OG NO:	228	RD.
ACTION:		

Geological FILE NO:

Geochemical, Geophysical

and Trenching

Assessment Report

.

on the

WHY 2 PROPERTY (WHY 2 Claim)

Whiteman Creek Area

Vernon Mining Division

GEOLOGICAL BRANCH ASSESSMENT REPORT

NTS: 82L/4E

Latitude: 50° 14.6' North

Longitude: 119° 37' West

Owner: Atlanta Gold Corporation

Operator: Atlanta Gold Corporation

Consultant: Discovery Consultants

Author: W.R. Gilmour

Date: June 2, 1989

TABLE OF CONTENTS

SUMMARY	Page	1
PROPERTY	Page	2
HISTORY	Page	2
LOCATION, TOPOGRAPHY, ACCESS	Page	3
GEOLOGY AND MINERALIZATION	Page	4
STREAM SEDIMENT SURVEY	Page	5
GEOCHEMICAL SOIL SURVEY	Page	7
VLF-EM SURVEY	Page	8
TRENCHING PROGRAM	Page	10
CONCLUSIONS	Page	12
STATEMENT OF COSTS	Page	13
STATEMENT OF QUALIFICATIONS	Page	15
APPENDIX 1 - STREAM SEDIMENT SURVEY RESULTS		

APPENDIX 2 - SOIL SURVEY RESULTS

.

- APPENDIX 3 ROCK SAMPLING RESULTS
- APPENDIX 4 TRENCH SAMPLING RESULTS
- APPENDIX 5 VLF-EM SURVEY RESULTS

LIST OF ILLUSTRATIONS

Figure		
A	Location map	
В	Property Index Map	1:50,000
1	Geology	1:5000
2	Stream Sediments - Heavy Minerals	1:5000
3	Soil Survey: Gold Values	1:5000
4	: Gold Anomaly Map	1:5000
5	: Silver Anomaly Map	1:5000
6	: Copper Anomaly Map	1:5000
7	: Iron Anomaly Map	1:5000
8	VLF-EM: Annapolis - Fraser Filtered Values	1:5000
9	VLF-EM: Hawaii - Fraser Filtered Values	1:5000
10	VLF-EM: Annapolis - F.F. Anomaly Map	1:5000
11	VLF-EM: Hawaii - F.F. Anomaly Map	1:5000
12	Trench Locations	1:5000
13-17	Trench Sampling	1:500

SUMMARY

The WHY 2 property consists of one 8-unit claim in the Whiteman Creek area of the Vernon Mining Division.

A program of geological mapping, geochemical and geophysical surveys, followed by trenching was carried out on the property. Gold anomalies were discovered in creeks and soils. In places VLF-EM conductors coincided with the soil anomalies. A preliminary program of trenching encountered anomalous but not economically significant gold values. Prospecting discovered gold values in narrow quartz veins. At present no drill targets have been delineated.

PROPERTY

The 20 unit WHY claim (record number 2048) was located by J.A. Hilton on October 5, 1985. The northerly 8 units were transferred to Quartz Creek Gold Mines (B.C.) Inc. in June, 1988, under a sale agreement. The WHY claim was then abandoned and relocated as the WHY 1 (12 units) and WHY 2 (8 units) claims. The WHY 2 claim (record number 2718), located on June 25, 1988, is the subject of this report. Under an agreement between Quartz Creek Gold Mines and Atlanta Gold Corporation (the operator) an exploration program was begun in July. The claim was then returned and released to J.A. Hilton and optioned directly to Atlanta Gold Corporation in September, 1988.

<u>HISTORY</u>

There is no record of any previous exploration on the property.

LOCATION, TOPOGRAPHY, ACCESS

The WHY 2 property is located in the Whiteman Creek area, 13 km west of Okanagan Lake and 25 km westerly from Vernon, B.C. (Figure A). The centre of the property is at 50° 14.6'N latitude and 119° 37'W longitude.

Elevations on the property range from 1460 m, at the northeast corner, to 1730 m in the northwest. The moderate to flat relief is characteristic of the Thompson Plateau.

Access to the area is via Westside Road, along Okanagan Lake, to Whiteman Main logging road (Figure B). Approximately 8.5 km up Whiteman Main, after crossing Whiteman Creek, the Maw Main logging road gives good access to the plateau east of the property. From a clear cut the property can be reached by an A.T.V. (all terrain vehicle) trail, a distance of 2.5 km to the south property boundary.

GEOLOGY AND MINERALIZATION

The rocks hosting the Brett gold zone (4 km to the west) are Tertiary pyroclastic and volcanic rocks, although a strong shear structure, with associated quartz veining, strongly influences the occurrence of gold mineralization. Commonly gold mineralization diffuses into altered and more porous rock units. Gold occurs in a similar setting in the Okanagan at the Dusty Mac, Vault and Rain properties.

Much of the WHY 2 property is till and clay covered, usually one to two metres thick, but probably significantly thicker in flat swampy areas.

The oldest rocks on the property are granitic rocks, chiefly of granodiorite composition, of Cretaceous or Jurassic age. Remnants of andesitic rocks (flows and/or dykes?) of probable early Tertiary age occur at the western boundary of the property. These rocks have been intruded by Eocene granites and syenites, along a contact approximating the south property boundary. This Eocene intrusion possibly post-dates the Brett mineralization.

In the area bordering the Brett property, quartz veins occur in granodiorite. The presence of andesitic volcanic rocks indicates that the veins are occurring near the base of the Tertiary. The veins, up to 25 cm wide, and surrounding wall rocks are anomalous in gold. One 25 cm wide vein ran 2490 ppb (0.07 o.p.t.) gold.

The geology and rock sampling locations are shown on Figure 1 and the results are appended (Appendix 3).

- 4 -

STREAM SEDIMENT SURVEY

A program of detail sampling of creek sediments for heavy minerals was carried out on the property. A total of 5 samples was collected, prepared and analysed as described below. Creek sediments were sieved in the field to -20 mesh size fraction, resulting in a sample averaging about 8 kg.

The samples were then shipped to C.F. Minerals Ltd. of Kelowna for heavy mineral separation. Numerous fractions were produced, varying in size, specific gravity and magnetic properties. The fraction chosen for analysis was the -150HN (-150 mesh, heavy - >3.2 specific gravity, non-magnetic) fraction. All remaining fractions were stored for either further analysis or microscopic examination. The selected samples were sent to Nuclear Activation Services Ltd. of Hamilton, Ontario, for analysis for As, Au, Ba, Co, Cr, Fe, Mo, Sb, Sc, Ta, Th, U, W, and La by neutron activation (INAA); for Ag, Cu, Pb, Zn by direct current plasma activation spectrometry (DCP); and for Hg by x-ray fluorescence (XRF).

The sample locations and gold values are shown on Figure 2. Regional background values are <1,000 ppb gold in the -150HN fraction, with anomalous values ranging up to 27,000 ppb gold on the property. As seen on Figure 2, the property is strongly anomalous in gold. A complete set of the results is appended (Appendix 1).

- 5 -

This 'gold only' geochemical signature in the -150HN fracture of stream sediments seems to reflect known gold mineralization on the property. Sampling of small quartz veins has indicated this same 'gold only' signature.

The use of heavy minerals generally gives much more reproducible results than silt samples and is a very effective method to measure the amount of gold in a large sample. The small size fraction (-150 mesh) has been demonstrated to best overcome the possible false anomalies due to placer effects.

GEOCHEMICAL SOIL SURVEY

A reconnaissance soil sampling survey on a 100 m X 100 m flagged, compass and topofil grid was carried out over most of property and an A.T.V. trail was cut to facilitate sample collection. Wherever possible the samples were collected from the 'B' horizon. All samples were collected in numbered kraft paper bags from an average depth of 15 cm. The samples were sent to Bondar-Clegg and Company for analysis. The -80 mesh fraction was analysed for gold by standard fire assay/atomic absorption methods and for Ag, As, Sb, Cu, Pb, Zn, Mo, Co, Bi and Fe by plasma emission spectroscopy following HNO₃-HCl extraction.

Certain areas of the property showed concentrations of anomalous values in gold. These areas were sampled in more detail on a 25 m X 25 m grid. A total of 1001 soil samples was collected.

The follow-up work confirmed most of the original anomalies. The gold values are plotted on Figure 3, and gold anomalies are displayed symbolically on Figure 4. Silver, copper and iron are displayed symbolically on Figures 5 through 7, respectively. These elements appear to have hydromorphic anomalies, concentrating as they do in wet areas. The gold anomalies appear to be generally exclusive of these other anomalies. The gold values can be erratic, which is not unusual in soil sampling. All the results are appended to this report (Appendix 2).

- 7 -

VLF-EM SURVEY

A VLF (very low frequency) method makes use of powerful, distant military radio transmitters. These transmitters induce electric currents in conductive bodies. The induced current produces secondary magnetic fields which can be detected by measuring deviations in the normal VLF fields. To maximize detection the direction to the transmitting station should be parallel to the strike of the conductor, although differences in direction of up to 45° still give very good responses. Klein and Lajoie summarize the interpretation of results as follows:

"The conductor is located at the inflection point marking the crossover from positive tilt to negative tilt, and maximum in field strength" (Klein and Lajoie, p 270).

They also state that the VLF method can detect "unwanted sources" such as swamp edges, creeks and topographic highs. Griffiths and King state that:

"VLF....has been found useful for mapping concealed boundaries between formations of contrasting resistivities rather than for the detection of localized conductors" (Griffiths and King, p 126).

On the WHY 2 property a detailed VLF EM survey was carried out over 17 km of flagged grid. The survey, which was run to look for faults or shears which might control gold mineralization, was restricted to areas of anomalous gold in soils. Readings were taken every 25 m along flagged lines spaced 25 m apart. The instrument was a Sabre model 27. Two transmitters were used in the survey; Hawaii, transmitting 23.4 Khz at an azimuth of approximately 215° and Annapolis, transmitting at 21.4 Khz at an

- 8 -

azimuth of approximately 110°. Two transmitting stations were used in order to better detect anomalies striking in different directions. Seattle was sometimes briefly substituted when Hawaii was off the air. The standard profile method of presenting dip angle data may be difficult to interpret. A filtering technique known as the Fraser Filter¹ has been applied to dip angle measurements from the orientation survey (dip angle measurements are listed in Appendix 5).

Fraser Filter values for Annapolis and Hawaii are shown on Figures 8 and 9 respectively. The values are displayed symbolically on Figures 10 & 11. The values commonly align to give the appearance of fair to good linear conductors.

The best conductor is northeast/southwest striking, 400 m long and appears to align itself with a creek drainage to the northeast. Figure 11 shows the conductor trending from 2025N/1150W to 2375N/900W.

¹ Reference: Fraser, D.C. 1969 Geophysics, v.34, pp 958-967.

- 9 -

TRENCHING PROGRAM

A back-hoe trenching program was implemented to test selected gold soil anomalies and/or VLF-EM conductors. A total of 5 trenches was dug with a Bobcat 76 Hydraulic Excavator. This equipment was selected because it is not expensive to operate and did not require the building of a road - the A.T.V. trail was used. The maximum depth of the trenches was about 2 m and the total length trenched was 380 m. Bedrock was reached in 2 of the trenches. Bedrock and till/clay exposures were chip sampled at 3 m intervals. The results are shown in plan and cross-section at 1:500 scale in Figures 13 to 17. The results are summarized below, with complete results in Appendix 4.

<u>Target</u>

<u>Results</u>

Irench 1:	925 ppb, 228 ppb Au in soils, VLF-EM conductor	no bedrock exposed, 1 till sample >100 ppb Au; 138 ppb
Trench 2:	182, 120, 107 Au in soils	no bedrock exposed 1 till sample >100 ppb Au; 251
Trench 3:	780, 120 Au in soils VLF-EM conductor	no bedrock exposed 3 till samples >100 ppb Au; 242, 121, 113
Trench 4:	588 Au in soils VLF-EM conductor	some granodiorite exposed, 6.0 m of altered, pyritic granodiorite ran 209 ppb Au 1 till sample >100 ppb Au; 379
Trench 5:	213, 165 Au in soils VLF-EM conductor	<pre>some granodiorite exposed, 3 till samples >100 ppb Au; 198, 178, 106</pre>

At some anomalous soil sites, profile sampling of the underlying till was done. The samples were treated as rock samples, that is, they were pulverized before analysis. The depths were measured from the base of the 'A' soil horizon. Shear zones are not likely to outcrop within 3 m of surface. However, profile sampling should detect an increase in gold with depth over a mineralized shear.

Commonly the near surface overburden rock samples (including the 'B' horizon) are not indicative of the soil values. This might mean that the gold is concentrated in the -80 mesh fraction and/or that gold is concentrated in the 'B' horizon.

CONCLUSIONS

- Strong heavy mineral gold anomalies occur in creeks draining the property.
- Anomalous gold values in soils tend to concentrate in a broad north-south zone over 1500 m long, straddling the baseline. Other smaller zones also occur.
- 3. Gold values generally appear to be higher in the 'B' horizon than in the till.
- Significant gold values do occur in small quartz veins with values up to 2490 ppb (0.07 o.p.t) gold over 25 cm.
- 5. These gold-bearing veins do not carry any elements which would be useful as pathfinder elements.
- 6. The best gold values obtained from bedrock in the trenches is 209 ppb over 6.0 m at the end of one segment of trench 4. These values are definitely anomalous but are not of economic significance.
- 7. The best values obtained from bedrock in the trenching program appear to be associated with the best VLF conductor.
- 8. No drill targets have been identified to date.

STATEMENT OF COSTS

1.	<pre>Professional Services W.R. Gilmour, Geologist supervision, report writin 11 days @ \$400/day F.L. Wynne, P. Eng. supervision 4.5 days @ \$450/day D. Duba, Geologist geological mapping 2.25 days @ \$320/day</pre>	đ	\$ 4400.00 2025.00 <u>720.00</u>	\$ 7145.00
2.	Field Personnel			
	Heavy Mineral sampling B. Carr Sept 14 1 day @ \$216/day R. Anctil Sept 14-15 1.5 days @ \$216/day	216.00 324.00	540.00	
	ATV trail building J. Beggs July 23-26, Aug 8,20 Nov 4-6 7.5 days @ \$192/day M. Beenen Aug 8	1440.00		
	.5 days @ \$160/day B. Deakin July 25-26, Nov 5-6 3.5 days @ \$160/day S. Maltby July 23-26, Aug 8 4.0 days @ \$216/day	80.00 560.00 <u>864.00</u>	2944.00	
	Soil sampling M. Beenen Aug 4-6 Sept 3-9 10 days @ \$160/day J. Beggs Aug 3-5 Sept 2-9	1600.00		
	10.5 days @ \$192/day R. Bennett Sept 1-7 7 days @ \$129/day	2016.00		
	B. Deakin Aug 4-8 Sept 2-9	1920.00		
	R. Herzig Aug 3,4 2 days @ \$160/day	320.00		
	S. Maltby Aug 4,6 2 days @ \$216/day	432.00	7184.00	
	Geophysics R. Anctil Sept 21,24-28 5 days @ \$216/day B. Carr Sept 13,15-16, 25-30	1080.00		
	5.5 days @ \$216/day B. Deakin Sept 25-30	1188.00		
	4 days @ \$160/day	640.00	2908.00	

	Trenching & sampling R. Anctil Oct 14-28,			
	Nov 3-6 17 days @ \$216/day	3672.00		
	M. Beenen Oct 22-28 7 days @ \$160/day	1120.00		
	R. Bennett Oct 17-28 9 days @ \$128/day	1152.00		
	B. Carr Oct 24	216 00		
	B. Deakin Oct 18-28	210.00		
	B. Ingelson Oct 18-19	1600.00		
	2 days @ \$160/day R. Patrick Oct 27	320.00		
	1 day @ \$216/day	216.00	8296.00	
	Prospecting			
	4 days @ \$280/day		1120.00	22992.00
3.	Office Personnel			
	Data Compilation		900.00	
	Secretarial		1300,00	3600.00
4.	Expenses			
	Backhoe Equipment rental/r Field Supplies	repair	6986.00 775.00	
	Transportation 4 x 4 truck	s	,	
	62 days @ \$40/day 10.800 km @ .30/km	2480.00 3240.00		
	Gas	<u>1150.00</u>	6870.00	
	Analysis Soil samples analysed for	~		
	Au + 10 element DCP	-		
	1001 @ \$16.10		16116.00	
	1001 & \$1.00		1001.00	
	Rock samples analysed for	2		
	148 @ \$16.10		2383.00	
	148 @ \$3.75		555.00	
	Shipping		375.00	
	Diffice, map printing, phot Data processing	cocopying	750.00 <u>600.00</u>	36411.00
		Tota	al	\$70148.00

STATEMENT OF QUALIFICATIONS

I, W.R. GILMOUR of 13511 Sumac Lane, Vernon, B.C., V1B 1A1, DO HEREBY CERTIFY that:

- 1. I am a consulting geologist in mineral exploration associated with Discovery Consultants, Vernon, B.C.
- 2. I have been practising my profession for 18 years.
- 3. I am a graduate of the University of British Columbia with a Bachelor of Science degree in geology.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. This report is based upon knowledge on the WHY 2 property gained from direct supervision of exploration work on the property.

When

W.R. Gilmour

Vernon, B.C. June 2, 1989

Appendix

<u>APPENDIX 1</u>

.

Heavy Mineral Analysis for -150HN Fraction

♦ - denotes < ♦ std = standard

Sample ID	-20 eesh	-150 HN	Au	Ag	As	Ba	Co	Cr	Cu	Fe	Kg	Mo	Pb	Sb	Sc	Ta	Th	U	W	In	La
	veight Kg	weight g∎	ppb	ppe	p₽∎	pp a	ppa	7	ppm	1	ppb	pp∎		pp∎	pp∎	p p∎	₽₽∎	pp∎	ppm	₽₽ #	pp∎
WHY-16	6.30	1.07	15000	8.0	3	1000	-100	-0.05	35	-5	21	5	6	1.7	40	30	110	54	90	38	380
WHY-17	8.10	0,55	27000	11.0	3	1500	-100	-0.05	t7	5	65	-5	4	2.0	70	50	150	80	100	21	710
WHY-18	6.10	Q.97	20000	2.0	1	1700	-100	0.06	17	-5	45	-5	6	i.1	70	40	140	74	90	15	620
WHY-19	5.10	3.76	12000	3.0	3	1000	-100	-0.05	15	5	150	-5	2	1.7	40	20	70	37	10	27	260
WHY-20	5.60	0.68	10000	4.0	2	1100	-100	0.05	36	5	26	-5	2	1.3	70	40	160	73	30	29	630
WHY-21	6.80	0.40	21000	5.0	2	2100	-100	0.09	10	9	13	-5	4	1.1	80	40	120	57	80	19	540
WHY-21A.(std)			840	-0.5	98	700	-100	-0.05	29	-5	210	-5	6	210.0	-10	-10	-10	3	20	92	30

APPENDIX 2

Soil Survey Results

			*******	*******		¥ - denotes <					
Sample ID	Au բթծ	Ag pp∎	As ppe	Bi pp n	Со рр∎	Сц рре	Fe X	Mo gp∎	₽Ŀ pp∎	Sb ppe	Zn pp e
L 2000N 0200H	12	-0.5	-5	-2	4	6	1.18	2	24	-5	48
L 2000N 0300N	35	-0.5	8	-2	6	9	1.55	2	30	-5	46
L 2000N 0400W	18	-0.5	7	-2	6	9	1.75	2	35	-5	59
£ 2000N 0500W	15	-0.5	6	-2	5	6	1.51	i	28	-5	49
1 2000N 0600W	22	-0.5	5	-2	4	8	1.49	1	33	-5	38
L 2000N 0700W	60	-0.5	-5	-2	3	4	1.16	1	22	-5	27
L 2000N 0800N	20	-0.5	8	-2	5	8	1.45	2	29	-5	4/
1 2000N 0900N	11	-0.5	-5	-2	3	4	0./4	-1	19	-5	23
L 2000M 1000W	19	0.5	6	-2	2	10	1.44	2	36	-5 F	30
L 2000N 1025N	-3	0.8	16	-2	3	8	1.12	1	6 5	-0	43
1 2000N 1030W	15	0.9	-0	-2	4	18	1.93	2	-3	-3	9/ E4
L 2000N 10/3W	0C *17	U.D	-0	-2	ວ ເ	11 C	1.02	1	~0 25	-5	4C 45
L 2000A 1100W	117	0.5	-J 12	-2	ل ۵	0	1.70	-1	2J -5	-J _5	4J 71
L 2000N 1125W	-5	-0.5	-5	-2	4 A	0 0	2.13	-1	-J -S	-J _5	05
L 2000N 1130W	25	-0.5	-5	-2	T A	, 11	2.19	-1	-5	-5	60
1 2000N 1200N	15	-V.J 1	-J S	-2	۲ د	25	2.02	-1 -1	-J 52	-J 26	45
L 2000N 1300N	1J 1	-0.5	-5	-2	3	23	1 03	1	22	-5	23
1 2000N 1400N	30	-0.5	-5	-2	5	6	1.23	2	29	-5	30
1 2000N 1500N	35	-0.5	-5	-2	4	7	1.33	2	32	-5	33
L 2000N 1600N	13	-0.5	6	-2	5	5	1.13	2	27	-Š	59
L 2000N 1700H	7	-0.5	- <u>5</u>	-2	4	5	1.19	1	27	-5	49
L 2000N 1800W	11	0.5	11	-2	8	22	2.42	3	51	16	49
L 2000N 1900W	10	-0.5	6	2	5	15	1.75	2	37	-5	38
L 2000N 1925H	6	-0.5	8	-2	6	12	2.99	2	15	-5	76
L 2000N 1950N	5	1.2	-5	-2	4	30	2.11	1	8	-5	44
L 2000N 1975W	-5	-0.5	12	-2	4	6	1.76	-1	-5	-5	45
L 2000N 2000N	54	-0.5	8	-2	4	7	1.22	2	33	-5	47
L 2000N 2025W	5	-0.5	-5	-2	5	7	1.71	-1	~5	~5	75
L 2000N 2050W	-5	-0.5	14	-2	4	7	1.64	-1	-5	-5	48
L 2000N 2100W	6	-0.5	-5	-2	5	6	1.13	2	26	-5	87
L 2025N 0850W	-5	0.7	-5	-2	5	7	1.86	-1	5	-5	54
L 2025N 0875N	-5	-0.5	19	-2	3	5	1.62	-1	-5	-5	46
L 2025N 0900W	-5	-0.5	7	-2	. 3	5	1.58	-1	-5	-5	61
L 2025N 0925W	6	0.8	-5	-2	8	25	3.00	-1	-5	-5	53
L 2025N 0950W	-5	-0.5	8	-2	4	4	1.58	-1	-5	-5	55
L 2025N 0975W	12	-0.5	24	-2	3	4	1.54	1	-5	-5	40
L 2025N 1000W	27	0.6	10	-2	2	6	1.02	-1	6	-5	22
L 2025N 1025N	-5	-0.5	9	-2	3	4	1.45	-1	-5	~5	56
L 2023K 1050W	30	-0.5	18	-2	4	5	1.82	-1	-5	-5	42
L 2023M 10/3W	64 (F	-0.5	8	-2	3	1	1.90	-1	-5	-5	48
E ZUZƏN IIVVW	10	-V.J -0 5	-3	-2	4	Ь	1.78	1	-5	-5 -	45
L 20238 11230 7 20250 11230	10	-0°0	נא _ד	-2	3	4	í,66	-1	b e	-3	59
E ZUZJM HIDUW	-0	-0.0	-2	-2	4	ь	1,03	-1	-5	-3	74

