()Off Confidential: 90.03.16 District Geologist, Kamloops ASSESSMENT REPORT 18745 MINING DIVISION: Osoyoos PROPERTY: Vault LAT 49 22 00 LONG 119 37 00 LOCATION: 11 5471291 310023 UTM NTS 082E05E CLAIM(S): Vault 1 OPERATOR(S): Can. Nickel AUTHOR(S): Groeneweg, W. REPORT YEAR: 1989, 44 Pages COMMODITIES SEARCHED FOR: Gold, Silver **KEYWORDS:** Eocene, Marron Formation, Marama Formation, White Lake Formation Trachytes, Lahars, Auriferous pyrite WORK Drilling, Geochemical DONE: DIAD 561.8 m 1 hole(s) Map(s) - 4; Scale(s) - 1:1000,1:4000 SAMP 125 sample(s) ;AU,ME RELATED **REPORTS:** 10968,12487,15595,17293 082ESW173 MINFILE:

Sec.

C. B.

LOG NO:	0523	RD.
ACTION:		
FILE NO:		

COLOR ADDRESS				
FI	1	M	E	D

DIAMOND DRILLING REPORT ON THE VAULT 1 CLAIM OSOYOOS MINING DIVISION N.T.S. 82E-5E Latitude: 49°22'N, Longitude: 119°37'W Owned by Canadian Nickel Company Limited (60%) and Seven Mile High Resources Inc. (40%) Operated by Canadian Nickel Company Limited

Work done from December 4, 1988 to December 15, 1988

GEOLOGICAL BRANCH ASSESSMENT REPORT

T KILLING

Drs. Wim Groeneweg Manager of Exploration, B.C. Canadian Nickel Company Limited Vancouver, B.C. May 1989

TABLE OF CONTENTS

Page

1.0	INTR	ODUCTION	1						
	1.1	1.1 Location, Access, Physiography							
	1.2	1							
	1.3	3							
	1.4	December 1988 Drilling Program of the VAULT 1 claim	5						
2.0	REGI	5							
3.0	PROPERTY GEOLOGY								
4.0	DIAM	OND DRILLING	8						
5.0	CONC	LUSIONS	10						
6.0	REFE	RENCES	11						
7.0	STAT	EMENT OF EXPENDITURES	12						
8.0	AUTH	OR'S QUALIFICATIONS	13						

APPENDICES

Appendix A - Borehole logs Appendix B - Analytical Results

FIGURES

Figure 1	Location Map, scale 1:250,000 (after page 1)
Figure 2	Location of claims and baselines, scale 1:10,000 (in pocket)
Figure 3	Geology and Borehole Location Map, scale 1:4,000 (in pocket)
Figure 4a	Section 1100E, scale 1:1,000 (in pocket)
Figure 4b	Section 1100E, scale 1:1,000 (in pocket)

1.0 INTRODUCTION

This report covers work done on the Vault 1 claim of the Vault Group during the period December 4-15, 1988.

1.1 Location, Access, Physiography

N.T.S. sheet: 82E-5E. Latitude: 49°22'N, Longitude: 119°37'W.

The Vault property is located 3 km northwest of Okanagan Falls in the Osoyoos Mining Division of British Columbia (see figure 1). Provincial Highway 97 and White Lake Road, both paved, cross the claim block and give excellent access. Old logging roads exist in the centre part of the property.

The topography consists of rounded hills, some with cliff edges, and shallow basins. Elevations range from 360 m at Skaha Lake to 800 m at the south end of the property. Vegetation cover varies from yellow pine, lodgepole pine and fir to sage brush, grass and prickly-pear cactus.

1.2 Property Definition

The Vault property consists of eighteen mineral claims totalling 79 units (see figure 2) They are:

Claim	Name	Record No.	No. Of Units	Current Expiry Date					
Vault 1		1513	8 12	Mar. $22/98$					
Vault 3		1532	4	May 25/98					
Vault 4		1533	18	May 25/98					
Vault 5		1534	7	May 25/98					
Vault 6		2621	3	June 12/98					
Vault 7		2622	16	June 12/98					
Vault 8		3031	1	Oct. 5/89					
Vault 9		3032	1	Oct. 5/89					
Vault 10		3030	1	Oct. 4/89					
Vault 11		3033	1	Oct. 5/89					
Vault 12		3034	1	Oct. 6/89					
Vault 13		3035	1	Oct. 6/89					
Vault 14	Fraction	3046	1	Nov. 4/89					
Vault 15 I	Fraction	3047	1	Nov. 4/89					
Vault 16	Fraction	3048	1	Nov. 4/89					
Vault 17 I	Fraction	3049	1	Nov. 4/89					
Vault 18	Fraction	3050	1	Nov. 4/89					

The claims are owned by Canadian Nickel Company Limited (60%) and Seven Mile High Resources Inc. (40%). During 1988, Canadian Nickel Company Limited was the operator.

The Vault 2 claim overlies the previously staked Bela claim (Record No. 1522, 1 unit).

1.3 History of the property

The Vault 1 claim was staked by M. Morrison in March, 1982, to cover a gossanous area of silicified breccias that carried anomalous values in gold and silver. Riocanex Inc. optioned the property in May, 1982, and staked the Vault 2-5 During 1982, Riocanex carried out geological and claims. geochemical surveys on parts of the Vault 1 and Vault 2 claims, and drilled four percussion holes totalling 295 m to test the silicified zone. This was followed up in 1983 by four NQWL diamond boreholes totalling 632 m. The location of these holes are indicated on figure 3 as PDH 1 to PDH 4 and 83-1 to 83-4. Mineralization was found to occur in the silicified, quartz-veined and clay-altered Lower Marama Formation. The mineralization consists of pyrite in amounts up to 10%, and low values in gold and silver. The best intersections were in hole 83-2: 2.3 ppm Au and 13.8 ppm Ag from 78 to 80 m and in hole 83-4: 2.6 ppm Au and 6.5 ppm Ag from 66 to 68 m.

Dome Exploration (Canada) Limited optioned the claims in late 1983. In early 1984, Dome conducted 3 line km of IP and mag surveys over the same zone and drilled seven BQWL diamond boreholes totalling 558 m. These holes are indicated on figure 3 as 138-1 to 138-7.

The results were similar to those of Riocanex. The best intersection was in hole 138-5: 2.5 ppm Au and 7 ppm Ag from 47 to 48 m.

During 1985, Seven Mile High Resources Inc. carried out geological and geochemical surveys on the Vault 4 claim and mag and VLF-EM surveys on the Vault 1 and Vault 4 claims. They also drilled eight percussion drill holes totalling 491 m. These holes are indicated on figure 3 as PDH 85-1 to PDH 85-7. None of the holes reached the favourable lower part of the Lower Marama Formation, and no gold or silver values were encountered.

During 1986, Canadian Nickel Company Limited carried out topographic and geological surveys on parts of the Vault 1, Vault 2 and Vault 4 claims and drilled two NQWL diamond boreholes totalling 779 m. Gold-silver mineralization was encountered in the second borehole (BH 38898) at 150S/880E, with the best intersection grading 7.4 g/t Au from 373.1 -374.8 m.

During 1987, the Vault 6 and 7 claims were staked, and Canadian Nickel Company Limited drilled 16 NQWL diamond boreholes totalling 4,664 m. These boreholes are indicated on figure 3 as 38900, 72401-72408 and 72414-72419. Several encouraging intersections were obtained from this drilling including 10.8 g/t Au from 329.60 to 337.96 m (8.36 m) in BH 72408. During 1988, the Vault 8 to 18 claims were staked. Canadian Nickel Company Limited drilled 49 NQWL diamond boreholes for 18,307 m. These boreholes are indicated on figure 3 as 72421-72453 and 72457-72471. As a result of this work, a large auriferous epithermal system was defined over an area of 1,000 m east-west by 500 m north-south. Within this, a central zone with a strike length of 600 m contains ore grade intersections, but no continuity is apparent.

1.4 December 1988 drilling program on the Vault 1 claim.

During the period December 4-15, 1988, one NQWL diamond borehole was drilled under contract by Beaupre Diamond Drilling Ltd. to a depth of 561.8 m. The core is stored on the Vault 1 claim.

2.0 REGIONAL GEOLOGY

The Vault property is located in the north-central part of the White Lake Basin. The Geology of the White Lake Basin is described by B.N. Church (1973) as an up to 4,000 m thick sequence of Early Tertiary (Eocene) sediments and volcanics. He recognized five main stratigraphic sub divisions, three of which are present on the Vault. The sequence has been preserved by downfaulting, possibly as a half graben, with the greatest downward movement near the Okanagan Valley. The sequence is cut by many northerly trending step-faults. The beds generally dip easterly.

3.0 PROPERTY GEOLOGY

The Vault property is underlain by volcanic flows, pyroclastics, and minor sedimentary rocks of Eocene age (see figure 3). The geological environment of this area is considered to be that of Tertiary volcanism resulting in subcircular stratavolcanoes which were modified by cauldron subsidence and resurgence.

The Eocene rocks are divided into three Formations: the older Marron Formation (unit 1) which is unconformably overlain by the Marama Formation (units 2 + 3) and the White Lake Formation (unit 4).

The Marron Formation (unit 1) is made up of extensive flows of porphyritic trachyte consisting of up to 70% groundmass of fine k-spar laths and up to 30% large tabular phenocrysts of k-spar to 3 mm in size. Minor constituents of the trachyte are quartz, hematite, dolomite, sericite and clay resulting from alteration and silicification. The top of the trachyte appears to be weathered and is considered to be an erosional surface.

The Marama Formation is divided into two units, unit 2 consisting of predominantly trachytic pyroclastics with minor sediments and trachyte flows lying unconformably on unit 1 and overlain by unit 3, a very fine grained, slightly porphyritic flow. Unit 2, with a thickness of up to 200 m, represents a series of explosive volcanic events with local sedimentation and thin flows. Rapid facies changes prevent positive correlation of horizons between drill holes but generally the basal part of the unit is a coarse pyroclastic breccia up to 30 m thick. Above the coarse breccia is tuffaceous material that grades upwards into a fine grained tuff. This sequence repeated several times as a result of renewed is explosive activity. The tuffs contain fragments of the underlying porphyritic trachyte and are themselves compositionally a trachyte.

Unit 3 is a very fine grained impermeable flow up to at least 300 m thick. This unit was called a rhyodacite by previous companies but thin sections indicate that the composition is predominantly plagioclase with 15% k-spar, 5% augite and no quartz. This unit presently covers approximately half of the property and originally probably formed an effective caprock over the whole property in the form of a dome.

<u>The White Lake Formation</u> (unit 4) is made up of lahars, volcanic flows and tuffs and sedimentary rocks from mudstones to conglomerates. This unit is only found in the eastern portion of the property and is thought to represent moat in-filling that followed caldera collapse.

A NE trending normal fault cuts through the central part The area east of the fault has of the mapped grid area. dropped down relative to the west block and has also been Epithermal tilted to the southeast. qold-silver mineralization appears to be controlled by a set of east-west trending fractures centred on the grid baseline. A first phase of ascending fluids selectively silicified the matrix of the pyroclastic rocks of unit 2. This was followed by repeated fracturing of the now brittle pyroclastics and emplacement of gold-silver bearing quartz veins and veinlets.

4.0 DIAMOND DRILLING

BH 72471 (see figure 3 for location) was drilled to test the eastern extension of the epithermal gold system.

Hole	Grid <u>Coordinates</u>	Dip	Length	Collar <u>Elevation</u>
72471	1092.7E/90.4S	-90°	561.8 m	455.6 m

The hole penetrated 216.25 m of White Lake Formation, 208.12 m of Upper Marama Formation (from 216.25 to 424.37 m), 126.28 m of Lower Marama Formation (from 424.37 to 550.65 m) and 11.10 m (from 550.65 to 561.75 m) of Marron Formation.

The Lower Marama Formation, consisting of a sequence of mudstones, siltstones, lahars and mafic trachytes, is variously silicified and cut by narrow quartz veins. Samples from this section analyzed anomalous in Au, Ag, As and Mo. The better intersections were as follows:

Intersection (m)	<u>Width (m)</u>	<u>Au (g/t)</u>	<u>Ag (g/t)</u>
474.04-474.94	0.90	9.50	6.6
491.18-492.19 505.48-508.41	2.93	4.40	6.6

Most of the gold is concentrated in the quartz veins and veinlets cutting the silicified Lower Marama rocks.

The location the hole was surveyed in relative to BL/900E. The baseline and the 900E line were surveyed in relative to the LCP of the Vault 1 claim (see figure 2). The survey was carried out by S.J. Buzikievich, B.C. Land Surveyor.

5.0 CONCLUSIONS

Borehole 72471 proved that epithermal gold mineralization is present in quartz veins and veinlets cutting the Lower Marama Formation as far east as the 1100E grid line and that the mineralization is still open to the east. Because of post mineral tilting to the east, the mineralization rakes downwards to the east and drilling east of the 1100E grid line will require boreholes from 600 to 700 m length.

