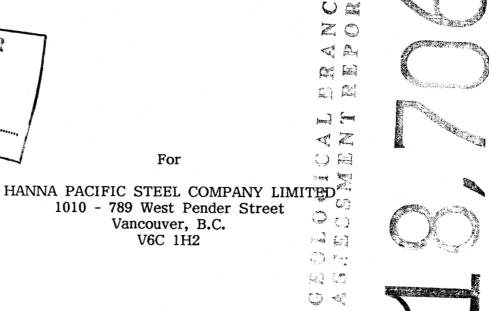
ARIS SUMMARY SHEET

District Geologist, Kamloops Off Confidential: 90.03.23 ASSESSMENT REPORT 18706 MINING DIVISION: Vernon PROPERTY: Hilton LOCATION: 50 10 00 LAT 118 35 00 LONG UTM 11 5558142 386918 NTS 082L02E CLAIM(S): Carryon, Carryon Two, Snafu, Election 1, Coverup, Dutchman, Hilton, Heck Lana,Lil Joe **DPERATOR(S):** Hanna Pacific Steel Yacoub, F.F.; Kidlark, R.G. AUTHOR(S): **REPORT YEAR:** 1989, 151 Pages COMMODITIES SEARCHED FOR: Gold, Silver, Lead **KEYWORDS:** Triassic, Jurassic, Nicola Group, Andesite, Shale, Argillite, Galena WORK DONE: Geological, Geochemical, Geophysical, Physical EMGR 30.0 km;VLF 1 Map(s) - 2; Scale(s) - 1:5000500.0 ha GEOL Map(s) - 1; Scale(s) - 1:500035.0 km LINE 30.0 km MAGG Map(s) - 2; Scale(s) - 1:5000ROCK 100 sample(s) ;AU,ME Map(s) - 1; Scale(s) - 1:100SOIL 1054 sample(s) ;AU,ME Map(s) - 8; Scale(s) - 1:5000150.0 m TREN 6 trench(es) MINFILE: 082LSE034

LOG NO: 0504	RD.
ACTION:	NTS 82L/2 Lat 50 10'N Long118 35'W
FILE NO:	


GEOLOGICAL, GEOCHEMICAL AND **GEOPHYSICAL REPORT ON THE** HILTON CLAIM GROUP

n v saga

VERNON MINING DIVISION BRITISH COLUMBIA

R Willand

For

Vancouver, B.C.

V6C 1H2

By

Roger G. Kidlark, B.Sc., F.G.A.C. Fayz F. Yacoub, B.Sc. ASHWORTH EXPLORATIONS LIMITED 718 - 744 West Hastings Street Vancouver, B.C. V6C 1A5

February 28, 1989

SUMMARY

The Hilton Claim Group consists of ten contiguous mineral claims totalling fiftysix units. The property is situated in the Vernon Mining Division approximately 50 kilometres east of the town of Vernon, B.C.

The claims lie within the Monashee Gold Camp which has been actively prospected for both placer and lode gold deposits since the late 1800's.

The property is underlain by volcanics, sediments and volcaniclastics of the Triassic to Jurassic Nicola Group. Locally the lithology has been subdivided into pelitic and andesite units.

Discontinuous quartz veins occur within shear zones and parallel to the regional fracture system. Gold mineralization is associated with shear zones and in quartz veins within shear zones.

Rock samples from the Cherry Shear Zone returned values up to 0.599 oz/ton gold, 1.05% lead and 2.22 oz/ton silver over a true width of 90 centimetres.

Rock samples from the Cherry Quartz Vein returned values up to 0.063 oz/ton gold and 0.9 ppm silver over a true width of 100 centimetres.

Rock samples from a quartz vein in the Hilton Shear Zone returned values up to 420 ppb gold and 0.7 ppm silver over a width of 40 centimetres. Samples from the quartz-free section returned values up to 770 ppb gold and 1.9 ppm silver over a true width of 100 centimetres.

The geochemical soil survey outlined a sixteen-point arsenic anomaly.

The geophysical survey located four VLF-EM conductors which are interpreted to be shear zones.

A Phase II program of diamond drilling, trenching, geological mapping, VLF-EM and magnetometer geophysics and soil sampling has been recommended. Approximate cost would be \$260,000.

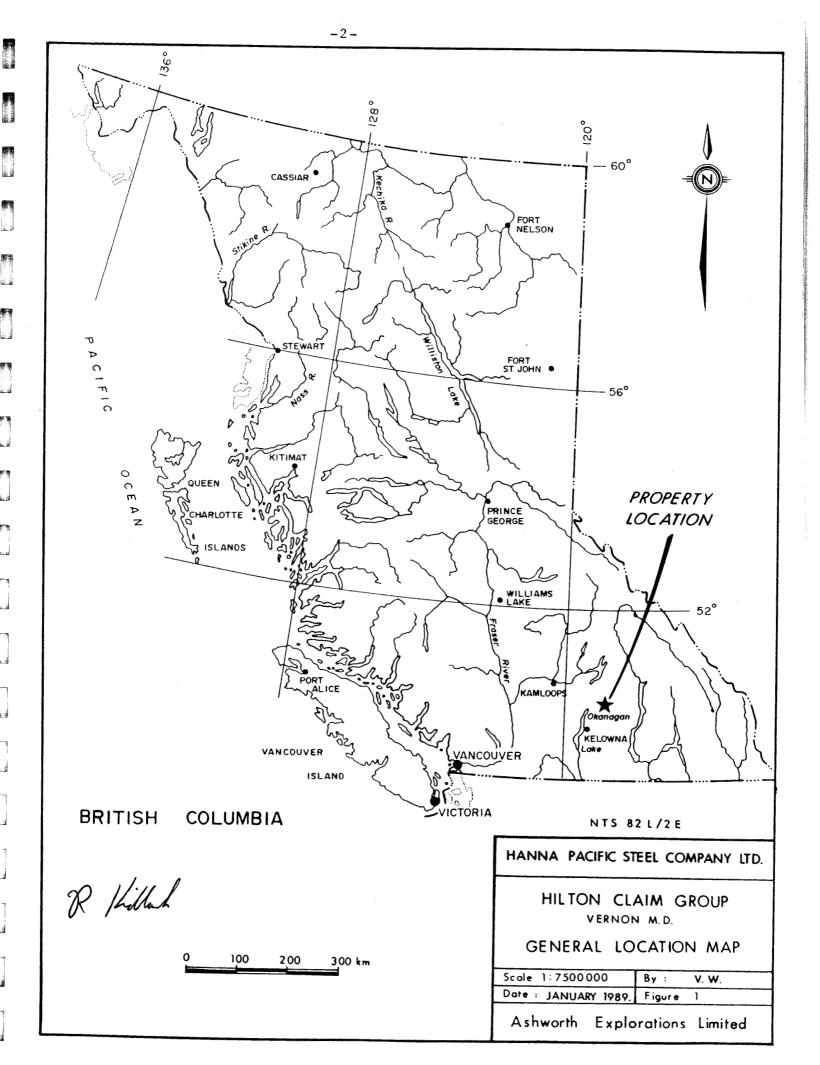
Contingent on the Phase II results, a Phase III program of detailed diamond drilling and trenching would be recommended.

TABI	LE OF	CONTENT	<u>S</u>	Page No.		
	SUM	MARY		i		
1.	INTE	RODUCTION	I	1		
2.	LOC	ATION, ACC	CESS AND PHYSIOGRAPHY	1		
3.	PRO	PERTY STA	TUS	3		
4.	ARE	A HISTORY		3		
5.	PRO	PERTY HIS	TORY	8		
6.	REG	IONAL GEO	LOGY	10		
7.	1988	AND 1989	PROGRAMS	14		
	7.1	Scope and	Purpose	14		
	7.2	Methods a	nd Procedures	14		
8.	RESU	JLTS		16		
	8.1	Property C	Geology	16		
	8.2	Trenching		18		
		8.2.1	Main Showing	18		
		8.2.2	Second Showing	22		
	8.3	Geochemic	al Soil Survey	24		
		8.3.1	Gold in Soils	24		
		8.3.2	Silver in Soils	25		
		8.3.3	Zinc in Soils	25		
		8.3.4	Arsenic in Soils	26		
		8.3.5	Discussion of Geochemical Results	27		
	8.4	VLF-EM an	nd Magnetometer Surveys	27		
		8.4.1	VLF Electromagnetic Survey	28		
		8.4.2	Magnetometer Survey	29		
		8.4.3	Geophysical Interpretation	29		
	8.5	Discussion	of Results	30		
9.	CON	CLUSIONS		32		
10.	RECO	OMMENDAT	TIONS	32		
11.	PROPOSED BUDGET 33					
	LIST	OF PERSC	DNNEL	34		
	REFI	ERENCES		35		
	CERT	TIFICATES		37 & 38		
	ITEN	IZED COS	T STATEMENT	39		

	URES, PLATES, MAPS AND APPENDICES	Page		
Figure 1:	General Location Map		4	
Figure 2:	Claim Location Map			
Figure 3:	Regional Geology Map		11	
Figure 4:	Trench Map (Main Showing)		19	
Figure 5:	Trench Map (Second Showing)		23	
Plate 1:	Cherry Shear Zone	Follows Page	20	
Plate 2:	Cherry Shear Zone	Follows Page	20	
Plate 3:	Hilton Shear Zone	Follows Page	: 21	
Plate 4:	Hilton Shear Zone	Follows Page	21	
Map 1:	Geology and Rock Sample Locations	In poc	cket	
Map 2:	Main Showing TMS1 (Cross Section)	11	11	
Map 3:	Gold - Soil Geochemistry	**	-11	
Map 4:	Silver - Soil Geochemistry	T	11	
Map 5:	Arsenic - Soil Geochemistry	TT TT	П	
Map 6:	Zinc - Soil Geochemistry	11	н	
Map 7:	Gold - Soil Geochemistry, Symbol Plot	**	"	
Map 8:	Silver - Soil Geochemistry, Symbol Plot	**	11	
Map 9:	Arsenic - Soil Geochemistry, Symbol Plot	**	11	
Map 10:	Zinc - Soil Geochemistry, Symbol Plot	11	11	
Map 11:	VLF-EM Profiles	11	п	
Map 12:	VLF-EM Field Strength Profiles	**	Ħ	
Map 13:	Total Field Magnetic Profiles	**	11	
Map 14:	Total Field Magnetic Contours	11	11	
Appendix A:	Rock Sample Descriptions			
Appendix B:	Analytical Reports			
Appendix C:	Analytical Techniques			
Appendix D:	Soil Correlation Matrix and Statistical Histograms			
Appendix E:	Geophysical Equipment Specifications			

1. INTRODUCTION

This report was prepared at the request of Hanna Pacific Steel Company Limited to describe and evaluate the results of geological-geochemical-geophysical surveys carried out by Ashworth Explorations Limited from December 1988 and February 1989 on the Hilton Claim Group, Vernon Mining Division, B.C. The report also describes the regional geology, past exploration activities in the area, previous work completed on the property and makes recommendations for further work.


One of the authors, Mr. Roger Kidlark, planned and supervised all fieldwork, and was project geologist on the subject claims from February 8 to 19, 1989. The co-author, Mr. Fayz Yacoub (geologist), was present on the subject claims from December 19 to 23, 1988 and February 8 to 19, 1989.

2. LOCATION, ACCESS AND PHYSIOGRAPHY (Figure 1)

The Hilton Claim Group is located approximately 9.5 kilometres southeast of the village of Cherryville and 50 kilometres east-southeast of Vernon, B.C. The property lies within the Vernon Mining Division on NTS mapsheet 82L/2.

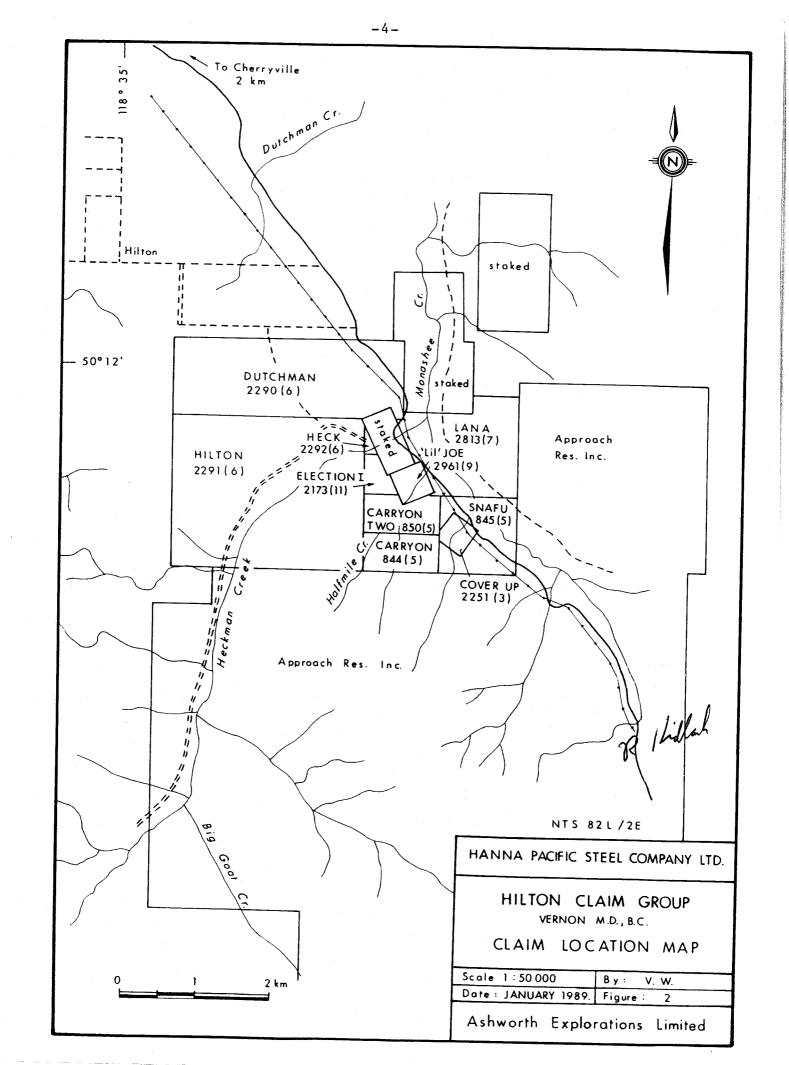
Access to the Hilton Claim Group is along Highway No. 6 which passes through the claims. Several secondary dirt roads lead from the highway to all parts of the claims.

Elevations range from 705 metres to 1303 metres giving a total relief of 597 metres. Slopes are generally gentle to moderate with the exception being the

steep slopes in the southeast corner of the property. The property is covered by Douglas fir and birch trees.

3. **PROPERTY STATUS** (Figure 2)

The Hilton Claim Group consists of ten contiguous claims, including four 2-post and six 4-post mineral claims, in the Vernon Mining Division. The claims are owned by Donald A. Simon of North Vancouver, B.C., and optioned to Hanna Pacific Steel Company Limited. Pertinent claim data is as follows:


CLAIM NAME	# OF UNITS	RECORD #	RECC	RD DATE	EXPI	RY DATE	
Carryon	2	844	May	12/80	May	12/89	
Snafu	4	845	May	12/80	May	12/89	
Carryon Two	2	850	May	16/80	May	16/89	
Election I	1	2173	Nov	13/86	Nov	13/89	
Cover Up	1	2251	Mar	24/87	Mar	24/89	
Dutchman	12	2290	Jun	24/87	Jun	24/89	
Hilton	20	2291	Jun	24/87	Jun	24/89	
Heck	1	2292	Jun	24/87	Jun	24/89	
Lana	12	2813	Jul	7/88	Jul	7/89	
'LIL' Joe	1	2961	Sep	8/88	Sep	8/89	
TOTAL	56		•	•	1	-,	

The total area, correcting for overlap, is approximately 1,137 hectares.

4. AREA HISTORY

The Monashee Gold Camp, which contains the Hilton Claim Group, has been actively prospected at various times for both placer and lode gold deposits. Placer gold production from Cherry Creek began in 1976 and nearby lode gold properties began development in the 1890's and have been worked at various intervals (B.C. Minister of Mines, Bulletin 20, 1944).

In 1890 the Morgan property was staked on top of Monashee Mountain, approximately five kilometres southeast of the southeast corner of the Hilton

Š. 3

. 1911 - 19

観光の

claim block. In 1916 the St. Paul mine showings were located about 600 metres north of the Morgan. A polymetallic ore with values in gold, silver, arsenic, antimony, copper, lead and zinc, was discovered. Total production to 1927 was 311 tons, including 136 ounces gold, 1,670 ounces silver, 3,495 pounds lead and 2,271 pounds zinc (B.C. Dept. of Mines, 1955). One sample of highgrade ore, taken in 1928, assayed 0.30 oz/ton gold, 190 oz/ton silver, 1.1% copper, 8% lead and 2% zinc (Minister of Mines Report, 1928).

In 1981, Brican Resources Ltd. acquired an option to purchase the St. Paul Mines property and staked the Monashee 1 to 8 claims. Between 1981 and 1983 Brican performed work programs which included geochemical soil and rock sampling, geological mapping, and magnetometer surveys. Anomalous gold and arsenic trends in both soils and rock were outlined in 1983 (Gilmour et al, 1983).

The Pita claims, located immediately south of the Hilton Claim Group, are owned by Mohawk Oil Co., and optioned to Approach Resources Inc. Three diamond drill holes were recently completed on the property to test a large altered zone which was both geophysically (I.P. survey) and geochemically anomalous (Vancouver Stockwatch, August 19, 1988). The eastern half of the property has undergone geological mapping and a geochemical survey (Vancouver Stockwatch, November 21, 1988).

Approximately seven kilometres southeast of the Hilton Claim Group are the four Monashee West Group crown grants (Lot Nos. 192, 193, 194 and 306). The crown grants were staked in 1886. Periodic work on the claims included underground development and the operation of a mill, with activity ceasing around 1940

(Schmidt et al, 1983). Total production between 1939 and 1940 totalled 2,418 tons, including 367 ounces gold, 1,637 ounces silver, 1,556 pounds lead and 418 pounds zinc (B.C. Dept. of Mines, 1955). The crown grants, plus 27 additional claims, were optioned to Nakusp Resources Limited in January 1983. That year, I.M. Watson & Associates Ltd. carried out geological mapping and geochemical soil sampling surveys. Gold anomalies in both rocks and soils were outlined with highest Au results of .726 oz/ton in rocks and 985 ppb in soils (Schmidt et al, 1983).

Immediately west of the Monashee West property and approximately six kilometres south of the Hilton property, Antelope Resources Limited is completing exploration work on seven crown grants comprising Mineral Lease No. M-37 (Rossland, Mascot, Evening Star, Number Four, Number Three, Number Two and Snowshoe crown grants). This group of claims was staked in 1886 along with the crown grants of the Monashee West Group property (Dawson, 1973). The Rossland, Mascot and Evening Star claims were known as the McPhail property between 1901 and 1907. Prior to 1923, considerable underground work was conducted on the claims and small volumes of ore were extracted (Antelope Resources Limited Prospectus, February 15, 1988).

El Paraiso Resources Limited's Top claims, located approximately nine kilometres south of the Hilton claims, include a strong shear zone which has yielded values in both gold and silver. In 1983 an eight hole diamond drilling program was completed to test the downdip extension of the surface showing. One interesting result was a 50 foot intersection in Hole 6 averaging 0.22 oz/ton gold, including a 15.5 foot section grading 0.56 oz/ton gold and 1.56 oz/ton silver (Vancouver

Stockwatch, June 2, 1988). Kerr Addison Mines Ltd. completed an eleven hole diamond drill program in 1984. This work revealed the gold and silver mineralization was strongest in mafic dyke swarms which cut the shear zone.

The property is currently under option to Venturex Resources Ltd. which completed a diamond drill program in 1988. Results released to date included an intersection, from 12.0 to 63.0 feet, of 51 feet grading 0.41 oz/ton gold which included 30.8 feet of 0.58 oz/ton gold (The Northern Miner, August 5, 1988).

Numerous additional showings are present in the general area of the Hilton Claim Group and are listed below:

Property	Type of Mineralization	Location
Unicorn	Pb mineralization in quartz veins	approx. seven kilometres northeast of Hilton Claim Group
Blue Grouse	Zn and Pb	approx. five kilometres north of Hilton Claim Group
Excelsior	Ag and Pb in quartz veins	approx. two kilometres northeast of Hilton Claim Group
Silver Bell & Silver Horde	Ag, Au and Pb in quartz veins	approx. seven kilometres east- northeast of Hilton Claim Group
Dona	Au, Ag, Pb and Cu in quartz veins	approx. nine kilometres southeast of Hilton Claim Group
Rose & KL	Au and Ag in quartz veins	approx. 14 kilometres southeast of Hilton Claim Group

(from Okulitch, 1979)

5. **PROPERTY HISTORY**

Three old showings occur on or near the Hilton Claim Group. These include the True Blue-Hidden Treasure showing, the Heckman Creek showing and the Old Joe showing. The True Blue-Hidden Treasure showing is located just north of the northern boundary of the Hilton Claim Group. It is a Ag-Cu-Pb-Zn showing in quartz veins and in 1905 a tunnel was dug for approximately 50 feet. A shipment of ore was made at that time but due to high shipping costs the venture was abandoned (B.C. Minister of Mines, 1905).

The Heckman Creek gold showing is located along Heckman Creek on the Hilton claim and is described as a placer occurrence (Minfile and Okulitch, 1979). No production information is available.

The Old Joe showing is described as a Au-Ag-Pb showing and is located on the 'LIL' Joe claim. Very little information is available on this particular showing (Minfile and Okulitch, 1979).

The original claims of the Hilton Claim Group were staked in 1980 and prospecting and geochemical work was performed by Mr. T. Archibald, prospector-owner, that same year. Two small grids were laid out on the Snafu and Carryon Two claims and a total of 130 soil samples were taken and analyzed for arsenic and mercury. Arsenic values were low on both grids. Mercury values on the Carryon Two grid gave four anomalies over 100 ppb with the highest 300 ppb. On the Snafu grid there were five mercury anomalies over 100 ppb with the highest 250 ppb (Leriche et al, 1987).

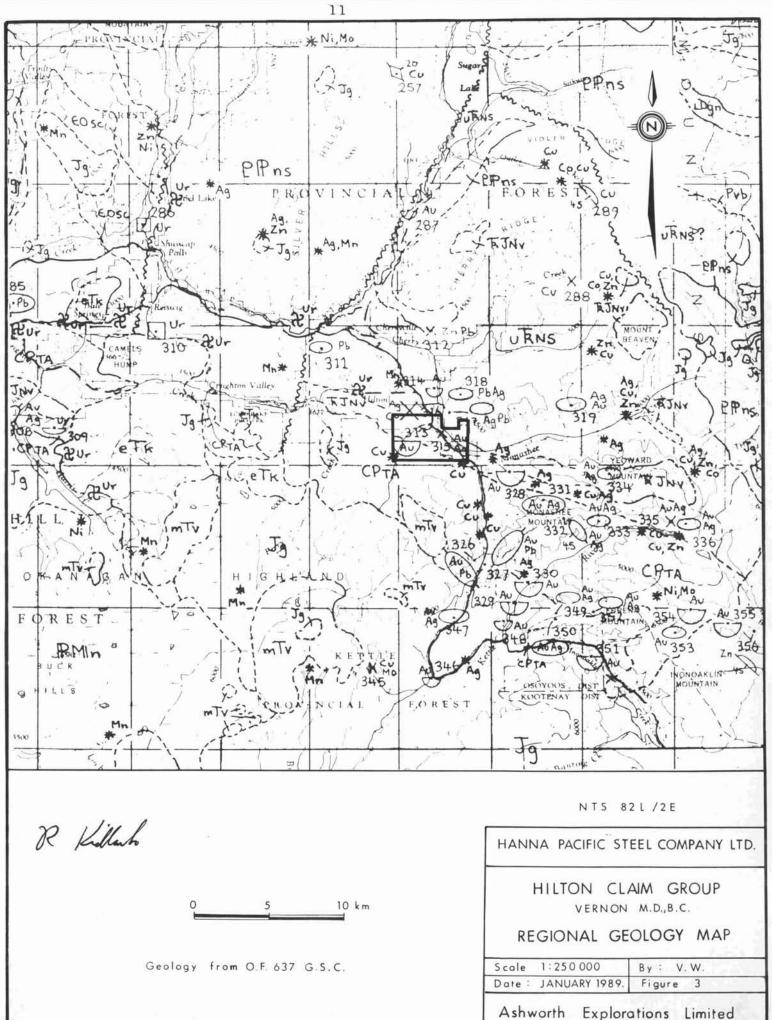
A bulldozed trench was cut on the Snafu claim in July 1983 to investigate a 1981 rock geochem anomaly of 1.23 oz/ton Au, 6.20 oz/ton Ag, 4.20% Pb and 1.86% Zn, obtained from a sample collected by T. Archibald. The highest samples from the trench were from a quartz vein mineralized with galena within a fault. Values from these samples were 4.610 oz/ton Au, 6.98 oz/ton Ag, and 0.403 oz/ton Au, 36.50 oz/ton Ag.

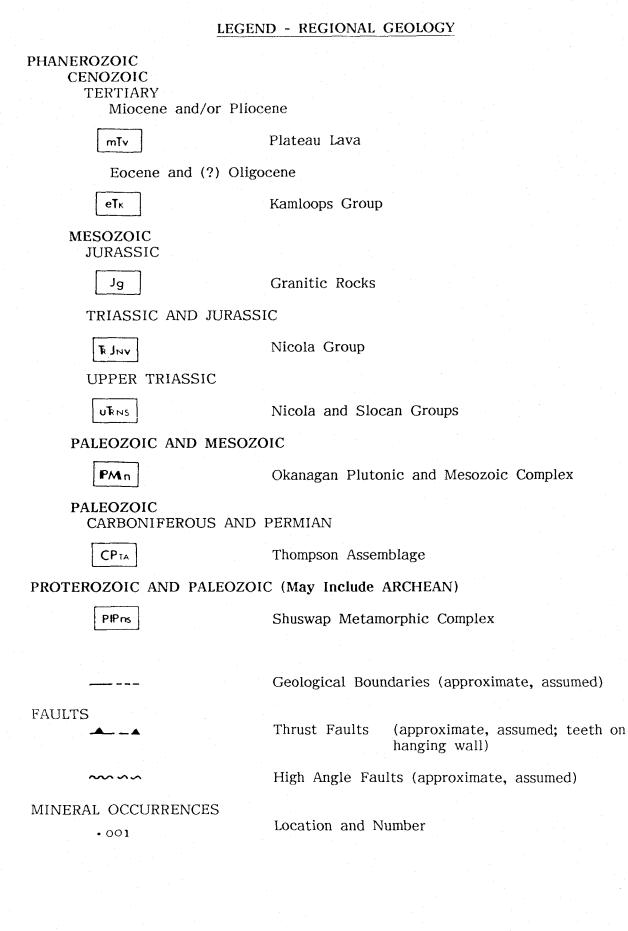
A geological survey carried on in November 1983 by geological consultant Robert Simpson confirmed the significant values from the bulldozed trench. Five rock samples were taken from the bulldozed trench and scree. All five were anomalous with the highest being 1.424 oz/ton Au, 11.66 oz/ton Ag and 5.25% Pb. A sixth sample was taken from a pyrrhotite-rich felsite dyke, 1.0 kilometres to the southwest. This sample yielded an anomalous gold value of 0.010 oz/ton.

A 1987 work program performed by Ashworth Explorations Limited consisted of geological prospecting and sampling, mapping and sampling the bulldozed trench, and tracing possible vein strike extensions from within the trench.

Results reconfirmed significant values in gold, silver and lead within the bulldozed trench (up to 2.203 oz/ton Au, 12.64 oz/ton Ag and 7.95% Pb) (Leriche et al, 1987). Anomalous values in gold, silver, lead and arsenic were encountered in outcrops up to 850 metres northwest of the bulldozed trench. No outcrop was found between the individual showings. Results also indicated that the wallrock carried anomalous values in precious metals (Leriche et al, 1987).

In August 1988, five rock samples were collected by Peter Leriche, geologist, to reconfirm the 1987 results from the bulldozed trench. Four of the five rock samples returned significant results and are described below:


SAMPLE NO.	ASSAY RESULTS	DESCRIPTION
HR88-R1	2.053oz/ton Au 59.2ppm Ag 6,098ppm Pb 4,871ppm Zn	Rusty semi-massive galena rich vein 7 cm wide. From bulldozer trench.
HR88-R2	.117oz/ton Au >100ppm Ag 28,171ppm Pb (2.8% Pb) 4,407ppm Zn	Chip sample across 1.7 m, not in- cluding above vein (R1). From bull- dozer trench.
HR88-R3	.446oz/ton Au	Chip sample across 30 cm quartz vein with blotches of galena. From bulldozer trench.
HR88-R5	1,006 ppm As	Select sample from quartz vein material from blasthole dump.


6. **REGIONAL GEOLOGY** (Figure 3)

The Hilton Claim Group lies in the Monashee Gold Camp, located in the Intermontane Belt near its eastern boundary with the Omineca Crystalline Belt.

The general trend of the Monashee area is characterized by a northwestsoutheast belt of Paleozoic sedimentary/volcanic rocks. These rocks are overlain to the north by Triassic sediments and volcanics and to the south are intruded by Jurassic plutonic rocks.

The oldest unit is the Shuswap Metamorphic Complex which may be Archean in age and contains paragneiss, schist and orthogneiss, lesser amounts of quartzite, marble, amphibolite, calcareous metasediments and numerous small intrusions of

leucocratic granitic rocks of various ages. This extensive unit lies in the northern portion of the Monashee region. The rocks of this Complex have undergone several episodes of deformation, metamorphism and intrusion.

The Thompson Assemblage, of Carboniferous to Permian age, includes argillaceous sediments, volcaniclastic rocks, limestone, conglomerate, breccia, greenstone and tuffs. The individual members are interdigitated on a relatively fine scale and have yielded fossils of Late Mississippian, Pennsylvanian and Permian ages. This unit cuts across the southwest corner of the Hilton claim block.

To the north the Thompson Assemblage is unconformably overlain by rocks of the Upper Triassic Slocan Group and the Upper Triassic-Lower Jurassic Nicola Group of volcano-sedimentary rocks. The Slocan Group contains argillaceous limestone, shale, minor conglomerate, calcareous pelite, greenstone and andalusite-, staurolite- and kyanite-bearing schists. According to the regional map, the Slocan Group cuts across the northwestern portion of the Hilton Claim Group. The Nicola Group, which cuts across the central portion of the Hilton Claim Group, contains andesite and basalt flow rocks, porphyritic augite andesite, breccia, tuffs, minor argillite, limestone and sericitic schist.

To the south the Thompson Assemblage rocks have been intruded by granitic rocks of the Late Jurassic Valhalla Complex. The emplacement of these intrusive rocks is believed to be responsible for the relatively low grade metamorphism and deformation of the older volcanic and sedimentary rocks. The composition of the intrusives is generally granodiorite but has been observed to vary widely (Nelles, 1986).

Eocene/Oligocene(?) Kamloops Group sedimentary and volcanic rocks are exposed west of the Hilton Claim Group and unconformably overlie the older sedimentary, volcanic and metamorphosed rock units of the region.

The youngest rock in the Monashee area is Miocene/Pliocene(?) plateau basaltic lavas. These basalts occur south and southwest of the subject property as relatively small outliers.

A major fault follows the eastern margin of the Shuswap Metamorphic Complex north of the Hilton Claim Group, extends south-southwest, and is truncated by Kamloops Group rocks and the Jurassic granitic pluton, approximately seven kilometres west of the Hilton claim. A second fault, possibly a splay off the first, extends southeast through Slocan Group rocks north of the property.

The general trend in the region surrounding the Hilton Claim Group is northwest-southeast (almost west-east). This is exhibited both structurally and lithologically (as noted earlier for the Thompson Assemblage). Early and late folds, foliation and linear structures in the Thompson Assemblage follow this trend. The Thompson Assemblage rocks have been metamorphosed to subgreenschist facies coeval with Jurassic-Cretaceous orogenic events (Okulitch, 1979).

Within the Takla Assemblage rocks (including the Nicola and Slocan Groups) minor folds, cleavage and foliation are well developed (Okulitch, 1979).

7. 1988 AND 1989 PROGRAM

7.1 SCOPE AND PURPOSE

From December 13, 1988 to February 19, 1989, two geologists and five geotechnicians carried out geological mapping, soil sampling, geophysics and trenching. The purpose of this program was:

- a) to cover the property with detailed geochemical, geological and geophysical surveys in order to define targets for follow-up exploration work,
- b) to evaluate and extend the known showings, and
- c) to find and systematically sample sulphide mineralization on the property.

7.2 METHODS AND PROCEDURES

Utilizing compass and hipchain, a slope-corrected flagged grid was laid out over the claim area. Line intervals were at 100 metres and stations were marked at 50 metre spacings.

Over the area of the main showing the grid was tightened to 50 metre line intervals with 25 metre station spacings. A total of 35 line kilometres were surveyed.

Geological mapping was carried out on the grid lines at a scale of 1:10,000.

A backhoe was used to reopen the main trench, the second showing and four additional trenches. At the end of the program all trenches, except for the main trench, were refilled, fertilized and reseeded.

A total of 100 rocks were collected on the property and analyzed for gold and multi-element ICP by Vangeochem Lab Ltd.

Using a grub hoe, soil samples were collected from the B horizon at all grid stations. Sample depth averaged 30 centimetres and a total of 1,054 samples were collected and analyzed for gold and multi-element ICP by Vangeochem Lab ltd.

A VLF-EM and magnetometer geophysical survey was carried out over the grid area. Readings were taken at all stations and a total of 31 line kilometres were surveyed.

An E.D.A. Omni Plus system (ser. # 38) was used to simultaneously measure total field magnetics data and VLF-EM data from Seattle (24.8 KHz) and Annapolis (21.4 KHz) transmitters. Parameters measured were total magnetic field strength, and VLF-EM field strength, in-phase dip angle and quadrature (see Appendix H for Equipment Specifications).

The VLF-EM in-phase and quadrature results were corrected to have the operator facing south. There were no other adjustments made to the VLF-EM data. Total field magnetic data were corrected for diurnal variation by the internal programming of the Omni IV base station. The Omni IV program interpolates a base station reading corresponding to the time of each field reading and corrects the field reading to a set datum value.

8. **RESULTS**

8.1 **PROPERTY GEOLOGY** (Map 1)

Outcrop is exposed over approximately seven percent of the claim area and is limited to steeper slopes and stream valleys. Due to time restraints and heavy snowfall, the western half of the property was not mapped.

The mapped portion of the property is underlain by the Triassic to Jurassic Nicola Group of volcanics, volcanoclastics and sediments.

The author has subdivided the rocks into a pelitic sedimentary unit and an andesitic volcanic unit.

Pelitic Sediments (Unit 2)

These rocks consist of interbedded black to gray-coloured shales and sandy shales with minor amounts of graywacke and argillite. Disseminated pyrite is a common constituent and averages one to two percent. Bedding is well developed, ranging from thin laminae to 30 centimetres in width.

At the northwest corner of the grid area, the unit has been subdivided into a 2b unit which consists of a black, very fine-grained, pyriferous and well bedded argillite.

Andesite (Unit 1)

The major rock type is a light to dark green coloured, very fine-grained and equigranular to slightly porphyritic andesite. Minor bands of tuff and dacite

were noted but not mapped separately. Generally the rocks are fresh and only minor chloritic alteration was noted.

In places the unit has been altered to a well foliated chloritic phyllite which was probably due to metamorphism on a regional scale.

The Nicola group of rocks is intruded by lamprophyre dykes (Unit A). The dykes are fine-grained, greenish-brown in colour, porphyritic and weather a dark brown colour. Biotite content averages around five percent and pyrite is present in trace amounts.

Structure

Generally the bedding in the sediments strikes in a northwesterly direction and dips from 36 to 83 degrees to the south. The foliation in the volcanic rocks strike and dip parallel to the bedding.

Folding

There are at least four different styles of folding on the property. On the largest scale is an inferred antiform which trends northwesterly along the northwestern corner of the grid area.

On a smaller scale, open folds on a scale of metres were noted at the southern end of TMS1. The folds (F2) have hinge lines that trend at 15 degrees and are accompanied by parasitic and discontinuous (F3) S-folds with axial planes striking 260 degrees and dipping 56 degrees north.

Tight (F4) rootless S-shaped drag folds were noted in TMS1.

8.2 TRENCHING

Backhoe trenches were cut with bulldozer assistance in the area of the Main and the Second Showings.

8.2.1 Main Showing

Four trenches were cut in this area (Figure 4). Trench TMS1 was named the Bulldozer Trench Showing in the 1987 report by P. Leriche and F. Yacoub.

TMS1

1

1

.

A cross-section of this trench is presented on Map 2 and significant sections are presented on Plates 1 to 4.

Most of the trench consists of the sedimentary unit. Intruded into the sediments are two lamprophyre dykes. One vertical dyke occurs near the centre of the trench, while the other dyke occurs at the northwest end of the trench. The sediments are strongly folded and deformed near the dyke contacts. The vertical dyke is offset towards the bottom of the trench.

Within the trench, quartz occurs as small pods in the sediments and as discontinuous veins within two shear zones.

Chip samples from the quartz pods within the sediments returned no significant values.

The Cherry Shear Zone is the most prominent structural feature and is situated

near the centre of the trench. The Hilton Shear Zone is located at the northwestern corner of the trench.

a) Cherry Shear Zone (Plates 1 and 2)

The width of the zone ranges from 2.4 metres to 90 centimetres and averages around 1.2 metres. The sediments within the shear are badly sheared and tight S-shaped drag folds occur near the upper part of the zone.

A discontinuous quartz vein termed the Cherry Vein is situated near the centre of the zone. The upper Cherry Vein (Plate 2) averages 20 centimetres in width and is drag folded along with the sediments, indicating post vein deformation along the shear zone.

The lower Cherry Vein (Plate 1) ranges from one metre to 30 centimetres in width, averages around 70 centimetres and is exposed over a six metre length.

The following continuous chip samples were collected from the Cherry Shear Zone:

SAMPLE NO.	LOCATION	WIDTH (cm)	VALUES
CH89-R64	Lower Cherry	70	.033 oz/t Au, 1.4 ppm Ag, 18 ppm Pb, 219 ppm Zn, 1,095 ppm As.
CH89-R65	Shear Zone above Lower Cherry Vein	60	65 ppb Au, 1.3 ppm Ag, 21 ppm Pb, 148 ppm Zn, 116 ppm As.
CH89-R67	Lower Cherry Vein	100	.063 oz/t Au, 0.9 ppm Ag, 22 ppm Pb, 186 ppm Zn, 217 ppm As.
CH89-R68	Shear Zone above Lower Cherry Vein	70	100 ppb Au, 6.0 ppm Ag, 206 ppm Pb, 20,000 ppm Zn(2.06% Zn), 195 ppm As, 979.6 ppm Cd.

CH89-R69	Shear Zone below Lower Cherry Vein	70	60 ppb Au, 1.5 ppm Ag, 27 ppm Pb, 472 ppm Zn, 414 ppm As.
CH89-R70	Shear Zone below Upper Cherry Vein	100	.114 oz/t Au, 4.2 ppm Ag, 536 ppm Pb, 487 ppm Zn, 154 ppm As.
CH89-R71	Upper Cherry Vein	20	85 ppb Au, 0.4 ppm Ag, 55 ppm Pb, 213 ppm Zn, 33 ppm As.
CH89-R72	Shear Zone- Upper Cherry Vein	60	55 ppb Au, 1.2 ppm Ag, 34 ppm Pb, 196 ppm Zn, 188 ppm As.
CH89-R73	Shear Zone- Upper Cherry Vein	60	150 ppb Au, 1.3 ppm Ag, 121 ppm Pb, 316 ppm Zn, 136 ppm As.
CH89-R74	Shear Zone- Upper Cherry Vein	90	0.599 oz/t Au, 750 ppm Ag(2.22 oz/t Ag), 9,774 ppm Pb(1.05% Pb), 6,198 ppm Zn(.67% Zn), 207 ppm As, 264 ppm Cd.

21

b) Hilton Shear Zone (Plates 3 and 4)

ki i

<u>8.</u>3

. .

.

£.2

à là

The Hilton Shear Zone is partially exposed and is at least two metres wide. A number of discontinuous quartz pods occur within this zone. At the lower exposure the zone is in contact with a lamprophyre dyke (Plate 3). Rock sampling returned the following results:

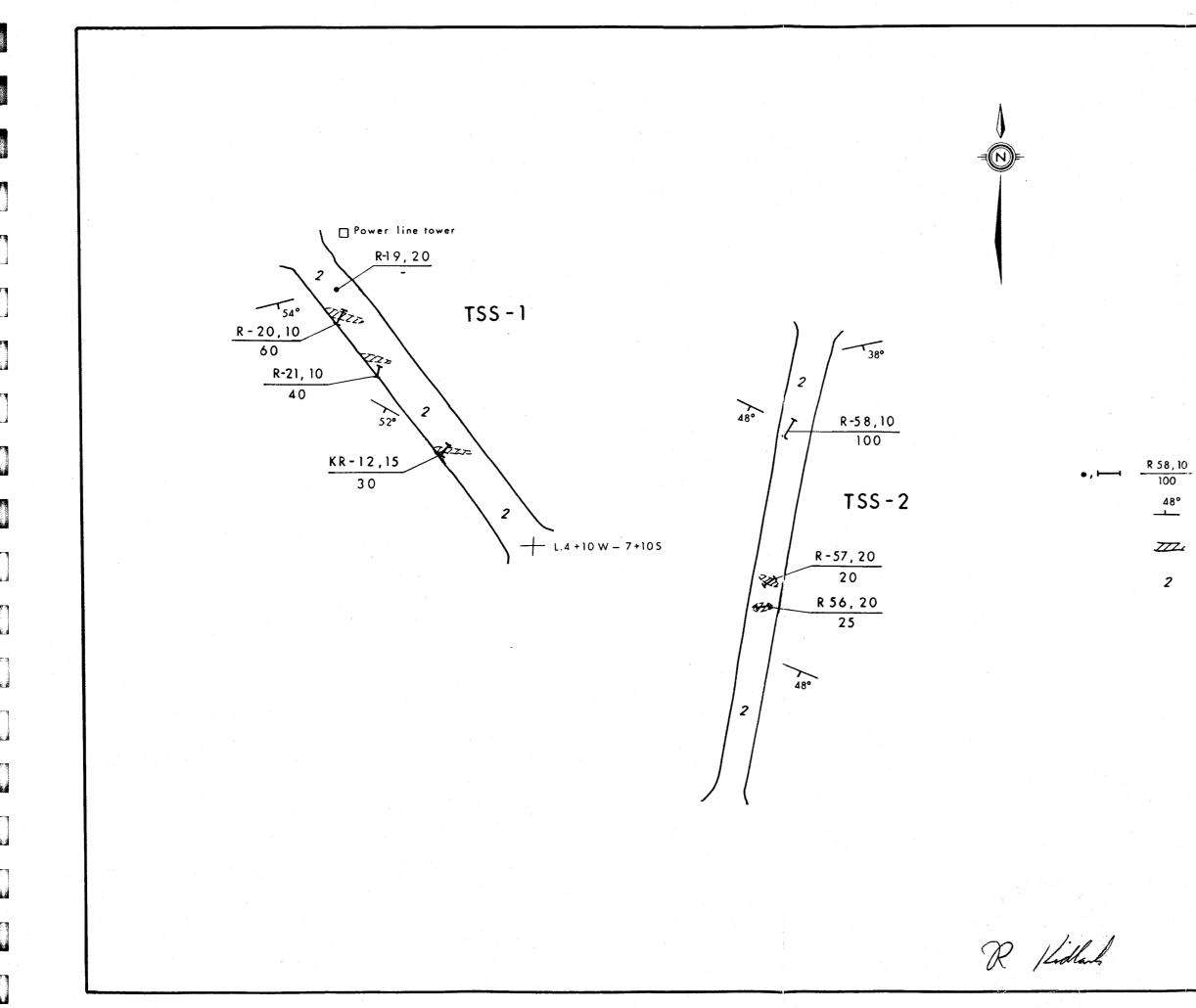
SAMPLE NO.	LOCATION	DIMENSIONS	VALUES
CH89-R76	Quartz lens near bottom of trench at dyke contact.	70 cm X 30 cm	.771 oz/st Au, 750 ppm Ag (2.13 oz/st Ag), 14,326 ppm Pb (1.11% Pb), 3,111 ppm Zn, 973 ppm As.
CH89-R77	Shear Zone just below dyke.	60 cm width	410 ppb Au, 4.5 ppm Ag, 304 ppm Pb, 174 ppm Zn, 285 ppm As.
CH89-R78	Quartz vein at NW end of trench.	40 cm width	420 ppb Au, 0.7 ppm Ag, 87 ppm Pb, 201 ppm Zn, 479 ppm As.

CH89-R79 Shear Zone 100 cm width 770 ppb Au, 1.9 ppm Ag, 148 ppm above R78 Pb, 193 ppm Zn, 1,124 ppm As. location.

TMS2, TMS3, TMS4 (Figure 4)

10

The geology in the trenches consists of sediments. A lamprophyre dyke was located near the south end of TMS4. It strikes in a northwesterly direction and dips 62 degrees to the south. Continuous chip samples over two metre lengths were collected along TMS2 and TMS3. No significant values were returned.


The Hilton and Cherry Shear Zones were not encountered in TMS2, TMS3 or TMS4, possibly due to folding or crossfaulting within the host rocks. TMS2, TMS3 and TMS4 may have been trenched too far north to intersect the shear zones.

8.2.2 Second Showing

The second showing was reopened (TSS1), and an additional trench (TSS2) was cut (Figure 5).

Trench TSS1 was named the Number 1 showing in the 1987 report by P. Leriche and F. Yacoub.

Small lenses of quartz occur within shales and argillites. The lenses range up to 1.5 metres in length and 0.5 metres in width. The sediments are unaltered, strike northwesterly and dip 48 to 54 degrees to the south.

LEGEND

10 Rock sample location, number, Au/ppb Sample width in cm

_ Attitude of bedding

Z Quartz lens

23

Black to grey shale, greywacke and argillite

HANNA PACIFIC STEEL COMPANY LTD. HILTON CLAIM GROUP VERNON M.D., B.C. TRENCH MAP SECOND SHOWING Scale 1:200 By: F.Y. Date : FEBRUARY 1989. Figure : 5 Ashworth Explorations Limited

10 m

Rock chip samples were collected from all quartz lenses and no significant values were returned.

8.3 GEOCHEMICAL SOIL SURVEY

Utilizing a grub hoe, 1,054 soil samples were collected on the grid area. Most samples were taken at a 30 centimetre depth from a well developed B horizon. Overburden depth on the grid area ranged from 30 centimetres to greater than 5.0 metres.

All data was sent to Tony Clark Consulting Services for statistical analysis. For interpretation purposes, correlation coefficients were calculated and frequency distribution histograms were plotted for gold, silver, arsenic, lead and zinc.

8.3.1 Gold in Soils (Maps 3 and 7)

Range:	Not detected to 635 ppb
Mean:	12 ppb
Standard Deviation:	20.84 ppb
Background:	0 - 20 ppb
Anomalous Threshold:	40 ppb

Significant values occur in the vicinity of TMS1 which is centred at L0+50W 8+70S. Since the anomalies are multi-element, other elements are also presented in the following table:

LOCATION	ANOMALOUS VALUES					
	Au(ppb)	Ag(ppm)	Pb(ppm)	Zn(ppm)	As(ppm)	
L0+50W 8+60S	40	1.3			290	
L0+50W 8+75S	110	4.3	94	277	130	
L0+50W 8+80S	45	1.8			93	
L0+50W 8+85S	45	1.8		265	568	
L0+50W 9+00S	635	10.3	435	1,658	635	

The correlation between gold, silver and arsenic is moderately strong.

8.3.2 Silver in Soils (Maps 4 and 8)

Range:	0.1 ppm to 10.3 ppm
Mean:	0.44 ppm
Standard Deviation:	0.53 ppm
Background:	0.1 to 1.4 ppm
Anomalous Threshold:	2.0 ppm

As well as the silver anomalies associated with TMS1, the following anomalies were located:

LOCATION

Silver Value (ppm)

L0+50W 1+00S	2.2
L0+50W 1+50S	2.1
L1+50W 0+50S	2.0
L2+00W 6+00S	4.3
L8+00W 0+50S	2.4
L9+50W 3+00S	2.2
L5+50W 5+50N	2.4

All are one point anomalies and there are no other corresponding element anomalies.

8.3.3 Zinc in Soils (Maps 6 and 10)

Range:	27 to 3519 ppm
Mean:	146 ppm
Standard Deviation:	129.48 ppm
Background:	27 to 200 ppm
Anomalous Threshold:	400 ppm

In addition to the anomalous values associated with TMS1, the following samples

are above threshold:

LOCATION	Zinc Value (ppm)	
L0+00W 4+50N	451	(a two point anomaly at the
L0+00W 5+00N	739	end of the line)
L2+00W 3+50S	3519	(a two point anomaly)
L2+00W 4+00S	474	,, ,
L3+00W 4+50N	508	
L10+00W 1+00S	443	
L12+00W 0+50S	419	
L18+00W 10+00N	919	(a two point anomaly at the
L19+00W 10+00N	465	end of the line)
L20+00W 8+00N	443	

26

There are no corresponding multi-element anomalies.

8.3.4 Arsenic in Soils (Maps 5 and 9)

Range:	Not detected to 635 ppm
Mean:	24.7 ppm
Standard Deviation:	42.15 ppm
Background:	0 - 80 ppm
Anomalous Threshold:	100 ppm

In addition to the arsenic anomaly associated with TMS1 the following anomalies

were located:

One Point Anomalies

LOCATION

Arsenic Value (ppm)

L1+00W 4+25S	103
L2+00W 1+00N	102
L6+00W 1+75S	358
L8+00W 3+50S	107
L10+00W 1+00S	136
L15+00W 4+50S	113
L16+00W 5+50N	106
L16+00W 3+00S	157
L19+00W 5+00S	104
L20+00W 10+00N	115

A sixteen point anomaly with arsenic values ranging from 106 to 506 ppm trends in a northwesterly direction in the area of, and topographically above, TSS1. The anomaly extends in length from L3+00W to L6+00W and is approximately 50 metres in width. This anomaly is also on strike with the main showing.

8.3.5 Discussion of Geochemical Results

Rock sampling in the main showing has indicated a very strong correlation between gold values and arsenic values.

Soil sampling in the area of the main showing has also indicated a strong correlation between gold values and arsenic values.

Since arsenic is more mobile in soils than gold, arsenic is concluded to be a good pathfinder for gold mineralization on the property. Hence the widespread and high order arsenic anomaly in the area of the second showing is considered to be significicant.

8.4 VLF-EM AND MAGNETOMETER SURVEYS

Two northwest-trending gaps in data are present in each of the four geophysical maps. These represent the two powerlines where geophysical data was not collected due to strong interference.

t-wes sys 800

8.4.1

Four interpreted VLF-EM conductors occur on the property. All four systems trend east-west.

Conductor system A (A1 and A2) is a dual subparallel conductor, trending eastwest for 800 to 900 metres. A1 extends from L14+00W 1+00S to L6+00W 3+50S and A2 extends from L14+00W 3+75S to L4+00W 5+25S. Both conductors appear to be offset approximately 50 metres after they cross the west powerline and Half Mile Creek. In-phase response is medium to strong and shows a strong correlation with weak to strong field strength. A reverse quadrature response is weak to medium when present. The system remains open to the west.

Conductor B trends at 90 degrees from L8+00W 9+35S to L5+50W 9+00S (250 metres in length). A 50 metre offset occurs between lines 7+00W and 6+50W. It exhibits medium in-phase response, weak reverse quadrature and weak to moderate field strength.

Conductor C trends east-west from L5+00W 1+75N to L0+00 3+25N for a length of 525 metres. The conductor is broken at Line 3+00W where the data has been affected by noise. The in-phase and field strength responses are weak to medium, growing stronger to the west.

Conductor D trends at 65 degrees from L10+00W 7+00S to L7+00W 5+50S for an overall length of 350 metres. The in-phase response is weak to medium, quadrature is non-existent to weak, and field strength is weak.

VLF Electromagnetic Survey (Figures 11 and 12)

8.4.2 Magnetometer Survey (Figures 13 and 14)

The magnetic environment is quiet, with data ranging from 57,200 to 57,800 gammas. The background level is approximately 57,400 gammas. Two significant east-west magnetic trends are interpreted.

The first linear trend (M1) extends from L14+00W 3+50S to L5+00W 3+50S. The trend is interrupted at Line 10+00W, at the intersection of Half Mile Creek and Line 7+00W (west powerline). Values along the trend are 100 to 200 gammas above background. It remains open to the west.

The second linear magnetic anomaly (M2) is at the south end of the grid from L8+00W to L5+50W (250 metres length). Values range up to 57,800 gammas or 400 gammas above background.

8.4.3 Geophysical Interpretation

Dual conductor A is likely structural (two parallel faults) in nature. Strong crossovers at points 8+00W 4+62S, 8+00W 1+87S, 7+00W 2+00S, 6+00W 3+62S could represent metallic (sulphide) mineralization. Conductor system A is flanked to the south by the magnetic anomaly M1. This linear magnetic high could reflect a change in lithology, such as a mafic dyke. Lamprophyre dykes trending eastwest occur on the Hilton property and are associated with mineralized shear zones, as seen at the Main Trench.

Conductor B is also interpreted as a structural shear zone. Again, it is flanked to the south by magnetic anomaly M2. This system appears to trend towards the Main Trench. Noisy data and powerline interference prohibit any definite

conclusions regarding a continuous shear zone between the Main Trench and Conductor B.

Conductors C and D are probably shear zones. These should be checked by geological mapping and blast trenching.

8.5 **DISCUSSION OF RESULTS**

VLF-EM conductors, significant geochemical soil anomalies and rock sampling turned up the following areas of interest:

Area 1

Rock sampling and mapping of the Main Zone (TMS1) turned up two mineralized shear zones. The Cherry Shear Zone contains a discontinuous quartz vein which returned values up to 0.063 oz/st gold and 0.9 ppm silver over a true width of 100 centimetres. Samples from the quartz-free shear zone returned values up to 0.599 oz/st gold, 1.05% lead and 2.22 oz/st silver over a true width of 90 centimetres.

The Hilton Shear Zone contains discontinuous quartz veins which returned values up to 420 ppb gold and 0.7 ppm silver over a true width of 40 centimetres. A select grab samples from one quartz lens having dimensions of 70 centimetres X 30 centimetres returned a value of 0.771 oz/st gold. Samples from the quartzfree shear zone returned values up to 770 ppb gold and 1.9 ppm silver over a true width of one metre. Soil samples collected near TMS1 were anomalous in gold (up to 635 ppb), silver, arsenic, lead and zinc.

Both of these mineralized shear zones are open along strike and down dip.

<u>Area 2</u>

A sixteen point arsenic anomaly with values ranging from 106 to 506 ppm is situated in the vicinity of the Second Showing. This anomaly remains to be explained.

Area 3

VLF-EM conductor A and magnetic anomaly M1 have been interpreted to represent the presence of a possible mineralized shear zone flanked by a mafic dyke.

Area 4

VLF-EM conductor B and magnetic anomaly M2 may represent an extension of the Cherry and Hilton Shear Zones to the west.

<u>Area 5</u>

VLF-EM conductor C has been interpreted as a shear zone.

<u>Area</u> 6

VLF-EM conductor D has been interpreted as a shear zone.

9. CONCLUSIONS

The authors believe that the Hilton Claim Group has good potential for hosting an economic gold deposit for the following reasons:

- Geological mapping and rock sampling returned potential economic gold values from the Cherry and Hilton Shear Zones over significant widths. Diamond drill targets have been established.
- Five additional areas of interest have been outlined from mapping, soil sampling and VLF-EM geophysical surveys.

For these reasons, further exploration work is warranted and recommended.

10. RECOMMENDATIONS

Phase II

Phase II is designed to test the Cherry and Hilton Shear Zones along strike and down dip by diamond drilling, to follow-up anomalies from Areas 1 to 6 by trenching, and to evaluate the unexplored parts of the property.

- 1) Diamond drill in a fence pattern to test the Cherry and Hilton Shear Zones at depth. Total diamond drilling would amount to 1,350 metres (4,100 feet).
- Bulldoze and backhoe trench in the area of the arsenic anomalies and/or over the four VLF-EM conductors.
- Diamond drill the arsenic anomalies and select VLF-EM conductors if trenching outlines favourable targets.
- 4) Extend the existing grid westward to cover the entire property.
- 5) Soil sample the extended grid.
- 6) Perform a VLF-EM and magnetometer survey to cover the extended grid.

7) Geologically map and prospect the unmapped area of the property.

Phase III

Phase III would be contingent upon favourable results from Phase II and would consist of more detailed diamond drilling and trenching.

11. PROPOSED BUDGET

Phase II (1988 dollars)

(Project Geologist, Field Geologist; 29 field days & Field Geologist, Party Chief, 3 Geotechnicians; 6 field days)

Project Preparation	\$ 2,000
Mob/Demob (includes transportation, freight and wages)	6,000
Field Crew	24,480
Field Costs [including Food and Accommodation, Communica- tions, Freight, Supplies, 1 4X4 Truck for 29 days, 1 4X4 Truck for 6 days]	15,365
ContractorsGeophysics\$360/km x 30 kmDiamond Drilling\$100/m x 1,350 m(all inclusive)Bulldozer/Backhoe\$120/hr x 40 hrs	10,800 135,000 4,800
Lab AnalysisSay 600 soil samples @ \$14/sample\$ 8,400Say 300 rock samples @ \$18/sample5,400	13,800
Reclamation and Permits	3,000
Supervision and Report	12,425
Sub-total	\$ 227,670
Administration 15%	34,151
Total	\$ 261,821
(Say	\$)

Respectfully submitted,

R 120

Roger G. Kidlark, B.Sc., F.G.A.C. Dated February 28, 1989

beaut

Fayz F. Yacoub, B.Sc.

LIST OF PERSONNEL

The following personnel were employed during the 1988/89 Field Program on the Hilton Claim Group.

Roger G. Kidlark Fayz F. Yacoub Brian A. Chore Robert Paeseler Vince G. Warwick Andrew Molnar Carl Gjendum Project Geologist Geologist Geophysical Operator Geotechnician & Party Chief Geotechnician Geotechnician

REFERENCES

Antelope Resources Limited Prospectus, February 15, 1988.

- Archibald, T., 1980. A Prospecting Report on the Midnight Nails 1 and 2 Claims, Vernon Mining Division, Assessment Report 8,770.
- Archibald, T., 1980. A Prospecting Report on the Carryon Claim Group, Vernon Mining Division, Assessment Report 8,993, May 1980.
- Archibald, T., 1986. A Very Low Frequency Survey on the Snafu, Carryon, Carryon Two Claim Group, Vernon Mining Division, Assessment Report 14,825, May 8, 1986.
- B.C. Minister of Mines Report, 1898. 1899. 1901. 1905. 1913. 1914. 1928.
- B.C. Minister of Mines, Bulletin 20, 1944.
- Callaghan, B., 1986. Report on the Trenching and Geological Mapping Conducted on the Pita 16 Mineral Claim, Vernon Mining Division, for Mohawk Oil Co. Ltd., Assessment Report 14,451, January 1986.
- Clendenan, A.D., 1984. Diamond Drilling Assessment Report on the Top Property (Top & Bottom Claims), McIntyre Lake, Vernon Mining Division for Brican Resources Ltd., Assessment Report 12,749, June 15, 1984.
- Dawson, J.M., 1973. Geological and Geochemical Report on the Monashee Pass Property for Keda Resources (1973) Ltd., Assessment Report 4,771, December 14, 1973.
- Gilmour, W.R. & Daughtry, K.L., 1983. Geochemical & Geological Assessment Report on the St. Paul and Monashee Properties, Vernon Mining Division, for Brican Resources Ltd., Assessment Report 12,050, December 13, 1983.
- Leriche, P.D. & Yacoub, F.F., 1987. Geological Report on the Hilton Claim Group, Vernon Mining Division for Ashworth Explorations Limited, June 1987.
- Leriche, P.D. & Yacoub, F.F., 1988. Geological/Geochemical Report on the Hilton Claim Group, Vernon Mining Division, for Donald A. Simon, Internal Draft, October 1988.
- Minfile, Old Joe and Heckman Creek.
- Nelles, D.M., 1986. Geochemical Report on the Aim Property, Vernon Mining Division for K.D. Resources Inc., November 28, 1986.

REFERENCES, Cont'd

Okulitch, A.V., 1979. Geological Survey of Canada, Open File 637.

Schmidt, U. & Watson, I.M., 1983. Report on Geochemical Survey and Reconnaissance Mapping, Monashee West Group, Vernon Mining Division, for Nakusp Resources Ltd., Assessment Report 11,789, December 20, 1983.

Simpson, R., 1983. A Geological Survey on the Snafu, Carryon, Carryon Two, and Midnight Nails One and Two Claim Groups, Vernon Mining Division, for T. Archibald, Assessment Report 11,892, December 15, 1983.

Sookochoff, L., 1983. Geological Evaluation Report on the Monashee Property, Vernon and Slocan Mining Division, for Demus Petro Corporation, February 7, 1983.

Vancouver Stockwatch, June 2, 1988 August 5, 1988. August 19, 1988. November 21, 1988.

Waldner, M.W., 1985. Report on the Geology and Geochemical Surveys Conducted on the Pita 16 Claim, Vernon Mining Division, for Mohawk Oil Co. Ltd., Assessment Report 13,701, May 1985.

CERTIFICATE

I, ROGER G. KIDLARK, of 303 - 9110 Halston Court, Burnaby, B.C. do hereby certify that:

- 1. I am a graduate of the University of Toronto with a Bachelor of Science Degree in Geology, 1974.
- 2. I am a Fellow in good standing with the Geological Association of Canada.
- 3. I have practised my profession as a geologist for twelve years in British Columbia, Yukon and Northwest Territories, Ontario and Nova Scotia.
- 4. The information, opinions and recommendations in this report are based on fieldwork carried out under my direction and published and unpublished literature. I was present on the subject property from February 8 to 19, 1989.
- 5. I have no interest, direct or indirect, in the subject claims or the securities of Hanna Pacific Steel Company Limited.
- 6. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

ASHWORTH EXPLORATIONS LIMITED

Roger G, Kidlark, B.Sc., F.G.A.C.

Dated at Vancouver, February 28, 1989.

CERTIFICATE

I, FAYZ F. YACOUB, of 13031 - 64th Avenue, Surrey, British Columbia, V3W 1X8, do hereby declare:

- 1. That I am a graduate in geology and chemistry from Assuit University, Egypt (B.Sc. 1967), and Mining Exploration Geology of the International Institute for Aerial Survey and Earth Sciences (I.T.C.), Holland (Diploma 1978).
- 2. I have actively pursued my career as a geologist for the past fifteen years.
- 3. The information, opinions, and recommendations in this report are based on fieldwork carried out by myself, and on published and unpublished literature. I was present on the subject property during the December 1988 to February 1989 work programs.
- 4. I have no interest, direct or indirect, in the subject claims or the securities of Hanna Pacific Steel Company Limited.
- 5. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of private or public financing.

ASHWORTH EXPLORATIONS LIMITED

.

Fayz F. Yacoub, B.Sc.

