MINISTRY OF ENERGY, MMES
 Rect N $1 \cup 1989$ SUBJEU: FILE VANCOUVER, BC.

REPORT ON THE DIAMOND AND
REVERSE CIRCULATION DRILLING

Location
NTS 82-L/6W
Latitude: $50^{\circ} 21^{\prime} N$ Longitude: $119^{\circ}$ g.'W

FOR

## Fit E



TABLE OF CONTENTSPage
1.0 SUMMARY ..... i
2.0 INTRODUCTION ..... 1
2.1 Location and Access. ..... 1
2.2 Property and Ownership ..... 2
2.3 Physiography ..... 2
2.4 Operations and communications. ..... 3
3.0 HISTORY AND PREVIOUS WORK ..... 3
4.0 GEOLOGY ..... 6
4.1 Regional Geology and Mineralization. ..... 6
4.2 Property Geology ..... 7
5.0 PROPERTY GEOPHYSICS ..... 9
6.0 DRILLING PROGRAM. ..... 10
7.0 CONCLUSIONS AND RECOMMENDATIONS ..... 17
8.0 REFERENCES. ..... 21

## LIST OF FIGURES

After Page
Figure 1: General Location Map. ..... 1
Figure 2: Claim Map ..... 2
Figure 3: Regional Geology Map ..... 6
Figure 4: Property Geology . . . . . . . . . .in pocket

Drill Holes Location and Geophysical Compilation Map10

## LIST OF APPENDICES

APPENDIX I: Statements of Qualifications
APPENDIX II: Geochemical Preparation and Analytical Procedures

APPENDIX III: Analytical Data for Core/RC Samples
APPENDIX IVa: Statistical Results
APPENDIX IVb: Histograms
APPENDIX IVc: Correlation Coefficients
APPENDIX V: Diamond Drill Logs
APPENDIX VI: RC Sample Descriptions and Sample Intervals
APPENDIX VII: Statement of Costs

### 1.0 SUMMARY

Pursuant to a request by the Presidents of Canova Resources Ltd. and Expeditor Resource Group Ltd., a limited diamond and reverse circulation drilling program was conducted on selected areas of the skookum property, Vernon Mining Division, by Hi-Tec Resource Management Ltd. during November and December of 1988. The program was designed to follow-up results from a previous geological, geochemical, geophysical program and trenching program carried out earlier in the summer.

The Skookum property is located northwest of okanagan Lake, approximately 15 km northwest of Vernon, B.C. The Vernon Area has seen minor placer activity since the early 1900's, however, there has been little exploration for lode gold deposits. In 1984, Huntington Resources began work on the Brett claims, which are located 15 kilometers southwest of the subject property. The discovery of a major epithermal gold system on the Brett claims has led to increased activity in the area, climaxing recently with the announcement by Huntington of a spectacular drill intersection of over $2 \mathrm{oz} / \mathrm{ton} \mathrm{Au}$ over 235 feet.

The subject claims are underlain by Upper Triassic Nicola Group volcanics and Upper Triassic Slocan Group sedimentary rocks. The volcanics consist mainly of basaltic and andesitic tuffaceous rocks, while the sediments are primarily argillites. These rocks are cut be a granitic intrusion and numerous associated feldspar porphyry dykes. Quartz hosted precious and base metal mineralization is associated with these feldspar porphyry dykes at the vera showing.

The skookum showing consisting of a white sugary-textured quartz vein up to 4 meters wide, is hosted by a well cleaved dark grey-black graphitic schist within a shear zone. Values of up to 320.83 opt Ag and 0.117 opt Au. have been obtained from the contact between the quartz and the graphite. Numerous other excellent precious metal values were obtained from other vein and graphite samples.

The skookum showing was originally staked in 1930. Records indicate that approximately 200 feet of shafts and drifts were dug with 127 tons of material sent to the smelter in trail. Recovery averaged 0.44 opt Au and 17.06 opt Ag. Reported values of 31.06 opt Au and 231 opt Ag were obtained from samples of decomposed quartz.

The skookum showing is associated with two strong northeast trending VLF conductors which are paralleled and flanked by a magnetic anomalous zone.

A total of 239.84 meters ( 787 feet) were diamond drilled in three holes and a total of 516.38 meters ( 1694 feet) were rotary drilled in six holes. Portions of two of the holes were drilled using both diamond and rotary drilling techniques. The total number of holes drilled was seven. One hundred and twenty-seven core samples and three hundred and twenty-eight RC drilled bulk samples were collected.

The presence of an extensive network of quartz veinlets and the existence of quartz veins up to 3 meters wide, within a graphitic schist host rock, was confirmed by the drilling program. Zones up to 28 meters wide yielded anomalous values in zinc in all of the holes. The highest silver value recorded from the drilling program was 104.6 ppm (sample 88-SD2-6). The highest gold value was 363 ppb from hole 88-SRC-1.

Relatively low precious metal values were detected in the drilling samples in comparison to the results from the trenching program. However, the geological setting of the claims, enhanced by the presence of abundant quartz veinlets and quartz veins up to 3 meters in width, and additional geophysical anomalies which remain untested, implies that further work is warranted.

### 2.0 INTRODUCTION

Pursuant to a request by the Presidents of Canova Resources Ltd. and Expeditor Resource Group Ltd., a limited diamond and reverse circulation drilling program was conducted on selected areas of the Skookum property, Vernon Mining Division, by Hi-Tec Resource Management Ltd. during November and December of 1988. The purpose of the drilling program was (a) to determine the geometry and structure of the previously trenched surface showings and (b) obtain information on the structure and mineralization parameters along lateral extensions to these zones and (c) to test in a preliminary manner selected VLF-EM anomalies and conductors associated with the zone, which were delineated during ground geophysical surveys conducted during Phase I of the 1988 exploration.

This report is based on the results of the 1988 exploration program and on the available literature pertaining to the area.

### 2.1 Location and Access

The Skookum property is located in the Vernon Mining Division in Southern British Columbia. The claims are approximately 60 km north of Kelowna and 15 km northwest of Vernon on the north end of Okanagan Lake. The claims comprise a total of 69 units. The property is centered at latitude $50^{\circ} 21^{\prime}$ north and longitude $119^{\circ} 23^{\prime}$ west (Figure 1).

Access to the Skookum property is by a 4 - wheel drive dirt road which commences 6 km north of the Irish Creek turnoff along Westshore Road, through the yard of local residents. The initial 3 kilometers of dirt road traverses a section of the Okanagan Indian Band reserve. Permission to move

drill equipment and personnel through the reserve was granted by the Band Council officials.

### 2.2 Property and Ownership

The skookum group consists of a total of 69 units which were recorded on October 7 , 1988. The claims are held jointly between Canova Resources Ltd. and Expeditor Resource Group Ltd.

The Skookum Group consists of 3 modified grid claims, the Tick, Tock and Jep \# 2 for a total of 34 units. The Tick and Tock claims are under option to Canova Resources from Mervin Boe. The Jep \# 2 claims have been optioned from J. Irwin. In addition, there are 352 -post claims, including the Brit 1-32, the Sun 1 and 2 and the Ona. The Brit and Sun claims are $100 \%$ owned by Canova and Expeditor, while the Ona claim is under option from Frank Leginus.

Pertinent claim data is summarized below:

| Name No | o. of Units | Record No. | Expiry Date |
| :---: | :---: | :---: | :---: |
| Tick | 6 | 739 | October 17,1990 |
| Tock | 20 | 738 | October 17,1990 |
| Jep \# 2 | 8 | 2550 | June 16, 1991 |
| Sun 1 | 1 | 2935 | August 3, 1991 |
| Sun 2 | 1 | 2936 | August 3, 1991 |
| Ona | 1 | 5943 | October 9, 1991 |
| Brit 1-24 | 24 | 2639-2662 | June 21, 1991 |
| Brit 25-32 | 28 | $2663-2670$ | June 22, 1991 |

The claim locations are shown on Figure 2.

### 2.3 Physiography

The claims are situated in the Okanagan Highland at the northeast edge of the Thompson Plateau. Local topographic relief varies from moderate to very steep. Elevations on the property range from 1050 meters to 1350 meters. The


Skookum showing is located between the forks of Newport creek.

### 2.4 Operations and Communications

The drilling program was conducted during the November and December of 1988. A total of 239.84 meters ( 787 feet) were diamond drilled in three holes and a total of 516.38 meters (1694 feet) were rotary drilled in six holes. Portions of two of the holes were drilled using both diamond and rotary drilling techniques. The total number of holes drilled was seven.

The field crew was based in Vernon, British Columbia and commuted 27 kilometers daily to the property. Telephone and fax communications with the office in vancouver, British columbia, were maintained on a regular basis. Transportation was provided by means of a 4 wheel-drive pick-up truck rented from Redhawk Rentals in Vancouver. Chains were required to enable access over the last 7 kilometers of snow covered dirt track.

### 3.0 HISTORY AND PREVIOUS WORK

The Vernon area has seen minor placer activity since the early 1900 's, however, there has been little exploration for lode gold deposits. In 1984, Huntington Resources began work on the Brett claims, which are located 15 kilometers southwest of the subject property along Whiteman Creek. The discovery of a major epithermal gold system on the Brett claims has led to increased activity in the area, climaxing recently with the announcement by Huntington of a spectacular drill intersection of over $2 \mathrm{oz} /$ ton Au over 235 feet. This hole was drilled at an angle of $84^{\circ}$ which is slightly oblique to the down dip angle of the zone.

Published results have also shown that there is dissemination of gold values in both hangingwall and footwall volcanics away from the main shear zone. One reverse circulation drill hole (RC-88-17) returned 25 feet grading 0.224 opt gold which includes a narrow intersection of 10 feet averaging 0.47 opt gold (Northern Miner, September 26, 1988). This property is now being explored by Huntington/Lacana under a joint venture agreement and drilling is expected to begin on the New Discovery zone which has similar geology (Northern Miner, September 26, 1988). Several other mineral showings have been reported in the area and many are hosted by quartz veins within epithermal systems.

Adjacent to the Skookum showing is the Vera property and Vera showing which was originally discovered in 1923. Development work included the excavation of one 15 m long adit as well as several pits. Two tons were shipped and reported to run $1.0 \mathrm{oz} /$ ton Au and $41.0 \mathrm{oz} / \mathrm{T}$ Ag. No further work is reported in the area of the claims until 1970, when a geochemical soil survey, magnetic survey and geology was completed over the May and Red Hawk claims (Assessment Report 2552). These claims are no longer in existence, however part of the area is now covered by the Golden zone \#1 claims. Summary reports on the property have been written by Daughtry, (1980), Wilmot, (1985), Livgard, (1986), and Shaw, (1987\& 1988).

A limited magnetic and electromagnetic survey ( 1.2 km ) was carried out on the Vera showing by Canova Resources Ltd. in December of 1987 (Freeze and Wetherill, 1988). The results of this program were inconclusive.

The skookum showing was originally staked in 1930 by H.J. Blurton. A $25^{\circ}$ and a $50^{\circ}$ inclined shafts were sunk on the Skookum showing during the early $1930^{\prime s}$ s and "rich values"
were reportedly found in the $25^{\circ}$ shaft and workings (Stewart, 1947). Stewart concluded, from his examination, that the values associated with the workings were spotty in occurrence. Records indicate that approximately 200 feet of shafts and drifts were dug with 127 tons of material sent to the smelter in Trail. Recovery averaged 0.44 opt Au and 17.06 opt Ag and reported values of 31.06 opt Au and 231 opt Ag were obtained from samples of decomposed quartz (Grond, 1988).

In the early summer of 1988, Hi-Tec Resource Management conducted a geological and geochemical exploration program on the Skookum and vera properties on behalf of Canova Resources Ltd. A geophysical survey was also conducted on the Vera property. The results of the program outlined a number of northwest trending geophysical and geochemical anomalies in the vicinity of the Vera showing, suggesting possible parallel structures. Follow-up trenching was recommended to test the zones, and this was completed during the late summer months. The best precious metal values obtained from the main vein zone was a grab sample of 148.46 opt Ag and 0.146 opt Au from $15 \%$ galena in quartz vein rubble. Other values recorded include sample 88-DTV54 which yielded 64.46 opt Ag and 0.064 Au from $15 \%$ galena and tetrahedrite in quartz stringers across 0.6 m and 88-DTV-60 which recorded 67.96 opt Ag and 0.085 opt Au across 0.7 m of $10 \%$ galena and tetrahedrite in quartz stringers. Base metal values of up to $8030 \mathrm{ppm} \mathrm{Cu}, 110763 \mathrm{ppm} \mathrm{Pb}$ and 4773 ppm Zn were also recorded (Grond, 1988).

### 4.0 GEOLOGY

### 4.1 Regional Geology and Mineral Deposits

The skookum property lies within the Omineca Geological Belt. According to okulitch et al, (1979), the area is underlain by a sequence of Triassic and Jurassic Nicola Group andesite and basalt flows with associated pyroclastics and slocan Group sediments, consisting of shale, argillite and siltstone (Figure 3). This package is intruded by plugs of Cretaceous Salmon Arm Pluton with granodiorite, granite, and quartz monzonite compositions.

Tertiary Plutonic rocks consisting primarily of syenites are located in the Whiteman creek and Whiterocks area. In the Whiteman creek area, the syenites are closely associated with a recently discovered, high grade gold zone at the Brett property, by Huntington Resources Ltd.

The geology of the Brett property consists of tertiary volcanics, including interbedded basaltic and andesitic flows and pyroclastic (tuffaceous) rocks, in fault contact with granitic rocks. A small syenitic intrusion cuts the granitic rocks and is closely related to a series of feldspar porphyry dykes which are directly associated with the main gold bearing structures on the property. The north-northwesterly trending mineralized structures occur within the tertiary volcanics rocks and are epithermal in origin. According to W. Grunenwald, (1987), "the dykes are associated with shear zones that likely provided the planes of weakness for their emplacement".

Major west-northwest trending fault structures occur throughout the area on the northwest side of okanagan Lake and can often be identified on the topography maps by drainage patterns.


### 4.2 Property Geology

The skookum showing is located in the northern portion of the Tock claim (Figure 4). The schist unit is in fault contact to the north with rusty phyllitic sediments. The schist hosted quartz veins appear to be related to a wide shear zone which may be associated with a nearby dioritic intrusion.

The skookum showing consists of a decomposed white sugarytextured quartz vein up to 4 meters wide hosted by a well cleaved dark grey-black graphitic schist. The graphitic schist is developed within a major shear zone and contains significant amounts of visible base metal mineralization at the main surface showing. Massive tetrahedrite and pyrite are commonly evident in samples.

An associated tension gash array developed along the thrust(?) contact of graphite and the overlying phyllite is also mineralized. The contacts of the vein carry values in addition to the graphitic partings in the vein.

Approximately fifty meters north of the skookum showing, a body of hornblende porphyritic intrusive rock outcrops. This rock is pale green with abundant black xenoliths of argillaceous wallrock and small, black, eughedral hornblende phenocrysts. Several outcrops of this intrusion occur north of the main skookum showing.

A trenching program was carried out on the main skookum showing during August, 1988, under the direction of Hi-Tec Resource Management Ltd. A forty-five meter long trench was excavated at the skookum showing which exposed a portion of $a$ quartz vein up to four meters wide within a
bed of massive, soft, graphitic schist. The graphite is intensely sheared and bedding is difficult to discern at surface. The quartz and graphitic schist are overlain by strongly sheared and folded interlayered argillite and phyllite. The contact between the graphite and argillite is marked by a quartz infilled sigmoidal tension gash array. This contact is interpreted as being a shear and possible thrust contact. Pyrite is commonly present as blebs and stringers within the graphitic schist.

The best precious metal values recorded from the trenching program were associated with tetrahedrite and galena mineralization within quartz veins. The highest value obtained was 320.83 opt Ag and 0.117 opt Au from a grab sample containing 30-40\% galena and tetrahedrite in quartz along the tension gash array zone. Other high values were obtained from sample 88-DTS-19, 205.92 opt Ag and 0.070 opt Au from a grab of 15-20\% Tetrahedrite, galena and sphalerite, and sample 88-DTS-27 yielded 224.00 opt Ag and 0.071 opt Au from a grab of $15 \%$ tetrahedrite in a quartz vein. The highest value obtained from a channel sample was 68.83 opt Ag and 0.094 opt Au across 2 meters of $15 \%$ tetrahedrite in a quartz vein (88-DTS-27) (Grond, 1988).

Precious metal mineralization occurs within the graphite as well as the quartz veins and stringers which invade the graphite. Lenses and partings within the quartz are often rich with tetrahedrite, sphalerite and galena. pyrite within the graphite is likely syngenetic. Based on the assay results of samples of the sheared graphite, it is probable that the sheared graphite contains appreciable tetrahedrite which is fine grained and not visible in hand sample. Several samples which demonstrate this are: 88-DTS-12, a grab of massive graphite at lower contact of the quartz vein, 4.87 opt $\mathrm{Ag}, 0.011$ opt Au and $88-\mathrm{DTS}-17$, minor
quartz in massive graphite, 12.98 opt $\mathrm{Ag}, 0.006$ opt Au. Values up to $30667 \mathrm{ppm} \mathrm{Cu}, 108634 \mathrm{ppm} \mathrm{Pb}$ and 68996 ppm Zn were also recorded.

### 5.0 PROPERTY GEOPHYSICS

A VLF-EM geophysical survey was conducted over the Skookum showing during November, 1988. The geophysical survey results show the extent of conductive horizons (probably graphite) and magnetic rock types (probably andesite) on the grid (Collins, Graham and Dahrouge, 1988).

The Skookum showing is associated with two strong northeast trending VLF conductors which are paralleled and flanked by a strong magnetic anomalous zone. The magnetic zone is probably related to the overlying andesites which contain abundant disseminated pyrrhotite. Numerous other spot magnetic anomalous zones have been outlined during the 1988 geophysical program.

The two VLF conductors define the boundaries of the graphitic schist horizon which represents a major northeast trending shear zone. This shear zone is host to a network of numerous quartz veinlets and occasional quartz veins of from 50 cm to 4 meters in width.

A cluster of northeasterly trending conductive zones in the central grid area correlate partially with the known extent of the graphitic horizons with which the precious metal values are associated. As such, they are valuable indicators of the probable extent of the system. The conductors are quite continuous, and extend for about 600 meters from 650E/4850N to $1150 \mathrm{E} / 5100 \mathrm{~N}$ (Figure 5, Section 6) ..

### 6.0 DRILLING PROGRAM

The drilling contractors were D. W. Coates Enterprises Ltd. of Delta, British Columbia. An Acker drilling rig, capable of drilling by both diamond and reverse circulation techniques, was used throughout the drilling program. one complete hole (88-SDD-001) was diamond drilled, two holes were combined diamond/reverse circulation drilled (88-SDD002, 88-SDD-003) and four holes were completed using only reverse circulation techniques. The bedrock was cored with a $N Q$ diamond bit. The diameter of the reverse circulation holes was $41 / 8^{\prime \prime}$.

A total of 239.84 meters ( 787 feet) were diamond drilled in three holes and a total of 516.38 meters (1694 feet) were rotary drilled in six holes. Portions of two of the holes were drilled using both diamond and rotary drilling techniques. The total number of holes drilled was seven (Figure 5). All of the core boxes are stored on the property at grid line $975 \mathrm{E} / 5000 \mathrm{~N}$.

One hundred and twenty-seven core samples and three hundred and twenty-eight RC drilled bulk samples were collected. The latter samples were collected at 5 foot intervals. All of the samples were submitted to Min-En Laboratories Ltd., in Vancouver, $\mathrm{B} . \mathrm{C} .$, for $\mathrm{Au}, \mathrm{Ag}, \mathrm{As}, \mathrm{Ba}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$ and Sb analysis by the Induced Coupled Plasma (ICP) method. Twenty-five core samples, from $88-S D D-001$, were analyzed for gold and silver by the Fire Assay (F.A.) method. Analytical procedures are reported in Appendix II and analytical data can be found in Appendix III.


Statistical treatment of data was possible for each analyzed element. Statistical data, histograms and correlation coefficients are listed in Appendix IV-A through Appendix IV-C. Each drill hole is summarized below and detailed diamond drill logs and summary log geological cross-sections are presented in Appendix $V$. Reverse Circulation sample descriptions and sample intervals are included in Appendix VI.

The diamond drilling and reverse circulation drilling program was designed to (a) determine the geometry and structure of the previously trenched surface showings and (b) obtain information on the structure and mineralization parameters along lateral extensions to these zones and (c) to test in a preliminary manner selected VLF-EM anomalies and conductors associated with the zone, which were delineated during ground geophysical surveys conducted during Phase I of the 1988 exploration. The drill holes were laid-out such that they would intersect the two main VLF conductors and the full width of the graphitic schist infilled shear zone.

## 88-SDD-1

This hole was located at Line $975 \mathrm{E} / 5015 \mathrm{~N}$ and was diamond drilled to a depth of 154.5 meters ( 507 feet) at an azimuth of $140^{\circ}$ and an angle of $45^{\circ}$. The hole was collared in medium to coarse grained, tuffaceous grey/green andesite.

The core from hole 88 -SDD-001 consisted of 13 meters (43 feet) of andesite which contained fine grained disseminated pyrrhotite throughout. This is underlain by 117 meters (384 feet) of graphitic schist. The graphitic schist is well mineralized throughout with pyrite blebs and stringers
and contains abundant $1-3 \mathrm{~mm}$ quartz veinlets. The lower 25 meters ( 82 feet) of the core consisted of more competent grey/green phyllite with minor graphitic partings and laminations.

Quartz veins up to 40 cm in width were intersected towards the top of the graphitic unit. A 3.3 meter quartz vein was intersected within the green phyllitic unit at 145.4 meters. The contacts of the vein were ground and no core axes could be obtained. This vein contained disseminated pyrite and chalcopyrite within fractures and argillaceous partings. An along strike portion of this vein is exposed in an old adit from which values with a reported average of 0.44 opt Au and 17.06 opt Ag were obtained. Reported values of 31.06 opt Au and 231 opt Ag , which were obtained from samples of decomposed quartz, are also contained in the old literature.

Core axes vary from $90^{\circ}$ to $25^{\circ}$ within the core. The lower core axes were recorded below a deformed, possible fault intersection zone, at the 115 meter level in the graphitic schist.

Eighty-eight samples were collected and geochemical values show a 28.15 meter wide anomalous zinc zone from 58.7 to 86.85 meters (samples 88-SD1-43, 88-SD1-46 to 88-SD1-53 and 88-SDl-55, 56). Values in this zone range from 104 ppm to 691 ppm Zn . A second anomalous zinc zone occurs between 103.9 and 114.4 meters (samples 88-SD1-70 to 74). Values in this 10.5 meter wide zone range from 158 ppm to 526 ppm Zn. Two highly anomalous barium values, 1507 ppm and 1669 ppm, were recorded from samples $88-$ SD1-65 and $88-$ SD1-85, respectively. Precious metal values as well as arsenic, copper, lead and stibnite values are relatively low. Gold values range from 1 ppb to 78 ppb and silver values range
from 0.3 ppm to 6.4 ppm . Sample $88-$ SDl-20 yielded both the highest gold and silver values.

88-SDD-2

This hole was located at Line $1080 \mathrm{E} / 4975 \mathrm{~N}$ and was drilled to a depth of 55.5 meters ( 182 feet) at an azimuth of $140^{\circ}$ and an angle of $-60^{\circ}$. The top 23.2 meters was drilled using RC techniques and the remainder was diamond drilled. The hole was collared in a medium to fine grained brown/grey argillaceous graphitic unit.

The core from hole $88-S D D-002$ consisted of black graphitic schist with interbedded pale grey tuffaceous laminae. Quartz stringers were evident throughout the core. These were generally $\leq 1 \mathrm{~cm}$ in thickness. The graphitic schist is well mineralized throughout with pyrite blebs and stringers. Minor azurite staining was evident in the quartz veinlets at the 32 meter level (sample 88-SD2-8).

Fourteen RC samples and nineteen split core samples were collected. Sample 88-SD2-6 yielded a gold value of 50 ppb and a silver value of 104.6 ppm . The remaining precious metal values are low. The geochemical values show a 27 meter wide anomalous zinc zone from 28.4 to 55.5 meters (samples 88-SD2-6 to 88-SD2-19). Values in this zone range from 127 ppm to 891 ppm Zn .

```
88-SDD-3
```

This hole was located at Line $1195 \mathrm{E} / 5300 \mathrm{~N}$ and was drilled to a depth of 103.0 meters ( 339 feet) at an azimuth of $130^{\circ}$ and an angle of $-45^{\circ}$. The top 50.6 meters was drilled using RC techniques and the remainder was diamond drilled. The hole was collared in a medium to coarse grained, black/light-grey argillaceous graphitic unit.

The core from hole $88-S D D-002$ consists of black graphitic schist with interbedded pale grey tuffaceous laminae. Quartz stringers were evident throughout the core as in the former holes.

Twenty-nine $R C$ samples and twenty split core samples were collected. Pyrite blebs and stringers were commonly evident throughout the graphitic schist unit. The geochemical values in zinc were predominantly anomalous below a depth of 23 meters (from RC sample 2000A to 88-SD320). Values in this zone range from 56 ppm to 516 ppm zn . Precious metal values are relatively low. Gold values range from 1 ppb to 22 ppb and silver values range from 0.9 ppm to 6.7 ppm .

## 88-SRC-1

This hole was located at Line $1050 \mathrm{E} / 5095 \mathrm{~N}$ and was drilled to a depth of 135.9 meters ( 446 feet) at an azimuth of $140^{\circ}$ and an angle of $45^{\circ}$. The hole was collared in a medium grained, light-brown andesitic unit.

The cuttings from the hole consist predominantly of black graphitic schist with interbedded pale grey tuffaceous units. Quartz was evident in some of the bulk samples.
to $4 \%$ pyrite and trace pyrrhotite were also occasionally present in some of the samples.

Ninety-one RC samples, collected at 5 foot intervals, were submitted to Min-En Labs. The geochemical values in zinc were predominantly anomalous from a depth of 26.21 meters to 64.31 meters (from sample 14544 A to sample 14568A). Values in this zone range from 74 ppm to 389 ppm Zn . Sample 14560A yielded the highest precious metal values of 363 ppb gold and 8.4 ppm silver. Samples 14561 A and 14564 A yielded values of 174 ppb and 120 ppb gold, respectively.

## 88-SRC-2

This hole was located at Line $1160 \mathrm{E} / 5155 \mathrm{~N}$ and was drilled to a depth of 135.9 meters ( 446 feet) at an azimuth of $140^{\circ}$ and an angle of $-45^{\circ}$. The hole was collared in a fine to coarse grained, brown/light-grey graphitic unit.

The cuttings from the hole consist predominantly of black graphitic schist with interbedded pale grey tuffaceous units. Quartz was evident in some of the bulk samples. Up to 8 ; pyrite and trace pyrrhotite were also occasionally present in some of the samples.

Eighty-seven RC samples, collected at 5 foot intervals, were submitted to Min-En Labs. The geochemical values in zinc were predominantly anomalous from a depth of 10.97 meters to 56.69 meters (from sample 1907A to sample 1936A). Values in this zone range from 93 ppm to 316 ppm zn . Sample 1917A yielded precious metal values of 147 ppb gold and 60.0 ppm silver. Samples 1956 A and 1957 A yielded values of 17 ppm and 34 ppb gold, and 711 ppm and $1,083 \mathrm{ppm}$
zinc, respectively. Four anomalous barium values, ranging from 602 ppm to $1,263 \mathrm{ppm}$ were recorded by samples 1946 A to 1949A.

88-SRC-4

This hole was located at Line $997 \mathrm{E} / 5055 \mathrm{~N}$ and was drilled to a depth of 129.8 meters ( 426 feet) at an azimuth of $150^{\circ}$ and an angle of $-45^{\circ}$. The hole was collared in a fine to medium grained, light-brown/grey graphitic unit.

The cuttings from the hole consist predominantly of black graphitic schist with interbedded pale grey tuffaceous units. Quartz was evident in some of the bulk samples. Up to 5\% pyrite and trace pyrrhotite were also occasionally present in some of the samples.

Eighty-three RC samples, collected at 5 foot intervals, were submitted to Min-En Labs. The geochemical values in zinc were predominantly anomalous from a depth of 21.64 meters to 110.03 meters (from sample 45163A to sample 45070A). Values in this zone range from 72 ppm to 462 ppm Zn. Six samples yielded elevated precious metal values of from 105 ppb to 151 ppb gold and up to 7.6 ppm silver.

## 88-SRC-5

This hole was located at Line $1005 \mathrm{E} / 5000 \mathrm{~N}$ and was drilled to a depth of 41.45 meters ( 136 feet) at an azimuth of $270^{\circ}$ and an angle of $-45^{\circ}$. The hole was collared in a fine to coarse grained, black graphitic unit.

The cuttings from the hole consist predominantly of black graphitic schist with interbedded pale grey graphitic units. Quartz was evident in some of the bulk samples. Up to $10 \%$ pyrite was also occasionally present in some of the samples.