6.0 REFERENCES

- Church, B.N. (1973) Geology of the White Lake Basin. BCDMPR Bulletin 61.
- Groeneweg, W. (1988) Diamond drilling report on the Vault 1 claim, Osoyoos Mining Division. Assessment Report 17293.
- Groeneweg, W. and E.N. Hunter (1987) Geological and diamond drilling report on the Vault 1-5 Claims, Osoyoos Mining Division. Assessment Report 15595.
- Jones, H.M. (1985) A report on the Vault Group of Mineral Claims, Okanagan Falls Area, Osoyoos Mining Division, B.C. Report for Seven Mile High Resources Inc.
- McClintock, J. (1982) Geological, Geochemical and Drilling Report on the Vault Option by Riocanex Inc. Assessment Report 10968.
- McClintock, J. (1983) Vault Option Drilling 1983. Private Report, Riocanex Inc.
- Oddy, R.W. (1984) Diamond Drill Program on the Vault 1-5 Mineral Claims, Okanagan Falls, B.C. Report for Dome Exploration (Canada) Limited. Assessment Report 12487.

7.0 STATEMENT OF EXPENDITURES

<u>B. Callaghan</u> , Contract Geologist 12 days @ 175	2,100
<u>R. Solomon</u> , assistant 12 days @ 90	1,080
<u>P. Solomon</u> , assistant 12 days @ 90	1,080
Accommodation and Food 12 days @ 65	780
<u>Truck Rental</u> 12 days @ 25	300
Diamond Drilling (by Beaupre Diamond Drilling) 561.8 m NQWL	6,195
<u>Analytical</u> (by Acme Analytical Labs) 125 core samples @ 16.75	2,094
Freight, Supplies, etc.	1,100
<u>W. Groeneweg</u> , Manager of Exploration Report writing and supervision 2 days @ 300	600
Total:	\$45,329

8.0 AUTHOR'S QUALIFICATIONS

I, Wim Groeneweg, of the City of Richmond, Province of British Columbia, do hereby certify that:

- 1. I am Manager of Exploration with Canadian Nickel Company Limited with offices at 512-808 Nelson Street, Vancouver, B.C., V6Z 2H2.
- 2. I am a graduate of the University of Leiden, The Netherlands, with a doctorandus degree (Master of Science equivalent) in geology (1966).
- 3. I have practised my profession as geologist since 1966.
- 4. I am a Fellow of the Geological Association of Canada, a member of the Society of Economic Geologists and a member of the Canadian Institute of Mining and Metallurgy.
- 5. I have supervised the work described in this report on behalf of Canadian Nickel Company Limited.

Dated at Vancouver, British Columbia this thirteenth day of May, 1989.

Wim Groeneweg

STATEMENT OF QUALIFICATIONS

I, Brian Callaghan, reside at 240 Stetson Street, Kelowna, British Columbia.

I graduated from Brandon University, Manitoba in 1980 with a Bachelor of Science Degree in Geology.

I have worked continuously as a Geologist since 1980,

I am presently self employed as a Geological Consultant.

I logged core for Canadian Nickel Company Limited on the Vault property near Okanagan Falls B.C. during the 1988 field season.

Brian Ca**)**laghan Signed, Scale January 20, 1989

APPENDIX A

BOREHOLE LOGS

		\bigcirc				FIELD EXPLO	N DIAMOND DR	********* ILL LOG		72471-0 PAGE 1
PROJECT PROPERTY BOREHOLE AZIMUTH DIP DEPTH	: : : : :	Vault 72471-0 .0 -90.0 561.8 M		LATITUDE DEPARTURE ELEVATION BL AZIMUTH GRID BEARING LOGGED BY	: -90.4 : 1092.7 : 455.6 : 90 : : B Callaghan		NTS SHEET # TOWNSHIP PROVINCE COUNTRY CLAIM # GRID NAME CORE SIZE	: 82E-SE : : BC : Canada : Vault 1 : : NQWL	STARTED COMPLETED MEASUREMENTS DRILLED BY DRILL TYPE TEST METHOD ASSAYED FOR	: 4 December 1988 : 14 December 1988 : M : Beaupre Diamond Drillin : Longyear 38 : Acid Etch Test : AU + ACME ICP
COMMENTS	ו: H OLE:r	recovery 100% unles Hole is located 160 Nothing	s noted, cor 10 m e and 25	e stored on pro 2 m s of n w co	perty rner of Vault	1 •	EVIATION RECORDS	*****		
		DEPTH	AZIM DIP	DEPTH	AZIM DIP	DEPTH	AZIM DIP	DEPTH AZ	IN DIP	
		60.96 121.92 182.88	.0 -88.0 .0 -86.0 .0 -87.5	0 243.84 10 304.80 10 365.76	.0 -85.00 .0 -87.00 .0 -88.00	426.72 487.68 548.64	.0 -86.00 .0 -86.00 .0 -86.00		1 1 1	
		***************	*****DESCRIP	I ION *********	***********				*****************************ANALYSES	*****
FROM	TO M					SAMPLE# FROM	TO LENGTH M M	MIN X AU	PPM AG PPM AS PPN BA PPM	MO PPM

.00 4.57 OVERBURDEN

4.57 114.35 LAHAR

White Lake Formation Unit 4, resedimented lahar with locally sandy carbonaceous muddy siliceous matrix, polymictic bleached clasts, angle up to 20 centimetre averaging 1 centimetre, fabric 50 degree, bedding of sandy carbonaceous unit 50 degree local leisigang on some clasts.

FIELD EXPLOR

M

SAMPLE#

FROM

N

TO LENGTH

M

MIN X

AU PPM

AG PPM

FROM TO

M. M

114.35 115.20 SILTSTONE

Gray buff pale brown varved, micro faulted, beds locally carbonaceous, sandy bedding 40 degree, no silicification

115.20 115.96 MUDSTONE

Black carbonaceous with hematitized bleached angle clasts, no silicification, more epiclastic down hole.

115.96 165.43 LAHAR

- 115.96 118.22 Clast supported well sorted, clasts bleached with embayments, matrix black siliceous.
- 118.22 130.79 Highly siliceous, bleached lahar, matrix and clasts buff colour, weakly detextured, no black carbonaceous matrix, minor veinlets hairline to 0.5 centimetre with hematitic black siliceous material.
- 130.79 165.43 As at 4.75 metre with interbedded sandstone siltstone, bedding 50 degree.

165.43 167.03 SANDSTONE

Coarse grained buff pale brown, locally fragmental bedding 50 degree to core axis, weak to moderate silicification. As at 4.57 metre.

178.98 179.34 FAULT

Gray pale brown fault gouge, no silicification, both

72471-0 PAGE 2

72471-0

2

PAGE

AS PPM BA PPN NO PPM

то

M

LENGTH

M

MIN X

AU PPM

SAMPLE#

FROM

M

*********************DESCRIPTION*****************************

FROM TO

М

H

contact 40 degree to core axis.

179.34 184.90 SILTSTONE

Varved carbonaceous locally micro faulted, bedding 40 degree.

184.90 188.47 MUDSTONE

Black carbonaceous weakly silicified, rare carbonate veining along beds.

188.47 210.89 LAHAR

Muddy carbonaceous matrix with polymictic clasts up to 20 centimetre becoming moderately siliceous with smaller clasts down hole.

210.89 216.25 MUDSTONE

216.25 424.37 DACITE

Black carbonaceous, variably moder

moderately to highly FX411141 423.35 424.37 1.02

.001 .1 55 76

silicified, locally gray with sandy siltstone and lahar 216.25 422.75 Pale green gray variably moderately silicified with rare distention fractures brecciated with white quartz carbonate flooding up to 4 centimetre at 223.42 metre.

422.75 424.37 Chloritic, brecciated, no silicification, core blockey.

72471-0 PAGE 3

4

72471-0

3

PAGE

AG PPM AS PPM BA PPM MO PPM

		FIELD EXPLOR		ED*****	RILL LOG						7247 PAGE
	**********************DESCRIPTION************************************						******	******	*ANALYSES	******	*****
FROM TO		SAMPLE# FROM M	TO M	LENGTH M	MIN X	AU PPM	AG PPH	AS PPM	BA PPH	NO PPM	
424.37 425.5	8 LAHAR										
	Muddy highly altered with locally chlorite altered volcanic clasts and siliceous mudstone clasts in gray brown silty matrix with local pyrite replacement bedding 50 degree.	FX411142 424.37	425.58	1.21		.001	.1	81	26	•	
425.58 428.7	0 MUDSTONE										
	425.58 426.92 Locally weakly silicified, anthracitic, locally fragmental with pyrite cores up to 5 centimetre, pyrite also syngenetic up	FX411143 425.58 FX411144 426.92	426.92 428.70	1.34 1.78		.001 .001	.2 .1	347 326	15 12	5 63	
	to 5%, more siliceous at lower contact 426.92 428.70 as above, but locally moderately to bighty silicified with								ч		
	insitu auto brecciation possibly weak damming front bedding 50 degree.				· .	·					ени 1910 - Р. -
428.70 431.7	O SILTSTONE										
	2% Locally massive fine grained syngenetic pyrite. 428.70 429.77 Gray carbonaceous highly siliceous, locally sandy with 3% syngenetic pyrite bedding 50 degree, fracture surfaces	FX411145 428.70 FX411146 429.77	429.77 431.70	1.07 1.93	-	.001 .004	.1 .1	420 714	11 9	21 46	
	slickensided. 429.77 431.70 As above, locally carbonaceous, locally fragmental, moderately to highly siliceous with up to.			•							

431.70 434.60 LAHAR

72471-0 PAGE 4

-0

				FIELD	****INC		ED*****	RILL LOG							72471-0 PAGE) 5
	1.1	*****	********DESCRIPTION************************************							******	******	*ANALYSES	******	******	***	
FROM M	TO M			SAMPLE#	FROM M	TO I M	LENGTH M	MIN X	AU PPM	AG PPM	AS PPM	BA PPM	MO PPM			
		431.70 432.66	5 2twd silty, moderate to highly siliceous	FX411147	431.70	432.66	.96		.001	.1	1991	10	85			
			gray buff matrix with brecciated clasts in locally quartz flooded matrix with	FX411148	432.66	434.60	1.94		.001	.1	277	10	33			
			fabric at 50 degree to core axis.													
		432.66 434.60) As above, less fragmental with very minor													
•			pyrite, matrix silty buff gray with													
			irregular pelite clasts locally													
			kaolinized and brecciated.													
434.60	437.9	7 SILTSTONE														
		434.60 435.95	5 Highly siliceous, gray buff, locally	FX411149	434.60	435.95	1.35		.001	.2	248	6	43			
			fragmental, locally with pelitic ,	FX411150	435.95	437.31	1.36		.001	.1	108	2	22			
			disrupted beds at 40 degree to core axis,	FX411151	437.31	437.97	.66		.001	.1	462	38	53			
			bedding at 435.85 metre saprolite to core													
			axis cut by a 2 centimetre pink cherty													
			banded quartz vein with sooty pyrite and													
			molybdenum ? at 30 degree to core axis.													
		435.95 437.31	As above with 40% kaolinized inclusions up													
			to 3 millimetre bedding disrupted at 40													
			degree to core axis, fractures anthracitic.													
		437.31 437.97	As above, but less siliceous, locally													
			sericitized bleached with abundant													
			calcite, core blockey brecciated at lower													
			contact at 40 degree, clasts locally						· .							
			kaolinized.					•								
437.97	439.30	DLAHAR														
		Ztwd Buff b	prown gray, insitu auto brecciated, clasts in	FX411152	437.97	439.30	1.33		.002	1	427	10	155			

sandy carbonaceous matrix, locally moderately siliceous with 2% dusty pyrite, clasts locally highly altered,

