LOG NO: (0609	RD.
ACTION:		
FILE NO:		

		_		
F!	L	M	E	D
 			-	ware a star of a star to

Drilling Report on the CC 1, CC 2 and CC 3 Claims

Kamloops Mining Division

NTS: 92P/8E

Lat: 51° 22' N Long: 120° 04' W

<u>Owner:</u>

Minnova Inc.

<u>Operator:</u>

Minnova Inc. CAL BRANCH SMENT REPORT

D. W. Blackadar Minnova Inc. May 16, 1989

Table of Contents

Page

I.	Introduction	1
II.	Location, Access and Physiography	1
III.	Claim Status	3
IV.	General Geology	3
v.	Exploration History	6
vı.	1988 Diamond Drill Program	9
	1. Description	9
	2. Results	10
VII.	Summary and Conclusions	10

List of Figures

Figure 1	Chu Chua Option, Property Location	2
Figure 2	Chu Chua Option, Claim Configuration and Index Map	4
Figure 3	Adams-Barriere Project Regional Geology	5
Figure 4	Drill Hole Plan with Surface Geology	7
Figure 5	Chu Chua Deposit Geological Cross Section 101+00N	8
Figure 6	Chu Chua Deposit Drill Hole plan 1:2500 in pocke	et

<u>List of Tables</u>

Table 1Claim Status	3
---------------------	---

List of Appendices

Appendix	I	Itemized Cost Statement
Appendix	II	Statements of Qualifications
Appendix	III	Drill Logs (including analytical results)

•

I. <u>Introduction</u>

The CC 1, CC 2 and CC 3 claims are part of the Chu Chua property located on Chu Chua Mountain about 22 kilometres north of the town of Barriere, B.C. This property is part of an extensive package of mineral claims held by Minnova Inc. in the Barriere area. These holdings are underlain by Paleozoic age felsic to mafic volcanic rocks of the Eagle Bay Assemblage and the Fennel Formation which are highly prospective for volcanogenic massive sulphide deposits. The CC 1, 2 and 3 claims host the Chu Chua massive sulphide deposit which consists of 2 million tonnes grading 2% Cu, 0.4% Zn, 0.4 g/T Au and 8 g/T Ag. This deposit is hosted by massive and pillowed basalts of the upper division of the Fennel Formation.

The Chu Chua property is jointly owned by Pacific Cassiar Limited of Calgary, International Vestor Resources Ltd. (formerly Vestor Explorations Limited) of Richmond and Quinterra Resources Inc. of Vancouver. Minnova Inc. is earning a 50% interest in the property and is operating ongoing exploration programs.

This report presents the results of part of a small diamond drilling program carried out on the Chu Chua deposit between September 8 and October 2, 1988. This program consisted of 13 NQ holes totalling 1152 m. Drill core from those holes is stored at Minnova's warehouse facility in Barriere.

II. Location, Access and Physiography (Figure 1)

The CC 1, 2 and 3 claims are situated on the top of Chu Chua Mountain about 22 kilometres north of the town of Barriere. Access into the property from Barriere is along the North Barriere Lake road to the Birk Creek turn off (25 km), and then along the Birk Creek logging road for about 17 kilometres.

Much of the property lies on the south facing slope of Chu Chua Mountain, with elevations ranging from 1372 m to 1890 m.

The property is generally forested with subalpine vegetation but has locally undergone clearcut logging. Sparse alpine vegetation is present at higher elevations.

The property is snowbound for much of the year and exploration is generally restricted to the period from late May to mid September.

III <u>Claim Status</u> (Figure 2)

The CC 1-3 claims are part of the Deposit Group (#2375, October 7, 1987) comprising the CC 1, 2, 3, 4, 8 and 10 claims for a total of 58 units. Current claim status is summarized in Table 1.

<u>Table 1</u>

CLAIM STATUS

<u>Claim</u>	Record No.	<u>No. of Units</u>	Expiry Date
CC-1	1154	16	98/03/02
CC-2	1373	4	98/08/22
CC-3	1374	3	98/08/22

IV <u>General Geology</u> (Figure 3)

The Chu Chua property is underlain primarily by rocks of the upper Paleozoic age Fennel Formation which is an internally imbricated oceanic sequence consisting of tholeitic basalt, chert, gabbro, rhyolite and a variety of sediments including argillite, sandstone and conglomerate. The Fennel Formation has been divided into an upper structural division consisting predominantly of pillow basalt, gabbro and minor chert, and lower structural

division dominated by rhyolite, chert and sedimentary rock. Rhyolite domes are common in this sequence.

The CC 1, 2 and 3 claims are underlain primarily by massive and pillowed basalts of the upper structural division of the Fennel Formation. These rocks are interbedded with well developed chert units up to 60 m thick.

The Chu Chua deposit (Figures 4 and 5) consists of two large massive sulphide pods known as the North and Main Lenses, and a smaller pod known as the South Lens. These pods consist predominantly of massive pyrite with local concentrations of massive magnetite and talc. Base metal sulphides consisting predominantly of chalcopyrite with minor dark borwn sphalerite occur within and interstitial to pyrite grains in the massive sulphide sections. Talc-magnetite zones are generally relatively barren, although magnetite lenses may contain discrete bodies of pyrite-chalcopyrite and grade accordingly.

In general, the deposits plunge steeply to the south and are thickest at surface (up to 50 m in the Main Lens) narrowing with depth. The deposits are associated with a thick cherty unit which has been traced along strike to the north. This unit is well developed in the footwall of the Main Lens and envelopes the North Lens.

V. <u>Exploration History</u>

Work carried out in the Chu Chua area in 1977 by International Vestor Resources Ltd., outlined a small copper gossan associated with a north-striking massive magnetite body. In 1978, the property was optioned to Craigmont Mines Limited and subsequent sulphide discovery of massive resulted in the drilling To the end of 1979, approximately 5776 metres of mineralization. diamond drilling were completed on the property by Craigmont. This work resulted in the delineation of 2 million Tonnes of reserves

grading 2% Cu, 0.4% Zn, 0.4 g/T Au and 8 g/T Ag. Craigmont also established extensive gid coverage on the property and completed soil and geophysical surveys.