Sample ID	Au	Ag	As	Bi	Co	Cu	Fe	Mo	Ph	Sh	7.0
	obp	ppe	₽¢ a	¢p∎	ppe	op∎	7.	ppe	ppa	pp∎	ppe
L 2025N 1175W	-5	-0.5	-5	-2	4	5	1.91	·			 40
L 2025N 1200W	-5	-0.5	-5	-2	3	5	1.59	-1	-5	-J _5	17
L 2025N 1225W	-5	-0.5	28	-2	2	4	1.34	-1	-5	-5	20
L 2025N 1250W	12	0.5	-5	-2	2	5	0.93	-1	-5	-5	30
L 2025N 1425W	-5	-0,5	15	-2	1	3	1.00	-1	-5	-J -5	14
L 2025N 1425W	-5	-0.5	8	-2	2	5	1.55	-1	-5	-J -5	21
L 2025N 1450W	68	0.6	-5	-2	4	12	2.02	-1	-5	-5	20
L 2025N 1450W	5	0.5	23	-2	2	2	1.05	-1	-5	-5	27
L 2025N 1475W	21	-0.5	23	-2	3	5	1.69	-1	-5	-5	41
L 2025N 1475W	7	0.5	21	-2	1	2	0.60	-1	-5	-5	12
L 2025N 1500W	10	-0.5	11	-2	2	4	1.52	-1	-5	-5	13
L 2025N 1500W	-5	1.5	-5	-2	4	29	2.33	-1	3 7	-5	25
L 2025N 1525W	-5	-0.5	-5	-2	2	4	1.57	-1	-5	-5	20
L 2025N 1525W	-5	2.0	-5	-2	З	16	1.25	-t	-5	-5	12
L 2025N 1550W	-5	-0.5	-5	-2	3	6	1.70	-1	-5	-5	40
L 2025N 1550W	-5	1.0	-5	-2	4	9	1.39	-1	6	~5	25
L 2025N 1575W	28	-0.5	12	-2	3	4	1.51	-1	-5	-5	49
L 2025N 1575W	-5	0.6	-5	-2	3	4	1.50	-1	5	-5	30
Ł 2025N 1950W	-5	2.0	-5	-2	6	25	2.40	2	-5	-5	44
L 2025N 1975W	-5	0.6	-5	-2	5	25	2,49	3	-5	-5	50
L 2025N 2000W	20	0.7	17	-2	3	7	1.36	-1	-5	-5	32
L 2025N 2025W	475	0.6	6	-2	4	10	1.58	-1	7	-5	38
L 2025N 2050W	5	-0.5	6	-2	4	10	1.63	ĩ	-5	-5	40
L 2050N 0850W	Bt	-0.5	12	-2	3	4	1.39	-1	-5	-5	45
L 2050N 0875W	39	-0.5	17	-2	3	4	1.33	-1	~5	-5	41
L 2050N 0900W	248	-0.5	6	-2	3	5	1.45	-1	-5	-5	47
L 2050N 0925W	-5	1.1	-5	-2	8	18	2.19	-i	-5	-5	36
L 2050N 0950W	171	-0.5	14	-2	2	3	1.19	-1	-5	5	38
L 2050N 0975W	6	-0.5	19	-2	3	3	1.41	-1	-5	6	26
L 2050N 1000N	82	-0.5	18	-2	1	3	0.69	-1	5	-5	13
L 2050N 1025W	-5	0.6	-5	-2	5	24	2.16	1	9	-5	39
L 2050N 1050W	-5	0.6	1 B	-2	2	7	1.36	-1	~5	-5	25
L 2050N 1075W	-5	-0.5	10	-2	4	5	1.77	-1	-5	-5	43
L 2050N 1100W	96	-0.5	16	-2	3	4	1.51	-1	~5	-5	48
L 2050N 1125W	136	-0.5	-5	-2	3	5	1.63	-1	6	-5	45
L 2050N 1150W	21	0.6	20	-2	2	2	1.26	-1	-5	-5	35
L 2050N 1175W	-5	-0.5	8	-2	3	3	1.57	-i	-5	-5	34
L 2050N 1200W	56	-0.5	6	-2	3	4	1.52	-1	-5	-5	28
L 2050N 1225W	-5	-0.5	20	-2	2	4	1.07	-1	-5	-5	25
L 2050N 1250W	-5	0.6	B	-2	3	5	1.40	-1	-5	-5	43
E 2050N 1950W	15	0.7	-5	-2	5	16	2.40	-1	5	-5	S5
L 2050N 1975W	-5	0.6	-5	-2	б	14	1.98	-1	7	-5	35
L 2050N 2000W	9	-0.5	6	-2	4	5	1.50	-i	-5	-5	44
L 2050N 2025W	9	-0.5	6	-2	4	9	1.67	-1	-5	-5	45
L 2030N 2050W	30	-0.5	18	-2	3	19	1.82	-1	5	-5	41
L 20/5N 0850W	21	-0.5	24	-2	2	3	1.30	-1	-5	-5	29
C 2073N 0875W	6	-0.5	21	-2	2	3	1.37	-1	-5	-5	32
L 2075N 0900W	75	-0.5	14	-2	3	4	1.62	-1	-5	-5	39
L 20/5N 0925W	11	0.5	10	-2	2	3	1.27	-1	-5	-5	41
L 20/5N 0950W	297	-0.5	-5	-2	5	16	2.13	-1	-5	-5	43

-	Sample ID	Au	Ag	Ås	Bi	Co	Cu	۶e	No	የኔ	Sb	Zn
		ppb	ppe	ppe	pp∎	pp e	¢₽∎	1	pp∎	ppe	pp s	β ρ ∎
	2075N 0975N	24	· i.o		-7	B	22	2.35	2	-5	-5	
	L 2075N 1000W	55	-0.5	7	-2	3	4	1.60	-1	-5	-5	35
	L 2075N 1025N	42	-0.5	13	-2	3	5	1.90	-1	-5	-5	43
	L 2075N 1050W	21	-0.5	-5	-2	3	4	1.57	-1	-5	-5	47
	L 2075N 1075W	165	-0.5	24	-2	3	3	1.63	-1	~ 5	-5	38
	L 2075W 1100W	213	0.5	-5	-2	4	9	1,90	-i	5	-5	39
	L 2075N 1125W	60	0.5	9	-2	3	4	1.55	-1	-5	-5	27
	L 2075N 1150W	12	0.6	7	-2	3	5	1.86	-i	-5	-5	37
	L 2075N 1175W	9	-0.5	17	-2	3	4	1.37	-1	-5	-5	34
	L 2075N 1200W	9	-0.5	23	-2	3	4	1.31	-1	-5	-5	36
	L 2075N 1225W	588	-0.5	23	-2	3	4	1.70	-1	-5	-5	31
	L 2075N 1250W	9	-0.5	14	-2	3	3	1.60	-1	-5	-S	48
	L 2075N 1425W	9	-0.5	16	-2	2	3	1.25	-1	-5	-5	25
	L 2075N 1450W	105	0.9	10	-2	3	5	1.48	-1	-5	-5	27
	L 20/5N 14/5W	50	-0.5	20	-2	2	3	1.34	-1	-5	-5	30
	L 2075N 1500W	12	9.7	-5	-2	3	14	1.8/	-1		-5	29
	L 2073R 1323N	12		-0	-2	4 2	23 7	2.05	-1	2	-0	23
	L 2075N 1575H	3 4	0.8	-5	-2	ა ი	۲ د	1.50	-1	-J 2	-J _S	31 25
	L 2075N 1950W	27	0.6	17	-2	2	5	1 44	-1	-5	-J -S	24
	L 2075N 1975W	15	2.1	-5	-2	4	22	1 83	-1	ں ~2	J _5	77
	L 2075N 2000W	78	0.5	7	-2	3	5	1.34	-1	-5	-5	42
	L 2075N 2025W	9	-0.5	12	-2	3	6	1.47	-1	-5	~5	46
	L 2075N 2050W	51	-0.5	-5	-2	3	7	1.37	-1	5	-5	46
	L 2100N 0200W	19	-0.5	-5	-2	- 5	10	1.49	2	35	-5	52
	L 2100N 0300W	8	-0.5	-5	2	5	8	1.36	2	33	-5	44
	L 2100N 0400W	38	-0.5	-5	-2	5	7	1,35	2	31	-5	34
	L 2100N 0500W	8	-0.5	-5	-2	5	9	1.53	2	33	-5	28
	L 2100N 0600W	11	-0.5	6	-2	5	8	1.25	2	32	-5	51
	L 2100N 0700W	21	-0.5	-5	-2	3	4	0.93	1	23	-5	21
	L 2100N 0800W	24	~0.5	-5	-2	3	4	0.99	1	23	-5	31
	L 2100N 0850W	21	0.5	17	-2	3	5	1.51	-1	-5	-5	49
	L 2100N 0875W	15	-0.5	23	2	3	3	1.28	-1	~5	-5	35
	L 2100N 0900N	66	-0.5	-5	-2	4	5	1.58	2	28	-5	48
	L 2100N 0925W	15	-0.5	19	-2	3	5	1.01	-1	-5 -	-5 -	35
	L 2100M 0950W	у 5	-9.5	11	-2	3	10	1.39	-1	3 F	-3	29
	E 2100M 09/3W	-0	-0.5	ь _5	-2	3 5	4 +	1.74	~1	ວ າດ	-5 -5	40 A Q
	L 21000 10000	52	-0.5	-J 17	-2	2	4	1.44	-1	23 -5	-J -5	נוי גר
	E 2100N 1050H	6	· - 0 5	£1	-2	3	3	1.55	-1 -1	-5	-5	70 46
	1 2100W 1030W	27	-0.5	13	-7	3	3	1.34	-1	5	-5	48
	E 2100N 1100N	8	-0.5	-5	-2	3	4	0.82	1	22	-5	25
	1 2100N 1125W	6	-0.5	15	-2	3	3	1.49	-1	-~ ~5	-5	46
	L 2100N 1150W	12	-0.5	5	-2	3	3	1.60	-1	7	-5	82
	L 2100N 1175W	9	-0.5	18	-2	3	3	1.54	-1	-5	-5	49
	L 2100N 1200W	95	-0.5	-5	-2	5	7	1,33	2	31	-5	65
	L 2100N 1225W	-5	-0,5	12	-2	3	4	1.47	-1	-5	-5	49
	L 2100N 1250W	-5	-0.5	16	-2	3	3	1.30	-1	-5	-5	53
	L 2100N 1300W	36	-0.5	~5	-2	4	4	1.10	1	23	-5	35
	L 2100N 1400W	13	-0.5	7	-2	8	9	1.53	2	31	-5	43

-

Sample ID	Ац	Aq	As	Bi	Co	Eu	Fp	Mo	Рн	56	70
	ppp	ppa	₽₽∎	ppm	ppe	òb∎	X	ρρα	çç n	ρ9 6	20 0
1 2100N 1425W	 79		 ۱۵	-2	······································		1 27				
L 2100N 1450W	15	-0.5	23	-2	3 2	* 5	1.20	-1	-5	-3	37
L 2100N 1475W	9	-0.5	29	-2	2	ა ი	1.40	-1	ð 	-5	28
E 2100N 1500N	55	-0.5	-5	-2	3 A	J L	1.00	-1	-0	-5	29
L 2100N 1525W	6	1.3	13	-2	2	1.4	1.00	-1	27	-5	27
L 2100N 1550W	6	8.5	10	+2	2	14	1.01	-1	-3	-0	20
L 2100N 1575W	-5	-0.5	a a	-2	2	۳ د	1.00	-1	-3	-5	24
L 2100N 1600W	-5	-0.5	5	-2	5	4 0	1.50	-1	-0	-5	22
L 2100N 1700W	-5	-0.5	5	-2	6	2	1.30	2	31	-3 F	38
L 2100N 1800W	9	-0.5	ğ	-2	6	ں م	1.31	2	32	-0	45
L 2100N 1900W	6	-0.5	-5	-2	4	Ś	1 12	1	. 33	-J F	69
L 2100N 1950W	-5	-0.5	23	-7	3	5	1 50	-1	20	-0	40
L 2100N 1975H	6	0.6	10	-2	4	11	1.30	-1	-J e	-0	42
L 2100N 2000N	18	-0.5	-5	-2	4	11 G	1 14	-1	-0 20	-0	32
L 2100N 2025W	-5	-0.5	27	-2	2	5	1 22	-1	20 _C	-0	3Z 20
L 2100N 2050W	q	-0.5	21	-7	2	J 4	1.33	-1	-3	-0	33
L 2100N 2100W	-5	-0.5	6	-2	7	e e	1.52	-1	-0 20	-0	20
L 2125N 0850W	- 6	-0.5	21	-2	, 3	2	1 12	-1	-5	-0	70
L 2125N 0875W	15	0.6	28	-2	1	1	0.65	-1	-J -5	-J _5	12
L 2125N 0900W	-5	0.6	20	-2	-1	4	0.41	-1	-5	-5	20
L 2125N 0925W	12	0.7	-5	-2	5	12	1 59	-1	5	_J _S	20
L 2125N 0950W	9	0.6	23	-2	2	5	1.14	-1	-5	-J _5	70 00
L 2125N 0975W	9	-0.5	17	-2	3	ě	1.69	-1	-5	-J -S	30 70
1 2125N 1000W	78	-0.5	21	-2	3	5	1.53	-1	-5	-5	51
L 2125N 1025W	75	-0.5	19	-2	3	3	1.35	-1	-5	-5	69
L 2125N 1050W	6	-0.5	7	-2	3	4	1.56	-1	7	-5	67 67
L 2125N 1075W	6	-0.5	13	-2	3	4	1.52	-1	-5	-5	47
L 2125N 1100W	15	~0.5	27	-2	3	5	1,45	-1	7	-5	42
L 2125N 1125W	6	-0.5	10	-2	3	4	1.59	-1	-5	-5	39
L 2125N 1150W	60	-0.5	16	-2	3	7	1.61	-1	8	6	76
L 2125N 1175W	12	-0.5	22	-2	3	3	1.38	-1	6	-5	55
L 2125N 1200W	9	-0.5	28	-2	3	3	1.47	-1	-5	-5	63
L 2125N 1225W	9	-0.5	15	-2	3	3	1.79	-1	-5	-5	75
L 2125N 1250W	21	-0.5	14	~2	3	3	1.51	-1	8	-5	67
L 2125N 1425W	-5	-0.5	20	-2	2	2	1.33	-i	-5	-5	30
L 2125N 1450W	15	-0.5	19	-2	2	3	1.60	-1	-5	-5	36
L 2125N 1475W	-5	-0.5	14	-2	4	5	1.51	-1	7	-5	37
L 2125N 1500W	9	-0.5	27	-2	2	3	0.95	-1	5	-5	27
L 2125N 1525W	9	1.3	9	-2	4	12	2.04	-1	-5	-5	33
L 2125N 1550W	30	-0.5	17	-2	3	5	1.53	-1	-5	-5	26
L 2125N 1575W	9	0.8	20	-2	2	3	1.31	-1	6	-5	27
L 2125N 1600W	6	0.5	23	-2	2	3	1.03	-1	-5	-5	25
L 2125N 1625W	6	0.6	22	-2	3	5	1.47	- i	9	-5	33
L 2125N 1650W	9	0,6	15	-2	3	4	1.57	-1	-5	-5	36
L 2125N 1675W	33	0.6	14	-2	4	4	1.63	1	-5	-5	43
L 2150N 0350W	15	-0,5	24	-2	4	5	1.39	-1	-5	-5	34
L 2150N 0375W	6	-0.5	-5	-2	6	9	2.20	1	-5	-5	41
L 2150N 0400W	9	~0.5	11	-2	2	4	1.66	-1	-5	-5	24
L 2150N 0425W	30	-0.5	17	-2	3	14	1.51	-1	-5	-5	26
L 2150N 0450W	54	-0.5	-5	-2	3	5	1.68	-1	-5	-5	24

Sample ID	Au	Ag	As	Bi	Co	Cu	Fe	No	Pb	Sb	ln
	ppb	pp∎	ppa	рр∎	pp e	¢p∎	ĩ	pps	ppe	ppm	bb e
L 2150N 0475W		-0.5		-2	4	б	1. 92				
L 2150N 0500W	-5	-0.5	10	-2	4	6	1.72	-1	-5	-5	45
L 2150N 0525W	-5	-0,5	11	-2	4	6	1.65	-1	-5	-5	46
L 2150N 0550W	24	-0.5	21	-2	4	6	1.72	-1	-5	~5	46
L 2150N 0575W	6	-0.5	-5	-2	4	8	1.43	-1	-5	-5	47
L 2150N 0850W	12	2.7	-5	-2	8	22	2.84	-1	-5	-5	37
L 2150N 0875W	15	3.5	-5	-2	7	27	2,88	-1	-5	-5	43
L 2150N 0900W	20	2.3	-5	-2	3	14	1.00	-1	-5	-5	34
L 2150N 0925W	42	-0.5	16	-2	3	5	1.05	-1	-5	-5	20
L 2150N 0950W	24	-0.5	8	-2	4	7	1.91	-1	-5	-5	42
L 2150N 0975W	222	-0.5	22	-2	3	6	1.88	-1	-5	-5	52
 L 2150N 1000W 	15	-0.5	-5	-2	4	6	1.71	-1	-5	-5	76
L 2150N 1025W	12	-0.5	-5	-2	4	6	1.71	-1	-5	-5	100
L 2150N 1050W	9	-0.5	6	-2	4	5	1.71	-1	-5	-5	57
Ł 2150N 1075W	18	-0.5	-5	-2	4	7	1.94	-1	-5	-5	44
L 2150N 1100W	588	-0.5	19	-2	3	4	1.42	-1	-5	-5	42
L 2150N 1125W	12	-0.5	20	-2	3	4	1.31	-1	-5	-5	30
L 2150N 1150W	36	-0.5	-5	-2	6	18	2.76	-1	-5	-5	50
L 2150N 1175W	2001	-0.5	-5	-2	4	5	1.75	2	-5	-5	80
L 2150N 1200N	9	-0.5	-5	-2	4	7	1.89	-1	-5	-5	62
L 2150N 1225W	45	-0.5	13	-2	3	6	1.58	-1	6	-5	61
L 2150R 1250W	12	-0.5	8	-2	3	4	1.48	-1	-5	-5	45
L 2150N 1450W	-5	1.2	-5	-2	4	9	2.09	-1	-5	-5	40
L 2150N 1475W	-5	-0.5	5	-2	4	9	1.88	i	-5	-5	42
L 2150N 1500W	48	-0.5	18	-2	3	5	1.72	-1	-5	-5	40
L 2150N 1525W	9	1.3	-5	-2	6	34	3.07	2	-5	-5	44
L 2150N 1550W	15	-0.5	17	-2	2	4	1.15	-1	-5	-5	17
L 2150N 1575W	9	0.6	-5	-2	4	9	1.88	-1	-5	-5	31
E 2150N 1600W	-5	-0.5	-5	-2	4	8	1.99	-1	-5	-5	39
L ZIOVN 15ZOW 1 OKEAN 15EAN	5 F	-0.5	12	-2	3	5	1.33	-1	-5	-5	39
£ 2100N 1000W	-3	0.9	-0	-2	ь г	11	2.22	-1	-5	-5	61
E 2130N 1673W	12	~0.3	-0	-2	3	1	1.96	1	-5 -	-5	44
L 21308 13308	3V 10	0.0	13	-2	3		1.38	-1	-5	-5	32
E 2130N 1373N	10	1.7	0 14	-1	6 0	32 10	2.90	2	ь •	-2	40
1 2150N 2025N	-5	-0.5	14	-2	o A	43 6	1.40	2	9	-2	95 ()
L 2150N 2020N	-5	0.3	1/ G	-2	4 5	8	1.02	-1	-5	-3	53 50
1 21300 2030W	-5	0.7	נ	-2	נ ג	à	\$. []	-1	-0	-5	52
21750 03750	-5	0.3	24	-2	יי די	č Z	5 74	1	-3	-3	48
L 2175N 0400N	5 C	0.7	11	-2	А	10 10	1./1	-1	5	-0	30 25
1 2175N 0425N	22	0.6	10	-2	*	10	1.92	-1	-0	-5	33
L 2175N 0450N	-5	-0.5	12	-2	7	7	1.30	-1	+0 _5	-0	26
L 2175N 0475M	q	-05	10	-2	7 6) D	1.07	-1	-0	-0	30
L 2175N 05004	-5	a.0	-5	-2	7	D C	1.04	-1	-5	-0	44
2175N 0525N	5	-0.5	11	-2	7	0 7	1.72	-1	-J _5	-3	90
L 2175N 05504	30	0.7	14	-2	י כ	י ד	CO+1 k2 1	-1 -1	-3 _c	-0 _5	94 26
L 2175N 0575M	5	-0.5	13	∠ _?		Ĺ	1.34	-1 _1	-J _S	-0 _5	33 C1
L 2175N 0850W	-5	-0.5	14	-2	т २	5	1 22	- <u>,</u> _1	-J _5	-J _C	01 01
L 2175N 0875M	6	-0.5	15	-7	2	4	1.32	-1 _1	ר- ב	L- 2	3J 2A
L 2175N 0900W	-5	1.8	13	-2	2	13	0.98	-1	J K	-J -5	2V 20
	-			-	F	1.0	V • 30	1	0	J	20

