ARIS SUMMARY SHEET

District Geologist, Nelson Off Confidential: 90.01.17

ASSESSMENT REPORT 18845 MINING DIVISION: Revelstoke Slocan

PROPERTY: Black Warrior

LAT 50 47 25 LONG 117 25 06

UTM 11 5626368 470512

NTS 082K14W

CLAIM(S): Black Warrior, Morgan, Galena, Ellsmere, Horne, Ferg 1-9, Circle City

OPERATOR(S): Golden Range Res.

AUTHOR(S): Hlava, M.

REPORT YEAR: 1989, 79 Pages

COMMODITIES

LOCATION:

SEARCHED FOR: Silver, Lead, Zinc, Copper, Gold

KEYWORDS: Paleozoic, Index Formation, Phyllites, Limestones, Schists, Galena

Sphalerite, Pyrite, Magnetite

WORK

DONE: Geophysical, Geochemical, Geological, Physical

EMGR 14.9 km; VLF
GEOL 5.0 ha
LINE 14.9 km
MAGG 14.9 km
REST 5.0 km
ROAD 6.5 km

SOIL 331 sample(s);ME

M1 ILE: 082KNW110

LOG NO: 0609	RD.
ACTION:	
ere de la company de la compan	
FILE NO:	

REPORT ON 1988 EXPLORATION WORK

ON

BLACK WARRIOR CLAIM GROUP

LOCATED IN

REVELSTOKE / SLOCAN MINING DIVISION

NTS 82 K 11 & 14

LATITUDE 50° 45' 25"

LONGITUDE 117° 24' 45"

FOR GOLDEN RANGE RESOURCES INC.

BY

MILAN HLAVA B.Bc.

APRIL 1989

GEOLOGICAL BRANCH ASSESSMENT REPORT

10,045

TABLE OF CONTENTS.

PAGE
TABLE OF CONTENTS2
LIST OF FIGURES3
LIST OF APPENDICES4
INTRODUCTION5
LOCATION AND ACCESS5
PHYSIOGRAPHY5
PROPERTY DESCRIPTION5
REGIONAL GEOLOGY6
PROPERTY GEOLOGY7
MINERALIZATION7
PREVIOUS WORK8
1988 EXPLORATION WORK8
GRID ESTABLISHMENT9
VLF EM 16 ELECTROMAGNETIC SURVEY9
VLF EM 16 ELECTROMAGNETIC SURVEY RESULTS9
RESISTIVITY SURVEY10
RESISTIVITY SURVEY RESULTS10
GROUND MAGNETOMETER SURVEY10
GROUND MAGNETOMETER SURVEY RESULTS10
GEOCHEMISTRY10
GEOCHEMISTRY RESULTS11
ROAD CONSTRUCTION11
CONCLUSIONS AND RECOMMENDATIONS12

LIST OF FIGURES

			Following page
FIGURE	1	Location Map	5
FIGURE	2	Portion of Mineral Claim Map 82 K/14 W	(M)5
FIGURE	3	Portion of Mineral Claim Map 82 K/11 W	(M)5
FIGURE	4	1988 Assay Results	8
FIGURE	5	Location of Road Constructed in 1988	11

LIST OF APPENDICES

APPENDIX A; Geological Mapping

APPENDIX B; VLF-EM 16 Electromagnetic Survey Results

APPENDIX C; Resistivity Survey Results

APPENDIX D; Ground Magnetometer Sruvey Results

APPENDIX E; Geochemical Survey Results

APPENDIX F; Certificate

APPENDIX G; Summary of Expenditures

INTRODUCTION

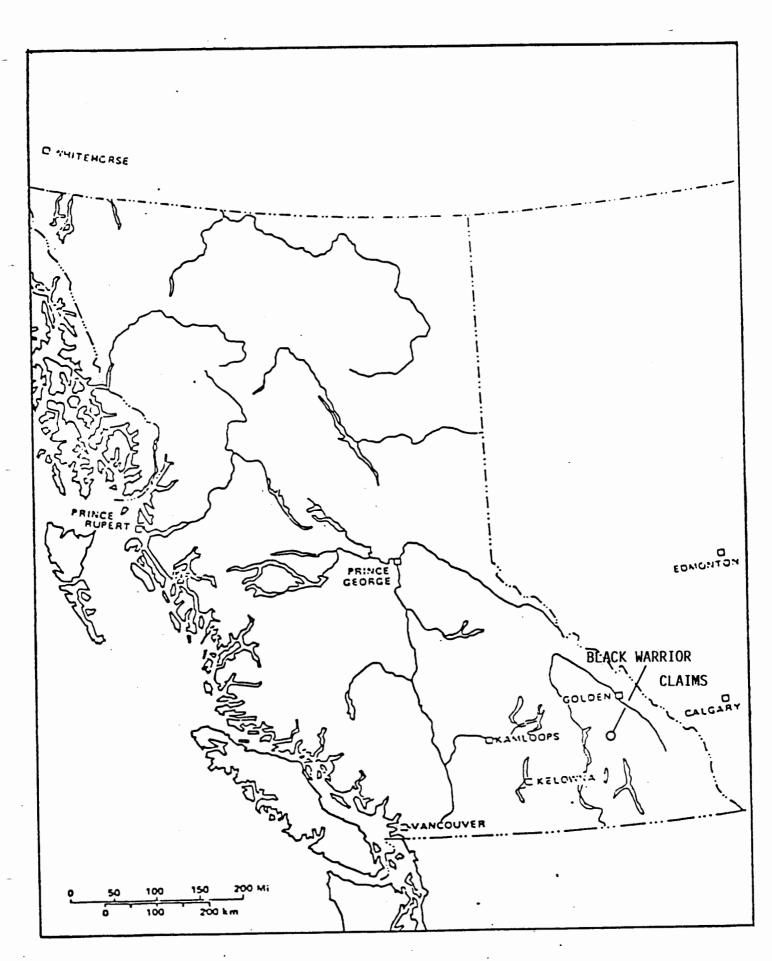
During the period of September 21 1988 and November 30, 1988 the author and additional crew of three men completed geological, geochemical and geophysical surveys for Golden Range Resources Inc on the Black Warrior Claim Group in the Ladeau Area of southeastern British Columbia (figure 1) as a part of the 1988 exploration program.

LOCATION AND ACCESS

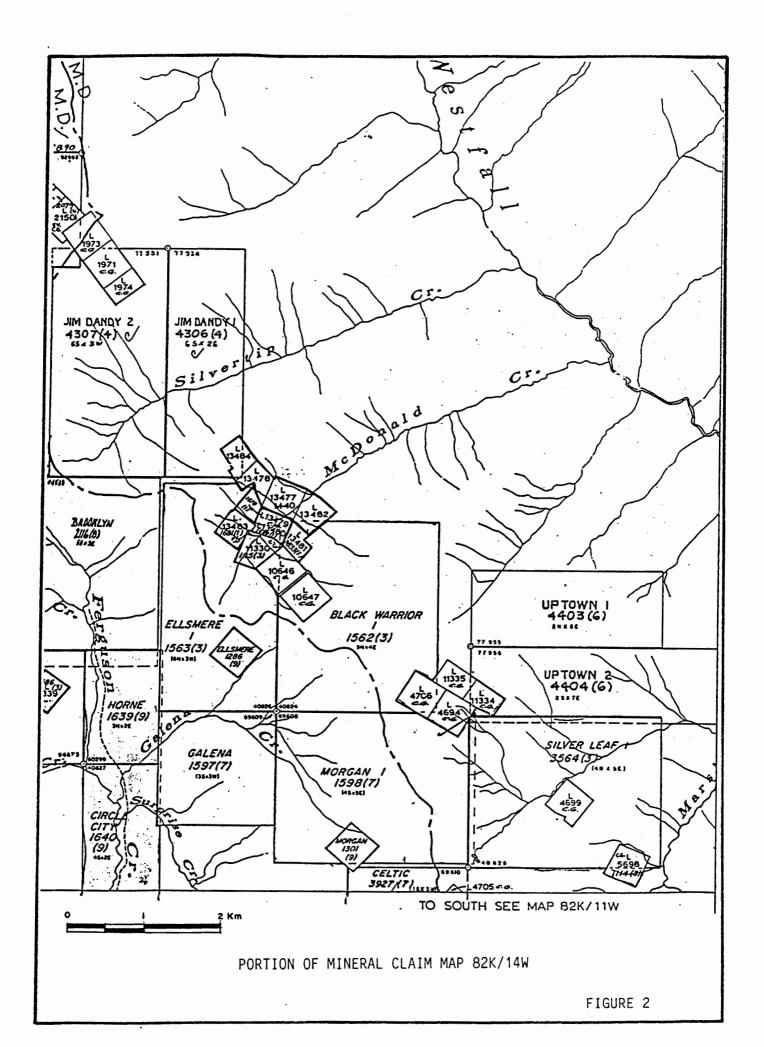
The Black Warrior Claim Group are located at the head waters of Galena Creek, 15.5 air kilometers north-northeast of the community of Trout Lake, NTS 82 k/11 &14, latitude 50° 45'25'' and longitude 117° 24'45''.

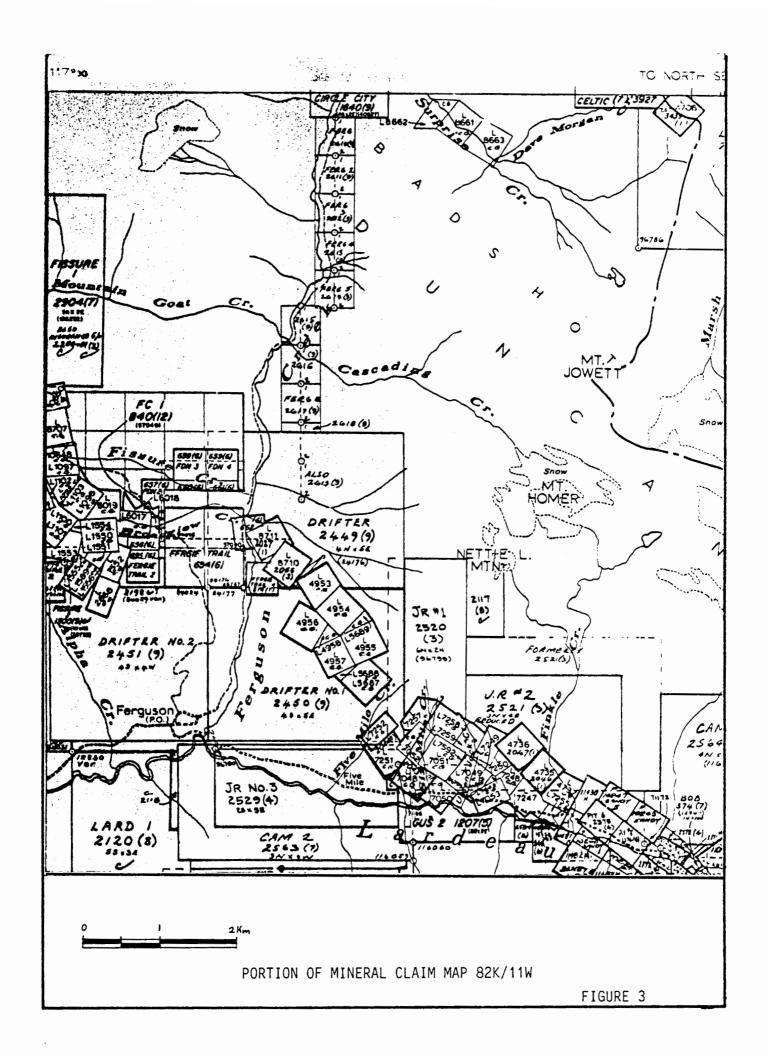
The most practical access to the claims is by helicopter from Nakusp (60 air km). Highland Helicopters Ltd. with the base at Nakusp provided transportation to and from the property on a daily basis.

PHYSIOGRAPHY


The property covers height of land which divides the Lardeau and Westfall drainage and which also forms the boundary between the Slocan and Revelstoke Mining Division. Following drainage originate on the property: Galena, Dave Morgan and Surprise Creek which flow south-westerly to Ferguson Creek; and McDonald and the north tributary of Marsh-Adam Creek which flow northeast to the Wesfall River.

Two small alpine glaciers are located on the property situated at the divide between Mc Donald Creek and unnamed drainage in the portion of the property. The glaciers cover approximately 50 hectares and are located above 2100 m elevation.


Elevation on the property vary from 1150 m at Ferguson Creek to 2680 m at the divide between Dave Morgan and Marsh-Adams Creeks


PROPERTY DESCRIPTION FIG 2 & 3

The Black Warrior Group consists of 99 claim units including 2 crown grants, optioned from Eric Denny and Jack Denny. The following is the status, pending acceptance of this report by the Mining Recorder.

INDEX MAP: FIGURE 1

SUMMARY OF CLAIMS

CLAIM NAME	EXPIRY DATE	UNITS	RECORD NO.
Clack Warrior #1	90-03-01	20	1562
Ellsmere #1	90-03-01	18	1563
Black Burn	90-07-16	20	2423
Galena	89-07-08	9	1597
Celtic	83-07-07	3	3927
Circle City	89-09-15	8	1640
Horne	91-09-15	6	1639
Ellsmere	89-09-29	1	2601
Morgan	90-09-29	1	1301
White Star	91-03-02	1	1115
Copper Glance	89-01-17	1	1681
Victoria	89-01-17	1	1678
Gladstone	89-01-17	1	1679
Snowstorm	89-01-18	1	2833
Canadian Girl	83-01-24	1	3439
Black Warrior	Crown 1913	1	-
Eva May	Crown 1913	1	_
Ferg #1	89-09-22	1	2610
Ferg #2	89-09-22	1	2611
Ferg #3	89-09-22	1	2612
Ferg #4	89-09-22	1	2613
Ferg #5	89-09-22	1	2614
Ferg #6	89-09-22	1	2615
Ferg #7	89-09-22	1	2616
Ferg #8	89-09-22	1	2617
Ferg #9	89 - 09-22	1	2618

REGIONAL GEOLOGY.

The unfossiliferous members of the Lardeau and Hamill Groups indentified by Read (1977) are presumed to be of Paleozoic and Proterezoic Ages respectively. Both groups form a broad belt of northwesterly trending formations between Kuskanax and Battle Range Batholits. All the formations are

part of a transgressive geosyncline sedimentary series of Kootenay Arc. The sedimentary sequence is completely isoclinaly folded with a generally steep dip to the northwest. Regional faulting so far identified consists of northwest-southeast trending trust faulting with strike slip offset. Table 1 lists Age relations of the sedimentary series within the region.

PROPERTY GEOLOGY.

During the mapping following units of Index formation were incountered: Gray phillite, Gray limestone, Graphitic schist, Chlorite schist and Sericite-pyrite schist.

Due to the size of the property and lack of suitable topographic base map, a detail interpretation of stratigraphy was not undertaken. Most of the geological mapping was completed near known mineralized areas and is presented in Appendix A.

The chorite schist & gray phillite are predominant rock types within the property. In mineralized areas these rock types are in gradational contact with sericite-pyrite schist.

The limestone occurs within the sequence in bands from 1 m to 150 m in thickness. Commonly the limestone is thinly laminated. In mineralized areas the limestone is altered to marble.

The field observations suggest that the folding and faulting within the property is complex and it will require detail mapping to define the stratigraphy and structure of the property.

MINERALIZATION.

The Horne Ledge zone occurs at a limestone-schist contact over a strike length of 3.6 km and 850 M vertically. The observed width is 1 m to 5 m. The mineralization consists of limonite galena, sphalerite pyrite and magnetite. The texture, grain size and style of mineralization is typical for replacement-skarn type. The best assay was 51.2% Pb, 2.78%,Ag, 0.066% Au from the float 50 cm in diameter found in Galena Creek. Where exposed by trenching the mineralization is deeply oxidized. The depth of oxidation is > 3 m. Therefore the surface sampling will not permit adequate evaluation of the true grade of mineralization.

TABLE 1
TABLE OF FORMATIONS

EON	ERA	PERIOD	GROUP.	FORMATION	LITHOLOGY
Lon		DEVONIAN	LARDEAU	BROADVIEW	 gray and green phyllitic grit phyllite
		1-		SHARON	- dark gray to black siliceous phyl- lite
U				AJAX	- massive grey quartzite
PHANER020IC	PALE0Z0IC			INDEX	- phillite - arenaceous limestone - minor gray phillite - gray and light green phyllite - limestone and quartz grit - minor phyllitic limestone
		co	NFORMABLE	CONTACT	
		CAMBRIAN LOWER CAMBRIAN	•	BADSHOT (LADE PEAK)	- gray & white limestone
			HAMILL	MOHICAN	green phylliteminor grayphyllitelimestone
PRECAMBRIAN	PROTER0201C			MARSH-ADAMS	 white, gray, green quartzite phillitic quartzite minor gray and black phillite

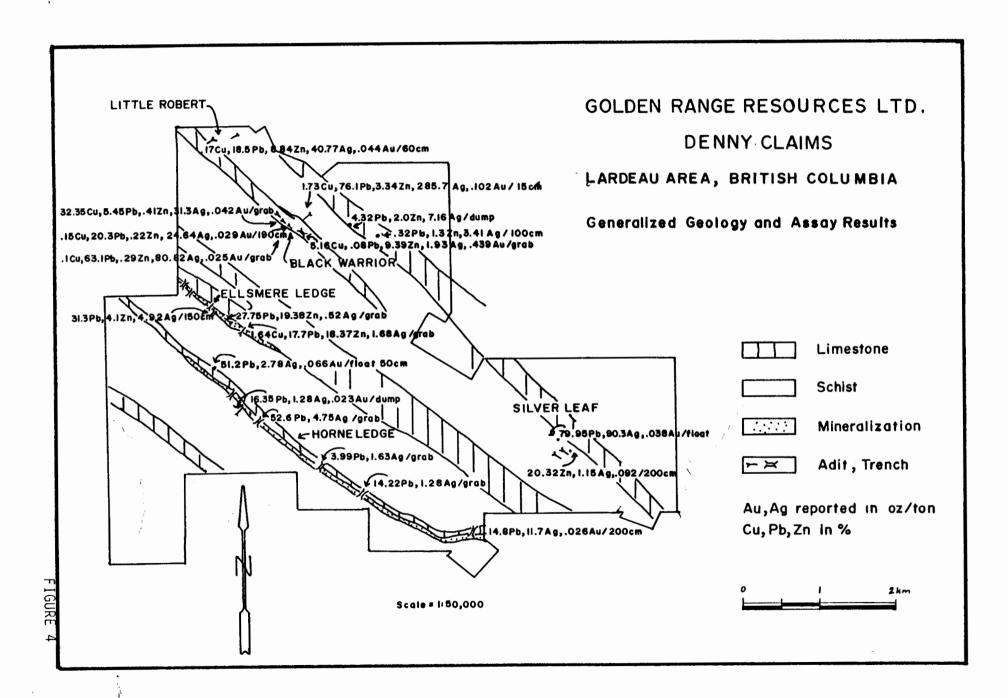
AFTER READ, 1976

Ellsmere Ledge Zone also occurs at a limestone-schist contact intermittently over a strike length of 2 km. The observed width is 2 m - 4 m. Mineralization consist of sphalerite, galena, pyrite and chalcopyrite.

The Black Warrior Zone consists of a quartz vein 190 cm wide. The defined strike length is 100 m. The quartz vein is mineralized with Cpy, Py, Zn, Pb. It is located at the contact between limestone and graphitic schist with attitude of north 35° west and dip of 75° west. The chip sample taken across 190 cm of exposed vein assayed 0.15% Cu; 20.3% Pb; 0.22% Zn; 24.64 oz Ag and 0.029 oz Au. 50 m south of adit #1 trenching has exposed 1 m wide zone of hydrothermally altered limestone with quartz carbonate stockwork. Grab sample from this location assayed 5.16% Cu; 0.08% Pb; 9.39% Zn; 1.93 oz Ag and 0.439 oz Au.

PREVIOUS WORK.

The Galena Creek Area was actively explored during the period 1893 to 1917. During that period many claims were recorded and crown granted. Gordon Turner's 1983 assessment report summarizes the history of exploration in this region and the reader is referred to his report for information on previous work.


In 1985 Nakusp Resources conducted 8 day exploration program on the property.

In 1987 Golden Range Resources conducted exploration program consisting of reconnaissance geological mapping, experimental geophysical surveys, airborne magnetometer and VLF surveys and sampling of known showings. Figure 4 summarize the results of sampling.

EXPLORATION WORK 1988.

During the period of September 21, 1988 and November 30th 1988 a crew consisting of senior geologist, geologist prospector and helper spend a total of 104 man days working on the claim group. The work consisted of:

_	Flagging & Chaining of lines	14.94	km
-	VLF EM Survey	14.94	km
-	Magnetometer Survey	14.94	km
_	Resistivity Survey	5.00	km

- Soil Geochemical Survey 331 samples

- Geological Mapping 5 km

- Road Construction 6.5 km

GRID ESTABLISHMENT.

A total of 14.94 km of lines were established by chain compass and clinometer with 25 meter station interval to provide control for VLF-EM; Magnetometer, Resistivity Surveys, Mapping and Sampling. The following is summary of lines by locality

Ellsmere 4.575 km

Horne 7.275 km

Black Warrior 1.390 km

Galena Creek 1.700 km

Total 14.940 km

VLF EM 16 ELECTROMAGNETIC SURVEY.

The electromagnetic survey carried out utilizing a Geonics EM 16, VLF EM receiver. The unit measures the vertical In-phase component (tangent of the tilt angle of the polarization ellipsoid) and vertical Out-of-phase component (the short axis of the polarization ellipsoid compared to the long axis) of the secondary field generated in the conductors.

The transmitter station used for the survey was NSS Annapolis, Maryland with a frequency of 21.4 Khz. The Azimuth to the station (NAA) is 115°. All the readings were taken with the operator facing east.

VLF-EM 16 ELECTROMAGNETIC SURVEY RESULTS.

The results are presented in Appendix B. The purpose of the survey was to test the usefulness of the technique to detect and trace the known sulfide mineralization. The results indicate that the VLF EM survey did not detect the known mineralization. However this does not rules out usefulness of this type geophysical survey on other parts of the property if the mineralized zone contains higher content of pyrite and chalcopyrite.

RESISTIVITY SURVEY.