In 1985, the CC property was optioned to Corporation Falconbridge Copper, now Minnova Inc. Minnova has established a number of grids on the property and has completed geological mapping, Max/Min surveying and local soil geochem surveys. Seventeen drill holes totalling 2400 m were drilled to test reconnaissance targets in 1985, 1986 and 1987.

VI. 1988 Diamond Drill Program

1. <u>Description</u>

Drilling carried out on the deposit in the late 1970's by Craigmont Mines defined two areas (Main and North Lenses) of relatively thick, high grade Cu mineralization occurring within 100 m of surface. This mineralization occurs over a strike length of about 200 m and is thought to be potentially open pittable. Minnova's 1988 drill program, carried out between September 8 and October 2, was designed to test the continuity of grade and thickness in this area by establishing drill intercepts at an average 25 m spacing. This program consisted of 13 NQ holes totalling 1152 metres. This report includes the results of four of these holes: CCF 19 and 20, drilled to test the Main Lens and CCF 25 and 26 drilled to test the North Lens. Drill logs, including dip test results and analytical data, are summarized in Appendix III. Collar locations are shown on Figure 6 and at 1:2500 scale.

Assay and geochemical analyses undertaken in conjunction with the drilling program were carried out by Min-En Labs of North Vancouver, B.C. Mineralized samples form the North and Main Lenses were analyzed geochemically for Cu, Zn, Ag and Au. High Au (>400

ppb) and Cu (>10000 ppm) values were then re-run by assay. Specific gravity measurements were also taken on all mineralized samples.

2. <u>Results</u>

The 1988 drill program was successful in upgrading reserve estimates and in improving our knowledge of the geology and configuration of the deposit. The most significant results of the program are as follows:

- The western margin of the Main Lens had not been defined by Craigmont during the initial drill programs. The 1988 program defined this margin and added significant tonnage to the deposit. (Figures 4 and 5)
- 2. Mineralization in the Main Lens was found to be concentrated in two main areas known as the Footwall Zone and the Hangingwall Wall Zone (Figure 5). The Footwall Zone is continuous and well developed along the Footwall contact of the lens, but is highly variable in thickness. This zone has an average thickness of about 7.2 m and contains the highest grade mineralization in the deposit. The Hanging wall zone is thinner, less continuous and lower grade, and averages about 4.5 m in thickness.

VII. <u>Summary and Conclusions</u>

÷

The 1988 drilling program has added significantly to our geological knowledge of the Chu Chua deposit and has improved reserve estimates. The near surface parts of the deposit are still open to the north and south however, and further drilling is required to define potentially open pittable reserves. Appendix I

Itemized Cost Statement

•

Itemized Cost Statement

-

.

.

•

<u>Diamond Dr</u>	<u>illing</u>	
	Tonto Drilling Ltd., Burnaby, B.C.	
	Longyear 38 Drill: 328.8 m @ \$80/m	\$26,304
<u>Analytical</u>	Min-En Labs, North Vancouver, B.C. 116 assays for Cu, Zn, Ag, Au and S.G. @ 36.75	\$4236
<u>Personnel</u>		
	D. W. Blackadar Senior Project Geologist 1 day @ \$350/day	\$350
	G. Sharp Field Geologist 6 days @ \$250/day	\$1500
	L. Holder Junior Assistant 6 days @ \$150/day	\$900
		\$33,317

Appendix II

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, Donald William Blackadar of 3838 Regent Avenue, North Vancouver, B. C. do hereby certify that:

- I graduated from the University of Calgary with a 1. BSc. in Geology in 1975 and from the University of Alberta with a M.Sc. in Geology in 1981.
- I have been a professional geologist registered in 2. the Province of Alberta since 1978.
- I have been employed on a full time basis in my 3. profession since April 1975 and I am currently employed as a Senior Project Geologist by Minnova Inc. of 3rd Floor - 311 Water St., Vancouver, B.C.
- Work reported in this volume was carried out under 4. my direct supervision.

Date: May 17, 1987

Signature:

D. W. Blackadar

STATEMENT OF QUALFICATIONS

- I, Shelley R. Lear certify that:
 - 1. I am an exploration geologist residing at 2393 W. 6th Ave., Vancouver, B.C.
 - 2. I have a BSc. in Geology from the University of British Columbia (1981).
 - 3. I have practised my profession since 1981.
 - 4. I personally carried out or supervised the work reported herein.

Date:

May 17, 1989

Signature:

Der Blackaster for R. Lear

S. R. Lear

I, Grant Sharp, of 941 Brucedale Ave., E. Hamilton, Ontario certify that:

- I graduated from the University of Western Ontario in 1. 1988 with a BSc. in Geology.
- I was employed by Minnova Inc. as a field geologist from 2. May to November, 1988.
- I personally carried out or supervised the work reported 3. herein.

