# GEOCHEMICAL \& GEOPHYSICAL REPORT 

on the

## ZUMAR PROPERTY

VERNON MINING DIVISION BRITISH COLUMBIA

LATITUDE $50^{\circ} 1^{\prime}$ NORTH
LONGITUDE $119^{\circ} 38^{\prime}$ WEST
NTS MAPSHEET 82L/4E
for

SKYWORLD RESOURCES \& DEVELOPMENT LTD.
\#2460-555 WEST HASTINGS STREET VANCOUVER, BRITISH COLUMBIA
by
Douglas H. Wood, B.Sc., FGAC Consulting Geologist

February 6, 1989
ASSESSMENT REPORT 18713 MINING DIVISION: Vernon


FILE NO:

## GEOCHEMICAL \& GEOPHYSICAL REPORT

on the

ZUMAR PROPERTY

VERNON MINING DIVISION
BRITISH COLUMBIA
LATITUDE $50^{\circ} 1^{\prime}$ NORTH LONGITUDE $119^{\circ} 38^{\circ}$ WEST

NTS MAPSHEET 82L/4E
for

SKYWORLD RESOURCES \& DEVELOPMENT LTTD \#2460-555 WEST HASTINGS STREET VANCOUVER, BRITISH COLUMBIA B
by


風 6 Consulting Geologist

[^0]

## Table of Contents

1.0 SUMMARY ..... 1
2.0 INTRODUCTION ..... 3
2.1 Terms of Reference ..... 3
2.2 Location and Access ..... 3
2.3 Topography, Climate and Vegetation ..... 5
2.4 Property Status ..... 5
2.5 Survey Procedures ..... 6
3.0 PROPERTY HISTORY ..... 9
4.0 GEOLOGY ..... 9
5.0 GEOCHEMISTRY ..... 11
5.1 Introduction ..... 11
5.2 Results and Interpretation ..... 12
5.21 Gold ..... 12
5.22 Copper ..... 12
5.23 Vanadium ..... 13
5.24 Potassium ..... 13
5.25 Calcium ..... 14
5.26 Phosphorous ..... 14
6.0 GEOPHYSICS ..... 16
6.1 Introduction ..... 16
6.2 Results and Interpretation ..... 16
7.0 CONCLUSIONS ..... 17
8.0 RECOMMENDATIONS ..... 18
8.1 Projected Cost Breakdown ..... 19
APPENDIX A - CERTIFICATE OF QUALIFICATIONS ..... 20
APPENDIX B - REFERENCES ..... 21
APPENDIX C - ASSAYERS' CERTIFICATES
APPENDIX D - GEOCHEMISTRY STATISTICS

## List of Figures

1. Location Map ..... 4
2. Claim Map ..... 7
3. Regional Geology ..... 10
4. Gold Geochemistry follows text
5. Copper Geochemistry ..... follows text
6. Vanadium Geochemistry follows text
7. Potassium Geochemistry follows text
8. Calcium Geochemistry follows text
9. Phosphorous Geochemistry ..... follows text
10. Magnetic Profiles follows text
11. VLF-EM Profiles ..... follows text

### 1.0 SUMMARY

A mineral exploration program conducted over the Zumar 2 and 4 Claims during late November and early December 1988 has resulted in a reinterpretation of an area of anomalous copper in soils and determined that the overall chemistry and structural features (derived from a VLF-EM interpretation) are consistent with a north-northeasterly striking zone of copper mineralization.

Anomalously high values for copper in soils were noted in two distinct clusters consistent with previous property soil surveys - the Zumar vein on the Zumar 4 claim and a copper-silver anomaly located in the southwest portion of the Zumar 4 claim (Wilmot, 1987; Morrison, 1986).

Gold and silver geochemistry were found to be of limited value in outlining either the Zumar vein or the Zumar 4 target area.

By examining several other trace elements including calcium, Phosphorus, Potassium and Vanadium, the anomalous clusters of copper in soils are shown to be similar while existing in separate lithological and structural environments. The Zumar vein is located in what appears to be a roughly east-west quartz fracture filling system with an associated VLF-EM conductor and a local magnetic high. The anomalous zone for copper within the Zumar 4 is associated with a strong north-northeasterly trending VLF-EM conductor and also with a local magnetic high.

The similarity in chemistry between the known mineralization at the Zumar vein and in the southern portion of the Zumar 4 claim is interpreted to be the result of a syngenetic source for mineralization.

A two phase continued exploration program is recommended to further test the economic potential of the Zumar 4 target area
and other portions of the Zumar claims not as yet explored. Phases II should be success contingent upon the results of the first phase programs.

The first phase should include a detailed geological, geochemical, geophysical survey of the Zumar 4 target area in conjunction with further reconnaissance surveys elsewhere on the Zumar claims. The second phase consisting of surface bulldozer trenching and stripping is recommended to test detailed survey targets. Upon the completion of the second phase, should results warrant further exploration, a program of upto 1000 meters of diamond drilling is suggested. A separate budget would be required for any drilling programs.

The estimated cost of the first phase is $\$ 79,700$ and for the second phase is $\$ 19,200$ for a total of $\$ 98,900$. These further expenditures on the Zumar claims are well warranted by the encouraging results of the recent program.


Douglas H. Wood, B.Sc., FGAC Consulting Geologist


### 2.0 INIRODUCTION

### 2.1 Terms of Reference

Pursuant to a request from the directors of Skyworld Resources and Development Ltd., the present report summarizes the results of prior exploration programs conducted over the Zumar property and details the results of the most recent field work completed between November 28 and December 12, 1988.

The recent field program included reconnaissance scale soil sampling on east-west grid lines in conjunction with magnetometer and VLF-EM surveys. This work was conducted by crews and contractors employed by Laroth Engineering Ltd. of Vancouver, B.C. under the supervision of Mr. E.N. Larabie, P.Eng. Mr. D.H. Wood, Consulting Geologist, assisted with this program and visited the property during May 1988 and on November 26, 1988 prior to the commencement of exploration work.

The purpose of these surveys was to determine the probability of north-south trending gold mineralization similar to that reported to be present on the Brett Claims located approximately 20 km north of the Zumar property.

### 2.2 Location and Access

The Zumar property is located on the north side of Lambly Creek between Terrace and Sandberg Creek and is situated approximately 30 km by road northwest of the city of Kelowna, B.C. The property is accessed via Westside road from Kelowna, north to the Bear Creek (Lambly Creek) logging road and then for 16 km west. The L.C.P. (legal corner post) for the Zumar 2 and 4 claims is situated some 200 meters due north of the 16 km post on the north side of the logging road.


The property is located on the eastern half of NTS mapsheet 82L/4 and is centered at Latitude $50^{\circ} 01^{\prime}$ North, Longitude $119^{\circ} 38^{\prime}$ West.

### 2.3 Topography, Climate and Vegetation

The property lies within the Okanogan Plateau area of the British Columbia Interior Region. Elevations on the property range from 915 meters (3000 feet) at the southern boundary of the claims to over 1280 meters ( 4200 feet) at the northeast corner of the Zumar 2 claim. Slopes are gentle and ridge tops are rounded.

The property area lies within the rainshadow of the coast Mountains with precipitation being sparse and occurring mainly as snow during the winter months. Snow accumulation is generally less than 1 meter over the winter, allowing year round access to the property. Water for mining and milling purposes is available from local drainages.

Vegetation on the property is open pine and fir in most areas. Much of the property area has been logged over the past 20 to 30 years. Gully areas and north facing slopes tend to have thick growths of underbrush and deciduous trees. Abundant timber is available for mining purposes.

### 2.4 Property Status

The Zumar property comprises four metric grid mining claims totalling 56 units and covering some 1400 hectares. The claims are in good standing and are owned by Skyworld Resources and Development Ltd.

The particulars of the Zumar claims are as follows:

| Claim Name | Rec. \# | No. Units | Expiry Date |
| :--- | :---: | :---: | :--- |
| Zumar Gold | 2157 | 8 | Oct. 3, 1992 |
| Zumar 2 | 711 | 20 | Oct. 19, 1990. |
| Zumar 3 | 2090 | 20 | May 2, 1989 |
| Zumar 4 | 2026 | 8 | Nov. 1, 1991. |

During the course of the recent field program several of the key claim posts were examined and found to be well and legally located.

The writer has not verified title to any of these claims as this was beyond the scope of the present report and should be covered by an opinion provided by the company's counsel.

### 2.5 Survey Procedures

Grid emplacement was accomplished by chain and compass survey with stations on all east-west lines marked by two colour survey flagging every 25 meters. A cut and picket baseline was established with stations marked at 50 meter intervals north from the L.C.P. for the Zumar 2 and 4 claims. Stations on all eastwest grid lines were numbered east or west of the baseline. Slope corrections were made between stations on all lines.

The east-west grid lines were spaced at 200 meter intervals for 1000 meters to either side of the baseline. Within the southeast portion of the grid, an additional three fill-in grid lines were placed for 600 meters east of the baseline in an area where previous surveys indicated a north-south trend in silver geochemistry.

Soils were collected at 25 meter intervals for the 600 meters east of the baseline on the 100 meter spaced lines from $0+00 \mathrm{~N}$ to

$6+00 N$ and at 50 meter intervals elsewhere. Soil samples were placed in kraft paper bags and subsequently sent to Acme Analytical Laboratories in Vancouver, B.C. for analysis.

A magnetometer survey was conducted over the grid area using a Barringer Research Model GM-122 proton magnetometer. Readings were taken in gammas at 25 meter station and all lines were looped at the baseline to allow for correction of diurnal variations.

A VLF-EM survey was conducted using a Sabre Model 27 receiver tuned to the Jim Creek (Seattle), Washington station ( 24.8 KHz ). Readings were taken for dip angle and field strength at 25 meter stations.

### 3.0 PROPERTY HISTORY

The first modern references to mineralization on the Zumar claims dates to the late 1970 's when the Zumar 2 claim was staked. In late 1979 an east-west trending narrow quartz vein discovered near the north edge of the Zumar 2 claim (Zumar vein) was explored by diamond drilling along a strike length of 50 meters and to a depth of 30 meters.

A bulk tonnage sample of selected quartz material from the zumar vein totalling 60.8 tons was shipped from this vein to the Trail smelter in 1980 with a reported recovery grade of $0.139 \mathrm{oz} / \mathrm{t}$ gold and $1.23 \mathrm{oz} / \mathrm{t}$ silver.

In 1986 and 1987, after the property was acquired by Skyworld Resources and Development Ltd., exploration programs consisting of geochemical, geophysical, geological, trenching and diamond drilling extended the known length of the $Z u m a r$ vein and examined anomalous areas elsewhere on the property.

Based upon the results of these programs it was decided that the grade and down dip extent of the Zumar vein was not sufficient to warrant further development on the vein (Wilmot, 1987). It was also found that geochemical targets within other areas of the property were possibly related to a mineralized source (Wilmot, 1987; Morrison, 1986) and warranted further exploration.

Recently, north trending gold bearing structures have been reported at the Brett Claims located approximately 15 km north of and along the same geological trend as the Zumar property.

### 4.0 GEOLOGY

The Zumar property is underlain by a mixed assemblage of volcanic and sedimentary rocks ranging from Permian to Tertiary age.

Mote: This legend is common to Hational Geochenlcal Reconnalissance Map
4-1976; Open file 409; Map 5-1976; Open File 410 and Map 6-1976, Open

## quatermary

ZUMAR PROPERTY
45

## Legend

4. Glacial, lecustrine, and fluviatile gravel, sand, silt and elay iertiary


## Legond apdified und geology complled for the geochemical map by T.E. kainins from maps 1059A, by H.M.A. Rice 1945, 1946, and A.6. Jones

## Geological cartography by ebe ceological survay of Canad

6

Mineralization, as exposed at the Zumar vein occurs within narrow east-west trending quartz veins containing up to $5 \%$ pyrite with minor chalcopyrite. The host rock has been chloritized and is typically limonitic adjacent to the veins.

A north trending possibly fault related feature extends northnorthwesterly from the southwest corner of the Zumar 4 claim and separates Permian metavolcanics on the west from Tertiary sediments and volcanics on the east side of the structure.

Numerous Late Mesozoic to Tertiary intrusive rocks occur over the property area. These include granodiorite of the Nelson Intrusives and hypabyssal volcanics of probable Eocene or later age.

### 5.0 GEOCHEMISTRY

### 5.1 Introduction

Soils results for 415 samples were analyzed and thresholds for anomalous values derived for plotting and interpretive purposes using the method of Sinclair (1976). Symbolic maps were prepared by Mr. J. Harrop of Cyber Quest Exploration Systems Ltd. using the PC-Xplor software package on an IBM-AT compatible computer.

Data interpretation is based upon the authors' experience and upon suggestions made by Mr. Harrop. Values in excess of the derived high background population thresholds for the elements presented are considered anomalous.

### 5.2 Results and Interpretation

### 5.21 Gold (ppb)

Population
1
2

Mean
not determined
not determined

Thresholds
12.0 ppb
20.0 ppb

Three populations were inferred for gold soil values. The low values ( < 12 ppb ) are considered background. Higher values were empirically divided into two separate populations, those between 12 ppb and 19 ppb and those $\geq 20 \mathrm{ppb}$. Experience has shown that gold values in soils greater than 20 ppb are indicative of nearby sources of mineralization and should be considered anomalous.

Gold results for the grid area are spotty with a slight coincidence of anomalous values flanking the location of the Zumar vein (Figure 4). The source of anomalous gold values to the south of copper anomalies in the southern portion of the Zumar 4 claim is not clear, however the presence of these and coincident high background (12 to 19 ppb ) gold in soils in this area suggest close proximity to source.

### 5.22 Copper (ppm)

| Population | Mean | Thresholds |  |
| :---: | ---: | :---: | ---: |
| 1 | 23.195 | $\mathrm{n} / \mathrm{a}$ | 46.533 |
| 2 | 64.810 | 51.762 | 77.857 |
| 3 | 155.000 | 75.000 | 235.000 |

Three populations were derived for copper in soils. The low background population is considered to be indicative of unmineralized source rocks. Samples above the lower threshold of the middle population and particularly above the lower threshold of the high background population show very good correlation to
the known mineralization at the Zumar vein showing and within the southern portion of the Zumar 4 claim (figure 5). Symbol plots for copper were drafted to show both these populations with small symbols for the middle population (2) and larger ones for the high background population (3). Soil values within population 3 are considered anomalous and those within population 2 appear to indicate proximity to mineralization.

### 5.23 Vanadium (ppm)

| Population | Mean | Thresholds |  |
| :---: | :---: | ---: | ---: |
| 1 | 36.285 | 23.769 | 55.393 |
| 2 | 58.050 | 30.656 | 109.920 |

Two populations were derived for Vanadium. The two appear to be related to the two dominant lithologies underlying the property, with very high values - above the high background population upper threshold - associated with copper anomalies (figure 6). Anomalous vanadium is most likely due the presence of magnetite in the vicinity of the Zumar vein and where coincident with copper anomalies in the southern portion of the Zumar 4 claim. Local magnetic highs in these two areas supports this hypothesis.

### 5.24 Potassium (\%)

Population
Mean
Thresholds
1

| 0.120 | 0.081 | 0.179 |
| :--- | :--- | :--- |
| 0.254 | 0.149 | 0.431 |
| 0.612 | 0.279 | 1.341 |

The high background population for potassium in soils produces a pattern when plotted which indicates a potassium alteration zone extending southeastward from the Zumar vein area (figure 7). This coincides with plotted population 2 copper results and
pyritic quartz mapped through this area during previous survey work (Morrison, 1986). During any subsequent property examinations this area should be thoroughly prospected.
5.25 Calcium (\%)

Population
Mean Thresholds

1
0.206
0.153
0.279

2
0.310
0.245
0.392

3
0.442
0.325
0.600

4
0.697
0.381
1.276

The four populations overlap which makes interpretation of the lower background populations difficult. However the coincidence of the values greater than $0.60 \%$ Ca with anomalous copper soil results in the southern portion of the Zumar 4 claim suggests the possibility that copper anomalies there are related to a zone of calcium alteration, which often accompanies disseminated copper mineralization (figure 8). The lack of well defined calcium enrichment in the vicinity of the Zumar vein is consistent with fissure filling mineralization known to occur there.

### 5.26 Phosphorous (\%)

Population
Mean Thresholds
1

| 0.043 | 0.017 | 0.111 |
| :--- | :--- | :--- |
| 0.134 | 0.072 | 0.250 |

Phosphorous geochemistry on the zumar soil grid highlights the two dominant underlying lithologies with Tertiary aged volcanic and hypabbysal rocks being richer in phosphorous (figure 9). The contact between Permian and Tertiary lithologies can be inferred as a southeast trending break extending from the northwest corner of the grid area toward the east end of Line $6+00 N$. The overlapping populations between $0.072 \%$ and $0.111 \%$
were plotted as small circles and values greater than $0.111 \%$ plotted as large circles. The coincidence of high background phosphorous in the vicinity of anomalous copper the southern portion of the Zumar 4 claim appears to related to localized lithological or mineralogical conditions. The lack of a similar coincidence at the Zumar vein is interpreted to be due to differing lithology or mode of mineralization.

Copper, calcium, vanadium and phosphorous soil anomalies are coincident in the southern portion of the Zumar 4 claim centered on Line $3+00 N$ between stations $4+00 \mathrm{E}$ and $4+75 \mathrm{E}$. A southerly trend from this area can be inferred extending to Line $1+00 \mathrm{~N}$ at $4+00 E$ in the case of copper and to lesser degree for calcium and vanadium. This trend may be influenced by topography and further geochemical studies in this area centered on Line $3+00 \mathrm{~N}$.

Coincident anomalous copper and vanadium which occur at the Zumar vein as well as in the southern portion of the Zumar 4 claim indicate a common source of mineralization. Vanadium usually accompanies stratabound copper deposits but is also known to occur as an impurity in iron rich minerals such as magnetite-
local magnetic highs over both areas of anomalous vanadium are the probable source of magnetite. Differences in potassium, calcium and phosphorous geochemistry between the Zumar vein and Zumar 4 copper anomaly appear to reflect different lithological and mineralization types.

In addition to the above documented elements, barium, manganese and nickel geochemistry were examined. Nickel was not found to reflect the known mineralization at the Zumar vein or the copper anomalies on the Zumar 4 claim. Manganese showed good correlation with both areas, but also proved to heavily affected by Tertiary lithologies. Barium was found to coincident with known mineralization at the Zumar vein but was significantly shifted east and north in the area of the ZUmar 4 copper
anomalies: Barium, manganese and nickel were not chosen for plotting.

### 6.0 GEOPHYSICS

### 6.1 Introduction

Magnetometer and VLF-EM surveys were conducted over the survey area in order to test for north trending structures in the vicinity of copper - silver anomalies noted from previous property surveys (Wilmot, 1987). Field data was plotted and a rough interpretation provided by Mr . John Ashenhurst of S.J.V. Consultants using the Geo-pack software package.

### 6.2 Results and Interpretation

Several dominant features are apparent from the plotted VLF-EM and Magnetometer results. Three strongly magnetic features, one located in the immediate area of the Zumar vein, a second coincident with copper soil anomalies in the southern portion of the Zumar 4 claim and a third associated with an inferred fault in the northeast corner of the grid area (figure 10). Local magnetic highs located at the Zumar vein and in the area of Zumar 4 copper anomalies are probably due to the presence of magnetite within mineralized systems. The coincident presence of vanadium anomalies at these two local magnetic highs also suggests the presence of magnetite or another iron mineral.

A large broad magnetic high in the northwestern portion of the grid area is probably due to the presence of mafic volcanics (G.S.C. Open file 410) rather than contact metamorphism of andesite (Morrison, 1986).

A north-south trending linear magnetic high from Line 0+00N at station $3+00 E$ to Line $12+00 \mathrm{~N}$ station $3+50 \mathrm{E}$ has the appearance of
a dike and coincides with copper soil anomalies on Line $3+00 \mathrm{~N}$ at the local magnetic high at station $4+00 E$.

Numerous VLF-EM cross-overs were encountered over the grid area, many of which are probably a result of the angle of the station to the survey lines (figure 11). Strong VLF-EM conductors are situated to the north of the Zumar vein, trending southeasterly, and to the west of the copper anomalies in the southern portion of the Zumar 4 claim trending north-south with a probable fault related break between lines $2+00 \mathrm{~N}$ and $3+00 \mathrm{~N}$.

### 7.0 CONCLUSIONS

Geochemical and geophysical data gathered during the recent survey on the Zumar claims indicates the presence of copper mineralization associated with Tertiary aged structures in the south-central portion of the Zumar 4 claim.

Similarities in the chemical and magnetic signatures of this anomalous area and the Zumar vein showing area are indicative of a common source of mineralization.

North-south trending VLF-EM derived structural elements in the area of the Zumar 4 target area suggest a similar type of mineralization environment to that reportedly present on the Brett claims property located some 20 km north of the Zumar claims.

A zone of copper and potassium enrichment and trending southeastward from the the area of the zumar vein showing follows a series of outcrops whith reported quartz veins containing minor sulfide mineralization.

### 8.0 RECOMMENDATIONS

Further exploration work, particularly in the area of copper anomalies in the southern portion of the Zumar 4 claim, is recommended. Detailed surveys in this area should include systematic geological mapping and prospecting in conjunction with Horizontal Loop EM (HLEM) and soil sampling.

Other areas of the Zumar claims to the north and west of the most recent survey work, should be covered by reconnaissance scale geological and geochemical surveys. A zone of copper and potassium enrichment extending southeasterly form the Zumar vein showing should also be thoroughly prospected.

Target areas outlined and detailed by the above surveys should be bulldozer trenched to determine the extent and grade of mineralization.

This two phase success contingent program is estimated to cost $\$ 98,900$ with the first phase consisting of ground survey at $\$ 79,700$ and the second of limited trenching at $\$ 19,200$.