Twenty-four RC samples, collected at 5 foot intervals, were submitted to Min-En Labs. Eleven of the samples yielded zinc values greater than 100 ppm . Three samples yielded elevated precious metal values of $105 \mathrm{ppb}, 112 \mathrm{ppb}$ and 172 ppb gold. The highest recorded silver value is 2.6 ppm silver.

The calculated correlation coefficients for these holes show a moderate correlation of 0.7 between Pb and Ag. Slight correlations are exhibited between the following elements: $A u-A s, A u-\mathrm{Pb}, \mathrm{Au}-\mathrm{Sb}$ and $\mathrm{Pb}-\mathrm{As}$. The remaining elements only show weak correlation coefficients. overall, the geochemical results of the drilling are relatively low in comparison to the results obtained from the trenching program.

### 7.0 CONCLUSIONS AND RECOMMENDATIONS

The skookum showing consists of a white sugary-textured quartz vein up to 4 meters wide hosted by a well cleaved dark grey-black graphitic schist. The graphitic schist is developed within a major shear zone and contains significant amounts of visible base metal mineralization. Massive tetrahedrite and pyrite are commonly evident in samples. The results of a trenching program carried out on the main skookum showing, during the summer of 1988, indicated that highly anomalous levels of precious metals
were associated with the graphitic schist and quartz veining.

An associated tension gash array developed along the thrust contact of graphite and the overlying phyllite is also mineralized. The contacts of the vein carry values in addition to the graphitic partings in the vein. Samples from this contact yielded a high grade grab sample value of 320.83 opt Ag, 0.117 opt Au. Additional values recorded from the showing have included values of up 224.0 opt silver and 0.071 opt gold. Values of up to 68.83 opt silver and 0.094 opt gold have been recorded from channel samples across 2.0 meters.

The skookum showing is associated with two strong northeast trending VLF conductors which are paralleled and flanked by a magnetic anomalous zone. The magnetic zone is probably related to the overlying andesites which contain abundant disseminated pyrrhotite. Numerous other spot magnetic anomalous zones have been outlined during the 1988 geophysical program.

A total of 239.84 meters ( 787 feet) were diamond drilled in three holes and a total of 516.38 meters ( 1694 feet) were rotary drilled in six holes. Portions of two of the holes were drilled using both diamond and rotary drilling techniques. The total number of holes drilled was seven.

The presence of an extensive network of quartz veinlets and the existence of quartz veins up to 3 meters wide, within a graphitic schist host rock, was confirmed by the drilling program. Zones up to 28 meters wide yielded anomalous values in zinc in all of the holes. The highest silver value recorded from the drilling program was 104.6 ppm
(sample 88-SD2-6). The highest gold value was 363 ppb from hole 88-SRC-1.

Relatively low precious metal values were detected in the drilling samples in comparison to the results from the trenching program. However, the geological setting of the claims, enhanced by the presence of abundant quartz veinlets and quartz veins up to 3 meters in width, implies that further work is warranted. The limited drilling program was designed to test the graphitic schist zone as defined by the geophysics survey. The latter survey also outlined additional northwest oriented zones which are interpreted as fault zones. These areas should be investigated by additional geological mapping and geochemical sampling.

Only limited exploration work has been conducted on the Skookum property. No prospecting, mapping or geochemical sampling has been conducted over the vast majority of the claims and consequently the potential for mineralization remains largely untested. Previous work has concentrated on the main Skookum showing with only minor attention being paid to the remainder of the claim area. The geological setting of the claims within an area of known mineral deposits, underlain in part by a correlative sequence, provides sufficient encouragement to conduct exploration programs on the claims. In addition, recent mineral discoveries from exploration work and drilling on nearby properties demonstrate that the potential for the existence of significant mineralization is a distinct possibility and should be tested.

The writers conclude that geological mapping and selective geochemical sampling should be conducted over the entire unmapped claim area to outline other areas of interest.

Respectfully submitted,
HI-TEC RESOURCE MANAGEMENT LTD.


Denis A. Collins, Ph.D., P.Geol., F.G.A.C.
$\frac{\text { Jody Dahronge }}{\text { J. Eehroguge, B.Sch, G.I.T. }}$

January , 1989
8.0 REFERENCES

Daughtry, K.L., (1980) Ronald (Octagon) Property, Vernon, B.C.

Freeze, J. and Wetherill, F. (1988) Geophysical Report on the Vera Claim Group, Vernon Mining Division.

Grond H. (1988)
Geological, Geophysical and Geochemical Report on the Vera claims, Private Report for Canova Resources Ltd.

Grond H. and Thompson, D. (1988). Report on the Trenching Program, Vera and Skookum Showings, Vernon M.D., Private Report for Canova Resources Ltd.

Livgard, E. (1986)
Report on the Vera Claim Group, Vernon Mining Division.
Jones, A.G. (1959) Geological Survey of Canada Memoir 296, Vernon Map Area.

Kikuchi, T. and Venkataramani, S. (1970) Geological Report, May and Red Hawk Claims Vernon Area, Brown-Overton Mines Ltd.

Okulitch, A.V. and Campbell, R.B., (1979) Geological Survey of Canada Open File 637, Thompson-Shuswap-Okanagan Geology.

Wilmot, A.D. (1985)
Report on the Vera Mineral Claims, Vernon Mining Division. preliminary Map. 65.

## APPENDIX I

## STATEMENT OF QUALIFICATIONS

I, DENIS A. COLLINS, of the City of Vancouver, Province of British Columbia, hereby certify:

1. THAT I am a geologist employed by Hi-Tec Resource Management Ltd. at 1500-609 Granville Street, Vancouver, British Columbia, Canada, V7Y $1 \mathrm{G5}$.
2. THAT I obtained a Bachelor of Science degree in Geology from University College Cork, Ireland in 1980 and a Ph. D. in Structural Geology from the same university in 1985.
3. THAT I have been practising my profession as a geologist in Ireland, South Africa and Canada since 1980.
4. THAT I am a Fellow, in good standing, with the Geological Association of Canada.
5. THAT I am a registered Professional Geologist, in good standing, with a license to practice with the Association of Professional Engineers, Geologists and Geophysicists of Alberta and the Northwest Territories.

Dated in Vancouver, British columbia, this 30 th day of January, 1989.
$\frac{\text { Denis A. Collins, Ph.D., P. Geol., F.G.A.C. }}{\text { Denser sen }}$


## STATEMENT OF QUALIFICATIONS

I, Jody Dahrouge, of the town of St. Paul, in the province of Alberta, do hereby certify:

1) I am a geologist employed by Hi-Tec Resource Management Ltd., of 1500-609 Granville Street, Vancouver, British Columbia.
2) I am a graduate of the University of Alberta, with a B.Sc., 1988, in Geological Sciences.
3) I have practised my profession as a geologist, for one field season since my graduation as follows:

1988 May-June, Lacana Mining Corp., Vancouver, B.C.

> 1988 July-Dec., Hi-Tec Resource Management Ltd., Vancouver, B.c.
4) I have not received, nor do I expect to receive any interests, direct or indirect in the securities of Canova or Expeditor.
sIGNED: $\frac{\text { fody Pahowe }}{\text { J. 車ahrouge, B.Sp. }}$

## APPENDIX II

## GEOCHEMICAL PREPARATION AND ANALYTICAL PROCEDURES

GEOCHEMICAL RESULTS AND LABORATORY ANALYTICAL METHODS

After intial preparation, all samples were analyzed by the Inductively Coupled Plasma (ICP) method for $\mathrm{Ag}, \mathrm{As}, \mathrm{Cu}, \mathrm{Pb}$, Sb and Zn . Gold was determined by the fire assay and atomic absorption method.

After drying soil and stream sediment samples at $95^{\circ} \mathrm{C}$, they were screened with an 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. For some of the silt samples, 40 mesh or 20 mesh sieves were used. Rock samples were put through a jaw crusher and a ceramic-plotted pulverizer.

For ICP analyses, 1.0 gram of sample material was digested for 6 hours with a hot $\mathrm{HNO}_{3}-\mathrm{HClO}_{4}$ mixture. After cooling, samples were diluted to a standard volume. The solutions were then analyzed by a computer-operated Jarrell Ash ICP Analyzer. Reports are formated by a route computer dotline printout.

For Au analyses, a suitable sample weight of 15 or 30 grams was fire assay preconcentrated. Samples were then digested with an Aqua Regia solution and then taken up to suitable volume by adding a $25 \% \mathrm{HCl}$ solution. Further oxidation and treatment of at least $75 \%$ of the original sample solutions are made suitable for extraction of gold with methyl isobutyl ketone. Gold is analyzed by Atomic Absorption instruments using a suitable standard solution. The detection limit is 1 ppb.

# MIN-EN Laboratories Ltd. <br> Specialists in Mincral Environments <br> Corner 15th Stroot and Bewicke <br> 705 WEST 15TH STREET north vancouver, e.c. <br> CANADA VTM 172 

$\frac{\text { FIRE GOLD GEOCHEMICAL ANALYSIS BY MIN-EN }}{\text { LABORATORIES LTD. }}$

Geochemical samples for Fire Gold processed by Min-En Laboratories Ltd., at 705 W . l5th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at $95^{\circ} \mathrm{C}$ soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 15.00 or 30.00 grams are fire assay preconcentrated.

After pretreatments the samples are digested with Aqua Regia solution, and after digestion the samples are taken up with $25 \% \mathrm{HCl}$ to suitable volume.

Furthex oxidation and treatment of at least $75 \%$ of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 1 ppb.

## APPENDIX III

ANALYTICAL DATA FOR CORE/R.C. SAMPLES

## SKOOKUM PROPERTY, VERNON MINING DIVISION.

 ASSAY RESULTS: DIAMOND DRILL HOLE 88-SDD-001| Sample <br> Number |  |  | AG | AG | AU | AU |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | G/TONNE | OZ/TON | G/TONNE | OZ/TON |
| 88 | SD1 | 001 | 1.6 | 0.05 | . 02 | 0.001 |
| 88 | SD1 | 002 | 1.4 | 0.04 | . 01 | 0.001 |
| 88 | SD1 | 003 | 1.3 | 0.04 | . 02 | 0.001 |
| 88 | SD1 | 004 | 1.5 | 0.04 | . 02 | 0.001 |
| 88 | SD1 | 005 | . 4 | 0.01 | . 01 | 0.001 |
| 88 | SD1 | 006 | 1.8 | 0.05 | . 02 | 0.001 |
| 88 | SD1 | 007 | 1.2 | 0.04 | . 01 | 0.001 |
| 88 | SD1 | 008 | . 3 | 0.01 | . 02 | 0.001 |
| 88 | SD1 | 009 | . 9 | 0.03 | . 01 | 0.001 |
| 88 | SD1 | 010 | 2.0 | 0.06 | . 01 | 0.001 |
| 88 | SD1 | 011 | . 2 | 0.01 | . 01 | 0.001 |
| 88 | SD1 | 012 | 1.1 | 0.03 | . 01 | 0.001 |
| 88 | SD1 | 013 | . 8 | 0.02 | . 01 | 0.001 |
| 88 | SD1. | 014 | . 3 | 0.01 | . 01 | 0.001 |
| 88 | SD1 | 032 | 2.4 | 0.07 | . 02 | 0.001 |
| 88 | SD1 | 033 | 1.8 | 0.05 | . 01 | 0.001 |
| 88 | SD1 | 035 | 1.9 | 0.06 | . 02 | 0.001 |
| 88 | SD1 | 043 | 1.3 | 0.04 | . 02 | 0.001 |
| 88 | SD1 | 046 | 1.0 | 0.03 | . 02 | 0.001 |
| 88 | SD1 | 054 | . 8 | 0.02 | . 01 | 0.001 |
| 88 | SD1 | 062 | 1.4 | 0.04 | . 02 | 0.001 |
| 88 | SD1 | 065 | 1.9 | 0.06 | . 02 | 0.001 |
| 88 | SD1 | 066 | 1.8 | 0.05 | . 01 | 0.001 |
| 88 | SD1 | 067 | . 9 | 0.03 | . 01 | 0.001 |
| 88 | SD1 | 068 | . 7 | 0.02 | . 02 | 0.001 |


| (VALUES |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN PPM) | AS | BA | Cu | PB | SB | 2N | AU-PPB | AG-AA |
| 88SD1001 | 7 | 89 | 96 | 14 | 1 | 57 |  |  |
| 88SD1002 | 8 | 110 | 46 | 19 | 2 | 52 |  |  |
| 88SD1003 | 13 | 74 | 60 | 19 | 2 | 59 |  |  |
| 88SD1004 | 5 | 48 | 53 | 11 | 2 | 65 |  |  |
| 88SD1005 | 6 | 84 | 84 | 19 | 1 | 194 |  |  |
| 88SD1006 | 12 | 60 | 95 | 21 | 4 | 139 |  |  |
| 885 S 1007 | 7 | 102 | 100 | 16 | 2 | 154 |  |  |
| 88SD1008 | 5 | 91 | 123 | 16 | 1 | 134 |  |  |
| 88SD1009 | 5 | 52 | 103 | 15 | 2 | 98 |  |  |
| 88SD1010 | 19 | 61 | 94 | 17 | 1 | 167 |  |  |
| 88SD1011 | 10 | 71 | 85 | 15 | 2 | 98 |  |  |
| 88SD1012 | 20 | 80 | 107 | 20 | 3 | 267 |  |  |
| 885 L 1013 | 13 | 75 | 85 | 14 | 3 | 181 |  |  |
| 88SD1014 | 10 | 71 | 72 | 21 | 3 | 88 |  |  |
| 88SDI015 | 4 | 62 | 63 | 16 | 4 | 125 | 1 | 1.0 |
| 88SDI016 | 29 | 46 | 91 | 19 | 2 | 219 | 1 | 1.2 |
| 88SDI017 | 2 | 65 | 70 | 18 | 4 | 93 | 2 | 1.2 |
| 88SDI018 | 18 | 57 | 93 | 12 | 3 | 104 | 8 | 1.0 |
| 88SDI019 | 17 | 80 | 88 | 17 | 7 | 102 | 20 | 3.2 |
| 88SDI 020 | 11 | 39 | 78 | 21 | 16 | 112 | 78 | 6.4 |
| 88 SDI 021 | 12 | 65 | 94 | 15 | 10 | 228 | 37 | 4.1 |
| 88SDI022 | 35 | 127 | 25 | 11 | 2 | 79 | 55 | 1.2 |
| 88SDI023 | 40 | 72 | 55 | 15 | 4 | 151 | 4 | 1.0 |
| 88SDI024 | 4 | 58 | 112 | 20 | 6 | 220 | 44 | 0.9 |
| 88SDI025 | 22 | 72 | 110 | 25 | 8 | 181 | 2 | 0.9 |
| 88SDI026 | 21 | 76 | 86 | 17 | 3 | 109 | 1 | 1.1 |
| 885 SI 027 | 4 | 92 | 69 | 18 | 3 | 108 | 1 | 0.8 |
| 88SDI028 | 9 | 78 | 1 | 30 | 1 | 45 | 1 | 0.5 |
| 88SDI029 | 10 | 90 | 9 | 39 | 2 | 44 | 2 | 0.7 |
| 88SDI030 | 5 | 165 | 51 | 32 | 3 | 70 | 4 | 1.6 |
| 88SDI031 | 16 | 71 | 88 | 27 | 2 | 77 | 2 | 1.2 |
| 88SD1032 | 25 | 31 | 65 | 24 | 4 | 47 |  |  |
| 88SD1033 | 5 | 60 | 54 | 24 | 2 | 76 |  |  |
| 88SDI034 | 7 | 78 | 43 | 9 | 1 | 84 | 1 | 0.8 |
| 88 SD1035 | 7 | 60 | 87 | 13 | 1 | 50 |  |  |
| 88SDI036 | 3 | 77 | 90 | 12 | 1 | 124 | 2 | 1.6 |
| 88SDI037 | 26 | 71 | 108 | 20 | 1 | 122 | 2 | 1.2 |
| 88SDI038 | 42 | 88 | 97 | 15 | 1 | 83 | 3 | 1.1 |
| 88SDI039 | 38 | 114 | 78 | 11 | 1 | 76 | 1 | 1.2 |
| 88 SDI 040 | 13 | 91 | 72 | 20 | 1 | 72 | 2 | 1.2 |
| 88SDI041 | 12 | 68 | 72 | 11 | 1 | 86 | 1 | 1.4 |
| 88SDI042 | 31 | 73 | 67 | 18 | 1 | 53 | 1 | 1.2 |
| 88SD1043 | 12 | 50 | 25 | 14 | 1 | 403 |  |  |
| 88SDI044 | 23 | 69 | 87 | 19 | 1 | 60 | 1 | 0.8 |
| 88SDI045 | 21 | 74 | 53 | 15 | 1 | 33 | 2 | 1.1 |
| 88SD1046 | 4 | 99 | 34 | 21 | 1 | 402 |  |  |
| 88SDI047 | 29 | 69 | 87 | 14 | 1 | 107 | 1 | 1.6 |
| 88SDI048 | 7 | 60 | 48 | 10 | 1 | 366 | 1 | 1.2 |
| 88SDI049 | 1 | 53 | 57 | 15 | 1 | 264 | 1 | 1.3 |
| 88SDI050 | 7 | 73 | 33 | 22 | 2 | 343 | 1 | 2.0 |
| 88SD1051 | 6 | 66 | 70 | 25 | 1 | 513 | 2 | 1.1 |
| 88SD1052 | 1 | 73 | 26 | 16 | 2 | 202 | 1 | 1.0 |


| (VALUES |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| IN PPM) | AS | BA | CU | PB | SB | ZN | AU-PPB | AG-AA |
| 88SD1053 | 9 | 104 | 42 | 24 | 1 | 366 | 3 | 0.8 |
| 88SD1054 | 13 | 44 | 21 | 14 | 1 | 31 |  |  |
| 88SD1055 | 28 | 74 | 71 | 31 | 1 | 691 | 2 | 1.0 |
| 88SD1056 | 27 | 73 | 25 | 23 | 2 | 104 | 1 | 0.8 |
| 88SD1057 | 39 | 72 | 31 | 21 | 1 | 53 | 2 | 0.8 |
| 88SD1058 | 30 | 109 | 33 | 25 | 1 | 28 | 3 | 0.5 |
| 88SD1059 | 25 | 81 | 45 | 25 | 1 | 20 | 1 | 0.6 |
| 88SD1060 | 18 | 622 | 19 | 23 | 1 | 73 | 1 | 1.2 |
| 88SD1061 | 21 | 151 | 53 | 25 | 2 | 28 | 4 | 0.8 |
| 88SD1062 | 9 | 69 | 35 | 11 | 1 | 186 |  |  |
| 88SD1063 | 20 | 88 | 53 | 30 | 2 | 24 | 3 | 1.0 |
| 88SD1064 | 24 | 60 | 21 | 27 | 3 | 22 | 5 | 0.9 |
| 88SD1065 | 13 | 1507 | 8 | 25 | 1 | 135 |  |  |
| 88SD1066 | 6 | 170 | 30 | 14 | 2 | 45 |  |  |
| 88SD1067 | 10 | 42 | 24 | 20 | 1 | 47 |  |  |
| 88SD1068 | 13 | 99 | 31 | 19 | 1 | 42 |  |  |
| 88SD1069 | 24 | 67 | 46 | 19 | 2 | 93 | 8 | 0.8 |
| 88SD1070 | 15 | 72 | 47 | 20 | 2 | 158 | 10 | 0.8 |
| 88SD1071 | 18 | 47 | 51 | 19 | 2 | 483 | 12 | 0.8 |
| 88SD1072 | 25 | 40 | 35 | 25 | 2 | 181 | 3 | 1.0 |
| 88SD1073 | 1 | 42 | 38 | 30 | 1 | 526 | 8 | 1.2 |
| 88SD1074 | 1 | 53 | 38 | 28 | 2 | 516 | 4 | 1.0 |
| 88SD1075 | 21 | 41 | 28 | 24 | 2 | 46 | 9 | 0.9 |
| 88SD1076 | 27 | 97 | 47 | 22 | 1 | 59 | 2 | 0.8 |
| 88SD1077 | 32 | 37 | 19 | 18 | 1 | 46 | 1 | 0.8 |
| 88SD1078 | 52 | 53 | 93 | 27 | 2 | 118 | 16 | 0.8 |
| 88SD1079 | 21 | 67 | 42 | 23 | 1 | 357 | 4 | 0.8 |
| 88SD1080 | 19 | 53 | 22 | 19 | 1 | 166 | 2 | 0.8 |
| 88SD1081 | 15 | 60 | 34 | 21 | 2 | 88 | 17 | 0.7 |
| 88SD1082 | 11 | 46 | 22 | 19 | 4 | 64 | 12 | 0.9 |
| 88SD1083 | 1 | 49 | 54 | 28 | 3 | 211 | 2 | 1.0 |
| 88SD1084 | 23 | 722 | 2 | 15 | 2 | 64 | 1 | 1.3 |
| 88SD1085 | 23 | 1669 | 24 | 14 | 2 | 75 | 5 | 1.2 |
| 88SD1086 | 10 | 123 | 47 | 22 | 1 | 32 | 4 | 1.2 |
| 88SD1087 | 8 | 52 | 28 | 24 | 1 | 36 | 1 | 0.8 |
| 88SD1088 | 13 | 90 | 48 | 19 | 1 | 75 | 2 | 0.5 |


| SKOOKUM PROPERTY, VERNON MINING DIVISION. ASSAY RESULTS: DIAMOND DRILL HOLE 88-SDD-002 (Top of hole Rotary drilled). |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (VALUES |  |  |  |  |  |  |  |  |
| IN PPM) | AS | BA | CU | PB | SB | ZN | AU-PPB | AG-AA |
| 1801A | 26 | 122 | 32 | 31 | 2 | 86 | 2 | 0.9 |
| 1802A | 20 | 103 | 36 | 45 | 1 | 105 | 1 | 1.3 |
| 1803A | 28 | 91 | 28 | 20 | 2 | 66 | 1 | 1.2 |
| 1804A | 28 | 87 | 31 | 28 | 2 | 76 | 1 | 0.7 |
| 1805A | 28 | 96 | 58 | 30 | 2 | 75 | 1 | 1.1 |
| 1806A | 25 | 98 | 69 | 28 | 1 | 78 | 1 | 1.1 |
| 1807A | 19 | 108 | 32 | 17 | 2 | 94 | 2 | 0.8 |
| 1808A | 26 | 92 | 33 | 12 | 2 | 68 | I | 1.2 |
| 1809A | 24 | 85 | 28 | 19 | 2 | 67 | 2 | 1.1 |
| 1810A | 27 | 76 | 26 | 19 | 1 | 52 | 1 | 0.8 |
| 1811A | 25 | 49 | 21 | 20 | 2 | 44 | 1 | 0.7 |
| 1812A | 22 | 68 | 24 | 17 | 1 | 49 | 3 | 1.0 |
| 1813A | 24 | 72 | 28 | 18 | 2 | 37 | 1 | 0.9 |
| 1814A | 20 | 83 | 22 | 15 | 1 | 57 | 2 | 0.9 |
| (Start Diamond Drill) |  |  |  |  |  |  |  |  |
| 88SD2001 | 26 | 53 | 35 | 21 | 1 | 39 | 1 | 0.6 |
| 88SD2002 | 15 | 60 | 29 | 15 | 1 | 81 | 1 | 0.9 |
| 88SD2003 | 17 | 56 | 70 | 18 | 1 | 68 | 1 | 0.6 |
| 88SD2004 | 11 | 53 | 29 | 16 | 1 | 46 | 3 | 1.0 |
| 88SD2005 | 13 | 58 | 39 | 12 | 1 | 91 | 1 | 0.6 |
| 88SD2006 | 76 | 42 | 7 | 398 | 1 | 648 | 50 | 104.0 |
| $885 D 2007$ | 26 | 54 | 104 | 21 | 1 | 177 | 2 | 1.5 |
| 88SD2008 | 35 | 66 | 58 | 20 | 1 | 140 | 1 | 1.2 |
| 88SD2009 | 26 | 62 | 66 | 25 | 2 | 127 | 1 | 1.6 |
| 88SD2010 | 20 | 60 | 32 | 22 | 2 | 177 | 2 | 1.2 |
| 88SD2011 | 9 | 60 | 40 | 16 | 1 | 264 | 2 | 1.0 |
| $885 D 2012$ | 10 | 60 | 57 | 19 | 1 | 172 | 1 | 1.0 |
| 88SD2013 | 15 | 47 | 45 | 16 | 1 | 307 | 1 | 1.2 |
| 88SD2014 | 17 | 53 | 49 | 13 | 1 | 243 | 2 | 0.8 |
| 88SD2015 | 12 | 73 | 31 | 21 | 2 | 298 | I | 0.8 |
| 88SD2016 | 4 | 70 | 56 | 12 | 1 | 441 | 2 | 1.0 |
| 885 D 2017 | 6 | 54 | 33 | 15 | 1 | 186 | 2 | 0.8 |
| 88SD2018 | 9 | 46 | 48 | 17 | 1 | 372 | 1 | 1.0 |
| 885 D 2019 | 6 | 51 | 76 | 16 | 1 | 891 | 1 | 1.2 |

SKOOKUM PROPERTY, VERNON MINING DIVISION. ASSAY RESULTS: DIAMOND DRILL HOLE B8-SDD-003
(Top of hole Rotary drilled).

| (VALUES |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| IN PPM) | AS | BA | CU | PB | SB | ZN | AU-PPB | AG-AA |
| 1989A | 24 | 85 | 23 | 15 | 2 | 72 | 8 | 0.9 |
| 1990A | 34 | 55 | 22 | 16 | 3 | 70 | 3 | 1.1 |
| 1991A | 29 | 70 | 28 | 25 | 3 | 63 | 2 | 1.0 |
| 1992A | 13 | 77 | 34 | 25 | 3 | 52 | 1 | 0.9 |
| 1993A | 2 | 117 | 40 | 23 | 2 | 50 | 3 | 0.9 |
| 1994A | 14 | 92 | 53 | 24 | 4 | 44 | 2 | 1.2 |
| 1995A | 13 | 60 | 57 | 21 | 3 | 56 | 1 | 0.9 |
| 1996A | 19 | 75 | 53 | 20 | 4 | 50 | 2 | 1.4 |
| 1997A | 4 | 90 | 61 | 19 | 3 | 93 | 5 | 1.1 |
| 1998A | 2 | 94 | 81 | 26 | 2 | 91 | 1 | 1.3 |
| 1999A | 25 | 136 | 89 | 17 | 3 | 98 | 10 | 1.8 |
| 2000A | 7 | 60 | 70 | 22 | 2 | 136 | 8 | 2.1 |
| 45001A | 51 | 61 | 90 | 27 | 5 | 108 | 26 | 5.4 |
| 45002A | 40 | 74 | 105 | 30 | 4 | 131 | 19 | 4.3 |
| 45003A | 16 | 68 | 92 | 26 | 2 | 129 | 6 | 1.8 |
| 45004A | 12 | 67 | 90 | 24 | 1 | 165 | 2 | 1.8 |
| 45005A | 15 | 79 | 80 | 18 | 2 | 132 | 3 | 1.5 |
| 45006A | 32 | 90 | 80 | 15 | 3 | 220 | 2 | 2.6 |
| 45007A | 56 | 103 | 48 | 27 | 14 | 329 | 7 | 6.7 |
| 45008A | 26 | 100 | 76 | 37 | 4 | 160 | 6 | 2.3 |
| 45009A | 8 | 84 | 93 | 19 | 4 | 345 | 5 | 1.2 |
| 45010A | 7 | 60 | 96 | 21 | 4 | 413 | 8 | 1.2 |
| 45011A | 12 | 69 | 96 | 17 | 1 | 383 | 4 | 0.9 |
| 45012A | 11 | 89 | 99 | 20 | 1 | 132 | 9 | 1.2 |
| 45013A | 8 | 94 | 76 | 21 | 1 | 62 | 15 | 1.1 |
| 45014A | 13 | 80 | 42 | 19 | 2 | 67 | 2 | 0.8 |
| 45015A | 13 | 78 | 47 | 21 | 3 | 137 | 2 | 1.0 |
| 45016A | 10 | 77 | 44 | 31 | 1 | 139 | 13 | 2.0 |
| 45017A | 3 | 62 | 49 | 41 | 1 | 158 | 21 | 2.5 |
| 88SD3001 | 22 | 91 | 42 | 18 | 1 | 109 | 1 | 1.1 |

