ARIS SUMMARY SHEET

District Geologist, Kamloops Off Confidential: 90.03.17 ASSESSMENT REPORT 18711 MINING DIVISION: Osoyoos PROPERTY: Oka LOCATION: LAT 49 48 00 LONG 119 55 00 5520257 UTM 11 290113 CLAIM(S): NTS 082E13W Oka 1-11, Iron Horse, Cap OPERATOR(S): Fairfield Min. LUTHOR(S): Jakubowski, W. 1989, 186 Pages REPORT YEAR: COMMODITIES SEARCHED FOR: Gold EYWORDS: WORK Triassic, Nicola Group, Limestone, Marble, Skarn, Gold, Andesite DONE: Drilling, Geophysical, Geochemical, Physical, Geological EMGR 41.5 km; VLF Map(s) - 3; Scale(s) - 1:5000MAGG 41.5 km Map(s) - 3; Scale(s) - 1:5000PETR 6 sample(s) 2.5 km ROAD ROCK 43 sample(s); AU, AG ROTD 6031.3 m 44 hole(s)Map(s) - 18; Scale(s) - 1:500SAMP 3903 sample(s);AU SOIL 45 sample(s); AU, AG ELATED EPORTS: 15834,16761,16788 MINFILE: 082ENW017,082ENW018,082ENW025

LOG NO: 0506	RD.
ACTION:	
FILE NO:	

1988

REVERSE CIRCULATION DRILLING, GEOPHYSICAL, GEOCHEMICAL AND PROSPECTING REPORT

FILMED

On the OKA PROPERTY

South Okanagan Area, Osoyoos Mining Division, B.C. NTS: 82E-13W; Lat. 49°48'N; Long. 119°55'W

MARCH. 1989 (BC ASSESSMENT REPORT) VOLUME I of II - TEXT & APPENDICES

GEOLOGICAL BRANCH ASSESSMENT REPORT

10,711

REPORT DISTRIBUTION

Government 2
Fairfield 1
Placer Dome 1
Field 1
Cordilleran Original

Total

Prepared: 6 reports

Part 1

42

This report consists of 2 Volumes: Volume I - Text & Appendices

Volume II - Plates

1 9 8 8

REVERSE CIRCULATION DRILLING, GEOPHYSICAL,

GEOCHEMICAL AND PROSPECTING REPORT

Osoyoos Mining Division, B.C. Latitude 49°48'N; Longitude 119°55'W. NTS; 82/E-13W

For

FAIRFIELD MINERALS LTD.
Vancouver, British Columbia

and

PLACER DOME INC. Vancouver, British Columbia

Ву

W. J. Jakubowski, B.Sc., Geologist

CORDILLERAN ENGINEERING LTD. 1980-1055 W. Hastings St. Vancouver, B.C. V6E 2E9

Date Submitted: April, 1989

Work Period: April 18 - July 23, 1988

TABLE OF CONTENTS

Tab				Page
1.0		ARY AND CONCLUSIONS	••••••	1
2.0	RECO	MMENDATIONS	• • • • • • • • •	2
3.0	TNTR	ODUCTION		3
3.0	3.1	Location and Access		3
	3. 2			3
		Claim Data	• • • • • • • • •	6
	3.3	History		7
	3.4	1988 Exploration Program		,
4.0	GEOL	OGY		8
	4.1	Regional Geology		-8
	4.2	Property Geology & Mineralization		8
5.0	ROAD	BUILDING		12
	· 			
6.0	REVE	RSE CIRCULATION DRILLING		13
	6.1	Operations		13
	6.2	Sampling and Analysis Procedures		13
	6.3	Lithologies		18
	6.4	Results		21
		6.4.1 Iron Horse Area		21
		6.4.2 Bolivar West Area		25
		6.4.3 Bolivar East Area		28
		6.4.4 Bolivar Road Area		30
		6.4.5 Cap Area		32
7 0	anoni	ana		24
7.0	GEOP	HYSICS		34
8.0	PROSI	PECTING		35
0.0	8.1	Introduction		35
	8.2	Results		35
	0. 2			35
			• • • • • • • • •	36
		8.2.2 Soil Sampling	• • • • • • • • •	30
9.0	NEW (CLAIMS		39
10.0	SELEC	CTED REFERENCES	• • • • • • • •	40
11.0	COST	STATEMENT		41
12.0	PERS	ONNEL & CONTRACTORS		42
13.0		EMENT OF QUALIFICATIONS		43
		APPENDICES		
Appendix	"A"	Summary Reverse Circulation Drill Hole Logs (OK-8	88-1 to OK-88	3-43)
Appendix		Analytical Reports		•
Appendix		Petrographic Report		
ppc.io.rx	v	By: Vancouver Petrographics		
Appendix	"D"		lka Property	
whhenary	υ	Report on the VLF and Magnetometer Survey on the C	va troberry	

TABLE OF CONTENTS

				Page
		TAE	BLES	-
	Table l			3
- T	Table 2			14
	Table 3	Summary of Significant Drill Chi		16
	Table 4	•	•••••	19
	Table 5	Property Stratigraphy Significant Values With Associat	ed Rock Types and Sulphides:	20
	Table 6			23
	Table 7			27
1	Table 8	5		28
	Table 9	- Bolivar Road Area .		30
U		FIGU	RES	
	m: 1	Tanakian Man		4
	Fig. l	Location Map	••••••	4 5
43	Fig. 2			9
	Fig. 3 Fig. 4		rty	10
	riy. 4	Drill Plan:	L CY	10
	Fig. 5			22
_	Fig. 6			26
	Fig. 7			29
	Fig. 8			31
	Fig. 9			33
1	Fig. 10	Prospecting Rock Sample Results		36
	Fig. 11	Bolivar Road Area Soil Geochemis	try	38
				
		<u>PLA</u>	TES	G1-
	Diata I.	Tron Horas Area Drill Costion	01027 F	<u>Scale</u> 1:500
i	Plate 1: Plate 2:	Iron Horse Area Drill Section Iron Horse Area Drill Section	91837 E	1:500
	Plate 3	Iron Horse Area Drill Section	91742 E	1:500
41	Plate 4:	Iron Horse Area Drill Section	91641 E	1:500
	Plate 5	Iron Horse Area Drill Section	91542 E	1:500
	Plate 6:	Iron Horse Area Drill Section	91455 E	1:500
alika	Plate 7:	Iron Horse Area Drill Section	21023 N	1:500
i i	Plate 8:	Iron Horse Area Drill Section	21060 N	1:500
	Plate 9:	Iron Horse Area Drill Section	B-B'	1:500
_	Plate 10:	Iron Horse Area Drill Section	D-D'	1:500
	Plate 11:	Bolivar West Area Drill Section	A-A'	1:500
	Plate 12:	Bolivar West Area Drill Section	B-B'	1:500
	Plate 13:	Bolivar East Area Drill Section	20622 N	1:500
	Plate 14:	Bolivar East Area Drill Section	C-C'	1:500
	Plate 15:	Bolivar East Area Drill Section	D-D'	1:500
•	Plate 16:	Bolivar Road Area Drill Section	20683 N	1:500
	Plate 17:	Bolivar Road Area Drill Section	A-A'	1:500
	Plate 18:	Cap Area Drill Section	A-A'	1:500
_				

1.0 SUMMARY AND CONCLUSIONS

The Oka gold property centered 12 kilometres northwest of Peachland, B.C. consists of 15 mineral claims (194 units), owned by Fairfield Minerals Ltd. and under option to Placer Dome Inc.

Access to the property is excellent via five kilometres of paved road and ten kilometres of all-weather gravel road.

Earlier exploration efforts in the Oka area concentrated on zinc and copper mineralization within massive sulphide zones, and porphyry copper-molybdenum showings. Recent exploration conducted by Cordilleran Engineering Ltd., focussed on gold. Programs in 1986 and 1987 consisted of linecutting, soil sampling, prospecting, reconnaissance mapping, a magnetometer survey and trenching. This work outlined several areas with gold mineralization hosted in skarns, diorite dykes and quartz veins.

In 1988 a six thousand metre reverse circulation drill program was undertaken to test favourable stratigraphy in five areas for economic gold skarn development. VLF-EM and magnetometer surveys, prospecting and detailed grid soil sampling were also conducted during 1988.

The claims are underlain by Cretaceous granodiorite which has intruded Upper Triassic Nicola Group clastic sediments, limestone and minor volcanic rocks. Lower Jurassic(?) diorite dykes and sills also crosscut Nicola Group rocks. Carbonate horizons have been variably recrystallized to marble and metasomatized to skarn at, or near, intrusive contacts.

2.0

RECOMMENDATIONS

A diamond drilling program of six NQ holes totalling 1100 metres is recommended to explore for gold-bearing structures in three areas on the 0ka property where reverse circulation drilling has indicated high gold values.

In the Iron Horse area three holes (600 m) are proposed. One would angle to the north toward the intercept in hole 88-20 which assayed 0.39 oz/ton Au over 1.52 metres. This would test the southerly extension of the upper skarn horizon and explore for a possible steeply dipping structure associated with the mineralized section. The second hole would angle to the north, 100 metres west of hole 88-20 exploring an untested area along strike from two mineralized holes. The third would be angled to the south toward mineralized intercepts in holes 88-5 and 88-21 beneath the West Horse showing. This should provide information on the mode of occurrence and trend of gold mineralization in this area.

In the Bolivar West area two holes (300 m) are proposed approximately 100 metres apart. Both would be angled to the south to explore for the eastward projection of a gold-bearing quartz vein which dips about 60 degrees to the north. One would also test the mineral intercept in hole 88-26 which assayed 0.41 oz/ton Au over 1.52 metres.

In the Bolivar East area one hole (200 m) is proposed. It would angle to the southeast toward the intercept in hole 88-32 which assayed 0.54 oz/ton Au over 1.52 m to check for a possible steeply dipping, northeast-trending mineralized structure.

Diamond drill core should be logged, split and analyzed for gold with particular emphasis on veins and disseminations of sulphide minerals. A total of 800 core samples is estimated. Forty hours of bulldozer work for road and drill site preparation is necessary. A tank truck would be required to haul water for drilling.

Respectfully submitted

CORDILLERAN ENGINEERING LTD.

W. Jakubowski, B.Sc. Geologist

W. Johnhaust.

* * * *

3.0

INTRODUCTION

3.1 LOCATION AND ACCESS (Figures 1 and 2)

The Oka property is situated in the Okanagan area of B.C. (Figure 1). The junction of the Headwaters Road (Figure 2) which provides access through the center of the claim block, and the paved Brenda Mine road is 11 km from Peachland. A 4-wheel drive vehicle is required to reach mineralized areas in the central and northwestern claims.

The property is on the east edge of the Trepanege Plateau, and elevations range from 900 m to 1500 m. Forest cover of pine, balsam and fir is extensive. The property is traversed from west to east by Greata Creek and from northwest to southeast by Peachland Creek.

3.2 CLAIM DATA

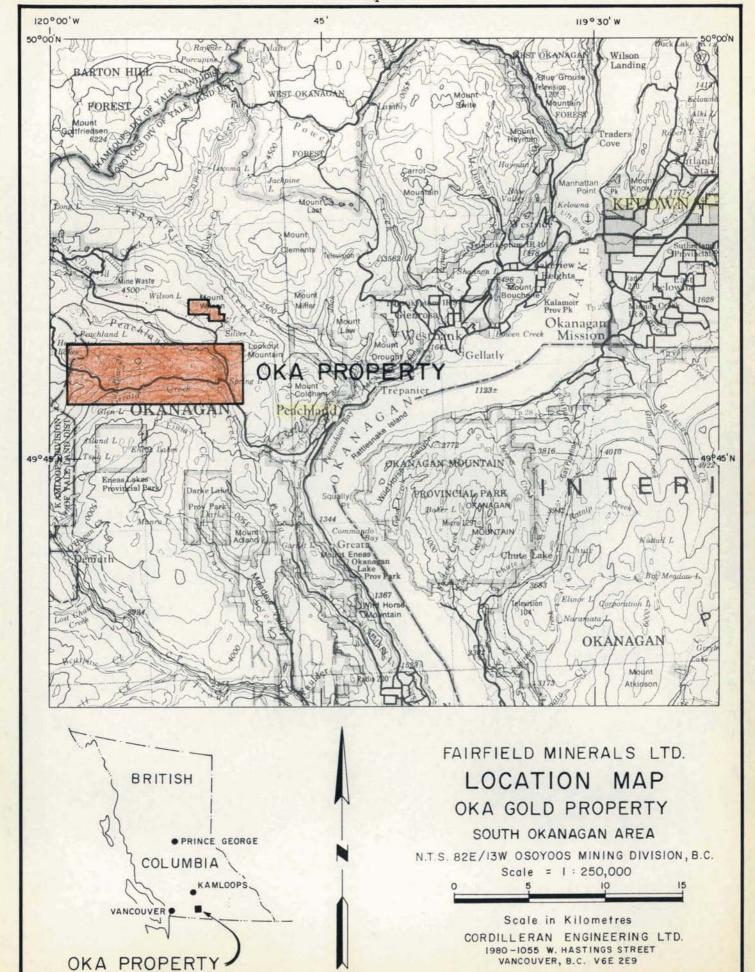
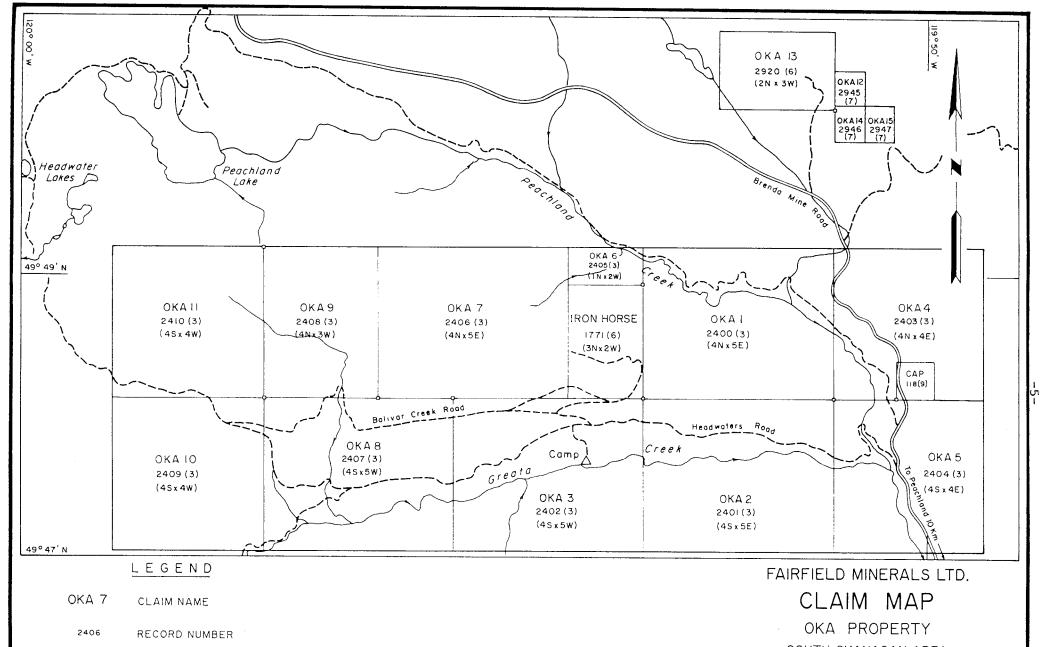

The status of the Oka, Iron Horse and Cap claims is indicated in Table 1, and their locations are shown on Figure 2. The Oka 1-11 claims were staked in March, 1986 and Oka 12-15 in June, 1988, by Cordilleran Engineering Ltd. for Fairfield Minerals Ltd. The Iron Horse and Cap claims were purchased by Fairfield from the claim holders. The property is subject to an option agreement with Placer Dome Inc.

Table	1:	CLAIM	DATA

CLAIM	UNITS	RECORD NO.	EXPIRY DATE
 '			
OKA 1	20	2400	25 MAR. 1994
OKA 2	20	2401	25 MAR. 1994
OKA 3	20	2402	25 MAR. 1994
OKA 4	16	2403	25 MAR. 1994
OKA 5	16	2404	25 MAR. 1994
OKA 6	2	2405	25 MAR. 1994
OKA 7	20	2406	25 MAR. 1994
OKA 8	20	2407	25 MAR. 1994
OKA 9	12	2408	25 MAR. 1994
OKA 10	16	2409	25 MAR. 1994
OKA 11	16	2410	25 MAR. 1994
OKA 12	2-post	2945	22 JUL. 1989
OKA 13	6	2920	28 JUN. 1989
OKA 14	2-post	2946	22 JUL. 1989
OKA 15	2-post	2947	22 JUL. 1989
CAP	1	118	28 SEP. 1998
IRON HORSE	6	1771	2 JUN. 1994
17 claims	101 : 1		


Total:

17 claims 191 units + 3 2-post claims

FEBRUARY 1989

FIGURE 1

(3) MONTH OF RECORD

(4Nx4W) NUMBER OF UNITS N & W

LCP LOCATION

SOUTH OKANAGAN AREA

OSOYOOS MINING DIVISION, B.C., N.T.S. 82E/I3W

CORDILLERAN ENGINEERING LTD.
1980-1055 W. HASTINGS STREET

VANCOUVER, B.C. V6E 2E9 FEBRUARY 1989

FIGURE 2

INTRODUCTION (continued)

3.3 HISTORY

The earliest reported work within the area of the Oka claims was in 1898 on the Silver King and Alma Mater properties at the west end of the present claim block. Three shallow shafts (to 4.3 m) and one deep one (76 m) were sunk and four adits (to 70 m) and one crosscut (58 m) were driven in intrusive rocks. The target was "free milling" gold, however, there is no record of any gold being recovered. In more recent years this area has been mapped (1965), soil sampled (1967) and diamond drilled (4 holes, 1979). A porphyry copper/molybdenum deposit was the objective of the later work.

The Iron Horse claim, near the center of the present property, has been another focus of activity which began in the 1930's. The area has been variably mapped, trenched, sampled and geophysically surveyed; an unknown number of holes were drilled in 1956.

A third area to receive previous work is now covered by the Cap and Oka 4 claims, north of the junction of the Brenda and Headwater roads. Exploration activity included mapping, trenching, diamond drilling (? holes, 1965), soil sampling and a magnetometer survey.

Skarn-hosted Cu-Zn massive sulphides were the targets on the Iron Horse and Cap claims.

Other areas within the present property were variously prospected, soil sampled and geophysically surveyed during the late 1960's and early 1970's.

Recent work has focussed on gold. In 1986, a program of linecutting, soil sampling, prospecting and reconnaissance mapping was carried out. A number of large gold soil geochemical anomalies were defined; prospecting of some of these revealed that the higher gold values are associated with skarn and massive sulphide zones.

The 1987 program consisted of detailed grid soil sampling, a magnetometer survey over the Iron Horse area and extensive backhoe stripping and trenching with associated detailed mapping and rock chip sampling. The excavating and rock sampling revealed gold in skarns, diorite dykes and quartz veins in four widely separated areas on the property.

INTRODUCTION (continued)

3.4 1988 EXPLORATION PROGRAM

During the period April 18 to July 23, 1988 Cordilleran Engineering Ltd. managed an exploration program on the Oka property on behalf of Fairfield Minerals Ltd. and Placer Dome Inc.

A total of 6031.3 metres of reverse circulation drilling was completed in 44 holes in five areas on the property. Several of the holes had significant gold values over moderate lengths. One assayed 0.41 oz/ton Au over 1.5 metres, another contained 0.17 oz/ton Au over 6.1 metres.

New roads, totalling 2.51 kilometres, were constructed to provide access to drill sites.

Secant chained, flagged, compass lines totalling 41.5 line-kilometres were prepared and utilized for magnetometer and VLF-EM surveys. Several weak geophysical anomalies were defined but no significant targets were outlined.

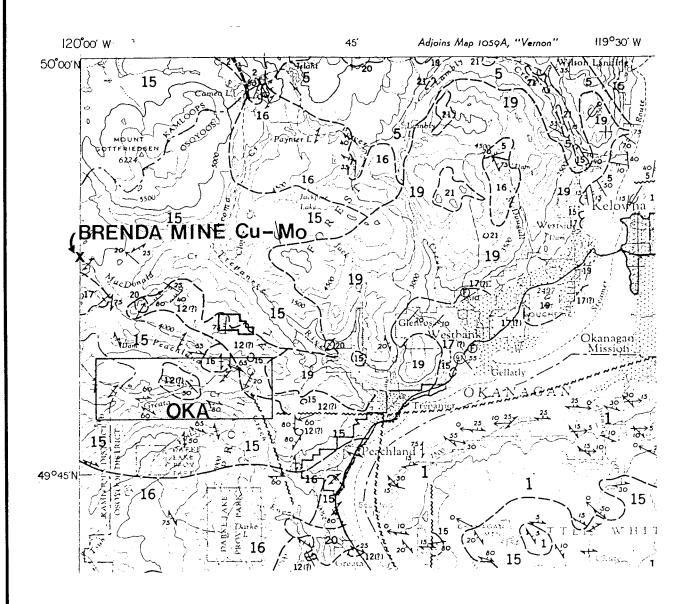
Eight man-days were spent prospecting areas of anomalous soil geochemistry. A new showing was discovered from which grab samples returned moderate gold values. Detailed soil sampling in the showing area provided 45 samples, many of which were strongly anomalous in gold and arsenic.

* * * *

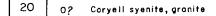
4.0 GEOLOGY

4.1 REGIONAL GEOLOGY (Figure 3)

The Oka property is situated in the northwest corner of G.S.C. Map 15-1961, Kettle River, mapped by Dr. H. W. Little, (1958-59). The property is underlain by pendants of sedimentary and volcanic rocks of the Upper Triassic Nicola Group which are cut by Cretaceous (?) age Nelson plutonic rocks. East of the property both intrusive and Nicola group rocks are covered by large areas of Eocene/Oligocene volcanic flows. Seven kilometres to the northwest the Brenda Mine open pit is located on a large porphyry copper-molybdenum system in Cretaceous granitic rocks.


4.2 PROPERTY GEOLOGY AND MINERALIZATION (Figure 4)

A brief summary of the property geology and mineralization is given below. Generalized unit contacts are shown on Figure 4. For a more detailed description of the lithologies see Section 6.3.


Pendants of Upper Triassic Nicola Group rocks underlie the central and eastern parts of the property. Nicola Group rocks include limestone, clastic sediments and intermediate to basic volcanic rocks (Units 2 and 3). Carbonate horizons have been variably recrystallized to marble and metasomatized to skarn at, or near, intrusive contacts.

In the Iron Horse area Nicola rocks consist predominantly of limestone, skarn and narrow argillite beds. In the Bolivar East and West areas Upper (?) Nicola Group lithologies consist mainly of andesitic to dacitic volcanics with minor interbeds of argillaceous rock. These units are largely hornfelsed with minor development of calc-silicate minerals. In the Cap Showing area on the eastern claims Nicola Group consists of interbedded limestone, sedimentary and volcanic rocks. Skarn and hornfels zones are locally developed.

Lower Jurassic(?) diorite and andesite dykes and sills cut the pendant rocks at several localities. They are most numerous in the Iron Horse area where they may be swarming outwards from a small source stock of quartz diorite to the east.

LEGEND

19 E/O Andesite, trachyte flows

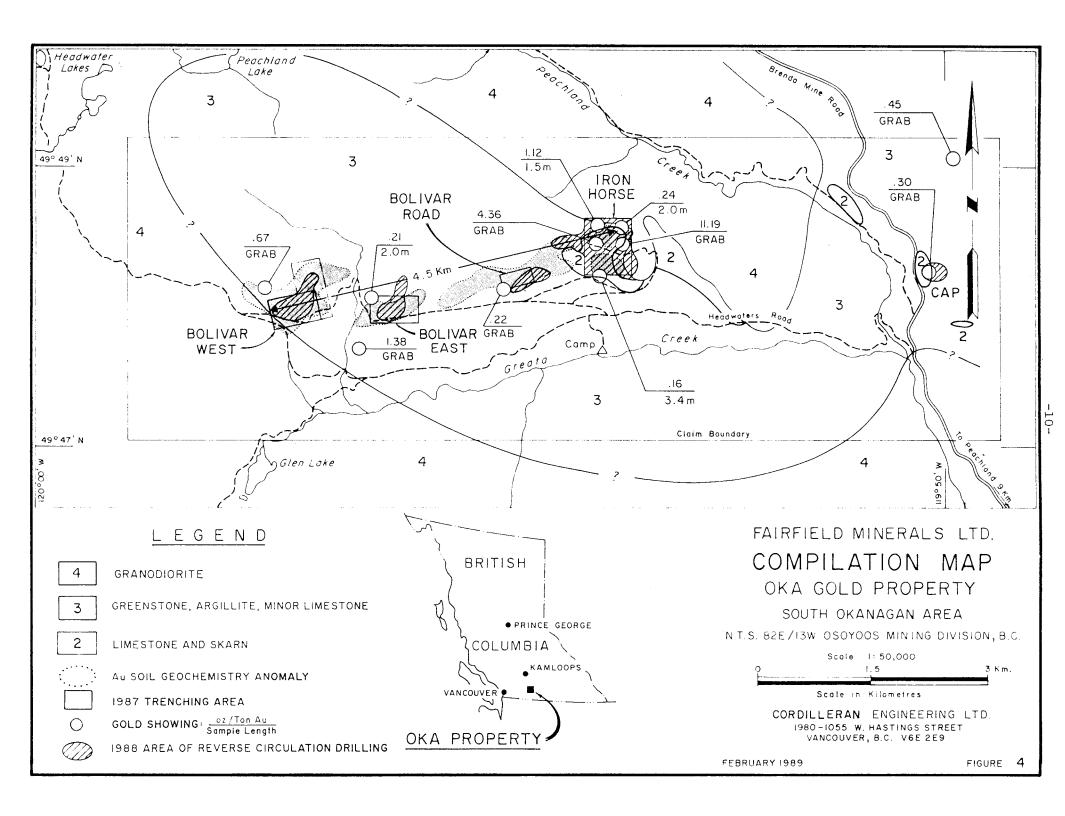
17 P/E Conglomerate, sandstone, shale

16 K? Valhalla granite, granodiorite

15 K? Nelson diorite to granodiorite

12 UR Nicola Group argillite, sandstone, limestone, greenstone

NOTE: From GSC Map 15-1961 FAIRFIELD MINERALS LTD.


REGIONAL GEOLOGY

OKA PROPERTY SOUTH OKANAGAN AREA

OSOYOOS MINING DIVISION, B.C., N.T.S. 82E/13W

Scale 1: 250,000 5 0 10 15

FIGURE 3

GEOLOGY

Property Geology & Mineralization (continued)

The southwest, southeast and north-central portions of the property are underlain by plutonic rocks of probable Cretaceous age. The igneous bodies are predominantly diorite to granodiorite in composition.

Strong fracturing and jointing are evident in brittle hornfelsed rocks and folding has been observed locally in carbonate exposures. Northeast trending structures are common, and quartz veins and veinlets seen in outcrops often have the same northeast strike. A major anticline is believed to underlie the ridge in the Iron Horse area with the fold axis plunging shallowly to the northwest.

Gold mineralization has been located in a number of widely separated areas on the property and occurs in several different modes. It is found in massive sulphide lenses consisting mainly of pyrite and pyrrhotite with lesser amounts of arsenopyrite, chalcopyrite and sphalerite; in sulphide-poor garnetite skarn; in pyritic, bleached diorite; and in quartz-arsenopyrite veins. Fine visible gold has been identified in marble containing minor disseminated arsenopyrite.

* * * *

ROAD BUILDING

5.0

A total of 2.51 kilometres of four-wheel drive road was constructed to provide access to the drill sites. This included 1430 metres in the Iron Horse area, 420 metres in the Bolivar West area, 630 metres in the Bolivar Road area and 30 metres in the Cap area (Figure 4). A Caterpillar D8K bulldozer was leased with operator from W. Dobbin Construction Ltd. of Kelowna to build the roads and drill sites. Erosion control measures and grooming will be completed on the disturbed areas during the 1989 field season in order to meet standard environmental requirements.

* * * *

6.0 REVERSE CIRCULUATION DRILLING

6.1 OPERATIONS

A reverse circulation drill program comprising forty-four holes totalling 6031.3 metres was completed on the Oka property between April 30 and July 19, 1988. Work was done by Westrail Construction Ltd. of Delta, B.C. utilizing a track-mounted Drilteck D50K rotary drill rig that had been converted to a reverse circulation system which produced an eleven centimetre hole. The drill was operated for one twelve-hour shift daily, from April 30 to May 30 and for two ten-hour shifts from May 31 to July 19. The average drilling rate was 69.7 metres per twelve-hour shift and 41 metres per ten-hour shift, including moves.

A summary of the 1988 drilling follows: Iron Horse, 3429.38 metres in 25 holes; Bolivar West, 808.25 metres in 6 holes; Bolivar East, 758.81 metres in 6 holes; Bolivar Road, 701.04 metres in 5 holes; Cap 343.82 metres in 2 holes. Table 2 details all of the drilling data.

Holes 36, 37 and 43 were abandoned due to bad ground, however, in most the drilling conditions were good. The majority of the holes returned water at a shallow depth. Drill chip recovery varied substantially throughout the program. Recovery was poor at the top of the water table and below strongly fractured zones where chips would pack into the fracture cavities up hole rather than being blown to surface.

6.2 SAMPLING AND ANALYSIS PROCEDURES

A three-tier riffle splitter was used to reduce the drill chips to 12.5% of the original volume. After splitting, continuous chip samples were collected at 1.52 metre intervals throughout the entire length of the holes. Each of these samples was labelled as described in Appendix "B" of this report.

A small representative sample, weighing approximately 100 grams, was taken from each 1.52 metre interval to be examined for geological logging. Each of these samples was labelled according to hole number and depth. They are stored at the camp site on the Oka property. The remaining portions of the samples, which averaged 4.7 kilograms, were shipped to Acme Analytical Laboratories Ltd. in Vancouver, B.C. to be analyzed for gold.

OKA PROPERTY 1988 REVERSE CIRCULATION DRILL SUMMARY RECORD

HOLE NO.	NORTHING	EASTING	ELEA.N	SECTION	INCLINATION degrees	AZ INUTH degrees	CASING	CLAIM	REC'Y	DATE START	DATE FINISH	AREA	DEPTH	TOTAL
								IRON						
OK88-1	520860.4	291734.1	1341.0	91742 E	-90	0	1.2	HORSE		APR 30	MAY 2	Iron Horse	151.64	151.64
-2	520908.6	291640.6	1354.7	91641 E	-90	0	1.2	пп		MAY 2	MAY 5	н н	141.12	292.76
-3	520959.6	291541.0	1358.2	91542 E	-90	0	0.8	n n		MAY 5	MAY 7	и и	152.10	444.86
-4	521060.6	291543.7	1346.0	91542 E	-90	0	0.8	п п		MAY 8	MAY 9	R W	121.31	566.17
-5	521094.5	291512.7	1345.4	91542 E	-55	351	0.6	n n		MAY 10	MAY 13	я п	102.11	668.28
-6	521060.5	291735.5	1304.0	91742 E	-90	0	1.2	я н		MAY 13	MAY 14		45.70	713.98
-7	521011.8	291840.0	1296.6	91837 E	-90	0	3.1	и и		MAY 14	MAY 15	π π	92.96	806.94
-8	521059.1	291943.7	1277.2	521060N	-90	0	0.6	11 11		MAY 15	MAY 16	* *	78.64	885.58
-9	521037.7	291797.6	1295.8	91798E	-55	0	0.6			MAY 16	MAY 17	4	120.40	1005.98
-10	520959.4	291746.9	1327.6	91742 E	-90	0	0.6	и и		MAY 18	MAY 19	н я	73.20	1079.18
-11	520987.9	291635.0	1349.0	91641 E	-90	0	0.6	H H		MAY 19	MAY 20	я я	118.87	1198.05
-12	521017.3	291353.4	1381.4	521023N	-90	0	0.6	n n		MAY 20	MAY 22	n w	151.94	1349.99
-13	521028.0	291178.7	1392.3	521023N	-90	0	0.6			MAY 22	MAY 24	п п	151.20	1501.19
-14	520781.6	291817.1	1320.0	91837 E	-90	0	1.5	и и		MAY 24	MAY 25	* 1	94.49	1595.68
-15	520857.8	291550.2	1314.9	91542 E	-90	0	0.6	# 11		MAY 26	JUN 9	* *	213.40	1809.08
-16	520804.7	291638.6	1298.5	91641 E	-90	0	0.6	7 11		MAY 28	JUN 8	u 2	213.40	2022.48
-17	520767.9	291743.4	1301.4	91742 E	-90	0	0.6	н н		MAY 30	MAY 31		137.16	2159.64
-18	520698.3	291794.1	1281.7	D-D'	-90	0	0.6	17 17		MAY 31	JUN 1	# W	130.61	2290.25
-19	520749.9	291644.5	1276.1	91641 E	-90	0	0.6	त्र स		JUN 1	JUN 4	9 R	194.62	2484.87
-20	520764.9	291546.9	1271.0	91542 E	-90	0	0.6	N N		JUN 5	JUN 6	п н	213.06	2697.93
-21	521098.7	291509.7	1344.0	91542 E	-90	0	0.9	# #		JUN 9	JUN 10	" "	131.06	2828.99
-22	521064.2	291630.7			-90	0	0.6			JUN 11	JUN 11	п и	42.67	2871.66
-23	520658.4	291641.2			-90	0	0.6	w #		JUN 11	JUN 13	# #	200.71	3072.37
-24	520650.9	291542.2		91542 E	-90	0	0.6	# H		JUN 16	JUN 17	* *	194.61	3266.98
-25	520379.92	287809.75	1330.90		-90	0	1.2	OKA 8		JUN 18	JUN 20	Bolivar West	195.60	3462.58
-26	520498.93	287759.64			-90	0	0.6	OKA 9		JUN 20	JUN 21	Bolivar West	121.92	3584.50
-27	520789.08	287766.02	1378.02		-90	0	0.6	OKA 9		JUN 21	JUN 22	Bolivar West	121.92	3706.42
-28	520533.21	287666.01	1382.59		-90	0	0.6	OKA 9		JUN 22	JUN 23	Bolivar West	121.92	3828.34
-29	520456.34				-90	0	0.6	OKA 9		JUN 23	JUN 24	Bolviar West	124.97	3953.31
-30	520378.81	287529.15	1368.99		-90	0	0.6	OKA 9		JUN 24	JUN 25	Bolviar West	121.92	4075.23

NOTE: DRILL DOUBLE SHIFTED (20 HOURS/DAY) STARTING MAY 30.

Table 2

Table 2: OKA PROPERTY 1988
REVERSE CIRCULATION DRILL SUMMARY RECORD Continued

HOLE NO.	NORTHING	EASTING	ELEV'N	SECTION	INCLINATION	AZIMUTH	CASING	CLAIM	REC'Y	DATE START	DATE FINISH	AREA	DEPTH	TOTAL
					<u>degrees</u>	degrees	1				******			
OK88-31	520621.66	288843.80	1343.3	520622 N	-90	0	0.6	OKA 7		JUN 26	JUN 28	Bolivar East	172.06	4247.29
-32	520201.02	288799.58	1268.85	C-C'	-90	0	0.6	OKA 8		JUN 28	JUN 29	# N	181.36	4428.65
-33	520299.42	288653.48	1281.34	C-C'	-90	0	0.6	OKA 8		JUN 29	JUN 29	т п	126.49	4555.14
-34	520282.81	288738.64	1287.49	C-C'	-90	0	0.6	OKA 8		JUN 30	JUN 30	и и	120.40	4675.54
-35	520170.53	288758.19	1263.42	D-D'	-90	0	1.5	OKA 8		JUN 30	JUL 1	H H	121.92	4797.46
-36	520169.30	288756.38	1263.43	D-D'	-55	250	2.0	OKA 8		JUL 1	JUL 2	н я	36.58	4834.04
-37	520522.20	290328.21	1253.46	A-A'	-90	0	1.2	OKA 7		JUL 3	JUL 5	Bolivar Road	36.58	4870.62
-37A	520522.58	290330.59	1253.46	A-A'	-90	0	2.1	OKA 7		JUL 5	JUL 7	W W	146.30	5016.92
-38	520563.63	290395.86	1269.67	A-A'	-90	0	3.1	OKA 7		JUL 7	JUL 9		182.88	5199.86
-39	520628.54	290478.31	1298.74	A-A'	-90	0	1.2	OKA 7		JUL 10	JUL 11	п п	152.40	5352.50
-40	520682.62	290781.85	1228.57	520683 N	-90	0	1.2	OKA 7		JUL 11	JUL 12		182.88	5535.08
-41	521108.07	291455.14	1352.29	B-B'	-55	0	1.2	IRON HORSE		JUL 13	JUL 14	Iron Horse	152.40	5687.48
-42	520637.02	295834.17	1019.02	A-A'	-90	0	0.9	CAP		JUL 15	JUL 16	Cap	171.91	5859.39
-43	520581.06	295810.79	1004.07	A-A'	-90	0	0.9	CAP		JUL 16	JUL 19	Cap	171.91	6031.30

Reverse Circulation Drilling Sampling and Analysis Procedures Continued

At the lab 0.2 kgm of chips from each sample were ground to minus 100 mesh and a 20 gram cut was collected. This was then ignited to 600 degrees Celsius and digested with hot aqua regia. The gold was extracted by MIBK (methyl isobutyl ketone) and then analyzed by graphite furnace atomic absorption. Samples with values above 1000 ppb were then fire assayed on a new cut from the pulp to more accurately determine gold content. A total of 3,903 drill chip samples were analyzed for gold.

Chips from each 1.52 metre interval were examined under a microscope and logged in detail. Summary logs for each hole are found in Appendix "A" of this report. Detailed logs are on file at the office of Cordilleran Engineering Ltd.

Table 3: OKA PROJECT - SUMMARY OF SIGNIFICANT DRILL CHIP SAMPLE RESULTS

				<u>Analysis</u>	Assay
<u> </u>	Hole No.	Sample No.	Depth (metres)	<u>Au ppb</u>	Au oz/ton
Iron Horse:	1	88-1 -4	4.6 - 6.1	671	
iton norse.	2	88-2 -22	32.0 - 33.5	590	
	4	88-4 -49	73.2 - 74.7	305	
	4	88-4 -66	99.1 - 100.6	1440	0.05
	4	88-4 -67	100.6 - 102.1	335	0.05
		88-4 -77	115.8 - 117.4	335	
	4			550	
	5	88-5 -42			
	5	88-5 -43	64.0 - 65.5	320	0.00
	5	88-5 -46	68.6 - 70.1	1560	0.03
	5	88-5- 47	70.1 - 71.6	5230	0.14
	5	88-5- 48	71.6 - 73.2	750	0 01 4 - 0 02 +
	5	88-5- 49	73.2 - 74.7	7450	0.01 to 0.02*
	5	88-5- 51	76.2 - 77.7	520	
	5	88-5- 56	83.8 - 85.3	320	
	5	88-5- 59	88.4 - 89.9	1390	0.04
	5	88-5- 60	89.9 - 91.4	345	
	5	88-5- 62	93.0 - 94.5	950	
	6	88-6- 11	15.2 - 16.7	505	
	14	88-14-17	24.4 - 25.9	845	
	15	88-15-102	153.9 - 155.4	5925	0.15
	15	88-15-103	155.4 - 157.0	3220	0.10
	15	88-15-104	157.0 - 158.5	560	
	15	88-15-108	161.3 - 164.6	330	
	15	88-15-111	167.6 - 169.2	390	
	16	88-16-4	4.5 - 6.1	625	
	16	88-16-5	6.1 - 7.6	285	
	16	88-16-94	141.7 - 143.3	1290	0.001 to 0.003*
	16	88-16-125	189.0 - 190.5	1080	0.03
	16	88-16-127	192.0 - 193.5	670	
	16	88-16-132	199.6 - 201.2	320	
	16	88-16-140	211.8 - 213.4	3430	0.11

^{*}assay results varied

Table 3: SUMMARY OF SIGNIFICANT DRILL CHIP SAMPLE RESULTS Continued

Area	Hole No.	Sample No.	Depth (metres)	Analysis Au ppb	Assay Au oz/ton
Iron Horse:	19	88-19-27	39.6 - 41.2	1020	0.03 to 0.05
	19	88-19-80	120.4 - 121.9	420	
	20	88-20-3	3.0 - 4.6	390	
	20	88-20-27	39.6 - 41.2	570	
	20	88-20-28	41.2 - 42.7	810	
	20	88-20-33	48.7 - 50.3	610	
	20	88-20-59	88.4 - 88.9	315	
	20	88-20-67	100.6 - 102.1	615	
	20	88-20-68	102.1 - 103.6	295	
	20	88-20-74	111.2 - 112.8	295	
	20	88-20-76	114.3 - 115.8	355	
	20	88-20-77	115.8 - 117.4	310	
	20	88-20-78	117.4 - 118.9	1570	0.05
	20	88-20-79	118.9 - 120.4	2580	0.08
	20	88-20-80	120.4 - 121.9	12045	0.39 to 0.44
	20	88-20-81	121.9 - 123.4	5780	0.15
	20	88-20-82	123.4 - 125.0	285	
	20	88-20-84	126.5 - 128.0	305	
	21	88-21-68	102.1 - 103.6	850	
	21	88-21-69	103.6 - 106.2	360	
	21	88-21-71	106.7 - 108.2	270	
	21	88-21-72	108.2 - 109.7	360	
	21	88-21-73	109.7 - 111.2	305	
	21	88-21-79	118.9 - 120.4	3420	0.10
	21	88-21-80	120.4 - 121.9	660	
	21	88-21-82	123.4 - 125.0	530	
	21	88-21-85	128.0 - 129.5	295	
Bolivar West:	25	88-25-128	193.6 - 195.1	405	
	26	88-26-69	103.6 - 105.2	14330	0.11 to 0.41
	26	88-26-70	105.2 - 106.7	535	
	26	88-26-71	106.7 - 108.2	521	
	27	88-27-9	12.2 - 13.7	590	
	27	88-27-12	16.7 - 18.3	675	
	27	88-27-20	29.0 - 30.5	380	
	27	88-27-32	47.2 - 48.7	693	
	27	88-27-33	48.7 - 50.2	412	
	27	88-27-58	86.9 - 88.5	540	
	27	88-27-69	103.6 - 105.2	290	
	28	88-28-4	4.6 - 6.1	525	
	28	88-28-12	16.7 - 18.3	550	
	28	88-28-35	51.8 - 53.3	480	
	29	88-29-38	56.4 - 57.9	430	
	29	88-29-47	70.1 - 71.6	410	
	30	88-30-19	27.4 - 29.0	550	

Table 3: SUMMARY OF SIGNIFICANT DRILL CHIP SAMPLE RESULTS Continued

_		a		Analysis	Assay
Агеа	Hole No.	Sample No.	Depth (metres)	<u>Au ppb</u>	Au oz/ton
Bolivar East:	31	88-31-2	1.5 - 3.0	3380	0.06
	31	88-31-3	3.0 - 4.6	430	
	32	88-32-2	1.5 - 3.0	480	
	32	88-32-6	7.6 - 9.1	355	
	32	88-32-7	9.1 - 10.7	325	
	32	88-32-31	45.7 - 47.2	1520	0.05
	32	88-32-32	47.2 - 48.7	650	
	32	88-32-89	134.1 - 135.6	7070	0.04 to 0.54*
	32	88-32-90	135.6 - 137.2	360	
	34	88-34-4	4.6 - 6.1	305	
	34	88-34-7	9.1 - 10.7	1040	0.01 to 0.06
	34	88-34-30	44.2 - 45.7	355	
Bolivar Road:	37	88-37-12	16.7 - 18.3	760	
	37A	88-37A-18	25.9 - 27.4	505	
	39	88-39-6	7.6 - 9.1	520	
	39	88-39-7	9.1 - 10.7	395	
	39	88-39-12	16.7 - 18.3	592	
	39	88-39-16	22.9 - 24.4	2032	0.06
Iron Horse:	41	88-41-32	47.2 - 48.7	1880	0.06

^{*}assay results varied.

Assay Averages

			Average
Hole No.	Averaged Interval	Interval (m)	Au oz/ton
15	153.9 - 157.0	3.1	0.13
20	117.4 - 123.6	6.0	0.17
20	120.4 - 123.4	3.0	0.27

Augrago

6.3 DRILL CHIP LITHOLOGIES

The Oka stratigraphy has been compiled from outcrop and trench mapping conducted in 1986 and 1987. Small reverse circulation drill chips, varying in size from 1 mm to 3 cm, precluded the definition of any large scale features such as bedding, cross cutting relationships, fractures, faults or large textural features in the drill holes. Descriptive terms were used as much as possible for the chip logging except where the microscopic features of the rock clearly defined its type. A descriptive code may be common to more than one stratigraphic unit (Ref: Table 5) because of the logger's inability to distinguish rock type without reference to large textural or crosscutting relationships.

Following are descriptions of the lithologic units, and code names, used to log the drill chip samples. The field description of the representative sample is followed by the petrographic description. Petrographic reports are attached in Appendix "C".

Table 4: DRILL CHIP LITHOLOGICAL CODES

- FLD FELDSPAR PORPHYRY tan, fine grained siliceous matrix with 2 to 20 percent disseminated chlorite hosting 2 to 5 percent .2 to .7 mm phenocrysts(?) of feldspar and or quartz.

 Petrographic analysis porphyritic andesite, metamorphosed andesite, dacite and skarn.
- GRANODIORITE light grey, medium grained, intergrown quartz and feldspar with 2 to 10 percent locally chloritized biotite. Trace disseminated pyrite. Not petrographically analyzed.
- DIO DIORITE medium greyish green, fine to medium grained feldspar and quartz with 10 to 20 percent partially chloritized biotite and other mafic minerals. Trace disseminated pyrite. Not petrographically analyzed.
- AND ANDESITE dark to medium green, fine grained, massive, sometimes containing .2 to .5 mm grains of feldspar or augite. Usually trace disseminated pyrite.

 Petrographic analysis: porphyritic, amygdaloidal andesite.
- XTF CRYSTAL TUFF white to light grey, fine grained siliceous matrix containing 10 to 40 percent .3 to 1.5 mm feldspar laths or quartz grains.

 Petrographic analysis: metamorphosed andesite with quartz rich patches of uncertain origin; diopside, garnet, quartz skarn.
- SLT SILTSTONE black, carbonaceous, locally calcareous to weakly siliceous. Not petrographically analyzed.
- HNF HORNFELS black to medium grey to maroon, very fine grained, siliceous.
 Not petrographically analyzed.
- FGS FINE GRAINED SILICEOUS ROCK white to light grey, very fine grained, siliceous. The type rock was seen interbedded with siltstones of the Upper Nicola group. Possibly a tuff. FGSB when containing 1-5% red biotite. Not petrographically analyzed.
- MGS MEDIUM GRAINED SILICEOUS ROCK white to light grey, .1 to .5 mm grain size, siliceous.

 Petrographic analysis: quartz, garnet, diopside, ankerite skarn; metamorphosed and replaced porpyhyritic andesite.
- SKN SKARN grey, green, brown or pink, medium grained with garnet, pyroxene, local epidote, calcite and wollastonite. Not petrographically analyzed.
- MBL MARBLE light to dark grey, medium grained with abundant calcite veinlets. Not petrographically analyzed.
- MS MASSIVE SULPHIDE dominantly pyrite and pyrrhotite with minor chalcopyrite and sphalerite. Commonly contains 10-30% skarn. Not petrographically analyzed.

Drill Chip Lithologies Continued

Below is the stratigraphic sequence of rocks mapped on the Oka property during the 1987 trenching program. Each rock description is followed by the drill chip lithological code which may belong to that stratigraphic member.

Table 5

PROPERTY STRATIGRAPHY

TERTIARY

Quartz-feldspar porphyry; dikes of granite(?) composition, which may be part of the Coryell Intrusions. FLP.

CRETACEOUS

Nelson Plutonic Rocks

<u>Granodiorite to diorite, minor aplitic phases</u>; massive, medium to coarse grained with local moderate to strong quartz sericite alteration. GDR, DIO.