Should results warrant, a third phase of exploration consisting of follow-up trenching and diamond drilling is suggested. A separate budget would be submitted for this phase of exploration.
8.1 Projected Cost Breakdown - Zumar Project
Phase I
Detailed Scale Follow-up Surveys
Mapping and Prospecting ..... \$ 4,000
Grid Emplacement - 15 km of Cut Line ..... 8,000Soil Sampling - 650 samples incl. assays
13,000
Rock Sampling - 50 samples incl. assays1,000
HLEM Survey - 8 days @ \$650/day ..... 5,200
Reconnaissance Scale Surveys
Mapping and Prospecting ..... \$ 2,500
Grid Emplacement - 20 km of Chained Line ..... 5,000
Soil Sampling - 450 samples incl. assays ..... 9,000
Rock sampling - 25 samples incl. assays ..... 600
Magnetometer Survey ..... 2,500
VLF-EM Survey ..... 2,500
Logistics
Food and Accommodation - 45 man-days @ $\$ 100 /$ day ..... 4,500
Transportation - 2 vehicles for 20 days ..... 2,400Supervision and Geological SupportReport Preparation
5,0006,000
Contingencies - approx. 12\% ..... 8,500
Total Phase I ..... \$ 79,700
Phase II - Contingent on Phase I Results
Trenching of Detailed Survey Targets
Mob/Demob
Access - 2 days @ \$750/day\$ 1,200
1,500Trenching - 8 days @ $\$ 750 /$ day
6,000
Geological Support and Supervision ..... 2,500
Assays - 50 rocks @ $\$ 20$ ..... 1,000
Logistics - 20 man-days @ $\$ 100 / m a n-d a y$ ..... 2,000
Report Preparation
Contingencies - approx. 15\%2,500
2,500
Total Phase II ..... \$ 19,200

## APPENDIX A - CERTIFICATE OF QUALIFICATIONS

## Certificate - Douglas H. Wood

I Douglas H. Wood of the city of Vancouver in the Province of British Columbia do hereby certify as follows:

1. I am an independent consulting geologist based in Vancouver, B.C. and have active in mineral exploration since 1977.
2. I graduated from the University of British Columbia in 1981 with a Bachelor of Science degree in Geological Sciences and spent a further year at the post-graduate level at the University of B.C.
3. I am a fellow in good standing of the Geological Association of Canada (F4594).
4. I visited the Zumar property on July 1, 1988 and again on November 26, 1988 and provided supervision to the field crews during the period between November 28 and December 12, 1988 when work was performed.
5. I have no interest, contingent or otherwise in the Zumar property nor in the securities of Skyworld Resources and Development Ltd.
6. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public documents.

Dated at Vancouver, Province of British Columbia, this 6 th day of February, 1989.


Douglas H. Wood, B.Sc., FGAC Consulting Geologist


## APPENDIX B - REFERENCES

Morrison, M.S. (1986)
Report on an Examination of the Zumar 2 \& 4 Mining Claims, Vernon Mining Division for Skyworld resources and Development Ltd.

Rose, Hawkes and Webb (1979)
Geochemistry in Mineral Exploration; Academic Press.
Sinclair, A.J. (1976)
Probability Graphs; Association of Exploration Geochemists Special Vol. \#4.

Wilmot, A.D. (1987)
Progress Report on the Zumar Mineral Claims, Vernon Mining Division for Skyworld Resources and Development Ltd.

 - SAMPLR TYPE: SOil -80 Mesh adz analysis by acio lach/aa prom 10 gy samply.

LAROTH ENGINEERING LTD. PROJECT ZUMAR File \# 88-6289 Page 1

| SAMPLE | Ho | Cu | Pb | 27 | Ag | Ni | CO | Mn | Fe | As | U | Au | ? | St | cd | Sb | Bi | $V$ | Ca | P | La | Cr | Mg | Ba | Ti | B | Al | Ha | 『 | 1 | AU* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PPM | PPM | PPM | PPM | PPM | PPM | P? | PPY | \% | PPM | PPY | PPM | PPH | PPH | PRH | PPY | PPM | PPM | 1 | 8 | PPM | PPM | \% | PPH | 1 | PPM | 3 | \% | : | PPM | PPB |
| L12+00\% 9+504 | 1 | 19 | 11 | 84 | . 3 | 17 | 6 | 408 | 2.32 | 3 | 5 | ND | 3 | 28 | 1 | 2 | 2 | 37. | . 32 | . 178 | 12 | 18 | . 29 | 156 | . 10 | 8 | 2.69 | . 02 | . 13 | 1 | 1 |
| L12+00N 9+00\% | 1 | 12 | 11 | 54 | . 1 | 13 | 6 | 491 | 2.28 | 2 | 5 | ND | 1 | 27 | 1 | 2 | 2 | 40 | . 41 | . 087 | 7 | 16 | . 30 | 123 | . 10 | 8 | 2.10 | . 02 | . 15 | 1 | 1 |
| L12+001188504 | 1 | 14 | 6 | 42 | . 1 | 7 | 6 | 231 | 2.62 | 2 | 5 | ND | 4 | 24 | 1 | 2 | 2 | 53 | . 30 | . 041 | 13 | 19 | . 33 | 53 | . 11 | 10 | 1.04 | . 02 | . 16 | 1 | 1 |
| L12+00\% 8+80\% | 1 | 28 | 5 | 65 | . 1 | 18 | 9 | 451 | 3.61 | 5 | 5 | WD | 9 | 35 | 1 | 2 | 2 | 71 | . 41 | . 085 | 34 | 30 | . 75 | 123 | . 14 | 8 | 1.93 | . 02 | . 40 | 2 | 3 |
| 112+00N 7+504 | 1 | 18 | 13 | 106 | . 3 | 18 | 6 | 500 | 2.24 | 2 | 5 | ND | 3 | 44 | 1 | 2 | 2 | 39 | . 57 | . 218 | 9 | 16 | . 32 | 123 | . 10 | 1 | 2.38 | . 02 | . 14 | 1 | 1 |
| L12+OON 7+OOH | 1 | 9 | 1 | 84 | . 1 | 10 | 5 | 691 | 1.87 | 2 | 5 | ND | 1 | 27 | 1 | 2 | 2 | 34 | . 27 | . 097 | 7 | 16 | . 21 | 139 | . 08 | 6 | 1.11 | . 01 | . 10 | 1 | 2 |
| 112+00N 57504 | 1 | 17 | 7 | 89 | . 2 | 16 | 6 | 327 | 2.19 | 2 | 5 | ND | 3 | 32 | 1 | 2 | 2 | 35 | . 21 | . 695 | 13 | 18 | . 31 | 133 | . 10 | 7 | 2.51 | . 02 | . 13 | 1 | 1 |
| L12+00N $6+00 \%$ | 1 | 12 | 8 | 33 | . 2 | 15 | 6 | 297 | 2.05 | 2 | 5 | HD | 1 | 22 | 1 | 2 | 2 | 30 | . 22 | . 214 | 8 | 17 | . 23 | 179 | . 09 | 1 | 2.38 | . 02 | 11 | 1 | 2 |
| L12+00N 5+504 | 1 | 12 | 8 | 58 | . 1 | 18 | 5 | 570 | 1.72 | 2 | 5 | HD | 1 | 38 | 1 | 2 | 2 | 27 | . 36 | . 221 | 7 | 16 | . 22 | 220 | . 08 | 8 | 1.89 | . 02 | . 10 | 1 | 1 |
| L12+00N $5+00 \mathrm{~K}$ | 1 | 1 | 2 | 43 | . 2 | 11 | 6 | 287 | 2.27 | 4 | 5 | ND | 1 | 23 | 1 | 2 | 2 | 13 | . 27 | . 061 | 13 | 23 | . 33 | 94 | . 09 | 1 | 1.07 | . 02 | . 15 | 2 | 4 |
| L12+60N 4+50\% | 1 | 13 | 5 | 71 | . 2 | 19 | 6 | 444 | 2.21 | 2 | 5 | WD | 3 | 31 | 1 | 2 | 2 | 35 | . 32 | . 175 | 8 | 20 | . 27 | 133 | . 09 | 2 | 2.14 | . 02 | . 12 | 1 | 1 |
| L12+00N $4+00 \mathrm{H}$ | 1 | 30 | 6 | 57 | . 2 | 24 | 6 | 343 | 2.19 | 2 | 5 | ND | 1 | 32 | 1 | 2 | 2 | 38 | . 32 | . 079 | 16 | 21 | . 30 | 114 | . 10 | 3 | 2.49 | . 02 | . 14 | 1 | 1 |
| L12+OON $3+50 \mathrm{H}$ |  | 13 |  | 73 | . 1 | 15 | 5 | 1009 | 1.96 | 2 | 5 | HD | 2 | 28 | 1 | 2 | 2 | 34 | . 26 | . 188 | 7 | 19 | . 23 | 178 | . 09 | 5 | 1.70 | . 02 | . 12 | 1 | 2 |
| L12+00H 3+00H | 1 | 11 | 8 | 57 | . 1 | 16 | 5 | 280 | 2.22 | 2 | 5 | ND | 1 | 26 | 1 | 2 | 2 | 42 | . 23 | . 057 | 10 | 25 | . 30 | 120 | . 10 | 6 | 1.48 | . 02 | . 12 | 1 | 2 |
| L12+00N $2+50 \mathrm{~N}$ | 1 | 13 | 5 | 48 | . 2 | 16 | 5 | 312 | 1.77 | 4 | 5 | WD | 3 | 27 | 1 | 2 | 2 | 29 | . 23 | . 199 | 1 | 14 | . 21 | 118 | . 09 | 3 | 2.01 | . 02 | . 11 | 3 | 1 |
| L12+001 $2+00 \mathrm{~K}$ | 1 | 10 | 6 | 51 | . 2 | 22 | 6 | 206 | 1.91 | 1 | 5 | ND | 3 | 29 | 1 | 2 | 2 | 32 | . 22 | . 163 | 7 | 24. | . 26 | 183 | . 09 | 5 | 1.81 | . 02 | . 09 | 1 | 1 |
| L12+00N 1+50\% | 1 | 16 | 7 | 46 | . 1 | 15 | 7 | 337 | 2.66 | 4 | 5 | ND | 7 | 46 | 1 | 2 | 2 | 58 | . 47 | . 098 | 25 | 28 | . 39 | 72 | . 10 | 2 | 1.02 | . 02 | . 14 | 2 | 12 |
| L12 $200111+00 \mathrm{H}$ | 1 | 12 | 9 | 34 | . 2 | 11 | 5 | 209 | 1.95 | 2 | 5 | ND | 1 | 32 | 1 | 2 | 2 | 29 | . 29 | . 015 | 9 | 19 | . 23 | 68 | . 08 | 6 | 1.58 | . 02 | . 09 | 1 | 2 |
| L12+00N $0+504$ | 1 | 9 | 6 | $3:$ | . 1 | 11 | 5 | 303 | 1.84 | 2 | 5 | ND | 2 | 22 | 1 | 2 | , | 30 | . 20 | . 027 | 8 | 21 | . 23 | 91 | . 08 | 7 | 1.42 | . 01 | . 13 | 1 | 1 |
| L12+0011 O+904 | 1 | 9 | 3 | 55 | . 1 | 14 | 4 | 264 | 1.87 | 5 | 5 | ND | 3 | 39 | 1 | , | 2 | 34 | . 32 | . 055 | 11 | 20 | . 20 | 104 | . 08 | , | 1.40 | . 02 | . 10 | 1 | 1 |
| $412+09 \mathrm{~N} 0+50 \mathrm{E}$ | 1 | 9 | 7 | 65 | . 2 | 13 | 5 | 211 | 2.07 | 3 | 5 | ND | 3 | 41 | 1 | 2 | 2 | 39 | . 32 | . 047 | 9 | 23 | . 29 | 91 | . 10 | 1 | 1.51 | . 02 | . 17 | . | 1 |
| L12+00: $1+208$ | 1 | 11 | 8 | 18 | . 2 | 11 | 6 | 391 | 1.95 | 1 | 6 | ND | 2 | 40 | 1 | , | 2 | 34 | . 33 | . 023 | 7 | 24 | . 27 | 71 | . 09 | 8 | 1.17 | . 02 | . 13 | 1 | 1 |
| 412+00N 1+508 | 1 | 17 | 9 | 81 | . 1 | 37 | 11 | 425 | 3.19 | 2 | 5 | ND | , | 100 | 1 | 2 | 2 | 67 | . 78 | . 095 | 36 | 46 | . 97 | 115 | . 12 | 6 | 1.92 | . 03 | . 17 | 1 | 2 |
| L12+00N $2+0 \mathrm{CB}$ | 1 | 13 | 2 | 13 | . 1 | 20 | 5 | 180 | 1.73 | 3 | , | ND | 3 | 42 | 1. | 2 | 2 | 31 | . 23 | . 126 | 10 | 11 | . 24 | 136 | . 08 | J | 1.65 | . 02 | . 10 | 1 | 3 |
| L12+00N $2+50 \mathrm{E}$ | 1 | 12 | 5 | 48 | . 2 | 14 | 5 | 167 | 1.96 | 2 | 5 | ND | 1 | 52 | 1 | 2 | 2 | 30 | . 10 | . 017 | 11 | 18 | . 29 | 63 | . 08 | 5 | 1.84 | . 02 | . 10 | 2 | 2 |
| L12+0013 $3+008$ | 1 | 12 | 9 | 53 | . 3 | 19 | 5 | 179 | 1.94 | 2 | 5 | ND | 3 | 54 | 1 | 2 | 2 | 32 | . 36 | . 089 | 7 | 23 | . 21 | 102 | . 08 |  | 1.76 | . 02 | . 08 | 1 | 1 |
| L12+00n 3+508 | 1 | 18 | 8 | 100 | . 1 | 19 | 6 | 315 | 2.08 | 2 | 5 | ND | 5 | 20. | 1 | 2 | 2 | 33 | . 16 | . 163 | 12 | 18 | . 32 | 172 | . 10 | 6 | 2.72 | . 02 | . 11 | 1 | 3 |
| 112+00N $4+008$ | 1 | 11 | 4 | 10 | . 2 | 18 | 6 | 513 | 1.94 | 2 | . | ND | 4 | 25 | 1 | 2 | 2 | 31 | . 19 | . 137 | 8 | 15 | . 24 | 165 | . 08 | 5 | 1.92 | . 01 | . 10 | 1 | 4 |
| L12+009 4 4 508 | 1 | 10 | 6 | 11 | . 3 | 21 | 5 | 263 | 1.79 | 5 | 5 | ND | 1 | 26 | 1 | 2 | 2 | 27 | . 20 | . 179 | 8 | 14 | . 20 | 172 | . 08 | 7 | 1.71 | . 01 | . 09 | 1 | 2 |
| 112+0011 5+008 | 1 | 12 | 6 | 86 | . 4 | 16 | 6 | 521 | 2.24 | 3 | 5 | HD | 5 | 23 | 1 | 2 | 2 | 38 | . 21 | . 128 | 9 | 15 | . 22 | 135 | . 09 | 5 | 1.97 | . 02 | . 09 | 1 | 1 |
| L12+60H 5408 | 1 | 11 | 7 | 82 | . 2 | 18 | 6 | 363 | 2.07 | 2 | 5 | ND | 5 | 18 | 1 | 2 | 2 | 33 | . 15 | . 113 | 8 | 17 | . 22 | 148 | . 08 | 8 | 1.84 | . 01 | . 09 | 1 | 1 |
| L12+00N $5+00 \mathrm{E}$ | 1 | 11 | 4 | 35 | . 1 | 12 | 6 | 195 | 2.52 | 5 | 5 | WD | 8 | 31 | 1 | 2 | 2 | 49 | . 31 | . 077 | 20 | 26 | . 30 | 53 | . 08 | 9 | . 89 | . 01 | . 11 | 1 | 1 |
| L12+00N $7+00 \mathrm{E}$ | 1 | 17 | 2 | 62 | . 1 | 15 | 7 | 244 | 3.21 | 4 | 5 | ND | 8 | 46 | 1 | 2 | 2 | 56 | . 38 | . 073 | 22 | 24 | . 37 | 54 | . 08 | 6 | . 87 | . 02 | . 17 | 1 | 5 |
| L12+001 $7+508$ | 1 | 8 | 6 | 94 | . 1 | 12 | 5 | 345 | 1.57 | 4 | $\xi$ | ND |  | 19 | 1 | 3 | 2 | 25 | . 13 | . 166 | 6. | 10 | . 18 | 169 | . 07 | 3 | 1.73 | . 02 | . 08 | 1 | 2 |
| L12+00N 8+60E | 1 | 13 | 11. | 99 | 13 | 16 | 6 | 384 | 1.89 | 3 | 5 | HD | 5 | 27 | 1 | 2 | 2 | 27. | . 19 | . 098 | 8 | 13 | . 24 | 195 | . 09 | 6 | 2.29 | . 02 | . 11 | 1 | 2 |
| L12+00\% 8+508 | 1 | 11 | 6 | 74 | . 3 | 16 | 5 | 255 | 1.90 | 2 | 5 | ND | 1 | 34 | 1 | $?$ | 2. | 29 | . 24 | . 134 | 11 | 13 | . 21 | 153 | . 07 | 1 | 1.53 | . 01 | . 10 | 1 | 1 |
| STD $\mathrm{C} / \mathrm{AJ}-\mathrm{j}$ | 18 | 57 | 38 | 132 | 6.9 | 67 | 31 | 1022 | 3.92 | 40 | 22 | 7 | 39 | 48 | 18 | 20 | 23 | 60 | . 47 | . 089 | 40 | 53 | . 91 | 177 | . 06 | 39 | 1.94 | . 06 | . 13 | 12 | 48 |