Dated at Vancouver, February 28, 1989

ITEMIZED COST STATEMENT

(Party Chief, 2 Geotechnicians; December 13-15/88. Field Geologist, Party Chief, 3 Geotechnicians; Dec. 20-23/88. Project Geologist, Field Geologist, Party Chief, 3 Geotechnicians; Feb. 9-18/89)

Project preparation				\$ 2,400
Mob/Demob (includes transportation, freight and wages)	Trip 1 Trip 2 Trip 3	\$	1,750 2,725 3,430	7,905
Field Crew Project Geologist \$325/day x 10 days Field Geologist \$275/day x 14 days Party Chief \$250/day x 17 days Geotechnicians \$210/day x 48 mandays		\$	3,250 3,850 4,250 10,080	21,430
<u>Field Costs</u> Food and Accommodation \$70/day x 89 Communications \$35/day x 17 days Freight Supplies 4X4 Truck \$110/day x 27 days	mandays	\$	6,230 595 250 850 2,970	10,895
Magnetometer and VLF-EM Survey \$360)/km x 30	km		10,800
Backhoe \$80/hr x 35 hrs				2,800
Reclamation				1,750
Lab Analysis 1,054 soil samples @ \$13/sample Au by Aqua Regia/Sol Ext, Multi- element ICP	-	\$	13,702	
100 rock samples @ \$18/sample Au by FA/AA, Multi-element ICP Thin Section Analysis			1,800 630	16,132
Supervision and Report Supervision Report Writing Map Plotting and Drafting Word Processing, Copying, Binding		\$	4,500 3,575 1,500 <u>650</u>	10,225
Sub-total				\$ 84,337
Administration 15%				12,650
Total				\$ 96,987

39

-

14 0

APPENDIX A

ROCK SAMPLE DESCRIPTIONS

ROCK SAMPLE DESCRIPTIONS - HILTON CLAIM GROUP

SAMPLE NO.	DESCRIPTION	WIDTH (cm)
CH88-R01	Chip sample; Silicified, light gray, fine-grained volcanic dacite, 20-30% quartz, minor pyrite.	30
CH88-R02	Chip sample; Small silicified zone of dacite hosting 5 cm wide barren sugary quartz vein.	20
CH88-R03	Chip sample; Dark brown to black shale, shear zone, bedding 100 degrees/75 degrees south, with moderate to intense oxidation, limonite in fract- ures.	200
CH88-R04	Chip sample; As sample CH88-R03.	200
CH88-R05	Chip sample; Shear zone with thin bedded black shale strongly oxidized, moderate silicification. Five cm quartz vein with minor oxides filling vugs.	, 200
CH88-R06	Channel sample; Barren quartz vein, 15 cm wide, strikes north, hosted by green volcanics.	15
CH88-R07	Channel sample; Milky quartz vein, 15 cm wide, 1-2% light brown rusty Fe oxide lenses.	15
CH88-R08	Chip sample; Massive barren quartz vein, striking north/vertical, minor rust along cleavage.	15
CH88-R09	Chip sample; 20 cm quartz vein hosted by silici- fied light gray dacite.	20
CH88-R10	Chip sample; Argillic altered dacite, numerous quartz veins 1 to 15 cm wide, minor calcite.	500
CH88-R11	Chip sample; Hematitic quartz lens, 20% hematite, minor limonite in vugs.	100
CH88-R12	Float; Angular quartz vein material, hematitic with no visible metallic minerals.	
CH88-R13	Chip sample; Silicified dacite with 10% quartz, minor calcite, rusty dark brown on weathered sur- faces.	50
CH88-R14	Float; Local angular crystalline quartz material, barren with minor Fe oxides along crystal faces.	

and a لعنا

CH88-R15 to CH88-R18	Grab samples collected from small, old, hand-dug pit. Hematitic, dark brown, rusty quartz vein, 2% disseminated pyrite, relic light gray volcanic fragment textures.	
CH89-R19	Float; Angular, silicified thin-bedded black shale with gray quartz veinlets .1 to .5 cm wide, no metallic minerals.	
CH89-R20	Chip sample; Thin bedded black shale, bedding 290 degrees/70 degrees SW, quartz veinlets. No visible metallic minerals.	60
CH89-R21	Chip sample; Silicified black shale, trace pyrite, quartz veins .5 to 1.5 cm wide along bedding planes.	40
CH89-R22	Float; Angular quartz, milky dark brown to reddish, along cleavage, trace pyrite.	
CH89-R23	Float; Angular milky quartz vein material (10-15%), dark brown iron staining, no sulphides.	
CH89-R24	Select sample; Milky quartz lens, reddish with minor iron staining. Host is black gray to black argillite.	
CH89-R25	Grab sample; Quartz vein 3 km south of Half Mile Creek. Barren, light brown to white milky quartz, host is black shale.	
CH89-R26	Grab sample; Milky quartz lens with 5-7% iron staining.	
CH89-R27	Chip sample; Oxidized volcanic andesite, 20% dark brown iron staining and minor limonite along fractures.	100
CH89-R28	Chip sample; Strong oxidation zone, orange to dark brown limonite and hematite. Host is altered, foli- ated andesite.	500
CH89-R29	Chip sample; Rusty, dark gray to black andesite. Foli- ation 285/80SW, limonite and hematite within foli- ations.	100
CH89-R30	Chip sample; Thin bedded black shale, 20-30% quartz veinlets parallel to bedding.	30
CH89-R31	Channel sample; Quartz vein and wall rock of silici- fied shale, vein strikes 290/75SW.	20
CH89-R32	Channel sample; Barren, milky quartz vein, 5-7% red- dish iron staining.	10
CH89-R33	Select sample; Mineralized quartz vein boulder, dis- seminated pyrite, chalcopyrite, 2-3% reddish Fe-stain- ing along cleavages.	30

CH89-R34	Float; 30X60 cm angular reddish quartz boulder, trace pyrite.	
CH89-R35	Float; Milky, barren quartz vein material with trace pyrite.	
CH89-R36	Chip sample; Oxidized zone, dark brown, soft, weath- ered rocks hosted by altered dacite tuff.	60
CH89-R37	Grab sample; Light brown-reddish, altered subcrop of graywacke, extensive Mn oxides.	
CH89-R38	Float; Milky quartz vein materials, 2-3% white flaky mica, dark gray Mn oxides.	
CH89-R39	Channel sample; Milky quartz vein, 45 cm wide, strik- ing 280/vertical, 2-3% pyrite and chalcopyrite.	45
CH89-R40	Select sample; Quartz lens hosted by andesite, 3-5% fine-grained pyrite.	20
CH89-R41	Chip sample; Brown to dark black laminated shale, well developed bedding, striking 270/85S, 1-2mm quartz veinlets within sediments. Trench TMS2.	200
CH89-R42	Chip sample; Laminated black shale, strong silici- fication with quartz veins up to 10 cm wide, trace pyrite, bedding 280/80S. Trench TMS2.	200
CH89-R43	Chip sample; Rusty, dark brown to black laminated shale, bedding 275/80S, minor silicification.	200
CH89-R44	Chip sample; Silicified pyritiferous black shale and graywacke, 10-15% quartz veinlets, 1-2% fine- grained pyrite.	200
CH89-R45	Chip sample; Dark black shale, minor graywacke, trace quartz and pyrite. Trench TMS2.	200
CH89-R46	Chip sample; Light gray sugary quartz veins, 1-5 cm wide, hosted by dark black shale, 1-2% fine-grained pyrite. Veins strike 270/60S. Chip across vein and host rock. Trench TMS2.	200
CH89-R47	Chip sample; Black laminated shale with minor silici- fication, trace fine-grained pyrite. Trench TMS2.	200
CH89-R48	Chip sample; Thin bedded shale with rusty brown round- ed oxide lenses, 1-2 mm, bedding strikes 265/62S. Trench TMS2.	200
CH89-R49	Chip sample; Same as CH89-R48. Trench TMS2.	200

March of Colored

CH89-R50	Chip sample; Barren sugary quartz vein striking 285 degrees, trace pyrite. Trench TMS2.	15
CH89-R51	Chip sample; Dark gray to black laminated shale, moderate to strong silicification with up to 30% sugary quartz, 1-2% iron staining. Trench TMS4.	60
CH89-R52	Chip sample; Silicified dark black shale with up to 30% quartz, no sulphides. Trench TMS4.	70
CH89-R53	Grab sample; Lamprophyre dyke, iron rich with dark brown biotite in fine-grained dark gray ground- mass. Trench TMS4.	
CH89-R54	Grab sample; Milky, barren quartz lens. Trench TSS1.	
CH89-R55	Grab sample; Another quartz lens at Trench TSS1. Trace pyrite, 1-2% light brown iron oxides. Host rock is black shale.	
CH89-R56	Grab sample; Same as sample CH89-R55. No mineralization. Trench TSS2.	
CH89-R57	Grab sample; Same as sample CH89-R55. Trench TSS2.	
CH89-R58	Chip sample; Laminated rusty, weathered black shale. Bedding 292/48S, minor silicification. Trench TSS2.	100
CH89-R59	Chip sample; Folded, weathered, laminated shale, minor silicification, quartz veinlets 2-3 mm. Trench TMS1.	80
CH89-R60	Chip sample; Shear zone with soft, weathered shale with dark brown hematitic bands. Trench TMS1.	70
CH89-R61	Chip sample; Same zone as CH89-R60. Trench TMS1.	80
CH89-R62	Chip sample; Same zone as CH89-R60. Bedding 280/ 65S. Trench TMS1.	60
CH89-R63	Grab sample; Milky, barren quartz lens with relics of dark gray fragments. Trench TMS1.	20
CH89-R64	Channel sample; Quartz vein striking 285/29S. White massive quartz with light brown to reddish colour along cleavage. Trace pyrite and pyrrhotite. Trench TMS1.	70
CH89-R65	Chip sample; Wallrock of vein in CH89-R64. Weathered shale, dark brown lenses of iron oxides 1-3 mm wide. Silicification present at contact with the vein. Trench TMS1.	60

CH89-R66	Grab sample; Lamprophyre dyke, light to dark gray groundmass, fine dark brown altered biotite pheno- crysts. Strikes 265 and vertical. Trench TMS1.	
CH89-R67	Channel sample; Quartz vein 90 cm wide. Milky quartz with light brown rusty appearance, no metallic min- erals. Trench TMS1.	90
CH89-R68	Chip sample; Silicified shale which is the wall rock to vein sampled by CH89-R67. Altered, sheared laminated shale. Trench TMS1.	70
CH89-R69	Chip sample; Light brown sheared laminated shale, 1-3 mm subrounded oxide lenses, 1-5mm quartz veinlets, bedding 280/30S. Trench TMS1.	70
CH89-R70	Chip sample; Shear zone of laminated, well bedded dark gray to black shale, moderate silicification at contact with quartz lens.	100
CH89-R71	Channel sample; Milky quartz vein, dark brown rust along cleavage, striking 280/50S. Trench TMS1.	20
CH89-R72	Chip sample; Shear zone. Sheared dark gray shale, minor silicification, dark brown oxides. Trench TMS1.	60
CH89-R73	Chip sample; Folded laminated shale, minor silicifi- cation.	60
CH89-R74	Chip sample; Shear zone. Well bedded shale with 20% light brown oxide bands parallel to bedding. Trench TMS1.	90
CH89-R75	Chip sample; Silicigfied shear zone, well bedded shale 20% quartz, 5-7% iron staining, bedding 290/50S. Trench TMS1.	50
CH89-R76	Grab sample; Rusty, vuggy quartz pod loaded with gal- ena, pod is 30 X 20 cm.	
CH89-R77	Chip sample; Silicified rusty quartz pod 30 X 10 cm, hosted by dark gray to black silicified well-banded shale, striking 280 degrees.	60
CH89-R78	Channel sample. Quartz vein 40 cm wide, white milky quartz, minor pyrite, trace pyrrhotite. Striking 290 degrees, unknown dip.	40
CH89-R79	Chip sample. Shear zone, well bedded shale, minor silicification, attitude of bedding 290 degree strike, dipping south.	100
CH89-R80	Float; Quartz material taken fro 1'X2' angular boulder, milky quartz with light to dark brown iron staining.	

CH89-R81	Chip sample; Milky, barren quartz vein, brown to red- dish colour along cleavage. Host is andesite flow.	40
CH89-R82	Chip sample; Another quartz vein 5 m west of CH89-R81. Similar type, striking 62/45NW.	40
CH89-R83	Chip sample; Another quartz vein similar to CH89-R81.	40
CH89-R84	Chip sample; Milky barren quartz vein striking 62/63NW, relics of dark gray volcanic fragments.	40
CH89-R85	Chip sample; Milky barren quartz vein.	25
CH89-R86	Chip sample; Altered, brecciated light to dark brown volcanic rocks. Moderate argillic alteration, strong limonite.	150
CH89-KR01	Float; Silicified andesite, 5% fine-grained dissemi- nated pyrite.	
CH89-KR02	Chip sample; Silicified andesite adjacent to quartz vein (Sample CH89-KR03), disseminated pyrite.	30
CH89-KR03	Channel sample; Quartz vein striking 228/42N, rusty, no obvious sulphides.	90
CH89-KR04	Channel sample; Quartz vein as CH89-KR03.	90
CH89-KR05	Chip sample; White quartz lens, hosted by light gray volcanic andesite, 90 cm long X 60 cm wide.	60
CH89-KR06 to CH89-KR11	Chip sample; Well bedded, sandy black shale, with laminated intervals of quartzite-argillite towards north end of trench TMS3.	200
CH89-KR12	Chip sample; Small rusty quartz lens, 30 cm X 30 cm, From second showing, TSS1.	30
CH89-KR13	Float; Rusty boulder of quartz float, no sulphides.	
CH89-KR14	Chip sample; Alteration zone, silicified, argilli- cally altered, foliated andesite, quartz pod-30 cm X 10 cm, 5% disseminated pyrite throughout.	400

and the second se

APPENDIX B

ANALYTICAL REPORTS

.

1.0

VANGEOCHEM LAB LIMITED

F

3.5

1.

1

in 1

Sec. 1

P

10.0

1

.

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

ASHWORTH EXPLORATION 1010 - 789 W. Pender	DATE:	Jan 11	1989
Vancouver, B.C. V6C 1H2	REPORT#:	890003	GA

PROJECT#: 259 SAMPLES ARRIVED: Jan 03 1988 REPORT COMPLETED: Jan 11 1989 ANALYSED FOR: Au (FA/AAS) ICP

INVOICE#: 890003 NA TOTAL SAMPLES: 18 SAMPLE TYPE: ROCKS REJECTS: SAVED

SAMPLES FROM: ASHWORTH EXPLORATION LTD. COPY SENT TO: ASHWORTH EXPLORATION LTD.

PREPARED FOR: MR. PETER LERICHE

ANALYSED BY: VGC Staff SIGNED:

GENERAL REMARK: None

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B.

MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 890003 GA	JOB NUMBER: 8	90003	ASHMORTH EXPLORATION (LTD.	PAGE 1	OF	1
SAMPLE #	Au						
	ppb						
CH98-R01	30						
CH88-R02	10						
CH88-R03	30						
CH88-R04	20						
CH88-R05	45						
CH88-R06	15						
CH88-R07	30						
CH88-R08	10						
CH88-R09	20						
CH88-R10	10						
CH88-R11	5						
CH88-R12	15						
CH88-R13	15						
CH88-R14	10						
CH88-R15	240						
CH98-R16	30						
CH88-R17	20						
CH88-R18	70						

DETECTION LINIT nd = none detected

VANGEOCHEM LAB LIMITED

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. VSL 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717 - stille

.

1

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 NL OF 3:1:3 HCL TO HNO3 TO H20 AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SN, NN,FE,CA,P,CR,MG,BA,PD,AL,NA,K,W,PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NGT DETECTED, -= NGT ANALYIED

COMPANY: ASHWORTH EXPL ATTENTION: P LERICHE PROJECT: 259								REPORT#: 890003 PA Job#: 890003 Invdice#: 890003 NA						DATE RECEIVED: 89/01/03 DATE COMPLETED: 89/01/13 COPY SENT TO:						ANALYST 202									
																						PAG	E 1 OF	t				$\left(\right)$	
SAMPLE NAME	AG PPH	AL X	AS PPN	AU PPN	8A PPM	81 Ppm	CA X	CD PPM	CO PPM	CR PPM	CU PPN	FE 1	K I	HG X	MN PPM	MO PPN	NA Z	NT PPN	P I	PB PPN	PD PPN	PT P PN	SB PPM	SN Pph	SR PPM	U PPM	N PPN	ZN PPM	
CH88-R01 CH88-R02 CH88-R03 CH88-R04 CH88-R04	.2 .6 1.5 2.1 2.2	.70 .91 2.09 1.88 2.05	ND 626 252 78	ND ND ND ND	31 33 96 120 90	ND ND ND 3	.58 2.13 .25 .15 .12	.3 .4 8.4 4.3 7.4	7 8 51 16 22	58 104 87 92 99	9 20 123 119 163	1.22 1.43 7.97 5.76 6.26	.14 .34 .32 .26 .26	.34 .46 .85 .94 .78	473 488 1231 260 224	2 2 14 10 13	.04 .03 .01 .01 .01	17 11 110 56 96	.09 .08 .10 .11 .09	56 21 45 38 40	ND ND ND ND	ND ND ND ND	ND ND ND ND	2 3 3 2 2	67 121 29 43 19	ND ND ND ND	ND NĐ ND ND	41 45 2029 790 676	
CH88-R06 CH88-R07 CH88-R08 CH88-R09 CH88-R10	3.1 .6 2.1 1.5 1.1	.84 .31 .23 .79 .68	8 ND ND 596 334	ND ND ND ND	46 34 19 97 67	ND ND ND ND	1.04 .13 .10 3.60 2.47	.5 .1 .1 7.6 1.1	7 3 3 10 10	73 153 293 36 35	52 39 31 32 23	1.99 .64 .58 3.10 3.05	.21 .04 .05 .60 .45	.47 -12 .09 .40 .46	588 132 103 1319 972	4 3 9 3 3	.01 .01 .01 .01 .03	87 13 10 9 9	.05 .01 .01 .17 .13	14 6 3 37 79	ND ND ND ND ND	ND ND ND ND	ND ND ND ND	1 ND 1 1 1	75 12 7 228 235	ND ND ND ND	ND ND ND ND	127 56 40 650 122	
CH88-R11 CH88-R12 CH88-R13 CH88-R14 CH88-R15	.6 .1 .2 .1 .6	.57 .24 1.19 .51 .30	263 23 28 ND 1395	ND ND ND ND ND	45 35 51 32 29	ND ND ND ND	2.88 .68 5.80 16.22 / 1.10	.1 .1 .4 .1 .1	5 4 8 1 8	83 253 27 38 97	13 11 17 12 19	1.34 .73 2.32 .57 1.31	.45 .12 .89 2.19 .19	.31 .10 .66 .18 .13	716 440 1297 764 465	3 9 2 1 3	.04 .02 .05 .03 .01	99 12 9 5 109	.06 .02 .11 .01 .04	176 31 31 21 51	ND ND ND ND	ND ND ND ND	ND ND ND ND	I ND ND ND	449 83 696 520 75	ND ND ND ND	ND ND ND ND	50 26 74 13 66	
CH88-R16 CH88-R17 CH88-R18	.3 .2 .1	.35 .17 .23	1211 669 1313	ND ND ND	33 19 42	ND ND ND	3.04 1.54 .31	2.3 1.5 .1	8 5 8	145 80 154	47 10 26	1.80 .71 1.81	.48 .23 .13	.50 .10 .10	625 404 834	6 1 5	.01 .01 .01	17 8 188	.07 .02 .03	14 267 65	ND ND ND	ND ND ND	ND ND ND	ND ND 1	230 132 30	ND ND ND	ND ND ND	138 80 51	
DETECTION LINIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	1	i	.01	i	.01	2	3	5	2	2	1	5	3	1	

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

ASHWORTH EXPLORATION 1010 - 789 W. Pender	 DATE:	Feb 20	1989
Vancouver, B.C. V6C 1H2	REPORT#: JOB#:	890071 890071	GA

PROJECT#: 259 SAMPLES ARRIVED: Feb 19 1989 REPORT COMPLETED: Feb 20 1989 ANALYSED FOR: Au (FA/AAS) ICP

2

100

.

 INVOICE#: 890071 NA TOTAL SAMPLES: 9 SAMPLE TYPE: ROCKS REJECTS: DISCARDED

SAMPLES FROM: DELIVERED COPY SENT TO: ASHWORTH EXPLORATION LTD.

PREPARED FOR: MR. PETER LERICHE

ANALYSED BY: VGC Staff SIGNED:

GENERAL REMARK: None

GC VANGEOCHEM LAB LIMITED

2.1

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSALIGA, ONT

MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 890071 GA	JOB NUMBER: 890071	ASHWORTH EXPLORATION LTD.	PAGE 1 OF 1
SAMPLE #	Au		
	ppb		
CH-89 KR13	10		
CH-89 KR14	5		
CH-89 R80	nd		
CH-89 R81	nd		
CH-89 R82	nd		
CH-89 R83	5		
CH-89 R84	nd		
CH-89 R85	nd		
CH-89 R86	55		

DETECTION LIMIT nd = none detected

VANGEOCHEM LAB LIMITED

1

1988 Triumph Street, Vancouver, B.C. V5L 1K5 Ph:(604)251-5656 Fax:(604)254-5717

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNOs to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Pd, Pt, Sn, Sr and W.

ANALYST:

Same of the

REPORT 1: 890071 PA		A	SHWORTH	EIPL		P	roj: 25	9		Date	In: 89/	02/19	Date	Out:89	/02/22	Att	: R KID	LARD							Pag	e i	of 1	
Sample Number	Ag	Al	As	Au	Ba	Bi	Ca	Cď	Co	Cr	Cu	Fe	ĸ	Ng	Mo	No	Na	Ni	P	Pb	Pd	Pt	Sb	Sn	Sr	U	¥	Zn
	, bbe	4	ppe	ppe	ppe	ppm	1	ppm	opa.	ppa	ppm	7	7	7	ppe	ppe	r	ppe	1	pps	ppa	pps	ppm	ppe	ppe	ppe	pp .	. pps
CH-89 KR13	0.1	0.08	17	<3	16	<3	0.22	0.1	2	94	6	0.31	0.04	0.04	122	1	0.01	16	0.01	14	₹3	<5	<2	2	22	<5	<3	17
CH-89 KR14	0.3	1.35	61	<3	51	<3	0.85	0.7	7	63	19	2.47	0.20	0.89	502	- 4	0.02	47	0.11	26	<3	<5	<2	- 4	106	<5	(3	92
CH-89 RB0	1.3	0.58	<3	<3	26	<3	0.48	0.1	4	236	9	1.17	0.10	0.35	327	8	0.01	12	0.03	205	<3	<5	<2	2	42	<5	<3	38
CH-89 881	0.3	0,29	(3	(3	7	(3	0.27	0.1	2	231	8	0.70	0.08	0.23	155	3	0.01	6	0.01	22	(3	(5	<2	2	18	(5	(3	19
CH-89 R82	0.1	0.15	(3	(3	10	(3	0.14	0.1	2	111	6	0.43	0.03		110	1	0.01	4	0.01	8	<3	<5	<2	<2	8	(5	<3	11
CH-89 R83	0.4	0.50	<3	<3	30	<3	0.21	0.3	5	263	26	1.19	0.07	0.30	231	9	0.01	8	0.04	16	<3	<5	<2	2	16	<5	<3	61
CH-89 R84	0.3	0.40	<3	(3	31	<3	0.16	0.1	4	147	22	1.03	0.05	0.25	162	5	0.01	68	0.02	12	(3	<5	<2	2	14	(5	<3	26
CH-89 885	0.1	0.05	(3	(3	6	(3	0.08	0.1	1	214	6	0.31	0.02	0.02	45	3	0.01	7	0.01	5	(3	(5	<2	(2	6	<5	(3	8
CH-89 R86	5.1	0.50	332	<3	40	(3	5.74	1.8	5	26	17	2.78	0.85		1320	4	0.01	6	0.07	123	<3	<5	<2	3	209	۲5	<3	301
Minimum Detection	0.1	0.01	3	3	1	3	0.01	0.1	t	1	1	0.01	0.01	0.01	1	1	0.01	t	0.01	2	3	5	2	2	1	5	3	t
Maximum Detection	50.0	10.00	2000	100	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	2000	1000	10000	100	1000	20000
<pre>< = Less than Minimum</pre>	is = Insuf	ficient	Sample	ns = 1	No sampl	e > =	Greate	r than I	Maximum	AuFA	= Fire	assay//	AS															

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED VANGEOCHEM LAB LIMITED

1.

1.1

2

20,0

4

1

4

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

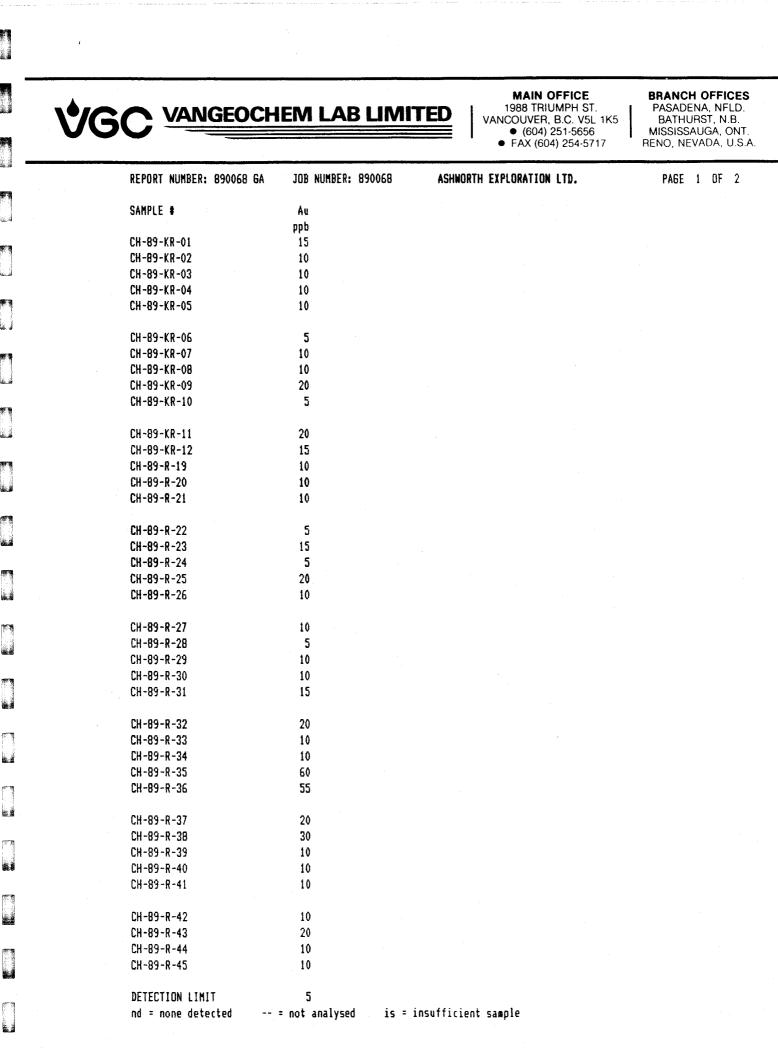
GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	ASHWORTH EXPLORATION LTD.	
ADDRESS:	1010 - 789 W. Pender Street	
•	Vancouver, B.C.	
- 1949 -	V6C 1H2	

DATE: Feb 21 1989

REPORT#: 890068 GA JOB#: 890068

PROJECT#: 259 SAMPLES ARRIVED: Feb 17 1989 REPORT COMPLETED: Feb 21 1989 ANALYSED FOR: Au (FA/AAS) ICP INVOICE#: 890068 NA TOTAL SAMPLES: 73 SAMPLE TYPE: ROCKS REJECTS: DISCARDED


SAMPLES FROM: ROGER KIDLARK COPY SENT TO: ASHWORTH EXPLORATION LTD.

PREPARED FOR: MR. PETER LERICHE

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: Assay recheck for sample >1000 ppb Au

GC VANGEOCHEM LAB LIMITED

010 6012 - 5

172

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REF	ORT NUMBER: 890068 GA	JOB NUMBER:	890068	ASHWORTH	EXPLORATION	LTD.	PAGE	2 OF	2
SAN	IPLE #	Au							
		ppb							
	-89-R-46	20							
	-89-R-47	20							
	-89-R-48	20							
	-89-R-49	10							
CH·	-89-R-50	10							
CH·	-89-R-51	20							
	-89-8-52	20							
	-89-R-53	20							
	-89-R-54	10							
CH	-89-R-55	25							
CH	-89-R-56	25							
CH	-89-R-57	20							
CH	-89-R-58	10							
CH	-89- R-59	. 10							
CH	-89 -R-6 0	10							
CH	-89-R-61	20							
	-8 9-R-62	20							
	-89-R-63	10							
	-89-R-64	1100							
CH	-89-R-65	65							
CH	-89-R-66	10							
	-89-R-67	2160		•					
	-89-R-68	100							
	-89-R-69	60							
	-89-R-70	3390							
CH	-89-R-71	85							
	-89-8-72	55							
	-89-R-73	150							
		• 10000							
	-89-R-75	415							
CH	-89-R-76	▶10000							
	-89-R-77	410							
	-89-R-78	420							
	-89-R-79	770							
	•								

DETECTION LIMIT nd = none detected

ST CL

10.3

in a

6.

MAIN OFFICE. 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

ASSAY ANALYTICAL REPORT

CLIENT:	ASHWORTH EXPLORATIO	IN LTD.	DATE:	Feb 21	1989
ADDRESS:	1010 - 789 W. Pende	er Street			
: '	Vancouver, B.C.		REPORT#:	890068	AA
: '	V6C 1H2		JOB#:	8 90068	

PROJECT#: 259 SAMPLES ARRIVED: Feb 17 1989 REPORT COMPLETED: Feb 21 1989 ANALYSED FOR: Au INVOICE#: 890068 NA TOTAL SAMPLES: 5 REJECTS/PULPS: 90 DAYS/1 YR SAMPLE TYPE: ROCKS

SAMPLES FROM: ROGER KIDLARK COPY SENT TO: ASHWORTH EXPLORATION LTD.

PREPARED FOR: MR. PETER LERICHE

ANALYSED BY: David Chiu

SIGNED:

Registered Provincial Assayer

GENERAL REMARK: Assay recheck for sample >1000 ppb Au

2 4

 MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 890068 AA	JDB NUMBER: 890068	ASHWORTH EXPLORATION LTD.	PAGE 1	ŌF	1
SAMPLE #	Au oz/st				
CH-89-R-64	.033				
CH-89-R-67	.063				
CH-89-R-70	.114				
CH-89-R-74	.599				
CH-89-R-76	.771				

1988 Triumph Street, Vancouver, B.C. V5L 1K5 Ph: (604)251-5656 Fax: (604)254-5717

100

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNOs to H2O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Pd, Pt, Sn, Sr and W.

																					ANA	LYST	•/_		\mathcal{M}		
REPORT #: 890068 PA			SHWORTH	EXPL		Proj: 2	59		Date	ln: 89/0)2/17	Date	Out:89	/02/21	Att	: R KID	LARK						L	Pag	e lo	12	
Sample Number	Ág ppm	A) X	As pp n	Au ppe	Ba ppe	Bi Ca ppm X	Cd pp n	Co ppn	Cr pom	Cu ppe	۶e ۲	K Z	Mg Z	Mn ppm	No ppe	Na Z	Ni ppe	P I	Pb pp s	Pd .	Pt pom	Sb pps	Sn pp∎	Sr ope	U ppe	W ppe] 00
CH-89-KR-01	0.8	1.85	10	<3	58	(3 1.49	1.1	7	99	27	3.02	0.31	1.13	870	5	0.02	20	0.12	33	<3	<5	<2	5	128	<5	<3	11
CH-89-KR-02	0.2	1.49	4	<3	79	<3 0.66	0.9	10	31	83	2.69	0.20	1.00	521	2	0.03	14	0.18	23	<3	<5	<2	4	46	<5	<3	7
CH-89-KR-03	0.7	0.37	<3	<3	47	<3 2.69	0.2	4	176	47	0.98	0.39	0.24	505	5	0.01	7	0.03	118	<3	<5	<2	2	189	<5	<3	2
CH-89-KR-04	0.1	0.46	(3	<3	75	(3 0.21	0.1	3	220	12	0.93	0.06	0.17	415	2	0.01	6	0.01	14	(3	<5	<2	2	29	<5	(3	2
CH-89-KR-05	0.1	0.13	<3	<3	44	<3 0.48	0.1	1	285	8	0.42	0.08	0.02	202	8	0.01	5	0.01	12	(3	۲5	<2	2	99	<5	<3	
CH-89-KR-06	1.1	0.26	5	<3	89	<3 8.53	0.6	6	80	27	1.74	1.21	0.27	422	3		56	0.05	18	<3	<5	<2	2	951	<5	(3	5
CH-89-KR-07	1.4	0.32	<3	<3	85	(3)10.00	0.B	4	38	39	1.40	1.67	0.27	434	1	0.01	49	0.05	18	<3	<5	<2	2	1382	<5	<3	6
CH-89-KR-08	1.4	0.53	<3	<3	104	(3)10.00	0.6	6	74	26	1.56	1.76	0.44	467	2	0.02	71	0.06	20	<3	<5	<2	3	1342	<5	<3	;
CH-89-KR-09	1.1	0.90	8	<3	156	(3 7.75	1.3	11	B9	37	2.64	1.14	0.89	544	3	0.01	111	0.08	22	<3	<5	<2	3	739	<5	<3	10
CH-89-KR-10	0.7	1.05	10	<3	138	(3 8.28	1.1	10	102	33	2.22	1.19	1.03	362	2	0.01	121	0.07	23	<3	<5	<2	3	734	<5	<3	\$
CH-89-KR-11	1.0	0.98	9	(3	130	(3 9.30	1.1	9	92	37	2.34	1.32	0.75	486	3	0.01	108	0.08	24	<3	<5	<2	3	696	<5	<3	9
CH-89-KR-12	1.0	0.54	43	<3	160	<3 >10.00	1.1	10	129	50	2.03	1.60	1.50	374	4	0.01	136	0.06	24	<3	<5	<2	3	1571	<5	<3	1
CH-89-R-19	0.8	0.08	<3	<3	68	<3 >10.00	0.2	2	56	16	0.87	1.48	0.51	272	(1	0.01	28	0.03	13	<3	<5	<2	2	1289	<5	<3	4
CH-89-R-20	1.2	0.07	9	<3	60	<3 >10.00	0.3	5	47	22	1.25	2.05	0.73	355	i	0.01	49	0.05	18	<3	(5	<2	2	1570	<5	<3	1
CH-89-R-21	0.9	0.15	<3	<3	210	<3 >10.00	0.5	4	73	19	1.17	2.04	1.02	295	2	0.01	73	0.04	18	<3	<5	<2	3	1535	<5	<3	ţ
CH-89-R-22	0.1	0.03	(3	(3	16	(3 0.49	0.1	1	251	4	0.31	0.07	0.05	64	5	0.01	8	0.01	3	<3	<5	<2	<2	69	<5	<3	
:H-89-R-23	0.1	0.65	<3	<3	35	<3 2.30	0.2	4	191	12	1.21	0.35	0.39	770	2	0.01	21	0.01	12	<3	<5	<2	2	184	<5	<3	
CH-89-R-24	0.2	0.86	<3	<3	22	<3 0.57	0.2	5	171	13	1.61	0.12	0,59	308	2	0.01	7	0.04	13	<3	<5	<2	3	48	<5	<3	
:H-B9-R-25	0.7	2.05	9	(3	102	<3 5.47	1.2	11	95	31	3.32	0.85	2.22	756	5	0.01	46	0.12	36	<3	<5	<2	5	691	<5	<3	1
H-89-R-26	1.2	0.38	<3	<3	20	<3 >10.00	0.1	1	72	12	0.80	2.17	0.34	995	<1	0.01	4	0.01	14	<3	۲5	<2	2	643	<5	{3	
H-89-R-27	1,1	2.84	26	<3	113	3 1.78	1.2	21	62	86	4.57	0.40	2.32	837	5	0.01	40	0.16	41	<3	<5	<2	9	191	<5	<3	1
CH-89-R-28	0.9	1.53	18	<3	90	<3 7.07	1.9	9	43	68	3.60	1.06	1.14	739	3	0.02	20	0.10	32	<3	<5	<2	5	485	<5	<3	1
CH-89-R-29	1.0	1.63	14	<3	104	(3 0.77	1.6	7	48	62	3.90	0.24	1.19	349	3	0.01	16	0.14	31	<3	<5	<2	5	67	<5	(3	
CH-89-R-30	1.4	0.47	<3	<3	49	(3 >10.00	0.2	5	69	19	1.34	2.20	0.62	339	3	0.02	70	0.05	22	(3	<5	<2	3	1166	<5	<3	
CH-89-R-31	1.3	0.66	(3	₹3	66	(3 9.37	0.6	4	164	19	1.09	1.32	0.80	410	2	0.01	43	0.03	47	<3	<5	<2	3	1278	<5	<3	
CH-89-R-32	0.9	0.17	<3	(3	20	<3 1.16	0.1	1	304	26	0.64	0.18	0.12	359	8	0.01	7	0.01	14	(3	<5	<2	2	109	<5	<3	
CH-89-R-33	0.7	0.48	<3	(3	34	(3 2.46	0.6	5	125	39	2.32	0.40	0.37	553	6	0.01	77	0.08	17	<3	<5	<2	3	<1	<5	<3	
CH-89-R-34	0.7	0.08	<3	<3	14	(3 0.10	0.1	1	99	4	0.39	0.02	0.02	68	<1	0.01	5	0,01	9	<3	<5	<2	2	13	<5	(3	
CH-89-R-35	1.0	0.68	<3	<3	163	<3 0.98	0.6	6	148	23	1.46	0.18	0.48	697	4	0.01	143	0.01	24	<3	₹5	<2	4	84	<5	<3	
CH-89-R-36	1.9	0.80	72	<3	62	<3 0.15	0.4	5	39	13	2.09	0.09	0.58	144	5	0.02	17	0.11	25	<3	<5	<2	4	38	<5	<3	i
CH-89-R-37	0.4	2.51	21	(3	159	(3 0.25	1.3	16	13	86	5.46	0.23	1.31	468	3	0.01	20	0.16	39	<3	<5	<2	6	28	<5	<3	1
CH-89-R-38	0.2	0.95	33	<3	31	<3 0.09	0.4	3	98	33	2.02	0.08	0.60	249	2	0.01	6	0.01	22	<3	<5	<2	3	10	<5	(3	
CH-89-R-39	0.9	0.97	. 4	<3	44	(3 7.12	0.6	4	24	22	2.27	1.02	0.85	1413	4	0.02	19	0.10	35	<3	<5	<2	4	462	<5	<3	
CH-89-R-40	1.3	0.78	28	<3	33	(3 1.84	1.2	7	131	20	2.42	0.33	0.58	589	5	0.02	8	0.08	39	(3	<5	<2	3	157	<5	(3	
CH-89-R-41	0.8	1.82	26	<3	109	<3 4.17	1.1	14	113	44	2.97	0.65	1.96	414	3	0.01	157	0.09	35	<3	< 5	<2	5	375	<5	(3	1
CH-89-R-42	0.8	1.20	22	<3	115		1.3	12				0.93		542	2	0.01	123		32	<3	۲5	<2	4	616	<5	<3	1
CH-89-R-43	0.9	1.13	22	<3	86	(3 9.27	1.1	8	102	26	2.01	1.31	1.61	597	2	0.01		0.05	29	<3	<5	<2	4	861	<5	<3	
CH-89-R-44	1.0	0.78	8	<3	172	<3 >10.00	1.1	8	99	29	2.03	1.74	1.45	558	3	0.01	78	0.05	28	<3	<5	<2	4	1012	(5	(3	
CH-89-R-45	1.1	0.49	<3	<3	96	(3)10.00		5	79	21	1.48	2.18	1.02	532	3	0.02	68		27	<3	(5	<2	4	1391	<5	∢3	
Minimum Detection		0.01	3	3	l	3 0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	3	5	2	2	1	5	3	
Maximum Detection		10.00	2000	100	1000	1000 10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20 000	1000	10.00	20000	10,00	20000	100	100	2000	1000	10000	166	1000	200

_

REPORT #: 890068 PA		A	SHWORTH	EXPL		Pr	oj: 25	9		Date	In: 89/	02/17	Date	Out:89	/02/21	Att	: R KID	LARK							Pag	ge 2 d	of 2	
Sample Number	Ag op a	- A1 X	As ppm	Au pp e	Ba pp n	Bi pp n	Ca X	Cd ppm	Co pp∎	Cr ppm	Cu ppe	Fe	K	Ng Z	Mn ppm	No DD n	Na Z	Ni DD m	P Z	Pb DD o	Pd pp n	Pt DDm	Sb ppe	Sn DDe	Sr pp a	U pom	W	Zn
CH-89-R-46	1.5	0.77	11	(3	64	• •	10.00	1.1	6	49	25	1.47	2.03	1.05	593	1	0.01	69	0.04	26	(3	ζ5	<2	3	1507	(5	(3	70
CH-89-R-47	1.3	0.38	(3	(3	42		10.00	1.1	3	40	16	1.00	2.04	0.74	542	- (1	0.01	55	0.03	21	(3	<5	<2	2	1544	<5	(3	47
CH-89-R-48	1.4	0.21	<3	<3	88		10.00	0.8	3	24	23	1.17	2.18	0.42	430	1	0.01	- 51	0.05	20	(3	(5	<2	2	1962	<5	(3	54
CH-89-R-49	1.4	0.12	<3	(3	115		10.00	1.1	3	26	25	1.44	2.26	0.93	605	i	0.01	54	0.09	20	(3	(5	(2	2	1682	(5	(3	74
CH-89-R-50	1.0	0.31	19	(3	172		7.68	0.7	6	147	21	1.44	1.08	0.82	421	4	0.01	63	0.04	23	(3	(5	<2	2	725	(5	(3	57
		****			.,.		,	VI./		• */				VI01	141	ť		00	VIV T	20	~~	10	14	4	163	13	12	
CH-89-R-51	1.8	0.26	88	(3	337	(3)	10.00	0.6	3	43	18	1.15	1.78	0.72	491	1	0.01	49	0.03	40	<3	(5	<2	2	1335	(5	(3	43
CH-89-R-52	1.0	0.13	77	<3	134	(3)	10.00	0.5	2	26	17	1.05	2.15	0.56	509	{ 1	0.01	47	0.04	20	(3	<5	<2	2	1694	<5	<3	53
CH-89-R-53	1.3	2.30	13	(3	661	3	3.37	1.6	36	340	38	4.25	0.67	3.81	723	3	0.03	49	0.20	39	(3	<5	<2	10	1319	(5	<3	94
CH-89-R-54	0.9	0.12	<3	<3	89	(3)	10.00	0.5	3	138	17	1.13	1.87	0.66	390	4	0.01	43	0.02	16	<3	<5	<2	2	1919	(5	(3	72
CH-89-R-55	0.8	0.27	13	3>	62	<3	7.88	1.1	4	55	21	1.19	1.04	0.43	324	(1	0.01	43	0.03	19	<3	<5	<2	2	986	۲5	<3	112
CH-89-R-56	0.7	0.34	11	<3	74	<3	4.48	0.8	5	81	24	1.62	0.68	0,75	296	2	0.01	70	0.03	14	(3	{5	<2	2	747	<5	(3	93
CH-89-R-57	0.3	0.05	<3	(3	46	<3	4.15	0.4	1	140	8	0.65	0.59	0.22	160	(I)	0.01	20	0.02	.,	<3	<5	(2	2	712	(5	(3	52
CH-89-R-58	1.1	0.25	84	<3	93	⟨3	8.87	1.2	;	39	35	1.79	1.26	0.73	368	1	0.01	64	0.11	16	⟨3	<5	(2	2	1067	(5	(3	98
CH-89-R-59	1.3	0.54	<3	<3	125		9.37	1.5	10	52	33	2.25	1.34	1.76	422	2	0.01	109	0.07	22	<3	<5	<2	3	1075	(5	(3	129
CH-89-R-60	1.3	0.44	17	(3	139		10.00	1.1	1	40	33	1.49	1.57	0.82	350	ī	0.01	106	0.07	22	(3	(5	<2	3	1046	(5	(3	103
01 03 1 00		VI	•,											VIUL	000	•			••••					·				
CH-89-R-61	1.4	0.82	72	<3	160	(3)	10.00	1.6	10	53	35	2.07	1.62	1.13	371	2	0.01	125	0.09	31	<3	<5	<2	3	939	<5	<3	113
CH-89-R-62	1.3	0.99	104	<3	178	<3	9.65	1.6	10	44	37	2.17	1.35	1.32	375	2	0.02	142	0.10	26	<3	<5	<2	4	831	<5	<3	106
CH-89-R-63	1.1	0.33	20	<3	92	(3	9.51	0.7	7	96	25	1.66	1.36	1.64	393	3	0.01	86	0.04	19	(3	(5	<2	-3	1377	<5	<3	74
CH-89-R-64	1.4	0.17	1095	<3	50	(3	4.86	0.1	17	128	7	2.00	0.72	0.33	271	2	0.01	120	0.02	18	(3	(5	<2	2	503	<5	(3	219
CH-89-R-65	1.3	0.27	116	<3	90	(3)	10.00	1.1	5	39	27	1.53	1.80	0.83	393	1	0.01	71	0.06	21	<3	(5	<2	2	1515	<5	<3	148
CH-89-R-65	0.5	2.64	23	<3	350	<3	2.40	1.2	17	17	10	3.88	0.47	2,11	499	4	0.04	99	0.29	41	(3	<5	<2	6	355	<5	۲3	161
CH-89-R-67	0.9	0.12	217	<3	131	<3 <3	3.06	4.4	4	193	5	1.17	0.44	0.37	190	5	0.01	62	0.02	22	(3	<5	<2	2	373	<5	3	186
				(3			9.58	979.6	•	50	97	1.81	1.34	1.57	478	8	0.01	129	0.02	206	(3	<5	(2	4	977	<5		>20000
CH-89-R-68 CH-89-R-69	6.0 1.5	0.38 0.25	195 414	<3 <3	109 117	<3 <3	5.Jo 8.46	12.9	11 9	55	33	2.02	1.20	0.97	401	1	0.01	123	0.05	27	<3	(5	<2	3	915	(5	<3	472
			154	(3	113		>10.00	14.4	4	87	22	1.32	1.50	0.81	381	2	0.01	66	0.05	536	(3	<5	<2	3	1321	<5	(3	487
CH-89-R-70	4.2	0.26	104	13	113	(3)	/10.00	14.4	. 7	07	22	1.52	1,30	0.01	301	4	0.01	00	0.03	790	13	13	12	3	1521	10	13	707
CH-89-R-71	0.4	0.19	33	<3	174	<3	1.13	8.6	3	78	6	0.55	0.17	0.24	67	<1	0.01	31	0.01	55	(3	<5	<2	2	163	<5	<3	213
CH-89-R-72	1.2	0.40	188	<3	142	<3	7.60	2.1	9	39	34	1.89	1.09	1.26	330	1	0.01	117	0.06	34	(3	<5	<2	3	922	(5	<3	196
CH-89-R-73	1.3	0.37	136	<3	116	<3	9.56	8.1	7	63	29	1.77	1.35	0.72	352	1	0.01	96	0.06	121	<3	(5	<2	3	1184	(5	(3	316
CH-89-R-74	>50.0	0,46	207	11	119	<3	6.24	264.1	1	132	34	2.00	0.92	0.67	262	6	0.01	85	0.05	9774	(3	(5	<2	3	762	<5	(3	6198
CH-89-R-75	1.8	0.35	246	<3	128	₹3	9.60	10.3	7	54	31	1.99	1.35	0.41	427	2	0.01	145	0.08	384	(3	<5	<2	2	958	<5	<3	407
CH-89-R-76	>50.0	0.13	973	25	51	(3	0.54	81.1	10	182	98	6.00	0.28	0.07	124	10	0.01	74	0.01	14326	<3	(5	<2	12	84	<5	<3	3111
CH-89-R-77	4.5	0.20	285	<3	106	(3	6.70	4.8	4	73	65	1.25	0.95	0.29	2B4	t	0.01	94	0.04	304	<3	<5	<2	2	64 i	<5	<3	174
CH-89-R-78	0.7	0.34	479	(3	169	(3	3.01	2.4	11	110	11	2.10	0.48	0.29	193	3	0.01	205	0.05	87	(3	<5	<2	3	307	<5	<3	201
CH-89-R-79	1.9	0.29	1124	(3	253	(3	9.87	12.5	6	48	33	1.62	1.39	0.39	359	1	0.01	75	0.05	148	<3	۲5	<2	3	1157	<5	<3	193
				~				<u>م</u> ،					0.01	0.01	,	4	0.01		0.01	2	3	5	2	2	1	5	2	1
Minimum Detection	0.1		3 2000	3 100	1000	3 1000	0.01	0.1	20000	1000	20000	0.01	0.01	0.01	20000	1000	10.00	20000		-	100	100	2000	-	10000	100	1000	20000
Maximum Detection		10.00									= Fire			10.00	10000	1000			14140	20000			2000					
<pre>< = Less than Minimum</pre>	15 = 1850	increat	910866	ns = 1	nu samp	16) =	015476	1 VU4H	11431 BUB	nur A	- 1116	assayik	n u															

VANGEOCHEM LAB LIMITED

ş

10.1

2

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: ASHWORTH EXPLORATION LTD. ADDRESS: 1010 - 789 W. Pender Street : Vancouver, B.C.

: V6C 1H2 PROJECT#: 259

SAMPLES ARRIVED: Jan 03 1989

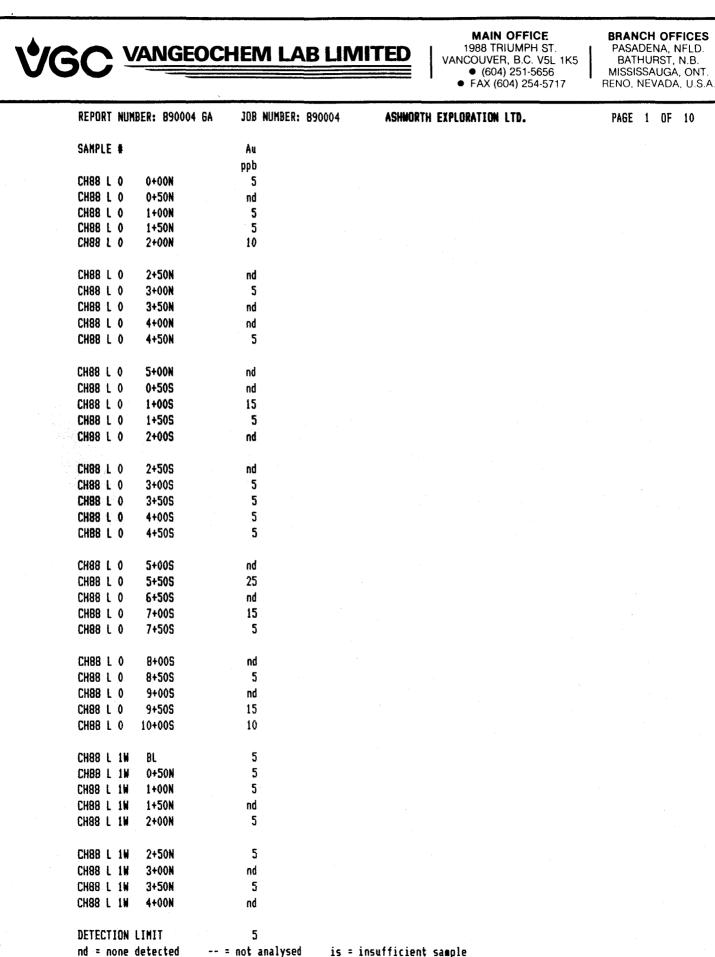
REPORT COMPLETED: Jan 16 1989

ANALYSED FOR: Au ICP

DATE: Jan 16 1989

REPORT#: 890004 GA JOB#: 890004

INVOICE#: 890004 NA TOTAL SAMPLES: 354 SAMPLE TYPE: SOILS **REJECTS: DISCARDED**


SAMPLES FROM: ASHWORTH EXPLORATION LTD. COPY SENT TO: ASHWORTH EXPLORATION LTD.

PREPARED FOR: MR. PETER LERICHE

ANALYSED BY: VGC Staff

SIGNED:

GENERAL REMARK: None

nd = none detected

Section 2 and a

te 2

17

8

100 ١.

16. ÷

ø

ale .

聊

6

100

<u>ò</u>

16

赝

36

.

-

is = insufficient sample

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUM	BER: 890004 GA	JOB NUMBER: B	90004	ASHNORTH EXPLORAT	TION LTD.	PAGE	2 OF	10	
SAMPLE #		Âu							
		ppb							
CH88 L 1W	4+50N	nd							
CH8B L 1W	5+00N	nd							
CH88 L 1W	0+505	5							
CHBB L 1W	1+005	5							
CH88 L 1W	1+505	5							
CH88 L 1W	2+005	5							
CH88 L 1W	2+50S	nd							
CH88 L 1W	3+005	nd							
CH88 L 1W	3+505	nd							
CH88 L 1W	4+005	5							
CH88 L 1W	4+50S	nd							
CH88 L 1W	5+00S	nd							
CH88 L 1W	5+50S	10							
CH88 L 1W	6+005	10							
CH88 L 1W	6+505	5 .							
CH88 L 1W	7+00S	15							
CH88 L 1W	7+50\$	nd							
CH88 L 1W	8+00S	10							
CH88 L 1W	8+50S	5							
CH88 L 1W	9+005	nd							
CH88 L 1W	9+505	nd							
CH88 L 1W	10+005	10							
CH88 L 2W	BL	15							
CH88 L 2W	0+50N	nd							
CH88 L 2W	1+00N	30							
CH88 L 2W	1+50N	5							
CH88 L 2W	2+00N	5							
CH88 L 2W	2+50N	5							
CH88 L 2W	3+00N	5							
CH88 L 2W	3+50N	15							
CH88 L 2¥	4+00N	10							
CH88 L 2W	4+50N	nd							
CH88 L 2W	5+00N	5							
CH88 L 2W	0+505	10							
CH88 L 2W	1+005	5							
CH88 L 2W	1+505	nd							
CH88 L 2W	2+005	5							
CH88 L 2W	2+505	nd							
CH88 L 2W	3+005	nd							
DETECTION	LIMIT	5							
	dada a bad	- not sosturod	1	neufficient comple					

nd = none detected

-- = not analysed is = i

VGC VANGEOCHEM LAB LIMITED

1000

4.4

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

t

REPORT NUMBER:	890004 GA JOB NUMBE	ER: 890004	ASHNORTH EXPLORATION LTD.	PAGE 3 DF 10
SAMPLE #	Au			
· · · · · · · · · · · · · · · · · · ·	քրե			
CH88 L 2W 3+5				
CH88 L 2W 4+0				
CH88 L 2W 4+5				
CH88 L 2W 5+0				
CH88 L 2W 5+5	ios 10			· ·
CH88 L 2W 6+0	IOS 10			
CH88 L 2W 6+5	OS 5			
CH88 L 2W 7+0	IOS nd			
CH88 L 2W 7+5	OS 5			
CH88 L 2W 8+0	0S nd			
CH88 L 2W 8+5	0S 15			
CH88 L 2W 9+0	05 nd			
CH88 L 2W 9+5	OS nd			
CH88 L 2W 10+0				
CH88 L 3W BL0+0				
CH88 L 3W 0+5	ON 15			, ž
CH88 L 3W 1+0				
CH88 L 3W 1+5				
CH88 L 3W 2+0				
CH88 L 3W 2+5				
CH88 L 3W 3+0	ON 5			
CH88 L 3W 3+5				
CH88 L 3W 4+0				
CH88 L 3W 4+5				
CH88 L 3W 5+0				
CH88 L 3W BS-	01 nd			
CH88 L 3W 0+5				
CH88 L 3W 1+0				
CH88 L 3W 1+5				
CH88 L 3W 2+0				
CH88 L 3W 2+5	OS nd			
CH88 L 3W 3+0				
CH88 L 3W 3+5				
CH88 L 3W 4+0				
CH88 L 3W 4+5				
CH88 L 3W 5+0	0S nd			
CH88 L 3W 5+5				
CH88 L 3W 6+0				
CH88 L 3W 6+5				
DETECTION LIMIT	5			
nd = none detec		ed is = i	insufficient sample	
WA - NOUE DEVEL	- not analys		rusairirtena sambic	

VGC VANGEOCHEM LAB LIMITED

1

1

e Tritte

1

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT	NUMBER: 890004 64	JOB NUMBER: 890	004 ASHNO	BRTH EXPLORATION LTD.	PAGE 4 OF 10
SAMPLE	ŧ	Au			
		ppb			
CH88 L		25			
CH88 L		5			
CH88 L		5			
CH88 L		10			
CH88 L	3W 9+00S	5			
CH88 L	3W 9+50S	nd			
CH88 L	3W 10+005	nd			
CH88 L	4W 0+00N	nd			
CH88 L	4W 0+50N	10			
CH88 L	4W 1+00N	nd			
CH88 L	4W 1+50N	5			
CH88 L	4W 2+00N	nd			
CH88 L	4W 2+50N	5			
CH88 L	4W 3+00N	5			
CH88 L	4W 3+50N	5			
CH88 L	4W 4+00N	nd			
CH88 L -	4W 4+50N	nd			
CH88 L 4	4W 5+00N	5			
CH88 L	W 0+50S	nd			
CH88 L 4		nd			
CH88 L 4	W 1+50S	nd			
CH88 L 4		15			
CH88 L 4	W 2+50S	5			
CH88 L 4					
CH88 L 4		5 5			
CH88 L 4	W 4+005	nd			
CH88 L 4		5			
CH88 L 4		5			
CH88 L 4		10			
CH88 L 4	¥ 6+00S	5			
CH88 L 4		20			
CH88 L 4		5			
CH88 L 4		10			
CH88 L 4		nd			
CH88 L 4	¥ 8+50S	15			
CH88 L 4		5			
CH88 L 4		5			
CH88 L 4	W 10+005	nd			
CH88 L 5	W BL	10			
DETECTIO	N LINIT	5			
			is = insufficien	it sample	

SC VANGEOCHEM LAB LIMITED

MAIN OFFICE. 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD.

BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

Į

REPORT NUM	IBER: 890004 64	JOB NU	MBER: 890004	ASHNORTH EXPLORA	TION LTD.	PAGE 5 OF	10
SANPLE #		Àu					
		ppb					
CH88 L SW	0+50N	5					
CH88 L 5W	1+00N	nd					
CH88 L 5W	1+50N	20					
CH88 L 5W	2+00N	5					
CH88 L 5W	2+50N	5					
CH88 L 5W	3+00N	5					
CH88 L SW	3+50N	nd					
CH88 L SW	4+00N	nd					
CH88 L SW	4+50N	10					
CH88 L 5W	5+00N	5					
0000 ·	A . FAG	-					
CH88 L SW	0+505	5					
CH88 L 5W	1+005	nd					
CH88 L SW	1+505	5					
CH88 L 5W	2+005	5					
CH88 L 5W	2+505	.5					
CH88 L 5W	3+005	5					
CH88 L SW	3+505	nd					
CH88 L 5W	4+005	10					
CH88 L 5W	4+50S	h					
CH88 L 5W	5+005	10					
CH88 L 5W	5+50S	5					
CH88 L SW	3+305 6+00S						
CH88 L 5W	6+50S	20					
CH88 L SW		10					
CH88 L 5W	7+00S 7+50S	10					
6000 C JW	/+303	nd					
CHBB L 5W	8+005	nd					
CH88 L 5W	8+50S	10					
CH88 L 5W	9+00S	15					
CH88 L 5W	9+505	5					
CH88 L 5W	10+005	5					
CH88 L 6W	0+50N	nd					
CH88 L 6W	1+00N	5					
CH88 L 6W	1+50N	nd					
CH88 L 6W	2+00N	10					
CH88 L 6W	2+50N	nd					
	4 , AAN	r					
CH88 L 6W	4+00N	5					
CH88 L 6W	4+50N	5					
CH88 1 6W	5+00N	10					
CH88 L 6W	0+00S	10					
DETECTION	LIMIT	5					
nd = none		- = not ana	lysed is = i	nsufficient sample			

VGC	VANGE	OCHEN	VI LA	B LIN	AITED
REPORT	NUMBER: 89000	4 GA JOB	NUMBER:	890004	ASHWO
SAMPLE	\$	Au			
		ppb			
CH88 L	6W 0+50S	h			
CH88 L	6W 1+50S	30			
CH88 L	6W 2+00S	nd			
CH88 L	6W 2+505	5			
CH88 L	6W 3+00S	nd			
CH88 L		10			
CH88 L		កថ			
CH88 L		hn			
CH98 L		5			
CH88 L	6W 5+50S	5			
CH88 L	6W 6+00S	5			
CH88 L		25			
CH88 L		nd	÷		
CH88 L		5			
CH88 L	6W 8+005	nd			
CH88 L	6W 8+50S	5			
CH88 L	6W 9+00S	nd			
CH88 L	6W 9+50S	<u> </u>			
CH88 L	6W 10+00S	5			
CH88 L	7W BL	10			
CH88 L		nd			
CH88 L		5			
CH88 L		5			
CH88 L		10			
CH88 L	7W 2+50N	5			
CH88 L		5			
CH88 L		5.			
CH98 L		5			
CH88 L		5			
CH88 L	7W 5+00N	10			
CH88 L	7₩ 0+50S	10			
CH88 L	7W 1+005	10			
CH88 L	7W 1+50S	nd			
CH88 L	7W 2+00S	10			
CH88 L	7₩ 2+505	nd			
CH88 L	7W 3+005	nd			
CH88 L	7¥ 3+50S	nd			
CH88 L	7₩ 4+00S	nd			
CH88 L	7W 4+50S	15			
DETECTI	ON LIMIT	5			
	no detected				

ASHWORTH EXPLORATION LTD.

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

PAGE 6 OF 10

	-	_	
1			
5			
1			
1			
j			
n			
4)			
100			
-			
200 m m m m m m m m m m m m m m m m m m			
-			

12.3

∜GC ⊻	ANGEOCH	IEM LAB LIM	MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717	l I Ri
REPORT NUM	BER: 890004 6A	JOB NUMBER: 890004	ASHWORTH EXPLORATION LTD.	
SAMPLE #		Au		
		ppb		
CH88 L 7W	5+00S	10		
CH88 L 7W	5+50S	35		
CH88 L 7W	6+00S	nd		
CH88 L 7W	6+505	10		
CH88 L 7W	7+005	10		
CH88 L 7W	7+505	5		
CH88 L 7W	8+005	10		
CH88 1 7W	8+505	15		
CH88 L 7W	9+005	10		
CHBB L 7W	9+505	5		
CH88 L 7W	10+005	10		
CH88 L 9W	B5-02	nd		
CH88 L 9W	0+005	5		
CH88 L 9W	0+505	10		
CH88 L 9W	1+005	10		
CH88 L 9W	1+505	5		
CH88 L 9W	2+005	10		
CH88 L 9W	2+505	nd		
CH88 L 9W	3+005	nd		
CH88 1 9W	3+505	5		
		-		
CH88 L 9W	4+00S	nd		
CH88 L 9W	4+505	5		
CH88 L 9W	5+00S	15		
CH88 L 9W	5+505	10		
CH88 L 9W	6+00S	15		
CH88 L 9W	6+50S	10		
CH88 L 9W	7+00S	5		
CH88 L 9W	7+50S	15		
CH88 L 9W	8+00S	5		
CH88 L 9W	8+50S	15		
CH88 L 9W	9+005	10		
	10+005	nd		
CH88 L10W	BL	10		
CH88 L10W	0+505	nd		
CH88 L10W	1+005	25		
CH88 L10W	1+505	20		
CH88 L10W	2+005	10		
CH88 L10W	2+505	10		
CH88 L10W	3+00S	10		

DETECTION LIMIT nd = none detected

5 -- = not analysed

is = insufficient sample

BRANCH OFFICES

PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

PAGE 7 OF 10

ļ

-T

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 890004 GA	JDB NUMBER: 890004	ASHWORTH EXPLORATION LTD.	PAGE 8 OF 10
SANPLE #	Åu		
	ppb		
CH88 L10W 3+505	5		
CH88 L10W 4+00S	10		
CH88 L10W 4+50S	. 5		
CH88 L10W 5+005	10		
CH88 L10W 5+50S	5		
CH88 L10W 6+00S	15		
CH88 L10W 6+50S	10		
CH88 L10W 7+00S	5		
CH88 L10W 7+50S	nd		
CH88 L10W 8+00S	5		
CH88 L10W 8+50S	nd		
CH88 L10W 9+005	10	<i>,</i>	
CH88 L10W 9+50S	5		
CH88 L10W 10+00S	15		· · · · · · · · · · · · · · · · · · ·
CH88 L11W BL	nd		
CH88 L11W 0+505	nd		
CH88 L11W 1+00S	nd		
CH8B L11W 1+505	30	4	
CH88 L11W 2+005	5		
CH88 L11W 2+505	nd		
CH88 L11W 3+005	nd		
CH88 L11W 3+505	5		
CH88 L11W 4+005	5		
CH88 L11W 4+505	15		
CH88 L11W 5+00S	10		
	۲ .		
CH8B LIIW 5+50S	15		
CH88 L11W 6+00S	15		
CH88 L11W 6+50S	5		
CH98 L11W 7+00S	nd		
CH88 L11W 7+505	5		
CH88 L11W 8+00S	10		
CH88 L11W 8+50S	15		
CH88 L11W 9+005	20		
CH88 L11W 9+505	5		
CH88 L11W 10+00S	10		
CH88 L12W 0+00S	5		
CH88 L12W 0+505	25		
CH88 L12W 1+005	nd		
CH88 L12W 1+50S	10		
DETECTION LIMIT	5		
nd = none detected = :	not analysed is = ins		

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

ļ

SAMPLE CH88 L1 CH88 L1 CH88 L1 CH88 L1 CH88 L1	2W 2+(MC	Au ppb				
CH88 L1 CH88 L1 CH88 L1		AC	nnh				
CH88 L1 CH88 L1 CH88 L1			5				
CH88 L1 CH88 L1			o nd				
CH88 L1	21 3+(10				
			5				
			nd				
CH88 L1	.2W 4+5	05	10				
CH88 L1			10				
CH88 L1			5				
CH88 L1			5				
CH88 L1			nd			. •	
	Ś						
CH88 L1:	21 7+0	ÔS	10				
CH88 L1:			nd				
CH88 L12			nd .				
CH88 L12			10				
CH88 L12			20				
	이 가지 않는다. 이 가지 않는다. 이 가지 않는다.						
CH88 L12	2W 9+5	05	nd				
CH88 L12			10		(- <u>6</u> 2, 194		
CH88 L13			nd				
CH88 L13			nd				
CH88 L13			10				
CH88 113	3W 2+0	1999 1990 - Na	5				
CH88 L13			10				
CH88 L13			10				
CH88 L13			nd				
CH88 L13			5	•			
			Ū				
CH88 L13			5				
CH88 L13			10				
CH88 L13			10				
CH88 L13			nd				
CH88 L13	3₩ 4+00)S	nd				
CH88 L13		S	10				
CH88 L13		S	- 5				
CH88 L13		S	nd				
CH88 L13		S	5				
CH88 L13	W 6+5(S	10				
CH88 L13	₩ 7+00	S	10				
CH88 L13			5				
CH88 L13			10				
CH88 L13			nd				
DETECTIO	N LIMIT		5				

. . 4 ALC: NOTE: NOT

1

الم الم

الم ال

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 FAX (604) 254-5717 •

ASHNORTH EXPLORATION LTD.