JURASSIC

Andesite dike or sill; well fractured, blocky, fine grained, AND.

<u>Diorite dike or sill</u>; well fractured, blocky, medium grained with local moderate to strong sericite alteration. DIO, FGSB.

TRIASSIC

Nicola Group

<u>Andesite to basalt</u>; dark green, massive to weakly flow-banded, finely to coarsely crystalline with abundant feldspar and augite phenocrysts. Commonly strongly sheared and chlorite-altered. AND, XTF, FGS, HNF, FLD.

<u>Heterolithic slump breccia</u>; contains subrounded to subangular fragments or clasts to .5 m of marble, chert, skarn and siltstone. SLT, MBL, FGS.

<u>Siltstone</u>: black calcareous to siliceous (hornfels) with local tuffaceous siltstone, chert pebble conglomerate, calc-silicate hornfels and greywacke. Often interbedded with volcanic or carbonate rocks. SLT, HNF, FGS.

<u>Skarn</u>: massive, coarse grained, predominantly red-brown garnet with pyroxene and local epidote, calcite and wollastonite. SKN, MGS, XTF.

<u>Marble</u>; light to dark grey, locally fossiliferous, poorly preserved bedding, locally strongly fractured with abundant white calcite veinlets. MBL.

Reverse Circulation Drilling Continued

6.4 RESULTS

The reverse circulation drilling was undertaken to test trench, soil geochemical and prospecting targets outline during the 1986 and 1987 programs. A drill grid spaced on approximately 100 m centres was established over the Iron Horse area and specific targets were drilled in four other locales.

6.4.1 Iron Horse Area (Figure 5, Plates 1-10)

The Iron Horse area is underlain by siltstones, marbles and skarns of the Lower Nicola group. Gold bearing skarns were exposed by trenching during 1987 on both sides of a southeast trending ridge. A grid pattern of drill holes was laid out to test for a mineralized skarn horizon(s) extending under the ridge from the South Horse showings to the North and West Horse showings. Holes were drilled vertically except for numbers 5, 9 and 41 which were angled at -55° to the north to pass under surface exposures of massive sulphides and to test for steeply dipping mineralized structures. Drill hole locations, as well as gold showings and geochemical anomalies, are illustrated on Figure 5. Drill chip analytical results and geological interpretations are shown on ten vertical sections (Plates 1-10).

Drilling defined a general pattern of alternating zones of skarn and marble cut by diorite dykes and underlain by diorite and granodiorite. The skarn horizons correlate moderately well between drill holes and may be metasomatized beds of impure limestones which were more susceptible to skarnification than clean limestones. Bedding in surface exposures indicates a dip slope on the south side of the Iron Horse ridge. This forms the southern limb of an anticline with the axis dipping roughly 10° to the west along the ridge. Younger, hornfelsed volcanics, interbedded with andesite and skarn were intersected on the west side of the drill grid in holes 12 and 13 confirming the northwest plunge of the anticlinal structure. The north limb of the anticline is poorly defined and appears to be turned up into a smaller scale synform as shown in section 91542E (Plate 5).

Mineralization: Gold results greater than 500 ppb Au were returned from samples of skarn, diorite, marble and granodiorite, all with trace to minor pyrite (table 6). The best value, 0.436 oz/t Au over 1.52 m, was from a sample of pink skarn in hole OK88-20, containing four percent disseminated and massive pyrite. No visible gold was seen in the drill chips, however, some was found in the North Horse stripped area in 1987. Bar graphs of the gold values plotted on the drill sections indicate that elevated values are locally correlatable between holes suggesting that the mineralization is related to skarn horizons and not necessarily to vertical structural features.

Reverse Circulation Drilling RESULTS Continued

Association of sulphides with strong gold values has been noted but is not essential. Pyrite was the dominant sulphide noted, usually occurring disseminated in the wallrock. Massive sulphide pods were mapped on surface and large concentrations of sulphide chips were recorded in holes OK 88-4 and 88-16 comprising pyrite, pyrrhotite, arsenopyrite and chalcopyrite. Low gold results were returned from the drill intersected massive sulphide zones.

Table 6: IRON HORSE AREA
SIGNIFICANT VALUES WITH ASSOCIATED ROCK TYPES AND SULPHIDES

Hole #	Sample #	Au ppb	Rock Types*	Sulphides and Vein Minerals
1	88-1-4	671	SKN,	Trace Py
2	88-2-22	590	SKN	2% Py
4	88-4-66	1440	DIO, SKN	Trace Py
5	88-5-42	550	MBL, SKN	4% Py
5	88-5-46	1560	SKN	1% Py, 7% Qtz, 3% Cal
5	88-5-47	5230	SKN, HNF	.5% Py, 2% Qtz, 2% Cal
5	88-5-48	750	SKN	Trace Py
5	88-5-49	7450	SKN	Trace Py, 2% Cal
5	88-5-51	520	SKN	0.2% Py
5	88-5-59	1390	DIO, SKN	Trace Py
5	88-5-62	950	DIO	Trace Py
6	88-6-11	505	DIO, GDR	Trace Py, Abundant FeO
14	88-14-17	845	GDR, AND	0.2% Py, Trace Cp
15	88-15-102	5925	SKN, GDR	0.5% Py
15	88-15-103	3220	GDR, SKN	Trace Py, Trace Cp, Trace Cal
15	88-15-104	560	GDR, SKN	Trace Py
16	88-16-5	625	DIO, SKN	Trace Py
16	88-16-94	1290	MBL, SKN	1% Py
16	88-16-125	1080	DIO, SKN	0.2% Py, 2% Cal
16	88-16-127	670	SKN, DIO	Trace Py
16	88-16-140	3460	MBL, SKN	1% Py
19	88-19-27	1020	DIO, SKN	Trace Py
20	88-20-27	570	SKN, MBL	Trace Py
20	88-20-28	810	SKN, MBL	Trace Py
20	88-20-33	610	SKN	Trace Py
20	88-20-67	615	SKN, DIO	Trace Py
20	88-20-78	1570	SKN, DIO	Trace Py
20	88-20-79	2580	SKN	8% PY
20	88-20-80	12045	SKN	4% Py, Trace Cpy
20	88-20-81	5780	SKN, MBL	2% PY
21	88-21-68	850	SKN, DIO	Trace Py
21	88-21-79	3420	DIO, SKN	Trace Py
21	88-21-80	660	DIO, SKN	Trace Py
21	88-21-82	530	DIO	Trace Py
41	88-41-32	1880	SKN	Trace Py

^{*}Rock codes are described in lithology section. Refer to Table 4.

Reverse Circulation Drilling RESULTS - Iron Horse Area Continued

Section Descriptions:

Section 291837 E (Plate 1)

Holes 7 and 14 were drilled to test for the extension to depth of skarn hosted mineralization encountered in the North and South Horse trench areas. Quartz diorite was intersected in both drill holes locating the flanks of the quartz diorite body exposed on surface in the centre of the section. The best result was 345 ppb Au /1.52 m in hole 14 from a sample of quartz diorite. Bar graphs illustrate a moderate intrusive-gold relationship.

Section 291798 E (Plate 2)

Hole 19 was drilled to test continuity to depth of gold mineralization found at the skarn-marble contact in the North Horse stripped area. Skarn was intersected but no significant values nor marble were found.

Section 291742 E (Plate 3)

Hole 6 was drilled to test for the extension of sulphide hosted mineralization found in the North Horse stripped area at the dioritemarble contact. The marble was not intersected and probably dips to the north, however, significant values were returned from the diorite. The domal shape of the intrusive body continues from Section 291837 E. The best result returned from the drill holes on this section was 671 ppb Au/1.52 metres from a sample of skarn with trace disseminated pyrite. An association between elevated gold values and skarn-marble in proximity to intrusives is defined by the bar graphs.

Section 291641 E (Plate 4)

A general pattern of two skarn horizons separated by marble dipping to the south is shown in this section. The attitude of the skarn marble contact is roughly parallel to the south slope of the Iron Horse ridge and is consistent with dip measurements taken on surface. Elevated gold values appear to be associated with skarn horizons in proximity to diorite dykes. The highest values, 1290 ppb Au/1.52 m and 3430 ppb Au/1.52 m, were from samples of mixed marble and skarn with minor pyrite from hole 16.

Section 291542 E (Plate 5)

Holes 4, 5 and 21 were drilled to test the continuity and grade of skarn hosted mineralization found in the West Horse stripped area. A smaller scale syncline was defined on the north limb of the Iron Horse anticline. The general pattern of two skarn horizons separated by a marble zone defined in the sections to the east is evident here. The sulphide and skarn hosted mineralization exposed on surface was not encountered in the upper skarn unit in the drill holes, however, strong gold values were returned from the lower skarn and diorite. Values are more continuously high in the diorite than in the skarn. Massive sulphides intersected in hole 4 returned weak gold values. skarn-marble-skarn pattern is confirmed in the south limb of the anticline in all holes except 24 where skarn development is much more Elevated gold values in the south limb appear to be restricted. associated with skarn in proximity to diorite dykes.

Reverse Circulation Drilling RESULTS - Iron Horse Area Continued

Section 291455 E (Plate 6)

Hole 41 was drilled to test the western extension of mineralization found in holes 4, 5, 21 and in the West Horse stripped area. An isolated high value of 1880 ppb Au/1.52 m was returned from a sample of skarn with 2% diorite chips.

Section 521023 N (Plate 7)

Holes 12 and 13 were drilled to test a soil geochemical anomaly to the west of the Iron Horse area. Stratigraphic units overlying those found in the Iron Horse area were intersected. No intrusive rocks were encountered. No significant gold values were returned.

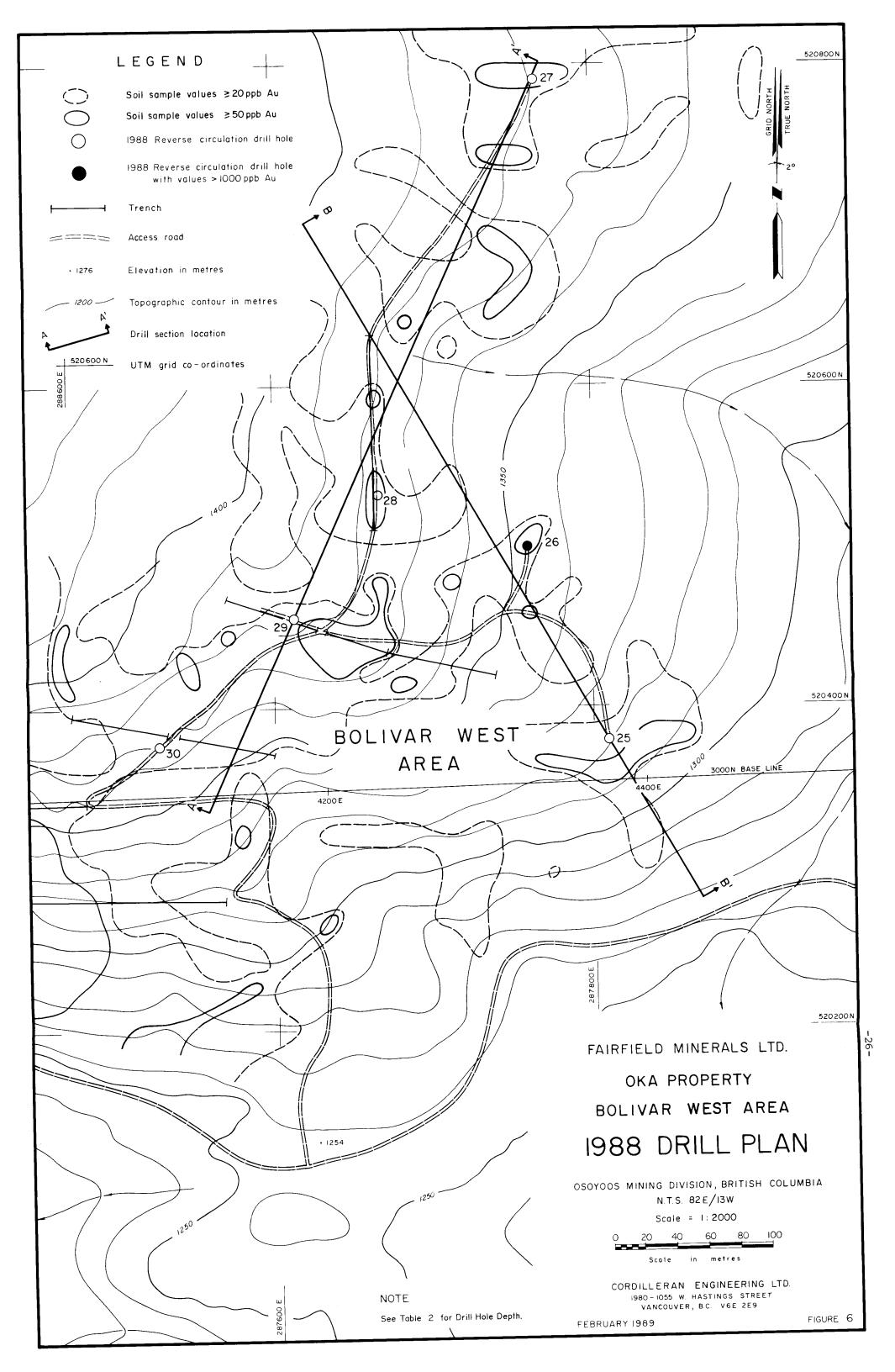
Section 521060 N (Plate 8)

Hole 8 was drilled to test a soil geochemical anomaly along the north edge of the quartz diorite stock: Marble, skarn, diorite and granodiorite were intersected but no significant values were returned.

Section B-B' (Plate 9)

This is a diagonal section trending 301 degrees and looking northeast, illustrating the shallow dip of the Iron Horse anticlinal axis to the west. The skarn-marble-skarn-intrusive sequence is evident in holes 21, 4 and 11.

Section D-D' (Plate 10)


This is a diagonal section oriented 301 degrees, looking northeast through the South Horse area. The skarn horizons are not as clearly continuous across this section. Mineralization appears to occur generally in skarn and at skarn-marble contacts in proximity to diorite dykes. The best value returned was 5925 ppb Au/1.52m from a sample of mixed skarn and granodiorite with 0.5% Py.

6.4.2 BOLIVAR WEST AREA

The Bolivar West area is underlain by Nicola Group andesitic and dacitic volcanics with lesser interbedded hornfelsed sediments and skarn. Cretaceous granodiorite to diorite lies immediately to the southwest and dykes of similar composition are common.

Six vertical holes were drilled to test various gold soil geochemical anomalies and weak gold mineralization in strongly fractured, quartz veined volcanic rocks exposed in trenches. Drill hole locations, as well as soil geochemical anomalies, are plotted on Figure 6. Significant analytical results and geological interpretations are shown on two vertical sections (Plates 11 and 12).

Bedding measurements taken on surface dip steeply to the southeast. Correlation of siltstone horizons between drill holes indicates conflicting bedding attitudes dipping moderately to the southeast and northeast.

Reverse Circulation Drilling RESULTS - Bolivar West Area Continued

Mineralization

Gold values greater than 400 ppb were returned from samples of fine grained siliceous rock, granodiorite and andesite. The best result, 14,330 ppb Au/1.52 m, was found in iron oxide stained, fine grained siliceous rock in hole OK-88-26. Elevated values are not correlatable between drill holes along the bedding and appear to occur sporadically Significant mineralization found during the 1987 in all rock types. trenching program was hosted in a northeast trending quartz vein and in arsenopyrite veinlets, suggesting structural control. The projection of the mineralized quartz vein passes immediately to the north of hole OK-88-26 and it is possible that this structure was intersected by the hole.

BOLIVAR WEST AREA Table 7: SIGNIFICANT VALUES WITH ASSOCIATED ROCK TYPES AND SULPHIDES

Hole #	Sample #	Au ppb	Rock Types*	Sulphides and Vein Minerals
26	88-26-69	14330	FGS	Trace Py
26	88-26-70	535	FGS	Trace Py
26	88-26-71	521	FGS	Trace Py
27	88-27-9	590	FGS, FGSB	Trace Py
27	88-27-12	675	FGS	Trace Py
27	88-27-32	693	GDR	Trace Py
27	88-27-58	540	GDR, FGS	Trace Py
28	88-28-4	525	AND, FGS	Trace Py
28	88-28-12	550	FGS	Trace Py
30	88-30-14	550	FGS, XTF	Trace Py

^{*}Rock types are described in the lithology section. Refer to Table 4.

Section A-A' (Plate 11)

This section is oriented at 26 degress looking northwest and illustrates the stratigraphy of the Upper Nicola group in the Bolivar West area. A siltstone unit and surrounding beds intersected in holes 28 and 29 correlate well and indicate a moderate dip to the northeast. Elevated gold values are sporadic and show no clear lithologic associations. Unusually high values within granodiorite were returned from hole 27.

<u>Section B-B'</u> (Plate 12) Section B-B' trends at 150 degrees looking northeast. The siltstone horizon indicated on the previous section was also intersected in holes 25 and 26 but suggests a moderate dip to the southeast in contrast to that noted on section A-A'. A value of 14330 ppb Au/1.52 m was returned from a sample of fine grained siliceous rock in hole 26 that may be related to a structural feature projected to pass immediately to the Other gold values are sporadic and not clearly north of the hole. associated with any specific rock type.

Reverse Circulation Drilling **RESULTS** Continued

6.4.3 **BOLIVAR EAST AREA**

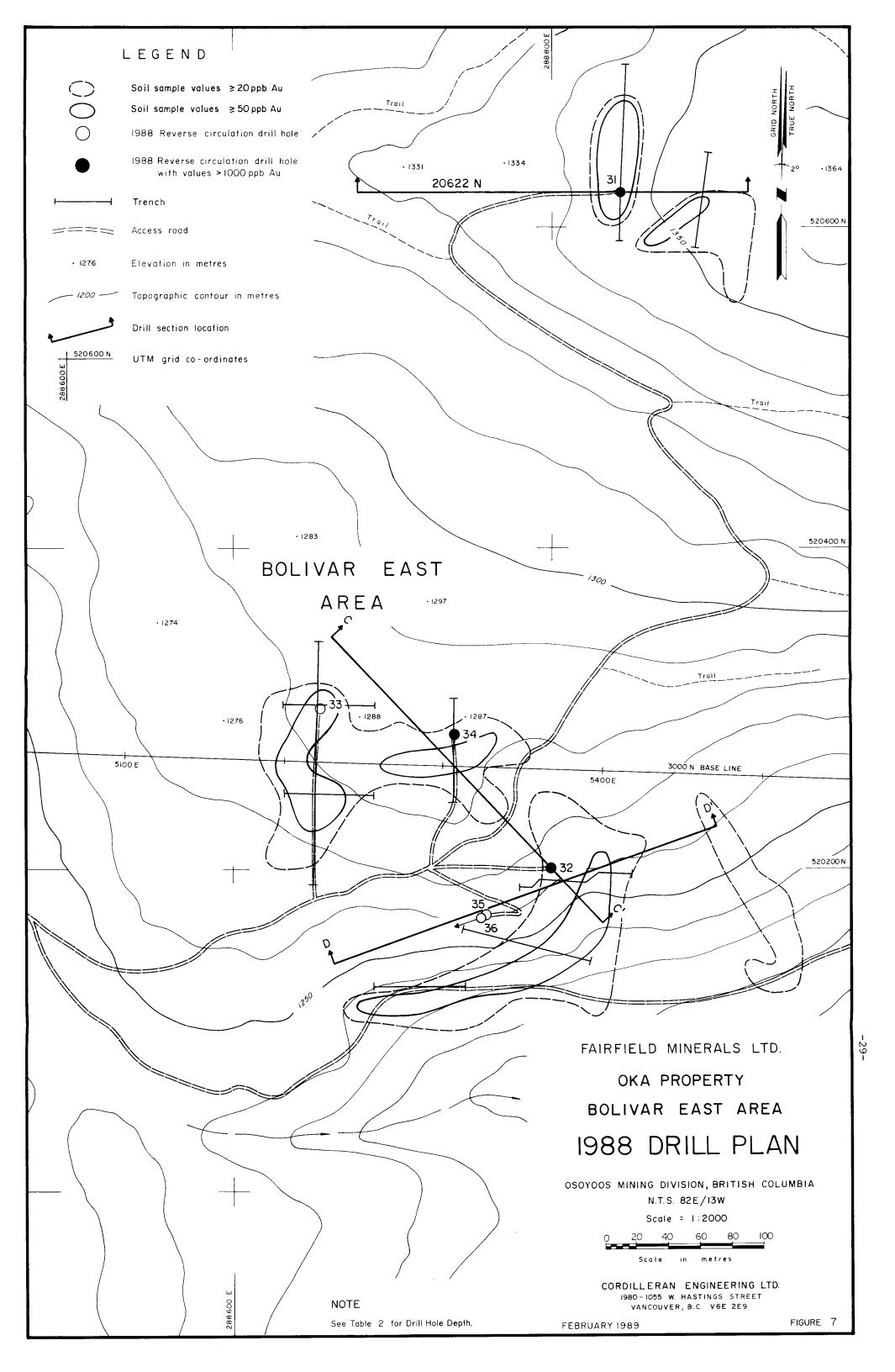
The Bolivar East area is underlain by Upper Nicola Group andesitic to dacitic volcanics interbedded with locally hornfelsed siltstones and tuffaceous siltstones and minor marble and skarn.

One angled and five vertical holes were drilled to test gold soil geochemical anomalies and gold showings in fractured volcanics and skarn in trenches. Drill hole locations and soil geochemical anomalies are shown on Figure 7. Significant analytical results and geological interpretations are plotted on three vertical sections (Plates 13, 14 and 15).

Table 8: **BOLIVAR EAST AREA** SIGNIFICANT VALUES WITH ASSOCIATED ROCK TYPES AND SULPHIDES

Hole 🛊	S <u>ample</u>	Au ppb	Rock Types*	Sulphides and Vein Minerals
31	88-31-2	3380	XTF, FGS	Trace Py, Trace Aspy
32	88-32-31	1520	GDR	Trace Py
32	88-32-32	650	GDR	Trace Py
32	88-32-89	7070	FGS, MGS	Trace Py
34	88-34-7	1040	MGS, XTF	Trace Py, Minor FeO

^{*}Rock codes are described in the lithology section. Refer to Table 4.


Section 20622 N (Plate 13)

Hole 31 was drilled to test the continuity to depth of mineralization hosted in bleached tuffaceous siltstone exposed by trenching in 1987. Drilling confirmed the surface mineralization and returned a value of 3380 ppb Au over 1.52 metres immediately below surface. No other significant mineralization was intersected in this hole.

Section C-C' (Plate 14)

This section illustrates the proximity to surface of the granodiorite Elevated gold values occur throughout the section intrusive body. within various rock types, suggesting structural control. Moderate gold surface explaining the anomalous soil results were found near geochemistry. A sample of mixed fine grained siliceous rock and medium grained siliceous rock returned a value of 7070 ppb Au over 1.52 metres.

 $\frac{\text{Section D-D'}}{\text{No distinct lithological marker units were intersected by drilling.}}$ Gold enrichment was found in several different rock types indicating possible structural control.

Reverse Circulation Drilling RESULTS Continued

6.4.4 BOLIVAR ROAD AREA

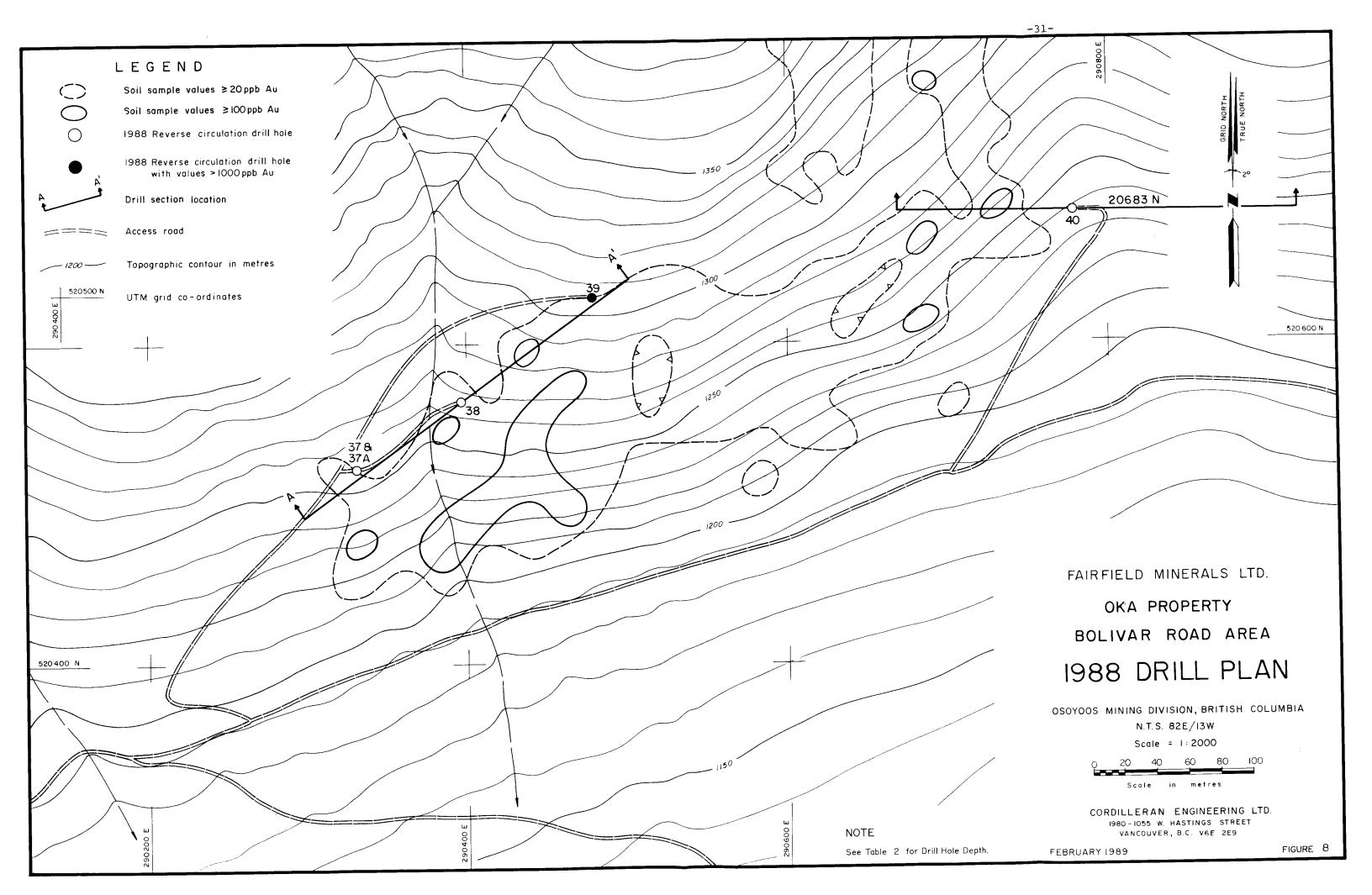
Rocks of the Upper Nicola Group underlie the Bolivar Road area. They comprise andesite locally interbedded with fine grained siliceous rock, minor medium grained siliceous rock and siltstone.

Five vertical holes were drilled along the upslope edge of an extensive gold soil geochemical anomaly. Hole number 37 was abandoned in bad ground and 37A was drilled beside it. Hole locations and geochemical anomalies are plotted on Figure 8 and drill results are shown on two vertical sections (Plates 16 and 17).

Table 9: BOLIVAR ROAD AREA
SIGNIFICANT VALUES WITH ASSOCIATED ROCK TYPES AND SULPHIDES

<u> Hole #</u>	S <u>ample #</u>	<u>Au ppb</u>	Rock Types*	Sulphides	and Vein Minerals
37	88-37-12	760	FGS, AND	Trace Py	
37A	88-37A-18	505	AND, SLT	Trace Py,	Trace Qtz
39	88-39-6	520	FGS, MBL	Trace Py	
39	88-39-12	592	FGS AND	Trace Py	
39	88-39-16	2032	FGS, AND, SLT	Trace Py	

^{*}Rock codes are described in the lithology section. Refer to Table 4.


Section 20683 N (Plate 16)

Hole 40 intersected rocks of the Upper Nicola group. No significant mineralization was intersected.

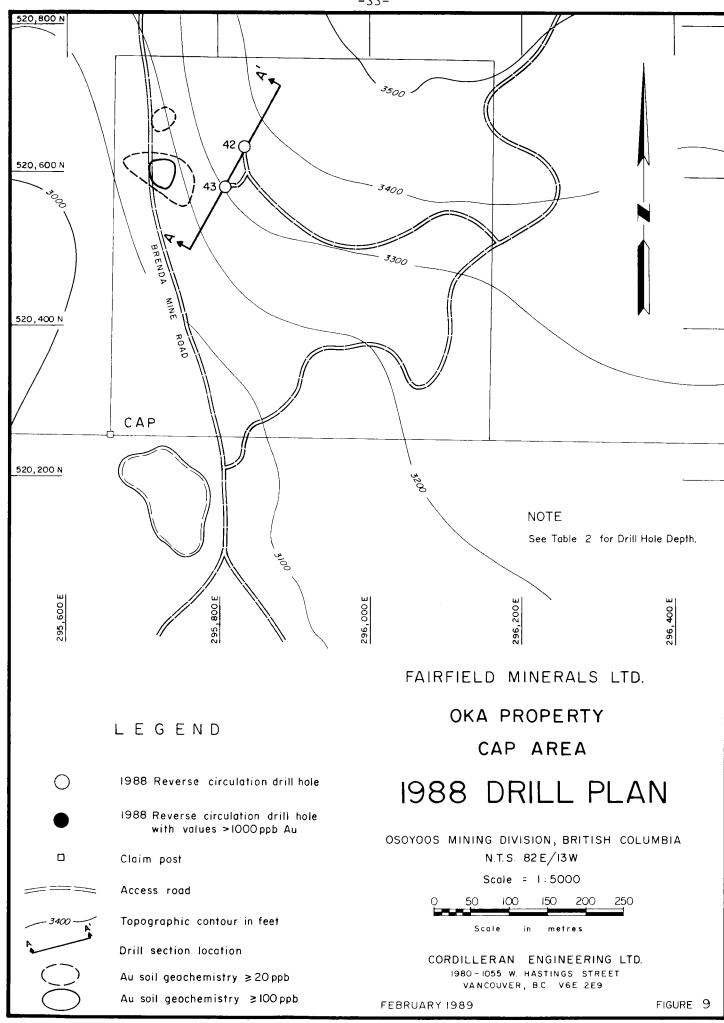
Section A-A' (Plate 17)

A zone containing feldspar porphyry was intersected in all three holes of this section forming a correlatable unit. This feature may be intrusive in origin or an altered porphyritic volcanic of the Upper Nicola group. Some granodiorite dykes cut the volcanics in holes 37A and 38.

A sample of mixed fine grained siliceous rock, andesite and siltstone with abundant iron oxide returned a value of 2032 ppb Au over 1.52 metres. A value of 505 ppb Au over 1.52 m was returned from a sample of andesite chips with trace quartz and calcite. The strongest gold results are located within thirty metres of surface and probably represent the source of the soil geochemical anomalies.

Reverse Circulation Drilling RESULTS Continued

6.4.5 CAP AREA


The Cap area is underlain by locally skarned rocks of the Nicola group. They comprise interbedded siltstone, marble, skarn and andesitic to basaltic volcanic rocks.

The vertical holes were drilled to test the projection of a massive sulphide bearing skarn horizon exposed in a road cut 80 metres to the west. The hole locations are shown on figure 9 and results are compiled on a vertical section.

Section A-A' (Plate 18)

The upper 100 metres of both holes cut interbedded marbles and siltstones similar to those hosting massive sulphide pods on surface. No sulphides were intersected. No significant gold results were returned.

GEOPHYSICS

7.0

VLF-EM and magnetometer surveys were conducted between May 4 and May 16, 1988. A report prepared by S. J. V. Consultants Ltd. is appended (Appendix "B").

Grid preparation for the geophysical work included 41.5 line-kilometres of secant chained flag and compass line. Both the magnetometer and VLF-EM surveys covered the entire grid with lines 100 m apart and stations at 25 m intervals. Station locations were marked in the field by grid numbered plastic flagging tape. The grid encompassed the Bolivar West, Bolivar East and Bolivar Road drill areas.

The purpose of the surveys was to use the data as an aid for geological mapping and to locate and trace mineralized shear zones.

The magnetometer survey indicated a possible geological contact extending from 2800N on line 4800E to 2850N on line 5600E, with the more magnetic rocks to the south. The VLF-EM survey located a conductor in this same area at approximately 2800N.

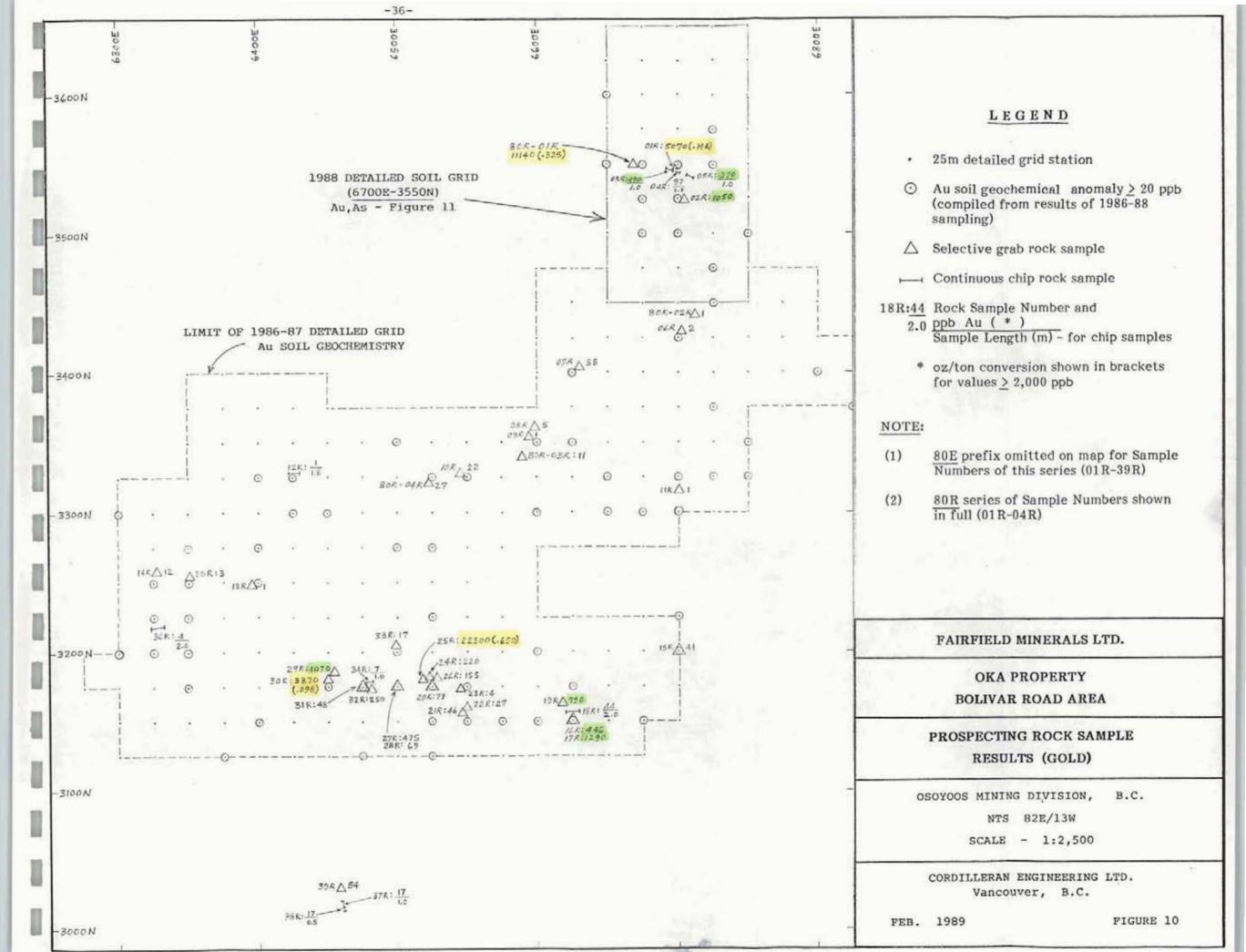
The VLF-EM data shows a series of conductors with short strike lengths which are probably due to conductive shear zones. They are striking NE-SW on the eastern part of the grid and E-W on the western part. The conductors roughly parallel the trend of geochemical anomalies in the area and a few are strongly correlated.

PROSPECTING

8.1 INTRODUCTION

8.0

A total of 8 man-days during May was spent following up anomalous gold soil geochemistry in the Bolivar Road area. This work included prospecting, rock sampling and minor soil sampling around newly-discovered mineralization near grid station 6700E-3550N. The soil sampling covered a northerly extension to parts of the 1986-87 detailed grids. Forty-three rock samples were collected and submitted for Au analysis (+Ag in one case) and 45 soil samples were analyzed for Au and As.


8.2 RESULTS

8.2.1 Rock Sampling (Figure 10)

Eleven of the 43 rock samples analyzed returned Au values greater than 300 ppb. All but one of these comprise quartz +sulphide vein material. Highest values of 22,300 ppb Au (0.65 oz/ton) and 233.5 ppm Ag (6.8 oz/ton) were obtained from a grab sample of one centimetre-wide quartz-galena stringers in siliceous skarn and marble rubble near grid station 6525E-3175N.

Small pits were hand-dug in quartz-arsenopyrite talus near grid stations 6675E-3550N and 6700E-3550N. Exposed bedrock consists of siliceous, coarse-grained volcanics (andesitic tuffs) with localized strongly disseminated arsenopyrite and pyrite, and narrow (<10 cm) arsenopyrite, pyrite, galena-bearing quartz veins or masses. Two selective grab samples returned Au analyses of 5,070 ppb (0.146 oz/ton - check assay) and 11,140 ppb (0.325 oz/ton); however, 3 continuous chip samples across the same exposures yielded a maximum value of only 490 ppb Au over one metre.

The overall rock sample results clearly show that the strongest gold values are associated with arsenopyrite and/or galena mineralization in sporadic, small-scale zones of silicification and quartz veining. Veins are generally narrow (<1-5 cm), irregular, and cut all rock types present, including the volcanic and clastic sedimentary units and underlying marble/skarn horizons.

PROSPECTING - Results Continued

8.2.2 Soil Sampling (Figure 11)

The 1988 soil sampling, centred at 6700E-3550N, has extended the main 1986-87 Au anomaly by over 100 metres to the north. The highest Au values, up to 490 ppb, are coincident with strong As results of several hundred ppm, up to a peak of 1,122 ppm. The majority of these strongly anomalous Au and As samples are located downslope (southeast) from the new quartz-arsenopyrite-gold discoveries.

* * * *

.0 175 200 225 250 Figure:11	25 50 75 100 125 150 SCALE 1: 2500		OKA PROPERTY SOIL GEOCHEM	FAIRFIELD MINERALS OF BOLIVAR ROAD AREA SO	AU ppb AS ppm
	-6825 E	3 SY78 E	€ 252 E € 852 E	9252 E	-6325 E
3125 N	r L			۵ ۲	0
3175 N	*		2 S		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		\$	۵	\$ \$.
3225 N_			\$		** ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
					% % .
3275 N_	(e)		0		20
	3° 0		6 8 6 0 0	\$	\$
3325 N	,,				0
	0		· · · · · · · · · · · · · · · · · · ·	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3375 N_	\$	D	\$		
	\$°	,			
3425 N		n	90L // IS	Only Au values >=20 ppb shown	Only
3475 N_		0 0	43 85 12 1122 230	1986 - 87 DETAILED GRIDS - 3300N and W. part 7000E 3350N)	19 (6600E -
			70 309 72 47 448		
3525 N_			805 489 177 307 46		8
3575 N	900 DEIAILED GRID 6700E - 3550N)	9	75 46 65 174 18 2 2 9 20 7 1,7 89 62 334 29		
3625 N	חפט חפוואדפת אאנ	-	29 51 74 75 31	Anomalous 20-65 30-60 Anomalous >65 ,50	Strongly
			32 23 30 40 81	S (froi	
	-38-	1000			

NEW CLAIMS

9.0

In June, 1988 the Oka 12, 13, 14 and 15 claims (9 units) were staked two kilometres north of the east end of the main claim block (Figure 2). This area was acquired to cover showings of massive sulphide skarn in a geological setting similar to that of the Iron Horse area four kilometres to the southwest.

A 4-wheel drive road extends from the Brenda Mine road to the top of Mount Wilson in the centre of Oka 13 claim. Mount Wilson, which reaches a peak of 4,583 feet, has gentle slopes with open forest on the west side and dense second growth forest on the east.

Moderate bedrock exposure on the upper part of Mount Wilson consists of metasedimentary and metavolcanic rocks of the Nicola Group which are part of a large pendant extending several kilometres to the northwest, engulfed by granodiorite to diorite of the Pennask Batholith (Figure 3). Pendant rocks on the new claims consist predominately of hornfelsed siltstones and andesitic (?) volcanics with abundant finely disseminated pyrite and pyrrhotite. Dykes of granodiorite and diorite are common. Local calc-silicate zones with abundant garnet and epidote contain disseminations and occasional masses of pyrite and pyrrhotite with rare chalcopyrite and sphalerite. Several grab samples from sulphide-rich rocks did not return any significant gold or silver values.

A soil geochemical grid was established over the new claims with samples spaced at 50 metres on lines 100 metres apart. The base line was oriented at 320 degrees with sample lines at 050 degrees. A total of 377 samples were collected and analyzed for gold. Only 5 samples returned values greater than 20 ppb Au with a high value of 110 ppb. Anomalous stations are isolated and no large anomalous areas or trends were defined. Geochemical certificates, attached in Appendix "B", are labelled Mt. Wilson, New Claim.

The potential for discovering a significant skarn-hosted gold deposit on the Oka 12-15 claims is considered to be poor and no further work is recommended.

10.0

SELECTED REFERENCES

CORDILLERAN ENGINEERING LTD.

- 1988 1987 Geochemical Report on the Oka Property (Group 1), Osoyoos Mining Division, B.C., Summary Report, February, 1988
- 1986 Geological, Geochemical and Prospecting Report on the Oka Claim Group, Osoyoos and Similkameen Mining Divisions, B.C. Assessment Report, April 1987.

LITTLE, H.W.:

1961 Geology, Kettle River (West Half), B.C. G.S.C. Map 15-1961.

11.0

COST STATEMENT

	OKA 1-5, IRON (99 un GRO	·	OKA 6-11 (86 units) GROUP 2	TOTAL
	Before June 2	After June 2		-
Holes Drilled	1-19	20-24, 41-43	25-40 + 37A	44 holes
Metres Drilled Cost Factor:	2484.87	1278.33	2268.10	6031.30 m
Metres Drilled in Area				
Total Metres Drilled	.412	.212	. 376	
Salaries, Professional				
& Technical Services	\$ 45,538.06	\$ 23,432.21	\$ 41,559.01	\$110,529.28
Reverse Circulation Drilling	89,416.76	46,010.57	81,603.65	217,030.98
Road Building	10,366.95	5,334.45	9,461.10	25,162.50
Geochemistry & Assays	17,942.06	9,232.33	16,374.31	43,548.70
Drafting	1,409.04	725.04	1,285.92	3,420.00
Truck & Equipment Rentals	3,585.42	1,844.93	3,272.13	8,702.48
Office Supplies, Printing,				
Telephone, Postage	1,593.25	819.83	1,454.04	3,867.12
Freight & Express	2,115.80	1,088.71	1,930.93	5,135.44
Travel & Accommodation	2,801.66	1,441.63	2,556.85	6,800.14
Equipment & Supplies	3,031.41	1,559.85	2,766.53	7,357.79
Food	2,864.90	1,474.17	2,614.56	6,953.63
Vehicles - Fuel & Repairs	1,179.22	606.79	1,076.18	2,862.19
Topographic Map	-	-	2,135.00	2,135.00
Geophysical Survey	***************************************		7,225.00	7,225.00
Total Cost of Work	\$181,844.53	\$93,570.51	\$175,315.21	\$450,730.25

12.0 PERSONNEL AND CONTRACTORS

PERSONNEL:

Name/address	Position	Field	d Dates	Worked	ļ
E. Balon North Vancouver, B.C.	Prospector	Apr	18 - M	ay 17,	1988
P.Donkersloot Vancouver, B.C.	Geologist	May	2 - J	uly 1,	1988
Z. Dressler Vancouver, B.C.	Sampler	May	2 - J	uly 21,	1988
W. Jakubowski Vancouver, B.C.	Geologist/Supervisor	Apr.	19 - J	uly 23,	1988
W. Kushner Grande Prairie, Alta.	Geologist	June	1 - J	uly 21,	1988
M. Muscat Whistler, B.C.	Cook/Sampler	Apr.	18 - J	uly 1,	1988
J. Rowe North Vancouver, B.C.	Geologist	Apr.	18 - M	ay 17,	1988
C. Tanner North Vancouver, B.C.	Sampler	June	31 - J	uly 21,	1988

CONTRACTORS:

W. Dobbin Construction Ltd. Kelowna, B.C.	Road & Drill Site Preparation	1	man:	Apr	24	-	May	14,1988
S.J.V. Consultants Vancouver, B.C.	Geophysics	2	men:	May	5	-	May	15,1988
Westrail Construction Ltd.	Drilling	7	men:	Apr	29	_	Jul	20,1988

13.0 STATEMENT OF QUALIFICATIONS

- I, Wojtek Jakubowski of Vancouver, British Columbia hereby certify that:
- 1. I am a geologist residing at #17 1435 West 10th Avenue and employed by Cordilleran Engineering Ltd. of 1980 1055 West Hastings Street, Vancouver, B.C.
- 2. I have received a B.Sc. degree in Geological Sciences from McGill University, Montreal, Quebec in 1979.
- I have practiced my profession for 9 years in Quebec, Northwest Territories, Yukon Territory and British Columbia.
- 4. I am an author of this report and the supervisor of the field work conducted on the Oka claim group by Cordilleran Engineering Ltd. during the period April 18 to July 23, 1988.

CORDILLERAN ENGINEERING LTD.

Wojtek Jakubowski, B.Sc.

We Johnboust.

Geologist

WJ/z April, 1989. Vancouver, B.C.

ROPERTY	OKA HOL	E NO. OK-88-1	AREA: IRON HORSE		Page 1
LAIM:	Iron Horse	RECOVERY:	3.85 kg/m	TOTAL DEPTH:	151.64 m
				DATE STARTED:	April 30, 1988
ORTHING:	520,860.4	CASING DEPTH:	1.2 m	DATE FINISHED:	May 2, 1988
ASTING:	291,734.1	CASING DIAMETER:	20 cm	CONTRACTOR:	Westrail Construction Ltd.
LEVATION:	1,341.0 m	BIT DIAMETER:	ll cm	LOGGED BY:	P. Donkersloot
IP: ZIMUTH:	-90 degrees			CHIPS STORED:	at Oka Property
211101111.					
OMMENTS:	mineralization found	ed to test an Au soil geoch d in trench SH-8B. Approxi	mately 56 metres of		-
	The hole was termin	ated after drilling 25 metro	es of diorite.		

