LOG NO: 0518	RD.
ACTION:	
FILE NO:	a ayaa ayaa, aan aa qaan garay ahaa ahaa ahaa ahaa ahaa ahaa ahaa

FILMED

PORCHER ISLAND - OCTOBER 1988 THROUGH DECEMBER 1988

DIAMOND DRILL EXPLORATION PROGRAM

CLAIMS:	Tippy	38573	Starlight	L7189
	Toby 1	38574	HSD	L7312
	Toby 2	38575	Trixie	L6515
	Kerry	38576	Western Hope	L6516
	BR1	829	Pirate	L6953
	BR2	830	Reward	L6955
	Jo1t	6253	Jeanie	L7191
	Pro fr	6252	Nabob	L7192
	DC	6693	Eagle	L6513
	Cola	6694	IXL	L6517
	CC	6695	IXL fr	L6518
	Edye Pass	210	Klim	L6519
			HED fr	L7188

MINING DIVISION: Skeena

NTS: 103J/2E, 103G/15E

<u>LATITUDE</u>: 54º 01' 30'N

LONGITUDE: 130° 35' 30'W

OWNER: Cathedral Gold Corporation

OPERATOR: Cathedral Gold Corporation

AUTHOR: Alan B. Taylor

DATE: May 1989 LOGICAL BRANCH

ASSESSMENT SEPORT

SUMMARY

The Porcher Island property is situated on the northwest corner of the Island and is 40 km southwest of the port of Prince Rupert, British Columbia. The former Surf Point Mine is located on the property and produced 77,000 tons of 0.29 oz/t gold from 1932 through 1939. This production came mainly from vertical stopes to surface from adits at the 1,110m level.

Gold mineralization occurs within pyrite bearing quartz which occur as vertical E-W to NE trending shear structures within a Cretaceous age quartz diorite intrusive. This diorite intrudes the metamorphosed basement rocks of the Prince Rupert Series.

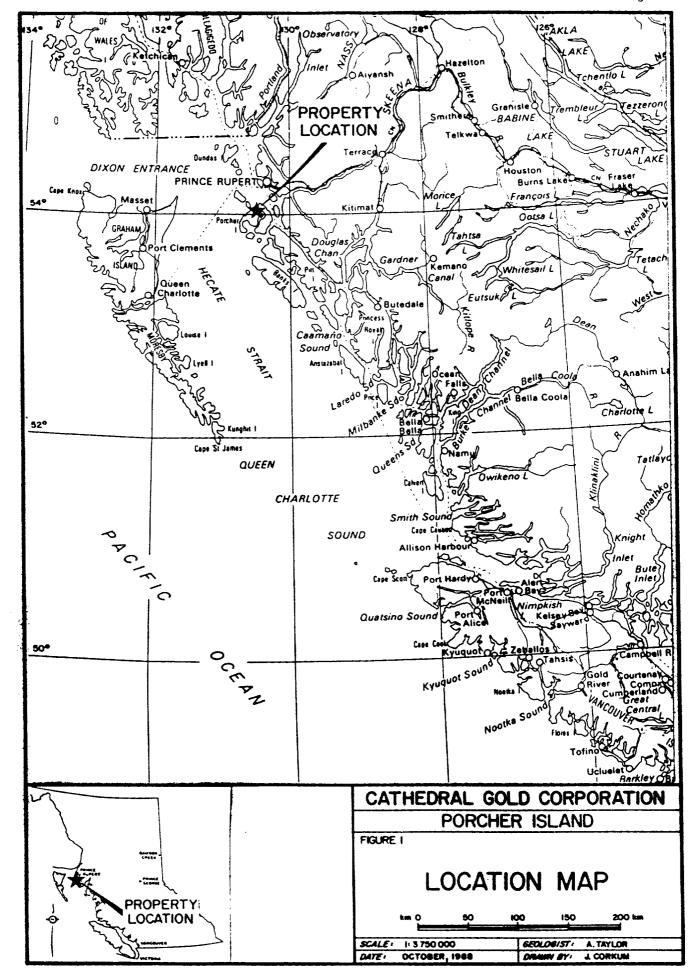
Diamond drilling took place throughout 1988 and holes 79, 80 and 88 are reported herein and were testing for gold bearing structures both along strike and at depth of the known veins. All holes were successful in intersecting anomalous gold values up to 77.49 g/t (2.26 oz/t) over 0.2m core length in hole 80.

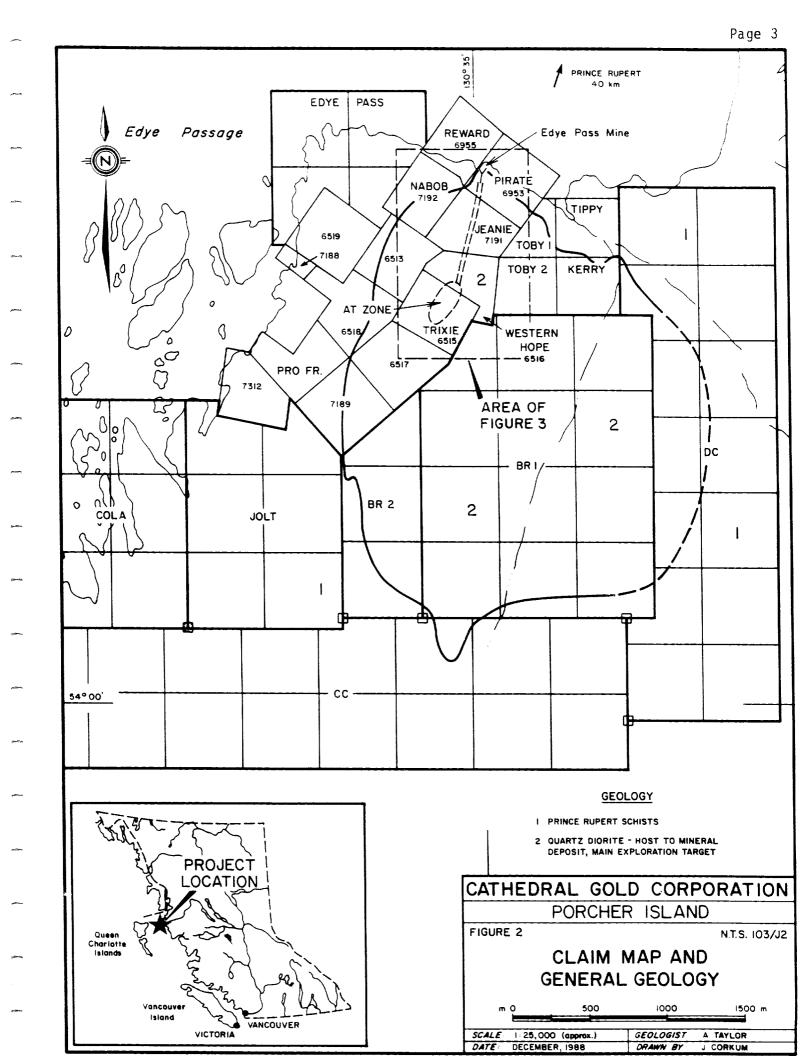
Further drilling is recommended to follow-up on the holes by further defining the vein geometry and extent.

TABLE OF CONTENTS

SUMMARY	Page
1.0 LOCATION AND ACCESS	1
2.0 PROPERTY DEFINITION	1
3.0 SUMMARY OF WORK COMPLETED	4
4.0 RESULTS	4
5.0 RECOMMENDATIONS	5
6.0 BIBLOGRAPHY	5
7.0 STATEMENT OF EXPENDITURES	6
8.0 CERTIFICATE OF QUALIFICATION	7
LIST OF APPENDICES	
APPENDIX 1 Drill Logs APPENDIX 2 Analytical Data and Techniques	
LIST OF FIGURES	
FIGURE 1 - Location Map	3 ck pocket

1.0 LOCATION AND ACCESS


The Porcher Island claims are located 40 km southwest of the town of Prince Rupert on the north coast of British Columbia. The property is situated on the northwest corner of Porcher Island, at Edye Pass, and is bordered on two sides by tidewater. There are presently no roads on the property and access is by boat, float plane or helicopter based out of Prince Rupert.


Vegetation is typical of coastal-type settings ranging from wind-blown stunted scrub vegetation in areas of muskeg to tall stands of spruce and cedar on steeper, better drained slopes. Topographically, the property contains rolling hills with moderate slopes and a highest elevation of 1,600 feet on Bell Mountain. Two linear-type bedrock structures trending northeast-southwest are apparent as steep gullies or trenches found in the northwestern part of the property.

2.0 PROPERTY DEFINITION

The property consists of the following claims owned 100% by Cathedral Gold Corporation (see Figure 2).

Crown Grants	Lot No.	<u>Units</u>
Western Hope	L6516	1
Pirate	L6953	1
Reward	L6955	1
Jeanie	L7191	1
Nabob	L7192	1
Trixie	L6515	1
HED Fr	L7188	1
Starlight	L7189	1
HSD	L7312	1
Eagle	L6513	1
IXL	L6517	1
IXL Fr	L6518	1
K1 im	L6519	1

<u>Claims</u>	Record No.	<u>Units</u>
Tippy	38573	1
Toby 1	38574	1
Toby 2	38575	1
Kerry	38576	1
Edye Pass	210	4
BR 1	829	12
BR 2	830	3
Jolt	6253	6
Pro fr	6252	1
DC	6693	14
Cola	6694	6
CC	6695	16

3.0 SUMMARY OF WORK COMPLETED

A drill camp was set-up in November 1987 on the main showing (AT ZONE) by barging all equipment into Edye Passage and slinging by helicopter to the AT ZONE. All drilling of holes 79, 80, 88 was completed by a helicopter supported Longyear 38. A total of 662.8m (2,174 ft) of BQ core was drilled, logged and sampled. Sampling was done by splitting and all remaining core is stored in racks at the campsite.

Analysis of core was done by Acme Labs (see Appendix 2) and consisted of standard 30 element ICP and gold by A.A. and all samples. Where necessary a separate fire assay was performed on high grade gold values. Work took place from October 17 variably through November 25, 1988.

4.0 RESULTS

The drill holes 79 and 80 were successful in intercepting anomalous gold values in pyritic quartz veins that are identical to the main AT ZONE. These zones are somewhat lower grade and narrow but show the similar vertical nature of the veins. A highest assay of 77.49 gm/tonne (2.26 oz/t) was obtained in hole 80 which may be correlated with an anomalous zone in 79 (see Figure 3).

Hole 88 was testing for anomalous gold values at depth and was successful in intercepting identical styles of anomalous gold below 1000m level. Best intercept was 8.36 gm/tonne (.244 oz/t) over 0.95m. All appropriate drill logs are listed in Appendix 1.

5.0 <u>RECOMMENDATIONS</u>

1. Further drilling is required to further define the extent, geometry and grades of the intercepted veins.

6.0 BIBLIOGRAPHY

- Corvalan, R., 1986: Geochemical Assessment Report on BR 1 and BR2 for Imperial Metals Corporation
- Hutchison, W.W., 1982: Geology of Prince Rupert Skeena Map Area, B.C. Memoir 394, G.S.C.
- Smith, A., 1948: Surf Point and Edye Pass Mines, in Structural Geology of Canadian Ore deposits, C.I.M. pp 94-99.
- Taylor, A. B., 1988: Geophysical Survey on Jolt and Pro fr Cathedral Gold Corporation, July 1988, Assessment Report #17861
- Taylor, A. B., 1987: Geochemical Surveys on Porcher Island Claims
 Cathedral Gold Corporation, October 1987, Assessment Report #17076

7.0 STATEMENT OF EXPENDITURES - Porcher Island October 17-December 10, 1988

-				
	Personnel			
948 <u>1</u>	A. Taylor T. East D. Visser	15 days @ \$165 15 days @ \$125 11 days @ \$115	\$2,475 1,875 <u>1,265</u>	
9-25 <u>1</u>	TOTAL PERSONNEL			\$ 5,615
	<u>Transportation</u>			
	Mob & Demob Helicopter	Vancouver - Prince Rupert 2 hrs @ \$550	\$2,000 1,100	
	TOTAL TRANSPORTATION	l		3,100
	Drilling			
was.	Holes 79, 80, 88 to	otal 2,174 ft @ \$35/ft		
	TOTAL DRILLING			76,090
	<u>Analytical</u>			
	392 ICP + AA (Au) Shipping (air freigh	@ \$13.25 nt)	\$5,194 	
 -	TOTAL ANALYTICAL			5,479
emple.	<u>Miscellaneous</u>			
parts.	Report Writing & Dra Equipment rentals (: Supplies (Sample bag Expediting	survey, radios)	\$2,000 2,000 1,000 1,000	
····	TOTAL MISCELLANEOUS	COSTS		6,000
-		GRAND TOTAL		\$96,284

8.0 CERTIFICATE OF QUALIFICATION

- I, ALAN B. TAYLOR, geologist, residing at 15-8720 Maplegrove Crescent in the Municipality of Burnaby, Province of British Columbia, hereby certify that:
- I graduated from Brock University in 1979 with an Honours Bachelor of Science in Geology.
- I graduated from the University of Western Ontario in 1984 with a Master of Science in Geology.
- 3. I have worked for various mining companies and government geological surveys since 1977.
- 4. I am presently a permanent staff geologist with Cathedral Gold Corporation of 800-601 West Hastings Street, in the City of Vancouver, Province of British Columbia.
- 5. The work described in this report on the Porcher Island Claims was undertaken under my direct supervision.

DATED at the City of Vancouver this 15 day of 1989.

Alan B. Taylor, Geologist

APPENDIX

DRILL LOGS

DRILL RECORD

CATHEDRAL GOLD CORPORATION

DEC. 1988

PROPERTY: Porcher Island

LOCATION : 4897.79E 19198.98N

COLLAR DIP : -45°

: 1 of 4 PAGE

HOLE NO. : PI-88-79

: 1139.13 m ELEV.

COLLAR AZ. : 180° % RECOVERY : 100

: A.B. Taylor LOGGED BY : October 23, 1988 DATE

COMPLETED: October 19, 1988

CORE SIZE : BQ COMMENCED: October 17, 1988

LENGTH : 140.21 m CORE STORED : On property

SPERRY SUN SURVEY: At 60.96 m = 46°/182°, at 140.21 m = 46°/196°.