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

PAGE 10 OF 10

REPORT NU	MBER: 89000	4 6A	JOB	NUMBER:	890004	
SAMPLE .			Au			
			ppb			
CH88 L13	9+005		5			
CH88 L13	9+505		10			
CH88 1 13H	200+01		5			

DETECTION LINIT 5 nd = none detected -- = not analysed

MAIN OFFICE: 1988 TRIUMPH STREET, VANCOUVER B.C. V5L 1K5 PH: (604)251-5656 TELEX:04-352578 BRANCH OFFICE: 1630 PANDORA STREET. VANCOUVER B.C. V5L 1L6 PH: (604)251-7282 FAX: (604)254-5717

anistical statement of the statement of the

影響的

10

ICAP GEOCHEMICAL ANALYSIS

A .5 GRAM SAMPLE IS DIGESTED WITH 5 ML OF 3:1:3 HCL TO HNO3 TO H2O AT 95 DEG. C FOR 90 MINUTES AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR SM, MN, FE, CA, P, CR, MG, BA, PD, AL, NA, K, W, PT AND SR. AU AND PD DETECTION IS 3 PPM. IS= INSUFFICIENT SAMPLE, ND= NOT DETECTED, -= NOT AMALYZED

COMPANY: ASHWORTH EXPL ATTENTION: P LERICHE PROJECT: 259	JOB#:	T#: 890004 PA 890004 CE#: 890004 NA	DATE RECEIVED: 89/01/03 DATE COMPLETED: 89/01/19 COPY SENT TD:	ANALYST 2/44
				PAGE 1 OF 10
SAMPLE NAME AG AL AS PPN I PPM	U BA BÌ CÀ CĐ Ph Pph Pph Z Pph	CO CR CU FE K MG PPM PPM PPM I I I		PT SB SN SR U U ZN PPN PPN PPN PPN PPN PPN
CH88 L0 0+00M .4 3.17 16 CH88 L0 0+55M .4 2.21 23 CH88 L0 0+55M .3 2.05 19 CH88 L0 1+50M 1.1 3.88 40 CH88 L0 2+50M .9 2.20 36	NO 302 NO .38 1.1 NO 116 ND .22 .9 ND 100 ND .21 .6 ND 197 ND .31 .8 NO 138 ND .16 1.8	9 14 25 1.88 .15 .32 10 21 37 2.37 .14 .59 10 21 33 2.25 .13 .58 16 21 41 2.67 .16 .53 13 27 63 2.88 .15 .63	59 447 2 .02 27 .08 30 ND 58 353 2 .02 24 .04 29 NO 53 357 2 .04 31 .06 45 NO	ND 3 53 NØ ND 233 MD ND 2 35 ND ND 139 NO HO 2 34 ND ND 136 ND ND 3 41 ND ND 163 ND ND 3 27 ND ND 237
CH88 L0 2+50N 1.1 3.23 43 CH88 L0 3+00N .9 2.08 25 CH88 L0 3+50N .3 1.52 17 EH88 L0 4+00N .4 1.47 20 CH88 L0 4+50N .9 2.58 19	ND 148 ND .40 1.3 ND 153 ND .23 2.1 ND 81 ND .16 .6 ND 73 ND .14 1.5 ND 186 ND .30 3.1	22 57 92 3.04 .16 .90 14 25 58 2.40 .11 .60 9 22 35 2.07 .09 .58 10 24 49 2.46 .13 .67 14 17 50 2.35 .12 .47	50 743 3 .02 39 .08 30 ND 58 306 2 .02 27 .05 23 ND 57 225 3 .01 33 .06 24 ND	NB HD 4 52 ND ND 172 ND HD 2 32 ND ND 238 ND ND 2 24 ND ND 167 ND HD 2 25 ND ND 261 ND ND 2 43 ND ND 451
CH88 L0 5+00N .9 3.04 29 CH88 L0 0+50S .6 3.33 19 CH88 L0 0+50S 1.2 2.68 44 CH88 L0 1+50S .1 2.11 9 CH88 L0 2+00S .1 1.62 5	NG 190 ND .29 5.4 ND 297 ND .49 1.5 ND 151 ND 2.11 1.2 ND 370 ND .57 1.3 ND 66 ND .40 .1	14 20 61 3.06 .14 .54 13 20 67 2.82 .17 .61 15 32 84 3.33 .41 1.19 8 13 23 1.79 .14 .39 6 4 16 .94 .10 .18	il 1430 2 .04 25 .09 55 ND 19 936 2 .03 31 .13 49 ND 39 1746 1 .02 17 .30 36 ND	ND ND 2 37 ND ND 739 ND HD 3 89 ND ND 184 ND ND 3 141 NO NO 155 ND ND 2 109 ND ND 238 ND NO 2 63 ND ND 73
CH88 L0 2+505 .6 2.27 27 CH88 L0 3+005 .3 2.39 46 CH88 L0 3+505 .5 2.42 19 CH88 L0 4+005 .1 2.26 13 CH88 L0 4+505 .3 1.63 18	ND 96 ND .37 .4 ND 244 ND .91 L.1 ND 125 ND .28 .5 ND 107 ND .18 .5 ND 103 ND .26 .8	11 18 29 2.02 .12 .52 12 16 35 3.46 .23 .66 B 16 24 1.84 .10 .45 7 11 17 1.42 .07 .30 12 32 39 2.42 .11 .80	i6 1215 1 .04 17 .14 47 NO 15 448 1 .02 24 .13 28 ND 10 208 1 .02 20 .19 25 ND	ND ND 3 67 ND ND 96 NO ND 2 101 ND ND 111 ND ND 3 35 NO ND 146 ND ND 2 29 ND ND 163 ND ND 3 32 ND ND 108
CH88 L0 S+00S .5 1.34 27 CH88 L0 S+50S .6 1.57 30 CH88 L0 S+50S .5 1.56 30 CH88 L0 6+50S .5 1.56 30 CH88 L0 7+50S .6 1.50 29 CH88 L0 7+50S .5 2.84 24	ND 70 ND .53 1.3 ND 82 ND .37 1.3 ND 64 ND .75 1.2 ND 71 ND 1.66 1.1 ND 109 ND .43 .5	11 31 40 2.56 .17 .82 14 34 50 2.71 .13 .94 13 30 57 2.78 .20 .92 11 27 52 2.38 .27 .81 11 18 44 2.31 .13 .66	04 558 2 .02 48 .10 29 NO 02 491 2 .02 38 .08 27 NO 01 467 2 .02 35 .09 26 ND	ND ND 2 26 ND ND 140 ND MD 3 34 ND ND 143 ND ND 3 50 ND ND 124 ND ND 2 63 ND ND 121 ND ND 3 30 ND ND 100
CH88 L0 8+00S .5 3.71 24 CH88 L0 8+50S .5 3.28 24 CH88 L0 9+00S 1.5 2.62 83 CH88 L0 9+00S .4 2.12 18 CH88 L0 19+00S .4 3.19 25	ND 119 ND .28 .5 ND 121 ND .32 .3 ND 131 3 .81 1.3 ND 166 ND .24 .5 ND 203 ND .21 .1	11 16 25 2.12 .12 .47 8 13 24 1.58 .11 .35 22 50 76 4.08 .23 1.34 11 34 24 2.11 .12 .56 10 23 23 2.01 .09 .42	15 461 L .02 26 .22 31 NO 14 628 3 .03 68 .06 42 NO 16 386 1 .01 52 .05 27 NO	ND ND 3 26 ND ND 136 ND ND 3 27 ND ND 105 ND ND 4 90 ND ND 137 ND ND 2 34 NO ND 131 ND ND 3 45 ND ND 110
CH88 Liw BL .i 2.06 5 CH88 Liw 0+50N .4 2.33 19 CH88 Liw 1+00N .1 2.14 15 CH88 Liw 1+50N .4 2.85 40 CH88 Liw 2+00N .1 1.95 13	ND 104 NO .20 .1 ND 137 ND .29 .5 ND 102 ND .22 .9 ND 248 ND .36 1.8 ND 137 ND .16 .8	7 17 1.76 .10 .44 10 26 26 2.11 .12 .65 10 21 30 2.13 .11 .52 17 26 37 3.31 .15 .79 8 17 20 1.72 .09 .43	55 513 1 .02 27 .07 29 ND 52 534 1 .01 27 .07 29 ND 79 1558 2 .03 23 .15 43 ND	ND ND 3 32 ND NO 125 ND ND 3 42 ND ND 151 ND NO 2 37 ND ND 171 ND ND 3 45 ND ND 182 ND ND 2 23 ND ND 196
CH88 Liw 2+50N .1 1.82 10 CH88 Liw 3+00N .1 2.45 28 CH88 Liw 3+50N .1 2.31 15 CH88 Liw 4+00N .1 1.55 13	ND 105 ND .16 .5 ND 223 ND .31 .9 ND 154 ND .17 .4 ND 101 ND .19 .8	9 20 28 1.88 .08 .49 17 27 42 2.26 .11 .55 9 15 21 1.60 .07 .39 9 20 26 2.00 .10 .56	55 931 2 .01 45 .10 28 ND 39 346 1 .01 36 .14 25 ND	ND ND 2 23 ND ND 139 ND ND 3 40 ND ND 178 ND ND 3 37 ND ND 226 ND ND 2 28 ND ND 150
DETECTION LIMIT .1 .01 3	3 1 3 .01 .1	1 1 1 .01 .01 .01	01 1 1 .01 1 .01 2 3	5 2 2 1 5 3 1

CLIENT: ASHMORTH EXPL JOBN: 890004 PROJECT: 259 REPORT: 890004 PA PAGE 2 OF 10 SAMPLE NAME 46 Al AS AU BA 81 ÊÅ CD CD ĊR CU FE K 86 MN. MG XA 82 P 28 PD PŤ SB. SN 52 ij ZN S PPN 1 PPR PPH 998 22N 1 PPM PPN PPH PPR z 1 **PPH** 22M 1 PPM PPR PP# 29h Ż 1 PPM PPH PPN **PP**# PPN PPH CH88 L1W 4+50N 33 .4 2.91 NÐ 197 ١ï .39 2.1 25 26 70 .53 2.36 .14 1025 .01 76 .22 3 38 ut. 30 3 70 267 10 хD M CH88 L1W 5+00W 2.41 15 189 28 .1 Mñ ND .19 1.1 10 19 1.87 .12 .43 436 2 .01 34 .07 29 ١D 20 3 36 253 H. ND ШĤ CH88 LIW 0+505 .1 2.68 -5 ШÐ 456 НĎ .78 1.1 9 12 25 1.92 .18 .39 1198 1 .02 19 .34 42 ЖĎ HĐ. ЖĎ 139 ND ND 172 2 CH88 L1W 1+005 .5 2.82 22 ND 220 ¥٨ 43 2.79 1.01 .8 12 14 .26 .67 1267 2 .04 20 .11 55 ND ŃÐ ND 3 93 ND ΝD 138 CH88 L1W 1+50S .1 2.67 8 ЖĎ 119 KD . 30 10 17 1.41 .28 .1 7 .11 317 .02 25 .09 28 ¥8 1 · ND MB 10 3 47 10 122 CH88 L1W 2+00S .1 1.81 13 ND 120 ND .29 .8 10 28 30 2.29 .12 .71 570 .02 31 .05 27 ND 1 ¥ñ 80 ыð 20 3 43 134 68 CH88 L1W 2+505 .1 1.18 26 ND ыħ .36 11 24 30 2.21 .12 .63 492 2 .02 32 1.1 .12 24 ШÖ ND 2 35 ND ND 134 CH88 L1N 3+00S ΧĎ 53 .63 33 .1 1.04 26 NÔ 1.1 10 23 2.19 .18 . 68 420 2 .02 35 .12 50 ND 24 MD 20 145 2 ×ñ 118 CH88 L1W 3+505 .3 1.07 23 жÐ 54 ХĎ .36 11 25 36 2.26 .15 .72 429 .02 34 25 1.1 2 .13 NB NÐ MD. 2 35 мĎ NÔ 127 CH88 L1W 4+005 32 ND ND .32 42 2.52 .1 1.26 64 1.6 13 30 .13 .76 554 - 2 .02 40 .14 27 NB XD ND 3 32 NŪ Ľ٨ 138 CH88 L14 4+505 .1 2.65 39 ND 93 ND . 26 .5 13 25 44 2.76 .15 .83 256 2 .01 30 .04 28 115 3 27 ЫŇ ND. 104 мħ ND CH88 L1W 5+005 1.1 2.63 60 NĎ 75 5 2.90 24 37 105 3.97 .52 1.54 670 42 .08 83 164 1.3 3 .01 34 1971 ND НĎ ШÐ CH88 L1W 5+505 27 ND 127 33 .14 .48 320 26 15 32 ND NÖ NG. ¥ñ .38 15 2.12 .02 Жħ 30 113 .4 3.67 .1 11 1 MB 4 CH88 LIN 6+005 .5 45 ND 127 3 32 56 3.39 .16 1.16 537 2 .01 39 .05 36 ЖŪ KS. 3.22 .35 .8 19 NÐ NÐ ыð 4 32 136 CH88 L1W 6+505 1.1 2.54 45 MÖ 74 3 .97 1.3 19 35 91 3.76 .25 1.26 560 2 .02 41 .07 36 #D 130 ND MD. 41 NÐ NÐ 4 CH88 LIW 7+005 2.52 3 87 44 ND 81 32 3.41 1.20 627 1.1 2.30 1.2 18 .40 2 .02 38 .10 31 ND 20 МÖ 4 68 NĎ ND 122 CH88 L1W 7+505 .4 2.80 23 ND 145 ND .44 .3 11 17 35 2.14 .13 .54 644 1 .02 21 .13 33 ХÖ 3 32 ыß 115 11B 146 нĎ CH88 L1W 8+005 .1 2.71 22 ND 110 ND .24 20 1.84 .09 \$31 -1 11 -14 .44 1 .01 23 .12 27 NÐ NÐ ЖĎ 3 22 MO ЖĎ 132 CH88 L1W 8+505 мÐ Nħ .1 2.87 21 118 .24 .4 -11 15 20 1.89 .09 .45 585 1 .01 25 .12 30 ND ND XÐ MB 22 ND 135 ź CH88 L1W 9+00S 26 NÐ 111 NÐ .39 .15 .1 2.81 .3 12 20 41 .71 480 24 2.41 2 .01 .09 30 МĎ ND жő 27 ЖÖ NO 103 CH88 L1W 9+50S ND 107 .28 .3 2.34 24 NB .5 12 26 45 2.34 .11 .67 450 66 2 .02 .11 29 ND NØ NÐ 3 28 ND ND 106 CH88 LIW 10+005 2.2 2.07 43 NO. 101 2.46 NB 1.5 16 50 89 3.41 .41 1.06 401 2 .02 142 .07 31 NB 20 3 107 ND ND 133 CH88 L2W BL .5 2.13 38 86 -114 NÐ .62 1.1 12 29 46 2.64 .16 .76 775 2 .03 38 .06 50 NŬ 74 ND ND 137 NO NO 3 CH88 L2W 0+50N .1 2.16 27 ND 144 ND .25 20 1.84 .09 .39 730 23 7 15 .06 30 .4 1 .01 MÓ NG. NB 3 38 ND ND 177 CH88 L2W 1+00M 1.8 2.86 102 ND - 89 ND .31 3.57 1.2 10 29 76 .15 .78 374 .03 37 .09 75 ND NÐ 168 3 ЖÐ 3 41 ND ND CH88 L2W 1+50N 2.2 2.41 -59 ND 104 3 . 86 3.4 16 38 99 3.63 .22 .89 597 .01 53 .09 40 ND ž ND ND 325 4 NÐ Жħ 58 CH88 129 2+00N 118 NB .33 .5 2.25 26 NĤ 1.1 12 26 46 2.61 .15 .68 670 2 .03 31 .06 34 N NE 3 40 ND ЖŪ 174 CH89 1.29 2+500 .1 2.70 21 ND 213 NO .28 . 8 9 16 25 1.78 .09 .42 960 2 .01 33 ,13 32 ¥П NŐ ¥0 242 MD Жħ 3 41 CH88 L2W 3+00N .1 2.01 11 NÐ 188 NB .21 1.7 21 33 1.93 .11 .46 871 32 10 2 .01 .10 25 ND. NВ MA 32 41 3 ND NR 鶸 21 1.3 25 .50 .1 1.58 148 40 . 26 8 1.78 23 Ĵ. CH88 L2W 3+50N 3 NØ .11 749 1 .01 .08 24 ND ND NÐ CH88 L2W 4+00N 172 ND . 22 .1 2.08 9 ND .5 9 19 23 1.79 .08 .44 774 1 .01 29 .10 25 ND NB ND. 3 37 WD. ΝÔ 192 CH88 L2N 4+50N .1 1.77 .5 2.30 8 NÐ 165 .17 7 17 ND . 6 18 1.54 .07 .43 711 .01 22 .07 22 MA 20 ND 2 -23 NÐ ND 226 CH88 L2N 5+00N ND 22 137 ND . 26 2.5 11 21 41 2.01 .09 .48 473 2 .01 36 .11 28 ND ND ND 3 45 ND ND 273 CH88 L2W 0+505 ND 259 .4 2.94 45 MD .77 1.3 12 12 28 2.86 .19 .49 1742 2 .04 15 .10 78 NÐ ND NÐ 3 126 ND NО 180 CH88 L2W 1+00S .1 2.11 12 ND 168 ЖÔ . 29 22 1.90 .09 .54 502 .6 - 4 25 1 .01 27 .09 27 Nħ ND ND 3 49 NŨ KQ 167 CH88 L2W 1+505 .5 1.87 22 'ND 110 NÛ 1.57 1.1 13 31 47 2.44 .28 .92 560 2 .03 36 .10 28 ND NÐ NĎ 3 112 NÖ NÖ 129 CH88 L2¥ 2+005 1.11 58 .55 26 NÐ 10 10 23 2.25 .70 569 .1 1.3 28 .15 2 .01 31 .13 29 ND ND NÐ 2 47 ND ND 156 2.07 CH88 L2W 2+505 33 ND 66 ND .23 293 15 30 51 3.05 .12 .94 .01 33 .06 27 ND ND .1 .6 2 NÖ 4 21 ND ND 123 CH88 L2W 3+005 .1 3.05 15 80 98 ND .19 10 1.39 .06 .25 361 .02 22 NÐ .1 7 16 .20 28 ND ND 28 1 3 NÐ NÐ 107 DETECTION LINIT .1 .01 3 3 1 3 .01 .1 1 .01 .01 .01 .01 .01 1 1 1 1 2 3 - 5 2 2 5 3 1

States ----

No. States and a state

1.11

1995 - 19**9**0

Contraction of the second

CLIENT: ASHAGRTH EXPL JOBA: 890004 PROJECT: 259 REPORT: 890004 PA

PAGE	3 Of	F 10	
------	------	------	--

SAMPLE NAME		AĜ PPH	AL I	AS PPN	AU PPN	BA PPH	B1 PPM	CA X	CD PPM	CO PPM	CR PPM	CU PPM	FE I	K X	NG X	NN PPH	NO PPN	NA L	NI PPH	P I	PB PPN	PD PPM	PT PPH	SB PPM	SN PP r	SR PPM	U Pph	W PPN	ZN PPN	
CH88 L2W 3+505 CH88 L2W 4+005		1.1 .1	2.25 2.02	17 8	ND ND	134 188	ND ND	. 32	20.2	11 9	20 16	39 18	1.94	.11	. 48 . 40	565 1153	32	.01	24 26	.16	202 41	ND ND	ND ND	ND ND	3	54 62	ND ND	ND ND	3519 474	
CH88 L2W 4+505 CH88 L2W 5+005 CH88 L2W 5+505 CH88 L2W 5+505 CH88 L2W 6+005 CH88 L2W 6+505		.3 .3 1.1 .4 .3	2.33 3.49 2.29 3.49 2.03	15 14 40 35 11	ND ND ND ND	138 126 75 173 107	ND ND ND ND	.17 .15 .93 .21 .28	.6 .4 1.1 .4 .1	9 9 18 11 10	21 12 30 19 26	25 24 79 28 26	1.89 1.83 3.42 2.15 2.01	.09 .08 .25 .10 .11	.53 .36 1.23 .52 .50	414 501 609 612 342	2 2 3 2 2	.01 .02 .02 .02 .02	25 20 37 34 33	.12 .20 .09 .25 .04	31 32 34 34 27	ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	3 4 3 3	23 19 52 25 34	ND ND ND ND	ND ND ND ND	170 141 137 150 103	
CH88 L2N 7+00S CH88 L2N 7+50S CH88 L2N 8+00S CH88 L2N 8+50S CH88 L2N 9+50S CH88 L2N 9+00S	- 	.3 .4 .4 .3 .1	2.38 3.85 1.84 2.53 3.12	20 10 18 17 16	nd Nd Nd Nd	102 89 60 84 140	ND ND ND ND	. 28 . 16 5. 19 . 43 . 20	.5 .1 .6 .4 .3	13 9 12 13 13	23 10 18 21 17	41 24 56 45 26	2.66 1.71 2.37 2.63 2.32	.13 .08 .76 .15 .11	.87 .31 .94 .90 .63	417 272 398 447 799	2 1 2 2 2	.01 .02 .02 .01 .01	28 18 20 23 26	.08 .14 .06 .06	28 31 24 26 28	ND ND ND ND ND	ND ND ND NO	ND ND ND ND ND	3 3 4 3	22 18 98 24 18	ND ND ND ND	ND ND ND ND	113 79 92 103 100	
CH88 L2W 9+50S CH88 L2W 10+00 CH88 L3WBL0+00 CH88 L3W 0+50W CH88 L3W 1+00N	S N	.4 .3 .5 1.1 .4	3.91 4.05 3.55 3.27 2.16	12 13 57 89 23	ND ND ND ND	111 110 159 163 120	ND ND ND ND	.20 .20 .40 .52 .20	.1 .1 1.4 .4	9 B 12 13 9	9 8 11 34 23	21 21 29 38 33	1.68 1.59 2.23 3.55 2.02	.09 .08 .14 .20 .11	.29 .26 .40 .95 .51	404 427 637 920 561	1 1 2 2	.02 .03 .04 .04 .03	19 18 18 19 22	.14 .13 .09 .08 .07	29 29 50 64 34	ND ND ND ND ND	ND ND ND ND	ND ND ND ND	3 3 2 2 2	19 20 83 93 43	ND ND ND ND	ND ND ND ND	103 96 124 221 135	
CH88 L3W 1+50W CH88 L3W 2+00W CH88 L3W 2+50W CH88 L3W 3+00W CH88 L3W 3+50W		.2 1.1 .5 3.6 .3	2.08 3.03 2.61 2.53 2.47	5 39 89 41 ND	ND ND ND ND ND	129 114 83 91 112	ND ND ND ND	.18 .55 .28 .31 .18	.3 1.1 .6 1.5 .6	7 12 10 16 9	17 33 23 45 17	15 56 39 84 30	1.55 3.21 3.79 3.28 1.81	.08 .19 .17 .16 .09	.42 .83 .74 .95 .42	393 661 415 452 291	1 2 3 2	.02 .03 .05 .02 .02	20 29 22 70 34	.05 .07 .07 .05 .07	29 44 35 49 25	ND ND ND ND	ND ND ND ND	ND ND ND ND	3 3 2 3 2	30 66 36 45 32	ND ND ND ND	ND ND ND ND	144 153 131 206 175	
CH88 L3W 4+00M CH88 L3W 4+50M CH88 L3W 5+00M CH98 L3W 85-01 CH88 L3W 0+505		.4 1.1 .3 .2 .2	2.47 3.53 2.57 .95 1.21	ND 15 6 27 22	ND ND ND ND	148 168 138 52 54	ND ND ND ND	.16 .13 .17 .43 .29	1.2 2.1 .3 .9 .6	9 10 9 9	18 21 18 24 27	26 57 27 29 33	1.82 2.34 1.85 2.14 2.32	.03 .10 .03 .13 .12	.43 .52 .46 .64 .75	308 184 227 318 316	2 3 2 3 2	.01 .01 .02 .02	34 52 32 30 30	.09 .19 .07 .12 .11	27 36 26 24 21	ND ND ND ND	ND ND ND ND	ND ND ND ND ND	2 2 2 2 3	36 36 29 38 32	ND ND ND ND	ND ND ND ND	296 508 159 120 111	
CH88 L3W 1+005 CH88 L3W 1+505 CH88 L3W 2+005 CH88 L3W 2+505 CH88 L3W 3+005		.3 .1 .3 .2 .5	1.22 .96 2.04 2.50 3.14	22 26 24 10 10	ND ND ND ND	70 50 60 125 143	ND ND ND ND	.46 .32 .28 .15 .15	1.2 .8 .9 .1 .1	12 10 13 7 9	30 24 27 10 15	37 33 59 17 26	2.37 2.24 2.82 1.43 1.88	.15 .12 .14 .07 .09	.81 .64 1.06 .24 .44	495 448 358 388 503	3 2 3 1 2	.02 .02 .02 .01 .01	36 32 36 17 25	.10 .12 .05 .20 .18	25 25 27 24 27	ND ND ND ND	ND ND ND ND	ND ND ND ND	2 2 3 3 3	43 32 29 27 21	ND ND ND ND	ND ND ND ND	137 128 111 151 137	
CH88 L3W 3+505 CH88 L3W 4+005 CH88 L3W 4+505 CH88 L3W 5+005 CH88 L3W 5+505 CH88 L3W 5+505		.1 .1 .3 .2 1.1	2.15 1.70 3.48 3.75 2.17	4 ND 9 16 30	ND ND ND ND	119 79 168 98 186	ND ND ND ND	.17 .18 .14 .12 2.29	.1 .3 .1 .1 1.6	9 10 8 9 21	17 25 11 12 82	22 26 21 23 64	1.70 2.02 1.52 1.81 3.69	.08 .10 .07 .08 .44	.44 .68 .24 .33 1.06	365 199 224 283 530	1 2 1 1 5	.02 .02 .02 .01 .01	23 24 47 34 172	.08 .05 .19 .16 .05	23 21 25 26 26	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND	3 3 2 3 2	22 20 21 25 181	ND ND ND ND	ND ND ND ND	102 86 112 96 156	
CH88 L3W 6+005 CH88 L3W 6+505		.2 .3		10 13	ND ND	180 129	ND Dx	.34 .15	.9 .1	19 9	69 19	36 17	3.06 1.68	.16 .08	.96 .43	224 388	4 1	.01 .02	177 45	.03 .16	28 25	ND ND	ND ND	ND ND	2 3	66 31	ND ND	ND ND	131 120	
DETECTION LINI	T	.1	.01	3	3	1	3	. 01	.1	1	1	-1	.01	.01	.01	i	1	.01	1	.01	2	3	5	2	2	ı	5	3	1	

CLIENT: ASHWORTH EXPL JOB4: 830004 PROJECT: 259 REPORT: 830004 PA

SAMPLE NAME	AG PPM	AL I	AS PPN	AU PPN	BA PPR	B1 PPM	CA 1	CD PPN	CD PPN	CR PPM	CU PPM	FE 1	K X	MG X	NN. Pph	NO PPH	NA Z	NI PPH	P I	PB PPM	PD PPM	PT PPN	SB PPN	SN PPN	SR PPN	U PPN	N PPN	ZN PPM
CH88 L3W 7+005 CH88 L3W 7+505 CH88 L3W 8+005	1.1 .6 .4	4.17 2.27 2.61	79 31 45	ND ND ND	176 67 146	6 ND 3	.45 .27 .31	1.6 .6 1.4	21 15 20	72 30 42	94 65 70	4.75 3.34 3.68	.23 .15 .17	1,66 1,30 1,15	466 357 739	3 2 2	.03 .01 .02	70 34 67	.04 .03 .09	46 28 32	ND ND ND	ND ND ND	ND ND ND	5 5 3	57 23 29	ND ND ND	ND ND ND	138 95 144
CH88 L3N 8+505 CH88 L3N 9+005 CH88 L3N 9+005 CH88 L3N 9+505 CH88 L4W 0+00N	.3 .5 .3 .4 .2	3.07 4.18 4.18 3.72 1.17	16 14 16 9 34	ND ND ND ND	107 128 141 130 58	ND ND ND ND	.20 .15 .16 .14 .44	.1 .3 .1 .1 .9	10 12 9 9	12 15 10 11 24	24 30 22 23 33	1.80 2.32 1.85 1.84 2.26	.09 .12 .09 .08 .14	.39 .49 .32 .34 .69	348 286 632 696 405	ND 1 1 ND 2	.02 .02 .02 .02 .02	21 24 20 19 32	.09 .08 .16 .18 .13	28 34 31 28 24	NO ND ND ND	ND ND ND ND	ND ND ND ND ND	3 3 3 3 2	20 17 19 17 39	ND ND ND ND ND	ND ND ND ND ND	88 80 89 123 121
CH88 L4W 0+50N CH88 L4W 1+00N CH88 L4W 1+50N CH88 L4W 1+50N CH88 L4W 2+50N	.1 .1 .2 .6 .3	2.45 3.70 3.80 1.93 1.60	21 96 51 44 22	nd Nd Nd Nd	157 173 202 87 69	ND ND ND ND	.30 .33 .25 .22 .19	.3 .4 .4 .5 .4	14 16 12 8 10	13 16 17 18 27	36 34 26 28 29	2.77 3.15 2.48 2.16 2.04	.14 .16 .12 .11 .10	.45 .68 .48 .55 .69	594 1097 731 415 266	1 2 1 1 1	.02 .04 .03 .03 .04	21 29 23 19 23	.17 .10 .09 .05 .05	25 44 41 146 35	ND ND ND ND	ND ND ND ND ND	ND ND ND ND	2 1 3 2 4	44 60 58 35 27	KD ND ND ND ND	nd ND ND ND	182 212 154 118 113
CH88 L4W 3+00N CH88 L4W 3+50N CH88 L4W 4+00N CH88 L4W 4+50N CH88 L4W 5+00N	1.1 .2 .1 .3 .1	2.33 1.61 1.86 2.47 1.52	22 6 ND 3 ND	ND ND ND ND	96 85 83 144 145	ND ND ND ND	.71 .22 .19 .26 .30	1.5 .6 .4 .9 .6	13 10 11 14 10	33 21 26 23 25	66 29 28 41 25	2.88 1.91 2.04 2.44 1.92	.20 .10 .10 .12 .11	.84 .55 .66 .60 .60	529 350 250 529 689	2 1 1 1	.03 .03 .04 .03 .03	38 24 24 33 24	.09 .07 .03 .05 .09	32 22 23 28 21	ND ND ND ND	ND ND ND ND	ND ND ND ND	3 3 3 3 3	52 32 27 36 38	ND ND ND ND	ND ND ND ND	169 132 101 185 133
CH88 L4W 0+505 CH88 L4W 1+005 CH88 L4W 1+505 CH88 L4W 2+005 CH88 L4W 2+505	.2 .1 .3 .1	1.36 3.04 2.23	22 18 3 7 4	ND ND ND ND	104 64 232 98 183	ND ND ND ND	.70 .20 .26 .15 .17	1.4 .5 .1 .1	13 11 6 10 8	30 28 10 28 14	37 28 19 21 16	2.44 2.28 1.36 1.84 1.49	.18 .11 .08 .08 .08	.82 .71 .18 .56 .33	646 386 526 272 715	2 1 1 1	.03 .02 .02 .01 .01	37 32 37 40 23	.11 .12 .66 .06 .29	28 21 26 23 23	ND ND ND ND	ND ND ND ND	ND ND ND ND ND	2 2 3 2	62 24 53 25 32	NG ND ND ND	ND ND ND ND	175 124 98 161 171
CH88 L4W 3+005 CH88 L4W 3+505 CH88 L4W 4+005 CH88 L4W 4+505 CH88 L4W 5+005	.4 1.1 .5 .5	1.25 3.40 3.02 3.79 2.41	16 21 14 20 31	ND ND ND ND	55 140 204 159 150	NO NO NO NO	1.71 .28 .37 .20 .20	.5 1.2 2.1 .1 .8	10 24 18 17 13	25 20 24 11 27	39 104 55 65 49	2.22 3.28 3.16 1.96 2.64	.31 .13 .16 .10 .12	.80 .65 .59 .36 .62	386 459 833 249 317	1 1 2 ND 2	.03 .03 .01 .03 .03	29 69 67 30 64	.11 .10 .09 .10 .05	21 32 32 32 33	ND ND ND ND	ND ND ND ND	nd Nd Nd Nd	2 3 2 3 3	87 39 52 35 40	ND ND ND ND	ND ND ND ND	89 208 352 105 182
CHBB L4W 5+505 CHBB L4W 6+005 CHBB L4W 6+505 CHBB L4W 7+005 CHBB L4W 7+505	1.1 .4 1.1 .4 1.1	3.57 1.96 2.20 .63 2.67	14 5 106 84 21	ND ND ND ND	255 110 95 64 169	ND ND ND ND	.39 .15 .26 15.39 .49	.8 .3 .8 .4 .4	18 10 14 7 11	38 27 55 11 30	63 22 67 38 30	3.04 1.87 3.28 1.27 2.20	.16 .09 .15 2.09 .14	.84 .72 1.14 .52 .56	318 227 309 178 171	1 ND 2 ND 1	.04 .04 .04 .03 .03	276 37 69 114 61	.02 .02 .06 .09 .03	38 24 31 25 28	ND ND ND ND ND	ND ND ND ND	ND ND ND ND ND	3 4 1 3	71 28 43 438 58	ND No No No	ND NO NO ND	174 111 132 84 101
CH88 L4W 8+005 CH88 L4W 8+505 CH88 L4W 9+005 CH88 L4W 9+505 CH88 L4W 9+505 CH88 L4W 10+005	.3 1.1 .4 .3 .3	2.52 2.48 2.43 3.41 2.98	16 44 43 47 33	ND ND ND ND	197 90 81 142 162	ND 3 ND ND ND	. 21 . 44 . 33 . 39 . 38	.4 1.4 .9 .6 .6	11 19 18 12 16	24 35 37 18 26	31 112 89 36 50	2.24 3.76 3.58 2.40 2.98	.11 .19 .17 .14 .15	.62 1.24 1.14 .53 .98	354 535 391 527 503	1 2 2 1 1	.02 .03 .02 .02 .01	42 44 42 27 35	.04 .04 .03 .40 .09	29 31 28 29 30	ND ND ND ND	ND ND ND ND	ND ND ND ND ND	4 4 3 4	33 33 28 33 25	ND ND ND ND	ND ND ND ND	100 112 111 142 112
CHB9 LS¥ BL	.4		32	ND	83	ND	.45	1.5	14	38	50	2.67	. 13	.90	463	2	.03	45	.12	30	ND	ND	ND	3	45	ND	ND	177
DETECTION LIMIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	1	1	.01	1	-01	2	3	5	2	2	1	5	3	1

PAGE 4 OF 10

CLIENT: ASHWORTH EIPL JOB8: 890004 PROJECT: 259 REPORT: 890004 PA

							030004	TA																					
SAMPLE NAME		6 A Ph 1	L AS PPI	AU t PP		BI I PPI	CA N X	CD PPH	CO PP#	CR PPM	CU PP			лs	MN	HO		NI	p	PB	PD		SE 5 DF						
CH88 L5W 0+50N CH88 L5W 1+00N		2 1.						1.3	12	31	3	-	2.10	z).76	PPR	PPI	4 X	PPI	1 1	PPN		PT PPH	SB PPM	SN PP		U I PPN	W PPI	ZN PPN	
CH88 L5W 1+50N CH88 L5W 2+00N		1 1.0	2 20	N	0 62	N)	6	10 9 14	31	3 20	1 2.4	9.1	2.84		3 2 2	.01		.12	27	ND	ND ND	ND		2 27		ND ND	143 232	
CH88 L5W 2+50N CH88 L5W 3+00N	. 1.) 179	ND		1.6	24	31 27	48					1		24		22 30	ND ND	ND ND	ND ND		22		ND ND		
CH88 L5W 3+50N CH88 L5W 4+00N	•	72.3 32.0 31.6	1 NO	ND ND ND	168	ND ND ND	.26	.6	15 7	28 16	53	2.69	.14	.71	1269 849 808	1	.02	30 24	.05	72 32	ND ND	ND ND	ND	2	106	ND ND	ND ND	168	
CH88 LSW 4+50N CH88 LSW 5+00N		7 2.8	4 98	ND		ND	.21 .30	.3 1.1	9 15	21 19	35 70			. 59	381 793	1	.02 .03 .03	18 24 39		23 24 36	ND ND ND	ND	ND ND	2	40 33	ND ND	ia ND ND ND	137 153 109	
CH88 LSW 0+505 CH88 LSW 0+505 CH88 LSW 1+005		3 1.1	2 19	ND ND ND	66. 61	ND ND	.24 .35	.7 1.1 -	14 11	27	73		.13	.75	336 455	1	.02	34	.07	24	ND	ND ND	ND	1	49	NÐ	ND	217	•
CH88 LSW 1+505 CH88 LSW 2+005		1.58	3 10	ND ND	61 76 48	ND ND ND	.16 .22 .15	.3 .6 .2	9 11 9	22 35	34 31	2.24 2.43	.09	.71 .97	433	2	.02 .01 .02	32 31 33	.11	22 21	ND ND	ND ND	ND ND	1 2	32 40 21	ND ND ND	ND ND ND	122 141 92	
CH88 LSW 2+505 CH88 L5W 3+005	.2			ND	138	ND	.16	.1	8	21 17	30 16	1.95	.10	. 60	184	i	.02	23	.05	23 18	ND. ND	NO ND	ND ND	32	26 17	ND ND	ND ND	121 75	
CH88 L5W 3+505 CH88 L5W 4+005	.2	2.49	3	ND ND ND	130 106 111	3 ND ND	.45	1.3	42 13	11 20	205 26	4.37	.19	.48 .85 .59	316 1001 382	ND 2	.01 .01 .01	26 53	.24	21 36	ND ND	ND ND	ND ND	1	23 58	ND ND	ND ND	123	
CH88 LSW 4+505 CH88 L5W 5+005	.2		ND	ND	133	ND	.22 .11	.8 .1	20 8	27 14	97 17	3.30 1.65	.13	. 93 . 44	634 431	1	.02	32 36 21	.06 .06 .06	23 35 20	ND ND ND	NŬ ND ND	ND ND	2	30 34	ND ND	ND ND	228 148 145	
CH88 L5W 5+505 CH88 L5W 5+005	.1 .6 .7	2.47	5 3 298	ND ND ND	183 160 138	ND ND	.17 .20	.2 .3	11 9	11 21	26 20	1.91	.08 .08	.38 .47	931 520	1	.01	42	.17	24	ND	ND	ND ND	2	21	0K	ND	124	
CH88 LSW 6+50S CH88 LSW 7+00S	2.8		202 14	ND ND	151	ND ND ND	.46 2.84 .19	1.1	15 17	31 27	41 74	2.50 3.27	.14	.78	615 402	1 1	.01	64 412 177	.20 .07 .07	23 37	ND ND	ND ND	ND ND	2	39 43 84	ND ND ND	ND ND ND	154 180 349	
CH88 LSW 7+505 CH68 LSW 8+005	.1	2.26	14	ND	147	ND	.17	1.1	10 15	29 85	18 33	1.07	.08	. 58	321	1	.01	67	.12	53 22	ND ND	ND ND	ND ND	1 2	147 34	NÐ ND	ND	242 158	
CH88 L5W 8+505 CH88 L5W 9+005	.1	3.00	24 7 28	ND ND ND	147 182 113	ND ND	.28 .18	.7 .5	15 13	60 58	54 23	3.23 2.99 2.62	.12 .13 .11	1.45 .95 1.00	350 364 410	2	.01 .01	136 112	.05 .04	27 27	ND ND	ND ND	ND ND	1	32 48	ND ND	ND ND	171	
CH88 LSW 9+50S CH88 LSW 10+00S	.2	2.20	57	ND	134	ND ND	.15 .21	.8 1.1	13 20	38 39	53 82	3.36 4.01	.13	1.10	150 447	3	.01 .01 .01	104 67 86	.04 .03 .03	27 24 30	ND ND	ND ND	ND ND	1	37 30	ND ND	ND ND ND	150 145 173	
CH88 L6W 0+50N CH88 L6W 0+50N CH88 L6W 1+00N	.1 .1 .2	1.99 1.02 1.54	15 4	ND ND	142 62		.18 11.05	.3 .5	11 7	28 18	29 47	2.70	.11	.64	268	2	.01	4B	.01	21	ND ND	ND	ND ND	2	41	ND	ND	147	
CH88 L6W 1+50N CH88 L6W 2+00N	.1	.82	10 ND 22	ND ND ND	128 68 71	ND ND ND	.49 2.25 .68	.7 .3	12 6	27 14	32 31	2.21	.13	.62 .81 .58	388 553 335	ND 1 1	.02 .01 .01	19 27	.06 .05	20 29	ND ND	ND ND	ND ND	1 2	35 133 35	ND ND ND	ND ND ND	94 57 169	
CH88 LEW 2+50N CH88 LEW 4+00N	.5	1.25	23	ND	76	ND	. 68	.8 1.1	11 11	28 30		2.27	.1B	.83	496	2	.02	21 36	.07 .11	20 22	ND ND	ND ND	ND ND	2 2	177 54	ND ND	ND ND	99 131	
CH88 L6W 4+50N CH88 L6W 5+00N	.5 .2 .2	2.91 2.01 1.83	80 48 41	ND ND ND	228 101	ND ND	.62 .24	1.5	24	32 32	84	2.37 3.76 2.64	.16 .23 .12	.86 .86 .73	510 877 328	2 2	.02 .02	36 44	.11 .10	24 36	ND ND	ND ND	ND ND	2	54 58	ND ND	ND	140	
CHBB LEW 0+00S	1.1	2.90	20	ND	96 62	ND 3	.23 .46	.5 1.1			44	2.42 3.70	.11	.67	325 401	1 2	.03 .03 .01	33 31 28	.04 .04 .02	26 24 23	ND ND ND	ND ND	ND	23	40 40	ND ND ND	ND ND ND	217 114 106	
DETECTION LIMIT	•1	. 01	3	3	t	3	.01	.1	1	1	1	.01	. 01	A1						13	nu	ND	ND	5	30	ND		104	
											•		• • •	.01	1	1	.01	1	.01	2	3	5	2	2	1	5	3	1	

Caracter State

- 36

CLIENT: ASHWORTH EIP_ JOBR: 890004 PROJECT: 259 REPORT: 890004 PA

B + A C		~~	
PAGE	δ.	181	10

Start's

and the second second second second second

SAMPLE NAME	A6 PPH	AL. . Z	AS PPR	AU PP#	BA PPH	BI PPM	CA 2	CD PPR	CO PPN	CR PPM	CU PPM	FE 1	K I	MG Z	NN PPN	NO PPM	NA 1	NI PPH	PZ	PB PPH	PD PPM	PT PPN	SB PPM	SN PPH	SR PPN	U PPM	N PPK	ZN PPM
CH88 L6W 9+505 CH88 L6W 1+505 CH88 L6W 2+005 CH88 L6W 2+505 CH88 L6W 2+505 CH88 L6W 3+005		2.23 2.57 2.41 2.57 2.83	11 69 19 10 6	NO NO ND ND	200 150 97 121 168	ND 3 ND ND	.38 .37 .16 .27 .22	1.2 4.1 .4 .3 .5	12 16 10 10 17	19 30 17 8 16	35 106 30 31 38	2.21 4.00 2.26 1.66 2.16	.13 .19 .10 .09 .10	.82 1.03 .56 .39 .44	1119 714 174 382 584	1 4 1 1	.01 .02 .02 .02 .01	26 44 21 20 51	.25 .08 .04 .25 .20	28 43 29 26 27	ND ND ND ND	ND ND ND ND	ND ND ND ND	3 2 2 2 2 2	44 47 29 53 37	ND ND ND ND	ND ND ND ND	227 295 89 151 232
CH88 LGW 3+505 CH88 LGW 4+005 CH88 LGW 4+505 CH88 LGW 5+505 CH88 LGW 5+505	.7 .7 .6 .7 1.2	2.92 3.17 2.46 2.45 2.45	25 9 5 5 23	ND ND ND ND	133 185 143 160 154	ND ND ND ND	.18 .17 .17 .17 .27	1.8 .5 .3 .5 .9	17 10 10 11 16	24 18 19 24 35	76 23 21 26 80	3.55 1.85 1.97 1.98 3.38	.15 .09 .09 .09 .15	.71 .43 .53 .59 .80	320 584 428 509 401	4 1 1 2	.01 .02 .02 .03 .02	76 40 25 31 60	.09 .35 .09 .07 .05	29 30 25 25 31	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	2 3 2 2 2	30 32 31 30 49	ND ND ND ND	ND ND ND ND ND	276 210 136 128 161
CH88 L6W 6+00S CH88 L6W 6+50S CH88 L6W 7+00S CH88 L6W 7+50S CH88 L6W 8+00S	.7 .8 1.5 .5 .5	2.77 2.58 2.64 1.84 2.29	134 506 40 23 17	ND ND ND ND	133 254 276 124 154	ND ND ND ND ND	.12 .26 .54 .14 .11	.4 1.3 2.1 .5 .5	9 17 22 12 11	13 26 56 36 27	32 69 76 32 39	1.78 3.76 4.33 2.57 2.34	.08 .17 .23 .11 .10	.29 .50 .70 .64 .57	273 413 341 216 187	1 2 4 2 2	.02 .02 .01 .02 .01	67 200 185 77 76	.09 .04 .03 .04 .04	35 56 31 23 24	ND ND ND ND	ND ND ND ND	ND ND ND ND	2 2 2 2 2 2	33 58 118 27 33	ND KD ND ND	ND ND ND ND	138 204 228 147 121
CH88 L6¥ 8+505 CH88 L6¥ 9+605 CH88 L6¥ 9+505 CH88 L6¥ 10+605 CH88 L6¥ 10+605 CH88 L7¥ BL	.2 .3 .2 .2 .2	2.29 2.63 2.71 2.07 2.92	23 50 18 20 12	ND ND ND ND	123 170 215 128 111	ND ND ND ND	.14 .14 .24 .17 .25	1.1 .5 .8 .4 .3	14 14 14 12 10	45 23 25 38 12	57 44 60 41 24	3.19 2.82 3.14 2.60 1.70	.13 .12 .14 .11 .09	1.05 .56 .74 .82 .48	167 146 154 218 285	2 3 2 ND	.01 .01 .02 .02 .01	100 81 62 48 20	.04 .02 .03 .03 .06	26 28 26 22 22	ND ND ND ND	ND ND ND ND	ND ND ND ND	1 2 2 3	26 35 35 26 28	NQ ND ND ND	ND ND ND ND	168 122 154 107 110
CH88 174 0+50N CH88 174 1+00N CH88 174 1+50N CH88 174 2+00N CH88 174 2+50N	.2 .8 1.1 .3 .3	1.74 1.73 2.36 1.73 1.74	ND 14 19 11 16	ND ND ND ND	96 113 126 98 92	HD ND ND ND	.78 8.75 .46 .26 .24	.1 1.6 1.1 .6 .6	7 15 13 11 11	9 22 45 32 33	32 86 53 25 26	1.09 2.30 3.02 2.28 2.34	.14 1.22 .16 .11 .11	.27 1.06 1.12 .99 1.03	223 670 359 386 370	ND 1 1 1	.03 .01 .03 .02 .02	30 28 41 29 29	.04 .15 .07 .11 .10	16 24 27 21 22	ND ND ND ND	ND ND ND ND	ND ND ND ND ND	1 2 3 3 3	22 101 44 29 28	ND ND ND ND	ND ND ND ND	62 119 175 146 144
CH88 L7W 3+00M CH88 L7W 3+50M CH88 L7W 4+00M CH88 L7W 4+50M CH88 L7W 4+50M CH88 L7W 5+00M	.2 .5 .3 .2 .5	1.03 1.18 1.38 1.12 1.36	17 32 40 26 30	nd ND ND ND	62 82 91 57 80	ND ND ND ND	.35 .65 .53 .33 .33	.6 1.8 2.7 1.1 1.3	9 12 15 11 13	24 28 37 28 30	31 39 53 28 41	1.98 2.34 2.85 2.31 2.57	.11 .17 .17 .12 .13	.63 .76 .82 .72 .81	392 527 821 432 592	2 2 3 2 2	.02 .02 .01 .02 .02	30 38 48 36 39	.10 .14 .11 .12 .12	20 23 29 22 25	ND ND ND ND	ND ND ND ND	ND ND ND ND	2 2 2 2 2	35 57 56 33 36	ND ND ND ND	ND ND ND ND ND	136 177 206 132 146
CH88 L7W 0+505 CH88 L7W 1+005 CH88 L7W 1+505 CH88 L7W 1+505 CH88 L7W 2+505 CH88 L7W 2+505	.6 .3 .5 .8 .3	2.35 3.22 3.79 3.41 3.01	21 19 13 18 7	ND ND ND ND	65 193 138 139 169	ND ND ND ND	.29 .17 .16 .18 .13	1.1 .5 .3 .1 .5	17 15 9 9	30 25 14 8 13	75 47 19 17 14	3.24 2.57 1.89 1.97 1.81	.15 .11 .09 .09 .08	1.44 .94 .36 .35 .31	516 386 433 598 744	2 1 1 1	.01 .01 .02 .02 .02	29 32 21 22 21	.05 .09 .12 .20 .13	25 27 31 33 35	ND NO NO NO	ND ND ND ND	ND ND ND ND	4 2 1 2	29 23 26 31 28	ND ND ND ND	ND ND ND ND	104 130 103 131 207
CH88 L7W 3+00S CH88 L7W 3+50S CH88 L7W 4+00S CH88 L7W 4+50S	.3 .3 1.5	2.21 4.10 2.35 2.99	12 18 5 19	ND ND ND ND	120 203 180 166	ND ND ND ND	.17 .13 .17 .25	.4 .5 .9	11 14 9 16	24 13 18 39	25 41 19 50	2.11 2.23 1.59 3.07	.10 .09 .08 .14	.69 .41 .46 1.14	359 523 347 367	1 1 1 2	.02 .02 .03 .03	26 37 43 43	.08 .10 .27 .03	26 29 24 31	ND ND ND ND	ND ND ND ND	ND ND ND	3 2 2 3	30 27 32 54	ND ND ND ND	ND ND ND ND	125 131 126 122
DETECTION LIMIT	.1	.01	3	3	t	3	.01	1.	1	1	1	.01	.01	.01	_ 1	1	.01	1	.01	2	3	5	2	2	1	5	3	1

Barran Barran

CLIENT: ASHWORTH ELPL JOB4: 890004 PROJECT: 259 REPORT: 890004 PA PAGE 7 OF 10 ÇD ÇŨ CR CU FE K 86 HX. 50 NI 28 90 52 U ZN SAMPLE NAME AG AS All RA 81 CA. NA ρ PT \$B SN ۰¥ AI. PPN PP# I PPH PPH PPN 1 PPN PPH PPN PPH 1 ĩ z PP# PPM z PPff 2 PPH PPN PPN PPH PPĦ PPN PP# PPN PPB CH88 L7W 5+005 .3 3.88 15 NÔ 148 МĎ .18 .5 10 16 23 2.00 .10 .41 419 2 .01 42 .17 35 NO ШĐ ND 2 49 80 ND 124 132 хD 13 16 26 2.18 .09 462 184 CH08 179 5+505 2.56 26 ND .10 .5 .39 -59 29 NÐ .3 2 .01 .14 33 ND ND ND 2 ND CH88 L7W 6+00S 3.86 38 NÔ 180 ND .14 .5 13 15 30 2.29 .10 .35 346 .02 130 .10 44 NO MD. 47 NB NĎ 163 2 ND 2 .4 CH88 L7W 6+505 .3 3.10 22 ND 115 ND .12 9 12 19 .08 .4 1.76 .22 371 52 .02 .16 32 ЖÐ ND жD 29 籾 NB 128 1 2 NØ 26 20 .09 .35 CH88 L7W 7+005 .3 2.46 12 151 NÐ .14 .5 11 2.15 225 .01 99 .05 ND ND. 37 ND 151 2 31 MÔ 1 ЖĎ CH88 L7N 7+505 2.66 15 ND 146 ND .12 .3 10 21 19 2.04 .09 .33 244 .01 95 .06 30 NŪ ND XD 30 ND NÐ 106 .1 1 2 CH88 L7W 8+005 151 ND .13 15 39 38 .77 2.99 11 M . 6 2.67 .11 203 104 .07 31 ND ND МĎ 28 ND M 149 .1 2 .01 2 CH88 L7¥ 8+505 .1 3.53 17 ND 242 ND .23 1.3 18 36 43 3.18 .15 1.14 521 .01 73 .04 34 ND ND NO 46 ND. ×ß 181 2 1 CH88 L78 9+005 .2 2.57 22 ЖÐ 170 3 .71 1.6 27 6 145 4.24 .25 .70 1502 .02 26 .11 37 ND ND NO 61 ND ND 143 -2 3 CH88 L7# 9+505 .1 2.06 12 ND 145 ND .17 .5 12 19 26 2.02 . 09 .44 362 .01 47 .06 25 ND ND ЖÐ 149 t ND 2 30 ND CH88 L7W 10+005 3.16 10 NÐ 153 ND .28 ...8 18 13 53 2.85 .14 .71 661 .01 28 .07 35 ND ND ND 36 ND NÐ 102 .1 2 1 CH88 L9W 85-02 .17 53 ND 35 .95 1.08 ,52 .1 NĎ NŰ 14.21 .8 -5 12 274 ND .02 16 .05 20 NO MÊ MŐ 184 MC NŻ 49 .2 1.87 15 12 .11 .33 CH88 L9W 0+005 - 5 NŬ 152 ND .45 .3 7 1.34 555 NÐ .01 24 .23 24 Nħ NB MD 32 ND NÐ 170 - 2 CH88 L9W 0+505 ND 145 NÐ 12 26 20 2.19 .10 .64 265 27 .3 2.85 10 .17 .5 .01 .13 30 ND ND NÐ 2 21 ΧÐ ¥0 144 1 159 .27 17 CH88 L9¥ 1+005 .3 3.60 7 ND ND .5 8 12 1.89 .10 , 38 732 .03 18 .14 67 NÐ ND ND 34 ЖÐ NÐ 126 1 CH88 L9W 1+505 3.26 18 ND 126 ХD .15 10 30 .4 .5 14 2.07 .10 .53 444 26 30 1 .01 .31 жD ND ΝÔ 2 25 ND NĎ 122 CH88 L9N 2+00S .9 2.34 26 NÐ -74 ХD 1.39 1.2 17 25 81 2.99 .29 1.27 581 .01 29 .08 27 NS ND NÛ 53 ЖĎ ND 100 4 CH88 L9W 2+505 2.62 18 ND 98 MD . 28 14 25 49 2.54 .4 .9 .13 1.01 428 .01 25 .05 28 ND ND ND 29 1 3 NB ND. 79 3.32 133 .22 2.65 18 ND ND 1.2 23 60 320 CH88 L9W 3+00S .9 -14 .12 . 91 1 .02 26 .06 30 ND ND ND 3 28 NÐ XD 92 207 XĐ 12 CH88 L9W 3+505 .3 3.30 7 ND .18 .4 16 30 1.90 .09 . 56 470 .01 23 .05 27 ND ND ND 25 ND ND 101 1 3 4.22 26 NĎ 1.53 .07 .23 257 CH88 L9¥ 4+00S .3 ND 85 .16 .1 - 8 6 24 1 .02 29 .15 31 ND ND ND 2 20 NÐ ND 49 CH88 L9W 4+505 •2 2.17 ND 128 ND .15 10 19 19 1.74 . 08 .61 259 4 .4 .03 NĎ .01 26 -24 NĎ N 3 19 ND N. 83 CH88 L9W 5+00S 187 NÐ .15 19 26 .70 .1 2.74 6 NÐ .9 -14 2.16 .10 633 2 .01 53 .05 29 NÖ ND ND XĐ 239 2 20 NÐ ND ND .29 15 CH88 L9W 5+505 .3 2.60 13 173 1.1 16 28 2.40 .12 .46 562 40 1 .01 .10 30 ND ND ND 2 34 ХD ND 211 38 ND NÐ .17 21 15 68 2.74 .47 CH88 L9W 5+00S .1 3.16 161 .5 ,12 1025 .01 39 .15 32 ND ND ND 30 NĎ ND. 149 1 2 ND 2.33 CH98 L9W 6+505 ND 181 .17 13 19 26 .1 2.11 6 .5 .11 .30 337 3 . 01 78 .04 27 ND ND NÐ 38 ХD NÐ 165 1 CH88 L9W 7+005 190 25 22 1.88 .08 .45 283 59 .05 ND ND ND 189 .1 2.19 - 5 ND NÔ .12 .4 10 2 . 01 26 ND 2 25 Жß CH88 L9W 7+505 .1 1.48 30 ND 177 ND .13 .5 10 16 16 1.99 .09 .20 207 .01 61 .05 25 X0 27 2 10 NB 1 ΜЪ НD 149 CH88 19W 8+005 .1 2.51 19 ХŌ 212 NÐ .12 .3 10 16 21 1.78 ,08 .27 264 68 ND NÐ ND NÖ ND .01 .14 26 39 112 1 1 .1 1.59 CH88 L9W 8+505 6 ND 112 NÐ .15 7 13 21 1.55 .07 .28 239 .1 .01 42 .12 ND ND 2 21 NÐ 2 26 ND ND 95 135 NO 24 .08 184 27 ND CH88 L9W 9+00S 1.1 3.25 15 ND .18 .3 ٩ 11 1.67 .28 .02 - 39 .11 29 ND ND ND 2 ХÐ 87 1 CH88 L9W 10+00S .3 3.45 22 ND 153 ND .18 .8 14 40 65 2.73 .12 .76 232 . 01 65 .04 30 ΧĐ ND ND 27 ND хD 91 1 - ? CH88 L10W BL .3 3.09 7 ND 185 ND .15 .5 10 21 20 1.84 .09 .54 271 , 01 50 .22 28 NÐ ND ND 25 ND ND 176 2 .22 1.46 CH88 L10# 0+505 .3 2.96 11 ND 191 ЯĎ .5 - 7 10 17 .08 .27 560 ND .01 27 .44 30 ND ND NÐ 38 ND ND 141 2 CH88 L10W 1+00S 1.6 3.39 ND 18 38 92 4.54 .21 .83 1063 136 NÐ 104 .34 2.1 2 .01 55 .07 134 NÐ ND ND 2 87 ND ND 443 CH68 L108 1+505 .2 3.00 55 'ND 140 ND .35 29 2.75 .58 .6 11 21 .15 1015 1 .04 -24 .11 71 ND ND ND 57 NÐ ND 223 .4 2.08 CH88 L10W 2+00S 23 NÖ 83 XO .23 .5 10 27 39 2.57 .12 .77 324 1 .03 25 .04 31 NB NB ND 2 34 ШÔ ND 101 . 53 17 27 93 CH88 L10W 2+50S 1.3 1.96 31 NĎ 41 3 1.3 3.30 . 19 1.40 434 2 .01 35 .06 26 ND ND NÐ 4 37 ND ND 85 KD 15 37 2.60 .13 .90 518 CH88 L10W 3+005 .3 3.03 20 ND 121 NĎ .29 .8 21 1 .01 26 .05 26 MO NB жÐ 3 34 ND 116 DETECTION LIMIT 1 . .01 3 3 1 3 .01 .1 1 1 .01 .0t .01 .01 .01 2 3 2 2 5 3 1 1 1 1 -5 1 - 1

 1

CLIENT: ASHWORTH EXPL JOBN: 890004 PROJECT: 259 REPORT: 890004 PA

	-	-																					••						
SAMPLE NAME	A6 PPR	AL Z	AS PPR	AU PPM	BA PPR	81 PPM	CA 1	CO PPM	CO PPN	CR PPN	CU PPM	FE 1	K X	MG 1	MN P9H	n0 PPM	NA 1	NI PPM	P 1	PB PPM	PD PPH	PT PPN	SB PPM	SN PPH	SR. PPH	U PPM	¥ PPN	IN PPN	
CH88 L10W 3+505 CH88 L10W 4+005	.5 .4	2.41 3.31	16 21	ND ND	116 127	ND ND	.28 .19	.6 .6	-16 	21 18	41 42	2.48 2.41	.13 .11	1.00 .82	725 555	2	.01	28 27	.05	29 31	ND ND	ND ND	ND ND	4	31 23	ND ND	ND ND	111 125	
CH88 L10W 4+50S CH88 L10W 5+00S CH88 L10W 5+50S CH88 L10W 6+00S CH88 L10W 6+50S	.4 .4 .7 .3 .4	2.56 2.40 4.02 3.46 2.80	25 29 34 21 29	ND ND ND ND	131 87 170 134 118	ND ND ND ND ND	.39 .29 .22 .20 .24	1.1 1.2 1.1 1.2 1.1	19 20 19 19	31 35 28 41 48	68 76 82 46 60	3.24 3.40 3.12 2.87 2.97	.17 .16 .14 .13 .14	1.47 1.53 1.02 .97 1.19	973 512 374 628 561	2 2 2 2 2 2	.01 .01 .01 .01	31 38 40 35 38	.11 .13 .08 .39 .09	29 29 33 35 32	ND ND ND ND	ND ND ND NS ND	ND ND ND ND ND	4 3 3 3 3	37 29 29 23 32	ND ND ND ND	ND ND ND ND	126 127 113 221 142	
CH88 L10W 7+005 CH88 L10W 7+505 CH88 L10W 8+505 CH88 L10W 8+505 CH88 L10W 9+005	.1 .4 .1 .2 .1	1.84 2.81 2.42 1.93 1.98	ND 19 11 15 25	ND ND ND ND	166 143 131 155 96	ND ND ND ND	.13 .11 .12 .09 .13	.1 .8 .1 .4 .1	8 14 9 9 11	13 21 14 15 14	17 46 19 22 45	1.56 2.48 1.65 1.88 2.63	.07 .10 .07 .08 .11	.39 .61 .38 .46 .42	558 205 290 484 237	1 2 1 1 2	.01 .01 .01 .01 .01	20 45 33 29 34	.26 .13 .20 .15 .06	24 28 25 24 28	ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	2 2 2 2 1	28 22 23 20 26	ND ND ND ND ND	ND ND ND ND	99 111 92 107 103	
CH88 L10W 9+50S CH88 L10W 10+00S CH88 L11W BL CH88 L11W 0+50S CH88 L11W 1+00S	.3 .1 .2 .1 .1	1.89 1.75 2.43 1.72 2.11	20 NB 6 25 14	ND ND ND ND	114 137 145 108 110	ND ND ND ND	.13 .13 .14 .49 .17	.4 .1 .3 .9 .4	11 8 6 10 11	19 20 8 12 21	49 14 14 40 39	2.55 1.36 1.30 2.06 1.82	.11 .07 .07 .14 .09	.45 .32 .23 .47 .49	380 260 383 654 253	2 1 1 1 1	.02 .01 .01 .01 .01	36 42 24 23 29	.08 .10 .33 .18 .09	31 22 27 40 28	ND ND ND ND	ND KD ND ND	ND ND ND ND	2 2 1 2 2	23 25 29 80 34	ND ND ND ND	ND ND ND ND	117 108 148 195 115	
CH88 L11W 1+50S CH88 L11W 2+50S CH88 L11W 2+50S CH88 L11W 3+50S CH88 L11W 3+50S	.5 .1 .1 .7 .5	2.71 2.49 3.52 3.30 3.76	12 28 36 16 13	ND ND ND ND	230 164 176 212 184	ND ND ND ND	.23 .33 .26 .25 .17	2.1 .4 .8 .4	8 21 18 13 14	12 18 109 18 13	18 46 38 48 44	2.27 2.92 2.33 2.33 2.35	.11 .15 .12 .12 .11	.54 .59 .92 .56 .55	611 765 359 369 186	1 2 1 2 1	.03 .01 .01 .01 .01	13 63 82 50 33	.15 .09 .04 .04 .06	34 36 31 37 34	ND ND ND ND	ND ND ND ND ND	ND ND ND ND	1 2 2 2 2	52 59 36 45 42	ND ND ND ND ND	ND ND ND ND	107 319 112 204 139	
CH88 L11W 4+00S CH88 L11W 4+50S CH88 L11W 5+00S CH88 L11W 5+50S CH88 L11W 5+50S CH88 L11W 6+00S	.2 .1 .1 .3 1.1	2.52 2.84 2.18 3.33 3.26	9 51 22 32 56	ND ND ND ND	106 146 123 134 92	ND ND ND ND ND	.19 .20 .17 .14 .56	.5 .5 .4 .6 1.6	13 17 15 16 27	15 15 22 26 64	36 60 51 35 115	2.29 2.63 2.46 2.61 4.02	.11 .12 .11 .11 .22	.59 .67 .71 .59 1.64	276 423 523 796 821	1 2 2 2 2	.01 .01 .01 .01	35 35 34 32 44	.02 .06 .05 .26 .04	26 31 27 31 33	ND ND ND ND	ND ND ND ND	ND ND ND ND	2 2 2 3 4	31 38 32 18 41	ND ND KD ND	ND ND ND ND	124 136 115 196 119	
CH88 L11W 6+50S CH88 L11W 7+00S CH88 L11W 7+50S CH88 L11W 8+00S CH88 L11W 8+50S	.1 .3 .4 .3 .4	2.13 2.56 2.86 2.93 2.91	21 12 18 20 22	ND ND ND ND	110 89 79 80 78	ND ND NO ND ND	.18 .49 .20 .42 .17	.8 .3 .6 .8 .9	15 12 14 16 17	24 19 22 38 26	73 27 47 40 43	2.69 1.80 2.30 2.69 2.58	.12 .13 .11 .15 .12	.82 .47 .89 .94 1.01	489 200 439 293 369	2 1 1 2 2	.01 .02 .01 .01 .01	30 24 23 27 25	.06 .03 .07 .03 .11	23 24 26 34 29	ND ND ND ND	NO ND ND ND	ND ND ND ND	3 2 3 4 3	20 54 19 35 19	nd Nd Nd Nd	ND ND ND ND	98 61 133 144 133	
CH8B L11# 9+00S CH8B L11# 9+50S CH8B L11# 10+00S CH8B L12# 0+00S CH8B L12# 0+50S	1.1 .2 .2 .1 .5	3.23 3.14 2.66 2.54 2.70	49 19 27 13 69	ND ND ND ND	108 160 196 73 109	3 ND ND ND	.46 .17 .18 .31 .33	1.7 .9 1.1 .4 1.7	25 18 22 9 11	66 42 56 10 9	75 46 52 14 27	3.45 2.80 3.29 2.65 3.52	.19 .12 .14 .14 .18	1.36 1.19 1.18 .47 .60	896 547 953 370 795	2 2 1 2	.01 .01 .03 .02	43 32 41 10 14	.08 .43 .38 .02 .04	38 30 39 39 177	ND ND ND ND	ND ND ND ND	ND ND ND ND	4 3 4 1	39 23 21 46 85	ND ND ND ND	ND ND ND ND	189 228 226 79 419	
CH88 L12W 1+00S CH88 L12W 1+505 DETECTION LIMIT	.3 .1 .1	2.10 2.89 .01	49 42 3	ND ND 3	46 141 1	ND ND 3	.29 .20 .01	.1 1.5 .1	11 17 1	7 10 1	42 60 1	1.22 3.58 .01	.08 .16 .01	.28 .35 .01	127 166 1	1 5 1	.02 .01 .01	14 58	.02 .03 .01	27 46 2	ND ND 3	ND ND S	ND XD 2	1 2 2	57 45 1	ND ND S	ND ND 3	90 316 1	