| L12＋CON $9+00 \mathrm{E}$ | 1 | 1 | 2 | 12 | ． 1 | 5 | 1 | 252 | 2.08 | 2 | 5 | ND | 6 | 17 | 1 | 2 | 2 | 32 | ． 16 | ． 034 | B | 16 | ． 18 | 78 | ． 07 | 2 | ． 99 | ． 01 | ． 09 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L12＋00H 9＋508 | 1 | 10 | 2 | 54 | ． 1 | 8 | 4 | 211 | 1.99 | 2 | 5 | ND | 4 | 22 | 1 | 2 | 2 | 29 | ． 18 | ． 039 | 9 | 15 | ． 22 | 103 | ． 08 | 2 | 1.38 | ． 01 | ． 10 | 1 | 1 |
| $110+00 N 10+1084$ | 1 | 27 | 8 | 184 | ． 2 | 15 | 10. | 767 | 2.79 | 2 | 5 | ND | 2 | 18 | 1 | 2 | 2 | 61 | ． 22 | ． 089 | 5 | 17 | ． 57 | 235 | ． 12 | 4 | 2.22 | ． 02 | ． 32 | 1 | 1 |
| $410+00 \mathrm{~N} 9+50 \mathrm{H}$ | 1 | 49 | 11 | 140 | 1 | 14 | 12 | 635 | 3.86 | 5 | 5 | ND | 1 | 15 | 1 | 2 | 2 | 90 | ． 19 | ． 098 | 7 | 16 | ． 82 | 187 | ． 15 | 2 | 2.83 | ． 01 | ． 38 | 1 | 10 |
| L10＋001 9＋00\％ | 1 | 19 | 6 | 157 | ． 1 | 21 | 7 | 551 | 2.18 | 2 | 5 | ND | 3 | 18 | 1 | 2 | 2 | 36 | ． 19 | ． 111 | 8 | 16 | ． 29 | 205 | ． 09 | 3 | 2.00 | ． 02 | ． 11 | 1 | 1 |
| L10＋00H $8+50 \mathrm{~K}$ | 1 | 19 | 4 | 125 | 1 | 11 | 1 | 597 | 2.57 | 2 | 5 | WD | 4 | 19 | 1 | 2 | 2 | 41 | ． 19 | ． 141 | 9 | 18 | ． 35 | 189 | ． 10 | 4 | 2.41 | ． 02 | ． 16 | 1 | 1 |
| L10toon $8+00 \%$ | 1 | 25 | 5 | 133 | ． 1 | 13 | 9 | 596 | 2.84 | 2 | 5 | WD | 2 | 19 | 1 | 2 | 2 | 56 | ． 24 | ． 080 | 6 | 13 | ． 46 | 169 | ． 11 | 5 | 2.20 | ． 01 | ． 24 | 1 | 1 |
| L10＋00H 7＋50K | 1 | 24 | 5 | 95 | ． 1 | 19 | 8 | 359 | 2.84 | 2 | 5 | IND | 5 | 28 | 1 | 2 | 2 | 54 | ． 26 | ． 096 | 11 | 23 | ． 44 | 157 | ． 10 | 3 | 1.70 | ． 02 | ． 21 | 1 | 2 |
| L10tocn $7+60 \mathrm{H}$ | 1 | 16 | 11 | 113 | ． 1 | 14 | 7 | 432 | 2.26 | 2 | 5 | ND | 3 | 20 | 1 | 2 | 2 | 35 | ． 21 | ． 149 | 7 | 11 | ． 28 | 157 | ． 08 | 2 | 1.97 | ． 01 | ． 12 | 1 | 3 |
| L10＋0015 $6+50 \%$ | 1 | 17 | 6 | 122 | ． 1 | 27 | 7 | 428 | 2.35 | 4 | 5 | ND | 4 | 28 | 1 | ， | 2 | 35 | ． 26 | ． 148 | 11 | 22 | ． 33 | 222 | ． 09 | 2 | 2.26 | ． 02 | ． 13 | 1 | 1 |
| L10 200 H a +0 CH | 1 | 13 | 9 | 173 | ． 2 | 14 | 6 | 1358 | 2.06 | 2 | 5 | WD | 2 | 42 | 1 | 2 | 2 | 33 | ． 46 | ． 149 | 7 | 16 | ． 26 | 235 | ．OB | 7 | 1.51 | ． 02 | ． 14 | 1 | 1 |
| L10＋00N $5+501$ | 1 | 18 | 3 | 103 | ． 2 | 16 | 7 | 458 | 2.38 | 2 | 5 | ND | 4 | 30 | 1 | 2 | 2 | 44 | ． 32 | ． 121 | 9 | 20 | ． 35 | 133 | ． 09 | 2 | 1.51 | ． 02 | ． 17 | 1 | 2 |
| L10＋00\％ $5+000$ | 1 | 32 | 1 | 107 | ． 2 | 16 | 10 | 321 | 3.47 | 2 | 5 | ND | 5 | 26 | 1 | 2 | 2 | 66 | ． 24 | ． 050 | 10 | 23 | ． 58 | 110 | ． 13 | 7 | 2.23 | ． 01 | ． 27 | 1 | 1 |
| L10＋008 $4+50 \mathrm{H}$ | 1 | 16 | 4 | 67 | ． 2 | 15 | 7 | 297 | 2.23 | 2 |  | H2 | 4 | 21 | 1 | ， | 2 | 11 | ． 22 | ． 048 | 12 | 21 | ． 30 | 100 | ． 10 | 6 | 1.39 | ． 02 | ． 11 | 1 | 1 |
| L10＋00\％ $4+00 \mathrm{~K}$ | 1 | 71 | 5 | 80 | ． 1 | 7 | 15 | 1165 | 5.13 | 2 | 5 | HD | 5 | 69 | 1 | 2 | 2 | 120 | 1.15 | ． 162 | 21 | 8 | ． 78 | 59 | ． 09 | 2 | 1.39 | ． 03 | ． 32 | 6 | 13 |
| L10＋000 $3+50 \mathrm{H}$ | 1 | 19 | 7 | 84 | ． 1 | ， | 7 | 535 | 2.52 | 4 | 5 | HD | 3 | 38 | 1 | 2 | 2 | 16 | ． 43 | ． 083 | 6 | 15 | ． 28 | 124 | ． 08 | 3 | 1.67 | ． 01 | ． 14 | 1 | 1 |
| L10 + OOIN 3＋00\％ | 1 | 15 | 7 | 75 | ． 1 | 17 | 6 | 335 | 2.15 | 2 | 5 | WD | 4 | 25 | 1 | 2 | 2 | 34 | ． 20 | ． 099 | 9 | 16 | ． 28 | 159 | ． 09 | 2 | 1.87 | ． 01 | ． 14 | 1 | 1 |
| L10＋00N $2+50 \mathrm{H}$ | 1 | 13 | 5 | 75 | ． 2 | 13 | 6 | 391 | 1.81 | 2 | 5 | WD | J | 20 | 1 |  | 2 | 29 | ． 18 | ． 120 | 8 | 14 | ． 11 | 109 | ． 08 |  | 1.51 | ． 02 | ． 10 | 1 | 1 |
| 110＋60： $2+004$ | 1 | 21 | 5 | 61 | ． 1 | 29 | 7 | 323 | 2.25 | 2 | 5 | NJ | 1 | 35 | 1 | 2 | 5 | 34 | ． 23 | ． 121 | 10 | 29 | ． 35 | 186 | ． 11 | 5 | 2.83 | ． 02 | ． 12 | 1 | 1 |
| L10＋00N 1450H | 1 | 10 | 9 | 100 | ． 1 | 17 | 5 | 660 | 1.79 | 2 | 5 | HD | 3 | 40 | 1 | 2 | 2 | 27 | ． 35 | ． 299 | 6 | 17 | ． 20 | 270 | ． 08 | 1 | 1.65 | ． 02 | ． 12 | 1 | 1 |
| L10＋00N i ＋00\％ | 1 | 15 | 7 | 91 | ． 1 | 21 | 7 | 391 | 2.23 | 2 | 5 | WD | 5 | 38 | 1 | 2 | 2 | 36 | ． 33 | ． 144 | ， | 22 | ． 31 | 143 | ． 09 | 4 | 2.06 | ． 02 | ． 11 | 1 | 1 |
| L10＋00N $0+50 \mathrm{H}$ | 1 | 14 | 7 | 101 | ． 2 | 19 | 6 | 559 | 2.00 | 2 | 5 | HD | 3 | 31 | 1 | 2 | 2 | 32 | ． 29 | ． 161 | 8 | 19 | ． 24 | 174 | ． 09 | 5 | 1.87 | ． 02 | ． 11 | 1 | 1 |
| 110＋00N $0+004$ | 1 | 17 | 3 | 54 | ． 1 | 15 | 6 | 374 | 2.55 | 2 | 5 | HD |  | 39 | 1 | 2 | 2 | 53 | ． 36 | ． 094 | 18 | 26 | ． 34 | 85 | ． 10 | 2 | 1.29 | ． 02 | ． 15 | 1 | 1 |
| L10＋00以 O＋50E | 1 | 15 | 6 | 46 | ． 1 | 20 | 6 | 261 | 2.31 | 2 | 5 | ND | 5 | 33 | 1 | 2 | 2 | 43 | ． 28 | ． 037 | 16 | 27 | ． 31 | 100 | ． 10 | 1 | 1.61 | ． 02 | ． 11 | 1 | 1 |
| L10＋00\％ $1+008$ | 1 | 11 | 5 | 31 | .1 | 16 | 5 | 131 | 1.89 | 3 | 5 | ND | 4 | 31 | 1 | 2 | 2 | 33 | ． 27 | ． 071 | 10 | 17 | ． 19 | 82 | ． 09 | 2 | 1.50 | ． 02 | ． 09 | 1 | 1 |
| L10＋00N $1+508$ | 1 | 12 | 2 | 33 | ． 1 | 9 | 4 | 160 | 2.34 | 2 |  | ND | 7 | 32 | 1 | 2 | 12 | 54. | ． 26 | ． 038 | 20 | 23 | ． 20 | 46 | ． 10 | 2 | ． 65 | ． 02 | ． 09 | 1 | 1 |
| L10＋00n $2+008$ | 1 | 13 | 5 | 54 | ． 1 | 10 | 4 | 399 | 1.58 | 2 | 5 | WD | 4 | 21 | 1 | ， | 2 | 27 | ． 18 | ． 131 | 1. | 12 | ． 16 | 165 | ． 07 | 5 | 1.39 | ． 02 | ． 08 | 1 | 2 |
| L10＋00： $2+508$ | 1 | 21 | 10 | 85 | ． 3 | 13 | 8 | 567 | 2.51 | 3 | 5 | HD | 5 | 33 | 1 | 2 | 2 | 43 | ． 31 | ． 125 |  | 16 | ． 34 | 122 | ． 10 | 5 | 1.98 | ． 02 | .14 | 1 | 1 |
| L10＋00N 3＋008 | 1 | 18 | 8 | 67 | ． 2 | 10 | 6 | 258 | 2.52 | 4 | 5 | HD | 5 | 28 | 1 | 2 | 2 | 13 | ． 28 | ． 053 | 7 | 19 | ． 33 | 90 | ． 11 | 3 | 1.57 | ． 02 | ． 14 | 1 | 1 |
| L10＋00N 3＋508 | 1 | 20 | 10 | 111 | ． 4 | 14 | 6 | 324 | 1.90 | 2 | 5 | HD | 1 | 24 | 1 | 2 | 2 | 29 | ． 21 | ． 170 | 1 | 13 | ． 25 | 157 | ． 09 | 2 | 2.00 | ． 02 | ． 08 | 1 | 1 |
| L10＋00\％ $4+00 \mathrm{E}$ | 1 | 62 | 9 | 11 | ． 2 | 11 | 12 | 781 | 4.53 | 5 | 5 | YD | 9 | 55 | 1 | 2 | 2 | 103 | ． 92 | ． 123 | 29 | 23 | ． 89 | 67 | ． 12 | 6 | 1.71 | ． 03 | ． 20 | 1 | 14 |
| L10 $1000 \mathrm{~K} 4+508$ | 1 | 21 | 10 | 56 | ． 2 | 11 | 6 | 295 | 2.58 | 2 | 5 | ND | 5 | 36 | 1 | 2 | 2 | 49 | .35 | ． 059 | 11 | 20 | ． 35 | 100 | ． 10 | 5 | 1.14 | ． 02 | ． 15 | 1 | 1 |
| L10＋0015 $5+008$ | 1 | 17 | 11 | 99 | .4 | 16 | 6 | 402 | 2.12 | 2 | 5 | YD | 4 | 21 | 1 | 2 | 2 | 32 | ． 21 | ． 039 | 6 | 14 | ． 28 | 181 | ． 10 | 4 | 2.35 | ． 01 | ． 12 | 1 | 2 |
| L10＋00N 5＋508 | 1 | 13 | 6 | 41 | ． 1 | 12 | 6 | 179 | 2.65 | 2 | 5 | ND | 9 | 42 | 1 | 2 | 2 | 51 | ． 30 | ． 060 | 19 | 27 | ． 36 | 83 | ． 11 | 8 | 1.02 | ． 02 | ． 11 | 1 | 17 |
| L10＋004 $6+008$ | 1 | 15 | 11 | 46 | ． 1 | 13 | 7 | 181 | 2.86 | 2 | 5 | HD | 7 | 29 | 1 | 2 | 2 | 51 | ． 22 | ． 049 | 13 | 24. | ． 35 | 98 | ． 11 | 3 | 1.63 | ． 01 | ． 11 | 1 | 1 |
| L10＋00\％6＋508 | 1 | 18 | 13 | 83 | ． 2 | 11 | 7 | 299 | 3.06 | 2 | 5 | ND | 8 | 19 | 1 | 2 | 2 | 51 | ． 16 | ． 117 | 13 | 21 | ． 32 | 152 | ． 10 | 3 | 2.22 | ． 01 | ． 08 | 1 | 1 |
| STD C／AU－S | 18 | 59 | 42 | 132 | 6.5 | 67 | 31 | 1006 | 4.00 | 39 | 23 | 7 | 39 | 47 | 18 | 16 | 24 | 58 | ． 46 | ． 085 | 38 | 56 | ． 89 | 172 | ． 05 | 34 | 1.85 | ． 06 | ． 14 | 12 | 51 |

SAMPIE

| L10+005 $7+008$ | 1 | 11 | 6 | 66 | . 1 | 18 | 8 | 340 | 5.02 | 2 | 5 | HD | 19 | 26 | 1 | 2 | 2 | 86 | . 23 | . 073 | 13 | 31 | . 39 | 92 | . 10 | 2 | 1.73 | . 01 | . 09 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L10+0012 $7+508$ | 1 | 9 | 2 | 30 | . 1 | 11 | 5 | 201 | 2.11 | 2 | 5 | ND | 1 | 33 | 1 | 2 | 2 | 50 | . 35 | . 083 | 21 | 27 | . 30 | 41 | . 08 | 7 | . 12 | . 01 | . 09 | 2 | 2 |
| L10+OON 8+00E | 1 | 8 | 1 | 45 | . 1 | 13 | 5 | 153 | 2.47 | 2 | 5 | ND | 5 | 25 | 1 | 2 | 2 | 37 | . 11 | . 028 | 10 | 20 | . 25 | 78 | . 09 | 1 | 1.68 | . 01 | . 09 | 1 | 1 |
| L10400128 850 E | 1 | 5 | 4 | 57 | . 1 | 12 | 1 | 356 | 2.14 | 2 | 5 | ND | 3 | 29 | 1 | 2 | 2 | 34 | . 24 | . 089 | 7 | 14 | . 23 | 106 | . 08 | 7 | 1.46 | . 02 | . 11 | 1 | 1 |
| L10+00N 9+00E | 1 | 7 | 5 | 42 | . 1 | 15 | 5 | 137 | 2.09 | 6 | 5 | ND | 4 | 38 | 1 | 2 | 2 | 26 | . 25 | . 100 | 8 | 16 | . 20 | 97 | . 08 | 2 | 1.88 | . 02 | . 11 | 1 | 2 |
| L10+00N 9+508 | 1 | 271 | 10 | 147 | . 8 | 12 | 18. | 2107 | 4.14 | 2 | 5 | KD | 3 | 235 | 2 | 2 | 2 | 88 | 2.32 | . 307 | 20 | 18 | . 82 | 205 | . 09 | 6 | 2.19 | . 02 | . 25 | 1 | 8 |
| L8+00\% $10+0001$ | 1 | 73 | 11 | 115 | . 1 | 21 | 12 | 454 | 4.25 | 3 | 5 | ND | 5 | 34 | 1 | 2 | 3 | 87 | . 35 | .053 | 14 | 30 | . 79 | 167 | . 14 | 5 | 3.09 | . 01 | . 40 | 1 | 1 |
| L8+00119+5011 | 1 | 24 | 6 | 83 | . 2 | 14 | 8 | 378 | 2.90 | 2 | 5 | ND | 3 | 22 | , | , | 2 | 50 | . 25 | . 032 | 6 | 25 | . 49 | 107 | . 11 | 5 | 2.12 | . 02 | . 27 | 1 | 1 |
| L8toon 9tioh | 1 | 32 | 4 | 155 | . 1 | 16 | 9 | 1100 | 2.96 | 2 | 5 | ND |  | 28 | 1 | 2 | 2 | 53 | . 30 | .089 | 9 | 19 | . 45 | 197 | . 19 | 4 | 2.27 | . 01 | . 19 | 1 | 1 |
| L8+001 $8+50 \mathrm{H}$ | 1 | 27 | 8 | 100 | . 1 | 18 | 8 | 158 | 2.62 | 3 | 5 | ND | 5 | 26 | 1 | 2 | 2 | 45 | . 25 | . 068 | 12 | 19 | . 41 | 190 | . 09 | 4 | 1.98 | . 01 | . 23 | 1 | 4 |
| L8+OON $8+00 \mathrm{H}$ | 1 | 36 | , | 127 | . 2 | 15 | 8 | 665 | 2.91 | 3 | 5 | ND | 3 | 23 | 1 | 2 | 2 | 53 | . 22 | . 056 | 8 | 16 | . 48 | 197 | . 09 | 9 | 2.26 | . 01 | . 24 | 1 | 1 |
| L8+00N $7+50 \mathrm{H}$ | 1 | 32 | 8 | 122 | . 2 | 16 | 9 | 973 | 3.16 | 5 | 5 | ND | 4 | 29 | 1 | 2 | 2 | 59 | . 30 | . 035 | 12 | 18 | . 49 | 179 | . 10 | 7 | 2.13 | . 01 | . 32 | 1 | 2 |
| L8+00\% $7+00 \mathrm{H}$ | 1 | 26 | 6 | 139 | . 1 | 17 | 9 | 1092 | 3.12 | 2 | 5 | WD | 3 | 34 | 1 | 2 | 2 | 54 | . 35 | . 051 | 11 | 22 | . 48 | 225 | . 10 | 2 | 2.13 | . 01 | . 21 | 1 | 1 |
| L8+001 $6+50 \mathrm{H}$ | 1 | 53 | 9 | 220 | . 2 | 17 | 14 | 2222 | 3.61 | 2 | 5 | WD | 3 | 40 | 1 | 2 | 2 | 67 | .44 | . 078 | 10 | 11 | . 51 | 278 | . 09 | 6 | 2.43 | . 01 | . 27 | 1 | 3 |
| L8+0011 6+00\% | 1 | 18 | 4 | 73 | . 2 | 13 | 1 | 403 | 3.17 | 2 | 5 | ND | 5 | 28 | 1 | 2 | 2. | 59 | . 29 | . 034 | 12 | 21 | . 43 | 105 | . 10 | 2 | 1.51 | . 01 | . 27 | 1 | 1 |
| LB+OON $5+50 \mathrm{H}$ | 1 | 18 | 8 | 99 | . 1 | 18 | 1 | 269 | 2.86 | 2 | 5 | HD | 5 | 28 | 1 | 2 | 2 | 45 | . 24 | . 076 | 10 | 20 | . 36 | 174 | . 10 | 5 | 2.56 | . 02 | . 20 | 1 | 1 |
| LB+OON $5+00 \%$ | 1 | 188 | 8 | 134 | . 1 | 16 | 22 | 1053 | 6.74 | 5 | 5 | W0 | 3 | 25 | 1 | 4 | 2 | 181 | . 47 | . 083 | 10 | 17 | 1.69 | 160 | . 22 | 5 | 2.98 | . 01 | 1.05 | 3 | 116 |
| L8+00N 4+504 | 1 | 108 | 14 | 233 | . 4 | 17 | 18 | 2104 | 5.11 | 1 | 5 | HD | 2 | 27 | 1 | 2 | 2 | 115 | . 35 | . 075 | 1 | 12 | 1.10 | 339 | . 16 | 6 | 3.04 | . 01 | . 54 | 1 | 18 |
| L8+0ON14000 | 1 | 61 | 6 | 173 | . 4 | 13 | 14 | 1314 | 4.32 | 5 | 5 | WD | 4 | 29 | 1 | 4 | 2 | 96 | . 37 | . 057 | 11 | 17 | . 90 | 266 | . 15 | 8 | 3.15 | . 01 | . 54 | 1 | 2 |
| L8+00N $3+50 \mathrm{H}$ | 1 | 252 | 6 | 132 | . 5 | 11 | 29 | 1083 | 8.42 | 3 | 5 | HD | 2 | 21 | 1 | 5 | 2. | 251 | . 50 | . 093 | 6 | 14 | 2.29 | 284 | . 30 | 2 | 3.41 | . 01 | 1.37 | 1 | 1 |
| L8+CON $3+00 \mathrm{~N}$ | 1 | 57 | 11 | 159 | . 4 | 17 | 12 | 1016 | 3.71 | 1 | 5 | ND | 4 | 48. | 1 | 2 | 2 | 79 | . 34 | . 118 | 9 | 20 | . 58 | 227 | . 10 | 7 | 2.33 | . 02 | . 29 | 3 | 2 |
| L8+00N $2+50 \mathrm{H}$ | 1 | 17. | 12 | 150 | . 3 | 24 | 8 | 417 | 2.58 | 1 | 6 | WD | 1 | 39. | 1 | 2 | 2 | 37 | . 21 | . 201 | 7 | 21 | . 37 | 230 | . 09 | 9 | 2.57 | . 02 | . 17 | 1 | 5 |
| L8+00N $2+0017$ | 1 | 11 | 5 | 113 | . 2 | 11 | 1 | 571 | 2.31 | 2 | 5 | ND | 4 | 46 | 1 | 2 | 2 | 35 | . 32 | . 155 | 1 | 16 | . 29 | 209 | . 08 | 1 | 1.96 | . 01 | . 16 | 1 | 1 |
| L8+00N 1+50\% | 1 | 20 | 10 | 109 | . 3 | 16 | 6 | 242 | 2.66 | 2 | 5 | HD | 5 | 29 | 1 | 2 | 2 | 41 | . 19 | . 181 | 9 | 17 | . 34 | 134 | . 09 | 3 | 2.71 | . 02 | . 12 | 1 | 22 |
| L8+OON $1+00 \mathrm{H}$ | 1 | 32 | 6 | 12 | . 1 | 16 | 9 | 495 | 3.58 | 8 | 5 | WD | 8 | 46 | 1 | 2 | 2 | 67 | . 52 | . 121 | 28 | 27 | . 65 | 111 | . 11 | 3 | 1.57 | . 02 | . 33 | 2 | 1 |
| L8+00N O+503 | 1 | 15 | 9 | 117 | . 3 | 15 | 6 | 282 | 2.64 | 2 | 5 | HD | 1 | 31 | I | 2 | 2 | 42 | . 21 | . 105 | 8 | 21 | . 33 | 148 | . 09 | J | 2.10 | . 01 | . 19 | 1 | 1 |
| L8+001 $0+00018$ | 1 | 22 | 11 | 160 | . 4 | 17 | 7 | 382 | 2.42 | 5 | 6 | WD | 5 | 38 | 1 | 2 | 3 | 36 | . 29 | . 192 | 8 | 20 | . 34 | 252 | . 09 | 8 | 2.39 | . 01 | . 13 | 2 | 3 |
| L8+00N O+508 | 1 | 49 | 15 | 90 | . 1 | 18 | 11 | 667 | 4.04 | 4 | 5. | HD | 10 | 55 | 1 | 2 | 2 | 81 | . 61 | . 129 | 29 | 33 | . 12 | 100 | . 11 | 6 | 1.80 | . 02 | . 24 | 2 | 1 |
| L8+008 1+002 | 1 | 18 | 13 | 130 | . 2 | 30 | 8 | 358 | 2.67 | 2 | 5 | WD | 5 | 47 | 1 | 3 | 2 | 31 | . 34 | . 175 | 12 | 32 | . 40 | 265 | . 10 | 6 | 3.08 | . 02 | . 14 | 1 | 1 |
| LO+00H $1+508$ | 1 | 10 | 8 | 173 | . 3 | 24 | 7. | 429 | 2.19 | 2 | 9 | HD | 4 | 33 | 1 | 2 | 2 | 33 | . 20 | . 132 | 5 | 23 | . 31 | 202 | . 09 | 6 | 2.45 | . 02 | . 10 | 1 | 1 |
| L8+00312+008 | 1 | 25. | 14 | 115 | . 1 | 26 | 14. | 851 | 4.56 | 5 | 5 | W | 10 | B3 | 1 | 5 | 5 | 80 | . 54 | . 108 | 44 | 61 | . 95 | 223 | . 17 | 5 | 3.75 | . 02 | . 12 | 1 | 2 |
| LB+OON $2+508$ | 1 | 20 | 12 | 200 | . 1 | 23 | 13 | 1004 | 4.43 | 3 | 5 | WD | 8 | 94 | 1 | 3 | 2 | 88 | . 69 | . 125 | 32 | 65 | . 80 | 180 | .20 | 5 | 3.06 | . 02 | . 15 | 1 | 1 |
| L8+001 3+00E | 1 | 12 | 10 | 145 | . 1 | 15 | 7 | 563 | 2.83 | 3 | 5 | WD | 4 | 48 | 1 | 3 | 3 | 53 | . 34 | . 051 | 9 | 41 | . 45 | 107 | . 15 | B | 2.17 | . 02 | . 17 | 1 | 1 |
| L8+00H $3+508$ | 1 | 13 | 13 | 163 | . 3 | 20 | 9 | 473 | 2.86 | 2 | 6 | ND | 5 | 53 | 1 | 2 | 3 | 53 | . 34 | . 201 | 11 | 39 | .47 | 180 | . 14 | 10 | 2.41 | . 01 | . 10 | 1 | J |
| L8+OON $4+008$ | 1 | 11 | 8 | 111 | . 2 | 22 | 1 | 516 | 2.67 | 2 | 5 | HD | 5 | 41 | 1 | 2 | 2 | 47 | . 30 | . 053 | 12 | 37 | . 40 | 120 | . 11 | 6 | 1.77 | . 02 | . 13 | 1 | 2 |
| L8toon $4+508$ | 1 | 32 | 1 | 95 | . 2 | 20 | 12 | 403 | 3.98 | 5 | 5 | WD | 9 | 86 | 1 | 2 | 2 | 93 | . 63 | . 096 | 24 | 50 | . 82 | 14 | . 15 | 11 | 1.64 | . 02 | . 20 | 1 | 1 |
| STD C/AJ-s | 18 | 59 | 10 | 132 | 7.0 | 67 | 30 | 1002 | 4.04 | 36 | 19 |  | 36 | 48 | 17 | 17 | 18 | 55 | 48 | . 092 | 36 | 53 | . 94 | 174 | . 06 | 35 | 1.96 | . 06 | . 14 | 12 | 47 |