Date:

May 17, 1949 <u>The Blackedan</u> for Grant Sharp

Signature:

Appendix III

Drill Logs (including analytical results)

(CCF 19, 20, 25, 26)

HOLE NUMBER: CCF-19			MINNOVA INC. Drill Hole Record		IMPERIAL UNITS: ME	TRIC UNITS: X
. PROJECT NAME: CHU CHUA Project number: Claim number: Location: Chu Chua Main	PLOTTING COORDS SRI Nort EAS Ele	H: 10078.50N F: 9951.90E		100+79N 99+55E	COLLAR DI Length of the Hold Start Dept Final Dept	1: 0.COs
	COLLAR GRID AZIMUT	1: 90x 0' 0"	COLLAR ASTRONOMIC AZINUTH:	90x 0' 0"		
DATE STARTED: September 12, 1988 DATE COMPLETED: September 13, 1988 DATE LOGGED: 0, 0	COLLAR SURVEY: YES Multishdt Survey: ND Rod Log: No		PULSE EM SURVEY: NO Plugged: No Hole size: Ng		CONTRACTOR: TONTO DRILLING Casing: 18.9M Core Storage: Barriere	
PURPOSE: TO DELINEATE CHU CHUA COPPERR	DEPOSIT.					
DIRECTIONAL DATA:						

:

	Depth (m)	Astronomic Azimuth	Dip degrees		FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLA6	Comments
	42.60		-47x 0'	ACID	OK		-	-	-	•	-	
	79.20	-	-47x O'	ACID	OK		: •	-	•	•	•	
	-	-	-	-	•		- `	-	•	•	-	
	-	•	-	-	•		-	-	•	-	•	
	-	-	-	-	-		•	-	-	•	•	
	-	•	•	-	-			-	•	•	-	
	-	-	-	-	-		-	-	•	-	•	
	-	-	•	-	•			-	•	-	•	
	-	-	-	-	•		; - ,	-	•	-	-	
	-	-	•	-	•			-	•	•	-	
	•	-	-		-				-	-	-	
	-	-	-	-	-				-	-		
		-	-	-	-	· ·		-		-	-	
	-	_	-	-	-			-	-	-	-	
	-	-	-		-			-	-	-	-	
	-	-	-	-	-			-	-	-	-	
	-	-	-	-	-			-	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	•	-	-		; -	-	-	-	-	
	-	-	-	-	-		: -	-	-	-	-	
	-	-	-	-	-			-	-	-	-	
	-	-	•	-	-		: -	•	-	-	-	
	-	-	-	•	-		: -	-	-	-	-	
	-	-	-	-	-		: -	-	-	-	-	
	-	-	-	-	•		; -	•	-	-	-	
	-	-	-	-	-		-	-	-	-	-	
	-	-	-	-	-		: -	•	-	-	•	
: CCF-19						DRILL HO	LE RECORD					LOGGED BY: S. LEAR

.

.

•

)

)

•

)

3

)

ž

)

3

;

FRON	ROCK	TEXTURE AND STRUCTURE	IANGLE:		MINERALIZATION	: REMARKS
			·::			
	CASING		1 1		; ;	
18.90	¦ !	1	¦		! !	¦ !
18.90	MASSIVE	· · · · · · · · · · · · · · · · · · ·	1		.95% py; 3% cpy, 2% mgt/	
		¦ Colcur – brassy yellow. Grain Size – fine.	: :		-	
		! Mostly pyrite. Minor magnetite, some chalcopyrite				: 23.5 - 32.8
		-rich sections.			· ·	<pre>! Very broken core. Possible fault. !</pre>
	:	1	: :		: 32.8 - 37.8 : 85I pyrite, 10I chalcopyrite, 5I	1
	1 4 1		: :		i magnetite.	
	1	1	: :		: : 37.8 - 40.0	
			1		951 pyrite, 51 chalcopyrite.)
	1		: :		44.2 - 44.4	1 1 1
	:	:			: 107 magnetite; minor quartz veins.	
1	:	•			45.2	
i	1	1	: :		<pre>! Trace brown sphalerite in fine grained ! pyrite.</pre>	i
48.40	CHERT AND	¦ !	 		: : .10% py/	
TO	BASALT	Colour - grey, green.	: :			1
55.40	CAT DSIT/	<pre>% Grain Size - fine. % Mostly grey chert with minor silicified basalt.</pre>	: :		· ? Pyrite as fine grained stringers;	1
	· ·		1 1		especially in cherty sections.	1
		59.4 - 61.1				959.4 - 61.1L .FLT/
1	:	<pre>Fault breccia, grey chert frags in pyritic gouged matrix. Moderately well healed.</pre>		: 59.5 - 59.7 : Quartz-carbonate vein in fault.		l Fault breccia. I
	;		: :	65.6 - 66.0		1
	, , ,			Strong quartz-carbonate veining.		
	:	: : 66.0 - 66.4	1 1			1
	¦	: Pyritic fault breccia.			 	
	MASSIVE				.981 py, tr cpy/	-
		¦ Colour - brassy yellow. ¦ Grain Size - fine.	1 1		i 1	i 1
		Nostly fine grained pyrite. Minor chalcopyrite		Occasional thin quartz veins & patches.	: :	: :

ć

-

)

7

2

)

)

2

נ

)

כ

ć

j

FROM :		:	ANGLE		1		
	TYPE	TEXTURE AND STRUCTURE	110 CA		: MINERALIZATION	REMARKS	
70.30	BASALT .fw bslt/	; : Colour - grey-green. : Grain Size - fine. : Basalt. Occasional varioles over lover 4.0m. : silicified near upper contact.	:	5% thin quartz veins ê 50 + 20 degrees to C.A.			
			1		70.3 - 71.0 1 10Z pyrite stringers.		
	: : E. D. H.	1 				; 71.0 - 72.8 ; Broken core.	
				·			
				,			
				·			
				·			
				·			
				· ·			
				• •			