The instrument used in survey was a Geonics EM16R which measures Apparent Resistivity of the ground in ohm-meter and phase angle. The measurement is made by orienting the instrument so that the coil is maximally coupled to tangential magnetic field (determined from an audio signal) and direction indicated by the instrument orientation. After the audio signal is nulled by means of two controls, the phase angle and apparent resistivity valves can be read directly from the instrument. The apparent transmitter azimuth of 66 was determined from the orientation of the instrument. For the present survey the signal utilized was from NLK Seattle, Washington at frequency 24.8 Khz.

RESISTIVITY SURVEY RESULTS.

The survey results are presented in Appendix C. The resistivity survey was successful to detect the Horne Ledge Zone and Ellsmere Ledge Zone, and Black Warrior Zone.

GROUND MAGNETOMETER SURVEY.

The ground magnetometer survey was completed utilizing a proton magnetometer Scintrex Model MP-2 capable of reading total field values to an accuracy of \pm 1 gamma. The main base station was established at BL 0 + 00. Secondary base stations were established at 100 m intervals along the base line to provide data for diurnal corrections.

Diurnal variation was corrected by tieing in to the base stations at time intervals less than 35 minutes. Maximum misclosure was 20 gammas.

GROUND MAGNETOMETER SURVEY - RESULTS.

The results of magnetometer survey are presented in Aappendix D. The results indicate that there is no correlation between magnetometer survey and known mineralization.

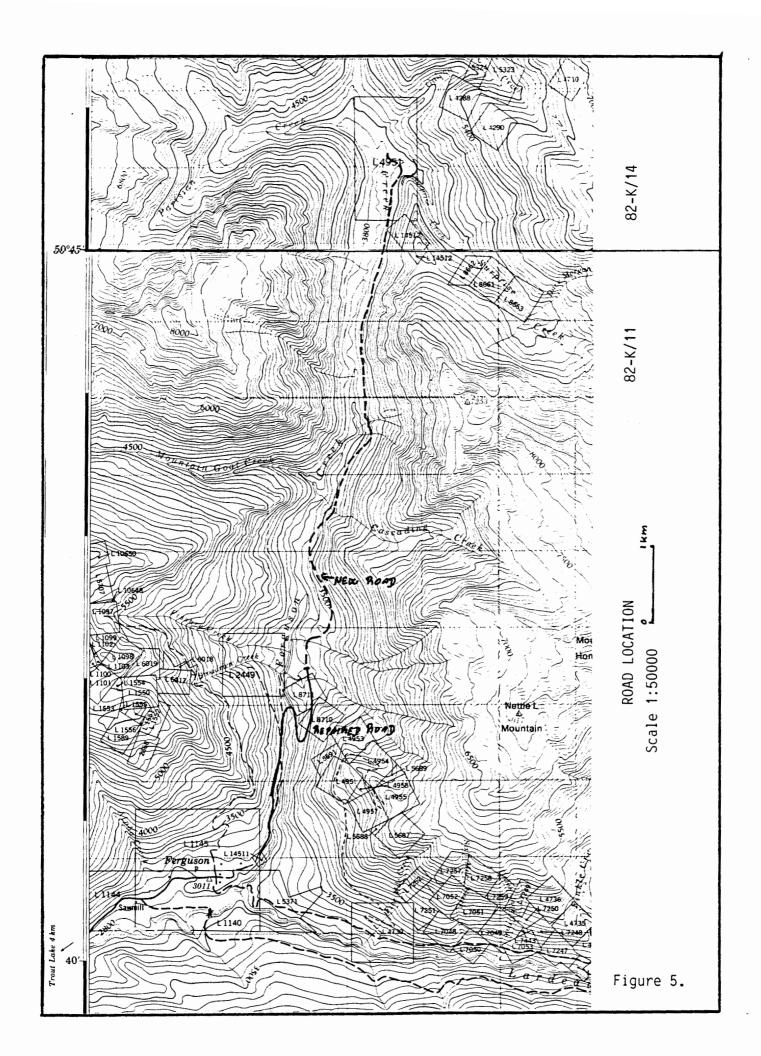
GEOCHEMISTRY.

Total of 242 soil samples were collected on Horn Ledge zone. The samples were taken at 25 m intervals (where possible) along the grid lines spaced 100 m apart.

88 soil samples were collected in Galena Creek zone at 30 m interval.

Soil samples were collected from the "B" horizon at a depth of 1-30 cm with the aid OF mattock. All sample locations were flagged in the field.

Soil samples were analyzed for 30 elements by Acme Analytical Laboratories LTD, Vancouver, British Columbia. The geochemical results, analytical method, sample location are given in Appendix E.


GEOCHEMISTRY RESULTS.

The mean and standard deviation values were calculated for the Cu, Zn, Pb, Ag, Mn, Sr. The threshold value was determined as mean + standard deviation. Values equal to or greater than threshold are considered to be anomalous. Following table summarizes the results:

ELEMENT	MEAN	STANDARD DEVIATI	ON THRESHOLD
Cu	22 ppm	10 ppm	32 ppm
Zn	81 ppm	72 ppm	153 ppm
Pb	36 ppm	28 ppm	64 ppm
Au	0.2 ppm	0.2 ppm	0.4 ppm
Mn	1363 ppm	1020 ppm	2383 ppm
Sr	63 ppm	78 ppm	141 ppm

ROAD CONSTRUCTION.

Four wheel drive road construction was contracted out to Logs Unlimited Box 447 Nakusp, B.C. The company utilized D-6 dozer to construct 6.5 kilometer of new road, and upgrading 3 kilometer of old logging road. The total of 454.5 hours of D-6 time and 20 hours of loader time was required to complete the road. The road follows the old pack trail to Circle City along the east side of Ferguson Creek Figure 5 shows the location of road.

CONCLUSIONS AND RECOMMENDATIONS.

Exploration work to date indicates that:

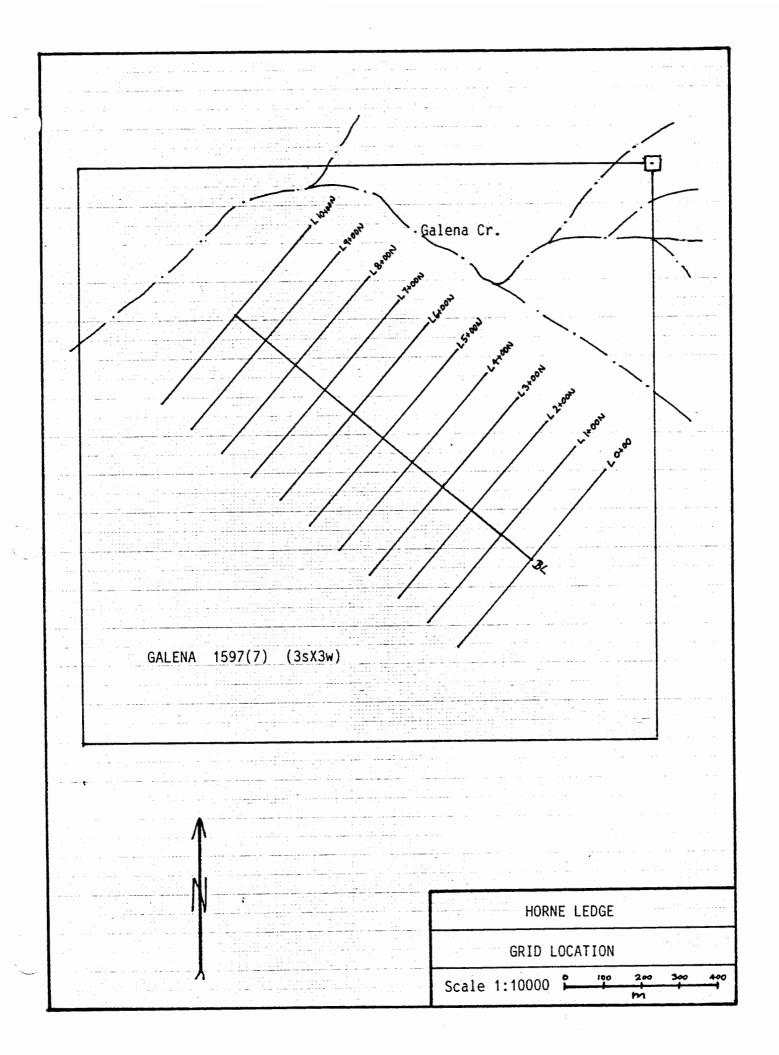
- 1. Mineralization is not reflected in soil samples. This can be attributed to extensive leaching of surface exposures of mineralization.
 - 2. Magnetometer survey did not detected any distinct anomalous areas.
- 3. VLF EM survey detected several anomalous zones none of which correspond to the known mineralization.
- 4. Resistivity survey was able to trace the known mineralization indirectly by detecting silicification associated with the mineralization.
- 5. Geological observations indicate that the mineralization is hydrothermal and/or scarn type, source of which is postulated to be deep-seated concealed intrusive.

In order to test continuity, nature and grade of mineralization following drill holes are recommended:

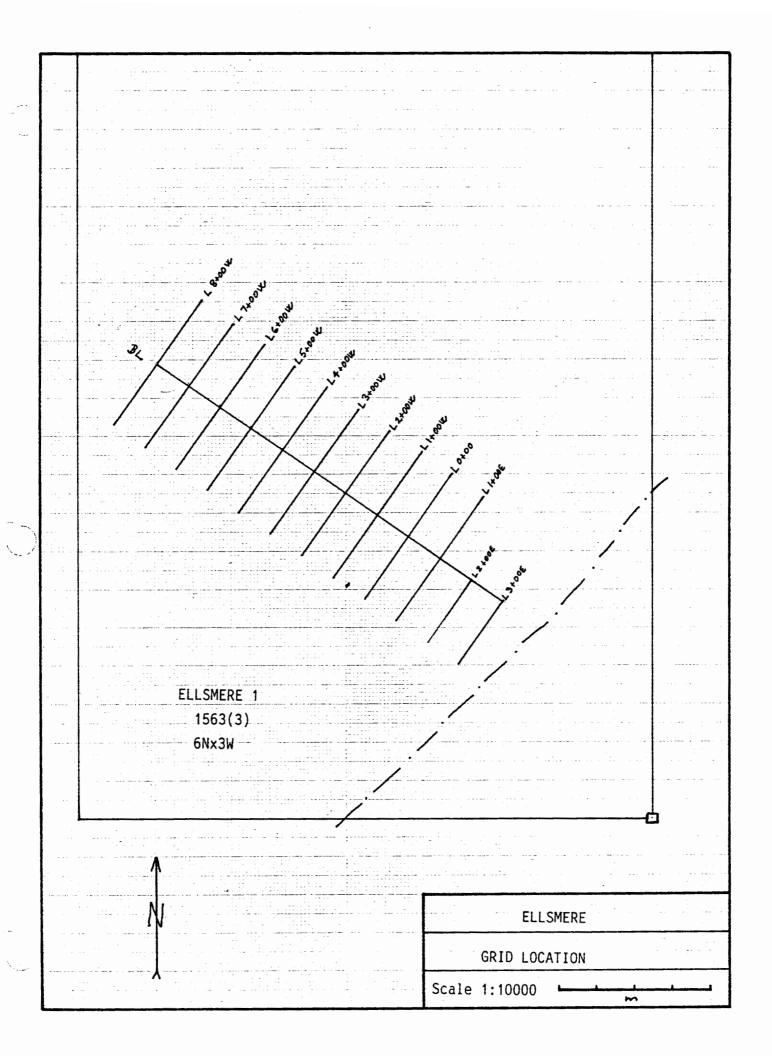
HORNE LEDGE:

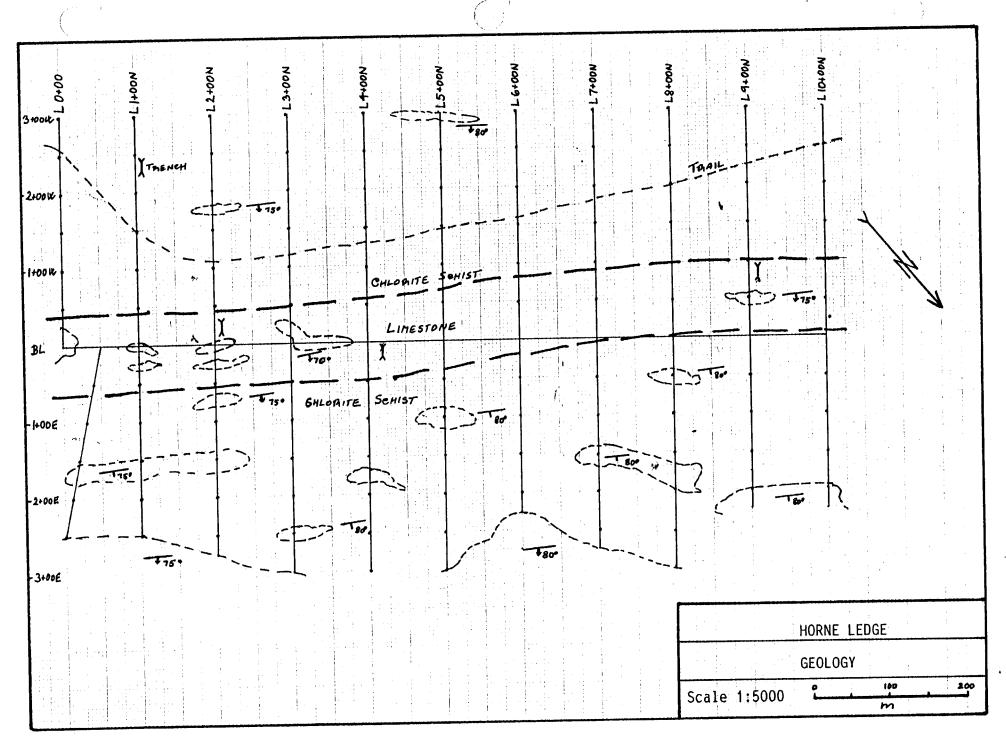
- # 1 Location: line 9+00 N 1+25 W; Azimuth: 40° ; Dip -45° Length 150 m
- # 2 Location: line 10+00 N 1+25 W; Azimuth 40 $^{\circ}$; Dip -45 $^{\circ}$ Length 150 m

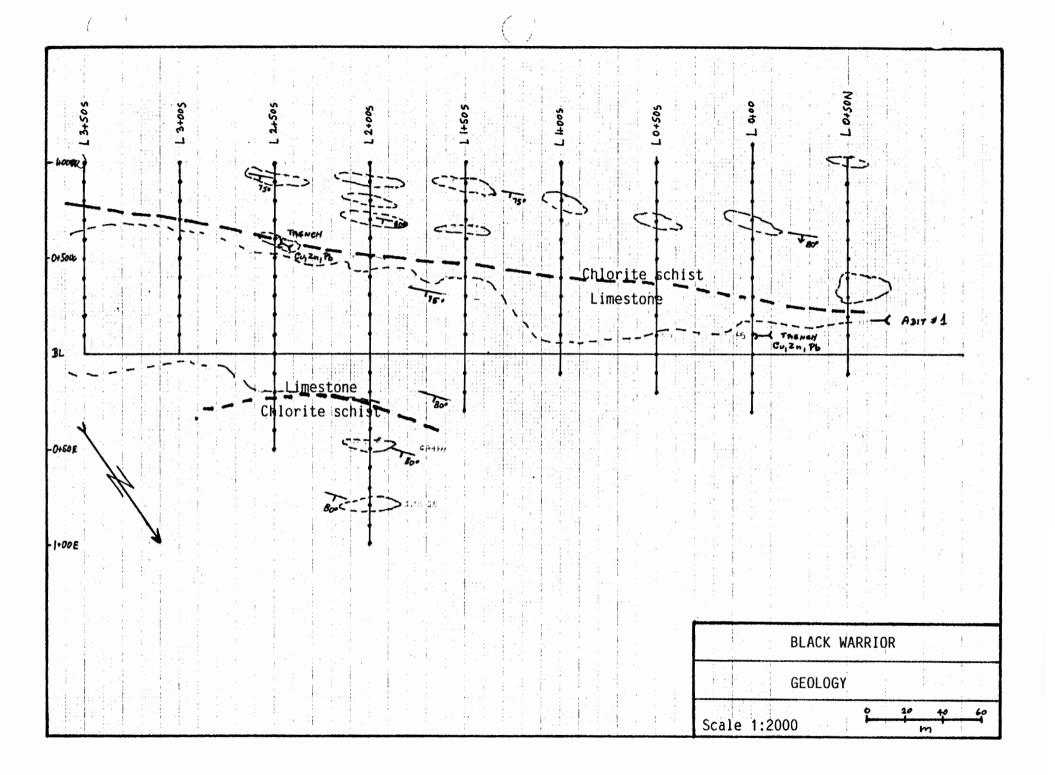
BLACK WARRIOR:

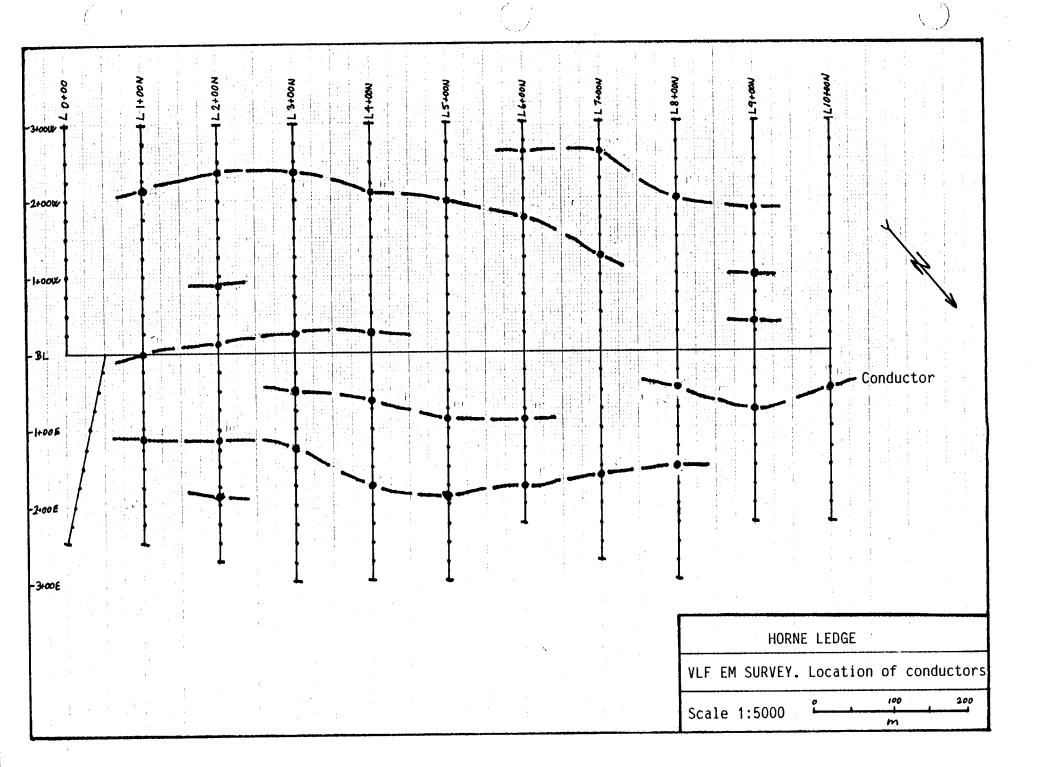

- # 3 Location: line 0+00 0+20 W Azimuth 35° Dip -50° Length
 - # 4 Location: line 0+50 S 0+20 E Azimuth 215° Dip -45° Length 150 m.

