LOG NO: 062	6 RD.
ACTION:	
FILE 80:	

H S

() e

R A N Ø N

🙇 😂

لیا چ

6

3

MINISTRY	OF POI F	ENERO I INA DE	Y, MINE	S S
Rec'd	UN.	ر ۱	1989	
SUBJ FILE		OUVE	R, B.C.	_

REPORT ON THE DIAMOND AND

REVERSE CIRCULATION DRILLING

PROGRAM ON THE

SKOOKUM PROPERTY

VERNON MINING DIVISION

SOUTHEASTERN BRITISH COLUMBIA

Location NTS 82-L/6W Latitude: 50⁰21'N Longitude: 119⁰22'W 24-

FOR

Canova Resources Ltd. Suite 1560 - 701 West Georgia Str Vancouver, B.C. V7Y 1C6

and

Expeditor Resource Group Ltd. 4 Suite 1500-609 Granville Strett Vancouver, B.C. ON V7Y 1G5

₿Y

Denis Collins Ph.D., P.Geol., FGAC and Jody Dahrouge, B.Sc., GIT. Hi-Tec Resource Management Ltd. 1500 - 609 Granville Street Vancouver, B.C. V7Y 1G5

January, 1989

TABLE OF CONTENTS

1.0	SUMMARY	Ĺ
2.0		L
	2.1 Location and Access	2
3.0	HISTORY AND PREVIOUS WORK	}
4.0	GEOLOGY	5
	4.1 Regional Geology and Mineralization 6 4.2 Property Geology	57
5.0	PROPERTY GEOPHYSICS)
6.0	DRILLING PROGRAM)
7.0	CONCLUSIONS AND RECOMMENDATIONS	7
8.0	REFERENCES	L

LIST OF FIGURES

			A	ſt	er	Page
Figure	1:	General Location Map	٠	•	•	1
Figure	2:	Claim Map	•	•	•	2
Figure	3:	Regional Geology Map	٠	•	•	б
Figure	4:	Property Geology	•	in	pc	ocket
Figure	5:	Drill Holes Location and Geophysical Compilation Map .	•			10

LIST OF APPENDICES

- APPENDIX I: Statements of Qualifications
 APPENDIX II: Geochemical Preparation and Analytical Procedures
 APPENDIX III: Analytical Data for Core/RC Samples
 APPENDIX IVa: Statistical Results
 APPENDIX IVb: Histograms
 APPENDIX IVc: Correlation Coefficients
 APPENDIX V: Diamond Drill Logs
 APPENDIX VI: RC Sample Descriptions and Sample Intervals
- APPENDIX VII: Statement of Costs

1.0 SUMMARY

Pursuant to a request by the Presidents of Canova Resources Ltd. and Expeditor Resource Group Ltd., a limited diamond and reverse circulation drilling program was conducted on selected areas of the Skookum property, Vernon Mining Division. by Hi-Tec Resource Management Ltd. during November and December of 1988. The program was designed follow-up to results from previous geological, a geochemical, geophysical program and trenching program carried out earlier in the summer.

The Skookum property is located northwest of Okanagan Lake, approximately 15 km northwest of Vernon, B.C. The Vernon Area has seen minor placer activity since the early 1900's, however, there has been little exploration for lode gold deposits. In 1984, Huntington Resources began work on the Brett claims, which are located 15 kilometers southwest of the subject property. The discovery of a major epithermal on the Brett claims has led to increased qold system activity in the area, climaxing recently with the announcement by Huntington of a spectacular drill intersection of over 2 oz/ton Au over 235 feet.

The subject claims are underlain by Upper Triassic Nicola Group volcanics and Upper Triassic Slocan Group sedimentary rocks. The volcanics consist mainly of basaltic and andesitic tuffaceous rocks, while the sediments are primarily argillites. These rocks are cut be a granitic intrusion and numerous associated feldspar porphyry dykes. Quartz hosted precious and base metal mineralization is associated with these feldspar porphyry dykes at the Vera showing.

i

The Skookum showing consisting of a white sugary-textured quartz vein up to 4 meters wide, is hosted by a well cleaved dark grey-black graphitic schist within a shear zone. Values of up to 320.83 opt Ag and 0.117 opt Au. have been obtained from the contact between the quartz and the graphite. Numerous other excellent precious metal values were obtained from other vein and graphite samples.

The Skookum showing was originally staked in 1930. Records indicate that approximately 200 feet of shafts and drifts were dug with 127 tons of material sent to the smelter in trail. Recovery averaged 0.44 opt Au and 17.06 opt Ag. Reported values of 31.06 opt Au and 231 opt Ag were obtained from samples of decomposed quartz.

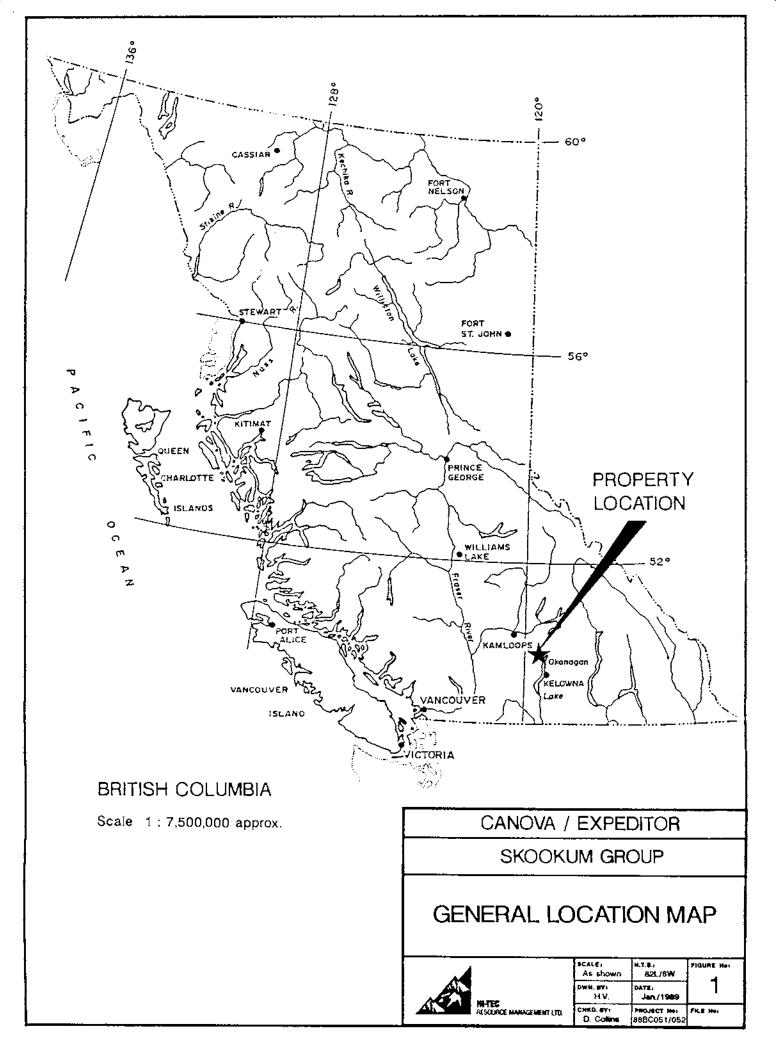
The Skookum showing is associated with two strong northeast trending VLF conductors which are paralleled and flanked by a magnetic anomalous zone.

A total of 239.84 meters (787 feet) were diamond drilled in three holes and a total of 516.38 meters (1694 feet) were rotary drilled in six holes. Portions of two of the holes were drilled using both diamond and rotary drilling techniques. The total number of holes drilled was seven. One hundred and twenty-seven core samples and three hundred and twenty-eight RC drilled bulk samples were collected.

The presence of an extensive network of quartz veinlets and the existence of quartz veins up to 3 meters wide, within a graphitic schist host rock, was confirmed by the drilling program. Zones up to 28 meters wide yielded anomalous values in zinc in all of the holes. The highest silver value recorded from the drilling program was 104.6 ppm (sample 88-SD2-6). The highest gold value was 363 ppb from hole 88-SRC-1.

Relatively low precious metal values were detected in the drilling samples in comparison to the results from the trenching program. However, the geological setting of the claims, enhanced by the presence of abundant quartz veinlets and quartz veins up to 3 meters in width, and additional geophysical anomalies which remain untested, implies that further work is warranted.

2.0 INTRODUCTION


Pursuant to a request by the Presidents of Canova Resources Ltd. and Expeditor Resource Group Ltd., a limited diamond and reverse circulation drilling program was conducted on selected areas of the Skookum property, Vernon Mining Hi-Tec Resource Management Division. by Ltd. during November and December of 1988. The purpose of the drilling program was (a) to determine the geometry and structure of the previously trenched surface showings and (b) obtain information on the structure and mineralization parameters along lateral extensions to these zones and (c) to test in preliminary manner selected VLF-EM anomalies anđ а conductors associated with the zone, which were delineated . during ground geophysical surveys conducted during Phase I of the 1988 exploration.

This report is based on the results of the 1988 exploration program and on the available literature pertaining to the area.

2.1 Location and Access

The Skookum property is located in the Vernon Mining Division in Southern British Columbia. The claims are approximately 60 km north of Kelowna and 15 km northwest of Vernon on the north end of Okanagan Lake. The claims comprise a total of 69 units. The property is centered at latitude 50° 21' north and longitude 119° 23' west (Figure 1).

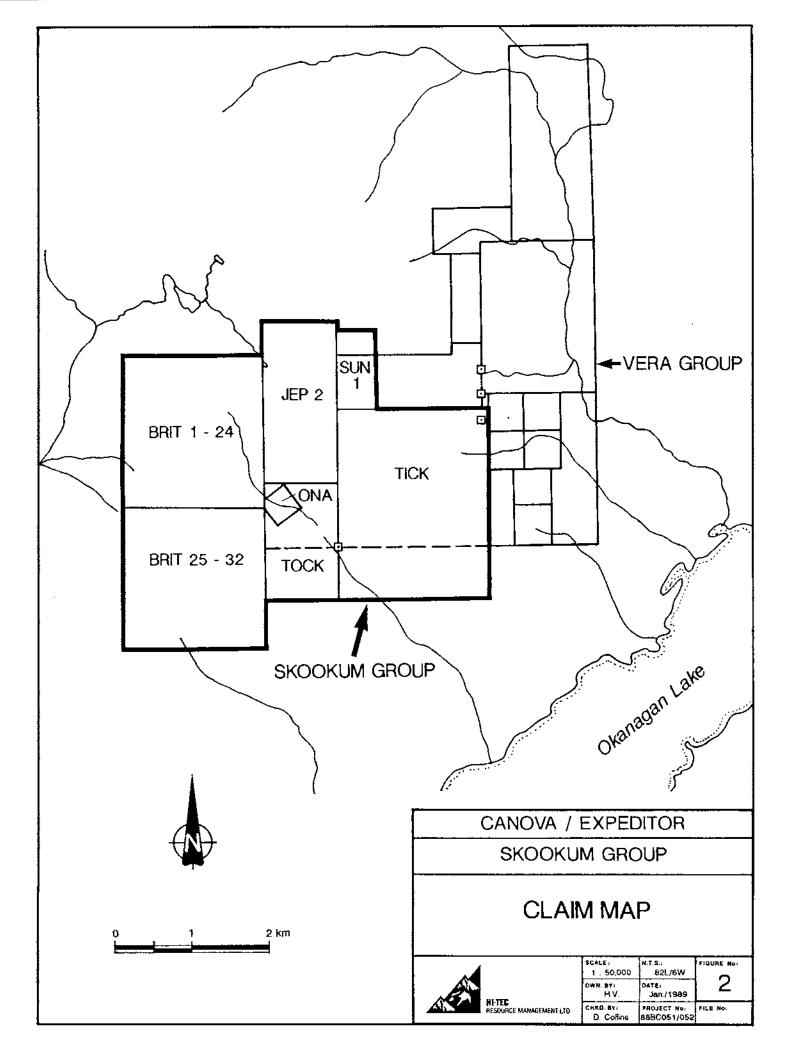
Access to the Skookum property is by a 4 - wheel drive dirt road which commences 6 km north of the Irish Creek turnoff along Westshore Road, through the yard of local residents. The initial 3 kilometers of dirt road traverses a section of the Okanagan Indian Band reserve. Permission to move

drill equipment and personnel through the reserve was granted by the Band Council officials.

2.2 Property and Ownership

The Skookum group consists of a total of 69 units which were recorded on October 7, 1988. The claims are held jointly between Canova Resources Ltd. and Expeditor Resource Group Ltd.

The Skookum Group consists of 3 modified grid claims, the Tick, Tock and Jep # 2 for a total of 34 units. The Tick and Tock claims are under option to Canova Resources from Mervin Boe. The Jep # 2 claims have been optioned from J. Irwin. In addition, there are 35 2-post claims, including the Brit 1-32, the Sun 1 and 2 and the Ona. The Brit and Sun claims are 100% owned by Canova and Expeditor, while the Ona claim is under option from Frank Leginus.


Pertinent claim data is summarized below:

Name	<u>No. of Units</u>	Record_No,	<u>Expiry Date</u>
Tick	6	739	October 17,1990
Tock	20	738	October 17,1990
Jep # 2	8	2550	June 16, 1991
Sun 1	1	2935	August 3, 1991
Sun 2	1	2936	August 3, 1991
Ona	1	5943	October 9, 1991
Brit 1 - 2		2639 - 2662	June 21, 1991
Brit 25 -	32 8	2663 - 2670	June 22, 1991

The claim locations are shown on Figure 2.

2.3 Physiography

The claims are situated in the Okanagan Highland at the northeast edge of the Thompson Plateau. Local topographic relief varies from moderate to very steep. Elevations on the property range from 1050 meters to 1350 meters. The

Skookum showing is located between the forks of Newport Creek.

2.4 Operations and Communications

The drilling program was conducted during the November and December of 1988. A total of 239.84 meters (787 feet) were diamond drilled in three holes and a total of 516.38 meters (1694 feet) were rotary drilled in six holes. Portions of two of the holes were drilled using both diamond and rotary drilling techniques. The total number of holes drilled was seven.

The field crew was based in Vernon, British Columbia and commuted 27 kilometers daily to the property. Telephone and fax communications with the office in Vancouver, British Columbia, were maintained on a regular basis. Transportation was provided by means of a 4 wheel-drive pick-up truck rented from Redhawk Rentals in Vancouver. Chains were required to enable access over the last 7 kilometers of snow covered dirt track.

3.0 HISTORY AND PREVIOUS WORK

The Vernon area has seen minor placer activity since the early 1900's, however, there has been little exploration for lode gold deposits. In 1984, Huntington Resources began work on the Brett claims, which are located 15 kilometers southwest of the subject property along Whiteman Creek. The discovery of a major epithermal gold system on the Brett claims has led to increased activity in the area, climaxing recently with the announcement by Huntington of a spectacular drill intersection of over 2 oz/ton Au over 235 feet. This hole was drilled at an angle of 84⁰ which is slightly oblique to the down dip angle of the zone.

Published results have also shown that there is dissemination of gold values in both hangingwall and footwall volcanics away from the main shear zone. One reverse circulation drill hole (RC-88-17) returned 25 feet grading 0.224 opt gold which includes a narrow intersection 10 feet averaging 0.47 opt gold (Northern Miner, of September 26, 1988). This property is now being explored by Huntington/Lacana under a joint venture agreement and drilling is expected to begin on the New Discovery zone which has similar geology (Northern Miner, September 26, 1988). Several other mineral showings have been reported in the area and many are hosted by quartz veins within epithermal systems.

Adjacent to the Skookum showing is the Vera property and Vera showing which was originally discovered in 1923. Development work included the excavation of one 15 m long adit as well as several pits. Two tons were shipped and reported to run 1.0 oz/ton Au and 41.0 oz/T Ag. No further work is reported in the area of the claims until 1970, when a geochemical soil survey, magnetic survey and geology was completed over the May and Red Hawk claims (Assessment Report 2552). These claims are no longer in existence, however part of the area is now covered by the Golden Zone #1 claims. Summary reports on the property have been written by Daughtry, (1980), Wilmot, (1985), Livgard, (1986), and Shaw, (1987 & 1988).

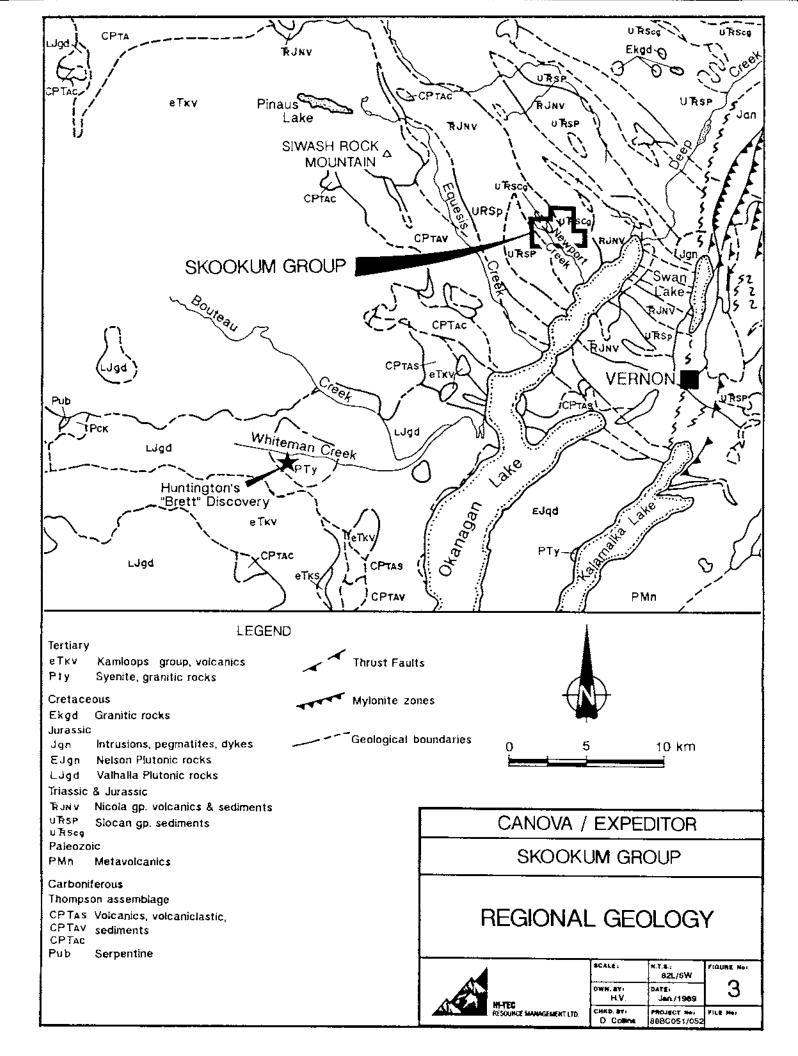
A limited magnetic and electromagnetic survey (1.2 km) was carried out on the Vera showing by Canova Resources Ltd. in December of 1987 (Freeze and Wetherill, 1988). The results of this program were inconclusive.

The Skookum showing was originally staked in 1930 by H.J. Blurton. A 25^0 and a 50^0 inclined shafts were sunk on the Skookum showing during the early 1930's and "rich values"

were reportedly found in the 25⁰ shaft and workings (Stewart, 1947). Stewart concluded, from his examination, that the values associated with the workings were spotty in occurrence. Records indicate that approximately 200 feet of shafts and drifts were dug with 127 tons of material sent to the smelter in Trail. Recovery averaged 0.44 opt Au and 17.06 opt Ag and reported values of 31.06 opt Au and 231 opt Ag were obtained from samples of decomposed quartz (Grond, 1988).

In the early summer of 1988, Hi-Tec Resource Management conducted a geological and geochemical exploration program on the Skockum and Vera properties on behalf of Canova Resources Ltd. A geophysical survey was also conducted on The results of the program outlined a the Vera property. number of northwest trending geophysical and geochemical anomalies in the vicinity of the Vera showing, suggesting possible parallel structures. Follow-up trenching was recommended to test the zones, and this was completed during the late summer months. The best precious metal values obtained from the main vein zone was a grab sample of 148.46 opt Ag and 0.146 opt Au from 15% galena in quartz vein rubble. Other values recorded include sample 88-DTV-54 which yielded 64.46 opt Ag and 0.064 Au from 15% galena and tetrahedrite in quartz stringers across 0.6 m and 88-DTV-60 which recorded 67.96 opt Ag and 0.085 opt Au across 0.7 m of 10% galena and tetrahedrite in quartz stringers. Base metal values of up to 8030 ppm Cu, 110763 ppm Pb and 4773 ppm Zn were also recorded (Grond, 1988).

4.0 GEOLOGY


4.1 Regional Geology and Mineral Deposits

The Skookum property lies within the Omineca Geological Belt. According to Okulitch et al, (1979), the area is underlain by a sequence of Triassic and Jurassic Nicola Group andesite and basalt flows with associated pyroclastics and Slocan Group sediments, consisting of shale, argillite and siltstone (Figure 3). This package is intruded by plugs of Cretaceous Salmon Arm Pluton with granodiorite, granite, and quartz monzonite compositions.

Tertiary Plutonic rocks consisting primarily of syenites are located in the Whiteman Creek and Whiterocks area. In the Whiteman Creek area, the syenites are closely associated with a recently discovered, high grade gold zone at the Brett property, by Huntington Resources Ltd.

The geology of the Brett property consists of tertiary volcanics, including interbedded basaltic and andesitic flows and pyroclastic (tuffaceous) rocks, in fault contact with granitic rocks. A small syenitic intrusion cuts the granitic rocks and is closely related to a series of feldspar porphyry dykes which are directly associated with the main gold bearing structures on the property. The north-northwesterly trending mineralized structures occur within the tertiary volcanics rocks and are epithermal in origin. According to W. Grunenwald, (1987), "the dykes are associated with shear zones that likely provided the planes of weakness for their emplacement".

Major west-northwest trending fault structures occur throughout the area on the northwest side of Okanagan Lake and can often be identified on the topography maps by drainage patterns.

4.2 Property Geology

The Skookum showing is located in the northern portion of the Tock claim (Figure 4). The schist unit is in fault contact to the north with rusty phyllitic sediments. The schist hosted quartz veins appear to be related to a wide shear zone which may be associated with a nearby dioritic intrusion.

The Skookum showing consists of a decomposed white sugarytextured quartz vein up to 4 meters wide hosted by a well cleaved dark grey-black graphitic schist. The graphitic schist is developed within a major shear zone and contains significant amounts of visible base metal mineralization at the main surface showing. Massive tetrahedrite and pyrite are commonly evident in samples.

An associated tension gash array developed along the thrust(?) contact of graphite and the overlying phyllite is also mineralized. The contacts of the vein carry values in addition to the graphitic partings in the vein.

Approximately fifty meters north of the Skookum showing, a body of hornblende porphyritic intrusive rock outcrops. This rock is pale green with abundant black xenoliths of argillaceous wallrock and small, black, eughedral hornblende phenocrysts. Several outcrops of this intrusion occur north of the main Skookum showing.

A trenching program was carried out on the main Skookum showing during August, 1988, under the direction of Hi-Tec Resource Management Ltd. A forty-five meter long trench was excavated at the Skookum showing which exposed a portion of a quartz vein up to four meters wide within a

bed of massive, soft, graphitic schist. The graphite is intensely sheared and bedding is difficult to discern at surface. The quartz and graphitic schist are overlain by strongly sheared and folded interlayered argillite and phyllite. The contact between the graphite and argillite is marked by a quartz infilled sigmoidal tension gash array. This contact is interpreted as being a shear and possible thrust contact. Pyrite is commonly present as blebs and stringers within the graphitic schist.

The best precious metal values recorded from the trenching program were associated with tetrahedrite and galena mineralization within quartz veins. The highest value obtained was 320.83 opt Ag and 0.117 opt Au from a grab sample containing 30-40% galena and tetrahedrite in guartz along the tension gash array zone. Other high values were obtained from sample 88-DTS-19, 205.92 opt Ag and 0.070 opt Au from a grab of 15-20% Tetrahedrite, galena and sphalerite, and sample 88-DTS-27 yielded 224.00 opt Ag and 0.071 opt Au from a grab of 15% tetrahedrite in a quartz vein. The highest value obtained from a channel sample was 68.83 opt Ag and 0.094 opt Au across 2 meters of 15% tetrahedrite in a quartz vein (88-DTS-27) (Grond, 1988).

Precious metal mineralization occurs within the graphite as well as the quartz veins and stringers which invade the graphite. Lenses and partings within the quartz are often rich with tetrahedrite, sphalerite and galena. Pyrite within the graphite is likely syngenetic. Based on the assay results of samples of the sheared graphite, it is probable that the sheared graphite contains appreciable tetrahedrite which is fine grained and not visible in hand sample. Several samples which demonstrate this are: 88-DTS-12, a grab of massive graphite at lower contact of the quartz vein, 4.87 opt Ag, 0.011 opt Au and 88-DTS-17, minor

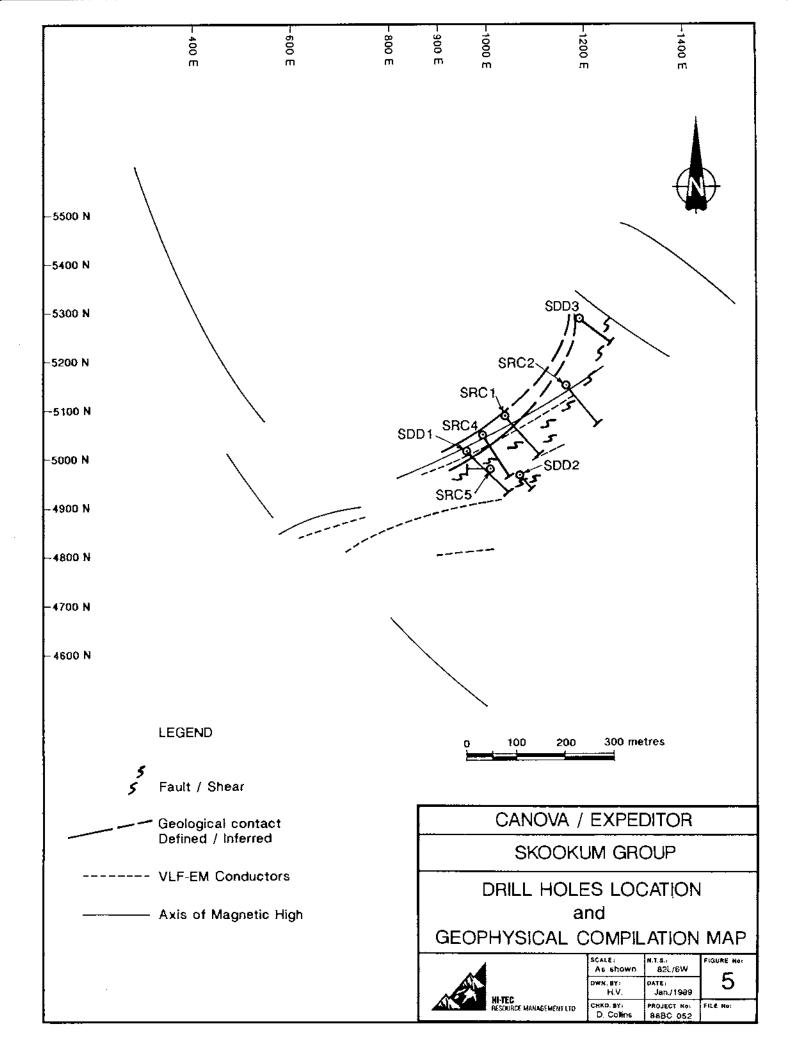
quartz in massive graphite, 12.98 opt Ag, 0.006 opt Au. Values up to 30667 ppm Cu, 108634 ppm Pb and 68996 ppm Zn were also recorded.

5.0 PROPERTY GEOPHYSICS

A VLF-EM geophysical survey was conducted over the Skookum showing during November, 1988. The geophysical survey results show the extent of conductive horizons (probably graphite) and magnetic rock types (probably andesite) on the grid (Collins, Graham and Dahrouge, 1988).

The Skookum showing is associated with two strong northeast trending VLF conductors which are paralleled and flanked by a strong magnetic anomalous zone. The magnetic zone is probably related to the overlying andesites which contain abundant disseminated pyrrhotite. Numerous other spot magnetic anomalous zones have been outlined during the 1988 geophysical program.

The two VLF conductors define the boundaries of the graphitic schist horizon which represents a major northeast trending shear zone. This shear zone is host to a network of numerous quartz veinlets and occasional quartz veins of from 50 cm to 4 meters in width.


A cluster of northeasterly trending conductive zones in the central grid area correlate partially with the known extent of the graphitic horizons with which the precious metal values are associated. As such, they are valuable indicators of the probable extent of the system. The conductors are quite continuous, and extend for about 600 meters from 650E/4850N to 1150E/5100N (Figure 5, Section 6)..

6.0 DRILLING PROGRAM

The drilling contractors were D. W. Coates Enterprises Ltd. of Delta, British Columbia. An Acker drilling rig, capable of drilling by both diamond and reverse circulation techniques, was used throughout the drilling program. One complete hole (88-SDD-001) was diamond drilled, two holes were combined diamond/reverse circulation drilled (88-SDD-002, 88-SDD-003) and four holes were completed using only reverse circulation techniques. The bedrock was cored with a NQ diamond bit. The diameter of the reverse circulation holes was 4 1/8".

A total of 239.84 meters (787 feet) were diamond drilled in three holes and a total of 516.38 meters (1694 feet) were rotary drilled in six holes. Portions of two of the holes were drilled using both diamond and rotary drilling techniques. The total number of holes drilled was seven (Figure 5). All of the core boxes are stored on the property at grid line 975E/5000N.

One hundred and twenty-seven core samples and three hundred and twenty-eight RC drilled bulk samples were collected. The latter samples were collected at 5 foot intervals. All of the samples were submitted to Min-En Laboratories Ltd., in Vancouver, B.C., for Au, Ag, As, Ba, Cu, Pb, Zn and Sb analysis by the Induced Coupled Plasma (ICP) method. Twenty-five core samples, from 88-SDD-001, were analyzed for gold and silver by the Fire Assay (F.A.) method. Analytical procedures are reported in Appendix II and analytical data can be found in Appendix III.

