ARIS SUMMARY SHEET

```
istrict Geologist, Nelson
                                                       Off Confidential: 90.05.18
ASSESSMENT REPORT 18786
                                 MINING DIVISION: Nelson
PROPERTY:
               Silver Dollar
LOCATION:
               LAT
                     49 11 45
                                   LONG
                                           117 17 30
               UTM
                     11
                         5449047
                                   478749
               NTS
                     082F03W
CAMP:
               004
                     Ymir - Nelson Area
               SD 1-2, Silver Dollar (L. 12599), Lucky Boy (L. 12600)

    LAIM(S):

OPERATOR(S):
               Highland Queen Mines
AUTHOR(S):
               Faulkner, R.L.
EPORT YEAR:
               1988, 125 Pages
JOMMODITIES
SEARCHED FOR: Gold, Silver, Copper, Lead, Zinc
EYWORDS:
               Hall Formation, Greywackes, Siltstones, Tuffs, Shear zones, Folds
               Ankerite, Chalcopyrite, Galena, Sphalerite, Electrum, Silver
               Tetrahedrite
WORK
ONE:
          Geological, Geochemical, Geophysical, Drilling, Physical
                  564.0 m
                               8 hole(s);NQ
               Map(s) - 2; Scale(s) - 1:500
                   18.0 km; VLF
          EMGR
              Map(s) - 1; Scale(s) - 1:1250
          GEOL
                  750.0 ha
              Map(s) - 11; Scale(s) - 1:500, 1:5000
                   18.0 km
          LINE
                   18.0 km
          MAGG
              Map(s) - 1; Scale(s) - 1:1250
          PETR
                    4 sample(s)
                    0.5 km
          ROAD
          SAMP
                  519 sample(s); AU, AG, CU, PB, ZN, AS, SB
              Map(s) - 5; Scale(s) - 1:500
                 646 sample(s); AU, AG, CU, PB, ZN
              Map(s) - 10; Scale(s) - 1:1250
          UNDV; RHAB
              082FSW207
MINFILE:
```


Ste 1201–675 W. Hastings St. Vancouver, B.C. Canada V6B 1N2 (604) 688-1553

LOG NO: 0529	RD.				
ACTION:					
	Consulting Geologists				
FILE NO:	and Engineers				

GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL,
AND DIAMOND DRILLING
REPORT ON THE SILVER DOLLAR PROPERTY,

FILMED

SALMO, BRITISH COLUMBIA
VOLUME I

Latitude: 49° 11' 45" N

Longitude: 117° 17' 30" W

NTS: 82F/3W

FOR

HIGHLAND QUEEN MINES LIMITED

2120 - 650 West Georgia St. Vancouver, British Columbia

V6B 4N9

Prepared by

Reginald L. Faulkner, B.Sc., M.A.Sc.

Vancouver, B.C.

September, 1988
(Work dates May 14 - August 7, 1988)

() (2)

- A

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
	1.1 Location, Access and Topography	1
	1.2 Claims	4
	1.3 History and Work	4
2.	GEOLOGY	6
	2.1 Regional Geology	7
	2.2 Grid Geology	9
	2.3 Underground Geology	10
	2.4 Diamond Drill Holes Geology	13
	2.5 Geological Summary and Discussion	15
3.	GEOCHEMI STRY	16
	3.1 Soil Geochemistry	17
	3.1.1 Grid Soil Geochemistry	17
	3.1.2 Claim Soil Geochemistry	18
	3.2 Underground Rock Geochemistry	20
	3.3 Diamond Drill Core Geochemistry	22
	3.4 Geochemistry Summary and Discussion	22
4.	GEOPHYSICS	25
	4.1 VLF-EM Survey	25
	4.2 Magnetic Survey	26
	4.3 Geophysical Surveys Summary and Discussion	27
t:		
5.	SUMMARY AND CONCLUSIONS	27
	5.1 Summary	27
	5.2 Conclusions	28
6.	RECOMMENDATIONS	29
7.	BIBLIOGRAPHY	31
8.	STATEMENT OF QUALIFICATION	32
9.	COST STATEMENT	34

LIST OF FIGURES

:		<u>Page</u>
Figure 1	Location Map	2
Figure 2	Claim Map	3
Figure 3	Land Tenure Map	(in pocket)
Figure 4	Regional Geology	.8
Figure 5	Geology Grid	(in pocket)
Figure 6	Drift 1 Geology	(in pocket)
Figure 7a	Drift 3 Geology:	
	Portal to station 3A+2.4m	(in pocket)
Figure 7b	Drift 3 Geology:	
	Station 3A+2.4m to Station 3C+8.0m	(in pocket)
Figure 7c	Drift 3 Geology:	
	Station 3C+8.0m to End of Drift	(in pocket)
Figure 8a	Drift 4 Geology:	
	Portal to Station 4D+11.0m	(in pocket)
Figure 8b	Drift 4 Geology:	
	Station 4D+11.0m to Station 4G	(in pocket)
Figure 8c	Drift 4 Geology:	
	Station 4G to End of Drift	(in pocket)
Figure 9	Plan of Diamond Drill Holes and	
	Underground Workings	(in pocket)
Figure 10	Geological: Crossection H-H ¹¹¹	(in pocket)
Figure 11	Grid Soil Geochemistry: Gold	(in pocket)
Figure 12	Grid Soil Geochemistry: Silver	(in pocket)
Figure 13	Grid Soil Geochemistry: Lead	(in pocket)
Figure 14	Grid Soil Geochemistry: Copper	(in pocket)
Figure 15	Grid Soil Geochemistry: Zinc	(in pocket)
Figure 16	Claim Soil Geochemistry: Gold	(in pocket)
Figure 17	Claim Soil Geochemistry: Silver	(in pocket)
Figure 18	Claim Soil Geochemistry: Lead	(in pocket)
Figure 19	Claim Soil Geochemistry: Copper	(in pocket)
Figure 20	Claim Soil Geochemistry: Zinc	(in pocket)

		Pa	ge
Figure 21	Drift 1: Gold/Silver		
	Rock Geochemistry	(in	pocket)
Figure 22	Drift 3: Gold/Silver Rock Geochemis	try;	
	Station 3C+8.0m to Station 3C+8.0m	(in	pocket)
Figure 23	Drift 3: Gold/Silver Rock Geochemis	try;	
	Station 3C+8.0m to End of Drift	(in	pocket)
Figure 24	Drift 4: Gold/Silver Rock Geochemis	try;	
	Station 4D+11.0m to Station 4G	(in	pocket)
Figure 25	Drift 4: Gold/Silver Rock Geochemis	try;	
	Station 4G to End of Drift	(in	pocket)
Figure 26	VLF-EM Geophysical Survey	(in	pocket)
Figure 27	Magnetic Geophysical Survey	(in	pocket)
Figure 28a	Summary and Recommendations Map	(in	pocket)
Figure 28b	Summary and Recommendations Map,		
	Detail	(in	pocket)
LIST OF TA	BLES		
			<u>Page</u>
Table 1 -			. 5
Table 2 - 1	Diamond Drill Core Geochemistry		23
LIST OF PL	ATES		
			<u>Page</u>
	Photomicrograph Drift 3 Mineralized		
	Sample: RF3-1		12
	Photomicrograph Drift 4 Mineralized		
:	SAMPLE: RF4-1		12

LIST OF APPENDICES

following text

Appendix A - Petrographic Examinations

Appendix B - Diamond Drill Logs

Appendix C - Geochemical Analytical Methods

Appendix D - Soil Sample Results

Appendix E - Underground Rock Geochemistry

Appendix F - Underground Rock Gold and Silver

Fire Assays

Appendix G - Diamond Drill Core Geochemistry

Appendix H - Claim Boundary Rock Geochemistry

1. INTRODUCTION

This report summarizes the initial exploration of the Silver Dollar Property, Salmo British Columbia. By funding the exploration program Highland Queen Mines Limited/ TRV Minerals Limited can earn up to 75% equity interest in an option held by Brian D. Fairbank to purchase the property.

The purpose of the exploration program is to determine the capability and potential of the Silver Dollar Property To do this, to host and contain gold reserves. sampling and geophysical surveys were undertaken delineate drill targets. Rock sampling and geological mapping of the rehabilitated Lucky Boy Mine workings were done to understand the gold bearing environment and to have a foundation on which to develop gold reserves. Diamond initiated to delineate the gold bearing drilling was structure and geological mapping was started to try and tie all these components together.

Conclusions have been reached and recommendations for further work presented.

1.1 Location, Access and Topography

Situated on the eastern edge of the Bonnington Range of the Selkirk Mountains, the Silver Dollar Property lies within the Nelson Mining Division. The property is approximately centered at latitude 49° 11' 45" north and longitude 117° 17' 30" west on N.T.S. map sheet 82 F/3W. It is to the west-northwest of and contiguous with the village of Salmo British Columbia (Figures 1 and 2). figure 1

Along the southern edge of the property is the Burlington Northern Rail Line and Highway 3. The highway gives access to the property from Castlegar, Trail, Nelson and Creston. Access to the Silver Dollar Property is by a short dirt road from Highway 3 and various parts of the property can be reached by logging roads, locally overgrown, and a diamond drill road.

The property occurs at the end of a ridge that trends south from Keystone Mountain to Erie Creek. It slopes steeply southward from a plateau at 1500 metres A.S.L. down to about 640 metres A.S.L. The plateau area has partially been logged, the brow of the ridge is sparsely treed rock outcrop and the lower reaches well treed with birch/poplar, fir and pine. The lower elevations have been selectively logged.

1.2 Claims

The Silver Dollar Property consists of 9 crown granted (C.G.) and 2 modified grid (M.G.) mineral claims, that cover the Silver Dollar and Lucky Boy Mines (Figure 2). Table 1 summarizes the pertinent claim information.

Portions of the Silver Dollar Property have alienated surface rights. These alienated surface rights, other than those outlined in the Mineral Tenure Act (August 15, 1988), are those rights of ways given to the Canadian Broadcasting Corporation (Plan 15942) and Village of Salmo (Plan 9722) (Figure 3).

1.3 History and Work

The crown granted mineral claims were recorded prior to 1899. Subsequently shafts and drifts were developed along the Silver Dollar and Lucky Boy "veins". From 1965 to 1977

TABLE 1

CLAIM DATA

Name	Number	Type	Units	Record	Recorded
				<u>Date</u>	Owner
Napoleon	4937	C.G.	_	-	J.Spencer/
					M.Easley
Silver Dollar	12599	C.G.	-	-	11
Lucky Boy	12600	C.G.	_	_	11
Salmo	12601	C.G.		-	37
Silver Dollar Fraction	12602	C.G.	-	. -	**
Lucky Boy Fraction	15504	C.G.	-	-	W
Lucky Boy #1	16216	C.G.	-		11
Lucky Boy #2	16217	C.G.	-	-	**
Lucky Boy #3 Fraction	16218	C.G.	-	_	**
SD 1	5088(5)	M.G.	15	20/05/88	B.Fairbank
SD 2	5089(5)	M.G.	15	20/05/88	n

the Lucky Boy Mine produced 1,626 ounces of gold and 58,390 ounces of silver from 6,174 tons of ore (Kenway, 1983; Lennan, 1988). No work has been performed since 1977 and significantly no geological exploration has ever been undertaken.

Having optioned the Silver Dollar Property and come to an agreement with Highland Queen Mines Limited, Fairbank Engineering has undertaken an exploration program centered on the Lucky Boy Mine workings on behalf of Highland Queen Mines. This 1988 work program entailed 18 kilometres of line cutting and magnetometer and VLF surveys. A total of 646 soil samples were taken over the cut grid, the claim boundaries and two longitudinal traverses. These samples were analyzed for Au, Ag, Cu, Pb and Zn. Three drifts and rehabilitated to allow safe access for portals were underground sampling and mapping of the Lucky Boy workings. In the workings 424 rock samples were taken and analyzed for Au, Ag, Cu, Pb, Zn, As and Sb. A 500 metre drill road and 10 drill sites were put in for Bergeron Drilling Limited's M-6 tank mounted Longyear Super 38 drill. A total 564 metres of NQ diamond drilling in eight holes was completed. From the drill core 128 samples were taken and 95 were sent for analyses of Au, Ag, Cu, Pb, Zn, As and Sb. Geological mapping of the underground workings has been completed and the surface mapping initiated.

2. **GEOLOGY**

The Silver Dollar Property is underlain by Rossland Group rocks. These rocks host the Lucky Boy Mine which is along a mineralized shear zone with quartz veining. The shear zone contains gold, silver, copper, lead and zinc bearing minerals.

2.1 Regional Geology

The lower Jurassic Rossland Group rocks are subdivided into three formations. The oldest is the Archibald Formation which is comprised of siltstone, argillaceous quartzite and minor tuff and lava. This formation is over lain by the andesite and basalt flows and flow breccia, agglomerate and minor siltstone and amphibolite of the Elise Formation. At the top of this stratigraphic pile is the Hall Formation which consists of argillite, shale, siltstone, phyllite with local volcanics and pebble conglomerates. These formations are penetrated by middle Jurassic Nelson and middle Eocene Coryell Intrusions, (Figure 4).

In this region the Rossland Group rocks occur within a fold, thrust belt formed in post-middle Jurassic time. The Hall Formation is the core of a north-south syncline that ends just north of the Silver Dollar Property. The Elise Formation forms the limbs of the syncline with the Archibald Formation occurring only on the western limb in contact with the Bonnington Pluton. A southwest-northeast anticline exposing Archibald Formation rocks appears to begin near the western boundary of the property and trends southward.

To the southeast of the anticline the Waneta Fault, a low angle easterly dipping thrust fault, brings Cambrian rocks into contact with the lower Jurassic Elise Formation. This fault is locally obliterated by the Nelson Intrusions. Transverse faults, to the southwest of the property, offset the anticline and bodies of Nelson Intrusive rocks (Little, 1960; 1986).

_

LEGEND

Diversion for Senter

Total - 40 to - 44

Farmer to B to

Fault contract approximate assumed)

From fault partners approximate assumed)

Selected Challeng accommon accommod

Geology by H. W. Citte, moduled after Walter (1934), John deld work by H. W. Little or land of the field sessions of 1948-1949, and 1959. Sheep Creat mining pang-from Martheol (1953), and Jaima head once and from five and Heaving (1959).

MAP 1145A

e mep carboraphy by me Geological Survey of Canade Rom is Jomphes by the Surveys and Masping Branch, Department ands: Foreiss and Wesel Resources, Breat Columbia

INDEX TO MINING PROPERTIES

- 1 Braum Crast
- 2 Amorang Grand
- 4. Animpion (New Asimpton)
- \$ formation
- · Festione
- 2 Secured Chance
- 8 Chillese Complete
- D. Landa May
- M. oherstone

SCALE

0 1 2 3 4 5 Kriometer

HIGHLAND QUEEN MINES LTD.

SILVER DOLLAR PROPERTY

REGIONAL GEOLOGY

NELSON M.D., B.C.

82 F/3

1:100,000

Date: SEPT/88

Proj. No. Fig. No. 155 - 88 4

2.2 Grid Geology:

It is believed that the Silver Dollar Property is underlain by the Hall Formation. The limited geological mapping, (Figure 5) has shown that interbedded greywackes and siltstones are the dominant rock types. In the mapped area tuffs, crystal and ash, and andesitic flows occur locally and appear to be conformable to the interbedded sediments. Feldspar-quartz porphyry as sills/dykes also occur locally and are somewhat conformable to bedding.

Bedding strikes a few degrees on either side of north and dips 40° to 90° to the east. Tops are generally unknown, but where found they point to the southwest. This suggests that the beds may be overturned.

The dominant and most important structural feature is a shear zone that strikes approximately 20° north and dips 10° to 30° to the east. It hosts the quartz and precious and base metal mineralization. This zone is only exposed around the adits. At the portal to Drift 4 a small, 2 metre wide, recumbent fold with a hinge line bearing 014° plunges 03° north. It is not known whether this fold is overturned. In this and other exposures minor folding and thrust faulting are apparent and mimic the above two features.

Jointing is ubiquitous and dominated by a joint set striking to the southeast between 120° and 149° that generally dips steeply, 70+°, to the southwest and to a lesser extent to the northeast. Less dominant joints are found to strike approximately 65° and dip 19° to 90° to the southeast with the shallower dips to the northwest, strike about 90° with dips from 35° to 85° predominantly to the north and strike to the south-southeast, around 170° generally dipping 18° to 90° to the east.

Pyrite is found everywhere as euhedral crystals of varying sizes and in varying amounts in all rock types. Carbonate occurs as masses (CaCO₃) filling dilatant zones, centimetres in width, as surface precipitate and as the matrix of clastic sediments. It is not known whether the carbonate in these clastic sediments is original or replacement mineralization.

2.3 Underground Geology

Three drifts expose crossections of the mineralized shear zone in the Lucky Boy Mine workings (Figures 6, 7 and 8, Plan View Figure 11). The rocks hosting the shear zone are themselves sheared and altered, but appear to be greywackes and siltstones of the Hall formation with tuffs occurring locally.

These rocks were folded, kinked and then sheared. The folds that resulted were found to be recumbent to slightly overturned and isoclinal to closed with north, south trending hinge lines that plunge 5° to 10° to the north. Kinking occurred in the siltstone dominated beds and gave rise to shearing and drag folding. Shearing was found to crosscut the folds and kinks in the host rocks.

Shearing movement is suggested by drag folding in the foot and hanging walls. These drag folds trend northeast-southwest, plunge 10 to 15 to the northwest and indicate a westward movement in the footwall and an eastward movement in the hanging wall. North-south movement within the gouge bounded shear zone is expressed by upright symmetrical open folds and northward thrust planes. This shear zone undulates with the foot wall, but generally strikes north-northwest - south-southeast to north-south and dips to the northeast 10° to 40°.

Quartz within the shear zone occurs as veins, veinlets and stringers that are generally well fractured and broken. In thin section the quartz is strongly recrystallized, granulated, fractured and strained (Appendix A). This suggests that the quartz veining inhabited dilatant zones prior to major shearing.

In hand specimen within and along the margins of the quartz are pyrite, chalcopyrite, galena, rare sphalerite and bornite and tetrahedrite. The habit of pyrite as masses and euhedral crystals, chalcopyrite as masses and blebs and rare bornite associated with the chalcopyrite suggests a contemporaneous deposition with quartz. Galena is found in fractures, along the margin of the quartz veining and to a lesser extent as blebs within pyrite. This hints at a later stage of deposition. Tetrahedrite occurs as a fine grained dark grey metallic mineral along the margins of and in fractures within the quartz. As with galena it is assumed that tetrahedrite is a late stage product.

In thin section the mineralized vein sample from Drift 1 is dominated by tetrahedrite with pyrite as an accessory mineral (RF1-1, Appendix A, Figure 6). The tetrahedrite forms threads and interconnected pockets while pyrite occurs as clusters of tiny euherda. Chalcopyrite is tarnished and its habit is as specks and pockets. Galena is rare and occurs as pockets. The thin section of the vein sample from Drift 3 shows compact pyrite is the dominant suphide (RF3-1, Appendix A, Figure 7c). It is fractured with the fractures containing quartz and galena. Galena occurs as segregated blebs and as dendritic permeations in the quartz. Electrum is fairly abundant as specks and threads in fractures, (Plate 1). Sphalerite, tetrahedrite and chalcopyrite are rarely found. The mineralogy of the thin section from Drift 4 is likened to that of Drift 1 (RF4-1 Appendix A, Figure

Plate 1: Sample RF3-1, Neg. 129-7. Veinlets of galena (Ga)and quartz (Qtz). Electrum (Elec) occurs as small segments (5-70 microns) in the galena-filled microfiacture network (APPENDIX A).

Plate 2: Sample RF4-1, Neg. 129-8. Tetrahedrite (Tetr) containing galena (Ga) and sphalerite (Sph) and native silver (Ag) (APPENDIX A).

8b). Tetrahedrite dominates as specks and threads in quartz and as matrices with galena in sulphide pockets. These pockets, 0.5 millimetres in diameter, contain tetrahedrite, galena, sphalerite and pyrite. Chalcopyrite occurs rarely as specks in gangue and the tetrahedrite. It is in this thin section that native silver is prominent, but a minor component mineralogically (Plate 2) (Harris, 1988).

Alteration consists of carbonatization silicification. Carbonate alteration locally occurs in the tuff horizon and in the greywacke-argillite beds, but specifically below the quartz veining. Thin section RF1-2 (Appendix A, Figure 6), is 52% fine grained micritic dolomite or ankerite with chlorite (mariposite?) patches. Carbonate also is found as surface coatings at the ends of Drifts 1 and 4. Silicification locally occurs in greywackes-argillites associated with quartz stringers (Harris, 1988).

2.4 Diamond Drill Holes Geology

In the eight diamond drill holes the rock hosting the shear, mineralized zone is largely comprised of greywacke, argillite and lesser amounts of felsic (ash) and crystal tuffs. Both the tuffs and the greywacke beds have local carbonatization of feldspars. Scarce augite-feldspar +/-quartz +/- biotite porphyry sills, possibly a recrystallized equivalent of the crystal tuff, occur throughout. In DDH-88-8, a turbidite sweep characterized by epiclastic rip-up clasts is intersected at depth, (Figures 9 and 10, Drill Logs Appendix B).

The bedding appears to be inverted, whereby older strata overlie the more recent. Dipping steeply, average 58° to the east, the bedding generally steepens slightly downhole. However, proximate to the mineralized zone, the

bedding shallows to approximate the veining and shearing dips. The strike cannot be determined by means of the drill core data.

Fault zones have been intersected throughout each of the drill holes. However, the faulting network is not readily discernible and thus its preponderance over the mineralized zone remains unclear.

Quartz veins equivalent to those of the mineralized zone within the drifts of the Lucky Boy Mine were intersected in each drill hole except for DDH-88-1 and DDH-88-8. At DDH-88-1, the mineralized zone was eroded away. At DDH-88-8 the mineralized zone was represented only by statigraphically equivalent shearing and faulting. In DDH-88-5 the mineralized zone was comprised of a dissipated quartz stringer stockwork dipping at approximately 70° to 90°.

The mineralized zone is largely undulating, approximating a strike of 161° and a northeasterly dip of 15° to 25°, and is largely comprised of massive bull type quartz stringers and veins up to 1.9 metres wide. They are regularly carbonate microveined, microfractured and host brecciated wall rock inclusions. Sulfide mineralization, which almost without exception is comprised of second generation? lustrous pyrite grains, grain aggregates and clots, occurs at the sheared vein contacts, brecciated wall rock inclusion contacts and along microfracture planes. Minor galena in the mineralized zone of DDH-88-6 represents the only other visible sulphide mineralization.

2.5 Geological Summary and Discussion

The regional geology suggests that the Rossland rocks were deposited offshore with their source being an island arc. A period of volcanism occurred (Elise Formation) which ended a time of quiet deposition (Archibald Formation) in the middle-lower Jurassic. With the end of the volcanic activity quiet deposition returned (Hall Formation) with minor uplift of the arc. Subsequent orogenic activity created the fold thrust belt with Nelson Intrusions emplaced in the middle Jurassic. Transverse faulting then occurred offsetting the major structural features. The latest event was the emplacement of the Coryell Intrusions.

Surface geological mapping has indicated that the lower Hall Formation, greywackes and argillites interbedded with tuffs and flows, has been folded and overturned. These beds were found to have a northerly strike and dip steeply to the east. Subsequent to folding, shearing was initiated and possibly the feldspar-quartz porphyry sills/dykes intruded. Shearing continued with minor thrust faulting and folding and could have terminated with the emplacement of the granitic stock on the east side of the property.

The underground geology suggests a sequence of events where the Hall Formation underwent regional shearing and deposition of metallic minerals. This shearing formed a pathway along which mineral rich fluids flowed and where fine grained greywacke/argillite occurred created zones of dilation. Quartz along with pyrite and chalcopyrite were deposited in these zones. With continued shearing the quartz was broken and the sulphides fractured providing a depositional environment for later minerals. These later minerals were tetrahedrite, native silver, electrum, galena and rare sphalerite. It is possible that the emplacement of

the granitic stock was the mechanism controlling the mineral bearing fluids.

The lack of arsenopyrite and the existence of native silver suggests the metal bearing fluids were of low to moderate temperatures and primary hydrothermal solutions.

Diamond drilling shows the existence, continuity, and areal extent of one and possibly two shear zones. Furthermore, quartz vein material in the shear zones and sulphides in DDH-88-2, DDH-88-3, DDH-88-4, DDH-88-6 and DDH-88-7 indicate the occurrence of mineralizing fluids.

3.0 GEOCHEMISTRY

The geochemical surveys of the Silver Dollar Property consisted of 646 soil samples, 424 channel rock samples, 4 rock samples and 128 NQ diamond drill core samples of which 95 were analyzed. They were analyzed at Min - En (Mineral Environments) Laboratories Limited 705 West 15th Street North Vancouver, British Columbia. These samples were analyzed for gold, silver, copper, lead and zinc in soils and for these elements plus arsenic and antimony in the rocks and core.

The methods used are detailed in Appendix C and are summarized as follows:

soils: Au, wet atomic absorption.

Ag, Cu, Pb, Zn, multi-acid atomic absorption.

rocks: Au, fire geochem.

6 element Inductively Coupled Plasma atomic emission spectrometry.

Au > 1000 p.p.b., fire assay.

Ag > 10 p.p.m., acid digestion chemical analysis.

core: Au, fire geochem.

6 element Inductively Coupled Plasma atomic

emission spectrometry.

Au > 1000 p.p.b., fire assay.

3.1 Soil Geochemistry

The Silver Dollar Property soil samples were collected from June 4th to 20th, 1988. Of the 646 samples collected 270 were taken at 25 metre intervals along cut grid lines. The remaining 376 soil samples were gathered along the three north-south claim block lines at 25 metre intervals and two north-south traverses bisecting the claim blocks at 50 metre intervals.

The soils on the property are derived from glacial till and talus material. The majority of the samples taken represent an immature "B" horizon that could be the transition zone between the "A" - "C" horizons, a lower "A" horizon or an upper "C" horizon. The analytical results are tabulated in Appendix D.

3.1.1 Grid Soil Geochemistry

Gold results from the grid soil samples occur as point anomalies as a result of the thick overburden. Significant point anomalies, >100 ppb Au, occurring down slope from the Lucky Boy "vein" are due to mine waste. The anomaly at station 300E 175S remains unexplained. At station 275E 000S the 70 ppb Au anomaly sits on the crown of an overgrown alluvial fan. The other anomalies, >10 ppb Au have not been investigated (Figure 11).

Silver results show significant anomalies (>1.6 ppm Ag) in the northwest quadrant of the grid, specifically at stations 500W 175N to 300N and 400W 225N to 300N. A

significantly anomalous result occurs as a point anomaly at station 400E 25N, the source is unknown. In general the anomalous silver values indicate east-west trends interrupted by thick overburden. The north-south elongation of the anomalous zones is due to slopes dipping steeply to the south (Figure 12).

Lead results also show east-west trends and elongation of anomalous zones down slope. A significantly anomalous zone occurs from lines 000W to 100W and from 75N to 150N. The anomalous zone at 200E 125N to 225N represents the down slope movement of lead from the point source at 250E 200N into a gully to the west then south down the gully. Another point anomaly is located at 500E 25N, whose source is unknown (Figure 12).

Copper results show significant anomalous values in the northwest quadrant. These results also show point anomalies, east-west trends and down slope spreading especially line 150W north of the base line (Figure 14).

Zinc results show point anomalies, east-west trends and elongation of anomalies down slope. As with silver and copper significant anomalies, >600 ppm Zn, occur in the northwest quadrant of the grid. Zinc also has anomalies occurring in the southwest quadrant and at stations 225N and 250n on line 600E. It also repeats the lead anomalous zone from lines 000W to 100W and 100N to 150N. Point anomalies occur randomly, but the anomaly at 150E 50S, 3401 ppm Zn, is believed to be man made with the logging road so close by (Figure 14).

3.1.2 Claim Soil Geochemistry

Gold results that were anomalous, > 10 ppb Au, occur as point sources and local groups (Figure 16). Claim Line

East, CL E, has a group anomaly from station 625S to station 700S (10 ppb to 25 ppb Au) and a point anomaly at 1250S. Claim Line 750E has only one point anomaly at 1450S. Claim Line 00W has a grouped anomaly at 1225S to 1250S and point anomalies at 425S and 1650S (35 ppb Au). Claim Line 750W has three point anomalies 1500S, 1650S (25 ppb Au) and 2300S (30 ppb Au). Claim Line West, CL W, has the most significant grouped anomaly from station 1625S (45 ppb Au) through 1675S (50 ppb Au) to 1750S. It also has point anomalies at 475S, 1025S (25 ppb Au), 1450S and 2325S (25 ppb Au). Notable are the significantly anomalous values, >20 ppb Au, at and around station 1650S on Claim Lines 00W (35 ppb Au), 750W (25 ppb Au) and West (45, 15 and 50 ppb Au).

Silver results as with gold show point and group anomalies (> 1.6 ppm Ag, Figure 17). CL E has scattered anomalous values 225S, 300S, 375S, 425S, 450S, 500S, 625S, 750S and a significant grouped anomaly from 0s to 50S (1.4, 3.2 and 2.1 ppm Ag). Claim Line 750E does not have any anomalous values neither does Claim Line 00W and Claim Line 750 W. Significantly CL W has the highest value at 19.6 ppm Ag at 1550S associated with 2.4 ppm Ag at 1575S and some point anomalies at 325S, 350S and 1050S.

Lead has very few anomalous results (Figure 18). Those values that are above 80 ppm Pb are on Cl E at 625S and 750S, Claim Line 750E at 200S, 650S, 1450S and 1550S, Claim Line 00W at 1125S, 1225S, 1250S and 1275S, Claim Line 750W at 2150S (162 ppm Pb, highest value) and 2500S and CL W at 1025S.

Copper claim line soil geochemistry results can be considered anomalous if greater than 160 ppm Cu (Figure 18). Point anomalies occur along Cl E at 25S (269 ppm Cu), 225S and 625S (292 ppm Cu). Claim Line 750E has no anomalous

values while Claim Line 00W has numerous 1225S, 1275S, 1375S, 1400S, 1475S (262 ppm Cu), 1500S (377 ppm Cu, highest value), 1525S, 1675S and 1700S. Claim Line 750W has no anomalous values and CL W has four 1300S, 1550S, 1900S (249 ppm Cu) and 1950S. No east- west trends are visible, but the 1550S anomaly on CL W may be associated with the silver anomaly at the same station.

Zinc results can be considered anomalous if they are above 600 ppm Zn (Figure 19). With this definition CL E has anomalous values and these range from 676 ppm to 2180 ppm Zn, the highest value, over 24 stations 00S to 750S. Claim Line 00W is the only other line with anomalies and they are at stations 1275s and 1300S.

3.2 Underground Rock Geochemistry

In Drift 1 the rock samples collected were numbered 60401 to 60521 and 60594 to 60615 (Appendices E and F, Figure 21). Based on a visual inspection those gold fire geochemical values greater than 300 ppb Au were fire assayed as were silver geochemical values greater than 10 ppm Ag. A total 56 gold samples and 9 silver samples were fire assayed out of 143 samples taken in this drift. The fire assayed gold values ranged from 0.009 oz. Au/ton (.308 gm. Au/tonne) to .375 oz Au/ton (12.8gm/tonne) with 4 samples >0.10 oz Au/ton (3.4 gm/tonne) and the silver from 0.35 oz Ag/ton (12.0 gm/tonne) to 14.44 oz Ag/ton(495 gm/tonne).Significantly all the fire assayed values were higher than the Au fire geochemical values and on average slightly lower than the ICP Ag results. 50% of the fire assayed gold and silver values were associated with sample intervals that contained greater than 50% quartz.

Samples number 60522 to 60593 and 60616 to 60677 were taken in Drift 3 (Appendices E and F, figure Figures 22 and

Those samples which had fire geochemical values > 1000 ppb Au and ICP values >10 ppm Ag were fire assayed. resulted in 48 gold values and 66 silver values out of 132 The fire assayed gold values samples being fire assayed. ranged from 0.029 oz Au/ton (1.0 gm/tonne) to 1.047 oz Au/ton (35.9 gm/tonne) with 26 greater than 0.10 oz Au/ton (3.4 gm/tonne) of which are 9 greater than 0.50 oz Au/ton (17.1 gm/tonne). The silver fire assay values range from 0.29 oz Ag/ton (9.9 gm/tonne) to 53.6 oz Ag/ton (1839.8 gm/tonne) with 14 samples greater than 5 oz Ag/ton (171.4 gm/tonne) of which 5 are greater than 20 oz Ag/ton (685.6 gm/tonne). For both gold and silver the fire assay values were generally higher than the fire geochem and ICP derived values. Of the 48 samples with gold values higher than 1000 36 occurred when the sample interval contained ppb Au, greater than 50% quartz. From 66 samples with silver value higher than 10ppm Ag, 38 occurred when the sample interval contained greater than 50% quartz.

The samples collected in Drift 4 were number 60678 to 60817 and 60851 to 60857 (Appendices E and F, Figures 24 and 25). As with Drift 3 gold values >1000 ppb Au and silver values >10 ppm Ag were fire assayed resulting in 24 gold and 30 silver assays. The gold fire assays ranged from 0.059 oz Au/ton (2.36 gm/tonne) to 1.686 oz Au/ton (57.79 gm/tonne) with 12 samples greater than 0.10 oz Au/ton (3.4 gm/tonne) and 2 greater than 1.0 oz Au/ton (34.28 gm/tonne). Silver fire assays ranged from 0.29 oz Ag/ton (9.9 gm/tonne) to 110.54 oz Ag/ton (3789.3 gm/tonne) with 5 samples greater than 5 oz Ag/ton (171.4 gm/tonne) and 3 greater than 20 oz Ag/ton (685.6 gm/tonne). Of the 24 gold fire assays 17 were found to occur when the samples contained greater than 50% quartz and for silver 15 of 30 samples.

In all three drifts elevated ICP values in copper lead arsenic, antimony and zinc are associated with elevated gold

and silver values. Lead values range from 18 ppm up to 5.5%, zinc from 25 ppm to 3.7%, copper from 9ppm to 0.82 %, arsenic 1 ppm to 707 ppm and antimony 1ppm to 6207 ppm or 0.62%. The antimony values suggest that the tetrahedrite-tennantite solution series tends towards the tetrahedrite. Visually the ICP results do not suggest any pathfinder elements for gold and silver.

3.3 Diamond Drill Core Geochemistry

To date 95 drill core samples from 8 holes have been analyzed. In these samples elevated gold and silver values have occurred at various levels. Elevated values have been noted in Diamond Drill Holes 2, 3, 5, 6, and 7 (Table 2; Figure 10; Diamond Drill Logs, Appendix B; Geochemical results, Appendix G). The targeted mineralized zone in DDH 1 is known to have been eroded away and is reflected in the low geochemical values sample numbers 16001 to 16006 (Appendix G).

For all the diamond drill holes the arsenic, copper, lead, antimony and zinc have been generally low. High values that do occur are associated with elevated gold and silver values.

3.4 Geochemistry Summary and Discussion

The soil geochemistry emphasizes the occurrence of east-west anomalous zones that crosscut the northerly striking and easterly dipping bedding. It also emphasizes the influence of overburden on the geochemical results, giving rise to point anomalies and higher values on and near rock exposures. This suggest that the overburden is covering significant anomalous trends and sources. Furthermore, the occurrence of carbonate precipitate may

TABLE 2
DIAMOND DRILL CORE GEOCHEMISTRY

DDH No.	Sample No.	Depth	Width	Gold	Silver
		<u>m.</u>	<u>m .</u>	ppb.	ppm.
2	16014	34.96-35.79	0.83	135	2.4
	16015	35.79-37.37	1.58	157	1.9
	16016	37.10-38.00	0.90	69	2.5
	16017	38.00-38.51	0.51	10	2.9
3	16027	28.75-30.00	1.25	6	2.5
	16028	30.00-30.93	0.93	3	2.7
	16029	30.93-31.85	0.92	2	2.4
	16030	31.85-33.00	1.15	91	3.4
	16031	33.00-33.45	0.45	288	3.4
	16032	33.45-33.85	0.45	27	3.9
	16033	33.85-34.40	0.55	210	3.2
	16034	34.40-35.05	0.65	60	2.9
	16035	35.05-36.20	1.15	22	2.6
4	16038	38.05-39.65	1.60	20	3.1
	16039	39.65-40.43	0.78	16	2.8
	16041	41.30-42.30	1.00	8	2.4
	16042	42.30-42.98	0.68	71	2.9
	16044	43.89-44.68	0.79	81	2.6
	16045	44.68-45.70	1.02	39	3.8
	16046	45.70-46.75	1.05	5	2.9
	16048	56.25-57.75	1.50	3	2.8
- 5	16053	57.00-57.75	2.40	1	3.7
6	16080	77.90-79.00	1.10	165	1.8
	16082	80.15-81.00	0.85	165	0.8
	16083	81.00-81.35	0.35	2600*	7.7
7	16110	80.34-80.70	0.36	20	1.2

^{*(0.082} oz/ton

^{2.82} gm/tonne)

influence the precipitation of silver, copper, zinc and lead leading to a transported anomaly.

These east-west anomalous zones and point anomalies indicate potential exploration targets in the northwest quadrant of the soil grid and on the Western Claim line and the top part of the Eastern Claim line.

Follow up prospecting on the western claim boundary found an old adit on a 0.6 metre visible quartz vein. When chip sampled (RF88SD100), the fire assay of the vein material returned 0.105 oz Au/ton (3.60 gm Au/tonne) (Appendix H). This sample also gave 60.0 ppm Ag (ICP equivalent 1.75 oz Ag/ton, 60 gm Ag/tonne) and 1629 ppm As. A grab sample of limonite quartz float in the same area gave 960 ppb Au, 2.1ppm Ag, 504 ppm As and 411 ppm Pb (RF88SD103, Appendix H).

Underground rock geochemistry shows the existence of and potential for gold and silver mineralization in the major shear zone in the quartz veining, hanging wall and footwall. Drift 1 geochemical results indicate a down dip extension of the mineralization mined in Drift 3. results from Drift 3 show the existence of significant gold and silver values over minable widths along 46.5 metres of This zone provides the the right rib of the drift. foundation upon which ore reserves can be developed. Drift 4 results suggest the occurrence of more than one shear/vein carrying significant gold and silver values. Furthermore, the significant gold value, 60811, (0.118 oz Au/tonne, 4.05 gm/tonne) at the end of Drift 4 indicates the potential for finding minable ore reserves along the strike of the shear/vein.