SKOOKUM PROPERTY, VERNON MINING DIVISION. ASSAY RESULTS: REVERSE CIRCULATION HOLE 88-SRC-001

| (VALUES |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN PPM) | AS | BA | CU | PB | SB | 2N | AU-PPB | AG-AA |
| 14525A | 36 | 105 | 26 | 23 | 2 | 80 | 1 | 1.4 |
| 14526A | 5 | 115 | 30 | 24 | 1 | 74 | 2 | 1.2 |
| 14527A | 3 | 101 | 23 | 21 | 1 | 76 | 3 | 1.6 |
| 14528 A | 2 | 102 | 27 | 25 | 1 | 75 | 2 | 2.0 |
| 14529A | 1 | 118 | 30 | 22 | 1 | 78 | 2 | . 6 |
| 14530A | 26 | 138 | 47 | 26 | 2 | 58 | 4 | 1.2 |
| 14531 A | 17 | 85 | 31 | 23 | 2 | 58 | 10 | 1.2 |
| 14532A | 15 | 114 | 29 | 20 | 1 | 54 | 4 | . 9 |
| 14533A | 12 | 157 | 52 | 17 | 1 | 74 | 2 | . 6 |
| 14534 A | 1 | 117 | 60 | 22 | 2 | 59 | 3 | 1.1 |
| 14535A | 1 | 108 | 57 | 20 | 1 | 62 | 2 | 1.0 |
| 14536A | 20 | 146 | 45 | 22 | 3 | 40 | 3 | 1.4 |
| 14537A | 6 | 29 | 27 | 30 | 1 | 60 | 2 | 1.2 |
| 14538A | 5 | 113 | 32 | 18 | 1 | 44 | 1 | . 8 |
| 14539A | 9 | 77 | 33 | 25 | 2 | 40 | 2 | 1.2 |
| 14540A | 20 | 77 | 40 | 26 | 3 | 31 | 5 | 1.4 |
| 14541 A | 15 | 86 | 42 | 23 | 3 | 49 | 2 | 1.2 |
| 14542A | 13 | 101 | 50 | 21 | 3 | 44 | 3 | 1.3 |
| 14543A | 1 | 59 | 41 | 7 | 3 | 58 | 1 | 1.4 |
| 14544 A | 9 | 127 | 81 | 18 | 2 | 204 | 1 | 1.0 |
| 14545A | 19 | 132 | 93 | 23 | 5 | 184 | 6 | 1.5 |
| 14546A | 20 | 137 | 86 | 24 | 5 | 132 | 5 | 1.1 |
| 14547A | 31 | 121 | 95 | 21 | 3 | 173 | 2 | . 9 |
| 14548A | 21 | 128 | 108 | 23 | 3 | 144 | 4 | . 5 |
| 14549A | 33 | 107 | 101 | 16 | 3 | 151 | 2 | . 7 |
| 14550A | 23 | 57 | 106 | 15 | 4 | 107 | 3 | 1.5 |
| 14551A | 40 | 91 | 97 | 8 | 4 | 110 | 2 | . 8 |
| 14552A | 43 | 67 | 106 | 17 | 2 | 132 | 1 | 1.5 |
| 14553A | 35 | 61 | 135 | 23 | 4 | 112 | 12 | 1.2 |
| 14554 A | 22 | 72 | 95 | 16 | 5 | 74 | 1 | 1.1 |
| 14555A | 33 | 56 | 92 | 21 | 3 | 111 | 2 | 1.3 |
| 14556A | 30 | 64 | 106 | 25 | 1 | 210 | 12 | 1.2 |
| 14557A | 25 | 66 | 108 | 33 | 1 | 109 | 2 | 1.2 |
| 14558A | 1 | 105 | 97 | 26 | 7 | 149 | 37 | 2.3 |
| 14559A | 25 | 113 | 106 | 34 | 1 | 121 | 2 | 1.0 |
| 14560A | 43 | 65 | 103 | 197 | 14 | 389 | 363 | 8.4 |
| 14561A | 23 | 135 | 72 | 21 | 8 | 120 | 174 | 3.1 |
| 14562A | 1 | 157 | 102 | 24 | 7 | 142 | 49 | 2.4 |
| 14563A | 1 | 117 | 98 | 11 | 4 | 129 | 16 | 1.6 |
| 14564A | 37 | 94 | 90 | 24 | 8 | 114 | 120 | 3.0 |
| 14565A | 1 | 105 | 103 | 32 | 6 | 126 | 25 | 2.7 |
| 14566A | 1 | 115 | 109 | 16 | 3 | 120 | 15 | 1.8 |
| 14567A | 12 | 146 | 108 | 23 | 2 | 150 | 9 | 1.7 |
| 14568A | 3 | 92 | 72 | 10 | 1 | 116 | 10 | 2.1 |
| 14569A | 28 | 110 | 98 | 23 | 1 | 85 | 2 | 1.2 |
| 14570A | 101 | 82 | 14 | 100 | 3 | 77 | 37 | 4.2 |
| 14571A | 11 | 68 | 53 | 36 | 2 | 83 | 1 | 3.6 |
| 14572A | 54 | 83 | 65 | 18 | 2 | 76 | 2 | 2.4 |
| 14573A | 10 | 147 | 12 | 10 | 1 | 55 | 3 | 2.3 |


| (VALUES |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IN PPM) | AS | BA | CU | PB | SB | ZN | AU-PPB | AG-AA |
| 14574 A | 23 | 128 | 39 | 16 | 1 | 74 | 1 | 1.2 |
| 14575A | 17 | 96 | 83 | 13 | 1 | 66 | 1 | 1.0 |
| 14576A | 21 | 174 | 58 | 7 | 1 | 69 | 2 | 2.1 |
| 14577A | 9 | 87 | 52 | 13 | 1 | 72 | 22 | 4.4 |
| 14578A | 38 | 77 | 111 | 19 | 2 | 66 | 2 | 3.2 |
| 14579 A | 15 | 134 | 77 | 18 | 2 | 65 | 42 | 2.7 |
| 14580 A | 39 | 106 | 45 | 6 | 1 | 65 | 21 | 4.6 |
| 14581 A | 4 | 121 | 37 | 9 | 1 | 59 | 18 | 2.4 |
| 14587 A | 8 | 59 | 67 | 57 | 3 | 51 | 1 | 2.8 |
| 14588 A | 24 | 74 | 57 | 25 | 8 | 66 | 1 | 4.0 |
| 14589 A | 2 | 77 | 41 | 24 | 2 | 49 | 1 | 1.0 |
| 14590 A | 8 | 80 | 40 | 35 | 2 | 49 | 2 | 1.0 |
| 14591 A | 2 | 95 | 46 | 33 | 1 | 57 | 1 | 1.6 |
| 14592A | 19 | 76 | 39 | 17 | 2 | 82 | 3 | 1.5 |
| 14593 A | 25 | 96 | 62 | 27 | 2 | 49 | 1 | 1.7 |
| 14594 A | 25 | 104 | 66 | 25 | 1 | 53 | 1 | 1.3 |
| 14595 A | 9 | 98 | 93 | 32 | 1 | 45 | 1 | 1.6 |
| 14596 A | 8 | 77 | 62 | 38 | 1 | 143 | 2 | 1.5 |
| 14597 A | 28 | 130 | 31 | 19 | 2 | 50 | 1 | 1.0 |
| 14598 A | 14 | 67 | 44 | 33 | 1 | 66 | 1 | 4.8 |
| 14599A | 2 | 109 | 57 | 33 | 1 | 64 | 1 | 2.0 |
| 14600 A | 19 | 53 | 74 | 29 | 1 | 132 | 2 | 1.9 |
| 1751 A | 16 | 84 | 65 | 36 | 1 | 90 | 2 | 2.0 |
| 1752A | 27 | 106 | 68 | 26 | 1 | 61 | 1 | 2.1 |
| 1753A | 12 | 56 | 87 | 43 | 2 | 61 | 2 | 1.9 |
| 1754 A | 11 | 86 | 84 | 33 | 1 | 216 | 1 | 1.9 |
| 1755A | 2 | 109 | 82 | 49 | 1 | 261 | 1 | 1.5 |
| 1756A | 13 | 87 | 82 | 29 | 1 | 81 | 3 | 1.6 |
| 1757A | 14 | 96 | 39 | 25 | 1 | 48 | 1 | 1.0 |
| 1758A | 5 | 145 | 57 | 36 | 1 | 53 | 2 | 1.2 |
| 1759A | 4 | 134 | 60 | 29 | 1 | 83 | 1 | 1.4 |
| 1760A | 9 | 88 | 42 | 26 | 2 | 67 | 3 | 1.1 |
| 1761A | 11 | 48 | 27 | 24 | 2 | 66 | 2 | 1.0 |
| 1762A | 4 | 63 | 23 | 20 | 1 | 90 | 4 | 1.4 |
| 1763 A | 15 | 82 | 33 | 27 | 2 | 92 | 4 | 2.0 |
| 1764 A | 1 | 68 | 12 | 20 | 2 | 75 | 5 | 1.0 |
| 1765A | Sample | Missi | ng at | Min-En |  | orat |  |  |
| 1766A | 12 | 74 | 19 | 32 | 2 | 83 | 23 | 1.6 |
| 1767A | 8 | 100 | 26 | 15 | 1 | 83 | 1 | 1.6 |
| 1768A | 1 | 90 | 15 | 11 | 1 | 53 | 2 | 1.1 |
| 1769A | 17 | 51 | 13 | 26 | 1 | 35 | 1 | 1.2 |
| 1770A | 1 | 96 | 37 | 13 | 1 | 124 | 14 | 1.5 |

SKOOKUM PROPERTY, VERNON MINING DIVISION. ASSAY RESULTS: REVERSE CIRCULATION HOLE 88-SRC-002
(VALUES

| IN PPM) | AS | BA | CU | PB | SB | ZN | AU-PPB | AG-AA |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1901A | 14 | 90 | 58 | 22 | 3 | 63 | 1 | 1.2 |
| 1902A | 8 | 85 | 58 | 12 | 2 | 80 | 3 | 1.0 |
| 1903A | 23 | 67 | 60 | 33 | 2 | 78 | 8 | 1.1 |
| 1904A | 6 | 93 | 56 | 22 | 2 | 71 | 1 | 1.0 |
| 1905A | 13 | 94 | 57 | 13 | 2 | 70 | 2 | 0.9 |
| 1906A | 7 | 67 | 51 | 20 | 2 | 99 | 3 | 1.4 |
| 1907A | 9 | 61 | 56 | 29 | 2 | 121 | 1 | 1.9 |
| 1908A | 24 | 50 | 74 | 20 | 6 | 143 | 7 | 2.0 |
| 1909A | 26 | 47 | 81 | 17 | 5 | 143 | 2 | 1.9 |
| 1910A | 36 | 39 | 87 | 31 | 4 | 316 | 8 | 2.8 |
| 1911A | 20 | 42 | 86 | 34 | 4 | 306 | 1 | 2.4 |
| 1912A | 21 | 63 | 104 | 42 | 2 | 179 | 6 | 2.1 |
| 1913A | 13 | 64 | 103 | 43 | 2 | 174 | 2 | 2.0 |
| 1914A | 31 | 52 | 92 | 43 | 2 | 242 | 2 | 5.2 |
| 1915A | 26 | 52 | 100 | 39 | 2 | 190 | 1 | 5.4 |
| 1916A | 12 | 46 | 150 | 22 | 1 | 153 | 16 | 16.0 |
| 1917A | 25 | 38 | 223 | 50 | 1 | 184 | 147 | 60.0 |
| 1918A | 25 | 52 | 110 | 20 | 1 | 134 | 2 | 2.2 |
| 1919A | 18 | 59 | 105 | 17 | 1 | 143 | 1 | 1.6 |
| 1920A | 16 | 48 | 104 | 22 | 1 | 126 | 2 | 2.0 |
| 1921A | 13 | 52 | 106 | 17 | 1 | 138 | 1 | 1.9 |
| 1922A | 14 | 64 | 122 | 27 | 1 | 124 | 1 | 1.6 |
| 1923A | 7 | 51 | 117 | 15 | 1 | 124 | 3 | 1.6 |
| 1924A | 2 | 43 | 94 | 14 | 1 | 125 | 1 | 1.3 |
| 1925A | 9 | 49 | 106 | 16 | 1 | 118 | 2 | 2.0 |
| 1926A | 7 | 50 | 100 | 19 | 1 | 267 | 5 | 1.4 |
| 1927A | 16 | 75 | 101 | 26 | 1 | 190 | 17 | 1.5 |
| 1928A | 9 | 56 | 71 | 27 | 1 | 258 | 10 | 1.6 |
| 1929A | 13 | 56 | 85 | 25 | 1 | 271 | 3 | 2.0 |
| 1930A | 23 | 28 | 38 | 15 | 2 | 93 | 5 | 1.4 |
| 1931A | 15 | 39 | 58 | 29 | 1 | 154 | 3 | 1.6 |
| 1932A | 18 | 105 | 61 | 25 | 1 | 138 | 17 | 1.6 |
| 1933A | 7 | 106 | 59 | 24 | 1 | 179 | 8 | 1.8 |
| 1934A | 8 | 42 | 62 | 20 | 1 | 223 | 10 | 2.2 |
| 1935A | 5 | 63 | 76 | 23 | 1 | 254 | 1 | 2.3 |
| 1936A | 9 | 51 | 66 | 20 | 1 | 101 | 2 | 1.8 |
| 1937A | 9 | 52 | 61 | 16 | 2 | 97 | 1 | 1.5 |
| 1938A | 4 | 43 | 65 | 14 | 1 | 73 | 1 | 1.6 |
| 1939A | 13 | 46 | 65 | 16 | 2 | 79 | 3 | 1.8 |
| 1940A | 14 | 27 | 63 | 35 | 3 | 89 | 1 | 2.1 |
| 1941A | 19 | 30 | 69 | 24 | 3 | 86 | 1 | 1.5 |
| 1942A | 12 | 32 | 84 | 18 | 3 | 122 | 1 | 1.7 |
| 1943A | 13 | 29 | 74 | 24 | 4 | 82 | 1 | 1.8 |
| 1944A | 23 | 93 | 42 | 29 | 5 | 76 | 41 | 1.9 |
| 1945A | 19 | 169 | 44 | 24 | 6 | 88 | 22 | 1.4 |
| 1946A | 37 | 1257 | 40 | 15 | 4 | 101 | 1 | 2.4 |
| 1947A | 31 | 1263 | 35 | 14 | 5 | 97 | 1 | 2.3 |
| 1948A | 32 | 602 | 40 | 19 | 4 | 90 | 1 | 1.8 |
| $1949 A$ | 35 | 628 | 43 | 18 | 5 | 85 | 3 | 1.6 |
| $1950 A$ | 5 | 135 | 4 | 18 | 4 | 87 | 1 | 1.9 |


| (VALUES |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| IN PPM) | AS | BA | CU | PB | SB | $2 N$ | AU-PPB | AG-AA |
| 1951A | 1 | 94 | 3 | 27 | 5 | 84 | 1 | 1.7 |
| 1952A | 7 | 83 | 9 | 24 | 3 | 71 | 2 | 1.4 |
| 1953A | 1 | 90 | 7 | 16 | 2 | 63 | 3 | 1.4 |
| 1954A | 13 | 41 | 34 | 30 | 10 | 178 | 2 | 2.9 |
| 1955A | 18 | 47 | 34 | 34 | 11 | 163 | 1 | 2.6 |
| 1956A | 19 | 92 | 76 | 56 | 2 | 711 | 1 | 17.5 |
| 1957A | 17 | 78 | 65 | 93 | 2 | 1083 | 1 | 34.0 |
| 1958A | 29 | 105 | 51 | 20 | 2 | 85 | 1 | 1.6 |
| 1959A | 27 | 76 | 56 | 20 | 4 | 76 | 2 | 1.5 |
| 1960A | 20 | 86 | 51 | 19 | 2 | 83 | 2 | 1.7 |
| 1961A | 23 | 77 | 55 | 18 | 3 | 94 | 1 | 1.5 |
| 1962A | 12 | 148 | 70 | 16 | 2 | 97 | 1 | 1.6 |
| 1963A | 14 | 141 | 79 | 13 | 2 | 97 | 1 | 1.4 |
| 1964A | 38 | 155 | 58 | 15 | 1 | 118 | 1 | 1.6 |
| 1966A | 37 | 86 | 82 | 20 | 4 | 169 | 2 | 4.5 |
| 1967A | 36 | 68 | 56 | 22 | 4 | 79 | 5 | 2.4 |
| 1968A | 44 | 60 | 48 | 27 | 5 | 89 | 2 | 2.7 |
| 1969A | 36 | 73 | 47 | 21 | 3 | 42 | 1 | 1.9 |
| 1970A | 24 | 88 | 20 | 20 | 2 | 36 | 1 | 1.3 |
| 1971A | 18 | 79 | 33 | 17 | 2 | 74 | 1 | 2.0 |
| 1972A | 29 | 61 | 34 | 22 | 3 | 98 | 2 | 2.2 |
| 1973A | 18 | 102 | 26 | 15 | 1 | 60 | 1 | 1.1 |
| 1974A | 9 | 110 | 22 | 16 | 2 | 44 | 1 | 0.9 |
| 1975A | 15 | 97 | 22 | 15 | 1 | 45 | 2 | 0.9 |
| 1976A | 32 | 147 | 26 | 20 | 2 | 61 | 1 | 1.4 |
| 1977A | 21 | 139 | 63 | 18 | 2 | 60 | 1 | 1.5 |
| 1978A | 20 | 125 | 64 | 29 | 2 | 55 | 1 | 1.8 |
| $1979 A$ | 18 | 67 | 25 | 23 | 3 | 145 | 2 | 1.3 |
| $1980 A$ | 13 | 60 | 26 | 27 | 3 | 119 | 1 | 1.5 |
| 1981A | 25 | 98 | 52 | 21 | 2 | 50 | 2 | 1.1 |
| 1982A | 21 | 74 | 35 | 22 | 1 | 47 | 8 | 1.0 |
| $1983 A$ | 18 | 68 | 37 | 22 | 3 | 120 | 4 | 1.6 |
| $1984 A$ | 26 | 98 | 31 | 24 | 2 | 84 | 1 | 1.1 |
| $1985 A$ | 20 | 53 | 52 | 19 | 3 | 249 | 3 | 1.5 |
| $1986 A$ | 17 | 57 | 45 | 25 | 4 | 309 | 1 | 1.0 |
| 1987A | 18 | 82 | 96 | 16 | 1 | 272 | 2 | 1.2 |
| $1988 A$ | 13 | 64 | 79 | 22 | 1 | 323 | 1 | 1.0 |

SKOOKUM PROPERTY, VERNON MINING DIVISION.
ASSAY RESULTS: REVERSE CIRCULATION HOLE 88-SRC-005

| (VALUES |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| IN PPM) | AS | BA | CU | PB | SB | ZN | AU-PPB | AG-AA |
| 45084 | 9 | 104 | 85 | 40 | 4 | 112 | 71 | 1.7 |
| 45085 | 28 | 88 | 59 | 21 | 4 | 82 | 26 | 1.3 |
| 45086 | 9 | 85 | 60 | 28 | 4 | 86 | 50 | 1.1 |
| 45087 | 16 | 83 | 64 | 18 | 2 | 89 | 35 | 1.8 |
| 45088 | 14 | 79 | 58 | 8 | 2 | 79 | 18 | 1.2 |
| 45089 | 16 | 82 | 85 | 27 | 4 | 106 | 82 | 1.7 |
| 45090 | 35 | 75 | 78 | 21 | 2 | 102 | 105 | 2.2 |
| 45091 | 61 | 100 | 87 | 37 | 13 | 147 | 112 | 1.9 |
| 45092 | 52 | 97 | 86 | 37 | 16 | 135 | 172 | 1.7 |
| 45093 | 62 | 106 | 91 | 37 | 15 | 106 | 62 | 1.6 |
| 45094 | 69 | 86 | 73 | 33 | 11 | 96 | 41 | 1.8 |
| 45095 | 53 | 87 | 64 | 23 | 9 | 74 | 4 | 1.3 |
| 45096 | 18 | 104 | 65 | 34 | 8 | 100 | 2 | 1.3 |
| 45097 | 14 | 97 | 95 | 30 | 9 | 101 | 1 | 1.1 |
| 45098 | 49 | 118 | 106 | 31 | 9 | 104 | 3 | .9 |
| 45099 | 15 | 131 | 108 | 20 | 25 | 87 | 2 | 1.4 |
| 45100 | 12 | 112 | 80 | 14 | 21 | 86 | 3 | 1.5 |
| 45101 | 34 | 74 | 67 | 26 | 22 | 89 | 36 | 2.6 |
| 45102 | 24 | 86 | 86 | 14 | 23 | 72 | 18 | 2.1 |
| 45103 | 6 | 112 | 68 | 17 | 20 | 89 | 3 | 1.5 |
| 45104 | 4 | 122 | 96 | 22 | 21 | 43 | 2 | 1.8 |
| 45105 | 14 | 101 | 88 | 24 | 20 | 35 | 1 | 1.3 |
| 45106 | 13 | 98 | 101 | 20 | 22 | 123 | 2 | 1.4 |
| 45107 | 4 | 110 | 126 | 27 | 22 | 213 | 1 | 1.4 |


| (VALUES |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| IN PPM) | AS | BA | CU | PB | SB | ZN | AU-PPB | AG-AA |
| 45200 | 20 | 91 | 78 | 29 | 1 | 310 | 2 | 2.3 |
| 45051 | 23 | 111 | 101 | 24 | 2 | 188 | 1 | 1.2 |
| 45052 | 25 | 118 | 74 | 28 | 1 | 351 | 1 | 4.5 |
| 45053 | 20 | 118 | 79 | 25 | 2 | 376 | 1 | 1.9 |
| 45054 | 15 | 126 | 80 | 26 | 1 | 434 | 1 | 1.8 |
| 45055 | 19 | 148 | 106 | 11 | 1 | 399 | 3 | 1.1 |
| 45056 | 11 | 98 | 89 | 17 | 1 | 371 | 1 | 1.4 |
| 45057 | 17 | 112 | 102 | 25 | 1 | 391 | 3 | 1.5 |
| 45058 | 20 | 93 | 69 | 17 | 1 | 313 | 2 | .9 |
| 45059 | 9 | 81 | 76 | 25 | 1 | 462 | 1 | 1.5 |
| 45060 | 17 | 59 | 54 | 17 | 1 | 141 | 1 | .9 |
| 45061 | 2 | 61 | 53 | 16 | 1 | 193 | 2 | .9 |
| 45062 | 5 | 81 | 60 | 13 | 1 | 263 | 4 | .7 |
| 45063 | 6 | 74 | 62 | 17 | 1 | 288 | 1 | .8 |
| 45064 | 6 | 63 | 43 | 16 | 1 | 249 | 2 | .9 |
| 45065 | 2 | 50 | 39 | 16 | 1 | 200 | 1 | .6 |
| 45066 | 12 | 64 | 44 | 23 | 1 | 188 | 1 | .8 |
| 45067 | 5 | 51 | 37 | 17 | 1 | 219 | 2 | .7 |
| 45068 | 18 | 57 | 61 | 16 | 1 | 339 | 1 | 1.01 |
| 45069 | 10 | 77 | 60 | 13 | 1 | 229 | 1 | .9 |
| 45070 | 12 | 72 | 57 | 24 | 1 | 170 | 1 | 1.0 |
| 45071 | 6 | 59 | 53 | 9 | 1 | 98 | 2 | .6 |
| 45072 | 19 | 100 | 76 | 35 | 1 | 67 | 1 | .8 |
| 45073 | 8 | 77 | 71 | 19 | 1 | 97 | 1 | 1.3 |
| 45074 | 10 | 136 | 114 | 18 | 1 | 121 | 1 | 1.0 |
| 45075 | 4 | 115 | 91 | 18 | 1 | 86 | 3 | .7 |
| 45076 | 4 | 85 | 94 | 32 | 1 | 126 | 2 | .5 |
| 45077 | 19 | 89 | 71 | 24 | 1 | 98 | 2 | .6 |
| 45078 | 2 | 137 | 51 | 16 | 1 | 85 | 1 | 1.1 |
| 45079 | 8 | 104 | 54 | 20 | 1 | 82 | 4 | 1.2 |
| 45080 | 7 | 175 | 41 | 13 | 1 | 57 | 5 | 1.2 |
| 45081 | 6 | 122 | 44 | 16 | 1 | 53 | 15 | 1.7 |
| 45082 | 8 | 151 | 60 | 22 | 1 | 70 | 1 | .8 |
| 45083 | 16 | 154 | 74 | 20 | 1 | 75 | 2 | .9 |

SKOOKUM PROPERTY, VERNON MINING DIVISION. ASSAY RESULTS: REVERSE CIRCULATION HOLE 88-SRC-004

| (VALUES |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| IN PPM) | AS | BA | CU | PB | SB | 2N | AU-PPB | AG-AA |
| 45151 | 21 | 140 | 33 | 23 | 1 | 67 | 1 | 1.1 |
| 45152 | 12 | 155 | 33 | 12 | 1 | 75 | 2 | 1.6 |
| 45153 | 5 | 136 | 32 | 15 | 1 | 72 | 1 | 1.0 |
| 45154 | 6 | 141 | 32 | 12 | 1 | 74 | 2 | .8 |
| 45155 | 7 | 109 | 34 | 14 | 1 | 81 | 1 | 1.1 |
| 45156 | 41 | 94 | 34 | 17 | 1 | 77 | 1 | .9 |
| 45157 | 15 | 126 | 43 | 19 | 2 | 65 | 2 | 1.0 |
| 45158 | 15 | 121 | 41 | 20 | 1 | 60 | 1 | .7 |
| 45159 | 5 | 104 | 39 | 20 | 4 | 50 | 1 | 1.0 |
| 45160 | 21 | 112 | 39 | 19 | 2 | 49 | 2 | .8 |
| 45161 | 21 | 65 | 39 | 19 | 1 | 62 | 1 | .7 |
| 45162 | 18 | 73 | 43 | 12 | 1 | 64 | 1 | 1.1 |
| 45163 | 2 | 107 | 77 | 27 | 1 | 181 | 5 | 1.2 |
| 45164 | 37 | 113 | 81 | 21 | 1 | 169 | 2 | 1.4 |
| 45165 | 26 | 113 | 82 | 28 | 1 | 175 | 1 | 1.3 |
| 45166 | 22 | 105 | 83 | 17 | 1 | 173 | 1 | 1.4 |
| 45167 | 1 | 76 | 157 | 18 | 1 | 173 | 4 | 1.4 |
| 45168 | 33 | 76 | 160 | 13 | 1 | 165 | 2 | 1.2 |
| 45169 | 11 | 90 | 106 | 13 | 1 | 142 | 2 | .9 |
| 45170 | 11 | 74 | 110 | 12 | 1 | 121 | 1 | 1.8 |
| 45171 | 1 | 75 | 80 | 17 | 2 | 102 | 22 | 1.4 |
| 45172 | 7 | 79 | 78 | 20 | 1 | 140 | 24 | 1.3 |
| 45173 | 9 | 65 | 98 | 16 | 2 | 121 | 143 | 2.0 |
| 45174 | 8 | 67 | 94 | 22 | 2 | 113 | 144 | 2.5 |
| 45175 | 4 | 66 | 91 | 11 | 2 | 105 | 151 | 1.8 |
| 45176 | 32 | 68 | 102 | 18 | 2 | 96 | 85 | 1.5 |
| 45177 | 42 | 66 | 97 | 53 | 28 | 136 | 61 | 5.3 |
| 45178 | 72 | 59 | 106 | 69 | 35 | 136 | 127 | 7.6 |
| 45179 | 143 | 109 | 89 | 107 | 26 | 176 | 106 | 4.3 |
| 45180 | 152 | 76 | 69 | 55 | 17 | 114 | 105 | 1.9 |
| 45181 | 114 | 91 | 90 | 32 | 13 | 118 | 92 | 2.7 |
| 45182 | 112 | 89 | 94 | 35 | 12 | 122 | 67 | 1.8 |
| 45183 | 83 | 84 | 87 | 26 | 12 | 118 | 50 | 2.6 |
| 45184 | 108 | 88 | 80 | 24 | 11 | 103 | 18 | 2.1 |
| 45185 | 1 | 87 | 104 | 21 | 7 | 98 | 2 | 2.3 |
| 45186 | 46 | 78 | 110 | 21 | 6 | 101 | 4 | 2.7 |
| 45187 | 12 | 74 | 105 | 28 | 6 | 122 | 5 | 2.3 |
| 45188 | 5 | 57 | 112 | 33 | 7 | 141 | 2 | 3.1 |
| 45189 | 8 | 94 | 86 | 17 | 1 | 91 | 15 | 2.3 |
| 45190 | 17 | 89 | 94 | 10 | 2 | 81 | 2 | 1.9 |
| 45191 | 3 | 138 | 97 | 16 | 3 | 72 | 1 | 2.0 |
| 45192 | 3 | 140 | 102 | 20 | 2 | 77 | 1 | 1.3 |
| 45193 | 10 | 131 | 74 | 33 | 2 | 141 | 3 | 1.4 |
| 45194 | 13 | 108 | 67 | 20 | 1 | 220 | 2 | 1.3 |
| 45195 | 16 | 85 | 49 | 18 | 1 | 165 | 1 | 1.7 |
| 45196 | 7 | 77 | 49 | 19 | 1 | 194 | 1 | 1.2 |
| 45197 | 14 | 66 | 49 | 16 | 1 | 146 | 1 | 1.0 |
| 45198 | 2 | 82 | 75 | 26 | 1 | 399 | 1 | .9 |
| 45199 | 22 | 93 | 71 | 20 | 1 | 196 | 4 | 1.4 |
|  |  |  |  |  |  |  |  |  |

vincouvmitorive． 705 WEST 161HSTREET

Company：HI－TEC FESOUFCE MANAGEMENT
File：日－2171／F1
［ Froject： $88-\mathrm{BC}-052$
Date：DEC 日／BE
Attention：D．CDILLINS
Type：FOCK ASSAY
［ He bereby certify the following results for samples submitted．

| $\Gamma$ | Sample <br> Number | AG <br> G／TONNE | AG $07 / \mathrm{TON}$ | AL．J G／TONNE | $\stackrel{\mathrm{ALJ}}{\mathrm{OZ} / \mathrm{TON}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 86 6D1 001 | 1． 6 | 0.05 | ． 02 | 0.001 |
|  | 39501002 | 1． 4.4 | 0.04 | .01 | 0.001 |
| ！ | 8 BLDL 004 | 1． 5 | 0.04 | ． 02 | 0.001 |
|  | G日 SDi 005 | ． 4 | 0.01 | .01 | 0.001 |
| 5 | BE SD1 007 | 1.2 | 0.04 | .01 | 0.001 |
|  | $88 \mathrm{SD1} 00 \mathrm{~g}$ | ． 3 | 0.01 | ． 02 | 0.001 |
|  | 88 501 009 | ． 9 | 0.08 | .01 | 0.001 |
|  | 86 EDI 010 | 2.0 | 0.06 | ． 01 | 0.001 |
|  | 69 5id 011 | ． 2 | 0.01 | ． 01 | 0.001 |
|  | B4EDI O12 | 1．1 | 0.08 | ． 01 | 0.001 |
| ： | 68 5D1 012 | ． 8 | 0.02 | .01. | 0.001 |
|  | कु 5D1 014 | ． 3 | 0.01 | .01 | 0.001 |