Sample ID	Au	Ag	As	Bi	Co	Cu	Fe	Bo	Pb	56	70
	ppb	₽₽ ¤	ppæ	9pe	pp a	ppa	X	ppa	<u>pp</u>	99 e	pp∎
1 2175N 0925U		 ۸ 5			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 c					
L 2175N 09509	-5	0.J	- 3- 1 1	-2	<u>র</u>	3	1.04	-1	-5	-5	35
1 2175N 09758	5 5	0,0 A C	11	-2	4	9	I./8	-1	-5	-5	47
L 21758 10000	2	0.0	-5	-2	4	8	1.89	-1	-5	-5	53
L 2175N 1025W	24	-0.5	-J 14	-2	4	3	1.37	-1	-5	~5	57
L 2175N 1050W	54 54	0.3	-5	-2	ۍ ا	6	1.6/	-1	10	-5	50
L 2175N 1075N	33	0.0	12	-2	4	7	1.69	-1	6	-5	63
L 2175N 1100W	Q Q	0.7	11	-2	4 x	4	1.70	1	5	-5	51
1 2175N 1125N	12	-0.5	12	-2	4 2	6	1.33	-1	ь	~5	46
L 2175N 1150N	19	0.5	13 E	-2	ú n	5	1.32	-1	5	-5	31
L 2175N 1175M	24	0.0	20	-2	ა ი	2	1.40	-1	-5	-5	28
L 2175N 1200W	9	0.7	-5	-2	ა ლ	۲ ٦۲	1.33	-1	,~3 _	-3	24
1 2175N 1225H	17	-0.5	10	_2	3 2	1.1	2.25	-1	о г	-5	37
L 2175N 1250W	10	0.6	15	-2	2 7	4 5	1.40	-1	-5	-2	38
L 2175N 1450N	14	0.0	9	-2	ч С	נ	1.00	-1	~0	-0 -	37
1 21758 14759	-5	1 1	20	-2	о И	0	1.23	-1	, -	-2	29
L 2175N 1500M	52	0 9	10	-2	• •	9 5	1.73	-1	2	-5	31
L 2175N 1525H	-5	0.5	10	-2	у 2	С А	1.03	-1	-3	-5	41
1 2175N 1550N	-5	-0.5	-5	-2	2	** * 7	V.88	-1	5 5	-5	19
L 2175N 15759	-5	0.3	21	-2	4	10	1.70	-1	-3	-5	35
1 2175N 1600H	5	0.7	16	- <u>r</u>	7	0 7	1.74	-1	-0	-5	35
L 2175N 1625H	-5	-0.5	14	2	7	10	1.77	-1	-3	-3	41
L 2175N 1650W	-5	-0.5	6	-2	J d	u G	1.60	-1	-5	-0	46
L 2175N 16759	Š	-0.5	11	-2	۲ د	10	1.00	-1	0 F	-0	4(
E 2200N 0200W	8	-0.5	-5	-7	6	10	1.52	-1	-0	-0	62
L 2200N 0300H	28	-0.5	-5	-2	7	10	1.52	3	35	-3	32
L 2200N 0400M	29	-0.5	8	-2	5	12	1.07	2 3	46 28	-J 0	40
L 2200N 0425W	28	-0.5	7	-2	4	11	1 94	ن 1_	4J _C	0	28
L 2200N 0450W	13	-0.5	-5	-2	۲ د	Q V	1.97	-1 -1	-J -5	-J _5	44 45
L 2200N 0475W	54	-0.5	6 6	-2	4	7	1.81	-1	-5	-J -5	4J 47
L 2200N 0500W	728	-0.5	8	-2	5	8	1.36	2	25	-5	40
L 2200N 0525W	18	-0.5	10	-2	5	8	1.72	-1	5	-5	+⊽ 53
L 2200N 0550W	-5	-0.5	15	-2	4	7	1.74	-1	-5	-5	42
L 2200N 0575W	-5	-0.5	12	-2	5	, 7	1.79	-1	-5	-5	85
L 2200N 0600W	13	-0.5	8	-2	5	8	1.42	2	33	-5	76
L 2200N 0700W	13	-0.5	5	-2	5	7	1.36	2	27	-5	49
L 2200N 0850W	-5	-0.5	19	-2	3	5	1.45	-1	-5	-5	38
L 2200N 0B75W	7	-0.5	13	-2	4	Ġ	1,4B	-1	-5	-5	26
L 2200N 0300W	39	-0.5	-5	-2	3	4	1.03	1	20	-5	19
L 2200N 0925W	8	~0.5	14	-2	3	6	2.05	-1	-5	-5	49
L 2200N 0950W	28	-0.5	23	-2	4	8	2.05	-1	-5	-5	52
L 2200N 0975W	14	0.6	20	-2	5	11	1.94	-1	5	-5	76
L 2200N 1000W	37	-0.5	8	-2	5	8	1.38	2	32	-5	56
L 2200N 1000W	43	-0.5	7	-2	6	10	1.70	2	37	-5	81
L 2200N 1025W	-5	-0.5	-5	2	6	12	2.08	-1	-5	-5	58
L 2200N 1050W	-5	-0.5	18	-2	2	7	2.20	-1	9	-5	Б4
L 2200N 1075W	5	-0.5	20	-2	5	10	1.83	-1	7	-5	98
L 2200N 1100W	23	-0.5	5	-2	4	6	1.57	2	26	-5	41
L 2200N 1100W	9	-0.5	9	-2	4	10	1,72	-1	6	-5	65
L 2200N 1125W	65	-0.5	5	-2	4	8	1.6B	-1	-5	-5	51
						-			~ ~	1	

Sample ID	Au	Ag	As	Bi	Co	Cu	Fe	No	ዖኔ	Sb	ไก
***************	ppə	₽ ₽ ₽	pp n	рря 	ррњ 	90 0	۲ 	рр е 	рр я	рра 	pþ e
L 2200N 1150W	20	-0.5	10	-2	2	5	1.62	-1	7	-5	36
L 2200N 1175W	· -5	-0.5	12	-2	4	7	1.58	-i	-5	-5	47
L 2200N 1200N	58	-0.5	-5	-2	3	4	0.85	1	22	-5	23
L 2200N 1200W	-5	-0.5	8	-2	3	5	1.52	-1	6	-5	34
L 2200N 1225W	5	-0.5	18	-2	3	7	1.35	-1	~5	-5	35
L 2200N 1250H	60	-0.5	14	-2	3	6	1.77	-1	-5	-5	47
L 2200N 1300W	11	-0.5	-5	-2	2	2	0.59	1	16	-5	14
L 2200N 1400W	[4 E	-0.5	-5	-2	3	5	0.86	1	21	-5	20
L 2200N 1400N	-3	0.7	9	-2	2	/	1.25	-1	-5	-5	34
1 2200N 1473W	8 16	0.8 0.5	У Г	-2	ა ი	5	1.66	-1	-5	-5	44
L 22008 13004	10	-0.0	-J -5	-2	ა ე	24	1.34	1	27	-0	34
L 2200N 1323N 1 2200N 1550H	o _ج	0.0	-0 7	-2	3	24	1.9/	-1	-5	-3	Z3
L 2200N 1530W	-J 47	-0.5	10	-2	4	5	1.0/	-1		-0	36
L 2200N 1500W	59	-0.5	10 Q	-2	1 5	۵ ۲	1.70	-1	-3 20	-J -5	92
L 2200N 1625H	-5	0.7	21	-2	4	10	2.05	-1	20	-J -5	50
2200N 1550H	294	0.7	-5	-2	4	6	1.64	-1	ג ק	-5	53
L 2200N 1675W	-5	-0.5	Ā	-2	5	11	1.97	1	5	-5	85
L 2200N 1700W	9	-0.5	10	-2	6	, i	1.50	2	28	-5	58
L 2200N 1800W	7	-0.5	5	-2	5	6	1.24	1	27	-5	70
L 2200N 1900W	14	-0.5	6	-2	6	B	1.50	2	29	~5	54
L 2200N 2000W	12	-0.5	8	-2	6	12	1.64	2	28	-5	52
L 2200N 2025W	5	-0.5	-5	-2	5	11	1.94	-1	-5	-5	54
L 2200N 2050W	7	-0.5	-5	-2	4	9	1.73	-1	-5	-5	44
L 2200N 2100W	70	-0.5	10	-2	6	B	1.63	2	29	-5	67
L 2225N 0425W	8	0.5	13	-2	3	6	1.38	-1	-5	-5	29
L 2225N 0450W	18	-0.5	10	-2	4	8	1.64	-1	-5	5	37
L 2225N 0475W	10	-0.5	17	-2	4	8	1.78	-1	-5	-5	37
L 2225N 0500W	11	-0.5	21	-2	5	В	2.00	-1	-5	-5	59
L 2225N 0525W	9	-0.5	-5	-2	3	7	1.56	-i	-5	-5	46
E 2223N V330W	-5	-0.5	-5	-2	3	6	1.55	-1	-5	-5	39
L 2225M 03/5W	70	-0.5	15	-2	4	1	1.66	-1	-5	-5	45
L 2223N 0830W	9	2.6	21	-2	5	41	2.25	-1	-5	-5	35
L 2223N 0073N	10	-0.5	3	-2	2	4	0.79	-1	-3	-5	14
E 2225N 0300W	29	-0.5	J Q	-2	ა ე	ь с	1.39	- <u>]</u>	-0	-0	20
1 22258 09504	5	-0.5	6 f 1	-2	ა 5	0 5	1.50	-1	-1	-0	30
L 2225N 0975N	-5	-0.5	-5	-1	3 4	7	1.35	-1	-0	-5	30
L 2225N 1000W	-5	-0.5	11	-2	ب ج	12	2 08	-1	-J 5	-J _5	40
L 2225N 1025W	-5	-0.5	10	-2	4	7	1.67	-1	-5	_5	50
L 2225N 1050W	-5	-0.5	-5	-2	3	6	1.57	، ب	-5	-5	44
L 2225N 1075W	-5	-0.5	7	-2	4	6	1.57	-1	-5	-5	52
L 2225N 1100W	6	-0.5	20	-2	3	5	1.53	-1	-5	-5	38
L 2225N 1125W	8	-0.5	8	-2	3	6	1.51	-1	-5	-5	37
L 2225N 1150W	15	0.5	10	-2	4	7	1.53	-1	-5	-5	41
L 2225N 1175H	-5	-0.5	6	-2	3	7	1.23	-1	-5	-5	30
L 2225N 1200W	30	-0.5	13	-2	3	7	1.03	-1	-5	-5	21
L 2225N 1225W	-5	-0.5	9	-2	2	5	1.10	-1	6	-5	21
L 2225N 1250W	8	0.5	13	-2	3	5	0.99	-1	-5	-5	16
L 2225N 1450W	7	-0.5	13	-2	4	10	1,91	-1	-5	-5	46

Sample ID	Au	Ag	A5	Bi	Co	Cu	Fe	Мо	Ph	Sh	7.0
###LL	ррЪ	¢p∎	ρp∎	¢p∎	op e	p p ø	ž	ppe	pge	οp∎	ρ ρ ∎
L 2225N 1475W	39	-0.5	23	-7	3	 7	1 60		·	• -	
L 2225N 1500W	22	0.6	11	-2	3	7	1 64	-1	0 F	-3	40
L 2225N 1525W	-5	0.8	16	-2	4	17	1 55	-1	-3	-5	37
L 2225N 1550W	5	1.9	19	-2	5	41	2 25	-1	10	-5	33
L 2225N 1575W	10	-0.5	17	-2	2	4	1 47	-1	5	-5	55
L 2225N 1600W	14	-0.5	B	-2	2	5	1.70	-1	-0	-5	32
L 2225N 1625W	22	-0.5	-5	-2	3	4	1.23	-1	8	-5	43
L 2225N 1650W	~5	-0.5	5	-2	3	4	1 27	-1	8	-2	32
L 2225N 1675W	145	0.6	7	-2	4	7	1.27	-1	5	-5	35
L 2250N 0425W	9	-0.5	13	-2	5	10	1 86	-1		-5	47
L 2250N 0450W	36	-0.5	-5	-2	3	6	1.50	-1	5	-0	43
L 2250N 0475W	5	-0.5	8	-2	3	ĥ	t 52	-1	-0	-5 F	41
L 2250N 0500W	5	-0.5	11	-2	4	7	1 57	-1	-0	-0	41
L 2250N 0525W	-5	-0.5	7	-2	5	, q	1 75	-1	-5	-3	44
L 2250N 0550W	8	-0.5	10	-2	5	Ŕ	1.70	_1	-0	-5	52
L 2250N 0575W	8	~0.5	8	-2	4	7	1 51	-1	-J C	-0	51
L 2250N 0850W	-5	-0.5	14	-7	3	5	1 57	-1	D _5	-0	51
L 2250N 0B75W	29	-0.5	24	-2	3	5	1 58	-1	-J E	-3	40
L 2250N 0900W	24	-0.5	-5	-2	4	7	2 07	-1	-5	-5	38
L 2250N 0925W	49	t.3	11	-2	3	14	2.10	-1	-J _5	-5	20
L 2250N 0950W	11	-0.5	7	-2	3	9	1 75	-1	-J _5	-0	29
L 2250N 0975W	9	-0.5	15	-2	3	7	1.76	-1	-J _5	-0	42
L 2250N 1000W	6	-0.5	B	-2	5	12	2 12	-1	-5	-5	40
L 2250N 1025H	115	-0.5	19	-2	4	6	1.57	-1	0 6	-5	67
L 2250N 1050W	8	-0.5	16	-2	4	7	1.64	-1	-5	-5	82
L 2250N 1075W	-5	-0.5	10	-2	4	5	1.49	-1	-5	_5	71
L 2250N 1100W	-5	-0.5	5	-2	4	5	1.59	-1	-5	-5	57
L 2250N 1125W	6	0.5	9	-2	4	5	1.52	-1	-5	-J -5	55
L 2250N 1150W	5	~0.5	11	-2	3	4	1.30	-1	-5	-5	46
L 2250N 1175W	84	-0.5	15	-2	3	5	1.48	-1	-5	-5	32
L 2250N 1200W	12	-0.5	-5	-2	3	5	1.68	-1	-5	-5	29
L 2250N 1225W	-5	0.6	13	-2	3	5	1.71	-1	-5	-5	30
L 2250N 1250W	58	0.7	10	-2	2	11	0.98	-1	6	-5	23
L 2250N 1450W	-5	-0.5	11	-2	3	7	1.64	-1	-5	-5	53
L 2250N 1475W	6	-0.5	16	-2	3	5	1.42	-1	-5	-5	44
L 2250N 1500W	15	0.8	8	-2	3	6	1.48	-1	~5	-5	43
L 2250N 1525W	-5	0.6	-5	-2	Э	7	1.54	-1	-5	<u>-5</u>	45
L 2250N 1550W	396	-0.5	8	-2	2	4	1.40	-1	-5	-5	36
2250N 1575W	5	1.5	10	-2	5	31	2.91	1	-5	-5	52
L 2250N 1600W	18	1.0	-5	-2	5	29	2.34	-1	7	-5	4B
2250N 1625W	6	0.6	10	-2	4	7	1.67	-1	-5	-5	37
2250N 1650W	-5	-0.5	-5	-2	2	6	1.22	-1	6	-5	2B
2250N 1675H	7	0.6	16	-2	3	7	1.61	-1	6	-5	35
2275N 0850W	-5	0.6	11	-2	Э	6	1.53	-1	-5	-5	36
L 22/3N 0875W	113	0.8	-5	-2	4	27	1,90	-1	6	-5	37
22/3N 0900W	122	-0.5	16	-2	3	6	1.94	-1	-5	-5	59
22/3N 0925W	5	0.8	-5	-2	4	15	2.01	-1	-5	-5	59
22/3N 0950W	48	~0.5	13	-2	3	7	2.05	-1	-5	-5	49
22/3N 09/5W	6	-0.5	10	-2	5	10	1.80	-1	5	-5	61
22/3N 1000W	15	-0.5	17	-2	3	7	1.39	-1	~5	-5	58

Sample ID	Au	Ag	As	Bi	Co	Cu	۶e	Мo	РЪ	Sb	ไก
	ррр 	ppa 	₽₽ ₽	₽₽ ₽	ab∎ 	ppa 	χ	pp.	pp e	pp s	₿₿ №
L 2275N 1025W	13	-0.5	14	-2	5	7	1.57	-1	-5	-5	76
£ 2275N 1050N	6	0.6	6	-2	3	5	1.37	-1	-5	-5	53
L 2275N 1450W	52	0.8	9	-2	2	5	1.42	-1	-5	-5	31
L 2275N 1475¥	21	0.5	11	-2	3	7	1.49	-1	-5	-5	35
L 2275N 1500W	~5	0.5	15	2	2	5	1.22	-1	-5	-5	28
L 2275N 1525W	14	0.5	11	-2	1	2	0,64	-1	-5	-5	15
L 2275N 1550W	-5	-0.5	9	-2	2	4	1.42	-1	-5	-5	21
L 2275N 1575W	-5	9.7	17	-2	4	15	1.89	-1	7	-5	33
L 2275N 1600W	12	-0.5	15	-2	3	8	1.40	-1	-5	-5	37
L 2275N 1625W	77	-0.5	15	-2	3	7	1.51	~1	-5	-5	42
L 2275N 1650N	-5	-0.5	12	-2	3	5	1.70	-1	~5	-5	44
L 22/5N 16/5W	14	-0.5	3	-2	3	۵ -	1,49	-1	<u>ხ</u> .	-5	28
£ 2300N 0200W	ç	-0.5		-2	6 -	1	1.51	2	25	-5	40
E 2300N 0300W	22	-0.5	11	-2		8	1./5	2	46	-5	50
L 2300K 0400W	14	-0.0	9	-2	ь 2	10	1.90	2	29	-5	50
L 2300M 0300M	17	-0.0	3	-2	ک ۸	6	1.42	1	23	-0	Z4 54
L 2300N 0500N	13	-0.0	5 11	-2	4	5 7	1.29	2	29	-0	29
L 23000 07000	13	-0,3	-5	-2	р С	1	1.40	4	32	-0	04 50
L 2300M 0800M	0 15	-0.J 47	-J 20	-2	2	J 31	0.74	-1	-5	-0	32
L 23000 08300	10	-0.5	20	-2	0 1	31 0	2.01	-1	-J 5	-J _5	47
1 22000 0070#	128	-0.5	4	-2	2	2 0	1 02	-1	74 74	-J -S	JI 27
E 2300N 0900N	796	0.5	6	-2	2	12	1 60	-1	7	-3 +5	20
1 23008 09504	30	-0.5	17	-2	7	10	1 92	-1	-5	-5	59
L 2300N 0975N	-5	~0.5	7	-2	, 6	42	2.26	2	-5	-5	20 PJ
1 2300N 1000N	28	-0.5	11	-2	8	9	1.55	2	32	-5	83
1 2300N 1025N	-5	-0.5	16	-7	5	7	1.70	-1	-5	-5	57
L 2300N 1050W	-5	-0.5	11	-2	4	6	1.52	-1	-5	-5	56
£ 2300N 1100W	10	-0.5	9	-2	6	-	1.39	2	28	-5	55
L 2300N 1200W	13	-0.5	-5	-2	3	4	0.89	1	21	-5	31
L 2300N 1300W	19	-0.5	5	-2	3	4	0.93	t	21	-5	25
L 2300N 1400W	17	-0.5	-5	-2	3	3	0.93	1	20	-5	27
£ 2300N 1450W	51	-0.5	15	-2	2	5	1.41	-1	6	-5	29
Ł 2300N 1475W	7	0.7	23	-2	4	7	1.67	-1	7	-5	32
L 2300N 1500W	55	-0.5	5	-2	4	5	1.21	2	27	-5	28
L 2300N 1525W	-5	0.6	12	-2	i	3	1.04	-1	-5	-5	20
L 2300N 1550W	15	0.5	8	-2	2	5	1.10	-1	7	-5	27
Ł 2300N 1575W	17	1.7	28	-2	5	28	2.30	-1	-5	-5	51
L 2300N 1600W	15	2.1	17	-2	8	36	2.37	3	52	22	56
L 2300N 1625W	-5	-0.5	14	-2	3	5	1.51	-1	-5	-5	36
L 2300N 1650W	-5	-0.5	6	-2	3	5	1.50	-1	-5	-5	38
L 2300N 1675W	9	-0.5	10	-2	4	8	1.68	-1	-5	-5	41
L 2300N 1700W	5	-0.5	10	-2	Б	9	i.58	2	29	-5	49
L 2300N 1800W	6	-0.5	-5	-2	4	5	1.10	1	21	-5	33
L 2300N 1900¥	8	-0.5	10	-2	6	7	1.56	2	28	-5	54
L 2300N 2000N	9	-0.5	9	-2	6	10	1.62	2	32	-5	44
L 2300N 2100N	11	-0.5	11	-2	9	11	1.88	3	35	7	77
L 2325N 0850W	14	3.1	10	-2	7	55	3.19	-1	-5	-5	53
L 2325N 0875W	14	3.6	13	-2	7	38	2.70	1	-5	-5	43
E Z3Z2M 0900M	12	0.8	-5	-2	3	9	1.65	-1	-5	-5	39

Sample ID	Au	Âg	As	Bi	Co	£u	Fe	Ko	РЬ	CH	75
	ppb	ppa	ppa	ppe	ppe	pp	7.	ppe	ppa	pp∎	pps
1 2325N 0925N	g	1 2	10			47		·	 -		
1 2325N 0950W	-S	-0.5	-5	-2	ם ד	4/	3.43	-1	-5	-5	45
L 2325N 0975N	-5	0.5	ь- 0	-2	, ,	10	2,18	-1	-5	-5	61
1 2325N 1000H	ت ج	-0.5	10	-2	о т	3	2.01	-1	-5	-5	63
1 2325N 1025W	-5	-0.5	10	-2	, ,	10	2.09	-1	5	-5	67
L 2325N 1050M	-5	-0.5	12	-2	o c	19	1.93	1	-5	-5	53
) 2325N 1450W	-5	-0.5	13	-2	0 2	10	1.33	-1	-5	-5	66
L 2325N 1475W	15	-0.5	13	-2	ა ე	2	1.9/	-1	-5	-5	29
L 2325N 1500W	71	-0.5	10	-2	ں 1	D 4	1.37	-1	-0	-5	28
£ 2325N 1525W	17	1.0	10	-2	1 5	4 22	0.70	-1	3	-0	1/
L 2325N 1550W	49	0.5	6	-2	2	10	1 51	-1	11	-0	40
L 2325N 1575W	-5	0.5	23	-2	د ۸	10	1.31	-1	7	-3	38
L 2325N 1600N	706	-0.5	7	-2	, T	9	1.52	-1	/ c	*0 F	4Z
L 2325N 1625N	5	0.6	-5	-2	۲ ۲	14	2.05	-1	ם ד	-3	9Z
L 2325N 1650W	-5	-0.5	Ğ	-2	6	0	1 07	-1	-5	-0	52
E 2325N 1675W	-5	-0.5	18	-2	4	7	1.03	-1	-0 E	-0	50 67
L 2350N 0850N	13	1.B	12	-2	7	40	2 90	-1	-5	~0	57
L 2350N 0875W	11	2.3	22	-2	, 4	19	1 99	-1	-J 5	-J _5	JZ 47
L 2350N 0900W	12	3.6	-5	-2	r A	36	2.49	-1	-5	-J -5	4/
L 2350N 0925W	-5	-0.5	19	-2	B	11	2.33	-1	-J _5	-J _5	ננ זר
L 2350N 0950W	-5	-0.5	19	-?	6	11	1 95	-1	-5	-5	70 74
L 2350N 0975W	6	-0.5	-5	-2	я я	f n	2 49	-1	-5	-5	/1 70
L 2350N 1000W	-5	-0.5	14	-2	۔ ۲	12	2.40	-1	-5	-5	/7
L 2350N 1025W	-5	-0.5	15	3	10	12	2 59	-1	-J _S	-J _5	50 50
L 2350N 1050W	-5	-0.5	15	2	6	4	1 73	-1	-5	-J _S	00 C A
L 2350N 1075W	-5	-0.5	11	-2	7	9	2.07	-1	-5	-5	04 55
L 2350N 1100W	-5	-0.5	9	-2	4	ĥ	1.48	-1	-5	-5	50
L 2350N 1125W	-5	-0.5	10	-2	4	7	1.41	-1	-5	-5	29
L 2350N 1150W	-5	0.5	15	-2	5	12	1.75	-1	5	-5	31
L 2350N 1175W	-5	~0.5	18	-2	4	В	1.75	~1	-5	-5	33
L 2350N 1200W	-5	-0.5	10	-2	4	11	1.90	-1	7	-5	34
L 2350N 1225W	-5	-0.5	5	-2	4	6	1.73	-i	5	-5	42
L 2350N 1450W	27	-0.5	15	-2	3	8	1.45	-1	-5	-5	48
L 2350N 1475W	-5	-0.5	1B	-2	5	9	2.02	-1	-5	-5	48
L 2350N 1500W	-5	-0.5	9	-2	4	9	1,53	-1	-5	-5	32
L 2350N 1525W	-5	0.8	10	-2	2	6	1.04	-1	6	-5	28
L 2350N 1550W	-5	-0.5	9	-2	4	9	1.59	-1	8	-5	39
L 2350N 1575W	-5	0.5	13	-2	4	7	1.59	-1	5	-5	40
L 2350N 1600W	-5	-0.5	15	-2	7	11	2.14	-1	-5	-5	57
L 2350N 1625W	-5	-0.5	20	-2	6	9	1.89	-1	B	-5	70
L 2350N 1650W	14	-0.5	-5	-2	8	9	1.84	-1	6	-5	49
L 2350N 1675W	-5	-0.5	20	-2	6	9	1.97	-1	-5	-5	62
L 2375N 0850W	5	-0.5	11	-2	14	13	2.10	3	12	-5	65
1 2375N 0875W	67	-0.5	12	3	6	10	1.56	- i	-5	~5	57
L 2375N 0900W	-5	-0.5	13	2	4	12	1.13	-1	-5	-5	31
L 2375N 0925W	14	2.7	5	-2	4	30	2.10	-1	6	-5	32
L 2375N 0950W	7	0.8	18	3	8	15	2.27	-1	6	-5	71
L 2375N 0975W	-5	~0.5	27	-2	7	9	1.92	-1	-5	-5	53
L 2375N 1000W	8	-0.5	-5	-2	4	7	1.45	-1	-5	-5	40
L 2375N 1025W	21	-0.5	14	-2	6	8	1.76	1	5	-5	50