4.0 GEOPHYSICS

Geophysical surveys performed were a Very Low Frequency (VLF) electromagnetic survey and a total field magnetic survey over a cut grid. The control grid has an east-west baseline and north-south survey lines at 50 and 100 metre spacings and a station interval of 12.5 metres. In all 18 line kilometres were surveyed.

4.1 VLF-EM Survey

The Seattle, Washington VLF transmitter station which has an operating frequency of 24.8 khz was utilized. Its signal is closest to perpendicular to the geologic strike and to the mined vein(s) on the property. The geometry allows the maximum induction of the transmitter signal.

Two main conductors are apparent from the VLF survey.

Conductor A is an undulating, roughly linear, east-west trending conductor that occurs toward the south ends of the grid lines at L150W-150S, L100W-162S, L050W-147S, L000-175S, L050E-162S, L100E-187S, L150E-200S, L200E-212S and L250E-225S (Figure 26). There was concern that the nearby railway may have an influence on the VLF response at these locations. As a test, lines 200E and 100W were extended across the rail line. It was shown that the rail line's VLF response is negligible at distances over 20 metres away, thus, Conductor A is not affected by the rail line and likely represents a lithologic contrast.

The in-phase VLF curves on Conductor A are rather flat, showing low conductivity contrast. The out-of-phase curves are flat as well, with low values (-4 to -14) again showing low conductivity contrast. Thus Conductor A appears to be rather weak.

A second conductor, Conductor B, occurs at locations L100E-94S, L100E-107S and L150E-87S, Figure 25. The inphase curves have a large amplitude showing a strong conductivity contrast, while the out-of-phase curves are moderately flat showing an intermediate conductivity contrast. Conductor B has a much lower resistivity than Conductor A and as such is a more promising exploration target.

On line 100E two separate inphase crossovers occur at 94S and 107S, showing two separate parallel conductors crossing line 100E at these locations. The more northerly conductor continues to line 150E at 87S. The southerly conductor of the pair does not readily appear on line 150E, but it may be masked due to being close to the first conductor. If this is the case it would lie under the inflection point of the inphase curve, at about 92S. The line to line correlation of the VLF curves would support the existence of the second conductor at 150E-92S and possibly to L200E-90S.

4.2 Magnetic Survey

The magnetic values obtained during the survey were from about 56,500 to 57,500 gammas. A base level of 56,500 gammas was chosen to give positive values between zero and 1000. Diurnal variations were linearly corrected to a base reading using the standard looping method.

The magnetics data over the survey area is rather complex, with few linear features apparent. A number of high and low value regions are apparent that are roughly lenticular in shape. Three areas having values of 1000 gammas or greater are at L400W-50S, L50W-212N and L500E-250N. Areas of magnetic values below 500 gammas are at

L000-250N, L050E-187N, L150E-250N and L400E-200N (Figure 27).

The region containing the Lucky Boy Mine underground workings has moderate magnetic values of about 700 gammas.

4.3 Summary and Discussion:

From the VLF survey it is possible to interpret the conductor pair as representing additional vein structures similar to the vein(s) seen in the Lucky Boy Mine.

The Magnetic survey suggests that areas that have possible alteration, as marked by closely spaced strong high and low magnetic values, occur at L50E-212N extending northnorthwest to L000-237N, and at L600E-225N to L500E-225N.

5.0 SUMMARY AND CONCLUSIONS

5.1 Summary

- There are three locations on the Silver Dollar Property which contain precious metals in shear zones. Silver Dollar Mine; Ag, Pb, Zn Lucky Boy Mine; Au, Ag, Pb, Zn, Cu Claim Line West Showing: Au, Ag (Figure 28a).
- 2. Underground rock sampling and geological mapping of the Lucky Boy Mine confirm the reported mine grades and the existence of in situ precious metal bearing quartz vein material in a shear zone (Figure 28b).
- Diamond drilling has proven the continuity and existence of the shearing around the Lucky Boy Mine.

4. Soil geochemistry and the geophysical surveys have indicated targets for detailed investigation (Claim Line East, northwest quadrant of the grid) and provided incentives to do more soil sampling and geophysics (to the north and west of the existing grid) (Figure 28a).

5.2 Conclusions

- There exists an extensive hydrothermal system or systems as indicated by the occurrence of three precious metal showings over a lateral distance of 2600 metres.
- 2. The known system is still open both up and down dip and along strike to the north.
- 3. Within this system or systems there is potential for economical ore shoots as proven by the recorded grades and tonnages extracted from the Lucky Boy Mine (1,626 ounces of gold and 58,390 ounces of silver from 6,174 tons of ore) (Kenway, 1983; Lennan, 1988).
- The potential for vertical as well as horizontal ore 4. shoots exists as possible model a for the shearing/hydrothermal system is one where the shearing may be stepped or associated with kinking with dilatant zones occurring just before orjust after step/kink.

6.0 RECOMMENDATIONS

With the results from the Phase 1 program in hand and tentatively having developed a model of the genesis of the mineralized zones, the following program is recommended:

- 1. Prospecting
- the whole Silver Dollar Property specifically to locate adits/drifts, shear zones and quartz veining;
- follow up any significant soil geochemical values.

2. Geological Mapping

- continue mapping the grid area;
- map the area above the grid to the break in slope;
- map the area between the Lucky Boy workings and the gold anomaly on CL W at station 1525S.

3. Geochemical Soil Sampling

- extend the northwest quadrant
 of the grid to the north and west;
- sample lines and stations at 50; metre and 25 metres respectively
- Au, Ag, Pb, Cu, As, Sb (Figure 28a).

4. Trenching

- the shear/quartz vein showing on CL W;
- trench at 50 metre spacings to trace the shear zone eastwards (Figure 28a);
- channel sample the hanging wall, shear/quartz vein and footwall.

- 5. Drilling
- drill 15, 50 foot (15 metre) holes to test the breadth of the CL W showing light drill (Winkie) - sample core (Figure 28a).
- diamond drilling at least 10, 180 foot (54 metre) holes in the area between DDH's 4, 5, 6 and Drift 3's right rib-sample the drill core (Figure 28b)
- 6. Channel Sample the accessible Silver Dollar Mine workings
 - Au, Ag, Pb, Cu, As, Sb (Figure 28a).

7. BIBLIOGRAPHY

- Geological Survey of Canada, 1965. "Geology Salmo, British Columbia. MAP 1145A
- Harris, J.F., 1988. "Petrographic Report". Silver Dollar Project, August 15, 1988.
- Kenway, R.W., 1983. "Report on Silver Dollar Property, Nelson Mining District, Salmo, B.C." Private Report by Marston & Marston Inc., for Petrohunter Energy Limited.
- Lennan, W.B., 1988 "Geological Report on the Silver Dollar Property". Highland Queen Mines Limited internal report, April 15, 1988
- Little, H.W., 1960. "Nelson Map-Area, West Half, British Columbia (82F W1/2)". Geological Survey of Canada, Memoir 308. 205pp.
 - ,1986. "Geological Notes, Nelson West Half (82F, W1/2) Map Area". Geological Survey of Canada, Open File (O.F.) 1195. 47pp.

STATEMENT OF QUALIFICATIONS

I, Reginald L. Faulkner of #102 - 1255 West 12th Avenue, Vancouver, British Columbia hereby certify that:

- 1. I am an exploration geologist and a graduate of the University of British Columbia, with a B.Sc. in Physical Geography/Geology in 1974 with additional course work in Geology in 1977-79 and 1982-83.
- 2. I obtained a M.A.Sc. from the University of British Columbia in Mining and Mineral Process Engineering in 1988, emphasizing mineral economics.
- 3. I am a Fellow of the Geological Association of Canada.
- 4. I have practiced as a geologist since 1979 for companies, including RIOCANEX, Vancouver, B.C.; Denison Mines Limited, Vancouver, B.C., Duval International Corporation, Vancouver B.C.; Trigg, Woollett, Olsen Consulting Limited, Edmonton, Alberta; Terra Mines Limited, Edmonton, Alberta, and Fairbank Engineering Limited, Vancouver, B.C.
- 5. The details of this report are based on work done by Fairbank Engineering from May 14 to October 7, 1988.

Reginald L. Faulkner, B.Sc. M.A.Sc.

February 1989

COST STATEMENT

LINE CUTTING

	a.		

A.Pratt T.Holgate M.Lich S.Ayling	12 days @ 18.75 days @ 7.25 days @ 10.25 days @	\$178/day \$168/day	3337.50 1218.00	
			\$9485.50	9485.50
Room and Board				
48.5 days @ \$55/day				2653.75
Transport				
Airfares, truck ren	tal, fuel			1062.31
Equipment, Field Su	pplies			
Chainsaw Flagging, lath, pai Small tools, bush h Communications and	ooks, machett	pplies		220.00 289.78 140.51 103.86
	su	B-TOTAL	•	13955.71

SOIL SAMPLING;

Labour					
T. Holgate M. Lich S. Ayling J. Davis	11.5 7.0 5.0 3.0	days @	\$178/day \$168/day \$200/day \$275/day	1000.00	
·				\$5048.00	5048.00
Room and Board					
26.5 days @ \$55/day					1457.50
Transport					
Truck rental and fu	el				777.56

Equipment and Field Supplies		
Sample envelopes 646 @ \$16.56/100 Communications and freight Office supplies, maps, reproductions, etc.	338.07	
	\$668.55	668.55
Office Support (Drafting, Typing)		
B. MacDougal 26.5 hrs @ \$25/hr 17.0 hrs @ \$32/hr		
J. Collins 2.0 hrs @ \$30/hr	60.00	
	\$1266.50	1266.50
Geochemistry		
646 samples Ag, Cu, Pb, Zn @ \$5.50/sample 646 samples Au wet @ \$4.75/sample 646 samples preparation @ \$1.00/sample	3068.50	
	\$7267.50	7267.50
<u>Disbursements</u>		700.97
SUB-TOTAL		\$17186.58
GEOPHYSICS		
Labour		5262 50
Labour J. Davis 19.5 days @ \$275/day		5362.50
Labour		
Labour J. Davis 19.5 days @ \$275/day		5362.50 1072.50
Labour J. Davis 19.5 days @ \$275/day Room and Board		
Labour J. Davis 19.5 days @ \$275/day Room and Board 19.5 days @ \$55/day	er	
Labour J. Davis 19.5 days @ \$275/day Room and Board 19.5 days @ \$55/day Transport	er	1072.50
Labour J. Davis 19.5 days @ \$275/day Room and Board 19.5 days @ \$55/day Transport Airfare J. Davis Castlegar to Vancouv	660.00	1072.50

Office Support

S. Ayling 5.5 hrs @ \$25/hr J. Collins 1.0 hr @ \$30/hr 143.75 30.00 \$173.75 173.93 \$8096.38 SUB-TOTAL **GEOLOGY**

Labour

		\$14263.00 14263.00
R. Faulkner	10.0 days @ \$325/day	3250.00
	1.0 day @ \$420/day	420.00
B. Fairbank	56.5 hrs @ \$60/hr	3390.00
D. Chromec	24.5 days @ \$294/day	7203.00

Room and Board

42.5 days @ \$55/day

2337.50

Transport

Truck rental Airfare	Chromec Castlegar - Van Faulkner Van - Castlegar		
		\$914.00 914.00	

Geochemistry

4 samples Ag,Cu,Pb,Zn,As,Hg 4 samples Au fire		\$5.00/spl \$7.25/spl		
4 samples preparation 1 sample Assay Au	@	\$3.75/spl \$8.50/spl	13.00	
			\$70.50	70.50

Equipment and Field Supplies

75.76 Maps and airphotos

Office Support

J. Collins 4.0 hrs @ \$30/hr 120.00 B. MacDougal 1.0 hr @ \$32/hr 32.00

\$152.00 152.00

SUB-TOTAL

\$17812.76

UNDERGROUND REHABILITATION: LUCKY BOY MINE

Contractor

VICORE Mining Developments Ltd. 13520.96

Equipment

Backhoe machine 4.0 hrs @ \$35/hr 140.00 operater 1.0 day @ \$200/day 200.00

\$13860.96 13860.96

Disbursement 10%

1386.10

SUB-TOTAL

\$15247.06

U/G GEOLOGY, SAMPLING: LUCKY BOY MINE

Labour

R. Faulkner 32.0 days @ \$325/day 10400.00 K. Kornum 12.5 days @ \$200/day 2500.00 S. Ayling 15.0 days @ \$200/day 3000.00

\$15900.00 15900.00

Room and Board

47 days @ \$55/day 2585.00

Transport

Truck rental 904.80
Airfare R. Faulkner Van - Cast - Van 245.10
S. Ayling Castlegar - Van 153.70

\$1303.60 1303.60

Equipment and Field Supplies 3.71 wks @ min. \$75/wk 300.00 U/G Lamps Transit 200.00 Plastic bags, tape, light bulbs, 604.91 spray paint etc. Communications and freight 1012.41 649.45 Reproductions \$2766.77 2766.77 Geochemistry: Rock Chip Samples 7 samples 12 element trace ICP @ \$6.00/spl 42.00 2332.00 424 samples Ag, Cu, Pb, Zn @ \$5.50/spl 65 samples Au wet @ \$4.75/spl 308.75 2602.75 359 samples Au fire @ \$7.25/spl 424 samples preparation @ \$3.75/spl 1590.00 132 samples Au assay @ \$8.50/spl 1122.00 102 samples Ag assay @ \$6.50/spl 663.00 \$8660.50 8660.50 <u>Petrography: Vancouver Petrographics</u> 428.00 Office Support (Drafting, Typing) 1616.00 50.5 hrs @ \$32/hr B. MacDougal J. Collins 1.0 hrs @ \$30/hr 30.00 \$1646.00 1646.00 Disbursement 836.18 \$34126.05 SUB-TOTAL DIAMOND DRILL ROAD Labour 975.00 3 days @ \$325/day R.Faulkner S.Ayling 2 days @ \$200/day 400.00 \$1375.00 1375.00

275.00

Room and Board

5 days @ \$55/day

Equipment Transit 50.00 3689.67 Contractor: Custom Dozing, Salmo, B.C. 184.48 Disbursement 5% \$5574.15 SUB-TOTAL DIAMOND DRILLING Labour D. Chromec 27 days @ \$294/day 7938.00 S. Courte 14 days @ \$232/day 3248.00 P. Orris 10.75 hrs @ \$22/hr 236.50 \$11422.50 11422.50 Room and Board 2585.00 41 days @ \$55/day Transportation Truck rental and fuel 1081.82 Airfares D. Chromec Van - Cast - Van 283.40 S. Courte Van - Cast - Van 283.40 \$1648.62 1648.62 Contractor Bergeron Drilling, Greenwood, B.C. 33968.75 Equipment and Field Supplies 70.00 Core Splitter 14 days @ \$5.00/day Plastic bags, office supplies, 402.57 splitting table, tarp etc. 423.94 Communications and freight 271.32 Reproductions \$1167.83 1167.83

Geochemistry: Core Samples 95 samples 6 element ICP @ \$5.00 475.00 95 samples Au fire @ \$7.25 688.75 95 samples preparation **@** \$3.75 356.25 1 Au assay **@** \$8.50 8.50 \$1528.50 1528.50 Office Support (Drafting) B. MacDougal 58.5 hrs @ \$32/hr 1872.00 Disbursements 4477.45 SUE-TOTAL \$58670.65 REPORT Labour R. Faulkner 32.13 days @ \$325/day 10440.63 D. Chromec 10.5 days @ \$294/day 3087.00 B. Fairbank 2.5 days @ \$460/day 1150.00 J. Collins 48 hrs .6 \$30/hr 1380.00 B. MacDougal 80 hrs 9 \$32/hr 2560.00 \$18617.63 18617.63 Reproductions 342.52 SUB-TOTAL \$18960.15

\$189629.49

PROGRAM TOTAL:

1:

APPENDIX A

PETROGRAPHIC EXAMINATIONS

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager
JOHN G. PAYNE, Ph.D. Geologist
A.L. LITTLEJOHN, M.Sc. Geologist
JEFF HARRIS, Ph.D. Geologist

P.O. BOX 39 8887 NASH STREET FORT LANGLEY, B.C. VOX 1JO

PHONE (604) 888-1323

Report for: Reg. Faulkner,

Fairbank Engineering,

1201-675 West Hastings St.,

Vancouver, B.C.

V6B 1N2

Invoice 7503

August 15th, 1988

Samples:

4 rock samples for sectioning and petrographic examination.

Samples are numbered RF1-1, RF1-2, RF3-1 and RF4-1. RF1-2 is unmineralized wall rock and was prepared as a standard thin section; the remainder were prepared as polished thin sections.

Summary:

Samples RF1-1 and RF4-1 are of similar type, being strongly recrystallized, granulated vein quartz, mineralized with threads and pockets of sulfides. The predominant sulfide is tetrahedrite, with accessory pyrite. Galena and sphalerite are also common in RF4-1. The style of mineralization is fine-grained, with intimate sulfide/gangue and sulfide/sulfide intergrowths. No gold was found in either of these samples, but native Ag is a notable constituent in RF4-1.

Sample RF3-1 is a different style of mineralization, consisting of semi-massive pyrite permeated by a network of hairline veinlets of galena and quartz. Electrum occurs as tiny specks associated with the veinlets.

Sample RF1-2 is a carbonate and quartz-rich rock of uncertain origin. It shows remnant textures suggestive of volcanic/pyroclastic affinities.

Individual petrographic descriptions are attached, together with a set of illustrative photomicrographs.

J.F. Harris Ph.D.

CONDUIT DEDOTE . CDECINI CENI OCY EIEI D CTIIDIFC

PHOTOMICROGRAPHS

All photos are by reflected light at a scale of 1cm = 42 microns

Sample RF3-1

Neg. 129-5: Cream-coloured matrix is pyrite. Black is intergranular and veniform quartz. Occasional tiny threads and pockets of galena can also be seen (bluish-grey: e.g. upper left centre. Bright yellow specks are electrum, as grains 5 - 25 microns in size. Electrum occurs on contact of quartz areas, within quartz and as tiny inclusions within pyrite.

Neg. 129-6: Example of coarser electrum (50 micron grains) associated with composite veinlets of galena (blue grey) chalcopyrite (brownish yellow) and sphalerite (dark grey) in pyrite matrix (buff colour).

Neg. 129-7: Similar to 129-6 but veinlets here are galena (blue-grey) and quartz (black). Note occurrence of electrum (bright yellow) as small segments (5 - 70 microns) in the galena-filled micro-fracture network.

Sample RF4-1

Neg. 129-8: Upper left half of field is pocket of tetrahedrite (olive grey) with emulsion-form inclusions of galena (light grey) and rare specks of sphalerite (darker, bluish grey). Bottom right half of field shows quartz matrix (dark grey) pervaded by tiny inclusions of tetrahedrite and sphalerite. Small clusters of cubic grains are pyrite. Native silver (bright white and tarnished creamy coloured, irregular grains) at contact of tetrahedrite pocket and quartz area.

Neg. 129-10: Shows complex permeation of quartz matrix (black) by tetrahedrite (olive grey). Small grains of native silver (bright white) at tetrahedrite/quartz contact.

Sample RF1-1

Estimated mode

Quartz 98
Sericite trace
Tetrahedrite 1
Pyrite 1
Chalcopyrite trace
Galena trace

This sample is quartz, of probable vein type, weakly mineralized with threads and specks of sulfides.

The quartz matrix is strongly recrystallized and deformed. Remnants of an anhedral granular texture, on the scale 1 - 4mm, are recognizable, but this is extensively modified by abundant irregular zones of granulation and networks of fracturing. Strong, shadowy strain polarization is developed throughout.

The only accessory gangue constituent is sericite, as rare wisps in some of the sinuous fracture zones.

The mineralization consists of fine-grained network threads and interconnected pockets, in the grain size range 0.02 - 0.5mm. Tetrahedrite and pyrite are the commonest constituents.

The tetrahedrite forms irregular threads and pockets as described. It is generally homogenous, but occasionally has minute inclusions of chalcopyrite. The pyrite forms clusters of tiny euhedra, 0.01 - 0.2mm in size, sometimes intergrown with the tetrahedrite and sometimes segregated from it. The pyrite occasionally contains minute inclusions of galena.

Chalcopyrite is the next commonest sulfide, and mainly forms individual specks and pockets independent of the other sulfides; it is often strongly tarnished.

Galena also forms rare pockets, and one or two minute grains of sphalerite were seen.

No gold was seen.

The mineralization is clearly controlled by sinuous microfracturing in the quartz. The sulfide paragenesis appears to be earliest pyrite followed by tetrahedrite and chalcopyrite, which are sometimes seen enveloping and intergranularly cementing the pyrite.

Sample RF1-2

Estimated mode

Carbonate	52
Quartz	27
Plagioclase	10
Sericite	9
Chlorite	2
Rutile	trace
Opaques	trace

This is a strongly altered rock of debatable origin.

The slide includes two distinctive variants in simple, apparently gradational, contact.

One end of the slide is composed predominantly of fine-grained, micritic carbonate (non-reactive to dilute acid and presumably dolomite or ankerite). This forms a matrix to diffuse wisps and clusters of remnant(?) felsitic plagioclase, and tiny, individual, sub-oriented flakes of sericite, 20 - 100 microns in size. Rare flecks of quartz and patches of probable chlorite are also seen.

a patchy, crypto-fragmental fabric is tentatively distinguishable, in terms of the distribution of clumps of slightly coarser carbonate and patches of felsite (remnant phenocrysts?). The mica flakes show a local sub-parallelism which sometimes resembles a remnant, contorted, flow-banded or pumiceous fabric.

This unit could be an altered glassy volcanic or pyroclastic, or a dolomitic tuff.

The other end of the slide is distinguished by an abundance of quartz. This forms varigranular, strained/recrystallized patches - often elongate to blocky in form and 1 - 10mm in size. These are set in a matrix of micritic carbonate with occasional wisps of fine-grained sericite. The carbonate sometimes shows diffuse, marginal, intergranular permeation of the quartz masses.

The quartz segregations - which may occasionally incorporate a little intergrown felsitic plagioclase - give the impression of silicified phenocrysts in a sheared, altered porphyry, or fragments in a tuff. They could also be disrupted veinlets or chert segregations in an exhalative(?) chemical sediment or cherty dolomitic tuff.

Sample RF3-1

Estimated mode

Quartz	50
Carbonate	trace
Pyrite	45
Galena	5
Chalcopyrite	trace
Tetrahedrite	trace
Sphalerite	trace
Electrum	trace

The gangue in this sample is identical to RF1-1, being essentially monomineralic quartz, strongly strained and recrystallized and with irregular zones of granulation.

This sample is strongly mineralized and much of it consists of compact pyrite.

The pyrite is minutely fractured and is pervaded by a network of threadlike veinlets filled with quartz and/or galena. Rare, tiny pockets of a brown carbonate form occasional segments of these veinlets. Sphalerite and chalcopyrite are also occasionally part of the veinlet assemblage.

Galena forms some substantial segregations, to 1 or 2mm in size, at the periphery of the main pyrite masses. These locally contain abundant minute inclusions of pyrite. Galena also forms some irregular, fine-grained, dendritic permeations of the quartz gangue.

Sphalerite, tetrahedrite and chalcopyrite occur as rare traces associated with the galena.

Electrum is seen relatively abundantly, as specks and threads of grain size 2 - 70 microns, within the hairline fractures. Less commonly, the electrum occurs as minute specks in compact, unfractured pyrite, or in quartz pockets within pyrite.

Quartz and pyrite are probably largely contemporaneous, with late-stage quartz, galena, the trace sulfides and electrum as a subsequent stage, healing fractures in pyrite.

Sample RF4-1

Estimated mode

Quartz	85
Tetrahedrite	8
Galena	3
Pyrite	2
Sphalerite	2
Arsenopyrite	trace
Chalcopyrite	trace
Native Ag	trace

This sample is of similar type to RF1-1. The gangue is strongly strained, partially recrystallized, vein-type quartz, and the mineralization is an intimate permeation of interconnected pockets and thread-like networks - partially following zones of granulation in the quartz matrix.

Sulfides are more abundant than in the first sample, and the mineralogical proportions are slightly different. In part, the sulfide components show intimate, fine-grained intergrowths.

Tetrahedrite is the predominant sulfide. It ranges from tiny specks and threads of 2 - 20 microns in compact quartz, up to small pockets of 0.5 mm.

Many of the larger sulfide pockets (to 2.0mm) are multi-component intergrowths, on the scale 0.02 - 0.2mm, in which tetrahedrite or galena form matrices to more or less abundant, emulsion-type bodies of each other and/or sphalerite. Pyrite, as clusters of minute euhedra, and gangue, are sometimes additional components in these intergrowths.

Sphalerite and galena occasionally form small segregations in their own right, as does pyrite - in the form of elongate clusters of tiny cubes, sometimes with intergrown, minute euhedra of arsenopyrite.

Chalcopyrite forms rare concentrations of tiny specks in gangue, or is seen as inclusions in tetrahedrite.

Native silver is a prominent - though minor - component. It occurs as individual, irregular-shaped grains, 10 - 150 microns in size, as inclusions in the major sulfides. Tetrahedrite is the commonest host, but the native silver is also seen in sphalerite and galena. It often occurs on the contact of inclusions of one sulfide in another, or of gangue inclusions in sulfides, or within quartz at the contact with sulfides.

APPENDIX B

DIAMOND DRILL LOGS

PROPERTY SILVER DOLLAR LUCKY BOY

PROPERTY

PROPERTY	SILVER	DOLLAR	LUCKY BOY	- TRUINITAL	iu tru	HOLE NoD	IDH-88-01
	DIP TEST	76	1				Page 1 of 4
Footage		Corrected	Grid Loca	tion: 162.445/152.4E	Bearina		Total Depth: 39 DL m
			7	68 21 FO De	Elev. Collar:	132.21	Logged By D. CHROHES
			Date Finis	hed: 07 17 99	_ Collar Dip:	<u>-90°</u>	Core Size: N.O.

DEF	TH	RECOVERY	DESCRIPTION	SAMPLE #	EPOM	то	WIDTH OF SAMPLE	 1	
FROM	70	RECOVERT	DESCRIPTION	SAMPLE #	PROM	70	OF SAMPLE	<u> </u>	
	18.29		overburden						
						1. 1			
Ped	31.}	957	GRETWACKE and ARGILLITE.						
			The unit is comprised of medium grey						
			greywacke equiproportionally interbedued						
			with dark grey to black argulate The grey-						
			wacke is competant, massive in appearance,						 ļ
			comprised of fine to medium sized, poorly					 	
			to moderately sorted, sub-rounded grains.					 	
			It is intermittently calcareous throughout						
			Variable proportions of thythmologily					 	
_			interbedded banded argulite accur-					 	
			throughout. Individual argulité hed/bands						
			sucrage 3.0 cm. in width. The unit has						
			undergone soft sediment deformation,			· · · · · ·			
			microfolding and microfaulting, weak						
			to accusionally moderate carbonate micro-			! ,			
_			veining fracturing is variably oriented,						
			averaging 41.0 mm in width throughout.						
_			Occasionally contacted to segmented,						
			the bedding is largely undulating						

	.*	FAIRBANK
		ENGINEERING LT

HOLE	No.	DH - 88 - DL		

Page 2 of 4

DEP	TH		Properties		T		WIDTH	Δ.		ΙΛ.	
ROM	70	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	660		Ag	
			approximating the following attitudes:							-	
			11. to c.o. @ 20.03 m								
			15 to c.o. @ 22.4 m								
			8 to c.a. @ 28.3 m								
			16 to co, @ 30.0 m								
			18 to c.a. @ 36.9 mm?								
										11.1	
			2-37 Fes (Py >> Po): Sulfides occur us								
			clots and finely disseminated grains								
			throughout the proportion of Fy close								
			decreases downhale Suffiles wis occur								
-			as fine lamination and coatings along								
					 -						
		 	fracture microfracture planes Both Py and		 	-	<u> </u>			-	-
$\neg \neg$			Po show affinity toward carbonate versing.		 					-	1
					 			20		1	
			18 29-19-63 : Blocky, broken and rubily sive	16001	18.29	18.85	0.56 m	24		1.2	╁
-+					-	ļ —					├
\dashv			18.63 - 19.3 e 19.5 - 19.65: Light grey, tuffsceou	10005	18.85	20.15	1.30 W	18		0.9	├-
-			bids hosting 5 to Py as clots and course		 	ļ				 	<u> </u>
			grains	ļ	 		 		ļ	ļ	
					<u> </u>				<u> </u>		_
			@ 19.05 & @ 19.45: Hilky white at a feld par	ļ	ļ	ļ					<u>_</u>
			stringers 0.2 cm wide orientalot 74" to co		L						<u> </u>
			with 5% clotty by at contacts.								
											1

- t			2	
ROPERTY				
RUCERII				

FAIRBANK

HOLE NO DOH - 88-0

Page 3 of 4

ROM	TO TO	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au		Ay	
			21.0 - Zie: Blocky, weakly brocciated and	16003	21.0	22.2	1.2 m	2		0.8	1943
_			carbonate microveined mirrofractured section.								
			24.0-24.15: Strongly brecolated, carbonate	16004	23.9	24.35	0.45m	3		0.3	
_			microverned (microfractured with iron oxide								
			coated fracture planes.					-			
			24.2-27.45: Howageneous, non-calcareous						 		
			greywacke.								
			27.65-29.75; Bedding contacts are oriented								
			sub-parallel to c.a.								
			31.5.31.8: Blocky and broken core with	11.005	31.5	32.0	0.5 M	4_		1.3	17.0.2
			@ 3335: Two Px blobs overaging 1.2 cm in	16006	33.0	34.15	1.15m	2		0.7	
			length are clargate sub parallel to bedding						ļ		
			Q 34.06: A 6.2 cm wide carbonate stringer								
_			with Pa bearing, graphitic contacts.								
. 1	39.0	1590	INTERMEDIATE CRYCIAL TUFF and GREYWACKE.								
	ЕОН		Brownish to medium grey in colour, the								
										İ	

	F	A	ll	?	E	1	Δ	1	٧k		
-		-	-	-	A	-	_	-		-	
		v (I		ŧ		4 1	H	0	L T	0	

			A1 414
		ENGINEERI	MG LT
ADEDTY		 ,	

HOLE No. DOH 88-01

Page 4 of 4

DED	TU I				T					
FROM	TO	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE			1. 1. <u>1.4.</u> 4
			unit is comprised of intermixed							
			intermediate crystal tuff, greyworks and minor ash silt. Sub rounded							
			and minor ash silt. Sub rounded							
			loff white feldspar and arcen (possibly							
			Chloritized priorene) phenocrysts accor							
			sporadically throughout the unit is competant and massive in appearance. 1-22 Fes (Py> Pa); sulfide accor 1							
			competant and massive in appearance							
			1-22 Fes (Py> Pa); Sulfide accor 1:		1					
			finely disseminated grains and clots.							
									100	
1										
]			
						-		40.5		

PROPERTY SILVER DOLLAR HOLE No. DOH - 88-02 DIP TEST Page | of 8 Angle
Reading Corrected Footage

Grid Location: 46.593 119.34E Bearing: GELO WEST Total Depth: 55.17 m

Date Started: 19 07 98 Elev Collar: 149.55 m wrt 1941 Logged By: D. CHROMEC Core Size: N. Q. Date Finished: 18 07 88 Collar Dip: -45°

DEF	TH			T	T		WIDTH	 T	Γ	T
FROM	то.	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE			
	9.14		CASING	40.00						
					1			4.5		
	9.35		DUERBURDEN: White granite and greyworks bldrs.							
			7							
1.35	13.35	8 ८%	CRETWACKE and ARGICLITE:							1
			Medium grey greywaske, interbedded with	. A.						
			dark grey to black, laminated and rhythmically							
			banded argillite and infrequently intermixed/							
			interbedded with medium grey siltations							
1			(volcanie ash?). The greyworke beds, averaging							
			less than 6.0 cm in width are massive							
			and occasionally calcareous.							
			The unit is weakly carbanate veined, microverned							
			and microfractured. It has undergone soft							
			sediment deformation, weak microfolding					 		
			and microfoulting with minor (40.5 cm)							
			displacement transecting bedding at variable							
			displacement transecting bedding at variable prientations. Hildly undulating bedding					 		
			contacts steepen from 67° to c.a at the			·				
			top of the interval to 75° to ca. at the					 		
			lower contact.			22.7				

	FAIRBANK
	ENGINEERING LTD

PROPERTY_

HOLE No. 50.98.02

DEF	TH	RECOVERY	BD00D(DEIOU				WIDTH	Λ	T		
FROM	or	HECUVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au		Aga Maa	
			1-29. Py occurre as hairling laminations, finely								
		1.	disseminated grains and rare olats.								
_			9.14-17.35: Occasional from oxide coated								
			fracture places preferentially priented	•							Γ
			sub parallel to bedding and 8-15° to								
			6.0								Г
											Γ
3.35	14.33	85 %	GEYSTAL TUFF and GREYWACKE	F003/	13.35	14.33	0.98m	3		0.1	
			Hadium brown in colour, medium grained								Γ
			hosting a patchy distribution of white								Γ
			fold spar +/- carbonate, clotty phenocrysts.								Π
			comprised of interlocking grains, the unit is								Π
			massive in appearance.	1.5							<u> </u>
4.33	19.0	95%	GREYWACKE and ARGILLITE.								
			(same as 9.35-13.35 m.) The interval is	8 0031	24.91	26.22	1.31 m	10		0.3	<u> </u>
			largely comprised of argillite, with several								
			predominant greywacke beds up to 10.0cm								7.
			wide accurring between 18.61 m to 19.52 m								
			Bedding approximates 73" and 69° to the s.a								-
			of 17.4 and 25.7 m respectively.								
											_
			23.40 to 29.0 : weakly breassated, moderately								
			carbonate veined, migroveined and micro-								

PROPERTY

HOLE NO. 50- 88-02

	PTH	RECOVERY	DESCRIPTION	Tanan	I	T	WIDTH	Au	T	5 of _	
ROM	70	ALCOVERT	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	oop.		Ag	
			Practived.								
مه	31.4	95%	FELSIC TUFF and GREYWACKE :								
			Light to creamy grey, muscovite bearing	16009	29.06	31.14	2.08 m	2		1.3	
			fine grained felsic tuff ash intermixed				1 14.		43.19		
			and vaguely interbedded with medium								
			grey greywacks, and minor argillite								
			29.06-30.0: Haderately breeciated, mixed								
			argulite and tull hosting 2-3% ly as								
			clots							<u> </u>	
		_	30-4-21.1: Tuff bed	1							

31.4	35.7	85%	GREYWACKE & ARGILITE								
			(same as 9.35 to 13.35 m) : Hoderately								
			carbonate usined migroverned and								
			weakly breessated. The greywacke is								
			uniformly and moderately calcareous.				12				
			2-3% Py over the interval.								
	4.										
			@ 31.63: A 1.0 cm wide, minor fault Gouck	11.010	31.19	32.31	1.17·m	4		0.4	
			THE STATE	19.							
			32.2-32.95; Blocky core with a 2 cm.	16.011	32.31	33,42	1.11 m	5		1.0	_
			wide Pault gouge, oriented at 49° to ca.			7					

FAIRBANK
ENGINEERING LTD

PROPERTY

HOLE No. 50- 28- 02

Page 4 of Q DEPTH WIDTH OF SAMPLE RECOVERY DESCRIPTION SAMPLE # FROM TO at 32.73 m 32.85 - 33.45: Strongly brecciated and veined with milky white atz-feldspar stringers, clots and blobs, hosting 4% clotty Px 32 55 - 33.97 : Hajor FAULT googe 16012 33.42 34.09 0.67 m 1.2 35.7 38.5 HILLERALIZED ZONE : Largely comprised of 16013 34.09 34.96 15 34.96 35.79 2.4 a sugary white barren QUARTE UEIN The QV is occasionally from oxide stained hosting minor, Fes mineralized, wall rock inclusions and sheared laminations laminations / bands are extremely rare Occasional imicrofractures are commanly carbonate conted 3-4% Py accours as finely disseminated grains, laminations, fracture plane coatings and alots, showing extreme affinity toward wall rock and wall rock 35.79 37.37 1.85 m 36.62-36.28: Wookly quarta veined 157 1.9 16015 greywacke with the upper and lower contacts oriented at 41° to ca and

PROPERTY

HOLE No 50-88-02

DEF	PTH	RECOVERY		T			WINTH	A	~~~~	7	_
ROM	70	MECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE	DOP		AG	
			and 72° to ca. prientation respectively.							<u> </u>	
_			3-49-ly occurs largely as finally discominate							i ka	
			grains and laminations								
_								1			
_			37.10 - 37.50: Shear banded greywacke,								
			argulite I graphite and carbonate solutions	-							
			hosting 8-10% Py as laminations and								Г
\perp			finely disseminated grains.								
_											Г
_			17.6-28.0 : QUARTE FELDSPAR PORPHYRY	16016	37.1	38,0	M P.O	69		2.5	Γ
_			Greenish grey in colour, massive in								
_			apprarance, fine to medium argined								
_			hosting clotty feldspar and lessor quartz						*		
_			phenocrysts up to 0.25 cm wide. The unit								
_			becomes blacky and broken toward the lower								
_	-		contact 2-37. Pr > Po over the interval occurrs								
_			as finely disseminated grains								
_			*								
_			38.0-38.5 : probable FAULT; broken	16017	31.0	38.51	0.51m	10		29	
_			38.0-28.5: probable FAULT; broken and tubbly quartz and wall rock.								
_			<u>' </u>								
1.5	41.70	90%	GREYWACKE and ARGULLITE: (same as								
\perp											
			9.35-13.35 m); Moderately carbonate veined/ microveined and weakly breasited, hosting								Г
- [4-5% Py as clots, subhedral grains up to							-	

FA	IRB	A١	١K:
ENGI	NEEA	ING	LTD

PROPERTY

HOLE No. 50 - 88 - 02

Page 6 of @ DEPTH Ag RECOVERY WIDTH OF SAMPLE DESCRIPTION SAMPLE # FROM FROM TO 0.2cm wide and lesser finely disseminated grains 38.5-39.53: FOOTWALL, hosting 8% Py as clots and subhedral grains up to become 40.07-41.03: FAULT; organic and drill mud containing rubbly wall rock tragments 41.03-41.30: Quartz > foldspar solution 16019 39.53 40.42 0.94m 2 1.5 veining and brecciation. 6% Py occurs as 0.4 1 020 41.03 0.66 m 10 40.47 clote and finely disseminated grains 16021 41.03 41.76 0.73 m 1.3 41.76 50.70 CRYSTAL TUFF, GREYWACKE and minor FELSIC 42.7 0.94 m 5 0.1 16022 41.76 (LAPILLI ?) TUFT : Greenish beige in colour to brownish - beige toward the lower contact, the unit is massive in appearance fine to medium grained with lapilli size inclusions. The unit has undergone white mica (muscovite) alteration. 3-4% FeS (Py » Po) occurre as finely disseminated grains and alots. 13. bright green Cr-mica (molochite?) class occurr sporadically throughout

						ENI	arr
OPEDTY							

HOLE No. SD . 48-

Poge 7 of 8

DEF		RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE	Au	I	Acy	Г
ROM	70								 		
			43,9-44.12: A 1.0 cm wide QUART? VEIN	16033	43.66	44.25	0.59 m	2		1.4	
			ariented sub parallel to the c.a. hosting					100			
]			ariented sub parallel to the co. hosting 1270 Pa a 1-28 CPy.								
		Ž.									
									1		
					-						
									 		
	-							1	 		
_									130		_
									-		<u> </u>
						···			 		
-									 		-
-								<u> </u>			-
									-		<u> </u>
-								·	 	ļ	-
									 	 	—
										<u> </u>	<u> </u>
									ļ		<u> </u>
					- T						
										T	

	FAIRBANK
M 4	INGINEERING LTD.