PAGE 8 DF 10

CLIENT: ASHNORTH EXPL JOB4: 890004 PROJECT: 259 REPORT: 890004 PA

11

SAMPLE NAME	AG PPM	AL I	AS PPM	AU Pph	BA PPM	BI PPH	CA Z	CO PPN	CQ PP#	CR PPH	CU PPM	FE	K I	MG X	NN PPH	NO PPM	NA Z	NI PPN	P X	PB PPN	PO PPM	PT PPM	SB PPM	SN PPN	SR PPM	U PPR	W PPM	2N PPn
CH88 L12W 2+005 CH88 L12W 2+505 CH88 L12W 3+005	.4 .3 .5	1.75 2.93 2.88	23 16 26	ND ND ND	77 159 118	ND ND ND	. 19 . 16 . 17	.6 .5 .3	13 15 13	24 20 11	43 32 36	2.39 2.47 2.04	.11 .11 .10	.74 .62 .38	303 389 435	2 2 2	.02 .01 .02	27 34 31	.06 .04 .15	28 35 30	ND ND ND	ND ND	NÐ ND ND	3 3 3	27 29 28	ND ND ND	ND ND ND	117 223 126
CH88 L12W 3+505 CH88 L12W 4+005 CH88 L12W 4+505 CH88 L12W 4+505 CH88 L12W 5+005 CH88 L12W 5+505	.5 .3 .1 .3 .4	3.11 3.31 2.57 3.01 3.56	19 25 19 46 23	ND ND ND ND	186 208 130 167 185	ND ND ND ND ND	.19 .13 .13 .12 .15	.9 .4 .4 .6 .3	13 13 14 17 11	13 15 20 19 14	38 40 42 54 24	2.12 2.14 2.38 2.72 1.88	.10 .09 .10 .12 .09	.50 .47 .67 .65 .37	277 245 264 295 498	2 2 2 3 2	.01 .01 .01 .01 .01	43 51 40 41 37	.08 .10 .06 .06 .11	31 32 29 31 35	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND	3 3 2 3 2	31 32 24 31 37	ND ND ND ND ND	ND ND ND ND	194 137 122 151 137
CH88 L12W 6+00S CH88 L12W 6+50S CH88 L12W 7+00S CH88 L12W 7+50S CH88 L12W 8+00S	.1 .1 .5 .5	2.57 1.43 2.39 1.63 3.94	17 31 29 21 29	ND ND ND ND	165 85 95 55 89	ND ND ND ND	.12 .11 .16 .18 .10	.1 .6 .5 .4 .1	12 11 14 14 11	18 18 25 24 19	29 64 51 44 26	2.10 2.86 2.52 2.34 2.06	.09 .12 .11 .11 .09	.48 .52 .93 1.06 .45	385 260 272 257 516	2 3 2 2 2	.01 .01 .01 .01 .01	38 37 37 26 18	.13 .07 .09 .03 .36	28 33 28 23 33	ND ND ND ND	NO ND ND ND ND	ND ND ND ND ND	3 2 3 4 3	22 16 23 15 12	ND ND ND ND	ND ND ND ND	152 142 132 70 93
CH88 L12W 8+505 CH88 L12W 9+005 CH88 L12W 9+505 CH88 L12W 10+005 CH88 L13W 0+50N	.5 .5 .4 .1	2.63 2.81 3.97 3.68 2.71	33 27 34 18 25	ND ND ND ND ND	78 82 142 111 81	ND ND ND ND	.17 .25 .17 .12 .26	.5 1.2 .9 .1 .3	21 20 21 14 10	87 44 52 25 11	48 39 73 35 14	3.03 3.02 2.96 2.03 2.53	.13 .14 .13 .09 .13	1.52 1.53 1.19 .65 .43	531 655 758 640 578	2 2 1 2	.01 .01 .01 .01	35 30 39 25 16	.13 .03 .20 .21 .07	31 29 39 31 51	ND ND ND ND	ND ND ND ND	ND ND ND ND	5 4 4 3 2	14 24 19 15 36	ND ND ND ND	ND ND ND ND ND	124 160 177 133 184
CH88 L13W 1+00N CH88 L13W 1+50N CH88 L13W 2+00N CH88 L13W 0+00S CH88 L13W 0+50S	.1 .1 .4 .1	2.39 1.85 2.94 3.32 2.90	24 21 6 44 18	NO ND ND ND	118 55 145 59 236	ND ND ND ND	.27 .15 .50 .19 .28	.4 .3 .1 1.1	8 9 6 9	15 16 18 6 16	24 22 22 20 29	1.97 2.55 2.17 1.55 2.02	.11 .11 .15 .08 .11	.44 .70 .47 .22 .49	736 266 652 318 751	1 2 2 1 2	.01 .02 .02 .02 .02	19 18 33 14 22	.13 .04 .03 .18 .16	36 34 33 44 36	ND ND ND ND	ND ND ND ND	ND ND ND ND	2 2 2 2 2	50 25 72 41 69	ND ND ND ND	ND ND ND ND	154 98 76 131 199
CH88 L13W 1+00S CH88 L13W 1+50S CH88 L13W 2+00S CH88 L13W 2+50S CH88 L13W 3+00S	.5 .6 .1 .1	3.77 3.12 3.76 2.98 4.40	60 15 23 44 61	ND ND ND ND	127 165 134 167 137	ND ND ND NO 3	.29 .18 .20 .13 .17	.3 .3 .6 .1 1.1	20 18 19 19 24	11 17 18 16 32	101 75 42 54 99	2.53 2.35 2.75 2.65 3.44	.13 .11 .13 .11 .15	.38 .72 .56 .66 1.26	374 324 805 492 485	2 2 2 2 3	.01 .01 .01 .01 .01	30 26 35 37 36	.20 .05 .09 .12 .21	43 27 36 29 37	ND ND ND ND	ND ND ND ND	ND ND ND ND	3 4 3 3 5	44 28 30 25 27	ND ND ND ND	ND ND ND ND	139 127 191 169 160
CH88 L13W 3+505 CH88 L13W 4+005 CH88 L13W 4+505 CH88 L13W 5+005 CH88 L13W 5+005 CH88 L13W 5+505	.3 .1 .2 .1	1.93 2.76 2.79 2.53 2.10	16 29 17 18 31	ND ND ND ND ND	80 196 178 117 111	ND ND ND ND	.24 .14 .18 .14 .14	.6 1.2 .5 .3 .3	14 15 13 13	28 26 24 19 19	41 47 56 42 40	2.49 2.54 2.65 2.22 2.32	.12 .11 .12 .10 .10	.86 .67 .70 .57 .60	272 637 290 259 258	2 4 2 2 2	.01 .01 .01 .01 .01	29 63 34 34 31	.03 .12 .04 .03 .04	26 33 30 27 24	ND ND ND ND ND	ND ND ND ND NO	ND ND ND ND	4 3 2 3	28 30 37 27 27	ND ND ND ND	N9 N0 N0 N0 N0	115 236 139 117 102
CH88 L13W 6+005 CH88 L13W 6+505 CH88 L13W 7+005 CH88 L13W 7+505 CH88 L13W 8+005	.2 .1 .2 .1	2.14 2.20 2.39 2.28 2.25	9 20 23 27 39	ND ND ND ND	116 145 154 142 135	ND ND ND ND ND	.14 .14 .10 .16 .15	.1 .3 .1 .1	9 11 9 10 13	14 16 13 15 20	32 36 29 23 53	1.81 2.18 1.84 1.97 2.66	.08 .10 .08 .09 .12	.34 .55 .30 .31 .60	216 269 224 298 266	2 2 2 2 3	.02 .01 .01 .01 .01	30 35 41 52 58	.03 .09 .10 .05 .04	23 24 26 25 26	ND ND ND ND	ND ND ND ND ND	ND ND ND ND	3 3 3 3 3 3	26 29 22 33 31	nd ND ND ND	XD ND ND ND	81 130 118 103 123
CH88 LI3W 8+505 Detection limit	.3 .1	2.90 .01	25 3	ND 3	105 1	ND 3	.20 .01	.5 .1	17 11	22 1	50 1	2.67 .01	.12	1.06 .01	476	2	.01 .01	27	.07 .01	26 2	NŬ 3	ND S	ND 2	4 2	21 1	ND 5	ND 3	141 1

PAGE 9 OF 10

CLIENT: ASHWORTH E	IPL JO	8\$: 890	004 PR	OJECT:	259 REA	PORT: 8	90004 P	À														PAGE	10 OF 1	0				
SAMPLE NAME	AG PPM	AL I	AS PPN	AU PPh	BA PPH	BI PPN	CA Z	CD PPM	CO PPM	CR PPM	CU PPH	fE X	K I	ng I	MN PPN	ND PPN	NA L	NI PPN	P I	PB PPM	PD PPM	PT PPR	SB PPM	SN PPM	SP PPR	U PPM	N PPH	ZN PPN
CH88 L13W 9+00S CH88 L13W 9+50S CH88 L13W 10+00S	.6 .1 .5	3.34 1.86 2.09	34 30 34	ND ND NB	96 119 136	3 ND ND	.16 .12 .12	.7 .5 .2	15 11 11	20 36 35	26	2.52 2.06 2.35	.09	.80 .73 .70	339 231 143	2 2 2	.01 .01 .02	30 55 59	.14 .05 .02	32 23 26	ND XD ND	ND ND ND	ND ND ND	4 2 3	21 20 28	ND ND ND	ND ND ND	131 99 93
DETECTION LINIT	.1	.01	3	3	1	3	.01	.1	1	1	1	.01	.01	.01	ı	ı	.01	1	.01	2	3	5	2	,	,	5	3	1

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT:	ASHWORTH EXPLORATION	LTD. DATE:	Feb 22 1989
ADDRESS:	1010 - 789 W. Pender	Street	
:	Vancouver, B.C.	REPORT#:	890069 GA
te se gade s t e	VEC 1H2	JOB#:	890063

PROJECT#: 259 SAMPLES ARRIVED: Feb 17 1989 REPORT COMPLETED: Feb 22 1989 ANALYSED FOR: Au ICP

2. 3

INVOICE#: 890069 NA TOTAL SAMPLES: 475 SAMPLE TYPE: 475 SOILS REJECTS: DISCARDED

SAMPLES FROM: MR. R. KIDLARK COPY SENT TO: ASHWORTH EXPLORATION LTD.

PREPARED FOR: MR. PETER LERICHE

ANALYSED BY: VGC Staff SIGNED:

GENERAL REMARK: None

3

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

I

REPORT NUMBER:	890069	GA JOB	NUMBER:	890069	ASHNORTH	EXPLORATION LTD.	PAGE 1 DF 13
SAMPLE #		Au					
		ppb					
CH-89 L 0+50W	0+00	30					
CH-89 L 0+50W	0+505	10					
CH-89 L 0+50W	1+005	20					
CH-89 L 0+50W	1+509	20					
CH-89 L 0+50W	2+005	20					
CH-89 L 0+50W	2+505	25					
CH-89 L 0+50W	3+005	10					
CH-89 L 0+50W	3+505	10					
CH-89 L 0+50W	4+00S	15					
CH-89 L 0+50W	4+505	35					
CH-89 L 0+50W	5+00S	10					
CH-89 L 0+50W	5+50S	20					
CH-89 L 0+50W	6+00S	10					
CH-89 L 0+50W	6+505	10					
CH-89 L 0+50W	7+005	10					
CH-89 L 0+50W	7+505	25					
CH-89 L 0+50W	8+00S	15					
CH-89 L 0+50W	8+50S	20					
CH-89 L 0+50W	9+00S	10					
CH-89 L 0+50W	9+505	10					
CH-89 L 0+50W	10+005	20					
CH-89 L 1+50W	0+00	20					
CH-89 L 1+50W	0+505	30					
CH-89 L 1+50W	1+005	5					
CH-89 L 1+50W	1+505	20					
CH-89 L 1+50W	2+005	25					
CH-89 L 1+50W	2+50S	10					
CH-89 L 1+50W	3+005	10					
CH-89 L 1+50W	3+505	20					
CH-89 L 1+50W	4+005	10					
CH-89 L 1+50W	4+50S	10					
CH-89 L 1+50W	5+005	5					
CH-89 L 1+50W	5+505	10					
CH-89 L 1+50W	6+505	20					
CH-89 L 1+50W	7+005	20					
CH-89 L 1+50W	7+505	15					
CH-89 L 1+50W	8+005	15					
CH-89 L 1+50W	8+50S	10					
CH-89 L 1+50W	9+00S	20					
DETECTION LIMIT	ſ.	5					
nd = none deter	ted	= not a	nalysed	is = insuf	ficient s	ample	
			-				

100

41.2

1

100 C

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER:	890069	GA JOB	NUMBER:	890069	ASHWORTH EXPLORATION LTD.	PAGE 2	OF	13
SAMPLE #		Au						
		ppb						
CH-89 L 1+50W	9+50S	20						
CH-89 L 1+50W	10+005	10						
CH-89 L 2+50W	0+505	15						
CH-89 L 2+50W	1+00S	5						
CH-89 L 2+50W	1+505	5						
CH-89 L 2+50#	2+005	25						
CH-89 L 2+50W	2+505	10						
CH-89 L 2+50W	3+005	10						
CH-89 L 2+50W	3+505	20						
CH-89 L 2+50W	4+005	10						
CH-89 L 2+50W	4+50S	15						
CH-89 L 2+50W	5+505	15						
CH-89 L 2+50W	6+00S	30						
CH-89 L 2+50W	6+505	15						
CH-89 L 2+50W	7+00S	10						
CH-89 L 2+50W	7+50S	15						
CH-89 L 2+50W	8+005	20						
CH-89 L 2+50W	8+50S	10						
CH-89 L 2+50W	9+005	20			. 4			
CH-89 L 2+50W	9+505	20						
CH-89 L 2+50W	10+00S	20						
CH-89 L 3+50W	0+00	10						
CH-89 L 3+50W	0+505	15						
CH-89 L 3+50W	1+005	10						
CH-89 L 3+50W	1+505	10						
CH-89 L 3+50W	2+005	10						
CH-89 L 3+50W	2+505	5						
CH-89 L 3+50W	3+005	5						
CH-89 L 3+50W	3+505	15						
CH-89 L 3+50W	4+005	10						
CH-89 L 3+50W	4+50S	20						
CH-89 L 3+50W	5+005	10						
CH-89 L 3+50W	5+50S	15						
CH-89 L 3+50W	6+00S	15						
CH-89 L 3+50W	6+50S	25						
CH-89 L 3+50W	7+005	20						
CH-89 L 3+50W	7+505	10						
CH-89 L 3+50N	8+005	15						
CH-89 L 3+50W	8+505	5						
DETECTION LIMIT	-	E						
nd = none detec		5 = not a	Inalysed	is = in	sufficient sample			
nd = none detec	ted	= not a	inalysed	is = in	sufficient sample			

6.3

1

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT.

RENO, NEVADA, U.S.A.

REPORT NUMBER:	890069 GA	JOB NUMBER:	890069	ASHWORTH EXPLORA	TION LTD.	PAGE 3 D	F 13
SAMPLE #		Au					
		ppb					
CH-89 L 3+50W	9+00S	15					
CH-89 L 3+50W	9+505	10					
CH-89 L 3+50W	10+00S	15					
CH-89 L 4+50W	0+00	15					
CH-89 L 4+50W	0+505	15					
CH-89 L 4+50W		5					
CH-89 L 4+50W	1+505	10					
CH-89 L 4+50W	2+005	10					
CH-89 L 4+50W		10					
CH-89 L 4+50W	3+005	15					
CH-89 L 4+50W		15					
CH-89 L 4+50W	4+505	15					
CH-89 L 4+50W	5+005	10					
CH-89 L 4+50W	5+505	10					
CH-89 L 4+50W	6+00S	20					
CH-89 L 4+50W	6+505	30					
CH-89 L 4+50W		20					
CH-89 L 4+50W		20					
CH-89 L 4+50W		5					
CH-89 L 4+50W		5					
CH-89 L 4+50W	9+00S	15					
CH-89 L 4+50W	9+505	10					
CH-89 L 4+50W	10+005	20					
CH-89 L 5+50W	0+00	10					
CH-89 L 5+50W	0+505	25					
CH-89 L 5+50W	1+005	5					
CH-89 L 5+50W	2+005	10					
CH-89 L 5+50W	3+005	10					
CH-89 L 5+50W	3+505	15					
CH-89 L 5+50W	4+00S	20					
CH-89 L 5+50W	4+50S	20					
CH-89 L 5+50W	5+005	10					
CH-89 L 5+50W		10					
CH-89 L 5+50W		25					
CH-89 L 5+50W	6+505	20					
CH-89 L 5+50W	7+00S	20					
CH-89 L 5+50W	7+50S	20					
CH-89 L 5+50W	8+005	10					
CH-89 L 5+50W	8+50S	20					
DETECTION LIM		5					
nd = none dete	ected	= not analyse	d is	= insufficient sample			

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER:	890069 6	JOB NUMBER:	890069	ASHWORTH	EXPLORATION	LTD.	PAGE	4 DF	13
SAMPLE #		Au							
		ppb							
CH-89 L 5+50W		10							
CH-89 L 5+50W		20							
CH-89 L 5+50W		15							
CH-89 L 5+50W		10							
CH-89 L 6+50W	0+00	25							
CH-89 L 6+50W	0+505	10							
CH-89 L 6+50W	1+00S	10							
CH-89 L 6+50W	1+505	5							
CH-89 L 6+50W	2+005	20							
CH-89 L 6+50W	2+505	10							
CH-89 L 6+50W	3+005	10							
CH-89 L 6+50W	3+505	10							
CH-89 L 6+50W	4+005	15							
CH-89 L 6+50W	4+505	20							
CH-89 L 6+50W	5+005	10 · · · · · ·							
CH-89 L 6+50W	5+505	10							
CH-89 L 6+50W	6+005	10							
CH-89 L 6+50W	6+509	10							
CH-89 L 6+50W	7+00S	20							
CH-89 L 6+50W	7+505	20							
CH-89 L 6+50W	8+005	20							
CH-89 L 6+50W	8+50S	20							
CH-89 L 6+50W	9+005	20							
 CH-89 L 6+50W	9+505	20							
CH-89 L 6+50W	10+005	20							
CH-89 L 7+50W	0+00	20							
CH-89 L 7+50W	0+50S	20							
CH-89 L 7+50W	1+00S	15							
CH-89 L 7+50W	1+505	10							
CH-89 L 7+50W	2+005	30							
CH-89 L 7+50W	2+505	30							
CH-89 L 7+50W	3+005	20							
CH-89 L 7+50W	3+505	20							
CH-89 L 7+50₩	4+005	20							
CH-89 L 7+50W	4+505	25							
CH-89 L 7+50W	5+005	20							
CH-89 L 7+50W	5+50S	20							
CH-89 L 7+50₩	6+005	10							
CH-89 L 7+50W	6+505	15							
DETECTION LINI		5							
nd = none dete	ected	= not analyse	d is	= insufficient s	sample				

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B.

1000

MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

ł

REPURT NUMBER:	890069 GA	JOB NUMBER:	890069	ASHWORTH EXPLORATION LTD.	PAGE 5 DF	13
SAMPLE #		Au				
		ppb				
CH-89 L 7+50W	7+00S	10				
CH-89 L 7+50W	7+50S	10				
CH-89 L 7+50W	8+00S	15				
CH-89 L 7+50W	8+50S	10				
CH-89 L 7+50W	9+00S	10				
CH-89 L 7+50W	9+505	10				
CH-89 L 7+50W	10+00S	10				
CH-89 L 8+00W	0+00	10				
CH-89 L 8+00W	0+50N	30				
CH-89 L 8+00W	0+505	30				
CH-89 L 8+00W	1+005	20				
CH-89 L 8+00W	2+005	20				
CH-89 L 8+00W	2+505	5				
CH-89 L 8+00W	3+005	10				
CH-89 L 8+00W	3+505	30				
· · · · · · · · · · · · · · · · · · ·						
CH-89 L 8+00W	4+005	10				
CH-89 L 8+00W	4+50S	10				
CH-89 L 8+00W	5+005	10				
CH-89 L 8+00W	5+505	5				
CH-89 L 8+00W	6+005	10				
CH-89 L 8+00W	6+505	10				
CH-89 L 8+00W	7+005	5				
CH-89 L 8+00W	7+505	10				
CH-89 L 8+00W	8+005	15				
CH-89 L 8+00W	8+50S	5				
CH-89 L 8+00W	9+005	20				
CH-89 L 8+00W	9+505	20				
CH-89 L 8+00W	10+005	10				
CH-89 L 8+50W	0+00	10				
CH-89 L 8+50W	0+505	20				
CH-89 L 8+50W	1+00S	10				
CH-89 L 8+50W	1+505	5				
CH-89 L 8+50W	2+00S	10				
CH-89 L 8+50W	2+505	15				
CH-89 L 8+50W	3+005	20				
CH-89 L 8+50W	3+505	15				
CH-89 L 8+50W	4+00S	10				
CH-89 L 8+50W	4+505	5				
CH-89 L 8+50W	5+00S	10				
DETECTION LINI	r	5				

100

6.3

É.

i i

1.1

i. A

i. i

MAIN OFFICE GC VANGEOCHEM LAB LIMITED 198 VANCO • • FA

IAIN UFFICE	
38 TRIUMPH ST.	
UVER, B.C. V5L 1K5	
(604) 251-5656	
AX (604) 254-5717	R

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMB	ER: 890069	GA JOB NUMBE	R: 890069	ASHWORTH EXPLORATION LTD.	PAGE 6 DF 13
SAMPLE #		Au			
		ppb			
CH-89 L 8+50		20			
CH-89 L 8+50		30			
CH-89 L 8+50		10			
CH-89 L 8+5		10			
CH-89 L 8+50	DW 7+505	10			
CH-89 L 8+50	0W 8+005	25			
CH-89 L 8+50	0¥ 8+50S	15			
CH-89 L 8+5	0¥ 9+00S	20			
CH-89 L 8+50	OW 9+50S	20			
CH-89 L 8+50	DW 10+005	10			
CH-89 L 9+5(00+0 WC	15			
CH-89 L 9+50)N 0+505	5			
CH-89 L 9+50		10			
CH-89 L 9+5		5			
CH-89 L 9+50	₩ 2+00S	20			
CH-89 L 9+5(2+505	10			
CH-89 L 9+50		25			
CH-89 L 9+50		10			
CH-89 L 9+5(15			
CH-89 L 9+50		15			
CH-89 L 9+50	W 5+00S	25			
CH-89 L 9+50		20			
CH-89 L 9+50		5			
CH-89 L 9+50		10			
CH-89 L 9+50	7+00S	10			
CH-89 L 9+50	₩ 7+50S	10			
CH-89 L 9+50	¥ 8+00S	10			
CH-89 L 9+50)¥ 8+50S	10			
CH-89 L 9+50)¥ 9+00S	10			
CH-89 L 9+50	₩ 9+505	nd			
CH-89 L 9+50		10			
CH-89 L14+00		25			
CH-89 L14+00		10			
CH-89 L14+00		10			
CH-89 L14+00)₩ 1+50N	10			
CH-89 L14+00		20			
CH-89 L14+00		20			
CH-89 L14+00		15			
CH-89 L14+00	W 1+00S	10			
DETECTION LI		5	, <i>.</i>		
nd = none de	erected	= not analys	ed 15 :	insufficient sample	

.

1077 L:

1

ħ ie.

1

2

.

齳

ы. .

las d

an d

2

1

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER:	890069 GA	JOB NUMBER	890069	ASHWORTH EXPLORATION LTD.	PAGE 7 OF 13
SANPLE #		Au			
		ppb			
CH-89 L14+00W	1+505	15			
CH-89 L14+00W	2+005	10			
CH-89 L14+00W	2+505	20			
CH-89 L14+00W	3+005	15			
CH-89 L14+00W	3+505	10			
CH-89 L14+00W	4+50S	20			
CH-89 L14+00W	5+005	15			
CH-89 L14+00W	5+505	10			
CH-89 L14+00W	6+005	10			
CH-89 L14+00W	6+505	10			
CH-89 L14+00W	7+005	15			
CH-89 L14+00W	7+505	10			
CH-89 L14+00W	8+005	10			
CH-89 L14+00W	8+505	15			
CH-89 L14+00W	9+005	20			
CH-89 L14+00W	9+505	15			
CH-89 L14+00W	10+00S	15			
CH-89 L15+00W	0+00	10			
CH-89 L15+00W	0+50N	15			
CH-89 L15+00W	1+00N	15			
CH-89 L15+00W	1+50N	20			
CH-89 L15+00W	2+00N	20			
CH-89 L15+00W	0+505	10			
CH-89 L15+00W	1+005	20			
CH-89 L15+00W	1+505	20			
CH-89 L15+00W	2+005	10			
CH-89 L15+00W	2+50\$	20			
CH-89 L15+00W	3+00S	20			
CH-89 L15+00W	3+50S	10			
CH-89 L15+00W	4+005	10			
CH-89 L15+00W	4+50S	30			
CH-89 L15+00W	5+00S	20			
CH-89 L15+00W	5+509	5			
CH-89 L15+00W	6+00S	15			
CH-89 L15+00W	6+50S	20			
CH-89 L15+00W	7+005	15			
CH-89 L15+00W	7+50S	15			
CH-89 L15+00W	8+00S	5			
CH-89 L15+00W	8+505	5			
DETECTION LIMI	T .	5			

(a) - 2-10 (a) - 2-10 (a) - 2-10

12 6

87 E.

8

dis.

1

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

I

REPORT NUMBER: 890069	GA JOB	NUMBER: 890069	ASHWORTH EXPLORATION LTD.	PAGE 8 DF 13
SAMPLE #	Au			
	ppb			
CH-89 L15+00W 9+00S				
CH-89 L15+00W 9+505				
CH-89 L15+00W 10+00S		× *		
CH-89 L16+00W 0+00	. 5			
CH-89 L16+00W 0+50N				
CH-89 L16+00W 1+00N	5			
CH-89 L16+00W 1+50N				
CH-89 L16+00W 2+00N				
CH-89 L16+00W 2+50N				
CH-89 L16+00W 3+50N				
	5			
CH-89 L16+00W 4+50N	20			
CH-89 L16+00W 5+00N	10			
CH-89 L16+00W 5+50N	20			
CH-89 L16+00W 6+00N	20			
CH-89 L16+00W 6+50N	20			
CH-89 L16+00W 7+00N	15			
CH-89 L16+00W 7+50N	25	i de calendaria de la constante		
CH-89 L16+00W 8+50N	15			
CH-89 L16+00W 9+00N	10			
CH-89 L16+00W 9+50N	5			
CH-89 L16+00W 10+00N	10			
CH-89 L16+00W 0+505	10			
CH-89 L16+00W 1+005	5			
CH-89 L16+00W 1+505	10			
CH-89 L16+00W 2+005	20	-		
CH-89 L16+00W 2+50S	5			
CH-89 L16+00W 3+005	20			
CH-89 L16+00¥ 3+505	20			
CH-89 L16+00W 4+00S	20			
CH-89 L16+00W 4+50S	20			
CH-89 L16+00W 5+00S	15			
CH-89 L16+00W 5+50S	5			
CH-89 L16+00W 6+00S	20			
CH-89 L16+00N 6+50S	10			
CH-89 L16+00W 7+00S	20			
CH-89 L16+00W 7+505	15			
CH-89 L16+00W 8+00S	10			
CH-89 L16+00W 8+505	5			
CH-89 L16+00W 9+005	20			
DETECTION LIMIT	5			
nd = none detected	= not a	alvsed ic	= insufficient sample	
He Hole Gereeven	1104 G	11.1300 13	Tundilittelle Sambre	

iliae il

i i i

. i

ia. 1

24

i.

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

ł

REPORT NUMBER:	890069 GA	JOB NUM	BER: 890069	ASHWORTH EXPLORATION LTD.	PAGE 9 OF 13
SANPLE #		Au			
		ppb			
CH-89 L16+00W	9+50S	10			
CH-89 L16+00W	10+005	10			
CH-89 L17+00W	0+00	10			
CH-89 L17+00W	0+50N	10			
CH-89 L17+00W	1+00N	nd			
CH-89 L17+00W	1+50N	10			
CH-89 L17+00W	2+00N	10			
CH-89 L17+00W	2+50N	20			
CH-89 L17+00W	3+00N	20			
CH-89 L17+00W	3+50N	10			
CH-89 L17+00W	4+00N	10			
CH-89 L17+00W	4+50N	10			
CH-89 L17+00W	5+00N	10			
CH-89 L17+00W	5+50N	10			
CH-89 L17+00W	6+50N(A)	15			
CH-89 L17+00W	6+50N(B)	10			
CH-89 L17+00W	7+00N	15			
CH-89 L17+00W	7+50N	5			
CH-89 L17+00W	8+00N	10			
CH-89 L17+00W	8+50N	10			
CH-89 L17+00W	9+00N	15			
CH-89 L17+00W	9+50N	10			
CH-89 L17+00W	10+00N	30			
CH-89 L17+00W	0+505	10			
CH-89 L17+00W	1+005	10			
CH-89 L17+00W	1+505	10			
CH-89 L17+00W	2+00S	10			
CH-89 L17+00W	3+005	15			
CH-89 L17+00W	3+505	15			
CH-89 L17+00W	4+00S	15			
CH-89 L17+00W	4+50S	15			
CH-89 L17+00W	5+005	15			
CH-89 L17+00W	5+505	15			
CH-89 L17+00W	6+005	10			
CH-89 L17+00W	6+50S	10			
CH-89 L17+00W	7+00S	10			
CH-89 L17+00W	7+50S	10			
CH-89 L17+00W	8+00S	10			
CH-89 L17+00W	8+505	20			
DETECTION LIMIT	Г	5			
nd = none deter	ted i	not analy	sed is =	insufficient sample	

MAIN OFFICE. 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER: 89	10069 GA	JOB	NUMBER:	89006	59	ASHWOR	TH EXI	PLORAT	ION L	TD.		PAGE	10	OF	13
SAMPLE #		Au													
		ppb													
CH-89 L17+00W 9		10													
	+505	15													
)+00S	15													
)+00	15													
)+50N	10													
CH-89 L18+00W 1	+00N	10													
CH-89 L18+00W 1	+50N	5													
CH-89 L18+00W 2	2+50N	15													
CH-89 L18+00W 3	S+OON	20													
CH-89 L18+00W 3	1+50N	20													
CH-89 L18+00W 4	+00N	10													
CH-89 L18+00W 4	1+50N	5													
CH-89 L18+00W 5	I+OON	20													
CH-89 L18+00W 5	i+50N	10													
CH-89 L18+00W 6	+00N	10						•							
CH-89 L18+00W 6	+50N	10													
CH-89 L18+00W 7	+00N	10													
CH-89 L18+00W 7	+50N	10													
CH-89 L18+00W 8	+OON	10													
CH-89 L18+00W 8	1+50N	10													
CH-89 L18+00W 9	+50N	10													
CH-89 L18+00W 10	+00N	15													
CH-89 L18+00W 0	+50\$	10													
CH-89 L18+00W 1	+005	10													
CH-89 L18+00W 1	+505	10													
CH-89 L18+00W 2	+00S	10													
CH-89 L18+00¥ 2	+50S	10													
CH-89 L18+00W 3	I+00S	10													
CH-89 L18+00W 3	+505	10													
CH-89 L18+00₩ 4	+00\$	10													
		10													
CH-89 L18+00W 5	+00S	20													
CH-89 L18+00₩ 5	+505	20													
CH-89 L18+00¥ 6	+005	15													
CH-89 L18+00W 6	+505	25													
CH-89 L18+00W 7	+005	20													
		10													
		10													
CH-89 L18+00W 8	+505	15													
DETECTION LIMIT		5													
		.													

6.1

l La

1

14.1

1

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER:	890069	GA JOB	NUMBER:	890069	ASHWORTH EXPLORATION	LTD.	PAGE 11 OF 13	ating t
		A.,						
SAMPLE #		Au						
01.00.110.008	01000	ppb 20						
CH-89 L18+00W	9+00S	20						
CH-89 L18+00₩	9+505	25						
CH-89 L19+00W	0+00	10						
CH-89 L19+00W	0+50N	10						
CH-89 L19+00W	1+00N	20						
CH-89 L19+00W	1+50N	35						
CH-89 L19+00W	2+00N	10						
CH-89 L19+00W	2+50N	10						
CH-89 L19+00W	3+00N	10						
CH-89 L19+00W	3+50N	10						
CH-89 L19+00W	4+00N	20						
CH-89 L19+00W	4+50N	10						
CH-89 L19+00W	5+00N	10						
CH-89 L19+00W	5+50N	10						
CH-89 L19+00W	6+00N	15						
CH-89 L19+00W	6+50N	20						
CH-89 L19+00W	7+00N	10						
CH-89 L19+00W	7+50N	20						
CH-89 L19+00W	8+00N	20						
CH-89 L19+00W	8+50N	20						
BIL DO 110.00	0.001							
CH-89 L19+00W	9+00N	20						
CH-89 L19+00W	9+50N	20						
CH-89 L19+00W	10+00N	35						
CH-89 L19+00W	0+505	5						
CH-89 L19+00W	1+005	5						
CH-89 L19+00W	1+509	10						
CH-89 L19+00W	2+005	20						
CH-89 L19+00W	2+505	15						
CH-89 L19+00W	3+00S	20						
CH-89 L19+00W	3+505	15						
	0.000	10						
CH-89 L19+00W	4+005	20						
CH-89 L19+00W	4+505	15						
CH-89 L19+00W	5+00S	15						
CH-89 L19+00W	5+505	15						
CH-89 L19+00W	6+00S	20						
CH-89 L19+00W	6+50S	20						
CH-89 L19+00W	7+00S	15						
CH-89 L19+00W	7+505	20						
CH-89 L19+00W	8+00S	25						
DETECTION LIMI	T	5						
nd = none dete		= not a	Inalysed	is = ind	ufficient sample			
				** - *IIS	semble			

٢

لغينا

.

1

1

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER:	890069 GA	JOB NUMBER:	890069	ASHWORTH EXPLORATION LTD.	PAGE 12 DF 13
SAMPLE #		Au			
		ppb			
CH-89 L19+00W		20			
CH-89 L19+00W		15			
CH-89 L19+00W	9+505	15			
CH-89 L19+00W		15			
CH-89 L20+00W	0+00	5			
CH-89 L20+00W	0+50N	15			
CH-89 L20+00W	1+00N	20			
CH-89 L20+00W	1+50N	nd			
CH-89 L20+00W	2+00N	5			
CH-89 L20+00W	2+50N	10			
CH-89 L20+00W	3+00N	15			
CH-89 L20+00W	3+50N	15			
CH-89 L20+00W	4+00N	10			
CH-89 L20+00W	4+50N	20			
CH-89 L20+00W	5+00N	15			
CH-89 L20+00W	5+50N	15			
CH-89 L20+00W	6+00N	25			
CH-89 L20+00W	6+50N	nd			
CH-89 L20+00W	7+00N	nd			
CH-89 120+00W	7+50N	10			
CH-89 L20+00W	8+00N	10			
CH-89 L20+00W	8+50N	5			
CH-89 L20+00W	9+00N	10			
CH-89 L20+00W	9+50N	15			
CH-89 L20+00W	10+00N	10			
CH-89 L20+00W	0+50S	10			
CH-89 L20+00W	1+005	กด์			
CH-89 L20+00W	1+505	5			
CH-89 L20+00W	2+00S	5			
CH-89 L20+00W	2+505	nd			
CH-89 L20+00W	3+005(A)	15			
CH-89 L20+00W	3+00S(B)	5			
CH-89 L20+00W	3+509	15			
CH-89 L20+00W	4+005	10			
CH-89 L20+00W	4+505	10			
CH-89 L20+00W	5+005	25			
CH-89 L20+00W	5+505	15			
CH-89 L20+00W	6+005	15			
CH-89 L20+00W	6+505	5			
DETECTION LIMI		5			
nd = none dete	cted	= not analysed	is = insu	ufficient sample	

10

CH-89 L20+00W 10+005

Ø,

1.4

4

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

REPORT NUMBER:	890069 GA	JOB NUMBER: 890069	ASHWORTH EXPLORATION LTD.	PAGE 13 OF 13
SAMPLE #		Au		
		ppb		
CH-89 L20+00W	7+005	15		
CH-89 L20+00W	7+50S	5		
CH-89 L20+00W	8+00S	10		
CH-89 L20+00W	8+50S	20		
CH-89 L20+00W	9+00S	15		
CH-89 L20+00W	9+505	25		

DETECTION LIMIT nd = none detected --

-- = not analysed

VANGEDCHEM LAB LIMITED 1988 Triueph Street, Vancouver, B.C. VSL 1K5 Pht (604)251-3656 Faxt (604)254-5717

つ・

ICAP GEOCHEMICAL ANALYSIS

Sec.

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNO₃ to H₂O at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Pd, Pt, Sn, Sr and W.

REPORT #: 890			ASHNO	RTH EXPL			Proj: 25)		Date In:	89/0	2/17	Dat	e Out:8	9/02/21		A+++ P	KIDLAR					ANA	LYSI	ſ:	[]	\wedge	n	
Sample Number	•	Ag		As A	u Ba	Bi	Ca	Cď	Co	Cr	Cu	Fe						NIPCHK	K.							Pa	ige 1	of 13	
CH-89 L 0+50W CH-89 L 0+50W CH-89 L 0+50W CH-89 L 0+50W CH-89 L 0+50W	0+50S 1+00S 1+50S	1.0 2.2 2.1	2.88 (2.23 2 2.18 2	011 pp 13 (13 (13 (14 (3 150 3 175 3 113 3 103	ppm (3 (3 (3 (3 (3	X 0.44 0.31	ppm 0.8 0.6 1.7 1.7 1.3		ppa 21 17 34 34	рр м 38 31 68 69	2.36 2.32 3.09 3.10 2.83	K 0.14 0.12 0.48 0.58 0.29	0.58 0.55	pps	рр {	1 0. 1 0. 1 0. 1 0.	03 03 02 03	19 33 31	0.10 0.04 0.11 0.11	42 44 45 45	Pd (3 (3 (3 (3 (3)	Pt 9pm (5 (5 (5 (5	Sb pp= {2 {2 {2 {2} {2} {2} {2}	Sn pps 5 6 5 5	Sr ppn 62 55 104 116	U ppm (5 (5 (5 (5	W ppm {3 {3 {3 {3 {3} {3} {3} {3}	Zn ppm 140 115 174 173
CH-89 L 0+50W CH-89 L 0+50W CH-89 L 0+50W CH-89 L 0+50W	3+00S 3+50S	0.6	2.32 1 2.13 1 1.25 1	1 (3	170	<3 <3 <3	1.22 0.15 0.24	2.1 0.5 0.5	11 7 9	12	47 18	2.79 1.48	0.26 0.09	0.76 0.32	792 515		1 0. 1 0.(1 0.(03	22).09).09).20		<3 <3 <3	<5 <5 <5	<2 <2 <2	5	79 74 27	<5 (5	<3 <3	141 141
CH-89 L 0+50W CH-89 L 0+50W CH-89 L 0+50W	4+00S 4+50S 5+00S	0.4 1	1.23 21 1.02 2:	3 (3	56	(3 (3	0.57 0.43	1.3 0.6	17	25	59	1.91 2.29 1.99	0.10 0.16 0.13	0.61 0.76 0.64	27 5 691 319	1	1 0.(1 0.(1 0.()2	36 (.05	21 28	(3 (3 (3	<5 <5 <5	<2 <2 <2	5	27 31 63 40	(5) (5) (5)	(3) (3) (3) (3)	136 112 134
CH-89 L 0+50W CH-89 L 0+50W CH-89 L 0+50W CH-89 L 0+50W	5+50S 5+50S 6+00S 6+50S 7+00S	1.0 2 1.2 1 0.8 2	.73 18 2.02 18 .81 19 .55 10 .54 11	(3 (3 (3	105 78 108	<3 <3 <3 <3 3	1.71 1.40 1.56 0.48 0.46	1.1 1.3 1.2 2.5 2.1	17 15 18	43 (31 (30 4	61 3 64 2 48 3		0.33 0.30 0.31 0.18 0.18	1.06 1.31 1.09 1.12 1.12	543 588 593 812 755	2 1 1	0.0	2 3	14 0 16 0 18 0	.10 .09 .04	30 29 13		<5 <5 <5 <5	<2 <2 <2 <2 <2	5 7 6 7	88 87 68 38	<pre></pre>	(3 (3 (3 (3 (3	115 139 134 120 154
CH-89 L 0+50W CH-89 L 0+50W CH-89 L 0+50W CH-89 L 0+50W	7+50S 8+00S 8+50S 9+00S	0.6 2.	. 16 22 . 60 6 . 31 23	(3 (3	75 156 127	<3 (3 (3	1.45 0.30 1.12	0.8	10	30 7 14 2	76 3 19 1	3.27 1.99	0.31 0.11 0.25	1.21 0.51 0.88	610 711 374	1	0.0	13	60. 90.	10 3	6 (2 (3	<5 (5 (5	<2 <2 <2	7 6 6	39 69 30	<5 <5 <5	<3 <3 <3	151 144 128
CH-89 L 0+50W	9+50S		.77 15 .16 12 .30 15	<3 <3 <3	77 146 104	<3 <3	0.33	0.5	10 ;	28 5 22 2	4 2	.47	0.47 0.11	0.85	405 506	1 1 (1	0.02	2 3	50,	07 2	8 <	3	(5 (5 (5	<2 <2 <2	6 6 8	67 91 46	<5 <5 <5	<3 <3 <3	123 105 114
CH-89 L 1+50W CH-89 L 1+50W CH-89 L 1+50W CH-89 L 1+50W CH-89 L 1+50W	0+00 0+505 1+005 1+505	1.0 1. 2.0 2. 0.5 1. 0.9 1.	98 (3 08 23 49 3 73 15	<3 <3 <3 <3	530 137 283 116		0.80 2.48 0.49	1.2 1.2 0.5	0 1 8 3 6 1	55 5; 20 3; 38 8; 38 8; 40 1; 88 5;	1 2 1 2 5 1	.13 (.93 (.06 (1.01 0.56 0.95 0.28 1.00	300 2527 593 956 592	2 1 1 (1 2	0.02 0.03 0.04 0.01 0.02	22 34 19	2 0,	10 3 09 5 15 2	8 ()) () i ()	3 (3 (3 (<2 <2 <2 <2 <2 <2 <2	6 6 5 6	34 125 113 62 79	(5 (5 (5 (5 (5	(3 (3 (3 (3 (3 (3	130 159 113 173 139
CH-89 L 1+50W CH-89 L 1+50W CH-89 L 1+50W CH-89 L 1+50W	2+00S 2+505 3+00S 3+50S 4+00S	0.6 1. 0.6 1. 0.8 2.1 0.7 1.9 0.1 1.4	78 24 86 7 90 16	<3 <3 <3 <3 <3	55 120 72 108 82	<3 <3 <3	0.59 0.11 1.06	.3 1	B 3 7	7 52 8 20 3 55	2 2. 1. 2.	.75 0 33 0 75 0	.18 .06 .24	0.71 0.97 0.22 0.95 0.31	427 692 169 597 273	2 2 1 2 1	0.02 0.02 0.02 0.02 0.02 0.01	37	0.(0.()9 35 10 31 15 34	<3 (3 (3		5 5 5	<2 <2 <2 <2 <2 <2 <2	5 6 6 5	32 48 17 46 21	<5 <5 <5 <5	(3) (3) (3)	121 145 76 105
CH-89 L 1+50W CH-89 L 1+50W CH-89 L 1+50W	4+50S 5+00S 5+50S 6+50S 7+00S	0.2 2.0 0.3 2.9 0.4 2.4 0.8 1.6 0.7 2.7	91 5 12 5 15 27	<pre><3 <3 <3 <3 <3 <3 <3</pre>	117 81 45	<pre>(3 ((3 ((3 ((3 (</pre>	0.17 0 0.29 0 4.13 1	.5 1 .4 1 .6 12 .3 12	1 1 2 23 2 25	1 22 3 51 5 74	1.5 2.4 2.8	50 0 48 0, 87 0,	.09 .12 .65	0.27 0.31 0.70 1.18 0.80	641 489 283 504 469	<1 1 1 2 1	0.01 0.02 0.01 0.01 0.02	16 19 28 27 29	0.2 0.0 0.0	6 28 5 34 8 29 7 29	(3 (3 (3 (3		5	<2 (2 (2 (2 (2	6 7 7 6	23 19 23 109	<5 <5 <5 <5 <5	 <3 <3 <3 <3 <3 	69 201 101 91 99
CH-89 L 1+50W CH-89 L 1+50W	7+50S 8+00S 8+ 50S 9+00S	0.8 2.2 0.6 3.1 0.7 2.3 0.8 2.0	5 (3 4 7 3 11	<3 <3 <3 <3	98 81	(30) (30)	0.66 0 0.18 0 0.26 1 0.53 0	1 12	12 20	23 46	2.7 1.6 2.5 2.5	760. 530. 550.	.19 (.08 (.12 ().96).33).87	580 539 432 371	1 1 1 1	0.01 0.01 0.01 0.01 0.01	33 19 23 22	0.0 0.0 0.1 0.0	36 4 32 3 32	(3) (3) (3) (3) (3) (3) (3)	<5 <5 <5 <5 <5		2 2 2	7 7	25 36 17 21 22	<5 <5 <5 <5 <5		110 116 86 93 85
Maxioun Detection		0.1 0.01 50.0 10.0(-	3 100	1 1000 10(.01 0. .00 1000.	•	1 1000	1 20000	0.0 10.0		01 0 00 to	0.01 00 - 20	1		0.01	1 20000	0.01 10 00	2 20000	3	5		2	2	1	5	3 3	1

Market	ALC: CON

REPORT 8: 890069 PA	ASHWORT	H EXPL Proj:	259 Date In:	89/02/17 D	ate Out:89/02/21	Att: R KIDLARK		Page 2 of 13
Sample Number	Ag Al As ppn X ppn		a Cd Co Cr X DDB DDB DDB	Cu Fe	K Hg Hn Z Z nnm	No Na Ni P	Pb Pd Pt Sb	Sn Sr U V In
CH-89 L 1+50W 9+505	1.3 2.20 18	3 (3 50 4 0,4	8 1.5 16 29	ppm I 93 3.54 0.1	19 1.27 586	pps 7 pps 7 2 0.03 35 0.04	рра рра рра рра 34 <3 <5 <2	ppa ppa ppa ppa ppa 6 23 <5 <3 95
CH-89 L 1+50W 10+005 CH-89 L 2+50W 0+505	0.1 2.28 13			16 1.49 0.0		(1 0.01 27 0.22	33 <3 <5 <2	5 21 <5 <3 118
CH-89 L 2+50W 0+50S CH-89 L 2+50W 1+00S	0.2 2.14 5			29 2.40 0. 36 2.21 0.		1 0.03 18 0.10	47 (3 (5 (2	5 59 <5 <3 115
CH-89 L 2+50% 1+505	0.2 1.27 25			42 2.49 0.1		2 0.02 32 0.12 2 0.02 39 0.10	25 〈3 〈5 〈2 28 〈3 〈5 〈2	4 28 <5 <3 132 4 37 <5 <3 135
CH-89 L 2+50W 2+005	0.4 1.71 12	2 <3 70 <3 0.2	3 0.9 13 35	39 2.54 0.1	11 0.95 382	1 0.02 31 0.04	30 <3 <5 <2	6 27 <5 <3 116
CH-89 L 2+50W 2+50S	0.5 3.19 (3		3 0.3 5 7	15 1.16 0.0	04 0.15 249	(1 0.02 13 0.26	35 (3 (5 (2	5 19 <5 <3 86
CH-89 L 2+50W 3+005	0.6 2.53 11			12 1.13 0.0		(1 0.01 15 0.35	30 <3 <5 <2	5 19 <5 <3 140
CH-89 L 2+50N 3+50S CH-89 L 2+50N 4+005	0.2 2.88 (3 0.3 2.07 4			19 1.73 0. 28 2.02 0.0		1 0.01 29 0.07 1 0.02 27 0.04	34 <3 <5 <2 29 <3 <5 <2	5 50 <5 <3 158 5 19 <5 <3 91
CH-89 L 2+50W 4+50S	0.4 1.98 15	i <3 65 <3 0.1	5 1.2 13 29	64 3.17 0.1	12 1.09 367	2 0.02 34 0.05	31 <3 <5 <2	6 14 (5 (3 122
CH-89 L 2+50W 5+50S	0.5 2.98 3			30 1.95 0.0		1 0.02 26 0.19	34 (3 (5 (2	6 26 <5 <3 112
CH-89 L 2+50H 6+005	4.3 1.82 22 0.8 2.25 7			104 3.07 0.1		3 0.02 119 0.05	31 (3 (5 (2	4 191 <5 <3 165
CH-89 L 2+50N 6+505 CH-89 L 2+50N 7+00S	0.8 2.25 7 0.3 2.80 25			47 3.29 0. 29 2.08 0.0		8 0.02 128 0.09 1 0.02 80 0.09	34 <3 <5 <2 36 <3 <5 <2	5 62 <5 <3 170 6 45 <5 <3 150
CH-89 L 2+50W 7+505	0.9 3.98 4	(3 150 (3 0.1	7 0.5 10 12	34 2.04 0.0	08 0.41 518	1 0.02 19 0.15	45 <3 <5 <2	7 22 <5 <3 92
CH-89 L 2+50W 8+00S	0.4 2.71 12			49 2.68 0.1		i 0.01 24 0.09	36 (3 (5 (2	7 27 <5 <3 103
CH-89 L 2+50N 8+505	0.3 2.70 8			27 2.20 0.0		1 0.01 22 0.04	32 <3 <5 <2	6 14 <5 <3 76
CH-89 L 2+50N 9+00S CH-89 L 2+50N 9+50S	0.2 3.18 7 0.5 3.52 8			25 1.67 0.0 25 1.87 0.0		1 0.02 14 0.14 1 0.01 15 0.15	33 (3 (5 (2 38 (3 (5 (2	6 16 <5 <3 84 7 15 <5 <3 99
CH-89 L 2+50W 10+00S	0.5 3.21 <3			31 2.06 0.0	08 0.49 279	1 0.01 45 0.12	39 (3 (5 (2	7 16 <5 <3 138
CH-89 L 3+50W 0+00	0.3 1.72 47			29 1.69 0.1		1 0.02 21 0.34	68 (3 (5 (2	5 90 <5 <3 308
CH-89 L 3+50W 0+50S CH-89 L 3+50W 1+00S	0.1 1.33 22 0.1 1.54 7			42 2.45 0.1		2 0.02 39 0.14 1 0.02 31 0.12	31 〈3 〈5 〈2 30 〈3 〈5 〈2	5 54 <5 <3 182 5 55 <5 <3 143
CH-89 L 3+50W 1+50S	0.1 1.59 10			44 2.34 0.1		1 0.02 30 0.14	29 (3 (5 (2	5 58 (5 (3 150
CH-89 L 3+50W 2+005	0.1 1.52 4	(3 82 (3 0.1	4 0.1 6 11	14 1.31 0.0	05 0.35 268	1 0.01 17 0.03	22 (3 (5 (2	4 27 <5 <3 107
CH-89 L 3+50W 2+50S	0.2 1.52 9			25 1.80 0.1		1 0.01 21 0.08	28 (3 (5 (2	4 48 <5 <3 142
CH-89 L 3+50W 3+00S	0.1 1.30 5			15 1.56 0.0		(1 0.01 18 0.04	19 (3 (5 (2	4 19 <5 <3 88
CH-89 L 3+50W 3+50S CH-89 L 3+50W 4+00S	0.2 1.50 3 0.1 2.46 4			17 1.58 0.0		(1 0.01 17 0.10 1 0.01 32 0.18	36 (3 (5 (2 33 (3 (5 (2	4 27 (5 (3 124 6 27 (5 (3 195
CH-89 L 3+50W 4+50S	0.9 1.48 (3			75 3.29 0.3 35 2.78 0.1		2 0.01 82 0.06 4 0.02 84 0.10	28 (3 (5 (2 31 (3 (5 (2	4 145 <5 <3 169 4 74 <5 <3 200
CH-B9 L 3+50W 5+00S CH-B9 L 3+50W 5+50S	0.3 1.65 <3 0.2 1.99 7			35 2.78 0.1 27 2.05 0.1		4 0.02 84 0.10 1 0.02 38 0.05	31 〈3 〈5 〈2 29 〈3 〈5 〈2	6 36 <5 <3 L17
CH-89 L 3+50W 6+005	0.5 2.21 16			50 2.84 0.1		2 0.02 49 0.07	33 (3 (5 (2	6 57 (5 (3 131
CH-89 L 3+50W 5+505	1.3 1.24 243			67 3.38 0.7		3 0.01 160 0.10	48 (3 (5 (2	5 332 <5 <3 206
CH-89 L 3+50W 7+005	0.2 2.11 18			35 2.42 0.1		1 0.01 24 0.05	31 (3 (5 (2	6 27 <5 <3 120
CH-89 L 3+50W 7+505	0.1 2.27 13			23 2.35 0.1		1 0.01 34 0.12	34 (3 (5 (2	6 35 (5 (3 176
CH-89 L 3+50W 8+005 CH-89 L 3+50W 8+505	0.4 1.57 36 0.1 2.66 15			70 3.16 0.3 39 2.69 0.1		3 0.01 61 0.11 2 0.01 27 0.04	31 〈3 〈5 〈2 36 〈3 〈5 〈2	5 104 <5 <3 164 8 21 <5 <3 88
Minimum Detection	0.1 0.01 3	3 1 3 0.0	1 0.1 1 1	1 0.01 0.0	01 0.01 1	1 0.01 1 0.01	2 3 5 2	2 1 5 3 1
Maximum Detection	50.0 10.00 2000		0 1000.0 20000 1000 20		00 10.00 20000			1000 10000 100 1000 20000
<pre>< = Less than Minimum is</pre>	= Insufficient Sample	e ns = No sample > = Grea	ter than Maxi <mark>aua</mark> AuFA = F	ire assay/AAS				

REPORT #: 890069 PA ASHWORTH FIPE Proj: 259 Date In: 89/02/17 Date Out:89/02/21 Att: R KIDLARK Page 3 of 13 Sample Number Aq A1 Ba Bi As Ass Ca Cđ Co Cr Cu Fe K Hq ňn ٨n Na. Ni Ρ Pb Pd Pt Sb Sn Sr Zn Ħ 12 008 7 004 008 1 I 008 00. 008 008 000 Z 1 1 008 00. 008 1 ppe DDe 000 000 004 008 008 ppa ppe CH-89 L 3+50W 9+005 3.55 0.8 -14 <3 113 (3 0.14 0.3 9 12 27 1.83 0.08 0.34 360 1 0.02 19 0.11 43 (3 <5 (2 7 16 **(**5 <3 88 CH-89 L 3+50W 9+505 0.8 3.98 17 (3 139 (3 0.14 0.7 9 10 25 1.88 0.08 0.29 687 2 0.01 19 0.29 48 (3 ۲) <2 7 17 <5 <3 106 CH-89 L 3+50W ٢3 10+005 0.4 2.75 132 14 (3 0.15 0.3 12 17 25 2.13 0.09 658 0.49 1 0.01 24 0.08 38 (3 (5 <2 6 18 (5 (3 114 CH-89 L 4+50W 0+00 0.1 1:04 28 (3 -51 <3 0.36 1.2 - 9 24 33 2.11 0.12 0.67 430 1 0.02 33 0.11 25 <3 <5 <2 3 33 {5 <3 131 CH-89 L 4+50W 0+505 1.25 30 <3 80 <3 0.2 0.40 1.2 12 31 39 2.48 0.14 0.77 538 2 0.02 36 0.11 27 (3 **(**5 (2 40 **(5** <3 166 - 4 CH-89 L 4+50N 1+005 0.5 0.92 13 (3 50 <3 0.15 0.3 1 17 15 1.67 0.07 0.53 302 1 0.02 17 0.10 18 <3 <5 (2 -3 17 ۲5 (3 104 CH-89 L 4+50W 1+505 0.5 1.46 15 (3 129 <3 0.31 0.8 11 30 26 2.30 0.14 0.89 930 29 1 0.02 0.08 37 30 (3 <5 (2 -5 <5 <3 132 CH-89 L 4+50W 2+00\$ 1.22 23 (3 (3 0.76 9 0.4 61 0.7 19 32 2.05 0.17 0.69 370 1 0.02 25 0.09 28 (3 <5 <2 49 (5 (3 88 4 CH-89 L 4+50W 2+505 0.3 1.23 13 (3 88 <3 0.19 0.5 9 24 26 1.99 0.09 0.70 310 1 0.02 24 0.08 24 <3 <2 23 <5 <3 99 **(5** 5 CH-89 L 4+50W 3+005 2.48 3 (3 214 (3 14 0.1 0.41 1.5 18 52 2.47 0.14 0.52 958 49 36 (3 1 0.02 0.12 (5 65 (5 <3 206 <2 -5 CH-89 L 4+50W 3+505 0.1 1.81 6 (3 261 (3 0.49 0.7 7 7 17 1.21 0.11 0.20 848 <1 0.01 15 0.76 26 <3 <5 (2 108 <5 **{**3 186 4 CH-89 L 4+50W 4+505 2.98 11 (3 176 (3 0.23 12 17 2.09 0.4 0.5 28 0.10 0.47 355 1 0.01 33 0.14 39 <3 <5 <2 6 33 <5 (3 164 CH-89 L 4+50W 5+005 0.4 2.98 4 (3 276 <3 0.27 0.6 10 12 27 1.78 0.09 0.35 402 31 36 1 0.02 0.05 <3 <5 <2 6 45 **(5 (3** 113 CH-89 L 4+50W 5+50S 0.3 3.26 7 <3 196 <3 0.22 1.1 17 47 39 3.14 0.13 0.63 374 2 0.01 153 0.09 42 <3 ٢) 52 ۲) (3 <2 6 175 CH-89 L 4+50W 6+00S 0.8 2.38 31 <3 143 <3 0.35 0.8 12 39 29 2.34 0.12 0.75 411 2 0.02 75 0.09 38 {3 <5 (5 <2 57 <3 144 6 137 <3 CH-89 L 4+50W 6+50S 0.4 2,06 199 (3 0.48 1.2 17 25 55 3.47 0.18 0.47 522 2 0.02 151 0.09 49 <3 ۲) <2 5 84 <5 <3 180 CH-89 L 4+50W 0.5 2.33 30 (3 (3 0.24 7+005 141 0.6 11 29 29 2.25 0.11 0.71 516 1 0.02 40 0.06 36 (3 <5 (5 (3 <2 6 44 124 <3 173 (3 0.12 CH-89 L 4+50W 7+50S 0.1 1.54 18 0.3 3 36 12 1.82 0.08 0.50 521 (1 0.01 52 0,10 27 <3 <5 <2 5 25 <5 <3 115 23 <3 154 <3 13 57 CH-89 L 4+50W 8+005 0.1 2.61 0.16 0.7 30 2.68 428 2 0.01 99 0.04 37 (3 <5 (2 36 (5 {3 123 0.11 0.81 6 2.50 CH-89 L 4+50W 8+505 11 (3 129 <3 0.22 14 0.2 0.8 51 33 2.69 324 34 <3 <5 0.12 0.89 2 0.01 91 0.03 <2 6 43 (5 (3 170 CH-89 L 4+50W 9+005 0.1 2.21 15 <3 152 (3 0.13 0.5 11 30 22 2.40 0.10 536 2 0.01 68 34 <3 <5 (2 34 <5 (3 128 0.64 0.02 -5 CH-89 L 4+50W 9+505 0.2 1.59 18 <3 119 <3 0.31 0.7 12 40 31 2.35 492 55 31 (3 <5 <2 43 ۲) (3 108 0.12 0.73 2 0.02 0.05 5 CH-89 L 4+50W 33 <3 103 33 3.48 10+005 0.4 2.11 3 0.28 1.3 18 44 0.15 1.09 749 28 38 ₹3 <5 <2 <5 <3 142 2 0.01 0.10 7 30 CH-89 L 5+50W 0+00 0.5 1.46 17 (3 48 (3 0.17 0.6 11 25 43 2.42 0.10 0.86 235 27 0.02 30 <3 <5 <2 (5 1 0.01 5 18 (3 89 <3 CH-89 L 5+50W 0+505 0.3 1.93 12 95 <3 0.24 1.1 12 39 48 2.77 0.12 1.03 465 35 0.05 37 <3 <5 <2 <5 (3 2 0.02 6 30 119 CH-89 L 5+50W 1+005 13 <3 <3 1.95 0.1 1.19 49 21 29 0.08 244 1 0.02 23 <5 (2 <5 <3 75 0.14 0.3 9 0.61 24 0.07 <3 16 CH-89 L 5+50W 21 <3 52 <3 0.12 32 2+005 0.2 1.06 0.3 21 22 9 2.04 0.08 0.59 184 1 0.02 0.07 23 <3 <5 <2 4 17 {5 <3 74 CH-89 L 5+50W 3+005 0.2 1.98 8 (3 76 <3 0.16 0.5 13 25 29 2.33 0.10 0.71 218 t 0.02 26 0.05 31 <3 <5 (2 6 21 <5 (3 106 <3 CH-89 L 5+50W 3+505 0.5 2.68 <3 151 <3 0.38 21 30 67 59 42 <3 <5 (2 <5 204 1.3 2.99 0.15 0.70 674 2 0.02 0.07 7 46 <3 CH-89 L 5+50W 4+005 0.1 1.59 <3 <3 250 (3 0.16 0.5 tt 19 19 1.87 0.09 0.46 930 1 0.01 21 0.18 27 <3 <5 (2 4 31 ۲5 <3 163 CH-89 L 5+50W 4+505 0.4 1.93 <3 (3 120 (3 0.15 0.5 9 18 24 1.83 0.08 0.53 330 1 0.02 24 0.04 29 <3 <5 <2 -5 29 (5 (3 99 CH-89 L S+50W 5+005 0.2 1.92 8 (3 125 (3 0.13 0.7 11 22 24 2.15 0.09 0.67 478 1 0.02 23 0.04 31 <3 ٢) <2 -5 25 (5 (3 102 <3 159 (5 <3 141 CH-89 L 5+50W 5+505 0.4 2.17 13 (3 0.30 0.6 12 30 45 2.48 0.12 0.69 610 2 0.02 42 0.09 39 (3 <5 <2 6 47 <3 33 134 44 <3 <5 <2 6 53 ٢5 <3 172 128 <3 0.37 18 88 3.80 0.20 521 3 0.02 0.05 CH-89 L 5+50W 6+005 0.9 2.29 28 1.2 0.71 <3 133 <3 0.7 12 27 28 2.01 55 35 (3 <5 (2 7 37 <5 <3 121 CH-89 L 5+50W 6+505 0.7 2.62 11 0.20 0.09 0.59 438 1 0.02 0.12 <5 <٢ CH-89 L 5+50W 2.39 75 0.11 27 <3 <2 34 (3 179 7+00S 0.3 1.54 13 <3 139 <3 0.15 0.6 10 32 33 0.10 0.49 513 1 0.01 4 CH-89 L 5+50W 7+505 0.1 2.36 3 <3 283 (3 0.37 1.5 17 74 51 3.71 0.18 0.90 644 2 0.01 166 0.06 34 <3 <5 <2 5 58 <5 <3 191 14 37 49 28 (3 <5 <2 28 ۲) (3 102 CH-89 L 5+50W 8+005 <3 90 <3 0.15 44 2.80 0.83 285 2 0.02 0.03 6 0.3 1.57 18 0.7 0.11 CH-89 L 5+50W 8+505 0.1 2.33 23 <3 155 <3 0.11 0.5 12 32 29 2.57 0.10 0.64 217 2 0.01 77 0.06 34 (3 (5 <2 5 28 <5 (3 127 Minimum Detection 0.1 0.01 3 -3 3 0.01 0.1 1 1 1 0.01 0.01 0.01 t 1 0.01 1 0.01 2 - 3 5 2 2 5 3 1000 20000 50.0 10.00 2000 100 1000 1000 10.00 1000.0 20000 1000 20000 10.00 10.00 10.00 20000 1000 10.00 20000 10.00 20000 100 100 2000 1000 10000 100 Maximum Detection < = Less than Minimum is = Insufficient Sample ins = No sample > = Greater than Maximum AuFA = Fire assay/AAS

E .