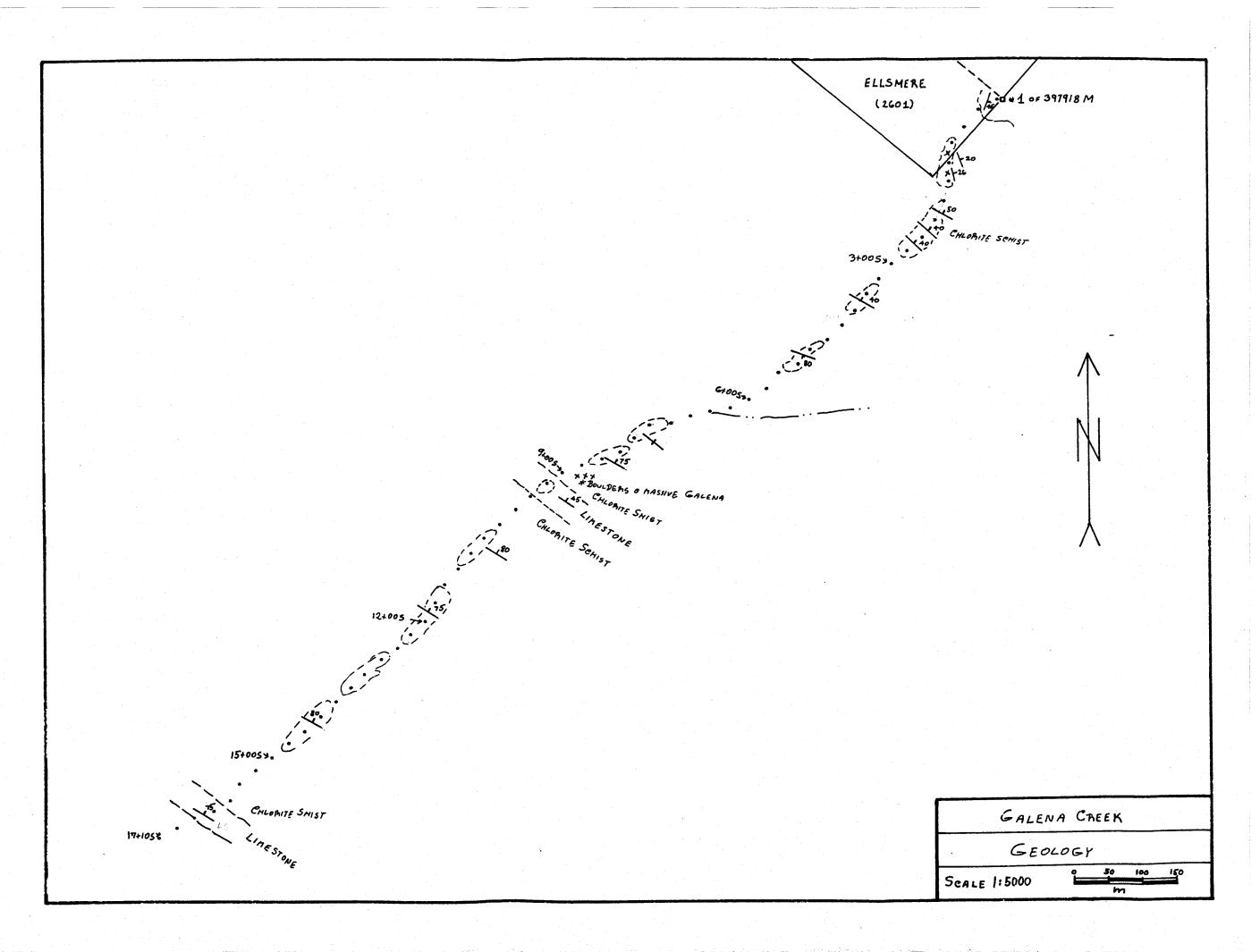
Respectfully submitted,

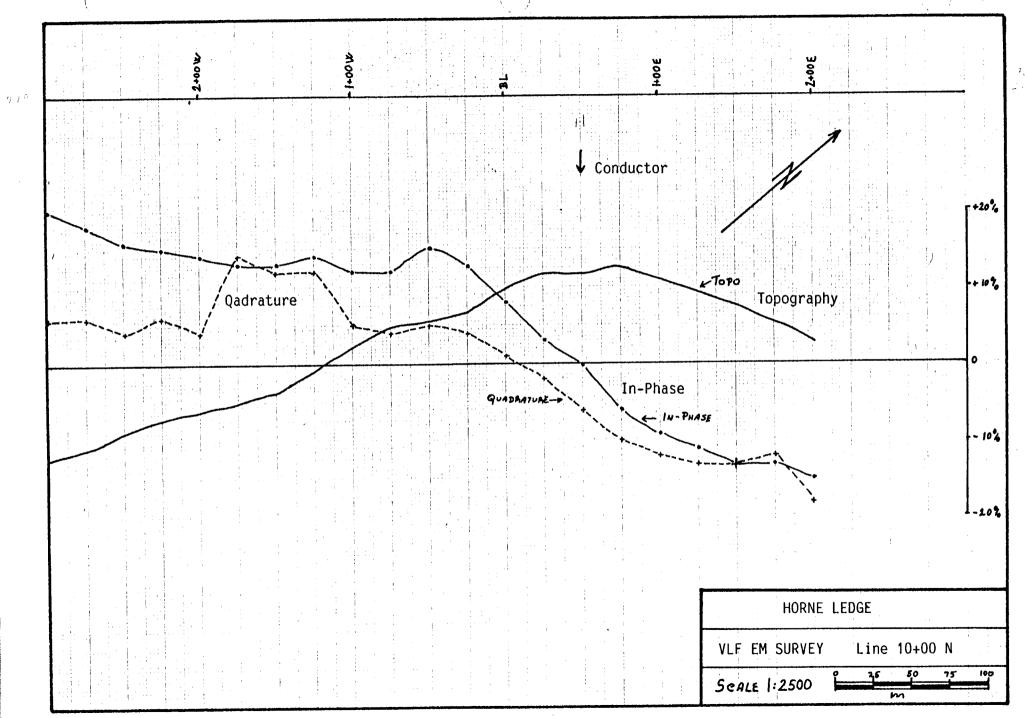

Milan Hlava, B.Sc., F.G.A.C.