PROPERTY

HOLE No. 50 88 - 07

Page 8 of 8

FROM	PTH TO	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au		Ag	
		ļ									
50.70	52.6	100%	AUGITE-BIOTITE - BUARTZ - FELOSPAR PORPHYRY								
			Medium to light grey in colour, fine to								
			medium grained with clotty ca feldspar						1		
<u> </u>			phenocrycle up to 0.2 cm. wide. The unit								
			is very competent, massive in appearance								
L			with interlocking grains. Lath like grains						1		
			show weak flow? alignment. The unit								
			contains coarser - darker phases and			 			1	-	
			equivalent wall rock inclusions up to 20 cm.								
			wide: 1-27. Fes (Pospy) accorre as						 		
			finely disseminated grains with affinity								
			toward make minerals.	····		7				 	
			INVERTO IMATE IMINETALS			-			 		
52.6	55.17	957.	CRYSTAL TUFF, GDEYNACKE and miner FELSIC	16 024	53.6	55.13	2.57 m	4		2.9	
			(LAPILLIZ): came as 41.76 - 50.70 m. except		1,				100		
	2		that this unit is medium grey in colour,								
			hosting 2% Fes (Py > Po) as finely								
			disseminated grains and occasionally as								
			enatings along fracture microfracture								
			planes.								
			piane x.							-	
					-						
											
	L			ł	1	- 1					

PROPERTY SILVED DOLLAR

HOLE No. 50-88-3

	DIP TEST					Page of 8
	Angle					
Footage	Reading Corrected	Grid Location:	46.595/119.348	Rearing:	Total De	opth. 46.65 mm
ю			18 107189		wet 19 M Logged	
-p124		Date Finished	19 07 98	Collar Dip: -90°	Core Siz	e <u> </u>
mt Ø					NTS:_	92 F 3

DEF	mbel	RECOVERY	DESCRIPTION	SAMPLE #	EDOM	то	WIDTH	[T		<u> </u>
FROM	TO	MECOVERY	DESCRIPTION	SAIN LL #	1 110341		OF SAMPLE				
.											
											1.1
	-6	1	Casing			- 1					
	1-6	5	Overburden boulders								
										1	
	.5-8	3(75%)	CRYSTAL TUFE, ASH and GREYWACKE								
			The unit is primarily comprised of								
			crystal tuff, intermixed with greywacks,								
			mud and minor ash. It is predominantly						ļ		
			cloudy gray-green in colour (weakly								
			chloritized) with occasinal brown						-		
		Production of the second second second second	patches where less weathered or altered.				<u> </u>		ļ		
			The unit is massive and patchy in			in a cassage			ļ		
			appearance. Intermediate in composition,				-	ļ	ļ		ļ
			the matrix is comprised of poorly						ļ		ļ
			sorted, sub-angular to sub-rounded,	etrerometer, whatevery we		er e canada actual					
			interlocking to diffuse grains/clasts.						1		
			It hosts a patchy distribution of sub-		ļ	ļ		ļ	ļ		
						a a instruction					ļ
l										ļ	

FAIRBANK
ENGINEERING LTD

PROPERTY

HOLE No. 50-88-3

Page 1 of 8

DEPTH	2500.50	(1 0 0 1 1	T		· · · · · ·	WIDTH	Λ.	1	1 44	1
ROM TO	RECOVERY	rounded, Ca-feldspasscr/PTiparbonate clots	SAMPLE #	FROM	. то	WIDTH OF SAMPLE	Au		Ag	
		/ phenocrysts which become less								Π
		prominant downhole. Weak, patchy								1
								1		1
		carbonate alteration occurs throughout.						 		
		The interval is largely blocky and								1
		rubbly with iron oxide coated fracture							 	+-
		planes.	+							┼
		1-2% FeS (Po>Py): Sulfides occur as			ļ					╁
		clots, finely disseminated grains and								┼
		grain aggregates.								\vdash
								-		<u> </u>
		8:3-13:9(98%) GREYWACKE and ARGILLITE	16025	9.32	10.25				0.9	_
		Medium grey gregoacke intermixed with				<u> </u>	<u> </u>	 		_
		minor volcanic ash and interbedded with		ļ						$oldsymbol{ol}}}}}}}}}}}}}}}}}}$
		dark grey to black, banded and laminated		ļ	ļ		71.5			_
		argillite. The unit has undergone soft								_
		sediment deformation, weak microfolding						/		
		and microfaulting. The unit is								
		moderately fractured and occasionally								
		iron onide stained. The bedding contacts								
		are undulating to irregular.	,						100	
		approximating the following attitudes:		1						
		30-31 degrees to the c.a. at 9.32m								
		70 71 Ong 295 to the C.S. 85 7.32M								
	1	ye ne e ene me e market kan e e e e e e e e e e e e e e e e e e e								
								 		┢┷

PROPERTY HOLE No. 50-88-3

DEF	TH	RECOVERY			1		WINTH	Λ.		TA	_
ROM	70	MECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au ppb		Ag	
			29-31 degrees to the c.a. at 13.3m		<u> </u>						
			2-37 Py occurs as finely disseminated							1	
-			grains, clots, hairline laminations and								
\dashv			minor carbonate replacement.			<u> </u>					
_											
_	13.	9-14-45(9	5%)ANDESITE DYKE ? INTERMEDIATE CRYSTAL	16026	13.85	14.8	0.95m	17		0.6	
_			TUFF ?								
-			Medium to dark grey in colour, the unit							1	
_			is medium to coarse grained hosting sub-					1.		100	
	-		hedral white feldspar phenocrysts up to		<u> </u>			1			
			8.25cm. wide and, dark grey to black								
			pyroxene and mica phenocrysts up to 0.6								
			cm. wide. Both upper and lower contacts								
			are wave, delimited by a probable chill								
			margin.					وبتعميدان			
-			1-2% Fe5 (Py>Po): Sulfides occur as								
			finely disseminated grains and clots.								
			Possible tr. powdery Mag is						<u> </u>		
-			disseminated throughout.								
-											
\dashv	14.	45-32.68	98%)GREYWACKE and ARGILLITE								
-			The interval is comprised of medium grey								
_			greywacke interbedded with dark grey to								
			black, banded and laminated argillite.								
	1	1									_

	FAIDDANIZ
	FAIRBANK
	ENGINEERING LTD

				VIKDAI	
BRORESTV			 ENG	INEERING	LTE
PROPERTY		:			

50-88-3 HOLE No._

		Compared to the Compared to th								
10	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	. :		44	
		The greywacke, especially the thicker			-			17		
		beds become increasingly calcareous								
		downhole. The unit has undergone soft			-					
		sediment deformation, weak microfolding								
		and microfaulting. Carbonate					. :-			
		microveining, microfracturing and								Г
		microfaulting, which is extremely rare			1.7					
		near the upper contact, increases to			,					
		moderate proportions downhole. The				U. F			7.7	
		bedding contacts are undulating to								
		rarely contorted, approximating the	: 1							
		following attitudes:								
		29-30 degrees to c.a. at 17.15m.								
		31-32 degrees to c.a. at 23.2m.								
		27- 27 degrees to c.a. at 26.5m.								F 4
							100			
		2-3% Py occurs as finely disseminated								
		grains, clots, hairline laminations and								
		minor carbonate replacement.		I					11.5	
							-		1.47	
									. 1	7
		14.85-16.3: Blocky core with iron oxide								
		coated fracture planes.								
\top									- 1	
	H 70	RECOVERY	The greywacke, especially the thicker bads become increasingly calcareous downhole. The unit has undergone soft sediment deformation, weak microfolding and microfaulting. Carbonate microveining, microfracturing and microfaulting, which is extremely rare near the upper contact, increases to moderate proportions downhole. The bedding contacts are undulating to rarely contorted, approximating the following attitudes: 29-30 degrees to c.a. at 17.15m. 31-32 degrees to c.a. at 23.2m. 27-27 degrees to c.a. at 26.5m.	The greywacke, especially the thicker beds become increasingly calcareous downhole. The unit has undergone soft sediment deformation, weak microfolding and microfaulting. Carbonate microveining, microfracturing and microfaulting, which is extremely rare near the upper contact, increases to moderate proportions downhole. The bedding contacts are undulating to rarely contorted, approximating the following attitudes: 29-30 degrees to c.a. at 17.15m. 31-32 degrees to c.a. at 23.2m. 27-27 degrees to c.a. at 26.5m. 2-3% Py occurs as finely disseminated grains, clots, hairline laminations and minor carbonate replacement.	TO RECOVERY The greywacke, especially the thicker beds become increasingly calcareous downhole. The unit has undergone soft sediment deformation, weak microfolding and microfaulting. Carbonate microveining, microfracturing and microfaulting, which is extremely rare near the upper contact, increases to moderate proportions downhole. The bedding contacts are undulating to rarely contorted, approximating the following attitudes: 29-30 degrees to c.a. at 17.15m. 31-32 degrees to c.a. at 23.2m. 27-27 degrees to c.a. at 26.5m. 2-3% Py occurs as finely disseminated grains, clots, hairline laminations and minor carbonate replacement.	TO RECOVERY The greywacke, especially the thicker beds become increasingly calcareous downhole. The unit has undergone soft sediment deformation, weak microfolding and microfaulting. Carbonate microveining, microfracturing and microfaulting, which is extremely rare near the upper contact, increases to moderate proportions downhole. The bedding contacts are undulating to rarely contorted, approximating the following attitudes: 29-38 degrees to c.a. at 17.15m. 31-32 degrees to c.a. at 25.2m. 27-27 degrees to c.a. at 26.5m. 2-3% Py occurs as finely disseminated grains, clots, hairline laminations and minor carbonate replacement.	The greywacke, especially the thicker bads become increasingly calcareous downhole. The unit has undergone soft sediment deformation, weak microfolding and microfaulting, Carbonate microveining, microfracturing and microfaulting, which is extremely rare near the upper contact, increases to moderate proportions downhole. The bedding contacts are undulating to rarely contorted, approximating the following attitudes: 29-38 degrees to c.a. at 17.15m. 31-32 degrees to c.a. at 23.2m. 27-27 degrees to c.a. at 26.5m.	The greywacke, especially the thicker beds become increasingly calcareous downhole. The unit has undergone soft sediment deformation, weak microfolding and microfaulting, Carbonate microveining, microfracturing and microfaulting, which is extremely rare near the upper contact, increases to moderate proportions downhole. The bedding contacts are undulating to rarely contorted, approximating the following attitudes: 29-30 degrees to c.a. at 17.15m. 31-32 degrees to c.a. at 23.2m. 27-27 degrees to c.a. at 26.5m.	The prequency Description The grequency, especially the thicker bads become increasingly calcareous downlote. The unit has undergone soft sediment deformation, weak microfolding and microfaulting, Carbonate microveining, microfracturing and microfaulting, which is extremely rare near the upper contact, increases to moderate proportions downhole. The bedding contacts are undulating to rarely contorted, approximating the following attitudes: 29-38 degrees to c.a. at 17.15m. 31-32 degrees to c.a. at 23.2m. 27-37 degrees to c.a. at 26.5m. 2-3% Py occurs as finely disseminated grains, clots, hairline laminations and minor carbonate replacement.	The greywacke, especially the thicker beds become increasingly calcareous downhole. The unit has undergone soft sediment deformation, weak microfolding and microfaulting, Carbonate microveining, microfracturing and microfaulting, which is extremely rare near the upper contact, increases to moderate proportions downhole. The bedding contacts are undulating to rarely contorted, approximating the following attitudes: 29-30 degrees to c.a. at 17.15m. 31-32 degrees to c.a. at 25.5m. 2-3% Py occurs as finely disseminated grains, clots, hairline laminations and minor carbonate replacement.

FAIR	BAN	١K
ENGINE		

				LAIKRAL	
OPERTY	1				

SD-88-3 HOLE No._

DEF	TH TO	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au ppb		dan	
			27 6-38 9: Intermittently and moderately	16027	28.75	30.0	1.25 m	6		2.5	
			carbonate veined, weakly brecciated	16028	30.0	30.93	0.93m	3		2.7	
			saction with variably oriented tension						4		
			gashes. 3-4% Pu occurs largely as								
			subhedral cubes up to 0.2 cm. wide.								
	MINE	PALLIZED Z	ONE								
	(30.	9-34.4m)									Г
										100	
	38.9	-32.6(90%)	GREYWACKE, moderately to strongly	16029	30.93	31.85	0.92 m	2		2.4	
			BRECCIATED by intense carbonate and								Г
			rarely quartz-carbonate veining. The					- Y			
			most intense brecciation occurs between								
			30.95m31.3m. 3-4% Py occurs as clots								
			and finely disseminated grains.								
	32.6	-33.0(85%)	SHEARED / MYLONITIZED SEDIMENTS	16030	31.85	33.0	1.15 m	9/		3.4	
			Finely laminated / interbanded								
			argillite, greywacke and carbonate +/-								
			quartz solutions. These shear bands are								Г
			wavy and undulating, oriented								
			approximating 70 to 90 degrees to the								
1			c.a. The interval culminates with a								
			2.0cm. wide, dirty sugary white,								
_				·							

			FAIRBANK

PROPERTY

HOLE No. 50-88-3

Page L of 8

DEF FROM	TH TO	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au pob		Ag	
			pyritiferrous quartz-carbonate vein.					''			
			4-5% Py occurrs as brassy clots and								
			finely disseminated grains with affinity								
			towards carbonate t/- quartz veining.								
	33	n-33.22(7	8%)FAULT/FAULT GOUGE	16031	33.0	33.45	0.45m	288		3.4	
			Drill mud with broken quartz -carbonate								
			and wall rock fragments.		<u> </u>				1		
				16032	33 45	33.85	0.40m	27		3.9	
	33	2-33.5(85	Z) GREYWACKE BRECCIA								
			Light to medium grey in colour, the								
			interval is comprised of intermixed								
			greywacke and pyroclastic sediments								
			hosting larger, brecciated wall rock								
			(greywacke) fragments,								
	33	5-33.8(7	X) Sugaru white bull QUARTZ VEIN with minor								
			carbonate component. The vein is weakly								
			microfractured and carbonate								
			microveined.				1.2				
			1% Py occurs along microfracture planes								
			as carbonate replacement.								
			33.5-33.53: broken and rubbly with iron								
									1		

PROPERTY

HOLE No. SD - 88 - 3

DEP	TO	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au		Ag	
runi	-,0				-	<u> </u>	OF SAMPLE	ррЪ	 	PPW	┼
+			exide costed fracture planes						+	 	╁╌
+				/6033	32 85	34.40	0.55 m	210	+	3.2	\vdash
_	33	8-34-9(85%	COUCE and SHERR ZONE	18000	30.00	3,110	0.03 (%)	210	+	13.2	+
-+			9 1.5cm. wide gouge at the upper contact						 	 	┼
-			ouleinsted by shear banded graywacks,						 	-	╀
4			argillite and quatz - carbonate			·		<u> </u>			<u> </u>
_			solutions oriented at 78-90 degrees to								
		·	the c.a.						\bot		
											Γ
	-34	8-34.4(987	O Meakly graphitic ARGILLITE and	16034	34.40	35.05	0.65m	60		2.9	
			GREYWACKE, moderately to strongly							1	
			BRECCIATED by intense carbonate and				4 4				
			rarely quartz-carbonate veining.								
	٠		4-5% Pu occurrs as clots, finely								
			disseminated grains and lustry cubes up								
_			to 0.2 cm. wide.						 		L
\dashv	,			11 - 25-	200.00	24.25			 	1	-
\dashv	34	4-46.63(95)	C) GREYWACKE and ARGILLITE	16035		36.20		22	┼	26	┼
_			The interval is comprised of medium grey	16036	41.20	42.33	1.13 m	_5_		1.6	L
_			greywacke interbedded with dark grey to								L
			black, banded and laminated argillite.				100		<u> </u>		
			The unit has undergone soft sediment								
			deformation, moderate microfolding and								
			microfaulting. Moderate carbonate								
									1		

		FAIRBAN	W
	1	I WIKDWI.	<u> 41/</u>
		ENGINEERING	LTD

PROPERTY_

HOLE No. 50-88-3

Page_s_ of _9_

DEP	TH	RECOVERY	DESCRIPTION	SAMPLE #	5004	то	WIDTH				
ROM	70	RECOVERT	DESCRIPTION	SAMPLE 4	FRUM	70	OF SAMPLE				
								1.			
			veining, microveining and								
			microfracturing along with patchy								
-+			brecciation occurs throughout. The	 							┝
-+		 	badding contacts are undulating,	 							-
-	·	 	commonly contorted to segmented,	 							
_			approximating the following attitudes:	<u> </u>							_
			38-32 degrees to a. a. 48.3m.								
			35-37 degrees to o.a. at 46.0m.								
						1. 17	·	1			
			4% Py coours as fine grained						100		
			laminations, clots and subhedral grains	 							┝
-		 	up to 8.2cm wide, finely disseminated	 						 	-
-			grains and carbonate replacement.								├-
			34.4-36.2: Moderately brecciated							<u> </u>	L
			graywacks and argillite hosting 5-6% Py							<u> </u>	L
			as clots and subhedral grains up to			1.3					
1			6.3cm wide.								
_			H. JCM WICE.								
				 			<u> </u>				-
-			41.25-41.6: Strongly brecciated by							 	┝
-			carbonate solution with 3-4% Py and Po	 	ļ						┝
			clots and fine grained carbonate	ļ							L
			replacement.	1						<u> </u>	L
寸							1				
				 							Г

PROPERTY SILVER DOLLAR

DIP TEST										
	Angle									
Footage	Reading	Corrected								
	Ţ	I								
	 	 								
	 	 								

1101 -	61-		_		
HULE	NO.	H JQ	3.2 -	ч	
			-9.11		

Grid Location: 30.435 87.11E	Bearing: N/B	Total Depth: 60.05 mg
Date Started: 07 20 - 98	Elev. Collar: 168-20 WET 19#1	Logged By: D. CHROMEC
Date Finished: 07 21 - 38	Collar Dip: -90°	Core Size: N. D.
		NTS. 82 F 3

DEF FROM	TH TO	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE				
-	2.53		casina			-					
			7								
3.53	8.93	70%	Broken and rubbly greywacke-orgillite								
			boulder.								
								14			
8.93	14.6		INTERHEDIATE CRYCTAL TOFF, GREYWACKE								
			and Muo	ļ							
			Predominantly modium brown in colour to			:					
			chotty - batchy was Jimm arsea inser-								
			hydrothermally altered. The unit is massive		·				ļ	1 1	
-			in appearance with fine to medium size								
			interlocking grains and approximal sub-								
			rounded coloite and foldapar-ion olotablebs us								
			to 075cm wide. Intermediate in composition,						<u> </u>		
			the unit is comprised of worisbly intermixed								
			exystal tuff and mechanical scluments.					·····			
			The medium green, by hatierimally								
			ultered sections patities are strongly								
			calcareous 1-176 by occurs as finely lissein-								
			inated grains, clots and southness sions								
			fracture planes.								

	Α	IR	BA	NK	
	N G	I N E	ERIN	BLTD	

	ENGINEERING
PROPERTY	two attains

HOLE NO DDH - 33-4

Page 7 of 7 DEPTH RECOVERY WIDTH Au DESCRIPTION SAMPLE # FROM то Ag 3.53-11.6 m: Fractured, rubby and blocky iron 14.6 m : cold contact with underlying unit 05 16 037 GREYWACKE and ARGILLITE Medium grey graywaske intorbedded with lark grey to black angellete. The arequisks especially thicker bets are calcarecus. The not temperate themselves are prepared and trav mustafalding and metofaulting. Work, sporadio Cos musicovarnina averagina allana in trianimery from El H. tundepoint espera alter between 20.5-22.5 m, where week breactation Letaenwees of Letretnos atm betsissesses cos veins mistavatas. The attitudes of the undulating to secondly : etanixology unibbed betietino: 23° to c.a. w 12.3 m 30° to c.a. w 25.7 m 28° to 30 3 23.7 m 25° to 20.0 31.3m 1-27. Py sor intowal ocours as finely disseminated grains, laminations and cootings along frosture planes.

				FAI	RBAI
PROPERTY	,			FNUIN	EERING
FROFERIT		 	 		

4 to 4 = 4 t	
HOLE No NNH - 23-4	
HOLL NO. WEN- PO- A	

DEPTH FROM TO		RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO OF SA	WIDTH OF SAMPLE				
FROM	Ю	RECOVERI	acom ron	J	, ,,,		OF SAMPLE		 		10.00
			Broken and blacky care with iron axide stained								
			Practure planes between 21.1-21.35m; 27.3-								
			23.5 m; 27.0 - 28.0 m; 30.6-31.0 m.	<u> </u>						1. 1. 3.	<u> </u>
				ļ							
			@ 32.15m; Sharp contact with underlying								
			unit approximating 230 to c.o. orientation.								
			The underlying unit however shows a 1.5 cm								
			unde coarsening downhole from the control possibly a								
			(CHILL MARGINS)								
										4	
32.15	40.02	95%	AUGITE - BIOTITE - GUARTE - FELDSPAR - PORPHYRY (DYKE)								
			Identical to that between 50.7 m to 52.6 m						ļ		
. :			in DDH-28-02. Hedium to light greenish grey,						<u> </u>		
			Pine to medium grained with irregular								
			Ca-feldspar clots phenocrysts up to 5.25 cm								
			viida. The unit is very compatant, imagine						<u> </u>		
			in appearance with interlocking grains. It								,
			contains conser and darker phases and						ļ		
			legunalent diffuse wall wock inclusions up						<u> </u>		<u> </u>
			to 2.0 cm mide. The unit is weakly in Cafter	<u> </u>					<u> </u>		
			feldspar) altered.						<u> </u>		
			1-2% Fes (Py > Po) is finely dissemenated								
			throughout with afficity toward maker								
			mune tals.					L	1		
						l	1	1			

F	1	٩	l	I	₹	ł	3	l	١	ľ	V	ł	(
Ē	N	0	•	N	E	ŧ	Ā	7	N	G	ī	. 7	D	١.

			ENGINEER	
PROPERTY.	 			

HOLE No. DDH - 88-4

Page 4 01 7

DEP FROM	TO TO	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE	Au ppb		iAcy ppim	
			38.72-38.76m · Tricgular feldapar · quarte	16038	3 શ . ડ	39.15	0.60 m	20		3.1	
			vein bosting chloritized wall rock and								
			K-altered feldspor inclusions with 1-2% PolPy		1 7						
				,							
			40.00-40.02 m : an irregular fining downhole	16037	39.65	40.43	0.78m	16		2.8	
			(CHILL HARGIN? contact.								
40.02	44.68	707.	GREYWACKE and ARGILLITE				50750			100	
			Same as that between 14.6 to 32.15m. except								
			that the bedding of this interval is								
			moderately deformed overall.								
			40,43 - 40,9 m; werkly to moderately charred	16040	40.43	41.3	0.87 m	4		17	
			suband reads suith bed atoms to be and bank								
		* -	approximating 70° to ca. arientation.								
			40.9 - 41.2 miBroken, 1.2 hbly core with a								
			probable FAULT COUSE & 41.15 to 41.20m.								
			f '	16091	11.5	42.3	1.0m	8		2.4	
			42.3-43.05 m: Strongly microveined, micro-	16042	1		a68m	71		2.9	
			Proctured and contexted argulite bosting	13.1.1.	1111	1					
			three contained and ungay sugary quarte		1						
			1		1				1		
			veins 242722112 0.6 cm wide approximating		1				1		
			PT - 52 10 C.O. CHEWITHION.	16045	42.22		0.91m	44		1.5	

						PAIKE
OPF	QTY					

HOLE No.

DEPTH		D. Donor J. Comp.		T	r	·	l wingu	π.	Aa	T./	
ROM	70	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE	Hu ppb:		PPM	
			43.05 - 44.68 m: Largely blocky and broken	16644	43.89	44.68	0.79 m	8/	1	2.6	
			to tubbly core with iron axide coated								
			fracture planes, and probable FAULT								
_			GOUGES between 43.5-43.6?m and								
	·		44.43 - 44.52 m.								
					1						
4.68 45.42 75%		75%	MINERALIZED ZONE: SUGARY BULL SHITE	16045	44.63	45.7	1.02 m	39	1	38	
			SUARTZ VEIN. The zone is weakly to			1.00					
			moderately commissioned - microfractured					***********			
			and fractured. It is largely blocky and								
			broken to rubbly near the lower contact.						1		
			The vein appears barren except for								
			minor, by bearing, wall tock inclusions						1		
			which become slightly more prominant						1		
			toward the lower contact.								
			1-27. Py occur as finely disserminated								
			grains and fine crystal aggregates with a						1		
			strong affinity toward wall rock inclusions.								
							1				
.42	53.0	95%	GREYWACKE and ARGILLITE:	,				*******		-	
			Same as that between 14.6 to 32.15 m								
			except for the following variations trends:						1		
			The intensity of deformation degrees						1		
			downhole. The grey wacks becomes less						 		
			calcareous and more thinkly hedded found		-	-			1	 	-

FAIRBANK
ENGINEERING LTD

			ENGINEERING	-
OPERTY:				

HOLE No. 70H -88 - 4

Page 6 of 3

DE	PTH	RECOVERY					WIDTH	Au	T	1	
FROM	70	MECOVERT	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE	ppb		bb.w	
			the lower contact. Weak Co, veining and								
			microucining occurs throughout the								
			generally wavy to undulating bedding				111				
			-company a reduced wellade example								
			ting the following attitudes:								
			(40° to c.a. (a) 44.65 mm								
			43° to c.a. & 43.56 m								
			37° to - 0 @ 49.68 m								
			38° to c.a w 55.70m								
			The deformation is most intense between								
			45.7 to 46.1 m; 46.9 to 47.7 m; 50.9 to 51.1m	16046	ц5.Э	45.35	1.05m	5		2.9	
				16047	5 2.43	53.1	0.67m	2		0.5	
			@ 57.0 m : an irregular contact where								
			angular argillite rip up clasts are								
			incorporated into the underlying unit,								7.5
			proximal to the contact. The underlying						1 - 1		
			unit shows a 1.0 cm wide coarsening,								
			Lounhola from the contact (a possible								
			CHILL MARGIN).								
											14
53.0	20.05	95%	AUSITE - INIOTITE - QUHVIZ - FELDSPAR HORPHYLY LOYKE	16,048	56.35	53.35	1.5 m	3		2.8	
	БОН		Identical to that between 32.15 - 40.02 m		1	-					
			except for the following:								
			This unit is non-calcareous. The fold-		1			 	1		
					1	<u> </u>			1		
		i	spat phenocrysta are more sparsely and	1	I	L	i	l		<u> </u>	L

		THOMITAND LTD
POPERTY		 THOUSERING CEO.

HOLE No. DDH - 88 - 4

DEPTH			A Property of the Control of the Con				WIDTH			
FROM	70	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE			
			sporadically distributed. The pyroxene							
			us weakly chloritized whereas the Peldspar							
			Is weakly clay altered. This interval hosts as The by							
	-		2-3% Fes where Po exceeds the Pu							
			content							
						· · · · · · · · · · · · · · · · · · ·				
						 				
										
		•								 l
										
								1.		
										· · · · · ·
										
\neg							<u>'</u>			
										
	-							7		
\neg		I								
		1					1		. *.	 í

PROPERTY SILVER DOLLAR

HOL	E.	No.	•	. O -	98	 5

	DIP TEST						Page of 8
	An	gle	1				
Footage	Reading	Corrected]				
			Grid Location: 1	.275 / 167 75 E	Bearing:	Total Depth_	80. u3 m
			Date Started:	21/07/68	Elev. Collar: 172.92 m wrt 19#1	Logged By:b	CHROMEC
•ор			Dare Finished:	13/07/88	Collar Dip: - 96°	Core Size	v. 6
. p124			•	-	Discontinue of the second of t		7 6 2

DEF	TH	PETOVEDY	DESCRIPTION	SAMPLE #	EDOM	то	WIDTH OF SAMPLE	Au	1	Ag	Т
FROM	70	RECOVERY .mb8	DESCRIPTION	JAIWI CE 4	FROM		OF SAMPLE	ppb	L	DOM	
				A STATE							
				1							
									1		
		-15.85	casing								
		15.85-48.	2(98%)GREYWACKE	16049	15.85	16.25	0.40m	2		0.9	
			The unit is primarily comprised of								
			greywacke, variably intermixed with mud								
_			and interbedded / banded with minor (5%)								
			dark grey to black argillite. The								
			greywecks is medium grey in colour to				-				
	····		brown when intermixed with mud.								
			Occasional light to medium grey							1	
		ļ	hydrothermally altered patches, blebs								
			and clots occur throughout, increasing		L						
			in occurrence downhole. The greywacke is								
			competent, massive in appearance,								
	<u> </u>		comprised of fine to medium, poorly	1							
			sorted and rounded interlocking grains.								
			The argillite interbeds / bands are								
ı									T		Ι

FAIRBANK
ENGINEERING LTD

PROPERTY

HOLE No. 50-88-5

DEF	TH	T T					· . · ·		 3_01_	<u>`</u>
ROM		RECOVERY	DESCRIPTION scarce, diffuse and strongly deformed	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au ppb	Ag	
		ļ	near the upper contact, becoming more		<u> </u>					
			prominant, distinct and less contorted							
			downhole. The unit is weakly carbonate							
			+/- feldspar +/- rare quartz veined,							
	-		aicrovained							
			and microfractured. The largely							
			undulating to contorted bedding							
			approximates the following attitudes:							
			29 degrees to c.a. at 29.5m.							
			29-31 degrees to c.a. at 31.2m.							
_			34 degrees to c.a. at 36.15m.							
_			24 degrees to c.a. at 36.8m.							
						-				
_			3-4% FeS (Po >or= Py) primarily occurs							
	<u> </u>		as clots, finely disseminated grains and							
			coatings along fracture planes.							
								1.3		
			15.9-16.1: two sub-parallel dirty grey-	16049	15.85	16.25	0.40 m	2	0.9	
			white QUARTZ veins, 1.8 and 1.5cm. wide,	ļ.						
			oriented 12 degrees to the c.a. host							
			brecciated wall rock inclusions and 5%							
			clotty and fine grained Po.							

· . F	7								 -	

,	FAIRBANK	
	ENGINEERING LTD	

					FAIRBAI	٧K
				FAR	ENGINEERING	170
OPERTY						

HOLE No. 50-88-5

Page 4 of 9

DEPTH	1					T www.	- X			~
OM TO	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au ppb		pph	L
		47.33m. is represented by 0.43cm. wide						1		<u> </u>
			I							
		void with minor rubbly wall rock.								T
								1		┢
31.	\$-57.25(90	ZJGREYMACKE		 				 		├-
	1	Same as that between 15.85-48.2m.except						 		
	 	for the following: This unit contains a								L
	}	marginally higher proportion of								
		argillite interbeds (10%), which are								Г
					. :					
- I		largely contorted to segmented. The								┢
	1	argillite becomes increasingly silica						 		┝
	 	enriched boward the lower contact. The						 	 	-
	 	- unit is moderately faldspar-carbonate						 	ļ	_
	 									L
	<u> </u>	shows a weak patchy carbonate alteration								_
	 	which becomes moderate and uniform								
		doumhole from 54.6m. The only reliable								
		- bedding attitude approximates 28 degrees								
		to the c. s. st. 53.7%								
			1					1	· · · · · ·	_
		54,8-54,89: Strongly bracciated by	16052	54.53	55.2	0.65m	4		1.4	_
		intense carbonate vaining, 1-2% Pu	16053	57.0	59.4	2.40m	i.		3.7	
		occurrs as clots and finely disseminated								_
		grains within brecciated wall rock						1		
_	t							 		-
-+	 	inclusions.		-						۰

	FAIRBANK
	ENGINEERING LTD

PROPERTY_

HOLE No. 50-88-5

Page 3 of 9

DEP FROM	TO	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE	Au		Ag	Π
			18.8-28.1: occasional blocku, vuggu.								
_			pitted and iron oxide stained sections.								
_											
_	40	2-51.5(90)	C) GPEYWACKE and ARGILLITE								
			Equiproportinally and rhythmically		1						
_			interbedded medium gray graywacke and		1						
_			dark gray to black, laminated and banded								
			argillite. The unit has undergone soft								
_			sediment deformation, weak microfolding								
			and microfaulting. It is weakly								
_			carbonate veined and microfractured. The								
_		<u> </u>	bedding contacts are undulating to			,					
\perp			irregular, approximating the following						I	1 10 17	
			attitudes:								
_			17 degrees to the c.a. at 41.5m								
			34 degrees to the c.a. at 45.5m								
			18 degrees to the c.a. at 49.9m	1							
			1-2% Py occurrs as finely disseminated								
			grains, hairline laminations and minor				\$;				
			carbonate replacement.						(:		
			46.33-48.7: Blocky, occasionally rubbly	16050	46.33	47.55	1.22 M	3		1.4	
			section with iron coated fracture	16051	47.6	49.77	1.17 m	5		0.7	
			planes. A MAJOR FAULT between 47.1 to								
-	1						100		T		

PROPERTY

HOLE No. 50 - 88 - 5

	TH	RECOVERY	DESCRIPTION	SAMPLE #	FRAM	то	WIDTH		T	T	T
ROM	70		DESCRIPTION OF THE PROPERTY OF	SAMIFLE #	- ROM	,,,	OF SAMPLE			<u> </u>	
_											T
	-50-	7.61.760	*>QUARTZ FELDSPAR PORPHYRY						100		Τ
		0	Signifier to that between							T	T
			50.7m to 52.6m in DDH-08-02. The unit is								T
			light greenish grey in colour with a								T
							<u> </u>			1	T
			mottled to cloudy overall appearance It		 					 	+-
			is extremely felsic, massive and	 	-		-			┼──	╁╌
_			competant. The grain and phenocryst	-						 	╁╾
			contacts are extremely diffuse and	 						 	┼-
+		 	poorly discernable. The unit is weakly	 						┼	┼
一			- eigrofractured and carbonate (after			-				 	╁
-			- Feldspar) altered			ļ					┼
-			3-42 Py over the interval occurs	 							↓_
-			primarily as clots, smeared clots along				ļ			 	
-			- colearcous fracture / microfracture					-		 	-
-			planes and finely disseminated powdery							ļ	↓_
\dashv			grains. Trace powdery AsPy occurs	 							1_
-			throughout								↓_
-+										<u> </u>	L
-			59 8-59 85: Rip-up clasts of the	<u> </u>							L
-			underlying sediments occur proximal to								L
_			the irregular lower contact.	-							
_											
_	61.	3-69.75mq9	5%) GREYWACKE	16054	61.05	61.87	0.82m	3		0.8	
- 1	1			16055	61.87	63.3	1.43 m	2		1.1	

FAIRBANK
ENGINETHING LTD

PROPERTY_

DESCRIPTION

upper and lower contacts approximate 39 degrees to the c.a. orientation. The veining contains sheared and brecciated wall rock fragments and minor grey to

DEPTH

FROM TO

RECOVERY

HOLE No. 50-88-5

WIDTH OF SAMPLE

TO

SAMPLE # FROM

Page 6 of 8

16056 66.80 68.4 4 1.7 that between 15 85-48 26 except 16057 68.4 69.80 1.4m For the following: The minor (5%) llite within this unit occurs gely as contorted and segmented interbeds (possibly rip-up clasts) Patchy to banded light green hydrothermal alteration occurs sporadically throughout the interval. 61.3-65.8: The interval is silica enriched and the grain contacts mottled to diffuse. 16058 69.80 70.90 1.10m 1.8 69.75-72.8(95%)MINERALIZED ZONE: Greywacke veined and 70.90 72.0 16059 1.10 M 3 1.4 brecciated by dirty, milky white QUARTZ Comprised of variably oriented and irregular injections, stringers and veins up to 5.0cm. wide, the veining shows a strong preference toward subparallel to c.a. orientation. Irregular

			FAIKRAINK
ROPERTY			 ENGINEERING LTD

HOLE No. 50-88-5

	TH	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE	Au	7	T.A.	T
ROM	70			JAIN LE 4	- nom	10	OF SAMPLE	pob		Agm	
_			glassy quartz shards.								
_	,		3-4% FeS (Po=Py;tr.CPy) Both Po and Py								
			primarily occur as clots. The Po clots							11.11.11	
			are marginally more common and larger								
_			than those of Py. Py and lesser Po also								
			occurr as finely disseminated grains.								
			Cou is almost invariably associated with			14.1					
			Po. The sulfides show a strong affinity								
			toward the brecciated wall rock and								
			inclusions thereof.								
_	72.	0-80.77(9	X)CRYSTAL TUFF, GREYWACKE and MUD	16060	72.0	72.8	0.8 m	4		0.3	
			Medium to dark brown-grey in colour, the	16061	77.85	78.75	0.90m	7		0.4	
			unit is comprised of variably intermixed	16062	79.5	80.4	0.9m	<u> </u>		0.5	
_			crystal tuff, graywacks and mud. The								Г
			matrix is predominantly comprised of								
_			fine to medium size, moderately sorted,								
_			sub-rounded interlocking grains. A								
			patchy distribution of white, sub-								
			rounded feldspar-carbonate								
			clots/phenocrysts persists throughout.								
			The unit is extremely competent and								
			massive in appearance. It is moderately								
			carbonate microveined and								
T											

							<u>FAIRBAN</u>	<u> 1K</u>
PERTY							ENGINEERING	LTC

HOLE No. 50-88-5

Page 3 of 2

DEF	PTH	RECOVERY	BEA. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10				WIDTH		i	
FROM	- 10	RECUVERY	DESCRIPTION	SAMPLE #	FHOM	10	WIDTH OF SAMPLE			
			microfractured.							
			1-2% Py occurs as finely disseminated							
			grains.							
				1						
				<u> </u>				100		
									. 77	
									10.0	
	-									
				l	1		,			

PROPERTY

Footage

SILVER DOLLAR	ENGINEENIN		No. DOH - 88-06
P TEST			Page 1 of 17
Reading Corrected	Grid Location: 45,0611/42.83E	Bearing NIA	Total Depth: 9,66 m.
	Date Started: 63 24 - 93	Elev. Collar: 209.56 wet 10 1	Logged By D. CHROMEC
	Date Finished: 53 25-23	Collar Dip: - 40°	Core Size: N. Q
			NTS: 82F3

DEF FROM	PTH ΤΟ	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au		Ag	
	3.05		CHRING								
.05	11.88	90%	GREYWACKE and ARGILLITE.	16.063	9.95	11.72	1.77m	4		0.2	
			Predominantly medium grey GREYWACKE								
			interbedded banded with lesser (30%)								
			dark grey to black argillite. The greywacke								
			is moderately sorted with largely sub-rounded								
			grains, Calcareous patches show strong	L							
			affinity toward thicker (up to 0.8 m wide)								
			greywacke bods. The unit has undergone								
			calt rediment deformation, microfolding						<u> </u>	<u> </u>	1
			and microfaulting. Weak con veining, micro.						1	<u> </u>	<u>L</u>
			veining and microfracturing occurs throughout.						1		
			the bedding contacts are undulating to								
			urregular with attitudes approximating;		<u> </u>						
			32° to c.a. @ 34 m; 24° to c.a. @ 7.8 m;								
			20° to c.a. D 9.9 m & 10.3 m.								
			1-2% Py occurs as microfracture laminations-								
			correplacement and finely disseminated								
			grains and clots throughout.								

