istrict Geol	ogist, Kamloops Off Confidential: 90.06.12		
ASSESSMENT REPORT 18838 MINING DIVISION: Clinton			
'ROPERTY: LOCATION:	Edge LAT 51 10 00 LONG 122 08 00 UTM 10 5668497 560597 NTS 092001E		
CAMP:	035 Taseko - Blackdome Area		
<pre>LAIM(S): Edge 1 OPERATOR(S): Brenwest Mining AUTHOR(S): Adamec, J.D.;Lumley, W.E. EPORT YEAR: 1989, 138 Pages OMMODITIES SEARCHED FOR: Gold "EYWORDS: Cretaceous, Eocene, Kingsvale Group, Andesites, Basalts, Rhyoli Shear Zones, Malachite, Chalcopyrite, Arsenopyrite Argillic alteration</pre>			
	lling,Geological,Geochemical D 1426.5 m 16 hole(s);NQ Map(s) - 2; Scale(s) - 1:3333,1:10 000 P 453 sample(s) ;AU,AG,AS,CU,DI,AD,SB Map(s) - 2; Scale(s) - 1:2500 16049,17366 0920 091		

lõg	NO:	de	15

RD.

ACTION:

FILE NO:

DIAMOND DRILLING REPORT ON THE

EDGE PROPERTY, BIG BAR CREEK, B.C.

CLINTON MINING DIVISION

Location NTS 92-0/1 Latitude: 51⁰10'N Longitude: 122⁰08'W

FOR

Brenwest Mining Ltd. Suite 3304 - Bentall 4 1055 Dunymuit Street CAL BRANCH Vancouver SECSMENT REPORT V7X 1L4

AUGUST 1988

TABLE OF CONTENTS

......

		<u>Page No.</u>
1.0	SUMMARY	1
2.0	INTRODUCTION	3
2.3	Property and Ownership Location and Access Physiography History and Previous Work	3 4 4
3.0	GEOLOGY	7
3.2	Regional Geology Property Geology Mineralization and Alteration	7 8 9
4.0	1988 DIAMOND DRILLING PROGRAM	9
4.2	Introduction Drill Core Mineralization Diamond Drill Log Synopsis	9 9 10
5.0	1988 FOLLOWUP EXPLORATION PROGRAM	14
	Trenching Rock sampling Rock sample mineralization Geochemistry	14 15 16 17
6.0	CONCLUSIONS AND RECOMMENDATIONS	17
7.0	REFERENCES	20

APPENDICES

APPENDIX	I	Statement of Qualifications
APPENDIX	II	Geochemical Preparation and Analytical Procedures
APPENDIX	III	Analytical Data for Core Samples
APPENDIX	IV	Diamond Drill Logs
APPENDIX	v	Diamond Drill Cross Sections
APPENDIX	VI	Rock Sample Descriptions
APPENDIX	VII	Statement of Costs
APPENDIX	VIII	Estimated Cost of Proposed Program

-

......

ILLUSTRATIONS

<u>After Page</u>

Figure 1.	General Location Map	3
Figure 2.	Claim Map	4
Figure 3.	Regional Geology Map	7
Figure 4.	1988 work program location map	in pocket
Figure 5.	Drill hole location map	in pocket
Figure 6.	Property geology map-northern portion	in pocket
Figure 7a,b	Rock sample location map	in pocket

1.0 SUMMARY

The Edge property consists of eight mineral claims located 40 km northwest of Clinton, B.C. The property is easily accessible by an all weather gravel road from Clinton to the Big Bar Ferry, which provides access to the west side of the Fraser River.

The 1987/1988 exploration program conducted by Hi-Tec Resource Management Ltd. between November 1987 and February 1988 and in May and June, 1988 consisted of the establishment of a surveyed grid, magnetometer and VLF-EM surveys, detailed geological mapping and prospecting. Trenching and sampling were then carried out over the geochemical and geophysical anomalies.

A total of 1425.65 metres of diamond drilling in 16 holes were completed on the property from May 24 to June 9, 1988 investigating the results found in the previous work.

An anomalous gold bearing quartz/carbonate chlorite shear zone up to 3 m in width has been identified and tested with 6 diamond drill holes over a stike length of 150 m and to a depth of 65 m. This zone assayed up to 1680 ppb Au and 52.1 ppm Ag over 1.0 m, with DDH-88-13 running 1007 ppb Au and 45.9 ppm Ag over 3.0 m.

The geology underlying the property consists primarily of two different volcanic rock formations. The older is Upper Cretaceous Kingsvale volcanic rocks and are characterized by massive, green, grey or buff andesite and purple or dark brown basalt. The younger Eocene volcanics consist mainly of creamy rhyolitic and dacitic tuff, with some minor andesite and basalt

i

occurring as a polymictic breccia with volcanic arenite.

There are several quartz carbonate veins or vein systems on the property. They generally strike north and dip from 54° west to 40° east. Good precious metal metals of up to .063 oz/ton Au and .44 oz/ton Ag have been obtained from surface trenches. In addition, a large zone of argillically altered rhyolite tuff has been systematically sampled and found to be associated with anomalous silver values.

Very favourable geology for "epithermal type" precious metal mineralization exists on the property. In addition, the property is in a similar geographic setting to the Black Dome Mine, 28 km north of the property.

Additional work consisting of drilling and surface work is both warranted and recommended by both authors.

2.0 INTRODUCTION

2.1 Property and Ownership

The Edge property consists of 8 mineral claims totalling 102 units and is situated in the Clinton Mining Division.

The Sheep claims are owned by Brenwest Mining Ltd. and the Edge 1 claim is under option from Mingold Resources Inc.

Pertinent claim data is summarized below:

<u>Name</u>	<u>No. of Units</u>	Record No.	<u>Expiry Date</u>
Edge 1	15	2022	June 16, 1989
Sheep 1	10	2462	Nov. 16, 1989
Sheep 2	20	2463	Nov. 16, 1989
Sheep 3	15	2464	Nov. 16, 1989
Sheep 4	10	2465	Nov. 16, 1989
Sheep 5	9	2466	Nov. 16, 1989
Sheep 6	20	2467	Nov. 16, 1989
Sheep 7	3	2573	Jan. 4, 1990

The claim locations are shown on Figure 2.

2.2 Location and Access

The Edge property is located on the west side of the Fraser River approximately 40 km northwest of Clinton, British Columbia. The property lies on NTS map sheet 92-0/1 and is centered at latitude 51°10'00" North and longitude 122°08'00" West (Figure 1).

Access to the property is by a secondary, all weather gravel road from Highway 97 at Clinton to the Big Bar ferry which provides access to the west side of the

Fraser River. This government operated ferry generally runs from April to November and has a carrying capacity of two vehicles or 10 tons. During the winter months the Highways Department operates a 5 person tram-car across the river. An alternate route to the claims is by 4-wheel drive vehicle from Lillooet, British Columbia, on a network of logging and ranch roads. Driving time from Lillooet by this route is approximately 3 1/2 hours (100 km).

2.3 Physiography

Local topographic relief varies from moderate to very steep. Elevations range from 300 m at the Fraser River to 1,615 m in the northwest corner of the Sheep 2 claim. The property has a rugged terrain caused by deep gullies eroded by intermittent creeks draining into the Fraser River. The major creek is Ward Creek, draining the southern part of the property.

Trettin (1961) in his geological study of the area states "three major elements of the topography can be distinguished: Mid Tertiary and older mountain rages, Middle or Late Tertiary upland surfaces, and Pleistocene and Recent Valleys".

Although the area was covered by glaciers, glacial erosion is slight and till is very rare. Vegetation consisting of scrub grass, sage brush and small cactus are predominant below 800 m in elevation. Ash, sparse pine and fir trees occur at higher elevations. Overburden varies from nil to moderatly thick and consists mainly of alluvial deposits.

2.4 History and Previous Work

The Edge property was staked by Kerr Addison Mines Ltd. in 1979 as a result of a regional program searching for gold in stockworks, volcanic flows and volcanoclastic rocks. Kerr Addison conducted geological mapping, soil sampling 10.3 km and of dipole-dipole induced polarization survey. The geochemical survey did not yield significant results, possibly due to the type and depth of overburden encountered on the property. The IP survey outlined a northwest striking chargeability anomaly 950 m long and open in both strike directions.

In 1980 Kerr Addison completed 2,078 meters of percussion drilling in 29 holes which was followed by 616 m of diamond drilling in 4 holes. Thirteen of the percussion holes were aborted due to thick overburden. All drilling was confined to the part of the IP anomaly area where surface sampling had yielded gold values up to 3,480 ppb in quartz-carbonate veins. The best drill intercept (PDH-13) was 4.49 ppm gold (approx. 0.13 oz/ton) across 3 m or 0.066 oz/ton gold across 9 m. Diamond drilling near this intercept failed to duplicate this result.

The Edge claim was staked in 1986 by Mingold Resources to cover the old Kerr Addison property. Preliminary sampling over the property confirmed the gold anomalies in the quartz-carbonate veins and also outlined a goldmercury anomaly within bleached volcanics occurring east of the Edge fault.

Field work for the 1987-88 exploration program conducted by Hi-Tec Resource Management Ltd. from November 27 to December 16, 1987 and from January 13 to January

26, 1988, consisted of 53.5 km of surveyed grid and baseline, 49.5 km of magnetometer and VLF-EM surveys, detailed geological mapping (1:5,000) of the grid with geological mapping (1:10,000) and prospecting on the balance of the property. A total of 110 rock chip samples and grab samples were collected.

A trenching program was carried out from January 22 to February 3 and from February 9 to February 18, 1988, consisting of 144 m of backhoe trenching, drilling and blasting of the bedrock and the collection of 29 rock chip and grab samples.

An additional program of geological mapping, sampling and hand trenching was carried out between July 8 and July 19, 1988. A total of 16 hand trenches were dug over newly discovered showings in the northern portion of the grid. In addition, systematic rock sampling of intensively argillically altered rhyolitic tuffs was carried out. A total of 255 rock chip samples were collected from trenches and outcrops.

3.0 GEOLOGY

3.1 Regional Geology and Mineralization

The Edge property lies within the Intermontane Belt, which is bordered to the west by the Coast Plutonic Complex and to the east by the Omineca Crystalline Belt.

Rocks of the Intermontane Belt in the property area comprise Upper Cretaceous volcanics of the Kingsvale Group, Eocene volcanics, Upper Miocene and/or Pliocene volcanic and sedimentary rocks, and Quaternary till and alluvial deposits. Tipper (1978) shows the area to be

underlain by a wedge of now weathered Kingsvale volcanics striking north and dipping to the east between 30-50 degrees. It is in fault contact with weathered Eocene volcanics with a northerly strike and random dips.

The Black Dome mine is located approximately 28 km northwest of the Edge property, in a similar geographic environment. The gold and silver mineralization at Black Dome occurs in epithermal quartz veins, most of which are hosted by rhyolite and dacitic andesite. Proven and probable ore reserves are 280,000 tonnes grading 23 grams gold per tonne and 74 grams silver per tonne (Preliminary Map 65).

3.2 Property Geology

The property is underlain primarily by two different volcanic rock formations which are separated by a major northwest trending fault structure (Edge Fault). The older are Upper Cretaceous Kingsvale volcanic rocks occurring west of the Edge fault and consisting mainly buff of massive, light green to grey-green to porphyritic andesite (Unit 1). This andesite weathers is magnetic and contains 5% ferromagnesian green, phenocrysts (Hornblende) up to 3 mm long. Andesitic flows form the highest peak on the Edge property.

Unit 2 is made up of purple or dark brown to black basaltic tuff which is hematitic, weakly porphyritic and slightly magnetic. The tuff is overall massive with sections weakly fractured and brecciated locally appearing to be water lain with thin alternating bands of dark and lighter soft tuffaceous mud. In addition the unit sometimes assumes the texture of a volcanic agglomerate or a flow breccia containing large clasts

of scoriaceous dark grey basalt and porphyritic andesite up to 14 cm. in diameter held within a hematitic tuffaceous matrix.

The contact between andesite and basaltic tuff strikes generally north with random dips from 50 degrees to the east to 30 degrees to the west. The exact stratigraphic relationship of these units is not known at present but there is indication that a light green siliceous porphyritic andesite flow appears to the the latest event to occur within these two units.

Unit 3 forms the southwest corner of the property and consists mainly of pale yellow, creamy rhyolitic, with less dacitic tuff with some andesitic and basaltic rocks outcropping throughout.

Unit 4 occurs on the northern part of the Sheep 6 claim and consists of polymictic breccia, partly altered with volcanic arenite. Siltstone is comparatively rare. In some parts, graded bedding and cross-bedding can be observed. The beds are generally grey but occasionally red.

Unit 5 occurs east of the Edge fault consists of two sub units: Unit 5A, the upper unit is a volcanic arenite characterized by angular to sub rounded clasts of porphyritic andesite and vesicular basalt up to 5.0 cm in diameter within a mudstone matrix. Unit 5B which underlies the arenite consists of varicoloured weakly to strongly argillically altered volcanoclastics which appear to be originally rhyolitic and dacitic tuffs. This unit is porous in nature making it more susceptible to hematitic alteration, silicification and kaolinitization. One Quaternary sedimentary unit (6) has been mapped because of its extent over the property. It consists of unconsolidated gravel, sand, silt and till. The thickness may locally exceed more than 30 m.

Structure on the property consists of a set of northeast trending faults which dip at a shallow angle to the east at between 20 to 45 degrees (indicated from the drilling). Folding of the volcanics is seen but delineation of strike is difficult to determine; preliminary mapping and previous reports state that the fold axis on the east side of the property, that is, east of the Edge Fault, strike NE-SW whereas the west side stikes NW-SE.

3.3 Mineralization and Alteration

Mineralization

Gold and silver mineralization occurs in epithermal brecciated and sheared quartz-carbonate veins, most of which are hosted by andesite. These veins usually occur at or near the contact between overlying andesite flows and basaltic tuffs with some veins located wholly within the tuff unit. The veins vary from a few centimeters to a few meters in width and locally a large amount of chlorite (up to 60-70%) as carry shears with well developed slickensides. There are several quartz carbonate breccia veins or vein systems within the area showing a general strike of due north and dips of 54° west to 40° east. Two quartz-carbonate veins were exposed by trenching in early 1988. The No. 1 vein outcroping near the road at Trench #4 and station 4+00N, 2+00E strikes 360° and dips 23° east. The average width of the vein is 1.5 m and it can be followed along strike for at least 100 m. The best

assay values from this vein were 2.17 g Au/t (0.063 oz/t) with 3.8 g Ag/t (0.11 oz/t) across 1.4 m and 0.72 g Au/t (0.02 oz/t) with 8.2 g Ag/t (0.24 oz/t) across 3.6 m. The No. 2 vein located near station 3+75N, 1+10E is up to 5 m wide and has a strike of 157° . The vein appears to be dipping to the west and can be followed for at least 12 m. The best assay value is 0.90 g Au/t (0.026 oz/t) with 3.0 g Ag/t (0.087 oz/t). The early 1988 diamond drilling failed to intercept the vein at depth.

The most persistent and best mineralized vein identified and explored by diamond drilling to date is the No. 3 vein, striking approximately 360 degrees and dipping 23 degrees west, located between 5-6+00N and 0+50E. The vein is approximately 2.0 m wide and can be followed along strike for at least 100 m to a depth of 65 m and is open on both ends.

A11 veins are characterized by brecciated and the vuggy quartz with calcite and locally contain 30-60% chlorite as shears. The calcite content within the from minor to equivalent amounts to the veins varies The veins contain disseminated quartz. pyrite, arsenopyrite up to 3-5%, as well as very minor chalcopyrite and sphalerite.

Mineralization is also found within faults on the property, with the actual fault plane and associated drag folds containing up to 3-5% pyrite, and equivalent arsenopyrite with trace amounts of chalcopyrite and sphalerite.

Alteration

The most prominent outcroping on the property is varicoloured (white, yellow, green, and purple), argillically altered zones found mostly on the The alteration pattern northeast part of the property. displays an outer envelope of in most cases kaolinitization a few meters thick and some propylitic alteration. The alteration zones contain disseminated hematite, pyrite, calcite and iron staining. Rock samples taken from altered zones yielded anomalous mercury, including a sample of 1,550 ppb associated with 0.22 g Au/t (sample 87051JA33).

4.0 1988 DIAMOND DRILLING PROGRAM

4.1 INTRODUCTION

The 1988 diamond drilling program was completed to explore the 3 major veins found in previous work performed by Hi-Tec Resource Management Ltd. The description and the results are summarized below in the Diamond Drill Log Synopsis.

4.2 DRIIL CORE MINERALIZATION AND ALTERATION

The mineralization found within the core to date consists mainly of disseminated pyrite and arsenopyrite with very minor chalcopyrite and sphalerite housed within quartz/carbonate chlorite shear zones and associated quartz veining. Minor ubiquitous pyrite is seen within the basaltic tuff unit but overall mineralization is minimal.

Alteration in the diamond drill holes consists mainly of zones of intense hematitization and argillic alteration associated with the basaltic tuff and shear zones that cut the tuff unit and the porphyritic andesites.

4.3 DIAMOND DRILL LOG SYNOPSIS

Diamond drill holes DDH-88-1,2 were located at 4+17N, 1+49E to the east of Trench 13 in which Vein #1 was tested and from which sample AS-44 was taken. This sample assayed 2.17 g Au/tonne (0.063 oz/t), 3.8 g Aq/tonne (0.11 oz/t) and 1902 ppm As across 1.4 m. The orientated at -50 and -70 holes were degrees respectively with an azimuth of 270 degrees (compass). Both were collared in a highly fractured and sheared andesite which appeared to be argillically altered. andesite This appears to be dipping east at approximately 25 degrees; it is bounded by a hematitic fault zone which occupies the gully immediately to the west of the trenches. A basaltic tuff and agglomerate were intersected on the other side of the fault. The entire section was sampled, returning no economic intersections.

Diamond drill holes DDH-88-3,4,5,15,16 were all drilled to test the high grade intersection that Kerr Addison had in percussion hole PDH-13, of 4.44 ppm over 3.0 m. The attitude of the holes are summarized below:

ORIENTATION	DIP	LOCATION
250	-50	5+74N,0+53W
250	-70	5+74N,0+53W
310	-50	5+79N,0+53W
	-90	5+76N,0+50W
280	-50	5+76N,0+50W
	250 250 310	250 -50 250 -70 310 -50 90

DDH-88-3 was collared north of the rich Kerr Addison Mines Ltd. percussion hole mentioned above with the purpose of exploring to find the source of the mineralization causing the high gold values. An anomalous gold bearing chloritic quartz/calcite shear zone was intersected at 69.75-79.00 m, yielding .41 g/ton Au and 9.3 g/ton Ag over 4.0 m.

DDH-88-04 was drilled to try to determine structure and the dip of the shear zone intersected above. The zone was intersected at 50.70-55.15 m yielding .74 g/ton Au and 6.3 g/ton Ag over 3.79 m.

DDH-88-05 was collared to ascertain structure and possible dip of the structure to the northwest. Unfortunately the drill hole with its flatter dip, appears to have gone over the shear zone intersected in the previous holes and therefore the shear zone was not found.

Diamond Drill Holes DDH-88-15, 16 were collared between DDH-88-3 and 4 and drilled at an azimuth of 280 degrees to try to intersect the shear zone missed by DDH-88-05. DDH-88-15 intersected the zone at 49.68-51.51 m, however, returned only anomalous values of .155 g/ton Au over 2.0 m.

DDH-88-16 intersected the zone at 79.40-84.28 m yielding only slightly anomalous readings of .37 g/ton Au and 8.2 g/ton Ag over a length of 3.12 m.

Diamond drill Holes DDH-88-7,8 were collared in a gully at location 3+79N, 1+49E and orientated at 240 degrees with dips of -45 and -65 degrees respectively. These holes were drilled to test the structure and mineralization of Vein #2 under trenches 5, 6, and 7. An attempt was made to build a drill platform on the west side of the trench locations to facilitate the testing of the proposed westerly dip of the structure, however, a large amount of outcrop halted the building of the road to the site.

Both of the drill holes were collared in highly fractured andesite which resulted in a large amount of core loss initially but then passed into a more competent andesite porphyry with drill hole 7 ending in a basaltic agglomerate. Good classic breccia zones were found in the area of drill hole 7 with a wide breccia zone intersected in drill hole 8. The entire length of the holes returned no anomalous values.

Diamond drill hole DDH-88-9 was located at 7+00W, 1+50S to test the geophysical EM and MAG anomalies associated with the Edge Fault. The hole was orientated at 270 degrees (compass) with a dip of -50 degrees. The volcanic arenite was the first rock type encounted after 33.53 m (110') of overburden. This unit was barren of any mineralization. The Edge Fault was encountered at 49.68 m (163') resulting in a large amount of lost and broken core and an overall tightening of the drill hole. A porphyritic andesite unit was found on the other side of the fault but core recovery was only 45-50%. The hole caved and broke rods which resulted in the abandonment of the hole at 71.63 m (235').

Diamond Drill Holes DDH-88-10 and 88-11 were drilled at locations 1+50S, 2+76E and 1+07S, 2+86E repectively, to test under the overburden for the source of the large amount of quartz/carbonate float found in the vicinity, as trenching in 1987 had failed to reach bedrock. To summarize: DDH-88-10 was orientated at 090 degrees (compass) at a dip of -50 degrees. The hole was collared in a highly fractured andesite porphyry and continued in an alternating sequence of basaltic tuff and fresh

andesite. Overall, the units were very fresh and weakly altered indicating that they are one of the youngest of the volcanics that were extruded in the area, certainly stratigraphically higher than the andesites and tuff units found near DDH's 1, 2, 3 and 4.

Similarly, DDH-88-11 which was orientated at 060 degrees (compass) at a dip of -65 degrees, continued in almost the same sequence of rocks as DDH-88-10. One small quartz rich shear zone was intersected but sampling revealed no economic or even anomalous readings.

DDH-88-12 was collared at grid location 2+88N, 3+00E and orientated at 090 degrees (compass) with a dip of -60 degrees to test under the Reynolds Creek Fault and the rock geochemical sample locations 88-AS-27, 28 which previously were assayed at .90 and .05 g/ton Au and 3.0 and 1.8 g/ton Ag respectively. Examination of the sample location indicated a pyrite/arsenopyrite rich quartz breccia and drag folds associated with the Reynolds Creek Fault exposed in the creek bed. The hole intersected the fault at 38.60 - 40.60 m returning an overall grade of .575 g/ton Au and 5.45 q/ton Aq fault was characterized m. The by a over 2.0 quartz/pyrite breccia zone with approximately 3% pyrite No other potentially economic arsenopyrite. and intersections were observed.

DDH-88-13,14 were collared at location 5+00N, 0+29W and orientated 090 degrees (compass) with a dip of -60 and -90 degrees respectively. Drill hole 88-13 was drilled to explore the down dip extension of a fault zone from which rock geochemical samples 87-JA-24, 25 and 87-AS-6 were taken. These samples ran .65, .76 and and 2.4, 1.7 and 5.7 q/ton.81 q/ton Au λq respectively. Diamond drill hole DDH-88-13 was the richest of all the holes intersected in the recent phase of drilling, returning 1.36 g/ton (.04 oz/ton) Au and 50.80 g/ton (1.48 oz/ton) Ag over 3.0 m.

DDH-88-14 was drilled to test the westerly extension of the quartz/carbonate vein intersected in DDH-88-13. This vein was intersected at 50.29-52.86 m yielding .80 g/ton Au and 11.3 g/ton Ag over 3.75 m.

5.0 THE 1988 FOLLOWUP EXPLORATION PROGRAM

Field work for the 1988 exploration program was conducted from July 8, to July 19, 1988. This work consisted of detailed geological mapping (1:500) on the northern part of the existing grid, hand trenching and sampling of newly discovered showings, systematic rock sampling of intensively argillically altered rhyolitic tuffs and the completion of reclamation work on areas disturbed by cat work.

5.1 Trenching

A total of 16 hand trenches were dug (see Figure 6). The trenching was focused on the newly discovered showings in the northern portion of the grid. Trench 16 exposed fractured fine grained andesite cut by 10 cm wide quartz vein with strong malachite staining.

Trenches 17 and 18 uncovered a 20 cm thick, iron stained quartz carbonate vein at the porphyritic andesite-basaltic tuff contact. The vein is striking west and dipping 80⁰ south. Trench 19 exposed a hematite stained quartz-carbonate vein associated with a shear zone at the andesite-basalt contact. A newly discovered, brecciated quartz carbonate vein (No. 4), hosted by grey green porphyritic andesite, has been intercepted by trenches 20, 21, 22, 23, 24, 25, 26, and The vein is striking 360°, dipping 40° west and 27. plunging at 21⁰ east. It can be followed along strike for approximately 40 m and in some places is up to 1 m in width. Trenches 28, 30, and 31 exposed two guartzandesite breccia zones up to 1 m thick. The continuity of this zone is unknown at the present time because trench 29 failed to reach bedrock due to thick overburden.

A total of 31 rock chip samples were collected from trenches. Rock sample locations are on figure 7b.

5.2 Rock Sampling

Based on the recommendation by E. Yarrow (1987), systematic rock sampling was carried out over the argillically altered area, in the eastern portion of the grid. The cliff face was accessed and sampled by a team of experienced rock climbers. A total of 184 rock chip samples were collected on 11 lines with a 3 m sample interval (see Figure 7a).

The zone within tertiary volcanics at the eastern portion of the Edge 1 claim, which produced values up to 465 ppb Au (Yarrow, 1987) was sampled as well. A total of 40 rock samples were collected from this zone (Figure 7a).

5.3 Rock Sample Mineralization

Iron staining is a characteristic feature of the quartz carbonate veins exposed on the property. The recognized mineralization in the rock samples consists of disseminated fine pyrite, chalcopyrite, hematite and malachite.

The best values were from rusty quartz carbonate veins associated with a shear zone (trench no. 19). Sample no. 14030 returned an assay value of 2.15 g Au/t (0.063 oz/t), 12.2 g Ag/t (0.36 oz/t) and 1061 As ppm across 18 cm while sample no. 14039 gave values of 0.91 g/t Au (0.027 oz/t), 15 g Ag/t (0.44 oz/t) and 538 ppm As across 25 cm.

The best values from newly discovered brecciated quartz carbonate veins were 1.06 g Au/t (0.031 oz/t), 21 g/t Ag (0.06 oz/t) and 338 ppm As across 0.70 m from rock chip sample no. 14035.

Intensively, argillically altered volcanic rocks are locally accompanied by significant amounts of quartz. Mineral assemblages within these zones include quartz, calcite, hematite and disseminated pyrite. High silver values are common and several values over 3 g/t (0.087 oz/t) were produced. The best values from brecciated quartz carbonate veins within argillically altered zones were sample no. 4148 assaying 0.1 g/t Au (0.001 oz/t) 4.3 g Ag/t (0.13 oz/t) across 50 cm.