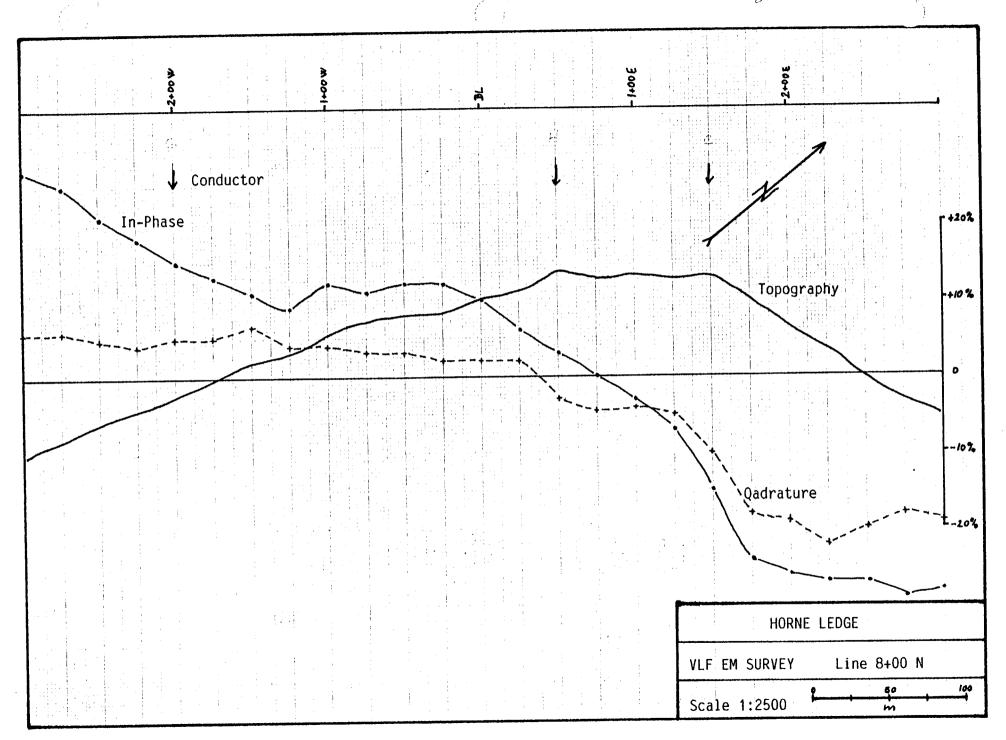

: lilas Man

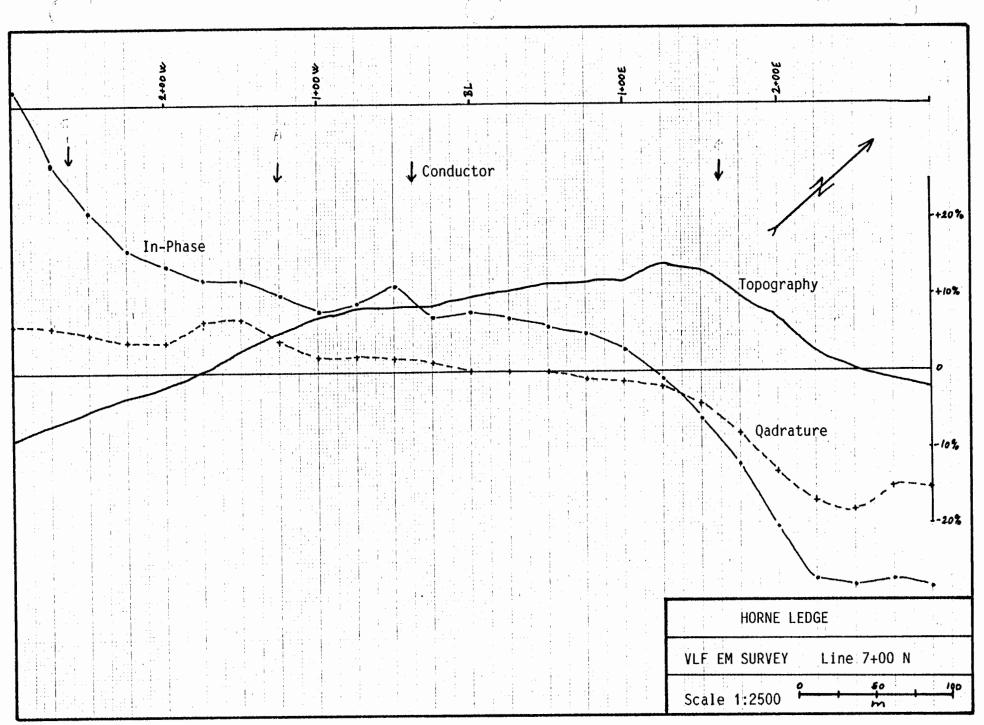

APPENDIX A GEOLOGICAL MAPPING

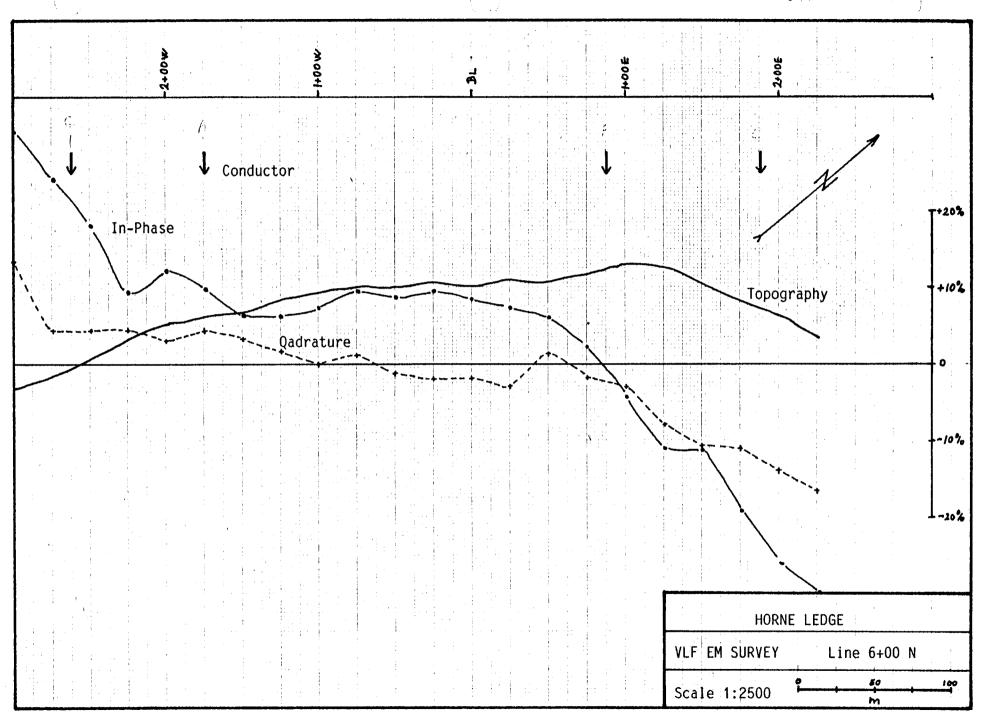


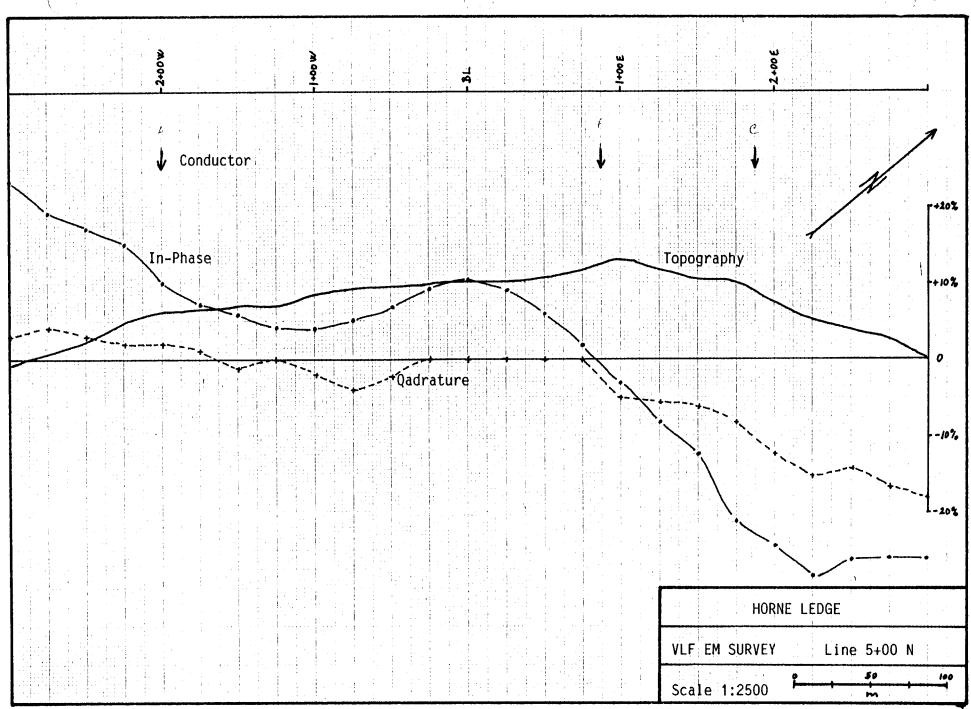


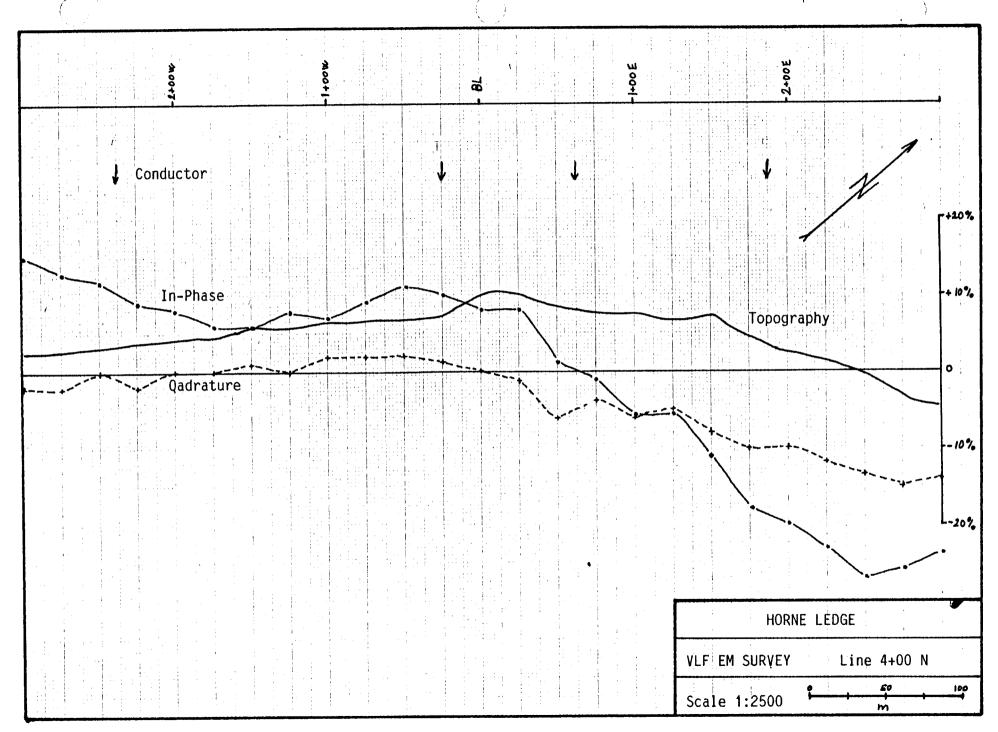


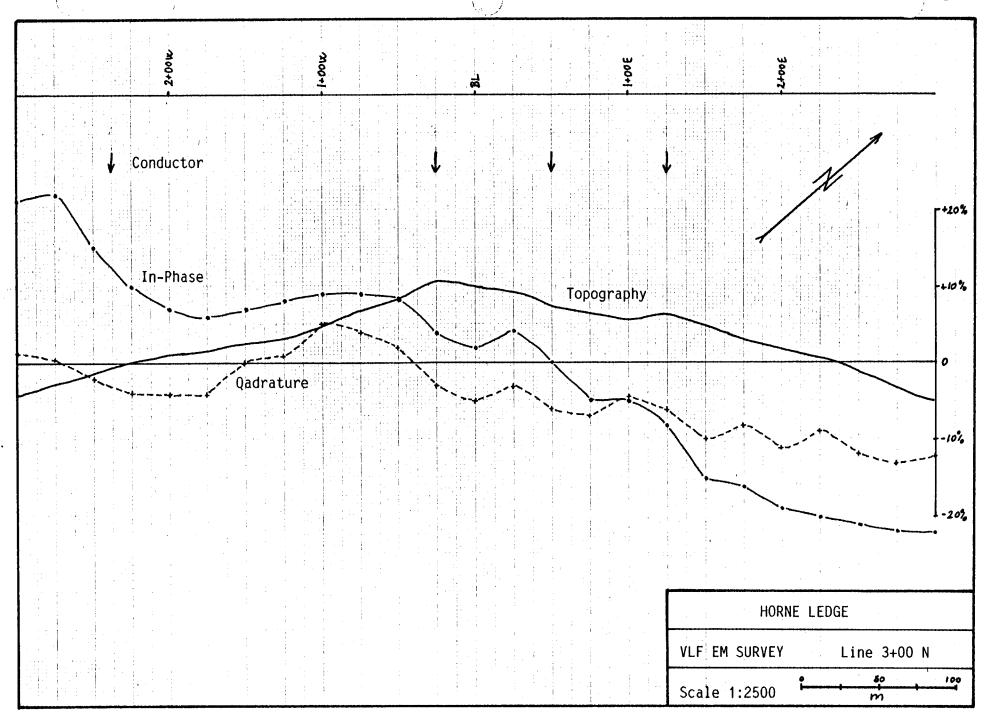

APPENDIX B

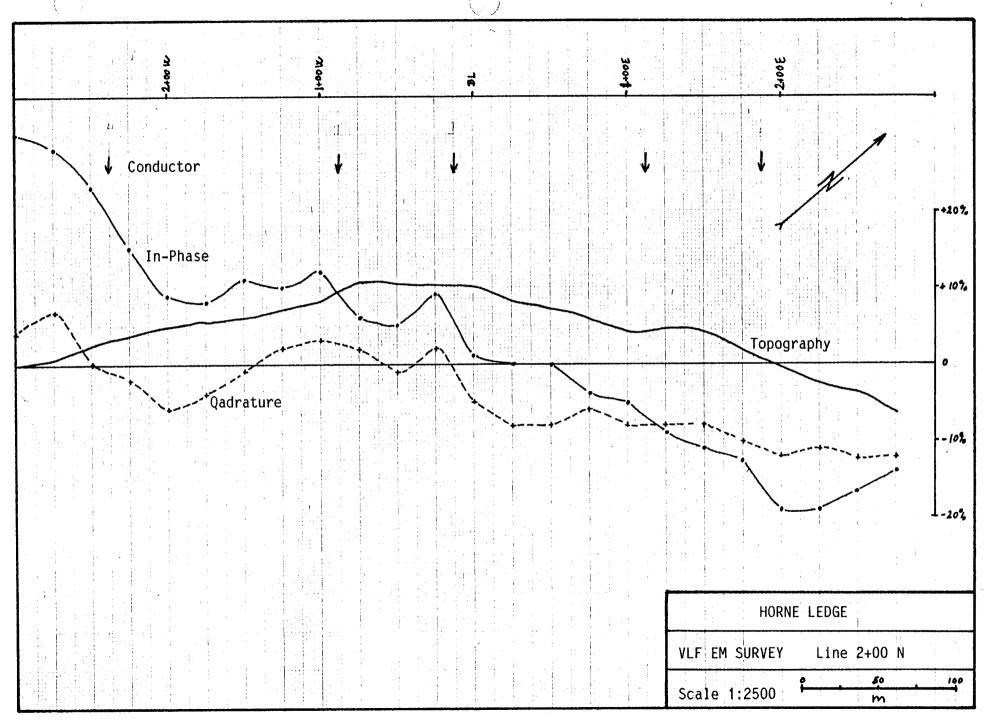

VLF-EM 16 ELECTROMAGNETIC SURVEY RESULTS

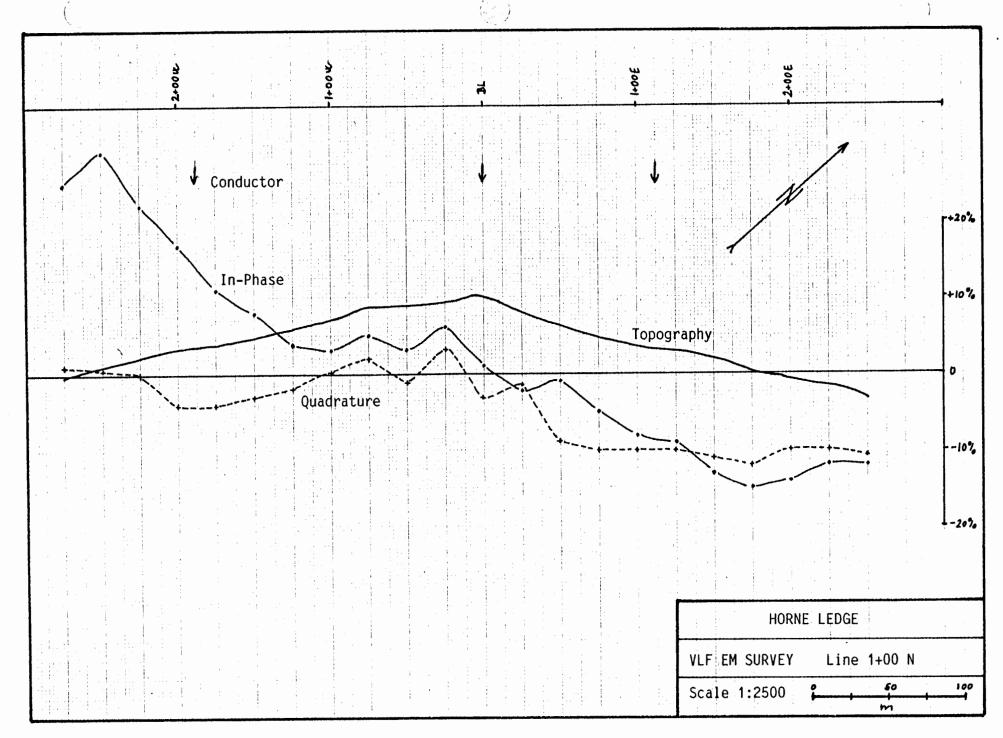


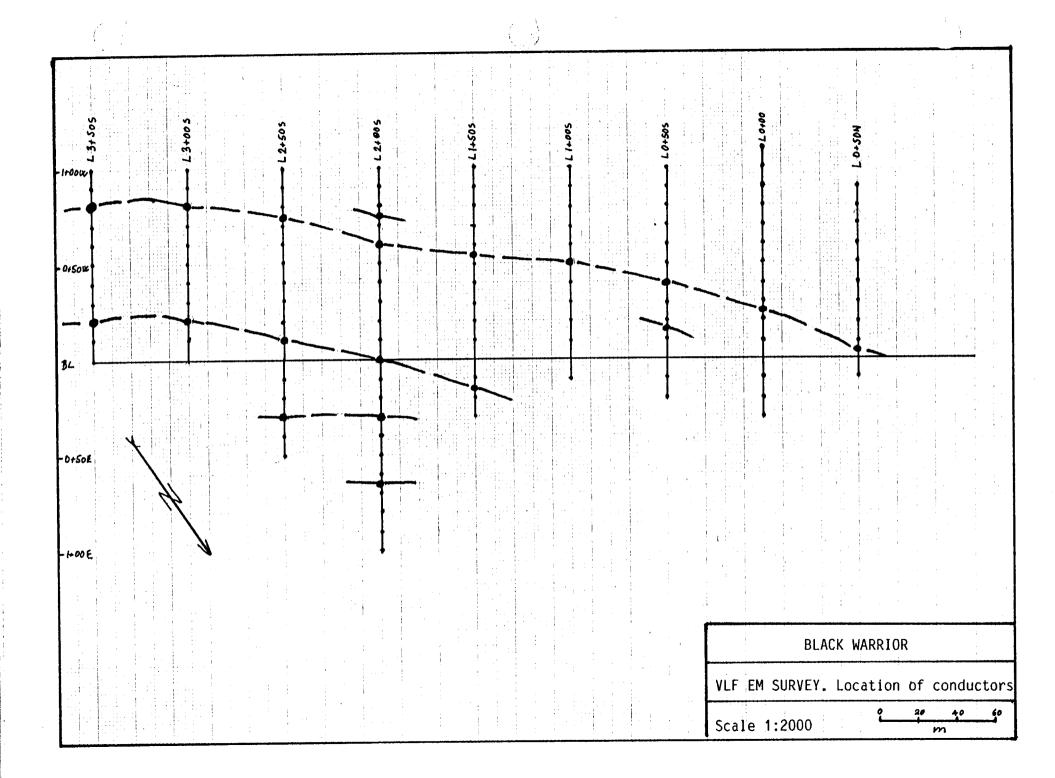

and the state of the state of

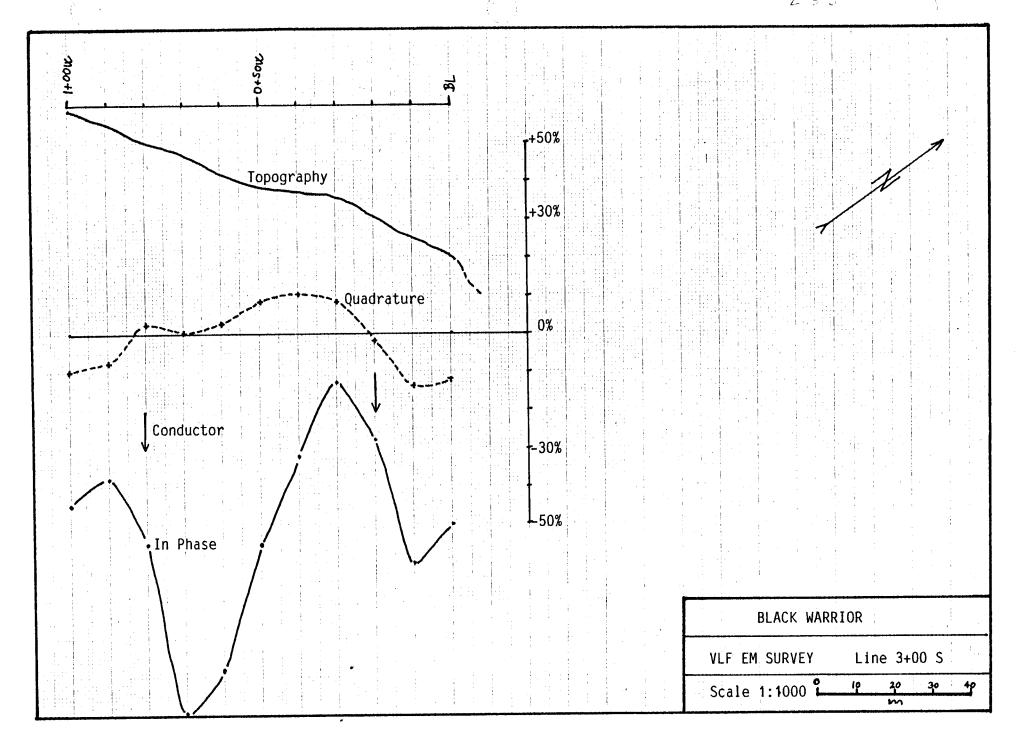

		9.000
-2+00 W	-1+00¢	
	In-Phase Topography	-+ 10%
	Qadrature	10%
	но	RNE LEDGE
	VLF EM SURV Scale 1:250	9 80 100

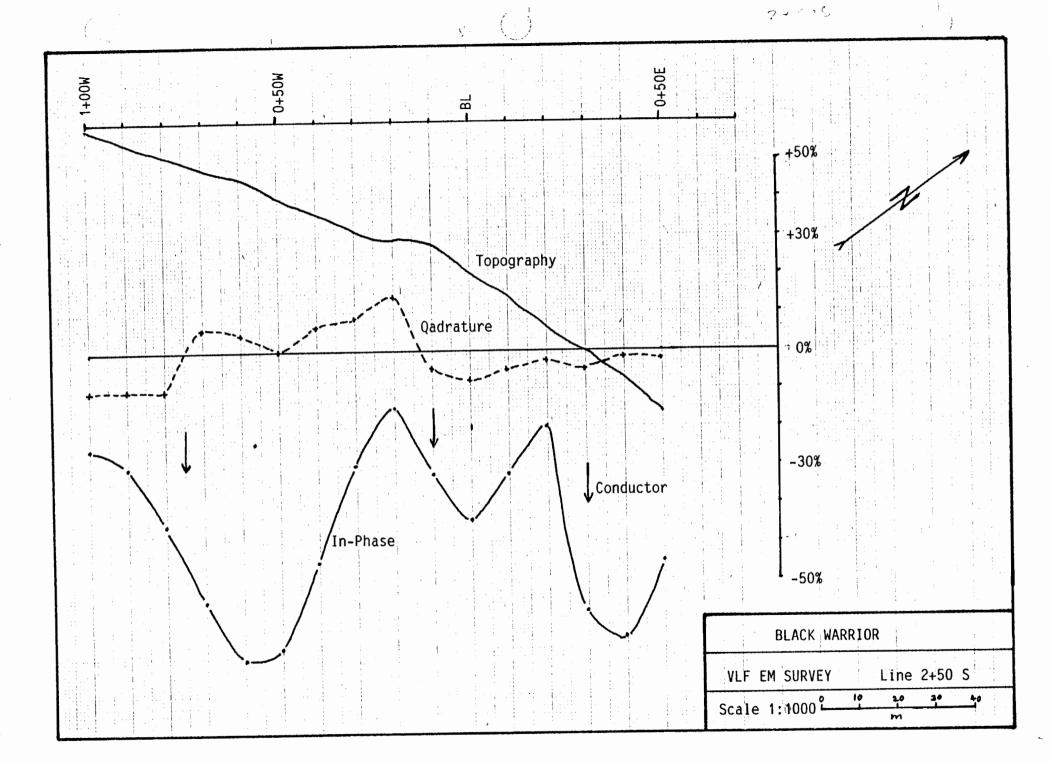


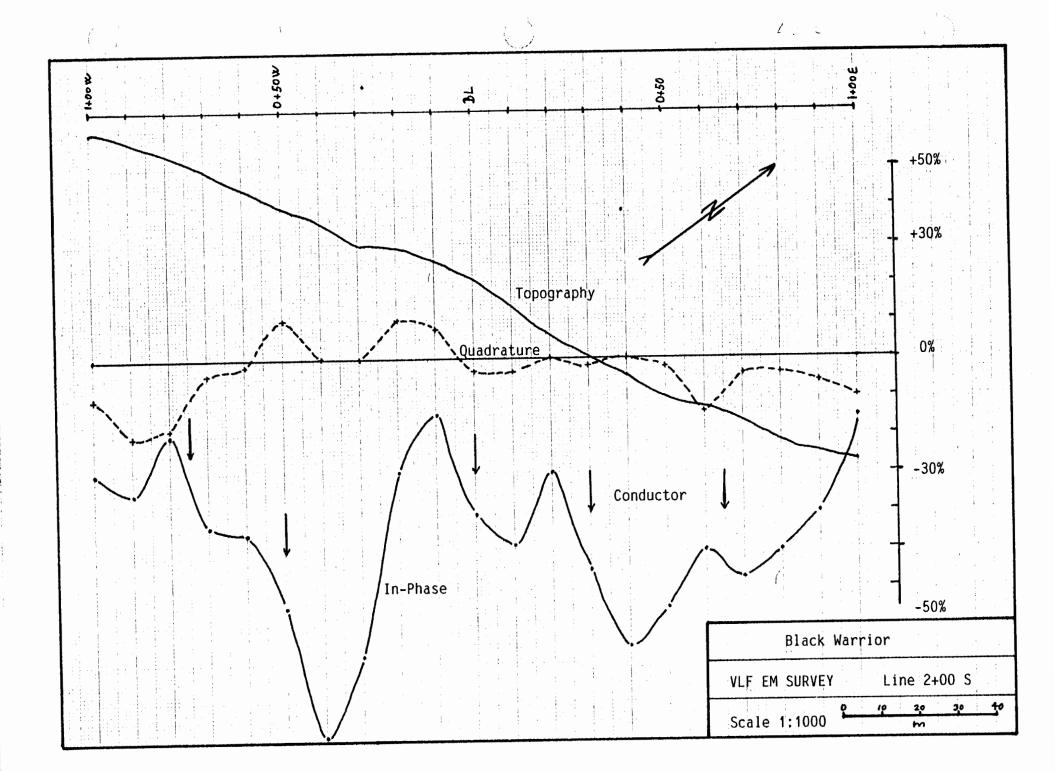


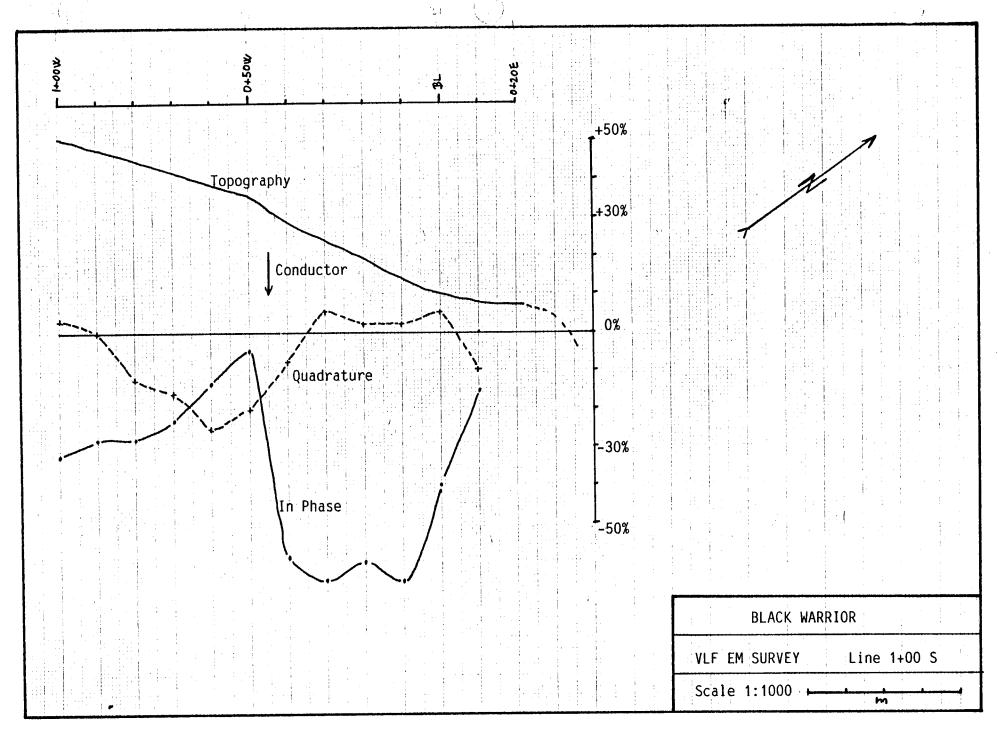


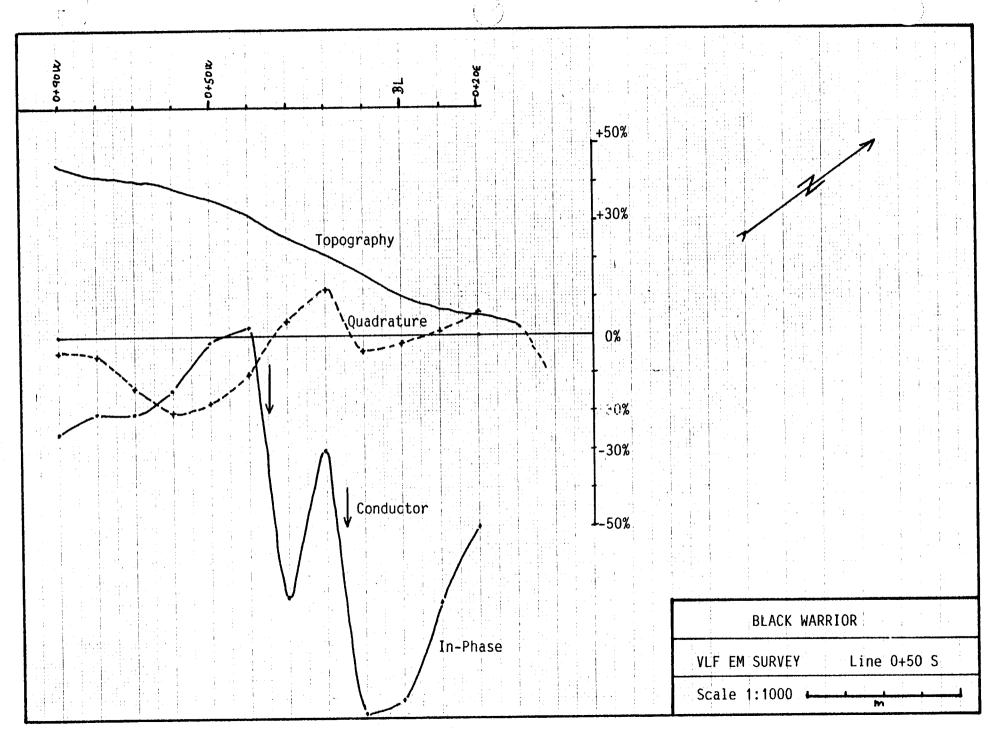


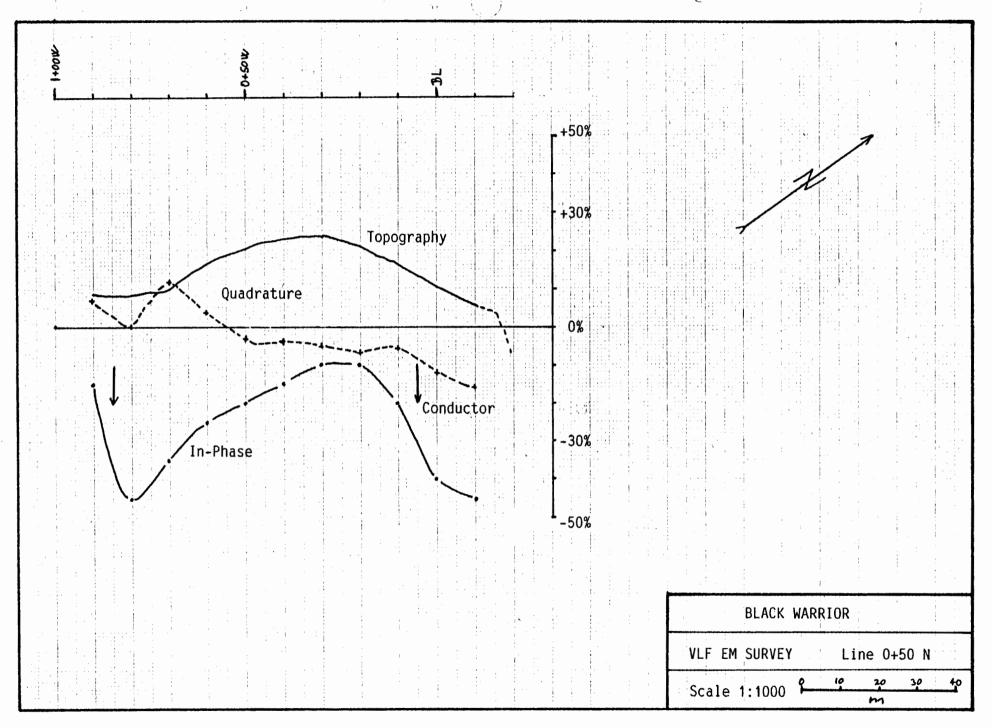












APPENDIX C RESISTIVITY SURVEY RESULTS

							· · · · · · · · · · · · · · · · · · ·			
	2	: !		3	}	N00	3	3	Z o	X64
040						2+00N		3		
3+00 LC 1		1								
ing at										
2+001c	2400	2100	2400	1000	1600	1400		2200	1800 2400	3000
1	1800	2000	2200	2300	1800	1800			2000 1800	1600
	2600	2400	2600	2400	2200	2000	1800	2000	1800	1600
\	2800	2200	j 14.	1800	2400	2200	2200		1600	1800
Hoose		2800	2800	1600	2600	18000	<u> </u>	10000	10300 14000	8,200
	2900	1800	2200	2200	1800	3000	8000	11500	9000 3000	10000
•	2600	2000	2400	2600	9000	5400	5000	2400	1800 3200	12800
	4000	2500	4000	6000	5000	2800	2600	2200	2000 1800	1600
BL =1					300	1200	1800	2400	1800 2200	2400
	15,000	30000	2100	3200	1200	1800	1600	2200	1600 1800	2000
		8000	1600	1800	350	2200	2000	i i	1200 2000	2000
	1200	1200	1400	1200	900	2600	2200	2400	2200 1800	1800
HOOF	1800	1800	1800	1100	900	2400	2400	1600	2400	1600
	1400	1400	2200	2000	500	2300	2800	1800	1800 2400	1800
	1000	900	2600	2300	850	1800	1600	1400	1600 2000	200
-2+00E	2200	1800	1400	1800	760	1600	1200	1400	1800	1600
	1									
					 					
								+		
3+00E					1				Values in oh	m meters
					1					
:					1		; i	1	HORNE LED	GE
								1		
									RESISTIVITY	SURVEY
									Scale 1:5000 2	100 2.00
									30416 1:3000 -	m

and the state of the

	(·											4. 1										,		
	30000		2000 L 7	7,0077	2800			7.00	1250	ALOUTE I			700777			70100				30072		7006		
- I+08N	8000	`\\	4600		6400		4000		1400		3000		2800		18.00		1200		1800					
	1000		7800		12000	0000	17000		4400	5000 -	4200		1800		2400		2800		1400					
	2200		3200	·	1300		3000		10000	9.00	12000	\supset	6400	-00	7600		32.00	1.1	3400					
	1600		2800		2600		2800		1000		2200		1100		3800		18000		24000			1.41		
- 34	2200		1600		1600		2200		2800		1800		1800		2400		2600		10000	****	128000			
	1800		1800		1680		2100		1800		2200		1600		1800		2200	2.	1300		16000		. !	
	1650		2200						:		2600		2400		2600		1800		2200		1800	\	****	:
1+005											1: :				1300		1400		2000		2400		5000	10000
																1 1 1					2600 /	· .	5000	
			-																		1600 I		500	
																			·	į	'°° 7		1000 1600	
	1			1					1		1			1				1	•		1	. •	:	:
	t								.!		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
İ	1 1 1								1		1.5							1	1	:			:	
	:							1									:	: val	ues	in ohn	mete	rs		
	i							1									1							
						1		: !										<u> </u>	·					_
																			•	ELLSMI	ERE			
	- ::				+ :			i	1									!	RESI	STIVI	TY SUF	RVEY		1
									100									1			50	100	150	200
										1.							Sca	le 1:	5000	_		m		200
	1		1			1	1 11					1					ــــــــــــــــــــــــــــــــــــــ	<u> </u>				·		

APPENDIX D MAGNETOMETER SURVEY RESULTS

	1 1 1 1		2	2	3	3	3	.		\$	§	3
00+0			9	8	Š				0 7/	868		7862
יך שט	284		2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200 4 7 7876	7876	878	871	873	67/	868	045	7862
- 1	386		885	-380						866	861	158
, [889		1880	875	878	1 ! !	877	270	869	861	253	855
	915		928	932	931		278	879	873	348	858	859
	945		940	945	942	1 1 1 1 1 1 1 1	128	289	812	888	878	881
1	132		924	923		919	920	392	818	813	897	897
: [722		924	923	924				9/8	9/7	928	112
	929		130	926	924	928		927	924	921	920	918
1	123		924	928	927	925		1 111 11	726	926	922	923
1.	919		920	924	1924	927	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	923	921	728	726
. 1.1.1	717 919		915	913	938	729	919	1	928	730	929	736
	1 1		902	920	918	I * * ********************************		1 1 1 1 1 1	932	936	136	933
- I. I	922 920		929	910	412	436	930		134	917	934	135
			I .	910	96	412	915	738	939	937	935	738
	- 1	910	904	930	934	932	937	136	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	935	934	138
1		912	104	940	941	133	948	1947	1+1	951	919	948
00E	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		899	1909	9/2	945	941		153	950	958	71-7
00E	192		944	708	918	154	938	938 940-	939	131	941	1772
	919		1920	920	924	752	936	951	728	926	931	131
1	912	1 1	918	910	935	960	948	1	131	723	928	929
	- 1		911	909	922	952	933	932	130	921	927	923
00E	914	:	710	910	921	932	936	1926	928	720	1928	1925
	913		908	915	724	930	929	1	724	123	1	
	708		- 140	710	940	928	932		1	928	1	
					1 :		928		- Table 1	924	!	i de la companya de La companya de la co
OOE	:				**************************************					BS	BL()0+00	57920 gammas
											HORNE LED	GF
	1										HONNE LED	uL
		# 1								1	· · CNETOMETE	ם כוומעבע
			4.1							M/	GNETOMETE	K SUKVET