G	ENEI	ALIZ	ED GEO	LOGY			S I	GNIF	ICANT	RESULTS		
F	ROM	TO	INTERVAL	UNIT	FROM	TO	INTERVAL	TW	UNIT	SAMPLE NO.	Au ppb] Au oz/t
	0.0	1.5	1.5	NS	1							
	1.5	7.0	5.5	SKN	4.6	6.1	1.5		SKN	88-1-4	671	
	7.0	8.0	1.0	MBL								
	3.0	24.0	16.0	SKN								I
	4.0	51.0	27.0	MBL								
	1.0	51.5	. 5	SKN								
	1.5	56.2	4.7	MBL								
	5.2	61.0	4.8	SKN	•							1
	1.0	68.5	7.5	MBL								
	3.5	73.2	4.7	GDR [i							
	3.2	77.7	4.5	SKN								
	7.7	90.0	12.3	GDR [
	0.0	96.0	6.0	SKN								1
	5.0	97.0	1.0	DIO								
1 11	7.0	112.0 117.0	15.0 5.0	SKN								,
	7.0	127.0	10.0	SKN								
1 12		151.64	24.64	DIO								1
1 12		131.01	21.01	D10	1							
1 15.	L.64 END	OF HOLE		; [ı							
İ												
1				·								'
				1								
				!								
İ				}								
-												
İ				!								
!												
1				ļ								
1				į								
1				Į,								
; }				} !								ļ
1				!								1
i				: 								1
i.				i								

AZIMUTH: COMMENTS: Hole 88-2 was drilled to test for vertical continuity of skarn mineralization found in trench SH 8A. Approximately 57.7 m of skarn mineralization was intersected. The hole was terminated after drilling through 32 m of granodiorite and diorite. SIGNIFICANT RESULTS	CORDIL	LERAN	ENGI	NEERII	NG LTD).			R	EVERS		RCULATION LE LOG
NORTHING:	PROPERTY	OKA		HOLE NO.	OK-88-2		AREA:	IRON HORS	SE		Page	2 1
NORTHING:	CLAIM:	Iron I	Horse		RECOVER	Y:	5.8	kg/m				
EASTING: 291,640.6 CASING DIAMETER: 20 cm CONTRACTOR: Mestrail Construction ELEVATION: 1,354.7 m BIT DIAMETER: 11 cm LOGGED BY: Paul Donkersloot DIP: -90 degrees CHIPS STORED: at Oka Property COMMENTS: Hole 88-2 was drilled to test for vertical continuity of skarn mineralization found in trench SH 8A. Approximately 57.7 m of skarn mineralization was intersected. The hole was terminated after drilling through 32 m of granodiorite and diorite. C E N E R A L I Z E D G E O L O G Y S I G N I F I C A N T R E S U L T S	NODWITHO.	E20 01	nn c		CACTNC	DEDTH.	, ,	_				
BIT DIAMETER: 11 cm											_	
DIP:												
AZIMUTH: COMMENTS:					DII DIA	MEIEK:	11	Cm				
Approximately 57.7 m of skarn mineralization was intersected. The hole was terminated after drilling through 32 m of granodiorite and diorite. C E N E R A L I Z E D		-90 ut	egrees						CHIPS	PIOKED:	at oka Pi	opercy
FROM TO INTERVAL UNIT FROM TO INTERVAL TW UNIT SAMPLE NO. Au ppb Au of the control of the		Approx The ho	kimately 5 ole was te	7.7 m of ska rminated aft	arn mineral	ization w	as inter 32 m of	rsected. f granodion	rite and dior	ite.		i on.
0.0												
1.3 3.0 1.7 DIO 3.0 10.0 7.0 SKN 10.0 11.0 1.0 MBL 11.0 18.5 7.5 SKN 18.5 20.8 2.3 MBL 20.8 50.0 29.2 SKN 32.0 33.5 1.5 SKN 590 50.0 86.0 36.0 MBL 86.0 89.0 3.0 SKN 89.0 96.0 7.0 MBL 96.0 96.5 .5 SKN 96.5 100.0 3.5 MBL 100.0 109.0 9.0 SKN 109.0 120.4 11.4 GDR 120.0 121.4 1.4 MBL 121.4 136.0 14.6 GDR 136.0 141.12 5.12 DIO					FROM	TO	INTERV	AL TW	UNIT	SAMPLE N	0. <i>1</i>	Au ppb Au oz/t
3.0												
10.0												
11.0												
18.5												
20.8				-								
50.0 86.0 36.0 MBL 86.0 89.0 3.0 SKN 89.0 96.0 7.0 MBL 96.0 96.5 .5 SKN 96.5 100.0 3.5 MBL 100.0 109.0 9.0 SKN 109.0 120.4 11.4 GDR 120.0 121.4 1.4 MBL 121.4 136.0 14.6 GDR 136.0 141.12 5.12 DIO					32.0	33 5	1 (5	CKN			500
86.0 89.0 3.0 SKN 89.0 96.0 7.0 MBL 96.0 96.5 .5 SKN 96.5 100.0 3.5 MBL 100.0 109.0 9.0 SKN 109.0 120.4 11.4 GDR 120.0 121.4 1.4 MBL 121.4 136.0 14.6 GDR 136.0 141.12 5.12 DIO				•	32.0	33.3	1	,	JIM			330
89.0 96.0 7.0 MBL 96.0 96.5 .5 SKN 96.5 100.0 3.5 MBL 100.0 109.0 9.0 SKN 109.0 120.4 11.4 GDR 120.0 121.4 1.4 MBL 121.4 136.0 14.6 GDR 136.0 141.12 5.12 DIO												
96.0 96.5 .5 SKN 96.5 100.0 3.5 MBL 100.0 109.0 9.0 SKN 109.0 120.4 11.4 GDR 120.0 121.4 1.4 MBL 121.4 136.0 14.6 GDR 136.0 141.12 5.12 DIO				•								
96.5 100.0 3.5 MBL 100.0 109.0 9.0 SKN 109.0 120.4 11.4 GDR 120.0 121.4 1.4 MBL 121.4 136.0 14.6 GDR 136.0 141.12 5.12 DIO				-								
100.0				•								
120.0 121.4 1.4 MBL 121.4 136.0 14.6 GDR 136.0 141.12 5.12 DIO	100.0	109.0	9.0	SKN								
121.4 136.0 14.6 GDR 136.0 141.12 5.12 DIO	109.0	120.4	11.4	GDR								
136.0 141.12 5.12 DIO	120.0		1.4	MBL								
İ		136.0	14.6	GDR								
141.72 END OF HOLE	136.0	141.12	5.12	DIO								
	141.72 END	OF HOLE										
				į								
				!								
				!								

CORDILLERAN ENGINEERING LTD.

PROPERTY	OKA		HOLE NO.	OK-88-3		AREA:	IRON	HORSE		Page 1
CLAIM:	Iron	Horse		RECOV	ERY:	5.5	kg/m		TOTAL DEPTH: DATE STARTED:	152.1 m May 5, 1988
NORTHING:	520,9	59.6		CASIN	G DEPTH:	0.7	6 m		DATE FINISHED:	May 7, 1988
EASTING:	291,5				G DIAMETER				CONTRACTOR:	Westrail Construction Ltd
ELEVATION:		58.2 m		BIT D	IAMETER:	11	CI		LOGGED BY:	Paul Donkersloot
DIP: AZIMUTH:	-90 d	egrees							CHIPS STORED:	at Oka Property
CFNFR	throu of th		s of grand			s of sam	ples 7		ere analyzed to c	ted after drilling onfirm the repeatability
FROM	TO	INTERVAL	UNIT	FROM	i TO	INTERV			UNIT SAMPLE	
0.0	1.5	1.5	NS	- Litoti	1		<u></u>			1 pps 1 v=/
1.5	12.2	10.7	SKN							
12.2	16.0	3.8	DIO							
16.0	19.0	3.0	SKN							
19.0	21.5	3.5	MBL							
21.5	42.7	21.2	SKN							
42.7	44.0	1.3	MBL							
44.0 48.7	48.7 70.2	4.7 21.5	SKN SLT							
70.2	110.0	39.8	MBL							
110.0	115.0	5.0	SKN							
	152.1	37.1	GDR							
115.0			, i	i						
115.0 152.1 END	OF HOLE									
	OF HOLE		 							
	OF HOLE		 							
	OF HOLE		 							
	OF HOLE		 							

PROPERTY	OKA HOL	E NO. OK-88-4	AREA: IRON HORSE		Page 1
CLAIM:	Iron Horse	RECOVERY:	5.2 kg/m	TOTAL DEPTH:	121.3 m
				DATE STARTED:	May 8, 1988
NORTHING:	521,060.6	CASING DEPTH:	0.61 m	DATE FINISHED:	May 9, 1988
EASTING:	291,543.7	CASING DIAMETER:	20 cm	CONTRACTOR:	Westrail Construction Ltd
ELEVATION:	1,346.0 m	BIT DIAMETER:	ll cm	LOGGED BY:	Paul Donkersloot
DIP:	-90 degrees			CHIPS STORED:	at Oka Property
AZIMUTH:	0				
COMMENTS:	34.9 m of skarn was	t the continuity of skarn he intersected. Gold mineral illed 27.4 m of diorite/gram	ization was intersect		

ļ	CEM	FD A I T 7	ED CEO	1000			С Т	CNTETCANO			
<u> </u>	FROM	ERALIZ TO	INTERVAL	LOGY	ED ∪ M	I TO		GNIFICANT		1 Au nah	l Au or /4
¦—	0.0	1.5	1.5	UNIT NS	FROM	T0	INTERVAL	TW UNIT	SAMPLE NO.	Au ppb	Au oz/t
l I	1.5	4.6	3.1	MBL							
ŀ	4.6	9.1	4.5	SKN							
i I	9.1	10.7	1.6	MBL							
1	10.7	19.8	9.1	SKN							
	19.8	22.9	3.1	MBL [
	22.9	24.4	1.5	MS							
	24.4	71.6	47.2	MBL							
	71.6	73.2	1.6	MS							
	73.2	94.5	21.3	SKN	73.2	74.7	1.5	SKN	88-4-49	305	
	94.5	118.9	24.4	DIO	99.1	103.6	4.5	DIO	88-4-66 to 68	668	
1	77. 7	110.7	21.1	1010	99.1	100.6	1.5	DIO	88-4-66	1440	
1				1	100.6	100.0	1.5	DIO	88-4-67	335	
					115.8	117.4	1.6	DIO	88- 4 -77	335	
, 1	18.9	121.3	2.4	GDR	113.0	117.7	1.0	DIO	00 4 77	333	
1	10.7	121.5	2. 1	JDR							
iı	21.3 E	ND OF HOLE		, I							
i				i							
İ				Ì							
i				į							
Ì				į							
1				İ							
1				j							
i				1							
ł				1							
				1							
1											
				1							
1											
1				1							
				1							
				1							
				1							
				į							
1											

PROPERTY	OKA		HOLE NO.	OK-88-5		AREA:	IRON HORSE				Page 1
CLAIM:	Iron H	orse		RECOVE	RY:	5.2	kg/m	TOTA	L DEPTH:	102.	1 n
									STARTED:	May	10, 1988
NORTHING:	521,09				DEPTH:	0.61			FINISHED:		13, 1988
EASTING:	291,51				DIAMETER:	20 c			'RACTOR:		rail Construction Ltd
ELEVATION:	•	5.4 m		BIT DI	AMETER:	11 0	m		SED BY:		Donkersloot
DIP:	-55 de							CHIE	S STORED:	at O	ka Property
AZIMUTH:	351 de	grees									
COMMENTS:											st Horse stripped
							gnificant go 6.0m of dior		alization wa	s int	ersected in skarn
GENEF FROM	TO	D G E INTERVAL	OLOGY UNIT	FROM	TO	S Interva	IGNIFI L TW	CANT UNIT	RESUL SAMPLE N		l Au nah l Au og/s
0.0	1.5	1.5	NS	rkun	1 10 1	INIERVA	L 177	ONII	J SAMPLE F	Ο.	Au ppb Au oz/t
1.5	4.0	2.5	ns SKN	i							
4.0	7.0	3.0	DIO 1	 							
7.0	29.0			!							
29.0	31.5	22.0	SKN	!							
31.5	35.0	2.5 3.5	DIO								
35.0	64.0		SKN		<i>(</i>	2.0		CIVI	00 5 43 110	1.42	1 25
	81.0	29.0 17.0	MBL SKN	62.5 68.6	65.5 77.7	3.0		SKN	88-5-42 TO		435
64.0	01.0	17.0	ן מאכ	70.1	74.7	9.1		SKN SKN	88-5-46 TO		2594
81.0	81.7	.7	DIO	10.1	14. 1	4.6		SKN	88-5-47-TC	49	44 76
81.7	86.0	4.3	SKN]	83.8	85.3	1.5		SKN	88-5-56		320
86.0	102.1	16.1	DIO	88.4	94.5	6.1		DIO	88-5-59 TO	62	734
00.0	102.1	10.1	1010	00.4	74. J	0.1		010	00-1-19 10	UZ	734
102.1 END	OF HOLE		ĺ								
			, 								
			i								
			ı İ								
			1								
			, 								
			1								
			' 								
			,								
			i								
			, 1								
			, 1								
			i								
			Ī								

PROPERTY	OKA	HOLE NO.	OK-88-6	AREA: IRON HORS	E	Page 1
CLAIM:	Iron Horse		RECOVERY:	4.4 kg/m	TOTAL DEPTH: DATE STARTED:	45.7 m May 13, 1988
NORTHING:	521,060.5		CASING DEPTH:	1.2 m	DATE FINISHED:	May 14, 1988
EASTING:	291,735.5		CASING DIAMETER:	20 cm	CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,304.0 m		BIT DIAMETER:	ll cm	LOGGED BY:	W. Jakubowski, P. Donkersloot
DIP:	-90 degrees			11 VIII	CHIPS STORED:	at Oka Property
AZIMUTH:	0					
COMMENTS:			al extent of minera r mineralization in		ed in North Horse str te.	ipped area.
						
		OLOGY	DDOM I MO I	SIGNIF		
FROM	TO INTERV		FROM TO	INTERVAL TW	UNIT SAMPLE	NO. Au ppb Au oz/t
0.00	1.5 1.5 21.3 19.8	NS DIO	15.2 16.7) E	DIO 0K88-6-11	505
1.5	21.3 19.8 45.7 24.4	GDR	15.2 16.7	1.5	DIO 0V09-0-11	303
21.3	45.1 24.4	GDR 1				
45.7 END OF	F HOLE					
1017 2110 01						
		į				
		i				
		İ				
		i				
		j				
		i				
		1				
		1				
		1				
		1				
		1				
		l				
		1				
		1				
		ļ				
		Į.				
		!				
		1				
		:				
		į				
		į				

PROPERTY	OKA		HOLE NO.	OK-88-7	i	AREA:	IRO	HORSE					Pa	ge l			
CLAIM:	Iron I	lorse		RECOVERY:		3,9	kg/m		TO	TAL DI	EPTH:	93	. О п				
											ARTED:			1988			
NORTHING:	521,0			CASING DEP		3.0					NISHED			1988			
EASTING:	291,84			CASING DIAM		20				TRAC'						tion L	td.
ELEVATION:		96.6 m		BIT DIAMETE	ER:	11	CA			GGED I				Jakubo			
DIP:	-90 de	egrees							CH)	(PS S	ORED:	at	0ka	Proper	ty		
AZIMUTH:	0																
COMMENTS:				urface extension Uling 35.1 m in				n encou	ntered i	in Noi	th Ho	rse tr	ench	NH 1.			
GENER	ALIZE	D GEO	OLOGY	***************************************		S	IGN	IFI	CANT	r R	E S U	LTS					
FROM	TO	INTERVAL			ro	INTERV		TW	UNIT		SAMPL			Au pp	b	Au oz,	/t
0.0	0.75	. 75	NS														
0.75	13.7	12.95	GDR														
13.7	16.7	3.0	SKN	I													
16.7	22.9	6.2	GRD														
22.9	29.0	7.0	SKN														
29.0	30.5	1.5	DIO														
30.5	38.1	7.6	SKN														
38.1	51.8	13.7	DIO														
51.8	53.3	1.5	SKN														
53.3	54.9	1.6	DIO														
54.9	57.9	3.0	SKN														
54.9	93.0	38.1	GDR														
93.0 END	OF HOLE		į														
			į														
			İ														
			;														
			į														
			l I	, 1													
			ļ	• 													
			1 !														
			1	.													
			, 														
			1														
			i	-													
			ľ														

PROPERTY	OKA	HOLE NO.	OK-88-8	AREA: IRON HORSE		Page 1
CLAIM:	Iron Horse		RECOVERY:	4.5 kg/m	TOTAL DEPTH: DATE STARTED:	78.6 m May 15, 1988
NORTHING:	521,059.1		CASING DEPTH:	0.6 m	DATE FINISHED:	May 16, 1988
EASTING:	291,943.7		CASING DIAMETER:	20 cm	CONTRACTOR:	Westrail Construction Ltd
ELEVATION:	1,277.2 m		BIT DIAMETER:	11 cm	LOGGED BY:	Paul Donkersloot
DIP:	-90 degrees				CHIPS STORED:	at Oka Property
AZIMUTH:	,					
COMMENTS:		20m of skarn	est an Au soil geoche was intersected. Th			
GENER	ALIZED G	E O L O G Y		SIGNIFIC	ANT RESUL	T S
FROM	TO INTERV		FROM TO	INTERVAL TW	UNIT SAMPLE	
0.0	1.5 1.5	NS				
1.5	6.3 4.8	SKN (
6.3	8.5 2.2	MBL]				
8.5	12.5 4.0	SKN				
12.5	19.0 6.5	MBL [
19.0	26.2 7.2	DIO				
26.2	36.4 10.2	MBL				
36.4	37.9 1.5	SKN I				
37.9	39.0 1.1	GDR				
39.0	41.3 2.3	SKN				
41.3	42.6 1.3	GDR				
42.6	46.6 4.0	SKN				
46.6	47.1 .5	GDR				
47.1	50.3 3.2	SKN				
50.3	74.5 24.2	DIO				
74.5	76.3 1.8	GDR				
76.3	78.6 2.3	DIO				
78.6 END	OF HOLE	į				
		i I				
		į				
		i I				
		1				
		1				
		1				
		l				
		1				
		i				
		1				
		I				
		1				
		i				

						DRI	
PROPERTY	OKA	HOLE NO.	OK-88-9	AREA:	IRON HORSE		Page 1
CLAIM:	Iron Horse		RECOVERY:	4.7	kg/m	TOTAL DEPTH:	120.4 m
						DATE STARTED:	May 16, 1988
NORTHING:	521,037.7		CASING DEPTH:	0.6	n.	DATE FINISHED:	May 17, 1988
EASTING:	291,797.6		CASING DIAMETER:	20 C	A	CONTRACTOR:	Westrail Construction Ltd
ELEVATION:	1,295.8 m		BIT DIAMETER:	11 c	II.	LOGGED BY:	Wojtek Jakubowski
DIP:	-55 degrees					CHIPS STORED:	at Oka Property
AZIMUTH:	0						• •
COMMENTS:	Hole drilled	to test possib	ole downward extensi	on of mi	neralization f	found in North Hor	se stripped area NH 1.
	Four skarn ho	•					
	Hole was term	inated after d	drilling 34.9m of die	orite and	d granodiorite	ž.	
					,		
GENERA	ALIZED G	EOLOGY		S	IGNIFIC	ANT RESUL	TS
FROM	TO INTERV	AL UNIT	FROM TO	INTERVA	L TW	UNIT SAMPLE	NO. Au ppb Au oz/t
0.0	1.5 1.5	NS					
1.5	10.7 9.2	SKN					
10.7	14.0 3.3	DIO					

GENERALIZED GEOLOGY FROM	SIGNIFICANT RESULTS RVAL TW UNIT SAMPLE NO. Au ppb Au oz/t
FROM	RVAL TW UNIT SAMPLE NO. Au ppb Au oz/t
1 1.5 10.7 9.2 SKN I	
10.7 14.0 3.3 DIO	
14.0 29.0 15.0 SKN	
29.0 31.0 2.0 DIO	
31.0 54.5 23.5 SKN	
54.5 55.5 1.0 DIO	
55.5 85.5 30.0 SKN	
85.5 93.0 7.5 GDR	
93.0 94.3 1.3 DIO	
94.3 102.0 7.7 GDR	
102.0	
103.0 120.4 17.4 GDR	
120.4 END OF HOLE	

PROPERTY	OKA	HOLE NO.	OK-88-10	AREA: IRON HORSE	•	Page 1
CLAIM:	Iron Horse		RECOVERY:	4.3 kg/m	TOTAL DEPTH:	73.2 m
NORTHING:	E30 0E0 4		CACTNO DEDUI.	0 6 m	DATE STARTED:	May 18, 1988
	520,959.4		CASING DEPTH:	0.6 m	DATE FINISHED:	May 19, 1888
EASTING:	291,746.9		CASING DIAMETER:	20 cm	CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,327.6 m		BIT DIAMETER:	11 cm	LOGGED BY:	Paul Donkersloot
DIP: AZIMUTH:	-90 degrees 0				CHIPS STORED:	at Oka Property
COMMENTS:			continuity of gold hos orizon was intersected		zation between the N	orth and South Horse
GENER	ALIZED G	EOLOGY	D*104	SIGNIFI	CANT RESUL	T S
FROM	TO INTERV		FROM TO	INTERVAL TW	UNIT SAMPLE	NO. Au ppb Au oz/t
0.0	1.5	NS		—		
1.5	21.3 19.8	GDR				
21.3	24.4 3.1	SKN				
24.4	73.2 48.8	DIO				
73.2 END 0	F HOLE					

ROPERTY	OKA	HOLE NO.	OK-88-11	AREA: IRON HO	RSE	Page 1
LAIM:	Iron Horse	<u> </u>	RECOVERY:	3.5 kg/m	TOTAL DEPTH:	118.9 m
					DATE STARTED:	May 19, 1988
ORTHING:	520,987.9		CASING DEPTH:	0.6 m	DATE FINISHED:	May 20, 1988
ASTING:	291,635.0		CASING DIAMETER:	20 cm	CONTRACTOR:	Westrail Construction Ltd
LEVATION:	1,349.0		BIT DIAMETER:	11 cm	LOGGED BY:	Paul Donkersloot
IP:	-90 degree	S			CHIPS STORED:	at Oka Property
ZIMUTH:	0					
OMMENTS:			skarn hosted gold mine drilling 22.9m of die		ve skarn horizons were iorite.	intersected.
	ALIZED	GEOLOGY			FICANT RESUL	
FROM		ERVAL UNIT	FROM TO	INTERVAL TW	UNIT SAMPLE	NO. Au ppb Au oz/t
0.0		.5 NS	1			
1.5	22.9 21		1			
22.9		.5 SKN	1			
24.4		.0 MBL	1			
27.4		.6 SKN				
32.0	50.3 18		1			
50.3		.5 SKN				
51.8		.1 MBL	1			
54.9	74.7 19					
74.7	91.4 16		 -			
94.1		.9 SKN	1			
96.0	114.3		1			
114.3	118.9 4	.6 GDR				
118.9 END	OF HOLE					
			1			
		I				
		1				
		į	.			
			•			
		<u> </u>				
		, 				
			; !			
			<u> </u>			
		i I	ı			
		i				

REVERSE CIRCULATION

PROPERTY	OKA	HOLE NO.	OK-88-12	AREA:	IRON HORSE		Page 1
CLAIM:	Iron Horse	e	RECOVERY:	4.2	kg/m	TOTAL DEPTH:	151.9 m
NORTHING:	511 A17 2		CACING DEDTIL	0.6		DATE STARTED:	May 20, 1988
EASTING:	521,017.3 291,353.4		CASING DEPTH: CASING DIAMETER:	0.6 20 (DATE FINISHED: CONTRACTOR:	May 22, 1988 Westrail Construction Ltd
ELEVATION:	1,381.4	m	BIT DIAMETER:	11 (LOGGED BY:	Paul Donkersloot
DIP:	-90 degree		DAA DAMADAM	** '	on.	CHIPS STORED:	at Oka Property
AZIMUTH:						VIII 0 01 VIII 0	as one respector
COMMENTS:	Hole dril	led to test a so	il geochem anomaly we	st of th	ne Iron Horse a	area.	
	Six skarn	horizons were in	ntersected.				
	Hole ended	d at 151.9m due	to lack of drill rods	•			
GENE	RALIZED	GEOLOGY	<u> </u>	S	IGNIFIC	ANT RESUL	T S
FROM		TERVAL UNIT	FROM TO	INTERVA		UNIT SAMPLE	
0.0		1.5 NR					
1.5		.5 SKN					
3.0		B.1 HNF					
6.1		SKN					
21.3 22.9		6 DIO 5 SKN					
24.4		.5 SKN 1.5 MBL	l 1				
25.9		.5 SKN					
27.4		2.9 MBL					
50.3		.2 SKN					
62.5		5.9 MBL					
149.4		.5 SKN					
150.9	151.9	0 SLT					
151.9 END	OF HOLE						
		•					
		İ					
		l	•				
		ì					
		! !					
		1					

PROPERTY	OKA HO	LE NO. OK-88-13	AREA: IRON HORSE		Page 1
CLAIM:	Iron Horse	RECOVERY:	3.24 kg/m	TOTAL DEPTH: DATE STARTED:	151.2 m May 22, 1988
NORTHING:	521,028.0	CASING DEPTH:	0.6 m	DATE FINISHED:	May 24, 1988
EASTING:	291,178.7	CASING DIAMETER:	20 cm	CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,392.3 m	BIT DIAMETER:	Il cm	LOGGED BY:	Paul Donkersloot
DIP: AZIMUTH:	-90 degrees			CHIPS STORED:	at Oka Property
COMMENTS:		lled to test an Au soil geod zones was intersected.	chem anomaly 180m west	of OK-88-12.	
		nated due to lack of drill r	ods.		

ı.						 			··			
١.		ERALIZ		OLOGY		 			ICANT			
1	FROM	TO	INTERVAL		FROM	TO	INTERVAL	TW	UNIT	SAMPLE NO.	Au ppb	Au oz/t
١	0.0	1.5	1.5	NS								
İ	1.5	9.0	7.5	AND								
1	9.0	11.0	2.0	SKN								
	11.0	15.0	4.0	AND								
}	15.0	16.0	1.0	SKN								
	16.0	27.0	11.0	AND								
	27.0	33.0	6.0	HNF/SKN								
	33.0	40.5	7.5	AND								
	40.5	50.0	9.5	HNE/AND								
-	50.0	97.5	37.5	HNE/SKN								
	97.5	106.5	19.0	SKN								
1	106.5	126.0	19.5	MBL								
	126.0	128.3	2.3	SKN								
1	128.3	141.9	13.6	SLT								
-	141.9	151.2	9.3	MBL								
	151.2 EN	ID OF HOLE										

PROPERTY	OKA	HOLE NO.	OK-88-14	AREA: IRON HORSE		Page 1
CLAIM:	Iron Horse		RECOVERY:	3.06 kg/m	TOTAL DEPTH: DATE STARTED:	94.5 m May 24, 1988
NORTHING:	520,781.6		CASING DEPTH:	1.5 m	DATE FINISHED:	May 25, 1988
ASTING:	291,817.1		CASING DIAMETER		CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,320.0 m		BIT DIAMETER:	ll cm	LOGGED BY:	W. Jakubowski, P. Donkersloo
)IP:	-90 degrees		21 211111	11 02	CHIPS STORED:	at Oka Property
AZIMUTH:						
COMMENTS:	massive sulph	ide mineraliz	ation found in tren	ch SH-9. Approximat	for vertical contin ely 14 metres of ska te and granodiorite.	
	ALIZED G			SIGNIFI		** · · · · · · · · · · · · · · · · · ·
FROM	TO INTERV		FROM TO	INTERVAL TW	UNIT SAMPLE	NO. Au ppb Au oz/t
0.0	1.0 1.0	NS				
1.0	9.0 8.0	MBL				
9.0	18.3 9.3	GDR				
18.3	21.3 3.0	SKN	24.4 25.0	1 5	ann 00 14 19	0.15
21.3	25.9 4.6	GDR	24.4 25.9	1.5	GDR 88-14-17	845
25.9	50.0 24.1	MBL				
50.0	60.8 10.8	SKN				
60.8	66.5 5.7	DIO				
66.5	67.2 .7	GDR				
67.2	76.0 8.8	DIO [
76.0	77.0 1.0	GDR				
77.0	94.5 17.5	DIO				
94.5 END	OF HOLE					
		!				
		!				
		!				
		-				
		!				
		Ï				
		!				

PROPERTY	OKA		HOLE NO.	OK-88-15		AREA:	IRON HO	RSE			P	age I	
CLAIM:	Iron H	orse		RECOVE	CRY:	6.0	kg/m	· · · · · · · · · · · · · · · · · · ·		DEPTH:	213.4	n	
										STARTED:	May 25		
NORTHING:	520,85				DEPTH:	0.6				INISHED:	May 28		
EASTING:	291,55				DIAMETER:	20 0			CONTRA			il Constru	ction Ltd
ELEVATION:		4.9 m		BIT D	AMETER:	11 (m		LOGGED		J. D. Ro		
DIP: AZIMUTH:	-90 de	grees							CHIPS	STORED:	at Oka	Property	
COMMENTS:	trench	areas.	drilled to	ely 95 metr	es of skarı	n was in	tersecte	d. The	hole w	as terminat	ted aft	er running	out of
			ne hole was		1011 151.9							ods were d	vallable.
	RALIZE		OLOGY				IGNI			RESUL'			
FROM		INTERVA		FROM	TO	INTERVA	L TW	U	IT	SAMPLE N	y.	Au ppb	Au oz/t
0.0	1.5	1.5	NS										
1.5 8.8	8.8 54.8	7.3 46.0	MBL Skn	1									
54.8	54.8 93.0	38.2											
93.0	95.0	2.0	MBL DIO	ı									
95.0	103.8	8.8	SKN										
103.8	138.8	35.0	MBL										
138.8	142.8	4.0	SKN	1									
142.8	153.0	10.2	MBL										
153.0	160.0	7.0	MBL/SKN	153.9	155.4	1.5		MBI	/SKN	88-15-10)2	5925	
				155.4	157.0	1.6			/SKN	88-15-10		3220	
				157.0	158.5	1.5			/SKN	88-15-10		560	
160.0	163.5	3.5	SKN						•				
163.5	164.6	1.1	DIO	163.1	164.6	1.5		SKN	/DIO	88-15-10)8	330	
164.6	173.8	9.2	SKN	167.6	169.2	1.6		SKN	i	88-15-11	11	390	
173.8	179.5	5.7	DIO										
179.5	194.0	14.5	SKN										
194.0	195.8	1.8	DIO										
195.8	197.5	1.7	SKN !										
197.5	213.4	15.9	GDR										
213.4 END	OF HOLE		, 										
			1										
			1										
			!										
			1										

PROPERTY	OKA	HOLE NO. OK-	88-16	AREA:	IRON HORSE		Page I	1
CLAIM:	Iron Horse		RECOVERY:	4.1 kg	g/m	TOTAL DEPTH: DATE STARTED:	213.4 m May 28, 1988	Î
NORTHING: EASTING: ELEVATION: DIP: AZIMUTH:	520,804.7 291,638.6 1,298.5 m -90 degrees		CASING DEPTH: CASING DIAMETER: BIT DIAMETER:	0.6 m 20 cm 11 cm		DATE FINISHED: CONTRACTOR: LOGGED BY: CHIPS STORED:	May 29, 1988 Westrail Construction Ltd. W.Jakubowski,P.Donkersloot at Oka Property	•

COMMENTS:

Hole drilled to test a soil geochem anomaly in the South Horse area. Massive sulphide was intersected from 39.6 to 41.2m. Nine skarn horizons were intersected. Hole was terminated due to lack of drill rods. Hole was extended from 151.9 to 213.4 metres beteen June 7 and June 8.

G E	NERALIZ	ED GE	OLOGY	<u> </u>		SIG	NIFICANT	RESULT	S
FRO	M TO	INTERVAL	UNIT	FROM	TO	INTERVAL	TW UNIT	SAMPLE NO.	Au ppb Au oz/t
0.	0 1.5	1.5	NS						
1.	7.6	6.1	DIO	6.1	7.6	1.5	DIO	88-16-5	625
7.	6 27.4	19.8	SKN						
27.		1.6	DIO						
29.		3.7	SKN	İ					
33.		6.1	MBL						
39.	5 41.2	1.6	MS						
41.		19.8	SKN						
61.		16.7	DIO						
77.		4.6	SKN						
82.		7.6	MBL						
89.		1.5	SKN						
91.		10.7	MBL						
102.		3.1	SKN	ı					
105.		38.1	MBL	141.7	143.3	1.6	MBL	88-16-94	1290
143.		4.5	SKN						
147.		4.6	MBL						
1 152.		10.9	SKN/MBL						
1 163.		4.3	MBL						
167.		3.1	GDR						
170.		18.1	MBL						
188.		2.7	DIO	189.0	190.5	1.5	DIO	88-16-125	1080
191.	201.5	10.0	SKN	192.0	193.5	1.5	SKN	88-16-127	670
				199.6	201.2	1.6	SKN	88-16-132	320
201.		1.0	DIO						
202.		1.7	SKN						
204.		1.5	GDR				war	00.16.146	0.40
205.	213.4	7.7	MBL	211.8	213.4	1.6	MBL	88-16-140	3430
213.4	END OF HOLE		1						
!			I						
1			ļ						
Ì			 						
]			İ						
l									

CORDILLERAN ENGINEERING LTD.

PROPERTY	OKA		HOLE NO.	OK-88-17	AREA: IRON HORSE		Page I
CLAIM:	Iron H	orse		RECOVERY:	3.5 kg/m	TOTAL DEPTH: DATE STARTED:	137.2 m May 30, 1988
NORTHING:	520,76	7.9		CASING DEPTH:	0.6 m	DATE FINISHED:	May 31, 1988
EASTING:	291,74			CASING DIAMETER:	20 cm	CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:		1.4 m		BIT DIAMETER:	ll cm	LOGGED BY:	W. Jakubowski, P. Donkersloo
OIP:	-90 de	grees				CHIPS STORED:	at Oka Property
AZIMUTH:							
COMMENTS:	minera	lization	found in So		 Approximately 7 		ntinuity of skarn hosted ersected. The hole was
GENER	ALIZE	D G E	OLOGY		SIGNIFI	CANT RESUL	T S
FROM	TO [INTERVA		FROM TO	INTERVAL TW	UNIT SAMPLE	
0.0	3.8	3.8	DIO				
3.8	9.2	5.4	SKN				
9.2	15.4	6.2	DIO				
15.4	18.1	2.7	SKN				
18.1	19.9	1.8	DIO				
19.9	25.5	5.6	SKN				
25.5	45.5	20.0	MBL/SKN				
45.5	47.0	1.5	MBL (
47.0	50.5	3.5	MBL/SKN				
50.5	57.5	7.0	SKN				
57.5	61.0	3.5	SKN/MBL				
61.0	76.5	15.5	SKN				
76.5	78.8	2.3	DIO				
78.8	82.3	3.5	SKN				
82.3	99.4	17.1	MBL				
99.4	109.9	10.5	SKN				
109.9	111.2	1.3	GDR				
111.2	131.0	19.8	DIO				
131.0	131.7	. 7	GDR				
131.7	137.2	5.5	DIO				
137.2 END	OF HOLE		į				
			i				
			1				
			1				
			i				
			i				
			·				
			į				
			Ì				
			i				
			i				

i.

REVERSE CIRCUIATION

PROPERTY	OKA		HOLE NO.	OK-88-18	AREA:	IRON HORSE		Page l
CLAIM:	Iron	Horse		RECOVERY:	5.4	(n/g	TOTAL DEPTH:	130.6 в
NORTHING:	520,6	198 3		CASING DEPTH:	0.6	7	DATE STARTED: DATE FINISHED:	May 31, 1988 June 1, 1988
ASTING:	291,7			CASING DIAMETER:			CONTRACTOR:	Westrail Construction Ltd
ELEVATION:		81.7 m		BIT DIAMETER:	11 c		LOGGED BY:	Jakubowski, Donkersloot, Wi
OIP:	-90 d	egrees					CHIPS STORED:	at Oka Property
AZIMUTH:	0							
	Six s and g	karn horizo ranodiorite	ons were in	vertical continuity on tersected. Hole was	termina	ed after dri	lling 22.9 metres	of diorite
	RALIZ		LOGY	EDOM 1 MO 1		GNIFIC		
FROM J	TO	INTERVAL 1.5	UNIT NS	FROM TO	INTERVA	. TW	UNIT SAMPLE	NO. Au ppb Au oz/t
1.5	19.8	18.3	MBL					
19.8	21.3	1.5	SKN					
21.3	29.0	7.7	MBL	•				
29.0	33.5	4.5	SKN					
33.5	48.7	15.2	MBL					
48.7	51.8	3.1	SKN					
51.8	53.3	1.5	MBL					
53.3	56.4	3.1	SKN					
56. 4 6 4. 0	64.0 65.5	7.6 1.5	MBL SKN					
	103.6	38.1	MBL [
65 5	108.2	4.6	SKN					
65.5 103.6	126.5	18.2	DIO					
103.6		4.1	GDR					
103.6 108.2	130.6	7.1						
103.6 108.2 126.5	130.6	7.1						
103.6 108.2 126.5		7.1]					
103.6 108.2 126.5	130.6	7.1	 					
103.6 108.2 126.5	130.6	7.1] 					
103.6 108.2 126.5	130.6	7.1] 					

PROPERTY	OKA		HOLE NO.	OK-88-19		AREA:	IRON	HORSE			Page	1	
CLAIM:	Iron F	lorse		RECOVI	ERY:	3.6	kg/m			DEPTH:	194.6 m		
										STARTED:	June 1, 1		
NORTHING:	520,74				G DEPTH:	0.6				INISHED:	June 5, 1		
EASTING:	291,64				DIAMETER				CONTRA				ction Ltd.
ELEVATION:		76.1 m		BIT D.	AMETER:	11	CM		LOGGEI				ersloot,WK
DIP: AZIMUTH:	-90 de	grees							CHIPS	STORED:	at Oka Pr	operty	
COMMENTS:	minera	lization	drilled to found in ne through 23	earby trend	hes. App	roximate							
GENEI	RALIZE	D G E	OLOGY			S	IGN	IFICA	NT	RESUL	T S		
FROM	TO	INTERVA		FROM	TO	INTERV			NIT	SAMPLE N		lu ppb	Au oz/t
0.0	1.5	1.5	NS				•					***************************************	+
1.5	4.6	3.1	SKN/DIO										
4.6	13.5	8.9	DIO										
13.5	18.3	4.8	SKN/DIO										
18.3	25.9	7.6	SKN										
25.9	80.6	54.7	DIO/SKN		41.2	1.	6	DIC	/SKN	88-19-2	7	1020	
.80.6	88.4	7.8	MBL/SKN										
88.4	91.5	3.1	MBL										
91.5	97.6	6.1	SKN										
97.6	100.7	3.1	DIO										
100.7	113.2	12.5 5.8	SKN										
113.2 119.0	119.0 122.0	3.0	DIO SKN	120.4	121.9	1.	E	ć	KN	00 10 0	٨	420	
122.0	150.5	28.5	MBL I	120.4	141.9	1.	J	ā	IN	88-19-8	U	420	
150.5	161.5	11.0	MBL/SKN [
161.5	169.2	7.7	MBL [
169.2	172.4	3.2	MBL/SKN										
172.4	194.6	22.2	GDR										
	OF HOLE												
	01 11000		İ										
			1										
			!										
			i										

1								-
1	PROPERTY	OKA	HOLE NO.	OK-88-20	AREA: IRON HORSE		Page 1	1
	CLAIM:	Iron Horse		RECOVERY:	4.2 kg/m	TOTAL DEPTH:	213.1 m	-¦
1						DATE STARTED:	June 5, 1988	
1	NORTHING:	520,764.9		CASING DEPTH:	0.6 m	DATE FINISHED:	June 7, 1988	ĺ
-	EASTING:	291,546.9		CASING DIAMETER:	20 сш	CONTRACTOR:	Westrail Construction Ltd.	
I	ELEVATION:	1,271.0 m		BIT DIAMETER:	ll cm	LOGGED BY:	Jakubowski,Donkersloot,WK	1
l	DIP:	-90 degrees				CHIPS STORED:	at Oka Property	i
	AZIMUTH:							1
								- 1

COMMENTS:

Hole 88-20 was drilled to test an Au soil geochemical anomaly and to test for vertical continuity of skarn mineralization found in nearby trenches. Approximately 120 m of skarn was drilled. The hole was terminated after running out of drill rods. 12.9m of granodiorite was intersected at the bottom of the hole.

GEI	NERALI Z		O L O G Y			SIG	NIFICANT	RESULTS		
[FROM	J TO	INTERVA	L UNIT	FROM	J TO	INTERVAL	TW UNIT	SAMPLE NO.	Au ppb	Au oz/t
0.0	5.5	5.5	SKN	3.0	4.6	1.6	SKN	88-20-3	390	
5.5	6.5	1.0	DIO							
6.5	35.0	28.5	SKN							
35.0	35.8	.8	DIO							
35.8	65.0	29.2	SKN	39.6	41.2	1.6	SKN	88-20-27	570	
			ļ	41.2	42.7	1.5	SKN	88-20-28	810	
1			1	48.7	50.3	1.6	SKN	88-20-33	610	
65.0	66.0	1.0	MBL							
66.0	80.5	14.5	SKN							
80.5	85.5	5.0	DIO							
85.5	88.4	2.9	SKN							
88.4	89.9	1.5	DIO	88.4	89.9	1.5	DIO	88-20-59	315	
89.9	91.4	1.5	SKN							
91.4	94.5	3.1	DIO							
94.5	100.6	6.1	SKN/DIO							
100.6	123.2	22.6	SKN	100.6	102.1	1.5	SKN	88-20-67	615	
!			!	114.3	115.8	1.5	SKN	88-20-76	355	
				115.8	117.4	1.6	SKN	88-20-77	310	
!			ļ	117.4	118.9	1.5	SKN	88-20-78	1570	
i !			ļ	118.9	120.4	1.5	SKN	88-20-79	2580	
} F			1	120.4	121.9	1.5	SKN	88-20-80	12045	
1 123.2	170.7	47.5	MBL	121.9 126.5	123.4 128.0	1.5 1.5	SKN MBL	88-20-81 88-20-8 4	5780 305	
170.7	173.7	3.0	MBL/SKN	120.5	120.0	1. 3	IIDL	00-20-04	303	
173.7	177.0	3.3	GDR							
177.0	185.9	8.9	MBL [
185.9	192.3	6.4	MBL/SKN							
192.3	196.6	4.3	MBL							
196.6	205.7	9.1	GDR [
205.7	208.8	3.1	MBL							
208.8	213.1	4.3	GDR							
 212 1	END OF HOLE									
1 712.1	PWD OF HOPE		1							
			İ							
l			[

FVFDCF

CLAIM:	NORTHING:	Iron							SE			
NORTHING: 521,098.7 CASING DEPTH: 0.91 m DATE FINISHED: June 11, 1988 EASTING: 291,509.7 CASING DIAMETER: 20 cm CONTRACTOR: Mestrail Construction II ELEVATION: 1,344.0 m BIT DIAMETER: 11 cm LOGGED BY: Jakubowski, Donkersloot, DIP: -90 degrees AZIMUTH: 0 COMMENTS: Hole drilled to test for continuity of mineralization between holes OK-88-4 and OK-88-5. Pyritic grey skarn intersected 51.8-53.3 m. Hole terminated after drilling 24.4 m diorite. G E N E R A L I Z E D G E O L O G Y SIGNIFICANT RESULTS FROM TO INTERVAL UNIT FROM TO INTERVAL UNIT SAMPLE NO. Au ppb Au oz 0.0 6.1 6.1 SKN 6.2 SKN 6.1 SKN 6.1 SKN 6.1 SKN 6.1 SKN 6.1 SKN 6.1 SKN 6.1 SKN 6.2 SKN 6.1 SKN 6.1 SKN 6.1 SKN 6.1 SKN 6.1 SKN 6.1 SKN 6.1 SKN 6.2 SKN 6.1 SKN 6.1 SKN 6.1 SKN 6.2 SKN 6.1 SKN 6.2			Horse		RECOVE	RY:	4.8	kg/m				
EASTING: 291,509.7 CASING DIAMETER: 20 CE CONTRACTOR: Westail Construction I ELEVATION: 1,344.0 m BIT DIAMETER: 11 CE LOGED BY: Jakubowski, Donkersloot, DIP: -90 degrees AZIMUTH: 0 COMMENTS: Hole drilled to test for continuity of mineralization between holes OK-88-4 and OK-88-5. Pyritic grey skarn intersected 51.8-53.3 m. Hole terminated after drilling 24.4 m diorite. COMMENTS: Hole drilled to test for continuity of mineralization between holes OK-88-4 and OK-88-5. Pyritic grey skarn intersected 51.8-53.3 m. Hole terminated after drilling 24.4 m diorite. COMMENTS: Hole drilled to test for continuity of mineralization between holes OK-88-4 and OK-88-5. Pyritic grey skarn intersected 51.8-53.3 m. Hole terminated after drilling 24.4 m diorite. COMMENTS: Hole drilled to test for continuity of mineralization between holes OK-88-4 and OK-88-5. Pyritic grey skarn intersected 51.8-53.3 m. Hole terminated after drilling 24.4 m diorite. COMMENTS: Hole drilled to test for continuity of mineralization between holes OK-88-4 and OK-88-5. Pyritic grey skarn intersected 51.8-53.3 m. Hole terminated after drilling 24.4 m diorite. COMMENTS: Hole drilled to test for continuity of mineralization between holes OK-88-4 and OK-88-5. Pyritic grey skarn intersected 51.8-53.3 m. down on the second 51.8-53.3 m. down of the second 51.8-53.3 m. down on the second 51.8-53.3 m		521.0	098.7		CASING	DEPTH:	0.91	lπ				
ELEVATION: 1,344.0 m	MOTING:											ruction Ltd
DIP: -90 degrees AZINUTH: 0 COMMENTS: Hole drilled to test for continuity of mineralization between holes OK-88-4 and OK-88-5. Pyritic grey skarn intersected 51.8-53.3 m. Hole terminated after drilling 24.4 m diorite. GENERALIZED GEOLOGY SIGNIFICANT RESULTS FROM TO INTERVAL UNIT FROM TO INTERVAL TW UNIT SAMPLE NO. Au ppb Au oz 0.0 6.1 6.1 SKN 6.1 9.1 3.0 DIO 9.1 21.3 12.2 SKN 21.3 38.1 16.8 DIO 38.1 77.7 39.6 MBL 77.7 105.2 27.5 SKN 102.1 103.6 1.5 SKN 88-21-68 850 105.2 131.1 25.9 DIO 106.7 108.2 1.5 DIO 88-21-71 270 108.2 109.7 11.2 .5 DIO 88-21-72 360 109.7 111.2 .5 DIO 88-21-73 305 118.9 120.4 1.5 DIO 88-21-79 3420 120.4 121.9 1.5 DIO 88-21-79 3420 120.4 121.9 1.5 DIO 88-21-80 660 123.4 125.0 1.6 DIO 88-21-80 660 123.4 125.0 1.6 DIO 88-21-86 295	ELEVATION:											
COMMENTS: Hole drilled to test for continuity of mineralization between holes OK-88-4 and OK-88-5. Pyritic grey skarn intersected 51.8-53.3 m. Hole terminated after drilling 24.4 m diorite. GENERALIZED GEOLOGY SIGNIFICANT RESULTS	DIP:	-90 d	legrees									
Intersected 51.8-53.3 m. Hole terminated after drilling 24.4 m diorite.	AZIMUTH:	0										
S G N F R A L I Z E D G E O L O G Y S G N I F I C A N T R E S U L T S FROM TO INTERVAL TW UNIT SAMPLE NO. Au ppb Au oz A	COMMENTS:									4 and OK-88-	5. Pyritic gre	y skarn
TO		inter	sected 51.8	-33.3 E.	note tetati	nated after	i dilli	ng 24.4 E	diorite.			
0.0 6.1 6.1 SKN 6.1 9.1 3.0 DIO 9.1 21.3 12.2 SKN 21.3 38.1 16.8 DIO 38.1 77.7 39.6 MBL 77.7 105.2 27.5 SKN 102.1 103.6 1.5 SKN 88-21-68 850 103.6 105.2 1.6 SKN 88-21-69 360 105.2 131.1 25.9 DIO 106.7 108.2 1.5 DIO 88-21-71 270 108.2 109.7 1.5 DIO 88-21-72 360 109.7 111.2 .5 DIO 88-21-73 305 118.9 120.4 1.5 DIO 88-21-79 3420 120.4 121.9 1.5 DIO 88-21-80 660 123.4 125.0 1.6 DIO 88-21-80 660 123.4 125.0 1.6 DIO 88-21-80 530 128.0 129.5 1.5 DIO 88-21-86 295	GENER	RALIZ	ED GEO	LOGY			S	IGNIF	ICANT	RESUL	T S	
6.1 9.1 3.0 DIO 9.1 21.3 12.2 SKN 21.3 38.1 16.8 DIO 38.1 77.7 39.6 MBL 77.7 105.2 27.5 SKN 102.1 103.6 1.5 SKN 88-21-68 850 103.6 105.2 1.6 SKN 88-21-69 360 105.2 131.1 25.9 DIO 106.7 108.2 1.5 DIO 88-21-71 270 108.2 109.7 1.5 DIO 88-21-72 360 109.7 111.2 .5 DIO 88-21-73 305 118.9 120.4 1.5 DIO 88-21-79 3420 120.4 121.9 1.5 DIO 88-21-80 660 123.4 125.0 1.6 DIO 88-21-80 530 128.0 129.5 1.5 DIO 88-21-86 295					FROM	TO	INTERVA	L TW	UNIT	SAMPLE N	10. Au ppb	Au oz/t
9.1 21.3 12.2 SKN 21.3 38.1 16.8 DIO 38.1 77.7 39.6 MBL 77.7 105.2 27.5 SKN 102.1 103.6 1.5 SKN 88-21-68 850 103.6 105.2 1.6 SKN 88-21-69 360 105.2 1.6 SKN 88-21-71 270 108.2 109.7 1.5 DIO 88-21-72 360 109.7 111.2 .5 DIO 88-21-73 305 118.9 120.4 1.5 DIO 88-21-79 3420 120.4 121.9 1.5 DIO 88-21-80 660 123.4 125.0 1.6 DIO 88-21-80 530 128.0 129.5 1.5 DIO 88-21-86 295												
21.3 38.1 16.8 DIO												
38.1 77.7 39.6 MBL 77.7 105.2 27.5 SKN 102.1 103.6 1.5 SKN 88-21-68 850 103.6 105.2 1.6 SKN 88-21-69 360 105.2 1.5 DIO 88-21-71 270 108.2 109.7 1.5 DIO 88-21-72 360 109.7 111.2 .5 DIO 88-21-73 305 118.9 120.4 1.5 DIO 88-21-79 3420 120.4 121.9 1.5 DIO 88-21-80 660 123.4 125.0 1.6 DIO 88-21-82 530 128.0 129.5 1.5 DIO 88-21-86 295												
77.7 105.2 27.5 SKN 102.1 103.6 1.5 SKN 88-21-68 850 103.6 105.2 1.6 SKN 88-21-69 360 105.2 131.1 25.9 DIO 106.7 108.2 1.5 DIO 88-21-71 270 108.2 109.7 1.5 DIO 88-21-72 360 109.7 111.2 .5 DIO 88-21-73 305 118.9 120.4 1.5 DIO 88-21-79 3420 120.4 121.9 1.5 DIO 88-21-80 660 123.4 125.0 1.6 DIO 88-21-82 530 128.0 129.5 1.5 DIO 88-21-86 295												
103.6												
105.2	77.7	105.2	27.5	SKN								
108.2												
109.7	105.2	131.1	25.9	DIO								
118.9												
120.4 121.9 1.5 DIO 88-21-80 660 123.4 125.0 1.6 DIO 88-21-82 530 128.0 129.5 1.5 DIO 88-21-86 295												
123.4 125.0												
128.0 129.5 1.5 DIO 88-21-86 295				İ								
131.1 END OF HOLE					128.0	129.5	1.5		DIO	88-21-8	6 295	
131.1 END OF HOLE	121 1 700	00 0000										
	131.1 END	OF HOLE		į								
					ı							
				1								
					!							
				1	ı							