Sample ID	Au Dab	Ag Dom	As DD	Bi DD e	Co	Cu Dovi	Fe 7	Mo	Pb	Sb	Zn
	,,	FF									
L 2375N 1050W	-5	-0.5	-5	-2	7	11	2.17	1	-5	-5	55
L 2375N 1075W	5	0.7	8	-2	7	16	2.01	-1	6	-5	49
L 2375N 1100W	5	0.6	6	-2	6	24	2.87	-1	-5	-5	56
L 2375N 1125W	-5	-0.5	7	2	8	12	2.22	~1	-5	-5	57
L 2375N 1150W	11	-0.5	12	-2	5	9	1.82	1	-5	-5	40
L 2375N 1175W	16	-0.5	16	-2	5	7	1.64	-1	6	-5	37
L 2375N 1200W	-5	-0.5	20	-2	6	7	1.80	-1	5	-5	59
L 2375N 1225W	5	-0.5	13	-2	5	9	1.75	-1	-5	-5	42
L 2375N 1450W	12	-0.5	8	-2	3	6	1.49	-1	-5	-5	36
L 2375N 1475W	~5	-0.5	16	-2	3	6	1.55	-1	-5	-5	37
L 2375N 1500W	6	0.7	10	-2	3	6	1.32	-1	7	-5	36
L 2375N 1525₩	-5	0.6	9	-2	7	19	2.09	-1	-5	-5	53
L 2375N 1550W	7	0.7	10	-2	3	11	1.35	-i	7	~5	36
L 2375N 1575W	7	0.6	-5	-2	7	16	2.01	-1	7	-5	56
L 2375N 1600W	-5	0.6	-5	-2	8	16	2.13	-1	7	-5	59
L 2375N 1625W	5	-0.5	-5	-2	8	14	2.19	-1	6	-5	85
L 2375N 1650W	-5	-0.5	13	-2	9	14	2.28	-1	9	-5	86
L 2375N 1675W	-5	-0.5	10	-2	9	17	2.35	-1	5	-5	64
L 2400N 0200N	9	-0.5	11	-2	6	8	1.48	2	31	-5	55
L 2400N 0300W	10	-0.5	13	-2	10	12	2.03	Э	37	11	80
L 2400N 0400W	Б	-0.5	6	-2	8	9	1.45	2	29	-5	65
L 2400N 0500W	21	-0.5	3	-2	8	10	1.48	1	32	-5	54
L 2400N 0600W	14	-0.5	12	-2	8	10	1.75	2	29	-5	52
L 2400N 0700W	8	-0.5	6	-2	7	9	1.44	1	31	-5	59
L 2400N 0800₩	11	2.5	10	-2	З	24	1.24	2	36	9	26
L 2400N 0900W	9	-0.5	θ	-2	7	9	1.37	1	29	-5	58
L 2400N 0925W	6	1.3	9	-2	6	38	2.76	1	6	-5	57
L 2400N 0950W	-5	0.0	16	-2	6	14	1.89	-1	-5	-5	50
L 2400N 0975W	-5	0.8	12	-2	6	19	2.50	-1	9	-5	63
L 2409N 1000W	15	-0.5	5	-2	5	6	1.35	1	24	-5	30
L 2400N 1000W	277	-0.5	10	-2	6	7	1.40	1	31	-5	49
L 2400N 1025W	5	-0.5	-5	-2	4	6	1.55	-1	-5	-5	46
L 2400N 1050W	15	-0.5	15	-2	4	8	1.52	-1	6	-5	37
L 2400N 1075W	16	0.5	17	-2	5	3	1.54	-1	8	-5	37
L 2400N 1100W	21	-0.5	1	-2	<u>/</u>	8	1.51	1	0E	-5	57
L 2400N 1123W	-5 F	-0.5	6	-2	5	7	1.42	-1	-5	-5	45
L 2400N 1150W	-5	-0.5	16	3	5		1.41	-1	-5	-5	44
L 2400N 11/3W	-3	-0.5	8	-2	4	6	1,46	-1	6	-5	45
L 2400N 1200W	55	-0.5	8	-2	5	/	1.48	1	28	-5	39
L 2400N 1223W	-0	0.5	13	-2	5	6	1,65	-1	-5	~5	39
L 24000 13000	1Z E	-V.J	11	-2	8	9	1.61	2	34	5	62
L 2400N 1400N 1 2400N 1500N	5	-U.J	10	-2	8	3	1.66	l	30	-5	53
L 24000 15050	-3	-V.3 -0 E	Э.	-2	8	10	1.72	2	34	-5	41
L 2400M 1323W	-3 E	- U.J	21	-2	5	1	1.80	-1	6	-5	42
L 2400M 1330M	-0	V./	-5	-2	ь ~	22	2,06	-1	/	-5	46
L 2400M 13/3M	-0 00	-0.5	13	3	8	15	2.15	-1	-5	-5	61
L ZYUUN IDUUN 1 9400N ICAEU	82	-0.5	ч -	-2		13	1.87	2	36	5	73
L 24990 15230	-0 . F	-0.0	/	-2	/	13	2,07	-1	-5	-5	6 0
L 24000 15300 1 24000 16750	-0	-V.3	7	-2	/	12	2,19	-1	-5	-5	72
L 2400M 10/0W	-0	-0*2	1	-2	9	14	2,48	2	6	-5	78

Sample ID	Au քրն	Ag pp∎	As pp∎	Bi ppn	Со рр а	Cu p¢∎	Fe X	Мо роп	Pb ppe	Sb pp a	Zn pp e
				 -							
L 2400N 1700W	-5	-0.5	15	-2	12	14	2.04	2	39	13	60
L 2400N 1800W	17	-0,5	7	-2	7	9	1.56	2	30	-5	45
L 2400N 1900W	10	-0.5	8	-2	6	10	1.46	2	29	-5	60
L 2400N 2000W	9	1.7	13	-2	8	31	1.94	3	37	В	45
L 2400N 2100W	6	-0.5	9	-2	8	10	1.72	2	32	-5	74
L 2425N 0900W	19	-0.5	-5	-2	9	14	2.50	-1	6	-5	76
L 2425N 0925W	41	-0.5	8	-2	5	10	1,97	-1	6	-5	53
L 2425N 0950W	-5	-0.5	6	-2	8	10	2.34	-1	-5	-5	57
L 2425N 0975W	7	-0.5	22	-2	3	6	1.66	-1	6	-5	53
L 2425N 1000W	~5	-0.5	8	-2	3	7	1.74	1	-5	-5	56
L 2425N 1025W	-5	-0.5	7	-2	9	10	2.29	1	-5	-5	68
L 2425N 1050W	-5	-0.5	B	-2	8	10	2.05	-1	-5	-5	65
L 2425N 1075W	-5	-0.5	-5	-2	5	10	1.79	-1	-5	-5	44
L 2425N 1100W	61	-0.5	5	-2	6	11	1.92	-1	-5	-5	47
L 2425N 1125W	6	-0.5	21	-2	5	9	1.69	-1	5	-5	58
L 2425N 1150W	-5	-0.5	7	-2	5	В	1.58	-1	- 7	-5	55
L 2425N 1175W	~5	-0.5	13	-2	4	9	1.50	-1	-5	-5	52
L 2425N 1200W	-5	-0.5	-5	-2	5	7	1.87	-1	Ă	-5	47
L 2425N 1225W	-5	-0.5	16	-2	9	10	2.82	1	-5	-5	48
L 2425N 1525W	-5	0.7	-5	-2	6	12	2.09	-1	۲ ۲	-5	
L 2425N 1550W	29	-0.5	-5	-2	6	12	1 93		-5	-5	50
L 2425N 1575W	B5	-0.5	B	2	5	Î.	1 57	-1	4	_5	52
L 2425N 1600W	6	-0.5	tõ	-2	Å	ģ	1 72	-1	-5	-J _5	0Z CC
L 2425N 1625W	7	-0.5	.*	-7	4	5	1 69	-1 _1	-3	-J _E	00 CC
2425N 1650N	-5	-0.5	13	-2		10	2.00	-1	, ,	-0	DD 00
L 2425N 1675W	6	-0.5	-5	_2	0	14	2.00	-1	с + 1	-0	39 DE
L 2450N 0900N	10	-0.5	-5	-2	4	7	1 63	-1	11	-J E	100
L 2450N 0925H	59	0.6	15	_2	2	5	1 22	- 1 - 1	5 E	-0	30
L 2450N 0950N	8	0.5	7	-2	3	0	1.00	-1	-1 -1	-J	42
1 2450N 0975N	11	0.6	, 9	-7	4	0 7	1.37	-1	נ 7	-0	۲ۍ ۱۹
L 2450N 1000W	6	-0.5	19	-2	4	, 0	1.03	-1	/ c	-3	43
1 2450N 1025N	17	~0.5	14	-2	4	ں د	1.02	_1	5	- 5	67
L 2450N 1050H	21	-0.5	4 Q	-2	ר ס	5	1,01	-1	-0	-0	47
1 2450N 1035N	-5	~0.5	-5	-4	দ	J 7	1.40	-1	-3	-3	94
1 2450N 1100N	21	-0.5	-5		5	7	1.33	-1	-5	-0	55
1 2450N 1100W	-5	-0.5	-5	-2	5	י לי	1.70	-1	-0	~J E	/3
L 2450N 1150N	-5	-0.5	-5	-2	с 0	۲ ۵	1.08	-1	5	-0	51
1 2450N 1130H	2	-0.5	-J _5	-2	0 F	ž	2.13	1	-0	-0	39
L 2450N 1200N	74	0.0	-J T	-2	5	/	1.73	-1	-0	-0	31
1 2450N 1225N	74	0.7	, ,	ن م	4	9 F	1.9/	2	-5	-5	37
1 2450N 1525U		24		-2	2	С 74	1.50	1	-5	-5	41
L 2450W 1520W	11 60	4.4		-7	ۍ -	36	2,21	1	-5	-5	52
1 2450N 1575U	02 6	0.0	5	-7	5	10	1.98	-1	-5	-5	61
L 2400N 10/00	-a E	V./	-0 -	-2	6	10	2.11	l	-5	-5	56
L 2450N IDVON	5 F	-0.5	/	-2	6	9	2.23	1	-5	-5	76
L 2400N 1620N	-5	-0.5	8	-2	5	7	1.95	-1	-5	-5	66
L 243VN 1630N	ь 4 г	-0.5	10	-2	5	8	2.04	-1	-5	-5	75
L 243VN 1673M	15	-0.5	-5	3	5	8	1.98	1	-5	-5	70
L 2473N 0775W	10	1.1	13	-2	-1	1	0.35	-1	-5	-5	13
L 2473N 0800W	8	0.9	6	-2	-1	6	0.40	-1	-5	-5	14
L Z4/5N 0825W	11	-0.5	16	-2	4	5	1.75	-1	-5	-5	39

Sample ID	Au ppb	Ag pp∎	As ppm	8i ppm	Со рр е	Cu Ppm	Fe ۲	Mo ppm	Pb ppm	ՏԵ ԲԲտ	Zn pp∎
1 2475N 0950D				·		 c	1 00				·
L 2475N 0075U	24	-0.5	11	-2		5	1.92	-1	-3	-5	45
L 2475N 0075W	-5	-0.3	11	-2	1	כ ד	9.72	-1	-5	-5	25
L 2475N 0975U	-) -)	-0.5	12	-7	5		2.00	-1	-5	-5	69
L 2475N 0950W	10	-9.5	/ 0	-Z	য ন	4	1.90	-1	-5	-5	48
L 2475N 0975N	26	-0.5	-5	-2	4 つ	12	2.00	-1	-5	-5	48
L 2500N 0200N	20 E	-0.5	-J 12	-2	2	4	1.70	-1	-3	-5	4/
L 2500N 0200W	12	-0.5	1 <u>7</u>	-2	7	11	1.85	1	34	6	55
L 2500N 0400N	-5	-0.5	11	-7	נ	12	1.68	2	33	-5	82
L 2500N 0500W	-J 5	-0.5	11	-2	0	10	1.00	2	34 05	-0	84
L 2500N 0600H	ы С	-0.5	11	-2	7	11	1.80	4	55	9	78
1 2500N 0700H	7	-0.5	10	 	10	12	1.02	2	37	10	8) 81
L 2500N 0775H	27	-0.5 -0.5	12	-1	2	11	1.32	2	39	12	83
L 2500N 0800H	56	-0.5	5	-2	د ۸	• •	1.94	-1	-0		28
1 2500N 0825H	10	2.5	5	-2	1	0	1.01	1	29	-3	20
L 2500N 0850N	-5	-0.5	19	-2	2	D 2	1 40	-1	-J .E	-0	25
L 2500N 0875W	9	-0.5	10	-2	2	с И	1.40	-1	~0 F	-0	22
1 2500N 0900N	6	-0.5	a a	-2	4	4	1.70	-1	-0 20	~0	36
E 2500N 0925W	209	-0.5	12	-Z _0	י י	0	1.30	2	30	-0 F	ئل مە
L 2500N 0950W	203	2.1	-5	-2	2	70	1.07	-1	-0 e	-0	43
L 2500N 0975W	26	-0.5	12	2	ა ე	30 5	2,JJ 1 67	-1	-0	-3	41
L 2500N 1000W	-5	-0.5	10	-2	3 4	ני	1.03	-1	-0	-5	50
1 2500N 1100H	5	-0.5	5	-4	5	, ,	1 20	1	28	"O E	JI 71
L 2500N 1200W	14	-0.5	11	-2	6	a a	1.67	1	20 22	-u -5	37 13
1 2500N 1300W	-5	0.6	6	-2	5	10	1.50	1 2	32	-0	43 50
L 2500N 1400W	7	-0.5	8	-2	6	10	1.67	1	30 77	-J -5	50
L 2500N 1500N	5	-0.5	ů ů	-2	6	4	1 57	1	33 21	-J _5	50
L 2500N 1525W	-5	-0.5	11	-2	4	, ,	1 94	_1	-2	-J -S	55
L 2500N 1550N	31	-0.5	14	-2	, Ţ	5	1 90	1	-5	-J -5	50
L 2500N 1575W	23	-0.5	15	-2	5	10	2.07	-1	-J -S	-5	50
L 2500N 1600W	-5	-0.5	6	-2	6		1.44	1	29	-5	53
L 2500N 1625W	16	-0.5	10	-2	4	5	2.11	-1	-5	-5	50
L 2500N 1650W	-5	-0.5	23	-2	4	7	1.95	-1	6	-5	65
L 2500N 1675W	48	-0.5	12	-2	5	. 8	2.16	-1	20	-5	94
L 2500N 1700N	-5	-0.5	5	-2	6	7	1.39	1	25	-5	63
L 2500N 1800W	8	-0.5	8	-2	6	9	1.51	1	28	-5	52
L 2500N 1850W	В	0.6	-5	-2	4	10	2.49	-1	7	-5	56
L 2500N 1875W	~5	1.0	5	-2	3	10	1.66	-1	7	-5	33
L 2500N 1900W	46	-0.5	-5	-2	4	5	1.11	1	25	-5	27
L 2500N 1925W	-5	0.7	16	-2	3	9	1.76	1	-5	-5	40
L 2500N 1950W	12	-0.5	21	-2	2	4	1.60	-1	5	-5	38
L 2500N 1975W	-5	0.6	12	-2	4	7	1.60	-1	-5	-5	53
L 2500N 2000W	7	-0.5	10	-2	6	15	1.54	2	29	-5	50
L 2500N 2100W	15	0.5	в	-2	5	12	1.50	2	29	-5	43
L 2525N 0775W	13	0.7	13	-2	-1	26	1.53	-1	-5	-5	15
L 2525N 0800W	-5	0.7	7	-2	3	13	1.24	-1	-5	-5	25
L 2525N 0825W	9	2.0	В	-2	-1	9	0.70	-1	-5	-5	24
L 2525N 0850W	-5	-0,5	16	-2	2	5	1.66	-1	Ă	-5	33
L 2525N 0875W	- 31	0.7	12	-2	1	7	1.26	-1	л Я	-5	32
L 2525N 0900W	38	-0.5	14	-2	3	4	1.07	-1	-5	-5	49

Sample ID	Au	Aq	As	Bi	Co	Cu	Fe	Mo	Ph	Sh	7.5
	գգե	pp s	ppa	pp	ព្ភព	ppe	7	ppn	ppn	ppm	50 0
L 2525N 0925W	-5	-0.5	14	-2	2	¢	1.45	-1	-5	-5	23
L 2525N 0950W	14	2.5	8	-2	5	36	3.40	2	5	-5	75
L 2525N 0975W	-5	-0.5	13	-2	4	7	2.15	-1	-5	-5	80
L 2525N 1850W	6	-0.5	17	-2	2	3	1.40	-1	-5	-5	36
L 2525N 1875W	-5	0,6	19	-2	2	6	1.46	-1	5	-5	39
L 2525N 1900W	-5	~0.5	7	-2	1	2	1.04	-1	-5	-5	27
L 2525N 1925W	9	0.7	-5	-2	3	5	1.70	-1	-5	-5	38
L 2525N 1950W	-5	-0.5	10	-2	3	6	1.75	-1	-5	-5	40
L 2525N 1975W	9	0.6	8	-2	5	7	2.01	-1	-5	-5	65
L 2550N 0775W	-5	1.5	-5	-2	1	15	0.87	-1	-5	-5	24
L 2550N 0800W	8	1.8	-5	-2	-1	19	0.80	-1	-5	-5	36
L 2550N 0825W	13	· 1.8	-5	-2	3	55	1.24	-1	-5	-5	23
L 2550N 0850W	-5	1.4	~5	-2	-1	10	0.73	-1	-5	-5	35
L 2550N 0875W	33	-0.5	6	-2	4	7	2.18	-1	-5	-5	44
L 2550N 0900N	8	-0.5	~5	+2	3	5	1.94	1	-5	-5	50
L 2550N 0925W	-5	-0.5	8	-2	2	В	1.71	-1	~ 5	-5	61
L 2550N 0950W	-5	-0.5	9	-2	2	4	1,73	-1	-5	-5	48
L 2000N 0975N	55	-0.5	12	-2	4	9	2.26	-1	-5	-5	70
L 2550N 1525W	32	0.6	7	-2	4	8	2.08	-1	6	-5	74
L 2550N 1550W	10	-0.5	15	-2	4	8	2.09	-i	5	-5	65
L 20000 1075W	337	-0.5	20	-2	4	6	1.85	-1	-5	-5	70
L 2550N 1600W	112	-0.5	13	-2	3	8	1.93	-1	5	-5	70
L 2550N 1625W	-5	-0.5	10	-2	4	8	2.04	-1	5	-5	83
L 2550N 1650W	-5	-0.5	8	-2	4	9	2.11	-1	7	-5	91
L 2550N 1675W	-5	0.7	9	-2	4	8	1.91	-1	6	-5	77
L 2550N 1850N	7	~0.5	13	-2	3	5	1.72	-i	-5	-5	47
L 2550N 1875W	-5	0.7	13	-2	3	5	1.75	-1	-5	-5	47
L 2550N 1900W	-5	0.9	8	-2	2	4	1.54	-1	5	-5	47
L 2550N 1925W	8	-0.5	19	-2	3	8	1.70	-1	5	-5	42
L 2000N 1900W	142	-0.5	13	-2	3	5	1.75	-i	-5	-5	42
L 2330N 1973W	-0	-0.5	9	-2	4	6	2.03	-1	-5	-5	63
E 200VN 200VN 2 2550N 20250	-0	-0.5	16	-2	4	6	1.91	-1	-5	-5	62
L 2330N 2023N	-0	9.5 A E	21	-2	3	6	1.48	-1	-5	-5	52
L 20000 2000W	-J -	-0.5	10	-2	3	y 	1.69	-1	-5	~5	55
L 2373N 0773W	-0	0.9	3	-2	-1	10	0.61	-1	-5	-5	19
1 2575N 0000N	-3	-0.5	14	-2	3	12	1.80	1	-5	-5	45
1 2575N NO50U	07 _C	-0.5	14	-2	2	4	1.50	-1	-5	-5	24
L 23750 00304	-J 40	-0.5	14	-2	2	ь ,	1,80	-1	-5	-5	44
1 2575N AQAAU	42	-0.5	17	-2	2	4	1./6	-1	5	5	36
L 2575N 0200W	J _5	-0 S	17	-1	J C	3	1.82	-1	5	6	45
2575N 0920W	- J 54	-0,J	40	-2	2	о 2	1.38	-1	-5	-5	35
E 2575N 09750	17 05	-0.5	17	-2	2	ງ ເ	1.0/	-1	~5	-5	37
L 2575N 1525U	10	-0 5	10	-2	2	15	1.64	-1	6	-5	35
- 25750 1520 0 25750 15509	-5	0.0	17	-2	ა ე	4	1,68	-1	5	-5	64
1 2575N 1575B	-5	0.0	14	-2	2	9, F	1.52	-1	-5	-5	58
L 2575N 16004	_9	-0.5	14	-2	້ 1	2	1.38	-1	-5	-5	22
1 2575N 1625U	-0	-0 S	10	-2	3	9 E	1.00	-1	6	-5	54
1 2575N 1650M	-5	-0.5	17	-2	2	2	1.5/	-1	-5	-5	68
1 2575N 1675H	56	-0.5	10	-2	د د	0 /	1.03	-1	/	-5	50
- TOLOH TOLOH	20	619	10	J	ప	6	1.62	-1	-5	-5	52