FAIRBANK	
 INGINERAING LTD	

				ENGINEERING	
OPFRI	Υ.				

HOLE No. DDH 38

Page 2 of 17

DEPTH DESCRIPTION		RECOVERY			T	r	WIDTH	T	 T
FROM	то	RECOVERT	DESCRIPTION	SAMPLE #	FROM	то	OF SAMPLE	 	
			62-6.65 m: Non-calcareous, non-porphyritie						
			equivalent of underlying crystal tuff.		i				100
			GREYWACKE UNIT.						
11.98	26.0	95%	CRYSTAL TURE GREYWACKE and miner ARGULITE.						
	ļ	<u></u>	Patchy grey to predominantly medium brown		<u> </u>				
			in colour, the unit is comprised of variably						
			intermixed crystal toll and greywacks						
			interheduled bonded with minor argillite.						
			The matrix is comprised of fine to medium						
			grained, sub rounded coloite, feldapar, quartz,						
			pyroxene, chlorite? biotite?, mud and ash.	-					
			It hosts a potchy distribution of white						
			and semi-translucent grey, sub rounded						
			calcite phenocrysts up to o.4 cm wide.						
			the entire unit is strongly microfractured,						
			microveined and moderately veined with					# T	
			white and grey coa overall, it is breceivated						
			and strangly calcareous. The rare argillite	2 -		1			
			banda are diffuse and contacted to segmented						
			67. Fes (Py > Po) primarily occur as clots,						
			time grained aggregates and finely						
			disseminated grains						
			Maria						
							-		

		FA	I	₹	В	A	1	١
	4	FNG	I N		11	1 N	0	-

			FAIRBANK
OPERTY			FNGINEERING LTD

HOLE No.

Page 3 of 12

DEP		RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au	T	Agn	一
ROM	70	<u> </u>					UP SAMPLE	66,0	 		-
			17.7 - 19.0 : Unaltered, non brecciated, non	16064	13.35	19,45	2.10 m	3	ļ	1.1	
			calcareous intermixed CRYSTAL TUFF and					·····			
			GREYWACKE. Hedium greyish green in								
			colour with pyroxens (chlorite?) and teldispar								
			phenocrysts fining towards the contacts								
			The lower contact is delimited by un								
	-		irregular con stringer approximating 41° to								
			c.a. orientation. 4-5% Fes (Py>Po) occur-								
T	-		no finely disseminated grains, grain aggregates								
T			and olote								
\Box									i		
\Box			20.2-20.4m: well preserved, si carriched	16065	21.2	22.5	1-1 m	1		0.7	
			laminated argullite class with very charp								
			contact.	ļ ————							
							l				
			als-21.35 m: An irregular, dirty quarte-						†		_
\dashv			feld spar vein heating bressisted wall			<u> </u>					_
7			rock inclusions and 2-7% Py.		 				 		
				16066	25.4	21 6	1.2m	2	 	0.1	
.0.	3.8	95%	GREYWACKE and ARGILLITE.		45.4	70.0	,,		7.75	-	
Т			predominantly medium, grey greyworks								
_			interbettal banted with minor (15%)						1		
\dashv			araillite which occurs as lamoinations, hands	-					<u> </u>		<u> </u>
_									 		
+			and rhythmically hedded sequences aurragina								
		L	less than 10 cm. in width. The argillite	L.,	L		L		L	لـــــا	

FAIRBANK
ENGINEFRING 110

				ENGINEE	
ROPERTY					

HOLE No. DOH 88-

Page 4 of 12

DEP	TH	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH	Au	T	Ag	
FROM	70	AECOVEN1	DESCRIPTION .	SAMPLE #	FROM	10	OF SAMPLE	660		ppm	
			becomes slightly more prominant downhole		·						
			The unit is fractured-micro fractured and co,								
			imicroversed. The only moderately well				, A				
			preserved bedding shows 240-260 to c.a.								
			orientation @ 28.5 m and 30.75 m.								
			2-3% Py>Po occurs as finely disseminated								
		·	veins, clots and coatings along microprocture								
			ulanas.								
		65 %	32.25 - 37.25 m. Fractured, broken and	16067.	37.25	34.5	2.25 m			0.8	14.
			blocky to rubbly with probable FAULTing	16063	39.5	35. 3.5	1.45m	1		0.6	
			accurring at 33.1 m., 33.7 m., 35.7 m and 365 m.	16000	35.45	37.50	1.55m	2		0.5	
			Strong microverning and microfracturing								
			persists to lower contact (38.8m)								
38.8	45.5	45%	GREYWACKE and BROWLITE								
			Equiproportionally and finely interbelded								
			greywacke and argillite. The unit is weakly								
			con veined microveined and microfixictural.					٠.			
			Averaging 2.c cm in width, the hedding								
			is usakly microfolded and microfouted with								
			undulating contacts approximating 33° - 36°								174
			to c.a prientation.	1							
$\neg \dagger$		· · · · · · · · · · · · · · · · · · ·	19 Con Hiten Hittun		1						
$\neg \uparrow$										<u> </u>	

						=
PKUP	ERTY					

HOL	Ε	No.	Op	H	- 3	2-1

ROM	70	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Aub	Ag	
5.5	51.05	95%	GREYWACKE AND HESILLITE							
			(same as 26.0 - 38.8m); sparse argillite							
			interheda bands show undulating to							
_			ocassionally contaited to segmented							
_			contacts, approximating 27° to c.s. and						2. E.	
			4° to ca orientation at 47.45 m and							
_			49.7 m respectively.							
_		* * *		2						
.05	53.75	90%	GREYWACKE AND ARGILLITE							
_			(same as 38.8 to 45.5 mm): Equiproportionally							
_			interbedded greyworke and argillite. The							
_			greyworks heds are predominant near							
_			the upper contact whereas the urgillite							
_			hede and intermixed mud becomes							
_			more predominant toward the lower							
			contact. The unit is waskly breezisted						1.0	
_			with undulating to contaited bedding							
			contacts priented 49° to c.a. w 51.2 m; 37° to			31				
			c.a @ 53.3 m . 38° to a.z. @ 53.65 m							
\downarrow			stes - 52.20 m; Hadarately bressisted	16070	51.05	53.35	1.30 M	2	0.8	
\bot			microfrastured and commissioned	16071	52,35	53.35	1.00 M	3	0.9	
						-				

	FAIRBANK
	ENGINEERING LTD

			FNGINLLRING	
ADEBTY				

HOLE No. DUH 38-6

Page 6 of 12

DE	PTH	RECOVERY					WIDTH	Au	T	١٨.	Γ
FROM	70	MECUVERY	DESCRIPTION	SAMPLE #	FROM	то	OF SAMPLE	pelo		Ag	
3.35	56.6	457.	(Recrystallized 3) CRYSTAL TUFF (OTZ-TELD-PXX PORPH)	16072	53.55	54.10	0.75 m	3		1.0	
							1.98m	3		1.2	
			unit is putoby to mottled in appearance.								
			The si enriched (weakly silicities))								
			matrix is comprised of diffuse feldspar					,		1.	
			and quarta grains, variably interimized								
		ļ	with volcanic ush, graywacke in & mud.								
			It hosts subhedral pricine and brotile								
			phenocrysts, diffuse quarte and inver-								
		<u> </u>	feldspar clots. The lath-like mailie						1		
			phenocrysts show variably priented foliation								
			The upper and lower contacts are dolumited by								
			CO3 veining approximating 550 to 2.7 and								
			37° to c.a. respectively.								
			1-2% Py over interval securs as finally						:		
			discerninated grains and clots showing	100						W	
			strong affinity toward madic minerale.	-				*.			
			and coatings along fracture unicrofracture								
			planes Passible trace Ens.					:			
.io	70.50	95%	CREYWACKE und ARGILLITE	16074	56.03	57.03	0.95 m.	2		1.2	
			Predominantly medium gray graymocke								
			interhedded with our conjargillite. Dominal								
			light grey quarts and Pel Japur Kish wordy beds								
			and dark yer usually bels secur throughout								

						DDA	A	ı
						TUP	NA	ļ
ABARCATY					ENGIN	EERIN	0 L	1
PROPERTY	<u></u>	 	 	 				

ŀ	10L	Ε	No.	- Had	33-0

Page 3 of 17

DEI	PTH	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE	Au	T	Ag	
num	- 10	<u></u>		ļ			UF SAMPLE	ppb		ppm	
FROM TO		The greyworks is massive and intermittently					<u> </u>	<u> </u>			
		calcareous. The unit has undergone soft									
			sediment deformation, miorofolding and							, ·	
			microfaulting. The microfoulting is often								
			associated sub-parallel-steep to c.a. tencion								
			gashes. Weak to mederate is veining and								
			microverning accors throughout the utitudes								
			of the generally deformed to contorted beds								
			approximates 28° to 34° to c.a.								
			2-37. Py over interval occurs as fin-ly								
			disseminated grains, clots contings along						. · · · ·		
			fracture planes and correptacement.								1,00
)								
_			59.33-59.608 54.8-54.43m: leregular 205							1.0	
_			veins and injections up to 2:0 mm with								
			termina bearing will test from ment:								
			68.28-68.95 m: Brecourts 1, atrongly musto-	16075	63.28	68,95	0.67m	4		1.0	
			Practured section with a 1.5 cm wide, wregular-								
			dirty con vein @ 68.75 m.						1		
.45	12.50	957.	GREYWACKE								
			Unitorm medium yrey greywicks informical								
			with monor FEISIC ASH. The unit is								
	I		resikly valearious, mileratured		7.1						

FA	IRB/	NK
ENG	NEERI	NG LID

		•			FAIRDAI	
ODEDTV	•				ENGINEERING	

HOLE No. DDH - 38-6

Page 3 of 12

DEI	PTH	RECOVERY	Second Se	T	T		WIDTH	T.	T	1	т —
FROM	70	RECOVERT	DESCRIPTION	SAMPLE #	FROM	TO	OF SAMPLE			land.	
			Co, veined - microveined and								
			misrofinitured, hosting i-27.								Γ
			cloty and Pinely disseminated Py.								
0.5	31.03	3570	ARGILLITE FELSIC TOFF and GREYWACKE.								
			Quiet water deposition primarily complised								
			of (70%) ARCILLITE, light beige PELSIC								
			TUFF and modeum arey SREYWACKE The								
			arguilite is both interbedded and quadation	nally							- 7
			intermixed with the feloratoff und	,							
			resymance. The greyworke is tiring								
			missresus. The unit has undergone soft								
			Lediment deformation, microfolding and								
			microfaulting It is moderately to locally								
_			strongly verned, microvarinad and miero.								
·			Practured. The verning is largely comprised								
			of cos, grading to quarte-feldspar-cos								
			downhole from 34.7 im. The bedding is								
			largely gradational, undulating to								
			deformed or sheared and breconted.								
			At 73.6mm, the maderately preserved badding								
			approximates 65° to ca. orientation.								
			4-5% Fes (Py>Po) accurs 23 finely								
			disseminated grains, grain ageriates.								
			clots and cubedral crystals with affinity			-					

PROPERTY

HOLE No. DOH-88-

DEP FROM		RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Ay		Ag	
			toward thicker argillite bods and sont								
			Poldapar + quart & veining, microveining								
			and microfracturing. The smoont of outlides								
			increases downhole.						1.52		
			71.4-722m; Sheared and breezesated section	16076	31.2	73. C	1.80m	3		0.7	
			with broken and rubbly core between 71.9 to								
			72.2m, representing a possible FAULT.								
_											
			73.22m; A 0.3 cm wide FHULT GOUGE		·						
			73.75 · 79.2 m : An undulating slickenside	16077	13.c	74.33	1.37m	2		0.5	
			cub-parallel to c.a.	16078	74.57	76.25	1.88m	4		0.9	
			76.25 - 76.5 mm: Sheared, blocky to broken	16074	16.25	37.90	1.65m	8		1.3	
		1	section containing quartz-very fragments.								
_			78.0 - 78.7 m: Breggiated, mirrofinatural,	16030	33.3	77.0	1.1 m	165		1.8	
			unioroverned and verned with quarte-cus								
			etringers up to 0.7 cm wide, with a								
			shear-FAULT GAUGE at 73.61-73.7 m.								
			72.45-31.0m: Predominantly greenisis - base								
[]		FELSIC TOFF with monor (410%) argillite.								
	. 1		and greywacks. The interval is shoured,					1.			1 1 V

FAIRBANK
ENGINEERING LTD

			FNGINEERING	
OPERTY			CHOINEEHING	

DESCRIPTION

argillite. The unit has undergone little to no soft sediment deformation, micro folding or microfoulting. The unit is weekly con veined and microverned

RECOVERY

HOLE NO. DOH-32-6

WIDTH OF SAMPLE

TO

SAMPLE # FROM

Page 10 of 12

bresciated, besting 5 to Py and trose, bright 10 79.67 m: 11 6.8 cm. wide, BULL WHITE 16011 79.0 90.15 1.15 W 82 0.6 QUARTZ VEIN oriented 60 540 to ca MILLERALLIZED ZONE: BULL WHITE JUARTS 0.85m 165 16082 30.15 81.0 8.0 VIEW, bosting minor, sheared, PES and Py bearing wall rock laminations and inclusions The lower contact is delimited by a D.3 cm wide, sheared, clayer CHUCE Shooring and contacts all approximate 740 to a.a. orientation. The sulfidesoccur almost exclusively within the wall vock laminations Inclusions 270 Py securs as close and Punely disseminated grains. 19. Pb 3 accurs a fine subhedral crystals and crystal squespotes 81.27 72.66 95% GREYWACKE and ARGILLITE Equiproportionally interbedded middium grey greyworks and dark grey to black

			FAIRB.	
PROPERTY			ENGINEERI	NG LT

HOLE No.___

Page_11 of 12

DEF	7H 70	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au	Au lon	Ag	
			The hedding is largely sharp and					11	•		
			distinct, showing the following attitudes:								
			36° to ca @ 33.1m.								
			23° to c.a is 34.5 m								
			24° to 1.0 @ 86.7 m								
			27° to c.a @ 90.7 m								
			19° to c.a @ 92.40m								
			3-4% Py over interval accors us clots,								
			finely disseminated grains and hairline								4.
			laminations. Py content decreases downhole.								
			81.42-81.48 m: Sheared, laminated	16033	31.0	31.35	035m	2600	0.082	17	
-			sediments approximating 73° to ca.					خــــــــــــــــــــــــــــــــــــ			
_			orientation.								
			and the same of th						ļ		
				16034	81.35	43.0	1.65m	2		0.5	
			TUFF boiling 4-5% Py.						<u> </u>		
_					·						
			81.72 - 82.50 m ; Moderately 603 valued,								
			missouring and microfulted section with								
			irregular to contarted bodding, heating						1 .		
\Box			37. Py as subhadral cubes, elets and finely								
I	,		disseminated grains.								
\neg					· 3.						

		ENGI	NE	ERIN	0	L.T	Ö

	ENGINEERI	ING LTD		
			1101 = 11.	
ROPERTY			HOLE No.	DDH-88
			.,	

Page 12 of 12

DEF	>TH		Broom Brion	SAMPLE #			WIDTH		Γ		
FROM	70	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE				100
			82.5 - 24.2 mm: Uniform areywacks intermixed								
			225. 24.2 m.; Uniform greyworks intermixed with miner volcavic ash, hosting 4-5% Py.								
			The state of the s				 				
							.				
			The state of the s				 	<u> </u>			
									ļ		
	<u> </u>							ļ			
									 		
								-			
										<u> </u>	
									<u> </u>		
				1							
					<u> </u>	<u> </u>					
							<u> </u>		 		-
			A CONTRACTOR OF THE CONTRACTOR								-
					 						
									 		-
						ļ					
					ļ						
						<u> </u>					
960x32	Tirana a					L	<u> </u>				

SILVER DOLLAR HOLE No. 50-88-7 DIP TEST Page 1 of 13 Angle Reading Corrected Postoge Total Depth: 98.7 m Grid Location: 66.364 | 9.15 N Bearing:
 Date Started:
 16 | 03 | 98
 Elev Collar:
 216 04 m m m 1 | 98 | Logged By:
 D. CHEONEC

 Date Finished:
 27 | 03 | 98
 Collar Dip:
 - 90°
 Core Size:
 U. 9
 NTS: \$2 F 3 DEPTHP174
FROM TOLE RECOVERY WIDTH OF SAMPLE DESCRIPTION SAMPLE # FROM TO 9.75 9.75-37.8 (85%)GREYWACKE and ARGILLITE 16085 13.9 15.4 1.5 m 16086 28.2 28.7 0.5 m Comprised primarily of medium grey greywacks locally intermixed with minor (5%) volcanic ash and interbedded with (35%) dark grey to black argillite. The greywacke beds are up to 1.5m wide however commonly occur as beds averaging 5.0cm. wide, thinly rhythmically interbedded with argillite. The proportion of intermixed volcanic ash becomes slightly more prominent downhole. The unit has undergone soft

FAIDDANIZ
FAIRBANK
ENGINEERING LTD

PROPERTY

sediment deformation, weak to moderate microfolding, microfaulting and weak

HOLE No. ___ 50 - 88 . 7

Page 1 of 13 DEPTH RECOVERY WIDTH OF SAMPLE DESCRIPTION SAMPLE # FROM FROM TO unit is weakly and eradically eous. Occasinally contorted and ented, the bedding is largely ndulating, approximating the following degrees at 15.7e 49 degrees at 29.7m 47 degrees at 25 Am 38-52 degrees at 27.85m 43 degrees at 30.3 3% Fe5 (Pu>>Po): Sulfides occur as clots and finely disseminated grains throughout. Pu also occurs as laminations and coatings along fracture 14.25-15.0: broken and blocky with carbonate vein breccia fragments. 33.8 3466 0.86m 34.4-34.6: strongly carbonate 16087

			FAIRBANK	, 0	
OPERTY					

HOLE No. SD - 88 . 7

DEP	TH	DC001/50			т	r	Luce			01_	
ROM	70	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE				
			microveined and microfractured, volcanic								
			esh rich greyweeke hosting 3-4% Pu								
											1
						1					
_			35.00 37.0: veleanic ash mich graywacks.	16088	3466	35.08	0.42m	11.			1
			lecally braceisted, microfractured,	16089	35.08	37.80	2.72m				1
_			veined and microveined with carbonate								
_			and, infrequently quartz-feldgpar-								
_			carbonate solutions. Pare vains up to								Г
_		- 10	9 7ca wide host wall rock injusions and						. /		Г
\dashv			4% Pu.								
_								- 1			
_	_32	8-48.9 (98	2X)CRYSTAL TUFF, ASH and GREYWACKE	16090	37.80	39.57	1.77 m				
_			The unit is primarily comprised of						7		
_			orystal tuff, intermixed with ash,						1. 1		_
\perp			greywacke and minor argillite. Medium								Г
_			brown in colour to cloudy grey - green								
_			where hydrothermally altered, the unit								
\perp			hosts a patchy distribution of sub-								
_			rounded, Ca-feldspar +/- carbonate,								
_			clots and blebs. Comprised of poorly								
_			sorted, sub-angular to sub-rounded,								
_			interlocking to diffuse grains/clasts,								
			the unit is patchy and massive in								
- 1		1									

			-411	HAININ
				BANK
		-	ENGINE	ERING LTD

PROPERTY_

HOLE No. 50-88-7

Page 4 01 13 DEPTH WIDTH OF SAMPLE RECOVERY DESCRIPTION SAMPLE # FROM TO FROM TO -4% FeS (Po>Py): Sulfides occur. as lots, finely disseminated grains and grain aggregates showing affinity towards carbonate veining. 16091 39.57 40.10 0.53 m 39.25-39.57: a network comprised of carbonate stringers averaging 0.2cm. in width 5-6% Po clots over interval. 16092 40.10 40.90 0.80m 48.9-41.62(95%)GREYWACKE and ARGILLITE Interhedded dark grey to black argillite and medium grey greywacke intermixed with minor ash. The upper and lower contacts are delimited by carbonate veins oriented at 67 and 32 degrees to the c.e. 16093 40.90 42.85 195m 41 62-51.67 95%) CRYSTAL TUFF, ASH and GREYWACKE

			FAIRBAN	
POPERTY				

50-88-7 HOLE No.

DEPTH RECOVERY			COVERY DESCRIPTION		1		WIDTH	 	T	
ROM	70	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	OF SAMPLE			1_
			Similar to that between 37.8 to 40.9m						1000-166	
			with the following exceptions and						Alaman.	
			trends. This unit is predominantly light						1.60.18	
			to medium greenish grey in colour with					100		
			occasional brownish gray patches.							
			Feldspar +/- carbonate clots and blebs							
			are rare in occurrence. The unit is				19 9			
			silica enriched (weakly silicified),						164	75
			hard (H = 5.8 to 5.5), compatent and						100	
			massive in appearance. Overall, the unit							
			is weakly veined and microveined with							1,11
			carbonate and occasionally milky white							
			quartz. It is also weakly to moderately							
			fractured and microfractured.	: .						
			6% Fe5 (Py > or = Po): Sulfides occur							
			as clots, blebs, grain aggregates and							
			finely disseminated grains showing							Г
			affinity toward carbonate veining and							T
			dense concentrations of feldspar-							
			carbonate clots and blebs.							
			644.8 & 644.9: two 0.2cm. wide milky	16094	44.60	45.10	0.50m			
			white quatz-carbonate stringers oriented	1001	,,,,,,,					1-
				_				 		

		FAIRBAN	

PROPERTY

SD-88-7 HOLE No.

Page 6 of 13 DEPTH RECOVERY WIDTH OF SAMPLE DESCRIPTION SAMPLE # FROM FROM TO at 37 and 33 degrees to the c.a. respectively, with 5% Py at the contacts. 16095 4760 5010 25m 47.8-58.5m.: CRYSTAL TUFF, hosting a dense concentration of sub-rounded Cafeldspar and carbonate clots and blabs up to 0.8 cm. wide. Veining and microveining is moderate overall to strong between 48.0 to 48.9m. and 49.7 to 50.1m. 7-8% FeS (Po > or = Py) over the interval primarily occurs as clots. 51 67-57.58 98% GREYHACKE and ARGILLITE Medium grey-green greywacke, intermixed with minor ASH which diminishes toward 56.8m., is interbedded with dark grey to black ergillite throughout. Near the upper contact, the argillite beds are up to 15cm. wide and extremely diffuse and deformed. They become more refined, thinly and rhythmically bedded, banded and laminated downhole from 55.9m. The

			HAIKRAN	
PERTY				

50-88-7 HOLE No._

DEPTH	T		· · · · · · · · · · · · · · · · · · ·			T	,		0/	
ROM TO	RECOVERY	DESCRIPTION	SAMPLE :	FROM	то	OF SAMPLE				
		unit is weakly carbonate veined,								
		microveined and moderately fractured.							11.	
	4	The bedding attitudes approximate the								П
		following orientations:								Π
		15 degraes to c.a. at 52.2m.								Π
		12 degrees to c.a. at 55.45m.								
		14 degrees to c.a. at 56.6m.								
		17 degrees to c.a. at 57.45m.					-,			Г
		3% FeS (Py>Po) occurs as finely								
		disseminated grains, clots and								
		laminations.								
		52.78-55.25: moderately carbonate +/-	16096	52.50	55.25	1.75m				
	<u> </u>	feldspar veined, brecciated and								
		intermittently blocky with iron oxide								Г
		staining. Rubbly (possible FAULT)								
		between 53.95-54.2								
		057.50: a very sharp contact								
		(microfault) truncating bedding at 68								_
		degrees to c.a.		1						
										<u> </u>
57	58-64.1(95	%) VOLCANIC ASH, CRYSTAL TUFF and GREYWACKE	16097	57.40	58.20	0.80 m				_
			16098	61.60						-

FAIRBANK	
ENGINEERING LTD	

PROPERTY.

HOLE No. 50-88-7

DEPT	u I		A STATE OF THE PARTY OF THE PAR						ONA"	or _	77
	TO RECOV	VERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE				Γ
_			Medium to predominantly light grey-green	16099	63∞	64.10	1.10 m			100	
_	<u> </u>		in colour, the unit is comprised of								Γ
_	-		volcanic ash, crystal tuff, variably								Γ
			intermixed with greywacke and								Γ
			infrequently interbedded with minor (5%)								Γ
_			argillite. Showing an overall downhole								T
			fining, the unit is largely fine to								t
			medium grained, occasionally hosting								t
			sub-rounded to sub-angular epiclasts and						1		t
			sub-rounded feldspar +/- carbonate								t
\bot			phenocrysts / clots up to 0.3cm wide.								T
			Lath to needle like mafic crystals								T
			(possibly argillite) up to 0.3cm in					-			T
			length occur sporadically throughout.						<u> </u>		T
			Along with other phenocrysts and								T
			epiclasts, they show a weak sub-parallel					- 2			Γ
- 1			to bedding foliation approximating 32-37						1		T
			degrees to c.a. orientation. The only								r
			distinct bedding approximates 34 degrees			*					r
			to c.a. at 63.15m. The lower contact is								r
			erosional, approximating 39 degrees to								Γ
			c.a. at 64.1m. The unit is non-								۲
T			calcareous, weakly carbonate veined,								H
			microveined and microfractured.								-
\top										2 5	-

	FAIRBANK	
744	ENGINEERING LTD	

			HAIRB	ANK
			ENGINEER	UNG LTD
OPERTY				

HOLE No. ____ SD-88-7

DEP		RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH			T	T
ROM	70				1	''	OF SAMPLE	 			
_			Occasional fracture / migrefracture		<u> </u>						L
			plenes are chlorite (seclite?) altered.								Γ
											Γ
			4-5% Pu occurs as slots, grain								Г
			eggregates, finely disseminated grains								
			aggregaces, Tirety disseminated grainev								
			57.58-61.4: predominantlu		 					 	
			·		 					 	+
\neg			CRYSTAL LAPIULI? TUFF with a dense,		 					 	\vdash
			patchy distribution of faldspar-		 						+
7			carbonate phenocrysts / clots, coarse			 				 	┼
-			epiclasts and 6% Py.								┼-
-1											
\dashv			62 4-62 57: strongly iron oxide stained.								<u> </u>
-			carbonate veined and bracciated with a								↓_
+		<u> </u>	1.5cm. wide FRULT GOUGE at the upper								
			contact								
4	-64	1-89 B4CR	IX)GREYWACKE, BRGILLITE and VOLCANIC ASH	16100	64.10	65.15	1.05m				
_			Barring the higher argillite content and						:		
4			the absence of the crustal tuff and								Г
\perp			associated feldspar +/- carbonate								
			phenocrysts / clots, this unit is								
			similar to that between 57.58 to 64.1m.								
			It is comprised of greywacke variably								<u> </u>
\neg			the state of the s								-

		FAIRBANK

SD-88-7 HOLE No._

DEPTH ROM T		DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE	Au .		Ag	T
		intermixed with volcanic ash/siltstone					ppb		Pom	+
								 	 	+
_		and interbedded with (28%) argillite.		-				┼	 	+-
		- Overall weak carbonate veining, moderate						├	 	┼-
		fracturing, microfracturing and			<u> </u>			ļ		╄-
		eicroveining is locally intense. The								_
		bedding is microfolded and microfaulted								
		with generally sharp undulating contacts								Г
		approximating the following attitudes:								Т
		24 degrees to c.a. at 64.7m.								1
		24 degrees to c.a. at 68.8m.								T
		19 degrees to c.a. at 74.2m.					************			1
		32 degrees to c.e. at 78.5m.						1		T
								1		T
		64.1-70.41: largely blocky with rubbly	16101	65.15	66.00	0.85m				T
		(possible FAULTs) sections between	16102	66.00	67.70	1.70m			100	
		;65.4-65.53m.; 60.8-68.95m.; 69.5-69.9m.	16103	1815	19.40	0.75m				
			16104			0.55m				\vdash
		72.25-72.41: clayey, rubbly FAULT GOUGE	16105	7		2.05 m				1
			16106			0.50m	2		0.9	T
		72.75-73.3: weakly carbonate veined and	16/07	_		2.20M	 2.		0.5	
		brecciated, broken and blocky section.	1,0,0,7		7110					†
										Г
		74.7-80.04: moderately foliated,	16108	77:11	79 20	2.09m	3		0.1	
		carbonate microveined and microfractured	1	14	4	1://				—

			FAIRBANK	
OPERTY			HOLF NO	SD-8

DEP	TH		the state of the s	· · · · · · · · · · · · · · · · · · ·				- A	Page_		
ROM	70	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	PPD		PPM	L
			ab 76 degrees to every with strong iron	16109	79.20	8004	0.84m	25		0.4	
\dashv			onide staining between 79.3 to 98.84m.								L
	00.	04-00.34 (OX)MAJOR FAULT								
+			R 34.0cm wide VOID	7		-					L
\dashv	88	34-99.51	95%)MINERALIZED ZONE: BULL-SUGARY WHITE	16110	80.34	80.70	0.36m	204		102	
\dashv			QUARTZ VEIN hosting minor, sheared wall		-						
\dashv			rock inclusions / laminations. R 2.8cm.	-							-
\dashv			occurs at the upper and lower contacts								-
\Box			respectively. Shearing approximates 78								-
_			degrees to c.a. orientation.								Γ
+			3-4% Py occurs as lustry crystals,								
+			grains and grain aggregates at the wall rock inclusions / laminations only.								_
			1 Sept and a sept of a sep					-			
\downarrow	88	51-82.7(9	5%)FOOTWALL: SHEARED AND BRECCIATED	16(11	8070	61.70	10 M	40		0.6	
+			GREYWACKE, VOLCANIC ASH and ARGILLITE.								
+			The unit is comprised of medium to light	+							
\dashv			greenish grey, intermixed greywacks and volcanic ash, interbedded / banded with								
			argillite. The unit is strongly		\neg						
I			brecciated, carbonate veined /								
											-

	FAIRBAN	lk
OPERTY	ENGINEERING	LY

HOLE No. SD- 88 - 7

Page 12 of 13

FROM TO RECOVERY DESCRIPTION SAMPLE * FROM TO OF SAMPLE DODGE DODG	AS
sheer bending approximates 70-98 degrees to c.s. orientation. The intensity of deformation and sulfide mineralization decreases toward the lower contact. 7% Py even the interval occurs as lustry crystals, clots, grains and grain aggregates almost invariably associated with the carbonate vaining. Minor Py is finally disseminated throughout. 16112 8170 8330 1.60m 3 22 7-89.7(9%) CREYMACKE and ARGILLITE (mECH) Equiproportionally interbedded medium gray, calcareous graywacke and dark grey to black argillite. The unit is weakly to moderately microfolded, microfaulted	
to c.e. orientation. The intensity of deformation and sulfide minerelization decreases toward the lower contect. 7% Py even the interval occurs as lustry orystals, clots, grains and grain aggregates almost invariably associated uith the carbonate vaining. Minor Py is finely disseminated throughout. 16/1/2 8/70 8330 1.60m 3 22.7-98.7(95x) GREYMACKE and ARGILLITE (RECH) Equiproportionally interbedded medium gray, calcareous graywacks and dark gray to black argillite. The unit is weakly to moderately microfolded, microfaulted	
to c.s. orientation. The intensity of deformation and sulfide mineralization decreases toward the lower contect. 7% Py even the interval occurs as lustry crystals, clots, grains and grain aggregates almost invariably associated with the carbonate vaining. Minor Py is finely disseminated throughout. 16/12 8/70 8330 1.60m 3 e2 7-90.7(95x) CREYMACKE and RRGILLITE (RECH) Equiproportionally interbedded medium gray, calcareous graywacks and dark gray to black argillits. The unit is weakly to moderately microfolded, microfaulted	
decreases toward the lower contect. 7% Py even the interval occurs as lustry crystals, clots, grains and grain aggregates almost invariably associated with the carbonate vaining. Minor Py is finely disseminated throughout. 92.7-99.7(95x) GREYHRCKE and ARGILLITE (SECH) Equipmonortionally interbedded medium gray, calcaraous graywacks and dark gray to black argillite. The unit is meakly to moderately microfolded, microfaulted	
decreases toward the lower contect. 7% Py even the interval occurs as lustry crystals, clots, grains and grain aggregates almost invariably associated uith the carbonate veining. Minor Py is finely disseminated throughout. 61/12 8/70 63:30 1:60m 3 92.7-88.7(95x) GREYWRCKE and RRGILLITE (SECH) Equiproportionally interbedded medium gray, calcareous graywacke and dark gray to black argillite. The unit is weakly to moderately microfolded, microfaulted	
7% Py ever the interval occurs as lustry crystals, clots, grains and grain eggregates almost invariably associated uith the carbonate veining. Minor Py is finely disseminated throughout. 92.7-90.7(95%) GREYMRCKE and RPGILLITE (=ECH) Equiproportionally interbedded medium gray, calcareous graywacke and dark gray to black argillite. The unit is weakly to moderately microfolded, microfaulted	
lustry orystals, clots, grains and grain aggregates almost invariably associated uith the carbonate vaining. Minor Py is finely disseminated throughout. 16/12 8/70 8330 1.60m 3 92 7-98.7(95x) GREYMRCKE and RRGILLITE (=ECH) Equiproportionally interbedded medium gray, calcareous graywacks and dark gray to black argillite. The unit is meakly to moderately microfolded, microfaulted	
eggregates almost invariably associated with the carbonate vaining. Minor Py is finely disseminated throughout. 16112 8170 6330 160m 3 92 7-98 7(94x) GREYMRCKE and ARGILLITE (SECH) Equiproportionally interbedded medium gray, calcareous graywacks and dark gray to black argillite. The unit is weakly to moderately microfolded, microfaulted	
### Property of the composite veining. Minor Py is Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170 8330 1.60m 3 Finely disseminated throughout. 16 2 8170	
finely disseminated throughout. 16 2 8 70 63.30 1.60m 3	
02 7-98.7(95x) CREYMACKE and ARGILLITE (SECH) Equiproportionally interbedded medium gray, calcareous graywacks and dark gray to black argillite. The unit is weakly to moderately microfolded, microfaulted	 -
(=E(H) Equiproportionally interbedded medium gray, calcareous graywacks and dark gray to black argillite. The unit is weakly to moderately microfolded, microfaulted	0.5
(RECH) Equiproportionally interbedded medium gray, calcaraous graywacks and dark gray to black argillite. The unit is weakly to moderately microfolded, microfaulted	
gray, calcareous graywacks and dark grey to black argillite. The unit is weakly to moderately microfolded, microfaulted	
to black argillite. The unit is weakly to moderately microfolded, microfaulted	
to moderately microfolded, microfaulted	
and carbonate microveined. Rveraging	
5.8ca. in width, the argillite beds are	
banded to finely laminated, with	
undulating contacts approximating the	-
	+
following attitudes:	
8 degrees to c.a. at 83.8m.	
27 degrees to c.a. at 95.0m.	
23 degrees to c.a. at 86.5m.	