Statistical treatment of data was possible for each analyzed element. Statistical data, histograms and coefficients are listed in correlation Appendix IV-A through Appendix IV-C. Each drill hole is summarized below and detailed diamond drill logs and summary log geological cross-sections are presented in Appendix V. Reverse Circulation sample descriptions and sample intervals are included in Appendix VI.

The diamond drilling and reverse circulation drilling program was designed to (a) determine the geometry and structure of the previously trenched surface showings and (b) obtain information on the structure and mineralization parameters along lateral extensions to these zones and (c) to test in a preliminary manner selected VLF-EM anomalies and conductors associated with the zone, which were delineated during ground geophysical surveys conducted during Phase I of the 1988 exploration. The drill holes were laid-out such that they would intersect the two main VLF conductors and the full width of the graphitic schist infilled shear zone.

88-SDD-1

This hole was located at Line 975E/5015N and was diamond drilled to a depth of 154.5 meters (507 feet) at an azimuth of 140^{0} and an angle of -45^{0} . The hole was collared in medium to coarse grained, tuffaceous grey/green andesite.

The core from hole 88-SDD-001 consisted of 13 meters (43 feet) of andesite which contained fine grained disseminated pyrrhotite throughout. This is underlain by 117 meters (384 feet) of graphitic schist. The graphitic schist is well mineralized throughout with pyrite blebs and stringers

and contains abundant 1-3 mm quartz veinlets. The lower 25 meters (82 feet) of the core consisted of more competent grey/green phyllite with minor graphitic partings and laminations.

Quartz veins up to 40 cm in width were intersected towards the top of the graphitic unit. A 3.3 meter quartz vein was intersected within the green phyllitic unit at 145.4 meters. The contacts of the vein were ground and no core axes could be obtained. This vein contained disseminated pyrite and chalcopyrite within fractures and argillaceous partings. An along strike portion of this vein is exposed in an old adit from which values with a reported average of 0.44 opt Au and 17.06 opt Ag were obtained. Reported values of 31.06 opt Au and 231 opt Ag, which were obtained from samples of decomposed quartz, are also contained in the old literature.

Core axes vary from 90^{0} to 25^{0} within the core. The lower core axes were recorded below a deformed, possible fault intersection zone, at the 115 meter level in the graphitic schist.

Eighty-eight samples were collected and geochemical values show a 28.15 meter wide anomalous zinc zone from 58.7 to 86.85 meters (samples 88-SD1-43, 88-SD1-46 to 88-SD1-53 and 88-SD1-55, 56). Values in this zone range from 104 ppm to 691 ppm Zn. A second anomalous zinc zone occurs between 103.9 and 114.4 meters (samples 88-SD1-70 to 74). Values in this 10.5 meter wide zone range from 158 ppm to 526 ppm Zn. Two highly anomalous barium values, 1507 ppm and 1669 ppm, were recorded from samples 88-SD1-65 and 88-SD1-85, respectively. Precious metal values as well as arsenic, copper, lead and stibnite values are relatively low. Gold values range from 1 ppb to 78 ppb and silver values range from 0.3 ppm to 6.4 ppm. Sample 88-SD1-20 yielded both the highest gold and silver values.

88-SDD-2

This hole was located at Line 1080E/4975N and was drilled to a depth of 55.5 meters (182 feet) at an azimuth of 140^{0} and an angle of -60^{0} . The top 23.2 meters was drilled using RC techniques and the remainder was diamond drilled. The hole was collared in a medium to fine grained brown/grey argillaceous graphitic unit.

The core from hole 88-SDD-002 consisted of black graphitic schist with interbedded pale grey tuffaceous laminae. Quartz stringers were evident throughout the core. These were generally \leq 1 cm in thickness. The graphitic schist is well mineralized throughout with pyrite blebs and stringers. Minor azurite staining was evident in the quartz veinlets at the 32 meter level (sample 88-SD2-8).

Fourteen RC samples and nineteen split core samples were collected. Sample 88-SD2-6 yielded a gold value of 50 ppb and a silver value of 104.6 ppm. The remaining precious metal values are low. The geochemical values show a 27 meter wide anomalous zinc zone from 28.4 to 55.5 meters (samples 88-SD2-6 to 88-SD2-19). Values in this zone range from 127 ppm to 891 ppm Zn.

This hole was located at Line 1195E/5300N and was drilled to a depth of 103.0 meters (339 feet) at an azimuth of 130^{0} and an angle of -45^{0} . The top 50.6 meters was drilled using RC techniques and the remainder was diamond drilled. The hole was collared in a medium to coarse grained, black/light-grey argillaceous graphitic unit.

The core from hole 88-SDD-002 consists of black graphitic schist with interbedded pale grey tuffaceous laminae. Quartz stringers were evident throughout the core as in the former holes.

Twenty-nine RC samples and twenty split core samples were collected. Pyrite blebs and stringers were commonly evident throughout the graphitic schist unit. The geochemical values in zinc were predominantly anomalous below a depth of 23 meters (from RC sample 2000A to 88-SD3-20). Values in this zone range from 56 ppm to 516 ppm Zn. Precious metal values are relatively low. Gold values range from 1 ppb to 22 ppb and silver values range from 0.9 ppm to 6.7 ppm.

88-SRC-1

This hole was located at Line 1050E/5095N and was drilled to a depth of 135.9 meters (446 feet) at an azimuth of 140^{0} and an angle of -45^{0} . The hole was collared in a medium grained, light-brown andesitic unit.

The cuttings from the hole consist predominantly of black graphitic schist with interbedded pale grey tuffaceous units. Quartz was evident in some of the bulk samples. Up to 4% pyrite and trace pyrrhotite were also occasionally present in some of the samples.

Ninety-one RC samples, collected at 5 foot intervals, were submitted to Min-En Labs. The geochemical values in zinc were predominantly anomalous from a depth of 26.21 meters to 64.31 meters (from sample 14544A to sample 14568A). Values in this zone range from 74 ppm to 389 ppm Zn. Sample 14560A yielded the highest precious metal values of 363 ppb gold and 8.4 ppm silver. Samples 14561A and 14564A yielded values of 174 ppb and 120 ppb gold, respectively.

88-SRC-2

This hole was located at Line 1160E/5155N and was drilled to a depth of 135.9 meters (446 feet) at an azimuth of 140^{0} and an angle of -45^{0} . The hole was collared in a fine to coarse grained, brown/light-grey graphitic unit.

The cuttings from the hole consist predominantly of black graphitic schist with interbedded pale grey tuffaceous units. Quartz was evident in some of the bulk samples. Up to 8% pyrite and trace pyrrhotite were also occasionally present in some of the samples.

Eighty-seven RC samples, collected at 5 foot intervals, were submitted to Min-En Labs. The geochemical values in zinc were predominantly anomalous from a depth of 10.97 meters to 56.69 meters (from sample 1907A to sample 1936A). Values in this zone range from 93 ppm to 316 ppm Zn. Sample 1917A yielded precious metal values of 147 ppb gold and 60.0 ppm silver. Samples 1956A and 1957A yielded values of 17 ppm and 34 ppb gold, and 711 ppm and 1,083 ppm zinc, respectively. Four anomalous barium values, ranging from 602 ppm to 1,263 ppm were recorded by samples 1946A to 1949A.

88-SRC-4

This hole was located at Line 997E/5055N and was drilled to a depth of 129.8 meters (426 feet) at an azimuth of 150^{0} and an angle of -45^{0} . The hole was collared in a fine to medium grained, light-brown/grey graphitic unit.

The cuttings from the hole consist predominantly of black graphitic schist with interbedded pale grey tuffaceous units. Quartz was evident in some of the bulk samples. Up to 5% pyrite and trace pyrrhotite were also occasionally present in some of the samples.

Eighty-three RC samples, collected at 5 foot intervals, were submitted to Min-En Labs. The geochemical values in zinc were predominantly anomalous from a depth of 21.64 meters to 110.03 meters (from sample 45163A to sample 45070A). Values in this zone range from 72 ppm to 462 ppm Zn. Six samples yielded elevated precious metal values of from 105 ppb to 151 ppb gold and up to 7.6 ppm silver.

88-SRC-5

This hole was located at Line 1005E/5000N and was drilled to a depth of 41.45 meters (136 feet) at an azimuth of 270^{0} and an angle of -45^{0} . The hole was collared in a fine to coarse grained, black graphitic unit.

The cuttings from the hole consist predominantly of black graphitic schist with interbedded pale grey graphitic units. Quartz was evident in some of the bulk samples. Up to 10% pyrite was also occasionally present in some of the samples.

Twenty-four RC samples, collected at 5 foot intervals, were submitted to Min-En Labs. Eleven of the samples yielded zinc values greater than 100 ppm. Three samples yielded elevated precious metal values of 105 ppb, 112 ppb and 172 ppb gold. The highest recorded silver value is 2.6 ppm silver.

The calculated correlation coefficients for these holes show a moderate correlation of 0.7 between Pb and Ag. Slight correlations are exhibited between the following elements: Au-As, Au-Pb, Au-Sb and Pb-As. The remaining elements only show weak correlation coefficients. Overall, the geochemical results of the drilling are relatively low in comparison to the results obtained from the trenching program.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The Skookum showing consists of a white sugary-textured quartz vein up to 4 meters wide hosted by a well cleaved dark grey-black graphitic schist. The graphitic schist is developed within а major shear zone and contains significant amounts of visible base metal mineralization. Massive tetrahedrite and pyrite are commonly evident in samples. The results of a trenching program carried out on the main Skookum showing, during the summer of 1988. indicated that highly anomalous levels of precious metals

were associated with the graphitic schist and quartz veining.

An associated tension gash array developed along the thrust contact of graphite and the overlying phyllite is also mineralized. The contacts of the vein carry values in addition to the graphitic partings in the vein. Samples from this contact yielded a high grade grab sample value of 320.83 opt Ag, 0.117 opt Au. Additional values recorded from the showing have included values of up 224.0 opt silver and 0.071 opt gold. Values of up to 68.83 opt silver and 0.094 opt gold have been recorded from channel samples across 2.0 meters.

The Skookum showing is associated with two strong northeast trending VLF conductors which are paralleled and flanked by a magnetic anomalous zone. The magnetic zone is probably related to the overlying andesites which contain abundant disseminated pyrrhotite. Numerous other spot magnetic anomalous zones have been outlined during the 1988 geophysical program.

A total of 239.84 meters (787 feet) were diamond drilled in three holes and a total of 516.38 meters (1694 feet) were rotary drilled in six holes. Portions of two of the holes were drilled using both diamond and rotary drilling techniques. The total number of holes drilled was seven.

The presence of an extensive network of quartz veinlets and the existence of quartz veins up to 3 meters wide, within a graphitic schist host rock, was confirmed by the drilling program. Zones up to 28 meters wide yielded anomalous values in zinc in all of the holes. The highest silver value recorded from the drilling program was 104.6 ppm

(sample 88-SD2-6). The highest gold value was 363 ppb from hole 88-SRC-1.

Relatively low precious metal values were detected in the drilling samples in comparison to the results from the trenching program. However, the geological setting of the claims, enhanced by the presence of abundant quartz veinlets and quartz veins up to 3 meters in width, implies The limited drilling that further work is warranted. program was designed to test the graphitic schist zone as defined by the geophysics survey. The latter survey also outlined additional northwest oriented zones which are as fault zones. These areas should be interpreted additional geological mapping and investigated by geochemical sampling.

Only limited exploration work has been conducted on the Skookum property. No prospecting, mapping or geochemical sampling has been conducted over the vast majority of the claims and consequently the potential for mineralization remains largely untested. Previous work has concentrated on the main Skookum showing with only minor attention being paid to the remainder of the claim area. The geological setting of the claims within an area of known mineral deposits, underlain in part by a correlative sequence, provides sufficient encouragement to conduct exploration In addition, recent mineral programs on the claims. discoveries from exploration work and drilling on nearby properties demonstrate that the potential for the existence of significant mineralization is a distinct possibility and should be tested.

The writers conclude that geological mapping and selective geochemical sampling should be conducted over the entire unmapped claim area to outline other areas of interest.

Respectfully submitted, HI-TEC RESOURCE MANAGEMENT LTD.

Denis Collins

Denis A. Collins, Ph.D., P.Geol., F.G.A.C.

ody Jahrouge incouge, B.Sch, G.I.T. J.

January , 1989

8.0 REFERENCES

Daughtry, K.L., (1980) Ronald (Octagon) Property, Vernon, B.C.

Freeze, J. and Wetherill, F. (1988) Geophysical Report on the Vera Claim Group, Vernon Mining Division.

Grond H. (1988) Geological, Geophysical and Geochemical Report on the Vera claims, Private Report for Canova Resources Ltd.

Grond H. and Thompson, D. (1988). Report on the Trenching Program, Vera and Skookum Showings, Vernon M.D., Private Report for Canova Resources Ltd.

Livgard, E. (1986) Report on the Vera Claim Group, Vernon Mining Division.

Jones, A.G. (1959) Geological Survey of Canada Memoir 296, Vernon Map Area.

Kikuchi, T. and Venkataramani, S. (1970) Geological Report, May and Red Hawk Claims Vernon Area, Brown-Overton Mines Ltd.

Okulitch, A.V. and Campbell, R.B., (1979) Geological Survey of Canada Open File 637, Thompson-Shuswap-Okanagan Geology.

Wilmot, A.D. (1985) Report on the Vera Mineral Claims, Vernon Mining Division. preliminary Map. 65.

APPENDIX I

STATEMENTS OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, DENIS A. COLLINS, of the City of Vancouver, Province of British Columbia, hereby certify:

- 1. THAT I am a geologist employed by Hi-Tec Resource Management Ltd. at 1500-609 Granville Street, Vancouver, British Columbia, Canada, V7Y 1G5.
- THAT I obtained a Bachelor of Science degree in Geology from University College Cork, Ireland in 1980 and a Ph.D. in Structural Geology from the same university in 1985.
- 3. THAT I have been practising my profession as a geologist in Ireland, South Africa and Canada since 1980.
- 4. THAT I am a Fellow, in good standing, with the Geological Association of Canada.
- 5. THAT I am a registered Professional Geologist, in good standing, with a license to practice with the Association of Professional Engineers, Geologists and Geophysicists of Alberta and the Northwest Territories.

Dated in Vancouver, British Columbia, this 30th day of January, 1989.

allins

Denis A. Collins, Ph.D., P. Geol., F.G.A.C.

STATEMENT OF QUALIFICATIONS

I, Jody Dahrouge, of the town of St. Paul, in the province of Alberta, do hereby certify:

1) I am a geologist employed by Hi-Tec Resource Management Ltd., of 1500-609 Granville Street, Vancouver, British Columbia.

- I am a graduate of the University of Alberta, with a B.Sc., 1988, in Geological Sciences.
- 3) I have practised my profession as a geologist, for one field season since my graduation as follows:

1988 May-June, Lacana Mining Corp., Vancouver, B.C.

1988 July-Dec., Hi-Tec Resource Management Ltd., Vancouver, B.C.

4) I have not received, nor do I expect to receive any interests, direct or indirect in the securities of Canova or Expeditor.

SIGNED:

APPENDIX II

GEOCHEMICAL PREPARATION AND ANALYTICAL PROCEDURES

GEOCHEMICAL RESULTS AND LABORATORY ANALYTICAL METHODS

After intial preparation, all samples were analyzed by the Inductively Coupled Plasma (ICP) method for Ag, As, Cu, Pb, Sb and Zn. Gold was determined by the fire assay and atomic absorption method.

After drying soil and stream sediment samples at 95^oC, they were screened with an 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. For some of the silt samples, 40 mesh or 20 mesh sieves were used. Rock samples were put through a jaw crusher and a ceramic-plotted pulverizer.

For ICP analyses, 1.0 gram of sample material was digested for 6 hours with a hot $HNO_3 - HCIO_4$ mixture. After cooling, samples were diluted to a standard volume. The solutions were then analyzed by a computer-operated Jarrell Ash ICP Analyzer. Reports are formated by a route computer dotline printout.

For Au analyses, a suitable sample weight of 15 or 30 grams was fire assay preconcentrated. Samples were then digested with an Aqua Regia solution and then taken up to suitable volume by adding a 25% HCl solution. Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with methyl isobutyl ketone. Gold is analyzed by Atomic Absorption instruments using a suitable standard solution. The detection limit is 1 ppb. PHONE: (604) 980-5814 or 988-4524

TELEX: 04-352828

MIN-EN Laboratories Ltd.

Corner 15th Street and Bewicke 705 WEST 15TH STREET

NORTH VANCOUVER, B.C. CANADA V7M 112

FIRE GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Fire Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95 °C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 15.00 or 30.00 grams are fire assay preconcentrated.

After pretreatments the samples are digested with Aqua Regia solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 1 ppb. APPENDIX III

ANALYTICAL DATA FOR CORE/R.C. SAMPLES

SKOOKUM PROPERTY, VERNON MINING DIVISION. ASSAY RESULTS: DIAMOND DRILL HOLE 88-SDD-001

Sample	AG	AG	ΔU	AU
Number	G/TONNE	OZ/TON	G/TONNE	OZ/TON
88 SD1 001	1.6	0.05	.02	0.001
88 SD1 002	1.4	0.04	.01	0.001
88 SD1 003	1.3	0.04	.02	0.001
88 SD1 004	1.5	0.04	.02	0.001
88 SD1 005	.4	0.01	.01	0.001
88 SD1 006	1.8	0.05	.02	0.001
88 SD1 007	1.2	0.04	.01	0.001
88 SD1 008	.3	0.01	.02	0.001
88 SD1 009	.9	0.03	.01	0.001
88 SD1 010	2.0	0.06	.01	0.001
88 SD1 011	.2	0.01	.01	0.001
88 SD1 0 12	1.1	0.03	.01	0.001
88 SD1 013	.8	0.02	.01	0.001
88 SD1 014	.3	0.01	.01	0.001
88 SD1 032	2.4	0.07	.02	0.001
88 SD1 033	1.8	0.05	.01	0.001
88 SD1 035	1.9	0.06	.02	0.001
88 SD1 043	1.3	0.04	.02	0.001
88 SD1 046	1.0	0.03	.02	0.001
88 SD1 054	.8	0.02	.01	0.001
88 SD1 062	1.4	0.04	.02	0.001
88 SD1 065	1.9	0.06	.02	0.001
88 SD1 066	1.8	0.05	.01	0.001
88 SD1 067	.9	0.03	.01	0.001
88 SD1 068	.7	0.02	.02	0.001

(VALUES								
IN PPM)	AS	BA	CU	PВ	SB	ZN	AU-PPB	20-22
88SD1001	д 7	89	96	14	1	57	AU-PPB	AG-AA
885D1001	8	110	46	19	2	57		
88SD1002	13	74	60	19	2	52 59		
88SD1003	13 5	48	53		2			
88SD1004	6	40 84	84	11 19	1	65		
						194		
88SD1006	12	60	95	21	4	139		
88SD1007	7	102	100	16	2	154		
88SD1008	5	91	123	16	1	134		
88SD1009	5	52	103	15	2	98		
88SD1010	19	61	94	17	1	167		
88SD1011	10	71	85	15	2	98		
88SD1012	20	80	107	20	3	267		
88SD1013	13	75	85	14	3	181		
88SD1014	10	71	72	21	3	88		
88SDI015	4	62	63	16	4	125	1	1.0
88SDI016	29	46	91	19	2	219	1	1.2
88SDI017	2	65	70	18	4	93	2	1.2
88SDI018	18	57	93	12	3	104	8	1.0
88SDI019	17	80	88	17	7	102	20	3.2
88SD1020	11	39	78	21	16	112	78	6.4
88SDI021	12	65	94	15	10	228	37	4.1
88SDI022	35	127	25	11	2	79	55	1.2
88SDI023	40	72	55	15	4	151	4	1.0
88SDI024	4	58	112	20	6	220	44	0.9
88SDI025	22	72	110	25	8	181	2	0.9
88SDI026	21	76	86	17	3	109	1	1.1
88SDI027	4	92	69	18	3	108	1	0.8
88SDI028	9	78	1	30	1	45	1	0.5
88SDI029	10	90	9	39	2	44	2	0.7
88SDI030	5	165	51	32	3	70	4	1.6
88SDI031	16	71	88	27	2	77	2	1.2
88SD1032	25	31	65	24	4	47	2	110
88SD1033	5	60	54	24	2	76		
88SDI034	7	78	43	9	ī	84	1	0.8
88SD1035	7	60	87	13	ī	50	-	0.0
88SDI036	3	77	90	12	ī	124	2	1.6
88SDI037	26	71	108	20	1	122	2	1.0
88SDI038	42	88	97	15	ī	83	3	1.1
885DI039	38	114	78	11	ī	76	1	1.2
88SDI040	13	91	72	20	ī	72	2	1.2
88SDI041	12	68	72	11	ī	86	1	1.4
88SDI042	31	73	67	18	ī	53	1	1.2
88SD1043	12	50	25	14	1	403	-	1.2
88SDI044	23	69	87	19	ī	60	1	0.8
88SDI045	21	74	53	15	ī	33	2	1.1
88SD1046	4	99	34	21	1	402	2	T • T
88SDI047	29	69	87	14	1	107	1	1.6
88SDI048	7	60	48	10	1	366	1	
88SDI049	í	53	57	15	1	264	1	1.2
88SDI050	7	73	33	22	2	343	1	1.3
88SD1051	6	66	70	25	1	543 513		2.0
88SD1051	1	73	26	25 16	2		2	1.1
00001002	<u>+</u>	10	20	10	2	202	1	1.0

(VALUES								
IN PPM)	AS	BA	CU	\mathbf{PB}	SB	ZN	AU-PPB	AG-AA
88SD1053	9	104	42	24	1	366	3	0.8
88SD1054	13	44	21	14	1	31		
88SD1055	28	74	71	31	1	691	2	1.0
88SD1056	27	73	25	23	2	104	1	0.8
88SD1057	39	72	31	21	1	53	2	0.8
88SD1058	30	109	33	25	1	28	3	0.5
88SD1059	25	81	45	25	1	20	1	0.6
88SD1060	18	622	19	23	1	73	1	1.2
88SD1061	21	151	53	25	2	28	4	0.8
88SD1062	9	69	35	11	1	186		
88SD1063	20	88	53	30	2	24	3	1.0
88SD1064	24	60	21	27	3	22	5	0.9
88SD1065	13	1507	8	25	1	135		
88SD1066	6	170	30	14	2	45		
88SD1067	10	42	24	20	1	47		
88SD1068	13	99	31	19	1	42		
88SD1069	24	67	46	19	2	93	8	0.8
88SD1070	15	72	47	20	2	158	10	0.8
88SD1071	18	47	51	19	2	483	12	0.8
88SD1072	25	40	35	25	2	181	3	1.0
88SD1073	1	42	38	30	1	526	8	1.2
88SD1074	1	53	38	28	2	516	4	1.0
88SD1075	21	41	28	24	2	46	9	0.9
88SD1076	27	97	47	22	1	59	2	0.8
88SD1077	32	37	19	18	1	46	1	0.8
88SD1078	52	53	93	27	2	118	16	0.8
88SD1079	21	67	42	23	1	357	4	0.8
88SD1080	19	53	22	19	1	166	2	0.8
88SD1081	15	60	34	21	2	88	17	0.7
88SD1082	11	46	22	19	4	64	12	0.9
88SD1083	1	49	54	28	3	211	2	1.0
88SD1084	23	722	2	15	2	64	1	1.3
88SD1085	23	1669	24	14	2	75	5	1.2
88SD1086	10	123	47	22	1	32	4	1.2
88SD1087	8	52	28	24	1	36	1	0.8
88SD1088	13	90	48	19	1	75	2	0.5

SKOOKUM PROPERTY, VERNON MINING DIVISION. ASSAY RESULTS: DIAMOND DRILL HOLE 88-SDD-002 (Top of hole Rotary drilled).

(VALUES IN PPM)	AS	BA	CU	PB	SB	ZN	AU-PPB	AG-AA
1801A	26	122	32	31	2	86	2	0.9
1802A	20	103	36	45	1	105	1	1.3
1803A	28	91	28	20	2	66	1	1.2
1804A	28	87	31	28	2	76	1	0.7
1805A	28	96	58	30	2	75	1	1.1
1806A	25	98	69	28	1	78	1	1.1
1807A	19	108	32	17	2	94	2	0.8
1808A	26	92	33	12	2	68	1	1.2
1809A	24	85	28	19	2	67	2	1.1
1810A	27	76	26	19	1	52	1	0.8
1811A	25	49	21	20	2	44	1	0.7
1812A	22	68	24	17	1	49	3	1.0
1813A	24	72	28	18	2	37	1	0.9
1814A	20	83	22	15	1	57	2	0.9
(Start Dia			i 11)					
88SD2001	26	53	35	21	1	39	1	0.6
88SD2002	15	60	29	15	1	81	1	0.9
88SD2003	17	56	70	18	1	68	1	0.6
88SD2004	11	53	29	16	1	46	3	1.0
88SD2005	13	58	39	12	1	91	1	0.6
88SD2006	76	42	7	398	1	648	50	104.0
88SD2007	26	54	104	21	1	177	2	1.5
88SD2008	35	66	58	20	1	140	1	1.2
88SD2009	26	62	66	25	2	127	1	1.6
88SD2010	20	60	32	22	2	177	2	1.2
88SD2011	9	60	40	16	1	264	2	1.0
88SD2012	10	60	57	19	1	172	1	1.0
88SD2013	15	47	45	16	1	307	1	1.2
88SD2014	17	53	49	13	1	243	2	0.8
88SD2015	12	73	31	21	2	298	1	0.8
88SD2016	4	70	56	12	1	441	2	1.0
88SD2017	6	54	33	15	1	186	2	0.8
88SD2018	9	46	48	17	1	372	1	1.0
88SD2019	6	51	76	16	1	891	1	1.2

SKOOKUM PROPERTY, VERNON MINING DIVISION. ASSAY RESULTS: DIAMOND DRILL HOLE 88-SDD-003 (Top of hole Rotary drilled).