Sample ID	Au	Ag	As	Bi	Co	Cu	Fe	No	Pb	Sb	ln
					~	 hhm	ہ۔ 	e	ыры. 	ppn 	ере
L 2575N 1850N	11	-0.5	11	-2	2	2	1,49	-1	-5	-5	32
L 2575N 1875W	21	-0.5	11	3	1	3	1.58	-1	6	-5	33
L 2575N 1900W	-5	-0.5	11	-2	2	3	1.63	-1	-5	-5	41
L 2575N 1925W	31	-0.5	16	-2	2	4	1.58	-1	-5	-5	48
L 2575N 1950W	21	-0.5	11	-2	3	5	1.68	-1	-5	-5	51
L 2575N 1975W	46	-0.5	9	-2	2	4	1.66	-i	-5	-5	54
L 2575N 2000W	-5	-0.5	13	-2	3	4	1.67	-1	5	-5	53
L 2575N 2025N	5	-0.5	15	-2	3	5	1.96	-1	-5	-5	57
L 2575N 2050W	-5	-0.5	23	3	3	5	1.71	-1	7	-5	57
L 2500N 0200W	19	-0.5	6	~2	4	8	1.18	2	27	~5	56
L 2600N 0300W	-5	-0.5	9	-2	6	12	1.41	2	30	-5	50
L 2500N 0400W	-2	-0.5	14	-2	8	14	1.62	3	34	6	82
L 2600N 0500W	-5	-0.5	14	-2	В	14	1.82	3	37	13	58
L ZEUUN VEUVN	11	-0.0	10	-2	4	16	1.93	3	36	10	61
1 2600N 0700W	1	-0.0	10	-2	6	13	1.40	2	24	-5	35
L 2600M 0773W	-0	1.0	13	-2	-1	1	0.27	-1	-5	-5	16
L ZOUNN VEUUW	30	-0.5	-5	-2	3	/	1.11	1	18	-5	30
L ZOVUN VOZJW	1 47	-0.5	29	-2	3	3	1,63	-1	-5	-5	37
E 2600N VB30W	140	0.6	с 10	-2	3	4	1.60	-1	-5	-5	27
L 2600N V073N	-J 750	-0.5	12	-2	2	4	1.70	-1	7	-5	36
L 2500N 0300N	300	-0.5	11	-2	5	12	1.51	3	33	5	44
L 2000K 0323N	5	-0.5	13	-2	2	2	1.33	-1	-5	~5	33
E ZOUVN VJJVM) OCOOM 09750	-0	~U.J	-0	-2	1	2	1.30	-1	-5	-5	27
L 2000A 0373W	22	1.9	4	-2	2	10	1.53	-1	6	-5 -	34
L 2000N 1000N	20	-0.5	11	-2	4	10	1.32	2	30	-5	49
L 26000 11000	22	-0.5	11	-2	р С	13	1.61	3	33	5	52
L 2600W 1200W	10	-0.5	5	-2	ם ד	10	1,20	1	20	-5	44
L 2000A 1300W	12	-0.5	р 11	-2	о с	10	1.39	2	25	-5	54
L 2600N 1900W	24	-0.J	11	-2	0 4	11	1.36	2	33	~0	80
L 2500N 1525N	27	-0.5	12	-2	יי	0 4	1.21	- 5	23	-0	//
L 2600N 1550W	10	-0.5	20	-2	2	т 4	1.40	-1	-5	-J _5	51
L 2500N 1575N	-5	-0.5	15	-2	2	4	1.40	-1	-J C	-5	50
2500N 1600N	234	-0.5	6	-2	4	۲ و	1.40	-1	20	-J -5	5
L 2500N 1625N	166	-0.5	14	5	đ	15	1 64	1	20	-5	20 20
L 2600N 1650W	7	-0.5	19	-2	2	4	1.42	-1	-5	-5	20
1 2600N 1675W	82	-0.5	11	-7	2	4	1 47	~1	-5	-5	47
L 2600N 1700N	17	-0.5	8	-2	5	11	1.36	2	24	-5	47
L 2600N 1800N	16	-0.5	7	-2	4	8	1.31	2	24	~5	20
L 2600N 1900W	14	-0.5	, 6	-2	4	10	1.33	2	24	-5	51
L 2600N 1925N	-5	-0.5	11	-2	2	4	1.44	-1	-5	-5	51
L 2600N 1950W	154	0.6	13	4	2	4	1.64	-1	-5	-5	44
L 2600N 1975W	-5	-0.5	14	-2	3	5	1.64	-1	-5	-5	56
L 2600N 2000W	460	-0.5	7	-2	5	11	1.44	2	27	-5	62
L 2600N 2025W	-5	0.6	22	-2	3	6	1.88	1	-5	-5	74
L 2600N 2050W	-5	0.5	7	-2	4	8	1.98	-1	6	-5	69
L 2600N 2100W	17	-0.5	9	-2	5	11	1.37	2	26	-5	59
L 2625N 0775W	21	0.5	i 1	-2	2	6	1.01	-1	-5	-5	32
L 2625N 0800W	-5	1.0	-5	-2	2	9	0,81	-1	10	~5	22
L 2625N 0825W	-5	-0.5	26	-2	4	5	1.70	-1	-5	-5	45
Sample ID	Au	Aq	As	Bi	Co	Cu	Fe	Mo	р _н	55	70
---------------	------------	-------------	----------	-----	--------	--------	---------	----------	----------------	----------	------------
	ррь	60 m	ppa	ppa	ppe	pps	ž	ppn	ppe	ppa	zn pp∎
1 2025N A05AU	100	_^ E			·		· · · ·				
1 2625N 0835W	102	-0.J	18	2	3	2	1.96	-1	-5	-5	33
L 2525N 0075M	120	-0.5	22	-2	3	4	1.84	-1	-5	-5	27
L 2020N 0000N	107	-0.0	22	-2	2	3	1.66	-1	-5	-5	28
E 2020W 0920W	24 C	0.0	14	-2	3	5	1.62	-1	-5	-5	35
i 2625N 09754	J +5	-0.J A a	23	-2	2	3	1.54	-1	-5	-5	33
i 2625N 1525U	- J 1.4	V.J	10	-2	ე ე	b	1,/9	-1	7	-5	48
1 2625N 1550N	-5	-0.J	40 14	-2	2	3	1.38	-1	-5	-5	62
L 2625N 1575N	5	-0.5	10	-2	ע ר	ٽ ا	1.43	-1	-5	-5	60
1 2525N 1500N	27	-0.5	11	-2	2	4	1.32	-1	8	-5	67
E 2625N 1625W	-5	-0.5	10	-2	ა ი	5	1.72	-1	12	-5	76
L 2625N 1650N	9	-0.5	24	-2	د د		1.05	-1	5	-5	99
L 2625N (675N	14	-0.5	16	-2	2	4	1.33	-1	-5	-5	50 55
L 2625N 1900W	R9	0.9	10 18	-2	2	J 4	1 71	-1	-0	-5	55
2625N 1925N	-5	-0.5	14	-2	5	- -	1.71	-1	-0	-5	4/
L 2625N 1950W	28	-0.5	22	-2	2	2 C	1.01	-1	, ,	-0	3/ (7
L 2625N 1975W	7	-0.5	20	-2	2	4	1.63	-1	- 5	-0	43
L 2625N 2000W	-5	-0.5	19	-2	2	Å	1.90	-1	-3	-3	9.3 FF
L 2625N 2025W	6	-0.5	21	-2	2	- 5	1.52	-1 -1	-0	-5	33 27
L 2625N 2050N	72	-0.5	14	4	3	Д	1.55	-1	-5	-0 K]/ TA
L 2650N 0775W	30	1.2	15	-2	3	ד ל	1 55	-1	р с	-5	2V 45
L 2650N 0800W	107	1.1	30	-2	1	12	1.00	-1	-5	-0	54 20
L 2650N 0825W	19	-0.5	16	-2	2	4	1 59	-1	-5	-J -5	20
L 2650N 0850W	98	-0.5	18	-2	2	4	1.61	-1	-5	-J _5	22
L 2650N 0875W	29	1.4	18	-2	2	18	1.40	-1	л 9	-5	20 74
L 2650N 0900W	30	0.7	16	-2	1	5	1.05	-1	5	-5	27
L 2650N 0925W	9	0.9	28	-2	2	3	1.42	-1	-5	-5	2.J 4.1
L 2650N 0950W	-5	0.6	9	-2	3	B	1.62	-1	~5	-5	45
L 2650N 0975W	9	0.5	19	-2	6	7	2.14	-1	6	-5	59
L 2650N 1525W	-5	-0.5	22	-2	3	5	1.68	-1	6	-5	73
L 2650N 1550W	11	0.5	20	-2	4	7	1.73	-1	6	-5	66
E 2650N 1575₩	35	-0.5	25	-2	4	6	2.03	-1	7	-5	119
L 2650N 1600W	27	-0.5	22	-2	4	5	1.87	-1	9	-5	103
L 2650N 1625W	12	-0.5	17	-2	4	5	1.97	-1	6	-5	99
L 2650N 1650W	-5	-0.5	23	-2	4	6	1.89	-1	6	-5	84
L 2650N 1675W	14	0.5	25	-2	3	4	1.52	-t	6	-5	63
L 2650N 1825W	-5	0.5	13	-2	2	4	1.65	-1	-5	-5	38
L 2650N 1850W	7	-0,5	17	-2	2	3	1.11	-1	11	-5	31
L 2650N 1875W	44	-0.5	16	2	1	2	1.01	1-	7	-5	29
L 2650N 1900W	90	-0.5	22	-2	3	5	1.94	-1	6	-5	58
L 2650N 1925W	5	2.3	28	-2	2	16	1.93	-1	8	-5	42
L 2650N 1950W	109	0.7	28	-2	3	7	2.16	-1	-5	-5	61
L 2650N 1975W	-5	0.9	21	-2	3	7	1.86	-1	-5	-5	77
L 2650N 2000W	42	-0.5	27	-2	4	6	1.85	-1	7	-5	82
C 2650N 2025N	-5	1.0	27	-2	4	10	2.09	-1	θ	-5	128
L 2650N 2050N	7	0.5	26	2	5	11	2.38	-1	11	-5	144
E 26/5N 0775W	51	1.0	14	-2	3	9	1.54	-1	8	-5	45
L 26/3N 0800W	93	1.0	22	-2	3	10	1.11	-1	6	-5	29
C 26/0N 0825W	252	0.Б	20	-2	2	4	0.96	-1	24	-5	29
L 26/5M 0850W	5	1.6	19	-2	-1	4	0.42	~1	-5	-5	14

Sample ID	Au	Ag	As	Bi	Co	Cu	Fe	No	Բհ	Sb	10
	ppb	ppm 	ទុក្	ppm	bbw	ppm	X	ppm	ppa	ព្រុគ	ppæ
L 2675N 0875W	58	1.1	28	-2	2	17	1.74	-1		-5	25
L 2675N 0900W	8	1.8	26	~2	3	23	1.92	-1	6	-5	50
1 2675N 0925W	228	-0.5	23	-2	2	4	1.57	-1	6	-5	45
L 2675N 0950W	7	1.3	23	2	3	11	1.67	-1	7	-5	46
L 2675N 0975W	925	0.5	17	-2	3	5	1.53	-1	-5	-5	45
L 2675N 1825W	15	-0.5	15	3	2	3	1.49	-1	-5	-5	30
L 2675N 1850W	-5	0.6	17	-2	2	3	1.61	-1	-5	-5	50
L 2675N 1875W	-5	-0.5	23	-2	1	6	1.06	-1	7	-5	24
L 2675N 1900W	41	1.1	12	-2	3	6	1.48	-1	-5	-5	44
L 2675N 1925W	12	0.5	13	2	2	3	1.18	-1	-5	-5	38
L 2675N 1950W	18	0.6	13	-2	3	4	1.63	-1	-5	-5	53
L 2675N 1975W	-5	1.9	20	3	5	12	2.16	-1	11	-5	91
L 2675N 2000W	5	-0.5	12	-2	5	6	1.88	-1	6	-5	91
L 2675N 2025W	-5	0.8	17	-2	5	14	2.22	-1	6	-5	112
L 2675N 2050W	6	-0.5	18	-2	6	13	2.52	-1	7	-5	95
L 2700N 0200W	20	-0.5	8	-2	4	9	1.28	2	28	-5	53
L 2700N 0300W	15	-0.5	B	-2	4	8	1.26	2	25	-5	50
L 2700N 0400W	11	-0.5	10	-2	4	10	1,18	2	28	-5	49
L 2700N 0500W	/	~0.5	13	-2	6	13	1.52	2	31	~5	47
L 2700N 0500W	21	0.5	15	-2	5	22	1.75	3	41	20	27
L 2700N 0700N	3/	-0.5	-5	-2	2	7	0.47	1	19	-5	25
L 2700N 0773W	30	0.7	R	-2	4	11	1.11	-1	6	-5	35
L 2700N 0800W	42	-0.5	Б	-2	4	11	0.99	2	25	-5	26
L 2700N 002JN	29 E	-0.0	-0	-2	2	1	0.8/	-1	7	-5	19
L 27000 00300	บ วา	9.7	-0 77	-2	2	17	1,19	-1	-5	-5	22
L 27000 0073#	21	1.7	27	-2	4	23	1.85	-1	-5	-5	27
L 2700N 1000N	2J 27	-0.5	y 14	-2	4	11	1.35	2	26	-5	37
2700N 1000N	27	-0.5	11	-2	2	11	1.28	2	31	-5	54
2700N 1200N	12	-0.5	0 (0	-2	о О	15	1,18	2	26	-5	63
E 2700N 1300N	21	-0.5	10	-2	5	10	2.04	3 2	40	18	/4
1 2700N 1400M	8	-0.5	17	-2	4	12	1,00	2	32	-0	80
L 2700N 1500N	10	-0.5	9	-2	4	10	1.70	2	30 25	-5	6U 60
L 2700N 1600W	13	-0.5	10	-2	5	10	1 49	2	20 21	-5	4D 50
L 2700N 1700N	25	-0.5	-5	-2	6	,, d	1.43	2	29	-5	J0 17
L 2700N 1800W	13	0.5	9	-2	5	15	1.21	3	47	9	77 20
L 2700N 1825W	-5	-0.5	5	-2	1	5	1.33	-1	Ğ	-5	32
L 2700N 1850W	482	-0.5	18	-2	2	ě	1.14	-1	11	-5	29
L 2700N 1875W	7	2.5	16	-2	4	19	2.09	-1	-5	-5	51
L 2700N 1900W	136	-0.5	-5	-2	5	7	1.26	2	30	-5	35
L 2700N 1925W	-5	0.7	10	-2	3	7	1.88	-1	6	~5	47
L 2700N 1950W	6	-0.5	7	-2	4	8	1.95	-1	-5	-5	57
L 2700N 1975W	6	0.B	29	-2	5	13	2,13	1	-5	-5	92
L 2700N 2000W	14	-0.5	11	-2	7	13	1.80	2	44	3	110
L 2700N 2025W	8	2.0	5	-2	4	11	2,12	-1	7	-5	89
L 2700N 2050W	59	0.9	13	-2	4	10	2.02	-1	-5	-5	82
L 2700N 2100W	33	2.4	7	-2	6	37	1.24	2	43	-5	49
L 2725N 0775W	8	-0.5	11	-2	3	7	1.83	-1	7	-5	37
L 2725N 0800N	7	-0.5	23	2	3	7	1.70	-1	-5	-5	35
L 2725N 0825H	30	-0.5	-5	3	3	6	1.18	- i	7	-5	21

Sample ID	Au	Αq	As	Bi	Co	Сu	Fe	Хo	Ph	Ch	7.0
	ppb	рра	pp∎	pp a	pp e	ppm	X	ppa	pça	pp e	ppe
L 2725N 0850W	173	0.5	12	-2	 3	 я	1 99	-1			 /c
L 2725N 0875W	132	0.7	10	3	3	7	2 09	-1	۱ د	- J	40
L 2725N 0900W	-5	0.9	12	5	3	10	2,03	-1	0 0	-J 5	
L 2725N 1825W	-5	0,6	-5	-2	2	5	1 45	-1	0 7	~J 5	33 27
L 2725N 1850W	-5	-0.5	10	-2	3	tt	1 72	-1	ć	-1	27
L 2725N 1875W	-5	-0.5	20	-2	2	44 9	1 35	-1	-5	-1	37
L 2725N 1900W	73	0.5		-2	3	7	1 95	_1	- 5	- J	27
L 2725N 1925W	-5	1.7	34	-2	5	13	2 15	-1	o a	-5	40
L 2725N 1950W	33	0.9	20	-2	3	R	1.94	-1	g	-5	5/ 5/
L 2725N 1975W	34	-0.5	24	-2	4	12	2.45	-1	7	_5	רע. דד
L 2750N 0775W	10	0.9	17	-2	3	9	1 94	-1	-5	 S	// דר
L 2750N 0800W	236	0.7	14	-2	ŝ	7	1.95	-1	-5	-J -5	3) 17
L 2750N 0825W	18	0.9	-5	-2	3	8	2.13	-1	-5	-J -5	47
L 2750N 0850W	14	-0.5	10	-2	2	7	1.63	-1	-5	-5	40 55
L 2750N 0875W	-5	0.7	8	-2	-1	10	0.75	-1	-5		0L 01
L 2750N 0900W	11	0.B	9	-2	3	9	2.38	-i	8	-5	27
L 2750N 1825W	33	0.8	-5	-2	4	10	1.88	-1	-5	-5	50
L 2750N 1850W	5	-0.5	~5	-2	2	7	1,90	-1	5	~5	51
L 2750N 1875W	-5	-0.5	22	-2	4	8	1.86	-1	7	-5	24
L 2750N 1900W	-5	0.8	-5	-2	3	7	1.62	-1	-5	~5	42
L 2750N 1925W	7	1.0	-5	-2	2	9	1.50	-1	5	-5	29
E 2750N 1950W	-5	-0.5	8	-2	3	10	1.75	-1	Š	-5	53
L 2750N 1975W	39	-0.5	-5	-2	3	10	1.96	-1	7	-5	50 60
L 2775N 0775W	56	-0.5	10	-2	2	5	1.53	1	-5	-5	26
L 2775N 0800W	19	-0.5	-5	-2	3	6	1.41	-1	-5	-5	36
L 2775N 0825W	41	~0.5	-5	-2	3	7	1,92	-1	5	-5	37
L 2775N 0850W	10	-0.5	-5	-2	-1	2	0.21	-1	8	-5	13
L 2775N 0875W	128	0.5	-5	~2	2	6	0.94	-1	5	-5	18
L 2775N 0900W	17	-0.5	10	-2	2	8	1.49	-i	5	-5	29
E 2800N 0200W	9	-0.5	9	-2	5	9	1.29	2	36	-5	91
L 2800N 0300W	22	-0.5	8	-2	5	8	1.32	2	33	-5	63
L 2800N 0400W	48	~0.5	5	-2	5	7	1.28	1	28	-5	57
L 2800N 0500W	32	-0.5	13	-2	7	15	2.02	3	45	16	52
L 2800N 0500W	17	-0.5	9	-2	5	15	1.57	2	41	7	30
L 2800N 0700W	18	-0.5	-5	-2	2	5	0.30	-1	21	-5	16
L 2800N 0775W	69	-0.5	11	-2	2	6	1.58	-1	10	-5	31
L 2800N 0800W	39	-0.5	9	-2	5	7	1.53	2	33	-5	35
L 2800N 0825W	9	-0.5	21	2	i	ŝ	1.44	-1	6	-5	31
L 2800N 0850W	9	-0.5	19	-2	2	7	1.58	-1	-5	-5	43
L 2800N 0875W	44	-0.5	11	-2	3	10	1.72	-1	-5	~5	41
E 2800N 0900W	19	-0.5	11	-2	5	12	1.33	2	41	6	29
L 2800N 1000W	18	-0.5	-5	-2	5	9	1.15	2	35	-5	27
L 2800N 1100W	19	-0.5	9	-2	5	9	1.49	2	37	-5	48
L 2800N 1200W	8	-0.5	11	-2	5	8	1.32	2	39	7	54
L 2800N 1300W	-5	-0.5	6	-2	5	6	1.15	2	30	-5	58
L 2800N 1400W	-5	-0,5	-5	-2	4	5	1.22	1	29	-5	38
L 2800N 1500W	11	-0.5	5	-2	5	7	1.35	1	28	-5	50
L 2800N 1600W	47	-0.5	-5	-2	Б	9	1.51	1	28	-5	62
L 2800N 1700W	13	-0.5	10	-2	5	7	1.42	2	35	-5	44
L 2800N 1800W	23	-0.5	-5	-2	5	9	1.43	2	31	-5	46

Sample ID	Au ppb	Ag ppe	As ppn	Bi ppna	Co ppn	Cu ppm	Fe X	ño ppa	Pb ppa	Sb ppm	Zn ppm
											
