LOG NO: 0814 RD. 6	LOG NO: 0602	RD.
ACTION: Dote received report back from anindments	ACTION:	
FILE NO:	FILE NO:	

100

. Gui

ان ا

8.3

le.

. .

16.3

1

걸

12.3

ار کا

È.

FILMED

GEOLOGICAL AND GEOCHEMICAL REPORT

ON THE

STAN PROPERTY

Brandywine Creek Area, Vancouver Mining Division, B.C.

NTS 92 J/3E Latitude: 50005'North Longitude: 123⁰11'West partial (cound $\zeta_{ab} = G_{ab}^{ab}$ RG all mai Sec. Inc. ву 約 <u>第</u>3 hard from に見ていた。 1. A. S land J. Duro Adamec, Ph.D., F.G.A.C. ് ക 1159 Premier Street North Vancouver, B.C. $\bigcirc \omega$ V7J 2H3 The second

ARIS SUMMARY SHEET

District Geolo	ogist, Victoria		Off Confident	tial: 90.04.13
ASSESSMENT REF	ORT 18788	MINING DIVISION: Va	ancouver	
PROPERTY: LOCATION:	Stan LAT 50 05 00 UTM 10 5547696 NTS 092J03E	LONG 123 12 00 485690		
CAMP:	032 Alta Lake Ca	amp		
CLAIM(S): OPERATOR(S): AUTHOR(S): REPORT YEAR: COMMODITIES	Stan 1-3 Adamec, J.D. Adamec, J.D. 1989, 34 Pages			
SEARCHED FOR: KEYWORDS: WORK		r mplex,Garibaldi Gro te,Bornite,Malachit		
DONE: Pros PROS	47 sample(s)	;ME		

1	ECORDER	
	26 1989 TABLE OF CONTENTS	
6	Summer Summer	Page No.
	UVER, B.C.	i /.
1.0	INTRODUCTION	1
1.1 1.2 1.3	Property Status	2 / 2 / 4 /
2.0	REGIONAL GEOLOGY	4
3.0	PROPERTY GEOLOGY AND MINERALIZATION	4 5
4.0	GEOCHEMISTRY	5 /
4.1	Discussion of Results	6
5.0	CONCLUSIONS AND RECOMMENDATIONS	8 /
6.0	REFERENCES	1

LIST OF APPENDICES

APPENDIX I	Statement of Qualifications
APPENDIX II	Rock Sample Descriptions
APPENDIX III	Analytical Methods 🧳
APPENDIX IV	Geochemical Data
APPENDIX V	Statement of Costs

LIST OF FIGURES

					<u>After Page</u>
Figure	1.	General Location	Мар		1 /
Figure	2.	Claim Map			2 /
Figure	3.	Regional Geology	Мар		4
Figure	4.	Rock and Silt Sar	nple Locat	tions Map	5

SUMMARY

61

......

.

The Stan property is located approximately 12 km southwest of the recreational resort of Whistler in the Brandywine Creek area, B.C.

The area lies within the Coast Plutonic Complex. The complex is characterized by gneisses and granitoid rocks with pendants and septae of metavolcanic and metasedimentary rocks which are variably metamorphosed from high amphibolite to low greenschist grade.

Two mining operations are located within the area, Van Silver Explorations Ltd. has a mill 2 km southeast and Northair Mine is located 6km north of the Stan property. The 1988 prospecting program defined several areas with anomalous precious and base metal values. The main zone of mineralization occurs on the Stan claims, where gold values up to 90 ppb and silver values of up to 9.2 ppm with accessory copper up to 4517 ppm were recorded.

The results of the geochemical survey indicate that the potential for significant precious and base metal mineralization exists on the Stan property and geological features indicate greater volumes of mineralization could be found.

A program of detailed geological mapping, soil sampling and a geophysical survey is warranted and recommended.

1.0 INTRODUCTION

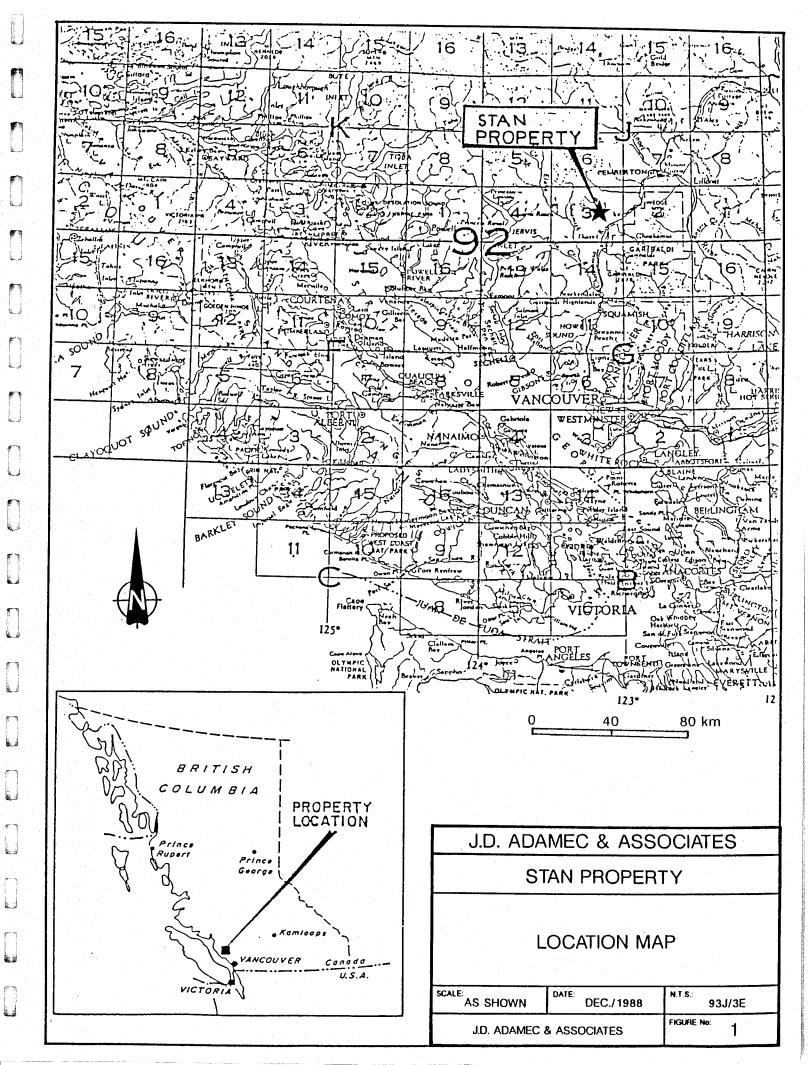
1

徽日

k d

The Stan 1, Stan 2 and Stan 3 claims, consisting of 55 units are owned by J. Adamec, 1154 Premier Street, North Vancouver, B.C.