		(Top	or no.	Le ROT	cary	ariii	ea).		
(VALUES									
IN PPM)	AS	BA	CU	PB	SB	ZN	AU-PPB	AG-AA	
1989A	24	85	23	15	2	72	8	0.9	
1990A	34	55	22	16	3	70	3	1.1	
1991A	29	70	28	25	3	63	2	1.0	
1992A	13	77	34	25	3	5 2	1	0.9	
1993A	2	117	40	23	2	50	3	0.9	
1994A	14	92	53	24	4	44	2	1.2	
1995A	13	60	57	21	3	56	1	0.9	
1996A	19	75	53	20	4	50	2	1.4	
1997A	4	90	61	19	3	93	5	1.1	
1998A	2	94	81	26	2	91	l	1.3	
1999A	25	136	89	17	3	98	10	1.8	
2000A	7	60	70	22	2	136	8	2.1	
45001A	51	61	90	27	5	108	26	5.4	
45002A	40	74	105	30	4	131	19	4.3	
45003A	16	68	92	26	2	129	6	1.8	
45004A	12	67	90	24	l	165	2	1.8	
45005A	15	79	80	18	2	132	3	1.5	
45006A	32	90	80	15	3	220	2	2.6	
45007A	56	103	48	27	14	329	7	6.7	
45008A	26	100	76	37	4	160	6	2.3	
45009A	8	84	93	19	4	345	5	1.2	
45010A	7	60	96	21	4	413	8	1.2	
45011A	12	69	96	17	i	383	4	0.9	
45012A	11	89	99	20	l	132	9	1.2	
45013A		94	76	21	ī	62	15	1.1	
45014A	13	80	42	19	2	67	2	0.8	
45015A	13	78	47	21	3	137	2	1.0	
45016A	10	77	44	31	l	139	13	2.0	
45017A	3	62	49	41	1	158	21	2.5	
88SD3001	22	91	42	18	1	109	1		Diamond Dr
88SD3002	17	95	41	15	1	77	1	1.2	
88SD3003	5	122	48	11	1	102	16	1.4	
88SD3004	13	104	49	16	1	73	3	1.3	
88SD3005	19	79	31	24	4	56	1	1.9	
88SD3006	4	127	61	13	l	5 9	3	1.0	
88SD3007	18	115	63	13	3	224	6	1.5	
88SD3008	6	115	54	15	3	239	2	1.0	
88SD3009	4	103	50	11	2	94	2	.9	
88SD3010	6	99	60	12	1	189	14	1.2	
88SD3011	15	102	105	14	3	164	1	1.6	
88SD3012	14	105	73	13	1	76	3	1.3	
88SD3013	2	115	79	14	3	352	2	1.5	
88SD3014	21	98	36	15	3	135	l	1.3	
88SD3015	5	97	73	14	3	85	2	1.4	
88SD3016	13	153	2	13	6	79	22	1.5	
88SD3017	3	103	57	9	5	94	8	1.1	
88SD3018	2	104	85	22	6	516	1	1.2	
88SD3019	28	75	98	84	4	331	3	2.1	
88SD3020	5	144	74	16	2	232	5	1.8	
	_		-	-			-		

SKOOKUM PROPERTY, VERNON MINING DIVISION. ASSAY RESULTS: REVERSE CIRCULATION HOLE 88-SRC-001

-

(11) 7 11 7 0								
(VALUES	20	53	011	20	a D	G 11		10.11
IN PPM)	AS	BA	CU	PB	SB	ZN	AU-PPB	AG-AA
14525A	36	105	26	23	2	80	1	1.4
14526A	5	115	30	24	1	74	2	1.2
14527A	3	101	23	21	1	76	3	1.6
14528A	2	102	27	25	1	75	2	2.0
14529A	1	118	30	22	1	78	2	•6
14530A	26	138	47	26	2	58	4	1.2
14531A	17	85	31	23	2	58	10	1.2
14532A	15	114	29	20	1	54	4	.9
14533A	12	157	52	17	1	74	2	.6
14534A	1	117	60	22	2	59	3	1.1
14535A	1	108	57	20	1	62	2	1.0
14536A	20	146	45	22	3	40	3	1.4
14537A	6	29	27	30	1	60	2	1.2
14538A	5	113	32	18	1	44	1	• 8
14539A	9	77	33	25	2	40	2	1.2
14540A	20	77	40	26	3	31	5	1.4
14541A	15	86	42	23	3	49	2	1.2
14542A	13	101	50	21	3	44	3	1.3
14543A	1	59	41	7	3	58	1	1.4
14544A	9	127	81	18	2	204	1	1.0
14545A	19	132	93	23	5	184	6	1.5
14546A	20	137	86	24	5	132	5	1.1
14547A	31	121	95	21	3	173	2	.9
14548A	21	128	108	23	3	144	4	• 5
14549A	33	107	101	16	3	151	2	.7
14550A	23	57	106	15	4	107	3	1.5
14551A	40	91	97	8	4	110	2	.8
14552A	43	67	106	17	2	132	1	1.5
14553A	35	61	135	23	4	112	12	1.2
14554A	22	72	95	16	5	74	1	1.1
14555A	33	56	92	21	3	111	2	1.3
14556A	30	64	106	25	l	210	12	1.2
14557A	25	66	108	33	1	109	2	1.2
14558A	1	105	97	26	7	149	37	2.3
14559A	25	113	106	34	1	121	2	1.0
14560A	43	65	103	197	14	389	363	8.4
14561A	23	135	72	21	8	120	174	3.1
14562A	1	157	102	24	7	142	49	2.4
14563A	1	117	98	11	4	129	16	1.6
14564A	37	94	90	24	8	114	120	3.0
14565A	1	105	103	32	6	126	25	2.7
14566A	1	115	109	16	3	120	15	1.8
14567A	12	146	108	23	2	150	9	1.7
14568A	3	92	72	10	1	116	10	2.1
14569A	28	110	98	23	1	85	2	1.2
14570A	101	82	14	100	3	77	37	4.2
14571A	11	68	53	36	2	83	1	3.6
14572A	54	83	65	18	2	76	2	2.4
14573A	10	147	12	10	1	55	3	2.3
								-

(VALUES								
IN PPM		BA	CU	PB	SB	ZN	AU-PPB	AG-AA
14574A	23	128	39	16	1	74	1	1.2
14575A	17	96	83	13	1	66	1	1.0
14576A	21	174	58	7	1	69	2	2.1
14577A	9	87	52	13	1	72	22	4.4
14578A	38	77	111	19	2	66	2	3.2
14579A	15	134	77	18	2	65	42	2.7
14580A	39	106	45	6	1	65	21	4.6
14581A	4	121	37	9	1	59	18	2.4
14587A	8	59	67	57	3	51	1	2.8
14588A	24	74	57	25	8	66	1	4.0
14589A	2	77	41	24	2	49	1	1.0
14590A	8	80	40	35	2	49	2	1.0
14591A	2	95	46	33	1	57	1	1.6
14592A	19	76	39	17	2	82	3	1.5
14593A	25	96	62	27	2	49	1	1.7
14594A	25	104	66	25	1	53	1	1.3
14595A	9	98	93	32	1	45	1	1.6
14596A	8	77	62	38	1	143	2	1.5
14597A	28	130	31	19	2	50	1	1.0
14598A	14	67	44	33	l	66	1	4.8
14599A	2	109	57	33	l	64	1	2.0
14600A	19	53	74	29	1	132	2	1.9
1751A	16	84	65	36	l	90	2	2.0
1752A	27	106	68	26	1	61	1	2.1
1753A	12	56	87	43	2	61	2	1.9
1754A	11	86	84	33	1	216	1	1.9
1755A	2	109	82	49	1	261	1	1.5
1756A	13	87	82	29	1	81	3	1.6
1757A	14	96	39	25	1	48	1	1.0
1758A	5	145	57	36	1	53	2	1.2
1759A	4	134	60	29	1	83	1	1.4
1760A	9	88	42	26	2	67	3	1.1
1761A	11	48	27	24	2	66	2	1.0
1762A	4	63	23	20	1	90	4	1.4
1763A	15	82	33	27	2	92	4	2.0
1764A	1	68	12	20	2	75	5	1.0
1765A				Min-En	La	borator	сy	
1766A	12	74	19	32	2	83	23	1.6
1767A	8	100	26	15	1	83	1	1.6
1768A	1	90	15	11	1	53	2	1.1
1769A	17	51	13	26	1	35	l	1.2
1770A	1	96	37	13	1	124	14	1.5

SKOOKUM PRO ASSAY RESUL' (VALUES							8-SRC-002	
IN PPM)	AS	BA	cu	PB	SB	ZN	AU-PPB	AG-AA
1901A	14	90	58	22	3	63	1	1.2
1902A	- 1	85	58	12	2	80	3	1.0
1903A	23	67	60	33	2	78	8	1.1
1903A 1904A	6	93	56	22	2	71	1	1.0
1905A	13	94	57	13	2	70	2	0.9
1906A	7	67	51	20	2	99	3	1.4
1907A	9	61	56	29	2	121	1	1.9
1908A	24	50	74	20	6	143	7	2.0
1909A	26	47	81	17	5	143	2	1.9
1910A	36	39	87	31	4	316	8	2.8
1911A	20	42	86	34	4	306	1	2.4
1912A	21	63	104	42	2	179	6	2.1
1913A	13	64	103	43	2	174	2	2.0
1914A	31	52	92	43	2	242	2	5.2
1915A	26	52	100	39	2	190	1	5.4
1916A	12	46	150	22	1	153	16	16.0
1917A	25	38	223	50	1	184	147	60.0
1918A	25	52	110	20	1	134	2	2.2
1919A	18	59	105	17	1	143	1	1.6
1920A	16	48	104	22	1	126	2	2.0
1921A	13	52	106	17	1	138	1	1.9
1922A	14	64	122	27	1	124	1	1.6
1923A	7	51	117	15	1	124	3	1.6
1924A	2	43	94	14	1	125	1	1.3
1925A 1926A	9 7	49 50	106 100	16	1 1	118	2 5	2.0
1920A 1927A	16	50 75	101	19 26	1	267 190	17	1.4
1927A 1928A	9	56	71	20	1	258	10	1.5 1.6
1929A	13	56	85	25	1	271	3	2.0
1930A	23	28	38	15	2	93	5	1.4
1931A	15	39	58	29	1	154	3	1.6
1932A	18	105	61	25	1	138	17	1.6
1933A	7	106	59	24	ī	179	8	1.8
1934A	8	42	62	20	ī	223	10	2.2
1935A	5	63	76	23	1	254	1	2.3
1936A	9	51	66	20	1	101	2	1.8
1937A	9	52	61	16	2	97	1	1.5
1938A	4	43	65	14	1	73	1	1.6
1939A	13	46	65	16	2	79	3	1.8
1940A	14	27	63	35	3	89	1	2.1
1941A	19	30	69	24	3	86	1	1.5
1942A	12	32	84	18	3	122	1	1.7
1943A	13	29	74	24	4	82	1	1.8
1944A 1945A	23 19	93 169	42	29	5	76	41	1.9
1945A 1946A		169 1257	44 40	24 15	6 4	88 101	22	1.4
1940A 1947A		1263	3 5	14	4 5	97	1 1	2.4 2.3
1948A	32	602	40	19	4	90	1	1.8
1949A	35	628	43	18	5	85	3	1.6
1950A	5	135	4	18	4	87	1	1.9
	-	-	-		-		—	

(VALUES								
IN PPM)	AS	BA	CU	PB	SB	ZN	AU-PPB	AG-AA
1951A	1	94	3	27	5	84	1	1.7
1952A	7	83	9	24	3	71	2	1.4
1953A	1	90	7	16	2	63	3	1.4
1954A	13	41	34	30	10	178	2	2.9
1955A	18	47	34	34	11	163	1	2.6
1956A	19	92	76	56	2	711	1	17.5
1957A	17	78	65	93	2	1083	1	34.0
1958A	29	105	51	20	2	85	1	1.6
1959A	27	76	56	20	4	76	2	1.5
1960A	20	86	51	19	2	83	2	1.7
1961A	23	77	55	18	3	94	1	1.5
1962A	12	148	70	16	2	97	1	1.6
1963A	14	141	79	13	2	97	1	1.4
1964A	38	155	58	15	1	118	1	1.6
1966A	37	86	82	20	4	169	2	4.5
1967A	36	68	56	22	4	79	5	2.4
1968A	44	60	48	27	5	89	2	2.7
1969A	36	73	47	21	3	42	1	1.9
1970A	24	88	20	20	2	36	1	1.3
1971A	18	79	33	17	2	74	1	2.0
1972A	29	61	34	22	3	98	2	2.2
1973A	18	102	26	15	1	60	1	1.1
1974A	9	110	22	16	2	44	1	0.9
1975A	15	97	22	15	1	45	2	0.9
1976A	32	147	26	20	2	61	1	1.4
1977A	21	139	63	18	2	60	1	1.5
1978A	20	125	64	29	2	55	1	1.8
1979A	18	67	25	23	3	145	2	1.3
1980A	13	60	26	27	3	119	1	1.5
1981A	25	98	52	21	2	50	2	1.1
1982A	21	74	35	22	1	47	8	1.0
1983A	18	68	37	22	3	120	4	1.6
1984A	26	98	31	24	2	84	1	1.1
1985A	20	53	52	19	3	249	3	1.5
1986A	17	57	45	25	4	309	1	1.0
1987A	18	82	96	16	1	272	2	1.2
1988A	13	64	79	22	1	323	1	1.0

-

SKOOKUM PROPERTY, VERNON MINING DIVISION. ASSAY RESULTS: REVERSE CIRCULATION HOLE 88-SRC-005

(VALUES								
IN PPM)	AS	BA	CU	PB	SB	ZN	AU-PPB	AG-AA
45084	9	104	85	40	4	112	71	1.7
45085	28	88	59	21	4	82	26	1.3
45086	9	85	60	28	4	86	50	1.1
45087	16	83	64	18	2	89	35	1.8
45088	14	79	58	8	2	79	18	1.2
45089	16	82	85	27	4	106	82	1.7
45090	35	75	78	21	2	102	105	2.2
45091	61	100	87	37	13	147	112	1.9
45092	52	97	86	37	16	135	172	1.7
45093	62	106	91	37	15	106	62	1.6
45094	69	86	73	33	11	96	41	1.8
45095	53	87	64	23	9	74	4	1.3
45096	18	104	65	34	8	100	2	1.3
45097	14	97	95	30	9	101	1	1.1
45098	49	118	106	31	9	104	3	.9
45099	15	131	108	20	25	87	2	1.4
45100	12	112	80	14	21	86	3	1.5
45101	34	74	67	26	22	89	36	2.6
45102	24	86	86	14	23	72	18	2.1
45103	6	112	68	17	20	89	3	1.5
45104	4	122	96	22	21	43	2	1.8
45105	14	101	88	24	20	35	1	1.3
45106	13	98	101	20	22	123	2	1.4
45107	4	110	126	27	22	213	1	1.4

(VALUES								
IN PPM)	AS	BA	CU	PB	SB	ZN	AU-PPB	AG-AA
45200	20	91	78	29	1	310	2	2.3
45051	23	111	101	24	2	188	1	1.2
45052	25	118	74	28	1	351	1	4.5
45053	20	118	79	25	2	376	1	1.9
45054	15	126	80	26	1	434	1	1.8
45055	19	148	106	11	1	399	3	1.1
45056	11	98	89	17	1	371	1	1.4
45057	17	112	102	25	1	391	3	1.5
45058	20	93	69	17	1	313	2	.9
45059	9	81	76	25	1	462	1	1.5
45060	17	59	54	17	1	141	1	.9
45061	2	61	53	16	1	193	2	.9
45062	5	81	60	13	1	263	4	.7
45063	6	74	62	17	1	288	1	.8
45064	6	63	43	16	1	249	2	.9
45065	2	50	39	16	1	200	1	.6
45066	12	64	44	23	1	188	1	.8
45067	5	51	37	17	1	219	2	.7
45068	18	57	61	16	1	339	1	1.01
45069	10	77	60	13	1	229	1	.9
45070	12	72	57	24	1	170	1	1.0
45071	6	59	53	9	1	98	2	.6
45072	19	100	76	35	1	67	1	• 8
45073	8	77	71	19	1	97	1	1.3
45074	10	136	114	18	1	121	1	1.0
45075	4	115	91	18	1	86	3	.7
45076	4	85	94	32	1	126	2	.5
45077	19	89	71	24	1	98	2	•6
45078	2	137	51	16	1	85	1	1.1
45079	8	104	54	20	1	82	4	1.2
45080	7	175	41	13	1	57	5	1.2
45081	6	122	44	16	1	53	15	1.7
45082	8	151	60	22	1	70	1	. 8
45083	16	154	74	20	1	75	2	.9

SKOOKUM PROPERTY, VERNON MINING DIVISION. ASSAY RESULTS: REVERSE CIRCULATION HOLE 88-SRC-004

1112 1 11200								
(VALUES				~ ~	~~			~
IN PPM)	AS	BA	CU	PB	SB	ZN	AU-PPB	AG-AA
45151	21	140	33	23	1	67	1	1.1
45152	12	155	33	12	1	75	2	1.6
45153	5	136	32	15	1	72	1	1.0
45154	6	141	32	12	1	74	2	.8
45155	7	109	34	14	1	81	1	1.1
45156	41	94	34	17	1	77	1	.9
45157	15	126	43	19	2	65	2	1.0
45158	15	121	41	20	1	60	1	.7
45159	5	104	39	20	4	50	1	1.0
45160	21	112	39	19	2	49	2	.8
45161	21	65	39	19	1	62	1	.7
45162	18	73	43	12	1	64	1	1.1
45163	2	107	77	27	1	181	5	1.2
45164	37	113	81	21	1	169	2	1.4
45165	26	113	82	28	1	175	1	1.3
45166	22	105	83	17	1	173	1	1.4
45167	1	76	157	18	1	173	4	1.4
45168	33	76	160	13	1	165	2	1.2
45169	11	90	106	13	ī	142	2	.9
45170	11	74	110	12	ī	121	1	1.8
45171	1	75	80	17	2	102	22	1.4
45172	7	79	78	20	1	140	24	1.3
45173	9	65	98	16	2	121	143	2,0
45174	8	67	94	22	2	113	144	2.5
45175	4	66	91	11	2	105	151	1.8
45176	32	68	102	18	2	96	85	1,5
45177	42	66	97	53	28	136	61	5.3
45178	72	59	106	69	35	136	127	7.6
45179	143	109	89	107	26	176	106	4.3
45180	152	76	69	55	17	114	105	1.9
45181	114	91	90	32	13	118	92	2.7
45182	112	89	94	35	12	122	67	1.8
45183	83	84	87	26	12	118	50	2.6
45184	108	88	80	24	11	103	18	2.1
45185	1	87	104	21	7	98	2	2.3
45186	46	78	110	21	6	101	4	2.7
45187	12	74	105	28	6	122	5	2.3
45188	5	57	112	33	7	141	2	3.1
45189	8	94	86	17	i	91	15	2.3
45190	17	89	94	10	2	81	2	1.9
45191	3	138	97	16	3	72	1	2.0
45192	3	140	102	20	2	77	1	1.3
45193	10	131	74	33	2	141	3	1.4
45194	13	108	67	20	1	220	2	1.3
45195	16	85	49	18	ī	165	1	1.3
45196	7	77	49	19	1	194	1	1.2
45197	, 14	66	49	16	i	146	1	
45198	2	82	49 75	26	1	399	1	1.0
45199	22	93	71	20	1	196	⊥ 4	.9
	66	25	11	20		120	4	1.4

• EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVEN OFFICE: 705 WEST 161H STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VA U.S.A. 7601087 • FAX (604) 980-9821

TIMMINS OFFICE: 33 EAST IROQUUIS ROAD PO. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9998

<u>Certificate of ASSAY</u>

Company:HI-TEC RESOURCE MANAGEMENT Project:88-BC-052 Attention:D.COLLINS

File:8-2171/P1 Date:DEC 8/88 Type:ROCK ASSAY

<u>We hereby certify the following results for samples submitted.</u>

	Sample Number	AG G/TONNE		AU G/TONNE	AU DZ/TON	
	88 SD1 001 88 SD4 002 88 SD1 004 98 SD1 005 88 SD1 007	1.6 1.4 1.5 .4 1.2	0.05 0.04 0.04 0.01 0.01 0.04	.02 .01 .02 .01 .01	0.001 0.001 0.001 0.001 0.001	· •••
	88 SD1 008 88 SD1 009 88 SD1 010 88 SD1 011 88 SD1 012	.3 .9 2.0 .2 1.1	0.01 0.03 0.04 0.01 0.03	.02 .01 .01 .01 .01	0.001 0.001 0.001 0.001 0.001 0.001	
-	88 SD1 013 88 SD1 014	.8 .3	0.02 0.01	.01 .01	0.001 0.001	

Certified by

1 by Bufinand

MIN-ENLABORATORIES LTD.

PROJECT NO: 88-8C-05			705 WEST			VANCOUVER,						FILE NO	
ATTENTION: D.COLLINS				(604)980-	5814 DR	(604)988-4	524 1	TYPE	ROCK	GEOCHEN	<u> </u>	DATE: DECE	MBER 0,
(VALUES IN PPM)	AS	8A	CU	PB	58	ZN							
88-SD -001	7	89	96	14	1	57							
88-SD4-002	8	110	46	19	2	52							
89-SDL-004	5	49	53	11	2	65							
88-SD\$-005	6	84	84	19	1	174							
88-SDL-007	7	102	100	16	2	154							
88-SDL-008	5	91	123	16	1	134							
88-SDL-009	5	52	103	15	2	98							
88-SD1-010	19	61	94	17	1	167							
88-SD1-011	10	71	85	15	2	98							
88-SD4-012	20	80	107	20	3	267							
88-SDQ-013	13	75	85	14	3	181							
88-SD1-014	10	71	72	21	3	88							

.

.

.

5

.

• EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

<u>Certificate of ASSAY</u>

Company:HI-TEC RESOURCE MANAGEMENT LTD. Project:88-BC 052 Attention:D.COLLINS/M.BELL File:8-2164/P1 Date:DEC 5/88 Type:ROCK ASSAY

He bereby certify the following results for samples submitted.

Sample Number	AG G/TONNE	AG DZ/TON	AU GZIONNE	AU OZ/TON	
1990.0000000000000000000000000000000000				۲۰۱۹ ۲۰۱۹ ۱۹۹۹ - ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰	ny managana kanagang kangan ang Kanganaharan kana kang kang kang kang kang kang ka
88SD1 003	1.3	0,04	.02	0,001	
88SD1 006	1.8	0.05	.02	0.001	
88SD1 032	2.4	0.07	.02	0.001	
88501 033	1.8	0.05	.01	0.001	
88SD1 035	1.9	0,06	.02	0,001	
 88SD1 043	1.3	0.04	.02	0.001	
88SD1 046	1.0	0.03	.02	0.001	
88SD1 054	.8	0.02	.01	0.001	
88SD1 062	i ,4	0.04	.02	0.001	
885D1 045	1.9	0.06	.02	0.001	
885D1 066	1,8	0.05	.01	0.001	
885D1 067	. 9	0.03	.01	0.001	
88SD1 0 68	.7	0.02	.02	0.001	

، این جو این دی جد دی جد چه باره این بار جز این در این اس جز این د

Certified by

MIN-EX LABORATORIES LTD.

COMPANY: HI-TEC RES	OURCE MAN	AGEMENT 1	TD.	HIN-E	N LABS	ICP REPORT		(ACT:F31) PAGE 1 OF 1
PROJECT ND: 08 BC 0	52		705 WEST	15TH ST.,	NORTH	VANCOUVER, B.C	. V7H 1T2	FILE NO: 8-2164R/P1
ATTENTION: D.COLLIN	S/M.BELL			(604) 990-	5914 OR	(604)988-4524	\$ TYPE ROCK GEOCH	EN 1 DATE: DECEMBER 5, 1988
(VALUES IN PPM)	AS	BA	£U	PB	S8	ZN		
B8501-003	13	74	60	19	2	59		
88501-006	12	60	95	21	4	139		
88SD1-032	25	31	65	24	4	47		
88SD1-033	5	60	54	24	2	76		
885D1-035	7	60	67	13	1	50		
88SD1-043	12	50	25	14	1	403		
88SD1-046	4	99	34	21	1	402		
88SD1-054	13	44	21	14	1	31		
88SD1-062	9	69	35	11	1	186		
88SD1-065	13	1507	8	25	i	135		
885D1-066	6	170	30	14	2	45		
B8SD1-067	10	42	24	20	1	47		
88SD1-068	13	7 7	31	19	1	42		
************************						*		

ATTEN (VAL OBST	CT NO: 88-8C-052 ITION: D.COLLINS 			705 WEST	15TH ST	ΝΠΟΥΝ	LANCOUTED	D C U3	M 117		EVENDA O STREZOLAS
(VA) BBST											FILE ND: 8-2175/P1+2
BBST	HEC IN DOM V				(604)980-	5814 DR	(604)988-		TYPE ROCK	SEDCHEM #	DATE: DECEMPER 14, 1988
	UES IN CEEL	AS	BA	CU	FÐ	SB	ZN	AU-PP8	AG-AA		
0000	1015	4	62	63	1	4	125	1	1.0		
Goal	1016	27	46	91	1	2	219	1	1.2		
8850	1017	2	65	70	1	4	93	2	i.2		
8850	1018	18	57	93	1	3	104	8	1.0		
0050	1019	17	80	88	!	7	102	20	3.2	u_u 	
8850	1020	11	39	79	3	16	112	7B	6.4		
8850	1021	12	65	94	1	10	228	37	4.1		
BBSC	1022	35	127	25	1	2	79	55	1.2		
8050	1023	40	72	55	1	4	151	. 4	1.0		
6850	1024	4	58	112	2		220	44	0.9		
BBST	1025	22	72	110	7	8	181	2			
8850	1026	21	76	86	1	3	107	1	1.1		
8850	1027	4	92	69	1	3	108	1	0.0		
8850	1028	9	78	1	12	1	45	1	0,5		
8850	1027	10	90	9	21	2	44	<u>2</u>	0.7		
8850	1030	5	165	51	14	3	70	4	. 1.6		
	1031	16	71	68	9	2	77	2	1.2		
	1034	7	78	43	1	1	84	1	0.8		
	1036	3	77	90	1	1	124	2	1.6		
	1037	26	71	108	2	1_	122	2			
	1039	42	88	97	1	1	83	3			
	1039	38	114	78	1	1	76	1	1.2		
	1040	13	91	72	2	1	72	2	1.2	•	
	1041	12	6 8	72	I	1	86	1	1.4		
)1042	31		67	1	1_	53	1	1.2		
	1044	23	69	87	1	1	60	1	0.B		
	1045	21	74	53	1	1	33	2	1.1		
	1047	29	69	87	1	1	107	1	1.6		
	1048	7	60	49	1	1	366	1	1.2		
)1049	1			1	1_	264	1	1.3		
8851	1050	7	73	33	22	2	343	1	2,0		

COMFANY: HI-TEC RESOU PROJECT NO: 88 BC 052			705 NEST	1519 ST., N		CP REPORT ANCOUVER,	B.C. V7	N 1T2		(ACT:F31) FAGE 1 1 FILE ND: 8-22102/
ATTENTION: D.COLLINS					14 OR				GEDCHEN I	CATE: DECEMBER 18,
(VALUES IN PPM)	AS	BA	CU	PB	S8	ZN	AU-PPB	A5-AA		
86SD1051	6	66	70	25	ł	513	2	1.1		
88501052	1	73	26	16	2	202	1	1.0		
88SD1053	9	104	42	24	i	366	3	0.8		
88SD1055	28	74	71	31	1	691	2	1.0		
88601056	27		25	23	2	104	<u> </u>	0.8		
89SD1057	39	72	31	21	1	53	2	0.8		
88501058	30	109	33	25	1	28	3	0.5		
88501059	25	81	45	25	1	20	1	0.6		
88SD1060	18	822	19	23	1	73	1	1.2		
88901061	21	151	53	25	2	28		0.8		******
88SD1053	20	88	53	20	2	24	3	1.0		
88SD1064	24	60	21	27	3	22	5	0.9		
885D1069	24	67	46	19	2	93	8	0.8		
88201070	15	72	47	20	2	158	10	0.8		
885D1071	18	47	51	19	2	483	12	0.8		
88SD1072	25	40	35	25	2	181	3	1.0		
88SD1073	1	42	38	30	1	528	8	1.2		
88SD1074	រ	53	38	28	2	516	4	1.0		
88SD1075	21	41	28	24	2	46	9	0.9		
88501076	27		47	22	!	59	2	0.8		
88SD1077	32	37	19	18	ł	46	1	0.B		
88SD1078	52	53	93	27	2	119	16	0.8		
885D1079	21	67	42	23	i	357	4	0.8		
89501080	19	53	22	19	1	165	2	0,8		
88301081	15	60	34	21	2		17	0.7		
88SD1082	11	46	22	19	4	64	12	0.9		
88SD1083	ł	49	54	28	3	211	2	1.0		
88501084	23	722	2	15	2	64	1	1.3		
88501085	23	1667	24	14	2	75	5	1.2		
88501086	10	123	47	22	<u> </u>	32	4	1.2		
88SD1087	8	52	28	24	1	26	1	0,8		
88301088	13	90	48	19	i	75	2	0,5		
88SD2001	26	53	35	21	i	39	I	0.6		
88502002	15	90	29	15	1	81	1	0.9		
88502003	. 17	56	70	18		68	<u>i</u>	0.6		
88502004	11	53	29	16	1	46	3	1.0		
88502005	13	58	39	12	1	91	1	0.6		
88582008	76	42	7	398	1	649	50	104.0		
88SD2007	26	54	104	21	1	177	2	1.5		
88SD2008	35	66	58	20	<u>l</u>	140	!.	1.2		
88SD2009	26	62	65 	25	2	127	1	1.6		
88502010	20	60	32	22	2	177	2	1.2		
88SD2011	9	60	40	16	1	264	2	1.0		
885D2012	10	60	57	19	1	172	1	1.0		
88502013	15	47	45	16	1	307	<u>1</u> .	1.2		
89302014	17	53	49	13	1	243	2	0.8		
88SD2015	12	73	31	21	2	298	1	0.8		
88SD2016	4	70	54	12	1	441	2	1.0		
985D2017	6	54	33	15	1	186	2	0.8		
88SD2018	9	46	48	17		372	1	1.0		
83SD2019	6	51	76	16	1	891	1	1.2		

	PANY: HI-TEC RESOL		IASEMENT		NIN-EN L			<u></u>	110	FILE NO: 8-2219R/F1
	JECT NO: 88 BC 053			700 WES!	157H ST., NO					CHEN 4 DATE: DECEMBER 22, 1
	FENTION: D.COLLINS				(604) 990-581		ZN A		AG-AA	CODE A PATERSCEPPEN 22, 1
~	ALUES IN PPN)	AS	8A	CU	FB +a	<u>SB</u>	109		1.1	
	BSD3001	22	91 05	42	18 15	1	77	1	1.2	
	ISD2002	17	95	41		1		1 15		
	1503003	5	122	48	11	1	102		1.4	
	iSD3004	13	104	49	16	1	73	3	1.3	
	ISD3005	19	79	31	24		56		1.9	
	ISD3006	4	127	61	13	1	57	3	1.0	
	ISD3007	18	115	63	13	3	224	6	1.5	
	ISD3008	6	115	54	15	3	239	2	1.0	
89	ISD3009	4	103	50	11	2	94	2	.9	
89	IS03010		97	60	12	1	189	14	1.2	
89	ISD3011	15	192	105	14	3	164	ł	1.6	
89	ISD3012	14	105	73	13	1	76	3	1.3	
88	ISD3013	2	115	79	14	3	352	2	1.5	
	1903014	21	98	36	15	3	135	1	1.3	
	ISD3015	5	97	73	14	3	85	2	1.4	
	ISD3016	13	153	2	13	6	79	22	1.5	
	BSD3017	3	103	57	9	5	94	8	1.1	
	BSD3018	2	104	85	22	6	516	1	1.2	
	ISD3019	28	75	78	84	4	331	3	2.1	
	ISD3020	5	144	74	16	2	232	5	1.8	
	016A	10	77	44			139	13	2.0	
	i0178	3	62	49	4 }	1	158	21	2.5	
	5151	21	140	33	23	-	67	1	1.1	
		12	155	33	12	1	75	2	1.6	
	152		135	33 32	15	1	72	i	1.0	
	N53							2		
	5154	6	141		12	1				
	5155	7	109	34	14	1	81	1	1.1	
	5156	41	94	34	17	1	77	1	, 9	
	6157	15	126	43	19	2	65	2	1.0	
	158	15	121	41	20		69	1		
	5159	5	104	39	20	Ą	50	1	1.0	
45	5160	21	112	39	19	2	49	2	.8	
45	5151	21	65	39	19	1	62	1	.7	
45	5162	18	73	43	12	1	64	1	1.1	
45	5163	2	107		27	1	191	5	1.2	
45	5164	37	113	81	21	1	169	2	1.4	
	5165	26	113	82	28	1	175	1	1.3	
	5166	22	105	83	17	1	173	1	1.4	
	5167	ł	76	157	18	1	173	4	1.4	
	5168	33	76	150	13	I	165	2	1.2	·
	5169	11	90	106	13	i	142	2	.9	
	5170	11	74	110	12	1	121	i	1.8	
	5171	1	75	80	17	2	102	22	1.4	
	5172	7	78 79	79	20	-	140	24	1.3	
	5172	, 9	65	98 98	16	2	121	143	2.0	
	5174			94	22	2	113	144	2.5	
	5175	4	66	91	11	2	105	151	1.8	
			69 69		19	2	95	85	1.5	
	5176	32		102 97	18 53	29	136	53 61	5.3	
	5177	42	66 60				136	127	7.6	
	5178	72	59	106	69	35				
	5179	143	107	89	107	26	176	106	4.3	
	5180	152	76	69	55	17	114	105	1.9	
	5181	114	91	90	32	12	118	92	2.7	
	5182	112	89	94	35	12	122	- 57	1.8	
	5183	83	84	87	26	12	118	50	2.6	
4	5184	108	98	<u>80</u>	24	11	103	19	2.1	
	5185	1	87	104	21	7	98	2	2.3	
	5185	45	78	119	21	6	101	4	2.7	
	5187	12	74	105	28	6	122	5	2.3	
	5188	5	57	112	33	7	141	2	3.1	