 FROM TO H H H H Bedding disrupted at 40 degree. 439.30 439.50 HUGTONE Upper contact 30 degree, highly siliceous possible FX411153 439.30 439.50 .20 daming front. 439.50 441.30 Highly siliceous buff brown grey FX411154 439.50 441.30 1.80 detextured clasts in black locally silty FX411155 4439.50 441.30 1.80 detextured clasts in black locally silty FX411155 4439.60 441.96 .66 politic astrix with 32 dusty pyrite. 441.50 441.50 # slowe, with 32 dusty pyrite. 441.50 441.50 # slowe, with 32 dusty pyrite. 441.50 441.50 # slowe, with slow slowe in the subcement FX411154 439.60 447.31 1.35 matrix with dusty pyrite, no vering, fabric 50 degree to core axis, no vering. 443.34 402.20 2tud locally highly siliceous sity pyrite matrix, locally highly siliceous sity pyrite astrix, locally highly siliceous sity asterial. 451.96 452.64 Grey green fault googe, no silicification FX411152 451.96 452.64 .68 .034 .2 70 44 s 			FIELD EXPLOR	LIMITI	ED******	********* ILL LOG							72471-0 PAGE
 ALL TERMENT AND TO CLENCTH NIN X AU PPN AG PPN AG PPN AG PPN MO PPN A Determine the state of the			Lune Lune	2								- and the second	
FROM TO SAMPLEØ FROM TO LENGTH HIN X AU PPH AG PPH AS PPH BA PPH NO PPH H		**********************DESCRIPTION************************************						*****	*******	*ANALYSES	******	******	***
 н н н н н н н н н н н н н н н н н н н	FROM TO		SAMPLE# FROM	TO I	ENGTH	MIN X	AU PPM	AG PPM	AS PPM	BA PPM	MO PPM		
439.30 439.50 KUDSTONE 439.30 439.50 KUDSTONE 439.50 441.30 Highly siliceous possible FX411153 439.30 439.50 .20 .001 .1 78 4 12 439.50 441.30 Highly siliceous buff brown gray FX411154 439.50 441.30 1.80 .002 .1 215 13 108 detextured cleats in black locally sily FX411155 441.30 441.96 .66 .001 .1 566 72 12 441.50 441.50 kashow, with six dusty pyrite. FX411154 443.66 443.96 2.00 .001 .1 566 72 12 441.50 443.51 Muddy cleats highly altered to chloritic FX411158 443.66 44.73 1.30 .009 .1 637 57 36 amtrix with dusty pyrite, no veining. FX411164 44.31 4.30 1.60 .009 .1 637 57 36 amtrix with dusty pyrite, no veining. FX411164 44.31 4.50 20 .51.96 .015 .1 1.222 80 .22 448.31 450.20 Job Locally instree adjacement FX411164 44.31 4.50 1.76 .013 .1 144 45 18 51.96 452.64 Gray green fault gouge, no silicification FX41162 451.96 452.64 .68 .072 .6 59 53 11 451.96 452.64 Gray green fault gouge, no silicification FX41162 451.96 452.64 .68 .072 .6 59 53 11 451.96 452.64 Gray green fault gouge, no silicification FX41162 451.96 452.64 .68 .072 .6 59 53 11 451.96 452.64 Gray green fault gouge, no silicification FX41162 451.96 452.64 .68 .072 .6 59 53 11 451.96 452.64 Gray green fault gouge, no silicification FX41162 451.96 452.64 .68 .072 .6 59 53 11 451.96 452.64 Gray green fault gouge, no silicification FX41162 451.96 452.64 .68 .072 .6 59 53 11 451.96 452.64 Gr	, M M		M	M	, M -								
 439.30 439.50 NUOSTONE Upper contact 30 degree, highly siliceous possible FX41153 439.30 439.50 .20 .001 .1 78 4 12 439.50 451.96 LAMAR 439.50 451.96 LAMAR 441.30 441.90 siliceous buff brown gray FX411154 439.50 441.30 1.80 .002 .1 215 13 108 detextured clasts in black locally sity FX411154 439.50 441.30 1.80 .001 .1 833 11 386 petite matrix with 5% dusty pyrite empleasament FX411157 443.96 445.96 2.00 .007 .1 1160 .38 66 441.96 448.31 Muddy clasts highly altered to chloritic FX411157 443.96 445.96 2.00 .007 .1 1160 .38 66 441.96 448.31 Muddy clasts highly altered to chloritic FX411158 445.96 42.00 .007 .1 1469 39 38 matrix with dusty pyrite, no veining, FX411160 443.31 430.20 1.89 .011 .1 222 80 22 fabric 50 degree to core axis. FX1119 447.04 43.04 61.96 1.76 .013 .1 144 45 18 448.31 450.20 2twd locally highly siliceous sity pyrite matrix, locally highly siliceous sity pyrite matrix, locally highly siliceous sity or veining. 450.20 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 degree. 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 81.97 451.97 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 81.97 451.97 452.64 Gray green fault gouge, no silicification FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 		bedding disrupted at 40 degree.											
 439.30 439.30 HUDSTONE Upper contact 30 degree, highly siliceous possible FX411153 439.30 439.50 .20 .001 .1 76 4 12 439.50 451.96 LANAR 451.96 452.54 Grey green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 451.96 452.64 Grey green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 451.96 452.64 Grey green fault gouge, no silicification FX411163 452.64 454.62 1.98 .072 .6 59 53 11 													
 439.30 KUSIONE Upper contact 30 degree, highly siliceous possible FX411153 439.30 439.50 .20 .001 .1 78 4 12 439.50 451.96 LANAR 439.50 441.30 Highly siliceous buff brown grey FX411154 439.50 441.30 1.80 .002 .1 215 13 108 detextured clasts in black locally sility FX41155 441.96 443.66 .001 .1 833 11 386 pelitic matrix with 32 dusty pyrite. FX411154 441.96 443.96 2.00 .001 .1 853 11 386 441.96 448.31 Muddy clasts highly altered to choritic FX411188 443.96 2.00 .007 .1 1160 38 66 441.96 448.31 Muddy clasts highly altered to choritic FX411184 459.66 47.31 1.35 .001 .1 439 39 58 and taic in variably moderately siliceous FX411154 443.96 1.76 .011 .1 222 80 22 fabric 50 degree to core axis. FX411164 450.20 41.96 1.76 .011 .1 222 80 22 448.31 450.20 2tud locally highly siliceous sility pyrite altered clasts, no veining. 450.20 2tud locally highly siliceous sility in a to breccited with a holorite altered clasts, no veining. 451.96 454.62 FAULT 	(70 70 /70 5												
Upper contact 30 degree, highly siliceous possible FX411153 439.30 439.50 .20 damming front. 439.50 451.96 LAMAR 439.50 441.30 441.96 siliceous buff brown gray FX411154 439.50 441.30 1.80 detextured clasts in black locally sility FX411155 441.30 441.96 .66 0001 .1 253 11 386 pelific matrix with 5X dusty pyrite. PX411154 443.96 43.96 2.00 .001 .1 566 72 12 441.30 441.96 48 above, with 15X dusty pyrite majorement FX411157 443.96 443.96 2.00 .001 .1 459 39 38 and talc in variably moderately siliceous FX411159 443.1 1.00 .009 .1 637 57 36 matrix with dusty pyrite, no vering, FX411161 445.31 443.1 1.00 .009 .1 637 57 36 fabric 50 degree to core axis. FX411151 443.96 443.01 1.80 0013 .1 144 45 18 448.31 450.20 2tud locally highly siliceous silty pyritic matrix, locally insitu auto brecciated with chlorite altered clasts, with 1 40 degree vein up to 1 centimetre with 1 40 degree lower contact 70 FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistority 30 degree lower contact 70 FX411163 452.66 454.62 1.98 .034 .2 70 44 8 .22741-0	439.30 439.30	MUDSTONE	· · · · · · · · · · · · · · · · · · ·										
439.50 451.96 LANAR 439.50 441.30 Highly siliceous buff brown gray FX411154 439.50 441.30 1.80 .002 .1 215 13 108 detextured clasts in black locally silty FX411155 441.96 43.96 2.00 .001 .1 5566 72 12 441.30 441.96 45 a blove, uith 153 dusty pyrite membersement FX411154 443.96 443.96 2.00 .007 .1 1160 .38 66 441.50 443.1 Muddy clasts highly attered to choritic FX411155 443.96 443.96 2.00 .007 .1 1160 .38 66 441.50 443.1 Muddy clasts highly attered to choritic FX411155 443.96 443.96 2.00 .007 .1 1160 .38 66 441.50 443.1 Muddy clasts highly attered to choritic FX411155 443.9 443.96 1.00 .000 .1 637 57 36 matrix with dust pyrite, no veining, FX411160 443.1 430.20 1.89 .011 .1 222 800 22 FA411161 450.20 451.96 1.76 .013 .1 144 45 18 448.31 450.20 Zbdd locally highly silteous sitty pyritic matrix, locally insitu auto brecciated with chlorite altered clasts, no veining. 450.20 A51.96 As above, with more chloritic clay altered clasts .011 4 40 degree vein up to 1 centilestre with massive pyrite in black matrix material. 451.96 454.62 FAULT 451.96 452.64 Fault .072 .6 59 53 11 451.96 454.62 FAULT 451.96 degree lower contact 70 FX411162 451.96 452.64 .68 .072 .6 59 53 11 achietasity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. .034 .2 70 44 8		Upper contact 30 degree, highly siliceous possible	FX411153 439.30 43	59.50	.20		.001	.1	78	4	12	<u>^</u>	
 439.50 451.96 LAHAR 439.50 441.30 Highly siliceous buff brown gray FX411154 439.50 441.30 1.80 .002 .1 215 13 108 detextured clasts in black locally silty FX411155 441.50 441.96 .66 .001 .1 833 11 386 pelitic matrix with 3X dusty pyrite. FX411154 441.96 443.96 2.00 .007 .1 1160 .38 66 441.96 448.31 11155 441.96 443.96 443.96 42.96 2.00 .007 .1 1160 .38 66 441.96 448.31 Huddy clasts highly altered to choritic FX411158 443.96 447.31 1.35 .001 .1 439 39 58 and talc in variably moderately silicous FX411159 447.31 448.31 1.00 .009 .1 637 57 36 matrix with dusty pyrite, no veining, FX411164 443.34 150.20 .89 .011 .1 222 80 22 FX41.95 .020 21 fabric 50 degree to core axis. FX411161 450.20 451.96 1.76 .013 .1 144 45 18 .022 80 122 FX411161 450.20 2451.96 1.76 .013 .1 144 45 18 450.20 2451.96 As above, with more chloritic clay altered clasts, no veining. 450.20 451.96 As above, with more chloritic clay altered clasts with 1 40 degree vein up to 1 centimetre with massive pyrite in black matrix material. 451.96 454.62 FAULT 		damming front.				•							
 439.50 431.96 LAMAR 439.50 441.30 Highly siliceous buff brown gray FX411154 439.50 441.30 1.80 .002 .1 215 13 108 detextured clasts in black locally silty FX411155 441.96 .66 .001 .1 833 11 386 palitic matrix with 5X dusty pyrite. FX411156 443.96 2.00 .001 .1 863 72 12 441.30 441.96 448.31 Muddy clasts highly altered to chorit to FX411156 443.96 42.00 .007 .1 1160 .58 66 464.9 39 58 and talc in variably moderately siliceous FX411157 443.50 443.13 1.00 .009 .1 637 37 36 and talc in variably moderately siliceous FX411159 447.31 448.31 1.00 .009 .1 637 37 36 fabric 50 degree to create it. FX411164 443.31 63.20 1.89 .011 .1 222 80 22 fabric fabric 50 degree to create it. FX411164 443.31 63.20 451.96 1.76 .013 .1 144 45 18 fabric 50 degree to create it. FX411164 443.31 63.20 451.96 1.76 .013 .1 144 45 18 fabric 50 degree to create it. FX411164 45.20 451.96 1.76 .013 .1 144 45 18 fabric 50 degree to create it. FX411164 45.20 451.96 452.64 .68 .072 .6 59 53 11 state it. Sintensive pyrite in black matrix material. 451.96 454.62 FAULT 													
439.50 4/1.30 Highly siliceous buff brown gray FX411154 439.50 441.30 1.80 .002 .1 215 13 108 439.50 441.30 Highly siliceous buff brown gray FX411154 439.50 441.96 .66 .001 .1 833 11 386 941.30 441.96 As above, with 5X dusty pyrite emplacement FX411157 443.96 443.96 2.00 .001 .1 833 11 386 441.30 441.96 As above, with 15X dusty pyrite emplacement FX411157 443.96 445.96 2.00 .001 .1 439 39 58 441.30 441.96 As above, with 15X dusty pyrite, no veining, FX411154 445.96 447.31 1.35 .001 .1 439 39 58 and talc in veriably moderately siliceous silty FX411156 447.31 448.31 1.00 .009 .1 637 57 36 448.31 450.20 2twol locally insitu auto .002 .11 .222 80 22 741156 4451.96 As above, with more chloritic clay altered .013 .1 144 45 18 448.31 450.20 451.96 As above, with more chloritic clay altered .013 .1 144 45 18 451.96 452.66 Gray green fault pouge, no silicification FX411162 451.96 452.64 .68 .072	430 50 451 0												
451.96 4H.36 Highly allereds in black locally silty FX41135 441.96 .66 .001 .1 215 13 108 detextured clasts in black locally silty FX41135 441.96 .66 .001 .1 853 11 386 yelitic matrix with 5X dusty pyrite. FX41135 441.96 443.96 2.00 .001 .1 563 72 12 441.30 441.96 As above, with 15X dusty pyrite emplacement FX411156 443.96 2.00 .007 .1 160 38 66 441.96 448.31 Muddy clasts highly altered to chloritic fX411158 445.96 447.31 .1.35 .001 .1 439 39 58 and talc in variably moderately siliceous fX411159 447.31 448.31 1.00 .009 .1 637 57 36 matrix with dusty pyrite, no veining, FX411161 450.20 451.96 1.76 .013 .1 144 45 18 448.31 450.20 2tad Locally highly siliceous silty pyritic matrix, locally insitu auto brecciated with chlorite altered clasts, no veining. .013 .1 144 45 18 451.96 452.64 frag green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11	437.30 471.30	439.50.441.30 Highly silicance buff brown grow	EV/444E/ 170 ED 11	4 70									
441.30 Additional costs in first with 5% dusty pyrite. FX411155 441.95 .001 .1 556 72 12 441.30 441.30 443.96 As above, with 15% dusty pyrite emplacement FX411156 441.96 443.96 2.00 .001 .1 556 72 12 441.30 441.96 As above, with 15% dusty pyrite emplacement FX411157 443.96 2.00 .007 .1 1160 .38 66 441.96 448.31 Muddy clasts highly altered to chloritic FX411157 443.96 2.00 .007 .1 1160 .38 66 441.96 448.31 Muddy clasts bighly moderately siliceous FX411159 447.31 1.35 .001 .1 453 457 57 36 matrix with dusty pyrite, no veining, FX411161 450.20 1.89 .011 .1 222 80 22 fabric 50.20 21 degree to cally insitu auto brecristed with chlorite altered clasts, .013 .1 144 45 18 450.20 20 451.96 452.64 As above, with more chloritic		detextured clasts in black locally silty	FX411104 409.00 44	1.50	1.80	1.1	.002	.1	215	13	108		
441.30 441.96 As above, with 15X dusty pyrite: emplacement FX411157 443.96 42.00 .001 .1 566 72 12 441.30 441.96 As above, with 15X dusty pyrite: emplacement FX411159 447.30 443.90 2.00 .001 .1 439 39 58 441.96 448.31 Muddy clasts highly altered to chloritic FX411159 447.31 448.31 1.00 .009 .1 433 39 58 and talc in variably moderately siliceous FX411159 447.31 448.31 1.00 .009 .1 637 57 36 matrix with dusty pyrite, no veining, FX411160 448.31 450.20 1.89 .011 .1 222 fabric 50 degree to core axis. FX411161 450.20 451.96 1.76 .013 .1 144 45 18 448.31 450.20 Ztudi jonsitu auto brecciated with chlorite altered clasts, no veining. 450.20 451.96 451.96 .013 .1 144 45 18 450.20 Ztudi jong Jong auto Jong auto Jong auto		Delitic matrix with 5% ducty purite	EV411155 441.30 44	1.90	2 00		.001	.1	833	11	386		
 441.96 448.31 Muddy clasts highly altered to chloritic FX411158 445.96 447.31 1.35 441.96 448.31 Muddy clasts highly altered to chloritic FX411158 445.96 447.31 1.35 and talc in variably moderately silicous FX411158 445.96 447.31 1.35 and talc in variably moderately silicous FX411159 447.31 448.31 1.00 and talc in variably moderately silicous FX411150 448.31 450.20 1.89 and talc in variably moderately silicous FX411161 450.20 451.96 1.76 and talc in variably moderately silicous silty pyritic matrix, locally highly silicous silty pyritic matrix, locally insitu auto breccitated with chlorite altered clasts, no veining. 450.20 451.96 As above, with more chloritic clay altered clasts with 0 pophyritic trachyte clasts with 1 40 degree vein up to 1 centimetre with massive pyrite in black matrix material. 451.96 454.62 FAULT 451.96 454.62 FAULT 451.96 454.62 FAULT 451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 and talc in variably moderately silicous table for the fact of the fact of		441.30 441.96 As above, with 15% dusty pyrite emplacement	FX411157 443 96 44	5 06	2.00		.001	.1	200	72	12		
and talc in variably moderately siliceous FX411159 447.31 448.31 1.00 .009 .1 457 57 36 matrix with dusty pyrite, no veining, fX411169 447.31 448.31 450.20 1.89 .011 .1 222 80 22 fabric 50 degree to core axis. FX411161 450.20 451.96 1.76 .013 .1 144 45 18 448.31 450.20 2tud locally highly soliceous sitty pyritic matrix, locally insitu auto .013 .1 144 45 18 450.20 451.96 As above, with more chloritic clay altered .013 .1 144 45 18 450.20 451.96 As above, with more chloritic clay altered .014 .013 .1 144 45 18 451.96 454.62 FAULT 450.20 451.96 As above, with more chloritic clay altered .013 .1 144 45 18 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 451.96 452.64 Gray green fault gouge, no silicification FX411163 452.64 454.62 1.98		441.96 448.31 Muddy clasts highly altered to chloritic	FX411158 445 96 44	7 31	1 35		.007		/100	30	50		
<pre>matrix with dusty pyrite, no veining, FX411160 448.31 450.20 1.89 .011 .1 222 80 22 fabric 50 degree to core axis. fX411161 450.20 451.96 1.76 .013 .1 144 45 18 448.31 450.20 2twd locally highly siliceous silty pyritic matrix, locally insitu auto brecciated with chlorite altered clasts, no veining. 450.20 451.96 451.96 451.96 451.96 451.96 452.64 .68 .072 .6 59 53 11 451.96 454.62 FAULT 451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 72471-0 72471-0 72471-0</pre>		and talc in variably moderately siliceous	FX411159 447.31 44	8.31	1.00		.009	.1	637	57	70		
<pre>fabric 50 degree to core axis. FX411161 450.20 451.96 1.76 .013 .1 144 45 18 448.31 450.20 2twd locally highly siliceous silty pyritic matrix, locally insitu auto brecciated with chlorite altered clasts, no veining. 450.20 451.96 As above, with more chloritic clay altered clasts with porphyritic trachyte clasts with 1 40 degree vein up to 1 centimetre with massive pyrite in black matrix material. 451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 72471-0 72471-0</pre>		matrix with dusty pyrite, no veining,	FX411160 448.31 45	50.20	1.89		.011	.1	222	80	22		
 448.31 450.20 2twd locally highly siliceous silty pyritic matrix, locally insitu auto brecciated with chlorite altered clasts, no veining. 450.20 451.96 As above, with more chloritic clay altered clasts with porphyritic trachyte clasts with 1 40 degree vein up to 1 centimetre with massive pyrite in black matrix material. 451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 		fabric 50 degree to core axis.	FX411161 450.20 45	51.96	1.76		.013	.1	144	45	18		
pyritic matrix, locally insitu auto brecciated with chlorite altered clasts, no veining. 450.20 451.96 As above, with more chloritic clay altered clasts with pophyritic trachyte clasts with 1 40 degree vein up to 1 centimetre with massive pyrite in black matrix material. 451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 72471-0		448.31 450.20 2twd locally highly siliceous silty						•••					
brecciated with chlorite altered clasts, no veining. 450.20 451.96 As above, with more chloritic clay altered clasts with porphyritic trachyte clasts with 1 40 degree vein up to 1 centimetre with massive pyrite in black matrix material. 451.96 454.62 FAULT 451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 72671-0		pyritic matrix, locally insitu auto											
no veining. 450.20 451.96 As above, with more chloritic clay altered clasts with porphyritic trachyte clasts with 1 40 degree vein up to 1 centimetre with massive pyrite in black matrix material. 451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 72471-0 72471-0		brecciated with chlorite altered clasts,											
 450.20 451.96 As above, with more chloritic clay altered clasts with porphyritic trachyte clasts with 1 40 degree vein up to 1 centimetre with massive pyrite in black matrix material. 451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 		no veining.											
clasts with porphyritic trachyte clasts with 1 40 degree vein up to 1 centimetre with massive pyrite in black matrix material. 451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 72471-0 72471-0		450.20 451.96 As above, with more chloritic clay altered											
with 1 40 degree vein up to 1 centimetre with massive pyrite in black matrix material. 451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 72471-0		clasts with porphyritic trachyte clasts											
with massive pyrite in black matrix material. 451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 72471-0		with 1 40 degree vein up to 1 centimetre											
material. 451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 72471-0		with massive pyrite in black matrix											
451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 72471-0		material.											
451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 72471-0													
451.96 454.62 FAULT 451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 72471-0													
451.96 452.64 Gray green fault gouge, no silicification FX411162 451.96 452.64 .68 .072 .6 59 53 11 schistosity 30 degree lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree. 72471-0	451.96 454.62	FAULT											e di seri
schistosity 30 degree Lower contact 70 FX411163 452.64 454.62 1.98 .034 .2 70 44 8 degree.		451.96 452.64 Gray green fault gouge, no silicification	FX411162 451.96 45	52.64	.68		.072	.6	59	53	11		
degree. 72471-0		schistosity 30 degree Lower contact 70	FX411163 452.64 45	4.62	1.98		.034	.2	70	44	8		
72471-0		degree.					•						
72471-0						•							
													72471-0

		FIELD EXPLO		AMOND DR	RILL LOG						\bigcirc	72471-0 PAGE	7
	**********************DESCRIPTION************************************						******	*******	*ANALYSES	*******	*******	***	
FROM TO		SAMPLE# FRO	м то	LENGTH	MIN X	AU PPM	AG PPH	AS PPH	BA PPN	MO PPM			
м м		M	N	M									
	452.64 454.62 As above, mylonitized, brecciated highly												
	altered, locally siliceous trachyte with												
	abundant talc alteration.												
							· · ·						
454 62 455 66	TRACUVIE												
454.02 455.00	Marcon bighly altered porphynitic ukly cilicous	EV/4446/ /5/	43 / 55 44	1.04		004		-					
	trace fine grained disseminated purite lower contact 40	FATTIO4 434.	02 433.00	1.04		.000	•1	(18	y			
	dearee.												
•													
455.66 456.27	FAULT												
	Mylonitized trachyte lahar ? lower contact 30 degree, no silicification.	FX411165 455.	66 456.27	.61		.083	.2	14	31	2	~		
												•	
456.27 459.64	LAHAR												
	Highly altered trachyte lahar with talc altered	FX411166 456.	27 457.92	1.65		.012	.1	9	18	5			
	phenocrysts, matrix brecciated variably siliceous locally soft carbonaceous, fabric 40 degree to core axis	FX411167 457.	92 459.64	1.72		.030	.1	25	34	4			
	 A second s												
459.64 460.04	FAIN T												
427.04 400.04	Marcon brown highly altered couped mylopitized trachyte	EV/11168 /50	<u> </u>	40		007		` 7	40	40			
	lahar ? lower contact 30 degree, no silicification.	FA411100 437.	04 400.04	.40		.005	• 1	2	19	12			
460 04 460 OF	1 41140												
400.04 400.93	As at 656.27 metro with pressinted black as-	EV/11140 /40	0/ /40 05	01		100	2.4						
	matrix with 3% fine grained disseminated pyrite.	FA411109 40U.	U4 400.93	.91		.122	2.0	22	47	2/2		•	

		**************************************	**				d	77
		FIELD EXPLOYIN DIAMOND DRILL LOG) P/
	**************************************			******	********	ANALYSES	*******	******
FROM TO		SAMPLE# FROM TO LENGTH MIN X	AU PPN	AG PPM	AS PPH	BA PPM	MO PPH	
M M		M N M						
460.95 462.10	5 FAULT				•			
	As at 459.64 metre.	FX411170 460.95 462.16 1.21	.102	.3	14	465	23	
462.16 463.70	S LAHAR		000	•	~	405	-	
	Highly altered, locally gouged and mylonitized	FX4111/1 402.10 403./8 1.02	.022	.2	20	125	3	
	cilicification no voining fabric 30 degree to come							
	avis at 462.60 metre							
463.78 465.30	5 FAULT							
	As at 460.95 metre, no silicification, upper contact 50	FX411172 463.78 465.36 1.58	.021	.2	11	267	2	
	degree to core axis.							
465.36 465.7	3 LAHAR							
	Bleached, buff brown brecciated moderately siliceous	FX411173 465.36 465.73 .37	.072	.3	7	412	26	
	ctast supported tanar :.							
465.73 465.9	D LOST CORF							
465.90 474.0	4 LAHAR							
	465.90 469.08 As at 465.73 metre with highly altered	FX411174 465.90 467.76 1.86	.205	.9	10	356	89	
	trachyte clasts with hematitized talc	FX411175 467.76 469.08 1.32	.097	.5	39	100	17	
	alteration in gray black pyritic locally	FX411176 469.08 469.95 .87	.054	.8	43	151	51	
	quartz flooded matrix with 1 possible	FX411177 469.95 470.76 .81	.030	.1	38	223	7	
	green trachyte clast cut by 1 veinlet at	FX411178 470.76 471.77 1.01	.175	1.1	135	66	69	
	70 degree to core axis with blood red	FX411179 471.77 472.88 1.11	1.160	4.2	243	66	96	
	alteration.	FX411180 472.88 473.62 .74	.056	.7	29	357	3	

72471-0 PAGE 8

72471-0 PAGE 8

1.1.1.1.1

FIELD EXPLOYIN DIAMOND DRILL LOG

.90

9.500

6.6

251

68

362

SAMPLE#

FROM TO

M

M

- H M 469.08 469.95 As above, with minor parallel veining FX411181 473.62 474.04 skimming core with 2% dusty, sooty pyrite with minor molybdenum ? up to 0.25
 - centimetre in thickness.
- 469.95 470.76 2twd, matrix weak to moderately siliceous, red maroon, clasts green locally altered to chlorite, with 1% coarse grained cubic pyrite.
- 470.76 471.77 2tmd matrix highly siliceous maroon in colour, sandy locally opallinized, clasts altered to chlorite and clays, strectched with gray black incipient quartz flooding, fabric 60 degree.
- 471.77 472.88 As above, with 7% type 1 and 2 gray black quartz veining with brecciated clasts at 20 degree to core axis, closely spaced with 3% pyrite in veins massive platy associated with black siliceous material.
- 472.88 473.62 2twd highly siliceous matrix and clasts, 1% hairline gray black quartz veinlets.
- 473.62 474.04 Highly siliceous clast supported trachyte lahar with 2% type 2 complex, multistage brecciated quartz up to 1.5 centimetre in width with 2% dusty fine grained pyrite with trace molybdenum ? at 40 degree to core axis.

474.04 474.94 QUARTZ VEIN

Type 3 complex, bladed, insitu auto brecciated FX411182 474.04 474.94 multistage white gray pale green quartz running parallel to core axis with black siliceous matrix

FROM TO LENGTH MIN X AU PPM AG PPM M M N 473.62 474.04 .42 2.230 12.2

72471-0 PAGE

		FIELD EXPLOR	IMITED*	ND DRILL	******* LOG						72471-0 PAGE	0 10
	***************************DESCRIPTION************************************					******	******	*ANALYSES	*******	******	***	
FROM TO		SAMPLE# FROM	TO LEN	IGTH M	IN X AU PP	AG PPM	AS PPH	BA PPM	NO PPN			
	material with 2% dusty pyrite with trace molybdenum.		F1	n		. <u>N</u>	•					
474 94 478	27 1 AHAR											
	474.94 475.86 2thd highly silicous high energy	EV611197 474 04 47	75 04	02	250							
	trachyte lahar with sendy green	EV611103 474.74 47	3.80 74 70	.YZ	.250	3.2	570	58	790			
	matrix with shardy clasts cut by 6 closely	FX411185 476 70 47	77 28	.04 58	.074	1.0	270	100	222			
	spaced white bladed quartz carbonate	FX411186 477.28 47	78.27	.90		1.7	170	120	21			
	veins at 20 degree to core axis, hairline		0.2.		.+00	1.2	117	107	2 1			
	to 1.5 centimetre.											
	475.86 476.70 2thd as above, with re brecciated insitu											
	auto brecciated clasts with 1% type 3								1			
	bladed quartz at 30 degree to core axis,											
	fabric 30 degree, occasional clasts with						•					
	pinpoint pyrite.											
	476.70 477.28 As above, with 70% quartz flooding with re											
	brecciated trachyte clasts, fabric											
	parallel to core axis.			·								
	4/1.20 4/0.27 As above, with 1% bladed quartz carbonate											
	veining, matrix nighty siticeous, clasts											
	up to 15 centimetre not siticitied.											
478.27 479.7	O BRECCIA											
	478.27 478.57 Silica flooded chip breccia with type 3	FX411187 478 27 47	8.57	30	1 020	20 1	100	124	040			
	clasts both shardy and rectangular with	FX411188 478.57 47	9.70 1	.13	.610	7.2	305	70	172			
	gray black quartz supporting soft volcanic				1010		505		116			
	clasts with pinpoint pyrite.											
	478.57 479.70 As above, with 10% vein clasts, fabric 30	.										
	degree to core axis with 1% type 3										•	
	veining up to 1 centimetre at 30 degree in										1 . A	
	chloritic lahar with 2% fine grained pyrite											
										~	72471-0)
								· ·			PAGE	10

FIELD EXPLOR N DIAMOND DRILL LOG

		***********************DESCRIPTION************************************							*******	******	*ANALYSES	******	*******
FROM	то		SAMPLE#	FROM	то	LENGTH	MIN X	AU PPM	AG PPM	AS PPH	BA PPM	HO PPH	•
M	M			. M	M	M	•						
					~ ~								
79.70	481.46	LAHAR											
		2tmd Matrix pink hematitized, sandy, highly siliceous,	FX411189	479.70	480.47	.77		.124	2.1	329	41	22	
		clasts variably silicified, insitu auto brecciated with 2% distention type 2 veining.	FX411190	480,47	481.46	.99		.057	1.3	170	30	38	
481.46	481.87	QUARTZ VEIN											
		80% Gray cherty quartz with multistage flooding with brecciation, upper contact 30 degree, fine grained	FX411191	481.46	481.87	.41		1.240	15.0	77	67	599	
		pyrite associated with detextured Lahar.											
81.87	484.54	LAHAR											
		Pyrite fine grained up to 2%, disseminated.	FX411192	481.87	483.19	1.32	/	.410	.9	33	34	12	
		481.87 483.19 Highly siliceous trachyte lahar with 4%	FX411193	483.19	484.54	1.35		.149	.6	376	43	6	
		type 3 pale green white irregular brecciated veining with shardy rectangular											
		Clasts in marcon matrix,.											
		35 centimetre with minor pyrite ponding											
		with 4 widely spaced type 3 white pale											
		green quartz veinlets with 25 disseminated											
		pyrite and blebs.											
84.54	484.69	QUARTZ VEIN											
		Type 3 pale green with multistage flooding and brecciation parallel to core axis up to 4 centimetre in	FX411194	484.54	484.69	.15		2.600	1.8	245	23	25	

thickness, 3% fine grained disseminated pyrite in Lahar.

		FIELD EXPL		AMOND D	RILL LOG	•						72471-0 PAGE 12
	**********************DESCRIPTION************************************						******	*******	*ANALYSES	******	*******	k**
FROM TO		SAMPLE# FR	ROM TO	LENGTH	MIN X	AU PPM	AG PPM	AS PPM	BA PPM	MO PPM		
			H H	M								
484.09 482.2	5 LAHAR		10 105 F				_					
	AS at 403.19 metre.	FX411195 484	1.09 48 3. 38	.89		.037	.7	468	38	5		
485.58 485.7	D QUARTZ VEIN											
	Type 3 laminated green white with black gray centre at	FX411196 485	.58 485.70	.12		2.440	1.8	245	82	8	•	
	60 degree to core axis up to 3.5 centimetre,											
	hematitized along vein walls.											
(OF 70 (00 0												
485.70 488.0	8 LAHAR						· · · ·		••	-		
	485.70 486.70 21md highly siliceous marcon matrix,	FX411197 485	.70 486.70	1.00		.057	.5	225	24	2		
	ninpoint pyrite pyrite also platy patches	FA411196 400	5.70 400.00	5 1.30		.002		506	22	2		
	in locally quartz flooded matrix.											
	486.70 488.08 As above, with 1 type 3 discontinuous											
	veinlet up to 1 centimetre at 40 degree											
	to core axis.											-
488.08 488.2	5 QUARTZ VEIN											
	Type 3 laminated pale green multistage flooded as at	FX411199 488	8.08 488.25	5 .17		2.320	1.4	100	23	3		
	485.58 metre at 40 degree to core axis, up to 5											
	centimetre in width, 3% pyrite disseminated and as blebs											
	in trachyte clasts.											
188 25 106 1												
400.23 470.4	488 25 489 89 As at 485 70 metre fabric 60 degree	5V/11200 /88	2 25 / 80 80	1 64		044	<u> </u>	403	24	2		
	489.89 490.89 As above moderate leising with 2 type 3	FX411200 480	89 490 80	2 1.00		.095	.0	242	18	<u>د</u>		•
	veinlets up to 0.75 centimetre widely	FX411202 490	.89 491.18	3.29		.630	.6	102	37	89		
							• •					
												72471-0

N DIAMOND DRILL LOG FIELD EXPLOR

72471-0 PAGE 13

		**************************************							*******	*******	ANAL VEEC	******	********
FROM	то		SAMPLE#	FROM	то	LENGTH	MIN X	AU PPM	AG PPM	AS PPM	BA PPM	MO PPM	
M	· M			M	м	M							
		spaced at 30 degree to core axis.	FX411203	491.18	492.19	1.01		4.460	.8	470	68	2	
		490.89 491.18 As above, with 1 type 3 dark green gray	FX411204	492.19	493.17	.98		.122	.5	363	40	10	
		black brecciated quartz vein at 70 degree	FX411205	493.17	494.17	1.00		.670	.9	106	27	34	
		up to 6 centimetre with fine grained dusty	FX411206	494.17	495.58	3 1.41		.820	1.2	101	29	16	
		pyrite with trace molybdenum, other	FX411207	495.58	496.47	' .89		.760	1.1	389	68	21	
•		veinlets up 2 millimetre.							•				
		491.18 492.19 2thd highly siliceous, matrix sandy brown											
		maroon, clasts bleached pale green insitu											
		auto brecciated with 1% type 3 cream gray								• .			
		vuggy quartz up to 0.75 centimetre at 30											
		degree to core axis, widely spaced.											
		492.19 493.17 As above, with 1% type 3 gray white green											
		quartz up to 0, 5 centimetre at 40											•
		degree, fabric 40 degree.											
		493.17 494.17 2thd, 2% distention veined, fabric 40											
		degree, veining 150 degree with 3% platy											
		pyrite.											
		494.17 495.58 As above, with rusty brown hematitized											
		pyritic material with shardy rectangular											
		brecciated vein clasts with 1% veining at											
		20 degree to core axis, pyrite up to 3%											
		disseminated, fabric 30 degree to core axis											
		495.58 496.47 As above at 491.18 metre with widely											
		spaced 0.5 centimetre type 3 veining at											
		20 to 50 degree to core axis.											
101 17													
490.47	497.06	BRECCIA											•
		Highly siliceous detextured lahar with brecciated type 3	FX411208	496.47	497.06	.59		.650	.9	322	31	16	
		quartz clasts with shardy volcanic clasts in marcon											

sandy brecciated matrix, pyrite locally up to 3% as

large brassy blebs.

	\bigcirc			FIELD	****IN	N D	IAMOND DR	ILL LOG	r a l ¹					72471- PAGE	-0 1
	*****	*******DESCRIPTION**	********							*******	*******	*ANALYSES	*******	*****	
FROM TO				SAMPLE#	FROM	TO	LENGTH	MIN X	AU PPM	AG PPM	AS PPH	BA PPM	MO PPM		
M 🖓 M		$(X_{i}) \in \{i,j\} \in \{i,j\}$			M	M	M								
497.06 500.00) LAHAR														
	497.06 498.35	2thd highly siliceou	s with occasional type	FX411209	497.06	498.3	5 1.29		.320	1.2	145	32	9		
		2 and 3 brecciated	vein clasts with 2%	FX411210	498.35	499.3	5 1.00		.350	.8	88	48	3		

		distention veining	with type 2 brecciated	FX411211	499.35 500.00	.65	.780	n/a	74	43	15
		gray green quartz at	30 degree to core axis								
	498.35 499.35	As above, moder	ate leisigang, fabric								
		locally 30 degree,	1 type 3 gray quartz								
		vein at 140 degre	e up to 1 centimetre,								
		pyrite disseminated	3%.								
	499.35 500.00	As above, mat	rix maroon sandy,								
		hematitized, insitu	auto brecciated with								
		2% type 3 distenti	on veining saprolite to								
		core axis and	20 degree 3% pyrite								
		disseminated cubic.									
500.00 500.83	QUARTZ VEIN										
	20% type 3	laminated re breco	iated, gray cream white	FX411212	500.00 500.83	.83	.210	.4	35	33	5
	green localt	y bladed quartz as w	eining saprolite and 30								
	degree in	rusty marcon breco	iated matrix with 3%								
	disseminated	pyrite.									
500.83 501.77	LAHAR				•						
	2thd As at 4	99.35 centimetre with	3% disseminated pyrite	FX411213	500.83 501.77	.94	.430	1.3	62	36	12
	and massive	pyrite associated wit	h 2% gray black type 2	· · ·							

501.77 503.97 BRECCIA

distention veining, matrix sandy bedding 30 degree.

				FIELD	EXPLO		D*****	ILL LOG							72471-0 PAGE 15
		*******	********DESCRIPTION*******************************							****	******	*ANALYSES	*******	*****	***
FROM M	TO M			SAMPLE#	FROM	TO L	.ENGTH M	MIN X	AU PPM	AG PPM	AS PPM	BA PPM	NO PPM		
		501.77 502.9	7 Highly detextured lahar as at 500.83 metre	FX411214	501.77	502.97	1.20		1.050	1.7	121	83	21	^	
			with 10% brecciated type 3 gray white	FX411215	502.97	503.97	1.00		.370	2.8	325	58	165		
			quartz chip fragments up to 1 centimetre,												
			,2% pyrite as blebs 502.97 503.97 as												
			above, with highly siliceous bleached pink						•						
		•	buff brecciated clasts with 1% silica												
			chip brecciated fragments in black pyritic												
			matrix with 2% distention veining with												1.
			pyrite fabric 40 degree to core axis.												
503.97	506.34	QUARTZ VEIN													
		503.97 504.3	4 Type 3 complex multistage laminated white	FX411216	503.97	504.34	.37		.290	.8	51	152	95		
			cream black bladed quartz with septa	FX411217	504.34	504.90	.56		.630	1.0	89	10	94		
			material, lamellar 50 degree to core axis,	FX411218	504.90	505.48	.58		.065	.7	19	9	19		
			pyrite fine grained also massive.	FX411219	505.48	506.34	.86		2.900	2.9	72	212	44		
		504.34 504.9	O Complex multistage brecciated type 3 vein												
			material, pyrite up to 3% locally cubic,												
			dusty and disseminated.												
		504.90 505.4	8 Massive vuggy locally laminated complex												
			multistage veining, locally ankeritic												
			with hairline fractures infilled with												
			massive dusty pyrite at 60 degree to core												
			axis.												
		505.48 506.3	4 Complex type 3 brecciated multistage												
			veining, vuggy ankeritic, laminated at 50												
			degree to core axis with 10% quartz chip												
			brecciated clasts at lower contact.						•						
506.34	506.95	BRECCIA	· · · · · · · · · · · · · · · · · · ·										1.2		
		Brecciated	lahar and silty sediment material with silica	FX411220	506.34	506.95	.61		9.160	9.4	83	103	38		

			FIELD E	EXPLOR		ED***** Amond Di	RILL LOG	★ ★ 						72471-0 PAGE 16
		************************DESCRIPTION************************************							******	*******	*ANALYSES	*******	******	**
FROM	TO		SAMPLE#	FROM	TO L	LENGTH	MIN X	AU PPM	AG PPM	AS PPM	BA PPM	MO PPM		
M . N S	М	abin bassais alasta in Links sitis and the state		M	M	M								
		50 degree to core avis												
506.95	507.51	QUARTZ VEIN												
		Gray cherty distention veined material cut by parallel	FX411221	506.95	507.51	.56		18.100	• 14.2	19	32	19		
		running brecciated type 3 gray quartz veining.							•					
			1											
507 51	508 41	RECCTA												
		Gray quartz flooding, local multistage precciation with	FX411222	507.51	508 41	90		2 940	3 4	68	19	70		
		bleached clasts cut by brecciated distention veined						6.740	2.7		10	37		
		material running saprolite and 40 degree to core axis,							· .					
		fabric 40 degree to core axis.												
508.41	509.90) QUARTZ VEIN						· .						
		Type 3 pale brown white locally bladed, complex	FX411223	508.41	509.90	1.49		.480	1 4	20	51	. 0		
		multistage brecciated at 40 degree to core axis, lower								20				
		contact 40 degree, dusty pyrite in black siliceous												
		material.												
509.90	511.17	BRECCIA												
		Dark green moderately siliceous matrix with 25% type 2	FX411224	509.90	510.12	.22		.770	31	125	24	27		
		and 3 brecciated quartz fragments lower contact gouged	FX411225	510.12	511.17	1.05		.420	.8	153	60	16		
		at 50 degree to core axis.												
E44 47	574 04													
511.17	221.01	511 17 513 17 Wighly silicous detextured pressisted	EV/44004	511 17	547 47	2 00			-	270	F.0			
		ultramafic derived far conclonerate with	FX411220	513.17	514 69	2.00		.490	.(238	56 52	5		
			, AT LILL!			1.76			.0	661	76	I		
													•	72471-0
														DACE 44

FIELD EXPLO ON DIAMOND DRILL LOG

***************DESCRIPTION	*****
----------------------------	-------

FROM

М

72471-0

PAGE 17

	***********************DESCRIPTION************************************	•						*******	******	*ANALYSES	*****	********
то		SAMPLE#	FROM	то	LENGTH	MIN X	AU PPH	AG PPN	AS PPH	BA PPM	MO PPM	· .
M			M	М	M							
	porphyritic trachyte clasts with	n FX411228	3 514.69	515.69	1.00		.350	.9	278	44	10	
	phenocrysts altered to talc, rare type 2	2 FX411229	9 515.69	516.46	.77		.710	.7	174	55	36	
	veining.	FX411230	516.46	518.46	2.00		.390	1.3	262	51	4	
	513.17 515.69 As above, with rare type 2 veining up to	FX411231	1 518.46	519.61	1.15		.260	.7	204	60	8	
	0.25 centimetre at 30 degree 515.69	9 FX411232	2 519.61	520.65	1.04		.159	.9	291	47	3	
	516.46 as above, 5% type 2 quartz flooding	FX411233	520.65	522.65	2.00		.210	.8	230	51	12	
	with gray cream white vuggy quartz in	FX411234	\$ 522.65	524.64	1.99		.100	.6	205	36	2	
	black siliceous pyritic matrix material.	FX41123	5 524.64	525.14	.50		.163	7	158	37	6	
	516.46 519.61 As at 511.17 metre.	FX411236	5 525.14	526.02	.88		.330	.6	159	31	30	
	519.61 520.65 As above, with 2% distention type ?	5 FX411237	7 526.02	526.95	.93		.500	1.6	211	31	57	
	veining up to 1.5 centimetre at 30 to 60) FX411238	B 526.95	527.95	1.00		.104	1.4	196	25	31	
	degree with brecciated quartz clasts with	n FX411239	527.95	529.36	1.41		.330	1.4	270	38	38	
	minor flourite in black pyritic material.	FX411240	529.36	530.81	1.45		1.080	1.4	164	42	30	
	520.65 525.14 Moderately to highly siliceous locally	FX41124	1 530.81	531.81	1.00		.142	.8	134	37	63	
	detextured with minor green gray quart;	2										Ŷ
	flooding.											
	525.14 526.02 As above, local insitu auto brecciation	r										
	with clay talc altered matrix material	L										

- with minor quartz flooding with 1% disseminated pyrite.
- 526.02 526.95 Highly siliceous matrix with locally chloritic clast, distention veined with 3% black pyritic matrix material and type 2 veining, pyrite interstitial massive platy 2%.
- 526.95 527.95 As above, with minor distention, pyrite 3% platy.
- 527.95 530.81 As above, 1% distention with type 2 gray black quartz veining.
- 530.81 531.81 Black pyritic matrix, moderately to highly detextured, 2% type2 veining parallel to core axis with minor flourite, locally

72471-0 PAGE 17

FIELD EXPLOSION DIAMOND DRILL LOG

		7247	1-0	
and a		PAGE	18	

		****************************DESCRIPTION************************************							******	******	ANALYSES	********	******
FROM	то		SAMPLE#	FROM	то	LENGTH	MIN X	AU PPM	AG PPM	AS PPM	BA PPM	MO PPN	
M	M			M	M	M							
		massive fine grained pyrite.											
F74 04	534 0												
551.81	551.98	S QUARTZ VEIN	EV/ 112/2	574 04	571 0	9 47		452	0	446	20	200	
		ook gray black quartz recounty at 20 degree to core axis.	FA411646	51.01	551.70	> .17		. 132	.,	110	67	200	
531.98	534.02	2 TRACHYTE											
		531.98 533.02 Or trachyte fan conglomerate ? moderate to	FX411243	531.98	533.0	2 1.04		.123	.8	181	31	16	
		highly siliceous, phenocrysts altered to	FX411244	533.02	534.0	2 1.00		.230	.8	242	40	9	
		sericite, talc occasional distention.											
		533.02 534.02 As above, with 1 distention fracture at 20											
		degree to core axis up to 1 centimetre.								•			
57/ 02	57/ 70												
JJ4.02	554.7	Theity outs beserieted ultremetic with trachute clasts	EV/117/5	57/ 02	53/ 70	77		056	4 6	112	76	.90	
		in black pyritic siliceous matrix with massive pyrite	FX41124J	JJ4.02				.050	1.4		50		
		blebs, upper contact 30 degree.	· ·										
534.79	536.4	5 ULTRAMAFIC											
		As at 530.81 metre.	FX411246	534.79	536.4	6 1.67		.054	1.2	142	35	18	
536.46	536.8	7 BRECCIA						or /					
	÷ .	Highly siliceous detextured multistage brecciated	FX411247	536.46	536.8	7 .41		.056	1.4	116	08	415	
		ultramatic tan conglomerate, clast supported in gray											
		DEACK SILLY SILLCEOUS WALLIX, INDITE HU DEGREE.											

536.87 537.92 ULTRAMAFIC

FIELD EXPLOSION DIAMOND DRILL LOG

	*****	*********DESCRIPTION*****	*****							******	*******	*ANALYSES	*******	*******
FROM TO)			SAMPLE#	FROM	то	LENGTH	MIN X	AU PPM	AG PPM	AS PPM	BA PPM	MO PPM	
M M	۱.,				M	M.	M							
	Moderately s	iliceous with 1 type 2 ve	in parallel to core	FX411248	536.87	537.92	1.05		.041	1.6	121	86	75	
	axis up to C	.25 centimetre, abundant	trachyte clasts in											
	locally gr	ay ultramafic derived	sediment material,								•			
	gouged at l	ower contact for 15	centimetre, Lower											
	contact 60 de	gree.												
			•											
537.92 544.	43 LAHAR	the state of the s							•					
	537.92 538.92	Highly siliceous	trachyte fan	FX411249	537.92	538.92	1.00		.038	.1	34	84	4	
		conglomerate, at upper	contact becoming	FX411250	538.92	540.92	2.00		.072	.1.	45	98	7	
		chloritic down hole min	or quartz flooding.	FX411251	540.92	542.65	1.73		.022	.1	92	177	2	
	538.92 542.65	As above, no silicificat	ion, porphyritic.	FX411252	542.65	543.65	1.00		.151	.5	106	119	23	
	542.65 543.65	Weakly siliceous trachy	te cut by 2 closely	FX411253	543.65	544.43	.78		.360	.4	44	218	19	
		spaced distention bre	ecciated veins at 40											
		degree up to 2 centi	metre with quartz											
		fragments in siliceous	hematitized black			1.1								
		matrix trace pyrite	; mylonitized and											
		gouged down hole, fabri	c 60 degree to core											
		axis.												
	543.65 544.43	As above, with bleach	ed trachyte clasts,	1										
		no silicification gou	iged at 60 degree											
		lower contact brecci	ated trachyte lahar											
		with 20% white pink	carbonate flooding											
		both contacts 60 degree	, fabric 60 degree											
		to core axis.		· · · · ·										
	1. A.													
544.43 544.	88 BRECCIA													
				FX411254	544.43	544.88	.45		.040	.8	10	158	4	· · · · ·

544.88 546.15 FAULT

				· \\	مستغلبة الأ								and the state of the second
		***********************DESCRIPTION************************************							******	*******	ANALYSES	;******	******
FROM	то		SAMPLE#	FROM	то	LENGTH	MIN X	AU PPM	AG PPM	AS PPM	BA PPM	NO PPN	
M	M			M	M	М			· ·				
			FX411255	544.88	546.15	1.27		.032	.1	11 🕓	68	15	
									•				
546.15	550.65	ULTRAMAFIC											
		Bleached highly altered trachyte fan conglomerate,	FX411256	546.15	548.15	2.00		.044	.1	10	60	1	
•		locally brecciated, mylonitized, no	FX411257	548.15	549.65	1.50		.018	.1.	2	68	1	
		silicification lower contact 70 degree	FX411258	549.65	550.65	1.00		.003	.1	- 6	40	1	
		546.15 548.15 Dark green locally insitu							••	•		•	
		auto brecciated, fan conglomerate with											
		occasional trachyte clasts, no											. î
		silicification, no veining.											
		548.15 550.65 As above, no silicification, minor calcite											
		veining up to 3 millimetre at 50 degree											
		widely spaced.											
550.65	561.75	TRACHYTE											
		Variably weakly silicified trachyte fan conglomerate	FX411259	550.65	552.65	2.00		.007	.1	6	52	1	
		with abundant intermixed ultramafic clasts, locally	FX411260	552.65	554.65	2.00		.015	.1	6	51	1	
		porphyritic, chloritic, with widely spaced calcite	FX411261	554.65	556.65	2.00		.011	.1	9	81	1	
		veinlets, locally brecciated with 1% fine grained	FX411262	556.65	557.65	1.00		.052	.1	13	153	1	
		disseminated pyrite, fractures hematitized with rusty	FX411263	557.65	559.65	2.00		.077	.1	30	118	1	
		red alteration with calcite altered phenocrysts Foot of	FX411264	559.65	560.65	1.00		.105	.1	48	71	1	
		Hole.	FX411265	560.65	561.75	1.10		.053	.1	81	62	1	

APPENDIX B

ANALYTICAL RESULTS

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

5 . . **.** . .

1.00

GEOCHEMICAL ANALYSIS CERTIFICATE

يحضمه

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: CORE AU** ANALYSIS BY FA+AA FROM 10 GK SAMPLE.

Vault 1B.C PPX. BH 72471 F

£....