The field work on the claims was conducted in June, September and October 1988, totalling in 27 field days, by J. Adamec, Ph.D. The work consisted of reconnaissance prospecting, limited rock and silt sampling.


This report reviews the geological setting and 1988 field work on the Stan claim group and provides recommendations for further exploration.

1.1 Location, Access and Physiography

The Stan claim group is located in the Brandywine Creek area, B.C., which is about 12 km southwest of the recreation resort of Whistler and about 87 km north of the city of Vancouver, B.C. The claim group is centered at latitude $50^{\circ}05'$ north and longitude $123^{\circ}11'$ west on 92J/3E map sheet (Figure 1).

Access to the property from Vancouver is via Highway 99 to the Brandywine Trail road and then approximately 6 km to the west to the eastern property boundary. Logging operations throughout the property has resulted in a network of two and four wheel drive roads on the property.

The Stan 2 and Stan 3 claims straddle the Brandywine Creek. Elevations on the property range from 2800 feet in the Brandywine valley to 5500 feet with moderate to

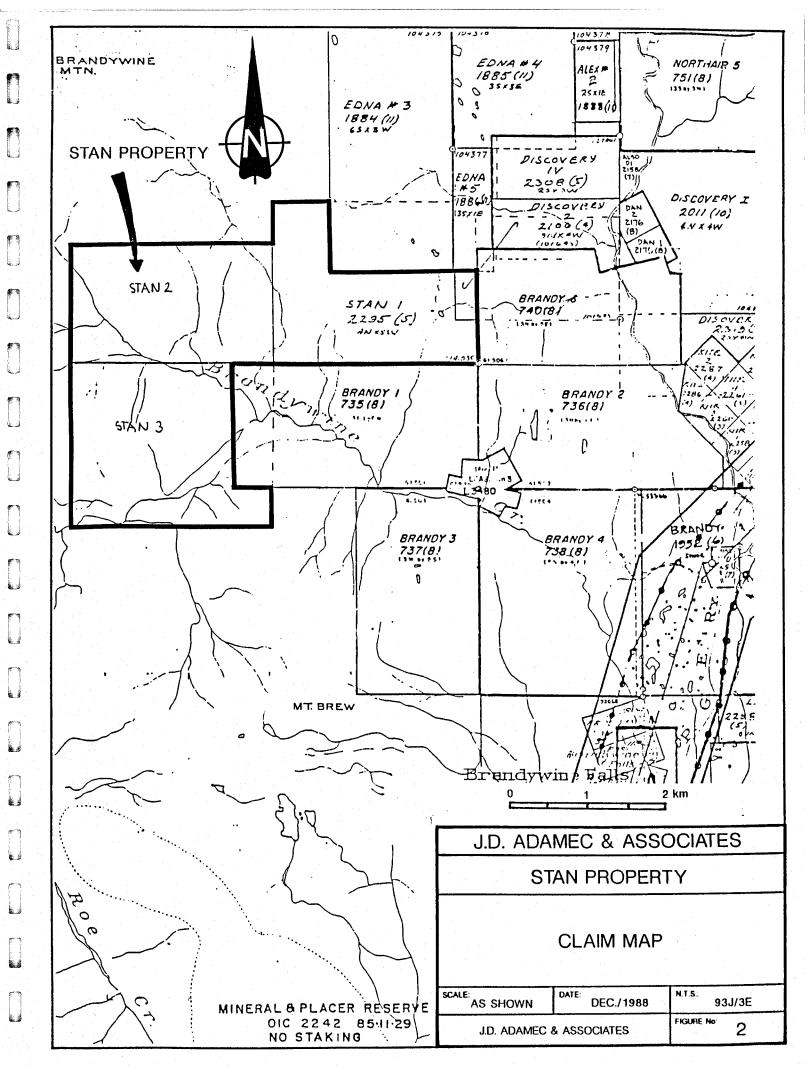
strong relief. Vegetation is typical of coast rain forest with the logged areas for commercial purpose.

1.2 Property Status

Contraction of the local data

Ben Line

The Stan property consists of three mineral claims, totalling 55 units, situated some 87 kilometers north of Vancouver, B.C. within the Vancouver Mining Division (Figure 2).


A list of pertinent claims data is given below:

<u>Cla</u>	<u>im</u>	<u>Units</u>	Record No.	<u>Record Date</u>
Stan	1	20	2295	05/10/88
Stan	2	15	2350	09/25/88
Stan	3	20	2351	09/24/88

A search of assessment records indicates that the Stan 1 claim was formally held as the Skyline claim, however no work was recorded. The claims are now owned by Mr. J. Adamec.

1.3 History

The first reports of exploration and mineral occurrences along the British Columbia Railroad (former Pacific Great EAstern Railroad) were made by Camsell (1917) in summary reports, 1917, Part B, Geological Survey of Canada. In the 1924 report of the Minister of Mines, Brewer states that, "During 1924 discoveries were made by Helmar Hogstrom on a small tributary of the Brandywine River, about 3 miles westerly from McGuire Siding, which are of considerable importance and promise to supply a tonnage of ore and suplies for railway-haul during the coming season of 1925." The description apparently applies to the Astra and Cambria

prospects (B.C. Mineral Inventory 92 JW #1) and Blue Jack prospect (B.C. Mineral Inventory 92-JW #3) operated in 1969 and 1976 by Barkley Valley Mines Ltd. and Van Silver Explorations Ltd.