DATE STARTED: June 11, 1988 NORTHING: 521,064.2 CASING DEPTH: 0.6 m DATE FINISHED: June 11, 1988 ASTING: 291,630.7 CASING DIAMETER: 20 cm CONTRACTOR: Westrail Construction Ltd. SLEVATION: 1,329.1 m BIT DIAMETER: 11 cm LOGGED BY: Jakubowski, Donkersloot, Willer: -90 degrees CHIPS STORED: at Oka Property COMMENTS: Hole drilled to test for continuity of skarn hosted gold mineralization between holes 88-6 and 88-5. 6.1m of skarn was intersected. Hole was terminated after drilling 38.1m of diorite-granodiorite. SIGNIFICANT RESULTS	PROPERTY	OKA	HOLE NO.	OK-88-22	AREA: IRON HORSE		Page 1
CORTHING: 521,064.2 CASING DEPTH: 0.6 m DATE FINISHED: June 11, 1988	CLAIM:	Iron Horse		RECOVERY:	4.02 kg/m		
ASTING: 291,630.7 CASING DIAMETER: 20 cm CONTRACTOR: Westrail Construction Ltc. LEVATION: 1,329.1 m BIT DIAMETER: 11 cm LOGGED BY: Jakubowski, Donkersloot, WITE: -90 degrees CHIPS STORED: at Oka Property ZIMUTH: OMMENTS: Hole drilled to test for continuity of skarn hosted gold mineralization between holes 88-6 and 88-5. 6.1m of skarn was intersected. Hole was terminated after drilling 38.1m of diorite-granodiorite. GENERALIZED GEOLOGY SIGNIFICANT RESULTS FROM TO INTERVAL UNIT FROM TO INTERVAL TW UNIT SAMPLE NO. Au ppb Au oz/ 0.0 1.5 1.5 CSR 1.5 C.6 6.1 SSR 1.6 27.4 19.8 GDR 27.4 32.0 4.6 GDR/DIO 32.0 42.7 10.7 DIO/SKN 42.7 END OF HOLE	NORTHING:	521,064.2		CASING DEPTH:	0.6 m		
Property	EASTING:						Westrail Construction Ltd
### COMMENTS: Hole drilled to test for continuity of skarn hosted gold mineralization between holes 88-6 and 88-5. GENERALIZED GEOLOGY SIGNIFICANT RESULTS	ELEVATION:	1,329.1 m		BIT DIAMETER:	ll cm	LOGGED BY:	Jakubowski, Donkersloot, Wk
CENERALIZED GEOLOGY SIGNIFICANT RESULTS	OIP: AZIMUTH:	-90 degrees				CHIPS STORED:	at Oka Property
FROM TO INTERVAL UNIT FROM TO INTERVAL TW UNIT SAMPLE NO. Au ppb Au oz/ 0.0 1.5 1.5 GDR 1.5 7.6 6.1 SKN 7.6 27.4 19.8 GDR 27.4 32.0 4.6 GDR/DIO 32.0 42.7 10.7 DIO/SKN 42.7 END OF HOLE	COMMENTS:						
FROM TO INTERVAL UNIT FROM TO INTERVAL TW UNIT SAMPLE NO. Au ppb Au oz/ 0.0 1.5 1.5 GDR 1.5 7.6 6.1 SKN 7.6 27.4 19.8 GDR 27.4 32.0 4.6 GDR/DIO 32.0 42.7 10.7 DIO/SKN 42.7 END OF HOLE	GENER	ALIZED G	EOLOGY		SIGNIFIC	ANT RESUL	T S
1.5 7.6 6.1 SKN 7.6 27.4 19.8 GDR 27.4 32.0 4.6 GDR/DIO 32.0 42.7 10.7 DIO/SKN 42.7 END OF HOLE	FROM	TO INTER	VAL UNIT	FROM J TO J			
7.6 27.4 19.8 GDR 27.4 32.0 4.6 GDR/DIO 32.0 42.7 10.7 DIO/SKN 42.7 END OF HOLE							
27.4 32.0 4.6 GDR/DIO 32.0 42.7 10.7 DIO/SKN 42.7 END OF HOLE							
32.0 42.7 10.7 DIO/SKN 42.7 END OF HOLE 42.7 EN							
42.7 END OF HOLE				ı			
	32.0	42.7 10.7	DIOVSKW I				
	42.7 END O	F HOLE	, 				
			1				
			i				
			ĺ				
			I				
			1				
]				
			1				
			i				
			, 				
			ĺ				
			!				
			Į.				
			1				
			\ 				
			j				
			i				•

n

CLAIM: NORTHING: EASTING: ELEVATION: DIP: AZIMUTH:	Iron Horse 520,658.4	<u></u>	RECOVERY:			
EASTING: ELEVATION: DIP:				5.5 kg/m	TOTAL DEPTH:	200.7 m
EASTING: ELEVATION: DIP:			CASING DEPTH:	0.6 m	DATE STARTED: DATE FINISHED:	June 11, 1988 June 13, 1988
ELEVATION: DIP:	291,641.2		CASING DIAMETER:	20 cm	CONTRACTOR:	Westrail Construction Ltd
	1,224.7 m		BIT DIAMETER:	ll cm	LOGGED BY:	Jakubowski, Donkersloot, WK
M&INUID:	-90 degrees				CHIPS STORED:	at Oka Property
CENED	found in Sou The hole was	th Horse trench terminated due		Approximately 56 ods.	metres of skarn was	
FROM	ALIZED G TO INTER		FROM TO	SIGNIFI INTERVAL TW	ICANT RESUL UNIT SAMPLE	
0.0	7.6 7.6		t Koit 10	INTERVAL IN	1 ONT SAIR DE	no. I na ppo I na ozy c
7.6	21.3 13.7					
21.3	46.0 24.7					
46.0	82.4 36.4					
82.4	93.0 10.6					
	100.3 7.3					
	103.8 3.5					
	106.5 2.7 111.2 4.7					
	111.2 4.7					
	115.8 1.5					
	139.5 23.7					
	200.7 61.2					
200.7 END	OF HOLE	; }				
		1				
		1				

REVERSE CIRCULATION

PROPERTY	OKA	HOLE NO.	OK-88-24	AREA:	IRON HORSE				Page 1		
CLAIM:	Iron Horse		RECOVERY:	7.0	kg/m		DEPTH:	194.		····	
NODWITTIG.	F20 (F0 0		OLCING DEDMI	0.6			STARTED:		16, 1988		
NORTHING: EASTING:	520,650.9 291,542.2		CASING DEPTH: CASING DIAMETER:	0.6 20 c			FINISHED:		17, 1988		L:
ELEVATION:	1,205.2 m		BIT DIAMETER:	20 C			ACTOR: D BY:		rail Cons nkersloot		tion rta
DIP:	-90 degrees		DII DIMBIBION.	11 0	ш		STORED:		ka Proper		
AZIMUTH:	70 4091000					01111	BIONED.	uc o	ku troper	~ <i>1</i>	
COMMENTS:	mineralizati The hole was	on found in ne terminated af	test an Au soil geoc earby trenches. Appro ter all available dr	oximatel ill rods	y 45 m of skar were used.	n was i	ntersected.		inuit y of	sto	ckwork
		EOLOGY			IGNIFIC		RESUL				
FROM	TO INTER		FROM TO	INTERVA	L TW	UNIT	SAMPLE 1	10.	Au pp	b]	Au oz/t
0.0	12.0 12.0										
12.0	15.6 3.6 19.7 4.1										
15.6 19.7	19.7 4.1 20.7 1.0										
20.7	100.9 80.2										
100.9	106.9 6.0										
106.9	121.9 15.0										
121.9	141.7 19.8										
141.7	194.6 52.9										
194.6 END	OF HOLE	! !									
		j 									
		<u> </u>									
		!									
		i									
		ĺ									
] }									

PROPERTY	OKA	HOLE NO. 0K-88-25	AREA: BOLIVAR WE	EST AREA	Page 1
CLAIM:	Oka 8	RECOVERY:	4.39 kg/m	TOTAL DEPTH: DATE STARTED:	195.6 m June 18, 1988
NORTHING:	520,379.9	CASING DEPTH:	1.2 m	DATE FINISHED:	June 20, 1988
EASTING:	287,809.8	CASING DIAMETER:	20 cm	CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,330.9 m	BIT DIAMETER:	ll cm	LOGGED BY:	Jakubowski, Donkersloot, WK
DIP: AZIMUTH:	-90 degrees			CHIPS STORED:	at Oka Property
COMMENTS:		drilled to test an Au soil geoc rminated after all of the avail	-	•	zones were intersected.

İ_											
_		IERALIZ		OLOGY				NIFICANT			
_	FROM	TO	INTERVA		FROM	TO_	INTERVAL	TW UNIT	J SAMPLE NO.	Au ppb	Au oz/t
l	0.0	10.0	10.0	XTF							
	10.0	27.0	17.0	XTF/FGS							
İ	27.0	62.5	35.5	FGS							
1	62.5	67.1	4.6	FGS/XTF							
	67.1	73.5	6.4	FGS							
-	73.5	74.8	1.3	XTF							
	74.8	88.2	13.4	FGS							
İ	88.2	89.0	.8	XTF							
١	89.0	90.0	1.0	FGS							
ļ	90.0	91.4	1.4	SLT							
1	91.4	93.6	2.2	MBL							
1	93.6	99.1	5.5	FGS/XTF							
	99.1	103.5	4.4	FGS							
1	103.5	105.8	2.3	FGS/XTF							
	105.8	117.3	11.5	FGS							
1	117.3	121.8	4.5	DIO							
	121.8	125.0	3.2	FGS							
1	125.0	127.0	2.0	MBL							
1	127.0	134.0	7.0	FGS							
1	134.0	141.7	7.7	FGS/XTF							
!	141.7	144.8	3.1	FGS							
1	144.8	150.2	5.4	FGS/XTF							
	150.2	151.0	.8	SLT							
!	151.0	169.2	18.2	FGS/XTF							
1	169.2	170.0	.8	GDR/FGSB							
1	170.0	175.2	5.2	FGS							
1	175.2	181.5	6.3	GDR/FGSB							
1	181.5	190.5	9.0	FGS	100 6	105 1	, ,	VMC	00 25 120	405	
1	190.5	195.6	5.1	XTF	193.6	195.1	1.5	XTF	88-25-128	405	
1	195.6	END OF HOLE		 							
i											
1				i							
				ĺ							
				!							
_											

PROPERTY	OKA	HOLE NO.	OK-88-26	AREA:	BOLIVAR	WEST AREA	Page 1
CLAIM:	Oka 9		RECOVERY:	4.8	kg/m	TOTAL DEPTH	H: 121.9 m
						DATE STARTE	ED: June 20, 1988
NORTHING:	520,498.93		CASING DEPTH:	0.6	ľ	DATE FINISH	HED: June 21, 1988
EASTING:	287,759.64		CASING DIAMETER:	20	cn	CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,354.1 m		BIT DIAMETER:	11	CM	LOGGED BY:	Jakubowski,Donkersloot,WK
DIP:	-90 degrees					CHIPS STORE	ED: at Oka Property
AZIMUTH:							
1							
COMMENTS:	Hole 88-26 was	drilled to	test a soil geochem	anomaly	. Hole wa	s terminated after	reaching the predetermined

Hole 88-26 was drilled to test a soil geochem anomaly. Hole was terminated after reaching the predetermined depth of 121.9m (400') as no marker horizon was intersected.

GEN	ERALIZ	E D G E	O L O G Y			SI	GNIF	ICANT	RESULTS		
FROM	l TO	INTERVAL		FROM	TO	INTERVAL	TW	UNIT	SAMPLE NO.	Au ppb	Au oz/t
0.0	1.5	1.5	NS								
1.5	6.1	4.6	FGS								
6.1	10.7	4.6	FGS/XTF								
10.7	12.2	1.5	FGS/AND								
12.2	13.7	1.5	FGS/MBL								
13.7	18.3	4.6	FGS								
18.3	19.8	1.5	XTF/AND								
19.8	21.3	1.5	FGS								
21.3	24.4	3.1	FGS/AND								
24.4	36.6	12.2	FGS/XTF								
36.6	38.1	1.5	FGS								
38.1	39.6	1.5	FGS/AND								
39.6	59.4	19.8	FGS								
59.4	61.0	1.6	FGS/MBL								
61.0	65.5	4.5	SLT								
65.5	67.1	1.6	SLT/FGS								
67.1	71.6	4.5	FGS								
71.6	73.2	1.6	SLT/MGS								
73.2	74.7	1.5	SLT/XTF								
74.7	80.8	6.1	XTF								
80.8	99.1	18.3	FGS/XTF					200			
99.1	117.4	18.3	FGS	103.6	105.2	1.6		FGS	88-26-26	14330	
			į.	105.2	106.7	1.5		FGS	88-26-70	535	
1 117 /	123.0	, -	DOC (VMD)	106.7	108.2	1.5		FGS	88-26-71	521	
117.4	121.9	4.5	FGS/XTF								
121.9	END OF HOLE		1								
141.7	END OF HOLL		1								
			i								•
			į								
			ĺ								
			ĺ								i
			ļ								
			1								

1	PROPERTY	OKA	HOLE NO.	OK-88-27	AREA: BOLIVAR WEST	AREA	Page 1	
	CLAIM:	Oka 9		RECOVERY:	4.14 kg/m	TOTAL DEPTH:	121.9 m	_l
1					-	DATE STARTED:	June 21, 1988	ĺ
1	NORTHING:	520,789.1		CASING DEPTH:	0.6 m	DATE FINISHED:	June 22, 1988	1
I	EASTING:	287,766.0		CASING DIAMETER:	20 cm	CONTRACTOR:	Westrail Construction Ltd.	-
[ELEVATION:	1.378.0 m		BIT DIAMETER:	ll cm	LOGGED BY:	Jakubowski,Donkersloot,WK	-
1	DIP:	-90 degrees				CHIPS STORED:	at Oka Property	İ
I	AZIMUTH:	-					• •	-
٠.								,

| COMMENTS:

Hole 88-27 was drilled to test a soil geochem anomaly. Hole was terminated after reaching the predetermined

depth of 121.9m (400') as no marker horizon was intersected.

GENE	ERALIZ	ED GE	0 L 0 G Y			SIG	NIFICANT I	RESULTS		
FROM	TO TO	INTERVA	L UNIT	FROM	J TO	INTERVAL	TW UNIT	SAMPLE NO.	Au ppb Au	oz/t
0.0	1.5	1.5	NS							
1.5	6.1	4.6	FGS							
6.1	15.2	9.1	FGS/FGSB	12.2	13.7	1.5	FGS/FGSB	88-27-9	590	
15.2	19.8	4.6	FGS	16.7	18.3	1.6	FGS	88-27-12	675	
19.8	22.9	3.1	FGS/XTF							
22.9	30.5	7.6	GDR/FGS	29.0	30.5	1.5	GDR/FGS	88-27-20	380	
30.5	56.4	25.9	GDR	47.2	48.7	1.5	GDR	88-27-32	693	
			Ī	48.7	50.2	1.5	GDR	88-27-33	412	
56.4	59.4	3.0	FGS							
59.4	68.6	9.2	AND							
68.6	70.1	1.5	GDR/AND							
70.1	71.6	1.5	AND							
71.6	96.0	24.4	GDR	86.9	88.4	1.5	GDR	88-27-58	540	
96.0	102.1	6.1	AND							
102.1	106.7	4.6	FGS	103.6	105.2	1.6	FGS	88-27-59	290	
106.7	121.9	15.2	GDR							
121.9 E	END OF HOLE									

								1
PROPERTY	OKA	HOLE NO.	OK-88-28	AREA:	BOLIVAR WEST	AREA	Page 1	
CLAIM:	Oka 9		RECOVERY:	4.3 kg	/m	TOTAL DEPTH:	121.9 ш	-¦
į						DATE STARTED:	June 22, 1988	1
NORTHING:	520,533.2		CASING DEPTH:	0.6 m		DATE FINISHED:	June 23, 1988	
EASTING:	287,666.0		CASING DIAMETER:	20 cm		CONTRACTOR:	Westrail Construction Ltd.	1
ELEVATION:	1,382.6 m		BIT DIAMETER:	11 cm		LOGGED BY:	Jakubowski,Donkersloot,WK	1
DIP:	-90 degrees					CHIPS STORED:	at Oka Property	-
AZIMUTH:								
1								ı

| COMMENTS:

Hole 88-28 was drilled to test vertical continuity of mineralization intersected in Bolivar West trench BW-28. | Hole was terminated after reaching the predetermined depth of 121.9m (400') as no marker horizon was intersected. |

FROM	ERALIZ I TO	INTERVAL	OLOGY L UNIT	FROM	l TO	INTERVAL	NIFICANT TW UNIT	RESULTS SAMPLE NO.	Au ppb Au	1 0Z/
0.0	5.5	5.5	AND	4.6	6. l	1.5	AND	88-28-4	525	1 02/
5.5	27.4	21.9	FGS	16.7	18.3	1.6	FGS	88-28-12	550	
27.4	30.5	3.1	FGS/XTF	10.,	10.5	1.0	1 00	00 20 12	330	
30.5	36.6	6.1	FGS/MBL							
36.6	47.5	10.9	XTF/FGS							
47.5	48.7	1.2	MBL							
48.7	57.0	8.3	FGS	51.8	53.3	1.5	FGS	88-28-35	480	
57.0	57.9	.9	XTF/FGS							
57.9	95.0	37.1	FGS/MGS							
95.0	96.0	1.0	SLT							
96.0	99.1	3.1	MGS/FGS							
99.1	103.6	4.5	XTF/FGS							
03.6	109.7	6.1	FGS/MGS							
09.7	121.9	12.2	MGS							
			i							

	OKA		HOLE NO.	OK-88-29		AREA:	DOLIVAN	WEST AREA		Page	: 1	
LAIM:	Oka 9	9		RECOVER	Y:	4.7	kg/m	TOTAL	DEPTH:	125.0 m		
									TARTED:	June 23,		
ORTHING:		156.34		CASING		0.6			INISHED:	June 24,		
ASTING: LEVATION:	-	511.54 381.59 m		BIT DIA	DIAMETER:	20 c 11 c		CONTRA LOGGED		Westrail Jakubows		
IP:		degrees		טוו טוה	uititi.	11 0	III			at Oka Pi		13100t, n r
ZIMUTH:	70 0	egrees.						0.111.0	DIONED.	uc oku ti	operej	
OMMENTS:								tion interse 125.0 m as				
GENEF	ALIZ	ED GEO	LOGY			S	IGNIF	ICANT	RESULI	' S		
FROM	TO	INTERVAL	UNIT	FROM	TO J	INTERVA		UNIT	SAMPLE NO		Au ppb	Au oz/t
0.0	1.5	1.5	NS									
1.5	21.0	19.5	FGS									
21.0	40.0	19.0	MGS/FGS									
40.0 46.0	46.0 47.0	6.0 1.0	FGS SLT									
40.0 47.0	64.0	17.0	XTF/FGS	56.4	57.9	1.5		GDR	88-29-38		430	
64.0	82.3	18.3	FGS/MGS	70.1	71.6	1.5		FGS	88-29-47		410	
82.3	90.0	7.7	XTF/FGS	10.1	11.0			100	00 17 1		110	
90.0	114.5	24.5	FGS/MGS									
114.5	125.0	10.5	MGS									
125.0 END	OF HOLE		 									
			į									
			į Į									
			i									
			i									
			i									
			•									

PROPERTY	OKA		HOLE NO.	OK-88-30		AREA:	BOLIVAR WEST	AREA		Page 1	
CLAIM:	Oka 9			RECOVE	ERY:	3.6 kg	g/n	TOTAL DEPTH DATE STARTE		9 m 25, 1988	
NORTHING:	520,3	78.8		CASINO	G DEPTH:	0.6 m		DATE FINISH		25, 1988	
EASTING:	287,5				DIAMETER:			CONTRACTOR:		rail Construct	ion Ltd
ELEVATION:		69.0 m			AMETER:	ll cm		LOGGED BY:		bowski,Donkers	
DIP:		egrees						CHIPS STORE		ka Property	2000,
AZIMUTH:	, ,	- J									
COMMENTS:	The ho						neralization ned depth of				was
			EOLOGYI				GNIFICA		ULTS		
FROM	TO	INTERVA		FROM	TO	INTERVAL	TW U	NIT SAM	IPLE NO.	Au ppb	Au oz/t
0.0	1.5	1.5	NS								
1.5	7.8	6.3	FGS/XTF								
7.8	21.3	13.5	GDR								
21.3	25.9	4.6	FGS/XTF	_			_				
25.9	32.0	6.1	FGS	27.4	29.0	1.6	F	GS 88	3-30-19	550	
32.0	38.3	6.3	FGS/MGS								
38.3	64.0	25.7	GDR								
64.0	82.5	18.5	FGS								
82.5	107.0		FGS/XTF/MGS								
107.0	112.8	5.8	GDR								
112.8	121.9	9.1	FGS/MGS								
121.9 END	OF HOLE		 								
			İ								
			1								
			: !								
			· !								
			į								
			i								

79.2

80.8

83.8

85.3

86.9

88.4

99.1

108.2

109.7

111.2

112.8

114.3

115.8

117.4

118.9

120.4

125.0

126.5

134.1

137.2

141.7

143.3

172.1

172.1 END OF HOLE

70.1 79.2

80.8

83.8

85.3

86.9

88.4

99.1

108.2

109.7

112.8

| 111.2

1114.3

115.8

117.4

118.9

120.4

125.0

126.5

134.1

| 137.2

141.7

143.3

9.1

1.6

3.0

1.5

1.6

1.5

10.7

9.1

1.5

1.5

1.6

1.5

1.5

1.6

1.5

1.5

4.6

1.5

7.6

3.1

4.5

1.6

28.8

SLT |

SLT/FGS |

SLT/AND |

FGS/AND |

FGS |

MBL/SKN |

SKN/SLT |

SLT/SKN |

FGS/XTF |

SLT/XTF |

FGS/SLT |

SLT MGS

SLT

SLT/FGS |

FGS

FGS/SLT |

FGS/XTF |

SLT

SLT

MBL | SLT

SKN

CORDILLERAN ENGINEERING LTD. REVERSE CIRCULATI DRILL HOLE LOG											
PROPERTY	OKA		HOLE NO.	OK-88-31		AREA:	BOLIVAR	EAST AREA		Page	1
CLAIM:	Oka 7			RECOVE	CRY:	3.01	kg/m		L DEPTH: STARTED:	172.1 m June 26, 1	988
NORTHING:	520,62	1.7		CASING	DEPTH:	0.6 m			FINISHED:	June 28, 1	
EASTING:	288,84				DIAMETER:	20 cm			RACTOR:	·•	onstruction Ltd
ELEVATION:	-	3.3 m			AMETER:	ll cm		LOGG	ED BY:	Jakubowski	,Donkersloot,W
DIP:	-90 de							CHIP	S STORED:	at Oka Pro	perty
AZIMUTH:		•									-
GENER	ALIZE	D G E	OLOGY			S I	GNIFI	CANT	RESUL	T S	
FROM	TO I	INTERVAL		FROM	TO I	INTERVAL		UNIT	SAMPLE	NO. Au	ppb Au oz/
0.0	1.5	1.5	NS								
1.5	3.0	1.5	XTF/FGS	1.5	3.0	1.5		XTF	88-31-	2 3	380
3.0	4.6	1.6	AND	3.0	4.6	1.6		AND	88-31-	3	430
4.6	22.9	18.3	FGS/XTF								
22.9	27.4	4.5	FGS								
27.4	42.7	15.3	XTF/FGS								
42.7	51.8	9.1	SLT								
51.8	54.9	3.1	SLT/FGS								
54.9	56. 4	1.5	SLT/MBL								
56. 4	62.5	6.1	SLT								
62.5	70.1	7.6	SLT/XTF								

PROPERTY	OKA	HOLE NO.	OK-88-32	AREA: BOLIVAR EAST	AREA	Page 1
CLAIM:	Oka 8		RECOVERY:	4.0 kg/m	TOTAL DEPTH: DATE STARTED:	181.4 m June 28, 1988
NORTHING:	520,201.0		CASING DEPTH:	0.6 m	DATE FINISHED:	June 29, 1988
EASTING:	288,799.6		CASING DIAMETER:	20 сш	CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,268.8 m		BIT DIAMETER:	li cm	LOGGED BY:	Jakubowski,Donkersloot,WK
DIP:	-90 degrees				CHIPS STORED:	at Oka Property
AZIMUTH:	-					

| COMMENTS:

Hole 88-32 was drilled to test vertical continuity of mineralization intersected in Bolivar East Trench BE-19. Hole was terminated after drilling 30m of granodiorite.

I	ERALIZ	ED GE	OLOGYI			SIGI	NIFICANT	RESULTS		
FROM	TO	INTERVA		FROM	I TO	INTERVAL	TW UNIT	SAMPLE NO.	Au ppb	Au oz/t
0.0	1.5	1.5	NS			./				
1.5	19.8	18.3	XTF/FGS	1.5	3.0	1.5	XTF	88-32-2	480	
			ĺ	7.6	9.1	1.5	FGS	88-32-6	355	
			1	9.1	10.7	1.6	FGS	88-32-7	325	
19.8	41.2	21.4	FGS							
41.2	54.5	13.3	GDR	45.7	47.2	1.5	GDR	88-32-31	1520	
1			1	47.2	48.7	1.5	GDR	88-32-32	650	
54.5	64.0	9.5	FGS/MGS							
64.0	70.0	6.0	GDR							
70.0	77.7	7.7	FGS/MGS							
77.7	86.5	8.8	EGS							
86.5	94.5	8.0	FGS/AND							
94.5	106.7	12.2	FGS							
106.7	109.7	3.0	FGS/MGS							
109.7	119.0	9.3	FGS							
119.0	120.0	1.0	GDR							
120.0	124.0	4.0	FGS							
124.0	125.0	1.0	AND							
125.0	129.5	4.5	XTF							
129.5	131.0	1.5	GDR							
131.0	134.0	3.0	MGS							
134.0	137.2	3.2	FGS/MGS	134.1	135.6	1.5	FGS	88-32-89	7070	
Ì			1	135.6	137.2	1.6	FGS	88-32-90	360	
137.2	150.0	12.8	XTF/FGS							
150.0	181.4	31.4	GDR							
181.4 E	ND OF HOLE									

. •

PROPERTY	OKA	HOLE NO.	OK-88-33	AREA:	BOLIVAR	EAST AREA		Page 1	
CLAIM:	0ka 8		RECOVERY:	3.85	kg/m		DEPTH: STARTED:	126.5 m June 29, 1988	
NORTHING:	520, 299. 42	1	CASING DEPTH:	0.6	n		FINISHED:	June 29, 1888	
EASTING:	288,653.48		CASING DIAMETER:			CONTRA		Westrail Const	ruction Ltd.
ELEVATION:	1,281.34		BIT DIAMETER:	11 ci		LOGGE		W.Jakubowski,	
OIP: AZIMUTH:	-90 degree	:S				CHIPS	STORED:	at Oka Propert	У
COMMENTS:			test vertical conting drilling 26.8 m of g			zation found	in Boliva 1	East trench BE-1	6.
GENER	ALIZED	GEOLOGY	I	S	IGNI	FICANT	RESUL	T S	
FROM		ERVAL UNIT	FROM TO	INTERVA	L TW	UNIT	SAMPLE 1	NO. Au ppb	Au oz/t
0.0		.5 NS							
1.5		.6 FGS							
6.1		.1 FGS/XTF							
12.2 15.2		.0 FGS	1						
19.8		.0 FGS/XTF	1						
51.8		.7 GDR	1						
		.2 GDR/MGS	İ						
97.5			1						
97.5 109.7	126.5 16	.8 GDR	I						
	126.5 16	.6 GUK							
109.7	126.5 16	. O GUK							
109.7	126.5 16	. O GUK							
109.7	126.5 16	. O GUK							
109.7	126.5 16	. O GUK							
109.7	126.5 16	. O GUK							
109.7	126.5 16	. O GUK							

PROPERTY	OKA	HOLE NO.	OK-88-34	AREA:	BOLIVAR EAST	AREA	Page I
CLAIM:	0ka 8		RECOVERY:	7.29 k	g/n	TOTAL DEPTH:	120.4 m
İ						DATE STARTED:	June 30, 1988
NORTHING:	520,282.81		CASING DEPTH:	0.6 m		DATE FINISHED:	June 30, 1988
EASTING:	288,738.64		CASING DIAMETER:	20 cm		CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,287.49 m		BIT DIAMETER:	ll cm		LOGGED BY:	W.Jakubowski, W.Kusher
DIP:	-90 degrees					CHIPS STORED:	at Oka Property
AZIMUTH:							

| COMMENTS:

Hole 88-34 was drilled to test vertical continuity of mineralization found in Bolivar East trench BE-18.

Hole was terminated after drilling 20m of granodiorite.

C F N I	ERALIZ	FD CF	OLOGYI	****		CICN	IFICANT	RESULTS	
FROM	TO	INTERVAL		FROM	TO	INTERVAL	TW UNIT	SAMPLE NO.	Au ppb Au oz/t
0.0	1.5	1.5	XTF	tion	10	I INTERVAL !	In ORII	SATELE NO.	I wa bbo I wa 02/c
1.5	9.1	7.6	XTF/FGS	4.6	6.1	1.5	XTF/FGS	88-34-4	305
9.1	10.7	1.6	XTF/MGS	9.1	10.7	1.6	MGS	88-34-7	1040
10.7	13.7	3.0	XTF/FGS	7.1	10.7	1.0	1105	00 34 7	1010
13.7	15.2	1.5	XTF						
15.2	18.3	3.1	XTF/FGS						
18.3	79.2	60.9	GDR I	44.2	45.7	1.5	GDR	88-34-30	355
79.2	80.8	1.6	GDR/MGS		2007	2.0	3511	00 01 00	000
80.8	99.1	18.3	GDR						
99.1	100.6	1.5	GDR/MGS						
100.6	120.4	19.8	GDR						
			ĺ						
120.4 H	END OF HOLE		-						
			1						
			1						
			1						
			1						
]						
			1						
			ļ						
			1						
			i						
			i,						
			i I						
			1						
			1						

PROPERTY	OKA	HOLE NO.	OK-88-35	AREA:	BOLIVAR EAST	AREA	Page 1
CLAIM:	Oka 8		RECOVERY:	5.13	kg/m	TOTAL DEPTH:	121.9 m
						DATE STARTED:	July 1, 1988
NORTHING:	520, 170. 53		CASING DEPTH:	1.5 E	i	DATE FINISHED:	July 1, 1988
EASTING:	288,758.19		CASING DIAMETER:	20 cm		CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,263.42 m		BIT DIAMETER:	ll cm	i	LOGGED BY:	W Jakubowski, W.Kushner
DIP:	-90 degrees					CHIPS STORED:	at Oka Property
AZIMUTH:	-						
COMMENTS:	Hole 88-35 was	drilled to	test continuity of m	ineraliza	tion found in	Bolivar East tre	nch BE-20.
	Hole was drille	d to a pred	etermined depth of 1	21.9 m (4	00') as no mar	ker horizon was	intersected.

		ERALIZ		LOGY					ICANT	RESUL			
1_	FROM	TO	INTERVAL	UNIT	FROM	<u> TO</u>	INTERVAL	TW	TINU	SAMPLE 1	NO.	Au ppb	Au oz/t
1	0.0	15.2	15.2	XTF/FGS									
ĺ	15.2	19.8	4.6	XTF/MGS									I
	19.8	21.3	1.5	XTF/FGS									i
	21.3	22.9	1.6	XTF									!
1	22.9	25.9	3.0	FGS									l
	25.9	32.0	6.1	XTF									Ī
Ì	32.0	33.5	1.5	XTF/FGS									
	33.5	35.0	1.5	FGS/MGS									[
1	35.0	36.6	1.6	FGS/XTF									i
	36 .6	38.1	1.5	XTF									ļ
	38.1	44.2	6.1	FGS/XTF									ì
	44.2	48.7	4.5	XTF									!
İ	48.7	50.3	1.6	MGS									ļ
1	50.3	54.9	4.6	XTF/MGS]
	54.9	82.3	27.4	XTF/FGS									i
1	82.3	88.4	6.1	FGS/MGS									1
	88.4	89.9	1.5	XTF/MGS									!
1	89.9	106.7	16.8	XTF/FGS									1
	106.7	108.2	1.5	FGS/MGS									l
	108.2	111.2	3.0	FGS/XTF									Į
	111.2	117.4	6.2	XTF/MGS									İ
1	117.4	121.9	4.5	XTF/FGS									1
	121 0	PMD OF HOLD											!
1	121.9	END OF HOLE		1									!
1				} 									
1				ļ									1
ï													1
ì				 									ł 1
i				1									1
i				1									1
i				'									1
i				1									! !

PROPERTY	OKA	HOLE NO.	0K-88-36	AREA:	BOLIVAR EAST	AREA	Page I
CLAIM:	Oka 8		RECOVERY:	5.35	kg/m	TOTAL DEPTH:	36.6 m
						DATE STARTED:	July 2, 1988
NORTHING:	520,169.30		CASING DEPTH:	2.0 m		DATE FINISHED:	July 3, 1988
EASTING:	288,756.38		CASING DIAMETER:	20 cm		CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,263.43 m		BIT DIAMETER:	ll cm		LOGGED BY:	W Jakubowski, W.Kushner
DIP:	-55 degrees					CHIPS STORED:	at Oka Property
AZIMUTH:	250 degrees						• •
	-						
COMMENTS:	Hole 88-36 was	drilled to	test for possible ve	rtical st	ructural contr	ol of mineraliza	tion found in Bolivar
			as terminated at 36.				

l											
	ERALIZ		OLOGY					ICANT	RESULTS		· · · · · · · · · · · · · · · · · · ·
FROM	J TO	INTERVAL		FROM	TO	INTERVAL	TW	UNIT	SAMPLE NO.	Au ppb	Au oz/t
0.0	1.5	1.5	NS								
1.5	4.6	3.1	XTF/FGS								
4.6	10.7	6.1	FGS/MGS								
10.7	16.7	6.0	XTF/MGS								
16.7	18.3	1.6	FGS	İ							
18.3	22.9	4.6	XTF/MGS								
22.9	25.9	3.0	FGS/MGS								
25.9	30.5	4.6	XTF/FGS								
30.5	32.0	1.5	XTF/MGS								
32.0	33.5	1.5	FGS/MGS								i
33.5	35.0	1.5	GDR/MGS								
35.0	36.6	1.6	FGS								
	END OF HOLE										

PROPERTY	OKA	HOLE NO.	OK-88-37(ABANDONED)	AREA: BOLIVAR ROAD	AREA	Page 1
CLAIM:	Oka 7		RECOVERY:	2.95 kg/m	TOTAL DEPTH:	30.5 m
İ				-	DATE STARTED:	July 3, 1988
NORTHING:	520,522.4		CASING DEPTH:	2.1 m	DATE FINISHED:	July 4, 1988
EASTING:	290,330.1		CASING DIAMETER:	20 cm	CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,255.6 m		BIT DIAMETER:	ll cm	LOGGED BY:	W Jakubowski, W.Kushner
DIP:	-90 degrees				CHIPS STORED:	at Oka Property
AZIMUTH:	0					
COMMENTS:	Hole 88-37 was	drilled to	test a soil geochem	anomaly. Hole was aban	doned after the	drill rods stuck at 30.5m.

! 											
i G	EN	ERALIZ	ED GE	OLOGYJ			SIG	NIFICANT	RESULTS		
	ROM	TO	INTERVAL	UNIT	FROM	TO	INTERVAL	TW UNIT	SAMPLE NO.	Au ppb	Au oz/t
	0.0	6.1	6.1	AND/GDR							
	6.1	7.6	1.5	SLT/FGS							:
	7.6	9.1	1.5	DIO/XTF							
	9.1	12.2	3.1	DIO							ı
	2.2	15.2	3.0	AND							
	5.2	29.0	13.8	AND/FGS	16.7	18.3	1.6	FGS	88-37-12	760	
2	9.0	30.5	1.5	AND							
] 3	10.5	END OF HOLE		 							
1				1							

PROPERTY	OKA	HOLE NO.	OK-88-37	AREA:	BOLIVAR ROAD	AREA	Page 1
CLAIM:	Oka 7		RECOVERY:	2.50)	(g/n	TOTAL DEPTH: DATE STARTED:	146.3 m July 5, 1988
NORTHING:	520,522.6		CASING DEPTH:	2.1 m		DATE FINISHED:	July 7, 1988
EASTING:	290,330.6		CASING DIAMETER:	20 cm		CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,253.5 m		BIT DIAMETER:	ll cm		LOGGED BY:	W Jakubowski, w.Kushner
DIP: AZIMUTH:	-90 degrees					CHIPS STORED:	at Oka Property
COMMENTS:			l geochemical anomal drilling 17m of ande	•			

GEN	IERALIZ	ED GEO	LOGY			SIG	NIFICANT	RESULTS		
FROM	j T0	INTERVAL		FROM	TO	INTERVAL	TW UNIT	SAMPLE NO.	Au ppb	Au oz/t
0.0	3.0	3.0	NS							
3.0	4.6	1.6	AND/SLT							
4.6	6.1	1.5	AND/GDR							
6.1	7.6	1.5	SLT/GDR							
7.6	9.1	1.5	FGS/MBL							
9.1	10.7	1.6	FGS/DIO							
10.7	13.7	3.0	DIO/AND							
13.7	18.3	4.6	AND/FGS							
18.3	19.8	1.5	FGS/MBL							
19.8	22.9	3.1	AND/FGS							
22.9	36.6	13.7	AND	25.9	27.4	1.5	AND	88-37-18	505	
36.6	61.0	24.4	AND/FLP							
61.0	64.0	3.0	FGS							
64.0	74.7	10.7	FGS/AND							
74.7	93.0	18.3	AND							
93.0	94.5	1.5	AND/FGS							
94.5	102.1	7.6	FGS							
102.1	103.6	1.5	FGS/AND							
103.6	105.2	1.6	AND							
105.2	109.7	4.5	AND/FGS							
109.7	112.8	3.1	AND							
112.8	115.8	3.0	AND/FGS							
115.8	125.4	9.6	AND							
125.4	129.5	4.1	AND/FGS							
129.5	146.3	16.8	AND							
146.3	END OF HOLE		1							
140.5	END OF HOLE		1							
		•	1							
			, i							
			! !							
			1							
			1							
			1							
			1							
			i							

182.9 END OF HOLE

REVERSE CIRCULATION

PROPERTY	OKA		HOLE NO.	OK-88-38	AREA:	BOLIVAR ROAD	AREA	Page 1
CLAIM:	0ka 7			RECOVERY:	4.21 k	g/m	TOTAL DEPTH:	182.9 m
NORTHING:	520,5	63.6		CASING DEPTH:	3.1 m		DATE STARTED: DATE FINISHED:	July 7, 1988 July 9, 1988
EASTING:	290,3			CASING DIAMETER:	20 cm		CONTRACTOR:	Westrail Construction Ltd
ELEVATION:		69.7 m		BIT DIAMETER:	ll cm		LOGGED BY:	W Jakubowski, W.Kushner
DIP: AZIMUTH:	-90 d	egrees					CHIPS STORED:	at Oka Property
COMMENTS:				test a soil geohemica 2.9 (600') as no marke				ling to a
GENE	RALIZ	ED GE	0 L 0 G Y		SIO	SNIFICA	NT RESUL	TS
FROM	TO	INTERVAL		FROM TO	INTERVAL	TW U	NIT SAMPLE I	NO. Au ppb Au oz/t
0.0	3.0	3.0	NS					
3.0	13.7	10.7	AND					
13.7	22.9	9.2	AND/FGS					
22.9	25.9	3.0	AND/MGS					
25.9	27.4	1.5	AND/FGS					
27.4	30.5	3.1	FGS/MGS					
30.5	39.6 42. 7	9.1 3.1	FGS/AND GDR					
20 6	4 4 /		ו מעט					
39.6								
42.7	50.3	7.6	GDR/FLP					
42.7 50.3	50.3 53.4	7.6 3.1	GDR/FLP GDR/AND					
42.7 50.3 53.4	50.3 53.4 59.4	7.6 3.1 6.0	GDR/FLP GDR/AND FLP					
42.7 50.3 53.4 59.4	50.3 53.4 59.4 68.6	7.6 3.1 6.0 9.2	GDR/FLP GDR/AND FLP FLP/GDR					
42.7 50.3 53.4 59.4 68.6	50.3 53.4 59.4 68.6 73.2	7.6 3.1 6.0 9.2 4.6	GDR/FLP GDR/AND FLP FLP/GDR AND/FGS					
42.7 50.3 53.4 59.4	50.3 53.4 59.4 68.6 73.2 77.7	7.6 3.1 6.0 9.2 4.6 4.5	GDR/FLP GDR/AND FLP FLP/GDR AND/FGS AND/FLP					
42.7 50.3 53.4 59.4 68.6 73.2	50.3 53.4 59.4 68.6 73.2	7.6 3.1 6.0 9.2 4.6	GDR/FLP GDR/AND FLP FLP/GDR AND/FGS					
42.7 50.3 53.4 59.4 68.6 73.2 77.7	50.3 53.4 59.4 68.6 73.2 77.7 83.8	7.6 3.1 6.0 9.2 4.6 4.5 6.1	GDR/FLP GDR/AND FLP FLP/GDR AND/FGS AND/FGS					
42.7 50.3 53.4 59.4 68.6 73.2 77.7 83.8	50.3 53.4 59.4 68.6 73.2 77.7 83.8 85.3	7.6 3.1 6.0 9.2 4.6 4.5 6.1 1.5	GDR/FLP GDR/AND FLP FLP/GDR AND/FGS AND/FGS AND/FGS AND/MGS					
42.7 50.3 53.4 59.4 68.6 73.2 77.7 83.8 85.3	50.3 53.4 59.4 68.6 73.2 77.7 83.8 85.3 88.4	7.6 3.1 6.0 9.2 4.6 4.5 6.1 1.5 3.1	GDR/FLP GDR/AND FLP FLP/GDR AND/FGS AND/FGS AND/MGS MGS/FGS FGS FGS/AND					
42.7 50.3 53.4 59.4 68.6 73.2 77.7 83.8 85.3 88.4	50.3 53.4 59.4 68.6 73.2 77.7 83.8 85.3 88.4 89.9	7.6 3.1 6.0 9.2 4.6 4.5 6.1 1.5 3.1	GDR/FLP GDR/AND FLP FLP/GDR AND/FGS AND/FGS AND/FGS MGS/FGS FGS					
42.7 50.3 53.4 59.4 68.6 73.2 77.7 83.8 85.3 88.4 89.9 91.4 93.0	50.3 53.4 59.4 68.6 73.2 77.7 83.8 85.3 88.4 89.9 91.4 93.0 94.5	7.6 3.1 6.0 9.2 4.6 4.5 6.1 1.5 3.1 1.5 1.5	GDR/FLP GDR/AND FLP FLP/GDR AND/FGS AND/FGS AND/FGS FGS FGS FGS/AND FGS/MGS MGS/AND					
42.7 50.3 53.4 59.4 68.6 73.2 77.7 83.8 85.3 88.4 89.9 91.4 93.0 94.5	50.3 53.4 59.4 68.6 73.2 77.7 83.8 85.3 88.4 89.9 91.4 93.0 94.5 108.2	7.6 3.1 6.0 9.2 4.6 4.5 6.1 1.5 3.1 1.5 1.5 1.6 1.7	GDR/FLP GDR/AND FLP FLP/GDR AND/FGS AND/FGS AND/FGS MGS/FGS FGS FGS/AND FGS/AND AND					
42.7 50.3 53.4 59.4 68.6 73.2 77.7 83.8 85.3 88.4 89.9 91.4 93.0	50.3 53.4 59.4 68.6 73.2 77.7 83.8 85.3 88.4 89.9 91.4 93.0 94.5	7.6 3.1 6.0 9.2 4.6 4.5 6.1 1.5 3.1 1.5 1.5	GDR/FLP GDR/AND FLP FLP/GDR AND/FGS AND/FGS AND/FGS FGS FGS FGS/AND FGS/MGS MGS/AND					

PROPERTY	OKA	HOLE NO.	OK-88-39	AREA:	BOLIVAR ROAD	AREA	Page 1
CLAIM:	Oka 7		RECOVERY:	7.16 kg	/ n	TOTAL DEPTH:	152.4 m
1						DATE STARTED:	July 10, 1988
NORTHING:	520,628.5		CASING DEPTH:	1.2 m		DATE FINISHED:	July 11, 1988
EASTING:	290,478.3		CASING DIAMETER:	20 cm		CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,298.7 M		BIT DIAMETER:	ll cm		LOGGED BY:	W Jakubowski, W.Kuskner
DIP:	-90 degrees					CHIPS STORED:	at Oka Property
AZIMUTH:							

| COMMENTS:

Hole 88-39 was drilled to test a soil geochemical anomaly. Hole was terminated after drillign 20 metres of andesite.