÷

1.1

INCO GOLD COMPANY File # 88-6331 Page 1

2	SANPLE:	No PPM	Cu PPH	PD PPM	Zn PPH	Àġ PPH	Ni PPM	Co PPN	Nn PPN	Fe %	AS PPN	U PPN	- AU PPH	Th PPH	ST PPM	Cd ?PX	SD PPM	BÍ PPH	V PPM	Ca %	P %	La PPM	Cr PPN	Nġ 1	Ba PPN	Ti \$	B PPH	Al S	Ha K	K Z	W PPH	PPB
Ţ	FX 411141 FX 411142 FX 411143 FX 411143 FX 411144 FX 411145	4 5 63 21	42 26 42 19 21	43 33 56 13 29	197 57 38 264 467	.1 .1 .2 .1 .1	34 30 73 43 45	22 11 29 25 19	113 2 2 24 89	3.55 6.60 4.45 5.19 4.41	55 31 347 326 420	5555	NC NC ND ND	3 4 2 3	329 305 115 45 45	1 1 1 1	17 15 64 124 109	3 2 4 4 2	13 5 9 7 4	.59 .32 .17 .07 .28	.063 .041 .032 .018 .017	7 2 2 3	8 1 1 3	.15 .03 .01 .01 .02	76 26 15 12 11	.01 .01 .01 .01 .01	2 2 2 2 2 2	1.29 .75 .94 .40 .64	.11 .10 .04 .02 .01	.22 .19 .05 .02 .03	1 1 3 8	1 1 1 1
	PX 411146 FX 411147 FX 411148 FX 411149 FX 411150	46 85 33 43 22	23 30 12 14 14	26 44 24 27 25	29 46 2 4 3	.1 .1 .2 .1	71 122 26 24 18	42 70 13 14 9	3 2 4 7 6	6.82 13.47 1.24 1.51 .54	714 1991 277 248 109	5 6 5 5 5	ND ND ND ND ND	2 3 4 7 6	37 40 32 23 28	1 1 1 1 1	126 202 35 30 22	2 2 2 3	5 6 5 4 3	.06 .07 .09 .08 .03	.017 .021 .011 .001 .001	2 2 3 2 2	3 1 3 5	.01 .01 .01 .01 .01	9 10 10 5 2	.01 .01 .01 .01 .01	2 2 5 3 2	.60 .62 .72 .75 .55	.01 .01 .01 .01	.01 .01 .01 .01 .01	8 9 6 22 6	4 1 1 1
	FZ 411151 FX 411152 FX 411152 FX 411154 FX 411154 FX 411155	53 155 12 108 386	18 20 10 19 31	26 24 2 15 36	28 53 113 100 245	.1 .1 .1 .1	37 37 14 38 64	17 22 4 16 30	10 6 24 15 6	1.44 1.24 .59 1.06 2.98	462 427 78 215 833	5 5 5 5 5	CN ND ND ND ND	3 2 1 2 1	57 51 19 55 113	1 1 1 1	25 32 10 25 46	2 2 3 2	17 8 2 6 7	.51 .06 .12 .07 .10	.005 .013 .003 .006 .010	4 3 2 2 2	13 6 8 8 6	.01 .01 .01 .02 .01	38 10 4 12 11	.01 .01 .01 .01 .01	2 2 2 2 2 2	1.74 .62 .17 .47 .52	.01 .02 .01 .02 .04	.02 .01 .01 .01 .02	7 7 3 6 10	1 2 1 2 1
	PX 411156 FX 411157 FX 411153 FX 411159 FX 411150	12 66 58 36 22	26 13 11 19 17	28 34 20 23 17	133 400 334 215 87	.1 .1 .1 .1	26 20 20 20 20	18 17 11 16 10	9 11 17 98 128	1.99 3.84 1.93 4.63 3.96	566 1160 439 637 222	5 5 5 5 5	ND ND ND ND ND	10 2 4 9 6	223 153 144 157 105	1 1 1 1 1	17 30 14 17 5	2 4 2 2 2	9 5 4 17 16	.37 .16 .13 .32 .16	.089 .021 .008 .083 .035	50 4 13 51 30	6 4 5 10 16	.04 .02 .02 .20 .30	72 38 39 57 80	.01 .01 .01 .01 .01	2 2 2 2 2 2	.71 .44 .42 1.11 1.30	.10 .07 .06 .07 .05	.18 .15 .14 .23 .15	7 7 4 3	1 7 1 9 11
	FX 411161 FX 411162 FX 411163 FX 411164 FX 411165	18 11 9 2	15 16 15 1 2	24 43 31 18 13	96 206 157 1 2	.1 .6 .2 .1 .2	18 25 17 2 2	11 11 7 1 1	175 119 72 7 9	4.33 3.51 2.16 .51 .65	144 59 70 7 14	5 5 5 5 5	ND ND ND ND ND	10 38 24 18 7	126 206 159 97 101	1 1 1 1	2 2 3 2 2	2 2 2 2 2 2	20 10 6 2 1	.27 .52 .20 .10 .13	.075 .154 .035 .014 .024	55 96 46 27 5	2D 8 4 4 4	.49 .40 .19 .02 .03	45 53 44 18 31	.01 .01 .01 .01 .01	2 2 2 2 2 2	1.71 1.65 .92 .36 .48	.05 .09 .07 .04 .04	.17 .23 .20 .14 .20	1 1 2 3	13 72 34 6 83
	FX 411166 FX 411157 FX 411168 FX 411169 FX 411170	5 4 12 272 23	3 2 1 3 1	11 22 13 30 32	1 1 11 5	.1 .1 2.6 .3	4 5 1 1 3	1 3 1 1 1	6 10 2 12 32	.36 .57 .08 .71 .52	9 25 2 55 14	5 5 5 5 5	ND ND ND ND ND	9 12 7 9 12	89 93 129 84 157	1 1 1 1	3 2 2 2 2 2	2 2 2 2 2 2	1 2 2 3 3	.12 .16 .21 .10 .28	.024 .035 .045 .015 .071	22 23 15 11 21	4 3 2 4 3	.01 .02 .02 .02 .06	18 34 19 47 465	.01 .01 .01 .01 .01	3 2 2 2 3	.38 .56 .55 .38 .68	.04 .04 .05 .04 .06	.15 .30 .21 .21 .25	2 2 1 3 1	12 30 3 122 102
	FX 411171 FX 411172 FX 411173 FX 411174 FX 411175	3 2 26 89 17	10 15 1 11 7	45 20 30 32 29	51 29 1 53 18	.2 .2 .3 .9 .5	8 5 8 4	6 3 1 5 3	159 30 14 147 35	2.66 .95 .33 2.03 1.59	29 11 7 10 39	5 5 5 5 5	ND ND ND ND ND	23 17 16 20 23	140 129 99 107 85	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	8 3 8 4	.24 .21 .12 .17 .06	.056 .046 .028 .042 .008	61 23 40 70 54	7 4 6 7 5	.41 .11 .02 .29 .08	125 257 412 356 100	.01 .01 .01 .01 .01	2 2 2 4 2	1.27 .67 .41 1.06 .49	.06 .06 .04 .05 .03	.22 .22 .21 .21 .21 .22	1 1 2 1 2	22 21 72 205 97
	FX 411176 STD C/AU-R	51 17	1 57	19 41	2 132	.8 6.7	2 58	1 30	14 1020	1.02 3.98	43 40	5 19	ND 7	24 37	74 48	1 18	2 16	2 18	4 58	.06 .47	.004 .088	44 39	4 56	.02 .90	151 174	.01 .06	2 32	,38 1.96	.03	.23	2 12	54 490

INCO GOLD COMPANY FILE # 88-6331

La Cr Яg Ba Ti B Al Na K W Au** SANPLE Zn Ag Ni Co Hn Fe As IJ Au Th Sr Cd Sb Bi V Ca P Pb Mo Cu \$ PPN PPN PPN PPN PPN PPN PPN PPN PPN ł \$ PPN PPM ł PPN 8 PPN 2 \$ 8 PPM PPB PPN PPN PPN PPN PPN PPN PPM PPN 17 530 4.47 38 ND 7 143 1 2 2 27 .49 .135 66 37 1.31 223 .01 2 2.44 .06 .22 1 30 FX 411177 5 7 43 24 118 .1 48 5 ND 98 1 2 2 22 .51 .078 23 26 .86 66 .01 6 1.23 .02 .13 1 175 135 12 50 1.1 23 9 347 3.15 1 FX 411178 69 15 1 .63 .087 30 23 .75 66 .01 2 1.12 .02 .14 1 1160 20 9 313 3.18 243 5 2 1 83 3 2 26 FX 411179 96 16 16 42 4.2 2 101 2 33 1.15 .114 47 38 .98 357 · .01 2 1.52 .02 .13 1 56 29 5 1 2 .7 16 10 398 3.30 ND FX 411180 3 16 11 56 2 1.32 .01 .10 1 2230 34 1.33 .093 38 .98 192 .01 79 5 3 1 118 1 2 4 30 FX 411181 58 20 12 40 12.2 14 11 317 3.04 2 9500 .43 68 .01 2 .79 .01 .11 216 2.77 251 178 6 2 27 2.04 .150 20 34 FX 411182 362 13 14 27 6.6 -11 6 5 9 1 1 12 11 291 3.76 570 5 ND 2 342 1 11 3 37 4.50 .186 32 23 .38 58 .01 2 .91 .01 .14 1 250 790 15 17 37 3.2 FX 411183 .76 105 65 29 .01 2 1.34 .02 1 - 74 12 282 3.86 270 5 ND 3 97 1 3 2 40 1.12 .152 .16 18 1.0 14 FX 411184 222 13 54 32 .69 .083 22 20 .47 128 .01 3.68 .01 .07 1 390 11 5 182 2.11 119 5 ND 1 58 1 2 4 FX 411185 70 12 27 1.9 8 63 30 .79 169 5 1.17 .02 .18 1 400 135 2 2 28 1.52 .137 .01 15 11 416 2.82 179 5 ND 1 1 FX 411186 50 1.2 21 13 1 1 1920 9 2 12 1.34 .072 37 8 .12 124 .01 4 .41 .02 .18 10 116 1.27 190 5 2 1 144 1 FX 411187 969 18 36 35 20.1 16 2 12 1.28 .104 52 10 .22 70 .01 4 .59 .03 .19 1 610 13 9 141 1.94 305 5 ND 1 139 1 2 20 34 7.2 FX 411188 172 15 2 34 .77 .170 73 26 .54 41 .01 3 1.05 .02 .19 1 124 2.1 19 17 176 3.40 329 5 ND 3 71 1 3 FX 411189 22 19 18 61 3 2 38 .61 .168 67 36 .62 30 .01 2 1.25 .02 .17 1 57 5 ND 61 1.3 14 14 213 3.74 170 3 1 FX 411190 38 21 14 62 1 1240 18 .37 .052 29 20 .26 67 .01 2 .56 .01 .13 - 77 5 ND 2 47 1 3 4 FX 411191 599 12 24 24 15.0 20 9 118 1.79 1 410 37 .67 .100 51 39 .80 34 .01 2 1.19 .01 .13 33 5 ND 67 1 2 2 FX 411192 .9 27 11 213 3.30 2 12 23 12 50 .70 43 3 1.08 .01 1 149 2 2 43 .49 .126 63 48 .01 .14 FX 411193 50 22 62 .6 30 13 183 3.59 376 5 ND 4 42 1 6 5 20 1 6 2 22 .22 .049 23 63 .33 23 .01 2 .53 .01 .11 1 2600 245 3 1 FX 411194 25 13 11 34 1.8 16 7 96 1.92 .72 1 37 2 .37 .109 61 42 38 .01 3 1.02 .01 .14 13 148 3.34 468 5 ND 4 31 1 2 45 FX 411195 5 20 19 60 .1 24 .23 82 .01 3 .44 1 2440 86 1.56 245 5 3 1 37 1 2 2 17 .33 .030 16 24 .01 .13 20 6 FX 411196 8 12 12 24 1.8 57 .40 .109 54 45 .86 24 .01 5 1.31 .01 .12 1 30 13 206 3.86 225 5 ND 3 38 1 2 2 49 FX 411197 2 19 22 62 .5 Ł 2 49 .46 .146 59 54 .71 22 .01 2 1.05 .01 .13 1 62 5 ND 5 34 1 5 14 16 65 .5 35 14 177 3.77 508 FX 411198 37 , 55 23 3.75 1 2320 5 3 3 26 1 2 2 30 .31 .084 31 .01 .01 .12 FX 411199 16 20 39 1.4 19 8 157 2.73 100 3 . 1 44 5 ND 36 8 2 45 ,49 ,169 58 53 .89 24 .01 3 1.15 .01 .12 14 178 3.51 403 4 1 FX 411200 22 13 58 .6 31 2 1 95 .64 .158 53 18 2 1.13 .01 .12 242 5 ND 3 40 1 2 2 46 61 .94 .01 192 3.28 FX 411201 4 9 19 50 .6 43 13 1 630 57 .50 .170 44 94 .82 37 .01 2 1.31 .01 .13 11 201 3.62 102 5 ND 5 41 2 2 49 -1 FX 411202 89 11 14 45 .6 68 7 49 .83 .129 60 72 .71 .01 2.81 .01 .14 1 4460 17 33 12 166 3.27 470 5 ND 4 48 1 2 6 50 .8 FX 411203 2 2 40 .49 .147 47 83 .72 40 .01 2.92 .01 .14 1 122 5 ND 5 35 ł 52 47 15 158 3.13 363 1 10 7 16 .5 FX 411204 59 1.10 27 .01 .11 - 1 570 2 62 .43 .114 38 .01 3 1.35 5 ND 3 37 1 2 34 32 14 52 .9 36 11 204 3.84 106 FX 411205 .40 .118 45 54 1.15 29 .01 2 1.36 .01 .12 1 820 5 ND 3 37 1 2 2 63 11 211 3.91 101 FX 411206 16 36 13 56 1.2 30 **63 .70** 68 .01 3 .74 .01 .12 1 760 389 5 ND 3 82 1 3 3 40 .66 .115 42 11 150 3.09 FX 411207 21 12 10 44 1.1 32 3 36 .43 .109 34 52 .65 31 .01 5.65 .01 .12 1 650 52 150 3.06 322 5 ND 3 1 2 16 20 46 .9 34 10 FX 411208 16 1 320 38 .46 .122 32 60 .82 32 .01 3.87 .01 .11 ND 3 51 1 2 2 50 38 11 189 3.19 145 5 FX 411209 9 16 10 1.2 1 350 5 ND 3 82 1 2 2 55 .74 .126 50 61 1.30 48 .01 5.98 .01 .11 88 35 12 251 3.91 3 22 16 64 .8 FX 411210 43 .01 3 1.14 .01 .12 1 780 59 .46 .121 46 66 1.13 47 2 2 208 3.45 74 5 ND 4 1 FX 411211 15 23 18 58 . 8 32 10 32 .53 .141 23 88 .91 33 .01 2 .88 .01 .10 1 210 ND 1 55 1 2 2 11 174 2.81 35 - 51 FX 411212 5 50 10 44 .4 69 20 18 58 .49 .089 39 56 .92 174 .06 36 1.99 .06 .14 11 470 7 37 47 19 68 30 1022 4.09 42 16 57 42 132 7.2 STD C/AU-R 17

Page 2

C

Ć

6

1.5

C

C

C

(

(

6

€

C

0

C

Ċ.

€

€

€.