$\qquad$
$\qquad$



## 

Company：HI－TEC RESOURCE MANAGEMENT LTD．
Project：8B－EC 052
Attention：D．COLLINS／M．BELL

File：8－2164／P1
Date：DEC 5／8日
Type：ROCK ASSAY

He berety gertify the following results for samples submitted．
Sample

AG
AG
AU
AU
Number
G／TONNE
OZ／TON G／TONNE
OZ／TON

| 8BSD 1003 | 1.3 | 0.04 | ． 02 | 0.001. |
| :---: | :---: | :---: | :---: | :---: |
| 885D1 006 | 1.8 | 0.05 | ． 02 | 0.001 |
| 8日SD1 032 | 2． 4 | 0.07 | .02 | 0.001 |
| EBSD1 OSS | 1.8 | 0.05 | ． 01 | 0.001 |
| gespl Oss | 1.9 | 0.06 | .02 | 0.001 |
| 88SD 1043 | 1.3 | 0.04 | ． 02 | 0.001 |
| 885D1 046 | 1． 0 | 0.03 | ． 02 | 0.001 |
| GESD1 054 | ． 8 | 0.02 | .01 | 0.001 |
| 80501 062 | 1.4 | 0.04 | ． 02 | 0.001 |
| 日日cil 1 065 | 1.9 | 0.06 | .02 | 0.001 |
| Begid 1066 | 1.8 | 0.05 | .01 | 0.001 |
| 98511 067 | ． 9 | 0.05 | .01 | 0.001 |
| B6SD1 068 | .7 | 0.02 | .02 | 0.001 |

Certified by


| WhatJes In PFM) | BA | CJ | P $\bar{B}$ | 58 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 68501-003 | 74 | 60 | 19 | 2 | 59 |
| 88508-006 12 | 60 | 95 | 21 | 4 | 139 |
| 885DI-032 25 | 31 | 85 | 24 | 4 | 47 |
| 88SDi-033 5 | 60 | 54 | 24 | 2 | 76 |
| 88501-035 | 60 | 87 | 13 | 1 | 50 |
| B9501-043 | 50 | 25 | 14 | 1 | 403 |
| B8SD -046 | 99 | 34 | $2!$ | 1 | 402 |
| 885D1-054 3 | 44 | 21 | 14 | 1 | 31 |
| 88501-062 | 69 | 35 | 11 | 1 | 186 |
| 88501-665 | 1507 | 8 | 25 | 1 | 135 |
| 88501-966 | 170 | 30 | 14 | 2 | 45 |
| 88581-067 10 | 42 | 24 | 20 | 1 | 47 |
| 88S01-068 13 | 97 | 31 | 19 | 1 | 42 |



NIH-EA LAES ICP REPORT
705 WEST !5TH SI., NBRTH VAREOMER, B.E. Y7H 112
(ACTIFSD) FACE : OF : FILE NO: $8-22102 / F!+2$

FEDRECTHO: 88 BC 052

AITETIOR: O.COLINS FQ

|  | 45 | BA | cu | F | S8 | 尘 | PPG | AS-9A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -8906 0 | 6 | 66 | 70 | 25 | 1 | 513 | 2 | 1.1 |
| 8850195? | 1 | 73 | 26 | 16 | 2 | 202 | 1 | 1.0 |
| 2850105 | 9 | 104 | 42 | 24 | 1 | 366 | 3 | 0.8 |
| 69S0tics | 28 | 74 | 71 | 31 | 1 | 691 | 2 | 1.10 |
| $89 E 01056$ | 27 | 7 | 25 | 23 | 2 | 104 | 1 | 0.8 |
| -89501057 | 89 | 72 | 31 | 21 | 1 | 53 | 2 | 0.8 |
| 88501058 | 30 | 109 | 33 | 25 | 1 | 28 | 3 | 0.5 |
| 885n5059 | 25 | 8) | 45 | 25 | 1 | 20 | $!$ | 0.6 |
| 89581060 | 18 | 822 | 17 | 23 | 1 | 73 | 1 | 1.2 |
| $88 c 01061$ | 21 | 151 | 53 | 25 | 2 | 28 | 4 | 0.8 |
| 8 Som 103 | 20 | 88 | 5 | ? 0 | 2 | 24 | 3 | 1.0 |
| 88581964 | 24 | 80 | 21 | 27 | 3 | 22 | 5 | 0.9 |
| 85511069 | 24 | 67 | 46 | 19 | 2 | 93 | 8 | 0.8 |
| 88501070 | 15 | 72 | 47 | 20 | 2 | 158 | 10 | 0.8 |
| 9590:671 | 18 | 47 | 51 | 19 | 2 | 483 | 12 | 6.8 |
| $88 S D 1072$ | 25 | 40 | 35 | 25 | 2 | 181 | 3 | 1.0 |
| 88SD1073 | 1 | 42 | 38 | 30 | 1 | 526 | 8 | 1.2 |
| 88501074 | 1 | 53 | 38 | 28 | 2 | 516 | 4 | 1.0 |
| 88501075 | 21 | 41 | 28 | 24 | 2 | 46 | 9 | 0.9 |
| 88.51076 | 27 | 97 | 47 | 22 | 1 | 59 | 2 | 0.8 |
| 8850107 | 32 | 37 | 19 | 18 | 1 | 46 | 1 | 0.8 |
| 88581078 | 52 | 53 | 93 | 27 | 2 | 118 | 16 | 0.8 |
| 88501077 | 21 | 67 | 42 | 23 | 1 | 357 | 4 | 0.8 |
| 89501080 | 19 | 53 | 27 | 17 | 1 | 166 | 2 | 18.8 |
| 89301081 | 15 | 60 | 34 | 21 | 2 | 88 | 17 | 0.7 |
| -88S51082 | 11 | 46 | 22 | 19 | 4 | 64 | 12 | 0.9 |
| 88501083 | 1 | 49 | 54 | 28 | 3 | 211 | 2 | 1.0 |
| 88501084 | 23 | 722 | 2 | 15 | 2 | 64 | 1 | 1.3 |
| 82931085 | 23 | 1667 | 24 | 14 | 2 | 75 | 5 | 1.2 |
| 88501086 | 10 | 123 | 47 | 22 | 1 | 32 | 4 | 1.2 |
| 665D1087 | 8 | 52 | 28 | 24 | 1 | 36 | 1 | 0.8 |
| 88501088 | 13 | 90 | 48 | 19 | 1 | 75 | 2 | 0.5 |
| 88502001 | 26 | 53 | 35 | 21 | 1 | 39 | 1 | 0.6 |
| 88592002 | 15 | 60 | 29 | 15 | 1 | 81 | 1 | 0.9 |
| 88902093 | 17 | 5 | 70 | 18 | 1 | 68 | 1 | 0.6 |
| 88502004 | 11 | 53 | 29 | 16 | 1 | 46 | 3 | 1.0 |
| 88502005 | 13 | 58 | 39 | 12 | 1 | 91 | 1 | 0.6 |
| 88502008 | 76 | 42 | 7 | 378 | 1 | 648 | 50 | 104.0 |
| 88502007 | 26 | 54 | 104 | 21 | 1 | 177 | 2 | 1.5 |
| $885 D 2009$ | 35 | 66 | 58 | 29 | 1 | 140 | 1. | 1.2 |
| 88502009 | 26 | 62 | 63 | 25 | 2 | 127 | 1 | 1.6 |
| 88582010 | 20 | 60 | 32 | 22 | 2 | 177 | 2 | 1.2 |
| 28592614 | 9 | 60 | 40 | 16 | 1 | 264 | 2 | 1.0 |
| 88502012 | 10 | 60 | 57 | 19 | 1 | 172 | 1 | 1.0 |
| 88502013 | 15 | 47 | 45 | 16 | 1 | 307 | 1 | 1.2 |
| -893020] | 17 | 53 | 49 | 13 | 1 | 243 | 2 | 0.8 |
| 88502015 | 12 | 73 | 31 | 21 | 2 | 278 | 1 | 9.8 |
| 88502016 | 4 | 70 | 56 | 12 | $!$ | 441 | 2 | 1.0 |
| 38502017 | 6 | 54 | 33 | 15 | 1 | 186 | 2 | 0.8 |
| 88502018 | 9 | 48 | 48 | 17 | 1 | 372 | 1 | 1.0 |
| 63502019 | $b$ | 51 | 76 | 16 | 1 | 891 | 1 | 1.2 |


| - AITEMTION: D.COLINS |  | (604) 990-5814 0R 1604)938-4524 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Walles in PFM | A5 | 明 | [U | P8 | SB | IV |  | 5-AA |  |
| 8 a | 22 | 91 | 42 | 18 | 1 | 109 | 1 | 1.1 |  |
| 8950.062 | 17 | 95 | 41 | 15 | 1 | 77 | 1 | 1.2 |  |
| 88507603 | 5 | 122 | 48 | 11 | 1 | 102 | 1t | 1.4 |  |
| 86503604 | 13 | 104 | 49 | 16 | 1 | 73 | ? | 1.3 |  |
| 88503005 | 19 | 79 | 31 | 24 | 4 | 56 | 1 | 1.9 |  |
| 88303606 | 4 | -127 | 61 | 15 | 1 | 57 | 3 | 1.0 |  |
| 88503007 | 18 | 115 | 63 | 13 | 3 | 224 | 6 | 1.5 |  |
| 885031088 | 6 | 115 | 54 | 15 | 3 | 239 | 2 | 1.0 |  |
| 8Scn309 | 4 | 103 | 50 | 11 | 2 | 94 | 2 | . 9 |  |
| 89585310 | 6 | 97 | 60 | 12 | 1 | 189 | 14 | 1.2 |  |
| 89603011 | 15 | 192 | 105 | 14 | 3 | 164 | 1 | 1.6 |  |
| 88503012 | 14 | 105 | 73 | 13 | 1 | 76 | 3 | 1.3 |  |
| 88503013 | 2 | 115 | 79 | 14 | 3 | 352 | 2 | 1.5 |  |
| 88503014 | 21 | 98 | 36 | 15 | 3 | 135 | 1 | 1.3 |  |
| 88903015 | 5 | 97 | 73 | 14 | 3 | 85 | 2 | 1.4 |  |
| 89507016 | 13 | 153 | 2 | 13 | 6 | 79 | 22 | 1.5 |  |
| 9850.9017 | 3 | 103 | 57 | 9 | 5 | 94 | 8 | 1.1 |  |
| 88503018 | 2 | 109 | 85 | 22 | 6 | 516 | 1 | 1.2 |  |
| 89SEMO 9 | 28 | 75 | 78 | 84 | 4 | 331 | 3 | 2.1 |  |
| gesbjozo | 5 | 144 | 74 | 16 | 2 | 232 | 5 | 1.8 |  |
| 45016 A | 10 | 77 | 44 | 31 | 1 | 139 | 15 | 2.0 |  |
| 459178 | 3 | 62 | 49 | 4) | 1 | 158 | 21 | 2.5 |  |
| 4515! | 21 | 140 | 33 | 33 | 1 | 67 | 1 | 1.1 |  |
| 455 | 12 | 155 | 33 | 12 | 1 | 75 | 2 | 1.6 |  |
| 455 | 5 | 136 | 32 | 15 | 1 | 72 | 1 | 1.9 |  |
| 4551 | 6 | 141 | 32 | 12 | 1 | 14 | 2 | . 8 |  |
| 45155 | 7 | 109 | 34 | 14 | 1 | 81 | 1 | 1.1 |  |
| 45156 | 41 | 94 | 34 | 17 | 1 | 77 | 1 | . 9 |  |
| 45157 | 15 | 126 | 43 | 19 | 2 | 65 | 2 | 1.0 |  |
| 45959 | 15 | 121 | 41 | 20 | 1 | 69 | 1 | - 7 |  |
| 4595 | 5 | 104 | 39 | 20 | 4 | 5 | $!$ | 1.0 |  |
| 45160 | 21 | 112 | 39 | 19 | 2 | 49 | 2 | . 8 |  |
| 45151 | 21 | 65 | 39 | 19 | 1 | $6 ?$ | $!$ | . 7 |  |
| 45162 | 18 | 73 | 43 | 12 | 1 | 69 | 1 | 1.1 |  |
| 45163 | 2 | 117 | 17 | 27 | 1 | 181 | 5 | 1.2 |  |
| 45164 | 37 | 115 | 81 | 21 | 1 | 169 | 2 | 1.4 |  |
| 45165 | 26 | 113 | 82 | 28 | 1 | 175 | 1 | 1.3 |  |
| 45166 | 22 | 105 | 83 | 17 | 1 | 173 | 1 | 1.4 |  |
| 45167 | 1 | 76 | 157 | 18 | 1 | 173 | 4 | 1.4 |  |
| 45168 | 33 | 76 | 169 | 13 | 1 | 165 | 2 | 1.2 |  |
| 45169 | 11 | 90 | 106 | 13 | 1 | 142 | 2 | . 9 |  |
| 45170 | 11 | 74 | 110 | 12 | 1 | 121 | 1 | 1.8 |  |
| 45171 | 1 | 75 | 80 | 17 | 2 | 102 | 22 | 1.4 |  |
| 45172 | 7 | 79 | 78 | 20 | I | 140 | 24 | 1.3 |  |
| 45173 | 9 | 65 | 98 | 16 | 2 | 121 | 143 | 2.1 |  |
| 45174 | 8 | 67 | 94 | 22 | 2 | 115 | 144 | 2.5 |  |
| 45175 | 4 | 66 | 91 | 11 | 2 | 105 | 151 | 1.8 |  |
| 45176 | 32 | 68 | 102 | 18 | 2 | 93 | 85 | 1.5 |  |
| 45177 | 42 | 66 | 97 | 53 | 28 | 136 | 61 | 5.3 |  |
| 45178 | 72 | 59 | 106 | 69 | 35 | 136 | 127 | 7.6 |  |
| 45179 | 143 | 107 | 89 | 107 | 26 | 176 | 106 | 4.3 |  |
| 45180 | 152 | 76 | 69 | 55 | 17 | 114 | 105 | 1.9 |  |
| 45181 | 114 | 91 | 91 | 32 | 13 | 118 | 92 | 2.7 |  |
| 45182 | 112 | 89 | 94 | 35 | 12 | 122 | 67 | 1.8 |  |
| 45183 | 83 | 84 | 87 | 26 | 12 | 118 | 50 | 2.6 |  |
| 45188 | 108 | 93 | 50 | 24 | 11 | 103 | 19 | 2.1 |  |
| 45185 | 1 | 87 | 104 | 21 | 7 | 98 | 2 | 2.3 |  |
| 45186 | 43 | 78 | 119 | 21 | 6 | 161 | 4 | 2.7 |  |
| 45187 | 12 | 74 | 105 | 28 | 6 | 122 | 5 | 2.3 |  |
| 45188 | 5 | 57 | 112 | 3 | 7 | 14] | 2 | 3.1 |  |





CUITPATI: HI-IEC RE. Mib. Liv.
Phíject No: 88 EC 952
705 WESF 15Th ST., NQRTH VAMCOUVER, B.E. V7M 172
FILE HE: $8-2192 / 91+2$ ATTENTID: D.COLLINS



COMPAMY: HI-TEC RES.MNG.LFD. PROJECT HO: 88 BC OS2 ATIENTIDN: B. COLLIHS


APPENDIX IV - A
STATISTICAL RESULTS

COMMAND: DESC MISSIHG VALUE TREATMENT: UARUISE
*** deschiptive statisilic ***
ThERE GRE 9 variagles alld 4bs cases in the data set
454 CASES (98.1\%) ARE vALID

|  |  |  |  | STO ERROR | CIEFF of |
| :---: | :---: | :---: | :---: | :---: | :---: |
| WARIARAE | MEAN | STD. OEV. | UARIANCE | OF MEAN | VASIATION |
| 1 A5 | 18.2930 | 17.5722 | 308.782 | 0.824703 | 96.0598 |
| 2 ¢A | 102.081 | 139.367 | 19423.1 | 6.54080 | 133.525 |
| 3 Cu | 63.2687 | 29.8991 | 893.959 | 1.40324 | 47.2574 |
| 4 PH | 23.4858 | 22.1918 | 492.034 | 1.04105 | 94.4439 |
| 5 CH | 3.05947 | 4.28494 | 18.3607 | 0.203102 | 140.055 |
| 62 N | 137.317 | 118.727 | 34096.2 | 5.57215 | 86.4521 |
| 7 Al | 11.0507 | 29.4069 | 864.768 | 1.38014 | 266.110 |
| 8 AE | 2.030164 | 5.89384 | 34.7374 | 0.275612 | 290.246 |

file: SHEOFLUM. ARs version: 1

COMARND: FFEO MSSING valUE TGEATMENT: VARHISE
*** FREQUENCIES AND 2 -SCORES ***

VARIAELE: I AS

|  | CUK |  | CH |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| yalue | FREE | FRE日 | $\%$ | \% | 1 SCuRE |
| 1.6icou | 22 | 22 | 4.8 | 4.8 | -0.984110 |
| 2.00000 | 16 | 38 | 3.5 | 8.4 | -6.92720! |
| 3.00000 | 7 | 45 | 1.5 | 9.9 | -0.870293 |
| 4.00000 | 17 | 62 | 3.7 | 13.7 | -0.813385 |
| 5.00000 | 18 | 80 | 4.0 | 17.6 | -0.756477 |
| 6.00000 | 15 | 95 | 3.3 | 20.9 | -0.699567 |
| 7.0000 | 17 | 112 | 3.7 | 24.7 | -0.642561 |
| 8.00000 | 15 | 127 | 3.3 | 28.0 | -0.585753 |
| 8.0000 | 20 | 147 | 4.4 | 32.4 | -0.520945 |
| 10.0000 | 11 | 158 | 2.4 | 34.8 | -0.471936 |
| 11.0000 | 10 | 168 | 2.2 | 37.0 | -0.415028 |
| 12, รูve | 19 | 197 | 4.2 | 41.2 | -0.358120 |
| 13.00\% | 27 | 214 | 5.9 | 47.1 | -0.301212 |
| 14.0000 | 12 | 226 | 2.6 | 49.9 | -0.244304 |
| 15.0000 | 16 | 242 | 3.5 | 53.3 | -0.187396 |
| 16.000 | 9 | 251 | 2.0 | 55.3 | -0.130489 |
| 17.0060 | 12 | 263 | 2.6 | 57.9 | -0.0735795 |
| 18.0000 | 15 | 278 | 3.3 | 31.2 | -0.0166713 |
| 19.000 | 14 | 292 | 3.1 | 64.3 | (1.0402368 |
| 20.0000 | 15 | 307 | 3.3 | 67.6 | 0.0971449 |
| 21.0010 | 14 | 321 | 3.5 | 70.7 | 0.154153 |
| 22.0000 | 6 | 327 | 1.3 | 72.0 | 0.210961 |
| 23.1000 | 11 | 338 | 2.4 | 74.4 | 0.267869 |
| 24.0000 | 9 | 347 | 2.0 | 76.4 | 0.324777 |
| 25.0000 | 14 | 331 | 3.1 | 74.5 | 0.381696 |
| 26.0100 | 12 | 373 | 2.6 | 82.2 | 0.438594 |
| 27.0600 | 5 | 378 | 1.1 | 83.3 | 0.495502 |
| 25.0000 | 8 | 336 | 1.8 | 85.1 | 0.552410 |
| 29.0000 | 5 | 391 | 1.1 | 85.1 | 0.609318 |
| 30.0100 | 2 | 393 | 0.4 | 86.6 | 0.656226 |
| 31.0600 | 4 | 397 | 0.9 | 97.4 | 0.723134 |
| 32.0600 | 5 | 402 | 1.1 | 98.5 | 0.780043 |
| 33.6000 | 3 | 405 | 0.7 | 97.2 | 0.836951 |
| 34.0000 | 2 | 407 | 0.4 | 89.6 | 0.893959 |
| T5.000 | 5 | 412 | 1.1 | 90.7 | 0.950767 |
| 36.0000 | 4 | 416 | 0.9 | 91.5 | 1.00768 |
| 37.0000 | 4 | 420 | 0.9 | 92.5 | 1.06458 |
| 38.0060 | 3 | 423 | 0.7 | 95.2 | 1.12149 |
| 39.0000 | 2 | 425 | 0.4 | 93.6 | 1.17840 |
| 40.0000 | 3 | 428 | 0.7 | 94.3 | 1.23531 |
| 41.0000 | 1 | 424 | 0.2 | 94.5 | 1.29222 |
| 42.06W | 2 | 431 | 0.4 | 94.9 | 1.34912 |
| 43.0000 | 2 | 433 | 0.4 | 95.4 | 1.40603 |
| 44.0000 | 1 | 434 | 0.2 | 95.6 | 1.46294 |
| 46.0000 | 1 | 435 | 0.2 | $95 . \mathrm{B}$ | 1.57476 |
| 49.0000 | 1 | 436 | 0.2 | 96.0 | 1.74748 |
| 51.0000 | 1 | 437 | 0.7 | 96.3 | 1.86130 |
| 52.0000 | 2 | 439 | 0.4 | 96.7 | 1.91821 |
| 53.0000 | 1 | 440 | 0.2 | 96.9 | 1.97511 |

ABstat $\overline{5} .00$
file: Skookum.abs version:1

## VARIARLE: 1 AS

|  | CtM |  | CIM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| value | FREO | FRED | $\%$ | \% | 1 Scare |
| 54.000 | 1 | 441 | 0.2 | 97.1 | 2.0270 |
| 56.0000 | 1 | 442 | 0.2 | 97.4 | 2.14584 |
| 61.0000 | 1 | 443 | 0.2 | 97.6 | 2.43038 |
| 32.0000 | 1 | 444 | 0.2 | 97.8 | 2.48729 |
| 59.0000 | 1 | 445 | 0.2 | 98.0 | 2.88564 |
| 12.0000 | 1 | 446 | 0.2 | 98.2 | 3.05637 |
| 75.1000 | 1 | 447 | 0.2 | 98.5 | 3.28400 |
| 83.0000 | 1 | 448 | 0.2 | 98.7 | 3.58236 |
| 101.000 | 1 | 449 | 0.2 | 98.9 | 4.70670 |
| 108.000 | 1 | 450 | 0.2 | 99.1 | 5.10506 |
| 112.000 | 1 | 451 | 0.2 | 99.3 | 5.33269 |
| 114.010 | 1 | 452 | 0.2 | 99.6 | 5.44651 |
| 14?.000 | 1 | 453 | 0.2 | 99.8 | 7.09585 |
| 152,090 | 1 | 454 | 0.2 | 100.0 | 3.60902 |
| total | 454 | 454 | 100.0 | 100.0 |  |

## COMSAHD: FREG

 MISSING VALUE TFEATMENT: VARMISE** FREOUENCIES AND 1-SCOFES ***

## VARIABLE: 2 HA

|  | CUK |  |  | CHM |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Value | fred | FRES | $\%$ | $i$ | 1 SCORE |
| 27.0006 | 1 | ! | 0.2 | 0.2 | -0.538733 |
| 28.0060 | 1 | 2 | 0.2 | 0.4 | -0.531559 |
| 29.0000 | 2 | 4 | 6.4 | 0.9 | -0.524383 |
| 30.0009 | , | 5 | 0.2 | 1.1 | -0.517207 |
| 31.0964 | 1 | $t$ | 0.2 | 1.3 | -0.510032 |
| 32.0006 | 1 | 7 | 0.2 | 1.5 | -0.502357 |
| 37.0000 | 1 | 8 | 0.2 | 1.8 | -0.466980 |
| 38.0000 | 1 | 9 | 0.2 | 2.0 | -0. 459805 |
| 30.006 | 3 | 12 | 0.7 | 2.5 | -0.4526] ${ }^{\text {a }}$ |
| 40.0000 | 1 | 13 | 0.2 | 2.9 | -0.445454 |
| 41.0000 | 2 | 15 | 0.4 | 3.3 | -0.438219 |
| 42.0000 | 5 | 20 | 1.1 | 4.4 | -0. 431104 |
| 43.0000 | 2 | 22 | 0.4 | 4.8 | - 6.423928 |
| 44.0096 | 1 | 23 | 0.2 | 5.1 | -0.416753 |
| 45.0000 | 5 | 28 | 1.1 | 3.2 | -0.402402 |
| 47.0000 | 4 | 32 | 0.9 | 7.0 | -0.355227 |
| 48.0000 | 3 | 35 | 0.7 | 7.1 | -0.388052 |
| 49.0900 | 3 | 39 | 0.7 | 8.4 | -0.300476 |
| 50.0090 | 4 | 42 | 0.9 | 9.3 | -6.373701 |
| 51.0000 | 5 | 47 | 1.1 | 10.4 | -0.356526 |
| 52.0000 | 7 | 54 | 1.5 | 11.9 | -0.359350 |
| 53.6000 | 9 | 65 | 2.0 | 15.9 | -0.352175 |
| 54.0000 | 2 | 65 | 0.4 | 14.3 | -0.345000 |
| 55.0000 | 1 | 66 | 0.2 | 14.5 | -0.337925 |
| 56.000 | 5 | 71 | 1.1 | 15.6 | -9.300649 |
| 57.0000 | 5 | 76 | 1.1 | 16.7 | -0.323474 |
| 55.0000 | 2 | 78 | 0.4 | 17.2 | -0.316299 |
| 59.0000 | 6 | 94 | 1.3 | 18.5 | -0.309123 |
| 60.0000 | 15 | 99 | 3.3 | 21.8 | -0.30194日 |
| 54.0000 | 6 | 10.5 | 1.3 | 23.1 | -0.294773 |
| \$2.0000 | 3 | 108 | 0.7 | 23.8 | -0.297597 |
| \$3.0000 | 4 | \$12 | 0.9 | 24.7 | -0.280422 |
| 64.0000 | 5 | 117 | 1.1 | 25.8 | -0.273247 |
| 65.0000 | 5 | 122 | 1.1 | 26.9 | -0.26607! |
| 85.00000 | 6 | 128 | 1.3 | 28.2 | -1. 258898 |
| 67.0000 | 9 | 137 | 2.0 | 30.2 | -0.251721 |
| 69,0000 | 9 | 145 | 1.8 | 31.9 | -0.244545 |
| 59.0000 | 4 | 149 | 0.9 | 32.8 | -0.237370 |
| 70.0000 | 2 | 151 | 0.4 | 33.3 | -0.230195 |
| 71.0000 | 4 | 155 | 0.9 | 34.1 | -0.223019 |
| 72.0000 | 7 | 162 | 1.5 | 35.7 | -1.215844 |
| 73.0000 | 1 | 159 | 1.5 | 37.2 | -0.209469 |
| 74.0000 | 11 | 180 | 2.4 | 39.6 | -0.201494 |
| 75.0000 | 6 | 185 | 1.3 | 41.1 | -0.194318 |
| 76.0000 | 7 | 193 | 1.5 | 42.5 | -0.187143 |
| 77.0000 | 12 | 205 | 2.6 | 45.2 | -0.179968 |
| 28.0000 | 5 | 210 | 1.1 | 46.3 | -0.172792 |
| 79.000 | 5 | 215 | 1.1 | 47.4 | -0.155617 |
| 80.0000 | 4 | 219 | 0.9 | 49.2 | -0.158442 |