		FAIRBAN
PROPERTY		ENGINEERING L

HOLE No. ____ SD-88.7

DE	TH.	T T			,					13 of _	13
FROM	70	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE				Τ
			23 degrees to c.a. at 87.3m.								T
											T
			2-3% Py over interval occurs as clots.								1
			finaly disseminated grains and							1	T
			laminations.						5.00		T
											1
						-				814.7	H
_							1 1				H
_											H
_								100			┢
_											一
_											H
_											-
_											-
_											Г
_											-
_											
-									:		
_											
											-
_											7.
					$\neg \uparrow$						
						\rightarrow				+	-
	1										

PROPERTY SILVER DOLLAR

	OF TEST								
	Angle								
Footage	Reading	Corrected							
		T							
		T							
	I								

HOLE No. DOL	١.	98	- OR
--------------	----	----	------

				_
Grid Location: +3.34N/32-32W	Bearing:	n/n	Total Depth: 101,19 mg	
Date Started: 07 28 - 88	Elev. Collar:	225.44 m (4)	1 TPul) Logged By D. CHRONEC	_
Date Finished: 63 30 - 88	Collar Dip:	- 900	Core Size: N G	_
			NTS: 82 F 3	

DEF		RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE		I	
FROM	ю					ļ <u>.</u>	OF SAMPLE			
٥	610		CBS1N6	· · · · · · · · · · · · · · · · · · ·		·			ļ	
610	8,45	85%	GREYWACKE & ARGILLITE	16113	6.10	8.75	2.65m			
			Broken, blacky, weakly weathered and clay							
			altered section comprised of dark to							
			medium grey GRETNACKE interbedded with							
			minor black ARGILLITE. The unit is					. (
			intermittently veined with Co. feldspar							
			and rarely quarte . Veining is associated with							
			weak precciation. Veining and bedding is							
			urregular and contacted to segmented. The							
	,		Only reliable Ledding attitudes approximate							
			26 to c.a. 60 8.5 m.							
			3-47. Py over interval occurs is clots and							
			finely disseminated grains.							
835	330¢	907	GREYWACKE							
			Predominantly medium grey in colour.							
			infrequently grading to tark gray where							
			intermixed with moudily material. It is							
-			moderately serted largely fine grained							1

	FAIRBANK
	ENGINEERING LTD

			ENGINEERING	
OPERTY				

HOLE No. ___ DDH 88-08

Page 2 of 13

FROM TO RECOVERY With rare coarser sandy heds (ir 14:1 to 15.4m) The unit is massive in appearance, hosting minor (57) Argunite interhands/heds. The Argunite hands/beds are extremely rare and diffuse near the upper sontact, becoming more prominent and refined toward the lower contact. (alcareous patches occur throughout The unit is weakly (00 - Ca Foldagar veined and microveined Although variably ariented, the microveined microfractures show a weak tendency to shallow from 35° to ca. O upper contact to 30° to ca. O 17.0m. The unit is sporadically fracture planes. 27 Fes (Py>Ps) accurs as finely disseminated grains, clats, laminations and coatings along fracture planes, with affinity towards (00) using and rare argulite.	DEPTH			1	1		WIDTH	Ι Δ	1	T.A.	
The unit is massive in appearance, hosting minor (5%) ARCILLIFE interbands beds. The ARGILLIFE bands beds are extremely rare and diffuse near the upper contact, becoming mate prominant and refined toward the lower contact calcoreous patches occur throughout. The unit is weakly cos - Ca Feldipar verned and miscroverned Although variably ariented, the miscroverned microfractures show a weak tendency to shallow from 35° to c.a. O upper contact to so to c.a. O 17.0m. The unit is sporadically fractured and blocky with iron oxide coated fracture planes. At Fes (Py>Po) accurs as finely disseminate grains, clets, laminations and coatings along fracture planes, with affinity towards (0) veining and rare argillite.	FROM TO	RECOVERY	DESCRIPTION	SAMPLE #	FROM	-10	OF SAMPLE	bbp		ppm	
minor (5%) ARCILLITE interbands beds. The ARGILLITE bands beds are extremely rare and diffuse near the upper contact. becoming more prominant and refined toward the lower centact. (alcoreous patches) occur throughout. The unit is weakly (0) - Ca Feldipar veined and misroveined. Although variably ariented, the microveined microfractures show a weak tendency to shallow from 35° to c.a. 9 upper contact to 00° to ca. 9 17.0m. The unit is apprehicably fractured and blocky with iron oride coated fracture planes. At Fes (Py>Pe) occurs as finely disseminated grains, close, larminations and coatings along fracture planes, with affinity towards (0) veining and rare argillite.			with rare coarser sondy beds (ie 14.1 to 15.4m)								
The ABGULITE bands beds are extremely rare and diffuse near the upper contact, becoming more prominant and refined toward the lower contact. (alcareous patches occur throughout. The unit is weakly cos - Ca Feldapar weined and microveined Although variably priented, the microveined microfractures show a weak tendency to shallow from 35° to c.a. @ upper contact to 30° to c.a. @ 17.0m. The unit is appradically fractured and blocky with iron oxide coated fracture planes. 276 Fes (Py>Po) occurs as finely disseminated grains, clots, laminations and coatings along fracture planes, with affinity towards (Cos weining and rare argillite. 12.27-14.03: Veil Breccin; irregular Cos vein 1 [6114 13.41 14.30 0.83 M 12 0.44 injection hosting angular, presciated wall			the unit is massive in appearance, hosting						ļ		
rare and diffuse near the upper contact, becoming more prominant and refined toward the lower centact. (alcareous patches occur throughout. The unit is weakly (0). - Ca Feldapar usined and microveined. Although variably ariented, the microveine! microtractures show a weak tendency to shallow from 75° to c.a. O upper contact to so to c.a. O 17.0m. The unit is appradically fractured and blocky with iron oxide coated fracture planes. 210 Fes (Py>Po) occurs as finely disseminated grains, clots, laminations and coatings along fracture planes, with affinity towards (0) ueining and rare argillite. 12.27-14.03: Veill arecoin; irregular (0), vein! 15.114 13.41 14.30 0.83 m 12 0.44 injection hosting angular, preceded wall			minor (5%) ARCILLITE interbands beds.								
becoming more prominant and refined toward the lower contact. Calcareous patches occur throughout. The unit is weakly cos - Ca Feldapar verned and microverned. Although variably ariented, the microvernel microfractures show a weak tendency to shallow from 75° to c.a. a upper contact to shallow from 75° to c.a. a upper contact to shallow from 75° to c.a. a upper contact to fractured and blocky with iron oxide coated fracture planes. 276 Fes (Py>Po) occurs as finely disseminated grains, clets, laminations and coatings along fracture planes, with affinity towards (0) weining and rare argillite. 12.37-14.03: VEIN ARECCIA; Irregular Co, vein 1 10114 13.41 14.30 0.83 M 12 0.44 injection hosting angular, preceived wall			The ARGILLITE bands beds are extremely							-	
toward the lower centact. (alcareous patches occur throughout. The unit is weakly (0) - Ca Feldspar veined and miseroveined. Although variably priented, the miseroveins! miserotractures show a weak tendency to shallow from 35° to ca. @ upper contact to 30° to ca. @ 17.0 m. The unit is sporadically fractured and blocky with iron oxide coated. fracture planes. 270 Fes (Pt>Po) occurs as finely disseminated grains, clots, laminations and coatings along fracture planes, with affinity towards (0) ueining and rare arguilite. 13.37-14.03: Vein breccia; irregular Co, vein! 10114 13.41 14.30 0.87 m 12 0.44 injection hosting angular, prescialed wall			rare and diffuse near the upper contact.								
occur throughout. The unit is weakly cos - Ca Feldapar veined and microveined. Although variably ariented, the microveine! microfractures show a weak tendency to shallow from 75° to co. O upper contact to 20° to co. O 17.0m. The unit is sporadically fractured and blocky with iron oxide coated fracture planes. 27. Fes (Py>Po) occurs as finely disseminated grains, clots, laminations and coatings along fracture planes, with affinity towards (Co) veining and rare argillite. 13.27-14.03: Vein Apercia: irregular Co, vein! 16114 13.41 14.30 0.87 m 12 0.44 Injection hosting angular, breezisted wall			becoming more prominant and refined								
occur throughout. The unit is weakly (0) - Ca Feldapar versed and microversed. Although variably priented, the microverse! microfractures show a weak tendency to shallow from 75° to co. O upper contact to 30° to co. O 17.0m. The unit is appradically fractured and blocky with iron oxide coated fracture planes. 27. Fes (Py>Po) occurs as finely disseminated grains, clots, laminations and coatings along fracture planes, with affinity towards (0) usining and rare argillite. 13.27-14.03: Vein breecin: irregular Co. vein! 16114 13.41 14.30 0.87 m 12 0.4			toward the lower contact. Calcareous patches								
- Ca Feldapar verned and microverned Although variably priented, the microvernal microfractures show a weak tendency to shallow from 75° to c.a. O upper contact to 30° to c.a. O 17.0m. The unit is appradically fractured and blocky with iron oxide coated fracture planes. 270 Fes (Py>Pa) occurs as finely disseminated grains, clots, laminations and coatings along fracture planes, with affinity towards (00) usining and rare argillite. 15.37-14.03: Vein Areccin; irregular Co. Vein 1 16114 13.41 14.30 0.83 m 12 0.44 injection hosting angular, processed wall											
Although variably priented, the microvernal microfractures show a weak tendency to shallow from 75° to c.a. @ upper contact to 30° to c.a. @ 17.0m. The unit is approaciably fractured and blocky with iron oxide coated fracture planes. 210 FeS (Py>Po) occurs as firely disseminated grains, clots, laminations and coatings along fracture planes, with affinity towards (co) weining and rare argulite. 13.27 -14.03: Vein apercia; irregular Co, vein 1 10114 13.41 14.30 0.89 m 12 0.44 injection hosting angular, preceived wall						12 T					
micro fractures show a weak tendency to shallow from 75° to c.a. @ upper contact to 30° to c.a. @ 17.0m. The unit is speradically fractured and blocky with iron oxide coated fracture planes. 276 FeS (Py>Po) occurs as finely disseminated grains, clots, laminations and coatings along fracture planes, with affinity towards (0) weining and rare argullite. 13.27-14.03: Vein breccin; irregular Co. vein 1 10114 13.41 14.30 0.83 m 12 0.44 injection hosting angular, precciated wall											
shallow from 75° to c.a. @ upper contact to 30° to c.a. @ 17.0 m. The unit is sporadically fractured and blocky with iron oxide coated fracture planes. 276 Fes (Py>Po) occurs as finely disseminated grains, clots, laminations and coatings along fracture planes, with affinity towards (0) usining and rare argillate. 13.27 - 14.03: Vein brescent; irregular Co. Vein 1 10.114 13.41 14.30 0.83 m 12 0.44 injection hosting angular, prescuated wall		1 '									
So to ca. @ 17.0m. The unit is sporadically fractured and blocky with iron oride coated fracture planes 2% Fes (Px>Po) occurs as finely disseminated grains, clots, laminations and coatings along fracture planes, with affinity towards (0) veining and rare argillite. 13.27-14.03: Vein breccin; irregular Co, vein 10114 13.41 14.30 0.83 m 12 0.44 injection hosting angular, precciated wall											
fractured and blocky with iron oride coated fracture planes 276 FeS (Py>Po) occurs as finely disseminated grains, clots, laminations and coatings along fracture planes, with affinity towards (Os weining and rare argullite. 13.27 - 14.03: Vein precein; irregular Cos vein 1 10114 13.41 14.30 0.83 m 12 0.44 injection hosting angular, preceinted wall											
fracture planes. 276 Fes (Py>Po) occurs as finely disseminated grains, clots, laminations and coatings along fracture planes, with affinity towards (00 veining and rare argullite. 12.27 - 14.03: Vein Brecoin; irregular Co. Vein 1 10.114 13.41 14.30 0.83 m 12 injection hosting angular, precoiated wall										18.5	
270 Fes (Py>Po) occurs as finely disseminated grains, clots, laminations and coatings along fracture planes, with affinity towards (00 usining and rare argullite. 12.27 - 14.03: VEIN BRECOIN; Irregular Co. vein 1 16114 13.41 14.30 0.83 M 12 injection hosting angular, precedited wall											
grains, clots, laminations and coatings along fracture planes, with affinity towards (0) veining and rare argulite. 13.27 - 14.03: VEIN BRECCIA: Irregular CO, Vein 1 10.114 13.41 14.30 0.87 M 12 0.4 injection hosting angular, precciated wall			•								
fracture planes, with affinity towards (0) verning and rare argullite. 13.37-14.03: VEIN ARECCIA; Irregular Co, vein 1 16114 13.41 14.30 0.83 m 12 0.4 Injection hosting angular, prescripted wall						1					
ueining and rare argulite. 13.27-14.03: VEIN BRECCIA; Irregular Co. Vein 16114 13.41 14.30 0.83m 12 0.4 Injection hosting angular, precciated wall											
13.27-14.03: VEIN BRECCIA; Irregular Co. vein/ 16114 13.41 14.30 0.83m 12 0.4 Injection hosting angular, precciated wall											
injection hosting angular, processated wall											
injection hosting angular, preceived wall			13.87 - 14.03 : VEIN BRECCIA: Irregular Co. vein	16114	13.41	14.30	0.83 M	12		0.4	
									100		

				FAIRBAN	
OPERI	TY				

HOLE No. DDH - 88 - 08

DEF	TH	RECOVERY	DESCRIPTION	SAMPLE #	ED044	то	WIDTH	Au	1	A.	
FROM	70	RECOVERT	DESCRIPTION	SAMPLE #	FNOM	10	WIDTH OF SAMPLE	PPO		Agu	
			@ 14.8 m : probable FAULT CAUGE; cas, wall rock	16115	19,50	15.95	1.35 m	4		0.9	
			and minor quartz fragments within clayer matrix								
			•								
			@ 13.5 m : VEIN BRECCIA: 1.5 cm wide network								
			of constringers and blebs approximating 24° to								
			c.o. orientation, hosting brecciated wall rock							11 - M	,
			fragments and minor Py.								
			20:06 - 20:12m : duty CO: - FEDSPAR-GUARTZ								
			UEIN; up to 0.9 cm. wide, approximating 68° to co								
			arrentation, besting pressinted wall rock					-	1		
			fragments and miner Py.								
									1		
			2162-21.95 m: possible FAULT; broken and	16116	21.40	21.95					
			rubbly core			MLL.I.V.					
.06	52.33	90%	GREYWACKE AND ARGILLITE.						1		
			Hedium Grey GLEYWACKE equiproportionally								
		I I	and rhythmically interbedded with dark grey						<u> </u>		
			to black Argillite. Downhole from 51.5 m, the						1		
			greywacke becomes increasingly intermixed								
			with valcanic ASH. The unit has undergone	1							
\neg			soft sediment deformation, minor micro						1		
_									 		
			faulting and microfolding overall, the unit						1	-	
		لحجيجا	is moderately CO2 veined imicroverned				l		<u> </u>		منسيا

	-	-		11/
	$L\Lambda$	11)L	$n \sim 1$	
	-	IKC	BAN	UR.
	.,	111 Z I	// VI	416
	ENG		N 1 N (I	LID

		ENGIN
PROPERTY		

HOLE No. __ DDH - 88 - 08

Page 4 of 13

DEP	TH	RECOVERY	DESCRIPTION	SAMPLE #			WIDTH		U	
ROM	70	RECOVERT	DESCRIPTION	SAMPLE #	FROM	TO	OF SAMPLE			
			although locally, it is strongly verned,							
			microverned and preceinted. The greywacke							
			notably the thicker beds are occasionally							
			salcareous. The argillite beds, austraging							
			4.0 cm in width show undulating contacts				7	:		
			approximating;							
			14° @ 28.9 m 34° @ 39.9 m							
			27 @ 29.3m 24 @ 40.9							
			19° 31.4 m 32° @ 42.8							
			27°@ 33.9 m 33° @ 47.8							
			32° 37.4 m 39° @ 50.5							
\Box			3% Py occurs as finely disseminated grains							
			clots, laminations and coatings along fracture							
			planes, showing strong affinity toward							
			con veining and argillite.							
		-	- 1 VEHILING WILV STATISTICS							
1			24.75-77.15 m; GREYWACKE; identical to that							
寸			between 8.75 - 23.06 m							2
1			Delure 1 5.75 - 15.06 m							
7				·						100
_			30.6-32.1m: GRETWACKE; same as above					-		
_			with miner (5%) AEGILLITE interbands beds							-
\dashv			269-752 WILL DOCULTS					-		
		-	34.9-35.2 m : Hottled ARGILLITE bed							

PROPERTY

DDH - 88 - 08 HOLE No._

DEF	TH			1.	Γ -	r	WIDTH		Page_s		
FROM	70	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE				
			35.3 - 3690 m . CO. VEINED, HICROVEINED	IG117	35.25	36,90	1.65m				1 4 12
			and locally BRECCIATED interbedded						4.00	130	
			ARGILLITE and GREYWACKE, hosting 3-47 Py					1. 1. 1.		2.75	yr 1
										4	
			45.3-46.7 m: GREYWACKE, identical to that	*							
			between 8.75m - 23.00 m. with minor (5%)						4.5	推工	
			ARGILLITE				arati Marati			Lain)	
_											
_			50.5-50.6 m: strong CO. VEINING, up to						a Negaria		
_			2.0 cm. wide oriented @ 41° to c.a.								
_											
			52.51-52.61 m : VOLCANIC WACKE LENS : light	16118	51.27	53.61	1.34m				
			greyish beige intermixed mechanical								
			sediments with valconic ASH, hosting		<u></u>					19 SE 19 SE SE	
			4-5% Py as laminations								
3.73	53.68	907.	GRETWACKE ARGILLITE & CRYSTAL TUFF (POSSIBLY								
			BURRTE-FELDSPAR PORPHYRY?)								
			The unit is equiproportionally comprised of						1 Sec. 1984		
			creamy light green, FELSIC CRYSTAL TUFF							4.5	
			interpedded with strongly SHEARED and							1.49.31	
			REECCIATED, interbanded GRETWACKE and							1,0,67	
			ARCILLITE. The TUFF is weakly clay white								
			mica altered and hosts sub-rounded				B e				
										100	

	FA	IRB	AN	١K	
	ENG	NEER	ING	TTD	

PROPERTY_

HOLE No. DDH - 88 - 08

Page 6 of 13

DEF	TH	<u> </u>			· · · · ·	·	Lungth	 	
FROM	70	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE		
			QUARTE - FELDSPAR phenocrysts up to 0.3 cm						14.
			wide It is competent and massive in						
			appearance. The GREYWACKE and ARGULITE				<u> </u>		
			is strongly QUARTE FELDSPAR and CO.						
			VEINED SHEARED and BRECCIATED. The						
			verning and brecciation increases toward	L					
			the lower contact. The shearing, veining						
			and unit contacts all approximate 72°-80°						
			to c.a. orientation.						147,11
			2-390 Py over interval is finely disseminated						
			and clotty showing affinity toward veining.						
			@ 52.73 & @ 53.52 : 1.5 cm. wide SHEAR						
			COUGES						
				16119	52.61	54.00	1.39 M		
			53.56 - 53.68 m : FELDSPAC - CO, VEIN BRECCIA						
			hasting angular wall rock fragments.					44	
3.68	54.94	907.	GREYWACKE AND VOLCANIC WACKE.						
			light to medium grey in colour, the unit						
			is comprised of greyworks variably						
			intermixed with volcanic ASH, interbanded						
]		45.4	with minor (10%) ARGILLITE. The unit is						
			weakly co, veined and brecointed			1.5			
.			near upper and lower contacts.						

PROPERTY

HOLE No. DDH - 88 - 08

DEF		RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE		Π		Т
ROM	70						OF SAMPLE				
_			4-5% Py over interval primarily occurs as					3111			
			clots and laminations and lesser as finely							875 875	
			disseminated grains. The concentration of Py								
			decreases downhole.						44.1		
			54.1-54.45 m : Strongly Iron oxide stained						3.45		
			patches						11.0		
			@ 54.94 m: Irregular cold contact with						13.5		
			underlying unit approximating 40° to c.a.					1			
			orientation.						18		
				16120	54,0	56.0	2.0m				
1.94	56.00	90%	(Recrystallized 3) FELSIC-CRYSTAL TUFF								
			(possibly QUARTE-FELDSPAR PORPHYRY),								
_			croamy light grey to light greenish beige								
			in colour appunitic with uniformly								
			distributed by clots. The unit is hard (H=5.0)								
			massive in overall appearance with infrequent								
			dark groy to black (SILICIFIED ADDILITE?)								
			laminations. The unit is strongly fractured								Г
			microfractured with overbearing PATCHY								
		1	TON OXIDE STAINING.								Г
			5% by over interval almost exclusively								
			accurs as clots and lesser as finely								
	T		disseminated grains								

FAIRBANK	
ENGINEERING LTO	

PROPERTY

HOLE No. DDH - 88 - 08

Page 8 of 13

UET	PTH	RECOVERY	DESCRIPTION	04451 5 5		T	WIDTH		l	
FROM	g	RECOVERT	DESCRIPTION	SAMPLE #	FROM	TO	OF SAMPLE			
			\$ 56.0 (lower contact): possible FAULT; broken							
			and blocky over 1.5 cm							
						1				V 1
6.0	60.95	80%	GREYWACKE							
			Hedrum grey GREYWACKE sporadically inter-							
			bedded with miner (187) ARGILLITE, Overall,							
			the unit is weakly con veined and miero-	***************************************						
			veined. The argillite bedding sequences, which							
			average 410cm. in width are maderately to							
			strongly con veined, microveined and						1, 1, 1, 1	
			contarted to brecciated.					4, 1		
			3-47. Py over interval occurs us clote.							
			Finely disseminated grains, grain aggregates							
			and laminations showing strong uffinity							
			toward argillite and con veining.							
			56.00-56.30mistrong patchy Iron oxide	16121	56.0	57.75	1.75m			
			staining associated with fractures and							
			microrractures.							
-										
			57.9-59.6 m: FRULT; blocky and broken	16127	57.75	0 F 9 7	0.95 W	1		
			core with 1.3 cm. wide shear @ 57.9 m.			****	- FIFTY			
			oriented at approximately 73° to c.a.							
			60.00-60.95 m: GREYWACKE; Identical to that			, "		 		

		100 minutes	FAIKBANK
DEDTY			

HOLE No. DDH - 88-08

DEP	TH	RECOVERY	DESCRIPTION	SAMPLE #	EB044	то	WIDTH OF SAMPLE		T	1	
ROM	70	RECOVERT	DESCRIPTION .	SAMPLE #	r RUM	10	OF SAMPLE		<u> </u>		
			between 8.75m to 23.06m.						- 1		
		,		16123	60,50	61.70	1.20m				
			@ 60.95 m : Lower contact is delimited by a O.7cm								
			wide cas vein ariented at 38° to c.a.								
95	63.75	957	(Recrystallised?) FEISIC-CRYSTAL TUFF (possibly				2.5			3.75	
			GUARTE-FELDERAR PORPHYRY)								
_		1-2	Similar to that between 54.94 m to 56.00 m.								
\perp			Croamy light grey to light greenish being								
_			in colour with uniformly distributed fo and		- 1						
_		1.	lesser Py clots. The unit is weakly to								
			moderately microfractured and co.								
_			mistaveined.								
_			4-57. Fes (Po>Py): Po Almost evaluately								
			accure as clots throughout; Py occurs as clots,								
_			finely disseminated grainse grain aggregates								
_			with strong affinity towards cos micro-								
_			veining.					····			L
_											
_			63.5 - 63.75 m : CHERRED, CO. VEINED, BRECSISTED	16124	63.05	64.00	0.95m				
_			ARGILLITE? hosting 5-7% Py as grain								
_			aggregates, clots and finely disseminated								
		Į.	grains.]				
\dashv											10.0
			@ 63.75 m: Irregular wavy contact.							1.0	10.7

	FAIRBANK	
	ENGINEERING LTD	

			ENGINEERING	
OPERTY			 * *	ĺ

HOLE No. __ DDH - 88 - 08

Page 10 of 13

DEI	TU I									
ROM	70	RECOVERY	DESCRIPTION	SAMPLE #	FROM	TO	WIDTH OF SAMPLE]	
				,						
7.32	0F.8F	95%	REWORKED GRETWACKE, ARGILITE & VOLCANIC	16125	64.2 7	66.45	2.18 m			
			MACKE	16126	13,35	75,40	2.05m			
			Predominantly GREYWACKE variably intermixed						8.75	
			with volcan agenic clasts and ASH hosting			-				
			sub-rounded to sub-angular RIP-UP CLASTS					. 9		
			up to 3.5 cm wide. The rip up state are							
_			predominantly comprised of interlanded							
			argillite and graywacke, lesser volcanic wacke,							Γ
			strong and ash and minor feldopar and quarts							
			grains crystals. Although variably priented							
			the rip-up clasts are preferentially slongute							
			sub-parallel to Ledding. This is especially							
			evident with the finer clasts.					- 1		
			Two major downhole fining sequences are					` ` ` ` .		
			evident Rip-up clasts, predominantly			4.5				
			comprised of interbanded argillite and							
			greywacke, up to 3.5 cm wide at 65.6 m.							
			grade to an interbedded greywacke and							Г
			argullite unit at 700m, which persists to					11.		
			73.65m. Another fining sequence commence	s						
			at 73.65 m, where graywooke availlite							
			and volconogenic rip-up slaats up to							
			0.8 cm unde grade to an interbedded							
			argillite and silty volcanic waske unit at							

PROPERTY

HOLE No. DDH - 88 - 08

DE	PTH			1	l		WIDTH		T	T	T
ROM	10	RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	1.0	1	and services	
			75.4 mm, which persists to 78.7 m. Over the								
			entire interval, a downhole increase in								
			volcanogenic sediments and an overall								
			fining is evident.						1.00		
			The unit is maderately cos veined								
			microveined and microfractured. It has								
			undergone soft sediment deformation;								
			microfolding and microfaulting and								
			weak broccuation. Where badding is								
			discernable, the beds are contorted to								
•			seamented, approximating 28° and 26°								
			to c.a. orientation at 72.0 m and 77.9 m			1					
			respectively								
			4% Fes (Py>Po) over interval primarily								
_			occurs as clots within the volcanogenis								
			sediments and, fine crystals, grains and								
			grain aggregates throughout showing								
			grain aggregates throughout showing affinity toward cos veining.								
			*								
			co, veined, blacky to broken and rubbly								
			with iron oxide coated fracture planes								
			between 68.9 to 69.1 mm; 69.35 to 70.2mm								
			; 70.85 to 71.3 m ; 76.8 to 77.1 m.								Г

FAIRBANK
ENDINEERING LID

			ENGINEERING
OPERTY			

HOLE No. DDH - 88 - 08

Page 12 of 13

DEF		RECOVERY	DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	Au	Ι	N.	
FROM	10							ppb		ppm	
38.30	80.88	457.	HUDDY INTERNEDIBLE CRASTAL TOFF (UNDESITE DYKE?	16127	78.20	19.15	0.95m	_8		15	
			Park brown in colour with feldspar - Cos					- 1 (A) (A)	ļ		
			phenocrysts up to 0.2 cm. wide and a								
			biotite rich compositionally intermediate						<u> </u>		
			matrix. Hassive in appearance the			<u>.</u>					
			unit is solt (clay altered), both the								
			upper and lower contacts approximate								
			61° to c.a. orientation, delimited by a							1	
			possible chill margin.								
			2% Px over interval primarily occurs us								
			finely diagraminated grains.								
			79.15-79.5 m.: Strongly veined with con-	16128	21.FE	39.55	0.40m	6		0.1	
			feldspar stringers and stringer networks								
			up to 4.5 cm. wide oriented at 68° to								
			c.a. The interval is strongly stay		·						
			serpentine altered and pearly green								100
			in colour.								
80.88	101.13	15 %	CREYWACKE ARCHUITE BUD VOICHWIG WHOKE								
			Predominantly medium to light grey								
			in colour with infrequent dark grey, mouddy								
			heds. The graywacke becomes diffuse				٧				
			and matted downhole as the proportion								
			of intermixed volcanic ASH increases								

PROPERTY____

HOLE No. DDH - 88 . 08

Page 13 of 13

DEPTH	 · · · · · · · · · · · · · · · · · · ·							· - 01 -	
FROM T	 DESCRIPTION	SAMPLE #	FROM	то	WIDTH OF SAMPLE	- :-7			
_	 The wanks is occasionally interbedded								
	 with (20%) ARGICUITE. The attitudes of								
	 the undulating to contacted argillite beds								
	approximate:								
	4 to c.a. @ 85.9 m								
	7 to c.a @ 98.7 m								
	22° to c.a @ 40.00								
	32° to c.a @ 92.6m								
	The unit is moderately Feldepar - Co.						,		
	microverned and microfratured.								
_	2% Py over intional occurs as clots,				1				
	 finely disseminated, coatings along			٠.					
	microfracture planes and as con-								
	 feldspar replacement.								
	85.7-88.9m: Dark grey, marddy								
	grexworke interpedded with (30%)	.9							
	ARGILLITE								
	91.0-71.7m: Strangly microverned								
	microfractured								
	EOH @ 101.19 m								-
	LALL III						1.2		

APPENDIX C

GEOCHEMICAL ANALYTICAL METHODS

MIN-EN Laboratories Ltd.

Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

FIRE GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Fire Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 15.00 or 30.00 grams are fire assay preconcentrated.

After pretreatments the samples are digested with Aqua Regia solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 1 ppb.

MIN-EN Laboratories Ltd.

Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 5.0 or 10.0 grams are pretreated with ${\rm HNO_3}$ and ${\rm HClO_4}$ mixture.

After pretreatments the samples are digested with Aqua Regia solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 0.005 ppm (5ppb).

RECOMMENDED PROCEDURE FOR FIRE ASSAY GOLD AND SILVER

Samples are dried at 120°F and after being crushed on a primary crusher to , inch size they are crushed on a secondary crusher to minus 10 mesh before being split on Jone's riffle. (In accordance with Gy's statistical rules).

At the splitting a 500 gram subsample is obtained which is pulverized to minus 100 mesh. After that the sample is mixed, rolled and quartered.

The assay is carried out on a one half assay ton sample, fire assayed at 1750°C with appropriate fluxes.

The lead bottom is than cupeled. (The silver bid can be weighed and the amount calculated, but it's accuracy is questionable.) Than the small bid is dissolved in aqua regia and analysed on the atomic absorption instrument for gold.

Results can be reported either in oz/ton 0.001 sensitivity or gram per metric ton upon request.

In every batch of 20 samples we have one in house natural standard.

For silver a completely separate assay is preferred on a 5.000 gram of subsample, where the sample is dissolved in aqua regia with a chemical separation and filtering. The amount of silver is determined by Atomic Absorption instrumentation.

MIN-EN Laboratories Ltd.

Specialists in Mineral Environments
Corner 15th Street and Bewicke
705 WEST 15th STREET
NORTH VANCOUVER, B.C.
CANADA

ANALYTICAL PROCEDURE REPORTS FOR ASSESSMENT WORK.

PROCEDURES FOR, Cu, Mo, Cd, Pb, Mn, Ni, Ag, Zn.

Samples are processed by Min-En Laboratories Ltd. at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by jaw crusher and pulverized by ceramic plated pulverizer.

1.0 gram of the samples are digested for 6 hours with ${\rm HNO_3}$ and ${\rm HC10_4}$ mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by Atomic Absorption Spectrophotometers.

Copper, lead, zinc, silver, cadmium, cobalt, nickel and manganese are analysed using the CH_2H_2 -Air flame combination but the molybdenum determination is carried out by C_2H_2 - N_2O gas mixture directly or indirectly (depending on the sensitivity and detection limit required) on these sample solutions.

Background corrections for Pb, Ag, Cd upon request are completed.

MIN-EN Laboratories Ltd.

Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

Analytical Procedure Report for Assessment Work

31 Element ICP

Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories Ltd., at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.

1.0 gram of the sample is digested for 4 hours with an aqua regia $HClO_4$ mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers. Reports are formatted and printed using a dot-matrix printer.

APPENDIX D

SOIL SAMPLE RESULTS

SPECIALISTS IN MINERAL ENVIRONMENTS

VANCOUVER OFFICE:

TV 5.557 674 516557 SSATH SAKCOLIER BC 045424 V7M 173 STEETHONE SSAC 186564 074 6641988-4574 TSLE UNA USA 1867667 • 74x 6641988-6531

TIMMINS OFFICE:

TU, BUX 36. TIVANNS ONTARIO CANADA I PAN 7**G7** TELEPHONE I TOSTOS4-9996

LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER 30 CANADA V7VI 172
TELEPHONE (904) 980-58-14 OR (904) 983-4924
TELEX VIA USA 7801465 - FAX (604) 580-8621
TIMMINS OFFICE:
30 EAST OROUGIS ROAD
DOX 697
TIMMINS ONTARIO CANADA P4N 7G7
TIMMINS ONTARIO CANADA P4N 7G7

Certificate of Geochem

Company: FAIRBANK ENGINEERING Project: SILVER DOLLAR (S.D) Attention: B. FAIRBANK

File:8-693/P2 Date: JUNE 19/88 Type:SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number	CU PPM	FB IN PPM PPM		≒U~WET PPB	
L100E 050N L100E 075N L100E 100N L100E 125N L100E 150N	144 139 121 152 95	. 54 219 37 103 43 207 38 169 49 212		to 30 5 5	
L100E 175N L100E 200N L100E 225N L100E 255N L100E 275N	91 113 134 67 72	27 213 42 254 24 202 33 667 -31 379	1.7 1.0 1.1 2 .9	5 5 5 7 8 8	
L100E 300N L50E 00BL L50E 025S L50E 0503 L50E 0759	#5 102 109 88 372	88 177 32 201 34 274 29 268 2530 3580	0.9 0.9 0.8 0.9 0.9	5 5 5 5 8	
L50E 100S L50E 125S L50E 150S L50E 175S L50E 200S	103 69 37 102 NO SAM	167 302 28 234 31 291 56 204 PLE	2.0 1 1.2 1.9 0.9	50 5 5 5 5	
L50E 025N L50E 050N L50E 075N L50E 100N L50E 125N	122 91 129 93 106	42 191 27 208 33 221 29 275 23 217	0.7 0.8 0.7 0.8 1.2	5 5 5 10	
L50E 150N L50E 175N L50E 200N L50E 225N L50E 250N	93 76 87 82 114	24 159 45 198 39 283 67 516 51 207	0.9 0.8 0.9 0.9	5 5 5 5	

MIN-EN LABORATORIES LTD.

Certificate of GEOCHEM

Company: FAIRBANK ENGINEERING Project:SILVER DOLLAR (S.D) Attention: 8. FAIRBANK

File:8-593/P1 Date: JUNE 19/88 Type:SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number		CU PPM	P 55 P 674	ZN PPM	AG PPM	AU-WET PPE	
F300M 0 F300M 0 F300M 0 F300M 0)258 508 758	81 98 129 57 106	34 28 39 37 31	463 471 511 623 414	0.9 0.8 1.2 0.8 1.0	5 5 10 5 8	
1200W 1 1200W 1 1200W 1 1200W 7	:50 S ? 5 S ?60\$	157 173 57 93 82	28 34 29 26 26	284 319 335 329 304	1.3 1.0 1.2 0.8 0.7	5 5 10 5	
L200W 0 L200W 0 L200W 1 L200W 1 L200W 1	75N 60N 25N	86 NO SA 59 98 103	75 MPLE 43 51 52	452 248 263 526	1.0 1.3 1.2 1.8	5 5 5	
F300M 2 F300M 3 F300M 3 F300M 3	160M 125M 250N	84 185 211 286 308	48 22 56 31 52	349 184 242 536 521	1.3 1.2 1.0 1.9	10 10 5 5	
1200W 3 1100E 0 1100E 0 1100E 0	00BL 025S 050S	MD SAI 95 101 89 73	MPLE 29 34 28 33	243 302 217 257	0.8 0.9 0.9 0.7	5 5 5 5	
L100E 1 L100E 1 L100E 1 L100E 0	258 508 759	167 111 118 115 129	21 49 36 31 33	176 162 214 169 211	0.8 1.1 1.0 1.1 0.9	5 5 10 5 5	

MIN-EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VAINCOUVER OFFICE:
105 WEST 1674 STREET CANADA V7M 172
NORTH VANCOULER BO CANADA V7M 172
TELEPHONE 674 380-3814 CR (604) 880-8814
TELEX VIA U.S.A. T801067 • FAX (604) 980-9821

TIMMINS OFFICE:

33 EAST IPOQUOS ROAD PO BOX 867 TAMINS ON ARIC CANACA PAN 7G7 TELEPHONE (106) 254-9996

SPEC ALISTS IN MINERAL ENVIRONMENTS

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER BC. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9821

TIMMINS OFFICE: 33 EAST IPOQUOIS ROAD PO. BOX 867 TIMMINS, ONTARIO CANADA PAN 7G7 TELEPHONE: (705) 264-9996

Certificate of Geochem

Company: FAIRBANK ENGINEERING Project:SILVER DOLLAR (S.D) Attention: B. FAIRBANK

File:8-693/P4 Date: JUNE 19/88 Type: SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number	EU PPM	PB PPM	ZN FFM	AG PPM	ALI-WET	
L100W 000N L100W 025N L100W 050N L100W 075N L100W 100N	93 75 66 44 53	32 27 23 34 109	189 158 176 264 347	1.0 1.3 0.8 0.9 0.5	5 5 10 5 8	
L100W 125N L100W 150N L100W 175N L100W 200N L100W 225N	-55 -58 -119 -157 -216	독 요 197 133 - 11 원주 1 명기	342 519 351 333 - 5 354	0.9	10 5 5 5	
L100W 250N - L100W 275N L100W 300N L50W 00BL L50W 025S	148 131 154 85 83	41 33 57 32 27	339 411 392 178 157	0.9 0.8 0.8 0.9 0.5	មួយស្រួស	
L50W 050S L50W 075S L50W 100S L50W 125S L50W 150S	84 78 73 31 116	29 28 42 37	219 204 247 301 262	0.8 0.7 0.7 0.8 0.9	5 10 5 5	
L50W 1758 L50W 025N L50W 050N L50W 075N L50W 100N	49 43 72 53 54	26 29 30 116 93	93 294 217 423 498	0.7 0.8 0.9 0.6 0.7	10 5 5 5	
LSOW 125N LSOW 150N LSOW 175N LSOW 200N LSOW 225N	59 78 67 82 141	62 49 34 64	632 147 179 - 187 222	0.8 1.1 0.9 1.3 0.7	5 5 10 5 5	

Certificate of Geochem Company: FAIRBANK ENGINEERING Project: SILVER DOLLAR (S.D)

Attention: B. FAIRBANK

File:8-693/P3 Date: JUNE 19/88 Type: SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number	CU PPM	PB	ZN PPM	AG PPM	AU-WET PPB	
L50E 275N L50E 300N L200E 00BL L200E 0259 L200E 050S	77 58 75 64 67	29 23 34 36 39	253 204 313 309 214	0.9 1.0 1.1 0.9 0.8	10 5 5 5 5	
L200E 0758 L200E 1008 L200E 1258 L200E 1508 L200E 1758	55 104 105 54 52	28 27 34 23 26	149 149 282 319 241	0.7 0.8 1.0 0.9 0.7	5 5 10 5 5	
L200E 200S L200E 025N L200E 050N L200E 075N L200E 100N	74 116 57 66 89	104 25 37 26 29	247 252 313 229 253	1.7 0.9 0.8 0.9 0.7	5 10 10 5	
L200E 125N L200E 150N L200E 175N L200E 200N L200E 225N	73 92 137 83 119	47 42 41 44 56	279 168 221 213 342	0.9 0.9 1.0 0.7 0.9	10 5 5 5	
L200E 250N L200E 275N L200E 300N L100W 025S L100W 050S	82 121 174 71 ND SAM	27 43 39 33 19LE	339 239 254 143	1.3 1.0 1.1 1.2	10 5 5 10	
L100W 075S E100W 100S L100W 125S L100W 150S E100W 175S	39 71 46 48 51	41 32 37 43 56	151 371 394 322 169	0.7 0.9 0.8 0.8 0.7	55555 5555	

Certified by_

MIN-EN LABORATORIES LTD.