			:			ASSA	YS		:	COMMENTS	
Sample	Fros	To	Length !	Cu	Pb	Zn	Ag	Au	SG :		
	(a)	()	(a)	I	1	I	g/T	g/T	S6 (
7505	18.90	20.50	1.60 :	.64	.01	.06		.18	•••••;•••; !		
7506	20.50	22.00	1.50 :	.54	.01	.05	5.3	. 28			
7507	22.00	23.50	1.50 :	.79	.01	.06	6.4	.3	-		
7508	23.50	25.00	1.50 ;		.01	.62		.3	4.68		
7509	25.00	28.00	3.00 :		.01	.26		.61	4.66		
			1								
7510	28.00	29.50	1.50 :	2.37	.01	.07	7.4	.27	4.62 1		
7511	23.50	31.50	2.00 :	4.32	.01	.24	11.9	.21	4.68 :		
7512	31.50	33.00	1.50 :	6.90	.01	.2	17.3	.23	4.44 :		
7513	33.00	34.50	1.50 :		.01	.41			4.62 :	1	
7514	34.50	36.00	1.50 ;	7.18	.01	.23	20.7	. 39	4.44 ;		
7515	36.00	37.50	: 1.50 ;	6.52	.01	.3	19.9	.52	4.67 :		
7516	37.50	39.00	1.50 :	5.02	.01	.06			4.67		
7517	39.00	40.50	1.50 :	5.18	.01		14.3	.20	4.68		
7518	40.50	42.00	1.50 :	3.88	.01	.07		.31	4.65		
7519	42.00	43.50	1.50 :		.01	.1		.38	4.2 ;		
			1								
7520	43.50	45.00	1.50 :	2.36	.01	.06	7.8	.29	4.4B (
7521	45.00	46.50	1.50 :	1.89	.04	.44	15.7	1.92	4.71 :		
7522	46.50	48.50	2.00 :	1.53	.01	.14	6.9	1.24	4.65 :		
7534	48.50	50.00	1.50 :	0.07	.01	. 09	1.2	0.08	1		
7535	50.00	51.50	1.50 :	0.01	0.00	0.0	.50	.01	1		
7536	51.50	52.40	0.90 :	0.01	0.0	0.0	.6	0.01	•	1	
7537	52.40	53.75	1.35 ;	0.00	0.00	0.00	0.4	0.01	-		
7538	53.75	54.20	0.45 ;	0.01	.0	0.0	1.2	0.07	I		
7539	54.20	53.70	-0.50 ;	0.01	0.0	0.0	0.5	0.02	i		
7540	55.70	59.00	3.30 ;	0.01	0.0	0.01	0.8	0.03	i		
			:								
7541	59.00	60.50	1.50 :	0.06	0.0	0.02	0.9	0.04	1		
7542	60.50	62.00	1.50 :	0.08	0.0	0.03	0.9	0.06	1		
7543	62.00	63.50	1.50 1	0.12	0.0	0.06	1.2	.05	i		
7544 7545	63.50 64.90	64.90	1.40 ¦ 1.50 ¦	0.05	0.0	0.01	1.2 2.52	0.01			
/ 515	04.30	66.40	1.30 1	0.12	0.0	0.02	2.32	.08	•	i	
7523	66.40	68.00	1.60	1.48	0.01	0.08	11.1	0.35	4.56 :	1	
VE.	66.40	70.30	3.90 :	1.59	0.02		11.75	0.73	4.54 1	1	
7524	68.00	70.30	2.30 :	1.67	0.03	0.40	12.2	1.0	4.53 ;		
AVE.	23.50	48.40	24.90 ;	4.14	0.01	0.22	13.44	0.52	4.60 :	1	
AVE.	23.50	48.50	25.00 :	4.13	0.01	0.22	13.41	0.53	4.60 :		
AVE.	23.50	48.50	25.00 :	4.13	0.01	0.22	13.41	0.53	4.60 :	:	

)

C

Э

)

Э

)

HOLE NUMB				GEOCHEM. SHEET	DATE: 5-May-1989
********		======	==========		
Sazple	From	Τo	Length		
	LÆJ	(8)	(5)		
,					
17525	77.00	80.00	3.00		

•

.

HOLE NUMBER: CCF-19

2

j

;

.

PAGE: 5

IOLE NUMBER: CCF-20			LL HOLE RECORD			IC UNITS:)
PROJECT NAME: CHU CHUA	PLOTTING COORDS GRID:		ALTERNATE COORDS GRID:		COLLAR DIP:	
PROJECT NUMBER: 321	- NORTH:	10071.20N	NORTH: 100	0+75N	LENGTH OF THE HOLE:	114.00m
CLAIN NUMBER:	EAST:	9927.50E	EAST: 93	3+29E	START DEPTH:	0.00
LOCATION: CC MAIN	ELEV:	1799.50	ELEV: 1	1812.00	FINAL DEPTH:	114.00
	COLLAR GRID AZIMUTH:	90x 0' 0"	COLLAR ASTRONOMIC AZIMUTH: 90	Dx 0' 0"		
DATE STARTED: September 13, 1988	COLLAR SURVEY: YES		PULSE EN SURVEY: NO		CONTRACTOR: TONTO DRILLING	
DATE COMPLETED: September 14, 1988	MULTISHOT SURVEY: NO		PLUGGED: NO	•	CASING: 11.3M	
DATE LOGGED: 0. 0	ROD LOG: NO		HOLE SIZE: NO		CORE STORAGE: BARRIERE	

PURPOSE: TO DELINEATE CHU CHUA DEPOSIT.

DIRECTIONAL DATA:

٠

Depth (m)	Astronomic Azimuth	Dip degrees			Comments	: Depth : (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Coments
42.60 79.20	- - -	-47x 0' -47x 0'	ACID	OK OK		-	•	•	-	•	
-	-	-	-	-		: • `	-	-	•	•	
•	•	-	-	•		: -	•	•	•	-	
-	-	-	-	•		: -	•	-	-	-	
-	-	-	-	-		-	-	•	•	-	
-	-	-	-	•			-	-	-	-	
-	-	-	-	-			-	•		-	
-	-	•	-	•			-			-	
-	-	-	-				-	-	-		
	_	-	-	-			-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		; -	-	-	-	-	
-	-	-	-	-			-	-	-	-	
-	-	-	-	-		; -	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	•		-	-	•	-	•	
•	-	-	-	-			-			-	
-	-	-	-	-		-	-	-	-	-	
-	-	-	-	-		-	-	-	-	-	
	-	-	-	-			-	-	-	-	
-	-	-	-	-		: -	-	-	-	-	
-	-	-	-	-			-	-	•	-	
-	-	-	-	-		¦ -	-	-	-	-	
 0						HOLE RECORD					LOGGED BY: G. SHARP