SAMPLEI

5 a0n 10 000 66+0011 $9+5016$ 26+0018 9+0018 L6+00118 $8+5017$ L6+0ON B+00K

L6+OON 7+504 L6t+ON 7+00W L6+OON $6+50 \%$ L6+0011 $6+00 \mathrm{H}$ L6+0ON $5+50 \mathrm{H}$

L6+001 $5+00 \mathrm{OH}$ $26+00 \mathrm{~N} 4+50 \mathrm{H}$ L6+001 $4+00 \mathrm{y}$ L6+00N $3+50 \mathrm{~K}$
$16+00 \mathrm{~K} ~ 3+004$


## 6+00N $1+258$

STD C/AU-S

| 1 | 13 | 7 | 104 | .1 | 7 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17 | 10 | 129 | .4 | 15 |
| 1 | 17 | 7 | 146 | .1 | 10 |
| 1 | 12 | 6 | 124 | .1 | 10 |
| 1 | 14 | 6 | 78 | .3 | 11 |
| 1 | 15 | 13 | 99 | .3 | 11 |
| 1 | 17 | 14 | 91 | .1 | 17 |
| 1 | 11 | 11 | 74 | .1 | 15 |
| 1 | 15 | 16 | 78 | .1 | 17 |
| 1 | 19 | 6 | 11 | .2 | 19 |


| .1 | 12 |
| :--- | :--- |
| .1 | 13 |
| .2 | 11 |
| .2 | 11 |
| 1 | 11 |


| 6 | 547 | 2.17 | 3 |
| :--- | :--- | :--- | :--- |
| 7 | 338 | 3.01 | 3 |
| 6 | 351 | 2.51 | 2 |
| 7 | 288 | 2.50 | 2 |
| 7 | 322 | 2.51 | 3 |


| MD | 2 |
| :--- | :--- |
| MD | 3 |
| ND | 3 |
| ND | 4 |
| WD | 2 |


| 20 | 1 | 2 |
| :--- | :--- | :--- |
| 23 | 1 | 2 |
| 23 | 1 | 2 |
| 28 | 1 | 2 |
| 22 | 1 | 2 |


| WD | 1 | 21 |
| :--- | :--- | :--- |
| WD | 3 | 30 |
| WD | 2 | 22 |
| ND | 4 | 2 |
| HD | 1 | 20 | $10 \quad 608 \quad 3.21$



| 5 | 316 | 2.04 |
| :--- | :--- | :--- |
| 6 | 360 | 2.09 |
| 7 | 430 | 2.32 |
| 5 | 438 | 2.07 |
| 7 | 314 | 2.53 |


| ND | 3 | 51 |
| :--- | :--- | :--- |
| MD | 3 | 29 |
| ND | 1 | 29 |
| MD | 1 | 21 |
| MD | 3 | 30 |

2
3
2
5
2
$\begin{array}{rr}\text { La } & \mathrm{Cr} \\ \mathrm{PPM} & \mathrm{PPM}\end{array}$ $\begin{array}{ll}.33 & .063 \\ .21 & .068 \\ .24 & .049 \\ .22 & .041\end{array}$

$$
\begin{array}{ll}
413 & 2.23 \\
308 & 2.55 \\
279 & 2.06 \\
185 & 2.56
\end{array}
$$

$$
\begin{array}{lll}
\text { WD } & 3 & 24 \\
\text { WD } & 4 & 22 \\
\text { MD } & 4 & 24 \\
\text { WD } & 6 & 24
\end{array}
$$ $\begin{array}{ll}1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2\end{array}$ $\qquad$ $\begin{array}{cc}8 & 16 \\ 6 & 11 \\ 5 & 13 \\ 5 & 11 \\ 9 & 2 \\ 8 & 11 \\ 14 & 1 \\ 1 & 16 \\ 13 & \\ 12 & \end{array}$ $\begin{array}{ll}.23 & .05 \\ .20 & .088 \\ .20 & .143 \\ .18 & .085 \\ .19 & .180 \\ .18 & .192\end{array}$

$\begin{array}{ccc}\mathrm{Hg} & \mathrm{Ba} & \mathrm{T} \\ \% & \mathrm{PPM} & \end{array}$ $\begin{array}{rr}71 & B \\ 2 & P R K\end{array}$ $B$
$P R K$ Al
1
 $\begin{array}{ll} & 36 \\ 32 \\ 32 \\ 37 \\ & 34 \\ & 45 \\ & 36 \\ 2 & 40 \\ 3 & 21 \\ 2 & 38 \\ 2 & 42 \\ & 36 \\ 2 & 38 \\ 2 & 42 \\ & 40 \\ 2 & 43 \\ 2 & 47 \\ 2 & 38 \\ 2 & 42 \\ 2 & 43 \\ 2 & 59\end{array}$ $\begin{array}{ll}.27 & 109 \\ .29 & 1 \\ .34 & \\ .29 & \\ .35 & \\ & \\ .26 \\ .30 & \\ .24 \\ .35 \\ .32\end{array}$ 109
151
128
101
92. $\begin{array}{llll}5 & 1.39 & .02 & .16 \\ 6 & 2.07 & .02 & .09 \\ 3 & 2.20 & .02 & .13 \\ 4 & 1.79 & .02 & .10 \\ 3 & 1.56 & .01 & .12\end{array}$ .16
.09
.13
.10

12 $\begin{array}{ll}17 & .26 \\ 19 & .30 \\ 16 & .24 \\ 19 & .35 \\ 21 & 32\end{array}$ $\begin{array}{ll}132 & .09 \\ 163 & .10 \\ 164 & .09 \\ 170 & .11 \\ 167 & 10\end{array}$ $\begin{array}{llll}1 & 1.84 & .01 & .10 \\ 5 & 2.39 & .02 & .08 \\ 2 & 2.02 & .01 & .08 \\ 3 & 2.55 & .02 & .11 \\ 2 & 2.28 & .02 & 10\end{array}$ $\begin{array}{ll}.18 & .037 \\ .27 & .039 \\ .31 & .022 \\ .33 & .037\end{array}$ $\begin{array}{cc}8 & 15 \\ 9 & 20 \\ 12 & 17 \\ 10 & 15 \\ 10 & 15\end{array}$ $\begin{array}{rr}.26 & 98 \\ .47 & 106 \\ .32 & 99 \\ .34 & 104 \\ 35 & 110\end{array}$ |  | .08 |
| :--- | :--- |
|  | .10 |
|  | .10 |
|  | .10 |
| 10 |  |

| 4 | 1.37 | .01 | .14 |
| :--- | :--- | :--- | :--- |
| 5 | 1.66 | .01 | .24 |
| 4 | 1.77 | .01 | .20 |
| 1 | 1.93 | .01 | .22 |
| 5 | 1.48 | .01 | 25 | .14

.24
.20
.22
.25
$\begin{array}{ll}2 & 1.52 \\ 2 & 1.55 \\ 6 & 1.47 \\ 2 & 1.89\end{array}$ 89 .26
.23
.26
.31
.38

$$
\begin{array}{ll}
2 & 1 \\
2 & 2 \\
3 & 2 \\
5 & 3 \\
1 & 5
\end{array}
$$

$$
\begin{array}{lll}
\text { WD } & 1 & 31 \\
\text { WD } & 3 & 23 \\
\text { WD } & 3 & 20 \\
\text { WD } & 3 & 34 \\
\text { WD } & 5 & 24
\end{array}
$$




$$
\begin{array}{ll}
.30 & .039 \\
.33 & .041 \\
.33 & .061 \\
.29 & .042 \\
.33 & .040
\end{array}
$$

$$
\begin{array}{r}
14 \\
15 \\
19 \\
16 \\
11
\end{array}
$$

$$
\begin{aligned}
& 29 \\
& 24 \\
& 17 \\
& 21 \\
& 15
\end{aligned}
$$

$$
\begin{array}{lll} 
& .48 & 160 \\
& .53 & 167 \\
& .73 & 232 \\
& .61 & 191 \\
5 & .64 & 144
\end{array}
$$

$$
\begin{aligned}
& 11 \\
& 44
\end{aligned}
$$

$$
\begin{gathered}
.12 \\
.14 \\
2 \\
.14 \\
.14 \\
.12
\end{gathered}
$$

| 3 | 2.13 | .01 | .35 |
| :---: | :---: | :---: | :---: |
| 8 | 2.50 | .02 | .38 |
| 1 | 3.06 | .01 | .46 |
| 7 | 2.74 | .02 | .38 |
| 2 | 2.08 | .01 | .46 |

$$
\begin{array}{llll}
3 & 2.13 & .01 & .35 \\
8 & 2.50 & .02 & .38 \\
1 & 3.06 & .01 & .46 \\
7 & 2.74 & .02 & .38 \\
2 & 2.08 & .01 & .46
\end{array}
$$

| 2 | 2 | 70 | .30 | .050 | 12 | 18 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 2 | 75 | .32 | .041 | 13 | 21 |
| 2 | 2 | 60 | .34 | .035 | 13 | 21 |
| 2 | 2 | 14 | .37 | .031 | 9 | 17 |
| 2 | 2 | 49 | .31 | .037 | 11 | 15 |

$$
\begin{array}{ll}
.56 & 164 \\
.57 & 129 \\
.46 & 161 \\
.49 & 107 \\
.35 & 145
\end{array}
$$

$$
\begin{aligned}
& .12 \\
& .12 \\
& .11 \\
& .11 \\
& .10
\end{aligned}
$$

$$
\begin{array}{llll}
1 & 2.27 & .01 & .00 \\
7 & 1.95 & .01 & .35 \\
3 & 1.77 & .01 & .32 \\
7 & 1.81 & .01 & .38 \\
6 & 1.81 & .01 & .24
\end{array}
$$

$$
\begin{array}{ll}
1 & 2 \\
1 & 2 \\
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}
$$

$$
\begin{array}{rrrrrrrr}
2 & 52 & .34 & .051 & 12 & 18 & .39 & 116 \\
& 39 & .20 & .038 & 8 & 16 & .30 & 108 \\
3 & 38 & .18 & .024 & 8 & 14 & .25 & 85 \\
3 & 38 & .28 & .092 & 12 & 17 & .31 & 167 \\
30 & .22 & .042 & 7 & 15 & .32 & 109
\end{array}
$$

$$
\begin{array}{ll}
.11 & 7 \\
.10 & 8 \\
.08 & 5 \\
.09 & 3 \\
.10 & 4
\end{array}
$$

$$
\begin{array}{cccc}
7 & 1.83 & .01 & .23 \\
8 & 1.62 & .01 & .22 \\
5 & 1.04 & .01 & .16 \\
3 & 2.01 & .01 & .16 \\
4 & 1.80 & .01 & .17
\end{array}
$$

$$
\begin{array}{lllllll}
54 & .49 & .055 & 10 & 22 & .54 & 240 \\
57 & .49 & .095 & 42 & 56 & .95 & 179
\end{array}
$$

$$
\begin{array}{r}
21.93 \\
412.01
\end{array}
$$

$$
\begin{array}{lll}
1.93 & .01 & .2 \\
2.01 & .05 & .
\end{array}
$$

$$
\begin{array}{rr}
.23 & 1 \\
.14 & 11
\end{array}
$$

sampica

| L6+00N $1+508$ | 1 | 16 | 5 | 90 | . 1 | 21 | 5 | 861 | 2.35 | 2 | 5 | ND | 3 | 42 | 1 | 2 | 2 | 12 | . 40 | . 058 | $B$ | 28 | . 38 | 196 | . 10 | 3 | 2.24 | . 01 | . 15 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L6+0011 1+758 | 1 | 22 | 10 | 106 | . 1 | 21 | 7 | 558 | 2.99 | 5 | 5 | HD | 3 | 28 | 1 | 2 | 2 | 55 | . 29 | . 036 | 10 | 36 | . 54 | 165 | . 14 | 8 | 2.47 | . 01 | . 27 | 2 |  |
| L6t001 $2+608$ | 1 | 13 | 8 | 86 | . 1 | 11 | 4 | 775 | 1.87 | 2 | 5 | ND | 2 | 44 | 1 | 2 |  | 38 | . 30 | . 023 | 5 | 16 | . 26 | 134 | . 10 | 10 | 1.33 | . 02 | . 15 | 1 |  |
| 26+00N $2+258$ | 1 | 11 | 6 | 193 | .1 | 26 | 4 | 660 | 1.63 | 2 | 5 | ND | 2 | 56 | 1 | 2 | 2 | 26 | . 29 | . 096 | 7 | 25 | . 21 | 229 | . 08 | 9 | 1.59 | . 02 | . 14 | 1 |  |
| 16+0012 $2+508$ | 1 | 10 | 9 | 156 | . 2 | 32 | 6 | 524 | 1.93 | 1 | 5 | ND | 4 | 37 | 1 | 2 | 2 | 31 | . 20 | . 090 | 5 | 34 | . 32 | 158 | . 10 | 1 | 1.84 | . 02 | . 13 | 1 | 1 |
| L6+00N $2+758$ | 1 | 1 | 10 | 137 | . 1 | 19 | 5 | 694 | 1.55 | 3 |  | HD | . | 70 | 1 | 2 | 2 | 21 | . 37 | .043 | 6 | 22 | . 26 | 119 | . 07 | 4 | 1.24 | . 02 | . 12 | 1 | 1 |
| 66+00N 3+008 | 1 | 14 | 1 | 71 | . 1 | 25 | 4 | 186 | 2.08 | 2 | 5 | ND | 3 | 34 | 1 | 2 | 2 | 36 | . 19 | . 040 | 6 | 32 | . 35 | 110 | . 11 | 6 | 1.89 | . 02 | . 12 | 1 | 12 |
| L6toon 3+258 | 1 | 9 | 6 | 97 | . 1 | 19 | 4 | 267 | 1.58 | 4 | 5 | HD | 2 | 28 | 1 | 2 | 3 | 25 | . 17 | . 096 | 5 | 21 | . 24 | 174 | . 08 | 8 | 1.57 | . 01 | . 12 | 1 | 1 |
| L6+0013 3+50] | 1 | $g$ | 3 | 57 | . 1 | 16 | 4 | 236 | 1.77 | 2 | 5 | HD | 3 | 28 | 1 | 2 | 2 | 31 | . 19 | . 084 | 7 | 17 | . 22 | 124 | . 09 | 8 | 1.44 | . 02 | . 11 | 1 |  |
| L6+00N 3+758 | 1 | 1 | 7 | 59 | . 1 | 10 | 1 | 253 | 1.74 | 2 | 5 | HD | 2 | 30 | 1 | 2 | 2 | 32 | . 18 | . 064 | 6 | 16 | . 21 | 11.4 | . 09 | 3 | 1.39 | . 02 | . 11 | 1 | 2 |
| L6t00:3 $4+008$ | 1 | 10 | 9 | 40 | . 1 | 10 | 4 | 162 | 2.05 | 2 | 5 | WD | 4 | 32 | , | 2 | 2 | 45 | . 21 | . 040 | 11 | 23 | . 26 | 92 | . 12 | 5 | 1.04 | . 02 | . 12 | 2 |  |
| L6toon 4+258 | 1 | 8 | 7 | 63 | . 1 | 1 | 4 | 293 | 2.01 | 2 | 5 | HIL | . | 26 | 1 | 2 | 2 | 46 | . 21 | . 033 | 14 | 23 | . 25 | 80 | . 10 | 2 | . 89 | . 01 | . 12 | 1 |  |
| Letoon 4450E | 1 | 14 | 5 | 64 | . 1 | 10 | 4 | 198 | 1.94 | 2 | 5 | HD | 1 | 28 | 1 | 2 | 3 | 36 | . 19 | . 034 | 8 | 19 | . 26 | 136 | . 11 | 2 | 1.56 | . 02 | . 13 | 1 |  |
| L6+00N 47758 | 1 | 16 | 11 | 117 | . 2 | 18 | 5 | 343 | 1.95 | 5 | 5 | HD | 3 | 33 | 1 | 2 | 3 | 34 | . 21 | . 104 | 8 | 21 | . 28 | 194 | . 10 | 6 | 2.11 | . 02 | . 11 | 1 |  |
| L6t001 5+008 | 1 | 10 | 5 | 92 | . 1 | 10 | 4 | 301 | 1.75 | 2 | 5 | ND | 3 | 25 | 1 | 2 | 2 | 36 | . 18 | . 043 | 7 | 19 | . 20 | 116 | . 10 | 5 | 1.31 | . 02 | . 10 | 1 | 1 |
| L $5+000 \mathrm{~N}$ 5+258 | 1 | 16 | 9 | 112 | . 1 | 17 | 4 | 310 | 1.99 | 5 | 5 | ND | 3 | 33 | 1 | 2 | 2 | 36 | . 21 | . 100 | , | 20 | . 28 | 171 | . 10 |  | 2.04 | . 02 | . 10 | 2 | 1 |
| L6+00N 5+5:02 | 1 | 19 | 5 | 90 | . 3 | 16 | 6 | 214 | 2.27 | 4 | 5 | WD | 4 | 26 | 1 | 2 | 2 | 42 | . 23 | . 081 | 7 | 19 | . 32 | 132 | . 11 |  | 1.95 | . 02 | . 13 | 1 | 1 |
| L6+00N $6+008$ | 1 | 49 | 6 | 85 | . 1 | 16 | 9 | 526 | 3.22 | 4 | 5 | ND | 5 | 52 | 1 | 2 | 2 | 17 | . 48 | . 084 | 19 | 27 | . 62 | 91 | . 12 | 4 | 1.79 | . 02 | . 21 | 1 | 1 |
| L6+90N 6+50? | 1 | 20 | 11 | 107 | . 1 | 11 | 6 | 383 | 2.45 | 3 | 5 | WD | 5 | 29 | 1 | 2 | 2 | 51 | . 28 | . 034 | , | 18 | . 35 | 105 | . 11 | 7 | 1.57 | . 02 | . 21 | 1 | 1 |
| L6toon $7+008$ | 1 | 15 | 2 | 114 | . 1 | 17 | 5 | 488 | 2.16 | 2 | 5 | HD | 2 | 26 | 1 | 2 | 2 | 41 | . 25 | . 032 | 5 | 20 | . 33 | 114 | . 11 | 3 | 1.57 | . 01 | . 12 | 1 | 1 |
| L6toon $7+50 \mathrm{E}$ | 1 | 23 | 9 | 98 | . 1 | 17 | 6 | 211 | 2.38 | 2 | 5 | WD | $B$ | 22 | 1 | 2 | 2 | 46 | . 21 | . 037 | f | 19 | . 35 | 108 | . 11 | 3 | 1.88 | . 02 | . 10 | 1 | 1 |
| L6toox 8+008 | , | 34 | 6 | 88 | . 2 | 14 | 7 | 436 | 2.48 | 2 | 5 | MD | 3 | 33 | 1 | 2 | 2 | 52. | . 32 | . 071 | 1 | 16 | . 36 . | 110 | . 09 | , | 1.59 | . 02 | .13 | 1 | 1 |
| L6toon $8+50 \mathrm{~S}$ | 1 | 17 | 6 | 82 | . 2 | 11 | 5 | 317 | 1.85 | 2 | 5 | 1 D | 2 | 23 | 1 | , | 2 | 32 | . 24 | . 034 | 5 | 13 | . 26 | 83 | . 08 | 6 | 1.43 | . 01 | . 13 | 1 | 1 |
| L6+00N 9+008 | 1 | 25 | 7 | 98 | . 1 | 15 | 1. | 247 | 2.26 | 3 | 5 | ND | 3 | 23 | 1 | 2 | 3 | 35 | . 22 | . 123 | 6 | 17 | . 31 | 162 | . 10 | , | 2.10 | . 02 | . 12 | , | 1 |
| L6+OON 9+508 | 1 | 32 | 5 | 85 | . 1 | 15 | 9 | 220 | 2.79 | 2 | 5 | HD | 3 | 29 | 1 | 2 | 2 | 56 | . 23 | . 064 | , | 14 | . 40 | 122 | . 11 | 2 | 1.88 | . 01 | . 12 | 3 | 2 |
| L5+00N 0+008 | , | 28 | 6 | 69 | . 2 | 11 |  | 517 | 2.61 | 2 | 5 | WD |  | 30 | 1 |  | 2 | 57 | . 29 | . 047 |  | 15 | . 36 | 117 | . 09 | 1 | 1.17 | . 01 | . 21 | 2 | 1 |
| L5+00N 0+258 | 1 | 28 | 7 | 76 | . 1 | 13 | 7. | 637 | 2.80 | 5 | 5 | WD | 4 | 31 | 1 | 2 | 2 | 61 | . 28 | . 030 | , | 16 | . 36 | 116 | . 10 | 5 | 1.46 | . 01 | . 21 | 2 |  |
| L5t00N $0+508$ | 1 | 31 | 5 | 74 | . 1 | 8 | 7 | 383 | 2.93 | 5 | 5 | HD | 4 | 30 | 1 | 2 |  | 66 | . 30 | . 042 | 9 | 11 | . 44 | 95 | . 11 |  | 1.12 | . 01 | . 22 | 3 | 3 |
| L5toon $0+758$ | 1 | 32 | 6 | 85 | . 1 | 21 | 9 | 500 | 3.19 | 2 | 5 | HD | 4 | 35 | 1 | 2 | 2 | 64 | . 34 | . 096 | 15 | 33 | . 50 | 127 | . 13 |  | 1.99 | . 01 | . 26 | 3 | 1 |
| L5 5 +0ON $1+008$ | 1 | 36 | 11 | 69 | .1 | 23 | 9 | 390 | 3.28 | 2 | 5 | HD | 4 | 34 | 1 | 2 | 2 | 11 | .35 | . 048 | 11 | 31. | . 50 | 104 | . 12 | 1 | 1.76 | . 01 | . 22 | 2 | 1 |
| L5+00N 1+258 | 1 | 28 | 9 | 55 | . 1 | 24 | 9 | 334 | 2.92 | 3 | 5 | HD | 4 | 36 | 1 | 2 | 2 | 66 | . 33 | . 052 | 11 | 35 | . 49 | 87 | . 11 | 3 | 1.22 | . 01 | . 18 | 2 | 1 |
| L5+00N $1+50 \mathrm{E}$ | 1 | 34 | 8 | 67. | . 1 | 15 | 8 | 292 | 3.22 | 2 | 5 | HD | 1 | 28 | 1 | 2 | 2 | 78 | . 30 | . 046 | 11 | 19 | . 48 | 68 | . 12 | 1 | 1.50 | . 01 | . 21 | 2 | 8 |
| L5toon 1+758 | 1 | 23 | 8 | 56 | . 1 | 8 | 7 | 322 | 2.82 | 2 | 5 | ND | 2 | 26 | 1 | 2 | 2 | 65 | . 28 | . 037 | 1 | 18 | . 34 | 84 | . 10 | 1 | 1.26 | . 01 | . 17 | 1 | 2 |
| L5+001 $2+008$ | 1 | 21 | $g$ | 66 | . 1 | 16 | 5 | 354 | 2.23 | 3 | 5 | HD | 3 | 40 | 1 | 2 |  | 43 | . 29 | . 034 | 11 | 23 | . 32 | 111 | . 10 | 8 | 1.82 | . 01 | . 15 | 1 | 1 |
| L5+00N 24252 | 1 | 23 | 8 | 74 | . 2 | 14 | 7 | 397 | 2.94 | 2 | 5 | HD | 4 | 34 | 1 | 2 | 2 | 69 | . 33 | . 054 | 11 | 20 | . 33 | 116 | . 10 | 8 | 1.35 | . 01 | . 18 | 2 | 1 |
| L5+00N $2+508$ | 1 | 18 | 12 | 73 | . 1 | 12 | 5 | 267 | 2.30 | 5 | 5 | HD | 2 | 24 | 1 | 2 | 2 | 46 | . 20 | . 040 | 1 | 16 | . 26 | 110 | . 10 | 1 | 1.62 | . 01 | . 12 | 1 | 1 |
| STD C/AU-S | 21 | 62 | 39 | 132 | 1.1 | 72 | 31 | 1054 | 4.11 | 40 | 21 | 7 | 39 | 47 | 18 | 17 | 24 | 60 | . 49 | . 095 | 39 | 57 | . 96 | 182 | . 07 | 38 | 1.91 | . 05 | . 14 | 11 | 52 |

