LOG NO:	0525	 RD.
ACTION:		
	a the second	
FILE NO:		and the contraction of the contract of the con

PROSPECTING REPORT ON THE DEV 1-4 CLAIMS NORTHWESTERN BRITISH COLUMBIA

Liard Mining Division NTS 104 G/12

Latitude 57° 32' N Longitude 131° 40' W

FILMED

FOR

 SUB-RECORDER

 RECEIVED

 MAY 1 7 1989

 M.R. # _____\$_____

 VANCOUVER, B.C.

, di

10

100 million - 100 million -

1

A 1 44

CONTINENTAL GOLD CORP. 1020-800 W. Pender Street Vancouver, B.C. V6C 2V6

BY

GREG DAWSON CONTINENTAL GOLD CORP.

March 16, E1091 OGICAL BRANCH ASSESSMENT REPORT

TABLE OF CONTENTS

		Page
1.0	SUMMARY	2
2.0	INTRODUCTION	3
	2.1 Location and Access	4
	2.2 Topography and Vegetation	4
	2.3 Exploration History	7
	2.4 Property Status	8
3.0	PROPERTY GEOLOGY	10
	3.1 Stratigraphy and Structure	10
	3.2 Mineralization and Geochemistry	12
4.0	CONCLUSIONS AND RECOMMENDATIONS	18
5.0	BIBLIOGRAPHY	19

APPENDICES

APPENDIX	I - Sample Descriptions
APPENDIX	II - Geochemistry
APPENDIX	III - Statement of Qualifications
APPENDIX	IV - Cost Statement

LIST OF FIGURES

Figure 1	Location Map	6
Figure 2	Claim Map	11
Figure 3	Geology of the Devil's Elbow Project Area	13
Figure 4	Sample Locations and Geochemistry	16
Figure 5	1:10,000 Sample Locations and Geochemistry	Pocket

LIST OF TABLES

Ł

Table 1 Claim Schedule

()]]

1.0 SUMMARY

The Devil's Elbow Project encompasses the DEV 1-4 claims totalling 80 units (2000ha). The project area, located 50 kms southwest of Telegraph Creek (NTS 104 G/12) is underlain by limestone, phyllite, argillite, chert, rhyolite and granodiorite. Large gossans have developed throughout the claim group, especially in regions where the sediments and volcanics are intruded by small stocks and plugs.

- 2 -

Prospecting to date has located numerous zones of precious and base metal mineralization associated with shear zones and brecciated zones in volcanics and sediments, well as as skarn hosted Aq-Pb-Zn mineralization. Minimal sampling within the mineralized zones discovered to date has returned assays of up to 9.8 oz/ton Ag, 2.62% Pb and 1.08% Zn over 5.25m. Grab samples from other zones have assayed up to 2290 ppb Au (0.067 oz/ton Au), 4.7 oz/ton Ag and 10% Zn. Numerous other gossanous/mineralized zones were not investigated during 1988.

The Devils Elbow Project has excellent potential for hosting shear-hosted gold-silver mineralization and precious metal-bearing skarns similar to mineralization found in the Iskut River region of B.C. and at Continental Gold Corp.'s Trophy Gold Project located 35 kms. southeast of the DEV 1-4 claims.

2.0 INTRODUCTION

New Yorks

The Devil's Elbow Project (NTS 104G/12) encompasses the DEV 1-4 claims. Each claim is a 20 unit modified grid claim for a total of 80 units. The claims are registered in the name of Douglas B. Forster and held in trust for Continental Gold Corp., who owns an undivided 100% interest in the claims. Douglas B. Forster is a Senior Officer and Director of Continental Gold Corp.

The claims were staked in July of 1988 to cover a large hydrothermally altered zone in volcanics and sediments, where prospecting had discovered heavily oxidized pyrite-sphalerite mineralization which assayed 2290 ppb Au, 4.7 oz/ton Ag and 10% zinc.

- 3 -

The DEV 1-4 claims were also located to cover the APEX Au, Ag, Pb, Zn, Cu, Wo mineral occurrence #013 on the Ministry of Energy and Mines' Mineral Inventory Map for NTS 104G.

2.1 Location and Access

1 1

6. F

Continental Gold Corp.'s DEV 1-4 claims are situated approximately 50 kms southwest of Telegraph Creek in northwestern British Columbia (Figure 1). Access to the property is via helicopter from Dease Lake or Telegraph Creek. As well, equipment and supplies can be flown in by float plane to the Stikine River, located 2.0 kms. from the western claim boundary.

The DEV 1-4 claims are centred near latitude $57^{\circ}32$ 'N and longitude $131^{\circ}40$ 'W on NTS map sheet 104G/12.

2.2 Topography and Climate

The DEV 1-4 claims are located within the drainage basin of the Stikine River at the eastern margin of the Coast Range Mountains. The project area is in

- 4 -

moderate alpine terrain with elevations ranging from 300 meters to 1900 meters.

Precipitation in the vicinity of the claims is variable throughout the year with sudden snow flurries and rain showers being common. Snow is on many north facing slopes until late June. Many cirques remain snow-filled all year round. The best months to conduct mineral exploration are July, August and September, with snow beginning to accumulate on the ground by early to mid-October.

Tree line is approximately 1200 meters, with all mineralization discovered to date occurring above this elevation. Minor grass and shrubs cover portions of the higher elevations, with much of the rest of claim region being underlain by talus and forest.

Outcrop exposure on the DEV claims is approximately 35%, with overburden and talus covering the rest of the region.

- 5 -

<u>i</u>

2.3 Exploration History

4.1

ii.

The first reconnaissance geological mapping in the Telegraph Creek map area was undertaken by Forrest A. Kerr (1948) of the Geological Survey of Canada, who mapped the mountains adjacent to the Stikine and Iskut rivers in the years 1924 to 1929. In 1956 the Geological Survey of Canada carried out "Operation Stikine" which included a helicopter reconnaissance of the Telegraph Creek map area.

7 -

This initial work combined with geological mapping conducted by J.G. Souther, led to the publication of a 1:250,000 scale geologic map of the Telegraph Map Sheet (104G); Souther (1972).

The first recorded mineral exploration in the Telegraph - Stikine River region was undertaken in 1861 when placer gold was discovered on the Stikine River just below the townsite of Telegraph Creek.

During the 1920's, 1930's and 1940's the emphasis had shifted from placer exploration to exploration for lode deposits. Early exploration was confined to accessible areas along the Stikine River, with a number of small copper occurrences being discovered.

During the 1920's and 1930's, the region covered by the DEV 1-4 claims was staked a number of times as the APEX claims.

No record of work exists for this early exploration period, although while staking the ground Continental geologists identified a number of pits and trenches on Devil's Elbow Ridge on DEV 1 and 2. Early explorationists were most likely interested in the extensive galena-sphalerite mineralization identified throughout the claim group.

Prospecting of the Dev 1-4 claims was carried out by five Continental Gold geologists on August 1st and 2nd, 1988. Seventy-eight rock samples were collected for analysis.

2.4 Property Status

The Devil's Elbow Project consists of 4 contiguous claims (DEV 1-4) totalling 80 units (2000ha). All mineral claims are owned by Continental Gold Corp.,

1

<u>لد ما</u>

.

and registered in the name of D.B. Forster, Vice President and Director of Continental Gold Corp. Pertinent claim information is outlined in Table 1. The location of the DEV 1-4 claims is depicted in Figure 2.

TABLE 1

CLAIM SCHEDULE

<u>Claim</u>	Record <u>No.</u>	Record _Date	Area <u>(ha)</u>	No. <u>Units</u>
DEV 1	5073	July 21, 1988	500	20
DEV 2	5074	July 21, 1988	500	20
DEV 3	5075	July 21, 1988	500	20
DEV 4	5076	July 21, 1988	500	<u>20</u>
			2000	80

3.0 PROPERTY GEOLOGY

1

10 C

Contraction of the local division of the loc

3.1 Stratigraphy

The regional geology of the Telegraph Creek map area has been discussed in detail by Kerr (1948) and by Souther (1972). The region covered by the DEV 1-4 claims is underlain by Permian sediments and volcanics

which are well exposed over much of the property (Figure 3). In the extreme southern portion of the project the sediments are intruded area bv granodiorite of Jurassic age. Triassic Upper volcanics also crop out within the claim group to the west of the Palaeozoic section. Lower Jurassic syenite intrusions occur both to the south and east of the claim group.

The Palaeozoic rocks consist of phyllite, argillite, chert, flow banded rhyolite and limestone. This section is intruded by numerous felsic and mafic dykes, which vary in width from 0.5 to 10 metres.

Shear zones, faults, and fault breccias have been recognized throughout the claim group and generally trend north-south to north-east.

3.2 <u>Mineralization and Geochemistry</u>

Only limited prospecting was conducted on the DEV 1-4 claims during the 1988 field season.