UNUSUAL FEAT.:

				T	1		r						
From	To				From	To				Ana	alysis		
Met	ers	Syb	Description	Sample	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au*
				No.		:			ppb	ppm	ppm	ppm	oz/tn
0.00	4.05		Casing - no core recovered.	108878	4.05	5.00	0.95		14				
				108879	5.00	6.00	1.00		2				
4.05	140.21	QD	Quartz Diorite	108880	6.00	6.44	0.44		1				
				108881	6.44	6.80	0.36		1640	0.20			0.048
			6.44-6.80 - quartz-pyrite vein 30°, 5% pyrite, blebby, moderately	108882	6.80	7,60			9				
			sheared.	108883	7.60	7.85	0.25		8840	1.20			0.258
				108884	7.85	8.85	1.00	ļ	28				
			7.60-7.85 - banded quartz-pyrite vein at 15°, with 5% fine pyrite, minor	108885	8.85	9.40			46				
			carbonate.	108886	9.40	10.40	1.00		6				
				108887		11.50	1.10		420				
			8.85-9.40 - strongly silicified quartz diorite with 4 x 3 mm quartz-	108888	11.50	12.50	1.00		4				
			chlorite veins 40°, minor disseminated pyrite near veins.	108889		13.35	0.85		1				
				108890	13.35	14.35	1.00		5		[
			9.40-11.50 - weak quartz stockwork system, veins at 40°, 1 mm to 1 cm,	108891	14.35	15.57	1.22		1		1		
			trace pyrite.	108892	15.57	15.80	0.23		1				
						[
			15.57-15.80 - weakly silicified, 2 x 2 mm quartz veins 45°.	108893	17.53	17.75	0.23		12				
			17.53-17.75 - white quartz vein at 40°.										
			19.23 - 2 cm quartz vein at 60°.	108894	19.19	19.82	0.63	l	1				
				108895	19.82	20.20	0.38	L	1				

PORCHER ISLAND PROPERTY PI-88-79 Page 2 of 4 Dec. 1988

From	То				From	То				A	nalysi	s			
	ers	Syb	Description	Sample Meters No.		Meters		Meters		Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au* oz/tn
			19.82-20.20 - moderately silicified zone with broken up quartz-chlorite	108896	20.20	20.90	0.70		2						
			vein, trace pyrite, chlorite shears.										ļ		
			20.65 - 1 x 4 mm chlorite-carbonate vein 15°.										<u> </u>		
			20.03 - 1 X 7 MM CHIOTEC CATBORAGO VOTTI 10 .	108897	23.95	24.85	0.90		56						
23.00	25.10		Moderately silicified zone with variable quartz veins up to 3 cm thick	108898	24.85	25.10	0.25		1390	0.30			.041		
			at 50°.	100000	00.75	00 57	0.00						<u> </u>		
			25.00 - 1 x 5 cm quartz-pyrite vein 40°.	108899 108900					5 2						
			25.00 - 1 X 5 Cili qual tz-pyrite verii 40 .	108901	30.50	31.38			1						
28.75	31.38		Moderately silicified and carbonate rich zone, 1 x 3 mm chloritic-												
			carbonate vein rolls in and out of core length giving a sheared	108902	40.69	41.00			1						
			appearance.	108903	41.00	41.76	0.76		1						
			35.00-35.40 - hybrid xenolith (amphibolite) zone.						:						
			40.69-41.00 - moderately silicified zone.	1.					i						
				108904	43.80	44.30	0.50		11						
			41.76-43.00 - 70% mafic xenoliths.	108905	44.30		0.51		340	0.50					
			43.80-45.05 - weakly silicified zone with minor quartz veins at 40°.	108906	44.81	45.05	0.24		960						
			44.98-45.03 - quartz-pyrite vein 35°.	108907	47.25	47.50	0.25		94						
			47.25-47.50 - moderately silicified with 1 x 3 cm quartz vein at 30°.												
										1		L			

3

j

) "}

1

1

1

ì

1

PORCHER ISLAND PROPERTY PI-88-79

Page 3 of 4 Dec. 1988

From	To				From	То				Aı	nalysi	S	
		Syb	Description	Sample No.	М	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			52.30-54.70 - 80% mafic xenoliths.	108908	55.50	55.70	0.20		6				
			55.50-55.70 - mildly silicic zone.	108909	•	60.50 61.20			5				
			64.18-64.38 - moderately silicified zone.	108910		64.38			2				
			66.65-66.90 - moderately silicified zone, trace pyrite.	108911		66.90			1				
			68.85-69.54 - moderately silicified zone, trace pyrite.	108913					2	0.20			
77.95	79.40		Strongly altered zone 77.95-78.80 - strongly silicified with minor quartz-chlorite veins 40°.	108914		78.80			16				
			78.80-79.40 - pink potassic and chloritic alteration, moderately broken,	108915	78.80	79.40	0.60		2				
			trace carbonate.	108916	79.40	80.00	0.60		1				
			88.53-182.00 - quartz-carbonate vein 90°.	108917	93.00	93.48	0.48		2				
			93.00-93.48 - moderately silicified zone.	108918	95.85				3				
95.85	99.25		Moderate to strongly silicified zone with minor chlorite clasts and vein, trace epidote, carbonate.	108919 108920	96.62 97.80	97.80 98.60			2				
			98.60-99.25 - 1 x 4 mm epidote-carbonate vein rolling parallel to core.	108921	98.60	99.25	0.65		2				
105.30	106.88		Strongly silicified zone, minor chlorite.		105.30 106.15				1 2				

PORCHER ISLAND PROPERTY

PI-88-79

Page 4 of 4

Dec. 1988

From To				From	To				1A	nalysis	S .	
Meters	Syb	Description	Sample No.	M	Meters 09.62 110.29	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
		109.62-110.29 - strongly silicified.	108924	109.62	110.29	0.67		1				
		111.30 - 1 x 4 mm carbonate vein 30°.	108925	123.75	124.00	0.25		1				
		End of hole - 140.21 m.										

1

DRILL RECORD

CATHEDRAL GOLD CORPORATION

DEC. 1988

PROPERTY : Porcher Island

LOCATION : 4897.74E 19199.32N

COLLAR DIP : -60°

PAGE : 1 of 5

HOLE NO. : PI-88-80

: 1138.79 m ELEV.

COLLAR AZ. : 180° % RECOVERY : 100

LOGGED BY : A.B. Taylor DATE : October 24, 1988

COMPLETED: October 20, 1988

CORE SIZE : BQ COMMENCED: October 19, 1988

: 124.05 m LENGTH

CORE STORED : On property

UNUSUAL FEAT.:

SPERRY SUN SURVEY:	At 60.96 m =	61°/181°, a	t 124.05 m	= 61°/187°.
--------------------	--------------	-------------	------------	-------------

From	To				From	To				Ana	alysis		
	' '	Syb	Description	Sample	Me	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au*
				No.					ppb	ppm	ppm	ppm	oz/tn
0.00	3.48		Casing - no core recovered.	108926	3.48	4.44	0.96		2				
				108927	4.44	4.65	0.21		1				
3.48	124.05	OD	Quartz Diorite	108928	4.65	5.18	0.53		1				
				108929	5.18	6.00	0.82		2				
3,48	15.60		Rock is badly broken up and fractured and weathered in places.	108930	6.00	7.00	1.00		330				
				108931	7.00	8.00	1.00		2020	0.30			.059
			4.44-4.65 - quartz vein 50°, trace pyrite.	108932	8.00	9.20	1.20		5				
				108933	9.20	10.0	0.80		2390	0.50			.070
1			6.70 - 1 x 2 cm guartz-carbonate vein 30°.	108934	10.00	11.00	1.00		405				
				108935	11.00	12.00	1.00		27				
			9.20-12.00 - 2-5 cm quartz veins rolling through core 15°-25°, 30% quartz,	108936	12.00	12.50	0.50		4				L
			trace pyrite, sheared and heavily fractured.	108937	12.50	13.00	0.50		164				
				108938	13.00	14.33	1.33	l	5				
			12.50-13.00 - extremely broken up, shear zone, clay development, trace	108939	14.33	14.80	0.47	1	11		1		<u> </u>
			hematite staining.	108940	14.80	15.40	0.60		18				
1	1			108941	15.40	16.60	1.20		1				
			14.33-14.80 - 10 x 1 mm quartz-carbonate veinlets 10° to core, originally	108942	16.60	16.80	0.20		104	0.80			
	t		from 2 cm quartz vein 35° to core, trace pyrite.	108943	16.80	17.37	0.57		2		1		
				108944	17.37	18.90	1.53		2				
			15.15-15.32 - quartz vein, heavily fractured.										
		\dashv	16.84 - 1 x 4 cm quartz vein, 40°, trace pyrite.										

PORCHER ISLAND PROPERTY

PI-88-80

Page 2 of 5

Dec. 1988

From	То				From	To				Aı	nalysi	3	
	ters	Syb	Description	Sample	Mete	ers	Lgth.	Rec.	Au	Ag	Cu	Zn	Au*
,,,		-,-	•	No.	İ				ppb	ppm	ppm	ppm	oz/tn
			10 00 10 15 must sale 400 miner 400 come of purity unit broken	108945	18.90	10 15	0.25		1760	0.20			.051
	 		18.90-19.15 - quartz vein 40°, minor 40° seams of pyrite, vein broken	108946					1/00	0.20			.031
		-	up and fractured.	108947					6				I
	ļ		21 CO 21 CO 1 v 4 cm grants purity voin 25°		20.13 2				2480	0.60			.072
		ļ	21.80-21.00 - 1 x 4 cm quartz-pyrite vein 25°.		21.00 2				3	0.00			.0/2
	-		22.40 - 1 x 3 mm quartz-chlorite vein 50°.		22.95 2		0.12		21				
	-		22.40 - 1 X 3 mm quartz-cirrorite verm 30 .	108951			0.93		5060	0.80	<u>†</u>	i	.148
			22.80 - 1 x 2 cm quart vein, trace pyrite, 40°.	-	24.00 2				2040	0.30			.059
			22.00 - 1 X 2 cm quart vern, trace pyrite, 40 .	108953		***************************************			11	0.00	i		
23.07	25.00		Heavily fractured and broken up quartz-carbonate-chlorite-pyrite vein	108954					24	1			
23.07	23.00		containing 20% altered quartz diorite xenoliths. Pyrite ~ 3% both in	108955					3				
			coarse blebs and disseminations. Contact not obvious but probably	1					1	1	1	1	
			~ 30°.										
									. 1				
			25.00-25.65 - variably silicified quartz diorite with minor quartz-										
			carbonate-chlorite material up to 40% of rock.										
				108956	30.65 3	31.40	0.75		1				
			30.65-32.00 - mildly silicified zone 6 x 2 mm quartz veins 30°.	108957	31.40 3	32.00	0.60		1				
				108958	32.00 3	33.00	1.00		2				
			33.10 - 1 x 5 mm quartz-carbonate vein 30°.	108959	33.00 3	33.40	0.40		2			l	
		Ť		108960	33.40 3	34.40	1.00		1		l		
			33.38 - 1 x 1 cm quartz vein 45°.	108961		5.66			12				
				108962					1				
34.40	37.80		Moderately silicified zone around a central vein.	108963			0.63		174				
				108964	37.25 3		0.55		11				
				108965	37.80 3	8.71	0.91		2	1	<u> </u>		

i i

4

) }

7

)

1

}

Ì

PORCHER ISLAND PROPERTY
PI-88-80
Page 3 of 5
Dec. 1988

From	To				From	То				Aı.	nalysis	\$	
		Syb	Description	Sample No.	1		Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au* oz/tn
			36.62-37.25 - 1 x 4 cm quartz-carbonate-chlorite vein subparallel to 15°	108966	38.71	40.00	1.29		1				
			cuts core in half. Slightly brecciated in places.	108967	40.00	41.76	1.76		1				
				ļ									
			48.00-48.60 - mildly silicified 2 x 1 mm quartz-carbonate veins 30°,	108968					77				
				108969					2				
			49.75-50.60 - mildly silicified 4 x 1 mm quartz-carbonate joints at 70°,	108970					1				
			trace pyrite.	108971		51.20			1				
				108972					5				
			54.60 - 1 x 3 cm strongly silicified band rimming a 6 mm chlorite vein	108973					2				
			60°, trace pyrite.	108974					2				
				108975		54.50			2				
			57.50 - 2 x 2 mm quartz-carbonate veins 45°.	108976					2				
				108977					2			i	
59.38	62.82		Strongly silicified, bleached zone with minor chlorite patches and vein-	108978		57.40			_ 2				
			lets 50°, disseminated to clotty pyrite, cream, brown colour, trace	108979		57.60			2				
			carbonate, [well/wall] jointed (every 10 cm at 50°).	108980		58.60			4				
1				108981	58.60				6				
			60.48-60.60 - massive coarse pyrite band 50°.	108982	59.38	60.45			4				
				108983	60.45	60.65			77500				2.260
			65.80 - 1 x 1 cm quartz-carbonate vein 60°, local silicification 1 x 1 mm	108984		61.82			1150	0.90			.034
			joint 35°, chloritic.	108985	61.82	62.30	0.48		290				
				108986	62.30	63.30	1.00		12				
			72.10 - 1 x 4 cm silicic band 30°, trace pyrite.										
				108987	65.70	66.00	0.30		11				
			79.15 - 1 x 5 cm weakly silicic zone.										
				108988	72.00	72.24	0.24		58				

)

PORCHER ISLAND PROPERTY PI-88-80 Page 4 of 5 Dec. 1988

From	To				From	То				Aı	nalysi	3	
•	• •	Syb	Description	Sample No.	Mo	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au* oz/tn
			87.26 - 1 x 4 mm quartz-chlorite vein 10°.	108989	79.05	79.25	0.20		2				
			90.18 - 1 x 1 mm quartz-chlorite vein 30°.										
91.22	92.80		Variably weakly silicified.	108990		91.52 92.80			48				
			91.22-91.52 - strongly silicified with chloritic blebs and variable	108992		96.40							
			patchy quartz, clay development on 3 40° shear planes.	108993	96.40	96.80	0.40		13				
96.80	99.10		Variably moderately silicified cut by 5% quartz veins, 1-2 cm at 10°-15° with minor chlorite.	108994 108995	97.82	97.82 98.60	0.78		4				
			106.10-106.70 - 2 x 4 cm epidote rich zones flanking 45° joint planes.	108996		99.10			1				
			109.00 - 1 x 2 cm pinkish quartz vein 20° with 5 cm flanking moderate	108997	106.10	106.70	0.60		1				
			silicification.	108998	108.95	109.20	0.25		1				
			111.00-111.86 - mildly silicified and fractured zone.	108999	111.00	111.86	0.86		8				
			113.75 - 1 x 3 cm quartz-chlorite vein 20°.		113.65 113.95		0.30		1				
			114.30, 114.70 - 1 x 1 cm quartz veins 20° and 50°.		116.85				11				
116.85	119.90		Mildly silicified zone.	32003	118.20	118.60	0.40		5				
					118.60 119.35				23				

PORCHER ISLAND PROPERTY PI-88-80 Page 5 of 5 Dec. 1988

From	То				From To				Ar	nalysis	S	
Met		Syb	Description	Sample No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			118.20-118.60 - strongly silicified, trace pyrite in chloritic patches,									
			minor quartz-carbonate veins 25°.									
			122.50 - 1 x 3 mm quartz-carbonate vein 35° cutting amphibolite xenolith.									
			End of hole - 124.05 m.									

DRILL RECORD

CATHEDRAL GOLD CORPORATION

DEC. 1988

PROPERTY : Porcher Island

LOCATION : 4827.29E 19278.58N

: 1 of 13 PAGE COLLAR DIP : 48°

HOLE NO. : PI-88-88

: 1103.12 m ELEV.

COLLAR AZ. : 175°

: A.B. Taylor LOGGED BY : November 18, 1988

COMMENCED: November 12, 1988

CORE SIZE : BQ

% RECOVERY : 100%

DATE CORE STORED : On property

COMPLETED: November 16, 1988

LENGTH : 398.37 m

SPERRY SUN SURVEY: At 32.61 m = $50^{\circ}/179^{\circ}$, at 93.57 m = $49\frac{1}{2}^{\circ}/183^{\circ}$, at 154.53 m = $49\frac{1}{2}^{\circ}/184^{\circ}$, at 215.49 m = $50\frac{1}{2}^{\circ}/186^{\circ}$.