COMPANY: WI-VED RESOUR	(Մչ ի	ANASEMENE			A FYR2 IFH				HEITERN CHOESE .
FROJECT NO: 88 BC 052			705 WEST	15TH ST.,	NORTH VAN	ICOUVER, B	.C. V7M	112	File ND: 0-22198/P3+4
ATTENTION: D.COLLINS				(604) 980-					EN (DATE: DECEMBER 22, 1738
(VALUES IN FFN)	<u>A5</u>	EA	<u>CU</u>	PB 17	<u>58</u>	ZN A 71	U-PPB 15	<u>45-AA</u> 2.3	
45189 45190	8 17	94 87	86 74	17	1 2	81	2	1.9	
45191		138	97	16	3	72	1	2,0	
45192	3	140	102	20	2	77	1	1.3	
45193	10	131	74	33	2	141		1.4	
45194	13	108	67	20	1	220	2	1.3	
45195	16	85	49	18	1	165	1	1.7	
45196	7	77	49 49	19	1	194 146	1	1.2	
45197 45198	14 2	66 8 2	75	16 26	∔ t	399	1	.9	
45179		93	71	20	<u>i</u>	196	· <u>i</u>	1,4	
45200	20	91	78	29	1	310	2	2.3	
45051	23	111	101	24	2	18B	1	1.2	
45052	25	118	74	28	1	351	1	4.5	
45053		118	79	25	2	376	····· <u>1</u>	1.9	
45054 45055	13	126	80 167	28 11	1	434 399	1 3	1.8 1.1	
45055 45056	19 11	148 98	106 89	17	1	371	い 1	1.4	
45057	17	112	102	25	1	391	3	1.5	
, 45059	20	93	67	17	1	313	2	.9	
45059	9	81	76	25	1	462	1	1.5	
45060	17	59	54	17	1	141	1	.9	
45061	2	61	53	16	1	193	2	.9 .7	
45062 4507	5	01 74	60 62	13 17	1	263 298	4	.7 .8	
45063 45064	₽- 5		<u>04</u> 43		<u>1</u>	249	2		
45045	2	50	39	16	1	200	1	. 6	
45066	12	64	44	23	1	19B	1	.8	
45067	5	51	37	17	1	219	2	.7	
45068	18	57_	<u>61</u>	16	1	337	. <u> </u>	1.01	
45069	10	17	P0 P0	13	1	229	1	.9	
45070	12 6	72	57 53	24 9	1	170 98	2	1.0	
45071 45072	19	59 100	76	35	1	67	1	.B	
45073	8_	77	71	19	i	97	<u>i</u>	1.3	
45074	10	136	114	19	1	121	1	1.0	
45075	4	115	71	18	1	86	3	.7	
45076	4	85	94	32	1	126	2	.5 ,	
45077	19	87	71 51	24 16	1 1	98 85	2	.6 1.1	
45078 45079	<u>2</u> 8	<u>137</u> 104	54	20	<u>i</u>	82	····· 4	1.2	
45080	7	175	41	13	1	57	5	1.2	
45081	6	122	44	16	1	53	15	1.7	
45082	8	151	60	22	ł	70	1	.8	
45093	16	154		20	1	75			
45084	9	104	85	40	4	112 82	71 26	1.7	
45065	29 9	88 85	59 60	21 28	4 5	86 86	20 50	1.1	
45086 45087	16	B 2	64 64	18	2	69	35	1.8	
45089	14	79	58	8	2	79	18	1.2	
45089	16	B2	85	27	4	104	82	1.7	
45090	35	75	7 B	21	2	102	105	2.2	
45071	61	100	87	37	13	147	112	1.9	
45092	52		86	37	16	135	172 62	1.7	
45093 45094	<u>62</u> 67		<u>91</u> 73	<u> </u>	<u>15</u> 11	106	<u>8</u> 2 41	1.6	
45095	53		7.5 64	23	9	74	4	1.3	
45096	19		65	-13 -34	9	100	2	1.3	
45097	14	97	95	20	9	101	1	1.1	
45098	49		106	51	9	104	3_	.9	

CUMPANT: RI-TEC RESU	URCE NAM	APENENI	L10.	FT14-E	N LABS I	CF FEFORT				THUTTON THEE I UP 1
PROJECT NO: 88 BC 05	2		705 WEST	15TH ST.,	NORTH V	ANEOUVER,	B.C. V7	M 172		FILE NO: 8-22198/P5
ATTENTION: D.COLLINS				(604)980-	5614 OR	(604)988-	4524 \$	TYPE ROCK	GEOCHEM 1	DATE: DECEMBER 22, 1988
(VALUES IN PPN)	AS	88	CŲ	FB	SB	ZN	AU-PP8	AG-AA		
45099	15	131	108	20	25	87	2	1.4		
45100	12	112	80	14	21	86	3	1.5		
45101	34	74	67	26	22	89	36	2.6		
45102	24	85	86	14	23	72	19	2.1		
45103	6	112	68	17	20	89	3	1.5		
45104	4	122	96	22	21	43	2	1.8		
45105	14	101	88	24	20	35	1	1.3		
45106	13	98	101	20	22	123	2	1.4		
45107	4	110	125	27	22	213	i	1.4		

COMPANY: RI-TEC RES.	MAG.LID.					IUF REFORT			THE PARTY OF THE PARTY OF T
FROJECT NO: 88-80-05			705 NEST			VANCOUVER,			FILE NO: 8-2186/F1+2
ATTENTION: D.COLLINS	5					(604) 788-			GEOCHEM 1 DATE: DECEMBER 14, 1989
(VALUES IN PPM)	A5	BA	CU	PB	SB		AU-PPB	AG-AA	
1752A	27	106	68	26	1	61	1	2.1	
1755A	2	109	82	49	1	261	1	1.5	
1759A	5	145	57	36	1	53	2	1.2	
1759A	4	134	60	29	1	83	i	1.4	
1767A	8	100	26	15	11	83	1	1.6	
1758A	1	90	15	11	1	53	2		
1770A	1	96	37	13	1	124	14	1.5	
14529A	1	118	30	22	1	78	2	.6	
14532A	15	114	29	20	1	54	4	.9	
14533A	12	157	52	17	<u>1</u>		2	<u></u>	***
14538A	5	113	32	18	1	44	1	• 8	
14542A	13	101	50	21	3	44	3	1.3	
14543A	1	59	41	7	3	58	ł	1.4	
14544A	9	127	81	18	2	204	1	1.0	
14545A	19	132	93	23	5	184		1.5	
14546A	20	137	86	24	5	132	5	1.1	
14547A	31	121	95	21	3	173	2	.9	
14548A	21	128	108	23	3	144	4	5	
14549A	33	107	101	16	3	151	2	.1	
14551A	40	91	97		4	110	2	.8	
145S4A	22	72	95	16	5	74	1	1.1	
14558A	1	105	97	26	7	149	37	2.3	
14561A	23	135	72	21	8	120	174	3.1	
14562A	1	157	102	24	7	142	49	2.4	
14563A	!	117	98	11	4	129	16		
14564A,	37	94	9 0	24	8	114	120		
14565A	1	105	103	32	6	126	25	2.7	
14566A	1	115	109	16	3	120	15		
14567A	12	146	109	23	2	150	9	1.7	
14568A	3	92	72	10	1	116	10		****
14570A	101	92	14	100	3	77	37		
14573A	10	147	12	10	ł	55	3		
14579A	15	134	77	18	2	65	42		
14580A	39	106	45	6	1	65	21	4.6	
145818	4	121	37	9	1	59	18	2.4	

ו

RÓJECT NO: 88 BC 052			705 WEST		RTH VANCOUVER, B		FILE ND: 8-2192/P
TTENTION: D.COLLINS						24 U HTPE RULK B U-PPB AG-AA	EBCHEN DATE: DECEMBER 15, 1
(VALUES IN PPM)	<u>A5</u> 26	BA 122	CU 32	8B 31	2 86	2 0,9	
1801A 1802A	20	103	32 36	45	1 105	1 1.3	
1802A	28	103	28	20	2 66	1 1.2	
1804A	28	87	31	28	2 76	1 0.7	
1805A	28	96	58	30	2 75	1 1.1	
1805A		98	67	29	1 70	1 1.1	
1807A	19	108	32	17	2 94	2 0.8	
1808A	26	92	33	12	2 6B	1 1.2	
18094	24	85	28	19	2 67	2 1.1	
1810A	27	76	26	19	1 52	1 0.8	
1910A 1911A	25	49	21	20	2 44	1 0.7	
1812A	22	68	24	17	1 49	3 1.0	
1813A	24	72	28	19	2 37	1 0.9	
1814A	20	83	22	15	1 57	2 0.9	
1935A	5	63	76	23	1 254	1 2.3	
1936A		51	<u>66</u>	20	1 101	2 1,8	
1937A	9	52	61	16	2 97	1 1.5	
1938A	4	43	65	14	1 73	1 1.6	
1939A	13	46	65	16	2 79	3 L.B	
1740A	14	27	63	35	3 89	1 2.1	
1741A	19	30	69	24	3 86	1 1.5	
1942A	12	32	84	18	3 122	1 1.7	
1943A	13	29	74	24	4 82	1 1.8	
1944A	23	93	42	29	5 76	41 1.9	
1945A	19	169	44	24	6 BB	22 1.4	
1946A	37	1257	4()	15	4 101	1 2.4	
1947A	31	1263	35	14	5 97	1 2.3	
1948A	32	602	40	19	4 90	1 1.8	
1949A	35	628	43	16	5 BS	3 1.6	
1950A	5	135	4	19	4 87	1 1.9	
1751A	ł	94	3	27	5 84	1 1.7	
1952A	7	83	9	24	3 71-	2 1.4	
1953A	1	9 0	7	15	2 63	3 1.4	
1954A	13	41	34	30	10 178	2 2.9	
1955A	18	47	34	34	11 163	1 2.6	
1956A	19	92	76	56	2 711	1 17.5	
1957A	17	78	65	73	2 1083	1 34.0	
1958A	29	105	51	20	2 85	1 1.6	
1959A	27	76	56	20	4 76	2 1.5	
1950A	20	86	51	19	2 83	2 1.7	
1961A	23	77	55	18	3 94	1 1.5	
1962A	12	148	70	16	2 97	1 1.6	
1963A	14	14!	79	13	2 97	1 1,4	
1964A	38	155	59	15	1 118	1 1.6	
1766A	37	86		20	4 169	2 4.5	
1957A	36	68	56	22	4 79	5 2.4	
1969A	44	60	48	27	5 89	2 2.7	
1959A	36	73	47	21	3 42	1 1.9	
1970A	24	88	20	20	2 36	1 1.3	
1971A	18		33	17	2 74	1 2.0	
1972A	29	61	34	22	3 98	2 2.2	
1973A	19	102	26	15	1 60	1 1.1	
1974A	9	110	22	16	2 44	1 0.9	
1975A	15	97	22	15	1 45	2 0.9	
1976A	32	147	26	20	2 61	1 1.4	
1977A	21	139	63	18	2 60	1 1.5	
1978A	20	125	64	29	2 55	! 1.8	
19794	18	67	25	23	3 145	2 1.3	
1980A	13	60	26	27	3 119	1 1.5	

DJECT NO: 88 BC 05 TENTION: D.COLLINS				(604)980-	5814 OR (NCDUVER, 1 (604)988-4	524	t TYPE		FILE NO: 8-2192/P3+
VALUES IN PPH)	AS	BA	CU	PB	58		AU-PPB			
981A	25	98	52	21	2	. 50	2		.1	
502A	21	74	35	22	1	47	8		.0	
983A	19	88	37	22	3	120	4		.6	
9B4A	26	98	31	24	2	84	1		.1	
985A	20	53	52	19	3	249	3		.5	
995A	17	57	45	25	4	309	1		.0	
9878	18	82	96	16	1	272	2		.2	
988A	13	64	79	22	1	323	1		.0	
989A	24	85	23	15	2	72	.8		.9	
990A 991A	34	55	22	16		70	3		.1	
771A 792A	13	70 77	28 34	25 25	3 3	63 52	2		.0 .9	
793A	2	117	40	23	2	50	1 3		.9	
994A	14	92	53	24	4	44	2		.2	
995A	13	\$0	57	21	3	56	1		.9	
996A	19	75	53	20	ă	50			. 4	
997A	4	90	61	19	3	93	5			
978A	2	94	81	26	2	91	1		.3	
999A	25	136	89	17	3	9B	10		.8	
000A	7	66	70	22	2	136	8		.1	
5001A	51	61 61	90	27	5	108	26	5	4	**************************************
5002 A	40	74	105	30	4	131	19	4.	.3	
5003A	16	68	92	26	2	129	6	1	. 8	
5004A	12	67	90	24	1	165	2	L.	. 8	
5005A	15	79	80	18	2	132	3		.5	
5006A	32	90	B Ú	15	3	220	2	2	. 6	
5007A	56	103	48	27	14	329	7	6.	.7	
5008A	26	100	76	37	4	160	6		.3	
5009A	9	84	93	19	4	345	5		. 2	
5010A	7	60	96	21	4	413	<u>B</u>		.2	
5011A	12	69	96	17	1	383	4		.9	
5012A	11	89	99	20	1	132	9		.2	
5013A	8	94	76	21	1	62	15			
5014A	13	80	42	19	2	67	2			
5015A	13		47	21	3	137	2			
901A	14	90	59	22	3	63	1		. 2	
902A	8	85	58	12	2	B()	3			
903A 9088	23	67 07	60 54	33	2	78	9		.1	
904A 905A	6 13	93 94	58 57	22 13	2 2	71 70	1	· 1. 0.		
906A	<u>13</u>		<u>5/</u>	20	<u>2</u>	/0	2		.4	
907A	9	61	51	20	2	121	د 1	1. t.		
708A	24	50	74	20	6	121	7			
909A	25	47	81	17	5	143	2			
910A	36	39	B7	31	4	316	B		,8	
911A	20	42	86	34	i	306	1		4	
912A	21	63	104	42	2	179		2.		
913A	13	64	103	43	2	174	2			
914A	31	52	92	43	2	242	2			
915A	26	52	100	39	2	190	1			
916A	12	46	150	22	i	153	16			
717A	25	38	223	50	1	184	147	60.		
91BA	25	52	110	20	1	134	2			
919A	18	59	105	17	1	143	1	1.		
920A	16	48	104	22	1	125	2			
921A	13	52	106	17	1	138	1			
922A	14	64	122	27	1	124	1	1.		
923A	7	51	117	15	1	124	3			
924A	2	43	94	14	L	125	1	1.		

.

COMFANY: KI-TEC RES	.MNG.LTD.			אוא-פ	N LABS I	CP REPORT	ſ			(ACT:F31) PAGE 1 OF 1
PROJECT NO: BB BC 0	52		705 NEST	15TH ST.,	NORTH V	ANCOUVER,	B.C. V7	K 112		FILE ND: 8-2192/P5
ATTENTION: D.COLLIN	S			(604)980-	5814 08	1604)988-	4524 \$	TYPE ROCK	GEOCHEN 1	DATE: DECEMBER 15, 1798
(VALUES IN PPH)	AS	8A	69	PB	SØ	ZN	AU-PP8	AG-AA		
1925A	9	49	105	15	1	118	2	2.0		
1926A	7	50	100	19	i	267	5	1.4		
1927A	15	75	101	26	t	190	17	1.5		
1920A	9	56	71	27	1	258	10	1.6		
1929A	13	56	85	25	1	271	3	2.0		
1930A	23	28	38	15	2	93	5	1.4		
1931A	15	39	58	29	1	154	3	1.6		
1932A	18	105	61	25	1	138	17	1.6		
1933A	1	106	59	24	1	179	8	1.8		
1934A	8	42	62	20	1	223	10	2.2		

:

APPENDIX IV - A

STATISTICAL RESULTS

ABstat 5.00 file: SKDDKUN.AB5 version:1

COMMAND: DESC MISSING VALUE TREATMENT: VARWISE

*** DESCRIPTIVE STATISTICS ***

THERE ARE 8 VARIABLES AND 463 CASES IN THE DATA SET

454 CASES (98.1%) ARE VALID

					STD ERROR	COEFF OF
VARIA	ABLE	MEAN	STD.DEV.	VARIANCE	OF MEAN	VARIATION
1 /	AS	18.2930	17.5722	308.782	0.824703	96.0598
28	BA	102.081	139.367	19423.1	6.54080	136.525
3 (CU	63.2687	29,8991	893.959	1.40324	47.2574
4 F	P R	23.4858	22.1918	492.034	1.04105	94,4439
5 5	60	3.05947	4.28494	18,3607	0.201102	140.055
62	ZN	137.317	118.727	14096.2	5.57215	86.4521
7,6	AU	11.0507	29.4069	864.768	1,38014	265.110
8 A	¥G	2.03064	5.89394	34,7374	0.276612	290.246

ABstat 5.00 file: SKOOKUM.ABS version:1

COMMAND: FRED MISSING VALUE TREATMENT: VARWISE

*** FREQUENCIES AND I-SCORES ***

VARIABLE: 1 AS

		CUM		CUM	
VALUE	FREQ	FREQ	X.	7	Z SCORE
1.00000	22	22	4.8	4.8	-0.984110
2.00000	16	39	3.5	8.4	-0.927201
3,00000	7	45	1.5	9.9	-0.870293
4.00000	17	62	3.7	13.7	-0.813385
5,00000	18	8û	4.0	17.6	-0.756477
5,00000	15	95	3.3	20.9	-0.699569
7.00000	17	112	3.7	24.7	-0.642661
8,00000	15	127	3.3	28.0	-0.585753
7,00000	20	147	4.4	32.4	-0.528845
10,0000	11	158	2.4	34.8	-0.471935
11.0000	10	168	2.2	37.0	-0.415028
12,0000	19	187	4.2	41.2	-0.358120
13.0000	27	214	5.9	47.1	-0.301212
14,0000	12	226	2.6	49.9	-0.244304
15.0000	16	242	3.5	53.3	-0.187396
16,0000	9	251	2.0	55.3	-0.130489
17,0000	12	263	2.6	57.9	-0,0735795
18,0000	15	279	3.3	51.2	-0.0166713
19.0000	14	292	3.1	64.3	0.0402368
20,0000	15	307	3.3	67.6	0.0971449
21,0000	14	321	3.1	70.7	0.154053
22.0000	6	327	1.3	72.0	0.210961
23,0000	11	338	2.4	74.4	0.267869
24.0000	9	347	2,0	75.4	0.324777
25.0000	14	361	3.1	79.5	0.381696
26.0000	12	373	2.6	82.2	0.438594
27.0000	5	378	1.1	83.3	0.495502
28.0000	8	382	1.8	85.0	0.552410
29.0000	5	391	1.1	85.1	0.609318
30,0000	2	393	0.4	86.6	0.666226
31.0000	4	397	0,9	97,4	0.723134
32,0000	5	402	1.1	99.5	0.780043
33,0000	3	405	0.7	99.2	0.836951
34.0000	2	407	0.4	89.5	0.893959
35.0000	5	412	1.1	90.7	0.950757
35,0000	4	416	0.9	91.5 92.5	1.00768
37.0000 38.0000	4	420	0.9	92.5	1.06458
39.0000	3 2	423 425	0.7 0.4	93.2	1.12149
40.0000	3	428	0.4	93.6 94.3	1.17840 1.23531
41.0000	1	429	0.2	94.5	1.29222
42,0000	2	431	0.4	94.9	1.34912
43.0000	2	433	0.4	95.4	1.40603
44.0000	1	434	0.7	95.6	1.46294
46,0000	1	435	0.2	95.B	1.57676
49.0000	1	436	0.2	96.0	1.74748
51.0000	t	437	0.2	96.3	1.86130
52,0000	2	439	0.4	96.7	1.91821
53,0000	1	440	0.2	96.9	1,97511

ABstat 5.00 file: SKOOKUM.AB5 version:1

VARIABLE: 1 AS

		CUM		CUM	
VALUE	FREQ	FREQ	7	X.	7 SCORE
54.0000	1	441	0.2	97.1	2.03202
56.0000	1	442	0.2	97.4	2.14584
61.0000	1	443	0.2	97.6	2.43038
52.0000	1	444	0.2	97.8	2,48729
59.0000	1	445	0.2	98.0	2.88564
72.0000	1	446	0.2	98.2	3.05637
75,0000	1	447	0.2	98.5	3.28400
83.0000	1	449	0.2	98.7	3.68236
101.000	1	449	0.2	98.9	4.70670
108.000	1	450	0.2	99.1	5.10506
112.000	1	451	0.2	99.3	5.33269
114.000	1	452	0.2	99.6	5.44651
143.000	1	453	0.2	99,8	7.09585
152.000	1	454	0. 2	100.0	7.60902
TOTAL	454	454	100.0	100.0	

-

1/12/89 page 4

COMMAND: FRED MISSING VALUE TREATMENT: VARWISE

*** FREQUENCIES AND 1-SCORES ***

VARIABLE: 2 BA

		CUM		CUM	
VALUE	FREQ	FREQ	Z	Lon L	Z SCORE
27.0000	rne@	1	0.2	0.2	-0.538733
28.0000	1	2	0.2 0.2	0.4	-0.531559
29.0000	2	4	0.4	0.9	-0.524383
30.0000	i	5	0.2	1.1	-0.517207
31.0000	1	5	0.2	1.3	-0.510032
32.0000	i	7	0.2	1.5	-0.502857
37,0000	1	, 8	0.2	1.8	-0.456980
38.0000	1	9	0.2	2.0	-0.459805
39,0000	3	12	0.7	2.5	-0.452630
40,0000	1	13	0.2	2.9	-0.445454
41.0000	2	15	0.4	3.3	-0.438279
42.0000	5	20	1.1	4.4	-0.431104
43.0000	2	22	0.4	4.8	-0.423928
44.0000	1	23	0.2	5.1	-0.416753
45.0000	5	29	1.1	5.2	-0.402402
47.0000	4	20 32	0.9	7.0	-0.395227
42.0000	3	35	0.7	7.7	-0.388052
49.0000	3	39 39	0.7	9.4	-0.380032 -0.380976
50.0000	4	42	0.7	5.4 9.3	-0.373701
51.0000	т 5	47	1.1	10.4	-0.366526
52.0000	5 7	54	1.5	11.9	-0.359350
53.0000	, Ģ	53	2.0	13.9	-0.352175
54.0000	7	65 65	0.4	14.3	-0.345000
55.0000	1 1		0.4		-0.337825
55.0000 56.0000	ڑ ۲	66 71		14.5 15.6	-0.337823
57.0000	5	76	1.1 1.1	i6.7	-0.323474
58.0000	2	78	0.4	17.2	-0.316299
59,0000	5	94 84	1.3	18.5	-0.309123
50.0000	15	99	3.3	21.8	-0.301948
51.0000	6	105	1.3	23.1	-0.294773
62.0000	3	108	0.7	23.8	-0.287597
\$3.0000	4	\$12	0.9	24.7	-0.290422
64.0000	5	117	1.1	25.B	-0.273247
55.0000	5	122	1.1	26.9	-0.266071
65.000	6	128	1.3	28.2	-0.258896
67.0000	9	137	2,0	30.2	-0,251721
68,0000	9	145	1.8	31.9	-0.244545
59.0000	4	149	0.9	32.8	-0.237370
70.0000	2	151	0,4	33.3	-0.230195
71.0000	4	155	Û.9	34,1	-0,223019
72.0000	7	152	1.5	35.7	-0.215844
73.0000	7	159	1.5	37.2	-0.208559
74,0000	11	180	2.4	39.5	-0.201494
75.0000	6	185	1.3	41.0	-0.194318
76.0000	7	193	1.5	42.5	-0.187143
77.0000	12	205	2.6	45.2	-0.179968
78.0000	5	210	1.1	46.3	-0.172792
79.0000	5	215	1.1	47.4	-0.165617
80.0000	4	219	0.9	48.2	-0.158442

ABstat 5.00 file: SKOOKUM.AB6 version:1

VARIABLE: 2 BA

		CUM		CUM	
VALUE	FREQ	FREQ	7.	ž	Z SCORE
B1.0000	3	222	0.7	48.9	-0,151266
82.0000	5	227	1.1	50.0	-0.144091
83.0000	4	231	0.9	50.9	-0.136916
B4.0000	4	235	0,9	51.8	-0,129740
85.0000	7	242	1.5	53.3	-0.122565
96.0000	6	248	1.3	54.5	-0.115390
87.0000	5	253	1.1	55.7	-0,108214
88.0000	6	259	1.3	57.0	-0.101039
89.0000	5	264	1.1	58.1	-0,0938638
90.0000	θ	272	1.8	59.9	-0.0856985
91.0000	7	279	1.5	61.5	-0.0795132
92.0000	5	284	1.1	62.6	-0.0723379
93.0000	4	288	0.9	63,4	-0.0651626
94.0000	7	295	1.5	65.0	-0.0579873
95.0000	2	297	0,4	65.4	-0.0508120
95.0000	5	302	1.1	66.5	-0.0436367
97.0000	5	307	1.1	57.5	-0.0364613
99.0000	7	314	1.5	69.2	-0.0292860
99.0000	3	317	ŵ.7	69.0	-0.0221107
100.000	4	321	Ú.9	70.7	-0.0149354
101.000	3	324	0.7	71.4	-0.00776009
102,000	4	328	0.9	72.2	-5.847728-04
103.000	4	332	0.9	73.1	0.00659054
104,000	8	34û	1.8	74.9	0.0137659
105.000	7	347	1.5	76.4	0.0209412
106.000	4	351	0.9	77.3	0.0281165
107.000	2	353	0.4	77.8	0.0352918
108.000	3	356	0.7	78.4	0.0424571
109.000	5	361	1.1	79.5 Dû d	0.0496424
110.000	4	365	0.9	B().4	0.0568177
111.000	1	366	0.2	80.6 01 E	0.0639930
112.000	4	370	0.9	B1.5	0.0711594
113.000	4	374	0.9	82.4	0.0783437 0.0855190
114,000	2	376	0.4	82.8	0.0835190
115.000	6	392 795	1.3	84.1 a. a	
119,000	3 4	385 389	0.7 0.9	94.9 85.7	0.107045 0.114220
118.000 121.000	3	392	0.7	85.3	0.135746
122.000	4	396	0.9	87.2	0.142921
123.000	1	397	Ŭ.2	87.4	0.150097
125,000	1	398	0.2	87.7	0.164447
126.000	2	400	0.4	88.1	0.171623
127.000	3	403	0.7	88.8	0.178798
129.000	2	405	0.4	89,2	0.185973
130,000	1	406	0.2	89.4	0,200324
131.000	2	408	0.4	89.9	0.207499
132.000	1	409	0.2	90.1	0.214675
134,000	2	411	0.4	90.5	0.229025
135.000	2	413	0.4	91.0	0.236201
136.000	3	416	0.7	91.6	0.243376
137.000	2	418	0.4	92.1	0,250551
138.000	· 2	420	0.4	92.5	0.257727
139.000	1	421	0.2	92.7	0.264902
140.000	2		0.4	93.2	0.272077
141.000	2	425	0.4	93.6	0.279252

ABstat 5.00 file: SKOOKUM.AB6 version:1

VARIABLE: 2 BA

		CUM		CUM	
VALUE	FREQ	FREQ	X.	ĩ.	7 SCORE
144.000	1	425	0,2	93.8	0.300778
145.000	i	427	0.2	94.1	0.307954
146.000	2	429	0.4	94.5	0.315129
147.000	2	431	0.4	94.9	0.322304
148.000	2	433	0.4	95.4	0.329480
151.000	2	435	0,4	95.8	0.351005
153.000	1	436	0.2	95.0	0.365356
154.000	1	437	0.2	95.3	0.372532
155,000	2	439	0.4	95.7	0.379707
157.000	2	441	0.4	97.1	0.394057
155.000	1	442	0.2	97.4	0,451460
159.000	1	443	0.2	97.6	0.480161
170,000	1	444	0.2	97.9	0.487337
174.000	1	445	0.2	98.0	0.516038
175,000	1	446	0.2	98.2	0.523213
602.000	1	447	0.2	98.5	3.58707
622,000	1	448	0.2	98.7	3,73058
628.000	1	449	0.2	98.9	3.77363
722,000	1	450	0.2	99.1	4.44911
1257.00	1	451	0.2	99.3	8.28690
1263.00	1	452	0.2	99.6	8.32995
1507.00	ł	453	0.2	99.8	10.0807
1669.00	1	454	0.2	100.0	11.2431
TOTAL	454	454	100.0	100.0	

COMMAND: FRED MISSING VALUE TREATMENT: VARWISE

*** FREQUENCIES AND Z-SCORES ***

VARIABLE: 3 CU

		CUM		CUM	
VALUE	FREQ	FREO	Z	X.	Z SCORE
1.00000	1	1	0.2	0.2	-2.08263
2.00000	2	3	0.4	0.7	-2.04918
3,00000	1	4	0.2	0.9	-2.01573
4.00000	1	5	0.2	1.1	-1,93229
7.00000	2	7	ē,4	1.5	-1,88195
8.00000	i	8	0.2	1.8	-1,84851
9,00000	2	10	Ō.4	2.2	-1.81506
12.0000	2	12	Ō.4	2.5	-1.71472
13,0000	1	13	0.2	2.9	-1.68128
14.0000	1	14	0.2	3.1	-1.64783
15,0000	1	15	0.2	3.3	-1.61439
19.0000	3	19	0.7	4.0	-1,48060
20.0000	1	19	0.2	4.2	-1,44716
21.0000	3	22	0.7	4.8	-1.41371
22,0000	6	28	1.3	5.2	-1.38026
23.0000	3	31	0.7	6.8	-1.34582
24,0000	3	34	0.7	7.5	-1.31337
25,0000	4	39	0.9	8,4	-1.27993
26.0000	7	45	1.5	9.9	-1.24648
27.0000	3	48	0.7	10.6	-1.21304
28.0000	5	54	1.3	11.9	-1.17959
29.0000	3	57	0.7	12.6	-1.14614
30.0000	3	60	0.7	13.2	-1.11270
31,0000	8	58	1.8	15.0	-1,07925
32.0000	6	74	1.3	16.3	-1.04581
33.0000	9	83	2.0	18.3	-1.01235
34.0000	8	91	1.8	20.0	-0.978915
35.0000	5	96	1.1	21.1	-0.945469
36.0000	2	99	0.4	21.6	-0.912024
37.0000	4	102	0.9	22.5	-0.978578
38.0000	3	105	0.7	23.1	-0.945132
39.0000	8	113	1.8	24.9	-0.811596
40.0000	5	119	1.3	26.2	-0.778241
41.0000	5 7	124	1.1	27.3	-0.744795
42.0000		131	1.5	28.9 70-0	-0.711349
43,0000 44,0000	5 5	136	1.1	30.0	-0.677903
45.0000	د 5	141 146	1.1	31.1	-0.644457 -0.611012
45.0000	3		1.1 0.7	32.2	
47.0000	5	149 155	1.3	32.8 34.1	-0.577566 -0.544120
48,0000	6	161	1.3	35.5	-0.510674
49.0000	5	151	1.3	36.8	-0.477229
50.0000	2	169	0.4	37.2	-0.443783
51.0000	6	175	1.3	38.5	-0.410337
52.0000	4	179	0.9	39.4	-0.376871
53.0000	9	108	2.0	41.4	-0.343445
54,0000	Ś	193	1.1	42.5	-0.310000
55.0000	2	195	0.4	43.0	-0.276554
56.0000	- 5	200	3.1	44.1	-0.243108
		-			