GEN	ERALIZ	ED GE	OLOGY			SIG	NIFICANT	RESULTS		
FROM	T O	INTERVAL	UNIT	FROM	T 0	INTERVAL	TW UNIT	SAMPLE NO.	j Au ppb	Au oz/t
0.0	1.5	1.5	NS							
1.5	3.0	1.5	MBL							
3.0	10.7	7.7	MBL/FGS	7.6	9.1	1.5	FGS	88-39-6	520	
			!	9.1	10.6	1.6	FGS	88-39-7	395	
10.7	13.7	3.0	MGS/AND							
13.7	15.2	1.5	MGS/FGS							
15.2	16.7	1.5	FGS/MBL							
16.7	19.8	3.1	AND/FGS	16.7	18.3	1.6	FGS	88-39-12	592	
19.8	24.4	4.6	SLT/FGS	22.9	24.4	1.5	FGS	88-39-16	2032	
24.4	36.6	12.2	AND/FGS							
36.6	65.5	28.9	AND							
65.5	67.1	1.6	AND/FLP							
67.1	73.2	6.1	FLP							
73.2	74.7	1.5	FLP/MGS							
74.7	80.8	6.1	FLP							
80.8	93.0	12.2	AND							
93.0	96.0	3.0	AND/FGS							
96.0	97.5	1.5	FGS							
97.5	102.1	4.6	FGS/AND							
102.1	106.7	4.6	FGS							
106.7	108.2	1.5	FGS/MGS							
108.2	112.8	4.6	FGS							
112.8	117.4	4.6	AND/FGS							
117.4	123.4	6.0	AND							
123.4	126.5	3.1	AND/FGS							
126.5	128.0	1.5	AND							
128.0	131.1	3.1	AND/FGS							
131.1	152.4	21.3	AND							
	**** AB (14: **									
152.4	END OF HOLE		į							
			ļ							
			\							

PROPERTY	OKA	HOLE NO.	OK-88-40	AREA:	BOLIVAR ROAD	AREA	Page 1	1
CLAIM:	Oka 7		RECOVERY:	3.26 kg	1/ E	TOTAL DEPTH:	182.9 m	- 1
						DATE STARTED:	July 11, 1988	
NORTHING:	520,682.6		CASING DEPTH:	1.2 m		DATE FINISHED:	July 12, 1988	-
EASTING:	290,781.9		CASING DIAMETER:	20 cm		CONTRACTOR:	Westrail Construction Ltd.	1
ELEVATION:	1,228.57 m		BIT DIAMETER:	ll cm		LOGGED BY:	W Jakubowski, W.Kushner	
DIP:	-90 degrees					CHIPS STORED:	at Oka Property	Į
AZIMUTH:	-							1
}								١
COMMENTS:	Hole 88-40 dri	lled to test	a soil geochemical	anomaly. H	lole was term	inated on reachin	ng maximum depth with	1

available drill rods. No significant mineralization was intersected.

GEN	ERALIZ	ED GEO	CLOGYI			SI	GNIF	ICANT	RESULTS		
FROM	TO	INTERVAL	UNIT	FROM	TO	INTERVAL	TW	UNIT	SAMPLE NO.	Au ppb	Au oz/t
0.0	1.5	1.5	NS (
1.5	10.7	9.2	FGS/AND								
10.7	24.4	13.7	AND								
24.4	25.9	1.5	FGS/AND								
25.9	39.6	13.7	AND								
39.6	57.4	17.8	FGS/AND								
57.4	79.2	21.8	AND								
79.2	80.8	1.6	XTF/AND								
80.8	132.6	51.8	AND]								
132.6	135.6	3.0	AND/FGS								
135.6	138.7	3.1	AND								
138.7	141.7	3.0	AND/FGS								
141.7	144.8	3.1	AND								
144.8	147.8	3.0	AND/FGS								
147.8	149.4	1.6	AND								
149.4	154.5	5.1	AND/FGS								
154.5	157.0	2.5	AND								
157.0	163.1	6.1	AND/FGS								
163.1	182.9	19.8	AND								1
182.9	END OF HOLE		i								
102.9	END OF HOLE		!								
! 			1								
! }			1								
1			i i								
			1								
Į			i								
			i								
			i								
			j								
}			İ								
			j								
			1								
1			1								
]			1								
							<u></u>				

PROPERTY	OKA	HOLE NO.	OK-88-41	AREA:	IRON HORSE	AREA	Page 1
CLAIM:	Iron Horse		RECOVERY:	3.78 k	g/m	TOTAL DEPTH:	152.4 m
						DATE STARTED:	July 13, 1988
NORTHING:	521,108.1		CASING DEPTH:	1.2 m		DATE FINISHED:	July 14, 1988
EASTING:	291,455.1		CASING DIAMETER:	20 cm		CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,352.3 m		BIT DIAMETER:	ll cm		LOGGED BY:	W Jakubowski, W.Kushner
DIP:	-55 degrees					CHIPS STORED:	at Oka Property
AZIMUTH:	0						, <i>-</i>
COMMENTS:	Hole 88-41 dri	lled to test	for continuity of s	karn hoste	d mineraliza	tion 50m west of	hole 88-5.
	Six skarn hori	zons were in	itersected. Hole was	terminate	d at a prede	termined depth of	152.4m (500').

GEN	ERALIZ	FD GF	OLOGY			SIG	NIFICANT	RESULTS		·
FROM	TO	INTERVAL		FROM	TO	INTERVAL	TW UNIT	SAMPLE NO.	l Au ppb	Au oz/t
0.0	3.0	3.0	NS							
3.0	4.6	1.6	GDR							
4.6	7.6	3.0	SKN/GDR							
7.6	13.7	6.1	GDR							
13.7	62.5	48.8	SKN	47.2	48.7	1.5	SKN	88-41-32	1880	
62.5	71.6	9.1	SLT/SKN							
71.6	73.2	1.6	SKN							
73.2	82.3	9.1	SLT/SKN							
82.3	85.3	3.0	SLT							
85.3	100.6	15.3	SLT/SKN							
100.6	108.2	7.6	GDR							
108.2	115.8	7.6	MBL/SKN							
115.8	117.4	1.6	MBL !							
117.4	138.7	21.3	MBL/SKN							
138.7	143.3	4.6	MBL							
143.3	149.4	6.1	MBL/SKN							
149.4	152.4	3.0	SKN							
			Į.							
152.4	END OF HOLE		!							
			!							
			1							
			1							
			1							
			l I							
			} 							
			1							
			ļ							
			!							
			1							
			1							
			l 1							
			1							
			, 							

REVERSE CIRCULATION

PROPERTY	OKA	HOLE NO.	OK-88-42	AREA:	CAP AREA		Page 1
CLAIM:	Cap		RECOVERY:	5.0 kg	J/n	TOTAL DEPTH: DATE STARTED:	171.9 m July 15, 1988
NORTHING:	520,637.0		CASING DEPTH:	0.9 m		DATE FINISHED:	July 16, 1988
EASTING:	295,834.2		CASING DIAMETER:	20 cm		CONTRACTOR:	Westrail Construction Ltd
ELEVATION:	1,019.02 m		BIT DIAMETER:	ll cm		LOGGED BY:	W Jakubowski, W. Kushner
DIP: AZIMUTH:	-90 degrees					CHIPS STORED:	at Oka Property
COMMENTS:			a soil geochemical significant mineraiza				g maximum depth with
0 T U T D					0 N T D T 0		m. a
FROM	A L I Z E D G TO INTERV	EOLOGY AL UNIT	FROM TO	INTERVAL	GNIFIC TW	ANT RESUL UNIT SAMPLE	
0.0	1.5 1.5	NS	rkun j 10 j	INTERVAL	1 14	UNII SMITLE	no. Nu ppo Nu 02/t
1.5	6.1 4.6	MBL/FGS					
2							
6.1		SLT/MBL					
6.1 16.7	16.7 10.6	SLT/MBL FGS/MBL					
		SLT/MBL FGS/MBL FGS/SLT					
16.7	16.7 10.6 19.8 3.1	FGS/MBL					
16.7 19.8	16.7 10.6 19.8 3.1 22.9 3.1	FGS/MBL FGS/SLT					
16.7 19.8 22.9 25.9 38.1	16.7 10.6 19.8 3.1 22.9 3.1 25.9 3.0 38.1 12.2 45.7 7.6	FGS/MBL FGS/SLT FGS/MBL					
16.7 19.8 22.9 25.9 38.1 45.7	16.7 10.6 19.8 3.1 22.9 3.1 25.9 3.0 38.1 12.2 45.7 7.6 50.3 4.6	FGS/MBL FGS/SLT FGS/MBL MBL/SLT FGS/SLT/MBL XTF/FGS					
16.7 19.8 22.9 25.9 38.1 45.7 50.3	16.7 10.6 19.8 3.1 22.9 3.1 25.9 3.0 38.1 12.2 45.7 7.6 50.3 4.6 51.8 1.5	FGS/MBL FGS/SLT FGS/MBL MBL/SLT FGS/SLT/MBL XTF/FGS FGS/DIO					
16.7 19.8 22.9 25.9 38.1 45.7 50.3 51.8	16.7 10.6 19.8 3.1 22.9 3.1 25.9 3.0 38.1 12.2 45.7 7.6 50.3 4.6 51.8 1.5 68.6 16.8	FGS/MBL FGS/SLT FGS/MBL MBL/SLT FGS/SLT/MBL XTF/FGS FGS/DIO FGS/SLT					
16.7 19.8 22.9 25.9 38.1 45.7 50.3 51.8 68.6	16.7 10.6 19.8 3.1 22.9 3.1 25.9 3.0 38.1 12.2 45.7 7.6 50.3 4.6 51.8 1.5 68.6 16.8 71.6 3.0	FGS/MBL FGS/SLT FGS/MBL MBL/SLT FGS/SLT/MBL XTF/FGS FGS/DIO FGS/SLT MBL/SLT					
16.7 19.8 22.9 25.9 38.1 45.7 50.3 51.8 68.6 71.6	16.7 10.6 19.8 3.1 22.9 3.1 25.9 3.0 38.1 12.2 45.7 7.6 50.3 4.6 51.8 1.5 68.6 16.8 71.6 3.0 79.2 7.6	FGS/MBL FGS/SLT FGS/MBL MBL/SLT FGS/SLT/MBL XTF/FGS FGS/DIO FGS/SLT MBL/SLT FGS/MBL					
16.7 19.8 22.9 25.9 38.1 45.7 50.3 51.8 68.6 71.6 79.2	16.7 10.6 19.8 3.1 22.9 3.1 25.9 3.0 38.1 12.2 45.7 7.6 50.3 4.6 51.8 1.5 68.6 16.8 71.6 3.0 79.2 7.6 86.9 7.7	FGS/MBL FGS/SLT FGS/MBL MBL/SLT FGS/SLT/MBL XTF/FGS FGS/DIO FGS/SLT MBL/SLT FGS/MBL FGS/SLT					
16.7 19.8 22.9 25.9 38.1 45.7 50.3 51.8 68.6 71.6 79.2 86.9	16.7 10.6 19.8 3.1 22.9 3.1 25.9 3.0 38.1 12.2 45.7 7.6 50.3 4.6 51.8 1.5 68.6 16.8 71.6 3.0 79.2 7.6 86.9 7.7 89.9 3.0	FGS/MBL FGS/SLT FGS/MBL MBL/SLT FGS/SLT/MBL XTF/FGS FGS/DIO FGS/SLT MBL/SLT FGS/MBL FGS/SLT DIO					
16.7 19.8 22.9 25.9 38.1 45.7 50.3 51.8 68.6 71.6 79.2 86.9 89.9	16.7 10.6 19.8 3.1 22.9 3.1 25.9 3.0 38.1 12.2 45.7 7.6 50.3 4.6 51.8 1.5 68.6 16.8 71.6 3.0 79.2 7.6 86.9 7.7 89.9 3.0 100.6 10.7	FGS/MBL FGS/SLT FGS/MBL MBL/SLT FGS/SLT/MBL XTF/FGS FGS/DIO FGS/SLT MBL/SLT FGS/MBL FGS/SLT DIO FGS					
16.7 19.8 22.9 25.9 38.1 45.7 50.3 51.8 68.6 71.6 79.2 86.9 89.9 100.6	16.7 10.6 19.8 3.1 22.9 3.1 25.9 3.0 38.1 12.2 45.7 7.6 50.3 4.6 51.8 1.5 68.6 16.8 71.6 3.0 79.2 7.6 86.9 7.7 89.9 3.0 100.6 10.7 114.3 13.7	FGS/MBL FGS/SLT FGS/MBL MBL/SLT FGS/SLT/MBL XTF/FGS FGS/DIO FGS/SLT MBL/SLT FGS/MBL FGS/SLT DIO FGS FGS/SLT					
16.7 19.8 22.9 25.9 38.1 45.7 50.3 51.8 68.6 71.6 79.2 86.9 89.9 100.6 114.3	16.7 10.6 19.8 3.1 22.9 3.1 25.9 3.0 38.1 12.2 45.7 7.6 50.3 4.6 51.8 1.5 68.6 16.8 71.6 3.0 79.2 7.6 86.9 7.7 89.9 3.0 100.6 10.7	FGS/MBL FGS/SLT FGS/MBL MBL/SLT FGS/SLT/MBL XTF/FGS FGS/DIO FGS/SLT MBL/SLT FGS/MBL FGS/SLT DIO FGS					

	OKA	HOLE NO.	OK-88-43(ABANDONED)	AREA: CAP AREA		Page 1
CLAIM:	Cap		RECOVERY:	2.6 kg/m	TOTAL DEPTH: DATE STARTED:	27.4 m July 16, 1988
NORTHING:	520,574.9		CASING DEPTH:	0.9 m	DATE FINISHED:	July 17, 1988
EASTING:	295,820.6		CASING DIAMETER:	20 cm	CONTRACTOR:	Westrail Construction Ltd
ELEVATION:	1,004.0		BIT DIAMETER:	ll cm	LOGGED BY:	W Jakubowski, W. Kushner
DIP: AZIMUTH:	-90 degrees				CHIPS STORED:	at Oka Property
COMMENTS:			a soil geochemical a on was intersected.	anomaly. Hole aband	doned after drill roo	ds stuck in hole.
GENERA	LIZED GE	0 L 0 G Y I		SIGNIFI	CANT RESUL	T S
	TO INTERVA		FROM TO	INTERVAL TW	UNIT SAMPLE R	

1.	GENI	ERALIZ	ED GEO	LOGY	1				S I	G N	ΙF	ICAI	N T	RES	ULTS					_
Ï	FROM	TO	INTERVAL		FROM		TO	1:	INTERVAL	1	TW	UN	IT I		LE NO.	1	Au ppb	i Aı	ı oz/t	-
1	0.0	1.5	1.5	NS																-
1	1.5	3.0	1.5	FGS	Ì															
1	3.0	6.1	3.1	FGS/MBL																
1	6.1	7.6	1.5	FGS/SLT																
1	7.6	9.1	1.5	FGS/MBL	1															
l	9.1	10.7	1.6	FGS/SLT																ĺ
1	10.7	16.7	6.0	FGS/MBL																
	16.7	18.3	1.6	FGS/SLT																1
1	18.3	27.4	9.1	MBL/SLT	İ															
	27 4 51	ייי אר וואני																		
1	21.4 EN	ID OF HOLE		i																
1				i	1															-
1																				
į																				1
i				i	!															1
İ				j																1
1																				
1																				į
				1																i
																				Ì
				1																!
1				l																į
ļ																				1
1																				
1				j																1
1																				
1				1																
1				ļ																
i				 																1
į				1																1
İ				, I																1
ļ				i																1
				ì																i
_				i																i

PROPERTY	OKA	HOLE NO.	OK-88-43	AREA: CAP AREA		Page l
CLAIM:	Cap		RECOVERY:	5.8 kg/m	TOTAL DEPTH:	171.9 m
					DATE STARTED:	July 16, 1988
NORTHING:	520,581.1		CASING DEPTH:	0.9 m	DATE FINISHED:	July 19, 1988
EASTING:	295,810.8		CASING DIAMETER:	20 cm	CONTRACTOR:	Westrail Construction Ltd.
ELEVATION:	1,004.0		BIT DIAMETER:	ll cm	LOGGED BY:	W Jakubowski, W. Kushner
DIP:	-90 degrees				CHIPS STORED:	at Oka Property
AZIMUTH:	•					
COMMENTS:	Hole 88-43 dri	lled to tes	t a soil geochemical	anomaly. Hole was te	rminated on reachi	ng maximum depth with

Hole 88-43 drilled to test a soil geochemical anomaly. Hole was terminated on reaching maximum depth with available drill rods. No significant mineralization was intersected.

¦_	GFN	ERALIZ	'FD GF	OLOGY	SIGNIFICANT RESULTS
i-	FROM	TO	INTERVAL		FROM TO INTERVAL TW UNIT SAMPLE NO. Au ppb Au oz/t
i	0.0	1.5	1.5	NS	
i	1.5	7.6	6.1	FGS/MBL	
Ì	7.6	9.1	1.5	MBL/SLT	
İ	9.1	10.7	1.6	FGS/SLT	
İ	10.7	21.3	10.6	FGS/MBL	
ĺ	21.3	29.0	7.7	MBL/SLT	
	29.0	32.0	3.0	FGS/MBL	
	32.0	33.5	1.5	FGS/SLT	
	33.5	41.2	7.7	FGS/MBL	
ĺ	41.2	48.7	7.5	FGS	
1	48.7	68.6	19.9	SLT	
	68.6	70.1	1.5	FGS	
	70.1	74.7	4.6	SLT	
1	74.7	82.3	7.6	FGS	
	82.3	85.3	3.0	SLT/FGS	
	85.3	89.9	4.6	FGS	
l	89.9	94.5	4.6	MGS	
	94.5	97.5	3.0	DIO	
!	97.5	117.4	19.9	FMGS/SLT	
	117.4	121.9	4.5	FGS/SLT	<u> </u>
	121.9	137.2	15.3	FGS	
	137.2 141.7	141.7 157.0	4.5 15.3	FGS/SLT FGS	i •
	157.0	160.0	3.0	FLP	
	160.0	171.9	11.9	FGS	i I
! !	100.0	1/1.7	11.7	100	1
]	171.9 E	END OF HOLE			
İ					
1					
l					
l					
I					i

APPENDIX "B"

ANALYTICAL REPORTS

Sample Number Explanation:

The first prefix in the sample number indicates the year of drilling, the second part indicates the hole number and the third part indicates the sample number.

Samples were collected continuously over 1.524 metre lengths in sequential downhole order.

A sample labelled 88-4-22 indicates that the sample was the 22nd sample collected from hole 4, drilled in 1988.

The table below lists some of the hole depths that correspond with the down-hole sample numbers.

Downhole Sample #	Depth metres
1	0.00 - 1.52
2	1.52 - 3.05
3	3.05 - 4.57
4	4.57 - 6.10
5	6.10 - 7.62
140	211.84 - 213.36

Note: Samples were not collected above the bedrock surface.

In areas of thick overburden sample number 1 and sometimes 2 are missing.

Samples with "A" suffix (e.g. 88-1-10A) were duplicate samples taken to test the reproducability of results.

Samples with values greater than 1000 ppb Au were resampled from the pulp and/or reject, and fire assayed for Au. Results are given in ounces per ton.

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: MAY 03 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: P1 CUTTING P2 ROCK AU* ANALYSIS BY AA FROM 20 GRAN SAMPLE. CKA- Step #1

D.TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA File # 88-1266 Page 1

SAMPLE#	AU* ppb
88-1-2	20
88-1-3	40
88-1-4	671
88-1-5	81
88-1-6	43
88-1-7	46
88-1-8	28
88-1-9	9
88-1-10	8
88-1-11	12
88-1-12	15
88-1-13	29
88-1-14	4
88-1-15	9
88-1-16	4
88-1-17 88-1-18 88-1-19 88-1-20 88-1-21	1 3 1 1
88-1-22	3
88-1-23	2
88-1-24	9
88-1-4A	682
88-1-5A	141
88-1-6A	68
88-1-7A	77
88-1-8A	35
88-1-9A	31
88-1-10A	14
88-1-11A	21
88-1-12A	39
88-1-13A	47
88-1-14A	22
88-1-15A	3
88-1-16A	17

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: MAY 09 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: 1.04.17/88.

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTING

AU* ANALYSIS BY AA FROM 20 GRAM SAMPLE.

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA (#2)/3/4 File # 88-1343

				_			
SAMPLE#	AU*	SAMPLE#	AU*	SAMPLE#	AU*	SAMPLE#	*UA
	ppb		ppb		ppb		ppb
88-1-25	1	88-1-61	19	88-1-97	2	88-2-34	1
88-1-26	1	88-1-62	18	88-1-98	1	88-2-35	2
88-1-27	2	88-1-63	20	88-1-99	49	88-2-36	1
88-1-28	2	88-1-64	215	88-1-100	146	88-2-37	
88-1-29	1		131	88-2-2	140		1 2
88-1-29	1	88-1-65	121	88-2-2	1.4	88-2-38	2
88-1-30	1	88-1-66	142	88-2-3	28	88-2-39	1
88-1-31	1	88-1-67	159	88-2-4	9	88-2-40	1
88-1-32	2	88-1-68	72	88-2-5	1	88-2-41	2
88-1-33	1	88-1-69	27	88-2-6	1	88-2-42	1
88-1-34	7	88-1-70	11	88-2-7	3	88-2-43	1
00 1 25	7	00 4 74	2.2	00 0 0	1	00 0 44	•
88-1-35	1	88-1-71	22	88-2-8	1	88-2-44	2
88-1-36	3	88-1-72	5	88-2-9	4	88-2-45	2
88-1-37	1	88-1-73	2	88-2-10	39	88-2-46	1
88-1-38	24	88-1-74	1	88-2-11	17	88-2-47	1
88-1-39	159	88-1-75	2	88-2-12	78	88-2-48	1
88-1-40	188	88-1-76	17	88-2-13	35	88-2-49	2
88-1-41	12	88-1-77	16	88-2-14	11	88-2-50	1
88-1-42	18	88-1-78	14	88-2-15	3	88-2-51	2
88-1-43	19	88-1-79	22	88-2-16	1	00 2 31	_
88-1-44	6	88-1-80	21	88-2-17	3		
00 1 11	Ŭ	88-1-80	21	00 2 17	, 5		
88-1-45	9	88-1-81	18	88-2-18	8		
88-1-46	25	88-1-82	35	88-2-19	31		
88-1-47	16	88-1-83	30	88-2-20	38		
88-1-48	2	88-1-84	8	88-2-21	109		
88-1-49	12	88-1-85	15	88-2-22	590		
00 1 50					4.4.0		
88-1-50	48	88-1-86	21	88-2-23	148		
88-1-51	192	88-1-87	15	88-2-24	92		
88-1-52	32	88-1-88	17	88-2-25	64		
88-1-53	22	88-1-89	1	88-2-26	37		
88-1-54	112	88-1-90	2	88-2-27	18		
88-1-55	32	88-1-91	15	88-2-28	13		
88-1-56	22	88-1-92	20	88-2-29	5		
88-1-57	28	88-1-93	65	88-2-30	7		•
88-1-58	16		2	88-2-31	8		
88-1-59	34	88-1-94		88-2-32	4		
00-1-03	J 4	88-1-95	1	00-2-32	4		
88-1-60	121	88-1-96	2	88-2-33	2		

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: MAY 10 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: P1-P4 CUTTING P5 ROCK AU* ANALYSIS BY AA FROM 20 GRAM SAMPLE.

D. TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #5 File # 88-1384

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	Au* ppb	SAMPLE#	AU* ppb
0K-88-2-52	1	OK-88-2-88	4	OK-88-3-32	1	OK-88-3-68	1
OK-88-2-53	1	OK-88-2-89	2	OK-88-3-33	1	OK-88-3-69	1
OK-88-2-54	1	OK-88-2-90	5	OK-88-3-34	1	OK-88-3-70	1
0K-88-2-55	ī	OK-88-2-91	7	OK-88-3-35	2	OK-88-3-71	ı 1
OK-88-2-56	1	OK-88-2-92	10	OK-88-3-36	1	OK-88-3-72	1
ON 00 2 30	-	OR 00 2 32	10	0 00 0 00	-	OK 00 5 72	*
OK-88-2-57	3	OK-88-2-93	14	OK-88-3-37	1	OK-88-3-73	2
0K-88-2-58	5	OK-88-3-2	11	OK-88-3-38	1	OK-88-3-74	1
0K-88-2-59	1	OK-88-3-3	15	OK-88-3-39	1	OK-88-3-75	1
0K-88-2-60	1	OK-88-3-4	17	OK-88-3-40	1	OK-88-3-76	1
OK-88-2-61	ī	OK-88-3-5	2	OK-88-3-41	2	OK-88-3-77	1
			_				_
OK-88-2-62	1	OK-88-3-6	7	OK-88-3-42	1	OK-88-3-78	1
OK-88-2-63	1	OK-88-3-7	29	OK-88-3-43	1	OK-88-3-79	1
OK-88-2-64	1	OK-88-3-8	32	OK-88-3-44	1	OK-88-3-80	2
OK-88-2-65	1	OK-88-3-9	158	OK-88-3-45	1	OK-88-3-81	1
OK-88-2-66	8	OK-88-3-10	103	OK-88-3-46	1	OK-88-3-82	1
OK-88-2-67	4	OK-88-3-11	149	OK-88-3-47	1	OK-88-3-83	1
OK-88-2-68	4	OK-88-3-12	16	OK-88-3-48	1	OK-88-3-84	2
OK-88-2-69	. 1	OK-88-3-13	1	OK-88-3-49	1	OK-88-3-85	1
OK-88-2-70	3	OK-88-3-14	4	OK-88-3-50	2	OK-88-3-86	1
OK-88-2-71	4	OK-88-3-15	1	OK-88-3-51	1	OK-88-3-71A	2
OK-88-2-72	6	OK-88-3-16	1	OK-88-3-52	1	OK-88-3-72A	1
OK-88-2-73	2	OK-88-3-17	1	OK-88-3-53	1	OK-88-3-73A	3
OK-88-2-74	1	OK-88-3-18	3	OK-88-3-54	1	OK-88-3-74A	1
OK-88-2-75	1	OK-88-3-19	1	OK-88-3-55	1	OK-88-3-75A	2
OK-88-2-76	1	OK-88-3-20	1	OK-88-3-56	2	OK-88-3-76A	1
OK-88-2-77	1	OK-88-3-21	1	OK-88-3-57	2	OK-88-3-77A	3
OK-88-2-78	1	OK-88-3-22	1	OK-88-3-58	1	OK-88-3-78A	1
OK-88-2-79	1	OK-88-3-23	1	OK-88-3-59	1	OK-88-3-79A	1
OK-88-2-80	1	OK-88-3-24	1	OK-88-3-60	1	OK-88-3-80A	1
OK-88-2-81	1	OK-88-3-25	2	OK-88-3-61	1		
OK-88-2-82	1	OK-88-3-26	1	OK-88-3-62	2		
OK-88-2-83	1	OK-88-3-27	1	OK-88-3-63	1		
0K-88-2-84	1	OK-88-3-28	2	OK-88-3-64	1		
OK-88-2-85	3	OK-88-3-29	1	OK-88-3-65	1		
OK-88-2-86	2	OK-88-3-30	1	OK-88-3-66	1		
0K-88-2-87	1	OK-88-3-31	1	OK-88-3-67	1		

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

DATE RECEIVED:

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: REJECT AU - 20 GM REGULAR ASSAY.

D.TOYE, C.LEONG, B.CHAN, J.WANG; CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING FILE # 88-1454R

SAMPLE# AU

oz/t

88-4-66 .039

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C.

PHONE(604)253-3158 FAX(604)253-1716

DATE RECEIVED: JUN 07 1988

V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

DATE REPORT MAILED: JUN 07 1988

ASSAY CERTIFICATE

cc 465

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY FROM 1/2 A.T.

CORDILLERAN ENGINEERING PROJECT-OKA File # 88-1454R

SAMPLE# AU**

oz/t

88-4-66 .049

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: MAY 16 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: 1.04 20/69.

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: DRILL CHIP AU* ANALYSIS BY AA FROM 20 GRAM SAMPLE.

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA File # 88-1454

SAMPLE#	AU* ppb	SAMPLE#	AU*	SAMPLE#	AU* dqq	SAMPLE#	AU* dqq
88-3-87	1	88-4-24	3	00-1-60	2	00-5-3	1.0
88-3-88	1	88-4-25	2	88-4-60	2	88-5-2	18
88-3-89	î			88-4-61	1	88-5-3	1
		88-4-26	2	88-4-62	14	88-5-4	7
88-3-90	1	88-4-27	1	88-4-63	29	88-5-5	3
88-3-91	1	88-4-28	2	88-4-64	16	88-5-6	22
88-3-92	1	88-4-29	1	88-4-65	131	88-5-7	23
88-3-93	1	88-4-30	1	88-4-66	1440	88-5-8	12
88-3-94	1	88-4-31	1	88-4-67	335	88-5-9	1
88-3-95	2	88-4-32	2	88-4-68	230	88-5-10	8
88-3-96	1	88-4-33	1				
	-	80-4-33	1	88-4-69	109	88-5-11	1
88-3 - 97 88-3 - 98	3	88-4-34	1	88-4-70	15	88-5-12	1
	1	88-4-35	2	88-4-71	3	88-5-13	11
88-3-99	1	88-4-36	2	88-4-72	36	88-5-14	1
88-3-100	1	88-4-37	1	88-4-73	31	88-5-15	16
88-4-2	1	88-4-38	2	88-4-74	42	88-5-16	9
88-4-3	1	88-4-39	1	88-4-75	38	88-5-17	18
88-4-4	1	88-4-40	3	88-4-76	186	88-5-18	26
88-4-5	1	83-4-41	1	88-4-77	335	88-5-19	18
88-4-6	10	88-4-42	28				
88-4-7	1			88-4-78	136	88-5-20	9
00-4-7	1	88-4-43	7	88-4-79	62	88-5-21	37
88-4-8	1	88-4-44	5	88-4-80	50	88-5-22	3
88-4-9	1	88-4-45	7			88-5-23	4
88-4-10	1	88-4-46	6			88-5-24	1
88-4-11	1	88-4-47	12				
88-4-12	ī	88-4-48	130			88-5-25	1
00 4-12	1	88-4-48	130			88-5-26	1
88-4-13	1	88-4-49	305			88-5-27	1
88-4-14	2	88-4-50	47				
88-4-15	1	88-4-51	25				
88-4-16	93	88-4-52	17				
88-4-17	13	88-4-53	14				
88-4-18	3	88-4-54	131				
88-4-19	2						
		88-4-55	105				
88-4-20	1	88-4-56	34				
88-4-21	1	88-4-57	18				
88-4-22	1	88-4-58	13				
88-4-23	1	88-4-59	9				

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUN 07 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: JUN 07 1988.

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY FROM 1/2 A.T.

CORDILLERAN ENGINEERING PROJECT-OKA #7 File # 88-1474R

JUN

SAMPLE# AU**
oz/t

88-5-46 .033
88-5-47 .136
88-5-49 .054
88-5-59 .042

ACME ANALYTICAL LABORATORIES LTD.

DATE RECEIVED:

JAN 12 1989

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: REJECT AU - 20 GM REGULAR ASSAY.

D. TOYE, C. LEONG, B. CHAN, J. WANG; CERTIFIED B.C. ASSAYERS

OKIC 112

CORDILLERAN ENGINEERING FILE # 88-1474R

SAMPLE# ΑU oz/t 88-5-46 .029 88-5-47 .175 88-5-49 .011 88-5-59 .047

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp

CORDILLERAN ENGINEERING FILE # 88-1474R

88-5-49 .050 .012 .021 .018

Sample contains Nature Au

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: MAY 17 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: 1.0.4.20/88

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTING

AU* ANALYSIS BY AA FROM 20 GRAM SAMPLE.

ASSAYER:D.TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #7 File # 38-1474

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
88-5-28	1	88-5-64	183	88-7-4	7
88-5-29	1	88-5-65	89	38-7-5	1
88-5-30	1	88-5-66	67	88-7-6	1
88-5-31	1	88-5-67	83	88-7-7	1
88-5-32	1	88-6-2	13	88-7-8	2
88-5-33	1	88-6-3	66	88-7-9	1
88-5-34	5	88-6-4	72	88-7-10	1
88-5-35	1	88-6-5	39	88-7-11	1
88-5-36	1	88-6-6	26	88-7-12	1
88-5-37	1	88-6-7	20	88-7-13	6
88-5-38	8	88-6-8	42	88-7-14	1
88-5-39	7	88-6-9	172	88-7-15	18
88-5-40	9	88-6-10	260	88-7-16	12
88-5-41	10	88-6-11	505	88-7-17	7
88-5-42	550	88-6-12	106	88-7-18	9
88-5-43	320	88-6-13	117	88-7-19	49
88-5-44	4	88-6-14	53	88-7-20	119
88-5-45	102	88-6-15	22	88-7-21	40
88-5-46	1560	88-6-16	104	88-7-22	17
88-5-47	5230	88-6-17	16	88-7-23	19
88-5-48	750	88-6-18	2	88-7-24	15
88-5-49	7450	88-6-19	21	88-7-25	6
88-5-50	52	88-6-20	12	88-7-26	9
88-5-51	520	88-6-21	4	88-7-27	61
88-5-52	205	88-6-22	13	88-7-28	65
88-5-53	18	88-6-23	. 2	88-7-29	17
88-5-54	20	88-6-24	1	88-7-30	21
88-5-55	260	38-6-25	1	88-7-31	16
88-5-56	320	88-6-26	3	88-7-32	12
88-5-57	52	88-6-27	1	88-7-33	14
88-5-58	189	88-6-28	4	88-7-34	10
88-5-59	1390	88-6-29	1	88-7-35	13
88-5-60	345	88-6-30	1	88-7-36	26
88-5-61	250	88-7-1	3	88-7-37	4
88-5-62	950	88-7-2	2	88-7-38	3
88-5-63	175	88-7-3	2	88-7-39	3
	-	30-7-3	۲.	88-7-40	1
				00-7-40	1

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: MAY 24 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: 104.30/88

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTING

AU* ANALYSIS BY AA FROM 20 GRAM SAMPLE.

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #9 File # 88-1547 Page 1

SAMPLE#	AU* ppb	SAMPLE#	*UA dqq	SAMPLE#	AU* ppb	SAMPLE#	*UA dqq
88-7-41	6	88-8-17	2	88-9-2	37	88-9-38	1
88-7-42	4	88-8-18	19	88-9-3	29	88-9-39	1
88-7-43	2	88-8-19	5	88-9-4	8	88-9-40	1
88-7-44	1	38-8-20	7	88-9-5	1	88-9-41	4
88-7-45	1	88-8-21	1	88-9-6	12	88-9-42	3
88-7-46	1	88-8-22	1	88-9-7	5	88-9-43	14
88-7-47	1	38-8-23	1	88-9-8	7	88-9-44	9
88-7-48	2	88-8-24	1	88-9-9	16	88-9-45	10
88-7-49	3	88-8-25	1	88-9-10	19	88-9-46	34
38-7-50	1	88-8-26	1	88-9-11	8	38-9-47	69
88-7-51	101	88-8-27	1	88-9-12	3	88-9-48	25
88-7-52	1	88-8-28	1	88-9-13	16	88-9-49	7
88-7-53	3	83-8-29	1	88-9-14	7	88-9-50	1
88-7-54	1	88-8-30	5	88-9-15	3	88-9-51	1
88-7-55	1	88-8-31	1	83-9-16	2	88-9-52	16
88-7-56	1	88-8-32	1	88-9-17	1	88-9-53	8
88-7-57	1	88-8-33	1	88-9-18	1	88-9-54	6
88-7-58	1	88-8-34	3	88-9-19	5	38-9-55	1
88-7-59	1	88-8-35	1	88-9-20	1	88-9-56	1
88-7-60	1	88-8-36	1	38-9-21	1	88-9-57	1
88-7-61	1	88-8-37	1	88-9-22	1	88-9-58	1
88-8-2	2	88-8-38	3	88-9-23	1	88-9-59	1
88-8-3	5	88-8-39	1	88-9-24	1	88-9-60	1
88-8-4	1	88-8-40	-1	88-9-25	1	88-9-61	1
88-8-5	1	88-8-41	2	88-9-26	1	88-9-62	1
88-8-6	1	88-8-42	1	88-9-27	1	88-9-63	1
88-8-7	3	88-8-43	1	88-9-28	4	88-9-64	2
88-8-8	1	88-8-44	1	88-9-29	5	88-9-65	35
88-8-9	1	88-8-45	1	88-9-30	1	88-9-66	8
88-8-10	1	88-8-46	3	88-9-31	1	38-9-67	12
88-8-11	2	83-8-47	8	88-9-32	4	88-9-68	1
88-8-12	1	88-8-48	4	88-9-33	1	88-9-69	1
88-8-13	1	88-8-49	2	88-9-34	69	88-9-70	1
88-8-14	1	88-8-50	1	88-9-35	3	88-9-71	. 2
88-8-15	1	88-8-51	1	88-9-36	44	88-9-72	1
88-8-16	1	88-8-52	1	88-9-37	4	88-9-73	1

SAMPLE#	AU* ppb	SAMPLE#	*UA dag
88-9-74 88-9-75 88-9-76 38-9-77 88-9-78	12 1 6 1 3	88-10-32 88-10-33 88-10-34 38-10-35 88-10-36	4 6 1 1
88-9-79 88-10-2 88-10-3 88-10-4 88-10-5	1 1 1 2	88-10-37 88-10-38 88-10-39 88-10-40 88-10-41	198 6 1 6
88-10-6 88-10-7 88-10-8 88-10-9 88-10-10	1 1 1 1	83-10-42 88-10-43 88-10-44 88-10-45 88-10-46	2 7 5 2 2
88-10-11 88-10-12 88-10-13 88-10-14 88-10-15	1 1 2 44	88-10-47 88-10-48 38-11-2 88-11-3 88-11-4	3 88 2 15 1
88-10-16 88-10-17 88-10-18 88-10-19 88-10-20	16 14 1 28 2	88-11-5 88-11-6 88-11-7 88-11-8 88-11-9	3 1 1 1 2
88-10-21 88-10-22 38-10-23 88-10-24 88-10-25	3 12 7 14 1	88-11-10 88-11-11 88-11-12 88-11-13 88-11-14	8 1 2 1 5
88-10-26 88-10-27 88-10-28 88-10-29 88-10-30	1 1 1 7	88-11-15 88-11-16 88-11-17 88-11-18 88-11-19	1 1 1 5 18
88-10-31	4	88-11-20	1

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: MAY 25 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: June 1/20.

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTING

AU* ANALYSIS BY AA FROM 20 GRAM SAMPLE.

CORDILLERAN ENGINEERING PROJECT-OKA #10 File # 88-1599 Page 1

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
88-11-21	1	88-11-57	3	88-12-16	12	88-12-52	2
88-11-22	1	88-11-58	4	88-12-17	4	88-12-53	1
88-11-23	1	88-11-59	1	88-12-18	8	38-12-54	1
88-11-24	1	88-11-60	6	88-12-19	1	88-12-55	1
88-11-25	1	88-11-61	3	88-12-20	1	88-12-56	1
		00 11 01	3	00 12 20	~	00 12 50	1
88-11-26	1	38-11-62	1	88-12-21	1	88-12-57	1
88-11-27	2	88-11-63	2	88-12-22	4	88-12-58	1
88-11-28	1	88-11-64	8	88-12-23	6	38-12-59	1
88-11-29	1	88-11-65	1	88-12-24	1	88-12-60	1
38-11-30	1	88-11-66	3	88-12-25	ī	38-12-61	1
		00 11 00	J	00 12 23	-	00 12 01	1
88-11-31	18	88-11-67	11	88-12-26	1	88-12-62	1
88-11-32	2	88-11-68	7	88-12-27	2	88-12-63	1
88-11-33	12	88-11-69	3	88-12-28	1	88-12-64	1
88-11-34	9	88-11-70	3	88-12-29	3	88-12-65	1
88-11-35	1	88-11-71	1	88-12-30	2	88-12-66	ī
			~			00 12 00	~
88-11-36	1	88-11-72	26	88-12-31	1	88-12-67	3
88-11-37	1	88-11-73	20	88-12-32	7	88-12-68	1
88-11-38	1	88-11-74	18	88-12-33	9	88-12-69	1
88-11-39	1	88-11-75	10	88-12-34	8	88-12-70	1
88-11-40	2	88-11-76	215	88-12-35	11	88-12-80	1
						00 12 00	-
88-11-41	1	88-11-77	7	88-12-36	30	88-12-81	1
88-11-42	44	88-11-78	34	88-12-37	24	88-12-82	1
88-11-43	15	88-12-2	5	88-12-38	38	88-12-83	2
88-11-44	20	88-12-3	6	88-12-39	1	38-12-84	1
88-11-45	1	88-12-4	8	88-12-40	7	88-12-85	1
			_			00 11 00	-
88-11-46	1	88-12-5	10	88-12-41	1	88-12-86	1
88-11-47	1	88-12-6	7	88-12-42	1	88-12-87	1
88-11-48	2	88-12-7	4	88-12-43	1	38-12-88	1
88-11-49	1	88-12-8	7	88-12-44	1	88-12-89	1
38-11-50	1	88-12-9	4	88-12-45	1	88-12-90	1
						00 11 30	-
88-11-51	91	88-12-10	7	88-12-46	1	88-12-91	1
88-11-52	3	88-12-11	5	88-12-47	1	88-12-92	1
88-11-53	1	88-12-12	5	88-12-48	1	38-12-93	1
88-11-54	1	88-12-13	6	38-12-49	1	83-12-94	1
88-11-55	1	88-12-14	12	88-12-50	3	88-12-95	1
		-					1
88-11-56	7	88-12-15	21	88-12-51	1	88-12-96	1
			-			00 12 00	-

SAMPLE#	*UA dqq	SAMPLE# AU*
88-12-97 88-12-98 88-12-99 88-12-100 88-13-2	3 1 8 1	88-13-34 66 88-13-35 64 88-13-36 47 88-13-37 29 88-13-38 35
88-13-3 88-13-4 88-13-5 88-13-6 88-13-7	9 1 7 36 225	
88-13-8 88-13-9 88-13-10 88-13-11 88-13-12	74 5 29 63 54	
88-13-13 88-13-14 88-13-15 88-13-16 88-13-17	5 1 14 9 18	
88-13-18 88-13-19 88-13-20 88-13-21 88-13-22	15 9 16 13 2	
38-13-23 88-13-24 88-13-25 88-13-26 88-13-27	1 7 4 8 10	
88-13-28 88-13-29 88-13-30 38-13-31 88-13-32	22 16 12 14 8	
88-13-33	4	

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: MAY 30 1988

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE UN 0 7. 88

- SAMPLE TYPE: CUTTING AU* ANALYSIS BY AA FROM 20 GRAM SAMPLE.

ASSAYER: D. TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #12 File # 88-1663

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU*	SAMPLE#	AU* ppb
88-12-71	1	00 10 66		00 16 1	c	20 14 27	2.0
88-12-72	1	88-13-66	3	88-14-1	5	88-14-37	29
88-12-73	2	88-13-67	4	88-14-2	2	33-14-38	84
88-12-74	2	88-13-68	8	88-14-3	1	88-14-39	30
88-12-75	1	88-13-69	10	88-14-4	1	88-14-40	128
00 12 73	•	88-13-70	1	88-14-5	230	88-14-41	111
88-12-76	4			00 14 6	2.0		
88-12-77	1	88-13-71	1	88-14-6	36	88-14-42	62
88-12-78	1	88-13-72	1	88-14-7	71	88-14-43	38
88-12-79	î	88-13-73	1	88-14-8	69	88-14-44	16
88-13-39	10	88-13-74	1	88-14-9	78	88-14-45	7
88-13-39	10	88-13-75	1	88-14-10	1.06	88-14-46	11
88-13-40	2			00 14 11	7 4 6	_	
88-13-41	4	88-13-76	1	88-14-11	144	88-14-47	4
88-13-42	2	88-13-77	2	88-14-12	70	38-14-48	1
88-13-43	3	88-13-78	1	88-14-13	2	88-14-49	1
88-13-44	1	88-13-79	4	88-14-14	42	88-14-50	2
00-13-44	1	88-13-80	1	88-14-15	4	88-14-51	1
88-13-45	2		_	00 14 16	2.0		
88-13-46	1	88-13-81	1	88-14-16	38	88-14-52	1
88-13-47	1	88-13-82	1	88-14-17	845	88-14-53	б
88-13-48	2	88-13-83	7	88-14-18	270	88-14-54	1
88-13-49	13	88-13-84	39	88-14-19	235	88-14-55	1
00 10 15	10	88-13-85	2	88-14-20	2	88-14-56	2
88-13-50	5	00 10 06	4	88-14-21	4	00 11 57	1
88-13-51	3	88-13-86	4			38-14-57	1
88-13-52	10	88-13-87	1	88-14-22	1	88-14-58	13
88-13-53	9	88-13-88	2	88-14-23	1	88-14-59	1
88-13-54	4	88-13-89	5	88-14-24	3	88-14-60	1
	•	88-13-90	1	88-14-25	1	88-14-61	1
88-13-55	12	00 12 01	1	38-14-26	1		
88-13-56	6	88-13-91	1		1		
88-13-57	6	88-13-92	1	88-14-27			
88-13-58	2	88-13-93	1	88-14-28	1		
88-13-59	8	88-13-94	37	88-14-29	1		
	•	88-13-95	1	88-14-30	2		
88-13-60	1		_	00 11 01	1		
88-13-61	4	88-13-96	1	88-14-31	1		
88-13-62	3	88-13-97	1	88-14-32	1		
88-13-63	4	88-13-98	1	88-14-33	1		
88-13-64	8	88-13-99	1	88-14-34	4		
	O	88-13-100	3	38-14-35	4		
88-13-65	11			88-14-36	12		

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: MAY 31 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: 7.88

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTING AU* ANALYSIS BY AA FROM 20 GRAM SAMPLE.

ASSAYER: D. TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #13 File # 88-1698

SAMPLE#	AU*	SAMPLE#	AU*	SAMPLE#	AU*
	ppb		ppb	DIMIL MA II	ppb
88-15-2	1	88-15-38	1	00 15 74	1
88-15-3	1	88-15-39	1	88-15-74	1
88-15-4	6	88-15-40	1	88-15-75	1
88-15-5	1			88-15-76	1
		88-15-41	1	88-15-77	2
88-15-6	1	88-15-42	1	88-15-78	1
88-15-7	1	88-15-43	1	00 15 70	3
88-15-8	3	88-15-44	1	88-15-79	
88-15-9	1	88-15-45	1	88-15-80	5
88-15-10	2	88-15-46	1		
88-15-11	1	88-15-47	1		
88-15-12	1	88-15-48	1		
88-15-13	2	88-15-49	2		
88-15-14	1	88-15-50	1		
88-15-15	1	88-15-51	î		
88-15-16	1				
88-13-10	1	88-15-52	1	٠	
88-15-17	3	88-15-53	1	,	
88-15-18	1	88-15-54	ĩ		
88-15-19	1				
		88-15-55	1		
88-15-20	1	88-15-56	1		
88-15-21	1	88-15-57	1		
88-15-22	1	88-15-58	1		
88-15-23	7	88-15-59	1		
88-15-24	10	88-15-60	1		
88-15-25	12				
		88-15-61	3		
88-15-26	4	88-15-62	1		
88-15-27	1	88-15-63	1		
88-15-28	1	88-15-64	1		
88-15-29					
	1	88-15-65	1		
88-15-30	12	88-15-66	1		
88-15-31	1	88-15-67	1		
88-15-32	1	88-15-68	1		
88-15-33	10	88-15-69	1		
88-15-34	180	88-15-70	1		
88-15-35					
	1	88-15-71	1		
88-15-36	7	88-15-72	1		
88-15-37	12	88-15-73	1		

ACME ANALYTICAL LABORATORIES LTD.