	.			ŀ	From	To				Ana	ilysis		i
From Met	To	Syb	Description	Sample	Me	ters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au
Mot	0.3	3,5		No.					ppb	ppm	ppm	ppm	oz/tn
0.00	2.52		Casing - no core recovered.	32888	2.52	4.00	1.48		58				
0.00	2.52		0001119 110 001	32889	4.00	4.70			3				
2.52	44.10	HOD	Hornblende Quartz Diorite	32890	4.70		0.30		690	0.50			
				32891	5.00	6.00			14				<u> </u>
			5.10 - 1 x 1 cm quartz vein 70°, minor pyrite in silicified 3 cm wall	32892	6.00		1.00		17				
			rock.	32893	7.00				5	. 20			
				32894	7.70		0.30		200				<u> </u>
			7.90 - 1 x 1 cm quartz vein 80°, minor pyrite.	32895	8.00	9.00	1.00		6				
			13.13 - 1 x 2 cm moderately silicified zone, trace pyrite.										
			13.45 - 1 x 4 mm carbonate vein 30°.	32896	13.00	13.25	0.25		125				
16.85	24.90		Moderately silicified zone, locally weakly foliated 30°. Mild carbonate	32897	16.85				4	. 20			
20.00			alteration.	32898		18.37			1				
				32899	18.37	19.80	1.43		1				
			21.50 - 1 x 2 mm carbonate vein 60°.	32900	19.80	21.00	1.20		1				
				32901		22.00			40				
			21.90 - 1 x 2 cm quartz-chlorite vein 70°, trace pyrite.	32902	22.00	22.70	0.70		87				
				32903	22.70	23.70	1.00		2				
			22.50 - 1 x 3 cm quartz vein 60°, minor pyrite.	32904	23.70	24.00	0.30		16				
			ELIVO - A V VIII QUITA I I I I I I I I I I I I I I I I I I	32905	24.00	24.90	0.90		69				

PORCHER ISLAND PROPERTY PI-88-88 Page 2 of 13

					From	То				Ar	nalysi	S	
From Met	To ers	Syb	Description	Sample No.	Мє	ters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au* oz/tn
			22.70-23.70 - unaltered HQD.	32906	24.90	25.90	1.00		5	. 20			
			22.70-23.70 - unartered rigo.	32907	25.90	26.20	0.30		1				
			25.90-26.20 - mildly silicified.										
			27.25-27.75 - variable 1-5 mm chlorite-carbonate vein rolling through	32908	26.20				1				
			core, local silicification, trace pyrite.	32909		27.75			12				
				32910	27.75	28.50	0.75		1				
			30.01 - 1 x 2 mm carbonate-chlorite vein 45°.										
			31.00 - 1 x 4 mm white carbonate vein 30°.										
			32.40 - 1 x 4 cm quartz vein 40°, minor pyrite, sharp contacts, no wall	32911	32.30	32.61	0.31		1				
			contacts, no wall rock alteration.										
			34.76 - 3 cm epidote rich band.	32912	36.00				1				
1				32913		37.15			33				
			36.57 - 1 x 10 cm cream white aplite vein 45°.	32914 32915	37.15 38.25				1				
			minor punito chiorita 2 v 2 mm	32915	38.70				2030	0.90			.059
		ļ	35.80-36.15 - moderately silicified zone, minor pyrite-chlorite, 2 x 2 mm	32917	39.20				260				
			carbonate veins 60°.	32918	40.00				220				
38.70	44.10		Moderately silicified zone.	32919	40.60				310	0.30			
36.70	74.10		riodel debety difficulties above	32920	41.60				30				
			39.00-39.20 - carbonate-chlorite-pyrite variable clotty (50%).	32921		43.60			4				
				32922		44.10			44				
				32923	44.10	45.00	0.90	1	1		ز	i	

PORCHER ISLAND PROPERTY

PI-88-88

Page 3 of 13

Cross	To				From	To				Ar	nalysi	s	
From Met	• -	Syb	Description	Sample	Me	ters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au*
1,0		5,2	•	No.		.,,			ppb	ppm	bbw	ppm	oz/tn
			43.60-44.10 - 1 x 3 cm quartz-chlorite vein rolling through zone, trace										
			pyrite.										ļ
				L									ļ
44.10	398.37	QD	Quartz Diorite										
			to so to so and analyzation state of the containing 15 cm quartz-chlorite										
			49.22-49.60 - moderately silicified zone containing 15 cm quartz-chlorite	32924	48.22	49.22	1.00		3				
			vein 35°, trace pyrite.	32925	49.22	49.60			560	0.40			
			52.30 - 1 x 4 cm quartz-chlorite vein 40°.	32926	49.60	50.40	0.70		2				
			J2.30 - 1 A 4 Cit quality Circolytes vota to	32927	50.40	51.10	0.70		149	0.40			
			53.40-54.25 - spotty mild silicification.	32928	51.10	52.10	1.00		6				L
			03.70 07780 00000 00000	32929	52.10	52.43	0.33		33				L
55.90	66.53		Patchy moderately silicified zones with sporadic quartz veins.	32930	52.43				2				i
				32931	53.40				29				l
			56.00 - 1 x 2 cm quartz vein 70°.	32932		55.25			1				
				32933		55.90			1				
			56.80 - 1 x 10 cm quartz-chlorite vein 35°, trace pyrite.	32934	55.90				870	0.80			
				32935	56.90				21				
			58.20 - 1 x 2 cm quartz-chlorite vein 10°, trace pyrite.	32936	57.75				250	0.30			
				32937	58.55				1				II
			59.30 - 1 x 10 cm quartz-chlorite vein 30°, trace pyrite.	32938	59.20				300				
				32939	59.60	60.25			1100	0.60			.032
			60.10 - 1 x 5 mm quartz vein, minor pyrite on 15° slip planes.	32940	60.25				3			ļ	
				32941	61.50				4				
			60.25-61.50 - unaltered QD.	32942	62.35				1				I
				32943	62.90	63.70	0.80		186				Ll

PORCHER ISLAND PROPERTY PI-88-88 Page 4 of 13

	.				From	То				Aı	nalysi	S	
From Met	To ers	Syb	Description	Sample No.	Me	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			61.50-62.25 - 3 x 1 cm quartz vein 35°, 1 x 4 cm quartz-chlorite vein 35°.	32944	63.70	64.40	0.70		9				
			01.50 02.20 0 X 2 6W 450.02	32945	64.40	64.85	0.45		29				
			62.90-63.70 - quartz-chlorite vein, trace pyrite.	32946		65.60			61				
				32947		66.53			3				<u> </u>
			62.90-63.24 - rolling through intensely silicified QD, minor pyrite.	32948		67.30			97				
				32949		68.00			10				
			63.24-63.70 - massive quartz vein 40°.	32950	68.00				28				
				32951		70.00			2				
			65.40 - 1 x 8 cm quartz-chlorite vein 40°, minor carbonate, trace pyrite.	32952		71.10			1				
				32953		72.00			- 1				
			66.40 - 4 x 2 mm quartz-carbonate vein 45°, local silicification.	32954		72.45 73.40			107				
				32955 32956		74.10			107				
			67.30-68.00 - 2-5 cm silicified 40° joints.	32956	/3.40	74.10	0.70						
			70.10 - 1 x 1 cm chlorite-carbonate vein 60°.	32957	83.00	83.30	0.30		55				
			71.00 - 1 x 1 cm epidote vein 20°.										
			71.60 - 1 x 1 cm chlorite-quartz vein 40°.										
			72.00-72.45 - moderately silicified zone on 2 30° chlorite joints.										
			72.45-73.40 - 20° foliation in moderately silicified weak shear zone.										
			83.15 - 1 x 5 mm silicic shear at 35°.										

PORCHER ISLAND PROPERTY

88-88**-**19

Page 5 of 13 Dec. 1988

	То				From	То				1A	nalysis	3	
From Met	1	Syb	Description	Sample No.	Me	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn
			85.45 - 3 x 1 mm carbonate veins 40°.										
			92.85 - 1 x 5 mm quartz-chlorite vein 20°, minor pyrite, no alteration.	32958	92.75	93.00	0.25		2				
95.50	96.96	A	Dark grey fine grained andesite dike, sharp 35° contacts.		101.00				1				
			101.78-101.96 - quartz vein 35°, minor chlorite.	32961	101.75 102.00	102.93	0.93		122 7				
			102.93-103.30 - moderately silicified zone 35°.	<u> </u>	102.93 103.30				5 2				
			105.32 - 1 x 1 cm quartz-chlorite vein 40°.										
			106.65 - 1 x 2 cm epidote-quartz-carbonate vein 15°, trace pyrite.	32964	105.22	105.45	0.23		250	0.20			
			113.50-115.50 - weak patchy silicification on 40° joints.	32965	106.55	106.85	0.30		3				
			115.30 - 1 x 15 cm quartz vein 35°, minor pyrite.										
			120.00-120.50 - 3 x 1 cm quartz veins 50°.		113.50 114.00				205 37				
				32968	115.00	115.50	0.50		128 6				
					115.50								
124.45	132.40		Quartz stockwork zone with local moderate to intense silicification next to veins. Veins at 50°, average 1-2 cm and 5% of total, trace pyrite in		120.00				11				
			some veins and on flanks.	32971	122.00	123.00	1.00		15			1	

PORCHER ISLAND PROPERTY PI-88-88

Page 6 of 13

- T -		T		1	From	To				Aı	nalysi	<u> </u>	
From To Meters	- }	yb	Description	Sample No.	M€	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au* oz/tn
	\dashv	_	127.10 - 1 x 10 cm pink aplite vein 45°.	32972	123.00	124.00	1.00		12				
			127.10 - 1 X 10 cm prink aprile veril 43 .	32973	124.00	124.45	0.45		1				
			128.60 - slight potassic alteration.	32974	124.45	125.30	0.85		35				
		\dashv	120.00 - Stigite poceasite discolation.		125.30				63				
		\dashv		32976	126.10	127.30	1.20		18				ļ
	\dashv	\dashv		32977	127.30	127.93	0.63		5				L
		\dashv		32978	127.93	128.60	0.67		1				ļ
	\dashv	十		32979	128.60	129.75	1.15		93				ļ
	_	-+											
		\dashv	133.30-135.20 - mildly silicified zone.		129.75				76				
		\dashv	133.30 133.60		130.50				680	0.80			
		-	136.10 - 10 cm moderate silicification around a 1 x 2 cm quartz vein 40°.		131.50				62				
	-	\dashv	100.10		132.40				9				
137.25 144.	90	_	Mildly to locally intense silicification quartz stockwork zone.		133.30				1				L
137.23 144.		\neg			134.00				1				
	_	\neg	137.30-137.50 - white quartz vein 60°.		134.70				193				
		\neg			135.20				6				
		\neg	137.95-138.20 - white quartz vein 70°, intense local silicification.		136.00				11				
		寸			136.25				1				ļ
		寸	140.43-140.64 - white quartz vein 70° with 2 coarse 2 cm blebs of		137.25				5				
			pyritic, minor chlorite.		137.60				1				ļ
		\neg			137.95				163				
			142.00 - 1 x 15 cm quartz vein 60°.		138.42				14				
	_	_			139.45				9				<u> </u>
	-	_	142.34-143.00 - intensely silicified, minor pyrite, 1 x 20 cm quartz-		140.35				4880	2.80			.142
		十	chlorite vein, trace pyrite.	32996	140.70	141.70	1.00		210				l

PORCHER ISLAND PROPERTY

PI-88-88

Page 7 of 13

From	То				From	То				Ai	nalysi	s	
Me	ters	Syb	Description	Sample	м	eters	Lgth.	Rec.	Au	Ag	Cu	Zn	Au *
				No.					ppb	ppm	ppm	ppm	oz/tn
			152.22-152.46 - cream-white aplite vein 45°.	72997	141.70	142.34	0.64		44				
				32998	142.34	143.00	0.66		1740	1.80			0, 0 51
				32999	143.00	143.50	0.50		950	0.90			
				33000	143.50	144.40	0.90		990	1.50			
						144.90			330				
						145.90		[26	0.20			
						147.00	1.10		25				
					147.00		1.10		5				
				72005	148.10	149.00	0.90		1				
			156.50-157.00 - 4 x 2 mm 60° silicic joints.	720006	156.50	157.00	0.50		1				
									ļ				
163.00	174.30		Variably moderate to mild silicified zone with intermittant unaltered			161.00			15				
			sections.			162.00			1		i		
· · · · · · · · · · · · · · · · · · ·	ļ					163.00			9				
	ļ		164.60-165.00 - moderately intense silicified minor chlorite, pyrite.	72010			0.90		1				
							0.70		1				
			165.60-166.50 - intensely silicified, minor chlorite, minor pyrite, 1	72012			0.50		61				
			x 5 cm quartz vein 70°.				0.50		1				
				_		166.50			210				
			167.20-167.70 - intensely silicified, minor chlorite vein 40°.	72015			0.70		1				
				72016			0.50		1				
			171.00-171.40 - intensely silicified.	72017			1.30		1				
				72018					1				
			171.80-174.30 - intensely silicified cream-brown with pepper-like	72019					3				
			chlorite texture.	72020	171.00	171.40	0.40		1				

PORCHER ISLAND PROPERTY PI-88-88 Page 8 of 13

From	То				From	То				A	nalysi	s	
	ters	Syb	Description	Sample No.	M	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au * oz/tn
			182.60-183.00 - epidote rich zone.										
			199.00-200.25 - 3 x 1 cm quartz-chlorite vein 40°, trace pyrite.	72021	171.40	171.80	0.40		1				
				72022	171.80	172.82	1.02		1				
					172.82				1				
					179.30				1				
				72025	182.60	183.00	0.40		1				
				72026	198.30	100.00	0.70		1				
					199.00				141				
					199.60		0.65		115				
				 	200.25				113				
					201.25		1.00		1			i	
			202.25-203.30 - 2 x 5 mm quartz veins 15°, minor pyrite.		202.25				1250	1.00			.037
					203.30		0.70		16	0.20			
209.70	214.45		Moderately to intensely silicified zone, foliated at places, 30° (healed	72033	209.00	209.70	0.70		12	0.20			
			shear?), minor chlorite, trace pyrite.	72034	209.70	210.80	1.10		269	0.40		l	
				72035	210.80	211.80	1.00	l	18				
			213.50-214.45 - intensely silicified 3 x 2 cm carbonate-chlorite-pyrite		211.80		0.65		13	0.20			
			veins rolling through core.		212.45		1.05		10				
		[27038	213.50	214.45	0.95		8350	3.10			.244
			216.00-216.65 - 3 x 1 cm quartz vein 70°, local silicification.		214.45				23	0.20			
	ļ				215.49				43	0.20			
	{			27041	216.00	216.65	0.65		286	0.40	l		

PORCHER ISLAND PROPERTY PI-88-88 Page 9 of 13

From	То				From To			Analysis							
Met	ters	Syb	Description	Sample No.	Meters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au oz/tn			
				ļ	<u> </u>	1									
	·			72042	216.65 218.00	1.35		8	0.30						
				72043	218.00 219.10	1.10		13	0.20						
				72044	219.10 220.00	0.90		250	0.30						
219.10	220.59		Healed 30° foliated shear zone, moderately silicified.	72045	220.00 220.59	0.59		20							
				72046	220.59 221.50	0.91		1							
			223.65 - 1 x 5 cm 30° foliated hematite stained reddish-brown shear,			<u> </u>									
			minor carbonate and silicification.	72047	223.50 223.80	0.30		1							
											-				
			230.60 - 1 x 10 cm moderately silicified zone, minor pyrite.		230.00 230.50			2							
					230.50 230.73			580							
232.30	236.50		Variably silicified zone.		230.73 232.30			1	I						
					232.30 233.00			114							
			232.30-233.00 - moderately silicified, weak 30° foliation.		233.00 234.10			11							
					234.10 234.70		ļ	240							
]		234.10-236.50 - moderately silicified.		234.70 235.70			430							
					235.70 236.50			720	0.50						
			235.50-235.70 - quartz-chlorite vein 60°, trace pyrite.		236.50 237.00			188							
					237.00 238.50			6		ļ					
		\dashv	239.25-239.88 - 2 x 2 mm quartz veins 40°, local silicification and trace		238.50 239.25			3							
			pyrite.		239.25 239.88			840	0.50						
					239.88 240.75			72							
			240.90 - 2 x 1 cm silicic zones on 40° joints.		240.75 241.50			460	0.50						
					241.50 242.55			171	0.20						
			241.40 - 1 x 6 mm quartz vein 30°, trace pyrite.		242.55 244.10			10							
					244.10 244.60			196	0.20						
1	1		243.05 - 1 x 1 cm white aplite vein 60°.	72065	244.60 245.97	1.37		53							

PORCHER ISLAND PROPERTY PI-88-88 Page 10 of 13

Dec. 1988

From To		Syb				То				A	nalysi	S	
1	ters	Syb	Description	Sample No.	M	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au [*] oz/tn
			244.40 - 3 x 1 mm quartz-carbonate veins 50°, minor pyrite and	72067	247.20	247.60	0.40		6840	5.50			. 200
			silicification.	72068	247.60	248.25	0.65		3860	1.90			.113
					248.25				16				
			244.90 - 1 x 2 cm mildly silicified zone.		249.02				7				
				72071	249.70	250.30	0.60		47				
			247.30 - 1 x 7 cm quartz vein 30°.		ļ								
			247.60-247.25 - moderately silicified.										
			247.90-248.20 - quartz vein 40°, minor pyrite.										
			249.70-250.30 - 2 x 1 cm silicic zone 80°, trace pyrite.	+									
				72072	251.40	251.70	0.30		310	0.20			
			253.80-253.95 - intensely silicified on a 45° joint plane, minor pyrite.	72073	253.75	254.00	0.25		335				
			261.00 - 1 x 4 mm quartz vein 60°, trace pyrite.	72074	260.80	261.10	0.30		27				
			261.70 - 1 x 4 mm quartz-pyrite vein 40°.	72075	261.10	269.85	0.75		220	0.20			
				72076	261.85	262.45	0.60		8				
			262.45-263.10 - 3 x 3 mm quartz-pyrite veins 60°, local silicification.	72077	262.45	263.10	0.65		380	0.20			
				72078	263.10	264.00	0.90		46				
264.20	270.50		Weak quartz stockwork system (veins <3%) at 30°, mild local	72079	264.00	264.50	0.50		290	0.20		1	
			silicification.		264.50				86				
				72081	265.75	266.32	0.57		1050	0.70	[.031