	TYPE	TEXTURE AND STRUCTURE	:ANGLE: :TO CA:		MINERALIZATION	REMARKS
0.00	CASING .OB/		· 			
TO	.hw bslt/	Colour - light grey. Grain Size - very fine grained. - massive. Factures		- silicified moderately - "black" micaeous	- barren	
68.20	PYRITIC ZONE .py mss/	Colour - metallic py Grain Size - very fine grained. - massive - throughout mottled tex. of massive pyrite (differential cooling - larger grain size)			.85-90I py, 1-2I cpy, 5-10I at/ 85-90I pyrite, 1-2I chalcopyrite, 5-10I agnetite. 60.5 - 62.7 95-98I agnetite.	- chalcopyrite occurring mainly as stringers on as blobs 1-3mm.
TO	.bslt/	 Colour - grey, blotchy dark green. Grain Size - fine grained. - tectonically brecciated basalt			- possible Mo >1% - 1% - but too dull (graphite)	- gradational contact below pyrite zone and silicified basalt
TO 77.50	: PYRITE : .mt cpy/			- quartz veining 1-4cm, 1-2I containing chlorite, graphite, some disseminated pyrite	.40-501 mt, 30-351 py, 10-151 cpy/ 40-501 magnetite, 30-351 pyrite, 10-151	
TŪ	: .exh/	Colour - light grey. Colour - light grey. Grain Size - very fine grained. - tectonically brecciated - possible beddingt @	: 45 :	- very silicified - chlorite around tec. brecciated clasts	.str. py 5-61/ - stringer pyrite 5 to 61	
TO					.90-95I py, 3-5I SiO2, tr -1I cpy/ 90-95I pyrite, 3-5I SiO2, trace to 1I chalcopyrite.	
	1	i	1		89.0 - 89.3	ł

3

2

Ì

,

.

KOLE NUM	BER: CCF-20			MINNOVA INC. Drill Hole Record		DATE: 5-May-1989
FROM TD	ROCK Type	TEXTURE AND STRUCTURE	ANGLE:		MINERALIZATION	REMARKS
					90-95Z SiD2, 5Z pyrite 9 - could be exhalitic small lense	
TD 114.00		Colour - light grey to light green. Grain Size - very fine grained. 89.8 - 100.5 - tectonically brecciated, intense silicification 100.5 - 114.8 - barren footwall basalt - varolitic textures		- silicification - "black mica" vithin interstitial cracks and fissures	- trace amounts of pyrite	

•

1

3

.

HOLE NUMBER: CCF-20	DRILL HOLE RECORD	LOGGED BY: G. SHARP	PAGE:	3

						ASSAY					CONNENTS
().	F	τ.	i Lanaki I	Cu	Pb	Zn	a Aq	Au	SG :		
Sample	Fros (e)	To (#)	Length : (m)	7	1	7	0/T	a/T	56 :		

2587	0.00	15.20	15.20	0	0	.01	3.2	.01	!		
2588	:5.50	17.00	1.50 :	1.82	.01	.06	6.7	.35	4.64		
2589	17.00	18.50	1.50 :	2.81	.02	.04	7.3	.4	4.78		
2590	18.50	20.00	1.50 :	3.05	.02	.04	9.5	.37	5.25 :		
2591	20.00	21.50	1.50 :	1.87	.01	.03	8.1	.4	5.38 /		
2592	21.50	23.00	1.50 ;	1.18	.01	.03	5.8	.39	5.44 :	•	!
2593	23.00	24.50	1.50 ;	1.36	.01	.04	6.2	.3	5.41		
						.16	15.5	.27	4.78		
2594	24.50	26.00	1.50 1	4.29	.01		5.1	.28	5.34		
12595 12596	26.00 27.50	27.50 29.00	1.50 1.50	.67 .46	.01 .02	.06 .13	5.3	.20	5.23		1
	2.100		1								1
12597	29.00	30.50	1.50 :	.37	.02	.15	6.8	.34	5.44	9	, ,
12598	30.50	32.00	1.50 :	. 29	.01	.33	5.6	.24	4.64		1
12599	32.00	23.50	1.50 :		.02	.19	11.4	.27	4.41		1 I
12600	33.50	35.00	1.50 :	.918	.02	.15	8.4	.3	4.56		1
8026	35.00	36.50	1.50	.82	.02	.3	7.9	.31	4.72 :		1
18027	36.50	38.00	1.50	1.15	.03	.54	10.9	.28	4.66 1		1
18028	38.00	39.50	1.50	1.39	.03	.31	15.8	.3	4.46 1		
18029	39.50	41.00	1.50		.03	.44	11.8	.34	4.64 1		:
18030	41.00	42.50	1.50	.64	.01	. 39	8.2	.32	4.79		1
18030	42.50	44.00	1.50	.58	.01	.4	7.1	.3	4.65 :		:
10031	72.30	11.00	1.50			••				•	
18032	44.00	45.50	1.50	. 56	.01	.16	6.2	.33	4.67		i I
18033	45.50	47.00	1.50		.01	. 18	6.3	.27	4.55		
18034	47.00	48.50	1.50	1.54	.01	.14	6.8	.22	4.6 1		
18035	48.50	50.00	1.50	1.63	.01	.04	8.5	.2	4.61		1 1
18036	50.00	51.50	1.50	1.93	.01	.09	12.1	. 26	4.52 1		1
18037	51.50	53.00	1.50	2.07	.01	.31	6.3	. 19	4.59 ;		:
18038	53.00	54.50	1.50	.71	0.01	0.84	3.5	0.15	4.4 1		1
18039	54.50	56.00	1.50		0.01	0.22	4.9	0.13	4.64		:
18040	56.00	57.50	1.50		.01	.2	5.7	.12	4.46 :		:
18041	57.50	59.00	1.50	0.11	0.00	0.07	2.2	0.07	4.5 1		1
						A AC	7 E		4 42 1		:
18042	59.00	60.00	1.00		0.01	0.06	3.5		4.42		:
18043	60.00	61.10	1.10		.01	.04	5.1	.1	4.39 1		
18044	61.10	62.70	1.60	.24	0	.01	2.3	.01	3.43		
18045	62.70	64.20	1.50		0	.01	6.9	.01	4.01		
18046	64.20	65.40	1.20	1.79	0.01	0.04	7.2	0.13	4.48 :		'
18047	65.40	66.70	1.30	2.11	0.01	0.13	8.4	0.27	4.55 ;		1
18048	66.70	67.80	1.10		0.02		7.1	0.38	4.61 1		
18049	67.80	69.20	1.40		0	.02	.5	.02	2.83 :		
18050	69.20	70.60	1.40			0.08	7.8	0.13	3.89 1		1
18076		71.60	1.00		0.01	0.06	8.2	0.16	3.89 :		;