11 1 -

('.		
1400 6418 6416 13 + 60 5	1926 1930 1942 1942 1942 1942 1944 1944 1944 1944	00000000000000000000000000000000000000
915 911 410 912 890 906 888 970 - 0+506 880 891	918 928 917 916 922 913 916 901 921 916 912 915 916 912 915 915 916 915 916 915 916 915 916 915	916 913 912 924 925 916 916 916
876 886 874 884 877 879 879 870 811	890 882 884 885 841 892 887 897 876 880 897 888 882 883 881 882 887 887 887 886 887 888 888 888 888 888 887 888 888 888 888 888 888 888 888	900 100 118 910 910 874 810 818 827 881 872
-0+50E	977 900 991 276 1882 918 922 713 126	
	917 915 714 Main B.S	. Located at BL.0+00
-6+00£		57878 gammas
		BLACK WARRIOR
		MAGNETOMETER SURVEY
		Scale 1:2000 20 40 6

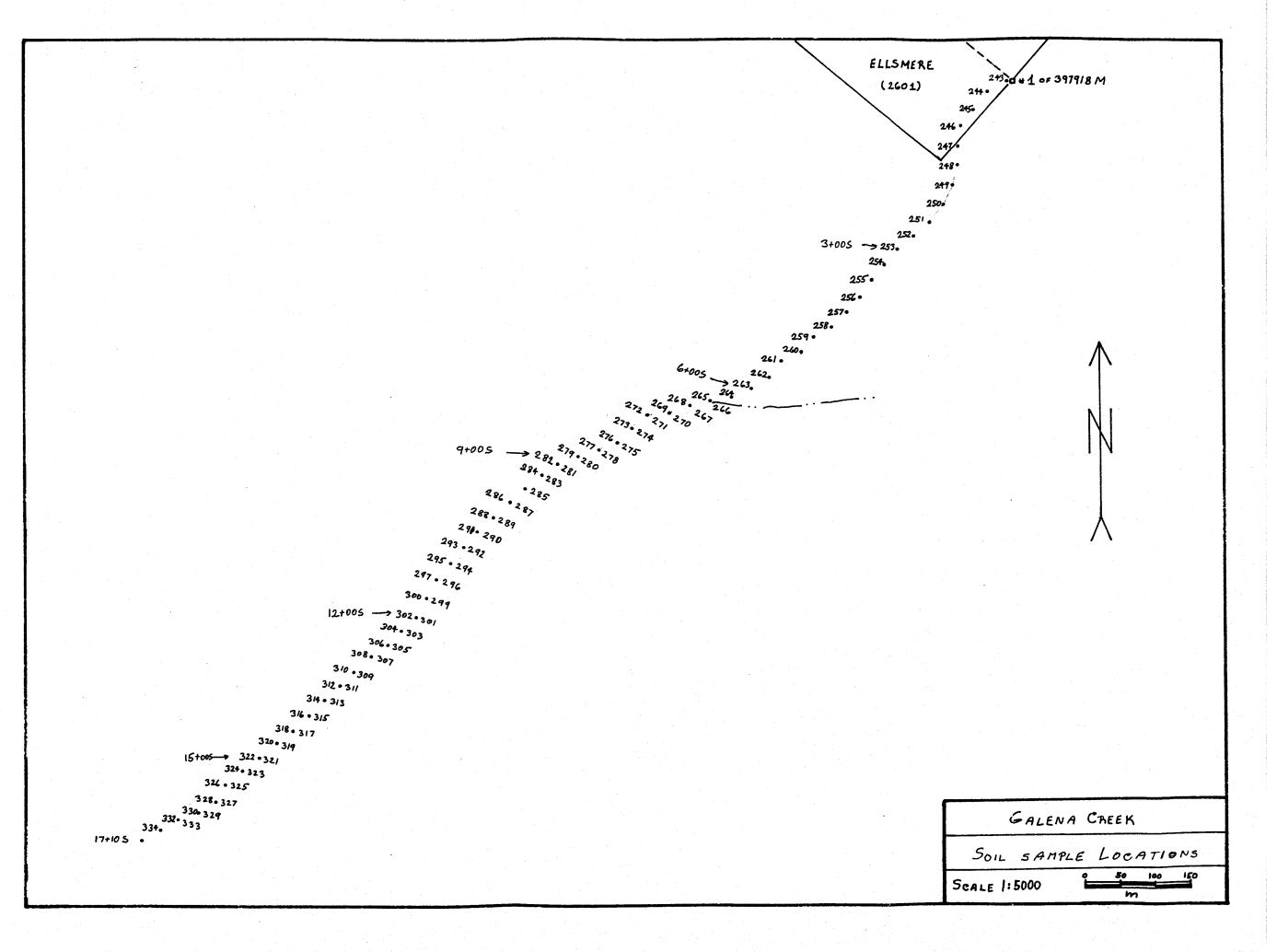
The second of th

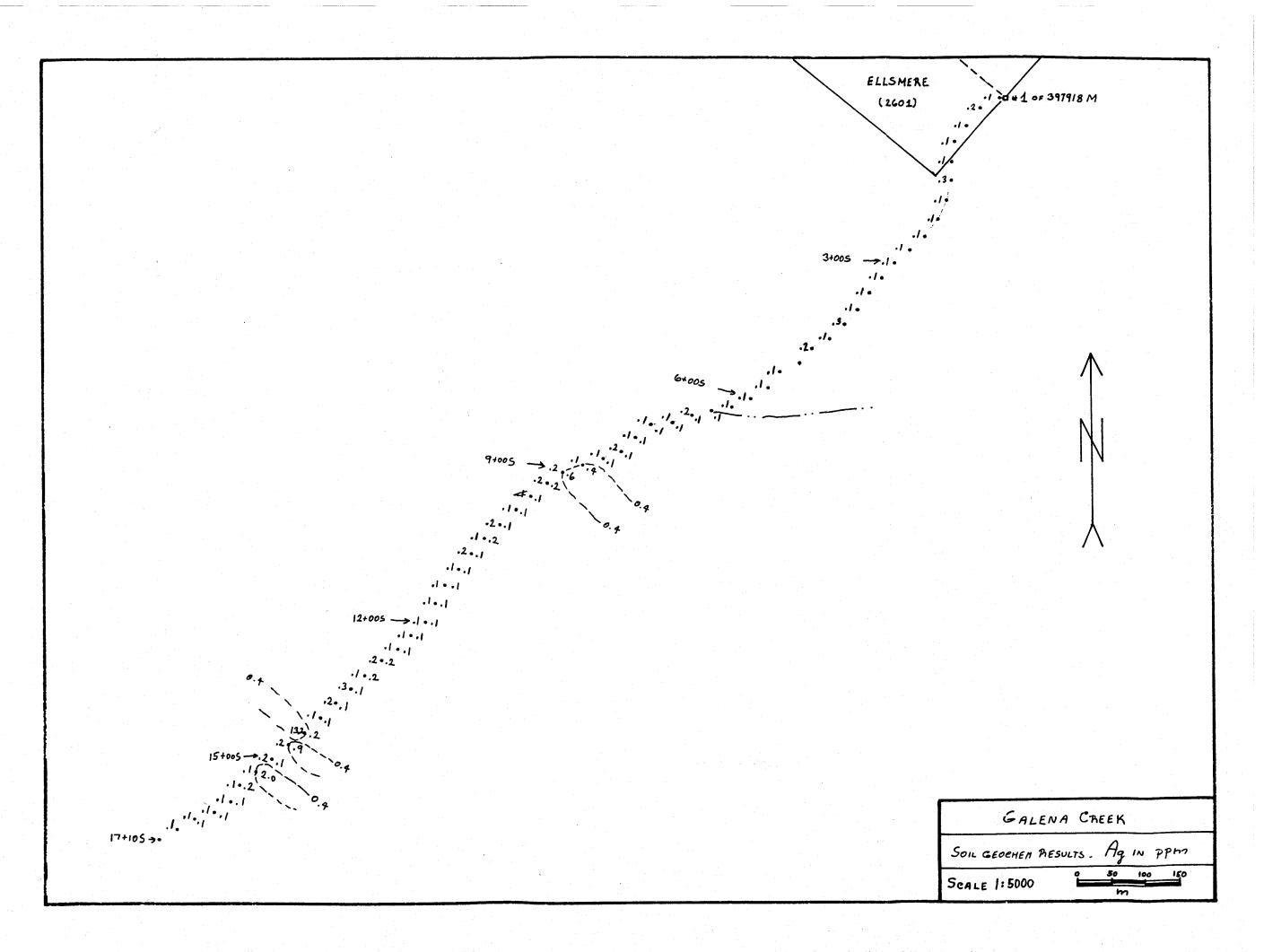
2	<i>(</i>	ì			,				F		1:500	t		() 2
						<u> </u>								
					1									
	i													
	<u>2</u>		+001%		9+001	2100+5	4+00K	3+00K	2+00K	30	9		L 2+00E	3+00E
	*		7+1-7		•	154	<u> </u>	, j	7	.	10	7+00	7	L3
	-		-		7									
-2.00 N	+978		1470		1996	1994	7989	1993	1985	1978	1963	1 985		
	984		972	1 1 1 1	994	992	110	986	788	984	902	986 981		
	982		978		992	1999	994	941	919	988	985	996		
	730		982		990	1990	000 1010	1800	983	995	197	998		
- I+00H	1		988 988		1002	1008	1080	1010	1993	786	995	993		
	976		987		1004	1004	1012	1012 -	998	983	981	110		
	972		996		1006	1008	990	989	941	988	975	183 978		
BL	478		986		9 92	990	989	980	983			783		
	980		992		990	941	986	984	988	992.	181	961	988	
	968		100		1002	982	916	1980	991	786	988	988	989	
1+005	1001		100	1 1 1 1	1000		000 1990	986	1993	983	986	990	993	985
1,005	984	_ 11111	100	8	1008	1006	1008	988	995	988	983	913	9% 人	988
1	988		991	1000_	1018	1012	1010	1000	990	992	974	984	987	986
'	982	:	1700		4,502	1018	1012	1016	1008	915	988	1996	984	781
2+005	1980		199		1990	11015	a jora	1020						
l													1	1
1	1				: !						DC s	.+ BI N±NN	Value 57983	3 dammas
1											, DJ 0	IL DE OTOO	varue 3730	, gammas
		. !			1 1									
												ELL	SMERE	: : :
												MAGNETOM	ETER SURVEY	
	d lar					i kanalan ka						e 1:5000	0 50 10	160 2.00

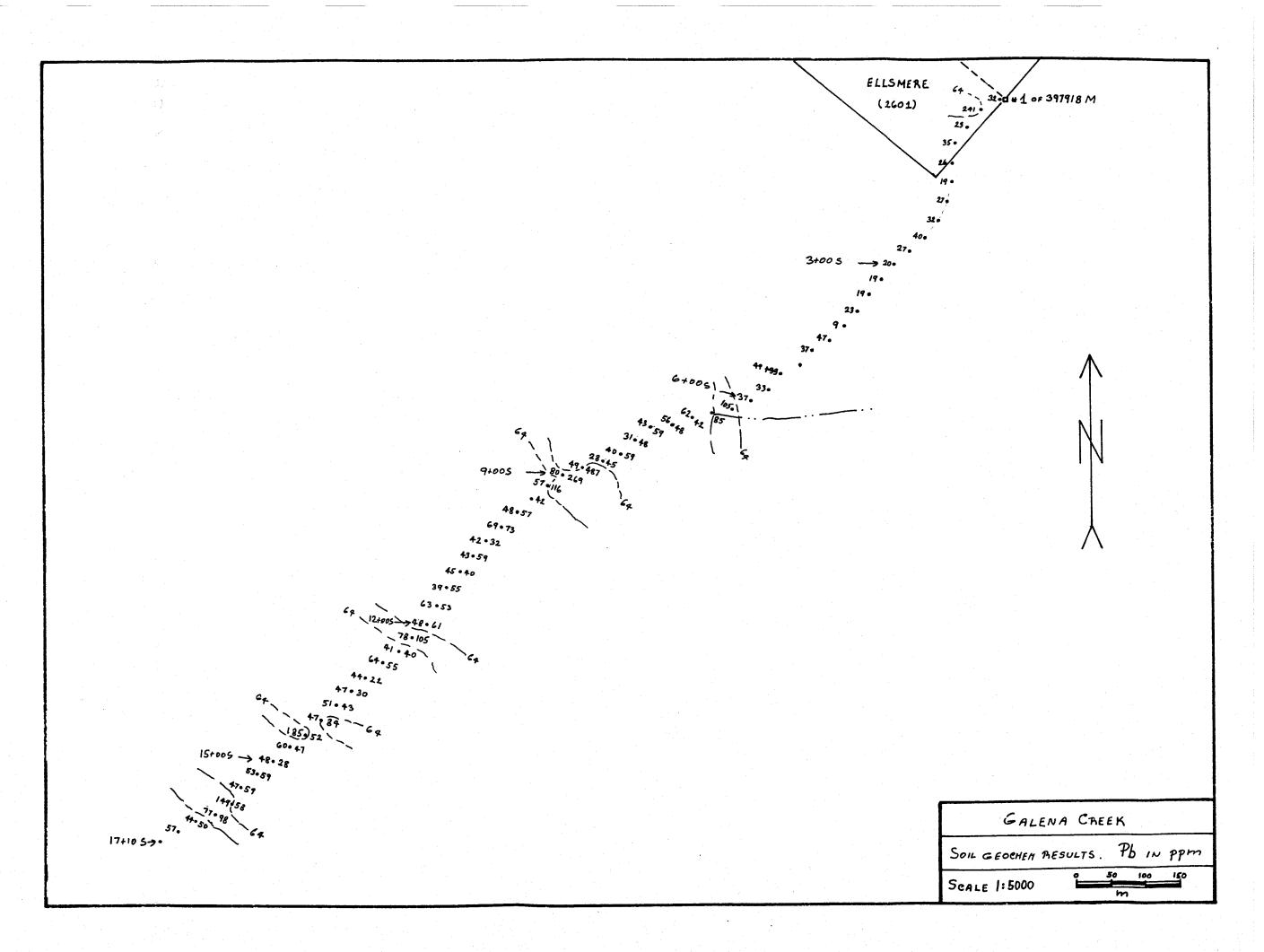
APPENDIX E GEOCHEMICAL SURVEY RESULTS

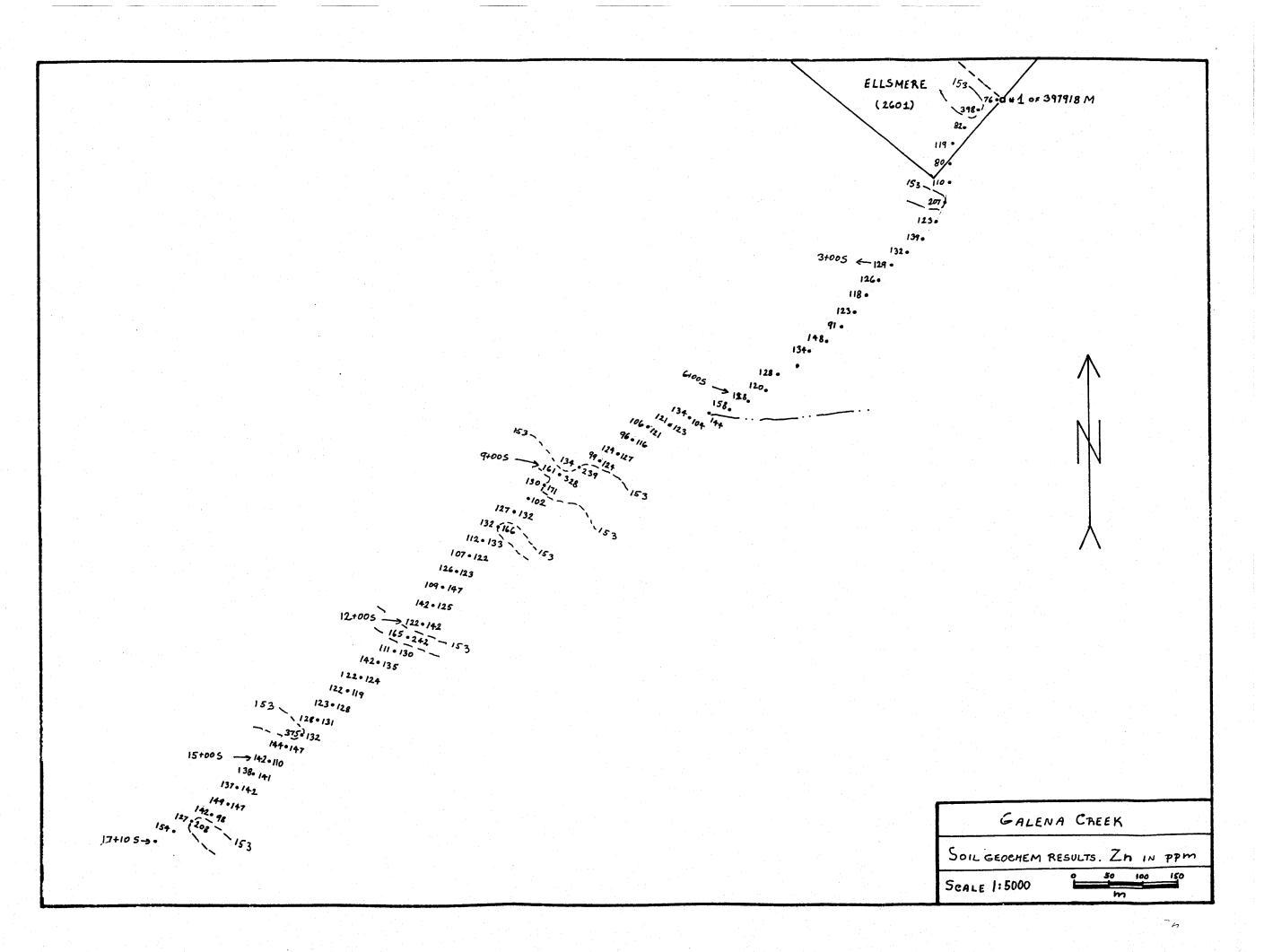
-											2	1
60		X 00 + T 1	L2-00 N	2	T 4+00 N	N 00+5	N 000+9-7	₩ 00 +			7 00 00 00 00 00 00 00 00 00 00 00 00 00	
7 0 1		÷	75	Š		1 . 11 1.		1		T108	₩ ₩ ₩ ₩	
3100kg	112	T	T ²⁶	788	1 1111 1111	T145	T 176	lan a di kacamatan 📳	267 204	209	241	
	"	27	25	87	10	143			205	210	240	
1	101	21	23	25	92	142		172	204	21/	259	
400W	1 1	30	22	84	93	141	180		203	211	258	
	107	31	2.1	83	94	140			201	115	237	
•	106	32	20	82	195	139	192	161	201	214	235	
11111	105	33	1.3	81	96	138	183		199	2.16	234	#
	104	35	12	79	18	136	185		198	217	233	
11.11	103	36	16	78	99	135	184	165	177		252	4
	101	37	15		100	134		164	196	218	23)	
BL .		<u> </u>		k	5				146	-219	230	
	\$65	- 38	56	177	†113 †114	133	- 187 - 188	163			229	
	/5 4	39	57	76	115	131	189		147	210	228	
400 E	53	40	59	74	116		190	161	148	221	227	
	51	42	60	73	1117	130	191		149	222.		
	50	43	61	72	118	129	192		150	223	215	
	149		62	77		128	195	159 158	151	224		
2+00 E	11	44	63	69	119	127	1145		152	1		
	147	145 146	65		121	126		156				
			166	67	122	125		1155	169			
-3+00E				168	1123	L 124			154			
1										Hor	NE LEDGE	
									-			
									Soil	SAMPLE	LOCATION	MAP
									SCALE	.5 000	0 50	190 150
					1				SCALE	15,000	m	

80 00 00 00 00 00 00 00 00 00 00 00 00 0	1		
□1 - 과과보드는 14 - 14 - 14 - 14 - 14 - 14 - 15 - 15 -		1	


		() cr
310016 310016		
		NE LEDGE results. Sr in ppm
	Scale 1:5000	0 100 100 m


* *	
3400 B. T 19 116 125 111 122 123 124 255 264 285 26 265 276 285 287 387 387 388 287 387 388 387 387	To To To To To To To To


, ⁽²⁾ 36


) 2n
000	756 T99 T58 T73 T80 11 63 57 72 72 63 83 64 84 78 18 44 100 76 106 57 23 85 82 90 53 92 90	778 7212 762 77 78 190 67 121 101 63 122 198 67 159 150 150 150 150 150 150 150 150 150 150
126	128	63 72 80 80 80 80 80 80 80 80 80 80 80 80 80
105 52 122 44 72 140 74 141 14	80	
33 46 77 33 460 42 3400E	75 88 89 +63 71 57 157 169 169 169 169 169 169 169 169 169 169	HORNE LEDGE Soil geochem results. Zn in ppm

					/ 1 No. 1				· · · · · · · · · · · · · · · · · · ·) n	n
3+00		Z+00N	Mao*5-1	4-00N	Noats T	7000Y	N00+L-7	Nag+87	N00757	LIDHOON		
)+0011 7 224	3	7276	T300	7377	Ţ911	71561	7455	7663	7433	7%7		
72	120	426	160	505	1348	1065	587	4661	558	33/		
27	360	558	268	354	1377	795	523	b 819	480	575		
59	779	772	412	236	2117	11112	756	605	514	11175		
192 ·	503	941	368	295	5101	1116	761	166	320	289		
716	413	586	324	1176	1897	1136	924	1328	850	381		
194	1287	961	1295	755	521	901	1089	451	+13	778		
554	934	346	275	585	137	403	1283	962	2020	1071		
1+00U +493	4700 83.	259	425	410	1152	3/3	256	-696	1406 238		14	
479	763	605	707	618	812.	504	356	225	4064	1653		
248	1074	850	-581	1049	924	153	290	586		159	•	
	1291	H87	2383	2501	406	256	260 342	725	283	/87 146		
BL 383	812	1323	1411 2383	350								
4343	2592	1446	124	143	485	242		181	+74	/88		
\$ 9702-	730	547	191	226	- 216	381	51		1	>172		
1022	216	517	104	603	233	399	286	128	32/	363		
. HODE 1191	449	301	4544	213	1	3/4	246	20\$	812	512		
153	315	294	14	626	304	335	100	453	331	224		
196	2.51	171	294	758	2511 2383	>35		238	1411			
188	\	96	-201	100	161	381	1439		10	587		
2+00E +177	496	1566	448	425	2303	485	770	1734		222		
904	72	539	189	285	2619 3	437	254	150				:
$oldsymbol{I}$	L58	194		225	367		615	† *				
		756	1011	215	275		1410	552				: : :
- 3+00E			L895	1506	11383			1252				
									HORNE	LEDGE		
								· · · · · · · · · · · · · · · · · · ·				
								Soi	l geochem	results	. Mn in pp	m
							1111		4.5000	q	100	20
				+				Scal	e 1:5000	- I	m	