PORCHER ISLAND PROPERTY PI-88-88 Page 11 of 13

Dec	1	988	ļ

From To				From	то То		Ì .	 	A	nalysi:	<u>s</u>	
Meters	Syb	Description	Sample No.	M	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au* oz/tn
		264.40 - 2 x 1 cm quartz veins 30°.	72082	266.32	267.31	0.99		103				
			72083	267.31	267.95	0.64		215	0.20			
		265.75-266.32 - 1 x 1 cm quartz vein 30°, 2 x 2 mm quartz-pyrite veins	72084	267.95	268.75	0.80		540	0.30			
		30°.	72085	268.75	269.40	0.65		1220	0.70			.036
			72086	269.40	270.50	1.10		2110	1.30			.062
		268.05 - 1 x 3 cm quartz-chlorite vein 30°, trace pyrite.	72087	270.50	271.10	0.60		11				
		268.65 - 1 x 2 cm quartz vein 25°, trace pyrite.										
		268.75-269.40 - 3 x 2 cm quartz veins 25°, trace pyrite, moderate										
		silicification.										
		270.34 - 3 x 2 mm quartz veins 40°, trace pyrite.										
		279.40-279.80 - moderate epidote rich zone.	72088	279.40	279.80	0.40		11				
		282.30 - 10 cm healed shear foliation 60°.	72089	282.10	282.40	0.30		13				
		284.20-284.40 - dark grey with white 3 mm phenocryst aplite dike 35°,										
		lower contact has 1 cm pink zone.	72090	294.70	295.10	0.40		123	0.20			
		294.74 - 1 x 1 cm quartz vein 40°.										
		299.88 - 1 x 2 cm cream-white aplite vein 20°.	72091	309.20	309.45	0.25		1290	1.00			.038
		300.34 - 1 x 10 cm mild silicic zone., 2 x 2 mm carbonate vein 10°.	72002	210 50	311.40	0.00		1990	1.20			. 058

PORCHER ISLAND PROPERTY

PI-88-88

Page 12 of 13 Dec. 1988

From To					From	То				S			
Met	ers	Syb	Description	Sample No.	e M	eters	Lgth.	Rec.	Au ppb	Ag ppm	Cu ppm	Zn ppm	Au [*] oz/tn
			309.30 - 1 x 2 cm silicified zone on 40° joint plane.										
			310.40 - 1 x 2 cm white aplite vein 20°.	72093	313.35	313.60	0.25		630	0.80			
			310.55 - 1 x 1 cm quartz vein 20°, trace pyrite.										
			311.30 - 1 x 1 cm quartz vein 40°, minor pyrite and silicification.		315.70 316.08				2490 14	1.40			.073
			313.50 - 1 x 2 cm quartz vein 35°, minor pyrite and silicification.	72096	317.20 317.60	317.60			4110	3.20			.120
			315.80 - 1 x 5 mm quartz vein 30°.										
			317.20-317.60 - intensely silicified zone, 1 x 3 cm quartz-pyrite vein 45°, 4% pyrite.										
			333.80-334.10 - 2 45° silicified joints.	72008	333.80	334 10	0.30		960				
			336.24 - 1 x 3 cm quartz-chlorite vein 40°.		336.10				9450	6.50			.276
			342.20-342.80 - 2 x 5 cm silicic zone around 50° chlorite joints.		342.20		0.60		355	0.30			
			345.20 - 1 x 4 cm quartz vein 70°, trace pyrite.	72101	342.80 343.51	343.51			25 320	0.20			
			345.55-345.86 - moderately silicified around 1 x 4 cm quartz-pyrite vein at 45°.	72103 72104	344.20 345.10	345.10 345.55	0.90 0.45		14 440	0.30			
	I			1/2105	345.55	343.80	0.31	1	23040	12.70			.672

PORCHER ISLAND PROPERTY PI-88-88 Page 13 of 13

From To						То			Analysis						
	ters	Syb	Description	Sample	M	eters	Lgth.	Rec.		Ag	Cu	Zn	Au *		
				No.					ppb	ppm	ppm	ppm	oz/tn		
				72106	345.86	346.56	0.70		67						
			371.08 - 1 x 1 cm white aplite vein 40°.												
			376.05-376.55 - 1 x 5 mm quartz-carbonate-pyrite vein parallel to 10°	72107	376.05	376.55	0.50		2940	2.10			.086		
			to core, local 1 cm silicification.												
			381.90 - 1 x 1 cm chlorite shear 10-15° with local intense silicification.	27108	381.80	382.10	0.30		600	0.30					
				ļ											
					383.00				63						
383.70	390.80		Variably silicified zone with trace pyrite.		383.70				2550	1.60			.074		
					384.00				29						
			383.70-384.00 - moderately silicified zone 2 x 2 mm pyrite vein 50°.		384.45				***********	1.50			.071		
					384.92				58						
			348.45-384.92 - intensely silicified zone, spotty chlorite, minor dis-		385.60				17						
			seminated pyrite, 3 x 1 mm 45° joints.		387.00		0.64		1		[
					387.64				5						
					388.50				6						
					389.50				1						
			394.00-394.30 - epidote rich zone, 2 x 5 mm quartz-chlorite vein 20°.	27119	390.80	392.10	1.30		1						
			395.20 - 1 x 2 mm carbonate vein 20°.	72120	394.00	394.30	0.30		1						
			End of hole - 398.37 m.	72121	395.00	395.30	0.30		1						
				I	i						1	l	i		

APPENDIX

ANALYTICAL DATA AND TECHNIQUES

37 1.92 .06 .15

E 108913

STD C/AU-R

18 61

55 . . 2 4 1243 3.25

38 132 7.0 68 31 1025 3.91 42 20

2

1

38 48

8

1

18

19 20

65 .49 .097

39 57 .92 177 .07

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA R AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

AU* ANALYSIS BY ACID LEACH/AA PRON 10 GM SAMPLE. - SAMPLE TYPE: Core DATE RECEIVED: OCT 31 1988 DATE REPORT MAILED: Nov 3 /88 SIGNED BY D. TOTE, C.LEONG, B.CHAN, J. WANG, CERTIFIED B.C. ASSAYERS File # 88-5548 CATHEDRAL GOLD CORP. PROJECT 4544 Page 1 55 p Lā Cr Вa **T**1 6 Al Cđ **5**1 V Ĉά Ma SAMPLE Co En Ü Αu Th Sr PPM PPM PPM PPN PPN PPN PPN PPM PPH a PPN PPK FPM PPN PPM PPM PPN ą PPK PPM PPH PPK 26 [.21 .089 ç . 68 61 . 03 1.08 14 892 2.30 E 108878 .77 32 .07 .04 .21 2 1.11 83 31 2.12 .094 10 E 108879 32 48 809 2.49 10 .79 79 . 05 2 1.14 68 28 1.85 . 093 6 745 2.50 E 108680 14 44 6 2 .73 .42 77 . 03 . 19 1 1640 69 19 1.84 .047 5 10 .04 9 27 19 571 2.43 E 108881 14 .70 130 . 69 1.16 05 60 31 1.39 .094 652 2.36 £ 108882 43 ĥ 20 2.50 .069 53 .03 . 6 1 .03 6 8846 57 .49 29 31 730 4.50 5 E 108883 28 1.2 1 28 2 1.13 .05 29 1.41 12 .76 104 .07 642 1.44 . 954 E 108884 16 23 1.24 .087 16 .78 67 .05 2 1.37 . 05 49 730 2.18 5 ND E 108885 36 6 26 1.67 Ģ .61 116 .08 1.15 .04 .24 100 . £85 € 108886 48 £ 781 2 35 ND 62 26 1.42 .088 6 1.2 . 62 116 . 38 .99 . 05 639 2.31 E 108887 .94 .093 .67 163 . 11 2 1.10 ß 50 £ 837 1.25 E 108386 2 .98 .06 31 10 .60 143 .10 607 2.23 5 NO 62 1.03 .091 8 E 108889 . 99 £3 27 1.93 .091 .65 94 .05 . 64 724 2.37 £ 108890 43 1.27 .091 .62 162 .10 2 1.07 87 8 10 E 108891 48 6 ó 683 2.31 ND 31 1.59 .085 141 . 39 1.11 .06 656 2.33 6.2 11 . 6 ? E 103892 2 .13 . 6 🗓 .53 .014 10 .10 . 5 .01 E 108893 10 198 . 59 17 1.28 4 1.11 .05 .089 6 11 . 65 161 .10 585 1.15 ND 1 90 E 168894 .62 79 .36 2 .99 .06 .15 105 21 3.35 . 689 10 11 5 E 108895 36 1 1000 2.10 .73 2 1.67 . 05 11 139 . 69 47 688 2.41 2 5 ND 89 1 28 1.54 .090 6 £ 108896 8 .53 84 . 03 2 .79 . û3 52 1.97 .075 9 636 1.69 ND 17 E 108897 109 57 .01 2 .83 .03 . 13 1 1350 16 2.55 .073 £30 1.69 84 £ 108898 17 3.39 .087 5 ٥ . 69 71 . 04 2 1.09 . 03 99 13 5 5 926 2.10 - 3 ND 1 E 108399 BC 21 3.40 .089 8 .66 66 .04 3 1.01 .03 ND 931 2.27 E 108900 65 2 .69 . 04 .14 63 19 3.66 .084 . 44 703 1.83 2 ХD E 108901 7 24 24 2.96 .086 10 .73 61 . 0.5 1.14 .08 126 E 108902 885 2.44 KD 2 1.25 , û ć . 50 45 1.30 .096 .91 123 . 14 56 14 68 2.80 E 108903 59 32 1.75 .086 .71 143 . 69 2 1.16 .06 ť 729 2.59 ND 81 18 . 1 £ 108904 2 1,03 .04 340 23 2.05 .082 10 . 65 44 . 03 . 0 9 2 77 704 5 KD E 108905 641 42 .5 960 .52 . 95 .05 . 14 1 75 12 2.27 .071 9 56 .01 620 2.26 5 ND 1 E 108906 16 2 31 . 1 94 17 2.06 .043 11 .40 62 .03 60 5 617 1.63 5 ND E 108907 21 .04 . 77 15 2.22 .074 . 46 74 . 05 72 E 108908 11 30 . 1 636 1.84 5 .05 .14 69 .03 4 1.02 803 2.16 5 ND 1 105 19 2.52 .082 6 10 . ó0 E 108909 8 41 .1 ş 2 2 1.02 .06 . 57 126 .09 5 ND 68 26 1.31 .084 10 53 723 2.23 2 E 108910 11 . 1 .08 .65 8.2 .10 3 1.16 5 91 2 21 .93 .082 6 12 6 566 1.84 2 E 108911 11 2 54 . 1 .67 117 .09 3 1.13 .07 .27 72 24 1.51 .086 11 701 2.30 5 ND E 108912 46 6 3 .07 . 09 27 4.10 .096 10 .99 37 . 04 5 1.40 6 121 2

Page 2 CATHEDRAL GOLD CORP. PROJECT 4544 FILE # 88-5548

SAMPLE	Ho PPM	Cu PPM	Pb PPM	2r. P P M	AG PPN	N1 PPN	Co P PM	MT. PPN	ře 3	As P PH	D PPM	Au PPN	Th FPM	£r PPM	Cd PPM	SE PPM	B1 PPM	V PPM	Cà 1	F e	Lá PPM	Cr PPM	₩g	Sá PPM	*:	E PPM	Al %	Na E	ľ.	W EPM	AU* PPB
E 108914 B 108915 E 108916 E 108917 E 108918	11 1 2 1	39 12 13 10	2 3 2 5	27 33 52 44 48	.1 .1 .1 .1	4 3 6 3 5			2.27 1.78 2.02	3 2 2 2 2	6 5 5 5	ND ND ND ND	1 1 1 1	166 73 79 148 132	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	18 18 16	E.14 4.32 1.17 3.40 3.11	.088 .087 .089	6 6 7 8 10	7 13 10 21 8	.51 .56 .60 .56	90 44 79 72 66	.01 .02 .07 .04	5 2	.91 1.19 1.03 1.08 1.24	.03 .01 .05 .04	.16 .11 .16 .18	3 1 1 1	16 2 1 2 3
E 108919 E 108920 E 108921 E 108922 E 108923	1 2 1 2	12 24 12 11 8	2 2 4 3 3	54 54 48 51 43	.1 .1 .1 .1	4 6 4 5 3	6	1034		2 2 2 2 2 2	5 5 5 5	ND ND ND ND	2 1 1 2	225 102 106 112 128	1 1 1 1	2 2 2 2 2	2 2 2 2 2	19 18 25	1.65 2.84 1.47 2.87 4.24	.087 .091 .086 .067	6 7 9 7 7	22 11 26 11 19	.65 .83 .60 .74	105 74 51 79 61	.07 .05 .06 .05	2 2 2	1.22 1.22 1.14 1.11 .97	.04 .04 .05 .07	.20 .16 .11 .18 .14	1 1 1 1	1 2 2 1 2
E 108924 E 108925 E 108926 E 108927 E 108928	1 1 1 1 2	76 10 9 7 8	6 8 3 5 2	66 50 49 20 49	.1 .1 .1 .1	5 6 5 7	3 5 6 3 6	766 517	2.84 1.97 2.34 1.59 2.64	2 2 2 2 2 5	5 5 5 5	HD ND ND ND	1 2 1 3	104 65 89 64 123	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	24 27 14	3.04 1.15 1.90 1.97 1.82	.065 .100 .050	8 9 7 10	11 38 10 47 12	.92 .61 .73 .36	68 245 100 68 107	.05 .11 .08 .01	6 2 3	1.29 1.10 1.16 .83 1.31	.09 .07 .04 .05	.18 .75 .28 .16 .26	1 1 1 1	1 1 2 1
E 108929 E 108930 E 108931 E 108932 E 108933	1 2 4 1 6	15 14 18 20 10	5 2 2 2 2 5	49 45 53 49 24	.1 .1 .3 .1	3 7 5 6 5	7 9 23 7 20	831 693 697	2.51 2.39 3.21 2.51 2.31	3 2 2 3 3	5 5 5 5	ND 2 ND 3	1 1 1 1	158 82 73 110 51	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	27 32 30		.094 .100	9 8 6	19 11 29 10 36	.75 .71 .73 .78 .42	144 94 130 151 35	.08 .07 .11 .09	2 2	1.62 1.41 1.27 1.22 .77	.04 .05 .05 .04	.40 .28 .56 .34 .09	1	330 330 2020 5 2390
E 108934 E 108935 E 108936 E 108937 E 108938	10 1 2 1	17 14 5 6	2 2 2 2 2 2	23 24 39 14 46	.1 .1 .1 .1	6 3 7 4 6	7 3 5 4 6	698 752 655	1.75 1.90 2.03 1.08 2.58	2 2 2 3 2	5 5 5 5 5	ND ND ND ND	1 1 1 1	54 59 84 57 93	1 1 1 1	2 2 4	2 3 2 2 2	20 24 14	2.74 2.89 1.96 2.85 2.10	.103 .099	8 11 11 8 10	10 22 10 18 10	.51 .47 .56 .29	41 53 80 67 98	.01 .01 .04 .01	2 5 2 2	.80 .85 .99 .73	.03 .03 .04 .03	.10 .15 .19 .15 .15	1 1 1 1	405 27 4 :64
E 108939 E 108940 E 108941 E 108942 E 108943	1 1 1 4	33 55 11 1625 16	2 2 5 8 6	29 43 53 45 54	.1 .1 .8	4 6 4 7 4	4 6 6 6	703 673	1.99 1.33 2.46 2.08 2.49	2 4 2 4 2	5 5 5 5 5	ND ND ND KD	1 1 1 1	167 121 116 93 97	1 1 1 1 1	2 2 2 2 2 2	2 2 2 3 2	26 33 26	2.13 1.16	.095 .091 .093 .079	9 7 8 7 9	30 11 26 10 28	.63 .67 .73 .56	44 70 170 149 186	.01 .03 .10 .09	2	.90 1.14 1.23 .94 1.20	.03 .03 .06 .04	.10 .14 .45 .41 .76	11 1 1 1	11 16 1 164 2
E 108944 E 108945 E 108946 E 108947 E 108948	1 2 1 1 66	19 6 7 8 E	8 3 4 3 5	58 8 53 64 31	.1 .2 .1 .1	6 6 5	7 4 7 8	471 798 779	2.65 1.03 2.58 2.64 3.00	5 4 5 4	5 5 5 5	ND ND ND ND	1 1 1 1	96 32 130 73 79	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	7 31 35	1.12	.099 .025 .100 .101	8 4 5 9	11 53 11 32 11	.75 .18 .81 .82 .47	194 19 146 217 87	.10 .01 .07 .12 .03	2 2 2	1.27 .34 1.24 1.32 .81	.05 .02 .04 .06	.74 .04 .33 .91 .21	1	17:0 1 6 24:0
E 109949 STD C/AU-R	1 18	11 61	5 42	52 132	.1 7.0	4 69	7 30	720 1017		2 44	5 21	NE 7	1 37	84 48	1 18	2 20	2 22	31 60		.093 .099	10 39	25 58	.74 .93	160 177	. 09 . 07	; 38	1.13 1. 90	. 04 . 06	.35	: 13	3 520