SAMPLE:


| L5+00N $2+758$ | 1 | 7 | 3 | 94 | . 1 | 8 | 4 | 327 | 1.60 | 2 | 5 | ND | 2 | 21 | 1 | 2 | 2 | 35 | . 20 | . 062 | 6 | 12 | . 19 | 188 | . 03 | 2 | 1.65 | . 01 | . 11 | 1 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L5+00N 3+008 | 1 | 10 | 6 | 60 | . 1 | 9 | 1 | 212 | 1.94 | 2 | 5 | ND | 2 | 26 | 1 | 2 | 2 | 43 | . 22 | . 050 | 9 | 17 | . 22 | 118 | . 09 | 2 | 1.44 | . 01 | . 13 | 1 | 1 |
| 15tion 3+258 | 1 | 7 | 2 | 51 | . 1 | 6 | 3 | 287 | 1.20 | 2 | 5 | ND | 1 | 19 | 1 | 2 | 2 | 24 | . 16 | . 018 | 5 | 12 | . 15 | 90 | . 07 | 2 | 1.07 | . 01 | . 10 | 1 | 1 |
| L5+00N 3+508 | 1 | 15 | 8 | 83 | . 1 | 22 | 5 | 291 | 1.75 | 2 | 5 | ND | 2 | 40 | 1 | 2 | 3 | 30 | . 21 | . 027 | 12 | 34 | .41 | 141 | . 09 | 2 | 1.81 | . 01 | . 17 | 1 | 1 |
| L5+00N 3+758 | 1 | 6 | 2 | 48 | . 1 | 7 | 2 | 207 | . 71 | 2 | 5 | ND | 1 | 28 | 1 | 2 | 2 | 13 | . 16 | . 039 | 1 | 11 | . 14 | 127 | . 04 | 2 | . 85 | . 01 | . 08 | 1 | - 1 |
| L5+00N 4+008 | 1 | 7 | 9 | 46 | . 3 | 8 | 4 | 179 | 1.54 | 1 | 5 | ND | 2 | 29 | 1 | 2 | 2 | 29 | . 17 | . 018 | 6 | 18 | . 22 | 104 | . 09 | 3 | 1.41 | . 01 | . 14 | 2 | 2 |
| L5toon 4+25E | 1 | 15 | 3 | 76 | . 1 | 11 | 5 | 307 | 2.08 | 2 | 5 | ND | 2 | 30 | 1 | 2 | 2 | 41 | . 28 | . 021 | 12 | 23 | . 31 | 118 | . 11 | 2 | 1.11 | . 01 | . 22 | 1 | 1 |
| L5+00H 4+508 | 1 | 15 | 12 | 30 | . 1 | 17 | 6 | 238 | 2.83 | 3 | 5 | ND | 1 | 65 | 1 | 2 | 2 | 57 | . 29 | . 061 | 13 | 33 | . 46 | 185 | . 14 | 2 | 3.01 | . 01 | . 15 | 1 | 1 |
| L5+00N 4+758 | 1 | 12 | 1 | 67 | . 1 | 11 | 5 | 164 | 2.01 | 2 | 5 | ND | 1 | 50 | 1 | 2 | , | 12 | . 23 | . 038 | 8 | 19 | . 31 | 161 | . 11 | 2 | 1.83 | . 01 | . 12 | 1 | 1 |
| $25+00115+008$ | 1 | 14 | 9 | 79 | . 3 | 12 | 5 | 297 | 1.78 | 2 | 5 | ND | 2 | 40 | 1 | 2 | 2 | 32 | . 27 | . 068 | 9 | 15 | . 23 | 186 | . 09 | 5 | 2.15 | . 02 | . 13 | 1 | 1 |
| L5tocn $5+258$ | 1 | 12 | 11 | 70 | . 1 | 9 | 5 | 491 | 1.87 | 2 | 5 | ND | 1 | 37 | 1 | 2 | 2 | 39 | . 27 | . 030 | 9 | 19 | . 25 | 157 | . 09 | 2 | 1.43 | . 01 | . 17 | 1 | 2 |
| L5+001 5+508 | 1 | 16 | 6 | 74 | . 2 | 11 | 5 | 551 | 2.07 | 3 | 5 | ND | 2 | 13 | 1 | 2 | 2 | 41 | . 33 | . 035 | 9 | 18 | . 23 | 162 | . 10 | 3 | 2.03 | . 01 | . 15 | 1 | 1 |
| L5toon 5+758 | 1 | 17 | 5 | 85 | . 3 | 11 | 5 | 271 | 2.14 | 2 | 5 | ND | 2 | 37 | 1 | 2 | 2 | 45 | . 28 | . 029 | 8 | 17 | . 30 | 114 | . 10 | 2 | 1.82 | . 01 | . 18 | 1 | 1 |
| L5+00N $6+008$ | 1 | 63 | 11 | 84 | . 3 | 15 | 8 | 378 | 3.54 | 2 | 5 | ND | 3 | 49 | 1 | 2 | 2 | 83 | . 50 | . 069 | 16 | 24 | . 59 | 81 | . 12 | 2 | 1.98 | . 01 | . 26 | 1 | 6 |
| L4+00N 10+004 | 1 | 10 | 5 | 48 | . 2 | 11 | 4 | 274 | 1.77 | 3 | 5 | ND | 2 | 21 | 1 | 2 | $?$ | 33 | . 21 | . 042 | 8 | 15 | . 21 | 114 | . 08 | 2 | 1.53 | . 01 | . 16 | 1 | 1 |
| L4+0014 9+5014 | 1 | 18 | 6 | 10 | . 1 | 9 | 5 | 471 | 1.79 | 2 | 5 | ND | 1 | 26 | 1 | 2 | 2 | 31 | . 32 | . 019 | 11 | 14 | . 25 | 91 | . 07 | 2 | 1.34 | . 01 | . 20 |  | 2 |
| L4+00N 9+00\% | 1 | 12 | 9 | 55 | . 1 | 9 | 5 | 591 | 2.08 | 5 | 5 | VD | 1 | 18 | 1 | 2 | 2 | 41 | . 19 | . 026 | 9 | 14 | . 23 | 116 | . 07 | 2 | 1.32 | . 01 | . 15 | 1 | 1 |
| L4+00N 8450\% | 1 | 16 | 8 | 37 | . 1 | 6 | 5 | 676 | 1.76 | 2 | 5 | 3D | 1 | 24 | 1 | ? | 2 | 34 | . 22 | . 014 | 11 | 12 | . 19 | 122 | . 01 | 2 | 1.12 | . 01 | . 17 | 1 | 2 |
| L4+00018 $8+00 \%$ | 1 | 12 | 12 | 43 | . 2 | B | 5 | 510 | 1.90 | 2 | 5 | ND | 2 | 26 | 1 | 2 | 2 | 36 | . 21 | . 025 | 9 | 13 | . 22 | 121 | . 08 | 3 | 1.58 | . 01 | . 19 | 1 | 1 |
| L4+00N $7+50 \mathrm{H}$ | 1 | 14 | 7 | 62 | . 1 | 6 | 5 | 1322 | 1.91 | 2 | 5 | N0 | 1 | 20 | 1 | 2 | 2 | 14 | . 21 | . 031 | 7 | 12 | . 23 | 134 | . 01 | 2 | 1.04 | . 01 | . 15 | 1 | 1 |
| L4+003 $7+00 \mathrm{H}$ | 1 | 19 | 4 | 100 | . 2 | 11 | 6 | 1024 | 2.02 | 1 | 5 | WD | 1 | 30 | 1 | 2 | 2 | 39 | . 30 | . 062 | 9 | 15 | . 25 | 230 | . 08 | 2 | 8.71 | . 01 | . 22 | 2 | 1 |
| L4+00N $6+50 \mathrm{~N}$ | 1 | 19 | 11 | 37 | . 5 | 8 | 5 | 521 | 1.83 | 1 | 6 | HD | 3 | 21 | 1 | 3 | 2 | 36 | . 34 | . 023 | 10 | 13 | . 22 | 114 | . 08 | 1 | 1.53 | . 01 | . 17 | 2 | 1 |
| L4+00N $6+00 \mathrm{~N}$ | 1 | 23 | 3 | 75 | . 3 | 10 |  | 810 | 2.01 | 2 | 5 | HD | 1 | 44 | 1 | 2 | 2 | 40 | . 54 | . 069 | 10 | 15 | . 25 | 201 | . 08 | 6 | 1.53 | . 01 | . 24 | 1 | 2 |
| L4+00N 5+50\% | 1 | 14 | 6 | 52 | . 1 | 9 | 5 | 380 | 1.95 | 2 | 5 | ND | 2 | 20 | 1 | 2 | 2 | 38 | . 20 | . 022 | 9 | 15. | . 24 | 135 | . 09 | 2 | 1.48 | . 01 | . 20 | 2 | 1 |
| L4+00N 5+00\% | 1 | 9 | 10 | 49 | . 2 | 8 | 1 | 481 | 1.68 | 3 | 5 | ND | 1 | 26 | 1 | 2 | 2 | 34 | . 27 | . 027 | 6 | 13 | . 21 | 143 | . 07 | 1 | 1.12 | . 01 | . 19 | 2 | 1 |
| L4+00N $4+504$ | 1 | 19 | 6 | 41 | . 3 | 11 | 6 | 218 | 2.31 | 3 | 5 | KD | 2 | 19 | 1 | 3 | 3 | 53 | . 21 | . 022 | 12 | 19 | . 32 | 82 | . 08 | 2 | . 98 | . 01 | . 24 | 1 | 3 |
| L4+00H $4+00 \mathrm{H}$ | 1 | 12 | 6 | 18 | . 1 | 14 | 6 | 138 | 1.90 | 2 | 5 | WD | 2 | 18 | 1 | 2 | 2 | 38 | . 18 | . 016 | 1 | 18 | . 21 | 103 | . 08 | 2 | 1.25 | . 01 | . 22 | 2 | 1 |
| L4+00N $3+50 \mathrm{H}$ | 1 | 30 | 10 | 11 | . 1 | 13 | 1 | 905 | 1.96 | 3 | 5 | HD | 1 | 55 | 1 | 2 | , | 38 | . 49 | . 029 | 8 | 14 | . 35 | 146 | . 08 | 2 | 1.82 | . 02 | . 24 | 1 | 1 |
| L4+00世 3+00\% | 1 | 39 | 11 | 99 | . 2 | 20 | 10 | 618 | 2.84 | 4 | 5 | HD | 2 | 34 | 1 | 3 | 2 | 60 | . 34 | . 062 | 10 | 26 | . 53 | 218 | . 11 | 5 | 2.55 | . 01 | . 39 | 1 | 1 |
| L4+00N $2+50 \mathrm{H}$ | 1 | 67 | 16 | 103 | . 3 | 17 | 12 | 598 | 4.09 | 4 | 5 | HD | 2 | 23 | 1 | 2 | 2 | 97 | . 29 | . 047 | 12 | 25 | . 84 | 149 | . 14 | 6 | 2.64 | . 01 | . 53 | 1 | 10 |
| L4+0012 $2+000$ | 1 | 31 | 11 | 99 | . 3 | 14 | 9 | 799 | 2.72 | 3 | 5 | WD | 2 | 31 | 1 | 3 | 2 | 63 | . 32 | . 019 | 10 | 19 | . 52 | 171 | . 10 | 6 | 2.02 | . 01 | . 39 | 1 | 1 |
| L4+0011 $1+50 \%$ | , | 39 | 3 | 96 | 1 | 16 | 11 | 971 | 3.17 | 3 | 5 | WD | 2 | 36 | 1 | 2 | 2 | 74 | , 35 | . 046 | 10 | 21 | . 59 | 173 | . 11 | 1 | 2.15 | . 01 | . 49 | 1 | 1 |
| L4+00N 1+00H | 1 | 42 | 9 | 73 | . 1 | 11 |  | 701 | 2.33 | 3 | 5 | ND | 1 | 71 | 1 | 2 | 2 | 51 | . 40 | .024 | 11 | 15 | . 13 | 115 | . 09 | 2 | 1.89 | . 01 | . 30 | 1 | 1 |
| 14+00N $0+50 \mathrm{H}$ | 1 | 19 | 8 | 61 | .1 | 9 | 6 | 828 | 2.11 | 3 | 5 | HD | 1 | 33 | 1 | 2 | 3 | 45 | . 27 | . 022 | 8 | 12 | . 32 | 139 | . 07 | 2 | 1.33 | . 01 | . 28 | 2 | 1 |
| L4+00120 +80 H | 1 | 32 | 7 | 47 | . 1 | 14 | 7 | 590 | 2.38 | 2 | 5 | HD | 2 | 39 | 1 | 2 | 3 | 55 | . 33 | . 023 | 10 | 15 | . 35 | 99 | . 07 | 4 | 1.09 | . 01 | . 28 | 1 | 5 |
| L4+00N 01258 | 1 | 23 | 4 | 59 | . 1 | 12 | 7 | 609 | 2.34 | 2 | 5 | ND | 1 | 33 | 1 | 2 | 2 | 51 | . 27 | . 026 | 9 | 14 | . 33 | 127 | . 09 | 2 | 1.45 | . 01 | . 21 | 1 | 1 |
| STD C/AD-S | 11 | 58 | 43 | 132 | 1.2 | 67 | 29 | 985 | 3.91 | 43 | 18 | 1 | 37 | 47 | 18 | 19 | 19 | 57 | . 46 | . 096 | 38 | 56 | . 85 | 176 | . 06 | 32 | 1.86 | . 06 | . 13 | 12 | 48 |

$\qquad$ pp ${ }^{\text {P }}$ $\begin{array}{r}\text { Sr } \\ \hline \text { PM }\end{array}$ $\begin{array}{rr}\text { Cd } & \text { Sb } \\ \text { Pi } & \text { PPM }\end{array}$ Bi
PPM $V$ $p$

$q$ | P | la |
| :--- | ---: |
|  | PPM | | Cr | Mg |
| :---: | :---: |
| Ba |  |
| BP |  |