The results from the rock geochemistry can be found in Appendix III with anomalous values above 0.5 g/t Au and 4 g/t Ag plotted on Figures 7a and 7b.

5.4 Geochemistry

A total of 255 rock chip samples were collected from All samples were sent to Min-En the property. Laboratories Ltd. 705 West 15th Street, North Vancouver, B.C. for analysis. 31 samples were subjected to a gold, silver fire assay and six element ICP. 224 samples were analysed for six elements (Au, Ag, As, Cu, Pb, Sb, Zn) by ICP. Preparation and analytical procedures can be found in Appendix II.

Gold values ranged from the detection limit of 5 ppb to a maximum of 2150 ppb. The highest values come from samples collected from quartz carbonate veins. Silver values in rocks ranged from a low of 0.1 ppm to a high of 15 ppm in sample no. 14039, taken from a quartz carbonate vein associated with a shear zone. Arsenic values were recorded up to 6505 ppm.

Zinc values ranged from 9 ppm to 237 ppm and there is a moderate correlation with lead values which ranged from 3 ppm to 180 ppm. Copper values reached as high as 1538 ppm. Antimony values were generally very low, with a maximum value of 51 ppm.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The Edge property consists of 8 mineral claims totalling 102 units and is situated in the Clinton Mining Division of B.C. Prospecting, rock sampling and geophysical surveying, followed by trenching and diamond drilling have shown the presence of significant gold-silver mineralization on the property over a relatively large area. It is believed that the property shows excellent potential for finding more precious metal mineralization with a good possiblity of higher grades.

Gold and silver bearing mineralization on the property generally consists of brecciated and sheared quartzcarbonate veins containing up to 60% chlorite with disseminated pyrite, arsenopyrite and minor chalcopyrite and sphalerite. The results of surface rock sampling and diamond drilling suggests that the overall grade of gold mineralization found to date ranges from 0.1 g to 2.17 g/t with accessory silver, arsenic, mercury and very minor zinc, lead and copper. Currently, the most extensive vein is the No. 3 vein, approximately 3.0 m in width which extends over 150 m in strike length to a depth of 65 m and is open to the west and south. It appears that the vein may be enriched by cross cutting faults.

The other brecciated quartz-carbonate veins can be traced on the surface for up to 120 m with encouraging precious metal grades.

It is proposed that the source of the mineralized hydrothermal fluids lies at depth and down dip of the exposed shear zone. In addition, it is possible that the shear zone has been enriched by cross cutting fault structures. To explore this possibility, a series of deep diamond drill holes should be drilled 150 m west of the recent drilling location to test the down dip extension of the shear zones encountered. A diamond drill platform should be built to the west of trenches 5,6 and 7 and two short holes drilled to explore the possible westerly dip of Vein Number 2. In addition, the newly discovered showings in the northern and eastern portions of the property should be diamond drill tested.

An estimate of the cost of the proposed exploration program is given in Appendix VIII.

Respectfully submitted, HI-TEC RESOURCE MANAGEMENT LTD.

William & Sur lig W.E. Lumley, B.Sc.

J.D.Adamec, Ph.D., F.G.A.C.

8.0 REFERENCES

- Adamec, J.D. (1988) Geological, Geochemical and Geophysical Report on the Edge Property, Big Bar Creek, B.C. Report for Brenwest Mining Ltd.
- Arnold, R. (1987). Geological report on the Edge 1 mineral claims. Report for Brenwest Mining Ltd.
- Duffell, S., McTaggart, K.C. (:1952). Ashcroft-Map-Area B.C., Geol. Surv., Canada, MCM 262.
- Energy, Mines and Resources of Canada (1985). Big Bar Creek, NTS 92-0/1, Topo map 1:50,000.
- Faulkner, E.L. (1985). Black Dome Deposits (920/7E, 8W) B.C., Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, Paper 1986-1.
- Geiger, K.W. (1977). Geological Assessment Report on Placer Mining Leases 612, 613 and 614 Known as the Bar Group for Longbar Minerals Ltd.
- Neelands, J.T. (1980). Report on the Percussion Drilling of the Big Bar Property, Kerr Addison Mines Ltd.
- Open File 534 (1978). Taseko Lakes (92-0) Map Area, sedimentary and volcanic rocks, geological map at scale of 1:250,000.
- Trettin, H.P. (1961). Geology of the Fraser River Valley between Lillooet and Big Bar Creek, B.C., Department of Mines and Petroleum Resources, Bulletin No. 44.
- Yarrow, E.W. (1987). Edge Property, Clinton Mining Division, B.C., Mingold Resources Inc.
- 1987 Producers and Potential Producers Mineral and Coal, Preliminary Map. 65.

APPENDIX I

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

- I, William E. Lumley, of the City of New Westminster, Province of British Columbia, here by certify that :
- 1. I am a geologist residing at 935 6th Street in the City of New Westminster, Province of British Columbia.
- 2. I obtained a Bachelor of Science Degree in Geology from the University of Waterloo, Waterloo, Ontario in 1974.
- 3. I have been practising my profession as a geologist in Canada and United States permanently since 1974.
- 4. The information contained in this report was obtained from field work conducted by myself and others in 1988.
- 5. I consent to the use of this report in the Prospectus or Statement of Material facts for the purpose of a private or public financing.
- Dated in Vancouver, B.C., this <u>/sr</u> day of <u>October</u>, 1988

Cullian & pinlis

William E. Lumley, B.Sc.

STATEMENT OF QUALIFICATIONS

- I, J. Duro Adamec, of 1154 Premier Street, North Vancouver, B.C. hereby certify:
- 1. I graduated in geology from Commenius University of Bratislava, Czeckoslovakia (1978) and I hold a Ph.D. in Engineering Geology (1982) from the same University.
- 2. I am a Fellow of Geological Association of Canada.
- 3. I have been practicing my profession in Europe and North America since 1978.
- 4. The information contained in this report was obtained from field work conducted by myself and others in 1988.
- 5. I consent to the use of this report in a Prospectus or Statement of Material Facts for the purpose of a private or public financing.
- Dated in Vancouver, B.C. this <u>/st</u> day of <u>October</u>, 1988.

D. Shame

J. Duro Adamac, Ph.D., F.G.A.C.

APPENDIX II

Geochemical Preparation and Analytical Procedures

MIN-EN Laboratories Ltd.

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

Analytical Procedure Report for Assessment Work

31 Element ICP

Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories Ltd., at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.

1.0 gram of the sample is digested for 4 hours with an aqua regia $HClO_4$ mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers. Reports are formatted and printed using a dot-matrix printer.

MIN-EN Laboratories Ltd. Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 5.0 or 10.0 grams are pretreated with HNO_3 and $HCIO_4$ mixture.

After pretreatments the samples are digested with <u>Aqua Regia</u> solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 0.005 ppm (5ppb).

TELEX: 04-352828

PHONE: (604) 980-5814 or 988-4524

MIN-EN Laboratories Ltd. Specialists in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

FIRE GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Fire Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at $95^{\circ}C$ soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 15.00 or 30.00 grams are fire assay preconcentrated.

After pretreatments the samples are digested with Aqua Regia solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 1 ppb.

APPENDIX III

Analytical Data for Core Samples

COMPANY: HI-TEC RESOURCE MANAGEMENT
 MIN-EN LARS ICP REPORT

.

COMPANY: HI-TEC RES		MANAGEMENI			IN-EN LAB				(ACT:F31) PAGE 1 OF
PROJECT NO: 88-8C-00 ATTENTION: P.SORBAR			/05 W				COUVER, B.C.		FILE NO: 8-598/P1
(VALUES IN FPH)	+ AG	AS	 CU	<u>(604)</u> FB			04) 988-4524	TYPE ROCK GE	DCHEM ‡ DATE:JUNE 1, 19
16 501	1.0	12 2	40	<u>FB</u> 17	<u>5</u> B 	<u>2</u> N- 84	AU-PPB		
16 502	.7	9	30	10			2		
16 503	1.5		30 31		8	84	1		
16 504		8		9	18	79	2		
16 505	1.0	45	40	15	16	86	1		
	1.3	7	43		8	91	ś		
16 506	1.0	10	45	20	8	91	2		
16 507	.3	3	44	17	7	79	1		
16 508	1.0	44	27	17	6	85	6		
16 509	,5	19	24	22	8	66	2		
16 510	1.0	<u>10</u>	32	18		_63	99	*****	
16 511	1.3	19	30	19	9	66	4		
16 512	1.2	16	28	19	10	68	13		
16 513	1.4	9	37	28	8	65	2		
16 514	.8	44	40	16	3	78	6		
16 515	.1	35	17	9	16	73	11		
16 516	.3	43	1	23	9	96	2		
16 517	. 4	11	24	17	4	83	5		
16 518	.8	1	35	21	6	71	1		
16 519	2.1	6	19	15	3	82	4		
16 520	.5	1	33	20	4	74	3		
16 521					:	- <u></u> 96	8		
16 522	.9	4	44	21		106	5		
16 523	1.2	1	44	19	-	107	3		
16 524	1.8	5	47	19	6	82			
16 525	1.6	50	24	11	2	76	2		
16 526	2,2	1	27						
16 527	1.2	-		14	4	84 87	2		
16 528		50	36	11	2	86	3		
	.7	11	50 70	18	2	63	2		
16 529	.4	34	32 -	24	2	77	2		
16 530	1.2	32	39	24		69	44		
	1.2	37	25	30	1	74	3		
16 532	.5	35	22	19	4	70	7		
6 533	.7	12	39	18	5	71	1		
16 534	.5	43	37	7	3	63	2		
.6 535	1.9		26	6	4		8		
.6 536	.6	33	25	16	5	66	1		
6 537	.7	2	30	21	5	73	13		
.6 538	.5	34	4 <u>1</u>	27	5	76	3		
16 539	.9	33	18	26	2	47	2		
6 540	.7	26	31	29	1	52	1		
6 541	.5	1	39	21	4	72	2		
.6 542	.6	48	43	13	2	78	2		
6 543	.6	21	542	9	-	65	29		
.6 544	.1	35	116	, 9	2	75	129		
	1.3	27	51	5	4	66			
	1.3	<u></u> 31		<u>0</u>	4	$\frac{29}{70}$	2		
.6 547	.9	31 275	59 57	10 16	4 6	70 75	123		
				10 51	4	79 76			
	5.1	509	B1		*† 		855		
6 549	.5	115	25	5	4	77	191		
	3.7	180	31	13		69	328		
6 551	.8	319	25	9	5	79	270		
	6.5	804	48	30	<u>1</u>	80	402		
6 553	3.0	148	43	31	3	46	155		
6 554	.5	28	46	16	4	55	6		
6 555	. 4	49	48	17	4	57	13		
6 556	.5	26	39	20	4	54	2		

-COMPANY: HI-TEC RESO				H	IN-EN LAI	35 IEP A	EFORT	(ACT;F31) FRBE 1 0- V7M 1T2 FILE NO: 8-624/F1+
PRDJECT NO: BEBC 007			705 WES	31 1514 ' 7700)	51., NUKI 000 5014	H VANU. No (LAA	10755, 5.6. Nooolasta	* TYPE ROCK GEOCHEM * DATE: JUNE 7, 193
ATTENTION: P.SORBARA					<u>299-2014</u> 98	<u>ZN</u> 4		
	<u>AG</u>					<u>29</u> 50	19-11-2	
	1.1	9	8	22	2	37 37	4	
16 558	.1	36	14	24	1	57 45	4 60	
16 559	.8	64	15	19	2		-	
16 560	1.1	116	36	29	3	57	4 2	
16 561	1.3	<u>177</u>	5	25		48	94	
16 562	.2	45	84	26	5	90	2	
16 563	1.3	5	12	25	1	66	5	
16 564	1.0	7	53	21	1	54	2	
16 565	9.3	904	29	39	5	74	845	
15 566	3,9	1214	20	34	77	70	806	
16 557	3,9	190	54	49	6	45	177	
16 568	8.6	2000	36	43	13	60	1250	
16 569	1.9	198	31	23	1	62	100	
16 570	1.0	210	139	21	3	56	190	
16 571	1.5	5	2	25	2	55	2	
16 572	.5	<u>-</u> 111	46	26	3	50	21	
16 573	1.7	67	52	24	3	38	52	
16 574	1.7	296	76	32	4	47	2125	
16 575	.1	4	48	24	2	50	3	
	,8	3	44	24	1	47	2	
16 576	<u></u>	205	<u>[</u> 4			62	80	
16 577	1.8	200 34	40	14	6	67	2	
16 578	1.0	53	13	22	ġ	54	3	
16 579		35 14	12	22		64	5	
16 580	1.5		12 74	21	8	58	1	
16 581		10		$\frac{21}{20}$	<u>8</u>		<u>-</u>	
16 582	1.9	1	18 50	20 22	e 1	58	2	
16 583	1.8	24	52 20	22 19	1 7	57	1	
16 584	1.5	33	29 + 85		6	64	÷ 7	
16 585	.1	15	145	20	0 1	04 74	4 ?	
_15_586		3		26			<u>-</u>	
16 587	2.5	42	27	22	6	59	с п	
16 588	2.6	33	46	26	6	61 70	2	
16 589	,6	10	17	25	1	70 po	ੇ ਦ	
16 590	.6	23	6	30	1	92	5	
16 591			12	<u>79</u>	<u> </u>	58		
16 592	3	45	14	17	1	42	2	
16 593	. 8	44	16	27	ų.	73	4	
15 594	.5	37	15	23	7	59	2	
16 575	.6	41	15	25	1	58	18	
16 576	.3	66	23	29	3	<u>54</u>	2	
16 597	5	42	24	28	1	10!	1	
10 377		·						

COMPANY: HI-TEC RE PROJECT NO: 88-BC-	-007				IN-EN LAB ST., NORTH			.C. V7M 1T2	(ACT:F31) PAGE 1 FILE NO: 8-661/
ATTENTION: PAUL SC	RBARA			(604)	780-5814 (DR (6	04)988-45	24 ¥ TYPE ROCK GEOD	
(VALUES IN PPM)	A6	AS	CU	PB	SB		AU-PPB		
16 598	3.1	51	20	13	4	49	4		
16 599	3.3	70	11	14	4	41	19		
16 600	2.5	66	19	19	5	59	25		
16 601	1.0	23	35	14	4	53	3		
16 602	2.0	35	22	15	4	46	2		
16 603	1.4	30	34	20	6	67	4		~~~
16 604	1.1	26	6	23	5	60	3		
16 605	1.2	25	11	18	5	68	2		
16 606	1.7	31	10	13	4	51	3		
16 607	1.1	23	14	17	5	67	1		
16 608	1.5	50	43	21	5	65	2	**********	
16 609	2.1	53	25	24	7	63	1		
16 610	2.3	65	45	20	6	65	1		
16 611	2.7	51	35	21	5	70	3		
16 612	1.6	31	10	12	4	53	5		
16 613	2.6	30	30	19	5	64	ä 4	~~~~~~~~~~~~~~~~~~~~~~~~	
16 614	2.9	36	8	10	4	52	2		
16 615	2.0	30	12	25	6	62	3		
16 616	2.6	29	6	22	5	76	1		
16 617	2.8	33	12	22	6	80	2		
16 618	1.4	34	23	15	5	50	11		
16 619	2.2	40	17	17	5	63	9		
16 620	2.3	73	20	19	4	63	17		
16 621	2.3	72	17	17	4	49	29		
16 622	1.3	50	5	14	5	65	23		
16 623	1.1	30	1	21	5	85	11		
16 624	.9	18	27	17	5	89	5		
16 625	2.5	39	18	19	5	56	54		
16 626	4.1	1575	20	17	7	55	351		
16 627	6.8	3492	26	25	11	49	492		
16 628	1.6	116	29	15	5	63	15		
16 629	.9	34	21	22	6	65	3		
16 630	1.0	34	4	15	6	61	i		
16 631	2.7	476	26	22	6	50	94		
16 632	2.9	228	46	20	4	50	170		
16 633	38.6	868	53	97	8	159	1680		
16 634	47.0	1008	94	81		143	702		
16 635	52.1	711	155	107		120	640		
16 636	3.3	161	12	20	6	71	81		
16 637	3.1	20	12	14	4	64	11		
16 638	2.4	162	6	15	5	47	57		
16 639	1.6	44	12	18	5	107	38		
16 640	.9	13	23	17		107	6		
16 641	.8	4	2	14	5	99	18		
16 642	.5	30	6	12		114	22		
16 643	1.0	27	28	17		101	19	*******	
88JA007 01	1.4	77	1	27	6	86	22		
88JA007 02	3.0	221	10	15	4	39	139		
88JA007 03	.3	26	24	6	2	15	84		
88JA007 04	.3	37	11	3	2	14	153		
88JA007 05		6	18	1	2	12	65		

	COMPANY: HI TEC RES PROJECT NO: BC 077	SOURCE MAN	AGEMENT	705 WEST	MIN-E 15TH ST.,	N LABS IC		R.C. V7M	(ACT:F31) FAGE 1 OF 1 1172 File No: 8-719R/P1+2
	ATTENTION: P.SORBAR	RA			(604)980-				t TYPE ROCK GEOCHEM & DATE: JUNE 20, 1988
	(VALUES IN PPM)	A6	AS	CU	PB	SB	ZN	AU-PPB	
	701	10.2	68	53	34	4	177	552	
	702	1.1	14	21	60	6	254	8	
	703	5.3	48	52	8	5	157	220	
	704	.8	8	21	76	6	112	49	
	705	19.5	16	66	126	10	513	1250	
	706	5.2	56	34	126	12	282	770	
	707	3.6	35	83	53	13	350	378	
	708	1.0	9	26	109	5	159	28	
	709	1.1	36	34	70	1	117	193	
	710	20.5	10	63	19	7	107	439	
	711 712	4.3	9 5	62 43	44 76	12	216 256	339 382	
	713	1.3	20	43 27	27	12	238 363	382	
	714	1.5	20	34	109	11	204	ა 1	
	715	1.1	19	27	50	11	150	1	
	716	.8		43	83	16	188	· <u>-</u>	
	717	1.2	21	32	3	11	292	2	
-994	718	1.4	15	36	37	19	84	1	
	719	1.3	16	44	115	39	303	2	
	720	1.4	1	51	109	34	144	1	
	721	1.4	17	40	96	11	76	18	***************************************
	722	.7	8	35	30	45	20	162	
	723	1.0	5	16	41	55	196	7	
	724	1.8	15	32	107	6	276	2	
	725	1.8	14	29	121	60	192	28	
	726	1.2	1	43	62	7	196	154	
	727	2.0	16	43	93	29	20	155	
	728	.7	4	27	72	25	83	2	
	729	.4	2	42	67	7	108	1	
	730	.7	3	51	42	13	101	165	
	731	1.3	19	39	32	7	177	2	
	732	1.2	7	50	88	6	403	1	
	733	1.3	7	53	11	1	189	3	
	734	1.3	11	45	26	4	434	29	
	735	1.3		48	40	7	9		
	736	1.2	9	43	41	3	340	2	
	737	1.0	8	38	16	6	228	4	
	738	.6	3	9	27	1	262	2	
	739	.6 .7	9 13	5 14	40 67	11 3	276 153	3 28	
Aug. (600)	-740			175			163	77	
	741	1.4		45	56	2	165 95	31	
	742	.6 1.2	3 3	35	15	13	190	101	
	743 16645	1.2	3 7	25	25	13 11	190	2	
aria.	16646	1.2	12	23	66		93	124	
	16647	.8		46	28	8	35	50	
	16648	.6	3	19	26	3	34	12	
	16649	1.5	2	31	36	14	200	4	
	16650	1.5	i	26	26	8	215	7	
	16644	1.6	4	26	47	10	118	2	

PROJECT NO: 86	BC 007'		705 WEST	15TH ST.	NORTH	VANCOUVER,	B.C. V7M		ACT:F31) PAGE FILE NO: 8-766
ATTENTION: P. S	ORBARA					(604)988-		I TYPE ROCK GEOCHEM	
(VALUES IN PPM) AG	AS	CU	PB	S8	ZN	AU-PPB		
744	.2	29	4	11	· · · · · · · · · · · · · · · · · · ·	49	3		
745	.1	1	5	10	2	52	2		
746	.7	24	52	12	2	45	4		
747	.9	41	16	10	1	35	29		
748	1.1	15	4	13	2	58	21		
749	.2	52	4	12	1	62	2		
750	.5	46	49	11	3	52	10		
14001	.5	27	45	15	1	60	3		
14002	.9	21	22	12	1	58	1		
14003	.4	1	12	13	2	57	2		
14004	1.1	48	49	9	2	63	4		
14005	.5	42	. 23	14	2	57	3		
14006	.6	160	33	16	3	61	2		
14007	1.4	14	28	21	1	55	1		
14008	.5	62	26	14	2	75	2		
14009	.3	1	46	18	2	66	1		
14010	.3	13	30	12	3	68	38		
14011	2.1	108	39	14	3	67	582		
14012	.3	49	36	15	1	58	3		
14013	.6	2	54	4	2	66			
14014	.6	26	25	8	3	65	14		
14015	77.4	1492	51	46	4	84	450		
14016	1.0	80	23	7	3	70	5		
14017	.2	6	56	9	2	46	16		
888001	1.0	122	13	10	2	11	79		
88BC02	2.8	963	4	15	2	12	101		
88BC03	,4	134	17	27	1	11	182		
88BC04	1.2	27	26	3	3	70	33		
88BC05	1.5	120	18	19	1	39	419		
888006	.2 1.2	<u>19</u> 74	<u> </u>	<u>17</u>	<u>2</u> 2	<u>88</u>	<u>41</u> 35		

MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments 705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

PHONE: (604) 980-5814 DR (604) 988-4524

<u>Certificate of ASSAY</u>

Company:HI-TEC RESOURCE MANAGEMENT Project:88-BC-007 Attention:P.SORBARA File:8-598/P1 Date:JUNE 8/88 Type:PULP ASSAY

<u>We hereby certify the following results for samples submitted.</u>

 AU	AU	Sample
OZ/TON	G/TONNE	Number
0.025	.86	16 548
0.010	.34	16 550
0.012	.40	16 552

MIN-EN LABORATORIES LTD.

Certified by_

TELEX: VIA USA 7601067 UC

MIN-EN LABORATORIES LTD.

Specialists in Mineral Environments

705 West 15th Street North Vancouver, B.C. Canada V7M 1T2

PHONE: (604) 980-5814 OR (604) 988-4524

TELEX:VIA USA 7601067 UC

Certificate of ASSAY

Company:HI-TEC RESOURCE MANAGEMENT Project:88BC-007 Attention:P.SORBARA

File:8-624/P1 Date:JUNE 10/88 Type:PULP ASSAY

<u>We hereby certify</u> the following results for samples submitted.

Sample Number	AU G/TONNE	AU OZ/TON	
16 565	1.01	0.029	
16 566	0.87	0.025	
16 568	1.26	0.037	
16 574	2.14	0.062	

Certified by

MIN-EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS .GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate ASSAY OF

Certified by

Company: HI TEC RESOURCE MANAGEMENT Project:88 BC 007 Attention: BILL LUMLEY

File:8-661/Pt Date: JULY 1/88 Type:PULP ASSAY

We hereby certify the following results for samples submitted.

 Sample Number	AG G/TONNE		AU G/TONNE	AU OZ/TON
 16 626 16 627			.38 .77	$0.011 \\ 0.022$
16 633	51.7	1.51	2,37	0.049
16 634	64.8	1.89	.92	0.027
 16 635	56.6	1.65	.79	0.023

MIN-EN CABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER. B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of ASSAY

Certified by

Company:HI TEC RESOURCE MANAGMENT Project:88 BC 007 Attention:B.LUMLEY

File:8-719/P1 Date:JULY 1/88 Type:PULP ASSAY

He hereby certify the following results for samples submitted.

	Sample Number	AG G/TONNE	AB OZ/TON	AU G/TONNE	AU 0Z/TON
	an and an and a second	in a subscription of the			
~	701			.98	0.029
	705	28.6	0.83	1.43	0.042
	706			, 98	0.029
	710	58.0	1.69	, 48	0"0 1 4

MIN-ER LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 ●FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of ASSAY

Company:HI-TEC RESOURCE MANAGEMENT Project:98 BC 007 Attention:P.SORBARA File:8-823/P1 Date:JULY 6/88 Type:PULP ASSAY

<u>We hereby certify</u> the following results for samples submitted.

	Sample Number	AG 6/TDNNE	AG NZ/TON 6/		AU 07/TON
	010 015	2.2	0.06	. 58	0.017 0.014
1. 1979.					
-					í
			Certifi	i so sol door a	Asi mant
				eeα µγ	MIN-EN LABORATORIES LTD.

EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of ASSAY

Company:HI-TEC RESOURCES Project:88BC 007 Attention:J.ADAMEC/V.KURAN File:8-1015/P1 Date:JULY 27/88 Type:ROCK ASSAY

Ne hereby certify the following results for samples submitted.

Sample Number	AU G/TONNE		AG G/TONNE	AG DZ/TON
14018 14019 14020 14021 14022	.71	0.001 0.001 0.001 0.021 0.008	1.5 4.0	0.04 0.05 0.12 0.01 0.01
14027 14028 14029 14030 14031	2.15			0.05
14032 14033 14034 14035 14035	.28 .24 1.04	0.007 0.031	.6 2.1 2.2 2.1 1.6	0.06 0.06 0.06
14037 14038 14039 14040 14041	.01 .03 .91 .21 .18	0.027 0.006	1.6 15.0	0.05 0.05 0.44 0.07 0.04
14043 14045 14046 14047 14047		0.002 0.001 0.001 0.008 0.008	.2 .6	0.03 0.01 0.02 0.03 0.12
14050 14142 14143 14145 14145	.03 1.45 .04 .03 .02	0.042 0.001 0.001	1.7 1.2	0.12

Certified by

MIN-EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 ◆FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

<u>Certificate of Assay</u>

Company:HI-TEC RES. Project:88BC 007 Attention:J.ADAMEC/V.KURAN File:8-1015/P2 Date:JULY 27/88 Type:ROCK ASSAY

<u>He hereby certify the following results for samples submitted.</u>

 Sample Number	AU G/TONNE	AU OZ/TON	AG G/TONNE	AG DZ/TON
and when the second of the second	$\label{eq:product} \mathcal{T} = $	$ \psi_{1}(x_{1})/ ^{2} = \psi_{1} = \psi$		$(x_1, \dots, x_n) \in (x_1, y_2, y_1, y_1, \dots, y_n)$
14148	" () 1	O.OO1	4.3	0.13

Certified by

MIN-E LABORATORIES LTD.