L 2800N 1900W	15	-0.5	-5	-2	5	8	1.24	2	31	-5	40
L 2800N 2000W	-5	-0.5	13	~2	7	12	1.91	3	41	9	99
L 2800N 2100W	-5	-0.5	7	-2	8	12	1.77	2	38	-5	74
L 2825N 0775W	8	-0.5	~5	-2	2	8	1.14	-1	-5	-5	27
L 2825N 0800W	137	-0.5	-5	-2	2	5	1.65	-1	6	-5	25
L 2825N 0825W	194	-0.5	12	-2	2	7	1.65	-1	7	-5	30
L 2825N 0850W	10	-0.5	6	-2	2	6	1.54	-i	-5	-5	34
L 2825N 0875W	45	-0.5	22	-2	2	7	1.96	-1	5	-5	33
L 2825N 0900W	172	-0.5	6	-2	-1	5	1.52	-1	5	-5	28
L 2850N 0775W	15	1.1	-5	-2	1	13	1.12	-1	5	5	26
L 2850N 0800W	157	0.5	19	-2	2	8	1.19	-1	8	-5	21
L 2850N 0825W	23	-0.5	-5	2	2	6	1.50	-1	6	-5	28
L 2850N 0850W	35	-0.5	24	-2	1	6	1.41	-1	-5	-5	26
L 2850N 0875W	5	-0.5	9	3	1	6	1.43	-1	-5	-5	26
L 2850N 0900W	82	-0.5	27	-2	2	6	1.64	-1	5	10	29
L 2850N 0925W	-5	0.7	-5	-2	1	7	0.75	1	7	-5	11
L 2850N 0950W	19	0.6	-5	-2	2	7	1.55	-1	-5	-5	32
L 2850N 0975W	6	~0.5	16	-2	2	9	1.59	-1	-5	-5	42
L 2875N 0825W	11	-0.5	-5	5	2	9	1.40	-1	7	-5	28
L 2875N 0850W	94	-0.5	-5	-2	2	7	1.12	-1	-5	-5	21
L 2875N 0875W	10	-0.5	9	-2	3	8	1.74	-1	6	-5	39
L 2875N 0900W	17	-0.5	10	-2	ł	6	1.42	-1	5	-5	40
L 2875N 0925W	8	0.7	6	2	-1	10	0,61	-1	5	-5	18
L 2875N 0950W	6	0.7	11	-2	i	10	0.83	-1	7	-5	17
L 2875N 0975W	8	-0.5	7	-2	2	6	1.43	-1	-5	6	40
L 2900N 0200W	10	-0.5	14	-2	6	12	1.60	3	42	12	64
L 2900N 0300W	23	-0.5	6	-2	5	7	1.27	1	31	~5	85
L 2900N 0400W	8	-0.5	7	-2	5	7	1.34	2	29	-5	52
£ 2900N 0500W	7	0.5	18	-2	5	16	1.64	3	· 55	33	53
L 2900N 0500W	-5	-0.5	9	-2	5	8	1.26	2	31	-5	35
L 2900N 0700W	6	-0.5	-5	-2	4	6	1.09	1	22	-5	52
L 2900N 0800W	9	-9.5	8	-2	4	9	1.01	2	38	-5	31
L 2900N 0825W	18	2.5	46	-2	2	33	2.05	-1	-5	-5	36
L 2900N 0850W	122	-0.5	9	-2	2	6	0.92	i	5	-5	30
L 2900N 0875W	40	-0.5	18	-2	2	5	1.35	-1	-5	-5	26
L 2900N 0900W	51	-0.5	6	-2	5	7	1.28	2	31	-5	35
L 2900N 0925W	-5	1.5	-5	3	2	12	0.68	-1	10	-5	28
L 2900N 0950W	13	1.8	8	-2	-1	16	0.49	- i	6	-5	24
L 2900N 0975W	13	-0.5	27	-2	3	8	1.86	-1	-5	7	55
L 2900N 1000W	-5	-0.5	8	-2	4	7	1.25	2	32	-5	35
L 2900N 1100W	9	-0,5	~5	-2	4	7	1.17	1	29	-5	49
Ł 2900N 1200W	5	-0.5	9	-2	4	3	1.40	2	33	-5	44
L 2900N 1300W	В	-0.5	Б	-2	5	7	1.41	2	31	~5	62
L 2900N 1400W	27	-0.5	-5	-2	5	9	1.27	t	31	-5	43
L 2900N 1500W	9	-0.5	-5	-2	4	5	1.25	i	25	-5	40
L 2900N 1500W	-5	-0.5	5	-2	S	8	1.43	1	28	-5	53
L 2900N 1700W	-5	-0.5	6	-2	4	5	1.42	1	22	-5	44
L 2900N 1800W	15	-0.5	-5	-2	6	9	1.67	1	32	-5	62
L 2900N 1900W	9	0,9	-5	-2	δ	11	1.50	· 1	29	-5	51
L 2900N 2000W	11	-0.5	-5	-2	5	8	1.65	1	31	-5	77

Sample ID	Åμ	Aa	As	Bi	Co	Ca	Fp	Mo	Ph	C.	7.0
	րրե	ope	ខ្ខុខភ	ppa	ppn	p p m	7.	ppe	96 0	ppm	20 000
L 2900N 2100W	-5	-0.5	-5			a	·				·
L 2925N 0825W	50	1.1	-5	-7	, 4	2 7.6	2.28	t	-5	-3	58
1 2925N 0850W	9	2,4	43	-2	4	34	1.65	-1	-5	-u -5	00 20
1 2925N 0875W	-5	1.4	11	-2	-1	10	0.39	1	-5	-J -5	37
L 2925N 0900W	8	0.6	-5	2	-1	12	0.48	-1	9	-5	22
L 2925N 0925W	6	1.0	-5	-2	-1	9	0.33	-1	-5	-5	10
L 2925N 0950W	6	1.0	-5	-2	-1	ç	0.27	-1	-5	-5	25
L 2925N 0975W	8	-0.5	10	2	3	13	2.19	-1	11	-5	43
L 2950N 0825W	9	-0.5	26	-2	3	19	2.37	1	.7	-5	55
L 2950N 0850W	12	-0.5	7	-2	3	14	2.04	-1	5	-5	51
L 2950N 0875W	-5	1.0	~5	-2	-1	6	0.34	-1	-5	-5	23
L 2950N 0900W	-5	1.4	-5	-2	-1	5	0.29	-1	-5	-5	17
L 2950N 0925W	9	1.7	6	2	-1	15	0.44	-1	-5	-5	34
L 2950N 0950W	7	1.4	22	-2	-1	8	0.31	-1	6	-5	34
L 2950N 0975W	20	6.3	35	-2	4	58	1.71	-1	-5	-5	38
L 2975N 0825W	9	2.4	14	-2	4	33	1.89	2	9	-5	44
L 2975N 0850W	7	2.5	34	2	5	25	2.30	-1	-5	-5	45
L 2975N 0875W	46	0.7	8	-2	3	12	0.94	2	6	-5	18
L 2975N 0900W	6	1.9	9	-2	5	24	1.07	1	-5	-5	23
L 2975N 0925W	6	1.6	11	-2	-1	16	0.1B	-1	-5	-5	24
L 2975N 0950W	13	2.3	20	-2	-1	19	0.53	-i	-5	-5	24
L 2975N 0975W	7	0.9	13	-2	2	11	1.25	~1	6	~5	28
L 3000N 0200₩	16	-0.5	-5	-2	4	5	1.50	1	26	-5	51
L 3000N 0300W	-5	-0.5	-5	-2	4	8	1.19	1	28	-5	47
L 3000N 0400W	80	-0.5	-5	-2	6	9	1.80	1	34	-5	71
L 3000N 0500W	-5	Ó.5	-5	-2	8	13	2.24	-1	43	7	78
1 3000N 0600W	20	0.9	-5	-2	9	22	1.90	1	40	-5	43
L 3000N 0700W	7	-0.5	-5	-2	5	6	1.33	1	32	-5	34
L 3000N 0800W	16	1,8	-5	-2	5	23	1.13	1	44	-5	38
L 3000N 0625W	9	2.6	9	-2	5	29	2.21	-1	8	-5	38
L 3000N 0850W	16	1.6	27	-2	3	34	1.71	-1	7	10	38
L 3000N 0875N	9	0.8	17	3	6	17	1.14	-1	6	-5	28
L 3000N 0900W	487	1.8	/	-2	3	11	0.53	1	27	-5	25
1 3000N 0923W	8	3.1	13	3	-1	10	0.29	-1	9	-5	27
L 30000 0330M	10	9.3	10	-2	2	15	1.4/	-1	-5	-5	32
L 3000N 09/3N	10	-0.5	30	2	4	1/	2.29	1	7	-5	50
L 3000N 1000W	20	-0.5	о Г	-2	4	2	1.29	1	26	-5	40
1 2000N 1200N	- J	-0.5	5	-2	5	5	1,15	1	26	-5	34
1 2000N 1200N	10	-0.5	0 E	-2	ວ 	6	1,10	1	31	-5	33
L 30000 14000	4J 5	-0.5	-5	-2	5	tı 	1.2/	1	28	-5	56
E 3000N 1500H	J 22	-0.5	-5	-2	3	3	0.89	1	22	-5	29
L 3000N 1600M	10	1.0	-0	-2	b 7	12	1.5/	1	43	-5	40
E 3000N 1700N	2	-05	~0 5	-2	1	12	2.08	l	48	8	58
1 3000N 1200N	ہ 2۔	-0.5	_G	-2	Ե	10	1.0/	1	31	-5	ے ا 27
1 3000N 1900N	-5	-0.5	-5	-2	5	8	1.32	2	33	-5	26
1 3000N 2000N	-5	-0.5	-5	-2	7	11	1.30	2	- J-J - D-D	-5	40
L 3000N 2100N	7	-0.5	-5	-2	7	11	1.08	1	38	-5	63
L 3000N 2200M	-5	-0.5	-5	-2	7	12	1.0/	2	4V 2E	-2	/6
L 3000N 2300M	-5	-0.5	-5	_2	י, ד	10	1 70	1	ა <u>ა</u> იი	-0	43 50
		V. U		-7	1	10	1./2	1	36	0	- 57

Sample ID	Au	Ag	As	8i	Co	Cu	Fe	ňo	Pb	Sb	Zn
	рръ	ppn	bbæ	ppe	ppn	ppm	7	ppm	ព្រួត	opa	pp∎
		•									
L 3025N 0825W	32	2.4	-5	5	2	34	1.70	-1	8	-5	41
L 3025N 0850W	17	2.6	-5	3	2	24	1.41	-1	-5	-5	38
L 3025N 0875N	20	2.4	10	-2	5	35	2.0B	2	-5	-5	36
L 3025N 0900W	19	3.8	16	-2	7	37	3.49	1	-5	-5	38
L 3025N 0925W	21	3.8	18	-2	4	24	2.08	3	7	-5	21
L 3025N 0950W	12	7.3	17	-2	2	23	1.00	-i	-5	-5	35
L 3025N 0975W	56	-0.5	14	-2	2	5	1.44	-i	-5	-5	39

`

APPENDIX 3

Rock Survey Results

.

						14632-328			t===== = ====				+	- denoi	tes (
Sample ID	Ац ррб	Ag ppe	As po∎	₿i pp#	b3 ∎qq	Co ppe	Cr pp∎	Cu ppo	Fe Z	Mn pp=	Но рре	Ni ppo	Pb pp∎	Sb pp∎	¥ pp∎	Zn ppe
WH-88-1 WH-BB-2	153 399	-0.5 1.3	15 6	-2 -2		6 -1		23 17	1.39 0.55		2 3		29 18	-5 -5		69 27
Z-88-R 800 Z-88-R 801	21 2490	-0.5	13 -5	-2 -2	-1 -1	5	61 205	2 4 24	1.77	644 745	-1 -1	5	11 -5	-5	25	65 54
Z-88-R 802 Z-88-R 803	241 281	-0.5 -0.5	-5 5	-2 -2	-1 -1	15 15	102 108	15 B	3.82 3.87	1592 1477	-1 -1	6 6	10 9	-5 -5	98 104	101 115
7-09-K 804	18	1.1	-5	-2	-1	2	219	13	1.18	378	2	4	8	-5	13	30

<u>ippindis_4</u>

Project: 586

lane: MIT PROPERTY

* - demotes (

<u>Geochemical Analysis Results</u>

TERICE || 1

SAIPLE Id	roct type	length/ depth	1e	łg	La .	81	Ci	Ce	Ct	Cu	Je	Ne.	Ne	Ħ	Ph	56	Ŧ	ĩa
		1	b bp	<u>P</u> P=	edd	<u>99</u> 2	ppa -	}}•	9 9 9	1 44	١	2 Pita	ppm	3 9 4))H	Me	1 de la compañía de la	1 94
33326	£111	3.1	31	-1.5	13	-1	-1	6	111	11	2.03	46	-1	11	5	-5	4	45
55327	till	3.4	21	-4.5	-5	-2	-1	1	104	11	2.46	574	-L	12	i	-5	45	55
5532	till	3.8	1	4.5	17	-1	-1	6	122	12	2.23	595	-1	12	1	-5	52	53
55325	till	3.0	- 69	-0.5	6	-1	-l	6	97	13	2.17	622	-1	9	10	-5	51	51
55330	till	3.1	- 14	1.6	-5	-2	-1	5	51	12	1.01	536	-1	•	1	-5	41	61
99J)R	t111	3.0	92	¥.5	-5	-2	٠l	5	96	1	1.95	584	-1	,	-5	-5	44	42
99332	till	3.1	13	1.7	-5	-1	-1	7	103	- 14	2.54	636	-1	11	15	-5	53	51
99333	нц	3.0	- 41	2.5	-5	-1	-1		122	11	2.35	924	1	10	11	-5	- 19	- 47
99334	t111	3.1	37	-1.5	12	-2	-1	£	142	12	1.24	619	-1	5	11	-5	- 48	43
99335	till	3.0	53	1.1	1	-2	-1	5	114	Lŧ	2.11	497	-1	11	9	-5	- 44	11
99336	till	3.4	34	4.5	-5	-2	-1	6	101	13	2.32	1897	ł	10	12	-5	- 45	59
99337	till	3.1	12	-1.5	-5	-2	-1	5	119	10	2.17	60	1	LU	9	-5	41	42
55338	tin	3.0	17	-4.5	27	-2	-1	6	133	11	2.36	544	-1	10		-5	51	- 44
33333		371	1	-4.5	-5	-2	-1	6	107	10	2.34	550	-i	,	11	-5	45	4
33348	t111	3.1	11	1.5	-5	-1	-1	6	124	10	2.36	544	2	11	1	-5	- 41	- (1
33345		5,8	. H	1.5	11	-1	-1	5	116	1	2.39	595	1	7	14	-5	47	39
77392		3.		1.3	-5	-7	-1	I	115	16	2.39	633	1	-	В	-5	51	39
33343		\$. B	1	-1.5	-)	1	-1			11	1.20	993	-1	,	- 1	5	16	
77351		3.8	15	-1.3	- 3	-1	-1)	111	11	1.71	510	2		11	-5	41	- 42
77347			136	-1.5		-1	-1		117	11	1.11	- (4)	2	3	11	-5	45	- 40
773/0	e.s. pioijje Pl	U-U .5	•	1.1	- ?	-1	-1		11	17	2.67	1531	-1	15	-5	-5	56	- 54
37128	w.w. protite PE	1.1-1.1	124	-1.)	11	-1	-1	1		12	2.20	551	-1	14	12	-5	64	54
44144	w.w. presile #2	U-U.J	-)	-1.3	21	-1	-] t	2	115	10	1.99	432	3	H	14	-5	- 63	- 65
22344	athe Atoling St	1.1.1	14	1.3	11	-1	-1)	18	10	1.35	(17	1	1	10	-5	52	51

Project: 586

:

Hane: THE PROPERTY

.

Geochemical Amalysis Results

	TRRICE # 2												t	t – dei	iotes <			
322222													******	. * * * * * * * * * *	ct\$\$\$\$	******	******	1111138
SAMPLE Ed	rock type	interval/ lengtb)u	- Jg	15	H	Cđ	Co	Cr	Cu	7e	Ka	No	₿i	11	\$	¥	In
		3	99 6	ppn	₽ ₽ ■	86e	ppe) ja	} 70) și și	١	778))a	ppa	t ha	99 0	ppa	20a
99347	t111	3.0	12	-1.5	-5	-2	-1	1	196	15	2.59	596	1	15	10	-5	55	
99348	till	3.0	251	1.1	-5	-1	-1	ŝ	183	15	2.32	512	2	11	13	-5	50	44
99349	tin	3.1	- 48	-1.5	14	-1	-1	7	56	13	7.50	567	ī	15	1	-5	55	
\$\$350	till	3.0	-5	-1.5	-5	-2	-1	Ì	12	12	2.38	533	-1	11	- 10	-5	52	- 44
99201	till	3.0	21	-1.5	31	-2	-1	Ē	117	Ħ	2.25	414	-1	12		-5	50	31
39202	till	3.0	1	-4.5	-5	-2	٠Ī	Ē	76	11	2.22	468	-ł	12	10	-5	58	
992#3	till	3.1	25	1.1	-5	-2	-1	É.	115	12	2.22	512	-1	1		-5	- 8	42
99284	till	3.0	24	-1.5	Ì	3	-1	Ĩ	111	13	2.52	573	-1	21	11	-5	54	4
59205	till	3.0	11	-0.5	-5	-2	-1	7	93	13	2.34	530	-1	9	5	-5	52	43
99286	till	3.0	12	-1.5	-5	-2	-1	1	183	15	2.55	511	-1	15	1	-5	55	45
3920 7	till	3.0	1	-1.5	5	-2	-1	5	119	25	2.35	583	-1	12	5	-5	46	43
55354	o.b. profile	1-1.1	-5	-0.5	15	-1	-1	F	65	ŧ	2.46	397	-1	1	1	-5	- 43	46
<u>99396</u>	e.b. profile	1.4-1.7	-5	-1.5	-5	-2	2	7	64	11	2.17	451	-i	10	1	-5	55	50
99385	o.b. profile	₽.7-1.2	22	-0.5	11	-2	-1	6	IJ	10	1.94	432	-1	7	7	-5	49	47
99375	s.b. prefile	1.2-1.7	25	1.7	22	-2	-i	5	77	11	1.91	562	-1	,	7	-5	53	43

Project: 586

Bane: WHY PROPERTY

Geochemical Analysis Results

	TREACE 3												I	- den	etes (
Sample Id	rock type	length/ depth B		بد	61 17) bi bi	Cd PPP	Co P p m	CC	Ca PP=	70 1	Ka Ka Ypu	ke Ke	Ni ppa	69 69	S) PP=	4 9 6	bbe II
									•••••						******			•••••
37101	till	3.1	10	-4.5	12	-2	1	÷	45	12	1.11	432	2	10	,	-5	43	41
37142	till	3.4	30	-1.5	6	4	1		78	11	2.10	495	2	B	L L	-5	- 43	- 17
37103	till	3.1	34	-1.5	15	2	-1	1	82	12	1.94	583	1	10	1	-5	45	- 44
37184	till	3.4	121	-0.5	•	-1	-1	1	- 94	Ð	2.12	523	-1	9	1	-5	47	-11
37105	till	3.1	1	-1.5		2	2	- F	95	28	1.11	521	2	13	14	-5	43	64
37106	till	3.1	31	-4.5	15	-2	-1	6	- 19	12	1.91	559	-1	1	3	-5	41	-11
37107	t111	3.0	1	-1.5	-5	2	-1	6	IF.	11	2.11	572	-1	10	1	-5	- 46	- 45
37184	tiil	3.1	242	-0.5	n	-2	-1	5	105	10	1.94	582	-1	1	11	-5	44	- 43
37109	t111	2.0	6	-1.5	15	-2	-1	1	93	12	2.25	591	-1	9	1	-5	46	52
37110	tHL	3.1	1	-0.5	B		-1	ŧ.	142	- 14	2.41	537	-1	11	3	-5	54	- 50
37111	till	3.0	łl	-1.5		-2	1	9	- 58	15	2.70	537	2	13	11	-5	- 65	54
37112	till	3.1	-5	-0.5	H	2	-1	1	96	Li	2.42	529	-1	15	1	-5	55	52
37113	till	1.4	- 47	-1.5	20	-2	-1	1	97	13	2.36	526	-1	11	1	-5	- 54	50
99399	e.b. profile #1	1-1.3	15	-1.5	12	-1	-1		123	LF	1.#	254	-1	1	-5	-5	39	- 44
33485	e.b. profile #1	1.3-1.1	1	-1.5	6	-2	-1	£	01	•	1.99	- 444	-1	•	11	-5	- 59	- 44
55182	a.b. profile Pl	1.1-1.1	1	-1.5	- 19	-1	-1	ŧ	14	12	2.54	411	-1	12	-5	-5	- 64	- (0
99483	o.b. profite Pl	1.4-1.5	113	-1.5	,	-2	-1	- 4	- 33	•	1.64	452	-1	7	5	-5	37	- 63
33187	a.b. profile #2	1-1.1	- 46	-4.5	27	-2	-1	Ţ	14	11	2.45	545	-1	1	1	-5	\$2	- 56
55484	o.b. profile 22	1.1-1.1	-5	-1.5	15	-1	-1	3	55	•	2.60	552	-1	1		-5	13	54
55184	a.b. profile #2	ŧ.9-L.1	-5	-1.5	-5	-1	2	Ð	52	15	3.28	436	-1	20	6	-5	74	51
55483	o.b. profile P2	1.1-1.4	1	-1.5	13	-1	-1	1	74	11	1.99	- 617	-1	17	5	-5	- 44	41
33186	a.b. profile #2	1.4-1.6	H	-1.5	11	-1	-1	4	- 18	11	1.11	537	-1	5	-5	-5	34	- 44

Project: 506 Name: WHT PROPERTY

.

.