The area appears to have received a number of prospecting efforts with a few shipments from the Astra-Cambria and Blue Jack prospects.

Blue Jack group - Silver Tunnel

							(2.5% Pb)
Open	Cut	·3	0.36	oz/t	Au	2.6	oz/t Ag
Open	Cut	2	0.20	oz/t	Au	2.4	oz/t Ag
Open	Cut	1	0.24	oz/t	Au	1.8	oz/t Ag

Astra-Cambria, Tedi Pit (1934)

<u>Au (oz/t)</u>	<u>Ag (oz/t)</u>	<u>% Pb</u>	<u>% Zn</u>	<u>% Cu</u>	<u>Width</u>
0.4	2.0	2.6	4.0	tr	15"
tr	1.5	1.0	3.0	-	30"

These old showings are located approximately 2 km south east of the Stan property.

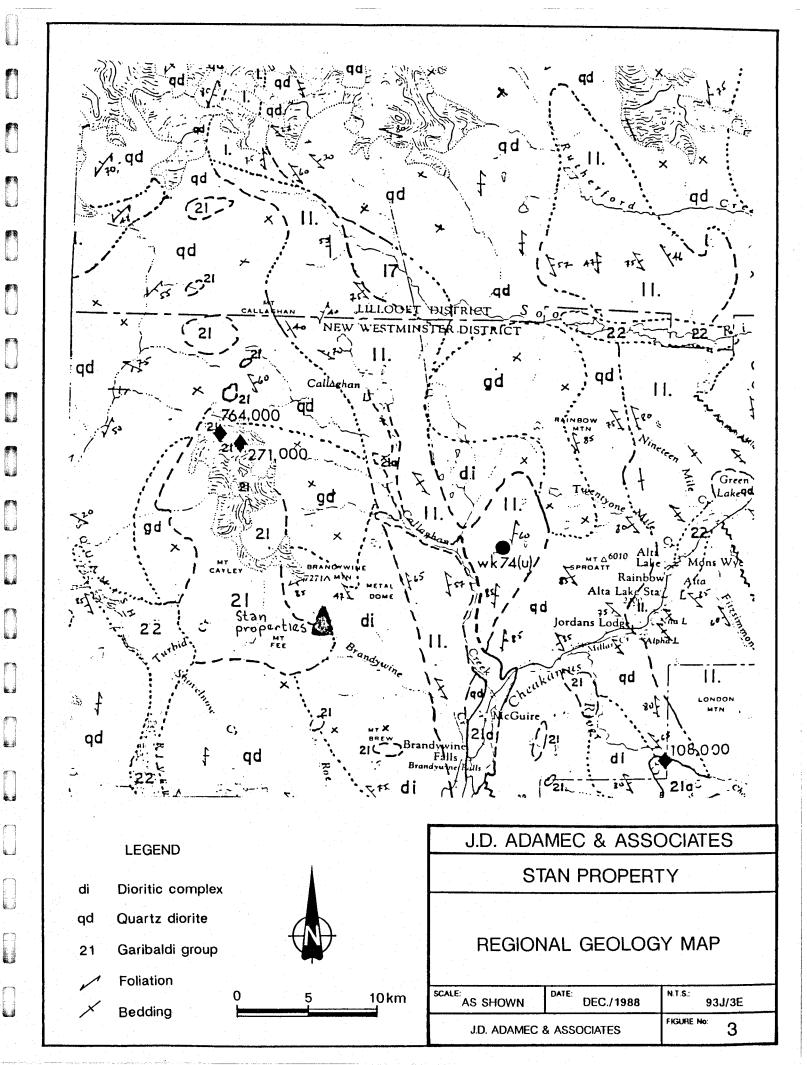
In 1970, on the Callaghan Creek Dr. M. P. Warshawski, an amateur prospector and Mr. A. H. Manifold, a geologist discovered, the Warman property, which is 6 km north of the subject property. The Norman Property was explored and developed by Northair Mines Ltd. from 1972 to start of production of copper, lead and zinc. Milling was suspended in June, 1982 due to economic conditions with reserves as of February 28, 1982 reported at 67,236 tons averaging 0.25 oz Au/ton, 0.77 oz Ag/ton, 1.25% Pb and 1.9% Zn.

2.0 REGIONAL GEOLOGY

È,

£ 1

The general geology of the Brandywine Creek area consists of the Callaghan Creek roof pendant, which lies within the Coast Plutonic Complex. Generally, Cretaceous to Triassic pendant rocks in the Coast Plutonic Complex are remnants of volcanic and sedimentary rocks of volcanic island arcs and associated basins (Dickson, 1976). Significant amounts of plutonic detritus is also present in some Lower Cretaceous to Upper Triassic rock units with their extent dependent on presence and the geographic location of the depositional site (Thompson, 1976).


4

The Coast Plutonic Complex is a complex of gneisses and granitoid rocks with pendants and septae of metavolcanic metasedimentary and rocks which are variably metamorphosed from high amphibolite to low greenschist grade.

These pendants and septae characterictically have a north westerly trending foliation and were developed primary between the Early Cretaceous and Early Tertiary (Surtherland Brown, 1971).

3.0 PROPERTY GEOLOGY AND MINERALIZATION

The Stan claim group is predominantly underlain by dioritic complex, of the Coast plutonic Complex. The dioritic complex consists of medium grained quartz Dioritic rocks in the area are reported to diorite. contain 45% plagioclase, 25% chlorite, 14% epidote, 8% quartz and the remainder accessory minerals (Miller, Sinclair, 1978). Greenstone of assumed andesitic composition is locally weakly moderately to metamorphosed of chloritic and biotitic greenschist.