,

LE NUMBE	R: CCF-2	0								ASSAY SHEET	DATE: 5-May-1989	
ample	From	To (e)	Length (m)	Cu 7	Pb T	In T	Ag n/T	Au n/T	56 ¦ 56 ¦			
			::::::::;									
551	71.60	72.90	1.30		0.00	0.01	1.20	0.01	2 54 1			
077	72.50	73.90		0.753	0.01	0.05 0.05	2.3 4.4	0.04	4.33			
1078 1073	73.90 75.00	75.00 76.50	1.10 :		0.0 0.01	0.03	4.7		3.71			
080		77.40	0.90		0.01				3.91		ł	
52	77.40	80.60	3.20	0.27	0.0	0.01	0.9	0.02	:			
53	80.60	83.10	2.50		0.00	0.0	0.6	0.01	1			
554	83.10		1.50			0.01		0.04			i	
081 E.	84.60 84.60	86.00 87.50	1.40 2.90		0.02	0.11	18.3	0.98	4.85 ¦ 4.76 ¦		4 4 5	
082	86.00	87.50	1.50	1.260.	01	0.11	12.9	0.79	4.6B ;		1	
083	87.50	89.00	1.50	1.37	0.01	0.11	13.4		4.88 :			
084	89.00	91.30	2.30		0.01	0.03	7.2		3.24 1			
085	91.30	92.80	1.50		0.03	0.16	11.8		4.64			
086	92.80	94.90	2.10	1.96	0.03	0.34	13.3		4.65 1			
555	94.90		1.20		0.0	0.01	1.2	0.03				
087	100.40		9.10		0.0	0.01	1.8	0.01	5 14 1			
/E. /E.	16.10 17.00		10.80	2.23	0.01 0.01	0.06 0.06	8.26 8.73	0.35	5.14 : 5.17 :			
VE.		77.40		2.690	0.01	0.09	5.37	0.14			ł	
VE.	62.70	77.40	14.70	2.705	0.01	0.10	5.39	0.14	3.71 :	·	1	

HOLE NUMBER: CCF-20

.

2

۰ ،

2

•

)

>

)

)

)

)

2

j

j

ASSAY SHEET

PAGE: 5

HOLE NUM				GEOCHEM. SHEET	DATE: 5-May-1989

Sample	From	To	Length :		•
	(<u>_</u>)	(.)	(a) {		
*******		******	*********		
12587	11.30	15.20	3.90 :		

.

.

18049 67.80 69.20 1.40 : 18087 100.40 109.50 9.10 :

)

.....

PAGE: 6

÷.

PROJECT NAME: CHU PROJECT NUMBER: 321 Claim Number: Location:					COORDS GI No Ei	RID: CC MAIN RTH: 10183.50N AST: 9979.00E LEV: 1820.70		ALTERNATE	COORDS 61 Noi E/		35N 76E	LENGTH OF THE Start	R DIP: -47x 0' 0" HOLE: 49.70m
			_		GRID AZIMI	JTH: 90x 0' 0"		COLLAR ASTRON	DMIC AZIMU	UTH: 90 <i>x</i>	0' 0"		
DATE STARTED: Sept DATE COMPLETED: Sept DATE LOGGED:	ember 22, 1988 0, 0	MULTISH	AR SURVEY: OT Survey: RQD LOG:	NO NO			. P Hol	SURVEY: NC LUGGED: NO E SIZE: NQ				- CONTRACTOR: TONTO DRILLING CASING: 3.6M CORE STORAGE: BARRIERE	
URPOSE: TO DEFINE LE	INS 2 MINERALIZ	ATION.											
IRECTIONAL DATA:							,						
	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	Depth (m)	Astronomic Azimuth	Dip degrees	Type of Test	FLAG	Comments	
	33.90	•	-46x 0'	ACID	OK			•	•	 -	-		
	-	-	:	•	-		• .	-		•	-		
	•	-	-	-	•		-	•	-	-	-		
	-	-	-	-	•		-	-	-	-			
	-	-	-	•	-		-	-	-	-	-		
	•	-	-	-	•		; -	-	•	•	•		
	•	-	-	-	-			-	-	-	-		
	-	-	-	-	-		-	-	-	-	-		
	-	-	•	-	-		; -	-	-	-	•		
	-	-	-	-	-		-	-	-	-	-		
		-	•	-	-			-	-	-	-		
	•	-	-	-	-			-	-				
		-	-	-	-		-	-		•	•		
		- -	-	- - -	- - -		-	-	-	-	-		
				- - - -	- - - -		-	- - - -	-	•	-		
	• • • • •	- - - - -	- - - -	- - - -	- - - -				- - - - -	• • • •	- - -		
	- - - - - - -	- - - - -	- - - - - -	- - - - -			-		- - - - -	• • • •	- - - -		
	- - - - - - - -		- - - - - -		- - - - - -			- - - - - -					
	- - - - - - - -		-	•	- - - - - -					•	· · · ·		
	- - - - - - - - - -			•	- - - - - - -			- - - - - - - - -	- - - - - - -		· · · ·		
	- - - - - - - - - - - - -			-	- - - - - - - - - -			- - - - - - - - - - - -	· · · · ·		· · · ·		
	- - - - - - - - - - - -			-	· · · · ·			- - - - - - - - - - - - - - -	- - - - - - - - - - -	- - - - - - - - -	· · · ·		

.