| L4t00N $0+508$ | 1 | 26 | 5 | 57 | . 3 | 13 | 7 | 579 | 2.38 | 2 | 6 | ND | 2 | 35 | 1 | 2 | 2 | 51 | . 30 | . 028 | 9 | 11 | . 35 | 135 | . 08 | 3 | 1.61 | . 01 | . 27 | 1 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L4t00N 0+758 | 1 | 25 | 8 | 51 | . 2 | 19 | 1 | 470 | 2.59 | 2 | 5 | ND | 2 | 34 | 1 | 2 | 2 | 58 | . 28 | . 025 | $g$ | 15 | . 33 | 113 | . 09 | 2 | 1.67 | . 01 | . 23 | 2 | 7 |
| L4+00N $1+502$ | 1 | 20 | 7 | 65 | . 2 | 12 | 6 | 195 | 2.38 | 1 | 5 | WD | 3 | 36. | 1 | 2 | 2 | 52 | . 28 | . 025 | 8 | 15 | . 32 | 109 | . 09 | 4 | 1.44 | . 01 | . 25 | 1 | 2 |
| $24+00 \mathrm{~N} 2+258$ | 1 | 22 | 7 | 88 | . 1 | 23 | 1 | 120 | 2.71 | 2 | 5 | ND | 3 | 32 | 1 | 2 | 2 | 51 | . 30 | . 034 | 11 | 22 | . 31 | 130 | . 10 | 2 | 2.17 | . 02 | . 24 | 1 | 1 |
| L4+008 $1+508$ | 1 | 22 | 6 | 67 | . 1 | 21 | 1 | 479 | 3.06 | 2 | 5 | ND | 2 | 32 | 1 | 2 | 2 | 68 | . 32 | . 053 | 10 | 28 | . 36 | 121 | . 08 | 2 | 1.37 | . 01 | . 19 | 1 | 1 |
| 14+60N 1+758 | 1 | 21 | 12 | 12 | .6 | 18 | 1 | 365 | 2.60 | 4 | 5 | ND | 5 | 26 | 1 | 1 | 2 | 51 | . 29 | . 031 | 10 | 24 | . 33 | 107 | . 10 | 8 | 1.91 | . 01 | . 19 | 1 | 4 |
| L4+CON $2+008$ | 1 | 17 | 7 | 47 | . 2 | 13 | 6 | 112 | 2.40 | 2 | 5 | ND | 2 | 33 | 1 | 2 | 2 | 57 | . 32 | . 021 | 11 | 19 | . 30 | 83 | . 09 | 2 | 1.29 | . 01 | . 21 | 2 | 1 |
| L4+00N $2+258$ | 1 | 20 | 6 | 47 | . 2 | 12 | 1 | 460 | 2.67 | 2 | 6 | WD | 3 | 31 | 1 | 2 | 2 | 63 | . 28 | . 020 | $1 ?$ | 18 | . 31 | 79 | . 09 | 3 | 1.22 | . 01 | . 22 | 2 | 1 |
| L4+00N $2+50 \mathrm{E}$ |  | 18 | 8 | 45 | . 1 | 11 | 6 | 323 | 2.65 | 4 | 5 | ND | 3 | 24 | 1 | 2 | 3 | 65 | . 27 | . 020 | 11 | 16 | . 30 | 55 | . 10 | 2 | 1.08 | . 01 | . 21 | 3 | 1 |
| 29+00N $2+758$ | 1 | 15 | 6 | 56 | . 1 | 12 | 5 | 280 | 2.29 | 2 | 5 | H0 | 3 | 31 | 1 | 2 | 2 | 48 | . 28 | . 063 | 11 | 16 | . 25 | 99 | . 09 | 2 | 1.63 | . 01 | . 16 | 1 | 1 |
| L4+00\% 3+002 | 1 | 11 | 3 | 67 | . 2 | 10 | 4 | 270 | 1.89 | 2 | 5 | ND | . | 29 | 1 | 2 | 2 | 10 | . 27 | . 055 | 8 | 14 | . 22 | 115 | . 08 | 2 | 1.59 | . 01 | . 10 | 1 | 2 |
| L4+00N 3+258 | 1 | 17 | 8 | 62 | . 1 | 13 | 6 | 276 | 2.26 | 2 | 5 | HD | 3 | 29 | 1 | 2 | 2 | 49 | . 31 | . 072 | 16 | 18 | . 29 | 119 | . 09 | 2 | 1.49 | . 02 | . 18 | 1 | 2 |
| L 4 +00 $3+5 \mathrm{CE}$ | 1 | 13 | 11 | 87 | . 2 | 20 | 6 | 390 | 1.92 | 2 | 5 | WD | 3 | 31. | 1 | 2 | 2 | 36 | . 26 | . 168 | 9 | 21 | . 27 | 201 | . 09 | 5 | 2.11 | . 01 | . 13 | 1 | 1 |
| $14+00 \mathrm{~N} 3+758$ | 1 | 9 | 8 | 43 | . 1 | 12 | 4 | 184 | 1.18 | 2 | 5 | HD | 8 | 21 |  | 2 | , | 21 | . 22 | . 028 | 5 | 11 | . 22 | 96 | . 08 | 2 | 1.58 | . 01 | . 11 | 1 | 3 |
| $12+00 N 4+008$ | 1 | 13 | 8 | 114 | . 1 | 17 | 5 | 748 | 1.84 | 2 | 5 | ND | 2 | 35 | 1 | 2 | 2 | 30 | . 24 | . 129 | 9 | 18 | . 26 | 303 | . 09 | 2 | 2.18 | . 01 | . 14 | 1 | 2 |
| L4+00N 4+258 | 1 | 19 | 8 | 73 | . 1 | 20 | 1 | 317 | 2.81 | 2 | 5 | WD | 5 | 60 | 1 |  | 2 | 60 | . 30 | . 044 | 18 | 29 | . 48 | 140 | . 13 | 2 | 2.42 | . 01 | . 22 | 1 | 1 |
| L4+008 $4+50 \mathrm{E}$ | 1 | 18 | 7 | 97 | . 1 | 18 | 1 | 126 | 2.84 | 2 | 5 | WD | 1 | 61 | 1 | , | 2 | 58 | . 34 | . 067 | 14 | 28 | . 47 | 289 | . 11 | 2 | 2.97 | . 01 | . 22 | 1 | 2 |
| 14+00N 4+758 | 1 | 26 | 10 | 99 | . 1 | 20 | 8 | 113 | 2.90 | 4 | 5 | HD | 4 | 44 | 1 | 2 | 2 | 64 | . 34 | . 065 | 11 | 31 | . 49 | 170 | . 13 | 2 | 1.88 | . 01 | . 26 | 1 | 3 |
| L9+00\% $5+038$ | 1 | 19 | 7 | 94 | . 2 | 14 | 6 | 381 | 2.23 | 2 | 5 | HD | 3 | 33 | 1 | 2 | 2 | 14 | . 28 | . 031 | 1 | 21 | . 36 | 167 | . 11 | 2 | 2.14 | . 01 | . 19 | 1 | 1 |
| L4+001 5+258 | 1 | 23 | 10 | 76 | . 5 | 15 | 7 | 379 | 2.10 | 4 | 5 | ND | 4 | 79 | 1 | 3 | 2 | 51 | . 34 | . 030 | 12 | 25 | . 39 | 298 | . 12 | 2 | 2.05 | . 01 | . 22 | 2 | 5 |
| L4+00k 5+508 | 1 | 51 | 8 | 107 | . 5 | 20 | 9 | 596 | 3.30 | 2 | 5 | WD | 4 | 75 | 1 | 2 | 2 | 66 | . 60 | . 170 | 16 | 25 | . 52 | 159 | . 12 | 3 | 2.96 | . 01 | . 23 | 1 | 2 |
| L4+00N 5+75E | 1 | 27 | 8 | 160 | . 2 | 16 | 6 | 822 | 2.25 | 2 | 5 | HD | , | 60 | 1 | , | 2 | 45 | . 55 | . 099 | 9 | 17 | . 32 | 162 | . 09 | 7 | 2.09 | . 01 | . 21 | 1 | 1 |
| L4+00N 6+008 | 1 | 34 | 12 | 150 | 1 | 20 | 8 | 525 | 2.97 |  | 5 | ND | 1 | 18 | 1 | 2 | 2 | 61 | . 38 | . 074 | 11 | 22 | . 43 | 162 | . 11 | 4 | 2.70 | . 01 | . 15 | 1 | 2 |
| L4t00N 6+508 | 1 | 15 | 6 | 94 | . 1 | 8 | 5 | 536 | 1.75 | 2 | 5 | ND | 1 | 34 | 1 | 2 | 2 | 36 | . 36 | . 014 | 5 | 12 | . 24 | 99 | . 08 | 6 | 1.41 | . 01 | . 17 | 1 | 1 |
| L4+00N $7+00 \mathrm{E}$ | 1 | 58 | 5 | 163 | . 3 | 23 | 12 | 648 | 1.61 | 2 | 5 | HD | , | 87 | 1 | 2 | 2 | 94 | . 95 | . 136 | 11 | 26 | . 86 | 200 | . 08 | 2 | 2.81 | . 02 | . 25 | 1 | 1 |
| L4t00N 7+508. | 1 | 18 | 4 | 87 | . 1 | 12 |  | 254 | 2.29 | 2 | 5 | ND | 3 | 29 | 1 | 2 | 2 | 46 | . 29 | . 034 | 1 | 18 | . 31 | 97 | . 10 | 3 | 1.79 | . 01 | . 19 | 1 | 10 |
| L4+00N 3+008 | 1 | 19 | 3 | 73 | . 2 | 17 | 6 | 270 | 2.20 | 3 | 5 | HD | , | 21 | 1 | 2 | 2 | 45 | . 26 | . 037 | 1 | 20 | . 30 | 116 | . 10 | 4 | 1.95 | . 02 | . 15 | 1 | 1 |
| L4+0018 8+508 | 1 | 15 | 4 | 91 | . 2 | 13 | 5 | 235 | 1.96 | 2 | 5 | HD | 2 | 21 | 1 | 2 | 2 | 42 | . 22 | . 099 | 6 | 15 | . 25 | 88 | . 09 | 2 | 1.63 | . 01 | . 13 | 1 | 1 |
| L4+00N 9+00E | 1 | 13 | 5 | 118 | . 1 | 14 | 5 | 329 | 1.64 | 3 | 5 | ND | 2 | 34 | 1 | 2 | 2 | 33 | . 29 | . 115 | , | 13 | . 21 | 152 | . 07 | 2 | 1.66 | . 02 | . 12 | 2 | 1 |
| $44+00 \mathrm{~N} 9+508$ | 1 | 23 | 4 | 152 | . 1 | 14 | 6 | 560 | 2.29 | 2 | 5 | HD | 2 | 36 | 1 | 2 | 2 | 45 | . 29 | . 066 | 8 | 17. | . 21 | 191 | . 09 | 2 | 1.94 | . 02 | . 14 | 1 | 1 |
| L3+00N 04002 | 1 | 35 | 7 | 89 | . 2 | 16 | 8 | 559 | 2.93 | 2 | 5 | HD | 2 | 10 | 1 | 2 | 2 | 61 | . 32 | . 038 | 12 | 21 | . 49 | 161 | . 11 | 1 | 2.09 | . 01 | . 39 | 1 | 1 |
| L3+00N $0+258$ | 1 | 26 | 8 | 78 | . 3 | 20 | 8 | 548 | 2.76 | 3 | 5 | HD | 3 | 38 | 1 | , | , | 56 | . 28 | . 036 | 10 | 24 | . 46 | 154 | . 11 | 3 | 2.03 | . 01 | . 32 | 1 | 2 |
| L3+00N O+50E | 1 | 32 | 6 | 67 | 1 | 13 | 8 | 191 | 2.80 | 2 | 5 | N0 | 2 | 39 | 1 | 2 | 2 | 59 | . 28 | . 025 | 10 | 18 | . 12 | 112 | . 10 | 2 | 1.82 | . 01 | . 26 | 1 | 1 |
| L3 3 +00 NO C 75 B | , | 32 | 10 | 85 | . 2 | 12 | 8 | 113 | 3.01 | 2 | 5 | HD | , | 43 | 1 | 2 | 2 | 69 | . 32 | . 020 | 12 | 17 | . 41 | 129 | . 11 | 2 | 1.47 | . 01 | . 27 | 2 | 1 |
| L3+00N $1+008$ | 1 | 28 | 10 | 90 | . 1 | 13 | 8 | 103 | 3.08 | 2 | 5 | HD | 2 | 10 | 1 | 2 | 2 | 65 | . 32 | . 030 | 12 | 20 | . 11 | 149 | . 11 | 2 | 1.81 | . 01 | . 31 | 1 | 1 |
| L3 +00\% 1+25E | 1 | 21 | 11 | 98 | . 2 | 18 | 1 | 586 | 2.35 | 2 | 5 | HD | 3 | 31 | 1 | 3 | 2 | 43 | . 25 | . 046 | 11 | 21 | . 33 | 159 | . 10 | 4 | 2.11 | . 01 | . 22 | 1 | 2 |
| STD C/AD-S | 18 | 60 | 40 | 132 | 6.7 | 68 | 30 | 1006 | 3.98 | 42 | 22 | 7 | 36 | 47 | 18 | 18 | 21 | 57 | . 47 | . 095 | 38 | 53 | . 87 | 176 | . 06 | 36 | 1.91 | . 06 | . 13 | 11 | 51 |



| L3+00N $1+50 \mathrm{~L}$ | 1 | 21 | 5 | 59 | . 2 | 23 | 7 | 288 | 2.68 | 2 | 5 | ND | 4 | 31 | 1 | 2 | 3 | 57 | . 27 | . 034 | 13 | 32 | . 41 | 99 | . 10 |  | 1.58 | . 01 | . 26 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L3 3 OON $1+758$ | 1 | 29 | 10 | 73 | . 2 | 11 | 7 | 537 | 2.86 | 5 | 5 | W0 | 3 | 31 | 1 | 2 | 3 | 59 | . 34 | . 050 | 15 | 21 | . 36 | 144 | . 10 | 6 | 2.05 | . 01 | . 24 | 2 | 3 |
| L3 $3+00 \mathrm{~N} 2+00 \mathrm{E}$ | 1 | 25 | 8 | 63 | . 2 | 10 | 6. | 528 | 2.88 | 5 | 5 | ND | 3 | 38 | 1 | 2 | 2 | 65 | . 34 | . 042 | 12 | 14 | . 30 | 105 | . 09 | 4 | 1.17 | . 01 | . 19 | 2 | 1 |
| L3toon $2+258$ | 1 | 24 | 13 | 52 | . 1 | 7 | 6 | 363 | 2.94 | 2 | 5 | ND | 2 | 33 | 1 | 2 | 2 | 67 | . 30 | . 021 | 11 | 13 | . 32 | 80 | . 10 | 3 | 1.47 | . 02 | . 20 | 4 | 2 |
| L3+09N $2+50 \mathrm{~B}$ | 1 | 42 | 8 | 56 | . 1 | 9 | 1 | 297 | 3.38 | 3 | 5 | WD | 3 | 34 | 1 | 2 | 2 | 71 | . 33 | . 024 | 15 | 16 | . 39 | 67 | . 11 | 2 | 2.68 | . 01 | . 25 | 2 | 1 |
| L3+00N $2+758$ | 1 | 31 | 8 | 62 | . 1 | 8 | 6 | 251 | 2.79 | 2 | 5 | HD | 3 | 33 | 1 | 2 | 2 | 59 | . 34 | . 018 | 12 | 15 | . 36 | 64 | . 11 | 4 | 1.74 | . 01 | . 25 | 1 | 5 |
| L3+CON 3+008 | 1 | 24 | 6 | 65 | . 1 | 7 | 6 | 661 | 2.55 | 2 | 5 | ND | 2 | 30 | 1 | 2 | 2 | 62 | . 31 | . 023 | 12 | 13 | . 31 | 69 | . 09 | 2 | 1.26 | . 01 | . 22 | 1 | 1 |
| L3+6011 $3+258$ | 1 | 16 | 8 | 82 | . 1 | 9 | 5 | 442 | 2.25 | 2 | 5 | : $\mathrm{D}_{1}$ | 2 | 31 | 1 | 2 | 2 | 45 | . 33 | . 018 | 13 | 11 | . 28 | 140 | . 10 | 2 | 2.20 | . 02 | . 16 | 1 | 1 |
| L3+6013 $3+508$ | 1 | 20 | 7 | 47 | . 1 | 10 | 6 | 243 | 2.55 | 2 | 5 | ND | 4 | 35 | 1 | 2 | 2 | 64 | . 37 | . 016 | 15 | 23 | . 31 | 71. | . 11 | 2 | 1.14 | . 01 | . 17 | 2 | 2 |
| L3+00N $4+008$ | 1 | 17 | 17 | 110 | 1. | 18 | 11 | 1043 | 3.82 | 2 | 5 | MD | 6 | 147 | 1 | 2 | 2 | 92 | . 70 | . 095 | 26 | 28 | . 89 | 241 | . 25 | 10 | 3.62 | . 05 | . 26 | 1 | 1 |
| L3+0CN $4+258$ | 1 | 74 | 13 | 87 | . 2 | 11 | 12. | 951 | 4.56 | 9 | 5 | ND | 4 | 85 | 1 | 2 | 2 | 107 | . 96 | . 161 | 20 | 21 | 1.04 | 98. | . 09 | 2 | 2.79 | . 02 | . 26 | 1 | 4 |
| L3+001 $4+50 \mathrm{~B}$ | 1 | 158 | 10 | 121 | . 1 | 11 | 15 | 1204 | 5.69 | 10 | 5 | ND |  | 90 | 1 | 2 | 2 | 133 | . 84 | . 136 | 16 | 21 | 1.17 | 106 | . 10 | 1 | 2.58 | . 02 | . 11 | 2 | 3 |
| L3+00N $4+75 \mathrm{E}$ | 1 | 147 | 11 | 111 | . 4 | 12 | 12 | 554 | 4.48 | 4 | 5 | ND | 1 | 80 | 1 | 2 | 2 | 103 | . 67 | . 080 | 15 | 18 | . 72 | 101 | . 11 | 8 | 2.42 | . 02 | . 38 | 1 | 4 |
| L3 3 OOL $5+008$ | 1 | 63 | 13 | 91 | . 1 | 15 | 9 | 480 | 3.66 | 6 | 5 | ND | 1 | 19 | 1 | 2 | 2 | 84 | . 45 | . 045 | 19 | 25 | . 56 | 151 | . 11 | 2 | 2.32 | . 01 | . 34 | 1 | 1 |
| L3+00N $5+258$ | 1 | 54 | 12 | 90 | . 1 | 14 | 9 | 577 | 3.30 | 2 | 5 | ND | , | 53 | 1 | 2 | 2 | 71 | . 49 | . 035 | 12 | 21 | . 52 | 111 | . 13 | 2 | 2.20 | . 01 | . 35 | 1 | 2 |
| L3+00N 5+50E | 1 | 41 | 11 | 112 | . 1 | 20 | 9 | 587 | 3.26 | 1 | 5 | HD | 3 | 60 | 1 | 2 | 2 | 61 | . 45 | . 021 | 14 | 28 | . 50 | 159 | . 13 | 2 | 2.26 | . 01 | . 35 | 1 | 1 |
| L3+00N 5+758 | 1 | 44 | 11 | 100 | . 1 | 15 | 9 | 673 | 2.96 | 3 | 5 | ND | 3 | 128 | 1 | 2 | 2 | 63 | . 48 | . 022 | 16 | 24 | . 17 | 173 | . 12 | 4 | 2.07 | . 01 | . 30 | 1 | 1 |
| $23+00116+008$ | 1 | 30 | 11 | 100 | . 2 | 13 | 7 | 435 | 2.69 | 2 | 5 | ND | 3 | 44 | 1 | 2 | 2 | 55 | . 36 | . 824 | 9 | 20 | . 39 | 105 | . 11 | 1 | 2.07 | . 01 | . 25 | 1 | 1 |
| L2+00N1 $10+00 \mathrm{~N}$ | 1 | 8 | 8 | 57 | . 1 | 11 | 5 | 448 | 1.97 | 2 | 5 | ND | 2 | 20 | 1 | 2 | 2 | 41 | . 16 | . 025 | 9 | 19 | . 22 | 113 | . 09 | 2 | 1.46 | . 01 | . 11 | 2 | 1 |
| $42+00 \mathrm{~N} 9+50 \mathrm{~K}$ | 1 | 18 | 7 | 58 | . 1 | 10 | 5 | 491 | 2.05 | 2 | 5 | ND | 2 | 32 | 1 | 2 | 2 | 40 | . 41 | . 019 | 13 | 15 | . 26 | 90 | . 08 | 2 | 1.75 | . 02 | . 16 | 1 | 2 |
| L2400N 9+00\% | 1 | 18 | 8 | 102 | . 1 | 13 | 6 | 589 | 2.02 | 3 | 5 | ND |  | 34 | 1 | 2 | 3 | 38 | . 29 | . 137 | 11 | 16 | . 24 | 205 | . 08 | 2 | 1.88 | . 02 | . 13 | 1 | 1 |
| L2+00118 8 50\% | 1 | 12 | 11 | 12 | . 2 | 9 | 6 | 760 | 2.17 | 2 | 5 | ND | 3 | 30 | 1 | 2 | 2 | 41 | . 21 | . 054 | 9 | 17 | .25. | 147 | . 09 | 4 | 1.68 | . 01 | . 15 | 1 | 1 |
| L2+60118 $8+004$ | 1 | 13 | 5 | 59 | . 1 | 9 | 5 | 636 | 1.89 | 2 | 5 | ND | 2 | 31 | 1 | 2 | 2 | 37 | . 28 | . 050 | 9 | 13 | . 21 | 141 | . 08 | 5 | 1.69 | . 01 | . 16 | 1 | 1 |
| L2+00N $7+50 \mathrm{H}$ | 1 | 16. | 8 | 75 | . 1 | 13 | 6 | 445 | 2.27 | 2 | 5 | YD | 3 | 36 | 1 | 2 | 2 | 46 | . 39 | . 059 | 12 | 20 | . 21 | 119 | . 10 | 4 | 1.69 | . 01 | . 20 | 1 | 1 |
| L2+0011 $7+0018$ | 1 | 20 | 8 | 48 | . 1 | 8 | 6 | 640 | 2.13 | 3 | 5 | ND | , | 34 | 1 | 2 | 2 | 48 | . 36 | . 017 | 10 | 11 | . 28 | 89 | . 09 | 2 | 1.65 | . 02 | . 18 | 1 | 1 |
| L2+00N 6+50H | , | 16 | 6 | 58 | . 1 | 11 | 6 | 327 | 2.86 | 2 | 5 | ND | J | 30 | 1 | 2 | 2 | 13. | . 30 | . 039 | 15 | 29 | .31 | 96 | . 13 | 2 | 1.32 | . 02 | . 17 | 1 | 1 |
| L2+00N $6+00 \%$ | , | 11 | 13 | 89 | . 2 | 10 | 5 | 371 | 2.12 | 2 | 5 | ND |  | 23 | 1 | 2 | 2 | 17 | . 23 | . 041 | 8 | 15 | . 23. | 128 | . 09 | 4 | 1.60 | . 01 | . 15 | 1 | 1 |
| L2+00N 5+50\% | 1 | 22 | 12 | 82 | . 1 | 15 | 1 | 371 | 2.48 | , | 5 | ND | 1 | 29 | 1 | 2 | 2 | 51 | . 30 | . 019 | 8 | 20 | . 33 | 148 | . 11 | 2 | 2.17 | . 01 | . 20 | 1 | 1 |
| L2+OON $5+00 \mathrm{~N}$ | 1 | 20 | 11 | 76 | . 2 | 14 | 7 | 306 | 2.29 | 4 | 5 | ND | 2 | 29 | 1 | 2 | 2 | 46 | . 28 | . 078 | 8 | 16 | . 29 | 146 | . 09 | 5 | 2.05 | . 02 | . 15 | 1 | 1 |
| L2+OON $4+50 \mathrm{H}$ | 1 | 31 | 9 | 89 | . 2 | 15 | 8 | 369 | 2.95 | 6 | 5 | HD | 3 | 25 | 1 | 2 | 2 | 60 | . 25 | . 048 | 10 | 18 | . 13 | 130 | . 11 | 3 | 2.19 | . 01 | . 24 | 1 | 1 |
| L2+00N $4+00 \mathrm{~N}$ | , | 27 | $B$ | 61 | . 1 | 15 | 7 | 297 | 2.47 | 2 | 5 | ND | , | 34 | 1 | 2 | 2 | 49 | . 23 | . 026 | 10 | 17 | . 35 | 117 | . 10 | 2 | 2.11 | . 02 | . 19 | 1 | 1 |
| L2+DON 3+504 | 1 | 31 | 12 | 12 | . 3 | 16 | 8 | 393 | 2.59 | 6 | 6 | WD | 3 | 36 | 1 | 2 | 2 | 52 | . 21 | . 065 | 11 | 11 | . 38 | 150 | . 10 | 5 | 2.64 | . 02 | . 21 | 1 | 1 |
| L2+00H3+00\% | 1 | 37 | 9 | 94 | .1 | 13 | 9 | 660 | 2.74 | 3 | 5 | WD | , | 34 | 1 | 2 | 2 | 58 | . 29 | . 018 | 8 | 16 | .15 | 163 | . 10 | 3 | 2.15 | . 01 | . 29 | 1 | 3 |
| L2+00N $2+50 \mathrm{O}$ | 1 | 39 | 11 | 91 | . 1 | 16 | 9 | 612 | 2.67 | 3 | 5 | ND | 2 | 39 | 1 | 2 | 2 | 55 | . 35 | . 069 | 12 | 18 | . 11 | 181 | . 10 | 2 | 2.67 | . 02 | . 23 | 1 | 1 |
| L2+OON $2+\mathrm{COH}$ | 1 | 36 | 11 | 77 | . 1 | 12 | 8 | 681 | 2.48 | 3 | 5 | No | 2 | 48 | 1 | 2 | 2 | 51 | . 38 | . 018 | 10 | 16 | . 42 | 148 | . 09 | 3 | 2.05 | . 01 | . 31. | 1 | 1 |
| L2+00N 1+50\% | 1 | 36 | 11 | 69 | . 1 | 17 | 9 | 406 | 2.85 | 1 | 5 | ND | 2 | 33 | 1 | 2 | 2 | 61 | . 29 | . 042 | 12 | 26 | .19 | 158 | . 11 | 2 | 2.25 | . 02 | . 31 | 1 | 3 |
| STD C/AU-S | 18 | 58 | 37 | 132 | 6.6 | 68 | 30 | 1007 | 4.04 | 43 | 18 | 7 | 36 | 47 | 18 | 18 | 19 | 58 | . 18 | . 093 | 39 | 53 | . 88 | 176 | . 06 | 34 | 1.94 | . 06 | . 13 | 11 | 50 |