Certified by_

MIN-EN CABORATORIES LTD.

VANCOUVER OFFICE.
705 WEST 15TH STREET
NORTH YANCOUVER 3C CANADA V7M 172
TELEPHONE ;6C41 980-5814 OR (604) 988-4524
TELEX VIA U.S.A. 7801057 • FAX (604) 980-3821

TIMMINS OFFICE: 33 EAST IRCQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA PAN 7G7 TELEPHONE: (705) 264-2996

Certificate of Geochem

Company:FAIRBANK ENGINEERING Project:SILVER DOLLAR (S.D) Attention:B.FAIRBANK File:8-693/P6 Date:JUNE 19/88 Type:SOIL GEOCHEM

He hereby certify the following results for samples submitted.

Sample Number	CU PPM	PB PPM	ZN PPM	AG PPM	AU-WET PPB	
L150E 1508 L150E 1755 L150E 200S L150E 025N L150E 050N	72 58 53 128 189	37 19 45 43 34	229 128 297 205 241	0.8 0.9 0.8 0.7	5 10 5 5	
L150E 075N L150E 100N L150E 125N L150E 150N L150E 175N	121 112 183 183 126	26 32 33 34 29	202 279 228 173 189	1.0 0.8 0.7 0.8 1.0	5 5 5 5	
L150E 200N L250E 0258 L250E 0508 L250E 0758 L250E 1008	91 94 73 101 59	35 26 34 28 27	273 242 361 206 229	1.0 0.7 0.8 0.9 0.9	5 5 5 5	
L250E 1258 L250E 1508 L250E 1758 L250E 2008 L250E 2258	58 39 64 34 38	29 31 34 21 49	324 293 387 88 129	0.8 0.9 0.8 0.6 0.7	សសសសស	
L250E 00NBL L250E 025N L250E 050N L250E 075N L250E 100N	119 93 96 63 109	36 31 34 23 32	227 219 184 263 276	0.9 0.9 0.8 0.9 1.2	5 5 5 5	
L250E 125N L250E 150N L250E 175N L250E 200N L250E 225N	81 102 117 69 86	29 38 37 159 35	242 261 205 614 281	0.8 0.7 0.8 0.8 0.9	5 10 5 5 5	

certified by Confinals

MIN-EN CABORATORIES LTD.

MIN • EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD PO. BOX 967 TIMMINS, ONTARIO CANADA PAN 7G7 TELEPHONE: (705) 264-9396

Certificate of Geochem

Company:FAIRBANK ENGINEERING Project:SILVER DOLLAR (S.D) Attention:B.FAIRBANK File:8-693/P5 Date:JUNE 21/88 Type:SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number	CU PPM	PB PPM	ZN PPM	AG PPM	AU-WET		
L50W 250N L50W 275N L50W 300N L150W 0259 L150W 050S	50 62 118 60 94	23 84 19 21 27	360 320 255 425 470	0.9 0.8 0.8 0.6 0.7	5 5 5 10 5		
L150W 0758 L150W 1008 L150W 1258 L150W 1508 L150W 1758	84 98 75 61 114	18 30 36 42 28	660 565 780 420 225	0.9 0.8 0.9 0.7 0.8	5 55 55 55		
L150W 200S L150W 00NBL L150W 025N L150W 050N L150W 075N	56 93 200 169 164	31 23 38 47 21	165 460 445 610 405	0.8 0.9 0.8 0.9	10 5 5 10 5	**	
L150W 100N L150W 125N L150W 150N L150W 175N L150W 200N	223 150 190 178 339	42 23 29 21 26	435 310 415 205 860	1.3 0.9 0.8 0.7 1.2	10 5 5 10 5		
L150W 225N L150W 250N L150W 275N L150W 300N L150E 0BL	152 298 NO SAME 249 78	40 44 PLE 22 24	360 690 530 245	0.8 1.6 0.9 0.7	5 5 5 5		
L150E 025S L150E 050S L150E 075S L150E 100S L150E 125S	58 63 44 60 40	18 21 14 22 26	255 340 315 240 350	0.8 0.6 0.7 0.8 0.9	5 10 5 5 5		

Certified by___

MIN-EN LABORATORIES LTD.

MIN • EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VANCOUVER OFFICE:
709 WEST 13TH STREET
MORTH VANCOUVER BC. CANADA W7M 172
TELEPHONE (904) 980-58 14 OR (604) 988-4524
TELEX: WA USA 7601087 * FAX (604) 980-9621
TIMMINS OFFICE:
33 EAST ROCUCUS ROAD
PO BOX 857
TIMMINS, ONTARIO CANADA P4N 7G7
TILLEPHONE (705) 264-9998

Certificate of Geochem

Company:FAIRBANK ENGINEERING Project:SILVER DOLLAR (S.D) Attention:B.FAIRBANK File:8-693/P7 Date:JUNE 19/88 Type:SOIL GEOCHEM

He hereby certify the following results for samples submitted.

Sample Number	CU PPM	PB PPM	ZN AG PPM PPM	AU-WET PPB	
L250E 250N L250E 275N L250E 300N L150E 225N L150E 300N	101 135 127 158 174	38 27 45 33	229 0.8 242 0.7 239 0.9 223 0.7 419 0.9	5 5 5 5 10	
L150E 250N L150E 275N	75 94	32 46	248 0.8 567 1.1	15 5	

certified by Con many

MIN-EN LABORATORIES LTD.

LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VANCOUVER OFFICE:
TOS WEST 15TH STREET
NORTH VANCOUVER BC CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX VIA U.S.A. 7501067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUO'S ROAD P.O. BOX 867 TAMMINS ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER BC. CANADA V7M 172
TELEPHONE (604) 990-3614 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9896

Certificate of Geochem

Company: FAIRBANK ENGINEERING Project: SILVER DOLLAR (S.D) Attention: B. FAIRBANK

File:8-694/P2 Date: JUNE 21/88 Type: SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number	CU PPM	PB PPM	ZN PPM	AG PPM	AU-WET	
LOW 075N	203	49	225	0.7	5	
LOW 100N	112	8	295	1.0	5	
LOW 125N	78	69	530	0.9	5	
LOW 150N	93	20	215	0.8	5	
LOW 175N LOW 200N LOW 225N LOW 250N	97 113 152 91	31 24 17	300 335 795 240	1.0 0.9 1.4 0.8	10 10 20 5	
LOW 275N	82	28	230	0.9 €	5	
LOW 300N	59	20	195	5.7	5	

Certificate of GEOCHEM

Company: FAIRBANK ENGINEERING Project: SILVER DOLLAR (S.D) Attention: B. FAIRBANK

File:8-694/P1 Date: JUNE 21/88 Type: SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number	C P	J PB PM PPM	ZN PPM	AG PPM	AU-WET PPB	
L300E 00BL L300E 0258 £300E 0508 £300E 0758 £300E 1008	10 10 10 11 10	9 29 2 32 2 24	250 265 290 255 235	0.7 0.6 0.8 0.7 0.8	5 5 10 10 5	
L300E 1258 L300E 1509 L300E 1758 L300E 2008 L300E 025N	8 10 5 7 12	3 22 8 23 9 58	295 250 235 270 260	0.9 0.8 0.7 0.6 0.8	5 130 5 -5	
L300E 050N L300E 075N L300E 100N L300E 125N L300E 150N	8	8 27 7 30 0 SAMPLE	315 265 255 325	0.7 0.7 0.8	5 5 5	
L300E 175N L300E 200N L300E 225N L300E 250N L300E 275N	6 8 9 8 17	8 22 0 26 6 31	260 158 159 230 225	0.7 0.8 0.8 0.6 0.8	5 10 5 5 5	
L300E 300N LOW 025S LOW 050S LOW 075S LOW 100S	1 <u>9</u> 13 16 11 8	9 <u>98</u> 2 <u>415</u> 7 28	210 485 650 205 310	0.9 0.8 1.0 0.9 0.7	5 5 150 5 5	
LOW 1255 LOW 1505 LOW 000N LOW 025N LOW 050N	7 5 10 12 <u>15</u>	2 36 2 48 7 <u>54</u>	315 310 355 230 210	0.9 1.2 1.0 0.9 0.8	5 230 5 5 5	

MIN-EN ABORATORIES LTD.

MIN-FINE ABORATORIES I TO

VARIOGOVER OFFICE.
705 WEST 16TH STREET
NORTH VANCOUVER BC CANADA V7M 172
TELEPHONE (604) 963-8614 OR (604) 968-4524
TELEX VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD PO. BOX 367 TIMMINS ONTARIO CANADA: P4N 7G7 TELEPHONE. (705) 264-9996.

• EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VANCOUVER OFFICE.
705 WEST 15TH STREET
NORTH WANCOUVER BC. CANADA V7M 1T2
TELEPHONE (604) 880-5814 OR (604) 980-9621
TIMMINS OFFICE:
TIMMINS OFFICE:

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

GEOCHEM

Certificate of Geochem

Company:FAIRBANK ENGINEERING LTD. Project:SILVER DOLLAR (SD) Attention:D.CHROMEOZONE File:8-794/P2 Date:JULY 2/98 Type:SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number	CU PFM	PB PPM	ZN PPM	AG PEH	AU-WET PPB	
L500W CORL SD-S L500W 0293 SD-S L500W 0508 SD-S L500W 0758 SD-S L500W 1005 SD-S	108 109 76 64 68	57 38 54 169 51	260 375 329 415 590	1.1 1.2 1.4 0.0 0.2	্র ড জ জ জ	
L500W 1258 SD-3 L500W 1508 SD-3 L500W 1758 SD-3 L500W 2008 SD-3 E500W 2258 SD-3	114 48 31 47 50	#8 153 62 26 50	540 345 375 330 335	0:8 0:8 0:4 1:0 2:3	1 12 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
L400E 300N SD-S L400E 275N SD-S L400E 250N SD-S L400E 225N SD-S L400E 200N SD-S	128 97 90 110 96	45 44 83 61 76	294 270 260 245 225	1.0 1.0 1.1 1.1	5 5 5 5	
L400E 175N 50-8 L400E 150N 80-3 L400E 125N 90-8 L400E 100N 80-8 L400E 075N 50-8	98 100 92 84 93	57 53 49 38 40	205 200 265 410 250	1.2 1.2 1.1 1.4	5 5 5 8	
L400E 050N SD-S L400E 025N SD-S L400E 00BL SD-S L400E 025S SD-S L400E 050S SD-S	68 119 89 78 115	42 60 42 36 35	425 376 305 275 152	1.2 2.2 0.8 1.0 0.8	5 5 5 5 7	
L400E 075S SD-8 L400E 100S SD-3 L400E 125S SD-S L400E 150S SD-S L400E 175S SD-S	87 93 98 62 51	36 34 35 42	205 236 260 200 310	0.5 1.1 0.8 0.7 0.7	10 5 5 5 5	

Certified by Chi Mans
MIN-EN LABORATORIES LTD.

NGINEERING Fil

Company:FAIRBANK ENGINEERING Project:SILVER DOLLAR (SD) Attention:D.CHROMEDZONS File:8-794/P1 Date:JULY 2/88 Type:SOIL GEOCHEM

He hereby certify the following results for samples submitted.

Certificate of

Sample Number	CU PPM	PB FFM	ZN PPM	AG PPM	ALI-WET PFB	
L400W 300N SD-S L400W 275N 5D-S L400W 250N SD-S L400W 225N SD-S L400W 200N SD-S	230 447 449 122 98	51 68 47 59 60	535 436 435 625 615	2.5 1.7 1.9 1.1	5 5 5 5	
LACOM 175N SD-S LACOM 150N SD-S LACOM 125N SD-S LACOM 125N BC-S LACOM 077H SD-S	.57 1110 195 117	44 58 39 45	590 500 455 320 440	1.2	5 5 5 5	
L400W 050N SD-6 L400W 005N SD-6 L400W 008L SD-6 L400W 0253 SD-5 L400W 050S 3D-5	138 901 59 901 78	66 50 41 49 36	295 310 265 270 370	2.0 1.4 1.1 1.2	5 5 5 5 5	
1.4000 0755 SD-S 1.4000 1005 SD-S 1.4000 1758 SD-S 1.4000 1503 SD-S 1.4000 1758 SD-S	95 127 103 73 108	48 52 39 39 43	430 395 460 345 620	1.2 1.3 1.0 1.1	10 5 5 5 5	
L500W 300N SD-S L500W 275N SD-S L500W 250N SD-S L500W 225N SD-S L500W 200N SD-S	174 167 185 190 275	37 46 56 39 53	490 700 1150 485 750	1.5 2.0 2.9 2.3 1.8	10 5 5 5 5	
L500W 175N SD-S L500W 125N SD-S L500W 075N SD-S L500W 030N SD-S L500W 025N SD-S	146 102 92 87 98	37 103 42 34 45	385 600 420 505 710	1.7 1.5 1.1 1.1	5 10 5 5 5	

certified by Bupmp

MIN-EN CABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

705 WEST 15TH STREET NORTH VANCOUVER B.C. CANADA: YTM 172 TELEPHONE (604) 980-3814 OR (604) 988-4524 TELEX. VIA. U.S.A. 7601067 • FAX. (604) 980-9821

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Company:FAIRBANK ENG.LTD. Project:SILVER DOLLAR (SD) Attention:D.CHROMEOZONE File:8-794/P4 Date:JULY 5/88 Type:SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number	CU PB PFM PFF	IN 1 PPM	4G PPM	AU-WET FPB
L600E 175N SD-S L600E 100N SD-S L600E 075N SD-S L600E 050N SD-S L600E 025N SD-S	68 42 74 41 69 33 47 39 44 25	339 307 382 353 264	2.9 1.0 4.4 1.0 2-2	5 5 10 5 5
L600E 008L 3D-8 L300E 0353 90-8 L600E 950S 8D-8 L309E 0753 2D-5 L600E 1996 3D-5	54 .72 45 .75 74 .45 51 .75 52 .75 24 .75	2.75 1 : 1977 1 : 1987 1 : 1987 1 : 1987 1 : 1987		
1,4005 1258 50-8 1,4005 1503 30-8 1,4006 1755 50-8 1,4006 2005 30-3 1,4006 2256 50-8	31 26 44 29 45 19 45 27 53 31	0.288 0.430 277 284 0.006	1 (9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5
	62 25 57 31 142 38 116 53 58 54	167 233 448 449 327	0.7 0.9 41.1 1.2 0.9	5 - 10 - 5 7 7 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
	68 45 121 41 118 49 55 37 51 32	363 332 694 507 549	5.0 1.3 1.6 1.1	10 5 5 5
BLOO 225W SD-S BLOO 175W SD-S BLOO 125W SD-S BLOO 075W SD-S BLOO 025W SD-S	73 56 78 35 104 31 89 30 88 49	452 208	1.1 1.3 1.2 1.3	5 5 5 5

Certified by Esseptians
MIN-EN LABORATORIES LTD.

MIN
• EN
LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VANCOUVEH UFFICE:
705 WEST 15TH STRET
MORTH VANCOUVER 8.C. CANADA V7M 172
TELEPHONE: (804) 980-5814 CR (804) 988-4524
TELEX. V/A U.S.A. 760/1067 • FAX (804) 980-9621
TIMMINS OFFICE

TIMMINS OFFICE:
33 EAST IROQUOIS ROAD
P.O. BOX 957
TIMMINS, ONTARIO CANADA PAN 7G7
TELEPHONE: (705) 264-9996

Certificate of Geochem

Company: FAIRBANK ENG.LTD. Project: SILVER DOLLAR (SD) Attention: D. CHROMEOIONE File:8-794/P3 Date:JULY 5/98 Type:SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number		CU FB PPM PF		AG PPM	AU-MET PP8	
L400E 2005 L500E 300N L500E 275N L500E 230N L500E 225N	SD-S SD-S	79 41 57 42 61 39 58 43 78 37	507 402 256	0.6 0.9 0.9 1.0 1.2	35 5 10	
1500E 200M 1500E 150M 1500E 150M 1500E 150M	50-5 50-5 50-7	সঞ্জ চুক কংকু সুকু গুক চুক সিন্ন চুক	197 233 233	0.9 1.2 0.9 0.8 0.8	5 (1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
L500F 075N L500E 055N L500E 005N L500E 008L L500E 025S	90-5 90-5 90-5	등4 (3 등3 (25 음2: 164 7명 (32 6주 (3)	256 297 228	1.0 1.4 0.9 4.2 0.9	5 5 10 5 5	
1.5006 0508 1.5006 0758 1.5006 1008 1.5006 1258 1.5006 1506	80-5 SD-5 SD-5	94 26 68 22 93 34 57 33 65 35	203 217 294	1.0 1.0 0.9 0.8 0.9	5 5 5 5	
L500E 1758 L500E 2068 L500E 2258 L600E 300M L600E 275N	SD-S SD-S SD-S	83 32 52 30 49 26 37 37 39 35	198 248 447	0.8 0.8 0.9 0.7 1.0	10 5 5 5 5	
Lacobe 250N Lacobe 275N Lacobe 175N Lacobe 150N	SD-S SD-S SD-S	A7 3A 52 25 227 43 (29) 34 (24) 39	789 181 1 334	1.2 1.1 1.6 1.2 1.3	5 5 5 40 5	

certified by Bunnah

MIN-EN LABORATURIES LTD.

• EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VARIOCUTER OF LICE.
705 WEST 15TH STREET
NORTH VANCOUVER BC (CANADA V7M 172
TELEPHONE 36041 980-5814 CR (604) 988-4624
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROCUOS ROAD PO BOX 867 TIMMINS, ONTARIO CANADA PAN 7G7 TELEPHONE: 1051 264-9996

• EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS
CHEMISTS - ASSAMENS - MACHINE - SECONEMISTS

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER BC CANADA V7M 1T2
TELEPHORE (804) 980-5813 OR (804) 988-4524
TELEX VIA U.S.A. 7601067 • FAX (604) 980-9821

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 967 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of GEOCHEM

Company:FAIRBANK ENG.LTD. Project:GILVER DOLLAR (SD) Attention:D.CHROMEOZONE File:8-794/P6 Date:JULY 7/88 Type:SDIL SEDCHEM

We hereby certify the following results for samples submitted.

Sample Number	CU FFM	₽B perm	ZM PHH	A0 254	AU-WET	
L750M 0800% SD-5 L750M 08503 SD-3 L750M 09509 SD-5 L750M 10008 SD-5 L750M 10505 20-3	50 50 (37 (37 (39)	49 74 77 75 25	275 Cer 174 215 Clo	1.2 1.3 1.4 1.3	5 5 5 10 5	
L750W 11008 50-8 L750W 11508 50-5 L750W 12008 30-8 L750W 12008 50-5 L750W 1200 5 00-3	(3 年 ・分類 た。○ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51 No. 40 10 11 11 12 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	18.34 (1.444) (1.444) (1.441) (1.441)		18 40 19 11 (8)	
1.750W 13509 SD-5 1.750W 14003 SD-3 1.750W 14509 SD-5 1.750W 15009 SD-8 1.750W 15509 SD-8	100 600 35 600 71 0	75 7 (14) 7 (24) 7 (26) 7 (26)	50.0 215, 205 230 281	1,2 1,1 1,2 1,5 1,5	5 5 10 15 5	
L/50W 18008 SB-0 L/50W 18509 RD 8 L/50W 17008 SD-8 L/50W 1/508 SD-8 L/50W 18008 SD-8	1,69 56 136 134 134 134	14.4 14.4 14.4 15.4 (1) 27.1	1045 () 536 1756 () 1246 () 2461 ()	9.8 1:9 1:1 9.8	5)5 (6 5 5	
L750W 18505 SD-S L750W 19005 SD-S L750W 19503 SD-S L750W 20005 SD-S L750W 10505 SD-S	90 04 39 80 67	54 139 50 55 55 73	345 255 246 275 360	1.3 0.8 1.0 1.1	5 5 5 10 5	
1.750W 21009 SD-S L750W 21505 SD-S 1.750W 32009 SD-S L750W 22508 SD-S L750W 23009 SD-S	64 28 73 70 7 7	75 362 47 49 43	535 205 380 285 205	1.3 1.3 1.4 0.9	3 5 10 5 5 30	

Certified by

MIN-EN LABORATORIES LTD.

Certificate of Geochem

Company: FAIRBANK ENG.LTD. Project: SILVER DOLLAR (SD) Attention: D. CHROMEOZONE

File:8-794/P5 Date:JULY 5/88 Type:SOIL GEOCHEM

We hereby certify the following results for samples submitted.

	Sample Number	CU PPM	PB PPM	ZN PFM	AG PPM	AU-WET PPB	
	81.00 025E SD-S 81.00 075E SD-S 81.00 125E SD-S 81.00 173E SD-S 81.00 225E SD-S	101 98 95 96 87	5.1 34 35 39 45	291 242 203 254 223	0.8 1.1 0.8 0.9 1.0	10 5 5 15 5	
	8L00 2755 SD-8 8L00 3256 SD-8 8L00 3506 SD-9 8L00 3756 SD-9 8L00 4355 SD-9	42 91 93 96 75	44 -27 -33 -34 -39	238 209 227 181 354	0.7 0.9 1.1 1.0 0.9	70 20 5 5	
	St.DO 450E SD-8 Bt.OO 475E SD-3 BLOO 525E SD-8 BLOO 550E SD-5 BLOO 575E SD-5	59 55 43 69 56	28 21 29 28 34	329 237 231 229 282	1.1 0.8 0.9 0.9	40 5 5 5 5	
. 1	_750W 0000S SD-S L750W 0050S SD-S L750W 0100S SD-S L750W 0150S SD-S L750W 0150S SD-S	31 39 32 36 34	24 25 27 33 29	254 267 208 211 271	1.1 1.2 1.0 1.1 0.9	25 5 5 5	
1	_750W 02508 SD-8 L750W 03008 SD-8 L750W 03508 SD-8 L750W 04008 SD-8 L750W 04508 SD-8	33 37 26 34 28	26 21 23 21 22	176 144 173 108 121	0.8 0.8 0.7 0.8 1.1	5 5 5 5	
	.750W 05008 SD-S .750W 05503 SD-S .750W 06008 SD-S .750W 06508 SD-S .750W 07008 SD-S	79 32 31 36 54	24 23 22 17 19	137 98 132 128 136	1.5 0.7 1.1 0.8 1.2	5 5 10 5 5	

Certified by_

MIN-EN LABORATORIES LTD.

MIN • EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VANNOUVER OFFICE:
705 WEST 15TH STREET
MORTH VANCOUVER BC. CANADA V7M 112
TELEPHONE (804) 980-5814 OR (804) 988-4524
TELEX: VA USA 780:1057 - FAX (804) 980-9621
TIMMINS OFFICE:
33 EAST INDOUGS ROAD
PUB DOX 857
TIMMINS ONTARIO CANADA P4N 7G7.
TELEPHONE: (705) 264-9996

Certificate of Geochem

Company: FAIRBANK ENG.LTD. Project: SILVER DOLLAR (SD) Attention: D. CHROMEOZONE File:8-794/P8
Date:JULY 6/88
Type:SOIL GEOCHEM

He hereby certify the following results for samples submitted.

Sample	CU PB	ZN AG	AU-WET
Number	PPM PPM	PPM PPM	PPB
L300W 125N SD-S L300W 100N SD-S L300W 075N SD-S L300W 050N SD-S L300W 025N SD-S	91 43 107 61 59 64 112 60 71 59	260 .8 840 1.0 510 1.3 565 1.1 710 1.4	15 10 5 5
L300W OOBL SD-S L300W 025S SD-S L300W 050S SD-S L300W 075S SD-S L300W 100S SD-S	80 67 110 71 78 53 113 68 96 51	630 1.3 675 1.5 730 1.1 640 1.3 855 1.3	5 10 5 10
L300W 1255 SD-S	118 52	500 1.4	10
L300W 1505 SD-S	102 66	3/5 .9	5
L300W 1755 SD-S	39 50	570 .7	10
L300W 2005 SD-S	67 47	560 1.1	5

Certified by MIN-EN CABORATORIES LTD.

MIN • EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VANCOUVEH OFFICE:
,705 WEST 15TH STREET
MORTH WANCOUVER BC, CANADA V7M 172
TELEPHONE (804) 980-58 14 OR (804) 983-4524
TELEX: VALUA 780 1075 - FAX (804) 980-9821
TIMMINS OFFICE:
2655T 800 V0 105 POLES
2655T 800 V0 105 POLES

33 EAST IROQUOIS ROAD PO. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-3998

Certificate of Geochem

Company: FAIRBANK ENG.LTD. Project: SILVER DOLLAR (SD) Attention: D. CHROMEOZONE File:8-794/P7 Date:JULY 6/88 Type:SOIL GEOCHEM

He hereby certify the following results for samples submitted.

Sample Number	CU PPM	PB PPM	ZN PPM	AG PPM	AU-WET PPB	
L750W 2350S SD-S L750W 2400S SD-S L750E 0000S SD-S L750E 0200S SD-S L750E 0250S SD-S	47 49 36 31 NO SA	39 100 72 84 MPLE	305 255 168 230	.9 .6 .5 .6	10 5 5 10	omitina a compania de la compania d
L750E 03008 8D-5 L750E 05008 8D-5 L750E 0550S 8D-9 L750E 07008 8D-9 L750E 0750S 8D-9	28 38 87 26 48	47 46 89 53 58	169 250 315 190 245	.4 1.0 .7 .4	5 5 5 10 10	
L750E 0800S SD-S L750E 0850S SD-S L750E 0900S SD-S L750E 0950S SD-S L750E 1050S SD-S	52 65 57 66 58	51 54 48 42 53	235 220 166 172 410	.7 ,6 .8 .8	5 5 5 5 10	
L750E 1100S SD-S L750E 1150S SD-S L750E 1200S SD-S L750E 1250S SD-S L750E 1300S SD-S	61 64 78 55 57	46 52 70 51 56	290 315 325 185 260	.9 .8 1.3 .8	5 5 5 10 5	
L750E 1350S SD-S L750E 1400S SD-S L750E 1450S SD-S L750E 1500S SD-S L750E 1550S SD-S	46 53 68 92 50	49 78 90 55 104	171 295 255 138 440	1.2 1.1 1.2 1.3 1.1	5 5 15 5 5	
L750E 1500S SD-S L750E 1550S SD-S L750E 1700S SD-S L300W 175N SD-S L300W 150N SD-S	86 147 144 60 67	22 53 44 59 51	450 475 510 615 670	1.5 1.1 1.4 1.3	5 5 5 5 5 5 5 5	

Certified by_

MIN-EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

705 WEST 15TH STREET
NORTH VANCOUVER BC. CANADA: V7M 1T2
TELEPHONE 1604) 980-5814 CR (604) 980-9621
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA PAN 7G7 TELEPHONE: (705) 264-9966.

Certificate of GEOCHEM

Company: FAIRBANK ENGINEERING Project: SD

Attention: B. FAIRBANK

File:8-783/P2 Date:JUNE 28/88 Type:SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number	AU-WET AG		PB ZN PPM PF	শূৰ
CL W 7758 SD-S CL W 8005 SD-S CL W 8505 SD-S CL W 8758 SD-S CL W 9009 SD-S	5 0. 5 0. 10 1. 5 0. 5 1.	8 64 0 66 9 38	26 15 33 12 38 14 36 19 37 14	24 39 23
CL W 9508 SD-8 CL W 9758 SD-8 CL W 10008 SD-8 CL W 10258 SD-8 CL W 10508 SD-8	5 1. 5 0. 5 0. 28 1. 5 1.	9 48 8 52 2 54	34 15 49 22 62 16 83 35 51 ts	2 1 5 9 34
CL W 10755 SD-S CL W 1100S SD-S CL W 1125S SD-S CL W 1150S SD-S CL W 11753 SD-S	5 1. 10 1. 10 1. 5 0. 5 1.	0 57 2 46 9 74	34 14 36 20 35 29 37 25 41 26	09 77 66
CL W 1200S SD-S CL W 1225S SD-S CL W 1250S SD-S CL W 1275S SD-S CL W 1300S SD-S	5 1. 5 1. 5 0. 5 0. 5 0.	1 113 2 132 7 94	47 30 49 29 51 26 42 17 48 20	?7 31
CL W 13258 SD-8 CL W 13508 SD-8 CL W 13758 SD-8 CL W 14008 SD-8 CL W 14258 SD-8	5 0. 5 0. 5 0. 5 0. 5 0.	8 115 9 102 8 118	32 18 37 20 31 14	04
CL W 1450S SD-S CL W 1475S SD-S CL W 1500S SD-S CL W 1550S SD-S CL W 1575S SD-S	10 1. 10 1. 5 19.		32 15 38 16 63 36	59

Certified by_

MIN-EN LABORATORIES LTD.

MIN •EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS
CHENSTS - ASSAYERS + AMADISTS + GEOGREPHISTS

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER BC CANADA V7M 172
TELEPHONE (604) 990-3614 OR (604) 988-4524
TELEX VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 887 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of GEOCHEM

Company:FAIRBANK ENGINEERING Project:SD Attention:B.FAIRBANK

File:8-703/P1 Date:JUNE 27/88 Type:SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number	AU-WÉT PPB	AG PPM	CU PPM	PB FPM	ZN PPM	
CL W 5NOO SD-S CL W 5258 SD-S CL W 5508 SD-S CL W 1008 SD-S CL W 1258 SD-S	5 5 5 10 5	0.9 0.7 0.9 0.8 0.7	25 32 57 64 29	47 34 26 37 28	353 243 234 179 327	
CL W 150S SD-5 CL W 1758 SD-S CL W 200S SD-S CL W 225S SD-S CL W 250S SD-S	5 5 10 5 5	1.7 1.1 1.3 1.0	57 62 79 31 26	52 27 53 29 31	181 134 172 404 302	40MESH
CL W 2758 SD-5 CL W 3008 SD-8 CL W 3258 SD-8 CL W 3508 SD-8 CL W 3758 SD-8	5 5 10 5 5	0.9 0.9 1.8 1.6	22 34 93 81 36	42 33 52 43 34	304 216 312 299 243	40MESH
CL W 400S SD-S CL W 425S 3D-S CL W 450S SD-S CL W 475S SD-S CL W 500S SD-S	5 5 10 15 5		27 63 66 49 134	26 32 24 23 27	248 279 157 182	
CL w 5258 SD-5 CL w 5508 SD-8 CL w 5758 SD-8 CL w 6008 SD-8 CL w 6258 SD-8	5 5 5 10 5	0.8 0.9 1.2 1.0	71 26 35 28 57	26 28 29 31 28	163 169 193 209	
CL W 6508 8D-8 CL W 6758 8D-8 CL W 7008 8D-8 CL W 7258 8D-8 CL W 7508 8D-8	5 5 5 10 5	0.9 0.8 1.1 0.9 0.7	44 73 55 148 94	24 25 32 27 26	128 177 229 148 146	

Certified by_

MIN-EN I ARRESTRATES I TO

LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - 465AYERG • 21A., 673 • 96 00 -51481

VAIYCOUVER OFFICE.

705 WEST 157H STREET

NORTH VANCOUVER, BC. CANADA VTW 172

TELEPHONE (804) 980-3814 OR (604) 980-4524

TELEX, VIA U.S.A. 7601067 • FAX (804) 980-9821

TIMMINS OFFICE: 33 EAST PROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA PAN 7G7 TELEPHONE: (705) 264-9996

LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS
(HEMISTS - RESAUETS - ANALYSTS - OZCOHEMISTS

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER BC. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9821

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of Geochem

Company: FAIRBANK ENGINEERING

Project:SD

Attention: B. FAIRBANK

File:8-783/P4 Date: JUNE 29/88 Type: SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number	AU-WET	AG PPM	CU PFM	PB PPM	ZN PPM	
CL W 2425S SD-S CL W 2450S 50-S CL W 2475S SD-S CL W 2500S SD-S CL O 000S SD-S	5 5 5 5	1.2 1.0 1.1 0.8 0.8	105 82 74 66 21	49 42 38 56 31	268 192 189 227 157	
CL 0 0255 SD-S CL 0 0505 SD-S CL 0 0755 SD-S CL 0 1005 SD-S CL 0 1255 SD-S	55 55 55 10	0.9 0.8 1.1 0.9 0.7	23 20 25 19 28	34 35 37 39 34	107 132 161 171 158	
CL 0 150S SD-S CL 0 175S SD-S CL 0 200S SD-S CL 0 225S SD-S CL 0 250S SD-S	5 5 5 6	0.9 1.3 1.0 0.9 1.0	24 53 52 27 22	35 44 42 38 35	162 194 173 163 131	
CL 0 2758 SD-S CL 0 3008 SD-S CL 0 3508 SD-S CL 0 3758 SD-S CL 0 4008 SD-S	5 5 5 5	0.8 0.9 0.7 1.1	49 47 38 31 38	82 33 34 32 39	273 149 119 178 279	
CL 0 4258 SD-5 CL 0 4508 SD-9 CL 0 4758 SD-5 CL 0 5008 SD-8 CL 0 5258 SD-5	20 5 5 5 5	0.7 0.8 0.9 1.0 0.8	55 35 37 39 34	34 43 41 44 53	171 158 153 192 143	
CL 0 5508 SD-S CL 0 5758 SD-S CL 0 6008 SD-S CL 0 6258 SD-S CL 0 6508 SD-S	5 5 5 10 5	0.9 0.8 0.7 0.9 0.7	29 22 23 38 41	37 36 27 42 26	184 148 93 237 112	

Certified by____ MIN-EN LABORATORIES LTD.

Certificate Geochem

Company: FAIRBANK ENGINEERING Project:50 Attention: B. FAIRBANK

File:8-783/P3 Date: JUNE 28/88 Type:SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample	AU-WET	AG	CU	PB	ZN
Number	PPR	PPM	PPM	PPM	PPM
CL W 1600S SD-S	5	0.8	117	41	164
CL W 1625S SD-S	45	0.9	94	48	169
CL W 1650S SD-S	15	0.7	95	31	147
CL W 1675S SD-S	50	0.9	123	62	211
CL W 1700S SD-S	5	1.0	139	69	189
CL W 17253 SD-S	20	0.8	101	43	138
CL W 17505 SD-S	5	0.6	138	34	131
CL W 18005 SD-S	5	0.7	83	36	144
CL W 18258 SD-S	5	0.8	91	41	157
CL W 18505 SD-S	5	0.7	54	37	173
CL W 18753 SD-S CL W 1900S SD-S CL W 1925S SD-S CL W 1950S SD-S CL W 1975S SD-S	5 5 5 5 5	0.7 0.8 0.7 0.9	53 249 147 211 96	39 38 36 54 55	202 394 327 278 396
CL W 2000S SD-S CL W 2025S SD-S CL W 2075S SD-S CL W 2100S SD-S CL W 2125S SD-S	5 10 5 5	0.9 0.8 0.9 0.8 0.8	101 72 39 51 42	32 34 58 36 37	162 188 273 236 261
CL W 2150S SD-S	5	0.9	58	44	312
CL W 2175S SD-S	5	1.2	142	73	263
CL W 2200S SD-S	10	1.0	67	46	291
CL W 2250S SD-S	5	0.9	71	48	272
CL W 2275S SD-S	5	1.0	60	49	269
CL W 23009 SD-S CL W 23258 SD-S CL W 23509 SD-S CL W 23755 SD-S CL W 24009 SD-S	5 25 5 5 5	1.1 0.8 0.9 0.9	66 71 89 73 62	53 46 42 57 44	478 494 241 314 321

• EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS.
CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VAINCOUVER OFFICE:
205 WEST 15TH STREET
NORTH VANCOUVER BC, CANADA V7M 172
TELEPHONE (804) 980-5814 OR (804) 983-4524
TELEX: VAL USA 7801087 • FAX (804) 980-9821
TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 THAMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of Geochem

Company: FAIRBANK ENGINEERING Project: SD Attention: B. FAIRBANK File:8-783/P6 Date:JUNE 28/88 Type:SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number	AU-WET PPB	AG PPM	CU PPM	PB PPM	ZN PPM	product Service productions of the confirmation
CL 0 16258 SD-8 CL 0 16508 SD-8 CL 0 16758 SD-8 CL 0 17008 SD-8 CL E 00008 SD-8	5 35 5 5 10	0.9 0.8 0.8 1.1	108 152 167 176 135	44 49 37 52 49	210 212 173 359 1145	
CL E 0025S SD-S CL E 0050S SD-S CL E 0225S SD-S CL E 0250S SD-S CL E 0275S SD-S	10 5 5 5	3.2 2.1 1.5 1.3	269 154 198 127 59	58 47 46 47 54	1435 1415 1095 1445 1395	40MESH
CL E 0300S SD-S CL E 0325S SD-S CL E 0350S SD-S CL E 0375S SD-S CL E 0400S SD-S	5 5 5 5 5	1.9 1.3 1.2 1.6	76 71 34 37 54	36 52 54 43 47	842 1265 1010 729 676	
CL E 04258 SD-8 CL E 04508 SD-9 CL E 04758 SD-8 CL E 05008 SD-8 CL E 05258 SD-8	5 5 5 5 5	1.8 1.6 1.0 1.7 1.2	52 35 28 29 27	46 39 34 31 36	789 968 1005 538 1015	40MESH
CL E 0550S SD-S CL E 0575S SD-S CL E 0600S SD-S CL E 0625S SD-S CL E 0650S SD-S	5 10 5 20 10	0.9 0.8 0.9 2.1 0.8	43 28 39 292 38	34 56 47 134 52	865 972 1025 2180 762	
CL E 06758 SD-8 CL E 07009 SD-8 CL E 07258 SD-8 CL E 07508 SD-8 CL E 07758 SD-8	25 10 5 5 5	0.7 0.8 0.9 2.0 0.9	34 26 41 66 38	44 47 49 138 62	517 1255 926 1035 578	40MESH

Certified by Sugnand
MIN-EN CARDRATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER BC, CANADA V7M 1T2
TELEPHORE (604) 980-5814 OR (604) 988-4524
TELEX VIA U.S.A. 7601067 • FAX (604) 980-9821

TIMMINS OFFICE: 33 EAST ROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA PAN 7G7 TELEPHONE: (705) 284-9998

Certificate of Geochem

Company: FAIRBANK ENGINEERING Project: SD Attention: B. FAIRBANK File:8-783/P5 Date:JUNE 28/88 Type:SOIL GEOCHEM

He hereby certify the following results for samples submitted.