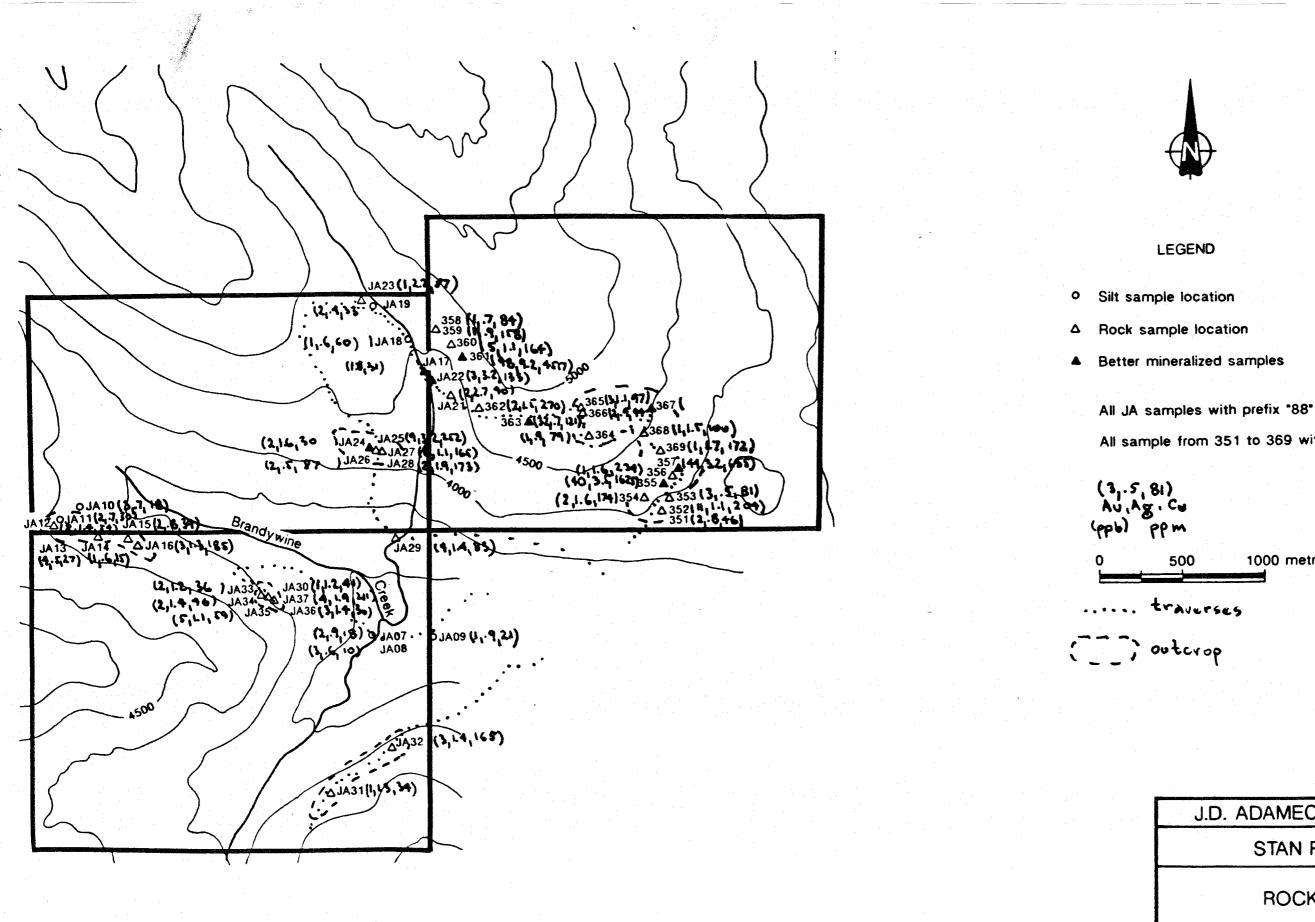
The southwest part of the property is underlain by Pliocene Garibaldi group consisting of basalt to rhyodacite flows and pyroclastics.

Mineralization on the property is associated with well sheared greenstones as dissemination, massive sulphides and skarn. The minerals at the Stan property are pyrite, chalcopyrite, bornite, malachite, sphalerite and pyrrhotite.

4.0 GEOCHEMISTRY

Second Second

1


4.1 Discussion of Results

The prospecting consisted of 47 rock samples and 10 silt samples. All samples were shipped to Min-En Laboratories, 705 West 15th Street, North Vancouver, B.C., for 31 elements by ICP and gold by atomic absorption analyses. Rock sample descriptions and analytical results are presented in Appendix II, III and IV.

A summary of results from the better mineralized samples are presented in Table 1.

Sample No.	<u>Type*</u>	Width (cm)	Au (ppb)	Ag (mqq)	Other (ppm)
18355	R	25	40	3.5	1625 Cu
18361	R	50	98	9.2	4517 Cu
JA 04	R	40	49	3.3	1473 Cu
JA 05	R	30	27	7.0	4658 Cu
JA 22	G		3	3.2	133 Cu
JA 25	R	30	9	3.2	252 Cu
18357	R	100	44	3.2	655 Cu
18363	R	100	32	0.7	121 Cu

*See rock descriptions.

All sample from 351 to 369 with prefix "18"

1000 metres

a de la companya de l					
J.D. ADA	MEC & ASSO	DCIATES			
ST	STAN PROPERTY				
	ROCK and SILT SAMPLE LOCATION MAP				
scale: 1 : 25.000	DATE DEC./1988	NTS 93J/3E			
J.D. ADAMEC	FIGURE No: 4				

Stream sediment samples from the streams which drain the property have returned only background values. Only sand sized and coarser sediments were found in these high-energy streams, the finer material having been washed away.

5.0 CONCLUSIONS AND RECOMMENDATIONS

C. Line of the second

A DESCRIPTION OF THE PARTY OF T

Contraction of the second

مگا

. م

J

1

The subject property lies within the Coast Plutonic Complex. This complex is formed by gneisses and pendants granitoid rocks with and septae of metavolcanic and metasedimentary rocks which are variably metamorphosed from high amphibolite to low greenschist grade.

The Stan property is surrounded by well known precious and base metal deposits and lies only 2 km northwest of the Blue Jack Astra-Cambria showings and about 6 km south of the Northair Mine, which are in similar geological setting favourable for precious and base metal mineralization.