PROJECT NO: 88BC 0			705 WEST			ANCOUVER, B.		FILE NO: 8-10:
ATTENTION: J. ADAME			FE			(604) 988-452	4 I TYPE ROCK GEO	DCHEM # DATE: JULY 2
(VALUES IN PPM)	AS	<u>CU</u>		PB	<u>SB</u>	ZN		
14018	21	756	25720	3	1	36		
14019	50	596	21570	8	1	30		
14020	9	1538	18650	12	1	27		
14021	94	186	7780	17	5	15		
14022	80	38	22520	19	1	34	*******	
14027	362	44	16050	30	10	20		
14028	279	107	26260	39	8	77		
14029	6505	202	26800	33	51	34		
14030	1061	186	42490	46	20	20		
14031	319	13	28080	18	2	44		
14032	352	4	32450	14	1	47		
14033	285	21	20670	17	1	27		
14034	300	19	24800	12	4	35		
14035	338	52	16030	14	4	15		
14036	146	17	12770	12	7	18		
14037	139	21	12360	17	3	18		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
14038	181	12	22190	14	3	30		
14039	538	395	51640	29	10	22		
14040	278	22	25540	15	5	32		
14041	218	11	21010	10	6	27		
14043	143	16	20550	12	8	20		
14045	37	20	16520	13	5	41		
14046	81	27	6100	8	8	9		
14047	236	17	18270	10	6	23		
14049	380	10	26650	39	5	32		
14050	109	12	15710	7	3	26		
14142	474	40	15240	17	8	33		
14143	31	28	31450	9	1	44		
14145	306	22	16490	15	10	16		
14147	141	41	12170	180	11	237		
14148	86	13	11520	17		14		
14140	00	13	11974	1		* 1		

:

COMPANY: HI-TEC RESO	URCE MANA	GENENT		HIN-EN LA	BS ICP REPORT			(ACT:F31) PAGE 1 OF 1
PROJECT NO: 888C 007					TH VANCOUVER, I			FILE NO: 8-1015/P1+2
ATTENTION: J.ADAMEC/					OR (604)988-4		I TYPE ROCK GEDCHEN	1 DATE: JULY 28, 1988
(VALUES IN PPM)	<u>A5</u>	AS	<u>CU</u> 13	PB 10	SB ZN 44	AU-PPB 10		
14071 14072	.8 1.0	14 10	13 31	10	1 44	10 5		
14073	.5	1	32	8	1 46	5		
14074	.7	1	48	14	i 49	5		
14075	1.2	22	23	8	2 47			• = = = = = = = = = = = = = = = = = = =
14076	1.4	21	25 27	15 13	1 50 1 49	5 5		
14077 14078	1.4 1.4	1	28	13	2 51	5		
14079	1.4	3	30	11	2 47	5		
14080	.7	4	4	8	1 44	10		
14081	.9	16	15	14	1 37	5		
14082	1.4	4	30	16 13	1 48 1 45	5 5		
14083 14084	1.1 1.1	30 12	27 34	13	1 50	5		
14085	.2	34	7	9	1 44	10		
14086	.2	32	5	7	1 56	10		
14087	.3	16	22	10	1 44	5		
14088	.6	2	14	12 15	1 46 2 49	រី 5		
14087 14070	1.4 1.1	19 16	26 23	15 12	2 47 1 49	5 5		
14091	1.4	21	27	10	2 49	10		
14092	2.0	34	24	16	4 40	15		
14093	1.3	22	28	15	1 50	10		
14094	1.8	14	24	18	2 43	5 5		
14095	1.2	<u>24</u> 17	<u>28</u> 32	<u> </u>	<u>1 51</u> 	<u>-</u> 5		
<u>14096</u> 14097	1.5	34	15	14	5 42	5		
14078	2.2	60	16	35	7 28	5		
14099	2.1	47	19	21	6 24	5		
14100	2,5	62	19	23	9 36	5		
14101	2.0	31 32	19 16	16 12	5 <u>33</u> 5 37	5 5	1	
14102 14103	1.7 .9	52 1	23	10	3 25	5		
14104	2.5	49	19	15	8 26	5		
14105	1.9	33	17	13	6 41	5		
14106	1.4	14	19	13	4 52	10		
14107	1.6	24 18	25 20	14 14	4 39 4 43	10 5		
14108 14109	1.4 2.4	45	20	14	7 44	5		
14110	2.3	39	21	16	8 23	5		····
14111	1.5	22	19	14	4 37	5		
14112	1,5	19	19	17	3 44	10		
14113	1.7	32	16	14 16	5 34 2 54	5 10		
14114	1.4 2,0	10 40	26 22	15	6 40	5		
14116	1.1	<u>11</u>	<u>-</u> 9	13	3 26	5		
14117	2.2	41	19	12	6 43	5		
14118	2.0	40	19	12	8 28 7 79	5		
14119	1.0	1	12 11	15 15	3 38 2 47	10		
<u>14120</u> 14121			22	10	2 44	§	*****	,,,,,
14122	1.8	19	21	31	4 56	5		
14123	1,4	25	16	17	5 36	10		
14124	1.5	23	23	25	5 36 3 37	5 10		
14125	1.3	<u>22</u>	<u>21</u> 13	<u>19</u> 17	$\frac{3}{1}$ $\frac{37}{43}$	10		
14126 14127	.7 .5	23	14	16	1 50	5		
14128	.4	21	10	13	i 52	5		
14129	.7	3	12	18	1 43	5		
14130		1	10	11	2 45	5	,	
								~ -

					MIN-EN LABS	100 00000	r		(ACT:F31) PAGE 1 BF 1
-	COMPANY: HI-TEC RE		ENT	1.)//// ·	TIN-EN LAUS STH ST., NORTH	TOL VELOK	। . 8.C. ∛7≝	112	FILE NO: 8-1015/P3+4
-	PROJECT NO: 888C 0	0/ MUNICAL	/05	2 WE21 1	(604)980-5814_0	R (404)988	-4524	TYPE ROCK SEOCHEM	1 DATE: JULY 28, 1988
	ATTENTION: J. ADAME (VALUES IN PPM)		AS	- <u>cu</u>	PB SE		AU-PPB		
-	14131	1.0	. <u></u> 1	16	16 1		5	, , , , , , , , , , , , , , , , , , ,	
	14132	.9	10	14	14 1	37	5		
	14133	.7	7	10	15 2	45	10		
	14134	.5	23	12	11 1	47	5		
	14135	1.5	31	15	12	34	10		
	14136	.7	13	16	14	• ••	20		
80.11	14137	.9	15	15	11	2 44	5 5		
	14138		10	17	10	1 48 1 43	10		
	14139	1.0	18	12 15	10 9	1 43 1 48	10		
	14140		<u>21</u> 39			5 32	5	# # # # # # = # ## # # # # # -	
	14151	1.6 .8	37	37	13	1 61	5		
	14152 14153	1.8	39	20		6 44	5		
	14154	2,2	41	16	24	7 43	10		
	14155	2.1	40	13	30	7 34	5		
	14155	1,9	48	15	25	7 40			
	14157	1.8	44	17	24	7 35	5		
	14158	1.8	37	19	24	6 42			
	14159	1.9	53	19	24	7 40			
	14160	2.2	52	17	22	7 28			~~~~ `````````````````````````````````
	14161	1.9	45	20	24	8 45 1 47	_		
	14162	.4	2	22 17	13 23	5 52			
	14163	1.5	37	17 34	15	1 52			
	14164	,6	2 45	34 16	22	6 44			
	14165	1.8	33	18	20	5 48	The set of the local division of the local d		
	14166 14167	1.8	45	14	26	7 54	, 5		
	14168	2.2	60	15	26	7 58			
	14169	1.9	47	16	26	7 70			
	14170	2.1	62	13	25	8 3			
	14171	2.4	56	15	28	8 3			
	14172	1.7	35	20	23	4 74 1 56			
	14173	1.2	20	27	11			1	
	14174	2.4	97	15	23 17	8 1 8 4		5 5	
	14175	2.6	56	17 15		7 3			
	14176	2.4	61 65	13	17		5 1		
. 18	14177	2.8 2.4	aj 55	17	20		3 1		
	14178	2.4	62	16	24	-		5	
	14179 14180	2.8	68	17	21		4		
+ m .	14180	2.4	54	18	15		,,	5	
	14182	2.1	48	17	21			5	
	14183	2.0	51	15	18			0	
	14184	2.4	45	17	21			5	
	14185	.3	1	45	<u></u>		711 72	5	
	14186	.2	1	44				.0	
	14187	.2	4	5 5	19 15		49	5	
	14188	.2	20	3 3	11			10	
	14189	.2	24	30			59	5	~~~~~
· 41	14190	2.2		<u>30</u> 14			20	5	
	14191	1,5	35	13		i	25	5	
	14192 14193	1.9	41	12	12		20	5	
-	14194	2.1	52	14	17	7	31	5	
	14195	2.3	56	16			31 32	10 5	
	14196	2.3	51	15		6 1	32 34	5	
	14197	2.0	44	12		0 6	3 1 28	40	
	14199	2.1	51	15		6	25	5	
	14200	2.2	45 10	18 13		1	48	5	
	14901	_ 7	10	1.	ь I				

COMPANY: HI-TEC HES	SOURCE MANAGE	:MEN1		DINTEN L				
PROJECT NO: BBBC OC		70	5 WEST 1	5TH ST., NO	RTH VAN	COUVER, B	LC. V7H	172 FILE NO: 8-1015/P5+6
ATTENTION: J. ADANED			(604) 980-581	4 DR (6	04)988-45	524	1 TYPE ROCK GEOCHEM 1 DATE: JULY 28, 1988
(VALUES IN PPN)	AS	AS	CU	P8	SB		NU-PPB	월 문 문 밝 낮 다 사용은 문 바빠 사용은 문 방 가 두 두 수 분년 것 두 두 두 는 는 물은 말 할 때 두 소 분을 못 할 수 두 는
14202	.7	14	35	7	1	40	5	
14203	.7	15	25	9	1	47	10	
14204	.5	18	6	14	2	49	10 5	
14205	1.8	25	11	12	5	28 44	10	
14206		10	30			48	10	이 또 또 참 밤 방 및 ~ · · · · 은 은 한 한 및 · · · · · · · · · · · · · · · · ·
14207	1.1	18	32	8 8	1	50	5	
14208	,5	14	36 29	6	3	49	5	•
14207	.5 .9	13 22	30	13	1	54	10	
14210	.7	8	26	8	1	48	10	
<u>14211</u> 14212	1.2	1	29	14	<u>i</u>	46	5	
14213	.4	12	4	12	2	49	5	
14214	.4	12	27	8	1	62	5	
14215	.5	31	7	6	2	66	5	
14216	.2	7	17	11	4	76	5	
14217	.2	1	6	7	3	66	5	
14218	.5	8	7	10	3	70	10	
14217	.3	40	5	9	1	90	5	
14220	.3	8	6	23	1	78	10	
14221	.8	61	5	16		<u>32</u> 27	15 5	
14222	.7	89	5	15	3	35	5	
14223	1.4	98	14	34	6 1	47	5	
14224	1.9	53	18	19 26	07	43	5	
14225	2.3	46 55	16	26 23	, 0	22	5	
14226	2.7	55	<u>15</u> 13	22		24	5	드 날 말 및 위사 사실 및 및 위 & 소소 보 프 플 및 및 위 ~ 는 소 보 프 프 위 사실 프 프 위 ~ ~ ~ ~ 은 드 및 및 위 ~ 나 소 보 드
14227	2.6	50 48	13	17	9	29	10	
14228	2.7 2.5	48	14	22	7	24	5	
14229 14230	2.2	43	15	24	7	15	5	
14230	2.3	44	14	16	7	22	5	
14232	2.1	49	4	15	7	23	5	
14233	.8	1	15	15	2	58	5	
14234	2.3	53	14	19	7	31	5	
14235	2.2	48	14	21	8	24	5	
14236	.2	1	4	10	1	59	5	و پر به به و به و به و به و به و به به به و به به به به و به
14237	.2	16	12	10	1	80	10	
14238	2.2	42	17	22	7	30	5	
18251	1.9	167	7	29	11	34	10 10	
18252	3.3	491	38	39	6 11	21 13	10	
18253	2.8	234	26	15 15		50		
18254	2.4	30	34 24	15	3	41	5	
18255	1.2	5 5	24 36	12	j i	44	5	
18256	1.0	903	20	27	23	35	5	
18257 18258	3.6	93	24	27	11	11	5	
18259	2.6	465	12	10	13	11	10	
18260	3,8	68	17	30	7	36	5	
18261	,8	11	15	13	3	48	Ę	
18262	2.3	52	18	19	7	26	5	
18263	2.5	67	15	19	9	8	<u>[(</u>	
18264	1.4	19	21	16	3	45	i(
18265	.6	1	32	12	1	50 51		Ĵ
18266	1.1	9	36	11 25	2 8	וס 46		J D
18301	2.2	51	15 15	25 19	8	27		5
18302	2,6	<u></u>	15	17				
18303	2.6	40. 54	10	17	8	16		
18304 18305	2.5	50 60	16	17	9	14	1	
18305	2.6	54	16	20	8	15		5
18307	1.3	30	38	22	2	53		5
 	28 ,88	12:5	2		E04	920 9	<u>621</u>	POGE 04

.t

JUL 28 '88 11:52 MIN-EN LABS LTD

378 PØ5

COMPANY, HI-TEC RESOLUCE MARGERENT HI-FEU LABS LCP REPORT FULLT SIT HULT S	JUL 28 '	88 11:52	•	MIN-EN	LABS LTI)			378 PØ5	
PROJECT NG: 688C 007 705 MEST ISTN 87., NORTH VARAUVUER, B.C. VPH 172 FULK NG: 6-108.37/76 ATTENTION: 1, ROMMEL/V.KURAN ATTENTION: 1, ROMMEL/V.KURAN 404/105 18 PP 4 66 45 (D1 PP 58 74 AU-PPB 18306 2.6 55 12 19 10 10 5 18310 2.5 63 15 20 8 59 10 18311 2.6 55 12 18 10 10 5 18312 3.0 57 12 25 10 28 5 18314 2.3 46 13 19 8 29 5 18315 2.4 50 13 19 8 29 5 18315 2.4 50 13 19 8 29 5 18315 2.4 50 13 19 8 29 5 18316 1.8 31 12 6 55 12 0 8 31 5 18317 2.0 45 27 16 5 20 5 18318 1.8 31 12 51 6 4 42 5 18319 2.1 55 18 21 6 21 10 18322 2.4 50 13 19 8 29 5 18318 1.8 31 12 16 55 12 20 8 31 5 18312 2.4 50 13 19 8 29 5 18315 2.4 50 13 19 8 29 5 18315 2.4 50 13 19 8 29 5 18316 1.8 31 12 16 21 10 18320 2.2 40 12 17 7 17 5 18321 2.3 41 13 19 7 22 5 18322 2.4 52 13 19 8 9 5 18322 2.4 52 13 19 8 9 5 18324 2.5 45 11 17 8 13 10 18324 2.5 45 11 17 8 13 10 18324 2.5 46 15 19 10 9 5 18325 1.8 31 14 17 5 13 5 18327 2.4 39 15 24 7 40 5 18326 2.4 49 15 19 10 9 5 18327 2.4 49 15 27 65 5 18333 2.5 50 12 23 9 20 20 18329 2.4 44 14 16 8 22 5 18339 2.4 44 14 16 8 22 5 18339 2.4 48 12 19 8 21 5 18339 2.4 48 12 19 8 21 5 18339 2.4 48 12 29 7 18 10 18329 2.4 49 13 22 9 18 10 18339 2.4 44 14 16 8 22 5 18339 2.4 44 14 16 8 22 5 18339 2.4 44 14 16 8 22 5 18339 2.4 44 14 16 8 22 5 18334 2.4 48 12 19 8 21 5 18334 2.4 44 14 16 8 22 5 18334 2.4 44 14 24 8 32 5 18334 2.4 48 12 19 8 21 5 18334 2.4 48 12 19 8 21 5 18334 2.4 48 12 19 8 21 5 18344 2.4 43 12 19 8 21 5 18344 2.4 43 12 19 8 21 10 18344 2.4 44 15 22 8 37 5 18346 2.4 44 15 22 8 37 5 18346 2.4 44 16 5 23 9 29 5 18346 2.4 44 16 5 24 7 10 18346 2.4 44 16 5 24 8 31 5 18346 2.4 44 16 5 35 5 18346 2.4 44 16 5 35 5 18346 2.4 44 16 5 35	COMPANY: HI-TEC RES	OURCE MANAG	EMENT		HIN-EN	LABS I	CP REPORT		AUTLAT AND	
ATTENTIDE: 1.60AMEC/V.KURAM (604)*800-5814 0R: (604)*800-4524 * TYPE ROCK EECCHER * Definiture * 18300 2.6 55 17 7 20 5 18307 2.6 57 17 20 9 21 5 18307 2.6 57 17 20 9 21 5 18310 2.6 55 12 18 10 18 5 18311 2.6 55 12 18 10 18 5 18312 2.6 55 12 10 28 5 18313 2.6 55 12 20 8 31 5 18314 2.3 46 13 19 8 29 5 12 10 18319 2.1 33 18 21 6 21 10 13 10 18322 2.4 45 11 17 5 10 10 10<				705 #EST	15TH ST., 1	NORTH V	ANCOUVER,	B.C. V7N		
IOMALUES IN FER J A6 A5 CU PP SB IM AU-FER 18306 2.6 54 15 17 9 24 5 18307 2.6 53 15 20 9 21 5 18310 2.5 63 15 20 9 21 5 18311 2.6 55 14 19 9 25 10 18312 3.0 57 12 18 10 18 5 14 18313 2.6 55 14 19 9 25 10 18314 2.1 56 14 42 5	•••				(604) 980-5	814 DR	(604) 988-	4524	I TYPE ROCK GEOCHEM I DATE: JULY 28,	1988
ISSUE 2.6 56 15 17 9 24 5 ISU0 2.5 53 17 20 9 21 5 ISU0 2.5 63 15 20 8 59 10 ISU1 2.6 55 12 18 10 16 5 ISU2 3.0 57 12 25 10 26 5 ISU3 2.6 55 14 19 9 25 10 ISU3 2.6 55 12 20 8 31 5 ISU3 2.6 45 11 17 7 17 5 ISU2 2.4 45 11 17 8 13 10 ISU2 2.4 4			AS	CU	PB	SB	ZN	AU-PPB		
1000 10 17 20 9 21 5 18310 2.5 63 15 20 8 59 10 18311 2.6 55 14 19 9 25 10 18313 2.6 55 14 19 9 25 10 18314 2.3 46 13 19 8 29 5 18314 2.4 50 13 19 8 29 5 18317 2.0 45 27 16 5 20 5 18317 2.0 45 27 16 4 42 5 18319 2.1 5 12 10 15 10 18320 2.2 40 12 17 7 17 5 18321 2.1 42 15 9 10 9 5 18322 2.4 46 11 17 8 10 13 18322 2.4 48 14						9				
1000 100 15 20 8 59 10 18311 2.6 55 12 10 10 16 5 18312 2.6 55 12 10 10 16 5 18313 2.6 55 14 19 9 25 10 18314 2.3 46 13 19 8 29 5 18315 2.4 55 12 20 8 31 5 18317 2.0 45 27 16 5 20 5 18316 1.8 31 58 16 4 42 5 18320 2.1 35 18 21 6 21 10 18321 2.3 41 13 19 7 22 5								5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
1000 1000 14 19 9 25 10 18313 2.6 55 14 19 9 25 10 18314 2.3 46 13 19 8 29 5 18315 2.4 50 15 12 20 8 31 5 18317 2.0 45 27 16 5 20 5 18319 1.4 31 58 16 4 42 5 18320 2.2 40 12 17 7 17 5 18322 2.4 52 13 19 7 22 5 18324 2.6 48 13 19 7 28 5 18325 1.8 33 14 17 5 13 10 18325 1.8 31 18 7 20 5 16 16332 2.7 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td>								5		
18314 2.10 2.10 10					****			10	~ 쇼 프 및 및 ~~ 스 쇼 프 및 ~ 스 스 원 및 관 ~ 스 사 및 일 및 ~ 스 원 프 프 ~ 프 및 및 두	
1434 150 15 19 6 29 5 18315 2,4 50 13 19 6 29 5 18317 2,0 45 27 16 5 20 5 18317 2,0 45 27 16 5 20 5 18319 2,1 35 18 21 6 21 10 18320 2,2 40 12 17 7 17 5 18322 2,4 32 13 19 7 22 5 18322 2,4 43 12 17 8 13 10 18324 2,6 48 15 19 10 9 5 18324 2,6 48 15 19 10 9 5 18325 1.8 33 14 17 5 13 5 18327 2,4 38 15 24 7 40 5 18326 2,4 50										
10:13 2.6 55 12 20 8 31 5 18316 1.6 31 58 16 4 42 5 18317 2.0 45 27 16 5 20 5 18317 2.0 45 27 16 5 20 5 18319 2.1 35 18 21 6 21 10 18320 2.2 2.4 12 17 7 17 5 18322 2.4 32 13 19 7 22 5 18322 2.4 32 13 14 17 8 13 10 18324 2.6 45 11 17 8 13 5 18325 1.8 31 18 7 20 5 18326 2.3 41 17 5 13 5 18326 2.4 56 16 22 9 35 5 18331 2.6 56								5		
16310 100 100 100 118317 2.0 45 27 14 5 20 5 118318 1.6 31 58 16 4 42 5 118319 2.1 35 18 21 6 21 10 118320 2.2 40 12 17 7 17 5 118321 2.3 41 13 19 7 22 5 118322 2.4 48 15 19 10 9 5 118324 2.4 48 15 19 10 9 5 118325 1.8 33 14 17 5 15 5 118327 2.4 38 15 24 7 40 5 118326 1.8 31 16 22 7 35 5 118327 2.7 54 12 23 9 20 20 118327 2.7 54 12 23								5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-		5		
18318 1.6 1.6 1								×-×		
1637 1.1 2.1 1.7 7 17 5 18320 2.2 40 12 17 7 17 5 18321 2.3 41 13 19 7 22 5 18323 2.4 52 13 19 8 9 5 18324 2.6 45 11 17 8 13 10 18324 2.6 48 15 19 10 9 5 18325 1.8 33 14 17 5 13 5 18326 2.3 41 13 18 7 28 5 18326 2.4 38 15 24 7 40 5 18327 2.4 38 15 24 7 40 5 18327 2.4 42 25 6 30 5 18330 2.6 12 27 9 18 10 18331 2.5 50 12 22								-		
16320 2.4 30 1 1 19 7 22 5 18321 2.3 41 13 19 9 9 5 18322 2.4 52 13 19 8 9 5 18324 2.4 45 11 17 8 13 10 18324 2.4 48 15 19 10 9 5 18325 1.8 33 14 17 5 13 5 18326 2.3 41 13 18 7 26 5 18326 2.4 38 15 24 7 40 5 18327 2.4 36 16 22 9 30 5 18330 2.4 56 16 22 9 20 20 18331 2.5 50 12 23 9 20 20 18333 2.4 44 14 16 8 28 5 18332	18319					6				
18322 2.4 52 13 19 9 5 18322 2.4 52 13 10 9 5 18324 2.6 45 11 17 8 13 10 18324 2.6 48 15 19 10 9 5 18325 1.8 33 14 17 5 15 5 18326 2.3 41 13 18 7 28 5 18327 2.4 32 15 24 7 40 5 18327 2.4 36 16 22 9 30 5 18330 2.4 56 16 22 9 35 5 18331 2.5 50 12 23 9 20 20 18333 2.4 44 14 16 8 28 5 18335 2.6 44 14 24 8 32 5 18335 2.6 44 14	18320		40			7				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18321	2.3	41			7				
18323 2.6 45 11 17 8 13 10 18324 2.6 48 15 19 10 9 5 18325 1.8 33 14 17 5 13 5 18326 2.3 41 13 18 7 26 5 18327 2.4 38 15 24 7 40 5 18328 1.8 31 18 24 5 41 10 18329 2.9 2.2 2.6 9 35 5 18331 2.5 50 12 23 9 20 20 18332 2.7 54 12 22 9 18 10 18335 2.4 44 14 16 8 28 5 18335 2.6 44 14 24 8 32 5 18336 .9 11 19 13 1 42 40 18337 2.6 50 <td></td> <td>2.4</td> <td>52</td> <td>13</td> <td></td> <td></td> <td></td> <td></td> <td>********</td> <td></td>		2.4	52	13					********	
18324 2,6 48 15 19 10 9 5 18325 1.8 33 14 17 5 13 5 18326 2.3 41 13 18 7 40 5 18327 2.4 38 15 24 7 40 5 18327 2.4 38 15 24 7 40 5 18327 2.7 62 25 26 9 30 5 18330 2.6 56 16 22 9 35 5 18331 2.5 50 12 23 9 20 20 18335 2.6 44 14 16 8 28 5 18335 2.6 44 14 24 8 32 5 18336 2.6 49 13 22 8 34 10 18336 .9 11 19 13 14 14 14 16 18337		2.6	45	11	17					
18325 1.8 33 14 17 5 13 5 18326 2.3 41 13 18 7 26 5 18327 2.4 38 15 24 7 40 5 16326 1.8 31 10 24 5 41 10 18327 2.4 56 16 22 9 30 5 18330 2.4 56 16 22 9 30 5 18331 2.5 50 12 22 9 18 10 18332 2.7 54 12 22 9 18 10 18334 2.4 44 14 16 8 28 5 18335 2.6 49 13 22 8 34 10 1835 2.6 49 13 22 8 34 10 1835 2.6 50 13 24 9 35 10 1834 2.6		2.6	48	i5	17	10				
10326 2.3 41 13 18 7 26 5 18327 2.4 38 15 24 7 40 5 18328 1.8 31 18 24 5 41 10 18329 2.9 42 25 26 9 30 5 18330 2.4 56 16 22 9 35 5 18331 2.5 50 12 23 9 20 20 18332 2.7 54 12 22 9 18 10 18333 2.4 44 14 16 8 21 5 18334 2.4 48 32 5 10 10 13 22 8 34 10 18334 2.6 49 13 22 8 34 10 18336 $.9$ 11 17 13 142 40 18339 $.3$ 1 7			33	14	17	5				
18327 2.4 38 15 24 7 40 5 18328 1.8 31 18 24 5 41 10 18329 2.9 42 25 26 9 30 5 18330 2.4 56 16 22 9 35 5 18331 2.5 50 12 23 9 20 20 18332 2.7 54 12 22 9 18 10 18333 2.4 44 14 16 8 28 5 18334 2.4 48 12 19 8 21 5 18335 2.6 44 14 24 8 32 5 18335 2.6 44 14 24 8 32 5 18336 2.6 50 13 24 9 35 10 18336 .9 11 19 13 1 42 40 18337 .2.6			41	13	18	7	28	-		
18328 1.8 31 18 24 5 41 10 18329 2.9 62 25 26 9 30 5 18330 2.6 56 16 22 9 35 5 18331 2.5 50 12 23 9 20 20 18332 2.7 54 12 22 7 18 10 18333 2.4 44 14 16 8 28 5 18334 2.4 49 12 19 8 21 5 18335 2.6 44 14 24 8 32 5 18335 2.6 49 13 22 8 34 10 18336 2.6 50 13 24 9 35 10 18336 2.6 50 13 24 9 35 10 18337 2.6 50 13 24 9 35 10 18339 .3				15	24	r (40	5	ᆂᇐᅭᅭᅭᇐᇕᇭᆫᄔᅊᇔᄣᇊᇾᅝᇳᇔᆘᆠᄮᇸᅖᇊᇉᆂᅶᇎᇐᆕᅶᅹᇳᅚᇎᆍᅸᆂᅋ	
1829 2.9 62 25 26 9 30 5 18330 2.6 56 16 22 9 35 5 18331 2.5 50 12 23 9 20 20 18332 2.7 54 12 22 9 18 10 18333 2.4 44 14 16 8 28 5 18334 2.4 48 12 19 8 21 5 18335 2.6 44 14 24 8 32 5 18335 2.6 49 13 22 8 34 10 18336 2.6 49 13 22 8 34 10 18336 2.6 50 13 24 9 35 10 18337 .3 1 7 16 1 43 10 18340 .6 10 18 10 1 59 5 18341 2.6				18	24	5	41	10		
18370 2.6 56 16 22 9 35 5 18331 2.5 50 12 23 9 20 20 18332 2.7 54 12 22 9 18 10 18332 2.4 44 14 16 8 28 5 18333 2.4 48 12 19 8 21 5 18335 2.6 44 14 24 8 32 5 18335 2.6 44 14 24 9 35 10 18336 2.6 50 13 24 9 35 10 18336 .9 11 19 13 1 42 40 18337 .3 1 7 16 1 43 10 18340 .6 10 18 10 1 59 5 18342 2.5 73 15 28 8 27 10 18343 2.6					26	9	30	5		
1033 2.5 50 12 23 9 20 20 18331 2.7 54 12 22 9 18 10 18333 2.4 44 14 16 8 28 5 18334 2.4 48 12 19 8 21 5 18335 2.6 44 14 24 8 32 5 18335 2.6 49 13 22 8 34 10 18336 2.6 50 13 24 9 35 10 18336 2.6 50 13 24 9 35 10 18337 2.6 50 13 24 9 35 10 18338 .9 1 19 13 1 42 40 18340 .6 10 18 10 1 59 5 18341 2.6 51 1.6 30 9 25 5 18342 2.0						9	35	5		
16332 2.7 54 12 22 9 18 10 16333 2.4 44 14 16 8 28 5 18333 2.4 49 12 19 8 21 5 18334 2.4 49 12 19 8 21 5 18335 2.6 44 14 24 8 32 5 18335 2.6 50 13 22 8 34 10 18336 2.6 50 13 24 9 35 10 18336 2.6 50 13 24 9 35 10 18337 2.6 50 13 24 9 35 10 18339 .3 1 7 16 1 43 10 18340 .6 10 18 10 1 59 5 18341 2.6 51 16 23 9 25 5 18343 2.5						9	20	20		
10332 2.4 44 14 16 8 26 5 18333 2.4 49 12 19 8 21 5 18334 2.4 49 12 19 8 21 5 18335 2.6 44 14 24 8 32 5 18336 2.6 49 13 22 8 34 10 18336 2.6 50 13 24 9 35 10 18337 2.6 50 13 24 9 35 10 18338 .9 11 19 13 1 42 40 18339 .3 1 7 16 1 43 10 18340 .6 10 19 10 1 59 5 18341 2.6 51 16 23 9 25 5 18342 2.3 83 16 32 10 18344 2.0 43 18						9	18	10		
18334 2.4 48 12 19 8 21 5 18334 2.6 44 14 24 8 32 5 18335 2.6 49 13 22 8 34 10 18336 2.6 49 13 22 8 34 10 18336 2.6 49 13 22 8 34 10 18337 2.6 50 13 24 9 35 10 18338 .9 11 19 13 1 42 40 18338 .9 11 19 13 1 43 10 18340 .6 10 18 10 1 59 5 18542 2.3 83 16 30 9 25 5 18543 2.5 73 15 28 8 27 10 18344 2.0 43 18 18 6 32 10 18345 1.8						8	28	5		
18334 2.4 44 14 24 8 32 5 18335 2.6 44 14 24 8 32 5 18335 2.6 49 13 22 8 34 10 18336 2.6 50 13 24 9 35 10 18337 2.6 50 13 24 9 35 10 18337 2.6 50 13 24 9 35 10 18339 .9 11 19 13 1 42 40 18339 .3 1 7 16 1 43 10 18340 .6 10 18 10 1 59 5 18341 2.6 51 16 23 9 29 5 18342 2.3 83 16 30 9 25 5 18343 1.8 18 4 32 10 18345 1.8 38 21 16							21	5		
18335 2.6 44 1 2.7 8 34 10 18336 2.6 50 13 22 8 34 10 18337 2.6 50 13 24 9 35 10 18338 .9 11 19 13 1 42 40 18338 .9 11 19 13 1 43 10 18339 .3 1 7 16 1 43 10 18340 .6 10 18 10 1 59 5 18341 2.6 51 16 23 9 29 5 18342 2.3 83 16 30 9 25 5 18342 2.4 31 18 18 6 32 10 18344 2.0 43 18 18 6 32 10 18345 1.8 38 21 16 5 36 5 18346 1.4										
183361.11.11.31.4 10337 2.65013249351018338.91119131424018339.317161431018340.61018101595183412.65116239295183422.38316309255183422.573152882710183442.043181863210183451.83821165365183462.44416228375183481.41924193345NO NUMBER A1.281211635810NO NUMBER B1.24314163375						-				
1037 10 10 1 10 13 1 42 40 18338 .9 11 19 13 1 43 10 18339 .3 1 7 16 1 43 10 18339 .3 1 7 16 1 59 5 18340 .6 10 18 10 1 59 5 18341 2.6 51 16 23 9 29 5 18342 2.3 83 16 30 9 25 5 18342 2.3 83 16 30 9 25 5 18343 2.5 73 15 28 8 27 10 18344 2.0 43 18 18 6 32 10 18345 1.8 38 21 16 5 36 5 18346 2.4 44 16 22 8 37 5 18348 1.						-				
18338 17 11 17 16 1 43 10 18339 $.3$ 1 7 16 1 43 10 18340 $.6$ 10 18 10 1 59 5 18341 2.6 51 16 23 9 29 5 18342 2.3 83 16 30 9 25 5 18342 2.3 83 16 30 9 25 5 18343 2.5 73 15 28 8 27 10 18344 2.0 43 18 18 6 32 10 18345 1.8 38 21 16 5 5 18346 2.4 44 16 22 8 37 5 18348 1.4 19 24 19 3 34 5 ND NUMBER 1.2 43 <										,
18337 1.3 1 1 1 59 5 18340 .6 10 18 10 1 59 5 18341 2.6 51 16 23 9 29 5 18342 2.3 83 16 30 9 25 5 18342 2.3 83 16 30 9 25 5 18343 2.5 73 15 28 8 27 10 18344 2.0 43 18 18 6 32 10 18345 1.8 38 21 16 5 5 5 18345 1.8 38 21 16 5 5 5 18346 2.4 44 16 22 8 37 5 18348 1.4 19 24 19 3 34 5 NO NUMBER 1.2 81 21 16 3 37 5 NO NUMBER			11			-				
18340 10 10 10 10 10 10 10 10 10 18341 2.6 51 16 23 9 29 5 18342 2.3 83 16 30 9 25 5 10 18342 2.3 83 16 30 9 25 5 10 18343 2.5 73 15 28 8 27 10 18344 2.0 43 18 6 32 10 18345 1.8 38 21 16 5 36 5 18345 1.8 38 21 16 5 36 5 18345 1.8 38 21 16 5 36 5 18346 2.4 44 16 22 8 37 5 18348 1.4 19 24 19 3 34 5 18348 1.4 19 24 19 3 34 5 10 10 10 10 10 10 10 10 10 10 10 10										
18341 2.6 31 30 20 25 5 18342 2.3 83 16 30 9 25 5 18343 2.5 73 15 28 8 27 10 18344 2.0 43 18 18 6 32 10 18345 1.8 38 21 16 5 36 5 18345 1.8 38 21 16 5 36 5 18346 2.4 44 16 22 8 37 5 18346 2.4 44 16 22 8 37 5 18347 1.4 26 21 18 4 31 5 18348 1.4 19 24 19 3 34 5 NO NUMBER A 1.2 81 21 16 3 37 5 NO NUMBER B 1.2 43 14 16 3 37 5 <td></td>										
18342 213 03 15 28 8 27 10 18343 2.5 73 15 28 8 27 10 18344 2.0 43 18 18 6 32 10 18345 1.8 38 21 16 5 36 5 18345 1.8 38 21 16 5 36 5 18346 2.4 44 16 22 8 37 5 18347 1.4 26 21 18 4 31 5 18348 1.4 19 24 19 3 34 5 NO NUMBER A 1.2 81 21 16 3 37 5 NO NUMBER B 1.2 43 14 16 3 37 5										
18343 2.0 43 18 18 6 32 10 18344 2.0 43 18 18 6 32 10 18345 1.8 38 21 16 5 36 5 18346 2.4 44 16 22 8 37 5 18346 2.4 44 16 22 8 37 5 18348 1.4 19 24 19 3 34 5 18348 1.4 19 24 19 3 34 5 $N0$ NUMBER A 1.2 81 21 16 3 58 10 $N0$ NUMBER B 1.2 43 14 16 3 37 5									· · · · · · · · · · · · · · · · · · ·	
18347 1.8 38 21 16 5 36 5 18346 2.4 44 16 22 8 37 5 18346 2.4 44 16 22 8 37 5 18347 1.4 26 21 18 4 31 5 18348 1.4 19 24 19 3 34 5 18348 1.4 19 24 19 3 34 5 NO NUMBER A 1.2 81 21 16 3 58 10 NO NUMBER B 1.2 43 14 16 3 37 5	18343									
18345 1.8 38 21 16 5 36 5 18346 2.4 44 16 22 8 37 5 18347 1.4 26 21 18 4 31 5 18348 1.4 19 24 19 3 34 5 ND NUMBER A 1.2 81 21 16 3 5B 10 NO NUMBER B 1.2 43 14 16 3 37 5	18344									
18346 2.4 44 16 22 8 37 5 18347 1.4 26 21 18 4 31 5 18348 1.4 19 24 19 3 34 5 NO NUMBER A 1.2 81 21 16 3 58 10 NO NUMBER B 1.2 43 14 16 3 37 5										
18347 1.4 26 21 18 4 31 5 18348 1.4 19 24 19 3 34 5 NO NUMBER A 1.2 81 21 16 3 58 10 NO NUMBER B 1.2 43 14 16 3 37 5		2.4				ł				
18348 1.4 19 24 19 3 34 5 NO NUMBER A 1.2 B1 21 16 3 5B 10 NO NUMBER B 1.2 43 14 16 3 37 5		1.4	26	21						
NO NUMBER A 1.2 B1 21 16 3 5B 10 NO NUMBER B 1.2 43 14 16 3 37 5		1.4	19							
NO NUMBER B 1.2 43 14 16 3 37 5			81	21	16					
				14	16					
·······································				14	21		8 20	6 5		
					****	w				