ABstat 5.00 file: SKOOKUM.AB6 version:1

VARIABLE: 3 CU

		EUM		CUM	
VALUE	F8E0	FREQ	7.	44 14	Z SCORE
57.0000	10	210	2.2	46.3	-0.209862
58,0000	8	218	1.8	49.0	-0.175217
59,0000	2	220	0.4	48.5	-0.142771
60,0000	9	229	2.0	50.4	-0.109325
61.0000	5	234	1.1	51.5	-0.0758792
\$2.0000	4	238	0.9	52.4	-0.0424334
63.0000	4	242	Ú.9	53.3	-0.00898763
64.0000	3	245	0.7	54.0	0.0244581
65.0000	1	252	1.5	55.5	0.0579039
55.0000	3	255	0.7	56.2	0.0913497
67.0000	4	259	0.9	57.0	0.124795
68.0000	2	251	0.4	57.5	0.158241
69.0000	5	266	1.1	58.6	0.191587
70.0000	5	271	1.1	59.7	0.225133
71.0000	5	276	1.1	50.8	0.258579
72,0000	5	281	1.1	61.9	0.292024
73,0000	3	294	0.7	62.5	0.325470
74.0000	7	291	1.5	54.1	0.358916
75,0000	1	292	0.2	64.3	0.392362
75.0000	7	299	1.5	65.9	0.425807
77,0000	2	361	0.4	66.3	0.459253
78,0000	5	306	1.1	67.4	0.492599
79,0000	4	310	0.9	68.3	0.526145
80,0000	6	316	1,3	59.5	0.559591
91.0000	4	320	0.9	70.5	0.593036
82.0000	4	324	0,9	71.4	0.525482
83.0000	2	326	0.4	71.8	0.659928
84.0000	3	329	0.7	72.5	0.693374
85.0000	6	335	1.3	73.8	0.726820
85,0000	6	341	1.3	75.1	0.750265
87,0000	7	348	1.5	76.7	0.793711
89.0000	3	351	0.7	77.3	0.827157
89.0000	3	354	0.7	78.0	0.860503
90.0000	5	359	1.1	79.1	0.894048
91,0000	4	363	0,9	80.0	0.927494
92,0000	3	365	0.7	80.6	0.950940
93.0000	5	371	1.1	81.7	0.994386
94,0000	7	378	1.5	83.3	1.02783
95.0000	4	382	0.9	84.1	1.06128
95.0000	5	387	1.1	85.2	1.09472
97,0000	5	392	1.1	85.3	1,12817
99.0000	4	396	0.9	87.2	1.16161
99.0000	t	397	0.2	87.4	1.19506
100.000	3	400	0.7	88.1	1.22951
101.000	4	404	0.9	89.0	1.26195
102,000	4	408	0.9	89.9	1.29540
103,000	4	412	0.9	90.7	1.32884
104.000	4	416	0.9	91.6	1.35229
105.000	4	420	0,9	92.5	1.39574
105.000	10	430	2.2	94.7	1.42918
107.000	1 5	431	0.2	94.9	1.46263
109.000 109.000	5 1	436 437	1.1	95.0 94 3	1.49607
1107.000	4	441	0.2 0.9	96.3 97.1	1.52952
111.000	n İ	442	0.2	97 .4	1.56295
111.000		771	V. L	,,, , ,	1.07041

ABstat 5.00 file: SKODKUM.AB6 version:1

VARIABLE: 3 CU

		CUM		CUM	
VALUE	FRED	FREQ	X.	X	I SCORE
112.000	2	444	0.4	97.8	1.62985
114.000	រ	445	0. 2	98.0	1.69675
117.000	1	446	0.2	90.2	1.79708
122.000	1	447	0.2	98.5	1.96431
123.000	i	448	0.2	98.7	1.99776
126.000	1	449	0.2	98.9	2.09810
135,000	1	450	0.2	99.1	2.39911
150.000	1	45i	0.2	99.3	2,90080
157.000	1	452	0.2	99.6	3.13492
160.000	1	453	0.2	99.9	3.23525
223.000	1	454	0.2	100.0	5.34234
TOTAL	454	454	100.0	100.0	

ABstat 5.00 file: SKOOKUM.AB5 version:1

COMMAND: FRED MISSING VALUE TREATMENT: VARWISE

*** FREQUENCIES AND Z-SCORES ***

VARIABLE: 4 PB

		CUM		CUM	
VALUE	FREQ	FRED	Z	7.	Z SCORE
6.00000	1	1	0.2	0.2	-0.788338
7.00000	2	3	0.4	0.7	-0.743256
8,00000	2	5	Ŭ.4	1.1	-0,698174
9.00000	4	9	0.9	2.0	-0.653092
10.0000	4	13	0.9	2.9	-0.608010
11.0000	11	24	2.4	5.3	-0.552928
12,0000	11	35	2.4	7.7	-0.517846
13.0000	16	51	3.5	11.2	-0.472754
14.0000	15	67	3.5	14.8	-0.427682
15.0000	25	92	5.5	20.3	-0.382601
16.0000	31	123	6.8	27.1	-0,337519
17,0000	25	148	5.5	32.5	-0.292437
18.0000	23	171	5.1	37.7	-0.247355
19.0000	28	199	6.2	43.8	-0,202273
20.0000	35	234	7.7	51.5	-0.157191
21.0000	25	259	5.5	57.0	-0.112109
22.0000	21	280	4.6	61.7	-0.0670271
23.0000	17	297	3.7	55.4	-0.0219452
24.0000	25	322	5.5	70.9	0.0231368
25.0000	22	344	4,8	75.8	0.0582187
26,0000	13	357	2,9	78.6	0.113301
27.0000	15	372	3.3	81.9	0.150303
28.0000	9	280	1.8	83.7	0.203464
29.0000	8	398	1.9	95.5	0.248546
30,0000	B	396	1.B	87.2	0.293628
31.0000	5	401	1.1	88.3	0.338710
32,0000	6	407	1.3	89.8	Q.383792
33.0000	9	416	2.0	91.6	0,428874
34.0000	4	420	0.9	92.5	0.473956
35,0000	4	424	0.9	93.4	0.519038
38,0000	2	427	0.7	94.1	0.554120
37,0000	4	431	0.9	94.9	0.609202
38.0000	1	432	0.2	95.2	0.554284
39,0000	2	434	Q.4	95.6	0.699366
40.0000	1	435	0.2	95.8	0.744448
41.0000	1	435	0.2	95.0	0.789529
42.0000	1	437	0.2	96.3	0.834611
43,0000	3	440	0.7	96.9	0.879593
45.0000	1	441	0.2	97.1	0.969857
49,0000	1	442	0.2	97.4	1.15010
50.0000	1	443	0.2	97.8	1.19527
53.0000	1	444	0.2	97.8 20.0	1.33051
55,0000	1	445	0.2	98.0 00.7	1.42068
58.0000	1	446	0.2	98.2	1.46576
57.0000	1	447	0.2	98.5 00 7	1.51084 2.05182
69.0000 84.0000	1	448 449	0.2 0.2	98.7 98.9	2.03182
93,0000	1	447	0.2	99.1	3.13379
100.000	1	451	0.2	99.3	3.44936
100.000	,	121	0.1	///3	3177/20

ABstat 5.00 file: SKDOKUN.AB6 version:1 1/12/89 page 12

VARIABLE: 4 PB

.

.

		CUM		CUM	
VALUE	FREQ	FREG	X	Y.	Z SCORE
107,000	t	452	0.2	99.6	3,76494
197.000	1	453	0.2	99.8	7.82231
398.000	1	454	0.2	100.0	16.8839
TOTAL	454	454	100.0	100.0	

ABstat 5.00 file: SKOOKUN.AB6 version:1

COMMAND: FRED MISSING VALUE TREATMENT: VARWISE

*** FREQUENCIES AND Z-SCORES ***

VARIABLE: 5 SB

		CUM		CUM	
VALUE	FRED	FRED	X	%	7 SCORE
1.00000	200	200	44.1	44.1	-0.480630
2.00000	114	314	25.1	59.2	-0.247255
3.00000	48	362	10.6	79.7	-0.0138792
4.00000	33	395	7.3	87.0	0.219495
5.00000	11	406	2.4	89.4	0.452872
6.00000	8	414	1.8	91.2	0.685248
7,00000	5	419	1,1	92.3	0.919623
8,00000	5	424	1.1	93.4	1.15300
9.00000	3	427	0.7	94.1	1.38637
10,0000	2	429	0.4	94.5	1.61975
11,0000	3	432	0.7	95.2	1.85313
12,0000	2	434	0.4	95.6	2.08650
13.0000	2	436	0.4	96.Ŭ	2.31988
14.0000	2	438	0.4	96.5	2.55325
15.0000	1	439	0.2	96.7	2.78663
15.0000	2	441	0.4	97.1	3.02000
17.0000	1	442	0.2	97.4	3.25338
20,0000	2	444	ű .4	97.8	3.95351
21.0000	2	446	0.4	98.2	4.19689
22.0000	3	449	0.7	98.9	4.42026
23,0000	1	450	0.2	99.1	4.65363
25,0000	1	451	0.2	99.3	5.12038
26.0000	1	452	0.2	99.6	5.35376
28.0000	1	453	0.2	99.8	5.82051
35,0000	1	454	0.2	100.0	7.45414
TOTAL	454	454	100.0	100.0	

ABstat 5.00 file: SKDOKUN.AB5 version:1

COMMAND: FREQ MISSING VALUE TREATMENT: VARWISE

*** FREQUENCIES AND 2-SCORES ***

VARIABLE: 6 IN

		CUM		CUM	
VALUE	FRED	FRED	X	X.	Z SCORE
20,0000	1	1	0.2	0.2	-0.988123
22,0000	1	2	0.2	0.4	-0.971278
24.0000	1	3	0.2	0,7	-0,954432
29.0000	2	5	0.4	1.1	-0.920742
31.0000	2	7	0.4	1.5	-0.895474
32.0000	1	8	0.2	1.8	~0.897051
33,0000	1	9	0.2	2.0	-0,878628
35,0000	2	11	0.4	2.4	-0.951783
36.0000	2	13	0.4	2.9	-0.853360
37.0000	1	14	0.2	3.1	-0.844938
39,0000	1	15	0.2	3.3	-0.828092
40.0000	2	17	Ú.4	3.7	-0.819670
42,0000	2	19	0.4	4.2	-0.802824
43.0000	1	20	0.2	4.4	-0.794402
44.0000	5	26	1.3	5.7	-0.785979
45.0000	4	30	0.9	5.5	-0.777556
46,0000	3	33	0.7	7.3	-0.759134
47.0000	3	36	0.7	7,9	-0.750711
48.0000	1	37	0.2	8.1	-0.752288
49,0000	5	43	1.3	9,5	-0.743866
50,0000	6	49	1.3	10.8	-0.735443
51.0000	1	50	0.Z	11.0	-0.727020
52.0000	3	53	0.7	ii.7	-0,718598
53.0000	6	59	1.3	13.0	-0.710175
54.0000	1	5 0	0.2	13.2	-0.701752
55.0000	2	62	0.4	13.7	-0.693330
55.0000	2	64	0.4	14.1	-0.584907
57.0000	4	68	Ú.9	15.0	-0.676484
58,0000	3	71	0.7	15.6	-0,668062
59.0000	5	76	i.i	16.7	-0.659639
60.0000	5	81	1.1	17.8	-0.651216
51.0000	3	94	0.7	18.5	-0.642794
62.0000	3	87	0.7	19.2	-0.534371
63.0000	3	90	0.7	19.8	-0.625948
64.0000	4	94	0.9	20.7	-0.617526
65.0000	4	98	0.9	21.6	-0.509103
66.0000	6	104	1.3	22,9	-0.600580
67.0000	5	109	1,1	24.0	-0.592258
68.0000	2	111	0.4	24.4	-0.583835
69. 0000	1	112	0.2	24.7	-0.575412
70.0000 71.0000	4	116	0.9	25.6	-0.566990
	2	118	ú.4	26.0	-0.558567
72.0000	5 3	124	1.3	27.3	-0.550144
73.0000 74.0000	ې 7	127	0.7 1 5	28.0 20 5	-0.541722
74.0000	1	134 145	1.5 1.5	29.5	-0.533299
75.0000	9 8	141 149	1.5	31.1 32.8	-0.524876 -0.516454
77.0000	5	147	1.8	32.8	-0.516454 -0.508031
78.0000	3	157	0.7	34.6	-0.499609
1010000	\$	137	Va (0.10	-0.477007

ABstat 5.00 file: SKOCKUM.AB6 version:1

VARIABLE: 6 ZN

		CUM		CUM	
VALUE	FREQ	FRED	7.	ž	Z SCORE
79.0000	5	152	1.1	35,7	-0.491185
80.0000	2	164	0.4	36.1	-0.482763
81.0000	4	168	0.9	37.0	-0.474341
82,0000	4	172	Û.9	37.9	-0.465918
83.0000	6	178	1.3	39.2	-0.457495
84.0000	2	181	0.7	39.9	-0.449073
85,0000	5	185	1.1	41,0	-0.440650
85.0000	6	192	1.3	42.3	-0.432227
87,0000	2	194	0.4	42.7	-0.423805
88.0000	3	197	0.7	43.4	-0.415382
89,0000	5	202	1.1	44.5	-0.406959
90.0000	3	205	0.7	45.2	~0.398537
91.0000	3	208	0.7	45.8	-0.390114
92,0000	1	209	0.2	45.0	-0.381591
93,0000	4	213	0.9	45.9	-0.373269
94,0000	4	217	0.9	47.8	-0.364846
96.0000	2	219	0.4	48.2	-0.348001
97,0000	5	224	1.1	49.3	-0.339578
98.0 000	7	231	1.5	50.9	-0.331155
99.0000	រ	232	0.2	51.i	-0.322733
100.000	1	233	0.2	51.3	-0.314310
101.000	4	237	0.9	52.2	-0.305887
102.000	4	241	Q.9	53.1	-0,297465
103.000	1	242	0.2	53.3	-0,289042
104.000	3	245	0.7	54.0	-0,280619
105.000	2	247	0.4	54.4	-0.272197
105.000	2	249	0.4	54.8	-0.263774
107.000	2	251	ů.4	55,3	-0.255351
109.000	2	253	0.4	55.7	-0.246929
107.000	3	256	0.7	55.4	-0.238506
110,000	1	257	0.2	56.6	-0.230093
111.000	1	258	0.2	56.9	-0.221661
112.000	3	261	0.7	57.5	-0.213238
113.000	1	252	0.2	57.7	-0.204815
114,000	2	264	0.4	58.1	-0.196393
115.000	1	265 274	0.2	58.4	-0,179547
118.000 119,000	5	270	1.1	59.5	-0.162702
179,000 120,000	1	271 27 4	0.2	59.7	-0.154279
121.000	3	279	0.7 1.1	60.4 61.5	-0.145857 -0.137434
122.000	4	283	0.9	62.3	-0.129011
123,000	1	283	0.2	52.5	-0.120589
124.000	4	288	0.9	63.4	-0.112166
125,000	2	290	0.4	53.9	-0.103743
126.000	3	293	0.7	54.5	-0.0953208
127.000	1	294	0.2	54.8	-0.0858981
129.000	2	296	0.4	65.2	-0.0700528
131,000	1	297	0.2	65.4	-0.0532075
132,000	5	302	1.1	66.5	-0.0447348
134.000	2	304	0.4	67.0	-0.0279395
135.000	3	307	0.7	67.6	-0.0195168
136.000	3	310	0.7	68.3	-0.0110942
137.000	1	311	0.2	68.5	-0.00267150
138,000	2	313	0.4	68.9	0.00575115
139.000	2	315	0.4	69.4	0.0141738

Aðstat 5.00 file: SKOOKUM.ABS version:1

VARIABLE: 6 ZN

		CUM		CUM	
VALUE	FREQ	FRED	ĩ.	χ.	7 SCORE
140,000	2	317	0.4	69.8	0.0225965
141.000	3	320	0.7	70.5	0.0310191
142.000	2	322	0.4	70.9	0.0394418
143.000	4	325	0.9	71.8	0.0478645
144,000	1	327	0.2	72.0	0.0552871
145.000	1	328	0.2	72.2	0.0647099
146.000	1	329	0.2	72.5	0.0731324
147.000	1	330	0.2	72.7	0.0815551
149.000	i	331	0.2	72.9	0.0984004
150.000	1	332	0.2	73.1	0.106823
151.000	2	334	0.4	73.5	0.115246
153,000	1	335	0.2	73.8	0.132091
154.000	2	337	0.4	74.2	0.140514
158.000	2	339	0.4	74.7	0.174204
160,000	1	340	0.2	74.9	0.191050
153,000	1	341	0.2	75.1	0.216318
164.000	1	342	0.2	75.3	0.224740
185.000	3	345	0.7	76.0	0.233163
166.000	1	346	0.2	76.2	0.241585
167.000	ì	347	0.2	76.4	0.250008
189.000	2	349 250	0.4	75.9	0.266854
170.000	1	350	0.2	77.1	0,275275
172.000 173.000	1 3	351 754	0.2 0.7	77.3	0.292122
173.000	ວ 1	354 355	0.2	78.0 76 2	0.300544 A 740043
175.000	1	355 355	0.2	78.2	0.308967 0.317390
175.000	1	338 357	0.2	79.4	
178.000	2	359	0.2 0.4	78.6 79.1	0.325812 0.334235
178.000	1	360	0.2	79.3	0.334253
179.000	2	362	0.4	79.7	0.351080
191.000	4	365	0.9	B0.5	0.357926
184.000	2	369	0.4	81.1	0.393194
185.000	2	370	0.4	81.5	0.410039
189,000	2	372	0.4	81.9	0,426884
189.000	1	373	0.2	82.2	0.435307
190,000	2	375	0.4	82.6	0.443730
193.000	1	376	0.2	82.9	0.468999
194.000	2	378	0.4	83.3	0.477420
196.000	1	379	0.2	83.5	0.494265
200.000	1	390	0.2	83.7	0.527958
202.000	1	381	0.2	83.9	0.544801
204.000	1	382	0.2	84.1	0.561647
210.000	1	282	0.2	84,4	0.512193
211.000	ł	384	0.2	84.6	0.620505
213.000	1	385	0.2	94.B	0.637451
215.000	1	386	0.2	85.0	0.652719
219,000	2	388	0.4	85.5	0.687987
220.000	3	391	0.7	86.1	0.696409
223.000	i	392 392	0.2	86.3	0.721677
224.000	1	393 704	0.2	85.5	0.730100
228.000 228.000	1	394 705	0.2	85.8 07 A	0.763791
229.000 272 ANA	1	395 394	0.2	87.0	0.772213
232.000 239.000	1 1	396 707	0.2 0.2	87.2 97.4	0.797481
242.000	1	397 398	0.2 0.2	87.4	0.856440
174.000	1	370	V.I	97.7	0.881708

1/12/89 page 16

ньстат р.«м file: SKOOKUM.AR6 version:1

. ...

VARIABLE: 6 IN

		CUM		CUM	
VALUE	FREQ	FREQ	7,	γ.	Z SCORE
243,000	1	399	0.2	87.9	0.890131
249.000	2	401	0.4	88.3	0.940667
254.000	1	402	0.2	88.5	0.982780
258.000	1	403	0.2	88.8	1.01547
261.000	1	404	0.2	89.0	1.04174
253.000	i	405	0.2	89.2	1.05858
254.000	2	407	0.4	89.6	1.05701
257.000	2	409	0.4	90.1	1.09227
271.000	1	410	0.2	90.3	1.12597
272.000	i	411	0.2	90.5	1.13439
288.000	1	412	0.2	90.7	1.26915
298.000	1	413	0.2	91.0	1.35338
306.000	1	414	0.2	91.2	1.42076
307.000	1	415	0.2	91.4	1.42918
309,000	1	416	0.2	91.5	1.44503
310.000	ł	417	0.2	91.9	1.45445
313,000	1	418	0.2	92.1	1.47972
315.000	1	419	0.2	92.3	1.50498
323.000	1	420	0.2	92,5	1,56394
329.000	1	421	0.2	92.7	1.51449
331,000	1	422	0.2	93.0	1.63132
339.000	1	423	0.2	93.2	1.59871
343,000	1	424	0.2	93,4	1.73240
345.000	i	425	0.2	93.6	1.74924
351.000	1	425	0.2	93.8	1.79978
352.000	1	427	0.2	94.1	1.90820
357.000	t	428	0.2	94.3	1.85031
355.000	2	430	0.4	94.7	1.92512
371.000	1	431	0.2	94.9	1.96823
372.000	ł	432	0.2	95.2	1.97665
376.000	í	433	0.2	95.4	2.01034
383.000	1	434	0.2	95.6	2.06930
389.000	1	435	0.2	95.8	2.11984
391.000	1	436	0.2	95.0	2.13568
399.000	2	439	0.4	95.5	2.20407
402.000	1	439	0.2	95.7	2.22933
403,000	1	440	0.2	96.9	2.23776
413.000	i	441	0.2	97.1	2.32198
434.000	i	442	0.2	97.4	2,49885
441.000	1	443	0.2	97.5	2.55782
462,000	i	444	0.2	97.8	2,73469
483.000	1	445	0.2	99.0	2.91157
513.000	1	446	0.2	98.2	3.16425
516.000	2	448	Ũ.4	98.7	3.18952
526,000	1	449	0.2	98.9	3.27374
648,000	i	45ú	0.2	99.1	4.30131
691,000	1	451	0.2	99.3	4.55348
711.000	1	452	0.2	99.6	4.83194
891.000	1	453	0.2	99.8	6.34801
1083.00	i	454	0.2	100.0	7.96517
TOTAL	454	454	100.0	100.0	

COMMAND: FRED MISSING VALUE TREATMENT: VARWISE

*** FREDUENCIES AND Z-SCORES ***

VARIABLE: 7 AU

		CUM		CUM	
VALUE	FREQ	FREQ	Y.	7.	Z SCORE
1.00000	155	155	34.1	34.1	-0.341779
2.00000	105	260	23.1	57.3	-0.307773
3,00000	39	299	8.6	65.9	-0.273767
4.00000	19	318	4.2	70.0	-0.239752
5.00000	14	332	3.1	73.1	-0,205755
5.00000	5	337	1.1	74.2	-0,171751
7.00000	2	339	0.4	74.7	-0.137745
8.00000	11	350	2.4	77.1	-0.103740
9.00000	3	353	0,7	77.8	-0.0697339
10.0000	19	372	4.2	81.9	-0.0357283
12.0600	4	376	0.9	92.8	0.0322828
13,0000	1	377	0.2	93.0	0.0662884
14.0000	2	379	0.4	93.5	0.100294
15.0000	4	383	ú.9	84.4	0.134300
16.0000	4	387	0.9	85.2	0.168305
17.0000	3	390	Q.7	85.9	0.202311
18.0000	4	394	0.9	85.8	0.236316
19.0000	1	395	0.2	97.ů	0.270322
20.0000	13	40B	2.9	89.9	0.304328
21.0000	2	410	0.4	90.3	0.338333
22,0000	4	414	0.9	91.2	0,372339
23.0000	1	415	0.2	91.4	0.406344
24.0000	1	416	0.2	91.8	0.440350
25.0000	1	417	0.2	91.9	0.474355
25.0000	Z	419	0.4	92.3	0,508361
35.0000	1	420	0.2	92.5	0.814411
36,0000		421	0.2	92.7	0.848417
37.0000	3	424	0.7	93.4	0.882422
41.0000	2	426	0.4	93.8	1.01844
42.0000	1	427	0.2	94.1	1.05245
44.0000	1	428	0.2	94.3	1.12045
49.0000	1	429	0.2	94.5	1.29049
50,0000	3	432	0.7	95.2	1.32450
55,0000	1	433	0.2	95.4	1.49452
61.0000	1	434	0.2	95.6	1.69855
62.0000	1	435	0.2	95.8	1.73256
\$7.0000	1	436	0.2	95.0	1.90259
71.0000	1	437	0.2	96.3	2.03861
78.0000	1	438	0.2	96.5	2.27665
82.0000	1	439	0.2	95.7	2.41267
65.0000	1	44Û	0.2	96.9	2.51459
92.0000	1	441	0.2	97.1	2.75273
105.000	2	443	0.4	97.5	3.19480
106.000	1	444	0.2	97.8	3.22881
112.000	1	445	0.2	98.0	3.43284
120.000	1	446	0.2	98.2	3.70489
127.000	1	447	0.2	98.5	3.94292
143.000	1	448	0.2	98.7	4.48701
144.000	1	449	0.2	98.9	4.52102

ABstat 5.00 file: SKOOKUM.AB5 version:1

VARIABLE: 7 AU

		CUM		CUM	
VALUE	FREØ	FREQ	X	X	Z SCORE
147.000	1	450	0.2	99.1	4.62304
151.000	1	451	0.2	99.3	4.75906
172.000	í	452	0.2	99.6	5.47318
174.000	1	453	0.2	99.9	5.54119
363,000	1	454	0.2	100.0	11.9682
TOTAL	454	454	100.0	100.0	

۲

COMMAND: FRED MISSING VALUE TREATMENT: VARWISE

*** FREQUENCIES AND Z-SCORES ***

VARIABLE: 8 AG

		CUM		CUM	
VALUE	FREO	FREQ	7	Z	Z SCORE
0,200000	i	1	0.2	0.2	-0.310602
0.300000	2	3	0.4	0.7	-0.293635
0.400000	1	4	0.2	0.9	-0.276658
0.500000	5	9	1.1	2.0	-0.259701
0.800000	9	18	2.0	4.0	-0.242735
0.700000	11	29	2.4	6.4	-0,225768
0.800000	32	61	7.0	13.4	-0,208901
0,90000	32	93	7.0	20.5	-0.191834
1.00000	41	134	9.0	29.5	-0.174867
1,01000	1	135	0,2	29,7	-0.173170
1.10000	29	154	6.4	36.1	-0.157900
1.20000	49	213	10.8	46.9	-0.140933
1.30000	24	237	5.3	52.2	-0.123955
1.40000	30	267	6.6	50,8	-0.107000
1.50000	26	293	5.7	64,5	-0.0900328
1.50000	27	320	5.9	70.5	-0.0730659
1,70000	10	220	2.2	72.7	-0.0560990
1.80000	21	351	4.6	77.3	-0.0391322
1.90000	16	367	3.5	80,9	-0.0221653
2.00000	15	382	3.3	94.1	-0.00519844
2,10000	9	391	2.0	86.1	0.0117684
2.20000	4	395	Û.9	87.0	0.0287353
2.30000	9	404	2.0	99.Ŭ	0.0457022
2.40000	7	411	1.5	90.5	0.0626690
2.50000	2	413	0.4	91.0	0.0796359
2.60000	4	417	0.9	91.9	0.0955028
2.70000	5	422	1.1	93.0	0.113570
2.80000	2	424	0.4	93.4	0.130536
2.90000	1	425	0.2	93.6	0.147503
3.00000	1	476	0.2	93.9	0.164470
3.10000	2	428	0.4	94.3	0.181437
3.20000	2	430	0.4	94.7	0.198404
3.50000	1	431	0.2	94.9	0.266271
4.00000	1	432	0.2	95.2	0.334139
4.10000	1	433	0.2	95.4	0.351106
4.20000 4.30000	1	434	0.2	95.6	0.368073
	2 1	436	0.4	96.0	0.395039
4.40000 4.50000	2	437 439	0.2 0.4	96.3 96.7	0.402005 0.418973
4.50000	1	440	0.4	76.7 95.9	0.435940
4.80000	1	441	0.2	97.1	0.469874
5,20000	1	442	0.2	97.4	0.537741
5.30000	i	443	0.2	97.6	0.554708
5.40000	2	445	0.4	98.0	0.571675
6.40000	1	446	0.2	98.2	0.741344
6.70000	1	447	0.2	98.5	0.792244
7.50000	1	448	0.2 0.2	98.7	0,944945
8.40000	1	449	0.2	98.9	1.08068
16.0000	. 1	450	0.2	99.1	2.37016
	•		~ * * *		2707010

ABstat 5.00 file: SKOOKUN.AB6 version:1

VARIABLE: 8 AS

		CUM		CU₩	
VALUE	FREQ	FRED	7.	X	Z SCORE
17.5000	1	451	0.2	99.3	2.62467
34,0000	ſ	452	0,2	99.6	5.42420
60,0000	1	453	0.2	99.8	9.83558
104.000	1	454	0.2	100.0	17.3010
TOTAL	454	454	100.0	100.0	

APPENDIX IV - B

HISTOGRAMS

ABstat 5.00 file: SKOOKUN.AB5 version:1

COMMAND: HIST MISSING VALUE TREATMENT: VARWISE

VARIABLE: 1 AS

AT LEAST	1,000	60	ភ្	10	15	20	25	30
BUT NOT OVER:	FREQ	7,	**		····		·	+
6.00000	95	20.9	IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	******	*****	******		
\$2.0000	92	20.3	IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	****************	*****	*****		
18,0000	91	20.0	IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	*****************	*******	******		
24,0000	69	15.2	IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	*****************	XXXXXXXXXXX			
30,0000	46	10.1	IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	*****				
35.0000	23	5.1	IXXXXXXXXXXXXXXXXXX					
42.0000	15	3.3	TAXXXXXXXXXX					
48,0000	4	0.9	IXXX					
54.0000	6		IXXXX					
60.0000	1	0.2						
65.0000	2	0.4	IX					
72,0000	2		IX					
78.0000	1	0.2	IX					
84.0000	1	0.2	IX					
90.0000	0	00.0	1					
96.0000	Û	00.0						
102.000	t	0.2						
106.000	Û	00.0						
112.000	2	0.4	IX					
118.000	1	0.2						
124.000	0	00.0						
130.000	0	00.0						
136.000	0	00.0						
142.000	Q	00.0						
148.000	1	0.2						
152,000	1	0.2	IX					
TOTAL	154	100.0	++ 5	 10	+ 15	t 24		+
101AL	727	10010	ن	10	11	20	25	20

ABstat 5.00 file: SkOOKUM.AB6 version:1

COMMAND: HIST MISSING VALUE TREATMENT: VARWISE

VARIABLE: 2 BA

AT LEAST	27.00	100	10	20	30	40	50	50	70
9UT NOT OVER:	FREQ	7,	+					+	+
63,0000	112	24.7		*******	(
125.000	268	63.4	IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	**************	*****	******	**********	*****	
199.000	46	10.1	1 X X X X X X X X X X X X X X X X X X X						
252.000	Û	00.0	1						
315.000	0	00.0	I						
378.000	Û	00,0	I						
441.000	Ũ	00.0]						
504,000	0	00.0	I						
569.000	Û	00.0	1						
630.000	3	0.7	IX						
693.000	0	00.0	I						
756.000	í	0.2	I						
819.000	Ø	00.0	1						
902.000	Ú	<u> 00.</u> 0	I						
945.000	Û	00.0	I						
1008.00	Û	00.0	I						
1071.00	Q	00.0	1						
1134.00	0	00.0	I						
1197.00	Û	00.0	I						
1260.00	1	0.2	I						
1323.00	1	0.2	1						
1385.00	Û	00.0	1						
1449.00	0	00.0	I						
1512.00	1	0.2	1						
1575.00	Ú	00.0	Ι						
1838.00	0	00.0	I						
1701.00	1	0.2	I						
			+					+	
TOTAL	454	100.0	10	20	30	40	50	60	70

٠

· .