Page 3 CATHEDRAL GOLD CORP. PROJECT 4544 FILE # 88-5548

FBLIGHES	MS PPN	Cu PPM	Pb PPM	2n PPM	AG PPK	N1 PPM	Cc F PN	Nn PPM	f e	As PPM	U PPM	Au PPM	Th PPH	ST PPM	Cd PPH	Sb PP#	B1 PPM	T PPM	Cá Ž	F %	La P PM	CT PPH	Mg L	Bà PPM	71 %	B FPM	il i	Nis X	Ĭ. Ş	N PPM	Au* PPE
E 108950 E 108951 E 108952 E 108953 E 108954	1 25 8 1	7 5 3 3 8	5 2 2 4 2	54 8 6 32 53	.1 .8 .3 .1	4 7 4 5	7 5 5 1 ?	415 733 1088	2.32 2.46 1.43 2.08 2.63	3 3 4 2 3	5 5 5 5	ND 7 ND ND	1 1 1 1	67 28 45 74 181	1 1 1 1	2 2 2 2 2 2	2 3 2 2	7 7 19	1.25 1.87 3.63 3.51 2.07	.086 .019 .033 .083 .087	7 10 6 8 8	9 4 9 10	.73 .11 .11 .73 .69	256 55 47 40 104	.16 .01 .01 .01	3 2 2	1.13 ,33 ,31 1.06 1.33	.04 .01 .01 .02 .03	.43 .11 .09 .08 .18	1 1 1 1 1	11 5060 1040 11 24
E 108955 E 108956 E 108957 E 108958 E 108959	1 1 1 1	29 10 13 15	3 2 2 4 2	46 47 52 53 46	.1 .1 .1 .1	6 4 5 4 6	5 6 7 7 6	718 755 641	2.11 2.40 2.44 2.37 2.14	3 4 2 2 2	5 5 5 5	ND ND ND ND	1 1 1 1	85 62 84 60 64	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	28 30 34	1.77 1.67 1.71 .57 1.50	.087 .087 .091 .088	8 6 6 6	10 9 9 9	.71 .76 .76 .70	126 114 131 18E 117	.06 .08 .09 .12 .06	4 3 4	1.13 1.09 1.14 1.17 1.02	.03 .04 .04 .06	.19 .30 .34 .78 .30	1 1 1 1 3	3 1 1 2 2
E 106960 E 108961 E 108962 E 108963 E 108964	1 1 1 8 3	11 13 14 10 38	5 3 2 2	49 51 43 19 26	.1 .1 .1 .1	3 5 3 3	6 6 6 6 2	772 721	2.22 2.49 2.34 1.26 1.37	3 2 2 2 2 2	5 5 5 5 5	ND ND ND ND	1 1 1 1	71 103 77 85 124	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	36 25 12	1.42 1.77 2.00 4.92 5.86	.092 .087 .064	7 6 7 7	9 9 7 6	.66 .74 .70 .32 .56	141 117 70 51 62	.06 .04 .01	7 5	1.05 1.15 1.03 1.07 .86	.04 .04 .03 .02 .03	.37 .28 .16 .13 .12	1 1 1 2 2	1 12 1 174 11
E 106965 E 106966 E 108967 E 108969 E 108969	1 1 1 1	20 11 10 90 12	3 2 4 3	49 56 54 49 54	.1 .1 .1 .1	4 5 5 4 5	6 6 6 6	719 675 793	2.42 2.31 2.19 2.50 2.07	3 2 2 3 2	5 5 5 5 5	DN DN CN DN	1 1 1 1 2	147 77 85 82 72	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	27 30 30 26 28	2.28 1.17 .95 2.20 .86	.094 .092 .085 .085	7 6 7 7	10 11 10 9	.72 .59 .61 .72 .61	88 154 179 95 158	.03 .10 .11 .05	4 3 9	1.17 1.12 1.08 1.09 1.04	.03 .05 .05 .05	.17 .35 .43 .23 .40	1 1 1 1	1 1 77 2
E 108570 E 106971 E 108572 E 108973 E 106974	1 1 1 1	12 14 9 11	5 3 2 5 5	48 50 49 49 55	.1 .1 .1 .1	4 4 2 6	5 6 4 5 7	585 969 620	2.05 1.65 2.71 1.89 2.23	2 3 4 2 3	5 5 5 5	DN DN DN DN	1 1 1 1	82 83 109 80 58	1 1 1 1	2 2 2 2 2 2	2 2 2 2	20 26	1.53 1.19 3.08 1.28 .91	.087 .089 .091 .092	8 6 7 6 7	8 1(7 11	.61 .59 .86 .63	79 99 50 91 180	.06 .07 .02 .07	5 3 '10	1.04 .99 1.15 .96 1.12	.04 .04 .14 .04	. 18 . 21 . 11 . 22 . 45	1 1 1 1	: 1 5 : 2
E 106975 E 106976 E 108977 E 108978 E 108979	1 1 1 1	11 11 15 14 23	3 2 2 2 2 3	51 40 55 53 47	.1 .1 .1 .1	5 6 5	6 5 6 7 6	869 672 635	2.29 2.26 2.37 2.22 2.26	2 2 5 2 2	5 5 5 5	DH DH DH DH DH	1 1 1 1	63 71 74 64 72	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	33 32	.78 2.50 1.07 .86 2.04	.087 .086 .093 .086 .083	7 7 7 7 6	10 16 10 10	.62 .60 .66 .62	175 89 177 175 111	.12 .08 .12 .12 .07	7	1.11 .90 1.25 1.09	.01 .03 .06 .06	. 49 . 24 . 48 . 45 . 26	1 1 1 2	2 2 2 2
E 108980 E 108981 E 106982 E 108983 E 108984	1 1 1 8	22 8 11 21 3	2 6 3 2 3	58 57 57 27 26	.1 .1 .1 16.4	3 5 3 12 2	8 7 6 77 4	673	2.52 15.59	2 3 3 6 6	5 5 5 5 5	ND ND ND 69	1 1 1 2	129 66 101 47 127	1 1 1 1	2 2 2 2 2	2 2 2 23 2	29 24 9	.88 2.24 1.85	.113 .096 .096 .036 .036	7 6 7 3	9 10 10 19 7	.82 .70 .78 .21	115 153 62 19 27	.10 .11 .05 .01	ĵ	1.28 1.13 1.18 .38 .57	.05 .05 .03 .02 .03	.27 .41 .12 .08 .06	1 1 1 1 3	4 6 4 77500 1150
E 108385 STD C/AU-R	1 18	8 59	2 42	49 132	.1 7.0	5 66	5	819 1023	2.21	4	5 22	GN B	: 37	67 48	1 19	2 16	2 23	22 60	2.03 .49	.087	7 39	10 56	. 61 . 96	57 17 4	. 05 . 07	4 38	.91 2.03	. 03 . 06	.16	1 12	280 470

Page 4 CATHEDRAL GOLD CORP. PROJECT 4544 FILE # 88-5548

SAMFLE!	NS PPM	Cu PPM	Pb P pn	ZT. PPN	AG PPM	N1 PPM	CC PPM	Mn PPM	fe }	As PPM	U PPM	AU PPM	Th PPM	ST PPM	Cđ P PK	SE PPM	Bi PPM	V PPN	Cà €	P	Lá PPN	CT PPM	Ng L	Bà PPM	T1 %	E PP n	Al %	Ná Z	K %	N PPH	PPE
E 108986 E 108987 E 108986 E 108989	2 1 9	25 15 11 13	2 2 2 2	50 51 44 48	.1 .1 .1	6 4	6 6 7 6	746 651 594	2.34 2.89 2.36	4 3 2 2	5 5 5 5	ND ND ND	1 1 1	106 105 59 73	1 1 1	2 2 2 2	2 2 2 2	26 22 23	1.24 1.67 1.45 1.40	.076 .082 .076 .082	6 5 7 5	7 25 8 21	.64 .68 .54 .64	85 146 144 123 52	.07 .08 .07 .07	2 2 1 4 2	.99 1.01 .89 .93	.04 .04 .04 .03	.18 .37 .32 .28	1 1 1 1	11 11 58 2 48
E 108990	3	7	2	41 36	.1	5	5		2.06	2	5	nd nd	1	84 74	1	3	2	16	3.23 2.90	.083	7	21	.60	47	.01	?	. 8 8	.02	.12	1	1
E 108991 E 108992 E 108993 E 108994	1 8	23 3 14	2 2 2	45 42 52	.1 .1 .1	3	6	1286 1197	2.46 2.35 2.33	3 3 2	5 5 5	ND ND ND	1 1 1	121 84 131	1 1 1	2 2 2	2 3 2	16 18		.072 .056 .076	6 7 8	23 6	. 87 . 96 . 67	41 45 52	.02	2	1.11 1.20 1.05 .74	.01	.10	1 1	13 4
E 108995	i	38	2	2 6 30	.1	4	4	680 736	1.65	2	5	DK GK	2	59 97	1	2	2	15	2.69	.068	12	30	.47	38 46	.01	3	1.04	.02	.09	1	1
E 108997 E 108998	1 2	10 22 38	2 2 2	49 28 55	.1	2 7	6	540 409	1.97 1.26 2.41	4 2 3	5 5 5	ND ND ND	1 3 1	147 49 101	1 1 1	2 2 2	2 2 2	22 12 20	.95 .84 2.64	.066 .041 .084	6 4 8	16 8 18	.55 .33 .76	118 94 68	.08	2	1.03 .61 1.05	.04 .03 .02	.23 .16	1	1 8
E 108999 E 109000	1	8	2	41	.1	5	5	627	1.83	2	5	ND ND	1	72 96	1	2	2		1.63	.059	5	? 25	.50	65 85	.04	2	.73	.02	.13	1	1
C 32001 C 32002 C 32003	1	24 60 9	2	42 49 42	.1	5	6		1.94 1.65 1.71	2	5	ND ND ND	1	84 76 55	1 1	2 2 2	2 2 2		1.58	.063 .067 .073	5 6 6	5 24 7	.60 .52 .55	71 68 94	. 05 . 04 . 06	2 2 2	.66 .74 .61	.02 .03 .03	.14 .13 .19	1 :	11 5 1
C 32004 C 32005	1 15	8	2	44	.1	3	6	653	1.81	2	5 23	ND 8	1 38	70 48	1 18	2	17	15 59	1.58	.065	6 39	25 60	,52 .94	58 174	.05	2 3.5	.81 1.55	.03	.18	1	2 3 535
STD C/AU-R	17	€1	36	133	6.7	6 ĉ	31	1013	4.09	41	13	•	30	10		••	•		-												

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER.

THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

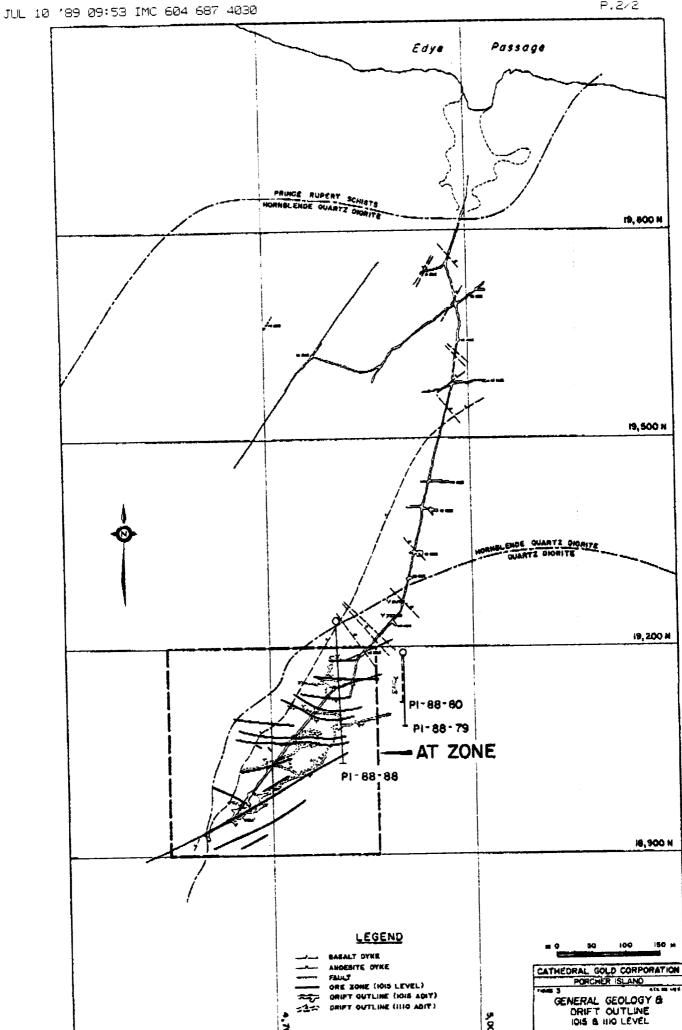
- SAMPLE TYPE: P1-P7 CORE P8 ROCK

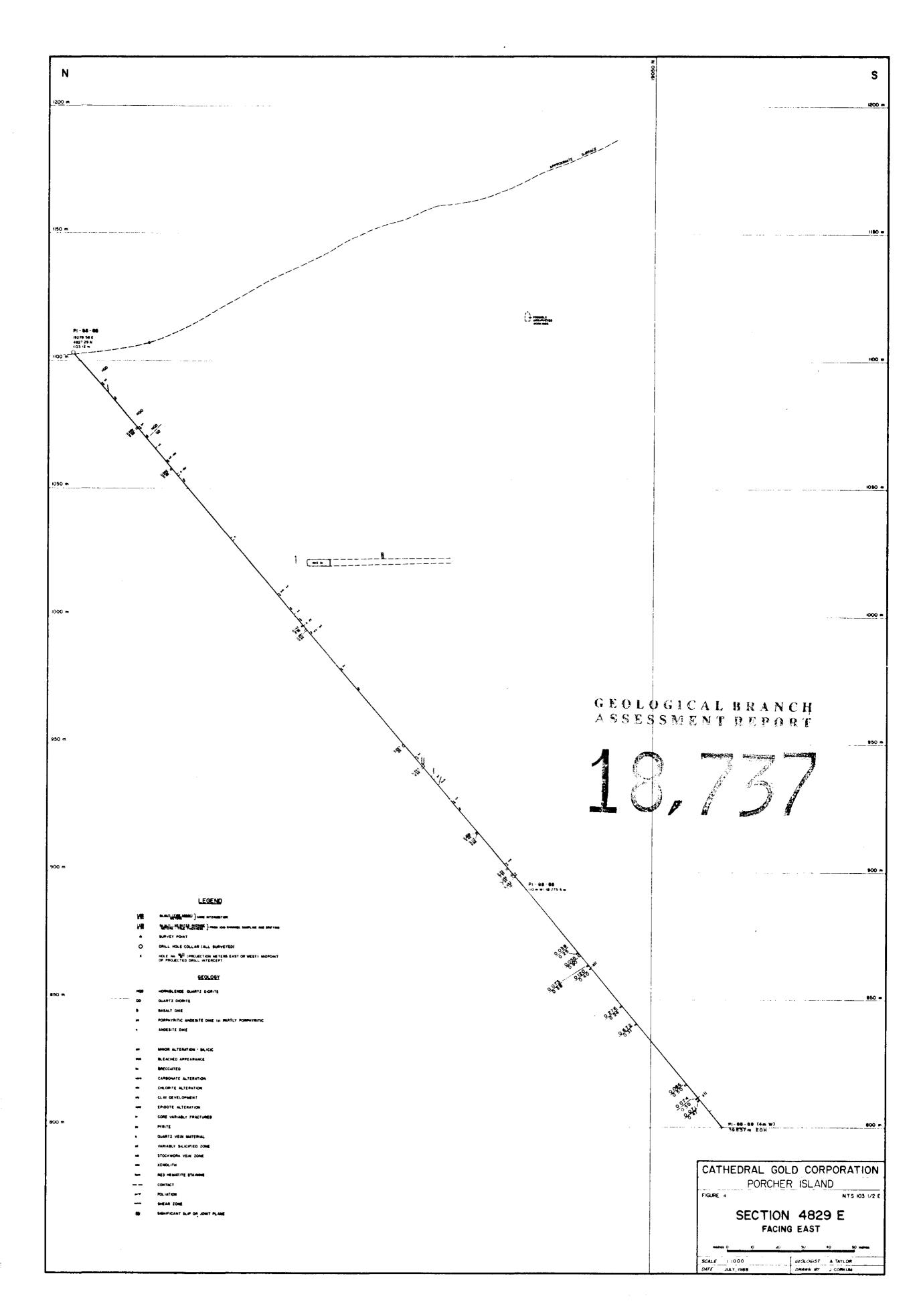
AU* AMALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