APPENDIX IV

Diamond Drill Logs

88-01

Sheet 1

of 3

Death	Description		Interv	al (m)			ASS	SAY RESUL	JS		
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppn)	Zn(ppm)	Pbppm)	Sb(ppm)
0.0 - 3.05	Casing										
22 21	Andesite Medium to dark green gray, locally hematitic aphanitic and highly fractured magnetic characterized by what appears to be hornblend crystals 1-2mm in length through- out the matrix. This section overall is quite highly fractured and weakly argillitic locally sheared and brecciated. 3.05- 5.18 broken core hematitic fractures at 30° to cor 5.18-16.61 weathered zone - light grey in colour (argil- litic?) with numerous fractures coated by hematite and minor chlorite. Broken core at: 7.47-7.77, 11.73- 12.04, 13.41-13.72 & 14.63-15.24 13.11 5 cm wide shear zone	16501	16.60	17.60	2	1.0	2	40	84	17	6
	at 30° to core axis. 15.70 vuggy 2cm wide quartz filled fracture at 10° to core axis.	16502 16503	17.60 18.60	18.60 19.60	1 2	.7 1.5	9 8	30 31	84 79	10 9	8 18
	18.59-20.42 Zone of intense shear- ing & brecciation - section characterized by chloritic shears at	16504 16505		20.60	1 3	1.0	45	40 43	86 91	15 22	16 8
	20° to 50° to core axis combined with a large amount of quartz/car- bonate veining.	16506 16507 16508	21.60 22.60 24.20	22.60 24.20 25.20	2 1 6	1.0 .3 1.0	10 3 44	45 44 27	91 79 85	20 17 17	8 7 6

88-01

i

Sheet 2

I

ł ì of 3

	1	1
AL.		
AREA	NH-TEC RESOLACE MANN	GEMENT LTD.

Depth	Description	Sample no.	Interv	al (m)			ASS	SAY RESUL	.TS		
Deptin	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
		16509	25.20	26.20	3	.5	19	24	66	22	8
1	23.77-24.54 Broken core	16510	26.20	27.20	9	1.0	10	32	63	18	3
	25.15-32.31 Zone of intense frac- turing: numerous quartz carbonate healed fractures and minor	16511	27.20	28.20	4	1.3	19	30	66	19	9
	chloritic shears at 20- 45° to core axis. Quart		28.20	29.20	13	1.2	16	28	68	19	10
	carbonate fractures appear weakly argil-	16513	29.20	30.20	2	1.4	9	37	65	28	8
	litic and contain local hematitic alteration.	16514	30.20	31.20	6	.8	44	40	78	16	3
	Fracturing increasing	16515	31.20	32.20	11	.1	35	19	73	9	16
	with depth.	16516	32.20	33.30	2	.3	43	1	96	23	9
32.31 -34.14 34.14	Fault gouge — soft red hematitic Basaltic Tuff										
- 46.03	Dark to medium red in colour mas- sive component locally cut by quartz carbonate fractures at 10- 40° to core. Entire unit hematitic and characterized by darker and lighter hematitic bands with no apparent orientation within the core. Appears as if it was origi- nally a water lain tuff. Locally some clasts of what appear to be porphyritic andesite can be seen within the tuffaceous matrix. Overall unit is uniform. 35.66 2 cm wide fracture at 40° to core. 39.93 2 cm wide fracture sub parallel to core.										

88-01

Sheet 3 of 3

Depth	Description	Sample no.	Interv	al (m)			ASS	SAY RESUL	TS	· · · · · · · · · · · · · · · · · · ·	
Depin	Description		from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
46.02 to 58.52	Andesite Medium to dark green grey, less fractured than andesite unit above	16517	47.50	48.50	5	.4	11	24	83	17	4
	Overall weakly porphyritic massive and quite compotent fracturing 1-2 fractures/metre. 3-4 mm in thickness at 30-45° to	16519	53.63	54.63	4	2.1	6	19	82	15	3
	-4 mm in thickness at 30-45° to ore axis. oper contact - appears gradation- l with weak-strong hematitic	16520	56.99	57.99	3	•2	1	33	74	20	4
	al with weak-strong hematitic alteration. Lower contact - marked increase in hematitic alteration noted along with weak shearing.	16518	57.99	58.84	1	.8	1	35	71	21	6
58.52 to 61.11	Intensely sheared basalt (dyke?) - hematitic lined shears at 30° to core axis weakly argillitic.										
61.11 to 63.25	Andesite Porphyry Large crystals of feldspar and minor hornblende mark this unit as a porphyry. Lower contact gougy and sheared at 90° to core.										
63.25 to 69.19	Basaltic Tuff Same as unit described above with one exception the few clasts seen within this unit appear larger up to 2.5 cm in diameter. 69.19 (227') END OF HOLE										

DRILL HOLE LOG SUMMARY

HI-TEC RESOURCE MANAGEMENT LTD.

Brenwest Mining Ltd.
88-BC-007
88-02
Big Bar Creek, B.C.
Clinton
Edqe
92 0/1
4+17N 1+50E
-70°/270°
(78,33m) 257'
NQ
96%
3.05m (10')
Highly fractured and sheared andesite
Basaltic tuff/ agglomerate
May 25, 1988
May 25, 1988
– N/A
15
1.0 meters
From: 16521 To: 16535
Frontier Drilling
W. E. Lumley

Comments:
overburden 3.05 medium to dark green grey aphanitic andesite
2
34.20 intense fracturing shearing at 20-30°to C/A 36.91 fault gouge, lower contact 10° C/A Basaltic tuff
VVVV 47.85 weakly porphyritic, VVVV magnetic dark to VVVV medium green grey VVVV andesite VVVV vvvv
62.00 fault gouge lower contact at 30° C/A 64.05 hematitic shear zone 66.00 andesite porphyry
- 69.30 basaltic tuff heavily frac. andesite 72.00 basaltic tuff
EOH 78.39m (257')

Scale of Summary log 1:500

HH-TEC RESOLACE MANAGEMENT LTD.

Depth	Description	Sample no.	Interv	al (m)			ASS	SAY RESUL	TS		
200		oumpio no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
0.00 - 3.05	Casing <u>Andesite</u> Medium to dark green grey, locally hematitic aphanitic and highly fractured magnetic. Same unit as in DDH-88-1 from 3.05-32.31. 3.05-14.00 weathered zone - large amount of broken core 14.00-14.35 soft fault gouge		from	to	Au(ppb)	Ag(ppm)	As(ppn)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppn)
	<pre>14.35-14.60 stockwork fracture zone - quartz/carbon- ate healed fractures weakly to moderately argillically altered. 14.60-19.80 Zone of intense shearing marked by chloritic slickensides & shear planes orient- ated at 0-60° to core</pre>	16522 16523	16.53 17.53	16.53 17.53 19.00	8 5 3	.9 .9 1.2	6 4 1 5	38 44 44	96 106 107	19 21 19	8 9 10
	axis. 21.50-26.20 Zone of moderate to intense stockwork fracturing and minor chloritic shears. Fractures generally orientated at 0-30° to	16526	22.03 23.03	19.81 23.03 24.03 26.08	1 2 2 3	1.8 1.6 2.2 1.2	5 50 1 50	47 24 24 36	82 76 84 86	19 11 14 11	6 2 4 2
	core. 28.10-28.50 Zone of fracturing, upper fracture set at 45° to core. Lower set at 10° to core. 30.10-32.50 Zone of intense hema- titic staining. 34.20-36.40 Zone of intense frac- turing and chloritic shearing at 20°-30° to core axis.	16528 16529		35.50 36.50	2 2	.7 .4	11 34	50 32	63 77	18 24	2 2

DRILL HOLE LOG NO.

88-02

Sheet 1

of 4

DRILL HOLE LOG NO. 88-02

.

Sheet 2 of 4

Death	Description	Sample no.	Interv	al (m)	ASSAY RESULTS							
Depth	Description		from	to	Au(_{ppb})	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)	
36.40 - 36.91	Soft hematitic fault gouge. Lower contact 10° to core.											
36.91 - 47.85												
	Dark to medium red in colour, uni- form and massive with very minor zones of fracturing and breccia- tion. Same unit as found in DDH-88-1 from 34.14-46.02.	16530	39.96	40.90	4	1.2	32	39	69	24	7	
	42.30-42.50 Compotent fault gouge. 45.00-45.80 Zone of fracturing.	16531	44.40	45.78	3	1.2	37	25	74	30	1	
	 45.00-45.50 fracturing parallel to core axis. 45.50-45.65 breccia zone - stock-work fracturing. 45.65-45.80 section characterized by fractures at 30° to core axis. 											
	47.85 Lower contact at 45° to core axis.											
47.85 - 61.60	Andesite Upper contact gradational, appears less fractured than andesite unit above weakly porphyritic magnetic dark to medium green grey in colour. Same unit as seen in DDH- 88-1 at 46.02-58.52m.											

DRILL HOLE LOG NO. 88-02

She

Sheet 3 of 4

NI-TEC Resource management LTD.

		<u>Comple po</u>	Interv	al (m)	ASSAY RESULTS							
Depth	Description		from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)	
- 62.1		Sample no. 16532 16533 16534			Au(pp)}	Ag(ppm)				Pb(ppm) 19 18 7	Sb(ppr)	
	Soft hematitic shear zone (possibly 5basaltic dyke?). Lower contact at 30° to core axis.											

88-02

Sheet ⁴ of ⁴

Denth	Description	Sample no.	Interva	al (m)	ASSAY RESULTS						
Depth	Description		from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
- 66.00	Andesite Porphyry Same unit as seen in DDH8801 at 61.11-63.25 lower contact gouge possible fault.										
	Basaltic Tuff (Dyke?) Unit is sheared and broken lower contact at 40° to core.										
69.30 - 72.00	Andesite moderate to heavily fractured lower contact is a breccia orientated at 40° to core exis.	16535	69.40	70.40	8	1.9	62	26	79	8	4
72.00 - 78.39	Basaltic Tuff/Minor Agglomerate Agglomerate clast seem larger and appear like volcanic bombs - elongated andesite porphyry in hematitic tuff matrix. Very minor pyrite. 78.39 (257') END OF HOLE										

DRILL HOLE LOG SUMMARY

HI-TEC RESOURCE MANAGEMENT LTD.

CompanyBrenwest Mining Ltd.Project No.88-BC-007Drill hole no.88-03Area/TownshipBig Bar Creek, B.C.Mining DivisionClintonClaim NameEdge 1N.T.S.92 0/1Grid Reference5+74N 0+53WAngle/Orientation-507250°Length(111.86m) (367')Core sizeNQ% Recovery96%Depth to Bedrock6.11m (20')Lithology Fm TopHematitic basaltic tuffLithology Fm TopHematitic basaltic tuffDate collaredMay 25, 1988Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 To: 16559Drilling CompanyFrontier Drilling		
Drill hole no.88-03Area/TownshipBig Bar Creek, B.C.Mining DivisionClintonClaim NameEdge 1N.T.S.92 0/1Grid Reference5+74N 0+53WAngle/Orientation-507250°Length(111.86m) (367')Core sizeNQ% Recovery96%Depth to Bedrock6.11m (20')Lithology Fm TopHematitic basaltic tuffLithology Fm TopHematitic basaltic tuffDate collaredMay 25, 1988Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 To: 16559Diffice Operation1.012Diffice Operation1.013	Company	Brenwest Mining Ltd.
Area/TownshipBig Bar Creek, B.C.Mining DivisionClintonClaim NameEdge 1N.T.S.92 0/1Grid Reference5+74N 0+53WAngle/Orientation-50%250°Length(111.86m) (367')Core sizeNQ% Recovery96%Depth to Bedrock6.11m (20')Lithology Fm TopHematitic basaltic tuffLithology Fm BaseAndesiteDate collaredMay 25, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 To: 16559Diff Corrence14013	Project No.	88-BC-007
Mining DivisionClintonClaim NameEdge 1N.T.S.92 0/1Grid Reference5+74N 0+53WAngle/Orientation-507/250°Length(111.86m) (367')Core sizeNQ% Recovery96%Depth to Bedrock6.11m (20')Lithology Fm TopHematitic basaltic tuffLithology Fm BaseAndesiteDate collaredMay 25, 1988Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536Diff Core Size1.012	Drill hole no.	88-03
Claim NameEdge 1N.T.S.92 0/1Grid Reference5+74N 0+53WAngle/Orientation-50%250°Length(111.86m) (367')Core sizeNQ% Recovery96%Depth to Bedrock6.11m (20')Lithology Fm TopHematitic basaltic tuffLithology Fm BaseAndesiteDate collaredMay 25, 1988Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 To: 16559Diffice Origination14012Diffice Origination14013	Area/Township	Big Bar Creek, B.C.
Edge 1N.T.S.92 0/1Grid Reference5+74N 0+53WAngle/Orientation-50%250°Length(111.86m) (367')Core sizeNQ% Recovery96%Depth to Bedrock6.11m (20')Lithology Fm TopHematitic basaltic tuffLithology Fm BaseAndesiteDate collaredMay 25, 1988Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 To: 16559Difficial Constant1.012Difficial Constant1.012Difficial Constant1.013	Mining Division	Clinton
92 0/1Grid Reference5+74N 0+53WAngle/Orientation-50°/250°Length(111.86m) (367')Core sizeNQ% Recovery96%Depth to Bedrock6.11m (20')Lithology Fm TopHematitic basaltic tuffLithology Fm BaseAndesiteDate collaredMay 25, 1988Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 To: 16559 14013	Claim Name	Edge 1
S+74N 0+53WAngle/Orientation-50%250°Length(111.86m) (367')Core sizeNQ% Recovery96%Depth to Bedrock6.11m (20')Lithology Fm TopHematitic basaltic tuffLithology Fm BaseAndesiteDate collaredMay 25, 1988Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 To: 16559Date Composition14013	N.T.S.	92 0/1
Length(111.86m) (367')Core sizeNQ% Recovery96%Depth to Bedrock6.11m (20')Lithology Fm TopHematitic basaltic tuffLithology Fm BaseAndesiteDate collaredMay 25, 1988Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 To: 16559Date Completed1.0m	Grid Reference	5+74N 0+53W
Core sizeNQ% Recovery96%Depth to Bedrock6.11m (20')Lithology Fm TopHematitic basaltic tuffLithology Fm BaseAndesiteDate collaredMay 25, 1988Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 To: 16559Date Completed1.0m	Angle/Orientation	-50%250°
NQ% Recovery96%Depth to Bedrock6.11m (20')Lithology Fm TopHematitic basaltic tuffLithology Fm BaseAndesiteDate collaredMay 25, 1988Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 To: 16559Date Composition14012 To: 14013	Length	(111.86m) (367')
JosDepth to Bedrock6.11m (20')Lithology Fm TopHematitic basaltic tuffLithology Fm BaseAndesiteDate collaredMay 25, 1988Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 To: 16559Date Composition14012 To: 14013	Core size	NQ
Lithology Fm TopHematitic basaltic tuffLithology Fm BaseAndesiteDate collaredMay 25, 1988Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 To: 16559Date Composition14012 To: 14013	% Recovery	96%
Lithology Fm TopHematitic basaltic tuffLithology Fm BaseAndesiteDate collaredMay 25, 1988Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 To: 16559Dation Comment14012 To: 14013	Depth to Bedrock	6.llm (20')
Date collaredMay 25, 1988Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 To: 16559 14012 To: 14013	Lithology Fm Top	Hematitic basaltic tuff
May 25, 1960Date completedMay 26, 1988Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536To: 16559Sample No's	Lithology Fm Base	Andesite
Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 1401216559 14013	Date collared	May 25, 1988
Dip TestsN/ANo. of Samples26Sample Interval1.0mSample No'sFrom: 16536 1401216559 14013	Date completed	
No. of Samples 26 Sample Interval 1.0m Sample No's From: 16536 14012 16559 14013	Dip Tests	
Sample Interval 1.0m Sample No's From: 16536 14012 16559 14013	No. of Samples	
Sample No's From: 16536 14012 16559 14013	Sample Interval	1.Om
	Sample No's	16536 16559
	Drilling Company	
Logged by W. E. Lumley	Logged by	W. E. Lumley

Со	mments:
overburde	n
6.05 casi	ng basaltic tuff
V V gou V V gre V V gre V V loc V V bre V V v V V bre V V V V V v V V v V V v V V v V V V V V V V V V	t hematitic fault ge medium to dark een grey andesite, cally fractured, ecciated
	alt gouge at 45°
33.80 bas	saltic tuff C/A
にしたい。 39.25 and ()() - 41.20 bas	desite saltic tuff
46.70 bas	saltic agglomerate
	rphyritic andesite saltic tuff
69.25 int	lesite porphyry saltic tuff desite, tensively sheared d brecciated
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	86m (367')

Scale of Summary log 1:500

88**-**03

Sheet 1

of 5

	Durinting	Sample	Interva	al (m)	ASSAY RESULTS							
Depth	Description	Sample no.	from	to	Auppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pbppm)	Sb(ppm)	
0.00 - 6.10	Casing											
6.10 - 11.40	Hematitic basaltic tuif. Aphanitic massive.	1										
11.40 - 12.00	Bright red soft hematitic fault gouge.											
12.00 -	Andesite											
30.10	Medium to dark green grey weather- ed locally fractured & brecciated weakly porphyritic. Fractures are healed with quartz ± carbonate, overall argillitic altered with		25 01	26.01		C	22	25	66	16	5	
	large amount of broken core.	16536	25.01	26.01	1	.6	33	25	00	ΤŎ	5	
	12.00-15.90 highly fractured sec- tion - large amount of broken core.	16537	28.06	29.06	13	.7	2	30	73	21	5	
	19.00-19.90 broken core hematite lined fractures. 20.10-21.80 broken core, 1.3m lost core.	16538	29.06	30.06	3	•5	34	41	76	27	5	
30.10 - 33.80	Fault gouge and fault breccia - hematitic gougy shearing at 45° to core, some chioritic shearing.											
33.80 - 39.25	Basaltic Tuff Soft hematitic dark red in colour very similar to tuff unit seen in DDH's 1 & 2. Some minor clasts but overall appears uniform. Upper contact at 45° to core axis Lower contact at 55° to core axis											

DRILL HOLE LOG NO. 88-03

Sheet 2 of 5

HI-TEC Resource Management LTD.