,

-

Geochemical Analysis Results

TRENCH 14

SAMPLE ID	zock type	interval/ length	λq	Åg	ls	Bi	Cđ	Co	Cr	Cu	Fe	Mn	No	Ni	Pb	Sd	۷	Ia
		1	ppb	pp∎	pp n	ppn	ppa	ppm	ppm	ppm	*	p p n	ppm	pp∎	ppæ	ppn	pp	₽₽₽
99149	granitic	3.0	-5	-0.5	71	-2	-1	5	111	9	1.72	774	-1	4	28	-5	23	50
99148	granitic	3.0	8	-0.5	-5	-2	-1	5	125	13	1.97	659	-1	4	17	-5	32	49
99147	granitic	3.0	ŝ	0.6	-5	-2	-1	5	94	12	1.78	\$43	-1	5	9	-5	26	52
99146	granitic	3.0	ş	-0.5	-5	-2	-1	5	131	13	1.85	\$44	-1	5	7	-5	29	86
99145	granitic	3.0	5	-0.5	-5	-2	-1	5	198	11	1.74	\$44	-1	4	10	-5	26	52
99144	granitic	3.0	6	-0.5	-5	-2	-1	5	103	12	1.77	600	-1	6	\$	-5	28	52
99275	granitic	3.0	-5	-0.5	25	-2	-1	5	99	13	1.63	629	-1	3	7	-5	22	58
99274	granitic	3.0	-5	-0.5	12	-2	-1	5	92	11	1.71	596	-1		7	-5	31	63
99273	granitic	3.0	249	2.0	12	-2	-1	10	102	15	3.00	838	-1	24	12	-5	66	\$2
99272	granitic	3.0	168	1.2	-5	-2	-1	12	10\$	17	3.40	908	-1	35	16	-5	77	66
99271	till	3.0	67	0.5	6	-2	-1	9	90	15	2.90	814	1	19	11	-5	64	61
99270	till	3.0	23	0.6	1	3	-1	6	82	11	2.32	607	-1	11	- 14	-5	51	47
99269	granitic	1.5	36	-0.5	12	-2	-1	17	108	41	3.26	694	1	27	8	-5	71	110
99268	granitic	1.5	26	-0.5	10	-2	-1	6	108	13	2.41	719	-1	9	14	-5	55	55
99267	clay	3.0	27	-0.5	9	-2	-1	6	109	13	2.12	\$17	-1	11	7	-5	49	71
99265	clay	1,0	35	-0.5	13	-2	-1	6	11#	13	1.97	487	-1	10	10	-5	47	48
99265	clay	2.0	40	0.6	16	3	-1	5	117	12	1.75	509	-1	6	5	-5	37	52
99264	clay	3.0	9	0.6	9	- 2	-1	4	115	12	1.73	527	-1	\$	-5	-5	35	51
99263	clay	3.0	10	-0.5	7	-2	-1	5	99	11	1.83	589	-1	- 4	8	-5	35	59
99262	clay	3.0	13	0.5	5	-2	-1	ŧ	102	12	1.65	416	-1	8	11	-5	39	38
99251	clay	3.0	16	-0.5	-5	2	-1	4	110	13	1.76	458	-1	6	•	-5	41	42
99260	clay	3.0	23	0.5	-5	-2	-1	- 4	103	12	1.69	437	-1	10	6	-5	40	42
99259	clay	3.0	11	0.5	-5	-2	-1	4	104	11	1.61	405	-i	1	11	-5	36	41
99258	clay	3.0	6	-0.5	13	-2	-1	5	135	13	1.95	590	-1	1	7	-5	42	55
99257	clay	3.0	17	0.6	12	-2	-1	5	124	12	1.92	511	-1	5	7	-5	45	46
99256	clay	3.0	26	-0.5	۶.	-2	-1	4	132	12	1.79	477	-1	10	8	-5	42	70
99255	clay	3.0	22	-0.5	-5	-2	-1	5	122	14	1.89	535	-1	8	7	-5	13	46

* - denotes <

TRBNCH # 4 (continued)

SAMPLE I O	rack type	interval/ leagth	Åı	Åg	2 5	Bİ	Cil	Co	Cr	Cu	l e	jin (No	li	Pb	56	¥	In
		1	ppb	ppn	999	ppa	ppe	PP	199	ppa	1	<u>bba</u>	<u>ppn</u>	<u>ppa</u>	<u>bba</u>	P Pa	his	ppe
3 3254	clay	3.0	24	-1.5	5	-2	-1	5	142	12	1.96	495	-1	9	10	-5	46	43
99253	granitic	3.1	1	-0.5	-5	-2	-1	4	174	11	1.62	551	-1	12	1	-5	29	61
99252	granitic	3.0	-5	-1.5	1	-1	-1	2	192	5	0.85	319	-1	6	-5	-5	13	21
99251	granitic	3.0	5	1.1	15	-2	-1	1	144	3	1.71	249	- i	4	6	-5	1	- 14
99167	gramitic	3.0	11	-1.5	16	-1	-1	2	183	5	0.75	383	ł	3	11	-5	10	- 19
\$9175	gramitic	3.1	27	-1.5	7	-2	-1	5	120	15	1.38	789	-1	4	10	-5	38	- 54
99174	granitic	3.0	-5	-1.5	,	-2	-1	5	125	H	1.92	834	-1	7	11	-5	32	- 68
11173	granitic	3.0	•	-1.5	13	-2	-1	5	155	12	1.17	558	3	6	15	-5	26	39
93172	granitic	3.0	1	-1.5	-5	-2	-1	3	14#	9	1.11	455	-1	4	7	-5	21	43
\$9171	gramitic	3.8	1	-1.5	-5	-1	-1	5	123	14	2.11	123	·Ì	3	1	-5	36	67
99176	gramitic	1.5	Iŧ	-1.5	14	4	-1	5	124	13	2.2	746	-1	1	,	-5	42	- 68
99169	in	1.5	379	-1.5	-5	-2	-1	É.	121	29	2.83	\$20	-1	10	10	-5	44	51
55168	gramitic	3.0	9	-1.5	1)	-2	-1	5	121	17	2.01	116	-1	7	15	-5	39	51
19166	aranitic	1.1	-5	-1.5	13	-2	-1	- i	112	Ð	1.14	(#3	-1	ŝ	1	-5	36	55
\$\$165	graaitic	2.1	-5	-1.5		3	-1	Ē.	122	43	2.14	1165	-1	i i	21	-5	36	52
99437	e.b. profile Pl	1-1.4	-5	-1.5	-5	-2	-1	5	121	1	2.11	412	ī	Í	1	-5	4	- 11
1943	o.b. profile Pl	1.1-1.1	-5	1.6	-5	-2	-1	5	93	16	2.35	417	-1	12	Í	-5	51	59
99439	e.b. erofile P2	1-1.4	-5	1.5	21	-2	-1	5	95	1	2.13	357	Ī	1	i	-5	49	51
33448	o.b. profile Pi	0.4-1.0	16	1.5	-5	-2	-1	5	95	H	2.19	521	-1	ĥ	-5	-5	52	53
99441	a.b. profile P2	1.0-1.4	12	1.5	19	-1	-1	3	11	ī	1.71	376	-1	4	Ĭ	-5	45	34
99442	o.b. arofile Pl	1.4-2.4	12	-1.5		-2	-1	3		j	1.85	424	-1	7	š	- j	47	11
19443	s.b. mefile P2	2.4-2.2	16	-1.5	-5	-2	-1	i	105	ū	2.13	586	-1	5	Ē	-5	47	. ii

1

Project: SOS

Name: VET PROPERTY

* - denotes (

Geochemical Analysis Results

TRENCE 1 5

.

SAMPLE rock ΤĒ Pb Sb ¥ length/ λu λç ٨s 81 Cđ Co Ct C₽ fe Кn No. 10 ID type deptb \$ pp∎ ppa ₽₽∎ 1 ppb ppn ppn pps ppa pps ₽₽∎ pon pp pp∎ pps ppa -------99351 till 3.0 22 -0.5 13 -5 85 11 2.08 \$18 -5 44 49 -2 -1 -1 7 7 -5 35 99352 3.0 -0.5 14 -2 -1 ţ 92 11 1.84 611 -1 6 6 50 till -5 99353 till 3.0 17 0.5 12 -2 -1 6 81 10 2.13 **615** -1 12 -5 -5 49 51 99354 till 3.0 ŧ -0.5 18 -2 -1 5 **\$**1 11 1.81 498 -1 7 8 -5 39 13 3.0 10 -2 5 11 1.95 -1 7 10 -5 42 47 \$\$355 till 30 -0.5 1 9 504 -2 -1 6 82 2.05 -1 8 5 -5 45 48 99356 EIII 3.0 \$ -0.5 3 10 466 3.0 -0.5 -1 -1 6 80 2.05 487 -1 7 1 -5 46 47 99357 till -5 7 9 -5 99358 till 3.0 -5 -0.5 -5 -1 -1 ٤ 88 10 2.40 710 -1 7 7 53 61 99359 till 3.0 26 -0.5 19 -2 1 5 83 2.05 512 -1 5 6 -5 47 50 10 -0.5 -2 5 83 1.85 -1 -5 -5 99360 till 3.4 5 -5 -1 9 469 8 43 42 99361 tIII -2 -1 5 82 2.10 8 -5 46 49 3.0 11 -0.5 8 9 559 -1 1 1.83 -5 99362 £111 3.0 6 -9.5 -5 -2 -1 5 90 9 538 -1 \$ \$ 38 46 99363 till -0.5 5 -2 4 100 1.81 500 -1 8 1 -5 40 40 3.0 106 -1 3 99364 grapitic -0.5 -2 5 87 1.88 9 -5 41 40 3.0 43 1 -I 9 541 -1 8 99365 granitic 3.0 10 -0.5 -2 -1 5 99 10 2.01 559 -1 5 1 -5 41 **45** 10 -2 5 2.18 8 -5 41 57 99366 gramitic 3.0 -5 -0.5 18 -1 ₿ł. 10 \$47 -1 8 -2 5 6 8 -5 38 55 99367 granitic 3.0 1 -0.5 6 1 87 13 2.13 722 -1 -5 -2 -1 5 82 12 2.16 \$04 10 45 49 99368 t111 3.0 31 -0.5 15 -1 \$ 2.16 -5 41 99359 till 3.0 -14 0.€ -5 -2 -1 6 15 12 591 -1 12 -5 47 99370 till 198 -8.5 -5 3 -1 6 11 27 2.22 618 -1 13 -5 -5 50 51 3.0 99371 tIII 3.0 178 -0.5 17 -2 -1 6 65 H 2.05 596 -1 12 -5 -5 46 39

SAMPLE 10	rock type		length/ depth	<u>k</u> ı	hg	Į1	Bi	Cđ	Co	Cr	Ce	?e	Ät	X0	I ł	Þ	Ð	Ÿ	Iz
	-			ppb	bbe	ppæ) pe	6 be	ppm	ppn	66a	١	b ba	ppz	<u>bbu</u>	ppm	ppa)))	p pu
19427	a.b. prafile	•	1-1.3	7	1.6	-5	?	-1	4	148	11	7.89	386		18	11			
99428	s.b. prefile	n	1.3-1.1	25	-1.5	Ē	-2	-i	ŝ	103	ii	2.14	375	-1	12	ï	-5	ŝ	- 63
99429	o.b. profile	P1	1.1-1.7	29	1.6	-5	-1	~1	4	100	11	2.14	(13	-1	9	1	-5	53	42
99430	s.s. profile	P 2	1-1.3	69	1.4	10	2	-i	1	19	10	2.31	687	I	10	1	-5	58	59
99431	o.b. profile	22	1.3-1.1	13	-0.5	-5	-2	-1	1	114	9	2.59	551	-1	21	6	-5	74	- 44
55432	o.b. profile	12	1.1-1.4	\$	1.7	-5	-2	-1	4	100	10	2.12	447	-1	6	1	-5	52	31
99433	o.b. profile	P2	1.4-1.\$	55	1.7	-5	-2	-1	3	- 64	10	1.61	365	-1	6	-5	-5	44	35
99434	s.b. profile	23	1-1.3	10	1.1	5	-2	-1	3	11	Iŧ	1.69	273	-1	5	-5	-5	- 44	36
99435	o.b. profile	23	1.3-1.6	-5	-1.5	17	-2	-1	ŧ	91	1	1.93	385	-1	9	6	-5	- 49	- 39
99436	s.b. profile	13	1.6-1.4	- 15	1.6	-5	3	-1	4	- 85	1	1.92	443	-1	9	10	-5	58	36

•

APPENDIX 5

WHY 2 Property VLF Results

D.A. = Dip Angle F.F. = Fraser Filter Value

Grid Location		Hava	ii	Annapolis		
		D.A.	F.F.	D.A.	F.F.	
*						
L2000N	1575¥	-4		5		
	1550₩	-6	8	2	13	
	1525W	-6	9	-2	8	
	1500W	-12	-2	-4	1	
	14751	-9	-10	-4	-3	
	1450¥	-7		-3		
	1425	-4		-2		
	1175W	-5		-3		
	1150W	-4	5	-5	-10	
	1125W	-9	-2	0	-10	
	1100W	-5	2	2	-5	
	1075₩	-6	7	3	-2	
	1050W	-10	-1	4	0	
	1025W	-8		Э		
	1000W	-7		4		
L2025N	12500	1		-2		
	12250	-6	t	3	-3	
	1200W	-4	-4	2	-1	
	1175W	-2	2	2	-4	
	1150W	-4	9	4	-1	
	1125₩	-4	13	4	-1	
	1100W	-11	1	3	-3	
	1075W	-10	-7	6	3	
	10500	-6	-2	4	5,	
	1025W	-8	-3	2	0	
	1000W	-6	~12	3	-2	
	975W	-5	-21	3	-4	
	950W	3	-8	4	-1	
	925N	7	16	6	9	
	900W	-1	15	2	8	
	875W	-5		-1		
	850W	-4		1		
L2050N	1250H	0		-4		
	12250	0	1	-3	-3	
	1200W	· 0	8	-4	-10	
	11750	-1	14	0	-11	

Grid Location		Havai	ii	Annapolis		
		D.A.	۶.۶.	D.A.	F.F.	
	*		+= -			
L2050N	1150W	-7	11	3	-6	
	11250	-8	10	4	-1	
	1100W	-11	8	5	2	
	1075W	-14	-1	3	Q	
	1050W	-13	-8	4	0	
	10250	-11	-7	4	-2	
	10000	-8	-10	3	-7	
	975W	-9	-17	7	-7	
	950W	0	-6	7	2	
	925W	0	10	10	15	
	9000	-3	10	2	12	
	B75W	-7		0		
	850W	-6		0		
L2075N	1575W	-4		7		
	1550W	-5	7	4	9	
	15250	-8	4	2	8	
	1500W	-8	-1	0	7	
	14754	-9	-9	~2	Э	
	1450W	-6		-3		
	1425W	-2		-2		
	1250W	-4		-4		
	12250	-3	-8	-5	-2	
	1200W	-3	-11	-5	-7	
	11750	4	4	-2	-10	
	1150W	1	14	-1	-14	
	1125₩	-4	12	4	-10	
	1100W	-5	11	7	-1	
	1075W	-10	3	6	1	
	10500	-10	-3	6	2	
	10250	~B	-3	6	2	
	10000	-9	-7	4	-4	
	9750	-5	-12	Б	-6	
	300M	-4	-6	8	4.	
	AZOM	1	Ь	B	13	
	900M	-2	2	2	1	
	8/50	-4		1		
	820W	-2		2		
L2100N	1575W	-4		5		
	1550W	-6	8	2	13	
	15258	-6	9	-2	8	
	1500₩	-12	-2	-4	1	
	14754	-9	-10	-4	-3	
	1450W	-7		-3		
	14250	4		-2		

_

.

Grid Location		Havai	ii	Annapolis		
		D.A.	F.F.	Ð.A.	F.F.	

L2100N	1250W (NO STATION)			-4		
	1225¥	-3		-3	-3	
	1200W	-2	-10	-4	-4	
	1175W	3	1	0	1	
	11501	2	16	-3	-7	
	1125W	-2	21	-2	-20	
	1100	-9	13	6	-9	
	10750	-12	0	9	5	
	1050W	-12	-6	4	0	
	1025W	-9	-5	6	-6	
	1000	-9	-3	1	-8	
	9750	-7	-2	9	-8	
	950W	-8	-3	12	3	
	925W	-6	-2	12	15	
	SOON	-6	-2	6	11	
	8730	-6		3		
	W068	-4		4		
L2125N	1675 0	-4		10		
	1650W	-5	-3	8	12	
	16251	-4	-5	4	8	
	1600W	-2	0	2	3	
	1575H	-2	3	2	5	
	1550N	-4	1	1	8	
	1525	-3	1	-2	4	
	1500W	-4	1	-3	-i	
	1475	-4	2	-2	-2	
	14500	-4		-2		
	1425₩	-6		-1		
	1250W	-3		-2		
	1225₩	0	-i	-3	-3	
	1200	-1	1	-2	-7	
	1175W	-1	1	0	-7	
	11508	-1	4	2	-5,	
	11250	-2	11	3	-5	
	1100W	-4	16	4	-5	
	1075W	-10	7	6	-2	
	1050W	-12	-6	6	1	
	10250	-9	-7	6	1	
	1000	-7	-3	5	1	
	975W	-7	-3	6	-1	
	950W	-6	-1	4	-2	
	925W	-5	2	8	4	
	900W	-7	2	4	4	
	875W	-6		4		
	850W	-8		4		

Grid Location		Havai	i	Annapolis		
		Q.A.	F.F.	D.A.	F.F.	
L2150N	1675W	-2		В		
	1650W	-4	2	4	6	
	16250	-4	0	3	5	
	1600W	-4	-1	3	13	
	15750	-4	-2	-1	15	
	1550W	-3	0	-6	6	
	1525₩	-3	0	-7	-2	
	1500W	-4	-3	-6	-4	
	1475₩	-2		-5		
	1450₩	-2		-4		
	1250W	-5		1		
	1225	-4	-4	1	-2	
	1200W	-3	-3	2	-1	
	1175W	-2	-2	2	4	
	11500	-2	-3	2	6	
	11251	-1	0	-2	-2	
	1100₩	0	12	0	-10	
	1075W	-3	18	2	-11	
	1050W	-10	7	6	-5	
	1025W	-11	-4	7	0	
	1000W	-9	-6	6	0	
	975W	-8	-7	7	0	
	950W	-6	-4	6	3	
	925W	-4	2	7	8	
	900W	-6	4	3	4	
	875W	-6		2		
	850N	-8		4		
L2175N	1675W	4		8		
	1650W	1	14	7	16	
	1625W	-5	5	2	16	
	1600W	-4	2	-3	6	
	15750	-5	7	-4	2	
	1550W	-6	8	-3	2-	
	1525₩	-10	-i	-6	-1	
	1500W	-9	-9	-3	2	
	1475₩	-6		-5		
	1450W	-4		-6		
	1250W	-13		-3		
	1225	-13	-8	-2	-3	
	1200₩	-11	-12	-3	-5	
	1175W	-7	-10	1	6	
	1150W	-5	-8	-1	16	
	1125₩	-3	-7	-7	10	
	1100W	-1	7	-9	-6	
	1075W	0	27	-9	-20	

Grid Location		Hawa	ii	Annapolis		
		D.A.	۶.۶.	D.A.	F.F.	
L2175N	10500	-11	23	-1	-18	
	1025W	-17	6	3	-10	
	1000₩	-17	0	5	-6	
	975W	-17	-2	7	-2	
	950W	-17	-4	7	8	
	925W	-15	-4	7	14	
	900W	-15	-6	-1	2	
	875W	-13		1		
	850W	-11		3		
L2200N	1675W	-2		8		
	1650W	2	3	8	15	
	1625W	-1	7	4	18	
	1500W	-2	5	-3	6	
	1575W	-4	1	-3	٥	
	1550W	-4	2	-2	5	
	1525W	-3	9	-4	6	
	1500W	-7	5	-6	2	
	1475W	-9		-6		
	1450W	-6		-6		
	1250W	7		-8		
	1225₩	-13	16	3	-4	
	1200W	-11	-6	2	11	
	11759	-11	-9	-3	7	
	1150W	-7	-9	-3	9	
	11251	-6	-9	-5	7	
	1100W	-3	i	-10	-11	
	1075₩	-1	20	-5	-21	
	1050W	-9	20	1	-14	
	1025W	-15	7	5	-4	
	1000W	-15	2	5	-2	
	975W	-16	-2	5	-2	
	950₩	-16	-8	7	4	
	9251	-13	-7	5	10	
	900W	-11	-3	3	10	
	875¥	-11		-1		
	850W	-10		-i		
L2225N	16750	-3		9		
	1650W	-1	-2	4	20	
	16250	0	4	-3	9	
	1500W	-2	7	-4	0	
	1575W	-3	9	-4	-3	
	1550W	-6	8	-3	1	
	1525₩	-8	4	-2	7	
	1500₩	-9	0	-6	2	
	1475W	-9		-6		

Grid Location		Havaii			Annapolis		
		D.A.	F.F.		D.A.	E.F.	
L2225N	1450₩	-8			-4		
	1250₩	-6			4		
	1225	-9	9		3	-7	
	1200W	-11	2		8	i	
	11750	-13	-12		6	10	
	1150W	-9	~16		4	6	
	11250	-3	-6		0	1	
	1100W	-3	-2		4	7	
	1075W	-3	-5		-1	6	
	1050W	-1	-10		-2	4	
	1025W	0	-17		-1	14	
	10000	6	-12		-6	20	
	975W	10	1		-11	5	
	950W	8	17		-16	-26	
	925W	7	28		-6	-31	
	900W	-6	12		5	-8	
	875W	-7			4		
	850W	-4			3		
L2250N	1675W	-3			-3		
	1650W	1	1		-2	-1	
	1625¥	-1	11		-2	-1	
	1600W	-2	16		-2	t	
	15750	-9	8		-1	6	
	1550W	-10	-3		-4	5	
	1525W	-9	-5		-5	-1	
	1500%	-7	-4		-5	-5	
	1475W	-7			-3		
	1450W	-5			-2		
	1250₩	-6			4		
	12250	-7	6		7	4	
	1200W	-9	-1		3	4	
	1175W	-10	-8		4	3.	
	1150W	-5	-4		2	4	
	1125W	-6	-1		2	5	
	1100W	-5	-5	sک	0	2	
	1075W	-5	-11		-1	-1	
	1050W	-1	-11		1	4	
	1025W	2	6		-1	-3	
	1000W	3	25		-3	-22	
	975W	-8	18		6	-20	
	950W	-12	-3		12	3	
	925W	-11	-11		11	15	
	900W	-6	-4		4	6	
	875W	-8			4		
	850W	-7			5		