COMMAND: HIST MISSING VALUE TREATMENT: VARWISE

VARIABLE: 3 CU

AT LEAST	1.000	00	1	2	3	4	5	6	7	8	9	10
BUT NOT OVER:	FREQ	7.	+	+	+	·ŧ	+	+	+	+		+
B,00000	8	1.8		XXX								
15.0000	7	1.5										
24.0000	19	4.2	XXXXXXXXXXXXXXXXXXX	******	****	(
32,0000	40	9.8		*****	*******	******	*****	*****	******	*******	(XXX	
40.0000	45	9.9		*****	*******	(*****	*****	******	*********	(XXXXX
48.0000	42	9.3		*****	*******	(*********	*****	* * * * * * * * * * * *	XXXXXXXXXX	*********	*****	
56.0000	39	8.6] X X X X X X X X X X X X X X X X X X X	*******	**********	*******	*****	****	******	((X	
54.0000	45	9.9		XXXXXXXXXX	*******	(********	*****	*****	XXXXXXXXXXX	*********	*****	XXXXX
72.0000	35	7.9	1 * * * * * * * * * * * * * * * * *	*****	*******	(*********	(******	*****	*****	* * * * *		
8 0,0000	35	7.7		*****	*******	(XXXXXXXXXX)	*****	*****	******	(XX		
88.0000	35	7.7	IXXXXXXXXXXXXXXXXXX	******	*******	*******	*****	******	XXXXXXXXXX	XXX		
96.0000	36	7.9		XXXXXXXXXX	******	*****	*****	******	*****	* * * * * *		
104.000	29	6.4	1 * * * * * * * * * * * * * * * * * *	****	*******	*****	*****	*****				
112.000	20	6.2	XXXXXXXXXXXXXXXXXXX	XXXXXXXXX	*********	(XXXXXXXXX)	*****	* * * * * * * * *				
120.000	2	0.4	IXXXX									
128.000	3	0.7	*****									
136.000	1	0.2	ŦXX									
144.000	Û	00.0	I									
152,000	1	0.2	IXX									
150.000	2	0.4	IXXXX									
169.000	0	00.0	I									
175.000	0	00.0	Ι									
184.000	Û	00.0	I									
192.000	0	ŪÛ.O	I									
200.000	0	00.0	3									
209.000	0	00.0	Ι									
216.000	Û		I									
224.000	1	0.2	IXX									
			++	·ŧ	+	·+	+	+	+	+	++	+
TOTAL	454	100.0	1	2	3	4	5	6	7	8	9	10

.....

ABstat 5.00 file: SKOOKUM.AB6 version:1

COMMAND: HIST MISSING VALUE TREATMENT: VARWISE

VARIABLE: 4 PB

AT LEAST	6.000	00	10	20	30	40	50	60	70
BUT NOT OVER:	FRED	X	ttt			+			+
15.0000	92	20.3	IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	********					
30,0000	304	67.0	TXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	**************	XXXXXXXXXXXXXX	***********	******	XXXX
45,0000	45	9.9	IXXXXXXXXXXXXX						
60.00 00	5	1.3	1 X X						
75.0000	i	0.2	I						
90,0000	i	0.2	I						
105.000	2	0.4	IX						
120.000	1	0.2	1						
135.000	0	00.0	Ι						
150.000	Q	00.0	Ī						
165.000	0	00.0	1						
180.000	0	00.0	1						
195.000	0	00.0	I						
210.000	1	0.2	I						
225.000	0	00.0	I						
240,000	0	00.0	1						
255.000	0	00.0	1						
270.000	0	00.0	1						
285.000	Û	00.0	I						
300.000	()	00.0	I						
315.000	Û	00.0	1						
330.000	Q	00.0	Ι						
345.000	0	00.0	Ι						
360.000	0	00.0	1						
375.000	Û	00.0	1						
390,000	Ũ	00.0	Ι						
405.000	1	0.2	1						
			*	++		+	+	· • •	+
TOTAL	454	100.0	10	20	30	40	50	60	70

ABstat 5.00 file: SKOOKUM.AB6 version:1

COMMAND: HIST MISSING VALUE TREATMENT: VARWISE

VARIABLE: 5 SB

e 1

1.00000 AT LEAST 10 20 $\overline{30}$ 40 TOTAL 454 100.0 10 20

30

40

50

50

ABstat 5.00 file: SKOOKUM.AB& version:1

COMMAND: HIST MISSING VALUE TREATMENT: VARWISE

VARIABLE: 5 ZN

AT LEAST	20.00	00	:	5	10	15	20	25	30	35	40
BUT NOT OVER:	FRED	λ.	+-	+	t	+		+	+	+	ŧ
41,0000	17	3.7	IXXXXXXXXX								
82.0000	155	34.1	IXXXXXXXXXXXXXX	XXXXXXXXXXX	*******	**********	*********	*********	**********	X	
123.000	112	24.7	IXXXXXXXXXXXX	XXXXXXXXXX	******	XXXXXXXXXXXXXX	XXXXXXXXXXXXXXX	XXX			
164.000	53	12,8	IXXXXXXXXXXXXX	EXXXXXXXXXX	XXXXXXXXXX						
205.000	40	3.8	IXXXXXXXXXXXX	XXXXXXXXXX							
245.000	17	3.7	IXXXXXXXXX								
287.000	12	2.5	IXXXXXXX				•				
328.000	9	2.0	I A X K X K								
359.000	10	2.2	1 X X X X X X								
410.000	10	2.2	IXXXXXX								
451.000	3	0.7	IXX								
492.000	2	0.4	E								
533,000	4	0.9	ΗXX								
574.000	0	00.0	I								
615,000	0	(0. 0	I								
\$55,000	1	0.2	IX								
597,000	í	0.2	IX								
738.000	1	ė.2	ΙX								
779,600	Ü	09.0	1								
820.000	Û	00.0	1								
851.000	ŷ	ĊQ.0									
902.000	1	0.2	1X								
943.000	ġ	00.0	1								
984,000	Ũ	60.0	Ι								
1025.00	Ú	(0, 0)	1								
1065.00	0	00.0	1								
1107.00	1	0.2	IX								
TOTAL	454	100.0			1ú	15	20	25	20	35	+ 40

ABstat 5.00 file: SKOOKUM.AB5 version:1

COMMAND: HIST MISSING VALUE TREATMENT: VARWISE

VARIABLE: 7 AU

AT LEAST	1.000	000	10	20	30	4ů	50	60	70	80	9 0
BUT NOT OVER:	FRED	X	++	·++	+	+	+	+	+	+	+
14.0000	379	83.5	IXXXXXXXXXXXXXXXXX		******	*******	**********	*****		*****	
28.0000	40	8.9	IXXXXXXXXX								
42.0000	8	1.8	IXX								
55.0000	5	1,3	IX								
70,0000	3	0,7	1 K								
84.0000	3	0.7	IX								
98. 0000	2	0.4	Ţ								
112,000	4	0.9	IX								
125,000	1	0.2	I								
140.000	1	0.2									
154.000	4	0.9	IX								
158,000	Û	00.0	I								
192.000	2	0.4	1								
196.000	Û	00.0	ĭ								
210.000	Û	00.0	I								
224.000	Ø	00.0	I								
238,000	0	00.0	1								
252.000	Û	06.0	I								
255.000	Ô	00.0	I								
280,000	Ð	00.0	I								
294.000	9	00.0	1								
308.000	Û	00.0	I								
322.000	Ċ	00.0	1								
336.000	0	00.Ú	I								
350.000	Û	00.0	I								
354.000	1	0.2	1								
TOTAL	454	100,8	++ 10	 20	t 30	 40	+ 50	 60	 70	 80	+ 90
			- 0	* V		75	40	00	CV.	60	Αŭ

ABstat 5.00 file: SKOOKUM.AB6 version:1

COMMAND: HIST MISSING VALUE TREATMENT: VARWISE

· -· ----

VARIABLE: 9 AG

~

AT LEAST	0,2000	00		10	20	30	40	50	60	70	80	90	100
BUT NOT OVER:	FREQ	7,	+-		+	+	+	+	+	+		t	+
4.00000	432	95.2	IXXXXX	*******	XXXXXXXXXX	XXXXXXXXXX	XXXXXXXXXX	*****	******	XXXXXXXXXX	******	*******	κ.
8.00000	16	3.5	IXXXX										
12,0000	1	0.2	I										
15.0000	1	0.2	1										
20,0000	1	0.2	I										
24.0000	Û	00.0	I										
28,0000	Ŷ	00.0	I										
32.0000	Ģ	00.0	I										
36,0000	1	0.2	i										
40.0000	0	00.0	1										
44.0000	Û	00.0	I										
43.0000	Û	00.0	I										
52,0000	9	00.0	I										
56.0000	Û	00.0	1										
60,0000	1	0.2	1										
64,0000	0	00.0	Ī										
68.0000	Û	00.0	I										
72.0000	()	00.0	1										
76.0000	0	00.0	i										
80.0000	()	00.0	I										
84.0000	0	00.Q	I										
83.0000	0	(0, 0)	1										
92,0000	0	00,0	1										
96.0000	()	00.0	1										
100.000	Û	00.U	I										
104.000	1	0.2	I										
			+	+	+	+	+	+	+	+	+	+	ŧ
TOTAL	454	100.0		10	20	30	40	50	50	70	80	90	100

÷

____ ... ___

.. .____

APPENDIX IV - C

CORRELATION COEFFICIENTS

CORRELATION COEFFICIENTS

	Au	Ag	As	Pb	Cu	Zn	Sb
Au	1.000	0.003	-0.144	0.029	0.111	0.0002	-0.036
Ag		1.000	-0.322	0.275	0.187	0.450	0.017
λа			1.000	0.127	-0.209	-0.008	0.358
Pb				1.000	0.317	0.371	-0.028
Cu					1.000	0.111	-0.057
Zn						1.000	0.291
Sb							1.000
Ratin	(+/-) (+/-)	0.000 0.301 0.551 0.801	to (+ to (+	/-) 0.30 /-) 0.55 /-) 0.80 /-) 1.00	0 0	Weak Slight Moderat Strong	e

SQUARES	OF C	ORRELATION	COEF	FICIENTS
(To express	the	interactio	n in	percentile)

	Au	Ag	As	РЬ	Cu	Zn	SÞ
Au	100.0	0.00	2.00	0.08	1.20	0.00	0.10
Ag		100.0	10.30	7.50	3.40	20.20	0.02
As			100.0	1.60	4.30	0.00	12.80
РЬ				100.0	10.00	13.70	0.07
Cu					100.0	1.20	0.30
Zn						100.0	8.40
Sb							100.0

Rating:	0.0%	to	9.0%	Weak
	9.1%	to	30.2%	Slight
	30.3%	to	64.0%	Moderate
	64.0%	to	100.0%	Strong

ABstat 5.00 File: SKOOKUM.A86 version:1

COMMAND: COAR MISSING VALUE TREATMENT: PAIRWISE

(NUMBER OF VALID CASES APPEARS UNDER COEFFICIENT)

*** CORRELATION MATRIX ***

VARIABLES:								
1 AS	1.00000							
2 BA	0.04278	1,00000						
	454							
3 CU	0.ù9654	-0.16021	1.00000					
	454	454						
4 P8	0,33694	-0.05353	0.01014	1.00000				
	454	454	454					
5 SB	0.41158	0.00377	0.22842	0.17521	1.00000			
	454	454	454	454				
5 ZN	-0.03300	-0.07985	0.19197	0.29205	-0.03577	1.00000		
	454	454	454	454	454			
7 AU	0.33769	-0.02961	0.23213	0.35640	0.38758	0.04351	1.00000	
	454	454	454	454	454	454		
9 AG	0.18278	-0.02944	0.09941	0.76655	0.03509	0.31069	0.21955	1.00000
	454	454	454	454	454	454	454	
	1 AS	2 BA	3 CU	4 PB	5 SB	6 ZN	7 AU	8 AG

.

APPENDIX V

DRILL LOGS

NI-TEC RESOURCE MANAGEMENT LTD.

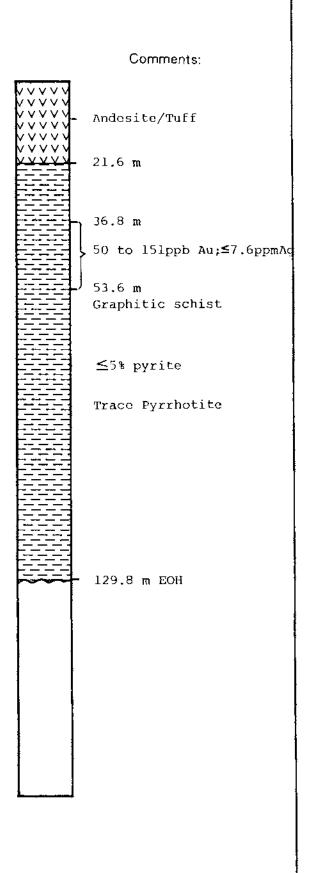
Canova/Expeditor
88-BC-052
88-SRC-1
Okanagan
Vernon
Skookum showing
82-L/6W
Line 1050E/5095N
-45 [°] /140 [°]
135.9 meters (446 ft)
4 1/8"RC
98%
0.4 meters
Andesite
Graphitic schist
December 3, 1988
December 4, 1988
N/A
91 RC
1.5 RC
From: 14525A To: 14600A
D.W. COATES
J.Dahrouge/D.Collins

	Comments:
	Andesite 6.9 m
	Tuffaceous unit
	24.7 m
	50.6 363ppb Au/8.4ppm Ag
	50.6 363ppb Au/8.4ppm Ag 174ppb Au/3.1ppm Ag 56.0 120ppb Au/3.0ppm Ag
	Graphitic schist
	≤4% pyrite
	Trace Pyrrhotite
	135.9 m EOH
i d	

HI-TEC Resource management LTD.

· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · ·
Company	Canova/Expeditor
Project No.	88-8C-052
Drill hole no.	88-5RC-2
Area/Township	Okanagan
Mining Division	Vernon
Claim Name	Skookum showing
N.T.S.	82-L/6W
Grid Reference	Line 1160E/5155N
Angle/Orientation	-45 [°] /140 [°]
Length	135.9 meters (446 ft)
Core size	4 1/8"RC
% Recovery	98%
Depth to Bedrock	0.4 meters
Lithology Fm Top	Graphitic schist
Lithology Fm Base	Graphitic schist
Date collared	December 5, 1988
Date completed	December 6, 1988
Dip Tests	N/A
No. of Samples	87 RC
Sample Interval	1.5 RC
Sample No's	From: 1901A To: 1988A
Drilling Company	D.W. COATES
Logged by	J.Dahrouge/D.Collins

		Comr	ments:	
고고려				
			1 47)	
	• 26.2	m	147ppb 60ppm	- Au - λα
			o o ppm	9
	Grapi	nitic	schist	
	≤8%	pyri	te	
	Trace	- Þvr	rhotite	
	1100	- 1] *	1100100	
	• 195	о г		
	1.35.	9 m E	ЮН	
	:			
	l			
.				
	ł			


Scale of Summary log

1:1000

HI-TEC RESOURCE MANAGEMENT LTD.

· · · · · · · · · · · · · · · · · · ·	·····
Company	Canova/Expeditor
Project No.	88-RC-052
Drill hole no.	88-SRC-4
Area/Township	Okanagan
Mining Division	Vernon
Claim Name	Skookum showing
N.T.S.	82-L/6W
Grid Reference	Line 997E/5055N
Angle/Orientation	~45 [°] /150 [°]
Length	129.8 meters (426 ft)
Core size	4 1/8"RC
% Recovery	98%
Depth to Bedrock	0.4 meters
Lithology Fm Top	Andesite/Tuff
Lithology Fm Base	Graphitic schist
Date collared	December 13, 1988
Date completed	December 14, 1988
Dip Tests	N/A
No. of Samples	83 RC
Sample Interval	1.5 RC
Sample No's	From: 45151A To: 45200A From: 45051A To: 45083A
Drilling Company	D.W. COATES
Logged by	J.Dahrouge/D.Collins

Scale of Summary log 1:1000

HI-TEC Resource Management LTD.

· · · · · · · · · · · · · · · · · · ·	
Company	Canova/Expeditor
Project No.	88-RC-052
Drill hole no.	88- SRC-5
Area/Township	Okanagan
Mining Division	Vernon
Claim Name	Skookum showing
N.T.S.	82-L/6W
Grid Reference	Line 1005E/5000N
Angle/Orientation	-45 [°] /270 [°]
Length	41.5 meters (136 ft)
Core size	4 1/8"RC
% Recovery	98%
Depth to Bedrock	0.4 meters
Lithology Fm Top	Graphitic schist
Lithology Fm Base	Graphitic schist
Date collared	December 14, 1988
Date completed	December 15, 1988
Dip Tests	N/A
No. of Samples	24 RC
Sample Interval	1.5 RC
Sample No's	From:45084A To:45107A
Drilling Company	D.W. COATES
Logged by	J.Dahrouge/D.Collins

Comments:
10% Quartz 172ppb Au 1.7ppm Ад 6.0 m
15.5 m 105ppb Au/2.2ppmAg 113ppb Au/1.9ppmAg 18.6 m Graphitic schist ≤10% Pyrite
41.5 m EON

Scale of Summary log

1:500

HI-TEC Resource management Ltd.

Company	Canova/Expeditor
Project No.	88-BC-052
Drill hole no.	88-SDD-1
Area/Township	Okanagan
Mining Division	Vernon
Claim Name	Skockum showing
N.T.S.	82-L/6W
Grid Reference	Line 975E/5015N
Angle/Orientation	-459140°
Length	154.5 meters (507 ft)
Core size	мQ
% Recovery	90%
Depth to Bedrock	0.4 meters
Lithology Fm Top	Andesite
Lithology Fm Base	Craphitic schist/ Phyllite
Date collared	.December 1, 1988
Date completed	December 3, 1988
Dip Tests	N/A
No. of Samples	88
Sample Interval	Variable
Sample No's	From: SD1-1 To: SD1-88
Drilling Company	D.W. COATES
Logged by	J.Dahrouge/D.Collins.

Comments: Andesite 13m Graphitic schist with interbedded tuffaceous beds Abundant Quartz veinlets, pyrite blebs and stringers 130 m Grey/Green Phyllite 145m Quartz vein 148m . 1 155m EOH

Scale of Summary log 1:10

1:1000

	PROJECT : 8	8-BC-052		DRIL	г ногв	E LOG NO. 88-SDD-00	1	S	heet	: 1 0	£6			
Depth	Description	Tectonic C/A struct.	Sample no.		τo	Mineralization & Alteration	(ppb) Au	ASSA Ag		SULT Ba		ppm Pb	sъ	۳۵
0.40	Overburden/end of casing													
5.27	Medium/coarse tuffaceous gy/gr andesite,clast size -granule to >2cm, Ang, unsorted,basal contact	60	SD1-1	1.0	3.0	Dis'm po <u>≺</u> 5%	20	1.6	7	89	96	14	1	57
6.1	Blk/dk gy laminated tuff- aceous, argillite. Thin <u><</u> 1 cm paler gy interlam.Trans- itional base diffuse.		SD1-2	5.27	6.1	Tr. dis'm po v.fine grained	10	1.4	8	113	46	19	2	52
6.6	Fine/aphanitic gy andesite Coarsening down.Diffuse lr	40				Tr. po								
7.26	Coarse grained andesite	2										5		
9.70	Fine grained gr/gy tuffac- eous andesite, clast size 30mm-<2mm,silicified matrix is white,1 green, fine gr, chloritized.	48 fluid strs.				Dis'm po <u>≺</u> 7%								
10.14	Dk gy/gr-blk, tuffaceous andesite, m. clast size fract. filled unit, much graphite along fracts. Very silicified in part.		SD1-3	9.45	10.0	<15% dis'm po	20	1.3	13	74	60	19	2	59
11.12	Contact with fine grained light gy tuffaceous andes. clast size fine-<2mm, sil.					< 3% dis'm po								
12.82	Contact with v. coarse grnd tuffaceous andesite, clasts >100mm-<2mm, gy/gr,		SD1-4	11.15	12.73	<pre><8% Sulfides po dis'm > py recrystallized</pre>	20	1.5	5	49	53	11	2	65

PROJECT : 88-BC-052

DRILL HOLE LOG NO. 88-SDD-001 Sheet 2 of 6

	<u></u>	<u> </u>	·	+										
Depth	Description	Tectonic % C/A struct.Rec			То		ppb) Au	ASSA Ag			5 - p Cu		Sb	
13.1	Blk graphitic schist with minor qtz v'lets<2mm, sugary white qtz.	30 v'lets											<u>+</u> ——	
14.2	Same as above. <3% sugary qtz. v'lets w random orient		SD1-5	12.73	14.23	<l2% dis'm<br="" py,="">/recry+in fracts</l2%>	1.5	.4	6	84	84	19	1	194
14.9	Same as above. Slightly more competent.<5% sugary qtz. v'lets.From 14.5-14.9 intensely silicified zone w v'lets.	80 v'lets	SD1-6	14.23	16.73	l2% sulfides, py dis'm & fract filled within gtz v'lets. po dis'm.	20	1.8	12	60	95	21	4	139
16.9	Semicompetent same as above		SD1-7	16.73	17.23	as above	ъø	1.2	7	102	100	16	2	154
17.17	Intensely v'ed graphitic unit. Veins <lcm <30%<br="" wide.="">sugary qtz.</lcm>					< 8% ៦୦/៦λ								
17.23	Tuff,light br, w qtz v'ing					< 3% sulfides.V fine dis'm py.		Į						
17.37	Same as above @ 16.9-17.17		SD1-8	17.23	18.73		20	.3	5	91	123	16	1	134
19.05	Blk graphitic schist with abundant qtz v'lets<2mm, <3% sugary white qtz.		SD1-9	18.73	20.0	<5% py. Rx <l.5 +<br="" cm="">dis'm, fract.filled Brassy py.</l.5>	10	.9	5	52	103	15	2	98
	Semi-competent light gy/blk graphitic schist with qtz v'lets occ mineralized w py and po. <5% white sugary qtz v'lets.		SD1-11	21.00 22.00 23.00	22.0 23.0 24.0	ру + ро ру + ро	10 10 10 10 10	2.0 .2 1.1 .8 .3	10 20 13	71 80	85 107 85	17 15 20 14 21	2	167 98 267 181 88
	Pale gy sil. laminae		SD1-15 SD1-16 SD1-17 SD1-19 SD1-19 SD1-20	26.00 27.00 28.00 29.00	27.0 28.0 29.0 30.0	py + po py + po py + po py + po py + po	1 2 8	1.0 1.2 1.2 1.0 3.2 6.4	29 2 18 17	57 8Ø	91 70 93 88	16 19 18 12 17 21	2 4 3 7	125 219 93 104 102 112
33.36	Light gy/gr fine grained andesite w v. fine clasts Tuffaceous, silicified, 5% qtz stringers.	55 lr cont	SD1-21 SD1-22 SD1-23	31.00 32.00	32.0 33.0	py blebs qtz stringers	37 55 4	4.1 1.2 1.0	12 35		94 25		10 2	228 79 151

PROJECT : 88-BC-052 DRILL HOLE LOG NO. 88-SDD-001 Sheet 3 of 6

[Tectonic %	Sample			Mineralization	(ppb)	ASSA	YRE	SULT	s - 1	mqq		·
Depth	Description	C/A struct.Red	no.	From	То	& Alteration	Au	Ag	As	Ва	Cu	Pb	sb	Zn
	Same as above.		SD1-24 SD1-25 SD1-26 SD1-27 SD1-28	35.00 36.00 37.00	36.0 37.0 38.0	mnr py,qtz st py blebs,qtz st py blebs,qtz st py blebs,qtz st mnr py,qtz	44 2 1 1	Ø.9 Ø.9 1.1 Ø.8 Ø.5	22 21 4			18	6 8 3 3	220 181 109 108 45
38.2	Graphitic schist same as above.					mir blider					-			
39.1	Light gy tuffaceous andes- ite.		SD1-29	39.00	40.0	mnr py, qtz	2	0.7	10	90	9	39	2	44
39.66 40.55	Graphitic schist as above. Light gy tuffaceous andes- ite.	65 laminae	SD1-30	40.00	41.0	mnr øy, gtz	4	1.6	5	165	51	32	3	70
41.8	Graphitic schist as above.	90 top cont	SD1-31	41.00	41.75	< 3% dis'm py.	2	1.2	16	71	88	27	2	77
42.2	Qtz vein w py and po along		SD1-32	41.75	42.25	< 5% py & tr cpy	20	2.4	25	31	65	24	4	47
42.75	Interlayered light green tuff & graphitic schist. Approx. 8% gtz. v'lets	50	SD1-33	42.25	42.75	< 6% dis'm py.	10	1.8	5	60	54	24	2	76
46.4	Graphitic schist as above		SD1-34	45.85	46.85	<4% Py blebs (< 1 cm)	1	0.8	7	78	43	9	1	84
47.85	Decomposed shear zone w py along arg. laminations.	var.				Py along shear <5% py assoc. ₩	20	1.9		60 77	97 90	13	1	5Ø 124
49.9	Graphitic schist as above.				49.95	qtz stringers mnr py assoc. w siliceous vein-	2	[ł		108		1	122
50.9	Light gr, tuffaceous volcs. w barren qtz stringers.		SD1-38	49.95	ţ	lets tr. py	3	1.1	42	88	97	15	1	83

PROJECT : 88-BC-952 DRILL HOLE LOG NO. 88-SDD-901 Sheet 4 of 6

		Tectonic %	Sample			Mineralization	(ppb)	ASSA	Y RE	SULTS	5 - E			
Depth	Description	C/A struct.Rec	no.	From	То	& Alteration	Αυ	Ag	As	Ва	Cu	Ър	sb	Zn
52.0	Same as above. Graphitic schist intercalated w tuff. 10% qtz stringers. Shear.		SD1-39 SD1-40				1 2	1.2 1.2		114 91	78 72	11 20	1	76
52.5	Graphitic interval which represents a shear zone.	50 top cont							•					
52.9		90 lam 60 lr.cont		5				2		,				
57.0	Interlam. tuff/graphite. Mineraliz contained within arg laminae, occ py blebs/ cubes < 2mm.		SD1-42	54.35	55.78	Py in arg lam Abun cubic py Abun cubic py	1 1 1	1.4 1.2 Ø.8	31	68 73 69	72 67 87	11 18 19	1 1 1	86 53 60
61.2	Blk/light gy graphitic unit Occasional qtz stringers w py.	5		58.70	60.20	Abun cubic py Occ Py/cpy? stringers mnr py	1 1	1.6 1.2	29 7	69 60	87 48	14 10	1 1	107 366
61.7	Decomposed, shear zone	20 lr.cont	SD1-49	61.20	61.70	abundant py	1	1.3	1	53	57	15	1	264
	Blk/light gy graphitic unit Occasional qtz stringers w		SD1-43	66.50	67.50		20	1.3	12	50	25	14	1	403
68.0	РУ•	80 top con	SD1-50	67.75	69.50	decomposed	1	2.0	7	73	33	22	2	343
68.4	Fault sub-parallel to C/A. Qtz vein plus graphitic lam	20 bot con				mnr qtz,py Py blebs <u><</u> .5cm		;						
8ø.ø	Same as above. V. fine blk graphitic unit. Rare qtz stringers.		SD1-52	78.62	80.12	abun dis py Fine dis py silic,mnr py	2 1	1.0	1	66 73	73 26	25 16	1 2	513 202
	Brecciated zone, qtz matrix angular <lcm blk="" graphitic<="" td=""><td></td><td>SD1-46 SD1-53</td><td></td><td></td><td>siliceous,mnr py(50%C.R.)</td><td>2Ø 3</td><td>1.0 0.3</td><td>4 9</td><td>99 104</td><td>34 42</td><td>21 24</td><td>1 1</td><td>402 366</td></lcm>		SD1-46 SD1-53			siliceous,mnr py(50%C.R.)	2Ø 3	1.0 0.3	4 9	99 104	34 42	21 24	1 1	402 366
81.7	fragments.	:			-	Tr. py blebs < 3 mm.								