Death	Description Sample no.		Interv	al (m)			ASS	SAY RESUL	TS		
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sbppm)
	Andesite Weakly porphyritic but highly fractured at low angles to core O-35° to core axis. Fractures hematitic lined very minor quartz carb.	16539 16540	39.13 40.13	40.13 41.13	2	.9 .7	33 26	18 31	47 52	26 29	2 1
41.20	Basaltic Tuff More compotent tuff unit. Identi- cal to unit found at 33.80-39.25 but not as soft.	16541	43.81	44.81	2	•2	1	39	72	21	4
- 47.15	Andesite Weakly porphyritic upper contact quartz vein at 30° to core axis. Lower contact 45° to core.	16542	46.00	47.15	2	.6	48	43	78	13	2
47.13 - 54.70	Basaltic Agglomerate Unit characterized by large clasts of porphyritic andesite and what appears to be some vesicular basal in a hematitic tuff matrix.	16543 : 16544	52.00 54.00	52.40 54.20	29 129	.6 .1	21 35 ·	542 116	65 75	9 9	1 3
	Andesite Weakly porphyritic upper contact is a breccia zone with angular pieces of andesite in a quartz ± carbonate matrix 6 em in width. Unit overall is weakly fractured.										

88-03

Sheet 3 of

5

410	
AT T	NI-TEC Resource management LTD.

01	Description	Sample no.	Interv	al (m)			ASS	SAY RESUL	TS		
Depth	Description		from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
100010	Basaltic Tuff Uniform section with minor quartz carbonate healed fractures.	16545	62.00	62.50	2	1.3	27	51	66	-5	4
	62.5-63.0 3 cm wide quartz healed fracture parallel to core. 63.0-63.60broken core.	16546	62.65	63.65	1	1.3	31	38	70	10	4
64.36 - 66.80	Andesite Forphyry Section characterized by large quartz phenocrysts up to 20 cm in width.	16547	64.40	65.20	123	.9	275	57	76	16	6
66.80 - 68.60	Hematitic Zone - volcanic basaltic tuff, minor quartz veins dendritic in nature.	14012	67.85	68.85	3	.3	49	36	58	15	1
68.60 - 103.20	<u>Andesite</u> <u>Upper Section</u> - quartz ± carbonate chloritic shear zone. 69.75-79.00 intensely sheared &	14013	68.85	69.85	76	.6	2	54	66	4	2
	brecciated section	16548	69.85	70.85	855	35.1	509	81	76	51	4
	characterized by chloritic shear planes and slickensides at 35-45° to core axis.	16549	70.85	71.85	191	.5	115	25	77	5	4
	69.75-72.40 chlorite content 45- 50% of section min-	16550	71.85	72.85	328	3.7	180	31	69	13	6
	eralization. 1-3%	16551	72.85	73.85	270	.8	319	25	79	9	5
	pyrite, minor aspy & very minor cpy.	16552	73.85	74.85	402	6.5	804	48	80	30	1
	72.40-77.00 section with numercus quartz ± carbonate veins 60-70% of core.	16553	75.04	75.94	155	3.0	148	43	46	31	3
	Mineralized with py 2-3% minor arseno- pyrite & trace cpy.	16554	75.94	77.00	6	.5	28	46	55	16	4

Shee

88-03

Sheet 4 of 5

Depth	Description	Sample no	Interv	al (m)			ASS	SAY RESU	LTS				
	·		from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm	Pb(ppm)	Sb(ppm)		
Depth	Description 77.00-79.00 chlorite rich section as above. 79.00-103.02 Lower Section: Andesite/Andesite Tuff(?) Porphyritic, quite uniform weakly fractured with 5 thin (2-3mm) fractures/metre at 20-40° to core axis. Some light green shear zones indicating some folding. Lower contact: quartz vein at 40° to core axis, 102.57-103.02 Summary of Structures 82.30 2 cm wide quartz vein at 30° to core axis. 79.86&80.47 inverse quartz veins at 30° to core axis 91.29-91.90 Light green shear zone	16556	from	r	Au(ppb)	Ag(ppm) .4 .5				<u>Рь(ррт</u>) 17 20	Sb(ppm) 4 4		
103.02 - 103.1	fracturing/shearing at \\\\\//\\\\\ in core. 96.25-97.00 fracture zone with 2cm wide fracture at 97.30r also. Soft hematitic gouge.	16557	96.25	97.00	1	1.1	9	8	50	22	2		

DRILL HOLE LOG NO. 88-03

13

Sheet 5 of 5

Depth	Description	Sample no.	Interva	al (m)			ASS	SAY RESUL	TS		
Deptin	Description		from	to	Au(ppb)	Ag(ppn)	As(ppm)	Cu(ppn)	Zn(2pm)	Pb(ppn)	Sb(ppm)
103.18-111.36		16558 16559	102.52	to 103.52 104.52	4	Ag(ppm)	As(ppm) 36 64	Cu(ppn) 14 15	Zn(2pm) 37 45	РЬ(РРЛ) 24 19	Sb(ppm)

DRILL HOLE LOG SUMMARY

HI-TEC Resource management LTD.

T
Brenwest Mining Ltd.
88-BC-007
88-04
Big Bar Creek, B.C.
Clinton M.D.
Edge
92 0/1
5+74N 0+53W
-70°/250°
133.50m (438')
NQ
98
9.14m (30')
Highly frac. andesite
basaltic tuff
May 26, 1988
May 27, 1988
21
Approx 1 meter
16560 16575 From: 743 To: 743 14014 14017
Frontier Drilling
W. E. Lumley

Comments:										
overburden										
9.14 weakly prophyritic 9.14 weakly prophyritic andesite										
29.60 fractured basaltic										
47.70 andesite -50.70 shearing and 53.15 brecciation										
63.0 basaltic agglomerate										
<pre> Control of the second secon</pre>										
<pre>vvvvv vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv</pre>										

Scale of Summary log

1:1000

•

88-04

Sheet 1

6

of

	Description	Sample no.	Interval (m)		ASSAY RESULTS							
Depth			from	to	Au(ppb)	Ag(ppn)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(opm)	Sb(ppm)	
0.00 - 9.14	Casing											
(Andesite Highly fractured weathered all broken core. Quartz healed stock- work, no mineralization.											
11.58 11.58	Fault gouge, hematitic red soft. Andesite Weakly porphyritic, magnetic dark to medium green grey. 11.58-16.00 stockwork fracturing with quartz filled fractures. Very minor py. Largest veins orientated at 40° to core. 16.00-29.60 andesite more compo- tent, less fracture very uniform. Four fractures/metre at 40°	16560		15.90	42 94	1.1	116	36	57	28 25	3	
29.60 47.70	to core axis. Highly fractured basaltic tuff(?) Section is characterized by quartz healed fractures (± carbonate) moderate to heavily hematized.											

88-04

Sheet 2 of 6

Depth	Description	Sample no.	Interval (m)		ASSAY RESULTS							
			from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppn)	Sb(ppm)	
	Fractured Basaltic Tuff (Cont'd) 32.64-34.21 zone of intense brec- ciation - angular pieces of tuff in a quartz with minor car- bonate matrix. 34.40-34.60 zone of intense hema- tization at 20° to core 36.20-36.60 Agglomerate section & with larger clasts 38.00-39.00 (breccia?).	16562	32.63	34.21	2	.2	45	84	90	26	5	
		16563	38.00	39.60	5	1.3	5	12	66	25	1	
47.70 - 50.70	Fractured Andesite Porphyry Fracturing occurring as stockwork associated with shears.Where not sheared this unit is quite fresh with large quartz (?) phenocrysts in the matrix. Identical to ande- site porphyry found in DDH-88-3 at 64.36-66.80 m.	16564	44.00	45.00	2	1.0	7	53	64	21	5	
	Shearing occuring at the following depths: 48.80-49.05 quartz carbonate 80%											
	of section pyrite .5% arsenopyrite tr. cpy. 49.50-49.65 quartz carbonate 80% of section, pyrite arsenopyrite.	14014	47.76	48.76	14	.6	26	25	65	8	3	
		14015	48.76	49.76	450	77.4	1492	51	84	46	4	
		14016	49.76	50.71	5	1.0	80	23	70	7	3	
					L							

88-04

Sheet 3 of 6

	Description	Comple on	Interva	al (m)			ASS	SAY RESUL	TS		
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
50.70 - 55.15	Shear zone - zone of intense shearing and brecciation. Section similar to section found in DDH-88-03 at 69.75-79.00m. Characterized by chloritic shears followed by zones of quartz/car- bonate veining. Entire section mineralized with pyrite 1-3% (locally 5%) minor arsenopyrite and trace of chalcopyrite & sphalerite.										
	50.70-51.00 solid quartz vein with minor calcite at 40° to core. 51.00-51.20 quartz carbonate breccia zone. 51.20-51.90 chloritic shear zone	16565	50.71	51.71	845	9.3	904	29	74	38	5
	with quartz/carbonate veining (30% of section)	16566	51.71	52.71	806	3.9	1214	30	70	34	7
	51.90-52.10 quartz/carbonate vein 52.10-52.50 chloritic shear zone. Shears @ 45° to core. 52.50-54.40 quartz/carbonate vein with minor chlorite	16567	52.71	53.71	177	3.9	190	54	46	48	6
	lined shears. Quartz/ carbonate occupies 85-90% of section. 54.40-55.15 chloritic shear zone	16568	53.71	54.50	1250	8.6	2000	36	60	43	13
	with quartz/carbonate veining occupying 30- 40% of section.	16569	54.50	55.10	100	1.0	188	31	62	23	1

88 - 04

Sheet 4 of 6

NI-TEC Resource Management LTD.

			interv	al (m)			ASS	SAY RESUL	TS		
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppn)	Zn(ppm)	Pbppm)	Sb(ppm)
55.15 - 63.00	Fractured Andesite Section more compotent and less sheared and fractured. Shear and breccia zones are as follows:										
	57.55-58.00 shear zone - quartz/ carbonate 60% of section. 58.45-58.90 2cm wide quartz healed breccia parallel to core.	16570	57.55	58.05	190	1.0	210	139	56	21	3
63.00 - 69.30	Basaltic Agglomerate (Breccia?) Hematitic, locally sheared and brecciated overall quite uniform with large clast up to 8 cm in width. 63.00 Upper contact 5 cm gouge. 67.60-68.80 Braccia Zone - angular pieces of tuff/agglo- merate held by a quartz matrix con- taining minor calcite.	16571	67.52	68.52	2	1.5	5	2	55	26	2
69.30 127.47	<u>Andesite</u> Weak to moderately porphyritic overall unit is quite uniform and compotent with local shear & breccia zones consisting of angu- lar shards of andesite in a quartz matrix (± calcite).										

88-04

ŧ

of ⁶

H-TEC RESOLACE MANAGEMENT LTD.

	Description	Comple co	Interva	al (m)			ASS	SAY RESUL	TS	,	
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cuppm)	Zn(ppm)	Pb(ppn)	Sb(ppm)
	Breccia fractures and shears as summarized below:	16572	74.79	75.50	21	.5	111	46	50	26	2
·	75.00-75.50 Shear zone, minor chlorite and quartz. Very minor pyrite. 81.08-82.30 Breccia zone - as	16573	81.20	82.20	52	1.7	67	52	38	24	3
	above in description. 92.96&93.12 Small quartz veins 2cm wide at 45° to	14017	97.00	98.00	16	.2	6	56	4	9	2
	core axis. 98.00-98.40 Brecciated quartz vein very minor py, aspy. 100.28 3 cm wide fracture at	16574	98.00	98.40	2125	1.9	296	76	49	32	4
	15° to core. 100.58- Breccia zone. 101.83	16575	101.00	102.00	3	.1	4	48	50	24	2
	Andesite 105.46 2 cm wide quartz vein at 30° to core 106.07- Vuggy breccia zone 106.68 Quartz content 30-40% very minor pyrite. 107.29- 4 cm wide brecciated 107.59 quartz vein sub-paral- lel to core.	16576	105.50	106.50	2	.8	3	44	47	24	1
	116.43- Sheared zone chloritic 119.48 soft with gouge. Shears at 25° to core. 120.85- Breccia zone contacts 121.31 at 30° to core. 124.36- Shear zone at 25° to 124.66 core.	743	122.20	123.20	101	1.2	3	35	190	15	13
	Basaltic dyke very sheared with upper contact fault gouge.										

88-04

Sheet 6 of 6

·		Completes	Interva	l (m)			ASS	AY RESUL	TS		
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cuppm)	Zn(ppm)	Pb(ppn)	Sb(ppm)
127.96- 128.63	Andesite — same as above.										
128.63-	Purple basaltic tuff.										
13 3. 50	Upper contact - 5-10 cm of fault gouge at 30° to core.										
	129.40- 130.45 Breccia Zone.										
	133.50 (438') END OF HOLE										
								2			

i.

Comments:

HI-TEC Resource management LTD.

		overburden
Company	Brenwest Mining	NoUO
Project No.	88-BC-007	6.10 medium to dark gree grey andesite
Drill hole no.	88-05	vvvv vvvv 9.00 fault gouge
Area/Township	Big Bar Creek, B.C.	
Mining Division	Clinton	
Claim Name	Edge	
N.T.S.	92 0/1	マママママ マママママ 辺谷会会 26.97 basaltic tuff
Grid Reference	5+74N 0+52W	30.18 and esite
Angle/Orientation	-45°/310°	VVVV 30.18 andesite VVVVV 32.00 basaltic agglomera
Length	105.77 (347')	0000
Core size	NQ	0.00
% Recovery	97	
Depth to Bedrock	6.10m (20')	
Lithology Fm Top	Andesite	
Lithology Fm Base	Basaltic agglomerate	
Date collared	May 27, 1988	
Date completed	May 28, 1988	64.82 and esite porphyry
Dip Tests	N/A	68.88 basaltic tuff
No. of Samples	10	73.61 and esite
Sample Interval	Approx 1.0 meters	78.49 volcanic basaltic
Sample No's	From:16577 To: 16586	00
Drilling Company	Frontier Drilling	0 0 0 87.17 andesite
Logged by	W. E. Lumley	vvvvv vvvvv EOH 105.77 (347')

Scale of Summary log

1:500

NH-TEC RESOLACE MANAGEMENT LTD.

		Constants	Interva	l (m)			ASS	AY RESUL	TS		
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
0.00 - 6.10	Casing										
6.10 - 8.23	Andesite Medium to dark green grey magnetic and highly fractured. Same unit as found in DDH-88-4 at 9.14-10.20.										
8.23 - 9.30	Bright red hematitic fault gouge.										
9.30 - 26.97	Medium to dark green grey, same unit as found in DDH-88-3 at 12.00-30.10. 9.30-16.00 Section quite highly fractured - stockwork very minor py., some broken core. 17.68 2cm wide fract. at 40° to ccre. 23.77-24.08 Sheared fracture zone. 25.30-25.45 Quartz vein.	16577	23.85	24.85	80	1.5	205	14	62	32	3
26.97 30.18	Basaltic Tuff Soft hematitic upper contact 5-7cm of fault gouge identical to basal- tic tuff unit in DDH-88-3 at 33.60- 39.25.										
30.18 32.00	Andesite Weakly porphyritic identical to the andesite found in DDH-88-03 at 46.70-47.15 appears highly altered										

DRILL HOLE LOG NO.

88-05

Sheet 1 of 3

Sheet 2 of 3

26

14

22

22

21

20

19

22

20

4-5 fractures/metre, 1 cm thick.

ASSAY RESULTS Interval (m) Description Sample no. Depth Au(ppb) Ag(ppn) As(ppm) Cu(ppn) from to Zn(ppm) Pb(ppm) 32.00- Basaltic Agglomerate 64.92 Dark red to mauve in colour. Over all massive with local brecciated and sheared zones. Unit characterized by large clasts of hematitically altered and stained porphyritic andesite in a hematitic tuff matrix appears identical to unit in DDH-88-3 47.15-54.70m. 16586 37.25 37.70 2 10 74 .1 3 34.14 2cm wide quartz/carb-38.70 2 16578 37.70 1.8 34 40 67 onate vein at 50° to •. core. . 39.70 3 1.6 53 64 16579 38.70 13 39.32-40.84 Quartz carbonate shear zone py very minor 39.70 40.70 5 1.5 14 12 64 16580 arsenopyrite. 41.35-41.76 Quartz chlorite shear 16581 41.35 41.75 1 1.7 10 24 58 zone, py 1-2%. 42.85-43.25 Quartz chlorite shear 42.85 43.25 1 1.9 1 63 16582 18 zone, py .5%. 46.90-47.40 Breccia zone. 16584 46.85 47.85 1 1.6 33 29 57 51.40-52.60 Breccia zone - quartz carbonate matrix 24 51.40 52.60 2 1.8 52 58 16583 chlorite pyrite 1-3%. 64.92-Andesite Porphyry 68.88 Appears locally sheared and fractured. Upper contact at 10° to core. Lower contact 15° to core. 65.99-67.06 Chloritic shear zone with guartz veins 65.83 66.83 2 16585 15 145 .1 64 (with minor calcite) occupy 40-50% of section, very minor pyrite. 68.88- Mauve Basaltic Tuff 73.61 very uniform, weakly fractured with

Sb(ppm)

2

6

8

7

8

6

1

6

٦

88-05

Sheet 3 of 3

Depth	Description	Sample no.	Interva	l (m)			ASS	AY RESUL	TS		
Depin	Description		from	to	Au(ppb)	Ag(ppm)	Asppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
73.61 - 78.49	Andesite Appears more compotent than ande- site unit above with one small shear zone at 74.68-75.29 m and one quartz vein at 76.50 m, 2 cm wide at 10° to core.										
78.49- 87.17	Volcanic Basaltic Agglomerate Very uniform and weakly fractured very similar to above mauve in colour. Large clast of altered porphyritic andesite up to 6cm in diameter. Where fractured frac- tures parallel to core. Very minor py.										
87.17 - 94.13	Andesite Porphyritic very compotent, frac- tured parallel to core.										
94.10- 105.77	Volcanic Basaltic Agglomerate Unit same as above but clasts appear more altered whitish in colour with argillic alteration. 105.77 END OF HOLE										

Comments:

HI-TEC RESOURCE MANAGEMENT LTD.

Company	Brenwest Mining	0 0 0 0 0 0 0 0 0 0
Project No.	88-BC-007	vvvv vvvv vvvv
Drill hole no.	88-06	
Area/Township	Big Bar Creek, B.C.	VVVV VVVV VVVV
Mining Division	Clinton	17 chlorite rich shear
Claim Name	Edge 1	
N.T.S.	92 0/1	
Grid Reference	4+14N 1+49E	
Angle/Orientation	-55°/360°	34.44 quartz breccia zo
Length	69.19m (227')	$\sqrt{\sqrt{3}}$ upper contact at $30-40^{\circ}$ $\sqrt{3}$
Core size	NQ	ŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇŇ
% Recovery	958+	
Depth to Bedrock	3.05m (10')	50.75 red hematitic fau 50.75 gouge
Lithology Fm Top	Andesite	volcanic basaltic
Lithology Fm Base	Volcanic Agglomerate	agglomerate
Date collared	May 29, 1988	200°9
Date completed	May 29, 1988	EOH 69.19m (227')
Dip Tests	N/A	EOH 69.19m (227')
No. of Samples	2	
Sample Interval	1.0m	
Sample No's	From: 16587 To: 16588	
Drilling Company	Frontier Drilling	
Logged by	W. E. Lumley	

Scale of Summary log

1:500

88-06

Sheet 1 of 2

Death	Description		Interva	ıl (m)			ASS	SAY RESUL	TS		
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm	Zn(ppm)	Pb(ppn)	Sb(ppm)
0.00 - 3.05	Casing										
3.05 - 50.75	<pre>Andesite Dark green in colour. Chloritic generally fractured and locally sheared and brecciated. Overall quite compotent with 6-lcm wide quartz healed fractures/meter at low angles 0-30° to core axis. This is the same unit that DDH's 1 & 2 were collared in. Very little mineralization. 10.66-11.28 Chlorite rich shear zone, minor quartz carbonate. Very minor pyrite. 11.28-17.07 Uniform compotent andesite fractures 4- lcm wide/meter. 17.07-17.98 Chloritic rich shear zone - shearing indi- cates intense folding within this section. 17.98-23.77 Uniform compotent andesite. 23.77-24.08 Quartz breccia zone - angular pieces of andesite in quartz carb. matrix. very minor pyrite. 27.43-28.04 Zone characterized by numerous fractures parallel to core 29.26-30.17 Porphyritic zone 32.31-32.61)Fractures parallel to 32.97-33.22)core axis.</pre>										

88-06

Sheet 2 of 2

Death	Description	Sample no.	Interv	al (m)			ASS	SAY RESUL	TS		
Depth	Description		from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
	<pre>34.44-34.59) Quartz breccia zone 35.20-35.50) upper contacts at 36.88-38.34) 30-40° to core. 39.93-40.08) 46.02-46.17) *All the quartz in above fractures appear weakly argillically altered with very little mineralization.</pre>	16587 16588	36.60 48.77	37.25 49.68	3 2	2.5 2.6	42 33	27 46	59 61	22 26	6
50.75- 51.66 51.66- 69.19	Red hematitic fault gouge. Volcanic Basaltic Agglomerate Overall compotent and uniformly hematitically stained. Ruby red to dark red in colour with angular to sub-rounded fragments of ande- site in an earthy red matrix. 57.91-58.82 Fracturing parallel to core 3-4cm wide. 64.31-64.77 Fracturing parallel to core 69.19 END OF HOLE										

HI-TEC RESOURCE MANAGEMENT LTD.

Company	Brenwest Mining
Project No.	88-BC-007
Drill hole no.	88-07
Area/Township	Big Bar Creek, B.C.
Mining Division	Clinton
Claim Name	Edqe
N.T.S.	92 0/2
Grid Reference	3+79N 1+49E
Angle/Orientation	-45°/240°
Length	87.47m (287')
Core size	NQ
% Recovery	70
Depth to Bedrock	3.66m (12m)
Lithology Fm Top	Andesite
Lithology Fm Base	Basaltic Agglomerate
Date collared	May 29,1988
Date completed	May 30,1988
Dip Tests	N/A
No. of Samples	1
Sample Interval	1.0m
Sample No's	From: 16597 To:
Drilling Company	Frontier Drilling
Logged by	W.E. Lumley

Comments:

Scale of Summary log 1:500

ł

ł

÷.

88-07

ł

÷

i

Sheet 1 of 2

1

Donth	Description	Sample no.	Interva	al (m)			ASS	AY RESUL	TS		
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppn)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
37.64	Casing <u>Andesite</u> Very highly fractured with frac- tures 30-40° to core axis. Hema- titic lined 25-35/m resulting in a large amount of broken and lost core. Unit is porphyritic and argillically altered. 3.65-10.97 Broken core. 10.97-12.65 .45 m lost core. 12.65-15.42 1.22 m lost core. 15.42-17.37 1.0 m lost core. 20.12-21.34 Quartz carbonate shear zone. Quartz/carbon- ate 30-40%, chlorite 30-40%, angular frag- ments 20-40%. 23.01-25.45 1.0 m lost core. 25.45-37.64 Moderately fractured zone 5-8 fractures/m.										
37.64- 38.71	Hematitic soft fault gouge.	16597	37.67	38.67	1	.5	42	24	101	28	1
60.04	Andesite Very uniform weakly fractured & porphyritic. 4 thin (1 cm wide) fractures/meter. Dark green in colour.										
60.04- 62.18	Hematitic soft fault gouge.										

88-07

Sheet 2 of 2

			Interva	l (m)			ASS	AY RESUL			
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
	·										
62.18-	Andesite Breccia										
65.22	Angular pieces of andesite cemented by a hematitic matrix.										
65.22-	Andesite Porphyry										
ó7 . 36	Large feldspar crystals up to 1.0 cm in length found in this section.										
67.36-	Volcanic Basaltic Agglomerate										
87.47	Dark red to dark red grey compotentand weakly fractured with 4-8 thin fractures/meter. Large clast of altered andesite set in a basaltic tuff matrix.										
	84.47m - END OF HOLE										
								<u> </u>			

Comments:

HI-TEC RESOURCE MANAGEMENT LTD.