.

123	

B enerine

REPORT #: 890069 PA	ASHW	IORTH EXPL	Proj: 259	Date In: 89/02/17	Date Out:89/02/21	Att: R KIDLARK		Prop. 4 of 13
Sample Mumber								Page 4 of 13
Sample Mumoel	•	As Au Ba ppa ppa ppa	Bi Ca Cd C ppm X ppm pp		K Ng Kn Z Z ppm	No Na Ni P Pb ppm I ppm I ppm		Sr U W Zn opn opn opn son
CH-89 L 5+50W 9+00S	0.6 1.80	51 (3 103	<3 0.20 1.1 1			4 0.03 88 0.02 32	2 (3 (5 (2 2	35 (5 (3 141
CH-89 L 5+50W 9+50S CH-89 L 5+50W 10+00S	0.3 1.93	20 <3 93 22 (3 164	(3 0.17 1.3 1			5 0.03 80 0.02 33		22 <5 <3 223
CH-89 L 5+50W 10+00S CH-89 L 5+50W 10+50S	0.3 2.27 0.2 2.59	22 (3 164 48 (3 80	<pre></pre>	4 26 41 2.76 3 23 26 2.58		2 0.02 59 0.02 32 2 0.02 49 0.02 37	· · · · · ·	37 (5 (3 11)
CH-89 L 6+50W 0+00	0.8 2.30	17 <3 63	(3 1.18 1.2 1			2 0.01 27 0.10 36		17 (5 (3 105 47 (5 (3 114
CH-89 L 6+50W 0+505	0.2 1.90	11 (3 79	(3 0.21 0.3 1	2 25 34 2.25	0.10 0.79 310	1 0.02 20 0.06 30) (3 (5 (2 4	24 <5 <3 94
CH-89 L 6+50N 1+00S	0.4 2.04	14 (3 44	<3 0.20 0.7 1	4 27 55 2.73	0.12 1.14 294	2 0.01 24 0.02 31		20 <5 <3 86
CH-89 L 6+50W 1+50S	0.1 1.94	11 (3 119		6 8 16 1.64		1 0.02 18 0.19 32		38 <5 <3 198
CH-89 L 6+50W 2+00S CH-89 L 6+50W 2+50S	0.5 2.64 0.1 2.51	13 (3 147 6 (3 99	<pre></pre>	0 26 18 1.92 0 12 24 1.61		1 0.02 28 0.15 37 1 0.01 24 0.11 35		23 <5 <3 129 26 <5 <3 138
CH-89 L 6+50W 3+00S	0.5 2.38	5 (3 155	<3 0.14 1.3 1	3 20 36 2.42	0.10 0.58 283	3 0.01 46 0.08 34		22 (5 (3 239
CH-B9 L 6+50W 3+50S	0.5 2.73	<3 <3 197		9 14 20 1.54		1 0.02 28 0.16 36		24 (5 (3 140
CH-89 L 6+50W 4+005	0.1 2.49	47 (3 151	(3 0.09 1.2 1			2 0.01 45 0.08 39		21 (5 (3 18)
CH-89 L 6+50W 4+50S	0.5 2.11	60 <3 115	<3 0.56 i.i 2			3 0.02 38 0.09 39		57 (5 (3 159
CH-89 L 6+50W 5+005	0.2 2.09	38 <3 94	<3 0.15 0.7 1	3 23 48 2.97	0.12 0.79 302	2 0.02 31 0.06 37	3 <5 <2 3	24 <5 <3 122
CH-89 L 6+50W 5+50S	0.1 2.30	8 (3 186	(3 0.14 0.1	9 38 19 1.86	0.08 0.35 181	1 0.02 105 0.09 32	2 <3 <5 <2 3	37 <5 <3 153
CH-89 L 6+50W 6+005	0.2 2.40	76 (3 154	3 0.14 0.5	9 16 32 1.93	0.09 0.44 269	1 0.02 37 0.06 42	2 (3 (5 (2 3	30 (5 (3 106
CH-89 L 6+50W 6+505	1.4 3.63	13 (3 219	(3 0.13 0.7 1			2 0.02 105 0.07 43		40 <5 <3 120
CH-89 L 6+50W 7+00S CH-89 L 6+50W 7+50S	0.1 1.77 0.1 1.83	14 (3 92 11 (3 145	<pre></pre>			2 0.01 67 0.03 27 2 0.01 96 0.08 29		27 <5 <3 125 16 <5 <3 172
CH-89 L 6+50W 8+00S	0.1 2.65	4 <3 178	<3 0.14 1.1 1	5 69 27 3.09	0.12 1.21 278	3 0.01 107 0.04 37		26 (5 (3 157
CH-89 L 6+50W 8+505	0.1 1.72	29 <3 89	(3 0.15 1.1 1			3 0.01 142 0.03 28		26 (5 (3 157
CH-89 L 6+50W 9+00S	0.4 3.27	4 (3 182	(3 0.26 0.7 1			2 0.03 31 0.06 38		34 <5 <3 126
CH-89 L 6+50W 9+50S	0.1 3.04	27 (3 279	(3 0.19 1.2 1		0.15 0.81 505	2 0.01 80 0.05 41		45 (5 (3 233
CH-89 L 6+50W 10+00S	0.1 3.39	6 <3 168	3 0.40 1.2 2	3 9 99 4.66	0.21 1.06 343	3 0.01 25 0.02 40) <3 <5 <2 5	19 (5 (3 100
CH-89 L 7+50W 0+00	0.1 2.44	4 (3 117	(3 7.84 0.7 1	7 23 75 2.45	1.12 1.00 500	1 0.02 25 0.07 34	4 (3 (5 (2 4	103 (5 (3 116
CH-89 L 7+50W 0+50S	0.1 2.56	8 (3 146	<3 0.26 0.7 1			1 0.01 26 0.15 35		18 <5 <3 149
CH-B9 L 7+50W 1+00S	0.4 2.53	8 <3 156	<3 0.18 0.6 1			1 0.01 26 0.14 35		17 (5 (3 143
CH-89 L 7+50W 1+50S CH-89 L 7+50W 2+00S	0.1 2.22 0.1 2.27	7 <3 141 3 <3 149		7 10 13 1.79 7 10 13 1.91		1 0.02 13 0.09 34		40 <5 <3 151 44 <5 <3 155
CN-85 L /*JUN 21003	0.1 2.23	5 15 140		7 10 13 1.91	0.10 0.37 1079	1 0.02 12 0.09 36		
CH-89 L 7+50W 2+505	0.2 2.72	8 <3 163		0 21 21 1.95		1 0.01 24 0.13 37		47 (5 (3 15)
CH-89 L 7+50W 3+005	0.2 1.95	22 (3 118 18 (3 150		7 12 25 1.85 0 24 58 3.00		1 0.02 14 0.15 36 2 0.01 32 0.12 42		51 (5 (3 125 37 (5 (3 184
CH-89 L 7+50W 3+505 CH-89 L 7+50W 4+005	0.1 2.93 0.1 3.35	20 (3 156		0 24 58 3.00 3 15 42 2.25		2 0.01 32 0.12 42		32 <5 <3 159
CH-89 L 7+50W 4+50S	0.2 3.99	38 <3 111	<3 0.20 0.5 1			2 0.01 20 0.10 44		19 <5 <3 102
CH-B9 L 7+50W 5+005	0.1 2.32	20 <3 185	(3 0.16 0.3 1	1 19 36 2.46	0.11 0.37 210	3 0.02 56 0.03 34	4 <3 <5 <2 3	40 <5 <3 116
CH-89 L 7+50W 5+50S	0.4 2.52	6 (3 173		8 16 15 1.50		1 0.01 37 0.27 33		37 <5 <3 220
CH-89 L 7+50W 6+00S	0.1 1.81	12 <3 175		3 20 40 2.46		3 0.01 58 0.08 32		43 (5 (3 166
CH-89 L 7+50W 6+50S	0.1 1.57	61 (3 156	(3 0.20 1.1 1	8 23 57 3.51	0.17 0.36 362	5 0.02 171 0.05 35	5 <3 <5 <2 2	41 <5 <3 146
Minimum Detection	0.1 0.01	3 3 1		1 1 1 0.01		1 0.01 1 0.01 2		1 5 3 1
- Maximum Detection < = tess than Minimum is		2000 100 1000 ante no e No sami	1000 10.00 1000.0 2000 le > = Greater than Maxim		10.00 10.00 20000	1000 10.00 20000 10.00 20000	0 100 100 2000 1000	10000 100 1000 20000
 Pras Aven (Filter) 	s insurvicious 30		ic / - Greater than (dill	an um u - itte apadåti	nn v			

*

600/	te da	1.62
644	fundan.	-

an an a' an a she was a she wa

REPORT #: 890069 PA		ASHWORTH		٩	roj: 259	3		Date	ln: 89/	02/17	Date	Out:89	/02/21	Att	R KID	LARK							Pag	e 5 o	f 13	l			
Sample Number	Ag 7	Al As	Au	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	ĸ	Mg	Mo	No	Na	Ni	P	Pb	Pd	Pt	Sb	Sn	Sr	U	¥	Zn		
CH 00 / 7.50H 7.665	ppa	Z pps	op n	ppa	ppa	7	pps	pps	ppe	ppm	I	X	1	ppe	ppe	1	ppn	1	<u>ope</u>	ppe	ppe	ppe	ppe	0pm	ppa	pp#	ppm		
CH-89 L 7+50W 7+005	0.3 1.9		<3	168	<3	0.14	0.7	10	18	38	2.39	0.09	0.35	183	2	0.01	67	0.03	36	(3	<5	<2	6	35	<5	(3	117		
CH-89 L 7+50W 7+50S	0.1 1.		(3	160	(3	0.24	0.4	14	22	50	2.99	0.14	0.24	284	t	0.01	161	0.05	34	(3	<5	<2	5	54	<5	<3	156		
CH-89 L 7+50W 8+00S	0.1 2.1		<3	300	(3	0.24	0.5	11	25	51	2.46	0.11	0.54	426	2	0.01	56	0.25	42	<3	<5	<2	7	47	<5	<3	137		
CH-89 L 7+50W 8+505	0.1 2.1		(3	170	(3	0.19	1.3	21	11	43	4.34	0.18	0.79	976	2	0.01	28	0.12	40	{3	<5	<2	7	30	{5	(3	124		
CH-89 L 7+50W 9+005	0.1 2.7	9 11	{3	193	(3	0,15	0.B	15	21	32	2.89	0.14	0.66	733	2	0.01	29	0.15	42	<3	<5	<2	7	27	۲5	<3	147		
CH-89 L 7+50W 9+50S	0.1 2.3		<3	158	(3	0.14	0.2	9	17	21	1.67	0.06	0,45	359	1	0.01	27	0.08	35	(3	<5	<2	7	24	<5	<3	111		
CH-89 L 7+50W 10+00S	0.4 3.6		<3	111	(3	0.17	0.4	14	15	47	2.60	0.11	0.68	354	2	0.01	22	0.10	50	<3	<5	<2	9	~16	(5	<3	108		
CH-89 L 8+00W 0+00	0.3 3.0		(3	183	<3	0.13	1.1	9	-14	21	2.12	0.08	0.35	795	1	0.01	26	0,09	52	<3	<5	<2	7	35	<5	<3	366		
CH-89 L 8+00W 0+50N	0.1 2.3		(3	141	3 (3	0.35	1.1	10	17	25	1.97	0.11	0.67	918	1	0.01	18	0.15	34	<3	<5	<2	7	40	<5	(3	233		
CH-89 L 8+00W 0+50S	1.6 1.3	3 13	(3	49	<3	0.31	0.6	9	33	57	2.61	0.13	0.74	257	1	0.02	30	0.04	37	(3	<5	<2	7	37	(5	<3	92		
CH-89 L 8+00W 1+00S	2.4 1.4	14 8	(3	76	<3	>10.00	0.7	15	21	76	2.27	3.03	1.32	486	1	0.01	24	0.04	35	(3	<5	<2	6	328	۲5	(3	76		
CH-89 L 8+00W 2+00S	0.6 2.0		(3	101	<3	0.34	0.6	9	18	28	1.85	0.10	0.50	439	1	0.01	22	0.04	50	(3	(5	<2	6	31	<5	<3	163		
CH-89 L 8+00W 2+505	0.4 1.5		<3	118	<3	0.17	0.2	9	24	23	1.87	0.08	0.66	267	<1	0.01	22	0.03	32	(3	<5	<2	7	23	<5	<3	107		
CH-89 L 8+00W 3+005	0.4 2.		₹3	131	<3	0.14	0.8	9	19	22	2.04	0.08	0.64	291	1	0.01	25	0,08	38	(3	<5	<2	7	24	<5	<3	132		
CH-89 L 8+00¥ 3+505	1.7 2.5	53 107	(3	86	<3	0.28	1.1	17	29	87	3.92	0.18	1.09	636	2	0.01	29	0.06	68	<3	<5	(2	7	45	<5	<3	112		
CH-89 L 8+00W 4+005	0.1 1.1	34 4	(3	133	<3	0.24	0.7	11	25	27	1.93	0.09	0.66	551	D)	0.01	28	0.09	33	(3	۲5	(2	6	30	(5	(3	139		
CH-89 L 8+00W 4+505	0.1 2.1		(3	139	(3	0.10	1.8	14	16	77	3.59	0.14	0.67	243	4	0.01	52	0.04	39	(3	<5	(2	6	21	<5	<3	245		
CH-89 L 8+00W 5+00S	0.4 2.3		(3	139	(3	0.13	0.4	11	15	36	2.36	0.09	0.50	380	2	0.01	27	0.11	39	(3	(5	(2	7	24	<5	<3	144		
CH-89 L 8+00W 5+505	0.3 2.		(3	138	: (3	0.14	0.6	12	19	30	2.21	0.09	0.47	419	1	0.01	25	0.05	40	(3	<5	(2	7	22	<5	<3	111		
CH-89 L 8+00W 5+00S	0.1 2.0		<3	239	(3	0.12	1,1	13	18	53	2.59	0.10	0.45	381	4	0.01	52	0.07	42	(3	<5	<2	,	27	` \ 5	<3	180		
CH-89 L 8+00W 6+505	0.1 1.3	39 8	<3	127	<3	0.14	0.8	17	17	42	2.71	0.11	0.31	349	2	0.01	119	0.04	29	(3	<5	(2	5	27	<5	<3	160		
CH-89 L 8+00W 7+00S	0.1 2.4		<3	165	<3	0.15	0.4	10	25	40	2.24	0.09	0.51	177	1	0.01	56	0.02	34	(3	(5	(2	6	33	<5 <5	(3	99		
CH-89 L 8+00W 7+505	0.3 2.5		(3	211	(3	0.30	0.4	14	19	62	3.20	0.15	0.34	202	3	0.02	110	0.04	44	(3	(5	<2	7	52	(5	<3 <3	139		
CH-89 L 8+00W 8+00S	0.1 1.1		(3	97	(3	0.12	0,2	12	18	39	2.63	0.10	0.35	184	2	0.01	98	0.05	27	(3	<5	(2	. 5	26	(5	(3	135		
CH-89 L 8+00W 8+50S	0.1 1.1		(3	170	<3	0.18	0.4	12	25	42	2.81	0.14	0.33	337	1	0.01	104	0.05	34	(3	(5	<2	6	42	(5	(3	129		
	-																	v. vj					-		_	_			
CH-89 L 8+00W 9+00S	0.1 3.0		<3	162	<3	0.27	1.1	21	17	74	3.71	0.17	0.91	464		0.01	39	0.11	46	(3	(5	<2	1	33	<5	(3	156		
CH-89 L 8+00W 9+505	0.1 2.1		<3	204	3	0.31	1.3	23	13	84	4.54	0.22	0.82	451	2	0.01	25	0.06	43	<3	<5	<2	B	24	(5	(3	120		
CH-89 L 8+00W 10+00S	0.1 2.4		<3	188	(3	0.14	0.2	10	15	26	1.90	0.08	0.43	513	1	0.01	28	0.16	34	(3	<5	<2	6	19	(5	(3	114		
CH-89 L 8+50W 0+00	0.1 2.1		<3	144	<3	0.27	0.4	11	14	19	2.33	0.11	0.45	703	i	0.02	19	0.20	46	<3	(5	<2	7	52	(5	(3	106		
CH-89 L 8+50W 0+50S	0.1 2.	14 9	(3	131	<3	0.17	0.4	9	25	22	2.13	0.09	0.65	222	1	0.01	22	0.05	35	<3	<5	<2	6	25	<5	<3	101		
CH-89 L 8+50W 1+005	0.3 2.1		{3	163	<3	0.19	0.5	8	17	22	1.76	0.08	0.41	486	1	0.02	19	0.14	38	<3	<5	<2	7	31	<5	<3	131		
CH-89 L 8+50W 1+50S	1.2 1.4	2 6	<3	87	<3	>10.00	1.1	15	17	76	2.06	2.16	1.04	468	(1	0.01	19	0.09	29	<3	<5	<2	5	148	(5	<3	73		
CH-89 L 8+50W 2+00S	0.1 1.1		<3	96	<3	0.31	0.2	5	9	13	1.31	0.08	0.27	316	<1	0.01	12	0.14	35	<3	<5	<2	6	31	(5	(3	124		
CH-89 L 8+50W 2+50S	0.1 2.3		<3	90	<3	0,22	0.4	12	25	44	2,46	0.11	0.98	436	1	0.01	22	0.08	33	<3	<5	<2	7	24	<5	(3	87		
CH-89 L 8+50W 3+005	0.4 2.	1 23	<3	66	<3	0.20	0.7	14	27	58	2.76	0.12	1.17	404	2	0.01	24	0.05	34	<3	<5	<2	9	21	<5	<3	79		
CH-89 L 8+50W 3+505	0.1 2.	12 17	<3	110	<3	0.23	0.4	11	24	42	2.36	0.11	0.91	581	1	0.01	21	0.10	36	<3	<5	<2	8	24	<5	<3	95		
CH-89 L 8+50W 4+00S	0.1 2.1		(3	164	(3	0.19	0.5	10	16	28	1.99	0.09	0.49	261	1	0.01	21	0.05	40	(3	(5	(2	7	35	<5	(3	96		
CH-89 L 8+50W 4+50S	0.4 2.		<3	136	(3	0.16	0.6	8	16	25	1.92	0.08	0.55	227	1	0.01	22	0.04	33	(3	(5	<2	6	24	(5	(3	114		
CH-89 L 8+50W 5+005	0.4 2.		<3	131	(3	0.20	0.8	10	9	31	1.80	0.08	0.38	332	2	0.01	29	0.13	38	(3	(5	(2	7	29	<5	<3	111		
Minimum Detection	0.1 0.4	01 3	3	1	3	0.01	0.1	t	1	1	0.01	0.01	0.01	1	t	0.01	1	0.01	2	3	5	2	2	1	5	3	1		
Maximum Detection	50.0 10.		100	1000	-	10.00 1		20000	•	-		10.00		-	-	10.00				100	100	2000	1000	10000	100	1000	20000		
<pre>< = Less than Hinimum is</pre>																									•••				
				,																									

REPORT #: 890069 PA	ASHWORTH EXPL	Proj: 259	Date In: 89/02/17	Bate Dut:89/02/21	Att: R KIDLARK		Page & of 13				
Sample Number CH-89 L 8+50W 5+50S CH-89 L 8+50W 6+00S CH-89 L 8+50W 6+50S CH-89 L 8+50W 7+00S CH-89 L 8+50W 7+50S	Ag Ai As Au ppm Z ppm ppm ppm 0.6 3.56 36 <3	pp pp T pp p p p p	Co Cr Cu Fe DB ppm ppm Y 12 17 34 2.02 18 139 4.02 19 26 65 4.06 14 32 31 2.46 14 26 32 2.60	K Mg Mn Z ppm 0.09 0.42 338 0.19 0.55 710 0.17 0.40 318 0.11 0.57 395 0.11 0.37 246	Ho Na Ni P Pb Ppm X ppm X ppm 1 0.02 32 0.14 48 4 0.01 52 0.13 49 9 0.02 176 0.05 43 1 0.01 94 0.06 41 2 0.01 82 0.07 44	pps ppa ppa ppa <3	Sr B W Zn pps pps pps pps 30 <5				
CH-89 L 8+50W 8+005 CH-89 L 8+50W 8+505 CH-89 L 8+50W 9+005 CH-89 L 8+50W 9+505 CH-89 L 8+50W 10+005	0.1 2.40 24 (3) 0.2 2.08 33 (3) 0.2 2.06 27 (3) 0.3 3.06 19 (3) 0.1 2.57 14 (3)	175 <3 0.24 0.5 1 166 <3	7 27 46 3.21 14 16 74 3.35 0 20 32 2.26 1 16 27 2.26 11 14 21 2.47	0.13 0.37 343 0.17 0.27 174 0.10 0.33 226 0.10 0.50 431 0.12 0.85 386	2 0.02 190 0.06 41 3 0.03 111 0.03 41 3 0.02 69 0.07 35 1 0.01 42 0.07 42 1 0.01 19 0.04 35	(3) (5) (2) 6 (3) (5) (2) 6 (3) (5) (2) 7	44 <5				
CH-89 L 9+50W 0+00 CH-89 L 9+50W 0+50S CH-89 L 9+50W 1+00S CH-89 L 9+50W 1+50S CH-89 L 9+50W 2+00S	1.1 3.43 27 (3 0.2 4.02 30 (3 0.1 2.18 5 (3 0.1 2.36 5 (3 0.1 2.37 17 (3	85 (3 0.27 0.1 144 (3 0.20 0.1 105 (3 0.22 0.1	9 23 22 1.87 6 8 16 1.42 5 11 15 1.20 0 23 20 1.96 9 19 30 2.66	0.08 0.49 315 0.10 0.17 329 0.07 0.24 437 0.10 0.53 227 0.15 0.71 808	1 0.01 50 0.44 43 1 0.02 15 0.30 50 1 0.01 16 0.14 32 1 0.02 20 0.02 37 1 0.03 17 0.06 49	(3) (5) (2) 9 (3) (5) (2) 6 (3) (5) (2) 7	26 <5				
CH-89 L 9+50W 2+505 CH-89 L 9+50W 3+005 CH-89 L 9+50W 3+505 CH-89 L 9+50W 4+005 CH-89 L 9+50W 4+505	0.2 2.30 26 <3	87 <3>10.00 0.1 125 <3 0.34 0.5 1 96 <3 0.31 0.3	6 29 48 2.94 3 11 43 0.92 5 23 49 2.67 9 11 47 1.61 3 15 45 2.28	0.14 1.27 633 5.02 0.48 350 0.14 0.7B 458 0.09 0.27 551 0.11 0.47 376	1 0.01 26 0.09 36 <1	(3) (5) (2) 2 (3) (5) (2) 9 (3) (5) (2) 7	39 <5 <3 125 206 <5				
CH-89 L 9+50W 5+005 CH-89 L 9+50W 5+505 CH-89 L 9+50W 6+005 CH-89 L 9+50W 6+505 CH-89 L 9+50W 7+005	0.6 4.16 55 <3	190 <3 0.14 1.2 1 120 <3	8 21 76 3.33 39 39 34 2.96 9 10 29 1.82 0 15 28 2.05 1 21 41 2.52	0.15 0.70 468 0.12 0.73 787 0.08 0.27 223 0.10 0.26 475 0.12 0.38 215	3 0.01 75 0.23 58 1 0.01 41 0.30 50 1 0.02 26 0.11 49 2 0.01 65 0.15 42 4 0.02 81 0.05 36	(3) (5) (2) 9 (3) (5) (2) 9 (3) (5) (2) 7	38 (5 (3 169 23 (5 (3 246 26 (5 (3 102 32 (5 (3 219 40 (5 (3 128				
CH-89 L 9+50N 7+50S CH-89 L 9+50N 8+00S CH-89 L 9+50N 8+50S CH-89 L 9+50N 9+00S CH-89 L 9+50N 9+50S	0.6 2.43 22 (3) 0.6 2.47 20 (3) 1.1 2.88 19 (3) 0.1 1.90 15 (3) 0.2 1.58 20 (3)	128 <3 0.20 0.3 151 <3	8 15 20 1.59 9 17 27 1.95 8 12 18 1.66 9 17 30 1.99 9 21 41 2.23	0.10 0.26 370 0.09 0.50 273 0.07 0.24 398 0.08 0.40 185 0.09 0.49 210	i 0.02 34 0.13 35 i 0.01 37 0.13 37 i 0.01 29 0.18 42 i 0.01 36 0.07 32 i 0.02 34 0.05 28	(3) (5) (2) 7 (3) (5) (2) 7 (3) (5) (2) 6	26 <5 <3 B5 24 <5				
CH-89 L 9+50W 10+00S CH-89 L14+00W 0+00 CH-89 L14+00W 0+50N CH-89 L14+00W 1+00N CH-89 L14+00W 1+50N	0.2 1.76 19 <3	161 (3 0.18 0.1 94 (3 0.14 0.1 191 (3 0.14 0.1	0 21 34 2.11 5 7 9 1.30 8 20 16 1.65 6 10 11 1.28 1 28 30 2.51	0.09 0.44 479 0.07 0.23 1083 0.08 0.49 468 0.05 0.29 1050 0.12 0.74 594	1 0.01 40 0.11 34 1 0.01 9 0.21 56 1 0.02 16 0.04 27 1 0.01 11 0.19 30 1 0.03 22 0.10 42	<3	18 <5 <3 111 37 <5				
CH-B9 L14+00W 2+00N CH-89 L14+00W 2+50N CH-89 L14+00W 0+50S CH-89 L14+00W 1+00S	0.1 1.60 16 (3 0.1 1.71 (3 (3 0.2 2.55 84 (3 0.2 1.71 12 (3	265 <3 0.70 1.1 168 <3 0.22 1.3	0 9 11 2.05 8 15 19 1.52 9 13 17 1.98 9 16 17 1.71	0.17 0.69 1240 0.15 0.44 1634 0.10 0.32 947 0.11 0.48 950	1 0.01 8 0.10 44 1 0.01 19 0.29 50 1 0.01 14 0.10 46 1 0.01 18 0.07 40	(3) (5) (2) 6 (3) (5) (2) 6	171 (5 (3 88 99 (5 (3 195 32 (5 (3 152 48 (5 (3 152				
Minimum Detection Maximum Detection < = Less than Minimum is =			0 1000 20000 10.00		1 0.01 1 0.01 2 1000 10.00 20000 10.00 20000						

State - Call	
ALCONG CALVESTON	

REPORT 8: 890069 PA	ASHWORTH EXPL					P	roj: 259)		Date I	(n: 89/	02/17	Date	Out:89	/02/21	Att	: R XID	LARK							Pag	e 7 a	if 13	
Sample Number	Ag	A)	As	Au	Ba	Bi	Ca	Cď	Co	Cr	Cu	Fe	K	Kg	Mn	Ho	Xa	Ni	P	Pb	Pd	Pt	Sb	Sn	Sr	U	W	Zn
CH-89 L14+00W 1+505	pp n 0.7	2 3.06	pp∎ 41	ppa (3	ppe 148	рр е З	1 0.25	pps	рр е 25	рр а 24	ppa	۲ ۵. ۵۵	1	1	ppa	pp	1	ppe	1	ppm	ppa	ppa	pps	ppa	ppa	<u>ope</u>	99 e	99a
CH-89 L14+00W 2+00S		1.42	18	<3 <3	140	3 (3		1.4			77	3.38	0.16	1.30	843	3	0.01	29	0.09	43	<3	<5	(2	10	42	<5	<3	172
CH-89 L14+00W 2+50S		2.45	16	(3	202	(3	0.16	0.5 0.6	12 18	16 15	38 45	2.17	0.10	0.62	520	1	0.01	23	0.09	26	<3	(5	(2	5	25	(5	<3	125
CH-89 L14+00W 3+00S		2.78	27	(3	159	(3			18			2.24	0.11	0.74	876	1	0.01	25	0.22	34	(3	(5	(2	7	32	(5	(3	171
CH-89 L14+00W 3+505		2.20	16	<3	120	<3 ·	0.16	0.8 0.5	7	17 10	22 14	1.72	0.08 0.06	0.38 0.22	550 513	2 1	0.01 0.01	38 27	0.29 0.20	36 29	(3 (3	(5 (5	<2 <2	7 6	31 21	<5 (5	<3 <3	160 187
CH-89 L14+00W 4+50S	0.1	2.40	26	<3	169	<3	0.24	0.6	12	15	21	2.16	0.11	0.38	774	2	0.01	23	0.05	35	<3	(5	<2	6	37	(5	(3	122
CH-89 L14+00W 5+005		2.68	46	(3	153	(3	0.15	0.5	11	13	29	2.04	0.09	0.32	389	2	0.01	48	0.10	36	<3	<5	(2	7	34	<5	<3	130
CH-89 L14+00W 5+505		2.91	31	(3	184	(3	0.18	0.5	10	12	25	1.92	0.09	0.34	459	2	0.01	45	0.06	39	(3	<5	<2	í	41	(5	(3	113
CH-89 L14+00W 6+005		1.81	18	(3	181	<3	0.11	0.3	ŝ	-14	15	1.71	0.08	0.33	498	1	0.01	34	0.05	26	(3	(5	<2	5	33	(5	(3	130
CH-89 L14+00W 6+505		2.03	30	(3	109	(3	0.12	0.5	10	17	20	1.77	0.08	0.35	280	2	0.01	42	0.04	29	(3	<5	<2	5	27	<5	(3	104
CH-89 L14+00W 7+005	0.1	1.35	36	<3	96	<3	0.14	0.5	10	17	24	1.98	0.09	0.35	288	2	0.01	53	0.05	25	∢ 3	5\	<2	5	29	<5	<3	104
CH-89 L14+00W 7+505	0.1	1.73	38	<3	129	<3	0.12	0.3	9	22	16	1.65	0.07	0.35	272	(1	0.01	58	0.07	27	(3	(5	(2	5	23	<5	(3	109
CH-89 L14+00W 8+005	0.1	1.63	40	<3	134	(3	0.15	0.5	11	30	31	2.20	0.10	0.54	439	1	0.01	59	0.07	29	(3	(5	<2	6	30	(5	<3	113
CH-89 L14+00W 8+50S	0.3	2.44	22	<3	193	<3	0.22	0.9	13	19	35	2.10	0.11	0.69	984	1	0.01	24	0.18	34	(3	(5	<2	7	30	(5	(3	139
CH-89 L14+00W 9+005	0.2	3.35	42	<3	161	<3	0.17	1.3	25	34	44	3.33	0.14	1.12	1122	2	0.01	27	0.42	42	<3	<5	(2	9	20	(5	<3	210
CH-89 L14+00W 9+505	0.1	2.90	36	(3	247	<3	0.17	0.5	15	19	20	2.24	0.10	0.37	860	t	0.01	14	0.77	39	(3	₹5	<2	9	27	<5	(3	140
CH-89 L14+00W 10+005	0.3	2.97	25	73	110	<3	0.20	0.5	12	14	32	1.98	0.10	0.60	603	2	0.01	17	0.14	37	(3	(5	(2	8	26	<5	(3	87
CH-89 L15+00W 0+00	0.1	2.20	75	(3	158	<3	0.16	0.6	11	19	28	1.86	0.09	0.42	641	i	0.01	28	0.17	36	(3	(5	(2	5	27	<5	(3	124
CH-89 L15+00W 0+50N		2.52	24	(3	160	(3	0.13	0.3	9	16	17	1.58	0.07	0.33	558	i	0.01	21	0.20	41	(3	(5	<2	6	26	(5	<3	202
CH-89 L15+00W 1+00N	0.2	1.35	19	<3	71	<3	0.15	0.8	9	27	22	1.91	0.09	0.67	287	(1	0.01	20	0.02	25	(3	(5	(2	5	27	(5	<3	109
CH-89 L15+00W 1+50N	0.3	2.09	8	<3	86	<3	0.25	0.1	6	8	12	1.36	0.0B	0.24	519	<1	0.01	16	0.12	42	<3	<5	<2	6	43	۲5	<3	86
CH-89 L15+00W 2+00N	0.2	1.59	17	<3	121	<3	0.45	1.3	13	27	41	2.33	0.15	0.71	1332	1	0.02	31	0.15	35	<3	<5	<2	6	66	<5	(3	148
CH-89 L15+00W 0+50S	0.2	1.78	93	<3	76	<3	0.12	0.5	9	18	37	2.08	0.09	0.58	214	1	0.01	22	0.02	34	(3	<5	<2	6	17	(5	(3	101
CH-89 L15+00W 1+00S	0.3	1.60	1	<3	124	<3	0.09	0.3	7	12	13	1.23	0.05	0.30	409	1>	0.01	18	0.11	26	<3	(5	<2	S	18	(5	(3	- 67
CH-89 L15+00W 1+50S	0.2	2.28	30	<3	102	<3	0.14	0.8	- 15	18	46	2.45	0.11	0.72	472	2	0.01	26	0.09	35	<3	<5	<2	7	28	<5	(3	135
CH-89 L15+00W 2+005	0.2	1.94	17	<3	138	<3	0.13	0.3	8	13	17	1.48	0.07	0.30	422	1	0.01	22	0.21	29	<3	(5	<2	5	24	<5	<3	118
CH-89 L15+00W 2+50S	0.3	1.87	19	<3	157	<3	0.11	1.1	8	9	13	1.31	0.05	0.20	683	1	0.01	36	0.26	31	<3	۲5	<2	6	25	<5	<3	194
CH-89 L15+00W 3+00S	0.6	3.51	24	<3	103	<3	0.16	0.5	11	8	35	1.85	0.09	0.30	387	2	0.02	31	0.15	44	<3	(5	<2	8	28	<5	<3	106
CH-89 L15+00W 3+505	0.4	1.95	23	<3	133	<3	0.22	0.9	11	10	20	1.54	0.09	0.33	879	1	0.01	26	0.16	33	<3	<5	<2	6	32	<5	<3	153
CH-89 L15+00W 4+005	0.6	2.06	25	<3	122	<3	0.11	0.6	11	20	37	2.16	0.09	0.65	272	1	0.02	25	0.06	35	<3	<5	<2	7	17	<5	<3	113
CH-89 L15+00W 4+505		1.05	113	<3	84	<3	0.13	1.2	18	10	75	4.46	0.18	0.30	563	3		44	0.08	28	<3	<5	<2	5	18	(5	<3	173
CH-89 L15+00W 5+00S	0.5	1.53	35	۲3	86	<3	0.10	0.8	13	22	43	2,42	0.10	0.71	388	1	0.02	25	0.05	30	<3	<5	<2	5	18	(5	<3	93
CH-89 L15+00W 5+505		1.61	24	<3	160	<3	0.16	0.5	8	9	15	1.50	0.08	0.15	668	- 1	0.01	38	0.18	30	<3	<5	<2	6	44	<5	(3	145
CH-89 L15+00W 6+00S		1.81	58	(3	166	(3	0.11	0.5	11	12	18	1.87	0.08	0.20	405	2	0.01	50	0.07	33	(3	(5	<2	6	29	(5	<3	168
CH-89 L15+00W 6+505	0.6	1.79	62	<3	123	(3	0.61	1.2	16	17	66	3.64	0.21	0.35	219	5	0.02	134	0.04	36	(3	۲5	<2	6	71	<5	<3	141
CH-89 L15+00W 7+00S		2.16	88	(3	177	(3	0.15	0.5	12	29	20	2.35	0.10	0,43	376	1		83	0.03	34	<3	<5	<2	6	33	<5	<3	89
CH-89 L15+00W 7+505		1.64	31	<3	95	(3	0.13	0.5	9	42	20	1.95	0.08	0.73	200	1		58	0.04	27	<3	<5	<2	6	21	<5	<3	85
CH-89 L15+00W 8+00S	0.6	2.07	53	<3	97	(3	0.20	0.5	11	39	35	2.39	0.11	0.77	189	I	0.01	58	0.05	33	(3	<5	<2	6	27	<5	<3	85
CH-89 L15+00W 8+50S	1.3	2.30	98	<3	87	<3	1.22	1.7	25	80	95	3.96	0.30	1.67	783	3	0.01	66	0.11	41	<3	<5	<2	7	49	(5	<3	123
Minimum Detection		0.01	3	3	١	3	0.01	0.1	i	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	3	5	2	2	١	5	3	1
Maximum Detection	50.0		2000	100	1000		10.00							10.00	20000	1000	10.00	20000	10.00	20000	100	100	2000	1000	10000	100	1000	20000
<pre>< = Less than Minimum is</pre>	= Insuff	icient	Sample	ns = N	o sampl	e > =	breater	than I	Naxinus	Aufa =	- fire a	assay/A	AS															

.

REPORT #: B90059 PA	ASHWORTH EXPL	Proj: 259	Date In: 89/02/17 Date Out:89/02/21	Att: R KIDLARK	Page 8 of 13
Sample Number CH-89 L15+00W 9+00S CH-89 L15+00W 9+50S CH-89 L15+00W 10+00S CH-89 L16+00W 0+00 CH-89 L16+00W 0+50W	Ag Al As Au ppm X ppm ppm 0.4 2.77 55 <3	Ba Bi Ca Cd Co ppm ppm 1 ppm ppm ppm 128 (3 0.19 1.2 19 157 (3 0.15 0.8 20 194 (3 0.26 0.8 17 58 (3 0.17 0.2 9 241 (3 0.17 0.2 7	ppm ppm X X ppm 9 63 56 3.02 0.14 1.31 602 0 26 48 3.27 0.14 1.02 700 7 21 33 2.63 0.13 0.85 729 9 25 22 1.67 0.08 0.64 256	Mo Na Ni P Pb Pd ppm X ppm X ppm ppm ppm ppm 3 0.01 46 0.12 43 (3 2 0.01 21 0.59 46 (3 1 0.01 15 0.45 36 (3 1 0.02 19 0.04 26 (3 1 0.01 13 0.20 29 (3	Pt Sb Sn Sr U W Zn pps pps pps pps pps pps pps pps <5
CH-89 L16+00W 1+00N CH-89 L16+00W 1+50N CH-89 L16+00W 2+00N CH-89 L16+00W 2+50N CH-89 L16+00W 3+50N	0.2 0.94 3 <3	149 <3	7 16 27 1.67 0.10 0.51 332 4 30 39 2.47 0.16 0.9B 550 9 18 21 1.92 0.11 0.59 919	1 0.01 17 0.08 33 <3	<5
CH-89 L16+00W 4+50N CH-89 L16+00W 5+00N CH-89 L16+00W 5+50N CH-89 L16+00W 6+00N CH-89 L16+00W 6+50N	0.4 2.06 23 <3	78 <3 0.85 1.1 12 149 <3	7 17 16 1.46 0.08 0.43 789 8 27 90 3.47 0.15 0.91 1431 7 22 58 2.93 0.17 0.85 1622	1 0.02 16 0.12 57 <3	(5 (2 5 67 (5 (3 189 (5 (2 5 31 (5 (3 189 (5 (2 8 27 (5 (3 191 (5 (2 8 27 (5 (3 191 (5 (2 6 86 (5 (3 357 (5 (2 5 106 (5 (3 234
CH-89 L16+00W 7+00N CH-89 L16+00W 7+50N CH-89 L16+00W 8+50N CH-89 L16+00W 9+00N CH-89 L16+00W 9+50N	0.2 1.86 9 (3) 0.1 2.09 23 (3) 0.1 2.13 6 (3) 0.2 1.72 12 (3) 0.2 2.07 7 (3)	215 (3 0.69 1.5 B 149 (3 0.26 2.1 13 241 (3 0.53 2.1 16 113 (3 0.31 1.2 11 148 (3 0.32 1.2 11	3 20 31 2.29 0.12 0.64 989 6 17 37 2.49 0.17 0.63 2098 1 18 30 2.04 0.11 0.52 709	1 0.01 21 0.15 35 <3	<5
CH-89 L16+00W 10+00N CH-89 L16+00W 0+50S CH-89 L16+00W 1+00S CH-89 L16+00W 1+50S CH-89 L16+00W 2+00S	0.1 2.19 25 <3	178 <3	2 21 23 1.97 0.11 0.50 693 9 15 22 1.57 0.08 0.39 559 7 13 14 1.38 0.06 0.27 390	(1 0.01 24 0.20 33 (3 1 0.01 24 0.12 40 (3 (1 0.02 22 0.15 33 (3 1 0.01 25 0.17 28 (3 1 0.01 31 0.11 36 (3	<5
CH-89 L16+00W 2+505 CH-89 L16+00W 3+505 CH-89 L16+00W 3+505 CH-89 L16+00W 4+505 CH-89 L16+00W 4+505	0.2 2.29 15 <3	131 (3 0.20 0.8 11 156 (3 0.26 1.1 36 97 3 0.43 1.2 32 136 (3 0.15 0.4 18 133 (3 0.17 0.8 15	6 15 126 3.83 0.17 0.81 1391 2 27 126 4.89 0.24 2.16 867 8 24 50 2.83 0.12 0.93 647	2 0.01 39 0.08 38 (3) 3 0.01 44 0.20 44 (3) 3 0.01 33 0.12 45 (3) 2 0.01 36 0.22 47 (3) 1 0.01 31 0.06 32 (3)	(5) (2) 6 31 (5) (3) 168 (5) (2) 7 42 (5) (3) 192 (5) (2) 10 59 (5) (3) 174 (5) (2) 9 27 (5) (3) 133 (5) (2) 6 24 (5) (3) 149
CH-89 L16+00W 5+005 CH-89 L16+00W 5+505 CH-89 L16+00W 6+005 CH-89 L16+00W 6+505 CH-89 L16+00W 7+005	0.2 2.61 31 <3	132 <3	0 ii 18 1.67 0.08 0.27 474 1 12 19 1.92 0.08 0.27 508 8 11 14 1.52 0.07 0.17 353	1 0.01 36 0.15 37 <3	(5) (2) 6 21 (5) (3) 153 (5) (2) 5 43 (5) (3) 127 (5) (2) 5 43 (5) (3) 127 (5) (2) 6 26 (5) (3) 162 (5) (2) 5 32 (5) (3) 147 (5) (2) 6 36 (5) (3) 150
CH-B9 L16+00W 7+50S CH-89 L16+00W 8+00S CH-89 L16+00W 8+50S CH-89 L16+00W 9+00S	0.1 2.47 84 <3	198 <3	0 38 13 1.83 0.10 0.52 789 9 25 13 1.56 0.08 0.48 1033 4 76 20 2.25 0.11 0.98 664	1 0.01 84 0.12 36 <3	<5
Minious Detection Maxious Detection < = Less than Minious is		1 3 0.01 0.1 1 1000 1000 10.00 1090.0 20000 sample > = Sreater than Maximum	0 1000 20000 10.00 10.00 10.00 20000 um AuFA = Fire assay/AAS		5 2 2 1 5 3 1 100 2000 1000 10000 100 1000 20000

_

•

	Sector Sector
S	
	Sec. 11

Supplex PA A A B B B B </th <th>Page 9 of 13</th>	Page 9 of 13
Der Billerow 9355 0.1 2.45 141 13 119 73 0.40 5.2 10 112 21 11 22 0.40 2.27 382 2 0.41 14 0.42 31 0.45 0.45 17 0.43 145 0.45 17 0.43 145 0.44 0.47 382 2 0.41 0.47 382 2 0.41 0.47 382 0.45 17 0.43 145 0.45 17 0.43 145 0.44 0.47 142 0.48 0.47 382 0.45 17 0.45 0.45 17 0.43 0.45 0.45 17 0.43 0.45 0.45 0.47 0.48 0.45 0.47 0.48 0.45 0.47 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	
Dimen Lineway Lineway <thlineway< th=""> <thlineway< th=""> <thlin< td=""><td></td></thlin<></thlineway<></thlineway<>	
Derge Lindow 0+06 0-2 1.1 1.0 2.1 2.0 0.0 0.1 0.00 2.0 2.0 0.0 0.1 0.00 2.0 2.0 0.0 0.1 0.00 2.0 2.0 0.0 0.1 0.00 2.0 2.0 0.0 0.1 0.00 2.0 2.0 0.0	
Der-B Lift how 0-Som 0.1 L.6. 7 0.3 0.1 0.5 1 <th0.5< th=""></th0.5<>	
Def=9 L1POW 0.11 L62 G <thg< th=""> G <thg< th=""> <!--</td--><td></td></thg<></thg<>	
eH=9 1.70+04 2.404 1.3 3.1 1.2 3 0.3 0.4 1.1 2.0 2 2.12 0.15 0.3 0.01 61 0.17 25 0.3 0.3 0.4 61 0.16 61 0.17 25 0.3 0.6 61 0.01 61 0.01 61 0.01 61 0.01 61 0.01 61 0.01 61 0.01 61 0.01 61 0.01 61 63 0.3 1.3 1.3 0.3 <td< td=""><td></td></td<>	
CH-BE L17490 755M 6.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 3.00 30 4.5 4.5 3.00 30 4.5 4.5 3.00 30 4.5 4.5 3.00 30 4.5 4.5 5.00 30 4.5 <	
CH-#9 11 1.55 27 33 63 33 <t< td=""><td></td></t<>	
CH-89 L174004 3 5504 0.5 L.85 13 (3) (3) 0.22 0.5 9 22 19 L.77 0.69 0.51 21 0.66 23 C3 C3 <thc3< th=""> C3 <thc3< th=""> <thc3< th=""> C3 <thc3< th=""></thc3<></thc3<></thc3<></thc3<>	
Herbell 17-0000 +1000 Ho H	
Der-Beilly-rower 4-50w 0.5 2.07 10 23 25 1.74 0.10 5.53 0.66 31 C3 C3 <thc3< th=""> C3 <thc3< th=""> <</thc3<></thc3<>	(5 (2 6 29 (5 (3 111
cH-99 1.74-004 5-0.01 0.4 9 20 19 1.74 0.09 0.51 6556 1 0.01 20 0.02 30 C3	
CH-89 L17+00H 5-50H 0.1 1.4 1.4 0.0 0.5 5.7 1 0.10 27 23 25 2 5 47 25 23 17 0.10 27 23 25 2 5 47 25 23 0.13 0.59 17 0.10 25 0.08 34 34 35 25 5 46 65 63	
CH-89 L17+00W 6+50K(A) 0.1 2.17 36 (3 0.29 1.5 11 25 32 2.39 0.13 0.66 1002 1 0.01 26 0.08 34 (3) (2) (2) (2) (2) (3) <td></td>	
H-B9 L1740W 740M 0.3 2.73 31 (3) 253 (3) 0.30 2.11 26 25 75 2.55 0.18 0.95 2023 2 0.01 33 0.06 45 0.07 35 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	
CH-B9 L1740W 740M 0.3 2.73 31 (3 263 (3 0.25 7.95 3.45 0.18 0.96 2023 2 0.01 45 0.06 45 0.01 27 0.01 33 0.1 0.1 1.06 0.0 1.06 0.06 27 <td>(5 <2 6 57 <5 <3 223</td>	(5 <2 6 57 <5 <3 223
CH-99 L1740W 7-50K 0.6 2.31 17 (3 95 (3 0.22 1.8 23 27 92 0.99 0.17 1.12 801 3 0.01 45 0.06 42 (3 C5 (2 7 7 38 (5 (3 0.14 0.10 0.10 0.10 0.10 0.10 0.10 0.10	
CH-89 L1740W 8+00K 0.5 2.31 17 (3) 95 (3) 0.1 10 24 28 2.00 0.11 0.50 1053 1 0.01 27 0.04 35 (3) (5) (2) 5 57 (5) (3) CH-89 L1740W 9+00W 0.3 2.26 13 (3) 154 (3) 0.43 0.8 12 20 41 2.06 0.13 0.50 1033 1 0.01 27 0.24 33 (3) (5) (2) 5 57 (5) (3) (3) 0.16 0.1 27 0.24 33 (3) (5) (3) (3) (3) (1) (3) (1) <td></td>	
CH-89 L17400W 850M 0.3 2.06 13 G3 0.4 0.8 12 20 41 2.08 0.13 0.50 1053 1 0.01 26 0.07 25 G3 C3 C5 C2 5 57 C3 G3 CH-89 L1740W 940W 9.03 2.27 11 G3 1.48 G3 0.25 0.6 8 16 25 1.70 0.10 0.42 344 1 0.01 27 0.24 33 G3 C5 C2 5 46 C5 G3 CH-89 L1740W 940M 0.04 33 1.2 21 22 61 2.61 0.61 37 0.61 33 0.16 49 G3 C5 C2 3 31 C5 G3 G3 C4 23 C1 0.11 1.41 11 1.18 0.07 0.35 355 1 0.01 13 0.65 C1 1.41 1.11 1.16 0.01 25 1.5 1 0.01 17 0.	
CH-89 L17+00W 9-50M 0.1 2.75 23 (3) 193 (3) 0.1 11 18 20 1.92 0.09 0.47 627 2 0.01 27 0.08 37 (3) (5) (2) 6 30 0.17 627 2 0.01 23 0.01 23 0.16 49 (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (5) (3) (5) (6) (5) (6) (5) (6) (1) (5) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) <	
CH-89 L17+00H 10+00M 1.1 3.94 40 (3) 1.14 (3) 0.33 1.2 21 22 61 2.81 0.15 0.67 471 3 0.01 33 0.16 49 (3) (3) (3) 0.11 0.42 (3) (3) 0.11 0.52 (3) 0.11 1.47 (3) (3) 0.14 (3) 0.13 0.1 5 14 11 1.18 0.07 0.55 335 1 0.01 13 0.06 14 (3) (5) (3) 0.11 1.68 4 (3) 0.13 0.1 6 12 14 11 1.18 0.01 27 0.14 22 (3) (5) (5) 0.67 471 1 0.01 17 0.07 20 (3) (5) (5) (3) 0.11 1.68 4 (3) 0.13 0.1 6 12 14 1.1 1.18 0.01 27 0.14 22 (3) (5) (3) (3) (3) (3)	
CH-99 L17+00W 0+505 0.1 0.32 (3) (3) (3) 0.21 0.1 5 14 11 1.18 0.07 0.35 335 1 0.01 13 0.06 14 (3) (5) (3) (1) (3) (1) (3) (1) (3) (1) (3) (1)	
CH-89 L17+00M 1+005 0.1 1.47 (3 (3 0.1 5 14 12 1.22 0.66 0.31 285 1 0.01 17 0.07 20 (3 (5 (2 4 25 (5 (3) CH-89 L17+00M 1+505 0.1 1.66 7 (3) 0.13 0.1 6 12 14 1.16 0.06 0.25 215 1 0.01 27 0.14 22 (3) (5) (2 4 23 (5) (3) CH-89 L17+00M 3+005 0.1 1.56 7 (3) 0.1 0.1 7 14 13 1.32 0.66 0.32 275 1 0.01 27 0.14 22 (3) (5) (2 4 23 (5) (3) (3) (3) 0.1 7 14 13 1.32 0.66 0.32 215 1 0.01 23 0.15 30 (3) (5) (2 4 23 (5) (3)	
CH-B9 L17+00W 1+50S 0.1 1.68 4 (3) 0.1 (3) 0.13 0.1 6 12 14 1.16 0.06 0.25 215 1 0.01 27 0.14 22 (3) (5) (2) 4 21 (5) (3) (2) (3) (1) (3) 0.1 7 14 13 1.32 0.06 0.32 165 1 0.01 25 0.11 24 (3) (5) (2) 4 21 (5) (3) (3) (3) 0.1 7 14 13 1.32 0.06 0.32 16 1 0.01 22 0.15 34 (3) (3) (3) (3) 0.11 (3) 0.11 (3) 0.11 (3) 0.11 (3) 0.12 0.11 23 0.16 34 (3) (3) (3) 0.11 0.11 (3) 0.11 0.11 (3) 0.11 0.11 (3) 0.11 0.11 (3) 0.11 0.11 0.11 0.11 0.11 0.11 </td <td></td>	
CH-89 L17+00H 2+005 0.1 1.66 7 (3) 0.13 0.1 7 14 13 1.32 0.06 0.32 426 1 0.01 25 0.12 24 (3) (5) (2) 4 21 (5) (3) CH-89 L17+00H 3+005 0.1 1.54 8 (3) 99 (3) 0.16 0.4 8 14 15 1.45 0.06 0.35 523 1 0.01 22 0.12 23 (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3)	<5 <2 4 25 <5 <3 95
CH-89 L17+00N 3+005 0.1 1.54 8 (3 99 (3 0.08 0.4 8 14 15 1.45 0.06 0.35 523 1 0.01 22 0.12 23 (3 (5 (2 6 33 (5 (3	
CH-B9 L17+00M 3+50S 0.3 2.58 24 (3) 143 (3) 0.16 0.4 10 14 24 1.56 0.08 0.41 B90 1 0.01 23 0.16 34 (3) (5) (2) 6 33 (5) (3) <	
CH-89 L17+00N 4+00S 0.3 2.26 25 (3) 104 (3) 0.12 0.1 8 7 17 1.47 0.07 0.16 477 1 0.01 20 0.15 30 (3) (5) (2) 5 19 (5) (3) CH-89 L17+00N 4+50S 0.1 1.51 12 (3) 0.11 0.4 9 13 28 2.12 0.09 0.37 295 1 0.01 38 0.08 26 (3) (5) (3) CH-89 L17+00N 5+00S 0.1 1.51 12 (3) 0.11 0.4 9 13 28 2.12 0.09 0.37 295 1 0.01 37 0.08 22 (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (5) (3) (1) 0.4 0.01 37 0.08 22 (3) (5) (3) (3) (5) (3) (2) (3)	
CH-B9 L17+00H 4+50S 0.1 1.84 6 (3) 145 (3) 0.18 0.6 7 9 23 1.70 0.08 0.23 349 1 0.01 38 0.08 26 (3) (5) (2) 5 30 (5) (3) (5) (2) 5 30 (5) (3) (2) (3) 0.11 0.4 9 13 28 2.12 0.09 0.37 295 1 0.01 37 0.08 22 (3) (5) (2) 4 22 (5) (3) (5) (2) (5) (2) (3) (1) 0.4 10 18 51 2.93 0.12 0.62 354 2 0.01 44 0.06 24 (3) (5) (2) (3) (5) (2) (3) (5) (3) (5) (2) (3) (5) (2) (3) (5) (2) (3) (5) (2) (3) (5) (2) (3) (5) (3) (5) (3) (5) (3) <td></td>	
CH-89 L17+00N 5+00S 0.1 1.51 12 (3 94 (3 0.11 0.4 9 13 28 2.12 0.09 0.37 295 1 0.01 37 0.08 22 (3 (5 (2 4 22 (5 (3) CH-89 L17+00N 5+50S 0.1 1.44 68 (3) 107 (3) 0.12 0.4 10 18 51 2.93 0.12 0.62 354 2 0.01 44 0.06 24 (3) (5) (2 4 22 (5) (3) CH-89 L17+00N 6+00S 0.1 1.93 43 (3) 0.12 0.7 11 18 51 2.93 0.12 0.62 354 2 0.01 44 0.06 24 (3) (5 (2) 5 (3) (5 (2) 5 (3) (5 (2) 5 (3) (5 (2) 5 (3) (5 (2) 5 (3) (5 (2) 5 (3) (5 (2	<5 <2 5 19 <5 < 3 83
CH-B9 L17+00W 5+505 0.1 1.44 6B (3) 107 (3) 0.12 0.4 10 1B 51 2.93 0.12 0.62 354 2 0.01 44 0.06 24 (3) (5) (2) 4 22 (5) (3) CH-B9 L17+00W 6+005 0.1 1.93 43 (3) 110 (3) 0.12 0.7 11 1B 46 2.34 0.10 0.48 315 1 0.01 49 0.09 28 (3) (5) (2) 5 (3) (5) (2) 5 (3) (5) (2) 5 (3) (5) (2) 5 (3) (5) (2) 5 (3) (5) (2) 5 (3) (5) (2) 5 (3) (5) (2) 5 (3) (5) (2) 5 (3) (5) (2) 5 (3) (5) (2) 5 (3) (5) (2) 5 (3) (5) (2) 5 (3) (5)	
CH-89 L17+00W 6+00S 0.1 1.93 43 (3 110 (3 0.12 0.7 11 18 45 2.34 0.10 0.48 315 1 0.01 49 0.09 28 (3) (5) (2) 5 25 (5) (3) CH-89 L17+00W 6+50S 0.3 2.62 39 (3) 279 (3) 0.22 0.4 11 37 19 2.34 0.11 0.48 396 1 0.01 97 0.05 34 (3) (5) (2) 6 35 (5) (3) (5) (2) 6 35 (3) (5) (2) 6 35 (3) (5) (2) 6 35 (3) (5) (2) 6 35 (3) (5) (2) 6 35 (3) (5) (2) 6 35 (3) (3) (5) (2) 6 35 (3) (3) (5) (2) 6 35 (3) (3) (5) (2) 6 35 (3)	
CH-B9 L17+00W 6+505 0.3 2.62 39 (3 279 (3 0.22 0.4 11 37 19 2.34 0.11 0.48 396 1 0.01 97 0.05 34 (3 (5 (2 6 35 (5 (3) CH-B9 L17+00W 7+005 0.3 2.89 19 (3 175 (3 0.16 0.6 11 51 16 2.10 0.10 0.63 351 1 0.01 109 0.12 36 (3 (5 (2 6 24 (5 (3) CH-B9 L17+00W 7+505 0.6 2.94 32 (3 141 (3 0.23 0.4 9 15 19 1.57 0.09 0.31 563 1 0.01 47 0.30 36 (3 (5 (2 6 36 (5 (3) (3) (2 6 36 (3) 351 1 0.01 47 0.30 36 (3 (5 (2 6 36 (5 (3)	
CH-89 L17+00W 7+00S 0.3 2.89 19 (3 175 (3 0.16 0.6 11 51 16 2.10 0.10 0.63 351 1 0.01 109 0.12 36 (3 (5 (2 6 24 (5 (3) CH-89 L17+00W 7+50S 0.6 2.94 32 (3 141 (3 0.23 0.4 9 15 19 1.57 0.09 0.31 563 1 0.01 47 0.30 36 (3 (5 (2 6 36 (5 (3) CH-89 L17+00W 8+00S 0.5 3.06 23 (3 279 (3 0.20 1.1 17 15 36 3.38 0.15 0.98 679 2 0.01 23 0.05 39 (3 (5 (2 6 23 (5 (3) (5 (2 6 23 (5 (3) (2 6 23 (5 (3) (5 (2 6 23 (5 (3) (5	
CH-B9 L17+00W 7+505 0.6 2.94 32 (3 141 (3 0.23 0.4 9 15 19 1.57 0.09 0.31 553 1 0.01 47 0.30 36 (3 (5 (2 6 36 (5 (3) CH-B9 L17+00W 8+005 0.5 3.06 23 (3 279 (3 0.20 1.1 17 15 36 3.38 0.15 0.98 679 2 0.01 23 0.05 39 (3 (5 (2 6 36 (5 (3) CH-B9 L17+00W 8+505 0.5 3.06 25 (3 97 (3 0.21 0.1 7 7 18 1.24 0.07 0.18 479 1 0.01 12 0.21 35 (3 (5 (2 6 23 (5 (3) (3 (5 (2 6 23 (5 (3) (3) (5 (2 6 23 (5 (3) (3) (5 (2 6 <	<5 <2 £ 35 <5 <3 164
CH-89 L17+00W 8+005 0.5 3.06 23 (3 279 (3 0.20 1.1 17 15 36 3.38 0.15 0.98 679 2 0.01 23 0.05 39 (3 (5 (2 8 23 (5 (3 CH-89 L17+00W 8+505 0.5 3.06 25 (3 97 (3 0.21 0.1 7 7 18 1.24 0.07 0.18 479 1 0.01 12 0.21 35 (3 (5 (2 6 23 (5 (3 Miniaue Detection 0.1 0.01 3 3 1 3 0.01 0.1 1 1 0.01 0.01 10.01 1 0.01 2 3 5 2 2 1 5 3 Maxisue Detection 50.0 10.00 2000 1000 1000 20000 1000 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.0	
CH-B9 L17+00W B+505 0.5 3.06 25 <3 97 <3 0.21 0.1 7 7 18 1.24 0.07 0.18 479 1 0.01 12 0.21 35 <3 <5 <2 6 23 <5 <3 Minimum Detection 0.1 0.01 3 3 1 3 0.01 0.1 1 1 0.01 1 0.01 2 3 5 2 2 1 5 3 Maximum Detection 50.0 10.00 1000 1000.0 20000 10.	
Minimum Detection 0.1 0.01 3 3 1 3 0.01 0.1 1 1 1 0.01 0.0	
Maximum Detection 50.0 10.00 2000 100 1000 1000 10.00 1000.0 20000 1000 20000 10.00 10.00 10.00 10.00 20000 10.00 20000 10.00 20000 100 100 1000 2000 100 1000 2000 100 1	<5 <2 6 23 <5 <3 74
	5 2 2 1 5 3 1
K = Less than Minimum is = Insufficient Sample ns = No sample > = Greater than Maximum AuFA = Fire assay/AAS	100 2000 1000 10000 100 1000 20000