Exploration activities in 1988 on the Stan property indicate that the potential for significant precious and base metal mineralization exists on the Stan claims.

As a result of the encouraging geochemical survey conducted on the property, an exploration program designed to test the potential for base and precious metal mineralization is warranted and recommended.

Detailed geological mapping should be carried out on the property. A control grid should be also established on the existing mineralized showings and a geochemical program along with geophysical program to perform over this grid.

Dependant upon positive results, a trenching, blasting, sampling and initial exploration drilling program should be carried out over the best anomalies to define the source and extent of these anomalies.

Respectfully submitted,

J. Duro Adamec, Ph.D., F.G.A.C.

December, 1988

6.0 REFERENCES

.

- Mathews, W.H., 1958. Geology of the Mount Garibaldi Map-Area, Southwest British Columbia, Canada. Geol. Soc. Amer, Bull, Vol. 69, No. 2, pp. 161-178.
- Miller, J. H. L. and Sinclair, A.J., 1979. Geology of an Area Including Northair Mines Ltd. Callaghan Creek Property. B.C. Min. Energy, Mines and Pet. Res., Geological Fieldwork 1978, Paper 1979-1, pp. 124-131.
 - , 1978. Geology of the Callaghan Creek - Roof Pendant. B.C. Min. Energy, Mines and Pet. Res., Geological Fieldwork 1977, pp. 96-102.
- Pearson, D. E., 1973. Warman (92-J-89). in B.C. Ministry of Mines GEM 1973, pp. 245-248.
- Sinclair, A. J., Wynne-Edwards, H.R., and Sutherland Brown, A., 1978. An Analysis of Distribution of Mineral Occurrences in British Columbia. B.C. Ministry of Mines & Pet. Res., Bull 68.
- Roddick, J. A., and Woodsworth, G. J., 1975. Coast Mountains Project: Pemberton (92J West Half) Map-Area, British Columbia. Geol. Surv., Canada, Paper 75-1, Pt. A, pp. 37-40.
- Woodsworth, G. J., Pearson, D. E., and Sinclair, A. J., 1977. Metal Distribution Patterns Across the EAstern Flank of the coast Plutonic Complex, South-Central British Columbia, Econ. Geol., Vol. 71, pp. 170-183.

APPENDIX I

P

0

Ù

Ĵ

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, J. Duro Adamec, of 1154 Premier Street, North Vancouver, B.C., hereby certify that:

- 1. I graduated in geology from Commenius University of Bratislava, Czechoslovakia (1978) and I hold a Ph.D. in Engineering Geology (1982) from the same University.
- 2. I am a Fellow, in good standing, of the Geological Association of Canada.
- 3. I have been practicing my profession in Europe, and North America since 1978.
- 4. The information contained in this report was obtained from field work conducted by myself and others in 1988.
- 5. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of a private or public financing.

Dated in Vancouver, B.C. this day of _____, 1988.

J. Duro Adamec, Ph.D., F.G.A.C.

n)

للن

F

لك

Ű.

APPENDIX II

Number of Street, or St

Rock Sample Descriptions

Rock Sample Descriptions

	Sample	Width	
Sample No.	*Type	<u>(Cm)</u>	Sample Description
D6 JA 1	R	25	Dark grey, medium grained granodiorite, disseminated
D6 JA 2	R	30	pyrite. Dark Grey, medium grained granodiorite, disseminated
D6 JA 3	R	20	pyrite. Greenstone, disseminated pyrite.
D6 JA 4	R	40	Grey, medium grained gran- odiorite, malachite,
D6 JA 5	R	30	chalcopyrite < 5%. Andesitic composition, malachite, chalcopyrite <
			2%.
D6 JA 6	R	25	Greenstone, disseminated sulphides.
88 JA 12	R	20	Biotite schist, rusty.
88 JA 14	G		Limonitic, medium grained, angular breccia.
88 JA 15	R	30	Siliceous greenstone.
88 JA 16	R	25	Greenschist, pyrite < 5%.
88 JA 21	G	-	Green, rusty, schist.
88 JA 22	G	-	Silicified greenstone, metalic luster, pyrite < 10%.
88 JA 23	R	30	Granitic composition,
			rusty, fine sulphides < 5%.
88 JA 24	R	150	Siliceous rock with disseminated pyrite.
88 JA 25	R	30	Rusty, biotite schist, disseminated pyrite.
88 JA 26	R	25	Silicified, pyritic green- stone.
88 JA 27	R	20	Schistozed greenstone, pyrite, < 5%.
88 JA 28	R	30	Rusty greenstone, pyrite < 2%.
88 JA 29	G		Medium grained quartz diorite, disseminated pyrite, quartz stringers.
88 JA 30	R	25	Rusty, siliceous greenstone, partly.
88 JA 33	R	20	schistozed, pyrite < 2%. Quartz vein.
88 JA 34	R	30	Coarse dark granadiorite,
88 JA 35	R	100	pyrite < 2%. Rusty, oxidized, biotite
			schist?