Company	Brenwest Mining Ltd.
oject No.	88-BC-007
Drill hole no.	88-08
Area/Township	Big Bar Creek, B.C.
Mining Division	Clinton
Claim Name	Edge
N.T.S.	92 0/2
Grid Reference	3+79N 1+49E
Angle/Orientation	-65°/240°
Length	70.4lm (231')
Core size	NO
% Recovery	92%
Depth to Bedrock	3.05m (10')
Lithology Fm Top	Andesite
Lithology Fm Base	Andesite Porphyry
Date collared	May 30, 1988
Date completed	
Dip Tests	May 31, 1988
No. of Samples	8
Sample Interval	
Sample No's	1.0m From: 16589 To: 16596
Drilling Company	
Logged by	Frontier Drilling W. E. Lumley

Scale of Summary log 1:500

88-08

Sheet 1 of 3

Depth	Description	Sample no.	Interva	l (m)	ASSAY RESULTS							
Deptin	Description	Sample no.	from	to	Au(ppb)	Ag(ppn)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)	
0.00 - 3.05	Casing						-					
3.05 - 42.37	Andesite Weakly porphyritic, dark grey gree in colour, fractured with quartz/ carb healed veins 5/metre, 1-2 cm in width. Locally section is brecciated and sheared resulting in lost core.	1										
	 3.05-11.28 Broken core: andesite weathered and frac- tured hematite. lined fractures orien- tated at 20-40° to core axis. 9.14-9.75 Quartz/carb healed breccia zone. Angular pieces of andesite in a quartz/carb matrix. 9.75-11.28 .7 m lost core. 											
	<pre>12.80-14.63 Large amount of shear- ing at parallel to 40° to core axis. 14.63-17.37 1 m lost core. 17.37-17.98 Quartz/carbonate chlor itic shear zone @ 25° to core 17.98-19.20 .7 meters of lost core 22.25-23.47 Lost core. 25.60-27.13 Section characterized by large amount of quartz carbonate vein- ing and breccia healing Orientation: random quartz/carbonate 40- 50% of section.</pre>											

88-08

Sheet 2 of 3

<u></u>	
AL A	NH-TEC Resource management LTD.

Durath	Description	Comple as	Interva	ıl (m)			ASS	SAY RESUL	TS		
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppn)	As(ppm)	Cu(ppm)	Zn(PPM)	Pb(Ppm)	Sb(PPm)
	27.13-42.37 Section becoming more compotent less frac- tured.										
	Very dark red basaltic dyke - hematitic appears weakly sheared.										
	Fractured & Brecciated Andesite										
66.75	Most of section consist of classic breccia texture with angular frag- ments of weakly porphyritic ande- site housed in an argillically altered quartz matrix. Py .5% maximum. Quartz/carbonate 40-90% of some sections.										
	47.24-50.90 Compotent porphyritic andesite moderately fractured with 8-10 fractures/metre, 1 cm each in thickness.										
	50.90-61.87 Classic breccia zone as described above with	16589	50.00	51.00	3	6	10	17	70	25	1
	zones of stockwork	16590	51.00	52.00	5	.6	23	8	92	30	1
	fracturing. 51.36-52.73 Quartz carbonate 50% of core.	16591	52.00	53.00	1	.7	36	12	58	24	2
	52.73-55.93 True classic breccia guartz/carb 70-90%	16592	53.00	54.00	2	.3	45	14	42	17	1
	of section. V. minor py.	16593	54.00	55.00	4	.8	44	16	73	27	3
	55.93-58.52 Quartz stockwork veining. 58.52-58.83 Quartz breccia zone.	16594	55.00	56.00	3	.6	37	16	59	23	7
	58.83-61.57 Quartz/carb breccia zone matrix 40-70%	16595	59.50	60.50	18	.6	41	15	58	25	1
	of section.	16596	60.50	61.50	2	.3	66	23	64	29	3

88-08

Sheet 3 of 3

IN-TEC Resolace Management LTD.
RESOLINCE MANAGEMENT LTD.

-	Description		Interval (m)		ASSAY RESULTS							
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppn)	Zn(ppm)	Pbppm)	Sb(ppm)	
	61.57-66.75 Large amount of broken core via fracturing 40-60° to core axis. .7 m lost core.											
66.75- 67.82	Hematitic fault gouge — soft clay.											
	Porphyritic andesite. Upper section clay altered. Over- all quite highly fractured with large amount of broken core. Hole tightening up. 70.41 END OF HOLE											

HI-TEC RESOURCE MANAGEMENT LTD.

į.

.

		Comments:
Company	Brenwest Mining	overburden
Project No.	BC-007	
Drill hole no.	88-09	0 0 0 0 0 0
Area/Township	Big Bar Creek B.C.	0.0
Mining Division	Clinton	
Claim Name	Edge	
N.T.S.	92 0/1	
Grid Reference	1+50S 7+50E	000 000 233.53
Angle/Orientation	-50°/270°	Volcanic arenite
Length	71.63m (235')	
Core size	NQ	
% Recovery	50-55%	48.77 fault
Depth to Bedrock	33.53m (110')	49.68
Lithology Fm Top	Volcanic Arenite	vvvvv andesite vvvvv poor core recovery
Lithology Fm Base	Fractured Por. Andesite	ŇŇŇŇ ŇŇŇŇ
Date collared	May 31, 1988	
Date completed	June 1, 1988	
Dip Tests	None	EOH 71.63m (235')
No. of Samples	None	
Sample Interval	None	
Sample No's	From: To:	
Drilling Company	Frontier Drilling	
Logged by	W. E. Lumley	

Scale of Summary log 1:500

88-09

Sheet 1 of 1

NI-TEC Resource management LTD.

	Description	Sample no.	Interva	al (m)			ASS	SAY RESUL	TS		
Depth	Description		from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
0.00 - 33.53	Casing										
33.53- 48.77	<u>Volcanic Arenite</u> Rounded clasts up to 10cm in diameter of porphyritic andesite, dark red basaltic tuff and very minor granodiorite in a dark brown mudstone matrix. Unit is uniform massive and very compotent	•									
48.77- 49.68 49.68-	large amount of shearing.	NO SAMPLES TAKEN									
71.63	highly fractured large amount of lost and ground core. Hole very tight.										
	Summary of recovery: 49.68-53.94 = 3.0m of lost core 53.94-57.00 = 2.4m of lost core 57.00-60.04 = 2.1m of lost core 60.04-63.09 = 2.1m of lost core 63.09-66.14 = 1.5m of lost core 66.14-69.19 = 1.8m of lost core 69.19-71.63 = 1.1m of lost core HOLE CAVED BROKE RODS AT 235' HOLE ABANDONED.										

HI-TEC RESOURCE MANAGEMENT LTD.

Company Project No. Drill hole no.	Brenwest Mining 88-BC-007
	88-BC-007
Drill hole no	
Dim noie ne:	88-10
Area/Township	Big Bar Creek, B.C.
Mining Division	Clinton
Claim Name	Edge
N.T.S.	92 0/1
Grid Reference	1+50S 2+76E
Angle/Orientation	-50/090
Length	121.92m (400')
Core size	NQ
% Recovery	998
Depth to Bedrock	9.14m (30')
Lithology Fm Top	9.14m (30') Highly frac. andesite por.
Lithology Fm Base	Andesite tuff
Date collared	June 2, 1988
Date completed	June 3. 1988
Dip Tests	
No. of Samples	14
Sample Interval	1.Om
Sample No's	From: 16598 To: 16611
Drilling Company	Frontier Drilling
Logged by	W.E. Lumley

Comments: O: overburden -9.15 highly frac.andesite 12.19 basaltic agglomerate 22.71 weakly porphyritic andesite -31.71 volcanic agglomerate 40.54 andesite 48.62 quartz carbonate shearing 68.58 volcanic basaltic tuff zones of shearing and brecciation 100.28 andesitic tuff 这些EOH 121.92 (400)

Scale of Summary log 1:1000

88-10

į

of 4

	Description		Interv	al (m)	ASSAY RESULTS							
Depth	Description	Sample no.	from	to	Au(ppb)	Ag _{(ppm})	As(ppm)	Cuppm)	Zn(ppm)	Pb(ppm)	Sb(opm)	
0.00 - 9.15	Casing											
	Highly Fractured Andesite - weakly porphyritic most of section con- sists of andesite breccia with angular fragments of andesite in a quartz/carbonate matrix minor pyrite.	16598 16599		11.00 12.00	4 19	3.1 3.3	51 70	20 11	47 41	13 14	4 4	
1	Red Hematitic Volcanic Basaltic Agglomerate/Breccia - fresh, un- altered, weakly fractured with dendritic carbonate filled frac- tures.	16600	12.00	13.00	25	2.5	66	19	59	19	5	
	 15.85 2 cm wide calcite filled breccia zone. 17.53 5 cm wide quartz/cal- cite breccia zone. 19.66-20.12 Quartz/carbonate breccia zone. 	16601	19.75	20.25	3	1.0	23	35	53	14	4	
	Weakly Porphyritic Andesite - Uni- formly massive cut by thin quartz veins at 30° to core axis, unalter dark green. Upper contact at 30° to core. Lower contact gradational with member below.	ed .										
31.70- 40.54	Volcanic Agglomerate Section characterized by large porphyritic andesite fragments up to 20cm in diameter set in a hema- titic tuffaceous matrix.											

Sheet 2

88-10

of 4

Denth	Description	Sample as	Interva	al (m)	ASSAY RESULTS							
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)	
	Dendritic quartz/carbonate veinir throughout but more concentrated at the upper contact with the andesite.	lg										
	33.38 5 cm wide shear zone with chloritic slicke sides at 40° to core.											
40 54-	Andesite/Andesite Tuff											
	Upper Section											
	40.54-53.95 Tuffaceous; appears weakly foliated at 30 40° to core axis, als cut with numerous qtz carbonate fractures approx. 1 cm in width no mineralization in this fractures at all 46.63-46.79 Quartz carbonate and chlorite shear zones 48.62-48.77 @ 30° to core axis.	50 : / 1										
	Lower Section 53.95-68.58 Andesite less tuffa- ceous & less fracture more massive and por- phyritic. Noted in- crease in hematitic alteration as next un is approached.											

88-10

Sheet 3 of 4

	Description	Sample no.	Interv	al (m)			ASS	AY RESUL	TS		
Depth	Description	Sample no.	from	to	Au(ppb)	Agppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppn)	Sbíppm)
100 28	Volcanic Basaltic Tuff/Agglomerat Hematitic, more fractured and sheared than agglomerate unit found above.	e									
	68.58-72.85 Agglomerate section - large clasts of por- phyritic andesite set in a tuffaceous matri Contains large amount of dendritic fracture of quartz/calcite.	x 16602	70.12	70.30	2	2.0	35	22	46	15	4
	72.85-100.28 Tuff Section - very few clasts appears la in water environment thin bands of alterna ting light & darker tuff showing slumping etc.	16603	75.00	75.50	4	1.4	30	34	67	20	6
	80.00-90.00 This section is highl sheared and brecciate as evidenced by shear zones light green in colour with up to .5% py. Overall mineral- ization is low howeve Appears like a large amount of folding has occurred in this sec- tion.	ed ed er									
	A summary of breccia & shear zone are as follows:	25									

88-10

i.

1

Sheet 4 of

4

NH-TES RESOLACE MUNACEMENT LTD.

			Interva	l (m)			ASS	AY RESUL	TS		
Depth	Description	Sample no.	from	to	Au(ppb)	Agppm)	As(ppm)	Cu(ppm)	Zn(PPM)	Pb(ppm)	Sb(ppm)
	Breccia Zones: characterized by angular clasts of tuff in a quartz/ carbonate matrix qtz/carb 20-40%.	16604	79.90	80.40	3	1.1	26	6	60	23	5
	Found at 83.21-83.82, 84.73-85.95,	16605	90.30	90.80	2	1.2	25	11	68	18	5
	93.88-95.71, 99.06-99.67.	16606	84.75	85.75	3	1.7	31	10	51	13	4
	Shear Zones: Described as above	16607	85.75	86.75	1	1.1	23	14	67	17	5
	Found at 79.86-80.16, 81.38-81.68, 85.65-85.90	16608	95.00	96.50	2	1.5	50	43	65	20	5
	Note* 93.90-100.28 Section became less hematitic and more compotent as lower contact was approached. Andesitic Tuff										
	Similar to unit above at 40.54- 63.95 overall massive with qtz/ carbonate breccia zones at:										
	101.24-101.49, 105.46-105.75, 105.90-106.35, 108.36-108.51, 114.00-114.91, very uniform and fresh. Blebs of quartz with minor calcite (hematite lined) found occasionally.	16609 16610 16611	113.80	104.20 114.80 115.60	1	2.1 2.3 2.7	53 65 51	25 45 35	63 65 70	24 20 21	7 6 5
	121.92(400') END OF HOLE										

Comments:

HI-TEC RESOURCE MANAGEMENT LTD.

Company	Brenwest Mining Ltd.	overburden
Project No.	88-BC-007	6.10 highly frac. a
Drill hole no.	88-11	vvvv-9.75 poor core reco
Area/Township	Big Bar Creek, B.C.	
Mining Division	Clinton	17.68 shear zone
Claim Name	Edge	
N.T.S.	92 0/1	
Grid Reference	1+07S 2+86E	
Angle/Orientation	-65°/060°	-36.12 fault gouge
Length	89.61m (294')	777737.80 prophyritic a
Core size	NQ	
% Recovery	94%	
Depth to Bedrock	6.10m (20')	
Lithology Fm Top	Highly frac. andesite	\vee \vee \vee \vee \vee \vee \sim
Lithology Fm Base	Andesite porphyry	$\sqrt[6]{}$ $\sqrt[6]{}$ $\sqrt[6]{}$ $\sqrt[6]{}$ $\sqrt[6]{}$
Date collared	June 3, 1988	
Date completed	June 4, 1988	
Dip Tests		
No. of Samples	11	
Sample Interval	1.0m	
Sample No's	From:16612 To:16621 14007	
Drilling Company	Frontier Drilling	/ ∨ ∨ ∨ ∨ / ∨ ∨ ∨ ∨ / ∨ ∨ ∨ ∨ ∠ EOH 89.61m (294')
Logged by	W. E. Lumley	

Scale	of	Summary	log

1:500

DRILL HOLE LOG NO. 88-11

Sheet 1 of 2

IN-TEC RESOURCE MANAGEMENT LTD.

Death	Description	Sample no.	Interva	ıl (m)	ASSAY RESULTS								
Depth	Description		from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)		
0.00 6.10	Casing												
6.10	Highly fractured andesite												
17.68	9.75-11.58 1.0 m lost core 11.58-12.50 .4 m lost core 12.50-14.33 1.2 m lost core 14.33-17.37 2.5 m lost core												
	Quartz/carbonate chloritic shear zone - chlorite 20-30% of section. Quartz/carbonate 70-80% of section	16620 16621	17.47 18.47	18.37 19.47	17 29	2.3 2.3	73 72	20 17	63 49	19 17	4		
	Possible source of samples taken on surface AS-3,4	16619	ł	21.95	9	2.2	40	17	63	19	4		
19.35	Andesite Tuff	16618	22.50	22.86	11	1.4	34	23	50	15	5		
36.12	Dark green grey in colour, similar to unit found in DDH-88-10 at 40.54-53.95 m. Characterized by tuffaceous dark & lighter coloured bands at 50° to core. Where frac- tured fractures are at 50° to core axis.	14007	24.85	25.70	1	1.4	14	28	55	21	1		
	Fracture zones with numerous quartz±carbonate healed fractures at 50° to core are found 20.71- 22.86 and 27.74-28.05 m.	16612	27.70	28.00	5	1.6	31	10	53	12	4		
36.12	Hematitic fault gouge.												
37.80		16615	37.00	38.00	3	2.0	30	12	62	25	6		
	Andesite	16616	38.00	39.00	1	2.6	29	6	76	22	5		
56.08	Weakly porphyritic & fractured in lower section 41.61-56.08, upper	16617	39.00	40.00	2	2.8	33	12	80	22	• 6		
	section - highly fractured in stockwork breccia with numerous fractures.	16613 16614	40.63 44.55	l		2.6 2.9	30 36	30 8	64 52	19 10	5 4		

H-TES RESOLACE MANAGEMENT LTD.

DRILL HOLE LOG NO.

88-11

Sheet 2 of 2

Death	Description	Sample no.	Interva	l (m)	ASSAY RESULTS								
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppm	As(ppm)	Cu(pon)	Zn(ppn)	Pb(ppm)	Sb(ppm)		
56.08 - 57.61	Hematitic Fault Gouge												
	Andesite Porphyry												
5 7. 61- 89.61	Siliceous fresh unaltered massive locally fractured 1-2 thin frac- tures/meter. Very uniform through- out unit.	-											
	 57.61-60.66 Zone of minor shearing & brecciation associ- ated with above fault. 65.84-66.15 Light green coloured shear zone. 79.25 3 cm wide fracture at 65° to core 												
	89.61 END OF HOLE												

HI-TEC RESOURCE MANAGEMENT LTD.

Company	Brenwest Mining
Project No.	88-BC-007
Drill hole no.	88-12
Area/Township	Big Bar Creek, B.C.
Mining Division	Clinton
Claim Name	Edge
N.T.S.	92 0/1
Grid Reference	2+88N 3+00E
Angle/Orientation	-60/090°
Length	96.01m (315')
Core size	NQ
% Recovery	98%
Depth to Bedrock	25.60m (84')
Lithology Fm Top	Basaltic Tuff
Lithology Fm Base	Andesite porphyry
Date collared	June 4, 1988
Date completed	June 5, 1988
Dip Tests	None
No. of Samples	10
Sample Interval	10m
Sample No's	From: 16622 To: 16631
Drilling Company	Frontier Drilling
Logged by	W.E. Lumley

Comments: overburden 25.60 hematitic basaltic tuff 32.31 intense shearing and 35.36 brecciation 37.80 basaltic tuff 40.84 fault zone 42.37 andesite VV 49.99 hematitic basalt tuff Andesite 89.46 Hematito fault gouge 92.53 Quartz chlorite shear zone Andesite VV EOH 96.01

Scale of Summary log 1:500

88-12

Sheet 1 of 3

Death	Description	Sample no.	Interva	I (m)	ASSAY RESULTS								
Depth	Description		from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppn)	Zn(ppm)	Pb(ppm)	Sb(ppm)		
0.00 25.60	Casing												
25.60 32.31	Hematitic Basaltic Tuff - uniformly fractured with 6-10 thin fractures per meter. Compotent and charac- terized by bands of darker & lighter material, possible water taif unit												
32.31	Zone of intense shearing and	16622	32.80	33.80	23	1.3	50	5	65	14	5		
35.36	brecciation - chlorite slickensides at 45° to core with minor pyrite	10025	33.80	34.80	11	1.1	30	1	85	21	5		
	and quartz/carbonate.	16624	36.60	37.60	5	.9	18	27	89	17	5		
35.36 37.80	Hematitic basaltic tuff - more compotent than above unit (less fractured).												
37.80 40.84	Fault Zone - marked by the following:												
	37.80-38.25 Hematitic pyritic (pyrite 5-10%) fault gouge. 38.25-38.71 Fault gouge and gougy												
	fracture andesite. py 1-3%.	16625	37.60	38.60	54	2.5	39	18	56	19	5		
	38.71-40.84 Quartz breccia zone - pyrite 5-10%, quartz 70%, aspy 1-3%,	16626	38.60	39.60	351	4.1	1575	20	55	17	7		
	chlorite 20%.	16627	39.60	40.60	492	6.8	3492	26	49	25	11		
40.84	Andesite - highly fractured weakly	16628	40.60	41.60	15	1.6	116	29	63	15	5		
42.37	porphyritic all broken core.												
42.37	Dark purple (mauve) basaltic tuff.								1				
44.20					[1				
					}								

DRILL HOLE LOG NO. 88-12

Sheet 2 of 3

	Description	Samala na	Interva	l (m)	ASSAY RESULTS							
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppn)	Zn(pm)	Pb(ppm)	Sb(ppm)	
	Andesite - as above highly frac- tured.											
44.50 45.57	Fractured basaltic tuff mostly broken core.											
	Andesite porphyry dyke - large feldspar crystals soft, unit is argillically altered light green in colour.											
46.18- 49.99	Andesite - weakly porphyritic moderately fractured 5-6 (thin 1 mm each)/meter.											
49.99- 62.63	Hematitic basalt tuff with minor andesite porphyry (dykes?) at 60.05-60.20, 61.56-62.03m.											
	 52.12-55.19 Moderately fractured qtz/carbonate veins dendritic 10-15% of section. 57.61-56.91 Shear zone quartz carbonate 20%, chlorite 80%. 60.66-61.57 Fracture zone - dendritic 10-20% of section. 											
62.63 65.99	Andesite Highly fractured with numerous hematite lined fractures at 45° to core. Section is mostly broken core, unit is weakly porphyritic.											

DRILL HOLE LOG NO. 88-12

Sheet 3 of 3

.	Description	Completes	Interva	al (m)	ASSAY RESULTS							
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppn)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)	
65.99- 89.46	Volcanic Basaltic Tuff/Minor Agglomerate											
	Typical tuff unit except that unit has numerous light green shear zones containing .5% py. Shear zones located at: 69.19-69.34, 69.49-70.26, 72.85- 73.46, 73.91-74.98, 80.77-80.92 (minor breccia)	16629 16630	72.90 73.40	73.40 74.40		.9 1.0	34 34	21 4	65 61	22 15	6	
89.46- 90.53	Bright red hematitic fault gouge.											
90.53- 92.66	Mauve hematitic fault gouge.	14005 14006	90.53 91.53	91.53 92.65		.5 .6	42 160	23 33	57 61	14 16	2 3	
92.66- 93.73	Gougy quartz carb chlorite shear zone. 1-3% py.	16631	92.65	93.00	94	2.7	476	26	50	22	6	
93.73- 96.01	Andesite Porphyry Hematitic light red massive.											
	Hole abandoned at 96.01 (315') due to caving.											

HI-TEC RESOURCE MANAGEMENT LTD.

CompanyBrenwest Mining Ltd.Project No.88-BC-007Drill hole no.88-13Area/TownshipBig Bar Creek, B.C.Mining DivisionClintonClaim NameEdgeN.T.S.92 0/1
Drill hole no. 88-13 Area/Township Big Bar Creek, B.C. Mining Division Clinton Claim Name Edge N.T.S. 92 0/1
Area/Township Big Bar Creek, B.C. Mining Division Clinton Claim Name Edge N.T.S. 92 0/1
Big Bar Creek, B.C. Mining Division Clinton Claim Name Edge N.T.S. 92 0/1
Claim Name Edge N.T.S. 92 0/1
N.T.S. 92 0/1
92 0/1
Grid Reference 500N/29W
Angle/Orientation -60°/090°
Length 73.46m (241')
Core size NQ
% Recovery 87
Depth to Bedrock 18,90m (62')
Lithology Fm Top Red andesite
Lithology Fm Base Volcanic agglomerate
Date collared June 6, 1988
Date completed June 7, 1988
Dip Tests None
No. of Samples 16
Sample Interval Approx 1.0m
Sample No's From: 16632 To: 16643 14008 To: 16643
Drilling Company Frontier Drilling
Logged by W. E. Lumley

	Comments:
ele over	burden
2200 0000 0000 0000 0000 0000 18.9 19.9 1	0 red andesite
1 1	l fault zone
35.9	py 3-10% 7 dark grey green andesite
	<pre>1 quartz-carbonate chloritic shear zone 6 andesite porphyry 0 volcanic agglomerate 73.46m (241')</pre>
	, 3 • 10 (1211)

Scale of Summary log	1:500

88-13

Sheet 1 of 2

Death	Description	Sample no.	Interval (m)		ASSAY RESULTS						
Depth		Sample no.	from	to	Au(ppq)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
0.00- 18.90	Casing										
32.31	Red Andesite Porphyritic, intensely sheared upper section resulting in very poor core recovery. 18.90-29.57 8.80m of lost core material recovered consisted of pebbles and pieces of dark grey and red andesite.	14010 14011	29.57 30.57	30.57 31.57	38 582	.3 2.1	13 108	30 39	68 67	12 14	3 3
32.31- 35.97	29.57-32.31 Massive red andesite. 30.18-30.94 Fault gouge. Fault zone summarized as follows: 32.31-32.61 Pyritic gouge py 5-10% 32.61-34.29 Pyritic quartz breccia minor chlorite, pyrite 3-5%. 34.29-34.44 Hematitic fault gouge. 34.44-35.97 Chloritic fault breccia	16638 16639	32.61 34.13 35.13	34.13 35.13 36.13	57 38 6	2.4	162 44 13	6 12 23	47 107 109	15 18 17	8 5 5
	- angular quartz and andesite fragments in chlorite.	16640 16641	39.10	40.10	18	.8	4	2	99 114	14	5
35.97- 43.13	Andesite Dark green grey weakly porphyritic 30% of section is sheared with the	16642 16643 14008	40.10 41.10 43.10	41.10 42.10 44.10	22 19 2	.5 1.0 .5	30 27 62	6 28 26	101 26	17 14	5 2
43.13- 44.81	shear zones narrow (5-10cm). Dark red hematitic stained fault & shear zone. Minor vuggy dendritic quartz veins 1-2 mm in width, very minor pyrite.	14009	44.10	44.80		.3		46	66	18	2

DRILL HOLE LOG NO. 88-13

Sheet 2 of 2

Death	Description	Sample no.	Interval (m)		ASSAY RESULTS						
Depth			from	to	Au(prb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
44.81- 48.16	Quartz/Carbonate Chloritic Shear Zone with quartz ± calcite occupy- ing 50% of section. Py 5-10% locally replaces angular pieces of andesite, minor arsenopyrite. Upper & lower contact at 45° to core axis. 44.81-45.72 Chloritic shear zone quartz 30% of section. 45.72-48.16 Chloritic shear zone quartz 50-60% of section.	16633 16634 16635 16636	44.80 45.80 46.80 47.80	45.80 46.80 47.80 48.80	1680 702 640 81	38.60 47.00 52.10 3.3	1008	53 94 155 12	159 143 120 71	97 81 107 20	8 5 6
50.90	Andesite Porphyry Highly fractured all section broken core. Volcanic Basaltic Agglomerate rounded to sub-rounded clasts of tuff and porphyritic andesite in a tuff matrix. Upper section 50.90-60.96 appears weakly brec- ciated & sheared. Lower section: less sheared 70.40-70.95 light green zone with vuggy fracture at 20° to core. Pyrite .5%. 73.46 END OF HOLE	16637	70.40	70.95	11	3.1	20	12	64	14	4

HI-TEC RESOURCE MANAGEMENT LTD.