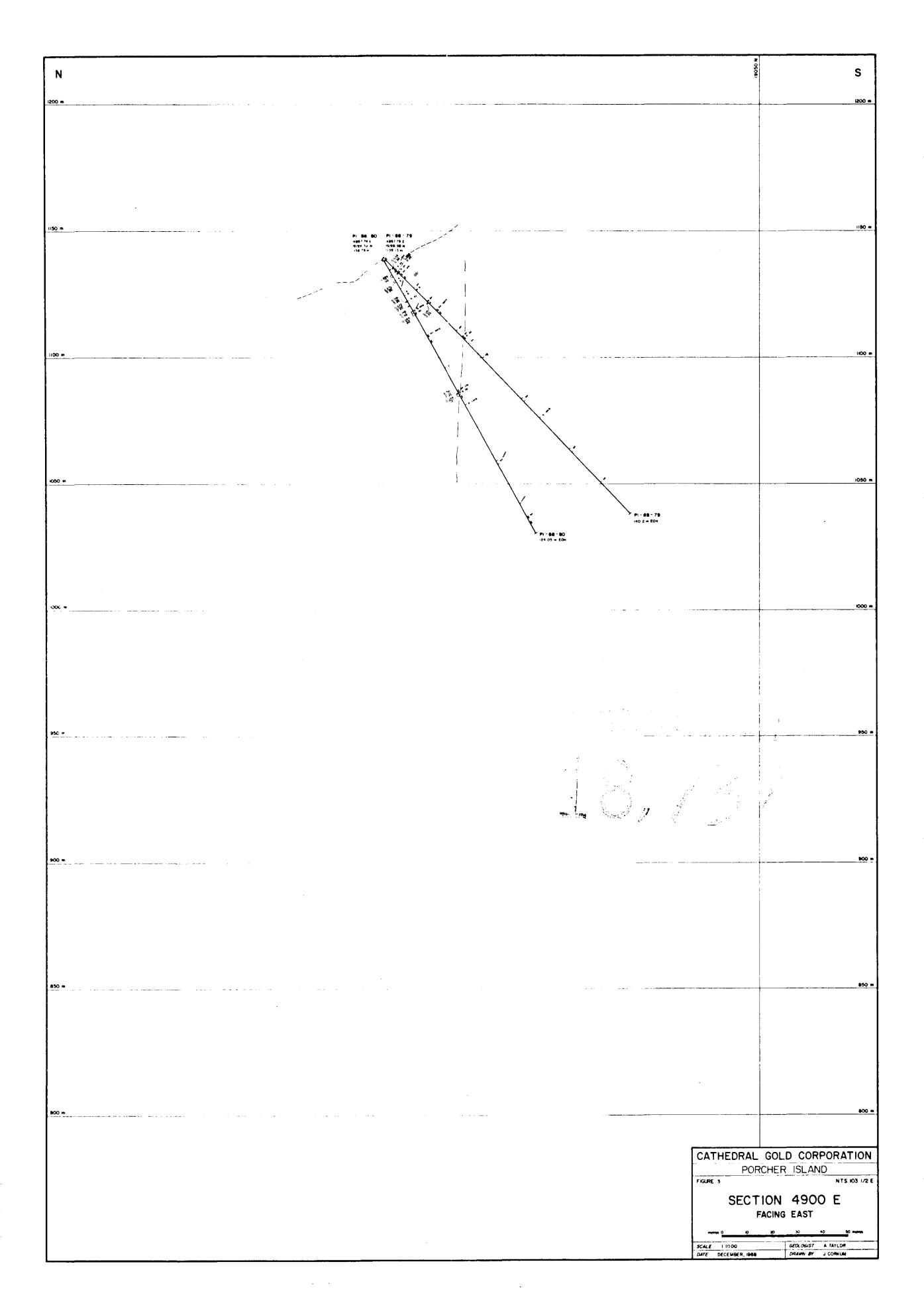
						(:ATH	EDR/	AL G	OLD	COR	P. P	ROJ.	ECT	454	}	riie	E #	88-	001		·u	, .								
SAMPLE#	Mo PPN	Cu PPM	Pb PPN	Zn PPM	Ag P?N	Ni PPM	Co PPM	No PPN	fe 1	As PPM	U PPM	Au PPM	Th PPM	ST PPM	Cđ PPM	Sb PPM	Bi PPM	V PPN	Ca }	P	La PPM	Cr PPM	Ng 3	Ba PPM	Ti 3	B PPM	Al E	Na Ł	1	W PPN	Au* PPB
C 32888 C 32889 C 32890 C 32891 C 32892	1 2 1 1	24 17 25 13	7 5 9 2	41 42 50 50 46	.1 .1 .5 .1	7 11 11 7 5	8 8 10 9	445 627 603	2.10 2.23 2.84 2.72 2.45	2 2 4 2 2	5 5 5 5	ND DH DH DH DH	1 1 1 1	47 66 69 60 70	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	41 45 47 49	.80 .87 1.32 1.30 .97	.080 .078 .079 .078 .077	5 5 6 6	28	.88 .90 1.11 1.13 1.00	195 215 183 190 212	.12 .13 .12 .12 .12	2 2 2	1.22 1.44 1.50 1.47 1.36	.07 .12 .10 .07	.50 .54 .47 .50 .59	1 1 1 1	58 3 690 14 17
C 32893 C 32894 C 32895 C 32896 C 32897	1 1 1 1	8 11 6 17 6	6 2 4 2 8	40 53 46 53 69	. 2 . 1 . 1 . 1	6 7 6 8	8 9 9 10	600 451 627	1.91 2.55 2.14 2.83 3.72	2 2 2 4 2	5 5 5 5	D CH D CH D CH D MD	1 1 2 1 2	49 54 53 79 70	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2		.80 1.30 .93 1.39 2.31	.080 .079 .077 .077	5 5 6 5		.83 1.14 .92 1.14 1.95	166 179 193 224 66	.10 .10 .11 .13	2 5 2	1.21 1.50 1.32 1.66 2.05	.08 .07 .07 .12 .05	.42 .48 .50 .60	1 1 1 1	5 200 6 125 4
C 32898 C 32899 C 32900 C 32901 C 32902	1 1 1 1	9 7 10 8 20	11 9 6 9	60 63 60 65 65	.1 .1 .1 .1	10 11 9 9	12 12	1031 763	3.00 3.34	5 3 5 4 2	5 5 5 5	ND ND ND	1 1 1 1	146 114 114 77 80	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	44 41 38	2.68 3.36 2.03 2.83 3.48	.079 .081 .380 .080	. 6 5 5 5 5	21 . 27 18	1.67 1.69 1.54 1.71 1.67	53 39 44 38 46	.04 .05 .06 .05	3 4 3	1.84 1.83 1.74 1.93 1.89	.03 .04 .04 .04	.11 .08 .07 .09	1 1 1 1	1 1 1 40 87
C 32903 C 32904 C 32905 C 32906 C 32907	1 1 1 1	6 8 23 61	6 2 10 6 7	44 54 62 46 64	.1 .1 .1 .2	10 13 13 8 10	9 10 11 9	781 865	1.68 2.64 3.10 2.16 3.37	2 2 5 2 2	5 5 5 5	ND ND ND ND	1 1 1 1	55 83 85 80 85	1 1 1 1	2 2 2 2 2	2 2 2 2 2	41 43 38	1.20 2.26 2.50 1.53 2.85	.077 .070 .075 .078	4 5 4 5 5	33 43 19	1.09 1.34 1.56 1.01 1.50	62 82 61 119 60	.08 .08 .07 .09	5 2 4	1.26 1.64 1.75 1.30 1.77	.05 .08 .05 .06	.14 .20 .15 .28 .16	1 1 1 1	16 69 5
C 32908 C 32909 C 32910 C 32911 C 32912	1 1 1 1	9 4 9 7 12	5 5 10 5	51 53 50 47 46	.1 .1 .1 .1	10 8 8 8	10 8 10 8 8	1174 663 612	2.95 3.29 2.86 2.43 2.24	2 3 4 2 2	5 5 5 5	ND ND ND ND	1 1 1 2 2	74 107 109 55 63	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2	44	1.85 4.34 1.95 1.10 .84		5 4 6 5 7			121 57 140 297 183	.09 .02 .09 .16	2 2 3	1.59 1.63 1.55 1.50 1.33	.08 .03 .06 .08	.30 .14 .35 .82 .60	1 3 1 1	1 12 1 1
C 32913 C 32914 C 32915 C 32916 C 32917	2 1 1 1	5 12 19 35	8 7 5 6 5	42 49 55 54 47	.1 .1 .9	5 8 5 5	9 9 8 7 7	550		2 5 2 2 2	5 5 5 5 5	ND ND ND ND	1 2 1 1	82 75 102 175 103	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	44 32 21	3.60 1.06 1.60 6.71 3.69	.071 .074 .074 .060 .067	6 9 6 3 5	28	.97 1.00 1.16 1.26 1.01	63 188 79 50 56	.05 .14 .08 .02 .02	3 7 2	1.31 1.46 1.55 1.37 1.37	.08 .09 .08 .04 .05	.16 .57 .18 .13		33 1 1 2030 260
C 32918 C 32919 C 32920 C 32921 C 32922	1 1 1 1 3	151 25 12 33	6 6 5 9	55 55 60 73 43	.1 .3 .1 .1	7 8 8 9	10 8 10 12	967		3 2 3 2 3	5 5 5 5 5	ND ND ND ND	1 1 1 1	82 85 100 100 161	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	33 42 44	1.97 2.85 2.68 3.75 4.69	.071 .069 .066 .065	6 5 6 5	16 15	1.23 1.09 1.32 1.71	76 56 62 49 56	.08 .04 .05 .02	2 2	1.53 1.44 1.63 1.89 1.28	.06 .06 .06 .04	.18 .14 .14 .11 .12	1 1 1 3	310 30 4 44
C 32923 STD C/AU-R	2 19	13	7	45 132	.1 7.2	9 70	9 31	521 1030	2.29 4.20	2 42	5 22	#D	1 39	84 50	1 19	2 19	2 18	40 61	1.09	.070 .096	5 41	16 59	.94 . 9 0	181 182	.12 .07		1.34 2.01	.09 .0 6	. 36 . 14	1 12	1 480

SAMPLE	No PPN	Cu P PN	P P P P P P P P P P P P P P P P P P P	Zn PPN	Ag PPN	Ni PPM	Co PPM	No PPN	fe \$	As PPN	U PPM	Au P PM	7b PPM	Sr PPM	Cd PPN	Sb PPM	Bi PPN	PPM	Ca %	P	La PPN	Cr PPM	Mg 3	Ba PPM	71 \$	B PPM	Al 3	Na %	I }	PPN	Au* PPB
C 32924 C 32925 C 32926 C 32927 C 32928	1 1 1 1 1	9 20 7 88 8	4 3 7 8 4	43 43 47 62 50	.1 .4 .1 .4	7 9 7 11 7	8 7 8 10	644 539 874	2.25 2.12 2.22 3.09 2.63	2 2 2 9 2	5 5 5 5	ND ND ND ND	1 1 1 1	44 70 70 83 55	1 1 1 1	2 2 2 2 2 2	2 2 2 3 2		.68 1.82 .89 2.23 1.20	.065 .049 .068 .067	6 4 6 7 7	44	.94 .89 1.01 1.35 1.12	412 122 247 210 284	.16 .05 .13 .12 .14	2 2 6	1.24 1.17 1.29 1.64 1.39	.07 .05 .06 .08	.72 .20 .47 .34 .55	1 1 2 1	3 560 2 149 6
C 32929 C 32930 C 32931 C 32932 C 32933	2 1 1 1	13 9 50 6 6	2 7 8 7 10	44 48 51 49 54	.1 .1 .2 .1	9 7 6 9	6 9 8 9	574 759 620	2.55	3 2 3 4	5 5 5 5	ND DU DU DU DU	1 1 1 1	53 55 59 64 66	1 1 1 1	2 2 2 2 2	2 2 2 2 2	39 41 40	1.79 .98 1.51 1.11 1.41	.054 .066 .061 .065	4 6 5 5	14 34 26	1.01 1.02 1.09 1.15 1.31	173 258 306 250 229	.09 .14 .14 .13 .13	2 2 5	1.16 1.25 1.40 1.39 1.44	.04 .05 .06 .05	.31 .48 .57 .44 .45	1 1 1 1	33 2 29 1
C 32934 C 32935 C 32936 C 32937 C 32938	6 2 1 1	45 26 35 5	3 4 6 7 8	47 58 61 51 47	.8 .1 .3 .1	5 8 6 11 11	6 10 9 9	808 960 608	2.12 2.97 3.05 2.48 2.44	3 2 2 6 7	5 5 5 5 5	ND ND ND ND	1 1 1 1	73 77 85 70 101	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	40 39 44	2.68 2.15 2.87 1.08 3.35	.047 .069 .064 .065	3 7 5 5	36 20	.98 1.38 1.33 1.10 1.03	60 109 98 216 60	.05 .10 .08 .13 .06	2 2 3	1.11 1.59 1.57 1.37 1.29	.04 .07 .06 .06	.12 .18 .17 .40 .12	1 1 1 1	870 21 250 1 300
C 32939 C 32940 C 32941 C 32942 C 32943	1 1 1 2	124 5 21 16 13	11 6 9 6 5	63 58 42 42 15	.6 .1 .1 .1	11 11 6 6 5	9 5 4		3.00 2.23 1.87 1.38	4 5 3 4 3	5 5 5 5 5	ND ND ND ND	1 1 1 1 1	98 64 65 77 118	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	33 20 14	3.28 1.51 1.72 1.04 4.18	.061 .062 .060 .068 .025	4 3 5 7 3		1.41 1.13 .67 .47 .24	60 92 84 84 21	.05 .09 .05 .07		1.56 1.26 .94 .67	.05 .03 .03 .04 .02	.12 .19 .18 .16	1 1 1 1 2	1100 3 4 1 186
C 32944 C 32945 C 32946 C 32947 C 32948	1 1 2 1	ó 11 41 18 13	5 3 6 5	46 52 57 41 45	.1 .1 .1 .1	10 9 8 5	1	680 1016 1286 615 568	2.53	5 2 2 2 2	5 5 5 5	ND ND ND ND	1 1 1 1	80 85 121 74 60	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	32 24	1.46 2.72 3.09 1.32 .90	.059 .051 .073 .070	5 4 5 7 7	16 47 13 29 17	.87 1.13 .94 .51	73 48 51 122 180	.08 .04 .05 .08	2	1.17 1.36 1.15 .94	.05 .05 .05 .06	.10 .11 .10 .28	1 1 1 1	9 29 61 3 97
C 32949 C 32950 C 32951 C 32952 C 32953	2 1 1 1	11 9 15 7	3 4 6 2 2	39 41 47 44 42	.1 .1 .1	6 7 8 1 6	5 4 6 5	578 570 794		6 3 7 2 3	5 5 5 5 5	ND ND ND ND	1 1 1 1	77 67 70 70 62	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	20 23 20	1.74 1.06 .81 1.68 1.52	.066 .067 .070 .070	6 7 8 6	10 9 38 15 9	.48 .50 .54 .58 .52	137 161 196 155 85	.08 .10 .12 .09	3 3 2 5	.84 .94 1.03 .92 .85	.05 .05 .06 .04	.34 .41 .46 .40	1 2 1 1	10 28 2 1
C 32954 C 32955 C 32956 C 32957 C 32958	4 78 1 1	12 27 9 15 56	2 2 5 8	36 31 46 46 61	.1 .2 .1 .1	5 6 3 5 5	4 4 5 5 8	568 869	1.89 1.55 1.52 2.01 3.23	2 4 2 2 6	5 5 5 5 5	ND ND ND ND	1 1 1 1	87 154 100 104 67	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	14 16 20	2.63 2.27 1.15 2.36 1.40	.069 .067 .068 .066	6 8 7 7 7	10 30 20 9 32	.49 .42 .51 .67	72 90 145 115 244	.05 .04 .08 .06	2	.89 1.03 .97 1.00 1.46	.05 .04 .04 .04	.16 .19 .30 .31	1 1 1 1	107 5 55 2
C 32959 STD C/AU-R	1 19	8 62	5 42	51 132	.1 7.3	4 72		616 1038	1.92 4.19	2 44	5 21	ND 8	1 39	44 51	1 17	2 1 6	2 21	26 58	.51 .49	.064 .099	7 41	7 5 9	.52 .97	211 179	.12	4 38	.95 1. 9 7	. 05 . 06	.56 .14	1 11	1 505