## VAFIABLE: <br> 2 日月

|  |  | CuM |  | CUM |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Value | freo | FRED | \% | \% | $l$ SCORE |
| 81.0060 | 3 | 222 | 0.7 | 48.9 | -0.151266 |
| 82.0000 | 5 | 227 | 1.1 | 50.0 | -0.14409! |
| 83.0000 | 4 | 231 | 0.9 | 50.9 | -0.136916 |
| 84.0000 | 4 | 235 | 0.9 | 51.8 | -0.129740 |
| 85.0000 | 7 | 242 | 1.5 | 53.3 | -0.122565 |
| 96.0060 | 6 | 248 | 1.3 | 54.6 | -0.15E390 |
| 87.0000 | 5 | 25. | 1.1 | 55.7 | - 0.108714 |
| 88.0000 | 6 | 259 | 1.3 | 57.1 | -0.101039 |
| 89.00000 | 5 | 264 | 1.1 | 59.1 | -0.1938638 |
| 90.0400 | 8 | 272 | 1.8 | 59.9 | -0.1086985 |
| 91.0000 | 7 | 279 | 1.5 | 61.5 | -0.0795132 |
| 92.0060 | 5 | 294 | 1.1 | 62.6 | -(0,0723379 |
| 93.0000 | 4 | 288 | 0.9 | 63.4 | -0.01651626 |
| 94.0000 | 7 | 295 | 1.5 | 65.11 | -0.0579973 |
| 95.0000 | 2 | 297 | 0.4 | 65.4 | - 0.0508120 |
| 96.0000 | 5 | 302 | 1.1 | 66.5 | -(1.0436367 |
| 97.0000 | 5 | 307 | 1.1 | 57.6 | -0.035461 ? |
| 99.060 | 7 | 314 | 1.5 | 69.2 | -0,0292860 |
| 99.0000 | 3 | 317 | 0.7 | 69.1 | -0.02221107 |
| 100.000 | 4 | 521 | 0.9 | 30.7 | -0.0149354 |
| 101.090 | 5 | 324 | 0.7 | 71.4 | -0.006776009 |
| 102.000 | 4 | 328 | 0.9 | 72.2 | -5.847725-04 |
| 103.000 | 4 | 332 | 0.9 | 73.1 | 0.00659054 |
| 104.000 | 8 | 340 | 1.8 | 74.9 | 0.0137659 |
| 105.000 | 7 | 347 | 1.5 | 76.4 | 0.0209412 |
| 106.000 | 4 | 351 | 0.7 | 77.3 | 0.0291165 |
| 107.000 | 2 | 353 | 0.4 | 77.8 | 0.0352918 |
| 108.000 | 3 | 356 | 0.7 | 78.4 | 0.0424571 |
| 109.000 | 5 | 361 | 1.1 | 79.5 | 0. 0.1496424 |
| 110.000 | 4 | 365 | 0.9 | 80.4 | 0.0568177 |
| 111.000 | 1 | 366 | 0.2 | 80.0 | 0.0639530 |
| 112.000 | 4 | 370 | 0.9 | B1. 5 | 0.0711684 |
| 113.000 | 4 | 374 | 0.9 | 82.4 | 0.0783437 |
| 114.8109 | 2 | 376 | 0.4 | 82.8 | 0.0855190 |
| 11.1099 | 6 | 382 | 1.3 | 84.1 | 0.0926943 |
| 117,060 | 3 | ? 35 | 0.7 | 94.8 | 0.107045 |
| 118.100 | 4 | 384 | 0.9 | 85.7 | 0.114220 |
| 121.000 | 3 | 392 | 0.7 | 80.3 | 4.135746 |
| 122.000 | 4 | 396 | 0.9 | 87.2 | 0.142921 |
| 123.000 | 1 | 397 | 0.2 | 87.4 | 0.150097 |
| 125.000 | , | 398 | (1.2 | 87.7 | [1. 164447 |
| 126.000 | 2 | 400 | 0.4 | 88.1 | 0.171623 |
| 127.0001 | , | 403 | 0.7 | 88.8 | 0.178798 |
| 129.000 | 2 | 405 | 0.4 | 89.2 | 0.185973 |
| 130.060 | 1 | 416 | 0.2 | 89.4 | 0.200324 |
| 131.000 | 2 | 418 | 0.4 | 89.9 | 0.207499 |
| 132.000 | 1 | 409 | 0.2 | 90.1 | 0.214875 |
| 134.000 | 2 | 411 | 0.4 | 90.5 | 0.229025 |
| 135.000 | 2 | 413 | 0.4 | 91.0 | 0.236201 |
| 136.000 | 3 | 416 | 0.7 | 91.6 | 0.243376 |
| 137.000 | 2 | 418 | 0.4 | 92.1 | 0.250551 |
| 138.000 | 2 | 420 | 0.4 | 92.5 | 0.25772 ? |
| 139.010 | 1 | 421 | 0.7 | 92.7 | 0.264902 |
| 140.000 | 2 | 423 | 0.4 | 93.2 | 0.272077 |
| 141.0100 | 2 | 425 | 0.4 | 93.6 | 0.279252 |

f1le: Srojkuma ABt versian:1

## VAFIABLE: <br> 2 月A

|  | CuM |  | CIM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VALUE | fred | FREQ | \% | \% | 7 SCORE |
| 144. ${ }^{1010}$ | 1 | 426 | 0.2 | 93.8 | 0.300778 |
| 145.000 | 1 | 427 | 0.2 | 94.1 | 0.307954 |
| 148.060 | 2 | 429 | 0.4 | 94.5 | 0.315129 |
| 147.000 | 2 | 431 | 0.4 | 94.9 | 0.32304 |
| 148.000 | 2 | 433 | 0.4 | 95.4 | 0.329480 |
| 151.000 | 2 | 435 | 0.4 | 95.8 | 0.351005 |
| 153.000 | 1 | 436 | 0.2 | 96.1 | 0.355356 |
| 154.000 | 1 | 431 | 0.2 | 96.3 | 0.372532 |
| 155.000 | 2 | 439 | 0.4 | 96.7 | 0.379707 |
| 157.600 | 2 | 441 | 0.4 | 97.1 | 0.394057 |
| 155.960 | 1 | 442 | 0.2 | 97.4 | 0.451460 |
| 169,000 | 1 | 443 | 0.2 | 97.6 | 0.480151 |
| 170,000 | 1 | 444 | 0.2 | 97.9 | 0.487377 |
| 174.000 | 1 | 445 | 0.2 | 98.1 | 0.516038 |
| 175.000 | 1 | 446 | 0.2 | 98.2 | 0.523213 |
| 602.000 | 1 | 447 | 0.2 | 98.5 | 3.58717 |
| 622.000 | 1 | 448 | 0.2 | 98.7 | 3.73058 |
| 328.000 | 1 | 449 | 0.2 | 98.9 | 3.77363 |
| 722.000 | 1 | 450 | 0.2 | 99.1 | 4.44811 |
| 1257.00 | 1 | 451 | 0.2 | 99.3 | 8.28690 |
| 1263.00 | 1 | 452 | 0.2 | 99.6 | 8.32995 |
| 1507.00 | 1 | 453 | 0.2 | 99.8 | 10.0807 |
| 1669.00 | 1 | 454 | 0.2 | 100.0 | 11.2431 |
| toral | 454 | 454 | 100.0 | 100.0 |  |

COMMAND: FRE MISSING VALUE TREATMENT: VAREISE
** FREQUENCIES ANO l-SCORES 4 \&

## VARIABLE: ECU

|  | CIIM |  |  | Cum |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VALUE | FRES | FRES | 2 | $\%$ | 1 SCORE |
| 1.0006 | 1 | 1 | 0.2 | 0.2 | -2.08263 |
| 2.00 mb | 2 | 3 | 0.4 | 0.7 | -2.04918 |
| 3.06000 | 1 | 4 | 0.2 | 0.9 | -2.01573 |
| 4.00060 | 1 | ${ }_{5}$ | 0.2 | 1.1 | -1.92229 |
| 7.06660 | 2 | 7 | 0.4 | 1.5 | -1.88195 |
| 8.00600 | 1 | 8 | 0.2 | 1.8 | -1.8485 |
| 9.06000 | 2 | 10 | 0.4 | 2.2 | -1.91506 |
| 12.0000 | 2 | 12 | 0.4 | 2.5 | -1.71472 |
| 13.0000 | 1 | 13 | 0.2 | 2.9 | -1.68128 |
| 14.000 | 1 | 14 | 0.2 | 3.1 | -1.64783 |
| 15.0100 | 1 | 15 | 0.2 | 3.3 | -1.61439 |
| 19.0000 | 3 | 18 | 0.7 | 4.0 | -1.4806 (1) |
| 26.0000 | 1 | 14 | 0.2 | 4.2 | -1.44716 |
| $21.60 \% 0$ | 3 | 22 | 0.7 | 4.8 | -1.41371 |
| 22.000 | 6 | 28 | 1.3 | 6.2 | $-4.38026$ |
| 23.060 | 3 | 31 | 0.7 | 6.8 | $-1.34582$ |
| 24.0000 | 3 | 34 | 0.7 | 7.5 | -1.3133 |
| 25.0000 | 4 | 39 | 0.9 | 8.4 | -1.27983 |
| 26.0900 | 7 | 45 | 1.5 | 9.9 | -1.24648 |
| 27.00600 | 3 | 48 | 0.7 | 10.6 | -1.21304 |
| 29.06010 | 6 | 54 | 1.3 | 11.9 | -1.17959 |
| 29.0000 | 3 | 57 | 0.7 | 12.6 | -1.14614 |
| J0.0000 | 3 | 60 | 0.7 | 13.2 | -1.11270 |
| 31.0000 | 8 | 68 | 1.8 | 15.0 | -1.07925 |
| 32.0000 | 6 | 74 | 1.3 | 16.3 | -1. (1459) |
| 33.0000 | 9 | 93 | 2.1 | 18.3 | -1.01236 |
| 34.1090 | 9 | 91 | 1.8 | 20.10 | -0.978915 |
| 35.0000 | 5 | 96 | 1.1 | 21.1 | -0.945469 |
| 36.1000 | 2 | 98 | 0.4 | 21.6 | -6.912024 |
| 37.0000 | 4 | 102 | 0.9 | 22.5 | -0.978578 |
| 38.0000 | 3 | 10.5 | 0.7 | 23.1 | -0.845 132 |
| 39.0000 | 8 | 113 | 1.8 | 24.9 | -0.811586 |
| 41.0000 | 6 | 119 | 1.3 | 26.2 | -0.77E241 |
| 41.0000 | 5 | 124 | 1.1 | 27.3 | -0.749795 |
| 42.0000 | 7 | 131 | 1.5 | 28.9 | -0.711349 |
| 45.0000 | 5 | 136 | 1.1 | 30.0 | -0.677903 |
| 44.0040 | 5 | 141 | 1.1 | 31.1 | -0.644457 |
| 45.0000 | 5 | 146 | 1.1 | 32.2 | -0.611012 |
| 46.0000 | 3 | 149 | 0.7 | 32.8 | -0.577566 |
| 47.0040 | 6 | 155 | 1.3 | 34.1 | -0.544120 |
| 48.0060 | 6 | 161 | 1.3 | 35.5 | -0.510674 |
| 49.0000 | 6 | 157 | 1.3 | 36.9 | -0.477229 |
| 50.0060 | 2 | 169 | 0.4 | 37.2 | -0.443783 |
| 51.0000 | 6 | 175 | 1.3 | 35.5 | -0.410337 |
| 52.0000 | 4 | 179 | 0.9 | 39.4 | -0.376891 |
| 53.0600 | 9 | 188 | 2.1 | 41.4 | -0.343445 |
| 54.10000 | 5 | 193 | 1.1 | 42.5 | - 0.310000 |
| 55.0000 | 2 | 195 | 0.4 | 43.0 | -0.276554 |
| 56.0000 | 5 | 200 | 1.1 | 44.1 | -0.245108 |

## Variable: 3 CU

|  | SUM |  |  | Cum |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VALUE | FRE0 | FREQ | 7 | \% | $l$ Score |
| 57.006 | 11 | 210 | 2.2 | 46.3 | -0.209062 |
| 58.0000 | 8 | 218 | 1.8 | 48.1 | -0.175217 |
| 59.0000 | 2 | 220 | 0.4 | 48.5 | -0.142771 |
| 60.0000 | 9 | 229 | 2.0 | 50.4 | -0.109325 |
| 61.00ito | 5 | 234 | 1.1 | 51.5 | -0.0758792 |
| 32.0000 | 4 | 238 | 0.9 | 52.4 | -0.0.1424334 |
| 63.0090 | 4 | 242 | 0.9 | 53.3 | -0.00898765 |
| 64.9090 | 3 | 245 | 0.7 | 54.0 | 0.0244581 |
| 65.0000 | 1 | 252 | 1.5 | 55.5 | 0.0579039 |
| \$6.0000 | 3 | 255 | 0.7 | 56.2 | 0.0913497 |
| 67.060 | 4 | 259 | 0.9 | 57.11 | 0.124795 |
| 68.0100 | 2 | 251 | 0.4 | 57.5 | 0.158241 |
| 69.0000 | 5 | 266 | 1.1 | 58.6 | 0.191587 |
| 79.0600 | 5 | 271 | 1.1 | 59.7 | 0.225133 |
| 71.0040 | 5 | 276 | 1.1 | 60.8 | 0.258579 |
| 72.6000 | 5 | 291 | 1.1 | 41.9 | 0.292024 |
| 73.0000 | 3 | 284 | 0.7 | 62.6 | 0.325470 |
| 74.6000 | 7 | 291 | 1.5 | 54.1 | 0.358916 |
| 75.1000 | 1 | 292 | 0.2 | 64.3 | 0.392362 |
| 76.0000 | 7 | 299 | 1.5 | 65.9 | 0.425807 |
| 77.0000 | 2 | 301 | 0.4 | 66.3 | 0.459253 |
| 78.0060 | ${ }_{5}$ | 306 | 1.5 | 67.4 | 0.492699 |
| 79, ubte | 4 | 310 | 0.9 | 68.5 | 0.526145 |
| 80.000 | 6 | 316 | 1.5 | 59.5 | 0.559591 |
| 81.0600 | 4 | 320 | 0.9 | 70.5 | 0.593056 |
| 92.00m | 4 | 324 | 0.9 | 71.4 | 0. 525482 |
| 83.1090 | 2 | 326 | 0.4 | 71.8 | 0.659928 |
| 84.0060 | 3 | 329 | 0.7 | 72.5 | (1.693374 |
| 85.0060 | 6 | 355 | 1.3 | 73.8 | 0.726820 |
| 88.0000 | 6 | 341 | 1.3 | 75.1 | 0.750265 |
| 97,0600 | 7 | 348 | 1.5 | 76.7 | 0.793711 |
| 88.0000 | 3 | 351 | 0.7 | 77.3 | 0.827157 |
| 89.0000 | 3 | 354 | 0.7 | 78.0 | 0.850503 |
| 73.0000 | 5 | 359 | 1.1 | 79.1 | 0.994048 |
| 91.0000 | 4 | 363 | $0 . \bar{y}$ | 80.0 | 0.927494 |
| 92,0000 | 3 | 365 | 0.7 | 80.6 | 0.950940 |
| 53.0000 | 5 | 371 | 1.1 | 81.7 | 0.994386 |
| 84.0000 | 7 | 378 | 1.5 | 88.3 | 1.02783 |
| 95.000 | 4 | 382 | 0.9 | 84.1 | 1.06128 |
| 96.0100 | 5 | 397 | 1.1 | 85.2 | 1.09472 |
| 97.0000 | 5 | 392 | 1.1 | 84.3 | 1.12817 |
| 99.0000 | 4 | 390 | 0.9 | 87.2 | 1.16161 |
| 99.0000 | 1 | 397 | 0.2 | 87.4 | 1.19506 |
| 100.000 | 3 | 400 | 0.7 | 88.1 | 1.72951 |
| 109.0100 | 4 | 404 | 0.9 | 89.0 | 1.26195 |
| 102.000 | 4 | 408 | 0.9 | 89.9 | 1.29540 |
| 103, 060 | 4 | 412 | 0.9 | 90.7 | 1.32884 |
| 104.000 | 4 | 416 | 0.9 | 91.6 | 1.35229 |
| 105.000 | 4 | 420 | 0.9 | 92.5 | 1.39574 |
| 105.000 | 10 | 430 | 2.2 | 94.7 | 1.42918 |
| 107.000 | 1 | 431 | 0.2 | 94.9 | 1.46263 |
| 109.000 | 5 | 436 | 1.1 | 95.0 | 1.49507 |
| 109.000 | 1 | 437 | 0.7 | 96.3 | 1.52952 |
| 180.000 | 4 | 441 | 0.9 | 97.1 | $1.55 \% 93$ |
| \$11.000 | $\pm$ | 442 | 0.2 | 97.4 | 1.59648 |

ABstat 5.06
file: SKOCKUH.AB6 version:1

VARIAFLE: 3CU

|  | CHm |  | CUM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| value | Fred | fege | 4 | $\%$ | 1 SCORE |
| 12.000 | 2 | 444 | 0.4 | 97.8 | 1.62985 |
| 114.000 | 1 | 445 | 0.2 | 98.1 | 1.69575 |
| 117.000 | 1 | 440 | 0.2 | 98.2 | 1.79708 |
| 127.010 | 1 | 447 | 0.2 | 99.5 | 1.96431 |
| 123.000 | 1 | 448 | 0.2 | 98.7 | 1.99776 |
| 126.009 | 1 | 449 | 0.2 | 98.9 | 2.09810 |
| 135.000 | 1 | 450 | 0.2 | 99.1 | 2.39911 |
| 150.000 | ! | 451 | 0.2 | 99.3 | 2.90090 |
| 157.000 | 1 | 452 | 0.2 | 99.6 | 3.13492 |
| 160.000 | 1 | 453 | 0.2 | 99.8 | 3.25525 |
| 223.000 | 1 | 454 | 0.2 | 100.0 | 5.34234 |
| total | 454 | 454 | 16.0 | 100.0 |  |

t** FREQUENCIES ANO ?-SCORES

VarIARLE: A PB

|  |  | CuM |  | CUM |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| YALUE | FREO | FRED | $\%$ | 4 | $l$ SCORE |
| b.00000 | 1 | 1 | 0.2 | 0.2 | -0.78835 |
| 7.000001 | 2 | 3 | 0.4 | 0.7 | -0.743256 |
| 8.006019 | 2 | 5 | 0.4 | 1.1 | -0.698174 |
| 9.00090 | 4 | 9 | 0.9 | 2.0 | -0.653092 |
| 10.000 | 4 | 13 | 0.9 | 2.9 | -0.608010 |
| 11.03000 | 11 | 24 | 2.4 | 5.3 | -0.562928 |
| 12.0000 | 11 | 35 | 2.4 | 7.7 | -0.517846 |
| 13.0000 | 16 | 51 | 3.5 | 11.2 | -0.472754 |
| 14.0000 | 16 | 67 | 3.5 | 14.8 | -0.427682 |
| 15.000 | 25 | 92 | 5.5 | 20.3 | -0.382601 |
| 16.0000 | 31 | 123 | 6.8 | 27.1 | -0.337519 |
| 17.0000 | 25 | 148 | 5.5 | 32.6 | -0.292437 |
| 18.10000 | 23 | $17!$ | 5.1 | 37.7 | -0.247355 |
| 19.0000 | 28 | 199 | 6.2 | 43.8 | -0.202273 |
| 20.6060 | 35 | 234 | 7.7 | 51.5 | -0. 25.5191 |
| 21.0000 | 25 | 259 | 5.5 | 57.1 | -0.112109 |
| 22.0060 | 21 | 280 | 4.6 | 81.7 | -0.067027! |
| 23.1000 | 17 | 297 | 3.7 | 65.4 | -(0.0219452 |
| 24.0006 | 25 | 322 | 5.5 | 70.9 | 0.0231368 |
| 25.0000 | 22 | 344 | 4.8 | 75.8 | \{1.0692187 |
| 26.1000 | 13 | 357 | 2.9 | 78.6 | 0.11501 |
| 27.0900 | 15 | 372 | 3.3 | 81.7 | 0.158383 |
| 28.0000 | 8 | 380 | 1.8 | 83.7 | 0. 20.23864 |
| 29.0000 | 8 | 738 | 1.9 | 95.5 | 0.248546 |
| 30.0000 | B | 396 | 1.8 | 87.2 | 0.293628 |
| 31.0000 | 5 | 401 | 1.1 | 86.3 | 0.358710 |
| 32.0000 | 6 | 407 | 1.3 | 89.6 | 0.363792 |
| 33.01090 | 9 | 416 | 2.0 | 91.6 | 0.428874 |
| 34.0000 | 4 | 420 | 0.9 | 92.5 | 0.473956 |
| 35.0000 | 4 | 424 | 0.9 | 93.4 | (1.519030 |
| 36.090 | 3 | 427 | 0.7 | 94.1 | 0.564120 |
| 37.0000 | 4 | 431 | 0.9 | 94.9 | 0.609202 |
| 38.0000 | 1 | 432 | 0.2 | 95.2 | 0.654284 |
| 39.0000 | 2 | 434 | 0.4 | 95.6 | 0.699366 |
| 40.0000 | 1 | 435 | 0.2 | 45.8 | 0.744448 |
| 41.0000 | 1 | 433 | 0.2 | 96.0 | 0.789529 |
| 42.0000 | 1 | 437 | 0.2 | 96.3 | (0.83461) |
| 43.9000 | 3 | 440 | 0.7 | 86.9 | 0.879693 |
| 45.0000 | 1 | 441 | 0.2 | 97.1 | 0.969857 |
| 49.0000 | 1 | 442 | 0.2 | 97.4 | 1.15018 |
| 50.1000 | 1 | 443 | 0.2 | 97.6 | 1.99527 |
| 53.0000 | 1 | 444 | 0.2 | 97.8 | 1.35051 |
| 55.0000 | 1 | 445 | 0.2 | 98.0 | 1.42068 |
| 56.0000 | 1 | 446 | 0.2 | 98.2 | 1.46576 |
| 57.0000 | 1 | 447 | 0.2 | 98.5 | 1.51084 |
| 69.0000 | 1 | 448 | 0.2 | 98.7 | 2.05182 |
| 84.00100 | 1 | 449 | 0.2 | 98.9 | 2.728015 |
| 93.0000 | 1 | 451 | 0.2 | 99.1 | 3.13379 |
| 100.000 | 1 | 451 | 0.2 | 99.3 | 3.44736 |

ABstat 5. 00
file: Sk'DIELM.ABS version:!

VARIARLE: A PB

|  | CUM |  |  |  | CLK |  |  |  |
| ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VALUE | FREO | FFEO | $\%$ | 7 | 2 SCORE |  |  |  |
| 107.000 | 1 | 452 | 0.2 | 99.6 | 3.76494 |  |  |  |
| 197.000 | 1 | 453 | 0.2 | 95.8 | 7.92231 |  |  |  |
| 399.000 | 1 | 454 | 0.2 | 100.6 | 16.3838 |  |  |  |
| TOTAL | 454 | 454 | 100.0 | 100.0 |  |  |  |  |

file: 5\%00\%UK.AEG version: 1

COMMANB: FRED MISSIMG VALUE TREATMENT: VAEWISE
tF FREQUENCIES AND I-SCORES ***

VAFIGRE: 5 SB

|  | CUM |  |  | CUM |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| UALUE | FFED | FREO | 4 | $\%$ | 7 SCOME |
| 1.00000 | 200 | 200 | 44.1 | 44.1 | -0.4806 50 |
| 2.00000 | 114 | 314 | 25.1 | 39.2 | -0.247255 |
| 3.00000 | 48 | 362 | 10.6 | 79.7 | -1. 01388792 |
| 4.01009 | 33 | 395 | 7.3 | 87.0 | 0.219496 |
| 5.00000 | 11 | 406 | 2.4 | 89.4 | 0.452872 |
| 6.60000 | 8 | 414 | 1.8 | 91.2 | 0.688248 |
| 7.00060 | 5 | 419 | 1,1 | 92.3 | 0.919623 |
| 9.0000 | 5 | 424 | 1.1 | 93.4 | 1.15300 |
| 9.0.¢¢¢ | 3 | 427 | 0.7 | 94.1 | 1.38637 |
| 10.0000 | 2 | 429 | 0.4 | 94.5 | 1.61975 |
| 11.0000 | 3 | 432 | 0.7 | 95.2 | 1.85313 |
| 12.0600 | 2 | 434 | 0.4 | 95.6 | 2.08550 |
| 13.000] | 2 | 435 | 0.4 | 98.0 | 2.31980 |
| 14.0006 | 2 | 438 | 0.4 | 96.5 | 2.55325 |
| 15.0000 | 1 | 439 | 0.2 | 96.7 | 2.78663 |
| 16.0000 | 2 | 441 | 0.4 | 97.1 | 3.02000 |
| 17.0000 | 1 | 442 | 0.2 | 97.4 | 3.25358 |
| 20.0000 | 2 | 444 | 0.4 | 97.8 | 3.95351 |
| 21.0000 | 2 | 446 | 0.4 | 93.2 | 4.15688 |
| 22.0006 | 3 | 449 | 0.7 | 98.9 | 4.42126 |
| 23.0000 | 1 | 450 | 0.2 | 99.1 | 4.55363 |
| 25.0000 | 1 | 451 | 0.2 | 99.3 | 5.12038 |
| 26.0000 | 1 | 452 | 0.2 | 99.6 | 5.35376 |
| 20.0000 | 1 | 453 | 0.2 | 99.8 | 5.82051 |
| 35.0000 | 1 | 454 | 0.2 | 100.0 | 7.45414 |
| TOTAL | 454 | 454 | 100.0 | 100.1 |  |

CDMMANO: FBEQ MSSSING VALUE TREATHENT: VARMISE
*** FREQUENCIES AND 2-SCORES *if

VARIARLE: 6 IN

|  | CUM |  | CliM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VALUE | FRE日 | Fgid | 4 | \% | 1 SCORE |
| 20.0000 | 1 | 1 | 0.2 | 0.2 | -0.988123 |
| 22.0100 | 1 | 2 | 0.2 | 0.4 | -0.971278 |
| 24.0030 | 1 | 5 | 0.2 | 0.7 | -0.954432 |
| 29.1000 | 2 | 5 | 0.4 | 1.1 | -0.9.920742 |
| 31.6000 | 2 | 7 | 0.4 | 1.5 | -0.895474 |
| 32.0000 | 1 | 8 | 0.2 | 1.8 | -0.89705! |
| 33.0000 | 1 | 9 | 0.2 | 2.0 | -0.1.878628 |
| 35.0000 | 2 | 11 | 0.4 | 2.4 | -0.061783 |
| 36.0000 | 2 | 13 | 0.4 | 2.9 | -0.853350 |
| 37.6000 | \} | 14 | 0.2 | 3.1 | -0.844938 |
| 39.6009 | 1 | 15 | 0.2 | 3.3 | -0.8283192 |
| 40.0000 | 2 | 17 | 0.4 | 3.7 | -0.819670 |
| 42.0060 | 2 | 19 | 0.4 | 4.2 | -0.802824 |
| 43.0000 | 1 | 20 | 0.2 | 4.4 | -0.794402 |
| 44.0060 | 6 | 26 | 1.3 | 5.7 | -0.785979 |
| 45.0000 | 4 | 30 | 0.9 | 6.6 | -0.777556 |
| 46.0000 | 3 | 33 | 0.7 | 7.3 | -0.769134 |
| 47.0000 | 3 | 36 | 0.7 | 7.9 | -0.760711 |
| 48.1000 | 1 | 37 | 0.2 | 8.1 | -0.753288 |
| 49.0000 | 6 | 43 | 1.3 | 9.5 | -0.743866 |
| 50.00006 | 6 | 49 | 1.3 | 10.8 | -0.735443 |
| 51.0000 | 1 | 50 | 0.2 | 11.0 | -0.727020 |
| 52.0000 | 3 | 5 | 0.7 | 11.7 | -0.718599 |
| 53.0000 | 6 | 59 | 1.3 | 15.9 | -0.710175 |
| 54.0000 | 1 | 30 | 0.2 | 13.2 | -0.701752 |
| 55.0060 | 2 | 62 | 0.4 | 15.7 | -0.693330 |
| 56.0000 | 2 | 64 | 0.4 | 14.1 | -0.684907 |
| 57.0000 | 4 | 68 | 0.9 | 15.0 | -0.676484 |
| 53.600 | 3 | 71 | 0.7 | 15.8 | -0.668052 |
| 59.01000 | 5 | 76 | 1.1 | 16.7 | -0.659639 |
| 80.0060 | 5 | 81 | 1.1 | 17.8 | -0.651216 |
| 51.0000 | 3 | 84 | 0.7 | 18.5 | -0.642794 |
| 62.0060 | 3 | 87 | 0.7 | 19.2 | -0.634371 |
| 63.0000 | 3 | 90 | 0.7 | 19.8 | -0.635948 |
| 64.0000 | 4 | 94 | 0.9 | 20.7 | -0.617526 |
| 65.0000 | 4 | 98 | 0.9 | 21.6 | - 0.609103 |
| 86.0000 | 6 | 104 | 1.3 | 22.9 | -0.600580 |
| 67.6000 | 5 | 109 | 1.1 | 24.0 | -0.542258 |
| 69.0600 | 2 | 111 | 0.4 | 24.4 | -0.583835 |
| 69.0000 | , | 112 | 0.2 | 24.7 | -6.575412 |
| 70.6000 | 4 | \$16 | 0.9 | 25.6 | -0.566990 |
| 31.0000 | 2 | 118 | 0.4 | 26.0 | -0.55856) |
| 72.1000 | 6 | 124 | 1.3 | 27.3 | -0.550144 |
| 73.0000 | 3 | 127 | 0.7 | 28.0 | -0.541722 |
| 74.0000 | 7 | 134 | 1.5 | 29.5 | -0.5.53299 |
| 75.0000 | 1 | 141 | 1.5 | 31.1 | -0.524876 |
| 76.0000 | 8 | 149 | 1.8 | 32.8 | -0.516454 |
| 77.0000 | 5 | 154 | 1.1 | 33.9 | -0.5080]1 |
| 78.0000 | 3 | 157 | 0.7 | 34.6 | -0.499609 |

VARTARAE: 6 IN

|  | CUM |  | CUM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| value | frea | FRES | $\%$ | $\%$ | 7 Score |
| 79.0000 | 5 | 152 | 1.1 | 35.7 | -0.491185 |
| $8(1.0010)$ | 2 | 164 | 0.4 | 36.1 | -0.489763 |
| 81.0000 | 4 | 168 | 0.9 | 37.0 | -0.474341 |
| 82, 6000 | 4 | 172 | 0.8 | 37.9 | -0.465918 |
| 83.0000 | 6 | 176 | 1.3 | 39.2 | - 0.457495 |
| 84.0000 | 3 | 181 | 0.7 | 39.9 | -0.449073 |
| 85, 6000 | 5 | 185 | 1.1 | 41.0 | -0.440650 |
| 85.0000 | 6 | 192 | 1.3 | 42.3 | -0.432227 |
| 87.0000 | 2 | 194 | 0.4 | 42.7 | -0. 4238805 |
| 88.0000 | 3 | 197 | 0.7 | 43.4 | -0.415382 |
| 89.0060 | 5 | 202 | 1.1 | 44.5 | -0.406959 |
| 90.0090 | 3 | 205 | 0.7 | 45.2 | -0.399537 |
| 71.0000 | 3 | 206 | 0.7 | 45.8 | -0.390114 |
| 92.0000 | 1 | 209 | 0.2 | 48.10 | -0.381691 |
| 93.0060 | 4 | 215 | 0.9 | 45.9 | -0. 373269 |
| 94.0000 | 4 | 217 | 0.9 | 47.8 | -0.354848 |
| 96.0000 | 2 | 219 | 0.4 | 48.2 | -0.34800) |
| 97.0000 | 5 | 224 | 1.1 | 49.3 | -0.339578 |
| 98.0600 | 7 | 235 | 1.5 | 50.9 | -0.331155 |
| 99.0000 | 1 | 232 | 0.2 | 51.1 | -0.322733 |
| 100.006 | 1 | 23. | 0.2 | 51.3 | -0.314310 |
| 501.000 | 4 | 237 | 0.9 | 52.2 | -0.305887 |
| 102.000 | 4 | 241 | 0.9 | 53.1 | -0.297465 |
| 103.008 | 1 | 242 | 0.2 | 53.3 | -0.289042 |
| 104.000 | 3 | 245 | 0.7 | 54.0 | -0.280619 |
| 105.000 | 2 | 247 | 0.4 | 54.4 | -0.272197 |
| 106.000 | 2 | 249 | 0.4 | 54.8 | -0.263774 |
| 107.000 | 2 | 251 | 0.4 | 55.3 | -0.255351 |
| 105.000 | 2 | 253 | 0.4 | 55.7 | -0.246929 |
| 107.000 | 3 | 256 | 0.7 | 56.4 | -0.238506 |
| 110.000 | 1 | 257 | 0.2 | 56.6 | -0.230093 |
| 111.000 | 1 | 258 | 0.2 | 56.9 | -0.221661 |
| 112.000 | 3 | 261 | 0.7 | 57.5 | -0.213238 |
| 113.000 | 1 | 252 | 0.2 | 57.7 | -0.204815 |
| 114.000 | 2 | 264 | 0.4 | 58.1 | -0.196393 |
| 186.000 | 1 | 265 | 0.2 | 58.4 | -0.179547 |
| 188.000 | 5 | 270 | 1.1 | 59.5 | -0.162702 |
| 119.006 | 1 | 271 | 0.2 | 59.7 | -0.154279 |
| 129.604 | 3 | 274 | 0.7 | 60.4 | -0.145857 |
| 121.100 | 5 | 279 | 1.1 | 61.5 | -0.137434 |
| 122.000 | 4 | 283 | 0.8 | 62.3 | -0.129011 |
| 123.600 | 1 | 294 | 0.2 | 57.6 | -0. 120589 |
| 124.040 | 4 | 288 | 0.9 | 63.4 | -0.112156 |
| 125.000 | 2 | 290 | 0.4 | 63.9 | -0.102743 |
| 126.000 | 3 | 293 | 0.7 | 54.5 | -0.095,3208 |
| 127.100 | 1 | 294 | 0.2 | \$4.8 | -0.0858981 |
| 129.000 | 2 | 296 | 0.4 | 65.2 | -0.0700528 |
| 131.000 | 1 | 297 | 0.2 | 65.4 | -0.0.032075 |
| 132.000 | 5 | 302 | 1.1 | 66.5 | -0.0447848 |
| 134.000 | 2 | 304 | 0.4 | 67.1 | -0.0279395 |
| 135.000 | 3 | 307 | 0.7 | 67.6 | -01.0195168 |
| 136.000 | 5 | 310 | 0.7 | 68.3 | -0.0110942 |
| 137.000 | 1 | 311 | 0.2 | 68.5 | -0.00267150 |
| 138.000 | 2 | 313 | 0.4 | 68.9 | 0.00575115 |
| 139.000 | 2 | 315 | 0.4 | 69.4 | 0.1141738 |

file: Ehoummation version: 1

VAFIAFIE: $\quad 62 \mathrm{~N}$

|  | CUM |  | CIM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VALUE | freo | FRED | 4 | $\%$ | 1 Scure |
| 140.600 | 2 | 317 | 6.4 | 69.8 | 0.0225965 |
| 141.000 | 3 | 320 | 0.7 | 80.5 | 0.0310191 |
| 142.060 | 2 | 322 | 0.4 | 70.9 | 0.0394418 |
| 143.000 | 4 | 325 | 0.9 | 71.8 | 0.0478545 |
| 144.000 | 1 | 327 | 0.2 | 12.0 | 0.0553871 |
| 145.060 | 1 | 328 | 0.2 | 72.2 | 0.0647189 |
| 146.000 | 1 | 329 | 0.2 | 72.5 | 0.0731324 |
| 147.000 | 1 | 350 | 0.2 | 72.7 | 0.0815851 |
| 149.800 | 1 | 331 | 0.2 | 72.9 | 0.0984004 |
| 150.000 | 1 | 332 | 0.2 | 73.1 | 0.106823 |
| 151.060 | 2 | 334 | 4.4 | 73.6 | 0.115246 |
| 153.000 | 1 | 335 | 0.2 | 33.8 | 0.132091 |
| 154.000 | 2 | 337 | 0.4 | 74.2 | 0.140514 |
| 158.000 | 2 | 339 | 0.4 | 74.7 | 0.174204 |
| 160.000 | 1 | 340 | 0.2 | 74.9 | 0.191050 |
| 163.160 | 1 | 34. | 0.2 | 75.1 | 0.216318 |
| 164.000 | 1 | 342 | 0.2 | 75.3 | 0.224740 |
| 155.060 | 3 | 345 | 0.7 | 76.0 | 0.238163 |
| 166.000 | 1 | 3.45 | 0.2 | 76.2 | 0.241586 |
| 167.000 | 1 | 3.4 | 0.2 | 76.4 | 0.250008 |
| 169.000 | 2 | 349 | 0.4 | 75.9 | 0.266854 |
| 170.000 | 1 | 350 | 0.2 | 77.1 | 0.275275 |
| 172.000 | 1 | 351 | 0.2 | 77.3 | 0.292122 |
| 173.000 | 3 | 354 | 0.7 | 76.0 | 0.300544 |
| 174.000 | 1 | 555 | 0.2 | 78.2 | 0.308967 |
| 175.060 | 1 | 356 | 0.2 | 79.4 | 0.317390 |
| 176.040 | 1 | 357 | 0.2 | 75.6 | 0.325912 |
| 177.009 | 2 | 359 | 0.4 | 79.1 | 0.334235 |
| 176.060 | 1 | 350 | 0.2 | 79.3 | 0.342559 |
| 179.000 | 2 | 352 | 0.4 | 79.7 | 0.351080 |
| 191.000 | 4 | 366 | 0.9 | 80.6 | 0.367926 |
| 184.00 | 2 | 369 | 0.4 | 61.1 | 0.393194 |
| $1{ }^{\text {cis bub }}$ | 2 | 370 | 0.4 | 81.5 | 0.410039 |
| 198.600 | 2 | 372 | 0.4 | 81.9 | 0.426884 |
| 189.100 | 1 | 375 | 0.2 | 82.2 | 0.435307 |
| 199.000 | 2 | 375 | 0.4 | 82.6 | 0.443730 |
| 193.100 | 1 | 376 | 0.2 | 82.8 | 0.468998 |
| 194.000 | 2 | 378 | 0.4 | 83.3 | 0.477420 |
| 196.000 | 1 | 379 | 0.2 | Ex.5 | 0. 494265 |
| 200.000 | 1 | 380 | 0.2 | 83.7 | 0.527955 |
| 202.000 | 1 | 381 | 0.2 | 83.9 | 0.544801 |
| 204.0041 | 1 | 382 | 0.2 | 84.1 | 0.561647 |
| 210.000 | 1 | 383 | 0.2 | 84.4 | 0.612183 |
| 211.000 | ! | 384 | 0.2 | 84.6 | 0.620505 |
| 213.000 | 1 | 385 | 0.2 | 84.8 | 6.637451 |
| 216.010 | 1 | 386 | 0.2 | 85.0 | 0.652719 |
| 219.000 | 2 | 398 | 0.4 | 85.5 | 0.687987 |
| 220.000 | 3 | 391 | 0.7 | 86.1 | 0.696409 |
| 223.100 | 1 | 592 | 0.2 | 86.3 | 0.721677 |
| 224.040 | 1 | 333 | 0.2 | 85.6 | 0.730100 |
| 228.000 | 1 | 394 | 0.2 | 86,8 | 0.763791 |
| 229.100 | 1 | 395 | 0.2 | 87.0 | 0.772213 |
| 232.040 | 1 | 396 | 0.2 | 87.2 | 0.797481 |
| 239.060 | 1 | 397 | 0.2 | 87.4 | 0.856440 |
| 242.000 | 1 | 398 | 0.2 | 97.7 | (1.881708 |

VARTAELE: 6 IN

|  | CUM |  |  | Cus |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Value | FREO | FEE0 | \% | $\%$ | 7 Score |
| 243.000 | 1 | 349 | 0.2 | 87.9 | (i. 890131 |
| 249.000 | 2 | 401 | 0.4 | 88.3 | 0.940657 |
| 255.010 | 1 | 402 | 0.2 | 88.5 | 0.982780 |
| 258.000 | 1 | 403 | 0.2 | 88.8 | 1.01647 |
| 261.000 | 1 | 404 | 0.2 | 89.0 | 1.04174 |
| 263.000 | 1 | 495 | 0.2 | 89.2 | 1.05858 |
| 224.000 | 2 | 407 | 0.4 | 89.6 | 1.06701 |
| 257.000 | 2 | 409 | 0.4 | 90.1 | 1.08227 |
| 271.0100 | 1 | 410 | 0.2 | 90.3 | 1.12597 |
| 272.000 | 1 | 411 | 0.2 | 90.5 | 1.13439 |
| 295.000 | 1 | 412 | 0.2 | 90.3 | 1.26955 |
| 299.000 | 1 | 413 | 0.2 | 91.8 | 1.35338 |
| 306.000 | 1 | 419 | 0.2 | 91.2 | 1.42076 |
| 307.100 | 1 | 415 | 0.2 | 91.4 | 1.42918 |
| 509.000 | 1 | 416 | 0.2 | 91.6 | 1.44503 |
| 310.000 | 1 | 417 | 0.2 | 91.9 | 1.45445 |
| 213,000 | 1 | 418 | 0.2 | 92.1 | 1.47972 |
| 316.000 | 1 | $41^{\circ}$ | 0.2 | 92.3 | 1,50498 |
| 323.000 | 1 | 420 | 0.2 | 92.5 | 1.56394 |
| 320.600 | 1 | 423 | 0.2 | 92.7 | 1.61449 |
| 331.000 | 1 | 422 | 0.2 | 93.0 | 1.63132 |
| 339.0010 | 1 | 423 | 0.2 | 93.2 | 1.69a7! |
| 343.060 | 1 | 424 | 0.2 | 93.4 | 1.73240 |
| 345.000 | 1 | 425 | 0.2 | 93.6 | 1.74924 |
| 351.000 | 1 | 425 | 0.2 | 93.8 | 1.79978 |
| 352.0160 | 1 | 427 | 0.2 | 94.1 | 1.80820 |
| 357.040 | 1 | 428 | 0.2 | 94.3 | 1.850131 |
| 366.000 | 2 | 430 | 0.4 | 94.7 | 1.92312 |
| 371.000 | 1 | 431 | 0.2 | 94.9 | 1.98823 |
| 372.000 | 1 | 432 | 0.2 | 95.2 | 1.97665 |
| 376.900 | 1 | 435 | 0.2 | 95.4 | 2.01034 |
| 383.000 | 1 | 434 | 0.2 | 95.6 | 2.06930 |
| 399.100 | 1 | 435 | 0.2 | 95.8 | 2.11984 |
| 351.000 | 1 | 436 | 0.2 | 93.0 | 2.13568 |
| 399.000 | 2 | 438 | 0.4 | 96.5 | 2.20407 |
| 402.000 | 1 | 439 | 0.2 | 93.7 | 2.22933 |
| 403.000 | 1 | 440 | 0.2 | 96.9 | 2.25776 |
| 413.000 | 1 | 44! | 0.2 | 97.1 | 2.32198 |
| 434.000 | 1 | 442 | 0.2 | 97.4 | 2.49886 |
| 441.060 | 1 | 443 | 0.2 | 97.5 | 2.55782 |
| 462.000 | 1 | 444 | 0.2 | 97.8 | 2.73469 |
| 483.000 | 1 | 445 | 0.2 | 98.0 | $2.9 \pm 157$ |
| 513.000 | 1 | 446 | 0.2 | 98.2 | 3.16425 |
| 516.000 | 2 | 448 | 0.4 | 98.7 | 3.19952 |
| 526.000 | 1 | 449 | 0.2 | 98.9 | 3.27374 |
| 648,000 | 1 | 450 | 0.2 | 99.1 | 4. 30131 |
| 691.000 | 1 | 451 | 0.2 | 99.3 | 4.66348 |
| 711.000 | 1 | 452 | 0.2 | 99.6 | 4.83194 |
| 891.0109 | 1 | 453 | 0.2 | 99.8 | 6.34801 |
| 1083.00 | 1 | 454 | 0.2 | 100.0 | 7.95517 |
| total | 454 | 454 | 100.0 | 100.0 |  |

COMMAND: FFEG HISSING VALUE TREATMEAS: VARMISE
tF* FREOUENCIES ANO l-SCORES **4

UARIARLE: 7 AU

|  | CHM |  | CUM |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VALUE | fred | fREO | $\%$ | $\%$ | 1 Scose |
| 1.04000 | 155 | 155 | 34.1 | 34.1 | -0. 541779 |
| 2.00009 | 105 | 260 | 23.1 | 57.3 | -0.30.7773 |
| 3.00000 | 39 | 299 | 8.6 | 65.9 | -0.275767 |
| 4.00060 | 19 | 318 | 4.2 | 70.0 | -0.239752 |
| 5.01090 | 14 | 332 | 3.1 | 78.1 | -0.20575 |
| 5.00e\% | 5 | 377 | 1.1 | 74.2 | - $0.17175!$ |
| 7.00000 | 2 | 339 | 0.4 | 74.7 | $-0.137745$ |
| 9.0 viouo | 11 | 350 | 2.4 | 77.1 | -0.103740 |
| 8.00000 | 3 | 353 | 0.7 | 77.8 | -0.06973s9 |
| 10.0090 | 19 | 372 | 4.2 | 81.9 | -0.0557283 |
| 12.0000 | 4 | 376 | 0.9 | 52.8 | 0.0322828 |
| 13.000 | 1 | 377 | 0.2 | 93.0 | 0.0662884 |
| 14.0100 | 2 | 379 | 0.4 | 93.5 | 0.106294 |
| 15.000 | 4 | 38. | 0.9 | 84.4 | 0.134300 |
| 16.0060 | 4 | 387 | 0.9 | 85.2 | 9.168305 |
| 17.0000 | 3 | 390 | 0.7 | 35.7 | 0.202311 |
| 10.0000 | 4 | 394 | 0.9 | 85.8 | 0.235316 |
| 19.0000 | 1 | 345 | 0.2 | 87.0 | (1.270322 |
| 29.6000 | 13 | 408 | 2.9 | 89.5 | 0.304828 |
| 21.000 | 2 | 410 | 0.4 | 91.3 | 0.338333 |
| 22.0060 | 4 | 414 | 0.9 | 41.2 | 0, 37234 |
| 23.0000 | 1 | 415 | 0.2 | 91.4 | 0.406344 |
| 24.0000 | 1 | 416 | 0.2 | 91.6 | 0.490350 |
| 25.9000 | 1 | 417 | 0.2 | 91.9 | 0.474355 |
| 26.0000 | 2 | 419 | 0.4 | 92.3 | 0.598351 |
| 35.0000 | 1 | 420 | 0.2 | 92.5 | 0.914411 |
| 36.0900 | 1 | 421 | 0.2 | 92.7 | 0.848417 |
| 37.0000 | 3 | 424 | 0.7 | 93.4 | 0.882422 |
| \$1.0000 | 2 | 426 | 0.4 | 93.8 | 1.01844 |
| 42.0000 | 1 | 427 | 0.2 | 94.1 | 1.05245 |
| 44.0000 | 1 | 420 | 0.2 | 94.3 | 1.12045 |
| 49.0000 | 1 | 429 | 0.2 | 94.5 | 1.29049 |
| 50.0000 | 3 | $433^{\prime \prime}$ | 0.7 | 95.2 | 1.32450 |
| 55.0000 | 1 | 433 | 0.2 | 95.4 | 1.49452 |
| 61.0000 | 1 | 434 | 0.2 | 95.6 | 1.69855 |
| 62.1000 | 1 | 435 | 0.2 | 85.8 | 1.73256 |
| 67.0000 | 1 | 436 | 0.2 | 96.0 | 1.9025 |
| 71.0000 | 1 | 437 | 0.2 | 96.5 | 2.03861 |
| 78.0000 | 1 | 438 | 0.2 | 95.5 | 2.27665 |
| 82.0000 | 1 | 439 | 0.2 | 85.7 | 2.41257 |
| 85.0000 | 1 | 440 | 0.2 | 96.9 | $2.5146^{\circ}$ |
| 92.0000 | 1 | 4.41 | 0.2 | 97.1 | 2.75275 |
| 105.000 | 2 | 443 | 0.4 | 97.6 | 3.19450 |
| 105.000 | 1 | 444 | 0.2 | 97.8 | 3.22981 |
| 112.000 | 1 | 445 | 0.2 | 98.0 | $3.432 \mathrm{S4}$ |
| 120.060 | 1 | 446 | 1.2 | 98.2 | 3.70489 |
| 127.000 | 1 | 447 | 0.2 | 98.5 | 3.94292 |
| 143.000 | 1 | 448 | 0.2 | 98.7 | 4.48701 |
| 144.000 | 1 | 449 | 0.2 | 98.9 | 4.52102 |

## VARIABLE: 7 AU

|  | CIM |  | Cim |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VALUE | FRES | FREO | \% | \% | 1 SCORE |
| 147.000 | 1 | 450 | 0.2 | 99.1 | 4.62304 |
| 151.000 | 1 | 451 | 0.2 | 99.3 | 4.75906 |
| 12.600 | 1 | 452 | 0.2 | 99.6 | 5.47318 |
| 174.000 | 1 | 453 | 0.2 | 99.8 | 5.54119 |
| 363.000 | 1 | 454 | 0.2 | 500.0 | 11.9682 |
| TOTAL | 454 | 454 | 100.0 | 100.0 |  |

COMMAND: FRED MISSING VALUE TREATMENT:

## ¥f freguencles and l-SCORES ***

VARIARLE: 8 AG

|  |  | Cum |  | cum |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| UALLE | Fged | fred | $\%$ | 4 | 2 Scoge |
| 0.20000 | 1 | 1 | 0.2 | 0.2 | -0.310602 |
| 0.300000 | 2 | 3 | 0.4 | 0.7 | -0.293635 |
| 0.40000 | 1 | 4 | 0.2 | 0.9 | - 0.276658 |
| 0.50060 | 5 | 9 | 1.1 | 2.0 | - 0.2589701 |
| 0.60000 | 9 | 18 | 2.0 | 4.0 | -v. 242735 |
| 0.70000 | 11 | 29 | 2.4 | 6.4 | -0.225768 |
| 0.800000 | 32 | 61 | 7.0 | 13.4 | -0.20880 |
| 0.900000 | 32 | 93 | 7.0 | 20.5 | -0.191854 |
| 1.00000 | 41 | 134 | 9.0 | 29.5 | -01.174867 |
| 1.01000 | 1 | 135 | 0.2 | 29.7 | -0.673174 |
| 1.10000 | 29 | 154 | 6.4 | 36.1 | -0.157900 |
| 1.20000 | 49 | 213 | 10.8 | 46.9 | -0.140933 |
| 1. 30000 | 24 | 237 | 5.3 | 52.2 | -0.123966 |
| 1.40000 | 30 | 267 | 6.6 | 58.8 | -0.107000 |
| 1.51000 | 26 | 203 | 5.7 | 64.5 | -0.1900928 |
| 1.60000 | 27 | 320 | 5.9 | 70.5 | -0.0730659 |
| 1.70000 | 10 | 330 | 2.2 | 72.7 | -0.0560990 |
| 1.80000 | 21 | 351 | 4.6 | 77.3 | -0.0391322 |
| 1.90000 | 16 | 367 | 3.5 | 80.8 | -4.0221653 |
| 2.00000 | 15 | 392 | 3.3 | 84.1 | -0.00519844 |
| 2. 10000 | 9 | 391 | 2.0 | 86.1 | 0.0117684 |
| 2.20000 | 4 | 395 | 0.9 | 87.1 | 0.0297553 |
| 2.30000 | 9 | 404 | 2.0 | 89.0 | 0.0457022 |
| 2.40000 | 7 | 411 | 1.5 | 90.5 | 0.0626690 |
| 2.50000 | 2 | 413 | 0.4 | 91.0 | 0.0796359 |
| 2.60000 | 4 | \$17 | 0.9 | 91.9 | 0.0956028 |
| 2.70000 | 5 | 422 | 1.1 | 93.0 | 0.113570 |
| 2.80000 | 2 | 424 | 0.4 | 93.4 | 0.130533 |
| 2.90600 | 1 | 425 | 0.2 | 93.6 | 0.147503 |
| 3.09000 | 1 | 476 | 0.2 | 93.9 | 4,164470 |
| 3.10000 | 2 | 428 | 0.4 | 94.3 | 0.181437 |
| 3.20000 | 2 | 430 | 0.4 | 94.7 | 0.198404 |
| 3.60000 | 1 | 43! | 0.2 | 94.9 | 0.266271 |
| 4.60000 | 1 | 432 | 0.2 | 95.2 | 0.334139 |
| 4.10000 | 1 | 433 | 0.2 | 95.4 | 0.351106 |
| 4.20000 | 1 | 434 | 0.2 | 95.6 | 0.358073 |
| 4.30000 | 2 | 436 | 0.4 | 96.11 | 0.395039 |
| 4.40000 | 1 | 437 | 0.2 | 96.3 | 0.402005 |
| 4.50000 | 2 | 439 | 0.4 | 96.7 | 0.418973 |
| 4.20000 | 1 | 440 | 0.2 | 93.9 | 0.435940 |
| 4.80000 | 1 | 441 | 0.2 | 97.1 | 0.407074 |
| 5.20000 | 1 | 442 | 0.2 | 97.4 | 0.537741 |
| 5.30000 | 1 | 44.3 | 0.2 | 47.6 | 0.554768 |
| 5.40600 | 2 | 445 | 0.4 | 98.0 | 0.571675 |
| 6.40060 | 1 | 446 | 0.2 | 98.2 | 0.741344 |
| 6.70000 | 1 | 447 | 0.2 | 98.5 | 0.792244 |
| 7.50000 | 1 | 448 | 0.2 | 98.7 | 0.944946 |
| 8.40000 | , | 449 | 0.2 | 98.9 | 1.09068 |
| 16.0000 | 1 | 450 | 0.2 | 99.1 | 2.37016 |

file: SkcinkM. ARG version:1

VARIARME: A AE

|  | CLin |  | Cut |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VALUE | FHED | FREO | $\%$ | \% | 2 Score |
| 17.5000 | 1 | 451 | 0.2 | 99.3 | 2.62467 |
| 34,0000 | 1 | 452 | 0.2 | 99.6 | 5.42420 |
| 60.0000 | 1 | 453 | 0.2 | 99.8 | 9.83558 |
| 104.000 | 1 | 454 | 0.2 | 100.0 | 17.3010 |
| total | 454 | 454 | 100.0 | 100.0 |  |

## APPENDIX IV - B HISTOGRAMS

CDMMAND: HIST MIGSIMG VRLHE TREATMENT: VAFUSE

VARIARLE: 1 AS

| AT LEAST | 1.000 |  | 5 | 10 | 45 | 20 | 25 | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gid nat duer: | Frid | $\%$ |  |  |  |  |  |  |
| 6.60008 | 95 | 20.9 | IKXXXXXXXXXXXXXXXXX | $x \times x \times$ | xxx | xxx |  |  |
| 12.0000 | 92 | 20.3 |  | xxxy | XXXXX | $x \times x y x$ |  |  |
| 18.0106 | 91 | 20.0 | 10xXPXXXXXXXXXXXXX | x,xy | xaxy | XXX |  |  |
| 24.0000 | 69 | 15.2 |  | xxxx | $x \times x$ |  |  |  |
| 30.1000 | 46 | 10.1 | JXXXXXXXXXXXXXXXXXX | $x \times x \times$ |  |  |  |  |
| 36.0000 | 23 | 5.1 | IXXXXXXXXXXXXXXXXX |  |  |  |  |  |
| 42.00000 | 15 | 3.3 | Jxyxaxaxaxi |  |  |  |  |  |
| 48.0000 | 4 | 0.9 | 1×XY |  |  |  |  |  |
| 54.00 cos | ¢ | 1.3 | IXXXX |  |  |  |  |  |
| 60.0000 | 1 | 0.2 | IX |  |  |  |  |  |
| 66.0000 | 2 | 0.4 | IX |  |  |  |  |  |
| 72.0000 | 2 | 0.4 | Ik |  |  |  |  |  |
| 78.0000 | 1 | 0.2 | IK |  |  |  |  |  |
| 84.0060 | 1 | 0.2 | Ik |  |  |  |  |  |
| 90.0000 | 0 | 01.0 | 1 |  |  |  |  |  |
| 96.0000 | 0 | 00.0 | I |  |  |  |  |  |
| 102.000 | 1 | 0.2 | IX |  |  |  |  |  |
| 106.000 | 0 | 00.0 | $t$ |  |  |  |  |  |
| 112.000 | 2 | 0.4 | IX |  |  |  |  |  |
| 118.000 | 1 | 0.2 | If |  |  |  |  |  |
| 124.300 | 0 | 06.0 | 1 |  |  |  |  |  |
| 130.600 | 0 | 00.0 | I |  |  |  |  |  |
| 136.000 | 0 | 0.0 .1 | 1 |  |  |  |  |  |
| 142.000 | 0 | 00.0 | 1 |  |  |  |  |  |
| 148.000 | 1 | 0.2 | I\% |  |  |  |  |  |
| 152.000 | 1 | 0.2 | I* |  |  |  |  |  |
| TDTAL | 454 | 100.0 | 5 | 10 | 15 | 20 | 25 | 30 |


| AT LEASt | 27.00 |  | 10 | 20 | 30 | 40 | 50 | b0 | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Qid Not OVER: | FREQ | \% | t------------t |  |  |  |  |  |  |
| 63.50000 | 112 | 24.7 |  | $x \times x \times$ |  |  |  |  |  |
| 126.000 | 288 | 63.4 | IXXXXXXXXXXXXXXXX | $x \times x \times$ | xxx | $x \times x \times$ | X $\times$ x $x$ | XXXXXXXX |  |
| 189.000 | 46 | 10.1 | IXXXXXXXXXXXXYX |  |  |  |  |  |  |
| 252.000 | 0 | 00. 0 | 1 |  |  |  |  |  |  |
| 315.000 | 0 | 00.1 | 1 |  |  |  |  |  |  |
| 378.0010 | 0 | 00.0 | I |  |  |  |  |  |  |
| 441.000 | 0 | 010 | , |  |  |  |  |  |  |
| 504.1000 | 0 | 00.0 | i |  |  |  |  |  |  |
| 569.000 | 0 | \$10.0 | 1 |  |  |  |  |  |  |
| 630.0096 | 3 | 0.7 | IX |  |  |  |  |  |  |
| 693.000 | 0 | 00.0 | 1 |  |  |  |  |  |  |
| 756.000 | 1 | 0.2 | I |  |  |  |  |  |  |
| 819.000 | 0 | 00.0 | 1 |  |  |  |  |  |  |
| 882.000 | 0 | 06.0 | I |  |  |  |  |  |  |
| 945.000 | 0 | 00.0 | I |  |  |  |  |  |  |
| 1049.00 | 0 | 00.0 | I |  |  |  |  |  |  |
| 1071.80 | 0 | 00.0 | 1 |  |  |  |  |  |  |
| 1134.00 | 0 | 00.0 | 1 |  |  |  |  |  |  |
| 1197.00 | 1 | 00.0 | I |  |  |  |  |  |  |
| 1250.00 | 1 | 0.2 | ! |  |  |  |  |  |  |
| 1323.60 | 1 | 0.2 | 1 |  |  |  |  |  |  |
| 1386.00 | 0 | 00.0 | 1 |  |  |  |  |  |  |
| 1449.00 | 0 | 00.0 | 1 |  |  |  |  |  |  |
| 1512.00 | 1 | 0.2 | 1 |  |  |  |  |  |  |
| 1575.00 | 0 | 00.0 | I |  |  |  |  |  |  |
| 1638.10 | 0 | 00.0 | 1 |  |  |  |  |  |  |
| 1701.60 | 1 | 0.2 |  |  |  |  |  |  |  |


| TOTAL | 454 | 100.0 | 10 | 20 | 30 | 90 | 50 | 60 | 70 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| COMMAND: HIST |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VARIABLE: 3 CU |  |  |  |  |  |  |  |  |  |  |  |  |
| At least | 1.00000 |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| SUT NOT DUER: | FREQ \% |  | ${ }^{+}$ |  |  |  |  |  |  |  |  | + |
| 9,00000 | 8 | 1.8 |  |  |  |  |  |  |  |  |  |  |
| 16.00000 | 7 | 1.5 |  |  |  |  |  |  |  |  |  |  |
| 24.0000 | 19 | 4.2 |  |  |  |  |  |  |  |  |  |  |
| 32.0060 | 40 | 9.8 |  |  |  |  |  |  |  |  |  |  |
| 40.0006 | 45 | 9.9 |  |  |  |  |  |  |  |  |  |  |
| 48.0000 | 42 | 9.3 |  |  |  |  |  |  |  |  |  |  |
| 56.0000 | 39 | 8.6 |  |  |  |  |  |  |  |  |  |  |
| 54.0000 | 45 | 9.9 |  |  |  |  |  |  |  |  |  |  |
| 72.030 | 36 | 7.9 |  |  |  |  |  |  |  |  |  |  |
| 80.9000 | 35 | 7.7 |  |  |  |  |  |  |  |  |  |  |
| 88.1000 | 35 | 7.7 |  |  |  |  |  |  |  |  |  |  |
| 96.0000 | 36 | 7.9 |  |  |  |  |  |  |  |  |  |  |
| 104.000 | 29 | 6.4 |  |  |  |  |  |  |  |  |  |  |
| 112.900 | 20 | 6.2 |  |  |  |  |  |  |  |  |  |  |
| 120.000 | 2 | 0.4 | 1xxx |  |  |  |  |  |  |  |  |  |
| 128.100 | 3 | 0.7 | IxMxxxx |  |  |  |  |  |  |  |  |  |
| 136.010 | 1 | 4.2 | IXX |  |  |  |  |  |  |  |  |  |
| 144.0000 | (1) | 00.0 | I |  |  |  |  |  |  |  |  |  |
| 152.000 | 1 | 0.2 | IXX |  |  |  |  |  |  |  |  |  |
| 150.100 | 2 | 0.4 | IXXXX |  |  |  |  |  |  |  |  |  |
| 168.000 | 0 | 00.10 | 1 |  |  |  |  |  |  |  |  |  |
| 176.000 | 0 | 00.0 | I |  |  |  |  |  |  |  |  |  |
| 184.000 | 0 | 00.10 | 1 |  |  |  |  |  |  |  |  |  |
| 192.010 | 0 | 00.0 | 1 |  |  |  |  |  |  |  |  |  |
| 200.000 | 0 | 10.0 | I |  |  |  |  |  |  |  |  |  |
| 208.000 | 0 | 10.0 | I |  |  |  |  |  |  |  |  |  |
| 216.000 | 0 | 00.0 | 1 |  |  |  |  |  |  |  |  |  |
| 224.000 | 1 | 0.2 | Ixx |  |  |  |  |  |  |  |  |  |
| TOTAL | 454 | 100.0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

COMMAKD: HJST
MISSIMS VALUE TREATMENT: VARNISE
VARIABLE: 4FP

| AT LEAST | 6.00 H |  | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gut kot guer: | FGED | $\%$ |  |  |  |  |  |  |  |
| 15.6000 | 92 | 20.3 |  | x $x$ \% |  |  |  |  |  |
| 36.0000 | 304 | 67.0 | IXXXXXXXXXXXXXX | x,xxy | XXXX | xex | xxax | xXXX |  |
| 45.0000 | 45 | 9.8 |  |  |  |  |  |  |  |
| 60.0060 | 8 | 1.3 | 18x |  |  |  |  |  |  |
| 75.000 | 1 | 0.2 | I |  |  |  |  |  |  |
| 90.0000 | 1 | 0.2 | I |  |  |  |  |  |  |
| 105.000 | 2 | 0.4 | IX |  |  |  |  |  |  |
| 120.640 | 1 | 0.2 | I |  |  |  |  |  |  |
| 135.0 ta | 0 | 00.0 | I |  |  |  |  |  |  |
| 150.000 | 0 | 00.0 | I |  |  |  |  |  |  |
| 155.000 | 1 | 90.0 | I |  |  |  |  |  |  |
| 180.000 | 0 | i0.0 | 1 |  |  |  |  |  |  |
| 195.660 | 0 | 00.0 | 1 |  |  |  |  |  |  |
| 210.000 | 1 | 0.2 | I |  |  |  |  |  |  |
| 225.000 | 0 | 00.0 | I |  |  |  |  |  |  |
| 240.600 | 0 | 01.0 | 1 |  |  |  |  |  |  |
| 255.000 | 0 | 00.9 | 1 |  |  |  |  |  |  |
| 270.000 | 0 | 00.0 | I |  |  |  |  |  |  |
| 285.000 | 0 | 00.0 | 1 |  |  |  |  |  |  |
| 300.000 | $($ | 000 | 1 |  |  |  |  |  |  |
| 315.000 | 0 | 00.0 | $!$ |  |  |  |  |  |  |
| 330.000 | 0 | 00.0 | 1 |  |  |  |  |  |  |
| 345.060 | 0 | 10.0 | I |  |  |  |  |  |  |
| 360.000 | 0 | 00.0 | 1 |  |  |  |  |  |  |
| 375.000 | 0 | 00.0 | I |  |  |  |  |  |  |
| 350.000 | 0 | 00.0 | I |  |  |  |  |  |  |
| 405.600 | 1 | 0.2 | I |  |  |  |  |  |  |
| TOTAL | 454 | 100.0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |

COMMARD: HIST MSSIME VALLE TREATMEHT: VARHISE


VAKIABLE: 5 IN


| T0TAL | 454100.0 | 5 | 11 | 15 | 20 | 25 | 0 | 35 | 4 \$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

```
ABstat 5.00
//12/89 poge < 
fle: SkONkum.ARs version:1
```

COMADT: HIST MISSING VALUE TPEATMENT: VAKMISE

UARIAALE: 7 AU

| AT LEASt | 1.000 |  | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GUT NOT OUEF: | FREO | \% |  |  |  |  |  |  |  |  |  |
| 14.0000 | 379 | 83.5 | IXXXXXXXXXXX | x $x^{\prime}$ x | XXY | XXX, | XXX | XXXX | XXXY | Y $\times$ |  |
| 28.0000 | 40 | 8.8 | Incuxyexpy |  |  |  |  |  |  |  |  |
| 42.0000 | 8 | 1.8 | IX\% |  |  |  |  |  |  |  |  |
| 55.0600 | 6 | 1,5 | IX |  |  |  |  |  |  |  |  |
| 70.0000 | 3 | 0.7 | jk |  |  |  |  |  |  |  |  |
| 84.0000 | 3 | 0.7 | IK |  |  |  |  |  |  |  |  |
| 98.000 | 2 | 0.4 | I |  |  |  |  |  |  |  |  |
| 112.06 | 4 | 0.9 | IX |  |  |  |  |  |  |  |  |
| 12.006 | 1 | 0.2 | I |  |  |  |  |  |  |  |  |
| 145.000 | 1 | 0.2 | I |  |  |  |  |  |  |  |  |
| 154.000 | 4 | 0.9 | I* |  |  |  |  |  |  |  |  |
| 168,000 | 0 | 00.0 | 1 |  |  |  |  |  |  |  |  |
| 192.090 | 2 | 0.4 | 1 |  |  |  |  |  |  |  |  |
| 188.0156 | 0 | 010.0 | i |  |  |  |  |  |  |  |  |
| 210.060 | 0 | 60.6 | 1 |  |  |  |  |  |  |  |  |
| 224.000 | 0 | 00.0 | I |  |  |  |  |  |  |  |  |
| 235.060 | 0 | 04.0 | 1 |  |  |  |  |  |  |  |  |
| 252.004 | 0 | O6, \% | I |  |  |  |  |  |  |  |  |
| 265.090 | 0 | 00.0 | 1 |  |  |  |  |  |  |  |  |
| 280.000 | (1) | 00.0 | I |  |  |  |  |  |  |  |  |
| 294.000 | 0 | 00.0 | 1 |  |  |  |  |  |  |  |  |
| 308.000 | 0 | 00.0 | I |  |  |  |  |  |  |  |  |
| 522.100 | 9 | 00.0 | 1 |  |  |  |  |  |  |  |  |
| 336.0000 | ! | 100.0 | I |  |  |  |  |  |  |  |  |
| 350.100 | 0 | 00.0 | 1 |  |  |  |  |  |  |  |  |
| 354.001 | 1 | 0.2 | 1 |  |  |  |  |  |  |  |  |
| total | 454 | 1000 | 10 | 24 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |

AFstat 5.00

## COMMARD: HIST

 MISSING VALUE TEEATHENT: VARUISEWAKIABLE: $\quad 9 A G$

| AT LEAST | 0.2000 |  | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gut Not diyer | FFED | $\%$ | +------...t- |  |  |  |  |  |  |  |  |  |
| 4.00000 | 432 | 95.2 |  | X ${ }^{\text {\% }}$ | (\%) $2 \times$ | XXX | X ${ }^{\text {P }}$ | XXR | XXX | XX ${ }^{\text {P }}$ | Kx $x$ |  |
| 8.0000 | 16 | 3.5 | IXGX |  |  |  |  |  |  |  |  |  |
| 12.0000 | 1 | 0.2 | 1 |  |  |  |  |  |  |  |  |  |
| 16.0000 | , | 0.2 | 1 |  |  |  |  |  |  |  |  |  |
| 20.10009 | 1 | 0.2 | I |  |  |  |  |  |  |  |  |  |
| 24.0000 | 0 | 00.0 | I |  |  |  |  |  |  |  |  |  |
| 28.609 | 0 | 69.0 | I |  |  |  |  |  |  |  |  |  |
| 32.0000 | 0 | 09.0 | 1 |  |  |  |  |  |  |  |  |  |
| Th.0000 | 1 | 0.2 | i |  |  |  |  |  |  |  |  |  |
| 40.0000 | 0 | (1).0 | 1 |  |  |  |  |  |  |  |  |  |
| 44. 0100 | 0 | 00.0 | ! |  |  |  |  |  |  |  |  |  |
| 43.0000 | 0 | 00.0 | I |  |  |  |  |  |  |  |  |  |
| 52.0000 | 9 | 60.0 | I |  |  |  |  |  |  |  |  |  |
| 56.0 | 1 | 00.0 | 1 |  |  |  |  |  |  |  |  |  |
| 6in, noto | 1 | 0.2 | I |  |  |  |  |  |  |  |  |  |
| 64.0006 | 0 | 00.0 | I |  |  |  |  |  |  |  |  |  |
| 68. 6 (000 | 0 | 00.0 | I |  |  |  |  |  |  |  |  |  |
| 72.0600 | 0 | 80.0 | 1 |  |  |  |  |  |  |  |  |  |
| 76.0000 | 0 | 00.0 | 1 |  |  |  |  |  |  |  |  |  |
| 80.6000 | 6 | 0.0 | I |  |  |  |  |  |  |  |  |  |
| 84.0060 | 0 | 04.0 | I |  |  |  |  |  |  |  |  |  |
| 88.0000 | 0 | (00.0) | 1 |  |  |  |  |  |  |  |  |  |
| 92.0000 | 0 | 00.0 | 1 |  |  |  |  |  |  |  |  |  |
| 96.0000 | 0 | 00.0 | 1 |  |  |  |  |  |  |  |  |  |
| 100.000 | 0 | vice | I |  |  |  |  |  |  |  |  |  |
| 104.000 | 1 | 6.2 | 1 |  |  |  |  |  |  |  |  |  |
| TOTAL | 454 | 100.0 | 10 | 20 | 30 | 40 | 51 | 50 | 70 | 80 | 96 | 100 |

# APPENDIX IV - C CORRELATION COEFFICIENTS 

## CORRELATION COEFFICIENTS

| Au | Ag | As | pb | Cu | Zn | Sb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Au $\quad 1.000$ | 0.003 | -0.144 | $4 \quad 0.029$ | 0.111 | 0.0002 | -0.036 |
| Ag | 1.000 | -0.322 | 20.275 | 0.187 | 0.450 | 0.017 |
| As |  | 1.000 | 0.127 | -0.209 | -0.008 | 0.358 |
| Pb |  |  | 1.000 | 0.317 | 0.371 | -0.028 |
| Cu |  |  |  | 1.000 | 0.111 | $-0.057$ |
| Zn |  |  |  |  | 1.000 | 0.291 |
| Sb |  |  |  |  |  | 1.000 |
| Rating: | 0.000 | to ( | $(+/-) \quad 0.300$ |  | Weak |  |
| $(+/-)$ | 0.301 | to ( | $(+/-) 0.550$ |  | Slight |  |
| $(+/-)$ | $0.551$ | to ( | $(+/-) 0.800$ |  | Moderate |  |
| $(+/-)$ | 0.801 | to ( | $(+/-) 1.000$ |  | Strong |  |

## SQUARES OF CORRELATION COEFFICIENTS

 (To express the interaction in percentile)|  | Au | Ag | As | Pb | Cu | Zn | sb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Au | 100.0 | 0.00 | 2.00 | 0.08 | 1.20 | 0.00 | 0.10 |
| Ag |  | 100.0 | 10.30 | 7.50 | 3.40 | 20.20 | 0.02 |
| As |  |  | 100.0 | 1.60 | 4.30 | 0.00 | 12.80 |
| Pb |  |  |  | 100.0 | 10.00 | 13.70 | 0.07 |
| Cu |  |  |  |  | 100.0 | 1.20 | 0.30 |
| Zn |  |  |  |  |  | 100.0 | 8.40 |
| sb |  |  |  |  |  |  | 100.0 |

Rating:

| $0.0 \%$ | to | $9.0 \%$ |
| ---: | ---: | ---: |
| $9.1 \%$ | to | $30.2 \%$ |
| $30.3 \%$ | to | $64.0 \%$ |
| $64.0 \%$ | to | $100.0 \%$ |

Weak
Slight
Moderate
Strong

Anstat 5.10




> APPENDIX V DRILL LOGS

Comments

| Company | Canova/Expeditor |
| :---: | :---: |
| Project No. | 88-EC-052 |
| Drill hole no. | 88-SRC-1 |
| Area/Township | Okanagan |
| Mining Division | Vernon |
| Claim Name | Skookum showing |
| N.T.S. | 82-L/6W |
| Grid Reference | Line 10508/5095N |
| Angle/Orientation | $-45^{\circ} / 140^{\circ}$ |
| Length | 135.9 meters (446 ft) |
| Core size | 4 1/8"RC |
| \% Recovery | 98\% |
| Depth to Bedrock | 0.4 meters |
| Lithology Fin Top | Andesite |
| Lithology Fm Base | Graphitic schist |
| Date collared | December 3, 1988 |
| Date completed | December 4, 1998 |
| Dip Tests | N/A |
| No. of Samples | 91 RC |
| Sample Interval | 1.5 RC |
| Sample No's | $\text { From: }{ }_{1751 A}^{14525 \pi} \text { To: }{ }_{1770 A}^{14600 A}$ |
| Drilling Company | D.W. CUATES |
| Logged by | J. Dahrouge/D.Collins |

Comments:

| Company | Canova/Espeditor |
| :---: | :---: |
| Project No. | B8- $\mathrm{EC}-052$ |
| Drill hoie no. | 88-5RC-2 |
| Area/Township | Okanagan |
| Mining Division | Vernor, |
| Claim Name | Skookum showing |
| N.T.S. | 82-L/6W |
| Grid Reference | Line 1160E/5155N |
| Angie/Orientation | $-45^{\circ} / 140^{\circ}$ |
| Length | 135.9 meters (446 ft) |
| Core size | $41 / 8{ }^{\prime \prime} \mathrm{RC}$ |
| \% Recovery | 98\% |
| Depth to Bedrock | 0.4 meters |
| Lithology Fm Top | Graphitic schist |
| Lithology Fm Base | Graphitic schist |
| Date collared | December 5, 1988 |
| Date completed | December 6, 1988 |
| Dip Tests | N/A |
| No. of Samples | 87 RC |
| Sample Interval | 1.5 RC |
| Sample No's | From: 1901^ To:1988n |
| Orilling Company | D.w. COATES |
| Logged by | J.Dahrouge/D.Collins |



| Scale of Summary $\log$ | $1: 1000$ |
| :--- | :--- |

Comments:

| Company | Canova/Expeditor |
| :---: | :---: |
| Project No. | 88- $\mathrm{EC}-052$ |
| Drill hole no. | 83-SRC-4 |
| Area/Township | Okanagan |
| Mining Division | Vernon |
| Claim Name | Skookum showing |
| N.T.S. | 82-L/6w |
| Grid Reference | Line 997E/5055N |
| Angle/Orientation | $-45^{\circ} / 150^{\circ}$ |
| Length | 129.3 meters ( 426 ft ) |
| Core size | $41 / 8^{\prime \prime} \mathrm{RC}$ |
| \% Recovery | 98\% |
| Depth to Bedrock | 0.4 meters |
| Lithology Fm Top | Andesite/Tuff |
| Lithology Fm Base | Graphitic schist |
| Date collared | Decomber 13, 1988 |
| Date completed | December 14, 1988 |
| Dip Tests | N/A |
| No. of Samples | 83 RC |
| Sample Interval | 1.5 RC |
| Sample No's | $\text { From: } 45151 \mathrm{~A} \text { To: } 452000 \mathrm{~A}$ |
| Drilling Company | D.W. COATES |
| Logged by | J.Dahrouge/D.Collins |



Andesite/TuFf
21.6 m
36.8 m

50 to $151 \mathrm{ppb} \mathrm{Au} ; \leq 7.6 \mathrm{ppmAq}$
53.6 m

Graphitic schist
$\leq 5 \%$ pyrite

Trace Pyrrhotite
129.8 m EOH

## DRILL HOLE LOG SUMMARY

HHEC
resource management lid.

| Company | Canova/Expeditor |
| :---: | :---: |
| Project No. | 88- $\mathrm{HC}-052$ |
| Drill hole no. | 88- SRC-5 |
| Area/Township | Okanagan |
| Mining Division | Vernon |
| Claim Name | Skookum showing |
| N.T.S. | 82-L/6W |
| Grid Reference | Line $1005 \mathrm{E} / 5000 \mathrm{~N}$ |
| Angle/Orientation | $-45^{\circ} / 270^{\circ}$ |
| Length | 41.5 meters ( 136 ft ) |
| Core size | 4 1/8"RC |
| \% Recovery | 98\% |
| Depth to Bedrock | 0.4 metcrs |
| Lithology Fm Top | Graphitic schist |
| Lithology Fm Base | Graphitic schist |
| Date collared | December 14, 1988 |
| Date completed | December 15, 1988 |
| Dip Tests | N/A |
| No. of Samples | 24 RC |
| Sample interval | 1.5 RC |
| Sample No's | From:45034A To: 45107A |
| Driling Company | D.W. COATES |
| Logged by | J. Dahrouge/D.Collins |

Comments:


| Scale of Summary $\log$ | $1: 500$ |
| :--- | :--- |

## DRILL HOLE LOG SUMMARY

Comments:

| Company | Canova/E\%peditor |
| :---: | :---: |
| Project No. | 8日- $\mathrm{BC}-052$ |
| Drill hole no. | 88-SDD-1 |
| Area/Township | Okanagan |
| Mining Division | Vernon |
| Claim Name | Skookum showing |
| N.T.S. | 日2-L/6W |
| Grid Reference | Line 975E/5015N |
| Angle/Orientation | $-459140^{\circ}$ |
| Length | 154.5 meters (507 ft) |
| Core size | NQ |
| \% Recovery | 90\% |
| Depth to Bedrock | 0.4 meters |
| Lithology Fm Top | Andesite |
| Lithology Fm Base | Craphitic schist/ Phyllite |
| Date collared | Jecember $\because 1983$ |
| Date completed | Oecomber 3, 1988 |
| Dip Tests | N/A |
| No. of Samples | 88 |
| Sample interval | variable |
| Sample No's | Fromi: SDl-1 To: SD1-88 |
| Drilling Company | D.W. COATES |
| Logged by | J.Dahrouge/D.Collins |



| Scale of Summary log | $1: 1000$ |
| :--- | :--- |

PROJECT : 88-BC-052
DRILL HCLE LOG NO. 88-SDD-G®1
Sheet 1 of 6


Sheet 2 of 6


PROJECT : 88-BC-952

Sheet 3 of 5

| Depth | Description | Tectonic ${ }^{\text {\% }}$ | Sample |  |  | Mineralization | (ppo) | ASSA | Y | SULT | - |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | C/A struct.Rec | no. | Erom | To | \& Alteration | Au | Ag | As | Ba | Cu | Pb | Sb | 2 n |
| 38.2 | Same as above. |  | SD1-24 | 34.00 | 35.3 | mnr py, qtz st | 44 | 0.9 |  | 58 | 112 | 20 | 6 | 220 |
|  |  |  | SD1-25 | 35.06 | 36.0 | py blebs, qtz st | 2 | 0.9 | 22 | 72 | 110 | 25 | 8 | 181 |
|  |  |  | SD1-26 | 36.00 | 37.8 | PY blebs, qtz st | 1 | 1.1 | 21 | 76 | 86 | 17 | 3 | 109 |
|  |  |  | SDI-27 | 37.00 | 38.0 | py blebs, qtz st | 1 | 0.8 | 4 | 92 | 69 | 18 | 3 | 108 |
|  |  |  | SD1-28 | 38.60 | 39.0 | mar py,qtz | 1 | 0.5 | 9 | 78 | 1 | 36 | 1 | 45 |
|  | Graphitic schist same as above. <br> Light gy tuffaceous andesite. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 39.1 |  |  | SD1-29 | 39.90 | 40.0 | min py , gt | 2 | 0.7 | 10 | 90 | 9 | 39 | 2 | 44 |
|  |  |  |  |  |  | unx py, qu |  |  |  |  |  |  |  | 44 |
| 39.66 | Graphitic schist as above. Light gy tuffaceous andesite. | 65 laminae | SDI-30 | 40.90 | 41.0 | mnr py, gtz | 4 | 1.6 | 5 | 165 | 51 | 32 | 3 | 70 |
| $40.55$ <br> 41.8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Graphitic schist as above. <br> Qtz vein $w$ py and po along fractures. | 90 top cont | SD1-31 | 41.90 | 41.75 | $<38$ dis'm py. | 2 | 1.2 | 16 | 71 | 88 | 27 | 2 | 77 |
| 42.2 |  | 50 | SDI-32 | 41.75 | 42.25 | < 5\% py \& tr cpy | 20 | 2.4 | 25 | 31 | 65 | 24 | 4 | 47 |
|  | Interlayered light green tuff \& graphitic schist. |  | SDl-33 | 42.25 | 42.75 | $<6 \%$ dis'm PY. | 16 | 1.8 | 5 | 60 | 54 | 24 | 2 | 76 |
| 42.75 | Approx. $8 \%$ gtz. v'lets |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 46.4 | Graphitic schist as above |  | SDl-34 | 45.85 | 46.85 | (4\% py blebs ( $<1 \mathrm{~cm}$ ) | 1 | 0.8 | 7 | 78 | 43 | 9 | 1 | 84 |
|  | Decomposed shear zone w py | var. |  |  |  |  |  |  |  |  |  |  |  |  |
| 47.85 | along arg. laminations. |  | SD1-35 | 46.85 47.85 | 47.85 48.85 | Py along shear <br> <5\% py assoc. w | 20 2 | 1.9 1.6 | 7 | 69 77 | 97 90 | 13 | 1 | 58 124 |
| 49.9 | Graphitic schist as above. | 90 lam | SD1-37 | 48.85 | 49.95 | qtz stringers ${ }_{\text {mar py assoc. }}$ | 2 | 1.2 | 26 | 71 | 108 | 20 | 1 | 122 |
| 50.9 | Light gr, tuffaceous volcs <br> w barren gtz stringers. |  | SD1-37 | 48.85 | 49.95 | siliceous veinlets | 2 | 1.2 | 26 | 71 | 108 | 20 | 1 |  |
|  |  |  | SDI-38 | 49.95 | 51.35 | tr. py | 3 | 1.1 | 42 | 88 | 97 | 15 | 1 | 83 |

PROJECT : 88-BC-952
DRILL HOLE LOG NO. 88-SDD-3B1
Sheet 4 of 6

| Depth | Description | Tectonic \% <br> C/A struct.Rec | $\begin{gathered} \text { Sample } \\ \text { no. } \end{gathered}$ | Erom | To | Mineralization \& Altoration | $\begin{gathered} (p p b) \\ A u \end{gathered}$ | $\begin{gathered} A S S A \\ A G \end{gathered}$ | $\begin{aligned} & \text { AY } \\ & \text { As } \end{aligned}$ | $\begin{gathered} \text { SUL } \\ \mathrm{Ba} \end{gathered}$ | $5-$ | pon Pb | Sb | 2 n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 52.0 | Same as above. Graphitic schist intercalated w tuff. 10\% qtz stringers. Shear. |  | SDI-39 | 51.35 52.35 | $\begin{aligned} & 52.35 \\ & 53.35 \end{aligned}$ |  | 1 2 | 1.2 1.2 | 38 13 | 114 91 | 78 | 11 20 | 1 | 76 72 |
| 52.5 | Graphitic interval which represents a shear zone. | 50 top cont |  |  |  |  |  |  |  |  |  |  |  |  |
| 52.9 | Graphitic, tr py in arg. laminae of variable $\mathrm{C} / \mathrm{A}$. | 90 lam |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Interlam. tuff/graphite. |  | SD1-41 | 53.35 | 54.35 | Py in arg lam | 1 | 1.4 | 12 | 68 | 72 | I 1 | 1 | 86 |
|  | Mineraliz contained within |  | SDI-42 | 54.35 | 55.78 | Abun cubic py | 1 | 1.2 | 31 | 73 | 57 | 18 | 1 | 53 |
| 57.8 | arg laminae, bcc py blebs/ cubes < 2 mm . |  | SDI-44 | 55.78 | 57.26 | Abun cubic py | 1 | 0.8 | 23 | 69 | 37 | 19 | 1 | 66 |
|  | Blk/light gy graphitic unit |  | SD1-45 | 57.20 | 58.70 | Abun cubic py occ |  |  |  |  |  |  |  |  |
|  | occasional gtz stringers w |  | SDI-47 | 58.79 | 69.23 | Py/coy? stringers | 1 | 1.6 | 29 | 69 | 87 | 14 | 1 | 107 |
| 61.2 | Dy. |  | SDI-48 | 60.20 | 61.20 | mnr py | 1 | 1.2 | 7 | 60 | 48 | 10 | 1 | 366 |
| 61.7 | Decomposed, shear zone | $2015 \cdot c o n t$ | SD1-49 | 61.29 | 61.76 | abundant py | 1 | 1.3 | 1 | 53 | 57 | 15 | 1 | 264 |
|  | occasional gtz stringers w |  | SD1-43 | 66.50 | 67.50 |  | 28 | 1.3 | 12 | 50 | 25 | 14 | 1 | 403 |
| 68.0 | PY. | 80 top con | SD1-56 | 67.75 | 69.50 | decomposed mnr gtz,py | 1 | 2.0 | 7 | 73 | 33 | 22 | 2 | 343 |
| 68.4 | Qtz vein plus graphitic lam | 20 bot con |  |  |  | Py blebs $\leq .5 \mathrm{~cm}$ |  |  |  |  |  |  |  |  |
|  | Same as above. V. fine bik graphitic unit. Rare gtz | 85-90 bdd | SDI-51 | 79.75 | 71.75 | abun dis py Eine dis py | 2 | 1.1 | 6 | 66 | 73 | 25 | 1 | 513 |
| 80.0 | stringers. |  | SDI-52 | 78.62 | 80.12 | silic,mor py | 1 | 1.0 | 1 | 73 | 26 | 16 | 2 | 292 |
|  |  |  | SDI-46 | 80.25 | 81.25 |  | 26 | 1.0 | 4 | 99 | 34 | 21 | 1 | 402 |
|  | Brecciated zone, gtz matrix angular <lcm blk graphitic |  | SDI-53 | 81.25 | 83.50 | $\begin{aligned} & \text { siliceous,mnz } \\ & \text { py(50\%C.R.) } \end{aligned}$ | 3 | 0.8 | 9 | 164 | $\stackrel{4}{4}$ | 24 | 1 | 366 |
| 81.7 | fragments. |  |  |  |  | $\left\{\begin{array}{l} \text { Tr. py blebs } \\ <3 \text { mm. } \end{array}\right.$ |  |  |  |  |  |  |  |  |