and the state of the

	REPORT #: 8	190069 PA			ASHW	DRTH EX	PL			Proj: 2	59		Date	In: B	9/02/13	, n	ata Aut	: 89/02/;			_												
	Sample Numb	er		Ag		As	Au	8a	Bi	Ca	Cd	Co			_		ite out	189/02/7	(1	Att: A	R KIDLAI	RK							f	age 10) of 1	3	
	CH-89 L17+0	OW 9+005)p∎).6 3			pps	ppm	ppe	1	ppa	pps	Cr ppa	Ci ppi		e Z	K Z	<u>.</u>	ln	ňo	Na	Ni	P	ዖъ	Pd	Pt	Sb	รก	Sr	I			
	CH-89 L17+0	OW 9+505				51	(3	88	3	0.22	1.3	21	28	7		-	~			ppm .	X	ppe	I	ope	ppe	pps	ppa	00m	DDB			W Zn	
	CH-89 L17+0					34	(3	124	<3	0.21	0.4	14	15	43							.01	26	0.04	45	<3	(5	(2	9	19	pp# {\$			
	CH-89 L18+00				.78	20 8	(3	89	(3	0.21	0.7	16	21	32							.01	19	0.0B	35	(3	(5	(2	7	24	(5			
I	CH-89 L18+0(<3	<3 <3	93 67	(3 (3	0.17 0.18	0.4 0.5	9 8	1B 20	17	1.8	2 0.0	9 0.	59 32	9 .	1 0	.01 .01	18	0.04 0.08	32 27	<3 <3	(5 (5	<2 <2	8	19	(5	Ċ	3 83	ł
(CH-89 L18+00	DW 1+00N	٥	.4 1.	.29	/ 1								• •	110	J V.V	8 0.3	51 25	6	1 0	.02	28	0.04	28	<3	(5	(2	5	25	(5			
	H-89 L18+00					<3 15	(3	79	<3	0.18	0.3	8	22	22	1.8	I 0.0	9 0.7	71 23			••							•	25	. \J	(,	88 (8	
	H-89 L18+00					12	(3 (3	94	<3	0.16	0.1	6	9	17					-		. 01			26	<3	(5	<2	4	38	<5	(3	89	
. (H-89 L18+00	W 3+00N	0.					69	<3	0.30	0.6	13	28	45							.02			38	<3	<5	<2	6	26	<5			
	H-89 L18+00						(3 (3	93	(3	0.15	0.4	10	34	40	2.24						. 02			30	<3	<5	<2	5	53	(5	(3		
							13	71	<3	1.13	1.2	13	27	59	2.40						.02 02			31	(3	<5	<2	5	26	<5	<3		
	H-89 L18+00		٥.	5 I.	88 1	8	(3	105	(3	A 00										· ·.	VZ	34	0.10	28	<3	<5	<2	4	71	<5	(3		
	H-89 L18+00		0.	4 1.			<3	96		0.88	0.6	13	35	50	2.54	0.21	0.8	8 507	r	1 0.	02	36	0.05										
	H-89 L18+00		٥.					108	(3 (3	0.14	0.4	8	24	21	1.77	0.08	0.6	7 230		1 0.		1		34	<3	<5	<2	5	71	<5	<3	116	
	H-89 L18+00		٥.	4 1.			<3	55	(3	0.73	0.8	12	28	27	2.06	0.17	0.6			1 0.				24	(3	(5	<2	5	32	<5	(3	100	
C	H-89 L18+00	W 5+00N	0.	2 1.			<3	95	<3 <3	0.15	0.6 0.5	11 10	26 26	53	2.42			2 276		1 0.				36 28	(3 (3	(5 (5	(2	6	93	<5	<3	139	
C	H-89 L18+00k	# 6+50N			-						*10		20	26	2.04	0.10	0.7	4 360		1 0.	01			6	3	(5	<2 <2	5 5	23 25	<5 (5	<3	111	
	1-89 L18+00W		1.		_			206	<3	0.20	1.2	17	17	103	2.82	0.13	0.7										14	3	23	<5	<3	118	
	-89 L18+00W		0.1		-			00	<3	0.15	0.5	10	18	41	2.14	0.10				2 0.0			.07 4	4	(3	(5	<2	7	40	<5	. /1		
	1-89 L18+00W		0.4				-		<3	0.28	0.5	12	19	32	2.19		0.57			1 0.(.05 3	t	(3	(5	<2	. 5	26	<5	(3	261	
	-89 L18+00W		0.1						<3	0.26	0.5	11	28	28	2.26	0.12	0.53 0.66			2 0.(.09 3		(3	<5	<2	5	42	<5	<3 <3	173	
		NGLO	0.2	2 2.0)4 14	4 (3 1	63	<3	0.26	0.6	8	13	20	1.57	0.09	0.35		1						<3	(5	(2	6	36	(5	(3	15B 123	
CH	-89 L18+00W	9+50N	0.1	1.4	6 (3	, <i>,</i>	. .									****	V. J.	019	1	0.0	01 2	26 0	.10 2	8	(3	(5	<2	4	41	(5	(3	220	
CH	-89 L18+00W	10+00N	0.1			•	-		(3	0.12	1.2	8	11	15	1.33	0.07	0.30	1149	1	0.0												220	
	-89 L18+00W		0.2				-		(3	0.28	5.4	12	14	38	2.56	0.13	0.41		5				.13 2		(3	<5	<2	3	18	(5	(3	187	
CH	-89 L18+00W	1+005	0.1		-	•				0.19	0.3	6	11	13	1.16	0.07	0.23		1				.12 3		<3	<5	<2	4	34	(5	(3	919	
CH	-89 L18+00W	1+505	0.1							0.11	0.1	5	12	13	1.32	0.05	0.33		1				.28 2		(3	(5	<2	4	37	<5	(3	138	
					- •	· ``	J 1,	23	(3	0.08	0.1	7	14	14	1.49	0.06	0.42		1	••••			.14 1 .13 2		(3	<5	<2	3	19	<5	<3	93	
	-89 L18+00W		0.2	1.7	46		3 i)	14 4	(3	0.09									•	•••	• •	/ v.	.13 2		(3	<5	<2	3	14	<5	(3	111	
	-89 L18+00W	2+505	0.2	2.3	2 13					0.27	0.1 0.5	6	10	12	1.18	0.05	0.22	410	1	0.0	1 1	90.	12 2		(3	/F							
	89 L18+00W	3+005	0.1	1.3	1 13					0.18	0.1	13 9	18	30	2.13	0.11	0.55	611	1		-		12 39			<5 <5	<2	.4	19	<5	<3	88	
	89 L18+00W	3+505	0.5	2.63	3 12				-	0.15	0.1	8	11	17	1.63	0.08	0.34	458	1	0.01						(5 (5	<2	6	44	<5	<3	134	
CH-	89 L18+00W	4+005	0.2	1.89	9 14	(3	11		-	0.17	0.4	-	12	24	1.53	0.07	0.31	210	1	0.01	2					<5	<2 <2	4	28	(5	(3	98	
CN-	89 L18+00W	4.500						,	•		***	11	29	34	2.18	0.10	0.64	286	1	0.01	34					<5	<2 <2	5. 5	26 23	<5 (5	<3	99	
	89 L18+00W	4+50S 5+00S	0.1			(3			3	0.12	0.1	11	21	30	2.06	0.09									-		14	J	23	<5	<3	104	
	89 L18+00W	5+505	0.2	2.08	•	(3		-	3 (0.12	0.1		13		1.92	0.09	0.50	294	1					<	3	<5	<2	6	24	۲5	(3	98	
	89 L18+00W	6+00S	0.1	1.89		<3			3 (0.12	0.4		19		2.22	0.10	0.43	168	3					(3	(5	(2	5	31	(5	(3	58 79	
	89 L18+00W	6+505	0.4	2.95		<3			3 (0.11	0.1		20		1.79	0.08	0.31	247 304	1	0.01	49			(3	(5	<2	5	21	(5	(3	109	
•		01303	1.1	2.86	15	(3	17	8 <:	3 (0.17	0.5	11	22		2.28	0.10	0.54	198	1	0.01	47			(<2	7	19	(5	<3	74	
CH-	89 L18+00W	7+00S	0.1	2.70	38	/1	1.04	.							-			170		0.01	61	0.0	08 33	<:	3 ((5	{2	6	31	< 5	(3	176	
CH-	89 L18+00W	7+505	0.1	2.50	18	<3							16	63	3.85	0.17	1.77	821	2	0.01	55		E 05		_								
CH-	89 L18+00W	8+00S	0.2	3.52	23	(3 (3			-				19	25	1.98		0.49	552	ī	0.01	25						<2	6	24	<5	(3	113	
CH-	89 L18+00W	8+50S	0.1	3.45	23	(3	130 137						12		1.99	0.09	0.68	330	i	0.01	15			(3		-	<2	6	18	<5	(3	128	
						13	13/	7 (3	0	.19	0.5	15	14	42	2.37	0.11	1.18	388	1	0.01	17			(3			<2	7	16	<5	<3	81	
	imum Detecti		0.1	0.01	3	3	1	1 3	^	.01	• •								-		.,	v. 1	v 30	<3		5	<2	7	18	<5	<3	118	
Maxi	aus Detecti	on	50.0	10.00	2000	100	1000				0.1	1	1			0.01	0.01	1	1	0.01	1	0.0	1 2	3		5	•	•		_			
< =	Less than M	linimum is =	Insuf	ficient	Sample	лs =	No sam	ole >	10 - 57 =	• VV 1VU 0340+ 41	0.0 200	UV 100	200	000 10	0.00 1	0.00	0.00	20000	1000		20000			100		5 0 20/	2	2	1	5	3	1	
					·			,,	ur i	Laver i	ran NdX]	eum Aut	# = F1	re ass	say/AAS									100	10	0 200	0 100	0 100	000	100 1	000 2	0000	

and the second second

REPORT #: 89	90069 PA			ASHW	ORTH EXP	'L		Proj:	259																			
Sample Numbe	r		Ag								ate In:	89/02/	17 0	ate Out	:89/02/2	1	Att: R	KIDLAR	K							Pane	ll of	12
			ny De	-					a Cd	Co	Cr	Cu	Fe	ĸ	Ng N	n	ňo	Na	Ni	P p				_		Taye	11 01	13
CH-89 L18+00		5 Ö	.4 3						X ppm		•	p#	· 7	z	χ ρο		08	-	op n	· ·		-		Sb	Sn :	Sr	U	W Zn
CH-89 L18+00		; 0	.2 3					30.2 30.3		21			40 0.	15 2.				.01	22 0.1	· · · ·		••			ipa pj	pe p	ps p	p# 99#
CH-89 L19+00		0	.3 1	.24				3 0.1		33			95 0.	16 1.0	67	6		01	35 0.					(2			<5	(3 84
CH-89 L19+00		0.	2 1	. 33	-					11		40 1.	95 0.(09 0.6	56 313	7	1 0.		26 0.0	-		-		(2			(5	(3 132
CH-89 L19+00	W 1+00N	0.	1 1	. 33				3 0.2 3 0.7		11 12		291. 332.					1 0.	02	31 0.0	07 2) (;	3 (5	<2 (2				(3 121 (3 122
CH-89 L19+00W	1+50N	0.	1 2	.09 ;	30	(3)		• • •								,	· ·.	02	26 0.(62 62	2 (3	(5 . 4	(2	6 9			3 143
CH-89 L19+00W	2+00N	0.				3 1	5 (18		18 4.:	31 0.2	3 0.7	4 1629	}	2 0.0	66	18 0.1				_					
CH-89 L19+00W	2+50N	0.				3 21	•			11		24 1.5	92 0.0	9 0.7			1 0.0		18 0.1 28 0.1			•		2	6 8	8	(S) +	3 128
CH-89 L19+00W	3+00N	0.				3 19			••••	9	23 2	21 1.3	79 0.1	1 0.5			1 0.0		24 0.1					2	6 2	9	5 (3 127
CH-89 L19+00W	3+50N	0.				3 15						3 1.7		9 0.5	2 863		1 0.0		20 0.0					2	6 5			3 162
CH-89 L19+00W	4+00N	0.							0.1	9	11 1	8 1.6	53 0.0	7 0.4	0 501		1 0.0		15 0.1					2	6 4 6 2	-		3 222 3 113
CH-89 L19+00W								0.14	0.3	7	18 1	4 1.5	7 0.0	7 0.4	B 402											•	• •	5 113
CH-89 L19+00W		0. 0.			3 <				0.3	7	17 1						1 0.0		9 0.0		<3	<5	i (2	6 2	4	5 <	3 123
CH-89 L19+00W		0.			3 (3 (0.3	8	20 1						1 0.0		9 0.0		<3	(5	i (2	6 2		5 (
CH-89 L19+00W		0.4				-				8	22 1					<	10.0 10.0		1 0.0		<3	<5		2	6 23		5 (
		v.			4 ()	3 13	5 (3	0.20	0.7	16	34 2	6 2.1				1			1 0.01 9 0.01		(3	<5			6 23			
CH-89 L19+00W	6+50N	0.3	2.2	29 (5 (:	3 200) (3												9 0.08	3 37	<3	<5	<	2	7 31	{	5 (
CH-89 L19+00W		0.3							2.2		20 4		6 0.15	5 0.74	1100	1	0.0	2 3	1 0.07	42	/3				_			
CH-89 L19+00W		0.3					••		2.2		20 49			0.78	1164	2			2 0.08		<3 <3	(5			7 48			
CH-89 L19+00W	8+00N	0.1							1.9		21 40			0.76	1076	2					(3	<5 <5			6 50			
CH-89 L19+00W	8+50N	0.3							1.7		7 24				1500	1	0.02				<3 <3	<5 <5	<		6 37			
CH-89 L19+00W	9+00N	0.0							1.3	12 1	7 24	2.1	5 0.12	0.52	1059	2	0.02				<3	<5 <5	<2 (2		552 545			
CH-89 L19+00W	9+50N	0.2	-	-				0.64	2.2	11 1	6 28	2.04	0.17	0.53	1249		A A1	· ·										200
··· · · · · ·	10+00N	0.1 0.9					<3	0.13	0.7	11 1	7 18				951	1		-			<3	<5	<2	. 1	5 90	(5	(3	219
CH-89 L19+00W	0+505	0.4					<3	0.33	3.3	38 2					1158	2 5				38	<3	<5	<2	· · •	24	<5	<3	
CH-89 L19+00W	1+005	0.4		•••			<3	0.16	0.7	11 2	0 31	2.35		0.69	354	1				62	(3	<5	<2	7	59	<5		
		***	2.1		(3	136	<3	0.12	0.7	7 1	4 22	1.49		0.36	495	1				35	(3	<5	<2			<5	<3	101
CH-89 L19+00W	1+505	0.3	2.0	35	<3	128	<3	0.22		. .						•			V.22	34	<3	<5	<2	6	22	<5	<3	119
CH-89 L19+00W	2+00S	0.2	1.47			76	(3	0.14	0.7 0.5	8 1		1.69		0.41	429	1	0.02	22	0.13	33	<3	(5	<2	6				
CH-89 L19+00W	2+50S	1.1	3.9	27	(3	204	<3	0.13	0.7	-		2.05		0.70	257	1	0.02	22	0.04	29	(3	(5	<2	5		<5	<3	138
CH-89 L19+00W	3+005	0.6	2.87	/ 14	<3	153	(3	0.14	0.7	13 20 12 21		2.52		0.49	171	2	0.02	45		49	(3	<5	<2	3 7	22 43	<5	<3	99
CH-89 L19+00W	3+505	0.3	2.22	22	<3	102	(3	0.15	0.7	13 23		2.30	0.11	0.69	245	2	0.02	32	0.10	41	(3	<5	(2	7	32	<5 <5	(3	95
CH-89 L19+00W	4+00S		.							2.	, JA	2.60	0.12	0.74	445	2	0.02	36	0.14	36	<3	(5	(2	6	32	(5	(3 (3	113 117
CH-89 L19+00W	4+505	0.5	2.04		<3	128	<3	0.11	0.6	11 20	25	2.24	0.10	0.62	286	•	A AA		• •-									
CH-89 L19+00W	4+305 5+005	0.3	1.31	18	<3	74	<3	0.10	0.6	9 18		1.88	0.09	0.57	190	2	0.02	34		34	<3	<5	<2	6	21	(5	<3	128
CH-89 L19+00W	5+505	0.3	1.47	104	. (3	71	<3	0.10	0.6	10 24		2.43	0.11	0.52	187	1	0.02	26		26	(3	<5	<2	5	17	(5	(3	81
CH-89 L19+00W	6+005	0.5 0.3	1.61	11	(3	132	<3	0.11	0.1	6 13		1.20	0.06	0.18	428	.(1		60	0.03	32	(3	(5	<2	5	18	<5	(3	101
		v. 3	2.54	33	<3	107	<3	0.16	1.1	21 209	27	2.61	0.13	1.90	255	2	0.02 0.01	24 187	0.09 0.03	30 36	(3	(5	<2	5	19	<5	(3	84
CH-89 L19+00W	6+50S	0.3	2.51	22	<3	143	<3	0.09								-		10/	v.v3	30	<3	<5	<2	. 5	22	<5	<3	104
CH-89 L19+00W	7+00S	1.1	2.41	79	<3	102	(3	0.09		13 40		2.75	0.12	1.01	194	2	0.01	70	0.06	38	<3	(5	<2	6	-17	/=		
CH-89 L19+00W	7+50S	1.1	3.75	16	(3	75	4	0.31		2 20	30	2.21	0.12	0.52	388	1	0.02	31	0.10	37	<3	<5	<2	- 6		(5	(3	130
CH-89 L19+00W	8+00S	1.1	4.20	B	(3	93	3	0.23		27 26	87	4.02	0.20	2.15	442	2	0.02	30	0.02	47	(3	(5	(2	10	22 14	<5 /5	(3	84
M2-1								V123	1,5	20 15	57	3.07	0.16	1.84	338	3	0.02	19	0.02	50	(3	(5	<2	9	22	<5 <5	<3 (3	82
Ninimum Detectio		0.1	0.01	3	3	1	3	0.01	0.1	1 1		A A1											12	,	**	()	<3	76
Maximum Detectio	00	50.0	10.00	2000	100	1000	1000			0 1000	20000	0.01	0.01	0.01	1	1	0.01	1	0.01	2	3	5	2	2	1	5	3	
<pre>< = Less than Mi</pre>	iniaua i	s = Insuff	icient	Sample	ns =)	lo sampl	e > = i	ireater	than Mavie	1000 IND 1000	= 51	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	2000	1000	10000	100	-	20000
										va nurn	- rite a	1558Y/A/	13													100	1000	20000

REPORT 1: 890069 PA	ASHWORTH EXPL	Proj: 259	Date In: 89/02/17	Date Out:89/02/21	Att: R KIDLARK	Page 12 of 13
Sample Mumber CH-89 L19+00N 8+505 CH-89 L19+00W 9+005 CH-89 L19+00W 9+505 CH-89 L19+00W 10+005 CH-89 L20+00W 0+00	Ag A1 As Au ppm X ppm ppm 0.9 4.23 18 (3) 0.6 3.46 18 (3) 0.8 2.89 9 (3) 0.8 2.89 18 (3) 0.8 2.88 18 (3) 0.3 1.89 8 (3)	Ba Bi Ca Cd Co ppm ppm Z ppm ppm ppm 84 3 0.19 1.2 22 107 3 0.14 0.6 13 101 4 0.12 0.7 15 85 3 0.15 0.8 16 95 3 0.14 0.3 9	Cr Cu Fe ppm ppm X 19 104 3.36 14 34 2.28 18 42 2.24 20 4B 2.88 17 21 1.71	K Mg Mn Z ppm 0.16 1.41 293 0.11 0.72 304 0.07 0.99 228 0.12 1.08 502 0.08 0.50 307	No Na Ni P Pb Pd ppm I ppm I ppm ppm ppm ppm 3 0.02 21 0.06 53 (3 2 0.02 18 0.16 44 (3 2 0.01 22 0.08 38 (3 2 0.01 19 0.11 39 (3 1 0.01 24 0.07 27 (3	Pt Sb Sn Sr U H In ppa state state<
CH-B9 L20+00N 0+50N CH-B9 L20+00N 1+00N CH-B9 L20+00N 1+50N CH-B9 L20+00N 2+00N CH-B9 L20+00W 2+50N	0.3 1.31 3 (3) 0.2 1.98 13 (3) 0.5 1.40 11 (3) 0.5 1.39 12 (3) 0.5 2.14 10 (3)	104 <3	24 19 1.77 16 16 1.77 31 33 2.22 26 33 2.14 10 21 1.54	0.08 0.64 328 0.05 0.33 271 0.12 0.73 661 0.10 0.63 481 0.07 0.37 248	1 0.02 24 0.05 24 <3	(5 (2 5 28 (5 (3 90 (5 (2 6 16 (5 (3 133 (5 (2 5 29 (5 (3 116 (5 (2 5 27 (5 (3 93 (5 (2 5 27 (5 (3 93 (5 (2 6 23 (5 (3 99
CH-89 L20+00W 3+00N CH-89 L20+00W 3+50N CH-89 L20+00W 4+00M CH-89 L20+00W 4+50N CH-89 L20+00W 5+00N	0.2 1.61 4 (3) 0.5 2.08 13 (3) 0.2 2.55 6 (3) 0.4 3.51 11 (3) 0.5 2.02 9 (3)	180 <3 0.19 0.1 7 105 <3	11 16 1.44 22 38 2.41 13 18 1.83 13 33 2.49 20 22 2.06	0.06 0.38 899 0.09 0.85 379 0.10 0.38 930 0.13 0.51 581 0.10 0.54 398	1 0.01 14 0.16 24 <3	(5) (2) 5 35 (5) (3) 145 (5) (2) 7 34 (5) (3) 89 (5) (2) 6 49 (5) (3) 121 (5) (2) 6 53 (5) (3) 113 (5) (2) 6 40 (5) (3) 85
CH-89 L20+00N 5+50N CH-89 L20+00N 6+00N CH-89 L20+00N 6+50N CH-89 L20+00N 7+00N CH-89 L20+00N 7+50N	0.1 1.63 15 (3) 0.1 1.57 23 (3) 0.2 1.12 (3) (3) 0.1 1.70 4 (3) 0.1 1.13 (3) (3)	18B <3	14 24 1.95 7 21 2.02 15 13 1.16 4 9 0.70 11 10 1.02	0.11 0.46 2552 0.10 0.49 462 0.05 0.38 280 0.03 0.10 363 0.07 0.30 713	1 0.01 14 0.12 34 <3	<5
CH-89 L20+00W 8+00N CH-89 L20+00W 8+50N CH-89 L20+00W 9+00N CH-89 L20+00W 9+50W CH-89 L20+00W 10+00M	0.2 2.21 6 (3) 0.2 1.72 6 (3) 0.5 2.18 8 (3) 0.4 2.11 17 (3) 1.1 2.85 115 (3)	174 (3 0.22 3.1 11 103 (3 0.21 0.7 8 92 (3 0.38 1.1 9 194 (3 0.21 2.1 13 88 (3 0.22 1.2 10	19 40 2.31 16 20 1.76 15 25 1.64 15 32 2.22 6 55 1.99	0.11 0.66 658 0.09 0.45 465 0.11 0.37 475 0.11 0.54 1152 0.10 0.29 272	3 0.01 46 0.06 39 <3	(5 (2 5 36 (5 (3 443 (5 (2 5 29 (5 (3 152 (5 (2 5 55 (5 (3 327 (5 (2 5 39 (5 (3 272 (5 (2 5 39 (5 (3 272 (5 (2 6 37 (5 (3 305
CH-89 L20+00N 0+505 CH-89 L20+00N 1+005 CH-89 L20+00N 1+505 CH-89 L20+00N 2+005 CH-89 L20+00N 2+505	0.2 1.49 4 (3) 0.1 1.78 (3) (3) 0.1 1.76 11 (3) 0.2 1.73 11 (3) 0.1 1.58 9 (3)	131 <3	16 27 1.82 14 19 1.76 13 12 1.57 13 12 1.53 12 11 1.47	0.10 0.57 1011 0.08 0.54 1155 0.07 0.33 288 0.07 0.33 327 0.07 0.32 358	1 0.01 14 0.10 27 <3	(5 (2 5 36 (5 (3 104 (5 (2 5 20 (5 (3 141 (5 (2 5 19 (5 (3 100 (5 (2 5 20 (5 (3 100 (5 (2 5 20 (5 (3 109 (5 (2 5 19 (5 (3 101
CH-89 L20+00W 3+00S(A) CH-89 L20+00W 3+00S(B) CH-89 L20+00W 3+50S CH-89 L20+00W 4+00S CH-89 L20+00W 4+50S	0.1 1.67 3 (3) 0.1 0.98 3 (3) 0.2 1.22 8 (3) 0.2 1.89 11 (3) 0.1 1.06 17 (3)	187 (3 0.17 0.5 9 149 (3 0.19 0.5 6 132 (3 0.16 0.1 6 122 (3 0.14 0.1 8 96 (3 0.21 0.6 8	14 18 1.71 12 B 1.16 12 9 1.24 14 16 1.50 15 15 1.96	0.09 0.49 1562 0.07 0.28 728 0.06 0.29 477 0.05 0.36 438 0.10 0.42 720	1 0.01 14 0.19 29 (3) 1 0.01 13 0.10 19 (3) 1 0.01 19 0.13 22 (3) 1 0.01 19 0.13 22 (3) 1 0.01 21 0.14 28 (3) 1 0.01 20 0.12 24 (3)	(5 (2 5 22 (5 (3 148 (5 (2 4 30 (5 (3 114 (5 (2 4 26 (5 (3 114 (5 (2 4 26 (5 (3 114 (5 (2 5 24 (5 (3 112 (5 (2 4 38 (5 (3 119
CH-89 L20+00W 5+00S CH-89 L20+00W 5+50S CH-89 L20+00W 6+00S CH-89 L20+00W 6+50S Winiswe Betection	0,2 2,43 26 (3 0,2 2,37 38 (3 0,1 1,52 29 (3 0,2 1,19 32 (3 0,1 0,01 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 17 1.70 18 32 2.19 33 28 2.48 26 31 2.32 1 1 0.01	0.08 0.35 504 0.11 0.46 470 0.11 0.64 547 0.10 0.64 399	1 0.01 29 0.11 34 (3) 2 0.01 60 0.08 36 (3) 2 0.01 56 0.07 27 (3) 2 0.01 32 0.04 24 (3) 1 0.01 1 0.01 2 3	(5) (2) 6 25 (5) (3) 100 (5) (2) 5 50 (5) (3) 105 (5) (2) 4 30 (5) (3) 114 (5) (2) 4 18 (5) (3) 88 5 2 2 1 5 3) 1
Minimum Detection Maximum Detection < = Less than Minimum is	50.0 10.00 2000 100	1 3 0.01 0.1 1 1000 1000 10.00 1000.0 20000 No sample > = Greater than Maximum	1000 20000 10.00	0.01 0.01 1 10.00 10.00 20000 AS	1 0.01 1 0.01 2 3 1000 10.00 20000 10.00 20000 100	5 2 2 1 5 3 1 100 2000 1000 10000 100 1000 20000

REPORT #: 890069 PA		A	SHNORTH	EXPL		8	roj: 2	59		Date	in: 89/	02/17	Date	Out:89	/02/21	Att	: R KID	LARK							Pag	e 13 o	f 13	
Sample Number	Ag	Al	As	Au	Ba	Bi	Ca	Cđ	0Ĵ	Cr	Cu	Fe	ĸ	Mg	Kn	ňo	Ka	Ni	٩	РЪ	Pđ	Pt	Sb	Sn	Sr	U	W	Zn
	ppa	Z	005	004	pps	ppe	1	pp.	pps	ppe	ppe	z	ĩ	z	ppe	pps	ĩ	ppa	7	ppe	ppa	ppe	pps	pp a	000	ppa	ppe	ppe
CH-89 L20+00W 7+005	0.5	2.75	12	<3	150	(3	0.17	0.6	11	25	29	2.18	0.10	0.66	248	2	0.01	50	0.04	37	<3	<5	<2	6	31	<5	<3	89
CH-89 L20+00W 7+50S	1.3	0.07	<3	<3	33	(3	>10.00	0.1	1	1	. 8	0.03	4.97	0.15	74	1	0.02	4	0.01	18	<3	<5	<2	<2	122	<5	<3	27
CH-89 L20+00W 8+005	0.5	3.54	22	(3	128	<3	0.52	1.2	23	21	82	3.45	0.19	1.32	782	2	0.01	35	0.08	47	<3	<5	<2	9	20	<5	<3	95
CH-89 L20+00W 8+50S	0.5	4.04	40	<3	96	<3	0.24	1.3	23	23	56	3.50	0.16	2.19	500	2	0.01	24	0.03	49	<3	<5	<2	9	18	<5	<3	97
CH-89 L20+00W 9+005	0.4	4.35	22	<3	71	3	0.26	1.2	30	155	88	3.44	0.16	2.39	445	2	0.01	84	0.03	52	<3	<5	<2	10	19	<5	<3	70
CH-89 L20+00W 9+50S	0.1	2.28	20	<3	159	(3	2.14	1.7	35	10	169	3.63	0.42	1.46	3248	1	0.01	11	0.15	42	(3	<5	(2	8	101	۲5	(3	159
CH-89 L20+00W 10+005	0.4	2.97	7	(3	380	3	0.B4		46	15	127	4.22	0.28	1.25	4383	2	0.01	23	0.39	47	<3	<5	<2	8	88	(5	(3	178
Miniana Babaikian		0.01	2	2		2	0.01	0.1	,	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	3	5	2	2	1	5	3	t
Minimum Detection	0.1		2000	100	1000	1000		1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000		20000	100	100	2000	1000	10000	100	1000	20000
Maximum Detection < = Less than Minimum is	50.0 s = Insuf	10.00 ficient												10100	20000	,,,,,,	10100	24400		20000			2000					

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

GEOCHEMICAL ANALYTICAL REPORT

CLIENT: ASHWORTH EXPLORATION LTD. ADDRESS: 1010 - 789 W. Pender Street

: Vancouver, B.C. : V6C 1H2 DATE: Feb 22 1989

REPORT#: 890072 GA JOB#: 890072

PROJECT#: 259 SAMPLES ARRIVED: Feb 19 1989 REPORT COMPLETED: Feb 22 1989 ANALYSED FOR: Au ICP

INVOICE#: 890072 NA TOTAL SAMPLES: 225 SAMPLE TYPE: 225 SOILS REJECTS: DISCARDED

SAMPLES FROM: MR. R. KIDLARK COPY SENT TO: ASHWORTH EXPLORATION LTD.

PREPARED FOR: MR. PETER LERICHE

ANALYSED BY: VGC Staff SIGNED:

GENERAL REMARK: None

	GEOCH	EM LAB LIM		MAIN OFFICE 1988 TRIUMPH ST. NCOUVER, B.C. V5L 1K5 ● (604) 251-5656	BRANCH OFFICE PASADENA, NFLD BATHURST, N.B. MISSISSAUGA, ON
	- 19.			 FAX (604) 254-5717 	RENO, NEVADA, U.S
REPORT NUMBER	: 890072 GA	JOB NUMBER: 890072	ASHWORTH E	EXPLORATION LTD.	PAGE 1 OF 6
SAMPLE #		Au			
		ppb			
CH-89 L0+00	7+255	20			
CH-89 L0+00	7+755	20			
CH-89 L0+00 CH-89 L0+00	8+255	5			
CH-89 L0+00	8+755 9+255	15			
	3+233	20			
CH-89 L0+00	9+75S	30			
CH-89 LO+50W	0+255	15			•
CH-89 LO+50W	0+755	10			
	1+255	5			
CH-89 L0+50W	1+755	20			
CH-89 L0+50W	2+255	20			
CH-89 L0+50W	2+755	5			
CH-89 LO+50N	3+255	20			
CH-89 LO+50N		5			
CH-89 LO+50W	4+255	5			
CH-89 L0+50W	4+759	5			
	5+255	10			
the effect of the second se	5+755	20			
	6+255	20			
	6+755	10			
CH-89 L0+50W	7+255	15			
CH-89 L0+50W		20			
CH-89 L0+50W	200 B.	10			
CH-89 L0+50W		20		-	
CH-89 L0+50W		5			
CH-89 L0+50W		15			
CH-89 LO+50WT		40			
CH-89 L0+50WT		10			
CH-89 LO+50WT		20			
CH-89 LO+50WT	8+755	110 -			
CH-89 L0+50WT		45			
CH-89 LO+50WT		45			
CH-89 LO+50WT		635 -			
CH-89 LO+50WT		15			
CH-89 L0+50WT	9+105	15			
CH-89 L0+50WT	9+155	nd			
CH-89 L0+50WT		10			
CH-89 L0+50WT		30			
CH-89 L0+50WT		10			

-

nd = none detected

P)

-

1

-- = not analysed

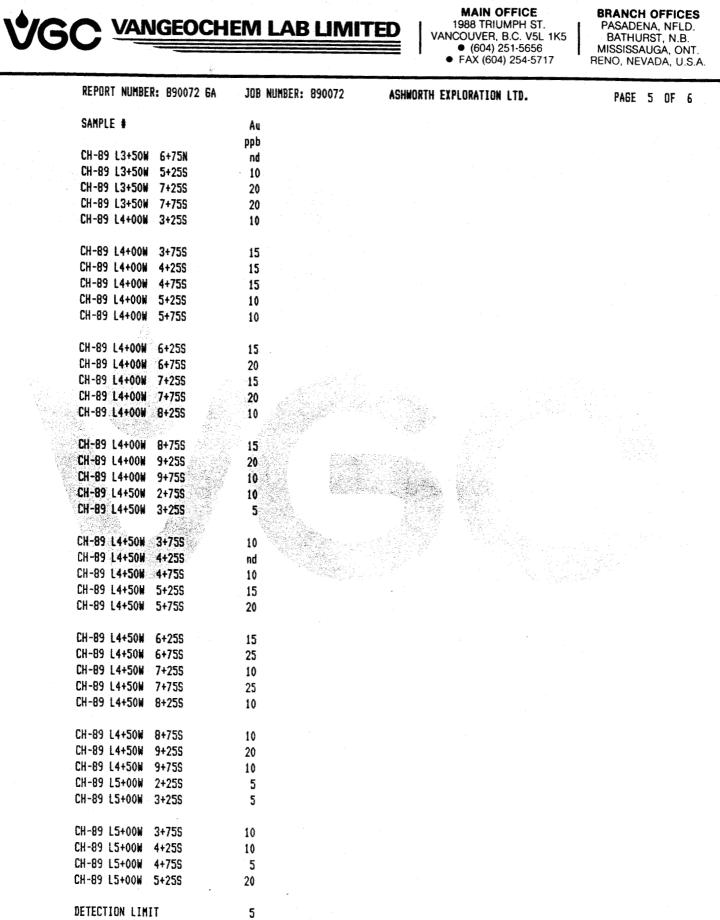
		MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717	BRANCH OFFICE PASADENA, NFLD BATHURST, N.B. MISSISSAUGA, ON RENO, NEVADA, U.S
REPORT NUMBER: 890072 GA	JOB NUMBER: 890072	ASHWORTH EXPLORATION LTD.	PAGE 2 OF
SAMPLE #	Au		
	ppb		
CH-89 L0+50WT 9+355	20		
CH-89 L0+50WT 9+405	15		
CH-89 L0+50WT 9+455	10		
CH-89 L0+50WT 9+505	15		
CH-89 L1+00N 0+255	15		
CH-89 L1+00W 0+755	10		
CH-89 L1+00W 1+255	20		
CH-89 L1+00W 1+75S	5		
CH-89 L1+00W 2+255	20		
CH-89 L1+00W 2+755	20		
CH-89 L1+00W 3+255	20		
CH-89 L1+00W 3+755	20		
CH-89 L1+00W 4+255	- 25		
CH-89 L1+00N 4+75S	15		
CH-89 L1+00W 5+255	10		
CH-89 L1+00W 5+755	25		
CH-89 L1+00W 6+255	15 15		
CH-89 L1+00W 6+755	20		
CH-89 L1+00W 7+255	15		
CH-89 L1+00W 7+755	20		
CH-89 L1+00W 8+25S	10		
CH-89 L1+00W 8+755	15		
CH-89 L1+00W 9+255			
CH-89 L1+00W 9+755	10 25		
CH-89 L1+00WT 8+255	10		
CH-89 L1+00WT 8+30S CH-89 L1+00WT 8+35S	15	-	
CH-89 L1+00WT 8+405	15		
CH-89 L1+00WT 8+405	10 10		
CH-89 L1+00WT 8+50S	10		
CH-89 L1+00WT 8+555	10		
CH-89 L1+00WT 8+70S	nd		
CH-89 L1+00WT 8+755	15		
CH-89 L1+00WT 8+80S	15		
CH-89 L1+00WT 8+855	10		
CH-89 L1+00WT 8+90S	15		
CH-89 L1+00WT 8+955	20		
CH-89 L1+00#T 9+005	15		
CH-89 L1+00WT 9+055	15		
DETECTION LIMIT	5		

`

REPORT NUMBER: 890072 GA SAMPLE # CH-89 L1+00WT 9+10S CH-89 L1+00WT 9+15S CH-89 L1+00WT 9+20S CH-89 L1+00WT 9+25S CH-89 L1+50W 0+25S CH-89 L1+50W 1+25S CH-89 L1+50W 1+75S CH-89 L1+50W 2+25S CH-89 L1+50W 2+25S CH-89 L1+50W 3+75S CH-89 L1+50W 3+75S CH-89 L1+50W 3+75S CH-89 L1+50W 4+75S CH-89 L1+50W 4+75S CH-89 L1+50W 5+75S CH-89 L1+50W 6+25S CH-89 L1+50W 6+25S CH-89 L1+50W 6+25S	JOB NUMBER: 890072 Au ppb 20 15 20 10 20 25 20 10 5 25 25	ASHWORTH EXPLORATION LTD.	PAGE 3 DF 6
CH-89 L1+00NT 9+10S CH-89 L1+00NT 9+15S CH-89 L1+00NT 9+20S CH-89 L1+00NT 9+25S CH-89 L1+50N 0+25S CH-89 L1+50N 1+25S CH-89 L1+50N 1+75S CH-89 L1+50N 2+25S CH-89 L1+50N 2+75S CH-89 L1+50N 3+75S CH-89 L1+50N 3+75S CH-89 L1+50N 4+75S CH-89 L1+50N 5+25S CH-89 L1+50N 5+25S CH-89 L1+50N 5+25S	ppb 20 15 20 10 20 25 20 10 5		
CH-89 L1+00NT 9+10S CH-89 L1+00NT 9+15S CH-89 L1+00NT 9+20S CH-89 L1+00NT 9+25S CH-89 L1+50N 0+25S CH-89 L1+50N 1+25S CH-89 L1+50N 1+75S CH-89 L1+50N 2+25S CH-89 L1+50N 2+75S CH-89 L1+50N 3+75S CH-89 L1+50N 3+75S CH-89 L1+50N 4+75S CH-89 L1+50N 5+25S CH-89 L1+50N 5+25S CH-89 L1+50N 5+25S	ppb 20 15 20 10 20 25 20 10 5		
CH-89 L1+00WT 9+155 CH-89 L1+00WT 9+205 CH-89 L1+00WT 9+205 CH-89 L1+50W 0+255 CH-89 L1+50W 1+255 CH-89 L1+50W 1+755 CH-89 L1+50W 2+255 CH-89 L1+50W 2+755 CH-89 L1+50W 3+755 CH-89 L1+50W 3+755 CH-89 L1+50W 4+255 CH-89 L1+50W 4+755 CH-89 L1+50W 5+255 CH-89 L1+50W 5+255	20 15 20 10 20 25 20 10 5		
CH-89 L1+00WT 9+155 CH-89 L1+00WT 9+205 CH-89 L1+00WT 9+205 CH-89 L1+50W 0+255 CH-89 L1+50W 1+255 CH-89 L1+50W 1+755 CH-89 L1+50W 2+255 CH-89 L1+50W 2+755 CH-89 L1+50W 3+755 CH-89 L1+50W 3+755 CH-89 L1+50W 4+255 CH-89 L1+50W 4+755 CH-89 L1+50W 5+255 CH-89 L1+50W 5+255	15 20 10 20 25 20 10 5		
CH-89 L1+00WT 9+20S CH-89 L1+00WT 9+25S CH-89 L1+50W 0+25S CH-89 L1+50W 1+25S CH-89 L1+50W 1+75S CH-89 L1+50W 2+25S CH-89 L1+50W 2+75S CH-89 L1+50W 3+25S CH-89 L1+50W 3+75S CH-89 L1+50W 4+25S CH-89 L1+50W 4+75S CH-89 L1+50W 5+25S CH-89 L1+50W 5+25S	20 10 20 25 20 10 5		
CH-89 L1+00WT 9+255 CH-89 L1+50W 0+255 CH-89 L1+50W 1+255 CH-89 L1+50W 1+755 CH-89 L1+50W 2+255 CH-89 L1+50W 2+755 CH-89 L1+50W 3+255 CH-89 L1+50W 3+755 CH-89 L1+50W 4+755 CH-89 L1+50W 4+755 CH-89 L1+50W 5+255 CH-89 L1+50W 5+255	10 20 25 20 10 5		
CH-89 L1+50W 0+25S CH-89 L1+50W 1+25S CH-89 L1+50W 1+75S CH-89 L1+50W 2+25S CH-89 L1+50W 2+75S CH-89 L1+50W 3+25S CH-89 L1+50W 3+75S CH-89 L1+50W 4+25S CH-89 L1+50W 4+75S CH-89 L1+50W 5+25S CH-89 L1+50W 5+25S	20 25 20 10 5		
CH-89 L1+50W 1+75S CH-89 L1+50W 2+25S CH-89 L1+50W 2+75S CH-89 L1+50W 3+25S CH-89 L1+50W 3+75S CH-89 L1+50W 4+25S CH-89 L1+50W 4+75S CH-89 L1+50W 5+25S CH-89 L1+50W 5+75S	20 10 5		
CH-89 L1+50W 2+25S CH-89 L1+50W 2+75S CH-89 L1+50W 3+25S CH-89 L1+50W 3+75S CH-89 L1+50W 4+25S CH-89 L1+50W 4+75S CH-89 L1+50W 5+25S CH-89 L1+50W 5+75S CH-89 L1+50W 6+25S	20 10 5		
CH-89 L1+50W 2+75S CH-89 L1+50W 3+25S CH-89 L1+50W 3+75S CH-89 L1+50W 4+25S CH-89 L1+50W 4+75S CH-89 L1+50W 5+25S CH-89 L1+50W 5+75S CH-89 L1+50W 6+25S	10 5		
CH-89 L1+50N 3+25S CH-89 L1+50N 3+75S CH-89 L1+50N 4+25S CH-89 L1+50N 4+75S CH-89 L1+50N 5+25S CH-89 L1+50N 5+75S CH-89 L1+50N 6+25S	5		
CH-89 L1+50N 3+25S CH-89 L1+50N 3+75S CH-89 L1+50N 4+25S CH-89 L1+50N 4+75S CH-89 L1+50N 5+25S CH-89 L1+50N 5+75S CH-89 L1+50N 6+25S			
CH-89 L1+50N 4+25S CH-89 L1+50N 4+75S CH-89 L1+50N 5+25S CH-89 L1+50N 5+75S CH-89 L1+50N 6+25S			
CH-89 L1+50W 4+75S CH-89 L1+50W 5+25S CH-89 L1+50W 5+75S CH-89 L1+50W 6+25S	15		
CH-89 L1+50W 5+25S CH-89 L1+50W 5+75S CH-89 L1+50W 6+25S	15		
CH-89 L1+50W 5+755 CH-89 L1+50W 6+255	og 10		
CH-89 L1+50W 6+255	5		
· 방법은 영향 방법 · · · · · · · · · · · · · · · · · ·	15		
방법은 영화 방법 이 가지 않는 것이 있는 것이 없는 것이 없다.	nd		
CH-89 L1+50W 6+755	5		
CH-89 L1+50W 7+255			
CH-89 L1+50W 7+75S	nd		
CH-89 L1+50W 8+255	10		
	10		
CH-89 L1+50W 8+755	15 A.		
CH-89 L1+50W 9+255	15		
CH-89 L1+50W 9+755	5		
CH-89 L1+50WT 8+105	10		
CH-89 L1+50WT 8+155	nd		
CH-89 L1+50WT 8+205	20		
CH-89 L1+50WT 8+255	10		
CH-89 L1+50WT 8+30S	10		
CH-89 L1+50WT 8+355	20		
CH-89 L1+50WT 8+405	15		
CH-89 L1+50WT 8+45S	20		
CH-89 L1+50WT 8+505	20		
CH-89 L1+50WT 8+555	10		
CH-89 L1+50WT 8+60S	10		
CH-89 L1+50WT 8+65S	10		
CH-89 L1+50WT 8+70S	20		
CH-89 L1+50WT 8+75S	15		
CH-89 L1+50WT 8+80S			
CH-89 L1+50WT 8+85S	20		
DETECTION LIMIT			

Sector Sector

間に


1

j

à

en sona a coper que

VGC Y	ANGEOCH		MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.
REPORT	WMBER: 890072 GA	JOB NUMBER: 890072	ASHWORTH EXPLORATION LTD.	PAGE 4 OF 6
SAMPLE		Au		
		ppb		
CH-89 L	+50WT 8+905	20		
CH-89 L	+50WT 8+955	5		
CH-89 L	+50WT 9+00S	15		
CH-89 L	+50WT 9+055	15		
<u>CH-89</u>	+50WT 9+105	15		
CH-89 L1		15		
	2+00W 6+25S	10		
	2+00W 6+755	15		
	2+00# 7+255	5		
CH-89 L3	2+00W 7+755	10		
CH-89 L2	+00W 8+255	15		
	+00W 8+755	15		
	+00# 9+255		a da ser a compañía de la compañía d	
CH-89 L	+00W 9+755	10		en e
	+50W 5+75S	5		
CH-89 L2		15		
	+50W 6+755	10		
En Provincia de Caracteria de	+50W 7+75S	20 15		
	+50W 8+255	20		
		20		
CH-89 17	+50W 8+75S	10		
	+501 9+255	10		
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	+501 9+755	10		
	+00W 5+75N	15		
	+00W 6+25N	10		
CH-89 L3	+00W 6+75N	10		
CH-89 L3	+00¥ 7+25N	20		
CH-89 L3	+00W 7+75N	10		
CH-89 L3	+00W 8+25N	10		
CH-89 L3	+00W 8+75N	5		
CH-89 L3	+00W 9+25N	10		
	+00# 4+755	10		
	+00# 5+255	20		
	+00W 9+755	20		
	+50¥ 4+25N	10		
CH-89 L3	+50W 4+75N	10		
	+50W 5+75N	15		
	+50W 6+25N A	20		
	+50W 6+25N B	nd		
DETECTIO	N LIMIT	5		

nd = none detected

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

	REPORT N	UMBER:	890072	6A	JOB N	UMBER:	89007	2	ASH	IORTH E	XPLORA	TION	LTD.		PAG	Εé	5 ()F	6	
	SAMPLE #				Au															
					ppb															
	CH-89 L5				20															
	CH-89 L5				5															
	CH-89 L5				10															
	CH-89 L5-				5															
	CH-89 L54	+00₩	7+755		20															
	CH-89 L54	+50W	3+25N		15															
	CH-89 L54				15															
	CH-89 L54	+50₩	4+25N		5															
	CH-89 L5+	+50¥ -	4+75N		15															
I	CH-89 L5+	-50	5+75N		20															
	CH-89 L5+				20															
	CH-89 L5+				10															
	CH-89 L5+				10	. 15			dia a											
	CH-89 L5+				15															
	CH-89 L5+	50W - 3	2+255		10															
	CH-89 L5+	50W 2	2+755		15				· *** 1											
	H-89 L6+				10		1 Na		14. <i>11</i> .	66										
	H-89 L6+				35			- 148 T.												
	H-89 L6+				15															
	H-89 L6+				10															
	H-89 L6+				15															
	H-89 L6+				15															
	H-89 L6+				20															
	H-89 L6+				15															
C	H-89 L6+	00W 5	+255		15															
· (H-89 L6+	00W 5	+755		30															
	H-89 L6+				15															
0	H-89 L6+	00₩ 6	+755		nd															
C	H-89 L6+0	00₩ 7	+255		15															
	H-89 L6+0				nd															
					1															

5 -- = not analysed

1988 Triumph Street, Vancouver, B.C. V5L 1K5 Ph:(604)251-5656 Fax:(604)254-5717

Vmrage

¢

THITED

ICAP GEOCHEMICAL ANALYSIS

A .5 gram sample is digested with 5 ml of 3:1:2 HCl to HNOm to HgO at 95 °C for 90 minutes and is diluted to 10 ml with water. This leach is partial for Al, Ba, Ca, Cr, Fe, K, Mg, Mn, Na, P, Pd, Pt, Sn, Sr and W.

						Thi	s leach	is par	tial fo	or Al,	Ba, Ca,	Cr, Fe	K, Hg	, Kn, N	a, P, Pd	, Pt, 1	ina is c Sn, Sr	and W.	to 10 A	l vith y	ater.						ť	
																	•								1		, .	
REPORT #: 890072 PA	÷.,	ASI	HWORTH	EXPL			Proj: 2	59		Dat	e In: 89	/02/19	Dal	e Out:	89/02/22	Å	tt: R K	I DI. ARK				1A	NALYS	ST: _	10			
Sample Number	Ag	A1	As	Au	Ba	Bi	Ca	Cđ	Co	C	r Cu	ı Fi		(B		lk				P Pb					-	ige 1	of 6	
CH-89 L0+00 7+255	рр а 0.8	7 1.51	pp a 22	ppa (3	ppa 67				ppe	ppi	e ppe	1						=			Pd ppa	Pt ppe		Si ppi		U ppe	N ppa	Zn
CH-89 L0+00 7+755	·	2.76	21	(3	67 133				12							1		2 3	0.01	B 38	(3	(5				(5	(3	
CH-89 L0+00 8+255		2.65	9	(3	88			0.5 0.1	12							3		-			(3	<5		1		(5	(3	
CH-89 L0+00 8+755	0.3	3.38	28	<3	178			0.1	ģ	2							2 0.0) 2 0.0)				<3	(5		6		<5	(3	
CH-89 L0+00 9+255	1.5	2.08	55	<3	99	<3	1.22	1.2	16	30	3 70						3 0.0				<3 <3	<5 <5		- 7		(5 (5	(3 (3	
CH-89 L0+00 9+755		2.09	16	<3	119			. 1.1	15	52	2 56	3.30	0.28	1.01	397	2	2 0.02	2 103	0.05	5 40	(3	(5	<2		е. ТТ		(0	
CH-89 LO+50W 0+255 CH-89 LO+50W 0+755		2.92 3.06	5 4	(3	188	.(3		0.4	10	18				0.57	930	2					(3	<5		6		<5 <5	<3 <3	163 112
CH-89 L0+50W 1+255		2.13	3	<3 <3	199 275	<3 <3		0.5	10	18						2	2 0.04	F 17			(3	(5		1		(5	(3	110
CH-89 L0+50W 1+75S		1.87	19	(3	176	(3	0.49	0.1 0.5	7	17	•••		0.12			1					<3	<5		5	109	<5	(3	161
CH-89 L0+50W 2+255	0.2	1.84	17									2.31	0.22	0.57	1406	1	0.02	2 18	0.08	50	(3	<5	<2	5	92	<5	<3	114
CH-89 L0+50W 2+755		1.58	17 - 4	<3 <3	171 131	<3 <3	0.95	0.3	11	17						1	0.02	2 17	0.08	46	<3	<5	<2	6	90	(5	{3	107
CH-89 L0+50W 3+255		1.98	ġ	<3	156	(3	0.12	1.1 0.1	5 6	8 11	12					1	0.01				<3	<5	<2	4	88	<5	(3	196
CH-89 L0+50W 3+755	0.1 2	2.02	11	(3	171	(3	0.13	0.3	6	12			0.06			1					<3	<5	<2	5		<5	<3	122
CH-89 L0+50W 4+25S	0.1 1	1.75	6	(3	349	<3	0.30	0.5	7	13			0.09			1 1		22 24			<3 <3	<5 <5	<2 <2	5 5	25 55	<5 <5	(3 (3	137 260
CH-89 L0+50W 4+755	0.2 1	1.30	14	<3	77	<3	0.24	0.4	9	24	26	2.03	0.10	0.64	302	2	0.02	25	0.06	30	(3		10					
CH-89 L0+50W 5+255		1.67	-17	<3	114	<3	0.34	0.6	18	33	45	2.56	0.13	0.86		2					(3	(5 (5	<2 <2	56	32 45	<5 <5	<3 <3	114
CH-89 L0+50W 5+755 CH-89 L0+50W 6+255		L.42 L.98	10 18	<3 <3	213	(3	3.11	2.3	13	18	30	2.12	0.48	0.77		ł	0.01			43	(3	<5	<2	5		(5	(3	121 140
CH-89 L0+50W 6+755		1.91	17	(3	134 144	<3 <3	1.02 0.93	2.8 3.3	15	26			0.24	0.90		2				39	<3	<5	<2	6	62	<5	(3	213
CH-00 1 ALEAN TUDEC								3.3	15	25	44	2.71	0.22	0.86	1335	2	0.01	32	0.07	38	<3	<5	<2	6	61	<5	<3	206
CH-89 L0+50W 7+255 CH-89 L0+50W 7+755		1.48	10	(3	182	(3	0.20	0.1	. 6	9	13	1.30	0.07	0.22	920	1	0.01	16	0.28	33	<3	(5	<2	5	25	(5	(3	110
CH-89 L0+50W 8+255		2.38 2.03	21 14	<3 <3	93 91	<3 <3	1.00 0.13	0.6 0.1	15 11	28	60	2.98	0.24	1.06	637	2	0.02			49	<3	(5	(2	6	47	<5	(3	124
CH-89 L0+50W 8+755		2.18	25	(3	118	(3	0.46	0.6	14	14 43	17 53	2.06 3.01	0.09	0.47	409	2	0.01	22		34	(3	<5	<2	6	17	<5	(3	165
CH-89 LO+50W 9+255		.57	10	(3	98	(3	0.18	0.1	10	29	25	2.18	0.10	0.87 0.65	412 182	3 1	0.02 0.02	58 35	0.05 0.02	42 32	<3 <3	(5 (5	<2 <2	6 5	48 24	<5 (5	(3 (3	113 90
CH-89 L0+50W 9+755		.21	19	<3	125	<3	0.31	0.6	12	44	39	2.59	0.13	0.78	388	2	0.02	75	0.05	42	(3	<5	(2	6	40			
CH-89 LO+50WT 8+60S CH-89 LO+50WT 8+65S		.55	290	<3	118	(3	0.66	0.9	14	17	67	2.78	0.18	0.36	374	2	0.02	121	0.08	39	(3	<5	(2	5	4V 64	<5 <5	(3 (3	128 141
CH-89 L0+50WT 8+70S		.14 .63	31 35	<3 <3	164	(3	0.17	0.1	9	19	21	1.79	0.08	0.46	211	i	0.02	33	0.09	42	(3	(5	(2	5	36	(5	(3	94
CH-89 L0+50WT 8+755		.58	130	<3 <3	137 228	<3 <3	0.16 2.98	0.1 2.6	7 18	14 50	15 59	1.59 3.44	0.07	0.20	226	2		55	0.13	45	(3	<5	<2	6	34	(5	(3	133
CH-89 L0+50WT 8+80S												3.74	0.52	0.70	361	3	0.02	192	0.09	94	(3	< 5	<2	4	219	<5	(3	277
CH-89 LO+50WT 8+85S		.58 .17	93 568	<3 <3	198	(3	5.34	1.5	17	55	55	3.23	0.81	0.85	282	3	0.02	182	0.09	62	<3	<5	<2	4	260	(5	<3	207
CH-89 L0+50WT 9+00S			500 635	(3 (3	202 244	(3 3	4.64 4.48	1.5 19.6	25 30	27 26	75 122	4.32	0.77	0.78	390	4	0.02	225	0.09	78	(3	<5	<2	5	302	<5	(3	268
CH-89 L0+50WT 9+05S		.24	28	(3	103	<3	0.33	0.6	17	71	44	5.47 3.01	0.80	1.22	275 229	8 2	0.01	292	0.13	435	(3	(5	<2	5	433	<5	(3	1658
CH-89 L0+50WT 9+105	0.3 2.	.34	23	<3	137	<3	0.22	0.1	11	30	19	2.27	0.10	0.52	295	2	0.02	108 69	0.02 0.03	45 40	<3 <3	<5 <5	<2 <2	6	49 34	(5 (5	(3 (3	124 102
CH-89 L0+50WT 9+155	0.2 1.	.96	14	<3	130	<3	0.28	0.3	10	26	25	1.92	0.10	0.53	487	t	0.02	39	0.10	38	13	/c	12	F	-	<i>,-</i>		
CH-89 L0+50WT 9+205		.05	22	(3	119	۲3	0.70	0.5	13	40	44	2.66	0.18	0.86	414	2		60	0.05	42	<3 (3	(5 (5	<2 <2	56	39 58	(5 (5	(3 (3	131
CH-89 LO+50WT 9+255 CH-89 LO+50WT 9+305		.43	19	<3	81	(3	1.56	0.5	12	29	42	2.38	0.29	0.85	440	2		39	0.09	33	(3	(5	<2	5	101	<5 <5	(3	115 94
011 03 LV10V#1 370V0	0.5 1.	. 73	12	<3	114	<3	0.34	0.3	11	33	34	2.25	0.12	0.69	369	2		45		38	<3	<5	<2	5	39	(5	<3	102
Ninimum Detection	0.1 0.	.01	3	3	t	3	0.01	0.1	1	. 1	1	0.01	0 01	A A1							_	-						
Maximum Detection	50.0 10.		000	100	1000		10.00 1		20000	1000	20000		0.01	0.01	1 20000	1000	0.01	1 20000	0.01	20000	3	5	2	2	1	5	3	1
															10000	1000	10.00	20000	10.00	20000	100	100	2000	1000	10000	100	1000	20000

ciant	

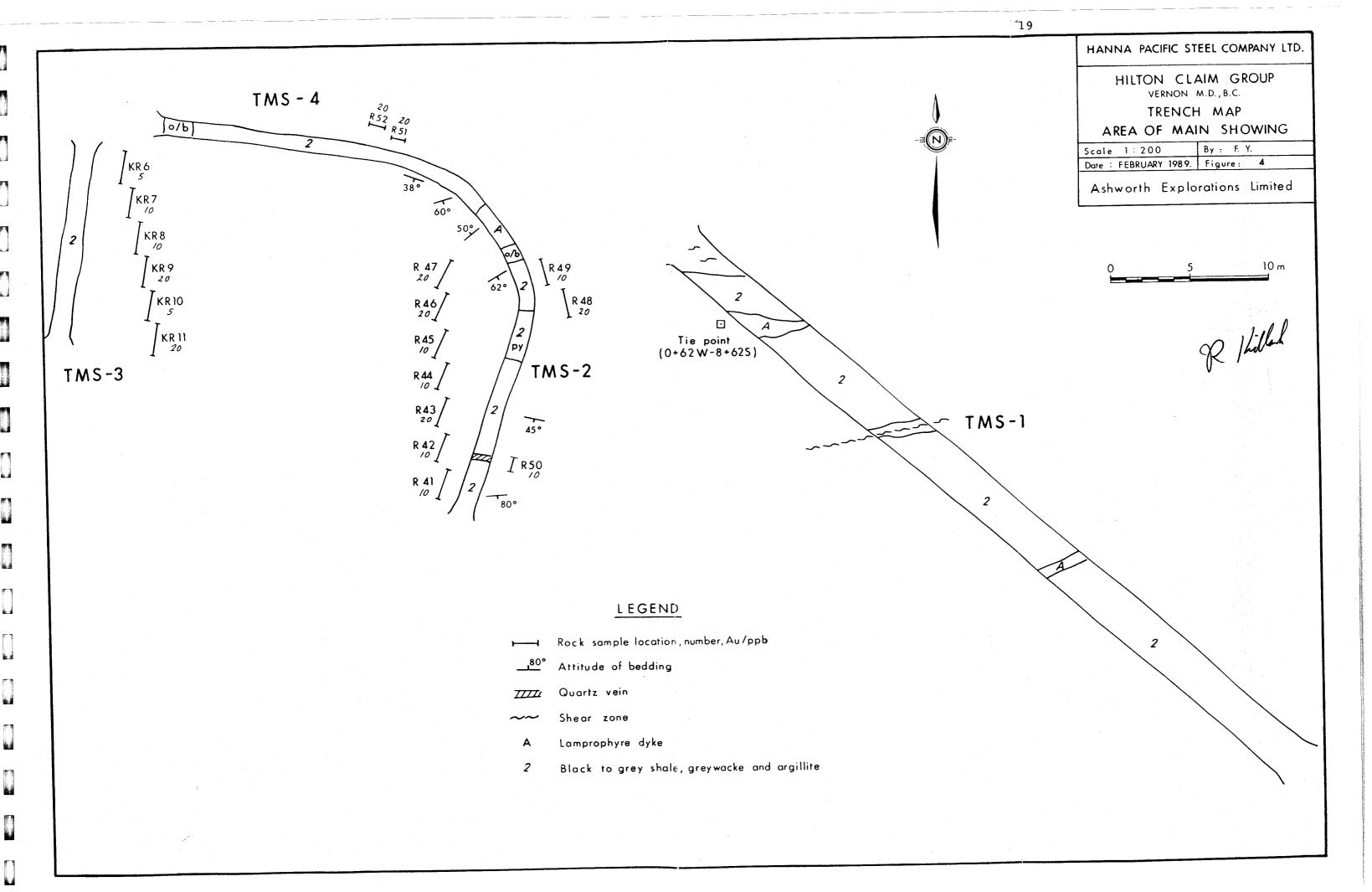
REPORT #: 890072 PA		ASHWORTH	EXPL		P	roj: 259)		Date	In: 89/	02/19	Date	Out:89	/02/22	Att	: R K10	LARK							Pag	e 2 a	of 6		
Sample Mumber	Ag Al ppm 7		Au ppm	Ba ppe	Bi ppm	Ca X	Cđ pp n	Co pp e	Ćr ppm	Cu ppa	Fe	K	Ng I	Mn ppm	No ppn	Na Z	Ni DDA	P I	Pb ppa	Pd pps	Pt ppm	Sb	Sa ppa	Sr	₽Ø∎	¥ pp=	Za ppa	
CH-89 L0+50WT 9+355	1.9 3.32		(3	216	4	0.77	2.9	27	95	100	4,99	0.27	0.98	946	5	0.02	223	0.05	51	<3	(5	(2	7	94	<5	<pre>/3</pre>	186	
CH-B9 L0+50WT 9+40S	0.6 2.30		(3	109	(3	0.35	1.5	20	119	48	2.99	0.15	1.43	413	3	0.01	188	0.06	34	(3)	(5	<2	6	43	<5	<3	138	
CH-89 LO+SOWT 9+45S CH-89 LO+SOWT 9+50S	0.6 2.17		(3 (3	122 117	<3 <3	0.30 0.41	1.1	13	37	32	2.29	0.12	0.68	378	2	0.02	61	0.07	32	(3	(5	<2	5	36	<5	<3	105	
CH-89 L1+00N 0+25S	0.9 2.57		(3	133	(3	0.47	0.7	16 13	64 32	47 44	3.14 2.77	0.15	0.73	344 635	3 2	0.02	89 32	0.05	35 45	(3 (3	(5 (5	<2 <2	6	48 58	۲5 ۲5	(3 (3	- 121 122	
GI 07 CL:00W 0.200	VI.) 110,		14	100		v. 17	v ,,,	10	JL		2	v. 17	v./3	000	-	v. va	JL	4.47	73	13	13	12	0	JO	13	13	122	
CH-B9 L1+00W 0+755	0.1 2.5		<3	559	(3	1.04	1.2	10	13	32	2.24	0.22	0.50	4221	1	0.03	17	0.21	52	(3	<5	<2	5	164	(5	<3	152	
CH-89 L1+00W 1+25S	0.1 2.28		(3	362	(3)	0.46	0.5	6	9	15	1.44	0.10	0.30	1052	1	0.02	12	0.46	35	(3	(5	<2	4	98	(5	<3	196	
CH-89 L1+00W 1+755	0.2 2.32		<3	109	(3	0.24	0.6	11	26	34	2.43	0.10	0.64	480	2	0.02	34	0.09	36	(3	(5	(2	5	40	< 5	(3	145	
CH-89 L1+00W 2+255 CH-89 L1+00W 2+755	1.2 1.81 0.3 1.44		<3 <3	94 B3	(3 (3	1.97 0.99	1.2	14 17	30 36	52 45	2.72 2.93	0.35 0.23	1.01 0.94	740 776	2		32 32	0.12 0.12	41 43	<3 <3	(5 (5	<2 <2	5	106	(5 (5	(3 (3	138 124	
								• •	00		** 70	****	VI 34		•		92	VI 11		13		14	•		15		***	
CH-89 L1+00W 3+25S	0.4 1.11		<3	59	(3	0.49	1.7	12	27	36	2.55	0.14	0.74	522	2		34	0.12	31	<3	(5	<2	4	47	(5	<3	128	
CH-89 L1+00W 3+755	0.4 1.07		(3	78	<3	0.85	2.1	11	23	35	2.26	0.20	0.74	842	1	0.01	32	0.12	33	(3	(5	· <2	4	68	(5	(3	178	
CH-89 L1+00W 4+25S CH-89 L1+00W 4+75S	0.2 1.81		(3 (3	104 99	<3 <3	1.05 0.23	1.7 0.5	40 12	.76 15	108 21	3.33 2.04	0.26	1.15 0.36	899 212	2 1	0.01 0.01	81 26	0.09 0.08	40 38	<3 <3	<5 <5	<2 <2	5	91 29	<5 <5	<3 (3	172 103	
CH-89 L1+00W 5+255	0.2 2.83		(3	117	(3	0.21	0.1	10	14	20	1.84	0.10	0.35	423	1	0.01	17	0.25	31	(3	(5	(2	5	26	(5	(3	103	
										~					•		•						. •					
CH-89 L1+00W 5+755	0.4 2.97		<3	194	<3	0.60	0.7	12	20	31	2.36	0.17	0.64	830	2		24	0.10	42	(3	<5	<2	6	56	(5	<3	130	
CH-89 L1+00W 5+255	0.3 3.29		<3	118	<3	0.46	0.6	13	19	30	2.23	0.13	0.56	448	1	0.01	27	0.14	35	<3	<5	<2	6	39	(5	(3	138	
CH-89 L1+00W 6+755 CH-89 L1+00W 7+255	0.4 2.69		<3 <3	110 73	(3 3	0.47 0.36	1.2 1.2	18 17	33 36	52 89	3.56 3.65	0.20 0.17	1.16	522 644	2 3	0.01 0.02	37 40	0.05 0.07	40 40	(3 (3	<5 <5	<2 <2	6	36 26	۲5 ۲5	<3 <3	122 135	
CH-89 L1+00W 7+755	0.6 2.95		(3	109	(3	0.49	0.8	15	28	64	3.10	0.17	1.02	607	2	0.02	29	0.12	39	(3	(5	(2	6	32	(5	(3	121	
										•••					-								-	•••				
CH-89 L1+00W 8+255	0.3 1.83		<3	119	(3	0.27	0.5	11	22	39	2.20	0.11	0.71	560	2	0.01	58	0.07	29	(3	<5	<2	5	25	<5	<3	105	
CH-89 L1+00W 8+755	1.2 2.38		<3	60	<3	0.38	1.1	16	34	98	3.74	0.20	1.20	519	3	0.02	62	0.04	34	(3	(5	<2	6	22	(5	(3	93	
CH-89 L1+00W 9+255 CH-89 L1+00W 9+755	0.4 2.49 0.5 1.98		(3 (3	78 78	(3 (3	0.27 0.24	0.7	14 16	26 50	61 61	2.96 3.13	0.14	0.99	474 284	23	0.02	36 104	0.07 0.03	31 32	(3 (3	(5 (5	<2 <2	6 5	21 29	<5 <5	(3 (3	97 152	
CH-89 L1+00WT 8+255	0.6 3.31		<3	118	(3	0.34	0.5	12	20	37	2.37	0.12	0.64	465	2	0.02	34	0.17	37	(3	(3 (5	(2	6	29	(5	(3	125	
															-							••	-					
CH-89 L1+00WT 8+305	0.4 3.09		<3	140	(3	0.22	0.1	9	14	25	1.75	0.08	0.38	555	1	0.02	23	0.22	32	(3	(5	(2	6	23	(5	(3	128	
CH-89 L1+00WT 8+355 CH-89 L1+00WT 8+405	0.4 3.86 0.5 2.20		(3 (3	100 125	<3 <3	0.18 0.66	0.3 1.1	8 14	10 21	23 49	1.65 2.87	0.07 0.19	0.27	398 475	1	0.02	21 66	0.27 0.10	34 32	(3 (3	<5 <5	<2 <2	6 5	22 78	<5 <5	<3 (3	120	
CH-89 L1+00WT 8+455	0.4 3.41		(3	156	3	0.29	0.3	10	14	30	2.06	0.10	0.42	229	í	0.02	25	0.20	33	(3	(5	<2	- 6	33	(5	(3	113	
CH-89 L1+00WT 8+505	0.2 2.90		(3	138	<3	0.20	0.6	13	20	32	2.40	0.11	0.64	417	1	0.01	29	0.11	31	<3	<5	(2	5	22	(5	(3	148	
		. <u>.</u>					, 				.									/*	/-		-				***	
CH-89 L1+00WT 8+555	0.2 2.70		(3 (3	139 111	<3 <3	0.19	0.6	11	17 22	25 41	2.12	0.09	0.40	348	1	0.01	42 55		33	<3 <3	<5 <5	<2 /2	5 4	30	<5 /5	<3 <3	130	
CH-89 L1+00WT 8+705 CH-89 L1+00WT 8+755	0.6 2.06		(3	67	(3)	0.41 0.29	0.7 0.7	12 14	22 31	41 76	2.44	0.14	0.51	217 334	2	0.02	55 40	0.04	28 31	(3)	(5) (5)	〈2 〈2	4	43 34	(5 (5	(3 (3	93	
CH-89 L1+00WT 8+80S	0.6 2.58		₹3	104	(3	0.35	0.7	14	28	47	3.00	0.17	0.92	424	2	0.02	30	0.05	35	(3	(5	(2	6	27	(5	(3	112	
CH-89 L1+00WT 8+855	0.5 2.81		<3	113	(3	0.30	0.7	14	27	46	2.94	0.15	0.93	528	2	0.02	26	0.08	36	(3	(5	<2	7	26	<5	(3	114	
AH 00 14 40HT 0-000			<i>.</i>														•		N 5				,	~		<i>(</i> 1		
CH-89 L1+00WT 8+90S CH-89 L1+00WT 8+95S	0.6 2.59		<3 <3	112 107	<3 <3	0.39 0.37	0.6	13 16	23 32	45 63	2.71 3.37	0.15	0.85 1.00	592 600	2 2	0.02	24 31	0.09	35 37	(3 (3	<5 <5	<2 <2	6	28 27	<5 <5	<3 (3	104	
CH-89 L1+00WT 9+005	0.3 2.72		(3	119	(3	0.33	0.5	13	25	40	2.64	0.14	0.80	589	1	0.02	25	0.10	37	(3	<5	(2	5	26	(5	-(3	108	
CH-89 L1+00WT 9+055	0.6 2.7		<3	106	(3	0.29	1.1	15	28	51	3.03	0.15	1.07	573	2	0.02	27	0.08	35	(3	(5	(2	5	22	(5	(3	103	
Minimum Detection	0.1 0.0	3	3		3	0.01	٥.	•			A A1	A A1	A A1	•		A A1		A A1	^	3	5	2	2		5	3		
Maximum Detection	0.1 0.01		100	1000	-	10.00 1	0.1	20000	1 1000	1 20000	0.01	0.01	0.01	1 20000	1000	0.01 10.00	20000	0.01 10.00	20000	3 100	100	2000	1000	10000	5 100	-	20000	
<pre>< = Less than Minimum is</pre>														*****									1.000				-****	
								-			•																	