Company	Brenwest Mining Ltd.
Project No.	88-BC-007
Drill hole no.	88-14
Area/Township	Big Bar Creek, B.C.
Mining Division	Clinton
Claim Name	Edge
N.T.S.	92 0/1
Grid Reference	500N/029W
Angle/Orientation	-90%-
Length	54.86 (180')
Core size	NQ
% Recovery	98%
Depth to Bedrock	24.38m (80')
Lithology Fm Top	Altered andesite
Lithology Fm Base	Fractured andesite
Date collared	June 7, 1988
Date completed	June 8, 1988
Dip Tests	-
No. of Samples	24
Sample Interval	Approx 1.0
Sample No's	From: 16644 To: 16650 701 To: 706
Drilling Company	Frontier Drilling
Logged by	W. E. Lumley

Comments:						
overburden						
24.38 altered andesite VVVVV VVVVV (argillic) VVVVV VVVV						
vyvy 32.61 basaltic conglom	erate					
37.19 brecciated quarts VVVV andesite py 1-2% VVVV	z-					
47.40 shear zone 49.23 hematitic fault gouge 50.29 andesite EOH 54.86m (180')						

Scale of Summary log

1:500

88-14

Sheet 1 of 2

Depth	Description	Sample no.	Interva	al (m)	ASSAY RESULTS							
			from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)	
0.00- 24.38	Casing											
32.61	<pre>Argillically Altered Andesite Moderate to intense argillic altera tion, larger amount of shearing chlorite lined and gouge. Moder- ately fractured also. 26.82-26.97 Gougy shear zone. 26.97-28.04 Chloritic quartz/carb- onate shear zone, lower contact gouge. 28.04-29.57 Argillically altered andesite, py .5%. 29.57-30.94 Fractured andesite - quartz-dendritic frac- tures. 30.94-32.61 Sheared andesite. Basaltic Agglomerate compotent weakly fractured.</pre>	16646	27.00 28.00 29.00	28.00 29.00 29.40	124 50 12	1.0 .8 .6	12 9 3	24 46 19	93 35 34	66 28 26	8 9 3	
37.19- 47.40	Andesite - fractured & brecciated quartz carb 5% of section has healed fractures, py 1-2%. 41.25 10 cm wide breccia zone at 20° to core. 44.50-44.90 Breccia zone, quartz 70% of section vuggy pyrite 1-3%. 46.63-46.93 Light to medium green py rich felsite(?) dyke py 5-10% at 45° to core.	16649 16650 16644 16645 702	39.62 40.62 44.19 45.19 47.34	41.62 45.19 46.39	7 2 2	1.5 1.5 1.6 1.2	2 1 4 7	31 26 26 25 21	200 215 118 19 254	36 26 47 25 60	14 8 10 11	
47.40- 49.23	Quartz chlorite shear zone py 3-5% minor aspy. same unit as found in DDH-88-13 at 44.81 - 48.16	703 704	48.34 49.34			5.3 .8	48 8	52 21	157 112	8 76	5 6	

88-14

Sheet 2 of 2

	Description	Sample no.	Interva	l (m)			ASS	AY RESUL			
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
49.23- 50.29	Red Hematitic Fault Gouge.										
50.29- 52.58	Quartz chlorite shear zone as above 3-5% pyrite.	705	50.34	51.34	1250	19.5	16	66	512	126	10
52.58-	Andesite	706	51.34	52.25	770	5.2	56	34	282	126	12
54.86	Highly fractured quartz carb.	701	52.25	54.00	552	10.5	68	53	177	34	4
	healed fractures.	14004	54.00	54.86	4	1.1	48	49	63	9	2
	HOLD CAVED & SANDED IN AT 54.86 m HOLE ABANDONED.										

DRILL HOLE LOG SUMMARY

HI-TEC RESOURCE MANAGEMENT LTD.

Company	Brenwest Mining Ltd.
Project No.	88BC-007
Drill hole no.	DDH-88-15
Area/Township	Big Bar Creek, B.C.
Mining Division	Clinton, B.C.
Claim Name	Edge
N.T.S.	72 0/1
Grid Reference	576N/52.5W
Angle/Orientation	280°/-90°
Length	99.67m (327')
Core size	NQ
% Recovery	97%
Depth to Bedrock	9.14m
Lithology Fm Top	Highly frac. andesite
Lithology Fm Base	andesite
Date collared	June 8, 1988
Date completed	June 9, 1988
Dip Tests	N/A
No. of Samples	21
Sample Interval	1.Om
Sampie No's	From: 722 To: 743
Drilling Company	Frontier Drilling Ltd.
Logged by	W. E. Lumley

	Comments: overburden										
0°0°0 0°0°0	overburden										
	9.14 highly fractured andesite										
	14.33 basaltic tuff										
	17.22 fault gouge 19.20 porphyritic andesite										
	24.90 volcanic basaltic agglomerate										
	34.14 andesite porphyry 36.27 volcanic basaltic tuff										
1 and	45.11 quartz carbonate shear zone 46.21 shear zone										
	51.51 fractured andesite										
	62.64 quartz carbonatevein 63.09 py 1-3%										
	75.74 dark red fault gouge 76.66 volcanic basaltic tuff										
	EOH 99.67m (327')										

1:500

88-15

Sheet 1 of 3

2	
	NH-TEC Resource management LTD.

		Consol	Interva	l (m)			ASS	AY RESUL	TS		
Depth	Description	Sample no.	from	to	Au(Ppb)	Ag(ppm)	As(PPM)	Cu(ppm)	Zn(PPM)	Pb(ppm)	Sb(ppm)
0.00- 9.14	Casing										
9.14- 14.33	Highly Fractured Andesite. Medium to dark green grey, highly fractured. Same unit as seen in DDH's 3,4,5.										
14.33- 17.22	Basaltic Tuff.										
17.22- 19.20	Red Hematitic Fault Gouge.										
19.20- 24.90	Andesite Porphry. Fractured weathered porphyritic identical to unit 64.36-66.80 m. 23.47-24.69 .9 m lost core.										
24.90- 34.14	Volcanic Basaltic Agglomerate Appears more clasts in tuff matrix similar to unit found in DDH-88-3 33.80-39.25 & at 66.80-68.60.										
34.14- 36.27	Andesite Porphyry Porphyritic & highly fractured fractures hematite lined, very broken resulting in lost core. 34.14-36.27 1.52 m lost core.										
36.27- 45.11	Volcanic Basaltic Tuff. Identical to unit in DDH-88-3 at 41.20-46.70 & 56.75-64.36 m.										

NH-TEC Resource municement LTD. 88-15

Sheet ² of

3

Depth	Description	Sample no.	Interva	al (m)	ASSAY RESULTS								
Depth	Description		from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cuppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)		
45.11- 46.21	Quartz carbonate chloritic shear zone - typical of shear zones intersected in DDH-88-3,4 but has	722	45.00	46.00	162	.7	8	35	20	30	45		
	less py & more hematite.	723	46.00	47.00	7	1.0	5	16	196	41	35		
46.21- 46.94	Hematitic stained shear zone.	724	47.00	48.00	2	1.8	15	32	276	107	6		
46.94- 49.68	Light green shear zone, py .5%.												
49.68-	Quartz/carbonate chloritic shear	725	48.00	49.00	28	1.8	<u>4</u> 4	29	192	121	60		
51.51	zone, py 1-3% locally 5%.	726	49.00	50.00	154	1.2	1	43	196	62	7		
51.51-	Andesite	727	50.00	51.00	155	2.0	16	43	20	93	29		
75.74	Moderate to highly fractured unit	728	51.00	52.00	2	.7	4	27	83	72	25		
	quartz/carbonate healed fractures.	729	52.00	53.00	1	.4	2	42	108	67	7		
	Upper Section: 51.51-65.99 Moderately fractured with sheared sections	730	62.10	63.10	165	.7	3	51	101	42	13		
	at 56.54-56.95 & 58.83-		63.10	64.10	2	1.3	19	39	177	32	7		
	58.98.	732	66.00	67.00	1	1.2	7	50	403	83	6		
	65.99-75.75 Stockwork fractured zone py .5% to locally 5%	733	67.00	68.00	3	1.3	7	53	189	11	1		
	62.33 5cm wide quartz carb.	734	68.00	69.00	29	1.3	11	45	434	26	4		
	vein py .5%. 62.64-63.09 Quartz carb. vein	735	69.00	70.00	5	1.2	6	48	9	40	7		
	py 1-3%, very minor cp	• 736	70.00	70.50	2	1.2	9	43	340	41	3		
	63.09-63.70 Fracture zone parallel to core.	737	70.50	71.00	4	1.0	8	38	228	16	6		
		750	71.00	72.00	10	.5	46	49	52	11	3		
	Hematitic dark red fault zone.	14001	1	73.00	3	.5	27	45	60	15	1		
76.66		14002	73.00	74.00	1	.9	21	22 12	58 57	12 13	· 1		
		14003 738		74.90	2	.4 .6	1 3	9	262	27	2 1		
		-											

88-15

Sheet

sheet 3 of 3

AL	
ANIA	NH-TEC Resolunce management LTD.

Depth	Description	Sample no.	Interva	al (m)	ASSAY RESULTS							
Deptil	Description	Sample no.	from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Zn(ppm)	Pb(ppm)	Sb(ppm)	
76.66-	Volcanic Basaltic Tuff/Agglomerate	742	80.43	81.43	31	.6	3	45	95	56	2	
76.68	Uniform basaltic tuff unit with several light green chloritic shear zones which cut unit at 30° to core. Same unit as seen in	739	92.04	93.04	3	.6	9	5	276	40	11	
	DDH-88-04 at 63.00-69.30 m.	740	93.04	94.04	28	.7	13	14	153	67	3	
	Shear zones at: 81.66-82.30, 93.27-93.88 (1-3% py), 94.49- 94.79 (1.3% py), 95.09-96.32 m (1-3% py).	741	95.09	96.09	77	1.4	3	175	163	8	7	
	Andesite											
99.67	Weak to moderately porphyritic quite uniform same unit as in DDH-88-04 at 69.30-127.47 m.											
				-								

DRILL HOLE LOG SUMMARY

HI-TEC RESOURCE MANAGEMENT LTD.

Company	Brenwest Mining Ltd.
Project No.	88-BC-007
Drill hole no.	DDH-88-16
Area/Township	Big Bar Creek, B.C.
Mining Division	Clinton
Claim Name	Edge
N.T.S.	92 0/1
Grid Reference	576N/52.5W
Angle/Orientation	280'/-50°
Length	93.57m (307')
Core size	NQ
% Recovery	99
Depth to Bedrock	6.10m
Lithology Fm Top	andesite highly fractured
Lithology Fm Base	basaltic agglomerate
Date collared	June 10, 1988
Date completed	June 11, 1988
Dip Tests	N/A
No. of Samples	15
Sample Interval	1.0m
Sample No's	From: 707 To: 721
Drilling Company	Frontier Drilling
Logged by	W. E. Lumley

Scale of Summary log

1:500

HITEC

DRILL HOLE LOG NO.

88-16

Sheet 1 of 3

Donth	Deperintion	Sample no.	Interva	al (m)	ASSAY RESULTS							
Depth	Description	Sample no.	from	to	Au(ppb)	Ag(ppn)	As(ppm)	Cu(ppn)	Zn(ppm)	Pb(ppm)	Sb(ppm)	
0.00 - 6.10	Casing											
6.10 - 8.08 8.08 -	Andesite Highly fractured numerous quartz healed fractures identical to units found in top of DDH-88-3,4&5 Hematitic fault gouge.											
10.82	nomiterer ruure gouge,											
10.82- 25.65	Andesite Weathered & highly fractured re- sulting in a large amount of broken core. Locally sheared & brecciated.											
	 10.82-14.33 Broken core. 14.94-17.07 Quartz Bx zone - angular fragments of andesite in quartz/carbonate matrix, minor py. 17.68-18.90 Quartz Bx zone. 18.90-28.65 Andesite - more compotent. Lower contact - brecciated. 											
28.65- 32.31	Hematitic Basaltic Breccia/Agglomer Large clasts of what appears to be porphyritic andesite housed in a hematitic tuff matrix, clasts are altered. Upper Contact 28.65-29.26 Gougy & sheared at 30° to core. Lower Contact 31.85-32.31 Gougy & sheared at 70-90° to core.	ate										

NH-TEC RESOURCE MANAGEMENT LTD. DRILL HOLE LOG NO.

Sheet 2 of 3

Depth	Description	Sample no.	Interva	al (m)	ASSAY RESULTS							
Deptit		Sample no.	from	to	Auppb)	Ag(ppm)	As(ppm)	Cu(ppm)	Znppm)	Pb(ppm)	Sbppm)	
32.31- 35.66	Fresh Andesite Porphyry Very fresh glassy siliceous ande- site porphyry with well defined feldspar lathes and hornblend e crystals.											
35.66- 79.40	Volcanic Basaltic Agglomerate Hematitic dark red in colour large clasts of altered porphyritic andesite and basalt up to 5 cm in width. Upper section is locally brecciated & sheared but overall is compotent & weakly fractured. Lower section consists mostly of breccia & shear zones. Upper section appears more tuffaceous exhibiting structures which appear to be slumping in a water environ.											
	35.66-52.12 Compotent section fractured 2 (thin)/m. 52.12-57.61 Quartz/carbonate	718	52.00	53.00	1	1.4	15	36	84	37	19	
	breccia zone angular fragments of agglomer-	719	53.00	54.00	2	1.3	16	44	303	115	39	
	ate up to 5 cm in width. Head in a qtz.	720	54.00	55.00	1	1.4	1	51	144	109	34	
	carbonate breccia py 1-3%.	721	55.00	56.10	18	1.4	17	40	76	96	11	
	57.61-58.52 Light green shear zone shearing at 30° to core 58.52-59.89 Breccia zone same as	• 713	56.10	57.10	3	1.3	20	27	363	27	11	
	above at 52.12-56.61. 59.89-60.66 Light green shear zone	714	57.10	58.10	1	1.6	20	34	204	109	11	
	Upper contact 20° to core, lower contact	715	58.10	59.10	1	1.1	19	27	150	50	17	
	45° to core.	716	59.10	60.10	6	.8	3	43	188	83	16	
		717	60.10	60.60	2	1.2	21	32	292	3	11	

88-16

Sheet 3 of 3

ANSIA	NH-TEC Resource management LTD.

Depth	Description	Sample no.	Interval (m)		ASSAY RESULTS						
			from	to	Au(ppb)	Ag(ppm)	As(ppm)	Cutopm)	Zn(ppm)	Pb(ppm)	Sb(ppm)
	Volcanic Basaltic Agglomerate (Cont'd)										
	60.66-61.26 Carbonate chlorite shear zone parallel to core axis. 71.35-72.84 Light green shear zones										
	as above. 75.29 1 cm wide fract. paral- lel to core. 76.81-77.11 Light green shear zone										
	with minor quartz at 45° to core axis.	744	77.35	78.35	3	.2	29	4	49	11	1
79.40	Quartz/Carbonate Chlorite Shear Zon	e. 745	78.35	79.35	2	.1	1	5	52	10	2
84.28	Chlorite as chloritic slickensides at 30°-40° to core axis, py 1-3%	707	79.35	80.35	378	3.6	35	83	350	53	13
	minor arsenopyrite. Quartz 35-40% of section, Calcite 5-10%, chlorite 50-60%. Typical & same zone as	708	80.35	81.35	28	1.0	9	26	159	109	5
	found in DDH's 3&4.	709	81.35	82.35	193	1.1	36	34	119	70	1
84.28-	Volcanic Basaltic Agglomerate (?)	710	82.35	83.47	439	20.5	10	63	107	19	7
93.57	This section boarders on andesite composition is less hematitic than agglomerate above but is highly	712	83.47	84.47	382	4.3	5	43	256	76	12
	altered and characterized by blebs and veins of banded chalcedony	746	84.47	85.47	4	.7	24	52	45	12	2
	which are lined with hematite. No mineralization evident.	747	85.47	86.47	29	.9	41	16	35	10	2
	93.57 m END OF HOLE	711	86.47	87.47	339	•8	9	62	216	44	7
	Hole tightened due to faulting	748	87.47	88.47	21	1.1	15	4	58	13	2
	Broke rods could not recover Hole Abandoned.	749	88.47	89.47	2	.2	52	4	62	12	1

APPENDIX V

Diamond Drill Cross Sections

از کی

<u></u>

. ادریا

F

فلننا

Ag(ppm)
35.1
0.5
3.7
0.8
6.5
77.4
1.0
9.3
3.9
3.9
8.6
1.8
1.9

DRILL HOLE LOG SUMMARY

HI-TEC RESOURCE MANAGEMENT LTD.

Company	Brenwest Mining
Project No.	88-BC-007
Drill hole no.	88-01
Area/Township	Big Bar Creek, B.C.
Mining Division	Clinton
Claim Name	Edge
N.T.S.	92 0/1
Grid Reference	4+17N 1+50F
Angle/Orientation	-50°/270°
Length	69.19m (227')
Core size	NQ
% Recovery	98%
Depth to Bedrock	3.05m (10')
Lithology Fm Top	frac & sheared andesite
Lithology Fm Base	basaltic tuff
Date collared	May 24, 1988
Date completed	May 24, 1988
Dip Tests	N/A
No. of Samples	20
Sample Interval	1.Om
Sample No's	From: 16501 To: 16520
Drilling Company	Frontier Drilling
Logged by	W.E. Lumley
Logged by	W.E. Lumley

Comments:				
0.000	overburden			
	3.05 medium to dark green grey locally hematitic aphanitic andesite			
	18.5 intense shearing 20.5 and brecciation			
	32.31 fault 34.14 basaltic tuff			
	-46.02 medium to dark green grey andesite			
	-58.52 intensively sheared basalt 61.11 andesite porphyry 63.19 basaltic tuff EOH 69.19m (227')			
L	l			

Scale of Summary log	1:500

TVAL. D	WIDTH	Au(ppb)	Ag(ppm)
57		170	2.9
80	1.0	1680	38.6
.80	1.0	702	47.0
80	1.0	640	52.1
34	1.0	220	5.3
34	1.0	49	3.8
.34	1.0	1250	19.5
.25	.91	770	52

e interval		WIDTH	Au(ppb)	Ag(ppm)
	TO			
	50.00	1.0	154	1.2
	51.00	1.0	155	2.0
	80.35	1.0	378	3.6
	81.35	1.0	28	1.0
i	82.35	1.0	193	1.1
;	82.85	0.5	439	20.5
	87.47	1.0	339	0.8
'	86.47	1.0	382	4.3

APPENDIX VI

Rock Sample Descriptions

Rock Sample Descriptions

Sample No.	<u>Width (cm)</u>	Rock Chip Description
14018	35	Brecciated quartz with minor malachite.
14019	25	Brecciated quartz with minor malachite and chalcopyrite.
*14020	-	Brecciated quartz with minor malachite and chalcopyrite.
14021	10	Quartz vein with minor iron staining.
14022	18	Moderately iron stained quartz vein.
14023	20	Purple basaltic tuff, weakly porphyritic.
14025	20	Dark breccia with large andesite clasts.
14027	15	Iron stained, quartz vein at the andesite/basalt contact.
14028	18	Same as 14027.
14029	10	Iron stained quartz-carbonate vein.
14030	18	Rusty, quartz-carbonate vein, shear zone.
14031	60	Rusty, brecciated quartz- carbonate vein.
14032	20	Same as 14031.
14033	45	Same as 14031.
14034	50	Same as 14031.
14035	70	Same as 14031.
14036	40	Brecciated quartz-carbonate vein with minor, very fine pyrite, < 2%.
14037	100	Same as 14031.

Sample No.	<u>Width (cm)</u>	Rock Chip Description
14038	150	Brecciated quartz-carbonate zone.
14039	25	Rusty, hematitic quartz- carbonate vein.
14040	100	Same as 14031.
14041	20	Same as 14031.
14043	30	Rusty quartz vein.
14045	20	Grey-green porphyritic andesite.
14046	20	Chalcedony vein.
14047	30	Brecciated quartz-carbonate vein.
14048	40	Same as 14047.
14049	40	Rusty quartz-carbonate vein.
14050	100	Brecciated quartz-carbonate vein.
14142	30	Quartz-carbonate vein.
14145	20	White quartz-carbonate vein with minor fine pyrite.
14147	15	Smoky quartz with minor pyrite.
14148	20	Rusty quartz-carbonate vein with pyrite < 2%.

*This sample is a select rock sample, whereas all the other samples are rock chip samples.