SAYPLEI

| L2+0ON $1+0 \mathrm{CK}$ | 1 | 44 | 9 | 17 | . 5 | 12 | 9 | 701 | 2.69 | 2 | 5 | ND | 3 | 45 | 1 | 2 | 2 | 59 | . 30 | . 029 | 11 | 19 | . 43 | 169 | . 11 | 11 | 1.91 | . 01 | . 12 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L2+008 $0+505$ | 1 | 55 | 5 | 109 | . 5 | 16 | 10 | 608 | 3.23 | 2 | 5 | ND | 3 | 30 | 1 | , | 2 | 12 | . 30 | . 073 | 12 | 22 | . 50 | 170 | . 11 | 6 | 1.99 | . 01 | . 29 | 1 | 1 |
| L240011 $0+0011$ | 1 | 35 | 11 | 84 | . 3 | 16 | 9 | 569 | 3.27 | 3 | 5 | ND | 4 | 43 | 1 | 2 | 2 | 69 | . 31 | . 054 | 23 | 21 | .50 | 143 | . 12 | 5 | 1.63 | . 01 | . 36 | 1 | 1 |
| 22+00N $0+258$ | 1 | 32 | 13 | 86 | . 6 | 17 | 9 | 479 | 3.11 | 5 | 5 | ND | 1 | 41 | 1 | 3 | 2 | 64 | . 29 | . 043 | 13 | 24 | . 48 | 139 | . 12 | 8 | 2.36 | . 01 | . 38 | 1 | 1 |
| L2+00N 0+508 | 1 | 30 | 9 | 82 | . 2 | 15 | 9 | 776 | 3.00 | 2 | 5 | ND | 2 | 45 | 1 | 2 | 2 | 63 | . 31 | . 027 | 11 | 19 | .47 | 147 | . 11 | 3 | 2.10 | . 01 | . 38 | 1 | 1 |
| L2+001 $0+758$ | 1 | 37 | 6 | 79 | . 3 | 12 | 9 | 456 | 3.16 | 2 | 5 | ND | 2 | 35 | 1 | 2 | 3 | 11 | . 21 | . 027 | 9 | 18 | . 48 | 117 | . 12 | 3 | 2.02 | . 01 | . 35 | 1 | 1 |
| L2+00N $1+008$ | 1 | 35 | 10 | 91 | .1 | 16 | 10 | 633 | 3.23 | 4 | 5 | HD | 3 | 36 | 1 | 2 | 2 | 12 | . 25 | . 025 | 10 | 20 | . 49 | 138 | . 12 | 4 | 2.08 | . 01 | . 34 | 1 | 1 |
| 42+0011+258 | 1 | 27 | 9 | 128 | . 3 | 16 | 8 | 1068 | 2.75 | 2 | 5 | ND | 2 | 13 | 1 | 2 | 2 | 59 | . 32 | . 061 | 12 | 19 | . 36 | 179 | . 09 | 7 | 1.84 | . 01 | . 26 | 1 | 3 |
| L2+00-1 $1+50 \mathrm{E}$ | 1 | 27 | 10 | 79 | . 1 | 15 | 8 | 565 | 2.88 | 3 | 5 | ND | 2 | 27 | 1 | 2 | 2 | 64 | . 21 | . 063 | 10 | 17 | . 39 | 127 | . 10 | 3 | 1.92 | . 01 | . 27 | 1 | 8 |
| L2+001 1+758 | 1 | 32 | 10 | 80 | .4 | 13 | 8 | 531 | 3.12 | 3 | 5 | ND | 3 | 13 | 1 | 2 | 2 | 67 | . 34 | . 029 | 12 | 11 | . 41 | 98 | . 11 | 4 | 2.11 | . 02 | . 25 | 1 | 1 |
| L2+00N $2+008$ | 1 | 32 | 5 | 142 | . 4 | 13 | 1 | 522 | 2.67 | 2 | 5 | HD | 3 | 33 | 1 | 2 | 2 | 58 | . 35 | . 060 | 9 | 13 | . 40 | 124 | . 10 | 8 | 2.33 | . 01 | . 25 | 1 | 1 |
| L2+001 2+25 | 1 | 50 | 1 | 93 | . 5 | 20. | 11 | 317 | 1.25 | 4 | 5 | ND | 4 | 32 | 1 | 2 | 2 | 98 | . 27 | . 044 | 17 | 25 | . 51 | 124 | . 13 | 6 | 2.33 | . 01 | . 34 | 1 | 2 |
| L2+00N $2+502$ | 1 | 97 | 9 | 80 | . 6 | 15 | 9 | 290 | 4.46 | 2 | 5 | HD | , | 53 | 1. | 2 | 2 | 104 | . 38 | . 060 | 15 | 24 | . 56 | 86 | . 13 | 8 | 2.01 | . 01 | . 40 | 1 | 1 |
| L2+001 $2+758$ | 1 | 47 | 9 | 67 | . 3 | 13 | 9 | 309 | 4.00 | 4 | 5 | ND | 1 | 41 | 1 | 2 | 2 | 95 | . 33 | . 035 | 15 | 20 | . 50 | 99 | . 12 | 5 | 1.74 | . 01 | . 38 | 2 | 3 |
| L2+001 3+008 | 1 | 37 | 9 | 94 | . 2 | 16 | 9 | 347 | 3.33 | 4 | 5 | HD | 3 | 31 | 1 | 2 | 2 | 75 | . 33 | . 024 | 13 | 19 | . 45 | 97 | . 12 | 5 | 1.92 | . 01 | . 30 | 1 | 2 |
| L2+001 $3+258$ | 1 | 52 | 16 | 120 | . 3 | 19 | 10 | 464 | 4.14 | 5 | 5 | ND | 1 | 71 | 1 | 2 | 2 | 95 | . 55 | . 065 | 27 | 31 | . 53 | 117 | . 16 | 6 | 2.69 | . 02 | . 25 | 1 | 1 |
| L2+00N 3+508 | 1 | 38 | 10 | 95 | . 1 | 22 | 10 | 459 | 4.20 | 4 | 5 | HE | 4 | 89 | 1 | 2 | 2 | 104 | . 46 | . 104 | 28 | 35 | . 69 | 154 | . 23 | 2 | 2.47 | . 02 | . 25 | 2 | 1 |
| L2+001 $3+758$ | 1 | 35 | 11 | 112 | 1 | 19 | 9 | 118 | 3.75 | 2 | 5 | ND |  | 58 | 1 | 2 | 2 | 83 | . 39 | . 057 | 13 | 24 | . 54 | 121 | . 13 | 6 | 2.21 | . 01 | . 29 | 1 | 1 |
| 12+000 $4+008$ | 1 | 145 | 15 | 123 | . 8 | 17 | 14 | 1097 | 5.32 | 3 | 5 | HD | 5 | 82 | 1 | 2 | 2 | 112 | . 12 | . 064 | 18 | 25 | . 79 | 102 | . 12 | 4 | 2.87 | . 02 | . 27 | 2 | 14 |
| L2 +00N $4+258$ | 1 | 51 | 14 | 101 | . 3 | 17 | 10 | 540 | 3.86 | 3 | 5 | ND | 1 | 56. | 1 | 2 | 2 | 90 | . 38 | . 026 | 16 | 24 | . 60 | 83 | . 13 | 5 | 1.95 | . 01 | . 31 | 2 | 6 |
| L2+00N $4+508$ | 1 | 55 | 11 | 125 | . 2 | 15 | 10 | 446 | 3.67 | 3 | 5 | HD | 3 | 55 | 1 | 2 | 2 | 76 | . 45 | . 051 | 14 | 11 | . 18 | 120 | . 13 | 4 | 2.73 | . 02 | . 21 | 1 | 1 |
| L2+00. $4+758$ | 1 | 25 | 10 | 126 | .4 | 12 | 8 | 524 | 3.14 | 5 | 5 | ND | 6 | 52 | 1 | 2 | 2 | 80 | . 43 | . 047 | 19 | 21 | . 54 | 176 | . 14 | 5 | 1.58 | . 01 | . 29 | 1 | 2 |
| 42+00N $5+008$ | 1 | 66 | 9 | 169 | . 2 | 16 | 11 | 951 | 3.96 | 4 | 5 | MD | 3 | 91 | 1 | 2 | 2 | 83 | . 57 | . 053 | 17 | 19 | . 49 | 135 | . 11 | 1 | 2.76 | . 02 | . 32 | 1 | 1 |
| L2+00N 5+258 | 1 | 46 | 12 | 146 | . 3 | 16 | 9 | 919 | 3.69 | 1 | 5 | ND | 3 | 81 | 1 | 2 | 2 | 82 | . 50 | . 040 | 13 | 20 | . 45 | 133 | . 11 | 5 | 2.12 | . 01 | . 31 | 1 | 3 |
| L2+00N $5+508$ | 1 | 54 | 9 | 94 | . 2 | 29 | 10 | 133 | 3.81 | 6 | 5 | HD | 5 | 70 | 1 | 2 | 2 | 82 | . 17 | . 010 | 22 | 37 | . 55 | 118 | . 13 | 4 | 2.30 | . 01 | . 33 | 1 | 1 |
| L2+0011 5+758 | 1 | 41 | 9 | 129 | . 1 | 33 | 9 | 714 | 3.21 | 4 | 5 | ND | 3 | 64 | 1 | 2 | 2 | 67 | . 51 | . 057 | 14 | 26 | . 41 | 119 | . 11 | 1 | 2.35 | .01 | . 28 | 1 | 2 |
| L2+00N $6+008$ | 1 | 28 | 9 | 76 | . 2 | 23 | 9 | 497 | 2.76 | 2 | 5 | HD | 3 | 13 | 1 | 2 | 2 | 56 | . 38 | . 021 | 13 | 28 | .12 | 113 | . 11 | 2 | 2.14 | . 01 | . 22 | 1 | 1 |
| L2+001 $6+508$ | 1 | 51 | 11 | 112 | . 3 | 21 | 12 | 850 | 4.01 | 3 | 5 | ND | 1 | 57 | 1 | $?$ | 2 | 43 | . 40 | . 028 | 15 | 32 | . 63 | 125 | . 11 | 6 | 2.33 | . 01 | . 32 | 3 | 9 |
| 12+00以 $7+008$ | 1 | 69 | 11 | 112 | . 1 | 16 | 11 | 580 | 4.27 | 5 | 5 | HD | , | 51 | 1 | 5 | 3 | 93 | . 13 | . 051 | 16 | 25 | . 64 | 112 | . 13 | 6 | 2.51 | . 02 | . 39 | 3 | 1 |
| L2+0017 $7+508$ | 1 | 36 | 11 | 123 | . 1 | 27 | 9 | 520 | 3.07 | 2 | 5 | WD | , | 48 | 1 | 2 | 2 | 60 | . 43 | . 041 | 13 | 38 | . 55 | 149 | . 12 | 2 | 2.41 | . 02 | . 34 | 1 | 5 |
| L2+00N 8+258 | 1 | 86 | 12 | 136 | . 1 | 26 | 14 | 730 | 4.07 | 6 | 5 | WD | 3 | 51 | 1 | 2 | 2 | 89 | . 54 | . 064 | 19 | 33 | . 59 | 120 | .11 | 2 | 2.46 | . 01 | . 33 | 1 | 4 |
| L2+0018 $8+508$ | 1 | 11 | 16 | 108 | . 1 | 30 | 10 | 450 | 3.31 | 8 | 5 | MD | 1 | 45 | 1 | 3 | 2 | 59 | . 41 | . 0661 | 19 | 36 | . 18 | 154 | . 11 | 2 | 3.03 | . 01 | . 34 | 1 | 1 |
| 12+00N 9+002 | 1 | 33 | 7 | 93 | . 1 | 16 | 8 | 173 | 3.14 | 6 | 5 | H | 3 | 42 | 1 | , | 2 | 67 | . 36 | . 022 | 17 | 25 | . 12 | 106 | 12 | 2 | 1.85 | . 01 | . 32 | 1 | 87 |
| 42+0019+508 | 1 | 29 | 8 | 102 | . 3 | 16 | 9 | 598 | 3.00 | 3 | 5 | MD | 1 | 4 | 1 | 2 | 2 | 67 | . 35 | . 055 | 15 | 25 | .45 | 112 | . 11 | 7 | 1.54 | . 01 | . 21 | 2 | 1 |
| L1+00N $\mathrm{O}+00 \mathrm{C}$ | 1 | 28 | 1 | 70 | . 3 | 13 | $B$ | 540 | 2.54 | 2 | 5 | ND | 2 | 47 | 1 | 2 | 2 | 52 | . 30 | . 029 | 10 | 20 | . 13 | 167 | . 10 | 5 | 2.06 | . 01 | . 31 | 1 | 1 |
| L1+00N $0+258$ | 1 | 29 | 12 | 82 | . 1 | 12 | 9 | 504 | 2.93 | 4 | 5 | HD | 1 | 51 | 1 | 2 | 2 | 63 | . 31 | . 027 | 9 | 18 | . 52 | 112 | . 11 | 2 | 2.27 | . 01 | . 42 | 12 | 1 |
| STD C/4ij-s |  | 58 | 10 | 132 | 6.8 | 69 | 30 | 1020 | 4.01 | 44 | 18 | 1 | 37 | 48 | 18 | 19 | 20 | 60 | . 47 | . 094 | 10 | 56 | . 87 | 178 | . 06 | 35 | 1.94 |  | . 13 | 12 | 52 |

LAROTH ENGINEERING LTD．PROJECT ZUMAR FILE \＃88－6289

SAMPLP：


| L1＋00N $0+50 \mathrm{E}$ | 1 | 21 | 6 | 81 | ． 2 | 10 | 6 | 353 | 2.07 | 2 | 5 | ND | 1 | 33 | 1 | 2 | 2 | 13 | ． 18 | ． 020 | 7 | 14 | ． 35 | 81 | ． 08 | 2 | 1.66 | ． 01 | ， 27 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1＋00N 0＋758 | 1 | 27 | 11 | 108 | ． 5 | 11 | 1 | 541 | 2.74 | 2 | 5 | HD | 5 | 29 | 1 | 2 | 2 | 56 | ． 24 | ． 031 | 11 | 24 | ． 42 | 122 | ． 10 | 7 | 1.97 | ． 01 | ． 33 | 1 |  |
| L1＋0CN 1＋008 | 1 | 24 | 8 | 105 | ． 3 | 10 | 6 | 550 | 2.61 | 2 | 5 | W | 2 | 31 | 1 | 3 | 2 | 56 | ． 31 | ． 028 | 10 | 17 | ． 34 | 126 | ． 08 | 4 | 1.63 | ． 01 | ． 27 | 2 | 167 |
| L1＋601 1＋258 | 1 | 33 | 8 | 121 | ． 3 | 14 | 1 | 482 | 2.80 | 2 | 5 | ND |  | 28 | 1 | 3 | 2 | 61 | ． 29 | ． 017 | 8 | 20 | ． 39 | 102 | ． 09 | 4 | 1.92 | ． 01 | ． 24 | 1 | 1 |
| LItCON $1+50 \mathrm{~B}$ | 1 | 21 | 10 | 90 | ． 4 | 13 | 7 | 529 | 2.80 | 3 | 5 | WD | 3 | 31 | 1 | 2 | 2 | 62 | ． 28 | ． 052 | 9 | 18 | ． 37 | 115 | ． 08 | 1 | 1.76 | ． 01 | ． 23 | 1 | 1 |
| L1＋00H 1＋758 | 1 | 31 | 8 | 14 | ． 2 | 12 | 7 | 323 | 2.99 | 2 | 5 | HD | 3 | 30 | 1 | 2 | 2 | 66 | ． 24 | ． 030 | 11 | 11 | ． 36 | 100 | ． 09 | 2 | 1.74 | ． 01 | ． 23 | 1 | 7 |
| L1＋008 $2+008$ | 1 | 37 | 2 | 71 | ． 2 | 10 | 1 | 383 | 2.87 | 2 | 5 | ND | 4 | 24 | 1 | 2 | 3 | 69 | ． 23 | ． 049 | 11 | 15 | ． 13 | 74 | ． 08 | 3 | 1.33 | ． 01 | ． 28 | 1 | 1 |
| L1＋00N $2+258$ | 1 | 31 | 4 | 73 | ． 1 | 12 | 7 | 485 | 2.43 | 2 | 5 | HD | 3 | 30 | 1 | 2 | 2 | 53 | ． 22 | ． 023 | 10 | 15 | ． 35 | 109 | ． 08 | 2 | 1.50 | ． 01 | ． 25 | 1 | 6 |
| L1＋004 $2+508$ | 1 | 20 | 4 | 84 | ． 1 | 8 | 5 | 457 | 2.04 | 2 | 5 | HD | 2 | 29 | 1 | 2 | 2 | 15 | ． 22 | ． 020 | 9 | 11 | ． 29 | 92 | ． 08 | 2 | 1.43 | ． 01 | ． 23 | 1 |  |
| L1＋0018 $2+758$ | 1 | 40 | 11 | 101 | ． 3 | 17 | 9 | 483 | 3.13 | 2 | 5 | HD | 3 | 44 | 1 | 2 | 2 | 66 | ． 31 | ． 040 | 15 | 20 | ． 49 | 145 | ． 11 | 2 | 2.20 | ． 01 | ． 34 | 1 | 1 |
| 11＋001i $3+008$ | 1 | 39 | 12 | 83 | ． 6 | 12 | 9 | 310 | 3.57 | 2 | 5 | HD | 4 | 38 | 1 | 3 | 2 | 82 | ． 28 | ． 030 | 12 | 18 | ． 55 | 105 | ． 12 | 5 | 2.02 | ． 01 | ． 36 | 1 | 6 |
| L1＋0011 3＋258 | 1 | 39 | 13 | 70 | ． 2 | 13 | 8 | 270 | 3.61 | 2 | 5 | ND | 5 | 50 | 1 | 2 | 2 | 83 | ． 31 | ． 040 | 19 | 20 | ． 59 | 100 | ． 13 | 5 | 2.02 | ． 01 | ． 39 | 1 | 1 |
| L1＋OON 3＋508 |  | 44 | 16 | 94 | ． 3 | 11 | 12 | 782 | 3.83 | 2 | 5 | ND | 5 | 66 | 1 | 2 | 2 | 89 | .42 | ． 081 | 23 | 21 | ． 64 | 149 | ． 15 | 5 | 2.54 | ． 01 | ． 36 | 1 | 15 |
| L1＋00N 3＋758 | 1 | 49 | 7 | 62 | ． 2 | 12 | 8 | 281 | 3.39 | 3 | 5 | ND | 4 | 41 | 1 | 2 | 2 | 83 | ． 28 | ． 031 | 14 | 19 | ． 51 | 86 | ． 12 | 3 | 1.64 | ． 01 | ． 32 | 1 | 2 |
| L1＋00N $4+00 \mathrm{E}$ | 1 | 129 | 8 | 115 | ． 6 | 12 | 13 | 643 | 4.85 | 2 | 5 | ND | $j$ | 75 | 1 | 2 | 2 | 111 | ． 52 | ． 057 | 13 | 20 | ． 68 | 83 | ． 13 | 3 | 2.22 | ． 01 | ． 37 | 3 | 9 |
| 41＋00N 4＋25s | 1 | 71 | 1 | 97 | ． 2 | 12 | 10 | 321 | 3.97 | 2 | 5 | ND | 3 | 49 | 1 | 2 | 2 | 90 | ． 41 | ． 031 | 10 | 16 | ． 53 | 11 | ． 12 | 1 | 2.00 | ． 01 | ． 36 | 1 | 3 |
| L1＋00 $4+50 \mathrm{E}$ | 1 | 49 | 12 | 104 | ． 3 | 12 | 8 | 506 | 3.14 | ， | 5 | WD | 2 | 43 | 1 | 2 | 2 | 68 | ． 35 | ． 035 | 11 | 14 | ． 39 | 104 | ． 10 | 3 | 2.08 | ． 01 | ． 25 | 2 | 2 |
| L1＋00N 4＋758 | 1 | 19 | 1 | 146 | .2 | 9 | 4 | 328 | 1.64 | 2 | 5 | ND | 2 | 39 | 1 | 2 | 2 | 33 | ． 30 | ． 054 | 6 | 9 | ． 22 | 104 | ． 07 | 4 | 1.65 | ． 01 | ． 14 | 1 | 1 |
| L1＋00N 5＋008 | 1 | 67 | 7 | 79 | ． 4 | 11 | 10 | 336 | 3.60 | 6 | 5 | WD | 4 | 54 | 1 | 2 | 2 | 85 | ． 39 | ． 056 | 12 | 13 | ． 54 | 113 | ． 13 | 4 | 2.06 | ． 01 | ． 31 | 1 | 2 |
| L1＋00N 5＋258 | 1 | 38 | 11 | 97 | ． 5 | 11 | $B$ | 290 | 3.23 | 7 | 6 | ND | 6 | 55 | 1 | 2 | 2 | 81 | ． 46 | ． 062 | 22 | 19 | ． 57 | 193 | ．13 | 1 | 1.67 | ． 01 | ． 28 | 1 | 1 |
| L1＋00N 5＋508 | 1 | 35 | 7 | 85 | ． 4 | 13 | 8 | 273 | 3.11 | 4 | 5 | HD | 6 | 49 | 1 | 2 | 2 | 74 | ． 34 | ． 044 | 15 | 21 | ． 53 | 164 | ． 12 | 4 | 1.69 | ． 01 | ． 30 | 1 | 1 |
| L1＋00N 5＋75E | 1 | 31 | 9 | 127 | ． 4 | 17 | 6 | 518 | 2.25 | 4 | 5 | ND | ， | 45 | 1 | 2 | 2 | 16 | ． 38 | ． 066 | 11 | 18 | ． 31 | 180 | ． 09 | 6 | 2.16 | ． 01 | ． 21 | 1 | 1 |
| L1＋00N $6+002$ | 1 | 34 | 10 | 99 | ． 2 | 21 | 8 | 730 | 2.50 | 2 | 5 | ND | 2 | 58 | 1 | 2 | 2 | 49 | ． 59 | ． 042 | 13 | 26 | ． 41 | 160 | ． 09 | 2 | 2.08 | ． 01 | ． 21 | 1 | 1 |
| L0＋00 10＋00\％ | 1 | 22 | 8 | 48 | ． 1 | 15 | 7 | 365 | 2.32 | 2 | 5 | ND | 5 | 39 | 1 | 2 | 2 | 47 | ． 51 | ． 063 | 11 | 23 | ． 46 | 86 | ． 08 | 5 | 1.27 | ． 01 | ． 21 | 1 | 2 |
| 20＋00 9＋50H | 1 | 10 | 9 | 37 | ． 1 | 12 | 5 | 150 | 1.92 | 2 | 5 | ND | 1 | 25 | 1 | 2 | 2 | 41 | ． 23 | ． 070 | 10 | 20 | ． 27 | 95 | ． 08 | 3 | 1.19 | ． 01 | ． 15 | 1 | 1 |
| LOt00 9＋00\％ | 1 | 21 | 1 | 36 | ． 3 | 17 | ， | 311 | 2.37 | 2 | 5 | ND | 6 | 37 |  | 2 | 2 | 47 | ． 38 | ． 055 | 21 | 26 | ． 43 | 63 | ． 07 | 1 | 1.09 | ． 01 | ． 17 | 1 | 1 |
| L0＋00 8＋50\％ | 1 | 11 | 9 | 53 | ． 2 | 12 | 5 | 403 | 1.81 | 2 | 5 | ND | 3 | 23 | 1 | 2 | 2 | 38 | .22 | ． 065 | 9 | 18 | ． 23 | 123 | ． 07 | 3 | 1.32 | ． 01 | ． 15 | 1 |  |
| 20＋00 8＋00以 | 1 | 7 | 11 | 50 | ． 3 | 9 | 1 | 636 | 1.47 | 2 | 5 | ND | 2 | 20 | 1 | 2 | 2 | 29 | ． 18 | ． 034 | 5 | 14 | ． 21 | 126 | ． 07 | 5 | 1.31 | ． 01 | ． 13 | 1 | 1 |
| L0＋00 7＋50\％ | 1 | 13 | 12 | 81 | ． 5 | 15 | 5 | 538 | 1.71 | 3 | 6 | HD | 3 | 29 | 1 | 2 | 1 | 31 | ． 26 | ． 136 | 8 | 16 | ． 26 | 199 | ． 08 | 1 | 2.10 | ． 01 | ． 16 | 1 | 3 |
| LO＋00 7＋00世 | 1 | 10 | 9 | 43 | ． 2 | 8 | 5 | 367 | 1.74 | 2 | 5 | ND | 3 | 24 | 1 | 2 | 2 | 37 | ． 19 | ． 021 | 9 | 14 | ． 26 | 81 | ． 08 | 6 | 1.13 | ． 01 | ． 15 | 1 | 1 |
| LO＋00 6＋5014 | 1 | 14 | 9 | 71 | ． 4 | 10 | 5 | 467 | 1.64 | 2 | 5 | HD | 2 | 24 | 1 | 2 | 2 | 32 | ． 23 | ． 082 | 1 | 11 | ． 24 | 134 | ． 07 | 1 | 1.72 | ． 01 | ． 15 | 1 | 1 |
| L0＋00 6＋00\％ | 1 | 9 | 10 | 11 | ． 1 | 9 | 4 | 739 | 1.55 | 2 | 5 | ND | ， | 17 | 1 | 2 | 2 | 32 | ． 18 | ． 076 | 1 | 12 | ． 19 | 140 | ． 06 | 2 | 1.34 | ． 01 | .13 | 1 | 1 |
| L0＋00 5＋50\％ | 1 | 21 | 1 | 36 | ． 2 | 7 | 6 | 330 | 1.96 | 3 | 5 | ND | 5 | 42 | 1 | 2 | 2 | 51 | 1.10 | ． 116 | 18 | 15 | ． 34 | 53 | ． 07 | 3 | ． 70 | ． 02 | ． 11 | 1 | 10 |
| LO＋00 5＋00\％ | 1 | 12 | 9 | 16 | ． 3 | 7 | 5 | 546 | 1.67 | 2 | 5 | HD | 2 | 22 | 1 | 2 | 2 | 36 | ． 22 | ． 026 | 8 | 13 | ． 18 | 127 | ． 06 | 1 | 1.07 | ． 01 | ． 13 | 1 | 1 |
| L0＋00 4＋50H1 | 1 | 10 | 8 | 48 | ． 1 | 7 | 4 | 430 | 1.61 | 3 | 5 | ND | 2 | 20 | 1 | 2 | 2 | 34 | ． 20 | ． 018 | 1 | 13 | ． 19 | 108 | ． 07 | 2 | 1.19 | ． 01 | ． 15 | 1 | 1 |
| 10＋00 $4+00 \mathrm{~K}$ | 1 | 13 | 10 | 83 | ． 3 | 10 | 5 | 150 | 1.64 | 3 | 5 | ND | 2 | 33 | 1 | 2 | 2 | 36 | ． 44 | ． 130 | 10 | 14 | ． 24 | 125 | ． 06 | 5 | 1.15 | ． 01 | ． 13 | 1 | 1 |