	Sec. 134
--	----------

and the second second

EPORT 1: 890072 PA		A	SHWORTH	EXPL		٩	70j: 25	9		Date	in: 89/0	2/19	Date	Out:89	/02/22	Att	: R KID	LARK							Pag	je 3.	of 6	
ample Number H-89 L1+00WT 9+10S	Ag ppm 0.3	Al 2 2.71	As ppm 10	Au ppa (3	Ba ppe 125	Bi pp a (3	Ca I 0.40	Cđ ppn 1.7	Co ppm 14	Cr ppm 26	Cu ppm 47	Fe X 2.45	K Z 0.14	Hg Z 0. 74	Mn ppe 578	Ho pps 4	Na Z 0.02	Ni pps 52	P I 0.10	Pb ppa 43	Pd ppa {3	Pt pps {5	Sb ppa {2	Sn ppe 7	Sr ppm 29	U ppa (5	W ppe (3	Zn pp a 106
H-89 L1+00WT 9+155	0.1	2.79	12	(3	118	(3	0.33	1.2	14	24	46	2.61	0.13	0.79	620	3	0.02	39	0.14	38	(3	<۲	<2	1	26	(5	<3	107
H-B9 L1+00WT 9+20S H-89 L1+00WT 9+25S	0.2 0.1	2.62 2.81	13 13	(3 (3	105 124	<3 <3	0.35	1.2	14	24	49	2.76	0.12	0.89	553	2	0.02	37	0.12	37	(3	(5	<2	7	27	(5	(3	109
H-89 L1+50W 0+255	0.7	3.60	22	(3	232	3	0.35 0.53	1.2 1.5	13 19	24 25	45 61	2.56 3.59	0.12 0.20	0.77	571 986	23	0.02 0.06	35 27	0.10	38 73	<3 <3	<5 (5	<2 <2	7 8	29 81	(5 (5	(3 (3	113 141
H-89 L1+50W 1+255	0.1	1.49	13	(3	72	(3	0.14	0.8	9	21	32	2.20	0.10	0.60	311	2		29	0.07	33	<3	۲5	<2	5	23	<5	∢ 3	115
H-89 L1+50W 1+755 H-89 L1+50W 2+255	1.3	1.81	27 25	<3 <3	106 52	(3 (3	0.44	1.2	14	39	56	3.04	0.16	1.09	434	3	0.04	45	0.10	38	(3	(5	(2	6	50	<5	<3	138
H-89 L1+50W 2+25S H-89 L1+50W 2+75S	0.7 0.5	1.03 1.78	19	(3	76	 <3	0.40 0.15	1.5 0.8	10 10	23 27	34 43	2.35 2.30	0.14 0.10	0.73	550 228	2	0.04	34 30	0.11 0.04	33 32	<3 <3	(5	(2	5	35	(5	<3	13
H-89 L1+50W 3+255	1.9	1.56	55	<3	66	(3	1.53	1.5	15	36	73	3.26	0.30	0.97	463	3	0.04 0.04	45	0.04	32 39	(3	<5 <5	(2 (2	5 5	21 60	(5 (5	(3 (3	9 13
H-89 L1+50W 3+755	1.3	2.42	43	(3	B2	4	0.52	1.7	27	38	93	4.14	0.20	1.36	591	4		61	0.04	46	(3	(5	<2	7	39	(5	(3	150
H-89 L1+50W 4+25S H-89 L1+50W 4+75S	0.5 0.5	2.56 3.08	10 22	(3 (3	96 119	<3 (3	0.15 0.22	0.6	10 11	14 16	23 32	1.93	0.09	0.49	308	1		23	0.11	36	(3	<5	<2	6	15	<5	<3	11
H-89 L1+50W 5+255	0.5	2.81	6	(3	85	(3	0.14	0.7 0.5	11	16	32 32	2.24	0.09	0.46 0.51	389 237	2		25 23	0.31 0.13	44 38	(3 {3	(5 (5	<2 <2	7 7	25 15	<5 <5	<3 (3	13 8
H-89 L1+50W 5+755	0.5	2.56	15	<3	174	(3	0.64	1.1	11	17	30	2.19	0.17	0.61	803	2		25	0.10	45	<3	(5	(2	6	56	(5	(3	12
H-89 L1+50W 6+255	1.3	2.51	28	<3	88	4	0.35	1.3	19	34	97	3.72	0.18	1.27	467	3		47	0.04	43	<3	<5	<2	7	29	(5	(3	113
H-89 L1+50W 6+755	1.3	4.05	13 11	(3 (3	110 158	(3 (3	0.24	0.3	10 9	13	25	2.00	0.09	0.43	493	2		24	0.17	48	(3	<5 (5	<2	8	28	(5	(3	9 10
H-89 L1+50W 7+255 H-89 L1+50W 7+755	0.6 0.6	2.88	11 9	(3)	114	<3	0.24 0.17	0.5 0.5	9	12 10	24 25	1.76 1.74	0.10 0.09	0.38 0.31	555 423	1 2	0.03	23 18	0.13 0.13	38 45	<3 <3	(5 (5	<2 (2	6 7	23 15	<5 <5	(3 (3	10
H-89 L1+50W 8+255	0.5	2.79	8	3	113	(3	0.15	0.5	10	12	24	1.78	0.09	0.37	299	Î		19	0.06	39	<3	(5	(2	7	16	< 5	(3	7
H-89 L1+50W 8+755	1.3	2.23	22	<3	61	(3	0.31	0.8	15	27	61	3.11	0.14	1.08	390	2		36	0.04	36	(3	(5	<2	7	21	<5	<3	8
1-89 L1+50W 9+255	1.3	1.99	26	<3	46	(3	1.99	1.2	15	26	76	3.23	0.40	1.25	493	2	0.04	30	0.05	34	(3	(5	<2	1	49	(5	<3	
1-89 L1+50W 9+755 1-89 L1+50WT 8+105	0.6 0.1	3.13 3.06	10 13	<3 <3	134 139	(3 (3	0.15 0.27	0.3 0.6	9 11	11 17	23 31	1.72 2.11	0.07 0.10	0.32 0.49	493 638	2 2	0.04 0.02	21 30	0.20 0.19	40 40	<3 <3	(5 (5	<2 <2	1	18 24	<5 <5	(3 (3	
H-89 L1+50WT 8+155	0.1	3.64	6	<3	97	(3	0.23	0.3	8	13	25	1.70	0.09	0.32	415	2		25	0.23	38	3	(5	<2	7	19	<5	(3	
H-89 L1+50WT 8+205	0.5	2.53	9	(3	172	<3	0.26	0.3	9	13	23	1.72	0.10	0.40	585	1		21	0.11	36	(3	{5	<2	6	25	<5	(3	
H-89 L1+50WT 8+255	0.6	3.00	9	(3	180	(3	0.28	0.6	11	18	31	2.06	0.10	0.51	299	2		23	0.04	42	(3	(5	(2	6	24	<5	(3	
H-89 L1+50WT 8+305	0.5	2.78	5 7	(3 (3	134 130	(3 (3	0.19	0.5 0.3	9 · 11	12 18	21 28	1.65	0.07	0.36	304 283	1		22	0.07	38	(3	(5 (5	(2	6	21	<5 (5	(3	
H-89 L1+50WT 8+355 H-89 L1+50WT 8+40S	0.3 0.3	2.65 2.89	5	<3 <3	97	(3	0.17 0.16	0.3	10	13	28	2.25 1.79	0.11 0.09	0.65 0.43	383	1		24 21	0.05	35 35	<3 <3	(5 (5	(2 (2	6 6	17 18	(5 (5	(3 (3	E
H-B9 L1+50WT 8+455	0.5	3.12	6	<3	95	<3	0.20	0.5	9	12	22	1.77	0.10	0.38	254	1	0.03	19	0.08	36	<3	<5	<2	7	24	<5	(3	1
H-89 L1+50WT 8+505	0.3	3.13	5	(3	113	<3	0.20	0.6	10	13	25	1.87	0.10	0.41	359	1		22	0.05	37	(3	(5	<2	6	22	<5 (5	(3	
H-89 L1+50WT 8+555	0.5	3.72	6	(3)	133 118	(3 (3	0.18 0.23	0.5 0.5	10 10	14 14	23 25	2.08	0.10	0.41 0.45	197 318	2 1		24 23	0.09 0.08	40 35	<3 <3	(5 (5	<2 <2	7	23 22	<5 <5	<3 <3	
H-89 L1+50WT 8+605 H-89 L1+50WT 8+655	0.5	2.91 2.26	3 14	<3 <3	137	(3	0.32	0.3	13	19	25 28	2.23	0.13	0.48	901	1		23	0.08	35	(3	(5 (5	(2	6	33	(5	<3 <3	
H-89 L1+50WT 8+705	0.1	2.19	12	<3	99	(3	1.28	0.7	12	21	48	2.40	0.28	0.79	611	1	0.02	24	0.07	31	<3	(5	<2	7	50	<5	<3	10
H-89 L1+50WT 8+755	0.1	2.17	9	<3	92	<3	1.14	0.7	12	21	49	2.46	0.27	0.82	550	1	0.02	23	0.06	30	<3	<5	<2	6	45	(5	<3	
H-89 L1+50WT 8+805	0.1	2.67	11	<3	94	(3	0.58	1.1	14	26	56	3.20	0.22	1.13	740	2		26	0.09	32	(3	(5	<2	7	29	<5 (5	(3	10
H-89 L1+50WT 8+855	0.2	2.30	11	<3	86	₹3	0.41	0.6	12	21	43	2.60	0.16	0.87	533	i	0.02	23	0.10	28	<3	<5	<2	7	22	<5	(3	
inimum Detection aximum Detection	0.1 50.0	0.01	3 2000	3 100	l 1000	3 1000	0.01	0.1 1000.0	1 20000	1	1	0.01	0.01	0.01	1 20000	1	0.01	1 20000	0.01	2 20000	3 100	5 100	2 2000	2 1000	1 10000	5 100	3 1000	2000
									Haximum.			10.00 Issay/A/		10.00	10000	1000	10.00	10000		20000	100	100	1000	1000	10000	100	1000	

.

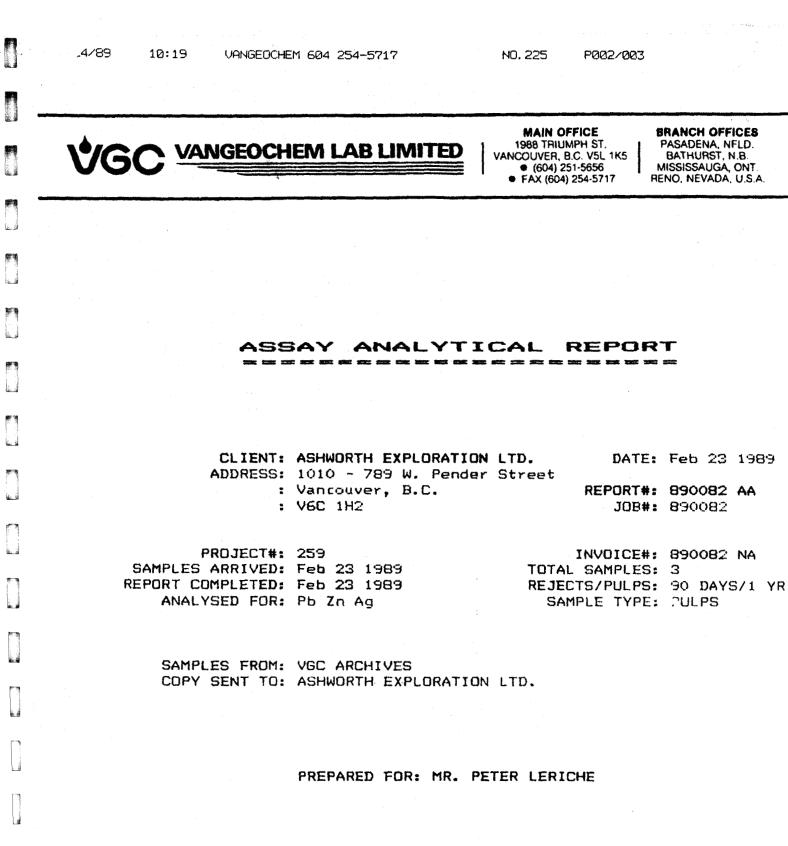

REPORT 8: 890072 PA		ASI	WORTH	EXPL		P	roj: 25	9		Date 1	ln: 89/	02/19	Date	Out:89	/02/22	Att	: R KID	LARK							Pag	je 4 (of 6	
Sample Number	Ag	AL Z	As pp#	Au pp s	Ba ppm	9i DDa	Ca T	D3	Co	Cr	Cu	Fe Z	K	Ng	Ma	No	Na	Ni	P	РЪ	Pd	Pt	Sb	Sn	Sr	ម	y -	Zn
CH-89 L1+50WT 8+905		2.49	24	γ ρ ∎ {3	99∎ 80	(3	0.58	ppm 1.5	pp. 16	pp s 26	pp m 63	3.27	0.18	1.17	pp n 644	ppa 3	Z 0.02	pp# 40	Z 0.08	ppm 27	pp s	ppn .	pps (2	ppm 7	ppe	ppa	pps	pps
CH-89 L1+50WT 8+955		. 26	22	(3	58	(3	0.42	2.1	17	30	76	3.46	0.16	1.30	496	3	0.02	45	0.05	37 34	<3 <3	<5. <5	<2 <2	8	28 24	<5 <5	(3 (3	99 91
CH-89 L1+SOWT 9+005	1.2 2	.42	18	<3	76	(3	0.38	1.2	14	25	54	2.90	0.16	1.03	479	2	0.02	32	0.06	32	<3	<5	<2	7	25	(5	(3	94
CH-89 L1+50WT 9+05S	1.2 2	.45	14	<3	78	(3	0.32	1.1	14	23	46	2.71	0.12	0.92	408	2	0.02	30	0.05	32	(3	(5	(2	1	23	<5	<3	96
CH-89 L1+50WT 9+10S	1.2 2	. 39	20	<3	58	<3	0.28	1.3	16	29	65	3.47	0.16	1.37	433	3	0.02	35	0.04	31	(3	(5	(2	8	19	(5	(3	96
CH-89 L2+00W 5+755		. 69	13	<3	131	{3	0.25	1.7	10	15	31	2.05	0.09	0.47	523	2	0.02	26	0.20	39	(3	(5	(2	7	24	(5	(3	110
CH-89 L2+00W 6+255		.22	10	<3	120	(3	0.29	1.1	13	34	35	2.43	0.11	0.79	477	2	0.03	43	0.09	33	<3	(5	<2	6	38	<5	(3	111
CH-89 L2+00W 6+755		. 30	22	<3	108	(3	0.35	1.5	18	33	42	3.38	0.15	1.19	900	2	0.02	39	0.17	35	<3	(5)	<2	6	28	<5	<3	152
CH-89 L2+00W 7+255		1.61	11	(3	125	(3	0.19	0.7	11	16	29	2.03	0.08	0.45	422	2	0.02	25	0.12	37	(3	(5	<2	1	19	(5	<3	94
CH-89 12+00W 7+755	0.5 3	8.50	12	<3	138	<3	0.17	0.5	12	14	23	2.18	0.10	0.39	753	2	0.02	23	0.22	37	(3	(5	(2	7	19	<5	<3	107
CH-89 L2+00W 8+255 CH-89 L2+00W 8+755	0.5 1 1.2 2	. 58	18 23	<3 (3	47 55	<3 3	5.99 0.74	0.7	12	18	56	2.34	0.89	0.91	388	1	0.02	22	0.08	26	(3	<5	<2	- 5	105	<5	(3	73
CH-89 L2+00W 9+255		1.60	11	<3	92	(3	0.18	1.3 0.5	17 10	29 13	80 31	3.61	0.22	1.39 0.46	600 314	2	0.02	33 20	0.05	31 33	(3 (3	<5 <5	(2	1	31	(5	(3	100
CH-89 L2+00W 9+755		.33	6	(3	120	<3 <3	0.37	0.8	13	39	51	2.39	0.14	0.81	212	2	0.02	76	0.14	33 28	(3	(5)	<2 <2	7	15 40	(5 (5	(3 (3	79 144
CH-89 L2+50W 5+755		.45	13	<3	129	<3	0.25	0.6	10	18	24	1.88	0.11	0.44	400	2	0.02	36	0.34	33	(3	(5)	<2	6	30	<5 <5	3	136
CH-89 L2+50W 6+255	0.5 2	. 88	6	<3	202	(3	0.17	0.6	11	25	22	1.85	0.08	0.49	476	1	0.02	52	0.24	30	{3	(5	<2	6	38	<5	<3	169
CH-89 L2+50W 6+755		.94	7	(3	184	(3	0.22	0.5	11	34	17	1.94	0,09	0.47	446	1	0.02	62	0.11	32	(3	<5	<2	6	40	(5	(3	189
CH-89 L2+50W 7+25S	1.2 3	. 94	21	{3	98	(3	0.26	0.7	13	21	34	2.48	0.13	0.61	349	2	0.03	37	0.15	39	{3	- (5	<2	7	23	<5	(3	128
CH-89 L2+50W 7+75S		1.12	17	<3	153	<3	0.14	0.5	12	16	26	2.18	0.10	0.45	812	1	0.02	27	0.15	35	<3	(5	<2	1	16	<5	(3	123
CH-89 L2+50W 8+255	0.4 2	2.50	15	<3	89	<3	0.25	0.7	13	23	45	2.53	0.11	0.78	507	1	0.02	29	0.07	30	{3	(5	<2	6	23	<5	<3	94
CH-89 L2+50W 8+755		.23	13	(3	126	<3	0.27	1.1	16	29	57	3.19	0.14	1.02	304	3	0.01	74	0.05	34	(3	(5	<2	1	21	<5	<3	92
CH-89 L2+50W 9+255		1.37	12	(3	140	<3	0.19	0.6	12	18	29	2.21	0.09	0.48	743	2	0.02	43	0.18	35	(3	(5	<2	6	18	(5	(3	129
CH-89 L2+50W 9+75S		.36	9 4	<3 <3	92 92	<3 <3	0.13	0.3	9	12 40	24	1.74	0.07	0.29	299	1	0.02	32	0.18	32	(3	(5	(2	6	14	(5	(3	86
CH-89 L3+00W 5+75N CH-89 L3+00W 6+25N		2.17 2.64	37	(3	135	<3 <3	0.26 0.30	0.6 0.7	12 16	46	30 42	2.35 2.86	0.11 0.14	0.75 0.90	264 372	3 2	0.02	73 55	0.04	29 37	<3 <3	(5 (5	<2 (2	5	52 45	(5 (5	<3 <3	121 113
								•			76	2.00	V. 1 Y	v. 30	J/ L	•	0.01		0104	3,			12	,	44	10	(5	110
CH-B9 L3+00W 6+75N		14	12	<3	162	(3	0.19	0.7	13	31	23	2.18	0.10	0.69	685	1	0.02	41	0.11	29	(3	(5	<2	6	33	(5	(3	141
CH-89 L3+00W 7+25N CH-89 L3+00W 7+75N		2.42 2.41	31 15	(3 (3	157 111	<3 <3	0.45 0.45	1.1	17 14	30 24	46 48	3.17 2.82	0.17 0.18	0.69 0.92	588 521	2 2	0.02 0.02	86 29	0.06	36 31	<3. ≺3	(5 (5	(2 (2	6 6	56 29	(5 (5	(3 (3	136 131
CH-89 L3+00W 8+25N		1.58	6	(3	100	(3	0.20	0.3	11	18	33	2.19	0.10	0.52	304	1	0.02	27	0.17	33	(3	(5	{2	6	19	(5	(3	97
CH-89 L3+00W 8+75N		2.57	17	(3	114	(3	0.25	0.3	13	18	20	2.17	0.10	0.48	654	1	0.02	28	0.04	31	(3	<5	(2	6	26	< 5	(3	94
																•								-				
CH-89 L3+00W 9+25N		1.58	13	<3 <3	157 221	<3 <3	0.13	0.3	10 9	11 15	19 15	1.99	0.08	0.26	785 998	2	0.02	18 32	0.32	39	< (3	(5 (5	<2 <2	75	15	<5 <5	<3 <3	104 182
CH-89 L3+00W 4+755 CH-89 L3+00W 5+255		.59	<3 22	(3	147	<3 <3	0.27 1.04	0.7	21	10 67	15 89	1.64	0.09	0.31 0.92	998 384	1 6	0.02 0.02	32 179	0.43	29 34	<3 <3	(5)	(2)	5 5	41 133	(5)	(3	222
CH-89 L3+00W 9+755		3.33	17	(3	108	(3)	0.14	0.3	9	12	24	1.79	0.09	0.29	304 848	1	0.02	23	0.24	33	(3	(5	(2	6	135	(5	(3	104
CH-89 L3+50W 4+25N		.24	5	<3	150	(3	1.09	0.8	8	20	34	1.79	0.24	0.75	564	1	0.01	51		28	(3	<5	<2	4	189	<5	<3	212
CH-89 L3+50W 4+75N	0.2 2	2.85	<3	<3	186	<3	0.21	1.5	15	14	34	2.45	0.13	0,46	628	2	0.01	58	0.24	32	(3	<5	<2	6	33	<5	<3	231
CH-89 L3+50W 5+75N		2,94	4	(3	143	<3	0.18	0.3	11	21	19	1.98	0.09	0.49	332	1	0.02	54	0.15	30	(3	<5	<2	6	41	(5	(3	136
CH-89 L3+50W 6+25N A	0.5 2	2.09	89	<3	111	<3	0.53	1.1	14	31	45	2.74	0.17	0.70	412	2	0.02	63	0.07	51	<3	<5	<2	11	60	<5	(3	132
CH-89 L3+50W 6+25N B	0.1 2	2,65	7	(3	167	<3	0.17	0.5	10	20	19	1.80	0.10	0.48	365	1	0.02	47	0.10	29	<3	<5	<2	6	37	{ 5	<3	125
Minimum Detection	0.1 0	0.01	3	3	1	3	0.01	0.1	t	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	3	5	2	2	1	5	3	1
Naximum Detection	50.0 10		2000	100	1000		10.00						10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	2000	1000	10000	100	1000	20000
<pre>< = Less than Minimum is</pre>	= Insuffic	ient S	Sample	ns = N	o sampl	e > ≠	Greater	than	Maximum	AuFA =	Fire	assay/A	A5															

AND THE REAL PROPERTY OF

and the second second

.

REPORT 8: 890072 PA		ASHWORTH	EXPL	÷.,	P	roj: 259	ł		Date I	n: 89/	02/19	Date	Out:89	/02/22	Att	R KIDI	LARK							Pag	e So	if 6	
Sample Mumber	Ag Al gom Z	As ppa	Au pom	Ba ppm	Bi pon	Ca T	Cd opa	Co ppe	Cr 994	Cu ppe	Fe 1	K	Ng I	Nn ppe	No ppn	Na I	Ni ppa	Р 1	Pb ppa	Pd	Pt	Sb ppe	Sn ppe	Sr ppe	U ppa	Pps	Zn ppo
CH-89 L3+50W 6+75N	1.2 1.97	20	` (3	121	(3	0.28	1.7	14	35	42	2.60	0.15	0.67	305	4	0.02	82	0.03	38	<3	<5	(2	7	45	<5	<3	125
CH-89 L3+50W 5+255	0.3 1.86	4	<3	106	(3	0.17	1.2	12	28	23	1.95	0.11	0.54	256	3	0.01	62	0.02	31	(3	(5	<2	6	38	(5	(3	100
CH-89 L3+50W 7+25S	0.7 2.37	15	(3	82	<3	0.37	1.1	14	26	57	2.97	0.15	1.10	350	3	0.01	38	0.02	32	<3	<5	<2	6	26	(5	(3	88
CH-89 L3+50W 7+75S	0.3 2.67	22	<3	154	<3	0.26	0.6	11	16	21	2.21	0.13	0.47	600	2	0.01	27	0.46	37	<3	<5	<2	6	27	(5	(3	149
CH-89 L4+00W 3+255	0.4 1.78	12	<3	112	<3	0.31	0.4	10	23	30	2.01	0.11	0.61	425	- 1	0.01	29	0.11	29	<3	<5	<2	5	27	K 5	(3	108
CH-89 L4+00W 3+755	1.2 2.23	8	(3	117	<3	1.50	1.1	15	37	51	2.71	0.32	0.93	460	. 3	0.02	42	0.06	32	(3	<5	<2	6	88	<5	<3	123
CH-89 L4+00W 4+255	0.3 2.35	31	(3	155	(3	0.61	1.2	18	21	64	3.01	0.20	0.88	980	3	0.01	33	0.07	39	<3	<5	<2	5	17	(5	<3	122
CH-89 L4+00W 4+755	0.2 1.54	3	(3	181	(3	0.30	0.4	9	13	15	1.61	0.10	0.39	1012	1	0.01	23	0.11	39	(3	<5	(2	4	46	- (5	(3	122
CH-89 L4+00W 5+255	0.4 3.19	10	<3	141	<3	0.27	0.5	13	33	17	2.13	0.11	0.39	517	2	0.01	83	0.17	36	(3	(5	(2	6	55	(5	(3	178
CH-89 L4+00W 5+755	0.5 2.58	<3	<3	159	<3	0.28	0.9	13	32	32	2.45	0.13	0.52	394	2	0.02	88	0.10	31	<3	(5	<2	5	49	<5	<3	179
CH-89 L4+00W 6+255	0.3 2.52	(3	<3	219	<3	0.18	0.8	12	26	17	1.95	0.09	0.51	765	2	0.01	56	0.18	31	<3	<5	<2	5	39	<5	(3	178
CH-89 L4+00W 6+75S	0.7 2.03	60	(3	166	(3	0.52	0.9	13	27	40	2.41	0.16	0.59	628	2	0.02	69	0.14	36	(3	<5	<2	5	83	<5	(3	163
CH-89 L4+00W 7+255	0.4 1.89	47	<3	122	<3	0.26	0.5	13	28	33	2.51	0.15	0.59	421	2	0.02	60	0.06	33	<3	<5	<2	5	53	(5	(3	116
CH-89 L4+00W 7+755	0.2 1.68	29 21	(3 (3	207 123	<3 <3	0.35	0.6	13	44	27	2.82	0.18	0.68	1160	2	0.02	79	0.10	33	(3	<5 (F	<2	4	76	(5	(3	133
CH-89 L4+00W 8+25S	0.3 2.52	21	13	123	13	0.13	0.1	10	24	16	1.86	0.10	0.38	333	1	0.01	48	0.11	31	<3	<5	<2	5	23	(5	(3	118
CH-89 L4+00W 8+75S	0.3 2.35	12	<3	188	<3	0.70	0.8	12	36	27	2.45	0.19	0.81	965	2	0.01	47	0.07	44	<3	<5	<2	-5	77	<5	<3	137
CH-89 L4+00W 9+25S	0.6 2.39	26	<3	82	3	0.31	1.3	18	40	82	3.83	0.19	1.30	543	3	0.01	- 44	0.05	34	<3	<5	<2	6	29	(5	<3	138
CH-89 L4+00W 9+755	0.1 1.94		<3	127	<3	0.27	1.3	15	40	40	2.90	0.17	0.90	799	2	0.02	55	0.07	31	<3	۲5	<2	5	34	<5	<3	150
CH-89 L4+50W 2+755	0.2 1.75		<3	115	(3)	0.14	0.4	9	21	27	2.00	0.10	0.57	398	1	0.01	29	0.13	25	<3	<5	<2	4	20	(5	(3	106
CH-89 L4+50W 3+25S	0.1 1.83	<3	<3	234	<3	0.45	0.8	8	9	17	1.33	0.11	0.24	772	1	0.01	19	0.72	25	<3	<5	<2	4	99	۲)	<3	183
CH-89 L4+50W 3+755	0.3 1.92	7	<3	143	<3	0.29	0.4	10	21	24	1.93	0.13	0.50	958	2	0.02	53	0.07	44	<3	<5	<2	5	40	<5	<3	114
CH-89 L4+50W 4+255	0.1 1.69	<3	<3	135	<3	0.13	0.3	.7	12	17	1.38	0.06	0.28	838	1	0.01	28	0.08	26	(3	(5	<2	4	21	(5	(3	97
CH-B9 L4+50W 4+755	0.4 2.90	<3 (3	<3 (3	179	<3	0.28	1.1	17	51	38	3.04	0.15	0.72	539	3	0.02	152	0.11	35	<3	<5	<2	6	58	(5	(3	170
CH-89 L4+50W 5+255 CH-89 L4+50W 5+755	0.4 3.09	(3 111	<3 <3	179 177	<3 <3	0.28 0.31	1.2	18 13	52 45	37 27	3.14 2.33	0.18 0.13	0.75 0.72	456 585	3 2	0.02 0.02	156 93	0.11 0.09	38 67	<3 <3	<5 <5	<2 <2	6 5	59 57	(5 (5	<3 <3	178 167
61 03 E4100W 31/33	V.B 2.3V	111	13	.,,	13	V. JI	v. ,	15	τJ	17	2.00	V.13	V.72	200	2	0.02	22	V.V3	67			12	J	-			
CH-89 L4+50W 6+25S	0.5 2.56	115	<3	176	<3	0.32	1.1	13	44	28	2.29	0.13	0.71	528	2	0.02	90	0.08	67	<3	<5	<2	5	58	<5	(3	157
CH-89 L4+50W 6+755	1.2 2.02		<3	151	<3	0.53	1.1	15	19	58	3.13	0.20	0.35	351	2	0.02	131	0.07	41	<3	<5	<2	5	82	(5	(3	169
CH-89 L4+50W 7+255	0.4 2.83		(3	173	(3	0.19	0.5	12	28	19	2.11	0.10	0.54	584	2	0.02	80	0.13	37	(3	(5	<2	5	41	<5 (5	(3	158
CH-89 L4+50W 7+75S	0.1 2.12		<3	192	3	0.28	0.8	14	49	24	2.97	0.17	0.62	689	2	0.01	95	0.05	31	(3	(5	<2	5	55	<5 (5	<3	150
CH-89 L4+50W 8+25S	0.1 2.17	8	₹3	134	(3	0.17	0.5	12	41	20	2.42	0.11	0.83	597	2	0.01	79	0.02	30	<3	(5)	<2	5	36	<5	<3	171
CH-89 L4+50W B+755	0.2 3.42		<3	200	<3	0.29	1.1	18	61	26	3.04	0.15	1.14	613	3	0.01	126	0.03	42	(3	(5	(2	5	59	(5	(3	183
CH-89 L4+50W 9+255	0.2 2.05		(3	165	<3	0.39	1.1	15	40	37	2.90	0.19	0.81	733	3	0.02	75	0.04	37	(3	(5	<2	5	69 78	<5 /5	<3 <3	132 120
CH-89 L4+50W 9+755	0.1 2.08		3	162	(3	0.51	1.2	14 7	44. 19	37 13	2.90 1.51	0.20 0.07	0.86 0.45	70B 274	2	0.02 0.01	72 24	0.04 0.10	38 22	<3 <3	<5 <5	<2 <2	5 4	78 23	<5 (5	<3 <3	120 91
CH-89 L5+00W 2+255	0.1 1.27 0.3 2.23	3 ∢3	<3 <3	91 108	(3 (3	0.15 0.20	0.1 0.5	13	24	13 25	2.17	0.10	0.43	328		0.01	37	0.06	30	(3	(5	<2	5	30	<5	(3	152
CH-89 L5+00W 3+255	0.3 2.23	(3	13	100	13	0.20	0.5	15	27	23	2.17	v. 1 v	0.04	520		0.02	J/	0.00	50	13	13	~1	5	50			
CH-89 L5+00W 3+75S	0.1 1.75		(3	93	(3	0.19	0.3	9	20	19	1.91	0.09	0.54	314	1	0.02	25	0.03	25	<3	<5	(2	4	26	(5	(3	106
CH-89 L5+00W 4+255	0.1 1.51	<3	(3	101	<3	0.13	0.1	7	16	12	1.49	0.06	0.43	557	1	0.02	19	0.03	22	(3	< (5	(2	4	25	(5	<3	92
CH-89 L5+00W 4+755	0.3 2.82		<3	165	<3	0.19	0.5	14	19	31	2.30	0.11	0.55	887	2	0.02	36	0.09	34	(3	(5	<2	- 6	28	(5	(3	164
CH-89 L5+00W 5+25S	0.3 2.90	8	<3	186	⟨3	0.12	0.5	11	17	25	1.91	0.10	0.42	770	2	0.02	44	0.18	34	{3	<5	<2	5	30	<5	<3	159
Minimum Detection	0.1 0.01	3	3	t	3	0.01	0.1	1	1	1	0.01	0.01	0.01	i,	1	0.01	1	0.01	2	3	5	2	2	1	5	3	1
Maximum Detection	50.0 10.00	2000	100	1000	1000	10.00 1	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	2000	1000	10000	100	1000	20000
<pre>< = Less than Minimum is</pre>			ns =	No sampl	le ⟩=	Greater	r than	Maximum	AuFA =	Fire	assay/A	AS															



REPORT #: 890072 PA ASHWORTH EXPL Proj: 259 Date In: 89/02/19 Date Out:89/02/22 Att: R KIDLARK Page 6 of 6 Sample Number Ag A1 Au 8a Bi Çđ Ĉo As Ca Cr Ĉu Fe ĸ ňa ňa No Na Ni P Pb Pđ Pt Sb Sn Sr U ч ln Z ï DOB 008 000 098 DDB DDA 008 008 008 ž. z Ż 1 ï pps DDB DDa DDB ppe ppe 008 DDB 008 00e 004 001 CH-89 L5+00W 5+75S 1.3 2.95 6 <3 137 <3 0.16 12 28 27 2.02 0.10 321 62 1.1 0.60 2 0.03 0.13 37 <5 37 ۲) (3 160 <3 (2 1 CH-89 L5+00W 6+255 3.70 401 (3 127 <3 0.32 1.4 0.1 9 13 19 1.70 0.11 0.24 329 1 0.03 100 (5 ۲۵ (3 0.37 55 (3 <2 7 64 160 CH-89 L5+00W 6+755 1.3 2.59 18 (3 143 (3 0.16 17 15 1.49 320 0.5 9 0.08 0.37 0.03 59 34 ζ5 (3 1 0.16 <3 <2 6 30 (5 161 CH-89 L5+00W 7+255 2.37 <3 146 Ô. B 9 (3 0.09 0.5 9 17 15 1.61 0.08 0.22 372 1 0.03 67 0.15 33 3 ۲5 (3 <3 (2 6 22 144 CH-89 L5+00W 7+755 0.6 2.47 15 <3 157 <3 0.11 0.9 13 54 24 2.54 0.11 0.89 202 85 32 1 0.03 0.02 (3 **(5** (2 6 29 ۲) <3 115 CH-89 L5+50W 3+25M 1.3 2.54 (3 <3 145 <3 0.15 1.1 13 26 31 2.38 0.11 0.71 406 36 (3 (5 <3 187 1 0.03 41 0.07 <2 7 29 (5 CH-89 L5+50W 3+75W (3 204 (3 0.28 30 1.4 3.17 10 1.2 13 142 3.45 0.16 0.80 811 2 0.03 55 (3 0.19 44 <3 **(5**) <2 7 56 (5 243 CH-89 L5+50W 4+25W (3 0,45 0.6 1.63 3 164 <3 0.12 0.4 10 18 21 1.71 0.09 1482 1 0.03 23 0.09 28 <3 (5 (2 5 20 (5 <3 186 CH-89 L5+50# 4+75N 6 <3 109 (3 0.17 0.5 12 22 25 2.00 0.6 2.19 0.08 0.58 296 1 0.03 27 0.05 32 (3 ٢5 <2 31 **(**5 <3 112 6 CH-89 L5+50W 5+75N 2.4 2.02 15 3 135 <3 0.60 1.8 22 30 81 4.18 0.22 0.68 423 7 0.04 155 0.07 40 (3 (5 <2 6 71 ۲5 (3 231 0.10 CH-89 L5+50W 6+25N 0.6 2.44 20 (3 201 (3 0.5 14 34 41 2.75 0.11 0.51 245 1 0.03 115 0.06 35 (3 (5 (2 6 29 ۲۶ <3 139 CH-89 L5+50W 6+75N 14 <3 150 (3 0.17 11 17 20 1.74 ۲۵ 0.6 1.94 0.5 0.08 0.38 625 1 0.03 38 33 (3 (5 <2 38 <3 170 0.10 ĥ CH-89 L5+50W 7+25M 0.6 3.62 20 (3 244 <3 0.13 0.9 15 59 21 2.35 0.11 0.69 248 1 0.03 146 0.06 40 (3 ۲) <2 7 34 (5 <3 167 CH-89 L5+50W 7+75M 0.6 1.82 16 (3 106 <3 0.22 0.5 16 41 35 2.59 0.12 0.90 386 53 32 (3 (5 <2 (5 <3 121 1 0.03 0.06 6 40 1.35 CH-89 L5+50W 2+255 1.54 11 <3 132 <3 0.11 0.6 0.1 6 11 10 0.07 225 12 27 (3 <5 <2 (5 (3 0.19 -1 0.03 0.40 5 23 75 CH-89 L5+50# 2+755 1.3 3.22 5 <3 71 <3 0.22 13 8 26 1.70 0.08 0.24 400 <3 (5 (5 (3 90 0.4 1 0.03 21 0.15 37 (2 7 26 CH-89 L6+00W 1+255 (3 48 **3** 12 1.3 1.28 30 1.62 1.2 24 46 2.52 0.28 0.82 447 2 0.04 32 0.11 28 <3 (5 <2 5 93 <5 <3 112 CH-89 L6+00W 1+755 0.6 2.34 358 <3 191 3 1.22 4.7 35 41 140 4.60 0.29 1.32 1400 5 0.03 67 0.12 55 (3 ۲5 <2 (5 (3 313 138 6 (3 <3 0.45 27 CH-89 L6+00W 2+25S 0.1 2.56 31 140 1.6 27 95 3,98 0.20 0.87 48 (5 (3 164 1346 2 0.03 0.13 45 (3 ۲) (2 6 65 CH-89 L6+00W 2+75S (3 <3 0.25 0.1 2.01 6 113 0.6 10 19 21 2.21 0.12 0.50 684 1 0.03 22 0.08 36 (3 ٢5 (2 6 38 (5 <3 129 CH-89 L6+00W 3+255 1.85 10 <3 255 <3 0.31 1.8 13 18 37 2.75 0.14 0.64 971 2 0.02 64 0.15 35 (3 <5 <2 44 ۲) <3 226 0.1 -5 CH-89 L6+00W 3+755 2.18 <3 <3 178 <3 0.18 0.4 8 15 16 1.48 0.08 0.37 759 0.02 43 30 (3 (5 (2 31 (5 (3 201 0.1 1 0.14 5 <3 (3 284 (3 0.32 22 20 30 2.39 0.13 0.48 2177 54 38 (3 ۲) <2 ٢) <3 293 CH-89 L6+00W 4+255 0.1 2.69 1.5 1 0.02 0.20 6 46 (3 CH-B9 L6+00W 4+755 0.1 2.28 3 164 <3 0.33 0.6 11 24 26 2.02 0.10 0.58 976 1 0.02 43 0.13 31 (3 (5 <2 6 50 (5 <3 171 (3 CH-89 L6+00W 5+255 0.6 2.25 20 (3 131 (3 0.31 1.1 16 35 46 2.87 0.14 0.86 640 1 0.03 48 0.07 35 (3 ۲) <2 6 42 (5 147 0.6 1.99 (3 CH-89 L6+00W 5+755 109 3 97 <3 0.46 1.7 20 39 110 4.23 0.19 0.96 654 3 0.03 90 0.10 41 <3 <5 <2 6 55 (5 180 (3 153 (3 13 33 24 2.45 0.15 0.43 1106 128 <3 {5 (2 94 (5 (3 217 CH-89 L6+00W 6+255 1.87 118 0.43 1 0.02 0.08 60 5 0.1 0.9 (3 26 1.77 0.09 0.24 46B 1 50 (3 <5 (2 36 **{5** 170 CH-89 L5+00W 6+755 0.1 2.89 44 <3 119 <3 0.14 0.4 9 14 0.02 0.13 41 6 (3 11 39 24 2.25 0.10 0.76 178 1 0.02 50 0.02 25 (3 (5 {2 5 26 (5 (3 106 11 69 <3 0.14 0.5 CH-89 L6+00W 7+255 0.1 1.66 (3 138 14 28 22 2.27 509 33 <3 ۲5 <2 23 <5 CH-89 L6+00W 7+755 2.50 19 <3 123 <3 0.12 0.3 0.10 0.47 1 0.02 84 0.08 Б 0.1 3 3 3 0.01 0.1 1 0.01 0.01 0.01 1 1 0.01 1 0.01 2 3 5 2 2 1 5 3 1 0.1 0.01 1 1 Miniaua Detection 1 1000 10000 100 1000 20000 100 100 2000 **Maximum Detection** 50.0 10.00 < = Less than Minimum is = Insufficient Sample ns = No sample > = Greater than Maximum AuFA = Fire assay/AAS

and the second second

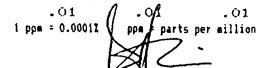
個

ANOMALOUS RESULTS: FURTHER ANALYSES BY ALTERNATE METHODS SUGGESTED

ANALYSED BY: David Chiu

SIGNED:

Registered Provincial Assayer


GENERAL REMARK: RE: job no. 890068

and the second

1. 1

lie.

GC VANGEOCH	HEM LAB LIMITE	D 1988 VANCOUV • (6	IN OFFICE TRIUMPH ST. /ER, B.C. V5L 1K5 (604) 251-5656 (604) 254-5717	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.
REPORT NUMBER: 890082 AA	JDD NUMBER: 890082	ASHWORTH EXPLO	RATION LTD.	PAGE 1 OF 1
SAMPLE #	РЬ %	Zn X	Ag oz/st	
CH-89 R68		2.06		
CH-89 R74	1.05	.67	2.22	
CH-89 R76	1.11		2.13	

< = less than</pre>

APPENDIX C

D CONTRACT

ANALYTICAL TECHNIQUES

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

December 1st, 1987

TO: Peter Leriche ASHWORTH EXPLORATION LTD. Mezz Fir ~ 744 W. Hastings St. Vancouver, B.C. V6C 1A5

FROM: Vangeochem Lab Limited 1521 Pemberton Avenue North Vancouver, British Columbia V7P 283

SUBJECT: Analytical procedure used to determine gold by fire assay method and detect by atomic absorption spectrophotometry in geological samples.

. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. Method of Extraction

- (a) 20.0 to 30.0 grams of the pulp samples were used. Samples were weighed out using a top-loading balance and deposited into individual fusion pots.
- (b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are then fused at 1900 degrees Farenhiet to form a lead "button".
- (c) The gold is extracted by cupellation and parted with diluted nitric acid.

3.4

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

(d) The gold bead is retained for subsequent measurement.

3. Method of Detection

- (a) The gold bead is dissolved by boiling with sodium cyanide, hydrogen peroxide and ammonium hydroxide.
- (b) The detection of gold was performed with a Techtron model AAS Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values, in parts per billion, were calculated by comparing them with a set of known gold standards.

Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. David Chiu and his laboratory staff.

David Chiu VANGEOCHEM LAB LIMITED

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

December 1st, 1987

ie :

6.

12.3

in i

4. 1

菌素

- TO: Peter Leriche ASHWORTH EXPLORATION LTD. Mezz Fir - 744 W. Hastings St. Vancouver, B.C. V6C 1A5
- FROM: Vangeochem Lab Limited 1521 Pemberton Avenue North Vancouver, British Columbia V7P 283
- 8UBJECT: Analytical procedure used to determine hot acid soluble for 28 element scan by inductively Coupled Plasma Spectrophotometry in geochemical silt and soil samples.

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. Method of Digestion

- (a) 0.50 gram portions of the minus 80-mesh samples were used. Samples were weighed out using an electronic balance.
- (b) Samples were digested with a 5 ml solution of HCL:HNO3:H20 in the ratio of 3:1:2 in a 95 degree Celsius water bath for 90 minutes.
- (c) The digested samples are then removed from the bath and bulked up to 10 ml total volume with dimineralized water and thoroughly mixed.

A State

-

\$

ŭ.

à. s

i.

8

1

100

100

VANGEOCHEM LAB LIMITED

MAIN OFFICE 1521 PEMBERTON AVE. NORTH VANCOUVER, B.C. V7P 2S3 (604) 986-5211 TELEX: 04-352578 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

3. Method of Analyses

See.

The ICP analyses elements were determined by using a Jarrel-Ash ICAP model 9000 directly reading the spectrophotometric emissions. All major matrix and trace elements are interelement corrected. All data are subsequently stored onto disk.

1. <u>Analysts</u>

The analyses were supervised or determined by either Mr. Eddle Tang, and, the laboratory staff.

Eddie Tang VANGEOCHEM LAB LINITED

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT RENO, NEVADA, U.S.A.

January 16 1989

.

1

2.3

職

TO: Peter Leriche ASHWORTH EXPLORATION LTD. 718 - 789 West Pender St. Vancouver, B.C. V6C 1H2

- FROM: Vangeochem Lab Limited 1988 Triumph Street Vancouver, British Columbia V5L 1K5
- SUBJECT: Analytical procedure used to determine hot acid soluble for 28 element scan by Inductively Coupled Plasma Spectrophotometry in geochemical silt and soil samples.

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. <u>Method of Digestion</u>

- (a) 0.50 gram portions of the minus 80-mesh samples were used. Samples were weighed out using an electronic balance.
- (b) Samples were digested with a 5 ml solution of HCL:HNO3:H20 in the ratio of 3:1:2 in a 95 degree Celsius water bath for 90 minutes.
- (c) The digested samples are then removed from the bath and bulked up to 10 ml total volume with dimineralized water and thoroughly mixed.

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

3. Method of Analyses

The ICP analyses elements were determined by using a Jarrel-Ash ICAP model 9000 directly reading the spectrophotometric emissions. All major matrix and trace elements are interelement corrected. All data are subsequently stored onto disk.

4. Analysts

لأسيقا

審測

F

ien ai

The analyses were supervised or determined by either Mr. Eddie Tang, and, the laboratory staff.

Ullie Dy.

Eddie Tang VANGEOCHEM LAB VIMITED

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

January 16 1989

TO: Peter Leriche ASHWORTH EXPLORATION LTD. 718 - 789 West Pender St. Vancouver, B.C. V6C 1H2

- FROM: Vangeochem Lab Limited 1988 Triumph Street Vancouver, British Columbia V5L 1K5
- SUBJECT: Analytical procedure used to determine Aqua Regia soluble gold in geochemical samples.
- 1. Method of Sample Preparation
 - (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. <u>Method of Digestion</u>

- (a) 5.00 to 10.00 grams of the minus 80-mesh portion of the samples were used. Samples were weighed out using an electronic micro-balance and deposited into beakers.
- (b) Using a 20 ml solution of Aqua Regia (3:1 solution of HCl to HNO3), each sample was vigorously digested over a hot plate.
- (c) The digested samples were filtered and the washed pulps were discarded. The filtrate was then reduced in volume to about 5 ml.

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

- (d) Au complex ions were then extracted into a di-isobutyl ketone and thiourea medium (Anion exchange liquids "Aliquot 336").
- (e) Separatory funnels were used to separate the organic layer.

3. Method of Detection

The detection of Au was performed with a Techtron model AAS Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out onto a strip chart recorder. A hydrogen lamp was used to correct any background interferences. The gold values, in parts per billion, were calculated by comparing them with a set of gold standards.

Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. David Chiu and his laboratory staff.

David Chiu VANGEOCHEM LAB LIMITED

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

January 16 1989

TO: Peter Leriche ASHWORTH EXPLORATION LTD. 718 - 789 West Pender St. Vancouver, B.C. V6C 1H2

- FROM: Vangeochem Lab Limited 1988 Triumph Street Vancouver, British Columbia V5L 1K5
- SUBJECT: Analytical procedure used to determine gold and silver by fire assay method and detect by gravimetry in geological samples.

1. Method of Sample Preparation

- (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
- (b) Dried soil and silt samples were sifted by hand using an 8^m diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
- (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. Method of Extraction

- (a) 1/4 to 1 assay tonne of the pulp samples were used. Samples were weighed out using a top-loading balance and deposited into individual fusion pots.
- (b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are thoroughly mixed, then fused at 1900 degrees Farenhiet to form a lead "button".
- (c) The gold and silver is extracted by cupellation and weighed as a dore bead. The gold is then parted with

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

diluted nitric acid.

(d) The gold bead is retained for subsequent measurement.

3. Method of Detection

The gold bead is weighed using a Sartorius micro-balance. The weight lost from the original bead is the silver content. Both the silver and the gold are reported in Ounces per short tonne.

4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. David Chiu and his laboratory staff.

Ste

David Chiu VANGEOCHEM LAB LIMITED

APPENDIX D

SOIL CORRELATION MATRIX AND STATISTICAL HISTOGRAMS

Routine: FREHIST File: \TONY\HANNA.NUM Date: 02-22-1989 Comment: PARTIAL DATA SET

Histogram for Zn_ppm *** DATA OUTSIDE RANGE ***

•	Lower limit	Upper limit	Frequency	8	Cumulative	8	
					~~~~~~~		
	0	40	1	0	1	0	
	40	80 *	35	3	36	3	
	80	120	380	36	416	40	
	120	160	367	35	783	74	Mean
	160	200	155	15	938	89	
	200	240	69	7	1007	96	
	240	280	18	2	1025	97	
	280	320	10	1	1035	98	
	320	360	5	0	1040	99	
	360	400	1	0	1041	99	
	400	440	1	0	1042	99	
	440	480	5	0	1047	100	
	480	520	1	0	1048	100	
	520	560	0	0	1048	100	
	560	600	0	0	1048	100	
	600	640	0	0	1048	100	
	640	680	0	0	1048	100	
	680	720	0	0	1048	100	
	720	760	1	0	1049	100	
	760	800	0	0	1049	100	
		s inside hist s outside his		104 3	9	ء 	
	Descriptive S	Statistics					
	Mean Variance Standard Devi Skewness	iation		167 129	.058 66.08 .4839 77193		

1. 3

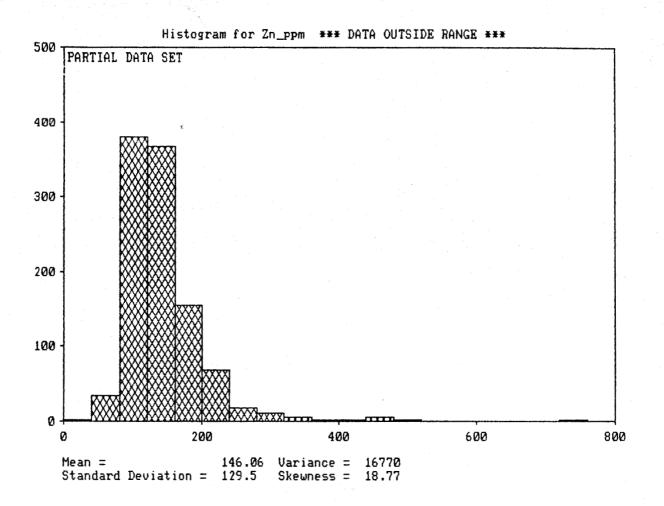
6

12 T 1

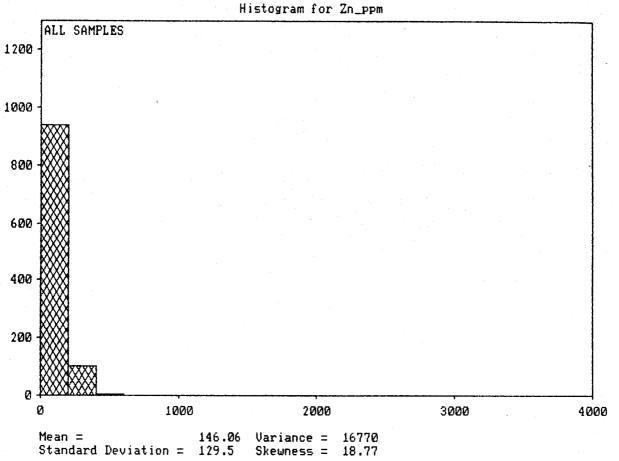
1 B 

**N** 1 لفرينا

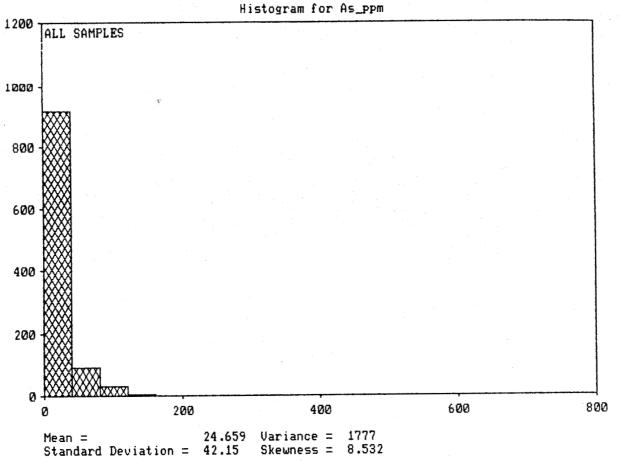
i.


. افريقا

1 


.

2


Page:

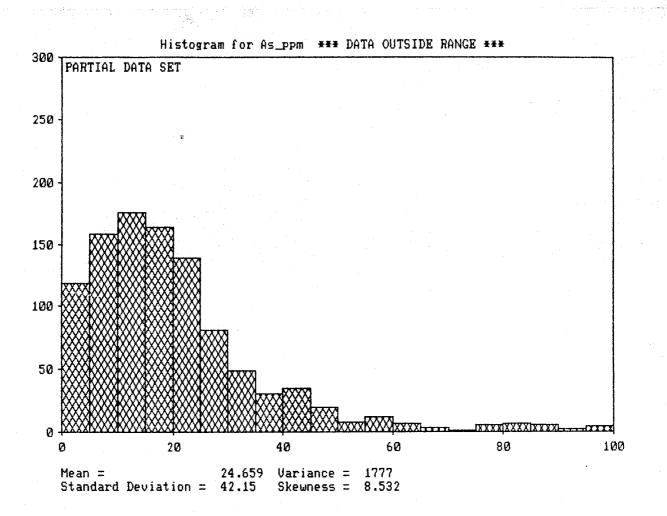






0(200




Page:

Histogram for As_ppm

ا ا

8

Lower ]	limit (	Jpper	limit	Freque	ency	æ	Cumulative	*	
0		40	 x		917	87	917	87	Mean
40		80			90	9	1007	96	
80		120			30	3	1037	99	
120		160			5	0	1042	99	
160		200			0	0	1042	99	
200		240			2	0	1044	99	
240		280			1	0	1045	99	
280		320			2	0	1047	100	
320		360			1	0	1048	100	
360		400			0	0	1048	100	
400		440			1	0	1049	100	
440		480			0	0	1049	100	
480		520			1	0	1050	100	
520		560			0	0	1050	100	
560		600			1	0	1051	100	
600		640			1	0	1052	100	
640		680			0	0	1052	100	
680		720			0	0	1052	100	
720		760			0	0	1052	100	
760		800			0	0	1052	100	
Data el	lements	insid	le hist	coram		10	52		
	lements					0			
Descrip	ptive St	tatist	ics						
Mean						24	.65874		
Variano	ce					17'	76.872		
Standar	d Devia	ation				42	.15296		
Skewnes							53168		

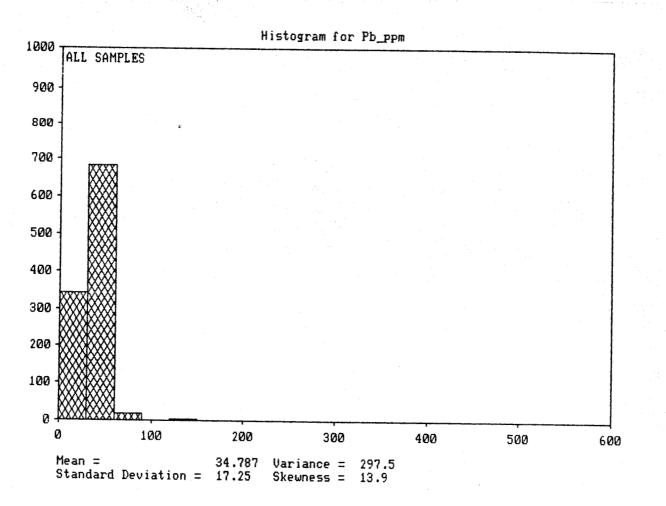


6.9

i i

F

.


Routine: FREHIST File: \TONY\HANNA.NUM Date: 02-22-1989 Comment: FARTIAL DATA SET

Histogram for As_ppm *** DATA OUTSIDE RANGE ***

Lower limit	Upper limit	Frequency	<b>%</b> (	Cumulative	*	
0	5	119	11	119	11	
5	10	159	15	278	26	
10	15	176	17	454	43	
15	20	164	16	618	59	
20	25	139	13	757	72	Mean
25	30	81	8	838	80	
30	35	49	5	887	84	
35	40	30	3	917	87	
40	45	35	3	952	90	
45	50	19	2	971	92	
50	55	8	1	979	93	
55	60	12	1	991	94	
60	65	7	1	998	95	
65	70	3	0	1001	95	
70	75	1 5	0	1002	95	
75	80	5	0	1007	96	
80	85	7	1	1014	96	
85	90	5	0	1019	97	
90	95	2	0	1021	97	
95	100	4	0	1025	97	
Data elements	s inside histo	ogram	102	5		
	outside hist		27			
Descriptivo	tatistics					

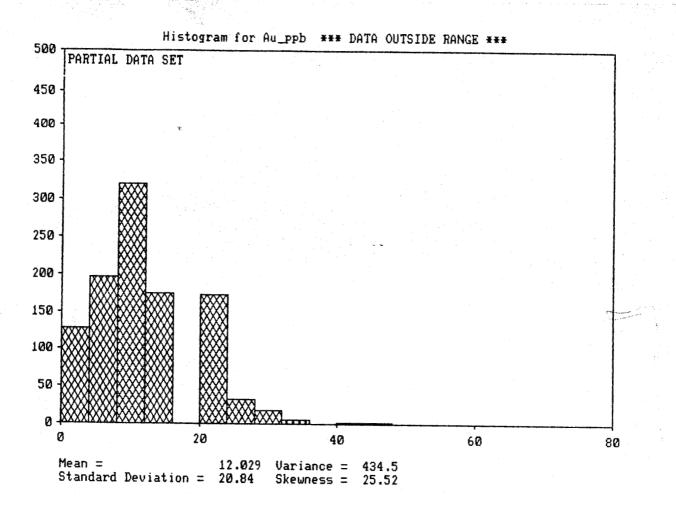
Descriptive Statistics

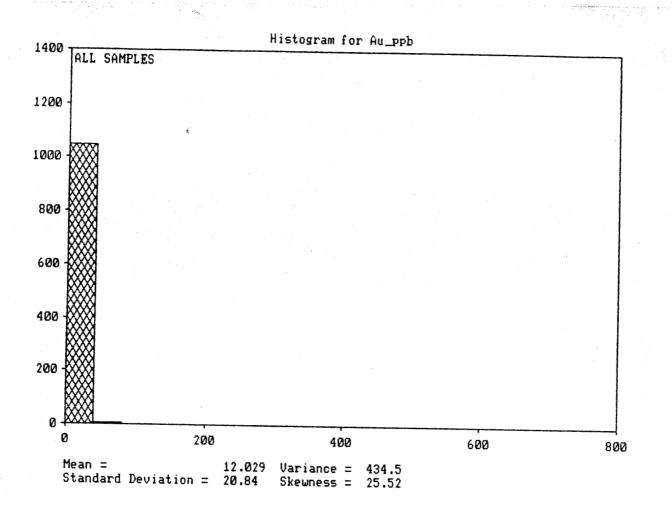
24.65874
1776.872
42.15296
8.53168



Histogram for Pb_ppm

E.