APPENDIX VII

Statement of Costs

STATEMENT OF COSTS

BRENWEST MINING LTD. EDGE PROPERTY PROJECT 88BC007

(2 days mob/demob, 28 project days)SalariesB. Lumley, Project Geologist\$ 9,000.00J. Adamec, Assistant (For period of drillprogram J. Adamec acted as assistant andwas charged at the appropriate rate of anassistant) 30 man days @ \$200/day6,000.00Project Expenses6,000.00SupervisionJ.P. Sorbara 4 days @ \$400/day\$1,600.00J.P. Sorbara 4 days @ \$400/day\$1,600.00V.M. Kuran 1.25 days @ \$325/day406.25Project Preparation5,245.00Truck Rental and Fuel 30 days @ \$130/day3,900.00Domicile 24 man days @ \$80/man/day1,920.00(36 man days provided by drill camp)1,920.00Diamond Drilling546 feet casing @ \$18.50/foot \$10,101.004134 feet core @ \$18.50/foot \$10,101.004134 feet core @ \$18.50/foot \$10,200.00Geochemistry13,020.08198 samples- preparation,6 element ICP for Ag As CuPb Sb Zn, gold fire-AA148 @ \$15.75/sample \$ 2,331.0050 @ \$15.25/sample \$ 2.000\$3,093.50geochem supplies18.37FAX charges2.0007 fire assays for gold\$9.59.500 @ \$8.50/sample59.503.2 hours @ \$554.56/hr1,774.601.2. hours @ \$554.56/hr1,774.601.697.05150.00Core Storage150.00Communications, Accounting, Freight698.33Report - Data Compilation and Drafting7,000.00Reclamation Permit and Assessment Requirements21,724.39	Field Work Period: May 18 - June 16, 1988 PHASE	I
B. Lumley, Project Geologist 30 man days @ \$300/day\$ 9,000.00J. Adamec, Assistant (For period of drill program J. Adamec acted as assistant and was charged at the appropriate rate of an assistant) 30 man days @ \$200/day6,000.00Project Expenses Supervision6,000.00J. P. Sorbara 4 days @ \$400/day \$1,600.002,006.25Project Preparation5,245.00Truck Rental and Fuel 30 days @ \$130/day3,900.00Domicile 24 man days @ \$80/man/day1,920.00(36 man days provided by drill camp)1,920.00Diamond Drilling 546 feet casing @ \$18.50/foot \$10,101.00 4134 feet core @ \$18.50/foot \$10,101.00 Supplies and Services124,368.08Geochemistry 198 samples- preparation, 6 element ICP for Ag As Cu Pb Sb Zn, gold fire-AA 148 @ \$15.75/sample \$ 2,331.00 50 @ \$15.25/sample \$ 2.600 7 fire assays for gold @ \$8.50/sample59.50Helicopter Support and Fuel 3.2 hours @ \$554.56/hr1,774.60 16.97.05 150.00 150.00 150.000 150.000 2.20001,774.60 1,774.60 1,774.60 1,000 2.2000Geomunications, Accounting, Freight Report - Data Compilation and Drafting Reclamation Permit and Assessment Requirements 15% Project Management Fee21,7724.39		
30 man days @ \$300/day\$ 9,000.00J. Adamec, Assistant (For period of drill program J. Adamec acted as assistant and was charged at the appropriate rate of an assistant) 30 man days @ \$200/day6,000.00Project Expenses Supervision6,000.00J.P. Sorbara 4 days @ \$400/day \$1,600.002,006.25Project Prepenseion2,006.25Project Preparation2,006.00Truck Rental and Fuel 30 days @ \$130/day3,900.00Domicile 24 man days @ \$80/man/day1,920.00(36 man days provided by drill camp)1,920.00Diamond Drilling546 feet casing @ \$18.50/foot \$10,101.00546 feet casing @ \$18.50/foot \$10,101.00134 feet core @ \$18.50/foot \$10,101.00H134 feet core @ \$18.50/foot \$13,020.08124,368.08Geochemistry13,020.08198 samples- preparation, 6 element ICP for Ag As Cu Pb Sb Zn, gold fire-AA148 @ \$15.75/sample \$ 2,331.00 50 @ \$15.25/sample \$ 2.00 7 fire assays for gold @ \$8.50/sample59.50Helicopter Support and Fuel 3.2 hours @ \$554.56/hr1,774.60 1,697.05 150.00Core Storage Core Storage1,697.05 150.00Core Storage Communications, Accounting, Freight Report - Data Compilation and Drafting 15% Project Management Fee7,000.00 20,000		
J. Adamec, Assistant (For period of drill program J. Adamec acted as assistant and was charged at the appropriate rate of an assistant) 30 man days @ \$200/day 6,000 Project Expenses Supervision J.P. Sorbara 4 days @ \$400/day \$1,600.00 V.M. Kuran 1.25 days @ \$325/day 406.25 Project Preparation 5,245.00 Truck Rental and Fuel 30 days @ \$130/day 3,900.00 Domicile 24 man days @ \$80/man/day 1,920.00 (36 man days provided by drill camp) Diamond Drilling 546 feet casing @ \$18.50/foot \$10,101.00 4134 feet core @ \$18.50/foot \$10,101.00 Field Cost Charges 24,768.00 Supplies and Services 13,020.08 Geochemistry 198 samples- preparation, 6 element ICP for Ag As Cu Pb Sb Zn, gold fire-AA 148 @ \$15.75/sample \$ 2,331.00 50 @ \$15.25/sample \$ 2.00 7 fire assays for gold @ \$8.50/sample 59.50 Helicopter Support and Fuel 3.2 hours @ \$554.56/hr 1,677.60 Field Supplies and Equipment 1,697.05 Core Storage 59.50 Communications, Accounting, Freight 7.00 Report - Data Compilation and Drafting 7.000.00 Reclamation Permit and Assessment Requirements 29.08 15% Project Management Fee 21,724.39		9.000.00
program J. Adamec acted as assistant and was charged at the appropriate rate of an assistant) 30 man days @ \$200/day 6,000.00 Project Expenses Supervision J.P. Sorbara 4 days @ \$400/day \$1,600.00 V.M. Kuran 1.25 days @ \$325/day 406.25 Project Preparation 5,245.00 Truck Rental and Fuel 30 days @ \$130/day 3,900.00 Domicile 24 man days @ \$80/man/day 1,920.00 (36 man days provided by drill camp) Diamond Drilling 546 feet casing @ \$18.50/foot \$10,101.00 4134 feet core @ \$18.50/foot \$10,101.00 Field Cost Charges 24,768.00 Supplies and Services 13,020.08 Geochemistry 198 samples- preparation, 6 element ICP for Ag As Cu Pb Sb Zn, gold fire-AA 148 @ \$15.75/sample \$ 2,331.00 50 @ \$15.25/sample \$ 2.00 7 fire assays for gold @ \$8.50/sample 59.50 Helicopter Support and Fuel 3.2 hours @ \$554.56/hr 1,677.60 Field Supplies and Equipment 1,697.05 Core Storage 59.56/hr 1,677.60 Field Supplies and Equipment 1,697.05 Core Storage 7,000 Report - Data Compilation and Drafting 7,000.00 Reclamation Permit and Assessment Requirements 220.08		570000000
assistant) 30 man days @ \$200/day 6,000.00 Project Expenses Supervision J.P. Sorbara 4 days @ \$400/day \$1,600.00 V.M. Kuran 1.25 days @ \$325/day 406.25 Project Preparation 5,245.00 Truck Rental and Fuel 30 days @ \$130/day 3,900.00 Domicile 24 man days @ \$80/man/day 1,920.00 (36 man days provided by drill camp) Diamond Drilling 546 feet casing @ \$18.50/foot \$10,101.00 Field Cost Charges 24,768.00 Supplies and Services 13,020.08 Geochemistry 198 samples- preparation, 6 element ICP for Ag As Cu Pb Sb Zn, gold fire-AA 148 @ \$15.75/sample 762.50 geochem supplies 18.37 FAX charges 2.00 7 fire assays for gold @ \$8.50/sample		
Project ExpensesSupervisionJ.P. Sorbara 4 days @ \$400/day \$1,600.00V.M. Kuran 1.25 days @ \$325/day _406.25Project Preparation5,245.00Truck Rental and Fuel 30 days @ \$130/day3,900.00Domicile 24 man days @ \$80/man/day1,920.00(36 man days provided by drill camp)1,920.00Diamond Drilling546 feet casing @ \$18.50/foot \$10,101.004134 feet core @ \$18.50/foot 76,479.00Field Cost Charges24,768.00Supplies and Services13,020.08124,368.08Geochemistry198 samples- preparation,6 element ICP for Ag As CuPb Sb Zn, gold fire-AA148 @ \$15.75/sample \$ 2,331.0050 @ \$15.25/sample \$ 2.007 fire assays for gold@ \$8.50/sampleS2.007 fire assays for gold@ \$8.50/sampleS2.007 field Supplies and Equipment0.00Core StorageCommunications, Accounting, FreightReport - Data Compilation and Drafting7,000.00929.0815% Project Management Fee21,724.39		
SupervisionJ.P. Sorbara 4 days @ \$400/day \$1,600.00V.M. Kuran 1.25 days @ \$325/day _406.25Project Preparation5,245.00Truck Rental and Fuel 30 days @ \$130/day3,900.00Domicile 24 man days @ \$80/man/day1,920.00(36 man days provided by drill camp)1,920.00Diamond Drilling546 feet casing @ \$18.50/foot \$10,101.004134 feet core @ \$18.50/foot 76,479.00Field Cost Charges24,768.00Supplies and Services13,020.08124,368.08124,368.08Geochemistry198 samples- preparation,6 element ICP for Ag As Cu\$3,093.50geochem supplies18.37FAX charges2.007 fire assays for gold\$9.500 (\$8.50/sample59.508.50/sample1,774.609.2 hours @ \$554.56/hr1,774.60Field Supplies and Equipment1,697.05Core Storage150.00Communications, Accounting, Freight698.33Report - Data Compilation and Drafting929.08158 Project Management Fee21,724.39		6,000.00
J.P. Sorbara 4 days @ \$400/day \$1,600.00 V.M. Kuran 1.25 days @ \$325/day <u>406.25</u> Project Preparation 5,245.00 Truck Rental and Fuel 30 days @ \$130/day 3,900.00 Domicile 24 man days @ \$80/man/day 1,920.00 (36 man days provided by drill camp) Diamond Drilling 546 feet casing @ \$18.50/foot \$10,101.00 4134 feet core @ \$124,368.08 Geochemistry 198 samples 124,368.08 Geochem supplies 18.37 FAX charges 2.000 7 fire assays for gold \$3,003.50 18.774.60 Field Supplies and Equipment 1,697.05 Core Storage 150.00 Communications, Accounting, Freight 698.33 Report - Data Compilation and Drafting 7,000.00 Reclamation Permit and Assessment Requirements 929.08 158 Project Management Fee 21,724.39		
V.M. Kuran 1.25 days @ \$325/day <u>406.25</u> Project Preparation 5, 245.00 Truck Rental and Fuel 30 days @ \$130/day 3,900.00 Domicile 24 man days @ \$80/man/day 1,920.00 (36 man days provided by drill camp) Diamond Drilling 546 feet casing @ \$18.50/foot \$10,101.00 4134 feet core @ \$18.50/foot \$10,101.00 4134 feet core @ \$18.50/foot 76,479.00 Field Cost Charges 24,768.00 Supplies and Services 13,020.08 Geochemistry 198 samples- preparation, 6 element ICP for Ag As Cu Pb Sb Zn, gold fire-AA 148 @ \$15.75/sample \$ 2,331.00 50 @ \$15.25/sample <u>762.50</u> (\$3,093.50 geochem supplies 18.37 FAX charges 2.00 7 fire assays for gold @ \$8.50/sample <u>59.50</u> Helicopter Support and Fuel 3.2 hours @ \$554.56/hr 1,774.60 Field Supplies and Equipment 1,697.05 Core Storage 698.33 Report - Data Compilation and Drafting 7,000.00 Reclamation Permit and Assessment Requirements 929.08 15% Project Management Fee 21,724.39	•	
Project Preparation2,006.25Truck Rental and Fuel 30 days @ \$130/day3,900.00Domicile 24 man days @ \$80/man/day1,920.00(36 man days provided by drill camp)1,920.00Diamond Drilling546 feet casing @ \$18.50/foot \$10,101.004134 feet core @ \$18.50/foot 76,479.00Field Cost Charges24,768.00Supplies and Services13,020.08198 samples- preparation,6 element ICP for Ag As CuPb Sb Zn, gold fire-AA148 @ \$15.75/sample \$ 2,331.0050 @ \$15.25/sample762.50geochem supplies18.37FAX charges2.0007 fire assays for gold@ \$8.50/sampleS.2 hours @ \$554.56/hrField Supplies and EquipmentCore StorageCommunications, Accounting, FreightReport - Data Compilation and DraftingReport - Data Compilation and Drafting7.000.00Reclamation Permit and Assessment Requirements128.0021,724.39		
Truck Rental and Fuel 30 days @ \$130/day3,900.00Domicile 24 man days @ \$80/man/day1,920.00(36 man days provided by drill camp)1,920.00Diamond Drilling546 feet casing @ \$18.50/foot \$10,101.00546 feet casing @ \$18.50/foot \$10,101.004134 feet core @ \$18.50/foot 76,479.00Field Cost Charges24,768.00Supplies and Services13,020.08124,368.08124,368.08Geochemistry124,368.08198 samples- preparation,6 element ICP for Ag As CuPb Sb Zn, gold fire-AA148 @ \$15.75/sample \$ 2,331.0050 @ \$15.25/sample762.50§3,093.50\$3,093.50geochem supplies18.37FAX charges2.007 fire assays for gold\$9.500 \$8.50/sample59.503,173.37Helicopter Support and Fuel1,697.053.2 hours @ \$554.56/hr1,774.60Field Supplies and Equipment1,697.05Core Storage150.00Communications, Accounting, Freight698.33Report - Data Compilation and Drafting7,000.00Reclamation Permit and Assessment Requirements21,724.39		2,006.25
Truck Rental and Fuel 30 days @ \$130/day 3,900.00 Domicile 24 man days @ \$80/man/day 1,920.00 (36 man days provided by drill camp) Diamond Drilling 546 feet casing @ \$18.50/foot \$10,101.00 4134 feet core @ \$18.50/foot \$10,101.00 4134 feet core @ \$18.50/foot \$10,101.00 4134 feet core @ \$18.50/foot \$10,101.00 Field Cost Charges 24,768.00 Supplies and Services 13,020.08 Geochemistry 198 samples- preparation, 6 element ICP for Ag As Cu Pb Sb Zn, gold fire-AA 148 @ \$15.75/sample \$ 2,331.00 50 @ \$15.25/sample <u>762.50</u> geochem supplies 18.37 FAX charges 2.00 7 fire assays for gold @ \$8.50/sample <u>59.50</u> Helicopter Support and Fuel 3.2 hours @ \$554.56/hr 1,774.60 Field Supplies and Equipment 1,697.05 Core Storage Communications, Accounting, Freight 698.33 Report - Data Compilation and Drafting 7,000.00 Reclamation Permit and Assessment Requirements 15% Project Management Fee 21,724.39	Project Preparation	5,245.00
(36 man days provided by drill camp)Diamond Drilling546 feet casing @ \$18.50/foot \$10,101.004134 feet core @ \$18.50/foot 76,479.00Field Cost Charges 24,768.00Supplies and Services 13,020.08Geochemistry198 samples- preparation, 6 element ICP for Ag As CuPb Sb Zn, gold fire-AA148 @ \$15.75/sample \$ 2,331.0050 @ \$15.25/sample 762.50\$3,093.50geochem supplies 18.37FAX charges 2.007 fire assays for gold @ \$8.50/sample 59.50Helicopter Support and Fuel 3.2 hours @ \$554.56/hr3.2 hours @ \$554.56/hrField Supplies and Equipment Core StorageCommunications, Accounting, Freight Report - Data Compilation and Drafting 15% Project Management Fee21,724.39	Truck Rental and Fuel 30 days @ \$130/day	-
Diamond Drilling 546 feet casing @ \$18.50/foot \$10,101.00 4134 feet core @ \$18.50/foot 76,479.00 Field Cost Charges 24,768.00 Supplies and Services 13,020.08 Geochemistry 198 samples- preparation, 6 element ICP for Ag As Cu Pb Sb Zn, gold fire-AA 148 @ \$15.75/sample \$ 2,331.00 50 @ \$15.25/sample <u>762.50</u> (\$3,093.50 geochem supplies 18.37 FAX charges 2.00 7 fire assays for gold @ \$8.50/sample <u>59.50</u> Helicopter Support and Fuel 3.2 hours @ \$554.56/hr 1,774.60 Field Supplies and Equipment 1,697.05 Core Storage 554.56/hr 150.00 Communications, Accounting, Freight 70.05 Report - Data Compilation and Drafting 7,000.00 Reclamation Permit and Assessment Requirements 929.08 15% Project Management Fee 21,724.39	Domicile 24 man days @ \$80/man/day	1,920.00
546 feet casing @ \$18.50/foot\$10,101.004134 feet core @ \$18.50/foot76,479.00Field Cost Charges24,768.00Supplies and Services13,020.08124,368.08124,368.08Geochemistry124,368.08198 samples- preparation, 6 element ICP for Ag As Cu124,368.08Pb Sb Zn, gold fire-AA148 @ \$15.75/sample \$ 2,331.0050 @ \$15.25/sample_762.50\$3,093.50\$3,093.50geochem supplies18.37FAX charges2.007 fire assays for gold\$9.50@ \$8.50/sample_59.50Signer1,774.60Field Supplies and Equipment1,697.05Core Storage150.00Communications, Accounting, Freight7,000.00Report - Data Compilation and Drafting7,000.00Reclamation Permit and Assessment Requirements229.0815% Project Management Fee21,724.39		
4134 feet core @ \$18.50/foot76,479.00Field Cost Charges24,768.00Supplies and Services13,020.08124,368.08Geochemistry124,368.08198 samples- preparation, 6 element ICP for Ag As Cu124,368.08Pb Sb Zn, gold fire-AA148 @ \$15.75/sample \$ 2,331.0050 @ \$15.25/sample762.50\$3,093.50geochem supplies18.37FAX charges2.007 fire assays for gold99.50@ \$8.50/sample59.50Helicopter Support and Fuel1,774.603.2 hours @ \$554.56/hr1,774.60Field Supplies and Equipment1,697.05Core Storage150.00Communications, Accounting, Freight68.33Report - Data Compilation and Drafting7,000.00Reclamation Permit and Assessment Requirements229.0815% Project Management Fee21,724.39		
Field Cost Charges 24,768.00 Supplies and Services 13,020.08 Geochemistry 198 samples- preparation, 6 element ICP for Ag As Cu Pb Sb Zn, gold fire-AA 148 @ \$15.75/sample \$ 2,331.00 50 @ \$15.25/sample		
Geochemistry124,368.08Geochemistry198 samples- preparation, 6 element ICP for Ag As Cu Pb Sb Zn, gold fire-AA 148 @ \$15.75/sample \$ 2,331.00 50 @ \$15.25/sample <u>762.50</u> \$3,093.50geochem supplies18.37 FAX chargesFAX charges2.00 \$3,093.50geochem supplies18.37 59.50FAX charges2.00 \$112,0007 fire assays for gold @ \$8.50/sample59.50Helicopter Support and Fuel 3.2 hours @ \$554.56/hr1,774.60 1,697.05 150.00 Core Storage Communications, Accounting, Freight Report - Data Compilation and Drafting Reclamation Permit and Assessment Requirements 15% Project Management Fee124,368.08	Field Cost Charges 24,768.00	
Geochemistry 198 samples- preparation, 6 element ICP for Ag As Cu Pb Sb Zn, gold fire-AA 148 @ \$15.75/sample \$ 2,331.00 50 @ \$15.25/sample <u>762.50</u> geochem supplies 18.37 FAX charges 2.00 7 fire assays for gold @ \$8.50/sample <u>59.50</u> Helicopter Support and Fuel 3.2 hours @ \$554.56/hr 1,774.60 Field Supplies and Equipment 1,697.05 Core Storage 550.00 Communications, Accounting, Freight 698.33 Report - Data Compilation and Drafting 7,000.00 Reclamation Permit and Assessment Requirements 929.08 15% Project Management Fee 21,724.39	Supplies and Services 13,020.08	
<pre>198 samples- preparation, 6 element ICP for Ag As Cu Pb Sb Zn, gold fire-AA 148 @ \$15.75/sample \$ 2,331.00 50 @ \$15.25/sample <u>762.50</u> \$3,093.50 geochem supplies <u>18.37</u> FAX charges 2.00 7 fire assays for gold @ \$8.50/sample <u>59.50</u> 3,173.37 Helicopter Support and Fuel 3.2 hours @ \$554.56/hr 1,774.60 Field Supplies and Equipment 1,697.05 Core Storage 59.30 Communications, Accounting, Freight 698.33 Report - Data Compilation and Drafting 7,000.00 Reclamation Permit and Assessment Requirements 929.08 15% Project Management Fee 21,724.39</pre>		124,368.08
6 element ICP for Ag As Cu Pb Sb Zn, gold fire-AA 148 @ \$15.75/sample \$ 2,331.00 50 @ \$15.25/sample <u>762.50</u> \$3,093.50 geochem supplies <u>18.37</u> FAX charges 2.00 7 fire assays for gold @ \$8.50/sample <u>59.50</u> Helicopter Support and Fuel 3.2 hours @ \$554.56/hr 1,774.60 Field Supplies and Equipment 1,697.05 Core Storage 150.000 Communications, Accounting, Freight 698.33 Report - Data Compilation and Drafting 7,000.000 Reclamation Permit and Assessment Requirements 929.08 15% Project Management Fee 21,724.39		
Pb Sb Zn, gold fire-AA 148 @ \$15.75/sample \$ 2,331.00 50 @ \$15.25/sample <u>762.50</u> \$3,093.50 geochem supplies <u>18.37</u> FAX charges 2.00 7 fire assays for gold @ \$8.50/sample <u>59.50</u> Helicopter Support and Fuel 3.2 hours @ \$554.56/hr 1,774.60 Field Supplies and Equipment 1,697.05 Core Storage 500 Communications, Accounting, Freight 698.33 Report - Data Compilation and Drafting 7,000.00 Reclamation Permit and Assessment Requirements 929.08 15% Project Management Fee 21,724.39		
148 @ \$15.75/sample \$ 2,331.0050 @ \$15.25/sample762.50geochem supplies18.37FAX charges2.007 fire assays for gold59.50@ \$8.50/sample59.50Helicopter Support and Fuel3,173.37Helicopter Support and Fuel1,697.05Score Storage150.00Communications, Accounting, Freight698.33Report - Data Compilation and Drafting7,000.00Reclamation Permit and Assessment Requirements929.0815% Project Management Fee21,724.39	Pb Sb Zn, gold fire-AA	
\$3,093.50 geochem supplies \$3,093.50 18.37 FAX charges 2.00 7 fire assays for gold @ \$8.50/sample 59.50 Helicopter Support and Fuel 3.2 hours @ \$554.56/hr 1,774.60 Field Supplies and Equipment 1,697.05 Core Storage 698.33 Report - Data Compilation and Drafting 7,000.00 Reclamation Permit and Assessment Requirements 929.08 15% Project Management Fee 21,724.39	148 @ \$15.75/sample \$ 2,331.00	
geochem supplies18.37FAX charges2.007 fire assays for gold59.50@ \$8.50/sample59.50Helicopter Support and Fuel3,173.37Helicopter Support and Fuel1,774.603.2 hours @ \$554.56/hr1,697.05Field Supplies and Equipment150.00Core Storage150.00Communications, Accounting, Freight698.33Report - Data Compilation and Drafting7,000.00Reclamation Permit and Assessment Requirements929.0815% Project Management Fee21,724.39		
FAX charges 2.00 7 fire assays for gold @ \$8.50/sample 59.50 Helicopter Support and Fuel 3.2 hours @ \$554.56/hr 1,774.60 Field Supplies and Equipment 1,697.05 Core Storage 0,000 Communications, Accounting, Freight 698.33 Report - Data Compilation and Drafting 7,000.00 Reclamation Permit and Assessment Requirements 929.08 15% Project Management Fee 21,724.39		
7 fire assays for gold @ \$8.50/sample		
<pre>@ \$8.50/sample 59.50 Welicopter Support and Fuel 3.2 hours @ \$554.56/hr Field Supplies and Equipment 1,697.05 Core Storage Communications, Accounting, Freight 698.33 Report - Data Compilation and Drafting 7,000.00 Reclamation Permit and Assessment Requirements 929.08 15% Project Management Fee 21,724.39</pre>		
Helicopter Support and Fuel3,173.37Belicopter Support and Fuel1,774.603.2 hours @ \$554.56/hr1,774.60Field Supplies and Equipment1,697.05Core Storage150.00Communications, Accounting, Freight698.33Report - Data Compilation and Drafting7,000.00Reclamation Permit and Assessment Requirements929.0815% Project Management Fee21,724.39	· · · · · · · · · · · · · · · · · · ·	
3.2 hours @ \$554.56/hr1,774.60Field Supplies and Equipment1,697.05Core Storage150.00Communications, Accounting, Freight698.33Report - Data Compilation and Drafting7,000.00Reclamation Permit and Assessment Requirements929.0815% Project Management Fee21,724.39		3,173.37
Field Supplies and Equipment1,697.05Core Storage150.00Communications, Accounting, Freight698.33Report - Data Compilation and Drafting7,000.00Reclamation Permit and Assessment Requirements929.0815% Project Management Fee21,724.39		1 774 68
Core Storage150.00Communications, Accounting, Freight698.33Report - Data Compilation and Drafting7,000.00Reclamation Permit and Assessment Requirements929.0815% Project Management Fee21,724.39		
Communications, Accounting, Freight Report - Data Compilation and Drafting Reclamation Permit and Assessment Requirements 15% Project Management Fee 21,724.39		
Report - Data Compilation and Drafting 7,000.00 Reclamation Permit and Assessment Requirements 929.08 15% Project Management Fee 21,724.39		
Reclamation Permit and Assessment Requirements 929.08	Report - Data Compilation and Drafting	7,000.00
	Reclamation Permit and Assessment Requirements	
	15% Project Management Fee	
TOTAL PHASE I: \$ 189,586.15	TOTAL PHASE 1: Ş	102,000.13

June 25 - June 28, 1988 PHASE II Field Work Period: (2 days mob/demob, 2 project days) Salaries B. Lumley 4 days @ \$300/day \$ 1,200.00 Project Expenses Truck Rental and Fuel 4 days @ \$130/day 520.00 Domicile 4 man days @ \$80/day 320.00 32.52 Field Supplies Geochemistry 31 samples- preparation, 6 element ICP for Ag, As, Cu, Pb, Sb and Zn, gold fire-AA 496.00 @ \$16.00/sample 2.00 2 pulps rolled @ \$1/sample 5 fire assays Ag @ \$6.50/sample 32.50 2 fire assays Ag-Au @\$8.50/sample 30.00 fire assays Au @ \$8.50/sample 76.50 9 3.50 FAX charges 640.50 15% Project Management Fee 226.95 2,939.97 TOTAL PHASE II: Field Work Period: July 8 - July 19, 1988 PHASE III (2 days mob/demob, 10 project days Hi-Tec crew, 2 project days climbers) Salaries J. Adamec, Project Geologist 12 days @ \$300/day \$ 3,600.00 Samuel Chase, Assistant 12 days @ \$200/day 2,400.00 Shane Wolf, Assistant 2,400.00 12 days @ \$200/day David McCashin, Rock Climber 4 days @ \$300/day 1,200.00 R.D. McGregor, Rock Climber 4 days @ \$300/day 1,200.00 \$10,800.00 Field Expenses 837.50 Project Preparation Truck Rental and Fuel 16 days @ \$130/day 2,080.00 3,520.00 Domicile 44 man days @ \$80/man/day

-2-

Geochemistry	
224 samples- preparation,	
6 element ICP- Ag, As, Cu,	
Pb, Sb and Zn, gold-wet	
@ \$13.50/sample \$ 3,024.00	
31 samples- preparation,	
6 element ICP- Ag, As, Cu,	
Pb, Sb and Zn, silver and	
gold fire assay @ \$23.75/šample 736.25	
FAX charges 4.50	
	3,764.75
Field Supplies	801.23
Accounting	325.00
Report Compilation and Drafting	2,500.00
15% Project Management Fee	1,899.90
TOTAL PHASE III:	\$26,528.38
TOTAL PROJECT COST: \$	219,054.50

-3-

APPENDIX VIII

Estimated Cost of Proposed Drill Program

ESTIMATED COST OF PROPOSED DRILL PROGRAM

Edge Property - Brenwest Mining Ltd. Phase III - Diamond Drilling

3,500 ft drilling @ \$30.00/foot \$105,000.0 Cat - 10 days @ \$800.00/day 24,000.00 Geologist - 30 days @ \$275.00/day 8,250.00 Assistant - 30 days @ \$175.00/day 5,250.00 Room and Board 3,000.00 Assays 5,000.00 Vehicles 4,000.00 Mobilization/Demobilization 10,000.00 Project Preparation 1,500.00 Accounting and Communications 1,500.00 Field Supplies 2,500.00 Report Compilation and Drafting 5,000.00 \$178,600.0 15% Contingency 26,500.00 Project Management Fee 20,000.00 TOTAL: \$225,100.00

LEGEND

2

3

5

grey, green, buff, porphyritic andesite, chloritized phenocrysts

purple, dark brown to black basalt, weakly porphyritic

pale yellow rhyolitic, less dacitic tuff with minor andesitic and basaltic rocks

varicoloured weakly to strongly argillicaly altered volcanic and volcanoclastic sediments

stault

DS- drill site

area of trenching, sampling and detailed mapping

ALC A

HI-TEC RESOURC

area of detailed rock sampling

_____C zone of detailed sampling

GEOLOGICAL BRANCH ASSESSMENT REPORT

 SCALE
 N.T.S.
 FIGURE No.

 1:10000
 92 0/1
 4

 DWN. BY:
 DATE:
 4

 A.G.B.
 Aug. 88
 4

 CHKD. BY:
 PROJECT No:
 88 BC007

FIGURE No:

 (\square)

Summary				
		RILL OLE ≠	* AZIMU	TH DIP
DDH I	4 + 17 N , I + 50 E	+	270°	-50
DDH-2		1	270°	-70
DDH+3	5 +74 N,0+53W	2	250°	- 50
DDH·4	12	2	250°	-70
DDH 5	5 + 79 N , 0 + 52 W	2	310°	- 45
DDH-6	4 * 14 N , I * 49 E	3	360°	-55
DDH·7	3 * 79 N , I * 49 E	4	240°	-45
DDH 8	1.4	4	240°	-65
DDH·9	I + 50 S , 7 + 50 E	5	270°	-50
DDH-10	1 * 50 S , 2 * 76 E	6	090°	-50
DDH-11	1+075,2+86 E	7	060°	-65
DDH·12	2+88 N, 3+00 E	8	090°	-60
DDH · 13	5 *00 N , 0 * 29 W	9	090°	-60
DDH 14	5+00N,0+29W	9	-	-90
DDH 15	5+76N,0+52.5W	2	-	-90
DDH·I6	5 + 76 N,0 + 52.5 W	2	280°	-50

⊢ o drill hole ---- road _____ creek

GEULUGICAL BRANCH ASSESSMENT REPORT 0 50 100 150 200 250 METRES BRENWEST MINING LTD EDGE PROPERTY DIAMOND DRILL LOCATION MAP

A.

HI-TEC

AGEMENT VIT

 SCALE
 N.T.S.
 FIGURE No.

 1:3333
 92.0/1
 5

 DWN. BY
 DATE.
 5

 A.G. B.
 Aug. 88
 FILE No.

 CHED BY
 PROJECT No.
 FILE No.

 88 BCOOT
 FILE No.

LEGEND

1	grey, green fine grained andesite
2	dark porphyritic basalt
3	volcanic breccia
4	quartz - andesite breccia

40 quartz, brecciated quartz veins 12 (strike, dip & plunge)

- <u>-----</u>54 attitude of jointing
- (__) outcrop
- ss fault

ACT

GEOLOGICAL BRANCH ASSESSMENT REPORT

BRENWEST MINING LTD EDGE PROPERTY

PROPERTY GEOLOGY MAP (Northern Part)

	SCALE. 1 500	N.T.S. 920/1	FIGURE No:	
	DWN BY H.V.	Aug./88	6	
HI-TEC RESOURCE MANAGEMENT (10	D. Adamec	PROJECT No 888C 007	FILE No:	

30 metres

150 E

756,3 596,8 1538,12	•14021 0.021, 0.01, 186, 17		
, o.06, 44, 30 , o.05, 107, 39 , o.06, 202, 33	•140	022 o.008,o.01,38,19	-
030 0.063, 0.36, 186, 46 039 0.027, 0.44, 395, 29 0.001, 0.04, 13, 18 0.003, 0.02, 4, 14 08, 0.06, 21, 17			
7, 0.06, 19,12 0.12, 10,39 0.06, 52, 14 06,21,17			
05,12,14 07,22,15 04,11,10 4050 o.001,o.05,12,7			
4036 <i>0.001, 0.05, 17, 12</i>			
	Baseline	20 E -	100 E -

LEGEND

• 14022 Au (oz/t), Ag(oz/t), Cu(ppm), Pb(ppm)

GEOLOGICAL BRANCH ASSESSMENT REPORT

18,838

10 20 30 metres

BRENWEST MINING LTD EDGE PROPERTY ROCK SAMPLE LOCATION MAP

150 E

ANC AN	HI-TEC RESOURCE MANAGEMENT LTD	SCALE . 1:500	N.T.S.: 920/1	FIGURE Not
		DWN. BY	Aug./88	
		снкр. ву: D. Adamec	PROJECT No: 88BC 007	FILE No: