LOG NO: 06	26 RD.
ACTION:	
FITE NO:	

	SUB-RECORDER
i.	JUN 2 2 1969
ŗ,	1.8. # \$
	VANCOUVER, B.C.

GEOPHYSICAL REPORT

on the

GENESIS CLAIM GROUP

NED

Kamloops Mining Division

NTS 92-1/11 and 92-1/14 Latitude 50°49'24" N - Longitude 121°24'30" W Property Centre

> Owner/Operator TROVE RESOURCES LTD. 505 - 850 Burrard Street Vancouver, B.C. V6Z 2J1

Report Prepared By QUEST CANADA EXPLORATION SERVICES INC. P.O. Box 11569 Vancouver Centre Suite 840, 650 West Georgia Street Vancouver, B.C. V6B 4N8

> GEOLÓGICAL BRANCH ASSESSMENT REPORT

May 1989

TABLE OF CONTENTS

••••

	Page	;
INTRODUCTION	. 1	
SUMMARY	. 1	
PROPERTY AND OWNERSHIP	. 2	
LOCATION AND ACCESS	. 2	
PHYSIOGRAPHY AND VEGETATION	• 3	
REGIONAL GEOLOGY	. 3	
REGIONAL EXPLORATION HISTORY	. 4	
PROPERTY EXPLORATION HISTORY	. 5	
PROPERTY GEOLOGY	• 6 • 6 • 7 • 7	
GEOCHEMICAL SURVEY	. 8	
GEOPHYSICAL SURVEYS	• 8 • 9 • 10	
RESULTS	. 11	
CONCLUSIONS	. 12	
RECOMMENDATIONS	. 13	
BIBLIOGRAPHY	. 14	

APPENDICES

APPENDIX 1	GEOCHEMICAL ANALYSIS CERTIFICATE
APPENDIX II	STATEMENT OF COSTS
APPENDIX II	I STATEMENT OF QUALIFICATIONS
APPENDIX IN	EDA OMNI-PLUS VLF/MAGNETOMETER Principle of Operation Field Procedure Specifications
APPENDIX V	MOVING SOURCE GENIE ELECTROMAGNETIC INSTRUMENT Field Procedure Specifications

LIST OF FIGURES

Figure	2		Page	
1.	Location	Мар	Following	2

LIST OF MAPS

<u>Map</u>

	Compilation Map	Мар	Pocket
1.	Moving Source Genie-EM Profile Map	Мар	Pocket
2.	Magnetometer Residual Value Map	Map	Pocket
3.	Magnetometer Residual Contour Map	Мар	Pocket
4.	VLF-EM Cutler Profile Map	Мар	Pocket
5.	VLF-EM Cutler Filtered Contour Map	Мар	Pocket
6.	VLF-EM Seattle Profile Map	Мар	Pocket
7.	VLF-EM Seattle Filtered Contour Map	Мар	Pocket

INTRODUCTION

The Genesis property is located approximately 200 km northeast of Vancouver near the town of Cache Creek in south-central British Columbia.

The property covers rocks belonging to the Nicola Group. These rocks have the potential to host massive sulphide deposits of volcanogenic origin.

The exploration program carried out on the property in 1988 was conducted in two phases. In May 1988, a soil geochemical survey was carried out over the conductive zone delineated as a result of the Genie-EM survey done in the spring of 1987. The grid was subsequently extended to the south and northwest, and magnetometer, VLF-EM and moving source Genie EM surveys were conducted in order to extend the aforementioned Genie-EM trend.

SUMMARY

The Genesis Group is comprised of six claim blocks totalling 73 units.

The property is centered 6 km west-northwest of the town of Cache Creek and extends 3 km north and 3 km south.

Access to the claims is via a 2 wheel drive road off Highway 97 approximately 5 km north of Cache Creek.

The Genesis property is underlain by a long, relatively narrow, north-northwesterly trending belt of submarine volcanics and

sediments belonging to the Nicola Group. Rock types include basic to acidic volcaniclastics and flows with intercalated argillic sediments.

The geophysical exploration program described in this report was primarily conducted to extend the known Genie-EM trend that runs diagonally across the length of the grid in the Genesis claim block. A soil geochemical survey was also conducted over this trend. Geophysical plans were prepared at a scale of 1:10,000 for the various surveys.

PROPERTY AND OWNERSHIP

The Genesis property consists of 6 contiguous mineral claims containing 73 units. Claim data is as follows:

<u>Claim Name</u>	Record #	<u>Units</u>	<u>Recording Date</u>
Genesis	7636	20	May 12, 1988
GE 1	7637	12	May 12, 1988
GE 2	7638	12	May 12, 1988
GE 3	7639	8	May 12, 1988
GE 4	7640	12	May 12, 1988
GE 5	7641	9	May 12, 1988

The claims are owned and operated by Trove Resources Ltd. of 505 - 850 Burrard Street, Vancouver, B.C.

LOCATION AND ACCESS

The property centre lies approximately 6 km west-northwest of Cache Creek at 50°49' north latitude and 121°24' west longitude. The southern boundary is just east of the northern end of McLean Lake, with the property extending for about 6 km in a northnorthwesterly direction. Access to the property is by way of a gravel 2 wheel drive range road leaving Highway 97 approximately 5 km north of Cache Creek at the Bonaparte Indian Reserve.

PHYSIOGRAPHY AND VEGETATION

Relief is gentle to moderate with elevations ranging from 1500 to 4500 feet above sea level.

The climate is semi-arid with annual rainfall ranging from 28 to 36 centimeters. Temperatures vary from up to 40° C in summer to as low as -35° C in winter.

The vegetation consists of grasslands, sage brush and cactus at lower elevations, with increasing amounts of pine and fir at higher elevations.

Rock outcrop is limited to slopes and valleys.

REGIONAL GEOLOGY

The Genesis claims lie within a north-northwest trending belt of Triassic volcanic and sedimentary rocks belonging to the Nicola Group. Rock types include basic to acidic volcaniclastics and flows with intercalated argillic sediments and their metamorphic equivalents. The belt is bounded on the east unconformably by sediments of the Ashcroft Formation, which consists of argillite, siltstone, sandstone and conglomerate. A fault contact with the Permian Cache Creek Complex and with unnamed Cretaceous sediments forms the western boundary of the belt. The Cretaceous sediments

- 3 ~

consist of conglomerate, sandstone and minor shale with coal horizons. The Cache Creek Complex consists of basalt, pillow basalt, diabase and gabbro intrusions, massive carbonate with argillite and tuffaceous interbeds (the Marble Canyon Formation), and local basalt and chert sequences with small bodies of ultramafic rock.

REGIONAL EXPLORATION HISTORY

The first major survey of the Ashcroft area was made by S. Duffell and K.C. McTaggart as shown in the G.S.C. Memoir No. 262 (1952).

Several studies, (Ladd 1977, 1979 and Travers 1978) were conducted in the late seventies. The second major publication was compiled by J.W.H. Monger, G.S.C. 1980-82, and W.S. McMillan, B.C.M.M.P.R. 1969-75 and 1977-80. The results of this work are presented in the G.S.C. Open File 980.

The area was subject to exploration activity in the 1960's and early 1970's by major mining companies and Vancouver juniors. Exploration targets were porphyry copper deposits.

Most of the recent work has been south of Cache Creek near Red Hill. Noranda Exploration Co., Bethlehem Copper Corp. and Guichon Explorco Limited are some of the companies who have worked on the gossan zones at Red Hill. Recent studies by D. Gamble (1980-81) have recognized the potential for volcanogenic stratabound sulphide deposits within the Nicola Group near Red Hill. The Selco Division of B.P. Canada Limited is now actively exploring this area. Geochemical and geophysical work has been conducted on the ground west of Cache Creek by Vancouver juniors in the early seventies. Results reported included gold, copper, zinc and lead anomalies (Assessment Reports 3153, 4068 and 9177).

PROPERTY EXPLORATION HISTORY

The area covered by the Genesis property received very little exploration prior to 1986. There are two government assessment reports documenting exploration programs conducted in the early seventies.

Report No. 3153 written by C.A. Lannle, P.Eng. in 1971 describes a soil geochemical survey for Cu, Pb and Zn, and a magnetometer survey conducted on the McLean claim group. Results of this program show a strong zinc anomaly with weak lead association stretching for over 600 m. The cause of this anomaly was never adequately explained.

Report No. 4068 prepared by G.B. Phelps, P.Eng. in 1972 describes a Cu soil geochemical survey conducted on the Ham and Eggs claim group. Results show a moderate copper geochemical anomaly trending north-northeast for approximately 1 km. However, the location map from the assessment report does not provide enough information to adequately correlate this anomaly to known topography in the area. It appears that the anomaly lies in the northern portion of the Genesis Group, within the GE 4 and GE 5 claims.

The Genesis property is the subject of a Prospecting Report prepared by Quest Canada Exploration Services Inc. in July 1986. This report by Ralph Shearing, P.Geol., states that the property is largely underlain by rocks which have the potential of hosting volcanogenic exhalative massive sulphide deposits.

- 5 -

PROPERTY GEOLOGY

Lithology

The claim block appears to be underlain by a bimodal suite of felsic to mafic volcanic flows and pyroclastic deposits. The general lithologic form of the rocks appears to be consistent with other members of the Nicola group. Clastic units form a relatively small proportion, approximately 5-10%, of the total stratigraphic column. In detail:

Andesitic Flows

Medium to dark green fine grained andesitic flows are the dominant mafic volcanic unit. This unit tends to be massive, poorly foliated, and rarely weakly hematitic. Pillow structures were not observed, but a sub-aqueous depositional environment is suspected. Interbedded pyroclastic sequences are infrequently noted.

Quartz Feldspar Porphyritic Flows

Light apple green, weakly sericitized felsic flows are identified throughout the property. Quartz eyes may exceed 0.5 cm and typically occupy 5-10% rock volume. Reliable strike indicators may be obtained from the flow bands frequently noted within this unit. Compositionally the unit ranges from dacitic to rhyodacitic.

Quartz Feldspar Porphyritic Fragmentals

Well defined felsic fragmentals are commonly identified in the north central grid area. Elongate 1.0 x 4.0 cm pale weathering oval fragments are strained at an apparent ratio of 2:1. Feldspars within this unit are generally pale cream and lightly sericitized.

Limestone

Grey to buff, medium grained limestone units are present as narrow, 10-15 m wide, intervolcanic sediments.

Intrusive Lithologies

Granodiorite

A large intrusive stock was found in the south of the claim block. This unit is typically massive, homogeneous, medium grained and unfoliated. Compositionally this rock is placed in a granodiorite field.

Mafic Dykes:

Small mafic dykes, discordant to all lithologies, are noted throughout the map area. Typically these units are less than 3.0 metres in width.

Structure

Bedding in the Genesis Group trends 125 degrees and dips southwesterly at 50 degrees. Bedding attitudes are coplanar with much of the foliation data. Cleavage bedding relations typically suggest the section is upright.

Small scale faults are frequently encountered within the claim area. The strength of shearing within the Nicola volcanics in this region is perhaps their most outstanding feature. Crenulated foliations, intrafolial folds and small scale nappe structures may be localized to some of these structures.

Large scale antiforms or synforms were not identified on the property.

GEOCHEMICAL SURVEY

The soil geochemical survey was conducted between May 13 and 20, 1988. A 50 metre line separation and 25 metre station interval flagged line grid was established over anomaly A on the Genesis claim. This grid covered the area from 9200 E to 8900 E on Line 10400 N to 8400 E to 7900 E on Line 11500 N of the grid established in the spring of 1987. In all, a total of about 12 km of grid was established and approximately 500 "B" horizon soil samples were collected. All soil samples were placed in kraft paper envelopes, field dried and delivered to Acme Analytical Laboratories in Vancouver, British Columbia. There, the samples were dried at 60°C, sieved to minus 80 mesh and were analyzed for 30 elements by inductively coupled argon plasma (ICP) and for gold by atomic absorption (AA). The certificate of analysis for the soil samples accompanies this report as Appendix I.

GEOPHYSICAL SURVEYS

The geophysical surveys were carried out in November and December 1988. A total of 43.85 km of grid was established and 38.35 km of magnetometer/2 station VLF-EM surveying and 39.20 km of moving source Genie-EM surveying were conducted during the program.

The VLF stations used for the survey were Cutler, Maine, U.S.A., 24.0 KHz located at 44°38'50" N, 67°16'54" W, and Seattle, Washington, U.S.A., 24.8 KHz located at 48°12'15" N, 121°55'00" W. The field procedures and specifications for the Omni-Plus VLF/Magnetometer system and the Genie portable EM system can be found in Appendices IV and V respectively.

- 8 -

Moving Source Genie Survey

The moving source Genie survey was carried out using a Genie SE-88 transmitter and an IGS-EM4 receiver. This system is a variant on the horizontal loop electromagnetic system in which the receiver and transmitter are separated by a fixed distance (100 m) and are moved in tandem along survey lines.

The transmitter is designed to simultaneously transmit signals at two well-separated frequencies. One of these is referred to as the reference frequency (112.5 Hz.) and the other is the signal frequency, which can be 337.5, 1012.5 or 3037.5 Hz. The receiver is a digital acquisition system capable of signal stacking and averaging the transmitted signals of the reference and one of the signal frequencies, and storing the amplitudes of these signals, as well as calculating the amplitude ratios of the various signals ie. 3037.5/112.5, 1012.5/112.5 and 337.5/112.5.

In the present survey, the percentage variations for the three amplitude ratios are plotted for each survey line. In a non-conductive environment the results are zero, while in the presence of a conductor, the measured values will show a negative value similar in shape to conventional HLEM results. If the 3037.5 frequency ratio dominates the response compared to the other two measured ratios, it indicates a weak conductor, whereas if the response at all three frequency ratios is similar, it indicates a strong conductor.

The moving source Genie data for the three frequency ratios has been plotted in profile at a scale of 1:10,000 (Map 1).

- 9 -

Magnetometer and VLF-EM Surveys

Magnetic and VLF-EM data were obtained using an EDA Omni-Plus digital acquisition system.

Diurnal variations of the earth's magnetic field were recorded with a second base station unit. Field and base station data was merged at the end of each survey day to remove the effects of these variations. The measuring accuracy of this procedure is ± 2 nT.

The magnetic field data has been corrected for diurnal variations and the ambient value of 57,000 nT has been removed from the measured values (Map 2). The residual data has been contoured at a scale of 1:10,000 and is presented on Map 3.

The VLF-EM data was measured at the same time as the magnetic data. The system is capable of sequentially measuring the in-phase, quadrature and horizontal field strength components of signals broadcast by up to three VLF transmitters operating in the 15 to 30 kHz. range. In the current survey, the variations in signals put out by the transmitters in Cutler, Maine and Seattle, Washington were measured.

The in-phase and quadrature results for both the Cutler and Seattle signals is presented in profile at a scale of 1:10,000 on Maps 4 and 6 respectively. The in-phase data has also been Fraser-filtered and contoured on Maps 5 and 7.

RESULTS

Geochemical Survey

No significant results were obtained from the soil geochemical survey.

Geophysical Surveys

The moving source Genie data (Map 1) has outlined a series of conductive trends in the northernmost part of the grid bearing S55E. Most are short strike length anomalies, generally less than 400 m in length. The exception is anomaly A which extends from line 12300 N to 11300 N. Responses are very strong - in some cases exceeding -50% at the 3037.5/112.5 frequency ratio and are caused by very near surface vertical conductors. However, the results at the other two frequency ratios are significantly weaker, indicating that these are weak to fair conductors only. Of these, anomaly A is the strongest because it is the widest, consisting of a broad conductive zone, or alternatively, a series of closely spaced zones.

Conductors B and C, located between lines 11100 N and 10200 N in the central part of the grid, may be the en echelon or a faulted continuation of anomaly A. The responses are weak as discussed above, however on lines 10900 N and 10700 N, the strong positive shoulder on the west side suggests a dip in that direction. The strongest responses are between 10700 N and 10400 N, though again these responses indicate only weak conductors.

In the southern part of the grid there are no conductive anomalies. There is, however, a series of positive Genie anomalies again dominated by the 3037.5/112.5 frequency response, eg. line 9700 N between 9400E and 9600 E. These results were obtained along the steep sloping part of the grid. The residual magnetic results presented on Map 3 are shown for only the northern and southern portions of the grid. In the northern part, the magnetic relief is very minor and no trends have been developed. This suggests that the rock underlying the grid is relatively homogeneous and non-magnetic. In the southern part, results show a more active magnetic environment, though one that appears to be erratic. There is a weak trend that extends from 9000 N to at least 10000 N between 9200 E and 9450 E. This anomaly is near the change of topography on the grid and is immediately above the positive Genie anomalies mentioned earlier.

The Cutler data (Map 5) shows very little response, indicating that the signal is poorly coupled with the conductors on these grids. The Seattle data (Map 7) is more diagnostic. It has delineated two anomalous trends; one is roughly north-south and the other correlates with the Genie data in the area between lines 10400 N and 10100 N at about 9000E (Genie anomaly B). The north-south anomalies located between lines 12200N and 10900 N at 7600 E and 9400 N to 8300 N roughly at 9000 E do not correlate with any Genie anomalies. These responses are generally weak and may be caused by topographic changes.

CONCLUSIONS

The Genie survey has outlined a series of shallow vertical to steeply west-dipping conductors in the northern part of the grid. Most are about 400 m in strike length. The exception is anomaly A which continues further to the southeast as two distinctive anomalies which end at about line 10300 N. There is no direct magnetic correlation with the EM anomalies on these grids. The magnetic data in the southern part of the grid is significantly different from the rest of the grid as to suggest that this area is underlain by a different geologic unit.

- 12 -

Selective geochemical sampling in the area has not produced significant base metal anomalies which would have been expected considering the shallowness of the conductors outlined in this survey. Consequently the source of the geophysical anomalies covered by the soil sampling can be either graphitic or barren sulphides.

RECOMMENDATIONS

It is recommended that a widely spaced geochemical soil survey be conducted over the unsampled existing grid. Line spacing of 200 metres with sample density of 50 metres should be adequate. Additional work would be contingent upon obtaining favourable results from the soil sampling. BIBLIOGRAPHY

- Duffell, S. and McTaggart, K.C. (1952): Ashcroft map area, British Columbia; Geological Survey of Canada, Memoir 262.
- Monger, J.W.H. and McMillan, W.J. (1983): Bedrock geology of Ashcroft (92 I) map area; Geological Survey of Canada, Open File 980.
- Shearing, R.E. (1986): Prospecting report on the Genesis North, Genesis Central, Genesis South claim groups; unpublished Assessment Report.
- Kamloops Mining Division, Assessment Reports: #8892 - Guichon Explorco Limited #9415 - Explorco Limited #3153 - Adera Mining Limited #4068 - Milestone Mines Ltd. (N.P.L.) #9177 - Cominco Ltd.

APPENDIX I

.

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGRESTED WITE BAL 3-1-2 HCL-HR03-E20 AT 55 DEG. C 702 ONE HOUR AND IS DILUTED TO 10 NL WITH WATEL. THIS LEACH IS PARTIAL FOR ME PE CA P LA CR NG BA TI B W AND LIMITED FOR WA R AND AL. AD DIFECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TYPE: SOIL AD ALALTSIS BY AA FROM 10 GRAM SAMPLE.

)

)

1

ĥ.

)

-ì

1

۱,

- 2

-)

ł

SAMPLI	No PPN	Cu PPK	Pb PPX	ZD PPK	Ag PPM	Vi PPN	CO PPK	Ma PPK	te t	λ5 ??N	U PPN	Xu PPK	Th PPK	ST PPN	Cd PPK	SD PPN	B1 PPN	V PPK	Ca ¥	P Ł	La PPX	CT PPN	Ng L	Ba PPK	Tİ Ş	8 ?P#	21 1	sit F	I ł	¥ PPX	Au* ??B
L15% 84+00% L15% 83+75% L15% 83+50% L15% 83+50% L15% 83+25% L15% 83+06%	2 1 1 2 2	33 42 41 51 27	4 6 2 4 6	218 70 45 92 141	.3 .5 .5 .5 .3	37 23 19 43 39	11 4 9 11	1633 487 394 509 642	3.17 1.01 1.18 2.30 3.25	5 10 5 12 8	5 5 5 6	10 10 10 10 10	3 1 1 2 4	10 269 498 466 13	1 1 1 1	2 2 3 2 2	2 2 2 2 2 2	48 1 14 18 15 15 36 12 54	.03 . .03 . .09 . .06 . .94 .	.071 .058 .040 .055 .025	10 4 3 6 8	46 17 15 36 45	.75 .38 .57 .94 .76	267 114 124 111 104	.12 .03 .04 .06 .14	2 4 9 9 2	1.82 .53 .78 1.26 2.05	.04 .03 .04 .03 .03	.47 .13 .21 .20 .37	1 1 1 1	1 1 1 1
115N 82+75V 115N 82+50V 115N 82+25V 115N 82+25V 115N 82+00V 115N 81+75N	1 2 1 3	38 82 47 37 64	3 8 9 4 7	85 380 223 56 230	.4 .3 .4 .2 .3	29 54 47 25 77	6 11 11 5 16	5\$7 1531 971 622 879	I.60 2.38 3.17 1.39 4.45	7 11 10 9 14	5 5 5 5 5		2 3 4 1 5	283 115 84 297 74	1 2 1 1	3 2 2 2	2 2 2 2 2 2	23 12. 42 3 49 2. 19 16 68 1.	.35 . .67 . .36 . .84 .	044 114 035 063 050	5 11 10 4 14	24 41 45 19 80	.54 .66 .70 .52 1.19	136 255 179 138 144	.04 .08 .12 .03 .12	10 18 5 11 13	.90 1.74 2.09 .72 2.72	.02 .03 .02 .02 .04	.21 .37 .35 .13 .68	1 1 1 1	1 1 1 1
L15N 81+30V L15N 81+25V L15N 81+0DV L15N 80+75C L15N 80+5DV	3 3 3 5 3	39 51 52 83 33	6 7 7 8 6	136 228 177 167 145	.3 .4 .2 .1 .2	62 59 68 119 49	14 13 14 20 14	1264 1562 1329 985 496	3.82 3.91 3.94 5.08 3.98	2 10 3 14 11	5 5 5 5 5		4 3 4 4	65 69 57 44 45	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	60 58 58 82 67	.95 . .91 . .90 . .77 . .53 .	.047 .059 .037 .056 .042	12 13 13 16 12	74 66 72 109 67	1.08 .90 1.01 1.74 1.DD	190 303 228 179 153	.11 .11 .11 .12 .15	2 2 2 8 2	2.22 2.45 2.26 3.19 2.50	.02 .02 .04 .02 .01	.41 .38 .34 .28 .35	1 1 1 1	3 1 1 2 1
L15R 00+25W L15N 00+000 L15N 79+750 L15N 79+50W L15N 79+50W	3 2 3 5	30 24 22 39 45	10 4 5 5 5	177 153 179 208 241	.4 .1 .2 .4	44 39 36 50 55	12 10 11 14 14	1305 654 595 701 668	3.36 3.33 3.25 4.03 4.26	6 3 4 11 11	5 5 7 5	10 10 10 10 10	4 3 4 4	51 37 34 55 50	1 1 1 1	2 2 2 2 2	2 2 2 2 2	54 55 53 66 71	,73 . .43 . .40 . .86 . .65 .	053 036 036 061 028	10 7 8 10 11	52 48 46 55 57	.84 .82 .80 1.DB 1.22	188 164 149 136 106	.11 .14 .13 .13 .13	2 2 7 5 2	2.10 2.13 2.17 2.43 2.48	.01 .02 .03 .01 .03	.31 .37 .24 .30 .24	1 1 1 1 1	1 1 1 1
L15N 79+00¥ L114+50% 75+50% L114+50% 79+75% L114+50% 80+00% L114+50% 80+23%	4 5 2 4 3	75 73 59 41 52	6 8 9 5	220 238 133 193 137	.3 .3 .1 .3	71 102 35 50 82	14 17 6 13 16	934 655 667 842 784	4.12 5,26 1.38 4.14 4.17	11 14 12 8 5	5 5 5 5 5	TC TC TC TC	4 5 2 4 4	56 43 272 56 64	1 2 1 1	2 2 3 2 3	2 2 2 2 2 2	63 1 83 - 24 11 83 - 83 - 69 -	.74 . .60 . .51 . .74 . .85 .	.024 .069 .104 .087 .095	19 17 5 11 15	51 57 25 56 100	.98 1.57 .71 .98 1.23	135 125 179 193 154	.11 .11 .04 .12 .15	2 4 18 2 7	2.28 3.28 .92 2.32 2.43	.01 .01 .04 .01 .01	.30 .44 .17 .26 .32	1 2 1 1 1	1 1 1 1
L114+50H 80+503 L114+50W 80+75R L114+50H 83+00R L114+50H 81+25R L114+50H 81+50R	4 3 4 2 3	42 36 55 28 33	5 6 6 6	195 209 208 171 220	.2 .2 .4 .2 .1	50 44 75 39 49	13 11 15 10 12	874 1127 992 841 1263	4.13 3.29 4.25 3.05 3.38	10 6 13 2 7	5 5 5 5	10 10 10 10 10	3 3 4 2 3	56 53 59 54 54	1 1 1 1 1	3 2 2 2 2 2	3 2 2 3	62 51 62 48 52	.72 . .61 . .91 . .52 .	089 046 090 049 049	11 9 14 8 11	56 49 74 50 53	.97 .75 1.21 .75 .77	198 203 188 211 282	.11 .12 .10 .13 .13	2 2 5 2	2.30 2.03 2.43 2.11 2.44	.02 .03 .01 .03 .03	.25 .26 .41 .29 .29	1 1 2 1	1 1 1 1
L114+50X 81+758 L114+50X 82+008 L114+50X 82+253 L114+50X 82+508 L114+50X 82+75X	2 3 2 2 2	39 26 30 28 35	4 7 3 6 6	168 148 178 159 212	.1 .1 .1 .1	53 42 48 43 43	12 12 13 12 11	720 530 910 723 724	3.77 3.45 3.52 3.38 3.21	6 3 5 7 2	5 5 5 5 5		3 2 3 3 3	46 35 40 52 54	1 1 1 1	2 2 2 2 2	2 2 2 2 2	58 58 52 53 50	.52 . .16 . .46 . .55 . .50 .	041 037 042 070 052	14 8 12 9 10	62 54 58 50 46	.96 .85 .87 .79 .70	201 157 197 167 182	.14 .14 .13 .13 .13	2 2 2 2 2 2	2.64 2.18 2.37 2.21 2.28	.01 .03 .02 .02 .03	.28 ,20 .29 .30 .29	1 2 2 1 1	1 1 3 1-
1114+500 03+000 STD C/AU-S	3 20	35 53	5 39	154 132	.1 7.4	48 73	11 31	428 1091	3.99 4.05	9 42	5 16	10 B	4 40	50 55	1 20	2 15	2 20	60 . 61 .	. 62 . I . 49 .	056 094	13 40	54 60	.96 .95	109 181	.13 .08	4 31	2.20 1.89	.03 .06	.32 .17	1 13	1 51

)

)

٦

)

)

)

)

)

)

)

.

)

)

san7 le‡	No P?X	Cu PPK	Pb PPK	10 ??K	Ag PPN	NI PPK	00 77%	KO PPK	Te X	As 7PM	U PPK	ÅU PPN	Tb PPN	Sr P r i	Cd PPN	SD PPK	Bi PPN	⊽ P₽x	Ca t	Р 1	La PPX	CT PPX	Hg 1	Ba PPK	Ti	8 PPK	л1 3	Na t	K Ł	¥ PPX	Au" PPB
L114+50H B3+25X L114+50H B3+50X L114+50H B3+50X L114+50H B3+75X L114+50H B4+00K L214+50H B4+00KA	1 1 1 1	32 32 69 67 52	8 4 5 4	135 135 170 173 100	.3 .2 .5 .4	39 32 41 41 35	10 9 8 8 6	949 424 810 810 577	2.89 2.40 2.22 2.29 1.52	2 2 4 8	5 5 5 5		1 2 1 2 1	50 232 211 203 272	1 1 2 2 1	2 2 2 3	5 4 5 3	48 36 32 33 24	.74 5.02 11.00 10.22 17.14	.043 .025 .113 .108 .070	8 6 6 4	39 27 32 33 23	. 65 . 72 . 67 . 68 . 63	145 85 125 124 113	.11 .08 .05 .05 .03	9 10 16 15 14	1.81 1.53 1.33 1.39 .89	.01 .03 .02 .05 .02	.23 .24 .17 .18 .10	2 1 1 1	2 1 1 1 1
1114H 79+75H 1114H 80+80B 1114H 80+25H 1114H 80+55H 1114H 80+75H	2 2 3 3 2	28 36 36 32 38	6 8 5 9	166 170 218 158 157	.3 .1 .2 .1 .1	48 60 49 45 55	11 13 12 12 14	442 548 1181 753 450	3.38 3.52 2.95 3.41 3.94	4 3 7 5 4	5 5 5 5	10 10 10 10 10	3 3 2 2 2	35 47 48 40 36	1 1 1 1	2 2 2 3	2 4 2 2	55 58 45 60 68	.55 .53 .58 .43 .37	.025 .061 .054 .031 .036	8 12 9 9 12	52 59 51 50 57	.98 .96 .78 .87 1.03	124 360 159 134 151	.12 .12 .07 .11 .12	2 2 4 3	2.10 2.30 1.48 2.10 2.64	.02 .01 .02 .03 .02	.22 .25 .19 .22 .20	1 1 1 3	1 3 1 1 1
L114N 81400B L114R 81+25B L114N 81+30B L114N 81+75B L114N 82+00B	2 1 1 1 1	31 28 27 24 23	3 6 6 5	180 216 177 138 173	.1 .4 .2 .1 .2	38 35 40 41 38	11 8 10 10 10	1191 1058 1082 1180 928	2.99 2.64 2.58 2.90 2.78	2 9 2 2 2	5 5 5 5 5		2 3 3 2 2	52 52 48 45 50	1 1 1 1	2 3 7 2 2 2	2 4 2 3 4	48 42 48 47 45	.54 .48 .45 .43 .54	.062 .069 .030 .076 .050	7 6 8 8 8	40 38 43 44 40	.72 .62 .71 .71 .65	213 211 224 197 182	.11 .10 .12 .11 .11	4 3 3 3 5	2.03 1.77 2.12 1.90 1.84	.02 .01 .03 .01 .03	.21 .24 .25 .22 .23	1 2 1 1 1	1 1 1 1
LI14H 82+25H L114B 82+55H L114B 82+75H L114B 83+95H L114B 83+25H	2 2 1 2 2	28 29 25 33 23	6 8 4 7 9	136 209 120 146 115	.3 .1 .1 .1 .2	39 43 32 42 33	9 10 8 30 10	631 700 1088 1130 840	2.96 3.13 2.56 2.76 3.03	2 5 2 2 4	5 5 5 5		2 2 2 2 2 2	38 36 49 58 33	1 1 1 1	2 2 2 2 2	2 3 2 2 3	51 51 41 48 54	.43 .40 .59 1.25 .43	.029 .042 .050 .049 .026	9 9 3 7 7	44 52 39 41 43	.65 .78 .61 .75 .72	136 147 163 163 149	.12 .11 .09 .09 .13	4 5 7 6	1.69 1.88 1.54 1.54 1.78	.03 .01 .04 .01 .01	.22 .26 .32 .21 .18	2 1 1 1 2	2 1 1 1 1
L114H 83+50B L114H 83+75B L114H 84+00B L114H 84+25E L114H 84+50B	1 2 1 3 1	28 31 40 127 29	7 7 6 4	211 127 166 124 125	.1 .1 .1 .1	34 39 41 48 28	9 12 12 13 9	1211 1034 1227 682 1497	2.82 3.22 3.16 3.50 2.39	6 2 11 18 2	5 5 5 5	ת ממ	1 1 1 1	44 45 65 93 69	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	48 56 48 57 36	.52 .42 .75 2.54 .71	.034 .020 .094 .058 .025	7 9 10 9 6	37 43 42 46 31	.37 .78 .75 1.04 .47	174 135 201 83 151	.11 .13 .09 .08 .09	8 2 4 3 7	1.75 1.76 2.15 1.75 1.50	.01 .01 .02 .03 .02	.28 .18 .20 .12 .36	3 1 1 4 1	3 1 1 1 1
L114N 84+75X L113+50W 80425X L113+50N 80450Y L113+50N 80473X L113+50N 81400X	1 2 2 1 2	29 26 38 36 27	5 7 4 4	169 146 264 239 143	.1 .1 .1 .1	33 41 35 38 38	10 11 9 9 10	1058 853 1810 1352 774	2.65 3.10 2.60 2.84 3.07	2 4 3 4 3	5 5 5 5		1 1 1 1	55 36 61 52 39	1 1 1 1	2 2 2 2 2	3 5 2 2 2	42 51 41 46 51	.58 .38 .42 .51 .39	.023 .061 .060 .059 .048	6 8 6 7 7	37 42 39 40 42	.55 .74 .60 .63 .76	125 158 302 327 155	.11 .10 .08 .10 .10	5 3 6 7 3	1.63 2.01 1.52 1.76 2.00	.02 .04 .02 .02 .02	.30 .17 .21 .24 .25	1 1 1 1	1 1 1 1
L113+50N 81+25K L113+50N 81+50R L113+50N 81+75K L113+50N 82+00K L113+50N 82+258	3 2 2 1 2	4D 31 26 26 21	6 1 5 6 6	147 158 130 171 147	.1 .1 .1 .1	46 42 43 42 31	12 10 13 10 9	1027 886 707 941 1090	3.48 3.39 3.17 3.01 2.54	5 2 5 7 6	5 5 5 5		2 1 2 2 1	44 44 47 46 39	1 1 1 1	2 2 2 2 2	2 2 2 2 2	58 55 53 47 43	.57 .53 .54 .52 .42	.032 .056 .037 .065 .048	10 9 9 9 5	49 48 46 62 37	.95 .77 .69 .65 .58	147 175 233 249 183	.09 .11 .13 .11 .10	3 5 2 5 4	2.00 1.78 2.38 1.98 1.49	.04 .01 .01 .03 .01	.17 .26 .21 .26 .15	1 1 1 1	2 1 1 1
1113+50K 82+501 STD C/AD+S	2 19	24 62	3 39	189 132	.1 7.1	34 70	\$ 30	649 1061	2.74 4.00	2	5 18	10 1	1 (9	43 53	1 19	2 15	2 17	44 60	. 55 . 49	.042 .089	5 {1	39 61	.63 .94	161 179	.10 .07	4 34	1.78 1.80	.03 .07	.25 .15	1 14	1 47

۰.

Page 2

•

1

•

3

)

)

.)

)

>

)

)

1

)

)

1

J

•

.

SAMPLE	No PPK	CT PPH	PL PPH	IO PPK	Ag Pen	NI PPK	Co PPK	NA PPK	te L	AC PPX	0 Bag	AU PPK	Th PPX	ST PPH	Cd PPK	Sb PPN	Bi PPM	V PPN	Ca ł	?	La PPK	CT PPK	Ng L	Ba PPM	Ti	E ??N	4) 2	Na X	K Ł	4 992	AU" PPB
L113+50N 824758 L113+50N 83+008 L113+50N 83+258 L113+50N 83+258 L113+50N 83+508 L113+50N 83+758	3 2 2 2 2	51 34 35 35 35	9 9 8 7 9	121 235 157 154 161	.2 .1 .2 .1 .1	59 49 54 42 44	12 11 12 11 12	718 1042 836 1579 1176	3.30 3.26 3.20 2.77 3.15	15 4 5 8	5 5 5 5 5	10 10 10 10 10	3 3 4 2 3	71 40 47 55	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	68 57 60 46 55	2.12 .45 .60 .51 .47	.059 .039 .032 .081 .113	10 11 11 9 11	55 53 54 44 48	.93 .71 .78 .64 .69	129 219 185 253 233	.10 .13 .13 .09 .12	2 9 2 5	1.85 2.17 2.25 1.78 2.26	.01 .01 .01 .02 .03	.15 .32 .23 .27 .28	1 1 1 2	1 1 1 2
L113+50R 84+00K L113+50N 84+23I L113+50N 84+50I L113+50N 84+75I L113+50N 85+00I	2 2 1 3 2	39 37 32 60 24	7 9 8 9 12	145 151 104 119 146	.1 .1 .1 .1	48 44 36 46 40	12 13 11 12 10	1009 1469 897 833 1101	3.21 3.34 3.00 3.38 3.04	8 9 6 19 6	5 5 5 5 5	10 10 10 10	3 2 3 3	52 32 41 64 51	1 1 1 1	2 2 2 2 2	2 2 2 2 2	53 56 51 59 53	.52 .58 .51 1.94 .44	.059 .045 .021 .074 .054	12 12 8 11 9	44 46 40 40 43	.75 .81 .64 .87 .67	245 286 125 134 219	.13 .12 .12 .10 .14	5 6 9 2 5	2.43 2.44 1.96 1.77 2.29	.01 .02 .02 .01 .02	.24 .21 .37 .15 .26	1 1 1 2	1 1 1 1
1113+50N 85+253 1138 80+509 1138 80+759 1138 80+759 1138 81+009 1138 83+259	2 1 2 3 2	39 74 25 26 32	8 11 8 5	263 287 154 204 175	.1 .1 .1 .1	41 60 38 40 39	12 10 9 11 10	1807 1772 1341 1512 1169	2.84 2.58 2.64 2.86 3.13	3 5 4 8 7	5 5 5 5 5		3 3 2 3 4	61 70 40 43 47	2 2 1 1 1	2 2 2 2 2	2 2 2 2 2	45 47 48 48 50	.57 .73 .37 .42 .45	.069 .073 .045 .055 .051	9 10 7 8 10	40 42 45 45 41	.64 .68 .62 .63 .71	229 276 222 249 272	.10 .10 .11 .10 .10	14 7 10 2 11	1.97 1.89 1.75 1.93 2.09	.03 .03 .01 .03 .01	.30 .21 .20 .26 .26	1 1 1 1 1	1 1 2 1
L113N 81+503 L113N 81+753 L113N 82+002 L113N 82+253 L113N 82+558 L113N 82+568	2 2 3 2	28 25 22 30 25	7 7 6 7	134 136 135 139 153	.1 .1 .2 .1 .1	35 29 30 40 33	10 B 9 11 9	822 1051 1296 1175 1117	2.92 2.67 2.32 2.73 2.54	1 3 2 5 2	5 5 5 5 5		3 3 2 2 3	47 74 40 41 40	1 1 1 1	2 2 2 2 2	2 3 2 3 3	50 45 42 47 45	.45 .77 .39 .38 .39	.027 .035 .040 .048 .040	9 6 10 7	41 33 31 46 40	.69 .59 .50 .63 .57	185 191 173 229 217	.11 .09 .09 .11 .11	10 10 2 2 6	1.85 1.41 1.44 1.88 1.68	.04 .04 .01 .03 .06	.20 .23 .18 .21 .19	1 2 1 1 2	1 1 1 1
L113X 82+758 L113X 83+00X L113H 83+258 L113H 83+558 L113H 83+558 L113H 83+758	2 3 2 3 2	26 36 29 44 32	8 9 9 5	143 134 155 122 181	.1 .1 .1 .1	40 58 31 59 41	11 15 9 13 10	714 530 1388 517 1570	3.12 3.63 2.36 3.56 2.78	7 3 2 10 3	5 5 5 5		3 3 2 3 3	34 43 44 49 52	1 1 1 1 1	2 2 2 2 2 2	2 3 7 3 2	58 69 44 66 47	.35 .38 .39 .60 .50	.028 .062 .045 .059 .067	9 12 5 14 9	51 64 35 61 42	.79 .96 .55 .90 .63	153 226 213 192 301	.13 .13 .30 .13 .11	5 5 2 3	1.86 2.66 1.33 2.38 2.00	.04 .02 .02 .03 .06	.20 .21 .21 .27 .24	1 2 1 1 1	2 1 1 1
L113X 84+00R L113X 84+23X L113X 84+25X L113X 84+50X L113X 84+73X L113X 85+00R	3 2 2 4 2	51 34 22 39 25	7 8 9 8	136 152 263 219 135	.1 .1 .1 .1	73 45 28 41 33	16 11 8 11 9	790 1267 1547 1329 1076	3.77 3.07 2.01 3.01 2.56	9 5 13 6	5 5 5 5 5		4 3 2 3 3	44 41 43 49 45	1 1 1 1	2 2 2 2 2	2 2 2 2 2	67 52 34 45 42	.50 .48 .46 .52 .44	.076 .042 .098 .047 .067	13 10 5 11 7	63 46 27 32 35	1.19 .74 .38 .57 .51	143 196 150 230 230	.11 .09 .08 .08 .11	3 2 5 11 3	1.89 1.82 1.32 1.72 1.80	.03 .02 .02 .03 .02	.18 .19 .20 .20 .25	1 1 1 1 3	1 1 1 2
1113N 85+258 1113N 85+508 1112+50N 81+008 1112+50N 81+258 1112+50N 81+258 1112+50N 81+508	2 1 2 2 2	32 43 24 33 38	8 9 5 9 9	221 246 150 142 214	.1 .1 .1 .1	4D 32 41 41 45	10 9 11 12 12	1222 2232 632 949 1191	2.70 2.36 2.71 2.78 2.81	2 5 2 4 6	5 5 5 5	UD UD UD UD UD	3 3 1 2 3	45 92 40 45 52	1 1 1 1	2 2 2 2 2	3 2 2 3 2	44 40 45 49 47	.43 .88 .37 .52 .50	.044 .110 .105 .047 .096	10 6 6 9	36 32 61 65 43	.36 .46 .63 .68 .87	295 330 193 221 329	.11 .09 .09 .09 .09	3 11 2 3 6	1,86 1.54 2.17 1.75 2.04	.03 .03 .01 .02 .03	.21 .33 .17 .15 .20	1 1 1 1	1 1 1 1
L112+50W 81+75E STD C/AU-S	2 19	32 63	7 49	144 125	.) 6.8	35 70	10 31	1143 1169	2.70 3. 6 8	4 (1	5 19	រា រ	4 41	41 53	1 17	2 20	2 20	45 60	.40 .45	.046 .088	10 41	37 61	.59 .85	192 190	.09 .07	3 34	1.55 1.71	.03 .09	.19 .13	i 13	2 58

-,

Page 3

•

2

)

)

Ъ

)

)

)

)

1

)

1

2

)

1

4

)

SAMPLE	Ko PPN	CC PPK	P's PPX	II PPH	Ag PPK	Ni PPN	CO PPN	MD PPK	Je L	25 PPX	T PPK	AU PPX	Tb PPN	ST PPH	Cđ PPN	53 1919	Bi PPN	V PPX	Ca R	? 1	La PPK	CT PPN	NÇ L	B5 B5	11 1	E PPN	х: З	sK S	K ł	¥ PPN	Act PPB
1112+5CN 62+008 1112+5CN 82+258 1112+5EK 82+258 1112+5EK 82+8508 1112+5CN 82+758 1112+5CN 83+008	1 2 3 3 3	18 26 36 40 27	5 6 11 6 8	192 277 147 170 188	.2 .3 .2 .3 .2	25 38 51 52 41	11 13 13 11	906 1217 934 821 660	2.14 2.83 3.37 3.25 3.47	2 8 7 9 8	5 5 5 5 5 5	n D D D D D	3 5 4 3 3	47 40 55 45 33	1 1 1 1	2 2 2 2 2	3 2 2 2 2	32 42 53 52 35	.32 .59 .68 .86 .48	.052 .050 .058 .047 .038	3 7 10 9 9	30 46 56 55 58	.45 .70 .90 .93 .87	178 233 158 136 131	.08 .09 .10 .09 .12	3 4 3 3	1.49 1.79 1.98 1.99 2.03	.03 .02 .05 .02 .01	.15 .30 .26 .24 .33	1 1 1 1	1 1 2 1
L112+50A 83+258 L112+50K 83+593 L112+50A 83+593 L112+50A 83+753 L112+50X 84+003 L112+50K 84+253	2 1 2 2 3	18 25 24 22 43	5 5 7 3	183 226 148 162 134	.1 .2 .4 .1	26 29 40 31 74	IO 10 13 10 16	518 1490 1176 1136 737	2.88 2.88 3.18 2.83 3.98	9 3 1 2 12	5 5 5 5 5		2 2 3 3 3	33 45 40 34 38	1 1 1 1	2 2 1 2 2	2 2 3 3 2	49 47 52 45 56	.37 .51 .52 .45 .59	.028 .059 .030 .053 .059	6 6 7 12	39 39 54 44 79	.67 .72 .78 .67 1.22	90 172 157 162 134	.13 .13 .13 .11 .13	2 2 3 3 2	1.58 1.83 2.22 1.78 2.37	.01 .02 .01 .02 .01	.24 .32 .35 .33 .26	2 1 1 2 1	1 1 1 1
L112+50X 84+508 L112+50K 84+758 L112+50X 85+808 L112+50X 85+251 L112+50X 85+508	2 2 1 2 2	22 25 42 25 41	6 6 7 6	134 153 177 168 158	.3 .1 .1 .2 .2	13 10 57 10 66	12 12 14 12 17	868 1177 1146 1463 1187	3.01 3.06 3.20 3.19 3.74	6 8 10 12 6	5 5 5 5 3		3 3 3 4	31 39 64 38 60	1 1 1 1 1	2 2 2 2 2	4 3 2 2 2	51 43 48 48 60	.43 .53 .87 .57 .91	.028 .031 .185 .044 .063	7 1 11 5 12	54 49 69 48 76	.74 .73 .75 .73 .91	167 203 295 261 268	.14 .13 .13 .13 .13	2 3 6 3	2.15 2.15 2.16 2.42 2.75	.01 .05 .04 .05 .05	.27 .22 .33 .32 .37	1 1 1 1	1 1 1 1
LI12+50X 85+75K L112+50X 86+80X L112H 81+00X L112H 81+25K L112N 81+25K L112N 81+50X	2 3 3 2	39 32 37 33 33	6 6 6 6	149 120 160 150 159	.2 .2 .2 .2	60 13 51 18 39	18 12 14 13 11	837 852 737 592 817	4.01 3.37 3.74 3.62 3.20	11 6 12 7 6	5 5 6 3		4 3 4 3	50 35 43 34 42	1 1 1 1 1	2 2 3 2 3	2 2 2 2 2	67 57 62 57 52	.17 .30 .51 .43 .49	.087 .023 .064 .046 .054	13 9 12 10 9	71 55 61 60 49	1.12 .82 1.03 1.05 .78	200 139 161 130 169	.15 .14 .14 .12 .12	2 4 3 5	3.10 2.19 2.29 2.21 1.81	.01 .04 .04 .02 .03	.27 .28 .25 .25 .31	1 1 1 1	1 1 1 1
11120 83+758 11120 62+008 11120 82+258 11120 82+258 11120 82+508 11120 82+758	2 3 3 2 2	27 27 31 34 31	7 8 5 1 6	141 189 187 205 280	.1 .2 .1 .2	41 39 44 48 39	12 13 13 15 12	348 559 780 712 1005	3.30 3.42 3.50 3.77 3.36	3 6 5 6 6	5 5 5 5 5		4 3 3 3	40 31 41 36 43	1 1 1 1	2 2 2 2 2	2 3 2 2 2	53 54 54 61 52	.47 .31 .44 .41 .50	.021 .058 .055 .071 .070	1) 9 10 10 9	50 49 54 60 50	.80 .76 .90 .98 .83	159 142 160 176 264	.13 .13 .13 .13 .13 .12	2 1 2 2	2.19 2.34 2.44 2.51 2.20	.01 .02 .02 .01 .02	.25 .31 .30 .21 .34	1 1 1 1 1	1 1 3 1
L112N 83+001 L212N 83+258 L112N 83+568 L112N 83+758 L112N 83+758 L112N 84+008) 5 1 1 3	45 47 24 23 48	10 8 6 9	263 273 208 134 158	.1 .2 .1 .2	60 57 30 33 76	14 14 9 10 19	881 743 1470 1006 655	4.01 3.97 2.64 2.91 4.59	10 12 4 3 11	5 5 5 5 5		3 3 2 3 4	53 50 46 33 35	1 1 1 1	2 3 2 2 2	2 3 2 2 2	60 59 42 49 79	1.05 .57 .56 .42 .5)	.082 .039 .065 .024 .061	11 13 6 7 13	74 52 38 44 84	1.08 .82 .58 .64 1.48	191 131 211 176 104	.13 .09 .11 .13 .15	14 5 3 2 5	2.80 2.33 1.92 1.91 2.96	.04 .04 .02 .03 .02	.58 .44 .30 .36 .35	1 1 1 1	3 1 1 1 3
L112K 844258 L112N 844508 L112K 844758 L112K 844758 L112K 85408 L112K 854258	2 2 2 2 2	36 32 32 30 33	5 5 8 7 8	200 157 185 224 171	.2 .3 .2 .2 .2	71 46 50 40 51	16 14 14 12 13	907 1307 1093 1635 1445	3.76 3.17 3.62 2. 96 3.39	5 7 8 3 7	5 5 5 5 5		3 4 3 3 3	43 52 44 42 45	1 1 1 1 1	3 2 2 2 2 2	2 2 2 2 2 2	55 19 58 15 50	.57 .64 .54 .54 .80	.054 .081 .064 .086 .077	11 10 11 8 10	83 54 62 18 54	1.00 .75 .91 .67 .82	278 277 250 319 285	.17 .13 .15 .12 .13	5 5 4 3 8	2.71 2.45 2.70 2.18 2.59	.03 .03 .04 .01 .03	.35 .41 .38 .41 .37	1 1 1 1 1	1 1 1 1 1
1112K 85+50E STD C/AU-S	2 21	28 51	6 12	154 138	.2 8.0	41 70	13 31	1225 1144	3.35 1.08	7 10	5 19	n 9	3 41	19 52	1 19	2 18	3 22	53 64	.52 .50	.0 1 # .097	9 11	50 61	. 18 . 91	267 184	.14 .08	2 32	2.57 1.97	. 02 . 08	.31 .16	ា អ	ា រ

Page 4

1

•

Э

•

)

Э

)

)

)

)

}

)

)

3

1

)

Ċ

1

J

SARP LE#	BO PPK	CD PPN	PD PPK	ld PPR	Ag PPN	VI PPK	Co PPN	NA PPN	Fe 2	As PPH	G PPK	AU PPE	Th PPN	ST PPN	Cd PPX	SD PPN	Bi PPR	¥ PPN	Ca ł	F \$	Li PPR	CT PPN	Ng ł	Ba PPN	Ti \$	B PPK	ג ז	Ka ł	I }	¥ PPK	Au* PPB
L112N 85+75K L112N 85+00K L112N 86+27E L111+50N 81+50Z L111+50R 81+73Z	2 1 2 4 2	30 37 48 76 38	5 8 8 6 3	129 117 120 151 138	.1 .3 .2 .3 .3	44 35 54 90 43	11 11 14 15 10	1035 1367 1335 577 686	3.58 2.87 3.53 4.17 3.03	2 4 6 13 7	5 5 5 5	10 10 10 10 10	3 4 3 4 3	42 57 58 46 58	1 1 1 1 1	2 2 2 2 2 2	3 2 2 2 2	53 43 52 65 46	.52 .60 .76 .80 3.41	.020 .064 .071 .073 .081	5 9 12 17 10	54 39 54 73 43	.83 .59 .88 1.29 .82	244 189 242 141 131	.13 .10 .11 .09 .09	3 3 6 7	2.59 2.20 2.79 2.43 1.62	.01 .01 .01 .01 .01	.27 .23 .26 .34 .20	1 2 1 1 1	6 3 1 6 1
L111+50W 82+00X L111+50W 82+258 L111+50W 82+508 L111+50W 82+75K L111+50W 83+00R	4 1 2 1 2	49 35 25 22 20	10 4 3 5 4	142 267 170 446 145	.1 .3 .1 .1	62 28 32 41 28	13 5 8 8 7	442 503 946 374 788	4.15 1.75 2.50 2.85 2.67	5 2 2 2 2 2	5 5 5 5 5	n n D n	4 1 3 3 3	43 209 49 39 33	1 3 1 1 2	2 2 2 2 2 2	3 2 2 2 2	60 23 36 42 42	.60 5.98 .48 .41 .41	.041 .121 .065 .061 .028	16 4 5 5	62 25 37 43 34	1.02 .31 .53 .54 .65	128 150 198 144 115	.11 .03 .08 .11 .10	3 19 6 9 5	2.45 1.20 1.53 2.02 1.71	.01 .01 .01 .01 .01	.24 .24 .23 .27 .21	1 1 1 1	1 1 1 1 1
1111+50N 83+23B 1111+50N 83+30N 1111+50N 83+73N 1111+50N 84+00B 1111+50N 84+20B	2 2 3 3 2	39 39 37 36 19	3 6 6 3	315 203 152 119 137	.3 .1 .1 .1 .2	44 52 54 54 30	11 10 12 12 8	1288 1014 718 599 977	2.97 3.52 3.65 4.01 2.55	2 4 5 2	5 5 5 5		3 3 4 3 3	108 48 44 41 32	4 1 1 1	2 2 2 2 3	2 2 2 2 3	41 50 54 64 38	.82 .51 .45 .47 .40	.183 .062 .064 .032 .036	8 9 11 11 6	46 58 55 64 36	.69 .90 .92 1.07 .61	283 231 206 137 142	.09 .11 .13 .15 .09	10 12 5 9 3	2.15 2.27 2.96 2.66 1.68	.01 .03 .01 .01 .01	.33 .42 .39 .35 .26	1 1 1 2	2 1 1 2 #
1111+50N 84+50X 1111+50N 84+73X 1111+50N 85+008 1111+50K 85+30X 1111+50K 85+758	3 2 3 2 2 2	42 36 49 46 33	5 2 6 4 5	157 135 131 142 170	.1 .1 .1 .1	55 42 67 74 47	13 11 15 15 11	899 1030 1061 1535 1350	3.77 3.25 4.07 3.58 3.22	8 10 8 5 6	5 5 5 5 5		3 4 4 4	42 43 52 63 48	1 1 1 1 1	2 2 2 2 2 2	2 6 2 2 2	59 49 58 48 44	.45 .47 .71 .83 .62	.051 .049 .052 .058 .060	10 9 14 13 9	62 45 63 79 50	.97 .76 1.05 .94 .72	171 209 230 343 278	.13 .11 .12 .14 .12	10 5 8 6	2.44 2.15 2.58 2.41 2.23	.01 .01 .02 .01 .01 .02	.31 .36 .36 .44 .40	1] 1]	5 2 1 1 1
L111+50N 85+802 L111+50N 86+252 L111+50N 86+50X L111N 82+252 L111N 82+302	3 2 2 2 2 2	30 42 40 22 22	6 7 8 5 6	138 155 126 185 156	.1 .1 .2 .1	48 47 54 31 33	13 12 14 7 8	1437 1522 1595 705 994	3.33 3.25 3.42 2.72 2.51	5 5 5 6 2	5 5 5 5 3		3 2 3 3 2	46 63 50 35 40	1 1 1 1	2 2 2 2 2 2	2 2 3 2 2	48 46 49 41 35	.59 .68 .63 .46 .49	.048 .090 .085 .045 .033	9 10 12 7 7	53 49 53 38 35	.74 .74 .83 .60 .58	234 283 280 178 189	.13 .11 .12 .10	4 11 6 3 4	2.22 2.18 2.58 1.65 1.81	.02 .02 .01 .01 .02	.29 .41 .41 .24 .22	1 1 1 1	6 5 1 1 6
L111N 82+758 L111N 83+00R L111N 83+258 L111N 83+50R L111N 83+75R	2 2 2 2 2 2	16 27 24 28 23	5 7 5 5 5	110 330 121 150 305	.1 .1 .1 .1	26 41 36 44 37	8 10 10 11 8	678 1226 532 972 1516	2.50 3.21 3.10 3.25 2.47	2 3 3 11 2	5 5 5 5 5		2 3 2 2 2	26 40 31 39 40	1 1 1 2	2 2 2 2 2 2 2	2 2 2 2 2	41 43 50 49 35	.38 .51 .42 .51 .42	.024 .079 .027 .053 .104	4 8 7 9 1	32 43 43 53 36	.59 .76 .79 .86 .51	104 207 129 179 274	.09 .09 .11 .11 .08	3 6 2 4 7	1.40 2.10 2.02 1.95 1.74	.01 .01 .01 .03 .01	.29 .39 .18 .29 .30	1 1 1 1	2 1 1 3 1
L121N 84+003 L111N 84+253 L111N 84+302 L111N 84+75X L111N 84+75X L111N 85+003	3 3 1 3 3	20 25 34 37 39	7 10 6 7	117 136 165 200 194	.1 .1 .4 .1 .1	32 34 26 43 44	9 10 6 12 21	791 1184 987 1298 1078	3.09 2.90 1.39 3.22 2.97	2 4 5 5	5 5 5 5		2 2 1 3 2	25 38 521 51 52	1 1 2 1 1	2 2 2 2 2 2	2 2 3 2	50 45 21 1 45 40	.41 .48 10.98 .59 .54	.023 .029 .188 .038 .079	6 7 3 9 10	39 38 21 43 38	.82 .74 .42 .72 .65	112 196 69 221 236	.12 .10 .04 .10 .09	2 7 12 3 7	1.79 1.86 .86 2.17 2.22	.01 .01 .02 .02 .02	.15 .23 .20 .24 .26	1 2 1 1 1	1 1 2 3 1
11111 85+251 570 C/AU-\$	3 20	39 63	6 41	153 131	.1 7.5	62 72	1] 30	981 1070	3.46 4.93	2 39	5 23	1D I	4 40	47 53	1 19	2 17	3 22	51 59	.59 .49	.041 .091	11 42	57 61	.91 .95	193 180	.11 .07	3 31	2.19 1.90	.01 .05	, 27 , 16	1 14	1 48

Υ.

Page 5

.

J

.

.

)

)

)

)

)

1

7

1

£

÷.

ł

.

۰.

Sanplbi	No PPN	Ca PPN	PD PPN	TO PPK	Ag PPH	¥i PPN	CO PPN	La PPK	te 1	As PPK	T PPK	Au Ppn	Th PPN	St PPN	Cđ P?N	S) PPK	Bi PPK	V PPK	Ce ł	₽ ₹	La PPK	CT PPN	Kç t	Ba PPX	ti 1	B PPX	۸1 ۲	Na Ł	1 }	¥ Ppn	да. Ррб
11110 85+500 11110 85+731 11110 86+000 11110 86+250 11110 86+300	3 3 1 1 2	64 51 26 38 28	11 6 5 9 7	142 154 132 158 111	.3 .3 .2 .1 .1	79 55 37 35 35	16 13 12 11 10	730 1228 1162 1335 1378	4.49 3.51 3.43 3.48 3.09	17 14 5 8 3	5 5 5 5 5	10 10 10 10	3 3 2 2	53 58 16 13 13	1 1 1 1	2 2 3 2	2 2 2 3	76 56 57 52 50	1.01 1.28 .55 .59 .50	.047 .063 .043 .059 .027	13 9 9 8 7	67 53 46 31 37	1.41 1.00 .77 .75 .72	122 180 201 207 203	.13 .09 .12 .11 .11	4 8 3 9 7	2.52 2.09 2.23 2.17 2.16	.03 .01 .03 .02 .02	.25 .26 .35 .32 .23	2 1 2 1 3	2 I 1 1 2
LIIIN 86+758 LIIIN 874001 LIIO+508 82+258 LIIO+508 82+508 LIIO+508 82+758	1 2 2 1 1	32 26 16 21 21	6 8 5 6	140 123 135 182 208	.2 .3 .2 .1 .3	38 37 21 32 32	11 12 7 8	1652 1581 749 981 1139	3.13 3.05 2.26 2.52 2.51	3 7 2 1 2	5 5 5 5 5		3 3 2 2 3	(5 12 30 36 36	1 1 1 1	2 2 3 2	2 2 3 2	48 50 38 39 39	.66 .56 .39 .41 .41	.043 .048 .040 .041 .041	9 8 4 6	39 39 30 31 33	.78 .69 .48 .51 .49	269 234 134 219 256	.11 .11 .09 .09 .10	6 1 7 9	2.13 1.97 1.32 1.78 1.85	.04 .04 .01 .02 .02	.30 .23 .19 .22 .26	1 1 2 1] 2] 1]
L110+50N 83+000 L110+50N 83+250 L110+50N 83+250 L110+50N 83+750 L110+50N 83+750 L210+50N 84+001	2 2 2 2 2	28 31 23 34 27	6 8 5 6	233 169 175 147 187	.1 .2 .3 .1	38 44 31 53 33	10 10 9 12 9	1115 761 814 642 1170	3.27 3.44 3.05 3.45 2.80] 8 3 11 3	3 5 3 5 5		2 3 2 3 3	41 10 32 46 45	5 1 5 1 1	2 2 2 2 2 2	3 2 2 3 2	52 55 52 54 44	.63 .50 .41 .55 .51	.048 .041 .029 .052 .043	9 6 11 9	43 53 40 56 38	.74 .92 .78 .91 .60	215 175 143 163 211	.11 .10 .10 .17 .10	1 5 5 1 5	2.09 2.02 1.73 2.25 1.85	.01 .01 .02 .02 .01	.24 .27 .21 .25 .25	1 1 1 1	3 6 3 5 1
L110+50N 84+25K L110+50R 84+301 L110+50N 84+75K L110+50K 85+003 L110+50K 85+25K	2 2 2 2 2	26 26 33 27	6 9 4 5 8	191 103 103 250 165	.1 .1 .1 .1	31 35 39 37 40	9 9 10 9 11	1164 1106 1092 1070 1180	2.76 2.94 2.94 2.84 3.13	3 6 6 6	5 5 5 5 5		2 2 2 2 2	60 45 40 46 43	1 1 1 1	2 2 2 2 2	4 2 2 3	44 47 46 45 52	.63 .50 .42 .45 .49	.044 .041 .046 .062 .061	7 8 8 7 7	37 39 40 39 46	.58 .62 .64 .66 .76	216 206 198 223 186	.11 .11 .11 .10 .10	7 7 10 5 5	1.83 2.00 2.08 1.75 2.05	.02 .01 .01 .01 .01	.26 .25 .25 .23 .18	1 1 1 1	1 1 2 1
1130+500 85+508 1130+500 85+753 1110+500 86+008 1130+500 86+253 1130+500 86+258 1130+500 86+308	2 3 1 1 1	36 31 8 21 26	6 7 2 7 5	199 132 17 198 178	.2 .1 .1 .1	40 51 4 32 38	12 32 1 10 12	946 605 40 850 1145	3.66 3.95 .20 2.67 3.08	8 12 4 3 5	5 5 5 5		3 3 1 2 3	52 45 1302 84 50	1 1 1 1	2 2 2 2 2 2	3 2 5 2 2	56 64 2 43 46	.48 .52 16.72 ,86 .50	.060 .026 .060 .033 .092	10 9 2 5 8	52 60 2 34 38	.86 .96 .26 .65 .70	232 186 16 122 225	.12 .12 .01 .10 .10	8 7 8 5 5	2.43 2.42 .09 1.78 2.12	.02 .01 .01 .01 .01	.33 .24 .02 .27 .26	1 1 1 1	2 3 1 1 1
1110+50N 86+75K LIID+50N 87+00X 1110+50N 87+25B LII0¥ 82+75K LIIDK 83+00K	1 2 2 2 2	17 28 39 25 26	4 5 5 9 9	121 112 153 138 197	.1 .1 .3 .2	27 40 40 34 32	8 11 12 9 9	658 649 1074 940 1272	2.35 3.27 3.53 2.82 2.53	6 11 9 8 4	5 5 5 5 5		2 3 3 3 2	26 10 56 13 63	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	39 54 56 46 10	.13 .56 .68 .65 .77	.022 .012 .038 .025 .055	5 8 7 6	30 13 12 39 35	.51 .78 .82 .68 .56	128 126 166 159 193	.09 .11 .11 .09 .08	2 1 10 1	1.76 2.06 2.11 1.56 1.73	.01 .01 .03 .01 .01	.13 .19 .26 .20 .21	1 1 1 2	1 2 2 1 1
LIIOX 834251 LIIOX 834501 LIIOX 834501 LIIOX 834731 LIIOX 844001 LIIOX 844251	2 2 2 2 2	25 25 29 17 19	7 4 5 5	168 172 160 143 181	.1 .1 .1 .1	30 39 42 56 24	8 11 10 11 7	1062 745 933 544 1177	2.42 3.22 3.05 3.78 2.32	5 3 8 2	5 5 5 5 5		1 2 2 2 2	254 11 57 35 36	1 1 1 1	2 2 2 2 2	2 2 2 2 2	37 55 50 60 39	3.53 .50 .73 .47 .46	.061 .033 .046 .047 .039	4 8 11 5	33 47 50 59 29	.58 .74 .76 .97 .50	61 158 172 167 177	.03 .12 .10 .11 .09	6 5 3 8	1.69 2.04 1.82 2.52 1.43	.03 .02 .01 .01 .01	.20 .21 .24 .26 .22	1 1 1 1	1 1 1 1
11108 84+501 STD C/AD-S	2 19	29 61	6 38	172 129	.1 7.0	44 69	11 29	907 1047	3.41 4.03	13 12	5 19	∎0 7) 38	65 52	1 18	2 15	4 17	53 63	. 58 . 49	.056 .089	9 40	51 59	.H. .H	213 176	.12 .07	7 30	2.26 1.81	.02 .06	.13 .14	1 12	1 17

Page 6

.

}

ł

)

)

)

)

1

1

)

)

}

1

J,

)

}

-.

supl1;	No PPX	CU 199	PÌ: PPN	La PPH	Ag PPK	Ki PPN	Co PPN	Ka PPN	Te 1)15 ??N	0 996	ka PPH	tb PPH	ST PPL	Cd PPN	SD PPK	Bi PPK	Y PPX	Ca t	Р 1	La PPN	CT PPU	Ng ł	Ba PPK	Ti t	B PPN	Aì 1	Na Ł	۲ ۲	¥ PPX	Au* PPB
27100 844758 1110x 854008 13100 854258 1110x 854501 12100 854558	2 2 2 6 2	24 21 41 57 33	5 2 5 9	156 151 182 204 367	.1 .1 .1 .3	36 29 47 51 31	10 9 13 14 12	1053 1063 1088 673 893	2.76 2.44 3.24 4.16 2.68	4 2 6 13 5	5 5 5 5		2 2 3 2	34 32 58 43 104	1 1 1 1 1	3 2 2 2 2	2 2 2 2 2	46 39 52 55 41	.37 .35 .58 .45 .41	.033 .033 .080 .031 .039	7 5 8 12 7	39 33 48 42 31	.65 .61 .87 1.22 .73	184 150 195 144 118	.11 .09 .09 .07 .00	11 2 3 4 3	1.79 1.63 1.85 2.18 1.41	.03 .01 .01 .02 .02	.21 .16 .20 .22 .12	2 1 1 1	3 1 1 1 1
L110X 86+00X L110W 86+25X L110X 86+50X L110W 86+75X L110W 86+75X L110W 87+00K	2 3 2 3	31 45 54 32 50	4 7 3 5 3	143 137 181 263 234	.1 .2 .1 .3	42 52 46 26 52	11 14 14 9 15	1149 721 1450 2526 895	2.87 4.14 3.72 2.32 3.90	4 8 6 2 6	5 5 5 5 5		3 3 2 2 3	51 39 82 70 82	1 1 1 2 1	2 2 2 2 2	3 2 2 3 2	49 66 54 35 62	.45 .53 1.02 .65 .66	.033 .030 .119 .067 .037	7 11 9 6 33	49 54 45 25 49	.68 1.05 1.09 .45 .87	210 119 215 310 272	.13 .11 .08 .07 .14	3 3 7 1 2	1.80 2.29 2.04 1.49 2.76	.01 .02 .02 .02 .02	.20 .23 .24 .23 .22	1 1 1 1	1 1 1 1
1110H 87+258 1110X 87+508 1110H 87+758 1109 87+758 1109+508 83+008 1109+508 83+258	1 1 1 2 6	27 10 36 28 77	2 2 3 9	35 42 277 162 283	.3 .4 .2 .1 .1	13 16 26 42 61	6 9 10 12	156 251 1751 644 537	.69 1.31 2.31 3.30 3.37	4 2 6 13	5 5 5 5 5		1 1 2 2	519 167 96 36 40	1 1 1 1	3 2 2 4	2 2 2 2 3	10 15 36 60 54	20.51 17.50 1.08 .57 .37	.032 .046 .109 .028 .061	2 3 5 9 17	1 6 27 50 37	.43 .56 .45 .91 1.06	62 56 231 136 103	.01 .01 .08 .12 .10	4 16 5 2	.38 ,66 1.55 1,80 1.92	.02 .01 .01 .02 .02	.02 .10 .23 .22 .18	1 1 1 1	1 1 2 1
1109+50H 83+506 1109+50H 83+731 1109+50H 84+008 1109+50H 84+232 1109+50H 84+501	2 2 2 2 2	31 23 26 30 29	4 4 7 4	213 172 210 174 186	.2 .2 .1 .1	39 33 32 40 33	10 8 8 11 10	737 763 816 1158 999	3,38 2,83 2,76 3,16 2,85	2 2 3 5	5 5 5 5		3 3 2 3 1	50 37 37 43 31	1 1 1 1	2 2 2 2 2	2 2 3 2 2	57 48 45 32 48	.69 .48 .45 .60 .41	.050 .028 .039 .058 .034	10] 7 8 6	39 39 40 45 37	.65 .63 .59 .80 .68	240 194 195 190 159	.14 .12 .11 .10 .10	6 2 3 8	2.26 1.95 1.88 1.79 1.67	.03 .03 .01 .02 .01	.19 .15 .20 .33 .17	1 1 2 1 1	1 1 1 1
L109+50N 84+753 L109+50N 85+008 L109+50N 85+233 L109+50N 85+30R L109+50N 85+732	2 2 2 2 1	25 30 40 32 4	4 4 6 2	152 134 154 186 11	.2 .2 .1 .1	29 42 51 32 4	9 11 13 5 1	777 629 676 718 67	2.83 3.53 3.76 3.04 .10	1 2 5 7 5	5 5 5 5 5		2 2 2 2 1	45 35 40 57 1349	1 1 1 1	2 2 2 2 2	2 2 2 2 3	48 60 64 49 2	.39 .13 .13 .52 22.12	.044 .027 .044 .050 .047	6 6 10 7 2	37 48 54 36 2	.64 .96 .98 .67 .33	171 143 152 115 17	.12 .10 .11 .11 .11	4 6 8 11	1.73 2.07 2.28 1.70 .07	.02 .02 .01 .01 .01	.22 .26 .31 .27 .03	2 1 1 1 1	1 1 1 1
1809+50N 86+00E L109+50N 86+23E L109+50N 86+50L L109+50N 87+00E L109+50N 87+25E	2 1 2 1 2	46 26 53 41 27	3 3 2 6 3	137 253 140 338 184	.1 .2 .1 .2 .1	87 30 59 38 32	16 8 15 11 13	499 592 569 1297 1544	4.40 2.64 4.24 2.93 2.83	12 2 10 7 2	5 5 5 5 5		3 1 2 3 1	63 53 38 62 55	1 1 2 1	2 2 3 2 2	2 2 2 2 2 2	77 45 14 45 44	.92 .45 .41 .54 .51	.023 .034 .033 .105 .014	12 6 11 8	85 39 62 39 34	1.23 .36 1.11 .69 .61	93 116 98 308 224	.16 .12 .13 .11 .11	3 6 3 7 6	2.53 1.49 2.32 1.94 1.93	.03 .01 .01 .02 .03	.31 .27 .21 .30 .27	1 1 1 1	1 1 1 1
L109+30H 87+50H L109+30H 87+73H L109+30K 88+00H L109H 83+50H L109H 83+75H	2 2 1 2 2	26 29 31 36 26	7 1 5 9 7	111 146 163 145 165	.2 .1 .1 .1 .1	30 34 45 61 40	11 11 13 13 9	1010 999 1195 665 508	2.98 3.40 3.41 3.85 3.28	3 5 6 7	5 5 5 5 5	0 0 0 0 0 0	1 2 2 2 1	52 48 47 45 34	1 1 1 1	2 2 2 2 2	2 2 2 4 2	35 54 36 62 32	.47 .51 .61 .63	.020 .036 .060 .050 .037	7 9 11 12 9	34 18 50 67 46	.68 .78 .77 1.01 .76	110 160 269 189 182	.12 .12 .13 .14 .13	7]] 3 6	1.78 2.18 2.62 2.49 2.29	.01 .03 .02 .02 .02	.24 .26 .25 .33 .25	1 1 1 2	1 1 1 1
LIOON 84+DOE STD C/AU-S	2 19	37 62	5 36	224 132	.1 1.2	48 72	13 30	1145 1064	3.49 4.07	5 12	5 13	10 7	2 40	53 53	2 13	3 17	2 21	54 61	.10 .30	. 059 . 090	9 62	51 61	.85 .96	263 101	. 09 . 07	9 30	2.09 1.86	.01 .07	.34 .13	1 H	2 41

Page 7

+ Y

)

)

1

)

)

)

)

)

)

1

2

)

1

)

)

.

SANPLE !	NO Nak	Cu PPK	Pb ?PK	ID PPX	Ag PPK	NI PPK	CO PPN	Ka PPK	Je 1	λs PPM	U P?K	Xu PPM	Tb PPK	ST PPK	Cd PPK	SD PPN	Bi PPK	¥ PPX	Ca ł	P L	La PPN	CT PPN	Kg t	9a PPN	ti t	E PPK	λ1 ۲	sk t	K Ş	¥ ?Px	Au* PPB
L109N 64+25E L109N 64+50E L109N 64+75E L109N 65+00E L109N 85+23E	1 1 2 2 2	15 38 55 53 29	5 4 9 3	333 170 164 133 159	.2 .2 .4 .2 .3	24 37 64 47 32	7 12 16 14 9	347 563 606 391 596	2.50 3.84 4.51 4.70 3.22	2 2 2 2 2 2	6 8 5 5	ולה ורים ורים אלי	3 4 3 4 3	38 42 43 51 44	3 1 1 1 1	2 2 3 3	2 2 2 2 3	42 62 78 87 57	.43 .58 .80 .62 .51	.024 .031 .027 .017 .051	6 10 15 14 8	31 42 50 48 36	.46 .94 1.20 1.03 .75	100 89 116 90 180	.12 .14 .12 .16 .13	2 5 2 6	1.73 2.03 2.53 2.47 2.04	.03 .03 .02 .04 .04	.21 .44 .47 .53 .36	1 1 1 1 2	1 1 1 1
L109N 85+50K L109N 85+75I L109N 86+003 L109N 86+25I L109N 86+55I	1 2 3 2 2	32 B1 53 35 41	4 8 4 6	251 147 152 161 198	.3 .2 .3 .7 .2	37 55 73 49 50	9 17 14 13 14	1445 635 598 1062 1120	2.73 4.68 4.43 3.56 3.52	3 13 8 3 2	5 5 8 5 5		3 3 4 3 2	89 57 39 45 59	1 1 1 1 1	2 3 2 2 2	2 2 2 2 2	43 90 75 58 55	.99 .86 .53 .57 .72	.145 .073 .052 .041 .095	8 14 13 31 13	38 49 73 52 46	.57 1.41 1.26 .90 .89	344 119 141 187 215	.09 .14 .10 .11 .10	12 2 2 2 2	1.78 2.45 2.54 2.19 2.42	.02 .01 .04 .07 .03	.44 .20 .34 .40 .26	1 2 1 1	1 2 1 1
L1D9N 86+752 L109N 87+002 L109N 87+25R L109N 87+50R L109N 87+50R	2 2 2 2 2 2	35 47 30 29 35	6 8 5 4 7	205 174 134 208 143	.1 .3 .1 .3 .1	44 63 42 35 58	12 16 13 11 15	1391 788 778 1106 537	3.13 3.80 3.74 3.11 4.06	2 3 2 2 3	5 6 5 5 6		2 3 1 3 3	50 57 49 57 49	1 1 1 1	2 2 2 2 2 2	3 2 2 4 2	48 51 58 46 69	.63 .64 .60 .61 .55	.092 .068 .054 .042 .034	9 12 11 7 12	40 59 49 38 63	.67 .99 .86 .67 .94	271 238 157 200 172	.10 .13 .13 .11 .11	5 2 2 6 2	2.05 2.55 2.52 2.09 2.89	.03 .03 .02 .03 .03	.33 .27 .37 .38 .33	1 1 1 1	1 3 1 1 1
L109N 88+00E L109H 88+25X L109H 88+50E L108+50H 83+75E L108+50H 84+00E	2 2 1 2 3	10 30 33 21 32	4 3 6 3 9	138 131 247 212 166	.3 .1 .1 .2 .1	37 44 34 33 39	12 13 10 9 12	981 795 1950 639 392	3.09 3.63 2.70 3.09 3.83	2 2 2 2 2	5 5 5 6 5		3 1 1 2 3	57 49 50 42 32	1 1 1 1	3 2 2 2 3	2 3 3 2 3	48 59 39 47 69	.60 .51 .77 .54 .38	.025 .030 .071 .042 .032	8 10 8 7 9	45 54 34 40 39	.66 .78 .58 .71 1.01	192 165 292 160 96	.12 .14 .09 .08 .12	4 2 7 8 2	2.14 2.48 1.65 1.75 2.06	.05 .03 .04 .01 .01	.45 .39 .33 .28 .24	1 1 1 1	1 1 1 1
L108+50W 84+25K L108+50R 84+50K L108+50W 84+75K L108+50R 85+00K L108+50N 85+25K	3 3 4 3 2	39 59 82 73 39	9 8 9 8 6	194 170 184 162 175	.3 .4 .3 .3	43 67 102 90 55	10 16 19 17 14	1337 627 853 755 1490	2.87 4.46 4.91 4.29 3.32	7 6 10 15 2	5 5 5 6		1 3 3 2 2	90 45 40 71 64	2 1 1 1 1	3 3 2 2 3	2 2 2 2 3	45 76 81 72 50	2,57 .82 .64 2.44 .99	.044 .052 .058 .064 .096	14 15 11 11	38 62 86 77 51	.81 1.25 1.69 1.58 .77	198 200 136 131 412	.08 .12 .09 .08 .09	5 2 2 2 2	1.64 2.79 2.78 2.41 2.16	.01 .02 .03 .04 .02	.18 .28 .21 .20 .38	2 1 1 1 1	1 2 1 1 1
L108+50R 85+501 L108+50N 85+738 L108+50N 86+003 L108+50N 86+238 L108+50N 86+238 L108+50N 86+508	2 2 2 2 2 2	33 32 44 29 33	4 8 6 5	145 157 234 165 210	.1 .1 .1 .1	55 45 45 41 40	13 12 12 12 12	832 1126 1269 1128 1452	3,40 3,18 3,14 3,12 3,08	2 3 3 2 5	5 5 5 5 5	10 10 10 10	2 1 1 1 2	41 40 67 38 44	1 1 1 1 1	2 2 2 2 2	4 3 2 2 2	54 50 45 49 46	.53 .54 .76 .38 .51	.042 .042 .123 .048 .096	11 9 8 10 8	53 51 45 46 45	.85 .77 .77 .72 .58	231 196 294 187 243	.12 .11 .08 .11 .10	2 2 2 2 2 2	2.56 2.09 1.96 2.00 2.11	.01 .01 .01 .04 .03	.31 .32 .33 .39 .35	2 2 1 1 1	I 1 1 1
L108+50W 86+758 L106+50N 67+008 L108+50M 87+258 L108+50R 87+550 L108+50N 87+751	2 2 1 1	32 31 28 30 36	7 5 8 6 7	150 163 160 149 144	.1 .1 .1 .1	51 49 40 41 42	14 12 11 12 14	877 1022 1363 1004 1315	3.77 3.64 3.02 3.37 3.68	2 3 2 4	5 5 5 5 5		3 2 1 2 1	44 42 44 40 52	1 1 1 1	2 2 2 2 2	3 2 2 2 2	56 53 47 52 54	.35 .55 .54 .51 .64	.050 .039 .029 .058 .035	11 10 8 11 10	61 61 43 46 46	.88 .80 .67 .70 .89	207 246 218 226 215	.13 .12 .11 .12 .11	2 2 4 2 2	2.48 2.40 2.10 2.61 2.41	.05 .01 .01 .03 .02	.39 .32 .29 .33 .40	1 2 1 1	1 1 1 2
1108+50R 88+008 STD C/AD+S	1 19	33 61	7 42	159 131	.1 7.2	50 71	13 31	761 1044	3.91 4.00	2 41	5 18	10 1	2 39	42 53	1 1\$	2 17	2 21	55 64	.59 .49	.062 .089	11 41	59 61	.87 ,95	196 179	.12 .07	2 32	2.97 1. 8 5	.01 .08	.37 .13	1 15	1 52

Υ.

Page B

.

1

)

)

)

)

)

)

)

)

)

1

)

3

J

)

.

SAMPLE	NO PPN	CU PPN	Pb PPX	ID PPM	λg PPN	N1 PPN	Co ?PX	NC YPK	Pe L	A G PPK	0 991	44 222	Th PPX	ST PPX	Cd P?K	SD F?n	Bi PPN	7 P P ¥	Ca t	P 1	La PPN	CT PPK	Hg L	Ba PPK	71 1	B 998	A1 3	Ka L	ן ז	¥ PPX	AU* PPB
L108+50¥ 86+25X L108+50K 86+50X L108+50X 86+75X L108K 64+25X L108K 64+25X L109X 84+55X	2 3 2 1 2	37 58 58 39 27	9 9 10 9 9	168 133 131 196 150	.2 .1 .3 .1 .1	43 72 60 47 39	12 15 16 12 10	967 781 974 568 683	3.30 4.39 4.14 3.27 3.01	5 5 2 2 4	3 5 8 5 5	יסו מו מו מו	2 2 3 2 3	38 33 41 43 40	1 1 1 1	2 3 2 2 2	2 2 2 2 2 2	49 67 62 53 47	.34 .60 .68 .49 .52	.031 .064 .063 .069 .058	11 10 11 12 9	43 59 57 42 36	.71 1.16 1.12 .76 .67	150 126 165 249 162	.11 .07 .09 .12 .10	2 3 3 3 5	2.43 2.56 2.61 2.53 1.95	.01 .01 .01 .01 .03	.27 .44 .40 .28 .30	1 1 1 1	4 7 1 1 2
1108N 84+753 L108N 85+008 L108N 85+238 L108N 85+368 L108R 85+758	2 1 2 2 2	29 33 24 22 26	7 6 9 7 8	197 238 167 123 158	.2 .1 .1 .1 .1	37 37 27 32 35	9 11 7 9 9	1314 1486 1170 794 987	2.61 3.00 2.22 7.61 2.64	2 3 2 4	5 5 5 5 5	ID ID ID ID	2 1 2 1 1	48 47 33 29 32	1 1 1 1	3 2 3 2 2	2 2 2 2 2 2	42 45 35 45 42	.60 .49 .42 .33 .37	.046 .127 .040 .021 .043	8 7 5 5 6	33 38 29 35 33	.61 .68 .49 .60 .59	253 320 186 131 160	.09 .09 .08 .10 .10	4 5 4 2 8	1.86 2.04 1.56 1.63 1.83	.03 .03 .01 .01 .01	.21 .32 .22 .19 .25	1 1 1 2	9 1 1 2 2
LIOBN 86+D33 LIOBN 86+239 LIOBN 86+398 LIOBN 86+758 LIOBN 87+008	1 1 2 1 3	31 30 32 31 40	B 10 7 7 6	154 218 146 156 136	.1 .1 .1 .1	44 39 50 45 56	12 11 12 12 14	1078 922 805 1076 778	3.06 2.93 3.56 3.21 4.09	2 5 4 2 5	5 5 5 5 5		2 2 3 2	41 63 38 63 41	1 1 1 1	2 3 2 2 2 2	2 2 2 2 3	48 45 56 51 63	.48 .48 .48 .49 .61	.064 .057 .032 .067 .025	10 8 9 9 11	44 40 57 44 62	.74 .65 1.00 .74 1.08	202 178 186 224 168	.10 .10 .11 .11 .10	4 5 4 2 4	2.07 2.12 2.28 2.43 2.45	.02 .01 .01 .01 .01	.30 .31 .33 .28 .34	1 1 2 1 1	1 1 1 1
LICON 87+258 LICON 87+308 LICON 87+358 LICON 80+CC3 LICON 80+CC3	2 2 1 1 2	36 35 37 36 32	8 9 8 8 9	146 120 187 138 154	.1 .1 .1 .1	49 65 41 45 40	12 15 12 13 11	907 743 644 970 681	3.59 3.95 3.33 3.62 3.47	5 5 2 3 2	5 5 5 5 5		2 1 2 2 1	46 39 44 63 35	1 1 1 1	2 2 2 2 2	2 2 3 3 2	54 68 51 54 51	.59 .52 .54 .53 .53	.035 .028 .032 .943 .051	11 13 8 10 9	51 37 42 51 45	.83 1.12 .82 .85 .78	214 130 156 211 195	.12 .12 .11 .12 .11	3 2 3 6 3	2.49 2.27 2.20 2.49 2.38	.02 .03 .03 .03 .03	.41 .19 .31 .42 .34	1 1 1 1	2 1 1 4 1
L108N 88+50B L108N 88+75E L108N 89+00E L108N 89+25E L107+50N 84+30E	1 1 1 3	24 28 48 32 32	9 7 6 8 10	164 136 160 122 194	.1 .1 .1 .1	29 32 47 33 40	9 11 13 9 11	1165 1145 1388 1278 1373	2.29 2.91 3.57 2.44 3.21	2 2 5 2 5	5 5 5 5 5		1 1 1 1 2	32 43 53 80 43	1 1 1 1	2 2 2 2 3	2 2 2 2 2 2	36 42 51 36 51	.46 .67 .82 .67 .59	.083 .046 .083 .022 .049	7 8 8 6 9	27 37 45 29 41	.45 .62 .91 .57 .70	198 198 228 141 246	.07 .09 .08 .08 .10	2 5 11 8 4	1.52 2.01 2.13 1.53 2.15	.02 .01 .01 .01 .01	.18 .37 .52 .34 .28	1 1 1 1	1 2 1 1 1
L107+50N 04+75E L1D7+50N 85+00R L107+50N 85+25E L107+50H 85+50B L107+50H 85+75E	2 2 1 1 2	34 29 23 45 38	8 5 6 7 11	184 357 213 185 170	.1 .1 .1 .1	39 35 27 53 44	10 10 9 12 11	1059 1637 835 1476 1104	2.92 2.65 2.71 3.00 3.05	2 2 2 5	5 5 6 5 5		1 1 2 1 1	47 46 29 53 46	1 1 1 1	2 2 2 2 2 2	2 2 3 2 2 2	47 39 43 46 48	.71 .58 .31 .61 .58	.051 .066 .048 .067 .064	8 5 8 8	38 34 30 46 46	.69 .65 .68 .94 .74	210 255 126 173 192	.09 .08 .10 .07 .09	5 1 5 7 6	1.82 1.71 1.64 1.84 1.99	.02 .01 .01 .01 .01	.24 .27 .21 .27 .28	1 1 2 1 1	1 1 3 5
L107+50% 86+00 L107+50% 86+25 L107+50% 86+50 L107+50% 86+75 L107+50% 86+75 L107+50% 87+808	2 2 2 2 2 2	40 40 37 42 36	7 6 9 6 6	175 159 150 146 219	.1 .1 .1 .1 .1	47 50 49 58 39	13 12 13 14 11	1142 1007 1239 620 1219	3.26 3.48 3.48 3.81 3.14	\$ 4 5 2 -	5 5 5 5 5 5		2 1 1 2 2	42 40 42 44 45	1 1 1 1 1	2 2 2 2 2	2 2 2 4 2	52 55 56 64 47	.53 .53 .59 .52 .57	.061 .078 .040 .059 .053	11 9 11 13 9	47 57 56 61 42	, 81 . 92 . 85 . 94 . 6 9	228 220 237 193 266	.11 .10 .12 .13 .11	5 5 4 2 4	2.33 2.06 2.28 2.82 2.13	.01 .01 .01 .02 .02	.35 .35 .30 .25 .35	1 1 1 1	1 1 1 2 1
1107+50N 87+25K STD C/AD-S	2 18	47 60	7	150 127	،1 ٤.৪	55 70	15 29	993 1038	3.72 3.92	6 10	5 22	10 7	2 38	48 50	1 18	2 17	4 18	61 64	. 62 . 48	. 066 . 088	12 40	56 60	.93 .92	219 172	.12 .07	5 31	2.50 1.79	.01 .05	.44 .14	1 14	1 49

.

``

Page 9

٦.

)

)

7

)

)

ì

)

1

)

)

1

)

ŧ

)

3

SAMPLE	Xo PPX	Ca PPN	Pb PPM	La PPR	Ag PPX	Xi PPN	Co PPK	NC P?X	Te 3	A6 PPX	U PPK	Au PPK	Tb PPK	ST PPM	Cd PPK	42 899	Bi PPN	V PPN	Ca 1	P	La PPM	Cr ₽₽K	Xg L	Ba PPN	ti \$	B PPM	ג ג	Na 1	۲ ۲	¥ PPX	AU" PPB
1107+508 87+508 L107+508 87+752 L107+508 88+602 L107+508 88+258 L107+508 88+508	3 2 2 2 1	35 36 41 42 39	6 5 6 4 5	158 143 146 148 151	.1 .1 .1 .2	43 45 46 49 46	13 13 14 14 13	1030 830 1024 972 1198	3.79 3.84 3.84 3.93 3.58	2 5 2 4 2	5 5 5 5 3		2 2 2 1 1	42 48 62 57 62	1 1 1 1	2 3 2 2 2	2 2 2 2 2 2	51 53 50 52 45	.65 .65 .90 .86 .99	.042 .043 .058 .077 .082	10 11 10 10 11	53 55 51 49 53	.90 .91 1.00 1.01 .90	155 181 213 167 242	.11 .12 .11 .10 .10	2264	2.33 2.73 2.56 2.48 2.32	.01 .01 .02 .02 .01	.37 .35 .46 .35 .50	1 2 1 1 1	1 1 1 1 2
L107+50K 88+75E L107+50K 89+00E L107+50K 89+25E L107+50K 89+50E L107+50K 85+00E	2 2 1 2 2	40 30 37 56 27	3 3 4 8	142 143 127 117 184	.1 .1 .2 .1 .1	50 48 48 51 34	13 14 13 14 11	1137 1182 1174 1032 954	3.81 4.00 3.54 3.82 3.23	5 4 2 3 5	5 5 5 5 5	10 10 10 10 10	1 1 2 1 2	58 65 74 112 36	1 1 1 1	2 2 2 2 2 2	2 2 3 2 2	50 53 47 54 46	.86 1.04 .91 1.35 .42	.069 .088 .071 .057 .052	11 10 10 10 8	54 51 54 50 42	.99 1.15 .93 1.13 .73	218 171 210 123 208	.11 .09 .11 .11 .12	3 8 5 9 2	2.51 2.38 2.34 2.22 2.24	.01 .01 .01 .02 .01	.43 .45 .48 .38 .21	1 1 1 1 1	1 1 1 1
L107# 85+25# L107# 85+50# L107# 85+75# L107# 86+00# L107# 86+25#	2 1 2 2 3	27 35 41 40 51	6 1 5 6 7	130 193 270 273 190	.3 .1 .2 .2 .1	39 34 47 45 55	10 8 14 12 13	829 1336 1035 805 799	3.22 2.62 3.52 3.47 3.96	2 2 7 2 8	5 5 6 5		3 2 4 2 2	38 53 62 37 51	1 1 2 1	2 2 2 2 2 2	2 3 2 2 2	43 38 47 49 54	.40 .52 .65 .48 .77	.056 .077 .138 .053 .988	10 7 12 11 14	43 36 42 44 48	.78 .58 .89 .89 1.01	207 244 220 189 191	.11 .09 .11 .11 .12	2 2 3 4 2	2.18 1.76 2.21 2.17 2.11	.01 .01 .01 .01 .01	.28 .31 .35 .28 .27	1 1 1 2	1 7 1 1
1107N 66+50X 1107N 86+73X 1107N 87+00X 1107N 87+23X 1107N 87+25X	2 2 2 2 3	44 50 47 40 45	\$ 7 5 9	159 180 207 139 186	.2 .2 .1 .1 .1	50 60 50 49 52	14 15 13 13 14	1104 1276 1536 1122 1108	3.73 4.02 3.51 3.53 3.76	3 7 3 2 6	5 5 5 5 5		2 2 2 2 2	43 64 55 39 56	1 1 1 1	2 2 2 2 3	2 2 2 2 2 2	53 55 48 49 52	.76 .87 .73 .36 .68	.058 .134 .091 .029 .065	12 12 10 11 11	49 64 53 56 61	.93 1.04 .89 .89 .93	249 325 331 193 243	.13 .10 .10 .12 .11	2 4 5 2 2	2.24 2.48 2.20 2.30 2.33	.02 .01 .02 .02 .02	.33 .38 .38 .26 .31	1 1 1 1 1	1 1 1 1
L107W 87+75B L107W 88+00B L107W 88+25B L107W 88+25B L107W 68+50B L107W 88+75B	1 2 2 2 2	46 42 47 51 53	6 5 8 5 5	151 182 159 132 167	.1 .1 .1 .1	50 44 44 55 51	13 13 13 14 13	1251 1534 1377 1072 1097	3.33 3.29 3.37 6.00 3.65	2 2 5 2 2	5 5 5 5 5	מנ סק סק סק	1 1 1 1	62 63 84 55 103	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	47 45 45 56 52	1.01 .95 1.28 .91 2.30	.070 .075 .098 .058 .083	11 10 10 11 9	48 45 45 52 47	.81 .79 .82 1.18 1.12	226 242 257 163 188	.10 .03 .08 .10 .09	2 5 8 3 5	2.13 2.16 2.28 2.46 2.22	.04 .01 .03 .02 .01	.34 .37 .40 .32 .31	1 1 1 1	2 1 1 1
L107N 89+00F L107N 89+25F L107N 89+508 L107N 89+75F L107N 89+05F	2 2 1 2 2	29 22 3 50 30	5 5 2 4 5	213 113 4 137 141	.1 .1 .1 .1	28 29 2 45 34	10 11 13 11	1644 966 29 1089 1180	2.46 2.98 .09 3.63 2.96	2 2 3 2 2 2	5 5 5 5 5	ם 10 10 10 10	2 1 1 2 2	62 43 568 133 62	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	33 46 1 48 37	.72 .55 21.01 1.96 .71	.052 .019 .010 .089 .037	6 8 2 8 8	29 39 2 44 35	.54 ,64 ,08 1.06 .66	193 101 5 135 102	.07 .12 .01 .09 .08	2 2 9 2	1.63 1.89 .05 2.30 1.94	.02 .03 .01 .02 .01	.23 .27 .04 .43 .31	1 1 1 1	1 1 1 1
L106+50 85+251 L106+50 85+508 L106+50 85+758 L106+50 85+758 L106+50 86+001 L106+50 86+238	1 2 2 3	32 28 32 38 35	3 6 5 6	204 218 201 234 183	.1 .1 .2 .2	31 39 42 35 46	9 11 11 11 12	723 737 673 1101 848	2.85 3.18 2.95 3.39 3.51	2 3 3 1	5 5 5 5 5		2 3 2 3 2	33 39 48 47 39	1 1 1 1	2 2 2 2 2 2	2 2 2 2 3	38 45 40 48 49	.42 .49 .54 .50 .53	.041 .042 .105 .076 .049	8 9 10 9 10	34 40 35 38 68	.61 ,80 ,78 .83 ,90	210 158 183 255 204	.11 .12 .10 .11 .12	2 2 2 2 2	2.10 2.37 2.18 2.09 2.32	.03 .03 .01 .01 .03	.26 .25 .24 .27 .21	1 1 1 1	1 1 1 1 .1
1106+50 86+501 STD C/XU-S	3 20	44 63	7 38	154 132	.3 7.3	54 72	13 30	917 1079	3.57	9 41	5 20	10 1	3 40	39 53	1 19	2 16	3 21	53 59	.62 .50	.052 .091	12 61	50 61	1.00	181 180	.11	2 33	1.92 1.88	.02 .07	.24 .13	1 14	1 50

Page 10

)

3

)

)

)

)

)

)

)

)

X

)

)

•

)

SMP13	No FPN	Ca PPN	PD PPN	ZG PPN	AG PPN	Ni PPX	Co PPM	NL PPN	Je 1	As PPK	U PPK	Au PPH	Th PPX	ST PPN	Cd PPX	SE PPN	Bi PPN	V PPN	Ca ł	P 1	La PPX	CT PPK	Ng L	Ba PPN	Ti ł	E PPM)] 1	¥a t	I ł	¥ ?PX	AU" PP5
L106+50 86+758 L106+50 874088 L106+50 87+258 L106+50 87+588 L106+50 87+758	3 2 2 3 2	31 39 42 52 46	3 4 2 7 7	194 186 175 145 184	.1 .1 .2 .1 .2	39 48 51 74 51	10 13 14 17 15	1002 1188 1270 1064 1003	3.30 3.61 3.78 4.34 3.72	2 5 2 6 7	5 5 5 5 5		3 3 2 2 4	32 50 51 46 71	1 1 1 1	2 2 2 2 2 2	2 2 2 3 2	47 51 53 62 53	.40 .66 .77 .74 .77	.066 .060 .053 .067 .067	9 13 11 12 14	43 52 59 77 52	.78 .93 1.02 1.40 .97	223 262 245 137 256	.12 .12 .10 .10 .12	2 2 2 2 2 2	2.14 2.55 2.43 2.37 2.60	.04 .03 .01 .04 .06	.24 .33 .33 .32 .37	1 1 1 2	1 1 1 1
L106+50 88+003 L106+50 88+233 L106+50 88+508 L106+50 88+753 L106+50 89+008	2 2 2 2 1	30 47 39 46 49	6 5 6 4	258 289 178 157 176	.1 .1 .1 .3	52 44 42 61 61	13 11 13 15 15	717 1301 1391 1095 1209	1.63 2.75 3.32 4.04 4.18	2 4 5 2 2	5 5 5 5		3 2 2 2 3	45 130 80 68 70	1 3 1 1 1	2 2 2 2 2	2 2 3 2 2 2	52 39 44 53 55	.57 3.62 1.15 .99 .91	.080 .078 .063 .089 .082	10 7 11 12 11	52 41 43 51 58	.52 .84 .87 1.19 1.15	148 165 242 210 213	.12 .05 .09 .10 .09	2 18 2 5 4	2.68 1.66 2.18 2.58 2.59	.02 .02 .05 .02 .01	.20 .33 .38 .45 .55	1 1 1 1	1 2 2 2 1
L106+50 89+258 L106+50 89+508 L106+50 89+758 L106+50 90+098 L106+50 90+258	2 2 2 2 1	72 49 38 40 40	3 3 5 3 3	162 147 162 127 134	.3 .1 .1 .1 .2	50 48 40 56 42	15 15 13 15 12	1174 1045 1275 870 1302	4.06 4.00 3.64 4.23 3.29	6 5 2 6 2	5 5 5 5		2 1 2 4 2	91 70 77 46 65	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	56 56 51 63 44	1.45 .90 .89 .70 1.24	.102 .071 .072 .037 .072	9 11 11 12 9	44 47 42 59 44	1.36 1.13 .91 1.34 .83	177 158 191 129 206	.07 .10 .10 .12 .08	8 2 2 2	2,34 2,58 2,31 2,54 2,05	.03 .03 .03 .02 .02	.38 .44 .38 .40 .41	1 1 1 1 1	1 3 1 5 1
1106 85+758 1106 86+008 1106 86+258 1106 86+508 1106 86+738	2 2 1 2 2	34 38 34 30 48	7 5 6 4	171 214 199 139 193	.2 .1 .2 .1 .2	41 41 35 49 44	13 13 11 14 12	831 911 904 965 1273	3.61 3.54 3.40 3.82 3.37	2 3 2 3 2	5 7 5 5 5		4 4 7 2	55 47 47 39 44	1 1 1 1	2 2 2 2 2	2 3 2 2 2	54 51 46 57 47	.63 .47 .56 .37 .91	.045 .086 .051 .034 .177	11 12 10 10 9	46 43 38 53 48	.66 .85 .96 1.12 .66	210 231 185 194 325	.12 .12 .12 .10 .08	2 2 2 2 2 2	2.57 2.37 2.48 2.36 2.25	.02 .01 .01 .01 ,01	.23 .25 .27 .35 .35	1 1 1 1	1 1 1 1
1106 87+008 1106 87+258 1106 87+308 1106 87+308 1106 87+758 1106 88+008	2 2 3 2 2	39 37 48 48 46	6 4 5 9 5	151 184 136 140 155	.1 .1 .2 .1	54 34 71 59 52	14 9 15 15 14	1324 1199 680 1256 1105	4.06 2.63 4.33 3.88 3.54	5 2 6 12 4	5 5 5 5 5		2 3 6 3 2	43 39 42 65 73	1 1 1 1	2 2 2 3 2	2 2 2 2 2 2 2	56 39 56 58 53	.71 .52 .59 1.14 1.25	.042 .084 .065 .059 .091	19 8 14 12 11	59 34 70 65 55	1.11 .59 1.26 1.16 1.01	219 191 141 201 230	.10 .08 .12 .08 .08	B 2 2 2 2	2.47 1.76 2.57 2.29 2.26	.01 .01 .01 .02 .02	.43 .16 .33 .33 .40	1 2 1 1 1	1 1 1 1
L106 88+25¥ L106 88+50¥ L106 88+75¥ L106 89+80¥ L106 89+25¥	2 2 2 2 2 2	40 39 47 45 43	4 6 6 8	156 155 156 156 132	.1 .1 .3 .1 .2	48 46 51 48 53	14 14 14 14 14	929 1051 1160 1075 938	3.48 3.50 3.71 3.70 3.69	7 2 4 8 6	5 5 5 5		2 2 2 1 2	63 59 66 77 50	1 1 1 1	2 3 2 2 3	2 2 1 2 2	52 51 53 53 53	.97 .94 1.10 1.14 .99	.068 .051 .073 .079 .059	12 12 11 12 13	51 49 53 49 50	.95 .87 1.02 1.02 1.03	224 212 185 201 163	.10 .11 .09 .10 .11	7 2 2 6 2	2.46 2.46 2.39 2.52 2.39	.02 .04 .01 .02 .02	. 42 . 43 . 42 . 39 . 40	1 1 1 1	3 1 1 2 3
L106 85+508 L106 85+738 L106 90+008 L106 90+258 L106 90+308	2 2 2 2 2	57 42 67 72 31	7 6 5 5 5	173 160 197 157 152	.1 .1 .1 .4 .1	46 38 46 59 36	13 12 13 14 13	1205 1143 1504 1083 1115	3.62 3.22 3.49 3.78 3.45	6 2 4 15 2	5 5 5 5		2 1 2 2 2	90 74 73 67 49	1 1 1 1	2 2 3 3 2	2 2 2 2 2	48 47 46 56 45	1.18 1.19 1.11 2.94 .73	.080 .055 .074 .125 .039	10 9 10 9 9	41 38 43 49 42	1.07 .79 .98 1.25 .83	169 189 265 154 130	.08 .10 .08 .05 .03	7 2 3 7 2	2.12 2.14 2.14 2.07 2.15	.01 .02 .01 .01 .02	.36 .28 .43 .33 .35	1 1 1 1 1	2 1 1 12 1
1106 30+751 STD C/AU-S	1 19	41 61	6 36	141 129	.1 7.1	41 70	14 30	1229 1057	3.36 4.00	6 38	5 20	1D 1	2 39	71 52	1 19	2 17	2 20	49 58	1.03 .49	.072 .088	12 41	42 59	.82 .34	224 179	.11 .07	2 31	2.55 1.81	.03 .05	.33 .14	1 11	2 52

Page 11

.

)

3

ì

Ϊ.

ł

•)

.)

)

)

)

)

Т

)

)

2

J

÷.

•

SAMPLE	No PPK	Cc PPN	?b PPN	tı PPN	Ag PPN	NI PPN	CC PPN	Kr PPN	le L	As PPH	T PPE	da PPX	TE. PPH	Sr P p k	Cđ PPM	S') PPX	Bi PPK	V PPN	53 1	P Ł	La PPN	CT PPN	Ng L	Ba PPN	ti 1	B PPK	41 1	jia L	E ţ	V PPX	201 778
L105+50 86+001 L105+50 86+251 L105+50 86+502 L105+50 86+751 L105+50 87+002	2 2 2 1 2	31 30 35 28 41	8 7 8 8	167 235 168 171 169	.1 .1 .1 .1	39 30 36 26 42	12 10 11 8 13	736 1379 1169 1122 1268	3.50 2.89 3.11 2.48 3.34	11 9 10 10 9	5 5 5 5 5	n L N N N	1 1 1 1 1	34 34 40 30 44	1 1 1 1	2 2 2 2 2	3 2 2 3 3	55 42 46 37 47	.44 .47 .54 .30 .73	.033 .060 .045 .047 .056	18] 9 1	43 32 38 26 42	.88 .69 .76 .53 .85	170 215 223 220 238	.11 .08 .09 .08 .08	2 2 3	2.03 1.76 2.01 1.62 1.95	.04 .04 .04 .03 .02	.24 .28 .32 .21 .42	2 1 2 1 1	1 2 2 3
L105+50 87+252 L105+50 87+508 L105+50 87+758 L105+50 88+008 L105+50 88+258	1 2 2 1	34 38 38 46 67	9 7 12 10 8	163 178 160 166 159	.1 .1 .2 .1	40 43 36 70 49	12 13 11 14 13	1055 1180 1267 1249 1021	3.19 3.37 2.94 3.14 3.28	13 13 16 14 12	5 5 5 5 5	D D D D D D	1 1 1 1 1	47 43 55 69 66	1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 3 3	48 48 44 47 51	.58 .60 .76 1.24 1.05	.069 .087 .113 .102 .087	10 10 9 10 10	43 47 39 63 47	.82 .90 .74 .85 .96	252 223 251 198 186	.09 .09 .06 .06 .07	3 3 6 11 5	2.06 1.97 1.83 1.73 2.13	.03 .02 .04 .02 .03	.37 .34 .37 .42 .48	1 1 1 2	2 1 5 1 3
1105+50 88+501 1105+50 88+758 1105+50 89+001 1105+50 89+258 1305+50 89+501	2 2 1 2 1	47 40 31 20 7	9 11 9 8 2	135 144 159 354 22	,2 ,2 ,1 ,2 ,1	54 50 38 42 7	13 14 11 11 11	814 634 1064 1575 96	3.32 3.59 3.80 2.63 .43	17 15 9 7 3	5 5 5 5 5		1 1 1 1 1	66 45 62 34 730	1 1 1 1	2 2 2 2 2 2	2 3 4 2 2	53 55 44 31 7	1.04 .66 .83 .43 16.14	.076 .038 .061 .053 .026	11 11 9 7 2	50 51 40 39 6	1.01 .97 .76 .62 .25	164 125 180 137 20	.08 .10 .08 .07 .01	9 3 2 3	1.98 2.03 1.94 1.76 .23	.04 .02 .01 .01 .03	.39 .56 .44 .23 .01	1 1 1 1 1	1 1 3 1
L105+50 89+753 L105+50 80+008 L105+50 90+258 L105+50 90+508 L105+50 90+758	2 2 1 1	53 18 56 32 11	9 8 11 11 8	152 136 142 174 136	.1 .2 .4 .2 .2	57 59 50 40 49	14 14 13 12 14	975 929 1055 1330 1094	3.66 4.11 3.60 3.46 3.62	11 17 15 7	5 5 5 5 5		1 1 1 1	74 47 69 34 59	1 1 1 1	2 2 2 2 2	2 3 2 3 2	57 65 53 50 53	1.07 .74 2.52 .56 .89	.039 .015 .060 .012 .064	9 11 10 10 10	49 60 46 48 49	1.16 1.04 1.03 .73 1.07	119 188 179 191 189	.08 .08 .09 .13 .08	3 2 2 2 10	2.07 2.39 2.04 2.37 2.09	.02 .03 .04 .03 .02	.50 .48 .34 .33 .46	1 1 1 2 1	1 1 1 2
1105+50 91+008 1105 86+503 1105 86+758 1105 87+003 1105 87+258	1 3 2 3	45 13 51 53 31	8 11 10 10 10	136 158 160 266 162	.2 .4 .2 .1	48 68 48 47 61	13 17 15 14 16	1057 981 931 1364 904	3.41 4.58 4.06 3.65 \$.23	14 26 17 16 15	5 5 5 5		1 1 1 1	72 33 50 51 36	1 1 1 1 1	2 5 2 3	2 2 2 2 2	53 78 64 54 69	I.11 .64 .77 .80 .63	.084 .053 .064 .092 .042	9 11 11 9 11	46 51 52 48 64	1.01 1.57 1.18 .98 1.24	179 95 167 236 159	.08 .07 .07 .07 .07	6 2 2 2 2	1.99 2.42 2.39 2.10 2.35	.02 .01 .02 .01 .01	.36 .25 .33 .31 .33	1 1 1 1 2) 1 1 2 1
1105 87+50% 1105 87+75% 1105 88+00% 1105 88+25% 1105 88+50%	2 1 2 2 2	49 27 45 41 43	10 10 10 12 14	170 147 158 148 145	.2 .1 .1 .3 .2	54 31 54 19 50	16 10 15 14 14	1235 1020 960 957 884	3.89 2.77 3.88 3.64 3.67	15 7 17 15 15	5 5 5 5 5		1 1 1 1	53 29 53 62 56	1 1 1 1	2 2 2 3	3 2 2 2 2	60 48 62 50 60	.83 .40 .71 .90 .76	.062 .052 .062 .067 .061	11 8 11 11 12	56 35 58 52 52	1.07 .60 1.10 1.06 1.03	251 201 227 196 203	.09 .09 .10 .08 .10	7 2 3 3 2	2.10 1.76 2.30 2.13 2.40	.03 .01 .01 .02 .01	.45 .23 .39 .41 .41	2 1 2 1 2	1 1 1 1 2
L103 68+752 L103 89+00E L105 89+231 L105 89+350 L105 89+351	2 2 2 2 1	34 42 41 47 49	5 8 12 9 8	145 178 117 141 139	.2 .2 .2 .2 .2	11 13 18 19 51	13 12 13 14 14	1000 1266 970 989 1009	3.23 3.01 3.35 3.52 3.73	12 6 13 15 10	5 5 5 5		1 1 1 1	60 11 57 65 54	1 1 1 1	2 2 2 2 2	3 2 3 2	52 46 53 56 56	.81 I.15 .88 I.07 .86	.065 .067 .065 .077 .056	10 9 10 10 10	41 42 49 68 50	.85 .81 .91 1.04 1.02	217 227 182 192 186	.09 .08 .09 .08 .09	3 6 7	2.21 1.84 2.17 2.08 2.29	.01 .01 .01 .02 .01	.39 .30 .38 .51 .45	1 1 2 1	1 1 2 1 1
1105 90+001 STD C/10-S	2 19	51 62	7 38	132 132	.1 7.1	58 68	15 30	905 1084	3.76 1.02	17 41	5 24	10 7	1 39	62 53	1 19	2 16	2 20	58 63	.93 .49	.087 .087	10 40	52 60	1.21	167 190	.08 .07	12 32	2.19	. 02 . 08	.51 .15	1 10	1 43

Page 12

1

)

)

)

)

)

}

)

1

)

)

)

J

J

)

J

SAMPLEĮ	No PPN	CC PPN	PD PPK	IC PPK	λg PPN	N1 PPN	Co PPN	Na PPK	le L	As PPN	D P?K	ÂU FPK	th PPN	ST PPN	Cd PPN	d2 899	B1 PPK	V PPX	63 \$	Р 1	La PPK	CT PPK	Ng 1	Ba PPE	ti 3	B PPN	۸1 ۲	Xa t	1	¥ PPK	Au* 226
1105 904258 1105 904508 1105 904738 1105 914008 1105 914258	1 2 1 1	37 46 45 34 36	9 7 3 6 6	129 129 133 123 109	.1 .1 .1 .1 .2	43 49 48 41 50	13 14 14 13 13	979 1239 1134 888 921	3.37 3.56 3.53 3.33 3.26	10 7 8 4 10	5 5 5 5 5		1 1 1 1	71 54 75 60 58	1 1 1 1	2 2 2 2 2	2 2 2 2 2	53 51 51 51 51 51	1.05 1.11 1.04 .72 .92	.068 .086 .089 .062 .073	9 9 8 9 9	44 45 47 47 55	.94 1.01 1.11 .89 .95	197 169 198 154 148	.09 .07 .07 .09 .09	9 8 15 5 5	2.10 1.95 2.05 2.04 1.98	.01 .01 .01 .01	.49 .40 .48 .45 .44	1 1 1 1	1 1 3 1 1
L105 91+50E L104+30 86+758 L104+50 87+00E L104+50 87+238 L104+50 87+50E	1 1 2 2 1	35 37 49 45 39	7 8 8 5 7	143 147 149 170 154	.1 .1 .2 .1 .1	42 38 51 47 42	12 12 16 14 13	1067 846 1184 1182 1124	3.20 3.31 3.91 3.62 3.38	5 6 11 12 11	5 5 5 5		1 1 1 1	45 53 41 57 49	1 1 1 1	2 2 3 2 3	2 2 2 2 2	48 53 64 56 52	.75 .66 .61 .78 .67	.064 .059 .055 .057 .043	8 9 11 10 9	52 44 52 49 46	.76 .85 1.05 1.01 .87	198 188 180 238 233	.09 .07 .08 .08 .09	9 8 3 4 7	1.95 2.30 2.51 2.29 2.24	.01 .01 .01 .02 .01	.41 .33 .36 .35 .50	1 1 1 1	2 1 1 5 2
L104+50 87+758 L104+50 88+008 L104+50 88+238 L104+50 88+508 L104+50 88+758	2 2 1 2 1	49 51 43 48 43	4 6 5 8 6	170 154 146 145 164	.1 .2 .1 .2 .1	50 54 47 51 47	14 14 13 13 13	1117 1055 965 867 984	3.73 3.51 3.31 3.50 3.51	12 13 11 13 10	5 5 5 5 5		1 1 1 1	55 54 74 68 56	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	58 55 52 55 55	.93 .99 1.07 1.11 .90	.094 .074 .081 .093 .105	9 9 10 10 10	53 53 47 50 52).04 1.10 .98 1.03 .93	215 179 219 177 207	. DB . D6 . 08 . 07 . 08	9 15 9 9 8	2.28 1.94 2.13 2.18 2.47	.01 .01 .01 .01 .01	.52 .43 .42 .40 .39	1 1 1 1	2 1 8 2 1
L104+50 89+00M L104+50 89+25K L104+50 89+50K L104+50 89+50K L104+50 89+75K L104+50 90+00K	1 2 1 1 1	40 47 38 40 47	5 6 7 7	137 161 146 132 142	.1 .1 .1 .1	45 51 46 43 47	12 13 13 13 13 24	935 1166 976 962 1054	3.15 3.36 3.50 3.42 3.59	. 8 12 9 8 11	5 5 5 5 5		1 1 1 1	75 72 43 55 57	1 1 1 1	2 2 2 2 2	2 2 2 2 2	50 53 51 53 55	1.06 1.21 .76 1.01 1.06	.071 .103 .070 .079 .078	10 9 10 9	45 52 51 47 68	.89 1.03 .86 .91 1.08	223 203 184 186 172	.08 .06 .09 .08 .97	6 10 4 10 10	2.02 1.97 2.18 2.13 2.16	.01 .01 .01 .01 .01	.41 .42 .50 .45 .49	1 1 1 1	1 1 1 2
L104+50 90+25K L104+50 90+50K L104+50 90+50K L104+50 91+00R L104+50 91+258) 1 1 1	43 39 41 40 30	4 5 3 9 4	142 142 123 115 126	.2 .3 .1 .1 .3	44 41 42 38 32	13 14 15 11 10	1100 1205 1005 1021 1188	3.28 3.36 3.37 2.95 2.53	8 8 5 3	5 5 5 5 5		1 1 1 1 1	53 53 47 83 55	1 1 1 1 1	2 2 2 2 2 2	7 3 2 2 3	49 50 52 46 37	1.04 .89 .91 1.26 .57	.075 .083 .072 .042 .081	9 10 10 8 7	44 44 42 39 34	.92 .83 .83 .80 .64	200 229 199 174 179	.07 .09 .09 .09 .09	7 4 8 24 9	2.01 2.12 2.16 1.88 1.59	.01 .01 .01 .01 .01	.48 .47 .43 .34 .34	1 2 1 1 1	3 1 1 1 1
L104+50 91+508 L104+50 91+758 L104 87+008 L104 87+258 L104 87+258 L104 87+508	1 1 1 2 1	28 52 46 45 54	5 8 5 6	121 106 195 197 130	.2 .4 .2 .1 .4	36 79 37 40 59	11 15 12 11 12	789 753 1186 901 475	3.07 3.83 2.95 3.17 3.82	3 11 6 7 9	5 5 5 5 5		1 2 1 1 1	46 57 63 67 43	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	47 66 43 45 62	.46 .85 .76 .87 .68	.044 .078 .075 .082 .055	B 21 8 8 12	49 68 37 42 57	.77 1.11 .92 1.03 1.28	132 161 190 163 126	.11 .11 .07 .07 .09	7 7 6 3 3	1.97 2.10 2.01 2.07 2.50	.01 .01 .02 .01 .01	.42 .40 .39 .43 .39	1 1 2 1	1 1 2 1 1
L104 87+753 L104 88+00E L104 88+253 L104 88+508 L104 88+508 L104 88+753	2 2 2 2 2	52 44 49 47 46	8 5 5 7	152 159 160 150 148	.2 .2 .1 .2 .1	38 49 50 55 53	14 13 13 14 13	856 1014 992 948 979	3.72 3.39 3.40 3.49 3.29	11 11 9 11 12	5 5 5 5 5		1 1 1 1	55 70 68 61 68	1 2 1 1 1	2 2 3 2	2 2 2 2 2 2	61 53 54 56 52	.87 1.21 1.28 1.13 1.25	.056 .088 .100 .090 .086	10 9 9 9	57 50 53 63 58	1.21 1.02 1.04 1.05 .97	163 201 175 163 173	. 57 . 57 . 06 . 07 . 07	8 10 18 12 14	2.22 2.14 2.04 2.11 1.97	.03 .01 .01 .01 .01	. 45 . 45 . 44 . 49 . 43	1 1 2 1	2 1 1 1 4
1104 89+008 STD C/AD-5	2 19	45 62	7 37	149 132	.3 7.3	53 71	13 31	907 1094	3.45 4.05	9 40	5 21	10 1	1 39	64 53	1 19	2 17	2 19	55 60	1.07	.079 .090	10 41	55 61	1.03 .96	168 179	.08 .07	7 33	2.07 1.79	.01 .07	.49 .15	1 13	2 33

Page 13

1

÷.

1

1

)

)

)

)

)

)

)

)

}

· - 2

)

)

3

J

)

)

.

SAMPLE	XO PPN	CU PPN	er PPN	at PPN	Ag PPX	Ki PPX	Co PPN	NA P?N	Te t	As PPN	Q PPN	AU PPH	TD PPK	ST PPN	Cd 7PM	SD PPX	Bİ PPK	V PPN	Cá ł	P	La PPN	CT PPX	NÇ L	Ba ?PX	7i 1	P P?K	л] \$	Ka K	r ł	¥ P?N	Au* PPB
L104 89+258	1	44	6	153	.1	17	12	956	3.29	8	5	T	1	61	1	2	2	47	1.06	.083	10	50	.91	164	.07	10	1.92	. 01	.41	1	2
L104 89+50K	1	47	8	155	.1	- 49	13	932	3.33	1	5	STÙ	1	57	1	2	2	47	1.01	.086	10	52	. 54	116	.07		1.92	.01	.0	1	2
1104 89+75I	1	38	8	144	.1	40	11	740	2.84	6	5	TD I	1	82	1	2	2	40	1.07	.089	,	- 41	. 60	176	.05	6	1.81	. 01	.32	1	1
L104 90+00E	1	42	7	147	.1	43	12	927	3.10	7	5	D	1	63	1	2	2	- 11	1.02	.074	9	45	. 67	169	.07	7	1.82	.01	.37	1	1
1104 90+251	1	35	9	138	.1	39	12	987	2.99	5	5	D	1	58	1	2	2	40	.98	.070	9	42	.79	205	.07	5	1.91	.03	.36	1	1
L104 90+50I	i	38	8	132	.1	43	13	991	3.28	1	5	D	i	46	1	2	3	43	.71	.057	10	44	.64	199	.09	4	2.12	.03	.38	1	2
L104 90+735	1	38	7	185	.1	36	11	1231	2.89	2	5	D	1	41	1	2	2	38	. 55	.107	e	37	.63	236	. 08	2	1.81	.01	.23	1	1
L104 91+00K	1	30	8	129	.1	39	12	767	3.32	6	5	n	1	39	1	2	2	- 48	. 62	.043	10	45	.76	161	.11	2	2.27	.01	. 37	1	2
L104 91+25T	i	36	6	115	.1	44	12	639	3.31	3	5	D	1	55	1	2	2	16	.50	.038	9	53	.90	129	.11	6	1.84	.01	.28	1	1
L104 91+50E	1	56	5	125	.1	44	16	861	3.75	1	5	D	1	47	1	2	2	54	.63	.052	11	50	.93	165	.12	2	2.44	.03	.н	1	\$
L104 91+751	1	46	,	152	.1	44	13	1032	3.36	5	5	D	1	50	1	2	2	- 11	.76	.098	10	4	.78	244	.09	3	2.05	.01	.41	1	1
1104 92+001	1	37	7	145	.1	37	11	959	2.99	5	5	D	1	64	1	2	2	40	1.01	.083	9	43	.74	203	.08	6	1,81	.02	.45	1	1

۰.

.

Page 14

APPENDIX II

.

,

.

2 ·

.-

Soil Sampling		
Personnel	• • • • • •	
I geologist - I day @ \$250.00/day	\$ 250.00	
$1 \text{ supervisor} = 7 \text{ days} \in 5200.00/\text{day}$	2,400.00	
2 assistants - 7 days e \$160.00/man/day	2,520.00	
Accommodation		
6 nights	437.40	
-		
Meals	545.41	
Vehicle Rental	879.55	
Sunnlies		
flageing	67.50	
soil sample bags	106.00	
hip chain thread	119.00	
soil sample note books	20,00	
Field Equipment and Instrument Rental		
22 personnel days @ \$2.00/person/day	44.00	
Management Fee	649.00	
HandBowene ree	0 19 100	
Assay Costs	5,830.00	
		A1A A(3 A(
Subtotal Soll Sampling		\$12,867.86
Grid Establishment		
5.5 km brushed line @ \$225.00/km	1,237,50	
38.35 km flagged line @ \$175.00/km	6,711.25	
Subtotal Crid Establishment		\$7 9/8 75
Subtotal GIIU EStablishment		21, 140+13

Geop	hysi	ica1	Surv	reys
------	------	------	------	------

2 ·

Magnetometer and 2 Station VLF 38.35 km @ \$180.00/km	6,903.00	
Genie-EM 39.20 km @ \$270.00/km	10,584.00	
Subtotal Geophysics	<u></u>	\$17,487.00
Assessment Report and Map Compilation		\$2,500.00
Total Cost of the 1988 Exploration Program		\$40,803.61

Specifications

Frequency Tuning Range	15 to 30 kHz, in 100 Hz increments, with bandwidth of 150 Hz; tuning range accommodates new Puerto Rico station at 28.5 kHz.
Transmitting Stations Measured	Up to 3 stations can be automatically measured at any given grid location within frequency tuning range.
Recorded VLF Magnetic Parameters	Vertical in-phase, vertical quadrature (out-of-phase), total field strength (or optional horizontal amplitude), dip angle.
Standard Memory Capacity	1300 combined VLF magnetic and VLF electric measurements as well as gradiometer and magnetometer readings.
Display	Custom designed, ruggedized liquid crystal display with built-in heater and an operating temperature range from -40° C to $+55^{\circ}$ C. The display contains six numeric digits, decimal point, battery status monitor, signal strength status monitor and function descriptors.
RS232C Serial I/O Interface	Variable baud rate from 300 to 9600 baud, 8 data bits, 2 stop bits, no parity.
Test Mode	A. Diagnostic Testing (data and programmable memory). B. Self Test (hardware).
Sensor Head	Contains 3 orthogonally mounted coils with automatic tilt compensation.
Operating Environmental Range	– 40°C to + 55°C; 0 – 100% relative humidity; Weatherproof.
Power Supply	Non-magnetic rechargeable sealed lead-acid 18V DC battery cartridge or belt; 18V DC disposable battery belt; 12V DC external power source for base station operation only.
Weights and Dimensions Instrument Console Sensor Head VLF Electronics Module Lead Acid Battery Cartridge Lead Acid Battery Belt Disposable Battery Belt	. 3 8 kg, 122 x 246 x 210 mm. .0.9 kg, 140 dia. x 130 mm. .1.7 kg, 280 x 190 x 60 mm. .1.8 kg, 138 x 95 x 75 mm. .1.8 kg, 540 x 100 x 40 mm. .1.2 kg, 540 x 100 x 40 mm.

APPENDIX III

I

STATEMENT OF QUALIFICATIONS

I, Ralph Edward Shearing, of 3433 West 12th Avenue, Vancouver, B.C., DO HEREBY CERTIFY THAT:

- 1. I am President of Quest Canada Exploration Services Inc., a geological consulting and services company, with business office at Suite 840, 650 West Georgia Street, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia with a degree of B.Sc., Geology, 1981.
- 3. I am a Fellow of the Geological Association of Canada.
- I am a Professional Geologist registered with the Association of Professional Engineers, Geologists and Geophysicists of Alberta. Membership #40288.
- 5. I have been active in mineral exploration since 1979 as follows:
 - a) 1979 Summer employee with St. Joseph Explorations Limited; Pb, Zn, Au, Ag and U exploration in the Yukon and British Columbia.
 - b) 1980 Summer employee with Sulpetro Minerals Limited; Pb, Zn, Au, Ag and U exploration in the Yukon and northern British Columbia.
 - c) 1981 1982 Full-time employee with Sulpetro Minerals Limited; Pb, Zn, Au and Ag exploration in the Yukon and northern British Columbia. Geological and geophysical exploration for Au, Ag, Cu, Pb and Zn in northwestern Quebec and northern Ontario. Geophysical exploration provided significant experience in conducting the following geophysical surveys, as well as in the application of the resultant data: VLF-Electromagnetic, Horizontal Loop Electromagnetic, Proton Magnetometer, Induced Polarization and Gravity.
 - d) 1983 Present Independent consulting geologist with Quest Canada Exploration Services Inc. Geological and geophysical exploration for Au, Ag, Pb and Zn in central British Columbia.
 - e) I supervised the exploration program conducted on the Genesis property during 1988.

Dated this 4th day of May, 1989.

hear By:

Ralph E. Shearing, B.Sc., P.Geol. Consulting Geologist

APPENDIX IV

.

۰,

 \mathbf{r}^{\prime}

.

···· · ··· ·····

EDA OMNI-PLUS VLF/MAGNETOMETER SYSTEM

VLF-EM and magnetic field measurements were made using an EDA Omni-Plus geophysical system. The Omni-Plus is a portable, microprocessor-based magnetometer/VLF system which is capable of measuring changes or contrasts detected by two different types of geophysical methods: magnetic and VLF electromagnetic (magnetic and electric).

Principle of Operation

Magnetic Field Measurements

If a proton-rich fluid such as kerosene, jet fuel, heptane, etc. is placed into a magnetic field, the protons will align along the magnetic field vector. The magnetic field is induced in the sensor upon depressing the pushbutton. Then this field is suddenly removed. Protons which behave as elementary gyroscopes will start precessing around the remaining magnetic field - that of the earth. The precession frequency is directly proportional to the magnetic field of the earth. The magnetometer counts this frequency, divides it by the appropriate constant to obtain a reading in gammas $(1\gamma = 10^{-5} \text{ gauss})$ and displays the reading in the form of a 5 digit number.

Electromagnetic Field Measurements

The VLF (Very Low Frequency) EM method employs an artificial source of EM waves - a VLF antenna, several hundred feet high, which acts essentially as a vertically grounded wire. A worldwide network of high-power VLF stations established for marine and air navigation act as the sources for the VLF-EM exploration method. At present, suitable transmitters for EM prospecting in North America are located at Cutler, Maine, Annapolis, Maryland, and Seattle, Washington. The transmitted frequencies (in the 20 KHz band) are very low frequency (VLF) only by comparison to broadcasting standards, but are in fact very high relative to any other geophysical EM system.

The VLF antenna current is vertical. The main magnetic field component of the primary (transmitted) signal is horizontal and theoretically tangent to circles about the antenna mast. Hence, a transmitting station should be chosen so that its direction is almost parallel to the geological strike in the survey area so as to produce a magnetic field perpendicular to the strike. If a conductor is located in the survey area, eddy currents are established, producing a secondary field in the vicinity of the conductor. The VLF-EM equipment measures the vertical components of this secondary field. The fact that the source is at infinity means the primary field is essentially uniform over the survey area and hence all conductors are energized uniformly. This enables the detection of a broad variety of conductors, ranging from good conductors - graphite, massive sulphides, to poor conductors - muskeg, clay edges, shear zones, contacts. At times this may be a disadvantage, however, since it may emphasize large-scale, relatively poor conductors at the expense of smaller concentrated bodies. In many environments, the anomalies of interest can be masked by the large amount of geological noise. The penetration of the system is limited by its high frequency in the presence of conductive overburden. However, if the subsurface is resistive, for example, little overburden, the penetration can be quite deep due to the transmitter being so far removed.

The VLF-EM method is also affected by topographic effects, spurious anomalies being picked up on top of conductive hills because the resultant field tends to follow the slope. The distinction between anomaly conductivity and depth is also often difficult. Another major drawback is that it is not always possible to use a transmitting station which gives a primary horizontal field striking at right angles to the geologic strikes in the survey area. In this case, two VLF transmitters, at approximately right angles to each other, should be used to provide better coverage.

Field Procedure

Measurements are obtained by the use of two sensors; a proton precession sensor carried on a pole to measure the magnetometer total field magnitude and a three-component sensor worn on the back to measure the magnetic component of the VLF secondary field. In addition, probes attached through the VLF circuitry housing are used to measure the electric component of the VLF secondary field. An electronics console is worn on the front of the operator that allows the operator to view and store the collected data in internally protected memory. The data stored is protected by a lithium battery which also powers a real-time clock.

Along with the magnetometer and VLF data, the Omni-Plus stores the following information:

- line number
- position number
- date and time
- direction of travel
- statistical error of the magnetometer readings
- signal strength and rate of decay of the magnetometer sensor

Contraction of the second

- direction, in degrees, of the primary field in relation to the operator
- signal strength and operator quality of the VLF sensor
- natural and cultural features

The Omni-Plus has been designed to simultaneously measure the VLF and magnetometer components. When the READ key is pressed, the previous magnetometer or VLF reading is displayed followed by the new corresponding reading for the particular station. At this point, all measurements have been completed and the data may be stored using one of the RECORD keys. If the operator tries to store the data prior to completion of the VLF measurements, the word "wait" will appear on the display indicating that the VLF measurement process is not completed. Once the VLF measurements are completed, the data may be stored.

The Omni-Plus monitors the VLF frequencies selected for operator quality and signal/noise during each reading. The results are both displayed as descriptor bars and stored in internal memory along with the field results.

Operator quality is a value to help the operator determine whether the measurement was properly taken. Since the in-phase and tilt measurements are dependent on the sensor being within 10 degrees of vertical and motionless, the Omni-Plus monitors the ability of the operator to remain motionless and vertical. As mentioned, the results are outputted on the display using the DECAY descriptor bars. The increased quality of the measurement is indicated by the increased number of bars displayed to a maximum of four. Also, for each measurement, a numeric value is given which ranges from 1 to 9, where 1 is the poorest and 9 is the best. Generally, a value of 5 to 6 should be obtained to ensure an accurate reading.

The signal/noise ratio is an actual measurement of the signal strength to the background noise. The results are outputted visually using the SENSOR descriptor bars when the VLF results are displayed. An increased signal strength is indicated by an increase in the number of bars displayed to a maximum of four. As with the operator quality, a numeric value is given which ranges from 1 to 9, where 1 is the weakest and 9 is the strongest.

The Omni-Plus has been designed whereby, if a weak station is selected, the instrument will automatically increase the measurement period to produce higher quality results. The measurement period for one frequency may range from one to ten seconds. In standard VLF survey methods, a single or consistent direction is used to maintain comparable signs on all in-phase, quadrature or tilt values relative to each other. Since the Omni-Plus is a no orientation system, a convention was selected that maintained the standard convention that North and East are positive and South and West are negative.

Therefore, the profiles plotted looking east (ie. S to N) and north (ie. W to E) will have the crossover in the correct sense (positive to negative).

APPENDIX V

٩,

MOVING SOURCE GENIE ELECTROMAGNETIC INSTRUMENT

Genie Portable EM System - Model SE-88

Field Procedure

The Genie field procedure varies somewhat depending on whether automatic chaining is used (reconnaissance mode) or whether cut and flagged lines are provided.

Automatic Chaining (Reconnaissance)

In this mode, the distance measuring capability of the GENIE is used to keep transmitter and receiver at a desired separation. Accuracy of separation is very good over neutral ground and relatively flat topography. However, steep topography or the presence of large conductors will shorten intercoil separation. In very steep terrain, the reduction in spacing may become appreciable due to transmitter and receiver no longer being maximally coupled. If accurate spacing is required, either lagging or, for small separations, the use of a hip chain by the receiver operator is recommended

The traverse should be started over neutral ground, having selected the desired frequency pair, separation and integration time. Selection of the integration time depends on atmospheric noise and required data accuracy. A measure of atmospheric noise can be obtained by selecting the NOISE MONITOR position with the METER switch while the transmitter is turned off. Quiet atmospheric noise conditions are characterized by a relatively steady signal meter indication. Approaching storm systems or local storms will give large meter fluctuations. Such conditions will require longer integration times to obtain consistent ratio readings.

The receiver operator should now walk along the traverse. As he approaches his station, both transmitter and receiver should be switched on. The METER switch must be in the SIGNAL position. The operator should proceed until the REFERENCE meter reads 1.0 or the pointer is within the short green arc. Meter fluctuations are due to atmospheric noise and movement of the receiving coil in the natural magnetic field.

The SIGNAL meter will also read approximately 1.0 over neutral terrain, but will depart from this reading near a conductor. Values larger or smaller are possible. The SIGNAL meter deflection compared to that of the REFERENCE meter gives thus an immediate visual indication of an anomalous zone. Transmitter and receiver coils should be vertical and steady during measurement. It is advisable to take more than one ratio reading and use the average, especially at large separations. Once all the measurements at a station are taken, transmitter and receiver should be turned off (receiver to STANDBY in subzero temperatures) to conserve battery power. The receiver operator should mark his station for the transmitter operator and then proceed in the same manner.

This method does not give overlapping coverage of the terrain. If overlap is required, the receiver operator should wear a hip chain. The transmitter operator can then walk along the chain for a distance equal to the desired station spacing before the receiver operator proceeds himself.

Data points are usually plotted at the midpoint between transmitter and receiver.

Observe the following hints to obtain consistent ratio readings:

- In the vicinity and especially directly over conductors, secondary field vectors at two well separated frequencies may show considerably different orientations in space. Repeatability of ratio readings in such locations depends strongly on receiving coil positions and orientation. for the latter reason, the receiver is fitted with a bubble level to facilitate repeatable coil orientation.
- Hold the receiver steady during measurement, especially at large separations, to reduce induction noise.
- Induction noise may also be caused by mechanical coil vibration. Do not tap either coil or receiver during measurement. Actuate the AUTO-HOLD switch gently at large separations when using the single measurement feature.
- Do not wear an electrical analog watch while operating the receiver. The small motor inside the watch creates enough electromagnetic disturbance to impair ratio accuracy.
- The audio alarm should not be used at separations exceeding 100 m. The current in the transducer is large enough to create a disturbing magnetic field. At large separations, this disturbance is comparable in strength to measured signals.

Cut and Flagged Lines

As mentioned in the previous section, flagging or the use of a hip chain are recommended in very steep terrain or when high station accuracy is desired on detail surveys.

Either operator may lead along a flagged traverse. Both operators switch on their equipment when on station. The appropriate separation setting may be preselected on the receiver. The REFERENCE meter must be within the long green arc. SEPARATION and MULTIPLIER controls are used as coarse and fine gain controls respectively to achieve this. To increase the meter reading, increase SEPARATION and/or MULTIPLIER settings and vice versa. When the signal strength condition is met, ratio readings are taken in the same manner as described earlier. Genie Portable EM System - Model SE-88

Specifications Transmitter Transmitting Element Iron-cored coil for each frequency. Transmitting Frequency Pairs Five pairs. 112.5 Hz reference with one of 337.5, 1012.5 or 3037.5 Hz; or 337.5 Hz reference with one of 1012.5 or 3037.5 Hz. Transmitting Moments 150 Am at 112.5 Hz, 100 Am at 337.5 Hz, 50 Am at 1012.5 Hz, 25 Am at 3037.5 Hz. Relative Amplitude Stability Better than 0.1% Power Supply Rechargeable Nickel-Cadmium batteries; 2 options available, Normal and Heavy Duty. Power Supply Endurance Normal duty pack: 3 hours continuous at 20°C. Heavy duty pack: 5 hours continuous at 20°C. -30°C to +50°C Operating Temperature Range -40°C to +50°C Storage Temperature Total Weight with Batteries Normal duty configuration: 14 kg Heavy duty configuration: 16 kg Dimensions Height: 800 mm; Width: 380 mm; Depth: 180 mm Receiver Receiving Element Iron-cored coil Receiving Frequency Pairs Same as transmitter Transmitter-Receiver Separation Primary selector: 6.26 m, 12.5 m, 25 m, 50 m, 100 m, 200 m plus Multiplier: x 1, x 1.25, x 1.5, x 1.75

Maximum Transmitter-Receiver Separation

Power Line Filtering

-

٩

_1

1

÷

Signal Averaging Time

Resolution of Ratio Display Power Supply

Power Supply Endurance

Operating Temperature Range

Total Weight

Console Dimensions

Coil Dimensions

Battery Charger

Power Requirements

Charging Time

Weight

Dimensions

200 m under most conditions. Greater separations may be possible, depending on atmospheric and power line noise.

Internally switch selectable at 60 or 50 Hz and 3rd harmonic.

Switch selectable at 2, 4, 8 or 16 seconds.

0.1%

Rechargeable Nickel-Cadium batteries.

20 hours continuous at 20°C

-30°C to +50°C

6 kg

Length: 280 mm; Height: 230 mm; Depth: 150 mm

Length: 500 mm; Diameter: 45 mm

115 V or 230 V, 50 Hz or 60 Hz, 50 VA

7 hours for completely discharged batteries, subsequent automatic trickle charging. Transmitter and receiver batteries can be charged simultaneously.

4.5 kg

Length: 290 mm; Height: 150 mm; Depth: 130 mm.

7200 E 7800 E 7400 E 7500 E 7800 E 7700 E 7800 E 7800 E 8000 E 8100 E 8200 E GEOLOGICAL BRANCH __L 12600 N **ASSESSMENT REPORT** L 12800 N. The state of the s __L 12500 N L 12500 N _____ __L 12400 N L 12400 N ____ 18,855 __L 12300 M L 12300 N ____ __L 12200 N · KETTIN L 12200 N. __L 12100 N THE PARTY L 12100 N Call and --------Α __L 12000 N L 12000 N H Forter 45.74 __L 11900 N L 11500 N. ---60 STATI II __L 11800 N 4-1-1 L 11800 N. ----__L 11700 H ----L 11700 N. ELINE 8300 E 8400 E 8500 E 8600 E 8800 E 8800 E 8000 E 8100 E 8200 E __L 11600 M L 11600 N_ Property in the state __L 11500 N L 11500 N. S-FATTON _L 11400 N (ansarph) L 11400 N __L 11300 N -----L 11900 N ____ __L 11200 N L 11200 N ____ and the second _L 11100 N L 11100 N ____ 1986 MAG/VLF/GENIE SURVEY __L 11000 N L 11000 N ____ __L 10900 N 1-17-1-1-1 L 10900 N C B L 10800 N 2200 E 7500 E 7600 E 7600 E 7600 E 7600 E 7800 E 8000 E 8100 E __L 10800 N ___L 10700 N L 10700 N____ 4++++++ ___L 10600 N L 10600 M ____ __L 10500 N L 10500 N ____ 174.00 ___L 10400 N 11-1-0 L 10400 N ____ The state of the state of the __L 10300 M -----L 10300 N ____ **** __L 10200 N L 10200 N ____ ___L 10100 N -----L 10100 N ____ __L 10000 N -----L 10000 N ___ and a local sector _L 9900 N L 9900 N ____ L 9800 N

L 9600 N		+ + but hade de
L 8700 H		- 12 - 10 L 9700 N
L 9600 N		L Second L S
L 9500 W		
L 9400 M		
L 9300 N		L 5300 N
L 9200 W		L
L 9100 N		L \$100 H
L 9000 W		1 1 1 1 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7
L 8900 N		L BOOD N
L 8800 N		+ FTTT++++FTT++++++++++++++++++++++++++
L 8700 N	INSTRIMENT	+ Freeport
L 8600 M	SE-88 GENIE	+ FTTT + stand we want to the stand of the s
L 8500 N	Rx -> Tx = 100m.	·
L 8400 N	₽ 50.0 0 1012/112 337/112	LEADER LEADER LEADER LEADER LEADER LEADER LEADER
L 8300 N	5 - 50.0 - Vi	L 8300 N
	· · · · · · · · · · · · · · · · · · ·	800 E 800 E 8000 E 9100 E 8200 E 8500 E 8500 E 9500 E 9500 E 9700 E
		TROVE RESOURCES LTD.
	CONDUCTOR LOCATION	GENESIS
		MOVING SOURCE
	4	PROFILE MAP
	SCALE 1:10,000 NJ	DEVISIONS
		By Date Approv.By Trijet La:
	0 100 200 300 400 saters	Tate 01/02/05 Tag Tat 1
	þ	QUEST CANADA EXPLORATION SERVICES INC.

	n	200 E 7300 E 7400 E 7500 E 7600 E 770	D E 7800 E 7900 E 8000 E 8100 E 8200	E				
	L 12500 W	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	884484844444444444444444444444444444444	2				L 12500 W
	L 12500 W	#\$ 	299329994999999999999999999999999999999	v				L 12500 W
	L 12400 W	#\$\$\$\$\$\$\$\$\$\$\$\$ 	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ 					L 12400 W
	L 12300 W	\$\$\$\$ * \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ 	37. 32399.532.325.325.325.325.325.325.33 	•	0	SSESSMENT	BRANCH	L 12300 N
	L 12200 W	8 8993 x 8444444 	2 4 8 8 8 8 8 8 9 2 2 2 3 3 4 4 4 8 4 2 4 3 3 	2		00000MENT	N D (II W I	L 12200 M
	L 12100 W	**************************************	וצרו דר דעי ט דרי ט דרי עדע עי אי ד טרי עי 	5		$1 \cap 0$	F7	L 12100 W
	L 12000 N	۵ د کو کې کې کې کې کې کې کې کو کې کې کې کې کې کې کې کې کې کې 	۱ ۵٫۵۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵	2		NAA	りつ	L 12000 M
	L 11900 N	49999999999999999999999999999999999999	~ \$\$,\$				and the second	L 11900 N
	L 11900 M		*> 000 00000000000000000000000000000000	>				L 11800 W
	L 11700 M _	449000000444900 n 84444900 	8488838884 34 34 >97 98845553	8300 E 840	DE 18500 E 6600 E	98 μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ	E.	L 11700 H
	L 11600 W _	3083444349995858939999 	\$\$ 4 + 4 44004444\$\$\$\$\$\$\$\$	·····				L 11600 W
	L 11500 W_	4 2 9 9 9 9 9 4 9 9 9 9 8 5 8 9 9 4 6 9 9 8 9 	> \$ \$`\$`\$`\$`\$`\$`\$`\$`\$`\$`\$`\$`\$`\$`\$	ۍ • • • • • • • • •	*****			L 11500 W
	L 11400 M	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	สราสารออุจารุธรายสาวจาราจาราสารส	به ۰۰۰۰۰۰۰	• • • • • • • • • • • • •			L 11400 W
	L 11300 W_	8484 204 28 28 28 28 20 2 2 2 2 2 2 2 2 2 2 2 2	א גער בעי שיי א בבר בעיר בעיר בי א בי א	» •••••				L 11300 W
	L 11200 H _	200000000000000000000000000000000000000	444444444	••••••	• • • • • • • • • • • •			L 11200 W
	L 11100 H _	\$\$\$\$ \$\$\$ \$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$\$\$ \$ \$\$\$\$\$\$	อาวิจ อำจำหน่ามีจำมีมีมันที่มีมีมันที่มี	» ••••••	1986 MAC/VI F	CENTE SUDVEY		L 11100 W
	L 11000 H _	ราวริราส์ ครัสสาร์ ครัสสาร์สาร์สาร์ 	, \$\$\$, \$\$\$\$\$\$ \$\$\$\$ \$`\$\$\$`\$`\$`\$`\$	° *	1300 110/ 11			L 11000 W
	L 10900 W _		ของชีดสีสี 2 > คองชีดสีสีสีสีสีสีสีสีสีสีสีสีสีสีสีสีสีสีส	s ⁵ • • • • • • • • • •				L 10900 W
	L 10800 W 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		····				L 10800 N
	L 10700 W _	-			· · · · · · · · · · · · · · · · · · ·			L 10700 W
	L 10600 W _	_		••••				L 10600 W
	L 10500 W _	-						L 10500 W
	L 10400 N _	-				• 3 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	*	L 10400 W
	L 10300 N _			·····		* * * * * * * * * * * * * * * * * * *	****	L 10300 W
	L 10200 W _	_		····			****	L 10200 W
	L 10100 N _			*****			• • • • • • •	L 10100 W
	L 10000 W _	-					• \$ \$ 4 \$. \$ \$ 6 \$ \$ \$ \$ \$ \$	##### L 10000 N
	L 9900 W					· · · · · · · · · · · · · · · · · · ·)\$ \$\$\$\$\$	## # # # # # L 9900 N
	L 9800 W	-					> ****** *****	1 9800 N
	L 9700 N _					***************	***************	
	L 9600 N _	-			*	****	****	L 9600 N
	L 9500 M _						************	
	L 9400 W _	-				*****	F##+0+00####0+00#	4 3 4 9 4 00 N
	L 9900 W.	-				\$7	************	
	L 9200 W.	-				>>>+++++++++++++++++++++++++++++++++++	*****	
	L 9100 N.	<u></u>						• * • • >L 9100 N
	L 9000 N.	-				× \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	************	L 9000 N
	L 8900 W.	_				***************	************	•
	L 8800 N .	-				\$*************************************	************	+ # + + P L 8800 N
	L 8700 W.		TACTO MOLT			*****	~ * # 8\$\$ * * * * * * * * * * *	***** •••••L 8700 N
	L 8600 W.					· • • • \$ • • • • • • • • • • • • • • •	• • ? ? ? ? ? ? ? ? ? • • • • •	• .* • • • L 8600 N
	L 8500 M.	Plotted Val	U.A. Umni Plus Mag ue = Corrected Value - 57000			*****	• • • • • • • • • • • • • • • • • • •	L 8500 N
	L 8400 W.						• • • · · · · · · · · · · · · · · · · ·	
	L 8300 W.						***************************************	
						85 8800 E 8900 E 9000 E 9100 E 920	0 E 8300 E 9400 E 9500 E 96	00 E 9700 E
			SCALE 1:10,000			, m .	TROVE RES	SOURCES LTD.
		0	100 200 300 400 enters				MAGN	ETOMETER
					ł		VA	LUE MAP
					-#-	REVISIONS By Date Approv.B	le scenning a report by Traject fo	Inul It:
								THE THE Z
-								

.*:

....

7200 Ε 7300 Ε 7400 Ε 7500 Ε 7600 Ε 7700 Ε 7800 Ε 7900 Ε 8000 Ε 8100 Ε 820	
	L 12600 N
	L 12500 N
	GEOLOGICAL BRANCH
	د ۱۸۵ ۲۵ ۲۵ ۲۵ ۲۵ ۲۵ ۲۵ ۲۵ ۲۵ ۲۵ ۲۵ ۲۵ ۲۵ ۲۵
	L 11800 N
	,
	L 11500 N
L 11200 N	L 11200 H
	L 11100 N
L 11000 N	1986 MAG/VLF/GENIE SURVEY
	L 10900 N
L 10800 N 7700 E 7300 E 7400 E 7500 E 7600 E 7700 E 7800 E 7900 E 8000 E 8100 E	L 10800 N
	L 10700 N
L 10400 N	
1. 10300 N	
L 10200 W	
L 10108 N	
L 10000 N	
L 9900 N	
L 9800 W	9800 N

