | × 53632                                       | ► 53573<br>■ 53868      | * 588-18<br>8 58 4 0 8 | DONEG K         |
| - 1      | 8+55         | - 285-6              |                                  | - 308+2                      | 24586               | 3+885 -                 | - 30%rE              |                    |                    | - 382-5            | 5+282              | 5+586              | 1                  | 186.43               | 1843.8F            | 2+395   | 4004-7             | 3#5#C        | 9-995               | 105170    |                                         | 1 139545           | 3+245                     | - Jeeret                                                           | - 18+58E            | ,                                       | 1 388+11             | - 11+5 <i>BE</i> - | 12+B8E -           | - 382+21              |                                                                                             | - 100                   | 1345451                                       | 194.88£ -               |                        | 10-100-01       |

Instrument: Scintrex mp - 2 Magnetometer Survey date: May 30 to June 14 ,1988

Dould I alla

# GEOLOGICAL BRANCH ASSESSMENT REPORT



GEVA RESOURCE COMPANY LTD. LEMON LAKE PROPERTY CARIBOO MINING DIVISION - BRITISH COLUMB GEOPHYSICAL MAP MAGNETOMETER PROFILES

JULY 5 /1988

N.T.S. 93A /6 FIGURE 8b





| 588288<br>588288<br>588288<br>58868<br>58882<br>58765<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58882<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>588888<br>58888<br>588888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>58888<br>5                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Par-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-State<br>Bar-St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| L. 18+00N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <pre>&gt;52826<br/>*58825<br/>*58825<br/>*58825<br/>*58826<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*59586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*55586<br/>*555</pre> |
| 9+584         9+98         9+98         9+98         9+98         9+98         9+98         9+98         9+98         9+98         9+98         9+98         9+98         9+58         1+988         1+988         1+988         1+988         1+988         1+988         1+988         1+988         1+988         1+988         1+988         1+9888         1+988         1+988         1+988         1+988         1+988         1+988         1+988         1+988         1+988         1+988         1+988         1+9488         1+9488         1+9488         1+9488         1+9488         1+9488         1+9488         1+9488         1+9488         1+9488         1+9488         1+9488         1+9488         1+9488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| L. 17+00N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>seese<br>se                                                                                                                                                                                                                                                        |
| a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.2844         a.4.4844         a.4.4844         a.4.4844         a.4.4844         a.4.48444         a.4.48444         a.4.48444         a.4.48444         a.4.48444         a.4.48444         a.4.44444         a.4.44444         a.4.44444         a.4.44444         a.4.44444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| L. 16+00N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA<br>ADARA                                                                                                                                                           |
| 845984       -         7       -         84588       -         84588       -         84588       -         94588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -         14588       -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| L. 15+00N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 582.56<br>582.56<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55<br>582.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0+500L       0+500L       0+500L       0       0+500L       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| L. 14+00N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000 million</li> <li>1000</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| L. 13+00N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>And and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and an and and</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| L. 12+00N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>All all all all all all all all all all</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| L. 11+00N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>All de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| L 114E # DL<br>SIN# TOTAL MA6.FIELD<br>2+88 68257<br>- 51388<br>8-580 63316<br>- 52335<br>1-980 64934<br>- 62335<br>1-980 64934<br>- 61383<br>2+880 68536<br>- 61135<br>2+880 61135<br>2+880 61135<br>- 61163<br>4-880 61221<br>3-580 61396<br>- 61221<br>3-580 61996<br>- 61221<br>3-580 61996<br>- 61221<br>3-580 61996<br>- 61221<br>3-580 61996<br>- 61221<br>3-580 61996<br>- 61221<br>3-580 61996<br>- 61221<br>- 5391<br>- 5391<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>- 53981<br>-                                                                                                                                                                                                                                             | LITTL 9 2000 FIELD<br>SING 1010L 1008.FIELD<br>3+88E 56636<br>- 52855<br>2+82E 58185<br>- 56888<br>2+88E 52933<br>- 58888<br>1+88E 58888<br>1+88E 58888<br>1+88E 58888<br>- 58288<br>- 58288<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 58386<br>8+88 5855<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 585<br>588 | STN# IDIAL RAG.