|  | 동두웅䓌吉古莒喜 <br>  <br>  |  <br> 式比志 <br>  | 낭 둥훙 도高古吉古亳完富出出 <br>  |  |  |  |  | 遥 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\exists$ |  |  |  |  |  |  | ーーーーナ | 7 |
| 心灾 | 二直心ご | ～～ | $\sim$ | － |  | $=$ | 岕ごご心出 | 器夺 |
| ita |  |  |  |  |  |  | －ancos | 㕲吕 |
| 흐⼼ | $9 \pm$ ¢ |  | 忈忥思心灾 |  |  |  | 気或込吅 | 品옵 |
| os． | i－ | － | is | － | icionisios | いごージ | isinis－ | 7 |
| －ご |  |  | いごご心 | כ： | こご心が心 | ごこここ | 云があった。 |  |
| No | － |  |  | $\infty$ | $0 \times \sim$ | ② | $\cdots \rightarrow \infty \rightarrow \infty$ | \％ |
| － |  | 注 | 突 |  | 宗合忈示呂 |  |  | 哭듬 |
| N | 总云云范范 |  |  | ～～～～～～范 |  |  |  | $\infty$ |
| $\pm n$ |  | $\omega$ | Nomunn | Nown on： |  | ＂－3 | －onco | 気荋 |
| N | conen un un en |  | couchen un | uncomen |  | an un mion in | $\sim$ | 永 |
| $\infty$ 름 | 듭 중 듬 조¢종 | 종픔 즘 줄 | 동 픔쯩 | 즘 돕 돔등 | 눙경 좁 돔 증 | 곰丆ㅡㅁ픔 증흠 | 폼퐇즘 종흠 | 喿梁 |
| $\stackrel{4}{0}$ | $\omega$ | $\cdots-60 \sim$ | $\omega$－－－－$\omega$ | －rかimon |  | $\omega$ | いのかの－ | \％ |
| $\pm$ |  |  | $\cdots$ | 心 | $\pm$ |  |  | \％ |
| －－ |  |  |  |  |  | ー－- － | ーーーーー |  |
| $\sqsupset \mathrm{F}$ | NN | NNNNの |  | $\cdots$ | NのNのN | Noncono | のnのNか | 号辰 |
| $\cdots$ | $\cdots$ | NかNNN |  | のパNの | のNがNい | NNHNN | NいがNON | 或 |
| $\because$ | がい | ニッジごロ | ごのご边 | 旭边が号 |  | ํ゙込ご |  | ？ |
| $\pm$ |  |  | 5is | 式忥言： | －$\sim_{0}$ |  |  | $\infty$ |
| 宫 | 웅훙ㅎㅇ | 훙ㄹ⼼영 | 宽总宽家家 | 룽우우웅 | 击氛总它家 |  | 응응응응 | $\cdots$ |
| ¢ | $こ ゙ \sim \infty$ | $\infty$－＜¢－ | $=$ | $\cdots \rightarrow \square 𠃌 \infty$ | $\stackrel{\square}{6}$ | 二このご「 | $\infty$－－ப | 盎気 |
| m | $\infty$ | ーム～ご | － | ＝ |  | ゅここここ | ジロニ～ | 号品 |
| 0 |  |  | 灾洨 | 灾汹 | －isisis |  | 幺 | 0 －5 |
| 気 |  |  | 宫ご年 | 긍흐능ㅇㅇ | 馬馬灾岕 | 或云心㐌云 |  | 7 |
| 8 | ここ\％ | 号江云云 | ら云云云 | －8880 | こioioi | －885 |  | －r |
| $\stackrel{\sim}{\sim}$ | conomoso | $\cdots \infty \times \infty$ | のの以ー | $\omega$ | のuncoun | いのN心－ | coun orn | 寧 |
| － |  | －～N゙范 | 云云云安安 | －5～n |  | Noncon |  | － |
| 8is | ㅇoㅇos | － | 흥ㅎㅇㅇ | obos | 90090 | 응is |  | － |
| ¢ |  | inicis | 边気気边 |  |  |  | inioision | $\cdots \infty$ |
| 心－ | か－ | ーーーー | Nーーーー | ーーーッか | いーNーN | いーーセー | ーが | 品品 |
| 边 | かーNーロ | ー－边っー | ーーNーロ | ーャ－－－ | ち－N | 灾のぃー | $\cdots$ | 品 |

LAROTH ENGINEERING LTD. PROJECT ZUMAR FILE \# 88-6289
sayplis:

| L0+00 8+508 | 1 | 44 | 10 | 108 | . | 22 | 11 | 1339 | 3.10 | 2 | 5 | no | 1 | 46 | 1 | 2 | 2 | 54 | . 46 | . 040 | 16 | 30 | . 51 | 187 | . 12 | 5 | 2.95 | . 01 | . 27 | 1 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L0+00 9+008 | 1 | 35 | 13 | 94 | . 2 | 24 | 10 | 594 | 3.12 | 2 | 5 | ND | 4 | 42 | 1 | 2 | 2 | 58 | . 39 | . 043 | 13 | 31 | . 51 | 139 | . 12 | 5 | 2.45 | . 02 | . 21 | 1 | 1 |
| LOt00 9+568 | 1 | 47 | 9 | 86 | . 1 | 27 | 10 | 464 | 3.19 | 2 | 5 | kD | 6 | 56 | 1 | 2 | 2 | 55 | . 45 | . 067 | 18 | 38 | . 57 | 155 | . 13 | 7 | 3.04 | . 01 | . 37 | 1 | 1 |
| ${ }^{10+00} 10+008$ | 1 | 43 | 11 | 99 | . 1 | 26 | 11 | 694 | 3.25 | 2 | 5 | HD | 5 | 10 | 1 | 2 | 2 | 62 | . 37 | . 039 | 15 | 36 | . 56 | 147 | . 13 | 8 | 2.12 | . 02 | . 28 | 1 | 1 |
| L11+50N 0+00 | 1 | 11 | 6 | 38 | . 1 | 8 | 1 | 529 | 1.69 | 2 | 5 | ND | 2 | 49 | 1 | 2 | 2 | 23 | .41 | . 222 | 7 | 16 | . 19 | 196 | . 07 | 6 | 1.43 | . 02 | . 11 | 1 | 1 |
| L11400N $0+00$ | 1 | 6 | 4 | 33 | . 2 | 8 | 5 | 545 | 1.50 | 2 | 5 | wD | 2 | 26 | 1 | 2 | ? | 22 | . 18 | 273 |  | 10 | . 11 | 158 | . 08 | 1 | 1.88 | . 02 | . 08 | 1 | 1 |
| L10+50N $0+50$ | 1 | 8 | 5 | 63 | . 2 | 17 | 1 | 575 | 1.56 | 2 | 5 | ND | 2 | 30 | 1 | 2 | 2 | 24 | . 24 | . 248 | 4 | 16 | . 17 | 251 | . 07 | 7 | 1.50 | . 01 | . 07 | 1 | 1 |
| L9+50180+00 | 1 | 16 | 12 | 85 | . 3 | 19 | 6 | 424 | 2.09 | 2 | 5 | WD |  | 33 | 1 | 2 | 3 | 34 | . 25 | . 121 | 10 | 20 | . 26 | 188 | . 09 | 6 | 2.04 | . 02 | . 10 | 1 | 1 |
| L9+00N $0+00$ | 1 | 15 | 12 | 156 | . 3 | 19 | 6 | 476 | 2.12 | 2 | 5 | ND | 3 | 33 | 1 | 2 | 2 | 34 | . 26 | . 236 | 8 | 20 | . 28 | 232 | . 09 | 6 | 2.08 | . 02 | . 12 | 1 | 1 |
| L $8+50110+00$ | 1 | 19 | 7 | 89 | . 3 | 19 | 1 | 250 | 2.55 | 2 | 5 | HD | 4 | 33 | 1 | 3 | 2 | 47 | . 28 | . 083 | 9 | 29 | . 40 | 137 | 11 | 8 | 2.11 | . 02 | . 11 | 1 | 1 |
| L2+50\% 0+00 | 1 | 59 | 11 | 73 | . 1 | 16 | 11 | 139 | 4.08 | 3 | 5 | w | 1 | 44 | 1 | 3 | 2 | 98 | . 52 | . 102 | 25 | 29 | . 69 | 101 | . 12 | 9 | 1.98 | . 02 | . 25 | 2 | 1 |
| L7toon 0+00 | 1 | 14 | 9 | 159 | . 2 | 10 | 6 | 1174 | 2.25 | 2 | 5 | HD | 2 | 26 | 1 | 2 | 2 | 40 | . 23 | . 071 | 1 | 16 | . 29 | 192 | . 09 | 6 | 1.75 | . 01 | . 15 | 1 | 1 |
| 26+50N $0+00$ | 1 | 21 | 11 | 80 | . 2 | 12 | B | 530 | 2.94 | 2 | 5 | \% | 1 | 35 | 1 | 2 | 2 | 61 | . 35 | . 063 | 11 | 18 | . 39 | 133 | . 10 | 6 | 1.49 | . 01 | . 17 | 2 | 31 |
| L5+50110000 | 1 | 23 | 10 | 83 | . 2 | 12 | 8 | 670 | 2.71 | 2 | 5 | HD | 3 | 39 | 1 | 2 | 2 | 54 | . 35 | . 042 | 10 | 19 | . 34 | 125 | . 10 | - | 1.71 | . 02 | . 19 | 1. | 1 |
| L4+503 $0+00$ | 1 | 36 | 10 | 68 | . 3 | 10 | 8 | 659 | 2.85 | 2 | 5 | \% | 3 | 35 | 1 | 2 | 2 | 57 | . 31 | . 046 | 12 | 17 | . 39 | 144 | . 09 | 8 | 1.82 | . 01 | . 26 | 1 |  |
| L3+50N $0+00$ | 1 | 36 | 12 | 91 | 2 | 18 | 9 | 780 | 2.95 | 2 | 5 | nD | 3 | 47 | 1 | 2 | 2 | 58 | . 42 | . 046 | 14 | 23 | . 51 | 178 | . 10 | 9 | 2.13 | . 01 | . 32 | 1 | 1 |
| L2 $2+50 \mathrm{~N} 0+00$ | 1 | 33 | 11 | 94 | . 2 | 19 | , | 506 | 2.98 | 2 | 5 | \% | 1 | 36 | 1 | 2 | 3 | 55 | . 30 | . 061 | 12 | 21 | . 51 | 228 | . 12 | 11 | 2.80 | . 02 | . 32 | 1 | 1 |
| L2 $1+50110+00$ | 1 | 43 | 15 | 98 | . 2 | 11 | 11 | 711 | 3.37 | 2 | 5 | HD | 3 | 46 | 1 | 2 |  | 78 | . 34 | . 032 | 9 | 18 | . 71 | 172 | . 13 | 11 | 2.11 | . 01 | . 52 | 1 | 1 |
| 20+500 0+00 | 1 | 30 | 14 | 93 | . 3 | 15 | 10 | 174 | 3.33 | 2 | 5 | no | 4 | 43 | 1 | 2 | 2 | 70 | . 30 | . 015 | 12 | 26 | . 62 | 160 | . 13 |  | 2.55 | . 01 | . 32 | 1 | 1 |
| STD C/au-s | 11 | 59 | 40 | 132 | 6.1 | 68 | 30 | 1026 | 4.05 | 41 | 22 | 8 | 39 | 48 | 18 | 17 | 18 | 60 | . 48 | . 094 | 39 | 55 | . 93 | 178 | . 06 | 38 | 2.0 | . 06 | . 13 | 11 | 51 |















PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS
Data File Name $=$ LA6289.PPT
Variable $=\mathbf{C u}$ ppm $\quad$ Unit $=\quad \begin{array}{rr}N & =415 \\ \mathrm{~N} \mathrm{CI} & =427\end{array}$
Transform $=$ Arithmetic $\quad$ Number of Populations $=3$
\# of Missing Observations $=0$.

Users Visual Parameter Estimates

| Population | Mean | Std Dev | Percentage |
| :---: | ---: | :---: | :---: |
|  |  |  |  |
| 1 | 23.195 | 11.669 | 92.50 |
| 2 | 64.810 | 6.524 | 4.70 |
| 3 | 155.000 | 40.000 | 2.80 |

Default Thresholds.
Standard Deviation Multiplier $=2.0$

| Pop. | Thresholds |  |
| ---: | ---: | ---: |
|  | - |  |
| 1 | -0.142 | 46.533 |
| 2 | 51.762 | 77.857 |
| 3 | 75.000 | 235.000 |

Zumar Property: Skyworld Resources \& Development
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
PARAMETER SUMMARY STATISTICS EOR PROBABILITY PLOT ANALYSIS
Data File Name $=$ LA6289. PPT

Variable $=\mathrm{V}$ ppm $\quad$|  | Unit $=$ |
| ---: | :--- |
| $N$ | $=415$ |
| N CI | $=$ |

Transform $=$ Logarithmic $\quad$ Number of Populations $=2$
\# of Missing Observations $=0$.

Class Interval Data Maximum Likelihood Parameter Estimates
Maximum LN Likelihood Value $=-1062.263$
Parameterized Degrees of Freedom $=\quad 3$

| Population | Mean | Std Dev | Percentage |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 1 | 36.285 | - | 29.368 | 28.77 |
| 2 | 58.050 | + | 44.833 |  |
| 2 |  | + | 79.185 | 71.23 |


Default Thresholds.
Standard Deviation Multiplier $=2.0$

| Pop. | Thresholds |  |  |  |
| :---: | ---: | ---: | :---: | :---: |
|  |  |  |  |  |
| 1 | 23.769 | 55.393 |  |  |
| 2 | 30.656 | 109.920 |  |  |


Variable $=\mathrm{K} \% \quad$ Unit $=\quad \mathrm{N}=415$
Transform $=$ Logarithmic $\quad$ Number of Populations $=3$
\# of Missing Observations $=0$.

Users Visual Parameter Estimates

| Population | Mean | Std Dev | Percentage |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 1 | 0.120 |  | 0.098 |
|  |  |  |  |
| 2 | 0.254 | - | 0.147 |
|  |  | 0.194 |  |
| 3 | 0.612 | - | 0.331 |

Default Thresholds.

Standard Deviation Multiplier $=2.0$
Pop. Thresholds
---- --ー-ー-----

| 1 | 0.081 | 0.179 |
| :--- | :--- | :--- |
| 2 | 0.149 | 0.431 |
| 3 | 0.279 | 1.341 |

Zumar Property: Skyworld Resources \& Development
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS

Data File Name $=$ LA6289. PPT

Variable $=$ Ca\% $\quad$ Unit $=\quad \mathbf{N}=\quad 415$
$\mathrm{NCI}=\quad 27$

Number of Populations $=4$
\# of Missing Observations $=0$.


Class Interval Data Maximum Likelihood Parameter Estimates



Default Thresholds.
Standard Deviation Multiplier $=2.0$

| Pop. | Thresholds |  |
| :---: | :---: | :---: |
|  |  |  |
| 1 | 0.153 | 0.279 |
| 2 | 0.245 | 0.392 |
| 3 | 0.325 | 0.600 |
| 4 | 0.381 | 1.276 |

Zumar Property: Skyworld Resources \& Development \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS Data File Name $=$ LA6289.PPT
Variable $=P \%$
Unit $=$
$\mathrm{N}=$
$\mathrm{N} C \mathrm{CI}=$
415
27

Transform $=$ Logarithmic $\quad$ Number of Populations $=2$
\# of Missing Observations $=0$.

Class Interval Data Maximum Likelihood Parameter Estimates

| Maximum LN Likelihood Value $=$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Parameterized Degrees of Freedom = |  |  | 3 |
| Population | Mean | Std Dev | Percentage |
| 1 | 0.043 | - 0.027 | 82.01 |
|  |  | 0.069 |  |
| 2 | 0.134 | - 0.098 | 17.99 |
|  |  | 0.183 |  |


Default Thresholds.
Standard Deviation Multiplier $=2.0$

| Pop. | Thresholds |  |
| :---: | :---: | :---: |
| - |  |  |
| 1 | 0.017 | 0.111 |
| 2 | 0.072 | 0.250 |

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

Zumar Property: skyworld Resources \& Development
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS
Data File Name $=$ LA6289. PPT
Variable $=$ Ba ppm $\quad$ Unit $=\quad N=415$
$\mathrm{NCI}=27$
Transform $=$ Arithmetic $\quad$ Number of Populations $=3$
\# of Missing Observations $=0$.

Users Visual Parameter Estimates

| Population | Mean | Std Dev | Percentage |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 1 | 130.124 | 36.476 | 93.70 |
| 2 | 228.000 | 6.920 | 4.00 |
| 3 | 285.000 | 17.340 | 2.30 |

Default Thresholds.
Standard Deviation Multiplier $=2.0$

| Pop. | Thresholds |  |
| :--- | ---: | :--- |
| - |  |  |
| 1 | 57.171 | 203.077 |
| 2 | 214.160 | 241.840 |
| 3 | 250.320 | 319.680 |

Zumar Property: Skyworld Resources \& Development
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS Data File Name $=$ LA6289. PPT

Variable $=\mathbf{N i}$ ppm $\quad$ Unit $=\quad$| $N$ | 415 |
| ---: | ---: |
| $N$ |  |

Transform $=$ Arithmetic $\quad$ Number of populations $=3$
\# of Missing Observations $=0$.

Incomplete Iteration Parameter Estimates

| Population | Mean | Std Dev | Percentage |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 1 | 13.842 | 3.773 | 93.00 |
| 2 | 23.225 | 0.722 | 3.84 |
| 3 | 27.546 | 1.939 | 3.16 |

Default Thresholds.
Standard Deviation Multiplier $=2.0$

| Pop. | Thresholds |  |
| :---: | ---: | :--- |
| - |  |  |
| 1 | 6.295 | 21.389 |
| 2 | 21.781 | 24.670 |
| 3 | 23.667 | 31.424 |

## Zumar Property: Skyworld Resources \& Development

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
PARAMETER SUMMARY STATISTICS FOR PROBABILITY PLOT ANALYSIS
Data File Name $=$ LA6289. PPT


Transform $=$ Arithmetic $\quad$ Number of Populations $=2$
\# of Missing Observations $=0$.
0 Observations Were Below the Minimum Value of 0.0001
4 Observations Were Above the Maximum Value of 1450.0000

Lower Truncation Correction of 5 percent.

Users Visual Parameter Estimates

| Population | Mean | Std Dev | Percentage |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 1 | 430.000 | 176.000 | 93.00 |
| 2 | 1078.233 | 124.550 | 7.00 |

Default Thresholds.
Standard Deviation Multiplier $=2.0$

| Pop. | Thresholds |  |  |  |
| :--- | ---: | ---: | :---: | :---: |
| - |  |  |  |  |
| 1 | 78.000 | 782.000 |  |  |
| 2 | 829.134 | 1327.333 |  |  |

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#


${ }^{1}$ LoN
 ${ }_{\text {LSN }}$ ${ }^{\text {LAN }}$ $\qquad$
${ }^{\text {L3N }}$
${ }^{\text {I2N }}$


18,713





ZUMAR 2
L12\% ZUMAR 4


GEOLOGICALBRANCH
18,213


[^0]:    February 6, 1989