88 JA 36	R	30	Rusty, dark quartz diorite.
88 JA 37	R	30	Quartz diorite with quartz
88 JA 31	R	30	veinlets, pyrite < 5%. Dark quartz diorite,
			pyrite < 10%.
88 JA 32	R	25	Rusty, fine grained
			diorite, pyrite <5%.
18351	R	20	Fine grained pale
			greenstone, pyrite, chal-
18352	R	100	copyrite < 10%.
10332	K	TOO	Fine grained, dark green-
			stone, pyrite, chalco- pyrite < 10%.
18353	G	-	Rusty schist, pyrite,
	Ũ		chalcopyrite, bornite <
	•		10%.
18354	R	25	Fine grained greenstone,
			chalcopyrite, pyrite < 5%.
18355	R	25	Dark biotite schist with
			quartz stringers, chalco-
			pyrite, pyrite.
18356	R	30	Fine grained, rusty
			granodiorite, pyrite,
10057	D		chalcopyrite < 5%.
18357 18358	R R	100	Greenstone.
10330	R	40	Pale, fine grained granodiorite.
18359	R	300	Rusty fine grained
10000	* *	500	granodiorite, disseminated
			pyrite, chalcopyrite.
18360	R	15	MEdium grained
			granodiorite.
18361	R	50	Fine grained greenstone?
			stringer of chalcopyrite,
			pyrite, bornite < 50%.
18362	R	30	Rusty greenstone.
18363	R	100	Greenstone.
18364	R	35	Light, fine grained
			greenstone, pyrite, chal- copyrite < 5%.
18365	R	30	Rusty greenstone, dissem-
10000	Λ	50	inated chalcopyrite.
18366	R	100	Rusty greenstone, chalco-
			pyrite < 5%.
18367	R	25	Fine grained granodiorite
			?, disseminated pyrite,
10000			chalcopyrite.
18368	R	100	Rusty, medium grained
10260	.	* •	granodiorite.
18369	R	30	Quartz diorite,
			disseminated pyrite, chal-
			copyrite.

and the second sec

0

Û

*Note: R - Rock chip samples G - Grab samples

0

 \bigcirc

APPENDIX III

ſ

0

 \sum

Analytical Methods

HONE: (604) 980-5814 or 988-4524

MIN-EN Laboratories Ltd.

Specialists in Mineral Environments Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C.

CANADA V7M 1T2

FIRE GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Fire Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95 °C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 15.00 or 30.00 grams are fire assay preconcentrated.

After pretreatments the samples are digested with Aqua Regia solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 1 ppb. 1

MIN-EN Laboratories Ltd. Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

Analytical Procedure Report for Assessment Work

31 Element ICP

Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories Ltd., at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95[°]C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.

1.0 gram of the sample is digested for 4 hours with an aqua regia $HClO_4$ mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers. Reports are formatted and printed using a dot-matrix printer.

APPENDIX IV

Ŋ

Geochemical Data

COMPANY: J.D.ADAMEC 8	ASSOC	CIATES		MIN-E	EN LABS	ICP REPORT	· , ;			(ACT:F3	1) PAG	E 1 DF 3
PROJECT NO: 88 BC 11			705 WEST	15TH ST.,	NORTH	ANCOUVER,	B.C. V7	M 1T2		FILE	NO: 8-	21585/P1
ATTENTION: J.ADAMEC				(604)980-	-5814 OR	(604)988-	4524	TYPE SIL	T GEOCHEM ¥	DATE:D	ECEMBER	8, 1988
(VALUES IN PPM)	AG	AL	AS	B	BA	BE	BI	CĂ	CD	C0	CU	FE
88JA07	.9	13760	14	7	102	.7	9	7550	3.4	17	18	37420
88JA08	.6	11220	13	4	84	.4	. 9	5450	2.3	15	10	46070
88JA09	.9	8240	12	1	40	.7	. 9	5730	3.7	13	21	20030
88JA10	.7	15400	. 11	4	62	.7	9	8920	3.4	18	33	26840
88JA11	.7	10340	12	1	48	.4	9	6670	2.4	14	30	20270
88JA13	.5	16790	6	3	149	.6	10	6120	2.4	20	27	34620
88JA17	.6	13270	9	3	47	.5	9	8210	2.9	19	31	24000
88JA18	.6	12410	6	2	32	.6	7	7160	4.8	23	60	25550
88JA19	.4	9820	7 .	1	31	.3	6	4770	3.3	14	33	14860
88JA20	.4	14140	12	4	49	.6	6	7610	4.0	18	42	20770

COMPANY: J.D.ADAMEC & ASSOCIATES MIN-EN LABS ICP REPORT (ACT:F31) PAGE 2 DF 3 PROJECT NO: 88 BC 11 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 FILE NO: 8-21585/P1 ATTENTION: J.ADAMEC (604)780-5814 DR (604)788-4524 ***** TYPE SILT GEOCHEM ***** DATE: DECEMBER 8, 1988 LĪ (VALUES IN PPM) MG MN MO NA NI P PB SB SR K 88JA07 88JA08 88JA09 88JA10 88JA11 88JA13 88JA17 i 88JA18 88JA19 88JA20

TH

ī

1_

1_____

	ď.																		
2. 3	COMPANY:				ASSO	CIATES		ł	IIN-	EN LABS	ICP REP	ORT			•	(ACT	:F31)	PAGE 3	DF 3
140	PROJECT	NO:	88	BC 11			705 WES	T 15TH	ST.	, NORTH \	VANCOUV	ER, B.(C. V7M	112		F	ILE NO:	8-215	95/P1
	ATTENTIO	IN:	J.AD	AMEC				(604)	980	-5814 OR	(604)9	38-452	4 🗄 🕯	TYPE SILT	GEOCHEM	I DAT	E:DECEN	IBER 8,	1788
	(VALUES	I	PPM)	Ū	V	ZN	6	A	SN		1	CR	AU-PPB					
	88JA07				1	92.5	45		1	2			39	2					
تخورسانا	88JA08				1	113.6	36		1	2		l'e	36	3					
	88JA09				i	55.i	23		2	2		2	34	1					
Success Success	88JA10				1	67.5	40		1	2		l	41	3					
81 B	80JA11				. 1	59.3	27	1. I.	2	2		2	33	2					
	88JA13				1	85.5	42		1	2			31	4					
100	88JA17				1	60.8	46		2	2		Į	33	1					
	88JA18				1	44.7	114		1	2		r.	38	. 1					
	88JA19				1	34.8	30		1	2			27	2		1			
	88JA20				1	46.9	56	11. 	1	1	·		35	1					•
en no																			