أستعا


10

1

Lower limit	Upper limit	Frequency	8	Cumulative	*	
0	30	343	33	343	33	
30	60	684	65	1027	98	Mean
60	90	19	2	1046	99	
90	120	1	0	1047	100	
120	150		0	1049	100	
150	180	2	0	1050	100	
180	210	1	0	1051	100	
210	240	0	0	1051	100	
240	270	Ō	0	1051	100	
270	300	0	0	1051	100	
300	330	0	0	1051	100	
330	360	Ō	0	1051	100	
360	390	0	0	1051	100	
390	420	0	0	1051	100	
420	450	1	Û	1052	100	
450	480	0	0	1052	100	
480	510	Ō	Ō	1052	100	
510	540	Ō	Ō	1052	100	
540	570	0	0	1052	100	
570	600	0	0	1052	100	
Data elements	inside hist	ogram	105	2		
Data elements		•	0			
Descriptive St	tatistics					
Mean			34.	78707		
Variance			297	.536		
Standard Devia	ation			24923		

Standard Deviation Skewness 17.24923 13.9011





Histogram for Au_ppb

أفسية

Lower limit	Upper limit	Frequency	% C	umulative	*	
0	40	1047	100	1047	100	Mean
40	80	3	0	1050	100	
80	120	1	0	1051	100	
120	160	0	0	1051	100	
160	200	0	0	1051	100	
200	240	0	0	1051	100	
240	280	0	0	1051	100	
280	320	0	0	1051	100	
320	360	0	0	1051	100	
360	400	0	0	1051	100	
400	440	0	0	1051	100	
440	480	0	0	1051	100	
480	520	0	0	1051	100	
520	560	0	0	1051	100	
560	600	0	0	1051	100	
600	640	1	0	1052	100	
640	680	0	0	1052	100	
680	720	0	0	1052	100	
720	760	0	0	1052	100	
760	800	0	0	1052	100	
Data elements Data elements			1052 0			
Descriptive S	Statistics					
Mean Variance Standard Devi Skewness	ation		12.0 434. 20.8 25.5	4837 4427		

Routine: FREHIST File: \TONY\HANNA.NUM Date: 02-22-1989 Comment: PARTIAL DATA SET

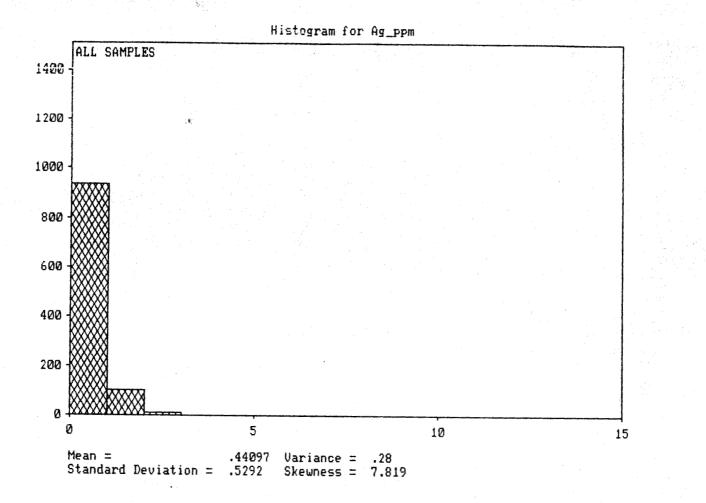
Lower limit Upper limit Frequency * Cumulative _____ ---------____ --------------Mean Data elements inside histogram Data elements outside histogram 

#### Histogram for Au_ppb *** DATA OUTSIDE RANGE ***

Descriptive Statistics

Same state

Contraction of the

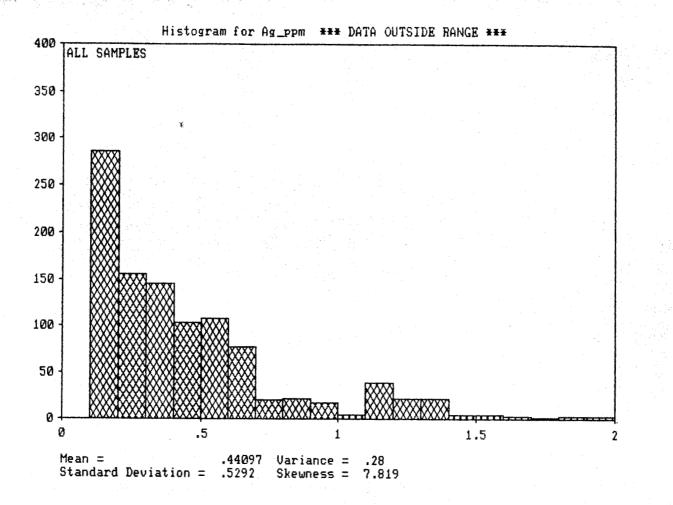

ال ا

Mean		12.02947
Variance		434.4837
Standard	Deviation	20.84427
Skewness		25.52462

·

Histogram for Ag_ppm

Lower limit Upper	limit	Frequency	*	Cumulative	%	
0 1	£.	935	89	935	89	Mean
1 2		104	10	1039	99	
2 3		9	1	1048	100	
3 4		1	0	1049	100	
4 5		2	0	1051	100	
5 6		0	0	1051	100	
6 7		0	0	1051	100	
7 8		0	0	1051	100	
8 9		0	0	1051	100	
9 10		0	0	1051	100	
10 11		1	0	1052	100	
11 12		0	0	1052	100	
12 13		0	0	1052	100	
13 14		0	0	1052	100	
14 15		0	0	1052	100	
Data elements inside	e histo	gram	105	2		
Data elements outsid	le hist	ogram	0			
Descriptive Statist	ics					
Mean			0.4	409705		
Variance				800041		
Standard Deviation			0.5	291541		
Skewness			7.8	19223		




Routine: FREHIST File: \TONY\HANNA.NUM Date: 02-22-1989 Comment: PARTIAL DATA SET

Histogram for Ag_ppm *** DATA OUTSIDE RANGE ***

Lower limit	Upper limit F	requency	% (	Cumulative	*	
0	0.1 *	0	0	0	0	
0.1	0.2	287	27	287	27	
0.2	0.3	156	15	443	42	
0.3	0.4	145	14	588	56	
0.4	0.5	103	10	691	66	Mean
0.5	0.6	108	10	799	76	
0.6	0.7	78	7	877	83	
0.7	0.8	20	2	897	85	
0.8	0.9	21	2	918	87	
0.9	1	17	2	935	89	
1	1.1	4	0	939	89	
1.1	1.2	39	4	978	93	
1.2	1.3	22	2	1000	95	
1.3	1.4	21	2	1021	97	
1.4	1.5	4	0	1025	97	
1.5	1.6	5 3	0	1030	98	
1.6	1.7	3	0	1033	98	
1.7	1.8	1 3	0	1034	98	
1.8	1.9	3	0	1037	99	
1.9	2	3	0	1040	99	
Data elements	inside histog	ram	1040	I		
Data elements	outside histo	gram	12			
Descriptive S	tatistics					
Mean			0.44	09705		

Variance Standard Deviation Skewness 0.2800041 0.5291541 7.819223



HANNA PACIFIC SOIL SAMPLES CORRELATION COEFFICIENTS AGPPM 1.00 0.07 0.45 0.04 -0.06 0.31 0.26 0.51 0.30 0.19 0.43 0.38 0.30 0.29 -0.08 0.32 0.23 0.34 -0.07 0.57 -0.04 0.00 0.10 0.48 0.23 0.04 0.26 0.62 ALPCI 0.07 1.00 0.01 0.08 0.25 0.22 -0.20 -0.06 0.30 -0.01 0.17 0.19 -0.18 0.07 0.00 0.05 0.02 0.21 0.17 -0.02 0.00 0.00 0.20 -0.22 -0.02 -0.01 -0.01 -0.08 0.09 ASPPN 0.45 1.00 0.04 0.05 0.18 0.07 0.33 0.11 0.33 0.38 0.10 0.13 -0.01 0.30 0.04 0.48 -0.02 0.52 -0.02 0.00 0.00 -0.00 0.42 -0.00 4.01 0.18 0.24 0.50 AUPPH 0.04 0.08 0.04 1.00 0.02 0.23 -0.00 0.02 0.05 0.10 0.07 0.11 0.01 0.10 -0.01 0.05 0.03 -0.02 0.02 -0.01 0.00 0.01 0.01 0.01 -0.00 -0.00 -0.00 0.02 BAPPH -0.06 0.25 0.05 0.02 1.00 -0.09 -0.09 0.12 0.07 -0.07 -0.09 -0.02 -0.09 -0.25 0.52 0.04 -0.08 0.19 0.32 0.18 0.01 0.00 0.00 0.01 0.21 -0.00 -0.01 0.20 0.08 BIFPM 0.31 0.22 0.18 0.23 -0.09 1.00 0.02 0.25 0.58 0.31 0.60 0.59 0.07 0.61 0.12 0.34 0.05 0.11 -0.10 0.19 -0.03 0.00 0.00 0.16 0.07 0.03 0.18 0.05 0.15 CAPCI 0.26 -0.20 0.07 -0.00 -0.09 0.02 1.00 0.06 -0.01 -0.02 0.11 -0.04 0.99 0.07 -0.00 -0.04 0.02 0.03 -0.05 0.03 -0.03 0.00 0.00 -0.08 0.50 0.05 0.01 -0.01 0.09 COPPN 0.51 -0.06 0.37 0.02 0.12 0.25 0.06 1.00 0.37 0.17 0.38 0.41 0.10 0.28 0.21 0.44 -0.00 0.26 -0.04 0.69 -0.00 0.00 0.00 0.02 0.37 0.03 0.11 0.85 0.57 COPPH 0.30 0.30 0.33 0.05 0.07 0.58 -0.01 0.37 1.00 0.45 0.83 0.84 0.07 0.68 0.26 0.50 0.01 0.36 -0.12 0.26 0.04 0.00 0.00 0.19 0.20 0.02 0.14 0.14 0.20 CRPPM 0.19 -0.01 0.11 0.10 -0.07 0.31 -0.02 0.17 0.45 1.00 0.31 0.49 0.03 0.63 -0.07 0.32 0.02 0.52 -0.26 0.03 0.07 0.00 0.00 0.03 0.11 0.07 0.05 0.01 0.06 CUPPR 0.43 0.17 0.33 0.07 -0.09 0.60 0.11 0.38 0.83 0.31 1.00 0.10 0.27 -0.19 0.23 0.82 0.19 0.64 0.14 0.51 0.00 0.00 0.09 0.27 0.09 0.14 0.12 0.18 0.05 FEPCT 0.38 0.19 0.38 0.11 -0.02 0.59 -0.04 0.41 0.84 0.49 0.82 1.00 0.06 0.72 0.14 0.64 0.14 0.43 -0.27 0.32 0.10 0.00 0.00 0.12 0.23 0.03 0.12 0.14 0.24 KPCT 0.30 -0.18 0.10 0.01 -0.09 0.07 0.99 0.10 0.07 0.03 0.19 0.06 1.00 0.14 0.01 0.02 0.04 0.07 -0.08 0.06 -0.03 0.00 0.00 -0.07 0.54 0.06 0.02 -0.00 0.11 M6PCT 0.29 0.07 0.13 0.10 -0.25 0.61 0.07 0.28 0.68 0.72 0.14 1.00 0.08 0.34 0.04 0.16 -0.30 0.10 0.00 0.00 0.18 0.13 0.11 -0.01 0.13 0.63 0.64 0.03 0.04 0.07 0.14 0.03 RNPPN -0.08 0.00 -0.01 -0.01 0.52 0.12 -0.00 0.21 0.26 -0.07 0.14 0.14 0.01 0.08 1.00 -0.02 0.02 -0.16 0.26 0.16 -0.06 0.00 0.00 0.11 0.24 -0.03 MOPPH 0.32 0.09 0.30 0.05 0.04 0.34 -0.04 0.44 0.50 0.32 0.51 0.64 0.02 0.34 -0.02 1.00 0.06 0.47 -0.16 0.30 0.06 0.00 0.00 0.03 0.17 0.05 0.10 0.27 0.25 NAPCT 0.23 0.05 0.04 0.05 -0.08 0.14 0.04 0.04 0.02 0.06 1.00 -0.01 -0.11 0.11 -0.02 0.00 0.00 0.02 0.14 0.01 0.05 -0.09 -0.01 0.05 0.02 -0.00 0.01 0.02 0.10 NIPPM 0.34 0.00 0.00 -0.06 0.35 0.07 0.01 0.18 0.29 0.02 0.48 0.03 0.19 0.11 0.03 0.26 0.36 0.52 0.27 0.43 0.07 0.16 -0.16 0.47 -0.01 1.00 -0.19 0.24 0.10 PPCT -0.07 0.21 -0.02 -0.02 0.32 -0.10 -0.05 -0.04 -0.12 -0.26 -0.19 -0.27 -0.08 -0.30 0.26 -0.16 -0.11 -0.19 1.00 0.04 -0.07 0.00 0.00 0.07 0.00 -0.07 -0.01 0.08 -0.00 0.01 0.00 0.00 0.18 0.40 PBPPM 0.57 0.17 0.52 0.02 0.18 0.19 0.03 0.69 0.26 0.03 0.23 0.32 0.06 0.10 0.16 0.30 0.11 0.24 0.04 1.00 -0.01 0.03 0.58 0.75 PDPFN -0.04 -0.02 -0.02 -0.01 0.01 -0.03 -0.03 -0.00 0.04 0.07 0.05 0.10 -0.03 0.03 -0.06 0.06 -0.02 0.10 -0.07 1.00 0.00 0.00 -0.01 -0.05 -0.01 0.04 -0.01 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PTPPN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 SBPPH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SWPPN 0.10 0.20 -0.00 0.01 0.01 0.16 -0.08 0.02 0.19 0.03 0.09 0.12 -0.07 0.18 0.11 0.03 0.02 -0.06 0.07 0.18 -0.01 0.00 0.00 1.00 -0.10 -0.01 0.05 -0.09 0.16 0.22 0.40 0.23 0.54 0.13 0.24 0.17 0.14 0.35 0.00 0.40 -0.05 0.00 0.00 -0.10 1.00 0.13 0.07 SRPPM 0.48 -0.22 0.42 0.01 0.21 0.07 0.50 0.37 0.20 0.11 0.27 0.03 0.02 0.07 0.09 0.03 0.06 0.04 -0.03 0.05 0.01 0.07 -0.02 -0.01 -0.01 0.00 0.00 -0.01 0.13 1.00 -0.00 0.00 0.03 UPPM 0.23 -0.02 -0.00 -0.00 -0.00 0.03 0.05 0.01 0.11 0.14 0.05 0.14 0.12 0.02 0.11 0.07 0.10 0.05 0.01 -0.01 0.03 0.04 0.00 0.00 0.05 0.07 -0.00 1.00 0.02 0.04 WPPN 0.04 -0.01 0.18 -0.00 -0.01 0.18 2NPPM 0.26 -0.01 0.24 -0.00 0.20 0.05 -0.01 0.85 0.14 0.01 0.12 0.14 -0.00 -0.01 0.14 0.27 -0.09 0.18 0.08 0.58 -0.01 0.00 -0.09 0.22 0.00 0.02 1.00 0.33 AUPPE 0.62 -0.08 0.50 0.02 0.08 0.15 0.09 0.57 0.20 0.06 0.18 0.24 0.11 0.13 0.03 0.25 -0.01 0.29 -0.00 0.75 0.04 0.00 0.00 0.16 0.40 0.03 0.04 0.33 1.00

S.L. tag

### APPENDIX E

### GEOPHYSICAL EQUIPMENT SPECIFICATIONS

APA-

Specifications	
specifications	
	45 to 70 kills with handwidth of 450 kin tuning serves
	15 to 30 kHz, with bandwidth of 150 Hz; tuning range accommodates new Puerto Rico station at 28.5 kHz.
Transmitting Stations Measured	Up to 3 stations can be automatically measured at
	any given grid location within frequency tuning range.
Recorded VLF Magnetic	
Parameters	Vertical in-phase, vertical quadrature (out-of-phase), total field strength (or optional horizontal amplitude), dip angle.
	1300 combined VLF magnetic and VLF electric
	measurements as well as gradiometer and magnetometer readings.
Display	Custom designed, ruggedized liquid crystal display
	with built-in heater and an operating temperature range from $-40^{\circ}$ C to $+55^{\circ}$ C. The display contains
	six numeric digits, decimal point, battery status
	monitor, signal strength status monitor and function descriptors.
RS232C Serial I/O Interface	Variable baud rate from 300 to 9600 baud, 8 data bits, 2 stop bits, no parity.
fest Mode	A. Diagnostic Testing (data and programmable
	memory). B. Self Test (hardware).
Sensor Head	Contains 3 orthogonally mounted coils with
	automatic tilt compensation.
Operating Environmental	
Range	– 40°C to + 55°C; 0 – 100% relative humidity;
	Weatherproof.
Power Supply	Non-magnetic rechargeable sealed lead-acid 18V DC
	operation only.
Veights and Dimensions	
Instrument Console	3.8 kg, 122 x 246 x 210 mm.
VLF Electronics Module	1.7 kg 280 x 190 x 60 mm
Lead Acid Battery Cartridge	1.8 kg, 138 x 95 x 75 mm.
Lead Acid Battery Belt	1.8 kg, 540 x 100 x 40 mm.
Disposable Battery Belt	1.2 kg, 540 x 100 x 40 mm.
Power Supply Veights and Dimensions Instrument Console Sensor Head VLF Electronics Module Lead Acid Battery Cartridge	Non-magnetic rechargeable sealed lead-acid 18V DC battery cartridge or belt; 18V DC disposable battery belt; 12V DC external power source for base station operation only. 3.8 kg, 122 x 246 x 210 mm. 0.9 kg, 140 dia. x 130 mm. 1.7 kg, 280 x 190 x 60 mm. 1.8 kg, 138 x 95 x 75 mm. 1.8 kg, 540 x 100 x 40 mm.

EDA Instruments Inc. 4 Thorncliffe Park Drive Toronto, Ontario Canada M4H 1H1 Telex: 06 23222 EDA TOR Cables: Instruments Toronto Telephone: (416) 425-7800 Fax: (416) 425-8135

1111111

*****

In USA, EDA Instruments Inc. 5151 Ward Road Wheat Ridge, Colorado U.S.A. 80033 Telephone: (303) 422-9112

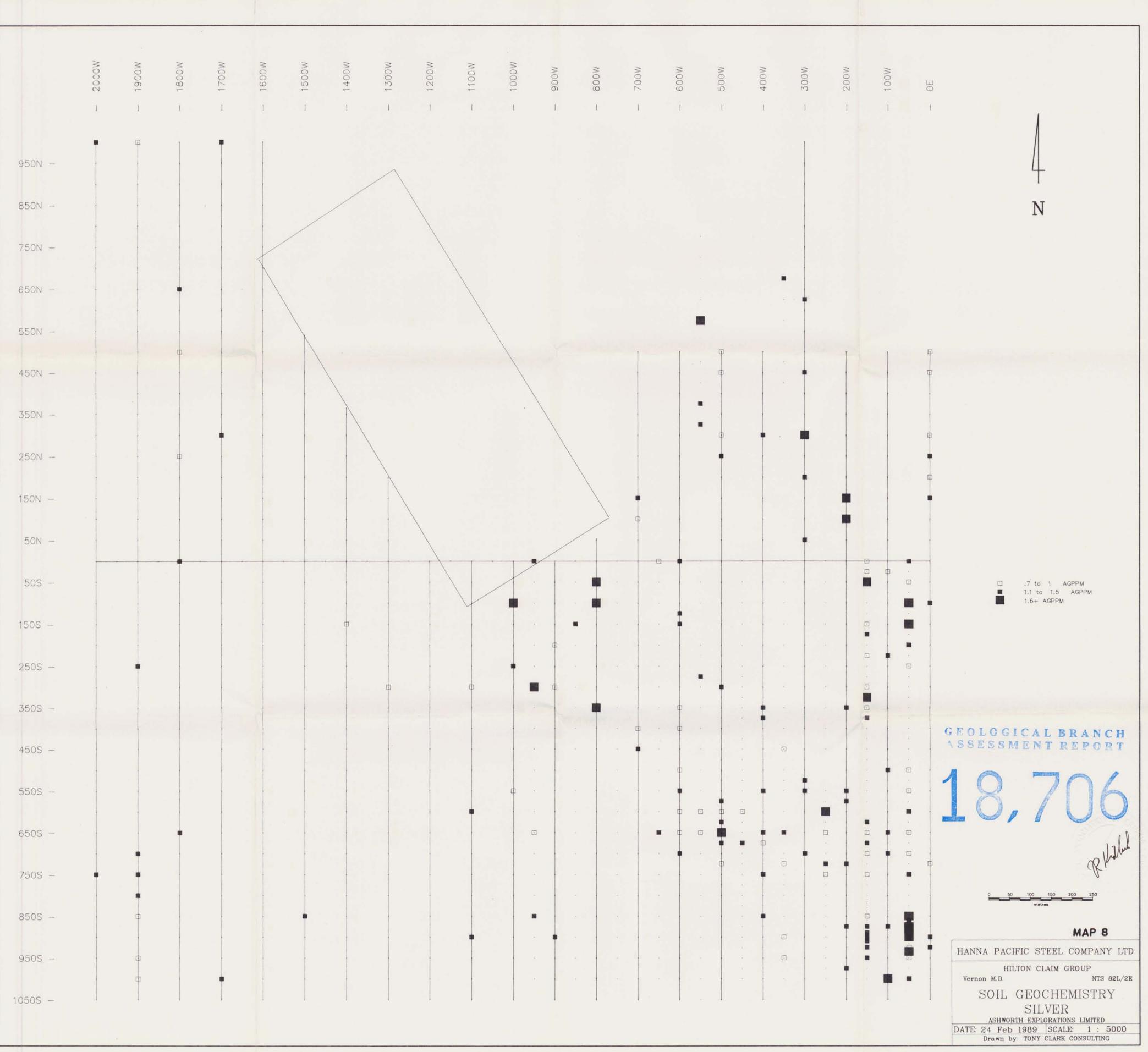
E.S. L. I. C.

- - - - -

. .



	_																		
	- 2000W	- 1900W	- 1800W - 1700W	- 1600W	- 1500W	- 1400W	- 1300W - 1200W	- 1100W	- 1000W	M006 -	- 800W	- 700W	- 600W	- 500W	- 400W - 300W	MOOG		- 100W	- OE
950N —	305 272 327	465 242 219	919 19. 187 15 18	7 188												104			4
850N -	152	230	220 11! 123 12		/											94 97			Ν
750N —	107	215	158 22	26 236									121 167			131 136			
650N —	85	201		23 223 234									170 139		125 125 132	141			
550N -	97	115	118										231		136	121			
450N -	113	116	139 17 100 16	2 -189								146	106 112 114 186	217	231	508	273 226	253	451
350N -	89 -	113	116 15	1 143								177	217 243 187	108		175	192	226	167
250N -	99	162	80 24			195						136	140	137	113	131	285 242	178	172
150N —	116	127	81 12	2 84	86	- 125	98					146	99	191	154	144	174 325	196	163
50N -	90	143	89 12 88 11		202	84	154			/	233	62	57	143	182	221	168	171	136
50S -	104	121	138 86	5 75 5 140	124	113		148		35 144 101	92 149	104 94	227 119	141 166		111 115	141 180 113	122112172115152110	112 115 184 3519 Zn ppm
150S -	141	119	93 95	4 110	135	152	127 3	90 <b>115</b> 516 107	223 8	18 126 131 37 122 73	151	103 198	112 295 313	121 132		128 135	138	196         161           122         173           145         114	161 173 238 114
250S -	109	99	- 88 - 97	168	118	125	169 2	17 319 223 112	101 1 85 1	28 100 124 25 79 87	107 151	207 138	164 75 151 129 90	75 88 91 123 99 106		151 86	123 145 96	134         141           138         107           134         141           124         196	107 141 96 196
350S -	114 148	113	98 13 99 12	174	106	160	160 1	26 204 94 139		00 101 95	132 125 112 184	125 239	232 106 226 276 204 201	228 206 152 183 148 186 106 114	88 88 108 208 124 123	137 140 102 158		118         136           128         122           127         112           178         137	122 112 146 800S 92 86 132 128 136 137 84 102 128 136
450S -	112	- 128 - 81	98 13	11 149	-173	122	139 1	37         124           22         136	126 1		139 159 245 102	126 181 122 159	210 163 293 136 99 171	145           92         97           124         164           164         170	352 195 122 105 169 122	86 91 112 122 182	170 201 138	138         134           172         260           104         115           103         114	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
550S —	100	84	79         11           109         15	127	93	130		51 115 37 196	113 2			184 153	128 102 147 161 141 180	154 113 159 178 180 175 160 167	178 100 174 117 179	96 222 156 112 136	141 101 89 137 91 110 124	164         139           109         121           113         134           130         140           136         120	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
650S -	88	130	74 14 176 16	4 147	168	130	130 1	52 119 42 98 32 61		02 149 197 19 165 210 28 189 142	160 146	128 120	217 204 121 170 228 170	160 157 242 180 161 169 158 124	178 132 206 163 84 120	169 120 170 189 138 150	111 115 103 99 152 95 113 110	138         213           130         154           122         206           122         151	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
750S -	27	82	128 16	53 154	85	109	-103	70 133 93 144	111 1	35 149 169	139 156	106 172	106 147 191 138 121 102	144 158 171 115 115 150 150 123	116 88 101 176 133 149 100 164	128 95 92 123 144 103	94 109 79 116 107 86 92 86	135 110 115 144	III0     II5     GEOLOGICAL BRANCH       II44     100       II24     II7
850S -	97	81	118 74	4 126	123	139	141 1	24 133 60 189	107	92 95 148	128 124	181 157		130 123 171 145 170 183 173 128	118 112 88 137 111 88	92	73 73 103 55 100 56	195 165 123	165 93 123 105 100 700 metres
950S -	159	78	132 9.	3 158	149	140		77 228 33 226	117 1	95 132			154 223	173 128 132 147 108 120 94 142	138 142 106 150	129 89 99	98 79 86 103 95 144 98	106 P	147     131     HANNA PACIFIC STEEL COMPANY LTD       128     163     HILTON CLAIM GROUP
1050S —						37		226					105	1.000		1000 (1000) (1			SOIL GEOCHEMISTRY ZINC
																			R Hollach DATE: 24 Feb 1989 SCALE: 1: 5000 Drawn by: TONY CLARK CONSULTING


	2000W 1900W	1800W	1700W	1500W	1400W	1300W 1200W	1100W	M006	800W	700W	600W	500W	400W 300W	200W	100W
	I I	I	l .	t T		I I		1 1	Ï	Ť,	i I H ho		t I	T	1
950N -	10 35	15	10	10											
3.3014 -	10 20		15	10	/								10		
850N -	5 20 10 20		10	15									10		
750N -	10 20		5	25							15		10 20		
650N -	0 20		15 10	20							10		0 10		
550N -	25 15 15 10		10	20							20		15 15		
450N -	15 10	20	10	10						10	10   15   5	10	5 10 10 0 5	5	0
10011	10 20	10	10							5	5 5 15	0	0 5 10 0 5	10	0
350N —	15 10 15 10	20	10 20	5						5	15	0 5	5 5 5 5	15 5	5
250N -	10 10	15	20	25	20	5				5	0	5	5 5	. 5	5
150N —	0 35	5	10	20 20	10	10				5	0	20	5 5	5	0
50N -	20 20 15 10	10	0	5 15 15 15	10	0			30	0	0	5	0 15 10 15	30 0	5
50S -	5 10	15	10	5 10 10 10	25	10 5	0	10 15 0 5 1	5 - <del>10 10</del> 0 20 30	20 10 ·	25 10 10 10 0 25	10 15 5 15	0 10 0	15 10 3	10 5 30 10 15 15 10 5 10
1500	0 5	10	10	5 20	10	0 0			0 10 20	15 10	10	0 5	0 10 5		10         10           5         5         20           25         20         5
150S -	5 10	10	10	20 20 10	15	5 10 5 5	30 5		5 5 0 10 20		5 30 35 20 0 10 15 10	5 10 5 10	0 10 5 15 10 5	25 5 2	10         5         20           10         5         20           15         5         20           15         5         20           10         20         20
250S -	0 15 5 15 20	10	15	5 20 20 20	20	10 0 10 10	0		0 15 5 0 20 10		10 5 10 15 10 0 10	1.2	5 5 0 5 5 0	10 0 1	0 0 25
350S -	15 15 15	10	15	20 10	10	0 5	5		5 15 30 5 10 10		15 10 10 15 15 15 0 20	5 5 0 15 10 10	10 5 15 0 15 0 10 10	20 0 2	5         20         20           10         0         10           5         20         5           0         5         15
450S -	10 15	10	15	20 30	20	10 10	15		5 5 10	25 15	20	10 0 0 15 5 10	15 5 20 5 15 10	15 0 1	0 5 15 5 25 5 0 0 35 0 15 5
550S -	- 25 · 15 - 15 · 15	20	15	15 20 5 5	15	5 10 0 5	10		5 10 10 0 20 5		10 5 10 15 10 5 10 30	10 10 20 15 5 10	5 10 0 10 10 20 10 15 5 10	0 1	0 10 20
650S -	15 20 5 20	25	10	20 15 10 20	10	5 5	- 15	5. St. 1	5 30 10 0 10 10		10 5 25 15 10 25 20	20 20 20 20 5 15 10 30	5 15 10 15 20 25 5	5 15 1 30 10 15 10 0 15 5 2	
75.00	15 15	20	10	20 15	15	10 10	0		o 10 5		0 20 0 20 15	10         25           10         20           5         10	20 5 20 25 15 20	20 5 5	0 15 10 5 15 15
750S —	5 20 10 25	10	10	15 15 10 5	10	10 0	5	0 10 1 5 10 5	5 10 10 5 25 15	10 5 15 10	20 5 20 0 20 0 10	0 20 20 25 0 5 10	10 10 5 20 20 0 15 5 10	15     5     1       15     10     0       20     0     1       20     15     1	5 0 25 0 20 20 5 10 15 19 10
850S -	20 20 15 15	15	20	5 5 20 20	15	0 10 5 20		0 10 1 10 10 1	5 15 5 0 20 20		20 5 20 20 0 10	10 5 10 15 15	15 5 10 15 5 5 5 15 5	20     15       10     15       10     15       20     0	
950S —	25 15 10 15	25	15	10 20 10 20	15	10 0		5 0	20 20		20 10 20	20 5 10 10	20 5 10 0 10 20	20 0 2 10 10 5	5 18 5 0 0 11 5 25 15
1050S -								15 10 0			20 5 15	5 20	0 15 0	20 10 1	

200W		100W		OE	
800S 0	15	10	15	10	-
15	0 20 10 10 20	15 10 15	10	5	
15	15 20 10 20 10 10 10 10	10 - 10 - 10 - 10	20 40	5	
15	15 15 20 20	15 15 10 15	20 110 45	15	
0	20 15 15	15 0 15 20	10 635 15 0	0	
5	15	10 10	10 5 10 20 15	20	
950Sl 0	1 20		10 19	500	
GEO ASS	LOGI	CALI	RAN REPO	CH	
1	8	7		00 150 2 metres	MAP 3
		HANNA	PACIFIC	STEEL (	COMPANY LTD
		Vernon		CLAIM G	ROUP NTS 82L/2E
		S			MISTRY
R Hill	lah	DATE: 24	Feb 198	GOLD EXPLORATION 39 SCALE	: 1 : 5000

# 4 N

635

Au ppb

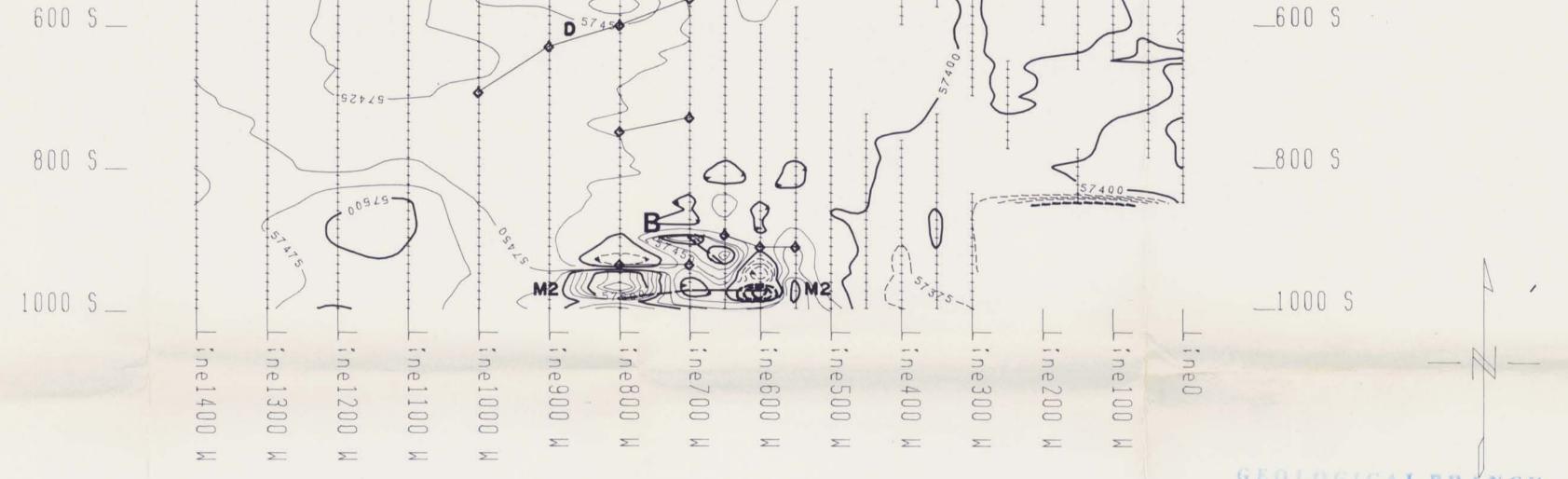


																				and the second				Charles .
		- 2000W	- 1900W	- 1000W	- 1600W	1500W		W0071 -	WOOdt	1100W		M0001 -	M006 -	- 800W	- 700W	- 600W	- 500W	- 400W	- 300W		- 200W	- 100W	Ц	
	950N —	1.1 0.4 0.5	0.9 0.1 0.2	0.1	0.1	0.1 0.2 0.2		/	$\overline{\mathbf{A}}$											0.5				
	850N —	0.2		0.2	0.3	0.1	/												1.1	0.5				
	750N —	0.1			0.6	0.1											0.6			0.5				
	650N —	0.2	0.3	1.1	0.1 0.3	0.1											0.6		1.2 0.1 0.5	0.4				
	550N -	0.1		0.2	0.1	0.1											2.4		0.1	0.1				
	4500	0.5	0.2	0.8	0.3	0.2					/				0.5	0.2	0.6	0.1	0.2	0.3	0.5	0.1		0.9
	450N -	0.2		0.5	0.5			\ \							0.3	0.5	0.6 0.3 1.4 0.3	0.1		0.4	0.1	0.1		0.4
	350N -	0.5		0.4	1.1	0.2									0.5		1.3	1.1		3.6	0.1	0.1		0.9
	250N —	0.5	0.1		0.5	0.4	0.2	0.1	0.1						0.3	0.5	1.5 0.2	0.3		0.5	0.1	0.1		1.1 0.9
	150N —	0.5	0.1	0.6	0.3	0.2	0.3	0.1	0.1						1.1	0.1	0.1	0.2		0.2	2.2	0.4		0.3
	50N -	0.3			0.1	0.2	0.1		0.1	\	0.2	0.3 1.1		0.1	0.2	0.1	0.2	0.1	14	1.1	0.1	1.0 0.1		0.4
	50S -	0.3		0.2	0.2	0.3	0.2		0.1	0.5	0.1	/	0.3 0.1				0.3 0.3			0.2 0.2		0.7 0.9 2.0 0.1	0.5	0.6
	150S -	0.1	0.6			0.1	0.3		0.5		0.5		0.3 0.3		0.3 0	1.3	0.1 0.2 0.2	0.5 0.1			0.1	0.1 0.1 0.9 0.1	0.3	0.1
	250S —	0.2		0.2		0.2	0.2		0.1		0.1			1 0.6 0.1 1 0.4 0.2		.5 0.3	0.6 0.1	0.4 0.1 0.3 0.1		0.3 0.4 0.2 0.5		0.6 0.1 0.7 1.2	1.3 0.2	0.1
		0.1 0.1	0.6			0.2	0.6		0.9		0.7		0.9 0.4		0.3 0	0.1	0.2 1.1	0.1 0.4		0.5 0.6	0.1	1.9 0.4	0.6	0.3 2
	350S -	0.2	0.3	0.5	1.1.1	0.3	0.6				0.2		0.3 0.1			0.1	0.1	0.3 1.2 0.5			0.1	1.3 0.4 0.1 0.1	0.1	0.1
	450S -	0.1	0.3	0.1	0.1	0.1	0.4		0.1		0.1	0.4 0.4			0.3 0	0.1		0.4 0.5 0.4 0.2		0.3 0.4 0.2 0.2	0.3	0.5 0.3	0.2	0.3
	550S —	0.2	0.5	0.1	0.1	0.1	0.3		0.1	0.4	0.3	0.7 0.1				0.6	1.3	0.3 1.1 0.6 0.5	0.2	1.2 1.1 0.5 0.5 0.2 4.3	1.2	0.5 0.4		0.6
	650S -	0.1	0.3	1.1	0.1	0.2	0.6		0.1		0,1	0.4 0.1		1 0.1 0.1		0.1	1.4	0.5 0.3 0.4 1.1	1.3	0.5 0.3 0.8 0.2	0.6	1.3 0.3 0.8 1.1	0.2	0.5 950
	750S -	0.5	1.1	0.1	0.3	0.1	0.1	0.1	0.2	0.1	0.3	0.1 0.1		1 0.1 0.3 2 0.3 0.1	0.3 0	0.1	0.8	0.4 0.4 0.1 1.1	0.7 0.1	1.1 0.3 1.2 0.6 0.9	1.2	0.6 0.6 0.8 0.4	5 0.1 4 1.1	0.6 0.8 0.5
		0.5	1.1	0.2	0.5	0.1	0.6	0.1	0.1	0.5	0.3	0.1 0.1					0.6 0.3 0.2 0.1 0.1	0.1 0.3 0.1 0.3		0.4 0.4 0.4 0.3 0.3	0.4	0.6 0.6 0.6 0.1 00000000000000000000000000000000000	0.6 0.1	0.3 0.5 0.5 0,5
	850S -	0.4	0.6	0.4	0.6	0.2	0.4	0.2	0.6	0.5	1.1	0,1 0,	1.1 0.	2 0.1 0.1	0.2 0	0.4 0.3	0.6 0.1	0.2 0.3 0.1 0.4 0.2 0.6	0.8	0.5 0.5 0.2 0.5	1.2           0.1           0.6	1.3		0.3 1.5 1.5
	950S —	0.1	0.8	0.2	0.6	0.1	0.5		0.1	0.5	0.2	0.3 0.					0.3 0.2 0.3 0.1	0.1 0.1			1.2	0.6 0.6	5 0.5	0.4 0.5 0.4
1	050S -														1		0.2				1			~

0E 200W 100W 0.5 0.5 0.5 0.3 1.5 1.5 0.4 AREA OF DETAILLED SAMPLING. 1:2500 GEOLOGICAL BRANCH ASSESSMENT REPORT 0 50 100 150 200 250 MAP 4 HANNA PACIFIC STEEL COMPANY LTD HILTON CLAIM GROUP Vernon M.D. NTS 82L/2E R Hidleh SOIL GEOCHEMISTRY SILVER ASHWORTH EXPLORATIONS LIMITED DATE: 24 Feb 1989 SCALE: 1 : 5000 Drawn by: TONY CLARK CONSULTING

10.3 Ag ppm

Ν


		- 2000W	- 1900W	- 1800W	- 1700W	- 1600W	- 1500W	- 1400W	- 1300W	- 1200W	- 1100W	- 1000W	M006 -	- 800W	- 700W	- 600W	- 500W	- 400W		- 300W	- 200W	- 100W	– 0E
	950N -	115	10	20	23	25			_											13			
	850N -	6	5	14	11	12	/													17			
	750N -	6	5	12	41	23											16			15			
	650N -	4	7	12	31 36 44												20 14		20	31			
	550N -	23	4	2	0	42											20 15		7 8	39 37 4			
	450N -	9	3	3	5	3									30	41	6 48		0 2	6	22	33	29
	350N -	6	0	18	15										40	80	3 8 10		5	2	9	13	20
		4	2	10	27	0									17		0 8		6 22	41	11	28	26
	250N -	10	9	12	- 39	11	17	2	6				/		16	23	23		22 44	89 39	21	10	43 36
	150N —	11	9	15	2	6	8	0	21						19 14	2	20		51 96	23	59 102	40	40
	50N —	3 8	13	8	10	7	24 75	4	25	13	6	7 2	5 2	) 12 9 32 4	0	4 7 20	30 - <del>17 - 32</del>		21 34 47	89 57	27 <u>38</u> 1	- 19 	23
	50S -	4	14	5	0	17	93 7	84	18	69	25	11 30 136 6			21 1				22 22 18 7	22 6 22 24	45 2 45 2 4 12 3	5 5 0 0 4	19
	150S —	11	5	3	4	10	30	41	15	42	12	55 6 23 17			13 1	358		15	3 10 7 4	26 25 24 12	2	8 2 14 15	4 9
	250S —	9	27	13	8	15	19	16	44	16	36	31 26	5 18 17	38	7 6	31 10 6	11 3 0 5	13 10	4 9	10 1	2 33 2 11	5 20 17 4 26 10 79 4	27
	350S -	8	22	12	24	53	23	16	16	19	13	16 38	3 7 17	107 18	18 2	10 25 0	8 19 0 2 3 5	0 7	16 5 12 21 3 8	4 0	50 17 16 4	5 27 9 23 14 5 25 11	f 19
	450S —	11	14	20	6	46	113	26	29	19	9 51	21 17 25 43	5 4 10	9 19 38	19 6	0 5 3	0 20 0 2 0 7	0	14 4 31 20 0 3	2 4 9 15 0	10	103 6 38 2	3 18
	550S —	38	104	38	68	22	24	31	- 31	46 23	32	29 55 34 45				20	8 5 8 13 3 6	2 7	31 1 10 4 14 7 2	16 22 30 3 13		10 17 27 18	3 30
n 1	650S -	29 32	22	- 31 - 15	43 39	- 38 - 22	58 62	18 30	9	17	56 21	21 40 29 23				118	401	115 137 1	5 16 0 06 243 60	10 22 6 13 7 7	2 35 10 24 11 2 22 13	45 10	30 30
	750S —	0	· 79 16	38	19 32	52 84	88	36 38	23	29 21	12	2 9 19 22		100		4 40 11 23	13 14 9 3 14	30 8 28 4 18 2	84 18 47 15 21 13	79 25 21 31 4	20 7 11 11 10 17	44 11 24 10 23 21	29 22 2 24
	350S —	22 40	8	23	23	6	53 98	40	39 25	29 33	20	11 20 15 19					15 18 24 23 7	23 1 8 2	29 22 16 36 21 44 15	17 45 12 15 16 8	18 0	18 21 22 6 19 14 29 20 20	24
	950S —	22	18	23	51	- 34	55	42	34	27	49	25 15						15 4 19 2	12 43 14 26 47 17	13 14 7 12 16 8	16 11 11 20	15 16	28 5 83 55 18
		7	18		20	26	24	25	34	18	27	0 19	22 14	16 70	10 6	20	22 16	18 2 33 3	25 33 14	17 9 9 2	6 10 13 13	12 19 43 15	16 25
1(	)50S -		ļ	I	Į		I	I	1			1				1	48	1		1		. 1	1

2000	V		100	ow		OE	
800S 1 18		0		- 22	15	1 24	
18	6 8 7	CHEDIED	6 2	1]	14	9	
• 17	67-6	5 5 3	0000	3	23 290	24	
23	14 22 11	12 9 11	16 9	29 31 23 25 15 568	35 130 93	28	
16	22	24 18 20	10 13 13	1	635	83	
11		26	11	13 22 13 10 12 26	14 19 25	55	
950S 12		18	1	24 12	13	18	
GE		GIC	A			T 150 200 tres MAF	250
L	0	,	н	ANNA PA	CIFIC S	TEEL CO	MPANY LTD
150				Vernon M.D.		LAIM GROU	UP NTS 82L/2E
R	hollow	l	DA	ASHV	ARS	CHEMI SENIC Iorations I SCALE:	
					the difference of the second sec	CLARK CON	

635 As ppm

Ν

:ne1200 Lîne900 Line800 Lîne100 Line200 - -- 1 ne1000 ne1400 ne1300 ne1100 :ne700 ine600 ine500 ine400 ine300 LineO 5....  $\sum$  $\sum$ Σ Σ_____ 5  $\sum$ 5 5  $\sum$ 5 5 2 1 400 N ____ __400 N C7425 200 N ___ __200 N 0___ _0 200 S ____ _200 S 400 S ____ _400 S



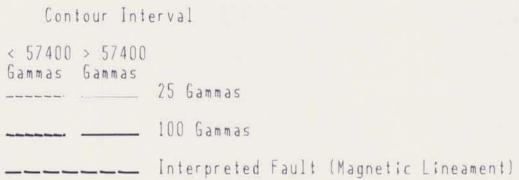
0

57 429

GEOLOGICAL BRANCH ASSESSMENT REPORT

R Willed

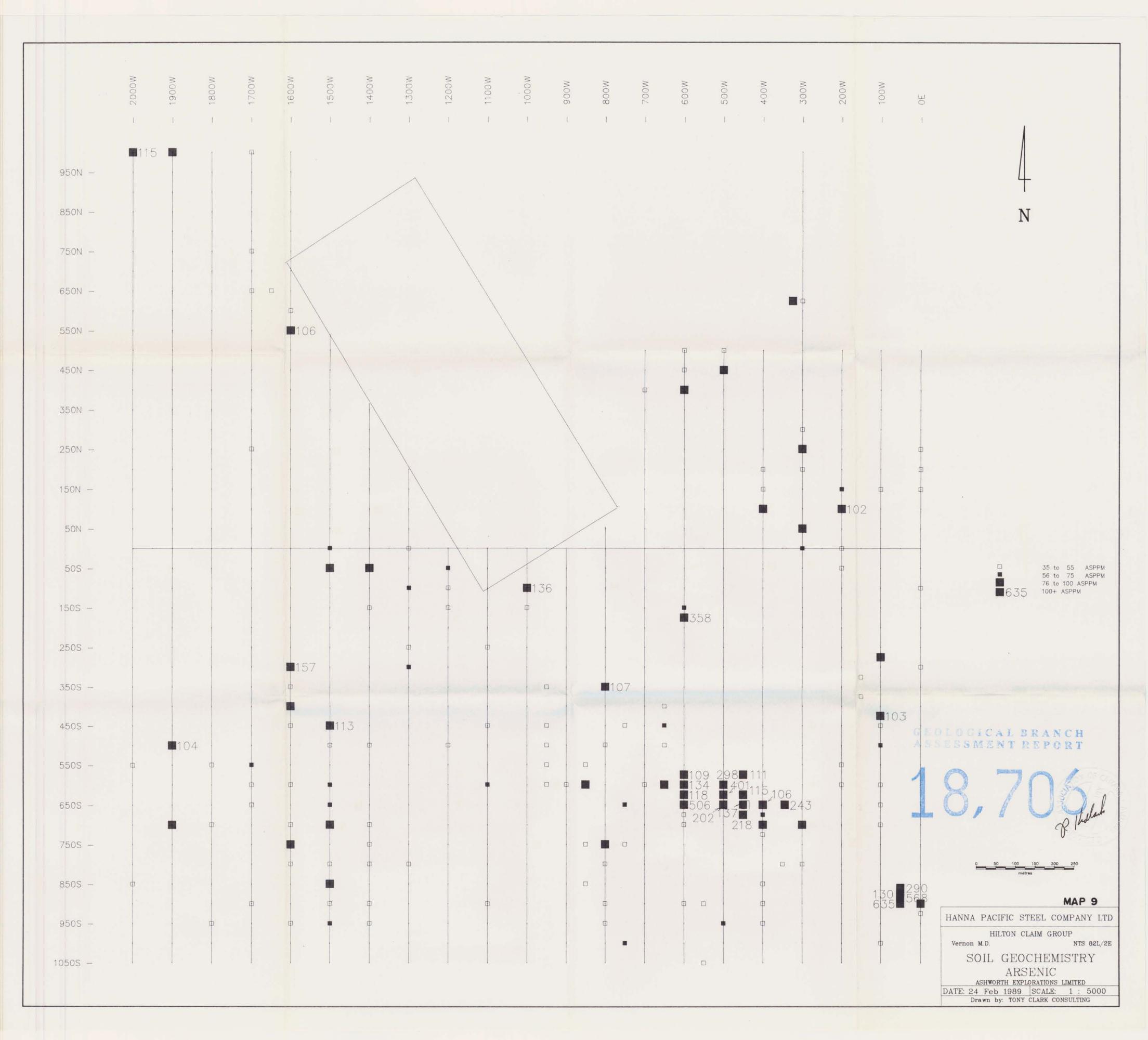
HANNA PACIFIC STEEL COMPANY LTD.


18,7

Total Field Magnetic Contours & Geophysical Interpretation Hilton Claim Group Vernon Mining Division, B.C. NTS 82 L/2E

Interpretex Resources Ltd. Report by T.R. Matich Surveyed by Ashworth Explorations Limited Project # 259 February 1989

Map # 14


# LEGEND



SCALE 1 : 5 000 0 0 100 (metres) 200 300 400

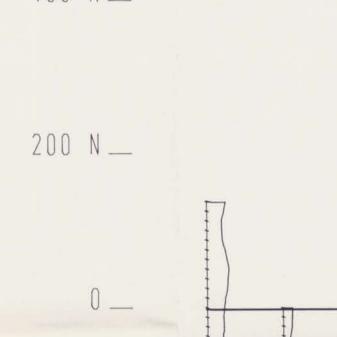


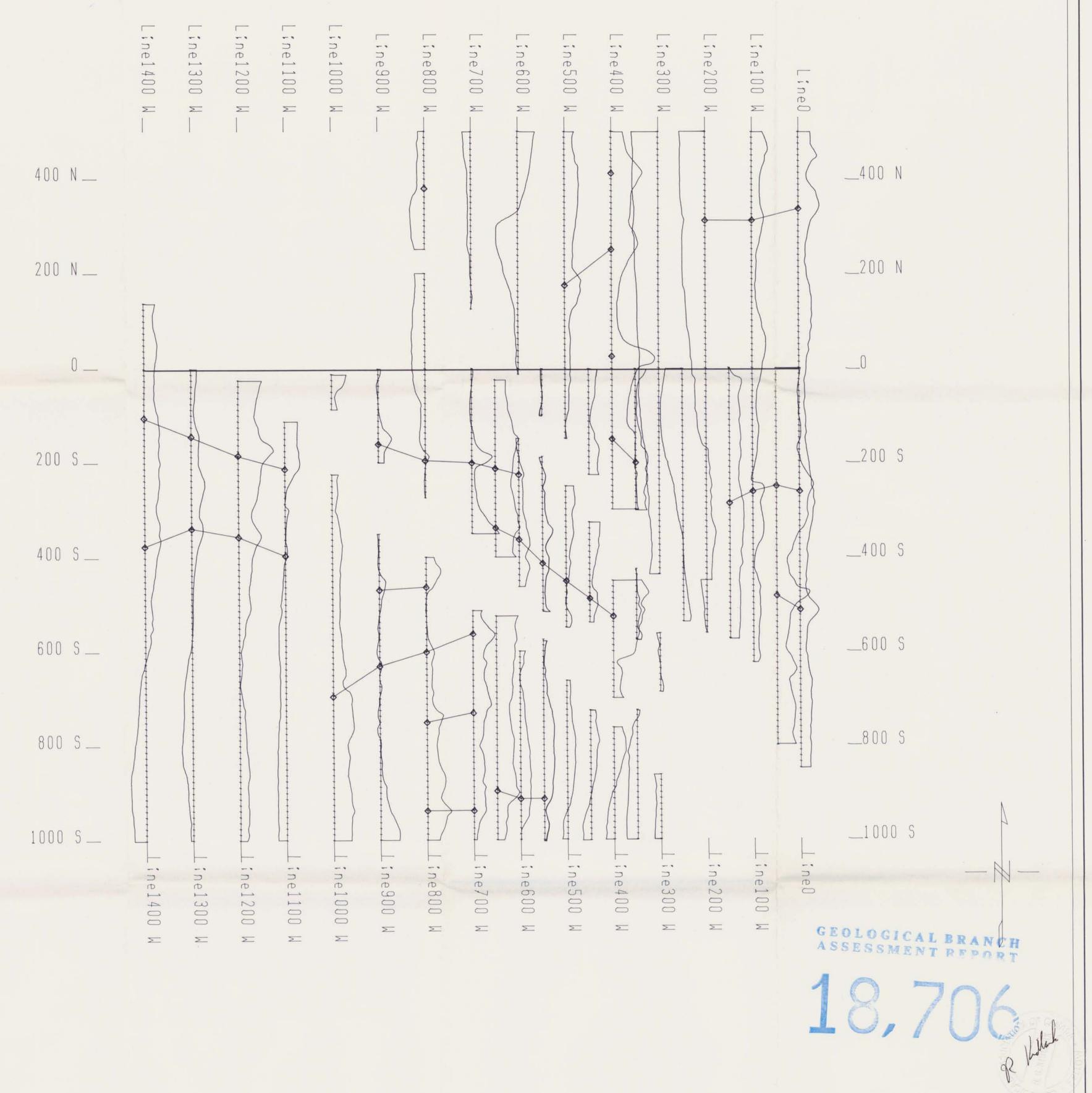
♦ VLF-EM Conductor



												4		
			1900W	1800W	1 700W	1600W	1500W	1400W	1300W	1200W	1100W	1000W	M006	800W
950N -       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th></th> <th>1</th> <th>1</th> <th>1</th> <th>I</th> <th>ŀ</th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th>ľ</th> <th></th> <th>1</th> <th>.1</th>		1	1	1	I	ŀ	1	1	1	1	ľ		1	.1
750N -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td< th=""><th>950N —</th><th></th><th>-</th><th></th><th>Ī</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	950N —		-		Ī									
750h     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -	850N -						/							
500x       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </th <th>750N -</th> <th></th>	750N -													
350N     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <t< th=""><th>650N -</th><th></th><th></th><th></th><th>-</th><th></th><th>( ) (</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	650N -				-		( ) (							
350M     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -	550N -	ų .				0								
3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 -     3501 - <th>450N -</th> <th></th> <th></th> <th></th> <th></th> <th>D</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	450N -					D								
150N -     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <td< th=""><th>350N -</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	350N -													
150N -       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th>250N -</th> <th>-</th> <th>-</th> <th></th> <th>۵</th> <th>٥</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	250N -	-	-		۵	٥								
50N       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <th>150N -</th> <th></th> <th></th> <th></th> <th></th> <th>¢</th> <th></th> <th></th> <th></th> <th><u> </u></th> <th></th> <th></th> <th></th> <th></th>	150N -					¢				<u> </u>				
1505 -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <th>50N -</th> <th></th> <th>-</th>	50N -													-
1505       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </th <th></th>														
250S -       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th></th> <th>•</th> <th></th> <th>_</th> <th><b>D</b></th>											•		_	<b>D</b>
350S       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </th <th>250S —</th> <th></th> <th></th> <th></th> <th></th> <th>÷</th> <th>D</th> <th>۵</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	250S —					÷	D	۵						
450S -       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th>350S -</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>•</th>	350S -						-							•
550S -       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th>450S -</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>t</th>	450S -						•							t
650S -       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th>550S -</th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th>Ī</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	550S -			-			Ī							
7505 -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td< th=""><th>650S -</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>•</th></td<>	650S -													•
850S - 950S - 1050S -	750S -			U		ų.								
950S - • • • • • • • • • • • • • • • • • •	850S –													
1050S -	950S -													
	1050S —													







Map #11

♦ ♦ VLF-EM Conductor



400 N ____



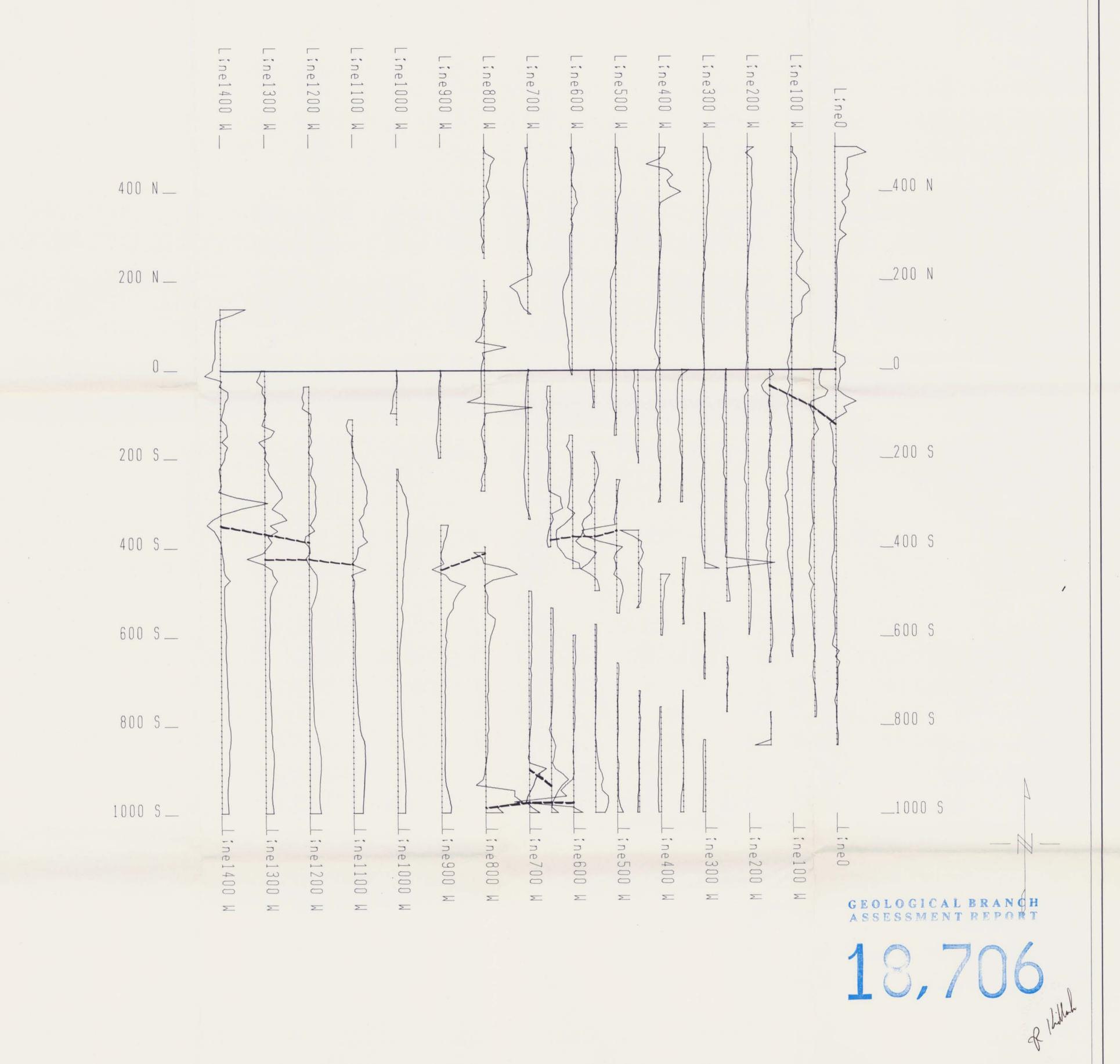




Field Strength 1 cm. = 100 units

SCALE 1 : 5 000 100 (metres) 200

♦ ♦ VLF-EM Conductor


### HANNA PACIFIC STEEL COMPANY LTD.

VLF-EM Field Strength Profiles NLK, Seattle, Wash. Hilton Claim Group Vernon Mining Division, B.C. NTS 82 L/2E

Interpretex Resources Ltd. Report by T.R. Matich Surveyed by Ashworth Explorations Limited Project # 259 February 1989

Map # 12





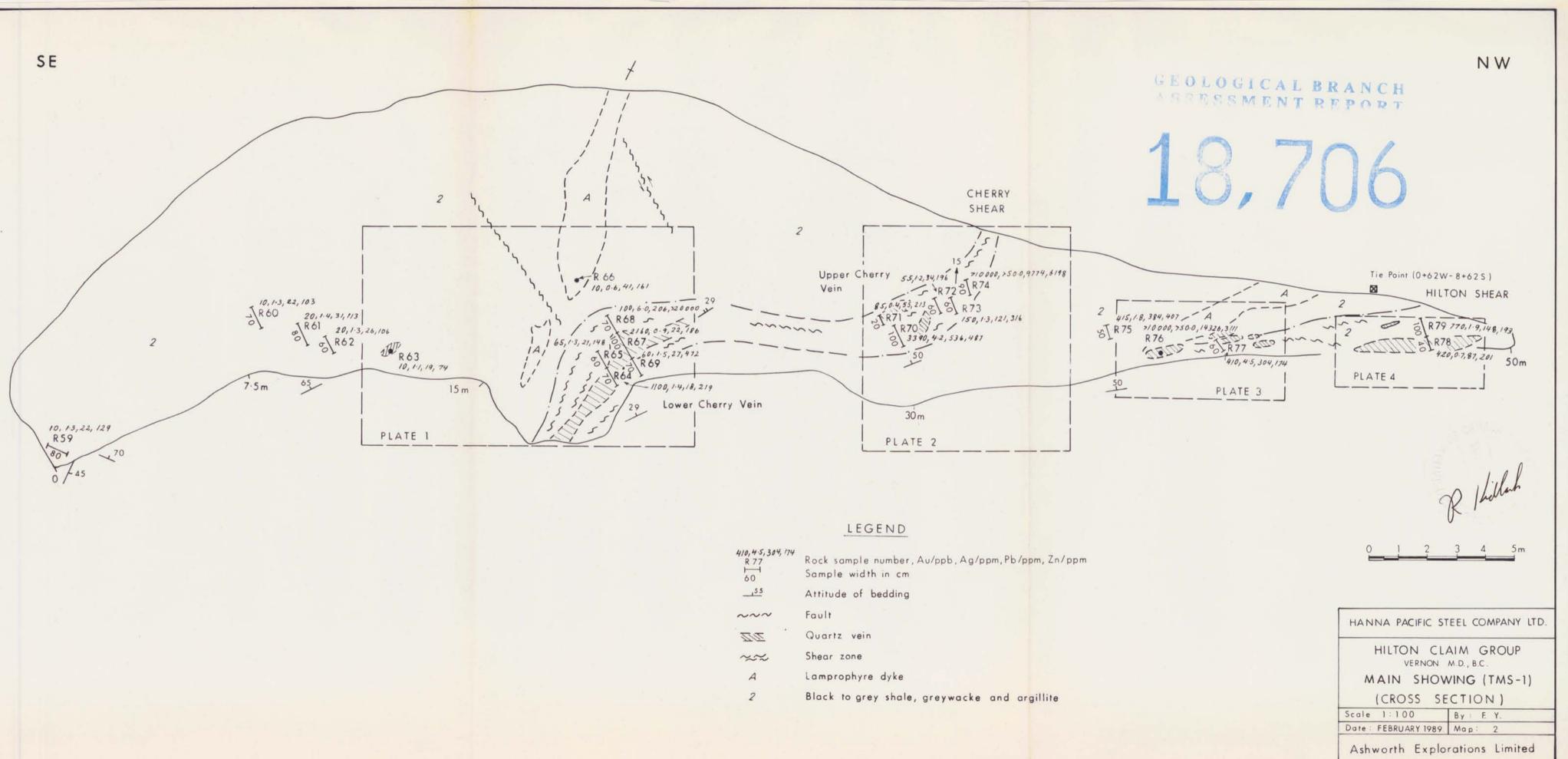
## LEGEND

_____ Total Magnetic Field 1 cm. = 200 Gammas


SCALE 1 : 5 000 00 0 100 (metres) 200 300 _____ Interpreted Fault (Magnetic Lineament)

# HANNA PACIFIC STEEL COMPANY LTD.

Total Field Magnetic Profiles Hilton Claim Group Vernon Mining Division, B.C. NTS 82 L/2E


Interpretex Resources Ltd. Report by T.R. Matich Surveyed by Ashworth Explorations Limited Project # 259 February 1989

Map # 13



	- 19		ANALYTICAL DE			The distance of	
	(188 (188 (188 (188 (188 (188 (188 (188	- HILL - FI12 - FI13 - FI14 - FI14 - FI14 - FI10 - FI10 - FI10 - F10	Ag (pp4) 30 10 20 45 15 15 15 15 240 30 240 30 240 30 240 30 240 30 240 30 240 30 25 240 26 26 26 26 26 26 26 26 26 26	2 6 15 21 22 31 5 21 15 15 15 15 15 15 15 15 15 15 15 15 15	nd 628 352 75 8 4d 596 334 203 23 8 1355 1211	24 (ppm) 41 45 3029 756 127 56 40 650 122 50 26 74 13 66 138	
	C188 C145 C145 C145 C145 C145 C145 C145 C145	5-818 5-819 5-820	20 70 10 10 11 5 15 5 20 11 10 5 10 5	2 1 8 12 9 1 1 2 7 12 12 12 13 18	568 1313 0 9 0 0 0 0 9 0 0 5 0 2 5 18 14	80 51 44 10 10 27 34 125 19 112 122 123 58	
		- 230 + 2211 + 2212 + 2233 + 2233 + 2233 + 2235 + 2	10 15 20 10 10 10 10 10 10 10 10 10 10 10 10 10	14 13 3 7 18 19 13 8 8 9 10 11 15 14 14 16 11 15 14 14 16 11 15 14 14 15 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16	100000022334 # # # # # 0 = 0 0 0 0 0 0 0 0 0 0 0 0 0	46 49 13 82 20 88 15 17 66 68 74 15 167 75 62 71 45 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 45 15 45 14 15 45 15 15 15 15 15 15 15 15 15 15 15 15 15	
	0199 0188 0189 0189 0189 0189 0189 0189	- 857 - 958 - 859 - 860 - 861 - 863	25 28 18 19 29 29 10 100 1.033	7 3 11 13 14 14 11 14	11 0 84 0 11 11 118 2005	90 52 98 125 100 110 106 74 219	
	C189 C189 C299	-RGG	65 10 2160 0.053	1.1 .6 .3	116 23 217	145 341 186	
	G95 G95 G85	EXD:	60/st) 100 68 3390 1114	6.0 1.5 4.2	195 414 154	125000 472 487	
	Cite Cite Cite	H72 H73	822/st1 85 33 154 10000	.4 1.2 1.3 520.8	33 188 136 207	213 196 216 6198	
	Cito		1.589 947513 415 114880 1.775	1.8 350.0	246 973	407 3111	
	C1195 C1195 C1195 C1195 C1195 C1195 C1195 C1195 C1195 C1195 C1195	PCN	40/41 400 400 700 M M M M M M M M M M M M M M M M M M		285 475 11 12 0 0 0 0 21 21 21 21 21 21 21 21 21 21 21 21 21	174 201 193 38 19 11 61 26 8 301 114	
	C1989 C1989 C1989 C1989 C1989 C1989 C1989 C1989 C1989 C1989 C1989 C1989	X2011 K1055 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K2015 K200 K20 K20 K20 K20 K20 K20 K20 K20 K2			4000500818907	70 2015 * 56 47 70 102 99 57 10 11	
	Class	KR14	LEGEN	1D	67	42	
	2b -	oup ided ; block Block , pyri ite; grey t e and doc ophyre Dyk Thin secti	iferrous, we to green colo ite es; light b	II bedded a nured flows prown colour	with mine , porphyr d number	wacke and a or tuffs, chlor itic.	ntic
	0	Outcrop			cr. I biece		
		Trench Bedding	(inclined, ve	rtical ]			
			nclined , verti ein {incline				
	*** ***		(inclined, v	vertical)			
-	~~ ~~	Geologic	known dip, al contact oundary		e, assume	ed )	
		L C P House, b Power li Highway	ine				
	===	Logging					
	 GEOL	0 G I (	ihic contour	RANC	н	c	R Hillack
	18	3,			) 2 6	400	500 m
	H	ANNA	PA	CIFIC	STEEL	COMP	ANY LTD.
			HILT	ON C	LAIM	GROU	р:
		GEC	DLOG	Y AN	id RC	DCK S	AMPLE
		die F	sooo EERUARY shwort		Moi		Drawn 25. 1 ited

Ashworth Explorations Limited



4/0,4.5,304,174 R 77 H 60	Rock sample n Sample width
55	Attitude of be
~~~	Fault
ZZ	Quartz vein
~~~~	Shear zone
А	Lamprophyre
2	Black to grey