PROJECT : 88-BC-G52
DRILL HOLE LOG NO. 88-SDD-09I
Sheet 5 of 5


PROJECT : 88-BC-352
DRILL HOLE LOG NO. 88-SDD-GO1
Sheet 6 of 6


## DRILL HOLE LOG SUMMARY

Comments:


| Scale of Summary $\log$ | $1: 500$ |
| :--- | :--- |

DRILE HOLE LOG NO. 88-SDD-0G2
Sheet 1 of 2


PROJECT : 88-BC-652
DRILE HOLE LOG NO. 88-SDD-6g2
Sheet 2 of 2

|  | Description | C/A struct | ? Rec | $\begin{gathered} \text { Sample } \\ \text { no. } \end{gathered}$ | From | To | $\begin{aligned} & \text { Mineralization } \\ & \sigma_{\sigma} \text { Alteration } \end{aligned}$ | (ppo) A |  | ASSAY RESULTS - ppm |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Depth |  |  |  |  |  |  |  | Au | Ag | jAs | \| ${ }^{\text {Ba }}$ | Cu | Pb | Sb | zn |
| 53.25 | Incompetent black graphitic unit. |  |  | SD2-16 | 52.25 | 53.25 | Minor py. | 2 | 1.0 | 4 | 70 | 56 | 12 | 1 | 441 |
|  | Laminated light grey graph- |  |  | SD2-17 | 53.25 | 54.25 | " | 2 | 0.8 | 6 | 54 | 33 | 15 | 1 | 186 |
|  | itic unit. Minor qtz vein- | 80 Bdg |  | SD2-18 | 54.25 | 55.25 | " | 1 | 1.0 | 9 | 46 | 48 | 17 | 1 | 372 |
| 57.06 | lets. |  |  | SD2-19 | 55.25 | 57.00 | " | 1 | 1.2 | 6 | 51 | 76 | 16 | 1 | 891 |
|  | End of Hole |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Comments:

| Company | Canova/Expeditor |
| :---: | :---: |
| Project No. | 88-8C-052 |
| Drill hole no. | 88-SDD-3 |
| Area/Township | Okanagan |
| Mining Division | Vernon |
| Claim Name | Skookum showing |
| N.T.S. | 82-L/6w |
| Grid Reference | Line 1195e/5300n |
| Angle/Orientation | $-45^{\circ} / 130^{\circ}$ |
| Length | 103 meters (339 feet) |
| Core size | $\begin{aligned} & 4118{ }^{4} \mathrm{RC} \\ & 50.6 \mathrm{~m} / \mathrm{NQ} \text { to } \mathrm{EOH} \end{aligned}$ |
| \% Recovery | 95\% |
| Depth to Bedrock | 0.4 meters |
| Lithology Fm Top | Graphitic schist |
| Lithology Fm Base | Graphitic schist |
| Date collared | December 7, 1988 |
| Date completed | December 13, 1988 |
| Dip Tests | $N / A$ |
| No. of Samples | 29RC / 20N2 |
| Sample interval | $1.5 \mathrm{RC} / 20 \mathrm{NQ}$ |
| Sample No's |  |
| Drilling Company | D.W. COATES |
| Logged by | J. Dahrouge/D.Collins |



| Scale of Summary log | $1: 1000$ |
| :--- | :--- |

PROJECT : 88-BC-g52
DRILE HOLE LOG NO. 88-SDD-®も3
Sheet 1 of 3


PROJECT : 88-BC-052
DRILL HOLE LOG NO. 88-SDD-903
Sheet 2 of 3



## APPENDIX VI

RC SAMPLE DESCRIPTIONS AND SAMPLE INTERVALS

| 88-SDD-001 | $140^{\circ} /-45^{\circ}$ | $\left(507^{\prime}\right) 154.5 \mathrm{~m}$ | L 975E; | 5015N | 88 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 88-S D D-002 \\ \text { SDD-002 } \end{array}$ | $\begin{gathered} 140^{\circ} /-60^{\circ} \\ \text { combined hole } \end{gathered}$ | $\begin{aligned} & \left(76^{\prime}\right) 23.2 \mathrm{~m}(\mathrm{RC}) \\ & \left(106^{\prime}\right) 32.3 \mathrm{~m}(\mathrm{DD}) \end{aligned}$ | L1080E; | 4975N | 14 19 |
| 88-SDD-003 | $\begin{gathered} 130^{\circ} /-45^{\circ} \\ \text { Combined hole } \end{gathered}$ | $\begin{aligned} & \left(164^{\prime}\right) 49.98 \mathrm{~m}(\mathrm{RC}) \\ & \left(174^{\prime}\right) 53.03 \mathrm{~m}(\mathrm{DD}) \end{aligned}$ | L1195E; | 5300 N | 29 20 |
| 88-SRC-001 | $140^{\circ} /-45^{\circ}$ | (446')135.93m | L1050E; | 5095N | 91 |
| 88-SRC-002 | $140^{\circ} /-45^{\circ}$ | $\left(446^{\prime}\right) 135.93 \mathrm{~m}$ | L1160E; | 5155N | 87 |
| 88-SRC-004 | $150^{\circ} /-45^{\circ}$ | (426 ${ }^{1}$ ) 129.84 m | L 997E; | 5055N | 83 |
| 88-SRC-005 | $270^{\circ} /-45^{\circ}$ | (136') 41.45m | L1005E; | 5000 N | 24 |
|  | TOTAL DIAMOND | DRILLED 239.84 | Meters | (787 feet) |  |
|  | TOTAL ROTARY | DRILLED 516.38 | Meters | (1694 feet) |  |
|  | TOTAL NUMBER | OF SAMPLES 455 |  |  |  |

Date Start: Dec. 4/88 Hole:88-SDD-002
Date Finish: Dec. 5/88 Total Length: 55.47 m


Date Start: Dec. 7/88 Date Finish: Dec. 13/88

| SAMPLE | INTERVAL From | ${\underset{T O}{(M)}}^{(1)}$ | WIDTH <br> (M) |
| :---: | :---: | :---: | :---: |
| 1989 A | 6.40 | 7.92 | 1.52 |
| 1990 A | 7.92 | 9.45 | 1.52 |
| 1991 A | 9.45 | 10.97 | 1.52 |
| 1992 A | 10.97 | 12.50 | 1.52 |
| 1993 A | 12.50 | 14.02 | 1.52 |
| 1994 A | 14.02 | 15.54 | 1.52 |
| 1995 A | 15.54 | 17.07 | 1.52 |
| 1996 A | 17.07 | 18.59 | 1.52 |
| 1997 A | 18.59 | 20.12 | 1.52 |
| 1998 A | 20.12 | 21.64 | 1.52 |
| 1999 A | 21.64 | 23.16 | 1. 52 |
| 2000 A | 23.16 | 24.69 | 1.52 |
| 45001A | 24.69 | 26.21 | 1.52 |
| 45002A | 26.21 | 27.74 | 1. 52 |
| 45003A | 27.74 | 29.26 | 1.52 |
| 45004A | 29.26 | 30.78 | 1.52 |
| 45005A | 30.78 | 32.31 | 1.52 |
| 45006A | 32.31 | 33.83 | 1. 52 |
| 45007A | 33.83 | 35.36 | 1. 52 |
| 45008A | 35.36 | 36.88 | 1. 52 |
| 45009A | 36.88 | 38.40 | 1. 52 |
| 45010A | 38.40 | 39.93 | 1.52 |
| 45011 A | 39.93 | 41.45 | 1.52 |
| 45012A | 41.45 | 42.97 | 1.52 |
| 45013A | 42.97 | 44.50 | 1. 52 |
| 45014 A | 44.50 | 46.02 | 1.52 |
| 45015A | 46.02 | 47.55 | 1.52 |
| 45016A | 47.55 | 49.07 | 1.52 |
| 45017A | 49.07 | 50.61 | 1.54 |

Hole: 88-SDD-003
Total Length: 103.01 m
DESCRIPTION
Graph/arg $b l k / L \mathrm{gr}, \mathrm{m} / \mathrm{c} \mathrm{gd},<3 \% \mathrm{qtz},<1 \% \mathrm{py}$
Graph/arg blk/ gr,m/c gd, $3 \% \mathrm{qtz}, 2 \% \mathrm{py} / \mathrm{po}$
Graph/arg L gy, f/c gd, <3\% qtz,<1\% py
Graph/arg L gy, f/c gd, <3\% qtz, <1\% py
Graph/arg L gy, f gd
Graph/arg $L$ gy, f/c gd
Graph/arg L gy, f/c gd
Graph/arg L/dk gy, f/m gd, mnr qtz
Graph/arg L/dk gy, f/m gd
Graph blk, f gd, <4\% py
Graph blk, f/m gd, $<2 \%$ qtz
Graph blk, f gd, $<2$ q qtz
Graph blk/dk gy, f gd, <2\% py, mnr qtz
Graph blk, f/c gd, <2\% qtz, <4\% py
Graph blk, f gd, $<6 \% \mathrm{py}$
Graph blk, f gd, <4\% py
Graph blk, f gd, $<4 \%$ py
Graph blk, f gd, <3\% py
Graph blk, f gd, <1\% qtz, <4\% py
Graph blk, f gd
Graph blk, f/m gd, <3\% py
Graph blk/dk gy, f gd, <6\% py
Graph blk/dk gy, f gd, <4\% py, mnr qtz
Graph dk gy, f/c gd, <4\% py, mnr qtz
Graph dk gY, f/c gd, <3\% py, mnr qtz
Graph L gy, f/m gd, <3\% py, <3\% qtz
Graph L gy, f gd
Graph blk/dk br, f/c gd, <3\% py
Graph L to $d k$ gy, f/c gd

Date start: Dec. 3/88 Date Finish: Dec. 4/88

| SAMPLE | \# | INTERVAL From | $\begin{gathered} (\mathrm{M}) \\ \mathrm{TO} \end{gathered}$ | WIDTH <br> (M) |
| :---: | :---: | :---: | :---: | :---: |
| 14525 | A | 2.13 | 3.05 | 0.91 |
| 14526 | A | 3.05 | 3.96 | 0.91 |
| 14527 | A | 3.96 | 4.88 | 0.91 |
| 14528 | A | 4.88 | 5.79 | 0.91 |
| 14529 | A | 5.79 | 6.71 | 0.91 |
| 14530 | A | 6.71 | 7.62 | 0.91 |
| 14531 | A | 7.62 | 8.53 | 0.91 |
| 14532 | A | 8.53 | 9.45 | 0.91 |
| 14533 | A | 9.45 | 10.36 | 0.91 |
| 14534 | A | 10.36 | 11.28 | 0.91 |
| 14535 | A | 11.28 | 12.19 | 0.91 |
| 14536 | A | 12.19 | 14.02 | 1.83 |
| 14537 | A | 14.02 | 15.54 | 1.52 |
|  | NS | 15.54 | 17.07 | 1.52 |
| 14538 | A | 17.07 | 18.59 | 1.52 |
| 14539 | A | 18.59 | 20.12 | 1.52 |
| 14540 | A | 20.12 | 21.64 | 1.52 |
| 14541 | A | 21.64 | 23.16 | 1.52 |
| 14542 | A | 23.16 | 24.69 | 1.52 |
| 14543 | A | 24.69 | 26.21 | 1.52 |
| 14544 | A | 26.21 | 27.74 | 1.52 |
| 14545 | A | 27.74 | 29.26 | 1.52 |
| 14546 | A | 29.26 | 30.78 | 1.52 |
| 14547 | A | 30.78 | 32.31 | 1.52 |
| 14548 | A | 32.31 | 33.83 | 1.52 |
| 14549 | A | 33.83 | 35.36 | 1.52 |
| 14550 | A | 35.36 | 36.88 | 1.52 |
| 14551 | A | 36.88 | 38.40 | 1.52 |
| 14552 | A | 38.40 | 39.93 | 1.52 |
| 14553 | A | 39.93 | 41.45 | 1.52 |
| 14554 | A | 41.45 | 42.97 | 1.52 |
| 14555 | A | 42.97 | 44.50 | 1.52 |
| 14556 | A | 44.50 | 46.02 | 1.52 |
| 14557 | A | 46.02 | 47.55 | 1.52 |
| 14558 | A | 47.55 | 49.07 | 1.52 |
| 14559 | A | 49.07 | 50.59 | 1.52 |
| 14560 | A | 50.59 | 52.12 | 1.52 |
| 14561 | A | 52.12 | 53.64 | 1.52 |
| 14562 | A | 53.64 | 55.17 | 1.52 |
| 14563 | A | 55.17 | 56.69 | 1.52 |
| 14564 | A | 56.69 | 58.21 | 1.52 |
| 14565 | A | 58.21 | 59.74 | 1.52 |
| 14566 | A | 59.74 | 61.26 | 1.52 |
| 14567 | A | 61.26 | 62.79 | 1.52 |
| 14568 | A | 62.79 | 64.31 | 1.52 |
| 14569 | A | 64.31 | 65.83 | 1.52 |
| 14570 | A | 65.83 | 67.36 | 1.52 |
| 14571 | A | 67.36 | 68.88 | 1.52 |

Hole: 88-SRC-001
Total Length: 135.93 m

## DESCRIPTION

Andes. L. br, med grained Andes/Arg. L. br/gy Arg/grap/tuff, L. gy, med f.grained Arg/grap/tuff, L.gy, f.grained Arg/grap/tuff, L.gY, f.grained Arg/grap/tuff, L.gy, f.grained Arg/grap/tuff, L.gy, v f.grained Arg/grap/tuff, L.gy, f.grained Arg/grap/tuff, L.gy, f.grained Arg/grap/tuff, L.gY, f.grained

Grap/minor tuff, L.gy f.grained
Grap/minor tuff, L.gy f.grained
Grap/minor tuff,L.gy f.grained
Grap/minor tuff,L.gy f.grained
Grap/minor tuff,L.gy f.grained
Grap white/gy minor qtz f.grained
Grap. dk gy minor py/po
Grap. dk gy minor py/po/qtz
Grap. dk gy minor qtz $\mathrm{f} / \mathrm{m}$ grained
Grap. dk gy abundant po f "
Grap. blk/dk gy minor py " "
Grap. blk/dk gy minor py " "
Grap. blk/dk gy minor py/qtz ${ }^{\prime}$
Grap. blk/dk gy minor py f grained
Grap. blk/dk gy minor py " "
$\begin{array}{ll}\text { Grap. med gy minor qtz/py } \\ \text { Grap. med gy minor py } & "\end{array}$
Grap. blk minor py $f$ grained
Grap. L. gY minor py f grained
Grap. blk minor py/qtz $\mathrm{f} / \mathrm{m}$ grained
Grap. blk minor py/qtz f/m grained
Grap. blk minor py/qtz f grained
Grap. med gy minor qtz $f$ grained
Grap. blk minor py/qtz f/m grained
Grap. blk minor py/qtz $\mathrm{f} / \mathrm{m}$ grained
Grap. blk minor py $f$ grained
Grap. blk/dk gy minor py " "
Grap. L. gy minor qtz f grained
Grap. L. gy minor qtz $f$ grained
Grap. L. gy minor qtz/py f grained
Grap. L. gy minor qtz/py $f$ grained


Date Start: Dec. 5/88 Date Finish: Dec. 6/88

| SAMPLE | \# | INTERVAL | (M) |
| :--- | :--- | :--- | :--- | WIDTH

Hole: 88-SRC-002
Total Length: 135.93 m

## DESCRIPTION

Casing
Arg/grap br/L.gy f/c grained, py
Arg br f/c grained (gd)
Grap. L. gy f/c grained
Grap. L. gy f/c grained, qtz
Grap. L. gy f grained
Grap. dk gY f/c grained, tr qtz
Graph/Arg blk/br,f/c gd, 4\% qtz, 2 告 py
Graph/Arg blk/br,f/c gd, 4\% qtz,2\% py/cpy?
Graph/Arg blk/br,f/m gd,4\% qtz,2\% py/cpy?
Graph blk, f/m gd,4\% qtz, 2\% py
Graph blk, f/m gd, $3 \% \mathrm{qtz}, 2 \% \mathrm{py}, \mathrm{po}, \mathrm{ntv} . \mathrm{Ag}$ ?
Graph blk, f gd, minor qtz,3\% py
Graph blk, $f / m$ gd, minor $q t z,<3 \%$ py
Graph blk, f gd, <4\% py
Graph blk, f gd, minor qtz/py
Graph blk, f gd, <4\% py
Graph blk, f gd, <2\% py
Graph blk, f gd, minor qtz/py
Graph blk, f gd, minor qtz/py
Graph blk, f gd, minor py
Graph blk, f gd, minor py
Graph blk, f gd, minor py
Graph blk, f gd, minor qtz, $<5 \%$ py
Graph blk, f/c gd, <3\% qtz, <3\% py
Graph blk, f/c gd, <3\% qtz, <3\% py
Graph blk, f/m gd, <3\% qtz, <3\% py
Graph blk, f/m gd, <3\% qtz, <3告 py
Graph/tuff? L gY, f/m gd, <3\% qtz, <3\% py
Graph/tuff? L gY, f/m gd, $<3 \% \mathrm{qtz},<3 \% \mathrm{py}$
Graph/tuff? L gy, f/c gd, $<4 \%$ qtz, $<3 \%$ py
Graph blk, f gd, <2\% py
Graph blk, f gd, <2\% py
Graph blk, f/c gd, <4\% qtz, $<4 \%$ py
Graph blk, f/c gd, <4\% qtz, <4\% py
Graph blk, f/c gd, <1\% qtz, <1\% py
Graph blk, f gd, <3\% py
Graph blk, f/c gd, <1\% qtz, <3\% py
Graph L gy, f/m gd, <4\% qtz, <8\% py
Graph L gy, f/m gd, <3\% qtz, $<6 \%$ py
Graph L gY, f/m gd, <4\% qtz, <8\% py
Graph L gy, f/m gd, <4\% qtz, <8\% py
Graph L gy, f/m gd, <4\% qtz, <8\% py
Graph L gy, f/m gd, <4\% qtz, $<8 \% \mathrm{py}$
Graph L gy, f/m gd, <4\% qtz, <4\% py
Graph L gy, f/m gd, <3\% qtz, $<3 \% \mathrm{py}$
Graph/arg L gy/br, f/c gd, <3\% qtz, <1\% py
Graph/arg L gy/br, f/c gd, <3\% qtz, <1\% py
Graph/arg L gy/br, f gd, $<3 \% \mathrm{qtz}$


Date Start: Dec. 13/88
Date Finish: Dec. 14/88

Hole: 88-SRC-004
Total Length: 129.84 m

| SAMPLE | INTERVAL From | $\begin{aligned} & \text { (M) } \\ & \text { TO } \end{aligned}$ | WIDTH <br> (M) | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 45200A | 78.02 | 79.55 | 1.52 | Graph blk, f gd, minor qtz/py |
| 45051A | 79.55 | 81.07 | 1.52 | Graph blk, f gd, minor qtz, $<2 \%$ py |
| 45052A | 81.07 | 82.60 | 1.52 | Graph blk, f gd, minor qtz, $<2 \%$ py |
| 45053A | 82.60 | 84.12 | 1.52 | Graph blk, f/c gd, minor qtz/py |
| 45054A | 84.12 | 85.64 | 1.52 | Graph blk, f/m gd, minor qtz/py |
| 45055A | 85.64 | 87.17 | 1.52 | Graph blk, f/m gd, minor py |
| 45056A | 87.17 | 88.69 | 1.52 | Graph blk, f gd, minor py |
| 45057A | 88.69 | 90.22 | 1.52 | Graph blk, f/c gd, minor py |
| 45058A | 90.22 | 91.74 | 1.52 | Graph blk, f/c gd, <4\% qtz, <3\% py |
| 45059A | 91.74 | 93.26 | 1.52 | Graph blk, f/m gd, <3\% py |
| 45060A | 93.26 | 94.79 | 1.52 | Graph dk gy/blk, f/c gd |
| 45061A | 94.79 | 96.31 | 1.52 | Graph dk gy/blk, f/c gd |
| 45062A | 96.31 | 97.84 | 1.52 | Graph blk, f/m gd, mnr qtz/py |
| 45063A | 97.84 | 99.36 | 1.52 | Graph blk, f/m gd, mnr qtz/py |
| 45064A | 99.36 | 100.88 | 1.52 | Graph blk, f/c gd |
| 45065A | 100.88 | 102.41 | 1.52 | Graph blk, f/c gd, mnr py |
| 45066A | 102.41 | 103.93 | 1.52 | Graph blk, f gd, mnr py |
| 45067A | 103.93 | 105.46 | 1.52 | Graph dk gy, f/m gd, mnr py |
| 45068A | 105.46 | 106.98 | 1.52 | Graph gy, f gd, <4\% py |
| 45069A | 106.98 | 108.50 | 1.52 | Graph dk gy, f gd, <2\% py |
| 45070A | 108.50 | 110.03 | 1.52 | Graph blk, f gd, <3\% py |
| 45071A | 110.03 | 111.55 | 1.52 | Graph dk gy, f gd, mnr qtz/<3\% py |
| 45072A | 111.55 | 113.08 | 1.52 | Graph dk gy, f gd, minr qtz/<3\% py |
| 45073A | 113.08 | 114.60 | 1.52 | Graph 1 gy, f gd, minor py |
| 45074A | 114.60 | 116.12 | 1.52 | Graph 1 gy, f gd, minor py |
| 45075A | 116.12 | 117.65 | 1.52 | Graph l gy, f gd, minor py |
| 45076A | 117.65 | 119.17 | 1.52 | Graph blk, f/m gd, mnr qtz/<3\% py |
| 45077A | 119.17 | 120.69 | 1.52 | Graph blk, f/m gd, mnr gtz/<3\% py |
| 45078A | 120.69 | 122.22 | 1.52 | Graph dk gy, f/c gd, mnr qtz/<4\% py |
| 45079A | 122.22 | 123.74 | 1.52 | Graph dk gy, f/c gd, mnr qtz/mnr pY |
| 45080A | 123.74 | 125.27 | 1.52 | Graph 1 gy, f/c gd |
| 45081A | 125.27 | 126.79 | 1.52 | Graph 1 gy, f/c gd |
| 45082A | 126.79 | 128.31 | 1.52 | Graph 1 gy, f/c gd, <3\% py |
| 45083A | 128.31 | 129.84 | 1.52 | Graph 1 gy, f/c gd, <3\% py |

Date Start: Dec. 14/88
Date Finish: Dec. 15/88

SAMPLE \# INTERVAL (M) | From |
| :---: |
| TO |
| FIDTH |
| (M) |

| 45092A | 4.57 | 6.71 | 2.13 | Graph blk, f/c gd, <10\% qtz/<10\% py/mnr gal/tetra(?) |
| :---: | :---: | :---: | :---: | :---: |
| 45084A | 6.71 | 7.92 | 1.22 | Graph blk, f/c gd, mar qtz/<3\% py |
| 45085A | 7.92 | 9.45 | 1.52 | Graph 1 gy, f/m gd, mnr qtz/<1\% pY |
| 45086A | 9.45 | 10.97 | 1.52 | Graph $1 \mathrm{gy}, \mathrm{f} / \mathrm{m} \mathrm{gd},<3 \% \mathrm{qtz} /<1 \% \mathrm{py}$ |
| 45087A | 10.97 | 12.50 | 1.52 | Graph blk, f/c gd, mnr qtz/<3\% py |
| 45088A | 12.50 | 14.02 | 1.52 | Graph blk, f gd, mmr qtz/<3\% py |
| 45089A | 14.02 | 15.54 | 1.52 | Graph blk, f gd, mnr qtz |
| 45090 A | 15.54 | 17.07 | 1.52 | Graph blk, f gd, mnr qtz/<mnr py |
| 45091A | 17.07 | 18.59 | 1.52 | Graph blk, f gd, mnr $\mathrm{qtz} /<\mathrm{mnr}$ pY |
| 45093A | 18.59 | 20.12 | 1.52 | Graph blk, f gd, mnr qtz/<mnr pY |
| 45094A | 20.12 | 21.64 | 1.52 | Graph dk gy, f gd, mnr py |
| 45095A | 21.64 | 23.16 | 1.52 | Graph dk gy, f gd, mnr py |
| 45096A | 23.16 | 24.69 | 1.52 | Graph dk gy, f gd, mnr py |
| 45097A | 24.69 | 26.21 | 1.52 | Graph blk, f gd, mnr py |
| 45098A | 26.21 | 27.74 | 1.52 | Graph dk gy, f gd, mnr py |
| 45099A | 27.74 | 29.26 | 1.52 | Graph dk gy, f gd, mnr py |
| 45100A | 29.26 | 30.78 | 1.52 | Graph dk gy, f gd, mnr qtz/mnr py |
| 45101A | 30.78 | 32.31 | 1.52 | Graph gy, f gd, <2\% py |
| 45102A | 32.31 | 33.83 | 1.52 | Graph gy, f gd, mnr qtz/mnr py |
| 45103A | 33.83 | 35.36 | 1.52 | Graph 1 gy,v f gd |
| 45104A | 35.36 | 36.88 | 1.52 | Graph 1 gy, f gd, $<2 \% \mathrm{qtz} /<5$ \% py |
| 45105A | 36.88 | 38.40 | 1.52 | Graph 1 gy, f ga, <2\% qtz/<5\% py |
| 45106A | 38.40 | 39.93 | 1.52 | Graph 1 gy, f gd, <5\% py |
| 45107A | 39.93 | 41.45 | 1.52 | Graph 1 gy, f ga, <7\% py |

Hole: 88-SRC-005
Total Length: 41.45 m
IDTH
(M)

## APPENDIX VII <br> STATEMENT OF COSTS

## STATEMENT OF COSTS

## EXPEDITOR RESOURCE GROUP IATD. <br> SKOOKUM PROPERTY <br> PROJECT 88 BCO 52

FIELD WORK PERIOD: November 28 - December 17,1988

## Eield Salaries

Denis Collins, Geologist
18 days $\Leftrightarrow \$ 400 /$ day $\$ 7,200.00$
Jody Dahrouge, Assistant
17 days @ $\$ 300 /$ day $5,100.00$
Mark Asleson, Assistant

1. day e $\$ 300 /$ day 300.00
J.p. Sorbara, Sr. Geologist

1 day @ $\$ 400 / \mathrm{day}$
400.00

Pierre Wilson, Technician
11 days a $\$ 150 /$ day 1.650 .00

## Project Expenses

Project Preparation
Mobilization/Demobilization
Freight
Work Permit
Supervision
3.000.00

2,996.00
533.20
500.00

2,550.00
Geochemistry
430 RC samples-sample preparation
@ $\$ 3.75 /$ sample $\$ 1,612.50$
4306 element ICP, geochem gold and silver e $\$ 14.75 /$ sample $6,342.50$
12 core samples-sample preparation ( $\$ 3.75 / \mathrm{sample}$
45.06

126 element ICP, gold and silver fire assay @ $\$ 2 \theta /$ sample
240.00

13 rush samples for 6 element ICP, gold and silver fire assay
( $\$ 35.63 /$ sample 463.19
Misc. Lab charges

## Drilling

Mob/Demob of Cat, Drill, Additional Drill Rods, core boxes $\$ 4,163.30$
Cat Work 66 hours \& $\$ 84.35 / \mathrm{hr}$
5,567.10 Diamond Driliing 787 Eeet a $\$ 29 / \mathrm{ft} 22,823.00$ Reverse Circulation

$$
1,694 \text { feet e } \$ 22.50 / \mathrm{ft} \frac{38,030.30}{70,583.70}
$$

Core shack and Splitter 18 days a $\$ 50 /$ day Truck Rental and Fuel 19 days @ \$130/day Domicile 37 man days @ $\$ 85 / \mathrm{man} /$ day
Field Equipment Rental 36 man days @ $\$ 35 / \mathrm{man} / \mathrm{day}$ Eield Supplies
Computer Rental 20 days $\$ 35 / d a y$
Covernent iling Government Filing