PROJECT ND: 88 BC 1 ATTENTION: J.ADAMEC			705WE51			ANCOUVER,			/ FERGUEN		NO: 8-2	
(VALUES IN PPM)	ÁG	AL				(604) 988-			GEOCHEM #		DECEMBE	~~~~
18351	.8	25880	AS 15	<u>B</u>	BA	BE	BI	CA	CD	<u> </u>	<u> </u>	
18352	1.1	23880	8	11	180	.7	15	13470	3.8	34	46	3917
19353	.5	11260	8 23	13	75	.6	20	14680	3.8	35	204	5047
18354	1.6	27560	20 14	7	147 180	.6	8	7690	3.5	15	81	157
18355	3.5	17580	21	10	180	.6	21 23	19730 21360	3.3 3.8	45	174	4834
18356	1.6	14990	19	9	153			11780	3.1	<u> 161 </u>	1625	5043 322
18357	3.2	21690	16	12	16	1.0	13	17780	1.8	85	234 655	884
18358	.7	30990	7	. 14	45	.8	9	26910	3.3	60 60	84	558
18359	.9	19570	18	10	124	.8	10	11890	4.2	29	158	387
18360	1.1	27810	21	13	58	.5	14	20220	2.3	33	164	408
18361	9.2	12320	19	10	10		21	14320	.5	221	4517	1693
18362	1.5	33800	25	15	88	.6	20	11970	1.7	45	270	646
18363	7	26170	19	12	335	1.0	12	17140	2.7	26	121	3573
18364	.9	21160	20	10	161	.8	13	11600	4.0	26	79	3508
18365	1.1	20780	20	10	162	.7	15	10480	3.4	26	97	352
18366	.9	24100	25	10	363	••••••••••••••••••••••••••••••••••••••	14	8440	2.0		74	475
18368	1.5	24260	19	12	228	.7	18	15490	2.6	25	100	4020
18369	1.7	24020	22	11	144	. 6	17	17500	2.0	34	172	4575
D5JA04	3.3	20950	27	10	197	.7	19	14670	4.2	22	1473	212
D5JA05	7.0	25560	21	12	62	.7	29	12940	3.7	24	4658	4101
D5JA06	.4	12740	25	7	37	.6	11	143890	4.2	24	297	125
D5JA07	1.3	22290	22	11	248	.8	15	13150	3,9	28	193	3333
D6JA01	1.1	16420	17	8	267	.8	11	12040	3.3	17	46	197
D6JA02	.9	18880	21	9	97	. 8	10	10460	4.7	18	35	2405
D6JA03	1.2	21280	21	9	103	.7	15	14950	2.6	19	54	2513
88JA12	1.4	16660	23	9	49	.6	16	16740	4.9	30	85	316
88JA14	.6	16120	75	19	172	1.6	6	5210	1.3	20	15	17197
88JA15	.8	23010	23	11	154	.6	15	15430	3.8	25	39	367(
88JA16	1.3	27280	19	11	223	.8	20	22450	2.3	42	185	5122
S88JA21	2.7	22980	17	9	21	.5	- 31	30520	1.1	38	40	3584
\$88JA22	3.2	21100	15	15	208	1,4	16	20320	7.6	33	133	327
S88JA23	2.2	29060	12	14	147	1.1	15	17990	4.5	26	87	4064
588JA24	1.6	16310	24	. 8	200	1.0	11	11540	4.3	15	30	185
S8BJA25	3.2	29380	11	13	112	.8	29	19270	2.8	39	252	5298
S88JA26	.5	51080	26	21	178	.8	13	16030	4.0	47	87	5847
S88JA27	1,1	44380	28	18	86	.6	20	23290	1.1	48	165	974
588JA28	1.9	28030	16	13	142	.6	16	23060	2.8	36	173	5267
588JA29	1.4	33950	5	14	212	1.0	14	32850	5.2	38	83	528
88JA30	1.2	15420	18	8	126	.5	13	9810	3.8	18	41	2508
88JA31	1.3	34920	18	14	64	.7	17	33630	2.1	29	34	384
88JA32	1.4	35370		14	279	1.0	19	29940	3.0	36	165	601
BBJA33	1.2	8050	23	5	78	.6	10	4530	5.1	14	36	1234
98JA34	1.4	11550	26	6	40	.5	12	11010	4.4	16	46	1571
8BJA35	1.1	21420	18	12	179	.8	13	12600	5.3	25	59	3505
88JA36	1.4	27080	16	. 14	310	.8	15	12350	4.0	24	30	3753
88JA37	1.9	52710	33	21			22 28	13240	2.0	61	211	10127
NONUMBER	1.4	23190	15	9	220	.6	16	14860	4.3	-31	44	3976