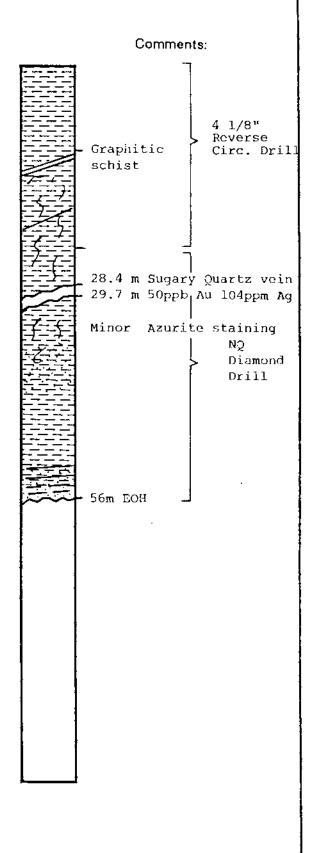
PROJECT : 88-BC-052 DRILL HOLE LOG NO. 88-SDD-001 Sheet 5 of 6

Depth	Description	Tectonic % C/A struct.Red		From		Mineralization		pb) ASSAY RESULTS - ppm Au Ag As Ba Cu Pb Sb z						
рерги	Description	C/A SCIUCT.Ret	no.		TO	& Alteration	Au	Ag	AS	Ва	Cu	PD	Sb	Zn
86.85	Blk homogeneous graphitic unit same as above. Occ. pale tuffaceous laminations	85 bđg	1	1	Ì	V.silic.,abun py Tr py. V.silic.,abun py	2 1	1.0 Ø.8		74	71 25	31 23	1 2	691 104
86.88	Qtz vein appears barren.	90 lr cont					}							
94.6	Graphitic unit as above. 3 - 5% qtz stringers <u><</u> 2mm		SD1-58	91.70	92.70	V.silic.,abun py Poor py miner. Poor py miner.	2 3 1	0.8 0.5 0.6	30	72 109 81	31 33 45	21 25 25	1 1 1	53 28 20
95.7	Pale gy/gr tuffaceous inter bed. Top cont. ground.	60 lr cont				Poor py miner.	i	1.2		622	19	23	i	73
96.5	Graphitic unit as above.		SD1-54	95.7	96.50	Tr dis py	19	.8	13	44	21	14	1	31
97.0	Pale gy/gr tuffaceous unit, slightly calc. Light br interbedded tuff bands up to 10 cm, with 10 cm inter bedded graphitic laminae. Qtz stringers within graph. contain tr py.	80	SD1-61	96.90	97.90	Tr py in stringers	4	Ø.8	21	151	53	25	2	29
99.7	Blk graphitic schist unit w interbdd thin siliceous laminations.Occasional py blebs		SD1-63	97.90	99.40	Py blebs, Stringers.	3	1.0	20	88	53	30	2	24
100.3	Qtz vein contacts ground.		•			Tr py blebs.							-	
	graphitic unit as above.	45 bdd	SD1-69	101.5	103.0	Tr dis'm py Tr dis'm py (50% CL)	5 8 10	Ø.9 Ø.8 Ø.8	24	60 67 72	21 46 47	27 19 20	3 2 2	22 93 158
111.0	Occ qtz v'lets.	65	SD1-71	111.0	111.4	Tr dis'm py Py blebs	12	0.8	18	47	51	19	2	483
		variable CA	SD1-73 SD1-74	112.4 113.4	113.4 114.4	V.silic,mnr py V.silic,mnr py V.silic,mnr py V.silic,mnr py Tr py	3 8 4 9	1.0 1.2 1.0 0.9	1 1	40 42 53 41	35 38 38 28	25 3Ø 28 24	2 1 2 2	181 526 516 46

PROJECT : 88-BC-352 DRILL HOLE LOG NO. 88-SDD-001 Sheet 6 of 6

:

Depth	Description	Tectonic % C/A struct.Rec	Sample no.		То	Mineralization & Alteration	(ppb) Au	ASSA Ag		ESULT: Ba			ļsъ	Zn
118.7	gy, w abundant py blebs <6%	25 Top cont 45 bot cont	SD1-76	115.7	117.2	Silic,<8%py in qtz stringers	2	Ø.8	27	97	47	22	1	59
	Graphitic unit as above. Fault parallel to C/A with minor < lcm wide qtz vein appears barren. Bottom very silicified with 8% py.		SD1-77	119.0	119.8	l cm qtz vein with mnr py 8% py	1	Ø.8	32	37	19	18	1	46
121.0		40 lam	SD1-78	120.5	121.5	8 cm qtz vein with mnr py	16	ø.8	52	53	93	27	2	118
123.7	Graphitic unit as above.	35 bđg	SD1-79	121.5	122.5	mnr qtz stringers	4	0.8	21	67	42	23	1	357
	Interlayered light gy tuff units 3-30 cm wide with graphitic schist. Minor gtz v'ing. Py blebs confined to	40 bdg	SD1-62	124.5	125.5	mnr gtz	2 2Ø 17	Ø.8 1.4 Ø.7	19 9 15	53 69 6Ø	22 35 34	19 11 21	1 1 2	166 186 88
130.4	graphitic/argillaceous lam, lower incompetent portion represents a shear.	45 lam				silic, mnr py qtz stringers w mnr py	12 2	Ø.9 1.0		46 49	22 54	19 28	4	64 211
133.7	Tuff, light gy/gr, with minor qtz v'lets (< 2%). Unit is chloritized.		SD1-84	130.4	131.4	mnr hem st. Fine <2% dis'm po	1	1.3	23	722	2	15	2	64
	Gr phyllite (massive) minor hem. staining, competent	80 parting	SD1-85	136.0	137.0	mnr hem st., gtz stringers	5	1.2	23	1669	24	14	2	75
145.4	friable unit. Minor part- ings throughout.		SD1-65	139.5	140.5		20	1.9	13	1507	8	25	1	135
148.7	White, sugary quartz vein, with minor graphitic laminations. Upper and lower contacts obscured.		SD1-66 SD1-67 SD1-58	146.5	147.5		10 10 20	1.8 .9 .7	6 10 13	42	30 24 31	14 20 19	2 1 1	45 47 42
	Gr phyllite (massive), with equal interbeds of graphite	parting	{			mnr qtz string, & cpy blebs	4	1.2	10	123	47	22	1	32
154.5	unit possess argillic part- ings.		SD1-69	150.5	151.5	mnr qtz,py mnr qtz,py mnr qtz,py	1 8 2	0.8 0.8 0.5		52 67 90	28 46 48	24 19 19	1 2 1	36 93 75
	End of hole.													



DRILL HOLE LOG SUMMARY

.

NI-TEC Resource Management Ltd.

Company	Canova/Expeditor
Project No.	88-BC-052
Drill hole no.	88-SDD-2
Area/Township	Okanagan
Mining Division	Vernon
Claim Name	Skookum showing
N.T.S.	82-L/6W
Grid Reference	Line 1080E/4975N
Angle/Orientation	-60 [°] /140 [°]
Length	55.5 meters (182 ft)
Core size	4 1/8"RC to 23.2m/NQ to EOH
% Recovery	95%
Depth to Bedrock	0.4 meters
Lithology Fm Top	Graphitic schist
Lithology Fm Base	Graphitic schist
Date collared	December 4, 1988
Date completed	December 5, 1988
Dip Tests	N/A
No. of Samples	14 RC / 19 NQ
Sample Interval	1.5 RC/Variable NQ
Sample No's	1801A 1814A From: SD2-1 To: SD2-19
Drilling Company	D.W. CDATES
Logged by	J.Dahrouge/D.Collins

Scale of Summary log

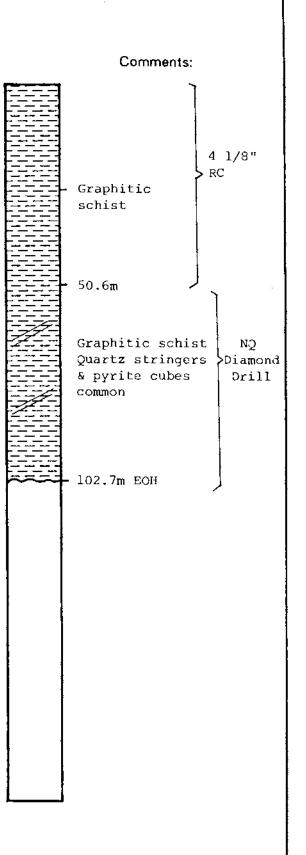
PROJECT : 88-BC-052 DRILL HOLE LOG NO. 88-SDD-002

Sheet 1 of 2

Depth	Description	Tectonic C/A struct.		Sample no.	From	ТО	Mineralization & Alteration	(ppb) Au			RESUI Ba				{ Zn
ØØ.ØØ	Collar Reverse Circulation				1	1			<u></u> }⊥	Ī					-
22.86	Commence diamond drilling			SD2-1 SD2-2				1	Ø.6 0.9	26	53 60	35	21	1	39 81
26.52	Black graphitic schist. <3% sugary qtz veinlets.	45 veins		SD2-3	23.86	24.86	Py fract fill <5% py blebs Rx	1	0.6	17	56 53	70 29	18 16	1	68 46
28.65	Same as above. Qtz veinlets.	85 veins 55 bedding	-	SD2-5	25.86	28.53		1	0.6	13	58	39	12	1	91
29.56	As above. Includes one qtz vein, interval is <55% sugary white qtz veinlets	5-45 veins 30 bdg	•	SD2-6	28.43	29.69	Py in graph host <8% py in qtz vein.Rx.	50	104	76	42	7	398	1	648
30.17	Black graphitic schist as above. Minor qtz blebs.			SD2-7	29.99	30.99	<10% rx py blebs < 1 cm.	2	1.5	26	54	104	21	1	177
35.66	Graphitic schist hosting minor qtz veinlets (<3%). Base is semi-competent.	40 veins					Minor azurite in gtz vein. Py <3%.	1		35 26		58 66		1	140 127
37.28	Competent-siliceous light grey graphitic schist/ argillite unit. Qtz vein- lets 2-5 CM	60 bdg 5-60veins		SD2-10	37.25	38.25	Abundant py. <3% Rx py.	2	1.:	2 20	60	32	22	2	177
37.79	White quartz vein.	ground				• 	Minor py	2						ł	
41.76	Competent graphitic unit. Minor qtz stringers. As above.	35 bđg					Minor py		2						
	Graphitic unit with minor interbedded incompetent	85 bdg		SD2-11	42.80	43.80	Abundant qtz & py blebs	2	1.0	9	60	40	16	1	264
	sections. Abundant (<8%) qtz stringers < 1 cm.			SD2-12	43.80	44.30	_< 6% ру.	1	1.0	ø 10	60	57	19	1	172
52.25	Graphitic unit with qtz stringers as above.			SD2-13 SD2-14 SD2-15	50.25	51.25			0.8	2 15 3 17 8 12	47 53 73	49	13	1	243

PROJECT : 88-BC-052 DRILL HOLE LOG NO. 88-SDD-002 Sheet 2 of 2

Depth	Description	Tectonic C/A struct.	1	Sample no.	From		Mineralization & Alteration	(ppb) Au				SULT: Cu			Zn
53.25	Incompetent black graphitic unit.			SD2-16	52.25	53.25	Minor py.	2	1.0	4	70	56	12	1	441
57.00	Laminated light grey graph- itic unit. Minor qtz vein- lets.	80 Bdg	2	SD2-17 SD2-18 SD2-19	54.25	55.25	п	2 1 1	Ø.8 1.0 1.2	9	54 46 51	33 48 76	15 17 16	1 1 1	186 372 891
	End of Hole														



DRILL HOLE LOG SUMMARY

•

NI-TEC Resource management Ltd.

Company	Canova/Expeditor
Project No.	88-BC-052
Drill hole no.	88-SDD-3
Area/Township	Økanagan
Mining Division	Vernon
Claim Name	Skopkum showing
N.T.S.	82L/6W
Grid Reference	Line 1195E/5300N
Angle/Orientation	-45 [°] /130 [°]
Length	103 meters (339 feet)
Core size	4 1/8"RC to 50.6m/NQ to EOH
% Recovery	95%
Depth to Bedrock	0.4 meters
Lithology Fm Top	Graphitic schist
Lithology Fm Base	Graphitic schist
Date collared	December 7, 1988
Date completed	December 13, 1988
Dip Tests	N/A
No. of Samples	29RC / 20N2
Sample interval	1.5 RC/ 20 NQ
Sample No's	From: $\frac{1989A}{503-1}$ To: $\frac{1989A}{503-20}$
Drilling Company	D.W. COATES
Logged by	J.Dahrouge/D.Collins

PROJECT: 88-BC-052 DRILL HOLE LOG NO. 88-SDD-003 Sheet 1 of 3

							ECG NO. 88-300-003	-		ince.					
Depth	Description	Tectonic C/A struct.		mple no.	From		Mineralization & Alteration	(ppb) Au	AS Ag		RESUI Ba	.TS - Cu	ppm Pb	Sb	 Zn
00.00	Collar Reverse circulation									 					
50.61	Commence diamond drilling							1							
	Graphite, dk grey, black w minor quartz and pyrite, unit is competent.	90 lam 50% CR													
	Graphite, 1 grey, partly silicified, semi-competent cubic py (<5mm)	90 lam	sc	D3-01	51.51	52.51	L <5% py	1	1.1	22	91	42	18	1	109
53.00	Graphite, dk grey, black partly silicified, partly silicified alon lamination	50 lam	SD	3-02	52.51	53.51	abun py	1	1.2	17	95	41	15	1	77
	Graphite, 1 grey, cubic Py	25 upper shear cont													
	Graphite, black, semi - competent to competent cubic pyrite (<5mm)	40 lam 10 clevage	SD	3-03	53.51	55.01	<6% py w mnr gtz blebs and stringers	16	1.4	5	122	48	11	1	102
	Graphitic shist, 1 grey, laminated, with quartz stringers parrallel to bedding, minor dark banding (up to 20 mm)	30-40 bdd/lam	SD	3-04	60.55	61.55	<8% quartz veinlets, <4% py	3	1.3	13	104	49	16	1	73
	Same as above, with cubic pyrite, and minor quartz	25-30 bdd	SD	3-05	67.20	67.95	<6% py, <4% guartz	1	1.9	19	79	31	24	4	56
	stringers and blebs along bedding		SD	3-06	67.95	68.95	<6% py, <4% quartz	3	1.0	4	127	61	13	1	59
	Graphite, black, with quartz stringers and bleb	25 top cont/lam	SD.	3-07	68.95	69.95	<8% py, <6% quartz	6	1.5	18	115	63	13	3	224
	along bedding, cubic	15 bot cont/lam	SD	3-08	69.95	71.05	<8% py,qtz	2	1.0	6	115	54	15	3	239

PROJECT: 88-BC-052 DRILL HOLE LOG NO. 88-SDD-003 Sheet 2 of 3

			Sample		1 1	Mineralization	(dad)	AS	SAY	RESUL	TS - 1	ppm		
Depth	Description	C/A struct.Rec	no.	From	То	& Alteration	Au	Ag	As	Ba	Cu	Pb	Sb	Zn
	Graphite, black, 1 grey, strongly silicified and competent unit with cubic pyrite,quartz blebs and stringers, minor folding	35 lam Ø @ 72.20 fold axis	SD3-09	72.20	73.20	<9% gtz,<8% PY	2	-9	4	103	50	11	2	94
	Graphite, black, miner- alization along bedding, semi competent to comp. Same as above with abun-	30 top cont 0 @ 74.20 fold axis	SD3-1Ø	73.20	74.20	<3% py, mnr qtz blebs, stringers	14	1.2	6	99	60	12	1	189
76.50	dant quartz stringers	30 lam												
78.84	Same as above , but competent unit	60 bot cont fault plane non-def'm	SD3-11	78.50	79.25	<8% qtz, <8% py	1	1.6	15	102	105	14	3	164
	Same as above, but including 3 cm quartz vein, non mineralized		SD3-12	79.25	80.25	<10% py along frac	3	1.3	14	1Ø5	73	13	1	76
81.99	Banded graphite, 1 grey black, quartz stringers and blebs along bedding cubic pyrite,occasional quartz veinlets (<1 cm)	30 lam				mnr qtz blebs, stringers								
82.24	Graphite, black, and competent, with guartz blebs parallel to bed- ding	40 lam	SD3-13	81.99	82.24	<15% cubic py, <8% gtz blebs	2	1.5	2	115	79	14	3	352
	Same as above.	25 lam												
	Graphite, 1 grey, in- competent, guartz and	25 bot	SD3-14	84.75	85.75	<6% py, gtz	1	1.3	21	98	36	15	3	135
85.70	pyrite blebs	contact		1										
	Graphite, black and competent, with quartz blebs parrallel to													
88.00	bedding		SD3-15	87.95	88.70	<8% py, qt2	2	1.4	5	97	73	14	3	85

PROJECT : 88-BC-052 DRILL HOLE LOG NO. 08-SDD-003 Sheet 3 of 3

ر	· · · · · · · · · · · · · · · · · · ·	Tecto	nic	Sample	1	11	Mineralization	(ppb)	AS	SAY	RESUL	rs - c	 ៣០<		
Depth	Description	C/A str			From	то	& Alteration	Au		As		-	-	Sb	Zn
88.75	Graphite, strongly deformed with quartz stringers and blebs, cubic pyrite assoc w quartz blebs														
88.29	Fault zone, l grey, buff, v fine grained matrix, comp- etent unit, with abundant rose quartz and associated pyrite/galena mineralizatio				5 87.70	88.35	<8% dis py mnr v.fn.dis. gal <6% rose gtz	22	1.5	13	153	2	13	6	79
92.25	Graphite, black, occasional veinlets (<25 mm), quartz stringers and blebs, pyrite blebs and fracture fill	lam/bd		SD3-11	7 88.35	88.45	5 <9% py, <8% qtz blebs stringers	8	1.1	3	103	57	9	5	94
92,75	Graphite, black, incompeten shear zone, pyrite fracture fill and blebs, minor quart	1		SD3-18	92.25	92.75	<12% py, qtz	1	1.2	2	104	85	22	5	516
93.50	Graphite, black, strongly deformed, quartz stringers, veinlets and blebs, pyrite blebs assoc. with quartz stringers and veinlets	CA variab	le	SD3-19	92.75	93.50	<15% qtz, <10 % py	3	2.1	28	75	98	84	4	331
93.75	Graphite, black, laminated, minor quartz stringers and blebs, cubic pyrite, comp- etent unit.	35 lam		*		***	<10% py, <5% qtz								
101.13	Graphite, black, competent, unit shows plastic def'm, quartz blebs and minor stringers along laminations	lam					<5% gtz, <6% py								
101.60	Graphite, l grey, black, quartz blebs and stringers cubic pyrite	55 top cont 65 lam					<6% qtz <6% py								
102.70	Graphite, dk black, comp- etent, quartz blebs, minor stringers, pyrite blebs		-	SD3-20	101.7	102.7	<8% qtz, <6% py	5	1.8		144	74	16	2	232
	End of hole.										<u> </u>		<u> </u>		

APPENDIX VI

· __ ·-- ·

RC SAMPLE DESCRIPTIONS AND SAMPLE INTERVALS

HOLE #	AZIMUTH/ANGLE	LENGTH	LOCATION	SAMPLES
88-SDD-001	140 ⁰ /-45 ⁰	(507')154.5m	L 975E; 5015N	88
88-SDD-002 SDD-002	140 ⁰ /-60 ⁰ Combined hole	(76')23.2m(R (106')32.3m(14 19
88-SDD-003	130 ⁰ /-45 ⁰ Combined hole	(164')49.98m (174')53.03m		29 20
88-SRC-001	140 ⁰ /-45 ⁰	(446')135.93	m L1050E; 5095N	91
88-SRC-002	140 ⁰ /-45 ⁰	(446')135.93	m L1160E; 5155N	87
88-SRC-004	150 ⁰ /-45 ⁰	(426')129.84	m L 997E; 5055N	83
88-SRC-005	270 ⁰ /-45 ⁰	(136') 41.45	n L1005E; 5000N	24
	TOTAL DIAMONI	D DRILLED	239.84 Meters (787 fe	et)
	TOTAL ROTARY	DRILLED	516.38 Meters (1694 f	eet)
	TOTAL NUMBER	OF SAMPLES	455	

.

Date Start: Dec. 4/88 Hole:88-SDD-002 Date Finish: Dec. 5/88 Total Length: 55.47 m

SAMPLE #	INTERVAL (M)	WIDTH	DESCRIPTION
	From To	(M)	
1801 A	1.52 3.05	1.52	Arg/grap br/gy med/f grained
1802 A	3.05 4.57	1.52	Arg/grap br/gy med/f grained
1803 A	4.57 6.10	1.52	Grap. dk gy minor py/qtz
1804 A	6.10 7.62	1.52	Arg/grap blk/dk gy minor py/qtz
1805 A	7.62 9.14	1.52	Grap. blk/dk gy f/m grained
1806 A	9.14 10.67	1.52	Arg/grap br/gy f grained
1807 A	10.67 12.19	1.52	Grap. blk minor py f grained
1808 A	12.19 13.72	1.52	Grap. blk minor py f grained
1809 A	13.72 15.24	1,52	Grap. blk minor py f grained
1810 A	15.24 16.76	1.52	Grap. L. gy minor py f grained
1811 A	16.76 18.29	1.52	Grap. L. gy f grained
1812 A	18.29 19.81	1.52	Grap. blk f grained
1813 A	19.81 21.33	1.52	Grap. L. gy minor qtz/py f "
1814 A	21.33 22.86	1.52	Grap. L. gy minor qtz/py f "
1	4 samples collec	ted.	
	AD ATTA DDATH DT		

.

END REVERSE CIRC BEGIN DD

Date Start: Dec. 7/88Hole: 88-SDD-003Date Finish: Dec. 13/88Total Length: 103.01 m

SAMPLE # INTERVAL (M) WIDTH DESCRIPTION

	THIDRING	()		
	From	ТО	(M)	
1989 A	6.40	7.92	1.52	Graph/arg blk/L gr,m/c gd,<3% qtz,<1% py
1990 A	7.92	9.45	1.52	Graph/arg blk/ gr,m/c gd,3% qtz,2% py/po
1991 A	9.45	10.97	1.52	Graph/arg L gy, f/c gd, <3% qtz,<1% py
1992 A	10.97	12.50	1.52	Graph/arg L gy, f/c gd, <3% qtz,<1% py
1993 A	12.50	14.02	1.52	Graph/arg L gy, f gd
1994 A	14.02	15.54	1.52	Graph/arg L gy, f/c gd
1995 A	15.54	17.07	1.52	Graph/arg L gy, f/c gd
1996 A	17.07	18.59	1.52	Graph/arg L/dk gy, f/m gd, mnr qtz
1997 A	18.59	20.12	1.52	Graph/arg L/dk gy, f/m gd
1998 A	20.12	21.64	1.52	Graph blk, f gd, <4% py
1999 A	21.64	23.16	1.52	Graph blk, f/m gd, <2% qtz
2000 A	23,16	24.69	1.52	Graph blk, f gd, <2% qtz
45001A	24.69	26.21	1.52	Graph blk/dk gy, f gd, <2% py, mnr qtz
45002A	26.21	27.74	1,52	Graph blk, f/c gd, <2% qtz,<4% py
45003A	27.74	29.26	1.52	Graph blk, f gd, <6% py
45004A	29.26	30.78	1.52	Graph blk, f gd, <4% py
45005A	30.78	32.31	1.52	Graph blk, f gd, <4% py
45006A	32.31	33.83	1.52	Graph blk, f gd, <3% py
45007A	33.83	35.36	1.52	Graph blk, f gd, <1% qtz,<4% py
45008A	35.36	36.88	1.52	Graph blk, f gd
45009A	36.88	38.40	1,52	Graph blk, f/m gd, <3% py
45010A	38.40	39.93	1.52	Graph blk/dk gy, f gd, <6% py
45011A	39.93	41.45	1.52	Graph blk/dk gy, f gd, <4% py, mnr qtz
45012A	41.45	42.97	1.52	Graph dk gy, f/c gd, <4% py, mnr qtz
45013A	42.97	44.50	1,52	Graph dk gy, f/c gd, <3% py, mnr qtz
45014A	44.50	46.02	1.52	Graph L gy, f/m gd, <3% py, <3% qtz
45015A	46.02	47.55	1.52	Graph L gy, f gd
45016A	47.55	49.07	1.52	Graph blk/dk br, f/c gd, <3% py
45017A	49.07	50.61	1.54	Graph L to dk gy, f/c gd

Date Start: Dec. 3/88 Date Finish: Dec. 4/88

Hole: 88-SRC-001 Total Length: 135.93 m

DESCRIPTION

SAMPLE #	INTERVAL From	(M) To	WIDTH (M)	DESCRIPTION
14525 A	2.13	3.05	0.91	Andes. L. br, med grained
14526 A	3.05	3.96	0.91	Andes. L. br, med grained
14527 A	3.96	4.88	0.91	Andes. L. br, med grained
14528 A	4.88	5.79	0.91	Andes. L. br, med grained
14528 A	5.79	6.71	0.91	Andes/Arg. L. br/gy
14530 A	6.71	7.62	0.91	Arg/grap/tuff, L. gy, med f.grained
14531 A	7.62	8.53	0.91	Arg/grap/tuff, L.gy, f.grained
14532 A	8.53	9.45	0.91	Arg/grap/tuff, L.gy, f.grained
14532 A	9.45	10.36	0.91	Arg/grap/tuff, L.gy, f.grained
14534 A	10.36	11.28	0.91	Arg/grap/tuff, L.gy, v f.grained
14535 A	11.28	12.19	0.91	Arg/grap/tuff, L.gy, f.grained
14536 A	12,19	14.02	1.83	Arg/grap/tuff, L.gy, f.grained
14537 A	14.02	15.54	1.52	Arg/grap/tuff, L.gy, f.grained
14557 A NS	15.54	17.07	1.52	Arg/grap/curr, b.gy, r.graineu
	17.07	18.59		Grap/minor tuff,L.gy f.grained
14538 A				
14539 A	18.59	20.12	1.52	Grap/minor tuff,L.gy f.grained
14540 A	20.12	21.64	1.52	Grap/minor tuff,L.gy f.grained
14541 A	21.64	23.16	1.52	Grap/minor tuff,L.gy f.grained
14542 A	23.16	24.69	1.52	Grap/minor tuff,L.gy f.grained
14543 A	24.69	26.21	1.52	Grap white/gy minor gtz f.grained
14544 A	26.21	27.74		Grap. dk gy minor py/po "
14545 A	27.74	29.26	1.52	Grap. dk gy minor py/po/qtz
14546 A	29,26	30,78		Grap. dk gy minor qtz f/m grained
14547 A	30.78	32.31	1.52	Grap. ak dy abandanc po r
14548 A	32.31	33.83		drup. Drwak dy minor py
14549 A	33.83	35.36	1.52	diap. Dik/uk dy minor py
14550 A	35.36	36.88	1.52	Grup: Dinyan gi minor piydes
14551 A	36.88	38.40	1.52	Grap. blk/dk gy minor py f grained
14552 A	38.40	39.93	1.52	grap. provat dy minor by
14553 A	39.93	41.45	1.52	diup. Dir/ur dy minor py
14554 A	41.45	42.97	1.52	didp: Mik/dk dy minor py
14555 A	42.97	44.50	1.52	diap. Dir/dr dy minor py
14556 A	44.50	46.02	1.52	ardb, wea dy winor destby t
14557 A	46.02	47.55	1.52	arap. med dy minor py
	47.55	49.07	1.52	Grap. blk minor py f grained
14559 A 14560 A	49.07	50.59	1.52	Grap. L. gy minor py f grained
14560 A 14561 A	50.59	52.12	1.52	Grap. blk minor py/qtz f/m grained
14561 A 14562 A	52.12 53.64	53.64	1.52	Grap. blk minor py/qtz f/m grained
14563 A	55.17	55.17 56.69	1.52	Grap. blk minor py/qtz f grained
14563 A 14564 A	56.69	58.89	1.52 1.52	Grap. med gy minor qtz f grained
14565 A	58.21	58.21	1.52	Grap. blk minor py/qtz f/m grained
14565 A	59,74	61.26	1.52	Grap. blk minor py/qtz f/m grained
14567 A	61.26	62.79	1.52	Grap. blk minor py f grained Grap. blk/dk gy minor py " "
14568 A	62.79	64.31	1,52	
14569 A	64.31	65.83	1.52	Grap. L. gy minor qtz f grained
14569 A 14570 A	65.83		1.52	Grap. L. gy minor qtz f grained
14570 A 14571 A		67.36		Grap. L. gy minor qtz/py f grained
14571 A	67.36	68.88	1.52	Grap. L. gy minor qtz/py f grained