38 55 .90 172 .06

32 2.00

37 132 6.5 67 28 943 3.99

36 22

7 37

STD C

)

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MR FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: SOIL GOLDEN RANGE RESOURCES File # 88-5278 Page 1 P La Cr Th ST Cd Sb Bi Ca ŽD λa Ni Co Mn ?e λs λu SAMPLES PPN PPN PPK PPK PPK PPK PPN ŧ % PPM PPM PPK PPK PPH PPH 13 14546 17.59 5-1 .02 .068 27 . 60 31 .01 2 2.02 2 19 26 14 812 7.15 15 ND 5-2 .01 .03 22 .01 .076 16 12 .18 18 . 03 2 1.46 B 1323 3.97 ND 45 5-3 .27 125 2 2.59 .01 . 04 22 .84 .196 22 14 . 03 ND 10 7471 5.86 22 5-4 98 23 .30 2 2.22 26 ND 19 .38 .147 34 15 62 . 02 264 13 3507 7.49 5-5 2 2.66 .06 28 27 .01 615 6.14 25 5-6 32 .03 25 23 .46 17 . D4 . 056 256 5.83 ND 5-7 23 71 .01 ND 28 .01 .082 23 17 .32 20 .04 2 1.75 7 342 4.74 5-8 36 .01 .108 17 24 . 23 37 .08 2 3.15 .01 2 22 38 57 . 2 14 11 1420 6.56 11 5-9 1 11 ND 28 .01 .053 20 .42 23 2 1.64 9 283 5.37 20 S-10 2 1.26 S-11 26 2 2.46 .01 .01 .089 . 68 30 . 03 254 7.79 ND 27 18 90 30 13 5-12 KD 32 .02 .058 19 25 .47 26 .03 2 2.88 .01 .04 245 5.45 14 70 S-13 .01 .04 . 99 .089 30 7 .09 41 .01 2 .91 31 ND 8 15 1146 4.81 5-14 19 71 16 .32 2 1.76 85 10 1987 6.90 5-15 2 1.85 .03 .065 17 5-16 . D1 .028 22 ß .07 34 .03 2 1.82 40 .1 12 605 4.69 5-17 35 17 .04 .055 16 2 2.32 .01 24 10 259 4.54 10 31 74 S-18 23 .05 2 2.27 .01 .02 ND 2 26 .01 .043 18 11 .10 . 2 6 3 366 3.78 12 5 5-19 13 28 .02 .076 22 .46 26 2 1.86 .01 12 969 6.08 S-20 26 2 1.35 5-21 29 19 .36 23 .02 2 1.69 .01 .05 KD .01 .046 30 96 941 6.57 19 5-22 .02 .051 33 19 .50 33 .01 2 2.34 . 01 . 06 2 29 45 92 . 2 32 13 772 5.77 5-23 .01 . 05 2 1.26 21 11 558 6.89 13 ND 20 .01 .088 26 18 .33 21 .02 27 33 84 24 5 5-24 1 20 . 38 19 2 1.21 .01 .05 .073 . D2 426 6.11 2 2.52 5-26 2 3.08 29 .02 .035 10 23 . 10 17 . 06 25 120 5.25 11 5-27 2 2.16 .01 .04 22 .01 .048 16 14 . 18 19 . 05 13 360 5-28 2 1.29 .01 . 05 21 12 .14 24 . 04 779 5.60 13 ND .01 .040 17 58 69 . 9 13 5-29 25 .01 .081 10 .13 . 05 503 3.89 5-30 2 2.24 5-31 413 3.48 31 .03 1287 3.85 ND .02 .048 25 11 .14 69 5-32 .01 .059 31 18 .34 21 .01 2 1.47 .01 .04 2 ND 32 17 934 7.48 42 5 5-33 2 2.62 .01 . 05 3 12 4700 5.01 21 ND 23 .08 .094 33 13 .20 7 C .04 25 106 142 .3 5-34 1 763 2 2.14 19 .01 .063 26 16 .22 26 .03 14 1074 5.24 20 5 ND 2 1 2 5-36 47 17 17 20 57 .49 .069

									GC	OLDE	N KA	MGE	RES	OUR	CES	r	TTF	# 8	8-2.	2/8										
Sample }	No PPN	Cu PPM	Pb PPM	Za PPM	Ag PPK	Ní PPN	Co PPM	Ka	Fe }	As PPK	D PPM	AU PPN	Th PPM	ST PPM	Cd PPN	Sb PPN	Bi PPM	V PPM	Ca	P 1	La PPK	Cr PPM	Ng 1	PPK PPK	Ti \$	B PPK	Al Ł	Na t	Į,	V PPN
S-37	1	21	37	90	.2	28	13	1291	5.40	28	5	MD	ŧ	5	1	2	2	11	. 02	.071	34	9	.16	43	.01	2		.01	. 01	1
S-38	1	18	53	104	.1	16	10	2592	5.04	21	5	ND	1	13	1	2	2	23	. 25	.153	22	14	.22	- 44	. 02		2.41	. 01	.01	2
S-39	1	25	29	105	.1	26	16	730	1.60	13	5	ND	1	12	1	2	2	21	. 16	.100	19	21	.50	55	.01		2,30	.01	. 01	3
S-40	1	18	35	49	.1	12	6	216	3.99	13	5	ND	1	4	1	2	2	23	. 01	.049	21	14	.22	17	. 03		1.72	.01	.01	4
5-41	i	16	36	42	.3	8	7	449	1.06	12	5	MD	1	1	1	2	2	25	. 02	.052	19	14	.14	15	.04	2	1.56	.01	. 01	2
S-42	1	20	22	61	.1	17	8	315	5.00	9	5	ND	1	3	1	2	2	33	.01	.037	21	19	.34	17	, 06	2	2.16	.01	.01	2
S-43	1	20	22	55	.3	13	7	259	3.04	12	5	ND	1	1	i	2	2	19	. 04	. 081	16	17	.31	21	.01	2	2.01	.01	.02	2
5-44	1	20	28	58	.1	14	9	496	4.17	9	5	MD	1	8	1	2	2	27	.04	.042	17	16	.31	21	. 05		2.23	.01	. 02	2
5-45	1	20	44	46	.5	16	5	72	2.19	7	5	ND	1	11	1	2	2	20	. 06	. 076	17	17	.33	33	.02	2	2.22	. 01	. 02	3
5-46	1	1	12	36	.2	10	4	58	2.17	5	5	ND	i	6	1	2	2	19	.01	.047	16	12	.24	19	.02	2	.94	.01	. 03	2
5-47	1	22	41	100	. 2	22	18	904	4.14	21	5	ND	1	30	1	2	2	14	.28	.110	15	15	.32	26	.02		1.84	.01	.01	2
5-48	1	36	32	76	.3	23	10	177	2.39	16	5	ND	1	119	1	2	2	19	1.35	.125	9	19	.55	42	.02	2	1.94	.01	. 05	2
S-49	1	20	30	43	.3	7	5	168	1.92	4	5	ND	1	12	1	3	2	15	. 07	.039	11	9	.14	18	.06	2	2.03	.01	.01	3
S-50	1	12	27	53	. 2	9	5	196	4.60	16	5	ND	2	9	1	2	2	28	. 05	.033	18	19	. 29	18	.05	2	2.05	.01	.01	2
S-51	1	25	31	58	.3	15	7		4.01	8	5	ND	1	6	1	2	2	33	.04	.043	25	14	.31	20	.03	2	1.71	.01	.02	2
S-52	1	24	30	96	.3	25	15	1191	5.11	17	5	ND	1	14	1	2	2	26	.16	.061	24	22	.44	35	. 02	2	1.77	.01	. 02	2
S-53	1	29	75	122	. 3	23	16	1022	4.56	17	5	ND	2	18	1	2	2	16	.24	.105	20	19	. 12	29	.02	2	2.96	.01	. 03	3
S-54	1	28	33	407	. 5	19	11	9702	2.89	9	5	ND	1	33	3	2	2	22	. 89	.161	14	14	. 22	169	.04	2	3.24	.01	. 02	1
S-55	1	24	71	165	. 2	18	9	4343	5.51	21	5	ND	1	14	1	2	2	22	. 23	.183	21	12	.28	69	.03	2	3.11	.01	.02	6
s-56	i	19	85	96	.2	17		1446		22	5	ND	2	8	1	2	2	32	.04	.065	21	18	.34	41	.04	2	2.32	.01	.03	2
s-57	1	12	17	52	.1	13	6	397	3.71	9	5	ND	2	6	1	2	2	48	.01	.040	38	15	. 23	25	. 06	2	.99	.01	.03	1
5-58	1	31	32	72	.3	17	9	344	4.29	12	5	ND	1	8	1	2	3	27	. 05	.050	19	18	. 41	37	.04	2	2.09	.01	. 03	1
5-59	1	12	26	41	.4	6	4	304	3.26	7	5	ND	1	8	1	2	2	24	. 07	.038	12	8	.11	25	.09		1.63	.01	.02	3
5-60	1	22	27	78	.1	20	9	234	5.82	17	5	ND	2	- (1	2	2	31	. 02	.034	25	20	. 46	28	.05	2	2.21	.01	.02	2
5-61	1	15	32	48	.1	10	6		4.50	15	5	ND	i	5	1	2	2	26	.01	. 055	18	14	.22	17	.04		1.55	.01	.02	3
5-62	1	8	16	40	.2	9	4	96	3.07	9	5	ND	1	4	1	2	2	27	.01	.038	21	13	.24	25	.02	2	1.08	.01	. 03	2
5-63	í	30	40	74	.2	17	28	1566		13	5	ND	1	8	1	3	2	23	. 05	.099	14	19	.45	30	.02	2	2.81	.01	. 04	3
5-64	1	21	25	77	. 2	23	12	539	4.75	11	5	ND	1	5	1	2	2	23	.02	.059	26	22	.53	25	.02	2	1.94	.01	.04	2
5-65	i	28	30	60	.3	18	8		3.56	17	5	ND	1	7	1	3	2	18	. 03	.085	18	19	. 42	23	.02		2.86	.01	.02	3
S-66	1	20	36	92	.1	25	21		5.16	12	5	ND	2	8	1	2	2	23	.03	.103	22	23	.61	39	.01		2.55	.01	.06	2
5-67	1	28	39	107	.2	30	17	985	5.96	22	5	ND	2	7	1	2	2	23	. 04	. 097	23	27	.71	36	.01	2	2.53	.01	. 05	3
5-68	i	23	34	93	. 3	22	16		4.19	12	5	ND	1	10	1	2	2	21	.06	.125	18	20	.54	33	.01		2.29	.01	. 05	2
S-69	i	22	31	75		20	8	189	4.11	11	3	ND	1	6	1	2	2	23	.03	.070	19	21	. 52	30	.02		2.40	.01	. 04	3
S-70	i	18	32	61	. 2	15	9	111	3.99	11	5	ND	i	6	i	2	2	23	.02	.054	22	18	.37	27	.03		2.24	.01	. 03	2
5-71	i	16	33	60	.1	12	6		4.75	11	5	ND	i	5	i	2	2	27	.02	.056	17	19	.33	28	.04		2.02	.01	.03	1
S-72	ı	21	41	94	.3	24	11	294	4.49	16	5	ND	1	11	1	4	2	24	.07	.125	14	24	. 55	28	. 01	2	2.88	.01	. 04	4
STD C	18	57	42	132	7.1	68	29		4.05	42	20	7	37	48	18	16	19	57	.49	.091	38	55	.91	177	.07		2.02	.06	.14	12

41
~
U
A
M
7
W
NE
PANE
Ž
Ž

									GC)LDE	N RA	MGE	RES	OUK	CES	E.	TDE	# 00	5-52	. , 0										
SAMPLE#	No PPK	Cu PPM	Pb PPN	Zo PPN	Ag PPN	Ni PPN	Co PPK	AD Nad	ře 1	As PPN	U PPM	ÀU PPN	Th PPM	St PPN	Cd PPN	Sb PPN	Bi PPM	V PPH	Ca	P	La PPM	Cr PPN	Ng L	Ba PPK	ti 3	B PPN	Al Ł	Na Ł	į	V PPN
5-73	1	13	27	37	.1	10	4	94	3.76	4	5	ND	4		1	2	2	33	.01	.024	20	12	.17	23	.08		1.05	. 01	.03	2
5-74	i	24	67	112	.1	24	22	4544	4.35	11	5	ND	1	10	1	2	2	20	.09	.164	16	20	.47	40	.02		2.51	.01	.04	2
5-75	i	23	26	22	.1	6	2		1.62	6	5	ND	1	5	1	2	2	15	.06	.054	6	7	.12	10	.09		3.52	.01	.01	3
S-76	í	26	22	80	.1	26	10		5.60	11	5	NO	2	4	1	2	2	23	. 02	.068	22	22	.55	25	.02		2.71	.01	.03	3
S-77	i	13	20	38	.1	10	1		3.12	6	5	MD	2	4	1	2	2	40	.01	.032	23	12	.16	20	.07	2	1.07	.01	.04	3
S-78	1	16	21	53	.1	16	6		4.35	12	5	ND	3	5	1	2	2	20	.02	.035	26	10	.16	35	.03		1.20	.01 .01	.03	1
5-79	1	30	29	80	.1	23	10	707	7.17	18	5	MD	5	4	1	2	2	17	.01	.048	30	15	. 26	28	.02		1.28			-
5-80	1	26	39	73	.1	26	11	425	6.18	17	5	ND	8	5	1	2	. 2	23	.02	.040	29	16	.30	28	.03		1.83	.01	.03	2
5-81	1	14	21	45	.1	12	5	275	3.12	6	5	ND	3	5	1	2	2	28	.01	.036	25	12	.21	18	.06		. 96	.01	. 03	
S-82	1	23	65	128	.2	27	13	1295	4.57	26	5	ND	3	16	1	2	2	19	.16	. 095	30	12	.17	39	. 03	1	2.24	.01	.02	2
5-83	1	15	26	53	.1	16	6	324	5.60	8	5	ND	3	4	1	2	2	39	.01	.061	20	17	.30	16	.06		1.43	.01 .01	.03	2
S-84	1	23	31	57	. 2	17	7		4.66	17	5	ND	3	5	1	2	2	26	.01	.070	15	19	.31	25	.04		2.76		.03	- 1
5-85	1	14	19	18	.4	4	2	472	2.71	6	5	ND	3	2	1	2	2	21	.02	.038	6	. 8	.06	18	.09		4.78	.01		
5-86	1	19	34	63	.1	17	1	268	5.65	12	5	ND	4	4	1	2	2	28	.01	.041	22	14	. 26	21	.06		1.74	.01	.04	3
5-87	1	15	31	71	.3	19	7	460	4.76	12	5	ND	2	4	1	2	2	19	.01	.042	26	13	. 27	22	.03	2	1.21	.01	.06	2
S-86	1	18	26	56	.3	14	6		5.25	12	5	ND	2	4	1	2	2	22	.01	.051	25	14	.21	21	.02		1.44 1.82	.01 .01	.05 .03	1 2
5-89	1	56	20	89	.1	31	12	337	5.88	13	5	ND	3	3	1	2	2	20	.01		24	27	. 67	24	.02					2
5-90	i	14	23	63	.1	16	6	505	4.22	13	5	ND	3		1	2	2	34	.01		20	20	.33	28	.04		1.65	.01	.04	2
S-91	1	25	28	83	.1	28	9	354	7.02	23	5	MD	5	5	1	2	2	27	. 02		19	31	.60	28	.02		1.87	.01	.04	
S-92	1	20	20	49	. I	15	6	236	4.59	10	5	ND	2	4	1	2	2	33	.01	.050	21	18	. 25	19	.02	1	1.20	.01	.04	2
		12	22	33	.1	10	4	795	3.90	7	5	ND	2	3	1	2	2	24	.01	.032	19	14	. 19	20	. 04	2	1.60	.01	. 02	3
5-93	1	12 27	28	74	.2	16		1176		18	5	ND	2	5	1	2	2	25	. 02	.049	15	18	. 25	36	.03	2	2.70	.01	.03	2
5-94	1			64	.1	21	10			14	5	ND	3	5	1	2	2	19	. 03	.049	22	16	.27	23	.02	2	1.35	.01	. 03	2
S-95	1	22	49			30	10		5.35	17	5	ND	4	5	1	2	2	22	. 03	.061	22	24	.53	41	.01	2	1.91	.01	.04	2
5-96	1	26	32	75	.1		5			17	5	ND	2	i	1	2	2	35	.01		20	21	. 38	28	.04	2	1.58	.01	. 03	3
5-97	1	17	19	47	.1	15	,	120	4.70	**	•				•	_									41	1		n i		3
S-98	1	13	17	43	.1	14	5		3.24	10	5	ND	1	3	1	2	2	24	.01		21	18	.33	41	.02		1.22	.01	.04	2
5-99	1	23	30	74	.i	28	12	1049	5.58	6	5	ND	1	3	1	2	2		.01		33	20	.57	31	.02					3
5-100	1	15	76	87	.2	15	6	284	4.92	1	5	ND	5	4	1	2	2		.01		13	20	.31	29	.06		2.49	.01	.05	
5-101	1	24	59	109	.1	36	15	2077	5.77	20	5	ND	16	46	1	2	2		. 35		43	6	. 07	75	.01	2		.01	. 93	2
5-102	i	14	23	52	.1	15	7	268	3.66	8	5	ND	2	4	1	2	2	15	.01	.032	28	11	.22	21	. 02	2	.95	.01	.03	1
S-103	1	24	47	91	.1	21	10		6.26	11	5	ND	3	4	1	2	2	21	. 63		21	15	.24	31	.03		1.87	.01	.03 .05	2 2
5-104	1	30	37	97	.2	31	13		5.33	20	5	ND	3	4	1	2	2	17	.01		21	17	.46	30	.02					i
S-105	1	24	45	83	.4	19	ı		5.47	9	5	ND	5	7	1	2	2	38	.04	.142	18	16	.30	108	.09		1.59	.01	.07	3
5-106	1	10	16	26	.1	6	2		1.77	8	5	ND	1	- 4	1	2	2		. 03	.045	6	6	. 09	17	.08		3.00	.01	. 02	
S-107	1	13	18	38	.2	9	4	716	3.24	7	5	ND	2	3	1	2	2	21	. 01	.052	12	11	.15	28	. 05	2	3.13	.01	. 05	4
S-10 8	1	12	18	33	.2	7	3		3.58	9	5	ND	2	3	1	2	2	29	.01		12	11	.10	17 171	.08		2.94 1.95	.01 .06	.02	5 11
STD C	17	58	40	132	6.5	67	29	948	4.11	39	22	7	38	47	18	18	19	58	.51	.092	39	55	. 94	111	.07	27	1.33	. 00	. 19	**

DGE
1 LE
HORN

									GU	יים ביים		.,						•												
SAMPLE#	No PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPN	Ni PPN	Co PPM	MB PPK	fe 1	As PPH	U PPN	Au PPN	Th PPM	St PPN	Cd PPN	Sb PPN	Bi PPM	V PPK	Ca	P	La PPK	Cr PPN	Hg Ł	Ba PPH	Ti \$	B PPN	Al 1	Na Ł	ł	PPK
S-109 S-110 S-111 S-112 S-113	1 1 1 1	8 6 10 24 10	13 11 16 19 24	15 11 15 78 33	.3 .1 .1 .1	4 5 30 9	1 2 11 3	21 12 224	1.64 1.21 2.92 6.35 2.45	9 4 13 8 6	5 5 5 5	ND ND ND	1 1 3 12 3	4 3 4 3 4	1 1 1 1	2 2 2 2 2	2 2 2 2 2	18 13 30 31 33	.02 .01 .04 .01	.040 .020 .030 .029 .031	8 18 4 28 22	7 6 9 23 9	.04 .04 .09 .46	24 23 9 26 17	.07 .04 .13 .05 .08	2 2 2 2	2.23 1.07 3.21 2.68 1.05	.01 .01 .01 .01	.01 .02 .01 .04 .02	1 1 2 2 2
S-114 S-115 S-116 S-117 S-118	1 1 2 1 2	20 19 34 13 24	23 32 20 43 27	61 68 62 74 67	.1 .1 .1 .2	19 20 23 18 19	7 7 8 11 8	603 213	5.75 5.68 6.19 3.81 6.66	12 16 24 10 26	5 5 5 5	ND ND ND ND	2 1 2 1 1	3 5 5 6 5	1 1 1 1	2 2 2 2 2	2 2 2 2 2	37 34 45 25 49	.01 .01 .01 .02	.062 .063 .070 .054 .086	18 19 27 27 20	19 19 22 19 23	.34 .33 .44 .40 .38	16 23 24 32 21	.05 .04 .04 .03 .03	2	1.80 1.91 1.91 1.87 2.06	.01 .01 .01 .01	.02 .02 .02 .04	1 2 2 3 3 3
S-119 S-120 S-121 S-122 S-123	1 2 1 1	21 29 21 26 12	32 30 26 25 26	64 88 67 54 66	.1 .1 .1 .3	19 26 21 17	10 10 8 5	225 215		12 18 13 10	5 5 5 5	ND ND ND ND	1 2 1 1	7 5 5 8 5	1 1 1 1	2 2 2 2 2	2 2 2 2 2	23 28 29 23 23	.02 .01 .02 .03	.083 .052 .054 .101 .059	15 21 18 13 20	20 22 21 17 18	.51 .48 .45 .39 .46	26 23 28 24 29	.02 .03 .04 .03	2 2 2	2.15 2.27 2.54 2.64 1.49	.01 .01 .01 .01	.03 .04 .05 .05	2 1 2 3 1
S-124 S-125 S-126 S-127 S-128	1 1 1 1	21 17 16 21 12	69 25 24 35 15	93 70 91 89 36	.1 .2 .1 .3	27 21 31 24 10	18 7 11 21 4	275 367 2619		15 11 16 14 8	5 5 5 5	ND ND ND	1 2 5 1	7 6 6 13 5	1 1 1 1	2 2 2 2 2	2 2 2 2 2	26 29 28 25 26	.03 .02 .02 .09	.069 .047 .037 .116 .034	20 22 28 13 33	21 20 31 20 11	.50 .44 .75 .50	33 31 35 39 18	.02 .06 .02 .02	2 2 2	1.72 2.3B 2.07 2.10 1.20	.01 .01 .01 .01	.05 .06 .07 .06	1 2 2
S-129 S-130 S-131 S-132 S-133	1 1 1 1	28 21 24 20 17	38 25 22 20 27	101 70 66 65 92	.2 .1 .2 .1	22 26 22	9 8	233 216	6.54 5.48	11 13 17 16 16	5 5 5 5 5	ND ND ND ND	1 3 5 2 2	11 4 3 4 5	1 1 1 1	2 2 2 2 2	2 2 2 2 2	22 29 32 29 33	.08 .01 .01 .02	.117 .054 .074 .054	24 29 27 28 25	22 22 24 20 26	.58 .45 .51 .46 .49	43 24 23 16 31	.02 .02 .04 .04	2 2 2 2	2.51 1.82 1.91 1.60 2.24	.01 .01 .01 .01	.07 .04 .06 .04	2 2 3
S-134 S-135 S-136 S-137 S-138	1 1 1 1	25 31 19	17 22 22 28 22	105 58	.3 .2 .2	29 34 16	10 12	1132	4.94 5.21 5.09	10 21 13 16 9	5 5 5 5	ND ND ND ND	1 3 3 2 3	7	1 1 1 1	3 2 2	2 2 2 2 2	23 29 26 26 23	.01 .03 .03 .01	.053 .053 .041			.25 .58 .63 .16	24 34 29 36 22		2	1.20 2.13 2.06 2.1.11 2.89	.01 .01 .01 .01	.04 .04 .05 .04	3 1 1 2
5-139 S-140 S-141 S-142 S-143	1 1 1 1 1	18 26 21	28 17 39 67 24	65 85 100	. 4 . 4 . 2	16 15 21	8 10 11	1897 5409 2117	7.92	9 10 17 15 21	5 5 5 5	ND		4 6 5	1 1 1	2 2	2 2 2	23 27 26	.01 .01 .02 .03	.063 .064 .069	29 22 21	14 14 19	.28 .26 .23 .35	33 61 89 48 38	. 03 . 04 . 02		2 1.88 2 1.08 2 1.70 2 2.11 2 1.40	.01 .01 .01	. 04 . 05 . 06 . 05	1 5 1 5 2 5 2
S-144 STD C	1 18								5.50 3.87		5 19					2 20	-						. 20 . 88				2 1.14 2 1.94		.05	