DATE RECEIVED:

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: REJECT AU - 20 GM REGULAR ASSAY.

D. TOYE, C.LEONG, B.CHAN, J.WANG; CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #14 FILE # 88-1791R

SAMPLE# ΑU

oz/t

88-16-94 .001

ACME ANALYTICAL LABORATORIES LTD. E 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 DATE RECEIVED: SEP 1 1988 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp

CORDILLERAN ENGINEERING FILE # 88-1791R

88-16-94 .003 .001 .002 .001

Original geochem result of 1290 ppb due to native Au.

ACME ANALYTICAL LABORATORIES LTD.

DATE RECEIVED: AUG 19 1988
852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY FROM 1/2 A.T.

(·(\$ws

. D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

SAMPLE#	AU**
	oz/t
OV 00 15 103	150
OK-88-15-102	.150
OK-88-15-103	.095
OK-88-16-125	.030
OK-88-16-140	.106
OK-88-20-78	.048
OK-88-20-79	.078
OK-88-20-80	.394
OK-88-20-81	.151

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUN 06 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: 13/88.

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTING

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS 1 5.

CORDILLERAN ENGINEERING PROJECT-OKA #14 File # 88-1791 Page 1

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	*UA dqq
88-15-81	4	88-16-18	7	88-16-54	11	88-16-90	1
88-15-82	1	88-16-19	10	88-16-55	5	88-16-91	1
88-15-83	7	88-16-20	3	88-16-56	9	88-16-92	
88-15-84	4	88-16-21	12	88-16-57	6		2
88-15-85	1	88-16-22	11	88-16-58	3	88-16-93	10
	_	00-10-22	* *	08-10-36	J	88-16-94	1290
88-15-86	1	88-16-23	24	88-16-59	5	88-16-95	28
88-15-87	3	88-16-24	16	88-16-60	6	88-16-96	52
88-15-88	2	88-16-25	2	88-16-61	1	88-16-97	
88-15-89	1	88-16-26	1	88-16-62	1		139
88-15-90	1	88-16-27	49	88-16-63	1	88-16-98	28
	~	00-10-27	40	99-10-02	1	88-16-99	7
88-15-91	3	88-16-28	28	88-16-64	1	88-16-100	6
88-15-92	23	88-16-29	11	88-16-65	1	88-17-1	20
88-15-93	6	88-16-30	7	88-16-66	1	88-17-2	11
88-15-94	5	88-16-31	7	88-16-67	2	88-17-3	
88-15-95	8	88-16-32	8	88-16-68	1		5
		00 10 32	Ü	00 10-00	*	88-17-4	5
88-15-96	6	88-16-33	2	88-16-69	1	88-17-5	3
88-15-97	5	88-16-34	1	88-16-70	1	88-17-6	1
88-15-98	6	88-16-35	1	88-16-71	3	88-17-7	25
88-15-99	2	88-16-36	3	88-16-72	2	88-17-8	
88-15-100	12	88-16-37	1	88-16-73	1	88-17-9	9
		00 10 0,	_	00 10 75	•	00-17-9	5
88-16-2	3	88-16-38	2	88-16-74	1	88-17-10	10
88-16-3	19	88-16-39	1	88-16-75	1	88-17-11	
88-16-4	29	88-16-40	4	88-16-76	2	88-17-12	6
88-16-5	625	88-16-41	4	88-16-77	1		7
88-16-6	285	88-16-42	1	88-16-78	1	88-17-13	9
		88-10-42	-	00-10-70	1	88-17-14	1
88-16-7	20	88-16-43	1	88-16-79	1	00-17-15	4
88-16-8	25	88-16-44	4	88-16-80	2	88-17-15	4
88-16-9	3	88-16-45	8	88-16-81	1	88-17-16	2
88-16-10	18		7			88-17-17	21
88-16-11	6	88-16-46		88-16-82	2	88-17-18	1
00 10 11	O	88-16-47	2	88-16-83	1	88-17-19	2
88-16-12	4	88-16-48	4	88-16-84	2	88-17-20	1
88-16-13	1	88-16-49	1	88-16-85	1	88-17-21	1
88-16-14	2	88-16-50	1	88-16-86	2		1
88-16-15	7	88-16-51	1			88-17-22	1
88-16-16	2	88-16-51	2	88-16-87	1	88-17-23	2
	<i>-</i>	88-10-32	4	88-16-88	2	88-17-24	6
88-16-17	13	88-16-53	4	88-16-89	1	88-17-25	1
						JU 11 2J	

CORDILLERAN ENGINEERING PROJECT-OKA #14 FILE # 88-1791 Page 2

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
88-17-26 88-17-27 88-17-28 88-17-29	12 5 1 2	88-17-62 88-17-63 88-17-64 88-17-65	12 1 1 1	88-18-8 88-18-9 88-18-10 88-18-11	1 1 1	88-18-44 88-18-45 88-18-46 88-18-47	1 1 2 1
88-17-30	3	88-17-66	3	88-18-12	1	88-18-48	1
88-17-31	1	88-17-67	3 12	88-18-13 88-18-14	2	88-18-49	1
88-17-32 88-17-33	38 22	88-17-68 88-17-69	1	88-18-15	1 1	88-18-50 88-18-51	1 1
88-17-34	6	88-17-70	4	88-18-16	2	88-18-53	1
88-17-35	2	88-17-71	62	88-18-17	1	88-18-54	1
88-17-36	5	88-17-72	16	88-18-18	1	88-18-55	1
88-17-37	33	88-17-73	10	88-18-19	4	88-18-56	1
88-17-38	6	88-17-74	8	88-18-20	21	88-18-57	1
88-17-39	46	88-17-75	48	88-18-21	11	88-18-58	1
88-17-40	5	88-17-76	92	88-18-22	1	88-18-59	2
88-17-41	1	88-17-77	11	88-18-23	10	88-18-60	1
88-17-42	1	88-17-78	8	88-18-24	1		
88-17-43	19	88-17-79	4	88-18-25	1		
88-17-44	13	88-17-80	9	88-18-26	1		
88-17-45	1	88-17-81	4	88-18-27	2		
88-17-46	6	88-17-82	3	88-18-28	2		
88-17-47	1	88-17-83	5	88-18-29	1		
88-17-48	9	88-17-84	3	88-18-30	1		
88-17-49	46	88-17-85	7	88-18-31	1		
88-17-50	33	88-17-86	2	88-18-32	1		
88-17-51	16	88-17-87	3	88-18-33	8		
88-17-52	12	88-17-88	4	88-18-34	10		•
88-17-53	7	88-17-89	8	88-18-35	2		
88-17-54	5	88-17-90	3	88-18-36	1		
88-17-55	1	88-18-2	12	88-18-37	1		
88-17-56	3	88-18-3	3	88-18-38	23		
88-17-57	5	88-18-4	1	88-18-39	1		
88-17-58	1	88-18-5	10	88-18-40	4		
88-17-59	2	88-18-6	1	88-18-41	1		
88-17-60	1	88-18-7	1	88-18-42	91		
88-17-61	1			88-18-43	101		

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

DATE RECEIVED:

JAN 12 1989

. Jan. 16. /89

ASSAY CERTIFICATE

- SAMPLE TYPE: REJECT AU - 20 GM REGULAR ASSAY.

D.TOYE, C.LEONG, B.CHAN, J.WANG; CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #16 FILE # 88-1813R

SAMPLE# ΑU

oz/t

88-19-27 .051

ACME ANALYTICAL LABORATORIES LTD. I 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 DATE RECEIVED: AUG 19 1988

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

CC Juis

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY FROM 1/2 A.T.

D. TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #16 FILE # 88-1813R

SAMPLE# AU**

oz/t

88-19-27 .029

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUN 07 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: JUN 07 1988.

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTING

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #16 File # 88-1813

SAMPLE#	AU*	SAMPLE#	AU* ppb	SAMPLE#	*UA dqq	SAMPLE#	AU* ppb
88-18-52	4	88-19-11	8	88-19-47	22	00 10 00	2.2
88-18-61	5	88-19-12	2	88-19-48	17	88-19-83	22
88-18-62	10	88-19-13	1			88-19-84	6
88-18-63	3	88-19-14		88-19-49	3	88-19-85	1
88-18-64	2		1	88-19-50	1	88-19-86	1
00 10 01	_	88-19-15	1	88-19-51	3	88-19-87	1
88-18-65	8	88-19-16	1	88-19-52	1	88-19-88	2
88-18-66	5	88-19-17	1	88-19-53	1	88-19-89	3
88-18-67	3	88-19-18	1	88-19-54	1	88-19-90	
88-18-68	4	88-19-19	2	88-19-55	1		1
88-18-69	2	88-19-20	105	88-19-56	1	88-19-91	21
		00 10 20	103	88-19-36	1	88-19-92	2
88-18-70	99	88-19-21	17	88-19-57	1	88-19-93	5
88-18-71	13	88-19-22	61	88-19-58	1	88-19-94	2
88-18-72	1	88-19-23	20	88-19-59	104	88-19-95	1
88-18-73	1	88-19-24	1	88-19-60	26	88-19-96	1
88-18-74	3	88-19-25	20	88-19-61	15	88-19-97	1
88-18-75	6	00 10 26	104				-
88-18-76	1	88-19-26	104	88-19-62	1	88-19-98	1
88-18-77	1	88-19-27	1020	88-19-63	1	88-19-99	2
88-18-78		88-19-28	265	88-19-64	1	88-19-100	4
	2	88-19-29	98	88-19-65	1		
88-18-79	6	88-19-30	113	88-19-66	1		
88-18-80	5	88-19-31	52	88-19-67	2.4		
88-18-81	38	88-19-32			24		
88-18-82	3	88-19-33	1	88-19-68	31		
88-18-83	2	88-19-34	1	88-19-69	25		
88-18-84	3		3	88-19-70	44		
	3	88-19-35	1	88-19-71	68		
88-18-85	5	88-19-36	1	88-19-72	2		
88-18-86	6	88-19-37	1	88-19-73	3		
88-19-2	1	88-19-38	î		16		
88-19-3	52	88-19-39		88-19-74	1		
88-19-4	22		1	88-19-75	23		
		88-19-40	2	88-19-76	1		
88-19-5	41	88-19-41	1	88-19-77	71		
88-19-6	4	88-19-42	î		71		
88-19-7	8	88-19-43	2	88-19-78	1		
88-19-8	2	88-19-44		88-19-79	1		
88-19-9	1		46	88-19-80	420		
	*	88-19-45	48	88-19-81	16		
88-19-10	14	88-19-46	33	88-19-82	2		

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUN 13 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: DRILL CHIP

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

CORDILLERAN ENGINEERING PROJECT-OKA File # 88-1921 Page 17.

SAMPLE#	AU* dqq	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
OK-88-15-100	21	OK-88-16-108	٨	OK-88-19-104	1
OK-88-15-101	180	OK-88-16-108	4		1 2
OK-88-15-102	5925		1	OK-88-19-105	
OK-88-15-103	3220	OK-88-16-110	2	OK-88-19-106	14
OK-88-15-104	560	OK-88-16-111	12	OK-88-19-107	1
		OK-88-16-112	8	OK-88-19-108	1
OK-88-15-105	114	OK-88-16-113	15	OK-88-19-109	7
OK-88-15-106	34	OK-88-16-114	1		1 2
OK-88-15-107	80	OK-88-16-114	2	OK-88-19-110	
OK-88-15-108	330			OK-88-19-111	1
OK-88-15-109	141	OK-38-16-116	4	OK-88-19-112	5
		OK-88-16-117	1	OK-88-19-113	1
OK-88-15-110	90	OK-88-16-118	1	OK-88-19-114	3
OK-88-15-111	390	OK-88-16-119	1	OK-88-19-115	6
OK-88-15-112	117	OK-88-16-120	1	OK-88-19-116	35
OK-88-15-113	92	OK-88-16-121	1	OK-88-19-117	
OK-88-15-114	65				4
		OK-88-16-122	1	OK-88-19-118	3
OK-88-15-115	114	OK-88-16-123	1	OK-88-19-119	74
OK-88-15-116	220	OK-88-16-124	5	OK-88-19-120	18
OK-88-15-117	147	OK-88-16-125	1080	OK-88-19-121	1
OK-88-15-118	118	OK-88-16-126	110	OK-88-19-122	1
OK-88-15-119	9	OK-88-16-127	670	OK-88-19-123	52
OK-88-15-120	1.0	21. 22 22 22,	0,0	011 00 10 110	3 4
	13	OK-88-16-128	104	OK-88-19-124	76
OK-88-15-121	23	OK-88-16-129	68	OK-88-19-125	16
OK-88-15-122	66	OK-88-16-130	1	OK-88-19-126	2
OK-88-15-123	51	OK-88-16-131	1	OK-88-19-127	1
OK-88-15-124	44	OK-88-16-132	320	OK-88-19-128	1
OK-38-15-125	102		000		_
OK-88-15-126	183	OK-88-16-133	35	OK-88-20-1	7
OK-88-15-126 OK-88-15-127	47	OK-88-16-134	37	OK-88-20-2	20
	105	OK-88-16-135	3	OK-88-20-3	390
OK-88-16-100	12	OK-88-16-136	21	OK-88-20-4	45
OK-88-16-101	59	OK-88-16-137	1	OK-88-20-5	21
OK-88-16-102	15				
OK-88-16-103		OK-88-16-138	1	OK-88-20-6	18
OK-88-16-104	4	OK-88-16-139	2	OK-88-20-7	12
OK-88-16-104	16	OK-88-16-140	3430	OK-88-20-8	1
OK-88-16-105	15	OK-88-19-101	14	OK-88-20-9	1
01/-00-10-100	16	OK-88-19-102	22	OK-88-20-10	3
OK-88-16-107	7	OK-88-19-103	1	OK-88-20-11	83

CORI	TIPERAN	ENGINEERING PROD	ECT-OKA	ribb # 88-1921 Page	2
SAMPLE#	AU*	SAMPLE#	AU*	SAMPLE#	AU*
	ppb		ppb		ppb
OK-88-20-12	14	OK-88-20-58	118	OK-88-20-104	31
OK-88-20-13	4	OK-88-20-59	315	OK-88-20-105	6
OK-88-20-14	3	OK-88-20-60	97	OK-88-20-106	3
OK-88-20-15	10	OK-88-20-61	96	OK-88-20-107	21
OK-88-20-16	3	OK-88-20-62	42	OK-88-20-107	32
		OK 00 20 02	10	UK-88-20-108	ے د
OK-88-20-17	5	OK-88-20-63	43	OK-88-20-109	7
OK-88-20-18	4	OK-88-20-64	32	OK-88-20-110	1
OK-88-20-19	8	OK-88-20-65	46	OK-88-20-111	4
OK-88-20-20	3	OK-88-20-66	225	OK-88-20-112	7
OK-88-20-21	8	OK-88-20-67	615	OK-88-20-113	4
OK-88-20-22	2	OK-88-20-68	295	OK-88-20-114	11
OK-88-20-23	19	OK-88-20-69	62	OK-88-20-115	3
OK-88-20-24	17	OK-88-20-70	103	OK-88-20-116	26
OK-88-20-25	24	OK-88-20-71	81	OK-88-20-110	
OK-88-20-26	75	OK-88-20-71	79	=	1 2
ON 00 20 20	73	UK-88-20-72	73	OK-88-20-118	2
OK-88-20-27	570	OK-88-20-73	52	OK-88-20-119	3
OK-88-20-28	810	OK-88-20-74	295	0K 00 40 111	_
OK-88-20-29	132	OK-88-20-75	265		
OK-88-20-30	260	OK-88-20-76	355	04 00 20 100	2
OK-88-20-31	135	OK-88-20-77	310	OK-88-20-120	3
		on 33 23 77	310	OK-88-20-121	1
OK-88-20-32	118	OK-88-20-78	1570	OK-88-20-122	1
OK-88-20-33	610	OK-88-20-79	2580	OK-88-20-123	44
OK-88-20-34	115	OK-88-20-80	12045	OK-88-20-124	1
OK-88-20-35	97		5780		
OK-88-20-36	51	OK-88-20-81		OK-88-20-125	1
OK 00-20-30	31	OK-88-20-82	285	OK-88-20-126	1
OK-88-20-37	63		100	OK-88-20-127	1
OK-88-20-37	63 1.6	OK-88-20-83	136	OK-88-20-128	1
	16			OK-88-20-129	2
OK-88-20-39	15	OK-88-20-84	305		
OK-88-20-40	36	OK-88-20-85	54	OK-88-20-130	3
OK-88-20-41	79	OK-88-20-86	49	OK-88-20-131	34
		OK-88-20-87	42	OK-88-20-132	5
OK-88-20-42	43	OK-88-20-88	65	OK-88-20-133	46
OK-88-20-43	48	01. 00 110 00	0.0	OK-88-20-134	9
OK-88-20-44	13	OK-88-20-89	2		
OK-88-20-45	21	OK-88-20-90	6	OK-88-20-135	2
OK-88-20-46	12	OK-88-20-91	14	OK-88-20-136	1
		OK-88-20-92	4	OK-88-20-137	6
OK-88-20-47	47	OK-88-20-93		OK-88-20-137	14
		OK-88-20-93	12	OK-88-20-139	1
OK-88-20-48	57	OK-88-20-94	68		
OK-88-20-49	32	OK-88-20-95	3	OK-88-20-140	1
OK-88-20-50	143	OK-88-20-96	11		-
OK-88-20-51	41	OK-88-20-97	3		
OK-88-20-52	36	OK-88-20-98	1		
OK-88-20-53	69	OV 00 20 00	2		
OK-88-20-54	24	OK-88-20-99	2		
OK-88-20-55	37	OK-88-20-100	16		
OK-88-20-56	28	OK-88-20-101	15		
OK-88-20-57	64	OK-88-20-102	21		
2. 00 20 37	U-X	OK-88-20-103	10		

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JAN 12 1989 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

Jan 17/89

ASSAY CERTIFICATE

- SAMPLE TYPE: REJECT AU - 20 GM REGULAR ASSAY.

SIGNED BY D. TOYE, C.LEONG, B.CHAN, J. WANG; CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA FILE # 88-1921R

SAMPLE#	AU oz/t
OK-88-15-102	.156
OK-88-15-103	.077
OK-88-16-125	.039
OK-88-16-140	.105
OK-88-20-78	.038
OK-88-20-79	.077
OK-88-20-80	.436
OK-88-20-81	.153

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY FROM 1/2 A.T.

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA FILE # 88-1921R 20 88 45

AU**
oz/t
.150
.095
.030
.106
.048
.078
.394
.151

ACME ANALYTICAL LABORATORIES LTD. 1852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

DATE RECEIVED:

JAN 12 1989

PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: REJECT AU - 20 GM REGULAR ASSAY.

CORDILLERAN ENGINEERING PROJECT-OKA FILE # 88-1973R

SAMPLE#

ΑU

oz/t

OK-88-21-79 .089

ACME ANALYTICAL LABORATORIES LTD. D 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 DATE RECEIVED: AUG 19 1988

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY FROM 1/2 A.T.

. D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT OKA FILE # 88-1973R

SAMPLE#

AU**

oz/t

OK-88-21-79 .098

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUN 14 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: DRILL CHIP AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE. JUN 27. 8:

CORDILLERAN ENGINEERING PROJECT-OKA File # 88-1973 Page 1

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
OK-88-15-125	2	OK-88-21-24	2	OK-88-21-60	35
OK-88-15-128	23	OK-88-21-25	1	OK-88-21-61	2
OK-88-15-129	260	OK-88-21-26		OK-88-21-62	28
OK-88-15-130	22	OK-88-21-27	1	OK-88-21-63	7
OK-88-15-131	8	OK-88-21-27	6		27
on oo 15 151	O	OK-00-21-28	4	OK-88-21-64	2. 1
OK-88-15-132	5	OK-88-21-29	2	OK-88-21-65	13
OK-88-15-133	1	OK-88-21-30	3	OK-88-21-66	2
OK-88-15-134	1	OK-88-21-31	2	OK-88-21-67	28
OK-88-15-136	1	OK-88-21-32	1	OK-88-21-68	850
OK-88-15-137	2	OK-88-21-33	2	OK-88-21-69	360
OK-88-15-138	1	OV 00 21 24		07 00 01 70	73
OK-88-15-139	î	OK-88-21-34	1	OK-88-21-70	
OK-88-15-140	1	OK-88-21-35	5	OK-88-21-71	270
OK-88-21-1		OK-88-21-36	1	OK-88-21-72	360
	180	OK-88-21-37	1	OK-88-21-73	305
OK-88-21-2	13	OK-88-21-38	2	OK-88-21-74	126
OK-88-21-3	30	OK-88-21-39	3	OK-88-21-75	105
OK-88-21-4	19	OK-88-21-40	1	OK-88-21-76	55
OK-88-21-5	21	OK-88-21-41	1	OK-88-21-77	85
OK-88-21-6	16	OK-88-21-42	2	OK-88-21-78	265
OK-88-21-7	1	OK-88-21-43	1	OK-88-21-79	3420
OK-88-21-8	3	OK-88-21-44	1	OK-88-21-80	660
OK-88-21-9	18	OK-88-21-45	1	*** ** **	88
OK-88-21-10	3	OK-88-21-46		OK-88-21-81	
OK-88-21-11	18	OK-88-21-46	1	OK-88-21-82	530
OK-88-21-12	2		2	OK-88-21-83	58
OK 00 21 12	4	OK-88-21-48	1	OK-88-21-84	44
OK-88-21-13	6	OK-88-21-49	1	OK-88-21-85	295
OK-88-21-14	5	OK-88-21-50	2	OK-88-21-86	43
OK-88-21-15	6	OK-88-21-51	3	OK-88-22-1	1
OK-88-21-16	3	OK-88-21-52	3	OK-88-22-2	12
OK-88-21-17	1	OK-88-21-53	7	OK-88-22-3	5
OK-88-21-18	2	OK-88-21-54	3	OK-88-22-4	4
OK-88-21-19	6	OK-88-21-56	4	OK-88-22-4	14
OK-88-21-20	12	OK-88-21-57	2	OK-88-22-6	3
OK-88-21-21	6	OK-88-21-58	3		6
OK-88-21-22	1	OK-88-21-59	154	OK-88-22-7	1
		2 00 41 39	T 7.4	OK-88-22-8	1
OK-88-21-23	1			OK-88-22-9	1

CORDILLERAN ENGINEERING PROJECT-OKA FILE # 88-1973 Page 2

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
OK-88-22-10 OK-88-22-11 OK-88-22-12 OK-88-22-13 OK-88-22-14	1 3 1 3 2	OK-88-23-16 OK-88-23-17 OK-88-23-18 OK-88-23-19 OK-88-23-20	1 19 23 42 38	OK-88-23-52 OK-88-23-53 OK-88-23-54 OK-88-23-55 OK-88-23-56	1 2 1 1
OK-88-22-15 OK-88-22-16 OK-88-22-17 OK-88-22-18 OK-88-22-19	1 4 3 4 9	OK-88-23-21 OK-88-23-22 OK-88-23-23 OK-88-23-24 OK-88-23-25	25 18 10 18 21	OK-88-23-57 OK-88-23-58 OK-88-23-59 OK-88-23-60 OK-88-23-61	4 1 1 5 4
OK-88-22-20 OK-88-22-21 OK-88-22-22 OK-88-22-23 OK-88-22-24	45 5 85 205 37	OK-88-23-26 OK-88-23-27 OK-88-23-28 OK-88-23-29 OK-88-23-30	4 5 1 3 6		
OK-88-22-25 OK-88-22-26 OK-88-22-27 OK-88-22-28 OK-88-22-29	23 2 3 104 41	OK-88-23-31 OK-88-23-32 OK-88-23-33 OK-88-23-34 OK-88-23-35	5 2 1 8 3		
OK-88-22-30 OK-88-23-1 OK-88-23-2 OK-88-23-3 OK-88-23-4	55 15 31 21 6	OK-88-23-36 OK-88-23-37 OK-88-23-38 OK-88-23-39 OK-88-23-40	5 2 1 2 2		
OK-88-23-5 OK-88-23-6 OK-88-23-7 OK-88-23-8 OK-88-23-9	8 140 68 17 10	OK-88-23-41 OK-88-23-42 OK-88-23-43 OK-88-23-44 OK-88-23-45	1 5 2 1		
OK-88-23-10 OK-88-23-11 OK-88-23-12 OK-88-23-13 OK-88-23-14	6 8 2 1 1	OK-88-23-46 OK-88-23-47 OK-88-23-48 OK-88-23-49 OK-88-23-50	1 1 2 2 1		
OK-88-23-15	1	OK-88-23-51	1		

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUN 20 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTING

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #19 File # 88-2130

		•	
SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
88-23-62 88-23-63 88-23-64 88-23-65 88-23-66	1 4 1 1	88-23-98 88-23-99 88-23-100 88-23-101 88-23-102	27 1 4 1 1
88-23-67 88-23-68 88-23-69 88-23-70 88-23-71	1 4 1 14 2	88-23-103 88-23-104 88-23-105 88-23-106 88-23-107	1 2 1 1 14
88-23-72 88-23-73 88-23-74 88-23-75 88-23-76	26 1 1 1	88-23-108 88-23-109 88-23-110 88-23-111	1 11 5 1
88-23-77 88-23-78 88-23-79 88-23-80 88-23-81	1 2 1 1	88-23-113 88-23-114 88-23-115 88-23-116 88-23-117	1 5 1 1
88-23-82 88-23-83 88-23-84 88-23-85 88-23-86	3 1 2 1 77	88-23-118 88-23-119 88-23-120 88-23-121 88-23-122	1 1 2 1
88-23-87 88-23-88 88-23-89 88-23-90 88-23-91	1 14 11 21 1	88-23-123 88-23-124 88-23-125 88-23-126 88-23-127	1 1 1 2
88-23-92 88-23-93 88-23-94 88-23-95 88-23-96	1 2 1 3 1	88-23-128 88-23-129 88-23-130 88-23-131 88-23-132	1 2 1 3 4
88-23-97	2		

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUN 21 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTING

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

TOL 0 5. 1

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #20 File # 88-2176 Page 1

SAMPLE#	AU*	SAMPLE#	AU*	SAMPLE#	AU*
	dqq		ppb	57 H H H #	ppb
			I L		nqq
88-24-1	5	88-24-37	1	88-24-73	1.0
88-24-2	7	88-24-38	1	90 21 / 0	10
88-24-3	44			88-24-74	4
88-24-4		88-24-39	2	88-24-75	8
	67	88-24-40	2	88-24-76	4
88-24-5	24	88-24-41	1	88-24-77	5
88-24-6	4	88-24-42	2	83-24-78	_
88-24-7	3	88-24-43	1	88-24-79	5
88-24-8	13	88-24-44	1	00 41 71	3
88-24-9	34			88-24-80	3
88-24-10	94	88-24-45	1	88-24-81	2
88-24-10	94	88-24-45	2	83-24-82	3
88-24-11	12	38-24-47	1	88-24-83	2
33-24-12	2	88-24-48	2	88-24-84	1
88-24-13	4	88-24-49	8	88-24-85	
88-24-14	1	88-24-50	1		1
88-24-15	1		1	88-24-86	3
00 24 13	1	88-24-51	T	88-24-87	1
88-24-16	2	88-24-52	1	88-24-88	3
88-24-17	1	88-24-53	3	38-24-89	4
88-24-18	1	88-24-54	1	38-24-90	
88-24-19	1	88-24-55	1		1
88-24-20	1			88-24-91	4
00 24 20	1	88-24-56	1	88-24-92	1
88-24-21	2	88-24-57	1	00 34 03	_
83-24-22	5	88-24-58	2	88-24-93	5
88-24-23	1			83-24-94	1
88-24-24	1	88-24-59	2	88-24-95	1
88-24-25		88-24-60	1	88-24-96	7
88-24-25	3	88-24-61	2	88-24-97	1
88-24-26	2	88-24-62	1	88-24-98	1
88-24-27	1	88-24-63	1	88-24-99	
38-24-23	1	38-24-64	1		1
88-24-29	1		1	88-24-100	1
88-24-30	1	88-24-65	_	88-24-101	2
00-24-30	1	88-24-66	2	88-24-102	1
88-24-31	2	88-24-67	2	88-24-103	1
88-24-32	1	88-24-68	3	88-24-104	1
88-24-33	2	88-24-69	3	88-24-105	
88-24-34	1	88-24-70	5		1
88-24-35	1			88-24-106	1
00 24 00	1	88-24-71	2	88-24-107	1
88-24-36	1	88-24-72	1	83-24-108	1
					-

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* dqq
88-24-109 88-24-110 88-24-111 88-24-112 88-24-113	1 1 2 1	88-25-18 88-25-19 88-25-20 83-25-21 88-25-22	13 7 8 53 20	88-25-54 88-25-55 88-25-56 88-25-57 88-25-58	9 7 27 11 14
88-24-114 88-24-115 88-24-116 88-24-117 88-24-118	2 1 4 1	88-25-23 88-25-24 88-25-25 88-25-26 88-25-27	4 17 29 30 8	88-25-59 88-25-60 88-25-61 88-25-62 88-25-63	1 2 7 10 10
88-24-119 88-24-120 88-24-121 88-24-122 88-24-123	2 2 2 1 1	88-25-28 88-25-29 88-25-30 88-25-31 88-25-32	23 55 94 84 28	88-25-64 88-25-65 83-25-66 88-25-67 88-25-68	10 1 1 1 5
88-24-124 88-24-125 38-24-126 88-24-127 88-24-128	2 1 1 1	88-25-33 88-25-34 98-25-35 88-25-36 88-25-37	21 7 1 15 3	88-25-69 88-25-70 88-25-71 88-25-72 88-25-73	20 28 42 105 185
88-25-2 88-25-3 88-25-4 88-25-5 88-25-6	13 12 18 210 20	88-25-38 88-25-39 88-25-40 88-25-41 88-25-42	1 8 21 1 2	88-25-74 88-25-75 88-25-76 88-25-77 88-25-78	44 38 19 21 2
88-25-7 88-25-8 88-25-9 88-25-10 88-25-11	18 15 6 12 9	88-25-43 88-25-44 88-25-45 88-25-46 88-25-47	1 8 31 13	88-25-79 88-25-80 88-25-81 88-25-82 88-25-83	28 22 9 12 112
88-25-12 88-25-13 88-25-14 88-25-15 88-25-16	16 13 11 4 6	88-25-48 88-25-49 88-25-50 88-25-51 88-25-52	1 3 14 1 8		
88-25-17	5	88-25-53	1		

DATE RECEIVED: JAN 12 1989 ACME ANALYTICAL LABORATORIES LTD. D 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: REJECT AU - 20 GM REGULAR ASSAY.

D.TOYE, C.LEONG, B.CHAN, J.WANG; CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA FILE # 88-2315R

SAMPLE# ΑU

oz/t

OK-88-26-69 .114

ACME ANALYTICAL LABORATORIES LTD.

DATE RECEIVED: AUG 19 1988

BE AUG 19 1988

DE AUG 19 1988

DE AUG 19 1988

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

(c sus

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY FROM 1/2 A.T.

CORDILLERAN ENGINEERING PROJECT OKA FILE # 88-2315R

SAMPLE# AU**

oz/t

OK-88-26-69 .414

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUNE 27 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: DRILL CHIP $_{\rm AU^{+}}$ ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLE	RAN ENGI	NEERING PROJECT-C	ŕ	# 88-2315 I	Page 1
SAMPLE#	AU*	SAMPLE#	AU*		AU*
	ppb	SAM DO II	ppb	SAMPLE#	
	PPD		PPD		dqq
OK-88-14-62	1	OK-88-25-119	9	OK-88-26-28	13
OK-88-25-84	ŝ	OK-88-25-120	7	OK-88-26-20	47
OK-83-25-85	8	OK-88-25-121	5	OK-88-26-30	16
OK-88-25-86	4	OK-88-25-122	30	OK-88-26-31	12
OK-88-25-87	25	OK-88-25-123	9		
5K-85-25-87	2. 3	OK 00 23 123	J	OK-88-26-32	9
OK-88-25-88	3	OK-88-25-124	11	OK-38-26-33	17
OK-88-25-89	10	OK-88-25-125	1	OK-88-26-34	41
OK-88-25-90	17	OK-88-25-126	29	OK-88-26-35	15
OK-88-25-91	14	OK-88-25-127	102	OK-88-26-36	14
OK-88-25-92	7	OK-88-25-128	405		
OR 66 25 52	,	OR 00 25 120	403	OK-88-26-37	8
OK-88-25-93	11	OK-88-26-2	14	OK-88-26-38	15
OK-38-25-94	24	OK-88-26-3	12	OK-88-26-39	7
OK-88-25-95	26	OK-88-26-4	13	OK-88-26-40	6
OK-88-25-96	8	OK-88-26-5	19	OK-88-26-41	1
OK-88-25-97	4	OK-88-26-6	1	OK-88-26-42	4
OK 00 25 57	4	OK 60 20 0	-	UN-86-26-42	4
OK-88-25-98	1	OK-83-26-7	4	OK-88-26-43	1
OK-88-25-99	1	OK-88-26-8	1	OK-88-26-44	1
OK-38-25-100	5	OK-88-26-9	5	OK-88-26-45	6
OK-88-25-101	12	OK-88-26-10	5	OK-88-26-46	19
OK-88-25-102	12	OK-88-26-11	3	OK-88-26-47	10
			_	OK 88 20 47	10
OK-88-25-103	10	OK-88-26-12	1	OK-88-26-48	34
OK-88-25-104	6	OK-88-26-13	1	OK-88-26-49	7
OK-88-25-105	8	OK-88-26-14	1	OK-88-26-50	5
OK-88-25-106	280	OK-88-26-15	5	OK-88-26-51	8
OK-88-25-107	11	OK-88-26-16	7	OK-88-26-52	4
				OR 00 20 32	1
OK-88-25-108	15	OK-88-26-17	12	OK-88-26-53	4
OK-88-25-109	11	OK-88-26-18	20	OK-88-26-54	6
OK-88-25-110	9	OK-88-26-19	11	OK-88-26-55	8
OK-88-25-111	6	OK-88-26-20	11	OK-88-26-56	2
OK-88-25-112	9	OK-88-26-21	4	OK-88-26-57	3
			_	OR 00 20 37	3
OK-88-25-113	26	OK-88-26-22	17	OK-88-26-58	18
OK-88-25-114	20	OK-88-26-23	9	OK-88-26-59	5
OK-88-25-115	26	OK-88-26-24	31	OK-88-26-60	6
OK-88-25-116	6	OK-88-26-25	8	OK-88-26-61	5
OK-88-25-117	8	OK-88-26-26	48	OK-88-26-62	1
				J	-
OK-38-25-118	19	OK-88-26-27	34	OK-88-26-63	2

CORDILLERAN ENGINEERING PROJECT-OKA FILE # 88-2315 Page 2

SAMPLE#	*uA dqq	SAMPLE#	AU* ppb	SAMPLE#	*UA dqq
OK-88-26-64 OK-88-26-65	9 6	OK-88-27-21 OK-88-27-22	89 34	OK-88-27-57 OK-88-27-58	14
OK-88-26-66	5	OK-88-27-23	33	OK-88-27-59	540
OK-88-26-67	25	OK-88-27-24	37	OK-88-27-60	81 8
OK-88-26-68	20	OK-88-27-25	41	OK-88-27-61	12
OK-88-26-69	14330	OK-88-27-26	52	OK-88-27-62	4
OK-38-26-70	535	OK-88-27-27	137	OK-88-27-63	25
OK-88-26-71	521	OK-88-27-28	79	OK-88-27-64	6
OK-88-26-72	137	OK-88-27-29	62	OK-88-27-65	3
OK-88-26-73	74	OK-88-27-30	123	OK-88-27-66	2
OK-88-26-74	132	OK-88-27-31	155	OK-88-27-67	16
OK-88-26-75	78	OK-88-27-32	693	OK-88-27-68	86
OK-88-26-76	60	OK-88-27-33	412	OK-88-27-69	290
OK-88-26-77	48	OK-88-27-34	67	OK-88-27-70	33
OK-83-26-78	75	OK-88-27-35	70	OK-88-27-71	57
OK-88-26-79	64	OK-88-27-36	40	OK-88-27-72	34
OK-88-26-80	74	CK-88-27-37	180	OK-88-27-73	55
0K - 88 - 27 - 2	23	OK-88-27-38	108	OK-88-27-74	45
OK-88-27-3	72	OK-88-27-39	70	OK-88-27-75	39
OK-88-27-4	64	OK-88-27-40	13	OK-88-27-76	83
OK-88-27-5	84	OK-88-27-41	58	OK-88-27-77	230
OK-88-27-6	53	OK-88-27-42	7	OK-38-27-78	24
OK-88-27-7	86	OK-88-27-43	16	OK-88-27-79	20
OK-88-27-8	210	OK - 88 - 27 - 44	14	OK-88-27-80	23
OK-88-27-9	590	OK-88-27-45	20	OK-88-28-1	47
OK-88-27-10	205	OK-88-27-46	65	OK-88-28-2	150
OK-88-27-11	93	OK-38-27-47	19	OK-88-28-3	74
OK-88-27-12	675	OK-88-27-48	45	OK-88-28-4	525
OK-88-27-13	76	OK-88-27-49	41	OK-88-28-5	31
OK-88-27-14	57	OK-88-27-50	18	OK-88-28-6	4 9
OK-88-27-15	39	OK-38-27-51	15	OK-88-28-7	15
OK-88-27-16	106	OK-88-27-52	16	OK-88-28-8	24
OK-88-27-17	17	OK-88-27-53	18	OK-88-28-9	23
OK-88-27-18	65	OK-88-27-54	53	OK-88-28-10	28
OK-88-27-19	78	OK-88-27-55	22	OK-88-28-11	42
OK-88-27-20	380	OK-88-27-56	15	OK-88-28-12	550

SAMPLE#	AU* ppb
OK-88-28-13	62
OK-88-28-14	21
OK-88-28-15	47
OK-88-28-16	1
OK-88-28-17	4
OK-88-28-18	5
OK-88-28-19	32
OK-88-28-20	7
OK-88-28-21	5
OK-88-28-22	18
OK-88-28-23	9
OK-88-28-24	5
OK-88-28-25	7
OK-88-28-26	5
OK-88-28-27	19
OK-88-28-28	1
OK-88-28-29	7
OK-88-28-30	15
OK-88-28-31	87
OK-88-28-32	95
OK-88-28-33	37
OK-88-28-34	72
OK-88-28-35	480
OK-88-28-36	21
OK-88-28-37	19
OK-88-28-38	11
OK-88-28-39	1
OK-88-28-40	36

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUNE 28 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: JUNE 28 1988

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTING

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLEJUL 1]

CORDILLERAN ENGINEERING PROJECT-OKA #22 File # 88-2395

SAMPLE#	*UA	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	*UA
88-28-41	42	88-28-77	4	88-29-34	12	88-29-70	14
88-28-42	36	88-28-78	1	88-29-35	31	88-29-71	9
88-28-43	5	88-28-79	5	88-29-36	275	88-29-72	30
88-28-44	130	38-28-80	1	88-29-37	66	88-29-73	
88-28-45	22	88-29-2	1	88-29-38	430		8
		00 03 2	*	00 23 30	430	88-29-74	38
88-28-46	15	88-29-3	13	88-29-39	71	88-29-75	21
38-28-47	10	88-29-4	9	88-29-40	11	88-29-76	22
88-28-48	20	88-29-5	21	88-29-41	26	88-29-77	10
88-28-49	21	88-29-6	4	88-29-42	6		
88-28-50	14	88-29-7	19	88-29-43		88-29-78	2
		00 25 7	1.0	00-29-43	4	88-29-79	9
88-28-51	48	88-29-8	30	88-29-44	4	88-29-80	10
38-28-52	27	88-29-9	1	38-29-45	4	38-29-81	59
88-28-53	7	88-29-10	6	88-29-46	2	88-29-82	4
38-28-54	9	38-29-11	81	88-29-47	410	88-30-2	
88-28-55	15	88-29-12	12	88-29-48	11		46
			2.6	00-23-46	11	83-30-3	78
88-23-56	.3	38-29-13	36	88-29-49	15	88-30-4	25
88-28-57	17	88-29-14	12	38-29-50	5	88-30-5	54
88-28-58	31	38-29-15	9	88-29-51	5	88-30-6	21
88-28-59	8	88-29-16	23	88-29-52	14	88-30-7	53
88-28-60	6	88-29-17	6	88-29-53	5	88-30-8	36
20 20 61	-						
88-28-61	1	88-29-18	19	88-29-54	27	88-30-9	56
88-28-62	18	88-29-19	5	88-29-55	10	88-30-10	41
88-28-63	8	88-29-20	8	88-29-56	3	83-30-11	11
88-28-64	8	88-29-21	1	88-29-57	11	88-30-12	31
88-28-65	21	88-29-22	1	88-29-58	2	88-30-13	48
88-28-66	1.0						
	10	88-29-23	4	88-29-59	· 6		
88-28-57	8	88-29-24	1	88-29-60	9		
88-28-68	41	38-29-25	5	83-29-61	86		
88-28-69	20	88-29-26	3	88-29-62	9		
88-28-70	13	88-29-27	4	88-29-63	6		
83-28-71	10	00 00 00	-				
38-28-72		88-29-28	5	88-29-64	6		
88-28-73	23	38-29-29	5	88-29-65	6 5		
38-28-74	8	88-29-30	3	88-29-66	5		
	7	38-29-31	6	88-29-67	6		
88-28-75	1	88-29-32	6	88-29-68	6		
33-28-76	4	88-29-33	1	88-29-69	13		

ACME ANALYTICAL LABORATORIES LTD. DE 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

DATE RECEIVED:

JAN 12 1989

•

PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: REJECT AU - 20 GM REGULAR ASSAY.

. D.TOYE, C.LEONG, B.CHAN, J.WANG; CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING FILE # 88-2464R

> SAMPLE# AU

> > oz/t

OK-88-31-02 .055

ACME ANALYTICAL LABORATORIES LTD. 1852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

DATE RECEIVED:

JAN 12 1989

PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: REJECT AU - 20 GM REGULAR ASSAY.

D.TOYE, C.LEONG, B.CHAN, J.WANG; CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #23 FILE # 88-2485R

SAMPLE#

ΑU

oz/t

.047 OK-88-32-31

OK-88-32-89 .041

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp

510 20

•

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT OKA #23 FILE # 88-2485R

SAMPLE# AU AU AU**

oz/t oz/t oz/t oz/t

OK-88-32-89 .082 .051 .538 .060

Sample contains nature Au.

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: AUG 19 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY FROM 1/2 A.T.

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT OKA #23 FILE # 88-2464R

cc Jws.

SAMPLE#

AU**

oz/t

OK-88-31-02 .061

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: AUG 19 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: \mathcal{H}_{PS} . \mathcal{S}_{PS}

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY ERON 10 A.T.

CORDILLERAN ENGINEERING PROJECT OKA #23 FILE # 88-2485R

SAMPLE# AU** oz/t

02/0

OK-88-32-31 .048

OK-88-32-89 .107

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JULY 04 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

July 12/88.

GEOCHEMICAL ANALYSIS CERTIFICĂTE

JL 13.88

- SAMPLE TYPE: CUTTING

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

CORDILLERAN ENGINEERING PROJECT-OKA #23 File # 88-2464 Page 1

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	*UA
OK-88-30-14	20	OK-88-30-50	34	OK-83-31-08	5
OK-88-30-15	53	OK-88-30-51	13	OK-88-31-09	8
OK-88-30-16	56	OK-88-30-52	3	OK-88-31-10	4
OK-88-30-17	73	OK-88-30-52	17	OK-88-31-11	6
OK-88-30-18	122			OK-88-31-12	4
OK-98-30 10	122	OK-88-30-54	27	OK 00 31 12	72
OK-88-30-19	550	OK-88-30-55	8	OK-88-31-13	1
OK-88-30-20	225	OK-88-30-56	1	OK-88-31-14	7
OK-38-30-21	133	OK-88-30-57	15	OK-83-31-15	1
OK-88-30-22	69	OK-88-30-58	19	OK-88-31-16	4
OK-88-30-23	46	OK-88-30-59	18	OK-88-31-17	1
		0.00000	10		_
OK-88-30-24	90	OK-88-30-60	30	OK-88-31-18	1
OK-88-30-25	36	OK-88-30-61	17	OK-88-31-19	11
OK-88-30-26	28	OK-88-30-62	4	OK-88-31-20	10
OK-88-30-27	34	OK-88-30-63	4	OK-88-31-21	23
OK-88-30-28	29	OK-88-30-64	1	OK-88-31-22	5
	_				_
OK-88-30-29	3	OK-88-30-65	3	OK-88-31-23	6
OK-88-30-30	41	OK-88-30-66	5	OK-88-31-24	22
OK-88-30-31	19	OK-38-30-67	2	OK-88-31-25	21
OK-88-30-32	129	OK-88-30-68	2	OK-88-31-26	11
OK-88-30-33	34	OK-88-30-69	4	OK-88-31-27	1
07 00 20 24	1.0			07 22 21 20	1 1
OK-88-30-34	18	OK-88-30-70	8	OK-88-31-28	11
OK-88-30-35	28	OK-88-30-71	3	OK-88-31-29	17
OK-88-30-36	22	OK-88-30-72	Е	OK-88-31-30	10
OK-88-30-37	13	OK-88-30 -7 3	13	OK-88-31-31	5
OK-88-30-38	15	OK-38-30-74	10	OK-88-31-34	4
OK-88-30-39	17	OK-88-30-75	12	OK-88-31-35	2
OK-88-30-40	12		12	OK-88-31-36	13
OK-88-30-41	11	OK-88-30-76		OK-88-31-37	7
OK-88-30-42	11	OK-88-30-77	25	OK-88-31-40	30
OK-88-30-42		OK-88-30-78	2		
08-88-30-43	10	OK-88-30-79	3	OK-88-31-42	16
OK-88-30-44	138	OK-88-30-80	15	OK-88-31-43	15
OK-88-30-45	39	OK-38-31-02	3380	OK-88-31-44	8
OK-88-30-46	14	OK-88-31-04	10	OK-88-31-45	1
OK-88-30-47	3	OK-88-31-05	22	OK-38-31-46	6
OK-88-30-48	2	OK-88-31-06	33	OK-88-31-47	2
		01/ 00 01-00	٠. ي		
OK-88-30-49	4	OK-88-31-07	36	OK-88-31-48	1

SAMPLE#	*UA dqq	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
OK-88-31-49 OK-88-31-50 OK-88-31-51 OK-88-31-52 OK-88-31-53	8 3 4 16 7	OK-88-31-85 OK-88-31-36 OK-88-31-87 OK-88-31-88 OK-88-31-89	1 5 28 240	OK-88-32-09 OK-88-32-10 OK-88-32-11 OK-88-32-12 OK-88-32-13	30 28 23 50 11
OK-88-31-54 OK-88-31-55 OK-88-31-56 OK-88-31-57 OK-88-31-58	4 15 2 2 13	OK-88-31-90 OK-88-31-91 OK-88-31-92 OK-88-31-93 OK-88-31-94	2 6 1 10 39	OK-88-32-14 OK-88-32-15 OK-88-32-16 OK-88-32-17	41 18 21 92
OK-88-31-59 OK-88-31-60 OK-88-31-61 OK-88-31-62 OK-88-31-63	12 15 2€ 5 6	OK-88-31-95 OK-88-31-96 OK-88-31-97 OK-88-31-98 OK-88-31-99	28 6 8 54 11		
OK-88-31-64 OK-88-31-65 OK-88-31-66 OK-88-31-67 OK-88-31-68	1 4 1 2	OK-88-31-100 OK-88-31-101 OK-88-31-102 OK-88-31-103 OK-88-31-104	10 1 1 1		
OK-88-31-69 OK-88-31-70 OK-88-31-71 OK-88-31-72 OK-88-31-73	1 3 9 51	OK-88-31-105 OK-88-31-106 OK-88-31-107 OK-88-31-108 OK-88-31-109	2 1 2 1 1		
OK-88-31-74 OK-88-31-75 OK-88-31-76 OK-88-31-77 OK-88-31-78	29 6 8 24 69	OK-88-31-110 OK-88-31-111 OK-88-31-112 OK-88-31-113 OK-88-32-02	2 2 1 2 480		
OK-88-31-79 OK-88-31-80 OK-88-31-81 OK-88-31-82 OK-88-31-83	20 6 2 11 7	OK-88-32-03 OK-88-32-04 OK-83-32-05 OK-88-32-06 OK-88-32-07	47 112 265 355 325		
OK-88-31-84	2	OK-88-32-08	31		

ACME ANALYTICAL LABORATORIES LTD. DA 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 DATE RECEIVED: JULY 05 1988

PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTINGS

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

. D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #23 File # 88-2485

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
OK-88-31-03 OK-88-31-32 OK-88-31-33 OK-88-31-38 OK-88-31-39	430 18 11 1	OK-88-32-48 OK-86-32-49 OK-88-32-50 OK-88-32-51 OK-88-32-52	11 18 8 88 24	OK-88-32-84 OK-88-32-85 OK-88-32-86 OK-88-32-87 OK-88-32-88	9 4 17 1 9
OK-88-31-41 OK-88-32-18 OK-88-32-19 OK-88-32-20 OK-88-32-21	18 7 28 36 45	OK-88-32-53 OK-88-32-54 OK-88-32-55 OK-88-32-56 OK-88-32-57	37 151 21 5 7	OK-88-32-89 OK-88-32-90 OK-88-32-91 OK-83-32-92 OK-88-32-93	7070 360 18 22 25
OK-88-32-22 OK-88-32-23 OK-88-32-24 OK-88-32-25 OK-88-32-26	51 1 1 6 139	OK-88-32-58 OK-88-32-59 OK-88-32-60 OK-88-32-61 OK-88-32-62	37 19 11 6 24	OK-88-32-94 OK-88-32-95 OK-88-32-96 OK-88-32-97 OK-88-32-98	36 2 1 1
OK-88-32-27 OK-88-32-28 OK-88-32-29 OK-88-32-30 OK-88-32-31	22 1 2 10 1520	OK-88-32-63 OK-88-32-64 OK-88-32-65 OK-88-32-66 OK-88-32-67	13 7 11 12 8	OK-88-32-99 OK-88-32-100 OK-83-32-101 OK-88-32-102 OK-88-32-103	13 68 29 19
OK-88-32-32 OK-88-32-33 OK-88-32-34 OK-88-32-35 OK-88-32-36	650 64 3 1 12	OK-88-32-68 OK-88-32-69 OK-88-32-70 OK-88-32-71 OK-88-32-72	5 15 4 8 8	OK-88-32-104 OK-88-32-105 OK-88-32-106 OK-88-32-107 OK-88-32-108	1 3 6 23
OK-88-32-37 OK-88-32-38 OK-88-32-39 OK-88-32-40 OK-88-32-41	10 17 14 43 132	OK-88-32-73 OK-88-32-74 OK-88-32-75 OK-88-32-76 OK-88-32-77	22 6 16 6 4	OK-88-32-109 OK-88-32-110 OK-88-32-111 OK-38-32-112 OK-88-32-113	18 9 4 1
OK-88-32-42 OK-88-32-43 OK-88-32-44 OK-88-32-45 OK-88-32-46	18 22 1 23 46	OK-88-32-78 OK-88-32-79 OK-88-32-80 OK-88-32-81 OK-88-32-82	10 6 5 3 37	OK-88-32-114 OK-88-32-115 OK-88-32-116 OK-88-32-117 OK-88-32-118	3 2 3 51 19
OK-83-32-47	9	OK-88-32-83	16	OK-88-32-119	5

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JAN 12 1989 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

. J. an. 16/89

ASSAY CERTIFICATE

- SAMPLE TYPE: REJECT AU - 20 GM REGULAR ASSAY.

SIGNED BY. D. TOYE, C. LEONG, B. CHAN, J. WANG; CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #24 FILE # 88-2486R

SAMPLE# AU

oz/t

OK-88-34-7 .014

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY FROM 1/2 A.T.

CORDILLERAN ENGINEERING PROJECT OKA #24 FILE # 88-2486R

SAMPLE# AU**

oz/t

OK-88-34-7 .064

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JULY 05 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTINGS

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

ASSAYER: ... D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN	ENGINEER	RING PROJECT-OKA	#24	File # 88-2486	Page 1
SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
OK-88-33-2	250	OK-88-33-38	1	OK-88-33-74	4
OK-88-33-3	146	OK-88-33-39	1	OK-88-33-75	1
OK-88-33-4	139	OK-88-33-40	28	OK-88-33-76	1
OK-88-33-5	42	OK-88-33-41	2	OK-88-33-77	55
OK-88-33-5	73	OK-88-33-41	2 1	OK-38-33-77)) 1
OV-09-22-0	73	UN-08-33-42	<u></u>	OK-68-33-78	ı
OK-38-33-7	11	OK-88-33-43	1	OK-88-33-79	7
OK-88-33-8	4	OK-88-33-44	3	OK-88-33-80	33
OK-88-33-9	13	OK-88-33-45	6	OK-88-33-81	1
OK-88-33-10	1	OK-88-33-46	2	OK-88-33-82	2
OK-88-33-11	1	OK-88-33-47	13	OK-88-33-83	3
J., 30 00 11	-	ON 00 00 17	1.0	01. 00 00 00	9
OK-83-33-12	1	OK-88-33-43	9	OK-88-34-1	58
OK-88-33-13	7	OK-88-33-49	4	OK-88-34-2	50
OK-83-33-14	19	OK-88-33-50	1	OK-88-34-3	11
OK-88-33-15	18	OK-88-33-51	1	OK-88-34-4	305
OK-88-33-16	7	OK-88-33-52	1	OK-88-34-5	32
	·		_	01. 00 01 0	
OK-88-33-17	1	OK-88-33-53	46	OK-88-34-6	3
OK-88-33-18	1	OK-88-33-54	1	OK-88-34-7	1040
OK-88-33-19	1	OK-88-33-55	39	OK-88-34-8	63
OK-88-33-20	16	OK-38-33-56	17	OK-88-34-9	49
OK-88-33-21	1	OK-88-33-57	.4	OK-88-34-10	128
	-	on 00 00 p.	-	ON 00 31 10	120
OK-88-33-22	3	OK-88-33-58	11	OK-88-34-11	126
OK-88-33-23	76	OK-88-33-59	15	OK-88-34-12	48
OK-88-33-24	4	OK-88-33-60	19	OK-88-34-13	20
OK-88-33-25	1	OK-88-33-61	1	OK-88-34-14	7
OK-88-33-26	1	OK-88-33-62	5	OK-88-34-15	6
					_
OK-88-33-27	1	OK-88-33-63	1	OK-88-34-16	24
OK-88-33-28	3	OK-88-33-64	1	OK-88-34-17	5
OK-88-33-29	5	OK-88-33-55	3	OK-88-34-18	1
OK-88-33-30	7	OK-88-33-66	7	OK-38-34-19	ĩ
OK-88-33-31	2	OK-88-33-67	1	OK-38-34-20	3
	4	· · · · · · · · · · · · · · · · · · ·	_	9K 90 31 20	J
OK-88-33-32	7	OK-88-33-68	12	OK-88-34-21	44
OK-88-33-33	1	OK-88-33-69	1	OK-88-34-22	3
OK-88-33-34	1	OK-38-33-70	37	OK-88-34-23	4
OK-88-33-35	17	OK-88-33-71	69	OK-88-34-24	i
OK-88-33-36	3	OK-88-33-72	40	OK-88-34-25	5
	_	- · -			5
OK-88-33-37	4	OK-83-33-73	14	OK-88-34-26	1
		- · -		J 50 D. 20	~

SAMPLE#	AU* ppb
OK-88-34-27	3
OK-88-34-28	1
OK-88-34-29	16
OK-88-34-30	355
OK-88-34-31	93
OK-88-34-32	18
OK-88-34-33	139
OK-88-34-34	194
OK-88-34-35	68
OK-88-34-36	90
OK-88-34-37	9
OK-88-34-38	7
OK-88-34-39	1
OK-88-34-40	11
CK-88-34-41	47
OK-88-34-42 OK-88-34-43 OK-88-34-44 OK-88-34-45 OK-88-34-46	57 17 13 1
OK-88-34-47	4
OK-88-34-48	10
OK-88-34-49	1
OK-88-34-50	1
OK-88-34-51	1
OK-88-34-52	2
OK-88-34-53	3
OK-88-34-54	2
OK-88-34-55	2
OK-88-34-56	1
OK-88-34-57	1
OK-88-34-58	24
OK-88-34-59	3
OK-88-34-60	1
OK-88-34-70	2

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JULY 11 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: July 11 1988

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTING

JUL 18, 68

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN	ENGINEER	ING PROJECT-OKA	#25	File # 88-2625	Page 1
SAMPLE	*UA dqq	SAMPLE#	*UA dqq	SAMPLE#	AU*
OK-88-34-61	2	OK-88-35-19	4	OK-88-35-55	19
OK-88-34-62	3	OK-88-35-20	3	OK-88-35-56	9
OK-88-34-63	58	OK-88-35-21	1	OK-88-35-57	10
OK-88-34-64	20	OK-88-35-22	5	OK-83-35-58	18
OK-88-34-65	14	OK-88-35-23	13	OK-88-35-59	17
OK-88-34-66	31	OK-28-35-24	1	OK-88-35-60	1.5
OK-88-34-67	4	OK-88-35-25	23	OK-88-35-61	17
OK-88-34-68	7	OK-88-35-26	7	OK-88-35-62	12
OK-88-34-69	1	OK-88-35-27	3	OK-88-35-63	15
OK-88-34-71	2	OK-88-35-28	9	OK-88-35-64	10
OK-88-34-72	1	OK-88-35-29	6	OK-88-35-65	16
OK-88-34-73	1	OK-88-35-30	265	OK-88-35-66	17
OK-88-34-74	2	OK-88-35-31	19	OK-88-35-67	19
OK-88-34-75	1	OK-88-35-32	12	OK-88-35-68	ŝ
OK-88-34-76	1	OK-88-35-33	17	OK-88-35-69	ð
OK-88-34-77	1	OK-88-35-34	23	OK-88-35-70	10
OK-88-34-78	3	OK-88-35-35	14	OK-88-35-71	91
OK-88-34-79	2	OK-88-35-36	3	CK-88-35-72	29
OK-88-35-1	2	OK-88-35-37	20	OK-88-35-73	12
OK-88-35-2	12	OK-88-35-38	11	OK-88-35-74	16
OK-88-35-3	3	OK-88-35-39	10	OK-88-35-75	24
OK-88-35-4	5	OK-88-35-40	6	OK-88-35-76	9
OK-88-35-5	3	OK-88-35-41	10	OX-88-35-77	3 5
OK-38-35-6	5	OK-88-35-42	4	OK-88-35-78	5
OK-88-35-7	1	OK-88-35-43	5	OK-88-35-79	6
OK-83-35-8	2	OK-88-35-44	4	OK-88-35-80	11
OK-88-35-9	1	OK-88-35-45	8	OK-88-36-2	44
OK-88-35-10	1	OK-38-35-46	6	OK-38-36-3	94
OK-88-35-11	12	OK-88-35-47	5	OK-88-36-4	30
OK-88-35-12	4	OK-88-35-48	11	OK-88-36-5	16
OK-88-35-13	8	OK-88-35-49	3	OK-88-36-6	24
OK-88-35-14	5	OK-88-35-50	5 6	OK-88-36-7	14
OK-88-35-15	115	OK-88-35-51	15	OK-38-36-8	10
OK-88-35-16	18	OK-88-35-52	11	OK-88-36-9	3.9
OK-88-35-17	9	OK-88-35-53	19	OK-88-36-10	20
OK-88-35-18	1	OK-88-35-54	16	OK-88-36-11	12

SAMPLE#	AU* ppb	SAMPLE#	AU*	SAMPLE#	AU* ppb
OK-88-36-12 OK-88-36-13 OK-88-36-14 OK-88-36-15	7 1 2 8	OK-88-37A-8 OK-88-37A-9 OK-88-37A-10 OK-88-37A-11	23 12 10 12	OK-88-37A-64 OK-88-37A-65 OK-88-37A-66 OK-88-37A-67	14 5 6 5
OK-88-36-16	2	OK-88-37A-12	8	OK-88-37A+68	5
OK-88-36-17 OK-88-36-13 OK-88-36-19 OK-38-36-20 OK-88-36-21	31 9 2 1	OK-88-37A-13 OK-88-37A-14 OK-38-37A-15 OK-88-37A-16 OK-88-37A-17	18 225 44 96 86	OK-88-37A-69 OK-88-37A-70	5 3
OK-88-36-22 OK-88-36-23 OK-88-36-24 OK-88-37-1 OH-88-37-2	1 5 1 4 3	OK-88-37A-18 OK-88-37A-19 OK-88-37A-20 OK-88-37A-21 OK-88-37A-22	505 95 131 52 35		
OK-38-37-3 OK-88-37-4 OK-38-37-5 OK-88-37-6 OK-88-37-7	4 24 10 24 14	OK-88-37A-23 OK-88-37A-24 OK-88-37A-25 OK-88-37A-26 OK-88-37A-27	88 156 85 31 61		
OK-88-37-8 OK-88-37-9 CK-88-37-10 OK-88-37-11 OK-88-37-12	3 3 24 5 760	OK-88-37A-48 OK-88-37A-49 OK-88-37A-50 OK-88-37A-51 OK-88-37A-52	3 20 4 1 12		
OK-88-37-13 OK-88-37-14 OK-88-37-15 OK-88-37-16 OK-98-37-17	27 47 58 25 21	OK-88-37A-53 OK-88-37A-54 OK-88-37A-55 OK-88-37A-56 OK-88-37A-57	2 1 3 1		
OK-88-37-18 OK-88-37A-3 OK-88-37A-4 OK-88-37A-5 OK-88-37A-6	4 15 2 2 66	OK-88-37A-58 OK-88-37A-59 OK-88-37A-60 OK-88-37A-61 OK-88-37A-62	3 1 1 2 1		
OK-88-37A-7	8	OK-88-37A-63	Ť		

ACME ANALYTICAL LABORATORIES LTD. DAT: 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 DATE RECEIVED: JULY 12 1988

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTING

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

7.. D.TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA#26 File # 38-2685 Page 1

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	*UA dqq
CK-38-37-19	41	OK-88-38-27	18	OK-88-37A-85	26
OK-88-37-20	40	OK-88-38-28	42	OK-83-37A-86	20 6
OK-88-37-28	43	OK-88-38-29	28	OK-88-37A-87	2
OK-88-37-29	19	OK-83-38-30	45	OK-88-37A-88	14
OK-88-37-30	21	OK-88-38-31	54	OK-88-37A-89	14
OK-88-37-31	29	OK-88-38-32	30	OK-88-37A-90	1
OK-88-37-32	23	OK-88-38-33	64	OK-88-37A-91	1
CK-88-37-33	26	CK-88-38-34	5.5	OK-88-37A-92	1
OK-88-37-34	19	OK-88-38-35	56	OK-98-37A-93	1
OK-88-37-35	13	OK-88-38-36	27	OK-88-37-94	2
OK-88-37-36	27	OK-88-38-37	17	OK-88-37-95	1
OK-88-37-37	38	OK-88-38-38	ð	OK-88-37-96	9
OK-88-37-38	20	OK-88-38-39	12	OK-88-38-3	38
OK-88-37-39	58	OK-88-38-40	7	OK-88-38-4	245
OK-88-37-40	23	OK-88-38-41	6	OK-88-38-5	92
OK-88-37-41	3	OK-88-38-42	9	OK-88-38-6	116
OK-88-37-42	2	OK-88-38-43	12	OK-88-38-7	68
OK-88-37-43	14	OK-88-38-44	17	OK-88-38-8	37
OK-88-37-44	5	OK-88-38-45	46	OK-88-38-9	12
OK-88-37-45	2	OK-88-38-45	9	OK-88-38-10	18
OK-88-37-46	13	a	1 1	211 02 50 44	
OK-88-37-47	5	OK-88-38-47	11 4	OK-88-38-11	56
OK-38-37A-71	1	CK-88-38-48 OK-88-38-49	20	OK-88-38-12	72
OK-88-37A-72	1	OK-88-38-50	117	OK-88-38-13	19
OK-88-37A-73	1	OK-88-38-51	15	OK-88-38-14	28
ov 00 07. 7.4		OK-00-30-31	7.7	CK-88-38-15	4
OK-88-37A-74	1	OK-88-38-52	8	OK-88-38-16	9
OK-88-37A-75	1	OK-88-38-53	3	OK-88-38-17	25
OK-88-37A-76	2	OK-88-38-54	22	OK-89-38-18	58
OK-88-37A-77	1	OK-88-38-55	13	OK-88-38-19	16
OK-88-37A-78	1	OK-88-38-56	1	OK-88-38-20	19
OK-88-37A-79	1	OK-88-38-57	5	OK-88-38-21	98
OK-88-37A-80	3	OK-88-38-58	10	OK-88-38-22	43
OK-88-37A-81	5	OK-88-38-59	28	OK-88-38-23	148
OK-88-37A-82	1	OK-88-38-60	7	OK-88-38-24	122
OK-88-37A-83	2	OK-83-38-61	11	OK-88-38-25	14
OK-88-37A-84	1	OK-88-38-62	6	OK-88-38-26	6

SAMPLE=	*UA dqq	SAMPLE#	*UA dqq	
OK-88-38-63 OK-88-38-64 OK-88-38-65 OK-88-38-66	11 10 11 21	OK-88-38-99 OK-88-38-100 OK-88-38-101 OK-38-38-102	14 1 5	
OK-88-38-67	17	OK-88-38-103	1	
OK-88-38-68 OK-88-38-69 OK-88-38-70 OK-38-38-71 OK-88-38-72	65943 43	OK-88-38-104 OK-88-38-105 OK-88-38-106 OK-88-38-107	4 6 8	
OK-88-38-73 OK-88-38-74 OK-88-38-75	30 6 6	OK-88-38-108 OK-88-38-109 OK-88-38-110 OK-88-38-111	1 18 22 1	
OK-88-38-76 OK-88-38-77	7 2	OK-88-38-112 OK-88-38-113	3	
OK-88-38-78 OK-88-38-79 OK-88-38-80 OK-88-38-81 OK-88-38-82	2 4 8 3 1	OK-88-38-114 OK-88-38-115 OK-88-38-116 OK-88-38-117 OK-88-38-118	7 21 2 2 2 2 1	
OK-88-38-83 OK-88-38-84 OK-88-38-85 OK-88-38-86 OK-88-38-87	7 4 4 3 2	OK-88-38-119 OK-88-39-2 OK-88-39-3 OK-38-39-4 OK-88-39-5	5 27 20 1 €	
OK-88-38-88 OK-88-38-89 OK-88-38-90 OK-88-38-91 OK-88-38-92	8 5 17 6 32	OK-88-39-6 OK-88-39-7	520 395	
OK-88-38-93 OK-88-38-94 OK-88-38-95 OK-38-38-96 OK-88-38-97	39 12 3 4 6			
OK-88-38-98	1			

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY FROM 1/2 A.T.

CORDILLERAN ENGINEERING PROJECT OKA #27 FILE # 88-2885R

SAMPLE# AU**

oz/t

OK-88-39-16 .058

OK-88-41-32 .055

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUL 18 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

: July 29/88

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTING

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

CORDILLERAN ENGINEERING PROJECT OKA #27 FILE # 88-2885 Page 1

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
OK-88-39-8	233	OK-88-39-44	17	OK-88-39-80	5
OK-88-39-9	54	OK-88-39-45	11	OK-88-39-81	5
OK-88-39-10	172			OK-88-39-82	10
OK-88-39-11	82	OK-88-39-46	18	OK-88-39-83	6
OK-88-39-12	592	OK-88-39-47	2	OK-88-39-84	8
UK-00-39-12	392	OK-88-39-48	7	07-00-33-64	6
OK-88-39-13	39	OK-88-39-49	47	OK-88-39-85	6
OK-88-39-14	17	OK-88-39-50	42	OK-88-39-86	7
OK-88-39-15	10	OK-88-39-51	8	OK-88-39-87	4
OK-88-39-16	2032	OK-88-39-52	15	OK-88-39-88	5
OK-88-39-17	52	OK-88-39-53	25	OK-88-39-89	22
OR 00 35 17	32	OK-88-39-33	25	OR 00 35 05	2.2
OK-88-39-18	39	OK-88-39-54	15	OK-88-39-90	12
OK-88-39-19	11	OK-88-39-55	9	OK-88-39-91	6
OK-88-39-20	65	OK-88-39-56	8	OK-88-39 - 92	5
OK-88-39-21	30	OK-88-39-57	8	OK-88-39-93	23
OK-88-39-22	47	OK-88-39-58	9	OK-88-39-94	4
OK-88-39-23	26	OK-88-39-59	4	OK-88-39-95	5
OK-88-39-24	19		4	OK-88-39-96	4
OK-88-39-25	19	OK-88-39-60	10	OK-88-39-97	
	61	OK-88-39-61	6		4
OK-88-39-26		OK-88-39-62	160	OK-88-39-98	7
OK-88-39-27	12	OK-88-39-63	27	OK-88-39-99	1
OK-88-39-28	25	OK-88-39-64	6	OK-88-39-100	17
OK-88-39-29	28	OK-88-39-65	3	OK-88-40-2	12
OK-88-39-30	24	OK-88-39-66	1	OK-88-40-3	79
OK-88-39-31	15	OK-88-39-67	$\stackrel{\overset{ au}{1}}{1}$	OK-88-40-4	44
OK-88-39-32	53	OK-88-39-68	31	OK-88-40-5	59
0 00 00 0		01-88-33-08	21	0K 00 10 3	3,5
OK-88-39-33	131	OK-88-39-69	28	OK-88-40-6	45
OK-88-39-34	27	OK-88-39-70	32	OK-88-40-7	23
OK-88-39-35	30	OK-88-39-71	77	OK-88-40-8	15
OK-88-39-36	21	OK-88-39-72	114	OK-88-40-9	2
OK-88-39-37	25	OK-88-39-73		OK-88-40-10	5
01. 00 33 37	4.5	08-88-39-73	88	OK 00 40 10	J
OK-88-39-38	19	OK-88-39-74	52	OK-88-40-11	14
OK-88-39-39	21	OK-88-39-75	21	OK-88-40-12	16
OK - 88 - 39 - 40	23	OK-88-39-76	15	OK-88-40-13	36
OK-88-39-41	12	OK-88-39-77	10	OK-88-40-14	22
OK-88-39-42	13	OK-88-39-78	3	OK-88-40-15	37
OK-88-39-43	9	OK-88-39-79	7	OK-88-40-16	35

CORDILLERAN ENGINEERING PROJECT OKA #27 FILE # 88-2885 Page 2

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
OK-88-40-17	10	OK-88-40-53	11	OK-88-40-89	4
OK-88-40-18	3	OK-88-40-54	13	OK-88-40-90	ī
OK-88-40-19	7	OK-88-40-55	78	OK-88-40-91	2
OK-88-40-20	8	OK-88-40-56	54	OK-88-40-92	2
OK-88-40-21	4	OK-88-40-57	10	OK-88-40-93	13
OK-88-40-22	1	OK-88-40-58	7	OK-88-40-94	19
OK-88-40-23	1	OK-88-40-59	3	OK-88-40-95	4
OK - 88 - 40 - 24	2	OK-88-40-60	6	OK-88-40-96	2
OK-88-40-25	2	OK-88-40-61	8	OK-88-40-97	12
OK-88-40-26	5	OK-88-40-62	4	OK-88-40-98	1
OK-88-40-27	1	OK-88-40-63	9	OK-88-40-99	7
OK-88-40-28	1	OK-88-40-64	3	OK-88-40-100	9
OK-88-40-29	1	OK-88-40-65	5	OK-88-40-101	2
OK-88-40-30	13	OK-88-40-66	6	OK-88-40-102	1
OK-88-40-31	2	OK-88-40-67	2	OK-88-40-103	5
OK-88-40-32	8	OK-88-40-68	1	OK-88-40-104	1
OK-88-40-33	15	OK-88-40-69	1	OK-88-40-105	9
OK-88-40-34	43	OK-88-40-70	5	OK-88-40-106	9
OK-88-40-35	16	OK-88-40-71	4	OK-88-40-107	3
OK-88-40-36	21	OK-88-40-72	3	OK-88-40-108	1
OK-88-40-37	4	OK-88-40-73	3	OK-88-41-3	5
OK-88-40-38	36	OK-88-40-74	2	OK-88-41-4	6
OK-88-40-39	23	OK-88-40-75	4	OK-88-41-5	11
OK - 88 - 40 - 40	11	OK-88-40-76	3	OK-88-41-6	14
OK-88-40-41	2	OK-88-40-77	3	OK-88-41-7	9
OK-88-40-42	1	OK-88-40-78	2	OK-88-41-8	11
OK-88-40-43	1	OK-88-40-79	8	OK-88-41-9	7
OK - 88 - 40 - 44	1	OK-88-40-80	3	OK-88-41-10	7
OK-88-40-45	1	OK-88-40-81	4	OK-88-41-11	32
OK-88-40-46	1	OK-88-40-82	3	OK-88-41-12	49
OK-88-40-47	1	OK-88-40-83	4	OK-88-41-13	13
OK-88-40-48	8	OK-88-40-84	2	OK-88-41-14	41
OK-88-40-49	5	OK-88-40-85	5	OK-88-41-15	21
OK-88-40-50	4	OK-88-40-86	3	OK-88-41-16	28
OK-88-40-51	17	OK-88-40-87	1	OK-88-41-17	31
OK-88-40-52	9	OK-88-40-88	1	OK-88-41-18	33

SAMPLE#	AU*		
	ppb	SAMPLE#	AU*
		··	ppb
OK-88-41-19	24		* *
OK-88-41-20	10	OK-88-41-55	54
OK-88-41-21	14	OK-88-41-56	7
OK-88-41-22	8	OK-88-41-57	14
OK-88-41-23	32	OK-88-41-58	12
OK 00 41 25	32	OK-88-41-59	11
OK-88-41-24	16	OK 88 41 33	11
OK-88-41-25	13	OK-88-41-60	3
		OK-88-41-61	
OK-88-41-26	12		1
OK-88-41-27	9	OK-88-41-62	1
OK-88-41-28	6	OK-88-41-63	12
	_	OK-88-41-64	10
OK-88-41-29	3		
0K - 88 - 41 - 30	6	OK-88-41-65	3
OK - 88 - 41 - 31	9	OK-88-41-66	2
OK-88-41-32	1880	OK-88-41-67	1
OK-88-41-33	64	OK-88-41-68	1
		OK-88-41-69	1
OK-88-41-34	37		
OK-88-41-35	96	OK-88-41-70	1
OK-88-41-36	11	OK-88-41-71	1
OK-88-41-37	23	OK-88-41-72	2
OK-88-41-38	30	OK-88-41-73	8
		OK-88-41-74	34
OK-88-41-39	4		
OK-88-41-40	6	OK-88-41-75	1
OK-88-41-41	2	OK-88-41-76	2
OK-88-41-42	1	OK-88-41-77	1
OK-88-41-43	1	OK-88-41-78	1
		OK-88-41-79	$\overline{1}$
OK-88-41-44	1		-
OK-88-41-45	4	OK-88-41-80	9
OK-88-41-46	4	OK-88-41-81	28
OK-88-41-47	2	OK-88-41-82	1
OK-88-41-48	2	OK-88-41-83	1
OK 00 11 10	4	OK-88-41-84	1
OK-88-41-49	4	OK 00 41 04	1
OK-88-41-50	5	OK-88-41-85	1
OK-88-41-51	4	OK-88-41-86	1
OK-88-41-51 OK-88-41-52	6	OK-88-41-88	1
OK-88-41-52	26	01/-00-41-0/	Ţ
07-00-41-22	26		
OK-88-41-54	71		
01-00-41-04	71		

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATES () 3 (8)

- SAMPLE TYPE: CUTTING

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GH SAMPLE.

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT OKA #28 FILE # 88-2932 Page 1

SAMPLE#	*UA ppb	SAMPLE#	AU* ppb	SAMPLE#	AU*
OK-88-40-109	3	OK-88-42-13	2	OK-88-42-49	1
OK-88-40-110	4	OK-88-42-14	1	OK-88-42-50	1
OK-88-40-111	6	OK-88-42-15	3	OK-88-42-51	2
OK-88-40-112	1	OK-88-42-16	4	OK-88-42-52	1
OK-88-40-113	1	OK-88-42-17	8	OK-88-42-53	2
0., 00 10 11		OK-88 42 17	0	07-99-45-33	2
OK-83-40-114	1	OK-88-42-18	2	OK-88-42-54	17
OK-88-40-115	5	OK-88-42-19	5	OK-88-42-55	7
OK-88-40-116	1	OK-88-42-20	1	OK-88-42-56	1
OK-88-40-117	1	OK-88-42-21	4	OK-88-42-57	1
OK-88-40-118	1	OK-88-42-22	7	OK-88-42-58	1
		ON 00 12 22	,	OK-00-42-30	<u>.</u>
OK-88-40-119	1	OK-88-42-23	1	OK-88-42-59	1
OK-83-40-120	1	OK-88-42-24	1	OK-88-42-60	2
OK-88-41-88	6	OK-88-42-25	1	OK-88-42-61	1
OK-88-41-89	1	OK-88-42-26	7	OK-88-42-62	1
OK-88-41-90	1	OK-88-42-27	1	OK-88-42-63	2
OK-88-41-91	1	OK-88-42-28	5	OK-88-42-64	1
OK-88-41-92	1	OK-88-42-29	12	OK-88-42-65	1
OK-88-41-93	1	OK-88-42-30	15	OK-88-42-66	2
OK-88-41-94	1	OK-88-42-31	8	OK-88-42-67	1
OK-88-41-95	1	OK-88-42-32	1	OK-88-42-68	1
OK-88-41-96	13	OK-88-42-33	5	OK-88-42-69	2
OK-88-41-97	15	OK-88-42-34	7	OK-88-42-70	1
OK-88-41-98	9	OK-88-42-35	1	OK-88-42-71	4
OK-88-41-99	23	OK-88-42-36	2	OK-88-42-72	2
OK-88-41-100	14	OK-88-42-37	1	OK-88-42-73	1
	_				_
OK-88-42-2	2	OK-88-42-38	-1	OK-88-42-74	1
OK-88-42-3	1	OK-88-42-39	5	OK-88-42-75	1
OK - 88 - 42 - 4	1	OK-88-42-40	14	OK-88-42-76	1
OK-88-42-5	4	OK-88-42-41	19	OK-88-42-77	2
OK-88-42-6	20	OK-88-42-42	31	OK-88-42-78	1
					_
OK-88-42-7	3	OK-88-42-43	6	OK-88-42-79	1
OK-88-42-8	8	OK-88-42-44	3	OK-88-42-80	1
OK-88-42-9	6	OK-88-42-45	6	OK-88-42-81	3
OK-88-42-10	4	OK-88-42-46	9	OK-88-42-82	1
OK-88-42-11	5	OK-88-42-47	1	OK-88-42-83	î
	_				-
OK-88-42-12	1	OK-88-42-48	7	OK-88-42-84	2

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
OK-88-42-85 OK-88-42-86 OK-88-42-87 OK-88-42-88 OK-88-42-89	3 2 1 3 1	OK-88-43-9 OK-88-43-10 OK-88-43-11 OK-88-43-12 OK-88-43-13	4 1 8 4 13
OK-88-42-90 OK-88-42-91 OK-88-42-92 OK-88-42-93 OK-88-42-94	1 1 3 1 2	OK-88-43-14 OK-88-43-15 OK-88-43-16 OK-88-43-17	1 1 1 1
OK-88-42-95 OK-88-42-96 OK-88-42-97 OK-88-42-98 OK-88-42-99	6 1 1 2 1		
OK-88-42-100 OK-88-42-101 OK-88-42-102 OK-88-42-103 OK-88-42-104	1 1 2 1 1		
OK-88-42-105 OK-88-42-106 OK-88-42-107 OK-88-42-108 OK-88-42-109	1 1 2 1		
OK-88-42-110 OK-88-42-111 OK-88-42-112 OK-88-42-113 OK-88-43-2	2 7 1 2		
OK-88-43-3 OK-88-43-4 OK-88-43-5 OK-88-43-6 OK-88-43-7	1 2 1 2 4		
OK-88-43-8	2		

ACME ANALYTICAL LABORATORIES LTD. DA 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 DATE RECEIVED: JUL 25 1988

PHONE (604) 253-3158 FAX (604) 253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: CUTTING

AUG 0 0.

AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

. D.TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT OKA FILE # 88-3084 Page 1

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU*
OK-88-21-SS	3	OK-88-43A-36	1	OK-88-43A-72	3
OK-88-43-18	3	OK-88-43A-37	1	OK-88-43A-73	4
OK-88-43A-2	1	OK-88-43A-38	1	OK-88-43A-74	3
OK-88-43A-3	1	OK-88-43A-39	2	OK-88-43A-75	1
OK-88-43A-4	1	OK-88-43A-40	1	OK-88-43A-76	3
OK-88-43A-5	1	OK-88-43A-41	1	OK-88-43A-77	1
OK-88-43A-6	1	OK-88-43A-42	9	OK-88-43A-78	1
OK-88-43A-7	1	OK-88-43A-43	1	OK-88-43A-79	1
OK-88-43A-8	2	OK-88-43A-44	1	OK-88-43A-80	1
OK-88-43A-9	1	OK-88-43A-45	2	OK-88-43A-81	1
OK-88-43A-10	1	OK-88-43A-46	24	01/ 00 407 00	-
	2		7	OK-88-43A-82	1
OK-88-43A-11		OK-88-43A-47		OK-88-43A-83	1
OK-88-43A-12	1	OK-88-43A-48	4	OK-88-43A-84	4
OK-88-43A-13	1	OK-88-43A-49	1	OK-88-43A-85	3
OK-88-43A-14	1	OK-88-43A-50	6	OK-88-43A-86	1
OK-88-43A-15	1	OK-88-43A-51	5	OK-88-43A-87	1
OK-88-43A-16	1	OK-88-43A-52	1	OK-88-43A-88	3
OK-88-43A-17	4	OK-88-43A-53	2	OK-88-43A-89	1
OK-88-43A-18	1	OK-88-43A-54	1	OK-88-43A-90	1
OK-88-43A-19	1	OK-88-43A-55	2	OK-88-43A-91	1
OV-00-427-20	3	OV 00-425-55	1	OV 00 427 02	
OK-88-43A-20		OK-88-43A-56	3	OK-88-43A-92	1
OK-88-43A-21	1	OK-88-43A-57	5 6	CK-88-43A-93	4
OK-88-43A-22	1	OK-88-43A-58		OK-88-43A-94	9
OK-88-43A-23	1	OK-88-43A-59	12	OK-88-43A-95	5
OK-88-43A-24	1	OK-88-43A-60	22	OK-88-43A-96	1
OK-88-43A-25	1	OK-88-43A-61	4	OK-88-43A-97	1
OK-88-43A-26	1	OK-88-43A-62	1	OK-88-43A-98	1
OK-88-43A-27	1	OK-88-43A-63	3	OK-88-43A-99	1
OK-88-43A-28	2	OK-88-43A-64	4	OK-88-43A-100	1
OK-88-43A-29	1	OK-88-43A-65	4	OK-88-43A-101	1
011 00 1011 25	1	OR 66 45H 65		OK-00-42M-101	1
OK-88-43A-30	1	OK-88-43A-66	5	OK-88-43A-102	4
OK-88-43A-31	1	OK-88-43A-67	б	OK-88-43A-103	5
OK-88-43A-32	11	OK-88-43A-68	4	OK-88-43A-104	1
OK-88-43A-33	1	OK-88-43A-69	11	OK-88-43A-105	1
OK-88-43A-34	3	OK-88-43A-70	5	OK-88-43A-106	1
OK-88-43A-35	1	OK-88-43A-71	1	OK-88-43A-107	1

CORDILLERAN ENGINEERING PROJECT OKA FILE # 88-3084 Page 2

SAMPLE#	*UA dqq
OK-88-43A-108 OK-88-43A-109 OK-88-43A-110 OK-88-43A-111	4 1 1 1 3
OK-88-43A-113	1

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUN 10 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

CORDILLERAN ENGINEERING PROJECT-OKA * NEW CLAIMS File # 88-1889 Page 1

- SAMPLE TYPE: SOIL

JUN 1 5. 88

AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

ce 9005.

D.TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS

COKDIPPE	LKAN	ENGINEERING	PROJECT	" ANDE		LIIE # 98-1883	Page I
CAMPIEH		AU*			on Mt. Wilson	n	
SAMPLE#			SAMPLE#		AU*	SAMPLE#	AU*
		ppb			ppb		ppb
							~ ~
13+00N 0	+00E	1	L11+00N	1+50E	1	L9+00N 2+50E	1
13+00N 0	+50E	1	L11+00N	2+00E	1		1
13+00N 1	+00E	1	L11+00N		2	L9+00N 3+00E	
13+00N 1		1	L11+00N		2 3	L9+00N 3+50E	1
13+00N 2		11			1	L9+00N 4+00E	1
13+00N 2	1001	~ ~	L11+00N	3+30E	1	L9+00N 4+50E	1
12.001 2		1					
13+00N 2		1	L11+00N		1	L9+00N 5+00E	1
13+00N 3		1	L11+00N	4+50E	1	L9+00N 5+50E	1
13+00N 3		2	L11+00N	5+00E	1	L9+00N 6+00E	1
13+00N 4	+00E	1	L11+00N	5+50E	1	L9+00N 6+50E	ı 1
13+00N 4	+50E	1	L11+00N	6+00E	1		
					_	L9+00N 7+00E	1
13+00N 5	+00E	1	L11+00N	6±50F	7		_
13+00N 5		1	L11+00N			L9+00N 7+50E	3
13+00N 6		î			1	L9+00N 8+00E	1
			L11+00N		1	L8+00N 0+00E	1
13+00N 6		1	L11+00N		1	L8+00N 0+50E	2
13+00N 7	+00E	1	L10+00N	0+00E	1	L8+00N 1+00E	1
						20.0011 2.002	_
13+00N 7	+50E	1	L10+00N	0+50E	1	L8+00N 1+50E	3
13+00N 8-	+00E	1	L10+00N	1+00E	1		1
12+00N 0	+50E	-	L10+00N		2	L8+00N 2+00E	
12+00N 1-		_	L10+00N		1	L8+00N 2+50E	1
12+00N 1		_				L8+00N 3+00E	4
12/00N 1	1000	*	L10+00N	2+50E	9	L8+00N 3+50E	1
12:001 2	LOOF	2 '					
12+00N 2-		-	L10+00N		1	L8+00N 4+00E	1
12+00N 2		1	L10+00N	3+50E	1	L8+00N 4+25E	1
12+00N 3-		1	L10+00N	4+00E	1	L8+00N 4+50E	1
12+00N 3	+50E	1	L10+00N	4+50E	5		10
12+00N 4-	+00E	-	L10+00N		2	L8+00N 5+00E	
			210.0011	3.002	_	L8+00N 5+50E	3
12+00N 4-	+50E	1	L10+00N	5+50E	1		_
12+00N 5-			L10+00N			L8+00N 6+00E	1
12+00N 5		•			1	L8+00N 6+50E	3
		_	L10+00N		1	L8+00N 7+00E	1
12+00N 6-		_	L10+00N		1	L8+00N 7+50E	4
12+00N 6-	+50E	2	L10+00N	7+50E	1	L8+00N 8+00E	3
							-
12+00N 7-		54	L10+00N	8+00E	2	L8+00AN 4+00E	1
12+00N 7-	+50E	2	L9+00N 0		1	L8+00AN 4+50E	1
12+00N 8-	+00E	-	L9+00N 0		1		
11+00N 0-		•	L9+00N 1		1	L8+00AN 5+00E	1
11+00N 0-		.	L9+00N 1		î	L8+00AN 5+50E	2
			TISTOON I.	- 7 O E	1	L8+00AN 6+00E	1
11+00N 1-	+005	2		. 005	1		
TITOUN I.	1001	-	L9+00N 2	+UUE	1	L8+00AN 6+50E	1

CORDILLERAN ENGINEERING PROJECT-OKA * NEW CLAIM* FILE # 88-1889 Page 2 on Mt. Wilson

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
L8+00AN 7+00E	1	L5+00N 0+00E	2	L3+00N 1+00E	1
L8+00AN 7+50E	1	L5+00N 0+50E	1	L3+00N 1+50E	1
L7+00N 0+00E	1	L5+00N 1+00E	1	L3+00N 2+00E	1
L7+00N 0+50E	1	L5+00N 1+50E	3	L3+00N 2+50E	3
L7+00N 1+00E	1	L5+00N 2+00E	2	L3+00N 3+00E	1
L7+00N 1+50E	2	L5+00N 2+50E	11	L3+00N 3+50E	1
L7+00N 2+00E	1	L5+00N 3+00E	1	L3+00N 4+00E	1
L7+00N 2+50E	1	L5+00N 3+50E	1	L3+00N 4+50E	1
L7+00N 3+00E	1	L5+00N 4+00E	19	L3+00N 5+00E	1
L7+00N 3+50E	1	L5+00N 4+50E	1	L3+00N 5+50E	1
L7+00N 4+00E	1	L5+00N 5+00E	1	L3+00N 6+00E	1
L7+00N 4+50E	1	L5+00N 5+50E	1	L3+00N 6+50E	1
L7+00N 5+00E	1	L5+00N 6+00E	2	L3+00N 7+00E	1
L7+00N 5+50E	1	L5+00N 6+50E	1	L3+00N 7+50E	1
L7+00N 6+00E	5	L5+00N 7+00E	3	L3+00N 8+00E	1
L7+00N 6+50E	1	L5+00N 7+50E	2	L2+00N 0+00E	1
L7+00N 7+00E	1	L5+00N 8+00E	1	L2+00N 0+50E	4
L7+00N 7+50E	1	L4+00N 0+00E	1	L2+00N 1+00E	1
L7+00N 8+00E	1	L4+00N 0+50E	3	L2+00N 1+50E	1
L6+00N 0+00E	1	L4+00N 1+00E	1	L2+00N 2+00E	1
L6+00N 0+50E	1	L4+00N 1+50E	1	L2+00N 2+50E	1
L6+00N 1+00E	1	L4+00N 2+00E	1	L2+00N 3+00E	1
L6+00N 1+50E	1	L4+00N 2+50E	1	L2+00N 3+50E	1
L6+00N 2+00E	1	L4+00N 3+00E	1	L2+00N 4+00E	1
L6+00N 2+50E	2	L4+00N 3+50E	1	L2+00N 4+50E	1
L6+00N 3+00E	1	L4+00N 4+00E	1	L2+00N 5+00E	1
L6+00N 3+50E	2	L4+00N 4+50E	2	L2+00N 5+50E	1
L6+00N 4+00E	4	L4+00N 5+00E	1	L2+00N 6+00E	1
L6+00N 4+50E	1	L4+00N 5+50E	3	L2+00N 6+50E	1
L6+00N 5+00E	1	L4+00N 6+00E	1	L2+00N 7+00E	1
L6+00N 5+50E	3	L4+00N 6+50E	1	L2+00N 7+50E	3
L6+00N 6+00E	1	L4+00N 7+00E	1	L2+00N 8+00E	1
L6+00N 6+50E	1	L4+00N 7+50E	25	L1+00N 0+00E	1
L6+00N 7+00E	1	L4+00N 8+00E	1	L1+00N 0+50E	1
L6+00N 7+50E	1	L3+00N 0+00E	1	L1+00N 1+00E	1
L6+00N 8+00E	2	L3+00N 0+50E	1	L1+00N 1+50E	2

		On Mt. Wil	son	
	SAMPLE#	AU*		
		ppb		
	L1+00N 2+00E	2		
	L1+00N 2+50E	1		
	L1+00N 3+00E	1		
	L1+00N 3+50E	1		
	L1+00N 4+00E	1		
		_		
	L1+00N 4+50E	1		
	L1+00N 5+00E	ĩ		
	L1+00N 5+50E	1		
	L1+00N 6+00E	5		
	L1+00N 6+50E	2		
	L1+00N 7+00E	1		
	L1+00N 7+50E	1		
	L1+00N 8+00E	2		
	L0+00N 0+00E	1		
	L0+00N 0+50E	2		
	L0+00N 1+00E	1		
	L0+00N 1+50E	ī		
	LO+00N 2+00E	1		
	L0+00N 2+50E	3 2		
	L0+00N 3+00E	۷		
	L0+00N 3+50E	1		
	L0+00N 4+00E	1		
	L0+00N 4+50E	1		
	L0+00N 5+00E	1		
	L0+00N 5+50E	1		
	L0+00N 6+00E	1		
	L0+00N 6+50E	1		
	L0+00N 7+00E	ĩ		
	L0+00N 7+50E	1		
	L0+00N 8+00E	1		
	HOTOON STOCE	T	Ag ppm	Cu ppm
Rock Samples	L9-R15	7	1.0	tr
*	L9-R16	23	1.9	_
	L9-R17	16	0.5	_
	L9-R18	2	0.1	
	L9-R19	13		_
	L9-R20		0.1	_
	L9-R21	36	1.2	
	T3_K5T	1	0.2	56

^{*}Extracted from Prospecting Project Lab Reports, Acme File Nos. 88-2067, 88-2357.

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUN 11 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: SOIL

AU * ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

. D.TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS

NEW CLAIMS on

CORDILLERAN ENGINEERING PROJECT-OKA * MT. WILSON File # 88-1892 Page 1

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
L1+00N 8+50E L1+00N 9+00E L1+00N 10+00E L1+00N 10+50E L1+00N 11+00E	1 1 1 2	L2+00S 9+00E L2+00S 9+50E L2+00S 10+00E L2+00S 10+50E L2+00S 11+00E	3 15 1 5 1
L0+00N 8+50E L0+00N 9+00E L0+00N 9+50E L0+00N 10+00E L0+00N 10+50E	1 1 1 9	L3+00S 4+00E L3+00S 4+50E L3+00S 5+00E L3+00S 5+50E L3+00S 6+00E	1 1 3 5
L0+00N 11+00E L1+00S 4+00E L1+00S 4+50E L1+00S 5+00E L1+00S 5+50E	1 110 1 1 17	L3+00S 6+50E L3+00S 7+00E L3+00S 7+50E L3+00S 8+00E L3+00S 8+50E	1 1 1 4 1
L1+00S 6+00E L1+00S 6+50E L1+00S 7+00E L1+00S 7+50E L1+00S 8+00E	1 1 4 6 1	L3+00S 9+00E L3+00S 9+50E L3+00S 10+00E L3+00S 10+50E L3+00S 11+00E	3 1 1 1 1
L1+00S 8+50E L1+00S 9+00E L1+00S 9+50E L1+00S 10+00E L1+00S 10+50E	1 1 2 1 2	L4+00S 4+00E L4+00S 4+50E L4+00S 5+00E L4+00S 5+50E L4+00S 6+00E	1 1 1 1 5
L1+00S 11+00E L2+00S 4+00E L2+00S 4+50E L2+00S 5+00E L2+00S 5+50E	1 1 2 5 1	L4+00S 6+50E L4+00S 7+00E L4+00S 7+50E L4+00S 8+00E L4+00S 8+50E	1 1 1 7
L2+00S 6+00E L2+00S 6+50E L2+00S 7+00E L2+00S 7+50E L2+00S 8+00E	1 1 4 4 3	L4+00S 9+00E L4+00S 9+50E L4+00S 10+00E L4+00S 10+50E L4+00S 11+00E	18 14 2 13 2
L2+00S 8+50E	1	L5+00S 4+00E	6

NEW CLAIMS on

CORDILLERAN ENGINEERING PROJECT-OKA * MT. WILSON FILE # 88-1892 Page 2

SAMPLE#	AU* ppb	SAMPLE#	AU* ppb
L5+00S 4+50E L5+00S 5+00E L5+00S 5+50E L5+00S 6+00E L5+00S 6+50E	3 1 4 1 6	L7+00S 7+50E L7+00S 8+00E L7+00S 8+50E L7+00S 9+00E L7+00S 9+50E	95 2 10 1 2
L5+00S 7+00E L5+00S 7+50E L5+00S 8+00E L5+00S 8+50E L5+00S 9+00E	2 2 1 2 1	L7+00S 10+00E L7+00S 10+50E L7+00S 11+00E L8+00S 4+00E L8+00S 4+50E	1 1 1 1 2
L5+00S 9+50E L5+00S 10+00E L5+00S 10+50E L5+00S 11+00E L6+00S 4+00E	1 1 1 2 1	L8+00S 5+00E L8+00S 5+50E L8+00S 6+00E L8+00S 6+50E L8+00S 7+00E	1 1 1 1 2
L6+00S 4+50E L6+00S 5+00E L6+00S 5+50E L6+00S 6+00E L6+00S 6+50E	1 1 1 3 1	L8+00S 7+50E L8+00S 8+00E L8+00S 8+50E L8+00S 9+00E L8+00S 9+50E	1 1 1 1
L6+00S 7+00E L6+00S 7+50E L6+00S 8+00E L6+00S 8+50E L6+00S 9+00E	1 1 11 2 1	L8+00S 10+00E L8+00S 10+50E L8+00S 11+00E	1 2 1
L6+00S 9+50E L6+00S 10+00E L6+00S 10+50E L6+00S 11+00E L7+00S 4+00E	1 1 1 2 1		
L7+00S 4+50E L7+00S 5+00E L7+00S 5+50E L7+00S 6+00E L7+00S 6+50E	4 1 1 2		
L7+00S 7+00E	32		

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: MAY 18 1988

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** BY FIRE ASSAY FROM 1/2 A.T.

D.TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #1 File # 88-1266R (Prospecting)

SAMPLE# AÚ**

oz/t

80E-01R .146

CORDILLERAN ENGINEERING PROJECT-OKA #1 FILE # 88-1266 (Prospecting)

SAMPLE# AU*

ppb

80E-01R 5070

CORDILLERAN ENGINEERING PROJECT-OKA #5 FILE # 88-1384 Page 5 (Prospecting)

SAMPLE# AU* ppb

Grid location 5000E-2495N 80M-01R 1

(sample is outside of Figure 10

area and therefore not shown).

ACME ANALYTICAL LABORATORIES LTD. DATE 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 DATE RECEIVED: MAY 17 1988 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P2 SOIL P3 ROCK ANALYSIS BY AA FROM 10 GRAM SAMPLE.

ASSAYER	٠: .ك	Froit.	D. TOYE OR C. LEONG	, CERT	TIFIED E	B.C. ASSAYE	RS
CORDILLE	RAN ENG	INEERIN	NG PROJECT-OKA #8 (Prospecting)	File			
SAMPLE#	As	Au*	(,		Soil G	3550N Grid eochem	
	PPM	PPB		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			
6650E 3650N	32	6	SAMPLE#	2 ~	70		
6650E 3625N	29	3	OAM DE#	As PPM	Au*	SAMPLE#	AU*
6650E 3600N	75	43		FFM	PPB		ppb
6650E 3575N	117	7	6750E 3650N	81	7		
6650E 3550N	805	280	6750E 3625N	31	1 1	80R-01R	11140
			6750E 3600N	16	1	80E-02R	1050
6650E 3525N	80	5	6750E 3575N	29	1	80E-03R	490
6650E 3500N	70	1	6750E 3550N	46	2	80E-04R	97
6650E 3475N	43	9	0.302 33301	40	2	80E-05R	370
6650E 3450N	51	11	6750E 3525N	113	8		
6675E 3650N	23	1	6750E 3500N	448	91		
			6750E 3475N	230	11		
6675E 3625N	51	1	6750E 3450N	54	1		
6675E 3600N	46	3	0,50% 3450N	J- 1	1		
6675E 3575N	89	2					
6675E 3550N	489	76					
6675E 3525N	693	49					
6675E 3500N	309	152					
6675E 3475N	85	9					
6675E 3450N	77	5					
6700E 3650N	30	1					
6700E 3625N	74	8					
6700E 3600N	65	6					
6700E 3575N	62	9					
6700E 3550N	177	102					
6700E 3525N	99	124					•
6700E 3500N	72	41	•			٠.	
6700E 3475N	12	4		•		1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	÷~
6700E 3450N	106	13					•
6725E 3650N	40	6					
6725E 3625N	75	15					
6725E 3600N	174	3					
6725E 3575N	334	260					
6725E 3550N	307	109					
6725E 3525N	129	6					
6725E 3500N	47	1					
6725E 3475N	1122	490					

6725E 3450N

STD C/AU-S

460

52

770

39

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: MAY 25 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: 3/88...

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY AA FROM 20 GRAM SAMPLE.

CORDILLERAN ENGINEERING PROJECT-OKA #11 File # 88-1600 (Prospecting)

SAMPLE#	Ag PPM	Au* PPB
80R-02R 80R-03R 80R-04R 80E-06R 80E-07R	- - - -	1 11 27 2 38
80E-08R 80E-09R 80E-10R 80E-11R 80E-12R	- - - -	5 1 22 1 1
80E-13R 80E-14R 80E-15R 80E-16R 80E-17R	-	1 12 41 445 1290
80E-18R 80E-19R 80E-20R 80E-21R 80E-22R	 - - -	44 790 79 46 27
80E-23R 80E-24R 80E-25R 80E-26R 80E-27R	233.5 [/] 2 -	4 220 2300 155 475
80E-28R 80E-29R 80E-30R 80E-31R STD C/AU-R	- [69 1070 3370 48 520

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUN 07 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: JUN 07 1988

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: ROCK

AU* ANALYSIS BY ACID LEACH/AA FROM 20 GM SAMPLE.

ASSAYER: D.TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS

CORDILLERAN ENGINEERING PROJECT-OKA #15 File # 88-1814 (Prospecting)

SAMPLE# AU* ppb 80E 32R 250 80E 33R 17 80E 34R 7 80E 35R 3 80E 36R 4 80E 37R 17 80E 38R 17 80E 39R 84

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager
JOHN G. PAYNE, Ph. D. Geologist

P.O. BOX 39 8887 NASH STREET FORT LANGLEY, B.C. VOX 1JO

Report for: Paul Donkersloot,

PHONE (604) 888-1323

Cordilleran Engineering Ltd., 1980 - 1055 West Hastings Street,

Invoice 7970 February 1988

VANCOUVER, B.C., V6E 2E9

Property: Oka

Samples: 6 rock chips from reverse circulation drilling:

AND, FGSB, MAROON ROCK, MGS, TFP, XTF,

Summary: Samples are grouped as follows:

1.0 Andesite

1.1 Porphyritic Andesite

phenocrysts of plagioclase, minor ones of hornblende in a groundmass dominated by plagioclase with minor amounts of several of quartz, sericite, carbonate, amphibole

AND dolomite-(chlorite-pyrite) amygdules; calcite vein

MAROON ragged plagioclase phenocrysts; extremely fine grained

groundmass

TFP groundmass of plagioclase with minor tremolite, quartz,

ankerite, chlorite, sphene, and opaque

1.2 Aphanitic Andesite/Basalt

AND one fragment, minor plagioclase phenocrysts altered to dolomite in extremely fine grained groundmass; amygdule of quartz-(dolomite)

1.3 Metamorphosed Aphanitic Andesite/Dacite

hornfelsed, dominated by plagioclase with lesser prismatic tremolite or granular diopside; in part with coarse grained patches of quartz

MGS plagioclase-tremolite with patches of ankerite and lesser chlorite and anhydrite; other fragments of plagioclase-diopside with coarser grained patches of quartz; veinlets of opaque, of anhydrite, and of quartz

TFP plagioclase-diopside-(quartz-opaque)

XTF plagioclase-diopside-(garnet) with angular patches of quartz of uncertain origin; ankerite replacement; coarser patches and veinlets of calcite, minor tremolite(?)

2.0 Dacite, Dacite/Andesite

2.1 Porphyritic Dacite (Metamorphosed)

phenocrysts of plagioclase in groundmass of plagioclase-quartz

FGSB patches of biotite-(opaque) and chlorite-(calcite), in part after hornblende phenocrysts; veinlets of dolomite/calcite and gypsum-(kaolinite)

2.2 Hornfelsed Dacite/Andesite

MAROON plagioclase-biotite with minor tremolite/actinolite, quartz, opaque

3.0 Skarn

variable with diopside and/or garnet, with or without quartz, ankerite/dolomite, chlorite

MGS dominated by quartz with diopside, garnet, and anhydrite(?), locally calcite/ankerite and chlorite

TFP one fragment: garnet-diopside-sericite after plagioclase (altered to chlorite-quartz)

XTF quartz-diopside-garnet (after andesite, quartz occurs in coarser grained, commonly angular patches as in less altered andesite)

4.0 Metasedimentary Rocks

AND two fragments: quartz-chlorite-(opaque), quartz-dolomite- (chlorite-opaque)

MAROON one fragment; quartz with lesser, commonly interstitial calcite and actinolite

5.0 Marble

very fine grained marble

MGS a few fragments

John G. Payne 604-986-2928

Sample: AND Porphyritic, Amygdaloidal Andesite, with Calcite Vein; Minor Metamorphic Quartz-Chlorite-Dolomite Schist(?) and Trace Basalt/Andesite cut by Fluorite Vein

Most fragments are of a porphyritic andesite containing plagioclase phenocrysts in a groundmass of plagioclase-sericite-dolomite-quartz. Amygdules and a late vein are dominated by dolomite. A few fragments are of weakly foliated quartz-chlorite-dolomite schist and one is of basalt/andesite.

andesite (90%	of sample)		
phenocrysts		amygdules	
plagioclase	7- 8%	dolomite	4- 5%
hornblende	Ø.5	chlorite	1
apatite	minor	pyrite	Ø.5
groundmass			
plagioclase	60-65		
sericite	5- 7	vein	
quartz	3- 4	dolomite	1- 2
dolomite	3 - 4		
ilmenite/Ti-c	oxide Ø.5		
pyrite	Ø.1		
apatite	minor		

Plagioclase forms euhedral, prismatic phenocrysts averaging $\emptyset.8-1.5~\text{mm}$ in length. Alteration is strong to complete to very fine grained dolomite.

One fragment contains part of a euhedral hornblende (?) phenocryst at least 1.2 mm across. It is altered completely to extremely fine grained chlorite with a patch of very fine grained dolomite-(hematite) in the core. Chlorite commonly is oriented perpendicular to the borders of the phenocryst. Along the border of the phenocryst are abundant Ti-oxide patches averaging 0.02-0.03 mm in size. The euhedral outline of this patch suggests that it is an altered hornblende phenocryst rather than an amygdule.

Apatite forms a few subhedral, prismatic phenocrysts averaging $\emptyset.15-\emptyset.25$ mm in length.

The groundmass is dominated by lathy plagioclase grains averaging $\emptyset.1-\emptyset.15$ mm in length. Interstitial to these are extremely fine grained patches of sericite, chlorite, and dolomite. Opaque (ilmenite)/semiopaque (Ti-oxide) forms disseminated equant grains averaging $\emptyset.02$ mm in size, with a few up to $\emptyset.3$ mm across. Apatite forms disseminated subhedral prismatic grains averaging $\emptyset.05-\emptyset.1$ mm in size. Pyrite forms a few disseminated grains averaging $\emptyset.03-\emptyset.07$ mm in size, and one patch $\emptyset.5$ m across of an aggregate of similar grains. Quartz forms interstitial, equant grains averaging $\emptyset.03-\emptyset.12$ mm in size.

Amygdules up to 3 mm across are dominated by very fine to fine grained dolomite. A few contain patches of extremely fine grained chlorite. A few contain patches up to 1.7 mm long of very fine grained opaque (pyrite), and a few contain disseminated, subhedral to euhedral grains up to 0.1 mm across of pyrite. Some smaller, more irregular patches are of extremely fine grained chlorite and very fine grained dolomite.

Two fragments (7% of sample) are of a metamorphic rocks. One is a very fine to locally fine grained, poorly foliated schist(?) dominated by quartz and lesser chlorite, with much less opaque. The other has a somewhat similar texture, and is dominated by quartz and dolomite, with a few chlorite-rich patches and local concentrations of disseminated opaque, mainly in dolomite.

One fragment (1-2% of the sample) is of an aphanitic andesite/basalt with 3-5% phenocrysts of plagioclase (altered to dolomite). It contains a few ragged replacement patches of ankerite and minor disseminated pyrite. A subrounded amygdule up to 0.35 mm in size is of very fine grained quartz and much less dolomite. Along one side is a vein up to 0.1 mm wide of fine grained fluorite.

Sample FGSB Metamorphosed Porphyritic Dacite; Veinlets of Dolomite/Calcite and Gypsum

Ragged phenocrysts of plagioclase are set in a groundmass dominated by plagioclase-quartz. Patches of biotite-(opaque) and chlorite-(dolomite) probably are partly after hornblende phenocrysts. Veinlets are of dolomite/calcite and of gypsum.

phenocrysts plagioclase 10-12% apatite $\emptyset.1$ patches (possible in part altered hornblende phenocrysts) biotite 4 - 5 chlorite-dolomite 3-4 opaque 1 - 2 groundmass veinlets plagioclase 35-4Ø dolomite/calcite Ø.5% gypsum-(kaolinite?) guartz 35-4Ø Ø.3 biotite/chlorite 2-3 opaque trace chlorite apatite 0.4 trace

Plagioclase forms anhedral phenocrysts averaging $\emptyset.3-1$ mm in size. Borders generally are ragged, and intergrown with groundmass plagioclase-quartz. Alteration is slight to moderate to extremely fine grained sericite and dusty hematite.

Biotite occurs in patches which range from irregular to probable pseudomorphic aggregates after hornblende phenocrysts (up to 1 mm long). Biotite forms stubby flakes averaging 0.05-0.1 mm in length. Pleochroism is from pale to light or medium brown. Lighter colored biotite probably is altered towards chlorite. Chlorite occurs in some patches with biotite and also forms separate patches with somewhat similar textures. Some chlorite patches also are intergrown coarsely with patches of dolomite. Opaque forms anhedral aggregates of very fine grains associated with biotite and to a lesser extent with chlorite.

Apatite forms a few stubby, prismatic phenocrysts averaging $\emptyset.15-\emptyset.2$ mm long. Many are light grey in color from dusty opaque inclusions. These grade downwards in size to groundmass prismatic apatite grains averaging $\emptyset.05-\emptyset.1$ mm in length. Apatite commonly is concentrated with biotite clusters.

The groundmass is dominated by plagioclase and quartz; the former as ragged grains averaging $\emptyset.03-\emptyset.1$ mm in size, and the latter as anhedral, equant grains averaging $\emptyset.03-\emptyset.05$ mm in size. Textures range from submosaic to slightly interlocking, with the latter more prominent in finer grained patches. Plagioclase is altered slightly to sericite and minor dolomite. Biotite, chlorite, and dolomite form disseminated, extremely fine to very fine grains and aggregates, intergrown with groundmass plagioclase and quartz.

Dolomite/calcite forms irregular patches and wispy to well defined veinlets up to 0.2 mm wide of very fine to fine grain size.

Gypsum forms a vein up to 0.2 mm wide of fine to extremely fine grains. Interstitial to gypsum are minor patches up to 0.1 mm in size of cryptocrystalline, light brown kaolinite(?).

A very irregular veinlet averaging $\emptyset.\emptyset3-\emptyset.\emptyset5$ mm wide on the edge of one fragment consists of opaque.

A veinlet up to $\emptyset.\emptyset2$ mm wide consists of extreme fine grained, light yellow, chlorite(?).

Sample Maroon Rock

Hornfelsed Dacite/Andesite + Minor Metamorphosed Porphyritic Andesite and Quartz-Actinolite-Calcite-Opaque Metasedimentary Rock

Most of the fragments are of aphanitic to very fine grained hornfelsed dacite/andesite. Some of these contain veinlets and replacement patches of calcite-gypsum-(K-feldspar). Three fragments are of metamorphosed porphyritic andesite, and one is of a quartz-actinolite-calcite metasedimentary rock.

hornfelsed dacite/andesite

plagioclase	60-65%
biotite	30-35
tremolite/actinolite	Ø- 5
quartz	0-10
opaque	1- 5
tourmaline	$\emptyset - \emptyset \cdot 2$

Aphanitic andesite/dacite fragments are dominated by plagioclase and biotite averaging 0.01-0.03 mm in grain size, with lesser disseminated opaque. Coarser grained fragments contain minor to moderately abundant quartz grains up to Ø.1 mm in size, and coarser grained clusters of biotite. One of these contains a ragged phenocryst of plagioclase Biotite is pleochroic from straw to medium reddish or orangish brown. Tremolite/actinolite forms subhedral to anhedral grains averaging Ø.Ø5-Ø.1 mm in size in one fragment; pleochroism is from pale to light green. One fragment contains a few patches up to Ø.2 mm in size of extremely fine grained actinolite/chlorite, in part intergrown with calcite, and possibly after hornblende. A few coarser fragments contain abundant disseminated patches of opaque averaging $\emptyset.1-\emptyset.2$ mm in size, and some contain abundant concentrations of Ti-oxide. One coarser fragment contains abundant stubby prismatic grains of tourmaline averaging Ø.Ø5-Ø.Ø8 mm long; pleochroism is from light to dark green.

Some fragments contain irregular patches and veinlets of fine to locally medium grained calcite and gypsum, and local patches of very fine grained K-feldspar.

One fragment of porphyritic andesite has a similar groundmass to the aphanitic andesite, but also contains vague relic plagioclase phenocrysts averaging $\emptyset.7-1$ mm in size; these are recrystallized partly to aggregates somewhat similar in texture to the groundmass. The groundmass contains irregular patches of quartz and slightly coarser grained biotite.

Two smaller fragments of porphyritic andesite contains similar, ragged plagioclase phenocrysts averaging $\emptyset.3-\emptyset.5$ mm in size, and a few patches of actinolite up to $\emptyset.5$ mm in size in a groundmass of slightly interlocking, extremely fine grained plagioclase and very fine grained actinolite. They also contain minor biotite flakes and patches of ilmenite/Ti-oxide up to $\emptyset.1$ mm in size. One is cut by a veinlet of plagioclase $\emptyset.07$ mm wide.

The metasedimentary rock fragment is dominated by subrounded quartz grains averaging $\emptyset.05-\emptyset.1$ mm in size, with interstitial, in part skeletal, patches of calcite, and actinolite. Actinolite also forms a few subhedral prismatic grains $\emptyset.5$ mm in length. Pleochroism is from pale to light green. Opaque forms several patches up to $\emptyset.5$ mm size.

Sample MGS

Quartz-Garnet-Diopside-Anhydrite(?)-Ankerite Skarn, Metamorphosed and Replaced Porphyritic Andesite, Limestone

Fragments are of two main types: very fine to extremely fine grained skarn dominated by quartz with lesser diopside, garnet, anhydrite, and ankerite; and metamorphosed andesite (plagioclase-tremolite) in part altered to plagioclase-diopside with quartz-(anhydrite-ankerite) replacement. A few fragments are of very fine grained marble.

skarn

Skarn fragments range from extremely fine to very fine grained and are dominated by quartz with lesser amounts of one or more of diopside, garnet, anhydrite(?) ankerite/dolomite, and chlorite. Quartz commonly forms coarser grained patches relatively free of other minerals. One fragment contains an aggregate of very fine grained anhydrite intergrown with lesser quartz. One fragment is an aggregate of calcite with lesser anhydrite and minor radiating patches of brownish green chlorite. Diopside generally forms anhedral grains less than 0.05 mm in size. Garnet forms anhedral grains and patches averaging 0.05-0.1 mm in grain size. Finer grained, irregular patches of garnet commonly are intergrown intimately with ankerite. A few fragments are cut by partly braided veinlets averaging 0.02-0.03 mm wide of calcite and/or anhydrite.

metamorphosed andesite/dacite

Several fragments are dominated by extremely fine grained plagioclase, with disseminated prismatic grains of tremolite averaging 0.07-0.1 mm in length, and irregular patches of ankerite and disseminated grains of opaque (pyrite). A few of these also contain patches of extremely fine grained chlorite. Other fragments are dominated by extremely fine grained plagioclase-diopside with coarser grained replacement(?) patches of quartz, and less abundant irregular replacement patches of ankerite. A few fragments contain abundant patches of anhydrite intergrown with lesser quartz and ankerite. Anhydrite ranges from skeletal grains with poikilitic inclusions of quartz to elongate grains up to 1.1 mm long. A few fragments contain replacement veinlets and patches up to 0.2 mm wide of opaque. Several contain replacement patches/veins dominated by very fine grained anhydrite. One is cut by a quartz veinlet.

marble

Marble fragments are dominated by submosaic aggregates of calcite averaging $\emptyset.07-0.15$ mm in grain size, with a few grains up to $\emptyset.3$ mm across. Hematite forms dusty disseminated grains. One fragment is of a coarse calcite grain 1.7 mm across containing a few elongate patches of extremely fine grained quartz.

Sample TFP Porphyritic Hypabyssal Andesite; Hornfelsed Aphanitic Andesite

Most fragments are of a porphyritic hypabyssal andesite, with phenocrysts of plagioclase and minor ones of hornblende in a groundmass dominated by plagioclase with lesser tremolite/actinolite, quartz, ankerite, chlorite, sphene, and opaque (pyrite?).

Less abundant fragments are of a hornfelsed aphanitic andesite dominated by plagioclase with lesser diopside, and much less quartz and opaque.

One fragment of skarn consists of a patchy aggregate of garnet-epidote-ankerite and plagioclase-chlorite-quartz.

hypabyssal andesite	(75-80%)	veinlets	
phenocrysts		calcite	∅.1%
plagioclase	15-20%		
hornblende	1- 2		
groundmass			
plagioclase	60-65		
quartz	4-5		
tremolite	5- 7		
ankerite	2- 3		
chlorite	1- 2		
sphene	1- 2		
opaque	1		

Plagioclase forms subhedral, prismatic phenocrysts and clusters of a few phenocrysts averaging $\emptyset.5-1$ mm in size. Alteration is slight to sericite and moderate to dusty hematite.

Hornblende forms a few subhedral, prismatic phenocrysts up to 1.7 mm long. Alteration is complete to ragged, pseudomorphic tremolite intergrown intimately with extremely fine grained, slightly interlocking plagioclase/quartz.

Groundmass plagioclase forms slightly interlocking grains averaging $\emptyset.\emptyset3-\emptyset.1$ mm in size. Tremolite forms subhedral prismatic grains averaging $\emptyset.1-\emptyset.15$ mm in length. It is altered slightly to ankerite. Quartz forms interstitial grains averaging $\emptyset.\emptyset3-\emptyset.\emptyset7$ mm in size. Ankerite forms disseminated, anhedral grains averaging $\emptyset.\emptyset5-\emptyset.1$ mm in size. Chlorite forms interstitial, extremely fine grained patches with a light brownish green color. Sphene forms irregular patches up to $\emptyset.3$ mm in size of very fine grains. Opaque forms scattered, irregular patches averaging $\emptyset.\emptyset5-\emptyset.4$ mm in size; some of these are rimmed by irregular patches of epidote.

Ankerite forms a few veinlets up to 0.05 mm wide.

The hornfelsed, aphanitic andesite fragments (15-20%) are dominated by slightly interlocking plagioclase grains averaging $\emptyset.01-0.0-3$ mm in size, with a few up to $\emptyset.1$ mm across. Intergrown with finer grained plagioclase are granular aggregates of diopside averaging $\emptyset.01-0.02$ mm in grain size. Quartz and opaque each form scattered equant grains averaging $\emptyset.05-0.1$ mm in size.

One fragment of skarn (5%) is zoned; one half consists of an intimate intergrowth of garnet, diopside and sericite, with lesser epidote; the other half consists of plagioclase altered strongly to extremely fine grained, light brownish green chlorite and scattered patches of quartz.

Sample XTF Metamorphosed Andesite with Quartz-Rich Patches of Uncertain Origin; Diopside-Garnet-Quartz Skarn; Calcite Replacement Patches and Veinlets

Most of the fragments are of an aphanitic, metamorphosed andesite dominated by plagioclase and lesser diopside and/or ankerite, with angular patches of coarser grained quartz. The origin of the quartz-rich patches is uncertain; they do not appear to be either angular fragments caught up in the andesite, or replacement patches. Some fragments are more strongly altered to diopside-garnet-quartz skarn. Calcite forms a replacement patch up to a few mm across.

plagioclase 35-40% diopside 17-20 garnet 2-3 quartz 25-30 ankerite 4-5 replacement patches, veinlets calcite 5-7 tremolite(?) minor

In the hornfelsed andesite, plagioclase forms anhedral, slightly interlocking grains averaging 0.01-0.02 mm in size, and a few anhedral grains up to 0.1 mm in size.

Diopside forms granular aggregates averaging 0.01-0.02 mm in size and a few ragged, equant to prismatic grains up to 0.1 mm in size.

Quartz forms angular patches averaging $\emptyset.7-1.5$ mm in size of submosaic grains averaging $\emptyset.07-\emptyset.2$ mm in size. A few patches are over 3 mm across.

Some fragments contain patches up to 1 mm in size of quartz averaging $\emptyset.02-0.03$ mm in grain size, with minor to moderately abundant disseminated, granular diopside averaging $\emptyset.01$ mm in grain size. One large fragment of this type is cut by a braided vein up to 1 mm wide of very fine to fine grained calcite.

Ankerite/calcite is concentrated moderately in patches of extremely fine grains intergrown with diopside.

One slightly coarser grained fragment is dominated by very fine grained calcite/ankerite and lesser quartz; it may be a replacement of the andesite or may be an alteration of a separate rock type.

In several fragments, alteration of the andesite is stronger to intimately intergrown aggregates of very fine to extremely fine grained diopside-garnet, with patches of coarser grained quartz as in the less altered fragments.

The large replacement patch consists of interlocking, fine to medium grains of calcite.

Several fragments are cut by wispy veinlets of calcite and one is bordered by a vein at least $\emptyset.2$ mm wide of similar calcite.

One fragment is cut by a wispy, slightly braided veinlet up to $\emptyset.03$ mm wide of tremolite(?).

MAY 3 1. 88

VLF AND MAGNETOMETER

SURVEY

ON THE

OKA PROPERTY

FOR

CORDILLERAN ENGINEERING LTD.

SURVEY BY

S.J.V. CONSULTANTS LTD.

OSOYOOS M.D.

N.T.S. 82E/13

MAY 1988

Report By Syd J. Visser S.J.V. Consultants LTD.

TABLE OF CONTENTS

	PAGE
INTRODUCTION	1
FIELD WORK	1
DATA PRESENTATION	2
INTERPRETATION	2
CONCLUSION	3

PLATES

		Scale
Plate 1	Ground Magnetometer Contour	1:5,000
Plate 2	Ground Magnetometer Profile	1:5,000
Plate 3	Ground VLF-EM Profiles	1:5,000
Plate 4	VLF-EM Fraser Filter Contour	1:5,000
Plate 5	Topography Gradient	1:5,000
Plate 6	Mag & VLF-EM Compilation Map	1:5,000

INTRODUCTION

A VLF and Magnetometer survey was conducted for Cordilleran Engineering LTD., by S.J.V. Consultants LTD., on the Oka Claims near Peachland B.C. during the period between May 4 and May 16, 1988.

The purpose of the survey was to trace a mineralized shear zone near a geochemical anomaly and to aid geological mapping.

FIELD WORK

The field work was performed by Rolf Krawinkel (Geophysicist) and Glenn Ayrton (student) from May 4 to May 16. 1988.

Two Gem-18 (one used as base station) and one Gem-8 Proton Precession Magnetometer, were used for the magnetometer survey. All resultant data was corrected for diurnal variations, base shifted to a base station reading and computer plotted on one contour map (Plate 1) and one profile plot (plate 2).

The VLF survey was performed using two geonics EM-16 VLF receivers. The Vlf transmitter station located in Hawaii was used as the source for the electromagnetic field because the direction from this station most closely parallels the direction of the interesting structure. Both the dip angle and quadrature were recorded and computer plotted on a profile map (Plate 3). The dip angle data was Fraser filtered and the positive part presented on a contour map (Plate 4).

The slope between stations were recorded along with the Vlf-EM data and plotted as profiles (Plate 5).

DATA PRESENTATION

The data is presented on the following 6 plots:

- Plate 1 Ground Magnetometer Contour
- Plate 2 Ground Magnetometer Profile
- Plate 3 Ground VLF-EM Profiles
- Plate 4 Vlf-EM Fraser Filter Contour
- Plate 5 Topography Gradient
- Plate 6 Mag and Vlf-EM Compilation Map

INTERPRETATION

The magnetics is fairly consistent throughout most of the grid area (Plate 1 and 2) with the exception of the area south of approx 2600N to 2800N in the central parts of the grid, the north east part of the grid and numerous short wave length features.

The magnetics indicate a geological contact at approx. 2600N on line 4800E to approx. 2850N on line 5600E with the more magnetic rocks to the south. It is difficult to locate the exact placement of the magnetic contact because there is no sharp edge effect. The contact may be at approx. 2800N as suggested by the Vlf conductor (Plate 6).

The Vlf-EM survey indicates a series of mainly short strike length crossovers (Plate 3 and 4). The strike of the crossover (conductors) axis (Plate 6) changes in direction from NE-SW in the eastern part of the grid to E-W in the western part of the grid. The strongest conductor appear in north east corner of the grid. The E-W striking conductor may be of the same conductivity but show response because of poorer coupling with the primary electromagnetic field (azimuth from Hawaii is approx. deg). The conductors may also be somewhat enhanced by the topography (Plate 5). An example where the slope of topography is the same as the crossover is on line 7400E on

the north east corner of the grid. The topography does not appear to be the main cause of the crossovers in any part of the grid.

The crossover striking from approx. 2850N on line 4800E to 2775N on line 5600E appears to be a geological contact and may correlate with the magnetics. The remainder of the crossovers are likely due to conduction sheer zones, conductive faults or weakly conductive mineralized zones.

There appears to be no direct correlation between the magnetics and the Vlf-EM crossovers. The station spacing when searching for narrow shear zones especially with magnetics should probably be decreased to 12.5M.

CONCLUSION

The magnetic survey indicates a magnetic contact at approx. 2800N in the central part of the grid with the more magnetic rocks to the south, The Vlf-EM also indicates a geological contact in this area.

The VIf-EM shows a series of conductors which are probably due to conductive shear zones on faults, striking NE-SW in the eastern part of the grid and E-W in the western part of the grid. These conductors should be correlated with the geochem. anomalies to locate favorable areas for drill targets.

Syd Visser F.G.A.C. Geophysicist

J.V. Consultants LTD.

MARKED LINES WITH STATIONS AT 25 METRES

CONTOUR INTERVAL: 100 NANOTESLAS(GAMMAS)
POSTED : 500 NANOTESLAS(GAMMAS)

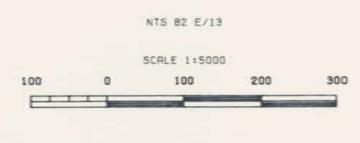
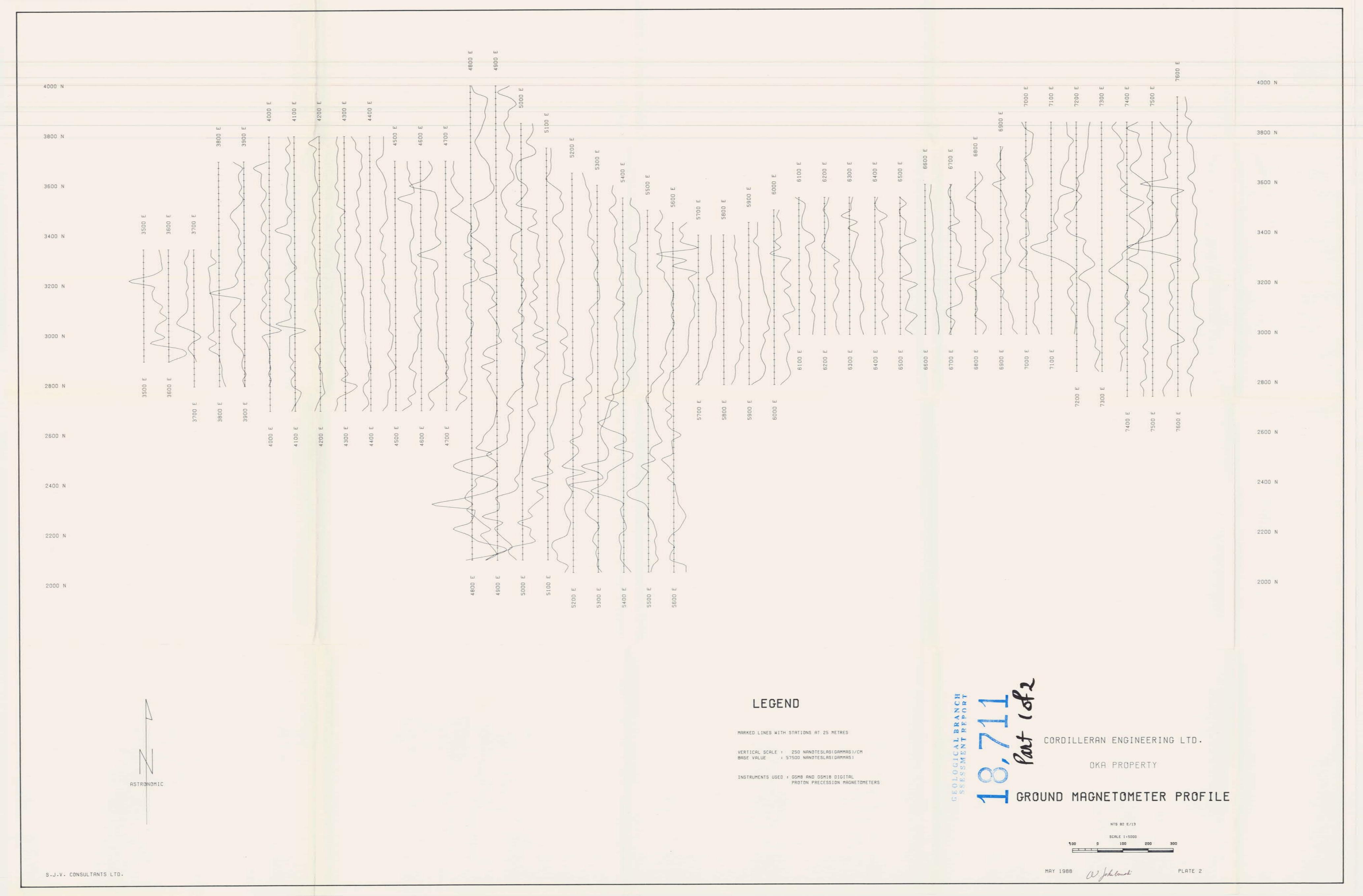
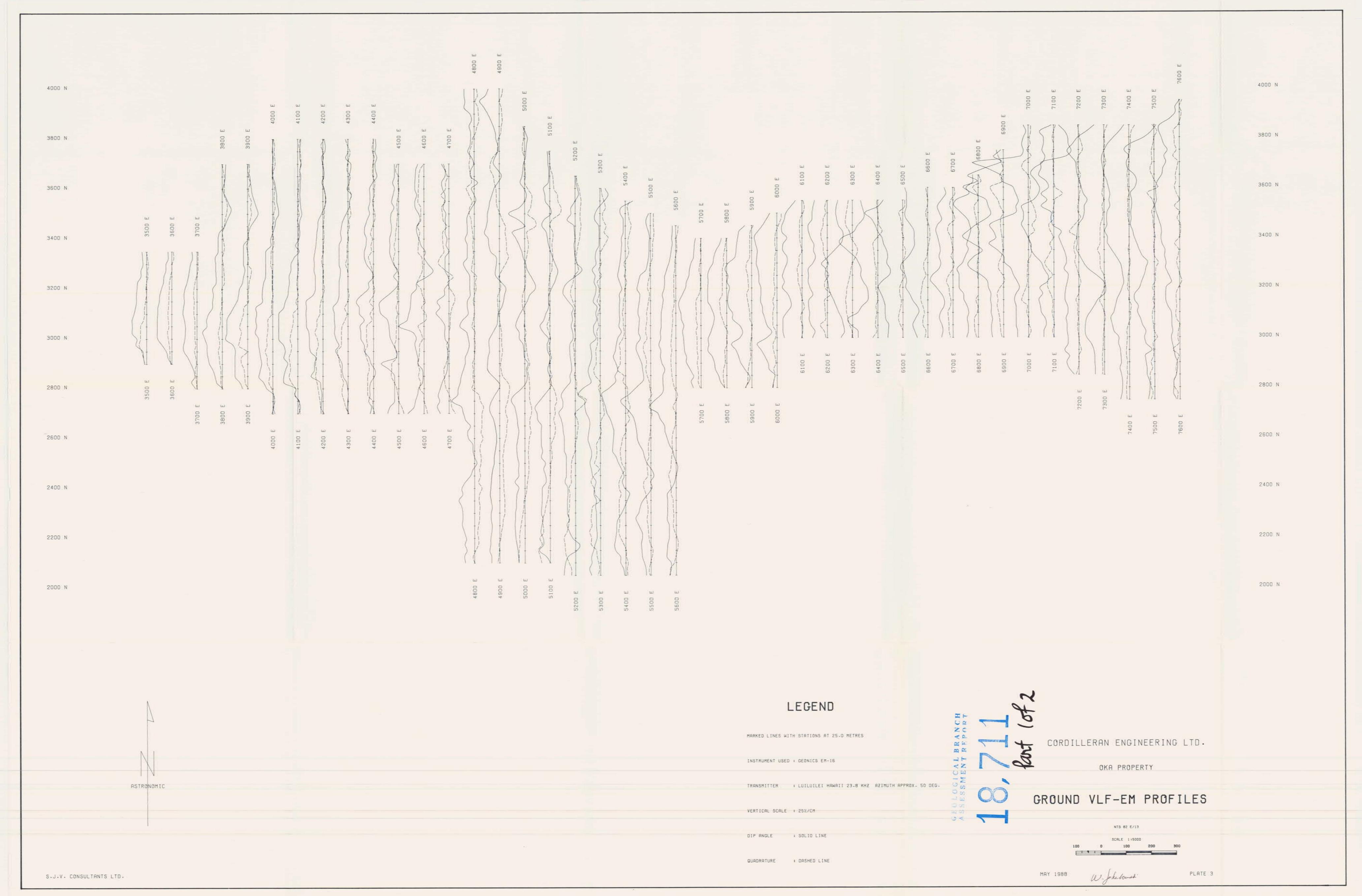
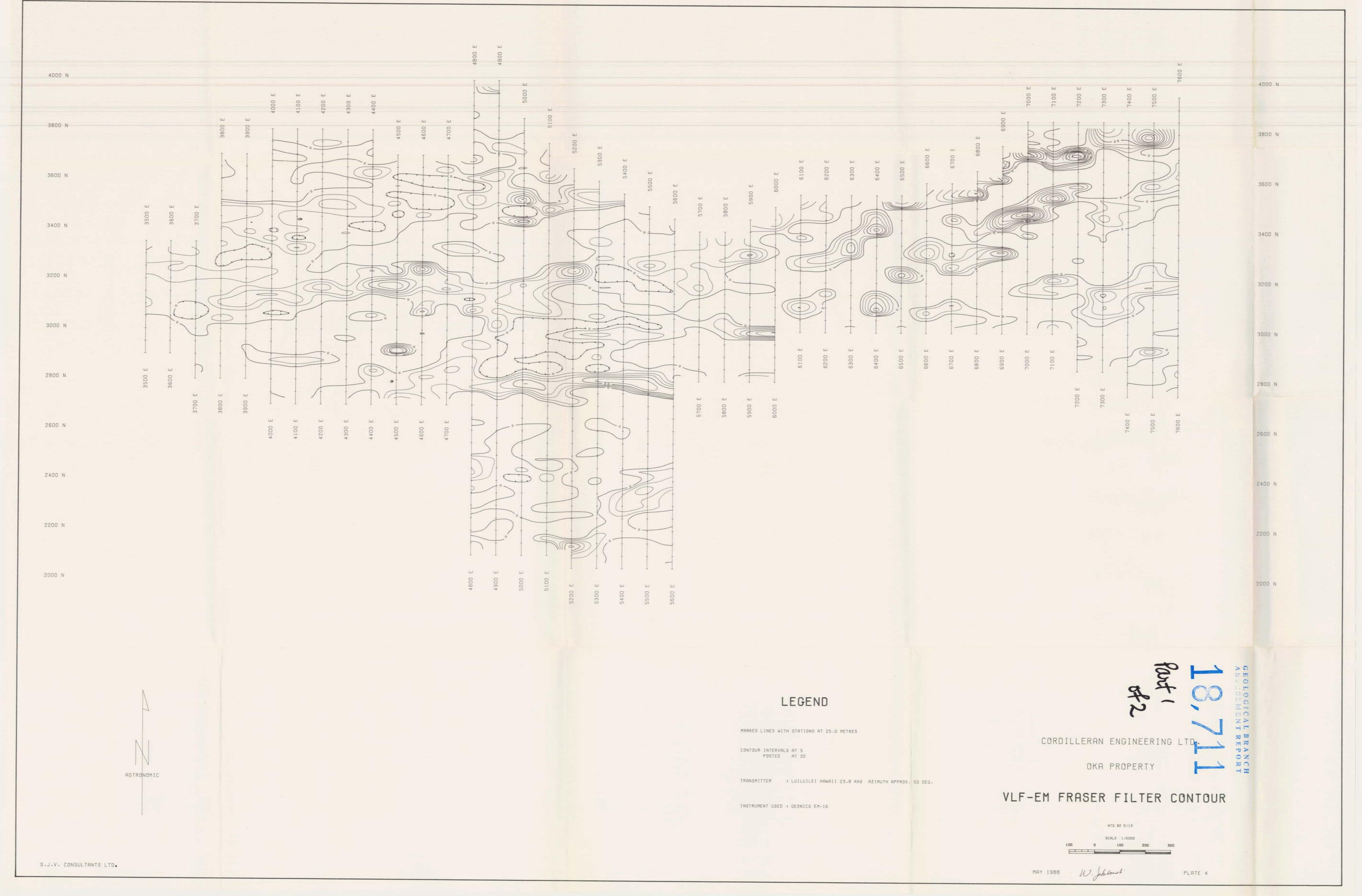
INSTRUMENTS USED : GSM8 AND GSM18 DIGITAL PROTON PRECESSION MAGNETOMETERS

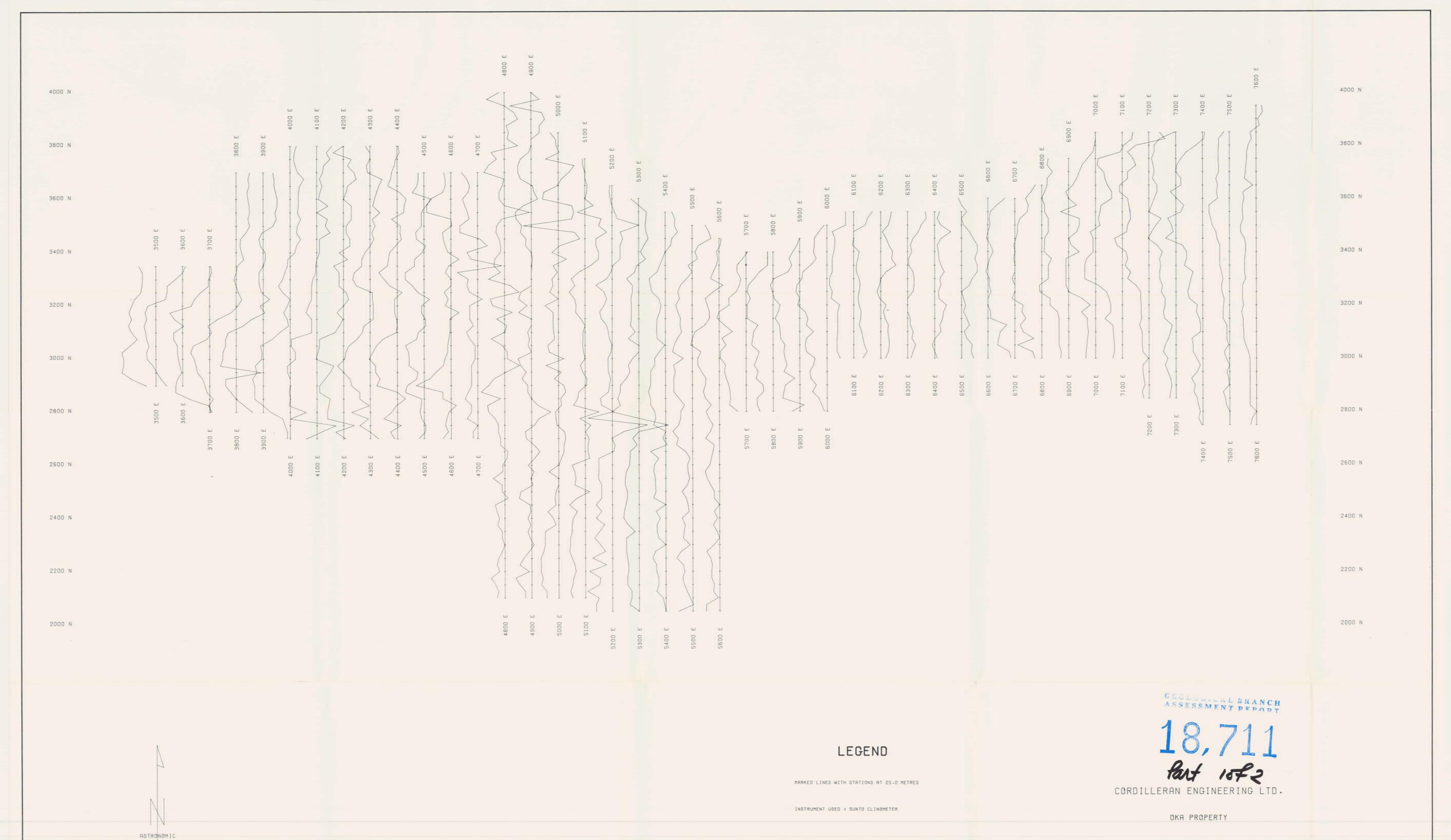
BRANCH PFPORT GEOLOGICAL ASSESSMENT

CORDILLERAN ENGINEERING LTD.

OKA PROPERTY

GROUND MAGNETOMETER CONTOUR


PLATE 1

S.J.V. CONSULTANTS LTD.

VERTICAL SCALE : 25%/CM

TOPOGRAPHY GRADIENT: SOLID LINE

MAY 1988 W. Johnsonsh. S.J.V. CONSULTANTS LTD.

TOPOGRAPHY GRADIENT

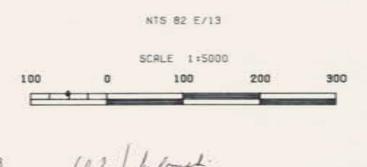
NTS 82 E/13

PLATE 5

ASTRONOMIC

LEGEND

MARKED LINES WITH STATIONS AT 25.0 METRES VLF-EM CONDUCTOR AXIS MEDIUM CONDUCTIVITY WERK CONDUCTIVITY _____


MAGNETIC ANOMALY
CONTACT ----

GEOLOGICAL BRANCH ASSESSMENT REPORT

CORDILLERAN ENGINEERING LTD.

OKA PROPERTY

MAG & VLF-EM COMPILATION MAP

S.J.V. CONSULTANTS LTD.

PLATE 6