SAMPLE			WIDTH	DESCRIPTION
14572 A	From 68.88	To 70.41	(M) 1.52	Grap. L. gy minor qtz/py f grained
14572 A 14573 A		71.93	1.52	Grap. med gy minor qtz f grained
14574 A		73.45	1.52	Grap. L. gy minor qtz f grained
14575 A		74.98	1.52	Grap. L. gy minor qtz f grained
14576 A		76.50	1.52	Grap. L. gy minor qtz f grained
14577 A		78.02	1.52	Grap. L. gy minor qtz f grained
14578 A		79.55	1.52	Grap. med gy minor qtz f grained
14579 A		81.07		Grap. med gy minor qtz f grained
14580 A		82.60		Grap. med gy minor qtz f grained
14581 A	82.60	84.12	1.52	Grap. med gy minor qtz abund. py
14582	A			
14583	A			
14584	A Tags void	1		
14585				
14586				
14587 A		85.64	1.52	Grap. blk/dk gy f grained
14588 A		87.17	1.52	Grap. blk/dk gy f grained
14589 A		88.69	1.52	Grap. blk/dk gy minor py/qtz
14590 A		90.22	1.52	Grap. blk/dk gy minor py/qtz
14591 A		91.74	1.52	Grap. blk/dk gy minor py/qtz
14592 A		93.26	1.52	Grap. L. gy minor qtz abund. py
14593 A		94.79	1.52	Grap. blk minor py f grained
14594 A 14595 A		96.31 97.84	1.52 1.52	Grap. med gy < 3% py f grained Grap. blk/dk gy minor qtz abund py
14596 A		99.34 99.36	1.52	Grap. med gy minor qtz/py vf grained
14597 A		100.88		Grap. L. gy minor qtz/py f grained
14598 A		102.48		Grap. L. gy abund qtz f grained
14599 A		103.91		Grap. dk gy minor qtz/py f/m grained
14600 A		105.43		Grap. L. gy minor qtz abund py
1751 A		106.96		Grap. L. gy minor qtz/py f grained
1752 A		108.58		Grap. L. gy minor py f grained
1753 A	108.58	110.00		Grap/Qtz v, L. gy/white minor py/cpy
1754 A		111.53		Grap. blk minor qtz < 4% py
1755 A	111.53	113.05		Grap. blk minor $qtz < 4\%$ py
1756 A	113.05	114.68	1.52	Grap. blk minor qtz < 4% py
1757 A	114.68	116.10	1.52	Grap. med gy minor py f grained
1758 A		117.62		Grap. L. gy minor qtz/py f grained
1759 A		119.15		Grap. dk gy minor py f grained
1760 A		120.67		Grap. L. gy minor qtz/py f grained
1761 A		122.29		Grap. blk f grained
1762 A		123.72		Grap. blk f grained
1763 A 1764 A		125.24		Grap. blk f grained
1764 A 1765 A		126.77 128.39		Grap. blk f grained Grap. blk minor qtz f grained
1765 A		120.39		Grap. blk 6% qtz 2% py
1767 A		131.34		Grap. blk < 4% qtz
1768 A		132.86		Grap. blk minor qtz f grained
1769 A				Grap. blk f grained
	134.49	-		Grap. blk f grained
EOH 1				

Date Start: Dec. 5/88 Date Finish: Dec. 6/88 Hole: 88-SRC-002 Total Length:135.93 m

SAMPLE #	INTERVAL	(M)	WIDTH	DESCRIPTION
	From	То	(M)	
1001 3	0.00	1.83	1.83	Casing
1901 A 1902 A	1.83 3.35	3.35 4.88	1.52 1.52	Arg/grap br/L.gy f/c grained, py Arg br f/c grained (gd)
1902 A 1903 A	4.88	4.00 6.40	1.52	Grap. L. gy f/c grained
1903 A 1904 A	6.40	7.92	1.52	Grap. L. gy f/c grained, qtz
1905 A	7.92	9.45	1.52	Grap. L. gy f grained
1906 A	9.45	10.97	1.52	Grap. dk gy f/c grained, tr gtz
1907 A	10.97	12.50	1.52	Graph/Arg blk/br,f/c gd,4% qtz,2% py
1908 A	12.50	14.02	1.52	Graph/Arg blk/br,f/c gd,4% qtz,2% py/cpy?
1909 A	14.02	15.54	1.52	Graph/Arg blk/br,f/m gd,4% qtz,2% py/cpy?
1910 A	15.54	17.07	1.52	Graph blk, f/m gd,4% qtz,2% py
1911 A	17.07	18.59	1.52	Graph blk, f/m gd,3% qtz,2% py,po,ntv.Ag?
1912 A	18.59	20.12	1.52	Graph blk, f gd, minor qtz,3% py
1913 A	20.12	21.64	1,52	Graph blk, f/m gd, minor qtz,<3% py
1914 A	21.64	23.16	1.52	Graph blk, f gd, <4% py
1915 A	23.16	24.69	1.52	Graph blk, f gd, minor qtz/py
1916 A	24.69	26.21	1.52	Graph blk, f gd, <4% py
1917 A	26.21	27.74	1.52	Graph blk, f gd, <2% py
1918 A	27.74	29.26	1.52	Graph blk, f gd, minor qtz/py
1919 A 1920 A	29.26 30.78	30.78 32.31	1.52 1.52	Graph blk, f gd, minor qtz/py Graph blk, f gd, minor py
1920 A 1921 A	32.31	33.83	1.52	Graph blk, f gd, minor py
1921 A	33.83	35.36	1.52	Graph blk, f gd, minor py
1923 A	35.36	36.88	1.52	Graph blk, f gd, minor qtz,<5% py
1924 A	36.88	38.40	1.52	Graph blk, f/c gd, $<3\%$ gtz, $<3\%$ py
1925 A	38.40	39.93	1.52	Graph blk, f/c gd, <3% qtz,<3% py
1926 A	39.93	41.45	1.52	Graph blk, f/m gd, <3% gtz,<3% py
1927 A	41.45	42.97	1.52	Graph blk, f/m gd, <3% qtz,<3% py
1928 A	42.97	44.50	1.52	Graph/tuff? L gy, f/m gd, <3% gtz,<3% py
1929 A	44.50	46.02	1.52	Graph/tuff? L gy, f/m gd, <3% gtz,<3% py
1930 A	46.02	47.55	1.52	Graph/tuff? L gy, f/c gd, <4% qtz,<3% py
1931 A	47.55	49.07		Graph blk, f gd, <2% py
1932 A	49.07	50.59		Graph blk, f gd, <2% py
1933 A	50.59	52.12	1.52	Graph blk, f/c gd, <4% qtz,<4% py
1934 A	52.12		1.52	
1935 A	53.64	55.17		Graph blk, f/c gd, <1% qtz,<1% py
1936 A 1937 A	55.17 56.69	56.69 58.21	1.52	Graph blk, f gd, <3% py
1937 A 1938 A	58.21	58.21	1.52 1.52	Graph blk, f/c gd, <1% qtz,<3% py Graph L gy, f/m gd, <4% qtz,<8% py
1939 A	59.74	61.26	1.52	Graph L gy, $1/m$ gd, $\langle 4\% qt2, \langle 6\% py$ Graph L gy, f/m gd, $\langle 3\% qt2, \langle 6\% py$
1940 A	61.26	62.79	1.52	Graph L gy, f/m gd, <4% qtz,<8% py
1941 A	62.79	64.31	1.52	Graph L gy, f/m gd, <4% qtz,<8% py
1942 A	64.31	65.83	1.52	Graph L gy, f/m gd, <4% qtz,<8% py
1943 A	65.83	67.36	1.52	Graph L gy, f/m gd, <4% qtz,<8% py
1944 A	67.36	68.88	1.52	Graph L gy, f/m gd, <4% qtz,<4% py
1945 A	68.88	70.41	1.52	Graph L gy, f/m gd, <3% qtz,<3% py
1946 A	70.41	71.93	1.52	Graph/arg L gy/br, f/c gd, <3% qtz,<1% py
1947 A	71.93	73.45	1.52	Graph/arg L gy/br, f/c gd, <3% qtz,<1% py
1948 A	73.45	74.98	1.52	Graph/arg L gy/br, f gd, <3% qtz

SAMPLE #	INTERVAL	· · ·	WIDTH	DESCRIPTION
	From	TO	(M)	Graph L gy/br, f/c gd, <2% qtz
1949 A	74.98 76.50		1.52 1.52	Graph L gy/br, f/c gd, $<2%$ qtz
1950 A	78.02		1.52	Graph L gy, f/m gd, $<4\%$ qtz, $<1\%$ py
1951 A 1952 A	79.55		1.52	Graph L gy, f/c gd, <6% qtz,<2% py
1952 A 1953 A	81.07		1.52	Graph L qy, f/c gd, <6% qtz, <2% py
1953 A 1954 A	82.60		1.52	Graph blk/gy, f/c gd, <6% qtz ,<4% py
1954 A 1955 A	84.12		1.52	Graph blk/gy, f/c gd, $<8\%$ qtz, $<4\%$ py
1955 A 1956 A	85.64		1.52	Graph blk, f/c gd, <6 qtz, <3 py
1958 A 1957 A	87.17		1.52	Graph blk, f/c gd, <6 % qtz, <3 % py
1957 A 1958 A	88.69		1.52	Graph blk, f gd
			1.52	Graph blk, f gd
1959 A	90.22 91.74		1.52	Graph blk, f gd
1960 A	91.74	93.20		Graph blk, f gd
1961 A 1962 A	93.20		1.52	Graph blk, f gd, <2 % qtz, <6 % py
1962 A 1963 A	96.31	97.84		Graph blk, f gd
1963 A 1964 A	97.84	99.36		Graph blk, f gd
	Sample no			stafu pik, i da
1965 A	100.88	102.41		Graph blk, f gd, <3% qtz,<2% py
1967 A	102.41	103.93		Graph blk, f gd, <3 % gtz, <2 % py
1968 A	103.93	105.46		Graph blk, f gd, <3 % gtz, <2 % py
1969 A	105.46	106.98		Graph blk/gy, f/m gd, <2 % qtz, <2 % py
1909 A 1970 A	106.98	108.50		Graph blk/gy, f/m gd, <2% qtz,<2% py
1971 A	108.50	110.03		Graph/Arg L. gy f grained, 2% qtz, 2% py
1972 A	110.03	111.55		Graph/Arg dk gy/gr f gd,2% qtz,2% py
1973 A	111.55	113.08		Graph L. gy f grained
1974 A	113.08	114.60		Graph L. gy f grained, minor py
1975 A	114.60	116.12		Graph L. gy f grained, minor qtz
1976 A	116.12	117.65		Graph L. gy f grained, minor py/qtz
1977 A	117.65	119,17		Graph blk, f/m gd,3% py
1978 A	119.17	120.69		Graph blk, f/m gd,2% qtz,1% py
1979 A	120.69	122.22		Graph blk, f/c gd,3% qtz
1980 A	122.22	123.74		Graph blk, f/c gd,3% qtz
1981 A	123.74	125.27		Graph/tuff? L gy, v f gd, <1% py
1982 A	125.27	126.79		Graph/tuff? L gy, v f gd, <1% py
1983 A	126.79	128.31		Graph/phyll.dk gy/gr,f gd,<2% py,5%py/cpy
1984 A	128.31	129.84		Graph/phyll.dk gy/gr,f gd,<2% py,5%py/cpy
1985 A	129.84	131.36		Graph blk, f/m gd, <1% qtz, 3%py
1986 A	131.36	132.89		Graph blk, f/m gd, <1% qtz, 2%py
1987 A	132.89	134.41		Graph blk, f grained, <2%py
1988 A	134.41	135.93	1.52	Graph blk, f grained, <1%py
EOH	87 samp	ples coll	ected.	

Date Start: Dec. 13/88Hole: 88-SRC-004Date Finish: Dec. 14/88Total Length: 129.84 m

SAMPLE #	INTERVAL		WIDTH	DESCRIPTION
	From	То	(M)	1 - 1 - (touff I have from from in a
45151A	3.35	4.88	1.52	Ands/tuff L br/gy f/m grained
45152A	4.88	6.40	1.52	Ands/tuff L br/gy f/c grained
45153A	6.40	7.92	1.52	Ands/tuff/mnr graph L br/gy f/m grained
45154A	7.92	9.45	1.52	Ands/tuff L br/gy f grained mnr qtz
45155A	9.45	10.97	1.52	Ands/arg L gy f grained
45156A	10.97	12.50 14.02	1.52 1.52	Ands/arg L gy f grained Ands/arg L gy f grained
45157A	12.50 14.02	14.02	1.52	Ands/arg L gy f grained
45158A	14.02	15.54	1.52	Ands/arg L gy V f grained
45159A	17.07	18.59	1.52	Ands/arg L gy v f grained
45160A	18.59	20.12	1.52	Ands/arg L gy v f grained
45161A	20.12	20.12	1.52	Ands/arg L gy v f grained Ands/arg L gy v f grained
45162A 45163A	21.64	23.16	1.52	Graph blk, f/m gd, minor gtz/py
45163A 45164A	23.16	23.10	1.52	Graph blk, f/m gd, minor gtz/py
45164A 45165A	24.69	26.21	1.52	Graph blk, f/m gd, minor gtz/py
45166A	26.21	27.74	1.52	Graph blk, f gd, <3% qtz/py
45167A	27.74	29.26	1.52	Graph blk, f/m gd, minor qtz/py
45168A	29.26	30.78	1.52	Graph blk, f/m gd, minor gtz/py
45169A	30.78	32.31	1.52	Graph blk, f/m gd, minor qtz/py
45170A	32.31	33.83	1.52	Graph blk, f/m gd, minor gtz/<3% py
45171A	33.83	35.36	1.52	Graph blk, f/m gd, minor gtz/<3% py
45172A	35.36	36.88	1.52	Graph blk, f/m gd, minor gtz/<4% cubic py
45173A	36.88	38.40	1.52	Graph blk, f/m gd, minor qtz/<4% cubic py
45174A	38.40	39.93	1.52	Graph blk, f/m gd, minor gtz/py
45175A	39.93	41.45	1.52	Graph blk, f/c gd, minor qtz/<4% py
45176A	41.45	42.97	1.52	Graph blk, f/m gd, minor qtz/<3% py
45177A	42.97	44.50	1.52	Graph blk, f/c gd, <3% qtz/py
45178A	44.50	46.02	1.52	Graph blk, f/c gd, <3% qtz/py
45179A	46.02	47.55	1.52	Graph blk, f/m gd, minor qtz/<4% py
45180A	47.55	49.07	1.52	Graph blk, f gd, minor qtz/<3% py
45181A	49.07	50.59	1.52	Graph blk, f gd, minor qtz/<3% py
45182A	50.59	52.12	1.52	Graph blk, f gd, minor qtz/<3% py
45183A	52.12	53.64	1.52	Graph blk, f/m gd, <2% qtz,<4% py
45184A	53.64	55.17	1.52	Graph blk, f gd, minor qtz,<3% py
45185A	55.17	56.69		Graph blk/dk gy, f/m gd, minor qtz/py
45186A	56.69	58.21	1.52	Graph blk/dk gy, f gd, minor qtz/py
45187A	58.21	59.74	1.52	Graph dk gy, f gd, minor py
45188A	59.74	61.26	1.52	Graph gy, f grained
45189A	61.26	62.79	1.52	Graph gy, f grained, minor qtz
45190A	62.79	64.31	1.52	Graph L gy, f gd, minor qtz/py
45191A	64.31	65.83	1.52	Graph gy, f/m gd, minor qtz,<3% py
45192A	65.83	67.36	1.52	Graph dk gy, f gd, minor py
45193A	67.36 68.88	68.88	1.52	Graph blk, f/m gd, <2% qtz,<4% py
45194A 45195A	70.41	70.41 71.93	1.52 1.52	Graph blk, f/c gd, <2% qtz,<4% py Graph blk, f/c gd, <3% qtz,<5% py
45195A 45196A	71.93	71.93	1.52	Graph blk, f/c gd, <3% qtz,<5% py Graph blk, f/c gd, <3% qtz,<5% py
45196A 45197A	73.45	73.45	1.52	Graph blk, f/c gd, <3% qt2,<4% py Graph blk, f/c gd, <1% qt2,<2% py
45197A 45198A	74.98	76.50	1.52 1.52	Graph blk, f/c gd, <1% qtz,<2% py Graph blk, f grained
45198A 45199A	76.50	78.02	1.52	Graph blk, f gd, minor qtz,<3% py
ADIDOU	10.00	/0.02	1.026	orabu prvi r dal wrupe devi-20 bi

SAMPLE #	INTERVAL From	(M) To	WIDTH (M)	DESCRIPTION
45200A	78.02	79.55	1.52	Graph blk, f gd, minor qtz/py
45051A	79.55	81.07	1.52	Graph blk, f gd, minor qtz,<2% py
45052A	81.07	82.60	1.52	Graph blk, f gd, minor qtz,<2% py
45053A	82.60	84.12	1.52	Graph blk, f/c gd, minor qtz/py
45054A	84.12	85.64	1.52	Graph blk, f/m gd, minor qtz/py
45055A	85.64	87.17	1.52	Graph blk, f/m gd, minor py
45056A	87.17	88.69	1.52	Graph blk, f gd, minor py
45057A	88.69	90.22	1.52	Graph blk, f/c gd, minor py
45058A	90.22	91.74	1.52	Graph blk, f/c gd, <4% qtz,<3% py
45059A	91.74	93.26	1.52	Graph blk, f/m gd, <3% py
45060A	93.26	94.79	1.52	Graph dk gy/blk, f/c gd
45061A	94.79	96.31	1.52	Graph dk gy/blk, f/c gd
45062A	96.31	97.84	1.52	Graph blk, f/m gd, mnr qtz/py
45063A	97.84	99.36	1.52	Graph blk, f/m gd, mnr qtz/py
45064A	99.36	100.88		Graph blk, f/c gd
45065A	100.88	102.41		Graph blk, f/c gd, mnr py
45066A	102.41	103.93		Graph blk, f gd, mnr py
45067A	103.93	105.46		Graph dk gy, f/m gd, mnr py
45068A	105.46	106.98		Graph gy, f gd, <4% py
45069A	106.98	108.50		Graph dk gy, f gd, <2% py
45070A	108.50	110.03		Graph blk, f gd, <3% py
45071A	110.03	111.55		Graph dk gy, f gd, mnr qtz/<3% py
45072A	111.55	113.08		Graph dk gy, f gd, mnr qtz/<3% py
45073A	113.08	114.60		Graph 1 gy, f gd, minor py
45074A	114.60	116.12		Graph 1 gy, f gd, minor py
45075A	116.12	117.65		Graph 1 gy, f gd, minor py
45076A	117.65	119.17		Graph blk, f/m gd, mnr qtz/<3% py
45077A	119.17	120.69		Graph blk, f/m gd, mnr qtz/<3% py
45078A	120.69	122.22		Graph dk gy, f/c gd, mnr qtz/<4% py
45079A	122.22	123.74		Graph dk gy, f/c gd, mnr qtz/mnr py
45080A	123.74	125.27		Graph 1 gy, f/c gd
45081A	125.27	126.79		Graph 1 gy, f/c gd
45082A	126.79	128.31		Graph 1 gy, f/c gd, <3% py
45083A	128.31	129.84	1.02	Graph 1 gy, f/c gd, <3% py

Date Start: Dec. 14/88 Date Finish: Dec. 15/88

Hole: 88-SRC-005 Total Length: 41.45 m

SAMPLE #	INTERVAL From	(M) To	WIDTH (M)	DESCRIPTION	
45092A	4.57	6.71	2.13	Graph blk, f/c gd, <10% qtz/<10% py/mnr gal/tetra(?)	
45084A	6.71	7.92	1.22	Graph blk, f/c gd, mnr qtz/<3% py	
45085A	7.92	9.45	1.52	Graph 1 gy, f/m gd, mnr qtz/<1% py	
45086A	9.45	10.97	1.52	Graph 1 gy, f/m gd, <3% qtz/<1% py	
45087A	10.97	12.50	1,52	Graph blk, f/c gd, mnr qtz/<3% py	
45088A	12.50	14.02	1.52	Graph blk, f gd, mnr qtz/<3% py	
45089A	14.02	15.54	1.52	Graph blk, f gd, mnr qtz	
45090A	15.54	17.07	1.52	Graph blk, f gd, mnr qtz/ <mnr py<="" td=""><td></td></mnr>	
45091A	17.07	18.59	1.52	Graph blk, f gd, mnr gtz/ <mnr py<="" td=""><td></td></mnr>	
45093A	18.59	20.12	1.52	Graph blk, f gd, mnr gtz/ <mnr py<="" td=""><td></td></mnr>	
45094A	20.12	21.64	1.52	Graph dk gy, f gd, mnr py	
45095A	21.64	23.16	1.52	Graph dk gy, f gd, mnr py	
45096A	23.16	24.69	1.52	Graph dk gy, f gd, mnr py	
45097A	24.69	26.21	1.52	Graph blk, f gd, mnr py	
45098A	26.21	27.74	1.52	Graph dk gy, f gd, mnr py	
45099A	27.74	29.26	1.52	Graph dk gy, f gd, mnr py	
45100A	29.26	30.78	1.52	Graph dk gy, f gd, mnr gtz/mnr py	
45101A	30.78	32.31	1.52	Graph gy, f gd, <2% py	
45102A	32.31	33.83	1.52	Graph gy, f gd, mnr qtz/mnr py	
45103A	33.83	35.36	1.52	Graph 1 gy, v f gd	
45104A	35,36	36.88	1.52	Graph 1 gy, f gd, <2% qtz/<5% py	
45105A	36.88	38.40	1.52	Graph 1 gy, f gd, <2 % gtz/ <5 % py	
45106A	38.40	39.93	1.52	Graph 1 gy, f gd, <5% py	
45107A	39.93	41.45	1.52	Graph 1 gy, f gd, <7% py	

APPENDIX VII

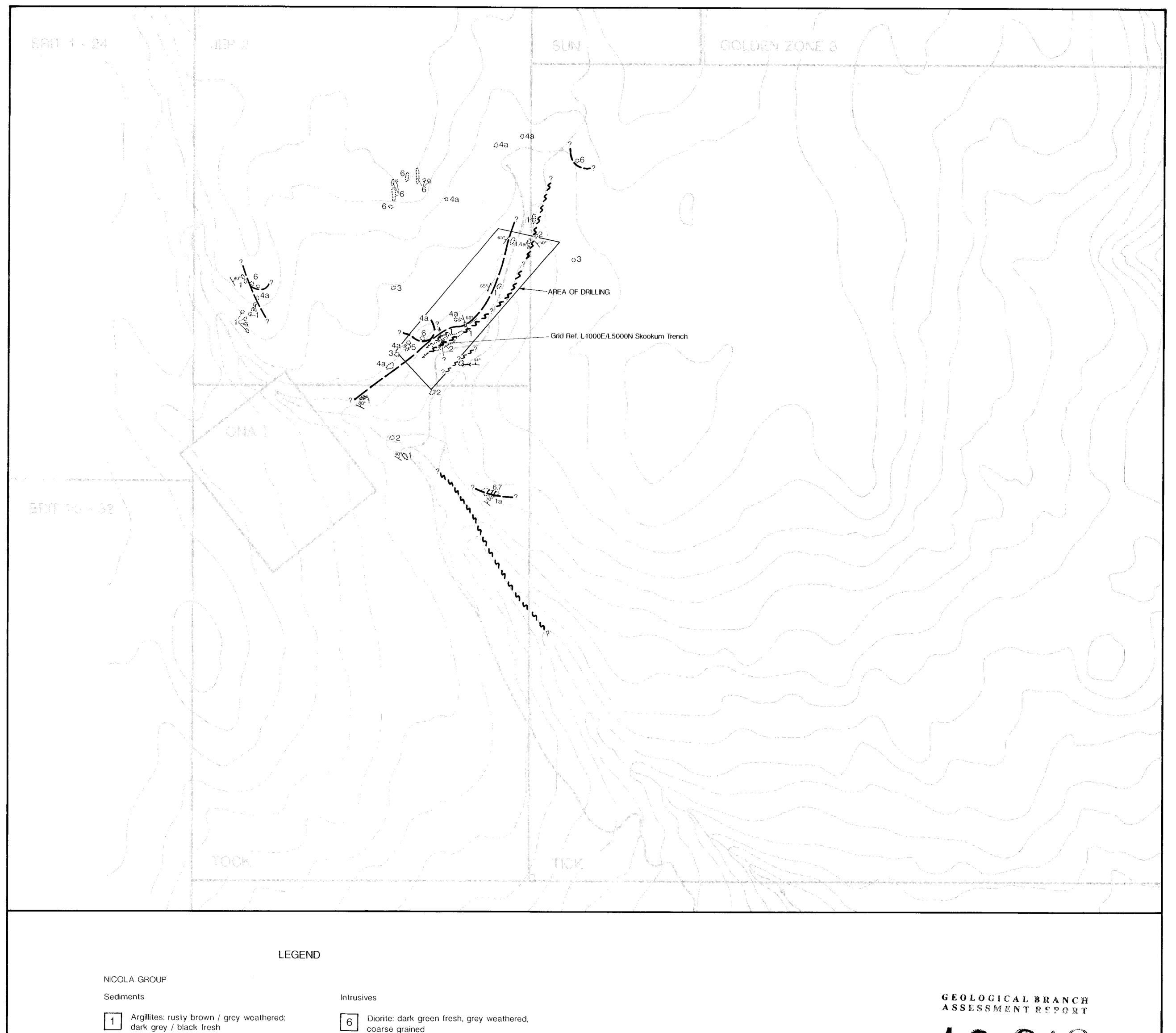
.

STATEMENT OF COSTS

STATEMENT OF COSTS

EXPEDITOR RESOURCE GROUP LTD. SKOOKUM PROPERTY PROJECT 88BC052

FIELD WORK PERIOD: November 28 - De	ecember 17,	1988
Field Salaries		
Denis Collins, Geologist 18 days @ \$400/day \$ 7,200.00 Jody Dahrouge, Assistant		
17 days @ \$300/day 5,100.00		
Mark Asleson, Assistant 1 day @ \$300/day 300.00		
J.P. Sorbara, Sr. Geologist 1 day @ \$400/day 400.00		
Pierre Wilson, Technician 11 days @ \$150/day 1,650.00		
	Ş	14,650.00
Project Expenses		
Project Preparation Mobilization/Demobilization		3,000.00 2,996.00
Freight Work Permit		533.20 500.00
Supervision		2,550.00
Geochemistry 430 RC samples-sample preparation		,
<pre>@ \$3.75/sample \$ 430 6 element ICP, geochem gold and</pre>	1,612.50	
silver @ \$14.75/sample	6,342.50	
<pre>12 core samples-sample preparation @ \$3.75/sample</pre>	45.00	
<pre>12 6 element ICP, gold and silver fire assay @ \$20/sample</pre>	240.00	
13 rush samples for 6 element ICP,	210.00	
gold and silver fire assay @ \$35.63/sample	463,19	
Misc. Lab charges	96,65	0 700 04
		8,799.84


.../2

Drilling	
Mob/Demob of Cat, Drill,	
Additional Drill Rods, core boxes \$ 4,163	.30
Cat Work 66 hours @ \$84.35/hr 5,567	.10
Diamond Drilling 787 Feet @ \$29/ft 22,823	.ØØ
Reverse Circulation	
1,694 feet @ \$22.50/ft 38,030	.30
	70,583.70
Core Shack and Splitter 18 days @ \$50/day	900.00
Truck Rental and Fuel 19 days @ \$130/day	2,470.00
Domicile 37 man days @ \$85/man/day	3,145.00
Field Equipment Rental 36 man days @ \$35/man/day	1,260.00
Field Supplies	713.58
Computer Rental 20 days @ \$35/day	700.00
Government Filing	1,125.00
Accounting/Communication	2,750.00
Report and Drafting	7,500.00
Project Management Fee @ 15%	14,485.82
TOTAL COST OF PROJECT:	\$138,662.14

-2-

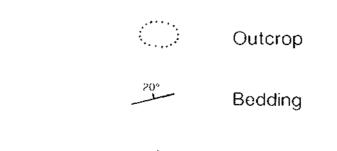
=((N))

6 coarse grained

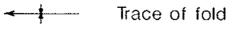
1a Hornfelsic rusty purple weathered, banded, silicified

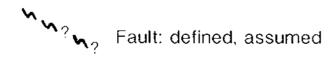
Feldspar porphyry: dark grey weathered, 7 black fresh

2 Graphitic Schist: rusty, in part pyritic

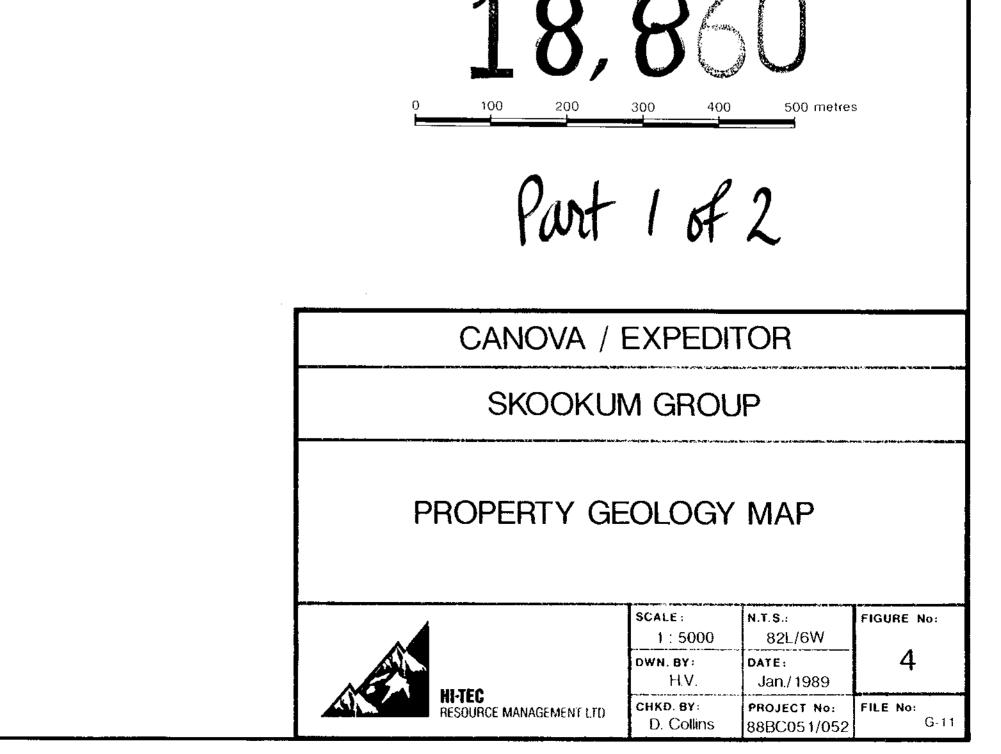

Volcanics

Basalt: light green / grey weathered; 3 light green fresh mostly altered to amphibolite


Andesite: undifferentiated grey fresh, rusty weathered 4


4a Tuffaceous / fragmental

Rhyollite: massive rusty weathered 5


Symbols

----- Geological contact

Qtz vein _____