•

-

2

3

• .

ROM	ROCK	: TEXTURE AND STRUCTURE	ANGLE:		HINERALIZATION	REMARKS
0.00 TO	CASING .OB/		 	n. j LAN j JUN		
3.60		; -{	·	•••••••••••••••••••••••••••••••••••••••	¦	, -{
TO	: ALTERED : BASALT : .hw bslt/ :	Colour - light grey - green. Grain Size - fime. Silicified and bleached basalt. 3.6 - 5.5 Angular basalt fragments in limonite matrix.		Limonite on fractures.		
TO	MASSIVE SULPHIDE .ass/	Colour - brassy yellow. 5 Grain Size - fine. 1 Mostly pyrite. Minor chalcopyrite, often on 1 fractures + with thin quartz patches - chalco- 2 pyrite appears to be secondary.			.951 py, 11 cpy/ 14.8 - 15.5 10-201 chalcopyrite. Very broken core with black coating on fractures. 28.7 - 29.2 101 chalcopyrite with minor quartz.	932.3 - 33.41 .FLT/ Some aud, most core lost.
		Colour - grey - green. Grain Size - fine - medium. Basalt. Hostly fine grained, some medium grained sections with white F.S. crystals.		36.4 - 41.7 Black chlorite filling fine.	35.4 - 36.4 201 stringer pyrite. 47.5 - 49.7 Trace disseminated pyrite + po.	33.4 - 34.1 Very broken core.
	•	49.7m E.D.H.			1	: :
			1		! 	!

. •

-

HOLE NUME										ASSAY SHEET DATE: 5-May-1989
						ASSA		******	:::::::::::::::::::::::::::::::::::::::	; COMMENTS
Sample	From	To	Length :	Cu	Pb	Zn	Ag	Au	S6 ;	
•	(_)	(_)	(a)	I	I	I	ç/T	g/T	SS	
			•							
18460	9.70	11.40	1.70 :	0.03	0.0	0.01	1.3	0.01	i	
18069	11.40	14.50	3.10	1.18	0.0	0.08	3.7	0.22	4.78 :	
18070	14.50	18.00	3.50 :	5.93	0.02	0.02	19.7	0.83	4.55	
12071	18.00	20.00	2.00 :	1.42	0.01	0.06	4.4	0.21	4.73 :	
18072	20.00	21.50	1.50 /	2.18	0.04	0.48	8.9	0.81	4.67 ¦	1
			:							
18073	21.50	25.50	4.00 :	2.24	0.02	0.32	8.6	0.6	4.51	
18074	25.50	27.00	1.50 :	2.14	0.02	0.35	7.9	0.61	4.55 :	1
18075	27.00	28.50	1.50 :	2.25	0.02	0.39	7.4	0.38	4.47 :	
18001	28.50	29.50	1.00 :	6.34	0.02	0.89	15.4	0.42	4.23 :	1
18002	29.50	33.40	3.90 :	1.44	0.01	0.05	25.9	0.24	4.25 :	
			:							
18461	33.40	36.30	2.90 :	0.01	0.0	0.01	1.1	0.05	:	
18462	36.30	39.00	2.70 :	0.02	0	0.02	0.8	0.03	1	
AVE.	11.40	33.40	22.00 :	2.64	0.02	0.21	12.56	0.48	4.53 :	

•

HOLE NUMBER: CCF-25

٤

)

ì

..... PA6E: 3

HOLE NUMB			•	GEOCHEM. SHEET	DATE: 5-May-1989
********	*********	******	**********		
Sample	From	To	Length 1		
	(m)	(#)	(m)		
,	*******	*******	*********		
18003	44.00	47.00	3.00 :		

•

.

.

.

)

)

3

)

)

)

)

)

J

)

ì

.

..... GEOCHEM. SHEET HOLE NUMBER: CCF-25

PAGE: 4

HOLE NUMBER: CCF-26		MINNOVA INC. Drill Hole Record		AL UNITS: METRIC UNITS: X
' PROJECT NAME: CHU CHUA PROJECT NUMBER: 321 Claim Number: Location:	PLOTTING COORDS GRID: CC M. North: 101 East: 990	MAIN ALTERNATE COORDS GRIE 174.00N NORTH	: : 101+66N : 99+67E	COLLAR DIP: -50x 0' 0" LENGTH 3F THE HOLE: 77.70m Start depth: 2.00m Final depth: 77.70m
DATE STARTED: September 22, 1988 DATE COMPLETED: September 23, 1988 DATE LOGGED: 0, 0	COLLAR GRID AZIMUTH: 90x Collar Survey: No Multishot Survey: No Rod Log: No	r O' O' COLLAR ASTRONOMIC AZIMUTH Pulse em survey: no Plugged: no Hole size: no		

.....

PURPOSE: TO TEST LENS 2.

......

DIRECTIONAL DATA:

٦.