w
Õ
Ă
ш
4
W
2
4
6
\mathcal{I}

Sanple#	No PPN	Cu PPN	Pb PPM	2n PPK	Ag PPM	Ni PPM	Co PPM	No PPK	Te 1	λs PPN	U PPM	Au PPK	Th PPM	ST PPN	Cđ PPM	Sb PPK	Bi PPN	V PPK	Ca }	P	La PPM	CT PPM	Ng L	Ba PPM	Ti	B PPN	Al E	Na E	r t	V PPN
S-145 S-146 S-147 S-148 S-149	1 1 1 1	22 13 14 21 27	21 17 25 23 29	58 24 42 59 55	.3 .2 .1 .1	19 6 13 16 15	9 3 4 7 8	151 128 208	6.39 3.02 4.01 5.77 5.38	15 5 13 14 15	5 5 5 5 5	ND ND ND ND	4 2 3 6 2	4 3 4 5 5	1 1 1 1	2 2 2 2 2	2 2 2 2 2	20 27 20 37 28	.01 .01 .02 .01	.043 .057 .048 .055	28 7 16 19 18	13 10 16 20 18	.17 .12 .31 .30 .26	27 21 29 25 28	.03 .08 .03 .06	2 2 2	1.09 4.10 2.24 2.14 2.51	.01 .01 .01 .01	.05 .03 .04 .04	2 5 4 4 3
S-150 S-151 S-152 S-153 S-154	1 1 1 1	44 21 13 22 28	45 37 22 33 64	93 112 44 73 210	.1 .1 .1 .1	35 21 12 22 38	13 B 4 9	1734 150 552	8.24 4.39 3.83 4.12 4.79	27 17 13 13 20	5 5 5 5	ND ND ND ND	4 3 3 2 9	5 6 3 4 13	1 1 1 1	2 2 2 2 2	2 2 2 2 2	24 27 26 18 16	.03 .02 .01 .01	.070 .059 .028 .056 .082	15 20 19 19 25	29 19 14 20 26	.54 .39 .21 .50 .73	26 62 17 25 55	.02 .04 .03 .01	2 2 2	2.56 1.30 1.05 1.24 2.45	.01 .01 .01 .01	.03 .05 .03 .04 .06	3 2 3 2 3
S-155 S-156 S-157 S-158 S-159	1 1 1 1 1	20 18 21 18 65	43 22 21 32 64	109 57 71 51 67	.1 .1 .1 .1	26 14 24 13 24	9	254	4.30 5.85 6.29 5.92 4.76	12 15 17 17 21	5 5 5 5	D D D D D D D D D	1 1 6 2 3	21 4 6 5 6	1 1 1 1 2	2 2 2 2 2	2 2 2 2 2	24 23 26 31 16	.17 .01 .02 .01	.160 .067 .061 .064 .180	13 14 26 21 12	21 27 23 22 18	.52 .45 .50 .29 .32	37 17 23 23 43	.01 .02 .02 .03 .02	2 2 2	1.92 2.06 1.89 1.68 2.80	.01 .01 .01 .01	.06 .03 .03 .06 .03	2 2 2 2 4
S-160 S-161 S-162 S-163 S-164	1 1 1 1 1	15 15 13 7 14	25 17 25 16 22	21 53 49 16 51	.1 .2 .1 .2	6 18 15 5 13	3 8 6 2 6	100 246 286 59 250	4.96 4.38 5.01 2.21 6.24	12 5 8 7 9	5 5 5 5 5	ND ND ND ND	2 1 3 1	4 5 3 4	1 1 1 1	2 2 2 2 2	2 2 2 2 2	33 24 42 27 45	.02 .01 .01 .01	.042 .039 .077 .035	7 13 23 14 24	14 21 16 7 18	.08 .37 .29 .08 .24	23 29 17 13 21	.11 .03 .06 .07	2 2 2	3.30 2.46 1.31 .84 1.49	.01 .01 .01 .01	.02 .02 .04 .03	4 2 3 2 2
S-165 S-166 S-167 S-168 S-169	1 1 1 1	21 18 16 18 31	18 17 23 45 79	76 67 69 84 100	.1 .1 .1 .3	25 22 21 22 26		290 356 256 1283 1089		13 10 13 12 14	5 5 5 5 5	ND ND ND ND	2 4 5 3	3 3 4 4	1 1 1 1	2 2 2 2 2	2 2 2 2 2	31 26 28 27 24	.01 .01 .01 .01	.082 .077 .046 .047	33 32 32 26 24	27 24 23 23 24	.55 .50 .45 .47 .42	21 23 31 51 37	.02 .02 .02 .03 .02	2 2 2	1.99 2.00 2.07 2.03 2.25	.01 .01 .01 .01	.04 .04 .03 .04	2 2 3 3 2
S-170 S-171 S-172 S-173 S-174	1 1 1 1	24 26 29 25 26	64 83 113 59 75	82 90 106 78 72	.1 .3 .1 .3	19 23 23 22 20	10 11 11 10 9	761 736 523	6.16 6.90 7.88 7.10 7.17	10 7 15 11	5 5 5 5	ND ND ND	2 2 5 7 3	4 5 4 4	1 1 1 1	2 2 2 2 2	2 2 2 2 2	25 22 24 28 29	.01 .03 .02 .02	.055 .061 .100 .086	30 23 24 29 30	17 20 21 21 19	.28 .35 .35 .34 .28	35 24 24 32 30	.02 .02 .03 .04	2 2 2	1.20 1.50 1.45 1.54 1.26	.01 .01 .01 .01	.03 .03 .03 .05	2 2 4 3 2
S-175 S-176 S-177 S-178 S-179	1 1 1 1	25 23 19 24 28	35 48 41 54 31	80 73 72 84 76	.1 .2 .1 .2 .1	25 19 17 18 21	8	455 1561 1065 795 1112	6.75 6.26 7.47	11 12 15 13	5 5 5 5	ND ND ND ND ND	3 3 3 3	4 4 5 4	1 1 1 1	2 2 2 2 2	2 2 2 2 2	25 23 22 28 24	.01 .01 .02 .02	.117 .113 .076 .057	34 28 30 22 26	20 16 14 17 17	.39 .24 .20 .20 .30	24 29 26 24 35	.02 .03 .03 .04	2 2 2	1.37 1.02 .84 1.23 1.30	.01 .01 .01 .01	.03 .04 .03 .05	3 1 2 2 3
5-180 STD C	1 19	28 59	35 41	82 132	.3 7.1	18 67	9 29	1116 943	7.16 4.27	15 38	5 21	ND 8	2 39	4 50	1 18	2 18	2 19	24 58	.01 .50	.052 .094	23 38	16 56	. 27 . 92	27 171	.03 .07		1.36	.01 .06	.03 .14	4 12

U	
	١
è	
u	
-	١
	į
	í
_	
u	
_	
~	
-	
<u> </u>	
- 6	
•	
_	

SAMPLE	No PPN	Cu PPK	Pb PPK	Zn PPM	Ag PPH	Ni PPK	Co PPN	Na PPK	ře 1	As PPM	U PPN	Au PPM	Th PPN	Sr PPN	Cd PPN	SD PPN	Bi PPK	V PPK	Ca	P	La PPK	Cr PPN	Ng 1	Ba PPM	Ti	B PPN	Al t	Na 1	I	V PPK
S-181 S-182 S-183 S-184 S-185	1 1 1 1	15 19 13 20 11	27 19 25 24 16	62 65 62 76 50	.1 .1 .1 .1	13 17 21 23 15	7 9 10 10 6	1135 909 403 313 504	4.39 4.63 4.82 6.94 4.68	11 8 2 19 9	5 5 5 5 5	ND ND ND	1 1 5 3 4	4 4 3 3 3	1 1 1 1	2 2 2 2 2	2 2 2 2 2	27 26 25 36 26	.01 .01 .01 .01	.041 .074 .047 .056 .052	24 27 29 29 37	15 20 20 23 17	.26 .39 .43 .46 .33	34 31 31 29 26	.04 .03 .03 .04	2 2 2	1.31 1.94 1.70 2.08 1.36	.01 .01 .01 .01	.03 .02 .02 .01	2 2 2 3 3
S-186 S-187 S-188 S-189 S-190	1 1 1 1	11 23 18 21 17	15 26 20 27 22	52 62 44 69 59	.1 .3 .1 .1	16 20 18 20 17	6 9 6 12 9	153 242 381 399 314	4.64 5.26 3.94 4.54 4.73	9 17 14 6	5 5 5 5 5	ND ND ND ND	2 1 2 2 5	3 3 17 4	1 1 1 1	2 2 2 2 2	2 2 2 2 2	24 33 27 31 33	.01 .01 .01 .18	.039 .075 .067 .050	34 25 22 27 21	20 24 21 19	.39 .41 .41 .42 .41	16 18 29 41 36	.01 .01 .03 .03	2 2 2	1.73 1.64 1.22 2.29 2.17	.01 .01 .01 .01	.01 .02 .03 .02	3 3 3 2 3
S-191 S-192 S-193 S-194 S-195	1 1 1 1	20 18 29 22 21	24 25 26 27 25	62 45 75 67 63	.1 .1 .1 .1	18 13 20 19	8 7 11 9 10	485	6.07 3.75 5.58 6.48 5.86	13 16 18 21 19	5 5 5 5 5	ND ND ND ND	2 2 4 2 1	3 4 4 4 5	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	32 22 24 30 28	.01 .03 .02 .01	.054 .088 .070 .077	26 13 23 25 17	20 19 23 25 25	.42 .33 .43 .39 .42	22 15 28 18 19	.03 .06 .02 .02	2 2 2	1.79 4.17 2.84 1.70 1.85	.01 .01 .01 .01	.01 .01 .03 .03	2 6 3 2 3
S-196 S-197 S-198 S-199 S-200	1 1 1 1	19 12 12 23 23	28 23 24 47 38	51 42 57 80 81	.2 .1 .4 .1	11 11 14 21 21	6 5 6 11 10	725 586 223 696 962	4.12 4.26 4.64 6.12 6.71	11 5 12 20 16	5 5 5 5	ND ND ND ND	1 1 3 4 3	4 3 4 4 5	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	32 31 34 22 34	.02 .01 .02 .01	.104 .054 .035 .045 .145	18 29 21 29 29	16 15 17 18 21	.24 .25 .31 .25 .37	24 23 36 32 57	.07 .04 .05 .02	2 2 2	2.10 1.23 2.57 1.92 1.67	.01 .01 .01 .01	.02 .01 .01 .02	3 3 2 3 2
S-201 S-202 S-203 S-204 S-205	1 1 1 1	19 24 23 36 44	30 37 30 40 56	63 92 104 98 101	.2 .4 .1 .1	15 25 26 25 33	7 12 13 12 15	1328 466 605	5.32 5.96 6.22 7.14 8.64	18 14 18 14 17	5 5 5 5 5	ND ND ND ND	2 3 7 3 8	4 8 6 12 7	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	32 25 26 24 21	.01 .11 .03 .14	.054 .100 .068 .057 .082	25 25 29 22 21	20 23 27 24 28	.31 .51 .56 .43	41 50 30 45 37	.05 .02 .02 .01	2 2 2	2.21 1.88 2.46 2.11 2.09	.01 .01 .01 .01	.02 .05 .03 .02	4 2 3 2 2
5-206 5-206X 5-207 5-208 5-209	1 1 1 1	33 46 26 29 27	64 51 50 91 32	147 95 78 222 90	.3 .2 .1 .3	30 21 19 27 23	-	4661 7000 663 433 558	17.23 7.11 5.86	13 24 13 11 12	5 5 5 5 5	ND ND ND ND	3 5 2 3 2	58 35 5 6	1 1 1 1	2 2 2 2 2	2 2 2 2 2	16 16 31 24 30	1.21 .35 .02 .04 .25	.152 .079 .057 .056	13 22 28 23 27	21 11 20 21 21	.47 .22 .29 .45	69 43 29 30 37	.01 .03 .03 .01	2 2 2	2.03 1.62 1.38 1.67 1.96	.01 .01 .01 .01	.05 .04 .03 .03	2 1 2 1 2
S-210 S-211 S-212 S-213 S-214	1 1 1 1	21 22 23 20 20	22 30 23 30 31	63 67 85 80 72	.2 .3 .2 .2	19 18 27 24 19	10 10 13 11	514 380	4.87 5.81 6.33 6.22 7.03	2 9 11 8 12	5 5 5 5	ND ND ND DN ND	2 4 3 3 2	7 4 4 4	1 1 1 1	2 2 2 2 2	2 2 2 2 2	26 30 26 26 37	.06 .02 .01 .03	.070 .063 .060 .072	29 26 28 30 26	18 20 23 22 22	.40 .37 .59 .50	36 30 32 25 26	.03 .04 .03 .02	2 2 2	1.70 2.20 2.13 1.73 1.78	.01 .01 .01 .01	.05 .04 .04 .04	2 2 3 2 2
S-215 STD C	1 17	20 57	86 41	163 132	.2 7.2	22 67	14 29	2020 955	6.07 4.06	18 41	5 18	ND 7	4 37	6 47	1 17	2 16	2 19	21 58	.02 .50	.057 .091	26 38	14 55	. 20 . 92	53 176	.03 .07		1.27 2.02	.01	.03 .13	1 13

											-																				
SAMPLE	MO PPM	Cu PPN	Pb PPN	2n PPM	Ag PPK	Ni PPN	Co PPM	Ma PPK	re 1	As PPN	U PPM	Au PPM	Th PPM	ST PPM	Cd PPN	Sb PPM	Bi PPM	V PPN	Ca	ì	La PPK	CT PPN	Ng Z	Ba PPM	Tí	B PPM	al E	Na	į	¥ PPK	
		2.	.,	178	,	22	11	1406	6 13	20	5	ND	3	4	1	2	2	25	. 01	.047	25	11	.12	34	.02	2	1.01	.01	.01	1	
5-216	1	24	57	179	. 2	32		4064		43	5	ND	3	28	i	i	Ž	18	.38	.140	48	15	. 26	61	.01	-	2.14	.01	.03	1	
S-217	1	32	1280	194	. 8					11	5	ND	2	- 6	;	2	2	32	. 83		19	28	.54	24	. 03		2.15	.01	.02	3	
5-218	1	25	61	99	.2	27	11		7.65		-		í	i	i	,	2	35	.01	.061	22	22	. 39	27	.03		1.84	.01	.03	2	
S-219	1	17	36	74	.1	19	9		6.65	. 8	5	ND	1	:	1	,	2	28		.073	24	24	.50	28	.02		2.04	.01	. 03	3	
5-220	1	23	21	78	.1	24	10	321	3.36	16	5	ND	•	•	1	4	4	7.0	.02	.073	41	41				•				•	
						••						un	٠		1	,	2	20	80	.072	25	21	.55	34	.01	2	1.75	.01	. 02	2	
S-221	1	19	21	73	.3	23	9		4.46	11	5	ND	2	•	•	2	2	32		.036	26	18	.35	17	.03	-	1.52	.01	.01	3	
S-222	1	13	21	64	.1	15	6		4.99	18	•	ND	-	:	;	-	2	37		.052	18	27	.45	19	.03		2.00	.01	.02	2	
S-223	1	21	35	11	.2	20	9		1.12	20	5	ND	2	4	1	2		36			17	10	.13	18	.03		1.01	.01	.02	ž	
5-224	1	9	19	29	.1	В	3		3.40	.1	5	ND	2	3	1	2	2			.026	19	21	.24	22	.02		1.14	.01	.02	i	
5-225	1	20	18	53	.1	19	6	587	4.56	12	5	RD	2	3	1	2	2	31	. 01	.047	13	21	.21	"	. 02	•	1	. • •		•	
						••		•••		••		WB.				,	,	**	A1	.041	21	23	. 48	25	.01	2	1.99	.01	. 02	2	
5-226	1	18	24	66	.1	22			5.89	19	5	KD	4	•	1	2	2	21 30	.01		19	28	.59	13	.01		2.25	.01	.01	2	
5-227	1	22	20	83	.1	24	10		7.39	14	5	ND	5	4	1	-	_				20	28	.58	42	.01		2.01	.01	.02	2	
5-228	1	31	41	92	. 2	29	12		7.13	16	5	ND	5	•	,	3	2	29		.096	14	18	.32	35	.05		2.97	.01	.02	i	
S-229	1	12	17	47	.1	13	6		3.90	1	5	ND	3	3 5	1	2	2	26		.045	25	12	.17	17	. 04		1.06	.01	.01	ž	
S-230	1	13	20	42	.1	10	5	172	3.20	6	5	ND	3	,	1	2	2	45	. 02	. 039	23	12	,	• ,		٠	2.00			•	
		••	10	26	•		4	108	6.10	9	5	ND	3		1	2	2	55	. 01	.048	12	15	.14	20	.12	2	1.37	.01	.02	3	
5-231	1	13	20	39	.2	9 12	-	159		10	5	ND	3	3	i	2	2	39		.041	18	15	.22	20	.07		1.34	.01	.01	3	
5-232	1	12	25	44	.1					20	5	ND	3	,	;	2	2	33		.064	12	17	. 22	39	.07		3.09	.01	.01	7	
S-233	1	20	516	518	. 2	16		1653					1	4	i	2	2	23		.042	15	11	.09	32	. 02		.96	.01	.02	2	
5-234	1	28	250	293	.4	11		2061		19 17	5	ND ND	5	6	1	2	2	16	.04		26	17	.42	42	.01		1.67	.01	.01	2	
5-235	1	25	52	112	.3	31	13	1701	6.13	11	,	RU	,	•		4	4	10	. • •	. 0,11	••	• •	•••	••		•	•			-	
S-236	1	13	36	80	.2	13	7	778	5.28	15	5	ND	2	4	1	2	2	25	.01	.056	25	16	. 23	22	.02	2	1.21	.01	. 03	2	
S-237	i	16	23	50	.2	12	6		4.40		5	KD	Ž	i	1	2	2	32		.066	23	15	. 21	19	.03	2	1.20	.01	. 02	2	
5-238	i	15	25	56	.2	15		289		8	5	ND	5	i	1	2	2	37		.061	25	20	.34	23	.04	2	1.57	.01	.02	3	
5-238	i	20	20	59	.2	16		1173		13	5	ND	2	i	i	2	2	34		.088	16	21	.34	29	.07	2	2.39	.01	.03	3	
		16	22	72	.2	19	ė		4.93	10	5	KD	3	i	1	2	2	25	.01		17	23	.41	29	.04	2	2.48	.01	.03	4	
5-240	1	10	44	12	• •	.,		213	1.75	••	•		•	•	•	-	•														
S-241	1	19	22	57	.1	16	9	331	5.17	5	5	ND	3	4	1	2	2	31	.01	.051	26	18	.31	21	.04	2	1.71	.01	.02	2	
5-242	i	22	20	62	.1	20	11		4.56	11	5	ND	- 4	_ 1	1	2	2	25	.02	.043	31	18	.36	34	.02		1.30	.01	. 03	2	
 5-243	1	34	32	76	.1	36	13	485	5.07	22	5	ND	8	5	1	3	2	17	.01	.041	23	26	.65	43	.01		2.21	.01	.06	3	
5-244	1	60	241	398	. 2	56	18	1409	4.91	27	5	ND	14	22	1	2	2	15		.104	43	27	. 61	59	.01		1.98	.01	. 07	1	
S-245	1	39	23	82	.1	38	14	571	3.65	19	5	ND	11	1 325	1	2	2	12	6.71	.068	18	22	.74	33	.01	2	1.42	.01	.06	2	
																											2 42		۸,	•	
5-246	1	50	35	119	.1	53	18	1476		28	5	ND	12	44	1	2	2	16		.084	37	29	. 92	68	.01		2.07	.01	.06	2	
5-247	1	15	26	80	.1	23	9		4.65	12	5	ND	2	52	1	2	2	28	.29		18	22	. 52	39	. 02		1.52	.01	. 05	2	
5-248	1	16	19	110	.3	29	10	325	1.36	8	5	KD	8	43	1	2	2	21		. 039	15	24	. 67	51	. 03		3.01	.01	.04	. 3	
5-249	1	42	27	207	.1	36		14183		8	6	ND		1 173	1	2	2		1.57		5	16	.64	56	.01		1.44	.01	. 05	1	
5-250	1	76	32	123	.1	37	16	1895	4.72	15	5	KD	13	12	1	2	2	19	.14	.046	26	29	. 81	61	.01	2	2.13	.01	. 05	2	
																				457	.,			77	01	•	1 07	0.1	. 05	4	
S-251	1	88	40	139	.1	42		3026		16	5	ND	12	14	1	3	2	13		.056	15	22 55	. 89	77 176	.01 .07		1.97	.01	. 13	12	
STD C	17	58	40	132	6.6	68	29	1050	4.00	42	22	7	37	48	18	20	20	58	. 50	.092	39	"	.91	110	.07	13	2.02	. 00		**	