TTENTION: J.AD	AMEC			(604) 990-	5814 DP	ANCOUVER, (604)988-4			GEOCHEM #		E NO: 8-21	
(VALUES IN PPM		LI	MG	MN	MO	NA	NI	P	PB	SB	DECEMBER	8. 1
18351	2560	12	18410	703	7	940	14	800	25		51	
18352	1540	.11	19050	721	6	830	13	710	30	· •	34	
18353	2390	9	4910	272	8	920	14	430	24	3	34	
18354	3140	11	20880	892	- 6	680	. 39	1700	51	3 1	40	
18355	1430	10	15190	576	5	1700	50	680	33	1	21	
18356	2800	10	9130	400	8	950	14	1510	27		28	
18357	730	10	9650	405	8	250	63	830	19		42	
18358	1290	14	26710	2259	7	670	28	1540	28	1	52	
18359	2280	11	14730	882	10	610	16	1630	32	2		
18360	1140	11	18710	788	7	540	17	1040	32	3	50 91	
19361	500		4590	327		170	1	880	26		47	
8362	2280	12	24520	859	6	720	17	1010	37	2	38	
8363	1710	11	13430	697	7	290	13	2100	31	2 A	115	
18364	2510	11	14300	688	8	870	1.5	1230	31		56	
8365	2310	11	14760	704	8	830	13	1070	28	4	49	
8366	2920	13	17300	456	23	330	28	2060	37	3	25	
8368	3900	11	14410	859	9	550	15	1400	44	4	51	
8369	2190	11	16060	581	7	1010	28	1820	26	3	76	
5JA04	3340	11	11210	481	7	790	15	970	27	1	84	
5JA05	2270	13	15220	1139	8	1030	13	1670	36	t	60	
5JA06	1820		4390	287	8	470	16	990	18	4	27	
5JA07	3250	13	15300	632	6	840	18	1210	31	2	38	
6JA01	6770	11	6660	406	. 7	850	12	810	23	4	65	
6JA02	2050	11	11730	806	7	780	20	850	31	3	60. 	
6JA03	2320	11	11010	629	8	700	15	990	36	5	118	
8JA12	2520	16	7650	371		2230	25	1670	19	5		
8JA14	1350	12	3920	982	3	1750	3	1050	16	1	36	
8JA15	2900	12	12870	739	ĥ.	1200	11	1510	24	4	101	
8JA16	5470	12	19310	724	6	3420	51	1360	27	1	34	
88JA21	900	8	8830	442		750	26	800	26	5	85	
88JA22	3770	17	15660	665	14	680	14	1280	45	16	68	
88JA23	2520	13	18770	812	15	670	11	1380	4J 30	-	98	
88JA24	4370	11	6690	425	. 9	940	12	620	32	5 7	78 80	
88JA25	2030	11	16970	883	0	1140	20	610	.40	3	55	
88JA26	2100	11	40960	1251	3	1180	124	850	38	5 1	47	
88JA27	1590	12	24650	1471		650		1360	43			
88JA28	1770	12	18610	952	8	640	26	1830	32	1	48	
B8JA29	8390	14	26080	1085	0 5	960	16	1410	32 29	1 ·	48 64	
8JA30	4510	11	9810	531	7	1270	13	550	33	1. 19	25	
BJA31	2120	14	16230	609	7	1270	13	1780	26	- 4 . 5	129	
BJA32	5470	13	17040	844	<u>'</u>	4140	7	2660	30	2	65	
BJA33	2760	10	4160	297	8	960	16	530	25	4	28	
BJA34	1220	. 9	3820	347	8	500	15	510	25	5	34	
BJA35	6750	12	14290	604	. 6 .	1750	25	770	23	3.	27	
BJA36	8220	12	17370	821	7	1730	23	1400	32	3	47	
BJA37	990	17	43380	1658	4	630	48	1040	25		25	
DNUMBER	7750	17	43380	759	6	1680	21	1040	34	4	2J 33	

PROJECT ND: 88 BC 11 ATTENTION: J.ADAMEC		703 WESI	(604) 780-1	NORTH VANCOU 5814 OR (604)			GEOCHEM #	FILE NO: DATE:DECEN	8-2158/P14 IRFR 8. 198
(VALUES IN PPM.)	U V	ZN	GA	SN	W CR	AU-PPB			
18351	1 80.2	47	1	2	1 208	2			
18352	1 145.3	57	1 1	4	1 185	11			
18353	1 27.8	27	6	1	5 253	3			
18354	1 94.7	80	1	4	1 163	2			
18355	1 106.5	61	2	3	1 207	40			
18356	1 70.2	40	3	2	2 199	1			
18357	1 92.1	40	2	1	1 183	44			
18358	1 104.9	69	1	2	1 175	1			
18359	1 57.5	106	4	2	1 160	1			
18360	1 78.5	69	3	22	1 168	5		· · · · · · · · · · · · · · · · · · ·	2.1.3
18361	1 60.6	28	1	. 1	1 206	78			
18362	1 190.7	78	1	3	1 145	2			
18363	1 79.7	55	3	3	2 213	32			
18364	1 71.2	82	3	2	3 219	1			
19365	1 63.0	87	2	2	5 254	3			
18366	1 113.4	56	4	2	4 267	2			
18368	1 84.8	97	3	3	3 158	1			
18369	1 88.8	57	5	3	4 232	1			
D5JA04	1 55.3	54	5	3	3 236	49			
D5JA05	1 42.1	75	7	3	1 265	27			-
D5JA06	1 63.5	19	8	. 1	1 82	2			
D5JA07	1 61.3	80	4	3	2 203	1			
D6JA01	1 40.2	28	5	2	3 2,07	1			
D6JA02	1 54.5	63	5	-	3 224	1			
D6JA03	1 68.2	32	7	2	7 279	2			
88JA12	1 60.4	27	7	2	3 212	2			
89JA14	1 81.3	60	1	1	1 105	1			
88JA15	1 97.6	60	4	1	8 325	2			
88JA16	1 166.2	56	1	4	2 206	3			
588JA21	1 128.7	23	6	6	6 263	22			
S88JA22	1 71.2	83	4	2	1 176	3			
588JA23	1 90.0	77	2	2	1 189	1			
S88JA24	1 38.8	44	7	$1 < \mathbf{i}$. The second	5 256	2			
S88JA25	1 148.4	71	1	6	1 154	9			
S88JA26	1 177.0	117	1	5	1 248	2		1	
S88JA27	1 226.4	100	1	4	1 168	6			
588JA28	1 95.5	78	2	3	5 263	2			
S88JA29	1 147.2	75	· 1	3	1 152	· · · 4 · · ·			
88JA30	1 67.4	37	- 3	1	2 219	1			
88JA31	i 125.8	48	5	5	1 138	1			
88JA32	1 195.0	76	2	4	1 118	3			
BBJA33	2 32.4	22	6	1	2 201	2			
88JA34	2 39.7	25	7	1	6 265	2			
B8JA35	1 127.8	50	5	3	1 174	5			
88JA36	1 102.1	83	4	3	1 175	3			
88JA37	1 283.2	108	1	7	1 152	4			
NONUMBER	1 111.1	65	4	2	1 163	6			

.

.

APPENDIX V

Statement of Costs

Statement of Cost

Work Period - Ju n-October, 1988 Prospecting 27 days @ \$100/day \$ 2,700.00 Food 27 days @ \$27/day \$ 729.00 Accommodation 27 days @ \$30/day \$ 810.00 Truck and fuel 27 days 2 \$103/day \$ 2,781.00 Field Supplies \$ 475.00 Geochemistry 47 rock samples, 10 silt samples \$ 963.25 Report, drafting, reproductions \$ 2,500.00 Communications \$ 50.00 Total: \$ 11,008.25

1

ų,

and the second second

2

And a little state

.