2

)

)

)

)

2

2

)

)

)

ز

ر

 45.00 77.30	-				 	(<u>a</u>)	Azimuth	degrees	Test		
			ACID	8K	 	-	-	-	•	-	
-	•	-49x O'		OK	1		-	•	•	•	
	-	-	•	-		•	-	-	-	•	
•	-		-				-	-	-	-	
-			-		;		-				
	-		-	-		-	-	-	-	-	
-	-	•	-	-		-	-	•	-	-	
-	-	-	-	-	i	-	-	-	-	-	
-	-	-	-	•	1	-	•	-	-	-	
-	-	-	•	-	!	-	-	-	-	-	
•	-	•	•	•	1	-	-	-	-	-	
•	-	-	-	-		•	-	-	-	-	
-	-	•	-	-	1	•	-	•	-	-	
-	-	-	-	-	1	-	-	-	-	-	
•	-	-	-	•	1	-	-	•	-	•	
-	-	-	-	-	1	-	-	-	-	-	
•	-	-	•	-	1	-	-	-	-	•	
-	-	-	-	•		•	-	-	-	-	
-	•	•	-	-	i	•	•	-	-	-	
-	-	-	-	-		-	-	-	-	•	
-	-	-	-	-		-	-	-	-	-	
	-		-	-	-	-	-	-	-		
-	-	-	-	-	i	-	-	-	•	-	
-	-	-	-	-	i	-	-	-	-	-	
-	-	-	-	-	1	-	-	-	-	-	
-	-	-	-	-	;	-	-	-	-	-	

ROM : To :	RCCK Type	TEXTURE AND STRUCTURE	:ANGLE :TO CA		HINERALIZATION	I REMARKS
0.00	CASING .OB/		 		1 	
TO :	ALTERED BASALT .hw bslt/	Colour - grey, green. 6 Grain Size - fine. 8 Basalt, moderately - highly silicified. 1 - occasional 52 0.5mm white F.S. crystals 2 - core moderately - highly broken throughout.	!	6.1 - 16.5 Noderate limonite staining on fractures.	1	925.6 - 30.2L .FLT BI/ Partially bealed Fault breccia. Matri often pyritic.
TO S	MASSIVE SULPHIDE .ess/	Colour - brassy yellow. Grain Size - fine. Mostly pyrite. Minor chalcopyrite especially with quartz patches and pitted core.			<pre>: .95Z py, 2-3Z cpy/ :</pre>	
TO : 7.70 : :	BASALT .fw bslt/ E. O. H.	Colour - grey - green. Colour - grey - green. Grain Size - fine. Basalt. Fine grained 0.5mm F.S. crystals in places up to 20%. Silicified near upper contact.	 	 50.3 - 56.3 Moderately - highly silicified basalt. 57 quartz veining at 60 + 20 degrees to C.A.	50.3 - 56.3 107 pyrite as fine grained stringers.	

,

۰.

)

)

)

)

،

ì

	ER: CCF-26			MINNOVA INC. Drill Hole Record		DATE: 5-May-1989
FROM I	ROCK : Type :	TEXTURE AND STRUCTURE	:ANGLE: :TO CA:	ALTERATION	MINERALIZATION	REMARKS
				-		
					•	
				•		
HOLE NUMBE				DRILL HOLE RECORD	LOGGED BY:	

2

3

3

)

>

3

3

2

)

2

Э

ز

********	ER: CCF-					ASSA			••••••••• !	COMMENTS	
Sazple	()	To (m)	Length : (m)	7	Pb I	Zn T	Ag a/T	Au g/T	SG I SG I		
18004	18.00	21.00	3.00		0.0	0.01	0.8	0.01	;- 		
18463	28.60	30.50	1.90	0.13	0.0	0.01	1.0	0.05	:		
18005	30.50	32.50	2.00	1.62	.02	.05	10.9		4.45		
18006	32.50	35.50	3.00	2.43	.02	.16	13.2	1.6	4.45		
18007	35.50	37.50	2.00	3.61	.02	.18	14.8	1.2	4.79 !		
18008	37.50	39.00	1.50		.04	.77	12.6	.9	4.8 :		
18009	39.00	40.50	1.50		.04		14.3		4.66		
18010	40.50	42.00	1.50		.04	1.78	11.5		4.72 :		
18011 18012	42.00 43.5 0	43.50 45.0 0	1.50 : 1.50 :		.02 .02	1.32 .73	15.9 13.2		4.69 ¦ 4.76 ¦		
18013	45.00	46.50	1.50	1.48	.02	. 64	6.5	1	4.77 :	1	
18014	46.50	48.00	1.50		.01	1.58	12.2	.79	4.58		
18015	48.00	50.30	2.30		.03	.34	13.4	.8			
18464	50.30	52.70	2.40		0.0	0.01	0.9	0.04	1		
18016	52.70	54.70	2.00		0.0	0.01	2.1	0.04	:	:	
18017	66.00	69.00	3.00		0.0	0.01	1.9	0.01	!		
AVE.	30.50	50.30	19.80	2.62	0.02	0.75	12.68	0.96	4.63	•	

1

·)

HOLE NUMB				GEOCHEM. SHEET	DATE: 5-May-1989
		******		***************************************	
Sample	From	To	Length (
	(@)	(m)	()	\sim	
* =========		******	*********		
18004	18.00	21.00	3.00 :		
18017	65.00	69.00	3.00		

•

.

3

2

3

b

Þ

•

•

)

)

)

2

ì

Ĵ

.

٠

HOLE NUMBER: CCF-26 GEOCHEM. SHEET PAGE: 5

94+00mE		96 +00mE	98+00mE	
108+00mN				O
106+00mN				0
104+00mN				0
				Q
102+00mN				
			O	0
100+00mN				•
				••
			O	•
98+00mN			θ	06
			1436.03m	
	0	Θ		
96+00mN		0	<u>O</u>	
	JOme	96+00mE		98+00ªE
	94+00mE	÷ 00 05		80 05

106+00mE	108 +00mE	110+00mE	
		-	
	·		
			G
		цц	Traced by Drawn by
	106+00mE	108+00mE	C C C C C C C C C C C C C C C C C C C