)

)

HORNE LEDGE

	SAMPLE	Mo PPM	Cu PPM	Pb PPN	Zo PPN	Ag PPM	N1 PPK	Co PPN	No PPK	Fe 3	As PPN	U PPN	AU PPM	Th PPM	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V PPK	Ca 1	P	La PPM	Cr PPM	Ng L	Ba PPM	Ti	B PPM	Al L	Na Ł	K 1	W PPN
(1	S-252 S-253 S-254 S-255 S-256	1 1 1 1	42 76 49 52 54	27 20 19 19	106 129 126 118 123	.1 .1 .1 .1 .1	33 46 42 47 47	13 14 22 21	1260 357 1553 807 771	3.04 4.97 4.87 4.88	9 17 15 12 13	5 5 5 5 5	ND ND ND ND	7 18 11 16 16	22 7 5 7	1 1 1 1	2 2 2 2 2	2 2 2 2 2	13 21 16 14 25	.39 .05 .05 .04	.063 .048 .061	8 18 15 31 33	19 32 32 30	.74 1.11 .97 1.02 1.06	64 73 53 48 50	.01 .01 .01 .01	2 2 2 2	1.34 2.42 2.30 2.26 2.35	.01 .01 .01 .01	. 04 . 05 . 04 . 04	1 3 3 2 2
	\$-257 \$-258 \$-259 \$-261 \$-262	1 1 1 1	16 40 50 64 36	9 47 37 49 33	91 148 134 133 128	.3 .1 .2 .1	35 42 48 55 38	11 22 20 28 18	1231 544 1306	6.31	12 18 21 27 18	5 5 5 5	ND ND ND ND	10 13 12 13 10	7 10 7 11 11	1 1 1 1	2 2 2 2 2	2 2 2 2 2	15 16 19 19 17	.04 .09 .04 .05	.033 .069 .041 .051	27 21 30 17 16	26 27 31 32 25	.79 .86 .90 .90	32 31 28 54 38	.01 .01 .01 .01	2 2 2	1.87 1.98 2.41 2.61 1.94	.01 .01 .01 .01	.04 .03 .04 .05	2 2 3 2 2
	\$-263 \$-264 \$-266 \$-267 \$-268	1 1 1 1	41 89 79 70 56	37 105 85 42 62	120 (158 144 104 134	.1 .1 .1 .1	41 68 62 52 48	40 37	678 1237 1350 1683 1287	8.79 8.77 6.84	23 62 56 33 32	5 5 5 5	ND ND ND ND	9 14 13 9 10	25 10 26 12 37	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	18 10 15 17 14	.15 .04 .08 .11	.083 .054 .065 .090	15 22 27 19 28	28 16 25 27 21	.81 .37 .61 .76	36 26 26 22 22	.01 .01 .01 .01	2 2 2	2.04 1.10 1.87 2.16 1.77	.01 .01 .01 .01	.03 .04 .04 .04	4 2 2 2 2 2
& ∀ ∨	S-269 S-270 S-271 S-272 S-273	1 1 1 1	59 61 57 52 40	56 48 59 43 31	121 123 121 106 96	.1 .1 .1 .1	51 50 46 39 33	30 29	1268 1299 1589 1144 566	6.67 5.74 4.75	28 32 28 21 13	5 5 5 5 8	ND ND ND ND	12 12 10 8 12	28 26 28 50 1392	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	16 18 14 11	.14 .13 .28 .51 6.93	.062 .064 .082 .080 .057	39 37 17 19 20	26 27 23 19	.75 .78 .69 .59	27 29 36 27 29	.01 .01 .01 .01	2 2 2	1.96 2.25 1.89 1.55 1.47	.01 .01 .01 .01	.04 .04 .04 .04	1 2 2 2 2 2
GALENI	S-274 S-275 S-276 S-277 S-278	1 1 1 1	51 53 48 44 60	48 59 40 28 45	116 127 124 99 124	.1 .1 .2 .1	47 47 47 35 48	27 23 17	1113 1153 £32 539 1080	5.66 5.21 4.23	31 30 27 17 36	5 5 5 5 5	ND ND ND ND	10 9 10 10	32 31 64 4 271 37	1 1 1 1	2 2 2 2 2	2 2 2 2 2	14 15 14 11 14	.37 .37 .91 5.93		24 18 20 19 21	22 24 23 17 22	.73 .76 .80 .68	29 29 25 11 27	.01 .01 .01 .01	2 2 2	1.71 1.89 1.71 1.36 1.73	.01 .01 .01 .01	.04 .04 .03 .02	1 2 1 2 2
#1	S-279 S-280 S-281 S-282 S-283	1 1 1 1 1	60 70 67 44 45	49 487 269 80 116	134 239 328 161 171	.1 .6 .2 .2	48 44 43 43	23 24	927 1505 2340 1166 1462	6.70 5.18	26 33 34 17 20	5 5 5 5	ND ND ND ND	10 8 7 9	39 65 153 31 59	1 1 1 1	2 2 2 2 2	2 2 2 2 2	15 14 10 13 12	.75 2.76 .44	.080 .080 .075 .065	19 17 16 15	24 21 16 23 19	.87 .78 .57 .75	26 42 49 47 35	.01 .01 .01 .01	2 2 2	1.89 1.66 1.30 1.88 1.57	.01 .01 .01 .01	.04 .03 .02 .04	2 2 2 1 1
	S-284 S-285 S-286 S-287 S-288	1 1 1 1	49 41 49 51 61	57 42 48 57 69	130 102 127 132 132	.2 .1 .1 .1	42 32 44 44 41	17 22	1247 644 977 1422 964	4.06 5.08 5.30	20 21 22 16 29	5 7 5 5 5	ND ND ND ND	7 8 10 9	59 349 94 42 139	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	13 14	.94 6.26 1.36 .52 2.88	.090 .069 .071 .069	17 14 17 21 20	20 17 21 22 20	.69 .61 .76 .69	41 24 29 45 21	.01 .01 .01 .01	2 4 2	1.66 1.18 1.69 1.93 1.58	.01 .01 .01 .01	.06 .04 .03 .03	1 2 1 1 2
	STD C	18	60	39	132	6.8	67	30	1017	4.15	40	21	8	39	49	18	20	20	60	. 50	.095	40	52	.92	182	. 07	33	2.04	.06	.14	13

. •

.

,

GOLDEN	RANGE	RESOURCES	FILE #	88-5278

SAMPLE)	No PPN	Cu PPN	Pb PPM	Zn PPM	Ag PPN	Ni PPN	Co PPM	No PPK	ie 1	As PPN	U PPM	Au PPN	Th PPM	Sr PPN	Cđ PPN	SD PPN	Bi PPM	V PPN	Ca	?	La PPM	CT PPM	Ng L	Ba PPM	Ti 3	B PPM	l 1	Na Ł	I t	W PPN
r 200	1	39	173	1166	.1	34	18	1670	4.53	20	5	MD	6	132	1	2	2	9	2.01	.125	13	15	.44	38	.01		1.05	.01	. 05	1
5-289 5-289A	1	43	58	125	.1	42	21	1025	5.20	21	5	ND	8	105	1	2	2	12	1.07	.082	23	20	.74	21	.01		1.64	.01	.04	2
5-203A S-290	1	37	32	133	.i	11	21	-	5.50	18	5	MD	9	58	1	2	2	16	. 59	.064	17	26	. 96	22	.01		2.13	.01	. 03	1
S-290	i	54	45	112	.2	38	20	890	4.93	25	5	ND	10	1206	1	2	2	12	4.80	.071	19	18	.70	17	. 01		1.50	.01	. 03	2
5-292	i	34	59	127	.2	36	20	1012		13	5	ND	7	31	1	2	2	15	.40	.092	15	22	.74	44	.01	2	1.83	.01	.04	1
2-131	•	"	•	,	••	••			••••	••	-																			
S-293	1	52	43	107	.1	37	19	805	4.69	20	5	MD	10	1 228	1	2	2	11	5.29	.087	20	18	. 65	15	. 01		1.34	.01	.02	2
5-294	i	31	40	123	.1	32	20	1794	4.23		5	ND	5	103	1	2	2	14	1.38	.085	B	21	.66	44	.01		1.52	.01	.02	2
S-295	i	40	45	126	.1	41	23	1435	5.43	11	.5	ND	9	21	1	2	2	16	.23	.063	22	24	.73	32	,01		2.03	.01	.03	1
5-296	i	38	55	147	.1	38	20	764	4.98	11	5	ND	8	21	1	2	2	15	. 27	.092	19	24	.78	38	.01		2.02	.01	.04	1
S-297	i	39	39	109	.1	35	18	742	4.71	18	5	ND	10	/ 141	1	2	2	13	3.08	.083	21	20	.74	26	.01	Z	1.64	.01	.03	3
• • • • • • • • • • • • • • • • • • • •	•	•••	•	•••												_						••		••		,	1 66	.01	.03	2
S-299	1	35	53	125	.1	37	21	925	5.90	20	5	ND	8	45	1	2	2	13	.71	.079	16	22	.71	31	.01		1.66	.01	.05	2
S-300	1	42	63	142	.1	39	20	1101	4.80	20	5	ND	8	38	1	2	2	13	.53	.084	17	21	.70	27	.01		1.89	.01	.04	1
S-301	1	47	61	142	.1	41	22	130B	5.04	19	5	ND	8	33	1	2	2	14	. 39	.105	17	21	.67	49	.01			.01	.03	ž
S-302	1	44	48	122	.1	38	20	1009	4.73	18	5	ND	8	104	1	2	2	13	2.15	.082	16	20	.66	27	.01		1.63	.01	.04	1
5-303	1	42	1105	1 242	.1	38	19	1763	4.50	13	5	ND	6	26	1	2	2	14	.34	.108	15	22	. 68	45	.01	2	1.84	.01	. 04	•
										20		MR	٥	£1	,	2	2	14	.70	.085	19	24	.80	33	.01	2	1.91	.01	. 05	2
5-304	1	53		1165	.1	45		1367		20	5	KD	9	51 37	1	2	2	15	.39	.098	11	26	.81	65	.01	-	1.91	.01	.03	1
s-305	1	40	40	130	.1	40	20	1121		11		ND	7		•	2	ž	12	.75	.075	14	20	.68	39	.01		1.47	.01	. 05	1
5-306	1	40	41	111	.1	36	16		3.72	13	5	ND		43 24	1	2	2	16	.27	.114	16	25	. 80	49	.01		1.93	.01	.04	2
S-307	1	39	55	135	.2	40	25			21	5	ND	8	66	1	2	2	14	1.06	.076	19	23	. 82	28	.01		1.80	.01	. 05	2
S-308	1	53	64	142	.2	47	24	1044	5.45	27	5	ND	10	00	1	4	4	13	1.00	.076	.,	.,		••	•••	•	••	•••		
s-309	1	36	22	124	.2	39	20	2003	4.45	9	5	ND	4	32	1	2	2	20	.30	.098	11	24	.70	79	.01		1.66	. 01	.04	1
S-310	i	48	44	122	.1	41		1292		20	5	ND	8	33	1	2	2	14	.43	.081	19	22	.70	38	.01	-	1.80	.01	.03	2
5-311	i	37	30	119	.1	40	22			9	5	ND	5	21	1	2	2	19	. 22	.077	13	26	. 80	63	.01		2.23	.01	.03	3
S-312	i	41	47	122	.3	39	20		5.14	12	5	ND	8	33	1	2	2	15	. 36	.074	18	22	.70	30	.01		1.81	.01	.04	2
5-312	1	32	43	128	.1	35		1175		12	5	ND	6	32	1	2	2	15	.34	.093	12	22	. 68	50	.01	2	1.68	.01	. 05	2
2-313	•	32	10		••	••	••	••••																••				41	45	,
5-314	1	36	51	123	.2	37	20	1580	4.82	14	5	ND	6	38	1	2	2	- 14	.52	.092	14	21	. 67	51	.01		1.59	.01	.05	1
5-315	1	41	184	131	. 1	36	26	12822	5.41	11	5	ND	6	20	1	2	2	15	. 20	. 130	13	22	.50	41	.01		1.69	.01	. 05	2
S-316	1	38	47	128	.1	38	19	1204	4.31	13	5	ND	6	46	1	2	2	12	.70	.084	14	21	.73	31	.01		1.54	.01	.04	2 2
S-317	1	43	52	132	.2	41	20	1800	5.19	1	5	ND	5	12	1	2	2	18	.21	.098	15	28	. 66	25	.01		1.72	.01	. 05	1
5-318	1	2488	1185	1 375	13.2	25	14	1341	4.60	11	5	ND	6	1 249	2	2	2	6	11.65	.067	5	1	.24	19	.01	2	.48	.01	. 04	1
											_						•			246	16	24		41	. 01	3	2.10	.01	. 05	1
S-319	1	206	47	147	.9	36			4.66		5	KD	7	74	1	2	2		1.60	.085	10	24 22	.83	41 45	.01		1.79	.01	.05	3
5-320	1	51	60	144	.2	41	21			13	5	ND	1	13	1	2	2	15		.089	16				.01		2.07	.01	.03	3
S-321	1	32	28	110	.1	34	20		4.65	1	5	ND	8	46	1	2	2	20		.073	13	28	. 83	26 47	.01		1.69	.01	.05	2
5-322	1	42	48	142	.2	39	19			14	5	ND	6	64	1	2	2	13		.115	15	20	. 69				1.44	.01	.03	2
5-323	1	275	59	141	2.0	36	18	1182	4.34	17	5	ND	6	75	1	2	2	12	2.30	. 079	13	24	.61	30	.01	2	1.21		. 03	•
STD C	18	58	44	132	6.7	67	29	1018	4.04	38	20	7	38	47	18	18	19	58	.50	.092	39	56	.92	178	.07	33	2.03	.06	.14	12

9,000

..)

٠)

)

	Sample #	Mo PPM	Cu PPM	Pb PPN	Zn PPN	Ag PPN	Ni PPM	Co PPN	No PPK	Fe 1	As PPH	U PPM	Au PPM	Th PPM	ST PPM	Cd PPM	Sb PPN	Bi PPM	V PPM	Ca 1	P	La PPM	Cr PPN	#g	Ba PPM	Ťí Š	B PPM	Al L	Na R	I }	¥ PPN
ENA	S-324 S-325 S-326 S-327 S-328	1 1 1 1	38 59 31 78 34	53 59 47 58 52	138 142 137 147 149	.1 .2 .1 .1	41 59 38 39 41	21 20	736 7192 1446 5299 1395	5.48 5.10 3.92	14 18 17 11 13	5 5 5 5 5	ND ND ND ND	9 7 7 5	11 65 27 46 31	1 1 1 1	2 2 2 2 2	2 2 2 2 2	20 20 15 14 17	.12 .68 .29 .40	.064 .140 .096 .126	24 12 18 10 15	28 30 23 20 27	.80 .77 .77 .73	22 56 42 73 38	.01 .01 .01 .01	2 2 2	2.30 2.59 1.86 1.87 2.01	.01 .01 .01 .01	.05 .05 .06 .05	1 1 1 1
GALE,	5-329 5-330 5-332 5-333 5-334	1 1 1 1	28 49 34 27 48	44 177 50 44 57	98 142 127 #208 154	.1 .1 .1 .1	36 45 43 29 43	22 13	532 1219 1214 14416 1670	5.67 5.28 3.58	26 12 18 19	5 5 5 5	ND ND ND ND	6 6 4 6	49 23 28 198 28	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	6 19 18 6 21	.57 .28 .31 2.60		13 19 17 15 19	10 30 28 8 30	.31 .88 .84 .23	20 37 57 58 69	.01 .01 .01 .01	2 2 3	.87 2.15 1.99 .82 1.83	.01 .01 .01 .01	.03 .04 .02 .02	1 1 2 1 1
	S-335 S-336 S-337 S-338 S-339	13 15 38 9	162 143 93 103 90	64 64 349 81 45	330 519 3588 514 203	.4 .2 6.2 .4 .1	90 73 217 90 123		711		59 68 377 101 78	5 6 5 5	ND ND ND ND	4 4 10 12 13	47 23 50 17 28	2 1 45 2 1	2 2 10 2 2	2 2 2 2 2	18	1.03 .38 1.64 .61 .89	. 339	6 3 2 3 4	5 6 11 5	.15 .06 .18 .13	64 67 103 52 31	.01 .01 .01 .01	2 2 2 2 2	.34 .36 .45 .39	.01 .01 .01 .01	.06 .07 .12 .05	1 1 1 1
	S-341 S-342 S-343 S-344 S-345	11 9 9 9	138 102 95 70 88	63 68 57 37 47	648 587 385 494 499	.7 .3 .3 .2	121 117 120 92 106	28 35 40 29 38	753 824 471	7.62 6.75 7.10 5.61 7.18	105 82 84 52 76	5 5 5 5	ND ND ND ND	12 12 11 16 16	16 17 10 7 8	2 5 2 4 5	2 3 2 2 2	2 2 2 2 2	10 11 11 21 19	.72 .64 .53 .35	.136 .134 .111 .061 .069	2 3 2 7 8	5 13 13 17 20	.17 .29 .22 .34 .41	47 40 38 28 28	.01 .01 .01 .01	2 2 2 3 2	.28 .86 .75 .97	.01 .01 .01 .01	.05 .01 .03 .04	1 2 1 1
	S-346 S-347 S-348 S-349 S-350	9 15 24 28 19	121 353 294 156 164	91 102 110	2185 990 1597 1270 758	2.0 1.5 2.4 1.5 1.4	326 124 215 140 68	47 24 46 25 22	477 947 598	7.05	64 53 68 48 42	5 5 5 5 5	ND ND ND ND	7 3 8 9	86 62 45 45 32	62 9 16 12 6	2 5 3 4 2	2 2 2 2 2 2		2.95 .89	.143 .187 .170 .098 .137	6 5 9 11 7	9 2 8 3 2	.30 .35 .20 .34	129 51 49 40 36	.01 .01 .01 .01	2 2 2 2 2	.98 .21 1.10 .38 .16	.01 .01 .01 .01	.05 .04 .03 .05	1 1 1 1
	S-351 S-352 S-353 S-354 S-355	39 64 37 46	133 186 144 133	251 304	1372 2120 1593 1184 361	1.0 2.3 2.3 3.5	111 172 129 133 66	15 18 17 25 6	476 842	4.64 4.16 5.33	46 74 38 30 31	5 5 5 5	ND ND ND ND	7 6 2 2	67 59 33 24 81	9 12 11 9	8 13 5 3	2 2 2 2 2	23 22 46	2.31 1.08	.133	11 10 10 10	2 2 3 8 6	.75 .79 .15 .18	26 33 37 48 106	.01 .01 .01 .01	2 7 3 2 7	.14 .13 .23 .52 .83	.01 .01 .01 .01	.03 .05 .05 .09	1 1 1 1
	\$-356 \$-357 \$-358 \$-359 \$-360	12 22 5 4	28 72 31 199 60	64 153 134 90 33	662 1063 373 483 129	.2 1.5 .2 .1	62 79 38 340 74	8 8 16 178 32	1011 514 874 953 438	3.37 4.26 4.67	34 58 21 38 6	5 5 5 5	ND ND ND ND	1 2 3 5	42 48 28 24 27	3 5 1 1	2 4 2 2 2	2 2 2 2 2 2	40 15 14		.731	17 12 16 216 33	11 8 10 20 10	.40 .80 .31 .58	100 71 54 54 17	.01 .01 .01 .01	5	1.41 .90 1.01 2.08	.01 .01 .01 .01	.11 .06 .02 .03	1 1 1 1
	S-361 STD C	3 18	62 57	34 40	101 132	.1 6.6	60 67	33 29	437 1018		9 39	5. 17	ND 6	6 37	25 47	1 18	2 19	2 22			. 081 . 092	29 39	8 55	. 29 . 92	13 176	.01	2 32	.69 2.05	.01 .06	.01 .14	1 12

APPENDIX F
CERTIFICATE

CERTIFICATE

I Milan Hlava of the town of Surrey, Province of British Columbia, Canada do state:

- 1. That I am a practicing consulting geologist with office at 14746, 90A Avenue Surrey, B.C. V3R 1B2.
- 2. That I am a graduate of Komensky University, Bratislava, Czechoslovakia (1968) with a degree of Bachelor of Science in Exploration Geology.
- 3. That I have practiced my profession as a Geologist continuously since 1968 and as a Consulting Geologist continuously since 1984.
- 4. That the conclusions reached in this report are my own.

Milan Hlava B.Sc., F.G.A.S.

elilow ellow

Consulting Geologist

APPENDIX G SUMMARY OF EXPENDITURES

SUMMARY OF EXPENDITURES

SALARIES

1 Senior Geologist	26 da	ys	300/day		7,800
l Geologist	26 da	ys	225/day		5,850
1 Prospector	26 da	ys	175/day		4,550
1 Helper	26 da	ys	125/day		3,250
MOBILIZATION & DEMOBILIZ	ATION				
Vancouver - Nakusp	- Vanc	ouv	ver		1,200
FOOD & ACCOMODATION	26 da	ys	55/man/day		6,760
		-	•		
FIELD WORK PLANNING	5 d a	ys	300/day		1,500
TRUCK RENTAL	26 da	ys	55/day		1,430
INSTRUMENT RENTAL					1,500
					•
FIELD SUPPLIES					950
DDADMING MADE DRINGS					1,000
DRAFTING, MAPS PRINTS					1,000
COMPILATION INTERPRETATI	ON				2,500
ANALYSES					
30 elements ICP	331 s	amp	les 10.00		3,310
ROAD CONSTRUCTION					45,000
KOAD CONSTRUCTION					43,000
HELICOPTER	26.7	hou	ırs 585		15,619
			mom a		100 010
			TUTA	ւ \$	102,219