On July 27, 1988 the British Columbia Ministry of Energy and Mines released the results from their

P

1

<u>.</u>

-

*

I FOEND	
percent and a second seco	TRIASSIC
QUATERNARY PLEISTOCENE AND RECENT	
29 Fluviatile gravel: sand, silt: glacial outwash, till, sloine moraine and colluvium	Augita-andesite flows, pyroclastic rocks, derived volcaniciastic rocks and
	related subvolcanic intrusions; minor greywacke, silistone and polymictic
28 Hot-spring deposit, tula , aragoaits	
	Siltatone, thin-bedded siliceous siltatone, ribbon chert, calcareous and
27 Olivine basait, related pyroclastic rocks and loose tepara; younger than some of 29	dolomictic silisione, greywacke, volcanio conglomerate, and minor limestone
	Limestone, fetid argillaceous limestone, calcareous shale and reefoid
	[6] limestone; may be in part younger than some 7 and 3
UPPER TERTIARY AND PLEISTOCENE	
26 Rhyolite and dacite flows, lava domes, pyroclastic rocks and related sub-	S Greywacke, situatone, anale; minor conglomerate, but and voicanic sandstone
volcanic intrusions; minor basalt	MIDDLE TRIASSIC
Basalt, olivine basalt, dacits, related pyroclastic rocks and subvolcanic	Shale concretionary black shales minor calcements shale and stitutone
intrusions; minor rhyolits; in part younger than some 26	
CRETACEOUS AND TERTIARY	PERMIAN MIDDILE AND HIPPER DEBMIAN
UPPER CRETACEOUS AND LOWER TERTIARY	Limestone, thick-bedded mainly bioclastic limestone; minor siltstone, chert
Light green, purple and white rhvolite, trachvie and dacits flows pyroclastic	and tuff
24 rocks and derived sediments	
	BEBWIN AND OF DEP
22 23 27. Biotite leucogranite, subvoicanic stocks, dykes and sills	Phyllite, argillaceous quartzite, quartz-sericite schist, chlorite schist,
	2 greeastone, minor chert, schistose tulf and limestone
SUSTUT GROUP Chart-public coorlomarate, stanite-boulder coorlomerate, cuartrose	
21 sandstone, arkose, siltstone, carbonaceous shale and minor coal	MISSISSIP PIAN
	Limestone, crinoidal limestone, forruginous limestone; marcon tuif, chert
20 part equivalent to 22	
	Amphibolite, amphibolite meles; age unknown probably pre-Upper Juraselo
19 Medium-to coarse-grained, pink biotite-hornblende quariz mozzonite	
	Ultramafic rocks; peridotite, dunite, serpentinite; age unknown, probably
JURASSIC AND/OR CRETACEOUS	
Post-upper triassic pre-tertiary	
18 Hornblande diorite	Geological boundary (delined and approximate, assumed)
	Bedding (horizontal, inclined, vertical, overturned)
17 Grazodiorite, quartz diorite; minor diorito, leucogranito and migmatite	Antioline
	Syncline
71224 0117	Fault (defined and approximate, assumed)
MEDLE (?) AND UPPER JURASSIC	Thenet fault task on handnessell side (defined and annessingly and a second state of
BOWSER GROUP	The loss inter, were on manying-ware and positions and approximate, insumoul,
16 chert-pebble congiomerale, grit, greywacke, subgreywacke, siltstone and	
	аниеты ргорегу
MIDDLE JURASSIC	Giacier
15 subvolcanie intrusions	
•	
LOWER AND MIDDLE JURASSIC	
[4] fronstone	
LOW ER JURASSIC Congiomerate, polymicita conglomerate: granite-boulder conglomerate, grit.	
[3] greywacke, silistone; bassitic and andesitic volcanic rocks, peperites,	
pillow-breccia and derived volcaniciastic rocks	
TRIASSIC AND JURASSIC	
POST-UPPER TRIASSIC PRE-LOWER JURASSIC	
12 Syeaits, orthoclass porphyry, monzoaits, pyroxeaits	
UTCYMAN RATHOLITY	
10. Hornblande granodiorite, minor hornblande-quartz diorite 11, Hornblande,	
quartz diorite, hornblends-pyrozene diorite, amphibolite and pyrozens-bearing	
amphibolite	

Figure 3a: Legend for Geologic Map, Figure 3 (After Souther,1972) Regional Geochemical Stream Sediment Survey which covered the entire Telegraph mapsheet (104G). Stream sediments from creeks draining the DEV 1-4 claims are highly anomalous in Pb, Zn, Ag, As and Cd and moderately anomalous in Au. Ninety-fifth percentile Ag, Pb, Zn and As anomalies were documented in creeks draining both east and west from the ridge that runs down the centre of the claim group.

To date, prospecting has discovered two major styles of precious and base metal mineralization on the DEV 1-4 claims. In the southern portion of the project area sulfide-bearing shear zones have been documented near the margin of a granodiorite stock. A large gossanous zone occurs near the contact of the granodiorite on DEV 3 and 4. Shear zones are recognized by the presence of abundant quartz and calcite gangue within brecciated and sheared volcanics or sediments. Mineralization consists of the sulfides pyrite, arsenopyrite, galena, chalcopyrite and sphalerite. Minor amounts of magnetite also occur within these zones. Minimal rock sampling has returned highly anomalous values in both base and precious metals as summarized below and indicated on

- 14 -

Figure 4. This style of mineralization is widespread on the southern portion of the claim group. All rock sample locations together with their Au, Ag, Cu, Pb, Zn values are shown on Figure 5.

and the second s

SAMPLE NUMBER	ASSAYS
5319	Au: 1260 ppb
7394	Au: 1630 ppb Ag: 4.47 oz/ton
7407	Au: 62 ppb Ag: 3.25 oz/ton Pb: 2.10% Zn: 4.64%
7735	Au: 2290 ppb Ag: 4.70 oz/ton Zn: 10%
7732	Ag: 2.11 oz/ton Cu: 1.14%

A second style of mineralization has been located in the northern portion of the property. Skarnified limestones occur on the DEV 1 claim about 500 metres north of the LCP just below, and west of the ridge crest. Old workings, in the form of several small trenches were found in this location. Mineralization within the skarn is banded, with banding being defined by alternating layers of galena, pyrite, magnetite and sphalerite within a gangue of actinolite, epidote and quartz. Continuous chip samples were taken across the

banding in the skarn yielding a weighted average over a 5.25 metre (17.22 foot) true width section assaying:

> Ag: 9.8 oz/ton) Pb: 2.62%) over 5.25 metres Zn: 1.08%) (Sample #'s 4770-4772)

The banding in the skarn dips gently eastward and strikes about north-south. Three hundred metres north of this location another outcrop of skarn assayed 1.8 oz/ton Ag and 0.91% Cu.

Numerous other gossanous pyrite-rich mineralized zones have been located on the property, although no attempt was made to investigate these regions during 1988.

4.0 CONCLUSIONS AND RECOMMENDATIONS

£.#

a.c

The region covered by Continental Gold Corp's Devil's Elbow Project has excellent potential for shear zone gold-silver mineralization similar to mineralization found in the Iskut River region of northwest B.C. In addition precious metal-bearing skarn mineralization is widespread in the project area and is similar in many respects to Gulf International Mineral's, McLymont Creek Project in the Iskut River area, where recent drilling of sulfide skarns has yielded drill intercepts which assayed up to 1.6 oz/ton Au and 39.73 oz/ton Ag over 36.5 feet.

The following work is recommended for the 1989 field season:

- Detailed prospecting over the entire claim area.
- Geological mapping at a scale of 1:10,000 over the entire claim area and at a scale of 1:1000 over areas of known mineralization.
- Grid layout over and surrounding the two major areas of mineralization to be followed by soil sampling and geophysics. The geophysics should consist of magnetic and VLF-EM surveys.

- Hand and dynamite trenching of known and newly discovered mineralization.

1.1

.

5.0 BIBLIOGRAPHY

British Columbia Report of Minister of Mines and Petroleum Resources - 1965, pp. 19-38.

Grove, E.W., 1986. Geology and Mineral Deposits on the Unut River - Salmon River - Anyox Area, Ministry of Energy, Mines and Petroleum Resources Bulletin 63.

Kerr, F.A., 1948. Lower Stikine and Western Iskut River Areas, B.C. Geological Survey of Canada, Memoir 246.

Souther, J.G. 1972. Telegraph Creek Map-Area, B.C. (104G), Geological Survey of Canada Paper 71-44.

Forster, D.B. 1988. The DEV Project Property Summary. Private Company Report.