SAMPLE#	No PPN	Cu PPN	Pb PPN	Zn PPN	Ag PPM	N1 PPN	Cc PPN	No PPN	Fe 1	As PPH	U PPM	Au PPM	Th PPM	Sr PPM	Cd PPM	Sb PPN	Bi PPM	V PPH	Ca	P	La PPM	PPN	Ng }	Ba PPM	71 1	B PPM	Al 3	Na %	I I	PPM	Au* PPB
C 32960 C 32961 C 32962 C 32963 C 32964	2 1 1 2 2	5 16 10 10	2 2 2 2 2 2	18 51 35 50 36	.1 .1 .1 .1	5 6 5 8 5	2 5 4 4 3	710 618	.91 1.88 1.50 1.97 1.47	3 2 2 4 3	5 5 5 5	ND ND ND ND	1 1 1 1	346 59 81 61 77	1 1 1 1	2 2 2 2 2	1 3 2 2 5	28	6.93 .59 1.87 .56 2.35	.024 .055 .055 .058 .049	3 6 6 5	3 10 10 11 9	.27 .54 .44 .52 .45	60 211 119 214 85	.02 .11 .05 .12 .04	2 3 2 3 2	.39 .96 .84 .99 .72	.03 .06 .06 .08	.13 .51 .25 .51 .18	5 1 2 1 2	122 7 5 2 250
C 32965 C 32966 C 32967 C 32968 C 32969	2 1 1 1 2	10 21 14 7 9	6 2 4 7 2	32 46 44 45 45	.1 .2 .1 .1	6 5 4 5 7	3 5 4 3 5	616 604 1812	1.50 1.80 1.74 1.66 1.74	3 4 2 4 2	5 5 5 5	ND ND ND ND	1 1 1 1	171 79 73 165 65	1 1 1 1	2 2 2 2 2	3 3 2 2	20 20	4.52 1.31 1.17 4.63 .72	.049 .056 .053 .039 .054	11 6 6 3 7	11 11 10 11 12	. \$0 . 53 . 52 . 78 . 51	120 142 140 65 199	.03 .08 .07 .03	2 2 2 2 2	1.07 .93 .88 .82 .96	.04 .06 .06 .03	.24 .34 .31 .14 .47	5 1 1 5 1	3 205 37 128 6
C 32976 C 32971 C 32972 C 32973 C 32974	1 1 1 1	19 10 10 8 23	8 6 3 2 3	44 48 46 46 41	.1 .1 .1 .1	6 7 5 4	4 5 5 4 4	553 547 514	1.69 1.63 1.62 1.57 1.53	2 2 2 2 2 2	5 5 5 5 5	ND ND ND ND	1 1 1 1	110 81 59 50 75	1 1 1 1	2 2 2 2 2 2	3 2 2 2 2 2	21 20 20	2.35 .95 .99 .70 1.56	.052 .056 .057 .056 .053	6 7 6 6	11 11 9 9	.50 .53 .53 .52 .50	99 175 157 173 98	.05 .10 .09 .09	2 4 6 2 5	.86 .91 .88 .83 .78	.07 .05 .05 .04	.18 .41 .37 .40 .20	1 1 1 1	11 15 12 1 35
2 32975 C 32976 C 32977 C 32978 C 32979	1 2 2 1 64	15 9 8 12	4 5 3 5 2	42 45 40 38 37	.1 .1 .1 .1	4 5 6 4 5	4 4 4	691 711 689	1.48 1.56 1.56 1.57 1.34	2 2 4 3 6	5 5 5 5	ND ND ND ND	1 1 1 1	57 63 84 73 92	1 1 1 1	2 2 2 2 2	2 3 2 4 3	17 16 16	1.38 1.53 1.92 1.92 2.79	.054	5 6 6 6 5	9 9 11 10 10	.52 .51 .46 .46 .43	91 110 78 54 53	.05 .06 .04 .03	2 2 3 2 3	.76 .81 .33 .74 .67	.04 .04 .05 .04 .03	.20 .25 .15 .10	1 1 1 1 88	63 18 5 1 93
C 32980 C 32981 C 32982 C 32983 C 32984	36 266 21 5	9 7 11 11 6	2 2 5 4 2	43 33 45 46 41	.1 .8 .2 .1	4 3 6 4 5	4 3 4 4	817	1.42 1.37 1.75 1.76 1.58	2 2 2 2 2 3	5 5 5 5 5	ND ND ND ND	1 1 1 1	71 67 72 52 61	1 1 1 1	2 2 2 2 2	2 2 2 2 2	15 20 23	1.85 2.68 1.26 .91 1.13	.056 .056 .058	6 7 7 6	10 7 10 19	.51 .45 .53 .53	74 54 120 164 105	.05 .02 .07 .10	2 2 2 2 2 2	.78 .70 .96 .91 .89	.04 .03 .05 .04	.15 .12 .24 .38 .22	1 1 1 1	76 680 62 9
C 32985 C 32986 C 32987 C 32988 C 32989	2 2 2 1 2	6 8 7 13 6	2 2 4 5	40 26 50 34 43	.1 .1 .1	5 5 8 4 5	4 3 5 3 5	620 640 579 644 514	1.58 1.36 1.84 1.48 1.61	2 3 6 2 3	5 5 5 5 5	DN DN DN DN DN	2 1 2 1 1	83 73 73 79 65	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	17 13 24 16 22	. 84	.058 .046 .061 .053	7 6 8 7 6	10 10 14 10 9	.45 .34 .56 .46	77 55 183 103 179	.04 .02 .11 .06	2 3 2 2 2	.87 .65 1.09 .76	.05 .06 .06 .05	.15 .12 .44 .22 .45	i 1 1 1	1 193 6 11 1
C 32990 C 32991 C 32992 C 32993 C 32994	3 1 3 1	6 5 12 10 7	4 5 2 2 3	19 40 18 43 42	.1 .1 .2 .1	8 5 8 3 5	2 4 1 4	342 575 452 528 638	.99 1.60 .95 1.45 1.58	2 2 2 2 2 3	5 5 5 5 5	ND ND ND ND	1 1 1 1	36 75 55 71 70	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	7 18	1.55 1.63 .99	.028 .058 .033 .055	1 7 5 6 7	11 10 10 10	.26 .50 .25 .52	43 67 37 135 78	.01 .03 .01 .08	2 2 4 2 2	.47 .89 .46 .86	.03 .05 .04 .04	.09 .12 .08 .28 .13	1 1 1 1	5 1 163 14 9
C 32995 STD C/AU-R	6 18	61 63	4	22 1 32	2.8	7 71	11 31	400 1049	3.34 4.16	4 43	5 20	4 B	1 39	36 52	1 20	2 16	2 17	7 60	1.44	.028 .092	5 4 0	9 64	. 23 . 93	37 180	.01	4	.49 1.96	.03 .06	. 08	1 12	4880 490


SAMPLE	Mo PPM	Cu P PM	Pb PPM	Zn PPN	A.g PPN	Ni PPM	Co PPN	No PPN	Fe	As PPN	U PPM	Au PPM	Tb PM	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V PPM	Ca %	P %	La PPM	Cr PPM	Ng \$	Ba PPM	T1 }	B PPM	Al Ł	Na %	Ĭ.	92M	Au* PPB
C 32996 C 32997 C 32998 C 32999 C 33000	1 2 2 1	26 34 75 84 22	2 2 2 2 2 2	34 38 29 48 27	.1 .1 1.8 .9	4 5 6 4 7	2 3 3 4 3	606 524 645	1.50 1.42 1.43 1.76 1.41	2 2 2 2 2 2	5 5 5 5 5	ND ND ND ND	1 1 1 1	75 73 58 69 61	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	10 7 11	2.47 1.91 1.74 1.79 2.05	.044 .042 .035 .063 .031	6 7 5 3 8	8 8 9 8	.40 .41 .35 .52 .32	56 66 44 62 34	.01 .01 .01 .01	2 2 3 2 2	.83 .88 .72 .97 .58	.06 .06 .07 .07	.09 .11 .08 .09	1 1 1 1	210 44 1740 950 990
E 72001 E 72002 E 72003 E 72004 E 72005	2 1 1 1 2	104 10 19 8	2 2 2 2 5	37 51 50 51 52	.1 .2 .1 .1	6 6 5 4 6	3 4 4 4	654 756 894	1.53 1.69 1.82 1.80 1.60	4 3 6 2 4	5 5 5 5	ND ND ND ND	1 1 1 1	55 78 93 104 168	1 1 1 1	2 2 2 2 2	2 2 2 2 2	17 15 14	1.43	.035 .067 .075 .062	4 5 4 5 6	9 9 11 22 12	.39 .54 .56 .57	56 138 104 78 186	.01 .06 .04 .03	2 2	.81 1.00 1.22 1.13 1.23	.06 .07 .12 .10	.08 .19 .15 .11	1 1 1 1 1	330 26 25 5
E 72008 E 72007 E 72008 B 72009 E 72010	2 1 1 1	6 9 8 7 9	2 3 2 2 2	47 47 56 53 46	.1 .1 .1 .1	6 4 5 6 5	4 5 5 5 4	665 661 602	1.91 1.74 2.03 1.77 1.27	3 3 2 4 3	5 5 5 5	ND ND ND ND	1 1 1 1	355 202 77 73 147	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	16 26 21	1.66 2.02 .87 .89 1.60	.052 .053 .058 .069 .064	7 8 6 6	3 25 8 8	.49 .48 .59 .56	218 144 232 219 132	.07 .04 .11 .10 .05	2 3 2	1.32 1.23 1.21 1.06 1.10	.05 .07 .06 .06	.36 .21 .50 .46 .21	1 1 1 1	1 15 1 9
E 72011 E 72012 B 72013 E 72014 E 72015	2 2 2	11 10 6 24	2 2 4 2	47 47 54 27 48	.1 .8 .1	5 5 7 4 5	4 4 5 2	837 532 779	1.63 1.74 1.46 1.40 1.42	3 2 5 2 4	5 5 5 7 5	ND ND ND NC ND	i 1 I 1	91 89 75 71 64	1 1 1 1	2 2 3 2 2	2 2 2 2 2 2	14 13	1.83 2.27 .93 2.50 .96	.071 .073	5 5 6 5	9 9 12 9	. 19 . 55 . 58 . 35 . 52	92 80 109 62 104	.04 .03 .06 .02 .06	2 6	.96 1.06 1.19 .83 1.07	.06 .09 .11 .11	.13 .12 .14 .10 .15	1 1 2 1 1	; 61 I 210 1
2 72015 B 72017 E 72018 B 72019 E 72020	2 1 1 2	4 14 5 9	2 5 2 4	26 52 50 50 30	.1 .1 .1 .1 .1	5 6 4 6	3 5 5 4 3	572 517 551	1.22 1.84 1.72 1.66 1.71	3 4 2 3 6	5 5 5 5	ND ND ND ND ND	1 1 1 1	99 78 63 93	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	22 22 18	3.26 .95 .58 1.06 3.47	.072 .063 .070	5 5 6 7	10 11 17 12 28	.36 .57 .51 .51	87 224 206 193 93	.02 .11 .10 .09	2 4 2	.98 1.26 1.02 1.16 1.12	.12 .12 .05 .11 .20	.14 .43 .41 .32 .17	1 1 1 1	1 1 1 3 1
E 72021 E 72022 E 72023 E 72024 E 72025	1 1 1 2	5 2 10 6	5 2 2 3 7	49 51 50 51 34	.3 .2 .1 .1	7 4 4 5	5 2 3 5	516 1166 1007 523 293		3 3 2 2 4	5 5 5 5 5	ND ND ND ND	2 1 1 2 1	69 105 105 57 83	1 1 1 1	2 2 2 2 2 2	2 2 5 2 2			.068 .072 .080 .064	6 5 6 5	11 11 11 24 6	.50 .66 .67 .52	243 59 78 226 57	.11 .03 .04 .11	4 2	1.12 1.25 1.28 1.07	.09 .15 .14 .08	.40 .10 .15 .44	1 1 1 1	1 1 1 1
E 72026 E 72027 E 72028 E 72029 E 72030	1 1 1 2	7 14 22 10 8	2 2 4 4 2	51 43 48 58 53	.3 .1 .1	5 5 4 8	5 4 5 6 5	774 690 645	1.73 1.59 1.79 2.02 2.06	3 2 2 4 2	7 5 5 5 5	ND ND ND ND	2 1 1 1	61 260 151 59 66	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	22 13 16 25 27	.62 2.46 1.77 .75	.063 .063 .061 .070	5 6 7 6	26 7 31 11 31	.50 .44 .49 .59	227 112 156 243 267	.10 .02 .04 .11	3 2 3	1.04 1.07 1.11 1.15 1.22	.09 .06 .08 .08	.43 .16 .24 .52 .58	1 1 1 1	1 141 115 1
E 72031 STD C/AU	1	45 58	4 39	48 132	1.0	5 68	4 28		1.89	3 40	5 22	ND 6	2 38	63 4 7	1 17	2 18	2 19	18 57	1.65	.070 .086	5 39	9 55	.50 .90	148 176	.06 .06	3 37	.96 1.85	.07 .06	.27 .13		1250 480