Ć

(

(

INCO GOLD COMPANY FILE # 88-6331

SAMPLE#	HO PPN	Cu PPN	Pb PPN	Zn PPM	Ag PPM	NI PPM	Co PPN	Nn PPN	Fe %	AS PPH	U PPN	Au PPM	Th PPN	ST PPN	Cd PPM	SD PPM	BÍ PPN	V PPH	Ca %	P X	La ?PM	CT PPM	Mg %	Ba PPN	Ti %	B PPN	Al %	Na %	K	N . PPH	Au** PPB	
FX 411213 FX 411214 FX 411215 FX 411216 FX 411217	12 21 165 95 94	38 22 28 4 4	13 14 21 2 2	47 52 74 5 12	1.3 1.7 2.8 .8 1.0	62 32 40 8 5	10 9 14 1 1	191 243 263 41 90	2.90 3.52 4.23 .73 1.53	62 121 325 51 89	5 5 5 5 5	ND ND ND ND	2 4 6 1 1	66 73 76 25 47	1 1 1 1	2 2 12 3 2	2 2 4 2 2	36 47 44 4 12	.57 .47 .50 .14 .17	.135 .107 .131 .003 .008	23 46 46 2 2	75 53 54 9 8	.84 1.08 1.09 .09 .15	36 83 58 152 10	.01 .01 .01 .01 .01	2 2 2 2 7	.76 .43 .51 .12 .14	.01 .01 .01 .01 .01	.18 .20 .19 .07 .05	2 1 1 2 4	430 1050 370 290 630	
FX 411218 FX 411219 FX 411220 FX 411221 FX 411221 FX 411222	19 44 38 19 39	3 19 18 53 76	2 9 15 5 12	9 23 31 17 29	.7 2.9 9.4 14.2 3.4	4 10 22 10 24	1 2 6 2 6	98 187 215 134 164	1.46 3.19 3.80 2.12 2.35	19 72 83 19 68	5 5 5 5 5	ND ND 14 21 2	1 1 1 2	29 77 102 51 58	1 1 1 1	2 3 2 2 2	2 2 2 2 2 2	9 22 23 10 21	.09 .21 .36 .19 .30	.014 .044 .100 .043 .089	2 10 24 11 28	7 13 14 10 33	.14 .30 .43 .27 .33	9 212 103 32 18	.01 .01 .01 .01 .01	2 2 2 2 2 2	.16 .34 .47 .35 .62	.01 .01 .03 .02 .02	.05 .11 .22 .14 .15	2 5 2 3 2	65 2900 9160 18100 2940	
FX 411223 FX 411224 FX 411225 FX 411225 FX 411226 FX 411227	9 27 16 5 1	8 18 11 11 12	5 12 15 20 21	18 50 59 67 70	1.4 3.1 .8 .7 .6	7 27 7 5 4	2 8 8 11 10	160 411 185 311 384	1.93 5.13 2.78 3.59 3.72	20 125 153 238 221	5 5 5 5	ND ND ND ND ND	1 5 6 5	30 76 56 61 62	1 1 1 1	2 4 2 2 2	2 2 2 2 2 2	9 40 16 31 40	.17 .31 .40 .44 .44	.023 .106 .126 .169 .167	8 52 60 72 64	12 70 13 14 15	.25 .97 .48 .87 1.09	51 24 60 58 52	.01 .01 .01 .01 .01	5 2 2 2 2 2	.34 2.15 .74 1.26 1.48	.01 .03 .02 .02 .02	.07 .22 .22 .28 .28	5 3 2 1 1	480 770 420 490 230	
FX 411228 FX 411229 FX 411230 FX 411231 FX 411232	10 35 4 8 3	13 10 11 11 18	24 19 26 23 22	68 70 68 57 60	.9 .7 1.3 .7 .9	5 4 4 4	11 7 10 9 9	295 190 392 305 422	3.08 2.18 3.74 2.90 3.32	278 174 262 204 291	5 5 5 5	ND Nd ND ND ND	5 3 7. 5 6	66 44 67 54 62	1 1 1 1	2 2 3 2 2	2 10 2 2 2	31 26 44 34 33	.59 .43 .54 .47 .48	.175 .104 .174 .148 .167	59 48 67 65 69	13 13 16 15 14	.85 .59 1.23 .90 1.21	44 55 51 60 47	.01 .01 .01 .01 .01	2 2 2 2 2 2	1.14 .79 1.60 1.16 1.45	.02 .01 .02 .02 .02	.29 .25 .31 .29 .27	1 2 1 2 1	350 710 390 260 159	
FX 411233 FX 411234 FX 411235 FX 411236 FX 411237	12 2 6 30 57	14 15 13 14 16	20 22 23 17 82	70 72 55 60 48	.8 .6 .7 .6 1.5	4 3 5 4	10 10 8 7 9	468 691 355 210 174	3.51 3.97 3.31 2.75 3.10	230 205 158 159 211	5 5 5 5 5	ND ND ND ND ND	4 4 4 3	62 71 58 59 58	1 1 1 1	3 2 2 2 2 2	2 2 2 2 2 2	40 37 29 26 21	.47 .47 .41 .39 .43	.176 .168 .130 .094 .109	63 60 60 49 62	17 16 12 12 9	1.33 1.46 1.00 .92 .57	51 36 37 31 31	.01 .01 .01 .01 .01	2 2 2 5 2	1.62 1.79 1.19 .97 .72	.02 .02 .02 .02 .02 .02	.29 .27 .24 .21 .19	2 1 1 1 1	210 100 163 330 500	
FX 411238 FX 411239 FX 411240 FX 411241 FX 411242	31 38 30 53 200	14 12 11 13 10	23 53 30 37 27	54 54 52 58 43	1.4 1.4 1.4 .8 .9	3 4 23 3 5	10 9 8 8 7	167 295 398 393 264	3.27 3.38 4.17 3.52 2.11	196 270 164 134 116	5 5 5 5 5	ND ND 2 ND ND	5 4 7 6 2	72 73 67 75 55	1 1 1 1	2 2 2 2 2	2 2 2 2 2	26 34 51 40 26	.41 .77 .50 .47 .40	.127 .147 .160 .145 .083	73 73 72 81 59	7 11 34 12 7	.64 .80 1.11 1.17 .58	25 38 42 37 29	.01 .01 .01 .01 .01	2 5 2 2 2	.93 .99 1.56 1.51 .81	.03 .02 .03 .03 .02	.27 .22 .27 .27 .15	1 2 1 1 1	104 330 1080 142 152	
FX 411243 FX 411244 FX 411245 FX 411246 FX 411247	16 9 80 18 413	15 12 13 12 8	34 16 21 21 32	63 62 60 58 38	.8 .8 1.4 1.2 1.4	3 2 4 3 5	8 9 10 9 6	352 396 230 290 193	3.60 3.48 2.45 2.80 2.04	181 242 113 142 116	5 5 5 5 5	ND ND ND ND ND	5 4 4 6 4	75 69 97 107 88	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	36 35 26 25 20	.43 .46 .59 .51 .49	.149 .157 .189 .161 .094	83 86 110 100 73	12 12 11 11 9	1.14 1.16 .72 .95 .53	31 40 35 35 68	.01 .01 .01 .01 .01	2 2 3 2	1.38 1.49 1.14 1.43 .90	.03 .03 .04 .04 .03	.25 .25 .31 .36 .31	1 1 1 1 2	123 230 56 54 56	
FX 411243 STD C/AU-R	75 19	9 63	26 42	44 132	1.6 7.2	9 69	7 30	411 1036	2.45	121 42	5 19	ND 8	6 39	130 51	1 19	2 17	2 19	19 63	1.06 .50	.120 .099	85 42	8 60	.78 .91	86 179	.01 .07	5 38	.97 2.02	.04 .05	.28 .14	1 11	41 490	

1.

A. 62. 6 . .

Page 3

C

ŧ

•••

(....

(

€:

(÷-

4

Ċ

r -

(° .

ι.

ξ.

(

e.

(j)

.

Ę

Ċ.

INCO GOLD COMPANY FILE # 88-6331

SAMPLE	Ho PPM	CU PPM	?b PPN	Zn PPN	Ag PPN	NÍ PPM	CO PPM	Mn PPN	Fe	AS PPN	U PPM	Au PPM	Th PPN	Sr PPN	Cđ PPM	SD PPM	BÍ PPM	V PPM	Câ %	P %	La PPM	Cr PPH	Ng %	Bâ P?N	Ti %	B PPM	Al X	Na ł	8	PPN	Au** PPB
FX 411249	4	16	28	38 47	.1	43 8	10 8	389 400	2.71	34 45	5	ND ND	7	160 177	1 1	2 2	2 2	17 12	1.27	.129	81 115	23 9	.76 .58	84 98	.01 .01	4	.78	.04 .05	.24 .27	2 2	38 72
FX 411251	2	11	35	67 59	.1	9	10 10	456 351	2.82	92 106	5	ND ND	10 10	154 141	1 1	2	2	20 16	1.31 1.06	.182 .143	129 113	11 8	.75 .49	177 119	.01 .01	3 4	1.24	.04 .04	.25	1 1	22 151
FX 411253	19	13	28	85	.4	6	9	494	2.68	44	5	ND	13	192	1	2	2	18	1.50	.152	119	7	.72	218	.01	9	.81	.04	.27	1	350
FX 411254	4	10	13	32	. 8	8	4	831	1.18	10	5	ND	2	265	1	2	2	13 13	7.48	.049	38 140	12	.54	158 68	.01	5 8	.66 1.08	.01	.15	2	40 32
FX 411255 FX 411256	15	18	31	75	.1	5	9	382	2.25	10	- 5	ND	10	169	1	2	3	17	1.39	.138	151	- 5	.75	60	.01	2	1.35	.05	.22	1	44
FX 411257 FX 411258	1 1	16 15	34 26	52 80	.1 .1	6 6	8 10	425 508	2.37 2.59	2.	5	ND ND	8 9	169	1	2	2	12	1.44	.138	145	4	.94	40	.01	2	1.58	.05	.24	1	3
FX 411259	1	16	34	52	.1	6	8	417	2.22	6	5	ND	10	185	1	2	2	11	2.05	.137	156	7	. 59	52	.01	2	1.18	. 05	.26	1	7
FX 411260 FX 411261	1 1	17 19	39 41	70 64	.1	5	9 10	507 543	2.60	6 9	5	NG ND	10	198	1	2	2	13	1.68	.137	149	4	.70	81	.01	3	1.34	.08	.21	1	11
FX 411262 FX 411263	1 1	17 17	38 38	56 63	.1 .1	4	9	56) 389	2.69 2.37	13 30	5 5	ND ND	10 8	180 171	1	2	2	18 19	1.57	.139	148 138	4	. 60	153	.01	1 3	1.35	.04	.21	5	52 77
FX 411254	1	17	31	62	.1	4	9	378	2.40	48	5	ND	8	154	1	2	2	20	1.31	.135	138	2	.62	.71	.02	4	1.18	.04	. 20	3	105
FX 411265 STD C/AU-R	1 18	19 62	28 41	53 132	.1 6.7	5 68	10 31	347 1019	2.36 3.93	31 40	5 22	ND 7	8 37	142 47	1 19	2 20	2 19	19 58	1.45	.134	134 38	55	.55 .90	62 174	.01 .06	35	1.23	.04	.27	12	525

Page 4

ζ.,

C

Ĉ

ť

ŧ

С,

Ć

í

(

ŀ

Ì

e

(

 (\cdot)

(

6

Ċ

OKANAGAN FALLS, BRITISH COLUMBIA.

BASED ON FIELD SURVEY OMILITED THE 28H DE LUCY . 1988

SCALE 1-10,000

The real part of the particular sector of the

BEARINGS ARE ASTPONOMIC AND ARE DERIVED FROM THE LEGAL DIRVER OF HIGH WAY WHITE " IS REGISTERED IN THE CAND FITLE DEFICE IN KAMLOUPS AT PLAN HIDE

BY STEVEN J. BUZIKIEVICH ... BOLS

FIGURE 2 Canadian Nickel Company Limited Vault Property, Okanagan Falls, B.C. Osoyoos M.D. Location of claims and baselines

-

Revised May 1989 by W. Groeneweg

STEVEN J. BUZIKIEVICH

		-
	-200 m	
	-400 m	
	10	
	-600 m	
	-600 m	
	-600 m	
	-6 <u>00 m</u>	
	-600 m	
	-60 m	
	-600 m	
	-60 m	
	-60 m	
	<u>-60 m</u>	
	-60 m	
	-60 m	
Company	-60 m	
Company	-600 m	
Com pany Area: Okanaga	-60 m Linited	
Com pany Area: Okanaga	-60 m	
Com pany Area: Okonogo	-600 m Limited n Fals, Osoyoos MD.BC. SHEET FIGURE 3 4 b	
Com pany Area: Okonogo	-200 m Linited I Fals, Osoyoos MD, BC. SHEET FIGURE 3 4 b Survey date: Data drawn	
K.Waish	-BOD M -BOD M	

				Eleva	tion 600 m
					400 m
					2 <u>00 m</u>
Au value	s in pp	m grea	ter		
than 1 ppm	, plotted	l only.			
					_00
Canadian Nic	kel Com	pany Li	miteol		
Canadian Nic Project: VAULT PROPERTY	kel Com	pany Li Area: Okanaga	miteol In Falls,Osoyoo	s MD,BC.	
Canadian Nic Troject: VAULT PROPERTY SECTION 11	oo E	pany Li Area: Okanaga	miteol	IS MD, BC. SHEET 1	FIGURE L1 a
Canadian Nic Project: VAULT PROPERTY SECTION 11 Supervisor: Wim Groeneweg ompiled by: E.F.Pattison	OO E Instrument: Drawn by: c.a.s	pany Li Area: Okanaga	survey date	SHEET	FIGURE L(a.