- 19 -

<u>APPENDIX I</u>

SAMPLE DESCRIPTIONS

NTS:	Pro	ject:_	Claim: <u>Dev</u>			Geologist: <u>Taul Barrot</u>				
Sample No.	Location	Туре	Sample Description	Length	Au	Ag	Cu	Pb	Zn	
PB 6320 00	Flegaling 1440m N-E of Providence Labo in Station	F	Angular float. Rache Chiseumie aliens), propries to alien devel in	-	118	2.6	2454	9	66	
PB 6321 00	Elevation Min N-Col Mounta; Kring	0	Detroit some behaven sets and Detroit home garder owner and operation 1880 and setticon s.	1	3	1.8	443	26	32	
PB 6322	11	0	11		28	1.3	186	48	33	
РВ 6323 00	Elevation 1250n Not of Mantain Lake	Si	Stream 5.5. Light brown to white sitt well sorted and arganic,	~	8	1.2	40	35	87	
PB 6324	I = I	F	Garse grained pyritized intrusive.	-	в	1.7	5076	8	83	

O-Outcrop

F⁻Float

V-Vein

So⁻ Soil

T⁻Talus Fines

Si-Silt

Contraction of

NTS:	Pro	ject:_	Claim: <u>Dev Claims</u>			Geologist: Paul Barrat				
Sample No.	Location	Туре	Sample Description	Length	Au	Ag	Cu	Pb	Zn	
PB-6312 - 00	Could be CP	F٧	guartz Veima a timostance forgillaccon milline and cridised and cartaing sin prite		1	· 8	26	33	360	
PB 6313 00	tlerrilen 1500 141 (201-	n T T	Silicified argillacoous rock	•	1	1.0	18	39	62	
PB 6314 00	Clear Han Robot 1 - Friday SP	۴	Quartz float inini pola 1 pyrile - si		1	0.5	11) 12	14	34	
PB 6315 00	Floral Constraints 2000	0	in production profession of		1	1.0	44	28	128	
PB 6316 00	Elevation 1520 S-Etion LCP	ſ	Quartz float minor suspinder contrile), loved in an argillacous.		3	0.5	28	10	63	
PB 631700	Fleverlien 1020 Sthern etimity A claims - Wot Lake		Taken Iran Kontact zone 1 1st and SD. is		4	0.3	41	13	39	
PB 6318 00	Christian 1460 Bions and Consol claims Worf Lake	F	Contact zone belireen as and Arg/1st Oxidine i limit containing minor prite and position fine gr- galance.		3	0.3	172	7	69	
PB 631900	Elevation 1470 Alevet 300m N.E. of Lake in sculled	0	Mafic dyte within sid mining in and mile unstances	1	1	3.4	1897	14	70	

0-Outeron

F-Float

NTS: 104G/12E

Project : _____

Claim: DEV 3 E4

Geologist: B. MEZET

新在13月1日

As 572

Sample No.	Location	Туре	Sample Description	Length	Au	Ag	Cu	РЪ	Zn
BM-00 7390	SW or LCP DEV 3 ~5650'	0	- JONLOUS JUTHUSIVE RX OTE RICH 78090 MINICS 1-510 - PIR-1 (1-490) DISS., FRANCY ORES - ORONGE (BAN DENDATION - LIMONITIC STAIN THE PHILLIPIC RY'S	//	3	.4	175	13	41
Bm-00 7391	SW OF LCP DEV 3 ~5650'	0	- QTZ RICH RX (INNO TO DESERMENTE ORIFLITATION BECAUSE OF HIGHLY FRACTURED DEBRIS - PYRITE (1-47) GREV, DISS., FRACTURES -VOBAY (1-576) - FIBPRUS GRA XTALS, MILKY WHITE QTZ - PYRTE CUBES IN VOBS - REPREN OXIDATION, LINGAUTIC STAIN.	/	2	.6	242	(1	497
'Bm-00 7392	SW OF LCP DEV 3 ~~5650'	0	- INTO GRAY CHERT OR ALTERED RINOLITI ? - PYRITE (2-510) DISS., FRACTURE CONTROLLED - DRANGE /BARI ONIDATION JUMONITIC STAIN - VERT F. GRAINED - PLATY TEXTURE ON LIX SIDE - SOME ARGILLIC ALTERNTION (1-210) W/ A WIMTE COLOR	/	4	.3	66	4	49
Bm-00 7393	Sui of Lip DEV 3 ~5650'	0	- GIZ VIIN OR SWHITT (FRACHINGS DEBAIS) -VUGGY (2-5%) -PRRITE (1-2%) - ORANGE / BRN OXIDITION, LIMONITIC STAIN - ORANGE / BRN OXIDITION, LIMONITIC STAIN - SOME ARGILLIC ALTERATION (5-10%) MILKY WHITE QTZ - JN DIVILLITIC (ARGILLICEFOUS RX'S	/	5	8.74	43	366	1
Bm-00 7394	DEV 4	0	- GTY BICH TRY ? (Imx 2m) EXTENT HORD TO DETERMINE DUE TO FRENCH YELL 'UT MENS -PYRITE (SILVER (CELTR) DISS., SOME CLUSTERS (-5-2cm) 1-5% -YELLOW/BRN OXIDATION, HIGHLY FRACTURED -WHITISH (GREY COLOF TRESH -VUGGY & (1-10%), SOME ARGILLIC ALTERMINON	1m	1630	152.8	33	58	13
Bm-00 7395	SW OF LCP DEV 3 ~5650	0	-HIGHLY ALTERED RX ARGILLIC ALTERATION (15-20%) -VUGAY & (15-20%), GTZ -MANGANTSE, LIMPNITIC STAIN -RETDIBAN DXIDATION -PRATE (1-3%), ROTTING PYRITE	/	3	.6	19	16	16
Bm-00 7396	DEV 4 ~5510'	0	- SILICFOUS RA RIVOLITT ? (CHERIH TEXTURE) -WHITE KARFH (CLOR. FRESH -RED/BRN OVIDATION -PURITE DISS., FRACTURE CONTROLLED (1-3%) -RESILIFIED TEXTURE	/	14	7.1	13	13	19
Bm-00 7397	DEV 3 ~5500'	0	- PYRITE RICH VEIN JAN CHERTY ARGILLITE "KNYDENT" -PYRITE RICH VEIN JAN CHERTY ARGILLITE "KNYDENT" -PYRITE (IS-25%) DISS., FRACTURE CONTROLLED, SILVER COLOR - WHITE/GREY FRISH, RED/BRN/YELLOW OXIDATION - LIMONITIC STAIN, PYRTE ZONE "BCM WIDE - PLATT TEXTURE, SOME ARGILLIC ALTERATION	25cm	10	1.4	22	15	85

O⁻Outcrop

F⁻Float

So - Soil

T⁻Talus Fines

SiTSilt

Claim: DEV 3E4 Geologist: B. MEZEI NTS: 104G/12E Project: Sample No. Location Type Sample Description Au Cu Pb Zn Length Δa -FELSIC DYKE Bm-00 DEV 3 QTZ 5-10% MARICS 1-2% PYRITE ~19. \bigcirc 8 8 31 7398 4 .4 -MILKY WHITE COLOR ~ 5550 TN PHULLIC ARGILLITE RE'S - BANED WALL RX AROUND DYNE (SEE 7398) - DK GREY | BLK COLOR FRESH DEV 3 Bm-00 -GREY |BRN WX 2 165 О q -PYRITE BLEBS (1-2%) .6 21 -HEAVY WEIGHT 7399 ~5550 - SILICITITU - QTE FLOAT PROBABLY A SWFAT ? DEV 3 -MILKY WHITE COLOR, BRITILE BM-00 -PYRITE (1-4 10) FRACTURE CONTROLLED .6 52 F 39 8 -LIMONITIC STAIN 7400 - Ø ~1% ~5550' - FAULT BRECCIA DEV 3 - Q12 70-7510 Bm -00 SED CHASIS (25.30 %) 2 .5 F 8 9 25 -VUBBY (5-10%), COCASCONIS TERIURE 7401 -SONE LIMENSITIC STAIN ~5500 -QTE VEIN OR POD INTERMINED W/ ARGILLITE DEV 4 AND INTRUSIVES ? ~ Im WIDE Bm-00 -PYRITE (~19.) 31 44 .3 2 94 \bigcirc MILKY WHITE COLOR 7402 -SOME RED/BRN ONIDATION ~5200' - CLOSE TO GO COMPET - QIZ VEIN JN GIZ RICH INTRUSIVE DEV 4 Bm-00 NVS LIMONITIC STAIN 4 16 .1 2 23 - BULL QUE BASICALLY SOME SUCROSIC TERIURE 7403 ~5200' CONTURTED LOOKING GTZ RICH RX LOOKS LIKE A MANGLED MESS DEV 4 Bm-00 SOME ARGILLIC ALTERATION 9.8 1455 44 -LIMONITIC STAIN 15 F 1032 7404 - RED 18RN ON DATION - PIELE (~190), PVELHOINE (~1-2%), GALENA (4190), CHALCO (4190) - SERVENTE, OTZ ~5300' - HIGH GRADE GRAB 19,239 54,398 DEV 4 Bm-00 - GALENN (5-10%), PYENE (1-5%), CHALCO (1-5%), MAGNETITE (5-10%) -SULANDE RICH VEIN 38.1 5 682 OALSO SEE 7406,7407 SPHOLERITE (4-5 %) 7405 -RED/BEN OXIDATION IMASSIVE, HEAVY -LIMONITIC STAIN, SONE QIZ, HEAVY FE- OXIDATION ~5300'

0-Outeron

E-Float

V-Vein

T-Talus Fines

Si-Silt

۲

ĊJ

NTS: 1046 /12E

Carlos and

Project : _____

Claim: DEV 3 54

Geologist: B. MEZEI

Sample No.	Location	Туре	Sample Description	Length	Au	Ag	Си	Pb	Zn	
Bm-00 7406	DEV 4 ~5300'	٥v	- SULPHIDE RICH VEIN SEE 7405 SAMPLE DESCRIPTION - IN QTZ RICH HAST	30cm	Ę	15.5	15 1	19,495	28,051	AS 12,69
Bm-00 7407 ·	DEN 4 ~5300'	04	- SULPHINDE RICH VEIN FURTHUR DOWN VEIN FROM 7405,7406 - SEE 7405 DESCRIPTION LESS GALLNA, INDRE PURITE	15 cm	62	110.7	338	21,109	46,464-	•
Bm-00 7408	DEV 4 ~5300'	F	-GRINGED UP WILL RX MAYBE DUE TO GD INTENSION -BRECCINTED LOCKING -YELGW/BRN ALTERATION, MANGANESE, LIMONITE -ARGILLC, SERICITE -NYS JUGGY (10-1570)		!	1.3	52	130	145	
Bm-00 7409	DEV 3	Si	- SILT GRAB	/	1	.6	29	19	85	•
Bm-00 7410	DEV 4 NE OF LK ~4800'	0	- GTZ RICH PDD - SILICEOUS - LIMOWITIC, AZURITE, MALACHITE STAIN - REDIGEN ONIDATION - PHENE (2-490), CHALCO(LI11), RATING PHATE, JUGS (1-390) - SOME ARGULUC ALTERATION	1	5	84.4-	3882	251	2366	
		· · · ·								

NTS: <u>1046/12</u> Project: Claim: <u>Lu</u> Geologist: <u>NMAN</u>									Y
Sample No.	Location	Туре	Sample Description	Length	Au	Ag	Cu	Pb	Zn
	20m Noll(P 20m W		light grey shyolite, flow barraing						
5327		0	OLISENU PGPERE ()"		1	. 8	14	27	90
	250m NALCP		filsic ny dite dissen pyrite 5%)						
5328 .	75m1 W	0	high degree (garesilie alle entre		1	11	29	53	30
	270m Noll(P		small ped q mansive (dem. 3cm)						
5329	55 m 0	0	. Mhyolite		1	3	19	12	61
	400n NaLCP	Ø	shydite hast containing minor (+)?						
5330	and side of mande	0	py use, calcite		4	32.5	1873	2757	2790
	420m Naich		altered nhy slite epidote, galcite						
5331.		0	galena (1%), py site (1%), chalcop.		24	42.6	3251	3777	4753
	11		Mydil's malachie 3" pyril 1%)						
5332		0	chalcopyrulada, galena (198)	1,5,		21.3	1973	1696	2399
•			1. On chip met of 533'?						:
5333	17	0			3	234	1238	3024	4189
	11		gral 3. Cm up section from 5333						
5334		$\left \right\rangle$	Men parts and chi and a second dealer		1	31.4	2152	364	358

0-Outeron

F-Float

V-Vein

T⁻Talus Fines

Si-Silt

Sample Description and Analysis Record

NTS:	Pro	: 	Geolog	ist: <u>/</u>	MA	<u>Y</u>			
Sample No.	Location	Туре	Sample Description L	ength	Au	Ag	Cu	РЬ	Zn
	small pil from		completely exidized nock; pyrte (?)						
5335		0			53	3.6	101	203	2513

0-Outcron

E-Float V-Vein

Sample Description and Analysis Record

NTS: 104 6/12

Project: <u>Recce</u>

Claim: _____

Geologist: DAWSON

And Constraints

Sample No.	Location	Туре	Sample Description	Length	Au	Ag	Cu	РЬ	Zn
6000	DOK	ROCK	25% PY & 10% MIN.X IN 70 CM WIDE ZONE DE SILICIFIED BND ECSTAINED		17	. 2	102	11	71
7713	1	Lį.	F.C. PORPH VOL, SILISIFIED 1.0 cm ANKERITE VEINS)	.	61	7	58
7714	1 ₁	N	30 CM ZONG OF VUGGY, FING FRAINED Voe. QZ VGINING, N.V.S. BUT V. RUSTI		27	.3	64	30	126
GD 007723	N.500D	11	QC FE CARB YUIN CONTAINS BY FRAGS OF ALTERE WALL ROCK % CUBIC PY		2,	.Y	32	43	69
6D 007727	PASS BETWEEN 5 56 UD AND SAHALER CRK	11	SKARN, MALACHITE STAIN, TE PY		18	.	359	2.	58
GD 007728	DEVILS ELBOW	1.	DARK FRAGMIENTED BHROLITE, 5% DISS Pt.		1	. /	34	34	27
1729	ų	11	SILICIFIED FELSIC VOLC. FRAGM, 2% DISS PY STRONG JAR - GOETH STAIN		1	.1	24	22	53
7730	BUNDED'EEN VOLC 5% PTSS PT 20 510 BANGTING	•	BANDED FEL VOLC 5% PISS. PY-PU ON BANPING			.1	27	15	18

O⁻Outcrop

F-Float

T⁻Talus Fines

NTS: 104/G12

Project: <u>TROPHY RECCE</u> Claim: _____

Geologist: DAWSON

Sample No.	Location	Туре	Sample Description	Length	Au	Ag	Cu	Pb	Zn	
GD 00 7731	UN ELBOW	R.	AS 7730, NO PY, JUST 7 FO ON LAMINATIONS		1	.1	13	19	24	
GD 00 7732	14	><	GRAB SILICIFIED VOL. BX. 20% CPY, 5% SP. 1% PY		13	7/.8	11457	510	620	•
7733	11	£7	GRAB CONTACT ZONE? Y siliceous MAL/AZ		1	8.3	735	814	792	
7734	÷1	N	STRONGLY SILICEOUS FLOW BANDEDBI RHYDLITE 10% ROLE SMEARIN TY		1	.7	33	21	61	
7735	f I	4	FLOAT BELLOW GOSSANDOUS O/C 70% PALE GRY PY IN 92 MATRIX		2290	160:3	47	162	99,999	
7736	4	ļl.	HIGH GRADE GRAB OF DESTAND RHUGLITE & UP TO 15% DISS. AND PATCHY DY. 1% SP		4	1.4	36	12	1782	
7737	11	10	RHYOLITE CHT. BX. 5% PY. ON LAMINATIONS		6	.5	17	8	193	
7738	Le .	ĸ	4 cm C. C. QZ VEIN, 5%. DISS, PY. HEMIOTTITE STAIN			.7	2	4	32	TONORTH

O-Outcrop

F-Float

V-Vein

So - Soil

T⁻Talus Fines

Si-Silt

Sample Description and Analysis Record

NTS: 104 G/12

Project: TROPHY RECCE

Claim: _____

Geologist: DAWSON

Sample No.	Location	Туре	Sample Description	Length	Au	Ag	Сц	Pb	Zn
6000 7739	Devils Eldonn	R	H5 7737		10	2.1	5	10	898
7740)	R	RHY/CHT BX, HIGH GRADE GRAB, TO 20% COPRSE YELLON AND F.G. PY.		1	.7	20	14	143
7741	11	R	COMPOSITE GRAD OF 5×10m O/C, MAFIC VOLC. STRONG JAR STAIN NOV.5.		1	.3	39	13	38

0-Outcrop

	NTS: /04	<u>+ G/12</u> Proj		Geolog	ist: <u>B</u>	B LA	νZ			
	Sample No.	Location	Туре	Sample Description	Length	Au	Ag	Cu	Pb	Zn
Augl	BL-00- 4740	50 m South OF Ler on Der 3/4 BOUND AFY	%	INTENSEZY FRACTURED, JALUSINCALY STAINED PHILLITE W ~ 1-2% PY (IP)	2m Cont. Citif]	ц	23	6	45
N	4741	DEV4: ~100m SSE OFLEP	%	34NDED RH490LITE (?) OR SILILEOUS SED: 3°6 DISS. PY, PY KNOTS TO 3 cm DIA. & PY IFILING REACTURES.	.5m CONT Cthl	 	•2	13	8	30
N	4742	DEV4: @5500' \$E of LCP	%	HIGRADE SAMPLE OF PHYLLITE W 10-15 % TY DISS & VENNLETS.QZ SWATTS I TRACE SL	•25m CHIP		.8	10	37	282
11	4743	DEN 3: @5670' ON WEST SIDE ST PUDUE CLEST	0/2	RHOUTE / SILILEOUS SECTIMENTS; JAROSI TILMUN / GUETTHITE STAINED; 1-206 DISS PY + 79 IN VENLETS.	1 m CONT CHIP	3	•7	12	6	40
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4744	DEN 31, ON WEST SIDE OF RIXE (1) SUBO!	0/2	COMPOSITE CHIP: QZ + 2-3%74 SMONT IN SILICEONS SEDS.	, SX , SM PANEL	16	2.2	21	112	357
и 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4745	DEN 3: 5200' \$ 50 m SW OF LAST SAMPLE	º/c	PYKITE/ACTINOLINE TEENKING SKARN ~ 10°10 DISS PY.	COMPOSIE GLAB.	-	3.0	9	118	1305
14 	4746	DEV 3 ? 100 M SW OF 10 M W.DE RYNE & 5205'	°/L	BULL GUARTZ VEIN/VEW BRECH SHEETED SYSTEM IN SILICEOUS AREILITE.	2m Curt Cihl	11	. 8	14	24	72
11	4747	DEV. 3: ~ 'EW#' BTWH PYKE & 62 V=TH SYSTEM @5570	0/2	HIDROZINCITÉ STAINED/FE. STAINED BLK. SIL. ARGULITE J 3% DISS PY. ± SIL(?)	20 cm CHIP		9	18	4	41
* *										

O-Outcrop

F-Float

V⁻Vein

T-Talus Fines

NTS: <u>/</u>	<u>4 G/12</u> Proj	ect:_	Claim: DEV			Geolog	ist: 🔄	Bob b	Are
Sample No.	Location	Туре	Sample Description	Length	Au	Ag	Cu	Pb	Zn
BL-00- 4748	DEV 1 : WEST OF LCP & 100 m	%	INTENSIELY JAPOSITICALLY STATINED FITHOLINE/(SILICEOUS SEDS?). 1-2% DISS PURITE IN LAMIMATIONS.	/m conte	3	.4	17	4	48
4749	DEV3 : WEST SIDE OF KNOB # # # ADJUENT TO GD DYKE	0/0	WALL ROCK OF IOM WIDE DYKE FROM SOUTH MARIN : ALT. ARGULLINE; KRACTHED W ~3 % DISSPY.	G GRAS	1	3	39	9	24
4750	DENI @ 5440' ON SIDEHUL FACIAL STIKINE N OF LCP	%	GUE. & JAR STATIMED SILICEOUS. SEDS TO 10-15 % CUARSE-GR. DISS PY; PY ALSO IN FRATURES.	.5m CONT CHIP	1	•4	15	15	44
4751	DEVIE 52001; 150 m ALENG REAM UNST SAMPLE SITE PLOTTED UN MAP	0/2	HYDROZIACITE STATNED, PLATEY CREY LIMESTONE ~1-20% DISS SL. LMST CUT BY CE VENNLETS; PY KNOTS TO 3 CM DIA.	IM CONT. CHIP	1	.4	7	C ¹	21
4769	Der @ 5200.	0/ K	SKARA & CTC BTWN LANST & PHYOLITE EPIDONE D Q2 >CC	GRAB	Ì	3.1	52	86	345
4770	DEVI: IN OLD HAND TREMCH ON W SIDE OF RIDGE TOP D.5300'	0/2	EPIDOTE - 62 · CC + BANDS OF SL & GN : SKARN! MERIGE ~ 5% GN & 25% SL . MINGE PY & COPPERSTRAN	1.25m CONT CITP	11	260.6	69	21255	6238
4771	AN BACK OF 4770 CARD.	072	BANDOD GN/SL = PY BEARING SKARN. 1655 MINDRONGLY: EP+GZ+CC	2m Contr Catil	19	346.3	42	30973	12328
4772	11	%	AL ABOVE IN LESS ALTERED WITHE RITUGLITIC MATERIAL ALSO; MINOR CAY AND PY	2M CONT CHIP	16	368.8	100	24461	12230

O⁻Outcrop

F⁻Float

V⁻Vein

So - Soil

T⁻Talus Fines

Sample Description and Analysis Record NTS: 104 G/12 Project: _____ Claim: DEV_____ Geologist: Bas LANE Sample No. Location $\frac{7}{2} = \frac{1}{2} = \frac{1}$ Sample Description Cu Pb Zn Type Length Ag Au BL-00-DEVI: WEST fug IM 9061 1840 1890 OF 2N/OE ID 4 2 CONT 60.1 4773 POST IN QULLEY® 5-10 % PY , 2% CPY , TRACE MO CHIP 4940 @ TOP OF CLIFF COMFOSIDE Aug DEVI : NORTH OF EPIRITZED RHYCLITE TO 1-246 155 311 223 5.6 4773 ON TOP OF GRAR 92 DISS PYRITE 2 4774 CLIFF EDGE

0⁻Outcrop

and the second second

F-Float

T⁻Talus Fines

Si "Silt

	Sar	npie	Description and Analy	SIS F	veco v	rd			
NTS: _/04	<i>G</i> Pro	ject:_	TROPHY Claim: near be	ok		Geolog	ist: 🛃	EK. A	UGSTEN
Sample No.	Location	Туре	Sample Description	Length	Au	Ag	Cu	Pb	Zn
BA-00- 4283	<u>Stopl</u> Old Box Chims	F	flow banded chyolite with 5-7% diss. t Fractcontrolled pyrite 3% disserve. Po - very localized, spotty	-	2	0.4	26	27	20
BA-00- 4284	11	F	gtz vein material with rusty fractures N.V.S.	1	3	0.1	7	2	8
BA-00-428 5	• •	0	- small massive pyrile pod in Alaw banded shyplites		3	6.5	197	197	150
BA-00-4286	På	0	- small lens/concentration? with 3% cpy. 1-2% blackjack sphalente -not much continuity to it.	_	4	26.3	2960	1027	2211
BA-00-4287	5708 2.	F	V. siliceous, pussible gtz vein material with 25% vugs, (very remoded) 441% pyrite as solitary, subhedral to enhedrol groups.	/	36	3.9	6	5	53
BA-00-4288	1	F	Qtz vein with «1% fracture-controll. pyrite - rusty fractures.	-	2	0.1	2	2	25-
BA-00-4289		F	- rusty rhyolite with tr. pyrite and associated/attached gtz vein with rusty fractures.		2).]	27	18	63
BA-00 -4290	<u>stopz</u> .	0	bleached altered (jarositic) and esite with 3-5% visible pyrite. - showed.	/	4	1.7	52	16	23

O⁻Outcrop

F⁻Float

V-Vein

So⁻ Soil

T-Talus Fines

Si "Si It

r) Nuzth

<u>APPENDIX II</u>

GEOCHEMISTRY

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 ACME ANALYTICAL LABORATORIES LTD.

GEOCHEMICAL ANALYSIS CERTIFICATE

1

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HH03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTHD TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR HN FE SP CA P LA CR HG BA TI B W AND LIMITED FOR HA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GH SAMPLE.

· hom DATE RECEIVED: ANG 5 1988 DATE REPORT MAILED: Hug 10 /89 ASSAYER. CONTINENTAL GOLD CORP. File # 88-3328 Page 1

SAMPLE	Ko PPK	Cu PPX	PDK PDK	Zn PPK	Ag PPK	N1 PPH	Co PPN	Xn PPK	re t	AS PPX	U 2PM	Au PPH	Th PPN	Sr PPX	Cd PPN	SD PPK	B1 PPH	PPK	Ca ł	P Ł	La PPN	Cr PPN	Kg t	Ba PPK	. TI 1	B PPN	A1 \$	Na Ł	.Т. Х.	Y PPX -	Au* PPB		
BL-00-4740 BL-00-4741 BL-00-4742 BL-00-4743 BL-00-4744	2 4 3 5 3	23 13 10 12 21	6 8 37 6 112	45 30 282 40 357	.4 .2 .8 .7 2.2	12 40 40 19 38	2 6 5 1	167 127 92 246 221	3.74 2.87 2.96 3.50 2.31	25 12 63 53 2	5 5 5 5 5	ND ND ND ND ND	1 1 2 1 1	38 32 324 57 472	1 1 2 1 1	2 2 2 2 2 2	2 2 4 2 2	23 11 42 20 61	.08 .13 1.21 .08 2.48	.035 .010 .024 .013 .021	2 2 3 2 3	33 29 44 41 59	.70 .55 1.20 .80 .56	30 39 41 22 44	.01 .01 .07 .02 .07	4 7 3 2 2	.98 .93 3.11 1.14 4.71	.03 .04 .30 .04 .33	.07 .08 .17 .04 .16	1 1 1 1	1 1 3 16	1111	
BL-00-4745 BL-00-4746 BL-00-4747 BL-00-4748 BL-00-4749	4 37 5 3 4	9 14 18 17 59	118 24 4 4 9	1305 72 41 48 24	3.0 .9 .1 .4 .3	68 31 53 22 45	30 3 7 3 10	879 241 192 175 150	9.50 .91 2.10 2.94 3.80	95 37 4 40 2	5 5 5 5 5	ND ND ND ND ND	2 1 1 1 2	263 14 611 55 432	5 1 1 1	2 2 2 2 2	17 2 2 2 2	82 8 32 21 34	3.26 .56 1.39 .09 2.09	.082 .009 .010 .019 .034	5 6 2 3 6	45 47 37 43 35	1.24 .06 .58 .91 .50	45 14 57 33 66	.11 .01 .03 .01 .12	7 2 5 3 5	4.64 .20 3.42 1.05 3.58	.37 .01 .29 .05 .23	.38 .04 .08 .08 .03	1 6 1 1 1	11 11 1 1 3 1	110	
BL-00-4750 BL-00-4751 BL-00-4769 BL-00-4770 BL-00-4771	2 2 4 46 76	15 7 52 69 42	15 5 86 21255 30973	44 21 345 6238 12328	.4 .4 3.1 260.6 345.3	76 25 68 47 44	7 2 7 17 28	75 192 1748 4771 5398	3.83 .83 2.79 2.62 3.06	41 13 2 10 14	5 5 5 5 5	ND ND ND ND	1 1 1 1	255 986 225 184 125	1 1 56 104	2 2 2 2 2 2	4 2 9 579 1128	31 12 32 31 29	1.55 24.56 7.07 6.60 5.25	.032 .018 .054 .042 .044	2 3 2 3 2	41 24 37 41 45	.81 .26 .95 .77 .76	25 14 6 12 15	.05 .04 .09 .13 .10	2 2 5 3	3.14 1.78 2.07 1.93 1.65	.23 .12 .01 .03 .01	.09 .06 .01 .01 .01	1 1 9 1	1 1 1 11 19	224145	•
BL-00-4772 BL-00-4773 BL-00-4774 BL-47-4739 KH-00-5327	16 7 4 8	100 9061 155 1245	24461 1840 311 213 27	12230 1890 223 168 90	368.8 60.1 5.6 6.3 .8	34 91 32 30 31	28 28 8 71 4	4968 3001 451 651 191	2.48 3.30 2.10 7.79 3.42	8 8 3 2 8	5 5 5 5	ND ND ND ND	1 1 1 1	202 76 251 91 254	101 13 2 1 1	2 2 2 2 2 2	846 69 8 9 Z	29 16 17 100 20	6.10 2.59 4.75 2.40 1.63	.078 .027 .083 .080 .015	4 3 4 4 2	40 15 22 50 35	.71 .50 .26 1.08	14 7 17 37 34	.13 .12 .16 .17	3 7 3 3 5	2.33 1.03 5.90 1.58 3.25	.10 .01 .39 .04	.01 .01 .02 .62){ 1 1 1 1	16 4 1 15 1		 ,
KM-00-5328 KM-00-5329 KM-00-5333 KM-00-5331 KM-00-5332	3 3 7 8 6	29 19 1873 3251 1973	53 12 2757 3777 1696	30 61 2790 4753 2399	1.1 .3 32.5 42.6 21.3	83 9 76 85 119	7 11 17 34 18	61 134 4424 4020 2948	3.43 3.28 3.71 5.62 4.74	41 20 3 6 3	5 5 5 5 5	ND ND ND ND ND	1 2 1 1 1	54 146 135 283 237	1 23 39 19	2 2 2 2 2	2 2 57 50 20	19 62 31 38 32	.06 1.48 5.49 4.30 4.61	.022 .079 .018 .036 .027	7 6 2 2 2 2	22 11 25 36 34	.72 1.25 .50 .70 .47	66 92 6 12 12	.01 .09 .10 .08 .10	7 3 2 2 2	.93 2.69 1.86 3.46 2.48	.03 .25 .02 .16 .12	.28 .17 .01 .04 .03	1 1 8 5 8	1 1 4 1	ILS IOW	
 KN-00-5333 KN-00-5334 KN-00-5335 KN-22-5326 BA-13-4365	4 3 2 7 8	1238 2152 101 445 22611	3024 364 203 15 24769	4189 358 2313 170 45909	23.4 31.4 <u>3.6</u> 1.9 335.5	84 28 9 12 31	14 20 3 18 11	1806 3223 472 1965 349	3.61 9.49 14.81 5.79 8.33	2 2 6902 43 103	5 5 5 5 5	ND ND ND ND 2	1 1 2 2 1	734 164 97 163 18	34 2 9 1 262	2 2 17 2 69	41 30 6 2 2	65 36 25 162 48	5.41 2.79 6.98 3.76 .26	.030 .196 .041 .187 .077	3 6 2 12 4	49 23 24 13 52	.82 1.09 .20 1.27 .50	27 33 55 38 22	.10 .13 .04 .05 .02	2 3 2 2 3	6.90 2.68 .38 .82 .85	.57 .07 .01 .01 .01	.13 .04 .07 .78 .12	21 11 1 1 14	3 1 53 23 4220	E L B	-
BA-13-4366 BA-13-4367 BA-13-4368 BA-13-4369 BA-14-4371	2 2 3 16 1	3935 2260 3373 231 481	21787 6915 27125 330 13492	62933 17906 25330 262 1501	198.9 27.0 226.3 1.7 18.9	13 27 22 15 45	6 16 11 9 19	151 502 409 343 1010	2.92 2.26 3.07 2.70 3.84	23 87 66 18 13	5 5 5 5 5	3 ND ND ND ND	1 1 1 4 1	6 56 32 592 94	423 104 154 1 9	616 9 179 2 15	2 2 2 2 2	18 50 53 59 87	.11 5.99 2.89 2.21 8.51	.031 .091 .075 .348 .074	2 10 4 12 2	23 46 50 17 26	.27 .61 .71 .27 3.58	5 14 16 32 306	.01 .04 .03 .01 .01	2 3 2 15 11	.32 .73 .77 .28 .32	.01 .03 .01 .02 .02	.04 .10 .08 .25 .12	1 1 1 1 1	3055 188 590 31 40	•	
BA-15-4372 STD C/AU-R	8 17	139 58	158 39	42 132	5.7 6.6	50 67	20 28	169 1047	8.24 3.97	290 37	5 19	ND 7	2 36	49 48	1 17	6 18	2 20	42 56	.30 .48	.174 .089	5 38	27 55	.05 .90	19 172	.01	11 33	.33 1.93	.01	.37 .14	1 11	475 520		

- ASSAY REQUIRED FOR CORRECT RESUL for Cin Pb. 20 >10,000 ppm

AG > 35PPM

			8a				G	EO	CF	IEM	í I C	CA	ا ا د	AN	IAI	LY:	sr	S	CI	ER'	rI	FI	CA	 \T!	3							i i N		
			•	-	1 1 -	CP IHIS LE SAMPL	500 GRI ACH IS B TYPE	AN SAN PARTI : ROCK	PLK IS AL FOR A	DIGEST R BN FR 10* Anal	RD WIT SR CA YSIS B	H 3NL : P LA CI V ACID	B-1-2 I R NG Bi LBACH/	ICL-HN A TI B 'AA PR	03-H20 W AND ON 10 (AT 95 Liniti GN SANI	DEG. (Id for PLE.	tor (ha k //	ONE BO AND AL	UR AND . AU	IS DII DETECT.	UTED T ION LIN	0 10 H 117 BY	L VITE ICP I	I WATER 5 3 PPI	•						方	F	
DZ	ATE RECEIV	ED:	JOLA	13 19	88	DAT	E RE	POR	T M	AILEI	s: Ý	mlj	16	188	•	ASSA	YER		· hr	m.	D.'	TOYE	OR	C.L	EON	3, C	ERT	IFIE	DB	.c.	Ass	AYEF	ເຮ	
									COI	NTINE	U ENTA	L GC	LD (CORE	2	Fi	le	# 88	-26	56	Pa	age	1											
	SANPLE#	No PPN	Cu PPN	Pb PPK	Zn PPH	Ag PPN	NI PPM	Co PPN	Xn PPN	Ye \$	As PPN	U PPN	Au PPH	Th PPM	Sr PPN	Cd PPN	Sb PPN	Bi PPM	V PPN	Ca ¥	P t	La PPK	CT PPN	Ng ł	Ba PPN	Tİ Ş	B PPN	al \$	Na Ş	I t	N PPN	AU* PPB		
	-BA-00-4283 -BA-00-4234 -BA-00-4265 -BA-00-4286 -BA-00-4287	1 1 3 7 1	26 7 197 2960 6	27 2 191 1027 5	20 8 150 2211 53	.4 .1 6.5 26.3 3.9	24 6 50 105 4	8 1 52 25 1	159 84 565 2903 56	3.82 .59 17.11 5.94 1.58	3 2 10 6 79	5 5 5 5 5	HD ND ND ND	1 1 1 1	514 29 78 202 3	1 1 17 1	2 2 2 2 6	7 2 10 16 2	21 2 23 23 1	6.73 .56 1.76 3.15 .63	.043 .003 .119 .041 .003	2 2 2 2 2 2	16 7 15 16 1	.10 .03 .39 .35 .01	15 2 18 21 3	.09 .01 .05 .09 .01	6 2 3 4 5	6.59 .46 1.66 2.01 .04	.50 .03 .08 .11 .01	.04 .02 .06 .03 .03	2 1 1 6 1	2 3 3 4 36	ILS EL ROW	
	-BA-00-4238 -BA-00-4289 _BA-00-4280 _BA-00-4280 _BA-11-4272	1	2 27 52 53	2 18 16	25 63 23	.1 1.1 1.7	4 12 11 19	1 3 7 8	114 240 85 1426	.48 2.23 <u>3.80</u> 3.37	4 17 2 2	5 5 5	ND ND ND	1 1 1	10 143 32 65	1	3 2 2 2	3 2 3 2	1 27 80	.32 .66 .58	.001 .011 .055	2 2 2 2	2 26 45	.02 .90 .78	1 11 18 583	.01 .02 .41	2 3 2 8	.01 2.01 .70	.01 .11 .09	.01 .03 .23	1 1 2 2	2 2 4 4	DEV	
	-BA-11-42/3	100	349	2646	126	40.5	1	5	134	7.55	n	5	KD	2	11	1	26	5	80	.03	.047	2	58	.13	197	.12	1	.19	.01	.18	1	51		•
	-BA-11-4274 -BA-11-4275 -BA-11-4276 -BA-11-4277 -BA-11-4278	21 5 1 37 3	88 23866 72 16130	10 13 13 12 9	34 28 23 34 37	.1 .4 8.9 .7 6.6	50 71 116 102 114	13 49 174 98 140	1835 1812 775 1941 1889	4.09 7.57 9.50 11.89 12.90	2 5 3 3	5 5 5 5 5	ND ND ND	1 1 1 1	87 129 51 107 143	1 1 1 1	2 2 2 2 2 2	2 2 15 2 3	86 18 11 17 12	13.81 7.05 2.08 5.12 6.27	.075 .057 .038 .029 .014	4 2 2 2 2	126 25 8 21 9	2.10 2.93 .72 2.61 2.74	294 18 7 9 10	.01 .01 .01 .01 .01	7 11 9 7 7	. 64 - 26 . 22 . 26 . 13	.01 .01 .01 .01 .01 .01	.22 .18 .10 .11 .09	3 1 1 1 1	225 31 123 68 610	•	•
	-BA-11-4219 -BA-12-4230 -BA-12-4231 -BA-12-4231 -BA-12-4232 -BH-12-7213	1 1 5 8 1	5379 233 37 189 30	10 9 6 15 10	18 9 32 43 46	2.1 2.9 .1 .7 .1	65 11 30 63 27	87 16 26 62 25	1421 38 2183 1371 987	6.21 15.88 6.42 10.08 5.82	3 62 3 3 3	5 5 5 5	ND 9 ND NC ND	1 2 1 1 1	132 3 188 89 55	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	9 2 18 15 167	4.89 .07 10.08 3.92 8.22	.019 .001 .021 .029 .073	2 2 2 2 2 2	10 1 13 11 31	2.13 .03 3.09 1.81 3.17	11 1 30 10 202	.01 .01 .01 .01 .01	11 9 2 7 5	.13 .07 .10 .12 1.17	.01 .01 .01 .01 .01	.08 .03 .08 .10 .17	1 1 2 2 1	72 9205 18 72 4		
	BH-11-7234 BH-11-7235 BH-11-7236 BH-11-7237 BH-11-7238	6 16 6 3 6	123 161 107 43 241	8 12 25 9 23	50 30 29 22 64	.2 .1 .4 .1 .1	7 43 45 37 66	15 30 29 14 54	473 460 417 375 873	3.90 5.39 5.12 4.75 6.86	3 3 6 5 9	5 5 5 5 5	nd Nd Nc Nd Nd	1 1 1 1	82 46 40 23 47	1 1 1 1	2 2 2 2 2 2	2 2 4 2	67 122 91 65 124	2.18 1.61 2.72 1.24 1.52	.099 .088 .118 .149 .100	2 2 2 2 2 2	3 73 51 58 94	.62 1.56 .98 1.12 1.70	28 15 13 25 42	.22 .14 .13 .10 .14	6 9 7 6 6	1.85 2.41 1.80 1.58 2.92	.10 .02 .01 .04 .02	.11 .37 .09 .36 .13	1 1 23 2 3	4 45 39 11 38		
	-BH-11-7219 -BN-11-7210 -BH-11-7211 -BN-11-7212 -BH-11-7213	23 91 15 2 1	113 1644 82 50 36	88 57 53 21 13	47 40 41 85 53	.2 2.7 .3 .1 .1	21 13 3 13 4	29 14 19 13 8	540 132 464 881 719	13.82 31.83 11.66 5.67 5.14	18 10 18 14 2	5 5 5 5 5	ND NC ND ND ND	1 5 1 1 1	89 21 88 26 11	1 1 1 1	· 2 3 2 2 2	2 6 2 2 2	136 343 114 140 66	.74 .11 .82 .83 .44	.076 .107 .050 .074 .113	2 2 2 3 5	33 52 2 16 4	1.00 .36 .69 1.41 1.26	329 52 74 49 38	.24 .18 .28 .23 .10	4 2 4 2 7	1.59 .52 1.50 2.02 1.75	.03 .01 .04 .05 .04	.29 .26 .53 .10 .05	10 1 7 4 1	62 16 144 7 2		
	BH-11-7234 BH-11-7235 BH-11-7235 BH-11-7236 BH-11-7238	1 16 9 11 7	77 172 185 169 163	8 11 24 4 15	24 10 20 13 48	.1 .7 .1 .2 .5	4 19 41 6 5	9 11 16 9 10	341 108 233 190 238	3.31 4.70 6.52 4.25 4.10	2 17 5 2 4	5 5 5 5 5	ND ND ND ND ND	1 1 2 2 2	22 22 27 13 24	1 1 1 1	2 2 2 2 3	2 2 2 2 2 2	68 71 79 73 95	.70 .36 .96 .70 1.69	.096 .066 .072 .072 .072	4 6 7 8	5 30 50 5 4	.71 .48 .93 .60 .71	11 46 29 43 42	.15 .18 .13 .13 .13 .12	5 3 14 10 10	1.06 .47 3.07 .71 .88	.04 .04 .04 .04 .04	.04 .05 .06 .04 .06	1 2 1 1 2	3 4 4 4 2		
÷	-BH-11-7219 STD C/AU-R	13 17	143 57	20 40	12 132	.4 6.8	3 66	38 27	249 1091	8.79 4.16	2 39	5 16	ND 7	1 37	64 44	1 17	2 16	2 23	43 55	.83 .46	.096 .086	3 38	5 55	.52 .91	4 174	.18 .06	5 33	.72 1.92	.04	.04	1 12	2 520		

						1.000 1.000		1.000 (1.000) 1.000 (1.000)		20								Er for 78 Brannski					r L		•								
								-	CC	ONTIN	IENT	AL	GOLI	co	RP.	F	ILE	a 8	8-3	328										•	Pa	ige 2	
SAMPLE#	HO PPK	Cu PPN	Pb PPN	Zn PPK	Ag PPH	NI PPK	Co PPK	Na PPK	re 1	As PPN	U PPH	Au PPN	Th PPK	Sr PPN	Cd PPK	SD PPK	B1 PPK	¥ :PN	Ca 3	р 1	La PPN	Cr PPH	Xg L	Ba PPK	Tİ X	B PPX	1 1 1	Na Z	K ł	N Bbk	Au* PPB		
Βλ-15-4373 Βλ-15-4374 Βλ-17-4370	9 3 1	97 2790 43	200 150 20	37 188 77	4.5 197.3 .9	39 8 5	15 2 8	24 93 1940	3.78 .75 7.42	219 126 2	5 5 5	ND 4 ND	2 3 3	19 647 193	1 11 1	2 67 2	3 2 2	24 5 95	.11 .41 9.18	.073 .035 .085	2 3 14	30 23 4	.02 .09 2.82	26 187 120	.01 .01 .01	5 2 2	.21 .14 3.73	.01	.24 .08 .20	1 2 1	520 4190 10		
PB-00-6312 PB-00-6313	2	26	33 39	- 360 62	.8 1.0	18	2	256	1.65	10	5	ND ND	-3	106	1	2	2	6 38	.58	.005 .065	2	31 52	.18	25	.01	3	1.96	.02	.03	1	1		-
PB-00-6314 PB-00-6315 PB-00-6316 PB-00-6317 PB-00-6318	6 2 4 2 6	11 44 28 41 172	14 28 10 13 7	34 128 63 39 69	.2 1.0 .5 .3 .3	13 14 14 28 22	1 13 7 6 5	57 165 611 70 404	.96 5.09 3.78 3.06 5.66	2 2 4 14 2	5 5 5 5 5	ND ND ND ND	1 5 4 3 4	35 91 62 29 115	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	5 84 49 24 224	.16 1.23 1.48 .08 .26	.005 .281 .036 .008 .004	2 15 4 6 3	37 26 21 25 193	.10 1.88 .98 1.10 1.57	23 40 18 58 152	.01 .19 .02 .01 .16	2 6 8 6 4	.25 1.98 1.57 1.55 2.81	.02 .08 .03 .02 .06	.01 .15 .06 .23 .50	1 1 1 1	1 1 3 4 3	Erebou	
PB-00-6319 PB-00-6320 PB-00-6321 PB-00-6322 PB-00-6323	3 3 7 2 3	1897 2454 443 186 40	14 9 26 48 35	70 66 32 33 87	3.4 2.6 1.8 1.3 1.2	79 32 42 17 21	160 74 24 14 11	1169 286 286 268 559	15.48 16.17 6.64 6.76 3.35	2 2 3 2 17	8 5 5 9	ND ND ND ND ND	5 4 9	1 15 151 74 77	1 1 1 1	2 2 2 2 2	4 9 2 2 2	13 7 35 37 54	4.10 .45 3.93 3.07 .92	.017 .023 .404 .578 .073	3 6 19 15 16	15 17 24 20 45	.01 .09 .65 .34 1.19	8 10 18 24 250	.02 .03 .09 .10 .06	2 2 2 3	.46 .52 5.15 2.48 2.23	.01 .05 .18 .07 .04	.04 .03 .09 .08 .16	2 21 1 1	1 118 3 28 8	DEVILS	
 PB-00-6324 PB-07-6311 BK-00-7384 BK-00-7385 BX-00-7390	5 6 5 2 1	5076 110 32710 58258 175	8 35 35 16 13	83 105 57 111 41	<u>1.7</u> .9 9.5 <u>26.5</u> .4	7 11 7 22 7	32 15 5 13 4	446 1119 539 1663 141	7.46 5.44 4.51 12.91 1.89	3 11 8 14 7	5 5 5 5 5	ND ND ND ND ND	12 5 2 2 5	38 149 122 12 122	1 1 8 6 1	2 2 2 5 2	6 2 . 35 28 2	81 199 123 8 31	.80 2.11 4.90 .12 .51	.060 .164 .066 .001 .047	26 17 3 8 4	8 24 15 20 10	1.01 1.72 .29 .03	34 45 20 29 45	.25 .17 .18 .01	5 20 2	2.10 1.26 4.15 .11 1.45	.08 .01 .01 .01	.15 .29 .02 .07	1 10 1	8 38 23 107		
BX-00-7391 BK-00-7392 BX-00-7393 BX-00-7394 BX-00-7395	1 4 2 5 2	242 66 43 33 19	11 4 366 58 16	497 49 9 13	.6 .3 8.7 152.8 .6	19 72 6 19 9	6 8 1 2 1	295 229 22 27 51	3.59 3.01 1.48 2.21 4.63	19 26 5 572 2	5 5 5 5 5 5	ND ND ND 2 ND	5 1 1 1 4	300 27 13 9 62	2 1 1 1	2 2 57 2	3 2 11 2 11	23 15 2 2 22	1.53 .09 .01 .01 .15	.049 .016 .003 .004 .029	2 2 2 2 2 2	19 32 38 33 52	1.15 .91 .02 .01 .52	48 32 266 23 45	.01 .03 .01 .01 .05	9 3 5 2 4	2.36 1.15 .18 .13 .64	.11 .02 .03 .01 .05	.12 .21 .10 .07 .13	1 1 1 1	2 4 5 1630 3	210	
BH-00-7396 BH-00-7397 BK-00-7398 BH-00-7399 BH-00-7400	5 2 2 2 4	13 22 8 21 52	13 15 8 9 8	19 85 31 165 39	7.1 1.4 .6 .6	20 69 8 52 67	2 9 3 5 14	120 255 315 211 130	2.08 8.10 1.59 2.24 5.18	78 39 2 4 2	5 5 5 5 5	ND ND ND ND ND	1 5 27 4 4	10 126 32 565 155	1 1 1 1	5 2 2 2 2 2	2 2 2 3 2	12 23 14 36 29	.02 .61 1.08 8.24 1.83	.011 .049 .044 .032 .011	2 2 43 5 2	34 37 19 53 31	.42 .79 .35 .46 .54	26 25 28 46 17	.01 .02 .01 .08 .05	5 2 2 3 2	.55 1.90 .58 4.02 2.05	.01 .14 .03 .31 .10	.09 .09 .15 .04 .05	1 1 1 1	14 10 4 2 1	LJ 2718.	
BX-00-7401 BN-00-7402 BX-00-7403 BX-00-7404 BX-00-7405	16 4 2 8 35	8 44 16 44 682 1	9 2 2 1455 9239	25 94 23 1032 54398	.5 .3 .1 9.8 38.1	15 10 15 33 18	2 3 2 4 21	95 234 85 897 1002 1	.78 1.23 .70 2.71 17.60	15 2 2 51 147	5 5 5 5 5	ND ND ND ND ND	3 4 3 4 5	12 25 26 25 30	1 1 7 410	2 2 2 4 25	2 2 2 2 3	8 16 15 12 49	.35 1.70 .51 1.64 .31	.009 .013 .009 .039 .028	5 3 3 3 2	46 33 44 24 34	.08 .13 .13 .52 .99	11 6 12 35 5	.01 .06 .05 .04 .04	2 2 5 2 2	.15 .59 .49 .66 1.68	.01 .01 .02 .01 .01	.05 .03 .04 .07 .04	1 1 5 1 2	2 31 4 15 5	Kon .	
BH-00-7406 STD C/AU-R	75 17	151 1 58	9495 44	28051 133	15.5 6.6	27 67	18 28	2001 1 1049	13.22 3.95	1462 39	5 17	ND 6	3 3 B	17 47	193 17	9 17	2 20	91 55	.28 .48	.042 .087	2 38	50 55	2.48	23 172	.01 .06	2 33	3.61 1.94	.02	.06 .13	1 11	7 485		

1

(

C

¢

(

٢٠

4

(:___

(

C

Ċ

C

C

(,

Ċ

C

(

C

- 88	an the state		÷.,		215 2	line in the		فانتدر ، ارتقا		in the second second second second second second second second second second second second second second second		and united			a	Carrier Carl				e References		an	9 9	- Marian Cold				Res.		Service	And State	action of			COLUMN STOR
					•					÷	CC	NTI	NENT	AL	GOLI	o co	RP.	F	ILE	# 8	8-33	328			: ¹ 1,		·						Pa	ge 3	
		SAMPLE	Ho PPH	C PP	u Fb K PPK	Zn PPX	Ag PPH	NI PPK	Co PPN	Ha PPH	Te t	λs PPK	U PPK	Au PPM	Th PPK	Sr PPH	Cd PPX	SD PPH	BI PPN	V PPK	Ca	P	La PPN	Cr PPX	Ng t	Ba PPN	Ti ł	B PPK	۸1 ۲	Na Ł	I ł	¥ PPH	Au* PPB		C
		BK-00-7407	3	33	8 21109	16181	110.7	24	27	1259	15.00	12690	5	ND	3	36	384	102	2	24	.25	.042	2	33	.88	15	.04	2	1.78	.01	.12	2	62	DEVILS	Ċ
		BH-00-7408 BH-00-7410	4	5 388	2 130 2 251	145 2366	1.3	25	- 8 - 19	293 286	5.51 7.14	47	5	ND ND	2	16	1 22	2	2	17 20	.13	.013	2	28 22	.32	203	.10	3	.73	.01 .01	.13	1	- 1-5-	ELBOW	
		BK-47-7386 BK-47-7387	116	64 34	4 18 0 32	69 66	1.4 2.4	5	25 16	317 215	7.42	2	5	ND ND	1	104 135	1	2	2	81 87	1.30	.088	3	1 5	1.29	14 19	.17 .22	6 12	1.50	.05	.10	1	12	DEVILS	<u>→</u> {.,
		BX-47-7388	5	959	3 16	()	5.4	14	33	962	6.94	2	5	ND	1	493	2	2	2	133	9.93	.052	9	2	.82	27	.07	5	.79	.01	.08	1	44	ELBOW	(
		8H-00-7409 STD C/AU-R	17	2	<u>7 19</u> 7 31	131	6.6	<u>20</u> 67	28	526	4.02	40	17	ND 7	36	47	-17	16	18	58	.68	.060	<u>15</u> 38	<u>19</u> 55	.97	149	.07	2	1.67	.03	.09	1	1.		<u> </u>
																·*																			` .

PD 100 PPM ZN 100 CU 100 ٢.

 \mathbf{C}

£...

C

¢.,

C

C

(

(**

67

(

C

C

Ausoppb Ag 20 ppm

<u>APPENDIX III</u>

A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A

F

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

- I, Greg Dawson, do hereby certify that:
- 1. I am currently employed as geologist by Continental Gold Corp. with offices at 1020-800 West Pender Street, Vancouver, B.C.
- 2. I graduated from the University of British Columbia in Geology, having obtained my Bachelor of Science in 1986.
- 3. I have worked in the field of mineral exploration in B.C., Manitoba and the Northwest Territories since 1976.
- 4. This report is based in part on my personal observations of the property.

Greg Dawson, B.Sc. Continental Gold Corp.

Vancouver, B.C.

k A

APPENDIX IV

i - Su -

COST STATEMENT

COST STATEMENT

LABOUR

and the second se

and solve the second

A DESCRIPTION OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE

1

	Bernie Augsten 2 days @ \$150/day	\$	300.00
	Bob Lane 2 days @ \$150/day		300.00
	Bruce Mezei 2 days @ \$140/day		280.00
	Paul Barratt 2 days @ \$140/day		280.00
	Kevin May 2 days @ \$120/day	-	240.00
	Sub Total	\$1	,400.00
ROOM	& BOARD		
	10 man days @ \$100/day inclusive	\$1	,000.00
GEOCH	HEMISTRY		
	78 rock samples @ \$13.75/sample	\$1,	,141.25
TRANS	SPORTATION		
	8 hrs. Hughes 500D @ \$680/hr.	\$5	,440.00

MISCELLANEOUS

Sample	Bags,	Flagging	etc.		\$75.00
			Grand	Total	\$9.056.25