								_																	_			N -	,	¥	Au *
SAMPLE	No PPM	Cu PPK	Pb PPM	Zn PPM	Ag PPN	N1 PPM	Co PPM	No PPM	Fe }	As PPM	U PPM	Au P PN	Th PPM	Sr PPM	Cđ PPM	SD PPM	B1 PPH	V PPM	Ca 1	P	ia PP M	Cr P PN	Ng L	Ba PPM	71	B PPN	Al \$	Na Z	1	PPM	PPB
E 72032 E 72033 E 72034 E 72035 E 72036	1 1 1 1	8 9 18 10 8	3 6 2 4 7	43 51 27 45 42	. 2 . 2 . 4 . 1	4 4 2 4 3	5 5 3 4 5	575 755 704	1.62 1.68 1.23 1.55 1.58	2 3 2 2 2	5 5 5 5 5	ND ND ND ND	2 2 2 2 2	98 70 72 85 83	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	22 8 11	1.11 .88 2.77 1.93 1.91	.072 .073 .063	7 8 10 9 7	8 8 5 9 7	.52 .57 .38 .47 .49	201 191 59 76 72	.10 .09 .01 .02 .02	5 9	1.03 1.03 .78 1.05 .98	.07 .05 .03 .05	.44 .41 .14 .13 .12	1 1 1 I	16 12 269 19 13
B 72037 B 72038 B 72039 E 72040 B 72041	1 16 1 1	9 6 9 9	2 4 7 4 6	45 26 51 50 45	.1 3.1 .2 .2	4 3 4 4 5	5 4 5 5 5	2388 584 521	1.46 1.93 1.50 1.42 1.46	2 5 2 2 2	5 5 5 5	ND 6 ND ND	1 1 2 2 1	80 150 90 85 72	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	7 18 18	1.43 6.91 1.13 .99 1.87	.058	7 8 8 8	9 6 9 9	.50 .60 .55 .52 .49	79 61 188 174 93	.04 .01 .07 .08	9	.94 .77 1.13 1.07 .93	.05 .03 .05 .06	.13 .12 .35 .33 .15	1 5 1 1	10 8350 23 43 286
E 72042 B 72043 E 72044 E 72045 E 72046	1 1 1 1	8 11 8	11 8 4 7 2	50 51 35 48 52	.3 .2 .3 .3	5 6 3 4	5 5 5 5	583 757 601	1.65 1.68 1.41 1.46 1.72	2 3 2 2 2	5 5 5 5	ND ND ND ND	2 2 2 2 1	89 81 76 94 89	1 1 1 1	2 2 2 2 2 3	2 2 2 2 2	22 8 13	1.22 .86 2.53 1.66 1.02	.068 .068 .070 .066	9 9 9 9	3 9 .7 8 8	.55 .56 .40 .50	197 220 95 117 218	.08 .10 .01 .03	12 4 12	1.23 1.12 .82 1.95 1.11	.04 .06 .03 .04	.45 .43 .19 .19 .50	1 1 1 1	8 13 250 20 1
E 72047 E 72048 E 72049 E 72050 E 72051	1 1 1 1	7 5 11 6 7	9 3 4 4 8	44 47 43 51 42	.1 .1 .3 .1	4 5 3 4	6 5 5 5	462 866 538	1.52 1.38 1.48 1.51	4 2 2 2 2 4	5 5 5 5	ND ND ND ND	1 2 1 1	93 83 76 66 84	1 1 1 1	2 2 2 2 2 2	2 2 4 2 2	18 11 18	1.43 .75 2.49 .88 2.73	.065	3 8 7 7 6	8 9 7 7	.49 .51 .50 .52 .46	154 206 94 179 73	.07 .10 .05 .09		1.06 1.02 .34 .96 .36	.04 .06 .04 .05	.40 .40 .17 .36 .15	1 1 2 1 1	1 2 580 1 114
E 72052 B 72053 E 72054 B 72055 E 72056	1 5 1 1	7 15 9 15	5 6 6 4	48 26 38 39 50	.1 .1 .1 .5	5 4 3 4	5 3 4 4 5	556 1002 700 821 630	1.23	2 2 3 3 2	5 5 5 5	ND ND ND ND	1 1 1 1	79 108 70 81 79	1 1 1 1	2 2 2 2 2 2	3 2 2 2 2	7 11 13	1.10 3.44 2.05 2.40 1.26	.054 .065 .064	8 5 6 6	. 7 6 7 7 8	. 52 . 36 . 44 . 52 . 59	143 54 65 66 170	.07 .01 .02 .02	2 2 2 2 2	1.03 .64 .82 .85	.07 .03 .05 .05	.24 .11 .11 .12 .32	1 1 1 1	11 240 430 720 188
E 72057 E 72058 E 72059 E 72060 E 72061	1 1 1 1	7 10 13 9	3 2 5 7 6	49 49 45 51	.1 .1 .5 .1	4 5 5 4 4	5 5 5 5	692 541	1.55 1.65 1.77 1.64 1.60	5 2 3 2 4	5 5 5 5 5	ND ND ND ND	1 1 1 1	86 69 99 67 75	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	21	.61 .80 1.69 .76 1.35	.065 .066 .071 .067	7 7 1 7	8 8 10 7 9	.55 .55 .53 .56	222 217 175 223 149	.11 .11 .08 .11	8 11 3 3 4	.97 .97 .95 .95	.05 .05 .06 .05	.51 .47 .35 .49 .28	1 1 1 1	6 3 840 72 460
E 72062 E 72063 E 72064 E 72065 E 72066	1 2 1 1	11 7 6 14 7	9 9 5 5	48 51 51 50 51	.2 .2 .1 .1	5 6 4 5	5 5 5 5 5	557	1.72 1.73	4 3 4 4 2	5 5 5 5 5	ND ND ND ND	1 2 1 1	82 67 117 78 78	1 1 1 1	2 2 2 2 2	2 2 2 2 2 3	17 24 20 23 22	1.23 .63 1.20 .74 .70	.069 .069 .071 .071	7 8 7 8 8	9 9 10 9 8	.54 .60 .60 .61	159 239 206 228 233	.08 .13 .10 .11	2 2 2	.95 1.05 1.10 1.03 1.06	.06 .06 .07 .06 .06	.30 .56 .41 .55	1 1 1 1	171 10 196 53 5
E 72067 STD C/AU-R	2 18	69 59	5 42	43 132	5.5 7.1	9 70	5 30	951 1033	1.69 4.14	2 41	5 23	7 8	1 39	94 49	1 19	2 16	4 18	15 61	2.56	.062 .098	7 40	15 57	. 49 . 96	124 181	.05 .07	6 37	.85 1.89	.07 .06	.21	1 12	6840 470


CATHEDRAL GOLD CORP. PROJECT 4544 FILE # 88-6017

SAMPLE#	No PPM	Cu PPN	Pb PPM	Zn PPN	Ag PPN	Ni PPM	Co P PM	Nn PPM	Fe 1	As PPN	U PPM	Au PPM	Th PPM	ST PPN	Cd PPM	Sb PPM	Bi PPM	V PPM	Ca 1	P	La PPN	Cr PPN	Ng 1	Ba PPN	71 \$	B PPM	Al E	N a B	K L	N PPN	Au* PPB
E 72068 E 72069 E 72070 E 72071 E 72072	1 1 1 1	147 6 6 9	1 5 6 4	24 47 47 47 47	1.9 .1 .1 .1	3 4 3 6 5	4 4 4 5	481 444 570	1.22 1.32 1.40 1.51 1.58	3 3 3 5 2	5 5 5 5	AD ND ND ND	I I I I	79 104 55 67 78	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	18 19 16	4.72 1.63 .70 1.34 1.36	.935 .347 .047 .050	4 5 5 4 4	11 6 14 7 15	.26 .51 .55 .55	39 207 219 172 176	.01 .09 .10 .07	7 2 2 2 4	. 40 . 89 . 84 . 86 . 98	.02 .03 .03 .03	. 08 . 50 . 53 . 38 . 43	1 1 1	3860 16 7 47 310
B 72073 B 72074 B 72075 E 72076 B 72077	1 1 1 1	15 9 8 10	7 6 7 4 6	45 50 43 48 46	.1 .1 .2 .1	2 3 6 5 5	4 4 5 4	464 452	1.58 1.64 1.30 1.47 1.56	2 2 4 6	5 5 5 5 5	ND ND ND ND	1 1 1 1	159 56 49 42 50	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	20 15 20	5.16 1.10 .83 .46 1.02	.045 .051 .049 .057	3 4 5 4 5	7 14 7 16 8	.69 .56 .51 .55	89 184 163 215 176	.03 .09 .08 .10	2 5 4 2 2	.77 .78 .76 .81	.02 .03 .04 .04	.21 .44 .39 .52 .41	3 1 1 1	335 27 220 8 380
3 72078 8 72079 8 72080 8 72081 8 72082	1 1 1 1	7 8 11 20 9	4 4 5 2 6	46 41 50 41 46	.1 .2 .1 .7	5 4 3 5	5 4 5 5	590 495 682	1.32 1.30 1.46 1.42 1.34	2 2 2 4 4	5 5 5 5	ND ND ND ND ND	1 1 1 1	53 73 52 74 47	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	17	.74 1.73 .31 2.10 .80	.046 .046 .049 .047	4 4 5 4 5	19 7 18 7 17	.51 .46 .58 .48	138 36 187 62 155	.07 .04 .09 .03	6 2 2 2 4	.75 .69 .83 .66	.03 .03 .04 .03	.30 .19 .42 .12 .33		46 290 86 1050 103
E 72083 E 72084 E 72085 E 72086 E 72087	1 1 1 1	60 13 20 14 3	6 4 2 5	48 41 35 50 51	.2 .3 .7 1.3	5 4 4 2 6	5 4 4	617 1012 1278 2195 540	1.57 1.45 1.81	2 3 2 2 9	5 5 5 5	ND ND ND ND	1 1 1 1	80 106 115 175 60	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	11 7	1.39 3.20 4.52 6.70 .95	.049 .045 .046 .040 .049	5 3 3 5	9 19 8 16 9	.56 .48 .39 .67	135 61 49 47 157	.07 .02 .01 .01	2 2 2 3 2	.86 .76 .62 .83	.05 .04 .33 .04	.27 .11 .09 .09	1 3 4	215 540 1220 2110 11
E 72088 E 72089 E 72090 E 72091 E 72092	1 1 1 1 1 1	5 6 13 39	6 6 4 4	49 53 48 49 52	.1 .1 .2 1.0	3 6 4 6 5	5 5 5 5 5	671 647 580	1.23 1.75 1.72 1.74 1.74	4 8 4 3	5 5 5 5 5	ND ND ND ND	1 1 1 1	44 72 130 63 52	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	17	.55 1.85 1.86 1.46 1.19	.048 .055 .048 .050	5 8 7 6 5	18 9 18 7 27	.49 .57 .52 .53	167 156 173 165 203	.08 .06 .07 .07	3 2 6 2	.78 1.18 .96 .85	.03 .03 .04 .03	.37 .37 .34 .39 .47	1	11 13 123 1290 1990
E 72093 E 72094 E 72095 E 72096 E 72097	1 1 1 9 1		6 5 6 4	40 45 54 19 55	.8 1.4 .1 3.2	5 2 5 4 5	4 4 5 2 5	608 565 542	1.47 1.65 1.78 1.47	3 2 6 2 4	5 5 5 5 5	ND ND ND 4	1 1 1 1	71 52 48 62 40	1 1 1 1	2 2 2 2 2	2 2 2 2 2	17 23	2.83 1.20 .56 2.40 .48	.045 .047 .047 .055	4 6 6 8 5	16 6 21 5 20	.42 .50 .59 .22	94 166 234 40 234	.03 .08 .11 .01	3 2 2 6 6	.61 .78 .94 .52	.02 .03 .05 .04	.20 .39 .58 .09	1	630 2490 14 4110 7
E 72098 B 72099 E 72100 E 72101 E 72102	1 12 1 1	29 9 8 14 15	2 6 2 4 3	47 41 47 65 57	.8 6.5 .3 .1	5 6 1 6 2	6 9 5 7 6	581 578 692	1.81 2.55 1.57 1.95 2.17	2 6 2 7 2	5 5 5 5 5	ND 7 ND ND	1 1 1 1	60 68 47 39 52	1 1 1 1	2 2 2 2 2	2 2 2 2 2	15 18 32	1.75 1.50 1.11 .74 1.72	.052 .042 .049 .079 .067	5 4 5 4 5	9 8 19 10 18	.53 .48 .52 .86 .67	143 100 168 233 163	.07 .06 .08 .13	5 2 4 2 2	.75 .79 .81 1.11 .92	.03 .04 .04 .05	.31 .26 .42 .65 .46	1 1 1	960 9450 355 25 320
E 72103 STD C/AU-R	1 18	6 61	5 43	53 133	.1 7.0	6 69		507 1020		2 42	5 22	ND 7	1 38	49 50	1 19	2 18	2 20	22 61	. 65 . 49	.053 .097	6 41	9 57	.58 .94	206 181	.11	2 3 6	.95 1.91	. 05 . 06	.51 .14	1 12	14 520

SAMPLES	No PPN	Cu PPM	Pb PPM	Zn PPM	PPM Ag	N1 PPM	Co P PN	Mn PPM	Fe 1	As PPM	U PPM	Au PPM	Th PPM	Sr PPM	Cd PPN	Sb PPN	B1 PPM	V PPN	Ca %	P	La PPM	CT PPN	¥.	Ba PPM	T1	B PP n	Al 3	Na 3	K	PPM	Au* PPB
			_			•	,	502	1.43	,	,	ND	,	54	1	2	2	15	1.06	.050	5	5	. 44	148	.07	2	.75	.03	. 26	1	440
E 72104	1	6	2	44			11	502	3.09	4	,	19	1	62	i	2	7	7	2.41	.042	6	5	.40	53	.01	3	. 68	.02	.12	1.7	23040
B 72105	2	38	2	39	12.7	•	12	631		1	,	ND	i	90	i	2	2	15	.92	. 052	7	8	.46	153	.07	3	.86	.04	. 29	1	67
E 72106	1	5	2	48	.1	4	•	450	1.30	3	,	ND	1	90	i	,	2	16	3.05	.047	5	5	.45	137	. 07	2	. 76	.03	. 32	1	2940
E 72107	4	26	2	45	2.1	1		769	1.73	3	J	MD	;	87	i	;	2		2.92		4	4	. 49	92	. 05	2	. 73	. 03	. 18	1	600
B 72108	1	19	3	41	. 3	1	s	990	1.61		,	RU	•	• ,	•	•	•	•••	•												
								536	1 10	,	2	ND	1	56	1	2	2	14	1.00	.055	5	6	. 52	115	. 07	2	.80	.03	. 23	1	63
E 72109	i	9	2	49	.1		•	526	1.38	4		ND	1	67	i	,	2		2.06	.053	5	5	.41	72	. 02	5	. 64	.03	. 12	1	2550
E 72110	2	25	2	37	1.6	2	;	715	1.61	•	,	ND	1	84	i	j	;		1.22	.052	6	6	.50	102	.06	2	. 83	.03	. 16	1	29
B 72111	1	8	2	48	. 1	1	•	560	1.46	7	,		4	77	1	,	,		2.75	.061	6	3	. 33	58	.01	2	.58	.04	. 11	1	2440
B 72112	2	9	2	23	1.5	1	2	769	1.39	4	,	MD	1	53	,	,	,		1.54	.055	5	6	.47	99	.05	3	. 79	.04	.17	1	58
E 72113	1	10	2	44	. 1	3	4	623	1.58	ı	2	ND	ı	33	•	•	•			,	•										
						_					r	N.D.	,	49	1	,	2	23	.59	.053	6	6	.50	197	.11	2	.88	.05	. 45	I	17
B 72114	1	7	2	49	.1	3	4	495	1.64	3		ND	1	48	1	,	•	26	.63	.063	5	1	. 52	212	.12	2	.85	.04	.40	1	1
E 72115	1	11	2	50	. I	3	- 4	514	1.65	•	,	ND	1	124	1	,	ż	12	3.23	.053	5	6	. 46	85	. 05	2	. 77	.03	.16	1	5
E 72116	1	40	2	43	. 1	2	4	862	1.31	ı.	3	ND	,		1	2	1		3.33	.062	ş.	5	. 55	60	.03	2	.86	.04	.13	1	6
E 72117	1	18	3	44	. 1	1	2	985	1.38	3	,	MD	ı	144	1	2	2		2.21	.060	ŕ	5	. 48	81	. 05	2	.90	.06	.15	1	1
E 72118	1	15	2	45	.1	1	4	684	1.46	2	5	MD	ı	136	1	4	4	12	2.21	.000	•	٠		••							
													,	101	1	,	,	14	1.02	.057	6	7	. 45	99	.07	2	. 81	.04	. 16	1	1
B 72119	1	11	2	44	.1	3	4	438	1.25	2	3	ND	1	104	1	2	2		2.28	.054	6	6	.53	44	. 05	1	.87	.04	.08	1	1
£ 72120	1	4	2	45	.1	2	5	600	1.16	2	,	ND	1	97		1	1		_	.056	ς	Š	. 46	94	.06	2	.73	.03	.16	1	1
# 77171	1	q	,	11	. 1	3	5	135	1.21	2	5	ND	I	52	1	4	4	1.3	1.17	. 0 3 0	,	,	. 10	٠,		-					