Sample	AU-WET	AG CU	PB	ZN	
Number	PPB	PPM PPM	PPM	PPM	
CL 0 6758 SD-S	5	0.8 31	29	132	
CL 0 7008 SD-S	5	0.9 42	32	124	
CL 0 7258 SD-S	5	0.8 49	63	183	
CL 0 7758 SD-S	5	0.8 53	72	319	
CL 0 8008 SD-S	5	1.0 55	47	173	
CL 0 9005 SD-8	10	0.9 54	53	164	
CL 0 9255 SD-8	5	0.8 91	34	161	
CL 0 9505 SD-9	5	1.1 89	36	152	
CL 0 9758 SD-3	5	1.3 137	51	287	
CL 0 10005 SD-3	5	1.2 109	42	223	
CL 0 10258 SD-8 CL 0 10508 SD-8 CL 0 10758 SD-8 CL 0 11258 SD-8 EL 0 11758 SD-8	10 10 5 5	0.9 112 1.0 76 0.8 148 1.0 129 0.9 89	74 59 71 96 48	342 238 292 196 308	
CL 0 1200S SD-S	5	0.8 123	54	314	
CL 0 1225S SD-S	20	0.8 168	103	326	
CL 0 1250S SD-S	15	0.7 154	82	318	
CL 0 1275S SD-S	5	0.9 204	144	776	
CL 0 1300S SD-S	10	1.0 97	64	617	
CL 0 13505 SD-S CL 0 13755 SD-S CL 0 14005 SD-S CL 0 14505 SD-S CL 0 14755 SD-S	5 5 5 5	0.8 122 0.9 211 0.7 194 0.8 91 1.2 262	55 36 49 56 42	532 143 246 217 144	
CL 0 1500S SD-S	5	0.9 377	46	171	
CL 0 1525S SD-S	5	0.8 175	47	423	
CL 0 1550S SD-S	10	1.1 144	78	339	
CL 0 1575S SD-S	5	1.0 121	42	342	
CL 0 1500S SD-S	5	0.9 63	33	324	

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS

705 WEST 15TH STREET
NORTH VANCOUVER BC. CANADA. V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 980-4524
TELEX: VIA U.S.A. 7601087 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST POQUOS POAD P.O. BOX 867 TIMMINS ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of GEOCHEM

Company: FAIRBANK ENGINEERING Project: SILVER DOLLAR Attention: B. FAIRBANK

File:8-806/P1 Date: JUNE 30/88 Type:ROCK GEOCHEM

We hereby certify the following results for samples submitted.

Sample Number	AU-WET PPB	AG PPM	PB PPM	ZN PPM	CU PPM	
60 401 60 402 60 403 60 404 60 405	30 285 240 135 110	1.1 1.6 4.8 1.3	54 67 484 119 56	89 262 459 179 97	39 77 88 31 33	
50 406 50 407 50 408 50 409 50 410	2050 120 260 3800 275	10.8 0.9 0.8 0.8 0.4	871 82 43 284 191	878 109 104 532 275	161 54 32 145 59	
50 411 50 412 50 413 60 414 50 415	500 395 140 390 550	5.6 2.1 1.0 11.9	314 123 46 538 89	194 163 51 429 119	98 31 12 346 36	
60 416 60 417 60 418 60 419 60 420	1000 95 600 230 3 75 0	2.3	499 111 93 54 1395	423 99 135 119 1555	65 43 55 31 621	
60 421 60 422 60 423 60 424 60 425	150 810 380 740 110	2.4 1.2 1.7 9.1	59 51 53 604 141	124 58 81 333 69	47 25 18 154 21	
50 425 50 427 50 451 50 452 60 453	500 1200 290 1060 450	2.1 4.3 1.4 8.9 8.3	86 358 119 892 273	57 424 192 548 1260	20 53 47 359 79	

Certified by

MIN-EN I SERRATHRIES I TO

LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER BC, CANADA V7M 1T2
TELEPHONE (604) 980-5514 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 367 THMAINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of Geochem

Company: FAIRBANK ENGINEERING Project:SD Attention: B. FAIRBANK

File:8-783/P7 Date: JUNE 28/88 Type: SOIL GEOCHEM

He hereby certify the following results for samples submitted.

Sample Number	AU-WET PPB	AG FFM		PB ZN PPM PPM	
CL E 08008 SD-8 CL E 08258 SD-9 CL E 08508 SD-9 CL E 08758 SD-9 CL E 09008 SD-9	5 5 5 10 5	0.9	22 26 29	46 392 32 584 31 549 38 497 33 217	
CL E 09258 SD-8 CL E 09505 SD-9 CL E 09758 SD-8 CL E 10903 3D-8 CL E 10258 SD-8	,5 5 5 5	o.a 0.7 0.9	42 31 27	37 328 26 349 27 481 34 308 29 369	
CL E 10508 SD-S CL E 10759 SD-S CL E 11008 SD-S CL E 11508 SD-S CL E 11758 SD-S	ស ១ ឆ ១ ឆ ១ ឆ	0.9 0.8	18 39 19	38 191 47 87 54 322 39 519 52 463	
CL E 1200S SD-S CL E 1225S SD-S CL E 1250S SD-S CL E 1275S SD-S CL E 1325S SD-S	5 10 15 5	0.8 0.8 0.9	28 3 26 3 29 3	31 102 36 184 58 356 27 103 39 472	40MESH 40MESH 40MESH
CL E 1400S SD-S CL E POST 4N 3E	5 5			31 124 33 821	

Certified by

MIN-EN Y ARRESTRATORIES I TO

Sample

LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS DEMOTS - ASSANSES - REALIZATION - TE CONCUSTS

705 WEST 167H STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-56 N-0R (504) 388-4524 TELEX. VIA U.S.A. 7601067 • FAX (604) 380-9621

TIMMINS OFFICE: 33 EAST POOQUOIS ROAD P.O. BOX 567 TIMMINS, ONTARIO CANADA. P4N 7G7 TELEPHONE: (705) 264-3996

Certificate of Geochem

ZN

CU

Company: FAIRBANK ENGINEERING Project: SILVER DOLLAR Attention: B. FAIRBANK

File:8-806/P3 Date: JUNE 30/98 Type: ROCK GEOCHEM

He hereby certify the following results for samples submitted.