*IELD<br>2-8094 53412<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SINE IDIEL RES.PIELD<br>24220 59482<br>- 59235<br>64120 59211<br>64220 59214<br>54260 5273<br>- 57643<br>- 57643<br>54260 5274<br>54260 5264<br>54260 52674<br>- 59013<br>44260 59201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ETNE TOTAL DAG.+1ELD<br>9+880 58528<br>- Bedet<br>8+580 58282<br>- 39224<br>- 39224<br>- 39224<br>- 59818<br>2+580 58238<br>- 58818<br>2+880 58328<br>- 58858<br>- 58858<br>- 588513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 64202<br>64202<br>64202<br>64304<br>64304<br>55364<br>55364<br>55364<br>55364<br>55364<br>55364<br>55364<br>55364<br>55364<br>55364<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5400<br>5 | 1-8800       50925         1-5800       50925         2-220       50925         2-220       50925         2-220       50926         2-220       50926         2-220       50926         2-220       50926         2-220       50926         2-220       50926         2-220       50926         2-220       50926         2-220       50926         2-220       50926         2-220       50927         2-220       50927         2-200       50927         2-200       50927         2-200       50927         2-200       50928         2-200       50928         2-200       50928         2-200       50928         2-200       50928         2-200       50928         2-200       50928         2-200       50928         2-200       50928         2-200       50928         2-200       50928         2-200       50928         2-200       50929         2-200       50928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-580         50823           2-580         50823           2-580         50823           2-4800         50823           2-4800         50823           2-4800         50823           2-4800         50823           2-4800         50823           2-4800         50823           2-880         50823           2-880         50823           2-880         50233           2-880         50234           2-880         50234           2-880         50238           2-880         50823           2-880         50823           2-880         50823           2-880         50823           2-880         50823           2-880         50823           2-880         50823           2-880         50823           2-880         50823           2-880         50823           2-880         50823           2-880         50823           2-880         50823           2-880         50823           2-880         50823           2-880         50823           2-                                                                                                                            | 44800         52568           34594         52232           34594         52232           34594         52232           34594         52232           34594         52232           34594         52232           34594         52232           34594         52232           34594         52232           34594         52232           34594         52232           34594         52232           34594         52232           34594         52232           34594         52232           34595         52331           34995         52331           34995         52331           34995         52331           34995         52331           34995         52331           34995         52331           34995         52331           34995         52331           34995         52331           34995         52331           34995         52331           34995         52331           34995         52331           34995         52331           34995 <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-200         20120           2-200         20120           2-2013         20233           2-2013         20233           2-2013         20233           2-2013         20233           2-2013         20233           2-2013         20233           2-2013         20232           2-2013         20232           2-2014         20232           2-2014         20233           2-2014         20234           2-2014         20235           2-2014         20236           2-2024         20233           2-2034         20234           2-2034         20235           2-2034         20235           2-2034         20235           2-2034         20235           2-2034         20235           2-2034         20235           2-2034         20235           2-2034         20235           2-2034         20235           2-2035         20125           2-2036         20125           2-2037         20125           2-2037         20125           2-2037         20125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | - 59153<br>P+2004 5954<br>- 59225<br>- 59225<br>- 59225<br>- 59247<br>- 59225<br>- 59163<br>- 59494<br>- 59247<br>- 59247<br>- 59247<br>- 59247<br>- 59247<br>- 59247<br>- 59247<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257<br>- 59257 | 342011     50243       -     50233       342011     50233       -     50233       -     50233       -     50233       -     50232       -     50232       -     50233       -     50232       -     50233       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       -     50243       - |

Instrument: Scintrex mp - 2 Magnetometer. Survey date: May 30 to June 14 ,1988

# 18,660

GEVA RESOURCE COMPANY LTD. LEMON LAKE PROPERTY ARIBOO MINING DIVISION - BRITISH COLUMBIA GEOPHYSICAL MAP MAGNETOMETER PROFILES

Dovald S. alle

JULY 5 /1988 N.T.S. 93A /6

FIGURE 8C