D.A. F.F. D.A. F.F.	Grid Location		Kava:	ii	Annapolis		
L2275N 1675N -7 -5 L2275N 1675N -7 -5 -2 1650N -5 6 -3 4 1600N -5 12 -5 B 1550N -11 0 -9 0 1525N -13 -4 -9 -8 1500N -9 -2 -7 -10 1475N -11 -3 -3 -6 1050N -5 2 -7 -10 1475N -11 -3 -7 -6 1025N -2 -10 0 7 1000N 0 3 -3 -6 975N 3 22 2 -16 900N -9 -4 7 5 975N -8 15 5 10 900N -9 -4 7 5 975N -8 3 8 3 <th></th> <th></th> <th>D.A.</th> <th>F.F.</th> <th>D.A.</th> <th>F.F.</th>			D.A.	F.F.	D.A.	F.F.	
L2275N 1675N -7 -5 16500N -5 6 -3 4 16500N -5 6 -3 4 1600N -5 12 -5 B 1550N -11 0 -9 0 1525N -13 -4 -9 -8 1500N -9 -2 -7 -10 1475N -11 -3 -3 -6 975N 3 22 -2 -16 950N -8 15 5 -10 925N -11 -2 5 1 900N -9 -4 7 5 975N 3 22 -2 -16 950N -8 15 5 -10 925N -11 -7 -4 7 5 950N -8 3 8 3 8 1650N -7 14			****				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L2275N	1675W	-7		-5		
i625N -5 6 -3 4 i600W -5 12 -5 B i575N -11 0 -9 0 i550W -11 0 -9 0 i550W -13 -4 -9 -8 i500W -9 -2 -7 -10 i475W -11 -3 -3 i050W -5 2 -7 i025W -2 -10 0 7 i000W 0 3 -3 -6 975W 3 22 -2 -16 900N -9 -4 7 5 925W -11 -2 5 1 900N -9 -4 7 5 850W -8 3 8 3 850W -8 3 2 12 1625W -7 -4 -1 0 1625W -7 14 -3 12 1575W -11 8		1650W	-5	-2	-5	-2	
1600W -5 12 -5 B 1575W -11 0 -9 0 1525W -13 -4 -9 -8 1500W -9 -2 -7 -10 1475W -11 -3 -3 -6 1050W -5 2 -7 -10 1475W -11 -3 -3 -6 975W -2 -10 0 7 1000W 0 3 -3 -6 975W -8 15 5 -10 925W -11 -2 6 1 900W -9 -4 7 5 875W -8 3 3 2 900W -7 -4 -1 0 1625W -7 -4 -7 -5 1550W -7 -4 -7 -4 1550W -7 -7 -2 -		16254	-5	6	-3	4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1600W	-5	12	-5	B	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15758	-11	8	-7	6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15500	-11	0	-9	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1525	-13	-4	-9	-8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1500W	-9	-2	-7	-10	
i450M -9 -3 1050M -5 2 1025H -2 -10 0 7 1000M 0 3 -3 -6 975W 3 22 -2 -16 950M -8 15 5 -10 925W -11 -2 6 1 900N -9 -4 7 5 975W -8 3 3 3 900N -9 -4 7 5 975W -8 3 3 3 850W -7 -4 -1 0 1625W -7 -4 -1 0 1625W -3 8 -3 8 1600N -7 14 -3 12 1575W -11 8 -9 -2 1500W -11 -4 -7 -4 1475W -11 -5		14750	-11		-3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1450₩	-9		-3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1050W	-5		2	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1025	-2	-10	0	7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1000	0	3	-3	-6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		975N	3	22	-2	-16	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		950W	-8	15	5	-10	
900N -9 -4 7 5 875N -8 3 3 850N -8 5 L2300N 1675N -7 -4 -1 0 1650N -7 -4 -1 0 1650N -7 -4 -1 0 1650N -7 -4 -1 0 1650N -3 8 -3 8 1600N -7 14 -3 12 157N -11 8 -9 2 1550N -13 -4 -5 -2 150N -11 -4 -7 -4 1525N -13 -4 -5 -2 150N -11 -5 -2 150N -11 -5 -7 -4 -4 -7 -4 -4 -7 -4 -4 -7 -4 -4 -7 -4 -7 -4 -7 2 2 10 0 2		925W	-11	-2	b -	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		900N	-9	-4	/	5	
B30N -8 5 L2300N 1675N -7 -5 1650N -7 -4 -1 0 1625N -3 8 -3 8 1600N -7 14 -3 12 1575N -11 8 -9 2 1550N -13 0 -9 -6 1525N -13 -4 -5 -2 1500N -11 -4 -7 -4 1475N -11 -5 -5 -2 1050N -7 2 2 -7 1450N -9 -3 -3 -2 1050N -7 2 2 -10 -2 1050N -7 2 2 -10 -2 1050N -7 2 2 -10 -2 1050N -7 14 4 -4 -3 900N -11 -5		8/50	-8		3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		850W	-8		5		
1650N -7 -4 -1 0 $1625N$ -3 8 -3 8 $1600N$ -7 14 -3 12 $1575N$ -11 8 -9 2 $1575N$ -11 8 -9 2 $1550N$ -13 -4 -5 -2 $1550N$ -11 -4 -7 -4 $1550N$ -11 -4 -7 -4 $1550N$ -11 -4 -7 -4 $1450N$ -9 -3 -7 -10 2 2 $1025N$ -4 -10 2 2 $1000N$ -2 2 $1025N$ -4 -10 2 2 $1000N$ -2 2 $1025N$ -4 -10 -2 2 $1000N$ -2 2 $1025N$ -7 14 4 -4 $900N$ -11 -5 5 5 <	L2300N	1675W	-7		-5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		16500	-7	-4	-1	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1625W	-3	8	-3	8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1600W	-7	14	-3	12	
1550N -13 0 -9 -6 1525W -13 -4 -5 -2 1500N -11 -4 -7 -4 1475N -11 -5 -3 1050N -9 -3 -3 1050N -7 2 2 1025W -4 -10 2 2 1000N -2 -9 2 4 975N 1 4 0 -2 950N 2 21 0 -9 925W -7 14 4 -4 900N -11 -5 5 5 $875W$ -8 3 $850W$ -5 1 L2325N $1675W$ -9 -3 12 12 L2325N $1675W$ -9 -3 12 12 L2325N $1675W$ -9 -3 12 12 12 12 L2325N $1675W$ <		15751	-11	8	-9	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1550%	-13	0	-9	-6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1525W	-13	-4	-5	-2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1500W	-11	-4	-/	-4	
1430N -3 -3 1050N -7 2 1025N -4 -10 2 2 1000N -2 -9 2 4 975N 1 4 0 -2 950N 2 21 0 -9 925N -7 14 4 -4 900N -11 -5 5 5 975N -8 3 3 850N -5 1 L2325N 1675N -9 -3 -3 -3 -3 L2325N 1675N -9 -3 -3 -3 -3 L2325N 1675N -9 -3 -3 -3 -3 L2325N 1675N -9 4 -3 -3 -3 L2325N 1675N -9 4 -5 9 1500N -5 8 -3 12 12 -5 9 1550N -9 4 -10		14/0W	-11		-0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1400W	-3		-3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10500	-7	10	2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10200	-4	-10	2	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1000M 0750	-2		1	4 ,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		77 3W 0501	1 2	4	Ű	~2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		730M U250	-7	21	0	-7	
S00k -11 -5 5 5 875k -8 3 850k -5 1 L2325k 1675k -9 -3 1650k -5 -4 -5 1650k -5 4 0 1650k -5 4 0 1650k -5 8 -3 1650k -5 8 -3 1500k -5 8 -3 1575k -9 4 -10		32JM 9000	-/	14 E	4	-9	
b73# -8 3 850W -5 1 L2325N 1675W -9 -3 1650W -5 -4 -5 1650W -5 4 0 1600W -5 8 -3 1575W -9 4 -5 1575W -9 4 -10		300% 8750	-11	-5	J 1	3	
L2325N 1675W -9 -3 1650W -5 -4 -5 -5 1625W -5 4 0 3 1600W -5 8 -3 12 1575W -9 4 -5 9 1550W -9 4 -10 -3		850W	-8 -5		3 1		
1650W -5 -4 -5 -5 1625W -5 4 0 3 1600W -5 8 -3 12 1575W -9 4 -5 9 1550W -9 4 -10 -3	123250	16754	-9		-3		
1625W -5 4 0 3 1600W -5 8 -3 12 1575W -9 4 -5 9 1550W -9 4 -10 -3	68484U	1650¥	-5	-4	-5	-5	
1600W -5 8 -3 12 1575W -9 4 -5 9 1550W -9 4 -10 -3		1625	-5	4	0	2	
1575W -9 4 -5 9		16000	-5	R	~3	12	
15504 -9 4 -10 -3		1575₩	-9	ě.	-5	4. P	
		1550W	-9	4	-10	-3	

Grid Location		Hawa	ii	Annapolis		
		Ð.A.	۶.۶.	D.A.	F.F.	
L2325N	15258	-9	6	-1	-7	
	1500W	-13	0	-5	0	
	14/5%	-11		-5		
	145UW	-11		-1		
	1050W	-5	_	4		
	10250	-4	-6	1	2	
	10000	0	-1	2	0	
	9758	-3	-6	1	5	
	950W	0	3	2	2	
	9258	3	21	-4	-9	
	900	-9	4	5	-3	
	875W	-9		2		
	850W	-1		2		
L2350N	1675W	-8		-1		
	1650W	-7	-1	-1	0	
	1625₩	-5	8	1	10	
	1500W	-9	8	-3	12	
	15758	-11	2	-7	4	
	1550W	-11	1	-7	-1	
	1525W	-11	1	-7	-3	
	1500W	-12	-i	-6	-3	
	1475W	-11		-5		
	1450W	-11		-5		
	1225W	0		-5		
	1200W	-5	14	-1	-12	
	1175₩	-6	14	2	-6	
	1150W	-13	3	4	0	
	1125	-12	-7	3	2	
	1100W	-10	-9	3	4	
	1075W	-8	-8	2	3	
	1050W	-5	-6	0	0	
	1025₩	-5	-8	2	3.	
	1000W	-2	-9	0	3	
	975W	0	-7	-1	0	
	950W	2	3	0	0	
	925W	3	15	-1	-5	
	900W	-4	8	0	-7	
	875W	-6		4		
	850W	-3		2		
L2375N	1675W	-11		-2		
	16508	-9	-5	-1	7	
	1625W	-7	3	-3	8	
	1600W	-8	7	-7	3	
	1575W	-11	3	-5	i	

Grid Location		Havai	i	Annapolis		
		D.A.	F.F.	D.A.	F.E.	
		44444	*****			
L2375H	1550W	-11	0	-8	-3	
	1525W	-11	0	-5	-3	
	1500W	-11	0	-5	0	
	14750	-i1		-5		
	1450¥	-11		-5		
	1225W	-3		-9		
	1200W	-3	3	-9	-2	
	1175W	-3	9	-9	-4	
	1150₩	-6	15	-7	-10	
	1125W	-9	13	-7	-16	
	1100W	-15	0	1	-7	
	10750	-13	-10	i	5	
	1050₩	-11	-11	0	9	
	1025W	-7	-7	-3	7	
	1000W	-6	-3	-5	2	
	975W	-5	-5	-5	4	
	950W	-5	-7	-5	6	
	925W	-1	-1	-9	0	
	900W	-2	9	-7	-10	
	875W	-3		-7		
	BSOW	-9		1		
L2400N	1675W	-7		-3		
	1650W	-7	2	-3	4	
	16251	-7	6	-5	1	
	1500W	-9	6	-5	-2	
	1575₩	-11	0	-4	2	
	1550W	-11		-4		
	1525W	-9		-7		
	1225₩	-6		-5		
	1200W	-6	2	-5	6	
	11750	-7	-2	-7	8	
	1150W	-7	-7	-9	8	
	1125₩	-4	-7	-11	4	
	1100W	-3	-2	-13	-2	
	1075W	-1	3	-11	-6	
	1050W	-4	5	-11	-12	
	1025W	-3	5	-7	-12	
	1000W	-7	-2	-3	-4	
	975W	-5	-7	-3	6	
	950W	-3	-9	-3	14	
	925W	-2	-	-9		
	900W	3		-11		
	1675 4	-8		4		
	1650W	-8	0	3	3	
	1625W	-9	0	i	-1	

Grid Location		Havai	ii	Annapolis		
		D.A.	F.F.	D.A.	F.F.	

L2425N	1600W	-7	5	3	0	
	1575W	-10	3	2	3	
	1550W	-11		2		
	1525₩	-9		0		
	1225W	-5		-3	_	
	12000	-5	1	-5	8	
	11/5W	-4	3	-1	6	
	11508	-1	-1	-9	0	
	11250	-5	-2	-9	-6	
	1100₩	-5	-2	-1	-6	
	10750	-5	-2	-5	-2	
	10500	-3	2	-2	0	
	10250	-5	2	-5	0	
	10000	-3	2	-5	-2	
	9738		U .	-5	-2	
	230M 025U	-/	-4	-3	2	
	923W 920U	-3 F		-5 5		
	3000	-0		-0		
L2450¥	1675W	-10		2		
	1650W	-7	0	3	4	
	1625W	-10	-1	0	-1	
	1600W	-7	2	i	-3	
	1575N	-9	5	3	1	
	1550₩	-10		i		
	1525₩	-11		2		
	1225W	-5		-5		
	12000	-5	3	-9	3	
	1175W	-7	-1	-9	-2	
	1150₩	6	-1	-8	-4	
	1125₩	-5	1	-8	-4	
	1100₩	-7	-1	-5	-1	
	10/50	-5	-3	-7	0.	
	10500	-6	-3	-5	2	
	10ZON KODOU	-3	1	-/	-2	
	10000	-0	4	-/	-10	
	3/38	-5	2	-3	-6	
	930W	-/	-2	-1	Ь	
	9230	-3		-3		
	300 M	-5		-7		
L2475N	975W	-4		2	-	
	AACC.	Ű	Ų	2	1	
	32 3 #	-2	-1	2	15	
	300W	-2	-8	-2	11	
	8/3W	1	-8	-ь	3	

Transm	itting	Stations

D.A. F.F. D.A. L2475N 850H 3 -6 -8 L2475N 850H 3 -6 -8 825N 4 -8 -6 800W 6 -3 775W 9 -4 L2500N 1975H -9 11 1950W -9 5 11 1925W -10 7 13	F.F. -5 -7
L2475N 850H 3 -6 -8 825N 4 -8 -6 800N 6 -3 775N 9 -4 L2500N 1975H -9 11 1950N -9 5 11 1925N -10 7 13	 -5 -7
L2475N 850W 3 -6 -8 825W 4 -8 -6 800W 6 -3 775W 9 -4 L2500N 1975W -9 11 1950W -9 5 11 1925W -10 7 13	-5 -7
825N 4 -8 -6 800W 6 -3 775W 9 -4 L2500N 1975W -9 11 1950W -9 5 11 1925W -10 7 13	-7
BOON 6 -3 775W 9 -4 L2500N 1975W -9 11 1950W -9 5 11 1925W -10 7 13	1
775W 9 -4 L2500N 1975W -9 11 1950W -9 5 11 1925W -10 7 13	1
L2500N 1975H -9 11 1950W -9 5 11 1925W -10 7 13	1
1950W -9 5 11 1925W -10 7 13	1
1925W -10 7 13	
·····	9
1900W -13 2 8	8
1875W -13 7	
1850W -12 6	
1675W -9 2	
1650W -8 -5 2	3
1625N -5 0 1	-1
1600N -5 7 O	-3
1575₩ –B 7 4	3
1550 4 -11 0	
1525W -10 1	
975W -2 2	
950 4 - i -1 0	9
9254 0 0 -2	6
90011 -2 -6 -5	-2
875W 1 -14 -3	-4
B50W 3 -14 -2	-2
8251 10 3 -2	-4
B00W 8 -1	
775W 2 1	
L2525N 1975W -11 10	_
1950N -10 3 13	7
1920W -12 2 8	8
1900W -12 -1 8	4
18/0W -12 5	
1850W ~11 7	
975H 2 -1	-
950W 1 7 1	3
¥∠⊃₩ ~2 4 ~2	2
900W -2 -3 -1	3
8/DW -3 -14 -2	4
809¥ 2 -14 -4	-1
820W 7 -4 -3	-3
800W 6 -2	
//ow / -2	

Grid Location		Kavaj	ii	Annapolis	
		D.A.	F.F.	D.A.	F.F.
L2550N	2050W	-13		9	
	2025W	-12	-8	10	1
	2000N	-8	-1	10	0
	1975W	-9	5	8	-2
	1950W	-10	7	12	5
	19258	-12	4	8	4
	1900₩	-14	-3	7	-2
	18759	-12		9	
	1850W	-11		8	
	1675W	~10		4	
	1650W	-8	-3	3	-2
	1625W	-9	-4	4	-2
	1600W	-6	6	5	2
	1575W	-7	14	4	4
	1550W	-14		3	
	1525₩	-13		2	
	975W	2	_	-2	
	950W	-2	5	2	5
	925W	-3	0	-2	7
	900W	-2	-1	-3	2
	8/5W	-3	-8	-4	-4
	820N	-1	-15	-3	-8
	825₩	4	-8	0	-5
	800W	/		1	
	//JW	4		1	
L2575N	2050W	-15		13	
	2025N	-13	-10	10	3
	2000₩	-10	-8	11	3
	1975W	-8	4	9	4
	19500	-7	15	9	1
	1925W	-15	10	7	-5
	1900¥	-15	2	10	-6,
	1875	-17		11	
	1850W	-15		12	
	1675W	-10		4	
	1650W	-9	-5	3	5
	1625W	-9	-7	2	2
	1600W	-5	4	0	-3
	1575W	-6	14	3	0
	1550₩	-12		2	
	15258	-13		1	
	975	2	_	-2	-
	950W	-2	8	0	5

	Grid Location		Hawai i		Annapolis	
			D.A.	E.E.	D.A.	F.F.
	(うにうこい)	00511				
	LZJ/JN	923¥	-6	-8	-3	য •
		900M 0750	-2	-11	-4	-1
		050U	2	-6	-2	<u> </u>
		OJUN Dogu	1	-8	-4	-1
			5	-4	-4	-7
		775W	6 4		-1 -5	
	L 2600N	2050W	-14		12	
•		2025	-13	-8	12	8
		2000W	-10	-5	9	5
		1975W	-9	1	7	-1
		1950W	-9	6	9	-1
		19250	-11		8	
		1900W	-13		9	
		1675W	-11	_	5	-
		1550	-10	-5	0	-2
		16250	-9	-7	4	0
		1600	-7	0	3	4
		15759	~5	12	1	2
		1550W	-11		2	
		1525₩	-13		0	
		975K	2		2	
		950W	0	7	2	9
		325W	-3	-2	-1	8
		900W	-2	-8	-4	2
		875W	1	-8	-3	0
		850W	2	-10	-4	-2
		825W	5	-7	-3	0
		800W	8		-2	
		775₩	6		-5	
	L2625N	2050W	-8		7	-
		2025₩	-13	1	9	-3
		2000₩	-11	-4	10	2
		19/5W	-11	-3	3	2
		193VW	-9	4	в	-2
		19230	-10		3	
		TANOM	-14		10	
		1675W	-11		-4	-
		1650W	-9	-6	0	-9
		1625₩	-1	-3	0	-11
		1600W	-7	4	5	-4
		10/00	-6	10	<u>ه</u>	6
		NUCCI	-12		3	

Transmitting Stations	

Grid Location		Hawaii		Annapolis	
		D.A.	F.F.	D.A.	F.F.
L2625N	1525₩	-11		2	
	975W	1		3	
	950¥	Ō	7	0	9
	925W	-3	2	-3	3
	900	-3	-1	-3	0
	875W	-2	-4	-3	-1
	850W	-3	-13	-3	-6
	825W	2	-11	-2	-5
	8001	- 6		2	
	775₩	4		-2	
L2650N	2050W	-9		1	
	2025W	-5	10	0	-7
	2000₩	-13	2	5	-3
	1975W	-11	-6	3	-1
	1950W	-9	4	5	-3
	19251	-9	16	4	-11
	1900₩	-15	16	7	-15
	1875W	-19	2	13	2
	18508	-21		13	
	1825W	-15		5	
	1675W	-10		-5	
	1650W	-9	1	0	-12
	1625W	-11	-3	4	-3
	1600W	-9	-1	3	3
	15750	-8	9	4	5
	1550W	-11		0	
	15254	-15		2	
	975W	-3		-1	
	3204	-3	9	-3	10
	923W	-8	3	-9	-1
	3008	-/	-1	-5	-7.
	8/30	-/	-2	-6	-7
	RACR	-/	-8	-1	-1
	825W	-5	-10	-3	4
	800W	-1		-3	
	775W	-1		-5	
L2675N	2050W	-9		2	
	20251	-7	-6	2	2
	2000₩	-3	4	-1	-7
	1975W	-7	4	3	-8
	1950₩	-7	8	5	-6
	1925₩	-7	16	5	-12

Grid Location		Hawai	i	Annapolis	
		D.A.	F.F.	D.A.	F.F.
L2675N	1900W	-15	6	9	-2
	1875¥	-15	-8	13	22
	1850W	-13		3	
	1825W	-9		-3	
	975W	-5		3	
	950W	-7	2	-3	11
	925W	-7	2	-7	-3
	900W	-7	2	-4	-5
	875W	-9	-4	-3	-3
	850W	-7	-8	-3	-6
	825W	-5	-6	-1	2
	800W	-3		1	
	775W	-3		-7	
L2700N	2050W	-8		1	
	2025	-7	-7	-1	8
	2000W	-5	-2	-3	0
	1975W	-3	2	-5	-10
	1950W	-7	-4	1	-8
	19250	-3	4	1	-11
	1900W	-3	15	3	-3
	1875W	-11	4	10	23
	1850W	-11		-3	
	1825W	-7		-7	
	900W	-9		-3	
	875W	-7	-6	-5	4
	850W	-5	-4	-7	-6
	825W	-5	-4	-5	-6
	BOOW	-3		-1	
	775W	-3		-5	
L2725N	1975W	-1		-5	
	1950W	-3	-1	-5	-10
	1925W	-3	1	0	-3
	1900W	0	13	0	9
	1875W	-7	9	-2	12
	1850₩	-9		-7	
	1B25W	-7		-7	
	900W	-9	_	-2	
	875W	-9	-2	-5	-3
	850W	-9	-4	-3	-8
	825W	-7	-4	-1	-4
	800M	-7		í	
	7 75 W	-5		-1	

Grid Location		. Havæii		Annapolis		
			D.A.	F.F.	D.A.	F.F.
L2750N	1975W		-3		-5	
	1950W		-3	-2	-5	-9
	19250		-3	-4	-1	-1
	1900W		-1	0	0	15
	1875W		-1	10	-5	17
	1850N		-3		-11	
	1825W		-9		-11	
	900W		-7		-8	
	875W		-9	2	-5	-13
	850W		-8	2	-3	-15
	825W		-10	0	3	1
	800W		-9		4	
	775W		-9		-5	
L2775N	900W		-5		-9	
	875W		-9	2	-3	-14
	850W		-9	-4	0	-6
	825W		-7	-2	2	6
	800W		-7		1	
	775W		-7		-5	
L 2800N	900W		-5		-9	
	875₩		-9	0	-5	-8
	850W		-9	-8	-3	2
	825W		-5		-3	
	800W		-5		-7	
	775W (N	O STATION)				
L2825N	900¥		-7		-7	
	875W		-5	-4	-5	-2
	850W		-7	-12	-5	0
	825W		- t		-5	
	800W		1		-5	
	775W (N	O STATION)				
L2850N	975W		-9		-10	
	950W		-11	-6	-9	-7
	925W		-7	-5	-7	-6
	900W		-7	-1	-5	-2
	875W		-6	1	-5	0
	850W		-7	-i	-5	-4
	825W		-7	-2	-5	-4
	800W		-5		-i	
	775₩		-7		-5	
L2875N	975W		-5		-7	
	950W		-6	3	-4	-8

Grid Location		Havai	ii	Annapolis	
		D.A.	F.F.	D.A.	F.F.
					<u></u>
L2875N	925W	-8	-1	-2	-5
	900W	~6	-2	-1	-5
	875W	-7	-1	0	-8
	850W	-5		2	
	825₩	-7		5	
L2900N	975W	-5		-7	
	950W	-6	3	-3	-8
	925W	-7	-2	-2	-3
	900W	-7	-5	0	-2
	875W	-4	2	-2	-12
	850W	-5		2	
	825W	-8		8	
L2925N	975N	-5		-3	
	950W	-6	1	-3	-1
	925W	-5	2	-2	-2
	900W	-7	2	-3	-10
	875¥	-6	2	0	-16
	850W	-8		5	
	825W	-7		8	
L2950N	975W	-5		-1	
	950W	-5	-1	-3	-1
	925¥	-4	0	-3	-8
	900¥	-5	2	0	-12
	875W	-4	3	2	-12
	850W	-7		7	
	825₩	-5		7	
L2975N	975W	-8		2	
	950W	-5	-8	-5	4
	925W	-2	-2	-3	-2
	900W	-3	-4	-4	-3
	875₩	-2	-6	-2	-6
	850N	1		-2	
	825W	0		2	
L3000N	975W	-7		-3	
	950W	-7	-8	-6	2
	925W	-3	-9	-5	0
	900W	-3	-12	-6	-1
	875₩	2	-8	-5	-2
	850W	4		-5	
	825W	3		-4	

Srid Location		Hawaii		Annapoli5	
		D.A.	F.F.	D.A.	F.F.
L3025N	975W	-7		-6	
	950N	-4	-5	-7	-3
	925W	-4	-5	-5	-5
	900W	-2	-7	-5	-5
	875W	-1	-9	-2	-3
	850W	2		-3	
	825W	4		-1	

•

....

-