AG

AU-WET

Number	PPB	PPM	P-PM	PPM	PPM	and the second second
60 484 60 485 60 486 60 487 60 488	50 20 440 2200 665	2.4 1.6 0.9 6.3 3.1	57 38 39 454 163	293 84 79 211 221	72 9 11 62 47	
		~~~~~				

Certified by_ MIN-FN ARRESTREES I TO



SPECIALISTS IN MINERAL ENVIRONMENTS. CHEMSTS - ASSENCES - MACHETS - GEOGREGISTS.

705 WEST 15TH STREET
NORTH VANCOUVER B.C. CANADA V7M 172
TELEPHONE (604) 980-5814 CR (604) 980-4824
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9821

TIMMINS OFFICE:

P.O. BOX 867 TIMMINS, ONTARIO CANADA PAN 7G7 TELEPHONE: (705) 264-9898

#### Certificate of Geochem

Company: FAIRBANK ENGINEERING Project: SILVER DOLLAR Attention: B. FAIRBANK

File:8-806/P2 Date: JUNE 30/88 Type: ROCK GEOCHEM

He hereby certify the following results for samples submitted.

Sample	AU-WET	AG	PB	IN	CU	
Number	PPB	PPM	PPM	FPM	PPM	
50 454	110	5.3	473	894	56	
50 455	5	1.2	33	152	16	
50 456	185	2.1	109	133	28	
60 457	10000	19.9	1160	454	119	
50 458	130	6.8	553	1495	65	
60 459	150	2.3	51	76	41	
60 460	15	1.4	28	71	11	
50 461	410	3.5	153	189	71	
60 462	575	23.4	1880	1270	112	
60 463	345	7.5	1060	1985	116	
60 464	75	1.5	44	223	43	
60 465	10	1.5	57	185	14	
60 466	380	2.3	106	122	27	
60 467	555	495.0	980	941	919	
60 468	250	8.9	1015	2110	468	
60 469	55	3.6	51	251	108	
50 470	5	2.1	42	222	81	
60 471	345	2.6	127	224	52	
50 472	260	2.3	83	427	35	
50 473	550	12.4	1180	949	96	
60 474	70	4.5	512	454	37	
60 475	5	1.4	38	64	14	
50 476	400	2.4	121	251	77	
60 477	600	2.5	83	78	29	
60 478	585	5.4	732	511	32	
60 479	30	2.8	166	212	37	
60 480	5	1.5	34	67	28	
60 481	6600	6.8	178	136	23	
60 482	1250	2.4	89	89	17	
60 483	575	6.2	440	368	59	

Certified by



#### MIN • EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS
-CHEMISTS - ASSAMERS - ANALOS S - GEOCHEMISTS

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH WINCOUVER BG. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 980-4824
TELEX VA U.S.A. 7601067 • FAX (604) 980-9621
TIMMINS OFFICE:

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### Certificate of Geochem

Company:FAIRBANK ENGINEERING Project:SD Attention:B.FAIRBANK

File:8-783/P7
Date:JUNE 28/88
Type:SOIL GEOCHEM

We hereby certify the following results for samples submitted.

Sample	AU-WET	AG	CU	PB	ZN
Number	PPB	PPM	PPM	PPM	PPM
CL E 0800S SD-S	5	0.8	44	46	392
CL E 0825S SD-S	5	0.9	22	32	584
CL E 0850S SD-S	5	0.7	26	31	549
CL E 0875S SD-S	10	0.9	29	38	497
CL E 0900S SD-S	5	1.2	73	33	217
CL E 09258 SD-8 CL E 09568 SD-8 CL E 09758 SD-8 CL E 10003 SD-8 CL E 10253 SD-8	5 5 5 5 10	0.7 0.8 0.7 0.9	24 42 31 27	37 26 27 34 29	328 349 481 328 369
CL E 10505 SD-5 CL E 10755 SD-5 CL E 11005 SD-5 CL E 11505 SD-5 CL E 11755 SD-5	5 5 5 5	0.8 0.9 0.8 1.0	24 18 39 19	38 47 34 39 32	291 87 322 519 463
CL E 1200S SD-S CL E 12253 SD-S CL E 1250S SD-S CL E 12758 SD-S CL E 1325S SD-S	5 10 15 5 5	0.9 0.8 0.8 0.9	21 28 26 29 38	41 36 38 27 39	102 40MESH 184 40MESH 356 103 40MESH 472
CL E 14005 SD-S	5	0.8	35	31	124
CL E POST 4N 3E	5		69	33	621

Certified by Con

### APPENDIX E

UNDERGROUND ROCK GEOCHEMISTRY



LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VAINCOUVER OFFICE:
705 WEST 15TH STREET
NORTH WANCOUVER BC. CANADA V7M 1T2
TELEPHONE (604) 980-5914 OR 1604) 980-9821
TIMMINS OFFICE:
31 SAST 1800/UOS ROAD
PC. BOX 667
TIMMINS, ONTARBO CANADA P4N 7G7
TELEPHONE: (705) 264-9996

#### Certificate of GEOCHEM

Company: FAIRBANK ENGINEERING Project: SILVER DOLLAR Attention: B. FAIRBANK

File:8-806/P1 Date: JUNE 30/88 Type:ROCK GEOCHEM

We hereby certify the following results for samples submitted.

Sample	AU-WET	AG	PB	ZN	EU	
Number	FPB	FPM	PPM	PPM	PPM	
60 401 60 402 60 403 60 404 60 405	30 285 240 135 110	1.1 1.6 4.8 1.3	54 67 484 119 56	89 262 459 179 97	39 77 98 31 33	
60 406	2050	10.6	871	878	161	
50 407	- 120	5.9	82	109	54	
50 409	- 260	7.8	63	104	32	
50 409	- 3600	5.4	284	632	145	
50 410	- 275	7.3	191	276	58	
60 411 60 412 60 413 60 414 60 415	500 375 140 370 550	5.6 2.1 1.0 11.9	314 123 46 538 89	194 163 51 428 119	98 31 12 346 36	
60 416	1000	4.9	499	423	65	
60 417	95	2.2	111	99	43	
60 419	600	2.3	93	135	55	
60 419	230	1.6	54	118	31	
60 420	3750	36.9	1395	1555	621	
50 421 60 422 60 423 60 424 60 425	150 810 380 740 110	2.4 1.2 1.7 9.1	69 51 63 604 141	124 58 81 333 69	47 25 18 154 21	
60 426	800	2.1	88	67	20	
.50 427	1200	4.3	358	424	53	
.60 451	290	1.4	119	192	47	
.60 452	1060	8.7	892	548	359	
.60 453	450	8.3	273	1260	79	

MIN-FN I GENESTABLES I TO

	BANK ENGINEERIN					COP REPORT						(ACZ	(FZI)	PAGE	1 17 1
	55-88 SILVER DO FAIRDANKYR.FAUL		70 <b>5 W</b> EST			VANCOUVER. 1604: 788-			r.pg	: ROCK	GEOCHE	1			5-810/83 5. 1988
EVALUES IN P	P# ) 45	46	(8)	29	38		∆0-658								
60526	4.5	35	33		4	277	[16				*				
60527	51.9	49	. 103	1.59	43	2847	467								
69528	45.4	. 7.	549	2051	74	4:32	3000								
60529	3.8	ą.	35,	131	4	565	. 72								
60530	2.1		34	22		771	45								
60531	145.8	57		12.4	30	774	7800					~			
60532	4,5	15	15	1.7		.985	144								
60533	975.3	118	5255	2.247	271	13224	14000								
50534	8.8	- 20	έ¢	1270	3	3560	1.55								
40535	10.2	27	57	:::	12	259	154								
60536	5.4	46	56	100	<u>-</u>	407	197	~~	)						
60537	704.1	22	:271	a 12.	91	8868	10000								
60533	5.0	7.2	23	33	2	232	85								
60539	6.7	45.5	74	. 43	17	574	155								
50540	aa5.B	12	1367	2255	487	1131	13000								
60541	17.7		502	3.33	2	53.57.	262)								

3807 NB: 155- <b>98</b> 1	BILVER DO	JLLAR	705WEST				P.C. V7H			FILE NO: 8-270/	/P1
2501 NG 100-48 SNITTH: BUFRIRDA RUCES (N 254 ) 175	K.R.FAA	LKNER		(504) 980	)-5914 CR	(504) 788		# TYPE ROCK	SEOCHEM	* DATE: JULY 5	, 19
ALUES [M POW :	45.	45	OU.	. 29	38	ZN	AU-PPB				
1.3	1.5	63	31	75	5	228	220				
429	2.8	121	19	533		.130	450				
479	1.5	102	7	92	2	156	245				
\$7.	1.4	24	21	220	. 7	367	70				
472	1.2	45	10	107	. 2	125	135				
457	5.2	77.75	71	345		358	1145				
404	1.8	42	29	104	. 2	31	40				
435		30	. 25	53		91	39.				
475	1,2	95	4.	50	2	ĊĠ.	530				
437	1.7	å2	17	167	2	219	311				
179 178	<del>11</del> 1		<del></del>	27		122	20				
±09 ±09			- 4	43	1	132	224				
	, á,	- 69						* 1			
449	2.5	79	14	137	- 2	283	300			200 - 100 PM - 100 PM	
441	1.0	23	40	29	. 1	82	8				
447		3: 45	19	191	22	226	235				
443	4,3	45	. 23	19	2	22	172				
444	2.9	127	. 15	169	2	237	2480		2		
445	. 7	13	35	30	. 1	93	5		1		
134	3.5.	75	12	505	2	270	1950				
117	2.7	. 58	17	26	1	99	. 990				
113	3,9	57	36	307	2	239	342			*	
449	1.5	47	172	165	. 1	310	388				
450	.5	31	11	44	1 g 1	37	153				
-5. 195	1.3	105	11		2	124	239				
11		27	-33		- ÷	197					
45. 20	<u></u>	23 117	<u>23</u>	<u>.51</u> 							
et.	1.1			1-1		777					
472	1,2	+ 41		.73		4.5	32				
4 <b>9</b> -	. 5	- 22	57	538	. :	790	120				
444	.2	10	26	30	3 -	78	8				
\$93 494	. 3	22	25	110	1 '-	209	232				
4=5	<u>::</u>	22 59	. 14	39	2	110,	162			****	
427	. 6	23	21	- 32		94	30				
493	1.2.	92	21	25	1	76	420				
499		77.	1.9	42	2	67	260				
500	,8				-	43	20.				
200 201	1.8	34 70	. 24. 25	<u>27</u> <del></del>		<u>-</u> 292	1930				
	1.1	772		47	1	201					
502			30				254				
593	1.5	120	5	: 54	2	190	379	1.5			
E04	• 6	Já	40	27	. 1	90	40				1 .
<b>5</b> 05	. 4	50	3	53	1	57	100				
50a	2.0	. دُهٔ	12	- <del>1</del> 7	- 2	25	575				
507	0.2	57	20	- 50	1	50	495				
509	1.4	79	13	101	2	122	372				
(°	9,3	144	19	1011		359	2080		100		٠,
** *1:2	1.0	79	44	22		117	17				
112 112 111	5	43				35	213				
	.7			45 53	1						
215		47	14		7	104	78		100		
113		47.	16	43	1	121	140				
914	2.2	56	41	105	2	155	950	1.0			
915	1.4	54	17	120	2_	332	255				
iis	.7	37	- 10	55	1-	178	148		30.5	141 8 400	·
517	5.5	21.	69	431	2	566	1100	1994	机物分割	grafia Disasa	
513	1,2	53	15	209	2	212	340				
519	.5	35	14	40	1	100	72		1250		1
52à	20.3	53	67	76		206	1200	100			1
		54	72	300		391	380				-
521											
522 525	698.7 8.0	104 39	2389 48	2802 192	114	1835	10000				
					5	279	310				

DIEST NOI 155-98				1578 87,				
ENTION: B.FAIRBA VALUES IN PRE I			507	1904139	0-081+ 3	0R (504)989 8 2N	6-4024 AU-PRB	1 TYPE ROCK SECCHEM 1 DATE: JULY 12,
AFAU TA LEU I	AG . 1.5	<u>23</u>	20 30	25		3 42		
603	.2	- 7	2	40		3 62	260	
604	6.9	20	21	818		5 52 4 314	150	
305	1,3	ìà.	70	25		1 72	15	
)50 <b>5</b>	2.1	- 33	2.	98		3 132	360	
807	8.4	<u>5</u> 7	75	397		132 133		
60 <b>8</b>	1.1	2	22	4 1		3. 194	102	
£0 <del>9</del> .	3.7	75	. 11	123		7 155	1743	
610	9.4	√ 77″	14	791			158	
611	17.3	39	215 35	678	10		70	
1512	4.1	95		108	1		2700	
álā	4.3	39	.4	236,			290	
15.4·	1.3	45	17	124	4		42	
615	2.5	c. 11	.56	116	4	104	217	
1315 	23.5	14 72	24 83	119				
6.7 512	448.0	72 117	700		15		2220	
315 319	7.7	217 18	100 -74	23 <b>22</b> 403	ė:		2027 459	
2.	3.5	25	39	55			. 453 27	
521	3.2	73	- 74	- 751	10		2240	
522 522		<u>34</u> 	34 24				31	
613	1.7	1	_5	73		150	- 22	
604	2,4	- 23	27	304			217	
	.5	- 12		24				
515	1.5	1.5	- 33	<u>.</u>		4.75	25	
rigoreanieren. Su:	2,3							
£23	1.7			51			· 4	
aZ9 .	-1.1	23	31	4.5			1	
600°	7.4	. 3	7.1	552		478	112	
27: 27:	1.1		<u>24</u>	40	. 2	95.		
	1.6	4	7.7	31	3		<u>-</u> [i	
423	9.6	105	7'3	524	:3		1929	
634	2.5	59	40	43	Š		77	
635	2.5	. 17	. 25	. 125	7	:57	7	
636	35.3	1231		2433	24		4500	
637	5.7	1.0	1.7	455	14		2-	
e38	6.2	49 .	19	508	5		120	
53?	50.8	80	117	3986	- 13		1779	
±40	8.0	24	27	559	7		155	
641	34.5	<u>95</u>	1 <u>75</u> -32	4047	5	7170	1252	
642	295.4			42408	103	1975	880	
54C	14.9	23	48	1420	2		122	
538 545	9.4	. 7	52	549			102	
	62.4	1.9	92	7233	39		1000	
64a 64	4.3	25	<u>14</u> 20	222 209	3 2	740 393		
64 52 <b>5</b>	9.0 512.3	11		197 - 35576				
3-3 347	15.9	.∔⊈ . 5 }	:392 ::377	- 3337 <b>5</b> - 1931 -	491 11		70000 1780	
357 850	13.7	17	143	4097.1	8		JZ80	
521	59.6	. 9	177	3538			5530	
552	<del></del>	72		1316	<u>-</u> 5			
523 523	63.6	174	141 141	7033	27		16000	
554	3.6	3	19	299	3		5/5	
555	8.9	43	- 3. 76	463	: . <u>.</u> 6		670	
555 555	9.4	50	55	772	7		1140	
557	<del></del> 3.7		25	319	<u>-</u>		135	
653	59.1	160	329	4557	20		24000	이 전 얼마 하다 그 이 사람들 같
529	9.3	77	259	805	2		055	

PRINCE   16.1508   16.1508   16.1508   16.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.1508   17.15	COMPANY: FAIRBANK ENSI			<b>*1%</b> -	EN-LASS	TOP REPORT			,	(CT: F31)	P46E 1 0F 1
1945   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195   195		HER DOLLAR	705 WEST							FILE WE	9-878/P1+2
1.552	ATTENTION: B.FAIRBANK				-5814 CR		4524	# TYPE ROCK	SEDCHEM :	DATE: JUR	Y 12, 1988
1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5	(VALUES IN PPM )	- 35 - 39	<u> Ch</u>		38		AU-228				
150544		5,2 -, 72	41.								
1.5		5.7 22									
1											
10549											
10549	3,243	<u> </u>	55	390			750				
50549		2.1 25			7						
\$4555   200.4   242   350   2232   50   17.23   4.760     \$4552   4.3   14   49   258   14   1214   9     \$4552   4.3   14   49   258   14   1214   9     \$4555   7.4   17   71.64   56.3   427   16.73   796     \$4555   7.4   71   71.73   85.3   25   235   2218     \$4555   7.4   71   71.73   85.3   25   235   2218     \$4555   7.4   71   71.73   85.3   25   235   2218     \$4555   7.4   71   71.73   85.3   25   235   2218     \$4555   7.4   71   71.73   85.3   25   235   2218     \$4555   7.4   7.4   71   71.73   71.74   71.74     \$4555   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5     \$4555   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5     \$4555   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5     \$4555   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5     \$4555   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5     \$4555   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5     \$4555   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5     \$4555   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5     \$4555   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5     \$4555   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5     \$4555   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5     \$4555   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5											
Seption   Septiment   Septim											
0.0557											
0.0557		5 7 78	15								
\$1,000											
Bottom   10.4											
\$\frac{955}{5,0257}											
\$\begin{array}{c c c c c c c c c c c c c c c c c c c											
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	40557	<del>1</del> 1 1									
1955    1962   1973   1974   1934   2975   2886   22000											
10550											
\$\begin{array}{c c c c c c c c c c c c c c c c c c c											
\$\begin{array}{c c c c c c c c c c c c c c c c c c c											
10565								*******			
\$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}											
175.55											
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	10553	1.1 - 4E	136								
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	50555	9/I I.	43 1								
Control   Cont	50567	F, 7 45	37		3		32000	***********			
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	c05á8 . T	o.5 69	1.82		1.7	1509	2740				
\$\frac{5571}{50572}	ç0 <b>5a7</b>	5,5 1 24	39	139	ò	294	723				
65572         3.1         22         30         245         5         500         139           60573         10.5         35         105         549         7         1699         578           60574         56.3         128         338         3509         24         1719         22000           40575         5.3         124         34         515         6         421         1550           65576         7.5         19         57         597         8         1308         779           80577         52.3         241         204         3579         26         2839         15000           40578         5.0         28         28         181         5         362         294           40577         3.5         4         68         181         5         362         294           40577         3.5         4         68         181         2         1655         217           50580         58.2         152         187         76         835         13         1437         516           40581         16.7         7         76         835         13         14	±0570	5. <del>7</del> 33	- 98	738		1428	. 84				
\$6573	50575	I.2	414			. 3295	1450				
60574         58.3         121         338         3509         24         1719         22000           60575         5.3         24         36         315         6         421         1750           60576         7.5         13         57         597         8         1308         379           60577         51.3         224         204         3579         26         28339         15000           60578         5.0         15         28         181         5         362         294           80577         3.5         4         68         1610         2         1655         219           80580         58.6         1530         187         7316         18         3102         24899           80581         15.7         76         835         13         1447         516           80582         6.4         1         49         1756         6         7140         440           80583         51.2         45         36         8539         11         2976         1910           90584         4.7         17         41         360         7         640         227	50572	5.1	39	245	5.	500	139				
60575			105		7	1699	578				
60576         7, 5         13         57         597         8         1308         379           60577         7         51, 3         240         204         3579         26         2839         5000           60578         5.0         7         28         181         5         362         294           80579         3.5         4         68         1810         2         1655         217           60580         58.6         170         197         5316         18         3102         4399           60581         15.7         7         76         835         13         1437         516           60582         5.1         1         49         1756         8         7140         40           60583         51.2         45         86         8539         11         2976         1910           50584         1.7         7         71         360         7         640         227           50585         10.3         2         58         793         6         2177         416           60586         122.7         13         4064         39         1431											
\$\frac{\begin{array}{c c c c c c c c c c c c c c c c c c c											
60576         5.0         7.5         28         181         5         362         294           60577         3.5         4         68         1610         2         1655         217           60580         58.6         130         197         5316         18         3102         4399           60581         15.3         7         76         835         13         1447         516           60582         6.4         1         49         1756         6         7140         440           60583         55.7         45         96         8539         11         2976         1910           50584         1.7         17         41         360         7         540         227           50585         10.5         2         58         793         6         2177         416           60586         121.8         74         434         4054         33         1431         5500           50587         3.7         4         18         270         4         139         248           50588         15.4         23         86         784         10         747         30											
60577         3.5         4         68         1510         2         1655         217           60580         58.6         150         197         5316         18         3102         4390           60581         15.7         7         76         835         13         1487         156           60582         6.4         1         49         1756         6         7140         440           60583         57.2         45         96         8539         11         2976         1910           50594         4.7         17         41         360         7         640         227           40585         10.7         2         58         793         6         2177         416         66530           60536         124.7         74         4054         39         1431         5500           80587         5.7         4         18         270         4         139         249           40588         12.4         23         86         784         10         747         500           80587         5.7         4         18         270         4         139         24											
60580         58,6         150         187         5316         18         3102         4379           60581         15,7         7         76         835         13         1447         516           50582         6,4         1         49         1756         6         7140         440           63583         53,2         45         86         8539         11         2976         1910           50584         4,7         17         41         360         7         640         227           50585         10,3         2         58         793         6         2177         416           60586         121,2         72         434         4064         38         1431         5500           50587         5,7         4         18         270         4         139         248           60588         15,4         23         86         784         10         747         700           20589         45,4         13         28         198         5         436         247           60590         4,5         13         28         198         5         436         247											
60581         15.7         7         76         835         13         1487         516           60582         6.4         3         49         1756         6         7140         440           60583         57.2         45         36         8539         11         2976         1910           50584         4.7         17         41         360         7         640         227           50885         10.3         2         58         793         6         2177         416           60536         122.5         72         434         4064         33         1431         5500           80587         5.7         4         18         270         4         139         248           60588         12.4         23         96         784         10         747         700           90589         45.6         2         3         28         198         5         436         247           60591         4.5         13         28         198         5         436         247           60591         5.4         22         37         254         5         302											
50582         c, 4         1         49         1756         6         7140         440           60583         51, 2         45         86         8539         11         2976         1910           50584         4, 7         17         41         360         7         640         227           50585         10, 5         2         58         793         6         2177         416           60586         122, 6         74         434         4954         33         1431         5590           50587         5, 7         4         18         270         4         139         248           60588         15, 4         23         86         794         10         747         500           40589         45, 6         13         86         794         10         747         500           40589         45, 6         1         61         4012         6         8183         150           60570         4, 5         15         28         188         5         456         247           60591         5, 4         22         37         254         5         302 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>											
60583     53.7     45     86     8539     11     2976     1910       50584     4.7     17     41     360     7     640     227       50585     10.5     2     58     793     6     2177     416       60586     122.8     74     434     4054     33     1431     5500       50587     5.7     4     18     270     4     139     248       60580     15.4     23     86     794     10     747     300       40589     45.6     1     61     4012     6     3183     150       60590     4.5     15     28     188     5     436     247       60591     5.4     22     37     254     5     302     99       80592     8.4     50     32     613     10     671     459       60593     5.0     17     31     150     4     140     107       60594     1.2     20     7     34     6     87     116       60595     3.6     69     22     149     11     230     429       60596     1.2     24     22     31											
50594         1,7         17         41         360         7         640         227           50585         10,3         2         58         793         6         2177         416           60536         121,5         74         434         4064         39         1431         5500           50587         5,7         4         18         270         4         139         248           60588         12,4         23         96         784         10         747         700           20589         15,4         23         86         784         10         747         700           60590         4,5         13         28         188         5         436         247           60591         5,4         22         37         254         5         302         98           60591         5,4         22         37         254         5         302         98           60591         5,4         22         37         254         5         302         98           60592         3,2         3,1         150         4         140         107 <td< th=""><th>50382</th><th>7. f</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	50382	7. f									
50885         10.5         2         58         793         6         2177         416         6         66856         122.5         74         454         4034         39         1451         5500         5087         5.7         4         18         270         4         139         2.48         4088         6         784         10         747         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700											
60586         121.5         74         434         4094         33         1431         5500           50587         3.7         4         18         270         4         139         248           60583         13.4         23         36         784         10         747         200           50589         43.6         2         36         784         10         747         200           60590         4.5         13         28         168         5         436         247           60591         5.4         22         37         254         5         302         99           60592         8.3         50         32         613         10         674         459           60593         5.5         17         31         150         4         140         74           60594         4.2         20         7         34         6         87         116           50595         3.6         69         22         149         11         230         429           50596         1.1         74         22         31         3         149         39      <											
50587   5.7   4   18   270   4   139   248							41 <b>0</b>				
6088     is.4     23     86     784     10     747     700       20589     is.6     is.6     io.12     6     3183     1350       60590     4.5     is.2     188     5     45     247       60591     5.4     22     37     254     5     302     98       60592     8.5     50     32     613     10     671     459       60593     5.0     17     31     150     4     140     107       60594     1.2     20     7     34     6     87     116       60595     3.6     69     22     149     11     230     429       98596     1.1     24     22     31     3     149     39       60597     1.7     22     24     39     5     52     94       50578     2.1     42     11     115     7     200     402       60599     1.7     25     22     17     4     71     77											
\$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2											
60590         4.5         13         28         188         5         436         247           60591         5.4         22         37         254         5         302         99           60592         8.5         50         32         513         10         571         459           60593         5.5         17         31         150         4         140         107           60594         1.2         20         7         34         6         87         116           50595         3.6         49         22         149         11         230         429           50596         1.1         74         22         31         3         149         39           50597         1.7         22         24         39         5         52         94           50598         2.1         42         11         115         7         200         402           50599         1.7         25         22         17         4         71         77											
60591         5.4         22         37         254         5         302         99           80592         8.4         50         32         613         10         671         459           60593         5.7         17         31         150         4         140         107           60594         1.2         29         7         34         6         87         116           50595         3.6         69         22         149         11         230         429           50596         1.1         7         22         24         39         5         52         94           50597         1.7         22         24         39         5         52         94           50598         2.1         42         11         115         7         200         402           50399         1.7         25         22         17         4         71         77											
80592 8.3 50 32 613 10 671 459 60593 5.3 17 31 150 4 140 107 60594 1.2 29 7 34 6 87 116 50595 3.3 69 22 149 11 230 429 60596 1.1 24 22 31 3 149 39 60597 1.7 22 24 39 5 52 94 60598 2.1 62 11 115 7 200 402 60599 1.7 25 22 17 4 71 77											•
60593     5.7     17     31     150     4     140     107       60594     1.2     29     7     34     6     87     116       60595     3.6     69     22     149     11     230     429       50596     1.1     24     22     31     3     149     39       60597     1.7     22     24     39     5     52     94       60598     2.1     42     11     115     7     200     492       60599     1.7     25     22     17     4     71     77			32		*****						
60594     1.2     29     7     34     6     87     116       50595     3.6     49     22     149     11     230     429       60596     1.1     24     22     31     3     149     79       60597     1.7     22     24     39     5     52     94       50598     2.1     42     11     115     7     200     402       50599     1.7     25     22     17     4     71     77									Maria No.		
50575     3.6     69     22     149     11     230     429       50596     1.1     74     22     31     3     149     79       60597     1.7     72     24     39     5     52     94       50578     2.1     22     11     115     7     200     402       60599     1.7     25     22     117     4     71     77											
59596     1.1     74     22     31     3     149     79       60597     1.7     22     24     39     5     52     94       50578     2.1     £2     11     115     7     200     402       60599     1.7     25     22     17     4     71     77											
60597     1.7     22     24     39     5     52     94       50598     2.1     ±2     11     115     7     200     402       50599     1.7     25     22     17     4     71     77											
50578 2.1 52 11 115 7 200 402 50577 1.7 25 22 17 4 71 77											
[50599] (a.g. 187) - 1,7 [6] 25, [6] 22 [6] - (17 [6] (4,7 [6] (4,7 [6] (7) (7) (6) [77 [6] (7) (6) (6) (6) (6) (7) (7) (7) (7) (7)	59578	.1 52									-44
	60599										
	TATABLE 1	Sin Pagin	* * * * * * * * * * * * * * * * * * * *	nz	`` r	L7: -	ing				

PROJECT	MER SELVER LO		(\$.5.)	705 kES1	1516 51	., 3050	- ANCIUVER	. E.I. 47	(*. 352		FOLE NO. 8	-123/5:-2
	DM: B.FAIRBANK				(604) ?	0-5313	9 - 204 - 922	-1504	1.105	FOCK SECC-EX		15, 338
	S IN PPH )	A3	49 42	59			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34-139				********
50683		24.3	42	53	575		7 1003	1400				
59584		55.0		316	102	5.		1950				
60685 60686		4.1		114	219			. 5 9 <b>8</b>				
60587		3.3 13.1			161		±87	- 5				
50538		25.5			7500 299	2	k. 2790 1 1281	420 5550				
60589		3.0		25	148		3%	390				
50570		37.4		9,28	20392	8 [48]		E0000				
40491		16.6		77	791	:30		345				
50592		13.1	13		483	21 37	1198 1234	322 345				
60493		4.7		25	367			345				
50694		13.9		72	- 893	20		5750				
60675		3,1			120	10		.54				
60695		39,7	58	125	1887	47		I4600				
-50477 -50478		2.3	23 20	<u>25</u>	177 555	47	1114 294	.: <u>!</u> ?7 				
50699		4.9	35		701.			777				
40700		45.3		234	1315			2329				
60701		3.5		23	:81	2:		142				
50702					235							
60703		3,6		<u></u>	54.							
60704		4.3	77	75	177	1.27	1278	57				
60705.		8.5	34	7.4	530	- 13	1.17	(73)		and particles		
50768		2,5	1. 17.	-3	112		175	. 27				
-50707		4,5				:	. 17					
50703		5,3					111111111111111111111111111111111111111					
50709		1,2		33	75.7	. 4						
60710			32	3	75	3						
60711		24.3		27	.33		197	1/1				
-60712 -60713		7.1	91 63	<u> </u>	204	<u>:</u>		<u></u>				
60714		2,5	88 88	. 13	. a# 147	10		128 128				
60715		3,4	110	27	197	- 24 23		2209 220				
50716		4.9	57	a El		13		: 1239				
50717		1,7	ė7					525				
60719			49		159 72			143				
60719		2.0	32	5	5.2	3	232	:2:				
60720		2, 3	47	13	: 52	- 15	335	137				
50721		1.6	- 24	9	38	- 11	150	21				
60722		1.5	39		36_		52					
60723		1.2	46		78	. 19	140					
50724		1.8	±5	5	50	9	56	. 71				
50725		2.1	21	93	72		151	75				
60726		.7	18.		36 4g	9	61 37					
_60727 50729		1,3	<u>85</u>	<u></u> 5	<u></u>							
60729		. 9	13	4	. 18	5	92. i 70					
50730	A track of	1.9	53	4	53	3	77	33				
60731		2,5	4.2		85	1.2	177					
50732		2,3	. 12		119	2	127	- 7				
50733		2,0	27	3 3 7 7	75	÷	62.	75				
60734		1.3	f	14	50		46	28				
50735		5.3		29	197	12	294	57				
50736		7.0	21	23	54	. 15	74	179				
60737		2.0	37	9	. 79		113					
60733		2.7	40	4	53	19	55	50				J. Bullion
40739		2.4	26	26	38	ā	62	54		and the second	- 1	
50740		5,8	11	46	462	7	467	113				

*19-EN 1983 109 HEPORT

COMPANY: FAIRBANK ENSINEERING

COMPAN	V ₂	AISBA	W.	%61\EER	(185		478	r-54 L⊅£9	109, 8570	RT.					14	C7:F31	PAG	Eig	F I
PROJEC	7 40	: 135	-23	SIL/EŔ	ISLLAR	705WES	Į 1574 SJ.	, MORTE	ANCOUVER	, a.C. V7M	172					FILE	NO: B	-878/	25
ALTEX	138:	3.58	1994	¥/			(5.)4) 36	30-5 <b>9</b> 14. C	R (604) 98	9-4524		TYPE	ROCK	SEOCHE	( )	1975	JULY.	12, 1	998
(944.1	25 .	¥ 28%	)	46		. 28	33	33	19	40-653									
6056)				275.4	152	157	4432	ġ.i	7:5	4000	77.5								
ávéé.	7			9.4	29		550	5	834	390									
50356	Ľ			27.5	77		1383	. 13	1027	1730									
6(cs5				5.9	21	. 27	350	. 3	400	205									
\$ 550	1			17.1		1028	1297		1147	7200									
ာ်စ⊅်				14.7				3	394	2000									
a ි 5 á ਬੈ				24.5	30		7414	122	.816	13000									
50669				5.0	3		214	1	315	450									
50570				59.5	76			lé											
 50571				. 3.1.				12	*********										
50572				235.3	74		. 2077	177								. 3.4			
60673				11.7	. \$			3	502										
50674				85.2	79		5195	13											
54675				6.5	49		127	•	1672										
_6067 <u>5</u>				37.2	74								~~~~						
50477				3.0	22				519										
50879				204.9	4		7328	148											
59679				á2á.7	. 93			374											
60650				172.6	7.0		F240	72											
40691				<del>39,5</del> -	70		1912.	24											
60682				4,3	1.4	58	127		197	458									

March   Marc										
Table   Tabl	00×24	NY: FAIRBANK ENGINE	ER 185		#11	HEN 1486	102 45268	RT.		ಆತ್ರಿಗಳಿಗಳು ರತ್ತಿಸರ ಗ್ರಹ್ಮಕ
### 1971   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972   ### 1972				. 705 <b>x</b> ES	7 1514 37	., >0878	V44000V6#		M, 172	
50744 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	ATTEX	TION: B.FAIRBANK R.	. F3V 2425 YEA		(504) 98	0-591410	R 204 499	-457ê	1 TYPE FOOK SECONEM	
\$67744   \$7.6   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5   \$7.5	(VAL)					35	IN.	2.1.005		
\$1.00										
SCOTAL   A   A   C   S   S   C   S   S   C   S   C   S   C   S   C   S   S										
1971-7										
Section   Sect	50741			4.			124			
Section   Sect				17	177	5				********
\$975    \$1.2   \$72   \$73   \$1.0   \$   \$1.2   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5   \$1.5					155			·		
Section   Sect										
\$9755										
507754   2.0   30   12   84   5   21   12		<del></del>	5							
\$9755	50754		9, 30.	. 72			221	:21		
\$\frac{90757}{10.758}				5			:37	1 1 T		
\$0759							-,24			
\$0.759						,}}				
\$2750				-		12	್ರವಿದ್ದೆ. ೧೯೫			
\$7754										
\$60.00			3	71				140		en de la companya de La companya de la co
Section   Sect			1 23		E3		47	1.2	<u> </u>	
\$2759 3.1 43 5. 12 3 2.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5					a541		.57	1,92		
\$2776					. 95					
50797			. <del>9</del> 3.							
\$20770		-		1 - 5 -	1.00	4				
\$20770	- 11-58		1 1 1 1					• • • • • • • • • • • • • • • • • • • •		
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	5075F	.,	11.		1.7		17.5	7.1		
\$\frac{1}{20775}		1.5	구 경험							
\$6774			8 27		17	1				
\$6774	29772		<del>-</del> -							
50775         12         22         17         47         9         52         7           60776         13         16         5         13         7         61         20           49777         20         59         17         443         13         52         17           50779         1.5         30         29         25         7         45         12           50780         1.9         23         7         159         12         275         16           50781         5.6         58         89         252         12         155         24           50782         2.7         30         73         145         9         15         15           50783         4.8         57         25         190         12         253         13           50783         4.8         57         25         190         12         253         13           50784         7.0         62         10         21         14         185         320           50783         7.4         33         41         425         325         12           50785         7.7	50774									
c0776         .3         .6         .5         .13         .7         col         .20           60777         19.2         59         4.7         444         12         512         517           50779         1.8         50         1.9         2.5         7         45         127           50780         1.9         2.8         7         1.59         1.2         275         1.6           50781         5.6         58         87         282         12         155         194           £9792         2.7         30         0.7         115         2         0.6         1.6           50784         7.1         62         10         71         14         1.55         520           50784         7.1         62         10         71         14         1.55         520           50785         7.1         2.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7         7.7 <th></th>										
\$6779			3 %		39	ā	el	- ₹0		
\$6779			59		845			: : : : : : : : : : : : : : : : : : :		
\$\frac{90780}{85781}		J. 34	35	. 3		. 13	- 213	145		
\$\frac{80761}{40732}\$ \ \frac{5.6}{2.1}\$ \ \frac{5.8}{30}\$ \ \frac{97}{12}\$ \ \frac{1.5}{12}\$ \				4.7						
£0792         2,7         30         77         145         7         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>										
50734				33		2	255			
150/184		4.1	57		193	12.		1.5		****
\$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2		7.1	62				. :: 5	₹30		
10787		3.		37						
60732		Tai Hay		·				24.5		
\$6.787	60738									
\$\frac{60799}{60797}\$ \ \frac{5}{1}, \frac{7}{2}, \frac{7}{2} \ \frac{23}{207} \ \frac{107}{107} \ \frac{107}{107} \ \frac{1}{2}, \frac{7}{2} \ \frac{47}{27} \ \frac{88}{272} \ \frac{125}{25} \ \frac{25}{25} \ \frac{105}{25} \ \frac{105}{10} \ \frac{105}{25} \ \frac{10}{25} \ \frac{105}{25} \ \										
\$\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color{\xi\color		3.1	74		207	1.0	7 3.5			
60794     651.7     96     1804     14968     53     193     5700       80795     51.8     44     134     1587     50     1933     510       60796     13.8     20     66     332     18     192       60797     9.1     24     73     273     48     407     120       50798     3.9     9     45     37     1)     105     18       50799     2.1     1     75     43     40     64     14       60800     1.8     7     31     34     6     80     5							- 0047			
60794     651.7     96     1804     14968     53     193     5700       80795     51.8     44     134     1587     50     1933     510       60796     13.8     20     66     332     18     192       60797     9.1     24     73     273     48     407     120       50798     3.9     9     45     37     1)     105     18       50799     2.1     1     75     43     40     64     14       60800     1.8     7     31     34     6     80     5										
\$3795							717			
60796     13.8     20     66     332     13     275     12       60797     9.1     24     75     275     45     493     150       50798     3.9     9     45     39     17     205     5       61799     2.1     1     35     43     10     64     14       60800     1.8     7     31     74     8     89     5										
60777 9.1 24 75 273 48 497 155 50779 3.7 9 45 37 17 235 5 50779 2.1 1 35 43 5 64 14 60800 1.6 7 31 74 8 89 5								. 22		
50778 3,9 9 45 39 19 (05 5 5(799 2,1 1 35 43 60 64 14 60800 1,6 7 31 34 6 80 5				7.5	273					
- \$2800 Million (1994), 87 Million (1994) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995)			9		97	. 15	195	25		
								2		

		s element			1.5	9-1985 11	P 465987				(A)	7:570	PASE 1 38 4
##20 <b>80</b> 7	BILLESS,	BRIGGLER I	924	115 <b>453</b> 7	2375 ST. (	NORTH A	NEGUJĖR,	B.C. V75	172			77 F V	Ge 8-927/93
		\$\$454;\$ _\ \$\$	258 <b>2</b> 7		3041980+	5814-19	MA1739-	4524	A STYPE	HOOK BE	BOHEN 1	DATE: NO	LY 23, 1998
2.c2	1 14.35	-3			25 25	:3	14	7]]+3 ng 7.					
50725	,	******	ξĂ	. 3		4	.21	559.					
31748		.3.5	137	ã <u>s</u>	1986	: T	1095	510					
- \$1745 ·				27	263	. 7	17	114					
11746		1.2	. 55	54	: 53	:2	223	525					
19747		1,1		11.0		39	124	143	1				
725				17.			2147	350					
3 - 3		7.5		45	:55	. 41	7.6	125					
60750		19.4	2	70	137	100	124	257					
20751		# # *		:5	218	2.5	1351	243					100
10752 30753		72, 6		31	14	16	95	17960:					
50753		4.5	. 2	<del>7</del>	174	14	455	198					
50754		3.3	. 73	32	78 :-	7	210	121	4. 4.5				
50755		2.5	27	10.	131	<u> </u>	:35	143					
60756.		5.4	3.1	26	25	:3	112	328					
60757		1,3	蝗.	21	192	3	343 -	277			1 1 to		
53759		3.3	12	<u>22</u> 12	<u></u>	3	1119	775					
30759		5,5	15	- 1	274	7	228	323					
50750		5.7	žà	33	-54	22	131	530					9 ( No. 1)
50. ol		1.5	52	11	51	5.	. 95	.00					
1:07:62		5.2	-	33	227	3	1542	502					
á07á5		1.7	7.5	<u>-</u> 35	Ē.		153	114					
\$ 1754		1.7	- 7	12	743	13	379	3180					
180765		1.3	37	Ψ.	47	19. <del>1</del>	177	:36					
2.17.25		7.7	- 4.4	15	1.28	ŧ	624	295					
5 "5".			F	2-		<u> </u>	217	<b>71</b> 3					
11.13					77.								
10,755.0			- 5	2.1			46	535					
11111		1.1		17	-		139	147					
V = -:			1)	-3	470	· •	373	7662					
50773		5.3		1.3	77	- 7	77	132					

- 0	19214	F4:334%	ENSTABLEME	NS .		* [ N=	W 1-35	137 <b>9570</b> 81	ř			(4)	TIFELL PR	AGE 1 OF 1
2	PICECT N	D: SILVE	RI DOLLARIS.	.2.7	705 WEST	578 \$7.,	HERTH!	PARCOLLIER,	B.C. 978	172			FILE NO	8-923/95
- 5	17,537,728	9, 4,	BANK PLEAS	KNER		16041730-	-5814 08	3041988	-4524	# TYPE	ROCK SED	CHEM 1	DATE: JUL	15, 1788
Ť	CALE:	19 22 <b>9</b> 5	45	43	. 21	28	33	24	20-228					
	3380		1.7	50	27	35	. 7	59	1					
	3-3534		1.5	7	- 25	. 3	. 9	22.	2					
	51865		1.7	- 7,	24	23	2	75	. 2					
	5159a		1.2	3	. 27	20	7	89	. 31					
	67507		7.4	34	113	230	19	- 414	370					
-	5)8:3		1.7	1	39	57	9	109	48					
	50209		. 7	,1	36	21	á	56	9 .					
	50810		. 9	- 12	23	29	19	51	2:					
	50871 -		10.1	112	- 51	454	. 12	455	3850					
	508021		2.7	29 : 1	36	56"	10	30	. 785					
	50 <b>3</b> 17		2. )		31	42	. 14	120	47					
	50814		4.3	35	33	112	, · 12"	249	418	5 . 5				
	50815.		1.6	6	23	22	3	41	15					
	:080:=		-1.4	1	. 32.	24	. 8	63	19	No. 19				
	5917		1.4		23	33.		77						
									95					
	á/)á51	~	9, 5	<u>-</u>	70	325	12	191	315					
	p1852		7. š	16	70 37.	32 <b>5</b> 149	3	171 73	315 118					
	50853 50853		9.5 4.6 8.3	. 16 22	70 37 60	325 149 134	3	171 73 319	315 118 237					
	p1852		7. š	16 22 13	70 37 60 47	325 149 234 117	3 18 11	191 98 319 143	315 118 237 152					
	60853 60853 60854 60858		9.5 4.6 8.3 6.6 31.5	. 16 22	70 37 80 47 89	325 149 234 117 347	38 18 11 28	191 98 319 143 209	315 118 237 152 570					
	50853 50853 50854 50858 60858		7.3 4.6 8.3 6.6 31.3 5.8	16 22 13	70 37. 60 47 89	325 149 234 117 347 57	28 12 28 28	191 98 319 143 209	315 118 237 152 570 78					
	60853 60853 60854 60858		9.5 4.6 8.3 6.6 31.5	16 22 13 46	70 37 80 47 89	325 149 234 117 347	38 18 11 28	191 98 319 143 209	315 118 237 152 570					

### APPENDIX F

UNDERGROUND ROCK GOLD AND SILVER FIRE ASSAYS



SPECIALISTS IN MINERAL ENVIRONMENTS
DIEMSTS - ASMATERS - APALOGIS - GEOCHEMISTS

VANCUUVER OFFICE:
703 WEST 157H STREET
NORTH VANCOUVER B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 980-8524
TELEX VIA U.S.A. 7601087 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 THANKINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (706) 264-9988

#### Certificate of ASSAY

Company: FAIRBANK ENGINEERING Project:SILVER DOLLAR Attention: 8. FAIRBANK

File:8-806/P1 Date: JULY 1/888 Type: FULP ASSAY

He hereby certify the following results for samples submitted.

Sample	AU	AU	
Number	G/TONNE	)Z/TON	
60 406	2.05	0.060	
60 409	5.38	0.157	
60 411	.47	0.014	
60 412	.40	0.012	
60 414	.41	0.012	
60 415	.57	0.017	
60 416	1.02	0.030	
60 418	.60	0.018	
60 420	4.40	0.128	
60 422	.81	0.024	
60 423	.40	0.012	
60 424	.70	0.020	
60 426	.60	0.018	
60 427	1.22	0.036	
60 452	1.23	0.036	
60 453	.43	0.013	
60 457	12.85	0.375	
60 461	.42	0.012	
60 462	.62	0.018	
60 466	.55	0.016	
60 467	.57	0.017	
60 471	.44	0.013	
60 473	.60	0.018	
60 476	.42	0.012	
60 477	.61	0.018	
50 478	.62	0,018	
60 481	7.48	0,218	
60 482	1.50	0,044	
60 483	.60	0,018	
60 486	.56	0,016	
60 487 60 488	2.98 .34	0.087	?-0 -/

Certified by

#### MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 172

PHONE: (604) 780-5814 OR (604) 788-4524

TELEX: VIA USA 7501947 UC

#### Certificate of Assay

Company: FAIRBANK ENSINEER: NG Project: 155-28 SILVER OCLLAR Attention: B. FAIRBANK/R. FAULKMER File:8-830/72 |D5-8:30LY 5/88 |Type:80DK ASSAY

We hereby certify the following results for samples sucmitted.

Sample Number	 AU GZÍONNE	UAU OZ/TON		
50 537 50 540 50 541	11.30 34.75 -3.20	0.330 5.017 0.093		

Sertified by_

MIN EN LA CRATCRIES LTD.

#### MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments 105 West 15th Street Worth Vancouver, B.C. Canada V7M 112

PHBNE: 7604:980-5814 GR (604)958-4524

TELEX: VIA USA 7601067 UC

#### Certificate of ASSAY

Cumpany: FAIRBANK ENCIPEER (MS ) : Project (15-89 SILVER DOULAR ); Attention: 9. FAIRBANK/R, FAULKNER File:8-930/P1 | Date:JULY 5/88 | Type:ROCK ASSAY

He berely certify the following results for samples submitted.

Sample AU Number S/TON			
\$6 429	7 0.040 1 0.01 <b>3</b> 5 0.011		
60 444 3.44 60 444 0.0 60 447 0.0 00 447 0.0 00 445 0.0	9 9,564 9 7,564 5 1,142		
. 60 498 . 4 60 501 . 2. 3 60 303 . 5 60 505 5 60 507 5	5 0.75 <b>5</b> B 0.011 P 0.017		
60 508 .4 60 509 2.4 60 514 1.0 60 517 1.1	0.072 0.037 0.034		
60 520 1.4 50 521 .4 50 522 12.3 60 523 .4 60 524 .3	6 0.013 0 0.359 0 0,012		
60 525 4.74 60 527 .44 60 528 3.00 60 531 4.44 60 533 17.15	4 (1.13) 3 (1.129) 3 (1.129)		

Certified by

MIN THE SECONDATION OF LAND



## LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ALEMENS - AMAZONIS - DESCRIPTION

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524-TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### Certificate of ASSAY

Company: FAIRBANK ENGINEERING Project: 155-88 SILVER DOLLAR Attention: BRIAN FAIRBANK

File:8-878/P1 Date: JULY 21/88 Type: PULP ASSAY

He hereby certify the following results for samples submitted.

Sample Number			AG G/TONNE	AG OZ/TON	AU G/TONNE	AU DZ/TON		
60 548 60 550 60 551 60 553	control of the contro	entre de la constante de la co	39.9 9.8	1.16 0.29	1.39 5.22	0.041 0.152	na en emperar in description in the control of the	in emperatur starte en selve de entre
60 554 60 555 60 556 60 557 60 559			12.0 109.6 172.0	0.47 0.05 3.20 5.02 5.02	14.84 1.07 27.23	0,491 0.040 0.790		
50 560 60 361 60 564 60 565 60 367			107.5 109.0 22.7 12.0	3.14 3.83 0.00 0.00 0.05	1.32 1.46 2.56	0.04: 0.043 0.07s		
60 568 60 571 60 573 60 574 60 575			97.8 76.0 11.7 71.6	2.85 2.32 0.34 2.09	3.01 1.59 25.00 1.84	0.088 6.045 0.729 0.054		
60 577 60 580 60 581 60 583 60 585			65,5 64.0 20.3 57.0	1.66 0.30	17.90 5.16 2.16	0.151		
60 586 60 588 60 589 60 601 60 609			142.0 16.3 48.0	4.14 0.48 1.40	5.74 1.58 2.38 1.74	0.187 0.046 0.069 0.057		





# LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - CEDCHEMISTS

VANCOUVER OFFICE;
705 WEST 15TH STREET
NORTH VANCOUVER B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5614 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9821 TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### Certificate of ASSAY

Company: FAIRBANK ENGINEERING Project: SILVER DOLLAR Attention: B. FAIRBANK

File:8-806/P1 Date: JULY 21/88 Type: PULP ASSAY

He hereby certify the following results for samples submitted.

Sample Number	AG AG G/TONNE OZ/TON	
50 405 50 414 60 420 50 457 50 462	12.1 0.35 12.4 0.36 36.4 1.06 18.8 0.55 21.3 0.62	meterioristica entre de referendam for internamenta comission, una estada de materioristica (com contramenta m
60 467 50 ,473	495.0 14.44 12.2 0.36	



# • EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS
CHEMBES - ASSATERS - ANALISTS - GEOCHEMBES

705 WEST 15TH STREET
NORTH VANCOUVER BC. CANADA V7M 1T2
TELEPHONE (804) 980-5814 OR (804) 988-4524
TELEX: VA U.S.A. 7601067 • FAX (804) 980-9821

TIMMINS OFFICE: 33 EAST (ROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA PAN 7G7 TELEPHONE: (705) 264-9996

#### Certificate of ASSAY

Company:FAIRBANK ENGINEERING Project:155-98 SILVER DOLLAR Attention:BRIAN FAIRBANK File:8-878/P2 Date:JULY 21/88 Type:PULP ASSAY

He hereby certify the following results for samples submitted.

Sample Number	AG G/TONNE	AG OZ/TON	AU G/TONNE	AÚ DZ/TON	
50 611 60 512 60 617 60 618 50 621	20.0 28.5 485.0	0.58 0.83 14.15	2.63 2.97 2.85	0.077 0.087 0.083	
60 633 60 636 60 637 60 639 50 641	36.6 18.4 50.0 41.2	1.07 0.54 2.33 1.20	2.11 4.65 1.59	0.062 0.136 0.047 0.029	
50 642 60 643 60 645 60 648 60 649	519.0 15.8 65.0 690.0	9,30 0,46 1,90 20,13 0,46	4.20 35.90 1,82	0.123 1.047 0.053	
60 650 60 651 60 652 60 653 60 658	41.5 52.0 10.7 70.0 59.8	1.21 1.81 0.31 2.04 1.74	3.67 6.00 19.00 27.20	0.107 0.275 0.554 0.793	
60 660 60 662 60 664 60 666 60 667	30.2 173.0 30.3 33.8 13.0	0.88 5.05 0.88 0.99 0.53	11.60 5.40 1.83 8.90 3.18	0.338 0.158 0.053 0.240 0.93	
60 658 60 670 60 672 60 673 60 674	119.0 38.2 298.0 13.7 90.0	3.47 1.70 8.69 0.40 2.63	17.60 14.80 1.49 13.70	0.513 0.432 0.043 0.400	

Certified by____

MIN-EN CABORATORIES LTD.



# • EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VANNOUVER UPFICE.
706 WEST 15TH STREET
MORTH VANCOUVER 96. CANADA V7M 1T2
TELEPHONE (904 1990-58 14 OR 1604) 988-4524
TELEX: VAL USA 7601067 *FAX (904) 990-9921
TIMMINS OFFICE:
31 SEAST IROZUOIS ROAD
PO BOX 887
TIMMINS, ONTARIO CANADA PAN 7G7
TELEPHONE: (705) 264-9996

#### Certificate of ASSAY

Company: FAIRBANK ENGINEERING. Froject: SD Attention: B. FAIRBANK/R. FAULKNER File:8-830/P1
Date:JULY 22/88
Type:PULF ASSAY

He hereby certify the following results for samples submitted.

Sample Number		AG DZ/TON				
69 520 60 522 60 525 60 527 60 528	28.3 1210.0	0.77 35.29 3.44 2.08	An Artenia trypyca	and a superior of the state of	giran anggang panggan panggang p	
60 531 60 533 60 535 60 535 60 537 60 540	9 <b>,9</b> 425.0	5.80 53.67 0.29 12.40 27.27				
60 541	20.6	0.66				

Certified by Brymans



#### MIN • EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH WANCOUVER BC. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: V/A U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 887 TIMMINS. ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9998

#### Certificate of ASSAY

Company: FAIRBANK ENGINEERING Project: 155-89 SILVER DOLLAR Attention: BRIAN FAIRBANK File:8-878/P3 Date:JULY 21/88 Type:PULP ASSAY

We hereby certify the following results for samples submitted.

Samp				AG G/TONNE	AG E OZ/TON	AU G/TDNNE	AU OZ/TON		**************************************	N. A. S.	
\$0 6 \$0 6 \$0 6 \$0 6	78 79 80			43.8 230.0 910.0 198.0 55.0	1.28 6.71 26.54 5.78 1.93	1.68 2.38 10.80	0.049 0.069 0.315 0.473		in in the second	an menganing mengani	wa fi <b>an</b> ny ao amin'ny faritr'i Amerika. I
								 *******			

Certified by Esignano



### • EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

705 WEST 16TH STREET
NORTH VANCOUVER, B.C., CANADA: V7M 1T2
TELEPHONE: 6041980-5814 OR (6041980-4524
TELEX: V/A U.S.A. 7501067 • FAX (604)980-9621

TIMMINS OFFICE: 33 EAST POQUOIS POAD PO. BOX 567 TIMMINS, CNTARIO CANADA P4N 7G7 TELEPHONE (705) 264-9996

#### Certificate of ASSAY

Company: FAIRBANK ENGINESHING Project: SILVER DOLLAR(5.5.) Attention: B. FAIRBANK/R. FAULKNER File:8-923/P2 Sate:JULY 22/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

	GATONNE DZATON	67.	AU-FIRE TONNE DZ	/TON	e Concerns ambient in insula 2 majoritus (m. 1. cm).
40 855	34.4 3.200			1000	er Austrago verbitoro Parlindra viringeria, umb 1, verb ir verbas i verb
		Ž.			





#### NIN EN LABORATORIES LTD

SPECIALISTS IN MINERAL ENVIRONMENTS

VAIVEOUVER OF FIGURE 705 WEST 15TH STREET NORTH VANCOUVER BC. CANADA V7M 172 TELEPHONE (604) 980-5914 OR (604) 980-4624 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9021

TIMMINS OFFICE:
33 EAST IROQUOIS ROAD
P.O. BOX 867
TIMMINS, ONTARIO CANADA PAN 7G7
TELEPHONE: (705) 264-9996

#### Certificate of ASSAY

Company: FAIRBANK ENGINEERING Froject: SILVER DOLLAR(S.S.) Attention: B. FAIRBANK/R. FAULKNER File:8-923/P1 Date:JULY 22/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

Sample Number	AG AG G/TONNE OZ/TON	AU-FIRE AU-FIRE G/TONNE 0Z/TON	
50 583 50 584 60 587 60 588 50 590	65.7 1.92 138.0 4.03 29.9 0.87 3790.0 110.54	2.73	ak ti sepigene mana mengana pangan panga Pangan pangan panga
60 691 60 692 60 694 60 696 60 698	16.6 0.48 12.8 0.57 14.0 0.41 37.9 1.16 13.7 0.40	7.94 0.229 41.60 1.213 3.51 0.102	
50 700 60 703 60 705 60 709 60 712	46.2 1.35 12.8 0.37	2.87 0.084 2.81 0.082 2.66 0.078 1.19 0.035 1.82 0.053	
60 715 60 744 60 750 60 752 60 764	22.0 0.64 19.7 0.57 21.4 0.62 9.9 0.29	9,24 0,270 15,62 0,456 3,27 0,095	
60 771 60 777 60 789 60 791 60 792	12.0 0.35 9.9 0.29 40.0 1.17 42.6 1.24 55.0 1.60	7.42 0.216 1.06 0.031 1.18 0.034	
60 793 60 794 60 795 60 796 60 811	71.4 2.08 730.0 21.29 57.6 1.68 19.8 0.58 11.9 0.35	1.83 0.053 6.79 0.198 4.05 0.118	

Certified by M

MIN-EN LABORATORIES I TO.

### APPENDIX G

DIAMOND DRILL CORE GEOCHEMISTRY

PROPERTY CHIRCHAN CHORD.			619	בפור וובר	ijik zarbh	1			TAL IT	31) PAGÉ	1 0F 1
PROJECT NO. S.D.		705#ES	7 15TH ST.	, NORTH /	ANCOUVER,	8.C. ¥75	112			FILE NO: B	-1068
ATTENTION: B.FAIRBANK	 		(804) 98	0-5814 QR				900K GEOCH	in a di	ATE: SEPT 9	1989
(VALUES IN PPS )							AU-PPB				
16024 DDH02-52.60-55,17					ò	38	. 4				
16025 DDH03-09.32-10.25	. 9		46	21	ð	70	1				
16026 DDH03 13.85-14.80	.6.	. 7			2	49	17				
15027 00803 28.75-30.00	2.5		39	. 18	5	ė1	6				
16028 DDH03-30.00-30.93	 2.7	Já	51	34	5	97	3.				
16029 DDH03 C0.93-31.85	 2.4		35	[3	5	70	2				
15030 DDH03-31.95-33.00		29	6 52	48	5	:13	91			1 1	
16031 DBH03-33.00-33.45		. 48	33	. 72	8	57	289				
15032 DDH03-33.45-33.85		72	27	31	13	79	27				
16033 DDH03-33,85-34,40	 3, 2	30	17	3.5	9	54	210				
16034 DDH03-34.40-35.05	 2.9	å8.	48	26	4	57	50				
16035 DDH03-35.05-36.20			48	18	5	96	22				
16036 DDH03-41.20-42.33	1.6	- 11	35	- 38	6	114	5				
16037 DDH04-13.85-15.24	.5	35	85		4	58					
16038 DDH04-38,05-39,65	 3.1	1	47	25	. 3	48	20				
16039 DDH04-39.65-40.43	 2.8	45	201	23	5	61	16				
15040 00H04-40.43-41.30	1.7	7.4	45	12	9	77	. 4				
16041 DDH04-41.30-42.30	2.4	. 24	57	13.	7	<b>‡</b> 0	. 8				
15042 DDH04-42.30-42.93	2.9	14	111	34	8	.54	71				
16043 DDHC4-42.98-43.99	1.5	1	61	35	4	87	44				

JUL 28 '88 :	15:43	MIN-E	N LABS	LTD				701	רטב	
COMPANY: FAIRBANK ENG	INEERING LT	).	1	IIN EN LA	es ICP R	EPORT				(ACT:F31) PAGE 1 OF 1
PROJECT NO: S.D.		705				UVER, D.C.	V7# 112			FILE NO: 8-1043/P1
ATTENTION: B.FAIRSAMK	B. CHROMEC		(604	980-5814	OR (604	1988-4524	1	TYPE ROCK	SEBCHEN	# DATE: JULY 27, 1988
(VALUES IN PPH )	A6	AS	CU		S)	IN AU-P				dadh
14001.01.18.29-18.85	1.2	45	18	21	2	44	24			
16002.01.19.85-20.15	. 9	34	15	13	i	45	18			The second second second
16003.01.21.00-22.20	.8	4	16	3	1	47	2			
15004.01.23.90-24.35	.3	1	22	10	2	68	3			
16005.01.31.50-32.00	1.3	2	40	19	2	171				
16006.01.33.00-34.15	.7	28	47	8	i	81	. 2			
16007.02.13.35-14.33	-1	10	101	5	5	80	3 .			
16009.02.24.91-26.22	.3	33	38	7	. 1.	114 -	10			
16009.02.29.06-31.14	1.3	29	26	17	2	63	2			
16010.02.31.14-32.31	.,4	12	72	16	<u>t</u>	81				
16011.02.32.31-33.42	1.0	23	16	14	2	43	5			
16012.02.33.42-34.09	1.2	31	19	12	5	20	2			
16013.02.34.09-34.96	1.5	43	22	7	5	28	7.			
16014.02.34.96-35.79	, :	67	11	44	7	86	122			
16015.02.35.79-37.37	1.9	64	21	34	3	64 .	157			
16016.02.37.10-38.00		22	15	104	1	341	74			
16017.02.38.00-38.51		93	7	54	8	293	10			
16018.02.38.51-39.53		63	22	18	2	70	12			
16019.02.39.53-40.47		40	25	14	2	57	2			
16020.02.40.47-41.03		24	78	45	<u>2</u>	174	10			
16021.02.41.03-41.76		51	51	11	2	62	. •			
16022.02 41.76-42.70	.1	10	35	. 7	. 1	48	5			
16023.02 43.66-44.25	1,4	45	148	15	3	20	2			



ATTENTION: 8.FAIRSANK (664)980-5814 DR (504)983-4524 I TYPE ROCK SEJOHEN & DATE;SEPT 9, 10 (VALUES IN PPH ) A6 A8 DU PB 38 IN 49-PPB 15079 1.3 64 58 19 1 31 8 165080 1.9 49 28 54 4 88 165 166081 66 64 26 23 1 67 32 166082 68 55 74 56 2 161 165 166082 68 55 74 56 2 161 165 166083 7.7 140 10 395 1 985 2500	COMPANY: FAIRBANK ENERS.			81N-	EN LABS	ich rehort				(A	CTIFSLE PAGE 1 OF 1
(VALUES IN PPH )     A6     A8     CU     PB     38     2N     40 PPB       16079     1.3     64     58     19     1     31     8       16086     1.9     49     7.3     54     4     88     1.65       16081     .6     64     25     23     1     67     92       16082     .8     55     74     56     2     161     165       16083     7.7     140     10     395     1     985     2500	PROJECT NO: S.D.DDHO6		-705 WEST	157H ST.	, SORTH	VANCOUVER,	B.C. V75	.72			FILE NO: 8-1224
16079     1.3     64     58     19     1     31     8       16086     1.9     49     38     54     4     88     165       16081     .6     64     26     23     1     67     32       16082     .8     55     34     56     2     161     165       16083     7.7     140     10     395     1     785     2500	ATTENTION: B.FAIRBANK			(604) 980	-5814 GR	16041939~	4524	I TYPE	ROCK	SECCHEM #	DATE: SEPT 7, 1998
16086     1.8     49     38     54     4     88     165       16081     .6     64     26     23     1     67     32       16082     .8     .5     .7     56     2     161     165       16083     .7     140     10     395     1     785     2500	(VALUES IN PPM )	45	AS	CU	28	38	ZN.	45-50B			
16081 .6 64 25 23 1 67 32 16082 .8 55 74 56 2 161 165 16083 7.7 140 10 395 1 985 2500	16079	1.3	64	58		1	31	. 8			
16082 .8 55 74 56 2 161 165 16083 7.7 140 10 395 1 985 2500	16086	1.9	49	38	54	4	88	. 165			
16083 7.7 140 10 395 1 985 2500	15081	. 5	64	25	23	1	67	32			
	16092	. 8	55	74	56	2	161	165			
14.03	16083	7.7	140	10	395	1	785	2500			
13907 13 22 17 27 3 119 2	15084	5	22		79.	3	110	2			*********

COMMENTS PALADAM EMBRO.			7187	CA LHOS	ile strus	1			i#L	aras Pe	ec i ut i
PROJECT NO: S.D.		705 MEST								FILE NO	: 8-1097R
ATTENTION: B.FAIRBANK			(504) 980	-5814 OR	(604) 988	-4524	# TYPE	ROCK	SEOCHER 1	DATE: SEP	T 9. 1988
(VALUES IN PPM )	A6	46	Ct:	P <b>B</b>	58		AU-PPB				
15044 DDH04-43.39-44.48	2.6		33	28	4	61	81				
16045 00H04-44.68-45.70	3.8	58	34	40	8	63	39				
15045 DDH04-45.70-46.75	2.9	46	35	20	4	74	5				
16047 DDHC4-52.43-53.10	.5	1 .	55	11	3.	73	2				
16048 00904-56.25-57.75	2.3	21	39	35	1	74	3				
16049 00H05-15.85-16.25	.9	9	21	10	5	42	. 2				
16050 DDHC5-46.33-47.55	1.4	1	16	16	5	72	- 3				
16051 DDH05-47.60-48.77	.7	1	28	16	4	96	5				41
16052 DDH05-54.55-55.20	1.4	5	20	. 8	3	88	4				
18053 D2HC5-57.00-59.40	3.7	213	18	19	10	62	1				
16054 DDH05-61.05-61.87	.8	. 13	36	16	5	50	3				
16055 DDH05-61.87-63.30	1.1	6	18	15	1 1 4	47	. 2				
16056 DDH05-66.80-68.40	1.7	1	12	11	5 6	54	4				
16057 DDH05-68.40-69.80	1.4	1	10	14	6	69	2				
16058 DDH05-69.30-70.90	1.8	15	21	14	4.	36	1				
15059 00H03-70.90-72.00	1.4	10	28	5	4	45	3				
16060 DDHC5-72.00-72.80	. 3	29	89	. 10	2	71	4				
16061 00405-77.85-78.75	. 4	15	103	14	1	72	. 7				
1506Z DDH05-79.50-80.40	5	12	98	10	1	73	1				

PR	OJECT :	NO: SILVI	K ENGINEERI ER NOLLAR	NG LTD.	70 <b>5 NES</b> T	1578 ST.	. NORTH	ICP REPORT VANCOUVER, R (604) 988-	B.C. V71	1 172 1 TYPE	anck generes	(ACT:F31) PAGE 1 OF 1 FILE NO: 8-1114R/P1 8 DATE:SEPT 26, 1988
		N: B.FAL		AS	<u>cu</u>	16041704	-3014 3 SB		AU-PPB	<u> </u>	Uddy practical	7 2072794112091 7744
		IN PPH	.2	17	183			64	4			**************************************
-	5063			149	102		ì	81	3			
-	6064		1.1	7	109	,	. 7	63	,			
	6065		.7	22		7	7	67	•			
	6066		.1	. 1	65 24			87	•			
	6067		<u>.B</u>	30								
	6068		.6.	26	16			117	,			
	6069		.5	21	21			78	. ,			
	6070		.8	1	27			107	• •		geral Mil	
	6071		.9	49	43 25			71	3			
	6072		1.0	<del></del>				59			·····	
	6073		1.2	1	1			70	ž			
	6074		1.2	1	21	3		5 65	i			
	16075		1.0		44	16		81	3			
	6076		.7	15	34	12		1 126	2			
	16077		.5		17	15		100	<u>-</u>			
	16106		.9		14	.0		107	,			
	16107		.5	26				6 73	3			
	16108		.1	2	•			3 48	- 25			
	16109			27	•	256		1 550	204			
	16110		1.2	50		11		1 58	40			
	16111		.4	49				2 67	"			
	16112		.5	2	11	7		2 o/ 5 57	12			
	16114		.4	. 1		3		2 J/ 5 68				
	16115		.9	23		2		3 68 5 59	9			
	16127		1.5	33		<u>-</u>		3 37 1 41				
	16128		.1	7	1	٥		. 41				



### EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS
O'MEN'S - ASSANERS - ANALYSTS - GEOCHEMISTS

VANTOCOVER OFFICE.
705 WEST 15TH STREET
MORTH VANCOUVER B.C. CAVADA V7M 172
TELEPHONE (604) 980-5814 OR (604) 980-9621
TIMMINS OFFICE:
33 EAST BROOLUGIS ROAD
P.D. BOX 387
THAMINS, ONTARIO CANADA PAN 7G7
TELEPHONE: (705) 264-9996

#### Certificate of ASSAY

Company: FAIRBANK ENGINEERING Project: S.D.DDHOS Attention: B.FAIRBANK

File:8-1224/P1 Date:SEPT.9/88 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

Sample Number	AU AU G/TONNE OZ/TON	
1,5083	2.82 0.082	mmen min men men men men men men men men men me
*****		

Certified by__

### APPENDIX H

CLAIM BOUNDARY ROCK GEOCHEMISTRY



Sample

Number

#### MIN • EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS
CHEMISTS - ASSAYERS - AMALISTS - GSOCHEMISTS

AU

G/TONNE OZ/TON

VANCOUVER OFFICE:
705 WEST 15TH STREET
NORTH VANCOUVER BC. CANADA V7M 172
TELEPHONE (804) 980-5814-0R-804) 988-4524
TELEX: VALUSA 7801087 + FAX (804) 980-9821
TIMMINS OFFICE:
33 EAST (RODUO'S ROAD
POL BOX 897
TIMMINS, ONTARRO CANADA PEN 767
TIMMINS, ONTARRO CANADA PEN 767
TIMMINS, ONTARRO CANADA PEN 767

#### Certificate of ASSAY

Company:FAIRBANK ENGINEERING Project:155-88 Attention:B.FAIRBANK

File:8-1542/P1 Date:SEPT.17/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

REBBSD	100	3.60	0.105	 A-Fritzmenene)	Principal Supramo	NOWS & STANKE	Marin Color of the	And the store of the	no mestado produceração
								ta Stantanta Stantantantantantantantantantantantantant	

Certified by

LUMPANY:				-		1			IUP KEPUK	-				INLITERED	
PROJECT	WO:	155-8	18 S.P.			705 WEST	15TH ST.	, WORTH	VANCOUVER	B.C. 47	172			FIL	E 101 8-1549R
ATTENTIO	N: I	.FAIR	BANK		 		(604) 986	-5014 OF	(604) 988	-4524	1	YPE ROCK	<b>SECCHEN</b>	\$ DATE:	SEPT 18, 1988
IVALUES	IN	PPH )		A6	 AS	CU	P <b>B</b>	SØ	Z#	AU-PPB		.,			
RF88SD	102			.8	 560	19	34	7	47	62	7.77				
RF88SD	103		2	.1	504	31	411	10	462	960					

COMPANY: FAIRBANK ENGRS.			NIN-	EN LAGS II	CP REPORT				(ACT:FIRE	PAGE 1 OF 1
PROJECT NO: 155-88		705 NEST				B.C. V78	172		F	ILE NO: 8-1542
ATTENTION: B.FAIRBANK				-5814 OR	(604) 988-	4524	I TYPE R	OCK SEOCHE	BATE:	SEPT 18, 1988
(VALUES IN PPN ) AG	AS	CU	PB	38	ZM	AU-PPS				
RF88SD 100 60.0	1629	90	182	47	98	3110				
RF885D 101 2.4	107	40	49	1	67	22				